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Introduzione

Nel primo capitolo di questa tesi studieremo il fenomeno della separata ana-
liticita: nel caso complesso é ben noto (Hartogs, 1906) che una funzione di n
variabili complesse & olomorfa se e solo se é separatamente olomorfa in ogni
variabile (vedi [11, 12, 16]). Dopo aver osservato che Al sufficiente supporre
n = 2 (possiamo in seguito iterare le conclusioni, aggiungendo una alla volta
le variabili), dimostriamo il passaggio fondamentale del teorema di Hartogs:
se f ¢ una funzione definita in A x A C C?, olomorfa per |2;| < € e separata-
mente olomorfa in zo quando z; ¢ fissato, allora f é olomorfa nel complesso
delle due variabili. La convergenza normale della serie di Taylor di f é data
dal lemma di Hartogs per funzioni subarmoniche. Tale risultato ¢ stato ge-
neralizzato in piu direzioni; nel lavoro presente si considera il caso in cui f ¢
separatamente olomorfa lungo le rette complesse, uscenti da una curva reale
7, che fogliano un’ipersuperficie reale M C C? e olomorfa in un intorno di 7.
Allora f é olomorfa in un intorno di M. Questa generalizzazione del lemma
di Hartogs offre una nuova interpretazione geometrica di un teorema di Siciak
(|17]) sulla separata analiticita reale: se una funzione in R? & separatamente
analitica reale in una variabile, e si estende ad una funzione olomorfa in una
striscia uniforme nella seconda, allora é analitica reale nel complesso delle
due variabili (Baracco-Zampieri, [5]).

Nella seconda parte trattiamo l’estensione di funzioni olomorfe definite
in un intorno di un wedge V' con edge non generico in una varieta generica
M. Viene definito ’angolo complesso am di V' in un punto p € 9V come il
massimo angolo di intersezione del cono tangente a V' in quel punto con una
retta complessa. Nel caso in cui V sia senza bordo (o = 2), o se l'edge di
V' e generico (o = 1), le teorie classiche di Boggess-Polking ([8]) e Tumanov
(|19]) assicurano l'estensione delle funzioni olomorfe in un intorno di V' ad
un wedge V/ su V. In [21] e [22] Zaitsev e Zampieri hanno generalizzato
il problema al caso % < a < 1: le funzioni olomorfe nell’intorno del wed-
ge, in questa situazione, si estendono ad un cosiddetto a-wedge su V' (tale
insieme puo essere visto come un wedge la cui componente normale ha un

andamento +). Per ottenere questo risultato viene introdotta una nuova teo-
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ria di dischi analitici con una singolarita a-Lipschitz in un punto di bordo:
proprieta fondamentale di tali dischi a-lipschitziani é che la loro componente
normale viene resa regolare dalla composizione con la funzione h di cui M
¢ il grafo. Grazie a questo fatto é possibile controllare la direzione di tali
a-dischi nel momento in cui vengono attaccati alla varieta. Nel nostro lavoro
viene presentata la naturale generalizzazione della teoria al caso o < %: per
rendere regolare la composizione della componente normale dei dischi con A,
chiederemo che h = OF (cioé M piatta e rigida all’ordine k) per k > <.



Introduction

In the first chapter of this thesis we study separate analyticity, starting from
the complex setting: it is a well known fact, proved by Hartogs in 1906 (see
[11, 12, 16]), that a function of n-complex variables is holomorphic if and
only if it is separately holomorphic in each variable. First we remark that,
by use of iteration, it is not restrictive to assume n = 2. Once we are in
dimension 2, we observe that the main step in the proof of Hartogs’ theorem
consists in showing that if a function f defined in A x A C C? is holomorphic
for |z5| < € and separately holomorphic in z5 when z; is kept fixed, then it
is jointly holomorphic; the normal convergence of the Taylor series of f is
obtained through the celebrated Hartogs’ lemma on subharmonic functions.
This result has been generalized in various directions and following different
approaches; in our work we consider the case where f is separately holomor-
phic along the complex lines issued from a real curve ~, which foliate a real
hypersurface M C C?, and holomorphic in a neighborhood of ~. Then it is
holomorphic in a neighborhood of M. This generalization of Hartogs’ lemma
also offers a geometric interpretation of a theorem by Siciak ([17]) about sep-
arate real analyticity: it is proved that a function in R? which is separately
real analytic in one variable and CR extendible in the other (that is sepa-
rately holomorphically extendible to a uniform strip), is real analytic (see
Baracco and Zampieri, [5]).

In the second part we deal with the extension of holomorphic functions
defined in a neighborhood of a wedge V' with non generic edge on a generic
manifold M. We define the complex angle ar of V' at a point p € 9V as
the maximal angle of the intersection of the tangent cone to V' at p with a
complex line. If V' has no boundary (a = 2), or if the edge of V' is generic
(a = 1), the classical theories of Boggess-Polking ([8]) and Tumanov ([19])
yield the extension

of holomorphic functions defined in a neighborhood of V' to a wedge V'
over V. In [21] and [22]|, Zaitsev and Zampieri generalized the problem to
the case 1/2 < o < 1: in this situation, holomorphic functions defined in
a neighborhood of the wedge extend to a so-called a-wedge over V' (this
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can be viewed as a wedge in the space where the normal directions have
a weight 1/«). To obtain this result, a new theory of analytic discs with
an a-Lipschitz singularity at a boundary point was introduced: the main
property of this new class of a-Lipschitz discs is that the conposition of their
normal component with the function h which graphs M is smooth. Hence it
is possible to control the direction of these a-discs when they are attached
to the manifold. In this work we present the natural generalization of this
theory to the case @ < 1/2: to keep the composition of the normal component
of the discs with h regular, we will ask that h = O (i.e. M is flat and rigid
to the order k) for k > 1/a.
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Chapter 1

Separate Analyticity

1.1 Separate complex analyticity

We study complex valued functions defined in open sets of C". Identifying
C" with R?", writing complex coordinates z = x + iy, with z = (21,..., 2,),
v=(x1,...,7,) ER" ey = (y1,...,yn) € R", and where i = /—1. We also
write = Rez e y = Im 2. Defining the conjugate of z as z = x — iy, we
have a linear change of real coordinates given by

(x,y) — (2,2) = (z + iy, x — iy),

with inverse

Z+Zz Z—Z)

(Z’Z)H( > %

This transformation can be read on the derivatives as

Op = 0, + 0=
0y =1(0, — 05),

with inverse
9. = 5 (0, — i0,)
0; = % (0y +i0,),

and in the dual base of differentials as

de = 3(dz + dz)
dy = 5(dz — dz),

dz = dx + idy
dz = dx —idy

1
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If f:C"— Cisa C! function, we can write it as
df =0f +0f =Y _ (0., fdz; + 0, fdz;) .
j=1

Definition 1.1. Let Q be an open subset of C". A function [ € Cl(Q) is
said to be holomorphic when 0f =0, that is

95 f =0 (1.1)
forany j=1,...,n.

We are interested in studying problems of separate analyticity: f is said
to be separately holomorphic in the variable z; if it is holomorphic in z;
when the other n — 1 variables are kept fixed. As we will see in the next
section, if f is separately analytic in each of the n complex variables, then
it is automatically jointly holomorphic; that is, the C! regularity required in
the definition above is a direct consequence of the separate holomorphy. All
the results in this chapter are stated in C?: they can easily be generalized by
iteration.

We begin by noticing that, if we assume continuity, or even less as bound-
edness, the conclusion is immediate

Proposition 1.1. Let f be a continuous function in a domain @ C C?2,
separately holomorphic in both variables when the other is kept fized. Then
f € C>®(Q), and in particular f is holomorphic.

Proof. Let D; and D, two discs such that their product D = D; x D,
is contained in (2, where f is separately holomorphic. Then, by Cauchy’s
formula, we can write

16 =, U @ =) %

_ f(Clu CQ)
a //8D1><8D2 (G —21)(C — Z2>dCl A dc

where the second equality is given by Fubini’s theorem (that we can apply
because f is continuous). Differientiating under the integral sign, we obtain
our conclusion. O

Proposition 1.2. Let f be separately holomorphic and bounded on compact
subsets of Q. Then f is holomorphic.
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Proof. By Proposition 1.1 we just need to prove that f is continuous. Let
20 € Q, and 2 — 20, and let z; move near 20 so that (2%, z) stays at a
distance bigger of r from the boundary of €). Let ¢ be a uniform bound for
|f| in the r-neighborhood of these points. Set F,(z2) := f(2Y, 22), then for
Cauchy’s inequalities we have

|02, F,(22)] <

I

1o

hence {F,} is equicontinuous and, if we also take 25 — 29, f(2¥,24) —
F(, 2). O

1.2 Hartogs theorem

We now state Hartogs’ celebrated result of 11|, where the equivalence of
joint and separate complex analyticity is proved (see also [12], [16]).

Theorem 1.1. Let Q be an open set in C? and f : Q — C a function such

that
21— f(z1,29) is holomorphic, for all 29
29 > f(20, z2) is holomorphic, for all 29.

Then f is holomorphic.

Notice that the statement is local, hence we can prove it for f defined
in polydiscs. The first step of the proof consists in gaining a small region of
joint analyticity.

Proposition 1.3. Let f : AXA — C be a function separately holomorphic in
each of the two variables. Then there exists § > 0 such that f € hol(A x Ay).

Proof. Define
El = {2’2 SANE |f(21722)‘ S l,Vzl € A},

E) is closed because f is continuous in the variable z, for a fixed z;. Moreover
UE;, = A.

But then, for Baire category theorem, there exists [y such that E; has a non-
empty interior whenever [ > [y. We can find a dense open set B C A such
that, applying Proposition 1.2, f is holomorphic in A x B. Assuming that
0 € B (up to an arbitrarily small shrinking of the analyticity domain), we
take a disc Ay C B, centered at 0: then f € hol(A x Ay). O
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We are now in the following situation: we have a function f : Ax A — C,
jointly holomorphic in a strip A x As, and separately holomorphic in the
variable zy for any fixed value of z; € A (we will not need the separate
analyticity in z; anymore).

The Taylor expansion of f with respect to z; and center in z5 = 0 is:

+00 oV
f(z1,22) = Z Mﬁzz” (1.2)

v=0

We would like it to converge normally in A x A, making f holomorphic there.

. ov ,0
The coefficients ZQflEfl )

are holomorphic in z;, hence the functions

9% f(21,0)|"

V!

pu(21) = (1.3)

are subharmonic.
By the separate holomorphy in z, and Cauchy-Hadamard criterion on the
convergence radius of power series, we have:

limsup ¢, (z1) < 1, for any fixed 2z € A,
V—00
while the joint analyticity in A x As, along with Cauchy inequalities, gives
us the following uniform estimate:

lim sup sup ¢, (z1) < 67"

v—0oo  z1EA
These conditions allow us to gain the uniformity in z; of the normal conver-

gence in z, of the series (1.2), making use of the following fundamental result
on subharmonic functions:

Lemma 1.1. Let {¢,} be a sequence of subharmonic functions defined on
A, and suppose there exist constants m < M such that

limsup sup ¢, (z) < M
v—oo  z€EA
and
limsup p,(z) <m, VzeA.

V—00

Then, for fized r < 1, we have

limsup sup ¢,(z) < m.

v=oo 2] <r
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Proof. Fix r < p < 1, and let o > 0. First we prove that, for any o’ > 0,
there exist a measurable subset £ of 0A, with A(E) < o’ (where X is the
Lebesgue measure on 0A,) and v, € N, such that ¢,({) < m + « for all
¢ € 0A,\ E, when v > v, o. Define

E, = U{CE@APZQO#(C) >m+ al;

p>v

then E,.1 C E, and, since limsup,_,., ¢, (() <mfor ¢ € 9A,, ., E, = 0.
Hence we can find v, € N with A\(E, ) <o Take E=E, ,, P.(() the

Poisson kernel of A, and C' = sup PZ(C) for |z] <rand ¢ € 8Ap.
If |z| <, then

oul2) < / Qs (Q)dNC) + / o OO0

by subharmonicity of ¢,.
For a big enough v, the first integral is:

/E POeu(Q)dNC) < / C(M + a)dA(C)

E

< C(M + a)\E).

As for the second integral, assuming m > 0 (up to translation), we notice
that for v > v, 4

/ P.(Q)pu(Q)dA(C) < / P.C) sup @,dA(C)
OAL\E OA\NE

OA\E

< /a o PO+ )

IN

(m +a) / NREGEL

< m+ a,

where the first inequality is trivial, the second follows from the definition of
E, the third one from the positivity of P, (¢) and the fourth from the fact
that

/ P.(C)AA(C) = 1.
oA,

Choose o satisfying C(M + «)a’ < «: recalling that
AME) <, for v > v, o = 1, we have

o, (2) <m+2a,

uniformly for |z| < r. O
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Theorem 1.2. Let f: A x A — C satisfying

F € hol(A x Ay)
f e hol({z}} x A), for all ) € A.

Then f € hol(A x A).

Proof. We saw that under these hypotheses the estimates of Lemma 1.1 for
the subharmonic functions {¢, } defined in (1.3) hold withm =1e M =§1;
then we have

limsup sup ¢, (21) <1

V—00 IZl‘ST

for all » < 1. This implies we have a v, such that, for v > v, we have

hence

r’ <1, for v > v,,

which proves the normal convergence of (1.2) in A, x A, for any r < 1. Since
all terms of the series are holomorphic and r is arbitrary, f is holomorphic
in A x A. O

As a direct consequence, Theorem 1.1 is proved.

1.3 Separate real analyticity

We have seen that if f is separately holomorphic in z; and 2z, then it is
holomorphic. It is a well known fact that this doesn’t hold for the real
analytic case: for example, the function

f(z1,22) = 129 €XP <—#)

3+ a3
is a C'*°-function, real analytic in each variable, but not jointly real analytic.

In C? = R? +4R? with coordinates z = (21, 23), 2 = x + iy, we consider a
function f on a domain Q C R?. We adopt the following terminology:

o f is separately real analytic in x; if its restriction to the section of 2
with each line parallel to the z;-axis is real analytic. This means that,
when the other real coordinate is fixed, f extends to |y;| < e,.
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o fis separately CR extendible to y; if it is separately real analytic in z;,
with a holomorphic extension to |y;| < e for a uniform e.

The issue in the previous example was that, while f extends in the direc-
tions y; and ¥, the extension is not uniform when z approaches 0.
The aim of this section is to prove the following result, stated in [5]:

Theorem 1.3. Let f be a continuous function defined in a domain Q C R?,
which is separately real analytic in 1 and CR-extendible to yo. Then f is
real analytic.

This result improves Siciak’s theorem of [17], where f was required to be
CR-extendible both to y; and ys.

The statement being local, we can suppose that €2 is the unit square I x I,
where I = (—1,1) C R; we denote by I the interval (—d,d), and by Uy the
strip I + ils C R%. We begin by proving the following result:

Proposition 1.4. Let [ be a function as in Theorem 1.3. Then there is a
positive § such that f extends holomorphically to Us X Ag

Proof. Up to rescaling, we can suppose f has holomorphic extension to the
sets Ug, er{71} X A and Uy, erA,, X {72}; we can even assume that f extends
to discs of radius slightly bigger than 1 and €,,. We first prove that there are
an open interval Iy and an open strip Us = I + i¢l5 such that f is continuous
in Is x A and in Us x Is, hence it is a continuous CR function therein. We
start from the proof of the continuity on I5 X A. Let

Ky ={z1 € I:sup|f(z1,2) < 1}

29€A

We note that K; C K, and that U K; = [ since sup|f(z1,22)] < +00
z2€A
for each x1. We claim that K is closed and f is continuous on K; x A.

In fact, let 27 — 29 with 2} € Kj; we want to show that then z{ € K.
We use the notation F,(z9) := f(xY,29) — f(29, 22). The sequence {F,}, is
equicontinuous on the compact subsets of A, as a consequence of Cauchy’s
inequalities and the hypothesis of boundedness of f on K; x A. We claim
that F, — 0 uniformly on compact sets. Otherwise, by the equicontinuity,
there is a subsequence {F,, }; which converges to a limit F # 0. But this
limit is holomorphic on A and equal to 0 on I, which is a contradiction that
proves f continuity on K; x A. By Baire’s Theorem, since U;K; = I, the
sets K; must contain an open interval for large [; also, such an interval can
be found in a neighborhood of any point and we may assume it contains
0, by means of a small translation. Thus there is a positive § such that f
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extends as a continuous function on Is x A, holomorphic in z: hence it is a
continuous CR function therein.

We now prove that f is a continuous CR function on Us x I5. For this
purpose, we define

1
Jy=A{xo: f(+, x2) extends to |y;| < 7 and |f (-, zq)| < }.

If 25 — x9 with x5 € J;, then by boundedness there is a subsequence which
converges to a holomorphic function on Us; this must be f(-,x%). As before
we have |f(-,22)] <1 and f|y, «z, is continuous. By Baire’s theorem we still

conclude that for large [, thel set J; contains an open interval that we can
suppose to be centered at 0. This concludes the proof of the claim.

Now we can use Ajrapetyan-Henkin’s edge of the wedge theorem of [1]
(following the presentation of [20]) to prove that f has a holomorphic exten-
sion to Ags X Ay, for a possibly smaller 9. We show first how to extend f for
0<Imz < 0,0 <Imgz < 4. In fact, choose smooth functions yj(ew) >0
with supp(y1) C [0, 7], supp(y2) C [7,27] and with unit mean value, take
(Aj) with 0 < \; < 0, 7 = 1,2, write yx = (Ay1, \2y2) and consider the
discs A;, x(7) which are the holomorphic extensions of (z, — Toyy) + iy, from
7 =¢e"Y € OA to T € A. (Here Ty is the Hilbert transform normalized by
To(-)(0) = 0.) Note that the boundaries of these discs, corresponding to the
values 7 = e of the parameter, are contained in the union of At x I5 and
Is x At (where A™ is the half disc defined by Im (7) > 0). Also, the set
of their centers {A,, 1(0)} = {z, + iA} is the set described by 0 < y; < 9§,
0 <y < 9. On the other hand f is uniformly approximated over the set
of the boundaries by a sequence of polynomials according to the Baouendi-
Treves approximation theorem (see [3]). This sequence is also convergent
in the inside of these discs, in particular in the set of their centers, by the
maximum principle. The limit of the sequence provides the desired extension
of f to the first quadrant 0 < y; < 9, 0 < yo < J; in the same way we prove
extension to the other quadrants.

We have seen that f is continuous and CR on Us x I5 and extends holo-
morphically to As x As. We notice that Us x I is foliated by the complex
leaves Us x {3}, for x9 € I5, which meet the set of holomorphic exten-
sion As X As. But then the propagation of the holomorphic extendibility of
CR functions along complex leaves yields extension of f to an open domain
Us x A of C? for a small §. This can be referred to Hanges-Treves theorem
of [10]; however, in the case of a plane, there is a simpler proof which uses
convergence radii of Taylor expansions, that we will present below (Lemma
1.2). The proposition is proved. ]
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Lemma 1.2, Let M = {(z1,22) € A x A : Imz =0, |20 > €}. If f is
a holomorphic function in (A x A)\ M, then it extends holomorphically to
A x A.

Proof. Define (A x A)t = (A x A)Nn{Imz > 0} and (A x A)” = (A x
A)N{Imz <0}, and let f* = f|axa)t. Take A < 1 and write the Taylor
expansion of f~ with respect to z; centered at x; — i¢\. The functions

azylf_(xl - Z)\J ZQ) %

vl

¢V(22> -

are subharmonic. We have:

limsup v, (z) < A7 Vz € A

V—00

and
limsup,(z2) < (1= A)71 if |zo] <e.
V—00
Now take a disc D centered at 29 € A (with |23 > €) and of radius p, such
that D N A, # (0. Then, by Fatou’s lemma and for solid submean property
of subharmonic functions, naming y the function that is (1—X)"'in DN A,
and A™! in D\ A, we have:

1
limsupv,(z5) = limsup —5 | u(z2)dz
V—00 V—00 7Tp D
1
< X(22)dz < N7,

2
™" Jp

for some A\ > \.

Iterating and applying Theorem 1.2, we prove that f~ extends to a holomor-
phic function in a neighborhood of M in A x A; but f is holomorphic in
(A x A)\ M, hence the extension must coincide with f* in (A x A)*. O

We are now in a situation similar to the one of Theorem 1.2, with the
difference that the separate extension takes place only for x; € I instead
of z1 € A; f: Us x As — C is a holomorphic function, whose restrictions
2y + f(29, 29) extend holomorphically to |z| < 1, for any fixed value of
2? € I C Us. As in the previous section, we can write the Taylor expansion
of f in zy centered at 2z = 0 and consider, for v € N, the subharmonic
functions

(1.4)
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For the joint analyticity in Us x Ag, we have

limsup sup @, (z1) <0°F, (1.5)

v—oo  z1€Ug

while, for any fixed x; € I, separate analyticity in z, gives us

lim sup ¢, (z1) < 1. (1.6)

V—00

We now state the following modified version of Lemma 1.1:

Lemma 1.3. Let AT ={z=2+iye C: |z|<1l,y>0}, I =(-1,1) C
OA*. Suppose that {p,} is a sequence of functions, subharmonic in AT and
upper semicontinuous on AT, such that

limsupp,(z) <1, Veel (1.7)
V—r00
and
limsup sup ¢, (z) <5 (1.8)

v—00 z€OAT
Then there exists a uniform constant k such that

limsup p,(2) < 1+ ké 'y,

V—00
uniformly on every compact subset of A™.

Proof. We adapt the proof of Lemma 1.1 to our case. Let a > 0 and K be
a compact subset of AT, For every o/ > 0 we can find a measurable subset
E C I with A(E) < o/ (where X is the Lebesgue measure on OA™) and v, o
such that sup,cp g, (2) <1+ aif v > v, o, since the measurable sets

E,=|J{Cel:puQ) 2 1+a}

pzv

form a decreasing sequence with (), E, = 0 (for (1.7)).
Let P,(¢) be the Poisson kernel of AT, and set Cx = sup P.(¢) for z € K
and ¢ € OAT. If z € K, for the submean property we have:

olz) < / L POAO0MO + / P(Opn(QdN(C) +

E

b [ BORODO)
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The first integral, by definition of E, is

/ PAOen(QdNO) < (1+a) / PL(C)AN(Q)
N\E I\E
< 1+«

for v > v, o. If v is big enough, we have

[ P00 < 67 +a) [ PAOaNQ)
< (674 a)CrA(E)

and

IN

/ PAOe(QdNO) < (57 +a) / P.(Q)dA()
AAT\T OAT\I

2071+ a) 1+z
= arg ;
s 1—2

both by estimate (1.8). Notice that

2 1+2
[ PO = Do (19)

since the second member is harmonic and is equal to the characteristic func-

tion of JA™ \ I on the boundary of A (see [9]).
Choose o such that (67! +«a)Cxa’ < «; it follows that, for v > v, o = V4 k,

20071 + «) 1+ 2

eu(2) < 1+a+ (07" +a)Ckra + arg -
T —z
261 1
< 1+3a+ arg +z
T 1—=2
< 1+43a+kd 1y,
for a constant k£ > 0, uniformly in K. ]

We are now ready to prove the following

Theorem 1.4. Let f be a holomorphic function in Usx Ag, whose restrictions
given by zo — f(2%, 25) extend holomorphically to A, for any fized 2° € 1.
Then f extends to a holomorphic function defined in a neighborhood of I x A.

Proof. Given a small o > 0, choose n < k~'da. Reasoning as in Theorem
1.2, and applying Lemma 1.3, we get normal convergence of the Taylor series
of f for |zs] < 1 — «, uniformly in z; when 0 < |y;| < n,. Hence f turns out
to be holomorphic in (I 4 il, ) x A;_,, where - means that 0 is removed.
But in fact f is holomorphic also at y; = 0 because this is true when 2z, € Aj
(see Lemma 1.2). O
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1.4 Further results

In this section we present some results of [4] and [14]. In Lemma 1.3, the
interval I does not play a special role: any curve Z C A x A serves the
purpose.

Let v be a C* curve and M a real C! hypersurface in C? foliated by
parallel complex lines I', issued transversally from each z € v. We show the
following

Theorem 1.5. Let f : M — C be a function, which is separately holomorphic
along each line I', and extends holomorphically to a neighborhood U of ~.
Then f extends as a holomorphic function to a neighborhood of M.

Proof. Let (21,22) be the coordinates in C?; we can suppose v C C x {0},
', ={x1} x A and M = v x A. The statement is local in z;, therefore
we can suppose that U is a neighborhood of {|23] < €}; f is holomorphic in
a neighborhood of =, say U, x A, (where U, is the e-neighborhood of ~ in
C x {0} and A, is the disc of radius €). We can write the Taylor expansion of
finU. x A, and define the subharmonic functions ¢, as in (1.4), obtaining
the pointwise estimate (1.6) for z € v and the uniform estimate (1.5).

We need a variant of Lemma 1.3. Let Z be a curve in AT contained in
the strip {0 < y < 5} with end points in AT \ I, and denote by At the
region bounded by Z and OA™ \ I. In this discussion Z needs not to be a
C'! curve; it must have just the regularity which is required for the Dirichlet
problem in A* to be solved.

Let {¢,} be a uniformly bounded sequence of subharmonic functions in A+

such that
limsupp,(z) <1, VexeZl

v—+00

limsup sup ¢, (z) < el

v—+00 LcgA+
we claim that

limsup o, (2) < 1+ 2ke 'n, (1.10)

V—00
uniformly for y < 2n. In order to prove (1.10), denote with P,(¢) the Poisson
kernel of A™; for z € AT, we have

/N P.(Q)dA(¢) S/~ P.(¢)dA(¢), (1.11)
OAT\T OA\T

since, for z € Z, the first integral vanishes and the second is positive, while
for z € 9A™T \ Z they are both equal to 1. Since these integrals are harmonic
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functions of the variable z, the inequality (1.11) holds for all z € AT, It
follows
limsup o, (2) < 1+ ke 'y,
V—00

uniformly on the compact subsets of A*; this last estimate yields (1.10) for
y < 2.

We now turn our attention to the curve . For 25 € v and a > 0, the C*
regularity of v assures us of the existence of a positive d, such that

ad,€

dist (2, T%,y) < ok

for z € v, |2 — 20| < 64. After rescaling by a factor d, ', we interpret T~
as [ and v as the curve Z.
By the argument above, applied to d,-half discs with center z,, we get

limsup ¢, (2) < 1+ 2ke 15,7 'n

V—r00

uniformly for y < 21 (notice that a factor d, ' enters into play because of
the rescaling). At this point we just need to choose

ady€
2k

17:

and to use a finite covering of v by d,-half discs. Taking the inf of the n’s
needed for this procedure, and reasoning simmetrically for negative half discs,
we end up with

limsupg,(2) <1+«

V—00

uniformly in the compact subsets of U, \ v, where U, is the n-strip around ~.
Therefore the Taylor series of f converges uniformly for z; € U, \ 7, normally
in zo € Aq_g:

its sum is then a holomorphic function in (4, \ v) X A;_,. But f extends
across M for |z| < ¢, and so it extends as a holomorphic function to U, x
A1_,, thus proving our statement. O

Remark 1. In the proof of Theorem 1.5 we needed to assume a C''-regularity
for the curve v. We can obtain an alternative proof by using Carathéodory’s
theorem: since the biholomorphic equivalence (Riemann map) between AT
and AT is continuous up to the boundary, it interchanges the distance to I
(that is Im 7) with the distance to Z. Hence the estimate of Lemma 1.3 can
be rewritten in a neighborhood of v, and the proof of our theorem can be
concluded as before.
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We now pass to prove an extension of Hartogs theorem for real analytic
foliations.

Remark 2. If we apply Theorem 1.4 to a family of lines {y; = const}, whose
corresponding stripes U, form a covering of A, we still have the conclusion of
Theorem 1.1. As we are going to see, this new proof is invariant under real
analytic transformations.

Let {I'y} be a foliation of holomorphic curves depending in a C* fashion
from a parameter A € A (where A is a connected open subset of R?), and
define 2 = U,I"y\. With this we mean there exists a real analytic diffeomor-
phism

O:AXA—=Q

which is holomorphic for A = const. Let € C Q be an open set with
Q'NTy #0 for all A € A.

Since the results we will prove are local in A\, we can choose holomorphic
coordinates such that €2’ is a neighborhood of z5 = 0 and the leaves are
transversal to such plane, and choos the parameter A = z; € A.. We will
also write @, (7) instead of ®(z1,7) and normalize the parametrization with
the condition ®@.,(0) = (21,0).

Theorem 1.6. Let f be a holomorphic function in Q' which extends along
Iy, for all xy € I.. Then f extends to a holomorphic function in M.

Proof. ®|;.«a is a real analytic function, holomorphic in 7: it can be locally
represented as a power series in x1 e 7. Changing x;, with z; in the series, we
obtain a function i), holomorphic in a neighborhood of I, x A, say V. s x A
(where V.5 = I. + ils), such that fb][exA = &. We will write I',, = ®,, (A).
Notice that

f:m = F-Z’l? (112)

for ;1 € I.. Up to taking a slightly smaller J, we can suppose

Uzleve,é(bzl (A5) cq.

Consider the function f o ® defined on Ves x As: it is holomorphic, and for
(1.12), its restriction 7 — f o ®(x1,7) extends to a holomorphic function
in A, for any fixed z; € I. C V5. Under these hypotheses we can apply
Theorem 1.4: for any a > 0 there is a positive d, such that f o ® extends to
a holomorphic function in V.5, < Aj_,. O

As an immediate corollary, we obtain:

Theorem 1.7. Let [ : Q — C be a holomorphic function in €V, which is
separately holomorphic along each leaf I',,. Then f is holomorphic in €.
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Proof. We can apply Theorem 1.6 to any line {Im z; = ¢}: for any a > 0, we
find a holomorphic extension of fo® for z; satisfying ¢ — 0, < Im z; < ¢+ 0,
and |7| < 1 — «a. Now any compact subset of 2 has a finite covering of open
sets where f is holomorphic, thus proving our statement. O
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Chapter 2

Holomorphic sectors

2.1 CR manifolds and CR functions

Let M be a smooth real submanifold in C"”. The complex tangent space at
a point p € M is defined as the maximal complex subspace in T, M, that is

TM = T,M N JT,M,

where J : C" — C" is the operator of multiplication by i. The manifold M
is called a CR manifold if dim T}7M is independent on p € M. Moreover, M
is called generic if T, M spans T,,C" = C" over C for all p € M, that is

T,M + JT,M = C".

We observe that all real hypersurfaces are generic, and that a generic manifold
is always a CR manifold.

Definition 2.1. Let f be a C' function defined on a CR manifold M. f is
called a CR function if df is C-linear on T°M.

In other words, if M C C" is a CR manifold defined by » = 0 for r =
(75)j=1,..m» & C* function f: M — C is CR if and only if for any extension
of f to C", which we still denote by f, we have Of AOry A ... AOry, = 0. For
a function f which is only continuous, we say that f is a CR function if the
above condition holds in the distributional sense.

The celebrated Baouendi-Treves theorem of [3| states that a CR function
can be locally approximated by holomorphic polynomials.

Theorem 2.1. Let M C C" be a generic manifold. For any point p € M
there exists a neighborhood U of p in M such that for every continuous CR
function f defined on M there is a sequence of holomorphic polynomials fy
that converges uniformly to f on the compact subsets of U.

17
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Proof. First we prove the statement for a maximally real submanifold M,
throuh p, that is T°My = 0. We set coordinates in C™ such that p = 0 and
T,My =R" C C". Up to shrinking M, we can suppose there exists 0 < c < 1
such that

IIm (z — w)| < c|Re (z —w)], (2.1)
for all z,w € My. We define the entire functions
A\ 2 .
H(z) = (—) F(w)eE= dwy AL A dwy,,
m Mo

where (z — w)? = Y (z; — w;)* and X\ > 0. (2.1) tells us that, as A —
00, fa(z) = f(z) for z € My. We now pass to prove that fy, — f in a
neighborhood of p € M. We view M, as a manifold with boundary, and
consider a small perturbation M; of My with the same boundary. Let

fa(z) = (é> ’ Fw)e = dwy AL A dwy;

T M

then fy(z) = f(z) for z € M.

Let M C M be the manifold bounded by M, and M, that is M =
My — M;; since e~ Mzmw)? g holomorphic, the integrand is a closed form on
M. Then, by Stokes theorem, it is immediate to conclude that fy(z) = fi(2)
for all z € C". We have proved that the sequence f, converges to f on every
small perturbation of Mj, and then in a neighborhood of p in M. Using
the Taylor expansions of f,, we obtain the desired approximation of f by

polynomials. O]

We now discuss the normal form for a generic manifold. Suppose M is
generic: then we can choose holomorphic coordinates (2/ = = + iy, 2") €
C™ x C*™ around a point p such that p = 0, T, M has the equation y = 0,
and T M has the equation 2z’ = 0. Then M is defined by a local equation

y = h(x,2"), (2.2)

where h is a smooth function with ~(0) = 0 and dh(0) = 0. Moreover (see
[7] and [23]) we have:

Proposition 2.1. Let M C C™ be a generic submanifold of codimension m
and class CF and let p be a point in M. Then there is a holomorphic change
of coordinates such that, in the new coordinates, M is graphed over x,z" at
p =20 by
y; = hi(z,2"), j=1,...,m,
with
A h0) = 0" n0)y =0 |1+ J] < k. (2.3)

" I
xl2"J zIz"J
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Proof. As we stated before, we can suppose M is graphed by a smooth func-
tion h with h(0) = 0 and dh(0) = 0. For the Taylor expansion of h = (h;)
up to order k, we have

_ I _nJ-nK k
h = E argrT 2 °Z 0 + 0",
[+ |+ K[>2

where a = ay ;i is an [-vector a = (a;). We “complexify” from = € R™ to
2/ € C™ and from (2”,z") € C"™™ Xcn-m C"™ to (2", @") € C"™ x C"™.
Consider the polynomial map

hk: (Z/,Z//,IDH) — 2 : aIJKZ/IZ//Jw//K
(LI+| |+ K[=>2

by the implicit function theorem, there is a unique map ® = ®(z’, 2”) such
that
2= ®( + ik, 2",0), 7). (2.4)

Define a holomorphic change of coordinates in a neighborhood of 0 by

7=z —ihk(®(2, "), 2", 0), (2.5)
=27 '
If z € M, that is, y = h(x, 2", Z"), then
j =1y —Reh®(®(,2"),2",0)
"oz k . "nozn " " (26)
=Re (h(z,2",7") — h* (® (z + ih(z, 2", 2"),2"),2",0)) .

To obtain an equation for the image M of M under the coordinates defined
by (2.5), we must replace (z, z”) by (xz(Z',2"),2"), which yields

7 = Re (h (x(z ), zz)

—h* (‘1’ <x(z’,z”) +ih(x(Z,2"), 23", 5 ) 0)) (2.7)

We write (2.7) as § = Re h. By the implicit function theorem, we can remove
g’ from h: hence Reh can be seen a graphing function for M. We just have
to see that h satisfies (2.3). Consider the function

(7,2") s x(2,2",2"). (2.8)
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Take a*, of (2 8) and complexify the variables from (z,%",Z) to (2/,2",@"):

~ —=!
we get for ok =2k 2 )

h(él 3 0 = )_ hk( k P EH>
_ Rk (CI) (CL’ + bk ( k ~”,ﬁ)//> ’§//> ’51/’0) + oF. (2.9)
We want to prove
hz', 2" ,0) = o

and
hE,0,0 ) = o".

If we prove the first, the second follows conjugating. Using (2.4), we have,
for z and 2" replaced by 2% = 2%(Z’,2”,0) and 2", respectively,

ah =@ (2F 4 ihF (2", 2, 0),2") + oF. (2.10)

But then, using (2.10) into (2.9) and evaluating h* and ® for @ = 0, we
have

B _ hk(l’k, U O) - hk ((I) (CL’ +th(x P 0) ~//) 5//’0) + Ok
= hF(2*,2",0) — B* (2% + 0", 2", 0) + o (2.11)
= Ok7
which completes our proof. O]

2.2 Analytic discs

We review the classical results about extension of CR functions by the an-
alytic disc technique. Our presentation closely follows those of [20] and [23]
(see also [2] and [7]).

Let A be the standard unit disc in C, and 0A the unit circle.

Definition 2.2. An analytic disc in C" is a holomorphic map
A:A—-C"

continuous up to the boundary. If M C C" is a submanifold, we say that A
is attached to M if its boundary A(OA) is contained in M.
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Let f be a CR function defined on a generic manifold M C C"; then
by Theorem 2.1 f is a uniform limit of a sequence f) of polynomials in a
neighborhood U of a point p. If A is a small disc such that A(OA) C U,
then f\ converges to f on A(OA); but then, since f\ o A converge on 0A,
they must converge in the interior A by the maximun principle. Hence f)
converge on the image A(A). Suppose now that € is an open set filled up by
sufficiently small analytic discs attached to M: then f, converge uniformly
on €) to a holomorphic function that extends f. Analogously, if €2 is a CR
manifold filled by discs, the limit of f) is a CR~extension of f.

We now introduce the Hilbert transform. If v : 0A — R is a smooth
function, it has a unique harmonic extension to A: this extension u has
a harmonic conjugate v on A, that is, a function v such that u + v is
holomorphic in A. v is uniquely determined up to an additive constant. The
Hilbert transform (normalized at 1) is the map T} : u|ga — v|9a normalized
by the condition v(1) = 0. Note that u = —Tiv+wu(1). T} is not a continuous
functional over the spaces C* of functions with integer regularity; it finds its
natural settings in the Holder spaces C**(9A), for k > 0 and 0 < a < 1, of
functions f endowed with continuous derivatives up to order k which satisfy

|07 f(e™t) — OFf(e™))]

fllea = Ifllk + sup < +o0.
1l = 171+ sup S =

With this norm, the space C* is a Banach space; moreover, if f and ¢ are
two maps in C*“, it is immediate to show that

1fglle < W[ fllallglla-

Hence C*° is a Banach algebra.
We prove the following classical result, due to Privalov:

Theorem 2.2. The functional Ty : C**(0A) — C**(JA) is continuous.
Proof. We write the harmonic extension of u through Poisson integral as

1 [ (1 —r?)u(e?)

Yy = = dv
u(re?) 21 Jo (1412 —=2rcos(d — ¢))
1 1— |z d
- 2] u(r) =
27 {|7|=1} ’T — 2‘2 T

~ Re [ﬁ /{ - (:fj) u(7>dT—T]

1 d
F=— (T+Z) u(r) =
21 {|r|=1} T —Z T

for r <1. Set
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F' is holomorphic in z, and since u is real, we have Im F'(0) = 0. But then

1 d
Tyu|,_pw = Im [—, / (T i Z) u(r)—T] it
211 {|Ir|=1} T—Z T

where Tj is the Hilbert transform normalized at 0.

Since 2 is smooth for |7| = 1, |z| < 1, it is sufficient to prove the
continuity of the Cauchy integral K defined by
1
Ku(z) = — ur) dr, |z| <1.

21 {|r|=1} T —Z

It is immediate to estimate ||Kul[x by ||u||gq. So, we have to estimate
@ = Oku. For z; = et and 2, = €2 in DA, set € = |21 — 29| and Ba.(21) =
{7 |7 — 21| < 2¢}. We have

271 T—2 T — 22
+  (a(z1) — a(z))
1 1
= — o+ e (a(zl) - ﬂ(ZQ))
2mi OANBa(21) 2mi OA\Bac(z1)
We use
1

- o+ (W(21) = a(z))
270 oA\ Boe (21)

1 1 1
= — (a(r) —u(z)) { — } dr
271 A\ Bae(21) T—z2 T — 22
1 —u + U - -
o S 8 g () - )
T JOA\Bac(z1) T— 2

since ﬁ faA #dT = 1, the sum of the second and third terms in the right-
2

ﬁ(zl ) —ﬂ(ZQ

hand side is fBQ (:1)M0A — 72 )dr. Tts absolute value is then estimated by

lE||a]z1 — 22|® The absolute value of the first term on the right-hand side
can be estimated by

Jilolzs =2l [ 20— 000 5 allles —
OA\Bac(z1)

As for the remaining integral over A N By (21), we have

1 N a— a—
1 <l / (19— 91° + 19 — 0] 1)d9
27T7’ 8AﬂBge(z1) 8AQBQ€(21)

S lallalzr = 2"

The proof is complete. O
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We are now ready to construct analytic discs attached to a generic man-
ifold M, as described by Bishop in [6].

Proposition 2.2. Let M be defined by (2.2) with h € C**'*2. Then for any
small w € CH*(OA, C"™™) with w(1) = 0, and for any 2 close to 0, there is
a unique u € C**(OA,R™) which is a solution of

u=—Tih(u, z) +w(T)) + . (2.12)

Moreover, if w depends on some parameter n € R so that R? — C**, n+—
w, is C, then also (0,2, 2)) ¥ Uyar v, REx Cm — CR2(9A) is C.

o0’ ~o

Proof. Consider the mapping

F: CP(QA,R™) x CF*(9A,C™™) x R™ x C"™™ — C*(9A, R™),

(u, w, xq, 25) — u+ Tih(u, 2, +w) — ;.

F is a C'-functional between function spaces. For the Jacobian 0,F with
respect to u, we have
O F : 1 — 0 —Ti0.h.

Evaluation at (0,0, 0) implies that 0, F is invertible since 0,h(0) = 0. Hence
the implicit function theorem in Banach spaces yields the solvability of (2.12),
along with the required dependence of the solution on all the parameters. [J

Let N,M = T,C"/T,M be the normal space to M at p € M, and I" C
N,M an open cone. A wedge W with edge M and direction cone I' is a set
of the form

W=(MnU)+T)NnU,

where U is a neighborhood of p in C". We state the following version of the
edge-of-the-wedge theorem, due to Ajrapetyan and Henkin ([1]).

Theorem 2.3. Let M C C" be a generic submanifold, and p € M. Let
M; 1 <37 < m, m = codimM) be manifolds with boundary M (hence
dimM; = dimM + 1). Suppose there are &1, ..., &, & € T,M;/T,M pointing
inside M;, such that span{¢y,...,&m} = NpM. Then all CR functions on
MUMU...UM,, extend holomorphically to a wedge W' with direction cone
I, where I is any finer cone than I' = conv{&y, ..., &n}-

Proof. We take p = 0, and describe our situation by taking M defined by
(2.2) and adding the extra directions &, . ..,&,,. We suppose M and M, are
defined by the equation

y = h(z,w,t),
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where ¢t € R™ and h is a smooth function defined in a neighborhood of 0 in
R™ x C"™™ x R™: M has the equation y = h(z,w,0), while M; is described
by t; > 0 and t; = 0 for i # j. We can assume h(0) = 0, 9,h(0) = 0,
Owh(0) = 0, and 9;h(0) = id; then the cone I', defined as the convex span of
the §;’s, is turned into

P={teR™:t;>0,1<j<m}.

We observe that (z,w,t) is a set of local coordinates of C" in a neighborhood
of 0. Let A(7) = (u(7)+iv(7), w(7) be a disc attached to M UM U. ..UM,
and t(17) = (t1(7),...,tn(7)) be the t-component of A in the coordinates
described above. Then all ¢;(7) > 0 for |7| = 1, but for any 7 € OA only one
of the t;(7) can be different from 0. We decompose A into a union |J~; of
j=1
arcs of length %”, take o;(7) > 0 with supp ¢; C v, and % [ ¢;d9 =1 and
define
t)\(T) = ()\1901(7_)7 e )‘m‘pm(T))a

for (A1,..., A\m) € RT.

Take parameters \, wy and zp. Then we have a family of discs Ay ;.
given by the solution of the Bishop equation

u=—T1h(u,wy,t) + xq.
Consider the evaluation mapping of the centers of the discs
E 1 (To, A, Wo) — Ax oy (0) = (2, +70(0), w,);

we prove that for the Jacobian of £ at 0 we have

Js_(o ) id), (2.13)

where the asterisk denotes unimportant elements. Thus, when the parame-
ters (A, zo, w,) describe R x R™ x C"~™, the union of the centers of the discs
covers a wedge W with direction cone I" for every I" finer than I' = R, and
we can conclude by the Baouendi-Treves approximation theorem (Theorem
2.1).

From v(0) = 5~ f%

= [ v(e™)dy for v = h, we get

2T
D,0(0) = (27)"! / 0,0, udd.
0
We also have 9yv(0) = 2= [7(9,hdyu+3;hdrty)dd. At A =0, z, = 0, w, =

0,
we have 0,h = 0, Oxt, = id. Hence, if 2(0) = u(0) + w(0), J,,2(0) = id,
02z(0) = i0;h, which proves (2.13). O
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We now treat the Lewy extension theorem of [13], and its extension to
manifolds of higher codimension due to Boggess-Polking (see [8]).
Let M C C™ be a smooth real hypersurface given by the equation r = 0.

Definition 2.3. The Levi form of M = 02 at a point p is the hermitian
form

Jor X, Y € T7M.

The Levi form is invariant under holomorphic change of coordinates, and
its rank and signature are well defined (that is, independent of the defining
function 7), up to the choice of an orientation: as a convention, we will
suppose that the open set Q is given by {r < 0}.

When the Levi form of M has at least one negative eigenvalue, holomor-
phic functions defined in €2 extend across the boundary:

Theorem 2.4. Let M = 0N a real hypersurface of class C°. Suppose that
3w0@u70h(p) <0

for a complex tangential vector wg. Then there is a full neighborhood U of p
in C™ with an extension map

hol(U N Q) — hol(U).

Proof. We will construct a family of discs { A} attached to M, with A(1) = z
describing a neighborhood of p, and prove they are transversal to M at 1 with
a uniform bound for the angle they form with 7°M; then the rays A([0, 1]) will
fill up the desired neighborhood of p, forcing the extension of the holomorphic
functions defined on 2.

Let M be defined bas in Proposition 2.1 in coordinates (z + iy, z”), and
define the z”-component of a disc A, , (for z = (z + iy, 2”) close to p and n
small) as w,(7) = nwe(l — 7). By Theorem 2.2, we can find a disc A, ,(-) =
(un(+) + 1v,(-), 2" + wy(-)) attached to M and such that A,,(1) = z. Fix
z = p = 0; it is easy to see (by the normal form of the hypersurface) that the
Taylor development of dv, (for 7 = te” € A) with respect to 7 reduces to

772
8tU77 = atasvnhzog + 02.

Recalling that v, = h on 0A, and applying the vanishing of derivatives of
Proposition 2.1, we can prove that

A2y = 200,05, 1|1 — 7|* on HA.
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Since |1 — 7|?|sa = 2Re (1 — 7)o, we have
0,020 =0 = —40u,Ogh > 0,

that is, the ray of the disc A, is transversal to 0 and points outside ().
The final step of the proof consists in moving z near 0 for a fixed small 7,
obtaining the desired family of discs. O]

Let now M C C" be a generic, higher-codimensional, submanifold, locally
given by an equation r = 0, where r = (r1,...,7,,) is a smooth R™-valued
function in a neighborhood of 0 € C" such that dr; A --- A 9r,,, # 0. Define
the Levi form of M as

— " 0%
J

k=1

for X,Y € T3 M; we identify N,M with R™ by the differential dr(p). The
Levi cone of M at p is the cone

I' = conv{Ly(p)(X,X) : X € ToM};
I' is independent on the choice of r.

Theorem 2.5. Let M be a generic submanifold of C" of class C°, and let T
be the Levi cone of M. Then all continuous CR functions on M extend to a
wedge W with edge M and direction cone T'.

2.3 Nonsmooth analytic discs

Following [21] and [22], we introduce spaces of functions on A and on A
that are C! everywhere outside the point 1 € A and have a prescribed
singularity at 7 = 1.

In the sequel, for 0 < a < 1, we take the principle branch of (1 — 7)¢ on
A which is real positive on the segment [—1,1]. For each «, we denote by
d = d(«) the unique positive integer such that do <1 < (d+ 1)a. Then d is
the maximal power such that (1 — 7)% ¢ C1# for any 0 < 8 < 1. Fix any 3
satisfying

(2.14)

0<f<(d+a—-1 if(d+1a>1,
0<pf<(d+2a—-1 if(d+1)a=1.

Then we have 8 < o and (1 — 7)7* € C%# if and only if j =0 or j > d.
Denote by Cy4[(1 — 7)?] and Cy4[(1 — 7)%, (1 — 7)“] the spaces of complex
polynomials of degree at most d in the corresponding variables. By a slight
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abuse we use the same notation for the spaces of restrictions of the polyno-
mials to OA and to A respectively. In order to exclude constant functions
from C'#, we consider the subspace of all functions f € CY# with f(1) =0
denoted by Cll’ﬂ.

We define

POA) == Cy[(1 — 1) + CIP(BA) C C(HA),

_ ! L~ _ (2.15)
PUA) = Cyl(1 —7)*, (1 = 7)Y+ Cy7(A) C C(A).

Our definition is given an important motivation by the following property

Lemma 2.1. Both sums in (2.15) are direct, i.e. any function f € P*(0A)
(resp. f € P*(A)) is uniquely decomposed as a sum f = p+ g with g €
CIP(OA) (resp. g € CYP(A)) and p a polynomial in the corresponding space.

Proof. We prove that the decomposition f = p + ¢ is uniquely determined
by the asymptotics of f at 1 € QA. For 7 = ¢’ € A and any j, we have

(1 —7)% = (1 —cos? — isin¥)?®* = (—i9)?*(1 + Ir; (V)

with 7;(¥) real analytic in [—m, 7] (we used the power series expansions of
sin? and cos ¥ at ¥ = 0). Hence, if we take two decompositions f = p;+¢g; =
P2+ go, we must have p; ((—i)*) — po((—it))®) € C1F which is only possible
for p1 = po, and therefore g; = go. The uniqueness of the decomposition in
P(A) also follows from the asymptotics of the powers (1 —7)7® at 7 = 1 for
T € A. ]

Let f € P and f = p + g its decomposition as in Lemma 2.1, with
p = Z?=1 ¢j(1 — 7)7*. Thanks to the uniqueness of such decomposition, we
can define the norm

d
11l = lesl + llgllcrs.
j=1

This norm makes P*(0A) (resp. P*(A)) a Banach space. Moreover

Lemma 2.2. There exists a constant C > 0 such that the spaces P*(0A)

and P*(A) with the norm C|| - ||(a) become Banach algebras.

Proof. We prove the statement for P*(0A); the case of P*(A) is analogous.
The only nontrivial statement is the behaviour with respect to the multipli-
cation. If f and g are either polynomials or functions in 011 » , it is easy to
check that

Cllifallw < C?1 fllieyllgll - (2.16)
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It remains to consider the case when f(7) = (1 — 7)/® and g € C}”. After
removing the linear terms, we may suppose ¢g(1) = ¢’(1) = 0 and hence
9T < llgllvslt = 71, 19 ()] < llglls11 = 7|7. We have

(f9)'(r) = ja(l = 7)"*lg(7) + (1 — 7)%g/(7). (2.17)

Since ja > « > f3, the second term is a product of functions in C, hence
it is in C? with its norm estimated by || f|l(w|lg//(). To show that the first
term is also in C%, we estimate its derivative

(Ga(=ry*" g (r)'| S 1A=7)"*g(n)|+]|A=7)""g' (D] < llglplt—7"""

which implies, by integration, that also the first term on the right-hand side
of (2.17) is in O with its norm estimated by ||g||1 5. We have fg € C}?(QA)
with || fgll) S I fll(@llglla)- Then there exists a suitable constant C' such
that we easily obtain the estimate (2.16). O

From now on we rescale the P*-norm according to Lemma 2.2 to obtain
the inequality [|fgll@) < [[fllwllgll@ for all f,g € P*(9A) (resp. f,g €

P(A)) without any constant C.
It is an immediate consequence of the construction of the spaces P* and
of Privalov’s theorem (2.2) that the Hilbert transform

Ty : PY(0A) — P (0A)
is a continuous linear operator.

Lemma 2.3. Let d > 1 and 0 < 8 < « be chosen as before, and let K be
either OA or A. If f € P*(K,R") with f(1) =0 and h € CH%(R",R™) with
vanishing derivatives hU)(0), 1 < j < d, the composition ho f is always in
CHP(K,R™).

Proof. Without loss of generality, we can suppose h(0) = 0. We want to
show that the estimate

Iho fllus S (14 LFIZ) 1Al (2.18)

holds. Write f = p+ g as in Lemma 2.1; we have

(h(f))'(7) = R (F()I' (T)] + B (f(7))[g'(7)]. (2.19)
Since 8 < a we always have f € C* C C?, with || f|ls < ||fl(a); therefore
W o feCP with
1B 0 flls S (X +11F @)l All2-
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Since ¢’ is in O (which is a Banach algebra), the second term on the right-
hand side of (2.19) is C# and its norm is estimated by the right-hand side of
(2.18). We need to show the same estimates holds for the first term.

Since (1 — 7)* € C?, the multiplication with (1 — 7)® or with (1 — 7)®
preserves the class C”. Hence it suffices to prove the estimate

IR F ' (s S (14 11 1l (2.20)

for p(7) = (1 — 7)* (the case p(7) = (1 — 7)* is analogous). We write the
derivative

(W (FEDIL = 7)) (r) = B (f (D)) (]I = 7)*7]
+(a = DA (DI - 7)) (221)

by the vanishing hypothesis on the derivatives, we have
n(@)] S [Bllavele 2 |1 (@)] S [Pllarelal™, |17 (@)] S [lhllaselz].
Using these estimates, along with
FOIS I @l =71 1 OFS el =717

we obtain

RN (O = ) S I I Rllaa] 1 — 7l (2.22)

and

B (FNIA =) S NG Nhllarelt — 7] 22, (2.23)
By an integration of (2.22) and (2.23), we get the estimate (2.20), that con-
cludes our proof. O

The C%2-smoothness in Lemma 2.3 is not necessary if we don’t have
(d 4+ 1)a = 1; in any other case it is sufficient to replace d + 2 with d + 1
to obtain the same result. We write d' = d'(a) = d for (d+ 1)a > 1 and
d = d + 1 otherwise; hence the conclusion of Lemma 2.3 holds for d + 2
replaced replaced by d' + 1.

In |21] the following more general result is proved on the differentiability
of the composition operator acting on P.

Proposition 2.3. For | > 1, the composition (h, f) — ho f defines a C"
map c: CTHHH(R? R™) x P(K,R") — PY(K,R™) whose first derivative is
given by o _ _

(h, Plh, f1(9) = h(f(9)) + B (f(9))[f(D)].
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Let M C C" be a generic submanifold of class C* ! (] > 1) through 0
that is locally represented as a graph

M ={(z+iy,w) e C""" x C" :y = h(z,w)} (2.24)

with A(0) = 0, 2'(0) = 0. We know from the classical theory (Proposition
2.2) that it is possible to attach C*-discs A(-) = (z(:),w(-)) to M for a
prescribed component w(-) € C* We want to show that, when the w-
component is in P%, the whole disc is in P“; moreover, we will prove that
the discs smoothly depend on their parameters.

Proposition 2.4. Let h = hgy be of class C¥*? and M = M, be given by
(2.24). For every sufficiently small xo € R*™™, w(-) € P*, where w(-) is
holomorphically extendible to A, and for every h sufficiently close to hg in
C¥+2, there exists a unique sufficiently small disc A(-) = (z(-),w(-)) in P*
altached to M such that Rez(1) = z. For h € CY**1 (1 > 1), the disc
A € P depends in a C' fashion on the parameters xo € R"™™, w € P* and
h e Cd’+l+l_

Proof. The required disc A(-) = (x(-)+iy(-),w(:)) can be obtained by solving
the Bishop equation

z(-) + Tih(z(9), w(9))(-) — z = 0. (2.25)

Call F the left-hand side of 2.25: it follows from Lemma 2.3, Proposition 2.3,
and the continuity of 77 on the space P%, that F'is a differentiable mapping.
Moreover, we have

O, F[i] = & — Tyh(x,w)(+) — xo;

in particular, evaluation at (0,0,0) implies that 0,F is invertible, since
0,h(0) = 0. Thus, for the implicit function theorem, we have a unique
solution to 2.25. O

Consider the cotangent bundle T*C"™: we identify it with the space of all
(1,0) covectors. Then the conormal bundle T;,C" of M in C" is the set of
all covectors in T*C"|y; which are purely imaginary when restricted to T'M;
T7,C" is a real (not necessarily CR) submanifold of 7*C". If 7 : T*C" — C"
is the natural projection: each fiber (73,C"), is naturally identified with a
maximal totally real linear subspace of T;C"~™. Denote by GL(C"~™) the
general linear group on C™ (that is, the group of all linear automorphisms
of C"™™); given p € M, the set G*(p) of all (¢,G*) € M x GL(C"™™) with
G*((T5,C"),) = (T5,C™), is a generic submanifold in C" x GL(C"™™) with
maximal totally real fibers over M. Hence we can identify 7;,C" with a
generic submanifold of T*C"~™. Applying Proposition 2.4 to the generic
submanifold G*(p) for p = A(1), we get:
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Lemma 2.4. Let A be a small P* disc in attached to a generic submanifold
M C C" of class C¥*+3. Then there is a unique disc G* : A — GL(C"™™) of
class P* such that G*(1) = id and, for ¥ € A,

G (D) ((T3C") aqy) = (T3 C") aw)-

We say that a generic manifold M, graphed by a function h in a neigh-
borhood of 0 as in (2.24), is flat and rigid up to the order k if

Iz, w) = O(Ja|* + |w]*);

we remark that by (2.2) all generic manifolds are flat and rigid up to the order
2. This observation led in [21] to prove that, if 1/2 < o < 1, the normal
component of discs in P is smoothed by composition with the function A
graphing M. More generally, making use of Lemma 2.3:

Lemma 2.5. Let A be a sufficiently small P“-disc attached to a generic
submanifold M C C", flat and rigid up to the order k and of class C*T1, and
set p= A(1l) € M. Then there is a unique representation

ATy =p+ (1 —7)"A1 + ...+ (1 — T)do‘Ad + B(1),
with Ay, ..., Ag € TSM, B(-) € C** and B(1) = 0.

Proof. We can suppose p = 0 and M is given by (2.24) with R0)(0) = 0 for
1 <j < k-—1. Since A is attached to M, we have y(7) = h(z(7),w(7)) for 7 €
OA. Then, by Lemma 2.3, y(-) € C1#(9A); hence even its Hilbert transform
x(+) is in CY#(OA). Therefore the holomorphic extension z(-) = x(-) +iy(-) €
C%A(A). Then the existence and uniqueness of the representation above are
given by the definition of the space P* and Lemma 2.1. ]

We denote by [v] € TyC" the equivalence class defined by a tangent
vector v. Since under the conditions of Lemma 2.5, the normal component of
Ais CY¥, it makes sense to write [0,A(1)] € (TyyC™) 41, even though 8, A(1)
(the radial derivative in A) may not exist; it makes sense now to discuss the
directions of P*-discs at their singular points.

Let G* be the “connection” on T;,C" over OA defined by Lemma 2.4: for
each ¥1,7; € JA, we have a linear isomorphism between (75,C")4(y,) and
(T3%/C") a(9,)- By duality, we can define an isomorphism between (73,C") 49,)
and (T C")a@,); we call G the corresponding GL(C"~™)-valued analytic
disc that gives the dual connection on T3,C" over A. We now show that G
describes the direction of the deformation of a P®-disc attached to M.
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Proposition 2.5. Let M be a generic manifold, rigid and flat up to the
order k, of class C' (1 > k+ 1), and let A be a small analytic disc of class
P attached to M with p = A(1). Let M' be a C' submanifold with boundary
M at a point ¢ € A(OA), with C,M' =T,M &R, v for a v e T,C". For any
€ > 0 there is a C' family of submanifolds M, C M U M’', for 0 < n < n,
such that My = M and the analytic disc A, (1) = (2,(7),w(7)) attached to
M, with the same w-component w(T) as A and A, (1) = p, satisfies

[0: Ay (1)] = [0, A(D)] + n(G(70) " [v] + [v0]) + () (2.26)
when n — 0, for some vy € T,C™ with |vg| < €.

Proof. We consider real coordinates x € C™ with ¢ = 0, in which M is given
byry=---=x,=0and M'byx;=---=x,,_1=0, 2, >0. Let ¢ >0 be
a function with compact support in a sufficiently small neighborhood of ¢ in
M, and define M,, 0 < n < nj, as the deformation of M that coincides with
M outside the support of ¢, and is given by zs = np(zsi1,. .., 22,) near q.

Take the analytic disc A, attached to M, with A,(1) = p and with the
same w-component as A. By Proposition 2.4, the derivative A of A, with
respect to 7 for n = 0 exists and belongs to P*. Since the “w-component” of
A, is fixed, we have A = (2,0). Let G* as in Lemma 2.4; for any ¢ € (T},C"),,
the function ¢(7) := (G*(7)€) [A(7)] is holomorphic in A, and, since the real
part of G*(7)¢ is 0 on OA, the real part of ¢ vanishes on A away from the
support of ¢, where M, = M.

Take & such that Re (G*(m)&)[v] > 0/¢| for a fixed small § > 0. If the
deformation of M takes place only in a sufficiently small neighborhood of
g, the direction of [A(7)] differs only slightly from [v] for 7 ~ 7, (while
[A(7)] = 0 for 7 far from 7;). Then, since also Ret(1) = 0, Retp(7) > 0 for
all 7 € OA. But then, by Hopf lemma, the radial derivative Re £[0,A(1)] is
positive. Since ¢ is arbitrarily chosen satisfying Re (G*(79)§)[v] > 0[¢| , we
have _

H&,A(l)] — )\G(Tg)_l[UH <e

for some A > 0 and sufficiently small § > 0. By a linear change of the
parameter 7 we can achieve A\ = 1. It remains to remark that the radial
derivative [0,A,(1)] is continuous in n with a%[arAn(l)HUZO =[0,A1)]. O

It is now immediate to state the following:

Proposition 2.6. Let M C C" be a generic, k-flat and rigid, C'-smooth
submanifold (1 > k + 1) through p = 0 and let A be a small analytic disc of
class P* attached to M. If Mj,..., M. are C'-smooth submanifolds with
boundary M at a point ¢ € A(OA) in s linearly independent directions
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(1], [vs] € (TmC)y, we can find s submanifolds My C M U M; of class
C', dimM; = dimM for all j, and arbitrarily close to M in the C' norm
such that, for the discs Ay, ..., Ay of class P attached to My,..., M, re-
spectively, with A;(1) = A(1) and with the same w-component as A, we have
that [0,A1(1)],...,[0,As(1)] are linearly independent.

2.4 Baouendi-Treves approximation for sectors

Definition 2.4. Let V' C C" be a generic submanifold. V is a Baouendi-
Treves submanifold if, for every j =0,1,...,00,w, every CR-function on V
of class C7 can be uniformly approzimated by holomorphic polynomials on
the compact subsets of V' in the C* topology.

In [19] it was observed that the original proof of the Baouendi-Treves
approximation theorem (Theorem 2.1) can be adapted to the situation of
a submanifold with generic edge; however, in the following section we will
consider a case where the edge is not generic. Here we show, following [21],
that neighborhoods of certain sectors in V' are submanifolds of Baouendi-
Treves.

Theorem 2.6. Let M C C" be a generic submanifold and V' C M an open
subset with Lipschitz boundary at p = 0 € V. Suppose we can find v € C"
and 0 < a < 1 such that the sector S,(a) := {z%v : Rez > 0} is contained
in C,V. Then there exists g > 0 such that the open subset

{z € M : dist(z, S,(a)) < go dist(z,p) < €5} (2.27)
1s a Baouendi-Treves submanifold in C".

We want to adapt the proof of Theorem 2.1 to our situation. Denote by
B (resp. B™) the open (resp. closed) unit ball in R™.

Lemma 2.6. Let M C C" be a generic submanifold of CR-dimension m. Set
d :=n—m. Suppose that for any compact K C M, there exist a holomorphic
nondegenerate quadratic form w(z) in C* and a smooth map p: B"xB% — M
such that the following hold:

i) the image o(B? x B%) contains K ;
() ge o 0 0 )

(ii) for each y € B?, the restriction ¢(-,y) is an embedding of B"™ into M
as a mazimally totally real submanifold N, (with boundary) such that
the restriction Rew|y, is positive definite.
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(iii) @(z,-) = const for every x € OB", in particular, the boundaries of N,’s
are the same for all y € BY.

Then M is a submanifold of Baouendi-Treves.

Proof. Take a CR-function f on M and y € B? and define the sequence of
entire functions

Fru(z) == (%)"/Q/N FOeCDdc A AdCy, 1=1,2,. ...

The positivity condition for Rew|y, implies that f), converges to f as A —
oo, uniformly on compacta in the interior of N,. It is easy to see by using
(i), that the convergence is uniform on K. Moreover, it follows from the fact
that f is CR, from (iii) and from the Stokes theorem that the functions f,,
are independent on y € B Thus, f\, is a sequence of entire functions that
uniformly converges to f on K, and we can approximate entire functions by
taking their Taylor polynomials. O]

In order to apply Lemma 2.6 to our situation, we need to construct ¢
satisfying the requirements. For € > 0,we define the real convex cone

AE::{SE§>g(x§+"-+xi)}CR"CC”

and the ball

1
BE::{' T P 2<—}C R" C C".
Zy yl + + yn 1 + c ?
Moreover, we set A, := (—1+A.)N(1—A.) C R, (where 1 = (1,0,...,0) €
C"). If iy € B, let C.(y) C C" be the union of all real line segments
connecting 7y with boundary points of A. and let C. be the union of the
subsets C.(y) for iy € B..

Lemma 2.7. For any ¢ > 0 and any 1y € B., the standard form Rew =
Re 37,22 = > .(x5 —y7) is positive on tangent vectors to C.(y). Moreover,
forany1 < d <nandd > 0, the exist a smooth map p: B" x B* — R"@®iR?
satisfying conditions (i) and (i) in Lemma 2.6 with w as above and such
that

C. N (R" @ iRY) C (B} x B) C (1+6)C. N (R™ @ iRY).

Proof. Any tangent vector v to C:(yo) at a point z = x + iy is a sum vy + vg,
where vy is tangent to the segment connecting z with a boundary point
a € 0A. and v, is tangent to 0A. at a. If vy = 0, the claim is clear, since
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Rew is positive on R™ C C". Otherwise, by rescaling v, we may assume
v1 = a — iy. By the convexity of A., a + vy ¢ A.. Then, by the construction
of A. and B, we have |y| < |a 4+ vy|. Since v = a + vy — 1y, this shows
Rew(v) > 0 as required.

For the second statement, remark that C.(y) can be written as C.(y) =
{z +i&(x)y : © € A} for a suitable continuous function £(z). We replace &
by a smooth function E that approximates ¢ in the C! norm such that the
submanifold C.(y) := {x+i(z)y : © € A.} still satisfies the above positivity
condition. It remains to choose ¢(z,y) == V14 d(x + Zg(x)y) ]

We are now ready to prove Theorem 2.6. Denote by d the codimension
of M in C". Without loss of generality, p = 0. The proof will depend on
the case whether « is larger or smaller than 1/2. Suppose first a« > 1/2.
Then € > 0 can be chosen such that, for y := (1 4 ¢)7"/2(1,0,...,0), the
intersection I := C.(y) N (C x {0}) has the angle « at the point iy. Then,
for any A > 0, there exists a complex affine automorphism F\: C* — C"
sending i\y to 0, AC.(y) N (C x {0}) to S,(a) and AC. N (R" & iRY) into
the interior of C,V. It follows from the definition of C,V that for A > 0
sufficiently small, the map F can be approximated on the closure AC. in C!
norm by a diffeomorphism Fy: C* — C" sending AC. N (R" & iR?) into the
closure V. C M such that Fj(idy) = 0 and dF\(i\y) = dF\(i\y). We can
now use F to transfer the standard form w and the family ¢ constructed in
Lemma 2.7 to the image U = F)\(AC. N (R" @ iR?%)) C V in order to have
data satisfying the assumptions of Lemma 2.6. Then Lemma 2.6 yields the
required conclusion. The proof for o < 1/2 is analogous to that in the first
case a > 1/2 with the only exception that the above map F)\ must be chosen
to sends the point (X,0,...,0) € AC; instead of i\y into p = 0.

2.5 Extension of CR functions into weighted
wedges

The celebrated theorem of Boggess-Polking of [8] extending classical results
of Hans Lewy (see [13]) (see Theorems 2.4 and 2.5) states that CR-functions
defined on a generic submanifold M C C" extend holomorphically to a wedge
in the direction of the convex cone spanned by the values of the Levi form of
M. Here one starts with a submanifold M and ends with a wedge. A natural
question is to obtain generalizations of this result within the category of
wedges.

In [19|, Tumanov shows that holomorphic functions defined in a fixed
neighborhood of a wedge V with generic edge F in a submanifold M C C",
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extend holomorphically to a fixed wedge in C" with edge E. This conclusion
does not hold if the edge E is not generic, or if it is not smooth. We want
to give conditions on V' that yield holomorphic extension to regions more
general than usual wedges.

We say that an open subset V' in a smooth manifold M has Lipschitz
boundary at a point p € AV if, in suitable coordinates near p, AV is repre-
sented by the graph of a Lipschitz function. One can see that V' has Lipschitz
boundary at p if and only if there is an open cone I' C T, M such that, for
any strictly finer subcone IV C I', one has (in local coordinates) z +y € V
for all x € V and y € I sufficiently close to p and 0 respectively. It is clear
that, if two cones I'y,I'y C T}, M satisfy the above property, so does their sum
['y + I's. Furthermore, among all such cones there is a unique maximal one,
namely the sum of all of them that is automatically convex. We call it the
tangent cone to V at p and denote by C,V. We define the complez angle of
V' at p to be the maximal angle of the intersection of C,V with a complex
line in 7, M. If all intersections are empty, we say that the complex angle is
0. It is clear that the complex angle is a local biholomorphic invariant of V'
at p.

In this section the edge of V' plays a secondary role. It can be seen as a
subset of the Lipschitz boundary of V:

Definition 2.5. Let M be a submanifold of R™ and p € M. A wedge with
edge M at p is an open subset in R™ with Lipschitz boundary at p € OV such
that OV contains a neighborhood of p in M.

A basic notion in our exposition is that of a-wedge, as defined in |21]:
they can be viewed as wedges with the normal directions to M that have a
weight 0 < a < 1.

Definition 2.6. Let M C R™ be a submanifold, V- C M an open subset and
pedV. Fir 0 < a < 1. An a-wedge in R™ over V at p is an open subset
V! C R™ for which there exist a neighborhood 2 of p in R™, a wedge W with
edge M at p and a constant C' > 0 such that

V'NQ D {zeW :dist(z,V) < Cdist(z,dV)"/*}. (2.28)
The main result of this chapter is the following:

Theorem 2.7. Let M C C" be a generic k-flat and rigid submanifold of
class C**1 and V. C M an open subset with Lipschitz boundary at p € OV,
with complex angle o for some 1/k < a < 1. Then for every neighborhood
V' of V in C™ there exists an a-wedge V" in C™ over V at p such that all
holomorphic functions in V' extend holomorphically to V.
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This is a generalization of the result contained in 21|, where the case
k = 2 was considered. We recall that a generic manifold M is always 2-rigid
and flat.

We will make use of the following abstract lemma for families of real curve:
the aim of this result is to prove that, in the context we are considering, a
family of radii of nonsmooth analytic discs (as defined in the previous section)
attached to V fills an a-wedge over V.

Proposition 2.7. Let V C R™ x 0 C R™ x R*™™ be an open set with
Lipschitz boundary at 0, and take a map of the form

0:[0,1]xV — R"
(t,p) — p+ta(p)+ ...+t aalp) + b(t, p)
with a(-), b(-,p) of class C*7 and d = d(«) as defined before. Suppose that
e aj(p) € CoV x {0} forallj=1,...,d;
e b(0,p) =0 forallp e V;
e 0,6(0,0) ¢ R™ x {0},
e the map p — b(-,p), V. — O is of class C'7.

Then there ezist € > 0, a neighborhood U of 0 in R™ x {0} and a submanifold
M’ of class C7° with boundary M at 0 and additional direction 8,b(0,0)
such that ¢ is a homeomorphism between (0,€) x (V NU) and an a-wedge
over V at 0 in M'.

Proof. We can suppose (up to a linear change of coordinates) 9;b(0,0) €
0 x R} and define the map

5(m.p) = (17, p)s - o (T D) (P (T D)), (n (Y, D))

for small 7 > 0 and p € V close to 0. We prove that & is C' in a
neighborhood of (0,0) in [0,1] x V. The first m components clearly satisfy
our claim; we just have to check (@, (7% p))%, 7 =1,...,n —m. If we
write @,,1(t,p) = tPm;(t,p) for a @ € C7 with $(0,0) # 0, we have

Or(mag (T, 0)™) = (@umag (T, 0))* " (Qupma) (71, p) 7O
= (@i (770D (D) (7, ).

Recalling that the composition ho f of two maps in C7 is in C"*, and that it
depends smoothly on h, we can conclude that the map p — 9,¢(+, p) between
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V and C” is of class C*7. In particular, the map p — @(+, p) between V and
7 is also of class C*7. But then both derivatives 0,¢ and 9, are in o
with respect to (7,p) € [0, 1] x V' and the regularity of ¢ follows. Now, since

d3(0,0)[R @ {0}] = (a(0), Obyns1(0,0), ..., Bba(0,0))

and dp(0,0)[RE&R™] = R™ & RO,b(0,0), we can use the rank theorem to find
a submanifold M’ of class C** with boundary M at 0 such that CoM’ =
R™ @ R,0,b(0,0) and, for some C' > 0, the set

V' = {z e M dist(z,V) < Cdist(z,V)}
is contained in $((0,1] x V). Then the set
Vi={z e R" xRY™ : (T1,..., T, Top g5 - - -, Tiy) € v’y
contains an a-wedge over V' at 0. [

As in [19], we prove our extendibility result through a propagation prin-
ciple for wedge-extendibility of CR functions:

Theorem 2.8. Let M C C" be a generic k-flat and rigid submanifold of
class C' (I > k+ 1) through p = 0, V.C M an open subset with Lipschitz
boundary at p € OV with complex angle o for % < a <1, and v a vector
in T,M such that {(*v:Re( > 0,( # 0} C C,V. Then for any sufficiently
small analytic disc A attached to M of the form

A =1-0%A1+ ...+ (1= 0O%™A;+ B(0), (2.29)

where d is the unique positive integer such that dow <1 < (d+1a, Aj e RTo
and B € CYP(A) with B(1) = p, and for any q¢ € A(OA) NV, the following
hold:

(i) For any wedge V' C C" with edge V at q, there exists an a-wedge
V" C C™ at p over V' such that any continuous CR-function on V that
has a holomorphic extension to V', has also a holomorphic extension
to V.

(i1) For any wedge V' with edge E C V at q in a submanifold M’ with
boundary V of class C', there erists an a-wedge V" over V at 0 in
a submanifold M" C C"™ with boundary M of class C such that any
continuous CR-function on V that has a CR-extension to V', has also
a CR-extension to V". Moreover, given several wedges V{,... V! as
above in s linearly independent directions in T,C"/T, M, the corre-
sponding submanifolds M, ..., M can be chosen in s linearly inde-
pendent directions in T,C"/T,M.



2.5. EXTENSION OF CR FUNCTIONS INTO WEIGHTED WEDGES39

Proof. Take A, p, ¢ and V’ as in the statement of part (ii): then A € P for
a suitable 0 < 3 < (d'+1)a — 1. By Proposition 2.4, we can find a C'-family
of P*-discs attached to M, x — A,, defined for x € M in a neighborhood
of p = 0, with Ag = A and A,(1) = z. From the assumptions on the
complex angle, we can suppose that A,(0A) C V if x € V is sufficiently
close to p. Applying Proposition 2.6, we can assume that A is transversal
to M at 7 = 1, up to an arbitrarily small deformation of M in V’'. Now
we can apply Proposition 2.7, finding ¢ > 0 and a neighborhood U of 0 in
M such that the map (7,x) — A,(7) defines a homeomorphism between
(1 —¢1)x (VNU) and an a-wedge V" over V at 0 in a submanifold M”
with boundary M at 0 of class C'? for a suitably chosen 0 < § < 1. Finally,
if €y is given by Theorem 2.6 with v as in the statement, and if A is small
enough, A,(0A) is contained in the set (2.27) for any x € V sufficiently
close to p. If we take any such x = xg, any CR-function f on V can be
uniformly approximated by a sequence of polynomials in a neighborhood
of A, (0A) C V. By the maximum principle, the sequence of polynomials
converges uniformly on A,(0A) for x € V sufficiently close to xy to a CR
extension of f in a neighborhood of A,,((1—¢,1)) in V”. Moreover, any such
sequence of polynomials yields the same limit function. We have obtained a
covering of V. NU by open subsets V}, such that f extends to a CR function
on the interior of each subset

VIi={A,(r):zeV;,Te(l-¢ 1)} C V"

We can now choose the covering {V;} so small that, whenever V; NV, # 0,
there exists a sequence of polynomials as above that converges uniformly on
the union V" U V)". Then, by the uniqueness property of the limit, the CR-
extensions of f to V" and V;’ must coincide on the intersection, yielding a
well-defined CR-extension of f to V.

We now pass to prove part (i): we take a wedge V' C C" with edge
V' at ¢, and we observe that we can choose submanifolds V/,..., V. c C"
of class C' with boundary V at ¢ in m linearly independent directions in
T,C"/T,M, where m is the codimension of M in C". Part (ii) proves that we
have extension of any CR-function f on V' U (U;V]) to a-wedges V{', ..., V|
over V' at p in submanifolds M7, ... M respectively, each with boundary
M, whose directions in T,C"/T,M are also linearly independent. Then near
each point pg € V close enough to 0 we can apply the edge of the wedge
theorem of Ajrapetyan-Henkin (Theorem 2.3), extending f to a wedge W,
with edge V at py whose direction cone is an arbitrarily smaller cone than
the convex linear span of the directions of M{ ... M/ at py. In order to
obtain an a-wedge over V' as required we need to estimate the size of W), as
po approaches the boundary 0V. To do this, we use the deformation version
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of the edge-of-the-wedge theorem stated in |15, Proposition 3.3|, and then
we apply linear rescaling (i.e. linear maps z — Az), to show that the size of
the wedge W in the edge-of-th-wedge theorem is proportional to the size of
the given submanifolds. Since each V" is an a-wedge over V' at 0, its size
near po in all directions can be estimated from below by dist(po, OV)Y* up
to a constant. Hence also the size of W, has a proportional estimate from
below. It follows from the definitionof a-wedge that the wedges W,,, cover
an a-wedge V" over V at 0. Furthermore, by choosing W, in a suitable
way and using the uniqueness of a holomorphic extension of functions into
wedges, we get holomorphic extension of f to V”. O

We recall that a CR-curve in M is a piecewise-smooth curve vy : [0,1] — M
with v/(¢) € T,y M for all t € [0,1]. By approximating CR curves and using
Theorem 2.8, we get the following more general result:

Theorem 2.9. Let M C C" be a generic submanifold of class C*¥*', flat and
rigid up to the order k, and V C M an open subset with Lipschitz boundary
atp € OV. Let v :1[0,1] — {p} UV be a CR-curve with v(0) = p such that
7'(0) € C,V and suppose the angle of the sector C,V NC~'(0) is ma for some
1/k < a < 1. Then, for any wedge V' € C™ with edge V' at ¢ = (1), there
exists an a-wedge V"' € C™ over V at p such that continuous CR-functions
on V that extend holomorphically V', also extend holomorphically to V.

Proof. Suppose p = 0. We approximate v by a chain of arbitrarily small
discs {A;} attached to M, for 1 < j <'s, such that A;(0A) N A;11(0A) # 0
for 1 < j < s—1, A is of the kind (2.29), and all other discs are of class C'17.
We start from p; = p = 0 and we construct A; € P* with A;(1) = 0 and
whose projection on Ty M is 4(1)(1 — 7)*. The distance of A;(—1) to some
point po = y(t2) in v is o(diam(A;)). Next, we take Ay with As(1) = A;(—1)
and whose projection in Ty, M is py+7(t2)(1—7). In this way we find a chain
ending at A;(—1) with |As(—1) —¢| < e If V' is a wedge with edge in C”
with edge V' at ¢, then V' is a submanifold with boundary M at some point
in the boundary of the disc A;. But then we can apply Theorem 2.8 and the
classical propagation of wedge extendibility by Tumanov (|18]) to reach our
conclusion. O

It is now immediate to prove our main result:

Proof of Theorem 2.7. By the definition of the complex angle, there must
exist a CR curve ~ satisfying the assumptions of Theorem 2.9, and the con-
clusion follows immediately from that theorem. n
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