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Abstract

With the advent of globalization and the recent financial turmoil, the interest

for the analysis of dependencies between financial time series has significantly

increased. Risk measures such as value-at-risk are heavily affected by the joint

extreme comovements of associated risk factors. This thesis suggests some copula-

based statistical tools which can be useful in order to have more insights into the

nature of the association between random variables in the tail of their distributions.

Preliminarily, an overview of important definitions and properties in copula

theory is given, and some known measures of tail dependence based on the no-

tion of tail dependence coefficients and rank correlations are introduced. A first

proposal consists of a graphical tool based on the so-called tail concentration func-

tion, in order to distinguish different families of copulas in a 2D configuration.

This can be used as a copula selection tool in practical fitting problems, when one

wants to choose one or more copulas to model the dependence structure in the data,

highlighting the information contained in the tail.

The thesis mainly deals with financial time series applications, where copula

functions and the related concepts of tail copula and tail dependence coefficients

are used to characterize the dependence structure of asset returns.

Classical cluster analysis tools are revisited by introducing suitable copula-

based tail dependence measures, which are exploited in the identification of sim-

ilarities or dissimilarities between the variables of interest and, in particular, be-

tween financial time series. Such an approach is designed to investigate the joint

behaviour of pairs of time series when they are taking on extremely low values. Ei-

ther the asymptotic and the finite behaviour are assessed. The proposed methodol-

ogy is based on a suitable copula-based time series model (GARCH-copula model),

in order to model the marginal behaviour of each time series separately from the

dependence pattern. Moreover, non-parametric estimation procedures are adopted

for describing the pairwise dependencies, thus avoiding any model assumption.

Simulation studies are conducted in order to check the performances of the pro-

posed procedures and applications to financial data are presented showing their

practical implementation.

The information coming from the output of the introduced clustering tech-

niques can be exploited for automatic portfolio selection procedures in order to



hedge the risk of a portfolio, by taking into account the occurrence of joint losses.

A two-stage portfolio diversification strategy is proposed and empirical analysis

are provided.

Results show how the suggested approach to the clustering of financial time

series can be used by an investor to have more insights into the relationships among

different assets in crisis periods. Moreover, the application to portfolio selection

framework suggests a cautious usage of standard procedures that may not work

when the markets are expected to experience periods of high volatility.



Sommario

Con l’avvento della globalizzazione e la recente crisi finanziaria, l’interes-

se verso l’analisi delle relazioni tra serie storiche finanziarie è notevolmente au-

mentato. Misure di rischio come il value-at-risk sono fortemente influenzate dai

movimenti estremi congiunti dei fattori di rischio associati.

Nella presente tesi si suggeriscono alcuni strumenti statistici basati sulla nozio-

ne di copula, che possono essere utili al fine di ottenere informazioni sulla natura

dell’associazione tra variabili casuali nella coda delle loro distribuzioni.

Preliminarmente, vengono introdotte definizioni e proprietà fondamentali della

teoria delle copule, e discusse alcune note misure di dipendenza basate sul concet-

to di coefficienti di dipendenza nella coda e correlazioni fra i ranghi. Una pri-

ma proposta consiste in uno strumento grafico basato sulla cosiddetta funzione di

concentrazione di coda per distinguere tra diverse famiglie di copule in una con-

figurazione bidimensionale. Questo strumento può essere impiegato in problemi

pratici, quando si vuole scegliere tra una o più copule per modellizzare la struttura

di dipendenza nei dati, evidenziando le informazioni contenute nella coda.

La tesi prende in considerazione diverse applicazioni nell’analisi di serie sto-

riche finanziarie, in cui le funzioni copula e i relativi concetti di copule di co-

da e coefficienti di dipendenza nelle code vengono impiegati per caratterizzare la

struttura di dipendenza dei rendimenti finanziari.

Gli strumenti standard per l’Analisi dei Gruppi (Cluster Analysis) vengono

rivisitati attraverso l’introduzione di opportune misure di dipendenza, che permet-

tano di identificare similarità o dissimilarità tra le quantità di interesse, nello spe-

cifico rappresentate da serie finanziarie. Tale approccio ha lo scopo di studiare il

comportamento congiunto di coppie di serie finanziarie nel momento in cui esse

assumono valori estremamente bassi. Vengono valutate sia la dipendenza asintoti-

ca che il comportamento finito. La metodologia proposta utilizza un modello per

serie storiche basato sulle copule (GARCH-copula model), che consente di mo-

dellizzare il comportamento marginale di ogni serie temporale separatamente dalla

struttura di dipendenza. Inoltre, vengono adottate procedure di stima non parame-

triche in relazione alla struttura di dipendenza, evitando cosı̀ qualunque assunzione

sul modello. Vengono condotti degli studi di simulazione per testare le procedure



proposte e diverse applicazioni a dati finanziari mostrano la loro implementazione

pratica.

Il risultato delle tecniche introdotte precedentemente può essere utilizzato in

procedure di selezione automatica di portafoglio al fine di coprire il rischio dovuto

al verificarsi di perdite congiunte. Viene proposta una strategia di diversificazione

di portafoglio in due fasi e illustrate le analisi empiriche.

L’approccio suggerito per il raggruppamento di serie finanziarie può essere uti-

le ad un investitore per avere una visione più approfondita delle correlazioni tra

mercati finanziari in periodi di crisi. Inoltre, l’applicazione nell’ambito della sele-

zione di portafogli suggerisce un uso prudente delle procedure standard che potreb-

bero non essere appropriate quando si prevede che i mercati possano attraversare

periodi di alta volatilità .
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Chapter 1

Introduction

1.1 Overview

At the end of the nineties copulas became increasingly popular as a new powerful

tool in the construction and estimation of multivariate stochastic models (Nelsen,

2006; Joe, 1997). First introduced by A. Sklar (Sklar, 1959), copulas have in-

spired a fast growth of interest and papers published in the subject due to many

successful applications in different fields (e.g., finance and economics, insurance,

hydrology). Copulas have proved to be useful especially when the major issue is to

understand/quantify a risk coming from different sources. See, for instance, Cheru-

bini et al. (2011), Jaworski et al. (2013), Mai & Scherer (2012), Genest & Favre

(2007) and the references therein. In these contexts, copula functions allow to ag-

gregate individual risk factors (usually, expressed in terms of random variables)

into one global risk output. Generally, such global risk is measured by the multi-

variate probability distribution function coupling the individual (one–dimensional)

risks by means of a copula. In many practical applications, the global risk does

not depend on the whole expression of the copula, but only on the behaviour of

the copula in specific regions of its domain, the tails of a distribution. The con-

cept of tail dependence describes the degree of dependence in the corner of the

lower-left quadrant or upper-right quadrant of a bivariate distribution (Frahm et al.,

2005). Tail-dependent distributions are of interest in many contexts and especially

in financial applications, where it is clear that the assumption of normality can no

longer be preserved. The concept of tail dependence can be embedded within the
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copula theory, such as the so–called tail-dependence coefficient. The flexibility of

the copula-based approach in modelling dependencies avoiding constraints on the

marginals represents one of the main advantages of copula models. As stressed,

for instance, by the Basel Committee on Banking Supervision1: “The copula ap-

proach allows the practitioner to precisely specify the dependencies in the areas

of the loss distributions that are crucial in determining the level of risk”. Several

investigations have been carried out during the years from different perspectives,

ranging from tools from extreme-value analysis (Gudendorf & Segers, 2010) to the

concept of threshold copulas (Jaworski, 2013).

In recent years financial markets have been characterized by an increasing global-

ization and a complex set of relationships among asset returns. Moreover, several

studies have demonstrated that the linkages among different assets vary across time

and that their strength tends to increase especially during crisis periods. In particu-

lar, practitioners are often interested in minimizing the whole risk of a portfolio of

assets by adopting some diversification techniques which are based on the selec-

tion of different assets from markets and/or regions that one believes to be weakly

correlated. In this framework, clustering techniques for multivariate financial time

series are adopted in order to find sub-groups of asset returns such that elements

within a group have a similar stochastic dependence structure, while elements from

distinct groups have different behaviour. These procedures typically involve the

choice of a convenient dissimilarity measure (see, e.g., Piccolo, 1990; Caiado &

Crato, 2010; Bastos & Caiado, 2013). Several clustering methods have focused

on the use of Pearson correlation in order to infer the hierarchical structure of a

portfolio of financial assets (see, for instance, the book by Kaufman & Rousseeuw,

1990). However, in most real life situations, returns of financial time series exhibit

clear evidence against the multivariate normal distribution (McNeil et al., 2005).

Therefore clustering procedures based on linear measures of correlation are inad-

equate for capturing extremal joint behaviour which is common in financial time

series. Mainly due to this considerations, copula-based time series models have

become a standard tool in modelling dependencies among univariate time series

(see Patton, 2012).

1Developments in Modelling Risk Aggregation, October 2010,

http://www.bis.org/publ/joint25.htm
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1.2 Summary and main contributions of this Thesis

This Thesis concerns the issue of tail dependence, as a relevant pattern in multi-

variate financial data. The identification of similarities/dissimilarities between the

variables of interest can provide a better understanding of the underlying depen-

dence structure. A copula-based approach allows us to construct models which go

beyond the standard ones at the level of dependence. The proposed methodology

finds application in several fields and is particularly useful in the analysis of finan-

cial data. In view of the results, the present thesis may represent one step in the

direction of novel developments of copula-based statistical tools.

After Chapter 2, in which we introduce the concept of copula in full generality,

the third chapter gives an overview of tail dependence measures revisited into the

general framework of copulas. In particular, firstly the so–called tail dependence

coefficient as a simple measure of dependence of large loss events is discussed.

Secondly, we focus on the conditional version of Spearman’s rank correlation, as

an alternative measure of the amount of dependence in a given (tail) region of a bi-

variate distribution. Thirdly, we introduce the so–called tail concentration function

(or quantile dependence function, see Patton, 2012), that may serve to visualize the

tail behaviour of a copula at some (finite) points near the corners of its domain. We

also discuss the potentials of such a function as a graphical tool useful to provide

information in the choice of the copula model adequately fitting the data.

Chapter 4 introduces the reader to the framework of financial time series of re-

turns, emphasizing some stylized facts regarding returns on financial assets: market

data returns tend to be uncorrelated, but dependent, they are heavy tailed, extremes

appear in clusters and volatility is random. In this framework, copula-based time

series models provide a tool to handle in a flexible way the link among different

univariate time series and allow us to model more accurately joint negative returns,

without any influence of marginal behaviour on the dependence structure.

Dealing with financial data, an important issue concerns the minimization of

the whole risk by adopting some diversification techniques, that should take into

account the comovements among the assets. Therefore, the diversification issue

naturally poses the question of investigating the relationship between financial time

series and of checking whether they can be grouped together in such a way that

may be helpful to portfolio selection. Following this ideas, Chapter 5 and Chapter
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6 propose two strategies for clustering financial time series in “extreme scenarios”,

that means, aiming at grouping financial time series according to a measure that ac-

counts for a kind of extreme (tail) dependence. Such a different approach consists

of finding groups that are similar in the sense that assets within the same group

tend to comove when they are experiencing very large losses. A similar viewpoint

can be found in a recent work by De Luca & Zuccolotto (2011). However our

approach presents some fundamental differences, since we avoid the specification

of a fully parametric model for describing the pairwise dependence between the

markets under consideration and we assume that the multivariate time series pro-

cess follows a copula-based semi-parametric model. The two methodologies are

intended to be used by an investor to have deeper insights into the relationships

among different assets in crisis periods. The main role in the clustering procedures

is played by dissimilarity measures, that are suitably defined to reflect the strength

of the (positive) dependence between the time series in a given tail region of their

joint distribution. To this end, two measures of tail dependence are adopted, which

express different ways of looking at tail dependence since they focus, respectively,

on asymptotic and finite tail behaviour. The estimation of these quantities is dis-

cussed and simulation studies are conducted to check the performances of the two

procedures in identifying the clusters.

Different applications of the proposed methodologies to the analysis of specific

financial datasets are presented. In addition, a further application concerns the

construction of a weighted portfolio from a group of assets in such a way that

the assets are diversified in their tail behaviour. This procedure is expected to be

useful to have an idea about possible portfolios to be built in bearish periods and

warn against the automatic use of standard portfolio selection procedures.



Chapter 2

Introduction to Copulas

2.1 Introduction

Many real-life situations can be modelled by a large number of random variables

which play a significant role, and such variates are generally not independent.

Therefore, it is often of fundamental importance to be able to link the marginal

distributions of different variables in order to give a flexible and accurate descrip-

tion of the joint law of the variables of interest. Copulas were introduced in 1959

in the context of probabilistic metric spaces and later exploited as a tool for un-

derstanding relationships among multivariate outcomes. A copula is a function

that links univariate marginals to their joint multivariate distribution in such a way

that it captures the entire dependence structure in the multivariate distribution. The

main advantage provided by a copula-approach in dependence modelling is that

the selection of an appropriate model for the dependence between variables X and

Y , represented by the copula, can proceed independently from the choice of the

marginal distributions. The seminal result in the history of copulas is due to Sklar

that introduced in 1959 the notion, and the name, of copula, and proved the theo-

rem that now bears his name (Sklar, 1959). The latter states that any multivariate

distribution can be expressed as its copula function evaluated at its marginal distri-

bution functions. Moreover, any copula function when evaluated at any marginal

distributions is a multivariate distribution.

The literature on the statistical properties and applications of copulas has been

developing rapidly in recent years. For an introduction to the theory of copulas and
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a large selection of related models, the reader may refer, e.g., to the monographs by

Joe (1997) and Nelsen (2006), or to reviews such as Durante & Sempi (2010) and

Cherubini et al. (2004), in which actuarial and financial applications are consid-

ered. Several other surveys of copula theory and applications in many fields have

appeared in the literature to date, ranging from finance and economics to hydrol-

ogy and environmental sciences. However, such a wide diffusion of applications

of copulas has recently raised several criticisms among some researchers (see, for

instance, the paper by Mikosch, 2006). It is worth stressing that copulas should

not be regarded as the solution to all problems related to stochastic dependence

and multivariate distributions. Copula models are just beginning to make their way

into the statistical literature and further research efforts in investigating the poten-

tials and the limitations of copula functions will be needed. The present thesis

represents one small step in the direction of novel developments of copula-based

statistical tools.

The rest of the chapter is so organized. Section 2.2 introduces the definition of a

copula and presents some basic properties. Section 2.3 is dedicated to Sklar’s The-

orem and its interpretation, which allows us to consider a copula as a ‘dependence

function’ and states the importance of copulas for stochastic models. Copulas in-

variance property and related dependence concepts are discussed in Section 2.4.

Section 2.5 briefly reviews two well-established measures of correlation known as

Spearman’s rank correlation and Kendall’s rank correlation in terms of copulas.

Finally, some examples of frequently employed families of copulas are illustrated

(Section 2.6).

2.2 Basic Definitions and Properties

To begin with, we need to establish basic notation. Let d ∈ N and x denote a vector

(x1, . . . , xd) ∈ Rd. The symbol I will denote the unit interval [0, 1]. Usually, the

abbreviation r.v. will denote a random vector, and the term joint d.f. will be used

for denoting the distribution function (d.f.) of a random vector having, at least, two

components. We start with the definition of a copula.

Definition 2.1. For every d ≥ 2, a d-dimensional copula (d-copula) is a d-variate

d.f. on Id whose univariate marginals are uniformly distributed on I.
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In other words, a d-dimensional copula is a d-dimensional d.f. with all d uni-

variate margins being U(0, 1). Since copulas are multivariate d.f.’s, the following

characterization theorem holds.

Theorem 2.2.1. A function C : Id → I is a copula if, and only if, it satisfies the

following properties:

1. C(1, . . . , 1, uj , 1, . . . , 1) = uj for every 1 ≤ j ≤ d and all uj ∈ I;
2. C is increasing in each variable, i.e. C(u) ≤ C(v) for all u,v ∈ Id, u ≤ v;

3. C is d-increasing, i.e. the C-volume of any d-dimensional interval is non-

negative.

As an easy consequence, the joint probability of all outcomes is zero if the

marginal probability of any outcome is zero, that is, C(u1, . . . , ud) = 0 if uj = 0

for any 1 ≤ j ≤ d. Now, consider a continuous d-dimensional distribution function

F (x1, . . . , xd) of the r.v. X with univariate marginal distributions F1, . . . Fd and

inverse (quantile) functions F−1
1 , . . . F−1

d . The transforms of uniform variates are

distributed as Fi, i = 1, . . . , d. Hence

F (x1, . . . , xd) = F (F−1
1 (u1), . . . , F−1

d (ud))

= Pr(U1 ≤ u1, . . . , Ud ≤ ud)

= C(u1, . . . , ud).

This anticipates the content of Sklar’s theorem, which states the link between dis-

tribution functions and copulas and will be discussed in the next section.

Since copulas are multivariate distribution functions, Fréchet-Hoeffding bounds

give upper and lower bounds in the class of all d-copulas.

Theorem 2.2.2. Every copula satisfies the following inequality:

max

[
d∑
i=1

ui − d+ 1, 0

]
≤ C(u) ≤ min(u1, . . . , ud) (2.1)

for every u ∈ Id.

The upper bound still satisfies the definition of copula. The lower bound is a

copula for d = 2, while it never satisfies the definition of copula for d ≥ 3. How-

ever, it can be proved that the bound is the best possible: pointwise there always
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exists a copula that takes its value. Fréchet-Hoeffding bounds are important in se-

lecting an appropriate copula. Often, a desirable feature of a family of copulas is

that it spans all possible degrees of dependence between the lower and the upper

bound. The upper and lower Fréchet bound, respectively, can be considered special

cases: Md(u) = min(u1, . . . , ud) is the comonotonicity copula, associated with a

vector U = (U1, . . . , Ud), whose components are uniformly distributed on I and

such that U1 = U2 = · · · = Ud almost surely; W2(u1, u2) = max(u1 + u2 − 1, 0)

is the countermonotonicity copula, associated with a vector U = (U1, U2) of r.v.’s

uniformly distributed on I and such that U1 = 1−U2 almost surely. Moreover, the

product copula has the form Πd(u) = u1 · · ·ud, which corresponds to indepen-

dence.
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Figure 2.1: 3D plots of basic copulas. Left Comonotonicity copula (upper bound).

Middle Product (or independence) copula. Right Countermonotonicity copula

(lower bound).

2.3 Sklar’s Theorem

Sklar’s theorem is the building block of the theory of copulas. It guarantees that not

only every joint continuous distribution function can be represented via a unique

copula, but that the converse holds too. Sklar’s theorem has been announced in

Sklar (1959), however its first proof for the bivariate case appeared in Schweizer

& Sklar (1974). Here, we enunciate the theorem in the d-dimensional case. A

multivariate proof can be found in Schweizer & Sklar (1983) (compare also with

Moore & Spruill, 1975; Deheuvels, 1978; Sklar, 1996).
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Theorem 2.3.1. Let F1, F2, . . . , Fd be (given) marginal distribution functions and

let Aj denote the range of Fj , Aj := Fj(R), for j = 1, . . . , d. Then, for every

(x1, x2, . . . , xd) ∈ Rd:

(i) If F is a joint d.f. with univariate margins F1(x1), F2(x2), . . . , Fd(xd), there

exists a unique copula C with domain A1 ×A2 · · · ×Ad such that

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)). (2.2)

Hence, such a C is unique when F1, F2, . . . , Fd are all continuous.

(ii) If C is any d-copula, then the function F : Rd → I defined by (2.2) is a

d-dimensional distribution function with margins F1, F2, . . . , Fd.

It follows as a corollary of Sklar’s theorem that the copula that allows the rep-

resentation (2.2) can be reconstructed from the margins and the joint distribution

by inversion.

Corollary 2.3.2. Under the hypothesis of part (i) of Sklar’s theorem, if Fi is con-

tinuous for every i ∈ {1, . . . , d}, the copula C : Rd → I is given by

C(u) = F (F−1
1 (u1), F−1

2 (u2), . . . , F−1
d (ud)) (2.3)

Corollary 2.3.2 states that the construction via Sklar’s theorem exhausts the

so–called Fréchet class, i.e. the class of joint distribution functions that have

F1, F2, . . . , Fd as margins.

By means of Sklar’s result, while writing F (x) = C(F1(x1), . . . , Fd(xd))

we have the possibility to express the joint cumulative probability in terms of the

marginal ones, referred to as the basic probabilistic interpretation of copulas; at

the same time, we are able to separate marginal behaviour, as represented by the

Fi, from the dependence between the marginals, only represented by the copula C

of X. For this reason, a copula is often viewed as a dependence function.

Finally, consider a d-copula C. If C is absolutely continuous, then there exists

a.e. in Id a d-variate density function c : Id → [0,∞) associated to C (see Du-

rante et al., 2013a). The copula density reflects the strength of dependence of the

margins. We have that

c(u1, u2, . . . , ud) =
∂dC(u1, u2, . . . , ud)

∂u1 . . . ∂ud
a.e. on Id. (2.4)
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For absolutely continuous random variables with d.f. F , the copula density is re-

lated to the density of the distribution F , denoted as f , by the canonical represen-

tation

f(x1, x2, . . . , xd) = c(F1(x1), F2(x2), . . . , Fd(xd)) ·
d∏
j=1

fj(xj) (2.5)

which implies that the copula density is equal to the ratio of the joint density f and

the product of all marginal densities fj .

2.4 Copulas as dependence functions

As pointed out in the previous section, copula functions allow researchers to con-

sider marginal distributions and dependence as two separate but related issues. As

a consequence, the copula function can be parametrized to include measures of de-

pendence between the marginal distributions. Some properties of copulas deserve

mention due to their important implications for empirical applications.

First, copulas have an attractive invariance property w.r.t. increasing transfor-

mations of the marginal distributions, that make copulas potentially very useful in

applied work. The following theorem holds.

Theorem 2.4.1. (Schweizer & Wolff, 1976, 1981) Let X1, . . . , Xd be continuous

random variables with marginal distribution functions F1, . . . , Fd and copula C.

Let t1, . . . , td be strictly increasing functions from R to R. Then t1(X1), . . . , td(Xd),

which have marginal distribution functions Hi = Fi ◦ t−1
i , i = 1, . . . , d, and joint

one H(u1, . . . , ud) = Pr(t1(X1) ≤ u1, . . . , td(Xd) ≤ ud), have copula C too:

H(v1, . . . , vd) = C(H1(v1), . . . ,Hd(vd)). (2.6)

The above result has important theoretical and applicative consequences. In

fact, it implies that any ‘property’ of the joint distribution function of the random

variables that is invariant under strictly increasing transformations of the random

variables is a ‘property’ of their copula and independent of the individual distribu-

tions. In particular, all the concepts related to rank statistics (such as Kendall’s τ )

can be expressed in terms of copulas.

Some additional properties of copulas that can be inferred from Sklar’s Theo-

rem permit us to characterize independence, perfect positive and negative depen-

dence, in terms of the basic copulas Πd,Md,W2.
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Proposition 2.4.2. Let (X1, X2, . . . , Xd) be a r.v. with continuous joint d.f. F .

Then

(i) the copula of (X1, . . . , Xd) is the product copula Πd if, and only if,X1, . . . , Xd

are independent;

(ii) the copula of (X1, . . . , Xd) is Md if, and only if, there exists a r.v. Z and

increasing functions t1, . . . , td such that X = (t1(Z), . . . , td(Z)) almost

surely;

(iii) for d = 2, the copula of (X1, X2) is W2 if, and only if, for some strictly

decreasing function t, X2 = t (X1) almost surely.

Random variates as in part (ii) of Proposition 2.4.2 are said to be comonotonic

or perfectly positively dependent; while part (iii) corresponds to countermonotonic-

ity or perfectly negatively dependent variables. That is, the association is positive

if the copula attains the upper Fréchet-Hoeffding bound and negative if it attains

the lower Fréchet–Hoeffding bound.

2.5 Measures of association

The general concept of association relates to random variates which are not in-

dependent according to the characterization in Section 2.4. That is, the random

variables (X,Y ) are said to be dependent or associated if they are not indepen-

dent in the sense that F (x, y) 6= F1(x)F2(y). In this section, we discuss the

relationships between copula functions and some main association measures, in

order to understand what is the nature of dependence that is captured by a copula.

This issue is particularly relevant to the choice among different copula models.

Well-known concepts of association include concordance, linear correlation, tail

dependence, positive quadrant dependency. Some measures associated with them

are rank correlations, the linear correlation coefficient, the indices of tail depen-

dence. Two well-established measures of correlation known as Spearman’s rank

correlation (Spearman’s rho) and Kendall’s rank correlation (Kendall’s tau) are re-

viewed in terms of copulas (see, e.g., Joe, 1997; Embrechts et al., 2002). Both

measures provide a valid alternative to the linear correlation coefficient which is

often an inappropriate and misleading measure of dependence; they are invariant

under monotonic transformations and do not depend on the functional forms of
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the marginal distributions. Tail dependence will be the topic of next chapter. We

restrict the discussion to the bivariate case although generalization to higher di-

mensions is possible.

2.5.1 Kendall’s tau

Consider two independent pairs of random variables (X1, Y1), (X2, Y2) each with

the same joint distribution function F . The vectors are said to be concordant if

X1 > X2 whenever Y1 > Y2, and X1 < X2 whenever Y1 < Y2; and discordant in

the opposite case. Thus, concordance refers to the property that large values of one

random variable are associated with large values of another, whereas discordance

refers to large values of one being associated with small values of the other.

Definition 2.2. (Kendall, 1938) Kendall’s tau for the random vector (X1, Y1) is

defined as

τ = Pr((X1 −X2)(Y1 − Y2) > 0)− Pr((X1 −X2)(Y1 − Y2) < 0). (2.7)

Interpreting Definition 2.2 in terms of concordance, one can easily obtain

τ = Pr[concordance]− Pr[discordance]

Given a r.v. (X,Y ) with continuous marginals having copula C, Kendall’s τ can

be expressed in terms of the copula as follows:

τC = 4

∫ ∫
I2
C(v, z)dC(v, z)− 1 (2.8)

Hence Kendall’s tau is a copula property. Notice that −1 ≤ τ ≤ 1, it is symmetric

and assume the value zero under independence. Further,

τ = −1 iff C = W2 iff Y = t(X) a.e., t decreasing;

τ = 1 iff C = M2 iff Y = t(X) a.e., t increasing.

It is also worth to stress that Kendall’s coefficient is a normalized expected value.

In fact, equation (2.8) can be rewritten by replacing the double integral with the

expected value of the function C(U1, U2), with U1 and U2 standard uniform and

joint distribution C. Hence,

τ = 4E[C(U1, U2)]− 1
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and

−1 ≤ 4E[C(U1, U2)]− 1 ≤ 1.

A result by Nelsen (1991) establishes that the following lemma holds.

Lemma 2.5.1. If C is a copula∫ ∫
I2
C(v, z)dC(v, z) +

∫ ∫
I2

∂C(v, z)

∂v

∂C(v, z)

∂z
dvdz =

1

2

It follows that when C has both an absolutely continuous and a singular com-

ponent, or is singular, Kendall’s τ can be computed as:

τ = 1− 4

∫ ∫
I2

∂C(v, z)

∂v

∂C(v, z)

∂z
dvdz (2.9)

Finally, consider a random sample of n pairs (Xi, Yi), i = 1, . . . , n and define

Aij := sgn(Xi −Xj)(Yi − Yj). It is straightforward that

E(Aij) = (+1) Pr((Xi−Xj)(Yi−Yj) > 0)+(−1) Pr((Xi−Xj)(Yi−Yj) < 0)

It follows that an unbiased estimator of Kendall’s tau is the so–called Sample

Kendall’s τ , which is consistent as well:

τS =
2

n(n− 1)

n∑
i=1

∑
j>i

Aij . (2.10)

2.5.2 Spearman’s rho

Consider three pairs of independent and identically distributed random vectors,

namely (X1, Y1), (X2, Y2) and (X3, Y3). As for Kendall’s τ , Spearman’s rho can

be defined in terms of the probability of concordance and discordance as follows.

Definition 2.3. Spearman’s rho for the random vector (X1, Y1) is defined as

ρS = 3[Pr((X1 −X2)(Y1 − Y3) > 0)− Pr((X1 −X2)(Y1 − Y3) < 0)]. (2.11)

Note that X2, Y3 are independent. Therefore, given a r.v. (X,Y ) with con-

tinuous marginals having copula C, Spearman’s ρ for (X,Y ) can be expressed in

terms of the copula as follows (Schweizer & Wolff, 1981):

ρS = 12

∫ ∫
I2
vz dC(v, z)− 3 = 12

∫ ∫
I2
C(v, z) dvdz − 3.
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One can easily derive

ρS = 12

∫ ∫
I2
{C(v, z)− uz}dvdz. (2.12)

Now, if X ∼ F1 and Y ∼ F2, and we let U1 = F1(X), U2 = F2(Y ), then

ρS = 12E(U1U2)− 3

=
E(U1U2)− 1/4

1/12
=

Cov(U1, U2)√
Var(U1)

√
Var(U2)

.

It turns out that Spearman’s coefficient is the linear correlation between F1(X) and

F2(Y ). Spearman’s ρS is therefore the rank correlation, in the sense of correlation

of the integral transforms ofX and Y . Also for Spearman’s ρS one could prove that

it reaches its bounds if, and only if, X and Y are respectively countermonotonic

and comonotonic continuous random variates:

ρS = −1 iff C = W2 iff Y = t(X) a.e., t decreasing;

ρS = 1 iff C = M2 iff Y = t(X) a.e., t increasing.

Again, consider a random sample of n pairs (Xi, Yi), i = 1, . . . , n, and define

Ri := rank(Xi) and Si := rank(Yi). The sample version of ρS is an unbiased

estimator of the population one and is computed as:

1− 6

∑n
i=1(Ri − Si)2

n(n2 − 1)
.

From the definitions of Kendall’s tau and Spearman’s rho it follows that both

are concordance measures and depend only on the copula under consideration.

Moreover, for continuous random variables all values in the interval [−1, 1] can be

obtained for Kendall’s tau or Spearman’s rho by a suitable choice of the underlying

copula. Further details and more discussion on the relationships between these two

measures can be found in Nelsen (2006).

2.6 Families of Copulas

Several investigations have been carried out concerning the construction of differ-

ent families of copulas and their properties. We will focus on a few of them, those

that seem to be more popular in the literature and frequently employed in financial

applications: Gaussian copulas, t-copulas, and the class of Archimedean copulas.
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2.6.1 Gaussian (Normal) copulas

The Gaussian (Normal) copula belongs to the so–called class of Elliptical copulas,

the latter being simply the copulas of elliptical distributions (see, for instance, Fang

et al., 1987).

The copula of the n-variate normal distribution with correlation matrix R has

the form

CGaR (u) = ΦR

(
Φ−1(u1),Φ−1(u2), . . . ,Φ−1(ud)

)
, (2.13)

where ΦR is the standardized multivariate normal distribution with correlation ma-

trix R and Φ−1 denotes the inverse of the distribution function of the univariate

standard normal distribution. For d = 2, the bivariate Gaussian copula is given by

CGaθ (u1, u2) = Φθ

(
Φ−1(u1),Φ−1(u2)

)
=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− θ2)1/2

(
−s

2 − 2θst+ t2

2(1− θ2)

)
dsdt

where θ ∈ [−1, 1], and Φ−1 denotes the inverse of the univariate Gaussian distribu-

tion. It is easy to verify that the Gaussian copula generates the standard Gaussian

joint distribution function - via Sklar’s Theorem - whenever the margins are stan-

dard normal. The expression of the density of the normal copula cGaR can be derived

from (2.13), via the canonical representation:

cGaR (Φ(x1), . . . ,Φ(xd)) =

1

(2π)
d
2 |R|

1
2

exp
(
−1

2x
TR−1x

)
d∏
j=1

(
1√
2π

exp

(
−1

2
x2
j

)) ,

where |R| is the determinant of R (see, e.g., Cherubini et al., 2004). Finally, it is

worth stressing that there are several bivariate random variables having Gaussian

margins but do not possess a Gaussian dependence structure (a Gaussian copula).

2.6.2 t-copulas

Let tR,ν denote the standardized multivariate Student’s t distribution with corre-

lation matrix R and ν degrees of freedom. The multivariate Student’s t-copula is

defined as follows:

CtR,ν(u) = tR,ν(t−1
ν (u1, ), t

−1
ν (u2, ), . . . , t

−1
ν (ud)), (2.14)
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where t−1
ν is the inverse of the univariate c.d.f. of Student’s t with ν degrees of

freedom. In the bivariate case the copula expression can be written as

Ctρ,ν(u1, u2) = tρ,ν
(
t−1
ν (u1), t−1

ν (u2)
)

=

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π(1− ρ2)1/2

(
1 +

s2 − 2ρst+ t2

ν(1− ρ2)

)− ν+2
2

dsdt

where ρ is simply the linear correlation coefficient of the corresponding bivariate

tν-distribution if ν > 2.

Student’s t-copulas, as Gaussian copulas, are easily parametrized by the linear

correlation matrix, but only the former yield dependence structures with tail depen-

dence. Thus, t-copulas represent a valid alternative to Gaussian copulas, especially

in financial applications where the need to get the extreme joint tail observations,

clearly present in the real data, often arises. Finally, expressing the copula density

as the ratio of the joint density and the product of all marginal densities, one has:

cR,ν(u1, . . . , ud) = |R|−
1
2

Γ

(
ν + d

2

)[
Γ
(ν

2

)]n−1

[
Γ

(
ν + 1

2

)]n
(

1 +
1

ν
ζTR−1ζ

)− ν+d
2

d∏
j=1

(
1 +

ζ2
j

ν

)− ν+1
2

,

where ζj = t−1
ν (uj) (see, e.g., Cherubini et al., 2004).

2.6.3 Archimedean copulas

In this section we discuss an important class of copulas called Archimedean cop-

ulas. They have proved to be useful in several applications since they are capable

of capturing wide ranges of dependence structures. Furthermore, in contrast to

elliptical copulas, all commonly encountered Archimedean copulas have closed

form expressions. There is a vast literature about Archimedean copulas. See, for

instance, McNeil & Nešlehová (2009).

Archimedean copulas may be constructed using a function ϕ : I → [0,∞],

continuous, decreasing, convex and such that ϕ(1) = 0. Such a function ϕ is

called a generator. It is called a strict generator whenever ϕ(0) = +∞. The

pseudo-inverse of ϕ is defined as follows:

ϕ[−1](v) =

ϕ−1(v) 0 ≤ v ≤ ϕ(0)

0 ϕ(0) ≤ v ≤ +∞
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The pseudo-inverse is such that, by composition with the generator, it gives the

identity, and it coincides with the usual inverse if ϕ is a strict generator.

Definition 2.4. Given a generator and its pseudo-inverse, an Archimedean 2-copula

takes the form

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (2.15)

If the generator is strict, the copula is said to be a strict Archimedean 2-copula.

Table 2.1 lists three bivariate one-parameter Archimedean copulas that appear

regularly in statistical literature: Gumbel, Clayton, Frank (see Figure 2.2). They

are constructed using a generator ϕα(t), indexed by the (real) parameter α. These

three copulas accommodate different patterns of dependence and have relatively

straightforward functional forms. Archimedean 2-copulas are easily verified to be

symmetric (i.e. C(u, v) = C(v, u), for every (u, v) ∈ I2), and associative (i.e.

C(C(u, v), z) = C(u,C(v, z)), for every (u, v, z) ∈ I3). Moreover, they are

easily related to measures of association and tail dependency (see Chapter 3).

Table 2.1: Selected Archimedean 2-copulas and their generators.

C(u, v) ϕα(t) range for α

Gumbel exp{− [(−logu)α + (−logv)α]} (−logt)α [1,+∞)

Clayton (u−α + v−α − 1)−1/α α−1(t−α − 1) (0,+∞)

Clayton* max[(u−α + v−α − 1)−1/α, 0] α−1(t−α − 1) (−1,+∞)\{0}
Frank − 1

α
log

(
1 + (exp(−αu)−1)(exp(−αv)−1)

exp(−α)−1

)
−log exp(−αt)−1

exp(−α)−1
(−∞,∞)\{0}

*For Clayton, the two cases correspond to strict and nonstrict generator, respectively.

Multivariate extensions can be obtained if restrictions are placed on the gener-

ator (see, e.g., Durante & Sempi, 2010; Cherubini et al., 2004).

Definition 2.5. A function h(t) : R→ R is said to be completely monotone on the

interval J if it belongs to C∞ and it has derivatives of all orders which alternate in

sign, i.e. if it satisfies

(−1)n
dnh(t)

dtn
≥ 0, n = 0, 1, 2, ...

The following theorem from Kimberling (1974) is useful.
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Theorem 2.6.1. Let ϕ be a generator. The function C : Id → I defined by

C(u1, u2, . . . , ud) = ϕ−1(ϕ(u1) + ϕ(u2) + · · ·+ ϕ(ud))

is a copula for all d ≥ 2 if, and only if, ϕ−1 is completely monotonic on [0,∞].

Finally, we give the definition of Archimedean d-copula.

Definition 2.6. Let ϕ be a strict generator, with ϕ−1 completely monotonic on

[0,∞]. Then a d-dimensional copula C is called Archimedean if it admits the

representation

C(u) = ϕ−1(ϕ(u1) + ϕ(u2) + · · ·+ ϕ(ud)) (2.16)

for all u ∈ I.

In the following, we briefly review the multivariate Archimedean copulas be-

longing to Gumbel, Clayton and Frank family.

Gumbel d-copula

The Gumbel family has been introduced by Gumbel (1960). Since it has been

discussed in Hougaard (1986), it is also known as the Gumbel–Hougaard family.

The standard expression for members of this family of d-copulas is

C(u1, . . . , ud) = exp

−( d∑
i=1

(−log(ui))
α

) 1
α

 , α ≥ 1. (2.17)

The case α = 1 gives the product copula as a special case, and the limit of (2.17)

for α→ +∞ is the comonotonicity copula. It follows that the Gumbel family can

represent independence and positive dependence only. The generator is given by

ϕα(u) = (−logu)α, α ≥ 1.

Clayton d-copula

The Clayton family was first proposed by Clayton (1978), and studied by Oakes

(1982). The standard expression for members of this family of d-copulas is

C(u1, . . . , ud) =

(
d∑
i=1

u−αi − (d− 1)

)− 1
α

α > 0. (2.18)

The limiting case α = 0 corresponds to the independence copula. The generator

has the form ϕα(u) = u−α − 1, α > 0.



2.6 Families of Copulas 19

Frank d-copula

Copulas of this family have been introduced by Frank (1979), and have the expres-

sion:

C(u1, . . . , ud) = − 1

α
log

{
1 +

∏d
i=1(e−αui − 1)

(e−α − 1)d−1

}
, α > 0. (2.19)

It reduces to the product copula if α = 0. For the case d = 2, the parameter α can

be extended also to the case α < 0. The generator is given by

ϕα(u) = −log

(
e−αu − 1

e−α − 1

)
, α > 0.

In Figure 2.2 we present an example of 1000 simulated draws from a Gumbel

copula with α = 3, a Clayton copula with α = 4 and a Frank copula with α = 6,

respectively, and N(0, 1) margins. We also show the corresponding contour plots

of the copula density.
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Figure 2.2: Top Bivariate sample of size n = 1000 from the Gumbel copula

with parameter α = 3, 0 (CG3,0), and contour plot of the density of the d.f.

F = C(F1, F2), with F1, F2 ∼ N(0, 1), C = CG3,0. Middle Bivariate sample

of size n = 1000 from the Clayton copula with parameter α = 4, 0 (CCl4,0), and

contour plot of the density of the d.f. F = C(F1, F2), with F1, F2 ∼ N(0, 1),

C = CCl4,0. Bottom Bivariate sample of size n = 1000 from the Frank cop-

ula with parameter α = 6, 0 (CFr6,0), and contour plot of the density of the d.f.

F = C(F1, F2), with F1, F2 ∼ N(0, 1), C = CFr6,0 .



Chapter 3

Tail Dependence measures

3.1 Introduction

A primary objective in modern risk management is to represent the comovement

of markets as closely as possible, dealing with non-normality at the univariate and

multivariate level. Corresponding to the heavy tail property in univariate distribu-

tions, tail dependence is used to model the co-occurrence of extreme events. Tail

dependence refers to the degree of dependence in the corner of the lower-left quad-

rant or upper-right quadrant of a bivariate distribution. The most popular measure

of tail behaviour is the so–called tail dependence coefficient (TDC), introduced by

Sibuya (1959) and discussed by Joe (1993). In their approach, TDC corresponds to

the probability that one margin exceeds a high/low threshold under the condition

that the other margin exceeds a high/low threshold. In financial applications, the

interest is usually concentrated on the probability that two stock indexes fall below

given levels. When such a probability is invariant under strictly increasing trans-

formations (for instance, it is based on ranks or quantiles), then it can be expressed

only in terms of copulas. TDC’s provide an asymptotic measure of tail dependence

and represent one of many possible approaches. Conditional versions of common

dependence measures have been considered in order to investigate the amount of

dependence in a given region of a bivariate distribution. For example, a condi-

tional version of Pearson’s correlation coefficient ρ of a bivariate random vector

X = (X1, X2) is defined by ρA := ρ(X1, X2|X ∈ A) for some (measurable) set

A ⊂ R2. However, Pearson’s correlation pitfalls have been pointed out by a large
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number of authors (see, for instance, Embrechts et al., 2002). Possible alternatives

are conditional versions of Spearman’s rho and Kendall’s tau, which only depend

on the underlying copula (see Section 2.5).

This chapter defines and explores the concept of tail dependence from different

perspectives. First, tail dependence is characterized by the TDC into the general

framework of copulas, and computed for several families (Section 3.2). As stressed

before, measures of finite tail dependence can be derived from conditional versions

of rank correlations. In Section 3.3 we focus on conditional Spearman’s rho, which

will play a central role in the clustering procedure described in Chapter 5. Section

3.4 introduces an auxiliary function that may serve to visualize the tail behaviour

of a copula C, the so–called tail concentration function (or quantile dependence

function, see Patton, 2012). Finally, in Section 3.5 a variation of the graphical tool

in Michiels & De Schepper (2013) is proposed, in order to detect which families

of copulas are closer to the empirical copula in the tail dependence behaviour,

as described by their tail concentration functions. This can be used as a copula

selection tool in practical fitting problems, when one wants to choose one or more

copulas to model the dependence structure in the data.

3.2 Tail dependence coefficients

We start with the most common definition of upper and lower tail dependence co-

efficients, for two continuous r.v.’s X1 and X2, with d.f.’s F1 and F2, respectively.

Let F−1
1 , F−1

2 denote the quantile functions of X1 and X2, respectively.

Definition 3.1. The upper tail dependence coefficient λU (upper TDC) of (X1, X2)

is defined by

λU := lim
t→1−

Pr
(
X2 > F−1

2 (t)|X1 > F−1
1 (t)

)
(3.1)

provided that the limit λU ∈ [0, 1] exists. The lower tail dependence coefficient λL
(lower TDC) of (X1, X2) is defined by

λL := lim
t→0+

Pr
(
X2 ≤ F−1

2 (t)|X1 ≤ F−1
1 (t)

)
(3.2)

provided that the limit λL ∈ [0, 1] exists. If λU ∈ (0, 1], X1 and X2 are said to be

asymptotically dependent in the upper tail; if λU = 0, X1 and X2 are said to be

asymptotically independent in the upper tail. Analogous definitions hold for λL.



3.2 Tail dependence coefficients 23

The following equivalent representation shows that tail dependence is a copula

property (Joe, 1997).

Definition 3.2. If a 2-copula C is such that

lim
t→1−

1− 2t+ C(t, t)

1− t
= λU (3.3)

exists, thenC has upper tail dependence if λU ∈ (0, 1], and upper tail independence

if λU = 0. Similarly, if the limit

lim
t→0+

C(t, t)

t
= λL (3.4)

exists, thenC has lower tail dependence if λL ∈ (0, 1], and lower tail independence

if λL = 0.

Since tail dependence is a copula property, it follows that many copula features

transfer to the TDC’s, such as the invariance under strictly increasing transforma-

tions of the margins. Given two random variables with copula C, the survival

copula is so defined:

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), (3.5)

and the joint survival function for two uniformly distributed random variables

whose joint distribution function is C is given by

C(u, v) = 1− u− v + C(u, v) = Ĉ(1− u, 1− v).

Hence the following relationships can be easily derived:

lim
t→0+

Ĉ(t, t)

t
= lim

t→1−

Ĉ(1− t, 1− t)
1− t

= lim
t→1−

C(t, t)

1− t
.

Thus, the lower TDC of Ĉ is the upper TDC of C, i.e. λL(Ĉ) = λU (C), where

λU (·), λL(·) are defined as in (3.3) and (3.4), respectively. In a similar way, one

can prove that λU (Ĉ) = λL(C).

For copulas with simple analytical expressions, the computation of λU and λL
can be straightforward. For copulas without a simple closed form an alternative

formula for λU (λL) can be used. Consider a pair of random variables (U1, U2)
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uniformly distributed on I with absolutely continuous copula C. Then

λU = lim
u→1−

C(u, u)

1− u

= − lim
u→1−

dC(u, u)

du

= lim
u→1−

(
2− ∂

∂s
C(s, t)

∣∣∣∣
s=t=u

− ∂

∂t
C(s, t)

∣∣∣∣
s=t=u

)
= lim

u→1−
(Pr(U2 > u|U1 = u) + Pr(U1 > u|U2 = u)) ,

since Pr(V > v|U = u) = 1− ∂C(u, v)/∂u. Moreover, if C is an exchangeable

copula, i.e. C(u, v) = C(v, u), then the latter expression simplifies to

λU = 2 lim
u→1−

Pr(U2 > u|U1 = u). (3.6)

Analogously, the lower TDC can be expressed as

λL = lim
u→0+

(Pr(U2 < u|U1 = u) + Pr(U1 < u|U2 = u))

and simplifies to

λL = 2 lim
u→0+

Pr(U2 < u|U1 = u), (3.7)

when C is exchangeable.

Example 3.2.1. Let C be a member of the Gaussian family with expression given in

Section 2.6.1, (X1, X2)T ∼ C(Φ(x1),Φ(x2)), with linear correlation coefficient

ρ. Then, formula (3.6) can be used to compute the upper TDC, which coincides

with the lower TDC. We have

lim
u→1−

Pr(U2 > u|U1 = u) = lim
x→∞

Pr(Φ−1(U2) > x|Φ−1(U1) = x)

= lim
x→∞

Pr(X2 > x|X1 = x).

We know that X2|X1 = x ∼ N(ρx, 1− ρ2). Thus,we obtain

λU = 2 lim
x→∞

Φ((x− ρx)/
√

1− ρ2) = 2 lim
x→∞

Φ(x
√

1− ρ/
√

1 + ρ),

with Φ denoting the distribution function of the standard normal distribution. We

showed that Gaussian copulas do have zero upper tail dependence coefficient.

Since elliptical distributions are radially symmetric, the coefficient of upper and

lower tail dependence coincide, that is, the Gaussian copula has either zero upper

and lower tail dependence coefficient for ρ < 1.
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Example 3.2.2. Let C be a member of the Student family with expression given in

Section 2.6.2, (X1, X2)T ∼ C(tρ,ν(x1), tρ,ν(x2)), with ν degrees of freedom and

linear correlation coefficient ρ. Then X2|X1 = x ∼ tν+1

(
ρx, ν+x2

ν+1 (1− ρ2)
)

. It

follows that a t-copula’s tail dependence can be evaluated by

λU = 2 lim
x→∞

Pr(X2 > x|X1 = x)

= 2 lim
x→∞

tν+1

((
ν + x2

ν + 1

)− 1
2 x(1− ρ)√

1− ρ2

)

= 2 lim
x→∞

tν+1

((
ν/x2 + 1

ν + 1

)− 1
2
√

1− ρ√
1 + ρ

)

= 2− 2tν+1

(√
ν + 1

√
1− ρ√
1 + ρ

)
,

provided that ρ > −1. Note that even for zero correlation this copula shows tail

dependence. As shown, t-copulas have upper and lower tail dependence which

tend to zero as the number of degrees of freedom tends to infinity for −1 < ρ < 1.

One can see the difference of the tail dependence between Gaussian copulas and

t-copulas from Figure 3.1.
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Figure 3.1: Left 1000 samples from a Gaussian copula with Kendall’s τ = 0.5.

Right 1000 samples from a t-copula with Kendall’s τ = 0.5 and ν = 2.

For Archimedean copulas, tail dependence can be expressed in terms of the

generators. First, we recall the definition of Laplace transform.

Definition 3.3. Let X be a nonnegative random variable with distribution function
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F . Consider the Laplace transform of X

φX(s) =

∫ ∞
0

e−sxdF (x), s > 0. (3.8)

It’s easy to prove that the inverse of Laplace transforms gives strict generators.

The following result is demonstrated in Joe (1997).

Theorem 3.2.1. Let ϕ be a strict generator such that ϕ−1 belongs to the class of

Laplace transforms of strictly positive random variables. If ϕ−1′(0) is finite, then

C(u, v) = ϕ−1(ϕ(u) + ϕ(v))

does not have upper tail dependence. IfC has upper tail dependence, thenϕ−1′(0) =

−∞ and the upper tail dependence coefficient is given by

λU = 2− 2 lim
s→0+

ϕ−1′(2s)

ϕ−1′(s)
. (3.9)

The lower tail dependence coefficient is equal to

λL = 2 lim
s→∞

ϕ−1′(2s)

ϕ−1′(s)
. (3.10)

Applying Theorem 3.2.1 it is possible to compute tail dependency for the ma-

jority of the commonly encountered Archimedean copulas, as shown in the follow-

ing examples.

Example 3.2.3. Gumbel copulas have strict generator ϕα(t) = (−logt)α, see Ta-

ble 2.1. Thus ϕ−1
α (s) = exp(−s1/α) and ϕ−1

α
′
(s) = (−1/α)s(1/α)−1 exp(−s1/α).

From Theorem 3.2.1 we obtain

λU = 2− 21/α lim
s→0+

exp(−(2s)1/α)

exp(−s1/α)
= 2− 21/α.

Example 3.2.4. The members of the strict Clayton family have generator ϕα(t) =

α−1(t−α − 1) for α > 0. Thus ϕ−1
α (s) = (1 + αs)−1/α.

It follows that λU = 0 and

λL = 2 lim
s→∞

(1 + 2αs)(−1/α)−1

(1 + αs)(−1/α)−1
= 2−1/α.
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Example 3.2.5. Consider the Frank family in Table 2.1. The strict generator is

ϕα(t) = −log exp(−αt)−1
exp(−α)−1 , for α ∈ (−∞,∞)\{0}. Hence,

ϕ−1
α (s) =− 1

α
log(1− (1− e−α)e−s),

ϕ−1
α
′
(s) =− 1

α

(1− e−α)e−s

(1− (1− e−α)e−s)
.

It follows that ϕ−1
α
′
(0) = (−1/α)(eα − 1), which is finite. Therefore, the Frank

family does not have upper tail dependence according to Theorem 3.2.1. Due to

the radially symmetric property of this family, Frank copulas do not have lower tail

dependence.

Table 3.1: Tail dependence coefficients for popular families of copulas.

Copula λL λU

Gaussian 0 0

Elliptical ≥ 0 ≥ 0

Gumbel 0 2− 21/α

Clayton (α ≥ 0) 2−1/α 0

Frank 0 0

Plackett 0 0

3.3 Conditional Spearman’s rho

According to the definition given in Chapter 2, the Spearman’s rank-correlation

coefficient of a r.v. (X,Y ) with joint d.f F and continuous marginals FX and FY ,

respectively, having copula C is given by

ρS = 12

∫ ∫
I2
vz dC(v, z)− 3 = 12

∫ ∫
I2
C(v, z) dvdz − 3. (3.11)

For every fixed α with 0 < α < 1, define the set

AT := { (x, y) | x ≤ F−1
X (α), y ≤ F−1

Y (α)} ,

where F−1
X (α) = inf{x | FX(x) ≥ α} and F−1

Y (α) = inf{y | FY (y) ≥ α}
denote the quantile functions with respect to FX and FY , respectively, for 0 <
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α < 1. Thus Pr((X,Y ) ∈ AT ) = C(α, α) and we assume that C(α, α) > 0. The

conditional joint c.d.f. can be written as

FT (x, y) = Pr(X ≤ x, Y ≤ y | (X,Y ) ∈ AT ) =
F
(
x ∧ F−1

X (α), y ∧ F−1
Y (α)

)
F
(
F−1
X (α), F−1

Y (α)
)

=
C
(
FX
(
x ∧ F−1

X (α)
)
, FY

(
y ∧ F−1

Y (α)
))

C(α, α)
, ∀x, y ∈ R.

The corresponding conditional marginal distribution functions are given by

FXT (x, y) = Pr(X ≤ x | (X,Y ) ∈ AT ) = FT
(
x, F−1

Y (α)
)

=
C
(
FX
(
x ∧ F−1

X (α)
)
, α
)

C(α, α)
, ∀x ∈ R.

and

FYT (x, y) = Pr(Y ≤ y | (X,Y ) ∈ AT ) = FT
(
F−1
X (α), y

)
=
C
(
t, FY

(
y ∧ F−1

Y (α)
))

C(α, α)
, ∀y ∈ R,

with FXT and FYT continuous. Due to Sklar’s Theorem there exist a unique copula

CT : [0, 1]2 → [0, 1] such that

FT (x, y) = CT (FXT (x), FYT (y)), ∀x, y ∈ R. (3.12)

We refer to the copula CT (u, v) = FT (F−1
XT

(u), F−1
YT

(v)), u, v ∈ [0, 1], as the

threshold (lower tail) copula associated with the conditional joint c.d.f. (see Dobrić

et al., 2013).

From equation (3.11) we can define the conditional Spearman’s correlation

coefficient by using the threshold tail copula, i.e.,

ρS(CT ) = 12

∫ ∫
I2
vz dCT (v, z)− 3 = 12

∫ ∫
I2
CT (v, z) dvdz − 3. (3.13)

Now, consider the samples Xt, Yt, (t = 1, . . . , n), with copula C. The proce-

dure to calculate the conditional Spearman’s coefficient ρ̂S associated to the sample

observations runs as in Algorithm 3.1. For more details about its practical imple-

mentation, see Dobrić et al. (2013), Durante & Jaworski (2010). Notice that, by

using similar arguments as in Schmid & Schmidt (2007), it can be proved that the
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conditional version of Spearman’s rho described in Algorithm 3.1. are consistent

and asymptotically normally distributed; i.e.,

√
nT (ρ̂S(CT )− ρS(CT ))

d−→ N(0, σ2
T ),

as nT tends to∞, provided that the threshold tail copula exists and satisfies some

regularity assumptions. Here σ2
T depends on the threshold copula CT . Further-

more, the calculation of Spearman’s correlation depends on the number of points

nT in tail region. If such number is small, the estimated correlations would be

affected by this small sample size (Dobrić et al., 2013). Typically, a convenient

sample size may be reached by selecting an appropriate threshold α.

Algorithm 3.1 Calculation of ρS(CT ).

1. Set the threshold α ∈ (0, 0.5).

2. Calculate the empirical cumulative distribution functions F̂X and F̂Y asso-

ciated with Xt and Yt, (t = 1, . . . , n), respectively.

3. For any t = 1, . . . , n, let (Rt, St) = (F̂X(Xt), F̂Y (Yt)), which corresponds

to pseudo copula observations.

4. Select all the observations in the sets

T̂ = {(Rt, St) | Rt ≤ α, St ≤ α}

5. Denote by IT the set of all indices t’s such that (Rt, St) ∈ T̂ .

6. Calculate the univariate empirical cumulative distribution functions F̂T,X
and F̂T,Y associated with all the observations (Xt, Yt)t∈IT .

7. For any index t ∈ IT , let (R′t, S
′
t) = (F̂T,X(Xt), F̂T,Y (Yt)).

8. Calculate Spearman’s correlation ρ̂(CT ) given by

ρ̂(CT ) =
12

nT

∑
t∈IT

R′tS
′
t − 3

where nT is the cardinality of T̂ .
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3.4 The tail concentration function

While tail dependence coefficients (see Definition 3.2) give an asymptotic approx-

imation of the behaviour of the copula in the tail of the distribution, it is often

interesting to look at the tail behavioural considered at some (finite) points near the

corners of the copula domain.

The present section discusses an auxiliary function that may serve to visual-

ize the tail dependence of a copula C, the so–called tail concentration function

(shortly, TCF). In particular, the latter is regarded as a graphical tool to visualize

tail behaviour and provide useful information in the choice of the copula model ad-

equately fitting the data. The TCF has been defined, for instance, in Venter (2002),

while its estimation from empirical data has been presented in Patton (2012, 2013).

Consider a random vector (U, V ) such that (U, V ) ∼ C. For any t ∈ (0, 1),

define qL(t) = Pr(U < t, V < t)/t and qU (t) = Pr(U > t, V > t)/(1 − t). In

terms of the copula C one has

qL(t) =
C(t, t)

t
and qU (t) =

1− 2t+ C(t, t)

(1− t)
. (3.14)

Definition 3.4. Given functions qL, qU as in (3.14), the tail concentration function

is defined as the function qC : I→ I given by

qC(t) = qL(t) · 1[0,0.5] + qU (t) · 1(0.5,1]. (3.15)

Notice that qC(0.5) = (1 + βC)/2, where βC is the Blomqvist’s measure of

association given by βC = 4C(0.5, 0.5)− 1 (see Nelsen, 2006).

For practical purposes, the tail concentration function can be more suited to

assess the risks of joint extremes than its limits given by the upper and the lower

TDC’s. In fact, when the speed of convergence of tail concentration function to the

boundary 0 (or 1) is slow, this implies that the dependence in the finite tail can be

significantly stronger than in the limit (compare with Manner & Segers, 2011).

The practical effect of considering the tail concentration function can be sum-

marized in Figure 3.2. Here, we can note the different tail behaviour of several

copulas sharing the same Blomqvist’s measure of association. The left figure dis-

plays the TCF plots for copulas with zero lower (upper) tail dependence coefficient,

while the right figure considers copulas with non-zero lower (upper) tail depen-

dence (see Table 3.1). In both figures the Blomqvist’s Beta is set to βC = 0.5.
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As it can be noticed, the TCF of Gaussian copulas seems to converge to 0 (respec-

tively, 1) slowly than Frank and Plackett copulas. As regard to the copulas with

non-negative TDC’s, it seems that the convergence of the TCF to 0 (respectively,

1) is slower in the case of Clayton copulas (respectively, survival Clayton). Thus,

Clayton copulas represent a natural choice for a conservative (from a risk manager

viewpoint) estimation of the tail of a joint distribution. Notice that the TCFs of

Gumbel and Galambos copulas are very close each other.
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Figure 3.2: Left Tail concentration functions for a sample of size 1000 from a

Gaussian, Frank and Plackett copula. Right Tail concentration functions for a sam-

ple of size 1000 from a Clayton, survival Clayton, Gumbel, Galambos copula and

Student t-copula with ν = 4 degrees of freedom.

In practice, given a random sample {(Xi, Yi) : i = 1, . . . , n} from the random

pair (X,Y ) with copula C, the TCF can be estimated by the following procedure.

First, the marginal distributions are estimated by their empirical versions,

Fn(t) =
1

n

n∑
i=1

1(Xi ≤ t), Gn(t) =
1

n

n∑
i=1

1(Yi ≤ t)

Secondly, the copula C is estimated by the empirical copula Cn, given for all

(u, v) ∈ I2 by

Cn(u, v) =
1

n

n∑
i=1

1(Ui ≤ u, Vi ≤ v),

where, for all i = 1, . . . , n, Ui = Fn(Xi) and Vi = Gn(Yi). Thus, for any t > 0,
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the (empirical) tail concentration function is given by

qemp(t) =
Cn(t, t)

t
· 1(0,0.5](t) +

1− 2t+ Cn(t, t)

1− t
· 1(0.5,1)(t) (3.16)

Figure 3.3 presents the empirical estimation of the TCF for two time series from

the MSCI World Index Data.
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Figure 3.3: TCF related to two MSCI indices.

Notice that Cn depends on the sample size. In particular, Cn(t, t) provides

accurate estimation of the dependence structure when there is a sufficient number

of points in [0, t]2. Therefore, in order to allow more reliable estimate, the empir-

ical tail concentration function is usually calculated on some interval [ε, 1] for a

suitable ε > 0 that is related to sample size.

3.5 Visualizing the tail-dependent copula-space

In Michiels & De Schepper (2013), a graphical tool has been provided in order to

give some advice to the decision maker for the choice of the copula family to be

used for fitting a given set of pairwise observations.

This method is based on two steps. First, one constructs the so–called copula-

test space, i.e. the set of all possible families of copulas that are suitable for the

data at hand (see Michiels & De Schepper, 2008). Such a space is, for instance,

constructed by taking into account some empirical measures of association cal-

culated from the observations. Then, a suitable distance between the empirical
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copula (as derived from data) and the (fitted) parametric families of copulas in the

copula test space is introduced. The calculated distances are hence visualized in

a Cartesian plane via principal coordinate analysis in such a way that one can as-

sess visually which copula family is closer (in the given distance) to the empirical

copula. In Michiels & De Schepper (2013) the considered distance is a L2-type

distance calculated on a finite grid of the copula domain. It measures the mean

squared error between the graph of the empirical copula and the graph of a fitted

parametric copula.

However, as stressed also in Michiels & De Schepper (2013), in some cases

it would be also convenient the choice of a distance metric that provides different

weights in the tails. In fact, while a global distance is surely convenient to have

an idea about the overall goodness-of-fit of the proposed model, in most practi-

cal problems connected with risk management, one is also interested whether the

model captures some important aspects of tail dependence behaviour. In fact, as

stressed in Hua & Joe (2012), it may happen that the central part of the distri-

bution influences the estimation more than the tail part, a fact that could be not

conservative from the viewpoint of a risk manager that wants to estimates some

risk quantities derived from the model (such as Value-at-Risk).

Therefore, here we introduce a variation of the graphical tool in Michiels &

De Schepper (2013) in order to detect which families of copulas are closer to the

empirical copula in the tail dependence behaviour. Specifically, the main ingredient

of our tool will be the introduction of suitable dissimilarity measure based on the

tail concentration function that can be used to visualize the distances among the

copulas of the test space to the empirical copula.

To this end, let (Xi, Yi)i=1,...,n be a bivariate sample from an unknown cop-

ula; or, better, use rank transformation to obtain from any sample the pseudo-

observations that are useful to identify the copula structure (see, e.g., Genest &

Favre, 2007). Consider a set of k copulas C1, C2, . . . , Ck belonging to different

families that have been fitted to the available data. A dissimilarity between the

empirical copula Cn and the copula Ci, i = 1, . . . , k can be so defined:

δ(Cn, Ci) =

∫ 1

0

(
qemp(t)− qCi(t)

)2
dt, (3.17)

where qemp is the TCF calculated via (3.16), while qCi is the TCF associated with

Ci. In other words, we consider a kind of L2-type distance between the empiri-
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cal TCF and the TCF of a copula Ci fitted to the observations. Analogously, the

dissimilarity between the i–th and the j–th copula is computed as

δ(Ci, Cj) =

∫ 1

0

(
qCi(t)− qCj (t)

)2
dt (3.18)

for 1 ≤ i 6= j ≤ k.

Obviously, dissimilarities (3.17) and (3.18) are both computed from a finite ap-

proximation of the TCF’s at some points t1 < t2 < · · · < tN in I. Nevertheless,

even for small sample size, they seem to provide hints to distinguish among differ-

ent copulas. To this end, a simulation study is conducted in order to check whether

the dissimilarity defined above are able to capture the tail behaviour of different

copulas.

Specifically, we simulate bivariate observations of sample size n ∈ {250, 500},
respectively, from Clayton, Gumbel, and Gaussian copulas (with different values

of Kendall’s τ ). Then we fit a parametric copula family to the data (via inversion of

Kendall’s τ ). Finally we calculate the dissimilarity between the empirical copula

and the fitted copula via (3.17). The considered families of copulas are Clayton

(denoted by C1), Gumbel (C2), Frank (C3), Gaussian (C4), Plackett (C5), Galam-

bos (C6). For B = 500 replications, this process produces a set of six matrices

containing the dissimilarities between the empirical copula and the fitted copula,

computed at each replication. The results are displayed in the form of box plots,

for varying Kendall’s tau values τ ∈ {0.25, 0.5, 0.75} (see Figures 3.4 and 3.5).

The following considerations can be drawn:

- For the Clayton family (C1), the tail properties of the simulated copula is

identified in all situations, regardless of τ -value and sample size. In fact,

both for small and large sample sizes the box plots in panels (a) – (c) suggest

that δ(emp,1) is minimal.

- For the Gumbel family (C2), the simulation results suggest that the true cop-

ula is not always recognized as the best-fit copula. In particular, regardless

of sample size, for τ ≤ 0.5 it seems that copulas C3, C5, C6 exhibit small

distances as well. For τ > 0.5, the identification of the true data generating

process seems more reliable.

- For the Gaussian family (C4) with small sample size (n = 250), other cop-

ulas exhibit a behaviour similar to the Gaussian copula for τ = 0.25, 0.5,
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(b) Clayton copula, τ = 0.5
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(c) Clayton copula, τ = 0.75
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(d) Gumbel copula, τ = 0.25
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(e) Gumbel copula, τ = 0.5
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(f) Gumbel copula, τ = 0.75
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(g) Normal copula, τ = 0.25
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(h) Normal copula, τ = 0.5
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Figure 3.4: Box plots resulting from the simulation study with n = 250, for bivari-

ate observations of sample size n from a Clayton (C1), Gumbel (C2) and Normal

(C4) copula with τ ∈ {0.25, 0.5, 0.75}.
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(a) Clayton copula, τ = 0.25
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(b) Clayton copula, τ = 0.5
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(c) Clayton copula, τ = 0.75
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(d) Gumbel copula, τ = 0.25
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(f) Gumbel copula, τ = 0.75
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Figure 3.5: Box plots resulting from the simulation study with n = 500, for bivari-

ate observations of sample size n from a Clayton (C1), Gumbel (C2) and Normal

(C4) copula with τ ∈ {0.25, 0.5, 0.75}.
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while for τ = 0.75 the identification of the true data seems to perform better.

For larger sample size and τ ≥ 0.5, the Gaussian copula is unambiguously

identified as the true copula.

Given such preliminary results, let us illustrate the graphical procedure to find

some possible copula candidates to describe the tail behaviour of bivariate obser-

vations with unknown dependence structure.

Let (Xi, Yi)i=1,...,n be a bivariate sample from an unknown copula. Consider

the set C 1, . . . ,C k of possible parametric families of copulas that can be suitable

to describe the dependence in the given data (i.e. the copula test space). The

procedure goes as follows.

1. For i = 1, . . . , k fit a copula Ci from the family C i using classical methods

(e.g. maximum likelihood estimation, inversion of Kendall’s τ , etc.).

2. For i = 1, . . . , k calculate the dissimilarity between Ci and the empirical

copula δ(emp,i) := δ(Cn, Ci) by using (3.17).

3. For the k copulas C1, . . . , Ck, calculate the K = k(k− 1)/2 mutual dissim-

ilarities δ(i,j) := δ(Ci, Cj) by using (3.18).

4. Consider the symmetric matrix D = (dij) (of dimension k + 1) defined as

follows:

d1j = δ(emp,j−1), j = 2, . . . , k + 1,

dij = δ(i−1,j−1), i, j = 2, . . . , k + 1, i < j

dii = 0, i = 1, . . . , k + 1.

Such a D is the dissimilarity matrix that describes the relation among Cn
(the empirical copula), C1, . . . , Ck.

5. Starting with the dissimilarity matrix D, perform a Multidimensional Scal-

ing (MDS) in order to construct a configuration of points in q dimensions,

where the Euclidean distances (in the q–dimensional space) between the dif-

ferent copulas has to fit as closely as possible the dissimilarity information

(for more details, see Kruskal, 1964a,b). As it is known from classical MDS,

the final configuration is such that the distortion caused by a reduction in di-

mensionality is minimized by means of the so–called stress function (for

more details, see Härdle & Simar, 2012).
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In practice, a suitable visualization is obtained when q = 2, although q > 2 could

be preferred in some cases (depending on the value of the stress function).

As an illustration of the methodology, consider a set of bivariate observations

generated from a known copula and suppose that we would like to check whether

the described graphical tool is able to suggest some good candidate copula model

for such data. To this end, consider as copula test space the one-parameter copula

families C i, i = 1, . . . , k mentioned above. Moreover, suppose that the random

sample is of size n = 250, and is generated by Clayton, Gumbel, Frank, and

Gaussian copulas, respectively, with Kendall’s tau τ = 0.5. The results for four

different situations are displayed in Figures 3.6 and 3.7.

Specifically, for each chart of Figures 3.6 and 3.7, we apply MDS on the matrix

of dissimilaritiesD defined as above, and check the stress function to see whether a

2D representation (q = 2) is feasible (in general a good representation should have

a stress lower than 2.5%). Then, we plot the k points pi = (xi, yi) corresponding to

copula Ci and pemp = (xemp, yemp) corresponding to the empirical copula Cn in a

2D graph. Notice that the fitting of parametric copulas has been done via inversion

of Kendall’s τ . As can be seen, the charts are often useful to identify the true data

generating process.

The graphical tool so obtained enables investigation of the goodness-of-fit by

means of the relative distances between the empirical TCF and all TCF’s of the

copulas of the test space at once. By including many other copula families with

different characteristics, it is possible to have a 2D visual overview of the whole

collection of copulas based on their tail features as expressed by the tail concen-

tration functions. This can be used as a copula selection tool in practical fitting

problems, when one wants to choose one or more copulas to model the dependence

structure in the data, highlighting the information contained in the tail.
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(a) Clayton copula (C1), τ = 0.5, n = 100
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Figure 3.6: Two-dimensional representation of copula test spaces for data gener-

ated by a Clayton and a Gumbel copula.
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(a) Frank copula (C3), τ = 0.5, n = 100
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Figure 3.7: Two-dimensional representation of copula test spaces for data gener-

ated by a Frank and a Normal copula.



Chapter 4

Clustering financial time series by
measures of tail dependence

4.1 Introduction

Clustering procedures represent an important tool in finance and economics, since

practitioners are often interested in identifying similarities in financial assets for

portfolio optimization and/or risk management purposes. In particular, the final

goal consists in minimizing the whole risk of a portfolio of assets by adopting

some diversification techniques which are based on the selection of different as-

sets from markets and/or regions that one believes to be weakly correlated. In

general, the clustering of a group of time series aims at finding sub-groups such

that elements within a group have a similar stochastic dependence structure, while

elements from distinct groups show a different behaviour. As summarized, for

instance, by Liao (2005), these methods can be basically distinguished into three

classes, depending upon whether they work (i) directly with the raw data (either in

the time or frequency domain), (ii) indirectly with features extracted from the raw

data, or (iii) indirectly with models built from the raw data. Clustering procedures

typically involve the choice of a convenient dissimilarity measure. To this end, a

number of approaches are available in the literature, which are based on different

techniques like autoregressive distances (Piccolo, 1990; Corduas & Piccolo, 2008;

Otranto, 2008), Mahalanobis-like distances (Caiado & Crato, 2010), variance ratio

statistics (Bastos & Caiado, 2013), symbolic data analysis (Brida & Risso, 2010),



42 4. Clustering financial time series by measures of tail dependence

latent class models (De Angelis, 2013), etc. For a collection of other approaches

and applications we refer the reader to Pattarin et al. (2004); Tola et al. (2008) and

the references therein. Several clustering methods have focused on the use of Pear-

son correlation in order to infer the hierarchical structure of a portfolio of financial

assets: see, for instance, the book by Kaufman & Rousseeuw (1990) and the works

by Mantegna (1999) and Bonanno et al. (2004). Their main idea is to consider a dis-

tance between time series that depends on the Pearson cross-correlation coefficient

(or rank-based variants like Spearman’s correlation), since high positive correlation

may be interpreted in terms of some degree of similarity between the time series

under consideration. From another perspective, models have been recently intro-

duced in order to estimate the dynamics of correlation coefficients within groups

of financial assets, with application to asset allocations (Engle, 2002; Billio et al.,

2006; Billio & Caporin, 2009).

Recently, the need for alternatives to classical correlation-based clustering derives

from the strong evidence that “classical correlation measures do not give an ac-

curate indication and understanding of the real dependence between risk expo-

sures” (Basel Committee on Banking Supervision, Joint Forum Developments in

Modelling Risk Aggregation, October 2010). In particular, dependencies between

extreme events such as extreme negative stock returns or large portfolio losses

should be adequately modelled to support beneficial asset-allocation strategies es-

pecially when there is some contagion effect among the markets under considera-

tion, namely when the positive association among the markets increases in crisis

period with respect to tranquil periods. In such a situation, in fact, diversifica-

tion may fail to work exactly when it is needed most (see, for instance, De Luca

et al., 2010; Durante & Jaworski, 2010; Durante & Foscolo, 2013; Durante et al.,

2013b). According to the Directive 2009/138/EC of the European Parliament and

of the Council of 25 November 2009 on the taking-up and pursuit of the business

of Insurance and Reinsurance (Solvency II), “diversification effects means the re-

duction in the risk exposure of insurance and reinsurance undertakings and groups

related to the diversification of their business, resulting from the fact that the ad-

verse outcome from one risk can be offset by a more favourable outcome from

another risk, where those risks are not fully correlated”. Thus, clustering tech-

niques tailored to risk management should adopt alternative procedures, by taking

into account the information about the tail behaviour of the involved quantities. In
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fact, if two financial markets have lower tail dependence coefficient different from

0, then they exhibit some positive dependence when both are experiencing very

large losses. Such a different approach consists of finding groups that are similar

in the sense that time series belonging to the same group tend to comove when they

are experiencing large losses.

This chapter begins with some basic definitions and properties of financial re-

turns, focusing on some stylized facts which impact on many financial applica-

tions, such as portfolio management, asset allocation, risk management. Then, the

potential of copula functions in modelling the joint behaviour of asset returns is

discussed. The interest is addressed on the problem of clustering financial time

series. In Section 4.3 and 4.4 a general methodology for clustering financial time

series via copula-approach is proposed. Preliminarily, a suitable stochastic model

may be built in two steps: first, the marginals are fitted (means, variances, and

distribution of the standardized residuals), then the standardized residuals of the

univariate models are coupled via a suitable copula model. This is the starting

point of clustering procedures described in the next two chapters.

4.2 Financial returns

Financial risk management is significantly based on the analysis of time series

of returns. As stressed by Campbell et al. (1997), financial studies often involve

returns for two main reasons: return series are a complete and scale-free summary

of the investment opportunity, and show more attractive statistical properties than

price series.

4.2.1 Prices and asset returns

Let Pt denote the price of an asset at time index t, where the t denotes the frequency

(e.g., yearly, monthly, daily). In general, the return expresses the relative change

in the price of a financial asset over a given time interval. In the literature there are

two types of returns: simple and compound.

Definition 4.1. For one period from date t− 1 to date t, the simple return is

Rt =
Pt
Pt−1

− 1 =
Pt − Pt−1

Pt−1
. (4.1)
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For n periods from date t− n to n, the multiperiod simple return is given by

Rt(n) = (1 +Rt)(1 +Rt−1)(1 +Rt−2) · · · (1 +Rt−n+1)− 1

=
Pt
Pt−1

Pt−1

Pt−2
· · · Pt−n+1

Pt−n
− 1 =

Pt
Pt−n

− 1

where 1 + Rt(n) = Pt/Pt−n is called a compound return. A different represen-

tation of returns frequently used by practitioners is based on continuously com-

pounded returns.

Definition 4.2. The continuously compounded return or log return is defined as

the natural logarithm of the simple gross return of an asset and denoted by rt:

rt = log(1 +Rt) = log

(
Pt
Pt−1

)
= log(Pt)− log(Pt−1). (4.2)

It is easy to show that the continuously compounded multiperiod return is simply

the sum of continuously compounded single-period returns:

rt(n) = log(1 +Rt(n)) = log((1 +Rt)(1 +Rt−1)(1 +Rt−2) · · · (1 +Rt−n+1))

= log(1 +Rt) + (1 +Rt−1) + (1 +Rt−2) + · · ·+ log(1 +Rt−n+1)

= rt + rt−1 + · · ·+ rt−n+1.

This property is one of the reasons that make continuously compounded returns

preferable rather than simple returns. Now, let p be a portfolio that places weight

wk on asset k. Then the simple return of p at time t, Rp,t, is computed as the

weighted sum of the returns of the individual assets:

Rp,t =

K∑
k=1

wkRkt,

where K is the number of assets and Rkt is the simple return of asset k. The above

property does not hold for continuously compounded returns of a portfolio, since

rp,t = log

(
Pp,t
Pp,t−1

)
6=

K∑
k=1

wklog

(
Pk,t
Pk,t−1

)
,

where rp,t is the continuously compounded return of the portfolio at time t. How-

ever, for small returns (e.g., daily) one has the approximation

rp,t ≈
K∑
k=1

wkrkt.
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4.2.2 Well-known properties of asset returns

In the last decades, the analysis of large data sets of high-frequency price series

and the intensive empirical studies on financial time series have revealed a set of

properties, common across many instruments, markets and time periods, observed

by independent studies and classified as “stylized facts”. Due to their generality,

they are often qualitative. For a complete review on the subject we refer the reader

to Cont (2001) and Danielsson (2011).

Many studies on financial assets highlight some empirical results that only hold

some of the time. Return distributions are usually skewed either to the left or to

the right, reflecting the asymmetric nature of asset returns. High frequency market

returns exhibit negative autocorrelation, but the autocorrelation for the absolute

and squared returns is always positive and significant, and decays slowly. A strong

positive autocorrelation is usually observable over long periods of time during bull

markets, while negative autocorrelation may characterize prolonged bear markets.

Almost all financial returns exhibit three statistical properties regardless of asset

type, sampling frequency, observation period or market: volatility clusters, heavy

tails, nonlinear dependence.
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Figure 4.1: Daily log-returns of the adjusted stock price of Parmalat (PLT.MI) for

the period June 2007 - June 2010.
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Volatility

In financial time series analysis, volatility means the conditional standard devia-

tion of the underlying asset return. Volatility evolves over time and, although it

is not directly observable, it has some characteristics that are commonly seen in

asset returns. Since the publication of Engle (1982), the phenomenon of volatility

clusters has been accepted as a stylized fact about asset returns. It can be explained

as the tendency of high-volatility events to cluster in time, that is, large price vari-

ations are more likely to be followed by large price variations. Thus, one usually

observes that a the market goes through periods with high volatility and other pe-

riods when volatility is low. The sample autocorrelation function of the squared

returns is commonly used to detect volatility clustering, since squared returns are

proxies for volatilities. More recent results (see, e.g., Bouchaud & Potters, 2001)

have analysed one more important feature of volatility which seems to be rather

universal: the volatility of stocks tends to increase when the price drops, referred

to as the leverage effect. This effect corresponds to a negative correlation between

past returns and future volatility, and is asymmetric.

All these properties play an important role in modelling univariate financial time

series. The first model designed to capture volatility clusters was the autoregressive

conditional heteroscedastic (ARCH) model of Engle (1982). Bollerslev (1986) pro-

posed a useful extension known as the generalized ARCH (GARCH) model which

has the potential to incorporate the impact of historical returns. The GARCH-type

models belong to the category of conditional volatility models and are based on

optimal exponential weighting of historical returns to obtain a volatility forecast.

However, as for the ARCH model, GARCH model encounters some weaknesses.

For instance, it responds equally to positive and negative shocks. Moreover, only

lower order GARCH models are used in most applications, say, GARCH(1,1),

GARCH(2,1) and GARCH(1,2) models. Subsequently, a large number of exten-

sions to the GARCH model have been proposed to overcome some weaknesses of

the earlier models in handling financial time series. For example, Nelson (1991)

proposed the exponential GARCH (EGARCH) model to account for asymmetric

effects between positive and negative asset returns. Another widely used GARCH

model allowing for leverage effects is the model of Glosten et al. (1993) (GJR-

GARCH, also known as threshold-GARCH). Many other volatility models not



4.2 Financial returns 47

mentioned here are available in the literature. We refer the reader to Tsay (2005)

for a comprehensive review on financial econometric models and their applications.

Heavy tails

The normality assumption has long dominated conventional asset allocation frame-

works. In reality, we can empirically observe that in many cases returns are not in-

dependent, and in all cases they are not normally distributed. In statistics, kurtosis

measures the degree of peakedness of a distribution relative to the tails. Normally

distributed variables have kurtosis equal to 3. Usually, a positive excess kurtosis

(over 3) indicates the presence of heavy tails (or fat tails). This means that the dis-

tribution puts more mass on the tails of its support than a normal distribution does.

Thus, a random sample from such a distribution tends to contain more extreme val-

ues. The heavy-tailed property of returns has been known since Mandelbrot (1963)

and Fama (1963, 1965). According to the survey by Cont (2001), “the (uncondi-

tional) distribution of returns seems to display a power-law or Pareto-like tail, with

a tail index which is finite, higher than two and less than five for most data sets

studied. In particular this excludes stable laws with infinite variance and the nor-

mal distribution. However the precise form of the tails is difficult to determine”.

Non-normality of asset returns has many important consequences in finance, es-

pecially in the field of risk management, where the main concern is on the far

left tail of the return distribution. Extreme negative past events such as the stock

market crash of 1987, the bursting of U.S. technology bubble in 2000-2001 or

the recent financial crisis of 2007-2009, have confirmed that assuming normality

in risk calculations may cause large underestimations of risk, leading to dramatic

consequences. Concluding, financial time series exhibit high variability, as re-

vealed by the heavy-tailed distributions of their increments and the non-negligible

occurrence of extreme negative events. These considerations motivate numerous

theoretical efforts to understand the intermittent nature of financial time series and

to model adequately the tails of the distribution of returns.

Nonlinear dependence

Most statistical models assume that the joint distribution of returns is Gaussian,

implying that we can measure dependence by using correlations, such as Pearson’s
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correlation coefficient. It is important to stress that two returns can be uncorrelated

(in the linear or Pearson sense) but dependent, since only linear dependencies are

detected. Considerable recent research has shown that the dependence between

different return series changes according to market conditions and, in particular,

correlations under extreme conditions are quite different than under normal condi-

tions. Relying on linear correlation matrices leads to underestimate the probability

of joint negative returns during periods of high market volatility. Thus, for many

financial applications it is essential to address nonlinear dependence, allowing the

dependence structure to vary according to markets behaviour.

4.3 Clustering financial assets: a copula-based approach

Most practical problems in risk management deal with portfolios containing a cer-

tain number of assets. The statistical analysis of the risk of such positions requires

information on the joint behaviour of the returns of different assets. By consid-

ering joint distributions, we turn our focus to how assets behave together during

periods of market stress. In particular, copulas allow us to model more accurately

an increased incidence of joint negative returns, without any influence of marginal

behaviour on the dependence structure. In the literature, copula-based time series

models have been used as a tool to handle in a flexible way the link among different

univariate time series (see Patton, 2012, and the references therein).

Following these ideas, a suitable stochastic model may be built in two steps: first,

the marginals are fitted (means, variances, and distribution of the standardized

residuals), then the standardized residuals of the univariate models are coupled

via a suitable copula model.

We consider a matrix of d financial time series (xit)t=1,...,T (i = 1, 2, . . . , d) rep-

resenting the returns of different financial assets. We assume that each time se-

ries (xit)t=1,...,T is generated by the stochastic process (Xt,Ft) such that, for

i = 1, . . . , d,

Xit = µi(Zt−1) + σi(Zt−1)εit, (4.3)

where Zt−1 depends on Ft−1, the available information up to time t − 1, and

the innovations εit are distributed according to a distribution function Fi for each

t. Moreover, the innovations εit are assumed to have a constant conditional dis-
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tribution Fi (with mean zero and variance one, for identification) such that for

every t the joint distribution function of (ε1t, . . . , εdt) can be expressed in the form

C(F1, . . . , Fd) for some copula C.

As known (see, e.g., Jaworski et al., 2010, 2013), the copula C is exactly the

function that captures the dependence properties of the time series. As discussed

in the previous chapters, the rank-invariant measures of association (Kendall’s tau,

Spearman’s rho and their conditional versions) and the tail dependence coefficients

are based on the calculation (in a parametric or non-parametric way) of the respec-

tive copula. Here we are assuming that some of the information contained in Ft−1

is not relevant for all variables. In particular, each variable depends on its own first

lag, but not on the lags of any other variable (see the discussion in Patton, 2009,

pp. 772–773). Thus we can construct each marginal distribution model using only

the information relevant for each variable, which will likely differ across margins,

and then use Ft−1 for the copula, to obtain a valid conditional joint distribution.

As stressed by Fermanian & Wegkamp (2012), even if the assumption that each

variable depends on its own lags seems strong, it has been proved to be reasonable

for many empirical studies.

The following steps are implemented in order to group the time series into

sub-groups such that elements in each sub-group have strong tail dependence.

1. Choose a suitable copula-based time series model (e.g. ARMA-GARCH

copula model) in order to model separately the marginal behaviour of each

time series and the link between them.

2. Estimate a suitable (pairwise) tail dependence measure among the different

time series.

3. Define a dissimilarity matrix by using the information contained in the tail

dependence measures and apply a suitable cluster algorithm, according to

the general characteristics of the above introduced dissimilarity matrix.

As a relevant feature of our approach, we assume that the multivariate time se-

ries process follows a copula-based semi-parametric model that allows to separate

the univariate behaviour of each time series from the dependence among them.

Moreover, we avoid the specification of a fully parametric model for describing

the pairwise dependence between the markets under consideration.
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4.4 Fit a copula-based time series model

The choice of the univariate model is made by classical model selection proce-

dures (e.g., Bayesian Information Criteria) and the goodness-of-fit verified by clas-

sical tests of homoscedasticity and uncorrelatedness of the residuals (Patton, 2012,

2013). Different models (with different parameters) can be estimated for each

univariate time series. In particular, the GARCH-type models have proved to be

adequate in modeling return series. Among different extensions, the GJR-GARCH

model can be considered in order to capture both the excess of kurtosis and the

asymmetric effects (see Section 4.2). For a time series of returns xt, let εt de-

note the error terms (return residuals, with respect to a mean process). Then, a

GJR-GARCH(p,q) (or TGARCH) model assumes the form

εt = σtηt, σ2
t = α0 +

q∑
i=1

(αi + γiNt−i)ε
2
t−i +

p∑
i=1

βjσ
2
t−j

where {ηt} is a sequence of independent and identically distributed innovations

with zero mean and unit variance, Nt−1 is the indicator function such that

Nt−1 =

{
1 if εt−i < 0,

0 if εt−i > 0,

and αi, γi, βj are non-negative parameters satisfying
∑max p,q

i=1 (αi + βi) < 1.

The model uses zero as the threshold to separate the impacts of past shocks, and

negative returns have a larger impact to σ2
t .

In the second step, using the parametric models estimated in previous step, we

compute the estimated standardized residuals given, for each i = 1, . . . , d by

ε̂it =
xit − µ̂i(Zt−1)

σ̂i(Zt−1)
.

Finally, the estimated standardized residuals are converted to the estimated proba-

bility integral transform variables zit = Fi(ε̂it), where Fi may be estimated from a

parametric model (Gaussian, Student t, etc.) or by using the empirical distribution

function.

Now, for all t = 1, . . . , T the points (z1
t , . . . , z

d
t ) := (z1t, . . . , zdt) contain the

information about the link (i.e. the copula) among the time series under consider-

ation and can be used in order to compute simple dependence measures or make
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inference about the copula of the time series.

As stressed, for instance, by Jondeau & Rockinger (2006), if the marginal model is

correctly specified, the estimated probability integral transforms (z1
t , . . . , z

d
t )t=1,...,T

behave asymptotically like a random sample generated by the copula C. As such,

dependence measures calculated from this sample are not biased by serially de-

pendence and/or heteroscedasticity. In particular, this latter aspect is very impor-

tant since the bias caused by volatility effects may induce serious inaccuracies in

the calculation of conditional correlations, as stressed for instance by Forbes &

Rigobon (2002) and Bradley & Taqqu (2004). As a further remark, notice that,

according to Patton (2012), “the estimated parameters from the conditional mean

and variance do not affect the asymptotic distribution of estimated dependence

measures such as Spearman’s rank correlation and Kendall’s tau”, that is “we can

ignore the error resulting from the estimation of the marginal distribution parame-

ters”. In other words, following also the results by Rémillard (2010), we may say

that the rank-based dependence measures (like Kendall’s tau, Spearman’s rho) be-

have asymptotically like the ones computed from innovations, extending the results

of Chen & Fan (2006).

Once obtained the pseudo–observations from the original time series, we adopt

two different measures in order to quantify the degree of dependence in the tail of

the joint distribution function, namely the lower TDC λL and the conditional Spear-

man’s correlation ρα. Then, suitable tail dependence-based dissimilarity measures

can be defined and used as input in classical cluster analysis tools. The two proce-

dures are described in details in the next two chapters.





Chapter 5

Clustering financial time series
via conditional Spearman’s rank
correlation

5.1 Introduction

The analysis of the association between two random variables has been extensively

studied in the literature: for an overview, see the books by Joe (1997), Nelsen

(2006), Jaworski et al. (2010), Cherubini et al. (2011), Jaworski et al. (2013). In

particular, different kinds of measures have been introduced in order to quantify

the association between the variables of interest when they are taking on very large

(respectively, small) values: see, for instance, Schmid et al. (2010), Bernard et al.

(2013) and the references therein.

One possible way to consider such a kind of dependence is to restrict to a condi-

tional version of the classical Pearson correlation coefficient, as done for instance

by Longin & Solnik (2001); Malevergne & Sornette (2006) (the so–called extreme

and exceedance correlations). However, as said, Pearson’s correlation coefficient

is often an inappropriate dependence measure. First, it measures only linear de-

pendence. Secondly, it is not invariant to a change of the univariate margins, and

thirdly, it is very sensitive to outliers (Schmid & Schmidt, 2007).

In order to overcome these pitfalls, we suggest a suitable conditional version of

Spearman’s correlation coefficient ρS , where the conditioning set is defined accord-
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ing to some given threshold (see Chapter 3, Section 3.3). Intuitively, we focus the

attention on the behaviour of the markets exposed to losses that are judged to be ex-

treme according to a predefined “risky” level. Conditional versions of Spearman’s

correlation have been also adopted in the detection of contagion among financial

markets (see, for instance, Durante & Jaworski (2010) and the references therein).

Compared with conditional Pearson’s correlation, Spearman’s correlation is rank

invariant (and, hence, more suitable for checking non-linear comovements in the

data) and only depends on the copula of the involved random variables. Moreover,

it is adapt to deal with non-Gaussian data (see, for instance, Embrechts et al., 2002;

McNeil et al., 2005).

Starting from the approach described in Chapter 4 (Sections 4.3, 4.4), this chap-

ter presents a methodology for clustering financial time series according to their

dependence in risky scenarios. The procedure is based on the calculation of suit-

able pairwise conditional Spearman’s correlation coefficients extracted from the

series. The performance of the proposed methodology is checked via a simulation

study in Section 5.5. An application to the analysis of the components of the Ital-

ian FTSE–MIB stock index is given in Section 5.6. Section 5.7 is devoted to final

remarks.

5.2 Define a measure of tail dependence

Given two random variables Xi, Xj and a threshold α ∈ (0, 1) representing the

risky level, we are interested in the Spearman’s correlation of the conditional distri-

bution of (Xi, Xj | (Xi, Xj) ∈ T ijα ), where T ijα = (−∞, qα(Xi)]×(−∞, qα(Xj)]

is a set of non-zero probability and qα(Xi) is the α–quantile of Xi for every i. In

the following, such a coefficient will be denoted by ρijS (α). From equation (3.13)

we know that

ρijS (α) = 12

∫ ∫
I2
C
T ijα

(u, v)dudv − 3, (5.1)

whereC
T ijα

is the (threshold) copula associated with the conditional d.f. of (Xi, Xj |
(Xi, Xj) ∈ T ijα ). The estimation of (5.1) consists in the following steps.

1. We consider the estimated probability integral transform zit = F̂i(ε̂it), where
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F̂i is the empirical distribution function

F̂i(t) =
1

T

T∑
i=1

1ε̂it≤t

2. Then we restrict to all points (zit, z
j
t )t=1,...,T such that zit ≤ α and zjt ≤ α.

Let us denote this set by (zit, z
j
t )t=1,...,Tα . The value ρijS (α) can be estimated

by using the standard population version of Spearman’s correlation (see, e.g.,

Genest & Favre, 2007) applied to the (restricted sample) (zit, z
j
t )t=1,...,Tα .

At the end of the procedure, we obtain a value ρijS (α) representing the association

between the financial markets time series i and j when both markets are experienc-

ing severe losses.

Remark 1. Under suitable specification of univariate margins, (z1
t , . . . , z

d
t )t be-

haves asymptotically like a random sample generated by the copula C (and hence

the marginals are uniform). In particular, for each i, the α–quantile (zit)t=1,...,T

is asymptotically equal to α. Due to general results about order statistics (see,

e.g., Wilks, 1948), it follows that (zit, z
j
t )t=1,...,Tα is also asymptotically a random

sample.

5.3 Define a dissimilarity measure

Now, we have to define a suitable dissimilarity matrix that collects the information

about the pairwise tail dependence among the time series. We usually assume that a

dissimilarity measure δ between time series (x1t) and (x2t) satisfies the following

properties:

1. non negativity, i.e. δ((x1t), (x2t)) ≥ 0;

2. identity, i.e. δ((x1t), (x1t)) = 0;

3. symmetry, i.e. δ((x1t), (x2t)) = δ((x2t), (x1t)).

In addition to properties 1-3, we require that the dissimilarity measure δ decreases

in a monotone way as (x1t) and (x2t) are more and more similar, according to the

idea of similarity one has adopted.

As explained in the previous section, we are considering conditional Spear-

man’s correlation with respect to a given tail set, as specified by a threshold α ∈
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(0, 1). Such an α denotes the “degree” of the risk of the tail scenario we are con-

sidering. In practice, we restrict to consider α ∈ {0.05, 0.10, 0.25}. Thus, for

each pair (i, j) of time series, we calculate the Spearman’s correlation ρijS (α) as

indicated in the previous step. For instance, ρijS (0.05) refers to the tail dependence

between market i and market j when both are experiencing severe losses that hap-

pens, on average, with a probability of 5% for each individual market.

Then, for i, j = 1, . . . , d, we may define the dissimilarity matrix ∆ = (∆ij)

whose elements are given by

∆ij =

√
2(1− ρijS (α)). (5.2)

It is easy to see that properties 1-3 hold for measure (5.2). Moreover it represents

a distance matrix, as showed for instance in Bonanno et al. (2004).

Notice that other ways of findings a correlation-type dissimilarity matrix have

been provided in the literature, as explained for instance by Kaufman & Rousseeuw

(1990). For instance, one might consider ∆ij = 1−ρijS (α) or ∆ij = 1−|ρijS (α)|. In

our study, we have found no significant difference among the use of these possible

choices.

5.4 Apply a suitable cluster algorithm

The dissimilarity matrix ∆ defined above could be used to determine clusters

among the d time series of financial returns by means of a suitable procedure.

For our purposes, we consider the hierarchical agglomerative clustering techniques

frequently used in practice (see, for instance Friedman et al., 2009). As is known,

hierarchical agglomerative algorithms start from the finest possible partition (i.e.

each observation forms a cluster) and, hence, each level merges a selected pair of

clusters into a new cluster according to the definition of the distance between two

groups. This sequence of nested partitions is best visualized as a top-down tree

called a dendrogram, such that the dissimilarity between merged clusters is mono-

tone increasing with the level of the merger. Among all the agglomerative strate-

gies we may apply, the three most common clustering procedures (which differ

in the computation of the distance between two groups) are single linkage, com-

plete linkage, average linkage. In particular, the single linkage defines the distance
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between two groups as the smallest value of the individual distances; the com-

plete linkage algorithm defines the distance between two clusters as the maximum

distance between their individual components; the average linkage (weighted or

not weighted) merges the two latter algorithms, since it computes an average dis-

tance. Notice that the dissimilarity matrix need to be further transformed in order

to obtain a (Euclidean) distance matrix if one wants to adopt some specific cluster

procedures (e.g., Ward method).

5.5 Simulation study

A set of simulation studies has been designed in order to explore the performance

of the proposed clustering procedure, with respect to the following parameters:

- the number d of the financial assets;

- the number J of different clusters;

- the strength of the tail correlation inside each subgroup of assets;

- the sample size T .

Such a study aims at clarifying whether, even in a finite sample, the behaviour of

conditional Spearman’s correlation guarantees that the whole clustering procedure

performs in a good way.

Specifically, according to the explanation in Section 5.2, we simulate a sample

of all possible realizations (z1
t , . . . , z

d
t )t=1,...,T that can be extracted from a multi-

variate time series model when some appropriate univariate time series models are

fitted to the marginals. That is, we simulate directly the estimated probability inte-

gral transforms, since the estimation of conditional Spearman’s correlation matrix

is not asymptotically biased by the estimation of the parameters of the univariate

model, as explained above. The realizations (z1
t , . . . , z

d
t )t=1,...,T are supposed to

be generated by a d–dimensional copula model of the form

C(u) =
J∏
j=1

Cj(uj1, . . . , ujkj ), (5.3)

for all u = (u11, . . . , u1k1 , u21, . . . , u2k2 , . . . , uJ1, . . . , uJkJ ), with k1+· · ·+kJ =

d. Hence, C is the product of J copulas Cj , where Cj comes from a Clayton

(respectively, survival Gumbel) family with a fixed lower TDC λ. We recall that
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Clayton and survival Gumbel copulas are typical examples of copulas exhibiting

non-zero TDC. By the very definition, model (5.3) describes the behaviour of (k1+

k2 + · · · + kJ) random variables that can be grouped into J clusters in such a

way that variables in the same cluster j are tail dependent with a non-zero tail

dependence coefficient driven by the copula Cj . By contrast, random variables

in different clusters are supposed to be independent and, hence, they are not tail

dependent. In other words, this model is able to interpret the presence of clustered

behaviour in the tails. Recently, other copula models have proved to be useful to

model tail dependence behaviour among groups and could be used as well (Czado,

2010; Brechmann, 2013). In order to examine the performances of our methods in

a variety of situations, we use the following value parameters for model (5.3):

- the threshold used to determine the tail region of interest set to α = 0.25;

- the sample size T = 400, 800;

- the dimension of the model d = 32, 64, 128;

- the number of copulas J = 4, 8, 16, with J < d/2, considered in (5.3);

- the lower TDC λ = 0.10, 0.30, 0.50.

Notice that, in the simulation study, there is a trade-off between sample size and

choice of the threshold α. In fact, when α becomes smaller, one needs to increase

the sample size in such a way that the tail region Tα contains a sufficient number of

points that allow the calculation of the conditional Spearman’s correlation. In order

to overcome such a problem, we prefer here to fix α = 0.25 and to assume that

the dimension of the sample size is not too large (according to financial practice).

It should be mentioned that various similar simulations have been also carried out

by using a small α (with large samples) and similar results have been obtained.

After simulating a sample, a dissimilarity matrix is created as described in Section

5.3 and the hierarchical clustering via complete linkage is applied. Moreover, for

each sample, we determine the optimal number of clusters g by the silhouette index

(Kaufman & Rousseeuw, 1990), which reflects the within-cluster compactness and

between-cluster separation of a clustering. In detail, for g = 1, 2, · · · , the number

of clusters is chosen such that the average silhouette width is maximized over all

g. It follows that, if the correct number of clusters is identified, then it coincides

with J . Otherwise, the system has misspecified the cluster structure, a fact that will

decrease the performance of our methodology.
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Finally, in order to examine whether the structure of the obtained clusters

matches to the true classification of the instances, two indices are considered: the

Rand Index (RI) (Rand, 1971) and the Adjusted Rand Index (ARI) (Hubert & Ara-

bie, 1985). The RI lies between 0 and 1, where the maximum value is taken when

two partitions agree perfectly. The ARI is the corrected-for-chance version of the

RI, so as to ensure that its maximum value is 1 and its expected value is zero when

the partitions are selected at random. It can can yield a value between −1 and 1.

Specifically, we calculate the RI and ARI between the cluster structure obtained

from the described method and the theoretical one (as induced from model (5.3)).

The calculations are repeated 250 times, and the average RI (respectively, ARI)

is considered. We also considered more replications without obtaining relevant

changes in the results. The results are presented in Tables 5.1, 5.2 and 5.3.

As can be seen, overall the simulations give reasonable results, even for a small

sample size. However, as the sample size increases, the performance generally im-

proves, as expected. Moreover a stronger tail dependence within groups (according

to λ) clearly improves the results, regardless of copula family, J-value and sample

size. The performance of the tested procedure seems also to be related to the type

of dependence (i.e. the copula) that is involved since, as known, different copulas

with the same tail dependence coefficient may have different (finite) tail behaviour,

i.e., different lower threshold copula. The number of clusters does not seem to have

a clear influence on the results, even if in several cases the performances seem to

become weaker as J increases. This can be explained by the fact that we do not

fix a priori the number of clusters to be considered but we allow the algorithm to

select this number according to the silhouette value.

5.6 Application to FTSE-MIB Index

In order to illustrate our approach we analyse daily log-returns of the components

of the FTSE–MIB index in the period from June 4, 2007 to June 29, 2012. The data

were downloaded from Datastream and are formed by the log-returns of adjusted

stock prices (pit)t=1,...,T of 34 assets (6 assets have been removed). By considering

only the days when all assets were operating, we collect T = 1292 observations.

The stocks are listed in Table 5.4.

We preliminary fit GJR-GARCH(1,1) models to the univariate time series with
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Student-t distributed errors to account for heavy tails. For all time series we then

perform Box-Pierce and Ljung-Box tests at lags 1 and 5, to check for residual

autocorrelation, ARCH tests at lags 1 and 5, for autoregressive conditional het-

eroscedasticity and Kolmogorov-Smirnov test to check for the Student hypothesis

for the standardized residuals. The estimation results show a reasonable fit for all

time series (see Table 5.5). By using the procedure of Section 4.4, we derive hence

the sample (z1
t , . . . , z

34
t ) on [0, 1]34. In order to restrict our analysis to extreme

observations we fix a threshold α denoting the “degree” of risk of the scenario we

are considering (for our application we set α = 0.05, 0.10, 0.25). In particular, for

each choice of the level α, we compute d(d − 1)/2 = 561 coefficients associated

with the pairs (zit, z
j
t ), i 6= j, i, j = 1, . . . , 34 conditional to the fact that (zit, z

j
t )

takes values on [0, α]2, and denote them by ρijS (α).
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Figure 5.1: Illustration of tail regions defined by the threshold α in a bi-

dimensional plot of two series of residuals.

As pointed out before, the starting point for our clustering procedure is a dis-

tance defined through the correlation matrix. To this end, hierarchical agglomer-

ative clustering algorithms are applied directly to the matrix ∆ = (∆ij)i,j=1,...,34

with ∆ij =
√

2(1− ρijS (α)). As a clustering procedure, we adopt the complete

linkage method, which has proved to be useful in a variety of situations. As a mat-

ter of fact, other methods like single linkage and average linkage may be applied

as well. The dendrograms produced by complete linkage scheme in each of the

three extreme scenarios are displayed in Figure 5.3 together with the associated
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Figure 5.2: Heat Maps for 34 FTSE–MIB components displaying the pairwise

dissimilarities for different threshold levels α ∈ {1, 0.25, 0.10, 0.05}.

threshold level α = 0.05, α = 0.10, α = 0.25, respectively. For completeness we

also report the complete linkage dendrogram when we use unconditional Spear-

man’s correlation (i.e. we assume α = 1). From here, the number of clusters can

be estimated by using classical results in the literature (see, e.g., Everitt, 1979).

Moreover, notice that in most real life situations, the number of clusters can be ei-

ther specified by the user based on his prior knowledge (for instance, geographic or

economic considerations) or estimated via a suitable procedure (see, e.g., Milligan

& Cooper, 1985; Gordon, 1999).

As can be seen from the dendrograms, the clustering hierarchy varies accord-

ing to the threshold level α. In fact, it may happen that the dependence between

two assets changes according to the different “crisis” periods both the assets are ex-
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Figure 5.3: Dendrogram plots of 34 FTSE–MIB components obtained by us-

ing hierarchical clustering (hclust function) with complete linkage method in

scenario α = 1 (unconditional Spearman’s correlation) and extreme scenarios

α = 0.25, 0.10, 0.05.

periencing. For example, looking at the dendrograms in Figure 5.3 one can try to

understand how the dependences within a specific sector in the data set (e.g., bank

institutions) evolve for different conditioning. The fact that such dependencies

change is well known in the literature, often under the name of financial contagion

(Durante & Foscolo, 2013). In particular, the clusters obtained in the unconditional

case are quite different from the clusters obtained in a risky scenario. This is par-

ticularly important for possible consequences in portfolio management. In fact, in

crisis periods, diversification effects can be mitigated when one does not take into

account the “extreme” dependence between the different assets.

Finally, a remark is needed here. From a practical point of view, first the risk

manager should fix the threshold level α, which reflects her/his investment strategy,
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then the cluster procedure should be performed. If one wants to be conservative

against extreme risks, a threshold α = 0.05 could be a reasonable choice, since it

reflects the behaviour of the markets in very risky scenarios. It will be a matter of

future investigations the determination of algorithmic procedures in order to select

the optimal α for a given set of time series. To this end some proposals have been

formulated in Jaworski & Pitera (2013).
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Figure 5.4: Barplots visualizing the agglomerative hierarchical clustering (com-

plete linkage) of 34 FTSE–MIB components for α ∈ {1, 0.25, 0.1, 0.05}, from

agnes algorithm (Kaufman & Rousseeuw, 1990). Agglomerative coefficients

measure the amount of clustering structure found.
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5.7 Discussion

In this Chapter, a new methodology to cluster financial time series according to a

suitable measure of tail dependence has been proposed. The motivation underlying

our approach can be found in the well-recognized fact that “classical correlation

measures do not give an accurate indication of the real dependence between risk

exposures”.

We focus on the behaviour of the markets when they are exposed to losses that

are judged to be extremely critical according to a predefined threshold level. To do

this, we measure the strength of the (positive) association between the time series

in a given tail region of their domain by considering suitable pairwise conditional

Spearman’s correlation coefficients extracted from the original series. The proce-

dure does not work directly with the time series data but requires a preliminary

filtering of the univariate time series, by means of a GARCH-type model. As dis-

cussed in Section 4.3 of Chapter 4, a copula-based approach allows us to separate

the univariate behaviour of each time series from the dependence structure at a

multivariate level.

The second step of the procedure is based on the construction of a dissimilar-

ity matrix, collecting all the estimated conditional correlations, which only depend

on the associated threshold copula (Section 5.2). These dissimilarities are then

used to perform traditional cluster analysis and, in particular, hierarchical cluster-

ing. It is worth mentioning that the methodology we suggest does not require the

specification of a full (parametric) dependency model between the markets under

consideration, but it is essentially non-parametric, thus allowing for a much greater

degree of flexibility in modelling the data. Finally, a simulation study (giving over-

all good results) and an application to the assets from the Italian FTSE-MIB index

are presented (Sections 5.5, 5.6).

The results could provide possible evidence that the correlations between mar-

kets during stress periods are quite different than under normal conditions, with

important consequences in portfolio management problems. In particular, the pro-

posed clustering strategy can be useful to investigate extreme comovements be-

tween financial time series in such a way that may be helpful to portfolio selection.
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Table 5.1: Simulation study results for d = 32, α = 0.25.

T = 400

J Copula family λ RI ARI

4

Clayton
0.10 0.7624 0.2825
0.30 0.8506 0.6761
0.50 0.9597 0.9108

Survival Gumbel
0.10 0.9155 0.7877
0.30 0.9984 0.9954
0.50 0.9998 0.9993

8

Clayton
0.10 0.8235 0.1782
0.30 0.8841 0.4365
0.50 0.9581 0.7960

Survival Gumbel
0.10 0.9080 0.5387
0.30 0.9949 0.9729
0.50 0.9995 0.9974

T = 800

J Copula family λ RI ARI

4

Clayton
0.10 0.8287 0.5412
0.30 0.9696 0.9187
0.50 0.9988 0.9966

Survival Gumbel
0.10 0.9917 0.9807
0.30 1.0000 1.0000
0.50 1.0000 1.0000

8

Clayton
0.10 0.8573 0.3205
0.30 0.9571 0.7786
0.50 0.9982 0.9900

Survival Gumbel
0.10 0.9726 0.8545
0.30 0.9999 0.9997
0.50 1.0000 1.0000
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Table 5.2: Simulation study results for d = 64, α = 0.25.

T = 400

J Copula family λ RI ARI

4

Clayton
0.10 0.7678 0.1689
0.30 0.8193 0.6194
0.50 0.9598 0.9030

Survival Gumbel
0.10 0.9441 0.8534
0.30 0.9990 0.9973
0.50 0.9996 0.9990

8

Clayton
0.10 0.8671 0.1385
0.30 0.9068 0.4395
0.50 0.9669 0.8306

Survival Gumbel
0.10 0.9435 0.6770
0.30 0.9985 0.9921
0.50 0.9998 0.9989

16

Clayton
0.10 0.9107 0.0842
0.30 0.9277 0.2660
0.50 0.9659 0.6563

Survival Gumbel
0.10 0.9423 0.4071
0.30 0.9956 0.9531
0.50 0.9991 0.9908

T = 800

J Copula family λ RI ARI

4

Clayton
0.10 0.8151 0.4917
0.30 0.9716 0.9270
0.50 0.9986 0.9961

Survival Gumbel
0.10 0.9941 0.9838
0.30 1.0000 1.0000
0.50 1.0000 1.0000

8

Clayton
0.10 0.8951 0.3328
0.30 0.9691 0.8429
0.50 0.9986 0.9931

Survival Gumbel
0.10 0.9880 0.9396
0.30 1.0000 1.0000
0.50 1.0000 1.0000

16

Clayton
0.10 0.9215 0.1979
0.30 0.9659 0.6504
0.50 0.9981 0.9799

Survival Gumbel
0.10 0.9776 0.7653
0.30 0.9999 0.9994
0.50 1.0000 1.0000
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Table 5.3: Simulation study results for d = 128, α = 0.25.

T = 400

J Copula family λ RI ARI

4

Clayton
0.10 0.6821 0.3204
0.30 0.7826 0.6007
0.50 0.9458 0.8687

Survival Gumbel
0.10 0.9656 0.9085
0.30 0.9997 0.9990
0.50 0.9997 0.9992

8

Clayton
0.10 0.8301 0.1446
0.30 0.8762 0.4278
0.50 0.9583 0.8025

Survival Gumbel
0.10 0.9533 0.7663
0.30 0.9993 0.9966
0.50 0.9997 0.9987

16

Clayton
0.10 0.8883 0.0796
0.30 0.9077 0.2500
0.50 0.9593 0.6428

Survival Gumbel
0.10 0.9396 0.4586
0.30 0.9977 0.9779
0.50 0.9996 0.9959

T = 800

J Copula family λ RI ARI

4

Clayton
0.10 0.7661 0.5644
0.30 0.9677 0.9139
0.50 0.9988 0.9968

Survival Gumbel
0.10 0.9978 0.9939
0.30 0.9996 0.9937
0.50 1.0000 1.0000

8

Clayton
0.10 0.8756 0.3441
0.30 0.9681 0.8456
0.50 0.9980 0.9906

Survival Gumbel
0.10 0.9946 0.9739
0.30 0.9870 0.8750
0.50 1.0000 1.0000

16

Clayton
0.10 0.8978 0.1789
0.30 0.9630 0.6676
0.50 0.9978 0.9791

Survival Gumbel
0.10 0.9857 0.8675
0.30 1.0000 0.9999
0.50 1.0000 1.0000
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Table 5.4: List of the analysed components of FTSE–MIB.

Symbol Name

a2a A2A
agl AUTOGRILL
sts ANSALDO STS
atl ATLANTIA
azm AZIMUT HOLDING
bmps BANCA MPS
bp BANCO POPOLARE
bpe BCA POP. EMILIA R.
bzu BUZZI UNICEM
cpr CAMPARI
enel ENEL
eni ENI
f FIAT
fnc FINMECCANICA
g GENERALI
ipg IMPREGILO
isp INTESA SANPAOLO
lto LOTTOMATICA
lux LUXOTTICA GROUP
mb MEDIOBANCA
med MEDIOLANUM
ms MEDIASET
plt PARMALAT
pc PIRELLI&C
pmi BCA POP. MILANO
spm SAIPEM
srg SNAM
stm STMICROELECTRONICS
ten TENARIS
tit TELECOM ITALIA
tod TOD’S
trn TERNA
ubi UBI BANCA
ucg UNICREDIT
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Table 5.5: Diagnostic tests for the components of FTSE–MIB.

BP

(1)

BP

(5)

LB

(1)

LB

(5)

ARCH

(1)

ARCH

(5)

KS

a2a 0.90 0.37 0.90 0.37 0.38 0.89 0.50
agl 0.82 0.39 0.82 0.38 0.88 0.94 0.41
sts 0.94 0.20 0.94 0.20 0.73 0.92 0.72
atl 0.76 0.86 0.76 0.85 0.21 0.36 0.78
azm 0.58 0.66 0.58 0.66 0.84 0.64 0.18
bmps 0.32 0.71 0.32 0.70 0.91 0.94 0.46
bp 0.79 0.88 0.79 0.88 0.61 0.03 0.57
bpe 0.21 0.65 0.21 0.64 0.02 0.01 0.25
bzu 0.80 0.49 0.80 0.49 0.55 0.10 0.05
cpr 0.74 0.76 0.74 0.76 0.78 0.99 0.94
enel 0.93 0.94 0.93 0.94 0.30 0.81 0.11
eni 0.89 0.69 0.89 0.69 0.12 0.73 0.03
f 0.80 0.25 0.80 0.25 0.95 0.90 0.04
fnc 0.36 0.10 0.36 0.09 0.39 0.80 0.51
g 0.59 0.78 0.59 0.78 0.44 0.68 0.14
ipg 0.32 0.17 0.32 0.16 0.93 0.95 0.49
isp 0.55 0.24 0.55 0.24 0.02 0.10 0.13
lto 0.68 0.63 0.68 0.63 0.54 0.73 0.79
lux 0.84 0.00 0.84 0.00 0.40 0.75 0.43
mb 0.77 0.95 0.77 0.95 0.95 0.92 0.84
med 0.23 0.62 0.23 0.62 0.79 0.60 0.58
ms 0.65 0.90 0.65 0.90 0.76 0.95 0.52
plt 0.36 0.80 0.36 0.80 0.64 0.87 0.25
pc 0.95 0.97 0.95 0.97 0.70 0.91 0.23
pmi 0.44 0.89 0.44 0.89 0.85 1.00 0.47
spm 0.59 0.84 0.59 0.83 0.21 0.14 0.08
srg 0.45 0.36 0.45 0.36 0.45 0.92 0.37
stm 0.64 0.58 0.64 0.57 0.81 0.51 0.50
ten 0.73 0.93 0.73 0.93 0.45 0.39 0.34
tit 0.89 0.09 0.89 0.08 0.54 0.99 0.13
tod 0.60 0.44 0.60 0.44 0.96 0.72 0.77
trn 0.72 0.94 0.72 0.94 0.67 0.95 0.20
ubi 0.47 0.76 0.47 0.75 0.34 0.81 0.54
ucg 0.34 0.27 0.34 0.27 0.57 0.62 0.08





Chapter 6

Clustering financial time series
via tail dependence coefficient

6.1 Introduction

In this chapter a procedure for clustering financial time series according to a suit-

able copula-based tail coefficient is proposed.

A recent work by De Luca & Zuccolotto (2011) proposes a dissimilarity mea-

sure for financial time series clustering based on parametric estimation of pairwise

lower tail dependence coefficients. Developing the ideas presented there, we fol-

low an alternative approach which avoids to specify any model assumption on the

pairwise dependence structure of the involved time series since it is only based on

the rank statistics derived from the observations. Moreover, it is also shown that,

while a multidimensional scaling is suggested by De Luca & Zuccolotto (2011)

as a further transformation of dissimilarities, this step could be avoided without

deteriorating the overall results.

The chapter is organized as follows. Sections 6.2 and 6.3 describe the proposed

cluster algorithm, whose performance is checked via a simulation study in Section

6.4. An application to the analysis of MSCI Developed Market indices is given in

Section 6.5, allowing a direct comparison with the results of De Luca & Zuccolotto

(2011). In Section 6.6 a two-stage portfolio selection procedure is developed and

empirical calculations on the EURO STOXX 50 are provided. In particular, by

exploiting the proposed tail dependence-based risky measures, a first-step cluster
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analysis is carried out for discerning between assets that behave similarly during

risky scenarios; while the second step concerns the selection of a weighted portfo-

lio from a group of assets in such a way that the assets are diversified in their tail

behaviour. Section 6.7 concludes.

6.2 Non-parametric estimation of tail dependence

Once we have obtained the pseudo–observations (z1
t , . . . , z

d
t )t=1,...,T from the orig-

inal time series according to procedure in Chapter 4, Section 4.4, we adopt the

concept of tail dependence coefficients. We recall that, as discussed in Chapter 3,

Section 3.2, if (X,Y ) is a continuous bivariate random vector with copula C, then

the lower and upper tail dependence coefficients (shortly, TDC’s) only depend on

C and are defined, respectively, by

λL(C) = lim
t→0+

C(t, t)

t
and λU (C) = lim

t→1−

1− 2t+ C(t, t)

1− t
. (6.1)

For what follows, it is important to notice that

λL(C) = λU (Ĉ), (6.2)

where Ĉ is the survival copula associated with C and given by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v).

Estimators of tail dependence coefficients have been considered several times in

the literature (see, e.g., Frahm et al., 2005). In particular, they are popular in the

class of extreme value copulas (see, for instance, Beirlant et al., 2006; Gudendorf

& Segers, 2010; Salvadori et al., 2007).

We recall that a copulaC is called an extreme value copula (EVC) ifC(ut, vt) =

Ct(u, v) for all t > 0, u, v ∈ [0, 1]. A result of Pickands (1981) states that C is an

EVC if and only if

C(u, v) = (uv)
A
(

logv
log(uv)

)
, (u, v) ∈ [0, 1]2, (6.3)

where A : [0, 1] → [1/2, 1] is continuous, convex and satisfies the constraint

max {t, 1− t} ≤ A(t) ≤ 1 for all t ∈ [0, 1]. The function A is referred to as

the dependence function associated with C.
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Non-parametric estimation procedures of the dependence functionA have been ex-

tensively considered in the literature (see, for instance, Gudendorf & Segers, 2010).

In particular, if C is an EVC, then

λU (C) = 2− 2A

(
1

2

)
. (6.4)

In other words, the estimation of the dependence functionA provides an estimation

for the upper TDC. Among various possible choices, a good choice is given by

the estimator ÂCFG proposed by Capéraà et al. (1997) (and further studied by

Genest & Segers, 2009), due to the fact that it seems preferable to other similar

estimators (see the discussion by Genest & Segers, 2009). In the sequel, we will

denote by λ̂CFGU the estimator of the upper TDC obtained from the estimation of

the dependence function via formula (6.4).

Now, in order to use an Extreme Value Theory (EVT) approach for the estima-

tion of lower TDC of our time series, we adopt the procedure suggested by Frahm

et al. (2005, section 3.5).

LetC be the copula associated with the pseudo–observations (z1
t , . . . , z

d
t )t=1,...,T

of the considered financial returns, obtained by applying the empirical distribution

function to the estimated standardized residuals from the univariate models. Let Ĉ

be the copula associated with the pseudo–observations of the corresponding losses

(i.e. the opposite of the returns) given by z̃it = 1 − zit for every i = 1, . . . , d and

t = 1, . . . , T . As a matter of fact, Ĉ may not be an EVC. However, under suitable

conditions, it belongs to the so–called domain of attraction of an EVC C∗ (Guden-

dorf & Segers, 2010). Moreover, it has been proved that Ĉ and C∗ have the same

upper TDC (Abdous et al., 1999, Lemma 1). Thus, instead of estimating directly

the lower TDC from C (or, equivalently, the upper TDC from Ĉ), we may estimate

it by using the estimator λ̂CFGU applied to the EVC C∗. Obviously, C∗ is unknown,

but its empirical version can be obtained by extracting block maxima from the loss

observations.

Specifically, the pairwise lower TDC is calculated via the following procedure.

1. Given a pair of pseudo–observations (zit, z
j
t )t=1,...,T , i 6= j, set z̃it = 1 −

zit and z̃jt = 1 − zjt . Namely, we pass from the copula C of the pseudo-

observations to the survival copula Ĉ of the pseudo–observations

2. We extract from (z̃it, z̃
j
t )t=1,...,T the maxima of observations over m blocks
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of l = T/m elements, by obtaining the time series (M̃ i
t , M̃

j
t )t=1,...,m.

3. We estimate the bivariate dependence function Aijm for the m block maxima

via the non-parametric rank-based CFG estimator by Capéraà et al. (1997)

and get the estimation λ̂CFGU of the upper TDC in (6.4).

4. By using (6.2), λ̂CFGU coincides with the lower TDC of (zit, z
j
t )t=1,...,T .

Notice that, as usual in the block-maxima approach (see, for instance, Em-

brechts et al., 1997), a trade-off necessarily takes place in determining the number

and size of blocks: a larger size leads to a more accurate determination of the EVC

C∗ in the domain of attraction; while a large number of blocks gives more data for

the estimation of the dependence function A.

6.3 Apply a cluster algorithm on dissimilarities

The definition of a suitable dissimilarity function between each pair of time se-

ries is a fundamental step before performing a cluster analysis. As in De Luca &

Zuccolotto (2011), here we have to transform the estimated lower TDC’s through

a monotonic function in such a way that the obtained dissimilarity between two

time series is small when their tail dependence is high, and monotonically in-

creases when their tail dependence decreases. Thus, for i, j = 1, . . . , d, a matrix

∆ = (∆ij) is defined whose elements are given by

∆ij = −log
(
λ̂Lij

)
, (6.5)

where λ̂Lij is the lower tail dependence coefficient between time series i and j esti-

mated non-parametrically through the procedure described in the previous section.

Equation (6.5) defines a dissimilarity matrix, which can be used as input for hierar-

chical clustering algorithms. When, instead, partitioning methods are used, such a

matrix has to be further treated in order to obtain a corresponding distance matrix.

Notice that here we choose a different function to derive the matrix ∆ compared to

(5.2). Here, λ̂Lij ∈ [0, 1], implying that (6.5) ranges from 0 to infinity.

Starting from the dissimilarity matrix defined in (6.5) we can perform cluster

analysis of the time series by following two different approaches:

1. apply an agglomerative hierarchical algorithm (e.g., single, average, com-

plete linkage) directly to the matrix ∆ = (∆ij);
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2. perform a non-metric Multidimensional Scaling (MDS) in order to obtain

the representation x1, . . . ,xd of normalized residuals in Rq. Then, the q-

dimensional point configuration obtained can be used as an input for K-

means algorithm.

The first clustering process is based on the hierarchical classification of the ob-

jects, producing the dendrogram that shows how clusters are formed at each stage

of the procedure. We recall that, in hierarchical clustering, partitions are obtained

by cutting off the dendrogram at an arbitrary point. One advantage of hierarchical

clustering is that the number of clusters is not required as a parameter. In the second

approach we consider the points in Rq obtained from MDS and cluster them with

the classical K-means algorithm. As already explained in Chapter 3, Section 3.5,

the algorithm works for a given value of the dimension q, which has to be given in

input. Starting from an initial point configuration for q = 2, the Shepard-Kruskal

algorithm (Kruskal, 1964a,b) iteratively improves the points configuration so as to

minimize the stress function and have a good approximation of the original entries.

The outcome is then used to perform K-means algorithm, a partitioning method in

which an iterative algorithm minimizes the sum of distances from each object to

its cluster centroid, over all clusters. Cluster centroids are computed differently for

each distance measure, to minimize the sum with respect to the chosen measure. It

is a faster method than hierarchical clustering, but the number of clusters has to be

fixed in advance. The final output is a set of clusters that are as compact and well

separated as possible.

6.4 Simulation study

A simulation study is conducted to check the clustering performances of the pro-

posed methodology. In analogy with the model defined in (5.3), for all u =

(u11, . . . , u1k1 , u21, . . . , u2k2 , . . . , uJ1, . . . , uJkJ ), with k1 + · · · + kJ = d, we

consider the following d–dimensional copula model

C(u) =

J∏
j=1

Cj(uj1, . . . , ujkj ). (6.6)

Again, C is the product of J copulas from Clayton and survival Gumbel family

with a fixed lower TDC λ. Model (6.6) is quite convenient in this context since
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it gives a direct overview of the degree of tail dependence within and across sub-

groups. We generate T data from (6.6) and consider different scenarios according

to:

- the sample size N = 500, 1000;

- the dimension of the model d = 32, 64, 128;

- the number of different clusters J = 4, 8, 16, with J < d/2;

- the lower TDC λ = 0.25, 0.50, 0.75.

For each model, the dissimilarity matrix (6.5) is computed and two clustering pro-

cedures (hierarchical and non-hierarchical) are applied:

1. complete linkage algorithm on dissimilarity matrix ∆ij = −log
(
λ̂Lij

)
;

2. K-means partitioning algorithm on the points in the final configuration re-

turned by Shepard-Kruskal’s non-metric MDS.

When performing MDS, we set q = 2 in order to avoid computational burden pro-

vided by considering q > 2. Notice, however, that under this restriction we may

in any case obtain that the stress function is lower than 2.5%. Now, supposed that

the number of clusters k to be selected is fixed and equal to J for each simulation,

we calculate the RI and ARI between the obtained cluster structure (from the sam-

pled data) and the expected cluster structure (as derived from the chosen model).

The calculations are repeated 250 times, and the average index is considered. The

results are reported in Tables 6.1 – 6.6. As the sample size increases, the perfor-

mance generally improves, as expected, regardless of copula model and number of

clusters. Moreover, as the dimension d increases, the performance seems to de-

crease, even if the changes are not so evident. In general, an increasing number of

clusters seems to give better performances. The different dependence structure (in

terms of TDC) matters; in fact, a stronger cluster separation (as obtained by a larger

TDC) increases the performances. The output is also influenced by the choice of

the copula family. This is due to a different tail behaviour that cannot only be cap-

tured by the TDC, as also explained in Chapter 3 about tail concentration function

(for more considerations about the tail of a copula see Jaworski, 2010). Finally,

complete linkage clustering procedure outperforms K-means, which requires an

additional step (multidimensional scaling) to convert the dissimilarity matrix into

a distance matrix. We also consider the approach via complete linkage when the
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Table 6.1: Simulation study results for N = 500, d = 32, k = J .

Complete linkage K-means

J Copula family λ RI ARI RI ARI

4

Clayton
0.25 0.8072 0.4845 0.7734 0.3715
0.50 0.9733 0.9264 0.8662 0.6401
0.75 1.0000 1.0000 0.8766 0.6802

Survival Gumbel
0.25 0.7815 0.4216 0.7637 0.3411
0.50 0.9729 0.9253 0.8604 0.6213
0.75 0.9998 0.9993 0.8718 0.6736

8

Clayton
0.25 0.8792 0.3596 0.8448 0.1610
0.50 0.9690 0.8335 0.8888 0.4117
0.75 0.9997 0.9983 0.9306 0.6491

Survival Gumbel
0.25 0.8710 0.3210 0.8392 0.1331
0.50 0.9714 0.8463 0.8949 0.4429
0.75 0.9999 0.9997 0.9244 0.6204

number of cluster is not fixed, but determined by the silhouette index criterion, as

previously done in Section 5.5. These results are reported in Tables 6.7 and 6.8

(similar results are obtained with the remaining copula models and are, for this

reason, not reported). As can be seen, the performance remains overall good and

comparable with the results obtained in the case the number of clusters is fixed.

6.5 Illustration from MSCI Developed Markets Index

In order to illustrate our approach we analyse daily returns of time series of Morgan

Stanley Capital International (MSCI) Developed Markets indices designed to mea-

sure the equity market performance of developed markets. The Dataset includes

the following markets: Australia, Austria, Belgium, Canada, Denmark, Finland,

France, Germany, Greece, Hong Kong, Ireland, Italy, Japan, Netherlands, New

Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the United

Kingdom and the United States. We restrict to the time series of daily log–returns

(x1
t , . . . , x

d
t ), d = 23, t = 1, . . . , T , in the period from June 4, 2002 to June 10,

2010 (T = 2093 observations; Source: Datastream) in order to provide a direct

comparison with the results by De Luca & Zuccolotto (2011). We preliminary ap-

ply a univariate Student-t AR-GARCH model to each time series of returns and
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Table 6.2: Simulation study results for N = 1000, d = 32, k = J .

Complete linkage K-means

J Copula family λ RI ARI RI ARI

4

Clayton
0.25 0.9206 0.7857 0.8670 0.6298
0.50 0.9998 0.9993 0.9176 0.7829
0.75 1.0000 1.0000 0.9028 0.7471

Survival Gumbel
0.25 0.8894 0.7054 0.8328 0.5318
0.50 0.9987 0.9965 0.9117 0.7695
0.75 1.0000 1.0000 0.9155 0.7822

8

Clayton
0.25 0.9325 0.6384 0.8531 0.2056
0.50 0.9985 0.9919 0.9079 0.5079
0.75 1.0000 1.0000 0.9422 0.7052

Survival Gumbel
0.25 0.9146 0.5445 0.8488 0.1810
0.50 0.9991 0.9951 0.9065 0.5022
0.75 1.0000 1.0000 0.9421 0.7087

Table 6.3: Simulation study results for N = 500, d = 64.

Complete linkage K-means

J Copula family λ RI ARI RI ARI

4

Clayton
0.25 0.7576 0.4263 0.7873 0.4220
0.50 0.9710 0.9236 0.8838 0.6925
0.75 0.9997 0.9992 0.8804 0.7005

Survival Gumbel
0.25 0.7293 0.3752 0.7636 0.3574
0.50 0.9750 0.9348 0.8736 0.6660
0.75 1.0000 1.0000 0.8599 0.6430

8

Clayton
0.25 0.8660 0.3662 0.8271 0.1555
0.50 0.9712 0.8617 0.8749 0.3972
0.75 0.9993 0.9966 0.9225 0.6429

Survival Gumbel
0.25 0.8580 0.3313 0.8238 0.1381
0.50 0.9721 0.8669 0.8711 0.3791
0.75 0.9997 0.9984 0.9233 0.6455

16

Clayton
0.25 0.9278 0.2653 0.9087 0.0759
0.50 0.9777 0.7695 0.9191 0.1828
0.75 0.9996 0.9963 0.9406 0.4134

Survival Gumbel
0.25 0.9236 0.2229 0.9076 0.0619
0.50 0.9761 0.7544 0.9180 0.1774
0.75 0.9994 0.9940 0.9412 0.4199
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Table 6.4: Simulation study results for N = 1000, d = 64, k = J .

Complete linkage K-means

J Copula family λ RI ARI RI ARI

4

Clayton
0.25 0.8786 0.7084 0.8709 0.6508
0.50 0.9991 0.9975 0.9187 0.7932
0.75 1.0000 1.0000 0.9055 0.7621

Survival Gumbel
0.25 0.8424 0.6297 0.8459 0.5823
0.50 0.9995 0.9985 0.9297 0.8207
0.75 1.0000 1.0000 0.9064 0.7640

8

Clayton
0.25 0.9301 0.6708 0.8372 0.2047
0.50 0.9990 0.9950 0.8839 0.4394
0.75 1.0000 1.0000 0.9337 0.6934

Survival Gumbel
0.25 0.9096 0.5840 0.8320 0.1780
0.50 0.9992 0.9962 0.8831 0.4359
0.75 1.0000 1.0000 0.9358 0.7040

16

Clayton
0.25 0.9533 0.5199 0.9100 0.0884
0.50 0.9982 0.9811 0.9211 0.2014
0.75 1.0000 1.0000 0.9427 0.4360

Survival Gumbel
0.25 0.9468 0.4541 0.9092 0.0775
0.50 0.9984 0.9830 0.9213 0.2032
0.75 1.0000 1.0000 0.9414 0.4201
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Table 6.5: Simulation study results for N = 500, d = 128, k = J .

Complete linkage K-means

J Copula family λ RI ARI RI ARI

4

Clayton
0.25 0.6472 0.2760 0.7769 0.4006
0.50 0.9694 0.9219 0.8714 0.6620
0.75 1.0000 1.0000 0.8788 0.6937

Survival Gumbel
0.25 0.5927 0.2095 0.7622 0.3603
0.50 0.9691 0.9233 0.8738 0.6670
0.75 1.0000 0.9999 0.8779 0.6918

8

Clayton
0.25 0.8026 0.2880 0.8252 0.1802
0.50 0.9688 0.8583 0.8612 0.3554
0.75 0.9994 0.9971 0.9116 0.6048

Survival Gumbel
0.25 0.8343 0.2807 0.8195 0.1688
0.50 0.9721 0.8731 0.8586 0.3422
0.75 1.0000 0.9999 0.9110 0.6023

16

Clayton
0.25 0.9183 0.2669 0.8996 0.0859
0.50 0.9754 0.7770 0.9108 0.1935
0.75 0.9993 0.9938 0.9329 0.4093

Survival Gumbel
0.25 0.8930 0.0835 0.8900 0.0496
0.50 0.9753 0.7780 0.9109 0.1973
0.75 0.9994 0.9941 0.9336 0.4143
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Table 6.6: Simulation study results for N = 1000, d = 128, k = J .

Complete linkage K-means

J Copula family λ RI ARI RI ARI

4

Clayton
0.25 0.7998 0.5585 0.8461 0.5865
0.50 0.9991 0.9977 0.9210 0.7961
0.75 1.0000 1.0000 0.8877 0.7204

Survival Gumbel
0.25 0.7667 0.5109 0.8313 0.5474
0.50 0.9991 0.9977 0.9257 0.8088
0.75 1.0000 1.0000 0.9005 0.7516

8

Clayton
0.25 0.8943 0.5954 0.8375 0.2367
0.50 0.9993 0.9966 0.8733 0.4124
0.75 1.0000 1.0000 0.9207 0.6442

Survival Gumbel
0.25 0.8621 0.4180 0.8413 0.2813
0.50 0.9991 0.9960 0.8727 0.4095
0.75 1.0000 1.0000 0.9224 0.6522

16

Clayton
0.25 0.9514 0.5621 0.9020 0.1086
0.50 0.9985 0.9857 0.9149 0.2313
0.75 1.0000 1.0000 0.9377 0.4501

Survival Gumbel
0.25 0.8961 0.1224 0.8936 0.0881
0.50 0.9988 0.9886 0.9146 0.2280
0.75 1.0000 1.0000 0.9378 0.4505
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Table 6.7: Simulation study results for N = 500, d = 32, k not fixed

Complete linkage

J Copula family λ RI ARI

4

Clayton
0.25 0.7648 0.5637
0.50 0.8699 0.8439
0.75 0.9406 0.9715

Survival Gumbel
0.25 0.7484 0.5341
0.50 0.8757 0.8521
0.75 0.9272 0.9512

8

Clayton
0.25 0.7728 0.4541
0.50 0.8959 0.7908
0.75 0.9831 0.9814

Survival Gumbel
0.25 0.7582 0.4187
0.50 0.8942 0.7898
0.75 0.9648 0.9696

the standardized residuals are computed. For all time series we then perform Box-

Pierce and Ljung-Box tests at lags 1 and 5, to check for residual autocorrelation,

ARCH tests at lags 1 and 5, for autoregressive conditional heteroscedasticity and

Kolmogorov-Smirnov test to check for the Student hypothesis for the standardized

residuals. The estimation results show a reasonable fit for all time series (see Table

6.9). The standardized residuals from each time series are rescaled to the inter-

val [0, 1] thus obtaining the sample (z1
t , . . . , z

23
t ) on [0, 1]23 which represents the

empirical copula among the time series of returns. For the estimation of TDC, we

consider m = 91 block maxima where each block contains 2093/91 = 23 ele-

ments from each time series of residuals (i.e. we focus approximately to monthly

maxima). Then, the pairwise lower TDC’s λLij are estimated non-parametrically by

the procedure described in Section 6.2. The total number of estimated coefficients

is d(d−1)/2 = 253, resulting in a 23×23 symmetric matrix. The starting point for

our clustering procedure is the dissimilarity matrix (6.5) based on estimates λ̂Lij so

that two strongly tail dependent assets are grouped together and weakly tail depen-

dent assets are far away. Among hierarchical clustering techniques the complete

linkage method is used to achieve more useful hierarchies than single or average

linkage from a pragmatic point of view. Moreover, it can be used on data that

are not restricted to Euclidean distances. Looking at the dendrogram produced by
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Table 6.8: Simulation study results for N = 1000, d = 32, k not fixed.

Complete linkage

J Copula family λ RI ARI

4

Clayton
0.25 0.8953 0.7752
0.50 0.9390 0.9237
0.75 0.9597 0.9769

Survival Gumbel
0.25 0.8484 0.7221
0.50 0.9473 0.9345
0.75 0.9541 0.9673

8

Clayton
0.25 0.8683 0.6518
0.50 0.9828 0.9640
0.75 0.9947 0.9922

Survival Gumbel
0.25 0.8412 0.5694
0.50 0.9838 0.9672
0.75 0.9988 0.9973

complete linkage scheme (Figure 6.1), we find out that the hierarchical structure

can be interpreted in terms of geographic proximity: the lower tail dependence

tends to be higher within European markets, where the Scandinavian countries are

grouped together as well as USA and Canada; Pacific countries tend to be divided

in two separate clusters where New Zealand and Australia are joined together as

well as Hong Kong, Japan and Singapore. At a first level of merging, k = 3 can

be considered a good solution, where k denotes the number of clusters selected.

Table 6.10 reports the corresponding cluster composition.

The second procedure we apply in our case study is the one summarized by

point (2) in Section 6.3. Here we repeat the analysis by increasing q until the min-

imum stress of the corresponding optimal configuration is lower than 2.5%. The

final configuration results in a set of d = 23 points of dimension q = 10, corre-

sponding to a stress value of 0.0242. Figure 6.2 displays the two-dimensional MDS

configuration, characterized by a stress value min(s) = 0.2283. The obtained 10-

dimensional points configuration can be used as input for K-means algorithm. As

said, unlike hierarchical clustering, K-means clustering requires that the number

of clusters to extract be specified in advance. The NbClust package of R can be

used as a guide (Charrad et al., 2013). Additionally, a plot of the total within-groups

sums of squares against the number of clusters can be helpful. A bend in the graph
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can suggest the appropriate number of clusters. From the left plot in Figure 6.3 we

observe that the decreasing profile in the within groups sum of squares when k in-

creases from 4 to 5 seems to be higher than the decreasing profile when k increases

from 5 to 6, suggesting that a 5-clusters solution may be a good fit to the data. In

the right part of Figure 6.3, 7 of 24 criteria provided by the NbClust package sug-

gest a 5-clusters solution. The cluster memberships are listed in Table 6.11. The

cluster solutions we carry out from the two procedures can be directly compared

with the results obtained by De Luca & Zuccolotto (2011), although in our analysis

we perform hierarchical clustering in addition to partitioning clustering and adopt

different criteria in the choice of the number of clusters. Moreover, we would like

to stress again that our procedure does not require any parametric assumption on

the copula linking the pairwise financial assets, which can be considered the main

advantage of the proposed method.

Table 6.9: Diagnostic tests for the components of MSCI Data.

BP

(1)

BP

(5)

LB

(1)

LB

(5)

ARCH

(1)

ARCH

(5)

KS

JAPAN 0.88 0.58 0.88 0.58 0.55 0.17 0.03
USA 0.83 0.60 0.83 0.60 0.01 0.15 0.00
AUSTRALIA 0.28 0.77 0.28 0.77 0.32 0.24 0.00
CANADA 0.50 0.87 0.50 0.86 0.94 0.47 0.00
GERMANY 0.32 0.25 0.32 0.25 0.43 0.10 0.01
UK 0.64 0.10 0.64 0.10 0.42 0.45 0.01
AUSTRIA 0.35 0.81 0.35 0.81 0.64 0.42 0.01
DENMARK 0.54 0.95 0.54 0.95 0.16 0.10 0.02
FRANCE 0.54 0.20 0.54 0.20 0.53 0.35 0.00
GREECE 0.24 0.60 0.24 0.60 0.25 0.35 0.05
ITALY 0.49 0.26 0.49 0.26 0.18 0.03 0.01
NEW.ZEALAND 0.42 0.60 0.42 0.60 0.87 0.03 0.08
NORWAY 0.34 0.66 0.34 0.66 0.25 0.10 0.00
SINGAPORE 0.33 0.45 0.33 0.45 0.05 0.10 0.07
SWEDEN 0.49 0.27 0.49 0.27 0.60 0.34 0.04
SWITZERLAND 0.51 0.12 0.51 0.12 0.90 0.18 0.00
BELGIUM 0.17 0.73 0.17 0.73 0.01 0.18 0.00
FINLAND 0.25 0.33 0.25 0.33 0.88 0.99 0.67
HONG.KONG 0.41 0.23 0.41 0.23 0.47 0.01 0.00
IRELAND 0.79 0.93 0.79 0.93 0.34 0.77 0.13
NETHERLANDS 0.35 0.23 0.35 0.23 0.62 0.18 0.01
PORTUGAL 0.14 0.14 0.14 0.14 0.21 0.07 0.42
SPAIN 0.44 0.50 0.44 0.50 0.96 0.00 0.03
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Figure 6.1: Dendrogram of the MSCI World Index Data constituents according to

complete linkage clustering. Cutting at height 1.5 a 3-clusters solution is obtained.

Table 6.10: Hierarchical Clustering of MSCI World Index Data.

Cluster 1 Cluster 2 Cluster 3

BELGIUM AUSTRALIA HONG KONG
CANADA AUSTRIA JAPAN
FINLAND GREECE SINGAPORE
FRANCE DENMARK
GERMANY NEW ZEALAND
IRELAND
ITALY
NETHERLANDS
NORWAY
PORTUGAL
SPAIN
SWEDEN
SWITZERLAND
UK
USA
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Figure 6.2: Two-dimensional MDS configuration for MSCI World Index Data.
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Figure 6.3: Left Within groups sum of squares versus the number of clusters in

a K-means solution. Right Recommended number of clusters using 24 criteria

provided by the NbClust package.

6.6 Application to portfolio selection framework

By exploiting tail dependence-based risky measures described so far, a two-stage

portfolio selection procedure is proposed, with the aim to increase the diversifi-

cation benefits in a bear market. A first-stage cluster analysis is carried out for

discerning between assets with the same performance during risky scenarios. In

the second stage, a mean-variance efficient frontier is computed by fixing a num-

ber of assets per portfolio and by selecting only one item from each cluster.



6.6 Application to portfolio selection framework 87

Table 6.11: K-means clustering of MSCI World Index Data.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

BELGIUM AUSTRIA DENMARK AUSTRALIA GREECE
FRANCE CANADA FINLAND JAPAN HONG.KONG
GERMANY IRELAND NORWAY NEW.ZEALAND SINGAPORE
ITALY USA SWEDEN
NETHERLANDS
PORTUGAL
SPAIN
SWITZERLAND
UK

The idea of diversification by grouping assets is not new (see, e.g., Panton et al.,

1976). The further step of selecting assets taking into account group constraints and

determining weights via Markowitz’s approach has been used, for instance, in Hui

(2005), where the groups are determined by factor analysis, and in Cesarone et al.

(2013). Finally, De Luca & Zuccolotto (2011) consider all possible portfolios with

group constraints; however, again, their clustering procedure is different since it

assumes a parametric form of the dependence structure.

As an illustration of our approach, we consider time series related to EURO

STOXX 50 stock index and its components in the period from January 2, 2003

to July 31, 2011. Moreover, as out-of-sample period, we will also show the per-

formance of our procedure in the period from August 1, 2011 to September 9,

2011. The period has been selected in consideration of the fact that EURO STOXX

50 was experiencing severe losses. We preliminary apply a univariate Student-t

ARMA(1,1)-GARCH(1,1) model to each time series of log–returns of 50 con-

stituents of the index to remove autocorrelation and heteroscedasticity from the

data. Then, we compute the standardized residuals in order to check the adequacy

of the fit. Having obtained the standardized residuals, we adopt two measures of

tail dependence described in Chapter 3 (Sections 3.2 and 3.3):

- the lower tail dependence coefficient λL;

- the conditional Spearman’s correlation ρα, for α = 0.10.

As regards the estimation of these quantities we rely on two specific techniques as

described in Section and 6.2 and 5.2, respectively:



88 6. Clustering financial time series via tail dependence coefficient

- the estimate of the lower TDC is derived from the estimate of the extreme-

value copula in the domain of attraction of C;

- the estimation of conditional Spearman’s ρα is related to the calculation

of the Spearman’s correlation in a sub-sample extracted from the pseudo–

observations and dependent on the threshold α.

Both these estimations are obtained via non-parametric procedures and do not re-

quire any parametric assumption on the unknown copula linking the time series of

interest. Then, the dissimilarity between two time series is defined by ∆ = (∆ij),

for i, j = 1, . . . , d, whose elements are given by

∆ij =
√

2(1− m̂ij), (6.7)

where m̂ij is the tail dependence measure between time series i and j, that is esti-

mated via one of the two procedures mentioned above. Starting from the dissimi-

larity matrix defined in (6.7) we can perform a cluster analysis of the time series by

different techniques. Here, for a comparative analysis, we focus on two methods:

the hierarchical agglomerative algorithms as applied in the previous applications,

and in particular, complete linkage, and the fuzzy clustering algorithm. The latter

is a partitioning method that takes into account some ambiguity in the data, which

often occurs, and allows each object to belong to one or more than one cluster ac-

cording to a membership coefficient. The main advantage of fuzzy clustering is

that it yields much more detailed information on the data structure compared to

other partitioning techniques. In order to perform fuzzy cluster analysis we can

consider FANNY algorithm Kaufman & Rousseeuw (1990), which handles either

interval-scaled measurements or dissimilarities. The algorithm aims at minimizing

an objective function which is a kind of total dispersion, depending on dissimi-

larities and membership coefficients. Once the number of clusters is chosen, the

algorithm returns some general information on the type of data and the actual mem-

berships for each object in each cluster are listed. Moreover, as in our case, a crisp

partition of the financial assets can be determined from the membership value of

each time series. In both methods, the optimal number of clusters is chosen by the

silhouette index criterion. The results are contained in Tables 6.12–6.15.

As it can be seen, the compositions of the sub–groups seem to differ with re-

spect to both the tail dependence measure and the clustering algorithms. Again,

we consider RI (ranging between 0 and 1), and ARI (ranging between -1 and 1), as
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Table 6.12: Hierarchical clustering of EURO STOXX 50 based on conditional

Spearman’s correlation ρα with α = 0.1

Cluster Asset

1 E.IND F.SGE D.BASX D.BAYX D.RWEX D.SIEX D.DTEX D.SAPX
H.UNIL F.LVMH F.CRFR I.ISP F.EI E.IBE

2 H.ASML B.ABI M.NOK1 D.EONX F.FTEL H.MT F.BSN F.AIR
F.OR.F F.SQ.F

3 I.ENEL F.DG.F D.BMWX I.ENI F.TAL F.UBL
4 F.BNP E.REP H.ING D.DAIX E.SCH F.GOB E.BBVA D.ALVX

D.DBKX D.MU2X CRGI I.G I.UCG E.TEF H.PHIL F.MIDI
F.QT.F F.GSZ

5 D.VO3X F.EX.F

Table 6.13: Hierarchical clustering of EURO STOXX 50 based on lower TDC

measure.

Cluster Asset

1 E.IND D.DAIX D.BMWX
2 H.ASML B.ABI D.RWEX D.EONX D.DTEX D.SAPX H.UNIL F.CRFR

F.EX.F F.SQ.F F.QT.F F.GSZ
3 I.ENEL M.NOK1 F.GOB D.BAYX F.FTEL CRGI
4 F.BNP E.REP H.ING E.SCH F.SGE F.DG.F E.BBVA D.ALVX

D.BASX D.SIEX H.MT F.BSN F.LVMH F.AIR I.G F.OR.F
I.UCG I.ISP E.TEF F.UBL F.MIDI E.IBE

5 D.DBKX I.ENI D.MU2X D.VO3X F.TAL H.PHIL F.EI

a measure of agreement among the obtained cluster solutions. If we fix the clus-

tering method and compare the results obtained by changing the tail dependence

measure, the obtained grouping compositions seem to be similar, as can be seen

by the values reported in Table 6.16, although they do not coincide. In fact, the

two tail dependence measures underline different aspects of tail dependence (finite

and asymptotic tail behaviour). Analogously, if we fix the tail dependence measure

but allow us to use different clustering procedures, the obtained grouping compo-

sitions seem to be similar (even more than in the previous case). In other words,

the effects of a changing clustering procedure seem to be less evident than those
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Table 6.14: Fuzzy clustering of EURO STOXX 50 based on conditional Speaman’s

correlation ρα with α = 0.1.

Cluster Asset

1 E.IND E.REP M.NOK1 H.MT F.UBL F.EI
2 H.ASML F.BNP H.ING E.SCH E.BBVA D.BAYX D.BMWX D.RWEX

I.ENI D.MU2X D.DTEX
3 I.ENEL D.EONX CRGI F.BSN F.CRFR E.TEF E.IBE F.GSZ
4 B.ABI F.SGE F.DG.F D.BASX F.FTEL D.VO3X D.SAPX H.UNIL

F.EX.F F.AIR F.OR.F F.SQ.F
5 D.DAIX F.GOB D.ALVX D.DBKX D.SIEX F.TAL F.LVMH I.G

I.UCG I.ISP H.PHIL F.MIDI F.QT.F

Table 6.15: Fuzzy clustering of EURO STOXX 50 based on lower TDC measure.

Cluster Asset

1 E.IND F.DG.F D.BMWX H.MT F.LVMH I.ISP E.TEF E.IBE
F.GSZ

2 H.ASML B.ABI F.SGE D.EONX D.DTEX H.UNIL F.BSN F.EX.F
F.AIR F.UBL F.QT.F

3 I.ENEL M.NOK1 D.BAYX I.ENI F.FTEL D.SAPX CRGI F.TAL
F.CRFR H.PHIL F.EI F.SQ.F

4 F.BNP E.REP H.ING E.SCH F.GOB E.BBVA D.ALVX D.BASX
D.DBKX D.SIEX I.G F.OR.F I.UCG F.MIDI

5 D.DAIX D.RWEX D.MU2X D.VO3X

obtained by changing the tail dependence measure.

Once the clustering procedure is completed, the assets have been grouped into

a predefined number K of clusters. Then our possible portfolio will be selected on

the basis of the following steps.

1. Determine all possible portfolios composed by K assets such that each asset

belongs to a different cluster.

2. For these portfolios, calculate the optimal weight assigned to each of its

assets with classical Markowitz portfolio selection procedure (Markowitz,

1952). We recall that this procedure provides a general way to maximize
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Table 6.16: Rand Index and Adjusted Rand Index between cluster compositions

obtained by using ρα and the lower TDC from hierarchical clustering (respec-

tively, fuzzy clustering), and between cluster compositions obtained from the two

clustering techniques performed on the same tail dependence-based dissimilarity

measure.

Hierarchical Clustering Fuzzy Clustering ρ0.10 TDC

RI 0.62 0.68 0.68 0.73
ARI 0.03 0.02 0.08 0.26

investor’s expected utility under certain conditions, namely to produce port-

folios that are able to minimize the total portfolio variance.

3. Given all possible portfolios composed in such a way, plot the graph of their

standard deviation against their expected return.

4. Determine the portfolios that are the vertices in the convex efficient frontier

of the standard deviation/expected return graph.

According to his/her preference the investor could hence choose one of the

portfolios that are on the convex frontier. The proposed approach has the following

features:

- It suggests to select the assets of the portfolio by taking into account the

grouping structure given by the clustering algorithms. Thus, two assets from

the same group (cluster) cannot be included in the same portfolio.

- Once the assets have been selected, their weights are determined by classical

methods, like Markowitz approach.

- All the portfolios composed in the previous two steps provide a graphical

representation of the possible choices of the investor (see, for instance, Fig-

ure 6.4). Based on his/her information, one investment strategy could be

selected.

- If no preference is required by the investor, the point with the smallest risk

on the convex frontier, namely the global minimum variance portfolio, can

be chosen.
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Figure 6.4: Standard deviation-Expected return plot of 5-asset portfolios generated

from TDC and hierarchical clustering.

Now, if we restrict to the TDC-based cluster analysis (the other results are

quite similar), we may notice in Figure 6.4 the graph of standard deviation against

expected returns of all 33264 portfolios composed with our procedure by using

hierarchical clustering, while the same picture is obtained in Figure 6.5 by fuzzy

clustering. In both cases, we highlight the portfolios in the convex efficient frontier.

The returns of these portfolios in the frontier are compared with the returns

of naive minimum variance portfolio built from the whole set of assets and to the

benchmark index EURO STOXX 50. As can be seen, the performance of the port-

folios in the efficient frontier is generally better than the benchmark and, in several

cases, outperforms the global minimum variance portfolio. This seems to confirm

the idea that, when markets are experiencing a period of losses, a diversification

strategy could be beneficial. The composition of the minimum variance portfolio

in the convex frontiers of Figure 6.6 is reported in Table 6.17. Notice that both gave

large weight to one single asset, while the other are different. Anyway, as can be

read from the basic statistics of the selected portfolios (Table 6.18), the returns of
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Figure 6.5: Standard deviation-Expected return plot of 5-asset portfolios generated

from TDC and fuzzy clustering.

the portfolio obtained by hierarchical clustering (HC Portfolio) and the returns ob-

tained by fuzzy clustering (Fanny Portfolio) are quite similar. Thus, the clustering

method does not have a strong influence on the overall results.

6.7 Discussion

In this Chapter, an approach to cluster financial time series according to their

asymptotic tail behaviour has been described. The procedure is based on the non-

parametric estimation of copula-based lower tail dependence coefficients, used to

quantify the extent to which extremely negative events tend to occur simultane-

ously for pairs of financial assets.

First, a suitable copula-based time series model is chosen (see Chapter 4, Sec-

tion 4.3) in order to model separately the marginal behaviour of each time series

and the link between them; in the second step, the pairwise tail dependence coeffi-

cients are estimated via the block maxima method. It consists of fitting an extreme
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Table 6.17: Composition of the minimum variance portfolios in the convex fron-

tiers of Figure 6.6, selected by hierarchical and fuzzy clustering applied on the

lower TDC-based measure.

Hierarchical Clustering

Assets F.EI F.FTEL F.BSN D.SAPX E.IND
Weights 0.41 0.25 0.15 0.14 0.05

Fuzzy Clustering

Assets F.EI H.UNIL E.TEF D.RWEX I.G
Weights 0.43 0.20 0.15 0.13 0.09

Table 6.18: Basic statistics related to the log–returns of selected minimum vari-

ance portfolios in the convex frontier by hierarchical and fuzzy clustering. Period:

August 1, 2011 – September 9, 2011.

Mean S.D. Skewness 5% VaR 5% E.S. Sharpe Ratio

HC Portfolio 0.0001 0.0049 -0.0426 -0.0077 -0.0116 0.0115
FANNY Portfolio 0.0001 0.0051 0.0296 -0.0077 -0.0118 0.0108

Naive MVP 0.0001 0.0048 -0.1527 -0.0076 -0.0114 0.0149
EURO STOXX 50 -0.0001 0.0071 0.0636 -0.0111 -0.0170 -0.0125

value distribution to a sample of maxima over blocks extracted from an underly-

ing series. In particular, the estimation of the dependence function A associated

with an extreme value copula provides an estimation for the upper tail dependence

coefficients of the transformed returns and, in turn, for the lower tail dependence

coefficients of the original time series (Section 6.2). Then, the matrix of pair-

wise dissimilarities is defined by transforming the tail coefficients matrix, in such

a way it can be used for clustering purposes. Two standard procedures are adopted,

namely, the agglomerative hierarchical clustering and K-means algorithm. The

latter requires a non-metric Multidimensional Scaling procedure to convert the in-

formation coming from the dissimilarity matrix into a points configuration in a

high-dimensional Euclidean space.

A small simulation study is conducted to check the clustering performances of
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the proposed methodology, by using different copula models. Results show that

the performance of the method is quite promising, even for large dimension of the

model. In order to illustrate the proposed approach, we analyse daily returns of

time series of Morgan Stanley Capital International Developed Markets indices,

designed to measure the equity market performance of developed markets. The

results can be compared with the case study in the work by De Luca & Zuccolotto

(2011), where a similar procedure is investigated by using a parametric estimation.

The usefulness of the presented methodology is further validated by the appli-

cation to portfolio selection framework (Section 6.6). The main idea is to select the

assets of the portfolio by taking into account the grouping structure given by the

clustering solution. A two-stage portfolio diversification strategy is proposed and

tested on time series related to EURO STOXX 50 stock index and its components.

The results seem to confirm the need for alternative diversification strategies when

markets are experiencing a period of simultaneous large losses.
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Figure 6.6: Top 9 minimum variance portfolios on the efficient frontier of all the

possible 5-asset portfolios obtained via hierarchical clustering. Bottom 10 mini-

mum variance portfolios on the efficient frontier of all the possible 5-asset portfo-

lios obtained via fuzzy clustering. The returns of the minimum variance portfolio

in the frontier (denoted by S) and the other portfolios in the frontier (black dotted

lines) are compared with the returns of EURO STOXX 50 (denoted by B) and with

the returns of global minimum variance portfolio(denoted by M) composed of all

50 assets.



Chapter 7

Conclusions

Copulas have proved to be useful in several application fields, especially when

the major issue is to understand/quantify a risk coming from different sources. In

many situations, the global risk strongly depends on the behaviour of the copula in

the tails of the distribution. The flexibility in the specification of the dependence

structure in the tail represents one of the main advantages of copula models. The

main goal of this thesis is to provide new insights into the study of tail dependence

of copulas in order to develop tools that may enhance practical applications.

Chapter 3 discusses the theory behind different tail dependence measures that

can be expressed in terms of copula functions (whose mathematical background

is given in Charter 2). Then, the problem of detecting different tail behaviours is

investigated. We analyse several aspects of tail dependence of copulas both at finite

and at infinite scale. In particular, the development of graphical copula tools may

help in the choice of the relevant copula for the problem at hand, especially when

classical goodness-of-it techniques may not be efficient. To this end, a modification

of the graphical tool in Michiels & De Schepper (2013) has been proposed, in

order to identify which families of copulas are closer to the empirical copula in

the tail dependence behaviour. The main ingredient of the suggested graphical tool

is the introduction of a suitable dissimilarity measure based on the notion of tail

concentration function.

As discussed in the thesis, financial problems often deal with the minimiza-

tion of the whole risk of a portfolio of assets by adopting some diversification

techniques, i.e. by investing in assets that do not behave similarly especially in
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crisis periods. The diversification issue naturally poses the question of investigat-

ing the relationship between financial time series and of checking whether they

can be grouped together according to some similarity criterion. However, it should

be taken into account that in many situations classical correlation-based clustering

procedures do not give an accurate indication and understanding of the real de-

pendence between risk exposures, especially when there is some contagion effect

among the markets under consideration. Hence, clustering techniques tailored to

risk management should adopt alternative procedures, by taking into account the

information about the tail behaviour of the involved quantities. In the thesis, it

is argued and it is shown that copula models and clustering strategies based on

measures of tail dependence could allow to successfully address asset allocation

problems.

In Chapter 5 and Chapter 6 two strategies for clustering financial time series

are presented, according to a suitable dissimilarity measure that accounts for a

kind of extreme (tail) dependence among the markets under consideration. Specif-

ically, the aim consists in creating groups of time series such that elements of each

group tend to comove when they are experiencing very large losses. To this end,

we adopt two different measures of tail dependence, namely the (lower) tail de-

pendence coefficient and the conditional Spearman’s correlation. These measures

express two different ways of looking at tail dependence since they focus, respec-

tively, on asymptotic tail dependence and finite tail dependence. From these co-

efficients, estimated for each pair of time series, a dissimilarity matrix is defined

and used as input for classical clustering techniques. As a relevant feature of the

proposed procedures, we consider copula-based time series models that allow to

separate the univariate behaviour of each time series from the dependence among

them (see Section 4.3). Moreover, we adopt non-parametric estimation procedures

in modelling the pairwise dependence between the time series, thus avoiding any

model assumption. Simulation studies are conducted to check the clustering perfor-

mances of the two different procedures, with quite promising results. Illustrations

from financial datasets are provided, showing the practical implementation of the

described techniques. Section 5.7 and 6.7 provide short discussions on some con-

siderations that could be drawn looking at the results and possible advantages in

using the suggested procedures.

The last section in Chapter 6 is devoted to an application in portfolio selection
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framework. Specifically, a two-stage portfolio diversification strategy is proposed,

in order to increase the diversification benefits in a bear market. By exploiting tail

dependence-based risky measures previously introduced, a first-step cluster anal-

ysis is performed for discriminating between assets with the same performance

during risky scenarios. Hierarchical and fuzzy techniques are used in the illustra-

tion, showing that they perform in a similar way. Then, a mean-variance efficient

frontier is computed by fixing a number of assets per portfolio.

Empirical calculations could provide possible evidence that investing on se-

lected index components in trouble periods may improve the risk-averse investor

portfolio performance. The proposed portfolio selection procedure is intended to

be used by an investor to have more insights into the relationships among different

assets in crisis periods. In particular, it may serve to warn against the automatic

use of standard portfolio selection procedures that may not work when the markets

are expected to experience bearish periods.
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(ISBN: 978-88-6129-882-8), 4 pages. Rome (Italy), 20-22 June 2012. CLEUP,

Padova, 2012.

Submitted Papers

F. Durante, J. Fernández-Sánchez and R. Pappadà (2014) Copulas, diagonals and
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Pappadà, R. (2013) Clustering financial time series by measures of tail dependence.

(oral) CLADAG 2013. 9th Meeting of the Classification and Data Analysis Group.,

Modena, Italy, September 18–20.
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