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To my family
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La capacità di ben giudicare e di distinguere il vero dal falso, che è ciò che propriamente
si chiama buon senso o ragione, è naturalmente uguale in tutti gli uomini; cos̀ı che la

diversità delle nostre opinioni non deriva dal fatto che gli uni sono più ragionevoli degli
altri, ma solo dal fatto che percorriamo diverse vie di pensiero, e non prendiamo in

considerazione le stesse cose.

Cartesio Discours de la methode A.T.II, p. 88
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Sommario

Il presente lavoro di tesi è stato finanziato da un borsa erogata dalla Fondazione Cari-
paro sul progetto di ricerca intitolato “The evaluation of customer satisfaction to improve
product and services by new statistical methods of Conjoint Analysis and Design of Exper-
iments”. Il lavoro si è concentrato principalmente su due aspetti pienamente pertinenti
al progetto sopracitato ovvero la costruzione di Orthogonal Arrays (OAs), funzionale alla
Conjoint Analysis, e lo sviluppo di nuove tecniche inferenziali nell’ambito della pianifi-
cazione degli esperimenti. Si è ritenuto pertanto di inserire come titolo della presente
tesi “Innovative approaches for the construction orthogonal arrays and permutation tests
in complex experimental designs” in modo sia da rispecchiare in modo puntuale i con-
tenuti dell’elaborato di tesi sia per evidenziare quali parti del progetto iniziale sono state
maggiormente approfondite. Molti sono i contributi sulle problematiche di esistenza e
costruzione degli OAs, qui si propone un approccio costruttivo basato sui concetti di
counting polynomial functions; dopo un lavoro di formalizzazione dei principali concetti
e nozioni, si procede alla generazione di numerosi OAs considerando diverse numerosità
di livelli e di forza. Particolare attenzione è posta nella costruzione di classi nonisomorfe
di OAs attraverso le quali si propone un metodo per l’analisi statistica di piani multi-
fattoriali a due ed a tre livelli non replicati. Le costruzioni dei disegni nonisomorfi sono
basate sui concetti di algebraic strata, evitando cos̀ı la computazione in campo complesso.
Per quanto concerne lo sviluppo di metodologie inferenziali non parametriche nei disegni
sperimentali, si sono presi in considerazione i disegni Randomized Complete Block (RCB)
ed i disegni Split-plot (SP). Per entrambi i disegni dopo una revisione critica e sistemat-
ica dei metodi inferenziali proposti in letteratura si propongono applicazioni originali dei
test di permutazione. Viene considerato, per i disegni RCB , sia il caso univariato che
multivariato, proponendo soluzioni basate su più fasi di combinazione dei test allo scopo
di ottenere una soluzioe globale ed anche di provveddere ad una metodologia per la cor-
rezzione della molteplicità dei p-value. Sono stati inoltre effettuati studi di validazione dei
test al fine di confrontare il comportamento, in termini di potenza, dei test parametrici
e non parametrici da letteratura con quelli proposti. Viene inoltre effettuata un’appli-
cazione reale del metodo nell’ambito della sperimentazione di nuove possibili fragranze
di un determinato detergente con quella presente attualmente sul mercato. Per i disegni
SP si valutano procedure di permutazione non parametriche basate sulle simmetrie dei
blocchi (SYP) e combinazioni dirette dei test parziali al fine di testare i possibili effetti dei
fattori principali e delle loro interazioni. Tramite uno studio di simulazione si valutano
in potenza e sotto H0 tali test, comparandoli con test noti da letteratura. Sulla base dei
risultati ottenuti, possiamo affermare che i metodi proposti forniscono una valida alterna-
tiva e soluzioni efficienti per problemi di analisi nella pianificazione degli esperimenti in
presenza di non normalità delle componenti d’errore, cosa del resto frequente in studi di
customer satisfaction, ed in presenza di fattori bloccati.
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Abstract

This thesis work has been funded by a Fondazione Cariparo’s scolarship for the research
project entitled on “The evaluation of customer satisfaction to improve product and ser-
vices by new statistical methods of Conjoint Analysis and Design of Experiments”. The
work is principally focused on two aspects of the cited project which are the construction
of Orthogonal Arrays (OAs), useful for Conjoint Analysis, and the development of new
inferential techniques in planning of experiments. We consequently considered to insert
the following title “Innovative approaches for the construction of orthogonal arrays and
permutation tests in complex experimental designs ”in order to give a clear representation
of the contents of the thesis work and to highlight the parts, of the initial project, which
have been deepened. There has been wide contribution on OAs’ existence and construction
issues; in this work we propose a constructive approach based on the concept of counting
polynomial functions; after a formalization of the main concepts and notions, we generate
several OAs with different number of levels and strength. Particular attention is given
to the construction of nonisomorphic classes of OAs, using these designs we propose a
method for the statistical analysis in two-level and three-level unreplicated multifactorial
designs. As for the development of inferential nonparametric methods for the analysis of
data in experimental designs, we take into consideration the Randomized Complete Block
(RCB) and Split-plot (SP) designs. After a critic and systematic revision of the inferential
methods proposed in literature, we propose original applications of the permutation tests.
As for the RCB designs, we took into consideration both the univaried and the multi-
varied case, proposing solutions based on more phases of the combination of the tests in
order to obtain a global solution and to provide a method to adjust for the multiplicity
of the p-value. Furthermore, we made studies for the validation of the adequacy of the
proposed methods and we compared in terms of power the behavior of parametric and
nonparametric tests from the literature with the proposed procedures. We also made an
actual application of the method in the experimentation of new possible fragrances of a
determined detergent with the one currently present on the market. For the SP designs we
evaluated nonparametric permutation procedures based on the symmetries of the blocks
(SYP) and direct combination of the partial tests in order to test the possible effects of
the whole plot factors and their interactions. Through a simulation study we evaluated
such tests in power and under H0, comparing them with known tests from the literature.
Based on the results, we can affirm that the proposed methods provide a valid alternative
and efficient solutions to analysis problems in experiment planning in presence of non-
normality of the error components, which is frequent in customer satisfaction studies and
in presence of blocked factors.

ix





Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Original contributions in the thesis . . . . . . . . . . . . . . . . . . . . . . . 3

2 Orthogonal arrays 7
2.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Nonisomorphic orthogonal arrays . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Orthogonal arrays as fractional factorial designs . . . . . . . . . . . . . . . . 14

3 Generation of orthogonal arrays 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Algebraic description of full factorial and fractional factorial designs . . . . 18
3.3 Construction of orthogonal arrays using counting polynomial functions . . . 23
3.4 Two-level and three-level nonisomorphic orthogonal arrays using strata . . . 27
3.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Unreplicated multifactorial designs 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Background and rationale for permutation tests . . . . . . . . . . . . . . . . 34
4.3 Permutation solution for testing active effects in unreplicated multifactorial

designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Randomized Complete Block designs 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 The set of hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Traditional parametric and nonparametric testing procedures for the RCB

design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Combination-based permutation solution for the RCB design . . . . . . . . 55
5.5 A suitable algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Comparative simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xi



5.7 Multivariate extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.8 Some testing procedures from the literature for the multivariate RCB design 74
5.9 Comparative simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.10 Examples of the permutation methodologies for RCB designs in sensorial

evaluation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.11 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Split-plot designs 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Split-plot designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 An overview of testing procedures for split-plot experiments . . . . . . . . . 87
6.4 A new approach to analyze split-plot designs . . . . . . . . . . . . . . . . . 90

6.4.1 The permutation approach in testing symmetry . . . . . . . . . . . . 94
6.4.2 A synchronized-based permutation solution for testing the sub-plot

main effects and interactions . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References 107

xii



Chapter 1

Introduction

1.1 Overview

The initial objective of this thesis work was to give methodological contributes in permu-
tation inferential techniques for testing active effects in experimental designs. The designs
took into account were the unreplicated (fractional) multifactorial designs, Randomized
Complete Block designs, with particular focus in the case of ordered categorical response
variables, and Split-plot designs. The methodologies developed substantially differ from
the usual permutation techniques, because, in the major part of cases, the underlying
assumptions of the permutation methods are not justified.

When considering unreplicated designs it is not possible to obtain an estimate of the
variance of the errors, therefore the usual inferential techniques, aimed at identifying the
significantly active factors, are unsuitable. In this work we provided a permutation test
for active effects in unreplicated multifactorial designs considering classes of nonisomor-
phic orthogonal arrays (Arboretti, Fontana and Ragazzi (2011)). We proposed a solution
based on extensions of the inequivalent matrices permutation testing procedures (Basso
et al. (2004)) in order to obtain separate permutation tests for the effects in unreplicated
fractional factorial designs. Rather than permuting responses of a single observed de-
sign matrix (or, equivalently, permuting rows of the design matrix keeping the responses
fixed), matrices are exchanged in order to obtain the permutation distribution. In order
to validate the proposed method we performed a Monte Carlo simulation study and we
found out that the permutation tests appear to be a valid solution for testing effects,
in particular when the usual normality assumptions cannot be justified. We showed our
methodologies on three-level unreplicated fractional factorial designs but the approach
suggested is general, it is valid for mixed fractional factorial designs (designs in which fac-
tors can assume different levels’ number) and for testing the interactions between factors
(if mixed nonisomorphic orthogonal arrays of strength greater than three are available!).
The methodologies suggested strictly depend on the number of nonisomorphic orthogonal
arrays available for the experimentation. In order to extend the proposed method when
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there are only a few nonisomorphic orthogonal designs we experimented a modified pro-
cedure. Given a list of k1 nonisomorphic arrays, for each of its members we randomly
generate, by row permutations, a certain number r of isomorphic arrays. Then the hybrid
class made by k = k1 · r arrays replaces the class of nonisomorphic orthogonal arrays and
the steps of the procedure remain the same. Also this procedure has been validate by
Monte Carlo simulation study.

Orthogonal arrays can be considered essentials in all statistic techniques, as for exam-
ple Conjoint Analysis, in which it is needed to use fractional factorial designs assuming
the orthogonality between factors, i.e. all combination of factor levels appear equally of-
ten. The major advantage to use orthogonal arrays is to give the possibility to estimate
low-order interactions between factors, in particular each orthogonal array of strength t
specifies the only fraction of resolution t+1. In this work we generated several orthogonal
arrays using recent algebraic method based on the counting polynomial functions (Fontana
et al. (2000), Pistone and Rogantin (2008)(a)), by these function it is possible to construct
fractions without restrictions on the cardinality of the levels (such as prime or prime pow-
ers) but implies computation in the complex field. In order to avoid this computational
problem we constructed orthogonal arrays using the concepts of algebraic strata. By this
method we provided a full list of nonisomorphic orthogonal arrays of strength two and
three with a given size (Arboretti, Fontana and Ragazzi (2011)).

The assumption of exchangeability of data with respect to groups, or blocks, according
the so-called treatment levels of the experiment, under the null hypothesis is required in
the usual permutation testing procedures (Pesarin (2001)), but this cannot be assumed in
Split-plot designs. Split-plot design may be refer to a common experimental setting where
a particular type of restricted randomization has occurred during a planned experiment.
In this work we presented a new method to perform inference on Split-plot experiments via
combination-based permutation tests (Corain, Ragazzi and Salmaso (2010)). This novel
nonparametric approach has been studied and validated using a Monte Carlo simulation
study where we compared it with the parametric and nonparametric procedures proposed
by literature. Results suggest that in each experimental situation where normality is
hard to justify and especially when errors have heavy-tailed distribution, the proposed
nonparametric procedure can be considered as a valid solution.

It is well known that a best permutation test for all population distributions P does
not generally exist, because the most powerful unbiased permutation test is a function
of the population distribution P which is assumed to be unknown (Pesarin (2001)). In
this work we considered the Randomized Complete Block design in case of an ordered
categorical response variable, which is the typical reference setting in many psychometric
studies and we compared via a Monte Carlo simulation study several combination-based
permutation test statistics (Arboretti, Corain and Ragazzi (2010)). We found out that the
Multi-focus statistic (Pesarin and Salmaso (2010)) using the Fisher’s combining function
appears to be the more powerful solution which we proved also to be better under non
normal errors than traditional parametric and rank-based nonparametric counterparts.
Multivariate extensions of the combination-based test statistics for the comparison of
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several treatments in the multivariate Randomized Complete Block designs are introduced
(Arboretti, Corain and Ragazzi (2011)). Several tests for the multivariate Randomized
Complete Block designs, including MANOVA procedure, are compared with the method
proposed via a Monte Carlo simulation study. The method has also been applied to a
real case study in the field of sensorial testing studies, the results suggest that in each
experimental situation where normality is hard to justify and especially when errors have
heavy-tailed distributions, the proposed nonparametric procedure can be considered as a
valid solution.

1.2 Original contributions in the thesis

The following list concerns the original results developed during the Ph.D. thesis:

• After a work of formalization of the main concepts related to the orthogonal arrays,
we discuss a method of construction based on the counting polynomial functions
(Fontana et al. (2000); Pistone and Rogantin (2008)(a)). Through a number of
recent papers, the original ideas have been developed into a technology based on
symbolic computation software, which we wished to illustrate with reference to orig-
inal works and typical examples. We propose the generation of several orthogonal
arrays using these polynomial functions in order to evaluate the real applicability
of the method purposed. Fractional factorial designs that satisfy a set of conditions
in terms of orthogonality between factors have been described as the zero-set of a
system of polynomial equations whose indeterminate are the complex coefficients of
the counting polynomial functions. We present a list of orthogonal arrays generated
using this method considering multifactorial designs with different number of fac-
tors’ levels and strength with the aim to examine the adequacy and generality of the
method proposed.

• The classes of nonisomorphic orthogonal arrays with a given size and strength have
been investigated. In particular we propose the generation of classes of nonisomor-
phic orthogonal arrays with two and three-levels (Arboretti, Fontana and Ragazzi
(2011)). The generation can be seen as an extension of a recent algebraic approach
based on the concepts of algebraic strata (Fontana and Pistone (2011)). The gen-
eration problem is reduced into finding non-negative integer solutions to a system
of linear equations while avoiding the computation with complex numbers. These
nonisomorphic orthogonal arrays are used for the statistical analysis of unreplicated
experiments.

• We propose a novel permutation solution for testing effects in two-levels and three-
levels multifactorial unreplicated designs (Arboretti, Fontana and Ragazzi (2011)).
This procedure is based on the Inequivalent Matrices Permuation Testing (IMPt)
approach (Basso et al. (2004)). IMPt approach allows us to separately test all effects
by exchanging matrices instead of permuting the vector of responses. The matrices
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implemented are the novel classes of nonisomorphic orthogonal arrays constructed.
In order to validate the IMPt procedures we perform a Monte Carlo simulation
study for both two-level and three-level designs where the innovative procedures
have been compared with the traditional counterpart. A modified IMPt procedure
has been introduced in case of a reduced number of nonisomorphic designs. This
hybrid approach has been validate by a Monte Carlo simulation study.

• We have compared several combination-based permutation tests for testing hypothe-
ses within the framework of Randomized Complete Block design (Arboretti, Corain
and Ragazzi (2010)). The method is based on extensions of the Nonparametric Com-
bination of Dependent Permutation tests (Pesarin (2001)). After a critical revision
of the methods proposed in the literature, we compare such methods and the one
proposed through an exhaustive simulation study in terms of power and under H0.
We refer to a typical psychometric study when using ordered categorical response
variable within the framework of Randomized Complete Block design such as in
the case of sensorial evaluations. We propose the iterated combination procedure:
based on the results of the simulation study we find out that the proposed iterated
combination-based permutation procedure is a very effective way to improve the
power of permutation tests.

• In order to supply a complete study of this method, we also suggest a multivariate
extension of the same (Arboretti, Corain and Ragazzi (2011)). In this case we focus
on the categorical case and, in order to validate the purposed procedures, we perform
a comparative simulation study with parametric and nonparametric competitors.
Results suggest that in each experimental situation where normality of the supposed
underlying continuous model is hard to justify and especially when errors have heavy-
tailed distributions, the proposed nonparametric procedure can be considered as a
valid solution.

• We propose an application of the proposed methods to a real case study: the re-
search and development division of a famous detergent company wants to compare
5 potential fragrances of a certain detergent with the one that is currently being
sold on the market. For this experiment we included 7 panelists that gave a score
through a Likert scale on couple comparisons of the fragrances.

• For Split-plot designs, we proceed by giving a new method to test the possible
effects of the main-plot factors (whole-plot) and their interactions in the permutation
framework (Corain, Ragazzi and Salmaso (2010)). Given the structure of the design,
permutation approach seems not be possible: in this experimental setting it is not
possible to assume the exchangeability of the errors due to one exceeding error
component inside the model. We then thought to arrange partial tests based on the
symmetries of the blocks to then combine them through direct function combination.
Based on the simulation studies these methods seem to be efficient in terms of power
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and competitive when the errors seem to have symmetrical distributions.

• In order to test the effects of the sub-plot factors (split-plot) we proceeded by extend-
ing the method based on the synchronized permutations: according to the simulation
study such methods appear to be a valid method in all those cases where it is not
possible to assume normality of the components of errors and homogeneity of the
variances.





Chapter 2

Orthogonal arrays

2.1 Theoretical background

A problem which often arises in the design of an experiment is that of ascertaining the effect
of quantitative or qualitative alterations in the various components upon some measurable
characteristic of the complete assembly. Consider for example the case of m fertilizers
each of which can be applied at s different levels. To carry out a full factorial experiment
would require sm plot or assemblies to use a more general term applicable to any type of
experiment, agronomic, industrial or otherwise.

Typically in design of experiments, the levels (or symbols) indicate the settings of the
factors or variables whose effects on a response of interest are to be studied. The number
of assemblies, or the number of level or treatment combinations are usually called runs
(or observations) of the experiment. In what follows we refer to the terms factors, levels
and runs of the design.

Full factorial designs involve all possible combinations of factors’ levels so, if there are
a large number of factors, there isn’t even the possibility to obtain a response to each
of the possible level combinations. Any collection of the level combinations does not use
all possible combination is called a Fractional Factorial or simply a Fraction. Among
fractional factorial designs orthogonal arrays (OAs) are of particular interest for their
appreciable statistical properties. Rao (1947) has shown that if the design is an OA of
strength t, then the estimates of main effects and interactions are unaffected by interactions
of order greater than one and less than t − 1, but the estimate of error is enhanced by
their presence. If t is even, we can measure interactions up to order t/2 supposing the
higher order interactions absent. When t is odd we can measure interactions up to order
(t− 1)/2.

Thus an array of appropriate strength must be chosen to handle those interactions
which are deemed important.

Let us consider an experiment which includes m factors such that p1 factors have
s1 levels, p2 factors have s2 levels . . . . . . and pm factors have sm levels. Following the
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definition of Hedayat et al. (1999) we can define an OA as follows:

Definition 1. An OA(N, sp1
1 ·. . .·spm

m , t), is an array of size N×m, where m = p1+. . .+pm

is the total number of factors, in which the first p1 columns have s1 symbols, the next p2

columns have s2 symbols and so on, with the property that in any N × t subarray every
possible t-tuple occurs λ times as a row.

In general we assume that if the index (λ) of the OA is not specified then it is equal
to one. The parameter t represents the strength of the OA. So, for example, the Table
2.1 (Hedayat et al. (1999)) represents an OA of size 12× 11 with entries from S = {0, 1}
where N = 12 is the number of runs, m = 11 is the number of variables (factors), s = 2
is the number of levels (symbols) of each factor and t = 2 is the strength.

Strength equal two means that every 12× 2 subarray of A contains each couple based
on S = {0, 1} exactly the same number of times (in this case three times).

In general the rows of the matrix (N) represent the tests that have to be performed
and the columns (m) represent the different variables while the entries of the array specify
the levels that the variables must assume.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 1 0 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 1 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1
1 0 1 0 0 0 1 1 1 0 1
1 1 0 1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 0 0 0 1 1
1 1 0 1 1 0 1 0 0 0 1

Table 2.1: OA with 11 factors, two levels and strength two.

In Definition 1 we note that the factors can assume different number of levels, usually,
these types of OAs, are known as mixed (or asymmetrical) OAs.

In this work we focus on the construction of fixed (or symmetrical) OAs where all
the factors assume the same number of levels, but in this Section we present the general
theory related to the bound parameters for their existence.

In what follows we refer to the terms fixed or mixed. We can define a fixed OA as
in Definition 1 where s1 = s2 = . . . = sm = s. Let S be a set of s levels (or symbols),
in general it has structure of finite field or a Galois field but it can have also different
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structures (for example the complex field C - see Chapter 3). We refer to the values N ,
m, s and t as the parameters of a given OA.

Hedayat et al. (1999) showed that the following properties of OAs follow immediately
from Definition 1:

1. λ = N
st ;

2. if a matrix A is an OA of strength t then permuting the runs of A results an OA
with the same parameters;

3. if a matrix A is an OA of strength t then permuting the levels of any factor results
an OA with the same parameters;

4. if a matrix A is an orthogonal array of strength t and index λ then it is also an OAs
of strength t′ < t with index λ′ = λst−t′ ;

5. let A be an OA(N, m, s, t) then any N × m′ subarray of A is an OA(N, m′, s, t′)
where t′ = min {m′, t};

6. if A = [
A1

A2
] is an OA(N, m, s, t), and A1 is an OA(N1,m, s, t1) then A2 is an

OA(N2,m, s, t2) where N2 = N −N1 and t2 ≥ min {t, t1} .

In real-life applications, it’s important to use the OA which contains the minimum
number of rows, because there are practical limitations on the number of the runs of the
experiment, and on the other hand for a given number of runs we want the strength to be
as large as possible; in many applications this is set equal to 2, 3 of 4.

The Rao’s inequalities (Rao (1947) and Rao (1973)) explain the upper bounds for
the parameters of an OA, in particular they show what is the minimum number of runs
N necessary for its construction, given the number of factors, levels and strength. The
following Propositions explain the Rao’s inequality for fixed and mixed OAs.

Proposition 2. The parameter of an OA(N,m, s, t) satisfy the following inequalities:

• N ≥ ∑i
k=0

(
n

k

)
(s− 1)k if t = 2i;

• N ≥ ∑i
k=0

(
n

k

)
(s− 1)k +

(
n− 1

i

)
(s− 1)i+1 if t = 2i + 1.

Proposition 3. The parameter of an OA(N, sp1·...·spm
m ,t

1 where s1 ≤ . . . ≤ sm satisfy the
following inequalities:

• N ≥ ∑i
u=0

∑
Iu(m)

(
n1

i1

)
· . . . ·

(
nm

im

)
(s1 − 1)i1 · . . . · (sm − 1)im if t = 2i;
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• N ≥ ∑i
u=0

∑
Iu(m)

(
n1

i1

)
· . . . ·

(
nm

im

)
(s1 − 1)i1 · . . . · (sm − 1)im +

∑
Ii(m)

(
n1

i1

)
· . . . ·

(
nm−1

im−1

)(
nm − 1

im

)
(s1 − 1)i1 · . . . · (sm−1 − 1)im−1 (sm − 1)im+1 if t = 2i + 1;

where Iu(m) = {(i1, . . . , im) : i1 ≥ 0, . . . , im ≥ 0,
∑m

l=1 il = m} with u ≥ 0 and m ≥ 1
integers.

We observe that the number N of runs required for the OA is often prohibitive.
Suppose for example that it is required to find an OA with strength two (t = 2) with
five factors (m = 5) in which two factors have four levels and three factors have three
levels. By the Rao’s inequalities we know that the dimension of the OA will be or
N = lcm(3 × 3, 3 × 4, 4 × 4) = 144 (where lcm notes the lowest common multiple) or
a multiple of 144. This effort only allows to estimate 13 (= 1 + 3× 2 + 2× 3) parameters
in the analysis model (excepted the variance).

So, an important question in the construction of OAs, is what the minimal size of an
array is when all other parameters are fixed.

Among the first lower bounds on the size of an OA for fixed and mixed levels were
those developed by Rao (Rao (1947) and Rao (1973)). Various other bounds have been
developed since then; see Hedayat et al. (1999) and Collombier (1996) for a survey of
different inequalities that are known thus far.

Bierbrauer (1995) found a lower bound on the runs of a fixed OA which he found to be
better than Rao’s for some values of the strength, recently, Diestelkamp (2004) provided
an analogues inequality for OAs having mixed levels.

Here we recall the well known results related to the lower bound of fixed and mixed
OAs which will be used throughout the work.

Bierbrauer (1995) provided the following bound on the size N of a fixed OA.

Theorem 4. Assume that an OA(N,m, s, t) exists, then:

N ≥ sm(1− (s− 1)m
s(t + 1)

). (2.1)

We observe that the inequality (2.1) is much easier to compute than Rao’s bound and
Diestalkamp (2004) provided a list of parameter combinations for OA(N, m, s, t) for which
the bound in (2.1) is sharper than Rao’s; we also observe that the inequality (2.1) leads
to a larger minimum value for N than Rao’s. In particular Diestalkamp (2004) suggested
that (2.1) yields a minimum value for N that is at least as good as Rao’s whenever s > 2
and t < m < t(s+1)

s−1 .

If we consider a mixed OA(N, s1 · . . . · sm, t) we observe that the size N of the array
must be a multiple of si1 · · · sit for any set I = {i1, . . . , it} ⊂ {1, . . . , m}. N is a multiple
of lcm, follows that:

N ≥ lcm {si1 · · · sit : 0 < i1 < . . . < it < m} . (2.2)
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Proposition 5. The dimension N of an OA(N, sp1
1 · . . . · spm

m , 2) is a multiple of the all
products

pi × pj ∀(i, j) ∈ {1, . . . , m}2 : i 6= j. (2.3)

Proof. By definition of OA we know that in the matrix N× t, of order pi×pj , its elements
are all equals and of sum N . This implies that N is necessary a multiple of pi × pj ∀i 6=
j.

The number of runs of an OA of strength t = 3 is given in the following proposition
(due to Collombier (1996)).

Proposition 6. Let us consider m factors with s1, . . . , sm levels, where sm = max ({si}).
The dimension N of an OA of strength t = 3 verifies the following inequality:

N ≥ sm(
m∑

i=1

(si − 1)− (sm − 2)). (2.4)

Proof. See Collombier (1996) pp 72 – 74.

Considering fixed OAs we can rewrite the Proposition 6 in the following way:

Corollary 7. The number of runs of an (fixed) OA of strength t = 3 verifies:

N ≥ s((m− 1)(s− 1) + 1). (2.5)

Proof. Consider s1 = · · · = sm = s, using Proposition 6 we have that:

N ≥ s(
∑m

i=1(si − 1)− (sm − 2)) =
= s(s1 − 1 + . . . + sm − 1)− (sm − 2)) =
= s(m(s− 1)− (s− 2)) = s((m− 1)(s− 1) + 1).

(2.6)

From Corollary 7 follows that the number of factors m of an OA of strength t = 3
satisfies:

m ≤ s2 + N − 2
s2 − s

. (2.7)

The index λ of a fixed orthogonal array is equal to:

λ =
N

st
, (2.8)

so rewriting (2.7) in terms of λ, s and m we have that:

m ≤ [
λs2 − 1
s− 1

] + 1, (2.9)
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where, with the notation [x], we intend the integer part of a real x.
For the OAs of strength t = 4 the number of the runs is N = λs4 with λ integer, in

particular:

N ≥ 1 + m(s− 1) +
m(m− 1)

2
(s− 1)2, (2.10)

this implies that:

m ≤ [
1

2(s− 1)
((s− 3) + ((s− 3)2 + 8(N − 1))1/2)]. (2.11)

We observe that the lower bounds for the number of runs can be considered as a
function in terms of m, s and t denoted by f(m, s, t) and it is not completely determine
of the maximal number of factors m in any OA, noted by g(N, s, t).

The relation between these bounds can be explained as follows:

f(m, s, t) = min {N : g(N, s, t) ≥ m} , (2.12)

g(N, s, t) ≤ max {m : f(m, s, t) ≤ N} . (2.13)

The generalization of the Rao’s bound for mixed OAs can be found in Diestelkamp
(2004) and in Brouwer et al. (2006).

Theorem 8. Brouwer et al. (2006). Let m ≥ t ≥ 1 and assume an OA(N, s1 · . . . · sm, t)
exists.

• if t is even, then:

N ≥
t/2∑

j=0

∑

|I|=j

∏

i∈I

(si − 1), (2.14)

• if t is odd, then:

N ≥ 1 +
(t−1)/2∑

j=1

∑

|I|=j

∏

(

si − 1) + max
j


(sj − 1)

∑

|I|= t−1
2

,j /∈I

∏

i∈I

(si − 1)


 , (2.15)

where I = {i1, . . . , it} ⊂ {1, . . . , m}.
For a complete overview on the methods available for the construction of OAs we

remind to Hedayat et al. (1999) and Collombier (1996); in this work we propose the
construction of OAs (Chapter 3) based on a recent algebraic approach based on the poly-
nomial counting functions (Fontana et al. (2000), Pistone and Rogantin (2008)(a)) in
accordance with the previous Propositions and Theorems in order to quantify the para-
meters of the OA. In particular, in our constructions, we fixe the number of factors, levels
and strength and we find the minimum number of runs according to (2.1) and Theorem
8, supposed that the researched OA exists.
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2.2 Nonisomorphic orthogonal arrays

Two arrays are said to be combinatorially isomorphic if one array can be obtained by
permuting rows, columns, or factor levels of the other array (see e.g. Hedayat et al.
(1999)).

It would be highly desirable to have an enumeration method obtaining, for given
parameters, a minimum complete set of nonisomorphic OAs. Such a set has a single
representative for each isomorphism class.

If the factors are all qualitative, one would then have to choose the best array according
to some optimality criterion, assign the factors to the columns such that prior knowledge
on the factor’s activities is incorporated as good as is feasible, and to assign the factor
levels to the symbols in a column at random. For qualitative factors at more than two
levels, one would have to consider additionally the non-equivalent ways to assign factor
levels to the symbols, because the levels now are ordered.

When more than one OA are available for the factorial experiment, the experiment can
use a suitable criterion to choose among the candidate arrays. The most commonly used
criteria are those of resolution and aberration, along with their generalization (Hedayat
et al. (1999)).

An essential element in establishing a minimum complete set of OAs is in proving that
all of the arrays are indeed nonisomorphic to each other.

Definition 9. Two orthogonal arrays are said isomorphic if one can be obtained from the
other by a sequence of permutations of the columns, the rows and the levels of each factor.

In Arboretti, Fontana and Ragazzi (2011) has been explored the use of nonisomorphic
OAs for nonparametric testing of factorial effects. In Chapter 4 of this thesis we report a
part of it.

A special class of OAs are those with parameters OA(N, m, 2, t) which define orthog-
onal factorial designs with N runs, m two-level columns and strength t ≥ 2. These OAs
have received great interest in the last decade (see Cheng (1995)) and many authors have
contributed to the investigation and identification of the full list of nonisomorphic OAs
with the same parameters.

Evangelaras et al. (2007)(a) contributed to this problem by providing the full list of
nonisomorphic orthogonal arrays when 12 ≤ N ≤ 24 and 3 ≤ m ≤ 6 when 28 ≤ N ≤ 40
and 3 ≤ m ≤ 5 as well as those with 44 ≤ N ≤ 64 and 3 ≤ m ≤ 4. However, orthogonal
arrays with three levels have not been sufficiently explored in this manner. Evangelaras et
al. (2007)(b) define a class of nonisomorphic three level orthogonal arrays with 18 runs and
3 ≤ m ≤ 7. Recently Schoen et al. (2010) provided an algorithm to enumerate a minimum
complete set of combinatorially nonisomorphic orthogonal arrays of given strength t, run-
size N and level-numbers of the factors. This allowed the generation of an extremely rich
library of orthogonal arrays.

The main use of nonisomorphic OAs consists into identify a simple method for the
enumeration of OAs of a given size, as all arrays can easily be generated once all non-
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isomorphic arrays are available. Despite the importance of the (very difficult) problem of
the OAs’ enumeration (see for example Stufken and Tang (2007)), in this work we suggest
to use the nonisomorphic OAs for the statistical analysis of unreplicated experiments, i.e.
there is a single observation for level combination. The statistical analysis of unreplicated
designs presents a challenge. This is because we can estimate all the effects but there are
no degree of freedom left to estimate the error variance.

In this context many solutions are proposed in the literature, but they are only for two-
level fractional factorial design; in Chapter 4 we present a novel solution for the analysis
of unreplicated factorial designs within the framework of the permutation tests using the
nonisomorphic OAs.

The key idea is to construct nonisomorphic orthogonal arrays (Chapter 3) in case
of two-level and three-level multifactorial experiments using algebraic strata, then find
the approximate permutation distribution of the test statistic (adopted for testing active
effects) exchanging nonisomorphic arrays instead of permuting the vector of responses
(Basso et al. (2004)). This approach usually extend the usual concept of permutation.

The concept of strata for the generation of fractional factorial design was introduced
in Fontana and Pistone (2010); in this way the generation problem is reduced into finding
non-negative integer solutions to a system of linear equations. The method seems to be
a valid alternative because it’s possible to take in consideration any number of factors’
levels. In the cited paper a list of nonisomorphic OAs is presented.

2.3 Orthogonal arrays as fractional factorial designs

The importance of the OAs in statistical analysis regards the possibility to estimate low-
order interactions between factors. Suppose for example an experiment which includes m
factors, noted by A1, . . . , Am with s levels, the level combinations can be represented by
the m-tuples (α1, . . . , αm) where, using the integer coding of factor levels, 0 ≤ αj ≤ s− 1,
with j = 1, . . . , m.

The set L of the all level combination is:

L = {α = (α1, . . . , αm) : αj = 0, . . . , nj − 1, j = 1, . . . ,m} ; (2.16)

and M = #L = sm is the number of elements of L or cardinality of L.
The related statistical model includes the main and interaction effects of order l such

that l ≤ sm. Considering N experimental units which are made available for the exper-
iment, and each unit will be assigned to a particular level of combination α. By rα we
denote the number of experimental units which are assigned to level combination α.

The statistical model can be represented in the following way:

Yαk = µα + εαk with k = 1, . . . , rα, α ∈ L, (2.17)

where Yαk denotes the random variable corresponding to the response of the k-th unit that
is assigned to level combination α, µα denotes a nonrandom population mean for possible
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observations with level combination α, and εαk denotes a nonobservable random deviation
from the population mean µα for the k-th unit that receives α.

We assume that the εαk’s (which are also referred to as random errors), have mean 0 and
constant variance σ2 and we will henceforth also assume that the Yαk’s are uncorrelated.

We observe that if systematic differences among the experimental units are known or
suspected, it might be useful to group the units into blocks of similar units. This implies,
in general, a modification of the commonly used method of randomization for assigning
units to level combinations and this would also result in an additional term in model 2.17
to account for possible differences between blocks. We discuss the blocking in Chapters
5 and 6 referring to Randomized Complete Block (RCB) and Split-Plot (SP) designs, we
focus on the inference procedures for testing effects in these designs and we propose new
nonparametric statistical methods for testing (active) effects (Arboretti, Corain, Ragazzi
(2010) and Corain, Ragazzi, Salmaso (2010)) within the framework of the nonparametric
combination of permutation tests (Pesarin (2001)).

The model (2.17) can be represented in matrix form:

Y = Xµ + ε, (2.18)

where X is an N ×M matrix of zeros and ones whose entries are obtained as follows: we
label the columns by the level combinations, in the standard order (precedence of one level
combination over another is decided on a lexicographic basis with the primary criterion
being the level of the last factor, with ties in the level of the last factor being decided
by the next-to-last factor and so on) and the rows by the subscripts of the corresponding
entries in Y ; the entry in position (αk, α′) is equal to one if α = α′.

If there are a large number of factors, the value of M can be enormous, so the use of
fractional factorial designs becomes essential.

Definition 10. (Pistone et al. (1996)) Let us consider a design that involves m factors,
noted by A1, . . . , Am, so that any factor Aj has sj levels. The full factorial design can be
defined as the cartesian product of factors:

D = A1 × . . .×Am. (2.19)

Definition 11. A fraction F is a multiset of D (F could be any subset of D without any
restriction on its run size).

In Chapter 3 we discuss the algebraic description of the full factorial and fractional
factorial designs and we propose a method based on particular polynomial functions for
the construction of the orthogonal arrays.

In general we can define a fraction of resolution R in the following way:

Definition 12. A fraction factorial design is of resolution R if all factorial effects up to
order b(R− 1)/2c are estimable, under the assumption that all factorial effects of order
b(R + 1)/2c and higher are zero, with the additional convention that if R is odd then the
general mean is also estimable and if R is even then the general mean is not of interest
for estimation.
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The notion of resolution and strength are related. The relation between orthogonal
arrays and fractional factorial designs can be resumed in the following Proposition:

Proposition 13. Any Orthogonal Array specifies a (fractional) factorial designs and the
orthogonal arrays of strength t are the only fractions of resolution t + 1.

The fractions give the possibility of confounding the estimation of effects of single
terms with the effects of interactions terms, the following list concern the properties of
the fractions of resolution R = t + 1:

• Fractions of resolution III (t = 2): no main effect is aliased with the other main
effects. Main effects are aliased with interaction effects of order two and interaction
effects are aliased between each others;

• Fractions of resolution IV (t = 3): no main effect is aliased with the other main
effects. The interaction effects of order two are aliased between each others;

• Fractions of resolution V (t = 4): no main effect is aliased with the other main
effects or with interaction effects of order two. The interaction effects of order two
are aliased between interaction effects of order three.

We can affirm that the importance of the OAs cannot be overstated. They are directly
useful as fractional factorial in factorial experiments arising from scientific and technolog-
ical investigations. They are intimately related to many other combinatorial objects such
as Hadamard matrices, orthogonal Latin squares and error-correcting codes.

The most fundamental questions concerning OAs are when they exist and how to
construct them if they do exist. Indeed, these are the two main themes of Hedayat et al.
(1999). A comprehensive discussion on the use of orthogonal arrays as fractional factorial
designs is given by Wu and Hamada (2000).

In this work we contribute to the construction of OAs using the counting polynomial
functions (Fontana et al. (2000) and Pistone and Rogantin (2008)(a)) and we use recent
algebraic approach (based on the concept of algebraic strata (Fontana and Pistone (2010))
in order to construct nonisomorphic OAs for a given size and strength.

We introduce also a ‘novel’ application of the nonisomorphic OAs: we use these arrays
in order to give a novel permutation approach for statistical inference in unreplicated
fractional factorial designs (Arboretti, Fontana and Ragazzi (2011)).



Chapter 3

Generation of orthogonal arrays

3.1 Introduction

In this Chapter we review the basic facts about the algebraic study of full factorial and
fractional factorial designs and level coding. A general reference to the main concepts of
algebra and methods of algebraic statistics for designing experiments we use is Kreuzer and
Robbiano (2000). Though a number of recent papers, the original ideas have developed
into a technology based on symbolic computation software, which we wish to illustrate
with reference to original works and typical examples.

We suggest two algebraic methods for the construction of OAs: the first is based on the
counting polynomial functions (we mainly refer to Fontana et al. (2000) and Pistone and
Rogantin (2008)(a)) and the second is based on the concepts of algebraic strata (Fontana
and Pistone (2010)).

Using counting polynomial functions we present the generation of several fixed orthog-
onal arrays (Section 3.3) for a given size N , considering different values of strength t and
of levels’ factors. This approach holds for a wide class of designs: regular fractional facto-
rial, mixed-level fractional factorials, Sudoku designs, fixed and mixed orthogonal arrays.
The main advantage of the proposed method is the possibility to consider different num-
bers of factors without restrictions (such as prime or prime power) on the number of the
levels. Using this approach the fractional factorial design consists in the set of solutions
of counting polynomial functions that satisfy a set of orthogonality conditions, implying
computation with complex numbers. In order to avoid this computational problem we use
a second method based on the strata: in this way the problem of finding fractional facto-
rial designs that satisfy a set of orthogonality conditions becomes the problem of finding
non-negative integer solutions to a system of linear equations. Using algebraic strata we
generate the class of all the OAs of a given size and strength, then, from this class we
extract all the nonisomorphic OAs.

The present Chapter is organized as follows. Section 3.2 is devoted to the formalization
of the algebraic descriptions of full factorial and fractional factorial designs with focus on
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the level coding. In Section 3.3 we present the generation of several fixed OAs using
counting polynomial functions while in Section 3.4 we present the formalization of the
algebraic method based on the strata utilized for the generation of the nonisomorphic OAs
(Arboretti, Fontana and Ragazzi (2011)). Finally, Section is dedicated to conclusions and
final remarks.

3.2 Algebraic description of full factorial and fractional fac-
torial designs

Let us consider an experiment which includes m factors, A1, . . . , Am, where each factor Aj

has sj levels for j = 1, . . . , m. The full factorial design D can be defined as the algebraic
variety:

D = {xj | dj(xj) = 0 ∀j = 1, . . . , m} , (3.1)

where d1(x1), . . . , dm(xm) are the univariate polynomials in the polynomial ring on the field
k in m variables containing Q noted by k[x1, . . . , xm] and xj , i = 1, . . . , sj ; j = 1, . . . , m
are the solutions of each equation dj(xj) which are all distinct and they belong to an
extension K of the field k.

As each equation contains one single indeterminate, the solution set of the system is
the Cartesian product of each set of solutions (Definition 10, Chapter 2). The ideal of D
is the ideal generated by the polynomials dj given by the set of all the polynomials which
vanishes on D. We refer to this ideal as the ideal of the full factorial design, noted by
I(D).

Each polynomial f ∈ I(D) is of the form f =
∑m

j=1 hjdj where hj ∈ k[x1, . . . , xm],
j = 1, . . . , m.

The code of factor levels, in general, has made with numbers (especially when the
levels are ordered), classical examples of level coding are:

1. Integer coding (a)
The levels takes values in the additive group Zsj : 0, 1, . . . , sj − 1 then

dj(x) = x(x− 1)(x− 2) · . . . · (x− (sj − 1)), (3.2)

in this case k = K = Q.

2. Integer coding (b)
The levels lij with i = 1, . . . , sj and j = 1, . . . ,m take values in the following way:

lij = (2i− sj − 1)/2 if sj odd,

lij = 2i− sj − 1 if sj even.

So for example in a 3m factorial design we have that:
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dj(x) = x(x2 − 1), (3.3)

and k = K = Q.

3. Complex coding
If the levels are the sjth roots of the unity then:

dj(x) = xsj − 1, (3.4)

and k = Q. K is an extension of Q containing the field Q[x]/I(D) (as for example
C).

Using the first coding we define the class of Regular Fractions (Fontana et al. (2000))
when sj = s and s is a prime. Regular fractions are clearly defined and have been widely
studied. Such regular fractions are characterized by their simple confounding structure
and defining relations. Wu and Hamada (2000) call a design regular if any two factorial
effects either estimated independently or are completely confounded.

The general setting where factors assume more than two levels it requires precise
specification of the factorial effects under consideration. However the definitions for regular
fractions for the case of mixed-level factorial designs have only recently appeared in the
literature (Pistone and Rogantin (2008) (a)).

We observe that the study of regular fractions is connected with the study of OAs, in
fact the Theorem 8.2.2 of Dey and Mukerjee (1999) states that each regular fraction is an
OA of a strength that is related to its solution. We observe that Dey and Mukerjee (1999)
restricted the attention only for fixed fraction with a number of levels equal to prime
power. Van De Ven and Bucchianico (2009) extended the definition of regular fraction for
mixed fractions and for number of level not equal to a prime power.

The second coding is the result of the orthogonalization of the linear term with respect
to the constant term. Fontana et al. (2000), Ye (2003) and Tang and Deng (1999) use the
coding −1 and +1 for binary factors in the multiplicative group isomorphic to Z2.

The complex code of factors’ levels was introduced for the first time in Bayley (1983).
Pistone and Rogantin (2008)(a) discussed the complex code of factors’ levels. Here, we
provide the methodology adopted only when sj = s and refer to the cited paper for the
general theory.

The s levels of a factor are the complex solutions of the equation ζs = 1:

ω
(s)
h = exp (i

2π

s
k), k = 0, . . . , s− 1. (3.5)

We observe that the complex roots of units are all distinct (this is because if we consider
the complex polynomial f(ζ) = ζs − 1 for s ≥ 2 we have that the derivative polynomial
f
′
(ζ) = sζs−1 has only one root that is zero, this implies that f(ζ) and f

′
(ζ) don’t have

common roots hence all the roots are distinct) and
(
ω

(s)
1

)k
= ω

(s)
k .
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We denote such a factor with s levels by Ωs =
{

ω
(s)
0 , . . . , ω

(s)
s−1

}
where Ωs denotes the

multiplicative group consisting of the sth complex roots of units; the full factorial design
in complex code will be:

D = Ωs1 × . . .× Ωsm . (3.6)

The full factorial design L in integer coding (Definition 10, Chapter 2) and the full
factorial D are in turn finite Abelian groups under the operations of elementwise addition
and multiplication respectively. The following Proposition asserts the isomorphic relations
between the groups Zs and Ωs.

Proposition 14. A function φ such that:

φ : Zs ↔ Ωs

k ↔ ωk,
(3.7)

is a group isomorphism of the additive group of Zs on the multiplicative group Ωs.

We observe that φ is an isomorphism between cyclic groups of the same order s.
Using the isomorphism (3.7) the set of the all level combination L (2.16) is both the full
factorial design with integer coding and the exponent set of the complex coded design D
and also any element of L is both a treatment combination in the integer coding and a
multi-exponent of an interaction term.

Example 15. Let us consider an experiment which includes three factors with two levels.
The full factorial design using the integer coding is:

L = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} ,

using the complex coding the full factorial design is the group:
D = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1), (−1, 1, 1), (−1, 1,−1), (−1,−1, 1), (−1,−1,−1)} .

Example 16. Consider an 2341 factorial design, the full factorial in integer coding (Table
3.1) has 32 runs coded by the element in the set L = Z2 × Z2 × Z2 × Z4 :
Using the complex code of the factors’ levels (Table 3.2), the runs are coded by the element

in the set D = Ω2 × Ω2 × Ω2 × Ω4 where Ω2 =
{

ω
(2)
0 , ω

(2)
1

}
= {1,−1} and

Ω4 =
{

ω
(4)
0 , ω

(4)
1 , ω

(4)
2 , ω

(4)
3

}
= {1, i(= i sen π/2),−1(= cosπ),−i(= i sen 3/2π)}. So the

elements of the group D (Table 3.2) represent the runs of the experiment.

Using the complex code of factors’ levels the full factorial design D coincides with the
set of solutions of the polynomial equations:

fj(ζj) = ζs
j − 1 = 0, j = 1, . . . , m; (3.8)
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A1 A2 A3 A4

0 0 0 0
0 0 0 1
0 0 0 2
0 0 0 3
0 0 1 0
0 0 1 1
0 0 1 2
0 0 1 3
...

...
...

...
1 1 1 3

Table 3.1: A 2341 full factorial design in integer coding.

A1 A2 A3 A4

1 1 1 1
1 1 1 i
1 1 1 -1
1 1 1 −i
1 1 -1 1
1 1 -1 i
1 1 -1 -1
1 1 -1 −i
...

...
...

...
-1 -1 -1 −i

Table 3.2: A 2341 full factorial design in complex coding.

where ζj is a point of the full factorial design in complex code. Such a design allows the
identification of all polynomial responses of the form:

∑

α∈L

θαXα, (3.9)

with Xα = Xα1
1 . . . Xαm

m θα ∈ C.
In this way we can consider a complex response f as a function defined on D with

values in C and considered as the restriction to D of a complex polynomial.
A factor Xj (or simple term) is defined as:

Xj : D 3 (ζ1, . . . , ζm) 7−→ ζi, (3.10)
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the interaction term Xα1
1 × . . .×Xαm

m is the function:

Xα : D 3 (ζ1, . . . , ζm) 7−→ ζα1
1 . . . ζαm

m . (3.11)

The function Xα is a response called monomial or interaction term, and we say that
Xα has order of interaction equal to k if k factors are involved (if the m-tuple α has k
non-null entries).

The set of all monomial responses in the model (3.9) is noted by:

Est(D) = {Xα : α ∈ L} , (3.12)

and it is an orthonormal basis of the complex responses on the design D.
If f is a response defined on D then its mean value is:

ED(f) =
1

#D
∑

ζ∈D
f(ζ). (3.13)

Definition 17. The set C(D) of the all complex responses is a complex Hilbert space with
the Hermitian product f · g = ED(fg).

C(D) =

{∑

α∈L

θαXα : θα ∈ C
}

, (3.14)

where g represents the conjugate of the response g:

g(ζ) =
∑

α∈L

θαXα(ζ) =
∑

α∈L

θ[−α]X
α(ζ). (3.15)

Pistone and Rogantin (2008)(a) showed that the coefficients of each response f are
uniquely defined by:

θα = ED(fXα). (3.16)

We can describe a fractional factorial design by its Counting Function, or if it is a
single replicate fraction, by its Indicator Function (introduced by Fontana et al. (1997))
(we refer to them as counting polynomial functions).

Definition 18. The Indicator Function F of a fraction F is a response defined on D such
that:

F (ζ) = 1 if ζ ∈ F and F (ζ) = 0 if ζ ∈ (D \ F). (3.17)

Using the theory of Gröbner basis and algebraic geometry (Kreuzer and Robbiano
(2000)), Fontana el al. (2000) show that each indicator function has a unique polynomial
representation:

F (ζ) =
∑

α∈L

bαXα(ζ) ζ ∈ D bα ∈ C, (3.18)

where bα are the coefficients of the representation of F on D.
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Definition 19. The Counting Function R of a fraction F with replicates is a response
defined on D such that for each ζ ∈ D, R(ζ) equals the number of appearances of ζ in the
fraction. The coefficients of the representation of R on D are denoted by cα.

R(ζ) =
∑

α∈L

cαXα(ζ) ζ ∈ D. (3.19)

A fraction is fully described by its indicator or counting function. The design with
replicates associated to a counting function can be considered a multi-subset F of the
design D, or an array with repeated rows. If R is a polynomial function then R is a
counting function of a fraction with replicates up to r if and only if R(R−1) . . . (R−r) = 0
on D.

A function F is an indicator function if and only if F 2 − F = 0, and F − 1 = 0 is a
generating equation of the fraction F . The indicator function and the counting function
are real valued so bα = b[−α] and cα = c[−α]. The coefficients bα and cα are:

1
#D

∑

ζ∈F
Xα(ζ), (3.20)

in particular b0 and c0 are the ratio between the number of points of the fraction and those
of the full design.

A response f is centered on a fraction if the mean value of f on the fraction F is zero,
where the mean value of a fraction f on the fraction F is defined as:

EF (f) =
1

#F
∑

ζ∈F
f(ζ). (3.21)

We say that two responses f and g are orthogonal if the mean value of fg on the
fraction is zero. For orthogonal here we refer to vector orthogonality and not to the
factor orthogonality, but for the choice of the complex coding the two orthogonalities are
essentially equivalent (for more detail we refer to Pistone and Rogantin (2008)(a)).

3.3 Construction of orthogonal arrays using counting poly-
nomial functions

In this Section we present the OAs in relation to the counting polynomial functions. The
aim of our present discussion is to give the theoretical supports for the generation of
OAs based on the counting polynomial models. The basic idea is that a fraction can
algebraically described using its counting polynomial function. This device allows a full
generalization of the mixed and fixed orthogonal arrays. The relation between OAs and
indicator polynomial functions has already been introduced in Fontana et al. (2000),
Pistone and Rogantin (2008)(a), in this Section we propose the generation of orthogonal
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arrays using extensively symbolic algebra software, especially Mathematica. This one and
other similar software systems can perform exact computations on computable number
field.

Let us consider now I a non-empty set of {1, . . . , m} and J its complement set then
D = DI ×DJ where DI is the full factorial design over I and DJ is the full factorial design
over J . If F is a fraction of D then FI ×FJ will be its projections.

1. A fraction F fully projects on the I-factors, if the projection FI is a full factorial
design where each point is replicate the same number s of times.

2. A complex code fraction F is a mixed orthogonal array of strength t if it fully projects
on any I-factors with #I = t.

Consider now the counting function R of the fraction F . The follow proposition charac-
terizes the counting function of an OA of strength t.

Proposition 20. A fraction F is an orthogonal array of strength t if and only if all the
coefficients of its counting function up to order t are zero.

Here we focus on the orthogonal arrays without replicates, i.e there is only one obser-
vation for any rows of the design matrix. We can describe an orthogonal array without
replicates with its indicator polynomial function. We remember that if F is the indicator
function of a fraction F , bα are the coefficients of the representation of F on D and F can
be represented as:

F (ζ) =
∑

α∈L

bαXα(ζ) ζ ∈ D, bα ∈ C. (3.22)

The following Proposition summarize theoretical results inherent to the coefficients of
the counting polynomial functions formally presented in Pistone and Rogantin (2008)(a).

Proposition 21. The coefficients bα and cα of the indicator function F and the counting
function R are:

bα = cα =
1

#D
∑

ζ∈F
Xα(ζ), (3.23)

so b0 and c0 are the ratio between the number of points of the fraction and those of the
design. In a fraction without replicates the coefficients of F are:

bα =
∑

β∈L

bβb[α−β]. (3.24)

Proof. We proof (3.23).
∑

ζ∈F
Xα(ζ)

∑

ζ∈D
RXα(ζ) =

∑

ζ∈D

∑

β∈L

cβXβ(ζ)Xα(ζ)
∑

ζ∈D
cα = #D. (3.25)
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The proof of (3.24) follows from F = F 2:
∑
α

bαXα =
∑

β

bβXβ
∑

γ

bγXγ =
∑
α

∑

[β+γ]=α

bβbγXα =
∑
α

∑

β

bβb[α−β]X
α. (3.26)

Considering for example a full factorial design including three factors with two level,
an orthogonal array of strength t = 2 and N = 4 runs is the matrix: where the s levels

A1 A2 A3

1 1 1
1 -1 -1
-1 1 -1
-1 -1 1

Table 3.3: An orthogonal array of strength two

are coded with the two roots of the unit. In this simple case the monomial responses are
1, X1, X2, X3, X1X2, X1X3, X2X3 X1X2X3 and L (the exponent set) is:
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

If we consider a fraction F given by the points of the orthogonal array described in
Table 3.3, all monomial responses on F and their values on the points are in Table 3.4:

ζ 1 X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3

(1, 1, 1) 1 1 1 1 1 1 1 1
(1,−1,−1) 1 1 -1 -1 -1 -1 1 1
(−1, 1,−1) 1 -1 1 -1 -1 1 -1 1
(−1,−1, 1) 1 -1 -1 1 1 -1 -1 1

Table 3.4: Example of an orthogonal array

The counting function associated to the orthogonal array in Table 3.3 has the coeffi-
cients all equal zero up to order two and it is equal to:

R =
1
4
(1 + X1X2X3).

In this work we used counting polynomial functions in order to construct fixed or-
thogonal arrays, according the lower bound for the OA’s size explained in the previous
Chapter.
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A simple algorithm to generate orthogonal arrays can be summarize in the following
steps:

1. Compute the lower bound N according to (8).

2. Given the levels {0, 1, . . . , s− 1} and the number of factors m, compute the exponent
set L. This exponent set has size (n,m).

3. For i = 1 to N , we map b to any row of L.

4. For i = 2 to n, we write the system of equations on bα in accordance with (3.24):
bi =

∑
j 6=i∈L bib[j−i]. We label any equation by g[i] with i = 0, . . . , n− 1.

5. Put b0 = N
n ;

6. Put the orthogonality conditions: bi = 0 for any i of order up to t, i 6= (0, . . . , 0);

7. Put the polynomial equation equal to zero.

8. Sample a solution among the set of solutions.

Step 2. concerns the computation of the exponent set that is the full factorial design
in integer coding. We observe that not all symbolic softwares provide a specific instruction
to generate all possible combination of elements from a list. In Mathematica step 1. and
2. can be easily done using the following function:

L = Tuples[b[0,1,2,3,...,s-1],m];

The elements of b[0,1,2,3,...,s-1] are treated as distinct, so that the function
Tuples for a list of length s gives output of length sm. As first remark we highlight
the problem of the information overload, in fact the dimension of L is often prohibitive
in case of a large number of factors and levels. The other steps of the algorithm can
easily implement in Mathematica (and in all symbolic software) with particular attention
to Steps 8., it attempts to solve a set of polynomial equations with the orthogonality
conditions as expressed in 6. In this case we suggest to use the following Mathematica
instruction:

Solve[{g[0]==0,g[1]==0,...,g[n-1]==0,b[0,...,0]==N/n},
{b[0,...,0],...,b[s-1,...,s-1]}];

The function Solve[eqns,vars] attempts to solve the set of equations eqns (in
our case g[0]==0,...,g[n-1]==0,b[0,...,0]==0) for the variables vars (in our case
b[0,...,0],...,b[s-1,...,s-1]); in this way we find the set of all solutions of the
polynomial equations implying computational time overload. So we suggest to use the
following function:
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FindInstance[g[0]==0 && g[1]==0 && ...&& g[n-1]==0 && b[0,...,0]==N/n,
{b[0,...,0],...,b[s-1,...,s-1]}];

Using FindInstance[eqns,vars] we find a solution instance of a system of equa-
tions. The following list concerns the orthogonal arrays constructed using the counting
polynomial functions.

• Orthogonal Arrays of the form OA(N, sm, 2) with s = 2, 3 and 4

– OA(4, 3, 2, 2)

– OA(8, 7, 2, 2)

– OA(9, 4, 3, 2)

– OA(16, 5, 4, 2)

• Orthogonal Arrays of the form OA(N, sm, 3) with s = 2 and 3

– OA(8, 4, 2, 3)

– OA(16, 8, 2, 3)

– OA(54, 5, 3, 3)

3.4 Two-level and three-level nonisomorphic orthogonal ar-
rays using strata

In this Section we propose the generation of nonisomorphic two-level and three-level or-
thogonal arrays using a recent algebraic method based on strata.

We mainly refer to Fontana and Pistone (2010). In that paper the general case of
mixed level fractional factorial designs with no restriction on the number of levels of each
factor is analysed. In the next Sections we will work with orthogonal arrays with s = 2 or
s = 3 levels, so, for this reason, we only describe the methodology for fractional factorial
designs where all the factors have the same number s of levels and s is a prime number.

Let us consider an experiment which includes m factors with s level, where any fac-
tor Aj , j = 1, . . . , m is coded with the s-th roots of the unity, so that Aj ≡ Ωs =
{ω0, . . . , ωs−1}, ωk = exp(

√−12π
s k), k = 0, . . . , s− 1. The full factorial design D is given

by the cartesian product Ωs × . . .× Ωs.
A fraction F can be defined as a multiset of D. In Section 3.3 polynomial counting

functions are used to represent multiplicity functions of orthogonal fractional factorial
designs. Given a fraction F the counting function R of F can be represented as a complex
polynomial defined over D; for each ζ ≡ (ζ1, . . . , ζm) ∈ D, R(ζ) coincides with the number
of appearances of a point ζ in the fraction (Definition 19).
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We now express the coefficients cα (Equation 3.30) using strata. The indicator function
of all the points ζ of D is defined as:

1ζ : D 3 τ 7−→
{

1 ζ = τ
0 ζ 6= τ

(3.27)

In this way the counting function can be written as:

R =
∑

ζ∈D
γζ1ζ , (3.28)

where
γζ ≡ R(ζ) ∈ {0, 1, . . . , n, . . .} . (3.29)

The coefficients of the counting function cα = 1
#D

∑
ζ∈F Xα(ζ) are related to the γζ

by:

cα =
1

#D
∑

ζ∈D
γζXα(ζ). (3.30)

The following propositions (Pistone and Rogantin (2008)(a)) regard two properties
which hold for the full factorial design. We present them for the particular case in which
all the factors have the same number s of levels and s is prime.

Proposition 22. Let Xr
j be a simple term. Over D, the term Xr

j

• will be constantly equal to 1, if r = 0;

• will take all the values of Ωs = {ω0, . . . , ωs−1} equally often, if r ≥ 1.

Proposition 23. Let Xα an interaction term, Xα = Xα1
1 . . . Xαm

m . Over D, the term Xα

• will be constantly equal to 1, if α = 0 ≡ (0, . . . , 0);

• will take all the values of Ωs = {ω0, . . . , ωs−1} equally often if α 6= 0.

Now we can define the strata which are associated to simple or interaction terms.

Definition 24. Let us consider a simple or interaction term Xα, α ∈ L = Zs × . . . ×
Zs, α 6= 0. The full factorial design D is partitioned into the following strata:

Dα
h =

{
ζ ∈ D : Xα(ζ) = ωh

}
, (3.31)

where ωh ∈ Ωs according to the Propositions 22 and 23.
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The number of points nα,h of the fraction F that are in the stratum Dα
h is:

nα,h =
∑

ζ∈Dα
h

γζ , h = 0, . . . , s− 1. (3.32)

Let us consider a fraction F of the full factorial design D with counting function
R =

∑
α∈L cαXα. From Equation (3.30), we can write the coefficients cα, α 6= 0, in terms

of nα,h, h = 0, . . . , s− 1:

cα =
1

#D
∑

ζ∈D
γζXα(ζ) =

1
#D

s−1∑

h=0

ωh

∑

ζ∈Dα
h

γζ =
1

#D
s−1∑

h=0

nα,hωh. (3.33)

We also observe that c0,...,0 is equal to the ratio between the number of points of F and
the number of points of D, #F

s . Pistone and Rogantin (2008)(a) showed that a fraction
is an orthogonal array of strength t if and only if all the coefficients cα of the polynomial
counting function R up to order t are zero:

cα = 0 ∀α ∈ C, (3.34)

where C = {α ∈ L : 0 < ‖α‖ ≤ t} and ‖α‖ is the number of non null elements of α. Propo-
sition 6 in Fontana et al. (2010) obtained conditions on nα,h that make cα = 0 for the
counting function of the fraction F .

For the case that we are considering, i.e. all the factors have the same number s of
levels and s is prime, this Proposition asserts that cα = 0 if, and only if, nα,0 = nα,1 =
. . . = nα,s−1. It follows that, using strata, it is possible to express the condition cα = 0 as:

∑

ζ∈Dα
h

γζ = λα, h = 0, . . . , s− 1, (3.35)

where λα is a constant that, in general, does not depend on h.
It is easy to verify that, in this case, λα, being equal to #F

s , does not depend on α
either. Then we denote λα simply by λ. If we vary α ∈ C we can obtain a homogeneous
system of linear equations:

ÃỸ = 0, (3.36)

where Ã = [A,−1], Ỹ = (Y, λ), A is the (#C × sm) matrix whose rows contain the values
of the indicator function of the strata, Y is the sm column vector whose entries are the
values of the counting function over D, λ will be equal to #F

s and 1 is the sm column
vector of 1.

It is now straightforward to verify that the union of two orthogonal arrays, F1 ∈
OA(n1, m, s, t) with counting function Y1 and F2 ∈ OA(n2,m, s, t) with counting function
Y2, is an orthogonal array F1 ∪ F2 ∈ OA(n1 + n2,m, s, t) with counting function Y1 + Y2.
Indeed Ã(Ỹ1 + Y2) = Ã(Ỹ1) + Ã(Ỹ2) = 0.
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Given a homogenous linear system ÃỸ = 0 where the unknowns Ỹ are positive integers,
the Hilbert Basis (Schrijver (1986)) is a minimal set of generators of all the positive integer
vectors Ỹ that are solutions of ÃỸ = 0.

In this way any counting function Y of an orthogonal array F ∈ OA(n,m, s, t) is a
linear combination of the generators with positive or null integer coefficients. Using 4ti2
to compute the Hilbert Basis, Fontana and Pistone (2010), considered the following cases:

• OA(n, 5, 2, 2); the Hilbert Basis contains the counting functions of 26, 142 orthogonal
arrays. They can be classified by the number of points:

number of points 8 12 16 20 24 28 32 36 Total
number of OAs 60 224 162 960 7,680 8,384 5,760 2,912 26,142

• OA(n, 3, 3, 2); the Hilbert Basis contains the counting functions of 66 orthogonal
arrays, 12 have 9 points, all different, and 54 have 18 points, one replicated, i.e. the
support size is equal to 17.

Let us consider the first case, OA(n, 5, 2, 2). Let us suppose that we want to generate
all the orthogonal arrays with 24 runs. We have to take:

• the 7, 680 elements of the Hilbert Basis that correspond to orthogonal arrays of size
24;

• all the counting functions that are the sum of the elements of the Hilbert Basis and
have a total number of points equal to 24. This can be done:

– adding 3 elements, each one with 8 points; we obtain 32, 620 different orthogonal
arrays;

– adding 2 elements, each one with 12 points; we obtain 22, 044 different orthog-
onal arrays;

– adding 2 elements, one with 8 points and the other with 16 points; we obtain
7, 800 different orthogonal arrays;

In total we get 7, 680 + 32, 620 + 22, 044 + 7, 800 = 70, 144 OAs. If we only consider
the different ones, we obtain 55, 284 orthogonal arrays. From this set we extract a list of
nonisomorphic OAs. We implement an algorithm based on the one presented in Evan-
gelaras et al. (2006). It should be noted that representing an orthogonal array using
its counting function simplifies the algorithm because counting functions are invariant for
row permutations. We obtain 63 nonisomorphic OAs (Arboretti, Fontana and Ragazzi
(2011)).

We adopt the same approach for OA(n, 4, 3, 3). The Hilbert Basis contains 131, 892 dif-
ferent OAs. If we consider all the OAs that contain 54 points and that are nonisomorphic
this number is reduced to 7 (Arboretti, Fontana and Ragazzi (2011)).
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3.5 Final remarks

In this Chapter we explored the algebraic methods for describe full factorial and fractional
factorial designs.

The method proposed (based on the counting polynomial functions) appears to be a
valid tool for the construction of OAs, the major advantage is that there are no restriction
to the number of levels of the factors and so both fixed and mixed OAs can be considered
under the same framework.

Using indicator functions we can also provide the generation of OAs when there is only
one observation for any row of the matrix, in this work we focus on the generation of un-
replicated OAs because in many experimental situations, in particular in a nonparametric
framework, these designs appear very often.

We observe also that the problem which occurs in the generation of OAs is the infor-
mation overload, so fact when there is a great number of factor and levels the computation
of the exponent set is often prohibitive.

In any case the method, using the complex code of factor levels, gives the possibility
to find OAs with strengths greater then two, with different number of factors and levels.
The problem to construct OAs with strength greater than two and with a great number
of factors and levels is still an open problem.

We also use a new methodology, based on algebraic strata, to generate the class of all
the orthogonal arrays of given size and strength. From this class we extract all the non-
isomorphic orthogonal arrays. The method is based on finding positive integer solutions
of linear system of equations avoiding computations with complex numbers. We focus
on the generation of nonisomorphic orthogonal arrays but the proposed approach can be
applied to all fractional factorial designs, including mixed level, and without restriction
on the number of levels of each factor.





Chapter 4

Unreplicated multifactorial designs

4.1 Introduction

The aim of this Chapter is to present a novel nonparametric approach for testing active
effects in unreplicated fractional factorial designs through nonisomorphic OAs (Arboretti,
Fontana and Ragazzi (2011)). The suggested method is based on extensions of the in-
equivalent matrices permutation (IMP) testing procedures (Basso et al. (2004)) and it
provides separate permutation tests for effects in two-level and three-level unreplicated
multifactorial designs. The key idea is to obtain the permutation distributions exchanging
matrices, which are elements of the class composed of nonisomorphic OAs of a given size
and strength available for the experiment, instead of permuting responses of a single ob-
served design matrix. This extend the usual approach to permutation techniques. For a
detailed discussion of the general theory of the nonparametric permutation testing proce-
dures we refer to Pesarin (2001), for the aim of our present discussion we only review the
basic concepts and notations of permutation tests within the framework of experimental
designs (Section 4.2).

Analysis of unreplicated factorial and fractional factorial designs has been an exten-
sively researched subject. To avoid misunderstanding it should be pointed out that our
approach can be adopted not only for unreplicated designs but also when some replications
are available.

We show our methodology on OAs with 2 or 3 levels but it can be used on the wider
class of orthogonal fractional factorial designs, including mixed level designs. Using the
classes of nonisomorphic two-level and three-level OAs generated using strata (Chapter 3,
Section 3.4) we provide permutation tests for active effects in both two-level and three-level
unreplicated multifactorial designs.

There are many numerical methods for analyzing unreplicated factorial experiments.
Hamada and Balakrishnan (1994) compared a large number of methods for orthogonal two-
level designs using an extensive simulation study. Of the direct methods they compared,
most performed similarly with respect to power. They recommended two methods based
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on ease of calculation. One of these two methods was developed by Lenth (1989).
Another two-stage method developed by Loh (1992) had a familiar graphical repre-

sentation based on the normal probability plot. Although this method was not included
in the extensive simulation study conducted by Balakrishnan and Hamada (1994), Loh
(1992) indicated that it was more powerful than Lenth’s method.

Within a permutation framework several contributions are developed for the analysis
of unreplicated two-level factorial and fractional factorial designs. Pesarin (2001) provides
permutation tests for two-level fractional factorial designs using the concepts of realigning
observations and paired permutations. The method provides exact separate tests but it is
only for the two-level designs and for the m main effects.

Basso et al. (2004) suggest using the IMP testing procedures for the analysis of unrepli-
cated two-level designs. The method obtains the permutation distributions by exchanging
nonisomorphic OAs instead of permuting responses of a single observed array. In that
paper a simulation study is performed in order to compare the IMP test with Lenth’s and
the parametric F test, showing a better performance of the IMP test with respect to both
other tests in the case of non normal error distributions.

We observe that all these methods are for the analysis of two-level multifactorial un-
replicated experiments.

In Section 4.3 we present a generalization of the IMP testing procedures for testing
effects in three-level unreplicated multifactorial experiments . In the Simulation Study
Section (Section 4.4) we show the IMP test for both two-level and three-level designs
using classes composed by:

• 63 nonisomorphic OAs with parameters N = 24, m = 5, s = t = 2 generated using
strata (Section 3.4, Chapter 3);

• 7 nonisomorphic OAs with parameters N = 54, m = 4, s = t = 3 generated using
strata (Section 3.4, Chapter 3);

• 711 nonisomorphic OAs with parameters N = 27, m = 4, s = 3 and t = 2 (Schoen
et al (2010)).

4.2 Background and rationale for permutation tests

The first descriptions of permutation tests for linear statistical models (including analysis
of variance and regression) can be traced back to the early half of this century in the work
of Fisher (1935). Such tests are computationally intensive, however, and the use of these
tests as opposed to the traditional normal-theory tests did not receive much attention
in the natural and behavioral sciences until much later, with the emergence of widely
accessible computer power (Edgington (1995)).

There is general agreement concerning an appropriate method of permutation for exact
tests of hypotheses in one-way analysis of variance (ANOVA) or simple linear regression



4.2 Background and rationale for permutation tests 35

(or, more simply, tests for the relationship between two variables, e.g., Pesarin (2001)).
This is not the case, however, for tests of individual factors in the context of multiple linear
regression or multifactorial designs. A clear description of the permutation methods for
testing effects within the framework of experimental designs is given in Pesarin (2001). It
is possible to assume, in general, that the observed data set Y is usually obtained by an
experiment performed n times on a population variable and it is generally partitioned into
groups (or blocks) according to the treatment levels of the experiment.

Pesarin (2001) describes and shows the statistical properties of the permutation tests
(such as: exactness, unbiasedness, similarity, consistency and invariance) when the con-
ceptual notion of the exchangeability among the units under H0 is assumed to be valid.
We observe that the assumption of exchangeability under H0 is equivalent to the assump-
tion of independent and identically distributed (IID) random errors. We observe that
the assumption of the exchangeability among units is typical referred to the concept of
exchangeability of data with respect to groups or blocks (restricted permutation approach
- Pesarin (2001)). The following Proposition formalizes the concept of exchangeability.

Proposition 25. A n× 1 random vector Y has an exchangeable distribution if and only
if any permutation of Y has the same distribution.

In this way the variance matrix Σ of Y∗ = PπY, where Pπ is a permutation matrix,
must be the same as that of Y. So we can say that:

PπΣP T
π = Σ, (4.1)

for any matrix Pπ ∈ Pe, the set of n× n permutation matrices.
We also observe that if we intend to make inferences from our sample to a wider

population, then an added assumption is necessary, namely, any effect of treatments on
the observed units is the same as the effect of treatments on the set of units in a wider
specified population. Such an assumption is weaker than the assumption that we actually
have a random sample from the population.

In this way we do not need to assume what kind of population distribution our partic-
ular errors are obtained from (normal or otherwise), only that whatever that population
is, the errors associated with the units we have are IID. Note that this means that a
test by permutation does not avoid the assumption of homogeneity of error variances (the
observation units must be exchangeable) under the null hypothesis.

Let us consider two points Y∗ and Y′ of the permutation sample space Ξ (which is
the set of all the point Y∗ such that the likelihood ratio fn

P (Y)/fn
P (Y∗) = ρ(Y,Y∗) is

not dependent on the density fn
P for whatever continous distribution P which belongs to

a nonparametric family of distribution P) then, in the null hypothesis H0, the conditional
probability of a generic point Y∗ is given by:

Pr(Y∗ = Y′ | Ξ) =
#[Y∗ = Y′, Y∗ ∈ Ξ]

#[Y∗ ∈ Ξ]
, (4.2)
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which is P -independent (invariance properties). Pesarin (2001) shows that this probability,
if there are no ties in the data set and if permutations correspond to permutation of the
arguments, is equal to 1

n! .
It’s well known that the data set Y is always a set of sufficient statistics in H0 for

whatever distribution. In a permutation framework we assume that the data set partitioned
into groups (or blocks) is now the set of sufficient statistics. If we consider Y1 and Y2

two separate and independent data set with sample size n1 and n2 respectively then as
the likelihood associated with the pooled data set is fn

P (Y) = fn1
P1

(Y1) · fn2
P2

(Y2) from the
sufficiency principle it follows that the data set partitioned into groups (Y1,Y2) is the set
of sufficient statistic. This implies that no datum from Y1 can be exchanged with any
other from Y2 because under the alternative the permutations are permitted only within
groups.

It is a common misconception that a permutation test has no assumptions. However,
exchangeability must either be assumed or it must be ensured by virtue of an a priori
random allocation of units in an experiment.

Considering these conceptual notions it is possible to consider permutational ap-
proaches in experimental planning: Pesarin (2001) provides separate exact permutation
tests for replicated factorial and fractional factorial designs, based on the concepts of
synchronized permutations and for unreplicated two-level factorial designs (based on the
concepts of realigning observations and paired permutations).

In unreplicated factorial designs a restricted permutation approach (in which the ex-
changeability of the units respect to the treatment levels holds in H0) seems not to be
possible, this is because the experiment is performed only one time and this implies the
impossibility to find the permutation distributions obtained by permuting the units among
the treatment levels of the response variable.

So in this context the key condition of exchangeability of observations doesn’t hold.
In order to give a permutation solution for testing effects in unreplicated multifactorial
designs we need to look for approximate solutions based on the residuals, in particular
in Section 4.3 we provide an extension of the IMP procedures for testing active effects in
three-level multifactorial designs, which is essentially based on permutation of residuals.

Commenges (2003) shows that when the exchangeability doesn’t hold one may try to
find a transformation which achieves approximate exchangeability then an appropriate
permutation test can be done. In the cited paper it is shown that if we consider a statistic
T = φ(Y) it may be possible to find V such that Ỹ = V (Y) is exchangeable and to write
T = φ̃(Ỹ). In other cases Commenges (2003) restricts that Ỹ has an exchangeable variance
matrix (second moment exchangeability) and shows the privileged role of residuals.

Let us consider for example the usual linear model in a 2m unreplicated factorial
designs:

Y = Xβ + ε, (4.3)

where Y is a vector of responses, X is the design matrix, β = [β0, . . . , βm]T is a vector of
unknown parameters and ε is a vector of errors which are assumed to be uncorrelated with



4.3 Permutation solution for testing active effects in unreplicated
multifactorial designs 37

the others and with same common variance σ2. We observe that the Yi, for i = 1, . . . , n,
do not have the same prediction. Assume (for the moment) that the parameters of the
model are known and let us consider affine transformations gi = ai + Yi + bi. So we have
that:

E(aiYi + bi) = λ for some λ, (4.4)

hence
bi = λ− aiE(Yi) so that gi(Yi) = ai[Yi − E(Yi)] + λ. (4.5)

This is a linear form of residuals plus a constant; for linear or quadratic forms, the
tests do not depend on λ so that if we consider affine transformations we are led to
ordinary residuals. In this way we can consider solutions based on residuals for testing
active effects in unreplicated multifactorial designs which, being affine transformations
(Commenges (2003)), preserve the first and second-moment exchangeability.

4.3 Permutation solution for testing active effects in un-
replicated multifactorial designs

We will now discuss an extension of the IMP solution (Basso et al. (2004)) for testing the
effects in unreplicated three-level factorial designs (Arboretti, Corain and Ragazzi (2011)).
The IMP testing procedures allow us to separately test all the effects by exchanging ma-
trices instead of permuting the vector of responses. Without loss of generality, we mainly
refer to experimental designs when there are m factors, each at three levels and when only
the significance of the main effects of the factors is being tested. The generalisation to
mixed level fractional factorial designs and to interactions testing is straightforward.

The main effects of factors A1, . . . , Am can be expressed through the parameters
β1, . . . , β2m; indeed for each factor we have two parameters that, in the case of quan-
titative factors, can be related to the linear and to the quadratic component. We denote
by βi and βi+m the parameters that represent the main effect of factor Ai, i = 1, . . . , m.

When only the main effects are under analysis, the design matrix X corresponding
to a fractional factorial design F with m factors, each with 3 levels, and N runs can be
defined as:

X = [I MD], (4.6)

where I is the N × 1 column vector whose entries are all equal to 1 and that represent the
general mean contribution, MD is a N × 2 ·m matrix whose columns, when the factors
are quantitative, represent the linear and quadratic effects of the m factors.

The usual linear model (fixed effects) is:

Y = Xβ + ε, (4.7)

where Y is a vector of responses, X is the design matrix defined in (4.6), β = [β0, . . . , β2m]T

is a vector of unknown parameters and ε is a vector of errors. As in Basso et al. (2004)
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the errors are assumed to be uncorrelated with other errors, with zero means and equal
variances.

When the information matrix XTX is of full rank, the only OLS (ordinary least square)
estimate of parameter β is given by:

b̂ = (XTX)−1XTY = [̂b0, . . . , b̂2m] (4.8)

where b̂0 is the mean of observed responses and b̂i, i = 1, . . . , 2m are the contrasts esti-
mating the effects. In order to obtain uncorrelated estimators of β we represent linear
and quadratic effects using orthogonal polynomials as reported in Table 4.1. In the case
of qualitative factors they will simply represent orthogonal contrasts.

For two level designs we simply take MD ≡ D, being ω0 = 1 and ω1 = −1. We refer

Level Linear Quadratic
ω0 -1 -1
ω1 0 2
ω2 1 -1

Table 4.1: Values of the orthogonal polynomials for three levels.

to a design matrix built using the values given in Table 4.1 as an unnormalized design
matrix.

Usually the experimenter is interested in separately testing all the parameters. There
are 2m parameters and consequently 2m null separate sub-hypotheses of interest:

H0βi : {βi = 0} , H1βi : {βi 6= 0} , (4.9)

irrespective of whether the remaining H0βj
are true or not, i, j = 1, . . . , 2m; i 6= j.

Once the experiment has been performed according to a fraction F , and assuming that
k nonisomorphic OAs are available, the IMP testing procedure can be summarized in the
following steps:

1. obtain the estimates in decreasing order
∣∣∣̂bobs

(1)

∣∣∣ ≥
∣∣∣̂bobs

(2)

∣∣∣ ≥ . . . ≥
∣∣∣̂bobs

(2m)

∣∣∣, where obs
stands for observed ;

2. put Ỹ = Y −∑
j 6=s b̂(j)X(j), where b̂(j) represents the estimate of the jth ordered

observed effect different from the one considered and X(j) are the ordered columns of
the design matrix X from which the effect of the corresponding factor was estimated
(for further details refer to Basso et al., 2004);

3. for q = 2, . . . , k obtain the estimates b̂q
1, b̂

q
2, . . . , b̂

q
2m from Ỹ, using X(q), the design

matrix corresponding to the q-th nonisomorphic OA;

4. put b̂q
1 = maxj

{∣∣∣̂bq
(j)

∣∣∣
}

;
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5. calculate the p-value for b̂obs
(s) : p(s) =

#[bbq
(1)
≥
���bbobs

(s)

���]
k ;

6. repeat steps 2., 3., 4. and 5. for s = 1, . . . , 2m.

In the present work we apply the IMP testing procedures for testing the main effects
using the class composed of 63 nonisomorphic OA(24, 5, 2, 2) (generated as described in
Section 3.4, Chapter 3) and the class of 711 nonisomorphic OA(27, 4, 3, 2) (Schoen et al.
(2010)).

In order to extend the proposed method to when there are only a few nonisomorphic
designs, like the 7 nonisomorphic OA(54, 4, 3, 3), we experiment a modified IMP procedure.
Given a list of k1 nonisomorphic arrays, for each of its members we randomly generate, by
row permutations, a certain number r of isomorphic arrays. Then the hybrid class made
by k = k1 ·r arrays replaces the class of nonisomorphic OAs and the steps of the algorithm
remain the same.

4.4 Simulation study

In this Section we report a simulation study performed in order:

• to validate the IMP testing procedures on two-level and three-level factorial designs;
we consider

– OA(24, 5, 2, 2), linear effects;

– OA(27, 4, 3, 2), linear and quadratic effects.

• to experiment the modified IMP testing; we consider

– OA(54, 4, 3, 3), linear and quadratic effects.

The focus of the analysis is on the power of IMP testing procedures and on the be-
haviour of the tests under the null hypotheses. We compare the IMP testing with the
standard parametric F test.

The simulation program generates 1, 000 independent experiments considering two
different distributions for the error terms ε: the standardized normal distribution N(0, 1),
as often occurs in the literature, and the Cauchy distribution Ca(0, 1), to get an idea of
the robustness of the test when errors have heavy tails.

To assess the power of the test, the simulation setting proposed in (Basso et al. (2004))
is as reported in the following Table 4.2:

In the simulation study, we use normalized design matrices, i.e. design matrices where
each column is obtained dividing the corresponding column of the unnormalized matrix
by the square root of its norm. For the sake of comparison with (Basso et al. (2004)) we
multiply the suggested values of Table 4.2 by the square root of the norms of the columns
of the unnormalized design matrix.
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OA(24, 5, 2, 2)
Distribution β1 β2 β3 β4 β5

Normal 1 3
4

1
2 0 0

Cauchy 2 3
2 1 0 0

Table 4.2: Values of active effects as in (Basso et al. (2004))

We observe that, using this approach for OAs with three levels, the parameters related
to the quadratic components are higher than those referring to the linear part. This allows
us to explore the behaviour of the IMP testing procedure for many different values of the
alternative.

The following Table 4.3 reports the absolute values of the effects that we used in our
study.

Distribution β1 β2 β3 β4 β5 β6 β7 β8

Normal
√

24 3
4

√
24 1

2

√
24 0 0

Cauchy 2
√

24 3
2

√
24

√
24 0 0

Values of active effects in the OA(24, 5, 2, 2) study
Normal

√
18 3

4

√
18 1

2

√
18 0

√
54 3

4

√
54 1

2

√
54 0

Cauchy 2
√

18 3
2

√
18

√
18 0 2

√
54 3

2

√
54

√
54 0

Values of active effects in the OA(27, 4, 3, 2) study
Normal

√
36 3

4

√
36 1

2

√
36 0

√
108 3

4

√
108 1

2

√
108 0

Cauchy 2
√

36 3
2

√
36

√
36 0 2

√
108 3

2

√
108

√
108 0

Values of active effects in the OA(54, 4, 3, 3) study

Table 4.3: Values of active effects in the simulation study

The significance levels which can actually be achieved have steps equal to 1/k where
k is the number of nonisomorphic OAs.

Tables 4.4, 4.5 and 4.6 report the results of the simulation study performed on the
OA(24, 5, 2, 2) arrays. Table 4.4 reports the behaviour of the tests under H0 while Table
4.5 and 4.6 report the rejection rates of the IMP test under the alternative as defined in
Table 4.3.

We observe that our results are very similar to those presented in (Basso et al., 2004);
it is worth noting that:

1. as the significance levels increase, the absolute value of the gap between the observed
probability of type I error and the desired significance level decreases and for values
of α larger than around 20% the test looks conservative;

2. the power of the IMP test is close to that of the F test when errors are normally
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distributed and is higher than that of the F test when the errors follow a Cauchy
distribution.

Normal errors Cauchy errors

α β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

0.0159 0.07 0.069 0.031 0.028 0.042 0.044 0.051 0.029 0.017 0.019
0.0317 0.07 0.069 0.031 0.028 0.042 0.044 0.051 0.029 0.017 0.019
0.0476 0.088 0.085 0.039 0.034 0.057 0.061 0.062 0.039 0.026 0.036
0.0635 0.112 0.113 0.058 0.055 0.084 0.096 0.09 0.054 0.043 0.061
0.0794 0.123 0.125 0.063 0.061 0.103 0.106 0.098 0.062 0.049 0.071
0.0952 0.123 0.125 0.063 0.061 0.103 0.106 0.098 0.062 0.049 0.071
0.1111 0.138 0.13 0.072 0.065 0.108 0.115 0.105 0.073 0.057 0.084
0.127 0.156 0.146 0.086 0.086 0.139 0.139 0.127 0.09 0.071 0.095
0.1429 0.167 0.154 0.092 0.089 0.149 0.146 0.141 0.098 0.078 0.102
0.1587 0.167 0.154 0.092 0.089 0.149 0.146 0.141 0.098 0.078 0.102
0.1746 0.179 0.164 0.1 0.096 0.163 0.155 0.156 0.105 0.083 0.117
0.1905 0.195 0.18 0.118 0.104 0.189 0.181 0.179 0.116 0.09 0.135
0.2063 0.195 0.18 0.118 0.104 0.189 0.181 0.179 0.116 0.09 0.135
0.2222 0.202 0.193 0.125 0.109 0.201 0.191 0.189 0.12 0.093 0.146
0.2381 0.218 0.208 0.141 0.126 0.234 0.201 0.208 0.148 0.109 0.173
0.254 0.23 0.215 0.148 0.134 0.244 0.212 0.22 0.153 0.116 0.182
0.2698 0.23 0.215 0.148 0.134 0.244 0.212 0.22 0.153 0.116 0.182
0.2857 0.239 0.224 0.159 0.139 0.255 0.219 0.232 0.163 0.125 0.19
0.3016 0.259 0.238 0.169 0.157 0.268 0.237 0.254 0.182 0.139 0.214
0.3175 0.266 0.244 0.18 0.161 0.282 0.245 0.264 0.193 0.147 0.222

Table 4.4: OA(24, 5, 2, 2): Behaviour of IMP tests under H0

Normal errors Cauchy errors

α β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

0.0159 0.966 0.859 0.469 0.025 0.043 0.480 0.370 0.162 0.014 0.018
0.0317 0.966 0.859 0.469 0.025 0.043 0.480 0.370 0.162 0.014 0.018
0.0476 0.969 0.875 0.518 0.033 0.054 0.503 0.391 0.182 0.025 0.038
0.0635 0.969 0.883 0.616 0.054 0.081 0.532 0.416 0.219 0.042 0.062
0.0794 0.969 0.888 0.639 0.059 0.101 0.549 0.426 0.231 0.047 0.071
0.0952 0.969 0.888 0.639 0.059 0.101 0.549 0.426 0.231 0.047 0.071
0.1111 0.969 0.889 0.656 0.063 0.111 0.556 0.436 0.241 0.057 0.082

Table 4.5: OA(24, 5, 2, 2): Powers of IMP tests
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Normal errors Cauchy errors

α β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

0.0159 0.984 0.826 0.44 0.012 0.018 0.306 0.212 0.092 0.002 0.005
0.0317 0.994 0.897 0.554 0.032 0.041 0.368 0.28 0.135 0.011 0.012
0.0476 0.996 0.931 0.619 0.047 0.063 0.411 0.331 0.174 0.02 0.021
0.0635 0.997 0.947 0.672 0.061 0.079 0.447 0.364 0.211 0.029 0.029
0.0794 0.998 0.958 0.717 0.076 0.094 0.479 0.388 0.236 0.041 0.039
0.0952 0.998 0.966 0.748 0.093 0.115 0.496 0.409 0.263 0.056 0.049
0.1111 0.999 0.971 0.776 0.107 0.127 0.517 0.428 0.283 0.071 0.061

Table 4.6: OA(24, 5, 2, 2): Powers of F tests

Rejection rates under null hypotheses

α β1 β2 β3 β4 β5 β6 β7 β8

0.0014 0.0070 0.0110 0.0010 0.0030 0.0160 0.0140 0.0040 0.0040
0.0028 0.0170 0.0160 0.0020 0.0030 0.0220 0.0150 0.0040 0.0070
0.0042 0.0220 0.0190 0.0030 0.0030 0.0220 0.0180 0.0050 0.0090
0.0113 0.0360 0.0290 0.0090 0.0080 0.0310 0.0230 0.0110 0.0180
0.0211 0.0480 0.0380 0.0140 0.0180 0.0360 0.0340 0.0170 0.0270
0.0309 0.0500 0.0410 0.0150 0.0220 0.0400 0.0390 0.0280 0.0320
0.0408 0.0550 0.0500 0.0240 0.0300 0.0490 0.0470 0.0350 0.0400
0.0506 0.0640 0.0550 0.0310 0.0390 0.0540 0.0530 0.0390 0.0440
0.0605 0.0680 0.0610 0.0380 0.0510 0.0640 0.0630 0.0430 0.0530
0.0703 0.0730 0.0700 0.0420 0.0520 0.0710 0.0680 0.0450 0.0550
0.0802 0.0750 0.0730 0.0470 0.0550 0.0760 0.0730 0.0500 0.0580
0.0900 0.0790 0.0750 0.0510 0.0580 0.0810 0.0760 0.0550 0.0620
0.1013 0.0870 0.0820 0.0570 0.0610 0.0850 0.0820 0.0590 0.0640

Table 4.7: OA(27, 4, 3, 2): Powers of IMP tests under H0 - Normal errors

Rejection rates under null hypotheses

α β1 β2 β3 β4 β5 β6 β7 β8

0.0014 0.0210 0.0140 0.0000 0.0020 0.0130 0.0100 0.0010 0.001
0.0028 0.0240 0.0170 0.0020 0.0040 0.0180 0.0150 0.0060 0.001
0.0042 0.0290 0.0200 0.0020 0.0040 0.0200 0.0180 0.0070 0.001
0.0113 0.0360 0.0290 0.0030 0.0080 0.0290 0.0250 0.0120 0.007
0.0211 0.0400 0.0370 0.0070 0.0110 0.0370 0.0340 0.0130 0.015
0.0309 0.0510 0.0420 0.0160 0.0170 0.0430 0.0420 0.0190 0.021
0.0408 0.0610 0.0500 0.0190 0.0210 0.0490 0.0490 0.0240 0.027
0.0506 0.0680 0.0520 0.0210 0.0240 0.0580 0.0560 0.0270 0.031
0.0605 0.0750 0.0610 0.0230 0.0290 0.0620 0.0630 0.0340 0.037
0.0703 0.0790 0.0660 0.0270 0.0320 0.0640 0.0650 0.0360 0.040
0.0802 0.0860 0.0730 0.0340 0.0360 0.0660 0.0680 0.0390 0.046
0.0900 0.0910 0.0750 0.0390 0.0410 0.0690 0.0720 0.0490 0.048
0.1013 0.0970 0.0790 0.0410 0.0450 0.0780 0.0740 0.0520 0.058

Table 4.8: OA(27, 4, 3, 2): Powers of IMP tests under H0 - Cauchy errors
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Rejection rates under alternatives

α β1 β2 β3 β4 β5 β6 β7 β8

0.0014 0.8310 0.5710 0.0910 0.0030 0.9460 0.9090 0.5270 0.0040
0.0028 0.8440 0.6070 0.1250 0.0030 0.9460 0.9120 0.5970 0.0070
0.0042 0.8490 0.6320 0.1470 0.0030 0.9460 0.9130 0.6280 0.0090
0.0113 0.8700 0.6940 0.2380 0.0080 0.9460 0.9180 0.8010 0.0180
0.0211 0.8760 0.7260 0.2920 0.0180 0.9460 0.9180 0.8430 0.0270
0.0309 0.8800 0.7410 0.3250 0.0220 0.9460 0.9180 0.8610 0.0320
0.0408 0.8830 0.7560 0.3610 0.0300 0.9460 0.9180 0.8920 0.0400
0.0506 0.8840 0.7680 0.3810 0.0390 0.9460 0.9180 0.8980 0.0440
0.0605 0.8840 0.7760 0.4120 0.0510 0.9460 0.9180 0.9110 0.0530
0.0703 0.8840 0.7820 0.4320 0.0520 0.9460 0.9180 0.9220 0.0550
0.0802 0.8850 0.7870 0.4510 0.0550 0.9460 0.9180 0.9260 0.0580
0.0900 0.8850 0.7880 0.4620 0.0580 0.9460 0.9180 0.9330 0.0620
0.1013 0.8850 0.7910 0.4850 0.0610 0.9460 0.9180 0.9380 0.0640

Table 4.9: OA(27, 4, 3, 2): Powers of IMP tests under Normal errors

Figure 4.1: OA(27, 4, 3, 2) Powers of IMP tests - Normal error terms
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Rejection rates under alternatives

α β1 β2 β3 β4 β5 β6 β7 β8

0.0014 0.683 0.292 0.084 0.001 1 0.935 0.517 0.002
0.0028 0.78 0.401 0.134 0.002 1 0.962 0.613 0.002
0.0042 0.823 0.455 0.174 0.003 1 0.974 0.678 0.006
0.0113 0.915 0.622 0.294 0.015 1 0.987 0.809 0.015
0.0211 0.954 0.731 0.384 0.021 1 0.996 0.875 0.021
0.0309 0.971 0.799 0.448 0.028 1 0.998 0.895 0.032
0.0408 0.98 0.839 0.481 0.041 1 0.999 0.921 0.043
0.0506 0.986 0.871 0.523 0.05 1 0.999 0.937 0.054
0.0605 0.989 0.883 0.546 0.06 1 0.999 0.948 0.059
0.0703 0.989 0.896 0.575 0.068 1 0.999 0.956 0.064
0.0802 0.991 0.91 0.603 0.081 1 0.999 0.963 0.072
0.0900 0.993 0.925 0.626 0.088 1 0.999 0.965 0.081
0.1013 0.993 0.93 0.646 0.107 1 1 0.969 0.093

Table 4.10: OA(27, 4, 3, 2): Powers of F tests under Normal errors

Rejection rates under alternatives

α β1 β2 β3 β4 β5 β6 β7 β8

0.0014 0.2700 0.1750 0.0230 0.0020 0.5030 0.3750 0.1020 0.0010
0.0028 0.2880 0.1860 0.0280 0.0040 0.5180 0.3890 0.1240 0.0010
0.0042 0.3040 0.2020 0.0360 0.0040 0.5250 0.4000 0.1330 0.0010
0.0113 0.3240 0.2390 0.0640 0.0080 0.5500 0.4260 0.2000 0.0070
0.0211 0.3400 0.2520 0.0800 0.0110 0.5630 0.4470 0.2310 0.0150
0.0309 0.3530 0.2620 0.0920 0.0170 0.5690 0.4570 0.2530 0.0210
0.0408 0.3690 0.2730 0.1070 0.0210 0.5800 0.4650 0.2740 0.0270
0.0506 0.3770 0.2760 0.1210 0.0240 0.5880 0.4710 0.2880 0.0310
0.0605 0.3820 0.2860 0.1370 0.0290 0.5900 0.4760 0.2980 0.0370
0.0703 0.3900 0.2980 0.1440 0.0320 0.5930 0.4810 0.3100 0.0400
0.0802 0.3940 0.3090 0.1580 0.0360 0.5980 0.4860 0.3180 0.0460
0.0900 0.3970 0.3140 0.1640 0.0410 0.6000 0.4930 0.3220 0.0480
0.1013 0.4100 0.3210 0.1720 0.0450 0.6060 0.5020 0.3320 0.0580

Table 4.11: OA(27, 4, 3, 2): Powers of IMP tests under Cauchy errors

Rejection rates under alternatives

α β1 β2 β3 β4 β5 β6 β7 β8

0.0014 0.104 0.047 0.017 0 0.311 0.187 0.075 0
0.0028 0.133 0.066 0.027 0.001 0.343 0.215 0.099 0
0.0042 0.155 0.077 0.035 0.002 0.366 0.237 0.117 0.002
0.0113 0.223 0.124 0.057 0.005 0.421 0.301 0.176 0.005
0.0211 0.263 0.165 0.091 0.01 0.475 0.347 0.217 0.011
0.0309 0.3 0.21 0.115 0.015 0.507 0.377 0.241 0.013
0.0408 0.326 0.233 0.128 0.022 0.53 0.41 0.264 0.018
0.0506 0.343 0.249 0.148 0.026 0.554 0.432 0.284 0.026
0.0605 0.36 0.274 0.167 0.033 0.568 0.451 0.303 0.032
0.0703 0.381 0.295 0.181 0.041 0.582 0.472 0.318 0.039
0.0802 0.394 0.313 0.197 0.048 0.595 0.49 0.336 0.05
0.0900 0.406 0.324 0.213 0.059 0.61 0.511 0.348 0.058
0.1013 0.419 0.345 0.228 0.076 0.618 0.525 0.37 0.066

Table 4.12: OA(27, 4, 3, 2): Powers of F tests under Cauchy errors
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Figure 4.2: OA(27, 4, 3, 2) Powers of IMP tests - Cauchy error terms

Figure 4.3: OA(27, 4, 3, 2) IMP vs F test- Normal error terms

Figure 4.4: OA(27, 4, 3, 2) IMP vs F test - Cauchy error terms
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Rejection rates under null hypotheses

α β1 β2 β3 β4 β5 β6 β7 β8

0.010 0.003 0.002 0.001 0.000 0.003 0.002 0.004 0.003
0.020 0.006 0.004 0.002 0.005 0.008 0.003 0.006 0.003
0.030 0.006 0.006 0.004 0.008 0.009 0.003 0.008 0.004
0.040 0.008 0.008 0.005 0.013 0.011 0.004 0.010 0.006
0.050 0.009 0.009 0.005 0.015 0.012 0.005 0.011 0.007
0.060 0.015 0.010 0.006 0.015 0.013 0.007 0.014 0.010
0.070 0.017 0.013 0.007 0.016 0.014 0.007 0.014 0.012
0.080 0.018 0.015 0.007 0.016 0.016 0.009 0.017 0.013
0.090 0.024 0.016 0.010 0.018 0.017 0.012 0.019 0.014
0.100 0.027 0.020 0.013 0.020 0.018 0.013 0.022 0.014

Normal Errors
0.010 0.000 0.003 0.001 0.001 0.001 0.000 0.004 0.000
0.020 0.004 0.004 0.004 0.002 0.002 0.002 0.006 0.001
0.030 0.008 0.004 0.004 0.002 0.006 0.003 0.010 0.001
0.040 0.009 0.004 0.005 0.002 0.007 0.007 0.012 0.001
0.050 0.011 0.007 0.008 0.004 0.008 0.012 0.014 0.003
0.060 0.011 0.009 0.010 0.004 0.010 0.014 0.015 0.007
0.070 0.015 0.010 0.010 0.006 0.011 0.015 0.016 0.008
0.080 0.016 0.011 0.012 0.010 0.011 0.017 0.019 0.008
0.090 0.022 0.011 0.014 0.011 0.011 0.019 0.020 0.009
0.100 0.024 0.012 0.016 0.011 0.013 0.019 0.022 0.010

Cauchy Errors

Table 4.13: OA(54, 4, 3, 3): Powers of IMP tests under H0

Rejection rates under alternatives

α β1 β2 β3 β4 β5 β6 β7 β8

0.010 0.995 0.885 0.392 0.000 1.000 1.000 0.973 0.003
0.020 0.999 0.921 0.487 0.005 1.000 1.000 0.983 0.003
0.030 0.999 0.935 0.538 0.008 1.000 1.000 0.987 0.004
0.040 1.000 0.954 0.575 0.013 1.000 1.000 0.990 0.006
0.050 1.000 0.964 0.610 0.015 1.000 1.000 0.991 0.007
0.060 1.000 0.966 0.633 0.015 1.000 1.000 0.993 0.010
0.070 1.000 0.969 0.646 0.016 1.000 1.000 0.994 0.012
0.080 1.000 0.977 0.664 0.016 1.000 1.000 0.994 0.013
0.090 1.000 0.980 0.681 0.018 1.000 1.000 0.995 0.014
0.100 1.000 0.982 0.695 0.020 1.000 1.000 0.995 0.014

Normal Errors
0.010 0.210 0.122 0.031 0.001 0.455 0.312 0.167 0.000
0.020 0.245 0.157 0.046 0.002 0.477 0.356 0.195 0.001
0.030 0.264 0.169 0.058 0.002 0.495 0.371 0.211 0.001
0.040 0.279 0.186 0.069 0.002 0.505 0.384 0.227 0.001
0.050 0.289 0.197 0.074 0.004 0.512 0.397 0.239 0.003
0.060 0.301 0.203 0.075 0.004 0.529 0.409 0.248 0.007
0.070 0.306 0.212 0.081 0.006 0.537 0.422 0.258 0.008
0.080 0.317 0.219 0.091 0.010 0.543 0.436 0.263 0.008
0.090 0.320 0.225 0.099 0.011 0.547 0.440 0.266 0.009
0.100 0.326 0.232 0.101 0.011 0.552 0.445 0.269 0.010

Cauchy Errors

Table 4.14: OA(54, 4, 3, 3): Powers of IMP tests
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Tables 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 report the simulation study results considering
the 711 nonisomorphic OAs OA(27, 4, 3, 2).

In Figure 4.1 and 4.2 we report the power of the tests on the linear parameters as a
function of the α levels, α ≤ 10%. From Tables 4.7 and 4.8, we observe that, for both the
error distributions, the test is conservative for α greater than around 7%.

The IMP testing procedure is based on the permutations of inequivalent matrices and
so, it does not only permute the observations within a certain configuration of the factors.
In this sense IMP provides an approximate test and this justifies the gap between the
desired and the observed significance levels. The power simulations show the effectiveness
of the IMP test. Indeed, from the first nominal level, the active effects are detected. We
note that with Cauchy errors the IMP test works well, both under H0 (Table 4.8) and H1

(Table 4.11), in particular the inactive effects under H1 maintain the same significance
levels observed under H0. Analogously to the OA(24, 5, 2, 2) case, the IMP test has a
performance close to that of the F test when errors are normally distributed (Figure 4.3)
and performs better than the F test when errors follow a Cauchy distribution (Figure 4.4).
We can also observe that the methodology suggested provides separate tests, one for each
of the relating sub-hypotheses of null effect (this implies that for each factor we find two
separate permutation tests related to the linear and quadratic component respectively),
and within the framework of the permutation tests it is possible to take into consideration
a phase of nonparametric combination methodology of the IMP tests. Finally in Tables
4.13 and 4.14 we report the simulation study results performed in order to experiment the
proposed method when the number of nonisomorphic arrays is quite small; indeed there
are only 7 nonisomorphic OA(54, 4, 3, 3). We use a modified IMP test procedure. For each
of the 7 nonisomorphic arrays, we randomly generate, by row permutations, 100 arrays.
We get 700 arrays that we use as the input of the IMP algorithm. We can see that results
look promising both in terms of accordance with the significance level and in terms of
power.

4.5 Final remarks

Using nonisomorphic OAs generated using strata (Chapter 3) and from the literature
(Schoen et al. (2010)) we provided separate tests for testing the main effects in unreplicated
experiments in the framework of permutation tests. The basic idea was to exchange
matrices instead of permuting the vector of responses (Basso et al. (2004)). The approach
remains unchanged for testing interactions. As suggested by the simulation study, we can
confirm that the proposed inferential solution is particulary useful for testing the effects
when errors are not normally distributed. The applicability of the method in practical
situations can be very high. Indeed, as we said, the method proposed by (Fontana and
Pistone (2010)) covers the generation of all fractional factorial designs and for OAs in
particular the recent catalogue of nonisomorphic OAs created by (Schoen et al. (2010))
offers a really wide range of designs. When the number of nonisomorphic OAs is not
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sufficient (let us say k ≤ 50) the modified IMP test seems to be a valid tool. This will be
part of further research development.



Chapter 5

Randomized Complete Block
designs

5.1 Introduction

In many scientific disciplines and industrial fields researchers and practitioners are often
faced with theoretical and practical problems multivariate in nature within the framework
of Randomized Complete Block (RCB) design with ordered categorical response variables
when dealing with comparisons between two or more treatments.

For example, this situations can arise very often in the field of sensorial testing study,
where especially in the food and body care industry, several useful experimental perfor-
mance indicators are individual sensorial evaluations provided by trained people (pan-
elists) during a so-called sensory test (Meilgaard et al. (2006)). Within this framework
the experimental design typically handles panelists as blocks.

In general, the requirement to take into consideration a RCB design occurs when the
experimental units are heterogeneous, hence the notion of blocking is used to control
the extraneous sources of variability. The major criteria of blocking are characteristics
associated with the experimental material and the experimental setting. The purpose of
blocking is to sort experimental units into blocks, so that the variation within a block is
“minimized”while that among blocks is “maximized”. An effective blocking not only yields
more precise results than an experimental design of comparable size without blocking, but
also increases the range of validity of the experimental results.

It is well known that a best permutation test for all population distributions P does
not generally exist, because the most powerful unbiased permutation test is a function of
the population distribution P which is assumed, in the framework of the nonparametric
inference, to be unknown (Pesarin (2001)). In this work we focus our attention on the
RCB designs in case of ordered categorical response variables, which are typical in sensorial
studies.

We propose, within the framework of the Nonparametric Combination (NPC) of De-
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pendent Permutation Tests several combination-based permutation test statistics (Section
5.4) for the RCB design, especially in case of ordered categorical variables used for sen-
sorial studies (Arboretti, Corain and Ragazzi (2010)). In order to validate the proposed
method we present a Monte Carlo simulation study (Section 5.6), the focus is on the pow-
ers of the permutation testing procedures which have been compared with the traditional
parametric and nonparametric competitors (Section 5.3). We find out that the Multi-
focus statistic using Fisher’s combining function appears to be the more powerful solution
which we proved also to be better under non normal errors than traditional paramet-
ric and rank-based nonparametric counterparts. We also propose a generalization of the
combination-based permutation testing in the multivariate case (Section 5.7) (Arboretti,
Corain and Ragazzi (2011)) and via an other comparative simulation study (Section 5.9)
we find out that the Anderson-Darling statistic using the Fisher’s combining function (for
all phases of combination) represents a valid solution. Some examples in the field of the
sensorial studies of the combination-based permutation approach are presented in Section
5.10. We conclude, Section 5.11, with a discussion and some directions of current and
future research.

5.2 The set of hypotheses

Let us consider X a response categorical variable which the support is partitioned into
m ≥ 2 ordered classes {Aγ ; γ = 1, . . . , m}, in the sense that relationships such as Aγ < Aλ

have a clear meaning for every pair of subscripts γ, λ such that 1 ≤ γ < λ ≤ m. The
classes Aγ represent either quantitative or qualitative categories in according to the nature
of X.

In this context let us assume that a statistical model for X exists given by the tern
(χ,B, P ∈ P), where χ is the sample space of X, B is an algebra of events and P is a
nonparametric family of non-degenerate probability distributions on (χ,B). Let us assume
that data are classified according to the C treatments and to the n blocks according to
the experimental design adopted for the experimentation. In this context we suppose that
experimental units are randomly assigned to the C treatments (C > 2) and exactly one
unit is assigned to each of the C treatments, the experimental design is developed with
the aim at comparing the C treatments.

In what follows we refer to Xij as the univariate categorical response variables where
the subscripts i = 1, . . . , n and j = 1, . . . , C are related to the n blocks and C treatments re-
spectively. If we consider C independent random samples Xj = {Xji; i = 1, . . . , n; j = 1, . . . , C}
the testing hypotheses can be formally described as follows:

H0 :
{

Xi1
d= . . .

d= XiC

}
= {Fi1(Aγ) = . . . = FiC(Aγ), γ = 1, . . . ,m} ∀i, (5.1)
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H1 :
{

(Xi1k

d
6= . . .

d
6= XiC)

}
=





m⋃

γ=1

(Fi1(Aγ) 6= . . . 6= FiC(Aγ))



 for at least one i,

(5.2)
for i = 1, . . . , n, γ = 1, . . . ,m and where Fij = Pr {Xij ≤ Aγ} with j = 1, . . . , C play the
role of cumulative distribution functions (CDFs) for ordered categorical variables Xij . We
observe that (5.2) defines the stochastic non-dominance of Xij with respect to Xih with
j < h; j, h = 1, . . . , C.

Formally this problem is related to the problem of goodness-of-fit testing for ordered
categorical variables and it’s well known that when the sample sizes are finite and some
nuisance parameters of the underlying multinomial distribution are unknown and are es-
timated from data, best solution very rarely exist for general hypotheses. In this context
we present some solution from the viewpoint of permutation testing, in particular consid-
ering alternatives of the so-called stochastic non-dominance type for ordered categorical
variables. We observe that the underlying response model is similar to the the model for
generalized stochastic effects (Pesarin (2001)) and as an example of a possible solution
within the permutation framework for stochastic ordering problems we remind the the
works of Finos et al. (2007) and Finos et al. (2008).

Let us assume that there exists a nonparametric function φ such that:

Xij = φ(Yij)
d= φ(Yih + ∆j) j, h = 1, . . . , C j 6= h; i = 1, . . . , n; (5.3)

where Yij represents underlying real-valued response, φ is a function which transforms Yij

into ordered categorical data Xij , and ∆j represents non-negative stochastic effects.
The function φ can be defined as a nonparametric function defined on the set Γ (i.e. the

set of the real-valued quantitative responses) in the set O (i.e. the set of the categorical
responses) which maps any point of Γ in O such that φ(Yij + ∆j) ≥ φ(Yij), for any
j = 1, . . . , C and i = 1, . . . , n.

This analogy allow us to extend the use of terminology adopted for quantitative vari-
ables to the case of ordered categorical variables, we also observe that this notation is
suitable for simulation algorithms, when underlying continuous models are supposed to
be generated before transformation into ordered classes. Conceptually continuous vari-
ables are sometimes treated as continuous and other times, especially in biomedical and
social science research, as categorical. In this work we categorize (or discretize) continuous
variables, as expressed in (5.3).

Following this rationale, let us focus our attention on the (continuous) variable Y =
{Y11, . . . , YnC} related to a n × C matrix of responses. Let us consider an experimental
design where there are n blocks and, within each block, experimental units are randomly
assigned to the C (C > 2) treatments and exactly one experimental unit is assigned to
each of the C treatments.

The statistical model (with fixed effects) for the randomized complete block (RCB)
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design can be represented as follows:

Yij = µ + βi + τj + εij εij ∼ IID(0, σ2) i = 1, · · · , n, j = 1, · · · , C, (5.4)

where βi, τj and Yij , are respectively the effect of the i-th block, the effect of the j-th
treatment and the response variable for the i-th block and the j-th treatment.

The random term εij represents the experimental error with zero mean, variance σ2

and unknown continuous distribution P . The usual side-conditions for effects are given
by the constrains

∑
i βi =

∑
j τj = 0.

Model (5.4) is also called the effects model (Montgomery, (2001)). If we define µj =
µ + τj , j = 1, . . . , C, an alternative representation of model (5.4) is the means model, i.e.

Yij = µj + βi + εij . (5.5)

The resulting inferential problem of interest is concerned with the following hypotheses:
H0 : {τj = 0, ∀j}, against H1 : {∃j : τj 6= 0}.

Note that this hypothesis is referred to a global test; if H0 is rejected, it is of interest
to perform inference on each pairwise comparison between couples of treatments, i.e.
H0(jh) : τj = τh, j, h = 1, . . . , C, j 6= h, against H1(jh) : τj 6= τh; with reference to model
(5.5), an equivalent representation of H0(jh) is the following: H0(jh) : µj − µh = 0, j,
h = 1, . . . , C, j 6= h, against H1(jh) : µj − µh 6= 0.

We recall that in the framework of RCB designs there is usually no interest in testing
the block effect which is handled as a nuisance factor. Note that, since no interaction
effect between treatments and blocks is here supposed to exist, expressions (5.4) and (5.5)
do not consider any interaction effect.

5.3 Traditional parametric and nonparametric testing pro-
cedures for the RCB design

In the framework of traditional parametric methods, when assuming random normal com-
ponents, it is appropriate to test the equality of all treatment means by using the tradi-
tional F statistic:

F =
SSTreatments/(C − 1)
SSE/(n− 1)(C − 1)

, (5.6)

where:

SSTreatments = n

C∑

j=1

(Y ·j − Y ··)2, SSE =
n∑

i=1

C∑

j=1

(Yij − Y ·j − Y i· + Y ··)2,

and Y ·j is the mean of the n experimental units in the j-th treatment, Y i· is the block
mean for the i-th block, and Y ·· is the overall mean. The F statistic is distributed as
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FC−1,(C−1)(n−1) if the null hypothesis H0 is true, hence we would reject H0, at the signif-
icance level α, if F0 > Fα;(C−1),(C−1)(n−1).

If the analysis indicates a significant difference in treatment means, we are usually
interested in multiple comparisons to find out which treatment means differ. That is, if
the global null hypothesis H0 is rejected we would consider the post-hoc set of C(C−1)/2
individual H0(jh) null hypotheses. Under normality, Bonferroni adjusted t-tests or Tukey’s
tests are the most recommended procedures. We recall that when carrying out multiple
testing, there should be a formal guarantee against incorrect decisions.

The so called multiplicity problem is particularly relevant in multiple comparison prob-
lems, since omitting to consider the multiplicity issue can often cause biased statistical
analysis (Westfall et al. (2000)).

Since the normality assumption is often questionable, if we do not assume the normal-
ity of random errors, we can take into consideration a nonparametric approach. In the
framework of nonparametric rank-based testing procedures, one of the earlier tests has
been proposed by Friedman (1937).

A general form of the Friedman’s statistic T , which incorporates a correction for ties
(Hollander and Wolfe, (1999)), is given by:

T =

(C − 1)
C∑

j=1
[R+j − n(C + 1)/2]2

n∑
i=1

C∑
j=1

(Rij)2 − nC(C + 1)2/4
, (5.7)

where Rij is the rank of Yij among the experimental units in block i and R+j =
∑

j Rij is
the sum of the ranks for the j-th treatment over the n blocks. Under the null hypothesis,
the R+j ’s should be close to n(C + 1)/2 which is the average of the R+j . Since T has an
asymptotic Chi-square distribution with C−1 degree of freedom, we would reject the null
hypothesis H0 if T0 > χα,(C−1)2 .

After rejection of H0, the comparisons between pairs of treatments can be performed
via absolute differences of the sums of within-blocks ranks. This set of values have to be
compared with an appropriate value rα which is function of C and n. For small values of
C and n, rα has been tabulated whereas, as n tends to infinity, it can be approximated by
the distribution of the range of independent standard normal variables. This procedure,
called Wilcoxon-Nemenyi-McDonald-Thompson procedure (Hollander and Wolfe (1999)),
has been designed in order to maintain an appropriate Maximum Experimentwise Error
Rate (MEER) α, where MEER is defined as the probability to reject at least one true
hypotheses in the set of C(C − 1)/2 individual H0(jh) null hypotheses.

Following Lehmann and D’abrera (2006), formula (5.7) can be replaced by:

T = nd′Σ−1
0 d, (5.8)

where Σ0 = (σjj′) is the covariance matrix under the null hypothesis of Ri = (Ri1, . . . , Ri,C−1),
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that is the rank order of the first C − 1 treatments, and

d′ =
[
R+1 − (C + 1)/2, R+2 − (C + 1)/2, . . . , R+(C−1) − (C + 1)/2

]
,

where R+j =
∑

j Rij .
Sepansky (2007) suggests a modification of (5.8), by the following test statistic:

TP = nd′Σ̂−1d, (5.9)

where Σ̂−1 = (sjj′) is the sample covariance matrix of the Ri.
Note that TP is an Hotelling-type T 2 statistic and its limiting null distribution is the

χ2 distribution with C− 1 degrees of freedom (see Anderson (2003) and Sepansky (2007))
examines also the covariance matrix in the test statistic (5.9) when the number of blocks
or sample size is small and he claims that the null hypothesis of no treatment difference
should be rejected when the sample covariance matrix is singular.

It is worth noting that while the Friedman test statistic is well defined when n is less
than C, TP is not since the sample covariance matrix is singular for all possible data
matrices in this case. The idea of Sepansky of rejecting the null hypothesis when the
sample covariance matrix is questionable and he does not support this statement with any
kind of formal proof and the motivation he provided is quite debatable. Moreover, the
simulation results presented by author clearly show that, especially for small values of n,
his test statistic does not maintain the nominal levels under the null hypothesis. Hence,
this proposal might be unreliable to properly perform inference for RCB designs.

Another approach, refereed as Aligned Rank Test (Lehmann and D’Abrera (2006)),
is to make all blocks comparable so that comparisons between treatments in different
blocks are meaningful. This can be done by subtracting the median or mean value of
the experimental units in the block from all experimental units in that block. After this
alignment is completed, the aligned experimental units are ranked over all blocks and
treatments. It can be shown that under the null hypothesis the following statistic is a
χ2

C−1 for large samples:

S =

(C − 1)n2
C∑

j=1
(R·j −R

2
··)2

n∑
i=1

C∑
j=1

(Rij −Ri·)2
, (5.10)

where now Rij denotes the aligned rank for Yij , Ri· is the average rank for the i-th block,
R·j is the average rank for the j-th treatment and R·· is the overall average rank.

In the literature there are a few other test statistics proposed for the RCB design.
Among others, Quade (1979) proposed a test based on within-block rankings that gives
greater weights to blocks that have greater variability. However, since several simulations
studies (Fawcett and Salter (1984), Groggel (1987)) have shown that the Quade’s proce-
dure is not well performing in some situations, hence as suggested by O’Gorman (2001), it
will be not included in the simulations we will present afterwards in this work. O’Gorman
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(2001) reviews and evaluates several tests for RCB design, including the F -test, Friedman’s
test, and a few Aligned Rank Tests. His simulations show that Friedman’s test has low
power compared with the Aligned Rank Tests if the number of treatments does not exceed
six and a novel aligned rank-based F -test proposed by the author shows relatively high
power for several skewed distributions if there is a large number of experimental units.

5.4 Combination-based permutation solution for the RCB
design

When dealing with complex designs conditional nonparametric methods can represent a
reasonable approach. We recall that traditional unconditional parametric testing methods
may be available, appropriate and effective only when a set of restrictive conditions are
satisfied. Accordingly, just as there are circumstances in which unconditional parametric
testing procedures may be appropriate, there are others where they may be unsuitable or
even impossible to be properly applied. In conditional testing procedures, provided that
exchangeability of data with respect to groups is satisfied in the null hypothesis, permu-
tation methods play a central role. This is because they allow for quite efficient solutions,
are useful when dealing with many difficult problems, provide clear interpretations of in-
ferential results, and allow for weak extensions of conditional to unconditional inferences.
For a detailed discussion on the topic of the comparison between permutation conditional
inferences with traditional unconditional inferences we refer to Pesarin (2001).

In this Section 5.4 we propose a novel solution for the whole set of hypotheses of
interest within the nonparametric framework of NonParametric Combination (NPC) of
dependent permutation tests.

In this context we refer to a typical sensorial testing study so the observed data X is
partitioned into m ordered classes, so X is usually organized in C ×m contingency table.
We note that H0 (5.1) implies that the data of the C treatments are exchangeable, so that
the permutation testing principle (Pesarin (2001)) may be properly applied. This implies
taking into consideration the permutation sample space Ξ/X generated by all permutations
of pooled data set X, that is, the set of all possible tables in which marginal frequencies
are fixed.

In order to avoid computational problems, using the nonparametric function φ (5.3)
which formally categorizes the continuous variable Y into the variable X, we now consider
the set of hypotheses statistics and the related combination-based permutation solutions in
reference to the categorized variable Y. In order to better explain the proposed approach
let us denote an (n× C) data set Y as:
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Y = [Y1, . . . ,Yj , . . . ,YC ] =




Y11 . . . Y1j . . . Y1C
...

. . .
...

...
Yi1 . . . Yij . . . YiC
...

...
. . .

...
Yn1 . . . Ynj . . . YnC




where Yij represents the ijth observed response for ith block and jth treatment, with
i = 1, . . . , n and j = 1, . . . , C (C ≥ 2).

In the framework of NonParametric Combination (NPC) of dependent permutation
tests we suppose that, if the global null hypothesis H0 is true, the assumption of ex-
changeability of random errors within the same block holds. Hence, the following set of
mild conditions should be jointly satisfied:

i) Suppose that for Y = [Y1, . . . ,YC ] an appropriate distribution Pj exists, Pj ∈ P,
j = 1, . . . , C, belonging to a (possibly non-specified) family P (a family of non-
degenerate probability distributions).

ii) The null hypothesis H0 states the equality in distribution of the response variable in
all C groups:

H0 : [P1, . . . , PC ] =
[
Y1

d= . . .
d= YC

]
, (5.11)

null hypothesis H0 implies the exchangeability, within each block, of the individual
data with respect to the C groups. Moreover H0 is supposed to be properly decom-
posed into C × (C − 1)/2 sub-hypotheses H0(jh), j, h = 1, . . . , C, j 6= h, each one
related to the jhth pairwise comparison between couples of treatments:

H0 :




C⋂
j,h=1
j 6=h

Yj
d= Yh


 =




C⋂
j,h=1
j 6=h

H0(jh)


 , (5.12)

H0 is called the global or overall null hypothesis, and H0(jh), j, h = 1, . . . , C, j 6= h,
are the partial null hypotheses.

iii) The alternative hypothesis H1 is represented by the union of partial H1(jh) sub-
alternatives:

H1 :




C⋃
j,h=1
j 6=h

H1(jh)


 =




C⋃
j,h=1
j 6=h

H1(jh)


 , (5.13)
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so that H1 is true if at least one of sub-alternatives is true. In this context, H1 is
called the global or overall alternative, and H1(jh), j, h = 1, . . . , C, j 6= h, are called
the partial alternatives.

iv) Let T = T(Y) represent a vector of test statistics, whose components T(jh), j, h =
1, . . . , C, j 6= h, represent the partial univariate and non-degenerate partial test
appropriate for testing the sub-hypothesis H0(jh) against H1(jh).

The assumptions regarding the set of all partial tests T =
{
T(jh), j, h = 1, . . . , C, j 6= h

}
necessary for nonparametric combination are:

• all permutation partial test are marginally unbiased and significant for large values,
so they are stochastically larger in H1 than in H0;

• all permutation partial tests T(jh) are consistent, that is,

Pr
{
T(jh) ≥ T(jh)α | H1(jh)

} → 1, ∀ α > 0, j, h = 1, . . . , C, j 6= h,

as n tends to infinity, where T(jh)α, which is assumed to be finite, is the critical value
of T(jh) at level α.

The first assumption formally implies that,

Pr
{
T(jh) ≥ T(jh)α | Y,H1(jh)

} ≥ α, ∀ α > 0, j, h = 1, . . . , C, j 6= h;

Pr
{
T(jh) ≤ z | H0(jh)

}
= Pr

{
T(jh) ≤ z | Y,H0(jh) ∩H†

jh

}
≥

Pr
{
T(jh) ≤ z | Y,H1(jh)

}
= Pr

{
T(jh) ≤ z | H1(jh) ∩H†

(jh)

}
;

with j, h = 1, . . . , C ∀z ∈ R1 where irrelevance with respect to the complementary set of
hypotheses H†

(jh) :
{
H0(jh) ∪H1(jh)

}
means that it does not matter which among H0(jh)

and H1(jh), j, h 6= i, is true when testing for the ith sub-hypothesis.
The first assumption implies that the set of p - values{

λ(jh), j, h = 1, . . . , C, j 6= h
}

associated with the partial tests in T, are positively depen-
dent in the alternative. In order to obtain global traditional consistency it suffices that at
least one partial test is consistent (Pesarin (2001)).

As far as the partial test statistic T(jh) is concerned, since we are referring to a m-
categories ordered response variable, it seems appropriate to take into consideration the
following proposal:

• Multi-focus statistic: this approach suggests to decompose the categorical response
variable of interest into m binary variables each one related to one category of the
response; in this way it is possible to refer to a further decomposition of the sub-
hypothesis H0(jh) into m additional sub-hypothesis each one suitable for testing the
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equality in distribution of each one of the k category of the ordered categorical
response variable; this is done via a set of m Chi-squared based test statistics cal-
culated from 2m × 2 contingency sub-tables to be then combined into a final test
statistic; note that a choice on the way to combine the k additional statistics have
to be done;

• Anderson-Darling statistic:

T ∗AD =
m−1∑

r=1

(N∗
hr −N∗

jr)[2
N·r
n

(
2n−N·r

2n
)

n2

2n− 1
]−

1
2 , (5.14)

where N·r = Njr+Nhr = N∗
jr+N∗

hr are the observed and the permutation cumulative

frequencies in which N∗
sr =

∑
q≤r f∗sq, r = 1, . . . , C−1, s = j, h. f∗sr = #

(
X∗

jr ∈ Ar

)
,

j = 1, . . . , C and r = 1, . . . , m are permutation frequencies related to the classes Ar.

• Anderson-Darling statistic based on squared-values:

T ∗AD2 =
m−1∑

r=1

(N∗
hr −N∗

jr)
2[N·r × (2n−N·r)]−1. (5.15)

• Kolmogorov-Smirnov statistic:

T ∗KS = sup(F ∗
hr − F ∗

jr), (5.16)

where F ∗
sr = N∗

sr/n, r = 1, . . . , m; s = j, h.

At this point, once we have selected one of the above proposed test statistic T(jh)

(each one related to the hypotheses H0(jh) with the goal of comparing the j-th and h-th
treatment, the idea is to combine all them with an appropriate combining function, in
order to test the global null hypothesis H0.

However, we should observe that in most real problems when the number of blocks
is large enough, there might be computational difficulties in calculating the conditional
permutation distribution. This means that it is not possible to calculate the exact p-value
of observed statistic T(jh)0. This drawback is overcome by using the Conditional Monte
Carlo (CMC) Procedure. The CMC on the pooled data set Y is a random simulation
of all possible permutations of the same data under H0. Hence, in order to obtain an
estimate of the permutation distribution under H0 of all test statistics, a CMC can be
used. It should be emphasized that CMC only considers permutations of individual data
vectors within each individual block, so that all underlying dependence relations which
are present in the component variables are preserved.
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5.5 A suitable algorithm

A suitable algorithm for calculating the proposed permutation test is composed of the
following steps:

a) For each pairwise comparison between couples of treatments calculate the vector of
the observed values of test statistics oT(Y), whose components oTjh = T (Yj ,Yh),
j, h = 1, . . . , C, j 6= h, are appropriate for testing the sub-hypothesis H0(jh) against
H1(jh).

b) Consider Y∗ as a permutation of the data set Y, carried out within each ith block in
order to preserve the dependence structure of data, then calculate the permutation
value of the test statistics:

T ∗jh = T (Y∗
j ,Y

∗
h), j, h = 1, . . . , C, j 6= h.

c) Carry out B independent repetitions (i.e. CMC iterations) of step (b). The set
of CMC results {bT

∗
jh, b = 1, . . . , B} is thus a random sampling from the null

permutation distribution of the test statistics.

d) Obtain the p-value from each partial sub-hypothesis H0(jh):

λjh = #(T ∗jh ≥o Tjh)/B, b = 1, . . . , B, j, h = 1, . . . , C, j 6= h.

e) The combined observed value of the global or overall null hypothesis H0 is:

oT
′′

= ψ(λ11, . . . , λ(C−1)C).

f) The combined value is then computed by:

T
′′∗ = ψ(λ∗11, . . . , λ

∗
(C−1)C)

where λ∗jh = #(T
′′∗
jh ≥ bT

′′∗
jh )/B, b = 1, . . . , B.

g) The global p-value is computed as:

λ
′′

= #(T
′′∗ ≥ oT

′′
)/B, b = 1, . . . , B.

It can be seen that under the general null hypothesis the CMC procedure provides a
consistent estimation of the permutation distributions, both marginal and combined, of
the C(C−1) partial tests. A general characterization of the class of combining functions is
given by the following three main features for the combining function ψ : [0, 1]C(C−1) → R:

1. It must be non-increasing in each argument:
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ψ(. . . , λs, . . .) ≥ ψ(. . . , λ′s, . . .) if λs < λ′s, s ∈ {1, . . . , S}.
2. It must attain its supreme value, possibly not finite, even when only one argument

reaches zero:

ψ(. . . , λs, . . .) → ψ if λs → 0, s ∈ {1, . . . , S}.
3. ∀α > 0, the critical value of every ψ is assumed to be finite and strictly smaller than

the supreme value:

T ′′α < ψ,

where λi is the p-value of the i-th partial test.

The above properties define the class C of combining functions. In Pesarin (2001) it is
provided that: (i) if the partial permutation tests are exacts, then the combined test Tψ is
exact; (ii) if all partial permutation tests are marginally (separately) unbiased then Tψ is
unbiased; (iii) if both partial tests are marginally unbiased and at least one is consistent,
then Tψ is consistent.

Some of the functions most often used to combine partial dependent tests are:

• Fisher combining function:
TF = −2

∑

i

log(λi). (5.17)

• Liptak combining function:

TL =
∑

i

Ψ−1(1− λi), (5.18)

where Ψ is the standard normal cumulative distribution function.

• Tippett combining function:

TT = max
i

(1− λi). (5.19)

• Liptak combining function with logistic transformations of the p-values:

TP =
∑

i

log[(1− λi)/λi]. (5.20)

We observe that an iterated combination approach could overcome the problem of pos-
sible instability of any specific combination function. This solution could be particularly
useful even in case of ordered categorical response variables; in fact, due to the finite sup-
port induced by the test statistics, the achievable p-value levels take ‘jumping’values and
this behaviour could imply possible p-value estimates which are different when applying
different combining functions.

A general algorithm able to implement the iterated combination approach can be
described as follows:
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• choose a set of combining functions, for example Fisher, Liptak and Tippett, and
separately apply all of them to obtain a global p-value, following the proposed algo-
rithm for calculating the permutation test (see steps f and g); the set of calculated
global p-values will slightly differ one another;

• separately apply again the set of chosen combining functions to the global p-values
obtained in the previous step; the set of the second-iteration global p-values will
differ one another but less than in the first iteration;

• iteratively repeat the previous step until the set of the iterated global p-values will
take approximately the same value. The convergence is guaranteed thanks to the
property of asymptotic equivalence of the combining functions (see Pesarin and
Salmaso (2010)).

5.6 Comparative simulation study

In order to validate the proposed method and to evaluate its performance in comparison
with either the traditional parametric (F test) and the nonparametric approach (Friedman
and Aligned Rank Tests (MAR)), in this Section we perform a comparative simulation
study. The goal is focused either on the global test H0 and on the related pairwise
comparisons (hypotheses H0(jh)).

The real context we are referring to is a typical sensorial study where the number of
blocks (panel lists) usually ranges around 10 − 15 people and the sensorial evaluation is
provided with a Likert 1 − 5 rating ordinal scale, where we suppose that the 0.5 scores
are admitted as well. Note that we are actually considering a 9 point ordered categorical
response variable. The nonparametric function (5.3) and the relation between the non-
dominance stochastic model and (5.2) allow us to consider the following setting:

• 1,000 independent simulations;

• number of blocks: n=6,10,20; number of treatment: C=3,5,7;

• block effect βi, i = 1, . . . , n, generated from a discrete uniform distribution with
values (-1,- 0.5,0,0.5,1);

• with reference to model (2), the treatment effects µj , j = 1, · · · , C, are set in the
following way:

– three treatments (C = 3): µ1 = 1, µ2 = 2 and µ3 = 4;

– five treatments (C = 5): µ1 = 1, µ2 = 1.5, µ3 = 2, µ4 = 3 and µ5 = 4;

– seven treatments (C = 7): µ1 = 1, µ2 = 1.5, µ3 = 2, µ4 = 2.5, µ5 = 3, µ6 = 3.5
and µ7 = 4;
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• we generate the underlying (univariate) continuous variables Yij , i = 1, . . . , n; j =
1, . . . , C with three types of random errors: normal, exponential (as an example of an
asymmetric distribution) and Student’s t with 2 degree of freedom (as an example of
an heavy tailed distribution). The variability of random errors has been calibrated
to the value of σ = 2, with the aim of properly reveal and compare the power
among the considered procedures. Using the nonparametric function φ expressed
in 5.3 we obtain the categorical variables Xjir =, i = 1, . . . , n, j = 1, . . . , C and
r = 1, . . . , m where the transformation consists to round the random errors to the
nearest integer. In this way we obtain the categorical variables Xijr with respective
number of ordered classes m = C.

For each simulation we performed the permutation tests (with 1,000 CMC) using
all the considered statistics: Multi-focus (with Fisher combining function: MF-F; with
Tippett combining function: MF-T; with Liptak combining function: MF-F), Anderson-
Darling statistic (AD), Anderson-Darling statistic based on squared-values (AD2) and
Kolmogorov-Smirnov statistic (KS). As far as the combining function is concerned, we
considered either the Fisher and the Tippett combining function. The considered signifi-
cance level was α = 0.05.

All results of the comparisons among combination-based permutation statistics for the
RCB design are reported in Table 5.1, Table 5.2 and Table 5.3, where we added to the
statistic’s label (MF-F, MF-T, MF-L, AD, AD2, KS) the term ‘w F’or ‘w T’to indicate
that we used the Fisher or the Tippett combining function respectively. It can be proved
that the combined permutation test obtained using Fisher, Liptak or Tippett combining
functions are admissible combinations, i.e. it does not exist any other type of combination
which is uniformly more powerful (Pesarin and Salmaso (2010)).

As parametric and nonparametric counterparts, we included in the simulation study
the traditional F-test, the Friedman test (5.7) and finally the Mean Aligned Rank (Mean
AR) test proposed by O’Gorman (2001). Results for the RCB design parametric and
nonparametric counterparts, along with for the iterated combination-based permutation
statistics (applied to MF-F, KS and AD2), are reported in Table 5.4.

Table 5.5 reports the rejection rates of the pairwise comparisons of the tests. Note that,
in order to be able to properly compare the performances of the compared procedures with
different values of C (i.e. no. of treatments), rejection rates of pairwise comparisons are
presented in terms of delta (δ), that is of the true differences (in term of σ) between
treatment effects, where delta is defined as:

δjh = τj − τh, j, h = 1, . . . , C; j 6= h. (5.21)

For example we get δ = 1σ for C = 3 from the difference between µ2 and µ1, whereas
we get δ = 1σ for C = 5 from the differences µ3 − µ1, µ4 − µ3, µ5 − µ4.

In case of rejection of the global null hypothesis H0k, in order to perform the treat-
ment pairwise comparisons, we considered permutation tests for two paired samples. Least
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Significant Difference (LSD) for the difference of mean ranks and t-tests as post-hoc pro-
cedures respectively for Friedman test and F-test and MAR have been considered as well.

We recall that all post-hoc pairwise procedures should take into account for the problem
of multiplicity (Westfall et al. (2000)) hence they have to be well defined in order to
maintain at the desired α-level the type I error probability of the main global hypothesis
H0. For this goal, for permutation tests we adopted a multiplicity correction strategy by
using the closed testing approach (Westfall et al. (2000)) via Tippett combining function
(i.e. the so called minP procedure, Westfall et al. (2000)) which is particularly suitable
to be implemented within the framework of permutation tests, while for all other pairwise
procedures we adopted the Bonferroni correction.

As first remark for the simulation study, we observe that under the null hypothesis all
procedures appear to behave properly according to the nominal level (Tables 5.1, 5.2, 5.3
and 5.4). From a general point of view, as expected, the power for the global hypothesis
increases as the number of blocks increases. With reference on the comparison among
combination-based statistics, first of all it should be noted that the Tippett combining
function does not perform satisfactorily because it produces systematically less powerful
results than statistics using the Fisher combining function. This is not surprising and
agrees with results of Finos and Salmaso (2004), in fact the Fisher combination is able
to ‘synergistically’exploit the behaviour of many hypotheses even when the effects are not
very prominent. It is worth noting that Multi-focus type statistics generally perform very
good and more or less similarly one each other, with a slight preference on the Fisher-based
Multi-focus statistic. Both Anderson-Darling statistics are not satisfactory; actually they
appear to be the worst statistics, while the Kolmogorov-Smirnov statistic is less powerful
than Multi-focus statistics but it performs similarly in case of Student’s t random errors.

Finally, a general weakness of all combination-based statistics is that they are some-
what conservative when the number of blocks is less than 10, as we can realize from the
comparison with the traditional RCB statistics. This is surely due to the relative low num-
ber of possible permutations and consequently of different values that the test statistic
can assume.

As far as the comparison with traditional RCB statistics, obviously the F-test shows
a better behaviour under normality, but in case of exponential errors and particularly
of Student’s t errors, all nonparametric procedures show a greater power. Among rank-
based nonparametric tests, the worst one is the Friedman test whereas a good behaviour
is provided by the Mean Aligned Rank test. It should be noted that Friedman test is
actually not satisfactory when data have ties as in case of ordered categorical variables we
considered in this Chapter. In fact, the continuity correction proposed by several authors
is valid only asymptotically and for finite samples it does not provides a conservative test
(Lehmann and D’Abrera (2006)). Note that the approach of iterated combination turns
out to be very effective. In fact, Table 5.4 shows that rejection rates are always increasing
when compared with results from Tables 5.1, 5.2 and 5.3.

Finally, as highlighted by Figures 5.1, 5.2 and 5.3, when comparing the best combination-
based permutation statistic, i.e. the iterated Multi-focus with Fisher combining function,
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it appears that it is actually the more powerful solution under non normal errors when
the number of blocks is equal or greater than ten.

H1 Rejection Rates H0 Nominal Levels
Statistic n C C

3 5 7 3 5 7

6 .252 .202 .130 .022 .022 .024
MF-F w T 10 .692 .594 .580 .048 .046 .033

20 .974 .955 .965 .046 .042 .039
6 .097 .103 .117 .003 .005 .032

MF-T w T 10 .548 .484 .513 .040 .037 .045
20 .923 .894 .903 .042 .043 .038
6 .239 .210 .122 .023 .027 .024

MF-L w T 10 .688 .611 .563 .055 .045 .043
20 .968 .959 .964 .048 .047 .046
6 .097 .101 .123 .003 .004 .010

KS w T 10 .506 .447 .495 .040 .028 .027
20 .906 .888 .910 .038 .049 .039
6 .013 .008 .005 .002 .002 .001

AD2 w T 10 .612 .506 .479 .040 .032 .034
20 .951 .926 .945 .042 .039 .031
6 .018 .006 .003 .001 .000 .001

AD w T 10 .598 .508 .453 .042 .039 .036
20 .948 .927 .941 .045 .038 .031
6 .293 .282 .290 .031 .027 .030

MF-F w F 10 .733 .690 .723 .059 .051 .045
20 .971 .977 .982 .048 .041 .045
6 .202 .228 .245 .022 .016 .032

MF-T w F 10 .628 .600 .639 .064 .058 .045
20 .951 .945 .961 .049 .046 .038
6 .308 .279 .294 .024 .027 .028

MF-L w F 10 .749 .691 .734 .059 .051 .044
20 .968 .982 .975 .048 .035 .051
6 .193 .225 .229 .014 .016 .032

KS w F 10 .608 .589 .636 .060 .054 .043
20 .938 .951 .962 .047 .046 .042
6 .143 .150 .142 .008 .011 .009

AD2 w F 10 .655 .601 .643 .056 .048 .026
20 .965 .962 .969 .037 .042 .042
6 .148 .150 .149 .009 .009 .010

AD w F 10 .660 .598 .648 .059 .047 .030
20 .963 .956 .968 .041 .040 .037

Table 5.1: Global Test with Fisher(F) and Tippett(T) combining function - Normal Errors
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H1 Rejection Rates H0 Nominal Levels
Statistic n C C

3 5 7 3 5 7

6 .401 .434 .422 .024 .021 .029
MF-F w T 10 .856 .865 .891 .040 .055 .060

20 .998 1.000 1.000 .053 .050 .042
6 .304 .376 .388 .016 .017 .025

MF-T w T 10 .846 .857 .871 .031 .049 .062
20 .998 1.000 1.000 .046 .034 .044
6 .407 .436 .425 .023 .020 .025

MF-L w T 10 .798 .814 .831 .044 .051 .061
20 .981 .969 .972 .044 .050 .041
6 .267 .348 .401 .009 .016 .032

KS w T 10 .823 .840 .857 .028 .052 .055
20 .998 .998 .998 .049 .041 .043
6 .177 .207 .203 .005 .005 .007

AD2 w T 10 .637 .645 .689 .036 .037 .037
20 .953 .952 .959 .035 .039 .039
6 .179 .208 .198 .005 .007 .007

AD w T 10 .591 .586 .635 .036 .035 .035
20 .882 .883 .879 .038 .038 .034
6 .337 .298 .173 .019 .015 .030

MF-F w F 10 .798 .796 .749 .042 .049 .056
20 .997 .996 .991 .044 .050 .051
6 .161 .189 .191 .005 .002 .007

MF-T w F 10 .767 .740 .721 .021 .033 .045
20 .994 1 .991 .041 .039 .054
6 .329 .303 .167 .021 .014 .027

MF-L w F 10 .727 .742 .711 .048 .052 .051
20 .963 .932 .936 .049 .057 .046
6 .158 .187 .184 .002 .004 .008

KS w F 10 .733 .713 .710 .019 .029 .042
20 .991 .993 .987 .033 .041 .051
6 .013 .018 .007 .000 .000 .000

AD2 w F 10 .559 .543 .504 .031 .030 .041
20 .930 .902 .888 .039 .039 .043
6 .015 .018 .009 .002 .001 .003

AD w F 10 .591 .586 .635 .034 .032 .034
20 .882 .883 .879 .038 .046 .036

Table 5.2: Global Test with Fisher(F) and Tippett(T) combining function - Exponential
Errors
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H1 Rejection Rates H0 Nominal Levels
Statistic n C C

3 5 7 3 5 7

6 0.145 0.106 0.066 0.024 0.028 0.017
MF-F w T 10 0.382 0.372 0.317 0.053 0.042 0.051

20 0.737 0.695 0.701 0.044 0.042 0.05
6 0.057 0.06 0.085 0.007 0.009 0.011

MF-T w T 10 0.319 0.351 0.334 0.033 0.042 0.043
20 0.714 0.682 0.7 0.049 0.04 0.050
6 0.145 0.094 0.074 0.025 0.023 0.016

MF-L w T 10 0.335 0.313 0.308 0.053 0.055 0.052
20 0.602 0.513 0.521 0.048 0.052 0.05
6 0.048 0.056 0.069 0.006 0.01 0.008

KS w T 10 0.297 0.328 0.309 0.025 0.046 0.043
20 0.730 0.699 0.699 0.034 0.038 0.039
6 0.010 0.002 0.000 0.005 0.001 0.001

AD2 w T 10 0.313 0.285 0.246 0.039 0.038 0.032
20 0.691 0.66 0.655 0.046 0.037 0.037
6 0.006 0.004 0.000 0.003 0.001 0.000

AD w T 10 0.306 0.279 0.240 0.041 0.037 0.035
20 0.618 0.582 0.541 0.039 0.045 0.033
6 0.169 0.163 0.168 0.025 0.03 0.025

MF-F w F 10 0.399 0.429 0.417 0.061 0.051 0.048
20 0.76 0.734 0.744 0.046 0.053 0.050
6 0.116 0.136 0.161 0.033 0.024 0.024

MF-T w F 10 0.379 0.427 0.39 0.045 0.049 0.049
20 0.742 0.726 0.766 0.049 0.041 0.052
6 0.169 0.165 0.16 0.03 0.036 0.026

MF-L w F 10 0.369 0.385 0.384 0.056 0.056 0.044
20 0.641 0.604 0.593 0.042 0.055 0.050
6 0.105 0.142 0.158 0.02 0.014 0.026

KS w F 10 0.363 0.423 0.4 0.043 0.053 0.044
20 0.784 0.767 0.796 0.053 0.041 0.049
6 0.078 0.078 0.09 0.008 0.007 0.004

AD2 w F 10 0.347 0.359 0.357 0.043 0.041 0.036
20 0.733 0.718 0.745 0.043 0.032 0.038
6 0.079 0.085 0.086 0.009 0.007 0.006

AD w F 10 0.326 0.346 0.341 0.046 0.043 0.038
20 0.670 0.647 0.649 0.042 0.04 0.030

Table 5.3: Global Test with Fisher(F) and Tippett(T) combining function - Student’s t
Errors
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H1 Rejection Rates H0 Nominal Levels
Statistic n C C

3 5 7 3 5 7

6 0.535 0.506 0.508 0.050 0.043 0.038
F 10 0.811 0.774 0.811 0.061 0.060 0.038

20 0.986 0.993 0.987 0.05 0.042 0.049
6 0.424 0.400 0.402 0.044 0.041 0.032

Friedman 10 0.702 0.667 0.711 0.047 0.054 0.041
20 0.957 0.962 0.976 0.047 0.04 0.041
6 0.459 0.438 0.456 0.051 0.051 0.044

MAR 10 0.719 0.696 0.731 0.054 0.06 0.045
20 0.957 0.965 0.978 0.047 0.043 0.042

Normal
6 0.559 0.565 0.547 0.054 0.034 0.041

F 10 0.813 0.788 0.839 0.046 0.05 0.052
20 0.984 0.975 0.987 0.038 0.04 0.044
6 0.547 0.583 0.553 0.058 0.031 0.043

Friedman 10 0.803 0.852 0.890 0.042 0.039 0.044
20 0.993 0.996 0.997 0.045 0.049 0.047
6 0.582 0.615 0.590 0.070 0.044 0.056

MAR 10 0.818 0.873 0.900 0.047 0.042 0.049
20 0.993 0.997 0.998 0.047 0.058 0.047

Exponential
6 0.209 0.178 0.158 0.033 0.035 0.031

F 10 0.256 0.257 0.242 0.046 0.037 0.037
20 0.491 0.422 0.415 0.033 0.04 0.031
6 0.223 0.209 0.201 0.045 0.035 0.029

Friedman 10 0.344 0.378 0.398 0.047 0.063 0.041
20 0.706 0.732 0.753 0.042 0.051 0.05
6 0.245 0.238 0.237 0.053 0.045 0.037

MAR 10 0.367 0.400 0.429 0.049 0.07 0.046
20 0.72 0.745 0.764 0.046 0.056 0.051

Student’s t

Table 5.4: Global Test - Competitors
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H1 Rejection Rates
Stat. n C=3 C=5 C=7

delta
1 2 3 1 2 3 1 2 3

6 0.034 0.175 0.393 0.02 0.107 0.309 0.024 0.057 0.245
F 10 0.092 0.377 0.761 0.036 0.236 0.632 0.048 0.127 0.533

20 0.191 0.73 0.977 0.1 0.614 0.968 0.14 0.357 0.941
6 0.017 0.094 0.292 0.005 0.043 0.164 0.005 0.02 0.127

Fr. 10 0.032 0.22 0.609 0.009 0.116 0.454 0.018 0.058 0.363
20 0.066 0.53 0.935 0.043 0.417 0.878 0.078 0.223 0.878
6 0.058 0.206 0.365 0.025 0.107 0.277 0.022 0.055 0.206

MAR 10 0.104 0.37 0.657 0.033 0.202 0.536 0.04 0.105 0.455
20 0.174 0.651 0.943 0.086 0.532 0.912 0.127 0.315 0.899
6 0.018 0.083 0.185 0.347 0.007 0.031 0.06 0.363 0.008

AD 10 0.091 0.35 0.643 0.721 0.027 0.135 0.357 0.729 0.036
20 0.259 0.761 0.973 0.988 0.113 0.566 0.935 0.991 0.158

Normal
6 0.057 0.252 0.489 0.024 0.123 0.375 0.03 0.069 0.31

F 10 0.104 0.39 0.756 0.049 0.253 0.62 0.058 0.141 0.563
20 0.211 0.728 0.972 0.103 0.6 0.955 0.144 0.369 0.931
6 0.018 0.092 0.46 0.005 0.054 0.326 0.009 0.027 0.261

Fr. 10 0.041 0.241 0.785 0.014 0.188 0.68 0.036 0.111 0.618
20 0.139 0.657 0.993 0.05 0.603 0.987 0.134 0.4 0.979
6 0.137 0.296 0.545 0.035 0.177 0.462 0.046 0.095 0.404

MAR 10 0.207 0.47 0.82 0.059 0.36 0.769 0.087 0.221 0.734
20 0.325 0.84 0.995 0.14 0.767 0.993 0.222 0.538 0.99
6 0.028 0.155 0.26 0.449 0.012 0.033 0.085 0.478 0.016

AD 10 0.156 0.486 0.792 0.914 0.058 0.253 0.545 0.94 0.086
20 0.314 0.768 0.966 0.994 0.15 0.602 0.917 0.995 0.238

Exponential
6 0.019 0.05 0.134 0.006 0.026 0.067 0.006 0.008 0.029

F 10 0.037 0.079 0.203 0.011 0.042 0.133 0.006 0.015 0.072
20 0.052 0.195 0.395 0.017 0.08 0.237 0.012 0.033 0.144
6 0.013 0.044 0.154 0.004 0.017 0.071 0.003 0.01 0.052

Fr. 10 0.031 0.101 0.254 0.008 0.049 0.183 0.007 0.022 0.115
20 0.058 0.265 0.624 0.024 0.155 0.501 0.03 0.086 0.443
6 0.049 0.091 0.192 0.011 0.045 0.116 0.013 0.022 0.086

MAR 10 0.068 0.155 0.294 0.018 0.082 0.231 0.014 0.034 0.162
20 0.095 0.316 0.641 0.04 0.209 0.543 0.047 0.111 0.495
6 0.018 0.029 0.089 0.146 0.006 0.014 0.029 0.172 0.007

AD 10 0.066 0.155 0.312 0.428 0.014 0.057 0.171 0.412 0.011
20 0.096 0.266 0.458 0.559 0.032 0.134 0.329 0.593 0.037

Student’s t

Table 5.5: Pairwise Comparisons
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Figure 5.1: C = 3 normal errors. Power comparison among iterated Fisher MultiFocus
permutation test and traditional counterparts.

Figure 5.2: C = 3 exponential errors. Power comparison among iterated Fisher MultiFocus
permutation test and traditional counterparts.
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Figure 5.3: C = 3 Student’s t errors. Power comparison among iterated Fisher MultiFocus
permutation test and traditional counterparts.

5.7 Multivariate extensions

The proposed combination-based permutation approach (described in Section 5.4), can be
easily extended via nonparametric combination methodology also to the multivariate case,
i.e. when the response variable is multidimensional. In this case the univariate components
could be mixed, it means that some could be continuous and/or ordered categorical. Also
in this case we focus on ordered categorical response variables proposing a generalization
of the combination-based permutation approach for testing effects within the framework of
the multivariate RCB designs, considering an additive phase of combination of dependent
univariate permutation tests. Following the rationale explained in Section 5.2, let us
consider X as a response categorical variable whose support is partitioned into m ≥ 2
ordered classes {Aγ ; γ = 1, . . . , m}, in the sense that relationships such as Aγ < Aλ have
a clear meaning for every pair of subscripts γ, λ such that 1 ≤ γ < λ ≤ m. Let us also
assume that a statistical model for X exists given by the tern (χ,B, P ∈ P), where χ
is the sample space of X, B is an algebra of events and P is a nonparametric family of
non-degenerate probability distributions on (χ,B). Let us assume that data are classified
according to C treatments and n blocks with reference to the adopted RCB design and
also the result of the experiment is characterized by the simultaneous observation of p
response variables. Hence, the multivariate categorical response variable X is related to a
p-dimensional vector of responses. The experimental design is developed with the aim at
comparing the C treatments with respect to p-different response variables.

In what follows we refer to Xijk as the univariate categorical response variable where
the subscripts i = 1, . . . , n, j = 1, . . . , C and k = 1, . . . , p are related to the n blocks, C
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treatments and p variables respectively. In this case, considering C independent random
samples Xj = {Xji; i = 1, . . . , n; j = 1, . . . , C}, the testing hypotheses expressed in (5.1)
and (5.2) can be rewritten as follows:

H0 :

{
p⋂

k=1

Xi1k
d= . . .

d= XiCk

}
=

{
p⋂

k=1

(Fi1k(Aγ) = . . . = FiCk(Aγ)), γ = 1, . . . , m

}
∀i,

(5.22)

H1 :

{
p⋃

k=1

(Xi1k

d
6= . . .

d
6= XiCk)

}
=





p⋃

k=1

m⋃

γ=1

(Fi1k(Aγ) 6= . . . 6= FiCk(Aγ))



 for at least one i,

(5.23)
for i = 1, . . . , n, γ = 1, . . . , m, where Fijk = Pr {Xijk ≤ Aγ} with j = 1, . . . , C are the
cumulative distribution functions (CDFs) for ordered categorical variables Xijk. Also in
this case (5.23) defines the non-dominance stochastic of Xijk with respect to Xihk with
j < h; j, h = 1, . . . , C and defines the inequality distribution of Xijk with respect to Xihk

with j 6= h; j, h = 1, . . . , C.
Also in this case we conceptually categorize a multidimensional continuous variable Y

by a (nonparametric) function φ defined as follows:

Xij = φ(Yij)
d= φ(Yih + ∆j) j, h = 1, . . . , C j 6= h i = 1, . . . , n; (5.24)

where Yij represents underlying real-valued p-vector of responses, φ is a function which
transforms Yijk into ordered categorical data Xijk, and ∆j represents non-negative sto-
chastic effects. So the function φ is a nonparametric function defined on the set Γ (i.e. the
set of the p-vector of numerical responses) in the set O (i.e. the set of the of the p-vector
of categorical responses) which maps any point of Γ in O such that φ(Yijk +∆j) ≥ φ(Yijk),
for any j = 1, . . . , C, k = 1, . . . , p and i = 1, . . . , n. As in the univariate case, we use this
analogy in order to use the terminology adopted for quantitative variables to the case of
ordered categorical variables. Now we focus our attention on the multivariate (continuous)
variable Y related to a p-dimensional vector of responses and we consider an experimental
design with n blocks and, within each block, experimental units are randomly assigned to
the C (C > 2) treatments and exactly one experimental unit is assigned to each of the C
treatments. We can represent the Y data as a matrix of size n×C× p where n represents
the number of blocks, C represents the number of treatments and p represents the number
of the univariate response variables. The p-variate observations can be presented in an
n× C table:

Y = [Y1, . . . ,Yj , . . . ,YC ] =




Y11 . . . Y1j . . . Y1C

. . .
Yi1 . . . Yij . . . YiC

. . .
Yn1 . . . Ynj . . . YnC






72 Randomized Complete Block designs

where Yij = [Yij1, . . . , Yijk, . . . , Yijp]T represents the ij-th observed p× 1 response for i-th
block and j-th variable, i = 1, . . . , n, j = 1, . . . , C (C > 2). Similarly to the model (5.4)
the multivariate data can be described as follows:

Yij = µ + βi + τ j + εij , εij ∼ IID(0, Σ) i = 1, . . . , n, j = 1, . . . , C (5.25)

where: βi, τ j , and Yij , are respectively the effect of the i-th block, the effect of the j-th
treatment and Yij is the p-dimensional multivariate response variable for the i-th block
and the j-th treatment. The random term εij represents a p-vector of experimental errors
with zero mean, variance/covariance matrix Σ and unknown continuous distribution P .
The usual side-conditions for effects are given by the constrains

∑
i βi =

∑
j τ j = 0.

The effect model for the k-th univariate component of Yij can be written as:

Yijk = µk + βik + τjk + εijk i = 1, . . . , n; j = 1, . . . , C; k = 1, . . . , p. (5.26)

Within the framework of NPC Test methodology, we remark that model (5.26) could be
rewritten in a more general form considering the interaction between effects and blocks.
This can be done because blocks play the role of strata, therefore it is as if each block
would provide a separated test so that it is not required that τj ’s have to be equal among
blocks (under the alternative nor under the null hypothesis). In addition it is not required
that errors have to be independent and identically distributed among block/subjects, but
just among trials within the same block. In this setting model (5.25) fall to be as a special
case of it. Note that the parametric counterparts does not extend to interaction so easily.
In the framework of NPC Test we suppose that, if the global null hypothesis H0 is true,
the hypothesis of exchangeability of random errors within the same block holds.

Also in this case the global null hypothesis H0 states the equality in distribution of the
the multivariate distribution of the p variables in all C groups, and it is supposed to be
properly decomposed into C × (C − 1)/2 sub-hypotheses H0(jk) (partial null hypotheses),
j, h = 1, . . . , C, j 6= h; each one related to the jh-th pair-wise comparison between couples
of treatments:

H0 :
[
Y1

d= . . .
d= YC

]
=




C⋂

j,h=1
j 6=h

(Yj
d= Yh)


 =




C⋂

j,h=1
j 6=h

H0(jh)


 . (5.27)

Finally, each H0(jh) is supposed to be properly decomposed into p sub-hypotheses
H0k(jh), k = 1, . . . , p, each appropriate for partial (univariate) aspects, thus H0 (multi-
variate) is true if all the H0k(jh) (univariate) are jointly true:

H0 :




C⋂

j,h=1
j 6=h

p⋂

k=1

(Yijk
d= Yihk)


 =




C⋂

j,h=1
j 6=h

p⋂

k=1

H0k(jh)


 , ∀i = 1, . . . , n. (5.28)
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The global alternative hypothesis H1 is represented by the union of partial H1k(jh)

sub-alternatives:

H1 :




C⋃

j,h=1
j 6=h

H1(jh)


 =




C⋃

j,h=1
j 6=h

p⋃

k=1

H1k(jh)


 ; (5.29)

so hat H1 is true if at least one of sub-alternatives is true.
Following the idea described in the univariate case, we want to test the global null

hypothesis H0 and the C×(C−1)/2 hypotheses H0(jh). The key idea comes from the partial
(univariate) tests which are focused on p-th partial aspects H0k(jh), and then, combining
them with an appropriate combining function, firstly to test H0(jh), j, h = 1, . . . , C, j 6= h,
and finally to test the global (multivariate) test which is referred to as the global null
hypothesis H0.

Any permutation testing procedure suggested for the univariate case (Section 5.4) can
be used, in this work we use the Anderson-Darling statistic (5.16) and the well-known
Pearson statistic:

P ∗2 =
∑

jh

nj · [N∗
jh

nj
− p̂h]2

p̂h
, (5.30)

where N∗
jh is described in (5.14) and p̂h = f·h

n where by f.h we intend the marginal
frequencies of the observation in the hth treatment.

We observe that in the null hypothesis H0 the permutation distribution of (5.30), in
case of large samples, is well approximated by that of a central chi-square with C−1 degree
of freedom. By the fact that the null distribution of (5.30) depends only on exchangeable
errors, it can be evaluated by a CMC method in order to obtain an exact permutation
test. In general the (5.30) is the most popular test statistic for non-dominance alternative
and non-ordered categorical variables while for ordered categorical variables is inadequate.

So we suggest an alternative, within the framework of permutation tests, of the Pearson
statistic for ordered categorical variables given by:

P ∗2
f =

k∑

j=1

(f∗hj −
nh.f.j

n
)2[f.j(n− f·j)]−1. (5.31)

This test statistic, again Anderson-Darling approach, in H0 is equivalent to the sum
of standardized squared summands, except for a permutationally invariant coefficient and
its behaviour is very close to that of the traditional chi-square. In order to obtain an
estimate of the permutation distribution under H0 of all test a CMC procedure can be
used. Every resampling without replacement Y∗ from the data set Y actually consists of a
random attribution of the individual block data vectors to the C treatments. In every Y∗

r

resampling, r = 1, . . . , B, the S = p× C × (C − 1)/2 partial tests Tk(jh) are calculated to
obtain the set of values [T ∗sr = T (Y ∗

sr), s = 1, . . . , S; r = 1, . . . , B], from the B independent
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random resamplings. It should be emphasized that CMCP only considers permutations
of individual data vectors within each individual block, so that all underlying dependence
relations which are present in the component variables are preserved.

5.8 Some testing procedures from the literature for the mul-
tivariate RCB design

Of sure, when assuming the hypothesis of multivariate normality for random error com-
ponents, the inferential problem can be solved by means of MANOVA procedure (Mont-
gomery (2004)). Möttönen et al. (2003) purpose an extension of the Friedman and Page
tests for the multivariate case, such procedures usually imply univariate rank, in the mul-
tivariate case they are replaced by spatial rank tests. The spatial centered rank of the
observation, ri among a n× C p-variate data-set {Y1, . . . ,Yn} is defined as:

ri = 1/n
n∑

q=1

sgn(Yi −Yq), (5.32)

where

sgn (Y) =
{ ‖Y‖−1 Y if Y 6= 0

0 if Y = 0

}
. (5.33)

The rij defined as the centered rank of the observation with the j-th treatment in the
i-th block, is possible to write r = (rT

1̇
, . . . , rT

.C−1)
T =

∑
i

ri where ri = (rT
i1, . . . , r

T
i,C−1)

T

is the concatenated vector of ranks vector. The p-variate observations can be presented
in an n × C table, if we consider the concatenated random vectors of the observations
in each blocks Yi = (Yi1 . . .YiC)T , i = 1, . . . , n, we can assume the independence of Yi

with CDF’s Fi(Yi1− τ1, . . . ,YiC − τC), where Fi are permutation invariant and the τj are
the treatment effects, so, within the blocks, the variables Yi1, . . . ,YiC are exchangeable
under the null model.

In this framework the permutation MANOVA test (Möttönen et al. (2003)) is given
by:

Q =
C − 1
nC

ZT
.jD

−1Z.j , (5.34)

where
Zi = (Zi1 . . .Zi,C−1)

T =
(
Zi1 − Zi. . . .Zi,C−1 − Zi.

)T
, (5.35)

denotes the (C−1)p-vector of the centered response values in the i-th block, then the sum
of the centered response values over the blocks is given by:

Z = (Z.1, . . . ,Z.,C−1) =
n∑

i=1

Zi. (5.36)
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The matrix D is given by:

D =
1

nC

n∑

i=1

C∑

j=1

ZijZT
ij (5.37)

Möttönen et al. (2003) show that if the sequence (Yi) is such that the second and third
moments of the permutation random variables Z∗i are uniformly bounded with D → Σ
where Σ is of full rank then, under H0 the limiting permutation distribution of Q∗ is
χ2

p(C−1). In order to obtain the spatial rank tests Möttönen et al. (2003) suggest to
replace the multivariate blockwise centered response vectors Zij by multivariate blockwise
centered rank vectors. The multivariate centered ranks rij is the centered rank of the
observation with the jth treatment among the observations in the ith block. The rank
can be displayed in a table as follows:

Treatments
Blocks 1 2 . . . C

1 r11 r12 . . . r1C

2 r21 r22 . . . r2C
...
...

...
...

. . .
...

n rn1 rn2 . . . rnC

(5.38)

If we consider the concatenated vector of rank vectors in the ith block (ri = (rT
i1, . . . , r

T
i,C−1))

the vector of the rank sums over the blocks will be r = (rT
.1, . . . , r

T
.,C−1) =

∑
i ri. The per-

mutation random variable of r is r∗ and of rij is r∗ij (ri1, . . . , riC are exchangeable within the

blocks). E∗(r∗ij) = 0, V ar∗(r∗ij) =
1
C

∑C
j=1 rijrT

.ij, Cov∗(r∗ij ,r
∗
ij′′

) =
1

C(C − 1)
∑C

j=1 r.ijrT
.ij .

We obtain that E∗(r∗) = 0, S−1
r = V ar∗(r∗) =

n

C − 1
(C(IC−1) − (JC−1) ⊗ (Gr) where

(Gr) =
1

nC

∑n
i=1

∑C
j=1 r.ijrT

.ij and ⊗ is the symbol for the Kronecker product. Mul-
tivariate extensions of the well known Friendman’s and Page’s tests are defined as the
Multivariate Friedman Statistic given by Qr = rTS−1

r r and the Multivariate Page test
statistic defined as L = r.1 + 2r.e + . . . + Cr.C .

Möttönen et al. (2003) show that under H0 the limiting permutation distribution of
Q∗

r is a χ2-distribution with p(C − 1) degrees of freedom and the limiting permutation
distribution of P ∗ = 12

nC2(C+1)
L∗T G−1

r L∗ has a central χ2-distribution with p degrees of
freedom.

5.9 Comparative simulation study

The permutation solution for the multivariate RCB have been evaluated with the para-
metric (MANOVA) and nonparametric testing procedures (Multivariate Friedman tests
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and Multivariate Page test) by a comparative simulation study. The simulation study is
designed in the following way:

• 1,000 independent simulations;

• number of blocks: n = 5, 10, 20; number of treatments: C = 2, 3, 4, 5;

• block effect βi, i = 1, . . . , n, is generated from discrete uniform distribution (inde-
pendently for all univariate components);

• number of response variables is p = 3;

• number of response variables where treatment effect is active: 1, 2, 3; by ‘active
variable’ we mean that for the kth variable, k = 1, 2, 3, true means differ from each
other (following the pattern detailed below) so that ∃k : τjk 6= 0, j = 1, . . . , C, k =
1, 2, 3; instead, we say that the treatment is not active for the kth variable when all
τjk are set equal to zero;

• at univariate level the treatment effects are set as follows:

– two treatments (C = 2): µ1 = 0 and µ2 = 3;

– three treatments (C = 3): µ1 = 0, µ2 = 1 and µ3 = 3;

– four treatments (C = 4): µ1 = 0, µ2 = 1, µ3 = 2 and µ4 = 3;

– five treatments (C = 5): µ1 = 0, µ2 = 0.5, µ3 = 1,µ4 = 2 and µ4 = 3;

• three types of random errors: normal, skew normal (as an example of an asymmetric
distribution) and Student’s t with 3 degrees of freedom (as an example of a heavy-
tailed distribution); each one of the p = 3 random component εijk, i = 1, . . . , n,
j = 1, . . . , C, k = 1, 2, 3, are generated with a variance/covariance structure as
follows:

Σ =




1.25 −0.5 0.5
−0.50 1.25 −0.25
0.5 −.25 1.25


 (5.39)

finally, in order to better represent a genuine ordinal scale, before being added to
the true effects the random errors were rounded to the nearest integer;

• the considered significance α-level is equal to 0.05.

We perform a multivariate permutation test (1, 000 conditional Monte Carlo iterations,
CMC) for each simulation using three types of combining function: Fisher, Tippett and
the second version of Liptak combing function; we also perform the parametric MANOVA
two way layout (for the RCB) and the nonparametric Multivariate Friedman Test and
Multivariate Page test as counterparts (Section 5.11).
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Tables 5.6, 5.7 and 5.8 report the rejection rates and nominal levels of the permu-
tation tests under the three different distributions of the error components (multivariate
normal errors in Table 5.6, multivariate Student’s t errors in Table 5.7 and multivariate
Skew-normal errors in Table 5.8). In the first column we report the type of test statistic,
Anderson-Darling statistic(AD) (5.14) and Pearson statistic for ordered categorical vari-
ables (Pears) (5.31). We added to the statistic’s label the terms ‘FwF’, ‘LwL’and ‘TwT’ to
indicate that we used the Fisher, Tippett and the logistic version of the Liptak combining
function for the first and second phase of combination (so for example ‘FwF’ means that
we used the Fisher combination function in all the phases of combination). We underline
that in the Tables 5.6, 5.7 and 5.8 the term Var. specifies the number of active variables
which occurs in the experiment.

As first remark of the simulation study we observe that, from a general point of view,
all the procedures under the null hypothesis appear to behave properly according to the
nominal level. We observe also that, the power of the global test increases when the num-
ber of blocks and treatments increases.

From Tables 5.6, 5.7 and 5.8 we note that the Anderson-Darling statistic with the
Fisher and the Liptak (second version) combining functions appears to be more powerful
than the others permutation test statistics implemented, we observe also that among the
permutation tests the use of the Tippett combining function seems to produce a loss of
power.

In Figures 5.4, 5.5 and 5.6 we report the power behaviour tests under multivariate
normal errors (Figure 5.4), multivariate Student’s t errors (Figure 5.5) and multivariate
Skew-normal errors (Figure 5.6) of the combination-based permutations testing procedure
(Permutation 1 and Permutation2), of the traditional MANOVA procedure (MANOVA)
and of the nonparametric competitors multivariate Friedman and multivariate Page tests.
Note that with the statistic’s label ‘Permutation1’ and ‘Permutation2’ we refer to the
Pearson test statistic for ordered categorical variables and to the Anderson-Darling test
statistic respectively, using the Fisher’s combination function for all the phases of combi-
nation.

We observe that all the combination-based statistics provide greater power than the
traditional MANOVA under non normal errors. As expected,MANOVA procedure has a
good behaviour under normality of the error components. As shown in Figure 5.4, the
combination-based permutation provide greater power than all the other procedure under
multivariate Student’s t errors. The results suggest that all the combination-based permu-
tation testings with the Fisher and the Liptak (second version) combining functions seems
to be satisfactory, in particular the Anderson-Darling statistic using the Fisher’s combi-
nation function. Among the nonparametric competitors the worst one is the multivariate
Friedman test statistic, but we observe that it seems to be a valid solution under asymmet-
rical distributions of the error components. In general we can say that permutation tests
provide greater powers under multivariate Student’s t errors, while under multivariate
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Skew-normal errors they seem loss power respect to the nonparametric competitors.

Rejection Rates Nominal Levels
C = 2 C = 3 C = 4 C = 5
Var. Var. Var. Var. C

Test n 1 2 3 1 2 3 1 2 3 1 2 3 2 3 4 5
5 .012 .288 .303 .012 .292 .307 .012 .296 .312 .013 .301 .317 .013 .013 .013 .013

Pears. 10 .570 .662 .666 .579 .672 .676 .588 .683 .687 .596 .693 .697 .022 .022 .023 .023

(LwL) 20 .667 .691 .793 .678 .701 .805 .688 .711 .817 .698 .722 .829 .043 .044 .044 .045
5 .012 .290 .305 .012 .295 .310 .012 .299 .315 .013 .303 .319 .013 .013 .013 .013

AD 10 .575 .668 .672 .584 .678 .682 .593 .689 .693 .602 .699 .703 .022 .023 .023 .023

(LwL) 20 .673 .697 .800 .683 .928 .972 .852 .972 .972 .704 .728 .836 .043 .044 .045 .045
5 .011 .262 .276 .011 .266 .280 .011 .270 .284 .011 .274 .289 .012 .012 .012 .012

Pears. 10 .520 .604 .608 .528 .613 .617 .536 .622 .626 .544 .632 .636 .020 .020 .021 .021

(TwT) 20 .609 .630 .723 .618 .639 .734 .627 .649 .745 .637 .658 .756 .039 .040 .040 .041
5 .011 .265 .278 .011 .269 .283 .011 .273 .287 .012 .277 .291 .012 .012 .012 .012

AD 10 .525 .609 .613 .532 .619 .622 .540 .628 .632 .549 .637 .641 .020 .021 .021 .021
(TwT) 20 .614 .635 .729 .623 .847 .887 .777 .887 .887 .642 .664 .763 .040 .040 .041 .041

5 .012 .287 .302 .012 .291 .307 .012 .296 .311 .013 .300 .316 .013 .013 .013 .013
Pear. 10 .569 .661 .665 .578 .671 .675 .586 .681 .685 .595 .691 .695 .022 .022 .023 .023

(FwF) 20 .666 .689 .791 .676 .788 .803 .686 .801 .815 .696 .889 .890 .043 .044 .044 .045
5 .012 .290 .305 .012 .294 .309 .012 .298 .314 .013 .303 .319 .013 .013 .013 .013

AD 10 .574 .667 .671 .583 .677 .681 .591 .687 .691 .600 .697 .701 .022 .023 .023 .023

(FwF) 20 .672 .695 .798 .682 .801 .970 .850 .879 .970 .703 .901 .834 .043 .044 .045 .045

Table 5.6: Permutation Tests: Rejection rates and nominal levels under multivariate
normal errors

Rejection Rates Nominal Levels
C = 2 C = 3 C = 4 C = 5
Var. Var. Var. Var. C

Test n 1 2 3 1 2 3 1 2 3 1 2 3 2 3 4 5
5 .013 .301 .316 .013 .305 .321 .013 .310 .326 .013 .314 .331 .013 .014 .014 .014

Pear. 10 .596 .692 .697 .605 .703 .707 .614 .713 .718 .623 .724 .728 .023 .023 .024 .024

(LwL) 20 .698 .722 .829 .708 .962 1.000 .882 1.000 1.000 .729 .755 .866 .045 .046 .046 .046
5 .013 .301 .317 .013 .306 .322 .013 .310 .327 .013 .315 .332 .013 .014 .014 .014

AD 10 .597 .694 .698 .606 .704 .709 .615 .715 .719 .625 .726 .730 .023 .023 .024 .024

(LwL) 20 .699 .723 .830 .710 .964 1.000 .884 1.000 1.000 .731 .756 .868 .045 .046 .047 .047
5 .011 .274 .288 .012 .278 .293 .012 .282 .297 .012 .287 .302 .012 .012 .013 .013

Pear. 10 .543 .631 .635 .552 .641 .645 .560 .650 .654 .568 .660 .664 .021 .021 .022 .022

(TwT) 20 .636 .658 .756 .646 .877 .918 .805 .918 .918 .665 .688 .790 .041 .042 .042 .042
5 .011 .275 .289 .012 .279 .293 .012 .283 .298 .012 .287 .302 .012 .012 .013 .013

AD 10 .545 .633 .637 .553 .642 .646 .561 .652 .656 .570 .662 .666 .021 .021 .022 .022

(TwT) 20 .638 .660 .757 .647 .879 .921 .806 .921 .921 .667 .690 .792 .041 .042 .042 .042
5 .012 .297 .313 .013 .301 .317 .013 .306 .322 .013 .311 .327 .013 .013 .014 .014

Pear. 10 .589 .684 .688 .598 .694 .699 .607 .705 .709 .616 .715 .720 .023 .023 .023 .023

(FwF) 20 .689 .713 .819 .700 .917 .995 .872 .956 .995 .721 .966 .996 .045 .045 .046 .046
5 .012 .298 .313 .013 .302 .318 .013 .307 .323 .013 .311 .328 .013 .013 .014 .014

AD 10 .590 .686 .690 .599 .696 .700 .608 .706 .711 .617 .717 .721 .023 .023 .024 .024

(FwF) 20 .691 .765 .821 .701 .953 .997 .874 .997 .997 .722 .991 1.000 .045 .045 .046 .046

Table 5.7: Permutation Tests: Rejection rates and nominal levels under multivariate
Student’s t errors
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Rejection Rates Nominal Levels
C = 2 C = 3 C = 4 C = 5
Var. Var. Var. Var. C

Test n 1 2 3 1 2 3 1 2 3 1 2 3 2 3 4 5
5 .012 .286 .301 .012 .290 .305 .012 .294 .310 .012 .299 .314 .013 .013 .013 .013

Pear. 10 .566 .658 .662 .575 .668 .672 .584 .678 .680 .592 .688 .692 .022 .022 .023 .023

(LwL) 20 .663 .686 .787 .673 .914 .957 .839 .957 .957 .693 .717 .823 .043 .043 .044 .044
5 .012 .286 .301 .012 .291 .306 .012 .295 .310 .013 .300 .315 .013 .013 .013 .013

AD 10 .568 .660 .664 .576 .670 .674 .585 .680 .684 .594 .690 .694 .022 .022 .023 .023

(LwL) 20 .665 .688 .789 .675 .916 .960 .841 .960 .960 .695 .719 .825 .043 .044 .044 .044
5 .011 .261 .274 .011 .264 .278 .011 .268 .282 .011 .272 .287 .012 .012 .012 .012

Pear. 10 .517 .600 .604 .524 .609 .613 .532 .618 .622 .540 .628 .631 .020 .020 .021 .021

(TwT) 20 .605 .626 .718 .614 .834 .873 .765 .873 .873 .632 .654 .751 .039 .040 .040 .040
5 .011 .261 .275 .011 .265 .279 .011 .269 .283 .011 .273 .287 .012 .012 .012 .012

AD 10 .518 .602 .605 .526 .611 .614 .533 .620 .623 .541 .629 .633 .020 .020 .021 .021

(TwT) 20 .606 .627 .720 .615 .836 .875 .767 .875 .875 .634 .656 .753 .039 .040 .040 .040
5 .012 .261 .296 .012 .285 .300 .012 .289 .304 .012 .294 .309 .012 .013 .013 .013

Pear. 10 .557 .647 .651 .565 .657 .661 .574 .666 .670 .582 .676 .681 .022 .022 .022 .022

(FwF) 20 .652 .699 .774 .662 .918 .941 .824 .970 .975 .682 .958 1.000 .042 .043 .043 .043
5 .012 .269 .296 .012 .286 .301 .012 .290 .305 .012 .294 .310 .012 .013 .013 .013

AD 10 .558 .652 .662 .567 .658 .662 .575 .668 .672 .584 .678 .682 .022 .022 .022 .022

(FwF) 20 .653 .703 .776 .663 .934 .943 .826 .978 .980 .683 .960 1.000 .042 .043 .043 .043

Table 5.8: Permutation Tests: Rejection rates and nominal levels under multivariate Skew-
normal errors

Figure 5.4: Power Comparison - multivariate normal errors
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Figure 5.5: Power Comparison - multivariate Student’s t errors

Figure 5.6: Power Comparison - multivariate Skew-normal errors
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5.10 Examples of the permutation methodologies for RCB
designs in sensorial evaluation studies

The comparison of the flavour of meat from three breeds of geese

As an example of the combination-based permutation approach for testing effects in the
(univariate) RCB design we now deal with a real case study proposed in the literature.

Suppose, as in Lamond (1970), that we wish to compare the flavour of meat from three
breeds of geese X, Y , and Z on a five point scale with categories ranging from ‘excellent’
to ‘very poor’ and that the data from eight consumers shown in Table 5.9 are obtained,
where we have labeled the ordered categories as 1-5 scores. When applying the considered
RCB procedures to meat flavour data we can obtain results reported in Table 5.10, where
we performed pairwise comparisons only if the global test had been rejected (α = 0.05).It
is interesting to observe that not all procedures agree to reject the global null hypothesis
(α = 0.05). Moreover, the application of the iterated combination approach implies a
strengthening of evidence against the null hypothesis of equal flavour of meat from three
breeds of geese.

Consumer X Y Z Consumer X Y Z

1 3 2 3 5 2 4 2
2 4 5 4 6 1 3 3
3 3 2 3 7 2 5 4
4 1 4 2 8 2 5 2

Table 5.9: Category ratings for meat flavour for three breeds of geese

Test p-value
F .028

Friedman .152
MAR .158

iterated comb.
MF-F .037 .025
MF-L .028 .022
MF-T .204 .122
AD .201 .164
AD2 .153 .119

Table 5.10: p-values by testing procedure from flavour meat data.
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An application to a real case study

The R&D division of a home-care company is studying 5 possible new fragrances (labeled
r, s, t, v, w) of a given detergent to compare with their own presently marketed product
(labeled x). The experiment is designed as follows: after testing one given product (using
sense of smell), the panelist assigned three different scores to it, describing the three most
important aspects of the product: Strength – S (1 − 5 points), Pleasantness – P (1 − 5),
Appropriateness – A(Yes, No).

The same experiment is replicated under different assessment conditions (Bloom - B,
Dry - D, Long - L, Neat - N and Wet - W ), which should represent the situations in which
the final customers will make use of the product.

The graph in Figure 4.7 shows the described complex RCB design with its comparison
reference between fragrance r and x.
Figure 4.7 also displays the idea behind the solution to this problem that we propose using
NPC Test methodology: for comparison between fragrance r and x, first of all a set of
15 univariate permutation tests is computed, where each test iTj , i = B, D, L, N, W , j =
S, P, A, takes into account for comparison of one given aspect (Strength – S, Pleasantness
– P , Appropriateness – A) within a given condition (Bloom - B, Dry - D, Long - L, Neat
- N and Wet - W ).

Figure 4.7: Experimental design and scheme of the permutation solution.

The next step relates to a multivariate comparison of fragrance r and x for each con-
dition, which can be resolved by test iT , i = B, D, L, N, W , obtained via nonparametric
combination of the univariate test for the three aspects. The final step is a global multi-
variate test T , obtained by a final further nonparametric combination of the five tests iT ,
i = B,D, L,N, W .

As an application of the proposed solution to real data, Table 5.11 displays the whole
set of results from a real experiment with 7 panelists where we compare five fragrances
with fragrance x and univariate permutation p-values have been corrected by multiplicity.
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Table 5.11: Results for comparison between five new fragrances (r,s,t,v,w) with the
presently marketed product (x)

Procedure Glob. r vs x s vs x t vs x v vs x w vs x
MANOVA .039 .032 .032 .032 .032 .032
Friedman .039

Page .039
Permutation .011 .027 .042 .059 .015 .000

5.11 Final remarks

We presented a combination-based permutation solution for hypothesis testing within the
framework of the randomized complete block design. The proposed solution may suggest
to practitioners in the field of evaluation for educational services and quality of products
an effective approach, especially when using ordered categorical variables, such as in the
case of sensorial evaluations.

As confirmed by the presented simulation studies, the nonparametric tests are certainly
good alternatives, in particular respect to the traditional parametric procedures.

In fact, even in case of normality, the power of permutation tests is nearly the same as
that of the parametric tests, while in case of asymmetric or heavy tailed error distributions
permutation tests can provide higher power.

Hence, in each practical situation where the normality assumption is hard to justify,
the proposed nonparametric procedure can be considered a valid solution.

Finally, as suggested by the real case study, a possible way to improve power of per-
mutation tests is to better investigate the role of the combining functions. Note that
our proposed permutation test applies a combining function two times: at first in order
to combine the partial pairwise permutation tests to obtain a global test, then we apply
a combining function in order to perform a suitable multiplicity correction strategy for
pairwise permutation p-values.

The generalization of the combination-based permutation approaches in the case of
multidimensional response variables is presented.

As suggested by the developed case study, we can confirm that the proposed solution
is a good alternative in particular, as confirmed by the comparative simulation study
performed, the proposed approach is quite flexible and may provide both partial and
global indicators for investigating the performance of new products to be developed.





Chapter 6

Split-plot designs

6.1 Introduction

Split-plot (SP) designs result when a particular type of restricted randomization has oc-
curred during a planned experiment. A simple factorial experiment can result in a SP-type
design because of the way the experiment was in fact carried out. For example, in many
industrial experiments some of the factors of interest may be time-cost expensive while
the remaining factors are easy to set up. As a result, the order in which the treatment
combinations for the experiment are run is determined by the ordering of these time-cost
expensive factors. Likewise, an experiment might involve experimental units which need
to be processed as a batch for one or more of the factors in a particular treatment com-
bination. Finally, in some situations experimental units might be processed individually,
one right after the other, for the same treatment combination without resetting the factor
settings for that treatment combination. Classic SP experiments are usually run in repli-
cates in a number of blocks, so that the general structure of these experiments involves
several treatment effects (that are considered fixed) and block effects (that are considered
random); given that the SP structure is of a mixed type, there is an additional variance
term component to be considered when testing for effects. In general, there are three
principal structures in a SP design which are to be taken into account:

1. Treatment Structure: as with other factorial designs, there is usually a factorial
structure where all treatment combinations occur in the design. The analysis model
will have terms corresponding to the main effects and interactions of the factors.

2. Experimental Units Structure: the key feature of the split-plot design is that there
are two sizes of experimental units, i.e. main-plots and sub-plots. The main-plots can
be arranged in either a completely randomized design (CRD) or in blocks as part
of a randomized complete block (RCB) design. The sub-plots are always smaller
portions of the main-plots.
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3. Randomization Structure: two separate randomizations are carried out in a split-plot
design. At the upper level, the main-plot treatments are randomly assigned to main-
plot units. This may be done as a CRD or as an RCB. Usually, an equal number of
replicates of each main-plot treatment is carried out. At the lower level, the sub-plot
treatments are randomly assigned within each main-plot and the randomization is
done independently for each main-plot.

The aim of this work is to present a novel permutation approach for testing effects in the
framework of SP designs (Corain, Ragazzi and Salmaso (2010)), the innovative approach is
formally presented in Section 6.4. Section 6.2 is devoted to the formalization of SP designs.
In Section 6.3 an overview on testing procedures for split plot experiments is presented.
Section 6.5 illustrates a comparative simulation study where the proposed permutation
approach is compared with the parametric and nonparametric counterparts proposed in
the literature. Finally, Section 6.7 is dedicated to conclusions and final remarks.

6.2 Split-plot designs

Consider the case of a SP experiment which includes a factor A with I levels, and a factor
B with J levels. Consider A as a whole-plot factor and B as a sub-plot factor (Naes et
al., (2006)). As usual in SP designs there are r blocks (or replications). The design can
be represented by the following model:

Yijl = µ + αi + βj + (αβ)ij + δl + Eil + εijl, (6.1)

with i = 1, . . . , I, j = 1, . . . , J and l = 1, . . . , r; µ is the general mean; αi are the effects
of the whole-plot factor (fixed), βj are the effects of the sub-plot factor (fixed), (αβ)ij are
the interaction effects between A and B, δl are the replicate/block effects (random effect)
and Eil is the whole-plot random error term which accounts for interaction between αi

and block l (with V ar(Eil) = σ2
whole). The term εijl is the regular (or sub-plot) error

with variance V ar(εijl) = σ2
sub. Given that some of the effects are random, the testing

procedure for the different effects are based on different error terms. For this model, the
whole-plot main effects are tested against the whole-plot mean square (MS) error, while
the sub-plot effects and interactions between whole-plots and sub-plots are tested against
the regular residual or sub-plot MS. In general it is possible to assume that all split-plot
models can be cast into the following general model (Naes et al. (2006)):

Y = Db + δ + e, (6.2)

where Y is the vector of response measurements, D is the design matrix for the experi-
mental factors, b is the vector of corresponding regression coefficients, δ is the vector of
whole-plot error terms and e is the vector of sub-plot errors. The terms δ and e can be
combined into one error term: e∗ = δ + e . Furthermore, we assume that all elements in
e are uncorrelated and uncorrelated between elements of δ; while the elements in δ are
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identical within the sample whole-plot and uncorrelated between whole-plots. Therefore,
V ar(δ) = σ2

wholeJ + σ2
subI where J is a (p × p) diagonal matrix with ones in the blocks

and zero elsewhere and I is a (p × p) identity matrix (p = I · J · r is the dimension of
Y ). Each block in the block diagonal matrix corresponds to the elements within the same
whole-plot. We observe that, in the model (6.1), a random block effect is also present in
the model and this factor will then be a part of the design matrix D. The general mixed
linear model (6.3) avoids this ambiguity:

Y = Xb + Zu+e, (6.3)

where Xb represents only the fixed effects of the design, Zu represents the random effects
and e is the vector of uncorrelated residual errors. The covariance matrix of Zu + e is
identical to the one in equation (6.2) because there is no random replicate effect in the
model.

6.3 An overview of testing procedures for split-plot exper-
iments

The simplest way to analyze SP designs is to ignore the split-plot structure in the design,
an approach which has been investigated by Letsinger et al. (1996) and by Kowalsky
et al. (2002). Essentially the regular ordinary least squares (OLS) estimate is used for
b (equation (6.2)) and the covariance matrix is calculated as (XTX)−1σ2

sub. The results
indicate that when the whole-plot error is smaller than the residual error, this approach
is suggested, but when the ratio between σ2

whole and σ2
sub is larger than unity, the OLS

should not be used.
The classic testing approach for SP is based on suitable ANOVA procedures and F

tests (Naes et al. (2006); Montgomery (2001)). The sub-plot error variance is obtained by
MSsub (residual mean square) and the whole-plot error variance is obtained by using the
difference between the sum of squares for the saturated and reduced models obtained only
from the fixed effects believed to be important (Letsinger et al. (1996)). The expected
corresponding E(MSdif ) is equal to:

E(MSdif ) = σ2
sub + mσ2

whole, (6.4)

where m is the number of sub-plot experiments per whole-plot combination. After calcu-
lations we find that

σ̂2
sub = (MSdif −MSsub)/m, (6.5)

is an unbiased estimator for the whole-plot error variance (for more details see Naes et
al. (2006) and Montgomery (2001)). When it is not possible to assume that there are
not interactions between whole-plot and split-plot factors, and when it is not possible
to assume compound symmetry (the cumulative distribution function of Yijl is invariant
under permutations of the error components among themselves), Koch (1969) gives a
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summary of the parametric and nonparametric procedures in such a case. In that paper
Koch considers only the situation in which the standard assumptions regarding normality
and variance homogeneity may not hold. With reference to the procedures suggested
by Koch (1969), the ν different treatments correspond in model (6.1) to the I whole-plot
treatments, the p different conditions correspond to the J split-plot treatments, and finally
the N subjects correspond to the all combination factor levels (I × J). Now consider an
experiment that involves N subjects, ν treatment groups and p conditions. Each of N
subjects has been randomly assigned to one of ν treatment groups and an observation has
been made on his or her response to each of p conditions. Let Y

(k)
ij be the response of

the j-th individual in the i-th treatment group to the k-th condition where i = 1, . . . , ν;
j = 1, . . . , ni; k = 1, . . . , p; so N =

∑ν
i=1 ni.

The data matrix will be:
YT

ij = (Y (1)
ij , . . . , Y

(p)
ij ), (6.6)

for i = 1, . . . , ν and j = 1, . . . , ni. The cumulative distribution function (CDF) of Yij is
continuous and p-variate, denoted by Fi(y) = G(y−mi) with m′

i = (m(1)
i , . . . ,m

(p)
i ) rep-

resenting the respective median vectors and indicative of the locations of the distributions
while G is a function that characterizes their shape. The different Yij are statistically
independent. The parametric analysis requires the basic assumption that G is a p-variate
normal distribution with a null mean and unknown positive definite covariance matrix Σ.
This implies that Yij are independently distributed according to the multivariate normal
distribution, i.e. Yij ∼ N(mi,Σ), we note the homoscedasticity assumption.

The nonparametric analysis does not require the above normality assumption. Within
this framework we want to test:

Hot : m1 = . . . = mν . (6.7)

To this purpose, if continuity is assumed, we may use the following statistic:

L = (
N − 1

N
)
∑

i

ni(Ri. − N + 1
2

j)′V −1
N (Ri. − N + 1

2
j), (6.8)

which is a generalization of the well-known Kruskal-Wallis test. By R
(k)
i. we mean the

average ranks, so R
(k)
i. = 1/ni

∑
j R

(k)
ij and

R
(k)
ij =

[
Rank of Y

(k)
ij in the set

{
Y

(k)
11 , . . . , Y (k)

vnv

}]
, (6.9)

where ties are handled by the mid-rank test. When H0t is true, all vectors Yij have
the same distribution. Hence, the joint distribution of all vectors is invariant under the
different possible assignments of the vectors to treatment groups. This invariance generates
a set of N ! equally likely realizations for the rank vectors Rij . Under this conditional
distribution (PNt) we have:

E(Rij | PNt) =
N + 1

2
j, (6.10)
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V ar(Rij | PNt) =
1
N

∑

i

∑

j

(Rij
N + 1

2
j)(Rij

N + 1
2

j) ≡ VN , (6.11)

where (i
′
, j
′
) 6= (i, j) and we assume that VN is non-singular.

Under the permutation approach, model (6.8) has equally likely (conditional) realiza-
tions and this may be used as a basis for a permutationally distribution free test for H0t.
The permutation distribution of L is approximately a chi-square with p(ν − 1) degrees of
freedom. The data matrix can be viewed as a set of mixed models, each of which corre-
sponds to a particular treatment (whole-plot). We now wish to test that in each of these
there are no condition effects, so the null hypothesis is:

Hoc : m
(1)
1 = . . . = m(p)

ν . (6.12)

This states that within each of the treatments there are no condition effects. First of
all we require the assumption of diagonal symmetry. We first make the transformation of
variables Uij= C1Yij where C1 is a (p−1)×p matrix whose rows are linearly independent
contrasts (so C1j = 0 if j is a vector - dimension p - of ones); we observe that if H0c is
true then Uij ∼ N(0p−1,C1ΣC′

1).
If the sample size (ni) is not too small, Koch (1969) suggests using tests that use the

information associated with all signed rank tests (Wilcoxon (1949)) corresponding to all
possible pairs of conditions. They have the form:

W ∗
ni

= T ∗′ni
C ′

1

[
C1V

∗
ni

C ′
1

]−1
C1T

∗
ni

, (6.13)

where:
T (k)∗

ni
= 1/ni

∑

j

S
(k)
ij ,

S
(k)
ij =

p∑

k′=1

{
sign(Y (k)

ij − Y
(k′)
ij )

}[
Rank of

∣∣∣Y (k)
ij − Y

(k′)
ij

∣∣∣
]

xmin
{∣∣∣Y (k)

ij − Y
(k′)
ij

∣∣∣ , . . . ,
∣∣∣Y (k)

ini
− Y

(k′)
ini

∣∣∣
}

,

v∗ni;kk′ = 1/n2
∑

j

S
(k)
ij S

(k′)
ij , V ∗

ni
= (v∗ni;kk′)

For large values of ni the statistic W ∗
ni is a chi-square with (p− 1) degrees of freedom.

The underlying permutation model PNc is due to the 2ni equally likely (conditional) re-
alizations associated with sign invariance imposed by the condition of diagonal symmetry.

Hence, we can consider the statistic:

W ∗
N,ν =

∑

i

W ∗
ni

, (6.14)
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so that when Hoc is true, for large values of ni, W ∗
N,ν is a chi-square with ν(p − 1)

degrees of freedom, but if ni is small, then W ∗
N,ν is only approximately a chi-square with

ν(p− 1) degrees of freedom. In the case of ni being too small, which implies singularities
in V ∗

ni
and difficulties in the chi-square approximation, W ∗

ni
can be modified applying it

to the sample obtained from treatment groups, thus obtaining a nonparametric analogue
of the parametric statistic F in the multivariate case. This statistic (W ∗

N ) is computed
in a manner similar to that used to obtain (6.13) but applied to the sample of subjects
obtained by the pooling treatment groups. The behaviour of this statistic is a chi-square
with (p − 1) degrees of freedom when Hoc is true. When the distributions within the
respective treatment groups may differ in shape as well as location, the statistic W ∗

N is
not a valid test for Hoc. In this situation Koch (1969) proposes the following statistic:

W = T̃ ′NC ′
1

[
C1ṼNC ′

1

]−1
C1T̃N , (6.15)

where:
T̃

(k)
N =

∑

i

∑

j

R̃
(k)
ij ,

ṼN ;kk′ =
1

N2

∑

i

∑

j

(R̃(k)
ij − p + 1

2
)(R̃(k′)

ij − p + 1
2

) and V ∗
N = (V ∗

N ;kk′),

R̃
(k)
ij =

[
Rank of Y

(k)
ij in the set

{
Y

(p)
ij , . . . , Y

(p)
ij

}]
.

When Hoc is true, we can do an exact test based on (6.15) in the permutation model
PNc, but if N is large the behaviour of (6.15) is approximately a chi-square distribution
with (p− 1) degrees of freedom.

6.4 A new approach to analyze split-plot designs

A novel permutation solution for testing whole-plot and split-plot main effects and their
interactions is here presented. We start saying that, in general, an exact permutation so-
lution for testing whole-plot main effects and their interactions cannot be done, due to the
fact that the exchangeability, under null hypothesis, of the error components doesn’t hold.
In this Section we suggest a new method to perform inference on split-plot experiments
via combination-based permutation tests (Pesarin and Salmaso (2010)).

The method is composed essentially of two parts: the first is based on a new symmetry-
based permutation approach (SYP) for testing the effects of whole-plot factors and the
interactions between whole-plot and split-plot factors; the second is based on the synchro-
nized permutation approach (SYN)- for more detail see Basso et al. (2007) and Salmaso
(2003)- to test the effects of split-plot factors and their interactions.

The example that generated our present discussion of SP experiments occurred in an
agricultural setting (see Naes et al. 2006). In this instance there are two different fertilizers
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(factor B), and two systems of irrigation (factor A) are to be used on two different varieties
of potato (factor C). The yield per square hectare is the response variable. There are two
blocks large enough to test each variety of potato with all fertilizers and both systems of
irrigation. It is possible to split each block into smaller sections but a full randomization
of the combinations is not possible - the same irrigation can only be used for strip sections
of the whole experimental area. The experimental design is a typical SP design where
the positions of the two systems of irrigation are randomized within the blocks and the
varieties of potato and the fertilizers are also randomized within the blocks. In this design
the systems of irrigation are considered to be a whole-plot and the others a split-plot. The
main-plot treatments follow a CRD or RCB design. Each of these plots is then split into
sub-plots, one for each of the varieties. Each variety is then randomly assigned to a sub-
plot within each main plot. The assignment is performed randomly within each main plot,
and independently of other main plots, i.e. the main plots are treated as blocks as far as
the varieties are concerned. Looking at it from two perspectives, the main-plot treatments
by themselves follow a simple CRD design, while the sub-plot treatments mimic an RCB
design. Combining the two together produces the split-plot design. Recognizing the two
types of designs that are combined is the key to analyzing these designs. There are two
different sizes of experimental units. The main-plot factor (A) is randomly assigned to
large (main) plots. Consequently, variation at the main-plot level is what limits detection
of effects. The sub-plot factor (B) is randomly assigned to smaller (split) plots within
each main plot. Consequently, both the blocking by main-plot and the smaller split-plot
experimental unit must be considered.

The following model is assumed to describe the data adequately:

Yijkl = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + δl + Eil + εijkl, (6.16)

with i, j, k, l are set equal to 1 or 2. The fixed effects are: µ (overall mean), αi (main
effect to the i-th level of A - whole-plot effect), βj (main effect to the j-th level of B -
sub-plot effect), γk (main effect to the k-th level of C - sub-plot effect), (αβ)ij (interac-
tion effect corresponding to the i-th level of A and j-th level of B), (αγ)ik (interaction
effect corresponding to the i-th level of A and k-th level of C), (βγ)jk (interaction effect
corresponding to the j-th level of B and k-th level of C) and (αβγ)ijk (interaction effect
corresponding to the i-th level of A, j-th level of B and k-th level of C). The random
effects are: δl (block effect), Eil (random effect corresponding to the i-th system of irriga-
tion and l-th block - whole-plot error term) and εijkl, (random effect corresponding to the
i-th level of A, j-th level of B, k-th level of C and l-th block - residual error term). In this
context we assume that Eil are IID with unknown continuous distribution function P -
symmetrically distributed around 0 - with mean 0 and V ar(Eil) = σ2

whole and also εijkl are
i.i.d with unknown continuous distribution function P - symmetrically distributed around
0 - with mean 0 and V ar(εijkl) = σ2

sub. We observe that it is also possible to incorporate
random interactions between sub-plots and replicates in the model, but these are often
considered to be negligible and are therefore omitted here. There are also the usual side



92 Split-plot designs

conditions: ∑

i

αi =
∑

j

βj =
∑

k

γk = 0, (6.17)

∑

i

(αβ)ij = 0 for any j
∑

j

(αβ)ij = 0 for any i, (6.18)

∑

i

(αγ)ik = 0 for any k
∑

k

(αγ)ik = 0 for any i, (6.19)

∑

j

(βγ)jk = 0 for any k
∑

k

(βγ)jk = 0 for any j, (6.20)

∑

i

(αβγ)ijk = 0. (6.21)

The following Table 6.1 is an illustration of the agricultural example with two blocks.
The symbol ‘+’ represents level 1 of the factors (A, B and C) while the symbol ‘-’ represents
level 2 of the factors involved in the experiment.

Table 6.1: Experimental design. The first variable is the whole-plot variable and the last
two are the sub-plot variables.

Block A B C

I + + +
I + + −
I + − +
I + − −

Block A B C

II − − −
II − − +
II − + −
II − + +

The over-null hypothesis state the null-effects of all factors and it c may be written as:

H0 : {(α = 0) ∩ (β = 0) ∩ (γ = 0)}∩
∩ {(αβ = 0) ∩ (αγ = 0) ∩ (βγ = 0) ∩ (αβγ) = 0} .

We want to separately test the sub-null hypotheses {H0A : α = 0};
{H0B : β = 0}; {H0AB : (αβ) = 0}; {H0AC : (αγ)ik = 0} and
{H0ABC : (αβγ)ijk = 0}. In order to simplify the notations we can rewrite the model (6.1)
as follows:

Yijkl = µijk + δl + σiε̃ijkl, (6.22)

where ε̃ijkl = Eil + εijkl are the random errors which are assumed to be symmetrically
distributed around the origin with unknown continuous distribution Pi (i = 1, 2), µijk =
µ+αi +βj +γk +(αβ)ij +(αγ)ik +(βγ)jk +(αβγ)ijk are unknown location parameters and
σi = σwp + σsp; i = 1, 2 are unknown scale coefficients which are not assumed to be equal.
Also we note by Y1 and Y2 the data vectors in the first and second block respectively
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(for example Y1 = (Y1111, Y1211, Y1121, Y1221)). We note that, in our present discussion,
the levels of the whole-plot factor A coincide with the blocks.

In this context, it must be observed that in H0 data are not exchangeable, so that the
permutation testing principle (Pesarin (2001)) is to some extent not exactly applicable.
Thus, in order to give a permutation solution, we have to look for approximate solutions.

Over-null hypothesis (referring to the model (6.22)) can be rewritten as:

H0 =
{

Y1 − µ

σ1

d=
Y2 − µ

σ2
; σ1 6= σ2

}
, (6.23)

where in addition we assume that the univariate responses Yijkl (i, l = 1, 2) take values
on the sample space χ, and are symmetrically distributed around the common location
parameter µ. The unconditional distributions of Xijkl = (Yijkl− Ỹ ), where Ỹ indicates the
pooled sampling median as Ỹ = (Y(n/2) + Y(1+n/2))/2 if n (where n = n1 + n2 is the total
number of the observations) is even and as Ỹ = (Y(n+1)/2 if n is odd, where Y(i) indicates
the ith order statistic; are symmetrically distributed around the origin if and only if H0 is
true. On the other hand, the conditional distributions of Xijkl conditional on the pooled
median Ỹ are such that:

Pr
{

Xijkl < z | Ỹ = −t
}

= Pr
{

Xijkl > z | Ỹ = t
}

, ∀z, t ∈ R, (6.24)

hence they are mutually symmetric, so they are only slightly asymmetric and their asym-
metry vanishes as sample size increases.

We can observe that the distributions of Xijkl in H0 are invariant with respect to the
common location parameter µ, but they depend on scale coefficients σi and on underlying
distributions Pi.

The key idea is to work within a permutation framework by conditioning with respect
to a set of jointly sufficient statistics in H0.

Suppose now that fP1 and fP2 are the densities of two sampling distributions related
to the two populations P1 and P2, relative to the same dominating measure Ψ and Y1, Y2

are the two separate data sets with sample size n1 and n2 respectively (in our discussion
n1 = n2). So as the likelihood associated with the pooled data set is:

fn
P (Y) = fn1

P1
(Y1) · fn2

P2
(Y2), (6.25)

from the sufficiency principle it follows that the data set partitioned into two blocks,
(Y1,Y2) is now the set of sufficient statistic. In fact, by joint invariance of the likelihood
ratio with respect to fP1 and fP2 , the permutation sample space of Y is Ξ/Y1

× Ξ/Y2

where Ξ/Y1
and Ξ/Y2

are the partial permutation sample space related to Y1 and Y2

respectively. Consequently, conditionally no datum from Y1 can be exchanged with any
other from Y2, because permutations are permitted only within blocks, separately.

The idea is to find a pair of conditional permutation tests for separately testing sym-
metry conditionally on (Y1,Y2) in accordance with the theory of permutation testing for
symmetry (Pesarin (2001)) followed by a suitable combination.
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6.4.1 The permutation approach in testing symmetry

In reference to the motivating example (model (6.1)) we can write the sub-hypothesis of
no whole-plot main effects as follows:

H0A : {α = 0} vs H1A : {α 6= 0} , (6.26)

or equivalently (model (6.22))

H0A : {µijkl = µ + βj + γk + αβij + αγik + βγjk + αβγijk} ,

vs

H1A : {µijkl 6= µ + βj + γk + αβij + αγik + βγjk + αβγijk} .

Let us consider the data on the first block Y1, that is a sample of n1 IID observations
from a continuous variable Y1 with unknown distribution P1 on the real line.

The responses Yijkl (l = 1, 2) take values on the sample space χ and are symmetrically
distributed around the common location parameter µ, so the unconditional distributions of
Xijkl = (Yijkl−Ỹ ) (where Ỹ is the pooled sampling median) are symmetrically distributed
around the origin if and only if H0A is true.

We can consider the variables Xijkl as the differences XAijkl −XBijkl where A and B
are two occasion of measurements with j, k = 1, 2 and i = l = 1. Pesarin (2001) shows
that the distribution of differences Xijkl is symmetric around the origin if XAijkl

d= XBijkl.
Let us consider t = (t1, . . . , tn1) and t′ = (t′1, . . . , t

′
n1) two points of the sample space,

they lie in the same orbit of a minimal sufficient statistic for any density fP1 symmetric
around zero if and only if the likelihood ratio

fP1(t1) · . . . · fP1(t
′
n1

)
fP1(t′1) · . . . · fP1(t′n1

)
= ρfP1

(t, t′), (6.27)

does not depend on fP1. Supposing the symmetry of fP1, the ratio ρfP1
(t, t′) is fP1

independent if fP1(ti) = fP1(t
′
i) (i = 1, . . . , n1) except for an irrelevant permutation of

units, i.e. ti = ±t′i. In this way the set of points χ/Y1
∈ Rn1 which contains the same

amount of information with respect to P1 as that contained in Y1 is made by all points
obtained by giving signs in all possible way to the elements of Y1.

Considering a finite group G of transformations of signs we have that:

X?
1 = g?(X1 =

{
X1111 · S?

1 , . . . , X1n1n11 · S?
n1

}
; n1 = 2, (6.28)

where {
S?

1 , . . . , S?
n1

} ∈ [−1, 1]n1 , (6.29)

is a vector of signs. So a suitable test for H0A (6.26) is given by T =
∑

jk X1jk1, the
permutation distribution of which is obtained by considering the permutation support
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T (X1) =
{

T (X∗
1) =

∑
jk X1jk1 · S∗1 : g ∈ G

}
where signs are assigned in all possible ways

with equal probability. So within the permutation approach in order to test H0A we are
looking for two separate partial tests of symmetry, one from each block, followed by a
suitable combination. These partial tests can be defined as:

IT ∗A =
∑

ijkl

Xijkl · S∗ijkl, (6.30)

where the notation I means “block 1” and the notation II means “block 2”and where
S∗ =

{
S∗ijkl; i = j = k = l = 1, 2

}
is a random sample of i.i.d observations from variable

S such that:

P (S = ±1) = 1/2. (6.31)

So we have that:
IT ∗A =

∑

jk

X1jk1 · S∗1jk1, (6.32)

IIT ∗A =
∑

jk

X2jk2 · S∗2jk2. (6.33)

After calculation and for conditions (6.17),(6.18),(6.19),(6.20),(6.21) we find:

IT ∗A = 4 · (µ + α +
∑

jk

ε̃1jk1) · (+1), (6.34)

IIT ∗A = 4 · (µ− α +
∑

jk

ε̃2jk2) · (−1). (6.35)

In these formulations, ε̃ijkl indicates the sum of all error components (ε̃ijkl = Eil+εijkl).
The two tests are independent and we can combine two tests into one (for more details
see Pesarin (2001)).

A possible combining function is a linear form (because the tests are independent)
given by:

ψ =
∣∣IIT ∗A +I T ∗A

∣∣ . (6.36)

After calculations we find that:

T ∗A = 4(2α +
∑

jk

(ε̃1jk1 − ε̃2jk2)). (6.37)

So we have found a statistic for testing the effects of whole-plot factor A that depends
only on effect α and on linear combinations of errors. Due to conditioning on a sample
quantity, the test statistic T ∗A is only approximately exact for testing symmetry. In a
similar way, suitable test statistics for testing on H0AB, H0AC , H0ABC can be obtained.
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6.4.2 A synchronized-based permutation solution for testing the sub-
plot main effects and interactions

As far as the split-plot structure is concerned, there is a complete randomization within
the blocks, so the sub-plot treatment mimics an RCB. For testing H0B, H0C and H0BC we
suggest using a synchronized permutation approach, which leads to three exact solutions
(Basso et al. (2007)). In particular, for each H0. we can find four intermediate statistics.
For example, considering the tests for H0B, we have two partial tests in the first block:

ITB|1 = (Y1111 − Y1211), (6.38)

ITB|2 = (Y1121 − Y1221), (6.39)

and another two partial tests in the second block:

IITB|1 = (Y2112 − Y2212), (6.40)

IITB|2 = (Y2122 − Y2222). (6.41)

In the first block v∗1 data are randomly selected from the strip A1B1C1 and exchanged
with v∗1 data randomly selected from the strip A1B2C1 and also v∗2 data are randomly
selected from the strip A1B1C2 and exchanged with v∗2 data randomly selected from the
strip A1B2C2.

In the second block v∗3 data are randomly selected from the strip A2B1C1 and ex-
changed with v∗3 data randomly selected from the strip A2B2C1 and also v∗4 data are
randomly selected from the strip A2B1C2 and exchanged with v∗4 data randomly selected
from the strip A2B2C2.

The permutation structures of the four intermediate statistics are:

IT ∗B|1 = 2(n− 2v∗1)(β + βγ) + n(ε̃
∗
1111 − ε̃

∗
1211), (6.42)

IT ∗B|2 = 2(n− 2v∗2)(β − βγ) + n(ε̃
∗
1121 − ε̃

∗
1221), (6.43)

IIT ∗B|1 = 2(n− 2v∗3)(β + βγ) + n(ε̃
∗
2112 − ε̃

∗
2212), (6.44)

IIT ∗B|2 = 2(n− 2v∗4)(β + βγ) + n(ε̃
∗
2122 − ε̃

∗
2222), (6.45)

where ε̃
∗
ijkl are the sampling means of permutation errors.

Synchronizing the permutations of the two statistics in the first block (that is v∗1 =
v∗2 = v∗) and the two statistics in the second block (v∗3 = v∗4 = v∗) then:

IT ∗B = 4(n− 2v∗)(β) + n(
∑

k

ε̃
∗
11k1 −

∑

k

ε̃
∗
12k1, (6.46)

IIT ∗B = 4(n− 2v∗)(β) + n(
∑

k

ε̃
∗
21k2 −

∑

k

ε̃
∗
22k2). (6.47)
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These two tests depend only on the effect of B and on a linear combination of ex-
changeable (within blocks) errors, so that they give two exact tests for H0B independent
of the truth of the other sub-null hypotheses.

The next step is how to combine these two tests, i.e. find out a suitable combining
function ψ:

ψ(IT ∗B,II T ∗B). (6.48)

For the independence of these tests, we suggest using Fisher’s combining function
(Pesarin (2001)).

The same strategy we used to obtain the solution for B can be applied to derive
permutation test statistics for C and BC.

6.5 Simulation study

In this Section, in order to validate the suggested method, we report on a simulation
study performed to validate symmetry permutation (SYP) testing on split-plot designs.
The reference setting for the present simulation study concerns a split-plot design with
three factors (model (6.16)), where both whole-plot factor A and split-plot factors B
and C have two levels each. The emphasis is on the power of SYP testing procedures:
a comparison with the parametric (F ) test and the nonparametric counterparts is also
presented.

The simulation program generates 1000 independent experiments for each of the fol-
lowing combination of cases:

• Two, four and six replications.

• The whole-plot error term (Eil) and the regular errors (εijkl) are independently
generated from a normal, exponential and 2 d.f. Student’s t distributions.

The standard deviation for random split-plot error (σ2
sub) was held at 0.5 and the

additional whole-plot component (σ2
whole) was 1. Note that the simulation mimics the

situation described in the previous Section. The main effects and interaction effects are
set as follows: α = 2, β = 1, γ = 0.5, αβ = 1.5, αγ = 1.25, βγ = 0.75 and αβγ = 0.25.

Tables 6.2, 6.3, 6.4 and 6.5 report a summary of the rejection rates (α = 0.05) and
nominal levels for the hypotheses H0A, H0AB, H0AC , H0ABC obtained using the symmetry-
based permutation testing procedure (SY P ), ANOVA testing procedure for SP designs
(F ) and the nonparametric counterparts L (6.8) and W (6.15); while tables 6.6, 6.7 and 6.8
report the rejection rates and nominal levels for the hypotheses H0B, H0C , H0BC obtained
using the synchronized-based permutation testing procedure (SY N) and the parametric
and nonparametric counterparts (F , L and W ).
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The first column reports the type of statistic, the second the number of replications
and then the estimated power under the three types of errors. Nominal levels are also
reported, in case we set all effects equal to zero.

From Figure 6.1 we note that for all whole-plot hypotheses the permutation SYP
statistic appears to be more powerful than the others under heavy-tailed errors (Student’s
t), while in the normal case F is obviously better, but we observe that when the number
of replicates is relatively small, the SYP statistic is a good alternative.

The rejection rates of the second order interaction tests between whole-plot factor A
and split-plot factors B, C are represented in Figures 6.2 and 6.3; while the rejection rates
of the third order interaction tests are reported in Figure 6.4.

Note that although Koch (1969) suggests applying the L statistic for whole-plot testing
and W statistic for split-plot testing, we decided to consider both statistics when testing for
all effects. The aim was to quantify the loss of power of each statistic for the inappropriate
cases.

Figure 6.1: Test on Whole-Plot factor (A).
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H1 (Rejection Rate) H0 (Nominal Level)
Error Error

Statistic r Normal t-Student Exp. Normal t-Student Exp.
2 .044 .176 .036 .016 .031 .036

SY P 4 .689 .768 .432 .033 .040 .056
6 .879 1.000 .996 .045 .048 .044
2 .056 .011 .023 .017 .021 .017

F 4 .780 .350 .340 .023 .035 .048
6 .989 .700 .789 .031 .056 .040
2 .050 .099 .112 .009 .011 .005

L 4 .600 .667 .536 .014 .012 .015
6 .980 .785 .999 .028 .035 .047
2 .032 .056 .045 .013 .018 .021

W 4 .458 .457 .430 .022 .025 .039
6 .900 .711 .988 .041 .033 .050

Table 6.2: Power simulation study in a SP design: test on whole-plot factor (A).

H1 (Rejection Rate) H0 (Nominal Level)
Error Error

Statistic r Normal t-Student Exp. Normal t-Student Exp.
2 .067 .107 .065 .016 .030 .023

SY P 4 .546 .678 .439 .029 .045 .059
6 .992 .993 .821 .032 .049 .068
2 .034 .014 .030 .019 .003 .023

F 4 .590 .189 .214 .021 .014 .038
6 .998 .563 .667 .024 .057 .044
2 .007 .067 .056 .002 .010 .013

L 4 .430 .389 .578 .023 .027 .031
6 .789 .891 .996 .040 .060 .046
2 .056 .073 052 .001 .004 .003

W 4 .354 .334 .512 .014 .011 .016
6 .698 .765 .931 .035 .049 .043

Table 6.3: Power simulation study in a SP Design: test on interaction between whole-plot
and split-plot factor (AB).

H1 (Rejection Rate) H0 (Nominal Level)
Error Error

Statistic r Normal t-Student Exp. Normal t-Student Exp.

2 .040 .105 .087 .020 .007 .028
SY P 4 .356 .543 .349 .034 .012 .056

6 .964 .999 .775 .047 .046 .057
2 .045 .011 .024 .000 .002 .036

F 4 .445 .198 .289 .015 .019 .044
6 .999 .670 .558 .045 .037 .048
2 .003 .090 .045 .006 .013 .012

L 4 .400 .443 .568 .010 .025 .034
6 .947 .887 1.000 .034 .041 .047
2 .045 .067 .069 .015 .009 .016

W 4 .325 .324 .467 .034 .035 .038
6 .900 .879 .976 .048 .046 .050

Table 6.4: Power simulation study in a SP Design: test on interaction between whole-plot
and split-plot factor(AC).
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Figure 6.2: Test on the second order interactions (AB).

Figure 6.3: Test on the second order interactions (AC).
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H1 (Rejection Rate) H0 (Nominal Level)
Error Error

Statistic r Normal t-Student Exp. Normal t-Student Exp.

2 .012 .078 .065 .001 .012 .048
SY P 4 .396 .459 .349 .028 .038 .036

6 .980 1.000 .991 .035 .050 .056
2 .026 .003 .030 .012 .035 .024

F 4 .467 .078 .189 .016 .045 .012
6 .993 .678 .780 .044 .051 .036
2 .014 .040 .067 .003 .004 .012

L 4 .354 .400 .561 .013 .012 .021
6 .876 .893 1.000 .035 .044 .034
2 .078 .070 .056 .007 .013 .017

W 4 .456 .432 .456 .022 .018 .023
6 .901 .777 .1.000 .033 .042 .043

Table 6.5: Power simulation study in a SP Design: test on interaction between whole-plot
and split-plot factor (ABC).

Figure 6.4: Test on the third order interactions (ABC).
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H1 (Rejection Rate) H0 (Nominal Level)
Error Error

Statistic r Normal t-Student Exp. Normal t-Student Exp.
2 .087 .099 .089 .021 .019 .032

SY N 4 .660 .812 .779 .039 .024 .036
6 .887 .999 .998 .020 .039 .066
2 .099 .013 .041 .020 .012 .015

F 4 .706 .432 .667 .029 .035 .032
6 .997 .786 .887 .035 .052 .045
2 .079 .065 .077 .003 .009 .006

L 4 .349 .697 .303 .012 .014 .016
6 .886 .806 1.000 .035 .046 .044
2 .075 .077 .098 .007 .004 .006

W 4 .589 .703 .811 .019 .029 .037
6 .901 .891 .997 .050 .048 .051

Table 6.6: Power simulation study in a SP Design: test on split-plot factor (B).

H1 (Rejection Rate) H0 (Nominal Level)
Error Error

Statistic r Normal t-Student Exp. Normal t-Student Exp.

2 .078 .089 .076 .024 .002 .011
SY N 4 .651 .711 .536 .045 .014 .056

6 .941 1.000 .892 .012 .033 .028
2 .070 .045 .056 .013 .011 .023

F 4 .713 .345 .498 .024 .029 .032
6 .958 .568 .879 .024 .041 .032
2 .035 .055 .091 .009 .014 .011

L 4 .443 .457 .600 .018 .023 .037
6 .779 .778 .905 .039 .048 .040
2 .066 .067 .085 .001 .017 .021

W 4 .567 .598 .679 .030 .031 .035
6 .800 .886 .993 .040 .047 .054

Table 6.7: Power simulation study in a SP Design: test on split-plot factor (C).

H1 (Rejection Rate) H0 (Nominal Level)
Error Error

Statistic r Normal t-Student Exp. Normal t-Student Exp.

2 .098 .156 .076 .008 .036 .036
SY N 4 .604 .698 .345 .023 .041 .032

6 .988 .998 .889 .031 .045 .036
2 .101 .056 .040 .006 .001 .016

F 4 .712 .154 .256 .034 .013 .016
6 .712 .154 .256 .034 .013 .016
2 .086 .014 .057 .003 .001 .017

L 4 .435 .324 .456 .017 .019 .029
6 .866 .895 .999 .033 .044 .050
2 .034 .039 .065 .000 .001 .009

W 4 .456 .561 .555 .015 .021 .013
6 .789 .876 .998 .029 .044 .047

Table 6.8: Power simulation study in a SP Design: test on interactions between split-plot
factors (BC).
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Figure 6.5: Test on sub-plot main effects (factor B).

We note also that, as expected, nonparametric L gives a good performance under
asymmetric errors (such as exponential, see Figures 6.1, 6.2, 6.3 and 6.4). This result con-
firms that the SY P statistic is somewhat negatively affected in the case of non symmetric
error distributions. We recall that we developed the SYP statistic under the assumption
of symmetry for the random error distribution. Under exponential errors L represents
the best alternative for both main effect and interactions; in any case, under Student’s t
distribution this nonparametric procedure is not more powerful than SYP, which is the
best one under heavy-tailed distribution.

Even if the focus of the present work is concerned with testing on the whole-plot main
effect and its interaction, it is interesting to consider simulation results on split-plot main
effects and related interactions as well.

To this end we recall that we applied the synchronized permutation approach. As
highlighted by Figures 6.5, it is clear that under non normal errors the SYN statistic
performs much better than the parametric F test and is also better than the rank-based
nonparametric counterparts, especially in the case of heavy-tailed errors. Finally, note
that as expected the W statistic appears more powerful than the L statistic which is not
appropriate here for split-plot effect testing.

6.6 An example

In this Section we face a real case study related to a study on wheat varieties grown in
different fertility regimes. Actually, it is a slightly modified example exposed in Milliken
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and Johnson (2009) p. 426. Let us consider the yields in pounds of two varieties of wheat
(B1 and B2) grown in two different fertility regimes (C1 and C2). The field (whole-plot
factor) was divided into two blocks (A1 and A2), each with two whole plots. Each of the
two fertilizer levels was randomly assigned to one whole plot within each block and two
replications were performed. The dataset, along with the data structure, is reported in
Table 6.9.

Block: A1 Block: A2
Fertility Variety Variety
regime B1 B2 B1 B2
C1 35.4 34.8 41.6 40.3

36.7 39.5 42.7 41.6
C2 37.9 36.4 43.6 42.8

38.2 40.0 44.5 47.6

Table 6.9: Data for the variety by fertility regime split-plot example.

When applying all the considered parametric and nonparametric split-plot procedures
to the wheat variety data, we can obtain p-values reported in Table 6.10, where we focus
our attention on testing the whole-plot effect and the related interactions. Table 6.11
report p-values obtained applying parametric and nonparametric procedures adopted for
testing main and interaction split-plot effects.

Factor under testing
Statistic A AB AC ABC

SYP (absolute sum) 0.0813 0.0750 0.0875 0.0875
SYP (simple sum) 0.0563 0.0437 0.0500 0.0437
F 0.0361 0.0722 0.0531 0.0528
L 0.0106 0.0217 0.0183 0.1025

Table 6.10: P -values of all the split-plot procedures for wheat variety data.

Factor under testing
Statistic B BC

SYN (absolute sum) 0.0530 0.0525
SYN (simple sum) 0.0380 0.0170
F 0.0460 0.0235
W 0.0350 0.0120

Table 6.11: P -values of all the split-plot procedures for wheat variety data.

Note that we applied the proposed permutation SYP statistic using not only the ab-
solute value of the sum of the two within block partial statistics (as stated in equation
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(29), p. 12) but also using as synthesis function the simple sum of partial statistics.
It is interesting to observe that not all procedures agree to reject the null hypotheses

(Table 6.10) (α = 0.05). Rank-based L statistic appears to be the more powerful, while
the parametric F -test seems to be the more conservative. The SYP statistic behaves a
little worse than the L statistic and a possible explanation of this point can be found in
the relative small number of different p-levels which are attainable in this case (namely,
160) so that the p-values are actually multiple of 1/160 = 0.00625. Testing split-plot
main and interaction effects we observe that all the statistics (except SY N statistic with
absolute value of the sum of the two within block partial statistics) agree to reject the null
hypotheses (Table 6.11).

6.7 Final Remarks

In the framework of the combination-based permutation methodology we presented a novel
solution for the whole set of hypotheses testing in split-plot experiments. The main idea
underlying the proposed nonparametric method is concerned with the joint application of
several synchronized and combination-based permutation tests.

Here we focus on situations with replicates, but our solution seems to be more general
and it has also been shown to have good properties.

As suggested by the simulation study, we can confirm that the proposed solution is a
good alternative to the traditional parametric F test.

Hence, in each experimental situation where normality is hard to justify, this nonpara-
metric procedure can be considered a valid solution. Furthermore, in the case of errors
with heavy-tailed distribution, such as Student’s t, permutation tests can provide higher
power than rank-based nonparametric counterparts. As far as further research develop-
ment is concerned, the proposed approach seems promising for multivariate extensions.
In fact, via nonparametric combination methodology (Pesarin (2001)), the dependence
among univariate response variables can be handled in an effective manner.
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