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Abstract

In this paper we present a system for 3D shapes digitization. During the re-
search we developed algorithms for 3D shapes reconstruction from multiple
stereo images; this algorithms provide the use of colored markers lying over
the object surface. The procedure developed provides steps of image pro-
cessing for markers detection, 3D reconstruction based on epipolar geometry
and data fusion from different stereo-pairs. Particular attention was paid to
the latter point, developing an algorithm based on uncertainty analysis of
each 3D point and compatibility analysis by the Mahalanobis distance. Were
then developed algorithms for modeling 3D objects in the scene based on a
images sequence of moving bodies. A physical prototype was created at the
MeccaLab at University of Trento and it has been used for an experimental
verification of the proposed algorithms.

Sommario

In questo lavoro viene presentato un sistema di digitalizzazione di forme
3D. Nel corso della ricerca sono stati sviluppati degli algoritmi per la ri-
costruzione di forme 3D a partire da immagini acquisite da più stereo-
camere; questi algoritmi prevedono l’utilizzo di marker colorati posizionati
sull’oggetto da digitalizzare. La procedura sviluppata prevede fasi di elabo-
razione delle immagini per la localizzazione dei marker, ricostruzione 3D
basata sulla geometria epipolare e fusione dei dati provenienti dalle di-
verse stereocamere. Particolare attenzione è stata posta a quest’ultimo
punto, sviluppando un algoritmo basato su analisi dell’incertezza di ogni
punto e analisi di compatibilità dei punti mediante distanza di Mahalanobis.
Vengono poi proesentati degli algoritmi per la modellazione degli oggetti
3D presenti nella scena sulla base di una sequenza di immagini dei corpi
in movimento. Un prototipo fisico è stato realizzato presso il MeccaLab
dell’Università di Trento ed è stato utilizzato per una fase sperimentale di
verifica degli algoritmi proposti.
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Chapter 1

Introduction

A 3D scanner is a device that analyzes a real-world object or environment
to collect data on its shape and, if interesting, its appearance (e.g. color).
The collected data can then be used to construct digital, three dimensional
models useful for a wide variety of applications. These devices are used
extensively by the entertainment industry, in the production of movies and
video games, but also in industrial design, orthotics and prosthetics, reverse
engineering and prototyping, quality control/inspection and documentation
of cultural artifacts.

The purpose of a 3D scanner is usually to create a point cloud of geo-
metric samples on the surface of the subject. These points can then be used
to extrapolate the shape of the subject. Many different technologies can be
used to build these 3D scanning devices; each technology comes with its own
limitations, advantages and costs.

For most situations, a single scan will not produce a complete model of
the subject. Multiple scans, even hundreds, from many different directions
are usually required to obtain information about all sides of the subject.
These scans have to be brought in a common reference frame, a process
that is usually called alignment or registration, and then merged to create
a complete model.

There are two types of 3D scanners: contact and non-contact. Non-
contact 3D scanners can be further divided into two main categories, active
scanners and passive scanners. There are a variety of technologies that fall
under each of these categories.

Contact 3D scanners probe the subject through physical touch. A Coor-
dinate Measuring Machine (CMM)(Spitz, 1999) is an example of a contact
3D scanner. It is used mostly in manufacturing and can be very precise.
The disadvantage of CMMs though, is that it requires contact with the ob-
ject being scanned. Thus, the act of scanning the object might modify or

1



2 CHAPTER 1. INTRODUCTION

damage it. This fact is very significant when scanning delicate or valuable
objects such as historical artifacts. The other disadvantage of CMMs is that
they are relatively slow compared to the other scanning methods. Physi-
cally moving the arm that the probe is mounted on can be very slow and
the fastest CMMs can only operate on a few hundred hertz.

Non-contact active scanners emit some kind of radiation or light and
detect its reflection in order to probe an object or environment. Possible
types of emissions used include light, ultrasound or x-ray. Some examples
of non-contact active devices are time-of-flight laser scanner, triangulation
laser scanner and structured light.

The time-of-flight 3D laser scanner is an active scanner that uses laser
light to probe the subject. At the heart of this type of scanner is a time-of-
flight laser rangefinder. The laser rangefinder finds the distance of a surface
by timing the round-trip time of a pulse of light. A laser is used to emit
a pulse of light and the amount of time before the reflected light is seen
by a detector is timed. Since the speed of light c is known, the round-
trip time determines the travel distance of the light, which is twice the
distance between the scanner and the surface. The accuracy of a time-of-
flight 3D laser scanner depends on how precisely we can measure the time.
The laser rangefinder only detects the distance of one point in its direction of
view. Thus, the scanner scans its entire field of view one point at a time by
changing the range finder’s direction of view to scan different points. The
view direction of the laser rangefinder can be changed by either rotating
the range finder itself, or by using a system of rotating mirrors. The latter
method is commonly used because mirrors are much lighter and can thus
be rotated much faster and with greater accuracy. Typical time-of-flight 3D
laser scanners can measure the distance of 10.000 ÷ 100.000 points every
second.

The triangulation 3D laser scanner is also an active scanner that uses
laser light to probe the environment. With respect to time-of-flight 3D laser
scanner the triangulation laser shines a laser on the subject and exploits
a camera to look for the location of the laser dot. Depending on how far
away the laser strikes a surface, the laser dot appears at different places in
the camera’s field of view. This technique is called triangulation because
the laser dot, the camera and the laser emitter form a triangle. The length
of one side of the triangle, the distance between the camera and the laser
emitter is known. The angle of the laser emitter corner is also known. The
angle of the camera corner can be determined by looking at the location of
the laser dot in the camera’s field of view. These three pieces of information
fully determine the shape and size of the triangle and gives the location of
the laser dot corner of the triangle. In most cases a laser stripe, instead
of a single laser dot, is swept across the object to speed up the acquisition
process. The National Research Council of Canada was among the first
institutes to develop the triangulation based laser scanning technology in
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1978(Mayer, 1999).

Structured-light 3D scanners project a pattern of light on the subject
and look at the deformation of the pattern on the subject. The pattern may
be one dimensional or two dimensional. An example of a one dimensional
pattern is a line. The line is projected onto the subject using either an LCD
projector or a sweeping laser. A camera, offset slightly from the pattern
projector, looks at the shape of the line and uses a technique similar to
triangulation to calculate the distance of every point on the line. In the case
of a single-line pattern, the line is swept across the field of view to gather
distance information one strip at a time. An example of a two-dimensional
pattern is a grid or a line stripe pattern. A camera is used to look at
the deformation of the pattern, and an algorithm is used to calculate the
distance at each point in the pattern. Structured-light scanning is still a
very active area of research. The advantage of structured-light 3D scanners
is speed. Instead of scanning one point at a time, structured light scanners
scan multiple points or the entire field of view at once. This reduces or
eliminates the problem of distortion from motion. Some existing systems
are capable of scanning moving objects in real-time(Zhang and Yau, 2006).

Non-contact passive scanners do not emit any kind of radiation them-
selves, but instead rely on detecting reflected ambient radiation. Most scan-
ners of this type detect visible light because it is a readily available ambient
radiation. Other types of radiation, such as infrared could also be used.
Passive methods can be very cheap, because in most cases they do not need
particular hardware.

Stereoscopic systems usually employ two video cameras, slightly apart,
looking at the same scene. By analyzing the slight differences between the
images seen by each camera, it is possible to determine the distance at
each point in the images. This method is based on human stereoscopic
vision(Young, 1994).

Silhouette 3D scanners use outlines created from a sequence of pho-
tographs around a three-dimensional object against a well contrasted back-
ground. These silhouettes are extruded and intersected to form the visual
hull approximation of the object. With these kinds of techniques some kind
of concavities of an object (like the interior of a bowl) are not detected.

In this work we are interested in the development of a 3D scanner for
the reconstruction of human body’s parts, like hands or feet. We need a
system able to reconstruct a 3D object with a “single shot”, for this reason
we choose a vision system.

This kind of systems are nowadays widely used in 3D shape reconstruc-
tion because of its flexibility. However, the increasing resolution of digital
image sensors is bringing actual measurement performance toward limits
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that were not available until few years ago.
As regards hardware setup, the main difference is that between multi-

camera and multi-stereo. In the first approach the cameras are located
uniformly in the space and each camera is considered as associated with
each other; in the second one the system reconstruct shapes by associating
camera couples. The use of multiple pairs of cameras allows the recon-
struction of different portions, visible to each pair and partially overlapping.
Compared with the multi-camera procedure, this approach allows a better
match between the two views, which are commonly very closed to each other.
However, the short baseline is prone to high depth uncertainty. In order to
increase shape accuracy, the different parts can be matched by means of
Iterative Closest Points (ICP) methods (Trucco et al., 1999; Eggert et al.,
1997) and then, for each point, a compatibility analysis can be performed
with their neighbors in order to fuse each estimate coming from different
couples.

Several methods can be used to match the information on different cam-
eras: shape detection, edge detection, correlation analysis, marker matching
and others. Celenk et al. (Celenk and Bachnak, 1990) describes a method
for surface reconstruction that employs a Lagrangian polynomial for sur-
face initialization and a quadratic variation method to improve the results.
In Esteban et al. (Hernandez Esteban and Schmitt, 2002) they recovers a
first approximation of the shape through the object silhouettes seen by the
multiple cameras, and then the shape is improved by a carving approach,
employing local correlation analysis between images taken by different cam-
eras. This approach is based on the hypothesis that, if a 3D point belongs
to the object surface, its projection into the different cameras which really
see it will be closely correlated. Nedevschi et al. (Nedevschi et al., 2004)
presents a method for spatial grouping by a multiple stereo system. The
grouping algorithm comprises a 3D space compressing step in order to map
the 3D points into a space of even density, that allows a easier grouping by
a neighborhood approach; a subsequent decompressing step preserves the
adjacencies of the compressed space and helps the fusion of grouped points
seen by different cameras.

Each step of the measurement process is affected by uncertainty, which
propagates to the final 3D estimates. Uncertainty sources are different,
such as digitalization and noise in image acquisition, feature extraction al-
gorithm and intrinsic and extrinsic calibration parameters. One drawback
of the above approaches is that they do not evaluate the uncertainty of the
reconstructed object. When system is used to perform 3D measurements,
a region of confidence of the measured 3D points should be evaluated to a
desired level of confidence. In this work we present a method that develops a
symbolic uncertainty estimation that merges the measurements performed
with different stereo pairs and yields the uncertainty associated with the
measured quantities.
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In Chen et al. (Chen et al., 2008) an uncertainty analysis is presented
for a binocular stereo reconstruction, but it does not describe a method
to compare and fuse the measurements of different stereo pairs. In addi-
tion, in our method the covariance of the parameters estimated during the
calibration phase is obtained by means of a Monte Carlo simulation avoid-
ing linearization; correlation between the different parameters is analyzed
in depth, giving rise to a covariance that can be considered sparse but not
simply diagonal, as in (Chen et al., 2008).

A method which takes uncertainty into consideration in order to choose
the best combination of camera pairs for stereo triangulation is described
in Amat et al. (Amat et al., 2002). In this case, however, the uncertainties
associated with the intrinsic and extrinsic camera calibration parameters are
not taken into account, and a simplified geometrical uncertainty estimation
and a propagation algorithm that uses scalar instead of vector quantities
is employed. In this way, cross-correlation between the different sources of
uncertainty are neglected.

The interest on the extension of 3D reconstruction to motion analysis is
growing due to the wide application of these systems in different industrial
and scientific fields. The recent advancements in Computer Vision have
impacted highly in the movie and advertisement industries (Boujou, 2009),
in the medical analysis area, in video-surveillance applications (Ioannidis
et al., 2007) and in biomechanics studies of the human body (Corazza et al.,
2007; Fayad et al., 2009). However, the strongest limitation for several
systems is their restriction to deal with rigid bodies only. A shape which is
deforming introduces new challenges, the object can vary arbitrary and the
observed shape may have different articulations not known a priori. How
to model and identify such variations is still an open issue even if successful
systems are already available in the market (OrganicMotion, 2009; Vicon,
2009).

In this work we present a multi-stereo system for the 3D scanning of
anatomical parts. Particular interest will be on the problem of position
fusion of 3D points reconstructed from more stereo-pairs. In the second
part we address the problem of motion segmentation and joint parameters
reconstruction, applied to human body in order to build automatically a
human body model.

The present work will be organized in 3 parts that discuss the theory of
computer vision, the innovative proposed algorithms and the experiments
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for the validation of the algorithms.
In Part I we discuss an introduction to the mathematical models used for

computer vision and the calibration of its the parameters (Chapter 2), and
the geometry and mathematical methods used for stereo-vision (Chapter 3).

In Part II we discuss a detailed description of the algorithms for the 3D
reconstruction of static objects (Chapter 4) and for the extension to motion
segmentation and joint reconstruction (Chapter 5).

In Part III we present the developed experimental set-up and the experi-
ments provided for the experimental verification of the proposed algorithms
(Chapter 6).



Part I

Introduction to computer
vision

7





Chapter 2

Camera model

In this chapter we introduce a mathematical model of the geometry of image
formation process. We are now interested in the discussion of what is an
image and how it is formed, in the reference frames that will be used in the
following chapters and in a rigorous description of the notation and conven-
tions. In the second part of the chapter will be presented the parameters
used to characterize the camera, related to the previously presented camera
model.

2.1 What’s an image?

An image is a two-dimensional brightness array, and we talk about a gray
level image, or a set of three such array, and we talk about a RGB image
(red, green and blue). In other words the image I is a map defined on a
compact region Ω of a two-dimensional surface, taking values in the positive
real numbers. In a camera Ω is a planar rectangular region occupied by the
CCD1 sensor. So I is a function:

I : Ω ⊂ R2 → R+ ; (x, y) 7−→ I(x, y) (2.1)

In the case of a digital image, both the domain Ω and the range R+ are
discretized. For instance, Ω = [1, 640]× [1, 480] ⊂ Z2, and R+ is an interval
of integers [0, 255] ⊂ Z+ (in this case we talk about VGA resolution and
8-bit encoding).

The values of the image I depend upon physical properties of the scene
being viewed, such as:

• the shape;

• the material reflectance properties;

• the distribution of the light sources (Forsyth and Ponce, 2002).

1In this work we always refer to “CCD sensor” but in general it could be a CMOS
sensor or a photographic film

9



10 CHAPTER 2. CAMERA MODEL

2.2 The thin lens model

A camera is composed by a set of lenses used to direct the light toward the
CCD. Thereby we perform a change of direction of propagation of the light,
using the properties of diffraction, refraction and reflection of a glass. For
simplicity we neglect the effects of diffraction and reflection in a lens system,
and consider only the refraction; for more details about the lenses models
see (Born and Wolf, 1999). Therefore we first consider the thin lens model.

A thin lens (see Figure 2.1) is a mathematical model defined by an axis
(optical axis) and a plane perpendicular to the axis (focal plane) with a
circular aperture centered at the intersection between the optical axis and
the focal plane (optical center).

Figure 2.1: Graphic representation of the thin lens model.

The thin lens model has two parameters: the focal length (f) and the
diameter (d). Its function is characterized by two properties:

• all rays entering the aperture parallel to the optical axis intersect on
the optical axis at a distance f from the optical center; the point of
intersection is called focus of the length.

• all rays through the optical center are undeflected.

Consider a point P ∈ R3 at a distance D along the optical axis from
the optical center. We can draw two rays from the point P: the first one is
parallel to the optical axis until the aperture and then intersect the optical
axis at the focus; the second one through the optical center and remains
undeflected. We can call p the point where the two rays intersect, and let d
be the distance from the optical center along the optical axis. Using similar
triangles we can obtain the fundamental equation of the thin lens:

1

D
+

1

d
=

1

f
(2.2)
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Therefore the irradiance I(x) at the point x on the image plane is ob-
tained by integrating all the energy emitted from the region of space that
project on the point x, compatibly with the geometry of the lens.

2.3 The pinhole model

If we let the aperture of the thin lens decrease to zero, all rays are forced to
go through the optical center (o), remaining undeflected. Consequently the
only points that contribute to the irradiance at the image point p = [x, y]T

are on a line through the points p and o.

Figure 2.2: Graphic representation of the pinhole model.

Let us consider a point P = [X,Y, Z]T , relative to a reference frame
centered at the optical center o with the z-axis parallel to the optical axis
(see Figure 2.2), from similar triangles we can see that the coordinates of P
and its image p are related by the so-called ideal perspective projection:

x = −f X
Z

, y = −f Y
Z

(2.3)

We can also write the projection as a map π:

π : R3 → R2 ; X 7−→ x (2.4)

This model, called ideal pinhole camera model, is an idealization of the
thin lens model when the aperture decrease to zero. Note that in this con-
ditions the diffraction effects become dominant and therefore the thin lens
model does not hold (Born and Wolf, 1999). Furthermore, as the aper-
ture decrease to zero, the energy going through the lens also become zero.
Otherwise, today it is possible to build devices that approximate the pin-
hole model, and so we can consider this model just as a good geometric
approximation.

Notice that in this model we have a negative sign in each of the formula
(2.3); this makes the image to be upside down. In order to eliminate this
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effect we introduce the frontal pinhole camera model, placing the image plane
in front of the optical center (see Figure 2.3). This corresponds to flip the
image: (x, y) 7→ (−x,−y). In this case, the image p = [x, y]T of the point
P is given by:

x = f
X

Z
, y = f

Y

Z
(2.5)

Figure 2.3: Graphic representation of the frontal pinhole model.

For the present work we used always the frontal pinhole model; the
interested readers can refer to (Ma et al., 2003) and (Forsyth and Ponce,
2002) for more details.

2.4 Reference frames and conventions

As described in (Ma et al., 2003), a camera can be modeled by a line (optical
axis), a point belonging to the line (optical center) and a plane orthogonal
to the optical axis at a distance f from the optical center (image plane)2.

As shown in Figure 2.4, in the rest of the work we refer to three kinds
of reference frames:

world it’s a global reference frame, it can be related to other devices in
the workspace or to the calibration set-up (Horn, 2000).

camera it’s a reference frame with origin in the optical center (o), z-axis
aligned with the optical axis and x-axis aligned with the columns of
the CCD sensor.

image it’s a reference frame with origin in the upper left corner of the CCD
sensor, x-axis aligned with the rows in the CCD and y-axis aligned with
the columns in the CCD.

2We are now referring to the frontal pinhole model, a more detailed description of the
model parameters will be discuss below.



2.5. GEOMETRIC MODEL OF PROJECTION 13

Figure 2.4: The ideal pinhole camera model with all the reference frames
used in this work. Notice the world reference frame (W ), the camera refer-
ence frame (C) and the image reference frame (I).

If we consider a set of points P in the space, we refer to the i-th point
with express in the reference frame F with the symbol:

FPi

2.5 Geometric model of projection

Considering the just described frontal pinhole camera model, the generic
position of a point comprised in the field of view of a camera is given by:

CP = λ Cp (2.6)

where λ ∈ R+ is a positive scalar parameter associated with the depth of
the point.

The camera is characterized by a set of intrinsic calibration parameters,
as described below, that defines the relationship between the camera refer-
ence frame and the image reference frame. Referring to the Figure 2.4, an
ideal pinhole camera reveals the following direct model:

Ip = K Cp =

 0 fm · s Ix0

−fm 0 Iy0

0 0 1

 Cp (2.7)

and the inverse model becomes:

Cp = K−1 Ip =

 0 − 1
fm

Iy0
fm

1
fm·s 0 − Ix0

fm·s
0 0 1

 Ip (2.8)
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where fm = f · Sx; s =
Sy

Sx
; Sx = pixels

length unit along x axis; Sy = pixels
length unit

along y axis3; (x0, y0) are the coordinates of the principal point of the CCD,
defined as the intersection between the principal axis and the image plane.

2.6 Camera parameters

Usually when we refer to camera calibration we mean the recovery of the
principal distance (or focal length) f and the principal point (x0, y0)T in
the image plane; or, equivalently, recovery of the position of the center of
projection (x0, y0, f)T in the camera reference frame. This is referred to as
interior orientation in photogrammetry; for us these will be the intrinsic
parameters.

A calibration target can be used to recover, from the correspondences
between points in the space and points in the image, a relationship between
the camera (or image) reference frame and the world reference frame. This
is referred to as exterior orientation in photogrammetry, for us these will be
the extrinsic parameters.

Since cameras often have appreciable geometric distortions, camera cal-
ibration is often taken to include the recovery of power series coefficients of
these distortions. Furthermore, an unknown scale factor in image sampling
may also need to be recovered, because scan lines are typically resampled in
the frame grabber, and so picture cells do not correspond discrete sensing
elements.

In this work we have developed a calibration procedure based on Tsai’s
method (Horn, 2000). This method for camera calibration recovers the in-
trinsic parameters, the extrinsic parameters, the power series coefficients for
distortion, and an image scale factor that best fit the measured image coor-
dinates, corresponding to known target point coordinates. This is done in
stages, starting off with closed form least-squares estimates of some param-
eters and ending with an iterative non-linear optimization of all parameters
simultaneously, using these estimates as starting values.

2.6.1 Intrinsic parameters

Interior Orientation is the relationship between camera reference frame and
image reference frame. Camera coordinates and image coordinates are re-
lated by the matrix K in equation 2.7. As we can see, matrix K has four
degrees of freedom. The problem of intrinsic parameters calibration is the
recovery of x0, y0, fm and s.

This is the basic task of camera calibration. However in practice we also
need to recover the position and attitude of the calibration target in the

3Sx and Sy are defined with reference to the directions x and y in the camera reference
frame and not in the image one.
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camera coordinate system (extrinsic parameters).

2.6.2 Extrinsic parameters

Exterior Orientation is the relationship between world reference frame and
camera reference frame. The transformation from world to camera consists
of a rotation and a translation. This transformation has six degrees of
freedom (three for rotation and three for translation). The world coordinate
system can be any system convenient for the particular design of the target.

The relationship between these two reference frames is given by:

WP =W RC
CP +W TC (2.9)

where WRC is the rotation matrix from camera reference frame to world
reference frame, and WTC is the position of the origin of camera reference
frame expressed in world frame.

The problem of extrinsic parameters calibration is the recovery of three
rotation angles, used to generate the rotation matrix, and three coordinates
of translation.

2.6.3 Distortion

Projection in an ideal imaging system is governed by the frontal pinhole
model. Real optical systems suffer from a number of inevitable geometric
distortions. In optical systems made of spherical surfaces, with centers along
the optical axis, a geometric distortion occurs in the radial direction. A
point is imaged at a distance from the principal point that is larger (pin-
cushion distortion) or smaller (barrel distortion) than the predicted one
by the perspective projection equations; the displacement increasing with
distance from the center. It is small for directions that are near parallel to
the optical axis, growing as some power series of the angle. The distortion
tends to be more noticeable with wide-angle lenses than with telephoto
lenses.

The displacement due to radial distortion can be modelled using the
equations: {

δx = x(κ1r
2 + κ2r

4 + . . .)
δy = y(κ1r

2 + κ2r
4 + . . .)

(2.10)

where x and y are measured from the center of distortion, which is typically
assumed to be at the principal point. Only even powers of the distance r
from the principal point occur, and typically only the first, or perhaps the
first and the second term in the power series are retained.

Equivalently we can express this distortion as function of r as:

δr = κ1r
3 + κ2r

5 + . . . (2.11)
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Electro-optical systems typically have larger distortions than optical sys-
tems made of glass. They also suffer from tangential distortion, which is at
right angle to the vector from the center of the image. Like radial distortion,
tangential distortion grows with distance from the center of distortion.{

δx = −y(ε1r
2 + ε2r

4 + . . .)
δy = +x(ε1r

2 + ε2r
4 + . . .)

(2.12)

In calibration, we attempt to recover the coefficients (κ1, κ2 , . . ., ε1, ε2,
. . .) of these power series.

In this work we consider only the radial distortions because of the tan-
gential distortions are negligible.



Chapter 3

Geometry of two cameras

A stereo system comprises two cameras, that we can call cam-1 and cam-2,
that frame the same field of view. The geometry of stereo systems is based
on the epipolar geometry. In this chapter we describe the epipolar geometry
and the triangulation process.

3.1 Epipolar geometry

Consider two images of the same scene taken from two distinct vantage
points. If we assume that the cameras are calibrated, we know the posi-
tion and orientation of the two camera frames with reference to the world
frame (see Section 2.6), and therefore the relative orientation and translation
between the two camera frames.

The intersections of the line (o1,o2) with each image plane are called
epipoles and denoted by e1 and e2 (see Figure 3.1). Consider a point P in
the 3D space in the field of view of both cameras; we can define the epipolar
plane as the plane through P, o1 and o2. Notice that the projections of
point P on the image planes belong to the rays (o1,P) and (o2,P), both
belonging to the epipolar plane; therefore the projections belongs to the
epipolar plane too.

The lines l1 and l2 are called epipolar lines, which are the intersections
of the epipolar plane with the two image planes.

Mathematically this considerations are expressed by the epipolar con-
straint :

〈p2,T×Rp1〉 = 0 (3.1)

where (R,T) is the relative pose between the two cameras.
The power of this constraint is applied to the matching of feature points

between the two images. Once we have the projection p1 of the point P on
the image plane π1, we have a description of the epipolar plane (o1,o2,p1)
and so we can compute the epipolar line on image plane π2. The projection
p2 of the point P on the image plane π2 must belong to this line.

17
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Figure 3.1: The epipolar geometry representation.

3.2 Stereo camera model

For each camera we can define a camera reference frame, as described in
Section 2.4. Considering the camera model described in Section 2.5, the
position of a point in the field of view of the i-th camera is given by:

iP =i

 X
Y
Z

 = λi

 xi
yi
1

 = λi pi (3.2)

where iP is the point position expressed in the reference frame of cam-i ; pi
is the projection of this point onto an ideal camera aligned with cam-i with
a focal length equal to 1 (in length units)1 and λi ∈ R+ is a scalar parameter
associated with the depth of the point.

By using the intrinsic parameters of the camera model, evaluated dur-
ing camera calibration, we can define the relation between projection pi,
expressed in length units, and projection pi′, expressed in pixels, being xi′
and yi′ respectively the column and row number, from the upper left corner
of the sensor. The ideal pinhole camera model give the following relation-
ship: {

x′ = fm · s · y + x0′
y′ = −fm · x+ y0′

(3.3)

and so:

pi′ =

 xi′
yi′
1

 =

 0 fm · s x0i′
−fm 0 y0i′

0 0 1

 xi
yi
1

 = K · pi (3.4)

1This is usually called rectified image.
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where fm = f · Sx; s =
Sy

Sx
; Sx = pixels

length unit along x axis; Sy = pixels
length unit

along y axis2.

3.3 Triangulation

The algorithm used for computing the depth of a point in the field of view
of both cameras in a stereo-pair is called triangulation. In the following
paragraphs we present the ideal case of triangulation and, later, the real case
with the middle point approach. More complex approaches, like epipolar
optimization algorithm, are described in (Ma et al., 2003).

3.3.1 Ideal case

When a point in space is in the field of view of both cameras in a stereo-pair,
the rays through the optical center and the projection of the point on the
image plane of each cameras intersect in the point itself.

Figure 3.2: The triangulation geometry in an ideal case.

With reference to Figure 3.2, the rays through (o1, p1) and (o2, p2) in-
tersect exactly in the point P . In mathematical language it can be express
as:

WP = λ1(Wp1 − Wo1) = λ2(Wp2 − Wo2) (3.5)

This is a system of three equations in two variables (λ1 and λ2) but, in this
ideal case, there are only two linearly independent equations. The position
of the point P will be computed from one of the rays in Equation 3.5.

2Notice that the parameters Sx and Sy are referred to x and y-axis and not to x′ and
y′-axis.
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3.3.2 Real case

Because of the influence of uncertainty, in the real case the two rays do
non-intersect. With reference to the Figure 3.3, the Equation 3.6 becomes:

WP ∼= λ1(Wp1 − Wo1) ∼= λ2(Wp2 − Wo2) (3.6)

Figure 3.3: The triangulation geometry in an real case.

In this case the system has no solution in variables (λ1 and λ2). For this
reason we have to use a cost function.

We can define two points P̃1 ∈ r1 and P̃2 ∈ r2 with the minimum
distance. These two points defines a segment orthogonal to the two rays;
middle point of this segment (P̃m) is selected as the measured 3D point.

A generic point P1 belonging to the ray r1 is described from Equation
2.6. We can compute the position of two generic points P1 and P2 in the
world reference frame as:

WP1 = λ1 ·W R1 ·1 p1 + Wo1 ,
WP2 = λ2 ·W R2 ·2 p2 + Wo2 (3.7)

In order to find points P̃1 and P̃2 with minimum distance, the follow-
ing cost function g is defined and then minimized by imposing gradient[
∂g
∂λ1

, ∂g
∂λ2

]
equal to zero:

g =
∥∥WP1 −W P2

∥∥2
=
(
WP1 −W P2

)T (WP1 −W P2

)
=

(
λ1 ·W R1 ·1 p1 + Wo1 − λ2 ·W R2 ·2 p2 + Wo2

)T ·
·
(
λ1 ·W R1 ·1 p1 + Wo1 − λ2 ·W R2 ·2 p2 + Wo2

) (3.8)

Defining Wv12 =W o1 −W o2 as the vector from Wo2 to Wo1 express in
world reference frame, and using the combination of rotation matrices, the
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Equation 3.8 becomes:

g = λ2
1 ·1 pT1 ·1 p1 − 2 · λ1 · λ2 ·1 pT1 ·1 R2

2p2 − 2 · λ1 ·1 pT1 ·1 v21+
−2 · λ2 ·2 pT2 ·2 v12 + λ2

2 ·2 pT2 ·2 p2 +W vT12 ·W v12

(3.9)
Taking partial derivatives and assigning a value of zero to the gradient

yields the following equation system:
∂g
∂λ1

= λ1

(
2 1p1

T 1p1

)
+ λ2

(
−2 1p1

T 1R2
2p2

)
+
(
−2 1p1

T 1v21

)
= 0

∂g
∂λ2

= λ1

(
−2 1p1

T 1R2
2p2

)
+ λ2

(
2 2p2

T 2p2

)
+
(
−2 2p2

T 2v12

)
= 0

(3.10)
The solution of this system are the λ̃1 and λ̃2 values that define the

minimum distance segment between the two rays. The symbolic solution of
the system is:

λ̃1 =

(
1p1

T ·1R2·2p2

)
·
(
2p2

T ·2v12

)
+
(
2p2

T ·2p2

)
·
(
1p1

T ·1v21

)
(1p1

T ·1p1)·(2p2
T ·2p2)−(1p1

T ·1R2·2p2)
2

λ̃2 =

(
1p1

T ·1p1

)
·
(
2p2

T ·2v12

)
+
(
1p1

T ·1R2·2p2

)
·
(
1p1

T ·1v21

)
(1p1

T ·1p1)·(2p2
T ·2p2)−(1p1

T ·1R2·2p2)
2

(3.11)

Thus, the extreme points P̃1 and P̃2 of the minimum distance segment
are:

W P̃1 = λ̃1 · WR1 · 1p1 + Wo1 ,
W P̃2 = λ̃2 · WR2 · 2p2 + Wo2 (3.12)

and the middle point associated with the points is:

W P̃m =
W P̃1 + W P̃2

2
(3.13)
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Part II

Proposed algorithms
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Chapter 4

Algorithm for static
reconstruction

In this chapter we discuss the description of the static reconstruction algo-
rithm developed in this work. In Figure 4.1, you can see the flow chart of
the algorithm. It is substantially based on three steps:

single camera stage in which, for each camera, the image is processed in
order to extract the feature points (200. feature detection) and provide
a description of each detected feature (300. feature description). See
Section 4.1.

single stereo-pair stage in which the two sets of feature points, one for
each camera in stereo-pair, are combined in order to reconstruct the
3D points cloud (400. Stereo-reconstruction). See Section 4.2.

complete system stage in which the points clouds provided from each
stereo-pair are combined and fused in order to obtain a unique points
cloud (500. Points fusion). See Section 4.3.

Externally to these stages, is the calibration stage (600. System cali-
bration). The calibration algorithm used is based on the Tsai’s approach
(Horn, 2000) 1. In this work we don’t describe the calibration algorithm,
for informations about the calibration parameters refer to Section 2.6.

What about the image acquisition stage (100. Image acquisition), a
compiled file provide to the initialization, setting and synchronized image
acquisition. In this step the most important things are:

• synchronism in image acquisition, because if the subject is moving,
time-different acquisitions generate errors in triangulation of the fea-
ture points.

1This algorithm was developed for previous works of the Mechanical Measurement
Research Group at University of Trento, and was adapted to the particular case.

25
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Figure 4.1: Functional description of the algorithm for static 3D reconstruc-
tion

• settings of camera parameters, because different settings of two cam-
eras in a single stereo-pair can provide different feature descriptions
and so errors in feature matching.

4.1 Feature extraction

The colored circular markers in the image shall be recognized in order to cre-
ate a list of descriptor array. The image segmentation algorithm is based on
edge detection using Canny operator (Canny, 1986). The feature extraction
algorithm proposed in this work is composed of two steps: feature detection,
which refers to the edge detection and filtering in order to select only the
colored markers, and feature description, which refers to the generation of
an array of descriptors used in the feature matching stage.

4.1.1 Feature detection

We start from an RGB image and we transform it into a gray-scale image in
order to compute the edges using the Canny algorithm. In literature there
are a lot of edge detectors (sobel, roberts, . . . ), but we chose the canny one
because of it is the best way to obtain closed contours. Thus we have a
binary image that represents the contours of the markers but also contours
of other objects in the field of view of the camera, and so we have to filter
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the image.
In the binary image we can consider each set of connected pixel as a

distinct object. In this way we have a set of objects in the image and we
have to determine if they are markers or not markers. For each object we
can compute a set of geometric parameters:

Euler Number It is a scalar value that represents the total number of
objects in the image minus the total number of holes in those objects.
Since we consider one object singularly, the Euler number can be 1, if
the contour is open; 0, if the object has only one hole; or less then 0,
if the object has more then one hole.

Area It is the number of pixels in the object. In this case the object is the
contour of a real object in the scene and so this value could be the
perimeter of the marker.

Filled Area It is the area of the object plus the area of all the holes in the
object. In this case this value could represents the area of the marker.

Major Axis Length It is a scalar value specifying the length (in pixels)
of the major axis of the ellipse that has the same normalized second
central moments as the region.

Minor Axis Length It is a scalar value specifying the length (in pixels)
of the minor axis of the ellipse that has the same normalized second
central moments as the region.

Using these parameters we can select two conditions in order to establish if
the object is the contour of a marker or something else.

The first condition is that the recognized object shall be closed contour
with a single hole inside. This condition is mathematically described by;

EulerNumber = 0

The second condition is based on the consideration that the projection of
a circle, although deformed, is approximately an ellipse; so the ratio between
perimeter and area must be, within a certain tolerance:

Area

FilledArea
=

√
2 · (a2 + b2)

ab
± tolerance

where a = MajorAxisLength and b = MinorAxisLength. The tolerance is
related to two reasons: first, image digitalization and edge detection make
the ellipse perimeter a polynomial approximation. Second, the exact for-
mula of ellipse circumference is C = 4aE(ε), where the function E(·) is the
complete elliptic integral of the second kind and ε is the eccentricity; the
formula used in this work is an approximation with about 5% of tolerance
(Barnard et al., 2001).
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If both these conditions are verified, the object is considered as a marker,
otherwise it will be deleted. An example of the image segmentation process
is shown in Figure 4.2.

(a) original image (b) gray-scale image

(c) Canny edges (d) marker detected

Figure 4.2: The image segmentation process. The original image in RGB
components is converted in gray scale and the edges are determined by using
Canny algorithm. The object are filtered in order to delete the one without
holes and the one that is not an ellipse.

4.1.2 Feature description

In order to determine the correspondence between feature points in two
camera of the same stereo-pair, we have to generate a complete description of
the feature point in term of position, geometry and chromatic characteristics.
Each marker is described from:

centroid the position of the marker’s centroid expressed in image reference
frame.

shape an array of four parameters that describes the geometric character-
istics of the marker; these parameters are: the area of the colored
marker, its eccentricity, its orientation and the major axis length.

color a scalar value that indicates the color of the marker.

stripe a scalar value that indicates the stripe which the marker belongs.
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The colors of the markers are assumed to be known a priori. We can
compute the mean RGB components of pixels belonging to the marker. We
associate the marker to a color class by using, in sequence, the k-means
algorithm and nearest neighbor algorithm. In order to minimize the miss-
classification, we used only four colors, equispaced in the (a*,b*) plane of
the CIE-L*a*b* color space (ISO 12640-3:2007, 2007).In our case we choose
the colors: red, green, blue and yellow.

The stripes clustering is performed on the same color markers and the
algorithm is based on principal component analysis.

4.2 Stereo-reconstruction

Once we have detected all the features in two images of the same stereo-
pair, we can proceed to 3D reconstruction. This stage can be divided in
two subproblems: feature matching and triangulation. What about the
triangulation algorithm, we refer to the middle point approach, as described
in Section 3.3.

The general approach to the feature matching for marker systems is the
minimum epipolar distance approach. Let us consider the feature point PL
in the left image of the stereo-pair, from the calibration parameters we can
compute the equation of the epipolar line on the right image. The standard
algorithm associates with the point PL the point PR in the right image with
the same color of PL and the minimum distance to the epipolar line. When
applied to our system, this approach shows two different problems:

• if the angle between the epipolar line and the stripes direction is small,
the association is highly sensible to the noise in the centroid determi-
nation.

• if the epipolar line intersect a lot of stripes, the probability to have a
wrong association will be very high (about 50%).

For a more robust association we can use, instead of the distance to the
epipolar line, a cost function (g(·)) of the descriptors of the feature point.
With reference to the Section 4.1.2, we define the cost function as:

g(PL, PR) = KE ·DE(PL, PR) +KS · ‖shape(PL)− shape(PR)‖ (4.1)

where DE(PL, PR) is the distance of point PR to the epipolar line generated
from PL, shape(P ) is the four elemets array of shape descriptors, and KE

and KS are two scalar coefficients that shall be tuned for the system.
Also using the cost function, the association is still affected by miss-

match. In order to have an association as robust as possible, an innovative
algorithm is proposed in this work. This algorithm is based on two different
steps: the determination of a correct starting point and the expansion from
this point with a threshold on the disparity gradient.
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4.2.1 Finding the starting stripe

Let us consider two set of feature points ΣL and ΣR, respectively related
to left and right images. To each point PL ∈ ΣL we associate the point
PR ∈ ΣR that has:

• the same color of the point PL,

• the minimum value of the function g(·).

For each pair (PL, PR) we have a corresponding pair of stripes (sL, sR),
where PL ∈ sL and PR ∈ sR. To each stripe sL we can associate the stripe
sR that has the maximum number of matched points, and a score that
represents the percentage of points of sR associated with the ones in sL.
The starting stripe is the pair (sL, sR) with the maximum score.

4.2.2 Expansion from starting stripe

Once we have the starting stripes association, we have a set of matched pairs
(PL, PR) and, to each pair is associated a disparity value, defined as the dif-
ference of coordinates of PL and PR, both expressed in own image reference
frame. As explained in (Hartley and Zisserman, 2004), the disparity value
is directly related to the depth of the point from the cameras. If we consider
that the object is a continuous surface, we can impose the continuity of the
disparity map.

In practice we proceed in an iterative loop that provides:

• determination of the N feature points in the left image nearest to the
ones already matched.

• to each point, we associate the feature point in the right image having:

– the same color of the point PL,

– the minimum value of the function g(·),

– disparity in the range [d0 −∆d, d0 + ∆d].

where d0 is the disparity of the nearest point to the analyzed one, and ∆d

is a parameter of the algorithm that is related to the maximum variation of
depth acceptable. If there are no points in the range, the feature point is
considered without matching.

The iterative loop ends when all the points in the left image are matched
to one in the right image.
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4.3 Points fusion

One of the most critical point in the multiple stereo approach, is originated
from the fact that the points cloud is generated from several different stereo-
pairs, and so we need a final stage in order to fuse the single points clouds
in a unique one.

All the existing approaches are based on the partial overlapping of the
points clouds, and provide a registration of the different clouds. The most
common approaches are Iterative Closest Points (ICP) (Trucco et al., 1999;
Eggert et al., 1997), and Bundle Adjustment (BA) (Triggs et al., 2000),
often used in sequence.

In this work we propose a method for points fusion based on the uncer-
tainty propagation by using the jacobian matrix, a compatibility analysis
by using Mahalanobis distance and a Bayesian data fusion.

4.3.1 Uncertainty analysis

In the triangulation algorithm described above, the triangulated point P̃m

is computed as a function of:

• the projection of 3D point on the image plane of each camera (Ipi, 2
components each)

• the intrinsic calibration parameters of each camera (Ki, 4 components
each)

• the extrinsic calibration parameters of each camera (WRi and Woi, 6
components each)

And so the coordinates of point P̃m are a function of 24 parameters

P̃m = f
(
Ip1,

Ip2,K1,K2,
WR1,

WR2,
Wo1,

Wo2

)︸ ︷︷ ︸
24 parameters

(4.2)

The rotation matrix is a 3 × 3 matrix and so it has 9 elements but,
as we know from the rigid body transformation rules (Ma et al., 2003),
the matrix has only three degrees of freedom. Each rotation matrix can be
conveniently expressed by a set of three Euler angles (αi, βi and γi) defining
rotation around three different axis (Goldstein et al., 2001).

In the sections below we discuss the evaluation of the uncertainty in
each of these parameters, considering the calibration process and the feature
detection process. After that we discuss the propagation of these uncertainty
in order to evaluate the covariance matrix of 3D point position.
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Calibration uncertainty

The parameters characterizing the camera model are estimated in a camera
calibration stage, the procedure used is similar to that proposed by Tsai
(Horn, 2000). The proposed procedure use a planar target which trans-
lates orthogonal to itself, generating a three-dimensional grid of calibration
points. At a first step, the parameters are evaluated by a pseudo-inverse so-
lution of a least-squares problem employing points on the calibration volume
and image points. A second step provides an iterative optimization in order
to minimize errors between acquired image points and the projections of the
3D calibration points on the image plane with the estimated parameters.

Before the calibration algorithm can be applied, optical radial distortion
are estimated and adjusted by rectifying distorted images. Radial distortion
coefficients are estimated by compensation of the curvature induced by radial
distortion on the calibration grid (Devernay and Faugeras, 2001).

Camera parameters uncertainties are evaluated propagating by the un-
certainties of the 3D calibration points and those of image points (Chen
et al., 2008; Horn, 2000). A Monte Carlo simulation is used.

The reasons of the deviation between measured image points and the
projection of 3D calibration points are various:

• simplification in camera model;

• digital camera resolution;

• dimensional accuracy of the calibration grid;

• geometrical and dimensional accuracy of grid translation.

In particular, if the motion of the grid to generate the calibration vol-
ume is not perfectly orthogonal to the optical axis of the camera, a bias is
induced in the uncertainty distribution of the grid points, so that the uncer-
tainty becomes non-symmetric in the image plane. Two more parameters are
therefore introduced to characterize the horizontal and vertical deviations
from orthogonality, αR and βC are the angles between translation direction
and, respectively, grid rows and columns. In an ideal grid motion the two
parameters shall be 90◦.

Summarizing, the calibration routine consists of the following four steps:

1. Estimation and adjustment of the optical radial distortions.

2. First estimation of the parameters αR and βC , defining the imper-
fection of the calibration target motion. These values are achieved
by minimizing iteratively the deviation between the measured image
coordinates of calibration points and those reconstructed projecting
volume points. The principal point is assumed to lie in the middle
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point of the image. With this assumption, once the systematic devia-
tion from orthogonality have been compensated, extrinsic and intrinsic
parameters can be derived from a pseudo inverse solution (Horn, 2000).

3. Final iterative optimization of all camera parameters (including prin-
cipal point) is performed, iteratively minimizing the deviation between
measured image points and those reconstructed projecting the 3D cal-
ibration points. This step supplies the final estimation of intrinsic and
extrinsic parameters. Standard deviation of the residuals after the
projection is combined with the resolution uncertainty, and is used to
evaluate the uncertainty associated with the image points used in the
next step.

4. Lastly, through a Monte Carlo simulation, the uncertainties of the
image points (as evaluated in the previous step) and the 3D calibra-
tion points are propagated, in order to evaluate the uncertainty of the
calibration parameters.

Steps 2 and 3 usually require usually less than 10 iterations, while the
Mote Carlo simulation step usually require about 105 iterations.

Feature uncertainty

The point P in 3D is defined as the centroid of a circular marker; for this
reason, determination of its projection pi in the image plane of the i-th
camera is always affected by uncertainty. First of all, digitalization and suc-
cessive binarization of the image deforms the circular shape into a polygonal
shape, and the centroid of these two shapes is not the same. Second, the
marker, which was originally a circle, is deformed in order to adhere to the
target surface; as first approximation, the deformed marker can be express
as an ellipse. Third, due to perspective effects, an ellipse which is not per-
pendicular to the optical axis of the camera is projected on the CCD as an
ovoid.

A simplified model of the perspective geometry identifies each marker
projection as an ellipse; this ellipse can be fitted by the covariance matrix of
the distribution of the pixels recognized as markers. The projected marker
can then be compared with the corresponding covariance ellipse and the 2D
distance of the two boundaries (∆b) can be computed as a function of angle
α. This distribution ∆b(α) = breal(α) − ffit(α) is a map R −→ R2. Figure
4.3 shows an example of a badly segmented elliptical marker and the fitted
one, and the related distribution ∆b.

Two parameters ∆C and Cb, which express the “difference” between
the projected ovoid and the estimated ellipse can be computed; ∆C =
[x∆C

, y∆C
]T ∈ R2 is the displacement between the centroid of the segmented
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Figure 4.3: Example of badly segmented elliptical marker. On the left, the
edge of the marker and the fitted ellipse; on the right, the distribution ∆b.

marker and the fitted ellipse, and Cb ∈ R2×2 is the covariance matrix of dis-
tribution ∆b.

The uncertainty of the centroid of the segmented marker is represented
by a covariance matrix which is a function of these two parameters:

Umeas = f (∆C , Cb) = a ·
[
x∆C

0
0 y∆C

]
+ b · Cb (4.3)

The larger the difference between the projected ovoid and the estimated
ellipse, the larger the uncertainty associated with the computed centroid. In
this function, parameters a and b are evaluated by a calibration procedure,
which uses a grid of circular photolithographic markers. This grid is moved
in a set of known positions and orientations, and the computed centroid
of the segmented marker is compared with the projected reference on the
CCD. In order to have a large set of views, two kinds of grids are used: the
first is a planar surface and the second the lateral surface of a cylinder.

4.3.2 Uncertainty propagation

The uncertainty evaluation for triangulated point P̃m of each stereo pair
becomes an uncertainty propagation problem, which employs the functional
model between input and output quantities, as express in Equation 4.2.

Several uncertainty propagation methods are known. Each of them is
based on a theory (i.e. probability, possibility or evidence theory), which
can express uncertainty by a corresponding suitable means (i.e. probability
density functions, fuzzy variables or random-fuzzy variables). According to
the GUM (BIPM et al., 1993), in this work, the uncertainty is analyzed
according to the probability theory and is expressed by probability density
functions (PDFs).

In order to calculate the propagated uncertainty of triangulated posi-
tion P̃m, taking into account the contributions of all uncertainty sources,
the method based on the formula expressed in the GUM is used. This
method is selected instead, for example, of the Monte Carlo propagation
approach, in order to increase computing speed and to allow real-time com-
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puting implementation. The propagation formula uses the sensitivity coeffi-
cients obtained from linearization of the mathematical model; this method
is based on thee hypothesis that a probability distribution, assumed or ex-
perimentally determined, can be associated with every uncertainty source
considered, and that a corresponding standar uncertainty can be obtained
from the probability distribution.

The GUM proposes a formula for the calculation of the uncertainty to
be associated with output quantities P̃m, obtainable as an indirect measure-
ment of all input quantities:

Uout = c ·Uin · cT (4.4)

where Uin ∈ R24×24 is the covariance matrix associated with the input quan-
tities, which are 24 in this application; Uout ∈ R3×3 is the covariance matrix
associated with the output quantities, which are the three components of
P̃m in this application; and c ∈ R3×24 is the matrix of the sensitivity co-
efficients achievable from partial derivatives of f(·) with respect to input
variables:

ci,j =
∂fi

∂inputj
(4.5)

In this application, the following assumptions are made:

1. The two components of the projected point Ipi of each camera are
assumed to be cross-correlated among themselves and not correlated
with any other input quantity.

2. The intrinsic calibration parameters of each camera are assumed to be
cross-correlated among themselves and not correlated with the corre-
sponding parameters of the other cameras or any other input quantity.

3. The extrinsic calibration parameters of each camera are assumed to be
cross-correlated among themselves and not correlated with the corre-
sponding parameters of the other cameras or any other input quantity.

These assumptions allows us to build the 24 × 24 covariance matrix of
scalar input quantities, putting six reduced dimension covariance matrices
along the diagonal Uin and assigning zero values to all other elements. The
matrix becomes:

Uin =



Umeas,1 0 0 0 0 0
0 Umeas,2 0 0 0 0
0 0 Uint,1 0 0 0
0 0 0 Uint,2 0 0
0 0 0 0 Uext,1 0
0 0 0 0 0 Uext,2

 (4.6)
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where Umeas,i ∈ R2×2 is the covariance matrix associated with measurement
of the projected point Ipi in the i-th camera; Uint,i ∈ R4×4 is the covariance
matrix associated with the intrinsic calibration parameters of the i-th cam-
era; and Uext,i ∈ R6×6 is the covariance matrix associated with the extrinsic
calibration parameters of the i-th camera.

The propagation model between input and output quantities described
in this work is not very simple, but have the advantage of being explicit.
Thus, it is possible to compute explicitly the sensitive coefficients as symbolic
expressions, and it is not necessary to evaluate them numerically, as often
happens with complex applications.

4.4 Compatibility analysis

As we have seen in Section 4.3.1, in non-ideal conditions, the stereo systems
at different positions provide different measurements of the same feature
point; in this work the feature points are centroids of colored spots. Each
measurement comes with its uncertainty, and a fusion process can combine
them in a single best-estimated one with the associated fused uncertainty.
Before points measured from different stereo systems can be fused, it is
necessary to state whether they are associated with the same feature or,
statistically speaking, whether they belong to the same distribution. A
compatibility analysis of the measured points is therefore performed.

A compatibility test on two points P1 and P2, with covariances C1 and
C2, is based on the consideration that the difference P1 −P2 is distributed
with zero mean and covariance C = C1 + C2.

We can define the Mahalanobis Distance (MD) (Duda et al., 2000) as a
statistical distance described by the equation:

MD2 = (P1 −P2)T (C1 + C2)−1(P1 −P2) (4.7)

Intuitively, the Mahalanobis distance is the distance between two points,
divided by the width of the covariance ellipsoid in the direction of the points
connection. If we consider two points with spherical uncertainty, the MD
is exactly the same as the euclidean distance; but if we consider two points
with generic covariance matrices, as more are the ellipsoids aligned with the
line joining the two points, as less is the MD. In Figure 4.4 are shown two
points with the same euclidean distance and uncertainty but MD completely
different, because of the orientation of the covariance ellipsoids.

On the Gaussian assumption, the MD has a χ2 distribution with a degree
of freedom ν equal to the dimension of vectors Pi. Once a confidence level
α′ has been chosen, it is stated that the two points are compatible if:

MD2 ≤ χ2(ν, α′) (4.8)
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Figure 4.4: An example of different Mahalanobis Distance between the same
couple of points, with covariance ellipsoids of equal axis length but different
orientations. In the first case (a) the MD is equal to 4.5, in the second one
(b) is 0.36.

Let Pi,j be the i-th 3D point measured by the j-th stereo-pair with
covariance Ci,j . The point fusion algorithm is made up of the following steps:
from measured points sets Σm and Σn of stereo-pairs m and n respectively,
each point Pi,m ∈ Σm is associated with the point Pj,n ∈ Σn having the
minimum MD; if the compatibility test is passed, the association is accepted
and the associated couple of points is fused, yelding the best estimate:

P∗k,mn = Cj,n(Ci,m + Cj,n)−1Pi,m + Ci,m(Ci,m + Cj,n)−1Pj,n (4.9)

and its covariance matrix:

C∗k,mn = Cj,n(Ci,m + Cj,n)−1Ci,m (4.10)

otherwise Pi,m and its covariance matrix Ci,m are kept as best estimate of
the feature; the process between all these best estimates is iterated (including
points not associated between the two sets), and a new set Σp is obtained.

Ambiguous cases may occur, when a point of set Σn is compatible with
two or more points of set Σm. In this case, the point of Σn is eliminated.
For this reason, threshold α′ must be tuned in order both to keep cases of
ambiguity low and not to lose useful information.

Notice that the best estimated fused point is computed by using the
Bayes theorem, therefore the covariance ellipsoid of the fused point is smaller
than the smallest of those starting. An example of the covariance ellipsoids
of a pair of points and the fused one is shown in Figure 4.5
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Figure 4.5: An example of covariance ellipsoids of two corresponding points
acquired by two stereo-pairs, and the ellipsoid of the fused point.



Chapter 5

Algorithm for Motion
Capture

With the algorithm described in Chapter 4 we have a system able to capture
a certain number of images from different cameras and, from this images,
to reconstruct the 3D position of a certain number of feature points in the
field of view. In this case we acquire a single image for each camera.

If we acquire not only a single image, but a sequence of images, we can
use this time-variant information in order to characterize better the viewed
objects. In particular we are interested in the segmentation of the different
objects in the field of view and in modeling the joints between these objects.

The final aim of the here presented system is to obtain a complete de-
scription of the articulated body in 3D and its motion properties automati-
cally from a set of images given a known pattern. In particular, our interest
is on the analysis of human motion (i.e. arms or legs).

As graphically explained in Figure 5.1, the proposed algorithm is a se-
quence of four steps. What about image acquisition and 3D reconstruction
steps we refer to Chapter 4, here we present only a brief reminder in Sec-
tion 5.1. The next Section 5.2 shows how the pairwise 3D matching is done
exploiting the particular structure of the pattern. Section 5.3 presents the
segmentation algorithm based on the motion of the object shape, we de-
scribe here three different algorithms: GPCA, RANSAC ans LSA. Finally
Section 5.4 describes the articulated joint position computation.

5.1 Image acquisition and 3D reconstruction

The image acquisition system, by using the 3D static reconstruction algo-
rithm described in Chapter 4, is able to reconstruct the position of a set of
points belonging to a generic surface located in a given working space.

An example of a subset of acquired images is shown in Figure 5.2, to-
gether with the pattern used for the acquisitions (Figure 5.3).

39
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Image Acquisition

3D Reconstruction

Points Matching

Motion Segmentation

Joint Reconstruction

Figure 5.1: The flow chart of our approach to the motion capture problem.

(a) frame 1 left (b) frame 1 right (c) frame 8 left (d) frame 8 right

Figure 5.2: An example of a set of images acquired from the stereo-pairs.

Figure 5.3: The pattern used for the 3d reconstruction.

The output of the 3D reconstruction stage for a single frame is a matrix
M of size n × 5, where n is the number of reconstructed points. The first
three columns of M are the metric coordinates x, y and z of the point. The
fourth column is a scalar that indicate the color of the marker, while the last
one is a scalar that represents the uncertainty of the reconstructed point.
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The matrix M at a single frame can be written as:

M =

 x1 y1 z1 col1 unc1
...

...
...

...
...

xn yn zn coln uncn


Figure 5.4 shows an example of the 3D reconstruction for a eight frames

long image sequence where the captured non-rigid motion is an arm bending
as presented in Figure 5.4 from a single stereo-pair view.

(a) frame 1 (b) frame 2 (c) frame 3 (d) frame 4

(e) frame 5 (f) frame 6 (g) frame 7 (h) frame 8

Figure 5.4: An example of a set of frames used for the motion segmentation
and joint reconstruction.

5.2 Trajectory matrix

The previous 3D reconstruction stage provides a set of unordered 3D coor-
dinates at each image frame. The next task is to assign at each 3D point
in a given frame the corresponding 3D point in the following frame. This
is a fundamental step in order to infer the global properties of the non-
rigid image shape (i.e. its motion). This 3D matching stage aims to form
a measurement matrix in which each column of the matrix represent a 3D
trajectory of the point. This matrix is of size 3F × P and it contains the
position of the P features tracked throughout F frames.

We have as input two frames, with respectively n and m points, uniquely
described by two matrices

M1 =

 x1 y1 z1 col1 unc1
...

...
...

...
...

xn yn zn coln uncn


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M2 =

 x1 y1 z1 col1 unc1
...

...
...

...
...

xm ym zm colm uncm


Each row of the matrices represents a point, along the columns there are
the coordinates of the point (x, y e z), the color (col) and the uncertainty
(unc).

The output of the frame-by-frame points matching algorithm is a vector

P 2 =

 P 2
1
...
P 2
n


with the same number of rows of the matrix M1, each row contains the index
of the point in the second frame matched with the one in the first frame. If
a point of the first frame has no given assignment in the second frame, the
value in P 2 will be NaN .

5.2.1 Matching using Nearest Neighbor

The simplest algorithm we can use is a revisited version of the classical
nearest neighbor (NN) approach to account for the different color assigned
to each 3D point in both frames. The algorithm is composed by the steps
below:

1. compute the metric distance matrix between each pair of points of the
same color in the two frames

D =

 d1
1 . . . dm1
...

. . .
...

d1
n . . . dmn


the pairs of point of different colors the correspondent value is NaN

2. compute the minimum distance for each point of frame 1, NaN values
are ignored, we obtain a n× 2 matrix in which the rows are the points
and the columns are the minimum distance and the index of the nearest
point

Dmin =

 dmin1 indmin1
...

...
dminn indminn


3. if the minimum distance between two points is lower than a thresh-

old and the association is unique, the association is considered valid,
otherwise it will be deleted.
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The threshold is automatically computed from the mean distance, the
mean of the first column of the matrix Dmin, multiplied by a coefficient.

This algorithm gives reasonable results under the hypothesis that the
movement of the feature between two successive frames is small with respect
to the distance between the features in a single frame. This means that the
motion of the bodies shall be slow with respect to the frame rate and the
features spatial density.

5.2.2 Matching using NN and Procrustes analysis

We also propose a novel algorithm for the frame-by-frame point matching
that combines NN and Procrustes Analysis (PA) theory. The algorithm is
composed by the three distinctive stages.

1. Stripe sorting. As a result of the previous reconstruction stage, each
3D point in M has assigned a given color. Thus, given the pattern
repetitive structure, it is possible to associated the points with the
same color to a set of stripes. Each stripe is sorted along the principal
directions of the 3D shape at the given frame.

2. Stripe matching. In this stage we match each stripe in the first
frame to a stripe in the second frame. This association is made using
a NN approach on the centroid of each stripe using again the color as
a discriminative feature.

3. Match 3D points in each stripe. For two matched stripes, we
select first the stripe containing less 3D points. Then we sequentially
assign these points to the 3D points of the other stripe and we register
the two sets using PA (Kanatani, 1996); see Figure 5.5 for a graphical
explanation. We selected the assignment which results in the minimum
3D error.

Stage 1 and 2 are based on the observation that a NN over the centroid of
the stripe is more robust to deformation and more computationally efficient
then performing a NN on each 3D point. Especially for the second step, if
the deforming body can be considered locally rigid on the stripe, the rigid
registration by PA give low 3D residual if the matching is correct.

The proposed algorithm is very robust for short movements with respect
to the stripe-to-stripe distance. If the displacement between the centroids of
the same stripe in two following frames is comparable to the stripe-by-stripe
distance, this method is no longer robust. In this case we can use a similar
algorithm, that we can call Local Procrustes Analysis (LPA), in which we
consider not only the associated stripe for the PA, but also the n-nearest.
This method is more robust than the previous one in the case of large dis-
placements. Unfortunately this modification introduce more sensibility to
deformations.
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Figure 5.5: A graphical explanation of the Procrustes Analysis applied to
the point matching. Dots represent the 3D points lying over a stripe. In
red a set of points for a candidate line to be matched at frame t. In green
a selected line at frame t + 1which contains less points. The green points
slides over the line with red dots and for each association a PA is computed.
The matched points are the one which give the minimum 3D error after
registration.

Once we have a frame-by-frame matching array for each pair of succes-
sive frames, we can build a trajectory matrix taking into account only the
features tracked in all the frames. The trajectories of the full tracked points
in the example case are shown in Figure 5.6.

Figure 5.6: An example of trajectory of points in a sequence of eight frames.

In this algorithm we consider only the points tracked in all the frames, the
markers tracked only in a few frames could be considered with a dedicated
missing data algorithm.
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The result trajectory matrix is:

W =

 w11 · · · w1P
...

. . .
...

wF1 · · · wFP

 (5.1)

where wij = [xij , yij , zij ]
T is the 3D position of the j-th point at the i-th

frame.

5.3 Motion Segmentation

Once the assignment problem is solved, the matrix W stores the correct
temporal information of the 3D trajectories of the non-rigid body. In order to
perform an analysis on the motion of body articulations we need to segment
the clouds of points which are assigned to relevant rigid motion. In the
experimental case here presented this means to assign each 3D trajectory
point in W to two clusters of points lying on the forearm or on the arm.
Notably, such problem span a vast literature in the Computer Vision where
it is generally termed as the motion segmentation problem. In the following
we are evaluating the results obtained by a subset of these methods applied
and modified for the 3D segmentation problem. In particular, we assess
the performances of three algorithms: Generalized Principal Component
Analysis (GPCA) (Vidal et al., 2005), Subspace RANSAC (Fischler and
Bolles, 1987; Tron and Vidal, 2007) and Local Subspace Affinity (LSA)
(Yan and Pollefeys, 2006b).

These algorithms obtains reasonable results for 2D motion segmentation
tasks with the LSA approach obtaining the best results in general purpose
databases (Tron and Vidal, 2007). In the following, we evaluate their qual-
ity in the case of bodies which have a certain degree of non-rigidity and
soft tissue artifacts. In general, we expect decreasing performance in two
different regions:

border zone where the marker’s movement could be affected by the muscle
tension. Regions are marked with blue in Figure 5.7.

joint zone where the two bodies are not well separated because of the
geometrical conformation of the natural joint (elbow). The region is
marked with red in Figure 5.7.

5.3.1 GPCA algorithm

The GPCA (Vidal et al., 2005) method was introduced with the purpose of
segmenting data lying on multiple subspaces. This is also the case for 3D
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Figure 5.7: The expected critical zone in the segmentation stage: the border
zone (blue) and the joint zone (red).

shapes moving and articulating since their trajectories lies on different sub-
spaces. The method is based on the consideration that trajectories of rigid
motion generate subspaces at most of dimension 4. The GPCA algorithm
first project the trajectories onto a five dimensional space using PowerFac-
torization, then GPCA is used to obtain the segmentation in the new lower
dimension space.

This method was originally developed for rigid bodies in a 2D data col-
lection, for instance if we have only one camera; in this work we tried to
apply the algorithm to the case of non-rigid bodies segmentation in a 3D
data collection. As explained by the authors, the main drawback of GPCA
is that the performances degraded when the number of objects increases,
moreover, the method does not assume the presence of outliers.

Figure 5.8 shows the segmentation results using GPCA over the arm
movement 3D data. The segmentation error is about 25% in this test show-
ing several outliers far from the joint and thus from the expected regions.
This unexpected result may be a consequence of the non-rigid motion of the
body parts.

5.3.2 RANSAC algorithm

The method is a popular and effective tool for robust statistical analysis
(Fischler and Bolles, 1987). It is based on the selection of the best model
which fit the inlier data. In order to estimate the putative models, candidates
set of points are chosen randomly and then the residual given the fitted
model is stored. After several random sampling, the model which fits best
the inliers is chosen.
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Figure 5.8: An example of motion segmentation using the Generalized Prin-
cipal Component Analysis (GPCA).

In our case, this algorithm is the worst performing of the three obtain-
ing a segmentation error of approximately 50% of the given points for this
dataset, as it is possible to see in Figure 5.9. In this figure we can observe
that most of the errors are at the border zone, where we expect errors be-
cause the movement of the markers could be affected by the muscle tension.

Figure 5.9: An example of motion segmentation using the RANSAC.

This method gives errors in both the expected regions, joint and border,
but in general we have several errors also in similar critical region as for the
GPCA algorithm.

5.3.3 LSA algorithm

The LSA approach (Yan and Pollefeys, 2006b) uses spectral analysis in order
to define the data clusters which refer to different motion subspaces. It is
based on local subspace fitting in the surrounding of each trajectory followed
by spectral clustering.

The Local Subspace Affinity algorithm exploits the fact that different
trajectories lie in a mixture of linear manifolds of different dimensions in
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order to deal with different type of motion: rigid, independent, articulated
and non-rigid. The general idea is to estimate the local linear manifold
for each trajectory, and compute an affinity matrix based on some measure
of the distance between each pair of manifolds. Once the affinity matrix
is built, any clustering algorithm could be applied in order to group the
trajectories and hence segment the motion.

The LSA algorithm can be divided into five main steps: rank estimation,
data transformation, subspace estimation, affinity matrix and clustering.
The algorithm flow is summarized in Figure 5.13.

Rank estimation

From the tracked features, a full trajectory matrix W3F×P , where F is the
number of frames and P the number of tracked point features, is built.
The first step of the algorithm consists in estimating the rank of W by
using Model Selection (MS) techniques (Kanatani, 2001). The rank (r) is
estimated as:

r = argminr
λ2
r+1∑r
k=1 λ

2
k

+ kr (5.2)

being λi the i-th singular value of W , and k a parameter that should depend
on the noise. The higher the noise level is, the larger k should be used.

Data transformation

Given the trajectory matrix W and its estimated rank r it is possible to
perform a data transformation. The idea is to consider each of its P columns
as a vector in R3F and to project them onto the Rr unit sphere. This
data transformation provides a dimensionality reduction, a normalization
of the data and a preparation for next step: the local subspace estimation.
Figure 5.10 shows an example of trajectories that belong to two different
subspaces of dimension 2 projected into an R3 unit sphere. The white dots
are trajectories which belong to one motion while black dots are trajectories
which belong to another motion. Due to noise not all the dots of the same
color lie exactly on the same subspace (one of the circles in the image).

In order to perform this transformation, SVD is applied to the matrix
W which is decomposed into U3F×3F , D3F×P and VP×P as:

W3F×P = U3F×3F ·D3F×P · V T
P×P (5.3)

Dimensionality reduction is achieved by considering only the first r rows
of V . Hence, each column of the matrix Vr×P is normalized to project them
onto the unit sphere.



5.3. MOTION SEGMENTATION 49

Figure 5.10: Example of trajectories that belong to two different subspaces
of dimension 2 projected into an R3 unit sphere. The two circles are the
2 subspaces. The white dots are trajectories which belong to one motion
while black dots are trajectories which belong to another motion.

Subspace estimation

As can be seen in Figure 5.10, in the transformed space most trajectories
and their closest neighbors lie on the same subspace. Hence, the underlying
subspace of a trajectory α can be estimated by local samples from itself and
its n nearest neighbors, being n + 1 ≥ d, where d is the highest dimension
of the linear subspace generated by the cluster.

If the type of motion is known, n can be tuned knowing that; for example,
for rigid motion d ≤ 4 while for articulated motion d ≤ 7. If the motion is
not known the highest dimension should be considered, for example d = 7
and those n ≥ 6. As a measure of the distance between two trajectories α1

and α2, the angle arccos(αT1 α2) ∈ [0, π] is used. It should be noted that
the computation of the nearest neighbors would not be possible without
the data transformation step, because it is not the spatial vicinity that is
considered here but it is the vicinity in terms of subspace distance.

Once the n nearest neighbors are identified, the bases of the subspace
of the trajectory α can be computed by SVD. From W , the sub-matrix Wα

containing only the trajectory α and its n nearest neighbors is extracted.
The rank of Wα is estimated again using the model selection. Knowing the
rank of Wα and using SVD the bases of the subspace S(α) can be computed.
The subspace estimation is performed for each trajectory, so that at the end
of this step the bases of the estimated subspace of all the trajectories are
available.

When estimating the subspace of trajectories that are close to the inter-
section between two subspaces the sampled nearest neighbors could belong
either to “correct” subspace or to the others. The proposers of the method
call this phenomena overestimation. Even thought overestimation leads to
an error in the subspace estimation, they say that this has a minor effect on
the overall segmentation. The reasons are that trajectories that are close
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to the intersection are usually small in amount compared to the total, be-
sides, in which cluster the trajectory will be classified relies on which of the
underlying subspaces is dominant for the overestimated subspace.

Affinity matrix

The affinity matrix AP×P measures the similarity of each pair of the pre-
viously estimated local subspaces. The affinity of two trajectories α1 and
α2 is defined as the similarity of their estimated local subspaces S(α1) and
S(α2):

A(α1, α2) = exp

(
−

M∑
i=1

sin(θi)
2

)
(5.4)

where θi is the i-th principal angle (Golub and Van Loan, 1996) between
the subspaces S(α1) and S(α2), and M is the minimum dimension between
S(α1) and S(α2). From this definition it can be deduced that A is a sym-
metric matrix and its entries take positive values, with a maximum of 1.
The closer to 1 is an entry A(α1, α2), the more similar the local subspaces
S(α1) and S(α2) are.

Figure 5.11 shows the affinity matrix of trajectories which belong to
three different clusters; the diagonal is white as all the values are equal
to one (being any subspace identical to itself) while black spots represent
subspace pairs with low similarity.

Figure 5.11: Example of affinity matrix of the trajectories of three clusters.

Clustering

Now that the affinity matrix A is computed, the idea is to group together
subspaces with high degree of similarity among them. Any clustering al-
gorithm can be applied, Yan and Pollefeys suggested to use the recursive
2-way spectral clustering technique (Shi and Malik, 1997).

The recursive 2-way spectral clustering works as follows:

• given N clusters in the scene and the affinity matrix A, segment the
data into two clusters C1 and C2 by spectral clustering.
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• while NumberOfClusters(C1, . . . , Cm) < N (at the first step m = 2),
compute the affinity matrix for each cluster Ci where i = 1, . . . ,m. Di-
vide each Ci into two clusters, C1

i and C2
i . Evaluate the Cheeger con-

stant (Ng et al., 2001) of each pair C1
i and C2

i . The Cheeger constant
gives a clue of how “difficult” is to split the cluster, hence decide the
subdivision of the cluster Cı̂ that gives the minimum Cheeger constant.
Replace Cı̂ with C1

ı̂ and C2
ı̂ .

As the spectral clustering algorithm is concerned, the normalized cut
criterion (Shi and Malik, 1997) is used. This approach is related to the
graph theoretic formulation of grouping. Focusing on motion segmentation,
each of the previously computed local subspaces can be interpreted as the
nodes V of a graph G and the affinity A defines the weights on the edges E
of the graph. That is, the weight between the node Vi and Vj is defined by
A(i, j). The graph G = (V,E) can be partitioned into two disjoint sets C1

and C2, where C1 ∪ C2 = V and C1 ∩ C2 = �. The degree of dissimilarity
between these two sets can be computed as total weight of the edges that
have been removed. In graph theoretic language it is called a cut:

cut(C1, C2) =
∑

u∈C1,v∈C2

A(u, v) (5.5)

The idea is to find the minimum cut but a greedy approach would lead
to partition the graph into very small sets. In order to avoid this phenomena
Shi and Malik proposed the minimization of the Normalized cut (Ncut):

Ncut(C1, C2) =
cut(C1, C2)

assoc(C1, V )
+

cut(C1, C2)

assoc(C2, V )
(5.6)

where assoc(Ci, V ) =
∑

u∈Ci,t∈V A(u, t) is the total connection from the
nodes in Ci to all nodes in the graph. In this way the cut cost becomes a
fraction of the total edge connections to all the nodes in the graph. Unfor-
tunately, finding the minimum normalized cut is an NP-complete problem.
However, an approximate discrete solution can be found efficiently by con-
straining the problem (this part is omitted for simplicity).

Let D be the degree matrix of A:

D(i, i) =

p∑
j=1

A(i, j) (5.7)

where i = 1 . . . P . It can be demonstrated that finding the minimum Ncut
is equivalent to solve the generalized eigenvalues system:

(D −A)y = λDy (5.8)

The matrix L = (D−A) is also called Laplacian matrix and it is known
to be positive and semidefinite (Pothen et al., 1990). If y is relaxed to
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take on real values, the solution can be found by using the second smallest
eigenvector. In the original formulation y would have taken on two discrete
values (for example 0 or 1) so that the values of each entry would have
determined the clustering. For example, if there are four features and y =
[0, 1, 0, 1] then one subgroup would be composed by the first and the third
feature while the other by the second and the fourth feature. The only
reason why this is not the optimal solution of the original problem is that y
does not take on only two discrete values so a threshold need to be set. On
the other hand this is what makes the problem tractable.

Figure 5.12 shows the same affinity matrix shown in Figure 5.11 rear-
ranged after the spectral cluster algorithm. In the rearranged affinity matrix
it is easy to see the block diagonal structure where each of the three clusters
is represented by a bright square which signifies high affinity between the
trajectories clustered together. The rearrangement of Figure 5.12 had no
misclassification, hence the black stripes that cross the white squares are
not errors but trajectories whose spaces are not particularly similar to the
rest of the cluster.

Figure 5.12: Example of affinity matrix rearranged after the spectral clus-
tering. This is the same affinity matrix shown in Figure 5.11.

In Figure 5.13 the LSA algorithm is summarized. It starts from the
trajectory matrix W built from P features tracked from F frames. The first
step is the rank estimation r of W which is obtained using a model selection
technique. In the second step the data are projected into a unit sphere of
dimension r exploiting SVD and the rank just computed. The third step
consists in estimating the subspace bases of each trajectory by sampling the
n nearest neighbors of each trajectory in the sphere space and using SVD
for the bases computation. In the fourth step the affinity matrix is built
computing the principal angles between every pair of subspaces. The last
step consists in clustering the affinity matrix, the result is a block structured
affinity matrix which correspond to a segmentation of the features.
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Figure 5.13: LSA flow. starting from a sequence of tracked features (red
dots) through the five steps which end with the final result where the features
belonging to the two objects are segmented (blue and green dots).

Figure 5.14 shows that the LSA algorithm is the best performing between
the tested three with a total segmentation error of about 8%;

Figure 5.14: An example of motion segmentation using the Local Subspace
Affinity (LSA).
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The algorithm correctly estimate the points in the border zone, but we
have some (expected) errors in the joint zone. but the interesting thing is
that the mistakes out of the critical expected regions are very few. This
is probably related to the fact that the LSA algorithm is more robust to
the noise possibly introduced by soft-tissue artifacts then the other two
considered approaches.

Because of the results shown in these preliminary tests, we propose to
use LSA algorithm to segment the bodies.

5.4 Joint Reconstruction

Now that the points have been assigned to the respective body parts, it
is now possible to compute the position and properties of the joint. The
theoretical property used to perform the computation of the joint is that
the subspaces computed from the trajectories of two body parts intersects.
Such common intersection can be used to identify the joint position and
properties as noticed by (Yan and Pollefeys, 2008; Tresadern and Reid,
2005) for image data and by (Fayad et al., 2009) for 3D data. We use the
computational tool developed in the latter work to perform the estimation
of the joint values.

This method is composed of three steps:

1. we refine a factorization method for Structure from Motion (SfM) by
applying a variation of the weighted PCT, based on least-squares opti-
mization; so that we have a first rigid approximation for each segment
of the non-rigid bodies.

2. we use a quadratic model for non-rigid bodies, initialized by the first
estimate of the rigid segment, to compute a more accurate rigid com-
ponent of the non-rigid segments.

3. we combine the techniques for articulated SfM and our model for the
non-rigid segments, to provide a final 3D articulated model of the
human body.

5.4.1 Factorization method

Factorization methods for Structure from Motion are a family of image based
algorithms that model moving objects as a product of two factors: motion
and shape. The shape parameters are defined as the 3D geometric proper-
ties of the object; the motion parameters are defined as the time-varying
parameters of the motion (e.g. rotations and translations of the rigid body)
that the shape performs in a metric space.

The factorization method proposed by Fayad (Fayad, 2008) assumes a
set of P 3D feature points being tracked over F frames. The method relies
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on the key fact that 3D trajectories of points belonging to the same body
share the same global properties.

From the Section 5.2, we have a matrixW that represents the trajectories
of all the feature points as:

W =

 w11 · · · w1P
...

. . .
...

wF1 · · · wFP

 (5.9)

where wij ∈ R3 is a 3 elements column vector that contains the 3D co-
ordinates of point j at frame i. Each 3D point wij can be written, in
homogeneous coordinates, as:

wij = [Ri|ti]
[
sj
1

]
(5.10)

where sj = [xj , yj , zj ]
T are the coordinates of the point j on a local reference

frame, and Mi and ti are respectively the rotation matrix and the translation
vector that describe sj with respect to a global reference frame. Stacking
these equations for all the F frames and P points, we have:

W =

 W1
...

WF

 =

 M1
...

MF

 [ S1 · · · Sp
]

+

 T1
...
TF

 = MS + T (5.11)

where Ti = [ti, 1
T
P ], with 1TP being a vector of P elements with all entries

equal to 1. The translational component ti can be computed as the coor-
dinates of the centroid of the point cloud at each frame Wi. Thus, it can
be easily eliminated by registering, at each frame, the point cloud to the
origin i.e at each frame we subtract to the coordinates of every point the
mean of the point cloud coordinates. In this scenario, it frequently occurs
that, instead of W , we consider a registered form of this matrix i.e. we use
a matrix W̃ such that:

W̃ = W − T = MS (5.12)

In this equation M is a < 3F × r > matrix and S a < r × P > matrix,
where r is the rank of the matrix W̃ and it depends by the type of shape
considered.

Rigid bodies

A rigid body moving rigidly brings the dimensionality of the bilinear models
to either r ≤ 3, if we consider the registered trajectory matrix, or r ≤ 4 if
we consider the translation vector too. Given this rank constraint, and
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remembering the equation 5.12, we can compute a factorization of W̃ by
performing a Singular Value Decomposition (SVD) giving:

W̃ = MS = UrΣrV
T
r (5.13)

where Ur is a 3F × r orthogonal matrix, Σr a r × r diagonal matrix and Vr
a P × r orthogonal matrix. This initial decomposition via SVD can provide
a first affine fit of the motion and shape components M and S such that:

M̃ = UrΣ
1/2
r and S̃ = Σ1/2

r V T
r (5.14)

The initial factorization proposed in equation 5.14 do not guarantee that
M̃ is in fact a collection of F 3 × 3 rotation matrices. Since this transfor-
mation is valid up to an affine transformation i.e. W̃ = M̃QQ−1S̃ we seek a
specific transformation Q which enforces the metric properties of M . This
can be achieved by imposing orthogonality constraints on M̃iQ, which is
done by solving the set of linear equations for all the F frames:{

mT
ikHmik = 1

mT
ikHmil = 0, ∀l 6= k (5.15)

with k, l = 1, 2, 3, mik and mil are respectively the k-th and l-th row of
matrix M̃i, and H = QQT is symmetric matrix (as Q is upper triangular).
Q can thus be recovered from H by using Cholesky decomposition. We
update the factorization in equation 5.14 to:

M = M̃Q and S = Q−1S̃ (5.16)

When the scene is composed of N rigid objects moving independently,
the same considerations are valid. The model is simply expanded for each of
the different independent objects, with S showing a block diagonal structure:

W̃ =
[
M1 · · · MN

]  S1

. . .

SN

 (5.17)

In this case the rank condition becomes r ≤ 3N .

Articulated bodies

However if the rigid objects are linked by joints their motions are not inde-
pendent and there is a loss in the degrees of freedom of the system. This
constraint on the movement manifests itself in the measurement matrix W
as a decrease in rank (Tresadern and Reid, 2005; Yan and Pollefeys, 2006a).
For the sake of simplicity we will only consider systems of two rigid bodies
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linked by a joint, two types of joints are here considered: the universal joint
and the hinge joint.

Universal joint

By universal (spherical) joint we mean a kind of joint in which each
body is at a fixed distance to the joint center, being the relative position of
the bodies constrained, but their rotations remaining independent. At each
frame the shapes connected by a joint satisfy the following relation:

R1d1 + t1 = −R2d2 + t2 (5.18)

where t1 and t2 are the 3D shape centroids of the two objects, R1 and R2

the 3 × 3 rotation matrices and d1 and d2 the 3D displacement vectors of
each shape from the central joint.

Thus we can write t2 as a function of t1, and we are now able to factorize
the trajectory matrix as:

W = [W1|W2] = [R1 R2 t1]

 S1 d1

0 S2 + d2

1 1

 (5.19)

where W1 and W2 are respectively the measurement matrices for the first
and second body.

By using the equation 5.18 the joint parameters d1 and d2 are easily
computed once we have found the motion parameters R1, R2, t1 and t2.

After the registration of each body to the origin of the global reference
frame, the registered trajectory matrix W̃ is a 3F × (P1 + P2) matrix with
rank 6, and so:

W̃ = [R1|R2]

[
S1 0
0 S2

]
(5.20)

Now we can perform the truncated SVD with k = 6.

W̃ = UkΣkV
T
k = [U1|U2]3F×6[V1|V2]6×(P1+P2) (5.21)

However the factorization is not final as [V1|V2] is a dense matrix. If we
define an operator Nl(·) that returns the left null-space of its argument, we
can define a 6× 6 transformation matrix TU such that:

TU =

[
Nl(V2)
Nl(V1)

]
(5.22)

We can now recover S by pre-multiplying it by TU :

S =

[
Nl(V2)
Nl(V1)

]
[V1|V2] =

[
Nl(V2)V1 Nl(V2)V2

Nl(V1)V1 Nl(V1)V2

]
=

[
S1 0
0 S2

]
(5.23)
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As we must keep the original data unaltered, we have to post-multiply
[U1|U2] by T−1

U :

M = [U1|U2]

[
Nl(V2)
Nl(V1)

]−1

= [M1|M2] (5.24)

Hinge Joint
In a hinge joint, two bodies can rotate around an axis such that the

distance to that rotation axis is constant. Therefore their rotation matrices
R1 and R2 are not completely independent.

From the geometry of the joint, we can see that every vector belonging
to any of the two bodies, that is parallel to the joint axis, must remain
so throughout the movement. Without loss of generality, we can choose a
local reference frame with x-axis coincident with the axis of rotation of the
joint. Let ex = [1 0 0]T be the x-axis unit vector. Applying a general 3× 3
rotation matrix R = [c1 c2 c3] to ex will result in c1 · ex, the only column of
the rotation matrix that affects vectors parallel to the x-axis is the first one.
Therefore, to comply with the joint constraints, the first column of R1 must
be equal to the first column of R2. We can now define the rotation matrices
as R1 = [c1 c2 c3] and R2 = [c1 c4 c5]. As all the points belonging to the
rotation axis must fulfill both movement conditions, thus, when considering
registered data, W̃ will then be given by:

W̃ = [c1 c2 c3 c4 c5]


x1

1 · · · x
(1)
P1

x
(2)
1 · · · x

(2)
P2

y1
1 · · · y

(1)
P1

0 · · · 0

z1
1 · · · z

(1)
P1

0 · · · 0

0 · · · 0 y
(2)
1 · · · y

(2)
P2

0 · · · 0 z
(2)
1 · · · z

(2)
P2

 (5.25)

Once again we use the truncated SVD of W̃ as the first step on the
parameter estimation. In this case we use k = 5 giving:

W̃ = UkΣkV
T
k = [U1|U2]3F×5[V1|V2]5×(P1+P2) (5.26)

As we have seen when we spoke about universal joints, this matrix [V1|V2]
is a dense matrix, but what we need is to compute a matrix S with the
structure defined in equation 5.25. Let TH be a transformation matrix such
that:

TH =

 bT

Nl(V2)
Nl(V1)

 (5.27)

whereNl(·) is the operator that returns the left null-space of its argument (as
defined previously), and bT = [1 0 0 0 0 0]. By pre-multiplying [V1|V2] with
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TH we leave the first row intact and we zero-out some entries in order to get
the desired structure of S. Again, we need to post-multiply [c1 c2 c3 c4 c5]
with T−1

H to keep the original data unaltered.

Weighted factorization

The algorithms described in Section 5.4.1 solve the problem when the ob-
served bodies are rigid. When dealing with non-rigid bodies they can still
be used as a coarse rigid approximation of the data.

When using SVD to estimate the motion and shape parameters, the re-
sulting shape will be the one that minimizes the error in a least-squares sense
over all the frames. Nonetheless this might not be the best representation
of the rigid component of the non-rigid shape. Factorizing with the previ-
ous algorithms can be seen as averaging the shape throughout the frames,
resulting in an attenuation of the deformations. The algorithm proposed
by Fayad (Fayad, 2008) is an approach that uses a weighted SVD in order
to penalize the contribution of the points which deform most. By doing so
we will attenuate the contribution of the deformations, obtaining a more
accurate rigid representation of the body.

In order to do that, he proceed in three steps1:

1. compute the rank-3 approximation of W and factorize into M and S
using the method described in Section 5.4.1.

2. for each point j, compute the weight matrix Cj as the covariance of
the deviation between the real trajectory of the point and the approx-
imated one by using rigid factorization.

3. recompute M and S by using the matrices Cj as weight.

Figure 5.15 shows the points cloud and the estimated rotational joint,
the position of the elbow. The first approximation of the human elbow is an
axial joint, this is a good model when we consider a low number of feature
points; in this case we have over 300 feature points near the elbow, and so
the deformation of the skin surface introduce secondary motions. For this
reason we model the elbow joint as a generic rotational joint.

The first possible reason is that the outliers after the segmentation stage
can produce an instability in the factorization step of the algorithm. For
this reason we have tried to manually delete the outliers, the result i better
than in the previous case but not so much. So there are some other reasons.

One critical point can be the quite planarity of the reconstructed points,
in this case the configuration would degenerate and so the computation

1This is only a brief description, for more details please see the reference
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Figure 5.15: An example of joint estimation using the Fayad’s algorithm.

of some internal steps of the algorithm can be affected from matrix rank
deficiency. One more critical point in this case is the co-planarity of the
points and the motion.



Part III

Experimental section

61





Chapter 6

Experimental section

In order to test the proposed algorithms, in this work we developed a physical
prototype of 3D scanner based on multiple stereo cameras. In this section
we present a complete description of the prototype with details about the
used hardware. We also test the algorithms by two kinds of experiments:
in the first one we analyze the results of the static reconstruction, in the
second one we did a preliminary test about motion capture application.

6.1 Experimental setup

The developed system, shown in Figure 6.1, is composed by a set of 12 cam-
eras, connected in a configuration of 6 stereo-pairs, and a workstation, used
for camera management and image processing. The stereo-pairs are located
around a workspace of dimension 400mm×200mm×200mm at a distance of
about 400mm. A frame of aluminum profiles ensures stable positioning of
each stereo-pair with respect to the others; also the thermal deformation
were taken into account in the geometric design in order to minimize them.

Figure 6.1: The experimental setup developed for the algorithms test.

63
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Each stereo-pair is composed from two Point Grey Chamaleon USB cam-
eras (Point Grey Research, Inc., 2009), with CMOS RGB sensor with max-
imal resolution of 1280×960 pixels. The two cameras are stuck on an iron
bar, and then connected to the structure. The cameras are all triggered
in order to ensure that all the images are acquired simultaneously. The
lenses are standard C-mount lenses with focal length 6mm and f-number
1.4; this ensure a field of view of about 400mm×300mm at a distance of
about 400mm. With reference to Figure 6.2, the baseline (b) is set at about
140mm, in order to have a compromise between accuracy in triangulation
and common marker detection (Brown et al., 2003). The angle between
the optical axis of two cameras is computed in order to have the maximal
overlapping between the two fields of view at a distance (d) of 400mm; in
this case the angle (α) is about 15◦.

Figure 6.2: The angle between cameras in a stereo-pair. In the developed
prototype α ∼= 15◦.

A system of LED lightning and diffusive polystyrene panels is used in
order to have in the workspace the light as most diffuse as possible.

We wrote a software for camera management and synchronous image
acquisition. The software provides the following tasks:

• recognizes all the cameras connected to the PC by ID-number

• switch on and initializes all the cameras

• set camera parameters as described in a configuration file

• acquires synchronous images from all the connected cameras

• save the images in folders and files, according to ID-number of each
camera and a look-up table.
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Using this physical prototype we developed a set of experiments in order
to verify the proposed algorithms. In the following two sections we present
the experiments for static and dynamic case.

6.2 Experiments of static reconstruction

What about the static 3D reconstruction we have done two different kinds
of experiments: one for the verification of shape reconstruction from a single
stereo-pair and one for the verification of the data fusion algorithm in terms
of uncertainty.

6.2.1 Single stereo-pair verification

In order to test and evaluate the accuracy in 3D reconstruction from a single
stereo-pair, we provide an experiment with a plane, inclined with respect to
the stereo-pair. In Figure 6.3 are shown the acquired images of the inclined
plane.

Figure 6.3: The acquired images in the inclined plane experiment.

We segment all the circular markers in the images and reconstruct the
3D position of each point by using the algorithm described in Chapter 4. In
this case the markers are all of the same color but the low density of feature
points and the orientation of the stripes make the algorithm adapt. The 3D
reconstruction of the plane is shown in Figure 6.4.

From the 3D reconstruction we compute the distance of each point from
the best fitting plane. The out of plane distance of each point and the
histogram of this distribution are shown in Figure 6.5.
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Figure 6.4: The 3D reconstruction of the inclined plane experiment.

Figure 6.5: The acquired images in the inclined plane experiment.

In this experiment we can see that the standard deviation of the points
from the best fitting plane is about 0.04mm (40µm), and it is a good result
for our main goal.

6.2.2 Data fusion verification

As described in a first-part experiment in (De Cecco et al., 2009a), an in-
clined can provided with colored markers on its lateral surface and positioned
by a Cartesian robot, is acquired by two stereo-pairs, which are angularly
spaced apart of nearly 90◦ as illustrated in Figure 6.6. Starting from an ini-
tial position (A) the can is translated along a straight trajectory to a final
position (B) and the markers on its surface are acquired both in the initial
and final position.

The acquired colored markers yield two sets of points (Σ1, Σ2) for each
stereo-pair and these two sets are reconstructed in both positions A e B.
The reconstructed 3D sets of Σ1, Σ2 in position A and B are depicted in
Figure 6.7 with their corresponding covariance ellipsoids; for each position a
compatibility test based on Mahalanobis distance is made. The points that
passed the compatibility tests have overlapping ellipsoids, as can be seen in
Figure 6.8 for two corresponding points (1 marker) one belonging to Σ1 and
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Figure 6.6: The inclined-can experiment setup. It is shown a can with
markers, the two stereo-pairs and the positioning robot.

the other one to Σ2.

Figure 6.7: The markers on the can reconstructed from 2 stereo-pairs.

For all corresponding points it is possible to fuse their covariance ellip-
soids as explained in Section 4.4, in order to obtain a fused point and its
covariance ellipsoid as shown in Figure 6.8 for one marker. It is clear that
the uncertainty associated with the fused point is significantly reduced with
reference to uncertainties obtained from a single stereo pair. This useful
result is particularly true for the two considered stereo pairs, since they are
angularly spaced apart of 90◦.

The resulting uncertainty for all the markers of position A is shown in
Figure 6.9 where the smaller ellipsoids in the central part belong to the fused
points that are the compatible ones between Σ1 and Σ2.

After computing the covariance of each marker, stating compatibility
and fusing points in both positions A and B, we have measured the transla-
tion of the can from A to B by computing the mean displacement between
corresponding points in the two positions. The point matching is computed
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Figure 6.8: Covariance elliposids of two corresponding points (obtained from
the same marker) acquired by two stereo-pairs.

Figure 6.9: Covariance ellipsoids of all the markers in position A.

using an ICP algorithm that also employs the color information for a more
robust result. The reference displacement superimposed by the Cartesian
robot is of 38.000mm with 1µm of spherical overall accuracy. The measured
mean displacement is of 37.95mm. Its uncertainty is computed with the
squared root of the maximum eigenvalue of the covariance of the displace-
ments set (the blue arrows in Figure 6.10) multiplied by the coverage factor
for 95.5% confidence level and the resulting value is of 0.14mm. This value
is fully compatible with the entity of the uncertainty of the points estimated
by the propagation and fusion method showing that the initial parameters
calibration is good.

6.3 Experiments of motion capture

For the evaluation of the motion capture framework we developed two kinds
of experiments. In the first stage we improved a rigid bodies articulated
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Figure 6.10: Blue vectors shown the estimated displacements of matching
points of A (green markers) and B (red markers).

arm, in the second one we used a real human arm.

6.3.1 Rigid bodies

In the first experiment two parallelepipeds are connected with an axial joint
in order to create a human arm mock-up. The figure 6.11 shows a sample of
the acquired images, a reconstructed frames, the segmentation results using
the LSA algorithm and the estimated axial joint.

(a) Original image. (b) Sample frame.

(c) LSA segmentation. (d) Estimated Joint.

Figure 6.11: The first experiment: two rigid bodies with axial joint.

The sequence is composed from 15 frames acquired from 2 stereo-pairs,
which are angularly spaced apart of nearly 180◦. A pattern, similar to the
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one shown in Figure 5.3, is superimposed to the parallelepipeds. Using the
algorithm for static reconstruction described in Chapter 4, we provide the 3D
reconstruction of each frame in the sequence. The matching between frames
and trajectory matrix generation is performed by using the novel algorithm
that combine NN and PA, separately for the clouds acquired from the two
stereo-pairs.

For the motion segmentation step we perform the LSA algorithm; as
shown in Figure 6.11, this method gives a segmentation error of only 1%.

Also the joint parameters estimation is performed by using the Fayad
code, as presented in Section 5.4. In this case we know a priori the kind of
joint (hinge) and so we can compute the real axis of rotation.

6.3.2 Deformable bodies

In the second experiment we have acquired a sequence of a real human
arm performing a bending movement. The figure 6.11 shows a sample of
the acquired images, a reconstructed frames, the segmentation results using
and the estimated universal joint.

(a) Original image. (b) Sample frame.

(c) LSA segmentation. (d) Estimated Joint.

Figure 6.12: The second experiment: a real human arm.

In this case we used a sequence of 8 frames acquired from a single stereo-
pair, and we reconstruct the 3D position of markers in each frame by using
the static reconstruction algorithm. The matching between frames is per-
formed by using the novel algorithm that combine NN and PA.
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In this experiments the total segmentation error using LSA algorithm is
of about 8%. The first approximation of the human elbow doing a bending
movement is an axial joint; nevertheless we have two conditions that disturb
this approximation: the high number of feature points and the skin-bones
internal movement and muscolar deformations. For this reason we model
the elbow joint as a generic rotational joint (universal).

In this configuration, the joint reconstruction has two critical points:

• the outliers after the segmentation stage can produce an instability in
the factorization step of the algorithm.

• the co-planarity of the points and the motion. If the point cloud is
quite planar the configuration would degenerate and so the compu-
tation of some internal steps of the algorithm can be affected from
matrix rank deficiency.
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Chapter 7

Conclusions

In this work we presented a set of algorithms for 3D shapes reconstruc-
tion and motion segmentation for the application to multiple stereo-camera
system and deformable bodies. In particular we were interested in the ap-
plication to human body analysis.

In the first part of the work, we presented a complete framework for
3D static scanning, based on a multiple stereo vision approach. The frame-
work provides the 3D reconstruction of a set of markers belonging to the
surface of a target body; the 3D position of each marker is computed from
each stereo-pair by using the triangulation algorithm. Later the position of
points viewed from more than one pair are fused performing a compatibility
analysis based on uncertainty ellipsoids of each point.

An extension to the motion analysis is presented in the second part of
the work. We describe here a complete framework for the points matching
among a sequence of frames, the segmentation of the bodies based on the
motion analysis, and the identification of the joint parameters. This algo-
rithm is oriented to the application to a collection of 3D data of non-rigid
bodies.

A prototype of 3D scanner was developed at the Mechatronics Labora-
tory at the University of Trento and the presented algorithm were tested
in an experimental section that comprises the analysis of static reconstruc-
tion, of planar and cylindrical surfaces, and motion analysis, of rigid and
non-rigid jointed bodies.

This work represents a solid basis for the realization of a 3D scanner
based on vision technologies. All the algorithm developed are implemented
as modular software, this will intervene and improve on individual parts. In
particular some points to improve are:

• replace the colored circular markers with natural features, this can be
done modifying only the marker detection and feature matching algo-
rithms, and developing a new method for the estimation of uncertainty

73
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in feature detection.

• replace the multiple stereo approach with the multiple camera one,
this can be done modifying the triangulation algorithm and, slightly,
the uncertainty propagation one. Notice that in this case there is no
longer needed of compatibility analysis and points fusion stages.

Most of the work has been supported by Delta R&S Company and part
of the algorithms was implemented in their products.

The work here presented resulted in two congress paper (De Cecco et al.,
2009a; De Cecco et al., 2009c), a journal paper (De Cecco et al., 2009b) and
a submitted congress paper.
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