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0
I N T R O D U C T I O N

In order to properly understand the big picture, everyone should fear
becoming mentally clouded and obsessed with one small section of truth.

— Xun Kuang (310 BC - 237 BC)

0.1 resilience , complexity and cooperation in socio-ecological

systems

Advances in experimental technologies, both in the laboratory and
in the field, are generating an increasing volume of ecologically and
sociologically relevant data [1, 2, 3, 4, 5, 6], spanning a wide range of
scales, revealing recurrent emergence of patterns [7, 8, 9, 10] in these
systems. This “data explosion” is both a challenge (inventing new
tools for their analysis [11, 12, 13, 14]) and an opportunity (identify-
ing rules driving the functioning of complex systems [15, 16, 17, 18]).
However, data alone do not necessarily lead to an understanding of
the systems of interest. At present, we are in a situation where in
front of a rich (but common to many systems) phenomenology we
have innumerable models for very specific cases that call for a gen-
eral vision [19, 20]. This challenge is very fascinating for physicists,
that have in their veins the search for general principles of apparently
different phenomena.

In particular, a very important property that seems to be shared
by most of the socio-ecological systems is their ability to respond to
perturbations, i.e. the system resilience. Cell biology [21, 22], ecol-
ogy [23, 24, 25], environmental science [26, 27], and food security
[28, 2] are just some of the many areas of investigation [29, 4, 3] on
the mechanisms increasing the system resilience. Nevertheless, not
all socio-ecological systems display high resilience. In food security,
the intensification of international food trade and local shocks in food
production led to global food crises, and for example Ref. [2] devel-
ops a framework to investigate the coupled global food-population
dynamics and finds that the global food system is losing resilience
(increasingly unstable and susceptible to conditions of crisis); In ecol-
ogy, the concept of resilience has evolved considerably since Holling’s
(1973) seminal paper [30] to describe the persistence of natural sys-
tems in the face of changes in ecosystem variables due to natural or
anthropogenic causes. It has been suggested that in many ecosystems
we are facing a lost of resilience and consequent loss of biodiversity
[31, 32, 33]. Therefore an important challenge is to understand what
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are the main drivers ruling the resilience of ecological communities,
so that proper ecosystem management strategy can be developed [34].

From data is emerging that one of the key feature of socio-ecological
system resilience may lie in the architecture of the interaction net-
works. The topology of the interaction network may actually repre-
sent the “parameter” that system somehow self-tunes so that the sys-
tem’s responses to stimuli is optimized with respect to some feature
(e.g. stability). In inanimate matter, spins or particles always have
their mutual interactions turned on (with an intensity decaying with
their relative distance) and the network describing their interaction
is dense, with most of the connections present. In contrast, if we con-
sider for instance an ecosystem, species interact selectively even if
they coexist at short distances, and the species interaction network is
sparse, that is, most of the interactions are turned off. At the same
time, the interactions that are turned on form non-random evolv-
ing structures that are the result of some optimization process un-
der adaptive/evolution pressure [35, 7]. Thanks to massive databases
now easy available, characteristics similar to those just mentioned for
ecological networks, have been observed also in gene-interaction net-
work [36, 37, 38], in neuronal networks [39, 40, 41] and even in social
networks [42, 4, 43]. These networks are very different and yet share
a crucial aspect: they all have undergone biological/social evolution
that has driven their incremental complexity.

One particular long-standing question regards the relationship be-
tween stability (resilience) and complexity in ecological system. Many
of the population dynamics modeling frameworks proposed in the
literature [44, 45, 46] cannot elude the celebrated May’s theorem [47].
This theorem, recently refined by Allesina and Tang [23] states that
the stability of the system depends on the product SC, where S is the
number of species and C is the fraction of non-zero pairwise interac-
tions between species. This result leads to the so-called stability and
complexity paradox debate [45]: a system in order to be stable cannot
be too large (S large) or too connected (large C). The paradox lies in
the fact that empirically, ecosystems with a large number of species
seem to be very stable [48, 45]. Moreover, recently it has been sug-
gested that because of this stability paradox, in microbial ecosystems
competition may play a much important roles than what expected
until now. In fact in these models, competition has a stabilizing role
in ecosystem dynamics, contrarily to cooperation that decreases the
ecosystem resilience [49, 50].

During my Ph.D. I have used a physicists approach based on com-
plex networks and statistical physics, to study the resilience in Socio-
Ecological systems, how it is related to the system complexity and
what is the role of cooperation in the ecosystem dynamics. I have
used a comprehensive approach that includes data mining, theoreti-
cal modeling (both computational and analytical) and statistical anal-
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yses. In particular, I have investigated the efficiency of a recently
proposed framework to study the resilience of complex interacting
systems, what the role of cooperation and competition in the univer-
sal patterns theoretically predicted by the model, and its validation
with data. I have then focused on the long-standing open question
of the relation between complexity and resilience in ecosystems, by
specifically focusing on how the architecture of interaction networks
may confer to living systems their ability to promptly react to to per-
turbations (e.g. increase resilience). To do that we have developed
a stochastic population dynamics model, generalizing an interacting
non-equilibrium model known as the voter model [51, 52, 53], and I
have also studied the effect of cooperation on the ecosystem resilience.
The results of my work suggest a novel picture on the relation be-
tween complexity, cooperation and resilience, challenging previous
results in the literature [23, 7, 49, 50].

0.2 thesis outline

The thesis blends and integrates the material published in a series of
peer-reviewed or preprinted publications, and it is organized in seven
brief chapters. A general introduction outlines the conceptual thread
joining the various issues studied. The other chapters are tailored
from the published works as outlined in detail below. A set of conclu-
sions, putting forth perspectives and further possible developments,
and the Appendices - where I have explained some mathematical
technicalities - are integral part of this thesis work. In the first part,
Chapters 1 2 3, we introduce a general theoretical framework that
allows to predict and explore the resilience of network-based com-
plex systems and discuss the properties of the interactions to deter-
mine the accuracy of the approximation. This part is rewritten from
Tu C, Grilli J, Schuessler F, et al. "Collapse of resilience patterns in
generalized Lotka-Volterra dynamics and beyond", Physical Review
E, 2017, 95(6): 062307; The second part, Chapters 4 5 6, we propose
an ecological stochastic model which is appropriate for species com-
munities with mutualistic/commensalistic interactions and find that,
in the large system size limit, any number of species can coexist for
a very general class of interaction networks and that the stationary
state is globally stable. This part is rewritten from Tu C, Suweis S,
Grilli J, et al. Cooperation promotes biodiversity and stability in a
model ecosystem. arXiv preprint arXiv:1708.03154, 2017., in review.
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Part I

N E T W O R K R E S I L I E N C E A N D I T S A C C U R A C Y

Simulated disorder postulates perfect discipline; simulated fear
postulates courage; simulated weakness postulates strength.

— Lao Tzu (? - 531 BC)





1
R E S I L I E N C E O F C O M P L E X S Y S T E M S D Y N A M I C S

All difficult things have their origin in that which is easy, and great things
in that which is small.

— Lao Tzu (? - 531 BC)

1.1 the concept of resilience

The fundamental agents of biological or socio-economic systems, from
genes in gene-regulatory networks to stock holders in financial mar-
kets, act under complex interactions and in general we do not know
how to derive the dynamic from first-principle potentials. In general
these interactions are described by pair-wise relations through a ma-
trix (the adjacency matrix) that regulates, typically in non-linear way,
the effect of the interactions to the dynamic of the single component.

In particular, there is a rising interest in assessing how interac-
tions determine the stability (or resilience) of dynamical attractors
[54], i.e. the ability of a system to return after a perturbation to the
original equilibrium state [1, 55, 5, 23]). Cell biology [21, 22], ecology
[23, 24, 25], environmental science [26, 27], and food security [28, 2]
are just some of the many areas of investigation [29, 4, 3] where the re-
lation between interaction properties and stability is, although deeply
studied, a central open question. Therefore, understanding the role of
system topology in resilience theory for multi-dimensional systems is
an important challenge from which our ability to prevent the collapse
of ecological and economic systems, as well as to design resilient sys-
tem.

1.2 classic one-dimensional method to quantify resilience

in one dimensional systems

We start by presenting the traditional mathematical method to quan-
tify resilience in one-dimensional systems driven by the non-linear
dynamic equation

dx

dt
= f(β, x) (1)

where f(β, x) represents the system’s dynamic and β is the (control)
parameter to capture the variable conditions. If for a stable fixed
points of Eq. (1), x∗, the following conditions hold:

f(β, x∗) = 0, (2)
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λ =
∂f

∂x
|x=x∗ < 0, (3)

then the solution of these conditions is called resilience function

x(β). (4)

Eq. (2) and (3) guarantee that the system is in its steady state and that
is linearly stable around it, i.e. for small perturbations the system will
go back to the un-perturbed equilibrium point x∗. In this case, Eq. (4)
represents the possible states of the system as a function of the control
parameter β.

The shape of the resilience function (see Fig. 1) is given by Eq. (4)
and uniquely determined by the functional form of f(β, x). If it is
folded backwards, then three equilibria may exist depending on the
value of the control parameter β. The colored lines in the β− x plane
represent the equilibrium solutions, i.e. the values x∗(β) such that
f(β, x∗) = 0. The black arrows in each sub-figure indicate the direc-
tion in which the system moves if it is not in the equilibrium. It can
be seen from these arrows that all curves represent stable equilibria,
except for the yellow middle section. In this case, if the system is
driven slightly away from this part of the curve, it will move further
away instead of returning. At the critical point βc of Eq. (4) the sys-
tem Eq. (1) loses its resilience by undergoing a sudden transition to
a different and often undesirable fixed point. This is known as criti-
cal transition and it is a well studied phenomena in complex system
literature [6, 56, 57, 58, 13].

Therefore, in one dimensional dynamic, as far as the function f

is invertible, a complete analytical treatment of the resilience of the
system is possible. We can identify the critical value of the control
parameter β and study the effect of external perturbation to the sys-
tem. Typically one is interested to study how to anticipate or avoid
critical transitions in the system and to this respect many indicators
have been developed.

1.3 critical slowing down

One of the most used indicator in known is critical slowing down
(CSD). In dynamical system, the phenomenon of CSD is indeed a
good indicator of whether the system approach to a critical threshold
[59]. For example in Fig. 1, if the system approaches the fold bifur-
cation point βc, the dominant eigenvalue characterizing the rates of
change around the equilibrium becomes zero, and consequently the
recovery rates decrease smoothly to zero [60, 13, 12] (Fig. 2). CSD
tends to lead to an increase in the AR1 (lag-1 autocorrelation) [15]
and variance [16] of the fluctuations in a stochastically forced system
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Figure 1: Three typical examples of resilience function for one-dimensional
system where the blue/red branch represents the desired/unde-
sired stable fixed point. The yellow branch represents the unstable
fixed point. The arrows represent the direction driving the system
to the stable fixed point. a, Resilience function displaying a bifur-
cation. If β > βc, there is only a single stable state (blue curve); If
not, there is one desired stable state (blue curve) and another un-
desired state (red curve). b, Resilience function displaying a first
order transition from the desired state (large x∗) to the undesired
state x∗ → 0. c, Resilience function displaying a stable state for
β < βc and no solution above βc. [extract from [11]]

approaching a bifurcation for the critical value of the control parame-
ter.

For simplicity, let us consider the 1-dimensional system given by
Eq. (1) but for discrete time steps, and let us call x̄ its equilibrium
at stationarity. If we assume to perturb the system around x̄ and we
quantify the deviation of the state variable x from the equilibrium
the time step n as yn = xn − x̄, then we can describe the dynamic
of yn through the linearizion of the dynamic around x̄, i.e. yn+1 =

yn + λyn. Then, after a period ∆t we have that yn+1 = eλ∆tyn, i,e.
the return to equilibrium is approximately exponential with a cer-
tain recovery speed λ. If we add to the solution a Gaussian noise
mimicking continuous perturbation to the stationary solution, then
the previous equation becomes yn+1 = eλ∆tyn + σεn where εn is
a random number from a standard normal distribution and σ is the
standard deviation. If λ and ∆t are independent of yn, this model is a
first-order autoregressive process yn+1 = αyn+σεn where α = eλ∆t

is the autocorrelation. The expectation and standard deviation of the
classic first-order autoregressive process yn+1 = c + αyn + σεn is
E(yn+1) = E(c) + αE(yn) + E(σεn) ⇒ µ = c + αµ + O ⇒ µ =
c
1−α and Var(yn+1) = E(y2n+1) − µ

2 = σ2

1−α2
. When the system

approaches to the critical point, the return speed to equilibrium de-
creases (λ approaches zero), the autocorrelation α tends to one and
the variance tends to infinity.

Briefly, in the dynamic of a system approaching a bifurcation, CSD
leads to (1) slower recovery from perturbations, (2) increased autocor-
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Figure 2: CSD is an indicator that the system has lost resilience. When
the system is far from/close to the bifurcation point (A/B), its
resilience is high/low, i.e. the basin of attraction is large/small
(C/E), the rate of recovery from perturbations is relatively high-
/low (D/F) and the resulting dynamic are characterized by high-
/low correlation between the states at subsequent time intervals
(G/H). [extract from [13]]

relation and (3) increased variance. All these indicators can be used
to detect early warning of critical transitions [12].
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2
N E T W O R K R E S I L I E N C E

He who controls others may be powerful, but he who has mastered himself
is mightier still.

— Lao Tzu (? - 531 BC)

2.1 how to estimate the resilience of complex network?

The classic one-dimensional method [54] presented above assumes
that the system dynamics can be approximated by one-dimensional
equation (1) dxdt = f(x,β), where β represents the endogenous effects
on the system. Although this method is conceptually powerful, it has
very limited applicability on “real world” problems, as it is unable
to account for resilience of complex multi-dimensional system com-
posed of numerous components interacting via a complex network of
weighted edges.

The CSD method could in theory inform about the critical point
also of multidimensional complex system, but being an approximated
numerical method, it is also presents many limitations, as difficult
to control sensitivity on the system parameters, high computational
costs (exponentially increasing) for investigating the critical transition
for several different combination of the system parameter. Addition-
ally, it does not offer the testable predictions for the system’s response
to different perturbations, not giving insights that allow to design op-
timal resilient multidimensional systems.

Recently, Gao et al. [11] overcome these drawbacks by developing
a general theoretical framework that allows us to predict and explore
the resilience of network-based complex system and open a new way
to understand the resilience in complex natural and man-made sys-
tems.

They consider a class of equations describing the dynamics of sev-
eral types of multi-dimensional systems (ranging from cellular [61] to
ecological [62, 7] and social systems [63]) with pair-wise interactions:

ẋi = F(xi) +

S∑
j=1

AijG(xi, xj) (5)

where x = (x1, ..., xS) is the activities of S components/nodes, the
functions F(xi) and G(xi, xj) represent the intrinsic dynamics of node
i and its dynamics driven by the interaction with the other compo-
nents, respectively. Finally, the weight matrix Aij specifies the inter-
action between nodes: if Aij = 0, then there is no interaction between
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i and j; otherwise the edge weight Aij represents the strength of the
interaction from j to i.

In analogy with the 1D system of equation [64, 65, 4], a transition
from a desired to an undesired stable fixed point captures the loss of
resilience also in the multi-dimensional system of equation (4). The
key difference is that equation (5) is not controlled only by one param-
eter (e.g. β), but it depends on many parameters, such as the weights
of all edges, the parameters of self-dynamics F(xi) and those charac-
terizing the inter-dynamics G(xi, xj). Therefore, the resilience loss can
be induced by changes in any of the S2 parameters, with each change
capturing a different kind of perturbation (see Fig. 3). For instance,
the extinction of species in an ecological system may correspond to
the removal of one or several nodes [11]. Therefore, the resilience
function of complex network is a multi-dimensional manifold over
the parameter space characterizing the system.

2.2 framework of one-dimensional effective equation

Characterizing the analysis in Gao et al. [11], the average nearest
neighbour activity xeff and effective control parameter βeff of Eq.
(5) are given by (see Appendix A for details):

xeff =
1TAx
1TA1

=

∑
ijAijxj∑
ijAij

(6)

βeff =
1TAsin

1TA1
=

∑
ijAijAji∑
ijAij

. (7)

We highlight that βeff is the average over the product of the out-
degrees and in-degrees of all nodes, and thus now depends on the
whole network topology. The dynamics of xeff following Eq. (5) can
be mapped through Eq. (79) to a one-dimensional effective equation:

ẋeff = f(βeff, xeff) = F(xeff) +βeffG(xeff, xeff), (8)

where βeff is the control parameter. By solving the equilibrium state
of this equation (f(xeff,βeff) = 0), one could obtain the resilience
curve x(β) or β(x) in the two dimensional coordinate system. For
the one-dimensional system given by Eq. (8), the resilience function
x(β) is calculated analytically and uniquely determined by f(x,β),
which represents the possible states of the system as a function of the
parameter βeff.

Summarizing, in order to study the resilience or the existence of
critical transitions of the complex multi-dimensional system given by
Eq. (5), one could simply calculate βeff from the network and analyze
the corresponding resilience function x(βeff) of Eq. (8). Clearly, the
properties of the one-dimensional non-linear Eq. (8) could be studied
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easily and the original S2 parameters of the microscopic description
A have been collapsed into a single macroscopic resilience parameter
βeff, so this framework is conceptually powerful. Of course it also
presents some important limitations that will be described later in
the next Chapter.

2.3 resilience of ecological dynamics

In this section we will apply the above theoretical framework to a
potential “real world” case of interest, namely the dynamics of eco-
logical species interacting through mutualistic relationships. Mutual-
istic networks have been intensively studied in recent years [24, 7,
66, 67, 68, 69, 70]. In particular, it has been shown [67] that these
type of ecological communities display characteristic network archi-
tecture, named “nested”, i.e. a topological structure in which spe-
cialist species tend to be connected with generalists one, forming a
hierarchy from the generalist to the specialist. It has suggested that
this type of structures minimizes competition [69], confers robustness
against species loss and other systemic damages [68]. Nevertheless,
other studies have demonstrated that structured mutualistic ecologi-
cal networks are less stable than their random counterparts [7] and
that nestedness is detrimental to community stability [23, 24]. There-
fore, the relationship between mutualistic networks and resilience is
still an open problem. Here we want to review some results on critical
transitions in these systems as a function of the network perturbation
intensity.

2.3.1 The model

Following the work of Gao and collaborators [11], we describe the
population dynamics of the mutualistic community as follow:

dxi
dt

= Bi+ xi

(
1−

xi
Ki

)(
xi
Ci

− 1

)
+

S∑
j=1

Aij
xixj

Di + Eixi +Hjxj
(9)

where xi is the abundance of species i, the first term Bi represents the
constant incoming migration, the second term xi

(
1− xi

Ki

)(
xi
Ci

− 1
)

represents logistic growth with the carrying capacity Ki [71] and
Allee effect Ci [72] and the third term represents the mutualistic con-
tribution from species xj to xi. We highlight that the above Eq. (9) is a
specific example of the general class of equations given by Eq. (5) with
F(xi) = Bi+xi

(
1− xi

Ki

)(
xi
Ci

− 1
)

andG(xi, xj) =
∑S
j=1Aij

xixj
Di+Eixi+Hjxj

only if all the parameters do not depend on the specific species. In the
following we will work within this assumption and with fixed param-
eters values, i.e. B = Bi = 0.1, the Allee effect C = Ci = 1, carrying
capacity K = Ki = 5 and D = Di = 5, E = Ei = 0.9, H = Hj = 0.1.
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2.3.2 Empirical networks

Some empirical ecological networks describing the mutualistic inter-
action, especially plant-pollinator relationships among species, have
been collected by ecologists [73, 74, 75, 76] and available on the web
[77]. Each empirical species interaction network is described by a ma-
trix M representing a n×m bipartite graph comprising n plants/-
fishes and m pollinators/anemones. From Mik we construct two pro-
jection networks Aij and Bij can be constructed by linking pairs of
plants that share mutual pollinators (Aij), or pollinators that share
mutual plants (Bij). If the pollinator k pollinates two plants i and
j, then we assign a weight to the link between these two plants of
strength MikMjk∑n

s=1Msk
. Further, if there are many mutual pollinators k

that plants i and j share, then the mutualistic interaction between
them will be stronger. Therefore, the weighted plant network can be
constructed by: Aij =

∑m
k=1

MikMjk∑n
s=1Msk

. A similar procedure is used to
construct the weighted pollinator network Bij.

Figure 3: a, The bipartite network M consists of nodes representing mutu-
alistic interactions, such as plant/fish and pollinator/anemone. b,
The two projected network (A - plants that share mutual pollina-
tors and B - pollinators that share mutual plants) from the bipartite
graph M. [extract from [11]]

2.3.3 Numerical simulations

For testing the resilience under realistic perturbations, each network
is perturbed through the following three methods:

1. Node perturbation. First, remove a fraction fn of nodes in the
network A randomly; Second, capture the giant connected com-
ponent; Third, re-run the numerical simulation again. This per-
turbation simulates the extinction of plant/pollinator;

2. Link perturbation. First, remove a fraction fl of links in the net-
work M randomly; Second, re-construct the plant and pollina-
tor network A and B; Third, re-run the numerical simulation
again. This perturbation simulates the disappearance of mutu-
alistic link;

14



3. Global perturbation. First, generate random variate rij from a
uniform distribution with mean fw < 1; Second, shift the link
weight Aij by the factor rij; Third, re-run the numerical simu-
lation again. This perturbation simulates a global change in the
environmental conditions, for example, varying temperature.

For testing whether the fixed points are stable, each network in-
cludes three different initial state:

1. low initial state xL, where all xi(t = 0) = 10−3;

2. high initial state xH, where all xi(t = 0) = 6;

3. random initial state xR, where xi(t = 0) is a random variate
from the uniform distribution between 0 and 10.

Each network and initial condition are substituted to Eq. (9) and
we solve numerically the system of coupled differential equation after
each perturbation. The results are summarized in Fig. 4. For different
perturbations (node perturbation, link perturbation and global pertur-
bation, respectively) of the same system, the corresponding resilience
pattern is different. For different ecological system to which we apply
the same perturbation procedure, the corresponding resilience pat-
terns are also different. When the perturbation is small, the system
maintains its resilience. If the perturbation exceeds a certain thresh-
old, the occurrence of bifurcation leads to a critical transition, from
the desired state xH and an undesired one xL. However, owing to the
multi-dimensionality of Aij, each realization is microscopically dis-
tinct, and as a result the bifurcation point is unpredictable across dif-
ferent realizations. Therefore, system loses its resilience under some
highly unpredictable conditions.

2.3.4 Universal resilience patterns in complex networks

The network resilience depends on the network topology, perturba-
tion and specific realization. This seemingly unpredictable and elu-
sory behaviour can be systematically treated by the one-dimensional
effective mean field equation presented above. Reducing the multi-
dimensional Eq. (9) to the form of Eq. (8), one obtains the following
one-dimensional effective equation:

f(βeff, xeff) = B+xeff
(
1−

xeff
K

)(xeff
C

− 1
)
+βeff

x2eff
D+ (E+H)xeff

(10)

Its fixed points can be found by f(βeff, xeff) = 0, namely

βeff(xeff) = −
[
B+ xeff

(
1−

xeff
K

)(xeff
C

− 1
)] D+ (E+H)xeff

x2eff
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(11)

which describes βeff by function of xeff. Inverting the above equa-
tion, one could obtain the final curve in the βeff−xeff two-dimensional
space, which describes the stationary solution for xeff as a func-
tion of βeff. The system linear stability is thus guaranteed when
∂f(βeff,xeff)

∂xeff
< 0.

As shown in Fig. 5, the resilience shows two different regimes, sep-
arated by a critical transition at βceff:

1. βeff > βceff. The system has a single fixed point xH;

2. βeff < βceff. The system features three potential fixed points,
xH, xL and the intermediate xM.

a) In the top regime, the system is resilient as long as xH
could recover from the disturbance deviating it.

b) In the middle regime, the system is unstable due to pos-
itive slope, ∂f(βeff,xeff)∂xeff

> 0. Therefore any perturbation
driving the system below xM will lead to resilience loss.

c) In the bottom regime, if the perturbation is large enough,
the system may lose resilience, potentially transitioning be-
tween the three states xH, xM and xL.

At the critical value, βceff, the two lower fixed points, xL and xM
are merged into a single point xceff. For obtaining the critical point
βceff, β

c
eff and xceff must satisfy the following two conditions:
∂f(βceff, xeff)

∂xeff
|xceff = 0

f(βceff, x
c
eff) = 0

(12)

The critical point of this bifurcation in our case is (βceff, x
c
eff) =

(6.97, 0.20), a value fully determined by the dynamics, independent
of the network topology.

By mapping the results of all realizations of Fig. 4 into the Fig. 5, all
points collapse into a single universal curve in the two-dimensional
state space βeff − xeff, no matter the specific network topology, per-
turbation and realizations have been chosen. This result shows the
universality of the resilience patterns in the one dimensional reduced
space, indicating that the mean field approximation works well in this
case.

2.4 conclusion

In summary, the resilience patterns of the multi-dimensional system
dynamics given by Eq. (5) are diverse and unpredictable because of
the inherently high-dimensional of the parameter space. By mapping
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the system into a two-dimensional βeff − xeff coordinate space, the
hidden resilience universal pattern is unveiled, independently on the
specific network, type of perturbation and realization. This frame-
work, at least for a given class of multi-dimensional system dynamics
equations and type of interactions, accurately predicts the system’s re-
sponse to diverse perturbations, correctly identifies the critical points
where the system loses its resilience. It further offers potential strate-
gies to avoid the loss of resilience and design principles for optimal
resilient systems that can successfully cope with perturbations. In the
next chapter we will further investigate the limits and conditions for
this theoretical framework to hold.
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Figure 4: Resilience of mutualistic networks. Each sub-figure shows the per-
turbation rate vs. average abundance 〈x〉 of species in a mutualistic
network following a perturbation across 100 realizations.
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Figure 5: Collapse of all different realizations of the perturbed dynam-
ics shown in Fig. 4 onto the universal resilience function in the
βeff − xeff two-dimensional space. Different colors of the points
represent the different realizations of node perturbations (circles),
link perturbations (squares) and global perturbations (diamonds).
The black curve is the universal resilience function given by the
mean field approximation and the bifurcation is predicted at
βceff = 6.97, independent of Aij.
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3
R E S I L I E N C E O F G E N E R A L I Z E D L O T K A - V O LT E R R A
D Y N A M I C S A N D B E Y O N D

Those who have knowledge, don’t predict. Those who predict, don’t have
knowledge.

— Lao Tzu (? - 531 BC)

3.1 motivation

In the previous chapter, we have presented the main results of the
seminal work of Gao and collaborators [11], showing the potential
hidden universality of resilience patterns for multi-dimensional sys-
tems driven by differential equations with pair-wise interactions. As
detailed in Appendix A, the main conditions claimed by Gao and
collaborators to be at the heart of this framework are:

(i) The network determined by the interaction between pairs of
nodes has negligible degree correlations;

(ii) The node activities are uniform across nodes on both the drift
and pair-wise interaction functions;

(iii) The weights of the interaction network are all positive.

Moreover, they assume that their results hold for any particular
equations within the class of differential equations described by Eq.
(5).

In this chapter, we consider whether these conditions are suffi-
cient and/or necessary to guarantee that the framework works, and
whether the results are independent of the model chosen. Specially,
we provide - using a random matrix approach - quantitative predic-
tions of the quality of the one-dimensional collapse as a function of
the properties of interaction network and considering only stable dy-
namics.

The main result of this chapter are:

• We find a new condition on the network interactions that poses
effective limitation to the framework.

• We show that the multi-dimensional reduction also works for
interaction matrix with a mixture of positive and negative signs

• We find that only a subset of dynamics of the class given by Eq.
(5) are actually valid in order to have an accurate mean-field
approximation.
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We prove analytically our results for generalized Lotka-Volterra
and test them by numerical simulations also for more general dy-
namics.

3.2 generalized lotka-volterra dynamics

The generalized Lotka-Volterra (GLV) dynamics are a set of first-order,
nonlinear, differential equations frequently used to describe ecologic
systems in which many species interact. Species interaction network
can be used to model competition, predator-prey and mutualistic re-
lationships between an arbitrary number of species and the species
population dynamics for species i is given by

ẋi = αixi + xi

S∑
j=1

Aijxj, (13)

where S is the number of species in the community, xi is the popula-
tions of species i, αi is the intrinsic growth rate of the species i and
Aij is the relationships between species i and j.

The interactions in the ecological network may have positive impact
(+), negative impact (-) or neutral impact (0) on the population of the
tracked species. The possible combinations outcomes for pair-wise
interactions allow the classification of various interaction types, as
described by Fig. 6.

1. Mutualism (++). For example, two species exchange metabolic
products to the benefit of both.

2. Parasitism/Predation (+-). For example, wolfs prey rabbits.

3. Amensalism (-0). For example, metabolic by-products of a mi-
crobial species alter the environment to the detriment of other
microorganisms.

4. Commensalism (+0). For example, commensals cross-feed on
compounds that are produced by other community members.

5. Competition (–). For example, two bacteria competing for the
same resource.

The effective interactions (type and strength) between species are
emergent quantities that arise from the multiple interactions among
the species. If αi is positive, then species i is able to reproduce in the
absence of any other species (for example, a plant); If αi is negative,
then its population will decline unless the appropriate other species
are present (for example, a herbivore that cannot survive without
plants to eat, or a predator that cannot persist without its prey). If
both Aij and Aji are negative, then the two species are in competition,
since they each have a direct negative effect on the other’s population.
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If Aij is positive but Aji is negative, then species i is a predator and
species j is prey, since the population of i grows at the expense of j.
If both Aij and Aji are positive, then the two species are mutualism,
since there is a relationship in which each species benefits from the
activity of another one. The vectorized form of Eq. (13) is obviously
ẋ = x ◦ (α+ A · x).

Figure 6: [Extract from [78]] Summary of ecological pair-wise interactions
types between two species. For each interaction partner, there are
three possible outcomes: positive (+), negative (-) and neutral (0)
impact.

The Generalized Lotka-Volterra dynamics may include limit cycles,
chaos and attractors and can be analyzed analytically to some extent.
Its fixed points can be found by setting ẋi = 0 for all i, which gives
x∗ = −A−1 ·α or x = 0.

In order to better understand the conditions of the collapse pre-
sented by the above chapter, a simplified GLV dynamics where both
conditions (i) and (ii) are satisfied is adopted. By considering F(x) =
αx and G(x,y) = xy, the condition (ii) is valid by definition. In this
case, the generalized Lotka-Volterra dynamics is defined by:

ẋi = αxi + xi

S∑
j=1

Aijxj, (14)

where α is the same for all species. On the other hand, condition (i)

is always satisfied if A is a random matrix (see section 3.4).
The analytical solution for the stationary state of the above GLV

dynamics is x∗ = −A−1 ·α. Therefore, xeff =
∑
ijAijxj∑
ijAij

and βeff =∑
ijkAikAkj∑
ijAij

could be calculated analytically as a function of proper-
ties of the weighted adjacency matrix A (see Eqs. (18) and (19) in
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section 3.4). Moreover, this solution is globally stable if the positive
orthant if A is positive definite [79, 25]. Finally, the corresponding one-
dimensional analytical effective equation for GLV dynamics reads as
dx
dt = αx+βx2, whose feasible (x(β) > 0) and stationary solution is:

x(β) = −α/β, (15)

with α/β < 0. For values of α/β > 0, the solution exists, but is not
meaningful.

3.3 error as distance from the mean point (xeff , βeff )

In order to measure the vertical distance from the point (xeff,βeff)
obtained from Eq. (5) and the stationary solution of the one-dimensional
resilience function x(β) (see section 3.4), we define the following func-
tion allowing us to estimate the error of the proposed approximation
(see Figure 7):

errx =

∣∣∣∣xeff − x(βeff)xeff

∣∣∣∣ (16)

Similarly, to measure the horizontal distance from this point to the
same resilience curve, we also define the horizontal error (see Figure
7):

errβ =

∣∣∣∣βeff −β(xeff)βeff

∣∣∣∣ . (17)

For GLV dynamics shown above section, the one-dimensional resilience
function are x(βeff) = α

βeff
and β(xeff) = α

xeff
, respectively. There-

fore, errx = errβ =
∣∣∣1+ α

xeffβeff

∣∣∣.
3.4 random matrix approach

In this section, we provide the analytical expression of xeff and βeff
when the interaction network A is a random matrix with given differ-
ent properties.

3.4.1 Off-diagonal drawn from a bivariate distribution

In the most general case we consider a matrix A, where all pairs
of off-diagonal elements - (Aij and Aji) - are drawn from a bivari-
ate distribution with mean µ, standard deviation σ and correlation
coefficient ρ and the diagonal elements Aii = −di are kept fixed.
The distribution from which the elements are drawn is not important,
as only mean, variance and correlations are the relevant parameters
[23, 25]. Under this setting one can generate both directed and undi-
rected networks, being able to tune also the interaction properties
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Figure 7: Quantifying the goodness of the one-dimensional system reduc-
tion. The red point (βeff, xeff) calculated by Eqs. (6) and (7).
The blue curve is the analytical stationary solution of the one-
dimensional effective function (8). The vertical and horizontal dis-
tances (errx, errβ) between the points and the curve represent the
error of the analytical approximation.

[80]. The following approximate equations would strictly hold only
in the very large S: µ = 1

S(S−1)

∑
i 6=jAij, σ

2 = 1
S(S−1)

∑
i 6=jA

2
ij − µ

2

and ρσ2 = 1
S(S−1)

∑
i 6=jAijAji − µ

2 where S is the matrix size. Then
one could get the following approximate equations:∑

ij

Aij =
∑
i

Aii +
∑
i 6=j

Aij =
∑
i

di + S(S− 1)µ

∑
ijk

AikAkj

=
∑
k

(
∑
i 6=j

AikAkj +
∑
i

AikAki)

=
∑
k

∑
i 6=j

AikAkj +
∑
ki

AikAki

= 2
∑
i 6=j

AiiAij +
∑

i 6=j,j6=k,k6=i
AikAkj +

∑
i

(Aii)
2 +

∑
i 6=k

AikAki

= 2(
∑
i

−di)(S− 1)µ+ S(S− 1)(S− 2)µ
2 +

∑
i

(−di)
2 + S(S− 1)ρσ2 + S(S− 1)µ2

=
∑
i

(−di)
2 + (S− 1)

[
2µ

∑
i

(−di) + S(S− 1)µ
2 + Sρσ2

]
For GLV dynamics the analytical solution for the equilibrium state

is x∗ = −A−1 ·α, where α is a vector whose components are all equal
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to the constant α, so
∑
ijAijxj = −Sα. According to the definition

xeff =
∑
ijAijxj∑
ijAij

and βeff =
∑
ijkAikAkj∑
ijAij

, the following approximations
for xeff and βeff are obtained:

xeff =
−Sα∑

i(−di) + S(S− 1)µ
(18)

βeff =

∑
i(−di)

2 + (S− 1)
[
2µ

∑
i(−di) + S(S− 1)µ

2 + Sρσ2
]∑

i(−di) + S(S− 1)µ
(19)

3.4.2 Off-diagonal drawn from a bivariate distribution and diagonal ele-
ments set to a constant

If the diagonal elements of A are all the same constant (Aii = −d

does not depend on i), then Eqs. (18) and (19) become:

xeff =
−α

(−d) + (S− 1)µ
(20)

βeff =
(−d)2 + (S− 1)

[
2µ(−d) + (S− 1)µ2 + ρσ2

]
(−d) + (S− 1)µ

(21)

3.4.3 Off-diagonal drawn from a bivariate distribution and diagonal ele-
ments drawn from a univariate distribution

If instead the diagonal elements Aii = −di are i.i.d. random variables
with given distribution of mean µd and standard deviation σd, then
Eqs. (18) and (19) become:

xeff =
−Sα

Sµd + S(S− 1)µ
=

−α

µd + (S− 1)µ
(22)

βeff =
S
[
(µd)

2 + (σd)
2
]
+ (S− 1)

[
2µSµd + S(S− 1)µ

2 + Sρσ2
]

Sµd + S(S− 1)µ

=
(µd)

2 + (σd)
2 + (S− 1)

[
2µµd + (S− 1)µ2 + ρσ2

]
µd + (S− 1)µ

(23)

3.4.4 All matrix elements drawn from the same univariate distribution

Finally, if µ = µd and σ = σd, then xeff = −α
Sµ and βeff =

µ2+σ2+(S−1)[(S+1)µ2+ρσ2]
Sµ .

Now the random matrix is generated by i.i.d. random variable (Aij =
p(µ,σ)) and therefore ρ ≈ 0. At large S, the following solutions are
obtained:

xeff =
−α

Sµ
(24)

βeff ≈
S2µ2 + σ2

Sµ
(25)
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3.4.5 Connectivity

In the previous analysis, we have set the connectivity (the fraction
of non-zero elements) always to one, i.e. C = 1. Generalizing the
results to not fully connected networks is straightforward. If the mean
and standard deviation of the non-zero elements are µdist and σdist
respectively, then the global mean and standard deviation become

µ = Cµdist and σ =
√
Cσ2dist +C(1−C)µ

2
dist. Substituting the new

µ and σ to Eqs. (24) and (25), the new xeff and βeff read:

xeff =
−α

SCµdist
(26)

βeff ≈
(
C
(
S2 − 1

)
+ 1
)
µ2dist + σ

2
dist

Sµdist
(27)

3.4.6 Stability criteria for random matrices

When dealing with ecological dynamics, we would like to deal with
stable fixed points. Therefore, before any perturbations of the system
we want to set some bound on the networks parameters so to assure
stable and feasible stationary solutions x∗. To do that we can use a
random matrix approach. As shown in [25], a feasible fixed point x∗

of the GLV dynamics (i.e. one with all entries x∗i > 0) is globally
stable if the symmetric interaction matrix A + AT is negative definite.
A sufficient condition for this negative definiteness in case of random
matrices used in this study is derived in [81]: It can be achieved by
setting the diagonal elements to a constant value Aij = −d, where d
has to be larger than some critical value dc. In terms of the mean µ,
standard deviation σ and correlation coefficient ρ, this critical value
is found to be

dc =

(S− 1)µ if µ > 0

σ
√
2S(1+ ρ) − µ if µ 6 0

(28)

3.5 error of the 1-dimensional reduction of the multi-
dimensional glv dynamics

Now we have all elements to quantify the error of the mean field
approximation for the analyzed GLV dynamics.

3.5.1 Error of βeff for any GLV dynamics

For GLV dynamics, if the random matrix A is generated by i.i.d. ran-
dom variable (Aij = p(µ,σ)), then xeff = −α

Sµ and βeff ≈ S2µ2+σ2

Sµ
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(see Eqs. (24) and (25) in section 3.4.4). According to the definitions
of error as distance from the mean point of the numeric realizations
(βeff, xeff), Eqs. (16) and (17) in section 3.3, the errors of the frame-
work with respect to the actual quantities measured directly from the
network could be predicted quantitatively and given by

errx = errβ =
σ2

S2µ2 + σ2
. (29)

Therefore, if the following new condition holds

S >>
σ

|µ|
(30)

the collapse will work (i.e. errx = errβ ≈ 0); Otherwise, the collapse
will fail.

Notice that all above conditions hold on average. Fluctuations with
respect to the average depends both on connectivity C and size S (see
section 3.4.5).

According to Eqs. (29) and (30), the approximation does not work
for any positive interaction matrix A! On one hand, the new condition,
Eq. (30), extends the validity of previous framework for matrix A
with an asymmetric mixture of positive and negative interactions, as
far as the mean µ is not close to zero. The stringent condition on
the positive of the interactions is not necessary. On the other hand,
if σ is very large with respect to µ and S is not large enough, then
the collapse will fail. For example, if interactions strengths are very
heterogeneous (e.g. power law distributed), although the interaction
is positive (mutualism), the system resilience can not be described by
the one-dimensional analytical resilience function.

3.5.2 Error of βeff for stable GLV dynamics

We have already seen that depending on the parametrization of the
adjacency matrix A, Eq. (14) may not have any stable stationary solu-
tions. However, the original work of Gao and collaborators [11] and
the above discussion do not consider the existence of a reachable sta-
ble point in the multi-dimensional dynamics. Especially for GLV dy-
namics, the feasibility and stability of Eq. (15) does not imply that the
corresponding solution of the full system given by Eq. (14) is feasi-
ble and stable. The mean field approximation in this case is not well
defined, as xeff can not be actually reached by the corresponding
true multidimensional dynamics. Therefore, in order to have a mean-
ingful one-dimensional reduction, the framework should restrict only
to matrix A that assure stability and feasibility of the complete GLV
dynamics .

If the off-diagonal elements of A are given by a distribution with
mean µ, standard deviation σ and correlation coefficient ρ and the di-
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agonal elements are all fixed to a constant (Aii = −d), then the effec-
tive one dimensional reduction that corresponds to feasible and stable
solution of Eq. (14): xeff = −α

(−d)+(S−1)µ and βeff =
(−d)2+(S−1)[2µ(−d)+(S−1)µ2+ρσ2]

(−d)+(S−1)µ

(see section 3.4.2). For µ > 0, by substituting the case of µ > 0 in Eq.
(28) (see section 3.4.6) into Eqs. (20) and (21), the new formulas are

xeff =
−α

2µ(S−1) and βeff =
µ2(S−1)2+(S−1)[3µ2(S−1)+ρσ2]

2µ(S−1) . Finally, by
substituting these new formulas of xeff and βeff into Eqs. (16) and
(17), the following quantitative estimation of the error could be ob-
tained: errx = errβ =

∣∣∣ ρσ2

4(S−1)µ2+ρσ2

∣∣∣. Therefore, if condition S >>

|ρ|
4

(
σ
µ

)2
holds, then the stationary solution of the GLV dynamics is

feasible and stable and the collapse will work (i.e. errx = errβ ≈ 0).
Similarly, for µ 6 0, by substituting the case of µ < 0 in Eq. (28), the fi-

nal formula is errx = errβ =

∣∣∣∣ ρσ2(S−1)

µ2(S−2)2+2
√
2µσ(S−2)

√
(ρ+1)S+σ2((3ρ+2)S−ρ)

∣∣∣∣.
The corresponding analytical condition for the success of the approx-

imation is S >> |ρ|
(
σ
µ

)2
. Summarizing the above discussions, the

resilience function of the high-dimensional system is well approxi-
mated by the one-dimensional resilience function if following condi-
tion holds

S >> |ρ|

(
σ

µ

)2
(31)

Eq. (31) highlights that the conditions shown in section 3.1 are nei-
ther sufficient nor necessary to guarantee that their method works in
general. Indeed, although condition (i) and (ii) are satisfied by the
considered GLV dynamics, the new condition poses effective limita-
tions and extensions to the collapse. The quality of the one-dimensional
approximation depends on the properties (µ, σ and ρ) of the interac-
tion matrix A, and may hold also for not strictly mutualistic interac-
tions.

Figure 8 shows that the collapse may work for: (A) Random inter-
action networks, where all off-diagonal elements are, with probability
C, drawn from a distribution with mean µ = 0 and a given standard
deviation σ; (B) Mutualistic case, where all off-diagonal elements are,
with probability C, drawn from a distribution with positive support
as well as (C) Competitive case, where all off-diagonal elements are neg-
ative or zero. As long as Eq. (31) is satisfied, the approximation works.
For small network size the collapse may fail and as the size increases
the collapse improves. As expected when µ = 0, independently of the
structure of the interaction matrix A (Random or Predator-Prey), the
collapse fails. Another interesting point evident from Eq. (31) is that
for ρ = 0 and µ 6= 0, the collapse works independently of the size of
A (see figure 8 D).
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Figure 8: Collapse of the S-dimensional system equations restricted to sta-
ble GLV dynamics. Random networks of different sizes 100 (Red),
200 (Green), 400 (Blue) generated by: (A) Mutualistic case. Aij are
drawn from a Lognormal distribution with mean µ = 1, standard
deviation σ = 2.5 and correlation coefficient ρ = 0.1; (B) Com-
petitive case. −Aij are drawn from a Lognormal distribution with
mean µ = 1, standard deviation σ = 2.5 and correlation coefficient
ρ = 0.1; (C) Random case. Random networks generated from nor-
mal distribution with mean µ = 0.5, standard deviation σ = 1 and
correlation coefficient ρ = 0.5. (D) Random networks of different
size 50 (Red), 75 (Green), 100 (Blue) generated by normal distri-
bution with mean µ = 0.5, standard deviation σ = 1 and with
correlation coefficient ρ = 0.

3.6 beyond glv dynamics

Generalizing previous discussions, especially Eqs. (16) and (17), our
results could extend to any model within the class of dynamics con-
sidered by Eq. (5). In the most general setting, the stationary solution
of Eq. (8) is β(x) = −

F(x)
G(x,x) . Therefore, the following equation holds:

errβ =

∣∣∣∣1+ F(xeff)

βeffG(xeff, xeff)

∣∣∣∣ (32)

For GLV dynamics the key quantity in determining the feasibility
of the one-dimensional reduction is a simple function of the product
between ρ and σ/µ compared to the system size S. It is possible that
this quantity is also crucial in determining the quality of the collapse
also for different type of dynamics. If the random matrix A is gener-
ated by i.i.d. random variables (Aij = p(µ,σ)) and the new condition
given by Eq. (30) holds, then βeff ≈ S2µ2+σ2

Sµ ≈ Sµ does not depend
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on the specific dynamics. Therefore, the following equation could be
obtained:

errβ =

∣∣∣∣1+ F(xeff)

SµG(xeff, xeff)

∣∣∣∣ . (33)

It is clear that Eq. (33) goes to zero depends on the functions F(xeff)
andG(xeff, xeff). In other words, the results presented by the original
framework hold only for particular choices of F(xi) and G(xi, xj), i.e.
those for which F(xeff)

SµG(xeff,xeff)
≈ −1. In brief, for general dynamics, if

the new condition Eq. (30) does not hold, the collapse will fail (e.g.
GLV dynamics); if it holds and F(xeff)

SµG(xeff,xeff)
≈ −1, the collapse will

work.
Figure 9 shows the above results by using the dynamics for eco-

logical community given by Eq. 5 in [11], where B = 0.1,C = 1,K =

5,D = 5,E = 0.9,H = 0.1. On one hand, the collapse may also work
for both positive-negative interactions Aij if S is large enough, exhib-
ited in figure 9 A. On the other hand, Figure 9 B confirms that the
conditions shown in section 3.1 are not sufficient to guarantee the
validity of the one-dimensional approximation for dynamics beyond
GLV. If the standard deviation matrix A is very large, the collapse
fails also for the specific dynamics.
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Figure 9: Collapse of the S-dimensional system equations for the non-linear
dynamics given by Eq. 5 in [11]. Random networks of different
sizes 50 (Red), 100 (Green), 200 (Blue) generated by: (A) Random
case. Each element of A is drawn from a Normal distribution
p(Aij) ∼ N(0.2, 1). As the size of A increases, the collapse im-
proves. (B) Mutualistic case. The elements of A are drawn from a
Lognormal distribution with mean µ = 0.096 and standard devia-
tion σ = 4.253. When the heterogeneity in the interaction strength
is very high (σ� µ), the collapse fails.

3.7 error as the mean distance of many realizations of

the random species interaction matrix

We can define the error in a more natural way, by considering the
mean distance between the mean field approximation and the out-
come of different realization of the random species interaction ma-
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trix. For each realization of the random matrix, there are two errors
(see Figure 7) measuring the vertical and horizontal distance from the
point (βeff, xeff) and the stationary solution of the one-dimensional
resilience function x(β). For the GLV dynamics, both errors become

err =
xeff − x(βeff)

xeff
=
βeff −β(xeff)

βeff
= 1+

α

xeffβeff
= 1−

n

d
(34)

where n =
∑
ijklAijAkl, d = S ·∑ijkAijAjk and the Aij are the

entries of the interaction matrix A.
By taking A to be a random matrix, the error itself becomes a ran-

dom variable whose probability distribution is inherited from the dis-
tribution of the random matrix. Under the assumption that the means
of numerator n and denominator d can be taken independently of
each other, the mean and variance could be calculated analytically
and are given by:

〈err〉 =
〈
1−

n

d

〉
≈ 1− 〈n〉〈d〉 (35)

Var(err) =

〈(
d 〈n〉−n 〈d〉

d 〈d〉

)2〉
≈
〈
d2
〉
〈n〉2 − 2 〈nd〉 〈n〉 〈d〉+

〈
n2
〉
〈d〉2

〈d2〉 〈d〉2

(36)

The above Eq. (35) and (36) include five terms to calculate

〈d〉 = S ·
〈∑
ija

AiaAaj

〉
; (37)

〈n〉 =
〈∑
ijkl

AijAkl

〉
; (38)

〈
d2
〉
= S2 ·

〈 ∑
ijklab

AiaAajAkbAbj

〉
; (39)

〈n · d〉 = S ·
〈 ∑
ijklmna

AijAklAmaAan

〉
; (40)

〈
n2
〉
=

〈 ∑
ijklmnop

AijAklAmnAop

〉
(41)

where all indices are iterated over {1, 2, ...,S}.
In full generality, we assume that all pairs of off-diagonal elements

(Aij and Aji) are drawn from a bivariate distribution with mean µ,
standard deviation σ and correlation coefficient ρ. The diagonal ele-
ments are either drawn from a univariate distribution following the
same statistics as the off-diagonal elements or kept fixed and con-
stant by setting Aii = −di. The analytical derivation is complicated
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and tedious. Even in the simplest version of random matrix A, the
entries Aij are all i.i.d., the pairs A2ij need to be separate out, because
they will lead to contributions other than µ2 where µ =

〈
Aij
〉

(and
similarly for higher order tuples). In order to do so, we devised an
algorithm to solve it.

3.7.1 Results

The analytical formula of mean and variance of the error for different
cases of interaction matrices A at the highest order in the network
size S are listed in table 1.

Case 〈err〉 Var(err)

Aij i.i.d. 0 (exact) σ4

S3µ4

Correlation (ρ = 0):

ρ = corr(Aij,Aji) ∈ [−1, 1] ρσ2

Sµ2
σ4

S3µ4

(
2µ

2

σ2
ρ+ (ρ− 1)2

)
Constant diagonal:

Aii = −d of order 1 or
√
S

σ2((S−2)ρ−1)
S2µ2

σ4

S3µ4

(
2µ

2

σ2
ρ+ (ρ− 1)2

)
for ρ = 0 - σ

2

S2µ2
σ4

S3µ4

for ρ 6= 0 and S� 1 σ2ρ
Sµ2

σ4

S3µ4

(
2µ

2

σ2
ρ+ (ρ− 1)2

)
Aii = −d of order S σ2((S−2)ρ−1)

S2µ2( ddc−1)
2

σ4

S3µ4( ddc−1)
4

(
2µ

2

σ2
ρ+ (ρ− 1)2

)
for ρ = 0 and S� 1 - σ2

S2µ2( ddc−1)
2

σ4

S3µ4( ddc−1)
4

for ρ 6= 0 and S� 1 σ2ρ

Sµ2( ddc−1)
2

σ4

S3µ4( ddc−1)
4

(
2µ

2

σ2
ρ+ (ρ− 1)2

)
Table 1: Analytical formulas approximating to highest order in S

The results in Table 1 can be summarized as follow: :

• In all cases, the error (or its fluctuations) grows without bound
if the ratio µ

σ goes to zero for a given network size S.

• The order of the fluctuations (namely S−
3
2 ) remains the same

for all cases, while the order of the mean changes. In particular,
for interaction matrices A without correlation (ρ = 0), the term
dominating the error for large S are the fluctuations while the
mean value is either zero (for i.i.d. entries Aij) or of order S−2

(in case of a constant diagonal). On the other hand, for networks
with non-zero correlation, the mean becomes the dominating
term of order S−1.

• If the diagonal is of the same scale as S, the error may explode.
This happens if Aii = −dc, where dc = (S− 1)µ corresponds to
the value of d where the interaction matrix becomes stable and
non-reactive for positive µ.
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Similar as the results of the first definition, the collapse does not
work for any positive interaction matrix A. On one hand, the new
condition extends the validity for matrix A with an asymmetric mix-
ture of positive and negative interactions, as far as the mean µ is not
close to zero. On the other hand, if the standard deviation of matrix
A is very large with respect to the mean µ and the size S is not large
enough, then the collapse will fail.

In order to test these analytical results, the interaction matrix with
the corresponding statistics numerically are sampled and compared
to the empirical mean and standard deviation with the theoretical
predictions. The results can be observed in figure 10. In all cases, the
theoretical predictions are met very well. There is a notable but small
deviation for small network size S = 20, namely slight underestima-
tion of the mean for the case of correlation, for example plot B of
figure 10.
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Figure 10: Comparison of theoretical results with numerical samples. Each
red dot corresponds to the error calculated for one interaction
matrix. For each case, 500 matrices are sampled independently
and calculated empirical means µerr and standard deviations
σerr (plotted as black dots and bars, respectively). The theoretical
mean 〈err〉 is plotted as an orange line, the shaded area indicates
the predicted standard deviation std(err). For all figures, the en-
tries of A are drawn from a normal distribution with µ = σ = 1.
The upper plots show the effect network size on the error in the
case of (A) all elements drawn i.i.d. or (B) with positive correla-
tion ρ = 0.3. The lower plots show the error for networks of size
S = 50 for (C) varying correlation ρ or (D) enforcing a constant
diagonal Aii relative to the critical value dc.

Similar as section 3.5.2, by combining the formulas of this new def-
inition with the D-stability, the analysis could still be restricted only
to the random matrix A that assure stability and feasiblity of the com-
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plete GLV dynamics. According to Eq. (28), for µ 6 0, the critical
value to have stable GLV dynamics is dc = σ

√
2S(1+ ρ) − µ (that is

d of order
√
S - rows 5-7 in table 1). For µ > 0, stable GLV dynamics

are assured if dc = (S− 1)µ, that is d of order S (rows 8-10 in Table
1). Note that for the case of a constant diagonal close to the critical
value, shown in Figure 10 (D), the theoretical value is not expected to
give a good approximation to the empirical average, since in this case,
the expected value of the denominator 〈d〉 becomes zero. In this case,
the approximation of taking numerator and denominator separately
is not justified. Furthermore, sampling becomes difficult, as outliers
may govern the empirical mean and standard deviation.

3.8 conclusions

In this chapter, we have studied under which condition a large dy-
namical system can be effectively approximated with one-dimensional
equation. We have adopted two different definitions to quantify the
error. The order parameter that appears as a variable in the effective
equation can be obtained from a simple expression of the local vari-
ables using an approach based on random matrix. Under this approx-
imation, it becomes clear which properties of the interactions deter-
mine the state of the system and it turns out to be possible to quantify
their effects.

We have then explored which properties of the interactions deter-
mine the accuracy of the approximation. In general, the form of the
multi-dimensional equations and how the non-linearities in the dy-
namics are introduced, will influence the opportunity to approximate
the original set of equations with the corresponding one-dimensional
mean field equation. In order to focus on the effect of the interac-
tions, we therefore first have considered a simple idealized scenario,
the generalized Lotka-Volterra equations, where the interactions are
linear. In this context, the accuracy of the approximation is only de-
termined by the interaction matrix.

The criterion we have obtained relates the variability of the interac-
tions between the agents/nodes and its number. In particular, for the
approximation to work, the size of the system has to be larger than
a critical value proportional to the coefficient of variation of the inter-
action strengths. Additionally, the reciprocity of interactions plays an
important role: the approximation is expected to work for any inter-
action strengths if there is not any correlation in the activity between
each pair of nodes in the network. As the correlation between recip-
rocal interactions is increased, the larger the size of the system must
be, so to guarantee the accuracy of the approximation.

Finally, we have shown that the approximation works also for in-
teraction matrices with a mixture of positive and negative signs and
that it can be extended to more complicated and non-linear dynamics.
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These results open up possible applications of the mean-field frame-
work to food-webs, neuronal networks and social/economic interac-
tions.
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Part II

C O O P E R AT I O N P R O M O T E S B I O D I V E R S I T Y
A N D S TA B I L I T Y

On the basis of biological, sociological, and historical
knowledge, we should recognize that the individual self is
subject to death or decay, but the sum total of individual

achievement, for better or worse, lives on in the immortality of
The Larger.

— Hu Shih (1891 - 1962)





4
N E U T R A L T H E O RY A N D B E Y O N D

He who learns but does not think, is lost. He who thinks but does not learn
is in great danger.

— Confucius (551 BC - 479 BC)

4.1 background

Research in population dynamics has a long history dating back to al-
most one thousand year ago with Fibonacci modeling of rabbits pop-
ulation. Nevertheless, there are still several open issues of paramount
importance in the research of ecological population dynamics [82, 83,
84, 85, 86, 87] and the current loss of earth biodiversity [88, 89] makes
this research field of great relevance today more than ever. Many fun-
damental and long-standing questions in biology concerning ecosys-
tem dynamics are, for example, how does simplicity result from ap-
parently complex interactions? How does diversity emerge and what
is the role of cooperation? How are these features maintained through
robust mechanisms? When several species co-occur in a community
there can be a rich set of relationships among them that can be repre-
sented as a complex interaction network. Historically, the first mod-
els defining the dynamics of interacting ecological species were those
of Lotka [90] and Volterra [91], which describe asymmetrical inter-
actions between predator-prey or resource-consumers systems. The
Lotka and Volterra (LV) equations have provided much theoretical
guidance [92, 93, 94] and translated in mathematical terms the mod-
elling of population dynamics based on a “niche” point of view.

Niche theories put the emphasis on phenotypic differences and
state that formation of coexisting species is only possible through
diversification for exploitation of the resources, minimizing competi-
tion among individuals, and postulates that the number of coexisting
species is equal to the number of niches or ways to exploit the re-
sources of the environment (this is what has been called the niche
dimension hypothesis [95, 96, 97, 98]).

While prey-predator and competitive interactions have been ex-
tensively studied, mutualistic/commensalistic interactions, which are
beneficial to the involved species - see Fig. 6 - have historically re-
ceived less attention. Nevertheless, in recent years, there have been
several studies showing the crucial role of cooperation in ecosystems
[7, 67, 69, 99, 70]. Therefore the question is how mutualistic interac-
tions affect and or change the niche dimension hypothesis.
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Indeed, one of the fundamental problems in theoretical ecology is
the search for key mechanisms leading to the emergence and coex-
istence of biodiversity [70, 100, 101, 7]; a deep understanding of the
underlying dynamics becomes essential for the maintenance and con-
servation of natural ecosystems. In most of the cases, experiments in
vivo are not always possible, and the only reliable procedure is the
use of mathematical descriptions combined with experimental data.

The current approach study to mutualistic/commensalistic popula-
tion dynamics is the same one as in the LV models, but with beneficial
interactions among individuals of different species [83, 102, 47]. The
limitations of these approaches were identified as more research was
carried out. Indeed, a generalization of the May stability-complexity
theorem [47, 45] has revealed that mutualism and cooperation in LV
models are more detrimental to stability than predator-prey interac-
tions as the product SC increases [23, 24, 7, 49], where S is the number
of species and C, the connectivity, is the fraction of non-zero pairwise
interactions between species.

4.2 the complexity-stability paradox : a random matrix

perspective

In the last years, many works [23, 24, 80, 103, 104, 105] have inves-
tigated the relationship between stability and the role of different
interaction types by using analytical results based on Random Matrix
Theory (RMT).

4.2.1 May’s complexity-stability paradox

Forty years ago, May [32, 47] showed that a sufficiently large ecolog-
ical network resting at a feasible equilibrium point would invariably
be unstable: arbitrarily small perturbations of the population densi-
ties would drive the system away from equilibrium. Assuming that
the ecological community composed of S populations is a continuous-
time dynamical system, the following ordinary differential equations
hold

dXi(t)

dt
= fi(X(t)), i = 1, ...,S (42)

where Xi(t) represents the density of population i at time t, the vec-
tor X(t) is the population densities and fi is a function relating the
growth rate of population i to the density of the S populations. The
system is at an equilibrium point X∗ whenever

dXi(t)

dt
|X∗ = fi(X∗) = 0 (43)

The equilibrium is said to be locally stable if all infinitesimal perturba-
tions die out eventually and its analysis is carried out by linearization
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of the system at the equilibrium point. By substituting the densities
of the populations X(t) into its Jacobian matrix Jij(X) =

∂fiX(t)
∂Xj

, its
community-matrix M is given by:

Mij = Jij|X∗ =
∂fiX(t)
∂Xj

|X∗ (44)

Each equilibrium corresponds to a community matrix and its coeffi-
cient Mij measures the effect of a slight increase in the population j
on the growth rate of population i. If all eigenvalues have negative
real parts, then the equilibrium is stable. May’s insight [106, 47] was
to skip the Jacobian matrix altogether, to consider directly the com-
munity matrix, modeled as a large random matrix, and to attempt
estimating the real part of the “rightmost” eigenvalue based on the
characteristics of the random matrix.

4.2.2 Random matrix perspective

Allseina et al. [23] extend May’s results to real spices interactions, for
example predator-prey, mutualistic or competitive, and find remark-
able differences between predator-prey interactions, which are stabi-
lizing, and mutualistic and competitive interactions, which are desta-
bilizing. For a random matrix M whose entries are independently
sampled from a statistical distribution, the following five quantities
are essential for determining the largest real part of its eigenvalues
[23, 81]:

1. the dimension of M, S, describing the number of species in the
network

2. the expectation of the off-diagonal entries, E =
〈
(Mij)i 6=j

〉
, de-

scribing the inter-specific interaction strengths

3. the expectation of the diagonal entries, −d = 〈Mii〉, describing
the intra-specific interaction strengths

4. the variance of the off-diagonal entries, V = Var(Mij)i 6=j > 0

5. the pairwise interaction correlation, ρ =
〈MijMji〉i 6=j−E2

V

Allseina et al. [23] showed that there is always one eigenvalue of M
(denoted by λM

R ) whose real part is close to the expected row sum of
M:

R(λM
R ) ≈ (S− 1)E− d (45)

When S is sufficiently large, the other (S− 1) eigenvalues of M are
approximately uniformly distributed on an ellipse centered at (−E−
d, 0), whose horizontal and vertical axes are about 2

√
SV(1+ ρ) and

2
√
SV(1− ρ), respectively. Therefore, the right most one of these (S−
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1) eigenvalues (denoted by R(λM
EL)) can be estimated using the “cen-

ter” plus the semi-length of the horizontal axis:

R(λM
EL) ≈ −E− d+

√
SV(1+ ρ) (46)

Finally, the stability criteria [81] is

• E > 0, (S− 1)E < d

• E 6 0,
√
SV(1+ ρ) − E < d

Allseina et al. [23] applied the above criteria to separate the contri-
bution of network structure and interaction strengths to stability as
well as found

1. The probability of stability for predator-prey networks decreases
when a realistic food web structure is imposed or if there is a
large preponderance of weak interactions.

2. Stability is negatively affected by nestedness in bipartite mutu-
alistic networks.

3. Stable predator-prey networks can be arbitrarily large and com-
plex, provided that predator-prey pairs are tightly coupled.

4.3 neutral theory of biodiversity and beyond

From a theoretical point of view, an alternative approach to niche-
based multi-species deterministic modeling is the Neutral Theory
(NT) of Biodiversity [82, 107, 108, 109, 110, 111, 84, 112]. The NT is
an ecological theory within which organisms of a community have
identical per-capita probabilities of giving birth, dying, migrating,
and speciating, regardless of the species they belong to. In this sense
the model is symmetric and it aims to model only species on the
same trophic level-species therefore competing for the same pool of
resources. For instance, plants and trees in a forest compete for re-
sources like carbon, nitrate and light.

Hubbell [82] generalized this neutral theory to explore the expected
steady-state distribution of relative species abundance (RSA) in the
local community under restricted immigration. Volkov et al. [108]
presented a theoretical framework for the unified neutral theory of
biodiversity and an analytical solution for the distribution of the RSA
both in the metacommunity and in the local community. Assuming
that

• bn,k represents the probability of birth in the k-th species with
n individuals and b−1,k = 0

• dn,k represents the probability of death in the k-th species with
n individuals and d0,k = 0
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• pn,k(t) represents the probability that the k-th species contains
n individuals at time t

The time evolution of pn,k(t) is regulated by the master equation
[113, 114]:

dpn,k(t)

dt
= pn+1,k(t)dn+1,k+pn−1,k(t)bn−1,k−pn,k(t)(bn,k+dn,k)

(47)

whose equilibrium solution is

Pn,k = P0,k

n−1∏
i=0

bi,k
di+1,k

(48)

where n > 0 and P0,k can be deduced from the normalization condi-
tion

∑
n Pn,k = 1.

The frequency of species containing n individuals is given by

φn =

S∑
k=1

Ik (49)

where S is the total number of species and Ik is a random variable
which takes the value 1 with probability Pn,k and 0 with probability
(1− Pn,k). Its average number is

〈φn〉 =
S∑
k=1

Pn,k (50)

4.3.1 RSA of metacommunity

If the species in a metacommunity are demographically identical and
density independent, i.e. bn,k = bn = bn and dn,k = dn = dn, the
following equation will hold

〈
φMn

〉
= SP0

n−1∏
i=0

bi
di+1

= SMP0
b0b1...bn−1
d1d2...dn

= φ
xn

n
(51)

whereM refers to the metacommunity, x = b/d represents the ratio of
effective per capita birth rate to the death rate arising from a variety
of causes and θ = SMP0v/b is the biodiversity parameter.

4.3.2 RSA of local community

If a local community of size J is semi-isolated from the surrounding
metacommunity, one may introduce an immigration rate m and the
dynamical rules [82, 115] governing the stochastic processes in the
community are:
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• With probability 1 −m, pick two individuals at random from
the local community. If they belong to the same species, no ac-
tion is taken. Otherwise, with equal probability, replace one of
the individuals with the offspring of the other

• With probability m, pick one individual at random from the
local community. Replace it by a new individual chosen with a
probability proportional to the abundance of its species in the
metacommunity.

The above rules lead to the following expressions for effective birth
and death rates for the k-th species

bn,k = (1−m)
n

J

J−n

J− 1
+m

µk
Jk

(
1−

n

J

)
(52)

dn,k = (1−m)
n

J

J−n

J− 1
+m

(
1−

µk
Jk

)
n

J
(53)

where µk is the abundance of the k-th species in the metacommunity
and JM is the total population of the metacommunity.

Substituting above equations into Eq. 48, one obtains the expression

Pn,k =
J!

n!(J−n)!
Γ(n+ λk)

Γ(λk)

Γ(νk −n)

Γ(νk − J)

Γ(λk + νk − J)

Γ(λk + νk)
≡ F(µk) (54)

where λk = m
1−m(J− 1)µkJm and νk = J+ m

1−m(J− 1)(1− µk
JM

). By sub-
stituting above equation into Eq. 50, one obtains:

〈φn〉 =
SM∑
k=1

F(µk) = SM 〈F(µk)〉 = SM
∫
dµρ̂(µ)F(µ) (55)

where ρ̂dµ = 1
Γ(ε)σε exp(−µ/σ)µ

ε−1dµ is the probability distribution
of the mean populations of the species in the metacommunity. Taking
the limits SM → ∞ and ε → 0 with θ = SMε approaching a finite
value [115] and on defining y = µ γσθ , one can obtain the analytic
expression of the local community

〈φn〉 = θ
J!

n!(J−n)!
Γ(γ)

Γ(J+ γ)

∫γ
0

Γ(n+ y)

Γ(1+ y)

Γ(J−n+ γ− y)

γ− y
exp(−yθ/γ)dy

(56)

where Γ(z) =
∫∞
0 t

z−1e−tdt and γ(z) = m(J−1)
1−m .

4.3.3 Voter model

Another important example of neutral model is the Voter Model (VM)
[51, 52, 116, 117, 53]. The VM is a paradigmatic model to describe
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competition in many fields going from social sciences [118] to biol-
ogy [119]. In the ecological context one deals with a community of
N individuals belonging to S different species. At every time step a
randomly selected individual dies and the corresponding resources
are freed up for colonization.

• With the probability ν the site is taken by an individual of a
species not currently present in the system (immigration from
surrounding communities or speciation event)

• With the probability 1− ν the available site is colonized by an
individual randomly sampled within the community [111, 84]

However, an important limitation of this modeling is that it does
support species coexistence without speciation (e.g. for ν = 0) and
it does not consider explicitly species interactions (e.g. mutualism/-
commensalism). Moreover, adding mutualisitic interactions typically
places a bound on the diversity of species that can coexist [23, 7, 24,
49]. Two crucial gaps in the current literature are thus:

1. a general framework where species interactions are added on
neutral models [82, 108, 84] and can modify the species birth-
death rates

2. understand the role of mutualistic/commensalistic interactions
in determining species coexistence also in the limit ν = 0 and
how they impact on patterns such as species abundance distri-
bution [84]

In the next chapter, we present a theoretical framework, where start-
ing from a VM-like microscopic stochastic modeling, we add mutu-
alistic/commensalistic interactions among species, affecting neutral-
ity and leading to an emergent niche-like multi species-mutualistic
model. Reconciling apparently contrasting observations and previous
results [47, 45, 23, 7, 49], we show that in our model ecosystem coop-
eration promotes biodiversity and diversity increases its stability.

45





5
T H E C O O P E R AT I V E V O T E R M O D E L

When you know a thing, to hold that you know it, and when you do not
know a thing, to allow that you do not know it - this is knowledge.

— Confucius (551 BC - 479 BC)

We now present a general framework where mutualistic species in-
teractions are added on neutral models [83, 24, 7] and modify the
species birth rates. In this way we can investigate the role of mutual-
istic/commensalistic interactions in determining species coexistence
and how they impact on the ecosystem stability and patterns such as
species abundance distribution.

5.1 a voter model with mutualistic interactions

Assuming that ηx is the species label at spatial position x where
ηx ∈ {1, . . . ,S} and x = 1, . . . ,N, the state at time t of the system
is given by η(t) = (η1(t),η2(t), . . . ,ηN(t)). We introduce a directed
graph on the set {1, . . . ,S}, where the nodes correspond to species and
directed links represent the network of ecological interactions. Given
two species i and j, a directed link of strength Mij from i to j means
that the i-th species interacts with the j-th species. If Mij > 0, then
the presence of the i-th species helps the j-th species to survive, i.e.
we have cooperation. In our model, we focus on mutualistic interac-
tions, Mij > 0, Mji > 0 (reciprocal cooperation), and commensalistic
interactions, Mij > 0, Mji = 0 or Mij = 0, Mji > 0, where only one
species benefices of the presence of the other one.

Using a random matrix approach, the matrix entries can be drawn
from a given probability distribution [23, 25] and they are decided at
time t = 0 and do not change with dynamics (quenched dynamics).
With the matrix M in hand, we can describe the Markovian dynamics
for the time evolution of η(t) in terms of the transition rates between
states.

We define the fraction of individuals of the k-species as η̄k =∑
x δηx,k/N where δ is Dirac delta function. In the dynamics, a ran-

dom individual is eliminated and the freed space is colonized by an
individual of given species j with a rate

ω(j,η,M) = η̄j + ε

S∑
k=1

η̄kMkjθ(η̄
j) (57)

where ε gives the cooperation intensity, so that we can fix the average
of the non-zeroMkj’s to 1, and θ(·) is the Heaviside step function, i.e.,
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θ(x) > 0 when x > 0 and 0 otherwise. The presence of the θ-function
guarantees that the transition rate is zero if the j-th species is extinct.

• When ε = 0, we recover the standard VM

• When ε > 0, the species j is favored by the presence of the other
species (k in the summation) to which it is connected and by
their population

We have presented the model by neglecting spatial effect on ecosys-
tems dynamics. Adding spatial interactions in this framework is not
complicated from a numerical point of view (we just restrict compe-
tition over space colonization only to neighbours individual), but we
loose all analytical results.

It is useful to highlight the differences between the form of the
interaction part in our rates (last term of Eq. (57)), with the corre-
sponding one in the LV equations. In the LV equation for the time
evolution of the population of the j-th species, the interaction term
would read

∑S
k=1 η̄

kBkjη̄
j. Similarly, to M in (57), the matrix B de-

scribes the interaction among species and Bkj is positive (negative) if
j is the predator (prey) and k is the prey (predator). The main differ-
ence is that this interaction term is quadratic in η̄, while in our setting
it is linear.

Indeed, we are stressing that mutualism and predator-prey interac-
tions are interactions types of different nature. In predator prey, this
term describes the probability that two species interact (which would
proportional to the product of the abundance of both the species like
it would happen in a chemical reaction between two reactants). On
the other hand we conceptualize this term by expressing a biologi-
cal links among species, and focus on their impact on the birth rates
ω(j,η,M). The interaction Mi,j > 0, as we have written, corresponds
to the case where species i helps species j to survives. This may hap-
pen in a bacterial community where the presence of certain species
create a friendly environment for other species to live in. Thus this en-
vironment is there independently of the population of the j-th species.
A simple example where this claim can be proved is the following, in-
spired by a recent contribution by [120]. Let c be the concentration of
a given resource used by the species j. This resource is provided, at a
rate s, by certain species and related to their populations in a linear
way, that is s =

∑
k ηkMkj. The kinetic of nutrient concentration is

thus

dc(t)/dt = s− ηj(t)r(c(t)), (58)

where r(c) is the consumption rate per individual whose specific
form is irrelevant as fas as it has the qualitative feature of the Monod
function r(c) = αc/(K+ c), with α and K some suitable constants. The
contribution to the growth rate of the j-th species, due to this nutrient,
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is δω = εr(c)ηj, where ε is a conversion factor measuring how the
nutrient contributes to the biomass of the j-th species. If the nutrient
concentration is in quasi-steady state, that is dc(t)/dt = 0, which oc-
curs if it relaxes much faster than populations, then, from the above
equation, we get r(c(t)) = s/ηj(t), leading to δω = εs = ε

∑
k ηkMkj

if ηj > 0. This is why we have assumed in Eq. (57) the interaction
term to be linear.

5.2 mean-field analysis for the model

We now want to characterize the large size limit of the dynamics
described above. The microscopic dynamics given by rates (57) induce
a Markovian evolution on the relative abundance η̄s of each species.
Standard techniques of convergence of generators [121] can be used
to prove that as N → ∞, the process (η̄1(t), . . . , η̄S(t))t>0 weakly
converges to the solution of the system of ordinary differential (mean
field) equation:

d
dt
η̄s = ε

S∑
k=1

η̄kMks θ(η̄
s) − ε η̄s

S∑
i,j=1

η̄iMij θ(η̄
j) (59)

where s = 1, . . . ,S represents different species, η̄s is the fraction of
individuals of the s-species, M represents the network of ecological
interaction, θ is the Heaviside step function and ε is the cooperation
intensity. For simplicity, we have omitted in the notation in the time
dependence.

We have also studied the same model where we relaxed the zero-
sum hypothesis introducing the possibility for a site to become empty
at rate λ < 1. If empty site are assigned to the 0-th species we still
have

∑S
j=0 η̄

j(t) = 1 at all times, whereas
∑S
j=1 η̄

j(t) 6 1 and its
stationary value will depend on λ, i.e. a soft constraint on the average
population in the community is implemented by introducing a non-
zero λ. All presented results do not change when empty sites are
considered: all stationary populations are simply rescaled by a global
multiplicative factor which depends on λ. We will show below that,
under suitable hypothesis, a stationary solution of Eq. (59) exists and
it will be denoted mj = limt→∞ η̄j(t).
5.2.1 Voter model with empty sites

We now extend the model presented in the main text introducing the
possibility for a site to be empty, i.e. relaxing the zero-sum constraint.
In our setting, empty sites do not interact with species and thus their
birth rates remain unchanged after the introduction of empty sites.
Non-empty sites become empty with rate λ. In the case ε = 0, the
rate λ has to be less than 1 otherwise empty sites will cover all the
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available space. If we denote with η̄0t the number of empty sites at
time t, then the mean field equations, obtained with similar compu-
tations as Eq. (59) and read

d
dt
η̄s = η̄sη̄0 − η̄sλ+ ε

S∑
k=1

η̄kMks θ(η̄
s) − ε η̄s

S∑
i,j=1

η̄iMij θ(η̄
j)

d
dt
η̄0 = (1− η̄0)(λ− η̄0) − ε η̄0

S∑
i,j=1

η̄iMij θ(η̄
j)

(60)

Let us analyze the mean-field equations for ε << 1. In this case the
stable equilibrium for the empty sites is η̄0 = λ−ε λ

1−λ

∑S
i,j=1 η̄

iMij θ(η̄
j)+

O(ε2). Substituting in the equations for η̄s, we obtain

d
dt
η̄s = ε

S∑
k=1

η̄kMks θ(η̄
s)−ε

(
1

1− λ

)
η̄s

S∑
i,j=1

η̄iMij θ(η̄
j)+O(ε2)

(61)

where s = 1, . . . ,S. After the change of variable η̄ ′ = (1 − λ)η̄, the
above Eq. (61) reduces to the Eq. (59) up to a second order perturba-
tion in ε. In other words, when ε is small, the introduction of empty
sites does not change a lot the dynamics of the species. The time
evolution remains O(ε2) close to the one described by (59) but on
“smaller” ecosystem as a λ fraction of the space is occupied by empty
sites.

An intuitive path to Eqs. (59) and (60) can be as follows. For large
N the evolution of the quantity η̄sN becomes deterministic because
the noise is canceled in the macroscopic regime and in the thermo-
dynamics limit the relative abundance converges to its mean. Then,
observe that the dynamics of the relative abundance in the infinitesi-
mal time dt is simple as it can only decrease by 1/N when a site of
kind s change type or can increase by 1/N when the new symbol of
a certain site is s. The same argument holds for η̄0.

5.3 analytic solution of the mean-field equation

If M is non negative and irreducible, i.e. if for any node i we can
reach any other node j through a path of oriented links (k, l) such
that Mkl > 0, then the Perron-Frobenius (PF) theorem holds [122]
and a non-trivial stationary state, (mk)k=1,...,S, exists with all positive
entries and it is unique. It is proportional to the left eigenvector, v, of
M corresponding to the eigenvalue of M with the largest modulus,
which turns out to be non-degenerate, positive and will be denoted
α in the following. All components of v are strictly positive and so
mi = vi/

∑
k vk. An example of irreducible matrix M occurs when
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Mij > 0 implies Mji > 0 and the network has a single connected
component.

Let mi with i = 1, . . . ,S the stationary solution of equation (59). If
all the components are positive, they are solutions of∑

k

mkMki = mi
∑
jk

mkMkj (62)

If M is irreducible, which means to require that a path of oriented
links (a link is present from i to j is Mij > 0) exists joining each pairs
of nodes, say k and l, then the Perron-Frobenius theorem holds (see
Theorem 1.5 in [122]). In this case a positive solution, i.e. mk > 0 for
all k, exists, it is unique and it is proportional to the left eigenvector,
v, of M corresponding to the eigenvalue of M with the largest real
part (see Theorem 1.7 in [122]), which turns out to be non degener-
ate, positive and will be denoted α in the following. All components
of v are strictly positive and so mi = vi/

∑
k vk. Notice that when a

irreducible matrix M is also aperiodic then it is primitive (see The-
orem 1.4 in [122]), that is there exists a positive integer k such that
(Mk)ij > 0 for all pairs of nodes i and j. This condition allows for a
stronger version of the Perron-Frobenius theorem (compare Theorem
1.1 with Theorem 1.5).

5.4 ecosystem stability

For this cooperative voter model we are able to relate key dynamical
features of Eq. (59) to the topology of the interaction matrix M and
prove analytically many results of ecological importance.

5.4.1 Topology of the interaction network and stationary states

Now, we discuss some features of the topology of the mutualistic
interaction matrix M and how they relate to stationary states of the
system.

A node with in-degree equals to zero and out-degree different from
zero is called a dead leaf of the network. The operation of pruning
consists in eliminating one by one the dead leaves of a given network
together with their outbound links. After a first pruning, we will ob-
tain a new network (that is a subnetwork of the starting one) that may
still have dead leaves - the elimination of a dead leaf may create a new
dead leaf. Going on with the pruning will result in a network that has
no dead leaves. The latter network is called pruned graph. It is easy to
see that the minimal pruned graph (i.e. with the smallest number of
links) can be constructed on given S sites is the cyclic graph. More in
general, we have:
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Proposition: The stable network is a union of isolated nodes and
graphs that contain at least one cycle each.

Indeed, pruning stops when the obtained graph is a union of iso-
lated nodes and graphs where all nodes have at least an ancestor (i.e.
the in-degree of each node is positive). Now a finite graph where each
node has at least one incoming link contains at least a cycle. In fact,
starting from one node it is possible to walk through the ancestors
and never stop. Since the graph is finite, soon or later, the walker will
visit twice the same node - so the walk contains a cycle - at most after
a number of steps that equals the size of the graph.

Figure 11 shows an example of the pruning procedure and of a
non-trivial pruned network.

(a)

0 1

2

3

4

××

(b)

1

2

3

4

Figure 11: The diagram shows the pruning process. (a) An example of how
the operation of pruning works. First the 0-node is eliminated
with its outbound link. After that, the node 1 becomes a dead
leaf and has to be pruned. The cycle shown by the red links is
pruned graph with no dead leaves. (b) An example of pruned
graph that is not made by cycles.

As we anticipated at the beginning of this section, the dynamics of
species sitting on dead leaves of the interaction network is trivial as
their relative abundance goes to zero. This is a simple consequence
of the fact that a dead leaf has no incoming bond. Thus, when s is
a dead leaf, the first term on the right of (59) is zero and simple

estimate gives
d
dt
η̄s 6 −ε η̄s

∑
i,j η̄

iMijθ(η̄
j). The previous simple

remark leads to the following:

Limiting dynamics of dead leaves: Start the dynamics from a point
with η̄i 6= 0 for all i = 1, . . . ,S. If k is a dead leaf then limt→∞ η̄k(t) =
0.

In summary, the presence of a dead leaf inhibits species coexistence
on the whole graph and coexistence is possible for the species that are
nodes of the pruned sub-network. More precisely, if i = 1, . . . ,γ are
dead leaves (at some step of the pruning), the stable equilibria must
have η̄1 = . . . = η̄γ = 0. The extinction of the i-th may create new
unsupported species that go to zero in the long run dynamics. Such a
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cascade of extinctions eventually end only when all the nodes of the
interaction network have non-zero in-degree.

5.4.2 Stationary solution of the MF dynamics from the species interaction
network

If Perron-Frobenius theorem holds, then the initial condition is al-
ways not orthogonal to the right eigenvector, w, of M corresponding
to the largest real eigenvalue α, and the time dependent solution of
Eq. (59) is

η̄(t) =
η̄(0)TeMt∑
i(η̄(0)

TeMt)i
(63)

Since for any eigenvalue, β 6= α, of M we have <(β) < α the domi-
nant term in both numerator and denominator in Eq. (63) is v eαt(η̄(0) ·
w) leading to limt→∞ η̄(t) = v∑

i vi
= m. This is an easy computation

when M has a basis of eigenvectors and in general can be derived
using the Jordan decomposition (appendix C).

As a corollary of the derivation above we have also that the station-
ary solution is globally stable. Therefore, within our framework, we
can analytically study the impact of the species interaction network
architecture on system stability and species extinction. In particular
we found that both nested and modular structures observed in real
ecological communities [123] satisfy the Perron-Frobenius theorem
and contribute to the system stability. The results of the mean field
predictions and the comparison with the corresponding stochastic dy-
namics are shown in Figure 12. Two simple examples are shown cor-
responding to an ecosystem with no extinction (panels A-C) and with
extinction (panel D-F). When the mean field predicts the coexistence
of all species then the stochastic dynamics leads to the first extinction
over exponentially large time with the system size, N [124, 116].

5.4.3 Stability of the equilibria

As already shown in chapter 3, stability of the stationary states of the
population dynamics is a key information of the ecological system. In
particular is of great interest how the stability of the equlibria change
for increasing ecosystem complexity [32, 47, 106, 23].

To study analytically the stability of the equilibria as a function of
ecological complexity, we analyze the eigenvalues of the linearization
of Eq. (59), i.e. the Jacobian matrix A, around the equilibria, mi, of
the system.

Following [47, 23] we assign the entry Mij with probability C to be
random a variable with positive mean µ, variance σ2 and correlation
ρ between non-zero off-diagonal elements Mij and Mji. The global
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Figure 12: Upper panels: (A) Species interaction network for 7 species where
each species has one mutualistic partner and all non-zero inter-
action Mij = 1. (B) Time evolution of the populations of the 7
species as predicted by the mean field dynamics Eq. (59). (C) Av-
erage time for one of the 7 species to get extinct in the full stochas-
tic dynamics. The average first extinction times grows exponen-
tially with the system size, N, i.e. TN ∼ exp(N). On the contrary if
ε = 0, the standard voter model, then TN ∼ N [52]. Lower panels:
(D) Species interaction network where one species is not helped
by any species and the iterative pruning process, as described in
the text, leads to no interaction network. (E) This causes a cas-
cade of extinctions as the time evolution of the mean field Eq.
(59) shows, leading to only one species dominating the commu-
nity. (F) The corresponding average first extinction times of the
microscopic stochastic model at various interaction strength, ε
are all compatible with the ε = 0 case.
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mean, standard deviation and correlation coefficient are µM = Cµ,
σM =

√
C (σ2 + (1−C)µ2) and ρM =

ρσ2+(1−C)µ2

σ2+(1−C)µ2
[80].

If µ > σ(1+ρ)√
S

, the leading eigenvalue λM ≈ Sµ lies on the right of
the ellipse formed by the others [23, 81]. The corresponding eigenvec-
tor has positive components according to Perron-Frobenius theorem
[125] and its components are approximately constant, i.e. the equilib-
ria of Eq. (59) can be written as

mi =
1

S
(1+ ξi) for i = 1, . . . ,S (64)

where
∑
i ξi = 0. Therefore 1 = Smi − ξi

S∑
k=1

Mik =

S∑
k=1

Mik (Smi − ξi)

= S

S∑
k=1

Mikmi −

S∑
k=1

Mikξi

≈
S∑
ik

Mikmi −

S∑
k=1

Mikξi

= λM −

S∑
k=1

Mikξi

The approximately equal holds when the degree of each node is sim-
ilar as the average degree of all nodes.

mj

S∑
k=1

Mik = mj(λM −

S∑
k=1

Mikξi)

= mjλM −mj

S∑
k=1

Mikξi

=
1

S
(1+ ξj)λM −

1

S
(1+ ξj)

S∑
k=1

Mikξi

= λM/S+ ξjλM/S−

S∑
k=1

Mikξi/S− ξj

S∑
k=1

Mikξi/S

All the terms involving ξi are sub-leading in S, so mj
∑S
k=1Mik ≈

λM/S.
Finally, we obtain

Jij ≈Mij − λM/S− δijλM

=Mij − µM − δijSµM

= Aij − δijSµM

(65)

where Aij := Mij − µM is a random matrix with mean 0, standard
deviation σM and correlation coefficient ρM. This implies that the
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eigenvalues are uniformly distributed in an ellipse centered around
−SµM with horizontal semi-axis

√
SσM(1 + ρM) and vertical semi-

axis
√
SσM(1− ρM) [23, 81]. The largest eigenvalue of the Jacobian

matrix Jij is given by −Sµ +
√
Sσ(1 + ρ). If S is large enough (S >(

σM(1+ρM)
µM

)2
), the system is always stable. Substituting the formulas

of µM, σM and ρM to the center, horizontal semi-axis, vertical semi-
axis and the largest eigenvalue discussed above, the final formulas
are

ellipse center: −CSµ

horizontal semiaxis:
C
√
S
(
(ρ+ 1)σ2 − 2(C− 1)µ2

)√
C (σ2 − (C− 1)µ2)

vertical semiaxis:
C
√
S (1− ρ)σ2√

C (σ2 − (C− 1)µ2)

largest eigenvalue: −CSµ+
C
√
S
(
(ρ+ 1)σ2 − 2(C− 1)µ2

)√
C (σ2 − (C− 1)µ2)

(66)

If the connectivity C (or S) is fixed, as S (or C) increases, then the
largest eigenvalue will decrease (Figure 13a and 13b). If the connec-
tivity scale as C ∼ 1/S, as S increases (or C decreases), the center of
the ellipse will not change, the horizontal semi-axis will increase and
the vertical semi-axis will decrease, then the largest eigenvalue will
increase (Figure 13c and 13d). But if S is big enough, this change is
ignorable comparing to the fixed center. Therefore, in the proposed
model cooperation promotes ecosystem biodiversity, that in turn in-
creases its stability without any fine tuning of the species interaction
strengths nor of the self-interactions [80].

5.5 relative species abundance

Finally we analyze the relative species abundance (RSA) of our sim-
ulated ecosystem. RSA is an important emergent pattern in ecology
[82, 108, 84, 109, 107]. It describes commonness and rarity of species,
thus characterizing the biodiversity of an ecological community. In
the model, the RSA is exactly given by the mean field stationary so-
lution m, that in turn depends on the species interaction matrix M.
The cumulative RSA is thus defined as the fraction of species with
population greater that a certain value, n,

P>[n] =
1

S

S∑
k=1

θ(n−Nmk), (67)

where we have fixed N = 1/min{m1, . . . ,mS} when all species coex-
ist, i.e. we have made the choice that the rarest species has population
equal to 1. We numerically find that the shape of the stationary RSA
weakly depends on the specific distribution of the matrix elements
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Figure 13: Stability for the relationship between size and connectivity. The
matrix elements draw from the standard half-normal distribution.
(a) The connectivity C is fixed; (b) The size S is fixed. (c) The con-
nectivity depends on the size; (d) The size depends on the connec-
tivity. The matrix M is generated by the standard half-standard
normal distribution. The marker are the numeric eigenvalues of
jacobian matrix J and the ellipse is its area analytically.

Mij, and it is mainly determined only on its coefficient of variation
CV = σM/µM, i.e. the variability of the interaction strengths rela-
tive to the mean of M (see Figure 14). This allows to constrained
the model parameters: In order to parametrize species interactions
strengths, that are typically unknown [23, 7], we can make use of a
random matrix approach where we fix the mean and the variance
according to the desired RSA one needs to fit. Contrarily to what typ-
ically is done in the literature [126, 127, 78, 128] we also find that,
for most of the structure of interaction matrix M, both the correlation
matrix V and its inverse V−1 are not good proxies of the species inter-
actions network - at least within our framework. This result highlights
the importance to properly infer interaction networks from data [78]
and this point is discussed in the next Chapter.
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Figure 14: Cumulative RSA for 9 different species interaction random net-
works M, where matrix elements Mij have been drawn from
three different probability distributions: a Normal distribution
N(α,β) (blue lines) (Mij’s are the the modulus of normally dis-
tributed random numbers), Gamma distribution Γ(α,β) (green
lines) and LogNormal distribution LN(α,β) (orange lines lines).
We set the distribution parameters α,β (see legend) so that in
each case we build interaction matrices with three different values
of coefficient of variation CV = σM/µM = 3, 4, 5. As we can see,
the cumulative RSA is not very sensible to the distribution from
which the matrix elements Mij are drawn, but only on the CV.
We highlight that in all the above cases ρ = 0, but we have non-

zero correlation among elements ofM as ρM =
ρσ2+(1−C)µ2

σ2+(1−C)µ2
6= 0.

For example, in the first case, the distribution from which the el-
ements are drawn is standard half-normal distribution |N(0, 1)|,
the connectivity C = 0.32, and the matrix correlation is ρM =

0.543.

5.6 extension of our framework to meta-community pop-
ulation dynamics

Our framework can be generalized to model population dynamics
in meta-communities, i.e. local ecological communities interacting
among them [129, 130]. In this case, each node represent a commu-
nity (see Figure 15), species interact within a community (and from
each node of a community one can reach any other node of the same
community following links (i, j) such thatMij > 0), and communities
interact among them.

5.6.1 Ecological meta-community formed by two communites

Considering the case of two communities A and B, connected by di-
rectional mutualism (known also as commensalism), where species
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Figure 15: Meta-community framework. In this example the ecosystem is
composed by 7 different communities. The three largest com-
munities (1,2,3) interact among them and correspond to the gi-
ant strong connected component (red dashed line) of the global
species interaction network M. The other communities com-
posed fewer species are instead isolated. In this case, the Perron-
Frobenius theorem does not hold, and in fact, if we ran the dy-
namics we observe extinctions. In particular, as predicted by our
model, all isolated communities are going to be extinct (from com-
munity 7 to community 4) and only the species involved in the
giant strongly connected cluster will survive. Adding a commen-
salism (green arrow) does not change the situation: only species
in communities 1,2,3 will survive. However, if we add even a
small reward for the community 4 by community 3, then the gi-
ant strongly connected cluster will be now composed by commu-
nities 1-4 and a larger number of species can coexist.

in community B benefit from the presence of some species in com-
munity A (e.g. sea turtles in community A and pilot fish (Naucrates
ductor) in fish community B), the species interaction in this ecosystem

are described by a matrix of the form M =

(
A X

0 B

)
where A (B) is

a SA×SA (SB×SB) matrix,Mij > 0 ∀i, j = 1, ..S, S = SA+SB and the
corresponding species abundances are mA ∈ R

SA
+ , mB ∈ R

SB
+ where

(mA,mB) = m and
∑S
i=1mi = 1 (Fig. 16 (a) is a simple diagram).

The analytic solution of the mean-field equation is (mA,mB)M =

α (mA,mB). Because mAA = αmA is independent of B, we could
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apply previous method based on Perron-Frobenius theorem [125] to
obtain the mA (α > 0 and mA > 0). Then mAX +mBB = αmB,
therefore mB = mAX (αISB −B)

−1. Let β be the eigenvalue of B (for
Perron-Frobenius theorem β > 0 ) with the largest modulus. If β < α,
(αISB −B)

−1 = 1
α

∑∞
k=0

(
B
α

)k
> 0 since B is primitive. Because X > 0,

mB > 0. This result can be generalized to three or more communities,
A, B, . . . ,Z connected by directional mutualism.

5.6.2 Ecological meta-community formed by three communites

We generalize the same approach to three communitiesM =

 A X1 Y

0 B X2

0 0 C


where S = SA + SB + SC (Fig. 16 (b) is a simple diagram) and the
corresponding species abundances are mA ∈ R

SA
+ , mB ∈ R

SB
+ , mC ∈

R
SC
+ where (mA,mB,mC) = m and

∑S
i=1mi = 1, the new mean-field

equation is (mA,mB,mC)M = α (mA,mB,mC). Because mAA =

αmA is independent of B and C, we could apply previous method
based on Perron-Frobenius theorem to obtain the mA (α > 0 and
mA > 0). According to the above case, mB = mAX1 (αISB −B)

−1 > 0

if β < α. Similarly, mC = (mAY +mBX2) (α−C)−1 > 0 if γ < α
Notice that X1 = 0 (i.e. C is helped both by A and B, but A and

B are independent) implies that mB = 0. A and B in this case are
intangible, so there are two stationary states. One is A extinct, the
other is B extinct!

5.6.3 Generalization to Ecological meta-community formed by any number
of communites

In general, if M =


A XAB · · · XAZ
0 B · · · XBZ

0 0
. . . :

0 0 · · · Z

 (Fig. 16 (c) is a sim-

ple diagram) and the Perron-Frobenius eigenvalue of A, λA is larger
than Perron-Frobenius eigenvalues of other communities (λB, λC, · · · ),
there is no extinction in this ecology system.

Beside conditions for meta-communities coexistence, this general-
ization allows us to understand which species or communities will go
extinct based on the topological properties of the species interaction
networks. In particular, if XIZ > 0 and XZI = 0 for all I = A,B, ...,Y
and all other XK,L = 0 for K 6= L, then the community Z is helped
by all other communities that in turn are independent to one another.
In this case all communities except Z is going to be extinct. More
generally, as shown in Figure 15, isolated species or communities are
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Figure 16: Mutualistic meta-community diagram. (a) two meta-
communities; (b) three meta-communities; (c) many meta-
communities.

going to be extinct if they do not belong to the largest cluster. This
result suggests that reciprocated cooperation play an important role
in selecting the coexisting species: species/communities that cooper-
ate (or cooperate more) have competitive advantages with respect to
other species/communities that do not cooperate (or cooperate less)
and that are thus doomed to extinction.
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6
S P E C I E S C O VA R I A N C E A N D I N T E R A C T I O N
M AT R I X

Real knowledge is to know the extent of one’s ignorance.

— Confucius (551 BC - 479 BC)

6.1 introduction

Recognizing relationships between variables connected in a network
is a pervasive problem in biology [131, 132, 133], ecology [78, 134, 128]
and information sciences [135, 136, 137], just to cite few. How strong
are the interactions among species, which type are them and what im-
pact do they have on the whole ecosystem is perhaps the most funda-
mental problem in community ecology for understanding patterns of
coexistence and the distribution and abundance of species. As already
see in Chapter 3, the interactions between two species in a ecosystem
may be of different types: Mutualism (++), Parasitism/Predation (+-),
Amensalism (-0), Commensalism (+0) and Competition (+-) (see Fig.
6 for details).

Unfortunately, detecting these various types of interactions and re-
constructing the whole ecological network is far from straightforward
and existing approaches are limited. Novel approaches can also open
the way towards global models of ecosystem dynamics and such mod-
els will ultimately be able to predict the outcome of community alter-
ations and the effects of perturbations.

6.1.1 Covariance or correlation matrix

One general method is applying the covariance/correlation of the
population of two observed species as the interdependency to con-
struct the whole interaction network. The covariance/correlation ma-
trix is a matrix whose element in the i, j position is the covariance/-
correlation coefficient between the i-th and j-th entry of the vector
describing the species population abundance. It can be written as

cor(X) = (diag(Σ))−
1
2 Σ (diag(Σ))−

1
2 (68)

where Σ = E
[
(X− E[X])(X− E[X])T

]
, diag(Σ) is the diagonal matrix

of Σ. Although it is easy to calculate and understand, it contains nu-
merous indirect relationships and correlation does not provide the
direct insight on if and how two species interact.
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6.1.2 Interaction matrix inferred through the maximum entropy principle

The principle of maximum entropy [138, 139] provides another simple
method to infer the probability distribution in an unbiased manner
using the measured average populations and correlation functions as
an input [134, 140, 127]. Its aim is to find the probability distribution
function p(~x) that maximizes the Shannon entropy

S = −
∑
~x

p(~x)ln(p(~x)) (69)

subject to the constraint that∑
~x

p(~x) = 1 (70)

〈xi〉 =
∑
~x

p(~x)xi =
1

T

∑
T

xki (71)

〈
xi, xj

〉
=

∑
~x

p(~x)xixj =
1

T

∑
T

xki x
k
j (72)

where ~x = (x1, ..., xN) is the state vector for N species and T is the
length of observed data.

Eq. (70) provides the normalization condition that the probabilities
of all observable states sum to 1 as well as Eqs. (71) and (72) ensure
that the distribution p(~x) preserves the mean and the correlations
observed in the dataset, so the matrix element Mij has the natural
interpretation of the interaction between the i-th and j-th species. Its
Boltzmann-like distribution p(x) ∼ e−H where H = 1/2

∑
ij xiVijxj

plays the role of the energy function in conventional statistical me-
chanics. The interaction matrix can be obtained by inverting the ma-
trix of covariance matrix, V−1

ij = Cij = 〈xi, xj〉− 〈xi〉〈xj〉. It provides
a measure of the effective interactions while faithfully encoding all
available information (if mean and correlations are the only available
information) and being unbiased with respect to missing information.

In this section, we consider the normal fluctuations around the de-
terministic limit of Eq. (59). This allows us to calculate the pair-wise
covariance matrix V between pairs of species population abundances
[134]. This quantity, once opportunely thresholded, is used as an em-
pirical proxy of the species interactions network [78, 141, 126]. Other
works, applying maximum entropy approach, use V−1 as the quan-
tity to describe species interactions [134, 127]. The aim of this section
is to test how well V or V−1 approximate the true interactions de-
scribed by M in our model.
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6.2 species covariance matrix

In our setting, we can compute analytically the covariance matrix in
the limit of normal fluctuations. We define species abundance fluctu-
ations as xiN(t) =

√
N
(
η̄i(t) −mi

)
for i = 1, . . . ,S. Again, one can

apply standard techniques of convergence of generators to get weak
convergence to the thermodynamic limiting evolution [121]. Indeed,
the stochastic process

(
x1N(t), . . . , x

S
N(t)

)
converges in distribution to

a Gaussian Markov process X :=
(
X1(t), . . . ,XS(t)

)
which solves the

stochastic differential equation

dX = εAX dt+ΦdBt, (73)

where Bt is a S-dimensional Brownian motion, which corresponds to
a S-dimensional Ornstein-Uhlenbeck process [121, 83]. The matrices
A and Φ depend on the interaction matrix M and the equilibria of Eq.
(59), i.e.

Aij =Mji − δij

S∑
h,k=1

mhMhk −mi

S∑
k=1

Mjk, (74)

and Φ satisfies the following constraint equation

(ΦΦT )ij =− 2

(
mimj + εmi

S∑
k=1

mkMkj

)
(1− δij)

+ 2(1−mi)

(
mi + ε

S∑
k=1

mkMki

)
δij

(75)

where δij is the Kronecker delta.
From Eq. (73), it is then possible to derive the dynamics of the

covariance matrix Vij(t) = 〈Xi(t),Xj(t)〉 (see [114] for details). There-
fore, we have

d V

dt
= εAV(t) + ε V(t)AT +ΦΦT , (76)

and at the equilibrium the covariance matrix resolves the following
equation

εAVeq + ε Veq AT +ΦΦT = 0. (77)

Eq. (77) is a Lyapunov equation, so we could apply standard algo-
rithms to solve it numerically [142].

6.2.1 empty sites

Analogous of formula (76) and (77) holds true for for the model with
empty sites, but for different A and Φ. In fact in this case, the lin-
earized dynamics described by the matrix Ãij with 0 6 i, j 6 S reads:
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Ã00 =− 2 ε

S∑
i,k=1

Mkimk

Ã0j =− εm0

S∑
k=1

Mjk for j = 1, . . . ,S

Ãi0 =mi + ε

S∑
k=1

Mkimk for i = 1, . . . ,S

Ãij =(m0 − λ)δij + εm0M
T
ij + εAij for i, j = 1, . . . ,S

while the diffusion matrix Φ̃ij with 0 6 i, j 6 S is

(Φ̃Φ̃T )00 =(1−m0)(1+ λ) + ε

S∑
k,h=1

Mkhmk

(Φ̃Φ̃T )0j =− 2mj λ for j = 1, . . . ,S

(Φ̃Φ̃T )i0 =− 2mi + 2ε

S∑
k=1

Mkimk for i = 1, . . . ,S

(Φ̃Φ̃T )ij =(ΦΦT )ij for i, j = 1, . . . ,S

(Φ̃Φ̃T )ii =mi λ+mi + ε

S∑
k=1

Mkimk + (ΦΦT )ii for i = 1, . . . ,S

6.3 species interaction matrix

By inverting the solution of Eq. (77), we calculate the inverse of the co-
variance matrix. In fact, V−1 in a Gaussian model or in a Gaussian ap-
proximation corresponds to the species interaction matrix [140, 134].
Indeed, within a maximum Entropy approach, V−1 is typically used
to infer species interactions based on the available information of the
system [127]. In our framework and as shown by Eq.(76), the rela-
tion between the interaction matrix M and the matrix V or V−1 is
highly non-linear. Moreover, because of the constraint on the matrix
V ,

∑
j Vij = 0, then V is not invertible, and thus in order to compute

V−1 we apply a pseudo-inverse scheme. Results are shown for the
model without empty sites, but there is no qualitatively difference
with empty sites. As shown in Figures 17-18, even for very simple
structure of matrix M, V and V−1 are not good proxies of the species
interactions. Although using our model shows that no of these meth-
ods work, this result highlights the importance to properly infer inter-
action networks from data. Therefore, how to explain the interaction
of each species is still an open problem.
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Figure 17: Histogram with the elements of the covariance Matrix V and its
inverse V−1 (calculated using pseudo-inverse method) compared
to the actual species interaction network M for a small (S=7) and
sparse (C=1/(S-1)) species interaction network. We see that both
V and V−1, if used as a proxy of M, overestimate the real interac-
tions in the ecological community.

Figure 18: Elements of the covariance matrix V and its inverse V−1 (cal-
culated using pseudo-inverse method) compared to the actual
species interaction network M for a large (S=100) and dense
(C=0.5) network. We see that, although there is some significant
correlations between elements of V , V−1 andM (see inset) , many
actual interactions (Mij 6= 0) are set to zero in both V and V−1.
On the other hand, in both V and V−1 wrongly indicate species
interactions also if Mij = 0.
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Part III

A P P E N D I X





A
M E A N - F I E L D A P P R O X I M AT I O N

As given by Eq. (5), the activity of each node depends on itself (F(xi))
and on the interaction with its nearest neighbours (

∑S
j=1AijG(xi, xj)).

Therefore, the activity of the average nearest neighbours nodes repre-
sent an important contribution of the system dynamics.

Assuming yi is a scalar quantity related to node i, we can define

the mean value of y over all nodes as yi is 〈yi〉 =
∑S
i=1 yi
S . For a given

node i, and picking at random another node j, the probability that the
selected j is a neighbour of node i is proportional to the out-degree of
j, soutj =

∑S
i=1Aij. Therefore, the larger the out-degree of node j is,

the larger will be the probability to select node j. We can thus define
the mean over all nearest neighbour nodes as

〈
yj
〉
nn

=
1
S

∑S
j=1 s

out
j yj

1
S

∑S
j=1 s

out
j

. (78)

Defining yj(xi) = G(xi, xj), the second term of the right part of Eq.
(5) could be written as:

∑S
j=1AijG(xi, xj) = sini

〈
yj(xi)

〉
j(i)

, where

j(i) denote all the neighbour nodes of i and sini =
∑S
j Aij is the

in-degree of node i. We highlight that if the correlations among the
nodes degree of the network given by the adjacency matrix A are
small, then the neighbour of i is on average representative of the
neighbour of any other other nodes and the relation sini

〈
yj(xi)

〉
j(i)

=

sini
〈
yj(xi)

〉
nn

holds for each pair of nodes i and j.
In order to mathematically formalize the above analysis, the oper-

ator L(y) =
1TAy
1TA1 =

1
S

∑S
j=1 s

out
j yj

1
S

∑S
j=1 s

out
j

is introduced, where 1 = (1, ..., 1)T

is the unit vector. According to this operator, Eq. (5) can be written
as dxidt = F(xi) + s

in
i L (G(xi, x)). If G(xi, xj) is linear in xj or the vari-

ance in the components of x is small, then L (G(xi, x)) ≈ G(xi,L(x)).
Therefore, dxidt ≈ F(xi) + s

in
i G (xi,L(x)) and the vector notation is

dx
dt ≈ F(x) + sin ◦G (x,L(x)), where ◦ is the Hadamard product. By
applying the operator to both sides of vectorized equation, it changes
to:

dL(x)
dt

≈ L
(
F(x) + sin ◦G(x,L(x))

)
≈ F (L(x))+L(sin)G (L(x),L(x)) .

(79)

Eq. (79) gives us the mean field description of the network activity,
but where the mean-field has been carried on in two steps: first aver-
aging only over the neighbours nodes, and then averaging again over
the whole network. Thanks to this mean-field approach we have a
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one-dimensional description of the complex multi-dimensional equa-
tion give by Eq. (5).
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B
A L G O R I T H M T O C A L C U L AT E T H E M E A N O F
C O M B I N AT I O N

The algorithm to calculate the mean of combination of d and n con-
sists of the following steps:

1. Generation of a feasible index combination. Such a combina-
tion like (i = j 6= k 6= l, i 6= l) is encoded in the upper triangle
of a 4× 4 boolean matrix, which in this case would look like

P =


− T F F

− − F F

− − − F

− − − −

 . (80)

Here, Pij = T implies that the i-th index is equal to the j-th
index (F for 6=), numbering the indices as (i, j,k, l) ∼ (0, 1, 2, 3).
We dump non-feasible combinations such as

Pillegal =


− T F F

− − F T

− − − F

− − − −

 . (81)

2. Calculating the number of terms nP associated with P. In or-
der to do so, we sort the indices into cliques containing only
equal ones. The number of cliques, called multiplicity factormP
is directly related to the number of terms by

nP = S(S− 1)...(S−mP) =
mP−1∏
α=0

(S−α) . (82)

3. Project the matrix P down to a 2× 2 boolean matrix RP. This
matrix encodes whether the actual random variables X = Aij
and Y = Akl are equal. We have X = Y only if i = k and j = l,
which in terms of the matrices P and RP is stated as

R01(P) = P02 ∧ P13 . (83)
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4. Calculating actual cliques C(R(P)). In this case, the only possi-
ble cliques are XY or X2, trivially encoded by R01(P).

5. Add contribution to overall sum. Each clique is associated with
a specific factor arising from taking the expected value. In this
case, we only have

〈XY〉 = µ2 and
〈
X2
〉
= σ2 + µ2 . (84)

We sum each term multiplied by the multiplicity nP, iterating
over all feasible index matrices P to get the corresponding ex-
pected value

〈d〉 = S ·
∑
P

nP 〈C(R(P))〉 . (85)

To incorporate correlation of transposed entries, we make use of
the lower triangle of R. In this example, we have Aij = X and Akl =
Aji = X

T only if i = l, j = k and (i, j) 6= (k, l), that is

R10(P) = P03 ∧ P12 ∧¬R01(P) . (86)

The associated clique has the expected value

〈
XXT

〉
= ρσ2 + µ2 . (87)

If we finally want to allow for the diagonal elements to be drawn
from a different distribution, we employ the free diagonal in a similar
manner. In this example:

R00(P) = P01, R11(P) = P23 , (88)

and the associated expected values

〈XYd〉 = µµd, 〈XdYd〉 = µ2d,
〈
X2d
〉
= σ2d + µ

2
d . (89)

For the second order terms, R becomes a 4× 4 boolean matrix, and
the full set of possible cliques becomes both larger (30 terms for both
correlation and specific diagonal) and more complicated (incorporat-
ing higher moments such as

〈
X3Y

〉
).
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C
J O R D A N D E C O M P O S I T I O N

Jordan normal form is a basic tool in linear algebra. Here, for sake
of completeness, we state the Jordan Normal Form theorem for a
S-dimensional matrix M with entries Mij ∈ C. Before stating the
theorem let us recall that a Jordan block of order k has the form

J =



ak ξ1 0 · · · 0

0 ak ξ2 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · · · · 0 ak ξs

0 · · · · · · · · · 0 ak


(90)

where ak ∈ C and ξi ∈ {0, 1} for i = 1, . . . ,k.

The Jordan Normal Form theorem states that every endomorphism
on a finite dimensional vector space on C has a Jordan matrix repre-
sentation.

Jordan Normal Form: Let V be a finite dimensional vector space on
C and M an endomorphism on V . Then there exits a basis of V such
that, with respect to this basis, the endomorphism M has the repre-
sentation

M =



J1 0 0 · · · 0

0 J2 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 Jm−1 0

0 · · · 0 0 Jm


(91)

where Ji, i = 1, . . . ,m are Jordan blocks. The number and the order
of the blocks are unequivocally determined by M.

Then, for example, if the i−th block, Ji, has dimension d, and vi1, vi2, . . . , vid
are the vectors of the basis of the Jordan representation related to the
i−th block, the Jordan Normal Form theorem implies that Mvi1 =

ai v
i
1 and Mvij = ai v

i
j + ξj v

i
j−1 for j = 2, . . . ,d.
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