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Abstract 

The refrigerant charge minimization in refrigerating and air conditioning systems represents a 

challenging issue due to the new environmental national and international regulations. The use of smaller 

smooth tubes, i.e. with outer diameter around 5 mm, is becoming more and more common in many 

applications. More recently, also the microfin tubes have started to be reduced in size to cope with the 

continuously increasing demand of new, efficient, and compact heat exchangers for air conditioning and 

refrigeration equipment. This work investigates the performance of R134a during saturated flow boiling 

inside a microfin tube with internal diameter at the fin tip of 4.3 mm. Boiling heat transfer coefficients, 

frictional pressure drops, and critical vapor qualities were measured at 30°C of saturation temperature, by 

varying the refrigerant mass velocity between 100 kg m-2 s-1 and 800 kg m-2 s-1 and the vapor quality from 

0.1 to 0.95 at four different heat fluxes: 15 kW m-2, 30 kW m-2, 60 kW m-2, and 90 kW m-2. Moreover, the 

reliability of several models for flow boiling heat transfer and pressure drop estimations was assessed by 

comparing the experimental results with the calculations. 

 

Introduction 

Microfin tubes have been deeply investigated and used in many technical applications (e.g., air 

conditioning and refrigeration systems) since their first introduction in 1977 by Fujie et al. (1977). In fact, 

they potentially have many advantages with respect to smooth tubes, mainly when applied during 
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refrigerant phase change. Despite a pressure drop increase, they provide higher heat transfer coefficients 

and a delayed onset of dryout during the boiling process. Furthermore, the fins realized along the tube 

circumference should contribute to an easier and quicker transition to annular regime with a consequent 

increase of the heat transfer performance (Han and Lee, 2005, Doretti et al., 2013). Beside, in the last years 

microfin tubes with relatively lower diameters have been investigated. A reduction in diameter leads to a 

reduction of the refrigerant charge, so these mini microfin tubes can provide more compact heat exchangers 

with a minimization of the whole system refrigerant hold-up, while maintaining high efficiencies. This 

latter feature could result attractive also to cope with the new and even more stringent national and 

international environmental regulations that limit the refrigerant charge inventory and its maximum GWP, 

e.g. the new European F-gas regulation (Regulation (EC) No 517/2014). The scientific literature is strongly 

motivated in continuously studying microfin tubes in terms of heat transfer performance to provide an 

updated experimental database including different geometries and refrigerants, and to identify and/or 

develop reliable heat transfer and pressure drop models. Despite that, in the last decade or so, just few 

research groups have been focusing their attention microfin tubes smaller than D=6 mm.  

Baba et al. (2012) presented an experimental work on R1234ze(E), R32, and a zeotropic 

R1234ze(E)/R32 (50:50) by mass% mixture flow boiling heat transfer inside a 4.86 mm ID at the fin tip 

microfin tube. The mass velocity ranged from 150 kg m-2 s-1 to 400 kg m-2 s-1 at a saturation temperature of 

10°C.  

Kondou et al. (2013) tested several refrigerants during flow boiling inside a water heated microfin tube 

having 4.94 mm ID at the fin tip: R32, R1234ze(E), a R32/R1234ze(E) (20:80) by mass% mixture, and a 

R32/R1234ze(E) (50:50) by mass% mixture. The saturation temperature was fixed at 10°C, the heat flux 

was set at 10 kW m-2 and 15 kW m-2, and mass velocity ranged from 150 kg m-2 s-1 to 400 kg m-2 s-1. 

Furthermore, Kondou et al. (2014a) analyzed the heat transfer performance in terms of heat transfer and 

pressure drop during both the condensation and the vaporization processes inside the same horizontal 

microfin tube (4.94 mm ID at the fin tip) of four refrigerant mixtures: two R744/R32/R1234ze(E) mixtures 

with compositions: (4:43:53) and (9:29:62) by mass% and two R32/R1234ze(E) mixtures with 

compositions: (30:70) and (40:60) by mass%. The authors carried out the flow boiling experimental tests at 

a saturation temperature of 10°C, a heat flux equal to 10 kW m-2, and mass velocity ranging from 150 kg m-
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2 s-1 to 600 kg m-2 s-1. In addition, the same 4.94 mm ID at the fin tip microfin tube was investigated by 

Kondou et al. (2014b) during R1234ze(E), R1234ze(Z), and R134a condensation and vaporization. During 

flow boiling tests, the heat flux was fixed at 10 kW m-2, the saturation temperature ranged from 0°C to 

30°C, and the mass velocity was set at 150 kg m-2 s-1, 200 kg m-2 s-1, and 300 kg m-2 s-1.  

In a different laboratory, a 3.4 mm ID at the fin tip electrically heated microfin tube was investigated 

during flow boiling of several refrigerants at 30°C of saturation temperature, heat fluxes ranging from 10 

kW m-2 to 50 kW m-2 and mass velocities from 190 kg m-2 s-1 to 940 kg m-2 s-1. Mancin et al. (2015) tested 

R134a, Diani et al. (2014) presented R1234ze(E) data, and Diani et al. (2015) measured R1234yf heat 

transfer performance. The same approach was used to test a 2.4 mm ID at the fin tip electrically heated 

microfin tube during flow boiling of R1234ze(E) and R134a (Diani et al., 2016), and R1234yf (Diani and 

Rossetto, 2015) at 30°C of saturation temperature, with mass velocities ranging from 375 kg m-2 s-1 to 940 

kg m-2 s-1, and heat fluxes from 10 kW m-2 to 50 kW m-2. 

Wu et al. (2013) investigated R22 and R410A flow boiling inside one smooth tube and five microfin 

tubes having the same outer diameter (5 mm) and different number of fins and helix angles. The 

investigated mass velocities ranged from 100 to 620 kg m-2 s-1, at a saturation temperature of 6 °C. They 

found that microfin tubes are more efficient at low mass velocities, since the heat transfer coefficient per 

unit pressure drop decreases with mass velocity.  

He et al. (2016) investigated R410A and a near azeotropic R290/R32 (68:32) by mass% mixture during 

flow boiling inside three different microfin tubes, having 4.3 mm, 6.1 mm, and 8.48 mm diameter at the fin 

tip, respectively. The saturation temperature was kept equal to 7 °C, 9 °C, and 11 °C, the mass velocity 

ranged from 50 kg m-2 s-1 to 250 kg m-2 s-1, and the heat flux from 10 kW m-2 to 30 kW m-2. The authors 

measured heat transfer coefficients also inside smooth tubes with 4.0 and 6.0 mm respectively. The HTC 

measured during flow boiling inside the microfin tubes having similar fin tip diameter were consistently 

higher than the ones inside smooth tubes at the same working conditions. 

Despite the few recent works listed above, the available experimental data set in different microfin 

geometries having small diameter is still rather limited. So new sets of data obtained on different microfin 

tubes are indeed very helpful to increase the knowledge on the subject and to properly assess the classical 

correlations proposed during the years.   
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This paper focuses on R134a flow boiling inside a new geometry microfin tube, having a fin tip 

diameter of 4.3 mm. Experimental measurements were collected at several mass velocities, from 100 kg m-2 

s-1 to 800 kg m-2 s-1, heat fluxes from 15 kW m-2 to 90 kW m-2, and by keeping the mean saturation 

temperature equal to 30°C. The new data sets permit to investigate the vapor quality, heat flux, and mass 

velocity effects on heat transfer coefficient and pressure drop. Furthermore, several literature correlations 

were assessed against the experimental database to test the suitability of the most common models also in 

this microfin geometry. Finally, the performance of the tested microfin tube was compared against that of 

an equivalent smooth tube. 

 

Experimental apparatus and test section 

Figure 1 reports a schematic of the experimental facility, which consists of three circuits: the green 

lines refer to the refrigerant loop, the blue ones to the cold water loop, the red ones to the hot water loop. 

The set up was meant to perform flow boiling heat transfer and pressure drop measurements of pure 

refrigerants and refrigerants mixtures inside structured geometries.  

Starting from the refrigerant circuit (green lines), the subcooled liquid is circulated by a variable speed 

volumetric gear pump, it flows through a Coriolis effect mass flow meter, and then it is partially vaporized 

in a Brazed Plate Heat Exchanger (BPHE) fed with hot water (red lines).  

The two-phase mixture leaves the BPHE evaporator and it reaches the test section at known mass 

velocity and vapor quality. There, it is vaporized by the power generated by a calibrated Ni-Cr wire 

resistance. The electrical power is supplied by a DC power generator rated up to 900 W. The electrical 

power supplied to the microfin tube is estimated by means of a calibrated reference resistance (shunt) used 

to measure the electrical current and by the measurement of the effective electrical difference potential of 

the resistance wire located in the copper heater. Finally, the refrigerant is condensed and subcooled by the 

tap water (blue lines) flowing in a dedicated post-condenser, another BPHE. The hot water loop (red lines) 

consists of a thermostatic bath, which permits to set both the water temperature and the water flow rate at 

the evaporator inlet. A magnetic flow meter and a calibrated T-type thermopile allow for an accurate 

estimation of the heat exchanged in the BPHE evaporator. 
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Tests were run to verify the heat balance between refrigerant and water sides, the results showed a 

misbalance always less than 2%. The refrigerant saturation pressure in the loop is controlled by the amount 

of refrigerant charge and by a damper connected to a compressed air line, which operates as pressure 

regulator. As highlighted in the schematic reported in Figure 1, refrigerant pressure and temperature are 

measured at several locations throughout the circuit to know the refrigerant properties at the inlet and outlet 

of each heat exchanger.  

No oil circulates in the refrigerant loop. Table 1 lists the values of maximum uncertainty (k=2) of the 

instruments used in the experimental facility. 

Figure 2 shows a drawing of the test copper plate; the microfin tube was brazed inside the guide milled 

on the top surface of the plate, which is 8 mm deep. As clearly shown, 16 holes, equally spaced, were 

drilled just 1 mm below the microfin tube, in order to locate as many T-type thermocouples to monitor the 

wall temperature distribution. Besides, as depicted in the additional section B of the test section, the 

distance between the thermocouples’ junctions and the tube wall is 0.5 mm. Another guide was milled on 

the bottom side of the copper plate, to host a Nickel-Chrome wire resistance connected to the DC current 

generator.  

Particular attention was dedicated to the design of the fittings used to connect the inlet and outlet pipes 

and the test section. In fact, a suitable smooth connection to the refrigerant circuit having the same fin tip 

diameter (D=4.3 mm) was realized to avoid any additional abrupt pressure drops. Pressure ports are located 

around 25 mm downstream and upstream of the copper plate, thus the length for pressure drop 

measurements is 250 mm. The test section assembly was then located inside an aluminum housing filled 

with 15 mm thick ceramic fiber blanket, to reduce the heat losses due to conduction to the surroundings. 

Considering the tested mini microfin tube, has n=54 fins, which are h=0.12 mm high, while the helix 

angle b is 27°, and the apex one g is around 11°. Given the reported dimensions, the area enhancement with 

reference to the smooth tube having the same fin tip diameter is equal to 1.87. Figure 3 reports two photos 

of the tested microfin tube where one can clearly observe a cross section of the microfins (a) and the helical 

fins (b).  

 

Data reduction 
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The two-phase heat transfer coefficient HTC, referred to the nominal area A, can be defined as: 

 

!"# = %&'
( ∙ *+,--.*/,0

= %&'
1 ∙ 2 ∙ 3 ∙ *+,--.*/,0

 

 

(1) 

 

where, the nominal area A is the area of an equivalent smooth tube having the inner diameter equal to the 

tube fin tip of the microfin tube, D. !"#$$   is the average value of the 16 measured wall temperatures twall,i as: 
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(2) 

 

while the average value of the saturation temperature !"#$   is calculated from the measured values of the 

pressure: 

 

!"#$ =
!"#$,'( )"#$,'( + !"#$,+,$()"#$,+,$)

2  

 

(3) 

 

Finally, the actual heat flow rate exchanged in the test section, qTS, is calculated from the electrical one, 

PEL, by subtracting the heat losses to the surroundings.  

Preliminary tests under vacuum conditions inside the refrigerant channel permitted to evaluate the heat 

loss (qloss) to the environment. This parameter was found to be a linear function of the mean wall 

temperature. The measurements were run by varying the mean wall temperature from 28°C to 63°C. In this 

wall temperature range, the heat loss can be estimated by: 

 

!"#$$ = 0.2006 ∙ +,-"". °C − 4.6698.. W . 
 

(4) 
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The actual heat flow rate qTS supplied to the sample is given by: 

 

!"# = %&'( !)*++ = Δ- ⋅ /( !)*++  
 

(5) 

 

The refrigerant enters the test section at an imposed vapor quality, this value can be evaluated from a 

thermal balance at the brazed plate heat exchanger, which acts as an evaporator:  

 

!"#$% = '( ∙ *%,( ∙ ,(,-./,(,012 = '3 ∙ 4-.,56/47,819  
 

(6) 

 

where !"   is the water mass flow rate, cp,w is the specific heat capacity of the water, and tw,in and tw,out 

are the inlet and outlet water temperatures. The right-hand side term of eq. (6) reports the refrigerant side 

heat flow rate where Jin,TS and JL,sub are specific enthalpies at the inlet of the test section and of the 

subcooled liquid entering the BPHE, respectively. Once calculated Jin,TS, the vapor quality at the inlet of the 

test section can be estimated by: 

 

!"#,%& =
("#,%&)(*
(+)(*

 

 

(7) 

 

where JL and JV are the specific enthalpies of the saturated liquid and vapor, respectively, evaluated at 

the refrigerant saturation pressure measured at the inlet of the test section.  

It is worth underlying that qloss varied from 2.5% to 4% of the electrical power supplied. The specific 

enthalpy at the outlet of the test section can be calculated from: 

 

!"# = %& ∙ ()*+,"#-(./,"#  
 

(8) 

 

The outlet vapor quality xout,TS is given by: 
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(9) 

 

where JL and JV are the specific enthalpies of the saturated liquid and vapor, respectively, evaluated at 

the saturation pressure of the refrigerant measured at the outlet of the test section. The mean vapor quality, 

xmean is the average value between the inlet and outlet ones.  

The frictional pressure drop exploited during the two-phase flow inside the microfin tube was 

calculated from the measured total pressure drop by subtracting the momentum and the gravitational 

pressure gradients, as: 

 

Dpf = Dpt - Dpc - Dpa (10) 

 

The momentum pressure drops are estimated by the homogeneous model for two-phase flow as 

follows: 

 

Dpa = G2(vV - vL) |Dx| (11) 

 

where vL and vV are the specific volumes of liquid and vapor phases, whereas |Dx| is the absolute value 

of the vapor quality change through the whole test section. The gravitational contribution Dpc was kept 

equal to 0 Pa, because the microfin tube is horizontal. All the thermodynamic and transport were estimated 

by RefProp v9.1 (Lemmon et al., 2013).  

For the sake of clarity, it has to be specified that the mass velocity G and the heat flux HF are referred 

to the cross sectional area and to the heat transfer area, respectively, of an equivalent smooth tube having 

an internal diameter equal to the diameter at the fin tip of the microfin tube under investigation. A detailed 

error analysis was performed in accordance with Kline and McClintock (1953) using the values of the 

instruments uncertainties (k=2) listed in Table 1; the uncertainty (k=2) on the two-phase heat transfer 
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coefficient showed a mean value of ±2.1% and a maximum value of ±3.8%, while the uncertainty on the 

vapor quality was ±0.03. The pressure drops showed a mean uncertainty of ±8%. 

 

Experimental Results 

This section presents the experimental results collected during vaporization of the R134a inside the mini 

microfin tube at a mean saturation temperature of 30°C. This value can be considered suitable for tap water 

heat pumps, civil and industrial driers, and for electronics cooling applications, in which R134a is the most 

common used refrigerant. The effects of the most important operating test conditions were investigated: 

mean vapor quality xmean, mass velocity G, and heat flux HF. 

The mean vapor quality xmean was varied from 0.1 to 0.95, the mass velocity from 100 kg m-2 s-1 to 800 

kg m-2 s-1, and the heat flux from 15 kW m-2 to 90 kW m-2. At these operating conditions, the vapor quality 

change through the test section varied from 0.02 to 0.32. The value of Dx=0.32 was considered the 

maximum acceptable to allow a proper comparison among the collected data; thus, when increasing the 

heat flux, one or more refrigerant mass velocities were not collected because they would have presented a 

higher vapor quality change. 

Figure 4 shows the effect of mass velocity G on the heat transfer coefficient as a function of the mean 

vapor quality xmean at the four investigated heat fluxes: HF=15 kW m-2 (a), HF=30 kW m-2 (b), HF=60 kW 

m-2 (c), and HF=90 kW m-2 (d). At these operating test conditions, the vapor quality change between inlet 

and outlet of the test section vary from 0.02 and 0.16 at HF=15 kW m-2, from 0.04 to 0.16 at HF=30 

 kW m-2, from 0.08 to 0.32 at HF=60 kW m-2, and from 0.12 to 0.25 at HF=90 kW m-2. 

Starting from the lowest heat flux, HF=15 kW m-2 (Figure 4a) and from the lowest mass velocity, 

G=100 kg m-2 s-1, one can see that the heat transfer coefficient remains almost constant at around 8000  

W m-2 K-1 up to a mean vapor quality of 0.5, meaning that the nucleate boiling seems to control the phase 

change process, whereas at higher vapor qualities it increases, and thus, also the two-phase forced 

convection starts to play a relevant role in the flow boiling phenomenon. 

When increasing the mass velocity (Figure 4a), the plateau at low vapor quality, where the heat 

transfer coefficient remains constant, quickly disappears, and the heat transfer coefficient increases almost 
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linearly with the vapor quality, meaning that the two-phase forced convection is becoming the most 

affecting phase-change mechanism. It is worth pointing out that for xmean<0.3, all the investigated mass 

velocities show similar values of heat transfer coefficient. Furthermore, at xmean>0.65, the values of heat 

transfer coefficient measured at G=200 kg m-2 s-1 and G=400 kg m-2 s-1 are greater than those obtained at 

higher mass velocities. Moreover, at 15 kW m-2, the effect of the mass velocity is only noticeable when 

passing from 100 kg m-2 s-1 to 200 kg m-2 s-1, where the heat transfer coefficients increase. This can be 

linked to a particular effect induced by the helical microfins that might be emphasized at these operating 

test conditions. Furthermore, this behavior can be also linked to the fact that when increasing the mass 

velocity over 400 kg m-2 s-1, the two-phase pressure drops also increase, which imply a saturation 

temperature drop with a consequent penalization of the heat transfer. This behavior was also found by 

Mancin et al. (2015) during R134a flow boiling inside another mini microfin tube an internal diameter at 

the fin tip of 3.4 mm and by and Jige et al. (2016) for R32 boiling inside a 2.6 mm microfin tube. The onset 

of the dryout was only observed at G=100 kg m-2 s-1 and G=200 kg m-2 s-1 and it occurred at around 

xmean=0.83 and xmean=0.91, respectively. 

At HF=30 kW m-2, only the data taken at G=100 kg m-2 s-1 show a well-defined plateau where the heat 

transfer coefficient can be considered fairly constant; at all the other mass velocities, the heat transfer 

coefficient increases with the vapor quality but the slope of the experimental trends is lower as compared to 

the data collected at HF=15 kW m-2. Moreover, at low vapor quality, the heat transfer coefficients are 

almost the same at all the investigated mass velocities. At high vapor quality, the forced convection 

remains the dominant heat transfer mechanism and, again, G=400 kg m-2 s-1 displays the highest heat 

transfer coefficients. The onset of the dryout was only observed at G=100 kg m-2 s-1 and G=200 kg m-2 s-1 

and it occurred at around xmean=0.67 and xmean=0.77, respectively. 

As reported in Figure 4c, when increasing the heat flux to HF=60 kW m-2 slightly different results can 

be highlighted. The two-phase heat transfer coefficient trends do not indicate any noticeable effect of the 

mass velocity: hence, the heat transfer mechanism seems to be controlled by the nucleate boiling. For xmean 

< 0.5 the heat transfer coefficient (being around 11000 W m-2 K-1), is almost constant with vapor quality at 

all the investigated mass velocities. As the vapor quality increases, the heat transfer coefficient slightly 
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increases showing an even more reduced slope as compared to HF=30 kW m-2. The dryout phenomenon 

was only observed at G=200 kg m-2 s-1 and the mean vapor quality at the dryout onset is around xmean=0.75. 

Finally, Figure 4d presents the heat transfer coefficients collected at HF=90 kW m-2, the heat transfer 

is controlled by the nucleate boiling, the heat transfer coefficients are almost constant at around 13000  

W m-2 K-1 up to xmean=0.65, the effect of the vapor quality is still present but further weakens as compared 

to lower heat fluxes. There is no noticeable effect of the mass velocity. The dry out was only observed at 

G=400 kg m-2 s-1 and the mean vapor quality at the onset of the dryout is around xmean=0.77. 

In order to further analyze the boiling behavior of this microfin tube, the measurements can be presented to 

show the effects of the heat flux on the flow boiling; Figure 5 reports the heat transfer coefficient plotted 

against the mean vapor quality at four different mass velocity: 200 kg m-2 s-1 (a), 400 kg m-2 s-1 (b), 600 kg 

m-2 s-1 (c), and 800 kg m-2 s-1.  

Figure 5a reports the data collected at G=200 kg m-2 s-1, for heat fluxes lower than 30 kW m-2, the heat 

transfer coefficient increases with vapor quality and the values measured at xmean<0.6 are almost the same. 

When increasing the vapor quality, the experimental measurements collected at HF=15 kW m-2 show 

higher heat transfer coefficients compared to those measured at HF=30 kW m-2. When increasing the heat 

flux, a constant value for the heat transfer coefficient is observed up to the dryout onset, meaning that the 

nucleate boiling is the dominant heat transfer mechanism. Considering the results depicted in Figure 5b, it 

can be stated that at heat flux lower than 30 kW m-2, there is no noticeable effect of this parameter on the 

boiling heat transfer. In fact, for vapor qualities lower than 0.4, the heat transfer coefficients are almost the 

same; then, for xmean>0.4, the heat transfer coefficient increases and those measured at HF=15 kW m-2 

become even slightly higher than those collected at HF=30 kW m-2. It is worth highlighting that when 

increasing the heat flux, the plateau where the heat transfer coefficient can be considered almost constant is 

extended to higher vapor qualities (i.e. to xmean=0.5 and xmean=0.65 for HF=60 kW m-2 and HF=90 kW m-2, 

where the heat transfer coefficients are around 11400 W m-2 K-1 and 12900 W m-2 K-1, respectively).  

At higher vapor qualities, the heat transfer coefficient slightly increases. Moreover, at xmean<0.6, for a 

given vapor quality, the heat transfer coefficient increases as the heat flux increases, especially for HF>30 

kW m-2. At these operating conditions, the nucleate boiling can be considered the prevailing phase change 

mechanism. When the vapor quality becomes higher than 0.65, the heat transfer coefficient profiles 
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converge exhibiting almost the same values. Finally, the dryout was only observed at HF=90 kW m-2 

confirming the interesting capabilities of the mini microfin tube in delaying the onset of dryout; this feature 

is particularly suitable for electronics cooling application where the dryout event and the consequent sharp 

surface temperature increase must be avoided. 

The results observed at low heat fluxes in Figures 5a and 5b can be explained considering that, at these 

operating conditions, the dominant heat transfer mechanism is the forced convection, which might be also 

positively influenced by the turbulence induced by the helical microfins. Similar considerations can be 

drawn when considering the results plotted in Figures 5c and 5d: there is not any noticeable effect of the 

heat flux up to HF=30 kW m-2. The heat transfer coefficients measured at HF=15 kW m-2 and HF=30  

kW m-2 are similar and they increase with vapor quality. The two-phase forced convection seems to control 

the boiling process. When comparing the data measured at higher heat fluxes with that for G=200 kg m-2 s-1 

(Figure 5a) and G=400 kg m-2 s-1 (Figure 5b), it can be stated that due to the high mass velocity, the plateau 

where the heat flux can be considered almost constant slightly recedes to lower vapor quality, meaning that 

the nucleate boiling is quickly overcome by the convective boiling heat transfer mechanism. In this case, 

the heat transfer coefficients measured at HF=90 kW m-2 are higher than those measured at lower heat 

fluxes. This confirms what highlighted before and also stated by Mancin et al. (2015) and Jige et al. (2016), 

i.e. it seems that there is a mass velocity range, in which the favorable characteristics of the helical microfin 

tube are even more effective leading to very high boiling heat transfer performance. On the basis of the 

present work and of Mancin et al. (2015) and Jige et al. (2016), it appears that this mass velocity range 

depends on the tube geometry and the refrigerant type. 

The experimental frictional pressure gradients are plotted in Figure 6 as a function of the mean vapor 

quality. As expected, it was found that the frictional pressure gradients did not depend from the imposed 

heat flux; thus, for the sake of clarity, only the data relative to HF=60 kW m-2 was plotted. As described 

before, the homogeneous model was considered to estimate the momentum pressure drops, which were 

subtracted from the total measured pressure drops.  

The results show that, at constant mass velocity, the frictional pressure gradient increases with vapor 

quality. Furthermore, at constant vapor quality, the frictional pressure gradient increases as the mass 
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velocity increases; similar results were also found by Mancin et al. (2015), Diani et al. (2014, 2015, and 

2016). 

 

 

 

Models’ Assessment 

This section presents the comparison between the values obtained by applying different models for the 

estimation of flow boiling heat transfer coefficients and two-phase frictional pressure gradients and those 

experimentally measured. The models proposed by Hamilton et al. (2008), Padovan et al. (2011), Wu et al. 

(2013), Diani et al. (2014), and the recent one by Rollman and Splider (2016) were chosen for the flow 

boiling heat transfer coefficients assessment. The relative and absolute deviations exhibited by the selected 

models are listed in Table 3. 

The best prediction capabilities were highlighted by the model proposed by Padovan et al. (2011) 

which showed a relative deviation of -6.4% and an absolute deviation of 20.4%. This model is an updated 

version of that proposed by Cavallini et al. (1999) to account for the capillary effects at very low refrigerant 

mass velocity. The recent models by Rollman and Spindler (2016) and by Diani et al. (2014) are even 

accurate, despite their relative and absolute deviations are higher if compared to those of Padovan et al. 

(2011).  

Figure 7 presents the comparisons between the experimental and calculated flow boiling heat transfer 

coefficients obtained from Padovan et al. (2011) model, by subdividing the data as a function of the applied 

heat flux, HF. 

The diagram permits to analyze the effect of the imposed heat flux on the prediction capabilities of the 

Padovan et al. (2011) model. In fact, the model estimates almost all the experimental measurements within 

±30%; moreover, only the data points collected at 15 kW m-2 are slightly underestimated whereas, for 

higher heat fluxes, the experimental flow boiling heat transfer coefficients are fairly estimated.  

The models proposed by Haraguchi et al. (1993), Kedzierski and Goncalves (1999), Cavallini et al. 

(2000), Goto et al. (2001), Newell and Shah (2001), Oliver et al. (2004), Bandarra Filho et al. (2004), Han 
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and Lee (2005), Afroz and Miyara (2011), Diani et al. (2014), and Rollman and Splinder (2016) were then 

selected to be compared against the experimental two-phase frictional pressure gradients. The models were 

computed following the integral method as suggested by Mauro et al. (2007). The values of relative and 

absolute deviations of the applied models for frictional pressure drops are listed in Table 4, whereas Figure 

8 reports the comparison between experimental and calculated frictional pressure gradients obtained by the 

four cited best models. 

As an outcome, a few of the selected models fairly predict the experimental frictional pressure 

gradients; when combining the two statistical parameters, i.e. relative and absolute deviations, the best 

predictions are exhibited by the models proposed by Kedzierski and Goncalves (1999) and by Cavallini et 

al. (2000), which were developed for traditional macro microfin tubes. The model by Diani et al. (2014), 

which represents an updated version of the model proposed by Cavallini et al. (2000) to account for the 

effects of the tube size, and the recent procedure proposed by Rollman and Splinder (2016) also show good 

predictions.  

 

Comparison with a reference smooth tube 

The proper use of an enhanced surface passes through the analysis of its actual heat transfer 

enhancement compared to the unavoidable pressure loss penalization. This consideration can also be 

applied to microfin tubes and it becomes even more important when considering the flow boiling heat 

transfer. As previously highlighted, the prevailing heat transfer mechanism depends on the operating 

conditions: mass velocity, vapor quality, reduced pressure, and heat flux. For this reason, for each 

combination of the mentioned parameters, the actual performance of the tube might be enhanced or 

penalized by the presence of the micro-fins.  

In order to evaluate the effective performance of this microfin tube, it is possible to compare the 

measured flow boiling heat transfer coefficients and frictional pressure gradients with those calculated for 

an equivalent smooth tube having the inner diameter equal to the fin tip diameter of the microfin tube, i.e. 

D=4.3 mm. The selection of the proper models to be applied to calculate the smooth tube reference values 

represents the key issue of this procedure. 
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Recently, the present authors (Longo et al., 2016) measured flow boiling heat transfer coefficients and 

frictional pressure drops of R134a inside a 4 mm internal diameter horizontal smooth tube. The flow 

boiling measurements were conducted by varying the refrigerant mass velocity from 200 kg m-2 s-1 to 600 

kg m-2 s-1, the vapor quality from 0.11 to 0.96, the heat flux from 10 W m-2 to 30 W m-2, at three different 

mean saturation temperatures of 10°C, 15°C, and 20°C, respectively. The authors conducted a models’ 

assessment and the results demonstrated that the procedures proposed by Kim and Mudawar (2014) for 

flow boiling heat transfer coefficient and by Friedel (1979) for frictional pressure gradients exploited the 

best agreements when compared to the experimental database.  

Accordingly, these two models were selected to estimate heat transfer coefficients and frictional 

pressure gradients during R134a flow boiling inside a reference smooth tube with an inner diameter D 

equal to 4.3 mm at the Same Operating Conditions (S.O.C.) of the microfin experimental data presented in 

this paper. 

Then, the calculated values were used to define two different parameters, as done also by Diani et al. 

(2016), the Enhancement Factor EF and Pressure Drop Ratio PDR, as: 

 

EF = $%&'()*+,(-
$%&./++01 2.4.&.

          (12) 

 

and  

 

PDR =
%&
%' (,*+,-.(+/
%&
%' (,01..23 4.6.7.

          (13) 

 

According to eqs. 14 and 15, for given operating test conditions, the higher the EF and the lower the 

PDR, the better the performance of the microfin tube as compared to the smooth one. Another important 

consideration to be pointed out is related to the area enhancement caused by the presence of microfins on 

the inner tube surface. For the tested tube this area enhancement is equal to 1.87. This means that an EF 
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less than 1.87 does not represent an optimal solution, and that only EF values higher than 1.87 can be 

considered acceptable. 

Figure 9 reports the EF plotted against the vapor quality as a function of the mass velocity; the figure is 

subdivided in four diagrams reporting the data collected at the four different heat fluxes: (a) HF=15 kW m-

2, (b) HF=30 kW m-2, (c) HF=60 kW m-2, and (d) HF=90 kW m-2.  

The results plotted in Figure 9a highlight that at HF=15 kW m-2, the EF is always greater than the area 

enhancement value (i.e., 1.87) and it increases with the vapor quality; moreover, as already described, at 

200 kg m-2 s-1 and 400 kg m-2 s-1 the values of the EF are greater than those measured at higher mass 

velocities. When increasing the heat flux up to 30 kW m-2 (Figure 9b), the EF is less affected by the mass 

velocity, and it is lower than the area enhancement for vapor quality less than 0.8. Only at higher vapor 

qualities, the EF becomes equal and sometimes slightly higher than 1.87. 

At heat fluxes equal to 60 kW m-2 and 90 kW m-2 (Figures 9c and 9d, respectively) the EF is almost 

constant being around 1 and it seems to slightly increase for vapor qualities greater than 0.5; in any case, it 

remains remarkably below the area enhancement, 1.87.  

Generally speaking, when only the heat transfer performance is considered, the microfin tubes should 

be used for low heat fluxes and low mass velocities, when the forced convective boiling is enhanced by the 

presence of the micro-fins. 

Figure 10 reports the Pressure Drop Ratio (PDR) calculated as defined in eq. 15; it is worth underlying 

that it has been chosen to report only the data collected at 60 kW m-2 because, as already stated, the 

frictional pressure gradients do not depend on the imposed heat flux. As expected, the PDR values are 

always greater than 1, with values ranging between 1.15 to 1.7. The lowest values are shown by the lowest 

mass velocity, G=200 kg m-2 s-1 while the highest are obtained at G=400 kg m-2 s-1. For mass velocities up 

to 600 kg m-2 s-1, the estimated trends present a maximum at a mean vapor quality of around 0.5, while at 

G=800 kg m-2 s-1 the PDR is almost constant, being around 1.3-1.4. 

When comparing the results plotted in Figure 9 and 10, it clearly appears that the maximum 

enhancement is achieved at low heat fluxes where, with the present geometrical configuration, the 

microfins enhance the forced convective boiling heat transfer mechanism rather than the nucleate boiling 

one. Similar results were also found by Wu et al. (2013) and Diani et al. (2016). 
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Conclusions 

This paper presents experimental heat transfer coefficients and pressure drops measured during flow 

boiling inside a mini microfin tube with an internal diameter at the fin tip of 4.3 mm. Tests were run at a 

constant mean saturation temperature of 30°C, by varying the vapor quality from 0.1 to 0.95, the mass 

velocity from 100 kg m-2 s-1 to 800 kg m-2 s-1, and the heat flux from 15 kW m-2 to 90 kW m-2. The results 

confirm that the heat transfer process is controlled by the two mechanisms that govern the flow boiling 

phenomenon, i.e. nucleate boiling and two-phase forced convection, and that the prevailing one depends 

upon the actual operating test conditions.  

In general, it can be stated that at low heat fluxes, the heat transfer coefficient is highly affected by the 

vapor quality, meaning that the convective boiling dominates the flow boiling phenomenon. A different 

situation occurs at high heat fluxes, where the heat transfer coefficient is negligibly affected by mass 

velocity and just weakly affected by vapor quality, meaning that the phase change process is mainly 

controlled by nucleate boiling. The two-phase frictional pressure drops were also measured. They increase 

with both mass velocity and vapor quality.  

Several models were selected, implemented, and then compared against the experimental 

measurements of boiling heat transfer coefficient and frictional pressure gradient; the models proposed by 

Padovan et al. (2011) and by Kedzierski and Goncalves (1999) can be suggested for the boiling heat 

transfer coefficient and frictional pressure drop estimations, respectively. 

Finally, the comparison between the performance of the microfin tube and that of an equivalent smooth 

tube highlighted that the enhanced solution is worth of interest especially at low heat fluxes and mass 

velocities. 
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Nomenclature 

     
A = fin tip area (m2)  
BPHE = Brazed Plate Heat Exchanger   
cp = specific heat capacity (J kg-1 K-1)  
D = fin tip diameter (m)  
(dp/dz) = pressure gradient (Pa m-1)  
EF = enhancement Factor (-)  
f = friction factor (–)  
FS = Full Scale   
G = mass velocity (kg m-2 s-1)  
GWP = global warming potential (-)  
g = gravity acceleration (m s-2)  
h = fin height (m)  
HF = Heat Flux (W m-2)  
HTC = Heat Transfer Coefficient (W m-2 K-1)  
I = current (A)  
ID = Inner Diameter (m)  
J = specific enthalphy (J kg-1)  
Jg = non-dimensional gas velocity  (–)  
Jg

T = transition gas velocity (–)  
k = thermal conductivity (W m-1 K-1)  
k = coverage factor (–)  
L = tube length (m)  
ṁ = mass flow rate (kg s-1)  
n = fin number (m)  
OD = Outer Diameter (m)  
p = pressure (Pa)  
PDR = pressure drop ratio (-)  
q = heat flux (W m-2)  
t = temperature (°C)  
!  = average temperature (°C) !  
v = specific volume (m3 kg-1)  
V = voltage (V)  
x = vapor quality (–)  
Xtt = Martinelli parameter (–)  
 

 
Greek symbols 
     
β = helix angle (°)  
γ = apex angle (°)  
Δ = difference (–)  
µ = dynamic viscosity (Pa s)  
ρ = density (kg m-3)  
     
     
 
Subscription 
   
a = momentum 
c =  gravitational 
EL = electric 
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f = frictional 
fin = fin 
in = inlet 
L =  liquid 
loss = loss 
mean = mean 
out = outlet 
r = refrigerant 
sat = saturation 
S.O.C = Same Operating Conditions 
sub = subcooled 
t = total 
tp = two phase 
TS = Test Section 
V = vapor 
w = water 
wall = wall 
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Figure 1: Schematic of the experimental setup. 

Figure 2: Drawing of the copper plate with the locations of the thermocouples. 

Figure 3: Photos of the cross section (a) and of the longitudinal view (b) of the tested microfin tube. 

Figure 4: Effect of mass velocity on heat transfer coefficient at four different heat fluxes: HF=15 kW m-2 

(a), HF=30 kW m-2 (b), HF=60 kW m-2 (c), and HF=90 kW m-2 (d). G expressed in [kg m-2 s-1]. 

Figure 5: Effect of heat flux on heat transfer coefficient at four different mass velocities: G=200 kg m-2 s-1 

(a), G=400 kg m-2 s-1 (b), G=600 kg m-2 s-1 (c), and G=800 kg m-2 s-1 (d). HF expressed in [kW m-2]. 

Figure 6: Effect of mass velocity on frictional pressure gradient at an imposed heat flux of 60 kW m-2. 

G expressed in [kg m-2 s-1]. 

Figure 7: Calculated vs. experimental heat transfer coefficient. Model by Padovan et al. (2011). 

Figure 8: Calculated vs. experimental frictional pressure gradients. Models by: (a) Kedzierski and 

Goncalves (1999), (b) Cavallini et al. (2000), (c) Diani et al. (2014), and (d) Rollman and Splinder (2016). 

Figure 9: Enhancement Factor plotted against the vapor quality as a function of the mass velocity at 

different heat fluxes: (a) HF=15 kW m-2, (b) HF=30 kW m-2, (c) HF=60 kW m-2, and (d) HF=90 kW m-2. 

G expressed in [kg m-2 s-1]. 

Figure 10: Pressure Drop Ratio (PDR) plotted against the vapor quality as a function of the mass velocity. 

G expressed in [kg m-2 s-1]. 

 



 23 

 
Table  1.  Instruments  uncertainty.  

Transducer Uncertainty (k=2) 
T-type thermocouples ± 0.1 K 

T-type thermopiles ± 0.05 K 
Electric power ± 0.26% of the reading 

Coriolis mass flowmeter (refrigerant loop) ± 0.10% of the reading 
Magnetic volumetric flowmeter (hot water loop) ± 0.2% of FS= 0.33 10-3 m3 s-1 

Differential pressure transducer (test section) ± 0.075% of 0.3 MPa  
Absolute pressure transducers ± 0.065% of FS= 4 MPa 
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Table  2.  Main  tube  characteristics.  

Parameter Nominal 
Outer Diameter, OD, (mm) 5.0 

Inner Diameter at the fin tip, D (mm) 4.3 
Tube Thickness, t (mm) 0.23 

Number of fins, n (-) 54 
Fin Height, h (mm) 0.12 
Apex angle, g (°) 11 
Helix angle, b (°) 27 
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Table  3.  Relative  and  absolute  deviations  of  the  selected  models  for  flow  boiling  heat  

transfer  coefficient  calculation.  
Parameter Deviation 

Relative Absolute 
Hamilton et al. (2008) -23.9 60.2 
Padovan et al. (2011) -6.4 20.4 

Wu et al. (2013) 59.4 67.9 
Diani et al. (2014) 24.4 25.7 

Rollman and Spindler (2016) 16.4 32.7 
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Table  4.  Relative  and  absolute  deviations  of  the  selected  models  for  two-­phase  frictional  

pressure  gradient  calculation.  
Parameter Deviation 

Relative Absolute 
Haraguchi et al. (1993) 8.3 24.4 

Kedzierski and Goncalves (1999) -3.4 18.3 
Cavallini et al. (2000) -3.5 19.3 

Goto et al. (2001) 28.9 36.6 
Newell and Shah (2001) -7.2 23.7 

Bandarra Filho et al. (2004) 29.5 38.0 
Oliver et al. (2004) -27.2 31.6 
Han and Lee (2005) -18.5 36.9 

Afroz and Miyara (2011) -30.7 32.1 
Diani et al. (2014) -2.7 22.8 

Rollman and Spindler (2016) -2.4 20.3 
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