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Introduzione

Nel primo capitolo di questa tesi studieremo il fenomeno della separata ana-
liticità: nel caso complesso è ben noto (Hartogs, 1906) che una funzione di n
variabili complesse è olomorfa se e solo se è separatamente olomorfa in ogni
variabile (vedi [11, 12, 16]). Dopo aver osservato che Ã¨ su�ciente supporre
n = 2 (possiamo in seguito iterare le conclusioni, aggiungendo una alla volta
le variabili), dimostriamo il passaggio fondamentale del teorema di Hartogs:
se f è una funzione de�nita in ∆×∆ ⊂ C2, olomorfa per |z2| < ε e separata-
mente olomorfa in z2 quando z1 è �ssato, allora f è olomorfa nel complesso
delle due variabili. La convergenza normale della serie di Taylor di f è data
dal lemma di Hartogs per funzioni subarmoniche. Tale risultato è stato ge-
neralizzato in più direzioni; nel lavoro presente si considera il caso in cui f è
separatamente olomorfa lungo le rette complesse, uscenti da una curva reale
γ, che fogliano un'ipersuper�cie reale M ⊂ C2 e olomorfa in un intorno di γ.
Allora f è olomorfa in un intorno di M . Questa generalizzazione del lemma
di Hartogs o�re una nuova interpretazione geometrica di un teorema di Siciak
([17]) sulla separata analiticità reale: se una funzione in R2 è separatamente
analitica reale in una variabile, e si estende ad una funzione olomorfa in una
striscia uniforme nella seconda, allora è analitica reale nel complesso delle
due variabili (Baracco-Zampieri, [5]).

Nella seconda parte trattiamo l'estensione di funzioni olomorfe de�nite
in un intorno di un wedge V con edge non generico in una varietà generica
M . Viene de�nito l'angolo complesso απ di V in un punto p ∈ ∂V come il
massimo angolo di intersezione del cono tangente a V in quel punto con una
retta complessa. Nel caso in cui V sia senza bordo (α = 2), o se l'edge di
V e generico (α = 1), le teorie classiche di Boggess-Polking ([8]) e Tumanov
([19]) assicurano l'estensione delle funzioni olomorfe in un intorno di V ad
un wedge V ′ su V . In [21] e [22] Zaitsev e Zampieri hanno generalizzato
il problema al caso 1

2
< α < 1: le funzioni olomorfe nell'intorno del wed-

ge, in questa situazione, si estendono ad un cosiddetto α-wedge su V (tale
insieme può essere visto come un wedge la cui componente normale ha un
andamento 1

α
). Per ottenere questo risultato viene introdotta una nuova teo-
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ria di dischi analitici con una singolarità α-Lipschitz in un punto di bordo:
proprietà fondamentale di tali dischi α-lipschitziani è che la loro componente
normale viene resa regolare dalla composizione con la funzione h di cui M
è il grafo. Grazie a questo fatto è possibile controllare la direzione di tali
α-dischi nel momento in cui vengono attaccati alla varietà. Nel nostro lavoro
viene presentata la naturale generalizzazione della teoria al caso α ≤ 1

2
: per

rendere regolare la composizione della componente normale dei dischi con h,
chiederemo che h = Ok (cioè M piatta e rigida all'ordine k) per k > 1

α
.



Introduction

In the �rst chapter of this thesis we study separate analyticity, starting from
the complex setting: it is a well known fact, proved by Hartogs in 1906 (see
[11, 12, 16]), that a function of n-complex variables is holomorphic if and
only if it is separately holomorphic in each variable. First we remark that,
by use of iteration, it is not restrictive to assume n = 2. Once we are in
dimension 2, we observe that the main step in the proof of Hartogs' theorem
consists in showing that if a function f de�ned in ∆×∆ ⊂ C2 is holomorphic
for |z2| < ε and separately holomorphic in z2 when z1 is kept �xed, then it
is jointly holomorphic; the normal convergence of the Taylor series of f is
obtained through the celebrated Hartogs' lemma on subharmonic functions.
This result has been generalized in various directions and following di�erent
approaches; in our work we consider the case where f is separately holomor-
phic along the complex lines issued from a real curve γ, which foliate a real
hypersurface M ⊂ C2, and holomorphic in a neighborhood of γ. Then it is
holomorphic in a neighborhood ofM . This generalization of Hartogs' lemma
also o�ers a geometric interpretation of a theorem by Siciak ([17]) about sep-
arate real analyticity: it is proved that a function in R2 which is separately
real analytic in one variable and CR extendible in the other (that is sepa-
rately holomorphically extendible to a uniform strip), is real analytic (see
Baracco and Zampieri, [5]).

In the second part we deal with the extension of holomorphic functions
de�ned in a neighborhood of a wedge V with non generic edge on a generic
manifold M . We de�ne the complex angle απ of V at a point p ∈ ∂V as
the maximal angle of the intersection of the tangent cone to V at p with a
complex line. If V has no boundary (α = 2), or if the edge of V is generic
(α = 1), the classical theories of Boggess-Polking ([8]) and Tumanov ([19])
yield the extension

of holomorphic functions de�ned in a neighborhood of V to a wedge V ′

over V . In [21] and [22], Zaitsev and Zampieri generalized the problem to
the case 1/2 < α < 1: in this situation, holomorphic functions de�ned in
a neighborhood of the wedge extend to a so-called α-wedge over V (this
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can be viewed as a wedge in the space where the normal directions have
a weight 1/α). To obtain this result, a new theory of analytic discs with
an α-Lipschitz singularity at a boundary point was introduced: the main
property of this new class of α-Lipschitz discs is that the conposition of their
normal component with the function h which graphs M is smooth. Hence it
is possible to control the direction of these α-discs when they are attached
to the manifold. In this work we present the natural generalization of this
theory to the case α ≤ 1/2: to keep the composition of the normal component
of the discs with h regular, we will ask that h = Ok (i.e. M is �at and rigid
to the order k) for k > 1/α.
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Chapter 1

Separate Analyticity

1.1 Separate complex analyticity

We study complex valued functions de�ned in open sets of Cn. Identifying
Cn with R2n, writing complex coordinates z = x + iy, with z = (z1, . . . , zn),
x = (x1, . . . , xn) ∈ Rn e y = (y1, . . . , yn) ∈ Rn, and where i =

√
−1. We also

write x = Re z e y = Im z. De�ning the conjugate of z as z̄ = x − iy, we
have a linear change of real coordinates given by

(x, y) 7→ (z, z̄) = (x+ iy, x− iy),

with inverse

(z, z̄) 7→
(
z + z̄

2
,
z − z̄

2i

)
.

This transformation can be read on the derivatives as{
∂x = ∂z + ∂z̄
∂y = i(∂z − ∂z̄),

with inverse {
∂z = 1

2
(∂x − i∂y)

∂z̄ = 1
2

(∂x + i∂y) ,

and in the dual base of di�erentials as{
dx = 1

2
(dz + dz̄)

dy = 1
2i

(dz − dz̄),{
dz = dx+ idy
dz̄ = dx− idy

1



2 CHAPTER 1. SEPARATE ANALYTICITY

If f : Cn → C is a C1 function, we can write it as

df = ∂f + ∂̄f =
n∑
j=1

(
∂zjfdzj + ∂z̄jfdz̄j

)
.

De�nition 1.1. Let Ω be an open subset of Cn. A function f ∈ C1(Ω) is
said to be holomorphic when ∂̄f = 0, that is

∂z̄jf = 0 (1.1)

for any j = 1, . . . , n.

We are interested in studying problems of separate analyticity: f is said
to be separately holomorphic in the variable zj if it is holomorphic in zj
when the other n − 1 variables are kept �xed. As we will see in the next
section, if f is separately analytic in each of the n complex variables, then
it is automatically jointly holomorphic; that is, the C1 regularity required in
the de�nition above is a direct consequence of the separate holomorphy. All
the results in this chapter are stated in C2: they can easily be generalized by
iteration.

We begin by noticing that, if we assume continuity, or even less as bound-
edness, the conclusion is immediate

Proposition 1.1. Let f be a continuous function in a domain Ω ⊂ C2,
separately holomorphic in both variables when the other is kept �xed. Then
f ∈ C∞(Ω), and in particular f is holomorphic.

Proof. Let D1 and D2 two discs such that their product D = D1 × D2

is contained in Ω, where f is separately holomorphic. Then, by Cauchy's
formula, we can write

f(z) =

∫
∂D1

(∫
∂D2

f(ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
dζ2

)
dζ1

=

∫ ∫
∂D1×∂D2

f(ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
dζ1 ∧ dζ2,

where the second equality is given by Fubini's theorem (that we can apply
because f is continuous). Di�erientiating under the integral sign, we obtain
our conclusion.

Proposition 1.2. Let f be separately holomorphic and bounded on compact
subsets of Ω. Then f is holomorphic.
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Proof. By Proposition 1.1 we just need to prove that f is continuous. Let
z0 ∈ Ω, and zν1 → z0

1 , and let z2 move near z0
2 so that (zν1 , z2) stays at a

distance bigger of r from the boundary of Ω. Let c be a uniform bound for
|f | in the r-neighborhood of these points. Set Fν(z2) := f(zν1 , z2), then for
Cauchy's inequalities we have

|∂z2Fν(z2)| ≤ c

r
;

hence {Fν} is equicontinuous and, if we also take zν2 → z0
2 , f(zν1 , z

ν
2 ) →

f(z0
1 , z

0
2).

1.2 Hartogs theorem

We now state Hartogs' celebrated result of [11], where the equivalence of
joint and separate complex analyticity is proved (see also [12], [16]).

Theorem 1.1. Let Ω be an open set in C2 and f : Ω 7→ C a function such
that {

z1 7→ f(z1, z
0
2) is holomorphic, for all z0

2

z2 7→ f(z0
1 , z2) is holomorphic, for all z0

1 .

Then f is holomorphic.

Notice that the statement is local, hence we can prove it for f de�ned
in polydiscs. The �rst step of the proof consists in gaining a small region of
joint analyticity.

Proposition 1.3. Let f : ∆×∆→ C be a function separately holomorphic in
each of the two variables. Then there exists δ > 0 such that f ∈ hol(∆×∆δ).

Proof. De�ne
El = {z2 ∈ ∆ : |f(z1, z2)| ≤ l,∀z1 ∈ ∆};

El is closed because f is continuous in the variable z2 for a �xed z1. Moreover

∪lEl = ∆.

But then, for Baire category theorem, there exists l0 such that El has a non-
empty interior whenever l ≥ l0. We can �nd a dense open set B ⊂ ∆ such
that, applying Proposition 1.2, f is holomorphic in ∆ × B. Assuming that
0 ∈ B (up to an arbitrarily small shrinking of the analyticity domain), we
take a disc ∆δ ⊂ B, centered at 0: then f ∈ hol(∆×∆δ).
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We are now in the following situation: we have a function f : ∆×∆→ C,
jointly holomorphic in a strip ∆ × ∆δ, and separately holomorphic in the
variable z2 for any �xed value of z1 ∈ ∆ (we will not need the separate
analyticity in z1 anymore).

The Taylor expansion of f with respect to z2 and center in z2 = 0 is:

f(z1, z2) =
+∞∑
ν=0

∂νz2f(z1, 0)

ν!
zν2 . (1.2)

We would like it to converge normally in ∆×∆, making f holomorphic there.
The coe�cients

∂νz2f(z1,0)

ν!
are holomorphic in z1, hence the functions

ϕν(z1) =

∣∣∣∣∂νz2f(z1, 0)

ν!

∣∣∣∣ 1ν (1.3)

are subharmonic.
By the separate holomorphy in z2 and Cauchy-Hadamard criterion on the
convergence radius of power series, we have:

lim sup
ν→∞

ϕν(z1) ≤ 1, for any �xed z1 ∈ ∆,

while the joint analyticity in ∆ ×∆δ, along with Cauchy inequalities, gives
us the following uniform estimate:

lim sup
ν→∞

sup
z1∈∆

ϕν(z1) ≤ δ−1.

These conditions allow us to gain the uniformity in z1 of the normal conver-
gence in z2 of the series (1.2), making use of the following fundamental result
on subharmonic functions:

Lemma 1.1. Let {ϕν} be a sequence of subharmonic functions de�ned on
∆, and suppose there exist constants m < M such that

lim sup
ν→∞

sup
z∈∆

ϕν(z) ≤M

and
lim sup
ν→∞

ϕν(z) ≤ m, ∀z ∈ ∆.

Then, for �xed r < 1, we have

lim sup
ν→∞

sup
|z|≤r

ϕν(z) ≤ m.
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Proof. Fix r < ρ < 1, and let α > 0. First we prove that, for any α′ > 0,
there exist a measurable subset E of ∂∆ρ with λ(E) < α′ (where λ is the
Lebesgue measure on ∂∆ρ) and να,α′ ∈ N, such that ϕν(ζ) < m + α for all
ζ ∈ ∂∆ρ \ E, when ν ≥ να,α′ . De�ne

Eν =
⋃
µ≥ν

{ζ ∈ ∂∆ρ : ϕµ(ζ) ≥ m+ α};

then Eν+1 ⊂ Eν and, since lim supν→∞ ϕν(ζ) ≤ m for ζ ∈ ∂∆ρ,
⋂∞
ν=1 Eν = ∅.

Hence we can �nd να,α′ ∈ N with λ(Eνα,α′ ) < α′. Take E = Eνα,α′ , Pz(ζ) the
Poisson kernel of ∆ρ, and C = supPz(ζ) for |z| ≤ r and ζ ∈ ∂∆ρ.
If |z| ≤ r, then

ϕν(z) ≤
∫
E

Pz(ζ)ϕν(ζ)dλ(ζ) +

∫
∂∆ρ\E

Pz(ζ)ϕν(ζ)dλ(ζ)

by subharmonicity of ϕν .
For a big enough ν, the �rst integral is:∫

E

Pz(ζ)ϕν(ζ)dλ(ζ) ≤
∫
E

C(M + α)dλ(ζ)

≤ C(M + α)λ(E).

As for the second integral, assuming m ≥ 0 (up to translation), we notice
that for ν ≥ να,α′ :∫

∂∆ρ\E
Pz(ζ)ϕν(ζ)dλ(ζ) ≤

∫
∂∆ρ\E

Pz(ζ) sup
∂∆ρ\E

ϕνdλ(ζ)

≤
∫
∂∆ρ\E

Pz(ζ)(m+ α)dλ(ζ)

≤ (m+ α)

∫
∂∆ρ\E

Pz(ζ)dλ(ζ)

≤ m+ α,

where the �rst inequality is trivial, the second follows from the de�nition of
E, the third one from the positivity of Pz (ζ) and the fourth from the fact
that ∫

∂∆ρ

Pz(ζ)dλ(ζ) = 1.

Choose α′ satisfying C(M + α)α′ ≤ α: recalling that
λ(E) < α′, for ν > να,α′ = να we have

ϕν(z) ≤ m+ 2α,

uniformly for |z| ≤ r.
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Theorem 1.2. Let f : ∆×∆→ C satisfying{
f ∈ hol(∆×∆δ)
f ∈ hol({z0

1} ×∆), for all z0
1 ∈ ∆.

Then f ∈ hol(∆×∆).

Proof. We saw that under these hypotheses the estimates of Lemma 1.1 for
the subharmonic functions {ϕν} de�ned in (1.3) hold with m = 1 eM = δ−1;
then we have

lim sup
ν→∞

sup
|z1|≤r

ϕν(z1) ≤ 1

for all r < 1. This implies we have a νr such that, for ν ≥ νr we have

sup
|z1|≤r

ϕν(z1) ≤ 1

r
,

hence

sup
|z1|≤r

∣∣∣∣∂νz2f(z1, 0)

ν!

∣∣∣∣ rν ≤ 1, for ν ≥ νr,

which proves the normal convergence of (1.2) in ∆r×∆r for any r < 1. Since
all terms of the series are holomorphic and r is arbitrary, f is holomorphic
in ∆×∆.

As a direct consequence, Theorem 1.1 is proved.

1.3 Separate real analyticity

We have seen that if f is separately holomorphic in z1 and z2, then it is
holomorphic. It is a well known fact that this doesn't hold for the real
analytic case: for example, the function

f(x1, x2) = x1x2 exp

(
− 1

x2
1 + x2

2

)
is a C∞-function, real analytic in each variable, but not jointly real analytic.

In C2 = R2 + iR2 with coordinates z = (z1, z2), z = x+ iy, we consider a
function f on a domain Ω ⊂ R2. We adopt the following terminology:

• f is separately real analytic in xj if its restriction to the section of Ω
with each line parallel to the xj-axis is real analytic. This means that,
when the other real coordinate is �xed, f extends to |yj| < εx.
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• f is separately CR extendible to yj if it is separately real analytic in xj,
with a holomorphic extension to |yj| < ε for a uniform ε.

The issue in the previous example was that, while f extends in the direc-
tions y1 and y2, the extension is not uniform when x approaches 0.

The aim of this section is to prove the following result, stated in [5]:

Theorem 1.3. Let f be a continuous function de�ned in a domain Ω ⊂ R2,
which is separately real analytic in x1 and CR-extendible to y2. Then f is
real analytic.

This result improves Siciak's theorem of [17], where f was required to be
CR-extendible both to y1 and y2.

The statement being local, we can suppose that Ω is the unit square I×I,
where I = (−1, 1) ⊂ R; we denote by Iδ the interval (−δ, δ), and by Uδ the
strip I + iIδ ⊂ R2. We begin by proving the following result:

Proposition 1.4. Let f be a function as in Theorem 1.3. Then there is a
positive δ such that f extends holomorphically to Uδ ×∆δ

Proof. Up to rescaling, we can suppose f has holomorphic extension to the
sets ∪x1∈I{x1}×∆ and ∪x2∈I∆εx2

×{x2}; we can even assume that f extends
to discs of radius slightly bigger than 1 and εx2 . We �rst prove that there are
an open interval Iδ and an open strip Uδ = I + iIδ such that f is continuous
in Iδ ×∆ and in Uδ × Iδ, hence it is a continuous CR function therein. We
start from the proof of the continuity on Iδ ×∆. Let

Kl = {x1 ∈ I : sup
z2∈∆
|f(x1, z2)| ≤ l}.

We note that Kl ⊂ Kl+1 and that ∪lKl = I since sup
z2∈∆
|f(x1, z2)| < +∞

for each x1. We claim that Kl is closed and f is continuous on Kl × ∆.
In fact, let xν1 → xo1 with xν1 ∈ Kl; we want to show that then xo1 ∈ Kl.
We use the notation Fν(z2) := f(xν1, z2) − f(xo1, z2). The sequence {Fν}ν is
equicontinuous on the compact subsets of ∆, as a consequence of Cauchy's
inequalities and the hypothesis of boundedness of f on Kl × ∆. We claim
that Fν → 0 uniformly on compact sets. Otherwise, by the equicontinuity,
there is a subsequence {Fνk}k which converges to a limit F 6= 0. But this
limit is holomorphic on ∆ and equal to 0 on I, which is a contradiction that
proves f continuity on Kl × ∆. By Baire's Theorem, since ∪lKl = I, the
sets Kl must contain an open interval for large l; also, such an interval can
be found in a neighborhood of any point and we may assume it contains
0, by means of a small translation. Thus there is a positive δ such that f
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extends as a continuous function on Iδ ×∆, holomorphic in z2: hence it is a
continuous CR function therein.

We now prove that f is a continuous CR function on Uδ × Iδ. For this
purpose, we de�ne

Jl = {x2 : f(·, x2) extends to |y1| <
1

l
and |f(·, x2)| < l}.

If xν2 → xo2 with xν2 ∈ Jl, then by boundedness there is a subsequence which
converges to a holomorphic function on U 1

l
; this must be f(·, xo2). As before

we have |f(·, x2)| ≤ l and f |U 1
l
×Il is continuous. By Baire's theorem we still

conclude that for large l, the set Jl contains an open interval that we can
suppose to be centered at 0. This concludes the proof of the claim.

Now we can use Ajrapetyan-Henkin's edge of the wedge theorem of [1]
(following the presentation of [20]) to prove that f has a holomorphic exten-
sion to ∆δ ×∆δ, for a possibly smaller δ. We show �rst how to extend f for
0 ≤ Im z1 < δ, 0 ≤ Im z2 < δ. In fact, choose smooth functions yj(eiϑ) ≥ 0
with supp(y1) ⊂ [0, π], supp(y2) ⊂ [π, 2π] and with unit mean value, take
(λj) with 0 ≤ λj < δ, j = 1, 2, write yλ = (λ1y1, λ2y2) and consider the
discs Axo,λ(τ) which are the holomorphic extensions of (xo−T0yλ)+ iyλ from
τ = eiϑ ∈ ∂∆ to τ ∈ ∆. (Here T0 is the Hilbert transform normalized by
T0(·)(0) = 0.) Note that the boundaries of these discs, corresponding to the
values τ = eiϑ of the parameter, are contained in the union of ∆+ × Iδ and
Iδ × ∆+ (where ∆+ is the half disc de�ned by Im (τ) > 0). Also, the set
of their centers {Axo,λ(0)} = {xo + iλ} is the set described by 0 ≤ y1 < δ,
0 ≤ y2 < δ. On the other hand f is uniformly approximated over the set
of the boundaries by a sequence of polynomials according to the Baouendi-
Treves approximation theorem (see [3]). This sequence is also convergent
in the inside of these discs, in particular in the set of their centers, by the
maximum principle. The limit of the sequence provides the desired extension
of f to the �rst quadrant 0 ≤ y1 < δ, 0 ≤ y2 < δ; in the same way we prove
extension to the other quadrants.

We have seen that f is continuous and CR on Uδ × Iδ and extends holo-
morphically to ∆δ ×∆δ. We notice that Uδ × Iδ is foliated by the complex
leaves Uδ × {x2}, for x2 ∈ Iδ, which meet the set of holomorphic exten-
sion ∆δ ×∆δ. But then the propagation of the holomorphic extendibility of
CR functions along complex leaves yields extension of f to an open domain
Uδ ×∆δ of C2 for a small δ. This can be referred to Hanges-Treves theorem
of [10]; however, in the case of a plane, there is a simpler proof which uses
convergence radii of Taylor expansions, that we will present below (Lemma
1.2). The proposition is proved.
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Lemma 1.2. Let M = {(z1, z2) ∈ ∆ × ∆ : Im z1 = 0, |z2| ≥ ε}. If f is
a holomorphic function in (∆ ×∆) \M , then it extends holomorphically to
∆×∆.

Proof. De�ne (∆ × ∆)+ = (∆ × ∆) ∩ {Im z1 > 0} and (∆ × ∆)− = (∆ ×
∆) ∩ {Im z1 < 0}, and let f± = f |(∆×∆)± . Take λ� 1 and write the Taylor
expansion of f− with respect to z1 centered at x1 − iλ. The functions

ψν(z2) =

∣∣∣∣∂νz1f−(x1 − iλ, z2)

ν!

∣∣∣∣ 1ν
are subharmonic. We have:

lim sup
ν→∞

ψν(z2) ≤ λ−1 ∀z2 ∈ ∆

and
lim sup
ν→∞

ψν(z2) ≤ (1− λ)−1 if |z2| < ε.

Now take a disc D centered at z0
2 ∈ ∆ (with |z0

2 | > ε) and of radius ρ, such
that D ∩∆ε 6= ∅. Then, by Fatou's lemma and for solid submean property
of subharmonic functions, naming χ the function that is (1−λ)−1 in D∩∆ε

and λ−1 in D \∆ε, we have:

lim sup
ν→∞

ψν(z
0
2) = lim sup

ν→∞

1

πρ2

∫
D

ψν(z2)dz2

≤ 1

πρ2

∫
D

χ(z2)dz2 ≤ λ′−1,

for some λ′ > λ.
Iterating and applying Theorem 1.2, we prove that f− extends to a holomor-
phic function in a neighborhood of M in ∆ × ∆; but f is holomorphic in
(∆×∆) \M , hence the extension must coincide with f+ in (∆×∆)+.

We are now in a situation similar to the one of Theorem 1.2, with the
di�erence that the separate extension takes place only for x1 ∈ I instead
of z1 ∈ ∆; f : Uδ × ∆δ → C is a holomorphic function, whose restrictions
z2 7→ f(x0

1, z2) extend holomorphically to |z2| < 1, for any �xed value of
x0

1 ∈ I ⊂ Uδ. As in the previous section, we can write the Taylor expansion
of f in z2 centered at z2 = 0 and consider, for ν ∈ N, the subharmonic
functions

ϕν(z1) =

∣∣∣∣∂νz2f(z1, 0)

ν!

∣∣∣∣ 1ν . (1.4)
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For the joint analyticity in Uδ ×∆δ, we have

lim sup
ν→∞

sup
z1∈Uδ

ϕν(z1) ≤ δ−1, (1.5)

while, for any �xed x1 ∈ I, separate analyticity in z2 gives us

lim sup
ν→∞

ϕν(x1) ≤ 1. (1.6)

We now state the following modi�ed version of Lemma 1.1:

Lemma 1.3. Let ∆+ = {z = x + iy ∈ C : |z| < 1, y > 0}, I = (−1, 1) ⊂
∂∆+. Suppose that {ϕν} is a sequence of functions, subharmonic in ∆+ and
upper semicontinuous on ∆̄+, such that

lim sup
ν→∞

ϕν(x) ≤ 1, ∀x ∈ I (1.7)

and

lim sup
ν→∞

sup
z∈∂∆+

ϕν(z) ≤ δ−1. (1.8)

Then there exists a uniform constant k such that

lim sup
ν→∞

ϕν(z) ≤ 1 + kδ−1y,

uniformly on every compact subset of ∆+.

Proof. We adapt the proof of Lemma 1.1 to our case. Let α > 0 and K be
a compact subset of ∆+. For every α′ > 0 we can �nd a measurable subset
E ⊂ I with λ(E) < α′ (where λ is the Lebesgue measure on ∂∆+) and να,α′
such that supz∈I\E ϕν(z) ≤ 1 + α if ν > να,α′ , since the measurable sets

Eν =
⋃
µ≥ν

{ζ ∈ I : ϕµ(ζ) ≥ 1 + α}

form a decreasing sequence with
⋂
ν Eν = ∅ (for (1.7)).

Let Pz(ζ) be the Poisson kernel of ∆+, and set CK = supPz(ζ) for z ∈ K
and ζ ∈ ∂∆+. If z ∈ K, for the submean property we have:

ϕν(z) ≤
∫
I\E

Pz(ζ)ϕν(ζ)dλ(ζ) +

∫
E

Pz(ζ)ϕν(ζ)dλ(ζ) +

+

∫
∂∆+\I

Pz(ζ)ϕν(ζ)dλ(ζ).
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The �rst integral, by de�nition of E, is∫
I\E

Pz(ζ)ϕν(ζ)dλ(ζ) ≤ (1 + α)

∫
I\E

Pz(ζ)dλ(ζ)

≤ 1 + α

for ν > να,α′ . If ν is big enough, we have∫
E

Pz(ζ)ϕν(ζ)dλ(ζ) ≤ (δ−1 + α)

∫
E

Pz(ζ)dλ(ζ)

≤ (δ−1 + α)CKλ(E)

and ∫
∂∆+\I

Pz(ζ)ϕν(ζ)dλ(ζ) ≤ (δ−1 + α)

∫
∂∆+\I

Pz(ζ)dλ(ζ)

=
2(δ−1 + α)

π
arg

1 + z

1− z
,

both by estimate (1.8). Notice that∫
∂∆+\I

Pz(ζ)dλ(ζ) =
2

π
arg

1 + z

1− z
, (1.9)

since the second member is harmonic and is equal to the characteristic func-
tion of ∂∆+ \ I on the boundary of ∆+ (see [9]).
Choose α′ such that (δ−1 +α)CKα

′ ≤ α; it follows that, for ν > να,α′ = να,K ,

ϕν(z) ≤ 1 + α + (δ−1 + α)CKα
′ +

2(δ−1 + α)

π
arg

1 + z

1− z

≤ 1 + 3α +
2δ−1

π
arg

1 + z

1− z
≤ 1 + 3α + kδ−1y,

for a constant k > 0, uniformly in K.

We are now ready to prove the following

Theorem 1.4. Let f be a holomorphic function in Uδ×∆δ, whose restrictions
given by z2 7→ f(x0

1, z2) extend holomorphically to ∆, for any �xed x0
1 ∈ I.

Then f extends to a holomorphic function de�ned in a neighborhood of I×∆.

Proof. Given a small α > 0, choose η < k−1δα. Reasoning as in Theorem
1.2, and applying Lemma 1.3, we get normal convergence of the Taylor series
of f for |z2| < 1− α, uniformly in z1 when 0 < |y1| < ηα. Hence f turns out
to be holomorphic in (I + iİηα) × ∆1−α, where · means that 0 is removed.
But in fact f is holomorphic also at y1 = 0 because this is true when z2 ∈ ∆δ

(see Lemma 1.2).
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1.4 Further results

In this section we present some results of [4] and [14]. In Lemma 1.3, the
interval I does not play a special role: any curve I ⊂ ∆ × ∆ serves the
purpose.

Let γ be a C1 curve and M a real C1 hypersurface in C2 foliated by
parallel complex lines Γz issued transversally from each z ∈ γ. We show the
following

Theorem 1.5. Let f : M → C be a function, which is separately holomorphic
along each line Γz and extends holomorphically to a neighborhood U of γ.
Then f extends as a holomorphic function to a neighborhood of M .

Proof. Let (z1, z2) be the coordinates in C2; we can suppose γ ⊂ C × {0},
Γz1 = {z1} × ∆ and M = γ × ∆. The statement is local in z1, therefore
we can suppose that U is a neighborhood of {|z2| < ε}; f is holomorphic in
a neighborhood of γ, say Uε × ∆ε (where Uε is the ε-neighborhood of γ in
C×{0} and ∆ε is the disc of radius ε). We can write the Taylor expansion of
f in Uε ×∆ε and de�ne the subharmonic functions ϕν as in (1.4), obtaining
the pointwise estimate (1.6) for z ∈ γ and the uniform estimate (1.5).

We need a variant of Lemma 1.3. Let I be a curve in ∆+ contained in
the strip {0 < y < η} with end points in ∂∆+ \ I, and denote by ∆̃+ the
region bounded by I and ∂∆+ \ I. In this discussion I needs not to be a
C1 curve; it must have just the regularity which is required for the Dirichlet
problem in ∆̃+ to be solved.
Let {ϕν} be a uniformly bounded sequence of subharmonic functions in ∆̃+

such that 
lim sup
ν→+∞

ϕν(x) ≤ 1, ∀x ∈ I

lim sup
ν→+∞

sup
z∈∂∆̃+

ϕν(z) ≤ ε−1;

we claim that
lim sup
ν→∞

ϕν(z) ≤ 1 + 2kε−1η, (1.10)

uniformly for y < 2η. In order to prove (1.10), denote with P̃z(ζ) the Poisson
kernel of ∆̃+; for z ∈ ∂∆̃+, we have∫

∂∆̃+\I
P̃z(ζ)dλ(ζ) ≤

∫
∂∆̃+\I

Pz(ζ)dλ(ζ), (1.11)

since, for z ∈ I, the �rst integral vanishes and the second is positive, while
for z ∈ ∂∆̃+ \ I they are both equal to 1. Since these integrals are harmonic
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functions of the variable z, the inequality (1.11) holds for all z ∈ ∆̃+. It
follows

lim sup
ν→∞

ϕν(z) ≤ 1 + kε−1y,

uniformly on the compact subsets of ∆̃+; this last estimate yields (1.10) for
y < 2η.

We now turn our attention to the curve γ. For z0 ∈ γ and α > 0, the C1

regularity of γ assures us of the existence of a positive δα such that

dist (z, Tz0γ) <
αδαε

2k

for z ∈ γ, |z − z0| < δα. After rescaling by a factor δα
−1, we interpret Tz0γ

as I and γ as the curve I.
By the argument above, applied to δα-half discs with center z0, we get

lim sup
ν→∞

ϕν(z) ≤ 1 + 2kε−1δα
−1η

uniformly for y < 2η (notice that a factor δα
−1 enters into play because of

the rescaling). At this point we just need to choose

η =
αδαε

2k

and to use a �nite covering of γ by δα-half discs. Taking the inf of the η's
needed for this procedure, and reasoning simmetrically for negative half discs,
we end up with

lim sup
ν→∞

ϕν(z) ≤ 1 + α

uniformly in the compact subsets of Uη \ γ, where Uη is the η-strip around γ.
Therefore the Taylor series of f converges uniformly for z1 ∈ Uη \γ, normally
in z2 ∈ ∆1−α:

its sum is then a holomorphic function in (Uη \ γ)×∆1−α. But f extends
across M for |z2| < ε, and so it extends as a holomorphic function to Uη ×
∆1−α, thus proving our statement.

Remark 1. In the proof of Theorem 1.5 we needed to assume a C1-regularity
for the curve γ. We can obtain an alternative proof by using Carathéodory's
theorem: since the biholomorphic equivalence (Riemann map) between ∆+

and ∆̃+ is continuous up to the boundary, it interchanges the distance to I
(that is Im τ) with the distance to I. Hence the estimate of Lemma 1.3 can
be rewritten in a neighborhood of γ, and the proof of our theorem can be
concluded as before.
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We now pass to prove an extension of Hartogs theorem for real analytic
foliations.

Remark 2. If we apply Theorem 1.4 to a family of lines {y1 = const}, whose
corresponding stripes Uε form a covering of ∆, we still have the conclusion of
Theorem 1.1. As we are going to see, this new proof is invariant under real
analytic transformations.

Let {Γλ} be a foliation of holomorphic curves depending in a Cω fashion
from a parameter λ ∈ Λ (where Λ is a connected open subset of R2), and
de�ne Ω = ∪λΓλ. With this we mean there exists a real analytic di�eomor-
phism

Φ : Λ×∆→ Ω

which is holomorphic for λ = const. Let Ω′ ⊂ Ω be an open set with
Ω′ ∩ Γλ 6= ∅ for all λ ∈ Λ.

Since the results we will prove are local in λ, we can choose holomorphic
coordinates such that Ω′ is a neighborhood of z2 = 0 and the leaves are
transversal to such plane, and choos the parameter λ = z1 ∈ ∆ε. We will
also write Φz1(τ) instead of Φ(z1, τ) and normalize the parametrization with
the condition Φz1(0) = (z1, 0).

Theorem 1.6. Let f be a holomorphic function in Ω′ which extends along
Γx1 for all x1 ∈ Iε. Then f extends to a holomorphic function in M .

Proof. Φ|Iε×∆ is a real analytic function, holomorphic in τ : it can be locally
represented as a power series in x1 e τ . Changing x1 with z1 in the series, we
obtain a function Φ̃, holomorphic in a neighborhood of Iε ×∆, say Vε,δ ×∆
(where Vε,δ = Iε + iIδ), such that Φ̃|Iε×∆ = Φ. We will write Γ̃z1 = Φ̃z1(∆).
Notice that

Γ̃x1 = Γx1 , (1.12)

for x1 ∈ Iε. Up to taking a slightly smaller δ, we can suppose

∪z1∈Vε,δΦ̃z1(∆δ) ⊂ Ω′.

Consider the function f ◦ Φ̃ de�ned on Vε,δ ×∆δ: it is holomorphic, and for
(1.12), its restriction τ 7→ f ◦ Φ̃(x1, τ) extends to a holomorphic function
in ∆, for any �xed x1 ∈ Iε ⊂ Vε,δ. Under these hypotheses we can apply
Theorem 1.4: for any α > 0 there is a positive δα such that f ◦ Φ̃ extends to
a holomorphic function in Vε,δα ×∆1−α.

As an immediate corollary, we obtain:

Theorem 1.7. Let f : Ω → C be a holomorphic function in Ω′, which is
separately holomorphic along each leaf Γz1. Then f is holomorphic in Ω.
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Proof. We can apply Theorem 1.6 to any line {Im z1 = c}: for any α > 0, we
�nd a holomorphic extension of f ◦ Φ̃ for z1 satisfying c− δα < Im z1 < c+ δα
and |τ | < 1− α. Now any compact subset of Ω has a �nite covering of open
sets where f is holomorphic, thus proving our statement.
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Chapter 2

Holomorphic sectors

2.1 CR manifolds and CR functions

Let M be a smooth real submanifold in Cn. The complex tangent space at
a point p ∈M is de�ned as the maximal complex subspace in TpM , that is

T cpM = TpM ∩ JTpM,

where J : Cn → Cn is the operator of multiplication by i. The manifold M
is called a CR manifold if dim T cpM is independent on p ∈M . Moreover, M
is called generic if TpM spans TpCn = Cn over C for all p ∈M , that is

TpM + JTpM = Cn.

We observe that all real hypersurfaces are generic, and that a generic manifold
is always a CR manifold.

De�nition 2.1. Let f be a C1 function de�ned on a CR manifold M . f is
called a CR function if df is C-linear on T cM.

In other words, if M ⊂ Cn is a CR manifold de�ned by r = 0 for r =
(rj)j=1,...,m, a C1 function f : M → C is CR if and only if for any extension
of f to Cn, which we still denote by f , we have ∂̄f ∧ ∂̄r1 ∧ ...∧ ∂̄rm = 0. For
a function f which is only continuous, we say that f is a CR function if the
above condition holds in the distributional sense.

The celebrated Baouendi-Treves theorem of [3] states that a CR function
can be locally approximated by holomorphic polynomials.

Theorem 2.1. Let M ⊂ Cn be a generic manifold. For any point p ∈ M
there exists a neighborhood U of p in M such that for every continuous CR
function f de�ned on M there is a sequence of holomorphic polynomials fλ
that converges uniformly to f on the compact subsets of U .

17
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Proof. First we prove the statement for a maximally real submanifold M0

throuh p, that is T cM0 = 0. We set coordinates in Cn such that p = 0 and
TpM0 = Rn ⊂ Cn. Up to shrinkingM0, we can suppose there exists 0 < c < 1
such that

|Im (z − w)| ≤ c|Re (z − w)|, (2.1)

for all z, w ∈M0. We de�ne the entire functions

fλ(z) =

(
λ

π

)n
2
∫
M0

f(w)e−λ(z−w)2dw1 ∧ . . . ∧ dwn,

where (z − w)2 =
∑

(zj − wj)
2 and λ > 0. (2.1) tells us that, as λ →

∞, fλ(z) → f(z) for z ∈ M0. We now pass to prove that fλ → f in a
neighborhood of p ∈ M . We view M0 as a manifold with boundary, and
consider a small perturbation M1 of M0 with the same boundary. Let

f̃λ(z) =

(
λ

π

)n
2
∫
M1

f(w)e−λ(z−w)2dw1 ∧ . . . ∧ dwn;

then f̃λ(z)→ f(z) for z ∈M1.
Let M̃ ⊂ M be the manifold bounded by M0 and M1, that is ∂M̃ =

M0 −M1; since e−λ(z−w)2 is holomorphic, the integrand is a closed form on
M . Then, by Stokes theorem, it is immediate to conclude that fλ(z) = f̃λ(z)
for all z ∈ Cn. We have proved that the sequence fλ converges to f on every
small perturbation of M0, and then in a neighborhood of p in M . Using
the Taylor expansions of fλ, we obtain the desired approximation of f by
polynomials.

We now discuss the normal form for a generic manifold. Suppose M is
generic: then we can choose holomorphic coordinates (z′ = x + iy, z′′) ∈
Cm × Cn−m around a point p such that p = 0, TpM has the equation y = 0,
and T cpM has the equation z′ = 0. Then M is de�ned by a local equation

y = h(x, z′′), (2.2)

where h is a smooth function with h(0) = 0 and dh(0) = 0. Moreover (see
[7] and [23]) we have:

Proposition 2.1. Let M ⊂ Cn be a generic submanifold of codimension m
and class Ck and let p be a point in M . Then there is a holomorphic change
of coordinates such that, in the new coordinates, M is graphed over x, z′′ at
p = 0 by

yj = hj(x, z
′′), j = 1, ...,m,

with
∂
|I|+|J |
xIz′′J

h(0) = ∂
|I|+|J |
xI z̄′′J

h(0) = 0 if|I|+ |J| ≤ k. (2.3)
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Proof. As we stated before, we can suppose M is graphed by a smooth func-
tion h with h(0) = 0 and dh(0) = 0. For the Taylor expansion of h = (hj)
up to order k, we have

h =
k∑

|I|+|J |+|K|≥2

aI J Kx
Iz′′J z̄′′K + ok,

where a = aI J K is an l-vector a = (aj). We �complexify� from x ∈ Rm to
z′ ∈ Cm and from (z′′, z̄′′) ∈ Cn−m ×Cn−m C̄n−m to (z′′, w̄′′) ∈ Cn−m × C̄n−m.
Consider the polynomial map

hk : (z′, z′′, w̄′′) 7→
k∑

|I|+|J |+|K|≥2

aIJKz
′Iz′′Jw̄′′K :

by the implicit function theorem, there is a unique map Φ = Φ(z′, z′′) such
that

z′ = Φ(z′ + ihk(z′, z′′, 0), z′′). (2.4)

De�ne a holomorphic change of coordinates in a neighborhood of 0 by{
z̃′ = z′ − ihk(Φ(z′, z′′), z′′, 0),

z̃′′ = z′′.
(2.5)

If z ∈M , that is, y = h(x, z′′, z̄′′), then

ỹ = y − Rehk(Φ(z′, z′′), z′′, 0)

= Re
(
h(x, z′′, z̄′′)− hk (Φ (x+ ih(x, z′′, z̄′′), z′′) , z′′, 0)

)
.

(2.6)

To obtain an equation for the image M̃ of M under the coordinates de�ned
by (2.5), we must replace (x, z′′) by (x(z̃′, z̃′′), z̃′′), which yields

ỹ = Re
(
h
(
x(z̃′, z̃′′), z̃′′, z̃

′′
)

−hk
(

Φ
(
x(z̃′, z̃′′) + ih(x(z̃′, z̃′′), z̃′′, z̃

′′
), z̃′′

)
, z̃′′, 0

))
.

(2.7)

We write (2.7) as ỹ = Re h̃. By the implicit function theorem, we can remove
ỹ′ from h̃; hence Re h̃ can be seen a graphing function for M̃ . We just have
to see that h̃ satis�es (2.3). Consider the function

(x̃, z̃′′) 7→ x(x̃, z̃′′, z̃′′). (2.8)
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Take xk, of (2.8) and complexify the variables from (x̃, z̃′′, z̃
′′
) to (z̃′, z̃′′, w̃

′′
):

we get for xk = xk(z̃′, z̃′′, w̃
′′
)

h̃(z̃′, z̃′′, w̃
′′
) = hk

(
xk, z̃′′, w̃

′′
)

− hk
(

Φ
(
xk + ihk

(
xk, z̃′′, w̃

′′
)
, z̃′′
)
, z̃′′, 0

)
+ ok. (2.9)

We want to prove
h̃(z̃′, z̃′′, 0) = ok

and
h̃(z̃′, 0, w̃

′′
) = ok.

If we prove the �rst, the second follows conjugating. Using (2.4), we have,
for x and z′′ replaced by xk = xk(z̃′, z̃′′, 0) and z̃′′, respectively,

xk = Φ
(
xk + ihk(xk, z̃′′, 0), z̃′′

)
+ ok. (2.10)

But then, using (2.10) into (2.9) and evaluating hk and Φ for w̃
′′

= 0, we
have

h̃ = hk(xk, z̃′′, 0)− hk
(
Φ
(
xk + ihk(xk, z̃′′, 0), z̃′′

)
, z̃′′, 0

)
+ ok

= hk(xk, z̃′′, 0)− hk
(
xk + ok, z̃′′, 0

)
+ ok

= ok,

(2.11)

which completes our proof.

2.2 Analytic discs

We review the classical results about extension of CR functions by the an-
alytic disc technique. Our presentation closely follows those of [20] and [23]
(see also [2] and [7]).

Let ∆ be the standard unit disc in C, and ∂∆ the unit circle.

De�nition 2.2. An analytic disc in Cn is a holomorphic map

A : ∆→ Cn

continuous up to the boundary. If M ⊂ Cn is a submanifold, we say that A
is attached to M if its boundary A(∂∆) is contained in M .
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Let f be a CR function de�ned on a generic manifold M ⊂ Cn; then
by Theorem 2.1 f is a uniform limit of a sequence fλ of polynomials in a
neighborhood U of a point p. If A is a small disc such that A(∂∆) ⊂ U ,
then fλ converges to f on A(∂∆); but then, since fλ ◦ A converge on ∂∆,
they must converge in the interior ∆ by the maximun principle. Hence fλ
converge on the image A(∆). Suppose now that Ω is an open set �lled up by
su�ciently small analytic discs attached to M : then fλ converge uniformly
on Ω to a holomorphic function that extends f . Analogously, if Ω is a CR
manifold �lled by discs, the limit of fλ is a CR-extension of f .

We now introduce the Hilbert transform. If u : ∂∆ → R is a smooth
function, it has a unique harmonic extension to ∆̄: this extension u has
a harmonic conjugate v on ∆̄, that is, a function v such that u + iv is
holomorphic in ∆. v is uniquely determined up to an additive constant. The
Hilbert transform (normalized at 1) is the map T1 : u|∂∆ 7→ v|∂∆ normalized
by the condition v(1) = 0. Note that u = −T1v+u(1). T1 is not a continuous
functional over the spaces Ck of functions with integer regularity; it �nds its
natural settings in the Hölder spaces Ck,α(∂∆), for k ≥ 0 and 0 < α < 1, of
functions f endowed with continuous derivatives up to order k which satisfy

‖f‖k,α = ||f ||k + sup
ϑ1, ϑ2

|∂kτ f(eiϑ1)− ∂kτ f(eiϑ2)|
|ϑ1 − ϑ2|α

< +∞.

With this norm, the space Ck,α is a Banach space; moreover, if f and g are
two maps in Ck,α, it is immediate to show that

‖fg‖α ≤ ‖f‖α‖g‖α.

Hence Ck,α is a Banach algebra.
We prove the following classical result, due to Privalov:

Theorem 2.2. The functional T1 : Ck,α(∂∆)→ Ck,α(∂∆) is continuous.

Proof. We write the harmonic extension of u through Poisson integral as

u(reiϕ) =
1

2π

∫ 2π

0

(1− r2)u(eiϑ)

(1 + r2 − 2rcos(ϑ− ϕ))
dϑ

=
1

2πi

∫
{|τ |=1}

1− |z|2

|τ − z|2
u(τ)

dτ

τ

= Re

[
1

2πi

∫
{|τ |=1}

(
τ + z

τ − z

)
u(τ)

dτ

τ

]
for r ≤ 1. Set

F =
1

2πi

∫
{|τ |=1}

(
τ + z

τ − z

)
u(τ)

dτ

τ
;
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F is holomorphic in z, and since u is real, we have ImF (0) = 0. But then

T0u|z=eiϑ = Im

[
1

2πi

∫
{|τ |=1}

(
τ + z

τ − z

)
u(τ)

dτ

τ

]
|z=eiϑ ,

where T0 is the Hilbert transform normalized at 0.
Since τ+z

τ
is smooth for |τ | = 1, |z| < 1, it is su�cient to prove the

continuity of the Cauchy integral K de�ned by

Ku(z) =
1

2πi

∫
{|τ |=1}

u(τ)

τ − z
dτ, |z| < 1.

It is immediate to estimate ‖Ku‖k by ‖u‖k,α. So, we have to estimate
ũ := ∂kϑu. For z1 = eiϑ1 and z2 = eiϑ2 in ∂∆, set ε = |z1 − z2| and B2ε(z1) =
{τ : |τ − z1| < 2ε}. We have

Kũ(z1)−Kũ(z2) =
1

2πi

∫
∂∆

((
ũ(τ)− ũ(z1)

τ − z1

)
−
(
ũ(τ)− ũ(z2)

τ − z2

))
dτ

+ (ũ(z1)− ũ(z2))

=
1

2πi

∫
∂∆∩B2ε(z1)

· +
1

2πi

∫
∂∆\B2ε(z1)

· + (ũ(z1)− ũ(z2)).

We use
1

2πi

∫
∂∆\B2ε(z1)

· + (ũ(z1)− ũ(z2))

=
1

2πi

∫
∂∆\B2ε(z1)

(ũ(τ)− ũ(z1))

[
1

τ − z1

− 1

τ − z2

]
dτ

+
1

2πi

∫
∂∆\B2ε(z1)

(−ũ(z1) + ũ(z2))

τ − z2

dτ + (ũ(z1)− ũ(z2));

since 1
2πi

∫
∂∆

1
τ−z2dτ = 1, the sum of the second and third terms in the right-

hand side is
∫
B2ε(z1)∩∂∆

ũ(z1)−ũ(z2)
τ−z2 dτ . Its absolute value is then estimated by

‖ũ‖α|z1 − z2|α. The absolute value of the �rst term on the right-hand side
can be estimated by

‖ũ‖α|z1 − z2|
∫
∂∆\B2ε(z1)

2|ϑ− ϑ1|−2+αdϑ . ||ũ||α|z1 − z2|α.

As for the remaining integral over ∂∆ ∩B2ε(z1), we have

1

2πi

∫
∂∆∩B2ε(z1)

· . ‖ũ‖α
∫
∂∆∩B2ε(z1)

(|ϑ− ϑ1|α−1 + |ϑ− ϑ2|α−1)dϑ

. ‖ũ‖α|z1 − z2|α.

The proof is complete.
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We are now ready to construct analytic discs attached to a generic man-
ifold M , as described by Bishop in [6].

Proposition 2.2. Let M be de�ned by (2.2) with h ∈ Ck+l+2. Then for any
small w ∈ Ck,α(∂∆,Cn−m) with w(1) = 0, and for any z0 close to 0, there is
a unique u ∈ Ck,α(∂∆,Rm) which is a solution of

u = −T1h(u, z′′0 + w(τ)) + x′0. (2.12)

Moreover, if w depends on some parameter η ∈ Rd so that Rd → Ck,α, η 7→
wη is C l, then also (η, x′o, z

′′
o ) 7→ uη,x′o,z′′o , R

d × Cn−m → Ck,α(∂∆) is C l.

Proof. Consider the mapping

F : Ck,α(∂∆,Rm)× Ck,α(∂∆,Cn−m)× Rm × Cn−m → Ck,α(∂∆,Rm),

(u,w, x′0, z
′′
0 ) 7→ u+ T1h(u, z′′0 + w)− x′0.

F is a C1-functional between function spaces. For the Jacobian ∂uF with
respect to u, we have

∂uF : u̇ 7→ u̇− T1∂xhu̇.

Evaluation at (0, 0, 0) implies that ∂uF is invertible since ∂xh(0) = 0. Hence
the implicit function theorem in Banach spaces yields the solvability of (2.12),
along with the required dependence of the solution on all the parameters.

Let NpM = TpCn/TpM be the normal space to M at p ∈ M , and Γ ⊂
NpM an open cone. A wedge W with edge M and direction cone Γ is a set
of the form

W = ((M ∩ U) + Γ) ∩ U,

where U is a neighborhood of p in Cn. We state the following version of the
edge-of-the-wedge theorem, due to Ajrapetyan and Henkin ([1]).

Theorem 2.3. Let M ⊂ Cn be a generic submanifold, and p ∈ M . Let
Mj (1 ≤ j ≤ m, m = codimM) be manifolds with boundary M (hence
dimMj = dimM + 1). Suppose there are ξ1, . . . , ξm, ξj ∈ TpMj/TpM pointing
inside Mj, such that span{ξ1, . . . , ξm} = NpM. Then all CR functions on
M ∪M1∪ . . .∪Mm extend holomorphically to a wedge W ′ with direction cone
Γ′, where Γ′ is any �ner cone than Γ = conv{ξ1, . . . , ξm}.

Proof. We take p = 0, and describe our situation by taking M de�ned by
(2.2) and adding the extra directions ξ1, . . . , ξm. We suppose M and Mj are
de�ned by the equation

y = h(x,w, t),
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where t ∈ Rm and h is a smooth function de�ned in a neighborhood of 0 in
Rm ×Cn−m ×Rm: M has the equation y = h(x,w, 0), while Mj is described
by tj > 0 and ti = 0 for i 6= j. We can assume h(0) = 0, ∂xh(0) = 0,
∂wh(0) = 0, and ∂th(0) = id; then the cone Γ, de�ned as the convex span of
the ξj's, is turned into

Γ = {t ∈ Rm : tj ≥ 0, 1 ≤ j ≤ m}.

We observe that (x,w, t) is a set of local coordinates of Cn in a neighborhood
of 0. Let A(τ) = (u(τ)+ iv(τ), w(τ) be a disc attached toM ∪M1∪ . . .∪Mm,
and t(τ) = (t1(τ), . . . , tm(τ)) be the t-component of A in the coordinates
described above. Then all tj(τ) ≥ 0 for |τ | = 1, but for any τ ∈ ∂∆ only one

of the tj(τ) can be di�erent from 0. We decompose ∂∆ into a union
m⋃
j=1

γj of

arcs of length 2π
m
, take ϕj(τ) ≥ 0 with suppϕj ⊂ γj and 1

2π

∫
ϕjdϑ = 1 and

de�ne
tλ(τ) = (λ1ϕ1(τ), ..., λmϕm(τ)),

for (λ1, . . . , λm) ∈ Rm
+ .

Take parameters λ, w0 and x0. Then we have a family of discs Aλ,x0,w0

given by the solution of the Bishop equation

u = −T1h(u,w0, t) + x0.

Consider the evaluation mapping of the centers of the discs

E : (xo, λ, wo) 7→ Aλ,xo,w0(0) = (xo + iv(0), wo);

we prove that for the Jacobian of E at 0 we have

JE =

(
id i∂th ∗
0 0 id

)
, (2.13)

where the asterisk denotes unimportant elements. Thus, when the parame-
ters (λ, x0, wo) describe Rm

+×Rm×Cn−m, the union of the centers of the discs
covers a wedge W with direction cone Γ′ for every Γ′ �ner than Γ = Rm

+ , and
we can conclude by the Baouendi-Treves approximation theorem (Theorem
2.1).

From v(0) = 1
2π

∫ 2π

0
v(eiϑ)dϑ for v = h, we get

∂x0v(0) = (2π)−1

∫ 2π

0

∂xh∂xoudϑ.

We also have ∂λv(0) = 1
2π

∫ 2π

0
(∂xh∂λu+∂th∂λtλ)dϑ. At λ = 0, xo = 0, wo = 0,

we have ∂xh = 0, ∂λtλ = id. Hence, if z(0) = u(0) + iv(0), ∂xoz(0) = id,
∂λz(0) = i∂th, which proves (2.13).
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We now treat the Lewy extension theorem of [13], and its extension to
manifolds of higher codimension due to Boggess-Polking (see [8]).

Let M ⊂ Cn be a smooth real hypersurface given by the equation r = 0.

De�nition 2.3. The Levi form of M = ∂Ω at a point p is the hermitian
form

LM(p)(X, Y ) =
n∑

j,k=1

∂2r

∂zj∂z̄k
(p)XjYk,

for X, Y ∈ T cpM .

The Levi form is invariant under holomorphic change of coordinates, and
its rank and signature are well de�ned (that is, independent of the de�ning
function r), up to the choice of an orientation: as a convention, we will
suppose that the open set Ω is given by {r < 0}.

When the Levi form of M has at least one negative eigenvalue, holomor-
phic functions de�ned in Ω extend across the boundary:

Theorem 2.4. Let M = ∂Ω a real hypersurface of class C5. Suppose that

∂w0∂w̄0h(p) < 0

for a complex tangential vector w0. Then there is a full neighborhood U of p
in Cn with an extension map

hol(U ∩ Ω) −→ hol(U).

Proof. We will construct a family of discs {A} attached toM , with A(1) = z
describing a neighborhood of p, and prove they are transversal toM at 1 with
a uniform bound for the angle they form with TM ; then the rays A([0, 1]) will
�ll up the desired neighborhood of p, forcing the extension of the holomorphic
functions de�ned on Ω.

Let M be de�ned bas in Proposition 2.1 in coordinates (x + iy, z′′), and
de�ne the z′′-component of a disc Az,η (for z = (x + iy, z′′) close to p and η
small) as wη(τ) = ηw0(1− τ). By Theorem 2.2, we can �nd a disc Az,η(·) =
(uη(·) + ivη(·), z′′ + wη(·)) attached to M and such that Az,η(1) = z. Fix
z = p = 0; it is easy to see (by the normal form of the hypersurface) that the
Taylor development of ∂tvη (for τ = teiϑ ∈ ∆) with respect to η reduces to

∂tvη = ∂t∂
2
ηvη|η=0

η2

2
+ o2.

Recalling that vη = h on ∂∆, and applying the vanishing of derivatives of
Proposition 2.1, we can prove that

∂2
ηvη = 2∂w0∂w̄0h|1− τ |2 on ∂∆.
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Since |1− τ |2|∂∆ = 2Re (1− τ)|∂∆, we have

∂t∂
2
ηvη|η=0 = −4∂w0∂w̄0h > 0,

that is, the ray of the disc Aη is transversal to ∂Ω and points outside Ω.
The �nal step of the proof consists in moving z near 0 for a �xed small η0,
obtaining the desired family of discs.

Let nowM ⊂ Cn be a generic, higher-codimensional, submanifold, locally
given by an equation r = 0, where r = (r1, . . . , rm) is a smooth Rm-valued
function in a neighborhood of 0 ∈ Cn such that ∂r1 ∧ · · · ∧ ∂rm 6= 0. De�ne
the Levi form of M as

LM(p)(X, Y ) =
n∑

j,k=1

∂2r

∂zj∂z̄k
(p)XjYk ∈ Cm,

for X, Y ∈ T cpM ; we identify NpM with Rm by the di�erential dr(p). The
Levi cone of M at p is the cone

Γ = conv{LM(p)(X,X) : X ∈ Tc
pM};

Γ is independent on the choice of r.

Theorem 2.5. Let M be a generic submanifold of Cn of class C5, and let Γ
be the Levi cone of M . Then all continuous CR functions on M extend to a
wedge W with edge M and direction cone Γ.

2.3 Nonsmooth analytic discs

Following [21] and [22], we introduce spaces of functions on ∂∆ and on ∆
that are C1 everywhere outside the point 1 ∈ ∂∆ and have a prescribed
singularity at τ = 1.

In the sequel, for 0 < α < 1, we take the principle branch of (1− τ)α on
∆ which is real positive on the segment [−1, 1]. For each α, we denote by
d = d(α) the unique positive integer such that dα < 1 ≤ (d+ 1)α. Then d is
the maximal power such that (1− τ)dα /∈ C1,β for any 0 < β < 1. Fix any β
satisfying {

0 < β ≤ (d+ 1)α− 1 if (d+ 1)α > 1,

0 < β ≤ (d+ 2)α− 1 if (d+ 1)α = 1.
(2.14)

Then we have β < α and (1− τ)jα ∈ C1,β if and only if j = 0 or j > d.
Denote by Cd[(1− τ)α] and Cd[(1− τ)α, (1− τ̄)α] the spaces of complex

polynomials of degree at most d in the corresponding variables. By a slight
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abuse we use the same notation for the spaces of restrictions of the polyno-
mials to ∂∆ and to ∆ respectively. In order to exclude constant functions
from C1,β, we consider the subspace of all functions f ∈ C1,β with f(1) = 0
denoted by C1,β

1 .
We de�ne

Pα(∂∆) := Cd[(1− τ)α] + C1,β
1 (∂∆) ⊂ C(∂∆),

Pα(∆) := Cd[(1− τ)α, (1− τ̄)α] + C1,β
1 (∆) ⊂ C(∆).

(2.15)

Our de�nition is given an important motivation by the following property

Lemma 2.1. Both sums in (2.15) are direct, i.e. any function f ∈ Pα(∂∆)
(resp. f ∈ Pα(∆)) is uniquely decomposed as a sum f = p + g with g ∈
C1,β

1 (∂∆) (resp. g ∈ C1,β
1 (∆)) and p a polynomial in the corresponding space.

Proof. We prove that the decomposition f = p + g is uniquely determined
by the asymptotics of f at 1 ∈ ∂∆. For τ = eiϑ ∈ ∂∆ and any j, we have

(1− τ)jα = (1− cosϑ− i sinϑ)jα = (−iϑ)jα(1 + ϑrj(ϑ))

with rj(ϑ) real analytic in [−π, π] (we used the power series expansions of
sinϑ and cosϑ at ϑ = 0). Hence, if we take two decompositions f = p1 +g1 =
p2 + g2, we must have p1((−iϑ)α)− p2((−iϑ)α) ∈ C1,β

1 which is only possible
for p1 = p2, and therefore g1 = g2. The uniqueness of the decomposition in
Pα(∆) also follows from the asymptotics of the powers (1− τ)jα at τ = 1 for
τ ∈ ∆.

Let f ∈ Pα, and f = p + g its decomposition as in Lemma 2.1, with
p =

∑d
j=1 cj(1 − τ)jα. Thanks to the uniqueness of such decomposition, we

can de�ne the norm

‖f‖(α) =
d∑
j=1

|cj|+ ‖g‖C1,β .

This norm makes Pα(∂∆) (resp. Pα(∆)) a Banach space. Moreover

Lemma 2.2. There exists a constant C > 0 such that the spaces Pα(∂∆)
and Pα(∆) with the norm C‖ · ‖(α) become Banach algebras.

Proof. We prove the statement for Pα(∂∆); the case of Pα(∆) is analogous.
The only nontrivial statement is the behaviour with respect to the multipli-
cation. If f and g are either polynomials or functions in C1,β

1 , it is easy to
check that

C‖fg‖(α) ≤ C2‖f‖(α)‖g‖(α). (2.16)
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It remains to consider the case when f(τ) = (1 − τ)jα and g ∈ C1,β
1 . After

removing the linear terms, we may suppose g(1) = g′(1) = 0 and hence
|g(τ)| ≤ ‖g‖1,β|1− τ |, |g′(τ)| ≤ ‖g‖1,β|1− τ |β. We have

(fg)′(τ) = jα(1− τ)jα−1g(τ) + (1− τ)jαg′(τ). (2.17)

Since jα ≥ α > β, the second term is a product of functions in Cβ, hence
it is in Cβ with its norm estimated by ‖f‖(α)‖g‖(α). To show that the �rst
term is also in Cβ, we estimate its derivative

|(jα(1−τ)jα−1g(τ))′| . |(1−τ)jα−2g(τ)|+|(1−τ)jα−1g′(τ)| . ‖g‖1,β|1−τ |β−1

which implies, by integration, that also the �rst term on the right-hand side
of (2.17) is in Cβ with its norm estimated by ‖g‖1,β. We have fg ∈ C1,β

1 (∂∆)
with ‖fg‖(α) . ‖f‖(α)‖g‖(α). Then there exists a suitable constant C such
that we easily obtain the estimate (2.16).

From now on we rescale the Pα-norm according to Lemma 2.2 to obtain
the inequality ‖fg‖(α) ≤ ‖f‖(α)‖g‖(α) for all f, g ∈ Pα(∂∆) (resp. f, g ∈
Pα(∆)) without any constant C.

It is an immediate consequence of the construction of the spaces Pα and
of Privalov's theorem (2.2) that the Hilbert transform

T1 : Pα(∂∆)→ Pα(∂∆)

is a continuous linear operator.

Lemma 2.3. Let d ≥ 1 and 0 < β < α be chosen as before, and let K be
either ∂∆ or ∆. If f ∈ Pα(K,Rn) with f(1) = 0 and h ∈ Cd+2(Rn,Rm) with
vanishing derivatives h(j)(0), 1 ≤ j ≤ d, the composition h ◦ f is always in
C1,β(K,Rm).

Proof. Without loss of generality, we can suppose h(0) = 0. We want to
show that the estimate

‖h ◦ f‖1,β .
(
1 + ‖f‖d+1

(α)

)
‖h‖d+2 (2.18)

holds. Write f = p+ g as in Lemma 2.1; we have

(h(f))′(τ) = h′(f(τ))[p′(τ)] + h′(f(τ))[g′(τ)]. (2.19)

Since β < α we always have f ∈ Cα ⊂ Cβ, with ‖f‖β . ‖f‖(α); therefore
h′ ◦ f ∈ Cβ with

‖h′ ◦ f‖β . (1 + ‖f‖(α))‖h‖2.
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Since g′ is in Cβ (which is a Banach algebra), the second term on the right-
hand side of (2.19) is Cβ and its norm is estimated by the right-hand side of
(2.18). We need to show the same estimates holds for the �rst term.

Since (1 − τ)α ∈ Cβ, the multiplication with (1 − τ)α or with (1 − τ̄)α

preserves the class Cβ. Hence it su�ces to prove the estimate

‖h′(f(τ))[p′(τ)]‖β .
(
1 + ‖f‖d+1

(α)

)
‖h‖d+2 (2.20)

for p(τ) = (1 − τ)α (the case p(τ) = (1 − τ̄)α is analogous). We write the
derivative

(h′(f(τ))[(1− τ)α−1])′(τ) = h′′(f(τ))[f ′(τ)][(1− τ)α−1]

+ (α− 1)h′(f(τ))[(1− τ)α−2]; (2.21)

by the vanishing hypothesis on the derivatives, we have

|h(x)| . ‖h‖d+2|x|d+2, |h′(x)| . ‖h‖d+2|x|d+1, |h′′(x)| . ‖h‖d+2|x|d.

Using these estimates, along with

|f(τ)| . ‖f‖(α)|1− τ |α |f ′(τ)| . ‖f‖(α)|1− τ |α−1,

we obtain

|h′′(f(τ))[f ′(τ)][(1− τ)α−1]| . ‖f‖d+1
(α) ‖h‖d+2|1− τ |(d+2)α−2 (2.22)

and
|h′(f(τ))[(1− τ)α−2]| . ‖f‖d+1

(α) ‖h‖d+2|1− τ |(d+2)α−2. (2.23)

By an integration of (2.22) and (2.23), we get the estimate (2.20), that con-
cludes our proof.

The Cd+2-smoothness in Lemma 2.3 is not necessary if we don't have
(d + 1)α = 1; in any other case it is su�cient to replace d + 2 with d + 1
to obtain the same result. We write d′ = d′(α) = d for (d + 1)α > 1 and
d′ = d + 1 otherwise; hence the conclusion of Lemma 2.3 holds for d + 2
replaced replaced by d′ + 1.

In [21] the following more general result is proved on the di�erentiability
of the composition operator acting on Pα.

Proposition 2.3. For l ≥ 1, the composition (h, f) 7→ h ◦ f de�nes a C l

map c : Cd′+l+1(Rn,Rm)×Pα(K,Rn)→ Pα(K,Rm) whose �rst derivative is
given by

c′(h, f)[ḣ, ḟ ](ϑ) = ḣ(f(ϑ)) + h′(f(ϑ))[ḟ(ϑ)].
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Let M ⊂ Cn be a generic submanifold of class Cd′+l+1 (l ≥ 1) through 0
that is locally represented as a graph

M = {(x+ iy, w) ∈ Cn−m × Cm : y = h(x,w)} (2.24)

with h(0) = 0, h′(0) = 0. We know from the classical theory (Proposition
2.2) that it is possible to attach Cα-discs A(·) = (z(·), w(·)) to M for a
prescribed component w(·) ∈ Cα. We want to show that, when the w-
component is in Pα, the whole disc is in Pα; moreover, we will prove that
the discs smoothly depend on their parameters.

Proposition 2.4. Let h = h0 be of class Cd′+2 and M = M0 be given by
(2.24). For every su�ciently small x0 ∈ Rn−m, w(·) ∈ Pα, where w(·) is
holomorphically extendible to ∆, and for every h su�ciently close to h0 in
Cd′+2, there exists a unique su�ciently small disc A(·) = (z(·), w(·)) in Pα
attached to M such that Re z(1) = x. For h ∈ Cd′+l+1 (l ≥ 1), the disc
A ∈ Pα depends in a C l fashion on the parameters x0 ∈ Rn−m, w ∈ Pα and
h ∈ Cd′+l+1.

Proof. The required disc A(·) = (x(·)+iy(·), w(·)) can be obtained by solving
the Bishop equation

x(·) + T1h
(
x(ϑ), w(ϑ)

)
(·)− x0 = 0. (2.25)

Call F the left-hand side of 2.25: it follows from Lemma 2.3, Proposition 2.3,
and the continuity of T1 on the space Pα, that F is a di�erentiable mapping.
Moreover, we have

∂xF [ẋ] = ẋ− T1h(x,w)(·)− x0;

in particular, evaluation at (0, 0, 0) implies that ∂xF is invertible, since
∂xh(0) = 0. Thus, for the implicit function theorem, we have a unique
solution to 2.25.

Consider the cotangent bundle T ∗Cn: we identify it with the space of all
(1, 0) covectors. Then the conormal bundle T ∗MCn of M in Cn is the set of
all covectors in T ∗Cn|M which are purely imaginary when restricted to TM ;
T ∗MCn is a real (not necessarily CR) submanifold of T ∗Cn. If π : T ∗Cn → Cn

is the natural projection: each �ber (T ∗MCn)p is naturally identi�ed with a
maximal totally real linear subspace of T ∗pCn−m. Denote by GL(Cn−m) the
general linear group on Cn (that is, the group of all linear automorphisms
of Cn−m); given p ∈ M , the set G∗(p) of all (q,G∗) ∈ M × GL(Cn−m) with
G∗((T ∗MCn)p) = (T ∗MCn)q is a generic submanifold in Cn × GL(Cn−m) with
maximal totally real �bers over M . Hence we can identify T ∗MCn with a
generic submanifold of T ∗Cn−m. Applying Proposition 2.4 to the generic
submanifold G∗(p) for p = A(1), we get:
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Lemma 2.4. Let A be a small Pα disc in attached to a generic submanifold
M ⊂ Cn of class Cd′+3. Then there is a unique disc G∗ : ∆→ GL(Cn−m) of
class Pα such that G∗(1) = id and, for ϑ ∈ ∂∆,

G∗(ϑ)((T ∗MCn)A(1)) = (T ∗MCn)A(ϑ).

We say that a generic manifold M , graphed by a function h in a neigh-
borhood of 0 as in (2.24), is �at and rigid up to the order k if

h(x,w) = O(|x|k + |w|k);

we remark that by (2.2) all generic manifolds are �at and rigid up to the order
2. This observation led in [21] to prove that, if 1/2 < α < 1, the normal
component of discs in Pα is smoothed by composition with the function h
graphing M . More generally, making use of Lemma 2.3:

Lemma 2.5. Let A be a su�ciently small Pα-disc attached to a generic
submanifold M ⊂ Cn, �at and rigid up to the order k and of class Ck+1, and
set p = A(1) ∈M . Then there is a unique representation

A(τ) = p+ (1− τ)αA1 + . . .+ (1− τ)dαAd +B(τ),

with A1, . . . , Ad ∈ T cpM , B(·) ∈ C1,β and B(1) = 0.

Proof. We can suppose p = 0 and M is given by (2.24) with h(j)(0) = 0 for
1 ≤ j ≤ k−1. Since A is attached toM , we have y(τ) = h(x(τ), w(τ)) for τ ∈
∂∆. Then, by Lemma 2.3, y(·) ∈ C1,β(∂∆); hence even its Hilbert transform
x(·) is in C1,β(∂∆). Therefore the holomorphic extension z(·) = x(·)+iy(·) ∈
C1,β(∆). Then the existence and uniqueness of the representation above are
given by the de�nition of the space Pα and Lemma 2.1.

We denote by [v] ∈ TMCn the equivalence class de�ned by a tangent
vector v. Since under the conditions of Lemma 2.5, the normal component of
A is C1,β, it makes sense to write [∂rA(1)] ∈ (TMCn)A(1), even though ∂rA(1)
(the radial derivative in ∆) may not exist; it makes sense now to discuss the
directions of Pα-discs at their singular points.

Let G∗ be the �connection� on T ∗MCn over ∂∆ de�ned by Lemma 2.4: for
each ϑ1, ϑ2 ∈ ∂∆, we have a linear isomorphism between (T ∗MCn)A(ϑ1) and
(T ∗MCn)A(ϑ2). By duality, we can de�ne an isomorphism between (TMCn)A(ϑ1)

and (TMCn)A(ϑ2); we call G the corresponding GL(Cn−m)-valued analytic
disc that gives the dual connection on TMCn over A. We now show that G
describes the direction of the deformation of a Pα-disc attached to M .
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Proposition 2.5. Let M be a generic manifold, rigid and �at up to the
order k, of class C l (l ≥ k + 1), and let A be a small analytic disc of class
Pα attached to M with p = A(1). Let M ′ be a C l submanifold with boundary
M at a point q ∈ A(∂∆), with CqM

′ = TqM ⊕R+v for a v ∈ TqCn. For any
ε > 0 there is a C l family of submanifolds Mη ⊂ M ∪M ′, for 0 ≤ η ≤ η0,
such that M0 = M and the analytic disc Aη(τ) = (zη(τ), w(τ)) attached to
M , with the same w-component w(τ) as A and Aη(1) = p, satis�es

[∂rAη(1)] = [∂rA(1)] + η
(
G(τ0)−1[v] + [v0]

)
+ o(η) (2.26)

when η → 0, for some v0 ∈ TpCn with |v0| < ε.

Proof. We consider real coordinates x ∈ Cn with q = 0, in which M is given
by x1 = · · · = xm = 0 andM ′ by x1 = · · · = xm−1 = 0, xm ≥ 0. Let ϕ ≥ 0 be
a function with compact support in a su�ciently small neighborhood of q in
M , and de�ne Mη, 0 ≤ η ≤ η0, as the deformation of M that coincides with
M outside the support of ϕ, and is given by xs = ηϕ(xs+1, . . . , x2n) near q.

Take the analytic disc Aη attached to Mη with Aη(1) = p and with the
same w-component as A. By Proposition 2.4, the derivative Ȧ of Aη with
respect to η for η = 0 exists and belongs to Pα. Since the �w-component� of
Aη is �xed, we have Ȧ = (ż, 0). LetG∗ as in Lemma 2.4; for any ξ ∈ (T ∗MCn)p,
the function ψ(τ) := (G∗(τ)ξ) [Ȧ(τ)] is holomorphic in ∆, and, since the real
part of G∗(τ)ξ is 0 on ∂∆, the real part of ψ vanishes on ∂∆ away from the
support of ϕ, where Mη = M .

Take ξ such that Re (G∗(τ0)ξ)[v] ≥ δ|ξ| for a �xed small δ > 0. If the
deformation of M takes place only in a su�ciently small neighborhood of
q, the direction of [Ȧ(τ)] di�ers only slightly from [v] for τ ∼ τ0 (while
[Ȧ(τ)] = 0 for τ far from τ0). Then, since also Reψ(1) = 0, Reψ(τ) ≥ 0 for
all τ ∈ ∂∆. But then, by Hopf lemma, the radial derivative Re ξ[∂rȦ(1)] is
positive. Since ξ is arbitrarily chosen satisfying Re (G∗(τ0)ξ)[v] ≥ δ|ξ| , we
have ∣∣[∂rȦ(1)]− λG(τ0)−1[v]

∣∣ < ε

for some λ > 0 and su�ciently small δ > 0. By a linear change of the
parameter η we can achieve λ = 1. It remains to remark that the radial
derivative [∂rAη(1)] is continuous in η with ∂

∂η
[∂rAη(1)]|η=0 = [∂rȦ(1)].

It is now immediate to state the following:

Proposition 2.6. Let M ⊂ Cn be a generic, k-�at and rigid, C l-smooth
submanifold (l ≥ k + 1) through p = 0 and let A be a small analytic disc of
class Pα attached to M . If M ′

1, . . . ,M
′
s are C l-smooth submanifolds with

boundary M at a point q ∈ A(∂∆) in s linearly independent directions
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[v1], . . . , [vs] ∈ (TMCn)q, we can �nd s submanifolds Mj ⊂ M ∪M ′
j of class

C l, dimMj = dimM for all j, and arbitrarily close to M in the C l norm
such that, for the discs A1, . . . , As of class Pα attached to M1, . . . ,Ms re-
spectively, with Aj(1) = A(1) and with the same w-component as A, we have
that [∂rA1(1)], . . . , [∂rAs(1)] are linearly independent.

2.4 Baouendi-Treves approximation for sectors

De�nition 2.4. Let V ⊂ Cn be a generic submanifold. V is a Baouendi-
Treves submanifold if, for every j = 0, 1, . . . ,∞, ω, every CR-function on V
of class Cj can be uniformly approximated by holomorphic polynomials on
the compact subsets of V in the Cs topology.

In [19] it was observed that the original proof of the Baouendi-Treves
approximation theorem (Theorem 2.1) can be adapted to the situation of
a submanifold with generic edge; however, in the following section we will
consider a case where the edge is not generic. Here we show, following [21],
that neighborhoods of certain sectors in V are submanifolds of Baouendi-
Treves.

Theorem 2.6. Let M ⊂ Cn be a generic submanifold and V ⊂ M an open
subset with Lipschitz boundary at p = 0 ∈ ∂V . Suppose we can �nd v ∈ Cn

and 0 < α < 1 such that the sector Sv(α) := {zαv : Re z ≥ 0} is contained
in CpV . Then there exists ε0 > 0 such that the open subset

{z ∈M : dist(z, Sv(α)) < ε0 dist(z, p) < ε2
0} (2.27)

is a Baouendi-Treves submanifold in Cn.

We want to adapt the proof of Theorem 2.1 to our situation. Denote by
Bn

0 (resp. Bn) the open (resp. closed) unit ball in Rn.

Lemma 2.6. LetM ⊂ Cn be a generic submanifold of CR-dimension m. Set
d := n−m. Suppose that for any compact K ⊂M , there exist a holomorphic
nondegenerate quadratic form ω(z) in Cn and a smooth map ϕ : Bn×Bd →M
such that the following hold:

(i) the image ϕ(Bn
0 ×Bd

0) contains K;

(ii) for each y ∈ Bd, the restriction ϕ(·, y) is an embedding of Bn into M
as a maximally totally real submanifold Ny (with boundary) such that
the restriction Reω|Ny is positive de�nite.
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(iii) ϕ(x, ·) = const for every x ∈ ∂Bn, in particular, the boundaries of Ny's
are the same for all y ∈ Bd.

Then M is a submanifold of Baouendi-Treves.

Proof. Take a CR-function f on M and y ∈ Bd and de�ne the sequence of
entire functions

fλ,y(z) :=
(λ
π

)n/2 ∫
Ny

f(ζ)e−λω(ζ−z)dζ1 ∧ · · · ∧ dζn, l = 1, 2, . . . .

The positivity condition for Reω|Ny implies that fλ,y converges to f as λ→
∞, uniformly on compacta in the interior of Ny. It is easy to see by using
(i), that the convergence is uniform on K. Moreover, it follows from the fact
that f is CR, from (iii) and from the Stokes theorem that the functions fλ,y
are independent on y ∈ Bd. Thus, fλ,y is a sequence of entire functions that
uniformly converges to f on K, and we can approximate entire functions by
taking their Taylor polynomials.

In order to apply Lemma 2.6 to our situation, we need to construct ϕ
satisfying the requirements. For ε > 0,we de�ne the real convex cone

Aε := {x2
1 >

ε

2
(x2

2 + · · ·+ x2
n)} ⊂ Rn ⊂ Cn

and the ball

Bε :=
{
iy : y2

1 + · · ·+ y2
n <

1

1 + ε

}
⊂ iRn ⊂ Cn.

Moreover, we set Ãε := (−1 +Aε)∩ (1−Aε) ⊂ Rn, (where 1 = (1, 0, . . . , 0) ∈
Cn). If iy ∈ Bε, let Cε(y) ⊂ Cn be the union of all real line segments
connecting iy with boundary points of Ãε and let Cε be the union of the
subsets Cε(y) for iy ∈ Bε.

Lemma 2.7. For any ε > 0 and any iy ∈ Bε, the standard form Reω =
Re
∑

j z
2
j =

∑
j(x

2
j − y2

j ) is positive on tangent vectors to Cε(y). Moreover,

for any 1 ≤ d ≤ n and δ > 0, the exist a smooth map ϕ : Bn×Bd → Rn⊕iRd

satisfying conditions (ii) and (iii) in Lemma 2.6 with ω as above and such
that

Cε ∩ (Rn ⊕ iRd) ⊂ ϕ(Bn
0 ×Bd

0) ⊂ (1 + δ)Cε ∩ (Rn ⊕ iRd).

Proof. Any tangent vector v to Cε(y0) at a point z = x+ iy is a sum v1 + v2,
where v1 is tangent to the segment connecting z with a boundary point
a ∈ ∂Ãε and v2 is tangent to ∂Ãε at a. If v1 = 0, the claim is clear, since
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Reω is positive on Rn ⊂ Cn. Otherwise, by rescaling v, we may assume
v1 = a− iy. By the convexity of Ãε, a+ v2 /∈ Ãε. Then, by the construction
of Aε and Bε, we have |y| < |a + v2|. Since v = a + v2 − iy, this shows
Reω(v) > 0 as required.

For the second statement, remark that Cε(y) can be written as Cε(y) =

{x + iξ(x)y : x ∈ Ãε} for a suitable continuous function ξ(x). We replace ξ
by a smooth function ξ̃ that approximates ξ in the C1 norm such that the
submanifold C̃ε(y) := {x+ iξ̃(x)y : x ∈ Ãε} still satis�es the above positivity
condition. It remains to choose ϕ(x, y) :=

√
1 + δ(x+ iξ̃(x)y).

We are now ready to prove Theorem 2.6. Denote by d the codimension
of M in Cn. Without loss of generality, p = 0. The proof will depend on
the case whether α is larger or smaller than 1/2. Suppose �rst α > 1/2.
Then ε > 0 can be chosen such that, for y := (1 + ε)−1/2(1, 0, . . . , 0), the
intersection I := Cε(y) ∩ (C × {0}) has the angle α at the point iy. Then,
for any λ > 0, there exists a complex a�ne automorphism Fλ : Cn → Cn

sending iλy to 0, λCε(y) ∩ (C × {0}) to Sv(α) and λCε ∩ (Rn ⊕ iRd) into
the interior of CpV . It follows from the de�nition of CpV that for λ > 0
su�ciently small, the map Fλ can be approximated on the closure λCε in C1

norm by a di�eomorphism F̃λ : Cn → Cn sending λCε ∩ (Rn ⊕ iRd) into the
closure V ⊂ M such that F̃λ(iλy) = 0 and dF̃λ(iλy) = dFλ(iλy). We can
now use F̃ to transfer the standard form ω and the family ϕ constructed in
Lemma 2.7 to the image U := F̃λ(λCε ∩ (Rn ⊕ iRd)) ⊂ V in order to have
data satisfying the assumptions of Lemma 2.6. Then Lemma 2.6 yields the
required conclusion. The proof for α ≤ 1/2 is analogous to that in the �rst
case α > 1/2 with the only exception that the above map Fλ must be chosen
to sends the point (λ, 0, . . . , 0) ∈ λCε instead of iλy into p = 0.

2.5 Extension of CR functions into weighted
wedges

The celebrated theorem of Boggess-Polking of [8] extending classical results
of Hans Lewy (see [13]) (see Theorems 2.4 and 2.5) states that CR-functions
de�ned on a generic submanifoldM ⊂ Cn extend holomorphically to a wedge
in the direction of the convex cone spanned by the values of the Levi form of
M . Here one starts with a submanifoldM and ends with a wedge. A natural
question is to obtain generalizations of this result within the category of
wedges.

In [19], Tumanov shows that holomorphic functions de�ned in a �xed
neighborhood of a wedge V with generic edge E in a submanifold M ⊂ Cn,
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extend holomorphically to a �xed wedge in Cn with edge E. This conclusion
does not hold if the edge E is not generic, or if it is not smooth. We want
to give conditions on V that yield holomorphic extension to regions more
general than usual wedges.

We say that an open subset V in a smooth manifold M has Lipschitz
boundary at a point p ∈ ∂V if, in suitable coordinates near p, ∂V is repre-
sented by the graph of a Lipschitz function. One can see that V has Lipschitz
boundary at p if and only if there is an open cone Γ ⊂ TpM such that, for
any strictly �ner subcone Γ′ ⊂ Γ, one has (in local coordinates) x + y ∈ V
for all x ∈ V and y ∈ Γ′ su�ciently close to p and 0 respectively. It is clear
that, if two cones Γ1,Γ2 ⊂ TpM satisfy the above property, so does their sum
Γ1 + Γ2. Furthermore, among all such cones there is a unique maximal one,
namely the sum of all of them that is automatically convex. We call it the
tangent cone to V at p and denote by CpV . We de�ne the complex angle of
V at p to be the maximal angle of the intersection of CpV with a complex
line in TpM . If all intersections are empty, we say that the complex angle is
0. It is clear that the complex angle is a local biholomorphic invariant of V
at p.

In this section the edge of V plays a secondary role. It can be seen as a
subset of the Lipschitz boundary of V :

De�nition 2.5. Let M be a submanifold of Rm and p ∈ M . A wedge with
edge M at p is an open subset in Rm with Lipschitz boundary at p ∈ ∂V such
that ∂V contains a neighborhood of p in M .

A basic notion in our exposition is that of α-wedge, as de�ned in [21]:
they can be viewed as wedges with the normal directions to M that have a
weight 0 < α < 1.

De�nition 2.6. Let M ⊂ Rm be a submanifold, V ⊂M an open subset and
p ∈ ∂V . Fix 0 < α < 1. An α-wedge in Rm over V at p is an open subset
V ′ ⊂ Rm for which there exist a neighborhood Ω of p in Rm, a wedge W with
edge M at p and a constant C > 0 such that

V ′ ∩ Ω ⊃ {x ∈ W : dist(x, V ) < C dist(x, ∂V )1/α}. (2.28)

The main result of this chapter is the following:

Theorem 2.7. Let M ⊂ Cn be a generic k-�at and rigid submanifold of
class Ck+1 and V ⊂ M an open subset with Lipschitz boundary at p ∈ ∂V ,
with complex angle πα for some 1/k < α < 1. Then for every neighborhood
V ′ of V in Cn there exists an α-wedge V ′′ in Cn over V at p such that all
holomorphic functions in V ′ extend holomorphically to V ′′.
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This is a generalization of the result contained in [21], where the case
k = 2 was considered. We recall that a generic manifold M is always 2-rigid
and �at.

We will make use of the following abstract lemma for families of real curve:
the aim of this result is to prove that, in the context we are considering, a
family of radii of nonsmooth analytic discs (as de�ned in the previous section)
attached to V �lls an α-wedge over V .

Proposition 2.7. Let V ⊂ Rm × 0 ⊂ Rm × Rn−m be an open set with
Lipschitz boundary at 0, and take a map of the form

ϕ : [0, 1]× V → Rn

(t, p) 7→ p+ tαa1(p) + . . .+ tdαad(p) + b(t, p)

with a(·), b(·, p) of class C1,γ and d = d(α) as de�ned before. Suppose that

• aj(p) ∈ C0V × {0} for all j = 1, . . . , d;

• b(0, p) = 0 for all p ∈ V ;

• ∂tb(0, 0) /∈ Rm × {0};

• the map p 7→ b(·, p), V → C1,γ is of class C1,γ.

Then there exist ε > 0, a neighborhood U of 0 in Rm×{0} and a submanifold
M ′ of class C1,γ2 with boundary M at 0 and additional direction ∂tb(0, 0)
such that ϕ is a homeomorphism between (0, ε) × (V ∩ U) and an α-wedge
over V at 0 in M ′.

Proof. We can suppose (up to a linear change of coordinates) ∂tb(0, 0) ∈
0× Rn−m

+ and de�ne the map

ϕ̃(τ, p) :=
(
ϕ1(τ 1/α, p), . . . , ϕm(τ 1/α, p), (ϕm+1(τ 1/α, p))α, . . . , (ϕn(τ 1/α, p))α

)
for small τ ≥ 0 and p ∈ V close to 0. We prove that ϕ̃ is C1,γ2 in a
neighborhood of (0, 0) in [0, 1] × V . The �rst m components clearly satisfy
our claim; we just have to check (ϕm+j(τ

1/α, p))α, j = 1, . . . , n − m. If we
write ϕm+j(t, p) = tϕ̂m+j(t, p) for a ϕ̂ ∈ Cγ with ϕ̂(0, 0) 6= 0, we have

∂τ (ϕm+j(τ
1/α, p))α) = (ϕm+j(τ

1/α, p))α−1 (∂tϕm+j)(τ
1/α, p) τ (1/α)−1

= (ϕ̂m+j(τ
1/α, p))α−1 (∂tϕm+j)(τ

1/α, p).

Recalling that the composition h ◦ f of two maps in Cγ is in Cγ2 , and that it
depends smoothly on h, we can conclude that the map p 7→ ∂τ ϕ̃(·, p) between
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V and Cγ2 is of class C1,γ. In particular, the map p 7→ ϕ̃(·, p) between V and
Cγ2 is also of class C1,γ. But then both derivatives ∂τ ϕ̃ and ∂pϕ̃ are in Cγ2

with respect to (τ, p) ∈ [0, 1]× V and the regularity of ϕ̃ follows. Now, since

dϕ̃(0, 0)[R⊕ {0}] = (a(0), ∂tbm+1(0, 0), . . . , ∂tbn(0, 0))

and dϕ̃(0, 0)[R⊕Rm] = Rm⊕R∂tb(0, 0), we can use the rank theorem to �nd
a submanifold M ′ of class C1,γ2 with boundary M at 0 such that C0M

′ =
Rm ⊕ R+∂tb(0, 0) and, for some C > 0, the set

Ṽ ′ := {x ∈M ′ : dist(x, V ) < Cdist(x, ∂V )}

is contained in ϕ̃((0, 1]× V ). Then the set

V ′ := {x ∈ Rm × Rn−m
+ : (x1, . . . , xm, x

α
m+1, . . . , x

α
n) ∈ Ṽ ′}

contains an α-wedge over V at 0.

As in [19], we prove our extendibility result through a propagation prin-
ciple for wedge-extendibility of CR functions:

Theorem 2.8. Let M ⊂ Cn be a generic k-�at and rigid submanifold of
class C l (l ≥ k + 1) through p = 0, V ⊂ M an open subset with Lipschitz
boundary at p ∈ ∂V with complex angle πα for 1

k
< α < 1, and v a vector

in TpM such that {ζαv : Re ζ ≥ 0, ζ 6= 0} ⊂ CpV . Then for any su�ciently
small analytic disc A attached to M of the form

A(ζ) = (1− ζ)αA1 + . . .+ (1− ζ)dαAd +B(ζ), (2.29)

where d is the unique positive integer such that dα < 1 ≤ (d+1)α, Aj ∈ R+ṽ
and B ∈ C1,β(∆) with B(1) = p, and for any q ∈ A(∂∆) ∩ V , the following
hold:

(i) For any wedge V ′ ⊂ Cn with edge V at q, there exists an α-wedge
V ′′ ⊂ Cn at p over V such that any continuous CR-function on V that
has a holomorphic extension to V ′, has also a holomorphic extension
to V ′′.

(ii) For any wedge V ′ with edge E ⊂ V at q in a submanifold M ′ with
boundary V of class C l, there exists an α-wedge V ′′ over V at 0 in
a submanifold M ′′ ⊂ Cn with boundary M of class C1 such that any
continuous CR-function on V that has a CR-extension to V ′, has also
a CR-extension to V ′′. Moreover, given several wedges V ′1 , . . . , V

′
s as

above in s linearly independent directions in TqCn/TqM , the corre-
sponding submanifolds M ′′

1 , . . . ,M
′′
s can be chosen in s linearly inde-

pendent directions in TpCn/TpM .
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Proof. Take A, p, q and V ′ as in the statement of part (ii): then A ∈ Pα for
a suitable 0 < β ≤ (d′+ 1)α−1. By Proposition 2.4, we can �nd a C l-family
of Pα-discs attached to M , x 7→ Ax, de�ned for x ∈ M in a neighborhood
of p = 0, with A0 = A and Ax(1) = x. From the assumptions on the
complex angle, we can suppose that Ax(∂∆) ⊂ V if x ∈ V is su�ciently
close to p. Applying Proposition 2.6, we can assume that A is transversal
to M at τ = 1, up to an arbitrarily small deformation of M in V ′. Now
we can apply Proposition 2.7, �nding ε > 0 and a neighborhood U of 0 in
M such that the map (τ, x) 7→ Ax(τ) de�nes a homeomorphism between
(1 − ε, 1) × (V ∩ U) and an α-wedge V ′′ over V at 0 in a submanifold M ′′

with boundary M at 0 of class C1,δ for a suitably chosen 0 < δ < 1. Finally,
if ε0 is given by Theorem 2.6 with v as in the statement, and if A is small
enough, Ax(∂∆) is contained in the set (2.27) for any x ∈ V su�ciently
close to p. If we take any such x = x0, any CR-function f on V can be
uniformly approximated by a sequence of polynomials in a neighborhood
of Ax0(∂∆) ⊂ V . By the maximum principle, the sequence of polynomials
converges uniformly on Ax(∂∆) for x ∈ V su�ciently close to x0 to a CR
extension of f in a neighborhood of Ax0((1−ε, 1)) in V ′′. Moreover, any such
sequence of polynomials yields the same limit function. We have obtained a
covering of V ∩ U by open subsets Vj, such that f extends to a CR function
on the interior of each subset

V ′′j := {Ax(τ) : x ∈ Vj, τ ∈ (1− ε, 1)} ⊂ V ′′.

We can now choose the covering {Vj} so small that, whenever Vj ∩ Vk 6= ∅,
there exists a sequence of polynomials as above that converges uniformly on
the union V ′′j ∪ V ′′k . Then, by the uniqueness property of the limit, the CR-
extensions of f to V ′′j and V ′′k must coincide on the intersection, yielding a
well-de�ned CR-extension of f to V ′′.

We now pass to prove part (i): we take a wedge V ′ ⊂ Cn with edge
V at q, and we observe that we can choose submanifolds V ′1 , . . . , V

′
m ⊂ Cn

of class C l with boundary V at q in m linearly independent directions in
TqCn/TqM , where m is the codimension ofM in Cn. Part (ii) proves that we
have extension of any CR-function f on V ∪ (∪jV ′j ) to α-wedges V ′′1 , . . . , V ′′m
over V at p in submanifolds M ′′

1 , . . . ,M
′′
m respectively, each with boundary

M , whose directions in TpCn/TpM are also linearly independent. Then near
each point p0 ∈ V close enough to 0 we can apply the edge of the wedge
theorem of Ajrapetyan-Henkin (Theorem 2.3), extending f to a wedge Wp0

with edge V at p0 whose direction cone is an arbitrarily smaller cone than
the convex linear span of the directions of M ′′

1 , . . . ,M
′′
m at p0. In order to

obtain an α-wedge over V as required we need to estimate the size of Wp0 as
p0 approaches the boundary ∂V . To do this, we use the deformation version
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of the edge-of-the-wedge theorem stated in [15, Proposition 3.3], and then
we apply linear rescaling (i.e. linear maps z 7→ λz), to show that the size of
the wedge W in the edge-of-th-wedge theorem is proportional to the size of
the given submanifolds. Since each V ′′j is an α-wedge over V at 0, its size
near p0 in all directions can be estimated from below by dist(p0, ∂V )1/α up
to a constant. Hence also the size of Wp0 has a proportional estimate from
below. It follows from the de�nitionof α-wedge that the wedges Wp0 cover
an α-wedge V ′′ over V at 0. Furthermore, by choosing Wp0 in a suitable
way and using the uniqueness of a holomorphic extension of functions into
wedges, we get holomorphic extension of f to V ′′.

We recall that a CR-curve inM is a piecewise-smooth curve γ : [0, 1]→M
with γ′(t) ∈ T cγ(t)M for all t ∈ [0, 1]. By approximating CR curves and using
Theorem 2.8, we get the following more general result:

Theorem 2.9. Let M ⊂ Cn be a generic submanifold of class Ck+1, �at and
rigid up to the order k, and V ⊂ M an open subset with Lipschitz boundary
at p ∈ ∂V . Let γ : [0, 1] → {p} ∪ V be a CR-curve with γ(0) = p such that
γ′(0) ∈ CpV and suppose the angle of the sector CpV ∩Cγ′(0) is πα for some
1/k < α < 1. Then, for any wedge V ′ ∈ Cn with edge V at q = γ(1), there
exists an α-wedge V ′′ ∈ Cn over V at p such that continuous CR-functions
on V that extend holomorphically V ′, also extend holomorphically to V ′′.

Proof. Suppose p = 0. We approximate γ by a chain of arbitrarily small
discs {Aj} attached to M , for 1 ≤ j ≤ s, such that Aj(∂∆) ∩ Aj+1(∂∆) 6= ∅
for 1 ≤ j ≤ s−1, A1 is of the kind (2.29), and all other discs are of class C1,β.
We start from p1 = p = 0 and we construct A1 ∈ Pα with A1(1) = 0 and
whose projection on T cp1M is γ̇(1)(1− τ)α. The distance of A1(−1) to some
point p2 = γ(t2) in γ is o(diam(A1)). Next, we take A2 with A2(1) = A1(−1)
and whose projection in T cp2M is p2 + γ̇(t2)(1−τ). In this way we �nd a chain
ending at As(−1) with |As(−1) − q| < ε. If V ′ is a wedge with edge in Cn

with edge V at q, then V ′ is a submanifold with boundary M at some point
in the boundary of the disc As. But then we can apply Theorem 2.8 and the
classical propagation of wedge extendibility by Tumanov ([18]) to reach our
conclusion.

It is now immediate to prove our main result:

Proof of Theorem 2.7. By the de�nition of the complex angle, there must
exist a CR curve γ satisfying the assumptions of Theorem 2.9, and the con-
clusion follows immediately from that theorem.
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