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Abstract
Background: Microarray gene expression (MAGE) signatures allow insights into the
transcriptional processes of leukemias and may evolve as a molecular diagnostic test. Introduction
of MAGE into clinical practice of leukemia diagnosis will require comprehensive assessment of
variation due to the methodologies. Here we systematically assessed the impact of three different
total RNA isolation procedures on variation in expression data: method A: lysis of mononuclear
cells, followed by lysate homogenization and RNA extraction; method B: organic solvent based
RNA isolation, and method C: organic solvent based RNA isolation followed by purification.

Results: We analyzed 27 pediatric acute leukemias representing nine distinct subtypes and show
that method A yields better RNA quality, was associated with more differentially expressed genes
between leukemia subtypes, demonstrated the lowest degree of variation between experiments,
was more reproducible, and was characterized with a higher precision in technical replicates.
Unsupervised and supervised analyses grouped leukemias according to lineage and clinical features
in all three methods, thus underlining the robustness of MAGE to identify leukemia specific
signatures.

Conclusion: The signatures in the different subtypes of leukemias, regardless of the different
extraction methods used, account for the biggest source of variation in the data. Lysis of
mononuclear cells, followed by lysate homogenization and RNA extraction represents the
optimum method for robust gene expression data and is thus recommended for obtaining robust
classification results in microarray studies in acute leukemias.

Background
Microarrays have been demonstrated to be a powerful
technology capable of successfully identifying novel tax-

onomies for various types of cancers [1-5] and gene
expression signatures could also be associated with clini-
cal outcome [2,4,6-9]. Those findings indicate that the
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data from different microarray assays are comparable
enough to identify biological heterogeneity between dis-
tinct tumor types. Moreover, it has recently been demon-
strated that, under properly controlled conditions, it is
feasible to perform tumor microarray analysis, at multiple
independent laboratories [10-15]. In addition, it has been
shown that sample preparation by different operators did
not impair the robustness of so-called diagnostic gene
expression signatures [16]. To avoid possible sources of
variation in the data, individual laboratories developed
standardized protocols involving all the various steps of
the sample preparation procedure, starting from tumor

sample collection, through sample processing, total RNA
isolation, cDNA synthesis, cRNA synthesis and labeling,
target fragmentation, microarray hybridization, to wash-
ing and staining protocols. Users are recommended to use
specific RNA isolation protocols, since one of the major
concerns in microarray technology is the quality of start-
ing material and various studies helped in a better under-
standing of the pre-analytical factors influencing gene
expression signatures in peripheral blood and bone mar-
row [17,18]. However, until now, no fundamental infor-
mation has been available about the degree of variation in
the leukemia gene expression profiles resulting from dif-

Study conceptFigure 1
Study concept. (A) Total RNA of each of the first 24 samples had been extracted following three different total RNA purifi-
cation methods A, B, and C. Method A: lysis of the mononuclear cells, followed by lysate homogenization (to reduce viscosity 
caused by high-molecular-weight cellular components and cell debris) using a biopolymer shredding system in a microcentri-
fuge spin-column format (QIAshredder, Qiagen) followed by total RNA purification (RNeasy Mini Kit, Qiagen). Method B: TRI-
zol RNA isolation (Invitrogen). Method C: TRIzol RNA isolation (Invitrogen) followed by an RNeasy purification step (RNeasy 
Mini Kit, Qiagen). The RNA purification step combines the selective binding properties of a silica-based membrane with the 
speed of microspin technology. It allows only RNA longer than 200 bases to bind to the silica membrane, providing an enrich-
ing for mRNA since nucleotides shorter than 200 nucleotides are selectively excluded. (B) For each of three additional sam-
ples, nine aliquots of mononuclear cells had been collected. Total RNA has been processed for each aliquot following one of 
the three methods and for each method three independent technical replicates were performed (A,A,A, B,B,B, C,C,C).
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ferent RNA extraction procedures although it is recog-
nized that different RNA stabilization and isolation
techniques will introduce varying amounts of analytical
noise into the data [19-21].

Here we present a comparative study of the microarray
data using three different RNA isolation and purification
techniques (HG-U133 Plus 2.0 microarrays, Affymetrix,
Inc., Santa Clara, CA, USA). We have performed standard-
ized experiments with total RNA extracted from pediatric
acute leukemia patients to investigate whether different
extraction protocols (see methods) result in comparable
gene expression data from the same sample source (Figure

1A). Moreover, we assessed the variability between gene
expression levels arising from multiple technical repli-
cates of the same sample (Figure 1B). Leukemia gene
expression signatures have been studied by numerous lab-
oratories and have been proposed to have an application
in a routine diagnosis workflow [22-25]. However, it is
not clear, to what degree the various RNA isolation proto-
cols impact the gene expression signatures due to method-
related changes. We comprehensively addressed the ques-
tion of RNA preparation for microarray analysis in leuke-
mia and suggest a technique for introduction into routine
laboratory diagnosis of pediatric acute leukemia by gene
expression profiling.

Box plots of quality measurementsFigure 2
Box plots of quality measurements. The box plots show various quality metrics to judge overall performance of the 
microarray experiments. Each method represents 33 individual microarray experiments (Count). For each of the methods 
median values (blue arrow), mean values (black arrow), standard deviation (StdDev) and interquartile range (IQR) are given. 
The overall p value has been calculated for each of the parameters using one-way ANOVA. (A) total cRNA yield after in vitro 
transcription (A<C<B; P = 5,308e-12). (B) %P called transcripts (A<B, A<C, B~C; P = 0,020). (C) Scaling factor (A<B, A<C, 
B~C; p = 1,477e-5). (D) 3'/5' ratio of the housekeeping gene GAPD. Note: one sample was excluded in the GAPD box plot due 
to strong outlier behavior (PAD_00271, #16, TRIzol method). (E) Q value, defined as the average standard error of pixels in 
probe cells used for background computation (A>B, A>C, B~C; P = 0,0149). (F) the A260/A280 ratio of cRNA measured with 
a spectrophotometer (A<B, C<B, A~C; p = 0,00227).
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Results
Assessment of data quality
In this study we first monitored data quality parameters.
All gene expression profiles passed the quality filter and
met our criteria for inclusion into further data analyses
[see Additional File 2]. In detail, the cRNA yield was
higher than 10.0 μg, the percentage of present called
probe sets represented on the HG-U133 Plus 2.0 micro-
array is greater or equal to 20.0%, the scaling factor is
below 10, the ratios of intensities of exogenous Bacillus
subtilis control transcripts from the Poly-A control kit (lys,
phe, thr, and dap) are greater or equal to 1, and the inten-
sity ratio of the 3' probe set to the 5' probe set for the
housekeeping gene GAPD is less than 3.0. Four samples
showed a higher 3'/5' GAPD ratio (#25 method C, two
preparations of #26 method B, #16 method B) but had
otherwise acceptable quality parameters.

As illustrated in Figure 2 the preparations of total RNA by
QIAshredder homogenization followed by RNeasy purifi-
cation (method A) resulted in acceptable cRNA yields and
very reproducible low 3'/5' GAPD ratios. Preparations of
total RNA by TRIzol (method B) yield slightly higher
amount of cRNA, generate a lower image background as
measured by Q value, but have a higher 3'/5' GAPD ratio.
When the total RNA was prepared by TRIzol followed by
RNeasy purification (method C) the cRNA yield was high,
the background low, with the 3'/5' GAPD ratio being a lit-
tle bit higher than for preparations of total RNA by
QIAshredder homogenization followed by RNeasy purifi-
cation. All three preparation methods generated an
acceptable range of present calls on the whole genome
microarray.

Density curves of global signal intensitiesFigure 3
Density curves of global signal intensities. The plots show the overall signal density distribution of all probe sets repre-
sented on the HG-U133 Plus 2.0 microarray. The signal used is PS. Data from each microarray analysis is represented by a sep-
arate line. The plot is useful to visualize whether there are differences in the overall signal distributions of the experiments. (A) 
Density curves colored by nine distinct leukemia types. (B) Density curves colored by the three different sample preparation 
methods.
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Total RNA quality can also be indirectly assessed by a so-
called RNA degradation plot analysis as implemented in
the "Simpleaffy" Bioconductor analysis package [26]. The
sample degradation was consistently more severe in gene
expression profiles when total RNA was processed for
microarray analysis directly after isolation with TRIzol
only (method B) [see Additional File 1, Supplementary
Figure 1]. This might reflect that in method B more impu-
rities such as phenol, salts, or residual ethanol are present
in the starting total RNA as compared to method A or

method C. These impurities influence the sample prepara-
tion reactions' efficiency, e.g. by inhibiting enzyme activi-
ties during cDNA synthesis or in vitro transcription
reaction, and thus impair the microarray data generated
with method B.

Comparability of gene expression profiles
To assess the comparability of global gene expression data
between samples isolated with different preparation
methods it is useful to examine the overall signal distribu-

Unsupervised hierarchical clustering analysisFigure 4
Unsupervised hierarchical clustering analysis. The unsupervised analysis is based on 2821 interquartile range (IQR) fil-
tered probe sets of the HG-U133 Plus 2.0 microarray of the 99 experiments included in the study. The signal used is PQN. The 
three major clusters that were identified by the algorithm represent B lineage ALL (orange), T lineage ALL (blue). and AML 
(green) leukemia types. Then the dendrogram splits and samples are subdivided according to leukemia subtype characteristics: 
1. Pro-B-ALL with t(4;11); 2. c-ALL with t(9;22); 3. T-ALL; 4. c-ALL with t(12;21); 5. Pre-B-ALL with t(1;19); 6. ALL with hyper-
diploid karyotype; 7. c-ALL-Pre-B-ALL with DNA-Index DI = 1 and negative for recurrent translocations; 8. AML with 
t(11q23)/MLL; 9. AML with normal karyotype or other abnormalities. The graph on the left shows the correlation between dis-
tances for clustering validation (0–1-vector where 0 means same cluster, 1 means different clusters). Samples are labeled by 
patient numbers (#1 – #27) and total RNA extraction methods (method A, method B, or method C). For patient samples #25, 
#26, and #27, three individual technical replicates were performed.
Page 5 of 15
(page number not for citation purposes)



BMC Genomics 2007, 8:188 http://www.biomedcentral.com/1471-2164/8/188
tion of all probe sets as density curve for each microarray
experiment. Outlier experiments would be detected by
their different behavior of the density curves. As shown in
Figure 3A no substantial curve shifts in the microarray sig-
nal distribution are observed among samples representing
different leukemia subtypes. The density curves are also
overlapping when the signal distribution is plotted
according to the total RNA preparation method (Figure
3B).

Unsupervised data analysis
We next investigated the consistency of gene expression
measurements of leukemia samples when using different
total RNA extraction methods by performing an unsuper-
vised hierarchical clustering analysis. Expression data

have been normalized using the PQN algorithm [27].
2821 genes were selected using the interquartile range
(IQR) as filtering criteria. The resulting dendrogram (Fig-
ure 4) clearly grouped the samples first by patient repli-
cates using three different extraction methods and
secondly separates the leukemias by lineage origin in B
lineage ALL (orange), T lineage ALL (blue) and AML
(green). In 22/27 of the patient replicates samples proc-
essed by QIAshredder homogenization followed by RNe-
asy purification (method A) cluster next to the two TRIzol-
based purifications (method B, C). In 5/27 of triplets
method A and C clustered next to method B (TRIzol with-
out further purification). In no case did methods A and B
together cluster next to method C. Within each lineage
dendrogram the samples from the same leukemia sub-

Supervised analysis using differentially expressed genesFigure 5
Supervised analysis using differentially expressed genes. In the three-dimensional principal component analysis (PCA) 
99 samples are included. The signal used is PQN. The analysis is based on 1089 differentially expressed genes that were identi-
fied in a supervised way to distinguish between the 9 distinct leukemia subtypes. A sphere represents each sample's gene 
expression profile using the 1089-gene signature. The first three principal components (PC) account for 58.6% of variation of 
the data (PC1 = 40.3%, PC2 = 11.3%, PC3 = 7.01%). (A) Distinction by leukemia classification: spheres with the same colors 
represent the same leukemia subtype. (B) Distinction by sample preparation method: spheres with the same color represent 
samples processed with the same total RNA preparation method.
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classes are linked to each other. Within the B lineage clus-
ter two patients with c-ALL with t(9;22) are linked
together as well as two patients with hyperdiploid karyo-
type. Also, 3 patients with c-ALL with t(12;21) are linked
in the same sub-branch. Patient samples with c-ALL-preB
with DNA-index DI = 1 and negative for recurrent translo-
cations are distributed over the three sub-branches of the

B-ALL cluster. The latter may be interpreted as an illustra-
tion of the known heterogeneity within this subclass of
acute leukemia. The group of T-ALL samples is not further
subdivided. The cluster of myeloid leukemias is divided
into two branches: AML with t(11q23)/MLL and AML
with normal karyotype or other abnormalities. This
clearly demonstrates that the underlying biology and not

One-way ANOVA of technical replicatesFigure 6
One-way ANOVA of technical replicates. Three patient samples (#25, #26, and #27) from distinct leukemia subtypes 
were analyzed in three independent technical replicates for each method A, B, and C leading to a dataset of 27 gene expression 
profiles. (A) The graph represents false discovery rate (FDR) values based on One-way Analysis of Variance (ANOVA) results. 
For each preparation method the absolute number (left x-axis) and percentage of differentially expressed genes (right y-axis) 
between the various leukemia subclasses is given. The x-axis is representing multiple percentages of false discovery rates 
(%FDR). Method A: red line, method B, blue line, method C, green line. The vertical line is drawn at a FDR of 0.001 (0.1%). (B) 
Venn diagram representing the absolute number of overlapping differentially expressed genes for the three methods used. The 
representation is based on a series of filters: present calls, fold-change, and FDR of 0.001 (0.1%). For example, n = 7,728 genes 
are found to be consistently differentially expressed between the various leukemia subclasses when comparing method A to B, 
method A to method C, and method B to method C. As a second example, n = 2,107 genes are exclusively found to be differ-
entially expressed when using sample preparation method A. Alternatively, n = 1,274 genes are detected to be differentially 
expressed by both method A and method C, but not by method B. (C) Summary table representing the percentages of over-
lapping differentially expressed genes for the three methods used. The first line represents the comparisons of method A to 
method B or method C. The second line represents the comparisons of method B to method C or method A. The third line 
represents the comparisons of method C to method A or method C.
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the RNA extraction protocol accounts for the biggest
source of variation in the data. Also, in an unsupervised
Principal Component Analysis (PCA) two distinct types of
AML are clearly separated from T lineage ALL and from B
lineage ALL and the three total RNA preparation methods
for each patient sample can be found in close proximity
next to each other [see Additional File 1, Supplementary
Figure 2].

Supervised data analysis
A supervised analysis was performed to assess the poten-
tial impact of the use of different total RNA extraction
methods on a leukemia classification approach. An all-
pairwise t-test analysis identified differentially expressed
genes that would distinguish between the 9 classes of
pediatric leukemias that are represented in our dataset. A
gene set of 1089 differentially expressed probe sets was
then examined by three-dimensional PCA. As shown in
Figure 5A this gene set clearly separates the various leuke-
mia lineages (B lineage ALL, T lineage ALL, AML) from
each other. In the AML group t(11q23)/MLL positive sam-
ples are separated from AML with a normal karyotype or
other abnormalities. In the B lineage ALL group subclus-
ters can be identified for ALL with the recurrent transloca-
tions t(1;19), t(4;11), t(9;22), or t(12;21). Importantly,
Figure 5B demonstrates that the three preparation meth-
ods for each patient sample can be found in close proxim-
ity next to each other. This again indicates that the data
variability due to different preparation methods is less
influential in the gene expression profiles than the leuke-
mia subclass.

As shown in Figure 1B three patients had been analyzed
with three technical replicates. To further assess the influ-
ence of total RNA preparation methods on a potential
leukemia classification approach, an one-way analysis of
variance (ANOVA) was performed separately for these
technical replicates. For each method A, B, and C the abso-
lute number of differentially expressed genes was identi-
fied using the following filtering strategy: (i) filtering by
present calls, followed by (ii) filtering by fold-change, and
(iii) filtering by false discovery rate (FDR). In detail, in the
first filtering step for every probe set of 9 microarrays at
each ANOVA at least 3 microarrays called the probe set as
"present". In the second filtering step for every probe set
at each comparison, i.e. #25 vs. #26, #25 vs. #27, and #26
vs. #27, the fold change is at least 1.5 fold. In the third fil-
tering step the FDR cutoff was set as a threshold of 0.001.
Then, the number of differentially expressed genes that
are overlapping between the three methods was summa-
rized. The analysis results are summarized in Figure 6. Fig-
ure 6A represents the FDR curves for the three different
methods. At a FDR of 0.1% it can be observed that the
absolute number of differentially expressed genes
between the various leukemia subclasses is the highest

Signal distributions for three technical replicatesFigure 7
Signal distributions for three technical replicates. 
Individual signal intensity distribution on a probe set level 
(PS) are shown as box plots for the three technical replicates 
for each of the three methods used. Sample preparation 
types are pointed on the x-axes; the log value of PS signals 
are pointed on the y-axes. Box plots with the same color 
represent log value of PS signals from the same total RNA 
preparation procedure type method A (red), method B 
(blue), or method C (green), respectively. (A) Replicates of 
patient #25. (B) Replicates of patient #26. (C) Replicates of 
patient #27.
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when method A is performed (n = 13,010). The second
highest number of differentially expressed genes is
observed with method B (n = 11,517). The lowest number
of differentially expressed genes is observed with method
C (n = 9,794).

We next investigated the percentage of overlapping genes
that are found to be differentially expressed between the
three methods used when analyzing the various leukemia
subclasses in a supervised way. The percentage of overlap-
ping genes is another suitable parameter to address the
impact of the use of different total RNA extraction meth-
ods on a leukemia classification approach. Figure 6B rep-
resents a Venn diagram visualization of the absolute
number of differentially expressed genes that are overlap-
ping between the three methods at a chosen false discov-
ery rate (FDR) of 0.1%. In detail, n = 7,728 genes are
found to be consistently differentially expressed between
the various leukemia subclasses when comparing all three
methods. Overall, comparisons of absolute numbers of
differentially expressed genes of method A showed a
greater overlap to the other methods than comparisons
based on method B or method C, respectively. This can
also be examined by percentages of overlapping differen-
tially expressed genes between the three methods (Figure
6C). Again, at a chosen FDR of 0.1% the highest percent-
age of overlap is observed for method A. In detail, 83.61%
of differentially expressed genes between the 9 leukemia
subclasses are overlapping in the comparison of method
A to method B. 91.91% of genes are commonly detected
to be overlapping in the comparison of method A to
method C. The second highest overlap is identified in the
comparison of method B to method A (74.01%) and to
method C (82.68%). Only 69.19% of differentially
expressed genes are overlapping in the comparison of
method C to method A, and 70.31% are overlapping in
the comparison of method C to method B. Interestingly,
n = 2,107 genes are exclusively found to be differentially
expressed when using method A. An analysis where these
2,107 genes were annotated according to their biological
function revealed that the top biological functions associ-
ated with these genes were cancer, cell cycle, cell signaling,
DNA replication, recombination, and repair, gene expres-
sion, or RNA post-transcriptional modification [see Addi-
tional File 1, Supplementary Figure 3].

Additionally, to further illustrate the assay performance, a
statistical power analysis for the RNA preparation meth-
ods A, B, and C is performed based on the Bioconductor
package "ssize". The power analysis is used, for statistical
comparison of identical leukemia samples, to assess the
precision of technical replicates obtained from different
RNA preparation methods. The data sets generated based
on the preparations of total RNA following the methods A
and B have greater average statistical power than the

microarray data set based on method C [see Additional
File 1, Supplementary Figure 4].

In summary, these analyses indicate that preparation of
total RNA by QIAshredder homogenization followed by
RNeasy purification is a robust sample preparation
method for microarray experiments that outperforms
other procedures for isolation of total RNA.

Reproducibility and precision of different sample 
preparation methods
As three patients had been analyzed with three technical
replicates (Figure 1B) we therefore were further able to
assess the technical reproducibility and precision of gene
expression data using the different total RNA extraction
methods by examining squared correlation coefficients
(R2), box plots, scatter plots, and coefficient of variation
(CV) assessments. These analyses included all 54675
probe sets represented on the HG-U133 Plus 2.0 micro-
array.

As shown in Figure 7, the mean values and interquartile
ranges (IQR) of probe set level signals (PS) are highly
comparable within the technical replicates as well as
across three sample preparation methods. Furthermore, a
pairwise scatter plot analysis demonstrates that gene
expression data are well correlated within the three sam-
ple preparation methods [see Additional File 1, Supple-
mentary Figures 5A,B,C]. The squared correlation
coefficients R2 range from 0.985 to 0.989 for preparations
of total RNA by QIAshredder homogenization followed
by RNeasy purification (method A), 0.976 to 0.987 for
TRIzol isolation (method B), and 0.967 to 0.988 for TRI-
zol followed by RNeasy purification (method C). Between
the three different sample preparation methods the mean
value of R2 is 0.952 and standard deviation is 0.005 for
method A versus method B, 0.976 mean value and 0.005
standard deviation for method A versus method C, and
0.965 mean value and 0.011 standard deviation for
method B versus method C, respectively.

Analysis of coefficient of variation is a useful way for
assessment of reproducibility and precision of the gene
expression profiles generated from three different total
RNA sources. The box plots demonstrate the variability in
gene expression measurements within the three technical
replicates using different sample preparation methods
[see Additional File 1, Supplementary Figure 6]. The data
demonstrate that the sample replicates prepared with
QIAshredder homogenization followed by RNeasy purifi-
cation (method A) are tighter and more consistent across
the three different subtypes of pediatric leukemia samples
than those obtained with the other two RNA isolation
methods. Also, it can be seen that microarray data gener-
ated with QIAshredder homogenization followed by RNe-
Page 9 of 15
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asy purification is least varied, most reproducible and
precise. Supplementary Figure 7 [see Additional File 1,
Supplementary Figure 7] represents the slopes in the scat-
ter plots of the standard deviation versus the mean PS
intensity signals calculated for each probe set on the HG-
U133 Plus 2.0 microarray, referred to as robust CV (as
described in the formula). Mean value and standard devi-
ation of the slopes are 0.025 and 0.007 for method A,
0.052 and 0.017 for method B, 0.035 and 0.019 for
method C.

Discussion
Recent investigations successfully applied gene expression
microarrays to classify known tumor types and also vari-
ous hematological malignancies [5,25,28-34]. The
increasing amount of data supports the concept that
microarray analysis could be introduced soon into the
routine classification of cancer [16,23,35]. However, sev-
eral questions about the multitude of sources of variation
in gene expression data have not been addressed and
therefore continue to leave doubts about the performance
of gene expression microarrays in clinical laboratory diag-
nosis. Here, for the first time, we present a study focused
on analyzing the impact of different RNA preparation pro-
cedures on gene expression data for different subtypes of
pediatric acute leukemias. The sample preparation and
purification methods analyzed here are not only the three
currently most used protocols for isolation of total RNA in
laboratory diagnosis analyses but are also used by many
laboratories working with different microarray platforms.
The protocols examined are method A: lysis of the mono-
nuclear cells, followed by lysate homogenization, which
reduces viscosity caused by high-molecular-weight cellu-
lar components and cell debris, using a biopolymer shred-
ding system in a microcentrifuge spin-column format,
followed by total RNA purification; method B: TRIzol
RNA isolation, and method C: TRIzol RNA isolation fol-
lowed by a total RNA purification step using selective
binding columns. The RNA purification step, based on
selective silica-membrane, purifies all RNA molecules
longer than 200 nucleotides consequently increasing the
amount of mRNA. These three methods were analyzed in
triplicates for each of 24 samples. Moreover, for an addi-
tional three samples triplicate technical replicates were
performed for each protocol. The main purposes of this
investigation were to address to what extent distinct total
RNA template isolation techniques impair the precision
and reproducibility of gene expression data from the same
sample and secondly, whether the underlying characteris-
tic leukemia-specific gene expression signatures are
affected by the RNA preparation procedure. We finally
aimed to identify the most robust sample preparation
method for microarray experiments and, at the same time,
a technique that could be introduced into daily routine
laboratory practice.

After a first analysis of the quality of our microarray data,
we could assert that since in all cases the quality parame-
ters met our criteria, each of the three preparation meth-
ods is able to generate acceptable gene expression profiles
of pediatric leukemias. We found that samples represent-
ing different leukemia subclasses and extracted using dif-
ferent RNA preparation methods are characterized by a
high comparability of gene expression data thus demon-
strating that sample preparation procedures do not impair
the overall probe set signal intensity distribution. Impor-
tantly, even though yielding lower amounts of cRNA if
compared to TRIzol (method B) and TRIzol followed by
RNeasy (method C) protocols (A<C<B; P = 5,308e-12), the
isolation of total RNA using QIAshredder homogeniza-
tion followed by RNeasy purification (method A) resulted
in a better quality of starting material as demonstrated by
the A260/280 ratio of cRNA (A<B, C<B, A~C; p =
0,00227), by very reproducible low 3'/5' GAPD ratios, and
by consistently lower scaling factors (A<B, A<C, B~C; p =
1,477e-5). This was then further examined by a so-called
RNA degradation plot analysis as implemented in the
Simpleaffy Bioconductor analysis package [26]. This anal-
ysis, although being an indirect approach for assessing the
sample quality, demonstrated that the overall quality was
consistently lower for microarray data when total RNA
was processed for microarray analysis directly after isola-
tion with TRIzol only (method B). While Agilent Bioana-
lyzer measurements showed acceptable total RNA quality
profiles for all three methods the RNA degradation plot
analysis might be a good way to indirectly identify poor
quality samples via their global gene expression signatures
on a probe level. The reason that total RNA samples pre-
pared using method B demonstrate poor quality is proba-
bly due to the fact that impurities such as salts or residual
amounts of phenol or ethanol are carried over in the sam-
ple preparation assay and subsequently impair enzymatic
reactions.

Next, an unsupervised hierarchical clustering as well as
unsupervised principal component analyses demon-
strated that samples are grouped first by each patient's rep-
licate method conditions, then by leukemia type, and
finally by leukemia lineage. In fact, the B lineage ALL sam-
ples are all clustered together and separately grouped from
T-ALL and AML. Moreover, inside each lineage-cluster
leukemias with the same diagnostic features – e.g. recur-
rent translocations – are linked to each other. This finding
is the demonstration that the variation in sample prepara-
tion method is a secondary effect, and that the major splits
in the clusters reflect true underlying biological differ-
ences between leukemias.

These findings are then confirmed by a subsequent super-
vised analysis of gene expression data. Considering only
the (n = 1,089) differentially expressed genes between the
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nine distinct leukemia categories that we studied here, all
samples are clearly separated by leukemia lineages and
without being influenced by the total RNA isolation
method. Furthermore, AML with normal karyotype is sep-
arated from the two patient samples with AML with
t(11q23)/MLL demonstrating an intra-lineage distinction
within the AML group. The same separation can be
observed in the B lineage ALL group where samples with
the chromosomal aberrations t(1;19), t(4;11), t(9;22), or
t(12;21) are split into distinct groups. As such, this is also
an independent confirmation of the clustering organiza-
tions as presented in recent gene expression profiling
studies of acute lymphoblastic leukemias [5,25,28,30-
33,36].

Conclusion
The first conclusion we draw from this study is that under-
lying biological characteristics of the pediatric acute leuke-
mia classes are quite significant and largely exceed the
variations between different total RNA sample prepara-
tion protocols. Having shown that at a chosen false dis-
covery rate of 0.01% method A is producing a higher
number of differentially expressed genes as compared to
method B and method C, we would propose that lysis of
the mononuclear cells, followed by lysate homogeniza-
tion (QIAshredder) and total RNA purification (Qiagen)
is the more robust total RNA isolation procedure for gene
expression experiments using microarray technology. The
importance of this new data is further strengthened by the
analysis of the technical replicates. In fact, the gene expres-

Table 1: Patient characteristics, distribution, and total RNA preparation method

Sample Diagnosis Blast cells (%) Gold standard classification Age (m-y) RNA preparation 
method

Microarrays

#1 Pre-pre-B-ALL 95 t(4;11) 6 m A,B,C 3
#2 c-ALL 70 t(9;22) 14 y A,B,C 3
#3 Early-T-ALL 83 negative 16 y A,B,C 3
#4 c-ALL 90 t(12;21) 13 y A,B,C 3
#5 Pre-B-ALL 98 t(1;19) 10 y A,B,C 3
#6 c-ALL 87 hyperdiploid (DI = 1,233) 2 y A,B,C 3
#7 c-ALL 93 negative 16 y A,B,C 3
#8 AML 89 negative* 16 y A,B,C 3
#9 c-ALL/Pro-B 85 t(9;22) 5 y A,B,C 3
#10 Early-T-ALL 94 negative 4 y A,B,C 3
#11 c-ALL 88 t(12;21) 2 y A,B,C 3
#12 prepreB/c-ALL 96 Hyperdiploid (DI = 1,244) 11 y A,B,C 3
#13 c-ALL 95 negative 3 y A,B,C 3
#14 Pre-B-ALL 87 negative 12 y A,B,C 3
#15 c-ALL 94 t(12;21) 8 y A,B,C 3
#16 AML 93 t(9;11) 6 y A,B,C 3
#17 Early-T-ALL 87 negative 9 y A,B,C 3
#18 Early-T-ALL 93 negative 9 y A,B,C 3
#19 c-ALL 93 hyperdiploid (DI = 1,160) 2 y A,B,C 3
#20 prepreB/c-ALL 85 negative 3 y A,B,C 3
#21 mature T-ALL 94 negative 4 y A,B,C 3
#22 Pre-B-ALL 95 negative 7 y A,B,C 3
#23 prepreB/c-ALL 94 negative 4 y A,B,C 3
#24 c-ALL 86 negative 5 y A,B,C 3

TOTAL 72

#25 AML 89 negative** 4 y A,A,A,B,B,B,C,C,C 9
#26 AML 77 t(1;11) 6 m A,A,A,B,B,B,C,C,C 9
#27 prepreB/CALL 92 negative 4 y A,A,A,B,B,B,C,C,C 9

TOTAL (replicates) 27

TOTAL in Study 99

Negative = negative for all gold standard tests regarding recurrent translocations. Age at diagnosis is expressed as months (m) or years (y). Method 
A: QIAshredder homogenization using a biopolymer shredding system in a microcentrifuge spin-column format followed by RNeasy purification; 
Method B: TRIzol RNA isolation. Method C: TRIzol RNA isolation followed by RNeasy purification. Samples #1–24 have been extracted in 
triplicates; Samples #25, #26, and #27 have been extracted in multiple technical replicates (n = 3). (*) Karyotype information: 46, XY; (**) 
Karyotype information: 46, XY der(9p) [3]/46, XY [19].
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sion data obtained with method A show the lowest degree
of variation and are more reproducible, as compared to
the alternative methods we tested for the isolation of total
RNA. Finally, all these evidences, combined with the
standardized microarray analysis protocol that we fol-
lowed for this study let us conclude that the initial
homogenization of the leukemia cell lysate followed by
total RNA purification using spin columns is currently the
optimal protocol available with respect to the robustness
of gene expression data and that this method is practical
for a routine laboratory use. Here we limited our micro-
array study to pediatric leukemia, but certainly these state-
ments could also be applied to similar cohorts of adult
leukemias.

Methods
Patient samples
Between December 2005 and March 2006 samples from
twenty-seven acute pediatric leukemia patients were ana-
lyzed at the time of diagnosis. All patients received a lab-
oratory diagnosis based on white blood cell count,
cytomorphology, cytochemistry, multiparameter immu-
nophenotyping, cytogenetics, fluorescence in situ hybrid-
ization (FISH), and molecular genetics (PCR).
Chromosome aberrations t(1;19)(q23;p13)(E2A-PBX1),
t(4;11)(q21;q23)(MLL-AF4), t(9;22)(q34;q11)(BCR-
ABL) t(12;21)(p13;q22)(TEL-AML1),
t(8;21)(q22;q22)(AML1-ETO), t(15;17)(q22;q21)(PML-
RARA), inv(16)(p13;q22)(CBFB-MYH11), and
t(8;14)(q24;q32) were screened following the BIOMED-1
concert action protocol [37]. Also, DNA index (DI) value
analysis for all samples was performed to distinguish
between patients with hyperdiploid karyotype and nor-
mal ploidy or hypodiploidy as reported by the Pediatric
Oncology Group (POG) and Berlin-Frankfurt-Munster
(BFM) group [38]. Patients with a DI value between 1.16
and 1.6 as detected by flow cytometry were considered
hyperdiploid [38,39]. Based on the laboratory diagnosis,
patients were subsequently risk stratified and enrolled in
the AIEOP LAL-2002 or LAM-2002 protocols. This study
was conducted after obtaining the informed consent from
all patients following the tenets of the Declaration of Hel-
sinki and was approved by the ethics committees of the
participating institutions before the initiation of the
study. All but one sample were drawn from bone marrow
(BM). For one patient, an infant patient (age lower than
one year; patient #26), a peripheral blood (PB) specimen
was processed. Mononuclear cells from patients were iso-
lated using Ficoll-Hypaque (Pharmacia-LKB, Uppsala,
Sweden) density gradient centrifugation at our laboratory.
For three myeloid cases (samples #8, #16, and #26) the
specimens were processed by hemolysis. Both childhood
acute myeloid leukemia (AML) (n = 4) and acute lym-
phoid leukemia (ALL) (n = 23) samples were collected
(Table 1). The AML group included samples with

t(11q23)/MLL rearrangement (n = 2; #16 is t(9;11) and
#26 is t(1;11)) and AML patients with normal karyotype
or other abnormalities (n = 2). The ALL group included
Pro-B-ALL t(4;11) (n = 1), Pro-B-ALL/c-ALL with t(9;22)
(n = 2), T-ALL (n = 5), c-ALL with t(12;21) (n = 3), Pre-B-
ALL with t(1;19) (n = 1), B lineage ALL with hyperdiploid
karyotype (n = 3), and B lineage ALL negative for the
screened recurrent translocations and with a DNA index
value equal to 1.0 (n = 8). The percentage of blast cells
ranged between 70% and 98%.

Study concept
As outlined in the study concept in Figures 1A and 1B 15
× 106 fresh mononuclear cells were collected for each of
the first twenty-four leukemia samples (#1–24). Subse-
quently, total RNA was extracted from aliquots of 5 × 106

cells and 10 × 106 cells following two distinct total RNA
purification method A and method B, respectively (see
"RNA isolation for microarray analysis"). Total RNA
obtained from method B was either used for the subse-
quent microarray analysis without further purification
(method B), or was additionally purified following
method C (see "RNA isolation for microarray analysis").
Microarray analysis was performed on each sample and
each preparation method (Affymetrix HG-U133 Plus 2.0).
Thus, for 24 patient samples a total of 72 microarrays were
analyzed (Figure 1A). In three additional samples (#25–
27) 45 × 106 fresh mononuclear cells each were collected
and divided into nine aliquots of 5 × 106 cells. Again, total
RNA was extracted from each aliquot following one of the
three methods and for each method three technical repli-
cates were performed (A,A,A, B,B,B, C,C,C), resulting in
additional 27 gene expression profiles on Affymetrix HG-
U133 Plus 2.0 microarrays (Figure 1B) [see Additional File
3].

RNA isolation for microarray analysis
Mononuclear cells were processed immediately after or
within 24 hours after the biopsy was obtained. Appear-
ance and fluidity of the samples were monitored before
starting with RNA isolation. Total RNA was isolated using
three different methods. Method A: lysis of the mononu-
clear cells, followed by lysate homogenization using a
biopolymer shredding system in a microcentrifuge spin-
column format (QIAshredder, Qiagen, Hilden, Ger-
many), followed by total RNA purification using selective
binding columns (RNeasy Mini Kit, Qiagen). The cell
lysate homogenization phase reduces viscosity caused by
high-molecular-weight cellular components and cell
debris. Method B: TRIzol RNA isolation (Invitrogen, Karl-
sruhe, Germany). Method C: TRIzol RNA isolation (Invit-
rogen) followed by a purification step (RNeasy Mini Kit,
Qiagen). The RNA purification step previously mentioned
combines the selective binding properties of a silica-based
membrane with the speed of microspin technology. This
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system allows only RNA longer than 200 bases to bind to
the silica membrane, providing an enriching for mRNA
since nucleotides shorter than 200 nucleotides are selec-
tively excluded. In all three methods we followed the pro-
tocols provided by the manufacturers. After extraction,
total RNA was stored at -80°C until used for microarray
analyses. RNA quality was assessed on the Agilent Bioan-
alyzer 2100 using the Agilent RNA 6000 Nano Assay kit
(Agilent Technologies, Waldbronn, Germany). RNA con-
centration was determined using the NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Inc., Wilm-
ington, DE USA). The overall total RNA quality was
assessed by A260/A280 ratio (NanoDrop) and electrophero-
gram (Agilent Bioanalyzer).

Microarray analysis
From each RNA preparation 2.0 μg of total RNA were con-
verted into double-stranded cDNA by reverse transcrip-
tion using a cDNA Synthesis System kit including an
oligo(dT)24 – T7 primer (Roche Applied Science, Man-
nheim, Germany) and the Poly-A control transcripts
(Affymetrix, Santa Clara, CA, USA). The generated cDNA
was purified using the GeneChip Sample Cleanup Mod-
ule (Affymetrix). Then, labeled cRNA was generated using
the Microarray RNA target synthesis kit (Roche Applied
Science) and an in vitro transcription labeling nucleotide
mixture (Affymetrix). The generated cRNA was purified
using the GeneChip Sample Cleanup Module (Affyme-
trix) and quantified using the NanoDrop ND-1000 spec-
trophotometer. In each preparation an amount of 11.0 μg
cRNA were fragmented with 5× Fragmentation Buffer
(Affymetrix) in a final reaction volume of 25 μl. The incu-
bation steps during cDNA synthesis, in vitro transcription
reaction, and target fragmentation were performed using
the Hybex Microarray Incubation System (SciGene, Sun-
nyvale, CA, USA) and Eppendorf ThermoStat plus instru-
ments (Eppendorf, Hamburg, Germany). Hybridization,
washing, staining and scanning protocols, respectively,
were performed on Affymetrix GeneChip instruments
(Hybridization Oven 640, Fluidics Station 450Dx, Scan-
ner GCS3000Dx) as recommended by the manufacturer.

Image data analysis
Microarray image files (.cel data) were generated using
default Affymetrix microarray analysis parameters (GCOS
1.2 software). Subsequently, intensity signals were calcu-
lated based on the non-central trimmed mean of Perfect
Match intensities with Quantile Normalization [27]. For
each gene expression profile a detailed data quality report
has been generated to define the overall quality of each
experiment [see Additional File 2]. The quality parameters
that were monitored besides cRNA total yield and cRNA
A260/A280 ratio included: (i) background noise (Q value),
(ii) percentage of present called probe sets, (iii) scaling
factor, (iv) information about exogenous Bacillus subtilis

control transcripts from the Affymetrix Poly-A control kit
(lys, phe, thr, and dap), and (v) the ratio of intensities of 3'
probes to 5' probes for a housekeeping gene (GAPD).

Statistical analysis
The data pre-processing included the summarization to
generate probe set level signals for each microarray exper-
iment and was performed using the PS or PQN algorithms
as described elsewhere [27]. To analyze the quality and
comparability of gene expression measurements we used
a Quality Control (QC) matrix, density plots of scaled
non-central trimmed mean of perfect match (PM) probe
intensities (PS signal), and an unsupervised hierarchical
clustering algorithm using Ward linkage of quantile nor-
malized signals (PQN). To analyze the consistency of
gene expression data we used a Principal Component
Analysis (PCA) [40]. A subset of genes was selected using
interquartile range (IQR) as filtering criteria and visual-
ized by hierarchical clustering [41]. Data have further
been analyzed using R software [42], Spotfire DecisionSite
to generate the box plots [43], Ingenuity Pathways Analy-
sis to annotate gene lists according to their biological
function [44], and Partek Genomics Suite to generate sig-
nal density curves and PCA plots [45]. The power analysis
was performed using the Bioconductor package "ssize"
[46]. All microarray raw data are available through the
Gene Expression Omnibus database, series accession
number: GSE7757 [47].

Competing interests
This study is part of the MILE Study (Microarray Innova-
tions In LEukemia) program, an ongoing collaborative
effort headed by the European Leukemia Network (ELN)
and sponsored by Roche Molecular Systems, Inc., address-
ing gene expression signatures in acute and chronic leuke-
mias. This study further supports the AmpliChip
Leukemia Test program, a gene expression microarray test
for the subclassification of leukemia. Roche Molecular
Systems, Inc. has business relationships with Qiagen and
is currently validating Qiagen products for the AmpliChip
Leukemia Test.

Authors' contributions
MCDO performed the microarray experiments and wrote
the paper, LT contributed to perform the experiments, AZ,
RL, and WML analyzed the microarray data, GB recorded
clinical data, GK supervised the study and writing of the
manuscript, and AK provided the original concept of the
study, and contributed to writing the paper.
Page 13 of 15
(page number not for citation purposes)



BMC Genomics 2007, 8:188 http://www.biomedcentral.com/1471-2164/8/188
Additional material

Acknowledgements
Supported in part by Fondazione Città della Speranza, CNR, MURST ex 
40% and 60% and Roche Molecular Systems, Inc., Pleasanton, CA, USA. The 
authors would like to thank the European LeukemiaNet gene expression 
profiling working group members Torsten Haferlach, Ken Mills, and 
Amanda Gilkes for helpful comments and critical reading of the manuscript.

References
1. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Bold-

rick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T,
Hudson J Jr., Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC,
Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wil-
son W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM: Dis-
tinct types of diffuse large B-cell lymphoma identified by gene
expression profiling.  Nature 2000, 403:503-511.

2. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd
C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander
ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M:
Classification of human lung carcinomas by mRNA expression
profiling reveals distinct adenocarcinoma subclasses.  Proc Natl
Acad Sci U S A 2001, 98:13790-13795.

3. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher
M, Simon R, Yakhini Z, Ben Dor A, Sampas N, Dougherty E, Wang E,
Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J,
Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D,
Sondak V: Molecular classification of cutaneous malignant
melanoma by gene expression profiling.  Nature 2000,
406:536-540.

4. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z,
Pacyna-Gengelbach M, van de RM, Rosen GD, Perou CM, Whyte RI,
Altman RB, Brown PO, Botstein D, Petersen I: Diversity of gene
expression in adenocarcinoma of the lung.  Proc Natl Acad Sci U S
A 2001, 98:13784-13789.

5. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES:
Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring.  Science 1999,
286:531-537.

6. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin
L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S,
Taylor JM, Iannettoni MD, Orringer MB, Hanash S: Gene-expression

profiles predict survival of patients with lung adenocarcinoma.
Nat Med 2002, 8:816-824.

7. Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Richards
WG, Jaklitsch MT, Sugarbaker DJ, Bueno R: Using gene expression
ratios to predict outcome among patients with mesotheli-
oma.  J Natl Cancer Inst 2003, 95:598-605.

8. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI,
Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM, Hurt
EM, Zhao H, Averett L, Yang L, Wilson WH, Jaffe ES, Simon R, Klausner
RD, Powell J, Duffey PL, Longo DL, Greiner TC, Weisenburger DD,
Sanger WG, Dave BJ, Lynch JC, Vose J, Armitage JO, Montserrat E,
Lopez-Guillermo A, Grogan TM, Miller TP, Leblanc M, Ott G, Kvaloy S,
Delabie J, Holte H, Krajci P, Stokke T, Staudt LM: The use of molec-
ular profiling to predict survival after chemotherapy for dif-
fuse large-B-cell lymphoma.  N Engl J Med 2002, 346:1937-1947.

9. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW,
Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D,
Witteveen A, Glas A, Delahaye L, van  V, Bartelink H, Rodenhuis S, Rut-
gers ET, Friend SH, Bernards R: A gene-expression signature as a
predictor of survival in breast cancer.  N Engl J Med 2002,
347:1999-2009.

10. Guo L, Lobenhofer EK, Wang C, Shippy R, Harris SC, Zhang L, Mei N,
Chen T, Herman D, Goodsaid FM, Hurban P, Phillips KL, Xu J, Deng X,
Sun YA, Tong W, Dragan YP, Shi L: Rat toxicogenomic study
reveals analytical consistency across microarray platforms.
Nat Biotechnol 2006, 24:1162-1169.

11. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM,
Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, Walker SJ, Zhang
L, Hurban P, de Longueville F, Fuscoe JC, Tong W, Shi L, Wolfinger RD:
Performance comparison of one-color and two-color plat-
forms within the Microarray Quality Control (MAQC)
project.  Nat Biotechnol 2006, 24:1140-1150.

12. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins
PJ, de Longueville F, Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC,
Setterquist RA, Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW,
Goodsaid FM, Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri
RK, Scherf U, Thierry-Mieg J, Wang C, Wilson M, Wolber PK, Zhang L,
Amur S, Bao W, Barbacioru CC, Lucas AB, Bertholet V, Boysen C,
Bromley B, Brown D, Brunner A, Canales R, Cao XM, Cebula TA, Chen
JJ, Cheng J, Chu TM, Chudin E, Corson J, Corton JC, Croner LJ, Davies
C, Davison TS, Delenstarr G, Deng X, Dorris D, Eklund AC, Fan XH,
Fang H, Fulmer-Smentek S, Fuscoe JC, Gallagher K, Ge W, Guo L, Guo
X, Hager J, Haje PK, Han J, Han T, Harbottle HC, Harris SC, Hatchwell
E, Hauser CA, Hester S, Hong H, Hurban P, Jackson SA, Ji H, Knight CR,
Kuo WP, Leclerc JE, Levy S, Li QZ, Liu C, Liu Y, Lombardi MJ, Ma Y,
Magnuson SR, Maqsodi B, McDaniel T, Mei N, Myklebost O, Ning B,
Novoradovskaya N, Orr MS, Osborn TW, Papallo A, Patterson TA,
Perkins RG, Peters EH, Peterson R, Philips KL, Pine PS, Pusztai L, Qian
F, Ren H, Rosen M, Rosenzweig BA, Samaha RR, Schena M, Schroth GP,
Shchegrova S, Smith DD, Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z,
Thierry-Mieg D, Thompson KL, Tikhonova I, Turpaz Y, Vallanat B, Van
C, Walker SJ, Wang SJ, Wang Y, Wolfinger R, Wong A, Wu J, Xiao C,
Xie Q, Xu J, Yang W, Zhang L, Zhong S, Zong Y, Slikker W Jr.: The
MicroArray Quality Control (MAQC) project shows inter- and
intraplatform reproducibility of gene expression measure-
ments.  Nat Biotechnol 2006, 24:1151-1161.

13. Shippy R, Fulmer-Smentek S, Jensen RV, Jones WD, Wolber PK, John-
son CD, Pine PS, Boysen C, Guo X, Chudin E, Sun YA, Willey JC, Thi-
erry-Mieg J, Thierry-Mieg D, Setterquist RA, Wilson M, Lucas AB,
Novoradovskaya N, Papallo A, Turpaz Y, Baker SC, Warrington JA, Shi
L, Herman D: Using RNA sample titrations to assess microarray
platform performance and normalization techniques.  Nat Bio-
technol 2006, 24:1123-1131.

14. Tong W, Lucas AB, Shippy R, Fan X, Fang H, Hong H, Orr MS, Chu TM,
Guo X, Collins PJ, Sun YA, Wang SJ, Bao W, Wolfinger RD, Shchegrova
S, Guo L, Warrington JA, Shi L: Evaluation of external RNA con-
trols for the assessment of microarray performance.  Nat Bio-
technol 2006, 24:1132-1139.

15. Dobbin KK, Beer DG, Meyerson M, Yeatman TJ, Gerald WL, Jacobson
JW, Conley B, Buetow KH, Heiskanen M, Simon RM, Minna JD, Girard
L, Misek DE, Taylor JM, Hanash S, Naoki K, Hayes DN, Ladd-Acosta C,
Enkemann SA, Viale A, Giordano TJ: Interlaboratory comparability
study of cancer gene expression analysis using oligonucleotide
microarrays.  Clin Cancer Res 2005, 11:565-572.

16. Kohlmann A, Schoch C, Dugas M, Rauhut S, Weninger F, Schnittger S,
Kern W, Haferlach T: Pattern robustness of diagnostic gene
expression signatures in leukemia.  Genes Chromosomes Cancer
2005, 42:299-307.

17. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Moser K, Ortmann
WA, Espe KJ, Balasubramanian S, Hughes KM, Chan JP, Begovich A,
Chang SY, Gregersen PK, Behrens TW: Expression levels for many
genes in human peripheral blood cells are highly sensitive to
ex vivo incubation.  Genes Immun 2004, 5:347-353.

Additional File 1
Supplementary Data. This file contains supplementary figures with addi-
tional comments explaining details of analysis, results, and interpretation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-188-S1.doc]

Additional File 2
This Excel file contains further details about each total RNA isolation 
method, including cRNA quality and quantity values as well as microar-
ray quality and quantity values for each experiment.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-188-S2.xls]

Additional File 3
This Excel file contains details about each total RNA isolation method and 
leukemia classification details for each CEL file. All microarray raw data 
(*.cel files) are available online through the Gene Expression Omnibus 
database with the series accession number GSE7757.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-188-S3.xls]
Page 14 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-8-188-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-8-188-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-8-188-S3.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10952317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10952317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12697852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12697852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12697852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12075054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12075054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12075054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17061323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17061323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16964227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15609343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15609343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15175644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15175644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15175644


BMC Genomics 2007, 8:188 http://www.biomedcentral.com/1471-2164/8/188
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

18. Breit S, Nees M, Schaefer U, Pfoersich M, Hagemeier C, Muckenthaler
M, Kulozik AE: Impact of pre-analytical handling on bone mar-
row mRNA gene expression.  Br J Haematol 2004, 126:231-243.

19. Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, Zander T,
Schultze JL: Comparison of different isolation techniques prior
gene expression profiling of blood derived cells: impact on
physiological responses, on overall expression and the role of
different cell types.  Pharmacogenomics J 2004, 4:193-207.

20. Feezor RJ, Baker HV, Mindrinos M, Hayden D, Tannahill CL, Brown-
stein BH, Fay A, MacMillan S, Laramie J, Xiao W, Moldawer LL, Cobb
JP, Laudanski K, Miller-Graziano CL, Maier RV, Schoenfeld D, Davis
RW, Tompkins RG: Whole blood and leukocyte RNA isolation
for gene expression analyses.  Physiol Genomics 2004, 19:247-254.

21. Staal FJ, Cario G, Cazzaniga G, Haferlach T, Heuser M, Hofmann WK,
Mills K, Schrappe M, Stanulla M, Wingen LU, van Dongen JJ, Schlegel-
berger B: Consensus guidelines for microarray gene expression
analyses in leukemia from three European leukemia net-
works.  Leukemia 2006, 20:1385-1392.

22. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R,
Dohner H, Pollack JR: Use of gene-expression profiling to identify
prognostic subclasses in adult acute myeloid leukemia.  N Engl
J Med 2004, 350:1605-1616.

23. Haferlach T, Kohlmann A, Schnittger S, Dugas M, Hiddemann W, Kern
W, Schoch C: Global approach to the diagnosis of leukemia
using gene expression profiling.  Blood 2005, 106:1189-1198.

24. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M,
Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M,
Lander ES, Golub TR: Multiclass cancer diagnosis using tumor
gene expression signatures.  Proc Natl Acad Sci U S A 2001,
98:15149-15154.

25. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R,
Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D,
Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L,
Downing JR: Classification, subtype discovery, and prediction of
outcome in pediatric acute lymphoblastic leukemia by gene
expression profiling.  Cancer Cell 2002, 1:133-143.

26. Wilson CL, Miller CJ: Simpleaffy: a BioConductor package for
Affymetrix Quality Control and data analysis.  Bioinformatics
2005, 21:3683-3685.

27. Liu WM, Li R, Sun JZ, Wang J, Tsai J, Wen W, Kohlmann A, Mickey WP:
PQN and DQN: Algorithms for expression microarrays.  J
Theor Biol 2006, 243(2):273-278.

28. Chiaretti S, Li X, Gentleman R, Vitale A, Wang KS, Mandelli F, Foa R,
Ritz J: Gene expression profiles of B-lineage adult acute lym-
phocytic leukemia reveal genetic patterns that identify lineage
derivation and distinct mechanisms of transformation.  Clin
Cancer Res 2005, 11:7209-7219.

29. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC,
Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR,
Look AT: Gene expression signatures define novel oncogenic
pathways in T cell acute lymphoblastic leukemia.  Cancer Cell
2002, 1:75-87.

30. Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W,
Haferlach T: Molecular characterization of acute leukemias by
use of microarray technology.  Genes Chromosomes Cancer 2003,
37:396-405.

31. Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W,
Haferlach T: Pediatric acute lymphoblastic leukemia (ALL)
gene expression signatures classify an independent cohort of
adult ALL patients.  Leukemia 2004, 18:63-71.

32. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Liu
HC, Mahfouz R, Raimondi SC, Lenny N, Patel A, Downing JR: Classifi-
cation of pediatric acute lymphoblastic leukemia by gene
expression profiling.  Blood 2003, 102:2951-2959.

33. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G, Shurtleff SA,
Pounds S, Cheng C, Ma J, Ribeiro RC, Rubnitz JE, Girtman K, Williams
WK, Raimondi SC, Liang DC, Shih LY, Pui CH, Downing JR: Gene
expression profiling of pediatric acute myelogenous leukemia.
Blood 2004, 104:3679-3687.

34. Schoch C, Kohlmann A, Schnittger S, Brors B, Dugas M, Mergenthaler
S, Kern W, Hiddemann W, Eils R, Haferlach T: Acute myeloid leuke-
mias with reciprocal rearrangements can be distinguished by
specific gene expression profiles.  Proc Natl Acad Sci U S A 2002,
99:10008-10013.

35. Ebert BL, Golub TR: Genomic approaches to hematologic malig-
nancies.  Blood 2004, 104:923-932.

36. Kohlmann A, Schoch C, Dugas M, Schnittger S, Hiddemann W, Kern W,
Haferlach T: New insights into MLL gene rearranged acute
leukemias using gene expression profiling: shared pathways,
lineage commitment, and partner genes.  Leukemia 2005,
19:953-964.

37. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G,
Gottardi E, Rambaldi A, Dotti G, Griesinger F, Parreira A, Gameiro P,

Diaz MG, Malec M, Langerak AW, San Miguel JF, Biondi A: Standard-
ized RT-PCR analysis of fusion gene transcripts from chromo-
some aberrations in acute leukemia for detection of minimal
residual disease. Report of the BIOMED-1 Concerted Action:
investigation of minimal residual disease in acute leukemia.
Leukemia 1999, 13:1901-1928.

38. Smith M, Arthur D, Camitta B, Carroll AJ, Crist W, Gaynon P, Gelber
R, Heerema N, Korn EL, Link M, Murphy S, Pui CH, Pullen J, Reamon
G, Sallan SE, Sather H, Shuster J, Simon R, Trigg M, Tubergen D, Uckun
F, Ungerleider R: Uniform approach to risk classification and
treatment assignment for children with acute lymphoblastic
leukemia.  J Clin Oncol 1996, 14:18-24.

39. Harris MB, Shuster JJ, Carroll A, Look AT, Borowitz MJ, Crist WM,
Nitschke R, Pullen J, Steuber CP, Land VJ: Trisomy of leukemic cell
chromosomes 4 and 10 identifies children with B-progenitor
cell acute lymphoblastic leukemia with a very low risk of treat-
ment failure: a Pediatric Oncology Group study.  Blood 1992,
79:3316-3324.

40. Mardia KV, Kent JT, Bibby JM: Multivariate analysis.  London: Aca-
demic Press 1979.

41. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and
display of genome-wide expression patterns.  Proc Natl Acad Sci
U S A 1998, 95:14863-14868.

42. The R Project for Statistical Computing:  [http://www.R-project.org].
43. Spotfire DecisionSite Product Suite, Start Page   [http://

www.spotfire.com/products/decisionsite.cfm]
44. Ingenuity Systems, Start Page   [http://www.ingenuity.com]
45. Partek Incorporated, Start Page   [http://www.partek.com]
46. Dudoit S, Gentleman RC, Quackenbush J: Open source software for

the analysis of microarray data.  Biotechniques 2003, Suppl:45-51.
47. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rud-

nev D, Lash AE, Fujibuchi W, Edgar R: NCBI GEO: mining millions
of expression profiles--database and tools.  Nucleic Acids Res 2005,
33:D562-D566.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15238145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15238145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15037859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15037859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15037859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15548831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15548831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15878973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15878973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16076888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16076888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16889801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16889801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16243790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16243790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16243790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12800151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12800151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14603332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14603332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14603332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12730115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12730115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12730115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15226186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15226186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12105272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12105272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12105272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15155462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15155462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15815718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15815718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15815718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10602411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10602411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8558195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8558195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8558195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1596572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1596572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1596572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.R-project.org
http://www.spotfire.com/products/decisionsite.cfm
http://www.spotfire.com/products/decisionsite.cfm
http://www.ingenuity.com
http://www.partek.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12664684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12664684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608262
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Assessment of data quality
	Comparability of gene expression profiles
	Unsupervised data analysis
	Supervised data analysis
	Reproducibility and precision of different sample preparation methods

	Discussion
	Conclusion
	Methods
	Patient samples
	Study concept
	RNA isolation for microarray analysis
	Microarray analysis
	Image data analysis
	Statistical analysis

	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

