
University of Padova

Department of Information Engineering

Ph.D. School on Information Engineering � XXV Cycle

Information and Communication Science and Technologies

Performance Optimization

Of GPU ELF-Codes

School Director

Prof. Matteo Bertocco

Section Coordinator

Prof. Carlo Ferrari

Supervisor

Prof. Gianfranco Bilardi

PhD Candidate

Fausto Artico

2

Abstract

Abstract in English

GPUs (Graphic Processing Units) are of interest for their favorable ratio GF/s
price . Compared to

the beginning - early 1980's - nowadays GPU architectures are more similar to general purpose

architectures but with (much) larger numbers of cores - the GF100 architecture released by NVIDIA

in 2009-2010, for example, has a true hardware cache hierarchy, a uni�ed memory address space,

double precision performance and has a maximum of 512 cores.

Exploiting the computational power of GPUs for non-graphics applications - past or present -

has, however, always been hard. Initially, in the early 2000's, the way to program GPUs was by

using graphic libraries API's (exclusively), which made writing non-graphics codes non-trivial and

tedious at best, and virtually impossible in the worst case. In 2003, the Brook compiler and runtime

system was introduced, giving users the ability to generate GPU code from a high level programming

language. In 2006 NVIDIA introduced CUDA (Compute Uni�ed Device Architecture). CUDA, a

parallel computing platform and programming model speci�cally developed by NVIDIA for its

GPUs, attempts to further facilitate general purpose programming of GPUs. Code edited using

CUDA is portable between di�erent NVIDIA GPU architectures and this is one of the reasons

because NVIDIA claims that the user's productivity is much higher than previous solutions, however

optimizing GPU code for utmost performance remains very hard, especially for NVIDIA GPUs using

the GF100 architecture - e.g., Fermi GPUs and some Tesla GPUs - because a) the real instruction

set architecture (ISA) is not publicly available, b) the code of the NVIDIA compiler - nvcc - is not

open and c) users can not edit code using the real assembly - ELF in NVIDIA parlance.

Compilers, while enabling immense increases in programmer productivity, by eliminating the

need to code at the (tedious) assembly level, are incapable of achieving, to date, performance similar

to that of an expert assembly programmer with good knowledge of the underlying architecture. In

fact, it is widely accepted that high-level language programming and compiling even with a state-

of-the-art compilers loose, on average, a factor of 3 in performance - and sometimes much more -

over what a good assembly programmer could achieve, and that even on a conventional, simple,

single-core machine. Compilers for more complex machines, such as NVIDIA GPUs, are likely to

do much worse because among other things, they face (even more) complex trade-o�s between often

undecidable and NP-hard problems. However, because NVIDIA a) makes it virtually impossible to

gain access to the actual assembly language used by its GF100 architecture, b) does not publicly

explain many of the internal mechanisms implemented in its compiler - nvcc - and c) makes it

virtually impossible to learn the details of its very complex GF100 architecture in su�cient detail

to be able to exploit them, obtaining an estimate of the performance di�erence between CUDA

programming and machine-level programming for NVIDIA GPUs using the GF100 architecture -

let alone achieving some a priori performance guarantees of shortest execution time - has been,

3

4

prior to this current work, impossible.

To optimize GPU code, users have to use CUDA or PTX (Parallel Thread Execution) - a virtual

instruction set architecture. The CUDA or PTX �les are given in input to nvcc that produces as

output fatbin �les. The fatbin �les are produced considering the target GPU architecture selected

by the user - this is done setting a �ag used by nvcc. In a fatbin �le, zero or more parts of the fatbin

�le will be executed by the CPU - think of these parts as the C/C++ parts - while the remaining

parts of the fatbin �le - think of these parts as the ELF parts - will be executed by the speci�c

model of the GPU for which the CUDA or PTX �le has been compiled. The fatbin �les are usually

very di�erent from the corresponding CUDA or PTX �les and this lack of control can completely

ruin any e�ort made at CUDA or PTX level to optimize the ELF part/parts of the fatbin �le that

will be executed by the target GPU for which the fatbin �le has been compiled.

We therefore reverse engineer the real ISA used by the GF100 architecture and generate a set

of editing guidelines to force nvcc to generate fatbin �les with at least the minimum number of

resources later necessary to modify them to get the wanted ELF algorithmic implementations -

this gives control on the ELF code that is executed by any GPU using the GF100 architecture.

During the process of reverse engineering we also discover all the correspondences between PTX

instructions and ELF instructions - a single PTX instruction can be transformed in one or more ELF

instructions - and the correspondences between PTX registers and ELF registers. Our procedure

is completely repeatable for any NVIDIA Kepler GPU - we do not need to rewrite our code.

Being able to get the wanted ELF algorithmic implementations is not enough to optimize the

ELF code of a fatbin �le, we need in fact also to discover, understand, and quantify some not

disclosed GPU behaviors that could slow down the execution of ELF code. This is necessary to

understand how to execute the optimization process and while we can not report here all the results

we have got, we can however say that we will explain to the reader a) how to force even distribu-

tions of the GPU thread blocks to the streaming multiprocessors, b) how we have discovered and

quanti�ed several warp scheduling phenomenons, c) how to avoid phenomenons of warp scheduling

load unbalancing, that it is not possible to control, in the streaming multiprocessors, d) how we

have determined, for each ELF instruction, the minimum quantity of time that it is necessary to

wait before a warp scheduler can schedule again a warp - yes, the quantity of time can be di�erent

for di�erent ELF instructions - e) how we have determined the time that it is necessary to wait

before to be able to read again the data in a register previously read or written - this too can be

di�erent for di�erent ELF instructions and di�erent whether the data has been previously read or

written - and f) how we have discovered the presence of an overhead time for the management of

the warps that does not grow linearly to a liner increase of the number of residents warps in a

streaming multiprocessor.

Next we explain a) the procedures of transformation that it is necessary to apply to the ELF

code of a fatbin �le to optimize the ELF code and so making its execution time as short as possible,

b) why we need to classify the fatbin �les generated from the original fatbin �le during the process of

optimization and how we do this using several criteria that as �nal result allow us to determine the

positions, occupied by each one of the fatbin �les generated, in a taxonomy that we have created,

c) how using the position of a fatbin �le in the taxonomy we determine whether the fatbin �le is

eligible for an empirical analysis - that we explain - a theoretical analysis or both, and d) how -

if the fatbin �le is eligible for a theoretical analysis - we execute the theoretical analysis that we

have devised and give an a priori - without any previous execution of the fatbin �le - shortest ELF

code execution time guarantee - this if the fatbin �le satis�es all the requirements of the theoretical

5

analysis - for the ELF code of the fatbin �le that will be executed by the target GPU for which the

fatbin �le has been compiled.

Abstract in Italian

GPUs (Graphic Processing Units) sono di interesse per il loro favorevole rapporto GF/s
price . Rispetto

all'inizio - primi anni 70 - oggigiorno le architectture GPU sono più simili ad architectture general

purpose ma hanno un numero (molto) più grande di cores - la architecttura GF100 rilasciata da

NVIDIA durante il 2009-2010, per esempio, ha una vera gerarchia di memoria cache, uno spazio

uni�cato per l'indirizzamento in memoria, è in grado di eseguire calcoli in doppia precisione ed ha

un massimo 512 core.

Sfruttare la potenza computazionale delle GPU per applicazioni non gra�che - passate o presenti

- è, comunque, sempre stato di�cile. Inizialmente, nei primi anni 2000, la programmazione su

GPU avveniva (esclusivamente) attraverso l'uso librerie gra�che, le quali rendevano la scrittura

di codici non gra�ci non triviale e tediosa al meglio, e virtualmente impossibile al peggio. Nel

2003, furono introdotti il compilatore e il sistema runtime Brook che diedero agli utenti l'abilità

di generare codice GPU da un linguaggio di programmazione ad alto livello. Nel 2006 NVIDIA

introdusse CUDA (Compute Uni�ed Device Architecture). CUDA, un modello di programmazione

e computazione parallela speci�camente sviluppato da NVIDIA per le sue GPUs, tenta di facilitare

ulteriormente la programmazione general purpose di GPU. Codice scritto in CUDA è portabile tra

di�erenti architectture GPU della NVIDIA e questa è una delle ragioni perché NVIDIA a�erma

che la produttività degli utenti è molto più alta di precedenti soluzioni, tuttavia ottimizare codice

GPU con l'obbiettivo di ottenere le massime prestazioni rimane molto di�cile, specialmente per

NVIDIA GPUs che usano l'architecttura GF100 - per esempio, Fermi GPUs e delle Tesla GPUs -

perché a) il vero instruction set architecture (ISA) è non pubblicamente disponibile, b) il codice

del compilatore NVIDIA - nvcc - è non aperto e c) gli utenti non possono scrivere codice usando il

vero assembly - ELF nel gergo della NVIDIA.

I compilatori, mentre permettono un immenso incremento della produttività di un programma-

tore, eliminando la necessità di codi�care al (tedioso) livello assembly, sono incapaci di ottenere, a

questa data, prestazioni simili a quelle di un programmatore che è esperto in assembly ed ha una

buona conoscenza dell'architettura sottostante. Infatti, è largamente accettato che programmazione

ad alto livello e compilazione per�no con compilatori che sono considerati allo stato dell'arte per-

dono, in media, un fattore 3 in prestazione - e a volte molto di più - nei confronti di cosa un

buon programmatore assembly potrebbe ottenere, e questo per�no su una macchina convenzionale,

semplice, a singolo core. Compilatori per macchine più complesse, come le GPU NVIDIA, sono

propensi a fare molto peggio perché tra le altre cose, essi devono determinare (persino più) complessi

trade-o�s durante la ricerca di soluzioni a problemi spesso indecidibili e NP-hard. Peraltro, perché

NVIDIA a) rende virtualmente impossibile guadagnare accesso all'attuale linguaggio assembly usato

dalla architettura GF100, b) non spiega pubblicamente molti dei meccanismi interni implementati

nel suo compilatore - nvcc - e c) rende virtualmente impossible imparare i dettagli della molto com-

plessa architecttura GF100 ad un su�ciente livello di dettaglio che permetta di sfruttarli, ottenere

una stima delle di�erenze prestazionali tra programmazione in CUDA e programmazione a livello

macchina per GPU NVIDIA che usano la architecttura GF100 - per non parlare dell'ottenimento

a priori di garanzie di tempo di esecuzione più breve - è stato, prima di questo corrente lavoro,

impossbile.

6

Per ottimizare codice GPU, gli utenti devono usare CUDA or PTX (Parallel Thread Execution)

- un instruction set architecture virtuale. I �le CUDA or PTX sono dati in input a nvcc che produce

come output fatbin �le. I fatbin �le sono prodotti considerando l'architecttura GPU selezionata

dall'utente - questo è fatto settando un �ag usato da nvcc. In un fatbin �le, zero o più parti del

fatbin �le saranno eseguite dalla CPU - pensa a queste parti come le parti C/C++ - mentre le

rimanenti parti del fatbin �le - pensa a queste parti come le parti ELF - saranno eseguite dallo

speci�co modello GPU per il quale i �le CUDA or PTX sono stati compilati. I fatbin �le sono

normalmente molto di�erenti dai corrispodenti �le CUDA o PTX e questa assenza di controllo può

completamente rovinare qualsiasi sforzo fatto a livello CUDA o PTX per otimizzare la parte o le

parti ELF del fatbin �le che sarà eseguita / saranno eseguite dalla GPU per la quale il fatbin �le è

stato compilato.

Noi quindi scopriamo quale è il vero ISA usato dalla architettura GF100 e generiamo un insieme

di linea guida per scrivere codice in modo tale da forzare nvcc a generare fatbin �le con almeno

il minimo numero di risorse successivamente necessario per modi�care i fatbin �le per ottenere le

volute implementazioni algoritmiche in ELF - questo da controllo sul codice ELF che è eseguito

da qualsiasi GPU che usa l'architettura GF100. Durante il processo di scoperata del vero ISA

scopriamo anche le corrispondenze tra istruzioni PTX e istruzioni ELF - una singola istructione

PTX può essere transformata in one o più istruzioni ELF - e le corrispondenze tra registri PTX e

registri ELF. La nostra procedura è completamente ripetibile per ogni NVIDIA Kepler GPU - non

occorre che riscrivamo il nostro codice.

Essere in grado di ottenere le volute implementazioni algoritmiche in ELF non è abbastanza per

ottimizzare il codice ELF di un fatbin �le, ci occorre infatti anche scoprire, comprendere e quan-

ti�care dei comportamenti GPU che non sono divulgati e che potrebbero rallentare l'esecuzione

di codice ELF. Questo è necessario per comprendere come eseguire il processo di ottimizzazione

e mentre noi non possiamo riportare qui tutti i risultati che abbiamo ottenuto, noi possiamo co-

munque dire che spiegheremo al lettore a) come forzare una distribuzione uniforme dei GPU thread

blocks agli streaming multiprocessors, b) come abbiamo scoperto e quanti�cato diversi fenomeni

riguardanti il warp scheduling, c) come evitare fenomeni di warp scheduling load unblanacing, che

è non possible controllare, negli streaming multiprocessors, d) come abbiamo determinato, per ogni

istruzione ELF, la minima quantità di tempo che è necessario attendere prima che un warp sched-

uler possa schedulare ancora un warp - si, la quantità di tempo può essere di�erente per di�erenti

istruzioni ELF - e) come abbiamo determinato il tempo che è necessario attendere prima di essere

in grado di leggere ancora un dato in un registro precedentemente letto o scritto - questo pure può

essere di�erente per di�ernti istruzioni ELF e di�erente se il dato è stato precedentemente letto o

scritto - e f) come abbiamo scoperto la presenza di un tempo di overhead per la gestione dei warp

che non cresce linearmente ad un incremento lineare del numero di warp residenti in uno streaming

multiprocessor.

Successivamente, noi spiegamo a) le procedure di trasformazione che è necessario applicare al

codice ELF di un fatbin �le per ottimizzare il codice ELF e così rendere il suo tempo di esecuzione il

più corto possibile, b) perché occorre classi�care i fatbin �le generati dal fatbin �le originale durante

il processo di ottimizzazione e come noi facciamo questo usando diversi criteri che come risultato

�nale permettono a noi di determinare le posizioni, occupate da ogni fatbin �le generato, in una

tassonomia che noi abbiamo creato, c) come usando la posizione di un fatbin �le nella tassonomia

noi determiniamo se il fatbin �le è quali�cato per una analisi empirica - che noi spieghiamo -

una analisi teorica o entrambe and d) come - supponendo il fatbin �le sia quali�cato per una

7

analisi teorica - noi eseguiamo l'analisi teorica che abbiamo ideato e diamo a priori - senza alcuna

precedente esecuzione del fatbin �le - la garanzia - questo supponendo il fatbin �le soddis� tutti

i requisiti dell'analisi teorica - che l'esecuzione del codice ELF del fatbin �le, quando il fatbin �le

sarà eseguito sulla architettura GPU per cui è stato generato, sarà la più breve possibile.

Contents

1: Structure of the Thesis 13

2: Introduction to GPUs 17

2.1 Introduction . 17

2.2 Parallel Thread Execution . 17

2.3 NVIDIA CUDA Compiler . 18

2.4 GPU Threads - Executions . 19

2.5 Launch Con�guration - De�nition . 20

2.6 Instruction Con�guration . 20

2.6.1 De�nition . 21

2.6.2 Dependence Distance . 21

2.6.3 Execution Time . 21

2.6.4 Useless Dependence Types . 21

2.6.5 Examples . 21

2.7 Summary . 23

3: The GF100 Architecture 25

3.1 Introduction . 25

3.2 Main Components of the GF100 Architecture . 25

3.3 Main Components of a Streaming Multiprocessor 27

3.4 Theoretical Tesla C2070 Peak Performances per Second 29

3.5 Summary of the Tesla C2070 Architectural Features 30

4: Types of Performance 31

4.1 Introduction . 31

4.2 Theoretical Streaming Multiprocessor Peak Performance Achievable in a Clock Cycle 31

4.3 Theoretical Streaming Multiprocessor Best Average Performance per Clock Cycle . . 32

4.4 Theoretical Instruction Con�guration Streaming Multiprocessor Peak Performance

Achievable in a Clock Cycle . 32

4.5 Real Instruction Con�guration Streaming Multiprocessor Peak Performance Achiev-

able in a Clock Cycle . 33

4.6 Real ELF Code Streaming Multiprocessor Average Performance per Clock Cycle . . 33

4.7 Theoretical ELF Code Streaming Multiprocessor Best Average Performance per

Clock Cycle . 34

4.8 Real ELF Code Streaming Multiprocessor Best Average Performance per Clock Cycle 35

4.9 Summary . 35

8

Contents 9

5: Lower Bound on the Real ELF Code E�ciency 37

5.1 Introduction . 37

5.2 Calculations to Determine the Lower Bound . 37

5.3 Warp Scheduling on the Not Disclosed Shared Hardware Resources 39

5.4 Warp Scheduling In�uence on the ELF Code Execution Time 39

5.5 Elimination of the Warp Scheduler Variability . 40

5.6 Warp Management Mechanism . 40

5.7 How much Tight Is the Lower Bound? . 44

5.8 Generality of the Solution Found for the Lower Bound 45

5.9 Summary . 45

6: Reverse Engineering of the ISA and Modi�cation of ELF Codes 47

6.1 Introduction . 47

6.2 Localization in Fatbin Files of the ELF Instructions Necessary to Execute the PTX

Instructions of PTX Codes . 48

6.3 PTX - ELF Correspondence Transformations . 50

6.3.1 Editing Guidelines To Edit PTX Files . 50

6.3.2 Analysis and Comparison of the PTX and Fatbin File Structures 52

6.3.3 Number, Type and Matching among PTX and ELF Registers 53

6.4 Database of the Human Readable Text Form Representations 54

6.5 Database of the Binary Codes of the ELF Instructions 56

6.6 Fatbin File Generation Satisfying Resource Constraints 58

6.7 Wanted ELF Algorithmic Implementations . 60

6.8 Summary . 61

7: Discovery, Understanding and Quanti�cation of Not Disclosed GPU

Behaviors 65

7.1 Introduction . 65

7.2 Not Disclosed GPU Behavior Categories . 66

7.3 GPU Architectural Features . 66

7.3.1 Global GPU Assignment and Scheduling Architectural Features 67

7.3.2 Local Streaming Multiprocessor PTX and ELF Architectural Features 67

7.4 PTX and ELF Codes . 71

7.4.1 A Priori Bandwidth and Latency GPU Memories Free Guarantee 71

7.4.2 Structure of the PTX and ELF Codes . 72

7.4.3 Construction of the PTX and ELF Codes . 74

7.5 Launch Con�gurations . 74

7.5.1 Global GPU Assignment and Scheduling Architectural Features 75

7.5.2 Local Streaming Multiprocessor PTX and ELF Architectural Features 75

7.6 GPU Architectural Feature Quanti�cations . 76

7.6.1 Global GPU Assignment and Scheduling Architectural Features 76

7.6.2 Local Streaming Multiprocessor PTX and ELF Architectural Features 79

7.7 Summary . 90

8: Modi�cations, Launch Con�gurations and Transformations 93

8.1 Introduction . 93

10 Contents

8.2 Procedures to Modify Single Fatbin Files . 93

8.2.1 Logically Correct Permutations of the ELF Instructions 93

8.2.2 Even Distribution of the GPU Thread Blocks to the Streaming Multiprocessors 94

8.2.3 Modi�cation of the Reading and/or Writing Mechanisms 94

8.3 Selection of the Launch Con�gurations . 100

8.4 Transformation of the Fatbin File to Analyze . 106

8.5 Summary . 109

9: Warp Scheduling Policies 113

9.1 Introduction . 113

9.2 What is Reasonable to Assume being True . 114

9.2.1 Very Simple Fatbin Files . 114

9.2.2 Executions with Load Balancing . 114

9.2.3 Probably True Things about the Warp Scheduling 114

9.2.4 Because Other Possibilities are Unlikely . 115

9.3 Impossibility of Knowing the Truth . 116

9.4 Cycling Policy - The Probable Warp Scheduling Policy 116

9.4.1 Mechanisms and Dynamics of the Warp Scheduling Cycling Policy 117

9.4.2 Change of the Order of Execution of the Mechanisms 118

9.4.3 Possibility of a Time Di�erence Between Warp Schedulers 118

9.4.4 Supporting Reasons for the Warp Scheduling Cycling Policy 119

9.4.5 Justifying the Starting Time Di�erences . 120

9.5 The Possibility that Other Policies are Executed . 122

9.5.1 Generalization of Results about the Starting Time Di�erences 122

9.5.2 Di�culty to Generalize the Results about the Ending Time Di�erences . . . 123

9.5.3 Consequences of the Reader's Choice . 123

9.5.4 Impossibility to Determine and Understand any Other Policy 124

9.5.5 Why a Policy Di�erent from the Cycling Policy is Unlikely 124

9.6 Advantages and Disadvantages of the Cycling Policy 126

9.7 Summary . 127

10: Taxonomy for Fatbin Files 129

10.1 Introduction . 129

10.2 Warp Scheduling Policy . 130

10.3 Branches . 130

10.4 Eviction Policies Used for the L2 Cache and the L1 Caches 132

10.5 Reading and Writing - Which and Where . 133

10.6 ELF Instructions of Synchronization . 134

10.7 Fatbin Files Generated for the Optimizations . 135

10.8 Summary . 135

11: Analysis/Analyses Selection 139

11.1 Introduction . 139

11.2 Analysis/Analyses Selection . 139

11.3 Summary . 143

Contents 11

12: Guaranteeing A Priori ELF Code Shortest Execution Times 145

12.1 Introduction . 145

12.2 Bandwidths and Latencies of the GPU Memories . 145

12.2.1 Reading and Writing - Positions and Locations 146

12.2.2 Di�culties in the Determination of the Cache Lines to Transfer 146

12.2.3 Supposing the GF100 Architecture Without the L2 Cache 147

12.2.4 Maximum Distance in Number of Warp ELF Instructions 148

12.2.5 Introduction of ELF Instructions of Synchronization 149

12.2.6 Constancy, of the Distances, in Number of Warp ELF Instructions 151

12.2.7 Warp ELF Instructions Implying O�-Chip ↔ On-Chip Transfers 155

12.2.8 Slowdowns due to the Bandwidths and the Latencies 161

12.3 Number of Resident Warps in Each Streaming Multiprocessor 169

12.4 Summary . 171

13: Contributions of the Thesis 175

13.1 Introduction . 175

13.2 Real ISA and ELF Codes . 176

13.2.1 Localization in Fatbin Files of the ELF Instructions Necessary to Execute the

PTX Instructions of PTX Codes . 177

13.2.2 Editing Rules to Force Nvcc . 177

13.2.3 PTX-ELF Correspondences . 179

13.2.4 Reverse Engineering of the Real Instruction Set Architecture 181

13.2.5 Getting the Wanted ELF Algorithmic Implementations 181

13.3 Not Disclosed GPU Behaviors . 182

13.3.1 Advancement of the Resident Warps in a Streaming Multiprocessor 183

13.3.2 Even Distribution of the GPU Thread Blocks 183

13.3.3 Warp Scheduling Load Unbalancing . 184

13.3.4 Local Streaming Multiprocessor PTX and ELF Architectural Features 184

13.4 Transformations and Launch Con�gurations . 186

13.4.1 Transformation of the Original Fatbin File to Be Optimized 187

13.4.2 Selection of the Launch Con�gurations . 187

13.5 Analysis of the Equivalent Fatbin Files Generated 187

13.5.1 Taxonomy for Fatbin Files . 188

13.5.2 Analysis/Analyses Selection . 188

13.5.3 Guaranteeing A Priori ELF Code Shortest Execution Times 188

13.6 Summary . 189

14: Previous Work and its Problems 191

14.1 Introduction . 191

14.2 Previous Work . 191

14.3 Problems with the Previous Work . 194

14.4 Summary . 196

15: Conclusions and Future Research Directions 197

15.1 Introduction . 197

15.2 Conclusions . 197

12 Contents

15.3 Future Research Directions . 198

Chapter 1

Structure of the Thesis

To get a very synthetic summary of the main contributions of this thesis the reader can read 15,

for a more detailed description of the main contributions the reader can read 13, while to get an

idea of the problems a) that a�ict the papers in literature and b) that we have instead addressed

and solved, the read can read 14. After this, to get a further level of detail, this time about all the

contributions of the thesis, the reader can read the summary section of each chapter - to facilitate

his/her research job in the thesis we describe in this chapter the structure of the thesis. Finally,

for the greatest level of detail and to understand the procedures used to get each one of the results,

the reader can read in detail each single chapter. The structure of the thesis is the following:

• In chapter 2 we introduce the reader to the GPU world. In 2.1 we describe the structure of

2 while in 2.2 we talk of PTX, the parallel thread execution virtual machine and instruction

set architecture of the GF100 architecture - the GPU architecture used. In 2.3 we describe

what is disclosed of the GPU compiler, nvcc, and its behaviors when it takes in input CUDA

or PTX codes and produces as output fatbin �les containing the ELF codes that the GF100

architecture has to execute. In section 2.4 we explain what happens each time a fatbin �le

is launched and the role of each GPU thread used to execute the fatbin �le while in section

2.5 we de�ne what is a launch con�guration. In section 2.6 we instead de�ne what are the

instruction con�gurations, explain because they are important, explain how we will time their

executions, explain the type of dependences we can consider in each instruction con�guration,

explain which types of dependences are important and which not and give some examples of

instruction con�gurations;

• In chapter 3 we describe the GF100 architecture. In 3.1 we describe the structure of 3 while

in 3.2 we describe the main components of the GF100 architecture. In 3.3 we analyze what

is disclosed about the many parts composing some of the main components - the streaming

multiprocessors - of the GF100 architecture. In section 3.4 we calculate the theoretical peak

performances per second of the Tesla C2070 - the GPU that we use. In section 5 we summarize,

from the quantitative point of view, the disclosed architectural features of the Tesla C2070;

• In chapter 4 we introduce several type of performances. In 4.1 we describe the structure of

4 while in each one of the remaining sections of the chapter we consider a di�erent type of

performance, give its de�nition, explain because it is important or not and put in evidence

which of them we consider when we want to optimize the ELF code in a fatbin �le;

13

14 Chapter 1. Structure of the Thesis

• In chapter 5 we explain that when we calculate the e�ciency of an ELF code in a fatbin �le

in reality we are calculating a lower bound on the real ELF code e�ciency. In 5.1 we describe

the structure of 5 while in 5.2 we explain more in detail why we need to calculate a lower

bound on the real ELF code e�ciency and underline the challenge about the quanti�cation

of the tightness of this lower bound. In 5.3 we describe the problem of the warp scheduling

on the not disclosed shared hardware resources and in 5.4 we stress its in�uence on the ELF

execution time. In 5.5 we explain that also if we eliminate the problem given by the variability,

due to the warp scheduling, of the ELF code execution time, it is not yet possible to quantify

the tightness of the lower bound on the real ELF code e�ciency. In 5.6 we describe the warp

scheduling mechanism. In 5.7 we explain that, also whether it is evident that it is not possible

to quantify how much tight is the lower bound, the lower bound is always the more tight that

it is possible. In 5.8 we explain that the results we get in 5.7 are valid in all the possible cases;

• In chapter 6 we reverse engineer the real instruction set architecture - and so not the PTX but

the ELF - to be able to get the wanted ELF algorithmic implementations when we write code -

PTX is the lowest way to write code so we need to write code in PTX, give it in input to nvcc,

get as output a fatbin �le and modify in the fatbin �le the ELF code corresponding to the PTX

code. In 6.1 we describe the structure of 6 while in 6.2 we explain the procedure necessary

to localize in a fatbin �le the ELF instructions corresponding to the PTX instructions of a

PTX �le given in input to nvcc for the generation of the fatbin �le. In 6.3 we explain that to

be able to modify ELF code is necessary to understand the correspondences between single

PTX instructions and ELF instructions used in the fatbin �les to execute the single PTX

instructions and we explain how we accomplish this - using speci�c editing rules to edit the

PTX �les, checking the structures of the PTX �les and their corresponding ELF codes in the

fatbin �les, understanding the number, type and matches between the PTX registers used

in each single PTX instruction and their counterparts in the ELF code. In 6.4 we therefore

build a database storing all the correspondences a) between single PTX instructions and ELF

instructions necessary to execute each single PTX instruction and b) between PTX registers

used in the single PTX instructions and the ELF registers used in the ELF instructions

necessary to execute each single PTX instruction. In 6.5 we reverse engineer the binary codes

of each single ELF instruction of interest. In 6.6 we explain how we produce fatbin �les

satisfying the resource constraints we need - this to be able later to modify ELF codes in

fatbin �les. In 6.7 we describe all the steps of the procedure necessary to generate the wanted

ELF algorithmic implementations;

• In chapter 7 we discover, understand and quantify some not disclosed GPU behaviors In 7.1

we describe the structure of 7 while in 7.2 we subdivide the not disclosed GPU behavior we

want to discover, understand and quantify in two categories - global and local. In 7.3 we de-

scribe the global GPU assignment and scheduling architectural features necessary to discover,

understand and quantify the global GPU behaviors and the local streaming multiprocessor

PTX and ELF architectural features necessary to discover, understand and quantify the local

GPU behaviors. In 7.4 we explain the importance of having a priori guarantees that the PTX

and the ELF codes, that we use to quantify the GPU architectural features, can not be slowed

down in their executions by the bandwidths and the latencies of the GPU memories and we

explain a) how we get these a priori guarantees giving to the PTX and to the ELF codes

speci�c structures and b) how we construct such PTX and ELF codes. In 7.5 we specify the

15

launch con�gurations that we use for the quanti�cation of the GPU architectural features

distinguishing between launch con�gurations used for the quanti�cation of the global GPU

assignment and scheduling architectural features and the local streaming multiprocessor PTX

and ELF architectural features. In 7.6 we quantify the global GPU assignment and schedul-

ing architectural features and the local streaming multiprocessor PTX and ELF architectural

features;

• In chapter 8 we explain how to transform a fatbin �le to increase the probability to get a

greater lower bound on its real ELF code e�ciency. In 8.1 we describe the structure of 8

while in 8.2 a description of the procedures we use to modify a fatbin �le. In 8.3 we describe

the procedure to generate the set of launch con�gurations that is used when we analyze a

fatbin �le. In 8.4 we explain the procedure that takes in input the fatbin �le that is necessary

to optimize and that produces as output a) a set of fatbin �les that is used to analyze the

original fatbin �le in input and b) a set of launch con�gurations for each one of the fatbin

�les generated;

• In chapter 9 we talk about the possible warp scheduling policy that could be executed by

the warp schedulers in the streaming multiprocessors of the GF100 architecture. In 9.1 we

describe the structure of 9 while in 9.2 with explain what is reasonable to assume being true

about the warp scheduling policy - this considering the results of 7. In 9.3 we talk however

of the impossibility of knowing whether what said in 9.2 is the truth in the real world. In

9.4 we therefore introduce the warp scheduling policy that we believe is the warp scheduling

policy that the warp schedulers in the streaming multiprocessors of the GF100 architecture

execute, this at least in the case when the bandwidths and the latencies of the GPU memories

can not slow down the execution of a fatbin �le. In 9.5 we talk instead about the possibility

that other warp scheduling policies are executed by the warp schedulers in the streaming

multiprocessors of the GF100 architecture and explain why, in our opinion, it is unlikely that

the warp schedulers in the streaming multiprocessors of the GF100 architecture execute warp

scheduling policies di�erent from the warp scheduling cycling policy. In 9.6 we conclude the

chapter describing the advantages of the warp scheduling policy and its only disadvantage;

• In chapter 10 we introduce a taxonomy for fatbin �les. In 10.1 we describe the structure of 10

while in 10.2 a summary of the consequences of what said in the previous chapter about the

�rst of the �ve factors necessary to classify a fatbin �le, the warp scheduling policy executed

by the warp schedulers in the streaming multiprocessors. In 10.3 we talk of the second of

the �ve factors, the presence or not of branches in the ELF code of the fatbin �le and of its

consequences. In 10.4 we talk of the third of the �ve factors, the eviction policies used for the

l2 and l1 caches of the GF100 architecture. In 10.5 we talk of the fourth of the �ve factors,

the reads and writes of the GPU threads used to execute the fatbin �le. In 9.4.5 we talk of

the last of the �ve factors, the presence of ELF instructions of synchronization in the fatbin

�le. Finally, in 10.7, we talk of the consequences of the possible combinations, generated by

these 5 factors, on the fatbin �les generated, using the procedures described in 8, for the

optimizations;

• In chapter 11 we list the possible combinations given by a) the position, of the fatbin �les,

generated using the procedures described in 8, in the taxonomy for fatbin �les introduced in

the 10, and b) the reader's goals, and we explain the process necessary to select the analysis

16 Chapter 1. Structure of the Thesis

or the analyses that can be executed on the fatbin �les and we describe one of the two possible

analyses - the empirical one;

• In chapter 12 we explain how we guarantee a priori ELF code shortest execution times using

the other of the two possible analyses - the theoretical one. In 12.1 we describe the structure

of 12 while in 12.2 we describe the theoretical proof that it is necessary to prove that the

execution of the ELF code of a fatbin �le can not be slowed down by the bandwidths and the

latencies of the GPU memories. In 12.3, supposing the execution of an ELF code of a fatbin

�le can not be slowed down by the bandwidths and the latencies of the GPU memories, we

instead describe how to determine the minimum number of resident warps that it is necessary

in each streaming multiprocessor to avoid pipeline stalls.

• In chapter 13 we summarize our contributes. At the introduction in 13.1 follows the four

sections of the chapter. In section 13.2 we summarize our contributions about the reverse

engineering of the real ISA and the modi�cation of ELF code. In 13.3 we summarize our

contributions about the discovery, understanding and quanti�cation of not disclosed GPU

behaviors. In 13.4 we summarize our contributions about the transformation of the ELF code

of the original fatbin �le to optimize and the selection of the launch con�gurations to use

during the analysis/analyses. In 13.5 we summarize our contributions about the procedures

of analysis developed to analyze the fatbin �les generated for the optimization of the original

fatbin �le.

• In chapter 14 we describe in 14.2 the previous work and highlight in 14.3 the problems a)

that a�ict all the results of all the papers that we were able to �nd but b) do not a�ict our

work and the results got in this thesis.

• In chapter 15 we write the conclusions and explain the future research directions that could

be followed to continue to develop the four main topics of this thesis and so a) the reverse

engineering of the real ISA and the modi�cation of ELF code to be able to have complete con-

trol on the ELF codes executed by GPUs, b) the discovery, understanding and quanti�cation

of not disclosed GPU behaviors to get data to use to understand how to optimize ELF code,

c) the processes of transformation that can be applied to a fatbin �le for its optimization and

d) the analysis of ELF codes 1) with the development of methods of classi�cation for ELF

codes to understand the analysis/analyses that it is possible to execute on ELF codes, 2) with

the development of empirical analyses and 3) with the development of theoretical analyses

able to give a priori guarantees on the execution times of ELF codes.

Chapter 2

Introduction to GPUs

2.1 Introduction

In this chapter we introduce the reader to GPUs. The discussions are valid for all the GPUs using

the GF100 or later architecture - see 3 for a description of the GF100 architecture and its main

hardware components.

We start talking of PTX, one of the possible "tools" to edit GPU code. We use PTX because

it "facilitates" the reverse engineering of the real instruction set architecture - 6.5. Understanding

the real instruction set architecture is necessary to be able to modify - if necessary - the parts of

the codes the GPU is going to execute. Next we talk of the NVIDIA compiler - nvcc. We describe

what nvcc takes in input, compiles and what produces as output - fatbin �les. We explain the many

parts composing a fatbin �le and later - 6.2 - we explain how we localize the several parts in each

fatbin �le, this to be able - if necessary - to modify the parts, containing the ELF code - 2.3 - that

correspond to the PTX code that we edit.

Follow a discussion on what the GPU threads execute when we launch a fatbin �le - a subset

of instructions of the real instruction set architecture. The subset is in ELF and is one of the parts

of the fatbin �le executed by the GPU - 6.2.

We therefore explain how we need logically con�gure the GPU threads, that we want to execute

a fatbin �le, before each execution of the fatbin �le. This is important because di�erent launch

con�gurations imply di�erent parameters to use in the analysis process of each fatbin �le and so it

could be that when some launch con�gurations are used to execute a fatbin �le, the couple (fatbin

�le , launch con�guration) has a greater probability to satisfy all the requirements of the analysis

process if some launch con�gurations are used instead of others.

Finally we de�ne what is an instruction con�guration and describe the instruction con�guration

features that we use in 7 to discover, understand and quantify the GPU behaviours - the GPU

behaviors are used for the analysis or the analyses and the modi�cation of the ELF codes in the

fatbin �les.

2.2 Parallel Thread Execution

GPU codes can be written in several ways, one of the possible ways is using PTX. As reported

in the NVIDIA PTX manual - [52] - PTX is however much more than only one of the possible

17

18 Chapter 2. Introduction to GPUs

ways to edit GPU code because PTX at its core is a parallel thread execution virtual machine and

instruction set architecture (isa).

As reported in [52] the main aims of PTX are the following: 1) provide a stable isa that spans

multiple GPU generations, 2) achieve performance in compiled applications comparable to native

GPU performance, 3) provide a machine-independent isa for C/C++ and other compilers to target,

4) provide a code distribution isa for application and middleware developers, 5) provide a common

source-level isa for optimizing code generators and translators, which map PTX to speci�c target

machines, 6) facilitate hand-coding of libraries, performance kernels, and architecture tests, 7)

provide a scalable programming model that spans GPU sizes from a single unit to many parallel

units.

PTX is the lowest of the "high" level "programming languages" that we can use to edit GPU

code. We use PTX to reverse engineer the real instruction set architecture of the Tesla C2070 - the

GPU we use in this thesis - because using PTX to edit GPU code we can skip several phases of the

compiling chain used by nvcc. Skipping several phases we get a compiled code gone under a minor

number of transformation phases of all the other possible cases where any of the other available

programming languages is used to edit GPU code.

We can not have the guarantee that the compiled codes achieved given in input PTX code to

nvcc are more near to mirror the original PTX codes of all the other possible cases where the GPU

code is written using any of the other available programming languages but PTX "facilitates" the

job of understanding a) as each single PTX instruction is transformed by nvcc and b) which and

how many ELF instructions in the fatbin �le produced as output by nvcc are used to execute each

single PTX instruction.

We always need to give in input to the NVIDIA CUDA compiler - nvcc - each one of the PTX

codes we edit. In the next section we therefore describe the nvcc job when it get in input PTX

code and later the nvcc job when it get in input GPU codes written not using PTX.

2.3 NVIDIA CUDA Compiler

We now know that one of the possible ways to edit GPU code is using PTX. PTX code can not

however to be executed, in its original form, by the GPU. Before the GPU is able to execute PTX

code or any other code that can be written using any NVIDIA tool or programming language it is

necessary to compile the code using nvcc, the NVIDIA CUDA compiler.

The nvcc source code is not open so the things we know of nvcc are written in the NVIDIA

nvcc manual. Nvcc can take in input two types of di�erent �les. Both the types of �les contain

code we want to be executed by the GPU but the code we want to be executed by the GPU has to

be completely written using a) only PTX or b) using only one or more of the others programming

languages allowed by NVIDIA. The two di�erent type of �les nvcc can take in input are the following:

• The .PTX or parallel thread execution �les. The PTX �les contain only GPU code and the

GPU code in them can be only PTX code. When the nvcc compiler takes in input a PTX

�le it produces as output a fatbin - fat binary - �le. The fatbin �le contain the PTX code

transformed in GPU assembly - let us call the GPU assembly ELF, this considering that when

we use cuobjdump, 6.2, it returns as output an interpretation text �le of what it de�nes being

a fatbin ELF code.

Our analysis of the ELF code - 6 - shows that is possible that one or more ELF instructions

2.4. GPU Threads - Executions 19

corresponds to a single PTX instruction but that there are also ELF instructions that do not

correspond to any PTX instruction. More, the dimension of an fatbin �le is bigger of the

dimension of each ELF instruction - 8 bytes - times the number of ELF instructions used to

execute the PTX code - 6.2.

• The .cu or CUDA �les. The CUDA �les contain CPU and GPU code. The GPU code in the

CUDA �les can not be PTX and is written using one of the several programming languages

made available by NVIDIA.

When a CUDA �le is given in input to nvcc, nvcc splits the CUDA �le in one or more CPU

parts and in one or more GPU parts. The GPU parts are �rst transformed by nvcc in PTX

codes and next the PTX codes are transformed by nvcc in ELF codes - this is done considering

the particular target GPU architecture where the PTX codes have to be executed. The ELF

codes so obtained are one of the parts of the fatbin �les generated by nvcc during the compiling

phase - 6.2. After the CPU parts have been compiled using the C/C++ compiler of the CPU

host machine nvcc, merges together the C/C++ compiled parts destined to be executed by

the CPU and the GPU parts destined to be executed by the GPU. The �nal result is a fatbin

�le.

The merge between the CPU parts and the GPU parts is necessary a) because when a fat-

bin �le is executed its execution starts on the CPU side and b) because some CPU-GPU

synchronizations could be necessary.

Each time a fatbin �le is launched, its GPU parts are executed by GPU threads - 2.4. In the

case the fatbin �le is produced starting by a PTX �le then the fatbin �le has to be called by inside a

CUDA �le - the CUDA �le has to be processed too to produce another fatbin �le as output because

the processing has always to start on the CPU side but a fatbin �le produced starting by a PTX

�le do not have any C/C++ code.

Now we know that only some parts of each fatbin �le are executed by the GPU, the GPU parts,

while the other parts of a fatbin �le are executed by the CPU. The GPU parts are executed by

GPU threads. In the next section what each GPU thread executes of the GPU parts.

2.4 GPU Threads - Executions

We edit code we want executed by the GPU using PTX or one of the other available programming

languages. Next we given the code in input to nvcc and we get as output a fatbin �le that we later

launch. When we launch a fatbin �le the fatbin �le starts to be executed by the CPU and later one

or more of its parts are executed by the GPU.

In the parts executed by the GPU there are some subparts - 6.2 - completely composed of ELF

code instructions - let us call such subparts completely composed of ELF code instructions sp. The

subparts sp - created by nvcc during the compiling process - correspond to the code that a) we

wanted executed by the GPU and b) we wrote using PTX or one of the other available programming

languages. Each time we launch a fatbin �le the subparts sp are always executed by all the GPU

threads we decide - at the moment of the fatbin launch - we want to execute the fatbin �le. This

does not mean that di�erent threads executes di�erent parts of the subparts sp. Each GPU thread

executes all the subparts sp of a fatbin �le or in other words each one of the subparts sp of a fatbin

�le is always executed by each GPU thread.

20 Chapter 2. Introduction to GPUs

Di�erent fatbin �les can be executed in parallel on the GPU but usually to execute a program

only a fatbin �le is running on the GPU at a given moment in time - this for GPU hardware

synchronization problems that we face if we launch more di�erent fatbin �les in parallel.

All the GPU threads launched execute the same ELF code but the GPU threads can follow

di�erent paths - if possible - inside the same ELF code. If this happens for the GPU threads

of a same warp - 3.2 - then we are in presence of a divergence phenomenon. Each divergence

phenomenon implies a slow down, 10.3.

The GPU threads have however, in any case, to be logically organized before of each launch.

In the next section we see what this logical organization is and the hardware limits that it has to

satisfy to give a correct fatbin �le execution.

2.5 Launch Con�guration - De�nition

Each time we launch a fatbin �le we need to decide a) the number of GPU thread blocks, b) a two

dimensional space distribution of the GPU thread blocks - logic GPU thread block distribution -

c) the number of GPU threads that is the number of GPU threads of each GPU thread block -

GPU thread block composition - and d) a three dimensional space distribution of the GPU threads

of each GPU thread block - logic GPU thread block form - that has be the same for all the GPU

thread blocks. From here, let us de�ne the choice of these parameters a launch con�guration.

We can launch a maximum of 232 GPU thread blocks per launch, a maximum of GPU 216

thread blocks along the x dimension of the two dimensional space and a maximum of 216 GPU

thread blocks along the y dimension of the two dimensional space. The GPU thread blocks have to

be distributed starting from the origin (0 , 0) of the two dimensional space and to be contiguous

along the x and y dimensions of the two dimensional space. Each GPU thread block can have a

maximum of 1032 GPU threads. The GPU threads of each GPU thread block have to be distributed

starting from the origin (0 , 0 , 0) of the three dimensional space and to be contiguous along the

x, y and z dimensions of the three dimensional space.

Because at each fatbin �le launch each GPU thread executes one or more instructions, in the

next section we a) analyze how any instruction - PTX or ELF - can be executed and b) analyze the

main instruction features used to discover, understand and quantify in 7 some not disclosed GPU

behaviors.

2.6 Instruction Con�guration

The GPU executes ELF instructions. At each PTX instruction corresponds one or more ELF

instructions - 6.3 - and there are ELF instructions that do not correspond to any PTX instruction

- 6.6.

For each PTX instruction we do not know: 1) the type and number of ELF instructions used to

execute the PTX instruction, 2) the type and number of ELF registers used in the ELF instructions

used to execute the PTX instruction and 3) the type and number of dependences among the ELF

registers used in the ELF instructions used to execute the PTX instruction. Because these things

are important for the discussions in the next chapters we introduce here the concept of instruction

con�guration. The discussions in the next subsections are done considering the PTX instructions

but analog discussions are valid for the ELF instructions.

2.6. Instruction Con�guration 21

2.6.1 De�nition

Any type of PTX instruction - add.s32, sub.u64, etc. - can be executed in two di�erent modes:

normal mode or conditional mode. The conditional mode can be executed if a guard is set at true

or if a guard is set at false.

If the PTX instruction has some PTX registers then these PTX registers are usually used in

previous PTX instructions and so they have - as result PTX register - a write-read dependence type

to the last previous PTX instruction where they were written or - as the operand PTX registers -

a read-read dependence type to the last previous PTX instruction where they were read.

The triplet (type of PTX instruction , mode of execution , type of dependence considered) is

what we de�ne being an instruction con�guration.

2.6.2 Dependence Distance

The dependence of each PTX register has a distance of zero or more PTX instructions - zero only

if the PTX register a) is read more times as operand in the same PTX instruction because it is

used more times as operand PTX register in the PTX instruction or b) is read and over written in

the same PTX instruction because it is used as operand PTX register and result PTX register in

the PTX instruction.

2.6.3 Execution Time

An instruction con�guration execution time is the time from the moment when, after its scheduling,

the GPU hardware has to read the PTX registers used as operands in the instruction con�gura-

tion to the moment when the result of the instruction con�guration can be read or overwritten

without waiting time caused by the writing due to the calculation of the result of the instruction

con�guration.

2.6.4 Useless Dependence Types

If in an instruction con�guration the same PTX register is read more times as operand and is

written as result then we have a read-write dependence at distance zero for the PTX register.

The read-write dependences at distance zero are not considered because the execution times of

each instruction con�guration are by de�nition greater than the waiting times due to read-write

dependences at distance zero.

The read-write dependences at distance greater than zero are not considered because, among

all the possible read-write dependences, the read-write dependences at distance zero are the de-

pendences requiring the minimum number of clock cycles for waiting times and their waiting times

are contained in the execution times of each instruction con�guration. The write-write dependence

are instead not considered because between any two writes of the same PTX register used for the

results of some instruction con�gurations we read the register at least one time and so for us the

write-write dependences are without importance.

2.6.5 Examples

In example 1 the evidence is on the sub.s32 PTX instruction. The sub.s32 PTX instruction is

executed in normal mode and the type of dependences are write-read for the PTX register %result_1

22 Chapter 2. Introduction to GPUs

Table 2.1: Example 1 of Instruction Con�guration

div.s32 %result_0, %operand_0, %operand_2;
..
..
..

add.s32 %result_1, %operand_0, %operand_1;
..
..

sub.s32 %result_2, %result_1, %operand_2;

and read-read for the PTX register %operand_2. The sub.s32 PTX instruction can be seen as two

instruction con�gurations. The �rst instruction con�guration considers the write-read dependence

of the PTX register %result_1, this dependence has a distance in number of PTX instructions

equal to 3. The second instruction con�guration considers the the read-read dependence of the

PTX register %operand_2, this dependence has a distance in number of PTX instructions equal

to 7.

Table 2.2: Example 2 of Instruction Con�guration

mul.wide.u32 %result_0, %operand_0, %operand_1;
..

add.su64 %result_1, %operand_1, %operand_2;
..
..
..

%guard_0 div.u64 %result_3, %operand_2, %result_0;
..

In example 2 the evidence is on the div.u64 PTX instruction. The div.u64 PTX instruction

is executed in conditional mode - the guard has to be set at true - and the type of dependences

are read-read for the PTX register %operand_2 and write-read for the PTX register %result_0.

The div.u64 PTX instruction can be seen as two instruction con�gurations. The �rst instruction

con�guration considers the read-read dependence of the PTX register %operand_2, this dependence

has a distance in number of PTX instructions equal to 4. The second instruction con�guration

considers the the write-read dependence of the PTX register %result_0, this dependence has a

distance in number of PTX instructions equal to 6.

Table 2.3: Example 3 of Instruction Con�guration

..
@!%guard_1 popc.b32 %result_0, %operand_1;

..
cnot.b32 %result_1, %operand_0;

..
b�nd.b32 %result_0, %result_1, %operand_0;

..

..

In example 3 the evidence is on the b�nd.b32 PTX instruction. The b�nd.b32 PTX instruction

is executed in normal mode and the type of dependences are write-read for the PTX register

2.7. Summary 23

%result_1 and read-read for the PTX register %operand_0. The b�nd.b32 PTX instruction can

be seen as two instruction con�gurations. The �rst instruction con�guration considers the write-

read dependence of the PTX register %result_1, this dependence has a distance in number of

PTX instructions equal to 2. The second instruction con�guration considers the the read-read

dependence of the PTX register %operand_0, this dependence has a distance in number of PTX

instructions equal to 2.

2.7 Summary

In this chapter we have introduced the reader to GPUs and in particular to all the GPUs using a

GF100 or later architecture. The main points to remember from this chapter are the following:

• The PTX is a parallel thread execution virtual machine and instruction set architecture (isa)

used to improve the portability of GPU code across several di�erent GPU architectures. PTX

is the lowest of the "high" level "programming languages" that we can use to edit GPU code

we want executed by the GPU. The PTX code can not to be executed by the GPU in its

original form, its has to be given in input to the NVIDIA compiler - nvcc - before of becoming

GPU executable;

• Nvcc can take in input PTX or CUDA codes and always produce as output fatbin �les. Inside

each fatbin �le there is the transformation in ELF code - the GPU assembly - of the code we

want executed by the GPU. When a fatbin �le is launched one or more parts of it are executed

by the CPU and one or more parts of it are executed by the GPU using GPU threads. The

GPU threads execute the ELF codes in the GPU parts;

• Each GPU thread used to execute a fatbin �le has to execute all the ELF codes in the GPU

parts of the fatbin �le also whether, inside each one of the GPU parts, each GPU thread can

follow di�erent paths. The GPU threads executing a fatbin �le has to be logically organized

before of any fatbin �le launch;

• The logical GPU thread organization has many degrees of freedom and these degrees are

important because they determine the values of the some GPU behaviours used in the anal-

ysis/analyses of the ELF codes;

• Any PTX or ELF instruction can be executed in two di�erent modes: a) normal or b)

conditional - with guard set at true or with guard set at false. For each PTX or ELF

instruction di�erent types of dependences for the PTX or ELF register used in the instruction

can be considered. The type of PTX or ELF instruction, its execution mode and the type of

dependence considered in each single case are important to discover, understand and quantify

the GPU behaviors used in the analysis/analyses of the codes and so all together they are

called instruction con�guration.

In the next chapter we describe the GF100 architecture, the architecture of the GPU Tesla C2070

that we use in this thesis. We start describing the main components of the GF100 architecture and

next we focus on the streaming multiprocessors, the parts of the GF100 architecture necessary to

execute scienti�c computing. Follow a theoretical analysis about the peak performances achievable

by the Tesla C2070 and a paragraph of summary about the architectural features of the Tesla

C2070.

24 Chapter 2. Introduction to GPUs

Chapter 3

The GF100 Architecture

3.1 Introduction

In the previous chapter we have introduced the reader to the GPUs, in this we describe the GF100

architecture of the GPU Tesla C2070 that we use in the thesis.

The GF100 architecture is a modular architecture designed by NVIDIA and manufactured by

TMC using a 40 nm productive process. The GF100 architecture has a die size of 529 mm2 and a

maximum of 3.2 billion of transistors.

Commercial GPUs using the GF100 architecture are the Fermi GTX 465, the Fermi GTX 470

and the Fermi GTX 480. Also whether gf means GPU Fermi two high end Tesla GPUs uses the

GF100 architecture too. These Tesla GPUs are the Tesla C2050 and the Tesla C2070. What

we know and explain in this chapter about the GF100 architecture is what NVIDIA discloses. We

start describing the main components of the GF100 architecture and their features, later we move to

describe particular parts of the GF100 architecture, the streaming multiprocessors - the streaming

multiprocessors are the GPU parts where is executed the scienti�c computing. We analyze the main

components of the streaming multiprocessors and get a �rst understanding of how such components

interact one with the other. Next, considering the Tesla C2070 hardware limitations, we calculate

its theoretical GPU peak performances and we conclude summarizing the disclosed architectural

features of the Tesla C2070.

3.2 Main Components of the GF100 Architecture

The GF100 has o� chip some private gddr 5 ram, on chip a l2 cache, a constant cache, a gigathread

scheduler, 4 graphics processing cluster and a maximum of 6 memory controllers. Let see what is

known about each one of these components:

• Gddr 5 Ram: Fermi GTX cards have 256MB attached to each of the enabled gddr5 memory

controllers for a total of 1.00, 1.25 or 1.50 GB. The Tesla C2050 and C2070 have 6 controllers.

The Tesla C2050 has 512 MB on each of the controllers for a total of 3 GB while the Tesla

C2070 has 1024 MB on each of the controllers for a total of 6 GB. The Fermi GTX 465 has

a bandwidth of 102.6 GB/s for its gddr 5 ram, the Fermi GTX 470 of 133.9 GB/s, the Fermi

GTX 480 of 177.4 GB/s, the Tesla C2050 and the Tesla C2070 of 144 GB/s;

25

26 Chapter 3. The GF100 Architecture

• L2 Cache: The l2 cache is on chip and is at maximum of 768 KB - 672 KB for GPUs like

the Fermi GTX 470 and the Tesla C2070 with 14 streaming multiprocessors. The l2 cache is

semi coherent because it has to keep the data present in the l1 caches but it is not necessary

it keeps the data present in the shared memories and in the hardware registers.

• Constant Cache: The constant cache has a dimension of 64 KB and can be written only by

the CPU. The GPU executes warps and each warp is always composed by 32 GPU threads.

If all the 32 GPU threads of a warp read the same constant memory cell then all the accesses

are satis�ed in only one clock cycle and the data is broadcasted to all the 32 GPU threads. If

instead the 32 GPU threads of a warp read 32 di�erent constant memory cells, one for each

GPU thread of the warp, at least 32 clock cycles are necessary to satisfy all the 32 di�erent

requests.

• Gigathread Scheduler: Each time a fatbin �le is executed using a launch con�guration - 2.5 -

the gigathread scheduler has to assign the GPU thread blocks to the streaming multiprocessors

and later to schedule the warps of each GPU thread block resident in a streaming multipro-

cessor during the whole execution of the fatbin �le. The assignments and the schedulings are

executed by the two gigathread scheduler levels:

� Chip Level: The gigathread scheduler assigns the GPU thread blocks to the streaming

multiprocessors. After that a GPU thread block is assigned to a streaming multiprocessor

the GPU thread block can not migrate. The gigathread scheduler can manage on �y a

maximum of 21504 GPU threads. The assignment of the GPU thread blocks is executed

considering: 1) the hardware resources available per streaming multiprocessor, 2) the

hardware resources required by each GPU thread block and 3) a series of concurrent

hardware design limits which a) the maximum number of resident GPU thread blocks in

a streaming multiprocessor - 8 - b) the maximum number of GPU threads a streaming

multiprocessor can manage on �y - 1536 - and c) the total quantity of shared memory

required by the potential set of GPU thread blocks resident in a streaming multiprocessor

- this total quantity has to be smaller than 16 or 48 KB, 16 or 48 KB depends on how

we set the GPU before the execution of the fatbin �le, 3.3.

� Streaming Multiprocessor Level: The gigathread scheduler in each streaming multipro-

cessor is represented by 2 warp schedulers. The 2 warps schedulers concurrently schedule

warps on the hardware resources of the streaming multiprocessor. The 2 warp schedulers

in each streaming multiprocessor can manage on �y at maximum 48 warps - 1536 GPU

threads.

The assignments and the schedulings are executed at a not disclosed clock frequency but it

is reasonable to assume that the schedulings are executed at a clock frequency than is half

the clock frequency of the function units - the CUDA cores, the load and store units and the

special function units, 3.3 - in a streaming multiprocessor.

This is reasonable because a) a warp is scheduled on only 1 of the 4 groups of function units

in a streaming multiprocessor - or 1 of the 2 groups of CUDA cores, or the group of load and

store units or the group of special function units, 3.3 - when a warp ELF instruction has to be

executed for the warp b) the CUDA cores, the load and store units and the special function

units have all the same clock frequency, 3.3, c) a warp is always composed by 32 GPU threads

3.3. Main Components of a Streaming Multiprocessor 27

and d) the maximum number of function units in each one of the 4 groups of function units is

16, 3.3, and therefore at least 2 function unit clock cycles are necessary to execute any warp

ELF instruction for a warp.

If the clock frequency used for the schedulings is greater than half the clock frequency of the

functions units of the 4 groups of function units in a streaming multiprocessor then there

would be the possibility to get some queues in input to the 4 groups of function units in a

streaming multiprocessor - this is however improbable considering a) the die area that the

queues would require and b) the control logic that would be necessary for the management

of the queues.

Furthermore, if the clock frequency used for the schedulings is smaller than half of the clock

frequency of the function units of the 4 groups of function units in a streaming multiprocessor

then the theoretical peak performance achievable per second would be determinate by the

clock frequency of the warp schedulers and not by the clock frequency of the function units of

the groups of function units and so part of the speed of the function units would be wasted.

For the previous reasons is therefore reasonable to assume that the clock frequency of the

warp schedulers is exactly half of the clock frequency of the function units in each one of the

4 groups of function units in a streaming multiprocessor.

• Graphics Processing Clusters: Each graphics processing cluster has a raster engine and a

maximum of 4 streaming multiprocessors. The Tesla C2070 have 14 streaming multiprocessors

and so some graphic processing clusters have less than 4 streaming multiprocessors.

• Raster Engines: The main components of a raster engine are the edge setup, the rasterizer

and the z-cull. The GF100 has a total of 40 Render Output Units but they are outside the

streaming multiprocessors.

• Streaming Multiprocessors: Each streaming multiprocessor has 64 KB of private ram, 215 =

32768 hardware registers, 32 CUDA cores, 16 load and store units, 4 special function units,

2 warp schedulers, 2 instruction dispatch units, 4 texture mapping units, 1 texture cache, 1

polymorph engine, 1 interconnection network and 1 instruction cache. In the next section we

describe the hardware components inside a streaming multiprocessor and how each one of the

hardware components interacts with the others.

3.3 Main Components of a Streaming Multiprocessor

The streaming multiprocessors are the parts of the GF100 architecture where is usually executed

the scienti�c computing. A description of each one of the main components of a streaming multi-

processor is the following:

• L1 Cache: We can choose only 2 con�gurations for the blocks of 64 KB of private ram of

the streaming multiprocessors and the con�guration has to be the same for all the streaming

multiprocessors during the whole execution of a fatbin �le. The dimension of the l1 cache and

of the shared memory of each streaming multiprocessor are determined by the con�guration

that we choose. The con�gurations:

� Con�guration 1: Each one of the 64 KB of private ram is partitioned in 48 KB and 16

KB - the 48 KB are managed by the hardware of the GPU and are seen like l1 cache

28 Chapter 3. The GF100 Architecture

while the other 16 KB has to be managed by the programmer and are seen like shared

memory;

� Con�guration 2: Each one of the 64 KB of private ram is partitioned in 16 KB and 48

KB - the 16 KB are managed by the hardware of the GPU and are seen like l1 cache

while the other 48 KB has to be managed by the programmer and are seen like shared

memory.

• Shared Memory: The shared memory is used to exchange data among GPU threads because

the hardware registers assigned to each GPU thread are private - private hardware registers

can not be used for data exchanges. The shared memory is divided in blocks of 4 bytes and

works in the following way:

� When more GPU threads want to read or to write the same shared memory blocks at

the same time then each one of the shared memory blocks of 4 bytes involved in the

read or the write will be serially read or written without any guarantee on the order of

execution of the instructions that read or write the same shared memory block;

� When more GPU threads want to read or to write di�erent shared memory blocks at the

same time then each one of the shared memory blocks of 4 bytes involved in the read or

the write will be concurrently read or written at the same time.

Hardware Registers: The hardware registers are 32 bits registers assigned to each single GPU

thread. After to be assigned they became private of the GPU thread. The data in a hardware

register need not to be in the l2 cache, l1 cache or in the shared memory.

CUDA Cores: The CUDA cores are also called scalar processors or shader processors - this

depends on the di�erent manuals or white papers released by NVIDIA. Each CUDA core has

a clock frequency of 1.15 GHz.

Inside each CUDA core there is a dispatch port, an unit for the gathering of the operands, a

�oating point unit, an integer unit and a result queue. Each CUDA core can execute a fusion

multiple and add per clock cycle - this is valid if the operands are at 32 bits.

Load and Store Units: The load and store units are 16 and allow to load and store data

from/to any memory address. The addresses are normally 64 bits addresses. The clock

frequency of the load and store units is 1.15 GHz.

Special Functions Units: The special function units are 4 and execute transcendental instruc-

tions as sin, cos, reciprocal and square root and have a clock frequency of 1.15 GHz.

Each special function unit executes at maximum a transcendental instruction per GPU thread

per clock cycle therefore when a warp is scheduled for the execution of a warp instruction

on the group of 4 special function units is impossible the warp instruction is executed in less

than 8 function unit clock cycles - every warp is composed by 32 GPU threads.

Each special function unit pipeline is decoupled from the 2 dispatch units and so each dispatch

unit can assign warp instructions to the other 3 groups of function units - the 2 group of 16

CUDA cores and the group of 16 load and store units - while the special function units are

busy.

Warp Schedulers: Are a part of the gigathread scheduler - streaming multiprocessor level.

Each warp scheduler schedules the warps on the hardware resources of the streaming multi-

processor.

3.4. Theoretical Tesla C2070 Peak Performances per Second 29

At each warp scheduler clock cycle a maximum of 2 warps are concurrently scheduled Each

warp is scheduled on 1 of the 2 groups of 16 CUDA cores, or on the group of 16 load and

store units or on the group of 4 special function units:

� If the warp is scheduled on 1 of the groups of 16 function units - 1 of the 2 groups of

16 CUDA cores or the group of 16 load and store units then the warp is executed as 2

half-warps - each half-warp composed by 16 GPU threads - in the next 2 function unit

clock cycles;

� If the warp is assigned to the group of 4 special function units then the warp is executed

as 8 eighth-warps - each eighter-warp composed by 4 GPU threads - in the next 8 function

unit clock cycles.

Instruction Dispatch Units: The instruction dispatch units are 2, one per warp scheduler.

When a warp is scheduled on the hardware resources of a streaming multiprocessor by 1 of

the 2 warp schedulers an instruction dispatch unit determines the warp instruction that has

to be executed for the warp. The 2 instruction dispatch units can dispatch at each warp

scheduler clock cycle 2 di�erent warp instructions.

Texture Mapping Units: The texture mapping units are 4. Each texture mapping unit has 4

texture �ltering units. GPUs like the Tesla C2070 with 14 streaming multiprocessors have a

total of 56 texture mapping units and 224 texture �ltering units.

Texture Cache: The texture cache is of type l1 and has dimensions of 12 KB. Each texture

cache is shared by the 4 texture mapping units of a streaming multiprocessor.

Polymorph Engine: Each polymorph engine executes the instructions of vertex fetch, tes-

sellation and viewport transform and has an attribute setup unit and a streaming output

unit.

Knowing the main hardware components of a streaming multiprocessor and how they interact

among them makes it possible to calculate the theoretical GPU Tesla C2070 peak performances

per second later used to determine the ELF code theoretical shortest execution time of a fatbin �le

- the ELF code theoretical shortest execution time of a fatbin �le is useful to get an idea of the

minimum quantity of time that is necessary to execute a fatbin �le on the GPU.

3.4 Theoretical Tesla C2070 Peak Performances per Second

Our discussion is here restricted to consider the 4 group of function units - the 2 groups of 16

CUDA cores, the group of 16 store and load units and the group of 4 special function units - that

are usually used to execute scienti�c computing - the texture mapping units and the polymorph

engines are therefore not considered.

At each warp scheduler clock cycle not more than 2 warps can be scheduled per streaming

multiprocessor and so not more than 2 · 14 = 28 warps can be scheduled on the whole GPU per

clock cycle. Such warps can not be executed in less than 2 function unit clock cycles - a warp is

composed by 32 GPU threads but each group of function units have not more than 16 function

units. A single function unit with a clock frequency of 1.15 Ghz can therefore execute at maximum

1.15 G instructions per second and these 1.15 G instructions are a part of the instructions that is

30 Chapter 3. The GF100 Architecture

necessary to execute for the maximum of 1.15·109
2 = 507.5 M warp instructions per second that can

be scheduled on the group of function units where is the function unit.

Furthermore, also whether in a clock cycle more than 32 function units per streaming mul-

tiprocessor can be executing instructions - 4.2 - in average not more than 32 function units per

streaming multiprocessor per clock cycle can be executing instructions - 4.3. With not more than

14 · 32 = 448 function units executing instructions, in average, per clock cycle, the theoretical GPU

peak performance of 14 · 32 · 1.15 · 109 = 515.2 GF/s is possible for instructions using 32 bit or

smaller operands while, in average, per clock cycle, the the theoretical GPU peak performance of
515.2

2 = 257.2 GF/s is possible for instructions using 64 bit operands.

Knowing the number of ELF instructions inside a fatbin �le and the launch con�guration used

for its launch we can calculate the total number of ELF instructions that is necessary to execute on

the GPU - this number is the number of ELF instruction inside the fatbin �le times the number of

GPU threads of the launch con�guration. The total number of ELF instructions that is necessary to

execute on the GPU divided the theoretical GPU Tesla C2070 peak performance gives the minimum

quantity of time that is necessary to execute the fatbin �le on the GPU.

3.5 Summary of the Tesla C2070 Architectural Features

In this chapter we have described the main hardware components of the GF100 architecture and

next we have analyzed the main hardware components of the streaming multiprocessors and the

way how the hardware components of the streaming multiprocessors interact. These things are

fundamental to calculate the theoretical GPU Tesla C2070 peak performances per second and so

the minimum quantity of time that is necessary to execute a fatbin �le on the GPU.

The Tesla C2070 has 6 GB of gddr 5 ram o� chip with a bandwidth 144 GB/s, 14 streaming

multiprocessors, a total of 32 · 14 = 448 CUDA cores with a clock frequency of 1.15 GHz, a total of

16 · 14 = 224 load and store units with a clock frequency of 1.15 GHz, a total of 4 · 14 = 74 special

function units at 1.15 GHz with a clock frequency of 1.15 GHz, a total of 215 · 14 = 458752 32 bits

hardware registers for the equivalent memory on chip of 458752 · 4 = 1.8 MB, 64 KB of constant

cache on chip, 672 KB of l2 cache on chip, a total of 64 · 14 = 896 KB of ram memory on chip

that can be partitioned in a total of 42 · 14 = 672 KB of l1 cache and 16 · 14 = 224 KB of shared

memory or in a total of 16 · 14 = 224 KB of l1 cache and 42 · 14 = 672 KB of shared memory, a

theoretical GPU peak performance of 515.2 GF/s for instructions using 32 bits or smaller operands

and a theoretical GPU peak performance of 257.2 GF/s for instructions using 64 bits operands.

In the next chapter we talk about the possible types of performance we need to consider when

we optimize ELF codes, we de�ne them and we explain why, during the optimization phases, some

of them are more important of others.

Chapter 4

Types of Performance

4.1 Introduction

In the previous chapter we have described the main components of the GF100 architecture and

the main components of each streaming multiprocessor. Next we have understood how the main

components of each streaming multiprocessor interact and we have calculated the theoretical GPU

peak performances per second achievable by the Tesla C2070 GPU that we use in the thesis.

Knowing the theoretical GPU peak performances per second achievable by the Tesla C2070 GPU

we can calculate the minimum quantity of time that is necessary to execute the ELF code of the

GPU parts of a fatbin �le and so we can calculate the ELF code e�ciency.

In this chapter we introduce several types of performance that we can consider during the

optimization of ELF codes, from which parts of the hardware design they have origin, because it is

important to di�erentiate one from the other and if and why each type of performance is possible

in reality considering what we already know of the hardware design of the GF100 architecture -

these things are important to understand a) which things of an ELF code we are going to optimize,

b) why we are going to optimize them and c) how is possible to optimize them.

Our discussion considers the parts of the streaming multiprocessor that are usually used to

execute scienti�c computing and not the parts of graphic processing used to execute particular

types of graphic instructions.

4.2 Theoretical Streaming Multiprocessor Peak Performance

Achievable in a Clock Cycle

Each streaming multiprocessor has 2 warp schedulers. If possible, at each warp scheduler clock

cycle, each one of the 2 warps schedulers schedules 1 warp on 1 of the 4 groups of function units

of the streaming multiprocessor. The 4 groups of functions units are composed by 2 groups of 16

CUDA cores, 1 group of 16 load and store units and 1 group of 4 special function units. Each

warp when scheduled can be scheduled on only 1 of these 4 groups and can not migrate during its

execution - see X. If 2 warps are scheduled at the same moment by the 2 warp schedulers then the

2 warps have to be scheduled on 2 di�erent groups of function units - see X.

Each function unit of each one of the 4 groups of function units has a clock frequency of 1.15

Ghz. The warp schedulers schedule warps at a clock frequency that is half of the clock frequency

31

32 Chapter 4. Types of Performance

of the function units of the 4 groups of function units. Because each warp is composed by 32 GPU

threads then at each function unit clock cycle 16 GPU threads - if the warp is executed on 1 of the

groups with 16 function units - or 4 GPU threads - if the warp is executed on the only group with

4 special function units - are working per clock cycle.

Having clear the previous things the theoretical streaming multiprocessor peak performance

achievable in a clock cycle is determinate with the following example. Suppose that at time 0 2

warps are scheduled, 1 on 1 of the 3 groups with 16 function units and 1 on the only group with

4 function units. Later at time 2 2 warps are scheduled, each one on 1 group of 16 function units.

At time 2 the warp previously scheduled at time 0 on 1 of the 3 groups of 16 function units has

completed its execution while the warp scheduled on the only group of 4 special function units has

still to terminate to be executed because only 4 GPU threads per clock cycle are executed by the

only group of 4 special function units. At time 2 and 3 we have therefore 2 of the 3 groups of 16

function units executing each one 16 GPU threads per clock cycle and the only group of 4 special

function units executing 4 GPU threads per clock cycle - total 16 + 16 + 4 = 36, the theoretical

streaming multiprocessor peak performance achievable in a clock cycle.

However, considering the GPU hardware design, the theoretical streaming multiprocessor peak

performance achievable in a clock cycle is not achievable, in average, per clock cycle, therefore we

introduce the theoretical streaming multiprocessor best average performance per clock cycle used

to calculate the theoretical minimum number of clock cycles that is necessary to execute an ELF

code.

4.3 Theoretical Streaming Multiprocessor Best Average Per-

formance per Clock Cycle

Because a) at each warp scheduler clock cycle not more than 2 warps can be scheduled, b) each

warp is always composed by 32 GPU threads and c) at each function unit clock cycle at maximum

only half of each one of the 2 warps is executed then not more than 32 function units, per clock

cycle, can, in average, execute GPU threads. The theoretical streaming multiprocessor best average

performance per clock cycle is therefore 32.

Also whether the theoretical streaming multiprocessor best average performance per clock cycle

is 32 this does not mean that the theoretical streaming multiprocessor best average performance

per clock cycle is reachable by every instruction con�guration - 2.6. Because this is e�ectively the

case, we explain why it happens in the next section where we introduce the theoretical instruction

con�guration streaming multiprocessor peak performance achievable in a clock cycle.

4.4 Theoretical Instruction Con�guration Streaming Multi-

processor Peak Performance Achievable in a Clock Cycle

Each instruction con�guration is always executed only by a type of function units - the CUDA cores,

the load and store units or the special function units - and so by 1 of the 2 groups of 16 CUDA cores,

by the group of load and store units or by the group of 4 special function units. Discovering the type

of function units executing a particular instruction con�guration we can calculate the theoretical

instruction con�guration streaming multiprocessor peak performance achievable in a clock cycle.

4.5. Real Instruction Con�guration Streaming Multiprocessor Peak Performance Achievable in a
Clock Cycle 33

The theoretical instruction con�guration streaming multiprocessor peak performance achievable

in a clock cycle is equal to the number of streaming multiprocessor function units able to execute

the instruction con�guration and so 32 if the instruction con�guration is executed by the CUDA

cores - this because 2 di�erent warps can be scheduled at the same time on the 2 di�erent groups

of 16 CUDA cores by the 2 warp schedulers and both the warps can require the execution of the

same instruction con�guration - 16 if the instruction con�guration is executed by the load and store

units or 4 if it the instruction con�guration is executed by the special function units.

However, this is only a theoretical peak performance. For some instruction con�gurations the

correspondent real instruction con�guration streaming multiprocessor peak performance achiev-

able in a clock cycle - 4.5 - is smaller than their theoretical instruction con�guration streaming

multiprocessor peak performance achievable in a clock cycle.

4.5 Real Instruction Con�guration Streaming Multiprocessor

Peak Performance Achievable in a Clock Cycle

One of our conjectures - veri�ed being true in 7.6.2 - is the existence of not disclosed hardware

resources shared by the 2 groups of 16 CUDA cores, hardware resources that because shared do not

allow to get the theoretical instruction con�guration streaming multiprocessor peak performance

achievable in a clock cycle for some instruction con�gurations.

The real instruction con�guration streaming multiprocessor peak performance achievable in

a clock cycle is important because if we use the theoretical instruction con�guration streaming

multiprocessor peak performance achievable in a clock cycle for the calculation of the e�ciency of

an ELF code we could think, in some cases, that the e�ciency of the ELF code is very low while

instead it could be the case that the e�ciency of the ELF code is very near to 1.

However, the real instruction con�guration streaming multiprocessor peak performance achiev-

able in a clock cycle can not be usually used in the calculation of the e�ciency of an ELF code

because usually an ELF code is composed by many di�erent instruction con�gurations and so the

2 warp instruction con�gurations, that could be scheduled, at each warp scheduler clock cycle, for

2 di�erent resident warps in a streaming multiprocessor, could be di�erent.

Furthermore, because we prove the existence of not disclosed shared hardware resources between

the 2 groups of 16 CUDA cores in each streaming multiprocessor, we can not exclude the existence

of not disclosed shared hardware resources among any subset of the 4 groups of function units inside

each streaming multiprocessor and so to take care of these things we introduce the real ELF code

streaming multiprocessor average performance per clock cycle.

4.6 Real ELF Code Streaming Multiprocessor Average Per-

formance per Clock Cycle

Because many di�erent couples of instruction con�gurations can be scheduled at the same time by

the 2 instruction dispatch units inside each streaming multiprocessor and usually an ELF code has

many di�erent instruction con�gurations then we have not de�ned a) the theoretical instruction

con�guration streaming multiprocessor best average performance per clock cycle and b) the real

instruction con�guration streaming multiprocessor best average performance per clock cycle, this

because they are useless for the calculations of the e�ciency of an ELF code. What instead we need

34 Chapter 4. Types of Performance

to calculate the e�ciency of an ELF code is the real ELF code streaming multiprocessor average

performance per clock cycle.

The real ELF code streaming multiprocessor average performance per clock cycle is determinate

by - but not only - the warp scheduling. It is calculated, after the end of the execution of a fatbin

�le, dividing the number of ELF instructions executed by a streaming multiprocessor by the number

of GPU clock cycles that have been necessary to execute the ELF code of the GPU parts of the

fatbin �le and it is what we want to optimize when we consider an ELF code.

One �rst thing that is interesting to understand it is whether an ELF code, with for exam-

ple instruction con�gurations a) executed by the 2 groups of 16 CUDA cores and b) with a real

instruction con�guration streaming multiprocessor peak performance achievable in a clock cycle

that is at least for some of them smaller than their theoretical instruction con�guration streaming

multiprocessor peak performance achievable in a clock cycle, can be executed reaching a real ELF

code streaming multiprocessor average performance per clock cycle equal to the theoretical stream-

ing multiprocessor best average performance per clock cycle and so being executed in the shortest

possible time. We believed this was possible and in 7.6.2 we verify this conjecture being true.

Knowing that the conjecture is true it is important because it means a) that the not disclosed

shared hardware resources between the 2 groups of 16 CUDA cores could be di�erent at least for

some couples of instruction con�gurations and b) that exists ELF codes executing at the theoretical

best that is possible achieve, considering the GPU hardware design also, if some or all the instruc-

tion con�gurations of the ELF codes have singularly a real instruction con�guration streaming

multiprocessor peak performance achievable in a clock cycle smaller than the theoretical streaming

multiprocessor best average performance per clock cycle.

With the conjecture proved true for the cases considering the 2 groups of 16 CUDA cores the

same conjecture - this time not veri�ed - can be extend at the cases considering all the possible

subsets of the 4 groups of function units in each streaming multiprocessor. The possibility that

the extended same conjecture, also whether not veri�ed, is true, has to be considered during the

calculations of the real ELF code streaming multiprocessor best average performance per clock

cycle because we want to be sure that the real ELF code streaming multiprocessor best average

performance per clock cycle we calculate is correct, precise and accurate to understand how much

near the real ELF code streaming multiprocessor average performance per clock cycle is to the

possible best, determinate by the GPU hardware design, for the ELF code.

4.7 Theoretical ELF Code Streaming Multiprocessor Best Av-

erage Performance per Clock Cycle

An ELF code can be executed with many di�erent launch con�gurations and each couple (ELF

code , launch con�guration) can be executed with many di�erent warp schedulings. The union

of all these warp schedulings is the set S of all the warp schedulings that could be used for the

execution of the ELF code - the hardware design could not allow to the warp schedulers to choose

some of the warp schedulings but for the purposes in this section this is not important.

The theoretical ELF code streaming multiprocessor best average performance per clock cycle

is the greatest real ELF code streaming multiprocessor average performance per clock cycle that

we would get for an ELF code if the couples of warp schedulers in each streaming multiprocessor

would choose a scheduling among the subset of the bests - the warp schedulings that if used by the

4.8. Real ELF Code Streaming Multiprocessor Best Average Performance per Clock Cycle 35

warp schedulers give the greatest real ELF code streaming multiprocessor average performance per

clock cycle, this independently of the fact that the GPU hardware design could not allow to the

warp schedulers to choose some or all them.

If we can calculate the theoretical ELF code streaming multiprocessor best average performance

per clock cycle - that could be smaller than the theoretical streaming multiprocessor best average

performance per clock cycle - then we can calculate the minimum number of clock cycles necessary

for the execution of an ELF code and so to calculate the theoretical best ELF code e�ciency.

4.8 Real ELF Code Streaming Multiprocessor Best Average

Performance per Clock Cycle

The real ELF code streaming multiprocessor best average performance per clock cycle is the greatest

real ELF code streaming multiprocessor average performance per clock cycle that we can get for

an ELF code considering the fact that the warp schedulers could be forced by the GPU hardware

design to choose only by a subset SS of the set S considered in the previous section.

We get the real ELF code streaming multiprocessor best average performance per clock cycle if

the couples of warp schedulers in each streaming multiprocessor choose one of the warp schedulings

that is in the subset SS and is one of the bests of the subset SS. The warp schedulings of this type

therefore a) are in SS and b) give the greatest real ELF code streaming multiprocessor average

performance per clock cycle among those in SS - notice that this could be smaller than the greatest

real ELF code streaming multiprocessor average performance per clock cycle that we can get if the

warp schedulers would choose one warp scheduling among the bests in S, the set of warp scheduling

considered in the previous section.

If we can calculate the real ELF code streaming multiprocessor best average performance per

clock cycle then we can calculate the minimum number of clock cycles necessary in reality for the

execution of an ELF code and so to calculate the best real ELF code e�ciency.

If we can calculate the real best ELF code e�ciency then we can calculate the real ELF code

e�ciency of each execution of an ELF code dividing the real ELF code streaming multiprocessor

average performance per clock cycle by the real ELF code streaming multiprocessor best average

performance per clock cycle - the real ELF code e�ciency is however usually di�erent from execu-

tion to execution because the warp schedulers usually choose a di�erent warp scheduling at each

execution of the same ELF code, 7.6.1 and 7.6.2.

4.9 Summary

In this chapter we have introduced several types of performances and their de�nitions to make

clear what we are going to optimize in an ELF code and what it is necessary to consider for the

calculation of some of the performances of an ELF code to be sure that the results that we get are

correct, precise and accurate. The main points to remember from this chapter are the following:

• The theoretical streaming multiprocessor peak performance achievable in a clock cycle is not

reachable in each clock cycle at cause of the GPU hardware design. The best that we can get

per clock cycle is therefore the theoretical streaming multiprocessor best average performance

per clock cycle;

36 Chapter 4. Types of Performance

• There are some not disclosed hardware resources shared among the 2 groups of 16 CUDA

cores in each streaming multiprocessor and so we can not exclude the presence of not disclosed

shared hardware resources among the possible subsets of the 4 groups of function units in

each streaming multiprocessor;

• For the presence of not disclosed shared hardware resources among the 2 groups of 16 CUDA

cores, for some instruction con�gurations, executed by the 2 groups of CUDA cores, is not

possible to get their theoretical instruction con�guration streaming multiprocessor peak per-

formance achievable in a clock cycle;

• ELF codes with instruction con�gurations with a real instruction con�guration streaming

multiprocessor peak performance achievable in a clock cycle smaller than their theoretical

instruction con�guration streaming multiprocessor peak performance achievable in a clock

cycle can however get a real ELF code streaming multiprocessor average performance per

clock cycle equal to the theoretical streaming multiprocessor best average performance per

clock cycle;

In the next chapter we see a) how the scheduling of the warps on the 4 groups of function units

in each streaming multiprocessor generates some e�ects that can not be foreseen and quanti�ed a

priori before the execution of a fatbin �le, and b) why it is impossible to calculate the theoretical

ELF code e�ciency and the real best ELF code e�ciency and so what we can instead do to get an

idea of how near an execution of an ELF code is at the real best ELF code e�ciency that the ELF

code can achieve on the GF100 architecture.

Chapter 5

Lower Bound on the Real ELF Code

E�ciency

5.1 Introduction

In the previous chapter we have introduced the several types of performance that we can consider

when we want to analyze and optimize an ELF code while in this chapter we instead explain

because it is not possible to calculate in a correct, precise and accurate way the theoretical ELF

code streaming multiprocessor best average performance per clock cycle and the real ELF code

streaming multiprocessor best average performance per clock cycle and so the theoretical best ELF

code e�ciency and the real best ELF code e�ciency. Because it is not possible to calculate the

real best ELF code e�ciency then it is not possible to calculate the real ELF code e�ciency and

so what we instead calculate it is a lower bound on the real ELF code e�ciency.

To understand how much tight is the lower bound, that we calculate at each execution of an ELF

code, to the real ELF code e�ciency, we talk of the impossibility to choose the warp schedulings

on the not disclosed hardware resources shared among the 2 groups of 16 CUDA cores in each

streaming multiprocessor. We therefore talk about the impossibility to determine a priori the warp

scheduling in�uence on the real ELF code e�ciency and of the impossibility to determine a priori

the warp scheduling impact on the variance of the real ELF code e�ciency from execution to

execution of a fatbin �le. Next we explain how we eliminate the ELF code execution time variance

problem given by the warp scheduling from execution to execution of a fatbin �le. We therefore

describe the mechanism that has to be implemented in the GF100 architecture to make it possible

to assign the resident warps in a streaming multiprocessor to the 4 groups of function units in the

streaming multiprocessor. Having described the mechanism we therefore talk of how much tight is

the lower bound, on the real ELF code e�ciency, that we calculate at each execution of an ELF

code, to the real ELF code e�ciency of the ELF code and we conclude talking about the generality

of the solution found for the lower bound.

5.2 Calculations to Determine the Lower Bound

When we consider an ELF code we can talk of theoretical best ELF code e�ciency, real best ELF

code e�ciency and real ELF code e�ciency. The theoretical best ELF code e�ciency is the best

37

38 Chapter 5. Lower Bound on the Real ELF Code E�ciency

e�ciency that the execution of an ELF code can get on the GF100 architecture if one of the best

warp schedulings is chosen. The best real ELF code e�ciency is the e�ciency that the execution

of an ELF code can get if, among the warp schedulings that the GPU hardware design allows to a

warp scheduler to choose, one of the bests among them is chosen. The real ELF code e�ciency is

the e�ciency of the execution of an ELF code and should be calculated considering the best ELF

code e�ciency - the ELF code e�ciency can be equal to 100% only if, among the warp schedulings

that the GPU hardware design allows to a warp scheduler to choose, one of the bests among them

is chosen for the execution of the ELF code.

Results in 7.6.1 and 7.6.2 con�rm that, also for the same couple (fatbin �le , launch con�guration

), at each execution the warp scheduling is di�erent. Considering a) that also for the same couple (

fatbin �le , launch con�guration) at each execution the warp scheduling is di�erent, b) that many

launch con�gurations can be used to execute a fatbin �le and c) the enormous quantity of warp

schedulings that could be used to execute a couple (fatbin �le , launch con�guration), then we

can not determine the theoretical ELF code streaming multiprocessor best average performance

per clock cycle and the real ELF code streaming multiprocessor best average performance per clock

cycle and so the theoretical best ELF code e�ciency and the real best ELF code e�ciency.

However, what we can calculate, it is the theoretical minimum number Nt of clock cycles that

would be necessary to all the streaming multiprocessors together to execute the ELF code supposing

each streaming multiprocessor is going to get an average performance per clock cycle equal to its

theoretical streaming multiprocessor best average performance per clock cycle - no performance

per clock cycle can be greater than this. Nt is equal to the total number of ELF instructions that

is necessary to execute for the couple (fatbin �le , launch con�guration) divided by the number

given by the theoretical streaming multiprocessor best average performance per clock cycle times

the number of streaming multiprocessors in the GF100 architecture. Dividing Nt by the number

of clock cycles Nr that were necessary to execute the ELF code we get a lower bound on the real

ELF code e�ciency.

Because a) the theoretical ELF code streaming multiprocessor best average performance per

clock cycle got in the case one of the best warp schedulings is chosen can not be greater than the

theoretical streaming multiprocessor best average performance per clock cycle, b) the best real ELF

code streaming multiprocessor best average performance per clock cycle got in the case one of the

best warp schedulings - among those that the GPU hardware design allows to the warp schedulers

to choose - is chosen, can not be greater than the theoretical ELF code streaming multiprocessor

best average performance per clock cycle and c) the real ELF code streaming multiprocessor average

performance per clock cycle of an execution of an ELF code can not be greater than the real ELF

code streaming multiprocessor best average performance per clock cycle, then the lower bound is

a lower bound because also whether we can not calculate a) the minimum number N1 of clock

cycles necessary to execute the ELF code to get its theoretical best ELF code e�ciency and b) the

minimum number N2 of clock cycles necessary to execute the ELF code to get its real best ELF

code e�ciency, the number of clock cycles necessary to execute the ELF code in these two cases

can not be smaller than Nt and greater than Nr - Nt < N1 < N2 < Nr.

To understand what can be said about how much tight is this lower bound to the real ELF

code e�ciency we need �rst to describe the mechanics of the scheduling of the warps on the not

disclose hardware resources shared among the possible subsets of the 4 groups of function units in

each streaming multiprocessor and later to describe the mechanics of the more general case of the

scheduling of the warps on the 4 groups of functions units in each streaming multiprocessor.

5.3. Warp Scheduling on the Not Disclosed Shared Hardware Resources 39

5.3 Warp Scheduling on the Not Disclosed Shared Hardware

Resources

For each possible couple of instruction con�gurations a) executed by the CUDA cores and b) with

a real instruction con�guration streaming multiprocessor peak performance achievable in a clock

cycle smaller than the theoretical streaming multiprocessor best average peak performance per clock

cycle, it would be useful to determine whether some not disclosed hardware resources are shared,

for the parallel execution of the couple of di�erent instruction con�gurations, by the 2 groups of 16

CUDA cores. Note well that this conjecture is di�erent from the conjecture in 4.6 because here we

are interested to understand whether the same or di�erent not disclosed hardware resources shared

between the 2 groups of CUDA cores are used for the parallel execution of a couple of di�erent

instruction con�gurations and not whether there are some not disclosed hardware resources shared

between the 2 groups of 16 CUDA cores - we e�ectively already know this last thing being true,

see 4.5.

This is unfortunately impossible for couples composed by 2 di�erent instruction con�gurations

because we can not force the warp scheduling and we can not be sure which warp scheduling is

chosen by the warp schedulers for the execution of an ELF code.

The warp scheduling in�uences the ELF code execution time because di�erent executions of

the same ELF code can give di�erent execution times considering that the warp schedulers could

schedule at the same moment, during di�erent launch, some times 2 warps requiring the execution

of instruction con�gurations that have to be executed by the 2 groups of 16 CUDA cores but require

both the same type of not disclosed shared hardware resources - we verify this conjecture being true

in 7.6.2 - and other times 2 warps requiring the execution of instruction con�gurations that have to

be executed by the 2 groups of 16 CUDA cores but require di�erent types of not disclosed shared

hardware resources - this is the conjecture that we can not know whether it is true or not - or

require the di�erent or the same types of not disclosed or disclosed shared or not shared hardware

resources without con�icts - think for example to 2 ELF instruction con�gurations that have to be

executed by the 2 groups of 16 CUDA cores that are disclosed not shared hardware resources but

that not require the use of any of the shared resources, disclosed or not disclosed, present between

the 2 groups of 16 CUDA cores.

5.4 Warp Scheduling In�uence on the ELF Code Execution

Time

Not knowing or having the possibility, a priori, to choose the warp scheduling of the execution of

an ELF code we can not quantify a priori the warp scheduling in�uence - in�uence due to the use

of the not disclosed hardware resources shared between the 2 groups of 16 CUDA cores in each

streaming multiprocessor - on the ELF code execution time and so on the real ELF code streaming

multiprocessor average performance per clock cycle.

More small is the real ELF code streaming multiprocessor average performance per clock cycle

compared to the theoretical streaming multiprocessor best average performance per clock cycle used

in the calculation of the lower bound, less tight the lower bound is.

The challenge is therefore to understand a priori, before the execution of the ELF code, how

much small will be the real ELF code streaming multiprocessor average performance per clock cycle

40 Chapter 5. Lower Bound on the Real ELF Code E�ciency

compared to the theoretical streaming multiprocessor best average performance per clock cycle, this

to quantify how much tight is the lower bound on the real ELF code e�ciency, thing however useful

only in the case the lower bound is small because if instead it is near at 100%, for example 96%,

then we have no incentive to quantify how much tight the lower bound is because we automatically

know that we got in the reality more than the 96% of the theoretical absolute and so more than

the 96% of the theoretical best and so more than the 96% of the real best - 5.2.

With what we know about the GPU hardware design this challenge does not seem solvable

because as said we have no way to know before, and however also after, the ELF code execution,

which warp scheduling the warp schedulers are going to choose or have chosen for the execution of

the ELF code.

5.5 Elimination of the Warp Scheduler Variability

We can not decide the warp scheduling and the GPU behavior could be unknown and have some

variabilities but because humans have designed the GPU hardware the GPU has to have a deter-

ministic behavior and so also a set of rules determining the warp schedulings.

The fact that the GPU has a deterministic behavior means that if the ELF codes used are GPU

hardware design free for all the aspects excluded the aspect generated by the warp scheduling for

the use of the not disclosed shared hardware resources among the 2 groups of 16 CUDA cores in each

streaming multiprocessor during the execution of an ELF code then, true that we can not decide

the warp scheduling and so �nd the best warp scheduling to utilize for the use of the not disclosed

shared hardware resources, but the warp scheduler behavior should have a very little variance from

execution to execution of the same ELF code and so a regularity has to be present in the warp

schedulings of di�erent executions of the same ELF code and such regularity, also whether a priori

it is not clear how it is going to in�uence the ELF code execution time, has to be re�ected in the

ELF code execution time of each execution of the ELF code and so has to give ELF code execution

times with a di�erence between the maximum and the minimum very little.

This solve the problem of the variability of the warp schedulings but do not say anything about

how, given an ELF code, we can calculate a priori how the warp scheduler behavior, also if regular,

is going to in�uence the real average number of clock cycles necessary to execute an ELF code -

and this real average number could be much greater than a) the theoretical minimum number of

clock cycles necessary to execute the ELF code that instead we use in the calculation of the lower

bound on the real ELF code e�ciency and b) the real minimum number of clock cycles necessary to

execute the ELF code that is the number of clock cycles achievable using any warp scheduling taken

from the set of the best warp schedulings. Furthermore, there is no reason a priori to believe that

exists a warp scheduling such that the ELF code can get a real ELF code streaming multiprocessor

average performance per clock cycle equal to the theoretical streaming multiprocessor best average

peak performance per clock cycle.

5.6 Warp Management Mechanism

During each warp scheduler clock cycle the 2 warp schedulers in a streaming multiprocessor have

to have a way a) to check which resident warps in the streaming multiprocessor are available to

be scheduled at the next warp scheduler clock cycle and b) to choose among them a maximum

5.6. Warp Management Mechanism 41

of 2 warps - each one of the 2 warps schedulers in the streaming multiprocessor will schedule at

maximum 1 warp at the beginning of the next warp scheduler clock cycle.

The resident warps in a streaming multiprocessor could be divided or not between the 2 warp

schedulers in the streaming multiprocessor but 1 of the 2 warps schedulers has to choose as �rst

a warp, if possible, and next the other warp scheduler has to choose as second another warp, if

possible. The warps have always to be scheduled on 2 di�erent groups of function units and so

the 2 warp schedulers in a way or in another have to be able to communicate with each other or

choose in a way interference free and so there has to be a way a) to communicate to the �rst warp

scheduler, that has to decide which warp to schedule, at the next warp scheduler clock cycle, which

groups of function units will be available and which warps will be available and can be scheduled

on such groups of function units that will be available and b) later to communicate to the second

warp scheduler, that has to decide which warp to schedule, at the next warp scheduler clock cycle,

the remained groups of function units that will be available and which of the remained warps that

was previously available to be scheduled can be scheduled on the remained groups of function units

that will be available.

Somebody could think that maybe the 4 groups of function units in each streaming multiproces-

sor have some input queues but this is not probable because: a) the 2 warps have to be scheduled on

2 di�erent groups of function units, b) a queue means overhead in management, data storage, etc.

and c) the clock frequency of every function unit is twice the clock frequency of a warp scheduler

and while 1 warp, if executed by 1 of the 2 groups of 16 CUDA cores in a streaming multiprocessor

or by the group of 16 load and store units in a streaming multiprocessor, is executed in not less

than 2 function unit clock cycles and so in not less than 1 warp scheduler clock cycle, 1 warp, if

executed by the group of 4 special function units in a streaming multiprocessor, is execute in not

less than 8 function unit clock cycles and so in not less than 4 warp scheduler clock cycles.

For the above reasons we do not believe there are queues in input to the 4 groups of function

units in each streaming multiprocessor but that instead there is a way for the group of 4 special

function units to signal that it is busy or will be busy for a given quantity of warp scheduler

clock cycles that depends on the ELF instruction that it has to execute - this because di�erent

ELF instructions could have a di�erent ELF instruction con�guration streaming multiprocessor

best average performance per clock cycle but the group of special function units has only 4 special

function units and each warp has always 32 GPU threads.

In 7.6.2 we also prove that there are some ELF instructions that are executed by the 2 groups

of 16 CUDA cores in a streaming multiprocessor but have a real ELF instruction con�guration

streaming multiprocessor best average performance per clock cycles equal to 8 and so that to

execute a warp requiring the calculation of one of such ELF instructions are required 4 function

unit clock cycles equivalent to 2 warp scheduler clock cycles.

Because the group of 4 special function units has to have a way to signal that it is busy or

will be busy for a given quantity of warp scheduler clock cycles depending on the ELF instruction

that has to be executed then considering what just said for some ELF instructions that has to be

executed by 1 of the 2 groups of 16 CUDA cores it has to be true too that the 2 groups of 16 CUDA

cores have to have a way to signal that they are busy or will be busy for a given quantity of warp

scheduler clock cycles depending on the ELF instruction that has to be executed - no checks were

done for the group of 16 load and store units but it is safe to assume that it too has to have a way to

signal that it is busy or will be busy for a given quantity of warp scheduler clock cycles depending

on the ELF instruction that has to be executed because we can not exclude there are not some load

42 Chapter 5. Lower Bound on the Real ELF Code E�ciency

and store ELF instructions with a real ELF instruction con�guration streaming multiprocessor best

average performance per clock cycle smaller than 16.

With the above mechanism that has to be implemented in a way or in another in the GF100

architecture the GPU hardware can determine a) which groups of function units will be available

at the beginning of the next warp scheduler clock cycle or b) after how many warp scheduler clock

cycles a group of function units will become available again, but this mechanism alone is not enough

to make possible the scheduling of the warps on the 4 groups of function units in each streaming

multiprocessor.

When 2 warp schedulers can only choose to schedule only warps requiring the use of the same

not disclosed hardware resources shared between the 2 groups of 16 CUDA cores in a streaming

multiprocessor, the results in 7.6.2 show a) that only 1, of the maximum 2 warps, that is possible

to schedule at each warp scheduler clock cycle, is scheduled and b) that the next warp can be

scheduled only after that the execution of the ELF instruction, of the previous warp scheduled,

has been completed. However always the results in 7.6.2 also show that for fatbin �les with a mix

of ELF instructions executed by the 2 groups of 16 CUDA cores and with a real ELF instruction

con�guration streaming multiprocessor best average performance per clock cycle equal to 32 and

16 we get a real ELF code streaming multiprocessor best average performance per clock cycle equal

to 32. Considering the previous two things is therefore not possible that, when a group of function

units signals that it is busy or it will be busy for a given quantity of warp scheduler clock cycles,

it makes all the other groups of function units, sharing the same not disclosed hardware resources

the group of function units will use to execute the ELF instruction of the warp that has to be

scheduled on it, signal that they are busy too or they will be busy too for the same given quantity

of warp scheduler clock cycles, this because otherwise the previous result about the real ELF code

streaming multiprocessor best average performance per clock cycle equal to 32 for fatbin �les with

a mix of ELF instructions would be impossible.

What therefore happens, when a group of function units signals that it is busy or it will be busy

for a given quantity of warp scheduler clock cycles, it is that a check has to be done on the warps in

a streaming multiprocessor and if the next ELF instruction of the warp needs for its execution the

same not disclosed hardware resources used for the execution of the ELF instruction of the warp

that is going to be scheduled, then independently of which groups of function units share such not

disclosed hardware resources, the warp will be made not available to be scheduled a) in the next

warp scheduler clock cycle - in this case the check has to be always executed between each two

warp scheduler clock cycles - or b) for the given quantity of warp scheduler clock cycles that is

necessary to execute the ELF instruction of the warp that is going to be scheduled at the next warp

scheduler clock cycle - in this case there has to be a counter for each resident warp in a streaming

multiprocessor that has to be decreased by one between each two warp scheduler clock cycles.

The above mechanism works well for all the possible cases, also for the cases where the execution

of the ELF instruction of the warp does not require the use of some not disclosed hardware resources

shared among the possible subsets of the 4 groups of function units in a streaming multiprocessor.

To illustrate because this mechanism works in all the possible cases let us consider the following

two cases among the many possible:

• Case 1): Some resident warps in a streaming multiprocessor - maybe all - are available to

be scheduled by the 2 warp schedulers at the next warp scheduler clock cycle, but for the

execution of the next ELF instruction of each one of the available warps, the use of the group

5.6. Warp Management Mechanism 43

of 4 special function units is required. Let us also suppose the group of 4 special function

units will be available to be used at the next warp scheduler clock cycle. In this case one of

the warps that is available to be scheduled at the next warp scheduler clock cycles will be

chosen and scheduled at the next warp scheduler clock cycle. All the previous warps that were

available to be scheduled at the next warp scheduler clock cycle now becomes not available

and so they can not be scheduled at the next warp scheduler clock cycle. Furthermore, all the

warp, that were available, or not, to be scheduled at the next warp scheduler clock cycle, and

that require for the execution of their next ELF instruction the group of 4 special function

units, now can not be scheduled for the next T warp scheduler clock cycles where T is equal

to ceil of 32 divided by the real ELF instruction con�guration streaming multiprocessor best

average performance per clock cycle of the ELF instruction of the warp that is going to be

scheduled at the next warp scheduler clock cycle on the group of 4 special function units.

Case 1) does not require the use of some not disclosed hardware resources shared among the

possible subsets of the 4 groups of functions units in a streaming multiprocessor and shows

how it is possible that also for such case, if there are at least two resident warps in a streaming

multiprocessor that are available to be scheduled at the next warp scheduler clock cycle, it

could be possible that the 2 warp schedulers schedule less than 2 warps.

The fact that the warp schedulers schedule less than 2 warps at the next warp scheduler clock

cycle, also whether at least 2 warps are available to be scheduled, it could be possible a)

because there is not any warp scheduling, for the whole execution of the ELF code, among all

the possible warp schedulings that the GPU hardware design allows to the warp schedulers to

choose for the whole execution of the ELF code, able to avoid the fact that the 2 warps can not

be scheduled at the next warp scheduler clock cycle or b) because the warp scheduling, chosen

by the warp schedulers, till now, for the execution of the ELF code, has generated a local

situation in the streaming multiprocessor such that, considering the GPU hardware design,

the 2 warp schedulers are going to schedule less than 2 warps, at the next warp scheduler

clock cycle, also whether in reality this case could be avoided if the 2 warp schedulers would

choose a di�erent warp scheduling for the execution of the ELF code - notice that however

this does not mean that the 2 warp schedulers can choose such warp scheduling, this depends

on the GPU hardware design, 4.8;

• Some resident warps in a streaming multiprocessor - maybe all - are available to be scheduled

by the 2 warp schedulers at the next warp scheduler clock cycle. One of the 2 warp schedulers

chooses a warp among the warps available to be scheduled at the next warp scheduler clock

cycle. The ELF instruction of the warp is going to be executed by 1 of the 2 groups of

16 CUDA cores and has a real ELF instruction con�guration streaming multiprocessor best

average performance per clock cycle equal to 16. The other warp scheduler chooses another

warp, among the remaining warps that are available to be scheduled at the next warp scheduler

clock cycle on one of the remaining groups of functions units, in the streaming multiprocessor,

that will be available at the next warp scheduler clock cycle - notice that more than one group

of functions units could be not available at the next warp scheduler clock cycle beyond the

group of 16 CUDA cores that is necessary to execute the ELF instruction of the warp that is

going to be scheduled by the �rst warp scheduler that chose among the warps, this e�ectively

depends on the ELF instructions of the warps scheduled by the 2 warp schedulers at the

previous warp scheduler clock cycles. The warp scheduler that has still to choose �nd therefore

44 Chapter 5. Lower Bound on the Real ELF Code E�ciency

a warp available and decide that it is going to schedule the warp at the next warp scheduler

clock cycle when also the other warp scheduler will schedule the warp that was chosen as

�rst. The ELF instruction of the second warp that is going to be scheduled at the next warp

scheduler clock cycle is going to be executed by the other group of 16 CUDA cores and has

a real ELF instruction con�guration streaming multiprocessor best average performance per

clock cycle equal to 8. The fact that both the ELF instructions have a real ELF instruction

con�guration streaming multiprocessor best average performance per clock cycle smaller than

32, the number of CUDA cores in a streaming multiprocessor, indicated that there are some

not disclosed shared hardware resources among the 2 groups of 16 CUDA cores in a streaming

multiprocessor for the execution of each one of these 2 di�erent ELF instructions but that

because the 2 warps are going to be scheduled together these not disclosed hardware shared

resources are di�erent for the execution of the ELF instructions of the 2 warps. After the 2

warps have been scheduled with the same mechanism used for the Case 1) the architecture

takes care to determine which resident warps in the streaming multiprocessor will not be

available to be scheduled at the next warp scheduler clock cycle or to determine for how

many warp scheduler clock cycle each resident warp in the streaming multiprocessor will not

be available to be scheduled.

The mechanisms above described has to implemented and execute in a way or in another by

the GPU architecture because the warp schedulers have to communicate between them or however

choose in an interference free way a maximum of 2 warps to schedule always on 2 di�erent groups

of function units, disclosed or not disclosed hardware resources shared among any possible subset

of the 4 groups of function units.

The di�erent cases considered in this subsections shows that the scheduling of the warps - that

we can not know or force - on the 4 groups of function units, independently of the not use or the

use of the same or di�erent not disclosed hardware resources shared among the possible subsets of

the 4 groups of function units in a streaming multiprocessor, can slow down the execution of an

ELF code and so lower the real ELF code streaming multiprocessor average performance per clock

cycle making it smaller than the theoretical streaming multiprocessor best average performance per

clock cycle.

5.7 How much Tight Is the Lower Bound?

Considering what said in the previous subsection, at each warp scheduler clock cycle the warp

schedulers will schedule, if possible, 2 warps - if this happens for the whole execution of an ELF

code then we will get a real ELF code streaming multiprocessor average performance equal to 32,

the theoretical streaming multiprocessor best average performance per clock cycle.

The real best ELF code e�ciency is the e�ciency achieved by an ELF code with the use of

one of the warp schedulings, of the subset SS, see 4.8, that is one of the best warp schedulings in

the subset SS - these best warp schedulings are therefore the warp schedulings a) that the GPU

hardware design allows to the warp schedulers to choose for the whole execution of an ELF code

and b) that give the greatest real ELF code streaming multiprocessor average performance per

clock cycle.

Because we can not modify or choose the warp scheduling and so which warps to assign, at each

warp scheduler clock cycle, to the 4 groups of function units in each streaming multiprocessor, we

5.8. Generality of the Solution Found for the Lower Bound 45

can therefore consider the lower bound on the real ELF code e�ciency the more tight possible to

the real best ELF code e�ciency - this is true for each execution of each ELF code.

Nothing however can in general be said about the quanti�cation of how much tight is the lower

bound to the real ELF code e�ciency, this because also if the warp schedulers in a streaming

multiprocessor could be able to determine the best choice in a temporal horizon of one warp

scheduler clock cycle - this supposing they are able to check all the possible couples of warps that

are available to be scheduled at the next warp scheduler clock cycle - there is not proof that such

choice is always the best if we consider the whole temporal horizon necessary for the execution of

an ELF code.

5.8 Generality of the Solution Found for the Lower Bound

In this chapter we started our discussion considering only the not disclosed shared hardware re-

sources between the 2 groups of 16 CUDA cores in each streaming multiprocessor - 5.3 - but later

we expand the discussion considering potential not disclosed shared hardware resources among the

possible subsets of the 4 groups of function units in each streaming multiprocessor - 5.6 - and

showed how the fact that we can not choose the scheduling of the warps is going to be a problem

in any case, not use or use of the same or di�erent not disclosed hardware resources shared among

the possible subsets of the 4 groups of function units - 5.6.

The goal to determine whether not disclosed hardware resources shared among the possible

subsets of the 4 groups of function units in each streaming multiprocessor are used for the parallel

execution of all the possible instruction con�guration couples and triplets - triplets because in each

moment a maximum of 3 groups of function units can be executing instruction con�gurations, 4.2 -

faces the same not solvable challenges met considering the analog goal restricted to all the possible

couples of instruction con�gurations that were considered in 5.3 for the discussion about the only

2 groups of 16 CUDA cores in each streaming multiprocessor - this happens because we can not

choose or know the warp scheduling that the warp schedulers are going to choose or have chosen

for the execution of an ELF code - but the goal is not important because the problem of the warp

scheduling is always present in any case and so also when for the execution of the ELF instructions

of the warps is not necessary the use of some not disclosed hardware resources shared among the

possible subsets of the 4 groups of function units in a streaming multiprocessor - 5.6.

The lower bound we calculate on the real ELF code e�ciency at each ELF code execution

is therefore always the more thigh possible, this independently of the warp schedulings that the

GPU hardware design allows to the warp schedulers to choose for the executions of an ELF code

- remember, 1) usually the warp scheduling chosen by the warp schedulers will be di�erent from

execution to execution of the same ELF code in a fatbin �le, this also in the case we use the same

launch con�guration, 7.6.1 and 7.6.2, and 2) the GPU hardware design could allow to the warp

schedulers yes to choose one warp scheduling among the many possible but not among all the

possible, 4.8.

5.9 Summary

In this chapter we have explained why we need to calculate a lower bound on the real ELF code

e�ciency at each execution of the ELF code and talked of how much tight is this lower bound to

the real ELF code e�ciency. The main points to remember from this chapter are the following:

46 Chapter 5. Lower Bound on the Real ELF Code E�ciency

• Also for the same couple (fatbin �le , launch con�guration) the warps schedulers in each

streaming multiprocessor usually choose a di�erent warp scheduling at each execution and

the GPU hardware design allows to them to choose only warps in a subset of all the possible.

Considering that it is not possible to determine the set of warp schedulings from which the

GPU hardware design allows to the warp schedulers to choose and that it is not possible to

determine which warp scheduling of this set the warp schedulers in each streaming multipro-

cessor will use at the next execution of the couple (fatbin �le , launch con�guration) then

it is not possible to calculate a) the theoretical best ELF code e�ciency and b) the real best

ELF code e�ciency, of the ELF code, in a fatbin �le;

• Because it is not possible to calculate the theoretical best ELF code e�ciency and the real

best ELF code e�ciency then what we calculate, at each execution of a couple (fatbin �le

, launch con�guration), is a lower bound on the real ELF code e�ciency - this is possible

thanks to the use of the theoretical streaming multiprocessor best average performance per

clock cycle;

• Because to calculate the lower bound on the real ELF code e�ciency we use the theoretical

streaming multiprocessor best average performance per clock cycle - notice that the real ELF

code streaming multiprocessor best average performance per clock cycle can never be greater

than the theoretical streaming multiprocessor best average performance per clock cycle - then,

if the lower bound is around 90% or more, we do not really care about how much tight it is

because we automatically know that we are already near to fully utilize the GF100 architecture

at its absolute best;

• Because we can not know, choose or force the warp scheduling of the warps on the 4 groups

of function units in each streaming multiprocessor, with what we know about the GF100

architecture, the lower bound, that we calculate on the real ELF code e�ciency, can be more

or less tight to the real ELF code e�ciency but it is always the more tight possible;

In the next chapter we reverse engineer the real instruction set architecture a) to be able to get

the wanted ELF algorithmic implementations because usually PTX codes are transformed in ELF

codes that do not mirror the original PTX codes and b) to be able to modify fatbin �les, if we want

so, to optimize them and so increase their lower bounds on the e�ciencies of their ELF codes.

Chapter 6

Reverse Engineering of the ISA and

Modi�cation of ELF Codes

6.1 Introduction

The lowest of the "high" level "programming languages" available to users to write GPU code

is PTX but PTX is only a virtual instruction set architecture. Developing theories considering

PTX codes, optimizing PTX codes and analyzing PTX codes is meaningless because the GPU

architecture executes ELF code, not PTX code, and the ELF code produced by nvcc taking in

input PTX code is usually very di�erent compared to the PTX code a) for number, order and type

of instructions - ELF instructions instead of PTX instructions - and b) for number, type and reuse

of registers - ELF registers instead of PTX registers.

Also if we base our analyses on ELF codes, because the ELF codes are usually very di�erent

compared to the PTX codes given in input to nvcc, we need to be able to modify ELF codes to

be able to optimize their executions, but because the real instruction set architecture and other

features of the ELF codes - corresponding to the PTX codes - in the fatbin �les, are not disclosed,

it is impossible to modify the ELF codes without before to execute several reverse engineering

procedures to uncover the necessary not disclosed information.

The goal of this chapter is therefore 1) to describe the reverse engineering procedures necessary

to uncover the not disclosed information - a) on the real instruction set architecture and b) on the

features of the ELF codes - necessary to modify the ELF codes, corresponding to PTX codes, in

the fatbin �les, and 2) describe the procedure that, using the results got about the not disclosed

information, allows to modify the ELF code of a fatbin �le and so to get any wanted ELF algorithmic

implementation.

We start localizing in a fatbin �le the positions of the ELF instructions corresponding to the

PTX instructions of a PTX code. This is not easy because not knowing the real instruction set

architecture we don't know the types of ELF instructions and their binaries and so we need �rst

to understand, in a fatbin �le, which are the binary codes of the ELF instructions corresponding

to the PTX instructions of the PTX code and later to search them in the fatbin �le using a

robust procedure giving the guarantee that the positions that we �nd are really the positions of

the ELF instructions necessary to execute the PTX instructions of the PTX code and not the

positions of some other ELF instructions equal to the ELF instructions necessary to execute the

47

48 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

PTX instructions of the PTX code.

The PTX-ELF correspondences are therefore determined. The PTX-ELF correspondences imply

a) the understanding of the number, order and type of ELF instructions necessary to execute each

single PTX instruction, b) the understanding of the number, order and type of ELF registers used

in each ELF instruction, c) the understanding of which ELF registers in the ELF instructions

correspond to which PTX registers in the single PTX instructions and d) the understanding of the

presence or not of ELF registers in the ELF instructions without corresponding PTX registers in

the single PTX instructions.

A database of the ELF-PTX correspondences is built. This database stores the results discovered

for the PTX-ELF correspondences. In this database the human readable text form representations

of the types of ELF instructions necessary to execute each single type of PTX instruction are

associated to each human readable text form representation of each single type of PTX instruction,

this together at the results got at the points a), b), c) and d) of the previous paragraph for the

PTX-ELF correspondences.

A database of the binary codes, of each possible human readable text form representation of each

possible ELF instruction of interest, is generated. This database requires the reverse engineering

of all the binary codes of all the possible human readable text form representations of the ELF

instructions of interest and so of understanding which bits in each binary code correspond to which

ELF registers used in each ELF instruction of interest and which bits instead correspond to other

things like for example op codes, �ags and other things not visible in the human readable text form

representation of an ELF instruction.

Because in the given time frame it is not possible to determine a) the ELF instructions, if any,

necessary to assign ELF registers to a fatbin �le, b) the procedure to assign to each ELF register a

di�erent hardware register for each GPU thread used for the execution of a fatbin �le and c) whether

there are other things not evident from the analysis of the interpretation text �le of a fatbin �le -

6.2 - we create a procedure to generate fatbin �les with at least the minimum number of resources

later necessary to modify the fatbin �les to get the wanted ELF algorithmic implementations.

We therefore describe another procedure that, taking in input the fatbin �les with at least the

minimum number of resources necessary for their modi�cation, allows us to modify the fatbin �les

to get the wanted ELF algorithmic implementations and later further modifying them, if necessary,

all the times and in all the ways we need or want.

6.2 Localization in Fatbin Files of the ELF Instructions Nec-

essary to Execute the PTX Instructions of PTX Codes

Also whether a) the real instruction set architecture of the GF100 architecture is not disclosed and

b) we do not know the binary codes corresponding to the ELF instructions used by the GF100

architecture to execute the PTX instructions of a PTX code, we can however interpret every fatbin

�le using a NVIDIA's tool - cuobjdump.

Cuobjdump gets in input a fabin �le and gives as output an interpretation text �le where we

can see how the PTX code has been transformed in ELF code. Every line of the interpretation text

�le has three columns. In the �rst column there is a series of hexadecimal consecutive addresses

with the address in the �rst row always equal to 0x0000, in the second column there are the binary

representations of the ELF instructions at the addresses in the �rst column and in the third column

6.2. Localization in Fatbin Files of the ELF Instructions Necessary to Execute the PTX
Instructions of PTX Codes 49

there are the human readable text form representations of the binary codes of the ELF instructions

in the second column. The dimension of each ELF instruction is 8 bytes because in the second

column of each interpretation text �le there are always 16 hexadecimal digits.

We experimentally found that the dimension of each fatbin �le is always bigger than the dimen-

sion in bytes of every ELF instruction - 8 - times the number of ELF instructions visible in the

interpretation text �le. To write/modify ELF codes or to extract the ELF instructions necessary

to execute a PTX instruction is therefore necessary as �rst step to code a robust procedure able

a) to localize in the fatbin �les the correct position of each single ELF instruction visible in the

interpretation text �les and b) to understand whether the binary codes of the ELF instructions,

showed in hexadecimal form, in the second column of the interpretation text �les, are the real

binary codes or permutations of the real binary codes of the ELF instructions.

We formulate two conjectures: 1) the binary codes of the ELF instructions showed in hexadec-

imal form in the second column of the interpretation text �les are byte permutations of the real

binary codes of the ELF instructions and 2) the ELF instructions visible in the interpretation text

�les are always ELF instructions that are consecutive in the fatbin �les. To verify this two conjec-

tures each time we analyze a fatbin �le we extract the potential binary codes of the ELF instructions

from the interpretation text �le of the fatbin �le. Next, for each one of the possible 8! permutations

of the 8 bytes of each binary code of each ELF instruction, we execute the following procedure: 1)

transformation of all the potential binary codes of the ELF instructions in the interpretation text

�le considering the chosen permutation, 2) alignment of the block of consecutive permuted binary

codes of the ELF instructions visible in the interpretation fatbin �le to every possible byte in the

fatbin �le, 3) calculation of the similarity score of every alignment, similarity score equal to the

number of groups of 8 consecutive bytes, and so to the number of ELF instructions visible in the

interpretation fatbin �le, with a perfect match with the bytes in the fatbin �le, given the chosen

permutation. After the execution of the procedure for all the possible 8! permutations we 1) de-

termine the maximum similarity score among all the similarity scores calculated, 3) check that the

maximum similarity score is equal to the number of ELF instructions visible in the interpretation

text �le of the fatbin �le and 3) check that the maximum similarity score appears only one time.

Thanks at the previous procedure we veri�ed conjecture 1) and conjecture 2) being true. Con-

jecture 1) is true because the bytes of an ELF instruction in position 0, 1, 2, 3, 4, 5, 6, 7 on the

hard disk are interpreted by cuobjdump as bytes in position 5, 6, 7, 8, 0, 1, 2, 3 for the hexadecimal

representations of the binary codes of the ELF instructions visible in the interpretation text �les of

the fatbin �les. Conjecture 2) is true because a) the maximum similarity score is always equal to

the number of visible ELF instructions in the interpretation text �le of a fatbin �le and b) because

it always appears only one time for each fatbin �le.

Having veri�ed a) conjecture 1) and 2) and b) storing the position in the fatbin �le where

the alignment of the block of consecutive real binary codes of the ELF instructions visible in the

interpretation fatbin �le gives us a perfect match, allows, after the analysis of the structure of

the PTX and the fatbin �les in 6.3.2 - the analysis is necessary to verify that, thanks at the

editing guidelines used in 6.3.1 to write the PTX �les, nvcc was forced to use the speci�c wanted

transformation rules - to extract the number, order and type of ELF instructions necessary to

execute a PTX instruction of interest - 6.3.3 - with the guarantee that the extracted ELF instructions

are really the ELF instructions necessary to execute the PTX instruction.

50 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

6.3 PTX - ELF Correspondence Transformations

We can not exclude that each PTX instruction in a PTX code can be transformed by nvcc in more

ELF instructions necessary for the execution of the PTX instruction. To be able to write or modify

ELF codes is therefore necessary to understand the PTX - ELF correspondence transformations

used by nvcc for each single PTX instruction.

6.3.1 Editing Guidelines To Edit PTX Files

Nvcc usually produces ELF codes very di�erent from the input PTX codes but the nvcc code is

not open and so it is hard to understand and to determine the nvcc transformation rules. Also

supposing this is feasible, the whole procedure would be however very time and energy consuming

and so not feasible in the given time frame.

A better choice is forcing nvcc to use only speci�c transformation rules. If we force nvcc to

use only speci�c transformation rules and we verify each time, during the generation of a fatbin,

that nvcc is really using only the speci�c transformations rules we want then 1) we can extract

the number, order and type of ELF instructions used to execute each PTX instruction of interest

and 2) we can be sure the number, order and type of ELF instructions used to execute each PTX

instruction of interest are really corresponding to each single PTX instruction of interest instead of

some other PTX instructions in the PTX �les.

To force nvcc to use speci�c transformation rules we use a set of editing guidelines to edit a

PTX �le for each type of PTX instruction of interest. The editing guidelines are based on the

assumptions that also whether the nvcc code is not open it is however reasonable that: a) nvcc

is going to cut dead code, b) nvcc is going to save the greatest number of ELF registers it can

save, c) nvcc is not going to remove two PTX synchronization barriers if between the two PTX

synchronization barriers there is at least one useful PTX instruction, d) if there is only one PTX

instruction between two PTX synchronization barriers and the PTX instruction is useful then nvcc

is going to transform the PTX instruction between the two PTX synchronization barriers in one or

more correspondent ELF instructions that nvcc put between the two ELF synchronization barriers

corresponding to the two PTX synchronization barriers and e) the order between di�erent couples of

PTX synchronization barriers in the PTX �le is preserved in the corresponding ELF code generated

by nvcc.

Considering the previous assumptions here the editing guidelines: a) every single PTX instruc-

tion has to be written between two PTX synchronization barriers, b) for each not predicate PTX

register used, a data is loaded in it, c) each data is loaded from a di�erent GPU global memory

address d) each data is loaded before the PTX instruction of interest, e) just after each data load,

the not predicate PTX register, where is the data, is used as operand and as result of a PTX

instruction, with the goal to modify the data, f) for each predicate PTX register used, a PTX

instruction of setting, using as operands the not predicate PTX registers, is executed before the

PTX instruction of interest, g) after the PTX instruction of interest, all the data, in all the PTX

registers, are stored to di�erent GPU global memory addresses, di�erent among them and di�erent

from the GPU global memory addresses used to load the data in the not predicate PTX registers

before the PTX instruction of interest.

The �rst motivation for the editing guidelines is that using them, if nvcc is forced to use the

wanted transformation rules, then we can later extract from the interpretation text �le of each

fatbin �le the number, order and type of ELF instructions necessary to execute each single PTX

6.3. PTX - ELF Correspondence Transformations 51

instruction of interest - 6.3.3 - thing possible because:

• We know the order, number and type of each one of the possible 16 di�erent PTX synchro-

nization barriers we write in each PTX �le;

• We divide each PTX �le in di�erent sections and in each section we use only one type of

PTX synchronization barrier and the type of PTX synchronization barrier used in each one

of the di�erent sections is di�erent - this implies that each PTX �le can not have more than

16 di�erent sections but this number is big enough for all our goals;

• We have manually checked that at each type of PTX synchronization barrier correspond only

a single ELF instruction - this was done in 6.2, during the analysis of the interpretation text

�les of the fatbin �les, generating 16 PTX �les with only one type of PTX synchronization

barrier per PTX �le, type of PTX synchronization barrier written a number X of times, with

us discovering a) that the number of PTX synchronization barriers in each PTX �le was equal

to the number of ELF instructions in each interpretation text �le of the fatbin �les generated

and b) that all the ELF instructions in each fatbin �le were always equal among them but

di�erent among di�erent fatbin �les;

• We have got the human readable text form representation of each one of the 16 single ELF

synchronization barrier instructions - this was done always in 6.2 where we found that the

human readable text form representations of each one of the possible 16 ELF synchroniza-

tion barrier instructions corresponding to the 16 PTX synchronization barrier instructions is

unique because uses a set of special registers and a set of constant values.

The second motivation for the editing guidelines is that using them, if nvcc is forced to use the

wanted transformation rules, then we can later understand, analyzing the interpretation text �les

of the fatbin �les, to which PTX register in a PTX instruction each ELF register used in an ELF

instruction correspond, this because 1) we load a data in each not predicate PTX registers used, 2)

we load the data from di�erent GPU global memory addresses, 3) we load the data before of the

PTX instruction of interest, 4) we modify each data, using only the PTX register where the data

is, just after the data load, 5) we set, before of the PTX instruction of interest, the predicate PTX

registers, this using as operands of the setting PTX instruction the not predicate PTX registers, 6)

we store the data in each PTX register used in the PTX �le, after the PTX instruction of interest,

to di�erent GPU global memory addresses - di�erent among them and di�erent from the GPU

global memory addresses used to load the data in the not predicate PTX registers before the PTX

instruction of interest - and so nvcc is forced to avoid to try to save ELF registers making clear,

in the storing section, of an interpretation text �le, of a fatbin �le, that corresponds to the storing

section of the PTX �le, given in input to nvcc, to generate the fatbin �le, which ELF registers

correspond to which PTX registers for the ELF instruction of interest - this because of course we

also know in which order we use the PTX registers of the PTX �le in the storing section of the

PTX �le.

Also whether the editing guidelines are based on the assumptions a), b) c), d), e), f) and g),

because we can not be sure the assumptions are true in the reality for every possible case - the

nvcc code is not open - then it is necessary 1) to implement some automatic controls - 6.3.2 - to

check that every time a fatbin �le is generated by nvcc, the fatbin �le is generated using the wanted

transformation rules and 2) if this is not always the case, to discover and understand in which cases

this does not happen, taking care to execute the consequent necessary actions - 6.3.2.

52 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

6.3.2 Analysis and Comparison of the PTX and Fatbin File Structures

To be sure that the editing guidelines, used to edit the PTX �les, have forced nvcc, during the

generation of the correspondent fatbin �les, to use the transformation rules we want, we need to

extract, analyze and compare the structures of each couple (PTX �le, ELF part corresponding to

the PTX �le).

The structure of a PTX �le is given by the order and type of PTX instructions in the PTX �le

while the structure, of the ELF part, corresponding to the PTX �le, is given by the order and type

of ELF instructions visible in the interpretation text �le of the fatbin �le.

To following checks and countermeasures, in the case nvcc has not used the transformation rules

we wanted, also whether we used the editing guidelines to edit the PTX �les, are therefore necessary

to determine the reliability of each ELF part corresponding to each PTX �le:

• a) Check on the number of each type of ELF synchronization barrier in the ELF part cor-

responding to the PTX �le, this because we know how many PTX synchronization barriers

we wrote for each type of PTX synchronization barrier in the PTX �le but we want to be

sure that nvcc, during the transformation of the PTX �les in fatbin �les, hasn't modi�ed the

number of synchronization barriers used for each type.

If the number of also only one type of ELF synchronization barrier is not equal to the number

of the correspondent type of PTX synchronization barrier then we can not trust the ELF

part corresponding to the PTX �le and so we need to discard the PTX and the fatbin �le

produced;

• b) Check that each type of ELF synchronization barrier has not other types of ELF syn-

chronization barriers between its �rst and last exemplar. Because a) between each two PTX

synchronization barriers we wrote a PTX instruction, b) we divided each PTX �le in di�erent

sections using in each section only one type of PTX synchronization barrier and c) the type

of PTX synchronization barrier used in each one of the di�erent sections was di�erent, if in

the ELF part corresponding to the PTX �le in a fatbin �le we have one or more di�erent

types of ELF synchronization barriers between the �rst and last exemplar of any type of ELF

synchronization barrier, then we automatically know that nvcc did not use the transformation

rules we wanted, this also whether we edit the PTX �les following the editing guidelines, and

so in this case too we can not trust the ELF part corresponding to the PTX �le in the fatbin

�le and so we need to discard the PTX and the fatbin �le produced.

If the previous two checks are positive then we are sure that, thanks at the editing guidelines

used to edit the PTX �les, nvcc used the transformation rules we wanted and so, because we know

a) between which type or types of PTX synchronization barriers we wrote the PTX instruction

of interest and b) the index number of each one of the two PTX synchronization barriers - for

example the fourth of type 2 and the �rst of type 3 - we are able 1) to localize in the interpretation

text �le generated by cuobjdump the number, order and type of ELF instructions corresponding

to the PTX instruction of interest and 2) to check that among such ELF instructions there are

not ELF instructions jumping to ELF instructions before or after the two ELF synchronization

barriers delimiting the group - the ELF synchronization barrier corresponding to the fourth PTX

synchronization barrier of type 2 and the ELF synchronization barrier corresponding to the �rst

PTX synchronization barrier of type 3 - thing this necessary to be de�nitely sure that the ELF

6.3. PTX - ELF Correspondence Transformations 53

instructions between the two ELF synchronization barriers are all the ELF instructions necessary

to execute the PTX instruction.

6.3.3 Number, Type and Matching among PTX and ELF Registers

Being able to know the number and type of ELF instructions corresponding to a PTX instruction is

not enough. For each ELF instruction used to execute a PTX instruction we need 1) to understand

which ELF register correspond to which PTX register in the PTX instruction, 2) to check that

the ELF registers used in the ELF instruction correspond to PTX registers used in the PTX

instruction and not to some other PTX registers used in the PTX �le and 3) to check whether the

ELF instruction is using some ELF registers without any correspondent PTX register in the PTX

�le.

Knowing a) in which order we use the PTX registers of a PTX �le to store the data resident

in all the PTX registers used in the PTX �le, b) the section of the PTX �le where the storing

procedure is executed - after the PTX instruction of interest - c) between which types of PTX

synchronization barriers and index numbers each PTX register with a data to store is used, d) that

the checks of the previous section on the comparison of the structure of the PTX �le and the ELF

part corresponding to the PTX �le are satis�ed and d) the position, in the human readable text

form representations of the storing ELF instructions, of the ELF registers containing the data to

store, then we can 1) check in the ELF code section corresponding to the storing section of the

PTX �le that the number of ELF registers, containing the data to store and used in the storing

ELF instructions, is equal to the number of PTX registers used in the PTX �le and 2) understand,

for each ELF register, in the ELF code section, corresponding to the storing section in the PTX

�le, which is the corresponding PTX register in the PTX �le.

We can a�rm 2) because we use the editing rules to edit the PTX �les and so it is very unlikely

that in some parts of the ELF code an ELF register corresponds to a PTX register and in other parts

of the ELF code the ELF register corresponds to another PTX register, this because a) we load,

all the necessary data, from di�erent parts of the GPU global memory, in the not predicate PTX

registers, b) we modify such data and set the predicate PTX registers, before the PTX instruction

of interest, c) after the PTX instruction of interest, we store the data, in all the PTX registers, to

other di�erent parts of the GPU global memory and d) it would be stupid whether the compiler

would use more ELF instructions of the necessary to swap data between ELF registers for the

execution of the fatbin �le.

Knowing the matches, we can understand the position of each result and each operand of a PTX

instruction in the human readable text form representations of the ELF instructions necessary to

execute the PTX instruction. Manual checks also show that nvcc is always assigning two consecutive

ELF registers to each 64 bits PTX register, this also whether, in the human readable text form

representation of some of the ELF instructions, necessary to execute the PTX instruction, only one

of the two ELF registers could be present.

Saving a) the name/s, type/s and position/s of the PTX register/s in the PTX instruction, b)

the name/s, type/s and position/s of the ELF registers in the human readable text form represen-

tations of the ELF instructions necessary to execute the PTX instruction and c) the ELF registers

correspondences, if any, to the PTX registers in the PTX instruction, allows us later, with di�erent

PTX-ELF register correspondences, to generate the right human readable text form representations

of the ELF instructions necessary to execute each PTX instruction we want - 6.7 - and to search

54 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

in the database of the binary codes of the ELF instructions corresponding to the human readable

text form representations - 6.5 - the binary codes of the ELF instructions, binary codes that we are

going to use to modify the ELF parts corresponding to the PTX �les, this to get the wanted ELF

algorithmic implementations - 6.7.

However, before to save the previous data, two further checks are executed. The �rst check is

executed to be sure that all the ELF registers, corresponding to the PTX registers used in the PTX

instruction, appear in the ELF instructions necessary to execute the PTX instruction. The second

check is executed to understand whether there are some ELF registers used in the ELF instructions

necessary to execute the PTX instruction without any correspondent PTX register in the PTX

instruction or in the PTX �le. If one of the checks would be negative then something would be

wrong but this never happens. If both the checks are instead positive, as it is always the case, then

a) the name/s, type/ and position/s of the ELF register/s 1) used in the ELF instructions necessary

to execute the PTX instruction and 2) without correspondent PTX register in the PTX instruction

or in the PTX �le, are stored - such data are useful when it is necessary to modify the ELF codes to

get the wanted ELF algorithmic implementations, 6.7 - and b) we can extract the ELF instructions,

necessary to execute the PTX instruction, being sure 1) that the ELF instructions correspond to

the PTX instruction, 2) that the ELF registers that are used in the ELF instructions, necessary to

execute the PTX instruction, have zero or more matches with the PTX registers used in the PTX

instruction and 3) that such matches between ELF and PTX registers are correct and therefore

can be used, when it is necessary, to modify an ELF code, to get the wanted ELF algorithmic

implementations - 6.7.

6.4 Database of the Human Readable Text Form Represen-

tations

For each PTX instruction is important to store in a database 1) the number, order and type of

human readable text form representations of the ELF instructions necessary to execute the PTX

instruction, 2) the number, the type and the positions of the ELF registers used in the ELF

instructions necessary to execute the PTX instruction and 3) the correspondences among ELF

registers and PTX registers, if any. The previous three things are necessary because:

• a) When we modify the ELF codes, to get the wanted ELF algorithmic implementations, we

need to understand how many ELF registers and types of ELF registers are used by the ELF

instructions necessary to execute each PTX instruction we want the ELF code executes.

Before and after our modi�cations, a fatbin �le has to have at least a minimum number and

type of ELF registers for its correct execution in its original and modi�ed �nal form. If after

its modi�cation/s, the fatbin �le uses ELF registers not originally to it assigned by nvcc during

its creation, then we are always going to get a launch failure when we execute the fatbin �le,

this for violations due to the use of the hardware resources - hardware registers - to it not

originally allocated - this has been experimentally proved by us thanks at the procedure that

we describe in 6.6, procedure that we use to modify ELF codes.

Knowing a) the number and type of PTX instructions we want executed by a fatbin �le, b)

the number, order and type of ELF instructions necessary for the execution of each PTX

instruction, c) the number, the type and the position/s of each ELF register in each ELF

6.4. Database of the Human Readable Text Form Representations 55

instruction, e) what is representing each ELF register in each ELF instruction, d) which ELF

register corresponds to which PTX register, if any, e) the type of reuse we want for each ELF

register - thing determining the type of dependence of each ELF register at each its reuse

and the dependence distance between each two its consecutive uses in the ELF code - and e)

having experimentally determined that a maximum of 64 ELF registers can be assigned to

a fatbin �le but that 4 of them are reserved for special uses in some ELF instructions and

therefore it is safe to assume that they can not be substituted with one of the other remaining

possible 60 ELF registers, then, because we can not write from scratch a fatbin �le - see why

in section 6.6 - but we can only modify fatbin �les produced by nvcc, we can analyze a fatbin

�le, before to modify it, to understand whether it has at least the minimum number of ELF

registers, per type of ELF register, necessary for its modi�cation and if not, we execute a

procedure, of creation and destruction of the fatbin �le, to get this goal - section 6.6.

• b) Studying the human readable text form representations of the ELF instructions we found

that 1) the ELF registers, used for the result and the operands of an ELF instruction, can be in

di�erent parts of the human readable text form interpretations of the ELF instructions and 2)

in a order di�erent from the order of the correspondent PTX registers in the PTX instruction

- these two things are true too for the binary codes of the ELF instructions discovered using

the procedure in 6.5.

Knowing 1) which ELF register corresponds to which PTX register, 2) which ELF register is

the register where will be written the result, which ELF registers are the operands of an ELF

instruction and the order of the ELF registers compared to the order of the corresponding PTX

registers in the PTX instruction, 3) whether in the ELF instructions necessary to execute a

PTX instruction are used some ELF registers without correspondent PTX register in the PTX

instruction and 4) whether an ELF register, used in the group of ELF instructions necessary

to execute a PTX instruction, has to be present more times, in di�erent positions, in the

group of ELF instructions necessary to execute a PTX instruction, allows us a) to be sure

that the execution of the fatbin �le, after its modi�cation, is logically correct, because we use

the right types of ELF registers in each ELF instruction, in their right roles - result, operands,

etc. - and read/write the data from/to the right ELF registers - role dependences in the single

and in the group of ELF instructions necessary to execute each single PTX instruction - b) to

modify the ELF code in such way to get the wanted dependence distances, in number of ELF

instructions, between each couple of consecutive uses of each ELF register and c) to determine

where and how many times each ELF register, assigned by nvcc to a fatbin �le, can be used,

during the fatbin �le execution, without making the fatbin �le execution logically incorrect.

We therefore build the database of the human readable text form representations where we store

the results of the previous phases, for each PTX instruction of interest, and so a) the corresponding

human readable text form representations of the ELF instructions necessary to execute a PTX

instruction, b) the correspondences among the PTX registers used in the PTX instruction and the

ELF registers, used in the ELF instructions necessary to execute the PTX instruction, together

at their names, types and positions in the human readable text form representations of the ELF

instructions and c) the possible ELF registers, used in the ELF instructions necessary to execute

the PTX instruction, with no corresponding PTX register in the PTX instruction, together at their

names, types and positions in the human readable text form representations of the ELF instructions.

56 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

Additional reasons to build the database of the human readable text form representations are

the following: a) it is probable, that in PTX �les di�erent from the PTX �les we edited and used to

extract the human readable text form interpretations of the ELF instructions necessary to execute

the single PTX instructions of interest, the PTX registers used in the PTX instructions of the

PTX �les have di�erent names and b) it is probable that nvcc is going to assign each time di�erent

ELF registers to the di�erent fatbin �les produced for the di�erent PTX �les and that therefore

we will have di�erent ELF registers, that correspond to the analogous, also whether with di�erent

names, PTX registers, used in the di�erent PTX �les, to execute the ELF instructions necessary

to execute the PTX instructions analogous to the single PTX instructions previously considered in

the extraction phase.

The utility of the database of the human readable text form representations of the ELF in-

structions necessary to execute the single PTX instructions of interest is evident when we want to

modify the ELF part corresponding to a PTX �le with the goal to get the wanted ELF algorithmic

implementation. In such cases we need 1) to build the correct human readable text form represen-

tations of the ELF instructions necessary to execute each PTX instruction in the PTX �le 2) get

the binary codes of such human readable text form representations and 3) overwrite one or more

parts of the ELF code corresponding to the PTX �le.

To be able to build the correct human readable text form representations of the ELF instructions

necessary to execute each PTX instruction in the PTX �le the database is fundamental because for

each PTX instruction, that we want executed in the ELF part corresponding to a PTX �le, we need:

a) to match the new PTX registers used in the PTX instructions with the old PTX registers used in

the PTX instructions during the extraction phase, b) to substitute in the human readable text form

representations of the ELF instructions necessary to execute the PTX instructions, human readable

text form representations got during the extraction phase, the old ELF registers corresponding to

the old PTX registers with the new ELF registers corresponding to the new PTX registers and c) to

take care of possible old ELF registers, without any correspondent old PTX register, substituting

them with new ELF registers, new ELF registers that this time have a corresponding new PTX

register in the PTX �le given in input to nvcc to generate the fatbin �le that we modify - see why

in 6.6.

6.5 Database of the Binary Codes of the ELF Instructions

The analysis of an interpretation text �le, generated by cuobjdump, about a generic fatbin �le,

shows that in the second column we see a permutation of the binary codes - 6.2 - permutation

associated to the human readable text form representations of the ELF instructions in the third

column. Nothing about the position and the number of bits of the opcode, of the ELF registers

and of the other �ags of the ELF instructions is known. In this section we take care to reverse

engineer the position and the number of bits of each ELF register used in each ELF instruction

and to discover the values of all the other remaining bits associated to each ELF instruction. This

reverse engineering is fundamental to be able to modify the ELF parts corresponding to the PTX

�les - 6.7.

Because each ELF instruction is composed by 8 bytes - 6.2 - then it is not feasible to try all the

possible 264 binary combinations to understand a) which bit correspond to which ELF register of

which ELF instruction, b) which bits corresponds to the opcodes of which ELF instructions, c) which

bits corresponds to the remaining visible things in the human readable text form representations

6.5. Database of the Binary Codes of the ELF Instructions 57

of which ELF instructions and d) which bits corresponds to the other remaining not visible things

in the human readable text form representations of which ELF instructions - we can not exclude,

for example, that some bits are useful to set some �ags that do not appear in the human readable

text form representations of one or more ELF instructions.

We say that it is not feasible to try all the possible 264 binary combinations not only for the

big quantity of time that would be required but also because one of our conjectures, veri�ed being

true at the end of this reverse engineering phase, is that the binary format of the real instruction

set architecture is not �xed and so, for example, the positions, of the bits, corresponding to the

ELF register, used for the result, of one or more ELF instructions, are di�erent from the positions,

of the bits, corresponding to the ELF register, used for the result, of some other ELF instructions

- the same it is true a) for all the other �elds that can compose a binary code and b) the order of

the �elds.

To overcome these problems, for each fatbin �le that nvcc each time produces a) we generate,

using cuobjdump, the interpretation text �le of the fatbin �le, b) we transform each human readable

text form representation, present in the interpretation text �le generated by cuobjdump, in its

abstract human readable text form representation where the substrings corresponding to the ELF

registers used in each ELF instruction are substituted with more generic substrings indicating the

type of ELF register and its index type in the ELF instruction - how many times such type of

ELF register has already appeared from the beginning of the string of the abstract human readable

text form representation - c) we get the binary code of each corresponding human readable text

form representation from the interpretation text �le, d) we create 64 di�erent binary codes for each

binary code selected in c), each one of the 64 binary codes, of 64 bits each one, got switching only

1 of the bits of the original binary code, e) we generate a copy of the fatbin �le, f) using the 64

binary codes created at point e), for a number of times equal to the number of ELF instructions

visible in the interpretation text �le of the fatbin �le, we overwrite the �rst 64 ELF instructions in

the ELF part, corresponding to the PTX �le, in the copy of the fatbin �le, g) for each group of 64

overwrites, using cubojdump, we get the interpretation text �le of the partially overwrited fatbin

�le, h) we extract the human readable text form representations of the �rst 64 ELF instructions in

the interpretation text �les of the partially overwrited fatbin �le, i) we create the abstract human

readable text form representations of the human readable text form representations extracted in

h), j) we check which of these abstract human readable text form representations are equal to

the abstract human readable text form representations of the original ELF instructions, k) for the

binary codes with an abstract human readable text form representation equal to one of the abstract

human readable text form representations of the original ELF instructions, we check, the modi�ed

bit, which of the ELF registers, used in the original ELF instruction, it is modifying and store the

correspondence.

The abstract human readable text form representation of an ELF instruction, the positions of

the bits modifying the ELF registers used in the ELF instruction, which ELF register, used in the

ELF instruction, each one of such bits is modifying and the value of the remaining other bits not

modifying any ELF register used in the ELF instruction, all together are an abstract representation

of the ELF instructions or of its binary code.

For each ELF instruction, in the ELF part corresponding to a PTX �le, we can determine its

abstract representation following the previous procedure and check whether the abstract represen-

tation of the ELF instruction has already been discovered and therefore all the binary codes of all

the human readable text form representations of the ELF instruction have already been determined

58 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

and are in the database of the binaries or not. If not then we need to execute the following pro-

cedure: a) generation of all the possible binary codes of the ELF instruction got modifying only

the bits corresponding to the ELF registers in the ELF instruction, b) overwriting of the ELF part

corresponding to a PTX �le in the copy of a fatbin �le with all or part of the binary codes generated

at point a), c) generation, using cuobjdump, of the interpretation text �le of the overwrited fatbin

�le, d) check that each binary code used to overwrite the copy of the fatbin �le has an abstract rep-

resentation equal to the abstract representation of the binary code of the original ELF instruction,

e) check that the bit or group of bits modi�ed for the creation of the binary code are modifying

only the correspondent ELF registers used in the ELF instruction, f) updating of the database of

the binaries with the couples (human readable text form interpretation , binary code) and g)

return at point b) if there are other binary codes to use to overwrite the ELF part corresponding

to a PTX �le in the copy of the fatbin �le because the number of ELF instructions in the ELF part

corresponding to a PTX �le in the copy of the fatbin �le was smaller than the number of remaining

binary codes generated in a) to use for the overwrites in b).

6.6 Fatbin File Generation Satisfying Resource Constraints

From 6.2 we know that the ELF part corresponding to a PTX �le is only a part of a fatbin �le. In

every fatbin �le, before and after the ELF part corresponding to a PTX �le, there are other two

parts that are not visible in the interpretation text �le, generated by cuobjdump, for the fatbin �le.

Let us call A and C the two parts of a fatbin �le not visible in its interpretation text �le and B the

part, visible in its interpretation text �le, corresponding to a PTX �le.

Analyzing the interpretation text �les we discover that there are not ELF instructions corre-

sponding to any of the PTX instructions used to declare the PTX registers in the PTX �les and

therefore the number and type of ELF registers used by the fatbin �les generated by nvcc has to

be declared in the parts A and C of the fatbin �le.

Using particular �ags we can force nvcc to let us know how many hardware registers each GPU

thread will have to execute the fatbin �le - such number of hardware registers is determined by nvcc,

during the compiling phase, after having taken in input a PTX �le, but before the generation of

the corresponding fatbin �le, and it can not change any more after the generation of the fatbin �le,

this independently of how many times and with which launch con�gurations the user will decide

later to execute the fatbin �le.

If we count the number of di�erent text forms corresponding to the di�erent ELF registers

visible in the interpretation text �le of a fatbin �le and compare it to the number of hardware

registers each GPU thread has to execute the fatbin �le then the number of di�erent text forms

corresponding to the di�erent ELF registers visible in the interpretation text �le of a fatbin �le is

always equal to the number of hardware registers each GPU thread has to execute the fatbin �le

plus 1.

To test the possibility that there is a bug in nvcc we a) edit several PTX �les using the editing

guidelines in 6.3.1 and b) declare a number of PTX registers per PTX �le greater than 64 - the max-

imum number of hardware registers that can be assigned to a fatbin �le. The number of hardware

registers returned as output by nvcc is always 63 instead of 64, but analyzing the interpretation text

�les of the fatbin �les the number of di�erent text forms corresponding to di�erent ELF registers

visible in the interpretation text �le is always 64.

After this �rst veri�cation, other PTX �les are therefore edited using di�erent numbers of PTX

6.6. Fatbin File Generation Satisfying Resource Constraints 59

registers per PTX �le, each number smaller than 64, this time. Also for all these cases the number

of di�erent text forms corresponding to di�erent ELF registers visible in the interpretation text �le

of a fatbin �le is always equal to the number of hardware registers each GPU thread has to execute

the fatbin �le plus 1.

The two previous checks verify that there is probably a bug in nvcc, this because the two checks

allow to speculate a) that the number of di�erent text forms corresponding to the di�erent ELF

registers visible in the interpretation text �le is probably the real number of hardware registers

available to each GPU thread to execute a fatbin �le, b) that there is probably a correspondence

one to one between ELF registers and hardware registers per GPU thread and c) there are not

probably hardware registers, available to each GPU thread for the execution of the fatbin �le, not

comparing as ELF registers in the interpretation text �le.

Because the number of hardware registers available to each GPU thread for the execution of a

fatbin �le is always smaller than the number of di�erent text forms corresponding to the di�erent

ELF registers visible in the interpretation text �le of a fatbin �le if the previous a) would not true

then at least one hardware register should correspond to at least two di�erent ELF registers, if the

previous b) would not true then some hardware registers would correspond to more ELF registers

and if the previous c) would not true then too some hardware registers would correspond to more

ELF registers.

The probability that a), b) and c) are not true is very small because if some hardware registers

would correspond to more ELF registers of the same GPU thread then there would be an addi-

tional overload in the determination of which warp each warp scheduler can schedule at each warp

scheduler clock cycle, thing very unlikely considering that a maximum of 48 warps can be resident

at each moment in each streaming multiprocessor, during the execution of a fatbin �le, and that

the 2 warp schedulers in each streaming multiprocessor have already to compete for the assignment

of the warps on the 4 groups of function units of the streaming multiprocessor where the 2 warp

scheduler are resident.

Considering a) the previous a), b) and c) true, b) that during the execution of a fatbin �le each

thread has to execute the B part of the fatbin �le in its entirety, c) that the interpretation text �le

of a fatbin �le is unique independently of how many GPU threads are going to execute the fatbin

�le during a launch and d) that the hardware registers of each GPU thread are private and can not

be used/read/written by other GPU threads during the execution of a fatbin �le then, in the parts

A and C of a fatbin �le, nvcc has to have generated some instructions that, using as operands 1)

the parameters used in a launch con�guration and 2) the distribution of the GPU thread blocks

to the streaming multiprocessors after the beginning of the execution of the fatbin �le, are able to

assign the right number and type of hardware registers to each GPU thread for the execution of

the B part of the fatbin �le, at the same time avoiding to assign the hardware registers assigned to

a GPU thread to another GPU thread.

Because a) we have not ELF instructions to declare the ELF registers we want and b) we do

not know the instructions and the procedure, in the parts A and C of a fatbin �le, necessary to

assign, during the execution of the fatbin �le, the hardware registers to the ELF registers in such

way to get the guarantee that di�erent hardware registers are used by each GPU thread during

the execution of the fatbin �le, then we need to develop a procedure to generate PTX �les that

compiled by nvcc give us fatbin �les with the required number and type of ELF registers necessary

to modify the fatbin �les to get the wanted ELF algorithmic implementations.

If we are successful in this then, because we use the ELF registers that however appear in

60 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

the interpretation text �le of the fatbin �le before of its modi�cation, we do not get any problem

during the execution of the modi�ed versions of the fatbin �les, fatbin �les now with their B parts

containing the wanted ELF algorithmic implementations, this because we overwrite only the B

parts of the fatbin �les, B parts that we know correspond to PTX �les and we know being without

jumps to the parts A and C of the modi�ed fatbin �les as it was already the case in the original

fatbin �les and so independently of the mechanism used by the GPU architecture to execute a

fatbin �le, at a given point in time, during the execution of the fatbin �les, the control has to be

however passed in some ways to the beginnings of the B parts, B parts that will be executed in

their entirety without jumps to the parts A and C as happen too in the case of the original fatbin

�les, B parts that therefore also whether overwrited will not give launch failures due to violations

for the use of hardware resources - hardware registers - not initially assigned to them.

Knowing a) the number and type of PTX instructions necessary to execute a PTX �le, b)

the number and type of ELF registers in the ELF instructions necessary to execute each PTX

instruction and c) how many ELF registers that appear in each ELF instruction we want reuse

in the other ELF instructions necessary to execute the PTX instructions in the PTX �le then,

following the editing guidelines in 6.3.1, we can write PTX �les that given in input to nvcc will

produce as output fatbin �les 1) with a minimum number of ELF registers, per type of ELF register,

necessary for the overwrites and the modi�cations of the fatbin �les and 2) with a number of ELF

instructions in their B parts greater than the number of ELF instructions necessary to get the

wanted ELF algorithmic implementations.

Because the editing guidelines are based on some assumptions - 6.3.1 - also whether such as-

sumptions are reasonable we need in any case to check each time 1) the number of each type of ELF

register in the interpretation text �les of the fatbin �les to be sure to have at least the minimum

number of ELF registers, per type, necessary for the overwrites and the modi�cations of the fatbin

�les and 2) that the B parts of the fatbin �les have a number of ELF instructions greater than the

number of ELF instructions necessary to get the wanted ELF algorithmic implementations. If such

checks for a fatbin �le are not satis�ed then we can continuously loop generating each time a PTX

�le with one more PTX register corresponding to one of the remaining ELF registers necessary to

satisfy the checks.

Following the previous procedure we can always get the wanted fatbin �le but it is also necessary

that the following things, that we discovered, are satis�ed: 1) the total number of ELF registers

wanted for a fatbin �le has to be smaller than 65, 2) the total number of ELF instructions wanted

in the B part of a fatbin �le has to be smaller than 8193, c) the number of ELF registers, starting

with �P� or �p� - one type of ELF register - in a fatbin �le, has to be smaller than 9 and d) the ELF

registers RZ, R0, R1, pt have be used only in some ELF instructions and only in speci�c positions

in such ELF instructions.

6.7 Wanted ELF Algorithmic Implementations

Thanks to the results in the previous sections we are now able to get any wanted ELF algorithmic

implementation if we execute the following procedure: 1) determination of the type and order of

PTX instructions necessary to execute an algorithm, 2) check, in the database of the human readable

text form representations, of the number of ELF instructions necessary to execute each one of the

PTX instructions, 3) determination of the number of ELF instruction necessary to execute the

algorithm - this is possible considering the results got at the steps 1) and 2) - 4) check, in the

6.8. Summary 61

database of the human readable text form representations, the number and type of ELF registers

necessary to execute each necessary ELF instruction, 5) determination of the total number and

type of ELF registers we want use for the execution of the ELF instructions necessary to execute

the algorithm - this is possible considering a) the results got at the step 1), b) the type and order of

ELF instructions necessary to execute each PTX instruction, c) the results got at the step 4) and d)

the frequency and type of reuse we want for each ELF register of the fatbin �le - 6) creation of the

fatbin �le with a) at least the minimum number of ELF instructions and b) at least the minimum

number of ELF registers, per type of ELF register, necessary to make possible the overwrites and

the modi�cations of the fatbin �le in the wanted way - step 6) is accomplished a) using the editing

guidelines in 6.3.1, b) the procedure in 6.6 and c) PTX instructions completely di�erent from

the PTX instruction necessary to execute the algorithm, this because our goal here it is to get a

fatbin �le satisfying the resource constraints - 7) matching of the PTX registers, used in the PTX

instructions necessary for the execution of the algorithm, with the ELF registers of the fatbin �le

- we assign each ELF register of the fatbin �le to one or more PTX registers, this considering the

order of the ELF instructions and the frequency and type of reuse we want for each ELF register

of the fatbin �le, things decided at the step 5) - 8) for each PTX instruction we match the PTX

registers used in the PTX instruction with the original PTX register used in the PTX instruction

during the extraction phase in 6.4, 9) substitution of the original ELF registers, used in the ELF

instructions, necessary to execute the PTX instructions, during the extraction phase in 6.4, with

the corresponding ELF registers - this is possible because a) we know each original ELF register to

which original PTX register correspond and b) at the step 9) we have done the match among PTX

registers now used in the PTX instructions and original PTX registers used in the PTX instructions

during the extraction phase in 6.4, 10) substitution of the original ELF registers, used in the ELF

instructions, necessary to execute the PTX instructions, without correspond original PTX register,

with the ELF registers that at the step 5) we have decided to use for this - these are now ELF

registers with a corresponding PTX register, declared in the PTX �le, used for the generation of the

fatbin �le, thing done to get the guarantee to have how many ELF registers for type and number

we want for these types of substitutions, 11) overwriting of the B part of the fatbin �le, in order,

with the ELF instructions with the wanted a) new ELF registers and b) dependences among the

new ELF registers and 12) overwriting of the possible remaining original ELF instructions of the

fatbin �le with the exit ELF instruction, this because we generated a fatbin �le with a number of

ELF instructions in its B part at least equal to the number of ELF instructions necessary to get

the wanted ELF algorithmic implementation, see step 6).

The modi�ed fatbin �le so obtained has in its B part the wanted ELF algorithmic implementa-

tion. In the B part of the modi�ed fatbin �le a) there are the ELF instructions necessary to execute,

in the wanted order, the PTX instructions and b) the ELF registers, used in the ELF instructions,

have the wanted dependence types - write-read, read-read, etc. - and the wanted dependence dis-

tances - in number of ELF instructions. Such modi�ed fatbin �les run without launch failures for

every possible launch con�guration and their execution is logically correct.

6.8 Summary

In this chapter we have described the procedures a) that were necessary to uncover not disclosed

information about the real instruction set architecture and other features of the ELF codes and b)

that are necessary to generate and modify fatbin �les to get the wanted ELF algorithmic imple-

62 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

mentations. The most important points to remember from this chapter are the following:

• In a fatbin �le, the ELF instructions, corresponding to the PTX code of a PTX �le, are

consecutive and occupy only a part of the fatbin �le, the B part - the part A and C of the

fatbin �le are created by nvcc and it not given to know what they contain. We are able to

localize the B part of each fatbin �le, this is important because the B part is the part of a

fatbin �le that we need to modify to get the wanted ELF algorithmic implementations;

• To execute a PTX instruction one or more ELF instructions are necessary. The correspon-

dence, between PTX instruction and number, type and order of ELF instructions necessary

to execute the PTX instruction, has been determined for all the PTX instructions of inter-

est. The correspondences, between ELF registers used in the ELF instructions necessary to

execute a PTX instruction and PTX registers used in the PTX instruction, too have been

determined so how which ELF registers used in the ELF instructions necessary to execute a

PTX instruction do not have a correspondent PTX register in the PTX instruction.

These results are useful when we want modify a fatbin �le using a set of ELF registers

di�erent from the original one used in the ELF instructions. Knowing which ELF register is

what in each ELF instruction allows us to modify an ELF code getting the guarantee that

the execution of the modi�ed ELF code is logically correct because we use each ELF register,

in each ELF instruction, in the correct role;

• The reverse engineering of the real instruction set architecture has been executed so now we

know that the binary codes of the real instruction set architecture have not a �xed format.

With the results of the reverse engineering we are now able to generate all the binary codes

of each ELF instruction of interest and overwrite the B part of a fatbin �le using the binary

codes corresponding to the ELF instructions we want with the ELF registers we want;

• There are not ELF instructions to assign ELF registers to a fatbin �le so the ELF registers

assigned to a fatbin �le have to be assigned by nvcc during the compiling phase and later

correspond to some hardware registers that has to be di�erent for each GPU thread used for

the execution of the fatbin �le.

The procedure for the assignment of hardware registers to the ELF registers of a fatbin �le

is not in the B part of a fatbin �le so it has to be in the part/s A and/or C - parts A and

C are not disclosed - because nvcc can not know the launch con�guration that we are going

to use at each di�erent execution of the fatbin �le and so nvcc can not know the number of

GPU thread that each time is going to execute the fatbin �le - the number of GPU threads

could be e�ectively di�erent each time.

To get the wanted ELF algorithmic implementation its therefore necessary a) to write a PTX

�le using a particular set of editing guidelines - 6.3.1 - b) to give the PTX �le in input to nvcc

to get as output a fatbin �le, that thanks to the use of the editing guidelines, has at least the

minimum number of ELF registers, per type of ELF register, necessary for the modi�cation

of the fatbin �le and c) to modify, in the fatbin �le, the ELF code corresponding to the PTX

�le, to get the wanted ELF algorithmic implementations;

• For each wanted ELF algorithmic implementation we want, thanks to the previous results, we

can always generate �rst a fatbin �le having at least the minimum number of ELF registers,

per type of ELF register, we want for the modi�cation of the fatbin �le and later we can

6.8. Summary 63

always modify the fatbin �le overwriting its B part with the order, type and number of ELF

instructions we want, each of them using the ELF registers that we want.

Such modi�ed fatbin �le a) have the wanted ELF algorithmic implementation, b) run without

launch failures due to violations for the use of ELF registers not originally assigned to it and c)

give us the guarantee that its execution its logically correct because we know the role of each

ELF register that we use in each ELF instruction - whether result, operand, etc. - and the

speci�c values of the bits, in the binary codes of each ELF instruction, for the determination

of the particular ELF register we want in each role in each ELF instruction.

Being able to get the wanted ELF algorithmic implementations is however not enough to op-

timize the execution of the ELF code of the B part of a fatbin �le. It is probable e�ectively that

there are also some GPU behaviors - a) not disclosed, b) not quanti�ed, c) determined by the

GPU hardware design and d) beyond the control of the users - able to in�uence the execution time

of a fatbin �le. In the next chapter we therefore discover, understand and quantify such GPU

behaviors.

64 Chapter 6. Reverse Engineering of the ISA and Modi�cation of ELF Codes

Chapter 7

Discovery, Understanding and

Quanti�cation of Not Disclosed GPU

Behaviors

7.1 Introduction

Being able to modify ELF codes is not enough to understand how to optimize them. There are

surely not disclosed GPU behaviors, due to the GPU hardware design, that is necessary to discover,

understand and quantify, to be able to optimize and analyze ELF codes.

Some not disclosed GPU behaviors are probably controllable and easily avoidable, others - as

the warp scheduling mechanism used by the warp schedulers to schedule warps on the 4 groups of

function units in each streaming multiprocessor - we already know are impossible to control or to

avoid. Every ELF code has therefore to be structured and being launched in such a way that: a)

the impact of GPU behaviors, that could have a negative impact but that can be avoided, is made

null and b) the impact of GPU behaviors, that could have a negative impact but that can not be

avoided, is minimized.

We divide the not disclosed GPU behaviors we want to verify, understand and quantify in two

categories - global and local - and we explain a) which GPU architectural features we need to

consider to verify whether the not disclosed GPU behaviors really exist and b) how we quantify

each GPU architectural feature.

Next we talk of the structures of the ELF codes used for the quanti�cations. Such structures

have to give the guarantee that the byte transfers among the di�erent GPU memories can not slow

down the executions of the ELF codes. We therefore describe a) the structures of the PTX codes

and of the ELF codes used for the quanti�cation of the GPU architectural features and b) the

automatic procedure for the generation of all the necessary fatbin �les necessary for the extraction

of each GPU architectural feature of each instruction con�guration.

Because each fatbin �le can be launched in many di�erent ways, understanding a) the launch

con�gurations used for each one of the two categories of not disclosed GPU behaviors - global

and local - and b) why the launch con�gurations have to be di�erent, is useful to understand the

logic behind the reliability of the ELF code execution times used in the quanti�cation of the GPU

architectural features.

65

66 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

The GPU architectural features are therefore extracted and quanti�ed and the veri�ed, under-

stood and quanti�ed GPU behaviors are explained. If a GPU behavior is avoidable and could have

a negative impact on the execution times of an ELF code then an explanation on how to avoid it

is given. If a GPU behavior is not avoidable and could have a negative impact on the execution

times of an ELF code then its variability is studied and is considered during the analysis/analyses

in the next chapters.

7.2 Not Disclosed GPU Behavior Categories

The not disclosed GPU behaviors we want to verify, understand and quantify can be divided in two

categories:

• The category of the not disclosed global GPU behaviors The not disclosed global GPU be-

haviors are determined by the gigathread scheduler - 3.2 - behavior a) at chip level and b)

at streaming multiprocessor level where some parts of the gigathread scheduler - the warp

schedulers - are not synchronized among di�erent streaming multiprocessors as instead are

at chip level the parts of the gigathread scheduler distributing GPU thread blocks to the

streaming multiprocessors.

Verifying, understanding and quantifying the not disclosed global GPU behaviors and their

variabilities is important a) for the global GPU load balancing analysis and b) to prove that

the executions, of the ELF code, of the B part, of the fatbin �le, of a couple (fatbin �le ,

launch con�guration), can not be slowed down by the bandwidths and the latencies of the

GPU memories, when the fatbin �le is executed using the launch con�guration of the couple

- 12.2;

• The category of the not disclosed local GPU behaviors The not disclosed local GPU behaviors

are determined a) by the parts of the gigathread scheduler at the streaming multiprocessor

level - the warp schedulers - and b) by the streaming multiprocessor hardware design.

Verifying, understanding and quantifying the not disclosed local GPU behaviors and their

variabilities is important a) for the local streaming multiprocessor load balancing analysis, b)

to prove that the executions, of the ELF code, of the B part, of the fatbin �le, of a couple (

fatbin �le , launch con�guration), can not be slowed down by the bandwidths and the latencies

of the GPU memories, when the fatbin �le is executed using the launch con�guration of the

couple - 12.2 - and c) to prove that it is not possible, during the execution, of the ELF code,

of the B part, of the fatbin �le, of a couple (fatbin �le , launch con�guration), the generation

of stalls, in the instruction pipelines of the streaming multiprocessors, due to the number of

resident warps in each streaming multiprocessor, when the fatbin �le is executed using the

launch con�guration of the couple - 12.3.

However, to be able to verify, understand and quantify the not disclosed global and local GPU

behaviors is �rst necessary to quantify the not disclosed GPU architectural features.

7.3 GPU Architectural Features

The GPU architectural features are divided a) in global GPU assignment and scheduling archi-

tectural features - 7.5.1 - useful to verify, understand and quantify the not disclosed global GPU

7.3. GPU Architectural Features 67

behaviors and b) in local streaming multiprocessor PTX and ELF architectural features - 7.5.2 -

useful to verify, understand and quantify the not disclosed local GPU behaviors

7.3.1 Global GPU Assignment and Scheduling Architectural Features

The global GPU assignment and scheduling architectural features are determined by GPU hardware

limitations due to the GPU hardware design. Considering the di�erent functions of the global

architectural features, the global architectural features can be divided in two groups:

• The �rst group. The �rst group is useful to determine whether the gigathread scheduler is

always evenly distributing the GPU thread blocks to the streaming multiprocessors. If the

gigathread scheduler does not assign in an even way the GPU thread blocks to the streaming

multiprocessors then this could vanify all the e�orts done to optimize an ELF code because

when a GPU thread block has been assigned to a streaming multiprocessor the GPU thread

block can not migrate any more;

• The second group. The second group considers several time di�erences - in number of clock

cycles - regarding the starting and ending warp scheduling phases of the resident warps on all

the streaming multiprocessors.

Because the GPU warp scheduling policies are not disclosed, the time di�erences are useful

to understand how the resident warps on the whole GPU are made advancing after that they

have been all scheduled at least one time.

The quanti�cation of these second group of global architectural features is useful to determine

whether the execution, of the ELF code, of the B part, of the fatbin �le, of a couple (fatbin

�le , launch con�guration), can not be slowed down by the bandwidths and the latencies

of the GPU memories, when the fatbin �le is executed using the launch con�guration of the

couple - 12.2.

If the execution, of the ELF code, of the B part, of the fatbin �le, of a couple (fatbin �le

, launch con�guration), could be slowed down by the bandwidths and the latencies of the

GPU memories, when the fatbin �le is executed using the launch con�guration of the couple,

then, to avoid this, we can modify the fatbin �le of the couple in several di�erent ways that

we will explain in the next chapters.

If instead the execution, of the ELF code, of the B part, of the fatbin �le, of a couple (fatbin

�le , launch con�guration), can not be slowed down by the bandwidths and the latencies

of the GPU memories, when the fatbin �le is executed using the launch con�guration of the

couple, then it is necessary to analyze what happens locally in each streaming multiprocessor.

To analyze what happens locally in each streaming multiprocessor it is necessary to quantify

the local streaming multiprocessor PTX and ELF architectural features.

7.3.2 Local Streaming Multiprocessor PTX and ELF Architectural Fea-

tures

The local streaming multiprocessor PTX and ELF architectural features are features determined by

the streaming multiprocessor hardware limitations due to the streaming multiprocessor hardware

design. Considering the di�erent function of the local streaming multiprocessor PTX and ELF

68 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

architectural features, the local streaming multiprocessor PTX and ELF architectural features can

be divided in two groups:

• The �rst group. The �rst group is composed by the same time di�erences - in number of

clock cycles - of the second group of features of the global GPU assignment and scheduling

architectural features.

The time di�erences are taken and determined locally for a single streaming multiprocessor

and are useful to understand as the resident warps in a streaming multiprocessor are made

advancing after that they have been all scheduled at least one time.

The quanti�cation of these second group of global architectural features is useful to determine

whether the execution, of the ELF code, of the B part, of the fatbin �le, of a couple (fatbin

�le , launch con�guration), can not be slowed down by the bandwidths and the latencies

of the GPU memories, when the fatbin �le is executed using the launch con�guration of the

couple - 12.2.

If the execution, of the ELF code, of the B part, of the fatbin �le, of a couple (fatbin �le

, launch con�guration), could be slowed down by the bandwidths and the latencies of the

GPU memories, when the fatbin �le is executed using the launch con�guration of the couple,

then, to avoid this, we can modify the fatbin �le of the couple in several di�erent ways that

we will explain in the next chapters.

If instead the execution, of the ELF code, of the B part, of the fatbin �le, of a couple (fatbin

�le , launch con�guration), can not be slowed down by the bandwidths and the latencies

of the GPU memories, when the fatbin �le is executed using the launch con�guration of the

couple, then it is necessary to consider the features of the second group of the local streaming

multiprocessor PTX and ELF architectural features.

• The second group. The second group considers several local streaming multiprocessor PTX

and ELF architectural features. The features are useful:

� a) To quantify the real instruction con�guration streaming multiprocessor best average

performance per clock cycle;

� b) To understand whether it is possible to get load unbalancing for the warp scheduling

in a streaming multiprocessor if the gigathread scheduler has evenly distributed the GPU

thread blocks to the streaming multiprocessors, and if yes, whether and how it is possible

to get load balancing for the warp scheduling in a streaming multiprocessor;

� c) To understand whether the warp schedulers have a scheduling waiting time. When a

warp is scheduled, at cause of the GPU hardware design, it is possible that at least a

minimum quantity of clock cycles has to pass before the warp schedulers can schedule the

warp again and that this minimum quantity of time can be due to causes di�erent a) by

the write-read and read-read dependence waiting times - see d) below for an explanation

- and/or b) the overhead time for the management of the warps - see e) below for an

explanation. This minimum quantity of time is the scheduling waiting time.

If the warp schedulers have a scheduling waiting time then it is necessary to understand

whether the scheduling waiting time is di�erent for di�erent ELF instruction con�gura-

tions and if yes then it is necessary to quantify the scheduling waiting time for each ELF

instruction con�guration;

7.3. GPU Architectural Features 69

� d) To quantify the number of clock cycles that is necessary to wait before to be able to

read a data previously written in an ELF register - write-read dependence waiting time

- for each ELF instruction con�guration and the number of clock cycles that is necessary

to wait before to be able to read a data previously read from an ELF register - read-read

dependence waiting time - for each ELF instruction con�guration;

� e) To understand whether there is an overhead time for the management of the warps,

if yes then whether its increase is not linear when the number of resident warps in a

streaming multiprocessor is linearly increasing, if yes then which can be the shape of a

function expressing it;

� f) To determine the minimum number of resident warps necessary in a streaming mul-

tiprocessor to get the real instruction con�guration best average performance per clock

cycle of each ELF instruction con�guration for each dependence distance.

The motivations to verify and quantify the local streaming multiprocessor PTX and ELF

architectural features a), b) c), d), e) and f) are the following:

� Verifying and quantifying the real instruction con�guration streaming multiprocessor

best average performance per clock cycle is useful to get a �rst idea about the minimum

number of clock cycles that is necessary to the GPU to execute some ELF codes and

after the execution of the ELF codes to get a more accurate measure of their e�ciencies.

As limit case considers, for example, an ELF code of only sine ELF instructions with

operands at 32 bits. The GPU theoretical peak performance is around 0.5 TF/s but

not more than 4 sine ELF instructions can be executed in a clock cycle per streaming

multiprocessor not more than 4 * 14 = 56 sine ELF instructions can be executed in a

clock cycle by the GPU.

Considering that the 4 special function units used to execute the sine ELF instructions

have a clock frequency of 1.15 Ghz, this gives a GPU theoretical peak performance, for

the ELF code, of about 0.06 TF/s instead of about 0.5 TF/s.

The real instruction con�guration streaming multiprocessor best average performance

per clock cycle of the PTX and ELF instruction con�gurations is also important to un-

derstand which function units in a streaming multiprocessor are executing which PTX or

ELF instruction con�gurations and to understand whether there are some not disclosed

hardware resources, shared among the possible subsets of the 4 groups of function units

in a streaming multiprocessor, for the parallel execution of all the possible couples or

triplets of PTX or ELF instruction con�gurations;

� Verifying whether and when there is load unbalancing for the warp scheduling in a

streaming multiprocessor, if the gigathread scheduler has evenly distributed the GPU

thread blocks to the streaming multiprocessors, is important because, supposing the

gigathread scheduler has evenly distributed the GPU thread blocks to the streaming

multiprocessors, if we can not force load balancing for the warp scheduling in a streaming

multiprocessor then the load unbalancing for the warp scheduling could have a very bad

impact on the execution time of an ELF code.

� Verifying and quantifying the existence of the scheduling waiting time/times is important

because if a) a couple (fatbin �le , launch con�guration) has an even GPU thread block

70 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

distribution on the streaming multiprocessors, b) we know how the warp schedulers are

making advance the warps at the global and local level after all the warps have been

scheduled at least one time, c) the execution, of the ELF code, of the B part, of the

fatbin �le, of the couple (fatbin �le , launch con�guration), can not be slowed down

by bandwidths and latencies of the GPU memories, when the fatbin �le is executed

using the launch con�guration of the couple and d) we can get load balancing, for the

warp scheduling, in each streaming multiprocessor, then, given the ELF instruction

con�gurations in the B part of the fatbin �le, the scheduling waiting times for each ELF

instruction con�guration in the ELF code allow to determine, in the cases where the

scheduling waiting time is the limiting factor, the minimum number of resident warps

necessary locally in each streaming multiprocessor to avoid instruction pipeline stalls -

due to the scheduling waiting times - during the execution, of the ELF code, of the B

part, of the fatbin �le, of a couple (fatbin �le , launch con�guration), when the fatbin

�le is executed using the launch con�guration of the couple;

� Verifying and quantifying the write-read dependence waiting times and the read-read

dependence waiting times is important because knowing a), b), c), d) of the previous

paragraph and the ELF instruction con�gurations in the B part of a fatbin �le, the

write-read dependence waiting times and the read-read dependence waiting times of the

ELF instruction con�gurations in the B part of a fatbin �le allow to determine, in the

cases where the dependence waiting times are the limiting factor, the minimum number

of resident warps necessary locally in a streaming multiprocessor to avoid instruction

pipeline stalls - due to the dependences waiting times - during the execution, of the ELF

code, of the B part, of the fatbin �le, of a couple (fatbin �le , launch con�guration

), when the fatbin �le is executed using the launch con�guration of the couple and to

determine the precise - and also average - number of clock cycles necessary to execute

each ELF instruction con�guration - 7.6.2;

� Verifying the existence of an overhead time for the management of the warps is useful to

understand whether the real ELF code streaming multiprocessor average performance

per clock cycle can be smaller than the theoretical streaming multiprocessor best average

performance per clock cycle for causes di�erent from the scheduling waiting times, the

dependence waiting times and the scheduling of the warps on the not disclosed hardware

resources shared among the subsets of the 4 groups of function units in each streaming

multiprocessor.

Verifying, whether the overhead time for the management of the warps is increasing not

linearly as the number of resident warps in a streaming multiprocessor linearly increases,

allows to understand that for the ELF instruction con�gurations the number of resident

warps necessary locally in a streaming multiprocessor could have to be greater than the

minimum got considering only the scheduling waiting time and the dependence waiting

time of the ELF instruction con�guration.

Determining the shape of a function able to express the overhead time for the manage-

ment of the warps allows to understand for which triplets (ELF instruction con�guration

, dependence distance , number of resident warps in a streaming multiprocessor) the

overhead time for the management of the warps could be the limiting factor in getting the

real ELF instruction con�guration streaming multiprocessor best average performance

7.4. PTX and ELF Codes 71

per clock cycle.

Considering the e�ects of the overhead time for the management of the warps allows to

determine, in the cases where the overhead time for the management of the warps is the

limiting factor, the minimum number of resident warps necessary locally in a streaming

multiprocessor to avoid instruction pipeline stalls - due to the overhead time for the

management of the warps - during the execution, of the ELF code, of the B part, of

the fatbin �le, of a couple (fatbin �le , launch con�guration), when the fatbin �le is

executed using the launch con�guration of the couple;

� Determining the minimum number of resident warps necessary in a streaming multipro-

cessor to get the real instruction con�guration best average performance per clock cycle

of each ELF instruction con�guration for each dependence distance is important because

knowing a), b), c), d) and the ELF instruction con�gurations in the B part of a fatbin �le,

then the minimum number of resident warps necessary in a streaming multiprocessor to

get the real instruction con�guration best average performance of each ELF instruction

con�guration for each dependence distance allows to determine the possible numbers

of resident warps necessary locally in a streaming multiprocessor to avoid instruction

pipeline stalls - due to the scheduling waiting times, the dependence waiting times and

the overhead time for the management of the warps - during the execution, of the ELF

code, of the B part, of the fatbin �le, of a couple (fatbin �le , launch con�guration),

when the fatbin �le is executed using the launch con�guration of the couple - 7.6.2.

To verify and quantify each GPU PTX and ELF architectural feature, the execution times, of

the ELF codes used, have to be accurate and reliable and so give an a priori guarantee that the

byte transfers among the di�erent GPU memories can not slow down the executions, of the ELF

codes, of the B parts, of the fatbin �les. To get an a priori guarantee that the byte transfers among

the di�erent GPU memories can not slow down the executions, of the ELF codes, of the B parts, of

the fatbin �les, it is necessary the ELF codes, of the B parts, of the fatbin �les, have the structure

indicated in the next section.

7.4 PTX and ELF Codes

The ELF codes, of the B parts, of the fatbin �les, has to be written in such way to give an a priori

guarantee that the byte transfers, among the di�erent GPU memories, can not slow down the

executions of one of their parts. This is important because in the quanti�cation of the architectural

features we need to have an a priori guarantee that the execution times of one of the parts of each

ELF code are due only a) to the gigathread scheduler hardware limitations and b) to the streaming

multiprocessor hardware limitations - warp schedulers, instruction pipeline depths, waiting times

due to write-read and read-read dependences among ELF registers, not disclosed hardware resources

shared among the possible subsets of the 4 groups of function units in each streaming multiprocessor,

etc. .

7.4.1 A Priori Bandwidth and Latency GPU Memories Free Guarantee

The B part of every fatbin �le has to be of limited length. For this reason the B part, of each

fatbin �le used for the quanti�cation of the architectural features, has inside a for loop - in this

72 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

way we can iterate on the for loop more times and so make each GPU thread to execute at least

the minimum number of ELF instructions we want.

The data, necessary to execute the ELF instructions inside the for loop, are loaded before the for

loop. A written request to the same global memory location and a memory synchronization barrier

are edited just before the beginning of the for loop. The GPU threads are released only after a) all

them have met the synchronization barrier and b) all them have satis�ed all the previous memory

requests and so also the writing request to the same global memory location. Doing this we have

the guarantee a) that all the necessary data, used inside the for loop, are in the ELF registers before

the beginning of the execution of the for loop and b) that, during the execution of the for loop, the

execution of the ELF instructions can not be slowed down by the byte transfers among the di�erent

GPU memories. Just after the synchronization barrier each GPU thread get the global GPU clock

cycle and enter to execute the for loop. Later, just after the end of the for loop, each GPU thread

get the GPU clock cycle, executes a writing request to the same global memory location and met

another memory synchronization barrier.

Considering a) that the worst case global memory latency is not greater than 800 function unit

clock cycles - [50, p. 87] and [56, p. 67] say 800 function unit clock cycles, [49, p. 47] and [55,

p. 57] say 600 function unit clock cycles - and b) that the read and the write operations to the

same global memory location are not atomic among GPU threads, such memory synchronization

barriers are going to produce a incredibly small noise on the �nal calculation of the execution times

necessary to execute the for loops because the number of ELF instructions executed for each for

loop is of the order of magnitude of the millions.

7.4.2 Structure of the PTX and ELF Codes

In this subsection 7.4.2 and in the next subsection 7.4.3 we give only examples for the PTX cases,

no example for the ELF cases is given but all the reasonings can be repeated in the same way

considering ELF instructions instead of PTX instructions.

Table 7.1: Part of the for loop of the PTX �le (add.u32 , normal mode , write-read , 3) where (
add.u32 , normal mode , write-read) is the PTX instruction con�guration and 3 is the dependence
distance considered for the write-read dependence type.

add.u32 %result_operand_0, %result_operand_0, %result_operand_0;
add.u32 %result_operand_1, %result_operand_1, %result_operand_1;
add.u32 %result_operand_2, %result_operand_2, %result_operand_2;

add.u32 %result_operand_0, %result_operand_0, %result_operand_0;
add.u32 %result_operand_1, %result_operand_1, %result_operand_1;
add.u32 %result_operand_2, %result_operand_2, %result_operand_2;

add.u32 %result_operand_0, %result_operand_0, %result_operand_0;
add.u32 %result_operand_1, %result_operand_1, %result_operand_1;
add.u32 %result_operand_2, %result_operand_2, %result_operand_2;

add.u32 %result_operand_0, %result_operand_0, %result_operand_0;
add.u32 %result_operand_1, %result_operand_1, %result_operand_1;
add.u32 %result_operand_2, %result_operand_2, %result_operand_2;

7.4. PTX and ELF Codes 73

The PTX code is showing 4 groups of add.u32 PTX instructions executed in normal mode.

Each group has the same 3 add.u32 PTX instructions - the name of the PTX registers determines

whether two PTX instructions are equal. The type of dependence between each couple of two equal

add.u32 PTX instructions is write-read at distance 3.

Table 7.2: Part of the for loop of the PTX �le (sub.s32 , conditional mode -> true , read-read ,
2) where (sub.s32 , conditional mode -> true , read-read) is the PTX instruction con�guration
and 2 is the dependence distance considered for the read-read dependence type.

@%guard_0 sub.s32 %result_0, %operand_0, %operand_0;
@%guard_1 sub.s32 %result_1, %operand_1, %operand_1;

@%guard_0 sub.s32 %result_0, %operand_0, %operand_0;
@%guard_1 sub.s32 %result_1, %operand_1, %operand_1;

@%guard_0 sub.s32 %result_0, %operand_0, %operand_0;
@%guard_1 sub.s32 %result_1, %operand_1, %operand_1;

@%guard_0 sub.s32 %result_0, %operand_0, %operand_0;
@%guard_1 sub.s32 %result_1, %operand_1, %operand_1;

The PTX code is showing 4 groups of sub.s32 PTX instructions executed in a conditional way

- the guard has to be true. Each group has the same 2 sub.s32 PTX add instructions. The type of

dependence between each couple of two equal sub.s32 PTX instructions is read-read at distance 2.

Table 7.3: Part of the for loop of the PTX �le (xor.b32 , conditional mode -> false , write-read ,
4) where (xor.b32 , conditional mode -> false , write-read) is the PTX instruction con�guration
and 4 is the dependence distance considered for the write-read dependence type.

!@%guard_0 xor.b32 %result_operand_0, %result_operand_0, %result_operand_0;
!@%guard_1 xor.b32 %result_operand_1, %result_operand_1, %result_operand_1;
!@%guard_2 xor.b32 %result_operand_2, %result_operand_2, %result_operand_2;
!@%guard_3 xor.b32 %result_operand_3, %result_operand_3, %result_operand_3;

!@%guard_0 xor.b32 %result_operand_0, %result_operand_0, %result_operand_0;
!@%guard_1 xor.b32 %result_operand_1, %result_operand_1, %result_operand_1;
!@%guard_2 xor.b32 %result_operand_2, %result_operand_2, %result_operand_2;
!@%guard_3 xor.b32 %result_operand_3, %result_operand_3, %result_operand_3;

!@%guard_0 xor.b32 %result_operand_0, %result_operand_0, %result_operand_0;
!@%guard_1 xor.b32 %result_operand_1, %result_operand_1, %result_operand_1;
!@%guard_2 xor.b32 %result_operand_2, %result_operand_2, %result_operand_2;
!@%guard_3 xor.b32 %result_operand_3, %result_operand_3, %result_operand_3;

The PTX code is showing 3 groups of xor.b32 PTX instructions executed in a conditional way

- the guard has to be false. Each group has the same 4 xor.b32 PTX instructions. The type of

dependence between each couple of two equal xor.b32 PTX instruction is write-read at distance 4.

To minimize the noise given by a) the increment of the variable of the number of for cycles

executed, b) the setting of the guard for the execution of the next cycle of the for loop and c) the

74 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

conditional jump for possibly repeating the for loop, we put, a) the increment of the variable, of

the number of for cycles executed, to the beginning of the for loop, b) the setting of the guard, for

the execution of the next cycle of the for loop, in the middle of the for loop and c) the conditional

jump, for possibly repeating the for loop, to the end of the for loop.

7.4.3 Construction of the PTX and ELF Codes

Using the results of the previous chapter we construct the B parts of the fatbin �les necessary to

extract the GPU PTX architectural features for each PTX instruction con�guration of interest.

For the construction of the B parts of the fatbin �les the following propositions are true: a)

the B parts of the fatbin �les have to be of limited length, b) the number of ELF registers, that

each GPU thread can have, can not be greater than 64 and c) a limited number and type of ELF

registers are necessary to execute the ELF instructions necessary to execute a PTX instruction

con�guration. Because a), b) and c) are true, for each PTX instruction con�guration, it is possible

to generate, in an automatic way, all the B parts of the fatbin �les necessary to quantify the GPU

PTX architectural features of the PTX instruction con�guration.

Suppose, for example, that an add.u32 PTX instruction, executed in normal mode - see the �rst

of the previous examples in 7.4.2 - requires 5 ELF registers, all of the same type - for example not

predicate and so all at 32 bits. Considering that a) each GPU thread can not have more than 64

ELF registers and b) that - for example - 13 ELF registers has to be reserved to execute things

di�erent from the add.u32 PTX instructions, executed in normal mode, inside the for loop, this

leaves 51 ELF registers to execute the add.u32 PTX instructions and so a maximum of 51 di�erent

add.s32 PTX instructions, to execute in normal mode, inside the for loop. For the PTX instruction

con�guration (add.u32 , normal mode , write-read), 51 fatbin �les are therefore generated. The

�rst fatbin �le has groups with only an add.u32 PTX instruction - this fatbin �le considers the

distance 1 for the write-read dependence type of the PTX instruction con�guration - the second

has groups with only 2 add.u32 PTX instructions - this fatbin �le considers the distance 2 for

the write-read dependence type of the PTX instruction con�guration - etc. . During the creation

of these 10 fatbin �les, the number of ELF instructions necessary to execute an add.u32 PTX

instruction in normal mode determines the number of ELF instructions NEIg necessary to execute

a group. The number of ELF instructions NEIr reserved in the fatbin �le to execute add.u32 PTX

instructions, in normal mode, with a write-read dependence type, inside the for loop, of the B part,

of the fatbin �le, determines the number of groups Ng = bNEIr
NEIg

c of add.u32 PTX instructions, to

execute in normal mode, with a write-read dependence type, to edit inside the for loop, of the B

part, of the fatbin �le.

7.5 Launch Con�gurations

Considering we can use many possible launch con�gurations to execute a fatbin �le - 2.5 - we always

choose to use the minimum number of GPU thread blocks, in their simplest a) logic GPU thread

block distribution, b) GPU thread block composition and c) logic GPU thread block form, to satisfy

our distribution requirements on the streaming multiprocessors.

During the quanti�cation of the GPU architectural features for each instruction con�guration

we calculate several tables. The rows of these tables represent the fatbin �les constructed for the

instruction con�guration - one fatbin �le for each one of the dependence distances of the dependence

7.5. Launch Con�gurations 75

type of the instruction con�guration. The columns of these tables represent the launch con�gura-

tions used to execute the fatbin �les. Some of these tables contain only architectural features - for

example time di�erences - while other contains values useful to quantify some architectural features

- for example the real instruction con�guration streaming multiprocessor best average performance

per clock cycle.

7.5.1 Global GPU Assignment and Scheduling Architectural Features

The number of streaming multiprocessors, the maximum number of resident warps per streaming

multiprocessor and the maximum number of warps per GPU thread block determine the minimum

number of GPU thread blocks necessary to get on each GPU streaming multiprocessor the maximum

number of resident warps per streaming multiprocessor - remember that are the GPU thread blocks

that are assigned to the streaming multiprocessors, that the GPU thread blocks can not migrate

after the assignment, that the warps are always composed by a �xed number of GPU threads, 32,

and that are the warps that are scheduled by the 2 warps schedulers in each streaming multiprocessor

and so our focus has to be on the number of GPU thread blocks and the number of warps per GPU

thread block and not on the single GPU threads.

For our machine, the number of streaming multiprocessors is 14, the maximum number of

resident warps per streaming multiprocessor is 48, the maximum number of warps per GPU thread

block is 32 and so the minimum number of GPU thread blocks to get on each GPU streaming

multiprocessor the maximum number of resident warps is 2∗14 = 28 because 2 GPU thread blocks,

with 24 < 32 warps per GPU thread block, on each one of the 14 streaming multiprocessors, give

the maximum number of resident warps per streaming multiprocessor, 48.

For each fatbin �le we have therefore a maximum of 24 launch con�gurations, 1 per possible

number of warps per GPU thread block. Given a fatbin �le, if the number of ELF registers per

GPU thread does not allow to 2 GPU thread blocks of X warps each one to �t in a streaming

multiprocessor the 1 ≤ X ≤ 24 launch con�guration for the fatbin �le is not used. Every fatbin �le

is executed Y times for each one of the launch con�gurations.

7.5.2 Local Streaming Multiprocessor PTX and ELF Architectural Fea-

tures

Only one of the GPU streaming multiprocessors is used and only a GPU thread block is used per

launch con�guration. With only a GPU thread block per launch con�guration there is no logic

GPU thread block distribution to choose. Because each GPU thread block can have a maximum of

1032 GPU threads and because each warp is always composed by 32 GPU threads, no GPU thread

block can have more than 32 warps and so, because only a GPU thread block is used, each fatbin

�le can not be launched with more than 32 di�erent launch con�gurations - 1 per possible number

of warps of the only GPU thread block used. Every fatbin �le is executed Y times for each one of

the launch con�gurations.

For some fatbin �les not all the launch con�gurations are used because a) each streaming

multiprocessor has 215 ELF registers and b) each GPU thread can not have more than 64 ELF

registers, and so if the fatbin �le has more than 215

25∗25 = 215

210 = 25 = 32 ELF registers then less than

32 warps are necessary to fully occupy the hardware register resources of a streaming multiprocessor.

On the other side the fatbin �les with less than 25 = 32 ELF registers per GPU thread do

not completely occupy all the hardware register resources of a streaming multiprocessor but this is

76 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

not a problem to quantify the real instruction con�guration streaming multiprocessor best average

performance per clock cycle of each instruction con�guration - see why in 7.6.2.

7.6 GPU Architectural Feature Quanti�cations

In the next two subsections we quantify the global GPU assignment and scheduling architectural

features - useful to verify, understand and quantify the not disclosed global GPU behaviors and their

variabilities - and the local streaming multiprocessors PTX and ELF architectural features - useful

to verify, understand and quantify the not disclosed local GPU behaviors and their variabilities.

7.6.1 Global GPU Assignment and Scheduling Architectural Features

For each couple (fatbin �le , launch con�guration), of the each instruction con�guration, the

�rst group of GPU architectural features is quanti�ed. The GPU architectural features are: a)

the possibility, for the gigathread scheduler, to assign, the GPU thread blocks, to the streaming

multiprocessors, in a not even way, b) the number of fatbin �le launches, c) the number of failed

fatbin �le launches, d) the number of not failed fatbin �le launches, e) the number of not failed fatbin

�le launches with even distribution of the GPU thread blocks to the streaming multiprocessors and

f) the number of not failed fatbin �le launches with not even distribution of the GPU thread blocks

to the streaming multiprocessors.

Several automatic checks are executed. A part of these automatic checks consider the number

and type of launches per fatbin �le - failed, not failed, with even or not even distribution of the

GPU thread blocks to the GPU streaming multiprocessors:

• All the launches of a fatbin �le with a given launch con�guration can only fail or not fail -

this is useful to understand whether something of wrong is happening on the GPU. If, when

the same launch con�guration is used to execute a fatbin �le, we would have an hybrid of

failed and not failed launches, then that would mean that there are problems about the bytes

read and written from/to the GPU memories - launch failures due to try to read and/or write

bytes from/to areas of the GPU memories not reserved to the fatbin �le;

• The division between even and not even distribution of the GPU thread blocks to the GPU

streaming multiprocessors is instead useful to test the conjecture that if the gigathread sched-

uler does not evenly distribute the GPU thread blocks to the GPU streaming multiprocessors

- supposing an even distribution is not the only possible choice - then the gigathread scheduler

is doing so for each execution of a fatbin �le with a given launch con�guration.

Such conjecture - that we prove true - shows that the mistake of the gigathread scheduler

is systematic - no analysis is instead done about the number of di�erent types of not even

distributions used by the gigathread scheduler.

Manual checks at the end of the extraction of this �rst group of architectural features has instead

allowed to discover the following things:

• T1) If the number of GPU thread blocks that we want assigned to each streaming multi-

processor requires a number of hardware registers that is smaller or equal than half of the

number of hardware registers of a streaming multiprocessor - 215

2 - and the number of GPU

thread blocks launched is equal to 2 times the number of streaming multiprocessors then the

7.6. GPU Architectural Feature Quanti�cations 77

gigathread scheduler always assigns in a not even way the GPU thread blocks to the streaming

multiprocessors;

• T2) If the number of GPU thread blocks that we want assigned to each streaming multipro-

cessor requires a number of hardware registers that is greater than half of the the number

of hardware registers of a streaming multiprocessor - 215

2 - smaller or equal than the number

of hardware registers of a streaming multiprocessor - 215 - and the number of GPU thread

blocks launched is equal to 2 times the number of streaming multiprocessors then the gi-

gathread scheduler always assigns in an even way the GPU thread blocks to the streaming

multiprocessors.

Also whether we are using only 24 launch con�gurations, instead of the possible many - 2.5 - T1

experimentally proves a systematic not even distribution of the GPU thread blocks to the streaming

multiprocessors by part of the gigathread scheduler - if the gigathread scheduler has such choice -

and so we can not exclude this can not happen also for other launch con�gurations di�erent from

the 24 used. A not even distribution of the GPU thread blocks to the streaming multiprocessors

that creates load unbalancing on the GPU can make useless any other thing done to optimize the

execution of the ELF code of the B part of a fatbin �le.

Without considering the type of not even GPU thread block distribution to the streaming

multiprocessors because the result would be hardly generalizable considering we used only 24 launch

con�gurations per fatbin �le instead of the possible many, the main point, learned from T1, is that

it is always necessary to generate fatbin �les in such way that knowing the number of GPU thread

blocks that we want per streaming multiprocessor - number that has always to be less than 9

because a maximum of 8 GPU thread blocks can be resident in a streaming multiprocessor - the

total number of hardware registers required by the number of GPU thread blocks that we want per

streaming multiprocessor has always to be greater than half of the number of hardware registers of

each streaming multiprocessor and smaller or equal than the number of hardware registers of each

streaming multiprocessor. In this way we force the gigathread scheduler to assign the GPU thread

blocks in an even way to the streaming multiprocessors because we do not leave to the gigathread

scheduler any other possible choice.

The second group of global GPU assignment and scheduling architectural features is therefore

quanti�ed. The output data, from each execution, of the for loop, of each couple (fatbin �le , launch

con�guration), are processed to calculate several types of time di�erences about the scheduling

times of the warps on the GPU. The following conjectures were done before the beginning of this

quanti�cation phase:

• a) It could be that the warps can not be scheduled at any possible clock cycle - for example

for warp management overhead, warp scheduler limitations, impossibility of warp scheduling

1) because the warp is waiting some results from previous ELF instructions or 2) because the

warp is waiting some data for bandwidths or latencies memory problems - this last case is

however impossible considering the structure of the B parts of the fatbin �les used;

• b) Because each streaming multiprocessor has only 2 warp schedulers, if in a streaming mul-

tiprocessor there are more than 2 resident warps, all the resident warps can not be scheduled

to execute the same ELF instruction at the same clock cycle and so the warps will execute

the ELF instruction in di�erent clock cycles;

78 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

• c) It is hard to believe that in the very simple case of only 2 resident warps per streaming

multiprocessor, all the warps on the GPU start to execute the for loop at the same clock cycle,

but also supposing this true, the number of warps per streaming multiprocessor has probably

to be greater than 2, to get locally in a streaming multiprocessor the theoretical streaming

multiprocessor best average performance per clock cycle.

If the conjectures a), b) and c) are true then there is an instant t1, when a warp or a subset of

all the resident warps on the GPU start to execute the �rst instruction of the for loop before all the

others - let us call this warp or this subset of warps the leading warp or the leading subsets of warps

- and an instant t2, when a warp or a subset of all the resident warps on the GPU start to execute

the �rst instruction of the for loop after all the others - let us call this warp or this subset of warps

the last warp or the last subset of warps. Let us also de�ne (t2 − t1) the starting time di�erence

in number of clock cycles. In the same way an analog reasoning can be done for the execution of

the last ELF instruction of the for loop only that in this case the time di�erence takes the name of

ending time di�erence in number of clock cycles.

So we have more resident warps in the GPU and all the warps can not execute the same ELF

instruction at the same time. One or more warps execute �rst of all the others such ELF instruction.

One or more warps execute after all the others such ELF instruction. The di�erence between these

two moments is a time di�erence in number of clock cycles. The starting time di�erence helps to

understand the scheduling variability at the beginning of the for loop. The ending time di�erence

helps to understand the scheduling variability at the end of the for loop. Each one of these two

time di�erences can be seen as a time window, time window that is necessary to wait to see all the

resident warps, in the GPU, pass on a given ELF instruction after that such ELF instruction has

been reached for the �rst time by a warp or a subset of warps.

The absolute di�erence, in number of clock cycles, between the ending and starting time di�er-

ences, allows to understand how the warps are advancing. If the minimum number of clocks cycles,

required to execute the local work on each streaming multiprocessor, is much greater than the

starting and ending time di�erences, while the absolute di�erence between the starting and ending

time di�erences is small, then we can say that from the moment when the last subset of warps start

to execute the �rst ELF instruction of the for loop to the moment when the �rst subset of warps

�nish to execute the last ELF instruction of the for loop, the warp schedulers of the streaming

multiprocessors make advance together all the warps. Knowing for which cases this is true is useful

a) for the analysis of the ELF code of the B part of a fatbin �le, b) for the eventual modi�cations

of the ELF code of the B part of a fatbin �le and c) for the generation of the launch con�gurations

to use to execute a fatbin �le.

At the end of the quanti�cation of the global GPU assignment and scheduling architectural

features several tables are calculated for each instruction con�guration. As said previously the rows

represent the fatbin �les constructed for the instruction con�guration - one fatbin �le for each one

of the dependence distances of the dependence type of the instruction con�guration - while the

columns represent the launch con�gurations used to execute the fatbin �les. For each instruction

con�guration the tables can be classi�ed in the following numbered groups:

• 1) The tables are the maximum absolute time di�erences between maximum ending time and

maximum starting time di�erences of the couples (fatbin �le , launch con�guration), the

maximum ending time di�erences of the couples (fatbin �le , launch con�guration), the

maximum starting time di�erences of the couples (fatbin �le , launch con�guration), the

7.6. GPU Architectural Feature Quanti�cations 79

minimum absolute time di�erences between maximum ending time and maximum starting

time di�erences of the couples (fatbin �le , launch con�guration), the minimum ending time

di�erences of the couples (fatbin �le , launch con�guration) and the minimum starting time

di�erences of the couples (fatbin �le , launch con�guration);

• 2) The tables have the same name of the previous tables but are calculated only considering

the couples (fatbin �le , launch con�guration) for which the gigathread scheduler has evenly

distributed the GPU thread blocks to the streaming multiprocessors;

• 3) The tables have the same name of the previous tables but are calculated only considering

the couples (fatbin �le , launch con�guration) for which the gigathread scheduler has not

evenly distributed the GPU thread blocks to the streaming multiprocessors;

A further set of 3 summary tables is calculated for each instruction con�guration. One table is

calculated considering all the launch con�gurations with not failed launches, one table is calculated

considering all the launch con�gurations with not failed launches and with an even GPU thread

block distribution to the streaming multiprocessors and one table is calculated considering all the

launch con�gurations with not failed launches and with a not even GPU thread block distribution

to the streaming multiprocessors. Each one of these tables has 6 rows, one for each one of the

possible 6 previous time di�erences, time di�erences this time calculated considering at the same

time all the couples (fatbin �le , launch con�guration) of the instruction con�guration. Each one

of these tables has 3 columns: the �rst column is for the fatbin �le identi�er associated to the time

di�erence at the given row, the second column is for the launch con�guration associated to the time

di�erence at the given row and the third column is for the value of the time di�erence considered

at the given row.

At end of this phase, analog, time di�erence tables, in number and structure, to the time di�er-

ence tables of the groups 1), 2), 3) and the set of 3 summary tables, are calculated considering at the

same time all the couples (fatbin �le , launch con�guration) of all the instruction con�gurations.

The only di�erence is for the tables of the set of 3 summary tables, tables that now have 4 columns

instead of 3, the fourth containing the identi�er of the instruction con�gurations associated to the

time di�erence at the given row.

All the tables are useful to study the warp scheduler variabilities and to determine whether

the byte transfers, among the di�erent GPU memories, could slow down the execution, of the ELF

code, of the B part, of the fatbin �le, of a couple (fatbin �le , launch con�guration) - di�erent from

the couples used in this chapter - when the fatbin �le is executed using the launch con�guration of

the couple.

7.6.2 Local Streaming Multiprocessor PTX and ELF Architectural Fea-

tures

The �rst group of local streaming multiprocessor PTX and ELF architectural features is composed

by the same time di�erences of the second group of global GPU assignment and scheduling archi-

tectural features. The group 1) of tables is calculated per instruction con�guration, the group 2) is

calculated considering only the couples (fatbin �le , launch con�guration) with an even number

of warps on the only streaming multiprocessor used and the group 3) is calculated considering only

the couples (fatbin �le , launch con�guration) with an odd number of warps on the only streaming

multiprocessor used.

80 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

The further set of 3 summary tables is calculated for each instruction con�guration only that

this time one table is calculated considering all the launch con�gurations with not failed launches,

one table is calculated considering all the couples (fatbin �le , launch con�guration) with not

failed launches and with an even number of warps on the only streaming multiprocessor used and

one table is calculated considering all the couples (fatbin �le , launch con�guration) with not

failed launches and with an odd number of warps on the only streaming multiprocessor used. As

in the previous case each one of these tables has 6 rows, one for each one of the possible 6 previous

time di�erences, time di�erences this time calculated considering at the same time all the couples

(fatbin �le , launch con�guration) of the instruction con�guration. As in the previous case each

one of these tables has 3 columns: the �rst column is for the fatbin �le identi�er associated to the

time di�erence at the given row, the second column is for the launch con�guration associated to

the time di�erence at the given row and the third column is for the value of the time di�erence

considered at the given row.

Also at end of this phase, analog, time di�erence tables, in number and structure to the time

di�erence tables of the groups 1), 2), 3) and the set of 3 summary tables, are calculated consid-

ering at the same time all the couples (fatbin �le , launch con�guration) of all the instruction

con�gurations. The only di�erence is, this time too, for the table of the set of 3 summary tables,

tables that now have 4 columns instead of 3, the fourth containing the identi�er of the instruction

con�gurations associated to the time di�erence at the given row.

All these tables are useful - as in the previous case - to study the warp scheduler variabilities

and to determine whether the byte transfers, among the di�erent GPU memories, could slow down

the execution, of the ELF code, of the B part, of the fatbin �le, of a couple (fatbin �le , launch

con�guration) - di�erent from the couples used in this chapter - when the fatbin �le is executed

using the launch con�guration of the couple.

The second group of local streaming multiprocessor PTX and ELF architectural features is

therefore veri�ed and/or quanti�ed. Such group is composed by 1) the real instruction con�gu-

ration streaming multiprocessor best average performance per clock cycle of the PTX and ELF

instruction con�gurations, 2) the veri�cation of whether it is possible to get load unbalancing for

the warp scheduling in a streaming multiprocessor if the gigathread scheduler has evenly distributed

the GPU thread blocks to the streaming multiprocessors, 3) the scheduling waiting times of the

ELF instruction con�gurations, 4) the write-read and read-read dependence waiting times of the

ELF instruction con�gurations, 5) the veri�cation of the existence of an overhead time for the man-

agement of the warps, the veri�cation of its not linear increase for a linear increase in the number of

resident warps in a streaming multiprocessor, the determination of the shape of a function able to

express it and 6) the minimum number of resident warps necessary in a streaming multiprocessor

to get the real ELF instruction con�guration streaming multiprocessor best average performance

per clock cycle of each ELF instruction con�guration for each dependence distance.

As the reader can notice the last four local streaming multiprocessor architectural features are

veri�ed and/or quanti�ed only for the ELF instruction con�gurations. This happens because a) the

GPU is going to execute ELF instruction con�gurations and not PTX instruction con�gurations,

b) each PTX instruction con�guration is transformed in one or more consecutive ELF instruction

con�gurations and c) there are speci�c dependences among the ELF registers used by the consec-

utive ELF instruction con�gurations. The streaming multiprocessor hardware design together at

the previous a), b) and c) determine the real PTX instruction con�guration streaming multipro-

cessor best average performance per clock cycle while the veri�cation or quanti�cation, of the last

7.6. GPU Architectural Feature Quanti�cations 81

four local streaming multiprocessor architectural features, of each ELF instruction con�guration,

is useful for the optimization and the analysis of the ELF code of the B part of the fatbin �le of a

couple (fatbin �le , launch con�guration) - di�erent from the couples used in this chapter - when

the fatbin �le is executed using the launch con�guration of the couple.

Real Instruction Con�guration Streaming Multiprocessor Best Average Performance Per Clock

Cycle: We start calculating the total number of instruction con�gurations that has to be executed

inside the for loops of each execution of each couple (fatbin �le , launch con�guration). Next we

calculate the average number of instruction con�gurations executed per clock cycle by the single

streaming multiprocessor during each launch of each couple (fatbin �le , launch con�guration) -

the average is calculated because during the execution of a fatbin �le there is no way to know which

and how many instruction con�gurations are executed in each speci�c clock cycle. Considering

the averages calculated for each execution of each couple (fatbin �le , launch con�guration),

the average of the averages is calculated for each couple (fatbin �le , launch con�guration).

Considering all the averages of the averages of all the couples (fatbin �le , launch con�guration

) of an instruction con�guration, the real instruction con�guration streaming multiprocessor best

average performance per clock cycle is the maximum, of the averages of the averages, rounded to

the nearest bigger integer - a streaming multiprocessor has to have an integer number of function

units to execute the instruction con�guration, a maximum not integer is due at the presence of

noise due to the warp scheduler variabilities and the three instructions inside each for loop used to

check whether it is necessary to iterate on the for loop.

A check is executed on the real instruction con�guration streaming multiprocessor best aver-

age performance per clock cycle achieved in this way. Such check is useful a) to get the guarantee

that the real instruction con�guration streaming multiprocessor best average performance per clock

cycle is the true real instruction con�guration streaming multiprocessor best average performance

per clock cycle and b) to get the guarantee that the real instruction con�guration streaming multi-

processor best average performance per clock cycle is the real instruction con�guration streaming

multiprocessor peak performance achievable in a clock cycle.

The check is executed separately for each instruction con�guration. Here the check steps: 1)

calculation, considering all the couples (fatbin �le , launch con�guration), of the maximum average

of the averages, 2) selection of the fatbin �les of the couples (fatbin �le , launch con�guration)

with an average of the averages not smaller than 95% of the maximum average of the averages

calculated at point 1), 3) check that the multiset so obtained has at least two di�erent fatbin �les.

Going more in detail on why is useful such check, we can say that because we do not know the

GPU hardware limitations due to the GPU hardware design, we can not a priori know whether a)

the number of fatbin �les that is possible to generate for the instruction con�guration and b) the

number and type of launch con�gurations used to run these fatbin �les, are su�cient to get the true

real instruction con�guration streaming multiprocessor best average performance per clock cycle -

this because the real instruction con�guration streaming multiprocessor best average performance

per clock cycle of an instruction con�guration could e�ectively depend on several di�erent things.

The following are conjectures that we therefore need to consider and to verify during the quan-

ti�cation phase of the real instruction con�guration streaming multiprocessor best average perfor-

mance per clock cycle - and so of the real instruction con�guration streaming multiprocessor peak

performance achievable in a clock cycle - of each instruction con�guration:

• 1) The real instruction con�guration streaming multiprocessor best average performance per

82 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

clock cycle could depend on the instruction con�guration. Di�erent instruction con�gurations

could have di�erent real instruction con�guration streaming multiprocessor best average per-

formance per clock cycle in the case - for example - di�erent instruction con�gurations require

for their execution di�erent function units;

• 2) A warp scheduler can not probably schedule a warp with 0 overhead clock cycles. After

the scheduling of a warp it is more probable that the warp schedulers can not schedule such

warp again before of a given number of clock cycles - scheduling waiting time - but not for the

write-read and read-read dependence waiting times but a) for intrinsic hardware limitations

of the warp scheduler or b) because the particular instruction con�guration that has to be

executed requires speci�c hardware resources - hardware paths, special registers shared among

GPU threads, etc. - that has to be shared or used with a lower frequency compared to the

frequency of other hardware resources;

• 3) The real instruction con�guration streaming multiprocessor best average performance per

clock cycle of an instruction con�guration could depend on the write-read and read-read

dependence waiting times of the instruction con�guration;

• 4) There could be an overhead time for the management of the warps, its increasing could be

not linear for a linear increase of the number of resident warps in a streaming multiprocessor

and therefore there could be cases where the overhead time for the management of the warps

could be the main factor in the determination of the real instruction con�guration streaming

multiprocessor best average performance per clock cycle;

• 5) The possible presence of not disclosed hardware shared resources between the 2 groups

of 16 CUDA cores in a streaming multiprocessor could give a real instruction con�guration

streaming multiprocessor best average performance per clock cycle smaller than the theoretical

instruction con�guration streaming multiprocessor best average performance per clock cycle.

We can choose the instruction con�guration and the number of resident warps in a streaming

multiprocessor but we can not change the scheduling waiting times, the dependence waiting times

and the overhead time for the management of the warps. Because we do not already know the

scheduling waiting times, the dependence waiting times and the overhead times due to the man-

agement of the warps, we can not know a priori how the scheduling waiting times, the dependence

waiting times and the overhead time for to the management of the warps are going to in�uence the

real instruction con�guration streaming multiprocessor best average performance per clock cycle of

each instruction con�guration. To avoid to believe that we have got the real instruction con�gura-

tion streaming multiprocessor best average performance per clock cycle, when instead we have been

limited by the scheduling waiting times, by the dependence waiting times or by the overhead time

for the management of the warps, we need to get more fatbin �les with one or more averages of the

averages not smaller than 95% of the maximum average of the averages calculated considering all

the couples (fatbin �le , launch con�guration) of the instruction con�guration.

All the instruction con�gurations, considered in the extraction phase, satisfy this check, so we

can safely say that we have determined the real instruction con�guration streaming multiprocessor

best average performance per clock cycle of each instruction con�guration considered.

Instruction con�gurations not considered in the extraction phase are for example the load and

store instructions. The load and store instructions are not considered in the extraction phase

7.6. GPU Architectural Feature Quanti�cations 83

because it is hard, whether not impossible, to time their execution without meeting great challenges

in the proofs necessary to give an a priori guarantee that their execution times are not slowed

down by the byte transfers among di�erent GPU memories. However, because each streaming

multiprocessor has only a group of 16 load and store units, we can safely assume that not more

than 16 load or store ELF instruction con�gurations can be executed per clock cycle by a streaming

multiprocessor.

PTX instruction con�gurations transformed by nvcc in only one ELF instruction con�guration

executed by the 2 groups of 16 CUDA cores and single ELF instruction con�gurations executed by

the 2 groups of 16 CUDA cores, both with a real instruction con�guration streaming multiprocessor

best average performance per clock cycle smaller than 32, indicate the presence of not disclosed

hardware resources shared between the 2 groups of 16 CUDA cores in each streaming multiprocessor

- this veri�es as true our conjecture in 4.5.

With the check at the beginning of the subsection and with what we know about the GPU hard-

ware design, the real instruction con�guration streaming multiprocessor best average performance

per clock cycle of each instruction con�guration is the real instruction con�guration streaming mul-

tiprocessor peak performance achievable in a clock cycle of each instruction con�guration because if

we consider instruction con�gurations executed by the 2 groups of 16 CUDA cores, a) we get a real

instruction con�guration streaming multiprocessor best average performance equal to 32 whether

there are not not disclosed hardware resources, shared between the 2 groups of 16 CUDA cores, for

the parallel execution of the instruction con�guration and c) we get a real instruction con�guration

streaming multiprocessor best average performance smaller than 32 whether there are not disclosed

hardware resources, shared between the 2 groups of 16 CUDA cores, for the parallel execution of

the instruction con�guration, while if we consider instruction con�gurations executed by the group

of 4 special function units, we get a real instruction con�guration streaming multiprocessor best

average performance equal to 4 for the execution of the instruction con�guration.

Knowing the real instruction con�guration streaming multiprocessor best average performance

per clock cycle of each instruction con�guration a) we can take one or more instruction con�g-

urations with a real instruction con�guration streaming multiprocessor best average performance

per clock cycle equal to 32 or 16 - in this way we are sure that the instruction con�gurations are

executed by the 2 groups of 16 CUDA cores, this because we do not use load and store instruction

con�gurations and the group of special function units has only 4 special function units and so the

instruction con�gurations executed using the group of 4 special function units can not have a real

instruction con�guration streaming multiprocessor best average performance per clock cycle greater

than 4 - b) we can mix them with other instruction con�gurations with a streaming multiprocessor

best average performance per clock cycle equal to 16 - this to be sure that these instruction con�g-

urations too are executed by the 2 groups of 16 CUDA cores and that in the fatbin �les that we are

going to generate there are at least some instruction con�gurations with a real instruction stream-

ing multiprocessor best average performance per clock cycle smaller than the theoretical streaming

multiprocessor best average performance per clock cycle that is 32 - and c) using the procedures

in 6.7, we generate some fatbin �les using the same guidelines used in 7.4 for the generation of the

fatbin �les used for the quanti�cation of the real instruction con�guration streaming multiprocessor

best average performance per clock cycle of the instruction con�gurations.

We therefore execute these fatbin �les using launch con�gurations selected considering also the

results of the next subsections, this to be sure, a priori, that the execution of the for loops of the

B parts of the fatbin �les are not slowed down by a) the load unbalancing, for the warp scheduling,

84 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

in the single streaming multiprocessor used, b) the scheduling waiting times, c) the write-read and

read-read dependence waiting times and d) the overhead time for the management of the warps.

At the end of each execution we calculate the real ELF code streaming multiprocessor average

performance per clock cycle of the execution.

Checking the real ELF code streaming multiprocessor average performance per clock cycle of an

execution and �nding it equal to the theoretical streaming multiprocessor best average performance

per clock cycle we prove being true our conjecture in 4.6 and so we know that fatbin �les with ELF

instructions, in their B parts, with a real ELF instruction best average performance smaller than the

theoretical streaming multiprocessor best average performance per clock cycle - 32 - can however

get a real ELF code streaming multiprocessor best average performance per clock cycle equal to

the theoretical streaming multiprocessor best average performance per clock cycle.

Possibility to Get Load Unbalancing for the Warp Scheduling in a Streaming Multiprocessor if

the Gigathread Scheduler Has evenly Distributed the GPU Thread Blocks to the Streaming Multi-

processors: If this is true and there is no way to get load balancing for the warp scheduling in a

streaming multiprocessor if the gigathread scheduler has evenly distributed the GPU thread blocks

on the streaming multiprocessors then the load unbalancing for the warp scheduling in a streaming

multiprocessor can have a very bad impact on the execution time of an ELF code.

To verify this conjecture, for each instruction con�guration, all its couples (fatbin �le , launch

con�guration) are divided in two groups: the group of the couples with launch con�gurations

with an even number of resident warps in the single streaming multiprocessor used and the group

of the couples with launch con�gurations with an odd number of resident warps in the single

streaming multiprocessor used. For each group, the couples, with a maximum average of the

averages that is not smaller than 95% of the real instruction con�guration streaming multiprocessor

best average performance per clock cycle, are selected. If the number of couples, selected by the

group with launch con�gurations with an even number of resident warps in the single streaming

multiprocessor used, is always much greater than the number of couples selected by the group with

launch con�gurations with an odd number of resident warps in the single streaming multiprocessor

used, then we have load unbalancing for the warp scheduling inside the streaming multiprocessor.

Manual checks says that this is always the case.

Understanding that each warp in a streaming multiprocessor has to be identi�able to be man-

aged, to try to explain why it is possible to get load unbalancing for the warp scheduling inside

a streaming multiprocessor, if the gigathread scheduler has evenly distributed the GPU thread

blocks to the streaming multiprocessors, we formulated the conjecture that maybe one warp sched-

uler could only manage warps with an �even� identi�er while the other warp scheduler could only

manage warps with an �odd� identi�er.

The veri�cation of the conjecture was done executing the following procedure: a) calculation of

the warp workloads - the workloads are always equal among warps because the ELF code in the

for loop of the B part of each fatbin �le is without divergences and so all the GPU threads execute

always the same number of instruction con�gurations - b) determination, supposing the conjecture

true, of the theoretical maximum e�ciencies possible for the couples (for loop in the B part of

the fatbin �le , launch con�guration) with launch con�gurations with an odd number of resident

warps in the single streaming multiprocessor used and c) comparison of the theoretical maximum

e�ciencies to the real e�ciencies. Because the real e�ciencies were however always much greater

than the correspondent theoretical maximum e�ciencies the conjecture has been proved being false.

Manual checks evidence that, for each instruction con�guration, the couples of the couples of

7.6. GPU Architectural Feature Quanti�cations 85

the type ((fatbin �le X , launch con�guration Y) , (fatbin �le X , launch con�guration Y + 1

)), with X > 2 and Y even, have starting time di�erences of the same order of magnitude while

the ending time di�erences of the couples (fatbin �le X , launch con�guration Y + 1), with an

odd number of resident warps - Y + 1 - in the single streaming multiprocessor used, are of 1, 2

or 3 orders of magnitude greater than the ending time di�erences of the correspondent couples (

fatbin �le X , launch con�guration Y), with an even number of resident warps - Y - in the single

streaming multiprocessor used.

Considering a) the execution time of each execution of each couple (fatbin �le , launch con�g-

uration) with an odd number of resident warps in the single streaming multiprocessor used and

b) the ending time di�erences, we can say that 1) the lost in e�ciency is due to the ending time

di�erences and that 2) the starting and ending time di�erences show that for unknown reasons,

when an odd number of warps is resident in a streaming multiprocessor, a situation of load un-

balancing for the warp scheduling is created inside the streaming multiprocessor after the starting

of the execution of the for loops in the B parts of the fatbin �les and that such situation of load

unbalancing for the warp scheduling survives till to the end of the execution of the for loops in the

B parts of the fatbin �les.

Also whether we have no way to know the causes generating the load unbalancing, the results

show that is always important to make sure that the total number of warps that we want assigned

to each streaming multiprocessor is always even - the total number of warps is given by the number

of GPU thread blocks that we want assigned to each streaming multiprocessor times the number

of warps of each GPU thread block.

Scheduling Waiting Times of the ELF Instruction Con�gurations: Each scheduling waiting time

of each ELF instruction con�guration is determined with the following procedure: 1) calculation

of the maximum average of the average throughputs considering at the same time all the couples

(fatbin �le X , launch con�guration 1) - 1 <= X <= number of fatbin �les generated for the

the ELF instruction con�guration while the launch con�guration 1 has only 1 GPU thread block

with only 1 warp - 2) check that more couples (fatbin �le X , launch con�guration 1) have

an absolute value of the di�erence, between their averages of the average throughputs and the

maximum average of the average throughputs calculated at point 1), not bigger than 0.002 and

3) determination of the scheduling waiting time as the average number of clock cycles, rounded at

the nearest smaller integer, necessary to execute an ELF instruction con�guration of the couple (

fatbin �le X , launch con�guration 1) where X is the smallest number among the couples (fatbin

�le X , launch con�guration 1) satisfying the check at point 2).

Step 2) is necessary to have the guarantee that a) the average of the average throughputs of

at least some couples (fatbin �le X , launch con�guration 1) is limited by the scheduling waiting

time and not by the dependence waiting time and b) that more couples (fatbin �le X , launch

con�guration 1) are limited by the scheduling waiting time because otherwise in presence of only

a couple we can not be sure its average of the average throughputs was limited by the scheduling

waiting time and so we can not be sure to have determined the real scheduling waiting time.

The average number of clock cycles is rounded to the nearest smaller integer because a streaming

multiprocessor can only have an integer number of function units and the starting and ending time

di�erences plus the three ELF instructions in each for loop necessary to iterate on it are introducing

a small noise. In the next subsection however we will see that the average number of clock cycles

necessary to execute an ELF instruction con�guration is not always the real number of clock cycles

necessary to execute an ELF instruction con�guration but it will be clear that the average number

86 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

of clock cycles necessary to execute an ELF instruction con�guration, selected at the end of the

procedure above indicated, independently of the fact that it is or not the real number of clock cycles

necessary to execute an ELF instruction con�guration, is the scheduling waiting time.

If an ELF instruction con�guration a) is executed by the 2 groups of 16 CUDA cores, b) has

a real ELF instruction con�guration streaming multiprocessor best average performance per clock

cycle equal to 32 and c) we are not limited by the dependence waiting times and the overhead time

for the management of the warps, then, with a number of warps equal to the scheduling waiting time

- this because at each warp scheduler clock cycle the 2 warp schedulers in a streaming multiprocessor

can schedule at maximum 2 warps but each warp is going to requires for its execution 2 function

unit clock cycles and the clock frequency of the warp schedulers is half of the clock frequency of the

function units - it should be possible to get an average throughput that is not smaller than 95%

of the maximum average of the average throughputs calculated considering all the couples (fatbin

�le , launch con�guration) of the ELF instruction con�guration and this is e�ectively always the

case.

Write-Read and Read-Read Dependence Waiting Times of the ELF Instruction Con�gurations:

The write-read and read-read dependence waiting times of an ELF instruction con�guration can

be determined only in those cases where the scheduling waiting time is determined by the couples

(fatbin �le X , launch con�guration 1) with X > 1, thing indicating that for the couple (fatbin

�le 1 , launch con�guration 1) the executions of the ELF instruction con�guration are limited by

the dependence waiting time and not by the scheduling waiting time.

All the ELF instruction con�gurations in each fatbin �le consider only one of the two dependence

types of interest - write-read or read-read. To quantify the dependence waiting times we consider

the average number of clock cycles necessary to execute an ELF instruction con�guration, average

that in some cases could be di�erent from the real number of clock cycles necessary to execute an

ELF instruction con�guration, as we will see in this subsection.

For the cases where is possible to calculate the write-read and read-read dependence waiting

times, the write-read and read-read dependence waiting times are equal to the average number

of clock cycles necessary to execute an ELF instruction con�guration of the couple (fatbin �le

1 , launch con�guration 1), average rounded at the smaller nearest integer because a streaming

multiprocessor can only have an integer number of function units and the starting and ending time

di�erences plus the three ELF instructions in each for loop necessary to iterate on it are introducing

a small noise.

In each code considering the read-read dependences there are also the write-write dependences,

write-write dependences a) present between the results of each couple of two equal ELF instruction

con�gurations - two ELF instruction con�gurations using the same ELF registers in the same roles

- and b) not quanti�ed because not interesting. The quanti�cation of the read-read dependence

waiting times is however not in�uenced by the write-write dependence waiting times. If a warp

scheduler could schedule the warps in such a way to request the writing of the result of an ELF

instruction con�guration before the ELF register can be overwritten then some queues would be

necessary, thing not probable considering a) the necessary management, b) the necessary die area

and c) the fact that for the ELF codes used for the quanti�cations such queues would contain

millions of results to write. The GPU architecture has therefore to be design in such a way that

this is considered in the scheduling waiting times and so a warp scheduler can not schedule a warp

in such a way that the request for the writing of the result in a ELF register can not be satis�ed

because a previous writing in the same ELF register has still to terminate. Considering this, the

7.6. GPU Architectural Feature Quanti�cations 87

quanti�cation of the read-read dependence waiting times can not therefore be in�uenced by the

write-write dependence waiting times.

Being the quanti�cation of the read-read dependence waiting times not in�uenced by the write-

write dependence waiting times and having experimentally proved that, for each ELF instruction

con�guration, the read-read dependence waiting time is smaller than the correspondent write-read

dependence waiting time of the ELF instruction con�guration and that, for some ELF instruction

con�gurations, the read-read dependence waiting time is smaller than the correspondent scheduling

waiting time of the ELF instruction con�guration, we can say that, for some ELF instruction

con�gurations, after a warp scheduler has seen to pass a quantity of time equivalent to that of a

scheduling waiting time of the ELF instruction con�guration, the warp scheduler is able to schedule

again the same warp well before the ELF register, where maybe has still to be written the result

of a previous equal ELF instruction con�guration, can be overwritten again - however if the warp

scheduler schedules again the warp this happens because the over writing of the ELF register will

be for sure possible when necessary, see why in the previous paragraph. For this reason, the average

number of clock cycles necessary to execute an ELF instruction con�guration of the couple (fatbin

�le 1 , launch con�guration 1), when we consider read-read dependences, is not the precise number

of clock cycles necessary to execute an ELF instruction con�guration, but is smaller than this, and

in some cases correspond to the scheduling waiting time.

Because we have 2 ELF instruction con�gurations - the ELF instruction con�guration consid-

ering the write-read dependence and the ELF instruction con�guration considering the read-read

dependence - for each type of ELF instruction with a given execution mode - the normal, the con-

ditional with guard set at true and the conditional with guard set at false - but both the 2 ELF

instruction con�gurations consider the same type of ELF instruction given an execution mode,

then the write-read dependence waiting time is instead the precise - and also average - number of

clock cycles necessary to execute an ELF instruction, with the given execution mode, because a

warp scheduler can not schedule a warp again before the result of a previous equal ELF instruction

con�guration can be read as operand. For the write-read dependences is however necessary to

distinguish two cases:

• If, following the �rst procedure indicated to quantify the scheduling waiting time of an ELF

instruction con�guration, a couple (fatbin �le X , launch con�guration 1), with X > 1, is

selected, then the average number of clock cycles necessary to execute an ELF instruction

con�guration for the couple (fatbin �le 1 , launch con�guration 1) is not determined by the

scheduling waiting time of the ELF instruction con�guration but by the dependence waiting

time of the ELF instruction con�guration. In this case the ELF instruction con�guration has

a write-read dependence waiting time greater than the scheduling waiting time of the ELF

instruction con�guration and the write-read dependence waiting time is equal to the average

number of clock cycles, necessary to execute an ELF instruction con�guration of the couple

(fatbin �le 1 , launch con�guration 1), rounded at the nearest smaller integer;

• If, following the �rst procedure indicated to quantify the scheduling waiting time of an ELF

instruction con�guration, a couple (fatbin �le X , launch con�guration 1), with X = 1, is

selected, then the average number of clock cycles necessary to execute an ELF instruction

con�guration for the couple (fatbin �le 1 , launch con�guration 1) is not determined by the

dependence waiting time of the ELF instruction con�guration but by the scheduling waiting

time of the ELF instruction con�guration. In this case the ELF instruction con�guration has

88 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

a write-read dependence waiting time smaller or equal than the scheduling waiting time of the

ELF instruction con�guration and it is not possible to determine the write-read dependence

waiting time of the ELF instruction con�guration but we can assume it equal to the scheduling

waiting time of the ELF instruction con�guration.

Write-read dependence waiting times smaller or equal than the scheduling waiting times

happen for some ELF instruction con�gurations using not disclosed hardware resources. In

PTX we can declare 64 bits PTX registers but the GF100 architecture has only 32 bits

hardware registers. We also know a) that PTX instructions using 64 bits registers has to

be executed using more than one ELF instruction - see results of the previous chapter - and

b) that each ELF instruction has to use 32 bits hardware registers - [52, p. 12]. From a)

and b) follow that carries and other partial results that can not be stored in the 32 bits

hardware registers used in the ELF instructions necessary to execute a PTX instruction has

temporary to be stored somewhere. Having stored the carries and the other partial results

in hardware units di�erent from the 32 bits hardware registers used in the ELF instructions

necessary to execute a PTX instruction and being the ELF instructions necessary to execute

the PTX instruction consecutive in the ELF code, it is therefore necessary for the GF100

architecture to be sure that it is not possible to schedule again the warp, to execute the next

ELF instruction necessary to execute the PTX instruction, before the carries and the other

partial results necessary to execute the next ELF instruction are written and can be read

again.

Finally, also whether the ELF instruction con�gurations necessary to load and store data or

results, of di�erent sizes, to di�erent GPU memories, have not been considered - this for the

reasons explained in the part on the real instruction con�gurations streaming multiprocessor best

average performance per clock cycle - we have planned some experiments that is our wish to carry

on in future and that will give us an upper bound on the dependence waiting times of the operands

of such ELF instruction con�gurations.

Existence of an Overhead Time for the Management of the Warps, Veri�cation of Its not Linear

Increasing for a Linear Increase of the Number of Resident Warps in a Streaming Multiprocessor and

Determination of the Shape of a Function able to Express It: To verify the existence of an overhead

time for the management of the warps we start considering the ELF instruction con�gurations 1)

for which it was possible to determine the write-read dependence waiting time and 2) with a real

ELF instruction con�guration streaming multiprocessor best average performance per clock cycle

equal to 32, checking that:

• a) The write-read dependence waiting time of each ELF instruction con�guration divided 2

is greater than the corresponding scheduling waiting time of each ELF instruction con�gura-

tion, this because being the real ELF instruction con�guration streaming multiprocessor best

average performance per clock cycle equal to 32, we are sure that the not disclosed hardware

resources shared among the 2 groups of 16 CUDA cores in a streaming multiprocessor are

not used for the execution of any of the ELF instruction con�gurations considered, and so

to be sure of not being limited, in the next experiments, by the scheduling waiting time of

the ELF instruction con�gurations, the only thing we need to check it is that the write-read

dependence waiting time of each ELF instruction con�guration divided 2 is greater than cor-

responding scheduling waiting time of each ELF instruction con�guration, this because it is

necessary that exactly 2 warps are scheduled at each warp scheduler clock cycle to get the real

7.6. GPU Architectural Feature Quanti�cations 89

ELF instruction con�guration streaming multiprocessor best average performance per clock

cycle of the ELF instruction con�gurations considered;

• b) Whether we get the real ELF instruction con�guration streaming multiprocessor best

average performance per clock cycle for the couple (fatbin �le 1 , launch con�guration X),

where X is equal to the �rst even integer equal or greater than the write-read dependence

waiting time - X is the number of warps in the single streaming multiprocessor used and

we want it even to get load balancing inside the streaming multiprocessor, furthermore we

use the write-read dependence waiting time to calculate X because at each warp scheduler

clock cycle 2 warps have to be scheduled but each one of them requires 2 function unit clock

cycles to be executed so a number of resident warps in a streaming multiprocessor equal to

X is enough to be sure that the execution of a couple (fatbin �le 1 , launch con�guration

X) is not slowed down by the write-read dependence waiting time of the ELF instruction

con�guration considered in the fatbin �le.

Checks show that we do not get the real ELF instruction con�guration streaming multiprocessor

best average performance per clock cycle for the couples (fatbin �le 1 , launch con�guration X)

with X equal to the �rst even integer equal or greater than the write-read dependence waiting time

but that the real ELF instruction con�guration streaming multiprocessor best average performance

per clock cycle is got for the �rst time for the fatbin �le 1 for an even number of warps Y greater

than X - this experimentally proves the existence of an overhead time for the management of the

warps.

Also whether moving from a number of warps equal to X to a number of warps equal to Y, using

steps of 2 to get load balancing inside the streaming multiprocessor, we are not able to quantify the

overhead time for the management of the warps, checking the values of the averages of the average

throughputs, we understand that the rate of growth of the overhead time for the management

of the warps is not linear with a linear increase of the number of warps in the single streaming

multiprocessor used and we understand that also whether the overhead time for the management

of the warps is the determinant factor for the average of the average throughputs, for the couples (

fatbin �le 1 , launch con�guration X <= Z <= Y), the overhead time for the management of the

warps has an in�uence exponentially decreasing moving from X to Y - X and Y depending on the

ELF instruction con�guration - with an null in�uence for a number of warps greater than Y.

At the same time, for ELF instruction con�gurations a) executed by the 2 groups of 16 CUDA

cores, b) with an ELF instruction con�guration streaming multiprocessor best average performance

per clock cycle equal to 16 - thing showing that there are some not disclosed hardware resources

shared among the 2 groups of 16 CUDA cores in a streaming multiprocessor and that such resources

are been used for the execution of the ELF instruction con�gurations - c) for which it was not

possible to determine the write-read dependence waiting time because their write-read dependence

waiting times are smaller than their scheduling waiting times, this phenomenon does not happen for

the �rst couple (fatbin �le 1 , launch con�guration Z) with Z equal to the scheduling waiting time

of the ELF instruction con�gurations, if Z is enough �small�. This experimentally prove that the

e�ect of the overhead time for the management of the warps can be null if the number of warps is

�small�. For these types of ELF instructions, the overhead time is not going to be a problem even for

a greater number of warps, in other words at the increase of the overhead time for the management

of the warps, the number of warps a) is already enough big compared to the minimum number

of warps necessary in a streaming multiprocessor to get the real ELF instruction con�guration

90 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

streaming multiprocessor best average performance per clock cycle for the dependence distance 1

and b) always enough big compared to the value of the overhead time for the management of the

warps, and so the overhead time for the management of the warps is never the limiting factor for

this type of ELF instruction con�gurations, this independently of the growth rate of the overhead

time for the management of the warps for such ELF instruction con�gurations.

Considering the previous two results, also whether we understand a) that the overhead time for

the management of the warps is the limiting factor for some triplets (ELF instruction con�gurations

, dependence distance, number of resident warps in a streaming multiprocessor) and b) that the

shape of a function able to express the overhead time for the management of the warps could be

a sigmoid with only positive values - starting with 0 for a number of warps equal to 0 and later

becoming a constant C or however a set of values that approximate a constant C when the number

of resident warps in a streaming multiprocessor is greater than Y, with Y and the values of the

sigmoid like function however dependent on the ELF instruction con�guration - we are not able

to quantify the overhead time for the management of the warps for the triplets (ELF instruction

con�guration , dependence distance, number of resident warps in a streaming multiprocessor)

and so, not being able to determine for some cases whether it is the scheduling waiting time, the

dependence waiting time or the overhead time for the management of the warps the limiting factor

for the average throughput that we get for the triplets (ELF instruction con�guration , dependence

distance , number of resident warps in a streaming multiprocessor), we need to store for each couple

(ELF instruction con�guration , dependence distance) the minimum number of resident warps

necessary in a streaming multiprocessor to get an average throughput that is not smaller than 95%

of the maximum average of the average throughputs calculated considering all the couples (fatbin

�le , launch con�guration) of the ELF instruction con�guration.

Minimum Number of Resident Warps Necessary in a Streaming Multiprocessor to get the Real

Instruction Con�guration Streaming Multiprocessor Best Average Performance per Clock Cycle of

Each ELF Instruction Con�guration for Each Dependence Distance: Considering that for some

triplets (ELF instruction con�guration , dependence distance , number of resident warps in a

streaming multiprocessor) is not possible to determine whether it is the scheduling waiting time,

the dependence waiting time or the overhead time for the management of the warps the limiting

factor in the determination of the minimum number of resident warps necessary to get the real

ELF instruction con�guration streaming multiprocessor best average performance per clock cycle

then it is important to store, for each couple (ELF instruction con�guration , dependence distance

), the minimum number of resident warps necessary in a streaming multiprocessor to get the real

ELF instruction con�guration streaming multiprocessor best average performance per clock cycle,

this to be able to understand the minimum number of resident warps, necessary locally in each

streaming multiprocessor used during the execution of a fatbin �le, to avoid instruction pipeline

stalls due to the scheduling waiting times, the dependence waiting times and the overhead time for

the management of the warps.

7.7 Summary

In this chapter we have veri�ed, understood and quanti�ed the GPU hardware behaviors - due to

the GPU hardware design - that could slow down the execution of the ELF code of the B part of

a fatbin �le. The main points to remember from this chapter are the following:

7.7. Summary 91

• When we execute a fatbin �le we always choose launch con�gurations such that all the GPU

thread blocks, we want to execute the fatbin �le, are assigned, by the gigathread scheduler,

to the streaming multiprocessors, at the beginning of the execution of the part of the fatbin

�le executed by the GPU. Doing this, the overhead due to the gigathread assignment - in-

dependently of what it is - is unique and paid only one time during the whole execution of

the ELF code of the B part of the fatbin �le, this because the GPU thread blocks will stay

resident in the streaming multiprocessors till to the end of the execution of the ELF code of

the B part of the fatbin �le;

• A couple (fatbin �le , launch con�guration) has to be chosen in such a way that the total

number of hardware registers required by the GPU threads of the GPU thread blocks we want

assigned to each streaming multiprocessor is greater than half of the number of hardware

registers of a streaming multiprocessor and smaller or equal than the number of hardware

registers of a streaming multiprocessor. This is necessary because we have experimentally

determined that otherwise the gigathread scheduler does not evenly distribute the GPU thread

blocks to the streaming multiprocessors and this could make useless all the other e�orts made

to optimize the execution of the ELF code of the B part of a fatbin �le;

• Also if the gigathread has evenly distributed the GPU thread blocks to the streaming mul-

tiprocessors the number of warps per GPU thread block times the number of GPU thread

blocks that we want assigned to each streaming multiprocessor has to be even because we

have experimentally determined that otherwise we do not get local load balancing for the warp

scheduling in a streaming multiprocessor and this could have a very impact on the execution

time of an ELF code;

• Not all the warps execute the same ELF instruction at the same time. There are some time

di�erences, in number of clock cycles, that is necessary to wait from the moment when the

leading warp or the leading subset of warps is scheduled to execute an ELF instruction to the

moment when the last warp or the last subset of warps is scheduled to execute the same ELF

instruction.

We have experimentally determined such time di�erences, at the global GPU level and at the

local streaming multiprocessor level, for the di�erent possible cases of the triplets of values (

number of ELF registers per GPU thread , number of warps per GPU thread block , number

of GPU thread blocks), because they are useful to understand whether the byte transfers,

among the di�erent GPU memories, could slow down the execution of the ELF code of the B

part of a fatbin �le;

• The real instruction con�guration streaming multiprocessor best average performance for

each instruction con�guration a) has been determined, b) correspond to the real instruction

con�guration streaming multiprocessor peak performance achievable in a clock cycle and c)

has allowed to discover the presence of not disclosed hardware resources shared between

the 2 groups of 16 CUDA cores in each streaming multiprocessor - for some instruction

con�gurations, the not disclosed shared hardware resources do not allow to get the theoretical

instruction con�guration streaming multiprocessor best average performance per clock cycle;

• We have determined the scheduling waiting time of each ELF instruction con�guration. The

scheduling waiting time is the minimum number of clock cycles that has to pass before a warp

92 Chapter 7. Discovery, Understanding and Quanti�cation of Not Disclosed GPU Behaviors

scheduler can consider to schedule the same warp again. The scheduling waiting times allow

to determine, in the case they are the limiting factor, the minimum number of warps that

has to be locally resident in a streaming multiprocessor to avoid stalls - due to the scheduling

waiting times - in the instruction pipelines of the streaming multiprocessor;

• The write-read and the read-read dependence waiting times have been determined of each

ELF instruction con�guration. The write-read dependence waiting times are equal to the

numbers of clock cycles that is necessary to wait before to be able to read a data from an

ELF register previously written while the read-read dependence waiting times are equal to

the numbers of clock cycles that is necessary to wait before to be able to read a data from an

ELF register previously read.

The write-read and the read-read dependence waiting times are useful to determine, in the case

they are the limiting factor, the minimum number of warps that has to be locally resident in a

streaming multiprocessor to avoid stall - due to the write-read and the read-read dependence

waiting times - in the instruction pipelines of the streaming multiprocessor. The write-read

dependence waiting time of an ELF instruction con�guration is also the number of clock

cycles necessary to execute the ELF instruction con�guration;

• The presence of an overhead time for the management of the warps has been validated as

its not linear increase for a linear increase of the number of resident warps in a streaming

multiprocessor. The shape of a function, able to express it, is a sigmoid, with only positive

values, but an accurate quanti�cation, of the overhead time for the management of the warps,

for all the possible triplets (ELF instruction con�gurations , dependence distance , number

of warps), was not possible.

The overhead time for the management of the warps is important because its e�ects, also

whether not quanti�able, allow to determine, in the case the overhead time for the man-

agement of the warps is the limiting factor, the minimum number of warps that has to be

locally resident in a streaming multiprocessor to avoid stall - due to the overhead time for the

management of the warps - in the instruction pipelines of the streaming multiprocessor;

• The minimum number of resident warps necessary in a streaming multiprocessor to get the real

instruction con�guration streaming multiprocessor best average performance per clock cycle

of each couple (ELF instruction con�guration , dependence distance) has been determined,

considering concurrently a) the scheduling waiting time of the ELF instruction con�guration,

b) the dependence waiting time of the ELF instruction con�guration and c) the overhead time

for the management of the warps, overcoming in this way the problem to determine who of

them is the limiting factor in each one of the single cases.

In the next chapter we describe the procedures to execute on an original fatbin �le Ffi . The

procedures are useful to increase the probability to get a greater lower bound on the real ELF

code e�ciency and imply a) the generation of several di�erent fatbin �les equivalent to the original

fatbin �le Ffi and b) the generation of the sets of potential launch con�gurations that can be used

to execute the fatbin �les generated - one set of launch con�gurations for each one of the fatbin

�les generated.

Chapter 8

Modi�cations, Launch Con�gurations

and Transformations

8.1 Introduction

In the previous chapter we have discovered, understood and quanti�ed not disclosed GPU behaviors

due to the GPU hardware design, things useful to understand how to transform a fatbin �le - the

goal of this chapter - to increase the probability to get a greater lower bound on its real ELF code

e�ciency.

We start describing a set of procedures that we use to modify single fatbin �les. Next we

explain the procedure to generate the set of launch con�gurations that has to be considered when

we analyze a fatbin �le. Finally, we explain how we transform a fatbin �le, before to analyze it, to

increase the probability to get a greater lower bound on its real ELF code e�ciency.

8.2 Procedures to Modify Single Fatbin Files

To try to increase the probability to get a greater lower bound on the real ELF code e�ciency of a

fatbin �le is necessary to modify the fatbin �le. We �nd useful to give here the de�nitions of some

procedures that we will use in the next sections to modify single fatbin �les.

The �rst procedure generates a fatbin �le for each logically correct permutation of the ELF

instructions in the B part of a fatbin �le. The second procedure modi�es a fatbin �le to give the

guarantee that, when we use it with the wanted launch con�guration, the gigathread scheduler

is going to evenly distribute the GPU thread blocks to the streaming multiprocessors. The third

procedure modi�es the reading and/or writing mechanisms used by a fatbin �le to allow us to run

it with a greater number of launch con�gurations and to consider or not the possibilities of reuse

of the local data.

8.2.1 Logically Correct Permutations of the ELF Instructions

Suppose that 1) we have a fatbin �le Fi, 2) we want to determine all the possible logically correct

permutations of its ELF instructions in its B part - we check the dependences between the ELF

registers used in the ELF instructions and generate all the possible logically correct orders of

93

94 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

precedence among ELF instructions - and 3) we want to generate for each one of the possible orders

a new fatbin �le Fo using the same number and type of hardware registers of the fatbin �le Fi.

Let us call the procedure that makes these things possible procedure A - PA. PA is feasible

because a) we can analyze the interpretation text �le of the fatbin �le Fi - 6.2 - to determine the

number and type of ELF registers of the fatbin �le, b) we can use the procedure described in 6.6

to generate fatbin �les with a number and type of resources - ELF registers and ELF instructions

used in their B parts - equal to the number and type of resources of the fatbin �le Fi and c) we

can use the procedure described in 6.7 to overwrite each one of the fatbin �les generated, this to

get each one of the fatbin �les Fo.

8.2.2 Even Distribution of the GPU Thread Blocks to the Streaming

Multiprocessors

Suppose 1) we have a fatbin �le Fi, 2) we want to execute the fatbin �le Fi using a speci�c launch

con�guration and 3) because the fatbin �le Fi has a number of ELF registers equal to nFi
er , we

have not the guarantee that the gigathread scheduler is going to evenly distribute to the streaming

multiprocessors the GPU thread blocks we want to use for the execution of the fatbin �le.

Using procedure B - PB - we take in input the fatbin �le Fi and generate as output a fatbin

�le Fo with, in its B part, the same number, type and order of the ELF instructions and the same

dependences among ELF registers of those in the B part of the fatbin �le Fi. Fo however has a

total number of ELF registers nFo
er greater than nFi

er .

We choose nFo
er in such a way that we get the guarantee that, when we execute the fatbin �le Fo

using the speci�c launch con�guration we wanted to use to execute the fatbin �le Fi, the gigathread

scheduler is going to evenly distribute to the streaming multiprocessors the GPU thread blocks -

remember that each GPU thread block has the same number of warps - and so nFo
er times the number

of warps per GPU thread block times the number of GPU thread blocks that we want resident in

each streaming multiprocessor, during the execution of the fatbin �le Fo - this is the total number

of hardware registers required by the GPU thread blocks resident in a streaming multiprocessor

- has to be greater than half the number of hardware registers of a streaming multiprocessor and

smaller or equal than the number of hardware registers of a streaming multiprocessor - 8.3;

8.2.3 Modi�cation of the Reading and/or Writing Mechanisms

Every fatbin �le has to take in input the number of dimensions of the problem and the size of each

one of these dimensions. To sort numbers, for example, we have only one dimension and the size of

this dimension is the number of numbers we want to sort, while to multiply rectangular matrices

the dimensions are three, each one with its size.

Each fatbin �le is coded to be executed with one of the following possible four combinations:

1) �xed number of dimensions and �xed size of each dimension, 2) �xed number of dimensions but

variable size of each dimension, 3) variable number of dimensions but �xed size of each dimension

and 4) variable number of dimensions and variable size of each dimension. Let us call, the previous

four combinations, problem structures in input to a fatbin �le.

If each GPU thread executing a fatbin �le is not going to read/write in the same order all the

data/results in input/output from the �rst to the last then, each time we launch a fatbin �le, each

GPU thread has to calculate its global identi�er to be able to determine from where read/write the

data/results during the execution of the fatbin �le.

8.2. Procedures to Modify Single Fatbin Files 95

Types of Reading/Writing Mechanisms

The reading/writing mechanisms can be implemented in di�erent ways in a fatbin �le but consid-

ering a) whether the fatbin �le has to be executed using a �xed number of GPU threads or can be

executed using a variable number of GPU threads and b) the four possible problem structures in

input to the fatbin �le, we can distinguish a total of three di�erent categories of reading/writing

mechanisms for all the possible couples (�xed or variable number of GPU threads to use to execute

a fatbin �le , problem structure in input to the fatbin �le):

• Cat1) The fatbin �le is coded in such way that we can execute it only using a �xed number

of GPU threads - the problem structure can be any. In this case we are very limited in the

number of launch con�gurations we can use to execute the fatbin �le because the number of

GPU threads is �xed and the number of GPU threads in each warp is always equal to 32.

One example of this category is a matrix multiplication implementation where given in input

to the fatbin �le two square matrices and their sizes, each GPU thread get a number of rows

from the �rst matrix equal to the ceil of the number of rows of the �rst matrix divided the

�xed number of GPU threads used to execute the fatbin �le and a number of columns from

the second matrix equal to the ceil of the number of columns of the second matrix divided

the �xed number of GPU threads used to execute the fatbin �le.

Smaller the number of launch con�gurations we can use to execute a fatbin �le smaller the

probability to get a lower bound on the real ELF code e�ciency near to 100% - the real ELF

code e�ciency is important is the more near that it is possible to 100% because we calculate

it using the theoretical streaming multiprocessor best average performance per clock cycle

seen that we can not know and calculate the theoretical best ELF code e�ciency and the real

best ELF code e�ciency - 5.2.

• Cat2) The fatbin �le is coded in such way that we can execute it using a variable number of

GPU threads - the problem structure can be any - but the subdivision of the work among

the GPU threads does not consider the possibilities, of reuse of local data, generated by

a) a di�erent number of GPU threads used for the execution of the fatbin �le and b) their

assignment to the streaming multiprocessors - which GPU threads are where and near to which

other GPU threads for the sharing of the resources of the GF100 architecture - speci�cally

the resources of a streaming multiprocessor, 3.3.

One example of this category is a matrix multiplication implementation, where, given in input,

to the fatbin �le, a) two square matrices, b) their sizes and c) the number of GPU threads

that we want to use to execute the fatbin �le, each GPU thread get a number of rows from the

�rst matrix equal to the ceil of number of rows of the �rst matrix divided the number of GPU

threads used to execute the fatbin �le and a number of columns from the second matrix equal

to the ceil of number of columns of the second matrix divided the number of GPU threads

used to execute the fatbin �le but 1) the GPU threads, in the same streaming multiprocessor,

instead to use the same columns of the second matrix, are using di�erent columns and/or 2)

the rows and columns are so long that they can not �t in the number of hardware registers

assigned to each GPU thread.

Because the number of launch con�gurations that we can use to execute a fatbin �le with a

reading/writing mechanism of category Cat2 is greater than the number of launch con�gura-

tions that we can use to execute an analogous fatbin �le with a reading/writing mechanism

96 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

of category Cat1 then the probability to get a greater lower bound on the real ELF code ef-

�ciency for a fatbin �le with a reading/writing mechanism of category Cat2 is at least equal,

if not greater, than that for the case with an analogous fatbin �le with a reading/writing

mechanism of category Cat1, where the number of GPU threads used to execute the fatbin

�le is �xed;

• Cat3) The fatbin �le is coded in such way that we can execute it using a variable number of

GPU threads - the problem structure can be any - and the subdivision of the work among

the GPU threads considers the possibilities of reuse of local data generated by a) a di�erent

number of GPU threads used for the execution of the fatbin �le and b) their assignment to

the streaming multiprocessors;

One example of this category is a matrix multiplication implementation where, given in input,

to the fatbin �le, a) two square matrices, b) their sizes and c) the number of GPU threads

that we want to use to execute the fatbin �le, each GPU thread get a di�erent number of

small square submatrices, from the �rst and the second matrix, considering 1) which other

GPU threads are in the same multiprocessor with them, 2) the structure of the ELF code in

the B part of the fatbin �le and 3) the number of hardware registers assigned to each GPU

thread, all this to try to maximize or at least to increase the probabilities of reuse of local

data during the execution of the fatbin �le.

Because a) the number of launch con�gurations that we can use to execute a fatbin �le

with a reading/writing mechanism of category Cat3 is greater than the number of launch

con�gurations that we can use to execute an analogous fatbin �le with a reading/writing

mechanism of category Cat1 and b) the ELF codes of the B parts of the fatbin �les with a

reading/writing mechanism of category Cat3 try to maximize or increase the probabilities of

reuse of local data during the execution of the fatbin �les compared to the ELF codes of the

B parts of analogous fatbin �les with a reading/writing mechanism of category Cat1 or Cat2,

the probability to get a greater lower bound on the real ELF code e�ciency for a fatbin �le

using a reading/writing mechanism of category Cat3 is at least equal, if not greater, than

that for the case with an analogous fatbin �le with a reading/writing mechanism of category

Cat1 or Cat2.

This happens not only because we can use several di�erent launch con�gurations to execute

the fatbin �le - launch con�guration greater in number of those that we can use to execute a

fatbin �le with a reading/writing mechanism of category Cat1 - but also because the ability

of a fatbin �le with a reading/writing mechanism of category Cat3, to trying to reuse local

data, will require the transfer of an equal or smaller quantity of bytes than that required by

an analogous fatbin �le with a reading/writing mechanism of category Cat1 or Cat2, and

smaller it is the quantity of bytes that is necessary to transfer during the execution of a fatbin

�le, greater the probability that it is possible to avoid slowdowns, during the execution of a

fatbin �le, due to the bandwidths and the latencies of the GPU memories.

Another advantage in using a fatbin �le with a reading/writing mechanism of category Cat2

or Cat3 is that, having the possibility to be able to choose the number of GPU threads to use for

the execution of the fatbin �le, the probability to be able to get a greater lower bound on the real

ELF code e�ciency of the fatbin �le, on the di�erent models of the GF100 architecture, each one

with di�erent bandwidths and/or latencies for the GPU memories, is greater than the case when

8.2. Procedures to Modify Single Fatbin Files 97

we need to consider an analogous fatbin �le with a reading/writing mechanism of category Cat1.

Several NVIDIA GPUs in fact use the GF100 architecture, but also whether the architecture is

modular, each speci�c model has a) a di�erent bandwidth between the GPU global memory and

the chip, b) a di�erent number of streaming multiprocessors and c) a di�erent quantity of L2 cache

on chip, and so 1) bigger the number of launch con�gurations - and so the number of GPU threads

and their possible distributions on the streaming multiprocessors - that we can use to execute a

fatbin �le and 2) greater the ability of the fatbin �le to try to increase the reuse of local data,

greater the probability to be able to get a greater lower bound on the real ELF code e�ciency of

the same fatbin �le, on the di�erent models of the GF100 architecture, without necessity of further

modifying the fatbin �le.

Transformation Choices for the Reading/Writing Mechanisms

When we analyze a fatbin �le with a reading/writing mechanism of the category Cat1 one of our

choices it is whether to transform the fatbin �le in a fatbin �le using a reading mechanism of

category Cat2 - let us call this procedure P1.

Procedure P1 requires simply a) to add to the parameters in input the number of GPU threads

that are going to be used for the execution of the fatbin �le, b) one or few more ELF registers

necessary 1) to calculate the global identi�er of the GPU thread and 2) to keep additional addresses

or the advancement jumps, in the arrays, the vectors and the structures that contain the input data

and that will contain the output results and c) few ELF instructions at the beginning of the B part

of the fatbin �le to partition the data in input among the GPU threads - this is done positioning

the GPU threads in the arrays, the vectors and the structures that contain the input data and that

will contain the output results.

Procedure P1 is always possible because a) we know the data layout and can change it, b) we

know the number of dimensions of the problem and their sizes and c) all the necessary ELF registers

at exclusion maybe of one - the ELF register containing the global identi�er of the GPU thread -

are already present in the fatbin �le. The only other cases, when more than one ELF register is

necessary, are:

• 1) When the sizes of the dimensions of the problem are �xed. We �nd the possibility for such

cases unlikely, because it is not in the GPU paradigm to create a fatbin �le able to solve a

problem with �xed sizes for its dimensions, because for matrix multiplication, for example,

this would mean that, excluding the number of GPU threads we can use to execute the fatbin

�le, we can multiply only two matrices of �xed size;

• 2) When the user wants to make the GPU threads read and write the data and the results,

in the arrays, the vectors and the structures, not in a consecutive way, but jumping from

address to address, with a jump that can be represented with a constant but it is a function

of something, for example the parameters of the launch con�guration.

If we therefore want to transform a fatbin �le with a reading/writing mechanism of category

Cat1 in a fatbin �le with a reading/writing mechanism of category Cat2 then we use the procedure

P1. The procedure P1 utilizes the procedure 6.7 to generate a fatbin �le as output a) that has a

reading/writing mechanism of category Cat2 and b) that is practically equal of the fatbin �le with

the reading/writing mechanism of category Cat1 given in input to P1.

98 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

The fatbin �le as output, with the reading/writing mechanism of category Cat2, has e�ectively

a) the same ELF instructions, in the same order, with the same dependences among ELF registers

of those of the fatbin �le with the reading/writing mechanism of category Cat1, b) the same

number and type of ELF registers of those of the fatbin �le with the reading/writing mechanism

of category Cat1 also whether the ELF registers could be di�erent from those of the fatbin �le

with the reading/writing mechanism of category Cat1, but c) one or few more ELF registers and

few more ELF instructions at the beginning of its B part to partition the data in input among the

GPU threads and allows to each GPU thread used to execute the fatbin �le to position itself in the

arrays, the vectors and the structures necessary for the execution of the fatbin �le - the arrays, the

vectors and the structures that contain the input data and that will contain the output results.

A fatbin �le with a reading/writing mechanism of the category Cat1 or Cat2 can instead be

transformed in one with a reading/writing mechanism of the category Cat3 - let us call this proce-

dure P2 - but this procedure it could be more complex of the procedure P1.

The types of transformations that the user wants to apply, to the fatbin �le, with a read-

ing/writing mechanism of category Cat1 or Cat2, in input to the procedure P2, determines whether

or not the output fatbin �le of the procedure P2 is practically equal or could be much di�erent from

the fatbin �le in input:

• The fatbin �le produced as output could be practically equal to the fatbin �le in input

because a) if the fatbin �le in input to the procedure P2 is a fatbin �le with a reading/writing

mechanism of category Cat1 then we can apply the procedure P1 to the fatbin �le with a

reading/writing mechanism of category Cat1 in input to the procedure P2 and later to try to

increase the reuse of local data simply changing the positions of the data in the data layout

or b) if the fatbin �le in input to the procedure P2 is a fatbin �le with a reading/writing

mechanism of category Cat2 then we can directly change only the positions of the data in the

data layout to try to increase the reuse of local data - let us call the set of transformations

and changes necessary in all these cases TAC1;

• The fatbin �le produced as output could be instead very di�erent from the fatbin �le in input

in the cases the user wants to modify a) the order and type of ELF instructions in the B parts

of the fatbin �les and/or b) the ELF registers used in the ELF instructions in the B part of

the fatbin �le and so maybe their number, dependence types and dependence distances and

c) maybe the positions of the data in the data layout or the data layout - let us call the set

of transformations and changes necessary in all these cases TAC2.

Transforming a fatbin �le with a reading/writing mechanism of category Cat1 to a fatbin �le

with a reading/writing mechanism of category Cat2 can be easily done with a procedure almost

entirely or entirely automated, while transforming a fatbin �le with a reading/writing mechanism

of category Cat1 or Cat2, to a fatbin �le with a reading/writing mechanism of category Cat3, can

instead become very hard - this happens if instead to try to increase the reuse of local data, as

it is written in the de�nition of the reading/writing mechanism of category Cat3, the user wants

instead guarantees about the increase of the reuse of local data compared to the case where the

user is going to use a fatbin �le, analogous to the fatbin �le with a reading/writing mechanism of

category Cat3, but with a reading/writing mechanism of category Cat1 or Cat2:

• If the user wants to apply the set of transformations and changes TAC1 then a procedure

almost entirely or entirely automated can be created to apply the set of transformations and

8.2. Procedures to Modify Single Fatbin Files 99

changes TAC1 to a fabin �le in input, this with the guarantee that the reuse of local data

it is at least equal, whether not greater, than the reuse that the user would have if he/she

would use the fatbin �le with the reading/writing mechanism of category Cat1 or Cat2 in

input to the procedure P2 - however the guarantee is only possible a) if the reader believes

the warp scheduling policy executed by the warps schedulers in the streaming multiprocessors

is the cycling policy, see 9 for a description of the cycling policy, b) if the output fatbin �le

is one of the fatbin �les in the subset SSA1
, see 10 to understand when a fatbin �le is in the

subset SSA1
, and c) if the fatbin �le has at least a launch con�guration, between the possible,

satisfying all the requirements of the analysis A1, see 12 for a description of the analysis A1,

otherwise it is hard whether not impossible to give to the user an a priori guarantee about

the increase of reuse of local data;

• If the user wants to apply the set of transformations and changes TAC2 then we do not think

1) the choice of the transformations and of the changes in the set TAC2 and 2) the application

of the transformations and of the changes in the set TAC2 to a fatbin �le in input, can be

automated - the job is highly complex already for an human being because a) it depends on

the order of the ELF instructions in the B part of the fatbin �le and by which ELF registers

are used in each ELF instruction and b) it is hard to quantify how these two things, together

at their many degrees of freedom, also just only for the simplest cases where we do not change

the ELF instructions in the B part of a fatbin �le, increase or decrease the reuse of local data

compared to the reuse of local data the user would get if he/she would use the fatbin �le with

a reading/writing mechanism of category Cat1 or Cat2 in input to the procedure P2, and

so, as for the previous case, it is hard whether not impossible to give to the user an a priori

guarantee about the increase of reuse of local data;

If the user decides that he/she wants to apply the set of transformations and changes TAC2 to

a fatbin �le with a reading/writing mechanism of category Cat1 or Cat2 then there is a further

disadvantage. Because in this case 1) the order of the ELF instructions in the B part of the fatbin

�le and 2) which ELF registers are used in each ELF instruction, are important, then, when an

user decides to generate or transform a fatbin �le with a reading/writing mechanism of category

Cat1 or Cat2 in a fatbin �le with a reading/writing mechanism of category Cat3, he/she can not

edit the GPU code in CUDA or PTX because the ELF code, of B part, of the fatbin �le, produced

by nvcc, is usually very di�erent from that in CUDA or PTX for a) the order and type of ELF

instructions, b) the number and type of ELF registers, c) the roles of the ELF registers used in

the ELF instructions in the B part of the fatbin �le, d) the dependence types of the ELF registers

used in the ELF instructions in the B part of the fatbin �le and e) the dependence distances among

the ELF registers used in the ELF instructions in the B part of the fatbin �le, and so if the user

wishes to apply the set of transformations and changes TAC2 to a fatbin �le with a reading/writing

mechanism of category Cat1 or Cat2 then he/she has to generate a fatbin �le with the necessary

resources and to modify the fatbin �le to get the wanted ELF algorithmic implementation - these

two things can be done using the procedures described in 6.6 and 6.7, but the whole process, also

if partially automated, is very time consuming because the level of detail and focus required to the

user to edit the necessary parts to implement his/her speci�c algorithmic are very demanding.

If instead the reader choose to use the set of transformations and changes TAC1 then the user

can a) simply give in input, to the procedure P2, the fatbin �le with a reading/writing mechanism

of category Cat1 or Cat2, b) apply the procedure P1 to the fatbin �le and later c.1) use another

100 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

automated procedure to change the positions of the data in the data layout or c.2) reprogram the

part on the CPU side that has to read the data from the hard disk and organize them in the arrays,

the vectors and the structures, that is necessary to transfer from the CPU to the GPU, for the

execution of the fatbin �le.

Finally, if the user does not want a) to change the order of the ELF instructions in the B part

of a fatbin �le and b) the ELF registers used in the ELF instructions in the B part of a fabin �le

and their roles in the ELF instructions, then we de�nitely advise, if necessary, to use the procedure

P1 that can be automated. Our advice is to use the procedure P1, if necessary and if the user

does not want to change a) and b), because later in 8.4 we will show how, taking the output fatbin

�le of the procedure P1 or P2, we generate a set of fatbin �les with the same ELF instructions in

their B parts of the ELF instructions of the B part of the output fatbin �le of the procedure P1 or

P2, the same dependences among the ELF registers in their B parts of the ELF registers in the B

part of the output fatbin �le of the procedure P1 or P2, but with each fatbin �le with one of the

possible logically correct orders of the ELF instructions in the B part of the output fatbin �le of

the procedure P1 or P2.

8.3 Selection of the Launch Con�gurations

Not all the launch con�gurations that could be used to execute a fatbin �le are used to analyze the

fatbin �le. To determine the launch con�gurations that can be used to analyze a fatbin �le and

so the potential launch con�gurations that can be used to execute a fatbin �le we need in fact to

consider the following things:

• The results in 7 about the time di�erences for the warp schedulings are got using launch

con�gurations where the gigathread scheduler assigns, to the streaming multiprocessors, the

GPU thread blocks used for the execution of the fatbin �les, at the beginning of execution of

the GPU code. It is in fact important that the gigathread scheduler a) does not assign any

GPU thread block to the streaming multiprocessors during any other moment of the fatbin

�le execution at exclusion of the beginning of the execution of the GPU code and b) evenly

distributes the GPU thread blocks to the streaming multiprocessors - in this way we got a

�rst form of load balancing for the execution of the ELF code, of the B part, of a fatbin �le.

The launch con�gurations that can be considered to analyze a fatbin �le have therefore a)

to have a number of GPU thread blocks that can be assigned by the gigathread scheduler to

the streaming multiprocessors at the beginning of the execution of the GPU code, b) to force

the gigathread scheduler to evenly distribute the GPU thread blocks to the streaming multi-

processors and c) to avoid the presence of any GPU thread block to assign to the streaming

multiprocessors during any other phase of the fatbin �le execution di�erent from the begin-

ning of the execution of the GPU code - for example, if we are using thousands of GPU

thread blocks for the execution of a fatbin �le then the gigathread scheduler is surely going

to assign some GPU thread blocks, to the streaming multiprocessors, after the beginning of

the execution of the GPU code, because at each moment, each streaming multiprocessor can

not have more than 8 resident GPU thread blocks;

• The number of resident warps in each streaming multiprocessor, during the execution of the

GPU code of a fatbin �le, can not be greater than 32 also whether the possible maximum

8.3. Selection of the Launch Con�gurations 101

would be 48. The reason because we use 32 instead of 48 is that in 7.6.2 it is easy to

execute fatbin �les using only 1 GPU thread block and so, for every dependence distance of

interest of each instruction con�guration of interest, to study what happens, in a streaming

multiprocessor, when the number of resident warps in the streaming multiprocessor is between

1 and 32 - remember that for every instruction con�guration, fatbin �le 1 was edited to study

the dependence distance 1, fatbin �le 2 was edited to study the dependence distance 2, etc. -

but the things are harder to study for a number of resident warps between 33 and 48 because:

� 1) For prime numbers of warps like 37, 41 or 47 there does not exist any launch con-

�guration able to give for the execution of the for loop, of the B part, of a fatbin �le,

37, 41 or 47 warps in at least one streaming multiprocessor - all the GPU thread blocks

have the same number of warps and the maximum number of warps that can have each

GPU thread block is 32 so independently of an even or not even distribution of the GPU

thread blocks to the streaming multiprocessors is not possible to get 37, 41 or 47 warps

on any of the streaming multiprocessors for the whole execution of the for loop, of the

B part, of a fatbin �le;

� 2) Every fatbin �le was created to study the dependence distance of a dependence type,

write-read or read-read, of an instruction con�guration. If the number of warps W

between 33 and 48 that we want in each streaming multiprocessor times the number of

GPU threads in each warp - 32 - times the number of ELF registers of the fatbin �le is

greater than the number of hardware registers of a streaming multiprocessor, then there

is not launch con�guration, that we can use, to study the dependence distance, of the

dependence type, of the instruction con�guration, with a number of warps between W

and 48, because in a streaming multiprocessor, the hardware registers, necessary for the

execution of the GPU code of the fatbin �le, are not enough;

� 3) If the number of warps between 33 and 48 that we wants in each streaming multi-

processor times the number of threads in each warp - 32 - times the number of ELF

registers of the fatbin �le is smaller or equal than half the number of hardware registers

of a streaming multiprocessor then to study the dependence distance, of the dependence

type, of the instruction con�guration, for a number of resident warps in a streaming

multiprocessor between 33 and 48, we need to use PA to transform the fatbin �le in such

way that the addition of useless ELF registers makes the number of warps we wants in

each streaming multiprocessor times the number of GPU threads in each warp times the

number of ELF registers of the fatbin �le greater than half the number of hardware reg-

isters of a streaming multiprocessor and smaller or equal than the number of hardware

registers of a streaming multiprocessor.

If this is the case then we need also a) to take care of the fact that we are not going to

use only a number of GPU thread blocks equal to 1 or 2 times the number of streaming

multiprocessors - for 33, for example, we can only use 3 GPU thread blocks per streaming

multiprocessor, each GPU thread block with 11 warps, while for 35 we can use 5 GPU

thread blocks per streaming multiprocessor, each GPU thread blocks with 7 warps, or 7

GPU thread blocks per streaming multiprocessor, each GPU thread block with 5 warps

- and b) at the end of each execution, to �nd out which GPU thread blocks were on

which streaming multiprocessors to be able to calculate the time di�erences.

Considering a) the quantity of work necessary, b) that the procedure PA is not automated for

102 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

this type of work, c) the fact that for some prime numbers of warps is however not possible to

get any result at cause of the GPU hardware design that we can not modify, d) the fact that

for some not prime numbers of warps we can not exclude too that it is however not possible

to get any result at cause of the GPU hardware design that we can not modify and e) that

we found that every dependence distance, of every dependence type, of every ELF instruction

con�guration, requires a minimum number of resident warps in a streaming multiprocessor

smaller than 32, to get the real ELF instruction con�guration streaming multiprocessor best

average performance per clock cycle - this if the byte transfers, among the di�erent GPU

memories, can not slow down the executions of the ELF codes, of the B parts, of the fatbin

�les, as e�ectively it was also the case for the executions of the for loops, of the B parts, of

the fatbin �les used in 7 - we decide to use 32 instead of 48, for the selection of the launch

con�gurations, also whether in future we plan to expand our work;

• Let us to consider the tables - calculated, during the extraction of the local streaming mul-

tiprocessor ELF architectural features in 7.6.2, considering, at the same time, all the ELF

instruction con�gurations - Ta of the maximum absolute time di�erences between maximum

ending time and maximum starting time di�erences of the couples (fatbin �le , launch con-

�guration), Tb of the maximum ending time di�erences of the couples (fatbin �le , launch

con�guration) and Tc of the maximum starting time di�erences of the couples (fatbin �le ,

launch con�guration).

Because such tables were calculated considering at the same time all the ELF instruction

con�gurations, in each one of them we have on the rows the dependence distances - fatbin

�le 1 corresponds to dependence distance 1, fatbin �le 2 corresponds to dependence distance

2, etc. - without any consideration about a) the dependence types or b) the ELF instruction

con�gurations of the dependence distances - and on the columns the launch con�gurations

used to execute the fatbin �les of each instruction con�guration - launch con�guration 1 has

only 1 GPU thread block with 1 warp that is going to be resident on the only streaming

multiprocessor used, launch con�guration 2 has only 1 GPU thread block with 2 warps that

are going to be resident on the only streaming multiprocessor used, etc. .

All the maximum starting time di�erences in the table Tc are ok because, independently of

the quantity of work that each GPU thread has to execute in the for loop, of the B part,

of a fatbin �le, at each execution, the values in the table Tc are smaller than 300 function

unit clock cycles - this means that the starting time di�erences are not in�uenced by a) the

quantity of work that each GPU thread has to execute in the for loop, of the B part, of the

fatbin �le, b) the number of resident warps in a streaming multiprocessor, c) the scheduling

waiting times, d) the dependence waiting times, e) the overhead time due to the management

of the warps, f) the dependence distance, g) the dependence type or h) the ELF instruction

con�guration, and remember that the executions of the for loops, of the B parts, of the fatbin

�les, can not be slowed down by the bandwidths and the latencies of the GPU memories.

We instead already know that the maximum ending time di�erences in the table Tb are not ok

for launch con�gurations with an odd number of resident warps in a streaming multiprocessor

and therefore, because table Tc is completely ok, of consequence also the maximum absolute

time di�erences between maximum ending time and maximum starting time di�erences of the

couples (fatbin �le , launch con�guration) in the table Ta, corresponding to the couples (

fatbin �le , launch con�guration) in the table Tb, are not ok.

8.3. Selection of the Launch Con�gurations 103

In the tables Ta, Tb and Tc, the columns represent the number of resident warps in the only

streaming multiprocessor used during a fatbin �le execution - column 1 1 warp, column 2

2 warps, etc. . While we use launch con�gurations, with only 1 GPU thread block, with

a number of warps, for the only GPU thread block used, going from 1 to 32, to calculate

the 32 columns of the tables Ta, Tb and Tc, it is very important, for the next discussions, to

understand that we can use more di�erent launch con�gurations, to get the same number of

resident warps, in each one of the streaming multiprocessors, for the execution of a fatbin �le.

Because table Tc is ok, it is checking the results in the table Tb that we determine a �rst set

of launch con�gurations that are not ok for the execution of a fatbin �le - table Ta does not

matter because as we have said it is determined only by the results in table Tb, this because

the whole table Tc is ok.

A �rst set of launch con�gurations that are not ok for the execution of a fatbin �le are all the

launch con�gurations that imply an odd number of resident warps in each one of streaming

multiprocessors - note that the launch con�gurations that are not ok, because implying an

odd number of resident warps, in each one of the streaming multiprocessors used, could be

di�erent for di�erent fatbin �les, this because each one of the fatbin �les could have a di�erent

number of ELF registers.

The set of launch con�gurations Slc that can be used to analyze a fatbin �le, it would therefore

seem to be a set composed by launch con�gurations with a number of GPU thread blocks that

a) give us the guarantee that the GPU thread blocks are going to be evenly distributed by

the gigathread scheduler to the streaming multiprocessors at the beginning of the execution

of the GPU code of a fatbin �le and b) have an even number of resident warps per streaming

multiprocessor smaller or equal than 32, but this is not true.

Each launch con�guration in Slc determines the number of resident warps in a streaming mul-

tiprocessor during the execution of a fatbin �le. We separate the launch con�gurations of Slc

in di�erent subsets SSw, each subset corresponding to a di�erent number of warps W resident

in a streaming multiprocessor during the execution of the fatbin �le - the number of subsets

are therefore 48 because a) not more than 48 warps can be resident in a streaming multipro-

cessor at any moment during the execution of a fatbin �le, b) the launch con�gurations in

Slc force the gigathread scheduler to assign all the GPU thread blocks at the beginning of

the execution of the GPU code of the fatbin �le and c) when a GPU thread block is assigned

to a streaming multiprocessor the GPU thread block can not migrate to another streaming

multiprocessor. Next we calculate the set of the dependence distances Sdd that appear in the

B part of the fatbin �le. We therefore generate all the couples (dependence distance in Sdd ,

not empty subset SSw = number of resident warps in a streaming multiprocessor). Finally

we eliminate from Slc all the launch con�gurations in the subsets SSw of the couples (depen-

dence distance in Sdd , not empty subset SSw) that in the table Tb have a maximum ending

time di�erence greater than 300 function unit clock cycles - let us call the set composed by all

these eliminated launch con�gurations Blc, where B means bad. The launch con�gurations

remained in Slc - the set of the potential launch con�gurations - are the launch con�gurations

that we use to analyze the fatbin �le.

The fact, that there are couples (dependence distance , number of resident warps in a stream-

ing multiprocessor), that force the gigathread scheduler to evenly distribute the GPU thread

blocks, to the streaming multiprocessors, at the beginning of the execution of GPU code of

104 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

a fatbin �le and imply an even number of resident warps in each streaming multiprocessor, a

maximum starting time di�erence smaller than 300 function unit clock cycles but a maximum

ending time di�erence greater than 300 function unit clock cycles, is due to GPU hardware

problems that we can not �x. The reasons because we say that this phenomenon is due to

GPU hardware problems are the following:

� In Slc, we have only launch con�gurations, generating couples (dependence distance in

Sdd , launch con�guration in Slc), that, in the table Tc, have a maximum starting time

di�erence, and, in the table Tb, have a maximum ending time di�erence, for the resident

warps in each one of the single streaming multiprocessors used, a) of the same order of

magnitude and b) smaller than 300 function unit clock cycles - these two things are true

independently of the quantity of work that each GPU thread has to execute in the for

loops, of the B parts, of the fatbin �les.

In Blc instead, we have only launch con�gurations, generating couples (dependence

distance in Sdd , launch con�guration in Blc), that, in table Tc, have a maximum starting

time di�erence, for the resident warps in each one of the single streaming multiprocessors

used, smaller than 300 function unit clock cycles, independently of the quantity of work

that each GPU thread has to execute in the for loops, of the B parts, of the fatbin �les,

but that, in table Tb, have a maximum ending time di�erence, for the resident warps in

each one of the single streaming multiprocessors used, from 2 to 6 orders of magnitude

greater than 300 function unit clock cycles, already for the executions of only 1 million - a

very low number - of ELF instructions, in the for loops, of the B parts, of the fatbin �les,

per GPU thread, and the orders of magnitude increase at the increase of the quantity of

work that each GPU thread has to execute in the for loops, of the B parts, of the fatbin

�les;

� Because the bandwidths and the latencies of the GPU memories can not slow down the

execution of the for loops, of the B parts, of the fatbin �les, used for the quanti�cation of

the local ELF architectural features, considering a generic couple (dependence distance

, number of resident warps in a streaming multiprocessor) and taking all the ELF

instruction con�gurations not limited by the scheduling waiting times, the dependence

waiting times and the overhead time due to the management of the warps - we know which

are such ELF instruction con�gurations for each couple (dependence distance, number of

resident warps in a streaming multiprocessor) because in 7.6.2 we concurrently consider

the scheduling waiting times, the dependence waiting times and the overhead time due

to the management of the warps to determine the minimum number of warps necessary

in a streaming multiprocessor to get an average throughput not smaller than the 95%

of the maximum average of the average throughputs obtained, for the ELF instruction

con�guration, considering all the couples (fatbin �le , launch con�guration) used to

analyze the ELF instruction con�guration - we can say that the phenomenon is not due

to some particular ELF instruction con�gurations and that, because the execution of the

for loops, of the B parts, of the fatbin �les, can not be slowed down by the bandwidths

and the latencies of the GPU memories and for the cases here considered the execution

of the for loops, of the B parts, of the fatbin �les, is not slowed down by the scheduling

waiting times, the dependence waiting times or the overhead time for the management

of the warps, we can say that, for causes that we can not modify, a) during the execution

8.3. Selection of the Launch Con�gurations 105

of the fatbin �les, the warp schedulers prefer to schedule some warps instead of others

and b) this phenomenon increases the maximum ending time di�erences at the increase

of the quantity of work that each GPU thread has to execute in the for loops, of the B

parts, of the fatbin �les and so it is probably coming in play from the beginning of the

executions of the for loops, of the B parts, of the fatbin �les and is going to last almost

for the whole executions of the for loops, of the B parts, of the fatbin �les - we exclude

the end of the executions of the for loops, of the B parts, of the fatbin �les, where some

warps are going to �nish before of others and therefore force the warp schedulers to

choose among a reduced number of resident warps, for a period of time that is greater

than the cases for which the maximum ending time di�erences are smaller than 300 clock

cycles;

We did not study the frequency of the phenomenon but we can not �x it in any case. Because

the phenomenon can reduce the real ELF code e�ciency of an ELF code we discard the launch

con�gurations in Blc from Slc - in Blc there could be therefore launch con�gurations implying

a) an even distribution of the GPU thread blocks to the streaming multiprocessors, b) an

even number of resident warps in each streaming multiprocessor and c) a distribution of the

GPU thread blocks, to the streaming multiprocessors, at the beginning of the execution of

the GPU code of the fatbin �le.

To summarize, to generate the set of launch con�gurations Slc to use for the analysis of a fatbin

�le it is necessary to calculate the following sets in the following order and in the following ways:

• The �rst set is composed by all the launch con�gurations a) with a number of GPU thread

blocks smaller than 8 times the number of streaming multiprocessors - 8 because the maximum

number of GPU thread blocks that can be resident at each moment during the execution of

a fatbin �le in a streaming multiprocessor is 8 - and b) with a number of warps per GPU

thread block going from 1 to 32 - the maximum number of warps that a GPU thread block

can have;

• From the �rst set, by elimination, we get a second set of potential launch con�gurations.

The launch con�gurations eliminated by the �rst set are all the launch con�gurations, with

a number of GPU thread blocks, that, divided by the number of streaming multiprocessors

of the speci�c model of the GF100 architecture that we want use to execute the fatbin �le,

do not give us an integer number - this means that the gigathread scheduler can not evenly

distribute the GPU thread blocks to the the streaming multiprocessors;

• From the second set, by elimination, we get a third set of potential launch con�gurations.

The launch con�gurations eliminated by the second set are all the launch con�gurations that

would have a number of resident warps per streaming multiprocessor greater than 32, this

supposing the gigathread scheduler evenly distributes the GPU thread blocks to the streaming

multiprocessors;

• From the third set, by elimination, we get a fourth set of potential launch con�gurations.

The launch con�gurations eliminated by the third set are all the launch con�guration that,

supposing the gigathread scheduler evenly distributes the GPU thread blocks to the streaming

multiprocessor, require a number of hardware registers per streaming multiprocessor - number

of resident warps per streaming multiprocessor times the number of GPU threads per warp,

106 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

32, times the number of ELF registers of the fatbin �le - that is smaller than half of the

number of hardware registers in a streaming multiprocessor or greater than the number of

hardware registers in a streaming multiprocessor - in this way we have the guarantee that,

for the launch con�gurations not eliminated, a) the gigathread scheduler is going to evenly

distribute the GPU thread blocks to the streaming multiprocessors and b) the gigathread

scheduler is going to do this at the beginning of the execution of the GPU code of the fatbin

�le;

• From the third set, by elimination, we get a fourth set of potential launch con�gurations.

The launch con�gurations eliminated by the third set are all the launch con�gurations with

an odd number of resident warps in a streaming multiprocessor;

• From the fourth set, by elimination, we get the �fth set of potential launch con�gurations.

The �fth set is the set of launch con�gurations Slc to use to analyze the fatbin �le. The launch

con�gurations eliminated by the fourth set are all the launch con�gurations that, considering

the dependence distances that appear in the interpretation text �le of the fatbin �le, generate

couples (dependence distance in Sdd , launch con�guration = number of resident warps in

a streaming multiprocessor) that have in the table Tb a maximum ending time di�erence

greater than 300 function unit clock cycles.

8.4 Transformation of the Fatbin File to Analyze

Every fatbin �le has a reading/writing mechanism of category Cat1, Cat2 or Cat3. If the fatbin �le

has a reading/writing mechanism of category Cat1 we can decide whether, for the analysis/analyses,

to keep the fatbin �le in the way it is or whether, using the procedure P1, to transform the fatbin

�le in a fatbin �le with a reading/writing mechanism of category Cat2 or Cat3. If the fatbin �le has

a reading/writing mechanism of category Cat2 we can decide whether, for the analysis/analyses,

to keep the fatbin �le in the way it is or whether, using the procedure P2, to transform the fatbin

�le in a fatbin �le with a reading/writing mechanism of category Cat3.

Let us call Ffi the original fatbin �le in input to the previous potential procedure of transfor-

mation of its reading/writing mechanism and the output fatbin �le of such potential procedure of

transformation Ffo - Ffo can therefore being equal to Ffi or being the transformation of Ffi .

Ffo has a number of ELF registers, let us say n
Ffo
er . Using the procedure Pb we generate a set

of fatbin �les, one for each integer number between n
Ffo
er and 64 - the maximum number of ELF

registers that can have a fatbin �le. Let us call the set of generated fatbin �les S1
Ff
. Every one

of the fatbin �les in S1
Ff

is analogous to Ffo , maybe the name of the useful ELF registers used in

the fatbin �les in S1
Ff

is di�erent from the name of the ELF registers used in Ffo but this does not

matter because each one of the fatbin �les in S1
Ff

has the same number and type of useful ELF

registers of Ffo , the dependences among the useful ELF registers in the B parts of the fatbin �les

in S1
Ff

are equal to the dependences among the ELF registers in the B part of the fatbin �le Ffo

and the order and type of ELF instructions in the B parts of the fatbin �les in S1
Ff

are equal to

the order and type of ELF instructions in the B part of fatbin �le Ffo - the fatbin �les in S1
Ff

have

also some additional useless ELF registers compared to Ffo but such useless ELF registers are not

used in the B parts of the fatbin �les in S1
Ff
. The generation of all these fatbin �les is necessary to

increase the probability that some launch con�gurations, not present in the Slc, of the fatbin �le

Ffo , are instead present in one or more Slcs of the fatbin �les in S1
Ff
.

8.4. Transformation of the Fatbin File to Analyze 107

Because the B parts of the fatbin �les in S1
Ff

are equivalent to the B part of the fatbin �le Ffo ,

we can use them, instead of Ffo alone, to analyze Ffo , and because it is probable that some launch

con�gurations not present in the Slc of the fatbin �le Ffo are instead present in the Slcs of the

fatbin �les in S1
Ff
, the probability, to �nd couples (fatbin �le in S1

Ff
, launch con�guration in the

Slc of the fatbin �le in S1
Ff

), with a greater lower bound on the real ELF code e�ciency, is equal,

whether not greater, than the case where we consider only the couples (fatbin �le Ffo , launch

con�guration in the Slc of the fatbin �le Ffo) or only the couples (original fatbin �le Ffi , launch

con�guration in the Slc of the original fatbin �le Ffi), in the case we did not transform Ffi .

Let us consider the cases when a) the number of ELF registers of the fatbin �le Ffo is equal

to n
Ffo
er , b) we want a number of GPU thread blocks per streaming multiprocessor equal to B, c)

the number of warps of each GPU thread block is equal to W but e) B ·W · 32 · nFfo
er is smaller

than half of the number of hardware registers in a streaming multiprocessor. If we use couples

(fatbin �le , launch con�guration) satisfying the conditions a), b), c), d) and e), then it is not

possible to get the guarantee that the gigathread scheduler is going to evenly distribute the GPU

thread blocks to the streaming multiprocessors. Thanks to generation of S1
Ff

is instead probable

that there are one or more fatbin �les, analogous to Ffo , but with a number of ELF registers nFf
er

greater than n
Ffo
er , such that B ·W ·32 ·nFf

er is greater than half of the number of hardware registers

in a streaming multiprocessor but equal or smaller than the number of ELF registers in a streaming

multiprocessor. If this is the case then we have the guarantee that the gigathread scheduler is

going to evenly distribute the GPU thread blocks to the streaming multiprocessors when we use

the couples (fatbin �le in S1
Ff

, wanted launch con�guration/s = number of resident warps in a

streaming multiprocessor) and that the gigathread scheduler is going to do this at the beginning

of the execution of the GPU code of the fatbin �le.

Some or all the fatbin �les in S1
Ff

could however have empty Slcs - this depends on the Sdd

of each fatbin �le in S1
Ff
. To avoid to loose good candidates for the analysis/analyses and for

further increasing the probability to get a greater lower bound on the real ELF code e�ciency of

the original fatbin �le Ffi , we therefore use procedure PA on each one of the fatbin �les in S1
Ff
.

Let us call SA each one of the sets of fatbin �les generated by the procedure PA taking in input

a fatbin �le in S1
Ff

- the number of SAs generated is equal to the number of fatbin �les in S1
Ff

- and

let us call S2
Ff

the set containing all the fatbin �les of all the sets SA that have been generated. The

Sdd of each fatbin �le in a SA is probably di�erent a) from the Sdd of at least some other fatbin �les

in the SA and b) from the Sdd of the fatbin �le in S1
Ff

used to generate SA and so the single fatbin

�les in each SA have a Slc that is probably di�erent a) from the others Slcs of the other fatbin �les

in the same SA and b) from the Slc of the fatbin �le in S1
Ff

used to generate SA.

All the fatbin �les in S2
Ff

with an empty Slc are eliminated. The remaining �les in S2
Ff
, with a

not empty Slc, are used to analyze the original fatbin �le Ffi - this is done analyzing all the couples

(fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

). Generating S2
Ff

is

useful because also if the dependences, among the ELF registers, used in the ELF instructions, in

the B parts, of the fatbin �les, in S2
Ff
, are the same of the dependences, among the ELF registers,

used in the ELF instructions, in the B part, of the fatbin �le Ffo , changing the order of the ELF

instructions can increase the probability to get a greater lower bound on the real ELF code e�ciency

because:

• If a fatbin �le in S1
Ff

has an empty Slc, at cause of its Sdd used in the last step of the

procedure used to generate its Slc, then generating an SA for the fatbin �le in S1
Ff

increases

108 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

the probability that at least some fatbin �les in its SA have a not empty Slc. If at least some

fatbin �les in its SA have a not empty Slc then we have increased the number of couples (

fatbin �le , launch con�guration) that we can use to analyze the original fatbin �le Ffi and

so we have made equal, whether not greater, the probability to get a greater lower bound on

the real ELF code e�ciency of the original fatbin �le Ffi ;

• Di�erent orders, of the ELF instructions, in the B parts, of the fatbin �les, in S2
Ff
, imply the

transfer of di�erent byte quantities, among the di�erent GPU memories, during the executions

of the fatbin �les.

Considering that a) we can not choose the warp schedulings, b) we can not know the warp

schedulings the GPU hardware design will allow to the warp schedulers to choose for the

execution of a fatbin �le and c) that the bandwidths and the latencies of the GPU memories

are �xed for each speci�c model of the GF100 architecture then, for some byte quantities that

it is necessary to transfer during the execution of a fatbin �le - such quantities are due to the

order and type of ELF instructions in the B part of the fatbin �le, to the dependences among

the ELF registers used in the ELF instructions in the B part of the fatbin �le and to the

warp schedulings that the GPU hardware design allows to the warp schedulers to choose for

the execution of the B part of the fatbin �le - the bandwidths and the latencies of the GPU

memories could be a bottleneck, during the execution of the fatbin �le, with some or all the

warp schedulings that the GPU hardware design allows to the warp schedulers to choose for

the execution of the B part of the fatbin �le, and so the bandwidths and the latencies of the

GPU memories could slow down the execution of the B part of the fatbin �le.

Greater the number of analogous possibilities that we can choose to execute a fatbin �le Ffo

- in other words fatbin �les a) with the number and type of their ELF instructions in their

B parts equal to number and type of the ELF instructions in the B part of the fatbin �le

Ffo , b) with the dependences among the ELF registers used in the ELF instructions in their

B parts equal to the dependences among the ELF registers used in the ELF instructions in

the B part of the fatbin �le Ffo but c) with a di�erent logically correct order of the ELF

instructions - better, because it is greater the probability that, for at least one of the orders

of the ELF instructions in the B parts of the fatbin �les, some or all the warp schedulings,

that the GPU hardware design allows to the warp schedulers to choose for the execution of

at least one of the fatbin �les, make it impossible for the bandwidths and the latencies of the

GPU memories to slow down the execution of the order of ELF instructions in the B part

of at least one of the fatbin �les however, if the bandwidths and the latencies of the GPU

memories can not slow down the execution of the order of ELF instructions in the B part of

a fatbin �le, for only some of the warp schedulings that the GPU hardware design allows to

the warp schedulers to choose for the execution of the B part of the fatbin �le, then we need

to make an experimental statistical study on the execution times of the B part of the fatbin

�le.

• Greater the probability to �nd at least one fatbin �le in S2
Ff

that, when executed with one

of the launch con�gurations in its Slc, with some or all the warp schedulings that the GPU

hardware design allows to the warp scheduler to choose for the execution of the fatbin �le,

has an execution of its B part that can not be slowed down by the scheduling waiting times,

the dependence waiting times and the overhead times due to the management of the warps

- if this could happen for only some of the warp schedulings that the GPU hardware design

8.5. Summary 109

allows to the warp schedulers to choose for the execution of the B part of the fatbin �le then

we need here too to make an experimental statistical study on the execution times of the B

part of the fatbin �le.

To summarize, going from the original fatbin �le Ffi to the fatbin �le Ffo , later, using the

procedure PB , from the fatbin �le Ffo to S1
Ff
, and, using the procedure PA, from S1

Ff
to S2

Ff
, is a

way to increase the probability to get a greater lower bound on the real ELF code e�ciency of the

original fatbin �le Ffi . The fatbin �les of the couples (fatbin �le in S2
Ff

, launch con�guration in

the Slc of the fatbin �le in S2
Ff

) are fatbin �les analogous to the fatbin �le Ffo - this means that

each one of the fatbin �les in S2
Ff

has a) the number and type of ELF instructions in its B part equal

to the number and type of ELF instructions in the B part of the fatbin �le Ffo , b) the dependences

among the ELF registers used in the ELF instructions in its B part equal to dependences among

the ELF registers used in the ELF instructions in the B part of the fatbin �le Ffo but c) a di�erent

logically correct order of the ELF instructions in its B part and d) a number of ELF registers equal

or greater than the number of ELF registers of the fatbin �le Ffo . The total number of di�erent

launch con�gurations, obtained considering the sets Slc of the fatbin �les in S2
Ff
, is greater than

the number of launch con�gurations in the set Slc of Ffi .

8.5 Summary

In this chapter we have described the steps necessary a) to transform an original fatbin �le Ffi and

b) to choose the launch con�gurations to use during the analysis/analyses, of each one of the fatbin

�les produced from the original one, this to increase the probability to get a greater lower bound

on the real ELF code e�ciency of the original fatbin �le Ffi . The main points to remember from

this chapter are the following:

• We can modify the reading/writing mechanism that a fatbin �le is using to read/write

data/results a) to increase the number of launch con�gurations that we can use to ana-

lyze the fatbin �le and b) to increase the number of launch con�gurations to try to reduce

the quantity of bytes that is necessary to transfer during the execution of the B part of the

fatbin �le.

Smaller the quantity of bytes that is necessary to transfer during the execution of a fatbin �le,

smaller the probability that the bandwidths and the latencies of the GPU memories can slow

down the execution of the B part of the fatbin �le, this independently of the warp scheduling

- remember that we can not choose the warp scheduling or know which it will be at the next

execution of the fatbin �le, this also if we use the same launch con�guration to execute the

fatbin �le;

• Let us call Ffi the original fatbin �le and Ffo the output fatbin �le of the possible, but

sometimes not wanted, process of transformation, of the reading/writing mechanism of the

original fatbin �le Ffi .

Ffo - see 8.4 for an explanation for the following di�erent points - a) is equal to the original

fatbin �le Ffi if no transformation process is used, b) is practically equal to the original fatbin

�le Ffi , if the procedure P1 is used, to transform, the original fatbin �le Ffi , with a read-

ing/writing mechanism of category Cat1, in a fatbin �le, with a reading/writing mechanism

of category Cat2, c) is practically equal to the original fatbin �le Ffi , if the procedure P2 is

110 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

used, to transform, the original fatbin �le Ffi , with a reading/writing mechanism of category

Cat1 or Cat2, in a fatbin �le, with a reading/writing mechanism of category Cat3 and it

necessary to apply, in the procedure P2, the set of transformations and changes TAC1 and

d) could be very di�erent from the original fatbin �le Ffi , if the the procedure P2 is used, to

transform the original fatbin �le Ffi , with a reading/writing mechanism of category Cat1 or

Cat2, in a fatbin �le, with a reading/writing mechanism of category Cat3 and it is necessary

to apply, in the procedure P2, the set of transformations and changes TAC2;

• Because the number of ELF registers nFf
er of a fatbin �le Ff is �xed, it is not always possible

to force the gigathread scheduler to evenly distribute the GPU thread blocks to the streaming

multiprocessors - this happens when the number of GPU thread blocks B we want in each

streaming multiprocessor times the number of warpsW of each GPU thread block times the

number of GPU threads of each warp times the number of ELF registers n
Ff
er of the fatbin

�le Ff is smaller than half the number of hardware registers in a streaming multiprocessor.

Generating the set S1
Ff

of fatbin �les with their B parts equivalent to the B part of the

fatbin �le Ffo - equal number, type and order of ELF instructions and equal dependences

among ELF registers - but a greater number of ELF registers - some of them will be dummy

ELF registers - allow us to use more launch con�gurations than the case where we are only

considering the fatbin �le Ffo .

This happens because some launch con�gurations previously impossible to use with the orig-

inal fatbin �le Ffi and the fatbin �le Ffo - B ·W · 32 · nFfi
er and B ·W · 32 · nFfo

er smaller than

half of the number of hardware registers in a streaming multiprocessor - now, when used to

execute one or more fatbin �les in the set S1
Ff
, give us the guarantee that the gigathread

scheduler is going to evenly distribute the GPU thread blocks to the streaming multipro-

cessors, this because B ·W · 32 · nFf
er is greater than half the number of hardware registers

in a streaming multiprocessor and smaller or equal the number of hardware registers in a

streaming multiprocessor;

• It is not enough, for a launch con�guration of a fatbin �le, to be considered as one of the

launch con�gurations that we use to analyze the fatbin �le, to give us the guarantee a)

that the gigathread scheduler is going to evenly distribute the GPU thread blocks to the

streaming multiprocessor, b) that this even distribution is done by the gigathread scheduler

at the beginning of the execution of the GPU code of the fatbin �le and c) that each streaming

multiprocessor will have an even number of resident warps.

A launch con�guration satisfying a), b) and c) determines the number of resident warps in

each streaming multiprocessor during the execution of the fatbin �le, but some couples (de-

pendence distance , number of resident warps in a streaming multiprocessor), in the table

- calculated during the extraction of the local streaming multiprocessor ELF architectural

features in 7.6.2 - of the maximum ending time di�erences of the couples (fatbin �le =

dependence distance , launch con�guration = number of resident warps in a streaming multi-

processor), and so also in the table - calculated during the extraction of the local streaming

multiprocessor ELF architectural features in 7.6.2 - of the maximum absolute time di�erences

between maximum ending time and maximum starting time di�erences of the couples (fatbin

�le = dependence distance , launch con�guration = number of resident warps in a streaming

multiprocessor), show the presence of a phenomenon of load unbalancing - a value greater

8.5. Summary 111

than 300 function unit clock cycles - for the warp scheduling in the streaming multiprocessors

- load unbalancing that we can not �x and that is important to avoid.

Analyzing the B part of a fatbin �le we therefore build its set of dependence distances Sdd.

Given a launch con�guration satisfying a), b) and c), we build the set of all the couples (

dependence distance in Sdd , launch con�guration = number of resident warps in a streaming

multiprocessor) and if also only one of the couples of this set is one of the couples that,

in the table - calculated during the extraction of the local streaming multiprocessor ELF

architectural features in 7.6.2 - of the maximum ending time di�erences of the couples (

fatbin �le = dependence distance , launch con�guration = number of resident warps in a

streaming multiprocessor) and so also in the table - calculated during the extraction of the

local streaming multiprocessor ELF architectural features in 7.6.2 - of the maximum absolute

time di�erences between maximum ending time and maximum starting time di�erences of the

couples (fatbin �le = dependence distance , launch con�guration = number of resident warps

in a streaming multiprocessor), shows the presence of the phenomenon of load unbalancing

for the warp scheduling then we can not use the launch con�guration to analyze the fatbin

�le.

The launch con�gurations - of a fatbin �le - satisfying a), b) and c), for which all the couples (

dependence distance in Sdd , launch con�guration = number of resident warps in a streaming

multiprocessor) do not show the presence of a phenomenon of load unbalancing for the warp

scheduling, compose the set of the launch con�gurations Slc that we use to analyze the fatbin

�le;

• Because we do not want to loose, at cause of their Sdds, good candidates - fatbin �les - for the

analysis/analyses of an original fatbin �le Ffi , after the creation of a set of fatbin �les S1
Ff
, to

increase the number of launch con�gurations that we can use for the analysis/analyses - this

compared to the case of those that is possible to use if we only consider the original fatbin �le

Ffi - we take, one at the time, each one of the fatbin �les in the set S1
Ff

and generate for each

one of them a set SA of analogous fatbin �les - each fatbin �le of each set SA has in its B part

one of the possible di�erent logically correct orders of the ELF instructions in the B part of

the fatbin �le used as generator for the set SA and remember that the fatbin �les in the set

S1
Ff

have their B parts equivalent to the B part of the fatbin �le Ffo . The fatbin �les of each

set SA probably have Sdds di�erent from the Sdd of the original fatbin �le Ffi and from the

Sdd of the fatbin �le Ffo and so probably di�erent from the Sdds of the fatbin �les in the set

S1
Ff
. Di�erent Sdds increase the probability that, if a launch con�guration could not be used

with a fatbin �le in the set S1
Ff
, now it can be used with at least one of the analogous fatbin

�les of the set SA created using as generator one of the fatbin �les in the set S1
Ff
.

The set, given by the union of all the set SA, is the set S2
Ff
. For each fatbin �le of the set S2

Ff

we calculate its set of launch con�guration Slc to use to analyze the fatbin �le. The fatbin

�les with an empty Slc are eliminated by the set S2
Ff
.

Having 1) generated the set S2
Ff

of fatbin �les and 2) determined for each one of the fatbin �les

in the set S2
Ff

its set of launch con�gurations Slc to use for its analysis, it is however not enough to

start to analyze the fatbin �les in the set S2
Ff
. To understand the possible analysis/analyses that can

be executed on the fatbin �les in the set S2
Ff
, it is �rst e�ectively necessary to talk of the possible

warp scheduling policies executed by the warp schedulers in the streaming multiprocessors.

112 Chapter 8. Modi�cations, Launch Con�gurations and Transformations

Chapter 9

Warp Scheduling Policies

9.1 Introduction

In the previous chapter we have described the steps necessary a) to transform the original fatbin �le

Ffi in a fatbin �le Ffo - fatbin �le Ffo that could have or not a reading/writing mechanism, 8.2.3,

of category di�erent from that of the reading/writing mechanism of the fatbin �le Ffi - and b) to

determine the launch con�gurations in the sets of launch con�gurations Slc - one set per fatbin �le

in the set S2
Ff

- to use to analyze the fatbin �les in the set S2
Ff
, set S2

Ff
produced from the fatbin

�les S1
Ff
, set S1

Ff
produced from the fatbin �le Ffo , fatbin �le Ffo produced from the original fatbin

�le Ffi . The points a) and b) increase the probability to get a greater lower bound on the real ELF

code e�ciency of the original fatbin �le Ffi .

The analysis/analyses to execute on each one of the the fatbin �les in the set S2
Ff

are determined

a) by the fact that the fatbin �le Ffo is or not in the subset SSA1 of all the possible fatbin �les

- if the fatbin �le Ffo is in the subset SSA1 then the fatbin �les in the set S2
Ff

are eligible for

the execution of the analysis A1 described in 12 - and b) by the reader's goals. The factors that

determine whether the fatbin �le Ffo is or not in the subset SSA1 are �ve, the �rst of them is the

warp scheduling policy executed by the warp schedulers in the streaming multiprocessors.

While we will talk of the last four, of the �ve factors, in the next chapter, in this chapter we talk

of the �rst of the �ve factors, the warp scheduling policy executed by the warp schedulers in the

streaming multiprocessors. We start explaining - thanks at the results that we got in 7.6.2 - what

is reasonable to assume being true - and because other possibilities are unlikely - about the warp

scheduling policy. Later we explain because it is impossible to know the implementation details

of the warp scheduling policy executed by the warp schedulers in the streaming multiprocessors.

Next we describe the mechanisms and the dynamics of the probable warp scheduling policy - the

cycling policy - executed by the warp schedulers in the streaming multiprocessors, which are the

reasons supporting the fact that the cycling policy is probably the warp scheduling policy executed

by the warp schedulers in the streaming multiprocessors and how we justify the starting time

di�erences we got in 7.6.2 for the quanti�cation of the local streaming multiprocessor PTX and

ELF architectural features, if it is true that the warp schedulers in the streaming multiprocessors

execute the warp scheduling cycling policy. We therefore talk about the possibility that instead of

the warp scheduling cycling policy other policies are executed, its consequences and why we believe

this is unlikely. Finally we talk of the advantages and disadvantages of the warp scheduling cycling

policy.

113

114 Chapter 9. Warp Scheduling Policies

9.2 What is Reasonable to Assume being True

In 5.6 we describe the mechanism that has to be implemented in the GPU to manage the resident

warps in a streaming multiprocessor but we do not explain in detail how the 2 warp schedulers in

each streaming multiprocessor speci�cally select the warps among the warps that will be available

to be scheduled at the next warp scheduler clock cycle.

To understand because it is not possible to get such implementation details and therefore what

is reasonable to assume being true about the implementation details, it is necessary to talk of the

starting and ending time di�erences that we got for the warp schedulings in 7.6.2.

9.2.1 Very Simple Fatbin Files

Each one of the B parts, of the fatbin �les, used in 7, for the discovery, understanding and quan-

ti�cation of the not disclosed GPU behaviors, has a) in its for loop only one ELF instruction

con�guration, repeated many times, using the same or di�erent ELF registers - there are also three

ELF instructions in the for loop necessary to iterate on the for loop but these three ELF instruc-

tions are not important - b) a very simple structure - some ELF instructions before the for loop,

a for loop, some others ELF instructions after the for loop - and c) a very simple control �ow -

no branches, only one for loop, all the GPU threads executing the same number and type of ELF

instructions.

9.2.2 Executions with Load Balancing

Let us de�ne Gs - good set - the set of the couples (dependence distance = fatbin �le , number of

resident warps in a streaming multiprocessor = launch con�guration) with all the three values, in

the tables, created for the quanti�cation of the local streaming multiprocessor ELF architectural

features, Ta of the maximum absolute time di�erences between maximum ending time and maximum

starting time di�erences of the couples (dependence distance , number of resident warps in a

streaming multiprocessor), Tb of the maximum ending time di�erences of the couples (dependence

distance , number of resident warps in a streaming multiprocessor) and Tc of the maximum starting

time di�erences of the couples (dependence distance , number of resident warps in a streaming

multiprocessor), smaller than 300 function unit clock cycles. The couples in Gs have load balancing

at global level - same number of GPU thread blocks in each streaming multiprocessor and so same

number of resident warps in each streaming multiprocessor - and load balancing at local level

- the number of resident warps in each streaming multiprocessor is even and the combination (

dependence distance = fatbin �le , number of resident warps in a streaming multiprocessor = launch

con�guration) does not create load unbalancing, for the warp scheduling, during the execution of

the fatbin �le of the couple, using the launch con�guration of the couple.

9.2.3 Probably True Things about the Warp Scheduling

Also whether it was not possible to get the state of advancement of the warps during the execution of

the for loops of the B parts of the fatbin �les - this because otherwise the quanti�cation of the local

streaming multiprocessor PTX and ELF architectural features would be been harder, whether not

impossible, to prove correct - it is reasonable to assume that the warp schedulers, for the execution

of the for loops of the very simple B parts of the fatbin �les, used for the quanti�cation of the local

streaming multiprocessor PTX and ELF architectural features, move forward all the warps together

9.2. What is Reasonable to Assume being True 115

because all the three values, in the tables Ta, Tb and Tc, of each couple (dependence distance ,

number of resident warps in a streaming multiprocessor) of the set Gs, are always smaller than

300 function unit clock cycles, this independently of the quantity of work that each GPU thread

has to execute.

That, for all the couples (dependence distance , number of resident warps in a streaming

multiprocessor) of the set Gs, the warp schedulers moves forward together all the resident warps

in a streaming multiprocessor, it is in our opinion true also whether we could not study, during the

executions, the advancement of the warps inside the for loops, of the B parts, of the fatbin �les,

because, given W resident warps in a streaming multiprocessor, if, for all the possible couples of

warps of the set W , we study the di�erences between the starting time di�erence of the 2 warps of

each couple and the ending time di�erences of the 2 warps of the couple then we can see that a)

such di�erences are only slightly di�erent - few clock cycles in almost the totality of the cases and

a little more in the remaining cases - and b) that the warp of each couple that starts �rst is going

also to �nish �rst and so, considering all the resident warps W in a streaming multiprocessor, 1)

that the �rst warp to start to execute the for loop, of the B part, of a fatbin �le, it is also the �rst

to �nish to execute it and that the last warp to start to execute the for loop, of the B part, of a

fatbin �le, is also the last to �nish to execute it and 2) that probably all the distances between

all the warps are going to stay almost constant for the whole execution of the for loop, of the B

part, of a fatbin �le, considering that the starting time di�erence and the ending time di�erence,

of the warps, of each couple, are equal or almost equal - the di�erence, between the starting time

di�erence and the ending time di�erence, of the warps, of each couple, is e�ectively of few clock

cycles, this independently of a) the ELF instruction con�guration, b) the dependence distance and

c) the fact that the execution of the for loop, of the B part, of the fatbin �le is or not slowed

down by the scheduling waiting times, the dependence waiting times or the overhead time for the

management of the warps.

9.2.4 Because Other Possibilities are Unlikely

For the couples (dependence distance , number of resident warps in a streaming multiprocessor),

of the set Gs - such couples are generated using the fatbin �les used for the quanti�cation of the

local streaming multiprocessor ELF architectural features in 7.6.2 - the possibility 1) that the warp

schedulers were scheduling more often a subset of the resident warps in a streaming multiprocessor,

after the beginning of the execution of the for loop. of the B part, of a fatbin �le, for only later to

make all the remaining resident warps in the streaming multiprocessor catch up the leading warps,

repeating this accordion e�ect for the whole execution of the for loop and 2) that the warp schedulers

would be able to make all the resident warps in the streaming multiprocessor �nish the execution

of the for loop, of the B part, of the fatbin �le, in such way to get an ending time di�erence, among

all the warps, and a starting time di�erence, among all the warps, both smaller than 300 function

unit clock cycles, this independently of a) the quantity of ELF instructions executed by each GPU

thread, b) the ELF instruction con�guration and c) the fact that the execution of the B part of the

fatbin �le was or not slowed down by the scheduling waiting times, the dependence waiting times

and the overhead time for the management of the warps, is very unlikely.

116 Chapter 9. Warp Scheduling Policies

9.3 Impossibility of Knowing the Truth

Also whether we are able 1) to get the wanted ELF algorithmic implementations and 2) to program,

in the real assembly, executed by the GF100 architecture, there is no way of knowing, also whether

it seems reasonable to assume so, whether the things said in 9.2.4 are true in the real world. Because

there is no way to know whether the previous things are true in the real word, we need to give to

the reader the possibility of choice between two di�erent cases. What the reader believes is true -

which are the implementation details of the warp scheduling policy executed by the warp schedulers

in the streaming multiprocessors and so which is the warp scheduling policy executed by the warp

schedulers in the streaming multiprocessors - is one of the �ve factors that determines whether the

fatbin �le is Ffo is in the subset SSA1 and therefore partially determine - partially because it is

only one of the �ve factors - whether the fatbin �les in the set S2
Ff

are eligible for the analysis A1

- this is due to the way we generate the fatbin �les in the set S2
Ff
.

We consider only one set Swsp
id of implementation details for the possible warp scheduling policies

that could be executed by the warp schedulers in the streaming multiprocessors and the reader has

only two possible choices, each one with its speci�c consequences:

• If the reader believes Swsp
id is the set of implementation details, implemented for the warp

scheduling policy, executed by the warp schedulers in the streaming multiprocessors, at least

in the cases when the execution, of the B part, of a fatbin �le, is not be slowed down by

the bandwidths and the latencies of the GPU memories, then the warp scheduling policy,

executed by the warp schedulers in the streaming multiprocessors, is what we call the cycling

policy;

• If the reader believes that also only one of the implementation details in the set Swsp
id is not

implemented or is di�erent for the warp scheduling policy executed by the warp schedulers

in the streaming multiprocessors then all the possible warp scheduling policies, that could be

executed by the warp schedulers in the streaming multiprocessors, do not matter which they

are because the consequences, for the execution of any warp scheduling policy di�erent from

the cycling policy, are the same - see subsection X.

9.4 Cycling Policy - The Probable Warp Scheduling Policy

This is the easiest of the warp scheduling policies that it could be implemented and it is the warp

scheduling policy that we believe it is executed at least in the cases when the execution, of the

B part, of a fatbin �le, is not be slowed down by the bandwidths and the latencies of the GPU

memories.

We start describing the mechanisms executed by the 2 warp schedulers in a streaming multi-

processor and the dynamics, originated by the warp scheduling cycling policy, between the 2 warp

schedulers in a streaming multiprocessor We therefore continue explaining the change, in the order

of execution of the mechanisms, that can happen, between the 2 warp schedulers in a streaming

multiprocessor, if one of the 2 warp scheduler in a streaming multiprocessor can schedule the warp

that it is pointing and instead the other warp scheduler in the streaming multiprocessor can not.

Finally we conclude the section explaining why we believe the warp scheduling cycling policy is the

warp scheduling policy that is implemented and executed by the warp schedulers in the streaming

multiprocessors.

9.4. Cycling Policy - The Probable Warp Scheduling Policy 117

9.4.1 Mechanisms and Dynamics of the Warp Scheduling Cycling Policy

What follows are the mechanisms executed by the 2 warp schedulers in a streaming multiprocessor

and the dynamics, originated by the warp scheduling cycling policy, between the 2 warp schedulers

in a streaming multiprocessor.

If the warp scheduling cycling policy is the warp scheduling policy executed by the warp sched-

ulers in the streaming multiprocessors then the GPU is able to establish an order among the resident

warps in a streaming multiprocessor. The 2 warp schedulers in a streaming multiprocessor, at each

moment, consider 2 di�erent warps in the order and there is a pointer that points to a warp in the

order that is not any of the two warps in the order that are considered by the 2 warp schedulers

in the streaming multiprocessor. When a warp scheduler schedules a warp, the pointer assigns the

warp that it is pointing to the warp scheduler. If the pointer points to the last warp in the order

then, after the assignment, the pointer points to the �rst warp in the order. If the pointer is not

pointing to the last warp in the order then, after the assignment, the pointer is increased of one to

point to the next warp in the order. After the beginning of a warp scheduler clock cycle, 1 of the

2 warp schedulers checks whether the warp that it is pointing is available to be scheduled at the

next warp scheduler clock cycle:

• If the warp, that the warp scheduler is pointing, is not available to be scheduled at the next

warp scheduler clock cycle then the warp scheduler does nothing and checks again the warp

at the next warp scheduler clock cycle;

• If the warp, that the warp scheduler is pointing, is available to be scheduled at the next

warp scheduler clock cycle then the warp scheduler decides to schedule the warp at the next

warp scheduler clock cycle and updates the state of the other resident warps in the streaming

multiprocessor. Possible examples:

� If the warp, that the warp scheduler is pointing, has to be scheduled on the group of 4

special function units and the real ELF instruction streaming multiprocessor best average

performance per clock cycle of its next warp ELF instruction, that has to be executed, is

equal to 2, then 16 function units clock cycles - 32, the number of GPU thread in a warp,

divided 2, the real ELF instruction streaming multiprocessor best average performance

per clock cycle - are necessary to execute the next warp ELF instruction of the warp

and so for the next 8 warp scheduler clock cycles - this because a warp scheduler clock

frequency is half of a function unit clock frequency - the group of 4 special function units

will not be available and therefore all the resident warps in the streaming multiprocessor,

that require, for the execution of their next warp ELF instruction, the group of 4 special

function units, will be made not available to be scheduled for the next 8 warp scheduler

clock cycles;

� If the warp, that the warp scheduler is pointing, has to be scheduled on 1 of the 2 groups

of 16 CUDA cores and the real ELF instruction streaming multiprocessor best average

performance per clock cycle of its next warp ELF instruction, that has to be executed,

is equal to 4, then we know, from 7.6.2, that some not disclosed hardware resources

shared among the 2 groups of 16 CUDA cores are used at least for the execution of warp

ELF instructions equal to the warp ELF instruction that is necessary to execute for the

warp - however these same not disclosed shared hardware resources could be used for the

execution of other di�erent warp ELF instructions too - and therefore all the resident

118 Chapter 9. Warp Scheduling Policies

warps in the streaming multiprocessor, that require, for the execution of their next warp

ELF instruction, the use of the same not disclosed shared hardware resources, will be

made not available to be scheduled for the next 4 warp scheduler clock cycles - 32, the

number of GPU threads, divided 4, the real ELF instruction streaming multiprocessor

best average performance per clock cycle, divided 2, the warp scheduler clock frequency

is half of a function unit clock frequency - independently of which of the 4 groups of

function units in a streaming multiprocessor are necessary to execute their next warp

ELF instruction.

After 1 of the 2 warp schedulers has executed the procedure, the same procedure is therefore

repeated by the other warp scheduler. After the last warp scheduler has executed the procedure,

each one of the 2 warp scheduler knows whether, at the next warp scheduler clock cycle, it will

schedule the warp that it is pointing. If a warp scheduler will schedule the warp that it is pointing

then, after the scheduling of the warp at the next warp scheduler clock cycle, the warp scheduler get

from the pointer the new warp that the warp scheduler has to consider and repeat the procedure.

If a warp scheduler will not schedule the warp that it is pointing then, at the next warp scheduler

clock cycle, it will repeat the procedure for the same warp.

9.4.2 Change of the Order of Execution of the Mechanisms

The warp scheduler that executes as �rst the procedure described in the previous subsection could

be the second to execute the same procedure at the next warp scheduler clock cycle. This depends

on a) whether both the 2 warp schedulers in the streaming multiprocessor will schedule or not, at

the next warp scheduler clock cycle, the warps that they are pointing or 2) whether 1 of the 2 warp

schedulers in the streaming multiprocessor is going to schedule, at the next warp scheduler clock

cycle, the warp that it is pointing, while the other warp scheduler no. The two possible mutually

exclusive cases are therefore the following:

• If, at the next warp scheduler clock cycle, the 2 warp schedulers are both going or not to

schedule the 2 warps that they are pointing then the order of precedence for the execution

of the procedure described in the previous subsection is going to remain the same for the 2

warp schedulers;

• If, at the next warp scheduler clock cycle, 1 of the 2 warp schedulers is going to schedule

the warp that it is pointing while the other warp scheduler is not going to schedule the warp

that it is pointing then the warp scheduler that is not going to schedule the warp that it is

pointing will execute as �rst the procedure described in the previous subsection.

9.4.3 Possibility of a Time Di�erence Between Warp Schedulers

In the discussions till now, we have supposed that the 2 warp schedulers in each streaming mul-

tiprocessors have their clock frequencies synchronized - the clock cycle x of one of the two warp

schedulers, CCws1
x , is happening at the same moment of the clock cycle x of the other warp sched-

uler, CCws2
x . This could be true or not, but if not, it does not matter, every discussions done till

now is however valid.

Because the clock frequency of the function units is twice the clock frequency of the warp

schedulers, it could e�ectively be that, at the clock cycle y of the function units - CCfu
y - only one

9.4. Cycling Policy - The Probable Warp Scheduling Policy 119

of the 2 warps schedulers in a streaming multiprocessor is at its CCx clock cycle. If this is the case,

the warp scheduler schedules or not the warp that it is pointing, whether necessary get from the

pointer the new warp that the warp scheduler has to consider, executes the procedure described in

9.4.1 and waits the function unit clock cycle CCfu
y+2. At the same time, at the function unit clock

cycle CCfu
y+1, the other warp scheduler in the streaming multiprocessor could be at its CCz clock

cycle. If this is the case, the other warp scheduler in the streaming multiprocessor schedules or not

the warp that it is pointing, whether necessary get from the pointer the new warp that the warp

scheduler has to consider, executes the procedure described in 9.4.1 and waits the function unit

clock cycle CCfu
y+3.

In this situation, the same warp scheduler clock cycle CCx does not happen at the same time

for the 2 warp schedulers in a streaming multiprocessor but with a time di�erence greater than one

function unit clock cycle.

All the previous discussions are valid also in this case. Furthermore, this case requires an

hardware and/or software logic that is simpler than the case where the 2 warp schedulers in a

streaming multiprocessor are supposed to have their clock frequencies synchronized and so this

case a) probably requires a smaller die area to implement the necessary hardware logic and b)

probably has a smaller probability to get some hardware and/or software bugs. The hardware

and/or software logic is simpler than that required, to execute the procedure in 9.4.1, supposing

the clock frequencies of the 2 warp schedulers in a streaming multiprocessor are synchronized,

because:

• It is not necessary to switch the order of execution, of the procedure described in 9.4.1, between

the 2 warp schedulers in a streaming multiprocessor, if at the previous warp scheduler clock

cycle, the 2 warp schedulers do not have, both, scheduled or not, the 2 di�erent warps that

each one of them were pointing;

• The speed, necessary a) for the checks for the decisions of the warp schedulers and b) for

the updating of the state of the resident warps a the streaming multiprocessor, could be

half of the speed instead necessary in the case the clock frequencies of the 2 warp schedulers

in a streaming multiprocessor are synchronized - think at the case where, at each function

unit clock cycle, only 1 of the 2 warp schedulers in a streaming multiprocessor executes the

procedure described in 9.4.1.

9.4.4 Supporting Reasons for the Warp Scheduling Cycling Policy

The warp scheduling cycling policy is the easiest warp scheduling policy to implement and in

our opinion is the warp scheduling policy that is implemented because it is hard to believe that,

implementing any other di�erent warp scheduling policy, it is possible to get something better.

The reasons because we say that it is hard to believe that, implementing any other di�erent

warp scheduling policy, it is possible to get something better, it is because the designers of the

GF100 architecture can not know 1) which ELF instructions a fatbin �le will have in its B part and

the order of the ELF instructions in the B part of the fatbin �le, 2) the structure of the B part of a

fatbin �le - which types of loops?, how many?, nested?, etc. - 3) the control �ow of the B part of a

fatbin �le - branches?, synchronizations?, etc. - 4) from where the GPU threads will read the data

and to where the GPU threads will write the results - GPU global memory?, which cache level?,

shared memory?, hardware registers? - and 5) how the GPU threads are going to read/write the

data/results - consecutively?, using pointers?, etc. - and therefore:

120 Chapter 9. Warp Scheduling Policies

• The designers would have a very hard time to prove why a di�erent warp scheduling pol-

icy should give smaller execution times for the fatbin �les - this because a) the number of

di�erent types of fatbin �les that nvcc can generate and b) all the possible di�erent launch

con�gurations an user can use to execute a fatbin �le, creates an incredibly huge number of

couples (fatbin �le , launch con�guration) to consider for the proof;

• The designers would have a very hard time to show experimentally that a warp scheduling

policy, di�erent from the warp scheduling cycling policy, would give shorter execution times,

for the B parts, of fatbin �les, in general, this because, also supposing the designers could be

able to show that a di�erent warp scheduling policy could give shortest execution times for at

least a small subset of all the possible couples (B part of a fatbin �le , launch con�guration

), the designers would face big challenges about the generalization of the results to other

couples;

• The designers would have a very hard time to prove that the cost payed for the increased

complexity of the control logic, necessary to execute a warp scheduling policy di�erent from

the warp scheduling cycling policy, and so the cost payed for the inevitably bigger die area

required for the implementation of a di�erent, more complex, control logic than that required

for the execution of the warp scheduling cycling policy, are worth.

9.4.5 Justifying the Starting Time Di�erences

From 9.2.2 we know that in a streaming multiprocessor, from the moment when the �rst warp or

the �rst two warps in a streaming multiprocessor start to execute the for loop of the B part of each

fatbin �le, to the moment when the last warp or the last two warps in a streaming multiprocessor

start to execute the for loop of the B part of the same fatbin �le, a maximum of 300 function unit

clock cycles passes for each couple (dependence distance , number of resident warps in a streaming

multiprocessor) of the set Gs.

If the warp schedulers in the streaming multiprocessors would execute the warp scheduling policy

then, because the maximum number of resident warps in a streaming multiprocessor, during the

execution of each fatbin �le used for the quanti�cation of the local streaming multiprocessor PTX

and ELF architectural features, is 32, it would seem that the maximum starting time di�erences

should be much smaller than 300 clock cycles and so it is necessary to justify the values of the

maximum starting time di�erences got for the couples (dependence distance , number of resident

warps in a streaming multiprocessor) of the set Gs. The following three things, about the B parts

of the fatbin �les used in 7, are true:

• To synchronize the di�erent number of GPU threads used for the executions of the B part of

a fatbin �le, we use a membar.gl ELF instruction - an ELF global memory barrier synchro-

nization instruction;

• Just after the membar.gl ELF instruction, the same location, of the GPU global memory, that

was overwritten with di�erent random values, by all the GPU threads used for the execution

of the B part of the fatbin �le, just before the membar.gl ELF instruction, is read by all the

GPU threads - this is necessary to force, all the GPU threads, used for the execution of the

B part of the fatbin �le, to become synchronized at the membar.gl ELF instruction;

9.4. Cycling Policy - The Probable Warp Scheduling Policy 121

• Just after the read ELF instruction and just before to start to execute the for loop, of the B

part, of the fatbin �le, each GPU thread, used to execute the B part of the fatbin �le, gets

the GPU global clock cycle - to get the GPU global clock cycle it is necessary to execute, for

each GPU thread, a set of 6 di�erent and consecutive ELF instructions, with 3, of the 6 ELF

instructions, that a) are consecutive and b) use a total of 2 di�erent special ELF registers that

b.1) correspond probably to 2 di�erent special hardware registers and b.2) could be shared

by all the streaming multiprocessors in the GPU.

The previous things generate therefore the following three cases useful to explain because we

got some maximum starting time di�erences, for the couples (dependence distance , number of

resident warps in a streaming multiprocessor) of the set Gs, that would seem do not make sense,

if the warp schedulers in the streaming multiprocessors are executing the warp scheduling cycling

policy:

• Case C1. The fact, that all the GPU threads, after the membar.gl ELF instruction, read the

same location of the GPU global memory, implies the transfer, of the bytes, in that location,

from the GPU global memory to the cache l2 and later from the l2 cache to the l1 cache of

each one of the streaming multiprocessors used for the execution of the B part of the fatbin

�le.

While for the movement of the bytes, from the GPU global memory to the l2 cache, the

waiting time, due to the latency of the GPU global memory, will be shared by all the GPU

threads used for the execution of the B part of the fatbin �le, the waiting time, necessary to

move the bytes, from the l2 cache to the l1 cache of each one of the streaming multiprocessors

used for the execution of the B part of the fatbin �le, could be di�erent for the GPU threads

in di�erent streaming multiprocessors and so it could create a �rst time di�erence among the

resident warps, in a streaming multiprocessor, used for the execution of the B part of the

fatbin �le - this case however is not applicable to the couples (dependence distance , number

of resident warps in a streaming multiprocessor) of the set Gs because the couples of the set

Gs are determined using the results got for the quanti�cation of the local streaming multipro-

cessor PTX and ELF architectural features and for the quanti�cation of the local streaming

multiprocessor PTX and ELF architectural features only a single streaming multiprocessor is

used for the execution of the B parts of the fatbin �les;

• Case C2. It is impossible to know the speci�c details that are used by the GF100 architecture

to update and read the 2 special hardware registers used in 3 of the 6 ELF instructions that

is necessary to execute for each GPU thread to get the GPU global clock cycle.

Because the GPU global clock is at 64 bits but the GF100 architecture has only hardware

registers at 32 bits then it could be that all the 3 or some of the 3 consecutive ELF instructions

that a) use the 2 special ELF registers and b) are necessary to get the GPU global clock

cycle, need to be executed consecutively for each warp and because a) each one of the 3 ELF

instructions using the 2 special ELF registers has its scheduling waiting time, its dependence

waiting times for its operands and its result and its overhead time for the management of

the warps and b) the reading and writing times, for a same special ELF register, could be

di�erent for di�erent ELF instructions, then the total number of clock cycles necessary for

their execution could be not indi�erent.

122 Chapter 9. Warp Scheduling Policies

Whether to all this we add the fact that all the resident warps in a streaming multiprocessor

have to execute the 3 consecutive ELF instructions, using the 2 special ELF registers, and

that probably no other warp can execute them when they are executed for another warp then,

when the number of resident warps in a streaming multiprocessor is approaching 32, we can

very easily to get a maximum starting time di�erence of 300 function units clock cycles.

• Case C3. After a membar.gl ELF instruction, it could be that not all the GPU threads used

for the execution of the B part of the fatbin �le are released at the same moment after that for

the last warp or warps, used for the execution of the B part of the fatbin �le, the membar.gl

ELF instruction has been executed.

It could be in fact possible that a quantity of time - with its variabilities - is required to release

all the warps used for the execution of the B part of the fatbin �le and that during the process

the 2 warp schedulers in each streaming multiprocessor start to schedule the warps released in

the streaming multiprocessor, cycling on them, as happen a) at the beginning of the execution

of the B part of a fatbin �le, when not all the GPU thread blocks, that should be assigned to

a streaming multiprocessor, have been assigned by the gigathread scheduler to the streaming

multiprocessor or b) when, always at the beginning of the execution of the B part of the fatbin

�le, all the warps of a GPU thread block, assigned to a streaming multiprocessor, have not

yet been made available to be considered by the pointer - in the streaming multiprocessor -

that assigns the warps, to the 2 warp schedulers, during the execution of the warp scheduling

cycling policy.

9.5 The Possibility that Other Policies are Executed

If the reader believes a) that there is also only one, of the details, of the warp scheduling cycling

policy, that is implemented in a di�erent way or b) that there are other details implemented,

but not considered, in the discussion of the warp scheduling cycling policy, that could imply a

di�erent advancement of the warps from that implied by the warp scheduling cycling policy, when

the execution of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies

of the GPU memories, then the warp scheduling policy, executed by the warp schedulers, in the

streaming multiprocessors, would be di�erent from the warp scheduling cycling policy, when the

execution of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies of

the GPU memories.

To understand why this could be true and so why we can not be 100% sure that the warp

scheduling cycling policy is the warp scheduling policy that is used by the 2 warp schedulers, to

execute the B parts of general fatbin �les, when the executions of the B parts of general fatbin

�les are not slowed down by the bandwidths and the latencies of the GPU memories, we need to

consider the simplicity of the B parts of the fatbin �les, used in 7, for the discovery, understanding

and quanti�cation of the not disclosed GPU behaviors

9.5.1 Generalization of Results about the Starting Time Di�erences

We know, thanks to results got in 7.6.2, that all the resident warps in a streaming multiprocessor,

in all the possible cases - couples (dependence distance , number of resident warps in a streaming

multiprocessor) in Gs or not - are scheduled at least one time, in a time window smaller than 300

9.5. The Possibility that Other Policies are Executed 123

function unit clock cycles, after all them are forced to be synchronized and so are forced to being

at the same point, of the ELF codes of the B parts of the fatbin �les, just before the beginning

of the for loop in the B parts of the fatbin �les - this independently of a) the ELF instruction

con�guration and b) the fact that the execution of the B part of the fatbin �le is or not slowed

down by the scheduling waiting time, the dependence waiting time or the overhead time for the

management of the warps.

This in our opinion is going to be the case also for the executions of the B parts of fatbin �les

very di�erent from the B parts of the fatbin �les used in 7 and therefore with a) many di�erent

ELF instructions, b) many di�erent structures and c) many di�erent control �ows, compared to

those of the B parts of the fatbin �les used in 7.

9.5.2 Di�culty to Generalize the Results about the Ending Time Dif-

ferences

If the warp scheduling policy executed by the 2 warp schedulers in a streaming multiprocessor, when

the execution of the B part of the fatbin �le is not slowed down by the bandwidths and the latencies

of the GPU memories, is di�erent by the warp scheduling cycling policy, then the results got in 7.6.2

for the couples (dependence distances , number of resident warps in a streaming multiprocessor)

of the set Gs - the couples immune by load balancing problems due to GPU the hardware design,

9.2.2 - however con�rm that a) the maximum ending time di�erences of the couples are smaller

than 300 function unit clock cycles and b) that the starting time di�erences and the ending time

di�erences for each couple of resident warps in a streaming multiprocessors are practically the same

- at maximum few clock cycle of di�erence. The points a) and b) show that, at least for the

executions of very simple B parts as those of the fatbin �les used for the quanti�cation of the local

streaming multiprocessor PTX and ELF architectural features in 7.6.2, it is reasonable to assume

that the warp schedulers are moving forward all the warps together in the way implied by the warp

scheduling cycling policy.

However we can not be sure that the maximum ending time di�erences of the couples (de-

pendence distances , number of resident warps in a streaming multiprocessor) of the set Gs -

the couples immune by hardware design problems about the warp scheduling - are going to stay

smaller than 300 function unit clock cycles also for the executions of B parts of fatbin �les very

di�erent from the B parts of the fatbin �les used in 7 and therefore that the results, about the

points a) and b), got for the executions of the very simple B parts of the fatbin �les, used in 7, for

the quanti�cation of the local streaming multiprocessor PTX and ELF architectural features, are

generalizable to the executions of B parts of fatbin �les with 1) many di�erent ELF instructions,

2) many di�erent structures and 3) many di�erent control �ows.

9.5.3 Consequences of the Reader's Choice

The results about the points a) and b) of the previous subsection are generalizable if the reader

believes that the warp scheduling cycling policy is the warp scheduling policy that is executed by

the warp schedulers in the streaming multiprocessors when the execution of the B part of a fatbin

�le is not slowed down by the bandwidths and the latencies of the GPU memories, but if the reader

believes that the warp schedulers in the streaming multiprocessors instead execute another warp

scheduling policy then we can not use, to analyze a fatbin �le, the idea that the warp schedulers,

in a streaming multiprocessor, are moving forward all the warps together in the way implied by the

124 Chapter 9. Warp Scheduling Policies

warp scheduling cycling policy because, in fact, the reality could be very di�erent from that, also

whether the maximum starting times and the maximum ending times, of the couples (dependence

distances , number of resident warps in a streaming multiprocessor) of the set Gs, seem to con�rm

that the warp schedulers, in a streaming multiprocessor, are moving forward all the warps together

in the way implied by the warp scheduling cycling policy, this at least for the executions of very

simple B parts as those of the fatbin �les used in 7 for the quanti�cation of the local streaming

multiprocessor PTX and ELF architectural features.

9.5.4 Impossibility to Determine and Understand any Other Policy

Any type of forward movement of the resident warps in a streaming multiprocessor could be possible,

if, when the execution of the B part of a fatbin �le is not slowed down by the bandwidths and the

latencies of the GPU memories, a warp scheduling policy di�erent from the warp scheduling cycling

policy is executed by the 2 warp schedulers in a streaming multiprocessor.

If, when the execution of the B part of a fatbin �le is not slowed down by the bandwidths and the

latencies of the GPU memories, the 2 warp schedulers in a streaming multiprocessor execute a warp

scheduling policy di�erent from the warp scheduling cycling policy then there is not way a) to prove

which is the warp scheduling policy or b) supposing the warp scheduling policy can be determined

and understood for a speci�c couple (fatbin �le , launch con�guration), being able to generalize the

results to other couples (fatbin �le , launch con�guration), this because 1) the number of possible

di�erent fatbin �les to consider is too big, 2) the number of possible di�erent launch con�gurations

that can be used to execute a fatbin �le is too big, 3) there is no way to get the implementation

details of the warp scheduling policy and 4) the di�erent number of ELF instructions that each

GPU thread has to execute - independently of the presence of divergences or not in the ELF code

- could have it too, as the type of fatbin �le and the type of launch con�guration, an in�uence on

the warp scheduling.

9.5.5 Why a Policy Di�erent from the Cycling Policy is Unlikely

If, when the execution of the B part of a fatbin �le is not slowed down by the bandwidths and

the latencies of the GPU memories, the 2 warp schedulers in a streaming multiprocessor would

execute a warp scheduling policy di�erent from the warp scheduling cycling policy, then it could

be possible to get a subset of resident warps in the streaming multiprocessor very forward in the

execution of the ELF code and a subset of the resident warps in the streaming multiprocessor very

behind in the execution of the ELF code. If some warps �nish to execute the ELF code of the B

part of a fatbin �le �rst of others then greater the di�culty for the warps schedulers to be able

to schedule, at each warp scheduler clock cycle, a couple of warps, this not only because, for the

warp schedulers, it is harder, with a smaller number of warps, to hide the latencies of the GPU

memories, but also because, for the warp schedulers, it is harder, with a smaller number of warps,

to hide the scheduling waiting times and the dependence waiting times.

Furthermore, because the GF100 architecture can not know the next group of ELF instructions

that is necessary to execute for a warp, if it is possible that some warps can be scheduled more

times than others and so move forward in the execution of the ELF code of the B part of a fatbin

�le then it could be easy, for some warps, to get at a point of the execution, when the warps need

to use a data, that the warps previously required to transfer from the GPU global memory, but the

9.5. The Possibility that Other Policies are Executed 125

data is not available. If this is the case then such warps can not be scheduled for the next N warp

scheduler clock cycles. The following things are true about N:

• N is between 200 and 400 warp scheduler clock cycles, because 400 and 800 function unit

clock cycles are the absolute minimum and the absolute maximum latencies of the GPU

global memory - [50, p. 87] and [56, p. 67] say 400 and 800 function unit clock cycles, [49,

p. 47] and [55, p. 57] say 400 and 600 function unit clock cycles - but a warp scheduler clock

frequency is half of a function unit clock frequency.

The exact value of the latency of the GPU global memory for the transfer of a data depends

on the location of the data in the GPU global memory, however when we transfer, from the

CPU to the GPU, the variables, the arrays, the vectors and the structures, necessary for the

execution of a couple (fatbin �le , launch con�guration) - variables, arrays, vectors and

structures that contain the input data and that will contain the output results - we have

no way to choose or to force the locations, in the GPU global memory, of the variables, the

arrays, the vectors and the structures and so the locations of the input data and the output

results.

The locations of the input data and the output results could be the same or not for the same

or for di�erent problem sizes but in any case we can not know, choose or force the locations

and so to determine the maximum of the possible latencies of the GPU global memory that

we can meet during the execution of the B part of a fatbin �le - the maximum of the possible

latencies could be smaller than the absolute maximum, this depends on the locations of the

variables, the arrays, the vectors and the structures, used for the execution of the fatbin �le,

in the GPU global memory.

For these reasons, in the analysis A1, described in 12, when we execute, on a fatbin �le, the

subanalysis on the bandwidths and the latencies of the GPU memories, we need to use the

greatest possible value for the latency of the GPU global memory, the absolute maximum,

that is equal to 800 function unit clock cycles that are equivalent to 400 warp scheduler clock

cycles;

• N depends on 1) the distance in number of ELF instructions between the ELF instruction

of the warp that requires the transfer of the data from the GPU global memory and the

�rst ELF instruction of the warp that needs to use that data, 2) the type and order of the

ELF instructions between the ELF instruction of the warp that requires the transfer of the

data from the GPU global memory and the �rst ELF instruction of the warp that needs to

use that data - the type and the order determine a lower bound on the minimum number of

clock cycles that has to pass before the warp can be scheduled for the execution of the ELF

instruction that needs to use the data transfered from the GPU global memory - and 3) the

warp scheduling history of all the resident warps in the streaming multiprocessor - number

and type of GPU global memory requests to read/write data/results, moments when the

GPU global memory requests happens, order and type of ELF instructions that is necessary

to execute for the resident warps in the streaming multiprocessor, after that the warp, that

requires the execution of the ELF instruction for the transfer of the data from the GPU global

memory, has been scheduled for the execution of the ELF instruction for the transfer of the

data from the GPU global memory.

Greater the quantity of warp scheduler clock cycles that some warps are not available to be

126 Chapter 9. Warp Scheduling Policies

scheduled, greater the quantity of time that the warp schedulers have to be able to try to hide 1)

the latency of the GPU global memory and the latencies of the GPU memories in general, 2) the

scheduling waiting times and 3) the dependence waiting times. However, smaller the number of

resident warps in a streaming multiprocessor that are available to be scheduled, harder the job of

the warp schedulers and so greater the probability that the execution of the B part of a fatbin �le

is going to get some slowdowns.

9.6 Advantages and Disadvantages of the Cycling Policy

The warp scheduling cycling policy present some advantages, compared to any other warp scheduling

policy, at the increase of the number of resident warps in a streaming multiprocessor.

Greater the number of warps for a warp scheduling policy di�erent from the warp scheduling

cycling policy, greater the potential disadvantage of the warp scheduling policy because it could

be easier for the 2 warp schedulers to generate the situations described in the previous subsection

therefore increasing the probability that the execution of the B part of a fatbin �le is going to get

some slowdowns.

If instead the 2 warp schedulers in a streaming multiprocessor execute the warp scheduling

cycling policy then, greater the number of resident warps in a streaming multiprocessor, greater the

probability for the warp schedulers in a streaming multiprocessor to be able to avoid slowdowns due

to 1) the latencies of the GPU memories, 2) the scheduling waiting times of the ELF instructions,

3) the dependence waiting times of the ELF instructions and 4) the overhead for the management

of the warps - see below why.

To understand why this happens we need to consider the following things: 1) at each warp

scheduler clock cycle not more than 2 warps can be scheduled and 2) each warp ELF instruction

that has to be executed for a warp can not be executed in less than 2 function units clock cycles -

this because every warp always has 32 GPU thread but each one of the 4 groups of functions units

in each streaming multiprocessor has not more than 16 function units.

Let us consider a generic fatbin �le - the distances in number of ELF instructions, between

ELF instructions that require the transfer of data from the GPU global memory and the �rst ELF

instructions using those data, are therefore constant from launch to launch, but let us execute the

generic fatbin �le with a di�erent number of resident warps per streaming multiprocessor from

launch L1 to launch L2 - in L2 a greater number of warps will be resident in each streaming

multiprocessor during the execution of the B part of the fatbin �le. The number of function units

clock cycles that has to pass, from the moment when a warp is scheduled and needs the execution

of one of the ELF instructions that require the transfer of a data from the GPU global memory,

to the moment when the warp could be available to be scheduled and needs the execution of the

�rst ELF instruction that requires the use of the data, is not smaller than the distance between the

two ELF instructions - the ELF instruction that requires the transfer of the data from the GPU

global memory and the �rst ELF instruction that requires the use of the data - times the number

of resident warps in the streaming multiprocessor - this because at the best case 2 warps can be

scheduled at each warp scheduler clock cycle, but each warp ELF instruction can not be executed

in less than 2 function units clock cycles.

Independently of a) the type of fatbin �le - with or without divergences, with or without loops,

etc. etc. - and b) the distances between the ELF instructions that require the transfer of data

from the GPU global memory and the ELF instructions that require their use, greater the number

9.7. Summary 127

of resident warps in a streaming multiprocessor, greater the minimum number of function units

clock cycles that has to pass before a warp can be scheduled again and so greater the number of

function units clock cycle that has to pass before the warp is available to be scheduled and requires

the execution of one of the ELF instructions that have to use the data and therefore greater the

probability, for the warp schedulers in a streaming multiprocessor, to be able to hide the latencies

of the GPU memories. At the same time, greater the number of resident warps in a streaming

multiprocessor, greater the probability, for the warp schedulers in a streaming multiprocessor, to

be able to hide the scheduling waiting times, the dependence waiting times and the overhead time for

the management of the warps - remember that the overhead time for the management of the warps

is not growing linearly and also whether it is the most important factor for the determination of the

real ELF instruction con�guration streaming multiprocessor average performance per clock cycle for

some triplets (ELF instructions con�guration , dependence distance , number of resident warps in

a streaming multiprocessor), its in�uence is null beyond a given number of warps, number of warps

that however dependent on the couple (ELF instructions con�guration , dependence distances),

see 7.6.2.

What it could be greater too, at the increase of the number of resident warps in a streaming

multiprocessor - but this is a disadvantage for the warp scheduling cycling policy - it is the proba-

bility that the bandwidths of the GPU memories will slow down the execution of the B part of the

fatbin �le. This happens because, greater the number of resident warps in a streaming multipro-

cessor, greater it could be the number of data transfers required from the moment when a warp is

scheduled and needs the execution of an ELF instruction that requires the transfer of a data from

one of the GPU memories to the moment when the warp could be available to be scheduled and

needs the execution of the �rst ELF instruction that requires the use of the data, this because all

the warps are moved forward all together with the mechanisms explained in 9.4.1 and 9.4.2 and so

the warp schedulers have to cycle on more warps, thing that increases the probability that a greater

number of transfers could be necessary compared to the case when the B part of the same fatbin

�le is executed with a smaller number of resident warps in each streaming multiprocessor.

9.7 Summary

In this chapter we have explained that also whether, thanks to the results in 7.6.2, it is reasonable

to assume speci�c things about the warp scheduling, because it is impossible to get the implemen-

tation details about the warp scheduling policy executed by the warp schedulers in the streaming

multiprocessors of the GF100 architecture, then the generalization or not a) of the results in 7.6.2

about the warp scheduling and b) of what it is reasonable to assume about the warp scheduling,

depends on what the reader believes . The main points to remember from this chapter are:

• With what we know from 7.6.2, it is reasonable to assume that, at least for the very simple

fatbin �les used in that chapter, if the fatbin �le is executed with a launch con�guration such

that the couple (dependence distance = fatbin �le , number of resident warps in a streaming

multiprocessor = launch con�guration) does not have any balancing problem - this means

that the couple is in the set Gs, 9.2.2 - the warp schedulers, in a streaming multiprocessor,

are moving forward all the resident warps in the streaming multiprocessor together, this at

least in the case when the execution of the B part of a fatbin �le is not slowed down by the

bandwidths and the latencies of the GPU memories, as it e�ectly happens for the executions

128 Chapter 9. Warp Scheduling Policies

of the for loops of the B parts of the fatbin �les used in 7;

• It is impossible to get the implementation details of the warp scheduling policy used by the

warp schedulers in the streaming multiprocessors, so we can not know for sure whether, when

the execution of the B part of a fatbin �le is not slowed down by the bandwidths and the

latencies of the GPU memories, the 2 warp schedulers in a streaming multiprocessor are

moving forward all the resident warps in the streaming multiprocessor together or whether,

because there is no way to study the advancement of the warps, inside the for loops, during the

executions of the B parts of the fatbin �les, without to make useless all the output results, this

is an illusion given to us from the fact that we analyze, for each resident warp in a streaming

multiprocessor, only the 2 moments corresponding to the moments when the warp is going to

enter in and has just left, the for loops, of the B parts, of fatbin �les;

• The reader has to choose whether, at least in the case when the execution of the B part of a

fatbin �le is not slowed down by the bandwidths and the latencies of the GPU memories, to

believe that the warp schedulers are executing the warp scheduling cycling policy - 9.4 - or

not. The reader's choice has di�erent consequences about the possibility or not to generalize

the results we got about the warp scheduling in 7.6.2 and so it is one of the �ve factors that

determines whether the fatbin �le Ffo is in the subset SSA1 and therefore partially determine

- partially because it is only one of the �ve factors - whether the fatbin �les in S2
Ff

are eligible

for the execution of the analysis A1 - this is due to the way we generate the fatbin �les in the

set S2
Ff
;

• The warp scheduling cycling policy is, in our opinion, the warp scheduling policy executed

by the warp schedulers in the streaming multiprocessors, this considering a) all the types of

advantages and b) the only potential disadvantage that the execution of the warp schedul-

ing cycling policy gives compared to the numerous and heavy disadvantages that instead

any other policy would generate whether executed by the warp schedulers in the streaming

multiprocessors of an architecture like the GF100 architecture;

The reader's choice determines that type of warp scheduling policy, whether cycling or not, we

need to consider as one of the �ve factors necessary to determine whether the fatbin �le Ffo is in the

subset SSA1
and therefore partially determine - partially because it is only one of the �ve factors -

whether the fatbin �les in the set S2
Ff

are eligible for the execution of the analysis A1 - this is due

to the way we generate the fatbin �les in the set S2
Ff
. The other three factors that is necessary

to consider to determine whether the fatbin �le Ffo is in the subset SSA1
are 1) the presence of

branches in the B part of the fatbin �le Ffo , 2) which, the read believes, are the eviction policies for

the l2 cache and the l1 caches, 3) the possibility to know a priori, before the execution of the fatbin

�le Ffo , which are the positions, in the arrays, the vectors and the structures, in the GPU global

memory, of the data/results that will be read/written, by each GPU thread used for the execution

of the B part of the fatbin �le Ffo , during the execution of the B part of the fatbin �le Ffo and 4)

the presence of ELF instructions of synchronization in the B part of the fatbin �le Ffo . In the next

chapter we talk of these four factors.

Chapter 10

Taxonomy for Fatbin Files

10.1 Introduction

In the previous chapter we have described the warp scheduling policy - the cycling policy - that is

probably executed by the warp schedulers in the streaming multiprocessors of the GF100 architec-

ture. Also whether we give many supporting reasons on why the warp scheduling cycling policy

is, in our opinion, the warp scheduling policy executed by the warp schedulers in the streaming

multiprocessors of the GF100 architecture, there is no way we can be 100% sure of this, because

it is impossible to get the implementations details of the warp scheduling policy. Because we can

not be 100% sure that the warp scheduling cycling policy is the warp scheduling policy executed

by the warps in the streaming multiprocessors then we need to give to the reader the choice to

believe whether, at least when the execution of the B part of a fatbin �le is not slowed down by

the bandwidths and the latencies of the GPU memories, the warp scheduling cycling policy is the

warp scheduling policy executed or not by the warp schedulers in the streaming multiprocessors of

the GF100 architecture.

The reader's choice about the warp scheduling policy is one of the four factors that determines

the place of a fatbin �le in the taxonomy that we introduce in this chapter. The taxonomy is simple.

In the taxonomy a fatbin �le can only be in the subset SSA1 or in its complement. The fact that

a fatbin �le is or not in the subset SSA1
depends on 1) which warp scheduling policy the reader

believes is executed by the warp schedulers in the streaming multiprocessors when the execution

of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies of the GPU

memories, 2) the presence of branches in the B part of the fatbin �le, 3) which, the read believes,

are the eviction policies used for the l2 cache and the l1 caches, 4) the possibility to know a priori,

before the execution of the fatbin �le, which are the positions, in the arrays, the vectors and the

structures, in the GPU global memory, of the data/results that will be read/written by each GPU

thread used to execute the B part of the fatbin �le, during the execution of the B part of the fatbin

�le and 5) the presence of ELF instructions of synchronization in the B part of the fatbin �le.

The reader's choices about what to believe a) it is the warp scheduling policy executed by the

warp schedulers in the streaming multiprocessors when the execution of the B part of a fatbin �le

is not slowed down by the bandwidths and the latencies of the GPU memories and b) which are

the eviction policies used for the l2 cache and l1 caches, determines whether the fatbin �le Ffo and

so the fatbin �les in the set S2
Ff

are in the complement of the subset SSA1 or whether instead they

could be in the subset SSA1 - to be sure the fatbin �le Ffo and the fatbin �les in the set S2
Ff

are

129

130 Chapter 10. Taxonomy for Fatbin Files

in the subset SSA1
it is necessary to check also the others three factors - factor 2), factor 4) and

factor 5) - that do not depend on the reader's choices but instead depend on the B parts of the

fatbin �les and could depend on the values of the input data read by the GPU threads used for the

executions of the B parts of the fatbin �les.

10.2 Warp Scheduling Policy

In the previous chapter we subdivided all the possible warp scheduling policies that could be

executed by the warp schedulers in the streaming multiprocessors in two set: the set composed

by only the warp scheduling cycling policy and the set composed by all the other possible warp

scheduling policies. The fact that a fatbin �le is or not in the subset SSA1 partially depends

on which warp scheduling policy the reader believes is executed by the warp schedulers in the

streaming multiprocessors when the execution of the B part of a fatbin �le is not slowed down by

the bandwidths and the latencies of the GPU memories:

• If the reader believes that the warp scheduling policy executed by the warp schedulers in the

streaming multiprocessors, when the execution of the B part of a fatbin �le is not slowed

down by the bandwidths and the latencies of the GPU memories, is not the warp scheduling

cycling policy, then the fatbin �le is not in the subset SSA1 and therefore the fatbin �les in

the set S2
Ff

are not eligible for the execution of the analysis A! but only for the analysis A2

described in 11;

• If the reader believes that the warp scheduling policy executed by the warp schedulers in the

streaming multiprocessor, when the execution of the B part of a fatbin �le is not slowed down

by the bandwidths and the latencies of the GPU memories, is the warp scheduling cycling

policy, then the fatbin �le could be in the subset SSA1
, this depends on the other four factors,

that we describe in the next the four sections.

10.3 Branches

Let us suppose that a fatbin �le has some branches in its B part. If a fatbin �le has some branches

then, usually, during the execution of the fatbin �le, which subparts, of the B part of the fatbin

�le, each GPU thread of a warp is going to execute, depend on the values of the input data that

the GPU thread is going to read during the execution of the B part of the fatbin �le.

Because a) the subparts, of the B part of the fatbin �le, that each GPU thread of a warp is

going to execute, are determined by the values of the input data that the GPU thread is going to

read during the execution of the B part of the fatbin �le and b) it is usually impossible to know,

a priori, which will be the values of the input data, that at the next execution of the B part of

the fatbin �le, a GPU thread is going to read, it follows that it is usually impossible to know a

priori which subparts, of the B part of the fatbin �le, a GPU thread will execute during the next

execution of the fatbin �le and it could be impossible too to know a priori the order of execution

of such subparts.

When the GPU threads of a warp execute di�erent subparts of the B part of a fatbin �le we are

in presence of a phenomenon known as divergence. Let us suppose the 32 GPU threads of a warp

require the execution of 4 di�erent ELF instructions - this means that they are executing 4 di�erent

subparts of the B part of a fatbin �le. Because the GPU threads of the warp require the execution

10.3. Branches 131

of 4 di�erent ELF instructions, the 32 GPU threads of the warp can be subdivided in 4 subsets, one

subset for each one of the 4 di�erent ELF instructions that is necessary to execute for the warp.

During the next 4 times the warp will be scheduled, the �rst time only 1, of the remaining 4 of

the 4 di�erent ELF instructions, that is necessary to execute for the warp, is executed, the second

time only 1, of the remaining 3 of the 4 di�erent ELF instructions, that is necessary to execute for

the warp, is executed, the third time only 1, of the remaining 2 of the 4 di�erent ELF instructions,

that is necessary to execute for the warp, is executed and the fourth time the last, of the 4 di�erent

ELF instructions, that is necessary to execute for the warp, is executed. At this point the 32 GPU

threads of the warp could or not to point the same ELF instruction in the B part of the fatbin �le:

• If the 32 GPU threads of the warp point di�erent ELF instructions, in the B part of the

fatbin �le, then the number of di�erent ELF instructions could be smaller than 4, equal to 4

or greater than 4, but in any case, also if the degree of divergence could be diminished - smaller

than 4 - equal - equal to 4 - or increased - greater than 4 - compared to the previous case, the

previous procedure will be repeated when a) the warp will be available to be scheduled again

- all the data necessary for the execution of the next di�erent ELF instructions pointed by

the 32 GPU threads of the warp are available and can be read - and b) one of the two warp

schedulers in the streaming multiprocessor will decide to schedule the warp.

• If the 32 GPU threads of the warp point the same ELF instruction, in the B part of the fatbin

�le, then all the 32 GPU threads of the warp require now the execution of the same ELF

instruction and so the previous divergence phenomenon, as the slow down to it associated,

will be both absent the next time the warp will be scheduled

Because it is usually impossible to know a priori which subparts, of the B part of a fatbin �le,

the GPU threads are going to execute, during the next execution of the B part of the fabin �le, it is

usually impossible to determine, to which ELF instructions in the B part of a fatbin �le, the GPU

threads of a warp, and more in general the GPU threads of all the warps, will point at di�erent

moments during the execution of the B part of the fatbin �le and so a) to force load balancing

among the streaming multiprocessors, b) to determine the slow downs generated by the divergence

phenomenons, c) to determine the quantities of bytes that could be necessary to read/write from/to

the GPU global memory and to transfer among di�erent GPU memory levels. For these reasons:

• If a) a fatbin �le has some branches in its B part and b) it is possible that the GPU threads

of a warp can follow a di�erent path during the execution of the B part of the fatbin �le -

di�erent from the path that could be followed by the other GPU threads of the warp and

di�erent from the path that could be followed by the GPU threads of other warps - then the

fatbin �le is not in the subset SSA1
;

• If a) a fatbin �le has some branches in its B part and b) it is impossible that the GPU threads

of a warp can follow a di�erent path during the execution of the B part of the fatbin �le -

di�erent from the path that could be followed by the other GPU threads of the warp and

di�erent from the path that could be followed by the GPU threads of other warps - then the

fatbin �le could be in the subset SSA1
;

• If a fatbin �le has not branches in its B part then the fatbin �le could be in the subset SSA1 .

There could be however some cases where, a fatbin �le, with some branches in its B part, is

not in the subset SSA1 , only because for some combinations (input , launch con�guration), that

132 Chapter 10. Taxonomy for Fatbin Files

could be used to execute the B part of the fatbin �le, some of the GPU threads, used to execute

the B part of the fatbin �le, follow di�erent paths - this also whether maybe there could be instead

other combinations (input , launch con�guration), that could be used to execute the B part of

the fatbin �le, for which all the GPU threads, used to execute the B part of the fatbin �le, follow

the same path.

In these cases, before to start to analyze the couples (fatbin �le in S2
Ff

, launch con�guration

in the Slc of the fatbin �le in S2
Ff

), to get more couples eligible for the execution of the analysis

A1, we can substitute each couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin

�le in S2
Ff

) considered not eligible for the execution of the analysis A1 because for some inputs,

some of the GPU threads, used to execute the B part of the fatbin �le, follow di�erent paths, with

the triplets (subset of inputs of the set of inputs used for the original fatbin �le Ffi , fatbin �le in

S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) forcing all the GPU threads, used

to execute the B part of the fatbin �le, to follow the same path - each one of the sets of possible

inputs of interest forces all the GPU threads, used to execute the B part of the fatbin �le, to follow

the same path but this path is di�erent from all the other paths that all the other sets of possible

inputs of interest force all the GPU threads, used to execute the B part of the fatbin �le, to follow;

That a) the reader believes that the warp scheduling policy executed by the warp schedulers

in the streaming multiprocessors, when the execution of the B part of a fatbin �le is not slowed

down by the bandwidths and the latencies of the GPU memories, is the warp scheduling cycling

policy and b) the B part of a fatbin �le is without branches or c) the B part of a fatbin �le has

some branches but all the GPU threads of all the warps used to execute the B part of the fatbin

�le follow the same path during the execution of the B part of the fatbin �le, it is however not

enough to guarantee that the fatbin �le is in the subset SSA1 . Three other factors, together a), b)

and c), e�ectively determine whether a fatbin �le is or not in the subset SSA1 . The �rst of these

three other factors, the eviction policies used for the l2 cache and the l1 caches, is discussed in the

next section.

10.4 Eviction Policies Used for the L2 Cache and the L1

Caches

The eviction policies used for the l2 cache and the l1 caches of the GF100 architecture are not dis-

closed. We believe that, knowing what we now know about the GF100 architecture, it is reasonable

to assume that the eviction policies, when one of the caches is full and it is necessary to substitute

some cache lines, will substitute the cache lines last recently used (LRU).

In our time frame we had no time to plan some experiments to validate whether the eviction

policies used for the l2 cache and the l1 caches of the GF100 architecture are LRU policies but in

any case we think that is probably impossible to build some experiments able to validate or discover

the eviction policies used for the l2 cache and the l1 caches of the GF100 architecture - this is due

to the impossibility to choose/force the warp scheduling and understand before of the execution of

the B part of a fatbin �le which it will be or after the execution of the B part of the fatbin �le

which it has been.

Because it was not possible to build some experiments to validate or discover the eviction policies

used for the l2 cache and the l1 caches of the GF100 architecture, then, also in this case, like in

the case for the warp scheduling policy, the reader has to choose whether to believe or not that the

10.5. Reading and Writing - Which and Where 133

eviction policies used for the l2 cache and the l1 caches of the GF100 architecture are LRU policies:

• If the reader believes that the eviction policies used for the l2 cache and the l1 caches of the

GF100 architecture are not LRU policies then the fatbin �le is not in the subset SSA1 ;

• If the reader believes that the eviction policies used for the l2 cache and the l1 caches of the

GF100 architecture are LRU policies then if the reader also believes that the warp scheduling

policy executed by the warp schedulers in the streaming multiprocessors is the warp scheduling

cycling policy, if the fatbin �le has no branches in its B part or if the fatbin �le has some

branches in its B part but that all the GPU threads of all the warps used to execute the B

part of the fatbin �le follow the same path during the execution of the B part of the fatbin

�le, then the fatbin �le could instead be in the subset SSA1
- this depends on the last the

two factors, a) the possibility to know a priori, before the execution of the fatbin �le, which

are the positions, in the arrays, the vectors and the structures, in the GPU global memory,

of the data/results that will be read/written by each GPU thread used to execute the B part

of the fatbin �le, during the execution of the B part of the fatbin �le and b) the presence of

ELF instructions of synchronization in the B part of the fatbin �le.

10.5 Reading and Writing - Which and Where

The possibility to know a priori, before the execution of the fatbin �le, which are the positions,

in the arrays, the vectors and the structures, in the GPU global memory, of the data/results that

will be read/written by each GPU thread used to execute the B part of the fatbin �le, during the

execution of the B part of the fatbin �le, is fundamental - together a) at the fact that the reader

believes that the warp scheduling policy executed by the warps in the streaming multiprocessors,

when the execution of the B part of a fatbin �le is not slowed down by the bandwidths and the

latencies of the GPU memories, is the warp scheduling cycling policy, b) at the fact that the fatbin

�le has no branches in its B part or at the fact that the fatbin �le has some branches in its B part

but that all the GPU threads of all the warps used to execute the B part of the fatbin �le follow the

same path during the execution of the B part of the fatbin �le and c) at the fact that the reader

believes that the eviction policies used for the l2 cache and the l1 caches of the GF100 architecture

are LRU policies - to determine, the quantities of bytes that it is necessary to transfer, from/to

o�-chip to/from on-chip, during the execution of the B part of a fatbin �le - we will explain why in

12.2 - and therefore:

• If it is not possible to know a priori, before the execution of the fatbin �le, which are the

positions, in the arrays, the vectors and the structures, in the GPU global memory, of the

data/results that will be read/written by each GPU thread used to execute the B part of the

fatbin �le, during the execution of the B part of the fatbin �le, then the fatbin �le is not in

the subset SSA1 ;

• If it is possible to know a priori, before the execution of the fatbin �le, which are the positions,

in the arrays, the vectors and the structures, in the GPU global memory, of the data/results

that will be read/written by each GPU thread used to execute the B part of the fatbin

�le, during the execution of the B part of the fatbin �le, if the reader believes that the warp

scheduling policy executed by the warps in the streaming multiprocessors, when the execution

of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies of the

134 Chapter 10. Taxonomy for Fatbin Files

GPU memories, is the warp scheduling cycling policy, if the fatbin �le has no branches in

its B part or if the fatbin �le has some branches in its B part but that all the GPU threads

of all the warps used to execute the B part of the fatbin �le follow the same path during

the execution of the B part of the fatbin �le, if the reader believes that the eviction policies

used for the l2 cache and the l1 caches of the GF100 architecture are LRU policies, then the

fatbin �le could be in the subset SSA1
- this depends on the last factor, the presence of ELF

instructions of synchronization in the B part of the fatbin �le.

10.6 ELF Instructions of Synchronization

In 9.4.5 we explain why, also if the warp schedulers in the streaming multiprocessors are executing

the warp scheduling cycling policy when the execution of the B part of a fatbin �le is not slowed

down by the bandwidths and the latencies of the GPU memories, it is possible to get some maximum

starting time di�erences, for some of the couples (dependence distance , number of warps resident in

a streaming multiprocessor) of the set Gs - 9.2.2 - that would seem impossible to get supposing the

warp scheduling policy executed by the warps in the streaming multiprocessors, when the execution

of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies of the GPU

memories, is the warp scheduling cycling policy.

One of the possibilities that explains why this is however possible it is described in the case C3

- 9.4.5. After an ELF instruction of synchronization, the warps, that become synchronized, could

be released at di�erent moments, forcing, in this way, for a period of time, the pointer in each

streaming multiprocessor, and so the 2 warp schedulers in each streaming multiprocessor, to cycle

only on a limited also whether increasing number of warps. Because there is no way to verify if this

is true or not then we can not exclude this is the case and therefore:

• If the fatbin �le has some ELF instructions of synchronization in its B part then the fatbin

�le is not in the subset SSA1
. If a fatbin �le has some ELF instructions of synchronization

in its B part and it is possible that all the warps resident in a streaming multiprocessor are

not made available again at the same moment to the pointer that assigns them to the 2 warp

schedulers in the streaming multiprocessor then for the fact that the pointer, and so the 2

warp schedulers in the streaming multiprocessor, are cycling on a reduced number of warps

compared to all those resident in the streaming multiprocessor, some slowdowns, due to the

scheduling waiting times, the dependence waiting times and the overhead for the management

of the warp, could be generated, and each one of these slowdowns could generate some other

slowdowns a) of di�erent nature - and so due to the warp scheduling and/or to the bandwidths

and the latencies of the GPU memories - b) of the same nature - and so due to the scheduling

waiting times and/or to the dependence waiting times and/or to the overhead time for the

management of the warps - or c) due to a mix of the previous ones in a) and b). Because

we can not exclude this avalanche e�ect and it is impossible 1) to quantify the number and

type of slowdowns that the avalanche e�ect would generate, 2) the moment when each one of

the slowdowns would be generated and c) to quantify the slowdown times of the slowdowns,

then we need to take care that the analysis A1 is executed only on fatbin �les without ELF

instructions of synchronization in their B parts.

• If the fatbin �le instead has not ELF instructions of synchronization in its B part then, if the

reader also believes that the warp scheduling policy executed by the warp schedulers in the

10.7. Fatbin Files Generated for the Optimizations 135

streaming multiprocessors, when the execution of the B part of a fatbin �le is not slowed down

by the bandwidths and the latencies of the GPU memories, is the warp scheduling cycling

policy, if the fatbin �le has no branches in its B part or if the fatbin �le has some branches

in its B part but that all the GPU threads of all the warps used to execute the B part of the

fatbin �le follow the same path during the execution of the B part of the fatbin �le, if the

reader believes that the eviction policies used for the l2 cache and the l1 caches of the GF100

architecture are LRU policies and if it is possible to know a priori, before the execution of

the fatbin �le, which are the positions, in the arrays, the vectors and the structures, in the

GPU global memory, of the data/results that will be read/written by each GPU thread used

to execute the B part of the fatbin �le, during the execution of the B part of the fatbin �le,

then the fatbin �le is in the subset SSA1
.

10.7 Fatbin Files Generated for the Optimizations

If a fatbin �le is in the subset SSA1 then the fatbin �le is eligible for the execution of the analysis

A1. Given the procedure used to generate the fatbin �les in the set S2
Ff

from the fatbin �les in the

set S1
Ff

and the procedure to generate the fatbin �les in the set S1
Ff

from the fatbin �le Ffo , if the

fatbin �le Ffo is in the subset SSA1 then automatically the fatbin �les in the set S2
Ff

are in the

subset SSA1 . For the fatbin �le Ffo we need instead to distinguish the two following cases:

• If the fatbin �le Ffo a) is equal to the original fatbin �le Ffi or b) is generated from the

original fatbin �le Ffi using the procedure P1 or c) is generated from the original fatbin �le

Ffi using the procedure P2 and the set of transformations and changes TAC1 - 8.2.3 - then,

if the original fatbin �le Ffi is in the subset SSA1 then the fatbin �le Ffo is in the subset

SSA1 , while if the original fatbin �le Ffi is not in the subset SSA1 then the fatbin �le Ffo is

not in the subset SSA1 ;

• If the fatbin �le Ffo is instead generated from the original fatbin �le Ffi using the procedure

P2 and the set of transformations and changes TAC2 - 8.2.3 - then it does not matter whether

the fatbin �le Ffi is or not in the subset SSA1
, the fatbin �le Ffo could be or not in the subset

SSA1
independently of the fact that the original fatbin �le Ffi is or not in the subset SSA1

.

10.8 Summary

In this chapter we have introduced a taxonomy for fatbin �les. The taxonomy is very simple, every

fatbin �le can only be in the subset SSA1
or in its complement. If a fatbin �le is in the subset

SSA1
then it is eligible for the execution of the analysis A1 described in 12. The main points to

remember from this chapter are the following:

• The fact that a fatbin �le is or not in the subset SSA1
depends on 1) which warp scheduling

policy the reader believes is executed by the warps in the streaming multiprocessor when the

execution of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies

of the GPU memories, 2) the presence of branches in the B part of the fatbin �le, 3) which,

the read believes, are the eviction policies used for the l2 cache and the l1 caches, 4) the

possibility to know a priori, before the execution of the fatbin �le, which are the positions,

in the arrays, the vectors and the structures, in the GPU global memory, of the data/results

136 Chapter 10. Taxonomy for Fatbin Files

that will be read/written by each GPU thread used to execute the B part of the fatbin �le,

during the execution of the B part of the fatbin �le and 5) the presence of ELF instructions

of synchronization in the B part of the fatbin �le;

• A fatbin �le is in the subset SSA1 , and so eligible for the execution of the analysis A1,

described in 12, if all the following conditions are true: a) the reader believes that the warp

scheduling policy executed by the warps in the streaming multiprocessors, when the execution

of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies of the

GPU memories, is the warp scheduling cycling policy, b) the fatbin �le has no branches in its

B part or the fatbin �le has some branches in its B part but that all the GPU threads of all the

warps used to execute the B part of the fatbin �le follow the same path during the execution

of the B part of the fatbin �le, c) the reader believes that the eviction policies used for the

l2 cache and the l1 caches of the GF100 architecture are last recently used policies, d) it is

possible to know a priori, before the execution of the fatbin �le, which are the positions, in

the arrays, the vectors and the structures, in the GPU global memory, of the data/results that

will be read/written by each GPU thread used to execute the B part of the fatbin �le, during

the execution of the B part of the fatbin �le and e) the fatbin �le has no ELF instructions of

synchronization in its B part;

• There could be some cases where, a fatbin �le, with some branches in its B part, is not in the

subset SSA1 , only because for some combinations (input , launch con�guration), that could

be used to execute the B part of the fatbin �le, some of the GPU threads, used to execute

the B part of the fatbin �le, follow di�erent paths - this also whether maybe there could be

instead other combinations (input , launch con�guration), that could be used to execute the

B part of the fatbin �le, for which all the GPU threads, used to execute the B part of the

fatbin �le, follow the same path.

In these cases, before to start to analyze the couples (fatbin �le in S2
Ff

, launch con�guration

in the Slc of the fatbin �le in S2
Ff

), to get more couples eligible for the execution of the

analysis A1, we can substitute each couple (fatbin �le in S2
Ff

, launch con�guration in the Slc

of the fatbin �le in S2
Ff

) considered not eligible for the execution of the analysis A1 because

for some inputs, some of the GPU threads, used to execute the B part of the fatbin �le, follow

di�erent paths, with the triplets (set of possible inputs of interest , fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

) forcing all the GPU threads, used to execute

the B part of the fatbin �le, to follow the same path - each one of the sets of possible inputs

of interest forces all the GPU threads, used to execute the B part of the fatbin �le, to follow

the same path but this path is di�erent from all the other paths that all the other sets of

possible inputs of interest force all the GPU threads, used to execute the B part of the fatbin

�le, to follow;

• If the fatbin �le Ffo a) is equal to the original fatbin �le Ffi or b) is generated from the

original fatbin �le Ffi using the procedure P1 or c) is generated from the original fatbin �le

Ffi using the procedure P2 and the set of transformations and changes TAC1 - 8.2.3 - then,

if the original fatbin �le Ffi is in the subset SSA1 then the fatbin �le Ffo is in the subset

SSA1 , while if the original fatbin �le Ffi is not in the subset SSA1 then the fatbin �le Ffo is

not in the subset SSA1 .

If the fatbin �le Ffo is instead generated from the original fatbin �le Ffi using the procedure

10.8. Summary 137

P2 and the set of transformations and changes TAC2 - 8.2.3 - then it does not matter whether

the fatbin �le Ffi is or not in the subset SSA1
, the fatbin �le Ffo could be or not in the subset

SSA1
independently of the fact that the original fatbin �le Ffi is or not in the subset SSA1

.

• Given the procedure used to generate the fatbin �les in the set S2
Ff

from the fatbin �les in

the set S1
Ff

and the procedure to generate the fatbin �les in the set S1
Ff

from the fatbin �le

Ffo , if the fatbin �le Ffo is in the subset SSA1
then automatically the fatbin �les in the set

S2
Ff

are in the subset SSA1
.

The analysis or the analyses that are executed on a fatbin �le depend on a) the fact that the

fatbin �le is or not in the subset SSA1 and b) the reader's goals. In the next chapter, considering

a) whether the fatbin �les in the set S2
Ff

are or not in the subset SSA1 and b) the reader's goals,

we describe the analysis or the analyses that are executed on each fatbin �le in the set S2
Ff
.

138 Chapter 10. Taxonomy for Fatbin Files

Chapter 11

Analysis/Analyses Selection

11.1 Introduction

In the previous chapter we have explained how to determine whether the fatbin �le Ffo is in the

subset SSA1 or not and so whether the fatbin �les in the set S2
Ff

are in the subset SSA1 or not and

therefore whether the fatbin �les in the set S2
Ff

are eligible for the execution of the analysis A1 or

not.

The analysis/analyses that can be executed on the fatbin �les in the set S2
Ff

is/are determined

by a) the fact that the the fatbin �le Ffo is in the subset SSA1 or not and b) the reader's goals.

In this chapter we therefore distinguish the possible di�erent cases given by the combinations of a)

and b) and describe the analysis A2 - the analysis A1 will be instead described in 12.

11.2 Analysis/Analyses Selection

The selection of the analysis/analyses to execute on the fatbin �les in the set S2
Ff

depends on two

factors: a) whether the fatbin �le Ffo is in the subset SSA1 or not and b) by the reader's goals.

We can distinguish the following cases:

• If the fatbin �le Ffo is in the subset SSA1 then we can execute the analysis A1, described in

12, on each one of the fatbin �les in the set S2
Ff
. At the end of this phase only one of the two

following mutually exclusive subcases is possible:

� At least one couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le

in S2
Ff

) satis�es all the requirements of the analysis A1. In this case we give a priori

ELF code shortest execution time guarantees for the execution, of the ELF codes, of the

B parts, of the fatbin �les, of the couples, satisfying all the requirements of the analysis

A1.

Thanks to the a priori ELF code shortest execution time guarantees, we have the guar-

antee that the executions of the ELF codes, of the B parts, of the fatbin �les, of the

couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), satisfying all the requirements of the analysis A1, will be never slowed down by 1)

the bandwidths of the GPU memories, 2) the latencies of the GPU memories, 3) the

scheduling waiting times, 4) the dependence waiting times and 5) the overhead time for

the management of the warps.

139

140 Chapter 11. Analysis/Analyses Selection

Furthermore, for the couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of the

fatbin �le in S2
Ff

), satisfying all the requirements of the analysis A1, we also get the

a priori guarantees that a) the only thing that can slow down the executions of the

ELF codes, of the B parts, of the fatbin �les, of the couples, is the warp scheduling -

and so sometimes it could be possible that less than 2 warps are scheduled at a warp

scheduler clock cycle, but this not for causes due to 1), 2), 3), 4) and 5), but for the warp

scheduling, that we can not choose/force or know, before and after too, the execution

of the B part of a fatbin �le - and b) that independently of the warp scheduling, the

slowdowns, that the warp scheduling can generate, are not going to create some local

streaming multiprocessor states or global GPU states such that slowdowns due to 1), 2),

3), 4) and 5) become possible.

Also if we get an a priori ELF code shortest execution time guarantee for some couples

(fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), some of the

couples could have an average execution time, for the B part, of their fatbin �le, that

is smaller than the average execution time, for the B part, of the fatbin �le, of others,

because a) we can not choose/force the warp scheduling, b) the GPU allows to the warp

schedulers to choose the warp schedulings to use for the executions of the B part of a

fatbin �le in S2
Ff
, of a couple (fatbin �le in S2

Ff
, launch con�guration in the Slc of the

fatbin �le in S2
Ff

), from a subset of all the possible warp schedulings that could be used,

c) the subset of warp schedulings from where the GPU allows to the warp schedulers to

choose the warp schedulings for the executions of the B part of the fatbin �le in S2
Ff
, of a

couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), could

be determined not only on the type of fatbin �le but also on the launch con�guration, the

dimensions of the variables, the arrays, the vectors and the structures, in the GPU global

memory, necessary to execute the couple (fatbin �le in S2
Ff

, launch con�guration in the

Slc of the fatbin �le in S2
Ff

) - variables, arrays, vectors and structures that contain the

input data and that will contain the output results - and the location of the data/results

in the GPU global memory - location that we can not know or force, see 9.5.5 - and d)

we have no way to determine the subset of warp schedulings from where the GPU allows

to the warp schedulers to choose the warp scheduling for the executions of the B part,

of the fatbin �le in S2
Ff
, of a couple (fatbin �le in S2

Ff
, launch con�guration in the Slc

of the fatbin �le in S2
Ff

) - note that this is the simplest possible case because the fatbin

�le is �xed, the launch con�guration is �xed and that the dimensions of the variables,

the arrays, the vectors and structures could be �xed because the launch con�guration

determines the number of GPU threads used to execute the B part of the fatbin �le and

this number will be always the same from execution to execution.

Because also if we get an a priori ELF code shortest execution time guarantee for some

couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

),

some of the couples could have an average execution time, for the B part, of their fatbin

�le, smaller than the average execution time, for the B part, of the fatbin �le, of others,

considering the reader's goals and so the quantity of time that the reader is willing to

dedicate to the analysis and the optimization of the original fatbin �le Ffi , the reader

has two mutually exclusive choices:

∗ For the reader is enough to get the a priori ELF code shortest execution time

guarantee for at least one couple (fatbin �le in S2
Ff

, launch con�guration in the Slc

11.2. Analysis/Analyses Selection 141

of the fatbin �le in S2
Ff

).

In this case, during the analysis A1, the �rst couple (fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

), that satis�es all the requirements

of the analysis A1, is the couple that the reader can choose to use to solve the same

problem that the reader would solve using the original fatbin �le Ffi . However,

whether the reader would use the original fabin �le Ffi , the reader would probably

get an average execution time, for the B part, of the original fatbin �le Ffi , greater

than the average execution time, of the B part, of the fatbin �le, of the �rst couple

(fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) found

to satisfy all the requirements of the analysis A1.

If the reader would be willing to spend more time for the analysis, supposing there

are more couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le

in S2
Ff

) satisfying all the requirements of the analysis A1, then more couples (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), satisfying all

the requirements of the analysis A1, will be found, but because there is no way to

calculate a priori the execution times of the B part of the fatbin �les of each one of

these couples - this because a) there is no way to know a priori the warp scheduling

that will be used by the warp schedulers in the streaming multiprocessors from

execution to execution of each single couple, b) there is now way to choose/force

the warp scheduling and c) usually the warp scheduling, also for the same couple,

changes from execution to execution - then there is no way, a priori, to di�erentiate

for execution time, of the B part, of the fatbin �les, the couples (fatbin �le in

S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), satisfying all the

requirements of the analysis A1, and so the reader can simply choose, during the

analysis A1, the �rst couple satisfying all the requirements and terminate the analysis

A1;

∗ For the reader is not enough to get the a priori ELF code shortest execution time

guarantee for at least a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc

of the fatbin �le in S2
Ff

). In this case a second analysis, the analysis A2 - that we

explain in the following paragraphs below - is executed on all the couples (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), satisfying all

the requirements of the analysis A1, and the best couple - best could mean di�erent

things considering the possibly di�erent reader's goals - is the couple that is used by

the reader to solve the same problem that the reader could solve using the couple

(original fatbin �le Ffi , a possible launch con�guration for the original fatbin �le

Ffi that is not necessarily in the set Slc of the original fatbin �le Ffi).

� No couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

)

satis�es all the requirements of the analysis A1. In this case we can not give an a priori

ELF code shortest execution time guarantee for the execution of the ELF code, of the B

part, of any of the fatbin �les in the set S2
Ff
. If there is not any couple (fatbin �le in S2

Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) satisfying all the requirements

of the analysis A1 then we execute the analysis A2 on each one of the fatbin �les in the

set S2
Ff
.

When the analysis A2 is executed on a couple (fatbin �le in S2
Ff

, launch con�guration in

the Slc of the fatbin �le in S2
Ff

), the fatbin �le in S2
Ff

of the couple has to be executed a

142 Chapter 11. Analysis/Analyses Selection

given minimum number of times T using the speci�c launch con�guration of the couple.

T could be di�erent for di�erent couples (fatbin �le in S2
Ff

, launch con�guration in

the Slc of the fatbin �le in S2
Ff

) and depends on how much fast we can get an accurate

distribution of the execution times, of the B part, of the fatbin �le, of the couple, this,

of course, when the fatbin �le of the couple is executed using the launch con�guration

of the couple - we will not repeat this anymore in this chapter, but when we talk of

execution time, of the B part, of the fatbin �le, of a couple, we always imply that the

execution time, of the B part, of the fatbin �le, of the couple, is obtained executing the

fatbin �le of the couple using the launch con�guration of the couple - but because a) we

can not a priori know the distribution, b) the distribution depends on factors that we

can not control - for example the warp scheduling - and c) the behaviors of the factors

can change, also for the same couple (fatbin �le in S2
Ff

, launch con�guration in the Slc

of the fatbin �le in S2
Ff

), from execution to execution, then T can be determined only

at run time. The analysis A2 allows us 1) to study and determine the minimum and

maximum execution times, of the B part, of the fatbin �le, of each couple, 2) to study

and determine the distribution of the execution times, of the B part, of the fatbin �le,

of each couple, between the minimum and the maximum execution times, of the B part,

of the fatbin �le, of each couple, 3) to calculate the average execution time, the median

execution time, the variance of the execution time and other statistical parameters on

the execution times, of the B part, of the fatbin �le, of each couple and 4) to determine,

among all the couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin

�le in S2
Ff

), the best couple - for example the couple Couple1 with an average execution

time, of the B part, of its fatbin �le, that is the minimum among all the average execution

times, of the B parts, of the fatbin �les, of all the couples or, if we instead want something

in high probability, for example the couple Couple2 that, among all the couples, is the

couple having the higher probability P , greater than a threshold probability Pt, that

the B part, of its fatbin �le, will be executed in a time smaller than that average time

necessary to execute the B part, of the fatbin �le, of the couple Couple1.

• The fatbin �le Ffo is not in the subset SSA1
. If this is true then all the fatbin �les in the set

S2
Ff

are not in the subset SSA1
. If this is the case then the fatbin �les in the set S2

Ff
are not

eligible for the execution of the analysis A1 but we always can, in any case, to execute the

analysis A2 on the fatbin �les in the set S2
Ff

and this is, in fact, the only thing that we can

do, supposing a) we do not want to modify the B part of the original fatbin �le Ffi , to move

it, if possible, in the subset SSA1
and therefore generate from the original fatbin �le Ffi so

modi�ed a new fatbin �le Ffo - fatbin �le Ffo that this time will be in the subset SSA1
thanks

to the modi�cations in the B part of the original fatbin �le Ffi , but this could be impossible

sometimes, it depends whether some modi�cations exist able to transform the original fatbin

�le Ffi in a fatbin �le that is in the subset SSA1
and which procedure, whether C1 or C2,

and/or which set of transformations and changes, whether TAC1 or TAC2, is/are used to

generate the new fatbin �le Ffo from the original fatbin �le Ffi so modi�ed - or b) we do not

want to modify the B part of the fatbin �le Ffo to move - if possible - the fatbin �le Ffo in

the subset SSA1 .

If however a) or b) is/are possible and applied, then we can generate another time the set of

fatbin �les S1
Ff

and from the set of fatbin �les S1
Ff

the set of fatbin �les S2
Ff
, fatbin �les in

11.3. Summary 143

the set S2
Ff

that this time will be in the subset SSA1
and on which therefore we can apply

the analysis A1.

Independently of the analysis/analyses executed on the couples (fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

), at the end of the analysis/analyses, the analysis

A2 is executed on the couples (original fatbin �le Ffi , a possible launch con�guration for the

original fatbin �le Ffi that is not necessarily in the set Slc of the original fatbin �le Ffi) - the

launch con�gurations are the launch con�gurations that the reader would use without knowing the

procedure used to generate the sets of launch con�gurations Slcs of the fatbin �les in the set S2
Ff
,

procedure therefore that could be used also to generate the set of launch con�gurations Slc for the

original fatbin �le Ffi .

The execution times, of the B part, of the fatbin �le, of the best couple (original fatbin �le Ffi

, a possible launch con�guration for the original fatbin �le Ffi that is not necessarily in the set Slc

of the original fatbin �le Ffi), got using the analysis A2, are compared to the execution times, of

the B part, of the fatbin �le, of the best couple (fatbin �le in S2
Ff

, launch con�guration in the Slc

of the fatbin �le in S2
Ff

) - in the case only the analysis A1 is used on the fatbin �les in the set S2
Ff

the couple could not be the best but one of the bests - to quantify the improvement obtained, for

the execution time, of the B part, of the original fatbin �le Ffi , by the whole optimization process.

11.3 Summary

In this chapter we have described the di�erent cases we can get about the selection of the analy-

sis/analyses to execute on the fatbin �les in the set S2
Ff
. The di�erent cases depends on a) the fact

that the fatbin �le Ffo is in the subset SSA1 or not and b) the reader's goals. The main points to

remember from this chapter are the following:

• If the fatbin �le Ffo is in the subset SSA1
then we can execute the analysis A1 on all the

couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

):

� If there is at least a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the

fatbin �le in S2
Ff

) satisfying all the requirements of the analysis A1 then we can give

an a priori ELF code shortest execution time for the execution, of the ELF code, of the

B part, of the fatbin �le, of at least a couple. After this, considering the reader's goals,

the analysis A2 could be executed or not, on the couples (fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

), satisfying all the requirements of the

analysis A1;

� If instead there is not couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the

fatbin �le in S2
Ff

) satisfying all the requirements of the analysis A1 then we need to

execute on each couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin

�le in S2
Ff

) the analysis A2.

• If the fatbin �le Ffo is not in the subset SSA1
then a) we can execute on the fatbin �les of the

set S2
Ff

the analysis A2 or b) we can modify, the original fatbin �le Ffi , to move it, if possible,

in the subset SSA1
, generate from the original fatbin �le Ffi the fatbin �le Ffo , taking care, of

what we do, if to do this, we use the procedure C2 with the set of transformations and changes

TAC2 - this to be sure that the fatbin �le Ffo too is in the subset SSA1
- and therefore repeat

144 Chapter 11. Analysis/Analyses Selection

the procedures described in 8 to generate the new set of couples (fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

) on which to execute the analysis/analyses

or c) we can directly modify the fatbin �le Ffo , to move it, if possible, in the subset SSA1
,

and therefore repeat the procedures described in 8 to generate the new set of couples (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) on which to execute the

analysis/analyses;

• When the analysis A2 is executed on a couple (fatbin �le in S2
Ff

, launch con�guration in the

Slc of the fatbin �le in S2
Ff

), the fatbin �le in S2
Ff

of the couple has to be executed a given

minimum number of times T using the speci�c launch con�guration of the couple. T could

be di�erent for di�erent couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of the

fatbin �le in S2
Ff

) and depends on how much fast we can get an accurate distribution of the

execution times, of the B part, of the fatbin �le, of the couple, but because a) we can not a

priori know the distribution, b) the distribution depends on factors that we can not control

- for example the warp scheduling - and c) the behaviors of the factors can change, also for

the same couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), from execution to execution, then T can be determined only at run time.

While in this chapter we have described the analysis A2 we do not have described the analysis

A1. In the next chapter we therefore describe the analysis A1 and we explain why it is possible,

for each couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

),

satisfying all the requirements of the analysis A1, to give an a priori ELF code shortest execution

time guarantee, for the execution, of the ELF code, of the B part, of the fatbin �le, of each one of

such couples.

Chapter 12

Guaranteeing A Priori ELF Code

Shortest Execution Times

12.1 Introduction

In the previous chapter, given the possible combinations generated by a) the fact that the fatbin

�les in the set S2
Ff

are in the subset SSA1
- 10 - or not and b) the reader's goals, we have explained

the procedure to determine the analysis/analyses that can be executed on the fatbin �les in the set

S2
Ff

and we have describe one of the analyses, the analysis A2.

In this chapter we describe the analysis A1. When the analysis A1 is executed on a couple (

fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), if the couple (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) satis�es all the requirements

a) of the subanalysis on the bandwidths and the latencies of the GPU memories and b) of the

subanalysis on the number of resident warps in each streaming multiprocessor, then we get an a

priori ELF code shortest execution time guarantee for the execution of the ELF code, of the B

part, of the fatbin �le, of the couple, when the fatbin �le is executed using the launch con�guration

of the couple, and so the guarantee that the execution of the ELF code, of the B part, of the fatbin

�le, of the couple, when the fatbin �le is executed using the launch con�guration of the couple,

can be slowed down only by the warp scheduling - that we can not choose/force - and not by the

bandwidths and the latencies of the GPU memories, the scheduling waiting times, the dependence

waiting times and the overhead time for the management of the warps.

12.2 Bandwidths and Latencies of the GPU Memories

The subanalysis on the bandwidths and the latencies of the GPU memories is necessary to get

the guarantee that, independently of the warp scheduling, when some data are read from GPU

memories di�erent from the hardware registers present in the streaming multiprocessors, the data

will be in the hardware registers when necessary, therefore giving us the guarantee that it will be

impossible for the warps in a streaming multiprocessor not being available to be scheduled, when

necessary, at cause of the fact that some data, that the warps need for the execution of their next

warp ELF instruction, are not yet in the hardware registers, that will be used as operands, because

the data are still moving among di�erent GPU memories.

145

146 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

12.2.1 Reading and Writing - Positions and Locations

If we execute the analysis A1 on a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the

fatbin �le in S2
Ff

) then this means that the fatbin �le of the couple is in the subset SSA1
. Because

the fatbin �le of the couple is in the subset SSA1
then we know from where and to where, in the

variables, the arrays, the vectors and the structures in the GPU global memory, each GPU thread,

used to execute the fatbin �le of the couple, reads and writes the data and the results, when the

fatbin �le is executed using the launch con�guration of the couple.

We can not know, choose or force the location of the variables, the arrays, the vectors and the

structures are in the GPU global memory - 9.5.5 - but we know that they are aligned to frontiers

of 128 bytes, the dimension in bytes of a line of l1 cache - [50, p. 163] and [55, p. 32].

When the GPU threads of a warp read some data that a) are in the GPU global memory b)

but are between more than two consecutive frontiers, then more l1 cache lines will be transfered.

For example, if, to execute a warp ELF instruction, a) the 32 GPU threads of the warps read data

that are between the positions 4 and 28, 45 and 51 and 68 and 90 in an array of data, b) each data

is at 4 bytes and c) the data are in the GPU global memory, then three l1 cache lines have to be

transfered from the GPU global memory to the l1 cache.

When the 32 GPU threads of a warp read or write results, if we know a) whether the data or

the results are or not in the l2 cache or in the l1 cache and b) the positions, of the data and the

results, to read and to write, in the variables, the arrays, the vectors and the structures in the GPU

global memory, then it is possible to determine the number of l1 cache lines that will be transfered,

for the read or the write, between the GPU global memory and the l1 cache, and so from o�-chip

to on-chip and/or from on-chip to o�-chip, when the data or the results have to be read or written

from/to the GPU global memory.

Let us suppose, for example, a warp ELF instruction requires to read some data and 1) that 8,

of the 32 GPU threads, of the warp, read, from the GPU global memory, a) the same data at 16

bits, b) that the data is only in the GPU global memory and c) the data is at the position 0 of an

array A, 2) that 15, of the 32 GPU threads, of the warp, read, from the l1 cache, other data all

present in the l1 cache and 3) that 9, of the 32 GPU threads, of the warp a) read 9 di�erent data,

b) that all the 9 data are all between the positions 64 and 127 of the array A and c) that all the

9 data are only in GPU global memory. In these conditions, when such warp ELF instruction is

executed, 2 l1 cache lines are transfered by the GPU global memory to the l1 cache and so from

o�-chip to on-chip - this happens because one l1 cache line has to be transfered for the data, in

position 0, of the array A, that 8, of the 32 GPU threads, of the warp, read and another l1 cache

line has to be transfered for the 9 di�erent data, that 9, of the 32 GPU threads, of the warp, read

- these 9 data are in positions between the 64 and the 127 in the array A and so between the bytes

in position 128 and 255 from the beginning of the array A, array A that we know being aligned to

frontiers of 128 bytes in the GPU global memory.

12.2.2 Di�culties in the Determination of the Cache Lines to Transfer

If there would be only one GPU thread used for the execution of the fatbin �le of a couple (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) then, knowing 1) from where

and to where, in the variables, the arrays, the vectors and the structures in the GPU global memory,

the GPU thread, reads and writes, the data and the results, during the execution of the fatbin �le,

2) the eviction policies used for the l2 cache and the l1 caches and 3) that is not necessary that a

12.2. Bandwidths and Latencies of the GPU Memories 147

cache line that is in a l1 cache is also in the l2 cache and that therefore there are some updating

mechanisms, when a warp tries to write some results to the GPU global memory and a l1 cache line

is only partially overwritten, that could imply a new transfer of the l1 cache line, from the GPU

global memory to the l1 cache, it would be easy to determine a) the number of l1 cache lines that is

necessary to transfer from o�-chip to on-chip and from on-chip to o�-chip and b) when these cache

lines are transfered between di�erent GPU memories, for the execution of a couple (fatbin �le in

S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

).

However, 1) many GPU threads are used for the execution of the fatbin �le of a couple (

fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) and 2) also for launch

con�gurations a) forcing the gigathread scheduler to evenly distribute the GPU thread blocks to

the streaming multiprocessors and b) without warp scheduling balancing problems at local level

- this means b.1) that there is an even number of warps in each streaming multiprocessor, b.2)

that the number of warps is the same for all the streaming multiprocessors and b.3) that all the

couples (dependence distance in the set Sdd of the fatbin �le in S2
Ff

, number of resident warps in

a streaming multiprocessor) are in the good set Gs, 9.2.2 - the maximum starting time di�erences,

for the couples in the set Gs, in the table Tc, built, for the global level, considering all the streaming

multiprocessors at the same time, are of the order of the millions of function unit clock cycles.

What said in 1) and 2) make it impossible accurately to determine to which ELF instructions

of the ELF code, of the B part, of a fatbin �le, the many GPU threads, used for the execution of

the B part of a fatbin �le, are pointing, during the execution of the B part of the fatbin �le, and so

to determine a) the number of l1 cache lines that is necessary to transfer from o�-chip to on-chip

and from on-chip to o�-chip and b) when these l1 cache lines are transfered between di�erent GPU

memories, during the execution of a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of

the fatbin �le in S2
Ff

).

12.2.3 Supposing the GF100 Architecture Without the L2 Cache

Let us instead suppose the GF100 architecture is without the l2 cache. If we suppose the GF100

architecture is without the l2 cache then the data and the results, whether not in the hardware

registers in the streaming multiprocessors, can only be in the GPU global memory, in the l1 caches,

in the shared memories, in the constant memory or in the texture memories - the constant memory

and the texture memories are not considered in the following discussion because the constant

memory can only be managed by the CPU side before to execute the B part of a fatbin �le and the

texture memories are not of interest.

Without l2 cache, the data can only be moved 1) from the GPU global memory to the l1 caches

or to the shared memories or 2) from the l1 caches or from the shared memories to the GPU global

memory. Because each streaming multiprocessor has its l1 cache and its shared memory then, when

we need to determine a) the number of l1 cache lines that is necessary to transfer from o�-chip to on-

chip and from on-chip to o�-chip and b) when these l1 cache lines are transfered between the di�erent

GPU memories, for the execution of a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of

the fatbin �le in S2
Ff

), instead to consider the maximum of the maximum starting time di�erences

of the couples (dependence distance in the set Sdd of the fatbin �le in S2
Ff

, number of resident

warps in a streaming multiprocessor) in the table Tc, built for the global level, we can consider the

maximum of the maximum starting time di�erences of the couples (dependence distance in the set

Sdd of the fatbin �le in S2
Ff

, number of resident warps in a streaming multiprocessor) in the table

148 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

Tc, built for the local level, considering only a single streaming multiprocessor, instead of all the

streaming multiprocessors at the same time.

The quantity of data that is necessary to transfer, from o�-chip to on-chip and from on-chip

to o�-chip, during the execution of a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc

of the fatbin �le in S2
Ff

), supposing the GF100 architecture is without l2 cache, is at least equal

whether not greater to the quantity of data that is really necessary to transfer, from o�-chip to

on-chip and from on-chip to o�-chip, during the execution of the couple (fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

) - this because the GF100 architecture has a l2

cache - and therefore is an upper bound on the quantity of data that is really necessary to transfer,

from o�-chip to on-chip and from on-chip to o�-chip, during the execution of the couple (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

).

12.2.4 Maximum Distance in Number of Warp ELF Instructions

To calculate the previous upper bound, on the quantity of data that is necessary to transfer, from

o�-chip to on-chip and from on-chip to o�-chip, during the execution of a couple (fatbin �le in

S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), we need to determine the number

of l1 cache lines that is necessary to transfer, from o�-chip to on-chip and from on-chip to o�-chip,

during the execution of a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin

�le in S2
Ff

).

To try to determine the number of l1 cache lines that is necessary to transfer, from o�-chip to

on-chip and from on-chip to o�-chip, during the execution of a couple (fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

), we �rst calculate the maximum distance, in

number of warp ELF instructions, that we can get, during the execution of the B part of the fatbin

�le of the couple, when the fatbin �le of the couple is executed with the launch con�guration of

the couple, between the leading subset of resident warps in a streaming multiprocessor and the last

subset of resident warps in the streaming multiprocessor.

If the couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) would

not satisfy all the requirements of the analysis A1 then a) there is no way to calculate the maximum

distance, in number of warp ELF instructions, between the leading subset of resident warps in a

streaming multiprocessor and the last subset of resident warps in the streaming multiprocessor,

that is possible during the execution of the B part of the fatbin �le of the couple, when the fatbin

�le is executed using the launch con�guration of the couple and b) the distances, in number of

warp ELF instructions, among resident warps in a streaming multiprocessor, are not going to stay

constant or almost constant but can change abruptly during the execution of the B part of the

fatbin �le of the couple, when the fatbin �le of the couple is executed with the launch con�guration

of the couple.

If instead we suppose a priori the couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of

the fatbin �le in S2
Ff

) satis�es all the requirements of the analysis A1 and so the execution of the B

part of the fatbin �le of the couple, when the fatbin �le is executed using the launch con�guration

of the couple, can be slowed down only by the warp scheduling and not by the bandwidths and the

latencies of the GPU memories, the scheduling waiting times, the dependence waiting times and

the overhead time for the management of the warps then a) it is possible to calculate the maximum

distance, in number of warp ELF instructions, between the leading subset of resident warps in a

streaming multiprocessor and the last subset of resident warps in the streaming multiprocessor, that

12.2. Bandwidths and Latencies of the GPU Memories 149

is possible during the execution of the fatbin �le of the couple, when the fatbin �le is executed using

the launch con�guration of the couple and b) the distances, in number of warp ELF instructions,

among resident warps in a streaming multiprocessor, are going to stay practically constant, during

the execution of the fatbin �le of the couple, when the fatbin �le of the couple is executed with the

launch con�guration of the couple.

To calculate the maximum distance, in number of warp ELF instructions, between the leading

subset of resident warps in a streaming multiprocessor and the last subset of resident warps in the

streaming multiprocessor, we determine the maximum of the maximum starting time di�erences

Mmstd of the couples (dependence distance in the set Sdd of the fatbin �le in S2
Ff

, number

of resident warps in a streaming multiprocessor) in the table Tc, built for the local level, and

remember the following things: 1) in each moment not more than 2 warps can be scheduled at

each warp scheduler clock cycle in a streaming multiprocessor, 2) because a) each one of the 4

groups of function units in a streaming multiprocessor have no more than 16 function units and b)

each warp is always composed by 32 GPU threads, then the execution of a warp ELF instruction

requires at least 2 function unit clock cycles, 3) the launch con�guration of the couple (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) determines the number of

resident warps per streaming multiprocessor - W - 4) the minimum scheduling waiting time we

discovered is of 4 function units clock cycles, 5) because 4 - the minimum scheduling waiting time

we discovered - is greater than 2 - the minimum number of function unit clock cycles that are

necessary to execute a warp ELF instruction - then in Mmstd function unit clock cycles, the 2 warp

schedulers in a streaming multiprocessor can not schedule the same warp more times than bMmstd

4 c
and so in Mmstd function unit clock cycles not more than bMmstd

4 c warp ELF instructions can be

executed for the same warp - this because a) the execution of a warp ELF instruction require at

least 2 function unit clock cycles and b) 1 warp scheduler clock cycle is equivalent to 2 function unit

clock cycles. It would therefore seem, that at the moment when the last or the last 2 resident warps

in a streaming multiprocessor are scheduled for the �rst time for the execution, of the B part, of

the fatbin �le, of a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in

S2
Ff

), the maximum distance, in number of warp ELF instructions, between the leading subset of

resident warps in a streaming multiprocessor and the last subset of resident warps in a streaming

multiprocessor, can be not more than MDnwei = bMmstd

4 c - this because in Mmstd function unit

clock cycles the minimum number of warp ELF instructions that can be scheduled for a warp is 0

while the maximum its bMmstd

4 c.

12.2.5 Introduction of ELF Instructions of Synchronization

We do not know how much time is necessary to the gigathread scheduler to distribute the GPU

thread blocks to the streaming multiprocessors and so possibly more GPU thread blocks to a

streaming multiprocessor. For this reason, when we determine the Mmstd for a couple (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), to be sure that the Mmstd,

determined for the couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in

S2
Ff

), is really an upper bound on the starting time di�erence that we can get for the execution

of the B part of the fatbin �le of the couple, when the fatbin �le is executed using the launch

con�guration of the couple, we need to modify the fatbin �les in the set S2
Ff
.

The table Tc, built in 7, for the local level, is built using the results got for the fatbin �les used in

that chapter. To be sure that, using the data of the table Tc, built for the local level, the Mmstd we

150 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

determine for a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

),

is really an upper bound on the starting time di�erence that we can get for the execution of the B

part of the fatbin �le of the couple, when the fatbin �le is executed using the launch con�guration of

the couple, we modify the fatbin �les in the set S2
Ff
, introducing at the beginning of their B parts,

the same three ELF instructions, we used to synchronize the GPU threads used for the executions

of the fatbin �les used in 7 and therefore 1) a write ELF instruction, that writes, the data in one

of the ELF registers of the fatbin �le, to a GPU global memory address common to all the GPU

threads used for the execution of the B part of the fatbin �le, 2) a membar.gl ELF instruction and

3) a read ELF instruction that reads the data from the GPU global memory address common to

all the GPU threads used for the execution of the B part of the fatbin �le and load it back to the

ELF register used for the writing in 1). Doing this we are sure that the Mmstd that we calculate for

each couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) is really

an upper bound on the starting time di�erence that we can get for the execution of the B part of

the fatbin �le of the couple, when the fatbin �le is executed using the launch con�guration of the

couple.

Knowing that theMmstd, that we calculate for a couple (fatbin �le in S2
Ff

, launch con�guration

in the Slc of the fatbin �le in S2
Ff

), is really an upper bound on the starting time di�erence that

we can get for the execution of the B part of the fatbin �le of the couple, when the fatbin �le is

executed using the launch con�guration of the couple, we can be sure that, at the warp scheduler

clock cycle WSCC - when, for the �rst time, after that all the resident warps in a streaming

multiprocessor have been scheduled for the execution of the three warp ELF instructions used to

synchronize all the resident warps in all the streaming multiprocessors, all the resident warps in the

streaming multiprocessor have been scheduled at least another time - the distance, in number of

warp ELF instructions, between the leading subset of resident warps in the streaming multiprocessor

and the last subset of resident warps in the streaming multiprocessor, is really not more than

MDnwei = bMmstd

4 c. To give some examples, considering the values in the table Tc, built for the

local level:

• Because the maximum of the maximum starting time di�erence of all possible couples (

dependence distance , number of resident warps in a streaming multiprocessor = 8), in the

set Gs, is 56, then, the MDnwei, of every fatbin �le in the set S2
Ff
, when the fatbin �le in

the set S2
Ff

is executed with a launch con�guration in the Slc of the fatbin �le in S2
Ff

that

forces the gigathread scheduler to assign to each streaming multiprocessor a number of warps

equal to 8, can not be greater than 14 - it could be smaller, this depends on the dependence

distances in the set Sdd of the fatbin �le in S2
Ff
;

• Because the maximum of the maximum starting time di�erences of all possible couples (

dependence distance , number of resident warps in a streaming multiprocessor = 32), in the

set Gs, is 296, then, the MDnwei, of every fatbin �le in the set S2
Ff
, when the fatbin �le in

the set S2
Ff

is executed with a launch con�guration in the Slc of the fatbin �le in S2
Ff

that

forces the gigathread scheduler to assign to each streaming multiprocessor a number of warps

equal to 32, can not be greater than 74 - it could be smaller, this depends on the dependence

distances in the set Sdd of the fatbin �le in S2
Ff
.

12.2. Bandwidths and Latencies of the GPU Memories 151

12.2.6 Constancy, of the Distances, in Number of Warp ELF Instructions

After the three ELF instructions, used to synchronize the warps, at the beginning of the B part,

of the fatbin �le, of a couple, it could be that the warp schedulers in a streaming multiprocessor

are going to cycle, for a period of time, on a number of warps that is smaller than the number of

resident warps in the streaming multiprocessor - case C3 in 9.4.5.

During the execution of the B part of the fatbin �le of a couple, we however reach a warp

scheduler clock cycleWSCC when, for the �rst time, after that all the resident warps in a streaming

multiprocessor have been scheduled for the execution of the three warp ELF instructions used to

synchronize all the resident warps in all the streaming multiprocessors, all the resident warps in the

streaming multiprocessor have been scheduled at least another time.

What we want prove in this subsection is that if a couple (fatbin �le in S2
Ff

, launch con�guration

in the Slc of the fatbin �le in S2
Ff

) satis�es all the requirements of the analysis A1 and so the

execution of the B part of the fatbin �le of the couple, when the fatbin �le is executed using

the launch con�guration of the couple, can only be slowed down by the warp scheduling, then

each distance - calculated at the warp scheduler clock cycle WSCC - in number of warp ELF

instructions, between each couple of resident warps in a streaming multiprocessor, can oscillate not

more than plus two minus two for almost the whole execution of the remaining B part of the fatbin

�le of the couple.

If it is true that the execution of the B part of the fatbin �le of a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) can only be slowed down by the warp

scheduling, then, after the warp scheduler clock cycle WSCC, for almost the whole execution of

the remaining B part of the fatbin �le of a couple, it impossible that the 2 warp schedulers in a

streaming multiprocessors are pointing to 2 warps that are more distant than 3 warps, in the order,

established by the GF100 architecture, for the resident warps in the streaming multiprocessor, order

on which the pointer in the streaming multiprocessor, and so the 2 warp schedulers in the streaming

multiprocessor, cycle - 9.4.

The warp ELF instructions that require the greatest number of function units clock cycles to

be executed are the warp ELF instructions that require for their execution the use of the group

of 4 special function units. For the execution of one of such warp ELF instructions, because the

number of GPU threads in a warp is always 32, 8 function unit clock cycles - equivalent to 4 warp

scheduler clock cycles - are necessary. Furthermore, at any moment, of the execution of the B part

of the fatbin �le of a couple, each one of the 2 warp schedulers in a streaming multiprocessor is

pointing to one of the warps wsm resident in the streaming multiprocessor.

Let us now suppose: 1) that one of the 2 warp schedulers is pointing the warp wx and the other

warp scheduler is pointing the warp wy, 2) that the next warp, in the order, that will be considered

by the pointer in the streaming multiprocessor, is the warp w(y+1)%wsm
, 3) that both the warps wx

and wy need the execution of a warp ELF instruction that requires the use of the group of 4 special

function units and 4) that the warp wx is scheduled at the warp scheduler clock cycle t making

therefore impossible to schedule the warp wy at warp scheduler clock cycles t, t+1, t+2 and t+3.

Also whether 1 of the 2 warp schedulers can not schedule the warp wy at the warp scheduler

clock cycles t, t + 1, t + 2 and t + 3, at the warp scheduler clock cycles t + 1, t + 2 and t + 3, the

other warp scheduler could however continue to schedule one or more warps - these warps would be,

in the order, the warp/warps W(y+1)%wsm
, W(y+2)%wsm

and W(y+3)%wsm
. At the warp scheduler

clock cycle t + 3, the distance, in number of warps, between the 2 warps, pointed by the 2 warp

152 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

schedulers in the streaming multiprocessor, can not be greater than 3 - if equal to 3 then, at the

warp scheduler clock cycles t+1, t+2 and t+3, 1 of the 2 warp schedulers has scheduled the warps

W(y+1)%wsm
, W(y+2)%wsm

and W(y+3)%wsm
.

At t+ 4 the warp scheduler that is pointing the warp wy schedules the warp wy - this for sure

because the warp scheduler that is pointing the warp wy has the precedence on the other warp

scheduler, 9.4.2 - and get from the pointer in the streaming multiprocessor the next warp in the

order. The group of 4 special function units will be available again only at the warp scheduler

clock cycle t+ 8. Because at the warp scheduler clock cycles t+ 4, t+ 5, t+ 4 and t+ 7, not more

than 2 warps can be scheduled at each warp scheduler clock cycle, then, if there are at least 11

= 3 + 8 resident warps in the streaming multiprocessor, we get the guarantee that each time a

warp w is scheduled, the other warp scheduler is pointing to a warp that, in the order, is the warp

W(y−3)%wsm
, W(y−2)%wsm

, W(y−1)%wsm
, W(y+1)%wsm

, W(y+2)%wsm
or W(y+3)%wsm

.

If instead the number of resident warps in a streaming multiprocessor would be less than 11

then, it is possible, if the warp wy would require the execution of a series of warp ELF instructions

each one using the group of 4 special function units, the generation of a compound e�ect, where the

group of 4 special function units is not available, when the warp wy is available to be scheduled, not

because busy to execute the warp ELF instruction of another warp, but because busy to execute

a previous warp ELF instruction for the warp wy. If this would be the case then the distances, in

number of warp ELF instructions, between the 2 warps of some of the couples of resident warps in

the streaming multiprocessor, could grow and grow, without any limit, during the execution of the

B part of the fatbin �le of a couple, when the fatbin �le is executed using the launch con�guration of

the couple, but we want to be sure that this does not happen because also whether our next proofs

allow to the distances, in number of warp ELF instructions, between the 2 warps of all the possible

couples of resident warps in a streaming multiprocessor, to change during the execution of the B

part of the fatbin �le of a couple, when the fatbin �le is executed using the launch con�guration

of the couple, the value of each distance, in number of warp ELF instructions, between the 2

warps of each couple of resident warps in a streaming multiprocessor, has to oscillate, during the

execution of the B part of the fatbin �le of a couple, when the fatbin �le is executed using the

launch con�guration of the couple, around the initial value of the distance, calculated at the warp

scheduler clock cycle WSCC, of a maximum quantity that has to be quanti�able.

At the warp scheduler clock cycle WSCC, only the two following cases are possible: 1) only 1

of the 2 warp schedulers in the streaming multiprocessor get a new warp from the pointer in the

streaming multiprocessor or 2) both the warps schedulers in the streaming multiprocessor get a

new warp from the pointer, in the streaming multiprocessor, that assigns the resident warps in the

streaming multiprocessor to the 2 warp schedulers in the streaming multiprocessor. Independently

of 1) and 2), after the assignment/s, the 2 warp schedulers in the streaming multiprocessor are

pointing to 2 warps a) that have to be consecutive in the order and b) without any other warp, in

the order, between them. Let us de�ne the warp, of the 2, that comes �rst in the order, the �rst

warp of the order.

Considering how the warp scheduling cycling policy cycles on the resident warps in the streaming

multiprocessor - 9.4.1 and 9.4.2 - and that, supposing there are at least 11 resident warps in

a streaming multiprocessor, each time a warp is scheduled by 1 of the 2 warp schedulers in a

streaming multiprocessor the other warp scheduler is pointing to another warp that is distant not

more than 3 in the order of the resident warps in the streaming multiprocessor, then, during almost

the whole execution of the B part of the fatbin �le of a couple, the initial values of the distances,

12.2. Bandwidths and Latencies of the GPU Memories 153

calculated at the warp scheduler clock cycle WSCC, between a resident warp w in a streaming

multiprocessor and the other resident warps in the streaming multiprocessor, can only change in

one of the following three ways:

• The value of the distance, in number of warp ELF instructions, between the warp w and

another resident warp in the streaming multiprocessor, it's equal to the value of the distance,

between the 2 warps, calculated at the warp scheduler clock cycle WSCC.

In this case, the value of the distance, in number of warp ELF instructions, between the warp

w and the other resident warp in the streaming multiprocessor, can a) remain constant or b)

decrease of one or c) decrease of two - this is only possible whether only 1 of the 2 warps, the

warp w and the other resident warp in the streaming multiprocessor, is one of the three last

warps in the order - or d) increase of one or e) increase of two - this is only possible if only

1 of the 2 warps, the warp w and the other resident warp in the streaming multiprocessor is

one of the �rst three warps in the order;

• The value of the distance, in number of warp ELF instructions, between the warp w and

another resident warp in the streaming multiprocessor, it's equal to the value of the distance,

between the 2 warps, calculated at the warp scheduler clock cycle WSCC minus one or two

- two is only possible if only 1 of the 2 warps, the warp w and the other resident warp in the

streaming multiprocessor, is one of the last three warps in the order.

In this case, the value of the distance, in number of warp ELF instructions, between the warp

w and the other resident warp in the streaming multiprocessor, can a) remain constant or b)

increase of one or c) increase of two - this is only possible if only 1 of the 2 warps, the warp

w and the other resident warp in the streaming multiprocessor, is one of the last three warps

in the order;

• The value of the distance, in number of warp ELF instructions, between the warp w and

another resident warp in the streaming multiprocessor it's equal to the distance between the

2 warps calculated at the warp scheduler clock cycle WSCC plus one or two - two is only

possible if only 1 of the 2 warps, the warp w or the other resident warp in the streaming

multiprocessor, is one of the �rst three warps in the order.

In this case, the value of the distance, in number of warp ELF instructions, between the warp

w and the other resident warp in the streaming multiprocessor, can a) remain constant or b)

decrease of one or c) decrease of two - this is only possible if only 1 of the 2 warps, the warp

w and the other resident warp in the streaming multiprocessor, is one of the �rst three warps

in the order.

For the previous three cases, after the warp scheduler clock cycle WSCC, the value of the

distance, in number of warp ELF instructions, between 2 generic resident warps in a streaming

multiprocessor, can only increase at maximum of two and decrease at maximum of two, compared

to the value of the distance, calculated at the warp scheduler clock cycle WSCC, between the same

2 generic resident warps in the streaming multiprocessor, and therefore the value of the distance, in

number of warp ELF instructions, between the 2 warps of each possible couple of resident warps in

a streaming multiprocessor, is going to stay practically constant - plus two minus two - for almost

the whole execution of the B part of the fatbin �le of a couple - if the couple satis�es all the

requirements of the analysis A1.

154 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

What said is true for almost the whole execution of the B part of the fatbin �le of a couple

satisfying all the requirements of the analysis A1 because near the end of the execution of the B

part of the fatbin �le of the couple, when the fatbin �le is executed using the launch con�guration

of the couple, some warps will �nish �rst of others to execute the B part of the fatbin �le of

the couple, leaving progressively a smaller and smaller number of resident warps in the streaming

multiprocessor - at this point in time some slowdowns due to the bandwidths and the latencies of

the GPU memories, the scheduling waiting times, the dependence waiting times and the overhead

time for the management of the warps could be possible but they can not last more of the quantity

of time necessary to execute a number of warp ELF instructions that can not be greater than

MDnwei warp ELF instructions times the number of resident warps in a streaming multiprocessor

and so usually a quantity of time that it is in�nitesimal compared to the execution time, of the B

part, of the fatbin �le, of the couple, when the fatbin �le is executed using the launch con�guration

of the couple.

Because the value of the distance, in number of warp ELF instructions, between the 2 warps

of each possible couple of resident warps in a streaming multiprocessor can only oscillate, after the

warp scheduler clock cycle WSCC, at maximum, of plus 2 minus 2, for almost the whole execution

of the B part of the fatbin �le of a couple, then, this means that, after the warp scheduler clock cycle

WSCC, for almost the whole execution of the B part of the fatbin �le of a couple, the maximum

distance, in number of warp ELF instructions, between the leading warp or the leading subset of

warps in a streaming multiprocessor and the last warp or the last subset of warps in a streaming

multiprocessor, is not equal or smaller than bMmstd

4 c - 12.2.4 - but instead is equal or smaller than

MDnwei = bMmstd

4 c+ 2.

Before to execute the analysis A1 on a couple (fatbin �le in S2
Ff

, launch con�guration in the

Slc of the fatbin �le in S2
Ff

), because we can scan the B part of the fatbin �le of the couple, we

can check in an automatic way all the ELF instructions in the B part of the fatbin �le and get the

number of warp scheduler clock cycles that are necessary to execute the most "expensive" warp

ELF instruction weime of the B part of the fatbin �le - this is possible thanks to the results got in

7.6.2.

Substituting in the proof of this subsection the value 4 - used supposing that the most "expen-

sive" warp ELF instruction, in the B part of the fatbin �le of the couple to analyze, would be a

warp ELF instruction requiring the use of the group of 4 special function units - with the number of

warp scheduler clock cycles necessary to execute the warp ELF instruction weime - we determine the

minimum number of warps min1
wsm

, that is necessary are resident in a streaming multiprocessor,

to avoid the compound e�ect that would not allow to quantify the maximum distance, in number

of warp ELF instructions, between the leading warp or the leading subset of warps in a streaming

multiprocessor and the last warp or the last subset of warps in a streaming multiprocessor, during

the execution of the B part of the fatbin �le of a couple - satisfying all the requirements of the

analysis A1 - when the fatbin �le is executed using the launch con�guration of the couple.

If for a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

)

min1
wsm

is equal or greater than the number of resident warps in each streaming multiprocessor, that

we obtain when the fatbin �le of a couple is executed using the launch con�guration of the couple,

then we need to discard the couple because the distance, in number of warps ELF instructions,

between the leading warp or the leading subset of resident warps in a streaming multiprocessor and

the last warp or the last subset of resident warps in the streaming multiprocessor, could grow and

grow making impossible any proof on the bandwidths and the latencies of the GPU memories.

12.2. Bandwidths and Latencies of the GPU Memories 155

12.2.7 Warp ELF Instructions Implying O�-Chip ↔ On-Chip Transfers

If a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) satis�es

all the requirements of the analysis A1 then the execution of the B part of the fatbin �le of the

couple, when the fatbin �le is executed using the launch con�guration of the couple, can only be

slowed down by the warp scheduling, and in these conditions we know that, during almost the

whole execution of the B part of the fatbin �le of the couple, also whether we can not calculate, and

therefore know, the values of the single distances, in number of warp ELF instructions, between

the 2 warps of each possible couple of resident warps, in any of the streaming multiprocessors, the

distance, in number of warp ELF instructions, between the leading warp or the leading subset of

warps in a streaming multiprocessor and the last warp or the last subset of warps in the same

streaming multiprocessor, is equal or smaller than MDnwei = bMmstd

4 c+ 2 - 12.2.6.

To try to determine the number of l1 cache lines that is necessary to transfer during the execution

of the B part of the fatbin �le of a couple, when the fatbin �le is executed using the launch

con�guration of the couple, we generate the set Supv of the unrolled path versions of the B part

of the fatbin �le of the couple. The original fatbin �le Ffi has a set of inputs Si. Each one of the

unrolled path versions of the B part of the fatbin �le of the couple is the path that a) is determined

by each single input of a subset SSi of inputs - more inputs could force all the GPU threads used to

execute the B part of the fatbin �le of the couple, when the fatbin �le is executed using the launch

con�guration of the couple, to follow the same path, same because the fatbin �le of the couple is

in the subset SSA1 and so it is impossible that there are some GPU threads, among those used to

execute the B part of the fatbin �le of the couple, when the fatbin �le is executed using the launch

con�guration of the couple, following di�erent paths, 10.3 - and b) is unrolled, some loops could be

present in the B part of the fatbin �le of the couple.

For the generation of the set of the unrolled path versions of the B part of the fatbin �le of the

couple, when the fatbin �le is executed using the launch con�guration of the couple, we need to

consider the following things:

• If it is possible to determine/know which inputs will be used for the original fatbin �le Ffi

then it is possible to determine each single path - supposing there are more possible paths in

the B part of the fatbin �le of the couple - that all the GPU threads, used to execute the B

part of the fatbin �le, will follow in the B part of the fatbin �le of the couple, each time the

fatbin �le is executed using the launch con�guration of the couple, for each one of the inputs

of one of the subsets SSi of inputs - each single path is a path version of the B part of the

fatbin �le of the couple;

• If it is not possible to determine/know which inputs will be used for the original fatbin �le

Ffi then it is not possible to determine which single path/paths - supposing there are more

possible paths in the B part of the fatbin �le of the couple - all the GPU threads, used to

execute the B part of the fatbin �le, will not follow in the B part of the fatbin �le of the

couple, when the fatbin �le is executed using the launch con�guration of the couple, but in

this case, we can simply generate all the possible paths that a GPU thread can follow to

execute the B part of the fatbin �le of the couple, when the fatbin �le is executed using the

launch con�guration of the couple - each single path is a path version of the B part of the

fatbin �le of the couple;

• If it is possible to determine/know the number of times, that each one of the loops, in the B

156 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

part of the fatbin �le of the couple, has/have to be executed, for an input or for a path version

of the B part of the fatbin �le of the couple, then we generate the unrolled path version of B

part of the fatbin �le of the couple for the input - some inputs could give the same unrolled

path version of the B part of the fatbin �le - or for the path version of the B part of the fatbin

�le of the couple;

• If it is not possible to determine/know the number of times, that one or more loops, in the B

part of the fatbin �le of the couple, has/have to be executed, for an input or for a path version

of the B part of the fatbin �le of the couple then, we a) can assume di�erent upper bounds on

the number of times that each one of the loops, in the B part of the fatbin �le of the couple,

has/have to be executed, when the fatbin �le is executed using the launch con�guration of

the couple, for the input or for the path version of the B part of the fatbin �le of the couple,

and b) generate an unrolled path version of the B part of the fatbin �le of the couple for each

one of the possible combinations of times that each one of the loops in the B part of the fatbin

�le, could be executed, when the fatbin �le is executed using the launch con�guration of the

couple, for the input or for the path version of the B part of the fatbin �le of the couple,

but if this is case then we need to prove that it is impossible that any of the other unrolled

path versions of the B part of the fatbin �le of the couple, that 1) we do not generate and

that correspond to potential executions of the B part of the fatbin �le of the couple, when

the fatbin �le is executed using the launch con�guration of the couple, for the input or for

the path version of the B part of the fatbin �le of the couple, and 2) where one or more of

the loops is/are executed a number of times greater than its/their upper bound/bounds, can

give executions of the B part of the fatbin �le of the couple, when the fatbin �le is executed

using the launch con�guration of the couple, for the input or for the path version of the B

part of the fatbin �le of the couple, that could be slowed down by things di�erent by the warp

scheduling - in other words we need to prove that each one of all the other possible unrolled

path versions of the B part of the fatbin �le of the couple that we do not generate for the

potential executions of the B part of the fatbin �le of the couple, that could happen, when

the fatbin �le is executed using the launch con�guration of the couple, for the input or for

the path version of the B part of the fatbin �le of the couple, satis�es all the requirements of

the analysis A1.

We therefore overlap a window of size MDnwei to each one of the unrolled path versions of the

B part of the fatbin �le of the couple and we consecutively align the lower side of the window to

each one of the ELF instructions of each one of the unrolled path versions of the B part of the

fatbin �le of the couple - in other words we make slide the window on all the unrolled path versions

of the B part of the fatbin �le of the couple.

Next, for each couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), we want to analyze the warp ELF instructions weils - the warp ELF instructions that require

the load and/or the store of data and/or results - of each one of the single unrolled path versions

in the sets Suvp generated for the couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of

the fatbin �le in S2
Ff

) - one set Suvp per couple (fatbin �le in S2
Ff

, launch con�guration in the

Slc of the fatbin �le in S2
Ff

).

For the same warp ELF instruction weils, of an unrolled path version of the B part of the fatbin

�le of a couple a) in a set Supv and b) generated by each one of the inputs of one of the subsets SSi

of inputs - the union of the subsets SSi of inputs give the set Si of inputs of the original fatbin �le

12.2. Bandwidths and Latencies of the GPU Memories 157

Ffi used to analyze a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le

in S2
Ff

) - we can distinguish the following two cases:

• The warp ELF instruction weils, of the unrolled path version of the B part of the fatbin

�le of the couple, load/store data/results from/to o�-chip to/from on-chip because a) the

data to read are transfered from the GPU global memory to the l1 caches of the streaming

multiprocessors or to the shared memories of the streaming multiprocessors, b) the results

to store are transfered from the l1 caches of the streaming multiprocessors or the shared

memories of the streaming multiprocessors to the GPU global memory or c) the results to

store imply the transfer of data from the the GPU global memory to the l1 caches of the

streaming multiprocessors, the updating of the data and the transfer of some or all the data

back to the GPU global memory, for some or all the inputs, of the subset SSi, of inputs

generating the unrolled path version of the B part of the fatbin �le of the couple - remember

that a) we are supposing the GF100 architecture is without l2 cache and b) we do not consider

the constant memory and the texture caches;

• The warp ELF instruction weils, of the unrolled path version of the B part of the fatbin �le of

the couple, does not load/store data/results from/to o�-chip to/from on-chip because 1) the

data are loaded from a) the l1 caches of the streaming multiprocessors, b) the shared memories

of the streaming multiprocessors or c) the hardware registers of the streaming multiprocessors

or 2) the results are stored a) from the hardware registers in the streaming multiprocessors to

the shared memories of the streaming multiprocessors, or b) in the hardware registers of the

streaming multiprocessors, for some or all the inputs, of the subset SSi, of inputs generating

the unrolled path version of the B part of the fatbin �le of the couple.

What we want to understand, given an unrolled path version of the B part of the fatbin �le of

the a couple, which of its warp ELF instructions weils are warp ELF instructions weiit or in other

words are warp ELF instructions that imply a) the transfer of a quantity of bytes from o�-chip

to on-chip, or b) the transfer of a quantity of bytes from on-chip to o�-chip, or c) the transfer of

a quantity of bytes from o�-chip to on-chip and the transfer of a quantity of bytes from on-chip

to o�-chip - see Possibility2 of the Example3 in the next subsection to understand when this can

happen - and we want understand this for each one of the inputs, of the subset SSi, of inputs

generating the unrolled path version of the B part of the fatbin �le of the couple.

We therefore substitute each couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of

the fatbin �le in S2
Ff

) with the set of all the possible quadruplets (fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

, unrolled path version of the B part of the fatbin

�le in S2
Ff

, an input, of one of the subsets SSi, of inputs generating the unrolled path version of

the B part of the fatbin �le in S2
Ff

) and instead of each couple we analyze each set of quadruplets.

Each set of quadruplets has one or more quadruplets for each one of the inputs, of the set Si of

inputs, of the original fatbin �le Ffi - this because a single input could generate more unrolled path

versions of the B part of the fatbin �le of a couple. During the analysis of each set of quadruplets,

for each quadruplet, we can distinguish the following two mutually exclusive cases:

• Case 1. It is possible to determine which warp ELF instructions weils, of the quadruplet,

are warp ELF instructions weiit, independently of a) which ELF instructions, the resident

warps in a streaming multiprocessor, point at the warp scheduler clock cycle WSCC - the

warps have however to point to some ELF instructions inside the window going from the

158 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

�rst ELF instruction feix, after the three ELF instructions, used at the beginning of the B

part of the fatbin �le of the couple, to synchronize all the resident warps in all the streaming

multiprocessors, to the ELF instruction eix = feix +MDnwei - b) the order of the resident

warps in the streaming multiprocessor and c) which of the 2 warp schedulers in the streaming

multiprocessor will have the priority of scheduling at the end of the warp scheduler clock cycle

WSCC.

• Case 2. It is not possible to determine which warp ELF instructions weils, of the quadruplet,

are warp ELF instructions weiit. Considering how we try to identify the warp ELF instruction

weiit - with the help of a window of size MDnwei that we make slide on the unrolled path

version of the B part of the fatbin �le of the quadruplet - it can happen that it is not possible to

determine which warp ELF instructions weils are warp ELF instructions weiit because there

could be some cases where the warp ELF instructions weiit are a function of the previous a),

b) and c) described in case 1, and so the warp ELF instructions weiit could be di�erent from

execution to execution of the fatbin �le of a quadruplet, when the fatbin �le of the quadruplet

is executed using the launch con�guration of the quadruplet, for the unrolled version of the

quadruplet, for the input of the quadruplet. If for a quadruplet we are in this case then we

have the following three choices:

� Choice1) We consider the couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of

the fatbin �le in S2
Ff

), originating the set of quadruplets of the quadruplet that we are

analyzing, as one of the couples that does not satisfy all the requirements of the analysis

A1 and therefore we discard the couple;

� Choice2) We discard the quadruplet and we continue to analyze the other quadruplets, of

the set of quadruplets originated by the couple (fatbin �le in S2
Ff

, launch con�guration

in the Slc of the fatbin �le in S2
Ff

) that we are analyzing, to check which of them satisfy

all the requirements of the analysis A1;

� Choice3) We a) modify the fatbin �le of the quadruplet taking care that the same

unrolled version of the B part of the fatbin �le of the quadruplet is generated again for

the input of the quadruplet and analyze a second time the quadruplet, or b) modify the

fatbin �le of the couple generating the set of quadruplets, generate another time the set

of quadruplets and start to analyze again each quadruplet of the new set of quadruplets,

or c) modify the original fatbin �le Ffi and repeat the whole procedure of generation 1)

of the fatbin �le Ffo , 2) of the set S1
Ff

of fatbin �les, 3) of the set S2
Ff

of fatbin �les,

4) of the sets of launch con�gurations for the fatbin �les in the set S2
Ff

- one set for

each fatbin �le - and 5) of the set of quadruplets for each new couple couple (fatbin

�le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) - but if we modify

the original fatbin �le Ffi then, if for the generation of the fatbin �le Ffo - 8.2.3 - we

use the procedure C2 and the set of transformations and changes TAC2, we need to

be careful to how we generate the fatbin �le Ffo because we could nullify the bene�ts

of the modi�cations introduced in the original fatbin �le Ffi and so �nd us, during

the execution of the analysis A1, in the case 2 again, for many of the new quadruplets

generated.

If we decide to modify the original fatbin �le Ffi , we do this to move from case 2 to case

1 as many couples (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le

12.2. Bandwidths and Latencies of the GPU Memories 159

in S2
Ff

) or as many quadruplets as possible - if the reader knows the distribution of the

inputs then it could be important to move from case 2 to case 1 only few quadruplets.

A simple way to try to accomplish this goals is to substitute one or more ELF instruc-

tions, that load/store data/results using the l1 caches of the streaming multiprocessors,

with ELF instructions that load/store data/results from/to the shared memories of the

streaming multiprocessors to/from the hardware registers of the streaming multipro-

cessor and with ELF instructions that load/store the data/results from/to the shared

memories of the streaming multiprocessors to/from the GPU global memory.

Because the shared memory has to be managed by the programmer, the ELF instructions,

to load/store data/results from/to the shared memories of the streaming multiprocessors

to/from the GPU memory, a) always imply the transfer of data/results and b) are always

explicit about the quantity of bytes that is necessary to load/store.

If therefore the B part of a fatbin �le would only have a) ELF instructions that load/store

data/results from/to the shared memories of the streaming multiprocessors to/from

the hardware registers of the streaming multiprocessors and b) ELF instructions that

load/store data/results from/to the shared memories of the streaming multiprocessors

to/from the GPU global memory, then all the quadruplets generated by the fatbin �le

would have a probability equal to zero of being in case 2 and so for them we would be

in case 1.

Reducing the number of ELF instructions that load/store data/results using the l1 caches

of the streaming multiprocessors and at the same time increasing the number of ELF

instructions a) that load/store data/results from/to the shared memories of the stream-

ing multiprocessors to/from the hardware registers of the streaming multiprocessors and

b) that transfer data/results from/to the shared memories of the streaming multiproces-

sors to/from the GPU global memory, we make the probability, that when we analyze

a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

),

we are in case 1 instead of case 2, at least equal whether not greater than that when we

consider the couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le

in S2
Ff

) without the modi�cations.

Before each execution of a fatbin �le, we need always to set the dimensions of the l1

cache and of the shared memory for all the streaming multiprocessors - the dimensions

have to be the same for all the streaming multiprocessors, 3.3. With a total of 64 KB

per streaming multiprocessor, partitioned as 48 KB of l1 cache and 16 KB of shared

memory or 16 KB of l1 cache and 48 KB of shared memory, before each execution of the

fatbin �le of a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin

�le in S2
Ff

), and the fact that each couple (fatbin �le in S2
Ff

, launch con�guration

in the Slc of the fatbin �le in S2
Ff

) is not executed with more than 32 resident warps

per streaming multiprocessor - 8.3 - then, in average, each warp, resident in a streaming

multiprocessor, has at least 2 of the 64 KB of memory - 2 KB correspond to a quantity of

memory equivalent to that of 16 lines of l1 cache. With the shared memory set to 48 KB

before the execution of a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of

the fatbin �le in S2
Ff

), each warp - supposing it is working on data completely di�erent

from the data on which all the other resident warps in the streaming multiprocessor

are working - will have, in average, a quantity of shared memory, for its personal use,

160 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

equivalent to at least 1.5 KB - 1.5 KB correspond to 12 lines of l1 cache.

If we decide to modify a) the fatbin �le of a couple (fatbin �le in S2
Ff

, launch con�gu-

ration in the Slc of the fatbin �le in S2
Ff

), b) the fatbin �le of a quadruplet (fatbin �le

in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

, unrolled path version

of the B part of the fatbin �le in S2
Ff

, an input, of one of the subsets SSi, of inputs

generating the unrolled path version of the B part of the fatbin �le in S2
Ff

) or c) the

original fatbin �le Ffi , then, because we are in case 2, when we analyze the B part of

the fatbin �le, only one of the two following things can be true:

∗ The B part of the fatbin �le already uses the shared memories. If this is true

then, because we are in case 2, this means that the B part of the fatbin �le has

ELF instructions that load/store data/results using the l1 caches of the streaming

multiprocessors - if this would not be the case then we would be in case 1 because if

there would not be ELF instructions, in the B part of the fatbin �le, that load/store

data/results using the l1 caches of the streaming multiprocessors then there would be

only a) ELF instructions that load/store data/results from/to the shared memories

of the streaming multiprocessors to/from the hardware registers of the streaming

multiprocessors and b) ELF instructions that load/store data/results from/to the

shared memories of the streaming multiprocessors to/from the GPU global memory,

and as we know the ELF instructions that load/store data/results from/to the shared

memories of the streaming multiprocessors to/from the GPU global memory always

imply the transfer of data/results from/to on-chip to/from o�-chip and are always

explicit about the quantity of bytes to load/store.

We can therefore further reduce the number of ELF instructions that load/store

data/results using the l1 caches of the streaming multiprocessors substituting them

a) with ELF instructions that load/store data/results from/to the shared memories

of the streaming multiprocessors to/from the hardware registers of the streaming

multiprocessors transfer and b) with ELF instructions that load/store data/results

from/to the shared memories of the streaming multiprocessors to/from the GPU

global memory;

∗ The B part of the fatbin �le does not use the shared memory. In this case too we

can substitute one or more ELF instructions that load/store data/results using the

l1 caches of the streaming multiprocessors a) with ELF instructions that load/store

data/results from/to the shared memories of the streaming multiprocessors to/from

the hardware registers of the streaming multiprocessors and b) with ELF instruc-

tions that load/store data/results from/to the shared memories of the streaming

multiprocessors to/from the GPU global memory.

At the end of this phase a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the

fatbin �le in S2
Ff

) is discarded or we know which warp ELF instructions weils, of each one of the

quadruplets (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

, unrolled

path version of the B part of the fatbin �le in S2
Ff

, an input, of one of the subsets SSi, of inputs

generating the unrolled path version of the B part of the fatbin �le in S2
Ff

) of the set of quadruplets

substituting the couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

), are warp ELF instructions weiit.

12.2. Bandwidths and Latencies of the GPU Memories 161

12.2.8 Slowdowns due to the Bandwidths and the Latencies

If we know which are the warp ELF instructions weiit of a quadruplet (fatbin �le in S2
Ff

, launch

con�guration in the Slc of the fatbin �le in S2
Ff

, unrolled path version of the B part of the fatbin

�le in S2
Ff

, an input, of one of the subsets SSi, of inputs generating the unrolled path version of

the B part of the fatbin �le in S2
Ff

) then, because we know a) from/to which GPU memories the

data/results are loaded/stored and b) the positions of the data/results in the variables, the arrays,

the vectors and the structures in the GPU global memory, we can calculate an upper bound on the

quantity of bytes that the GF100 architecture has to transfer from o�-chip to on-chip and/or from

on-chip to o�/chip for the execution of each warp ELF instruction weiit - the case from o�-chip to

on-chip and from on-chip to o�/chip can happen when, for example, a result, in a hardware register

in a streaming multiprocessor, have to be written in the GPU global memory, but it is necessary

to transfer from o�-chip to on-chip a l1 cache line in the l1 cache of a streaming multiprocessor,

update part of the l1 cache line and transfer back the l1 cache line from on-chip to o�-chip.

Furthermore, for each ELF instruction, that store/load data/results from/to the shared memo-

ries in a streaming multiprocessor to/from the GPU global memory, the positions, of the data/results

to load/store, have always to be consecutive in the shared memories and the GPU global memory.

Some examples about the quantity of bytes that the GF100 architecture has to transfer from

o�-chip to on-chip and/or from on-chip to o�/chip for the execution of some warp ELF instructions

weiit are the following:

• Example1) To load 129 consecutive bytes from the GPU global memory to the l1 cache of a

streaming multiprocessor, the GF100 architecture transfers from o�-chip to on-chip 256 bytes,

this independently of the alignment of the �rst byte to the frontiers of 128 bytes of the GPU

global memory - this happens because a l1 cache line has 128 bytes. The �rst l1 cache line is

transfered for the �rst 128 bytes while the second l1 cache line is transfered for the last byte,

the byte 129;

• Example2) To store 128 consecutive bytes, that are in a l1 cache line in a l1 cache of a

streaming multiprocessor, to consecutive locations in the GPU global memory:

� Possibility1) The 128 bytes will be aligned to one of the frontiers of 128 bytes of the

GPU global memory. In this case the GF100 architecture transfers, from the l1 cache of

a streaming multiprocessor to the GPU global memory, 128 bytes, and therefore for this

case the total quantity of bytes transfered is 128;

� Possibility : 2) The 128 bytes will not be aligned to one of the frontiers of 128 bytes of

the GPU global memory. In this case the GF100 architecture has to a) transfer from the

global memory to the l1 cache of the streaming multiprocessor 2 l1 cache lines, b) update

parts of each one of the 2 l1 cache lines and c) transfer back the 2 l1 cache lines from

the l1 cache of the streaming multiprocessor to the GPU global memory, and therefore

for this case the total quantity of bytes transfered is 128 · 4 = 512.

• Example3) To store 129 consecutive bytes from the shared memory of a streaming multipro-

cessor to the GPU global memory, supposing the position of the �rst of these 129 consecutive

bytes is aligned to one of the frontiers of 128 bytes of the GPU global memory, the GF100

architecture transfers not more than 128 + 128 = 256 bytes. For this case we have two

possibilities:

162 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

� Possibility1) 129 bytes are transfered directly from the shared memory to the GPU

global memory and exactly 129 bytes are transfered from the GF100 architecture. In our

opinion this does not happen. We say this considering a) how works the transfers between

the o�-chip GPU global memory and the on-chip l1 cache memories - the transfers are

done at groups of 128 bytes for the l1 cache - and b) the fact that the 64 KB of memory

of each streaming multiprocessor are con�gurable, from execution to execution, as 48

KB of l1 cache and 16 KB of shared memory or 16 KB of l1 cache and 48 KB shared

memory;

� Possibility2) 129 bytes are transfered directly from the shared memory to the GPU

global memory but because the transfers for the l1 cache are done at groups of 128 bytes

- the dimension in bytes of a l1 cache line - then the data paths used to transfer bytes at

the worst case will be used to transfer the 129 bytes as whether the 129 bytes would be

256 bytes. In our opinion this is what happens considering the fact that the 64 KB of

memory of each streaming multiprocessor are con�gurable, from execution to execution,

as 48 KB of l1 cache and 16 KB of shared memory or 16 KB of l1 cache and 48 KB

shared memory.

If a quadruplet has warp ELF instructions weiit that to write to the GPU global memory has

to a) transfer bytes from the GPU global memory to the l1 caches of the streaming multiprocessors

and b) transfer back some or all the bytes from the l1 caches of the streaming multiprocessors

to the GPU global - see Example2 above for one of these warp ELF instructions - then this is a

problem for a proofs in this subsection. To avoid these problems, we repeat the procedure described

in Choice3 in the previous subsection, this to modify a) the fatbin �le of the quadruplet, or b) the

fatbin �le of the couple originating the quadruplet, or c) the original fatbin �le, to eliminate these

warp ELF instructions weils - this can be done substituting them 1) with warp ELF instructions

that transfers bytes from the GPU global memory to the the shared memories of the streaming

multiprocessors and b) with warp ELF instructions that transfer bytes from the shared memories

of the streaming multiprocessors to the GPU global memory. If the reader does not wish to do

the modi�cations then other di�erent proofs have to be used but these proofs will be discussed in

another place at an another time.

For each warp ELF instruction weiit, of each quadruplet (fatbin �le in S2
Ff

, launch con�guration

in the Slc of the fatbin �le in S2
Ff

, unrolled path version of the B part of the fatbin �le in S2
Ff

,

an input, of one of the subsets SSi, of inputs generating the unrolled path version of the B part

of the fatbin �le in S2
Ff

), of each set of quadruplets, we calculate an upper bound UBweiit
qbt on

the quantity of bytes that the GF100 architecture has to transfer, from/to o�-chip to/from on-

chip, for the execution of the warp ELF instruction weiit. All the upper bounds are calculated

supposing that, the bytes that is necessary to transfer, by the GF100 architecture, from/to o�-chip

to/from on-chip, for the execution of each single warp ELF instruction weiit, are always transfered

in quantities that are multiples of 128 bytes, the dimension in bytes of a l1 cache line - see why we

want this reading the possibility 2 of the Example3 above - and this upper bound is the most tight

possible.

To verify whether the execution of the B part of the fatbin �le of a quadruplet, when the fatbin

�le is executed using the launch con�guration of the quadruplet, for the unrolled path version of

the quadruplet, for the input of the quadruplet, can not be slowed down by the bandwidths and

the latencies of the GPU memories, we need to execute the following procedure on each one of the

12.2. Bandwidths and Latencies of the GPU Memories 163

warp ELF instructions weiit of the quadruplet:

• Step 1. Let us suppose a) that there is a warp w, among the warps W resident in a streaming

multiprocessor, that requires the execution of a warp ELF instruction weiit, b) that the warp

w is scheduled, for the execution of such warp ELF instruction weiit, at the warp scheduler

clock cycle t and c) that, in the same streaming multiprocessor where the warp w is resident,

between the warp scheduler clock cycles between t−W and t, W warp ELF instruction weiit

have been scheduled - this as 1) one warp ELF instruction weiit scheduled per warp or 2)

more than one warp ELF instruction weiit scheduled for some warps and zero warp ELF

instructions weiit scheduled for some other warps. Because we can not know to which ELF

instructions in the B part of a fatbin �le, during the execution of the B part of the fatbin �le,

the warps W, resident in a streaming multiprocessor, are pointing, step 1 is useful because:

� It is the worst case scenario about the number of warp ELF instructions weiit that can

be scheduled in the last W warp scheduler clock cycles in a streaming multiprocessor. A

number of warp ELF instructions weiit equal to W is in fact the maximum number of

warp ELF instructions weiit that can be scheduled in a time span of W warp scheduler

clock cycles because in each streaming multiprocessor there is only one group of 16

load/store function units to execute ELF instructions that load/store data/results - 3.3;

� It is the worst case scenario about the warp scheduler clock cycle when the warp w is

scheduled for the execution of a warp ELF instruction weiit because the last warp ELF

instruction weiit - the last warp ELF instruction weiit is the warp ELF instruction weiit

to execute for the warp w - is scheduled at the warp scheduler clock cycle t instead of

one of the previous warp scheduler clock cycles.

• Step 2. Let us suppose that between the warp scheduler clock cycles t −W and t, also in

each one of the other streaming multiprocessors, W warp ELF instructions weiit have been

scheduled.

Because we can not know to which ELF instructions of the B part of a fatbin �le all the

warps, not only the resident warps in a streaming multiprocessor, are pointing, during the

execution of the B part of the fatbin �le, and therefore which ELF instructions have been

scheduled in the last W warp scheduler clock cycles by the warp schedulers in the streaming

multiprocessors, then, in a time span of W warp scheduler clock cycles, remembering the

procedure, for a single streaming multiprocessor, described in step 1, it is not possible that

more than W warp ELF instructions weiit have been scheduled per streaming multiprocessor

and so that more than a total of S ·W warp ELF instructions weiit have been scheduled in

the whole GPU - S is the number of streaming multiprocessors of the GPU.

Let us also suppose that the data/results that needs to be loaded/stored for the execution of

the warp ELF instruction weiit, scheduled for the warp w, at the warp scheduler clock cycle t,

a) will be the last data/results that will be loaded/stored and b) will be the last data/results,

of all the S ·W warp ELF instructions weiit, that will arrive to the l1 cache of the streaming

multiprocessor, to the shared memory of the streaming multiprocessor or to the GPU global

memory.

• Step 3. We can not determine the total quantity of bytes that is necessary to load/store

for the whole set of S ·W warp ELF instructions weiit because also supposing the window,

164 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

that we make slide on the unrolled path versions of a quadruplet, is enough small to allow

us to determine which warp ELF instructions weiit have been scheduled, in the last W warp

scheduler clock cycles, in the streaming multiprocessor where the warp w is resident, we can

not know which warp ELF instructions weiit have been scheduled, in the last W warp sched-

uler clock cycles, for all the other resident warps in all the other streaming multiprocessors,

this because the starting time di�erences, at global level, are of the order of the millions of

function unit clock cycles, 12.2.2 - one million of function unit clock cycles is equivalent to half

million of warp scheduler clock cycles - and therefore each one of the other warps in the other

streaming multiprocessors could point to any ELF instruction of the B part of the fatbin �le

of the couple, during the execution of the B part of the fatbin �le of the couple.

For this reason, we need to assume we are in the worst case scenario and so that for the

execution of each one of the warp ELF instruction weiit, scheduled in the last W warp

scheduler clock cycles, the GF100 architecture has to transfer, from/to o�-chip to/from on-

chip, the maximum possible quantity of bytes. Among all the upper bounds, on the quantity

of bytes that is necessary for the GF100 architecture to transfer, from/to o�-chip to/from

on-chip, for the execution of each one of the warp ELF instructions weiit, we therefore select

the maximum UBweiit
qbtmax

.

Because UBweiit
qbtmax

is an upper bound, on the quantity of bytes, that the GF100 architecture

transfers, from/to o�-chip to/from on-chip, for the execution of any warp ELF instruction

weiit, an upper bound, on the total quantity of bytes, that the GF100 architecture transfers,

from/to o�-chip to/from on-chip, for the execution of the whole set of S · W warp ELF

instructions weiit, is UBtqbt = S ·W · UBweiit
qbtmax

.

• Step 4. For the discussion that follow a) we consider the GF100 architecture without l2 cache -

12.2.3 - and b) we consider that the bandwidths between the di�erent types of GPU memories

on-chip are greater than the bandwidth between the GPU global memory o�-chip and the l2

cache on-chip.

The maximum latency, in number of warp scheduler clock cycles, for the GPU global memory,

is 400 warp scheduler clock cycles - [50, p. 87] and [56, p. 67] say 800 function unit clock

cycles, [49, p. 47] and [55, p. 57] say 600 function unit clock cycles. Because the maximum

latency, in number of warp scheduler clock cycles, for the GPU global memory, is 400, let us

put ourself in the worst case scenario about the latency and so that the quantity of bytes, that

the GF100 architecture has to transfer from/to o�-chip to/from on-chip for the execution of

each one of the warp ELF instructions weiit, is always facing a latency of 400 warp scheduler

clock cycles and therefore that if a warp ELF instruction weiit is scheduled at the warp

scheduler clock cycle x then the quantity of bytes that the GF100 architecture has to transfer

from/to o�-chip to/from on-chip and/or from on-chip to o�-chip for the execution of the warp

ELF instruction weiit can not being loaded/stored before of the warp scheduler clock cycle

x+ 400.

Knowing the bandwidth in bytes per second used to transfer bytes from/to the o�-chip GPU

global memory to/from the on-chip memories - we know such bandwidth for every GPU model

using the GF100 architecture, for the Tesla C2070 it is 144 GB/s - we calculate the bandwidth

in bytes per warp scheduler clock cycle - Bb/wscc
off−on - to transfer bytes from/to the o�-chip GPU

global memory to/from the on-chip memories.

12.2. Bandwidths and Latencies of the GPU Memories 165

If the execution of other warp ELF instructions weiit, scheduled before the warp scheduler

clock cycle t − W , is not interfering, for the use of the bandwidth used to transfer bytes

from/to o�-chip to/from on-chip, with execution of the warp ELF instructions weiit, scheduled

between the warp scheduler clock cycle t−W and t, then an upper bound on the number of

warp scheduler clock cycles that is necessary at the GF100 architecture to transfer from/to

o�-chip to/from on-chip the total quantity of bytes UBtqbt = S ·W · UBweiit
qbtmax

is UBtqbt
wscc =

400 + d UBtqbt

B
b/wscc
off−on

e.

Considering the upper bound UBtqbt
wscc on the number of warp scheduler clock cycles that is

necessary at the GF100 architecture to transfer from/to o�-chip to/from on-chip the total

quantity of bytes UBtqbt then, if the execution of other warp ELF instructions weiit, scheduled

before the warp scheduler clock cycle t−W , is not interfering, for the use of the bandwidth

used to transfer bytes from/to o�-chip to/from on-chip, with the execution of the warp ELF

instructions weiit, scheduled between the warp scheduler clock cycle t−W and t, the quantity

of bytes that the GF100 architecture has to transfer for the execution of the warp ELF

instruction weiit, of the warp w, scheduled at the warp scheduler clock cycle t, will be a) in

the ll cache of the streaming multiprocessor where the warp w is resident, b) in the shared

memory of the streaming multiprocessor where the warp w is resident or c) in the GPU global

memory, not later than the warp scheduler clock cycle t+ UBtqbt
wscc.

• Step 5. Some of the bytes that the GF100 architecture has to transfer for the execution of

the warp ELF instruction weiit, scheduled at the warp scheduler clock cycle t, for the warp

w, could be used by some other warp ELF instructions in the B part of the fatbin �le of

the couple. This happens when some or all the bytes that the GF100 architecture has to

transfer for the execution of the warp ELF instruction weiit, scheduled at the warp scheduler

clock cycle t, for the warp w, have to be read for the execution of some other warp ELF

instructions - think for example a) to some data, transfered from the GPU global memory

to the l1 cache, that are going to be used for the execution of some warp ELF instructions

or b) some partial results that are transfered from the l1 cache or the shared memory of a

streaming multiprocessor to the GPU global memory but later need to be transfered again

from/to o�-chip to/from on-chip.

Let us a) call weif the �rst of these warp ELF instructions, after the warp ELF instruction

weiit, scheduled at the warp scheduler clock cycle t, for the warp w and b) calculate the

distance Dnwei, in number of warp ELF instructions, between the warp ELF instruction

weiit and the warp ELF instruction weif , in the unrolled path version of the B part of the

fatbin �le of the couple.

At each warp scheduler clock cycle not more than 2 warps can be scheduled in a streaming

multiprocessor. A lower bound, on the number of warp scheduler clock cycles, that has to

pass after the warp scheduler clock cycle t, before the warp w can be considered again for the

scheduling of the warp ELF instruction eif , is therefore LBt1
wscc = DnweibW2 c.

That the execution of other warp ELF instructions weiit, scheduled before the warp scheduler

clock cycle t − W , is not interfering, for the use of the bandwidth, used by the GF100

architecture to transfer bytes from/to o�-chip to/from on-chip, with the execution of the

warp ELF instructions weiit, scheduled between the warp scheduler clock cycle t−W and t,

is important because otherwise the bytes that the GF100 architecture has to transfer for the

166 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

execution of the warp ELF instruction weiit, scheduled at the warp scheduler clock cycle t, for

the warp w, could not be where they need to be - and so a) in the l1 cache of the streaming

multiprocessor where the warp w is resident, b) in the shared memory of the streaming

multiprocessor where the warp w is resident or c) in the GPU global memory - at the warp

scheduler clock cycle t+ LBt1
wscc - we check whether this is the case in step 6.

Supposing there is no interference, if t + LBt1
wscc is equal or greater than t + UBtqbt

wscc then

the bandwidths and the latencies of the GPU memories can not slow down the execution of

the B part of the fatbin �le of the couple, when the fatbin �le is executed using the launch

con�guration of the couple, for any of the input that generates the unrolled path version of

the B part of the fatbin �le of the couple, at cause of the transfer of the bytes necessary for

the execution of the warp ELF instruction weiit, scheduled at the warp scheduler clock cycle

t, for the warp w.

• Step 6. We need to be sure that the execution of other warp ELF instructions weiit, scheduled

before the warp scheduler clock cycle t−W , is not interfering, for the use of the bandwidth,

used by the GF100 architecture to transfer bytes from/to o�-chip to/from on-chip, with the

execution of the warp ELF instructions weiit, scheduled between the warp scheduler clock

cycle t−W and t.

In the unrolled path version of the quadruplet, we determine the distances, in number of warp

ELF instructions, between all the consecutive couples of warp ELF instructions weiit and

among these distances we select the minimum distance mdweiit . Considering the position,

in the unrolled path version of the quadruplet, of the warp ELF instruction weiit, that is

scheduled, as warp ELF instruction, at the warp scheduler clock cycle t, for the warp w, we

know that it is impossible that in the previous mdweiit − 1 warp ELF instructions, in the

unrolled path version of the quadruplet, there are some ELF instructions weiit.

Because at each warp scheduler clock cycle not more than 2 warps can be scheduled in a

streaming multiprocessor, a lower bound, in number of warp scheduler clock cycles, required to

the 2 warp schedulers, resident in the streaming multiprocessor where the warp w is resident,

to move the warp w from the execution of a warp ELF instruction x to a warp ELF instruction

x+mdweiit , is LB
t2
wscc = mdweiitbW2 c and therefore the warp scheduler clock cycle at which

the warp w could have been scheduled for the execution of the warp ELF instruction weiit,

that precede the warp ELF instruction weiit, for which the warp w is scheduled at the warp

scheduler clock cycle t, can not be a warp scheduler clock cycle after the warp scheduler clock

cycle t− LBt2
wscc.

If the execution of other warp ELF instructions weiit, scheduled before the warp scheduler

clock cycle t −W , interferes, for the use of the bandwidth, used by the GF100 architecture

to transfer bytes from/to o�-chip to/from on-chip, with the execution of the warp ELF in-

structions weiit, scheduled between the warp scheduler clock cycle t −W and t, then their

interference can be not greater than the case when all them - the other warp ELF instructions

weiit - are scheduled between the warp scheduler clock cycles t−LBt2
wscc−W and t−LBt2

wscc.

If t − LBt2
wscc + UBtqbt

wscc is equal or smaller than t + 400 then we have the guarantee that

the execution of the warp ELF instructions weiit, scheduled between the warp scheduler

clock cycle t− LBt2
wscc −W and t− LBt2

wscc, is not interfering, for the use of the bandwidth,

used by the GF100 architecture to transfer bytes from/to o�-chip to/from on-chip, with the

12.2. Bandwidths and Latencies of the GPU Memories 167

execution of the warp ELF instructions weiit, scheduled between the warp scheduler clock

cycle t−W and t, and so the bytes transfered for the execution of the warp ELF instruction

weiit, scheduled at the warp scheduler clock cycle t, for the warp w, will be of course a) in

the l1 cache of the streaming multiprocessor where the warp w is resident, b) in the shared

memory of the streaming multiprocessor where the warp w is resident or c) in the GPU global

memory, not later than the warp scheduler clock cycle t+ UBtqbt
wscc and so not later than the

warp scheduler clock cycle t+ LBt1
wscc.

Furthermore, if t−LBt2
wscc +UBtqbt

wscc is equal or smaller than t+ 400 then it is not necessary

to repeat the previous procedure backward till at the beginning of the unrolled path version

of the quadruplet because it is impossible that the execution of previous groups of warp ELF

instructions weiit, scheduled in groups ofW warp scheduler clock cycles as indicated, can make

possible that the bytes, that the GF100 architecture has to transfer from/to o�-chip to/from

on-chip, for the execution of the warp ELF instruction weiit, scheduled at the warp scheduler

clock cycle t, for the warp w, are not, after the warp scheduler clock cycle t+UBtqbt
wscc and so at

the warp scheduler clock cycle t+LBt1
wscc, a) in the l1 cache of the streaming multiprocessor

where the warp w is resident, b) in the shared memory of the streaming multiprocessor where

the warp w is resident or c) in the GPU global memory.

If a warp ELF instruction weiit is scheduled for a warp w resident in a streaming multiproces-

sor at the warp scheduler clock cycle t then, at the warp scheduler clock cycles between t−W

and t− 1, because the proofs consider the worst case scenarios for all the factors involved, it

is not necessary that a) in the same streaming multiprocessor, a warp ELF instruction weiit

has been scheduled at each one of the warp scheduler clock cycles between t−W and t−1 and

b) in each one of the other streaming multiprocessors, a warp ELF instruction weiit has been

scheduled at each one of the warp scheduler clock cycles between t−W and t, and therefore,

without further calculations, if t−LBt2
wscc +UBtqbt

wscc is equal or smaller than t+ 400 then we

get the guarantee that, independently of when the warp ELF instructions weiit of the B part

of the fatbin �le of the quadruplet, the bandwidths and the latencies of the GPU memories

can not slow down the execution of the B part of the fatbin �le of the quadruplet, when the

fatbin �le is executed with the launch con�guration of the quadruplet, for the input of the

quadruplet.

If instead t − LBt2
wscc + UBtqbt

wscc is greater than t + 400 then we can not have the guarantee

that the execution of other warp ELF instructions weiit, scheduled before the warp scheduler

clock cycle t − W , is not interfering, for the use of the bandwidth, used by the GF100

architecture to transfer bytes from/to o�-chip to/from on-chip, with the execution of the

warp ELF instructions weiit, scheduled between the warp scheduler clock cycle t −W and

t, and so the bytes, that the GF100 architecture has to transfer from/to o�-chip to/from

on-chip, for the execution of the warp ELF instruction weiit, scheduled at the warp scheduler

clock cycle t, for the warp w, could not be a) in the l1 cache of the streaming multiprocessor

where the warp w is resident, b) in the shared memory of the streaming multiprocessor where

the warp w is resident or c) in the GPU global memory, at the warp scheduler clock cycle

t+ LBt1
wscc.

If this would be the case then we need to discard the quadruplet because the possibility, that

the bytes, that GF100 architecture has to transfer from/to o�-chip to/from on-chip, for the

execution of the warp ELF instruction weiit, scheduled at the warp scheduler clock cycle t,

168 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

for the warp w, are or not a) in the l1 cache of the streaming multiprocessor where the warp

w is resident, b) in the shared memory of the streaming multiprocessor where the warp w

is resident or c) in the GPU global memory, at the warp scheduler clock cycle t + LBt1
wscc,

depends on factors that we can not know, quantify, choose or force.

If also only one of the warp ELF instructions weiit of a quadruplet does not pass the previous

test, also if the quadruplet could satisfy all the requirements of the subanalysis on the number of

resident warps in each streaming multiprocessor, the execution of the B part of the fatbin �le of

the quadruplet, when the fatbin �le is executed using the launch con�guration of the quadruplet,

for the unrolled path version of the quadruplet, for the input of the quadruplet, could be slowed

down by the bandwidths and the latencies of the GPU memories - there is no really way to know

this.

If for any reason, during the execution of the B part of the fatbin �le of a quadruplet, when

the fatbin �le is executed using the launch con�guration of the quadruplet, for the unrolled path

version of the quadruplet, for the input of the quadruplet, also only one slowdown is generated by

the bandwidths and the latencies of the GPU memories then a) each single slowdown generated by

the bandwidths and the latencies of the GPU memories can generate any other number and type

of slowdowns - slowdowns due to the warp scheduling, slowdowns due to the scheduling waiting

times, slowdowns due to the dependence waiting times and/or slowdowns due to the overhead time

for the management of the warps - and b) each one of the new slowdowns can generate any other

number and type of slowdowns - avalanche e�ect.

If instead all the warp ELF instruction weiit of a quadruplet pass the previous test then we

have the guarantee that, if the quadruplet also satis�es all the requirements of the subanalysis on

the number of resident warps in each streaming multiprocessor, the execution of the B part of the

fatbin �le of the quadruplet, when the fatbin �le is executed with the launch con�guration of the

quadruplet, for the unrolled path version of quadruplet, for any input - not only the input of the

quadruplet - a) considered or not in the analysis A1, b) generating the unrolled path version of the

B part of the fatbin �le of the quadruplet and c) generating an UBweiit
qbtmax

equal or smaller than the

UBweiit
qbtmax

of the quadruplet, can be slowed down a) only by the warp scheduling - that we can not

know, choose or force - and b) that each single slowdown generated by the warp scheduling is not

going to generate any other slowdown.

However, at the beginning of the execution of the B part of the fatbin �le of a quadruplet,

between the warp scheduler clock cycle when all the warps used to execute the fatbin �le are

synchronized and the warp scheduler clock cycle WSCC, the 2 warps schedulers in each one of the

streaming multiprocessors could cycle on a number of warps that is smaller than the number of

warps that is resident in the streaming multiprocessor where the 2 warp schedulers are - case C3

in 9.4.5 - and so to be sure the proofs given about the bandwidths and the latencies of the GPU

memories are correct, if the unrolled path version of the quadruplet satis�es the requirements of

the subanalysis on the bandwidths and the latencies of the GPU memories then we need to modify

the B part of the fatbin �le of the quadruplet introducing, just after the three ELF instruction

used to synchronizes the warps, MDnwei nop - not operation - ELF instructions, this to be sure

that no warp ELF instruction weiit is scheduled before of the warp scheduler clock cycle WSCC

after which we are sure that the 2 warps schedulers in each one of the streaming multiprocessors

are cycling on all the resident warps in the streaming multiprocessor where the 2 warp schedulers

are.

12.3. Number of Resident Warps in Each Streaming Multiprocessor 169

12.3 Number of Resident Warps in Each Streaming Multi-

processor

Each ELF instruction in the B part of the fatbin �le of a quadruplet is using some ELF registers.

Considering the B part of the fatbin �le of a quadruplet, each ELF register of each ELF instruction

has one or more dependence distances equal to the number of ELF instructions, in the unrolled

path version of the quadruplet, between the ELF instruction where the ELF register is used and

the next ELF instruction that uses the register.

For each unrolled path version of a quadruplet, for each ELF register of an ELF instruction,

we create the corresponding couples (instruction con�guration , dependence distance). The ELF

register used as result gives us the dependence distance for the ELF instruction con�guration, of

the ELF instruction, where the ELF register, used as result, of the ELF instruction, has a type of

dependence write-read, while the ELF registers used as operands give us the dependence distances

for the ELF instruction con�guration, of the ELF instruction, where the ELF registers, used as

operands, have a type of dependence read-read.

For each ELF instruction, we therefore retrieve the minimum number of warps minei
wsm

, resident

in a streaming multiprocessor, that is necessary to get the real ELF instruction streaming multipro-

cessor best average performance per clock cycle. To do this we �rst retrieve the minimum of each

couple (instruction con�guration , dependence distance) of the two ELF instruction con�gurations

corresponding to the ELF instruction - two because one is for the dependence type write-read and

the other is for the dependence type read-read but note that if more di�erent ELF registers are

used as operands of the ELF instruction then we have more couples (instruction con�guration ,

dependence distance) with a dependence type read-read - and next we take the maximum -minei
wsm

- of the minimums - the maximum minei
wsm

is the minimum number of warps minei
wsm

, resident in

a streaming multiprocessor, that is necessary to get the real ELF instruction streaming multipro-

cessor best average performance per clock cycle considering at the same time all the dependence

distances of all the dependence types of all the ELF registers used in the ELF instruction.

At this point we take the maximum of the maximums minei
wsm

- we have a maximum minei
wsm

for each one of the ELF instructions in the unrolled path version of the quadruplet. Let us call the

maximum of the maximums min2
wsm

. min2
wsm

is a lower bound on the minimum number of warps

that have to be resident in each streaming multiprocessor, during the execution of the fatbin �le of

the quadruplet, when the fatbin �le is executed using the launch con�guration of the quadruplet, for

the input of the quadruplet, to get the guarantee that the execution of the B part of the fatbin �le

of the quadruplet, when the fatbin �le is executed using the launch con�guration of the quadruplet,

for the input of the quadruplet, can not be slowed down by the scheduling waiting times, the

dependence waiting times and the overhead time for the management of the warps - this supposing

the unrolled path version of the B part of the fatbin �le of the couple satis�es all the requirements

of the subanalysis on the bandwidths and the latencies of the GPU memories.

Because we have calculated two of these types of lower bounds - min1
wsm

in 12.2.6 and min2
wsm

here - we take the maximum - minwsm
= max(min1

wsm
,min2

wsm
) - of the two. minwsm

is the

minimum number of warps that have to be resident in each streaming multiprocessor to get the

guarantee, if the unrolled path version of the B part of the fatbin �le of the quadruplet satis�es also

all the requirements of the subanalysis on the bandwidths and the latencies of the GPU memories,

a) that the execution of the B part of the fatbin �le of the quadruplet, when the fatbin �le is

executed using the launch con�guration of the quadruplet, for the unrolled path version of the

170 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

quadruplet, for the input of the quadruplet, can not be slowed down by the scheduling waiting

times, the dependence waiting times and the overhead time for the management of the warps but

can only be slowed down by the warp scheduling - that we can not know, choose or control - and b)

that each single slowdown generated by the warp scheduling can not generate any other slowdown.

If instead minwsm
is greater than the number of resident warps in a streaming multiprocessor

that we obtain, using the launch con�guration of the quadruplet, for the execution of the B part of

the fatbin �le of the quadruplet, for the unrolled path version of the quadruplet, for the input of the

quadruplet, then the execution of the B part of the fatbin �le of the quadruplet, when the fatbin

�le is executed using the launch con�guration of the quadruplet, for the unrolled path version of

the quadruplet, for the input of the quadruplet, could be slowed down by the scheduling waiting

times, the dependence waiting times and the overhead time for the management of the warps. Each

single slowdown of one of these three types could generate any other number and type of one of

these three types of slowdowns and wrap scheduling slowdowns and each one of the new slowdowns

generated could originate further slowdowns of one of these four types - avalanche e�ect - but if the

quadruplet satis�es all the requirements of the subanalysis on the bandwidths and the latencies of

the GPU memories then it is impossible for any of the slowdowns, due to the warp scheduling, the

scheduling waiting times, the dependence waiting times and the overhead time for the management

of the warps, to generate slowdowns due to the bandwidths and the latencies of the GPU memories.

The reader could notice that when we quanti�ed the dependence waiting times, the scheduling

waiting times and the overhead time for the management of the warps for each ELF instruction of

interest we used several fatbin �les - 7.4 - but that each one of them have only one type of ELF

instruction con�guration in the single for loop in the B part of each one of the fatbin �les - this if

we exclude the three ELF instructions to check whether it is necessary to iterate on the for loop.

The reader could therefore ask how it possible that we can generalize the quanti�cations of the

scheduling waiting times, the dependence waiting times and the overhead time for the management

of the warps to fatbin �le that in their B parts can be very di�erent from the fatbin �les used in 7.

Each ELF instruction requires a given number of hardware resources to be executed. Some of

these hardware resources are visible in the human readable text form representation of the ELF

instruction while others no - think, for example, to the group or to the groups of function units that

can be used to execute a warp ELF instruction or at the case when an ELF instruction requires the

use of some not disclosed hardware resources di�erent from the special registers that sometimes are

visible in the human readable text form representations of the ELF instructions.

The values of the scheduling waiting times, the dependence waiting times and the overhead

time for the management of the warps are the worst possible for each one of the ELF instruction

con�gurations considered in 7. This is true because the ELF instruction con�gurations, in the for

loop, of the B part, of each one of the fatbin �les, used in 7, to quantify the scheduling waiting

times, the dependence waiting times and the overhead time for the management of the warps of

an ELF instruction, are the same - this if we exclude the three ELF instructions to check whether

it is necessary to iterate on the for loop - and so - excluded the ELF registers, that are visible in

the human readable text form representation of each one of the ELF instruction con�gurations,

and that each one of the ELF instruction con�gurations could have di�erent - each one of the ELF

instruction con�gurations in the for loop of a single fatbin �le requires the use of the same hardware

resources when singularly executed.

When we have a fatbin �le with many di�erent ELF instructions in its B part, independently of

which ELF instructions in its B part the resident warps in a streaming multiprocessor are pointing,

12.4. Summary 171

the set of hardware resources - di�erent from the hardware registers that correspond to the ELF

registers - necessary to execute the 2 warp ELF instructions of the maximum of 2 warps that can

be scheduled by the 2 warp schedulers at a warp scheduler clock cycle, can give only three cases: 1)

the sets of hardware resources required for the execution of each one of the 2 warp ELF instructions

are completely di�erent, 2) the sets of hardware resources required for the execution of each one

of the 2 warp ELF instructions have an intersection that is not empty, 3) the sets of hardware

resources required for the execution of each one of the 2 warp ELF instruction are the same.

For all the fatbin �les in 7 we are in case 3. Case 3 is the worst case that we can have for the

reuse of the hardware resources used to execute a warp ELF instruction and so the worst case for

the quanti�cations a) of the scheduling waiting times, b) the dependence waiting times and c) the

overhead time for the management of the warps. The reason why case 3 is the worst case, it is due

to the fact that all the hardware resources - at exclusion of the hardware registers that correspond

to the ELF registers - used for the execution of a warp ELF instruction, have to be used for the

execution of the next warp ELF instruction. For this reason, the quanti�cations of the scheduling

waiting times, the dependence waiting times and the overhead time for the management of the

warps got in 7 are all upper bounds for each one of the ELF instruction con�gurations. Consid-

ering also that a) the quanti�cation about the minimum number of resident warps in a streaming

multiprocessor, necessary to get the real ELF instruction con�guration streaming multiprocessor

best average performance per clock cycle, for each dependence distance of each ELF instruction

con�guration, is always determined considering, at the same time, the in�uence of all three these

concurrent factors - the warp scheduling time, the dependence waiting time and the overhead time

for the management of the warps - b) that we are always using the values that these three factors

have for the dependence distance of the ELF instruction con�guration and c) that each of these

three factors can not be greater than what it was - this because we are in case 3 and therefore

each one of their quanti�cations for each one of the dependence distances of each one of the ELF

instruction con�gurations is always an upper bound - then, because 1) we execute the subanalysis

on the number of resident warps in each streaming multiprocessor using minwsm
and 2) we execute

the subanalysis on the bandwidths and the latencies of the GPU memories considering that all the

warps, used for the execution of the B part of the fatbin �le of a quadruplet, could point to any ELF

instructions in the B part of the fatbin �le of a quadruplet - this also whether we know that, when

the quadruplet satis�es all the requirements of the analysis A1, at least all the resident warps in the

same streaming multiprocessor are always not more distant than MDnwei warp ELF instructions -

we are sure that cases worst of those present during the execution of the B part of the fatbin �les

used in 7 can never happen during the execution of B parts of fatbin �les with many di�erent ELF

instructions.

12.4 Summary

In this chapter we have described the procedures that it is necessary to execute to verify whether

a couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) satis�es all

the requirements of the analysis A1. We can distinguish two cases:

• A couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) satis�es

all the requirements of the analysis A1. In this case we give an a priori ELF code shortest

execution time guarantee for the execution of the B part of the fatbin �le of the couple, when

172 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

the fatbin �le of the couple is executed using the launch con�guration of the couple, for any

input a) considered or not in the analysis A1, b) generating one of the unrolled path versions

- 12.2.7 - generated by the inputs of the set Si of inputs - 12.2.7 - and c) with a UBweiit
qbtmax

-

12.2.8 - smaller or equal of the greatest UBweiit
qbtmax

of the unrolled path versions generated by

the inputs of the set Si of inputs;

• A couple (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

) does

not satisfy all the requirements of the analysis A1. In this case it could be that some of the

quadruplets (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

,

unrolled path version of the B part of the fatbin �le in S2
Ff

, an input, of one of the subsets

SSi, of inputs generating the unrolled path version of the B part of the fatbin �le in S2
Ff

) -

12.2.7 - generated to analyze the couple (fatbin �le in S2
Ff

, launch con�guration in the Slc

of the fatbin �le in S2
Ff

), satisfy all the requirements of the analysis A1. If this is the case

then the quadruplets satisfying all the requirements of the analysis A1 can be subdivided in

subsets, a subset for each di�erent unrolled path version of the quadruplets. In each subset

one or more quadruplets have the greatest UBweiit
qbtmax

. For any input a) considered or not in

the analysis A1 and b) generating an unrolled path version of the B part of the fatbin �le of

the couple that 1) is an unrolled path version representing one of the subsets of quadruplets

generated using the inputs of the set Si of inputs and 2) has a UBweiit
qbtmax

, for the input, smaller

or equal than the greatest UBweiit
qbtmax

of the subset with the unrolled path version equal to the

unrolled path version generated by the input, we give an a priori ELF code shortest execution

time guarantee;

The more important points to remember from this chapter are the followings:

• If a quadruplet satis�es all the requirements of the analysis A1 then, also we can not know

to which ELF instructions, in the B part of the fatbin �le of the quadruplet, the resident

warps in a streaming multiprocessor are pointing during the execution of the B part of the

fatbin �le, when the fatbin �le is executed using the launch con�guration of the quadruplet,

for the unrolled version of the quadruplet, for the input of the quadruplet, we prove that the

leading warp or the leading subset of resident warps in a streaming multiprocessor can not

be more distant than MDnwei warp ELF instructions from the last warp or the last subset

of resident warps in the same streaming multiprocessor, this for almost the whole execution

of the B part of the fatbin �le - the beginning and the ending are excluded because not all

the resident warps in a streaming multiprocessor start and �nish together but instead some

warps will start �rst of others and will �nish �rst of others.

MDnwei depends on a) the set Sdd of dependence distances of the fatbin �le of the quadruplet

and b) the launch con�guration of the quadruplet - the launch con�guration determines the

number of resident warps in each streaming multiprocessor during the execution of a fatbin

�le. Considering the results got for the starting time di�erences in 7 MDnwei can go from a

minimum of 0 to a maximum of 74 - 74 can be reached when there are 32 resident warps in

a streaming multiprocessor;

• If a quadruplet satis�es all the requirements of the analysis A1 then, also whether we can not

know to which ELF instructions in the B part of the fatbin �le of the quadruplet, the resident

warps in a streaming multiprocessor are pointing during the execution of the B part of the

fatbin �le, when the fatbin �le is executed using the launch con�guration of the quadruplet,

12.4. Summary 173

for the unrolled version of the quadruplet, for the input of the quadruplet, we prove that, for

almost the whole execution of the B part of the fatbin �le, if there is a number of resident

warps in each streaming multiprocessor greater than min1
wsm

- min1
wsm

depends on the ELF

instructions in the unrolled path version of the quadruplet - the value of the distance, in

number of warp ELF instructions, between the 2 warps of each possible couple of resident

warps in a streaming multiprocessor, is going to oscillate not more than plus minus 2 around

the value that the distance of the couple has at the �rst warp scheduler clock cycle when

all the resident warps in the streaming multiprocessor have been scheduled at least one time

after their synchronization at the beginning of the B part of the fatbin �le;

• Knowing that, if a quadruplet satis�es all the requirements of the analysis A1 then the leading

warp or the leading subset of resident warps in a streaming multiprocessor can not be more

distant than MDnwei warp ELF instructions from the last warp or the last subset of resident

warps in the same streaming multiprocessor, this for almost the whole execution of the B

part of the fatbin �le of the quadruplet, when the fatbin �le is executed using the launch

con�guration of the quadruplet, for the unrolled path version of the quadruplet, for the input

of the quadruplet, we explain a) how to determine the warp ELF instructions weiit, in the

unrolled path version of the quadruplet, that imply the transfer of bytes from o�-chip to on-

chip and/or from on-chip to o�-chip during the execution of the B part of the fatbin �le of the

quadruplet, when the fatbin �le is executed with the launch con�guration of the quadruplet,

for the unrolled path version of the quadruplet, for the input of the quadruplet and b) what

to do if instead these warp ELF instructions weiit can not be determined because they could

be di�erent by execution to execution of the B part of the fatbin �le of the quadruplet, when

the fatbin �le is executed with the launch con�guration of the quadruplet, for the unrolled

path version of the quadruplet, for the input of the quadruplet.

• Knowing the warp ELF instruction weiit, in the unrolled path version of the quadruplet, that

imply the transfer of bytes from o�-chip to on-chip and/or from on-chip to o�-chip during the

execution of the B part of the fatbin �le of the quadruplet, when the fatbin �le is executed with

the launch con�guration of the quadruplet, for the unrolled path version of the quadruplet,

for the input of the quadruplet, we prove whether the execution of the B part of the fatbin

�le of the quadruplet, when the fatbin �le is executed with the launch con�guration of the

quadruplet, for the unrolled path version of the quadruplet, for the input of the quadruplet,

can not be slowed down by the bandwidths and the latencies of the GPU memories;

• If a quadruplet satis�es all the requirements of the subanalysis on the bandwidths and the

latencies of the GPU memories then, knowing the number of resident warps in each stream-

ing multiprocessor for the execution of fatbin �le of the quadruplet, when the fatbin �le is

executed using the launch con�guration of the quadruplet, for the unrolled path version of

the quadruplet, for the input of the quadruplet, we prove whether the execution of the B

part of the fatbin �le of the quadruplet, when the fatbin �le is executed with the launch

con�guration of the quadruplet, for the unrolled path version of the quadruplet, for the input

of the quadruplet, can not be slowed down by the scheduling waiting times, the dependence

waiting times and the overhead for the management of the warps.

In the next chapter we explain a) how with this thesis we have solved several challenges that

nobody - at the best of our knowledge - had solved or addressed in papers in literature, and b)

174 Chapter 12. Guaranteeing A Priori ELF Code Shortest Execution Times

because in our opinion it is important that we have addressed and solved these challenges.

Chapter 13

Contributions of the Thesis

13.1 Introduction

In the previous chapter we have described the analysis A1 and explained what it is necessary for a

quadruplet (fatbin �le in S2
Ff

, launch con�guration in the Slc of the fatbin �le in S2
Ff

, unrolled

path version of the B part of the fatbin �le in S2
Ff

, an input, of one of the subsets SSi, of inputs

generating the unrolled path version of the B part of the fatbin �le in S2
Ff

) to satisfy all the

requirements of the analysis A1 and so allowing us to give an a priori ELF code shortest execution

time guarantee for the execution of the ELF code, of the B part, of the fatbin �le, of the quadruplet,

when the fatbin �le is executed using the launch con�guration of the quadruplet, for any input -

not only the input of the quadruplet - a) considered or not in the analysis A1, b) generating the

unrolled path version of the B part of the fatbin �le of the quadruplet - 12.2.7 - and c) generating

an UBweiit
qbtmax

equal or smaller than the UBweiit
qbtmax

of the quadruplet - 12.2.8.

In the this chapter we explain a) how with this thesis we have solved several challenges that

nobody - at the best of our knowledge - had solved or addressed in papers in literature, and b)

because in our opinion it is important that we have addressed and solved these challenges.

In 13.2 we explain because it was important to reverse engineer the real ISA and being able to

modify ELF codes to get the wanted ELF algorithmic implementations - for a greater quantity of

details see the summary of 6 and 6. We describe in 13.2.1 how we are able to localize in a fatbin

�le - see 2.3 to understand what it is a fatbin �le - the ELF code that corresponds to the PTX code

- see 2.2 for the de�nition of PTX - given in input to nvcc - see 2.3 to understand what it is nvcc.

Next in 13.2.2 we explain because it is important to use the editing rules that we have given to force

nvcc to generate fatbin �les. We therefore talk in 13.2.3 of the PTX-ELF correspondences that we

have discovered between PTX and ELF instructions. In 13.2.4 we instead give an explanation of

because it was important to reverse engineer the real instruction set architecture and we explain

that we have found that the real instruction set architecture is not at �xed format but that this

is not a problem because we have successfully reverse engineered the binary code of each possible

ELF instruction we need to modify any fatbin �le. In 13.2.5, we explain that thanks to these results

we are now able to get any wanted ELF algorithmic implementation we want executed by a GF100

architecture.

In 13.3 we explain because it was important to discover, understand and quantify some not

disclosed GPU behaviors. We start talking of the importance that the B parts of the fatbin �les

- used for the discoveries, the understanding and the quanti�cations of the not disclosed GPU

175

176 Chapter 13. Contributions of the Thesis

behaviors - are generated in speci�c ways - the B part of a fatbin �le, 6.6, is the part of the fatbin

�le that is composed by the ELF code that corresponds to the PTX code given in input to nvcc.

In 13.3.1 we explain what we have discovered about the advancement of the resident warps in a

streaming multiprocessor - see 3.2 to understand what it is a warp and 3.3 to understand what it is a

streaming multiprocessor. Next in 13.3.2 we explain what it is necessary to do to get the guarantee

that the gigathread scheduler is going to evenly distribute to the streaming multiprocessors the

GPU thread blocks used to execute the B part of a fatbin �le. We therefore talk in 13.3.3 of what it

is necessary to do to avoid warp scheduling load unbalancing in a streaming multiprocessor. Finally

in 13.3.4 we talk of the importance of the discovery, understanding and quanti�cation - see 7.5.2

- of the following local streaming multiprocessor PTX and ELF architectural features: a) the real

instruction con�gurations streaming multiprocessor best average performance per clock cycle of the

PTX and ELF instruction con�gurations - see 2.6 for the de�nition of instruction con�guration - b)

the scheduling waiting times of the ELF instruction con�gurations - see 7.5.2 for the de�nition of

scheduling waiting time - c) the dependence waiting times of the ELF instruction con�gurations -

see 7.5.2 for the de�nition of dependence waiting time - d) the overhead time for the management of

the warps and e) the minimum number of resident warps necessary in a streaming multiprocessor

to get the real instruction con�guration streaming multiprocessor best average performance per

clock cycle of each ELF instruction con�guration for each dependence distance - see 2.6.2 for the

de�nition of dependence distance.

In 13.4 we explain because it is important a) to transform an original fatbin �le, that we want

to optimize, in a set of fatbin �les equivalent to the original fatbin �le - 8.4 - and b) to generate a

set of launch con�gurations for each one of the fatbin �les generated - see 8.3 for the procedure and

2.5 for the de�nition of launch con�guration - to increase the probability to get shorter execution

times for the B parts of the fatbin �les generated - this compared to the execution times that the

reader would get if he/she would execute only the B part of the original fatbin �le with a launch

con�guration of his/her choice.

In 13.5 we explain because it is important to analyze a fatbin �le considering several things.

In 13.5.1 we explain that some of the previous things determine the position of the fatbin �le in

a taxonomy for fatbin �les that we have created - 10. In 13.5.2 we explain that the position of

a fatbin �le in the taxonomy is one of the two things that determine the analysis/analyses - the

empirical one and/or the theoretical one, see 11 - that can be executed on the fatbin �le. Finally in

13.5.3 we explain that it is possible, executing the theoretical analysis that we have devised - 12 -

to give an a priori ELF code shortest execution time guarantee for the execution of the ELF code

of the B part of a fatbin �le.

13.2 Real ISA and ELF Codes

To be able to get the wanted ELF algorithmic implementations it is necessary to reverse engineer

several aspects of the GF100 architecture. Being able to get the wanted ELF algorithmic imple-

mentations is important because if we can only use CUDA or PTX to edit code then nvcc can each

time completely ruin the modi�cations and/or transformations that we apply to a fatbin �le during

the optimization process - the modi�cations and/or transformations have as goal the reduction of

the execution time of the ELF part/parts of the fatbin �le that will be executed by the target GPU

for which the fatbin �le has been compiled.

13.2. Real ISA and ELF Codes 177

13.2.1 Localization in Fatbin Files of the ELF Instructions Necessary to

Execute the PTX Instructions of PTX Codes

We are not able to �nd in literature any paper that shows or studies the structure of the fatbin

�les generated as output by nvcc. We have found that also in the simplest case when we give in

input to nvcc �les without code that has to be executed by the CPU - PTX �les for example - the

fatbin �les produced by nvcc - fatbin �les that therefore contain only code that is executed by the

GPU - have many more ELF instructions of the ELF instructions generated by the procedure of

transformation of the PTX code in ELF code. We know this because analyzing the interpretation

text �les generated by cuobjdump - a NVIDIA tool able to "interpret a fatbin �le" - we have found

that the number of ELF instructions in the interpretation text �les times 8 - the number of bytes

of each ELF instruction - is always smaller than the dimension in bytes of the fatbin �le - 6.2.

We devised a robust procedure - 6.2 - able to always individuate in a fatbin �le the ELF instruc-

tions generated by the procedure of transformation of the PTX code, thing not easy because a) the

real instruction set architecture is not disclosed and b) cuobjdump in reality shows a permutation

of the 8 bytes of each one of the ELF instructions generated by the procedure of transformation of

the PTX code - we discovered this because searching in any fatbin �le the binary codes showed by

cuobjdump we were not able to �nd them.

Being able to understand the real position of the bytes, of the binary codes showed by cuobj-

dump, in the binary code of each ELF instruction, is important to be able to individuate in which

part of the fatbin �le are the ELF instructions generated by the procedure of transformation of

the PTX code - this is the part of the fatbin �le that we have de�ned as the B part and that is

composed only from the ELF instructions a) generated by the procedure of transformation of the

PTX code and b) visible in the interpretation text �le generated by cuobjdump for the fatbin �le,

6.6.

Being able to individuate the B part of a fatbin �le it is instead important to be able to modify

the B part of the fatbin �le to get the wanted ELF algorithmic implementation.

13.2.2 Editing Rules to Force Nvcc

NVIDIA does not allow to users to write in the assembly - the ELF, see 2.3 - executed by the GPU.

When we write a PTX code, the ELF code - corresponding to the PTX code - executed by the

GPU, is usually very di�erent by the PTX code a) for number, order and type of instructions and

b) for number, type and reuse of registers - 6.1. The fact that the ELF code, corresponding to a

PTX code, is very di�erent from the PTX code, it is usually - for not saying pretty much always -

overlooked in the papers in literature - this happens for papers considering CPUs too.

If the analyses of a code, that has to be executed on a machine, are based on something of

di�erent from the assembly representation of the code that has to be executed on the machine, then

the analyses are usually meaningless and not correct because the assembly representation of the code

executed by the machine - CPU or GPU - is usually very di�erent from the higher representation

of the code written by an user, while for the few cases when the assembly representation of the

code executed by the machine - CPU or GPU - is mirroring the higher representation of the code

written by an user a) for number, order and type of instructions and b) for number, type and reuse

of registers, the results are not generalizable - you could get a completely di�erent assembly code

1) changing the version of the compiler, 2) changing the compiler, 3) changing the value of any of

the �ags used to compile the code, 4) adding/removing some of the �ags, 5) changing the drivers

178 Chapter 13. Contributions of the Thesis

of the part of the machine where has to be executed the assembly code, 6) changing the version of

the operative system of the machine or 7) changing the operative system of the machine.

The �rst thing to do it is therefore to base any analysis of any code to execute on a machine on the

assembly representation of the code that has to be executed on the machine. The second thing to do,

in the case it is not possible to edit the code using the assembly of the machine - as it happens in our

case - it is a) to force the compiler to generate the wanted assembly algorithmic implementation or

b) to force the compiler to generate an assembly �le with at least the minimum number of resources

later necessary to modify the assembly �le to get the wanted assembly algorithmic implementation.

We are not able, at this moment, to force nvcc to generate the wanted ELF algorithmic imple-

mentation, this because a) the nvcc code is not open and b) we believe that also if we could be

able to do that then it would be hard to generalize the results to other versions of nvcc. For the

last reason, we therefore believe it is better to force nvcc to generate a fatbin �le with at least the

minimum number of resources later necessary to modify the fatbin �le to get the wanted ELF algo-

rithmic implementation. This, in our opinion, is an easier - but however di�cult goal - compared

to that of forcing nvcc to generate a fatbin �le with the wanted ELF algorithmic implementation -

thing that would be however hardly generalizable, as explained.

Anyway, we need however to force nvcc to generate fatbin �les with at least the minimum

number of resources later necessary to modify the fatbin �les, this because in the interpretation

text �les produced by cuobjdump a) there are not the ELF instructions necessary to declare the

ELF registers, 6.6 - this also whether we need to write the PTX instructions, in the PTX codes,

to declare the PTX registers that later will get some corresponding ELF registers - and b) there

are not ELF or not ELF instructions assigning hardware registers to the ELF registers, 6.6. Not

having way to know a) which are such - ELF or not ELF - instructions and b) where they are in

the other A and C parts of the fatbin �les di�erent from the B parts that are composed by the

consecutive ELF instructions generated by nvcc to execute the PTX codes - this because the real

instruction set architecture is not disclosed and cuobjdump does not interpret such instructions

that are not with all the others that it instead interprets in the fatbin �le - we need always to

force nvcc to generate fatbin �les with at least the minimum number of resources later necessary to

modify the fatbin �les, this because, considered what said, we can not force nvcc to give us exactly

the resources we want - for example the ELF registers R2 and R10 - or generate the procedure of

assignment of the hardware registers to the ELF registers, but we can force nvcc to give us at least

the minimum number and type of ELF registers we want and we can force nvcc to generate the

procedure of assignment of the hardware registers to the ELF registers - also whether we do not

know which it is - and later use the resources assigned by nvcc to the fatbin �le - for example the

ELF registers R37 and R49 instead of the ELF registers R2 and R10 that have not been assigned

to the fatbin �le - to modify the fatbin �le to get the wanted ELF algorithmic implementation,

wanted ELF algorithmic implementation that will not crash because a) to modify the fatbin �le

we have used only resources assigned to the fatbin �le and b) there is no jump, in the part of the

fatbin �le interpreted by cuobjdump - the B part - to some other parts of the fatbin �le di�erent

from the B part, and therefore independently of which can be the procedure of assignment of the

hardware registers to the ELF registers, when the control is passed to the beginning of the part of

the fatbin �le interpreted by cuobjdump - the B part - the part is executed in its wholeness, using

only the resources assigned by nvcc to the B part of the fatbin �le.

We give a set of guidelines to force nvcc to generate fatbin �les with at least the minimum

number of resources later necessary to modify the fatbin �les to get the wanted ELF algorithmic

13.2. Real ISA and ELF Codes 179

implementations -6.3.1. Our set of guidelines is based on the assumptions that nvcc, when compiles a

PTX �le, a1) tries to save as many registers as possible, a2) does not remove 2 PTX synchronization

barriers if there are some useful PTX instructions between the 2 PTX synchronization barriers and

a3) transform the PTX instructions between each couple of PTX synchronization barriers in ELF

instructions that will be between the 2 ELF synchronization barriers that correspond to the couple

of PTX synchronization barriers that contains the PTX instructions However, because we can not

know whether the assumptions are really true in reality - this because the nvcc code is not open -

we always check that this is in fact the case each time a fatbin �le is generated, 6.3.2 - this is done

checking the structure of the PTX �le given in input to nvcc and the structure of the part of fatbin

�le that corresponds to the PTX instructions transformed in ELF instructions, in other words the

part of the fatbin �le that is interpreted by cuobjdump, the B part of the fatbin �le.

In out situation the code of our compiler - nvcc - is not open, but also supposing the code of a

generic compiler would be open, usually people do not spend time to study a compiler code to force

the compiler to generate the wanted assembly algorithmic implementations a) because it is very

time consuming and b) because it would be hard to generalize the results to other versions of the

same or a di�erent compiler in the same or a di�erent environment - operative system, hardware

architecture, drivers, etc. . The only other possible choice, in this case too, it would be therefore

to force the compiler to generate an assembly �le with the minimum number and type of resources

later necessary to modify it to get the wanted assembly algorithmic implementation.

If the people writing compilers can give a simple function to generate assembly �les with a given

number and type of resources then that would be great, if not, users can simply implement our

procedure for another machine, this because our procedure works for any version of any compiler -

CPU or GPU - with or not open code, in any environment, but if the real instruction set architecture

is not know - this means that we do not know the binary codes of the assembly instructions and

which bits in the binary code of an assembly instruction represent what - then there has to be a tool -

as cuobjdump - that returns an interpretation text �le where we can at least read an human readable

text form representation of the assembly instructions - for example ADD.B32 R34, R5, R17.

We are not able to �nd in literature any paper that gives editing guidelines to write PTX codes

in such way to force nvcc to generate fatbin �les with at least a wished minimum number and type of

resources. Considering the importance of this also in the more general case we hope people writing

compilers consider the possibility of making available to users functions to generate assembly �les

with the wished minimum number and type of resources.

13.2.3 PTX-ELF Correspondences

The real instruction set architecture is not disclosed so to be able to modify the B parts of fatbin

�les to get the wanted ELF algorithmic implementations it is necessary to understand in which ELF

instructions is transformed each single PTX instruction, in which order are such ELF instructions

and which ELF registers in such ELF instructions correspond to which PTX registers in the single

PTX instructions.

We use the set of guidelines - 6.3.1 - to generate a series of fatbin �le - a fatbin �le per single

PTX instruction of interest. The same set of guidelines that allows us to generate fatbin �les

with at least a minimum number and type of resources allows us also to understand, analyzing the

interpretation text �le of a fatbin �le generated giving in input to nvcc a PTX �le edited following

the editing guidelines, a) which ELF instruction/instructions are used to execute each single PTX

180 Chapter 13. Contributions of the Thesis

instruction, 6.3.2 - there are many single PTX instructions that are transformed in set of consecutive

ELF instructions - b) which ELF register correspond to a PTX register of the PTX code used to

generate the fatbin �le - 6.3.3 - and c) whether there are some ELF registers, used in the ELF

instruction/instructions used to execute each single PTX instruction, without corresponding PTX

register in the single PTX instruction - 6.3.3.

Understanding these things is important because when we modify the B parts of the fatbin

�les - 6.7 - for each PTX instruction we want to transform in the ELF executed by the GPU, we

need a) to associate the PTX registers - for example %reg3, %reg4 and %reg5 - used in the PTX

instruction - for example a mul.s32 PTX instruction - in our PTX code, with the original PTX

registers - for example %result, %operand1 and %operand2 - used in the PTX instruction when we

extracted the PTX instruction, b) to understand which ELF registers in our fatbin �le generated

for our PTX code correspond to the PTX registers used in the PTX instruction in our code - for

example R27 for %reg3, R34 for %reg4 and R47 for %reg5 - c) to build the human readable text

form representation/representations of the ELF instruction/instructions necessary to execute the

PTX instruction, taking care to substitute the original ELF registers - for example R23, R27 and

R59 - that corresponds to the original PTX registers - %result, %operand1 and %operand2 - with

the ELF registers of our fatbin �le - R27, R34 and R47 - that correspond to the PTX registers of

our PTX instruction - %reg3, %reg4 and %reg5 - d) to take care to use some of the ELF registers

of our fatbin �le if in the ELF instruction/instructions necessary to execute the PTX instruction

there are some original ELF registers without corresponding original PTX register in the original

PTX instruction, and e) �nally retrieve the binary codes/codes of the human readable text form

representation/representations, of the ELF instruction/instructions, so built.

Considering the complexity of the GPUs we can not exclude that the same PTX instruction,

using the same PTX registers, in the same roles in the PTX instruction, can be transformed by

nvcc in a di�erent number and type of ELF instructions that depend on the following 5 things: a)

the NVIDIA drivers and their versions, b) the version of nvcc, c) whether the code is compiled for

32 bits or 64 bits, d) which has to be the PTX version of the intermediate PTX �les generated by

nvcc for the generation of the output fatbin �le, e) for which GPU architecture has to be produced

the output fatbin �le and f) the operative system running on the CPU and its version.

For this reasons, 1) our framework is able to �nd the PTX-ELF correspondences of any of the

speci�c GPUs using the GF100 architecture - this for each one of the possible combinations of

values of the previous 5 things - and 2) independently of which GPU architecture the Kepler GPUs

use - equal or di�erent from the GF100 architecture - the framework is able to �nd the PTX-ELF

correspondences of any speci�c Kepler GPU - this is possible because cuobjdump is supported also

for Kepler GPUs.

We are not able to �nd any paper in literature where are indicated the PTX-ELF correspon-

dences but such correspondences are important to understand how we need to modify the B part of

a fatbin �le to get the wanted ELF algorithmic implementations, with the right ELF instructions

necessary to execute each PTX instruction, with the right ELF registers in their di�erent roles in

each one of the ELF instructions and with the right dependences among ELF registers used in the

ELF instructions - see 6.4 for further details.

13.2. Real ISA and ELF Codes 181

13.2.4 Reverse Engineering of the Real Instruction Set Architecture

We are not able to �nd in literature any paper that reverse engineers the real instruction set

architecture used by the GF100 architecture. We reverse engineer the real instruction set used by

the GF100 architecture - 6.5 - because it is important a) to understand some details of the GF100

architecture and b) to be able to modify the B parts of the fatbin �les to get the wanted ELF

algorithmic implementations.

Having reverse engineered the real instruction set architecture used by the GF100 architecture

and knowing the human readable text form representations of the ELF instructions we want the

GPU executes, we can retrieve or generate the binary codes corresponding to the human readable

text form representations of the ELF instructions that we want the GPU executes and overwrite

the B parts of the fatbin �les that we know correspond to the PTX codes given in input to nvcc.

Considering the complexity of the GPUs we can not exclude that the same ELF instruction,

using the same ELF registers, in the same roles in the ELF instruction, can be transformed by nvcc

in di�erent binary codes that depend on the following 5 things: a) the NVIDIA drivers and their

versions, b) the version of nvcc, c) whether the code is compiled for 32 bits or 64 bits, d) which has

to be the PTX version of the intermediate PTX �les generated by nvcc for the generation of the

output fatbin �le, e) for which GPU architecture has to be produced the output fatbin �le and f)

the operative system running on the CPU and its version.

For this reasons, as already previously said, 1) our framework is able to �nd the PTX-ELF

correspondences of any of the speci�c GPUs using the GF100 architecture - this for each one of

the possible combinations of values of the previous 5 things - and 2) independently of which GPU

architecture the Kepler GPUs use - equal or di�erent from the GF100 architecture - the framework

is able to �nd the PTX-ELF correspondences of any speci�c Kepler GPU - this is possible because

cuobjdump is supported also for Kepler GPUs.

We have found that the real instruction set architecture has not a �xed format. For each ELF

instruction we now know which groups of bits in the 8 bytes that represent the binary code of

the ELF instruction correspond to which of the ELF registers that appear in the human readable

text form representation of the ELF instruction. For example, for the human readable text form

representation of the ELF instruction @P0 SET.B32.GT P1, pt, R5, R37, pt, we know which bits

allow us to modify the normal predicate ELF registers P0 and P1 and the special predicate ELF

register pt, and which bits allow us to modify the normal not predicate ELF registers R5 and R37.

All the bits that do not modify any of the ELF registers that appear in the human readable text

form representation of an ELF instruction are instead considered necessary to generate the ELF

instruction.

13.2.5 Getting the Wanted ELF Algorithmic Implementations

If a) we can not write in the assembly executed by the machine or b) we can not force the compiler

to generate the wanted assembly algorithmic implementation or c) we can not modify the assembly

code produced by the compiler to get the wanted assembly algorithmic implementation, then all our

e�orts in editing code could be useless because usually the assembly code generated by a compiler

is very di�erent from the higher code edited by an user and this is usually true not only for GPUs

but also for CPUs.

We are not able to �nd in literature any paper showing how to get the wanted ELF algorithmic

implementations for GPUs using the GF100 architecture. To eliminate this lack of control, thanks

182 Chapter 13. Contributions of the Thesis

to the results of the previous phases, we devise a procedure to get any wanted ELF algorithmic

implementation - 6.7 - to be able, also whether we can not directly write in ELF, of modifying

the B part of any fatbin �le, a) with the number and type of ELF instructions that we want, b)

with the ELF registers, in each one of the ELF instructions, that we want, in the positions that we

want, c) with the dependences among ELF registers that we want, d) with the guarantee that the

B part of the fatbin �le will not crash during its execution and e) that the execution of the B part

of the fatbin �le will be logically correct - this because we know the correspondences among PTX

registers and ELF registers. For example, for a PTX instruction @%reg0 sub.s32 %res, %fo, %so,

the corresponding human readable text form representation of the ELF instruction necessary to

execute it could be SUB.B32 R28, R6, R59, pt, @P4, where 1) the PTX normal predicate register

%reg0 appear at the end of the human readable text form representation of the ELF instruction as

the normal predicate ELF register P4 and 2) there is the use of the special predicate ELF register

pt that does not appear anywhere in the PTX instruction.

The procedure gives us control on the ELF code that is executed by the GF100 architecture

and we can get the same results for any di�erent combination of values of the 5 things previously

listed - and so a) the NVIDIA drivers and their versions, b) the version of nvcc, etc. - that could

require di�erent binary codes, also for the same ELF instruction, using the same ELF registers.

13.3 Not Disclosed GPU Behaviors

We foreseen that there are some not disclosed GPU behaviors able to slow down the execution of

the B part of a fatbin �le. Discovering, understanding and quantifying these not disclosed GPU

behaviors is important to understand how to analyze the B part of a fatbin �le and to understand

how to modify it - if necessary - to optimize its execution time.

To discover, understand and quantify the not disclosed GPU behaviors, we generate several

fatbin �les, a fatbin �le per couple (instruction con�guration , dependence distance), 7.4 - we

do this using the results described in the previous section. The fatbin �les are at our knowledge

the only fatbin �les - used to get this goal - with their B parts built having a complete control on

the ELF of the GF100 architecture - this is important to validate the results that we get for the

discovering, the understanding and the quanti�cation of the not disclosed GPU behaviors. In all

the papers we found in literature instead, also whether all the results are obtained - for a similar or

di�erent goal - executing fatbin �les produced by nvcc, there is no sign of which is the ELF executed

by the GF100 architecture and whether the B parts of the fatbin �les are equal or di�erent to the

codes - CUDA or PTX - given in input to nvcc.

About the for loop in the B parts of the fatbin �les a) to understand why the executions of the for

loop in the B parts of the fatbin �les generated for the discovery, understanding and quanti�cation

of the not disclosed GPU behaviors can not be slowed down by the bandwidths and the latencies

of the GPU memories see 7.4.1, b) to understand the structure of the for loop in the B parts of the

fatbin �les see 7.4.2 and c) to understand the procedure that we have used to generate the B parts

of the fatbin �les see 7.4.3 - to instead better understand the procedures used for the discovery, the

understanding and the quanti�cation of the not disclosed GPU behaviors see 7.6.

13.3. Not Disclosed GPU Behaviors 183

13.3.1 Advancement of the Resident Warps in a Streaming Multiproces-

sor

Studying the advancement of the resident warps in a streaming multiprocessor, during the execution

of the for loops of the B parts of the fatbin �les generated for the discovery, understanding and

quanti�cation of the not disclosed GPU behaviors, we have strong evidence that the warps are

moved forward all together by the warp schedulers in a streaming multiprocessor. We think this is

the case also for the execution of the B part of any fatbin �le - equal or di�erent from the fatbin

�les used - this at least in the cases when the execution of the B part of the fatbin �le can not

be slowed down by the bandwidths and the latencies of the GPU memories - see 9 for the several

supporting reasons.

Understanding this is important because the warp scheduling policies executed by the warp

schedulers in the streaming multiprocessors are not disclosed but we need to understand how the

resident warps in a streaming multiprocessor are made to advance because, for example, this allows

us to correctly calculate some lower bounds on the minimum quantity of time that it is necessary

for a warp to move from the execution of a warp ELF instruction x to a warp ELF instruction y

when there are w warp resident in the streaming multiprocessor where the warp is resident.

13.3.2 Even Distribution of the GPU Thread Blocks

We are not able to �nd in literature any paper that accurately studies the distribution of the

GPU thread blocks to the streaming multiprocessors of the GF100 architecture. If the gigathread

scheduler is not evenly distributing the GPU thread blocks to the streaming multiprocessors then all

our e�orts to optimize the B part of a fatbin �le could be made useless by a not even distribution of

the GPU thread blocks to the streaming multiprocessors - think for example to the load unbalancing

that could be created.

Thanks to our study we discover that the distributions of the GPU thread blocks to the stream-

ing multiprocessors depend on a) the number of ELF registers of a fatbin �le and b) the launch

con�guration used to execute the fatbin �le - a fatbin �le can be usually executed using more than

only one launch con�guration - 2.5. Because the number of launch con�gurations that could be

used to execute a fatbin �le is huge - 2.5 - we study a subset of all the possibilities - this because

not more than 48 warps can be resident in each moment, during the execution of the B part of a

fatbin �le, in a streaming multiprocessor. The results of the study are the following:

• R1) If the number of GPU thread blocks that we want assigned to each one of the streaming

multiprocessors times the number of warps per GPU thread block times the number of ELF

registers of the fatbin �le is smaller than half of the number of hardware registers of a streaming

multiprocessor then the gigathread scheduler is never evenly distributing the GPU thread

blocks to the streaming multiprocessors;

• R2) If the number of GPU thread blocks that we want assigned to each one of the streaming

multiprocessors times the number of warps per GPU thread block times the number of ELF

registers of the fatbin �le is greater than half of the number of hardware registers of a streaming

multiprocessor and smaller or equal than the number of hardware registers of a streaming

multiprocessor then the gigathread scheduler is always evenly distributing the GPU thread

blocks to the streaming multiprocessors.

184 Chapter 13. Contributions of the Thesis

Beyond the fact that only 48 warps can be resident at each moment, during the execution of the

B part of a fabin �le, in a streaming multiprocessor, another reason to use a subset of all the possible

launch con�gurations it is that we want to avoid, during the execution of the B part of the fatbin �le,

the overheads due to the assignment of the GPU thread blocks to the streaming multiprocessors. If

the number of GPU thread blocks we want per streaming multiprocessor - smaller than 48 - times

the number of warps per GPU thread block times the number of ELF registers of the fatbin �le

is greater than half of the number of hardware registers of a streaming multiprocessor and smaller

or equal than the number of hardware registers of a streaming multiprocessor then, for any launch

con�guration a) satisfying the previous requirement and b) implying, supposing an even distribution

of the GPU thread blocks, a number of GPU thread blocks per streaming multiprocessor smaller

than 48, we get the guarantee that the gigathread scheduler is always going to evenly distribute the

GPU thread blocks to the streaming multiprocessors and that it will do this only one time during

the execution of the B part of the fatbin �le.

13.3.3 Warp Scheduling Load Unbalancing

We are not able to �nd in literature any paper that accurately studies the warp scheduling at local

level - and so in the streaming multiprocessors - where the authors take care to create in ELF some

speci�c B parts for the fatbin �les used in the studies.

Timing the execution of the many di�erent for loops of the many di�erent fatbin �les we gener-

ated for the discovery, the understanding and the quanti�cation of the not disclosed GPU behaviors,

we �nd that if the number of resident warps in a streaming multiprocessor is odd then some phe-

nomenons of warp scheduling load unbalancing are present and so to execute a fatbin �le it is better

to avoid the use of launch con�gurations that, also whether imply an even distribution of the GPU

thread blocks to the streaming multiprocessors, force an odd number of resident warps in each

streaming multiprocessor.

The number of resident warps in a streaming multiprocessors is not however the only thing

that can create warp scheduling load unbalancing in a streaming multiprocessor, another are the

dependence distances between the ELF registers used in the ELF instructions of the B part of a

fatbin �le - 8.3 thanks to the results in 7.6.2.

13.3.4 Local Streaming Multiprocessor PTX and ELF Architectural Fea-

tures

The discovery, understanding and quanti�cation of the local streaming multiprocessor PTX and

ELF architecture features it is important to understand how to optimize and how to analyze the B

part of a fatbin �le.

The local streaming multiprocessor PTX and ELF architectural features are: a) the real instruc-

tion con�gurations streaming multiprocessor best average performance per clock cycle of the PTX

and ELF instruction con�gurations, b) the scheduling waiting times of the ELF instruction con�g-

urations, c) the dependence waiting times of the ELF instruction con�gurations, d) the overhead

time for the management of the warps and e) the minimum number of resident warps necessary in

a streaming multiprocessor to get the real instruction con�guration streaming multiprocessor best

average performance per clock cycle of each ELF instruction con�guration for each dependence

distance.

13.3. Not Disclosed GPU Behaviors 185

Real Instruction Con�guration Streaming Multiprocessor Best Average Performance per Clock

Cycle: We are not able to �nd in literature any paper that studies the real instruction con�guration

streaming multiprocessor best average performance per clock cycle, of the PTX and ELF instruc-

tion con�gurations of interest, with our level of accuracy. We not only determine the real PTX

and ELF instruction con�guration streaming multiprocessor best average performance per clock

cycle of each PTX and ELF instruction con�guration of interest - 7.6.2 - but we also discover the

presence of some not disclosed hardware resources shared among the 2 groups of 16 CUDA cores in

each streaming multiprocessor, not disclosed shared hardware resources that make impossible for

some PTX and some ELF instruction con�gurations to have a real PTX or ELF instruction con�g-

uration streaming multiprocessor best average performance per clock cycle equal to the theoretical

streaming multiprocessor best average performance per clock cycle - 4.3. Knowing the real PTX

and ELF instructions streaming multiprocessor best average performance per clock cycle allows the

real ELF code e�ciency of the B part of some fatbin �les to be better calculated;

Scheduling Waiting Times: We are not able to �nd any paper in literature that accurately

studies the warp scheduling waiting times. We foreseen that the warp scheduling waiting time

could be di�erent for di�erent ELF instruction con�gurations. Veri�ed that the warp scheduling

waiting time is di�erent for di�erent ELF instruction con�gurations, we quantify the scheduling

waiting time of each ELF instruction con�guration of interest - 7.6.2.

Knowing the scheduling waiting times is important because, considering the B part of a fatbin

�le, the scheduling waiting times of the ELF instructions in the B part of the fatbin �le, supposing

the execution of the B part of the fatbin �le can not be slowed down by the bandwidths and the

latencies of the GPU memories, allows us to determine the minimum number of resident warps,

that are necessary in each streaming multiprocessor, during the execution of the B part of the fatbin

�le, to avoid pipeline stalls due to the scheduling waiting times.

Dependence Waiting Times: We are not able to �nd any paper in literature that accurately

studies the dependence waiting times. We foreseen that the dependence waiting time could be

di�erent for di�erent ELF instruction con�gurations. Veri�ed that the dependence waiting time is

di�erent for di�erent ELF instruction con�gurations, we quantify the dependence waiting times of

each ELF instruction con�guration of interest - 7.6.2.

Knowing the dependence waiting times is important because, considering the B part of a fatbin

�le, the dependence waiting times of the ELF instructions in the B part of the fatbin �le, supposing

the execution of the B part of the fatbin �le can not be slowed down by the bandwidths and the

latencies of the GPU memories, allows us to determine the minimum number of resident warps,

that are necessary in each streaming multiprocessor, during the execution of the B part of the fatbin

�le, to avoid pipeline stalls due to the dependence waiting times.

Overhead Time for the Management of the Warps: We are not able to �nd any paper in literature

that accurately studies the overhead time for the management of the warps. We foreseen its

existence and that it is possible that it is not linearly increasing with a linear increase of the

number of resident warps in a streaming multiprocessor. Veri�ed its existence and its not linear

increase at a linear increase of the number of resident warps in a streaming multiprocessor, we

study the overhead time for the management of the warps and take in account its e�ects for the

di�erent triplets (ELF instruction con�guration , dependence distance , number of resident warps

in a streaming multiprocessor) - 7.6.2.

Knowing the overhead time for the management of the warps is important because, considering

the B part of a fatbin �le, the overhead time for the management of the warps, supposing the

186 Chapter 13. Contributions of the Thesis

execution of the B part of the fatbin �le can not be slowed down by the bandwidths and the

latencies of the GPU memories, allows us to determine the minimum number of resident warps that

are necessary in each streaming multiprocessor, during the execution of the B part of the fatbin

�le, to avoid pipeline stalls due to the overhead time for the management of the warps.

Minimum Number of Resident Warps Necessary in a Streaming Multiprocessor to get the Real

Instruction Con�guration Streaming Multiprocessor Best Average Performance per Clock Cycle of

Each ELF Instruction Con�guration for Each Dependence Distance: Considering concurrently the

scheduling waiting times, the dependence waiting times and the overhead time for the manage-

ment of the warps, we determine the minimum number of resident warps necessary in a streaming

multiprocessor to get the real instruction con�guration streaming multiprocessor best average per-

formance per clock cycle of each ELF instruction con�guration for each dependence distance -

7.6.2.

Knowing the the minimum number of resident warps necessary in a streaming multiprocessor to

get the real instruction con�guration streaming multiprocessor best average performance per clock

cycle of each ELF instruction for each dependence distance is important because, considering the B

part of a fatbin �le, the minimum number of resident warps necessary in a streaming multiprocessor

to get the real instruction con�guration streaming multiprocessor best average performance per

clock cycle of each ELF instruction for each dependence distance, supposing the execution of the

B part of the fatbin �le can not be slowed down by the bandwidths and the latencies of the

GPU memories, allows us to determine the minimum number of resident warps necessary in each

streaming multiprocessor, during the execution of the B part of the fatbin �le, to avoid pipeline

stalls due to the scheduling waiting times, the dependence waiting times and the overhead time for

the management of the warps.

13.4 Transformations and Launch Con�gurations

While thanks to the results in 13.2 we are able to get the wanted ELF algorithmic implementations

and so being sure that nvcc can not ruin our e�orts, thanks to the results got in 13.3 we under-

stand how to modify the B part of any fatbin �le to optimize its execution time. The process of

optimization start with a) the transformation of the original fatbin �le that we want to optimize -

the transformation implies 1) the possible modi�cation of the B part of the original fatbin �le that

we want to optimize and 2) the generation of a set of fatbin �les with their B parts equivalent to

the B part of the original fatbin �le, see 8.4 - and b) the generation of a set of launch con�gurations

for each one of the equivalent fatbin �les generated - the launch con�gurations, in the set of launch

con�gurations generated for an equivalent fatbin �le, 1) are only some of the launch con�gurations

that could be used to execute the fatbin �le and 2) will be the only launch con�gurations that can

be considered during the analysis/analyses of the B part of the fatbin �le, see 8.3.

We are not able to �nd any paper in literature where some modi�cations are applied - at ELF

level - to the B part of a fatbin �le that has to be executed by GPUs using the GF100 architecture.

We instead are able to do this and we do it because generating many fatbin �les with their B parts

equivalent to the B part of the original fatbin �le, we increase the probability that we can use at

least a launch con�guration, to execute at least one of the equivalent fatbin �les, without problems

of load unbalancing - this is far from banal, in fact we are not able to �nd in literature any paper

that a) studies accurately the process of distribution of the GPU thread blocks to the streaming

multiprocessors - 7.6.1 - b) discovers that there is warp scheduling load unbalancing in the case

13.5. Analysis of the Equivalent Fatbin Files Generated 187

there is an odd number of resident warps in a streaming multiprocessor - 7.6.2 - and c) discovers

that there can be warp scheduling load unbalancing whether, when the fatbin �le is executed using

a launch con�guration, the B part of a fatbin �le, together at the launch con�guration used to

execute the fatbin �le, generates some speci�c couples (dependence distance , number of resident

warps in a streaming multiprocessor) - 8.3 thanks to the results in 7.6.2.

13.4.1 Transformation of the Original Fatbin File to Be Optimized

After the possible modi�cation of an original fatbin �le to be optimized we generate many equivalent

copies of the original fatbin �le, each one a) with a di�erent number of ELF registers and b) with

a di�erent logically correct order of the ELF instructions of the B part of the original fatbin �le -

see 8.4 for the whole procedure of transformation of the original fatbin �le.

This procedure allows us, having many equivalent copies of the original fatbin �le with only a) a

di�erent number of ELF registers and b) a di�erent logically correct order of the ELF instructions

of the B part of the original fatbin �le, to consider for the analysis/analyses many more launch

con�gurations of those that we could consider for the analysis/analyses of only the B part of the

original fatbin �le - each launch con�guration used to analyze a fatbin �le has to satisfy speci�c

requirements, see next subsection.

13.4.2 Selection of the Launch Con�gurations

The launch con�gurations in each set of launch con�gurations of each fatbin �le are generated in

such a way that, thanks to the results on the discovery, understanding and quanti�cation of the

not disclosed GPU behaviors, we have an a priori guarantee that each time an equivalent fatbin

�le is executed using one of the launch con�gurations in the set of launch con�gurations generated

for it, a) the gigathread scheduler evenly distributes the GPU thread blocks to the streaming

multiprocessors, b) the number of resident warps in each streaming multiprocessor is even and

c) phenomenons of warp scheduling load unbalancing, due to the presence of some dependence

distances in the B part of the fatbin �le that are bad - see 8.3 - for the number of resident warps,

in each streaming multiprocessor, implied by the launch con�guration used to execute the fatbin

�le, are absent - this last thing is due to the fact that to generate the set of launch con�gurations

for the equivalent fatbin �le, all the couples (dependence distance , number of resident warps in

a streaming multiprocessor), generated by the combination (B part of the equivalent fatbin �le

generated , potential launch con�guration in the set of launch con�gurations generated for the

equivalent fatbin �le), are considered.

13.5 Analysis of the Equivalent Fatbin Files Generated

To be able to complete the optimization process of the B part of an original fatbin �le we need

to analyze the couples (equivalent fatbin �le generated , launch con�guration in the set of launch

con�gurations generated for the equivalent fatbin �le).

To be able to accurately analyze the couples, we highlight the importance of di�erentiating

fatbin �les and therefore create a taxonomy per fatbin �les that allows us to classify them - 10.

Next, considering the position of the fatbin �les in the taxonomy, we explain the analysis/analyses

that are executable on the fatbin �les - 11. Finally, if a fatbin �le is in a particular position in

the taxonomy then we explain why we are able to execute on it a theoretical analysis that we have

188 Chapter 13. Contributions of the Thesis

devised. If the theoretical analysis is executed on an equivalent fatbin �le and if at least one of the

couples for it generated satis�es all the requirements of the theoretical analysis then we give an a

priori ELF code shortest execution time guarantee for the execution of the B part of the equivalent

fatbin �le when the equivalent fatbin �le is executed using the launch con�guration of the couple -

12.

13.5.1 Taxonomy for Fatbin Files

To di�erentiate fatbin �les, and so to understand which analysis/analyses are executable on them,

we create a taxonomy for fatbin �les. We are not able to �nd any paper in literature where the

fatbin �les are classi�ed considering - as instead we do for our taxonomy - 1) which warp scheduling

policy the reader believes is executed by the warp schedulers in the streaming multiprocessors when

the execution of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies

of the GPU memories, 2) the presence of branches in the B part of the fatbin �le, 3) which, the read

believes, are the eviction policies used for the l2 cache and the l1 caches, 4) the possibility to know

a priori, before the execution of the fatbin �le, which are the positions, in the arrays, the vectors

and the structures, in the GPU global memory, of the data/results that will be read/written by

each GPU thread used to execute the B part of the fatbin �le, during the execution of the B part

of the fatbin �le and 5) the presence of ELF instructions of synchronization in the B part of the

fatbin �le.

The classi�cation of the fatbin �le using the taxonomy is important because considering how

the fatbin �les are classi�ed using the taxonomy, the fatbin �les are eligible for the execution of

di�erent types of analyses - empirical and/or theoretical - thing instead usually not considered in

the papers in literature where the analysis/analyses a) is/are empirical studies, b) is/are executed

running some microkernels and c) does/do not consider the speci�c structure/structures of the B

parts of fatbin �les on which the microkernels could be embedded by users.

13.5.2 Analysis/Analyses Selection

Considering the positions of the fatbin �les in the taxonomy we explain because some analyses are

possible instead of others. For the fatbin �les in a given position in the taxonomy we explain the

problems given from the fact that it is impossible to know the locations, in the GPU global memory,

where the ELF instructions, of the B part of any fatbin �le, read/write data/results, this also if it

could be possible to determine a) which ELF instructions in the B part of a fatbin �le imply some

byte transfers and b) in which positions in the arrays, the vectors and the structures that contains

the data in input and that will contain the output results, the GPU threads, used to execute the

B part of a fatbin �le, are going to read/write the data/results, during the execution of the B part

of the fatbin �le.

13.5.3 Guaranteeing A Priori ELF Code Shortest Execution Times

At the best of our knowledge we are the only one to theoretically study the B part of a fatbin �le

a) considering its features - in other words its position in a taxonomy - and b) creating several

unrolled path versions of its B part that are analyzed considering the inputs that generate them.

Each couple (fatbin �le generated , launch con�guration in the set of launch con�gurations of

the fatbin �le generated) is substituted with a set of quadruplets - see 12.2.7 for a greater quantity

13.6. Summary 189

of details about the process of generation and the reasons because it is necessary.

For each quadruplet satisfying all the requirements of the theoretical analysis we can give an

a priori ELF code shortest execution time guarantee - see 12.4 for a brief explanation of the

consequences of this. For the other results that we proved to be able to execute the theoretical

analysis on the B part of a fatbin �le we invite the reader to read 12.4 while for an explanation and

the veri�cation of the correctness of the theoretical analysis we invite the reader to check 12.

13.6 Summary

In this chapter we have reviewed the main contributions of the thesis. The users can only use CUDA

or PTX to edit code but it is very easy that nvcc can completely ruin all the e�orts done at CUDA

or PTX level to optimize a code. Also whether a) the real instruction set architecture used by the

G100 architecture is not disclosed, b) the nvcc code is not open and c) it is not possible to edit

code in the assembly - the ELF - executed by the GPUs using the GF100 architecture, thanks to

the results in this thesis, now users a) can get the wanted ELF algorithmic implementation and b)

can optimize the execution time of ELF code of fatbin �les with a much greater degree of accuracy

compared to what it was possible before - this is possible not only because we give to users the tools

to get the wanted ELF algorithmic implementations but also because 1) we discover, understand

and quantify some not disclosed GPU behaviors that could slow down the execution of the B part

of a fatbin �le and 2) we devise an optimization process that, considering what we have discovered,

understood and quanti�ed about the not disclosed GPU behaviors, transforms the original fatbin

�le, classi�es the equivalent fatbin �les generated and executes di�erent types of analyses, empirical

or theoretical, on the equivalent fatbin �les generated.

Thanks to the results in 13.2 - real ISA and ELF codes - 1) we are able to localize in a fatbin �le

the ELF instructions that correspond to the PTX code given in input to nvcc for the generation of

the fatbin �le, 2) we give a set of guidelines to force nvcc to generate fatbin �les with at least the

minimum number and type of resources later necessary to modify the B part of the fatbin �le to get

the wanted ELF algorithmic implementations, 3) we discover the PTX-ELF correspondences and so

for each single PTX instruction we know the number, type and order of ELF instructions necessary

to execute the PTX instruction and which ELF registers, in the ELF instructions necessary to

execute the PTX instruction, correspond to which PTX registers in the PTX instruction, 5) we

reverse engineer the real instruction set architecture and 6) we are able to get any wanted ELF

algorithmic implementations - we can get all these results not only for any GPU using a GF100

architecture but also for any NVIDIA GPU using a later architecture and so, for example, Kepler

GPUs.

Thanks to the results in 13.3 - not disclosed GPU behaviors - 1) we know how the resident

warps in a streaming multiprocessor are made to advance , this at least in the case the execution

of the B part of a fatbin �le is not slowed down by the bandwidths and the latencies of the GPU

memories, 2) we know how to force the gigathread scheduler to always evenly distribute the GPU

thread blocks to the streaming multiprocessors, 3) we know how to avoid warp scheduling load

unbalancing in the streaming multiprocessors, 4) we discover, understand and quantify the local

streaming multiprocessor PTX and ELF architectural features and so a) the real instruction con-

�guration streaming multiprocessor best average performance per clock cycle of the PTX and ELF

instruction con�gurations, b) the scheduling waiting times of the ELF instruction con�gurations,

c) the dependence waiting times of the ELF instruction con�gurations, d) the overhead time for

190 Chapter 13. Contributions of the Thesis

the management of the warps and e) the minimum number of resident warps necessary in a stream-

ing multiprocessor to get the real instruction con�guration streaming multiprocessor best average

performance per clock cycle of each ELF instruction con�guration for each dependence distance.

Thanks to the results in 13.4 - transformations and launch con�gurations - 1) we know how

to transform the B part of an original fatbin �le that we want to optimize and 2) we know how

to generate the sets of launch con�gurations, a set of launch con�gurations for each one of the

equivalent fatbin �les generated from the original fatbin �le - the set of launch con�gurations of

each equivalent fatbin �le is used for the analysis/analyses.

Thanks to the results in 13.5 - analysis of the equivalent fatbin �les generated - 1) we classify

the equivalent fatbin �les, generated from the original fatbin �le, using a taxonomy, 2) consid-

ering the positions, in the taxonomy, of the equivalent fatbin �les generated, we determine the

analysis/analyses that can be executed on their B parts and 3) we give a priori ELF code short-

est execution time guarantees if the equivalent fatbin �les generated from the original fatbin �le

are eligible for the execution of the theoretical analysis and one or more of them satisfy all the

requirements of the theoretical analysis.

In the next chapter we review the previous work and considering the contributions of the thesis

we highlight the problems that a�ict all the results of all the papers that we were able to �nd.

Chapter 14

Previous Work and its Problems

14.1 Introduction

In the the previous chapter we have explained a) how with this thesis we have solved several

challenges that nobody - at the best of our knowledge - had solved or addressed in papers in

literature, and b) because in our opinion it is important that we have addressed and solved these

challenges. In the this chapter we review the previous work and considering the contributions of

the thesis we highlight the problems that a�ict all the results of all the papers that we were able

to �nd.

14.2 Previous Work

The papers about NVIDIA GPUs can be subdivided in several categories and a paper can be at

the same time in more categories. For these reasons here we present only one of the possible way

of classi�cation, this to explain the evolution of the state of the art for di�erent topics.

In the auto-tuning category we have tools to transform in an automatic way C codes in CUDA

codes [42, 2010], more speci�c auto-tuning tools to optimize dense matrix multiplications for

GPGPU (General Purpose GPUs) with caches [78, 2010], model-driven auto-tuning tools for the

sparse matrix-vector multiplication [35, 2010], tools to auto-tune CUDA parameters for the sparse

vector multiplication [23, 2010], automatic tools for the generation of BLAS - basic linear algebra

subprograms - libraries [24, 2011], auto-tuning tools for GEMM - general matrix multiplication -

kernels, speci�cally for Fermi GPUs - and therefore for GPUs using the GF100 architecture - [32,

2012], auto-tuning tools for dense vector and matrix-vector operations for Fermi GPUs [70, 2012]

and auto-tuning tools for the sparse matrix vector product based on the ELLR-T approach [17,

2012].

In the matrix-multiplication category we have, for GPUs using an architecture di�erent from

the GF100 architecture, general studies as [43, 2008] and [6, 2009] that optimize the sparse matrix-

vector multiplication, while studies that also consider GPUs using the GF100 architecture are [58,

2010] that improves the Magma GEMM , [59, 2011] that optimizes the symmetric dense matrix

vector multiplication and [75, 2012] that optimizes the sparse matrix-vector multiplication using

cache blocking methods.

In the CUDA optimization category we have papers that study optimization principles and eval-

uate performance [65, 2008], papers that explain how to reduce the GPU programming complexity

191

192 Chapter 14. Previous Work and its Problems

[67, 2008], papers that propose mapping paths for multi-GPGPU accelerated computers starting

from portable high level programming abstractions [4, 2010] and papers that explain the impact

of the CUDA tuning techniques for Fermi GPUs [82, 2011]. Papers that consider more speci�c

optimization techniques are instead for example papers that propose control-structures to optimize

GPGPU codes [62, 2009] and papers that propose on-the �y elimination of dynamic irregularities

for GPU computing [16, 2011].

In the framework category where a framework can be used to translate, optimize and/or analyze

GPU code, we have papers that propose frameworks for an e�cient implementation of CUDA kernels

on multi-cores, papers that propose compiler frameworks for the optimization of a�ne loop nests

[44, 2008], papers that propose compiler frameworks for the automatic translation and optimization

of OpenMP code to GPGPU code [64, 2009], papers that propose cross-input adaptive frameworks

for the optimization of GPU code [79, 2009], papers that propose to optimize compilers for GPGPU

with input-data sharing [81, 2010], papers that propose dynamic optimization frameworks - as for

example Ocelot - for bulk-synchronous applications in heterogeneous systems [18, 2010], papers

that propose frameworks able to predict the GPU performance considering CPU code skeletons

that are translated by the frameworks [34, 2011], papers that propose frameworks to dynamically

instrument - within Ocelot - GPU applications [48, 2011], papers that propose frameworks to port

shared memory GPU applications to multi-GPUs [11, 2012] and papers that propose di�erent

optimization strategies using llCoMP [61, 2012].

In the performance model category we have papers that propose performance prediction models

for CUDA GPGPU platforms [36, 2009], papers that propose performance modeling and automatic

ghost zone optimizations for iterative stencil loops [45, 2009], papers that propose adaptive perfor-

mance modeling tools [66, 2010], theses that propose performance prediction using parametrized

models [60, 2011] and papers that propose GPU performance models for e�ective control �ow

divergence optimizations [83, 2012].

In the sorting category we have papers that consider the use of GPUs to manage large databases

[21, 2006], papers that implement adaptive bitonic sorting on GPUs [22, 2006], papers using hybrid

algorithms on GPUs [69, 2008], papers that explain the design of e�cient sorting algorithms for

GPUs [68, 2009], papers that explain the design and the implementation in CUDA of algorithms

to sort integers [37, 2011] and papers that implement and study the performance of radix sort

algorithms [46, 2011].

In the design and evaluation category beyond some of the papers in the sorting category we

have papers that consider the design and implementation of visual computing algorithms [29, 2009]

and papers that consider the design and performance evaluation of image processing algorithms [28,

2011], while for more speci�c types of analysis and characterizations we have papers that consider

PTX kernels [2, 2009].

In the modeling category we have papers that devise analytical models for GPU architectures

with memory-level and thread-level parallelism awareness [27, 2009] and papers that instead model

CPU-GPU workloads and systems [3, 2010], in the simulator category we have papers that analyze

CUDA workloads [1, 2009] and papers that propose modular function GPU simulators like Barra [63,

2009] while in the API category we have papers that propose to optimize the memory bandwidths

of GPUs via warp specialization [40, 2011].

Finally in the various �elds category we have papers that consider the high performance compu-

tation and iterative display of molecular orbitals [71, 2009], papers that consider the optimization

of data intensive computations for DNA sequence alignment [72, 2009], papers that consider the

14.2. Previous Work 193

heap based k-nearest neighbor search on GPUs [5, 2010], papers that solve on GPUs lattice QCD

systems of equations using mixed precision solvers [13, 2010], papers that use GPUs to execute

multi-spin monte carlo simulations of the 2D ising model [8, 2010], papers that use GPUs to simu-

late �uid �ows in complex geometries using lattice Boltzmann codes [7, 2010], papers that consider

the use of GPUs for the direct aperture optimization for online adaptive radiation therapy [12,

2010], papers that implements CUDA algorithms for cone beam reconstruction [80, 2010], papers

that describe optimization strategies and study the performance of lattice Boltzmann CUDA ker-

nels [31, 2011], papers that evaluate the optimizations applied to parallel particle swarm algorithms

[38, 2011], papers that implements molecular dynamics on hybrid high performance computers [10,

2011], papers that consider molecular dynamics simulations of the relaxation processes in the con-

densed matter [47, 2011], papers that consider the performance potential for simulating spin models

on GPUs [77, 2012], papers that consider CUDA optimization strategies for compute - and mem-

ory - bound neuroimaging algorithms [14, 2012], papers that consider the optimization of linked

list pre�x computations on multithreaded GPUs using CUDA [76, 2012], papers that consider the

haralick's texture features computation accelerated by GPUs for biological applications [41, 2012],

papers that consider co-evolutionary di�erential evolution algorithm for solving min-max optimiza-

tion problems implemented on GPUs using CUDA [39, 2012], papers that consider the use of GPUs

to solve knapsack problems [73, 2012], papers that study the q-state plotts using monte carlo algo-

rithms implemented and optimized in CUDA [15, 2012] and papers that enhance data parallelism

for ant colony algorithms [33, 2013].

Three papers, among all those that we have been able to �nd, consider for their studies -

executed on GPU architectures pre-GF100 - the real assembly produced by nvcc, instead of CUDA

or PTX code:

• In 2008, V. Volkov and J. W. Demmel presented in [74] the performance results for dense

linear algebra for the NVIDIA GeForces GTX280, 9800GTX, 8800GTX and 8600GTS. For

their studies they use Decuda to inspect the binaries produced by nvcc and as they report

Decuda is a third-party disassembler of GPU binaries based on the reverse engineering of the

real instruction set architecture used by the GPU architectures studied in the paper ;

• In 2010 H. Wong, M. M. Papadopoulou, M. S. Alvandi and A. Moshovos in [25] demysti�ed

part of the NVIDIA GT200 (GTX280) GPU microarchitecture trough microbenchmarking.

In their paper they too use Decuda to inspect the binary code generated by nvcc for the

CUDA kernels that they implemented and used;

• In 2011 Y. Zhang and J. D. Owens in [84] describe a quantitative performance analysis model

for the NVIDIA GT200 GeForce 200-series GPUs. In their paper with the assistance of

Decuda they buid a tool to modify the original binary instructions, assemble the modi�ed

instructions back to the binary code sequence, and �nally embed the modi�ed code into the

execution �le. This is an improvement compared to the previous papers because this means

that they got control on the assembly executed by the GPU architecture.

All the three previous papers however consider GPU architectures pre-GF100 - it is not possible

to use Decuda to modify the binary code that has to be executed by GPUs using the GF100

architecture.

The authors - G. Tany, L. Liy, S. Triechlez, E. Phillipsz, Y. Baoy and N. Suny - of another paper

- [19, 2011] - instead implement DGEMM speci�cally for Fermi GPUs and study what happens for

194 Chapter 14. Previous Work and its Problems

a Tesla C2050 GPU - Tesla C2050 GPUs use the GF100 architecture as Fermi GPUs.

At page 8 of their paper they report that the proposed optimization strategies are involved with

the exact selection and scheduling of instructions and therefore they cannot be achieved at the level

of either CUDA C or PTX language because the programs of CUDA C/PTX are transformed to

the native machine instructions by nvcc. They next claim that with NVIDIA's internal tool-chain,

they implemented Algorithm 3 using Fermi's native machine language on NVIDIA Tesla C2050.

We would like to understand how they were able to get this result because we are not able to �nd

in the paper any further explanation.

We know that there is AsFermi - http://code.google.com/p/asfermi/ - an assembler for the

NVIDIA Fermi ISA but a) the last update to the AsFermi project was done during January 2012,

b) the set of instructions reversed engineered - http://code.google.com/p/asfermi/wiki/Instructions

- is much smaller than our where we also consider the size and the type of the operands and of the

results of the PTX instructions that are transformed, c) we can not �nd any explanation about the

PTX-ELF correspondences that we have found and that are necessary to produce correct ELF code

and d) we know that there are some known issues with AsFermi - http://code.google.com/p/asfermi/

wiki/KnownIssues.

Because we can not read in [19] anything about AsFermi then we are curious to know how the

authors of that paper were able to do what they say - Sean Triechlez and Everett Phillips were

working for NVIDIA at that time but also supposing they knew and did what it was necessary,

the method that they used, to get the wanted ELF algorithmic implementations to execute on the

Tesla C2050, has not been disclosed at the best of our knowledge.

14.3 Problems with the Previous Work

All the results of all the papers that we have been able to �nd are a�icted by one or more problems.

We highlight here the most important of these problems, problems that show how the results got

in the papers could be not correct - the results could be due to causes di�erent from those thought

by the authors of the papers - or not generalizable - change also only the version of the NVIDIA

drivers and the results could be completely di�erent. Here therefore the description of the most

important problems a�icting the papers that we have been able to �nd:

• The results are got considering CUDA or PTX codes. The results in this case could be

incorrect because the authors of the papers consider that the e�ects - the results - that they

got, are due to the features that they implemented at CUDA or PTX level.

The ELF code produced in output by nvcc is usually very di�erent from the input CUDA

or PTX code and therefore the features implemented at CUDA or PTX level could be trans-

formed in something of completely di�erent by nvcc during the generation of the output fatbin

�les corresponding to the input CUDA or PTX codes and so being absent or almost absent

at ELF level.

If this is the case then a) the results could be useless because the cause-e�ect principle behind

the explanation of the results could be wrong - this because the causes of the e�ects, and so of

the results, could be di�erent from the features implemented at the CUDA or PTX level - or

b) supposing the results correct, the results are not generalizable because the same CUDA or

PTX code could be transformed in a completely di�erent way at the change of also only one

of the following 5 things: a) the NVIDIA drivers and their versions, b) the version of nvcc,

14.3. Problems with the Previous Work 195

c) whether the code is compiled for 32 bits or 64 bits, d) which has to be the PTX version

of the intermediate PTX �les generated by nvcc for the generation of the output fatbin �le,

e) for which GPU architecture has to be produced the output fatbin �le and f) the operative

system running on the CPU and its version;

• The not disclosed GPU behaviors that we have discovered, understood and quanti�ed are not

considered. This is reasonable because to discover, to correctly understand and to accurately

quantify the not disclosed GPU behaviors it is necessary to be able to produce the wanted

ELF algorithmic implementations but this was not possible for the GF100 architecture before

of the procedures we devised to get such goal;

If the not disclosed GPU behaviors are not discovered, not correctly understood or not accu-

rately quanti�ed then it is not possible to get a reliable, correct and accurate model of the

GPU architecture on which the fatbin �les are executed, thing instead necessary to under-

stand how to optimize the B part of a fatbin �le and therefore a) to transform it, b) to select

for it a set of launch con�gurations, c) to classify it and d) to understand how to develop the

empirical and theoretical analysis/analyses to execute on it;

• The warp scheduling policies executed by the warp schedulers in the streaming multiprocessors

are not studied. Studying how the warps are moved forward by the warp schedulers in the

streaming multiprocessors is important for the whole process of optimization and to avoid

phenomenon of warp scheduling load unbalancing during the execution of the B part of a

fatbin �le.

A phenomenon of warp scheduling load unbalancing if not recognized and avoided could make

to interpret in the wrong way the results - the warp scheduling load unbalancing could be

attributed to the wrong cause or set of causes that instead does/do not have any connection

with the generation of the phenomenon of warp scheduling load unbalancing;

• The distributions of the GPU thread blocks to the streaming multiprocessors is not studied.

Understanding how the gigathread scheduler is going to distribute the GPU thread blocks to

the streaming multiprocessors for the execution of the B part of a fatbin �le is important to

avoid phenomenons of workload unbalancing.

If the phenomenon of workload unbalancing is not recognized and understood then it is

possible to attribute the wrong causes to the poor e�ciency that the B part of a fatbin �le is

getting while if the phenomenon of workload unbalancing is recognized and understood then

it is possible to force the gigathread scheduler to evenly distribute the GPU thread blocks to

the streaming multiprocessors;

• The minimum number of resident warps that is necessary in a streaming multiprocessor to

avoid pipeline stalls, due to the warp scheduling times, the dependence waiting times and

the overhead time for the management of the warps, during the execution of the B part of a

fatbin �le is not studied with our level of accuracy or is not proved or determined and so it

is not possible to understand whether the e�ciency of the ELF code is good because its only

slowdowns are due to the warp scheduling or instead the e�ciency of the ELF code is not

good because its slowdowns are due to causes a) also di�erent from the warp scheduling and

b) that could be however avoided;

196 Chapter 14. Previous Work and its Problems

The fact that previously at this thesis was not possible to get the wanted ELF algorithmic

implementations made di�cult to accurately determine it for the B part of a fatbin �le but

now we can determine it not only for the B part of a fatbin �le but also for each dependence

distance of each ELF instruction.

• The analysis/analyses are executed as empirical studies where some microkernels are run

without considering the structure of the B parts of fatbin �les on which an user could embed

the microkernels, thing instead very important to consider to prove that the results got for

the microkernels are generalizable to other cases.

It is very easy, for example, to embed a microkernel with an high e�ciency on the B part of a

fatbin �le that can completely ruin the e�ciency of the microkernel - think to the generation

of slowdowns, during the execution of the B part of a fatbin �le, due to the bandwidths and

latencies of the GPU memories, this at cause of the order and type of ELF instructions of

the B part of the fatbin �le and the dependences among the ELF registers used in the ELF

instructions of the B part of the fatbin �le;

• There is not theoretical study considering the quadruplets (fatbin �le in S2
Ff

, launch con�g-

uration in the Slc of the fatbin �le in S2
Ff

, unrolled path version of the B part of the fatbin

�le in S2
Ff

, an input, of one of the subsets SSi, of inputs generating the unrolled path version

of the B part of the fatbin �le in S2
Ff

), thing instead important to be able to give an a priori

ELF code shortest execution time guarantee for the execution of the B part of a fatbin �le.

We show that it is important to classify fatbin �les to determine the type of analysis/analyses

that can be executed on them and that it is always important to generate the unrolled path

version of the B part of a fatbin �le considering the launch con�guration and the input given to

the fatbin �le because this two things can make the di�erence for the generation of slowdowns

due to causes di�erent from the warp scheduling;

• There is not correct theoretical analysis able to give an a priori guarantee that the execution

of the B part of the fatbin �le can not be slowed down by the bandwidths and the latencies

of the GPU memories, the warp scheduling waiting times, the dependence waiting times and

the overhead time for the management of the warps, and so that the only thing that can slow

down the execution of the B part of a fatbin �le is the warp scheduling - warp scheduling that

we can not force, choose or control.

14.4 Summary

In the this chapter we have reviewed the previous work and considering the contributions of the

thesis we have highlighted the problems that a�ict all the results of all the papers that we were

able to �nd. In the next chapter we brie�y summarize the results of the thesis and highlight some

of the possible future research directions.

Chapter 15

Conclusions and Future Research

Directions

15.1 Introduction

In the previous chapter we have reviewed the previous work and considering the contributions of

the thesis we have highlighted the problems that a�ict all the results of all the papers that we have

been able to �nd. In this chapter we brie�y summarize the results of the thesis and highlight some

of the possible future research directions.

15.2 Conclusions

Considering the impossibility to edit code using the real instruction set architecture a) we reversed

engineered it - 6 - b) we devised a procedure - 6.6 - to generate fatbin �les with at least the minimum

number of resources later necessary to modify their B parts, 6.6 - this was necessary because it was

not possible to bypass the compiler - and c) we devised another procedure to get the wanted ELF

algorithmic implementations - 6.7.

We therefore discovered, understood and quanti�ed some not disclosed GPU behaviors - 7 - that

could slow down the execution of the B part of a fatbin �le. This was necessary for the optimization

process and so to understand a) how to transform an original fatbin �le - 8 - b) how to classify

fatbin �les - 10 - c) which analysis/analyses can be executed on them - 11 - and d) how to execute

the analysis/analyses - 11 and 12.

Next we devised a) a procedure that transforms an original fatbin �le that we want to optimize

in a set of equivalent fatbin �les - 8.4 - and b) a procedure that generates for each one of the

equivalent fatbin �les a set of launch con�gurations - 8.3 - to use during the analysis/analyses of

the equivalent fatbin �les - because many di�erent launch con�gurations could be used to execute

the B part of a fatbin �le, 2.5, and because the launch con�gurations in each set has to satisfy some

requirements, then the launch con�gurations in a set are usually only a subset of all those possible.

We have therefore showed the importance of classifying fatbin �les using a taxonomy for fatbin

�les that we have devised - 10 - and why the position of a fatbin �le in the taxonomy determine

the analysis/analyses - empirical and/or theoretical - that can be executed on the fatbin �le - 11.

Finally, we devised a theoretical analysis - 12 - that, if it is applicable to a fatbin �le, allows us

197

198 Chapter 15. Conclusions and Future Research Directions

to give an a priori ELF code shortest execution time guarantee for the execution of the B part of

the fatbin �le - this supposing the fatbin �le satis�es all the requirements of the theoretical analysis.

15.3 Future Research Directions

We focused on the optimization of the B part of a fatbin �le - we want the execution time of the

B part of a fatbin �le the most short possible - but we want to extend our work considering also

a) the part/parts of a fatbin �le executed by a CPU and b) the part/parts of a fatbin �le that

implies/imply byte transfers between the CPU and the GPU of the machine where the fatbin �le

is executed. Possible future research directions, for the topics already considered in the thesis, can

be instead the following:

• Reverse engineering of the real instruction set: The reverse engineering of the real instruction

set for GPUs using the GF100 architecture is almost complete. We can reverse engineer

some particular ELF instructions as, for example, the ELF instructions using the texture

memories, the ELF instructions executing atomic updatings or the ELF instruction executing

reduction operations, but the reverse engineering of all the other ELF instructions is already

implemented in our framework. Completed the reverse engineering for all the ELF instructions

of the real instruction set architecture used by the G100 architecture we wish to repeat the

whole procedure for Kepler GPUs - we do not need to change anything in our framework;

• Modi�cation of ELF code: Also whether we have complete control on the B part of any fatbin

�le and so we can get any wanted ELF algorithmic implementation, we are going to try to

reverse engineer a) the procedure of generation applied by nvcc for the assignment of ELF

registers to fatbin �les, b) the procedure of assignment of hardware registers, to ELF registers,

during the execution of the B part of a fatbin �le, and c) the other parts of a fatbin �le that we

know are executed by a GPU but that are not visible in the interpretation text �le generated

by cuobjdump - 6.2;

• Not disclosed GPU behaviors: We want to discover, understand and quantity the not disclosed

GPU behaviors of the architecture/architectures used by Kepler GPUs. This will require some

work on the framework because also whether the architecture/architectures used by Kepler

GPUs is/are similar to the GF100 architecture, there will be however some di�erences that

it is necessary to consider to repeat, in the correct way, the whole procedure;

• Transformation and launch con�gurations: We want to automate the procedures described

in 8. While in this thesis we devised a procedure to generate fatbin �les that are equivalent

to the original fatbin �le, in future we will instead devise procedures able to generate fatbin

�les very di�erent from the original fatbin �le - it could be hard to discover a good process

of generation because if the B part of a fatbin �le generated is very di�erent from the B

part of the original fatbin �le then it could be hard to be able to prove that there are good

possibilities to execute the B part that is very di�erent in a shorter quantity of time than

that necessary to execute the B part of the original fatbin �le;

• Analysis of the equivalent fatbin �les: We want to expand the framework to make the execution

of the empirical analysis automatic, but the parameters in input to the fatbin �les are usually

di�erent for di�erent fatbin �les and therefore the preparation of the stack and the generation

15.3. Future Research Directions 199

of the variables, arrays, vectors and structures, that contain the input data and that will

contain the output results for the execution of the B part of the fatbin �le, in any case, are

usually di�erent from problem to problem and therefore can not be automated.

We want also to automate the procedure necessary for the execution of the theoretical analysis

but we already know that the procedure, to determine the minimum number of resident warps

that is necessary in each streaming multiprocessor to avoid pipeline stalls due to the scheduling

waiting times, the dependence waiting times and the overhead time for the management of the

warps, will be much easier to automate than the procedure necessary to determine whether

the execution of the B part of the fatbin �le can or not be slowed down by the bandwidths

and the latencies of the GPU memories.

200 Chapter 15. Conclusions and Future Research Directions

Bibliography

[1] W. W. L. Fung H. Wong A. Bakhoda, G. Yuan and T. M. Aamod. Analyzing CUDAWorkloads

using a Detailed GPU Simulator. Proceedings of the 36th annual international symposium on

Computer architecture, pages 152�163, 2009.

[2] G. Diamos A. Kerr and S. Yalamanchili. A Characterization and Analysis of PTX Kernels.

IEEE International Symposium on Workload Characterization, pages 3�12, 2009.

[3] G. Diamos A. Kerr and S. Yalamanchili. Modeling GPU-CPU Workloads and Systems. Pro-

ceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units,

pages 31�42, 2010.

[4] B. Meister M. Baskaran D. Wohlford C. Bastoul A. Leung, N. Vasilache and R. Lethin. A

Mapping Path for Multi-GPGPU Accelerated Computers from a Portable High Level Pro-

gramming Abstraction. Proceedings of the 3rd Workshop on General-Purpose Computation on

Graphics Processing Units, pages 51�61, 2010.

[5] R.J. Barrientos, J.I. GÃ³mez, C. Tenllado, and M. Prieto. Heap Based k-Nearest Neighbor

Search on GPUs. Conference Proceedings, XXI Jornadas de Paralelismo, pages 559�566, 2010.

[6] N. Bell and M. Garland. E�cient Sparse Matrix-Vector Multiplication on CUDA. Proceedings

of 2011 Conference on Supercomputing, 2009.

[7] M. Bernaschi1, M. Fatica, S. Melchionna, S. Succi, and E. Kaxiras. A Flexible High-

Performance Lattice Boltzmann GPU Code for the Simulations of Fluid Flows in Complex

Geometries. Concurrency and Computation: Practice and Experience, 22(1):1�14, 2010.

[8] B. Block, P. Virnau, and T. Preis. Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations

of the 2D Ising Model. Computer Physics Communications, 181(9):1549�1556, 2010.

[9] N. Brookwood. NVIDIA Solves the GPU Computing Puzzle. http://www.nvidia.com/

object/fermi-architecture.html, 2010. [Online; accessed 23-October-2011].

[10] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington. Implementing Molecular

Dynamics on Hybrid High Performance Computersâ��Short Range Forces. Computer Physics

Communications, 182(4):898�911, 2011.

[11] C. WenGuang C. DeHao and Z. WeiMin. CUDA-Zero: a Framework for Porting Shared Mem-

ory GPU Applications to Multi-GPUs. Science in China - Information Sciences, 55(2):663�676,

2012.

201

http://www.nvidia.com/object/fermi-architecture.html
http://www.nvidia.com/object/fermi-architecture.html

202 Bibliography

[12] X. Jia C. Men and S. B. Jiang. GPU-Based Ultra-Fast Direct Aperture Optimization for

Online Adaptive Radiation Therapy. Physics in Medicine and Biology, 55:4309�4319, 2010.

[13] M.A. Clark, R. Babich, K. Barros, R.C. Brower, and C. Rebbi. Solving Lattice QCD Systems

of Equations using Mixed Precision Solvers on GPUs. Computer Physics Communications,

(181):1517�1528, 2010.

[14] B. Dongb B. Gutmana I. Yanovskyc D. Leea, I. Dinova and A. W. Togaa. CUDA Optimization

Strategies for Compute - and Memory - Bound Neuroimaging Algorithms. Computer Methods

and Programs in Biomedicine, 106(3):175�187, 2012.

[15] N. Wolovick E. E. Ferrero, J. P. De Francesco and S. A. Cannas. Q-State Potts Model Metasta-

bility Study using Optimized GPU-Based Monte Carlo Algorithms. Computer Physics Com-

munications, 183(8):1578�1587, 2012.

[16] Z. Guo K. Tian E. Z. Zhang, Y. Jiang and X. Shen. On-the-Fly Elimination of Dynamic

Irregularities for GPU Computing. Proceedings of the sixteenth international conference on

Architectural support for programming languages and operating systems, pages 369�380, 2011.

[17] E.M. Garzon F. Vazqueza, J.J. Fernandeza. Automatic Tuning of the Sparse Matrix Vector

Product on GPUs Based on the ELLR-T Approach. Parallel Computing, 38(8):408�420, 2012.

[18] S. Yalamanchili G. F. Diamos, A. R. Kerr and N. Clark. Ocelot: a Dynamic Optimization

Framework for Bulk-Synchronous Applications in Heterogeneous Systems. Proceedings of the

19th international conference on Parallel architectures and compilation techniques, pages 353�

364, 2010.

[19] S. Triechlez E. Phillipsz Y. Baoy G. Tany, L. Liy and N. Suny. Fast Implementation of DGEMM

on Fermi GPU. International Conference for High Performance Computing, Networking, Stor-

age and Analysis, 2011.

[20] P. Glaskowsky. NVIDIAs Fermi: the First Complete GPU Computing Architecture. http://

www.nvidia.com/object/fermi-architecture.html, 2010. [Online; accessed 19-July-2011].

[21] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GpuTeraSort: High Performance

Graphics Coprocessor Sorting for Large Database Management. SIGMOD - ACM, pages 1�12,

2006.

[22] A. Greb and G. Zachmann. GPU-ABiSort: Optimal Parallel Sorting on Stream Architectures.

20th International Parallel and Distributed Processing Symposium, 2006.

[23] P. Guo and L. Wang. Auto-Tuning CUDA Parameters for Sparse Matrix-Vector Multiplication

on GPUs. 2010 International Conference on Computational and Information Sciences, pages

1154�1157, 2010.

[24] J. Xue Y. Yang H. Cui, L. Wang and X. Feng. Automatic Library Generation for BLAS3 on

GPUs. Parallel and Distributed Processing Symposium, 2011.

[25] M. S. Alvandi H. Wong, M. M. Papadopoulou and A. Moshovos. Demystifying GPU Mi-

croarchitecture through Microbenchmarking. IEEE International Symposium on Performance

Analysis of Systems and Software, pages 235�246, 2010.

http://www.nvidia.com/object/fermi-architecture.html
http://www.nvidia.com/object/fermi-architecture.html

Bibliography 203

[26] T. R. Halfhill. Looking Beyond Graphics. http://www.nvidia.com/object/

fermi-architecture.html, 2010. [Online; accessed 27-June-2011].

[27] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-Level and

Thread-Level Parallelism Awareness. Proceedings of the 36th annual international symposium

on Computer architecture, pages 152�163, 2009.

[28] M. H. Lee S. Cho I. K. Park, N. Singhal and C. W. Kim. Design and Performance Evaluation

of Image Processing Algorithms on GPUs. IEEE Transactions on Parallel and Distributed

Systems, 22(1):91�104, 2011.

[29] M. H. Leeâ� I. K. Park, N. Singhal and S. Cho. E�cient Design and Implementation of

Visual Computing Algorithms on the GPU. 16th IEEE International Conference on Image

Processing, pages 2321�2324, 2009.

[30] S. S. Stone J. A. Stratton and W. W. Hwu. MCUDA: an E�cient Implementation of CUDA

Kernels on Multi-Cores. Book on Languages and Compilers for Parallel Computing, pages

16�30, 2008.

[31] G. Hager J. Habich, T. Zeiser and G. Wellein. Performance Analysis and Optimization Strate-

gies for a D3Q19 Lattice Boltzmann Kernel on NVIDIA GPUs using CUDA. Advances in

Engineering Software, 42(5):266�272, 2011.

[32] S. Tomov J. Kurzak and J. Dongarra. Autotuning GEMM Kernels for the Fermi GPU. Ieee

Transactions on Parallel and Distributed Systems, 23(11):2045�2057, 2012.

[33] A. Nisbet M. Amosb J. M. Cecilia, J. M. Garcia and M. Ujaldon. Enhancing Data Paral-

lelism for Ant Colony Optimization on GPUs. Journal of Parallel and Distributed Computing,

73(1):42�51, 2013.

[34] K. Kumaran V. Vishwanath J. Meng, V. A. Morozov and T. D. Uram. GROPHECY: GPU Per-

formance Projection from CPU Code Skeletons. Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, 2011.

[35] A. Singh J. W. Choi and R. W. Vuduc. Model-driven Autotuning of Sparse Matrix-Vector

Multiply on GPUs. Proceedings of the 15th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 115�126, 2010.

[36] M. S. Rehman S. Patidar P. J. Narayanan K. Kothapalli, R. Mukherjee and K. Srinathan. A

Performance Prediction Model for the CUDA GPGPU Platform. International Conference on

High Performance Computing, pages 463�472, 2009.

[37] V. Kolonias, A. G. Voyiatzis, G. Goulas, and E. Housos. Design and Implementation of an

E�cient Integer Count Sort in CUDA GPUs. Concurrency and Computation: Practice and

Experience, (23):2365�2381, 2011.

[38] S. Cagnoni L. Mussi, F. Daolio. Evaluation of Parallel Particle Swarm Optimization Algorithms

within the CUDA Architecture. Information Sciences, 18(1):4642â��4657, 2011.

[39] S. Cagnoni L. Mussi, F. Daolio. A Co-Evolutionary Di�erential Evolution Algorithm for Solving

Min-Max Optimization Problems Implemented on GPU using C-CUDA. Expert Systems with

Applications, 39(12):10324â��10333, 2012.

http://www.nvidia.com/object/fermi-architecture.html
http://www.nvidia.com/object/fermi-architecture.html

204 Bibliography

[40] H. Cook M. Bauer and B. Khailany. CudaDMA: Optimizing GPU Memory Bandwidth via

Warp Specialization. Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, 2011.

[41] N. Harder A. Suratanee K. Rohr R. Konig M. Gipp, G. Marcus and R. Manner. Haralick's

Texture Features Computation Accelerated by GPUs for Biological Applications. Modeling,

Simulation and Optimization of Complex Processes, page 127â��137, 2012.

[42] J. Ramanujam M. M. Baskaran and P. Sadayappan. Automatic C-to-CUDA Code Generation

for A�ne Programs. Proceedings of the 19th joint European conference on Theory and Practice

of Software, international conference on Compiler Construction, pages 244�263, 2010.

[43] R. Bordawekar M. M. Baskaran. Optimizing Sparse Matrix-Vector Multiplication on GPUs.

Technical Report, IBM T.J.Watson Research Center, 2008.

[44] S. Krishnamoorthy J. Ramanujam A. Rountev M. M. Baskaran, U. Bondhugula and P. Sa-

dayappan. A Compiler Framework for Optimization of A�ne Loop Nests for GPGPUs. Pro-

ceedings of the 22nd annual international conference on Supercomputing, pages 225�234, 2008.

[45] J. Meng and K. Skadron. Performance Modeling and Automatic Ghost Zone Optimization

for Iterative Stencil Loops on GPUs. Proceedings of the 23rd international conference on

Supercomputing, pages 256�265, 2009.

[46] D. Merrill and A. S. Grimshaw. High Performance and Scalable Radix Sorting: a Case

Study of Implementing Dynamic Parallelism for GPU Computing. Parallel Processing Let-

ters, 21(2):245�272, 2011.

[47] I.V. Morozov, A.M. Kazennov, R.G. Bystryi, G.E. Norman, V.V. Pisarev, and V.V. Stegailov.

Molecular Dynamics Simulations of the Relaxation Processes in the Condensed Matter on

GPUs. Computer Physics Communications, 182(9):1974�1978, 2011.

[48] G. Diamos S. Yalamanchili N. Farooqui, A. Kerr and K. Schwan. A Framework for Dynamically

Instrumenting GPU Compute Applications within GPU Ocelot. 4th Workshop on General-

Purpose Computation on Graphics Procesing Units, 2011.

[49] Nvidia. CUDA C Best Practices Guide Version 3.1. http://developer.nvidia.com/cuda/

nvidia-gpu-computing-documentation, 2010. [Online; accessed 04-July-2011].

[50] Nvidia. CUDA C Programming Guide Version 3.1. http://developer.nvidia.com/cuda/

nvidia-gpu-computing-documentation, 2010. [Online; accessed 11-January-2011].

[51] Nvidia. Fermi Compute Architecture. www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIAFermiComputeArchitectureWhitepaper.pdf, 2010. [Online; accessed 10-September-

2012].

[52] Nvidia. PTX (Parallel Thread Execution) ISA Version 2.2. http://developer.nvidia.com/

cuda/nvidia-gpu-computing-documentation, 2010. [Online; accessed 27-June-2011].

[53] Nvidia. The CUDA Compiler Driver Nvcc. http://developer.nvidia.com/cuda/

nvidia-gpu-computing-documentation, 2010. [Online; accessed 07-May-2011].

http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf
www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation

Bibliography 205

[54] Nvidia. Cuobjdump (An Interpreting Tool for Fatbin Files). http://developer.nvidia.

com/cuda/nvidia-gpu-computing-documentation, 2011. [Online; accessed 03-April-2011].

[55] Nvidia. CUDA C Best Practices Guide Version 4.1. http://developer.nvidia.com/cuda/

nvidia-gpu-computing-documentation, 2012. [Online; accessed 07-September-2012].

[56] Nvidia. CUDA C Programming Guide Version 4.1. http://developer.nvidia.com/cuda/

nvidia-gpu-computing-documentation, 2012. [Online; accessed 13-September-2012].

[57] D. Patterson. The Top 10 Innovations in the New NVIDIA Fermi Architecture and the

Top 3 Next Challenges. http://www.nvidia.com/object/fermi-architecture.html, 2010.

[Online; accessed 15-February-2011].

[58] S. Tomov R. Nath and J. Dongarra. An Improved Magma GEMM for Fermi Graphics Pro-

cessing Units. International J. of High Performance Computing Application, 24(4):511�515,

2010.

[59] T. T. Dong R. Nath, S. Tomov and J. Dongarra. Optimizing Symmetric Dense Matrix-Vector

Multiplication on GPUs. Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, 2011.

[60] A. Resios. GPU Performance Prediction using Parametrized Models.pdf. Master's thesis -

Utrecht University, 2011.

[61] R. Reyes and F. de Sande. Optimization Strategies in Di�erent CUDA Architectures using

LlCoMP. Microprocessors and Microsystems, 36(2):78�87, 2012.

[62] J. Siegel S. Carrillo and X. Li. A Control-Structure Splitting Optimization for GPGPU.

Proceedings of the 6th ACM conference on Computing frontiers, pages 147�150, 2009.

[63] D. Defour S. Collange and D. Parello. Barra, a Modular Functional GPU Simulator for

GPGPU. Technical Report, 2009.

[64] S. Min S. Lee and R. Eigenmann. OpenMP to GPGPU: a Compiler Framework for Auto-

matic Translation and Optimization. Proceedings of the 14th ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 101�110, 2009.

[65] S. S. Baghsorkhi S. S. Stone D. B. Kirk S. Ryoo, C. I. Rodrigues andW.W. Hwuy. Optimization

Principles and Application Performance Evaluation of a Multithreaded GPU Using CUDA.

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel

programming, pages 73�82, 2008.

[66] S. J. Patel W. D. Gropp S. S. Baghsorkhi, M. Delahaye and W. W. Hwu. An Adaptive

Performance Modeling Tool for GPU Architectures. Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 105�114, 2010.

[67] S. S. Baghsorkhi S. Ueng, M. Lathara and W. W. Hwu. CUDA-Lite: Reducing GPU Pro-

gramming Complexity. Languages and Compilers for Parallel Computing, pages 1�15, 2008.

[68] N. Satish, M. Harris, and M. Garland. Designing E�cient Sorting Algorithms for Manycore

GPUs. Parallel and Distributed Processing Symposium - IEEE, pages 1�10, 2009.

http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://www.nvidia.com/object/fermi-architecture.html

206 Bibliography

[69] E. Sintorn and U. Assarsson. Fast Parallel GPU-Sorting using a Hybrid Algorithm. Journal

of Parallel and Distributed Computing, 68(10):1381�1388, 2008.

[70] H. H. B. Sorensen. Auto-Tuning Dense Vector and Matrix-Vector Operations for Fermi GPUs.

Parallel Processing and Applied Mathematics - Lecture Notes in Computer Science, 72(3):619�

629, 2012.

[71] J. E. Stone, J. Saam, D. J. Hardy, K. L. Vandivort, W. W. Hwu, and K. Schulten. High Perfor-

mance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-Core

CPUs. Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing

Units, pages 9�18, 2009.

[72] C. Trapnell and M. C. Schatz. Optimizing Data Intensive GPGPU Computations for DNA

Sequence Alignment. Parallel Computing, 35(8):429�440, 2009.

[73] M. Elkihela V. Boyera, D. El Baza. Solving Knapsack Problems on GPU. Computers and

Operations Research, 39(1):42�47, 2012.

[74] V. Volkov and J. W. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra. Interna-

tional Conference for High Performance Computing, Networking, Storage and Analysis, pages

1�11, 2008.

[75] S. Jiao D. Wang F Song W. Xu, H. Zhang and Z. Liu. Optimizing Sparse Matrix Vector Mul-

tiplication Using Cache Blocking Method on Fermi GPU. ACIS International Conference on

Software Engineering, Arti�cial Intelligence, Networking and Parallel/Distributed Computing,

2012.

[76] Z. Wei and J. Jaja. Optimization of Linked List Pre�x Computations on Multithreaded GPUs

using CUDA. Parallel Process. Letters, 22(4), 2012.

[77] M. Weigel. Performance Potential for Simulating Spin Models on GPU. Journal of Computa-

tional Physics, 231(8):3064�3082, 2012.

[78] C. Zhang X. Cui, Y. Chen and H. Mei. Auto-Tuning Dense Matrix Multiplication for GPGPU

with Cache. International Conference on Parallel and Distributed Systems, 2010.

[79] E. Z. Zhang Y. Liu and X. Shen. A Cross-Input Adaptive Framework for GPU Program Opti-

mizations. Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed

Processing, pages 1�10, 2009.

[80] F. Ino Y. Okitsu and K. Hagihara. High-Performance Cone Beam Reconstruction using CUDA

Compatible GPUs. Parallel Computing, 36(2):129�141, 2010.

[81] J. Kong Y. Yang, P. Xiang and H. Zhou. An Optimizing Compiler for GPGPU Programs with

Input-Data Sharing. Proceedings of the 15th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 343�344, 2010.

[82] Arturo Gonzalez-Escribano Yuri Torres and Diego R. Llanos. Understanding the Impact of

CUDA Tuning Techniques for Fermi. High Performance Computing Symposium, pages 631�

639, 2011.

Bibliography 207

[83] K. Rupnow Z. Cui, Y. Liang and D. Chen. An Accurate GPU Performance Model for E�ective

Control Flow Divergence Optimization. IEEE 26th International Parallel and Distributed

Processing Symposium, pages 83�84, 2012.

[84] Y. Zhang and J. D. Owens. A Quantitative Performance Analysis Model for GPU Archi-

tectures. IEEE 17th International Symposium on High Performance Computer Architecture,

pages 382�393, 2011.

	Structure of the Thesis
	Introduction to GPUs
	Introduction
	Parallel Thread Execution
	NVIDIA CUDA Compiler
	GPU Threads - Executions
	Launch Configuration - Definition
	Instruction Configuration
	Definition
	Dependence Distance
	Execution Time
	Useless Dependence Types
	Examples

	Summary

	The GF100 Architecture
	Introduction
	Main Components of the GF100 Architecture
	Main Components of a Streaming Multiprocessor
	Theoretical Tesla C2070 Peak Performances per Second
	Summary of the Tesla C2070 Architectural Features

	Types of Performance
	Introduction
	Theoretical Streaming Multiprocessor Peak Performance Achievable in a Clock Cycle
	Theoretical Streaming Multiprocessor Best Average Performance per Clock Cycle
	Theoretical Instruction Configuration Streaming Multiprocessor Peak Performance Achievable in a Clock Cycle
	Real Instruction Configuration Streaming Multiprocessor Peak Performance Achievable in a Clock Cycle
	Real ELF Code Streaming Multiprocessor Average Performance per Clock Cycle
	Theoretical ELF Code Streaming Multiprocessor Best Average Performance per Clock Cycle
	Real ELF Code Streaming Multiprocessor Best Average Performance per Clock Cycle
	Summary

	Lower Bound on the Real ELF Code Efficiency
	Introduction
	Calculations to Determine the Lower Bound
	Warp Scheduling on the Not Disclosed Shared Hardware Resources
	Warp Scheduling Influence on the ELF Code Execution Time
	Elimination of the Warp Scheduler Variability
	Warp Management Mechanism
	How much Tight Is the Lower Bound?
	Generality of the Solution Found for the Lower Bound
	Summary

	Reverse Engineering of the ISA and Modification of ELF Codes
	Introduction
	Localization in Fatbin Files of the ELF Instructions Necessary to Execute the PTX Instructions of PTX Codes
	PTX - ELF Correspondence Transformations
	Editing Guidelines To Edit PTX Files
	Analysis and Comparison of the PTX and Fatbin File Structures
	Number, Type and Matching among PTX and ELF Registers

	Database of the Human Readable Text Form Representations
	Database of the Binary Codes of the ELF Instructions
	Fatbin File Generation Satisfying Resource Constraints
	Wanted ELF Algorithmic Implementations
	Summary

	Discovery, Understanding and Quantification of Not Disclosed GPU Behaviors
	Introduction
	Not Disclosed GPU Behavior Categories
	GPU Architectural Features
	Global GPU Assignment and Scheduling Architectural Features
	Local Streaming Multiprocessor PTX and ELF Architectural Features

	PTX and ELF Codes
	A Priori Bandwidth and Latency GPU Memories Free Guarantee
	Structure of the PTX and ELF Codes
	Construction of the PTX and ELF Codes

	Launch Configurations
	Global GPU Assignment and Scheduling Architectural Features
	Local Streaming Multiprocessor PTX and ELF Architectural Features

	GPU Architectural Feature Quantifications
	Global GPU Assignment and Scheduling Architectural Features
	Local Streaming Multiprocessor PTX and ELF Architectural Features

	Summary

	Modifications, Launch Configurations and Transformations
	Introduction
	Procedures to Modify Single Fatbin Files
	Logically Correct Permutations of the ELF Instructions
	Even Distribution of the GPU Thread Blocks to the Streaming Multiprocessors
	Modification of the Reading and/or Writing Mechanisms

	Selection of the Launch Configurations
	Transformation of the Fatbin File to Analyze
	Summary

	Warp Scheduling Policies
	Introduction
	What is Reasonable to Assume being True
	Very Simple Fatbin Files
	Executions with Load Balancing
	Probably True Things about the Warp Scheduling
	Because Other Possibilities are Unlikely

	Impossibility of Knowing the Truth
	Cycling Policy - The Probable Warp Scheduling Policy
	Mechanisms and Dynamics of the Warp Scheduling Cycling Policy
	Change of the Order of Execution of the Mechanisms
	Possibility of a Time Difference Between Warp Schedulers
	Supporting Reasons for the Warp Scheduling Cycling Policy
	Justifying the Starting Time Differences

	The Possibility that Other Policies are Executed
	Generalization of Results about the Starting Time Differences
	Difficulty to Generalize the Results about the Ending Time Differences
	Consequences of the Reader's Choice
	Impossibility to Determine and Understand any Other Policy
	Why a Policy Different from the Cycling Policy is Unlikely

	Advantages and Disadvantages of the Cycling Policy
	Summary

	Taxonomy for Fatbin Files
	Introduction
	Warp Scheduling Policy
	Branches
	Eviction Policies Used for the L2 Cache and the L1 Caches
	Reading and Writing - Which and Where
	ELF Instructions of Synchronization
	Fatbin Files Generated for the Optimizations
	Summary

	Analysis/Analyses Selection
	Introduction
	Analysis/Analyses Selection
	Summary

	Guaranteeing A Priori ELF Code Shortest Execution Times
	Introduction
	Bandwidths and Latencies of the GPU Memories
	Reading and Writing - Positions and Locations
	Difficulties in the Determination of the Cache Lines to Transfer
	Supposing the GF100 Architecture Without the L2 Cache
	Maximum Distance in Number of Warp ELF Instructions
	Introduction of ELF Instructions of Synchronization
	Constancy, of the Distances, in Number of Warp ELF Instructions
	Warp ELF Instructions Implying Off-Chip On-Chip Transfers
	Slowdowns due to the Bandwidths and the Latencies

	Number of Resident Warps in Each Streaming Multiprocessor
	Summary

	Contributions of the Thesis
	Introduction
	Real ISA and ELF Codes
	Localization in Fatbin Files of the ELF Instructions Necessary to Execute the PTX Instructions of PTX Codes
	Editing Rules to Force Nvcc
	PTX-ELF Correspondences
	Reverse Engineering of the Real Instruction Set Architecture
	Getting the Wanted ELF Algorithmic Implementations

	Not Disclosed GPU Behaviors
	Advancement of the Resident Warps in a Streaming Multiprocessor
	Even Distribution of the GPU Thread Blocks
	Warp Scheduling Load Unbalancing
	Local Streaming Multiprocessor PTX and ELF Architectural Features

	Transformations and Launch Configurations
	Transformation of the Original Fatbin File to Be Optimized
	Selection of the Launch Configurations

	Analysis of the Equivalent Fatbin Files Generated
	Taxonomy for Fatbin Files
	Analysis/Analyses Selection
	Guaranteeing A Priori ELF Code Shortest Execution Times

	Summary

	Previous Work and its Problems
	Introduction
	Previous Work
	Problems with the Previous Work
	Summary

	Conclusions and Future Research Directions
	Introduction
	Conclusions
	Future Research Directions

