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Introduction

Ogni numero pari maggiore di 2 è somma di due primi.
Every even integer greater than 2 is sum of two primes.

Introduzione (italiano)

La congettura di Goldbach

Il 7 giugno del 1742, in una lettera indirizzata a Eulero, Goldbach formulò la seguente
congettura

se N è un intero tale che N = p1 + p2, con p1 e p2 primi,
allora, per ogni 2 ≤ k ≤ N , N = p1 + . . .+ pk, con p1, . . . , pk primi.

Va sottolineato che al tempo di Goldbach il numero 1 era considerato un numero primo,
contrariamente ad oggi. A margine della stessa lettera, Goldbach annotò un’altra congettura

se N è un intero maggiore di 2,
allora N = p1 + p2 + p3, con p1, p2 e p3 primi.

Nella lettera di risposta, datata 30 giugno dello stesso anno, Eulero scrisse una terza conget-
tura che egli stesso attribùı a Goldbach

se N è un intero positivo e pari, allora N = p1 + p2, con p1 e p2 primi.

Oggi è noto che queste tre congetture sono equivalenti (si veda, e.g., Pintz [Pin06b]).

Dopo l’esclusione di 1 dall’insieme dei numeri primi, queste congetture sono state tradotte
nel moderno linguaggio dei primi. La prima, essendo strettamente legata alla primalità di 1,
non ha un’interessante traduzione, al contrario la versione moderna della seconda congettura
è la cosiddetta congettura di Goldbach ternaria

se N è un intero dispari maggiore di 5,
allora N = p1 + p2 + p3, con p1, p2 e p3 primi,

(TGC)

mentre la versione moderna della terza congettura è la celebre congettura di Goldbach

se N è un intero pari maggiore di 2,
allora N = p1 + p2, con p1 e p2 primi.

(GC)
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Avendo ipotesi più restrittive, le versioni moderne sono più forti delle originali; in particolare
non si ha l’equivalenza tra congettura di Goldbach e congettura di Goldbach ternaria, ma
soltanto

GC ⇒ TGC.

Nonostante la formulazione molto semplice, la congettura di Goldbach è estremamente
difficile da dimostrare, al punto che oggi, dopo più di 250 anni, è ancora un problema aperto.
Per maggiori informazioni su questo argomento, si veda il bel lavoro monografico [Pin06b]
di Pintz.

Risultati legati alla congettura di Goldbach

Benché la congettura di Goldbach sia ancora oggi un problema aperto, esistono numerosi
risultati legati ad essa.

Nel 1923 Hardy e Littlewood, assumendo l’ipotesi di Riemann generalizzata1 (GRH nel
seguito), dimostrarono la TGC per N sufficientemente grande e la GC per quasi tutti gli
interi pari (si vedano [HL23a] e [HL23b] rispettivamente).

Nel 1937 Vinogradov, in [Vin37], riusc̀ı a dimostrare la TGC, per N sufficientemente
grande, incondizionatamente e cioè senza assumere GRH.

Per quanto riguarda l’insieme eccezionale per la congettura di Goldbach, il principale
risultato incondizionale si deve a Montgomery e Vaughan. Essi dimostrarono in [MV75] che
esiste δ > 0 per cui il numero di interi positivi pari e minori di X che non si possono scrivere
come somma di due primi è � X1−δ. Recentemente in [Pin09], Pintz ha annunciato che la
stima precedente è valida per δ = 1/3.

Un importante risultato legato alla congettura di Goldbach si deve a Linnik: egli dimostrò,
nel 1951 sotto GRH (in [Lin51]) e due anni dopo incondizionatamente (in [Lin53]) l’esistenza
di una costante k tale che ogni intero pari sufficientemente grande è somma di due primi e
al più k potenze di 2. A tale lavoro seguirono numerosi tentativi di trovare un upper bound
per k e questo problema è noto come problema di Goldbach-Linnik.

Ad oggi, le migliori stime sono k = 7 sotto GRH e k = 13 incondizionatamente, ottenute
da Heath–Brown e Putcha nel 2002 in [HBP02]. Va ricordato che Pintz e Ruzsa nel 2003, in
[PR03], dimostrarono in maniera indipendente k = 7 sotto GRH (nello stesso lavoro, inoltre,
gli autori annunciarono k = 8 incondizionatamente).

Nel 2007 Languasco, Pintz e Zaccagnini, in [LPZ07], hanno risolto una variante del prob-
lema di Goldbach-Linnik: fissato k ≥ 1, trovare una formula asintotica per il numero di
rappresentazioni di un intero minore di X come somma di due primi e k potenze di 2, valida
per quasi tutti gli interi positivi e pari. Il punto importante nel loro lavoro è che, per ogni
k ≥ 1, il numero di eccezioni alla formula asintotica è �k X

3/5(logX)10. Infatti

1i.e. per ogni carattere di Dirichlet χ e per ogni numero complesso s tali che L(χ, s) = 0, se 0 < <(s) < 1, allora
<(s) = 1/2.
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• la stima dell’insieme eccezionale per la congettura di Goldbach in [Pin09] è � X2/3 e
chiaramente 3/5 < 2/3. Dunque, anche aggiungendo una sola potenza di 2, la stima
migliora: ciò dipende dal riuscire a fare l’aritmetica in media della serie singolare;

• l’esponente 3/5 è, allo stato dell’arte, il livello migliore che si possa ottenere: per
abbassarlo si deve migliorare, negli esponenti, la stima di Vaughan (si veda [Vau97],
Teorema 3.1).

Nel Capitolo 3 generalizziamo il risultato di Languasco, Pintz e Zaccagnini, trovando,
fissati g ≥ 3 e k ≥ 1, una formula asintotica per il numero di rappresentazioni di un intero
(minore di X) come somma di due primi e k potenze di g, valida per quasi tutti gli interi
positivi verificanti opportune (e standard) condizioni aritmetiche. Il punto importante nel
nostro lavoro è che, pur lavorando con potenze più sparse delle potenze di 2, riusciamo lo
stesso ad ottenere 3/5 come esponente nella stima dell’insieme eccezionale. Ciò dipende dal
riuscire a gestire l’aritmetica, più complicata, facendo la media della serie singolare sulle
potenze di g.

Un altro problema legato alla congettura di Goldbach è il problema di Waring-Goldbach,
che riguarda la rappresentabilità un intero come somma di potenze prime. Il primo lavoro
in questo campo si deve a Hua che, nel 1938 in [Hua38b], dimostrò che quasi tutti i naturali
n ≡ 3 (mod 24) e n 6≡ 0 (mod 5) si possono scrivere come somma di tre quadrati di primi.
Nello stesso lavoro dimostrò anche che ogni intero n ≡ 5 (mod 24) sufficientemente grande
si può scrivere come somma di cinque quadrati di primi.

Combinando il problema di Goldbach-Linnik con il problema di Waring-Goldbach si
hanno i cosiddetti problemi misti con potenze di primi e potenze di 2. Riguardo a questo
argomento, ricordiamo il lavoro [LLZ99] di J. Liu, M.C. Liu e T. Zhan, in cui gli autori
dimostrarono che, prendendo k opportunamente grande, si ha: sia che ogni intero pari
sufficientemente grande è somma di quattro quadrati di primi e k potenze di 2, sia che
ogni intero dispari sufficientemente grande è somma di un primo, due quadrati di primi e k
potenze di 2. A tale articolo seguirono numerosi lavori per stimare k e, ad oggi, i risultati
migliori sono: k = 151, relativamente allo studio di quattro quadrati di primi e k potenze
di 2 (dimostrato da H. Li in [Li06]) e k = 83, relativamente allo studio di un primo, due
quadrati di primi e k potenze di 2 (dimostrato da G. Lü e Sun in [LS09])

Un altro tipo di risultati collegati alla congettura di Goldbach sono quelli che riguardano
i problemi diofantei con numeri primi che, in un certo senso, possono essere considerati come
l’analogo reale dalla GC e della TGC. Riguardo a questo argomento, ricordiamo i lavori di
Brüden, Cook e Perelli [BCP97] per la forma binaria e di Vaughan [Vau74] per la forma
ternaria. Per esempio Vaughan dimostrò che, se λ1, λ2 e λ3 sono numeri reali non nulli e
non tutti dello stesso segno, η è un numero reale e λ1/λ2 è irrazionale, allora esistono infinite
triplette ordinate (p1, p2, p3) di numeri primi, tali che

| η + λ1p1 + λ2p2 + λ3p3 | < (max
1≤i≤3

pi)
−1/10(log(max

1≤i≤3
pi))

20.

Un problema diofanteo con due primi e potenze di 2, che può essere quindi considerato
un analogo reale del problema di Goldbach-Linnik, è stato studiato da Parsell nel 2003 in
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[Par03]. Qui egli ha dimostrato che i valori assunti dalle combinazioni lineari reali di due
primi e k potenze di 2 possono approssimare arbitrariamente bene qualsiasi numero reale,
prendendo k sufficientemente grande. Recentemente Languasco e Zaccagnini in [LZ10] hanno
migliorato il lavoro di Parsell, abbassando il numero di potenze di 2 necessarie.

Ricordiamo infine che W.P. Li e Wang nel 2005, in [LW05], hanno studiato un’approssi-
mazione diofantea ai problemi misti con quadrati di primi e potenze di 2: in particolare hanno
dimostrato che i valori assunti delle combinazioni lineari reali di un primo, due quadrati di
primi e k potenze di 2 possono approssimare arbitrariamente bene qualsiasi numero reale,
prendendo k sufficientemente grande.

Nel Capitolo 2 miglioriamo il risultato W.P. Li e Wang, abbassando il loro lower bound
per k di circa il 90%.

Struttura della tesi

Il Capitolo 1 è di carattere preliminare e raccoglie le notazioni e i risultati noti usati nella tesi;
in particolare, nella Sezione 1.3 descriviamo alcune tecniche classiche che saranno fondamen-
tali nei capitoli successivi: il metodo del cerchio di Hardy-Littlewood (utilizzato nel Capitolo
3 per studiare una variante del problema di Goldbach-Linnik), il metodo di Davenport-
Heilbronn e la formula esplicita di Pintz (utilizzati nel Capitolo 2 per studiare un problema
diofanteo).

Nel Capitolo 2 presentiamo il primo risultato di questa tesi, che riguarda un problema
diofanteo con un primo, due quadrati di primi e k potenze di 2. Questo problema è stato
già studiato da W.P. Li e Wang in [LW05]: nella Sezione 2.1 descriviamo il nostro risultato,
confrontandolo dettagliatamente con tale precedente lavoro. In particolare spieghiamo quali
novità abbiamo introdotto e come queste ci abbiano permesso di migliorare il risultato di
Li-Wang, abbassando il lower bound di k di circa il 90%.

Nella Sezione 2.2 impostiamo il nostro problema e nella Sezione 2.3 elenchiamo i lemmi
utilizzati per la sua risoluzione, dimostrando nel dettaglio i risultati nuovi (che sono varianti
per quadrati di primi di risultati noti):

• Il Lemma 2.8 è una variante del Lemma 4 in Languasco-Zaccagnini [LZ10].

• Il Lemma 2.9 è una variante del Lemma 4 in Parsell [Par03].

• Il Lemma 2.12 è una variante del Lemma 1 in Brüdern-Cook-Perelli [BCP97].

• Il Lemma 2.13 è una variante della stima dell’integrale di Selberg dimostrata da Saffari-
Vaughan in [SV77], §6 (in particolare i Claim 2.A e Claim 2.B sono l’analogo dei Lemmi
5 e 6 rispettivamente).

Nelle successive Sezioni 2.4, 2.5 e 2.6 dimostriamo opportune stime sugli archi principali,
secondari e banali. Il capitolo si conclude con la Sezione 2.7 in cui, raccogliendo tutti i
risultati parziali ottenuti, dimostriamo il nostro teorema.

Nel Capitolo 3 presentiamo il secondo risultato di questa tesi, che riguarda un problema
con due primi e k potenze di g ≥ 3. Più precisamente, il problema da noi studiato è
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una variante del lavoro [LPZ07] di Languasco, Pintz e Zaccagnini riguardo al problema di
Goldbach-Linnik. Nella Sezione 3.1 descriviamo il nostro risultato, confrontandolo detta-
gliatamente con quello in [LPZ07]: in particolare spieghiamo quali sono le novità da noi
introdotte per lavorare con le potenze di g al posto delle potenze di 2.

Nella Sezioni 3.2 e 3.3 definiamo la notazione necessaria e impostiamo il nostro problema,
mentre nelle successive Sezioni 3.4 e 3.5 dimostriamo opportune stime sugli archi principali
e secondari. In particolare, nella Sezione 3.4, in analogia con [LPZ07], riusciamo ad ottenere
una stima dell’insieme eccezionale che è ottimale, se si usa la stima di Vaughan. Nella
Sezione 3.5, la parte interessante riguarda il trattamento delle potenze di g (si veda lo studio

di R
(5)
M (N)).

La Sezione 3.6 è infine dedicata alla dimostrazione del nostro teorema. Nella successiva
Sezione 3.7 dimostriamo i risultati nuovi utilizzati in tale Capitolo 3:

• Il Lemma 3.6 è una variante di un risultato di Romanov in [Rom34].

• Il Lemma 3.8 è un raffinamento del Lemma 1.2 in Murty-Rosen-Silverman [MRS96].

• Il Corollario 3.9 è un’applicazione del Lemma 3.8 alle potenze di g.

• Il Lemma 3.10 è una variante, per le potenze di g, del Lemma 6.2 in Languasco-Pintz-
Zaccagnini [LPZ07].

• Il Lemma 3.14 riguarda la stima di un prodotto convergente.

Il capitolo si conclude con la Sezione 3.8, contenente il programma PARI-GP utilizzato
nella dimostrazione del Lemma 3.14.

Appendice

L’Appendice A riguarda un problema coomologico da noi studiato durante il dottorato:
contare i punti razionali di una curva algebrica definita sopra un campo finito. Tale problema
è di grande interesse perché ha importanti applicazioni in crittografia (per esempio si applica
al problema del logaritmo discreto). La nostra idea è di affrontarlo “alla maniera di Kedlaya”
(si veda [Ked01]) ossia studiando l’azione del morfismo di Frobenius su particolari spazi di
coomologia p-adica: la coomologia di Monsky-Washnitzer.

La tecnica di Kedlaya è stata già generalizzata, ad esempio, da Lauder [Lau04] usando la
teoria di Dwork e da Chatel [CL09] usando la coomologia di Monsky-Washnitzer a supposto
compatto. In questi lavori, le curve in esame sono sempre curve iperellittiche (i.e. rivestimenti
doppi di P1): la nostra idea è generalizzare tali tecniche a curve più generali, come, ad
esempio, le curve trigonali (i.e. rivestimenti tripli di P1).

Introduction (english)

The Goldbach conjecture

In a letter to Euler dated 7 June of 1742, Goldbach stated the following conjecture
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if N is an integer such that N = p1 + p2, with p1 and p2 primes,
then, for every 2 ≤ k ≤ N , N = p1 + . . .+ pk, with p1, . . . , pk prime.

We have to keep in mind that in Goldbach’s time the number 1 was considered to be a prime,
in contrast with the modern definition. In the margin of the same letter, Goldbach stated
another conjecture

if N is a integer greater than 2,
then N = p1 + p2 + p3, with p1, p2 and p3 primes.

In his reply letter, dated 30 June of the same year, Euler wrote a third conjecture which is
now ascribed to Goldbach

if N is a positive even integer, then N = p1 + p2, with p1 and p2 primes.

Today, these three conjectures are known to be equivalent (see, e.g., Pintz [Pin06b]).

We can rewrite the conjectures above using the modern language of primes, that is
without considering 1 to be a prime number. The first conjecture is strictly connected to
the primality of 1 and therefore its modern version has no interest. On the contrary, the
modern version of the second conjecture is the so called ternary Goldbach conjecture

if N is an odd integer greater than 5,
then N = p1 + p2 + p3, with p1, p2 and p3 primes,

(TGC)

while the modern version of the third conjecture is the famous Goldbach conjecture

if N is an even integer greater than 2,
then N = p1 + p2, with p1 and p2 primes.

(GC)

Since the modern conjectures have more restrictive hypothesis, they are stronger than original
ones; in particular the Goldbach conjecture and the ternary Goldbach conjecture are not
equivalent, but only

GC ⇒ TGC.

Despite its very simple statement, the Goldbach conjecture is extremely hard to prove
and nowadays, after more than 250 years, it is still an open problem. For a beautiful survey
on this subject, we refer to Pintz [Pin06b].

Results related to the Goldbach conjecture

Even if the Goldbach conjecture is still an open problem, nevertheless there exists a large
number of results related to it.

In 1923 Hardy and Littlewood proved, under the generalized Riemann hypothesis2 (GRH
in the following) both TGC for sufficiently large N and GC for almost all the even integers
(see [HL23a] and [HL23b] respectively).

2i.e. for every Dirichlet character χ and every complex number s such that L(χ, s) = 0, if 0 < <(s) < 1, then
<(s) = 1/2.
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In 1937 Vinogradov (see [Vin37]) was able to prove TGC for sufficiently large N , uncon-
ditionally that is without assuming GRH.

Concerning the exceptional set for the Goldbach conjecture, the most important uncon-
ditional result is by Montgomery and Vaughan. In [MV75] they proved that there exists
δ > 0 such that the number of positive even integers which are less than X and that cannot
be written as sum of two primes is � X1−δ. Recently, Pintz in [Pin09] announced that the
Montgomery-Vaughan estimate holds for δ = 1/3.

A very important result related to the Goldbach conjecture is due to Linnik: he proved,
in 1951 under GRH and two years later unconditionally (see [Lin51] and [Lin53] resp.) that
there exists a constant k such that every sufficiently large even integer is a sum of two primes
and at most k powers of 2. The problem of finding an upper bound for such k is known as
the Goldbach-Linnik problem and it has been extensively studied.

To this day, the best upper bounds for k are k = 7 under GRH and k = 13 unconditionally,
obtained by Heath–Brown and Putcha in 2002 in [HBP02]. We remark as well that Pintz
and Ruzsa in 2003 independently proved k = 7 under GRH (see [PR03], in the same paper
the authors also announced k = 8 unconditionally).

In 2007, Languasco, Pintz and Zaccagnini (see [LPZ07]) studied a variation of the
Goldbach-Linnik problem: given k ≥ 1, finding an asymptotic formula for the number
of representations of a positive even integer less than X as sum of two primes and k powers
of 2, which holds for almost all positive even integers. The important point in their work
is that, for every k ≥ 1, the number of exceptional values for the asymptotic formula is
�k X

3/5(logX)10. In fact

• by Pintz [Pin09], the size of the exceptional set for the Goldbach conjecture is� X2/3,
and 3/5 < 2/3. Therefore, just adding a single power of 2, a better estimation can be
found;

• the exponent 3/5 is the best possible level, according to the state of the art: to lower
it, we have to refine, in the exponents, the Vaughan estimation (see [Vau97], Theorem
3.1).

In Chapter 3 we generalize Languasco-Pintz-Zaccagnini’s result: given g ≥ 3 and k ≥ 1,
we find an asymptotic formula for the number of representations of an integer less than X as
sum of two primes and k powers of g, which holds for almost all positive integers satisfying
suitable (and standard) arithmetic conditions. The important point in our work is that, even
using sparser powers, we still obtain 3/5 as exponent in the estimation of the exceptional
set.

Another problem connected to the Goldbach conjecture is the Waring-Goldbach problem
which is about the representability of a positive integer as sum of prime powers. The first
result in this field is dated 1938 and due to Hua who proved in [Hua38b] that almost all
positive integers n, such that n ≡ 3 (mod 24) and n 6≡ 0 (mod 5), can be written as sum of
three prime squares. In the same work he also proved that every positive integer n sufficiently
large and such that n ≡ 5 (mod 24) can be written as sum of five prime squares.



14 V. Settimi - On some additive problems with primes and powers of a fixed integer

The combination of the Goldbach-Linnik problem with the Waring-Goldbach problem
gives rise to the so called mixed problem with prime powers and powers of 2. In this field
we recall the paper [LLZ99] by J. Liu, M.C. Liu e T. Zhan, where the authors proved that,
given k suitably large, then both every even integer sufficiently large is sum of four prime
squares and k powers of 2, and every odd integer sufficiently large is sum of one prime, two
prime squares and k powers of 2. After Liu-Liu-Zhan’s work, several estimates for k have
been proved and, to this day, the best results are the following: k = 151, for the problem
with four prime squares and k powers of 2 (proved by H. Li in [Li06]) and k = 83, for the
problem with one prime, two prime squares and k powers of 2 (proved by G. Lü and Sun in
[LS09]).

Other results related to the Goldbach conjecture are those about diophantine problems
with prime numbers that can be considered as the real analogous of GC and TGC. In this
field, we recall the works of Brüden, Cook and Perelli [BCP97] for the binary form and of
Vaughan [Vau74] for the ternary one. For example, Vaughan proved that, if λ1, λ2 and λ3

are non-zero real numbers not all of the same sign, η is real and λ1/λ2 is irrational, then
there are infinitely many ordered triples (p1, p2, p3) of primes for which

| η + λ1p1 + λ2p2 + λ3p3 | < (max
1≤i≤3

pi)
−1/10(log(max

1≤i≤3
pi))

20.

A diophantine problem with two primes and powers of 2, that can be considered as a real
analogous of the Goldbach-Linnik problem, was studied by Parsell in 2003 in [Par03]: he
proved that the values obtained by linear real combinations of two primes and k powers of
2 can approximate every real number with an arbitrarily small error, for k sufficiently large.
Recently in [LZ10], Languasco and Zaccagnini improved Parsell’s result, lowering the lower
bound for k.

We finally recall that W.P. Li and Wang in 2005, in [LW05], studied a diophantine
approximation to a mixed problem with prime squares and powers of 2: more precisely, they
proved that the values obtained by linear real combinations of one prime, two prime squares
and k powers of 2 can approximate every real number with an arbitrarily small error, for k
sufficiently large.

In Chapter 2 we improve W.P. Li and Wang’s result, lowering their lower bound for k by
about 90%.

Structure of the thesis

Chapter 1 is of preliminary character and it collects the notation and some well-known results
used in this work. In particular, in Section 1.3, we describe some classical techniques, crucial
in the following chapters: the Hardy-Littlewood circle method (used in Chapter 3 to study
a variation of the Goldbach-Linnik problem), the Davenport-Heilbronn method and Pintz’s
explicit formula (used in Chapter 2 to study a diophantine problem).

In Chapter 2 we introduce our first theorem, which is about a diophantine problem with
one prime, two prime squares and k powers of 2. This problem was already studied by
W.P. Li e Wang in [LW05]: in Section 2.1 we describe our result, carefully comparing it
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with this previous work. In particular, we analyse our techniques and we explain how they
allowed us to improve Li-Wang’s result, lowering their lower bound for k by about 90%.

In Section 2.2 we set up our problem and in Section 2.3 we collect the lemmas used to
solve it, proving in details the new results (which are variations, for prime squares, of some
well-known results):

• Lemma 2.8 is a variation of Lemma 4 in Languasco-Zaccagnini [LZ10].

• Lemma 2.9 is a variation of Lemma 4 in Parsell [Par03].

• Lemma 2.12 is a variation of Lemma 1 in Brüdern-Cook-Perelli [BCP97].

• Lemma 2.13 is a variation of Saffari-Vaughan estimation of Selberg integral in [SV77],
§6 (in particular Claims 2.A and 2.B are variations of Lemma 5 and 6 respectively).

In Sections 2.4, 2.5 and 2.6 we prove some suitable estimates for the major, the minor
and the trivial arcs.

The chapter ends with Section 2.7 where, gathering together the partial results, we prove
our theorem.

In Chapter 3 we introduce our second theorem, which is about a problem with two primes
and k powers of g ≥ 3. More precisely, our work can be considered as a variation of [LPZ07],
by Languasco, Pintz e Zaccagnini concerning the Goldbach-Linnik problem. In Section 3.1
we describe our result, carefully comparing it with the one in [LPZ07] and analysing the new
techniques used to deal with powers of g, instead of with powers of 2.

In Sections 3.2 and 3.3 we fix the notation and set up our problem, while in Sections 3.4
and 3.5 we prove some suitable estimates for the major and the minor arcs. In particular,
in Section 3.4, by analogy with [LPZ07], we obtain an estimate of the exceptional set which
is optimal, using the Vaughan estimate (in Result (R.9)). The relevant part in Section 3.5

is the study of R
(5)
M (N) which requires a careful treatment of the powers of g.

In Section 3.6 we finally prove our theorem. In the following Section 3.7 we prove the
new results used in this chapter:

• Lemma 3.6 is a variation of a result of Romanov in [Rom34].

• Lemma 3.8 is a refinement of Lemma 1.2 in Murty-Rosen-Silverman [MRS96].

• Corollary 3.9 is an application of Lemma 3.8 to powers of g.

• Lemma 3.10 is a variation, for powers of g, of Lemma 6.2 in Languasco-Pintz-Zaccagnini
[LPZ07].

• Lemma 3.14 is about the estimation of a convergent product.

The chapter ends with Section 3.8, containing the PARI-GP program used to prove Lemma
3.14.
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Appendix

Appendix A is about point-counting cohomological problem we studied during the PhD:
counting the rational points of an algebraic curve defined over a finite field. This is a very
studied problem since it has significant applications in cryptography (e.g., for the discrete
logarithm problem). Our idea is to approach this problem “after Kedlaya” (see [Ked01]), that
is studying the action of the Frobenius morphism over some suitable p-adic cohomological
spaces: the Monsky-Washnitzer cohomology.

Kedlaya technique was already generalized, for example by Lauder [Lau04] using Dwork’s
theory and by Chatel [CL09] using the Monsky-Washnitzer cohomology with compact sup-
port. In all these works, the curves under consideration are hyperelliptic (i.e. double covers
of P1): our idea is to generalize such techniques to more general curves, such as the trigonal
curves (i.e. triple covers of P1).



Chapter 1

Preliminaries

In this chapter we gather the notation and results we will need in this work. We devote a
separate chapter to collecting these notions, in order to simply the reading.

1.1 Notation

In this work, we use the following notation:

P set of all prime numbers;

pi prime numbers;

g ≥ 3 fixed integer, base of powers;

k ≥ 1, number of powers (of 2 or g);

νi,mi ∈ N positive exponents;

λi, µi ∈ R, coefficients in diophantine problems;

$ ∈ R, number to be approximate in diophantine problems;

N suitable integer, studied in Goldbach-Linnik problems;

X ∈ R large parameter;

P,Q ∈ R, major and minor arcs levels;

η ∈ R, sufficiently small positive constant;

ε, εi ∈ R, arbitrarily small positive constants;

C,Cg positive constants in the statement of our theorems;

C,Ci, D, c, ci positive constants;

α ∈ R variable, used in exponential sums;

d odd positive integer;

log a natural logarithm of a;

L,L′ ∈ R parameters suitably related to logX;
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S,Si ⊆ R suitable subsets of R;

I(·, ·), I, J needed integrals;

E(·) exceptional set;

erri error terms;

ı imaginary unit;

s = σ + ıt complex number;

s = σ − ıt complex conjugate;

<(s) = σ, the real part of s;

ρi = βi + ıγi generic zero of Dirichlet L-functions;

(a, b) gcd(a, b);

[a, b] lcm(a, b).

We remark that the values of the constants listed above are not necessarily the same at each
occurrence.

We will also use the following classical definitions:

c0 twin prime constant, i.e. c0 =
∏
p>2

(
1− 1

(p− 1)2

)
≈ 0.660 161;

χ(n) Dirichlet character, i.e. χ : Z→ C s.t. ∃r ∈ N>0 called modulus with
χ(n+ r) = χ(n) ∀n ∈ Z,
χ(n) 6= 0⇔ (n, r) = 1,

χ(mn) = χ(m)χ(n) ∀m,n ∈ Z;

e(s) = e2πıs;

ϕ(n) Euler ϕ-function, i.e. ϕ(n) = n
∏
p|n

p− 1

p
;

γ Euler constant, i.e. γ ≈ 0.577 215;

Γ(s) Gamma function, i.e. Γ(s) =

∫ +∞

0

xs−1e−xdx, if <(s) > 0,

extended by analytic continuation to C except the non-positive

integers (where the function has simple poles);

J(X, h) Selberg integral, i.e. J(X, h) =

∫ X

εX

(ϑ(x+ h)− ϑ(x)− h)2dx;

J∗(X, h) “square-root” Selberg integral, i.e.

J∗(X, h) =

∫ X

εX

(
ϑ(
√
x+ h)− ϑ(

√
x)− (

√
x+ h−

√
x)
)2

dx;

K(α, η) kernel function for the Davenport-Heilbronn method, i.e.
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K(α, η) =
(sin πηα

πα

)2

, for α 6= 0;

L(s, χ) Dirichlet L-function, i.e. L(s, χ) =
∑
n≤1

χ(n)

ns
, if <(s) > 1,

given χ a Dirichlet character modulo r > 1, and extended to C by

analytic continuation;

Λ(n) von Mangoldt function, i.e. Λ(n) =

{
log p if n = pk, ∃k > 0

0 otherwise;

M,m, t major, minor and trivial arcs ;

µ(n) Möbius µ-function, i.e. µ(n) =


(−1)k if n = p1 . . . pk,

1 if n = 1,

0 otherwise;

N(T ) = | {ρ = β + ıγ : ζ(ρ) = 0; 0 < β < 1; 0 < γ ≤ T} |;
N(σ, T ) = | {ρ = β + ıγ : ζ(ρ) = 0; β ≥ σ; |γ| ≤ T} |;
π(x) prime-counting function, i.e. π(x) = |{p : p ≤ x}|;
ψ(x) Chebyshev ψ-function, i.e. ψ(x) =

∑
n≤x

Λ(n);

Ψ(n) Dedekind Ψ-function, i.e. Ψ(n) = n
∏
p|n

p+ 1

p
;

S(n) singular series for the Goldbach problem, i.e.

S(n) =


0 if n odd,

2c0

∏
p|n; p>2

p− 1

p− 2
if n > 0 even ;

ϑ(x) Chebyshev ϑ-function, i.e. ϑ(x) =
∑
p≤x

log(p);

ζ(s) Riemann ζ-function, i.e. ζ(s) =
∑
n≤1

1

ns
, if <(s) > 1,

extended to C \ {1} by analytic continuation (s = 1 is a simple pole);

f(x) ∼ g(x) for x→ x0, means lim
x→x0

f(x)

g(x)
= 1, with x0 ∈ R ∪ {∞};

f(x) = o(g(x)) for x→ x0, means lim
x→x0

f(x)

g(x)
= 0, with x0 ∈ R ∪ {∞};

f(x) = O(g(x)) for x→ x0, means |f(x)| ≤ C g(x)| around x0, with x0 ∈ R ∪ {∞}
and C absolute constant;

f(x)� g(x) for x→ x0, means f(x) = O(g(x));

f(x)� g(x) for x→ x0, means g(x) = O(f(x)).
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Moreover we need to define the following functions:

f(d) multiplicative function s.t. f(d) =


∏
p|d

1

p− 2
if d > 2 odd,

0 otherwise;

G(α) exponential sum over powers of 2, i.e. G(α) =
∑

1≤m≤L

e(2mα);

Gg(α) exponential sum over powers of g, i.e. Gg(α) =
∑

1≤m≤L′
e(gmα);

I(X;S) relevant integral in diophantine problem, i.e.

I(X;S) =

∫
S
S1(λ1α)S2(λ2α)S2(λ3α)G(µ1α) . . . G(µkα)e($α)K(α, η)dα;

J (X) = [2X/3, X];

N(X) number of solutions (p1, p2, p3,m1, . . . ,mk) of the inequality

|λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12m1 + . . .+ µk2

mk +$ | < η

with εX ≤ p1, p
2
2, p

2
3 ≤ X and 1 ≤ m1, . . . ,mk ≤ L;

r′′k,g(N) counting function for our problem with two primes and k powers of g. i.e.

r′′k,g(N) = | {(p1, p2, ν1, . . . , νk) ∈ P2 × [1, L]k : N = p1 + p2 + gν1 + . . .+ gνk} |
=

∑
1≤p1,p2≤X

∑
1≤ν1,...,νk≤L

p1+p2+gν1+...+gνk=N

1;

R′′k,g(N) weighted counting function associated to r′′k,g(N), i.e.

R′′k,g(N) =
∑

1≤m1,m2≤X

∑
1≤ν1,...,νk≤L

m1+m2+gν1+...+gνk=N

Λ(m1)Λ(m2);

R′′S(N) the restriction of R′′k,g(N) to the set S;

rGb(N) counting function for the Goldbach problem, i.e.

rGb(N) = | {(p1, p2) ∈ P2 : N = p1 + p2} | =
∑

1≤p1,p2≤X
p1+p2=N

1;

RGb(N) weighted counting function associated to rGb(N), i.e.

RGb(N) =
∑

1≤m1,m2≤X
m1+m2=N

Λ(m1)Λ(m2);

RS(N) the restriction of RGb(N) to the set S;

S1(α) exponential sum over primes, i.e. S1(α) =
∑

εX≤p≤X

log p e(pα);

S2(α) exponential sum over prime squares, i.e. S2(α) =
∑

εX≤p2≤X

log p e(p2α);

S(α) exponential sum over prime powers, i.e. S(α) =
∑

1≤m≤X

Λ(m)e(mα);
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S′(n) =
∏

p|n; p>2

p− 1

p− 2
, so that S(n) = 2c0S

′(n);

S′′(n) =
∏

p|n; p>2

p+ 1

p
;

S−(n) =
(

2− 1

2m0−1
− 1

2m0

) ∏
m≥0

∏
p>2; pm‖n

(
1 +

1

p
− 1

pm+1
− 1

pm+2

)
,

with m0 such that 2m0‖n;

tk,g(N) = | {(ν1, . . . , νk) ∈ [1, L]k : N = gν1 + . . .+ gνk} | =
∑

1≤ν1,...,νk≤L
N=gν1+...+gνk

1;

t′k,g(N) = | {(ν1, . . . , νk) ∈ [1, L′]k : N = gν1 + . . .+ gνk} | =
∑

1≤ν1,...,νk≤L′
N=gν1+...+gνk

1;

T1(α) auxiliary exponential integral “over integers”, i.e. T1(α) =

∫ X

εX

e(αt)dt;

T2(α) auxiliary exponential integral “over squares”, i.e. T2(α) =

∫ √X
√
εX

e(αt2)dt;

U1(α) auxiliary exponential sum over integers, i.e. U1(α) =
∑

εX≤n≤X

e(αn);

U2(α) auxiliary exponential sum over squares, i.e. U2(α) =
∑

εX≤n2≤X

e(αn2);

ξ(d) = min{` > 0 : 2` ≡ 1 (mod d)}, with d odd;

ξg(d) = min{` > 0 : g` ≡ 1 (mod d)}, with (d, g) = 1;

ξg(d) = min{` > 0 : g` ≡ 1 (mod d/(d, g))}.

1.2 Useful results

In this section we collect some classical results that will be useful in the following.

R.1 (Davenport-Heilbronn’s kernel function).

Given the kernel function for the Davenport-Heilbronn method K(α, η) =
(

sinπηα
πα

)2
for α 6= 0,

then both
K(α, η)� min(η2;α−2),

K̂(t, η) =

∫
R
K(α, η)e(tα)dα = max(0; η − |t|),

where K̂(t, η) is the Fourier transform of K(α, η).

Proof. This lemma is a well-known result by Davenport-Heilbronn (see [DH46], Lemma 4).
See also Lemma 20.1 of Davenport [Dav05] for the proof. �



22 V. Settimi - On some additive problems with primes and powers of a fixed integer

R.2 (Prime Number Theorem (PNT)).
Given the prime counting function π(x), then

π(x) ∼ x

log x
, x→∞.

Proof. It was conjectured by Gauss in 1792 and by Legendre in 1798. Almost a century
later, in 1896, Hadamard [Had96] and de la Vallée Poussin [dlVP96] independently proved
it by using analytic arguments (see Apostol [Apo76], Chapter 13, for an analytic proof). An
elementary (but quite intricate) proof of the PNT was discovered in 1949 by Selberg [Sel49]
and Erdős [Erd49]. �

R.3 (Equivalent forms of the PNT).
The PNT is logically equivalent to each of the following

i) ϑ(x) ∼ x, x→∞,

ii) ψ(x) ∼ x, x→∞,

where ϑ(x) and ψ(x) are the Chebyshev functions.

Proof. See Apostol [Apo76], Theorem 4.4. �

R.4 (PNT with error term).
The strongest known form for the PNT is:

ψ(x) = x+O
(
x exp

(
−c(log x)3/5

(log log x)1/5

))
,

for an absolute constant c > 0, where ψ(x) is the Chebyshev function1.

Proof. See Ivić [Ivi85], Theorem 12.2. �

R.5 (Vinogradov-Korobov’s zero-free region).
There exists an absolute constant c > 0 such that ζ(s) 6= 0 for s = σ + ıt with

σ ≥ 1− c

(log(|t|+ 2))2/3(log log(|t|+ 2))1/3
.

Proof. See Montgomery [Mon71], Corollary 11.4. See also Ivić [Ivi85], Chapter 6, for an
exhaustive analysis of the zero-free region. �

R.6 (Dirichlet’s theorem on diophantine approximations).
Let α ∈ R, then, for every X ∈ R≥1, there exists a/q ∈ Q such that (a, q) = 1, 1 ≤ q ≤ X
and ∣∣∣α− a

q

∣∣∣ ≤ 1

qX
.

1Similar statements hold true for ϑ(x) and π(x) too.
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Proof. See Vaughan [Vau97], Lemma 2.1. �

R.7 (Law of best approximation for continued fraction).
Let x ∈ R and let a/q ∈ Q be a convergent of the continued fraction for x. If 0 < q′ < q and
a′/q′ 6= a/q, then

|a− qx| < |a′ − q′x|.

Proof. See Hardy-Wright [HW10], Theorem 182, for the proof. See also Chapter 10 for a
survey over continued fractions. �

R.8 (Rieger’s estimation).
Let T (X) = | {(p1, p2, p3, p4) ∈ P4 : p2

1 + p2
2 = p2

3 + p2
4; p1p2 6= p3p4; p2

i ≤ X ∀i} |, then

T (X)� X(logX)−3.

Proof. [Rie68], Satz 3. See also the estimate of H12 at page 106 of T. Liu [Liu04]. �

R.9 (Vaughan’s estimation of exponential sum over primes).
If (a, q) = 1, q ≤ X and |α− a/q| < 1/q2, then

S(α)�
(
X
√
q

+
√
qX +X4/5

)
(logX)4,

where S(α) =
∑

εX≤m≤X Λ(m) e(mα) and α ∈ R.

Proof. See Vaughan [Vau97], Theorem 3.1, for the “log p-version”, see Davenport [Dav00],
§25, for the “Λ(m)-version”. This result is a refinement of a famous estimate by Vinogradov
(see, e.g, [Vin04], Theorem 1 of Chapter IX). �

R.10 (Ghosh’s estimation of exponential sum over prime squares).
If a, q ∈ N \ {0} is such that (a, q) = 1 and |α− a/q| < q−2, then for any ε > 0

S2(α)�ε X
1/2+ε

(1

q
+

1

X1/4
+

q

X

)1/4

,

where S2(α) =
∑

εX≤p2≤X log p e(p2α) and α ∈ R.

Proof. [Gho81], Theorem 2. �

R.11 (Gallagher’s lemma on the truncated L2-norm of exponentials sums).
Let α ∈ R and let

S (α) =
∑
x∈S

s(x)e(xα)

be an absolutely convergent exponential sum, with s(x) ∈ C and S ⊆ R an arbitrary sequence
of real numbers. Let moreover 0 < θ < 1, X ∈ R and δ = θ/X, then∫ X

−X

∣∣∣S (α)
∣∣∣2dα�θ

∫ +∞

−∞

∣∣∣δ−1
∑
|x−y|< δ

2

s(x)
∣∣∣2dy.
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Proof. [Gal70], Lemma 1. See also Montgomery [Mon71], Lemma 1.9 for the proof. �

R.12 (Saffari-Vaughan’s estimation of the Selberg integral).
Let ε > 0 be an arbitrarily small constant. Then there exists a constant c(ε) > 0 such that

J(X, h)�ε h
2X exp

(
− c(ε)

( logX

log logX

)1/3)
uniformly for X1/6+ε ≤ h ≤ X, where J(X, h) is the Selberg integral.

Proof. [SV77], §6. �

R.13 (Truncated explicit formula for ψ(x)).
Let ρ = β + iγ run over the complex zeros of ζ(s). Then

ψ(x) = x−
∑
|γ|≤T

xρ

ρ
+O

( x
T

log2(xT ) + log x
)

uniformly in T ≥ 2, where ψ(x) is the Chebyshev function.

Proof. See Ivić [Ivi85], Theorem 12.1. See also Davenport [Dav00], Chapter 17 for an
exhaustive analysis of the explicit formula for ψ(x). �

R.14 (Riemann-von Mangoldt formula).
Let N(T ) be the number of the zeros of ζ(s) that lie in the region 0 < β < 1 and 0 < γ ≤ T ,
then

N(T ) =
T

2π
log
( T

2π

)
− T

2π
+O(log T ).

Proof. See Ivić [Ivi85], Theorem 1.7. �

R.15 (Zero-density estimates).
Let N(σ, T ) be the number of the zeros of ζ(s) that lie in the region σ ≤ β ≤ 1 and |γ| ≤ T ,
then

N(σ, T )�


T log T if 0 ≤ σ ≤ 1

2
,

tD(σ)(1−σ)(log T )B if
1

2
≤ σ ≤ 1,

where D(σ)(1 − σ) ≤ 1 and ∂
∂σ

(D(σ)(1 − σ)) < 0. Moreover, D(σ) satisfies the following
Ingham-Huxley’s estimates

D(σ) ≤



3

2− σ
if

1

2
≤ σ ≤ 3

4
,

3

3σ − 1
if

3

4
≤ σ ≤ 1,

12

5
if

1

2
≤ σ ≤ 1.
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Proof. See Ivić [Ivi85], Chapter 11, for an exhaustive analysis about zero-density estimates.
In particular see Theorem 11.1 for Ingham-Huxley’s estimates. �

R.16 (Euler’s summation formula).
Let b·c denote the floor function and let x, y ∈ R, with 0 < y < x. If f(t) ∈ C1([y, x]) with
(continue) derivative denoted by f ′(t), then∑

y<n≤x

f(n) =

∫ x

y

f(t)dt+

∫ x

y

(t− btc)f ′(t)dt+ (y − byc)f(y)− (x− bxc)f(x).

Proof. See Apostol [Apo76], Theorem 3.1. �

R.17 (Abel’s identity).
For any arithmetic function a(n), let

A(t) =
∑
n≤t

a(n),

where A(t) = 0, if t < 1. Let moreover x, y ∈ R, with 0 < y < x. If f(t) ∈ C1([y, x]) with
(continue) derivative denoted by f ′(t), then∑

y<n≤x

a(n)f(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt.

Proof. See Apostol [Apo76], Theorem 4.2. �

R.18 (Mertens’ and Vasil’kovskaja’s theorems).
Let γ be the Euler constant.

1. Mertens’ theorem claims∏
p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 +O

(
(log x)−1

))
.

2. Vasil’kovskaja’s theorem claims that, given L(x) = exp((log x)3/5(log log x)−1/5), there
exists an absolute constant c > 0 such that∏

p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 +O

(
L(x)−c

))
.

3. Similarly, we have that, given the constant b = γ −
∑

p

∑
k≥2(kpk)−1, then∑

p≤x

1

p
= log log x+ b+O

(
(log x)−1

)
.

Proof. See Montgomery-Vaughan [MV07], Theorem 2.7(e) and page 55, for the proof of
Mertens’ theorem. See Theorem 2.7(d) for the proof of point 3.

For the proof of Vasil’kovskaja’s theorem, see Languasco-Zaccagnini [LZ07], Lemma 5 (or
see the proof on pages 80-81 of Prachar [Pra78] inserting the Vinogradov-Korobov [Vin58,
Kor58a, Kor58b] zero-free region for the Riemann zeta function). �
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1.3 Useful techniques

In this section we briefly describe some classical techniques that will be used throughout our
work.

1.3.1 Hardy-Littlewood circle method

The circle method has its genesis in a paper of Hardy and Ramanujan [HR18] and it is used
to approach many additive problems. The method can be roughly summarized as follows:

1. Turning an additive problem over integers (e.g., the Goldbach problem) into an analytic
problem, by means of Fourier analysis;

2. Dissecting the obtained integration interval into major and minor arcs which respec-
tively give the expected main term and the expected error term of the additive problem.

To better explain how the method works, we describe here its application to the ternary
Goldbach problem, as solved by Vinogradov [Vin37]. For this part we refer to Davenport
[Dav00], §26.

Recalling that P denotes the set of all prime numbers, the relevant counting function for
the ternary Goldbach problem is

r3(N) = | {(p1, p2, p3) ∈ P3 : N = p1 + p2 + p3} |,

defined for any odd integer N > 5. Instead of considering r3(N), we deal with the associated
weighted function

R3(N) =
∑

m1+m2+m3=N

Λ(m1)Λ(m2)Λ(m3),

where Λ(m) is the von Mangoldt function. We remark that, by definition of Λ(m), R3(N)
is actually a weighed counting of the number of representations of N as sum of three prime
powers. However it’s easy to see that the contribution made to R3(N) by proper prime
powers is � N3/2(logN)2 and this error term doesn’t affect the final result, as will be clear
later.

Let us now consider the exponential sum

S(α) =
∑

1≤m≤N

Λ(m)e(mα),

with e(x) = e2πıx. It is straightforward that

S3(α) =
∑
n≥1

( ∑
m1+m2+m3=n

mi≤N

Λ(m1)Λ(m2)Λ(m3)
)
e(nα).

Hence, by the Fourier coefficient formula (see, e.g., Apostol [Apo76], §11.4), we obtain the
following fundamental relation

R3(N) =

∫ 1

0

S3(α)e(−Nα)dα. (1.1)
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We shall get that the |S(α)| is small, unless α is near a rational number with a small
denominator and, in each such a case, we can find a suitable approximating function to S(α).
This suggests to dissect the integration interval of (1.1) into two parts, M and m say, where
m is the subset of [0, 1] of those numbers which are not near rational numbers with small
denominators and M is made of intervals close to such rationals.

So we now split the interval [0, 1] using (a variation of) the so called Farey dissection
(see, e.g., Hardy-Wright [HW10], §3): let P = (logN)B and Q = N/P , where B > 0 will
be chosen later in term of another parameter A > 0. Thus, P < Q holds for any sufficiently
large N . Then, for every 1 ≤ a ≤ q ≤ P such that (a, q) = 1, we define the interval

M(a, q) =
[a
q
− 1

Q
,
a

q
+

1

Q

]
.

Thanks to the restriction q ≤ P , such intervals are not-overlapping: in fact, taken M(a1, q1)
and M(a2, q2) such that a1/q1 6= a2/q2, then∣∣∣a1

q1

− a2

q2

∣∣∣ =
∣∣∣a1q2 − a2q1

q1q2

∣∣∣ ≥ 1

q1q2

≥ 1

P 2
>

2

Q
,

since (logN)3B < N/2 for sufficiently large N ; while, if we assume that there exists α 6= 0
such that α ∈M(a1, q1) ∩M(a2, q2), we get the contradiction∣∣∣a1

q1

− a2

q2

∣∣∣ ≤ ∣∣∣a1

q1

− α
∣∣∣+
∣∣∣α− a2

q2

∣∣∣ ≤ 2

Q
.

We define the major arcs to be

M =
⊔

1≤q≤P

⊔
1≤a≤q
(a,q)=1

M(a, q).

It’s easy to see that M ⊂
[

1
Q
, 1+ 1

Q

]
and so we define the minor arcs to be m =

[
1
Q
, 1+ 1

Q

]
\M.

We remark that, since S(α) and e(nα) have period 1 in α, we can shift the integration
interval of (1.1) to

(
1
Q
, 1 + 1

Q

]
and so split it according to the Farey dissection described

above. In this way we obtain

R3(N) =

∫ 1+ 1
Q

1
Q

S3(α)e(−Nα)dα

=

∫
m

S3(α)e(−Nα)dα +
∑

1≤q≤P

∑
1≤a≤q
(a,q)=1

∫
M(a,q)

S3(α)e(−Nα)dα.

Now we deal with major and minor arcs separately.
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Major arcs

Let us consider α ∈M(a, q), for some fixed a and q. Therefore α = a/q+β where β is a real
number such that |β| ≤ 1/Q. Arguing as in pages 146-147 of Davenport [Dav00], we obtain

S(α) =
µ(q)

ϕ(q)
T (β) +O

(
N exp(−c

√
logN)

)
where µ(q) is the Möbius function, ϕ(q) is the Euler function, T (β) =

∑
m≤N e(mβ) and

c > 0 is a suitable constant (in the following it will not be necessarily the same at each
occurrence). It’s easy to see that∫

M(a,q)

S3(α)e(−Nα)dα =
µ(q)

ϕ3(q)
e
(−aN

q

)∫ 1/Q

−1/Q

T 3(β)e(−Nβ)dβ

+O
(
N3

Q
exp(−c

√
logN)

)
,

and so, recalling Q = N/P , P = (logN)B, we have∫
M

S3(α)e(−Nα)dα =
∑

1≤q≤P

µ(q)

ϕ3(q)
cq(N)

∫ 1/Q

−1/Q

T 3(β)e(−Nβ)dβ

+O
(
N2 exp(−c

√
logN)

)
, (1.2)

where cq(N) =
∑

1≤a≤q; (a,q)=1 e
(
aN
q

)
is the Ramanujan sum (see, e.g., Montgomery-Vaughan

[MV07], page 110).
We now estimate the integral at the right-hand side of (1.2) observing that T (β) is such

that T (β) =
∑

m≤N(e2πıβ)k � min(N ; |β|−1), which implies∫ 1−1/Q

1/Q

|T 3(β)|dβ � Q2.

Using the Fourier coefficient formula, we easily see that∫ 1

0

T 3(β)e(−Nβ)dβ =
(N − 1)(N − 2)

2
=
N2

2
+O(N).

Recalling that the integrand function above has period 1 and that Q = N/(logN)B, we get∫ 1/Q

−1/Q

T 3(β)e(−Nβ)dβ =

∫ 1

0

T 3(β)e(−Nβ)dβ −
∫ 1−1/Q

1/Q

T 3(β)e(−Nβ)dβ

=
N2

2
+O

(
N2(logN)−2B

)
. (1.3)

To complete the estimation of (1.2), there is left to study the following sum over q∑
1≤q≤P

µ(q)

ϕ3(q)
cq(N) =

∑
q≥1

µ(q)

ϕ3(q)
cq(N)−

∑
q>P

µ(q)

ϕ3(q)
cq(N).
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Using the Möbius inversion formula, we easily obtain that |cq(N)| ≤ ϕ(q) and so

∑
q>P

µ(q)

ϕ3(q)
cq(N)�

∑
q>P

1

ϕ2(q)
� (logN)−B+1,

where the last inequality follows from, e.g., Hardy-Wright [HW10], Theorem 327. By the
Euler product formula (see, e.g., Apostol [Apo76], §11.5), we also get∑

q≥1

µ(q)

ϕ3(q)
cq(N) =

∏
p|N

(
1− 1

(p− 1)2

)∏
p 6|N

(
1 +

1

(p− 1)3

)
= S3(N),

where S3(N) is the singular series for the ternary Goldbach problem. Therefore the major
arcs contribution is∫

M

S3(α)e(−Nα)dα =
(
S3(N) +O

(
(logN)−B+1

))(N2

2
+O

(
N2(logN)−2B

))
+O

(
N2 exp(−c

√
logN)

)
= S3(N)

N2

2
+O

(
N2(logN)−B+1

)
. (1.4)

Minor arcs

We want to prove that the order of magnitude of the minor arcs contribution is smaller than
the major arcs asymptotic behaviour proved in (1.4). The first step is observing that∣∣∣ ∫

m

S3(α)e(−Nα)dα
∣∣∣ ≤ max

α∈m
|S(α)|

∫ 1

0

|S2(α)|dα.

By orthogonality, the integral in the right-hand side is
∑

m≤N Λ2(m) � N logN , where
the asymptotic inequality is a direct application of the Prime Number Theorem (see Result
(R.4)). By Dirichlet’s theorem on diophantine approximations (see Result (R.6)), we can
apply Vaughan’s estimation in Result (R.9) and therefore, for every α ∈ m, we have

|S(α)| �
(
N
√
q

+
√
qN +N4/5

)
(logN)4 � N(logN)−B/2+4. (1.5)

Hence, the minor arcs contribution is O
(
N2(logN)−B/2+5

)
.

Collecting (1.1), (1.4) and (1.5) and setting B = 2(A+ 5), we finally get

Theorem 1.1 (Vinogradov’s theorem [Vin37]). Let N be a sufficiently large integer. Then,
for any fixed A > 0, we have

R3(N) = S3(N)
N2

2
+O

(
N2(logN)−A

)
.
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1.3.2 Pintz’s explicit formula

Pintz’s explicit formula in the next Theorem 1.3 (that we cite from [Pin09], §18) is the main
tool in estimating the contribution of the major arcs (obtained by the Farey dissection), to
the weighted function associated to the Goldbach problem. To be more precise: in estimating
the following function

RM(n) =

∫
M

S2(α) e(−nα)dα,

where e(x) = e2πıx and S(α) =
∑

1≤m≤X Λ(m)e(mα), with Λ(m) the von Mangoldt function

and X a large parameter. Moreover, if P ∈ [X2/5, X41/100] and Q = X/P , we have

M =
⊔

1≤q≤P

⊔
1≤a≤q
(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1

qQ

]
,

as in Section 1.3.1. Pintz’s formula shows that, beyond the eventual excepitonal zero, we
can exactly evaluate the effect of all the so called “generalised exceptional zeros” for the
L-functions. The technique used is a generalization of the “exceptional zero technique” in-
troduced by Montgomery-Vaughan in [MV75], where they exactly computed the contribution
made by the possible Siegel zero, to the asymptotic formula in the Goldbach problem.

We recall a classical and fundamental result about the zero-free region, defining the
exceptional zeros.

Theorem 1.2 (Zero-free region). There exists an absolute constant c > 0 such that if χ is
a Dirichlet character modulo r, then the region{

s = β + ıγ : β > 1− c

log(r(|γ|+ 2))

}
contains no zeros of L(s, χ) unless χ is a real character, in which case L(s, χ) has at most
one, necessarily real, zero β ∈ (1 − c/(log 2r), 1]. Such a zero β is called exceptional (or
Siegel) zero.

Proof. See Montgomery-Vaughan [MV07], Theorem 11.3. �

Proceeding as in Jutila [Jut77], we consider the rectangle

R(σ, T ) = {β + ıγ : σ ≤ β ≤ 1; |γ| ≤ T},

and we define N(σ, T, χ) to be the number of zeros of the L-function L(s, χ) which lie in
R(σ, T ). Further let

N∗(σ, T, P ) =
∑

1≤r≤P

∑*

χ mod r

N(σ, T, χ),

be the number of zeros of L(s, χ), for any primitive Dirichlet character χ modulo r ≤ P
(i.e. the asterisk indicates that the sum is over primitive characters), which lie in R(σ, T ).
Any such a zero (resp. character, modulus) is called generalized exceptional zero (resp.
character, modulus).
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To state Pintz’s explicit formula, we need to consider the set E(H,T ) of all generalized ex-
ceptional zeros which lie in R(1−H/ logX,T ), such that |E(H,T )| = N∗(1−H/ logX,T, P ),
with H and T sufficiently large constants and P ≤ X4/9−ε. We also need to introduce the
following notation:

ρi = (1− δi) + ıγi, δi ≤
H

logX
, |γi| ≤ T,

χi (mod ri), (1.6)

ri ≤ P, P ≤ X4/9−ε,

Finally we include, among the generalized exceptional zeros, the pole ρ0 = 1 of ζ(s) =
L(s, χ0), where χ0 can be considered as the primitive character modulo 1. So we can define
E0(H,T ) = E(H,T ) ∪ {1} and

A(ρi) =

{
−1 if ρi ∈ E(H,T ),

1 if i = 0.
(1.7)

We are now ready to state the needed theorem.

Theorem 1.3 (Pintz’s explicit formula). Let P ∈ [Xθ−ε, Xθ], with θ < 4/9 and ε > 0. Then
for any even n ∈ [X/2, X]

RM(n) =
∑

ρi,ρj∈E0(H,T )

S(χi, χj, n)A(ρi)A(ρj)
Γ(ρi)Γ(ρj)

Γ(ρi + ρj)
nρi+ρj−1

+O
(
X
(
e−cH + T−1/2

))
,

where c > 0 is a fixed absolute constant, A(ρ) is defined above in (1.7), Γ(ρ) is the Gamma
function and S(χi, χj, n) is the so-called generalized singular series.

Proof. [Pin09], Theorem 25. �

Remark 1.4. The exact definition of the generalized singular series is very elaborate (see
Pintz [Pin06b], §15, pages 244-245), however here we just need the following properties of
its:

i) |S(χi, χj, n)| ≤ S(χ0, χ0, n) = S(n);

ii) for any sufficiently small ε > 0 we have

|S(χi, χj, n)| ≤ ε,

except when  ri | C(ε)n
rj | C(ε)n
cond(χiχj) ≥ ε−3,

where C(ε) is a suitable constant depending only on ε and cond(χ) denotes the conductor2

of χ.
2The conductor of χ is its smallest induced modulus (see e.g. Apostol [Apo76], page 171).



32 V. Settimi - On some additive problems with primes and powers of a fixed integer

The theorem yields the following corollary by Languasco, Pintz and Zaccagnini [LPZ07],
which gives an estimation and an asymptotic estimation of RM(n).

Corollary 1.5 (Languasco-Pintz-Zaccagnini). Theorem 1.3 implies that for every even n ∈
[X/2, X], we have:

RM(n)� nS(n).

In particular, if there exists a sufficiently small absolute constant η > 0 and a constant C ′(η)
depending only on η such that

ri - C ′(η)n (1.8)

for every generalized (primitive) exceptional character χi, then

|RM(n)− nS(n)| ≤ ηnS(n).

Moreover, denoting by a∗ the odd square-free part of any a ∈ N, we have r∗i � (logX)2 for
any generalized exceptional modulus.

Finally, if K denotes the number of generalized (primitive) exceptional character χi
mod ri, then

0 ≤ K ≤ C1(η),

with C1(η) a positive constant depending only on η.

Proof. [LPZ07], Corollary 4.2. �
We remark that nS(n) is the diagonal term for ρi = ρj = 1 in Pintz’s explicit formula

above.
We conclude this section listing two useful results about generalized exceptional zeros

and moduli.

Lemma 1.6 (Peneva). Suppose that P ≥ 1 and T ≥ 2. For 41/42 ≤ σ ≤ 1 we have

N∗(σ, T, P )� (P 4T )
3
2

(1−σ).

Proof. [Pen01, Pen04], Lemma 3′. �
In our situation, recalling that P ∈ [X2/5, X41/100] and so P ≤ X1/2, and assuming T ≤ P

and H/ logX ≤ 1/42, we get

|E(H,T )| � (X5/2)
3
2

(H/ logX) = e15H/4

that is, roughly speaking, we can bound the number of exceptional zeros only using the
exceptional moduli.

Lemma 1.7 (Pintz). If L(s, χ) = 0, with s = 1− δ and χ (mod r) real character, then

δ � r−1/2.

Proof. [Pin76], Theorem 3. �
As set in (1.6), our generalized exceptional zeros ρi are such that δi ≤ H/ logX. Thus

Lemma 1.7 implies

H

logX
≥ δi �

1
√
ri

⇒ ri �
( logX

H

)2

� (logX)2,

recalling that H is a sufficiently large constant.
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1.3.3 Davenport-Heilbronn method

The notation used in this section is in accordance with the original works and not with the
rest of the thesis.

The Hardy-Littlewood method described in Section 1.3.1, deals with the solution of equa-
tions in integers and it can be used, more generally, fixing k and ` positive integers, to study
the solubility of an homogeneous equation of the form

λ1x
k
1 + . . .+ λ`x

k
` = 0,

where the λi’s are integers (see Vaughan [Vau97], §9) or, equivalently, are all in rational
ratio. To deal with the case when some of the λi’s are not in rational ratio, Davenport and
Heilbronn in [DH46] developed a new method, that can be therefore seen as a variation of
the Hardy-Littlewood one.

To explain how it works, we briefly describe here the proof the main theorem in [DH46]
(for more details see also Davenport [Dav05], §20, and Vaughan [Vau97], §11).

Theorem 1.8 (Davenport-Heilbronn). Let λ1, . . . , λ5 be non-zero real numbers, not all of
the same sign and such that there exist 1 ≤ i, j ≤ 5 such that λi/λj is irrational. Then there
exist arbitrarily large integers P such that

|λ1x
2
1 + . . .+ λ5x

2
5| < 1 (1.9)

has solutions in 1 ≤ xi ≤ P for every 1 ≤ i ≤ 5.

Remark 1.9. 1. We can easily deduce the corresponding result for the inequality

|λ1x
2
1 + . . .+ λ5x

2
5| < η,

for any η > 0, just replacing λi with λi/η for every 1 ≤ i ≤ 5, and then applying
Theorem 1.8.

2. We can easily prove the same result for the inequality

|λ1x
2
1 + . . .+ λ5x

2
5 − µ| < η,

for any real number µ, just replacing η with η + |µ|.

3. Let k be a positive integer. Using Hua’s inequality in [Hua38a], we can replace the
squares by kth-powers, so obtaining the corresponding result for

|λ1x
k
1 + . . .+ λ`x

k
` − µ| < η,

provided that ` ≥ 2k + 1.

Proof of Theorem 1.8. We start by observing that we can assume, without any loss of
generality, that λ1/λ2 6∈ Q and λ1/λ2 < 0. Let us set

Q = Q(x1, . . . , x5) = λ1x
2
1 + . . .+ λ5x

2
5.
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Given a large integer P > 0, our aim is to prove that
∑

1≤x1,...,x5≤P, |Q|<1 1 is “large”. More
precisely, we will prove that ∑

1≤x1,...,x5≤P
|Q|<1

1� P 3. (1.10)

The first step is to construct a function in Q, say f(Q), which is positive for |Q| < 1 and
zero for |Q| ≥ 1. So let

f(Q) =

∫ ∞
−∞

e(αQ)
(sin πα

πα

)2

dα,

where e(x) = e2πıx. It’s easy to see that f(Q) = max(0; 1− |Q|). Now let us define

S(α) =
P∑
x=1

e(αx2) and I(α) =

∫ P

0

e(αx2)dx.

By easy computations, we obtain∫ +∞

−∞
S(λ1α) . . . S(λ5α)

(sin πα

πα

)2

dα (1.11)

=
∑

1≤x1,...,x5≤P

∫ +∞

−∞
e(α(λ1x

2
1 + . . .+ λ5x

2
5))
(sin πα

πα

)2

dα

=
∑

1≤x1,...,x5≤P
|Q|<1

(1− |Q|).

Since 1 ≥ |1− |Q||, for |Q| < 1, then, to prove (1.10), it is sufficient to prove that∑
1≤x1,...,x5≤P
|Q|<1

(1− |Q|)� P 3.

Arguing as in (1.11), but with I(α) replacing S(α), we obtain∫ +∞

−∞
I(λ1α) . . . I(λ5α)

(sin πα

πα

)2

dα =

∫
1≤x1,...,x5≤P
|Q|<1

(1− |Q|)dx1 . . . dx5. (1.12)

Using this setting, the idea of the proof is the following:

1. Proving that the right-hand side of (1.12) is � P 3, for P sufficiently large;

2. Proving that the difference between the left-hand sides of (1.11) and (1.12) is o(P 3),
for P sufficiently large;

3. Thus the right-hand side of (1.11) is � P 3, as wanted.
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The key step is the second one and, in particular, the difficulty in proving it lies in estimating
the contribution made by those α such that3

1

4(maxi |λi|)P
< |α| < P δ,

for any fixed δ > 0, to the integral on the left-hand side of (1.11). Here the hypothesis
about the irrationality of λ1/λ2 is crucial (for example, we will need the continued fraction
expansion for λ1/λ2). �

3For the lower bound, we follow Davenport [Dav05], §20, since it allows a sharper result. In the original paper it
is just 1

P
< |α| < P δ.





Chapter 2

On a Diophantine problem with one
prime, two squares of primes and
k powers of two

In this chapter we introduce our work about a diophantine problem with one prime, two
prime squares and k powers of 2. This problem was already studied by W.P. Li and Wang
[LW05]. Here we refine their result, improving their lower bound for k. More precisely, in
the first section, we state our result and we compare it with Li-Wang’s work. In Section 2.2
we set up our problem and we fix the notation, while in Section 2.3 we collect the lemmas
needed to prove our theorem. In particular, Lemmas 2.8-2.9 and Lemmas 2.12-2.13 (with
Claims 2.A-2.B) are our new results, used to deal with exponential sums over prime squares.
In Sections 2.4 -2.6 we prove the partial results we need to complete the proof of our theorem,
which is the subject of the last Section 2.7.

2.1 Introduction to our result

The very starting point for our work is the beautiful paper [Par03] by Parsell in which the
author investigated the values taken by real linear combinations of two primes and a bounded
number of powers of 2. Roughly speaking, Parsell proved that, under certain conditions, these
values can be made arbitrarily close to any real number, by taking sufficiently many powers
of 2.

More precisely he proved the following

Theorem (Parsell). Suppose that λ1 and λ2 are real numbers such that λ1/λ2 is negative
and irrational. Further suppose that µ1, . . . , µk are nonzero real numbers such that, for some
i and j, the ratios λ1/µi and λ2/µj are rational. Finally, fix η > 0. Then there exists an
integer k0, depending at most on λ’s, µ’s and η, such that for every real number $ and every
integer k > k0, the inequality

|λ1p1 + λ2p2 + µ12m1 + . . .+ µk2
mk +$ | < η (2.1)

has infinitely many solutions in primes p1 and p2 and positive integers m1, . . . ,mk.
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After rearranging and multiplying through by a suitable constant, we can suppose that λ1/µ1

and λ2/µ2 are rational, λ1 > 1, λ2 < −1 and |λ1/λ2| ≥ 1. With these conditions, the
constant k0 is given explicitly as

k0 = 2 +
⌈ log((1− 8λ1ε)η)− log(2C|λ1λ2|)

log(0.954)

⌉
where ε > 0 is an arbitrarily small constant and

C = C(q1, q2) = 25
√

log(2q1)
√

log(2q2),

with ai/qi = λi/µi the reduced fraction having qi > 0.

Proof. [Par03], Theorem 1 (see pages 365 and 371 for the explicit formula for k0). �

The main ingredient in Parsell’s proof is the Davenport-Heilbronn version of the Hardy-
Littlewood method. That is, Parsell first reduced his problem to studying the integral over
R of some suitable exponential sums over primes and over powers of 2. Then he split the
integration interval into major, minor and trivial arcs and, finally, he estimated the respective
integrals one by one:

• On the major arc, Parsell used the truncated explicit formula for ψ(x) (see Result
(R.13)), the zero-density estimate by Ingham-Huxley (see Result (R.15)) and the zero-
free region for the Riemann ζ-function (see Result (R.5)).

• On the minor arc, Parsell used a standard argument involving continued fractions
for the irrational number λ1/λ2, to estimate the exponential sum over primes (see
e.g. Vaughan [Vau74], Lemma 11). Then he used a result by Heath–Brown and Putcha
(see [HBP02], Lemma 1 and some techniques in §5) to prove that the contribution of
the exponential sum over powers of 2 is small, except on a set of very small measure.

• On the trivial arc, Parsell used trivial estimates.

We mention that recently, Languasco and Zaccagnini in [LZ10] improved Parsell’s theo-
rem, lowering the value of k0.

Replacing one of the prime summands in (2.1), with the sum of two prime squares, we
obtain the problem of studying the values taken by the form

λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12m1 + · · ·+ µk2

mk .

This problem naturally descends from the combination of Parsell’s theorem with the Waring-
Goldbach problem with prime squares (see, e.g., Hua [Hua38b]). The only result we know
about it, is the following theorem by W.P. Li and Wang

Theorem (Li-Wang). Suppose that λ1, λ2 and λ3 are nonzero real numbers not all of the
same sign and such that λ2/λ3 is irrational. Further suppose that µ1, . . . , µk are nonzero
real numbers such that, for some i, j and `, the ratios λ1/µi, λ2/µj and λ3/µ` are rational.
Finally, fix η > 0. Then there exists an integer k0, depending at most on λ’s, µ’s, η and
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ε, where ε > 0 is an arbitrarily small number, such that for every real number $ and every
integer k > k0, the inequality

|λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12m1 + . . .+ µk2

mk +$ | < η

has infinitely many solutions in primes p1, p2 and p3 and positive integers m1, . . . ,mk.

The constant k0 is given explicitly as

k0 = 3 +
⌈ log(λ1η)− log(29C(|λ1|+ |λ2|+ |λ3|)2)

log(0.995)

⌉
where

C = C(q1, q2, q3, ε) = 5(1 + ε)5

√(114 · 43 · π26

227 · 25
+

log 2

2

)√
log(2q1)

√
log(2q2)

√
log(2q3),

where ai/qi = λi/µi is the reduced fraction having qi > 0.

Proof. [LW05], Theorem 1 (see page 21 for the explicit formula for k0). �

Li-Wang’s proof is along the lines of Parsell’s one, but with in addition exponential sums
over prime squares: the authors basically adapted the same techniques used by Parsell, to
deal with prime squares when needed, and they used Ghosh’s estimate in [Gho81] (see Result
(R.10)) to deal with the exponential sum over prime squares on the minor arc.

Our idea is to improve Li-Wang’s result (that is lowering their value of k0) by using
different and more fitting techniques. In particular, we prove the following result (that we
write in a slightly different form, with respect to Parsell’s and Li-Wang’s theorems, splitting
it into a theorem and a corollary).

Theorem A (Languasco-Settimi [LS11]). Suppose that λ1 < 0, λ2, λ3 > 0 are real numbers
such that λ2/λ3 is irrational. Further suppose that µ1, . . . , µk are nonzero real numbers such
that λi/µi ∈ Q for i ∈ {1, 2, 3}, and denote by ai/qi the reduced fraction of λi/µi having
qi > 0. Finally let η > 0 be a sufficiently small constant such that

η < min
(∣∣∣λ1

a1

∣∣∣; λ2

a2

;
λ3

a3

)
.

Then there exists an integer k0, depending at most on λ = (λ1, λ2, λ3), µ = (µ1, µ2, µ3), η
and ε1, where ε1 > 0 is an arbitrarily small constant, such that, for every real number $ and
every integer k ≥ k0, the inequality

|λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12m1 + . . .+ µk2

mk +$ | < η (2.2)

has infinitely many solutions in primes p1, p2 and p3 and positive integers m1, . . . ,mk.

The constant k0 is given explicitly as

k0 = 3 +
⌈ log((3− 2

√
2− ε4)η)− log (4C(|λ1|+ λ2 + λ3))

log(0.9505087500)

⌉
, (2.3)
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where ε4 > 0 is an arbitrarily small constant1 and

C = C(q1, q2, q3, ε1) = (1 + ε1)
(

log 2 + C ·S′(q1)
)1/2

×
(

log2 2 +D ·S′′(q2)
)1/4(

log2 2 +D ·S′′(q3)
)1/4

, (2.4)

with C = 10.0219168340, D = 17, 646, 979.6536361512. Moreover

S′(n) =
∏
p|n
p>2

p− 1

p− 2
and S′′(n) =

∏
p|n
p>2

p+ 1

p
. (2.5)

Corollary A (Languasco-Settimi). Suppose that λ1, λ2, λ3 are nonzero real numbers, not all
of the same sign and such that λ2/λ3 is irrational. Further suppose µ1, . . . , µk are nonzero
real numbers such that λi/µi ∈ Q for i ∈ {1, 2, 3}, and denote by ai/qi the reduced fraction
of λi/µi having qi > 0. Finally let η > 0 be a sufficiently small constant such that

η < min
(∣∣∣λ1

a1

∣∣∣; ∣∣∣λ2

a2

∣∣∣; ∣∣∣λ3

a3

∣∣∣)
and τ ≥ η > 0. Then there exists an integer k0, depending at most on λ, µ, η and ε1, where
ε1 > 0 is arbitrarily small constant, such that, for every real number $ and every integer
k ≥ k0 the inequality

| λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12m1 + . . .+ µk2

mk +$ | < τ

has infinitely many solutions in primes p1, p2 and p3 and positive integers m1, . . . , mk.

Proof of the corollary. The corollary is a direct consequence of Theorem A since, re-
ordering the λ’s, we can get λ1 < 0, λ2, λ3 > 0. Hence the theorem assures us that the
inequality (2.2) has infinitely many solutions and the corollary immediately follows from the
condition τ ≥ η. �

The rest of this chapter is devoted to a detailed proof of our Theorem A. We just want
to remark here that, with respect to [LW05], our main gain comes from enlarging the size of
the major arc, since this allows us to use sharper estimates on the minor arc. In particular

• On the major arc, we replaced Parsell’s technique used in [LW05], with an argument
involving a L2-estimate of the exponential sum over prime squares (i.e. S2(α)). This is
a standard tool when working on primes (see, e.g., Languasco-Zaccagnini [LZ10] for an
application to a similar problem), but it seems that it is the first time that this kind of
technique is used for prime squares (so the relevant Lemmas 2.12 and 2.13 below could
be of some independent interest).

– Lemma 2.12 is a variation, for prime squares, of Lemma 2.11 (that we cite from
Brüdern-Cook-Perelli [BCP97], Lemma 1).

1We call ε4 in such a way since it will be the fourth arbitrarily small positive constant in the following.
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– Lemma 2.13 is a variation, for prime squares, of Saffari-Vaughan’s estimation of
the Selberg integral described in Result (R.12) (in particular, Claim 2.A and Claim
2.B are variations of [SV77], Lemma 5 and Lemma 6 respectively).

• On the minor arc, to treat the exponential sums over primes (i.e. S1(α)) and over
prime squares (i.e. S2(α)), we follow the argument in Lemma 4 of Languasco-Zaccagnini
[LZ10], instead of Parsell’s mean value estimate used in [LW05]. Moreover, to deal with
the exponential sum over powers of two (i.e. G(α)), we insert Pintz-Ruzsa’s algorithm
(see [PR03]) to estimate the measure of the subset of the minor arc on which |G(α)|
is “large”, instead of Heath–Brown-Putcha’s result used in [Par03] and [LW05]. These
ingredients lead to a sharper estimate on the minor arc and let us reduce the lower
bound k0. More precisely

– In Lemma 2.5, we use Lemma 4 of Languasco-Zaccagnini [LZ10] to treat S1(α).
and in Lemma 2.8 we developed a technique, analogous to Languasco-Zaccagnini’s
one, to treat S2(α).

Our Lemmas 2.5 and 2.8 (as we will analyze in details after their statements)
improve the numerical constants in the definition (2.4) of C, comparing with Li-
Wang’s ones.

Moreover we remark that the works of Rosser-Schoenfeld [RS62] on n/ϕ(n) and of
Solé-Planat [SP11] on the Dedekind Ψ-function (see Lemmas 2.2 and 2.3 below)
give for S′(q) and S′′(q) sharper estimates, for large values of q, than 2 log(2q)
used by Li-Wang in the definition of C. This leads to another improvement in the
value of C.

– To deal with the exponential sum over powers of two (i.e. G(α)), we insert Pintz-
Ruzsa’s algorithm (defined in [PR03]). This ingredient allows us to improve the
absolute value of the denominator of k0 (compare our k0 in (2.3) with Li-Wang’s
one). Comparing only such denominators, we see that our gain is about 90%.

In practice, the following example shows that the gain is actually slightly larger than
90%. For instance, taking λ1 = −

√
5 = µ−1

1 , λ2 =
√

3 = µ−1
2 , λ3 =

√
2 = µ−1

3 , η = 1 and
ε1 = ε4 = 10−20, we get k0 = 286, while W.P. Li-Wang’s estimate gives k0 = 4120.

2.2 Davenport-Heilbronn method

In this section we set the notation, in order to use (a variation of) the Davenport-Heilbronn
method described in Section 1.3.3, to count the solutions of the inequality (2.2) in the
statement of Theorem A.

Let ε, ε1 be two sufficiently small positive constants, X be a large parameter, M =
|µ1|+ . . .+ |µk| and L = log2(εX/(2M)). Our aim is therefore to find the number N(X) of
solutions of the inequality (2.2), with εX ≤ p1, p

2
2, p

2
3 ≤ X and 1 ≤ m1, . . . ,mk ≤ L.

Setting e(u) = exp(2πıu), the needed exponential sums are

S1(α) =
∑

εX≤p≤X

log p e(pα) exponential sum over primes,
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S2(α) =
∑

εX≤p2≤X

log p e(p2α) exponential sum over prime squares,

G(α) =
∑

1≤m≤L

e(2mα) exponential sum over powers of 2.

The kernel function for the Davenport-Heilbronn method is K(α, η) =
(

sinπηα
πα

)2
, for

α 6= 0. By Result (R.1) it verifies

K.i) K̂(t, η) = max(0 ; η − |t|), where K̂(t, η) is the Fourier transform of K(α, η);

K.ii) K(α, η)� min(η2 ; α−2).

If we define

I(X;S) =

∫
S
S1(λ1α)S2(λ2α)S2(λ3α)G(µ1α) · · ·G(µkα)e($α)K(α, η)dα,

for any S ⊆ R, then, by (K.i), it follows that

I(X;R)� η(logX)3 ·N(X).

So we want to prove that, for X → +∞ running over a suitable integral sequence, we have

I(X;R)�k,λ,ε η
2X(logX)k, (2.6)

where λ = (λ1, λ2, λ3), thus obtaining

N(X)�k,λ,ε ηX(logX)k−3,

which implies Theorem A.
To prove the estimate (2.6), we dissect the real line into major M, minor m and trivial t

arcs, by choosing P = X2/5/ logX and letting

M = {α ∈ R : |α| ≤ P/X}, m = {α ∈ R : P/X < |α| ≤ L2}, t = R \ (M ∪m). (2.7)

Accordingly, we write

I(X;R) = I(X;M) + I(X;m) + I(X; t). (2.8)

Our aim is to prove that:

• On trivial arc,

|I(X; t)| = o
(
XLk

)
(2.9)

holds for all sufficiently large X.

• On major arc,

I(X;M) ≥ c1η
2XLk, (2.10)

with c1 = c1(ε4,λ) > 0 constant.
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• On minor arc,

|I(X;m)| ≤ c2(k)ηXLk (2.11)

holds for X → +∞ running over a suitable integral sequence, where c2(k) > 0 depends
only on k, c2(k)→ 0 as k → +∞ and

c1η − c2(k) ≥ c3η, (2.12)

for some absolute constant c3 > 0 and for k ≥ k0.

Inserting (2.9)-(2.12) into (2.8), we finally obtain that the estimate in (2.6) holds, thus
proving Theorem A.

2.3 Lemmas

In this section we collect the lemmas needed to prove the estimates (2.9)-(2.11). Some of
these lemmas are known results; hence in many cases we will just give the relative references.
Other ones are new and in this case we will prove them in details. In particular, we will
prove Lemmas 2.8-2.9 and Lemmas 2.12-2.13 (with Claims 2.A-2.B) since they are needed
to deal with exponential sums over prime squares.

Let 1 ≤ n ≤ (1 − ε)X/2 be an integer and p1, p2 two prime numbers. We define the
twin-prime counting function as follows

Z(X; 2n) =
∑

εX≤p1≤X

∑
p2≤X

p2−p1=2n

log p1 log p2. (2.13)

We recall that we denote by S(n) the singular series for the Goldbach problem, and so
S(n) = 2c0S

′(n), where S′(n) is defined in (2.5) and c0 is the twin prime constant

c0 =
∏
p>2

(
1− 1

(p− 1)2

)
.

Notice that S′(n) is a multiplicative function2 and, according to Gourdon-Sebah [GS01], we
have 0.66016181584 < c0 < 0.66016181585.

Further, given ` ∈ N \ {0}, let r`,`(m) be the number of representations of an integer m

as
∑`

i=1 2ui −
∑`

i=1 2vi , with 1 ≤ ui, vi ≤ L integers, so that r`,`(m) = 0 for sufficiently large
|m|. Let us define

S(`, L) =
∑

m∈Z\{0}

r`,`(m)S(m).

The first lemma is about the behaviour of S(`, L) for sufficiently large X.

2S′(n) is the multiplicative part of S(n)
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Lemma 2.1 (Khalfalah-Pintz). For any given ` ≥ 1, there exists A(`) ∈ R such that

lim
L→+∞

(S(`, L)

2L2`
− 1
)

= A(`).

Proof. [KP06], Theorem 1. �

Moreover, Khalfalah-Pintz proved in Theorem 2 of [KP06] some numerical estimates for
A(`), when 1 ≤ ` ≤ 7. We just need here

A(1) < 0.2792521041. (2.14)

The second lemma is an upper bound for S′(n).

Lemma 2.2 (Languasco-Zaccagnini). For n ∈ N, n ≥ 3, we have that

S′(n) <
n

c0ϕ(n)
<
eγ log log n

c0

+
2.50637

c0 · log log n
,

where γ ≈ 0.5772156 is the Euler constant.

Proof. See [LZ10], Lemma 2. We just remark here that, for n ≥ 3, the first estimate follows
immediately observing that

S′(n) =
∏
p|n
p>2

(p− 1)2

p(p− 2)

∏
p|n
p>2

p

p− 1
<
∏
p>2

(p− 1)2

p(p− 2)

∏
p|n

p

p− 1
=

1

c0

n

ϕ(n)
.

The second estimate is a direct application of Theorem 15 of Rosser and Schoenfeld [RS62]
which claims that, for every n ≥ 3, we have

n

ϕ(n)
< eγ log log n+

2.50637

log log n
. �

Let us now define

f(n) =

{
1 for n = 1, 2,

n
c0ϕ(n)

for n ≥ 3.

For every n ≥ 1, the inequality S′(n) ≤ f(n) is sharper than Parsell’s estimate S′(n) ≤
2 log(2n) (see the estimate of h(q) at page 369 of [Par03]). Since it is clear that computing
the exact value of f(n) for large values of n it is not easy (because it requires the knowledge
of every prime factor of n), we also remark that, for every n ≥ 14, the second estimate in
Lemma 2.2 leads to a sharper bound than S′(n) ≤ 2 log(2n) used in [Par03] and [LW05].

The next lemma is an upper bound for S′′(n), which is defined in (2.5). We first remark
that it is connected with the Dedekind Ψ-function Ψ(n) = n

∏
p|n (p+ 1)/p, since

S′′(n) =

{
Ψ(n)
n

for n odd,
2Ψ(n)

3n
for n even.
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Lemma 2.3. For n ∈ N, n ≥ 31, we have that

S′′(n) < eγ log log n,

where γ ≈ 0.5772156 is the Euler constant.

Proof. Clearly S′′(n) ≤ Ψ(n)/n, so the lemma immediately follows from Corollary 2 of
Solé-Planat [SP11] which claims that Ψ(n)/(n log log n) < eγ , for every n > 30. �

For every n ≥ 31, the estimate in Lemma 2.3 is sharper than Li-Wang’s one (that
is S′′(n) ≤ 2 log(2n), as in the last line of page 279 of [LW05]). We also remark that
S′′(1) = S′′(2) = 1 and the computation of S′′(n) in the remaining interval 3 ≤ n ≤ 30 is
an easy task.

The next lemma is a famous result of Bombieri and Davenport that is needed in the proof
of Lemma 2.5 below.

Lemma 2.4 (Bombieri-Davenport). There exists a positive constant B such that, for every
positive integer n, we have

Z(X; 2n) < BS(n)X,

where Z(X; 2n) is defined in (2.13) and S(n) is the singular series for the Goldbach problem,
provided that X is sufficiently large.

Proof. [BD66], Theorem 2. �
Chen [Che78] proved that B = 3.9171 can be used in Lemma 2.4. The assumption of a

suitable form of the twin prime conjecture (i.e. Z(X; 2n) ∼ S(n)X, for X → +∞) implies
that in this case we can take B = 1 + ε, for every positive ε.

Now we state some lemmas we need to estimate I(X;m). The first one is an improvement
of the mean-square estimate in Parsell [Par03], Lemma 3.

Lemma 2.5 (Languasco-Zaccagnini). Let X be a sufficiently large parameter and let λ, µ 6= 0
be two real numbers such that λ/µ ∈ Q. Let a, q ∈ Z \ {0} be such that q > 0, (a, q) = 1 and
λ/µ = a/q. Let further 0 < η < |λ/a|. We have∫

R
|S1(λα)G(µα)|2K(α, η)dα < ηXL2

(
(1− ε) log 2 + C ·S′(q)

)
+OM,ε(ηXL),

where C = 2B(1 + A(1)) = 10.0219168340, B = 3.9171 is the constant in Lemma 2.4 and
A(1) is estimated in (2.14). Finally, let ε, L, M be as are defined at the beginning this
section.

Proof. [LZ10], Lemma 4. �
The constant C = 10.0219168340 should be compared with the value C1 = 11.4525218267

obtained in [Par03] (we remark that in the proof of Lemma 3, Parsell also used the worst
estimate S′(n) ≤ 2 log(2n)). We also remark that, assuming the twin prime conjecture in
Lemma 2.4 and taking B = 1 + 10−20, we get C = 2.5585042083.

The next step is to find a mean value estimate for the exponential sum over prime squares.
Instead of the estimate used by Li-Wang in [LW05], we prove a new result (see Lemma 2.8
below), following the argument used by Languasco and Zaccagnini in the proof of Lemma
2.5. In order to do this, we need the following Lemmas 2.6-2.7.
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Lemma 2.6. Let ε1 > 0 be an arbitrarily small constant. For n ∈ Z, n 6= 0, |n| ≤ X and
n ≡ 0 mod 24, let us define

r(n) =
∣∣{(p1, p2, p3, p4) ∈ P4 : p2

1 + p2
2 − p2

3 − p2
4 = n; pj ≤ X1/2, j = 1, . . . , 4

}∣∣,
where P is the set of all prime numbers. We have

r(n) ≤ (1 + ε1)c4
π2

16
S−(n)

X

log4X
,

with c4 = (101) · 220 and

S−(n) =

(
2− 1

2m0−1
− 1

2m0

) ∏
p>2
pm‖n
m≥0

(
1 +

1

p
− 1

pm+1
− 1

pm+2

)
,

where m0 ∈ N such that 2m0 ‖ n.

Proof. It follows by inserting the remark at page 385 of H. Li [Li06] in the proof of Lemma
2.2 of J. Liu-Lü [LL04]. �

We immediately remark that S−(n) ≤ 2S′′(n). In fact
(
2− 1

2m0−1 − 1
2m0

)
≤ 2, for every

m0 ∈ N, and ∏
p>2
pm‖n
m≥0

(
1 +

1

p
− 1

pm+1
− 1

pm+2

)
≤
∏
p|n
p>2

(
1 +

1

p

)
= S′′(n).

We also need the following result by H. Li

Lemma 2.7 (H. Li). Let d be a positive odd integer, let us define the quantity

ξ(d) = min{` : 2` ≡ 1 (mod d)}.

Then the series
+∞∑
d=1
2-d

µ2(d)

dξ(d)

is convergent and its value is c5 < 1.620767.

Proof. [Li06], Lemma 4. �
We are now ready to state our result for the exponential sum over prime squares, which

is the analogue of Lemma 2.5, but with prime squares instead of primes.

Lemma 2.8. Let X be a sufficiently large parameter and let λ, µ 6= 0 be two real numbers
such that λ/µ ∈ Q. Let a, q ∈ Z \ {0} be such that q > 0, (a, q) = 1 and λ/µ = a/q. Let
further 0 < η < |λ/a|. We have∫

R
|S2(λα)G(µα)|4K(α, η)dα < (1 + ε1)ηXL4

(
log2 2 +D ·S′′(q)

)
,

where ε1 > 0 is an arbitrarily small constant and D = c4c5 · 2−5 · 3−1 · π2, with c4, c5 defined
as in Lemmas 2.6-2.7 respectively.
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Lemma 2.8 should be compared with Lemma 4.2 of [LW05] (see also Lemma 4.3 of
W.P. Li-Wang [LW07]) in which the value D1 = 2−27 · 5−2 · 114 · 43 · π26 plays the role of
our D. Using the values c4 = 101 · 220 and c5 < 1.620767 as in Lemmas 2.6-2.7, we see
that D < 17, 646, 979.6536361512 while D1 = 1, 581, 925, 383.0798448770. We remark that
D < (0.0112) ·D1 and so the reduction factor here is close to the 98.8%. With an abuse of
notation, in the statement of Theorem A we set D = 17, 646, 979.6536361512.
Proof. This proof is along the lines of Languasco-Zaccagnini’s proof of Lemma 2.5. Letting

I =

∫
R
|S2(λα)G(µα)|4K(α, η)dα,

by definitions of S2(α) and G(α) and by the property (K.i) of K(α, η), we immediately have

I =
∑

εX≤p21,p22,p23,p24≤X

log p1 log p2 log p3 log p4

×
∑

1≤m1,m2,m3,m4≤L

max
(

0; η − |λ(p2
1 + p2

2 − p2
3 − p2

4) + µ(2m1 + 2m2 − 2m3 − 2m4)|
)
. (2.15)

Let δ = λ(p2
1 + p2

2 − p2
3 − p2

4) + µ(2m1 + 2m2 − 2m3 − 2m4). For a sufficiently small η > 0, we
claim that

|δ| < η ⇔ δ = 0. (2.16)

Recalling the hypothesis on a and q and assuming that δ 6= 0 in (2.16), then, for η < |λ/a|
as in the hypothesis, the assumption |δ| < η leads to a contradiction. In fact we have

1

|a|
>

η

|λ|
>
∣∣∣p2

1 + p2
2 − p2

3 − p2
4 +

q

a
(2m1 + 2m2 − 2m3 − 2m4)

∣∣∣
=
∣∣∣a(p2

1 + p2
2 − p2

3 − p2
4) + q(2m1 + 2m2 − 2m3 − 2m4)

a

∣∣∣ ≥ 1

|a|
,

since a(p2
1 + p2

2 − p2
3 − p2

4) + q(2m1 + 2m2 − 2m3 − 2m4) 6= 0 is a linear integral combination.
Inserting (2.16) in (2.15), we can write that

I = η
∑

εX≤p21,p22,p23,p24≤X

∑
1≤m1,m2,m3,m4≤L

λ(p21+p22−p23−p24)+µ(2m1+2m2−2m3−2m4 )=0

log p1 log p2 log p3 log p4. (2.17)

Diagonal contribution. The diagonal contribution in (2.17) is equal to

η
∑

εX≤p21,p22,p23,p24≤X
p21+p22=p23+p24

log p1 log p2 log p3 log p4

∑
1≤m1,m2,m3,m4≤L
2m1+2m2=2m3+2m4

1. (2.18)

The number of the solutions of p2
1 + p2

2 = p2
3 + p2

4, when p1p2 6= p3p4, can be estimated using
Rieger’s Theorem (see Result (R.8)) and it is � X(logX)−3. This gives a contribution to
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the first sum in (2.18) which is � X logX. In the remaining case p1p2 = p3p4, the first sum
in (2.18) becomes

2
∑

εX≤p21,p22≤X

log2 p1 log2 p2 = 2
( ∑
√
εX≤p≤

√
X

log2 p
)2

≤ 2

(
logX

2

)2 (
ϑ(
√
X)− ϑ(

√
εX)

)2

=
(logX)2

2
X(1−

√
ε)2 + oε

(
X(logX)2

)
< (1− ε)X

2
(logX)2,

where we used the Prime Number Theorem for the ϑ-function (see Result (R.3)) and the
fact that ε > 0 is a sufficiently small constant. The sum over powers of 2 in (2.18) can
be evaluated by fixing first m1 = m3 (thus getting exactly L2 solutions) and then fixing
m1 6= m3 (which gives other L2−L solutions). Hence the contribution of the second sum in
(2.18) is 2L2 − L.

Combining these results we get that the total contribution of (2.18) is

< (1− ε)ηXL2(logX)2 < ηXL4(log 2)2.� (2.19)

Non-diagonal contribution. Now we have to estimate the contribution, say I ′, of the non-
diagonal solutions of δ = 0 in (2.17). We achieve this by connecting I ′ with the singular
series S−(n) of Lemma 2.6. First, we remark that

pj > 3, ∀j = 1, . . . , 4 ⇒ n = p2
1 + p2

2 − p2
3 − p2

4 ≡ 0 mod 24.

We now study the case n 6≡ 0 mod 24 and n ≡ 0 mod 24 one by one.

• Let n = p2
1 +p2

2−p2
3−p2

4 6≡ 0 mod 24, then at least one of the pj’s must be equal to 2 or
3 and hence r(n), defined as in the statement of Lemma 2.6, verifies3 r(n) � X1/2+ε.
Therefore, recalling that λ/µ = a/q 6= 0 and (a, q) = 1, if 2m3 + 2m4 − 2m1 − 2m2 6= 0
and (q/a)(2m3 + 2m4 − 2m1 − 2m2) 6≡ 0 mod 24, then we have∣∣{(p1, . . . , p4) ∈ P : p2

1 + p2
2 − p2

3 − p2
4 =

q

a
(2m3 + 2m4 − 2m1 − 2m2)

}∣∣� X1/2+ε.

• Let n = p2
1 + p2

2 − p2
3 − p2

4 ≡ 0 mod 24. By definition of L and M , we have∣∣∣(q
a

)
(2m3 + 2m4 − 2m1 − 2m2)

∣∣∣ ≤ ∣∣∣q
a

∣∣∣4εX
2M

≤ 2εX

|λ|
< X

for ε sufficiently small. Therefore n satisfies the hypothesis of Lemma 2.6. Applying the
lemma and recalling that log pj ≤ (1/2) logX, S−(n) ≤ 2S′′(n) and that r((q/a)(2m3 +
2m4 − 2m1 − 2m2)) 6= 0 if and only if a | (2m3 + 2m4 − 2m1 − 2m2), we have

I ′ ≤ η

16
log4X

∑
1≤m1,m2,m3,m4≤L

r
(q
a

(2m3 + 2m4 − 2m1 − 2m2)
)

< (1 + ε1)c4
π2

128
ηX

∑
1≤m1,m2,m3,m4≤L

S′′
(q
a

(2m3 + 2m4 − 2m1 − 2m2)
)
. (2.20)

3Because in this case we have that n + p23 + 4 = p21 + p22 or n + p23 + 9 = p21 + p22 and so, for every fixed p3
the number of solutions is bounded by the number of ways we can write an integer as a sum of two squares. It is
� (n+ p23 + 9)ε � Xε, see, e.g., Theorem 338 of Hardy-Wright [HW10].
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Using the multiplicativity of S′′(n) (defined in (2.5)), we get

S′′
(q
a

(2m3 + 2m4 − 2m1 − 2m2)
)
≤ S′′(q)S′′

(2m3 + 2m4 − 2m1 − 2m2

a

)
≤ S′′(q)S′′(2m3 + 2m4 − 2m1 − 2m2),

and so, by (2.20), for every sufficiently large X we can write

I ′ ≤ (1 + ε1)c4
π2

128
S′′(q)ηX

∑
1≤m1,m2,m3,m4≤L

S′′(2m3 + 2m4 − 2m1 − 2m2).

Arguing now as in the estimation of Σ at pages 63-64 of Liu-Lü [LL04], we get∑
1≤m1,m2,m3,m4≤L

S′′(2m3 + 2m4 − 2m1 − 2m2) ≤ 4

3
c5(1 + ε1)L4,

thus obtaining, for a sufficiently small ε1, that

I ′ ≤ (1 + ε1)c4c5
π2

96
S′′(q)ηXL4.� (2.21)

Hence, by (2.17), (2.19) and (2.21), we finally get

I < (1 + ε1)ηXL4
(

log2 2 + c4c5
π2

96
S′′(q)

)
,

this way proving Lemma 2.8. �

The next lemma is the analogous of Lemma 4 in [Par03], but for the exponential sum
over prime squares and with a better choice of parameters with respect to Lemma 4.3 of
[LW05]. We can use such parameters, since we have narrowed the size of minor arc.

Lemma 2.9. Suppose that λ2/λ3 is irrational. Let X = q2, where q is the denominator of
a convergent to the continued fraction for λ2/λ3. Then, for arbitrarily small ε2, we have

sup
α∈m
|S2(λ2α)S2(λ3α)| �ε2 X

15/16+ε2(logX)1/2.

Proof. Let α ∈ m and Q = X1/4/(logX)2 ≤ P . Clearly λ2α, λ3α ∈ R, so by Dirichlet’s
theorem in Result (R.6), for every i = 2, 3 there exist integers ai, qi such that 1 ≤ qi ≤ X/Q,
(ai, qi) = 1 and |λiαqi − ai| ≤ Q/X. We remark that a2a3 6= 0 otherwise |λiαqi| ≤ Q/X,
that is |α| ≤ Q/(qiλiX) ≤ P/X and so we would have α ∈M.

Now suppose that q1, q2 ≤ Q. In this case we get

a3q2
λ2

λ3

− a2q3 = (λ2αq2 − a2)
a3

λ3α
− (λ3αq3 − a3)

a2

λ3α

and hence ∣∣∣∣a3q2
λ2

λ3

− a2q3

∣∣∣∣ ≤ 2

(
1 +

∣∣∣∣λ2

λ3

∣∣∣∣) Q2

X
<

1

2q
,
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for a sufficiently large X. Then, from the law of best approximation (see Result (R.7)) and
the definition of m, we obtain the contradiction

X1/2 = q ≤ |a3q2| � q2q3 log2X ≤ Q2 log2X ≤ X1/2 log−2X.

Hence either q2 > Q or q3 > Q. Assume, without loss of generality, that q2 > Q. Using
Ghosh’s estimate in Result (R.10), we have

sup
α∈m
|S2(λ2α)S2(λ3α)| �ε2 X

1+ε2 sup
Q<q2≤X/Q

(
1

q2

+
1

X1/4
+
q2

X

)1/4

�ε2 X
15/16+ε2(logX)1/2,

and Lemma 2.9 follows. �

To estimate the contribution of G(α) on the minor arc, we use Pintz-Ruzsa’s method as
developed in [PR03], §3-7.

Lemma 2.10 (Pintz-Ruzsa). Let 0 < c < 1. Then there exists ν = ν(c) ∈ (0, 1) such that

|E(ν)| := | {α ∈ (0, 1) : |G(α)| > νL} | �M,ε X
−c.

Proof. [PR03], §7. �

To obtain explicit values for ν, we used the version of Pintz-Ruzsa’s algorithm already
implemented to get the results in Languasco-Zaccagnini [LZ10]. We used the PARI/GP
[The10] scripting language and the gp2c compiling tool to be able to compute fifty decimal
digits (but we write here just ten) of the constant involved in the previous lemma. Running
the program in our case, Lemma 2.10 gives the following result:

|G(α)| ≤ 0.9505087500 · L , (2.22)

for α ∈ (0, 1) \ E and with |E| �M,ε X
−7/8−10−20

. The computing time to get (2.22) on a
Apple MacBook Pro was equal to 29 minutes and 37 seconds (but to get 30 correct digits
just 4 minutes and 6 seconds suffice). You can download the PARI/GP source code of our
program together with the cited numerical values at the following link: www.math.unipd.

it/~languasc/PintzRuzsaMethod.html.

Now we state some lemmas we need to work on the major arc. Let

J(X, h) =

∫ X

εX

(ϑ(x+ h)− ϑ(x)− h)2dx (2.23)

and

J∗(X, h) =

∫ X

εX

(
ϑ(
√
x+ h)− ϑ(

√
x)− (

√
x+ h−

√
x)
)2

dx (2.24)

be two different versions of the Selberg integral, with ϑ(x) the Chebyshev function. We also
define the following exponential sums

U1(α) =
∑

εX≤n≤X

e(αn) auxiliary exponential sum over integers,

www.math.unipd.it/~languasc/PintzRuzsaMethod.html
www.math.unipd.it/~languasc/PintzRuzsaMethod.html
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U2(α) =
∑

εX≤n2≤X

e(αn2) auxiliary exponential sum over squares.

The famous Gallagher’s lemma on the truncated L2-norm of exponential sums (see Result
(R.11)) applied to (S1 − U1)(α) gives the following well-known result.

Lemma 2.11. For 1/X ≤ Y ≤ 1/2, we have∫ Y

−Y
|S1(α)− U1(α)|2dα�ε

log2X

Y
+ Y 2X + Y 2J

(
X,

1

2Y

)
,

where J(X, h) is defined in (2.23).

Proof. See Brüdern-Cook-Perelli [BCP97], Lemma 1. �

Following Brüdern-Cook-Perelli, we prove the corresponding result for exponential sums
over squares.

Lemma 2.12. For 1/X ≤ Y ≤ 1/2, we have∫ Y

−Y
|S2(α)− U2(α)|2dα�ε

log2X

YX
+ Y 2X + Y 2J∗

(
X,

1

2Y

)
,

where J∗(X, h) is defined in (2.24).

Proof. Letting now the needed integral to be

I =

∫ Y

−Y
|S2(α)− U2(α)|2dα.

By definitions of S2(α) and U2(α), we can write

I =

∫ Y

−Y

∣∣∣ ∑
εX≤p2≤X

log p e(p2α)−
∑

εX≤n2≤X

e(αn2)
∣∣∣2dα =

∫ Y

−Y

∣∣∣ ∑
εX≤n2≤X

(κ(n)− 1)e(n2α)
∣∣∣2dα,

where κ(n) = log p, if n = p prime, and κ(n) = 0, otherwise. Since the sum inside the
absolute value in the right-hand side above is finite, we can apply Gallagher’s lemma in
Result (R.11), thus obtaining

I � Y 2

∫ ∞
−∞

( ∑
|y−n2|≤1/(4Y )
εX≤n2≤X

(κ(n)− 1)
)2

dy = Y 2

∫ ∞
−∞

( ∑
x≤n2≤x+H
εX≤n2≤X

(κ(n)− 1)
)2

dx,

where the last step follows from taking x = y − 1/(4Y ) and defining, for simplicity, H =
1/(2Y ).

It is easy to see that the inner sum in the last integral above is empty whenever X < x
or εX > x + H, thus we can restrict the integration range to S = [εX −H,X]. Then we
split S as S = S1 t S2 t S3, where the symbol t represents a disjoint union and

S1 = [εX −H, e1] , S2 = [e1, e2] , S3 = [e2, X] ,
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with e1, e2 such that for any x ∈ S2 the condition x ≤ n2 ≤ x + H implies εX ≤ n2 ≤ X.
So, for every x ∈ S2 we must have x ≥ εX and x+H ≤ X, and hence e1 = εX, e2 = X−H.
According to these definitions we can write

I � Y 2(I1 + I2 + I3) = Y 2

(∫
S1

+

∫
S2

+

∫
S3

)( ∑
x≤n2≤x+H
εX≤n2≤X

(κ(n)− 1)
)2

dx,
(2.25)

say. We now estimate Ii, for i = 1, 2 and 3, one by one.

Estimation of I1. For every x ∈ S1 = [εX −H, εX], we have

i) n2 ≤ x+H ⇒ n2 ≤ εX +H = X (ε+H/X) ≤ X. The last inequality follows from

ε ≤ 1− H

X
, (2.26)

which is true since ε can be chosen small enough and H/X ≤ 1/2.

ii) n2 ≥ εX ⇒ n2 ≥ x.

So we can unify the conditions in the inner sum of I1, obtaining

I1 =

∫
S1

( ∑
εX≤n2≤x+H

(κ(n)− 1)
)2

dx =

∫
S1

( ∑
εX≤n2≤x+H

κ(n)−
∑

εX≤n2≤x+H

1
)2

dx.

Recalling the definitions of κ(x) and ϑ(x), we get∑
√
εX≤n≤

√
x+H

κ(n) = ϑ(
√
x+H)− ϑ(

√
εX).

Moreover, we trivially have ∑
√
εX≤n≤

√
x+H

1 =
√
x+H −

√
εX +O(1),

where O(1) is the contribution of the fractional part. Thus, using |a+ b|2 ≤ 2|a|2 + 2|b|2, we
get

I1 =

∫
S1

(
ϑ(
√
x+H)− ϑ(

√
εX)− (

√
x+H −

√
εX) +O(1)

)2

dx

�
∫ εX

εX−H

(
ϑ(
√
x+H)− ϑ(

√
εX)− (

√
x+H −

√
εX)

)2

dx+H. (2.27)

To estimate the previous integral, we use the trivial relation

ϑ(y + h)− ϑ(y) =
∑

y≤p≤y+h

log p ≤ log(y + h) (π(y + h)− π(y)) ≤ log(y + h)h, (2.28)
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for h ≥ 1, which directly follows from the definition of π(x).

In our situation y =
√
εX ≥ 0 and h =

√
x+H −

√
εX. Thus, for x ∈ [εX − H, εX +

2
√
εX −H + 1), we have h < 1, which implies that the values of the ϑ-function involved in

(2.27) are equal and so the integrand there is reduced to the difference of the radicals (which
is h� 1). In the remaining range we have h ≥ 1, so we can use (2.28) thus obtaining(
ϑ(
√
x+H)− ϑ(

√
εX)− (

√
x+H −

√
εX)

)2

�
(√

x+H −
√
εX
)2(

log
√
x+H + 1

)2

�ε

(√
x+H −

√
εX
)2(

log
√
X
)2

� (logX)2
(√

x+H −
√
εX
)2

, (2.29)

where we used x ≤ εX and H ≤ X/2 by the definitions of H and Y .
Therefore, by (2.27) and (2.29), we have

I1 � (logX)2

∫ εX

εX−H

(√
x+H −

√
εX
)2

dx+H

≤ H(logX)2 max
εX−H≤x≤εX

(√
x+H −

√
εX
)2

+H

= H(logX)2
(√

εX +H −
√
εX
)2

+H

= εHX(logX)2
(√

1 +
H

εX
− 1
)2

+H.

By the trivial relation 1+y ≤ (1+y/2)2, we get
√
|1 + y|−1 ≤ y/2 and so

√
1 + H

εX
−1 ≤ H

2εX
.

Thus

I1 � εHX

(
H

εX

)2

(logX)2 +H �ε
H3(logX)2

X
+H.� (2.30)

Estimation of I3. The estimation of I3 is similar to the one of I1. For every x ∈ S3 =
[X −H,X], we have

i) n2 ≥ x⇒ n2 ≥ X −H ≥ εX, where the last inequality follows from (2.26).

ii) n2 ≤ X ⇒ n2 ≤ X −H +H ≤ x+H.

We can therefore unify the conditions in the inner sum of I3, obtaining

I3 =

∫
S3

( ∑
x≤n2≤X

(κ(n)− 1)
)2

dx =

∫ X

X−H

( ∑
√
x≤p≤

√
X

log p−
∑

√
x≤n≤

√
X

1
)2

dx

�
∫ X

X−H

(
ϑ(
√
X)− ϑ

(√
x
)
− (
√
X −

√
x)
)2

dx+H.

We now work as for I1, with y =
√
x and h =

√
X −

√
x. For x ∈ (X + 1 − 2

√
X,X], we

have h < 1, so the values of the ϑ-function are the same and the integrand is equal to the
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difference of the radicals (which is h� 1). In the remaining range we have h ≥ 1 and so we
can use (2.28), obtaining

I3 �
∫ X

X−H
(
√
X −

√
x)2(log

√
X + 1)2dx+H � H(logX)2

(
max

X−H≤x≤X

(√
X −

√
x
))2

+H

= HX(logX)2

(
1−

√
1− H

X

)2

+H.

We now use the trivial relation 1− y ≤ (1− y/2)2, that is
√
|1− y| − 1 + y ≤ y/2. If y ≤ 1,

it implies |1−
√

1− y| ≤ y/(2
√

1− y) and so, since H ≤ X/2, we have

∣∣∣1−√1− H

X

∣∣∣ ≤ H

2X
√

1− H
X

≤ H

2
√
εX

,

where the last inequality is due to (2.26). Hence

I3 � HX(logX)2
( H√

εX

)2

+H �ε
H3(logX)2

X
+H.� (2.31)

Estimation of I2. First of all, we recall that for every x ∈ S2 = [εX,X −H], the condition
x ≤ n2 ≤ x+H implies εX ≤ n2 ≤ X. Therefore

I2 =

∫
S2

( ∑
x≤n2≤x+H

(k(n)− 1)
)2

dx =

∫ X−H

εX

( ∑
√
x≤p≤

√
x+H

log p−
∑

√
x≤n≤

√
x+H

1
)2

dx

=

∫ X−H

εX

(
ϑ(
√
x+H)− ϑ

(√
x
)
− (
√
x+H −

√
x) +O(1)

)2

dx

�
∫ X

εX

(
ϑ(
√
x+H)− ϑ(

√
x)− (

√
x+H −

√
x)
)2

dx+X

= J∗ (X,H) +X, (2.32)

where we used the definition of J∗ (X,H) in (2.24) and the inequality in (2.26) which implies
X −H − εX = X (1− ε−H/X) ≤ X.�

Therefore, by (2.25), (2.30)-(2.32) and recalling H = 1/(2Y ) and Y ≥ 1/X, we have

I �ε Y
2

(
(logX)2

XY 3
+X + J∗

(
X,

1

2Y

))
=

(logX)2

XY
+XY 2 + Y 2J∗

(
X,

1

2Y

)
,

and this proves Lemma 2.12. �

To estimate the “square-root” form J∗(X, h) of the Selberg integral, we use the next
result, which is analogous to Saffari-Vaughan’s estimation of the Selberg integral given in
Result (R.12).
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Lemma 2.13. Let ε3 be an arbitrarily small positive constant. There exists a positive con-
stant c6 = c6(ε3) such that

J∗(X, h)�ε h
2 exp

(
− c6

( logX

log logX

)1/3)
,

uniformly for X7/12+ε3 ≤ h ≤ X, where J∗(X, h) is defined in (2.24).

Proof. We reduce our problem to estimate the integral

J∗ψ(X, h) :=

∫ X

εX

(
ψ(
√
x+ h)− ψ(

√
x)− (

√
x+ h−

√
x)
)2

dx, (2.33)

since, using |a+ b|2 ≤ 2|a|2 + 2|b|2, it is easy to see that

J∗(X, h)� J∗ψ(X, h) +

∫ X

εX

(
ψ(
√
x+ h)− ψ(

√
x)− ϑ(

√
x+ h) + ϑ(

√
x)
)2

dx.

The difference between ϑ(x) and ψ(x) in [
√
x,
√
x+ h] is∑

√
x≤pa≤

√
x+h

a≥2

log p� logX
∑

√
x≤pa≤

√
x+h

a≥2

1� (logX)2
∑

√
x≤p2≤

√
x+h

1,

since for pa ≤
√
x+ h with a ≥ 2, we have log p ≤ (1/4) log(x + h) and x, h ≤ X by

assumption; moreover there are at most� logX prime powers in [
√
x,
√
x+ h]. By definition

of the prime-counting function π(x), we have∑
√
x≤p2≤

√
x+h

1 = π((x+ h)1/4)− π(x1/4) ≤ (x+ h)1/4 − x1/4 = x1/4
((

1 +
h

x

)1/4

− 1
)
.

Now, using the trivial relation 1 + y ≤ (1 + y/2)2 twice, we obtain(
1 +

h

x

)1/4

− 1 ≤
(

1 +
h

2x

)1/2

− 1 ≤
(

1 +
h

4x

)
− 1,

and hence ∑
√
x≤p2≤

√
x+h

1 ≤ x1/4 h

4x
�ε

h

X3/4
,

since εX ≤ x ≤ X. Therefore

J∗(X, h)�ε J
∗
ψ(X, h) +

∫ X

εX

h2

X3/2
(logX)4 dx�ε J

∗
ψ(X, h) + h2 (logX)4

X1/2
. (2.34)

To estimate the right hand side of (2.34), we use the following results we will prove later.
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Claim 2.A. Let ε3 be an arbitrarily small positive constant. There exists a positive constant
c6 = c6(ε3) such that

J̃∗ψ(X, δ) :=

∫ X

εX

(
ψ(
√
x+ δx)− ψ(

√
x)− (

√
x+ δx−

√
x)
)2

dx

�ε δ
2X2 exp

(
− c6

( logX

log logX

)1/3)
,

uniformly for X−5/12+ε3 ≤ δ ≤ 14.

As we will prove later, Claim 2.A implies the following.

Claim 2.B. Let ε3 be an arbitrarily small positive constant. There exists a positive constant
c6 = c6(ε3) such that

J∗ψ(X, h)�ε h
2 exp

(
− c6

( logX

log logX

)1/3)
,

uniformly for X7/12+ε3 ≤ h ≤ X, where J∗ψ(X, h) is defined in (2.33).

Therefore, by (2.34) and Claim 2.B, we obtain

J∗(X, h)�ε h
2 exp

(
− c6

( logX

log logX

)1/3)
thus proving Lemma 2.13. �

We now prove the two claims used above.
Proof of Claim 2.A. We follow the line of Lemma 5 in Saffari-Vaughan [SV77]. To

estimate J̃∗ψ(X, δ), we use the truncated explicit formula for ψ(x) in Result (R.13), that is:

ψ(x) = x−
∑
|γ|≤T

xρ

ρ
+O

( x
T

log2(xT ) + log x
)

uniformly in T ≥ 2 and for ρ = β + iγ along the zeros of ζ(s). So

J̃∗ψ(X, δ) =

∫ X

εX

∣∣∣∣∣−∑
|γ|≤T

xρ/2
((1 + δ)ρ/2 − 1)

ρ
+O

(√
X

T
log2(XT ) + logX

)∣∣∣∣∣
2

dx,

where we used that x ≤ X,
√
x+ δx�

√
X and log(

√
XT ) = (logX)/2+log T � log(XT ).

By the symmetry of the non-trivial zeros of ζ(s) with respect to the line <(s) = 1/2 and
using |a+ b|2 ≤ 2|a|2 + 2|b|2, we get

J̃∗ψ(X, δ)�ε

∫ X

εX

∣∣∣ ∑
|γ|≤T
β≥1/2

xρ/2
((1 + δ)ρ/2 − 1)

ρ

∣∣∣2dx+
X2

T 2
log4(XT ) +X log2X. (2.35)

4The lower bound for δ is due to Ingham-Huxley’s zero-density estimate given in Result (R.15).
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As in Ivić [Ivi85], page 316, we define

c(δ, ρ) =
(1 + δ)ρ − 1

ρ
,

and so we can write ∣∣∣c(δ, ρ
2

)∣∣∣� min

(
1

|γ|
; δ

)
, (2.36)

since ∣∣∣c(δ, ρ
2

)∣∣∣ ≤ |1 + δ|ρ/2 + 1

|ρ|/2
≤ 2(2β/2 + 1)√

β2 + γ2
� 1

|γ|
,

where we used the hypothesis δ ≤ 1 and the fact that 0 < β < 1 for the non-trivial zeros of
ζ(s). Moreover also ∣∣∣c(δ, ρ

2

)∣∣∣ =
∣∣∣∫ 1+δ

1

tρ/2−1dt
∣∣∣� ∫ 1+δ

1

tβ/2−1dt ≤ δ,

where we used β/2 − 1 < 0 and t ≥ 1. Assuming T ≥ 1/δ, we can split the summation in
(2.35) into two cases, defined accordingly to (2.36). That is

J̃∗ψ(X, δ)�ε I[0,1/δ) + I[1/δ,T ] +
X2

T 2
log4(XT ) +X(logX)2, (2.37)

with

IS =

∫ X

εX

∣∣∣ ∑
|γ|∈S
β≥1/2

xρ/2c
(
δ,
ρ

2

)∣∣∣2dx =
∑
|γ1|∈S
β1≥1/2

∑
|γ2|∈S
β2≥1/2

c
(
δ,
ρ1

2

)
c
(
δ,
ρ2

2

)∫ X

εX

x(ρ1+ρ2)/2dx

=
∑
|γ1|∈S
β1≥1/2

∑
|γ2|∈S
β2≥1/2

c
(
δ,
ρ1

2

)
c
(
δ,
ρ2

2

)2X(ρ1+ρ2)/2+1(1− ε(ρ1+ρ2)/2+1)

ρ1 + ρ2 + 2

�
∑
|γ1|∈S
β1≥1/2

∑
|γ2|∈S
β2≥1/2

∣∣∣c(δ, ρ1

2

)∣∣∣∣∣∣c(δ, ρ2

2

)∣∣∣X(β1+β2)/2+1

1 + |γ1 − γ2|

�
∑
|γ1|∈S
β1≥1/2

∑
|γ2|∈S

1/2≤β2≤β1

∣∣∣c(δ, ρ1

2

)∣∣∣∣∣∣c(δ, ρ2

2

)∣∣∣ Xβ1+1

1 + |γ1 − γ2|
. (2.38)

In the previous chain of inequalities we used |1 − ε(ρ1+ρ2)/2+1| � 1 and |ρ1 + ρ2 + 2| =√
(β1 + β2 + 2)2 + (γ1 − γ2)2 ≥

√
1 + (γ1 − γ2)2 � 1 + |γ1 − γ2|. We also ordered the zeros

ρ with respect to their real part. Now we deal with I[0,1/δ) and I[1/δ,T ] separately.
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Estimation of I[0,1/δ). For |γ1|, |γ2| ∈ [0, 1/δ), we have |c (δ, ρ1/2)| , |c (δ, ρ2/2)| � δ by
(2.36). From (2.38) we can write

I[0,1/δ) � δ2X
∑
|γ1|<δ−1

β1≥1/2

Xβ1
∑
|γ2|<δ−1

1/2≤β2≤β1

1

1 + |γ1 − γ2|
� δ2X(logX)2

∑
|γ1|<δ−1

β1≥1/2

Xβ1 , (2.39)

where the last inequality follows from

∑
|γ2|<δ−1

1/2≤β2≤β1

1

1 + |γ1 − γ2|
�

2/δ∑
n=0

∑
|γ2|<δ−1

1/2≤β2≤β1
n≤|γ1−γ2|≤n+1

1

1 + n
�

2/δ∑
n=0

1

1 + n

∑
|γ2|<δ−1

1/2≤β2≤β1
n≤|γ1−γ2|≤n+1

γ2≥γ1

1

=

2/δ∑
n=0

1

1 + n

∑
|γ2|<δ−1

1/2≤β2≤β1
γ1+n≤γ2≤γ1+n+1

1�
2/δ∑
n=0

1

1 + n
log(γ1 + n)

� log

(
γ1 +

2

δ

) 2/δ∑
n=0

1

1 + n
� log

(
3

δ

)
log

(
2

δ

)
� (logX)2. (2.40)

Here we used the relations |γ1 − γ2| ≤ |γ1| + |γ2| < 2/δ,
∑k

n=1 1/n � log k and log(δ−1) �
logX, together with the Riemann-von Mangoldt formula (see Result (R.14)) which implies

N(0, t+ 1)−N(0, t)� log t.

Denoting by S[0,1/δ) the sum in the right hand side of (2.39), we get

S[0,1/δ) =
∑
|γ|<1/δ
β≥1/2

Xβ =
∑
|γ|<1/δ
β≥1/2

(Xβ −X1/2) +
∑
|γ|<1/δ
β≥1/2

X1/2

= logX

∫ 1

1/2

XuN
(
u,

1

δ

)
du+X1/2N

(1

2
,
1

δ

)
� logX max

1/2≤u≤1

(
XuN

(
u,

1

δ

))
.

We now recall Ingham-Huxley’s zero-density estimates (see Result (R.15)) given by

N(σ, t)�
{
t log t for 0 ≤ σ ≤ 1

2
,

t
12
5

(1−σ)(log t)B for 1
2
≤ σ ≤ 1.

(2.41)

And we also recall that, by the Vinogradov-Korobov zero-free region (see Result (R.5)), there
are no zeros ρ = β + iγ of the Riemann ζ-function having

β ≥ 1− c7

(log(|γ|+ 2))2/3(log log(|γ|+ 2))1/3
,
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where c7 > 0 is an absolute constant. In the following c7 will not necessarily be the same at
each occurrence.

In our situation, |γ| ≤ T , so N(u, t) = 0 for every t ≤ T and u ≥ 1−K with

K =
c7

(log T )2/3(log log T )1/3
.

From the previous remarks, we obtain

S[0,1/δ) � logX max
1/2≤u≤1−K

(
(δ−1)(12/5)(1−u)(log(δ−1))BXu

)
� (logX)B+1δ−

12
5 max

1/2≤u≤1−K

(
(δ12/5X)u

)
,

since log(δ−1)� logX. We now observe that

∂

∂u
((δ12/5X)u) = (δ12/5X)u log(δ12/5X) > 0, (2.42)

because δ ≥ X−
5
12

+ε3 and so5 δ12/5X ≥ (X−
5
12

+ε3)
12
5 X > 1. Therefore, the maximum above

is attained at u = 1−K and so

S[0,1/δ) � (logX)B+1δ−
12
5 δ

12
5

(1−K)X1−K = X(logX)B+1(δ12/5X)−K .

Inserting the last estimate into (2.39), we can write

A[0,1/δ) � δ2X2(logX)B+3(δ12/5X)−K .� (2.43)

Estimation of I[1/δ,T ]. For |γ1|, |γ2| ∈ [1/δ, T ], we have |c (δ, ρ1/2)| � |γ1|−1 and |c (δ, ρ2/2)|
� |γ2|−1 by (2.36). Thus, from (2.38) we get

I[1/δ,T ] � X
∑

1/δ≤|γ1|≤T
β1≥1/2

Xβ1

|γ1|
∑

1/δ≤|γ2|≤T
1/2≤β2≤β1

1

|γ2|(1 + |γ1 − γ2|)

� X
∑

1/δ≤|γ1|≤T
β1≥1/2

Xβ1

|γ1|2
∑

|γ1|≤|γ2|≤T
1/2≤β2≤β1

1

1 + |γ1 − γ2|
� X(log T )2

∑
1/δ≤|γ1|≤T
β1≥1/2

Xβ1

|γ1|2
,

where the last step follows from (2.40) with T instead of 1/δ. By a simple trick, we can
rewrite the previous inequality as

I[1/δ,T ] � X(log T )2(S ′[1/δ,T ] + S ′′[1/δ,T ]), (2.44)

with

S ′[1/δ,T ] =
∑

1/δ≤|γ|≤T
β≥1/2

Xβ
( 1

|γ|2
− 1

T 2

)
and S ′′[1/δ,T ] =

1

T 2

∑
1/δ≤|γ|≤T
β≥1/2

Xβ.

5This explains how the lower bound of δ is linked to Ingham-Huxley’s estimate, as said before in the statement of
Claim 2.A.
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For S ′′[1/δ,T ] we can argue as we did for S[0,1/δ), just keeping in mind that this time 1/δ ≤
|γ| ≤ T . Hence

S ′′[1/δ,T ] �
logX

T 2
max

1/2≤u≤1−K

(
Xu
[
N(u, T )−N

(
u,

1

δ

)])
.

As for S ′[1/δ,T ], we immediately obtain

S ′[1/δ,T ] =
∑

1/δ≤|γ|≤T
β≥1/2

Xβ

∫ T

|γ|

2

t3
dt = 2

∫ T

1/δ

( ∑
1/δ≤|γ|≤t
β≥1/2

Xβ

)
dt

t3
.

The summation inside the previous integral is exactly the one in S ′′[1/δ,T ], but with t instead
of T . Using t ≤ T , we can write

S ′[1/δ,T ] �
∫ T

1/δ

logX max
1/2≤u≤1−K

(
Xu
[
N(u, t)−N

(
u,

1

δ

)])dt

t3
.

Therefore

S ′[1/δ,T ] + S ′′[1/δ,T ] � logX

(∫ T

1/δ

max
1/2≤u≤1−K

(
Xu
[
N(u, t)−N

(
u,

1

δ

)])dt

t3

+
1

T 2
max

1/2≤u≤1−K

(
Xu
[
N(u, T )−N

(
u,

1

δ

)]))

� logX

(
max

1/δ≤t≤T

(
1

t2
max

1/2≤u≤1−K

(
Xu
[
N(u, t)−N

(
u,

1

δ

)]))∫ T

1/δ

dt

t

+
1

T 2
max

1/2≤u≤1−K

(
Xu
[
N(u, T )−N

(
u,

1

δ

)]))

� logX log(Tδ) max
1/δ≤t≤T

(
1

t2
max

1/2≤u≤1−K

(
Xu t(12/5)(1−u)(log t)B

))
,

by the zero-density estimate in (2.41). Inserting this in (2.44) and recalling t ≤ T , we get

I[1/δ,T ] � X(log T )B+2 logX log(Tδ) max
1/2≤u≤1−K

(
Xu max

1/δ≤t≤T

(
t(12/5)(1−u)−2

))
.

To compute the inner maximum above, we just remark that (12/5)(1 − u) − 2 < 0 (since
u > 1/2). Hence the maximum is attained at t = 1/δ, so

I[1/δ,T ] � X(log T )B+2 logX log(Tδ) max
1/2≤u≤1−K

(
Xu(δ−1)(12/5)(1−u)−2

)
= δ−

2
5X(log T )B+2 logX log(Tδ) max

1/2≤u≤1−K

(
(Xδ12/5)u

)
.

By (2.42), the maximum above is attained at u = 1−K, thus

I[1/δ,T ] � δ−
2
5X(log T )B+2 logX log(Tδ)(Xδ12/5)1−K

= δ2X2(log T )B+2 logX log(Tδ)(Xδ12/5)−K .� (2.45)
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Conclusion of the proof. Inserting (2.43) and (2.45) into (2.37), we get

J̃∗ψ(X, δ)�ε δ
2X2(Xδ12/5)−K logX

(
(logX)B+2 + (log T )B+2 log(Tδ)

)
+
X2

T 2
(log(XT ))4 +X(logX)2. (2.46)

We now have to choose the optimal T . Remarking that:

i) We want X ≤ X2T−2, that is T ≤
√
X. This choice of T also implies that log T � logX

and hence (2.46) becomes

J̃∗ψ(X, δ)�ε δ
2X2(Xδ12/5)−K(logX)B+4 +

X2

T 2
(logX)4. (2.47)

ii) We want X2T−2(logX)4 ≤ δ2X2(Xδ12/5)−K(logX)B+4. This implies the inequality
T ≥ δ−1(Xδ12/5)K/2(logX)−B/2. Recalling 1/δ ≤ X5/12−ε3 , we can take

T ≥ X5/12−ε3(Xδ12/5)K/2(logX)−B/2.

Since X5/12−ε3(Xδ12/5)K/2(logX)−B/2 <
√
X, the second condition on T is compatible

with the first one. After this choice of T , (2.47) becomes

J̃∗ψ(X, δ)�ε δ
2X2(Xδ12/5)−K(logX)B+4. (2.48)

By T ≤
√
X, we also have

K =
c7

(log T )2/3(log log T )1/3
≥ c8

(logX)2/3(log logX)1/3
=: K ′,

for a suitable positive constant c8. From this and (2.48) we immediately obtain

J̃∗ψ(X, δ)�ε δ
2X2(Xδ12/5)−K

′
(logX)B+4

= δ2X2(logX)B+4 exp
(
− c8(logX + (12/5) log δ)

(logX)2/3(log logX)1/3

)
� δ2X2 exp

(
− c9

( logX

log logX

)1/3)
,

for a sufficiently large X and for a suitable positive constant c9 = c9(ε3). So Claim 2.A
follows. �

Proof of Claim 2.B. We follow the line of Lemma 6 in Saffari-Vaughan [SV77]. We
recall that ε3 is an arbitrarily small positive constant and that X7/12+ε3 ≤ h ≤ X. Let now
2h ≤ v ≤ 3h. To estimate J∗ψ(X, h), defined in (2.33), the first step is observing that, by

|a+ b|2 ≤ 2|a|2 + 2|b|2, we get(
ψ(
√
x+ h)−ψ(

√
x)− (

√
x+ h−

√
x)
)2
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�
(
ψ(
√
x+ v)− ψ(

√
x)− (

√
x+ v −

√
x)
)2

+
(
ψ(
√
x+ v)− ψ(

√
x+ h)− (

√
x+ v −

√
x+ h)

)2
.

Thus, replacing h by
∫ 3h

2h
dv, we have

hJ∗ψ(X, h)�
∫ X

εX

∫ 3h

2h

((
ψ(
√
x+ v)− ψ(

√
x)− (

√
x+ v −

√
x)
)2

+
(
ψ(
√
x+ v)− ψ(

√
x+ h)− (

√
x+ v −

√
x+ h)

)2
)

dv dx. (2.49)

Setting z = v−h, y = x+h and changing variables in the second integration, the right hand
side of (2.49) becomes

�
∫ X

εX

(∫ 3h

2h

(
ψ(
√
x+ v)− ψ(

√
x)− (

√
x+ v −

√
x)
)2

dv

)
dx

+

∫ X+h

εX+h

(∫ 2h

h

(
ψ(
√
y + z)− ψ(

√
y)− (

√
y + z −√y)

)2
dz

)
dy.

Since both the integrand functions are non-negative, we can extend the integration ranges
merging x with y and v with z. Hence

hJ∗ψ(X, h)�
∫ X+h

εX

(∫ 3h

h

(
ψ(
√
x+ v)− ψ(

√
x)− (

√
x+ v −

√
x)
)2

dv

)
dx

=

∫ X+h

εX

(∫ 3h/x

h/x

(
ψ(
√
x+ xδ)− ψ(

√
x)− (

√
x+ xδ −

√
x)
)2

dδ

)
x dx,

where, in the last step, we made the change of variable δ = v/x, thus getting δ ≥ h/x ≥
X−5/12+ε3 as in the hypothesis of Claim 2.A6.

We now use the relation εX ≤ x ≤ X+h to remove the dependence on x of the integration
interval in δ and to bound x itself. So we get

hJ∗ψ(X, h)� (X + h)

∫ X+h

εX

(∫ 3h/(εX)

h/(X+h)

(
ψ(
√
x+ xδ)− ψ(

√
x)− (

√
x+ xδ −

√
x)
)2

dδ

)
dx

= (X + h)

∫ 3h/(εX)

h/(X+h)

(∫ X+h

εX

(
ψ(
√
x+ xδ)− ψ(

√
x)− (

√
x+ xδ −

√
x)
)2

dx

)
dδ.

Finally, using Claim 2.A, we get

J∗ψ(X, h)�ε
X + h

h

∫ 3h/(εX)

h/(X+h)

(
δ2X2 exp

(
− c6

( logX

log logX

)1/3))
dδ

� X3

h
exp

(
− c6

( logX

log logX

)1/3)∫ 3h/(εX)

0

δ2dδ

6Actually in Claim 2.A, we also have δ ≤ 1, but we can drop this condition since, for δ ≥ 1, the needed estimate
follows from the Prime Number Theorem with error term in Result (R.4).
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=
X3

h

9h3

ε3X3
exp

(
− c6

( logX

log logX

)1/3)
�ε h

2 exp
(
− c6

( logX

log logX

)1/3)
.

This concludes the proof of Claim 2.B. �

Now we are ready to estimate I(X;M), I(X;m) and I(X; t).

2.4 The major arc

In this section we prove the inequality I(X;M) ≥ c1η
2XL in (2.10). We follow the argu-

ment in Languasco-Zaccagnini [LZ10], §4, suitably modified to deal also with prime squares.
Letting

T1(α) =

∫ X

εX

e(tα)dt�ε min
(
X;

1

|α|

)
, (2.50)

T2(α) =

∫ X1/2

(εX)1/2
e(t2α)dt =

1

2

∫ X

εX

v−1/2e(vα)dv �ε X
−1/2 min

(
X;

1

|α|

)
, (2.51)

we can write

I(X;M) =

∫
M

T1(λ1α)T2(λ2α)T2(λ3α)G(µ1α) · · ·G(µkα)e($α)K(α, η)dα

+

∫
M

(
S1(λ1α)− T1(λ1α)

)
T2(λ2α)T2(λ3α)G(µ1α) · · ·G(µkα)e($α)K(α, η)dα

+

∫
M

S1(λ1α)
(
S2(λ2α)− T2(λ2α)

)
T2(λ3α)G(µ1α) · · ·G(µkα)e($α)K(α, η)dα

+

∫
M

S1(λ1α)S2(λ2α)
(
S2(λ3α)− T2(λ3α)

)
G(µ1α) · · ·G(µkα)e($α)K(α, η)dα

= J1 + J2 + J3 + J4, (2.52)

say. In what follows we will prove that

J1 ≥
(3− 2

√
2)η2XLk

4 (|λ1|+ |λ2|+ |λ3|)
+Oε

(
η2X1/5Lk+2

)
(2.53)

and

J2 + J3 + J4 = o
(
η2XLk

)
, (2.54)

thus obtaining, by (2.52)-(2.54), that

I(X;M) ≥ (3− 2
√

2)− ε4
4 (|λ1|+ |λ2|+ |λ3|)

η2XLk.

This proves that the inequality (2.10) holds with c1 = 2−2(3−2
√

2−ε4) (|λ1|+ |λ2|+ |λ3|)−1

and ε4 > 0 an arbitrarily small constant.
In order to do this, we need these two estimates:
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• The first one is ∫ 1

0

|S1(α)|2dα�ε X logX, (2.55)

which is a consequence of the Prime Number Theorem (see Result (R.2)), together with
Abel’s identity (see Result (R.17)) and Parseval’s formula (see, e.g., Apostol [Apo74],
Theorem 11.4). In fact∫ 1

0

|S1(α)|2dα =
∑

εX≤p≤X

(log p)2 = X logX +O(X)− εX log(εX) +O(εX)�ε X logX.

• The second one is ∫ 1

0

|S2(α)|4dα�ε X log2X, (2.56)

which is based on Rieger’s estimation in Result (R.8).

Estimation of J2, J3 and J4.

We first estimate J4. We remark that, by Euler’s summation formula (see Result (R.16)),
we have

Ti(α)− Ui(α)� 1 +X|α| for every i = 1, 2. (2.57)

So by definition (2.7) of M, the Cauchy-Schwarz inequality, and (2.55)-(2.57) we get∫
M

|S1(λ1α)||S2(λ2α)||T2(λ3α)− U2(λ3α)|dα

�λ

∫ 1/X

−1/X

|S1(λ1α)||S2(λ2α)|dα +X

∫ P/X

1/X

|α||S1(λ1α)||S2(λ2α)|dα

�λ X
−1/4

(∫ 1

0

|S1(α)|2dα
)1/2(∫ 1

0

|S2(α)|4dα
)1/4

+X
(∫ P/X

1/X

α4dα
)1/4(∫ 1

0

|S2(α)|4dα
)1/4(∫ 1

0

|S1(α)|2dα
)1/2

�λ,ε X
1/2 logX + P 5/4X1/2 logX = o(X),

since P = X2/5/ logX. Hence, using the trivial estimates |G(µiα)| ≤ L and K(α, η) � η2,
we can write

J4 =

∫
M

S1(λ1α)S2(λ2α)
(
S2(λ3α)− U2(λ3α)

)
G(µ1α) · · ·G(µkα)e($α)K(α, η)dα

+ oλ,M,ε

(
η2XLk

)
.
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Now using again the definition (2.7) of M, the Cauchy-Schwarz inequality and the trivial
estimates |G(µiα)| ≤ L and K(α, η) � η2, and applying the estimate in (2.55) and Lem-
mas 2.12-2.13 with Y = P/X, and finally observing that |S2(λ2α)| �ε X

1/2 (by a direct
application of the Prime Number Theorem in Result (R.3)), we have that

J4 � η2LkX1/2
(∫

M

|S2(λ3α)− U2(λ3α)|2dα
)1/2(∫

M

|S1(λ1α)|2dα
)1/2

+ oλ,M,ε

(
η2XLk

)
�λ,M,ε η

2LkX1/2
(∫ 1

0

|S1(α)|2dα
)1/2

exp
(
− c6(ε3)

2

( logX

log logX

)1/3)
+ oλ,M

(
η2XLk

)
�λ,M,ε η

2XLk+1/2 exp
(
− c6(ε3)

2

( logX

log logX

)1/3)
= o
(
η2XLk

)
.

The integral J3 can be estimated analogously using the estimate in (2.51) for T2(λ3α),
instead of |S2(λ3α)| � X1/2.

For J2 we argue as follows. First of all, using again (2.57) and (2.51), we get∫
M

|T1(λ1α)− U1(λ1α)||T2(λ2α)||T2(λ3α)|dα�λ X

∫ 1/X

−1/X

dα +

∫ P/X

1/X

X|α|
Xα2

dα

�λ 1 + logP = o(X),

since P = X2/5/ logX. Hence, using the trivial estimates |G(µiα)| ≤ L and K(α, η) � η2,
we can write

J2 =

∫
M

(
S1(λ1α)− U1(λ1α)

)
T2(λ2α)T2(λ3α)G(µ1α) · · ·G(µkα)e($α)K(α, η)dα

+ oλ,M
(
η2XLk

)
.

Using again the definition (2.7) of M, the Cauchy-Schwarz inequality and the trivial estimates
|G(µiα)| ≤ L and K(α, η)� η2, and applying Lemma 2.11 and Saffari-Vaughan’s estimation
of the Selberg integral in Result (R.12) with Y = P/X, we have

J2 � η2Lk
(∫

M

|S1(λ1α)− U1(λ1α)|2dα
)1/2(∫

M

|T2(λ2α)T2(λ3α)|2dα
)1/2

+ oλ,M
(
η2XLk

)
�λ,M,ε η

2LkX1/2
(∫

M

|T2(λ2α)T2(λ3α)|2dα
)1/2

exp
(
− c6(ε3)

2

( logX

log logX

)1/3)
+ oλ,M

(
η2XLk

)
�λ,M,ε η

2XLk exp
(
− c6(ε3)

2

( logX

log logX

)1/3)
+ oλ,M

(
η2XLk

)
= o
(
η2XLk

)
,

since
∫
M
|T2(λ2α)T2(λ3α)|2dα�λ X, by the estimate of T2(α) in (2.51). Hence (2.54) holds.�

Estimation of J1. Recalling that P = X2/5/ logX, using the definition (2.7) of M, the
estimates (2.50)-(2.51) for T1(α) and T2(α) and the definition (2.52) of J1, we obtain

J1 =
∑

1≤m1≤L

· · ·
∑

1≤mk≤L

J
(
µ12m1 + · · ·+ µk2

mk +$, η
)

+Oε
(
η2X1/5Lk+2

)
, (2.58)
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where J (u, η) is defined as

J (u, η) =

∫
R
T1(λ1α)T2(λ2α)T2(λ3α)e(uα)K(α, η)dα

=
1

4

∫ X

εX

∫ X

εX

∫ X

εX

K̂(λ1u1 + λ2u2 + λ3u3 + u, η)u
−1/2
2 u

−1/2
3 du1du2du3.

Here the second relation follows by definitions (2.50)-(2.51) of T1(α) and T2(α) resp. and
interchanging the integration order.

We recall that λ1 < 0 and λ2, λ3 > 0, so if |u| ≤ εX, for

X|λ1|
2 (|λ1|+ λ2 + λ3)

≤ u2, u3 ≤
X|λ1|

|λ1|+ λ2 + λ3

,

and for X sufficiently large and ε sufficiently small, we get

−η
2
− (λ2u2 + λ3u3 + u) ≤ λ1u1 ≤

η

2
− (λ2u2 + λ3u3 + u).

Hence there exists an interval for u1, of length η|λ1|−1 and entirely contained in [εX,X],

such that K̂(λ1u1 +λ2u2 +λ3u3 +u, η) ≥ η/2 there. So, letting b = (X|λ1|)/(|λ1|+λ2 +λ3),
we can write that

J (u, η) ≥ η2

8|λ1|

(∫ b

b/2

v−1/2dv

)2

=
(3− 2

√
2)η2X

4 (|λ1|+ λ2 + λ3)
.

By definition of L, we have that |µ12m1 + · · · + µk2
mk + $| ≤ εX, for X sufficiently large

and hence, by (2.58), we obtain

J1 ≥
(3− 2

√
2)η2XLk

4 (|λ1|+ λ2 + λ3)
+Oε

(
η2X1/5Lk+2

)
,

thus proving the bound (2.53).�

2.5 The trivial arc

In this section we prove the estimate |I(X; t)| = o
(
XLk

)
in (2.9), following the argument

in Parsell [Par03]. Recalling the definition (2.7) of t, the trivial estimate |G(µiα)| ≤ L and
using twice the Cauchy-Schwarz inequality, we get

|I(X; t)| � Lk
(∫ +∞

L2

|S1(λ1α)|2K(α, η)dα
)1/2

×
(∫ +∞

L2

|S2(λ2α)|4K(α, η)dα
)1/4(∫ +∞

L2

|S2(λ3α)|4K(α, η)dα
)1/4

.
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By the estimation of K(α, η) given in (K.ii) and making a suitable change of variable, we
have that for i = 2, 3∫ +∞

L2

|S2(λiα)|4K(α, η)dα�λ

∫ +∞

λiL2

|S2(α)|4

α2
dα�

∑
n≥λiL2

1

(n− 1)2

∫ n

n−1

|S2(α)|4dα

�λ L
−2

∫ 1

0

|S2(α)|4dα�λ,M,ε X,

where, in the last step, we used the estimation in (2.56). For the “S1-integral” above, we
argue in a similar way, obtaining∫ +∞

L2

|S1(λ1α)|2K(α, η)dα�λ

∫ +∞

λ1L2

|S1(α)|2

α2
dα�

∑
n≥λ1L2

1

(n− 1)2

∫ n

n−1

|S1(α)|2dα

�λ L
−2

∫ 1

0

|S1(α)|2dα�λ,M,ε
X

logX
,

where in the last step we used the estimation in (2.55). Hence the asymptotic formula (2.9)
holds.

2.6 The minor arc

In this section we prove the inequality |I(X;m)| ≤ c2(k)ηXLk in (2.11), using Pintz-Ruzsa’s
work in [PR03]. By definition we have

I(X;m) =

∫
m

S1(λ1α)S2(λ2α)S2(λ3α)G(µ1α) · · ·G(µkα)e($α)K(α, η)dα.

Letting c ∈ (0, 1) to be chosen later, we first split m as m1 tm2, where t denotes a disjoint
union and m2 is the set of those α ∈ m such that |G(µiα)| > ν(c)L, for some i ∈ {1, . . . , k}
and with ν(c) defined in Lemma 2.10. We want to choose c in order to get |I(X;m2)| =
o(ηX), since, by Lemma 2.10, we know that |m2| �M,ε kL

2X−c.
To this end, using the trivial estimates |G(µiα)| ≤ L and K(α, η) � η2, the Cauchy-

Schwarz inequality and Lemma 2.9, we obtain

|I(X;m2)| ≤ η2Lk
(

sup
α∈m2

|S2(λ2α)S2(λ3α)|
)(∫

m2

|S1(λ1α)|dα
)

�λ η
2Lk|m2|1/2

(
sup
α∈m
|S2(λ2α)S2(λ3α)|

)(
L2

∫ 1

0

|S1(α)|2dα
)1/2

�λ,M,ε,ε2 k
1/2η2Lk+3X23/16+ε2−c/2,

where ε2 > 0 is a sufficiently small constant and X = q2, with q the denominator of a
convergent to the continued fraction for λ2/λ3. Taking c = 7/8 + 10−20 as in (2.22) and
applying Pintz-Ruzsa’s lemma, we obtain that

|I(X;m2)| = o(ηX), (2.59)
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for ν = 0.9505087500. We remark that neither the result of Kumchev [Kum06] nor the
approach of Cook, Fox and Harman (see [CF01], [Har04], [CH06]) seem to give any improve-
ment of the previous estimates.

Now we evaluate the contribution of m1, using the Cauchy-Schwarz inequality and Lem-
mas 2.5, 2.8. So

|I(X;m1)| ≤ (νL)k−3
(∫

m

|S1(λ1α)G(µ1α)|2K(α, η)dα
)1/2

×
(∫

m

|S2(λ2α)G(µ2α)|4K(α, η)dα
)1/4(∫

m

|S2(λ3α)G(µ3α)|4K(α, η)dα
)1/4

< νk−3CηXLk, (2.60)

where C = C(q1, q2, q3, ε1) is defined as in (2.4) (we remark that ε1 is not necessarily the
same at each occurrence).

Hence, by (2.59)-(2.60), we finally get that

|I(X;m)| < (0.9505087500)k−3CηXLk

holds, for X sufficiently large. This means that the inequality (2.11) holds with

c2(k) = (0.9505087500)k−3C. (2.61)

2.7 Proof of the theorem

We have to verify if there exists a k0 ∈ N such that the condition (2.12) holds forX sufficiently
large and X = q2, where q is the denominator of a convergent of the continued fraction for
λ2/λ3. Combining the inequalities (2.10)-(2.11), with c2(k) as in (2.61), we obtain that (2.12)
holds for k ≥ k0, with k0 as defined in (2.3). This completes the proof of our Theorem A.



Chapter 3

On the sum of two primes and k
powers of g ≥ 3

In this chapter we introduce our work about a problem with two prime and k powers of
g ≥ 3. It is a variation of Languasco-Pintz-Zaccagnini’s work [LPZ07] about the Goldbach-
Linnik problem, since we generalize their result to powers of g, instead of powers of 2. More
precisely, in the first section we state our result and we compare it with Languasco-Pintz-
Zaccagnini’s one. In Section 3.2 we fix the general setting, introducing the needed notation,
while in Section 3.3 we set up our problem. In Sections 3.4-3.5 we prove the partial results
necessary in the proof of our theorem. In particular, in Section 3.4 we estimate contribution
of the minor arcs, studying the size of the exceptional set; to do this, we just replace the
trivial estimation for the exponential sum over powers of 2 used in [LPZ07], with the trivial
estimation for the exponential sum over powers of g: in this way we obtain the same bound
for the exceptional set, which is the optimal one using Vaughan’s estimation in Result (R.9).
On the contrary, in Section 3.5 a more careful treatment of the powers of g is needed (see

the study of R
(5)
M (N)). In Section 3.6 we gather such partial results, proving our theorem.

Finally, in the following Section 3.7, we collect and prove the new results used in this chapter.
In particular, Lemma 3.6 is a variation, for powers of g, of a result of Romanov in [Rom34];
Lemma 3.8 is a sharper version of Lemma 1.2 in Murty-Rosen-Silverman [MRS96] and it
does not depend on g, while Corollary 3.9 can be consider as an application of Lemma 3.8 to
powers of g. In Lemma 3.10 we study an arithmetic sum which involves the singular series
over powers of g and therefore a careful analysis of this arithmetic part is needed; this lemma
is a variation, for powers of g, of Lemma 6.2 in Languasco-Pintz-Zaccagnini [LPZ07]. The
last Lemma 3.14 is about the estimation of an infinite convergent product, which is effectively
computed (with a specified error term) in the PARI-GP program written in Section 3.8.

3.1 Introduction to our result

The starting point for our work is the paper [LPZ07] by Languasco, Pintz and Zaccagnini
concerning the Goldbach-Linnik problem, where the authors proved the validity, for almost
all even integers, of a suitable asymptotic formula for the number of representations of a
large even integer as sum of two primes and a bounded number of powers of 2.
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More precisely, they proved the following

Theorem (Languasco-Pintz-Zaccagnini). Let k ≥ 1 be a fixed integer. Let η > 0 be
given. Let X > X0(k, η) be a sufficiently large parameter and L2 = log2X. Let moreover
N ≤ X be an even integer. If we define

R′′k(N) =
∑

1≤m1,m2≤X

∑
1≤ν1,...,νk≤L2

m1+m2+2ν1+...+2νk=N

Λ(m1)Λ(m2),

where Λ(n) is the von Mangoldt function, then there exists a constant C = C(k,N) ∈ [1, 2]
such that

|R′′k(N)−CNLk2| ≤ ηNLk2,

for all even integers N ∈ [1, X], apart from at most Ok
(
X3/5(logX)10

)
exceptions.

Proof. [LPZ07], Theorem, at page 2. �

We remark that R′′k(N) is the weighted function associate to the following counting func-
tion (defined for N even)

r′′k(N) = | {(p1, p2, ν1, . . . , νk) ∈ P× [1, L2]k : N = p1 + p2 + 2ν1 + . . .+ 2νk} |,

which counts the number of representations of an even integer N as sum of two primes and
k powers of 2, being P is the set of all prime numbers.

The main ingredient in Languasco-Pintz-Zaccagnini’s proof is the Hardy-Littlewood circle
method described in Section 1.3.1: they first reduced their problem to studying an integral,
defined over the unit interval [0, 1], which has as integrand function some suitable exponential
sums over primes and over powers of 2; then they split the integration interval into major
and minor arcs. Finally, they estimated the respective integrals one by one. The key step is
the estimation on the major arcs. More precisely:

• On the minor arcs, the estimate is straightforward and the main ingredient is Vaughan’s
Lemma in Result (R.9), concerning the exponential sum over primes. Using it (and
trivially estimating the exponential sums over powers of 2) Languasco, Pintz and Zac-
cagnini proved that the contribution on the minor arcs is small for almost all even
integers.

• On the major arcs, the estimation is much more elaborated and the key point is Pintz’s
explicit formula in Section 1.3.2, which describes the behaviour of the exponential sum
over primes on the major arcs. Using Pintz’s formula, Languasco, Pintz and Zaccagnini
reduced their problem to the study of a convergent series, which is actually related to
the Romanov constant (see Pintz [Pin06a], §5, and Khalfalah-Pintz [KP06], Corollary
1), and of a suitable average of the Goldbach singular series.

Replacing the powers of 2 with powers of g ≥ 3, we obtain the problem of studying the
following counting function (defined for suitable integers N):

r′′k,g(N) = | {(p1, p2, ν1, . . . , νk) ∈ P2 × [1, L]k : N = p1 + p2 + gν1 + . . .+ gνk} |



Chapter 3. On the sum of two primes and k powers of g ≥ 3 71

with L = loggX, which is a natural generalization of the Goldbach-Linnik problem (see,
e.g., page 2 of Gallagher [Gal75]). Our idea is to prove, for this generalization, an analogous
of Languasco-Pintz-Zaccagnini’s theorem. More precisely, we prove the following.

Theorem B (Settimi). Let k ≥ 1, g ≥ 3 be fixed integers. Let η > 0 be given. Let
X > X0(k, η, g) be a sufficiently large parameter and L = loggX. Let moreover N ≤ X be
an integer that satisfies the following arithmetic conditions:{

N even if g even,
N ≡ k (mod 2) if g odd.

(A.C.)

If we define

R′′k,g(N) =
∑

1≤m1,m2≤X

∑
1≤ν1,...,νk≤L

m1+m2+gν1+...+gνk=N

Λ(m1)Λ(m2),

where Λ(n) is the von Mangoldt function, then there exists a constant Cg = Cg(k,N) such
that

|R′′k,g(N)−CgNLk| ≤ ηNLk,

for all N ∈ [1, X] satisfying (A.C.), apart from at most Og
(
X3/5(logX)10

)
exceptions.

Moreover

Cg ≤ 2c0e
γ · 0.7574

(
log log g + 3 + log 2 +

π

2

)
+O

(
1

log log g

)
,

where c0 is the twin-prime constant and γ is the Euler constant1.

We remark that R′′k,g(N) is the weighted function associate to the relevant counting
function r′′k,g(N) defined above and that the arithmetic conditions (A.C.) are standard for
this kind of problem (see again [Gal75]).

This chapter is devoted to a detailed proof of our Theorem B, which follows the lines of
Languasco-Pintz-Zaccagnini’s proof of their theorem, but adapted to powers of g: the key
point involves the arithmetic part, since a careful analysis of the non-coprimality to g is
needed. More precisely:

• On minor arcs, we use the same estimation as [LPZ07].

• On major arcs, as in [LPZ07], we use Pintz’s explicit formula (see Theorem 1.3 of
Section 1.3.2) to reduce our problem to the study of a convergent series and of an
arithmetic sum. This reduction step is more complicated than in [LPZ07], because of

the possible non-coprimality to g of some parameters (see the estimation of R
(5)
M (N)

below).

– To study the convergent series, we replaced Khalfalah-Pintz’s technique used in
[LPZ07], with a new result (see Lemma 3.6 and the auxiliary results in Lemma 3.8
and Corollary 3.9). In order to do this, we follow the argument in Murty-Rosen-
Silverman [MRS96], but using sharper estimations (compare our Lemma 3.8 with
Lemma 1 in [MRS96]).

1We recall (see the preliminaries in Chapter 1) that γ ≈ 0.5772156 and, according to Gourdon-Sebah [GS01],
0.66016181584 < c0 < 0.66016181585.
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– To study the arithmetic sum, we carefully adapt the technique in [LPZ07] to powers
of g.

We conclude the comparison to [LPZ07], with the following remark.

Remark 3.1. When g = 2, the arithmetic conditions (A.C.) trivially imply that N is even,
which is exactly the Goldbach-Linnik problem. For this case we refer to [LPZ07], since the
argument in our proof leads to a constant Cg which is, for g = 2, worst than Languasco-
Pintz-Zaccagnini’s C. This is due to the fact that, in [LPZ07], following the line of Corollary
1 in Khalfalah-Pintz [KP06], a more refined analysis of the convergent series is performed.

We do not try to replicate Khalfalah-Pintz’s technique in our situation, since, even finding
a more accurate bound for Cg, the size of the exceptional set does not significantly change.

3.2 Definitions and general setting

In this section we set the notation in order to use the Hardy-Littlewood circle method,
described in Section 1.3.1, to count the number of representations of an integer N (satisfying
some suitable arithmetic conditions) as

N = p1 + p2 + gν1 + . . .+ gνk ,

as in the statement of Theorem B.
To this end, let k ≥ 1 and g ≥ 3 be two fixed positive integers (the constants implied by

the “O(·)” and “�” notations will silently depend on g and k). Let X be a large parameter,
say X > X0(k, g, η) with η > 0 a sufficiently small constant, not necessarily the same at
each occurrence. Let also J (X) = [2X/3, X], L = loggX and L′ = L − L1/2. Finally, let
N ∈ J (X)2.

Besides the counting function r′′k,g(N) already defined, we also need the following functions

rGb(N) = | {(p1, p2) ∈ P2 : N = p1 + p2} |,
tk,g(N) = | {(ν1, . . . , νk) ∈ [1, L]k : N = gν1 + . . .+ gνk} |,
t′k,g(N) = | {(ν1, . . . , νk) ∈ [1, L′]k : N = gν1 + . . .+ gνk} |, (3.1)

which count respectively the number of representations of an even integer as sum of two
primes (i.e. the “Goldbach representations”) and the number of representations of a suitable
integer as sum of k powers of g, with exponents restricted to two different intervals.

It’s easy to see that the requirement νi ∈ [1, L] in the definition of tk,g(N), as well as in
the definition of r′′k,g(N), is not restrictive since gL = X ≥ N ≥ gν1 + . . . + gνk > gνi for
every 1 ≤ i ≤ k. On the contrary, the hypothesis νi ∈ [1, L′] in the definition of t′k,g(N) is
restrictive.

We can also define the following weighted function associated to rGb(N)

RGb(N) =
∑

1≤m1,m2≤X
m1+m2=N

Λ(m1)Λ(m2).

2We set N ∈ J (X) (but it would actually be sufficient J (X) = [δX,X] for any 0 < δ < 1), instead of N ∈ [1, X],
but in Section 3.6 we extend our result to the whole [1, X], by using a dyadic argument.
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The relationship between the weighted functions R′′k,g(N) and RGb(N) is given by the formula

R′′k,g(N) =
∑

1≤n≤N

RGb(n)t′k,g(N − n) +O
(
NLk−1/2 log logN

)
. (3.2)

In fact, rearranging the sums in the definition of R′′k,g(N), we have:

R′′k,g(N) =
∑

0≤m≤N

∑
1≤ν1,...,νk≤L
gν1+...+gνk=m

∑
1≤m1,m2≤X
m1+m2=N−m

Λ(m1)Λ(m2)

=
∑

0≤m≤N

RGb(N −m)
∑

1≤ν1,...,νk≤L
gν1+...+gνk=m

1

=
∑

0≤m≤N

RGb(N −m)
( ∑

1≤ν1,...,νk≤L′
gν1+...+gνk=m

1 +
∑

L′≤ν≤L

∑
1≤ν1,...,νk−1≤L

gν1+...+gνk−1+gν=m

1
)

=
∑

0≤m≤N

RGb(N −m)t′k,g(m) +
∑

0≤m≤N

RGb(N −m)O
(
Lk−1(L− L′)

)
=
∑

0≤n≤N

RGb(n)t′k,g(N − n) +O
(
Lk−1/2

) ∑
0≤n≤N

RGb(n)

=
∑

1≤n≤N

RGb(n)t′k,g(N − n) +O
(
NLk−1/2 log logN

)
.

The last step is due to the fact that RGb(0) = 0 and RGb(N) � NS(N) � N log logN
by Theorem 3.11 of Halberstam-Richert [HR74] (see also the subsequent remark at page
317). We recall that S(n) is the singular series of the Goldbach problem already defined
in the previous chapters (see, e.g., the preliminaries at Chapter 1) and it will be crucial in
evaluating the major arcs contribution (see Section 3.5).

3.3 Hardy-Littlewood circle method

We want to use the Hardy-Littlewood circle method to study our relevant weighted function
R′′k,g(N), therefore we need the following exponential sums

Gg(α) =
∑

1≤m≤L′
e(gmα) exponential sum over powers of g,

S(α) =
∑

1≤m≤X

Λ(m)e(mα) weighted exponential sum over primes,

where e(x) = e2πıx as usual. We start by dissecting the unit circle, using the parameters

P ∈ [X2/5, X41/100], Q = X/P,
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(the fact that P cannot be directly fixed and its upper bound depend on Pintz’s explicit
formula stated in Theorem 1.3 of Section 1.3.2). Let now

M =
⊔

1≤q≤P

⊔
1≤a≤q
(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1

qQ

]
, m =

[
1

Q
, 1 +

1

Q

]
\M, (3.3)

where t means disjoint union. This construction is called the Farey dissection of the unit
interval, with M major arcs and m minor arcs (see, e.g., the fundamental paper [MV75] by
Montgomery-Vaughan).

With this notation, we can split RGb(N) and R′′k,g(N) as follows: for S ∈ {M,m}, let us
define

RS(n) =

∫
S
S2(α)e(−nα)dα.

Then

RGb(n) = RM(n) +Rm(n), (3.4)

as at page 773 of Languasco-Pintz-Zaccagnini [LPZ07]. With a similar argument we have
that, if we define

R′′S(N) =

∫
S
S2(α)Gk

g(α)e(−Nα)dα, (3.5)

then

R′′k,g(N) = R′′M(N) +R′′m(N) +O
(
NLk−1/2 log logN

)
. (3.6)

In fact, by definition of S(α) and Gg(α) we obtain

S2(α)Gk
g(α) =

∑
1≤m1,m2≤X

Λ(m1)Λ(m2)e((m1 +m2)α)
∑

1≤ν1,...,νk≤L′
e(α(gν1 + . . .+ gνk))

=
∑

1≤m1,m2≤X

∑
1≤ν1,...,νk≤L′

Λ(m1)Λ(m2)e(α(m1 +m2 + gν1 + . . .+ gνk))

=
∑
n≥1

( ∑
1≤m1,m2≤X

∑
1≤ν1,...,νk≤L′

m1+m2+gν1+...+gνk=n

Λ(m1)Λ(m2)
)
e(αn)

=
∑
n≥1

( ∑
1≤m≤n

RGb(m)t′k,g(n−m)
)
e(αn).

By relation (3.2) and the Fourier coefficients formula (see, e.g., Apostol [Apo74], §11.4), we
have

R′′k,g(N) +O
(
NLk−1/2 log logN

)
=

∑
1≤m≤N

RGb(m)t′k,g(N −m)

=

∫ 1/Q+1

1/Q

S2(α)Gk
g(α)e(−Nα)dα
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= R′′M(N) +R′′m(N).

Using again the relation (3.2) and the splitting formula (3.4) for RGb(N), we immediately
get

R′′k,g(N) =
∑

1≤n≤N

RM(n)t′k,g(N − n) +
∑

1≤n≤N

Rm(n)t′k,g(N − n)

+O
(
NLk−1/2 log logN

)
,

since

R′′S(N) =
∑

1≤n≤N

RS(n)t′k,g(N − n). (3.7)

Remark 3.2. R′′S(N) 6= 0 implies that N satisfies the arithmetic conditions (A.C.): in fact
it is easy to see that RS(n) 6= 0 in (3.7) implies that n is even, which is equivalent to the
fact that N verifies (A.C.).

3.4 Minor arcs

In this section we prove that the contribution of the minor arcs is small, except for few
exceptional values. Here we follow the lines of [LPZ07], §3, and we use the same trivial
estimation (see inequality 3.8 below).

The first step is estimating the L2-average of R′′m(N), for N satisfying (A.C.).

Lemma 3.3. Let R′′m(N) be as defined in (3.5), then∑
N∈J (X)

|R′′m(N)|2 � XL2k logX max
α∈m
|S(α)|2.

Proof. The trivial estimate for Gg(α) is

|Gg(α)| =
∣∣∣ ∑

1≤m≤L′
e(gmα)

∣∣∣ ≤ ∑
1≤m≤L′

|e(gmα)| = L′ ≤ L. (3.8)

Using it, the definition of R′′m(N) and Bessel’s inequality (see, e.g., [Apo74], §11.5), we get

∑
N∈J (X)

|R′′m(N)|2 =
∑

N∈J (X)

∣∣∣∣∫
m

S2(α)Gk
g(α)e(−Nα)dα

∣∣∣∣2
≤
∫
m

|S2(α)Gk
g(α)|2dα

≤ L2k

∫
m

|S(α)|4dα

≤ L2k max
α∈m
|S(α)|2

∫
m

|S(α)|2dα
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≤ L2k max
α∈m
|S(α)|2

∫ 1/Q+1

1/Q

|S(α)|2dα.

By Parseval’s theorem and the Prime Number Theorem with error term (see Result (R.4)),
we can write ∫ 1+1/Q

1/Q

|S(α)|2dα =
∑

1≤m≤X

Λ2(m) = X logX +O(X).

Therefore we conclude ∑
N∈J (X)

|R′′m(N)|2 � XL2k logX max
α∈m
|S(α)|2. �

To bound S(α) for α ∈ m, we use Vaughan’s estimate in Result (R.9), that is

S(α)�
(
X
√
q

+
√
qX +X4/5

)
(logX)4, for (a, q) = 1,

∣∣∣α− a

q

∣∣∣ < 1

q2
,

which implies

S(α)� X4/5(logX)4, (3.9)

for every α ∈ m. In fact, recalling the definition (3.3) of M, we have that P < q < Q for

every α ∈ m. Moreover by construction P ≥ X2/5. Thus X/q1/2 and (qX)1/2 are bounded
above by X4/5.

Combining Lemma 3.3 and (3.9), we get∑
N∈J (X)

|R′′m(N)|2 � XL2k logX(X4/5(logX)4)
2

= X13/5L2k(logX)9. (3.10)

Using this, we prove that, except for “few” exceptions, R′′m(N) is “sufficiently small” (that
is, by the splitting formula (3.6), its contribution to R′′k,g(N) is negligible). More precisely,
we conclude with the following lemma.

Lemma 3.4. Letting

E(X) = {N ∈ J (X) : N verifies (A.C.) and |R′′m(N)| ≥ NLk−1/2},

we have
|E(X)| � X3/5L(logX)9.

Proof. Splitting the sum in (3.10) into |R′′m(N)| ≥ NLk−1/2 and |R′′m(N)| < NLk−1/2, we
obtain

X13/5L2k(logX)9 �
∑

N∈J (X)

|R′′m(N)|≥NLk−1/2

|R′′m(N)|2 +
∑

N∈J (X)

|R′′m(N)|<NLk−1/2

|R′′m(N)|2
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�
∑

N∈J (X)

|R′′m(N)|≥NLk−1/2

(NLk−1/2)2 ≥ N2L2k−1|E(X)|.

Thus, recalling that N ≥ 2X/3, we get

|E(X)| � X13/5L(logX)9N−2 ≤ X13/5L(logX)9(2X/3)−2 � X3/5L(logX)9. �

3.5 Major arcs

In this section we estimate the contribution of the major arcs to R′′k,g(N). Since R′′M(N) =∑
1≤n≤N RM(n)t′k,g(N − n) by (3.7), we start by studying RM(N). To this end, our main

tools are the explicit formula by Pintz in [Pin09] and, in particular, the related corollary by
Languasco-Pintz-Zaccagnini in [LPZ07]. They are, respectively, Theorem 1.3 and Corollary
1.5 in Section 1.3.2. We refer to our Section 1.3.2 for the definitions of generalized exceptional
zeros, moduli and characters and we just summarize here the statement of Corollary 1.5:

(C.1) RM(n)� nS(n), for every even n ∈ [X/2, X] (and thus n ∈ J (X) = [2X/3, X]).

(C.2) |RM(n)−nS(n)| ≤ ηnS(n), if there exists a sufficiently small absolute constant η > 0
and a constant C ′(η) such that

ri - C ′(η)n,

for every generalized exceptional modulus ri.

(C.3) r∗i � (logX)2, for any generalized exceptional modulus ri, where a∗ denotes the odd
square-free part of a ∈ N.

(C.4) 0 ≤ K ≤ C1(η), where K is the number of generalized exceptional character χi and
C1(η) is a positive constant.

We now split our interval J (X) according to points (C.1)-(C.2). More precisely let us call
Je(X) the set of those n ∈ J (X) which are even and let us denote

J2(X) = {n ∈ Je(X) : n verifies point (C.2)},
J1(X) = Je(X) \ J2(X).

Using this partition of Je(X) and the relation (3.7), we can split the contribution of the
major arcs as

R′′M(N) = R
(1)
M (N) +R

(2)
M (N), (3.11)

with

R
(i)
M (N) =

∑
1≤n≤N
n∈Ji(X)

RM(n)t′k,g(N − n). (3.12)

We observe (as done in Remark 3.2) that if t′k,g(N − n) 6= 0, then n even if and only if N

satisfies (A.C.): our problem is therefore reduced to estimating R
(1)
M (N) and R

(2)
M (N), for N

verifying the arithmetic conditions.
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Estimation of R
(1)
M (N). By construction, for n ∈ J1(X) holds the estimate RM(n) �

nS(n). Thus by (3.12) and the definition of t′k,g(N − n) in (3.1), we have

R
(1)
M (N)�

∑
1≤n≤N
n∈J1(X)

nS(n)t′k,g(N − n) =
∑

1≤n≤N
n∈J1(X)

nS(n)
∑

1≤ν1,...,νk≤L′
gν1+...+gνk=N−n

1

=
∑

1≤ν1,...,νk≤L′
N−gν1−...−gνk∈J1(X)

(N − gν1 − . . .− gνk)S(N − gν1 − . . .− gνk)

≤ N
∑

1≤ν1,...,νk≤L′
N−gν1−...−gνk∈J1(X)

S(N − gν1 − . . .− gνk)

= N
∑

1≤ν1,...,νk−1∈L′

∑
1≤ν≤L′

m−gν∈J1(X)

S(m′ − gν), (3.13)

where m′ = m′(N, ν1, . . . , νk−1) = N−gν1−. . .−gνk−1 . It makes sense, since N−gν1−. . .−gνk
is even by the conditions (A.C.) on N and 1 ≤ N−gν1−. . .−gνk ≤ N is true for X sufficiently
large.

We now observe that, given ` ∈ Je(X), by construction ` ∈ J1(X) is equivalent to the
existence of 0 ≤ i ≤ K (with K defined in point (C.4)) such that ri|C ′(η)` (⇔ ri

(C′(η),ri)
|`).

So (3.13) implies

R
(1)
M (N)� N

∑
1≤ν1,...,νk−1≤L′
m′≡g mod 2

∑
1≤i≤K

∑
1≤ν≤L′

ri
(C′(η),ri)

|(m′−gν)

S(m′ − gν).

In order to estimate it, we define the quantity

Ag(m, r) =
∑

1≤ν≤L′
gν<m

r|(m−gν)

S(m− gν) (3.14)

for every m ∈ [X/2, X] and r ∈ N. We remark that if m 6≡ g (mod 2), then m− gν odd and
so S(m − gν) = 0, for any 1 ≤ ν ≤ L′, and therefore Ag(m, r) = 0. Thus the definition of
Ag(m, r) naturally contains the condition m ≡ g (mod 2). Since m′ = N − gν1 − . . .− gνk ∈
[X/2, X] for X sufficiently large, we can write

R
(1)
M (N)� N

∑
1≤i≤K

∑
1≤ν1,...,νk−1≤L′

Ag

(
m′,

ri
(C ′(η), ri)

)
≤ N

∑
1≤i≤K

∑
1≤ν1,...,νk−1≤L′

Ag

(
m′,

r∗i
(C ′(η), r∗i )

)
, (3.15)

where ∗ denotes the odd square-free part as before. The last step is due to
r∗i

(C′(η),r∗i )
| ri
(C′(η),ri)

,

which implies Ag
(
m′, ri

(C′(η),ri)

)
≤ Ag

(
m′,

r∗i
(C′(η),r∗i )

)
.
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To conclude we need an upper bound for Ag(m
′, r): we will prove in the next Lemma

3.10 that, for an arbitrarily ω > 0, we have Ag(m, r)� ωL, for any m ∈ [X/2, X] such that
m ≡ g (mod 2) and r odd positive integer such that r � (logX)2. In our situation, the
hypothesis of the lemma are satisfied since

• m′ = N − gν1 − . . .− gνk−1 ≡ g (mod 2) by the arithmetic conditions (A.C.) on N ;

• N − gν1 − . . .− gνk−1 ≤ X is trivially true;

• N − gν1 − . . .− gνk−1 ≥ X/2 holds since N ≥ 2X/3 and X sufficiently large;

• r∗i
(C′(η),r∗i )

is an odd positive integer by construction;

• By point (C.3) of the corollary above, we have r∗i � (logX)2. Since C ′(η) is a constant
depending only on η and not on X, we can therefore suppose, without loss of generality,

that r′i =
r∗i

(C′(η),r∗i )
� (logX)2.

Inserting Lemma 3.10 in (3.15) and choosing ω = η/K, we obtain

R
(1)
M (N)� NL′

k−1
ηL� ηNLk.

The splitting formula (3.11) therefore implies

R′′M(N) = R
(2)
M (N) +O

(
ηNLk

)
.� (3.16)

Estimation of R
(2)
M (N). By construction, for n ∈ J2(X) holds the asymptotic estimate

|RM(n)−nS(n)| ≤ ηnS(n) (and so RM(n) = (1+O(η))nS(n)) with η > 0 sufficiently small,

as at point (C.2). Recalling the definition (3.12) of R
(2)
M (N) and that J2(X) = Je(X)\J1(X),

and arguing exactly as at pages 776-777 of Languasco-Pintz-Zaccagnini [LPZ07], we get

R
(2)
M (N) = (1 +O(η))

∑
1≤n≤N
n∈J2(X)

nS(n)t′k,g(N − n) = (1 +O(η))
(
R

(3)
M (N)−R(1)

M (N)
)
,

with
R

(3)
M (N) =

∑
1≤n≤N
n∈Je(X)

nS(n)t′k,g(N − n).

Using the estimation of R
(1)
M (N) just obtained, we see that

R
(2)
M (N) = (1 +O(η))R

(3)
M (N) + (1 +O(η))O

(
ηNLk

)
= (1 +O(η))R

(3)
M (N) +O

(
ηNLk

)
,

being η sufficiently small. So (3.16) implies

R′′M(N) = (1 +O(η))R
(3)
M (N) +O

(
ηNLk

)
.� (3.17)

Therefore there is left to study R
(3)
M (N).
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Estimation of R
(3)
M (N). We recall that

S(n) = 2c0

∏
p|n
p>2

p− 1

p− 2
, (3.18)

wherever n is even, and otherwise S(n) = 0. So, using the definition (3.1) of t′k,g(n), we get

R
(3)
M (N) = 2c0

∑
1≤n≤N
n∈Je(X)

(
n
∏
p|n
p>2

p− 1

p− 2

∑
1≤ν1,...,νk≤L′

gν1+...+gνk=N−n

1
)
. (3.19)

It is easy to see that, for every ` ∈ N∏
p|`
p>2

p− 1

p− 2
=
∑
d|`

µ2(d)f(d) (3.20)

where µ(d) is the Möbius function (see, e.g., Apostol [Apo76], page 24) and f(d) is defined
as

f(d) =
∏
p|d

1

p− 2
, (3.21)

whenever d > 2 is odd and f(d) = 0 otherwise. In fact, let m be the largest odd divisor of
`, eventually ` itself, then∏

p|`
p>2

p− 1

p− 2
=
∏
p|m

(
1 +

1

p− 2

)
=
∏
p|m

(
1− µ(p)f(p)

)
.

Both µ(d) and f(d) are multiplicative functions and thus so is (µf)(d). Therefore, using a
well known result for multiplicative arithmetic functions (that can be found again in [Apo76],
page 37), we obtain∏

p|m

(
1− µ(p)f(p)

)
=
∑
d|m

µ2(d)f(d) =
∑
d|`

µ2(d)f(d),

since f(d) = 0 whenever d even. So∏
p|`
p>2

p− 1

p− 2
=
∑
d|`

µ2(d)f(d).

Inserting the relation (3.20) in (3.19), we obtain

R
(3)
M (N) = 2c0

∑
1≤n≤N
n∈Je(X)

(∑
d|n

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
gν1+...+gνk=N−n

(N − gν1 − . . .− gνk)
)
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= 2c0

∑
d≤N

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
d|(N−gν1−...−gνk )>0

(N − gν1 − . . .− gνk).

= 2c0N
∑
d≤N

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
d|(N−gν1−...−gνk )>0

(
1− gν1 + . . .+ gνk

N

)
= (1 +Ok(η))2c0N

∑
d≤N

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
d|(N−gν1−...−gνk )>0

1,

where we used N ≥ 2X/3 with X sufficiently large, and N − gν1 − . . . − gνk even by the
arithmetic conditions (A.C.) on N .

We now split the external sum over d above into (d, g) = 1 and (d, g) > 1, obtaining

R
(3)
M (N) = (1 +Ok(η))2c0N

( ∑
d≤N

(d,g)=1

µ2(d)f(d) +
∑
d≤N

(d,g)>1

µ2(d)f(d)
) ∑

1≤ν1,...,νk≤L′
d|(N−gν1−...−gνk )>0

1

= (1 +Ok(η))[R
(4)
M (N) +R

(5)
M (N)], (3.22)

with

R
(4)
M (N) = 2c0N

∑
d≤N

(d,g)=1

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
d|(N−gν1−...−gνk )>0

1, (3.23)

R
(5)
M (N) = 2c0N

∑
d≤N

(d,g)>1

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
d|(N−gν1−...−gνk )>0

1.� (3.24)

Let us introduce the notation f = (d, g), d̄ = d/f and ḡ = g/f . We remark that the fact
that d is odd and square-free implies:

i) f is odd, since d is odd.

ii) (d̄, f) = 1, since d is square-free.

iii) (ḡ, d̄) = 1 by definition of gcd, and so (d̄, g) = 1.

Inserting (3.22) in (3.17), we obtain

R′′M(N) = (1 +Ok(η))[R
(4)
M (N) +R

(5)
M (N)] +O

(
ηNLk

)
, (3.25)

hence there is left to study R
(4)
M (N) and R

(5)
M (N).

Estimation of R
(4)
M (N). Let us define the quantities

ξg(d) = min{` ≥ 1 : g` ≡ 1 (mod d)}, (3.26)
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jg(d, k,N) =
∑

1≤ν1,...,νk≤ξg(d)
d|(N−gν1−...−gνk )>0

1.

We remark that ξg(d) is well defined since (d, g) = 1 in R
(4)
M (N). Choosing ν1, . . . , νk−1

arbitrarily, there is at most one 1 ≤ ν ≤ ξg(d) such that d|(N − gν1 − . . . − gνk−1 − gν).
In fact, let us suppose by contradiction that there exists also τ ∈ [1, ξg(d)] with τ 6= ν and
d|(N − gν1 − . . .− gνk−1 − gτ ). It implies that gν ≡ N − gν1 − . . .− gνk−1 ≡ gτ (mod d) that
is gν−τ ≡ 1 (mod d) which is in contradiction with the definition of ξg(d). Therefore

jg(d, k,N) ≤ ξg(d)k−1. (3.27)

Let us define also the following functions

Sg(m, d) =

{
1 if ∃ 1 ≤ ν ≤ L′ s.t. d|(m− gν)
0 otherwise;

(3.28)

S ′g(m,N) =
∑
d≤N

(d,g)=1

µ2(d)f(d)Sg(m, d);

S ′′g (N) = max
1≤m≤N

S ′g(m,N).

We use these functions to split the inner sum in (3.23) and estimate the associated error

term for R
(4)
M (N). We remark that we have an error only when, taken 1 ≤ ν1, . . . , νk−1 ≤ L′

arbitrarily, there exists an exponent 1 ≤ ν ≤ L′ such that d|(N − gν1− . . .− gνk−1− gν), thus

R
(4)
M (N)

2c0N
=
∑
d≤N

(d,g)=1

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
d|(N−gν1−...−gνk )>0

1

=
∑
d≤N

(d,g)=1

µ2(d)f(d)
[
jg(d, k,N)

( L′

ξg(d)

)k
+O(1)

∑
1≤ν1,...,νk−1≤L′

Sg(N − gν1 − . . .− gνk−1 , d)
]

=
∑
d≤N

(d,g)=1

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k
+O(1)

∑
d≤N

(d,g)=1

∑
1≤ν1,...,νk−1≤L′

µ2(d)f(d)Sg(N − gν1 − . . .− gνk−1 , d)

=
∑
d≤N

(d,g)=1

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k
+O(1)

∑
1≤ν1,...,νk−1≤L′

S ′g(N − gν1 − . . .− gνk−1 , N)
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=
∑
d≤N

(d,g)=1

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k
+O

(
L′k−1S ′′g (N)

)

=
∑
d≤N

(d,g)=1

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k
+O

(
Lk−1S ′′g (N)

)
, (3.29)

recalling L′ � L and 1 ≤ N − gν1 − . . .− gνk−1 ≤ N . To conclude, we split the summation

in (3.29) into Σ
(1)
g (N) and Σ

(2)
g (N) according to whether ξg(d) ≤ L1/2 or ξg(d) > L1/2. Using

the trivial estimation in (3.27) we get

Σ(2)
g (N) =

∑
d≤N

(d,g)=1

ξg(d)>L1/2

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k

≤ L′k
∑
d≤N

(d,g)=1

ξg(d)>L1/2

µ2(d)
f(d)

ξg(d)
< ηLk,

for X > c1(η, g), where c1(η, g) is a suitable positive constant. The last step follows from the

fact that the series
∑

(d,g)=1 µ
2(d) f(d)

ξg(d)
converges (as we will prove later in Remark 3.7 after

Lemma 3.6). Observing that if ξg(d) goes to +∞, then also d goes to +∞, we therefore have
that our sum is dominated by the tail of a convergent series.

On the other hand we have

Σ(1)
g (N) = L′k

∑
d≤N

(d,g)=1

ξg(d)≤L1/2

µ2(d)
f(d)jg(d, k,N)

ξg(d)k

= L′k
(
Dg(k,N)−

∑
d>N

(d,g)=1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
−

∑
d≤N

(d,g)=1

ξg(d)>L1/2

µ2(d)
f(d)jg(d, k,N)

ξg(d)k

)
,

with

Dg(k,N) =
∑
d≥1

(d,g)=1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
.

By the trivial estimate (3.27), we get Dg(k,N) ≤
∑

(d,g)=1 µ
2(d) f(d)

ξg(d)
, which converges again

by Lemma 3.6 and Remark 3.7. Moreover∑
d>N

(d,g)=1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
� η,
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for X > c2(η, g), where c2(η, g) is a suitable positive constant, since this summation is the
tail of a convergent series. Finally, we can take X > c3(η, g), with c3(η, g) a positive constant,
in such a way that L1/2 large enough to have∑

d≤N
(d,g)=1

ξg(d)>L1/2

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
� η.

Collecting all these remarks and since L′ � L, we get

Σ(1)
g (N) = Dg(k,N)L′k +O

(
ηLk

)
.

So, if we define
D′g(k,N) = 2c0Dg(k,N),

then, by (3.29) and the estimations of Σ
(1)
g (N) and Σ

(2)
g (N) just obtained, we have

R
(4)
M (N) = 2c0N

(
Dg(k,N)L′k +O

(
ηLk

)
+O

(
Lk−1S ′′g (N)

))
= D′g(k,N)NL′k +O

(
ηNLk

)
, (3.30)

where the last step follows from S ′g(m,N)� logL (as we will see later in Remark 3.13 after
Lemma 3.10) that trivially implies S ′′g (N)� ηL.�

Estimation of R
(5)
M (N). By definition, in R

(5)
M (N) we sum over d such that (d, g) = f > 1.

Recalling the notation d̄ = d/f and that (d̄, g) = 1, let us define the quantities

ξg(d) = min{` ≥ 1 : g` ≡ 1 (mod d/(d, g))} = ξg(d̄), (3.31)

jg(d, k,N) =
∑

1≤ν1,...,νk≤ξg(d)
d|(N−gν1−...−gνk )>0

1.

We remark that ξg(d) is well defined and moreover

i) whenever (d, g) = 1, then d̄ = d and so ξg(d) = ξg(d); thus jg(d, k,N) = jg(d, k,N);

ii) if (d, g) = d (⇔ d|g), then d̄ = 1; thus

ξg(d) = ξg(1) = min{` ≥ 1 : g` ≡ 1 (mod 1)} = 1, (3.32)

jg(d, k,N) =
∑

1≤ν1,...,νk≤1
d|(N−gν1−...−gνk )>0

1 =

{
1 if d|(N − kg) (⇔ d|N)
0 otherwise.

We also have that d|(N − gν1 − . . .− gνk) trivially implies d̄|(N − gν1 − . . .− gνk). Thus

jg(d, k,N) =
∑

1≤ν1,...,νk≤ξg(d)
d|(N−gν1−...−gνk )>0

1 ≤
∑

1≤ν1,...,νk≤ξg(d)
d̄|(N−gν1−...−gνk )>0

1 = jg(d̄, k, N).
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So it’s easy to see that, (3.27) implies

jg(d, k,N) ≤ jg(d̄, k, N) ≤ ξg(d̄)k−1 = ξg(d)k−1. (3.33)

This inequality can be proven also by a direct argument: choosing 1 ≤ ν1, . . . , νk−1 ≤ ξg(d)

arbitrarily, there is at most one 1 ≤ ν ≤ ξg(d) such that d|(N − gν1 − . . . − gνk−1 − gν).

In fact, let us suppose by contradiction that there exists also τ ∈ [1, ξg(d)] with τ 6= ν and
d|(N − gν1 − . . .− gνk−1 − gτ ). It implies that gν ≡ N − gν1 − . . .− gνk−1 ≡ gτ (mod d). Thus
also gν ≡ gτ (mod d̄), that is gν−τ ≡ 1 (mod d̄) which is in contradiction with the definition
of ξg(d) (we remark that g is a unit modulo d̄, since (d̄, g) = 1, and so we can invert gτ ) .

Therefore jg(d, k,N) ≤ ξg(d)k−1.
Let us define also the following functions

S ′g(m,N) =
∑
d≤N

(d,g)>1

µ2(d)f(d)Sg(m, d); (3.34)

S ′′g (N) = max
1≤m≤N

S ′g(m,N).

Remark 3.5. By definition, Sg(m, d) = 1 if there exists an exponent 1 ≤ ν ≤ L′ such that
d|(m− gν) and Sg(m, d) = 0 otherwise. So it is easy to see that, if (d, g) = d (⇔ d|g), then
Sg(m, d) = 1 whenever d|m and Sg(m, d) = 0 otherwise.

We now observe that, given 1 ≤ ν ≤ ξg(d) and using the notation d = d̄f with f = (g, d),
then

d|(m− gν)⇔
{
d̄|(m− gν),
f |(m− gν)(⇔ f |m),

because of (d̄, f) = 1 and f |g. So if there exists 1 ≤ ν ≤ ξg(d) such that d|(m − gν), then

d|(m− gν+ξg(d)) since both{
m− gν+ξg(d) ≡ m (mod f) ≡ 0 (mod f)

m− gν+ξg(d) ≡ m− gν (mod d̄) ≡ 0 (mod d̄).

We now split the external sum in the definition (3.24) of R
(5)
M (N), according to 1 < (d, g) < d

and (d, g) = d. We also split inner sum and estimate the associated error term as did for

R
(4)
M (N), observing that we have an error only when, taken 1 ≤ ν1, . . . , νk−1 ≤ L′ arbitrarily,

there exists an exponent 1 ≤ ν ≤ L′ such that d|(N − gν1 − . . .− gνk−1 − gν). Thus

R
(5)
M (N)

2c0N
=

∑
d≤N

1<(d,g)<d

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
d|(N−gν1−...−gνk )>0

1 +
∑
d≤N
d|g

µ2(d)f(d)
∑

1≤ν1,...,νk≤L′
d|N

1

=
∑
d≤N

1<(d,g)<d

µ2(d)f(d)
[
jg(d, k,N)

( L′

ξg(d)

)k
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+O(1)
∑

1≤ν1,...,νk−1≤L′
Sg(N − gν1 − . . .− gνk−1 , d)

]
+ L′k

∑
d≤N
d|(g,N)

µ2(d)f(d). (3.35)

Recalling the relations in (3.32), we get

L′k
∑
d≤N
d|(g,N)

µ2(d)f(d) = L′k
∑
d≤N
d|(g,N)

µ2(d)f(d)
jg(d, k,N)

ξg(d)
.

Thus, if we introduce the notation

T ′g(m,N) = S ′g(m,N)−
∑
d≤N
d|(g,m)

µ2(d)f(d) =
∑
d≤N

1<(d,g)<d

µ2(d)f(d)Sg(m, d),

T ′′g (N) = max
1≤m≤N

T ′g(m,N),

we can rearrange (3.35) as follows

R
(5)
M (N)

2c0N
=
∑
d≤N

(d,g)>1

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k
+O(1)

∑
d≤N

(d,g)>1

∑
1≤ν1,...,νk−1≤L′

µ2(d)f(d)Sg(N − gν1 − . . .− gνk−1 , d)

=
∑
d≤N

(d,g)>1

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k
+O(1)

∑
1≤ν1,...,νk−1≤L′

T ′g(N − gν1 − . . .− gνk−1 , N)

=
∑
d≤N

(d,g)>1

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k
+O

(
(L′)k−1T ′′g (N)

)

=
∑
d≤N

(d,g)>1

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k
+O

(
Lk−1T ′′g (N)

)
, (3.36)

recalling L′ � L and 1 ≤ N − gν1 − . . .− gνk−1 ≤ N . To conclude, we split the summation

above into Σ
(1)
g (N) and Σ

(2)
g (N) according to whether ξg(d) ≤ L1/2 or ξg(d) > L1/2 and we

argue exactly as did for R
(4)
M (N). That is, using the trivial estimate in (3.33) we get

Σ
(2)
g (N) =

∑
d≤N

(d,g)>1

ξg(d)>L1/2

µ2(d)f(d)jg(d, k,N)
( L′

ξg(d)

)k



Chapter 3. On the sum of two primes and k powers of g ≥ 3 87

≤ L′k
∑
d≤N

(d,g)>1

ξg(d)>L1/2

µ2(d)
f(d)

ξg(d)
< ηLk,

for X > c1(η, g), where c1(η, g) is a suitable positive constant. The last step follows from the

fact that the series
∑

(d,g)>1 µ
2(d) f(d)

ξg(d)
converges (as we will prove later in Remark 3.7 after

Lemma 3.6). Observing that if ξg(d) goes to +∞, then also d goes to +∞, we therefore have
that our sum is dominated by the tail of a convergent series.

On the other hand

Σ
(1)
g (N) = L′k

∑
d≤N

(d,g)>1

ξg(d)≤L1/2

µ2(d)
f(d)jg(d, k,N)

ξg(d)k

= L′k
(
Dg(k,N)−

∑
d>N

(d,g)>1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
−

∑
d≤N

(d,g)>1

ξg(d)>L1/2

µ2(d)
f(d)jg(d, k,N)

ξg(d)k

)
,

with

Dg(k,N) =
∑
d≥1

(d,g)>1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
.

By the trivial estimate in (3.33), we get Dg(k,N) ≤
∑

(d,g)>1 µ
2(d) f(d)

ξg(d)
, which converges

again by Remark 3.7. Moreover∑
d>N

(d,g)>1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
� η,

for X > c2(η, g), where c2(η, g) is a suitable positive constant, since this summation is the
tail of a convergent series. Finally, we can take X > c3(η, g), with c3(η, g) a positive constant,
in such a way that L1/2 is large enough to have∑

d≤N
(d,g)>1

ξg(d)>L1/2

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
� η.

Collecting all these remarks and since L′ � L, we get

Σ
(1)
g (N) = Dg(k,N)L′k +O

(
ηLk

)
.

So, if we define
D′g(k,N) = 2c0Dg(k,N),
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then, by (3.36) and the estimates of Σ
(1)
g (N) and Σ

(2)
g (N) just obtained, we have

R
(5)
M (N) = 2c0N

(
Dg(k,N)L′k +O

(
ηLk

)
+O

(
Lk−1T ′′g (N)

))
= D′g(k,N)NL′k +O

(
ηNLk

)
, (3.37)

where the last step follows from T ′g(m,N) � logL (as we will see later in Lemma 3.10 and

Remark 3.13) that trivially implies T ′′g (N)� ηL.�

Therefore, by the estimates of R
(4)
M (N) and R

(5)
M (n) in (3.30) and (3.37) resp., and by

(3.25) we get

R′′M(N) = (1 +O(η))
[
D′g(k,N)NLk +D′g(k,N)NLk +O

(
ηNLk

)]
+O

(
ηNLk

)
= (1 +O(η))[D′g(k,N) +D′g(k,N)]NLk, (3.38)

and so there is left to study, for any N ∈ J (X) satisfying (A.C.), the following constant

Cg = Cg(k,N) = D′g(k,N) +D′g(k,N) = 2c0

[
Dg(k,N) +Dg(k,N)

]
= 2c0

[ ∑
d≥1

(d,g)=1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
+
∑
d≥1

(d,g)>1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k

]

= 2c0

∑
d≥1

µ2(d)
f(d)jg(d, k,N)

ξg(d)k
,

recalling that for (d, g) = 1, ξg(d) = ξg(d) and jg(d, k,N) = jg(d, k,N), as already observed.

3.6 Proof of the theorem

Collecting the splitting formula (3.6) for R′′k,g(N), Lemma 3.4 on minor arcs and the relation
(3.38) on major arcs, we obtain

R′′k,g(N) = (1 +Ok(η))CgNL
k +O

(
NLk−1/2

)
+O

(
NLk−1/2 log logN

)
= (1 +Ok(η))CgNL

k

which implies
|R′′k,g(N)−CgNLk| ≤ ηNLk

for every N ∈ J (X) satisfying (A.C.) with at most O
(
X3/5(logX)9L

)
= Og

(
X3/5(logX)10

)
exceptions.

Extension to [1, X]. We can easily extend this result to every N ∈ [1, X] satisfying (A.C.),
by using a dyadic argument. That is, if we denote by E(x, y) the subset of [x, y] made up of
those integers N that satisfies (A.C.) and such that |R′′k,g(N)−CgNLk| > ηNLk, then

|E(1, X)| =
∣∣∣O(logX)⊔

n=0

E
(
X
(2

3

)n+1

, X
(2

3

)n)∣∣∣
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�g

O(logX)∑
n=0

(
X
(2

3

)n)3/5(
log
(
X
(2

3

)n))10

� X3/5(logX)10

O(logX)∑
n=0

(2

3

)3n/5

� X3/5(logX)10,

where we used the convergence of
∑O(logX)

n=0 ((2/3)3/5)n and we applied our result to N ∈
J (X(2/3)n) every time.

Thus Theorem B holds, once we prove that the series defining Cg converges (we will
actually prove that Cg ≤ 2c0e

γ · 0.7574
(

log log g+ 3 + log 2 + π/2) +O((log log g)−1), where
the implicit constant is absolute).

3.7 Lemmas

Our first result is a variation of a result of Romanov [Rom34] (see Pintz-Ruzsa [PR03], page
188, for an easier proof) and it is along the lines of Theorem 1.1 in Murty-Rosen-Silverman
[MRS96].

Lemma 3.6. Let f(d) and ξg(d) be as defined in (3.21) and (3.31) resp., then the series

∑
d≥1

µ2(d)
f(d)

ξg(d)

is convergent.

Proof. Trivially ∑
d≥1

µ2(d)
f(d)

ξg(d)
=
∑
n≥1

1

n

∑
ξg(d)=n

µ2(d)f(d).

Let us define the functions

Fg(n) =
∑

ξg(d)=n

µ2(d)f(d),

F ′g(x) =
∑
n≤x

Fg(n),

therefore the series in the statement of the lemma is

F ′′g =
∑
n≥1

Fg(n)

n
.
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Following [MRS96], our aim is to use Abel’s identity (see Result (R.17)) to show that F ′′g
converges. More precisely, Abel’s identity implies

F ′′g = lim
y→∞

y∑
n=1

Fg(n)

n
= lim

y→∞

(∑y
n=1 Fg(n)

y
−
∑1

n=1 Fg(n)

1
+

∫ y

1

∑t
n=1 Fg(n)

t2
dt
)

= lim
y→∞

F ′g(y)

y
+ lim

y→∞

∫ y

1

F ′g(t)

t2
dt.

By the next Corollary 3.9, F ′g(x) < Ceγ(log(x2 +1)+log log g+3)+O((log log g)−1) where
C < 0.7574 is an absolute constant and γ is the Euler constant. Thus

F ′′g < lim
y→∞

Ceγ(log(y2 + 1) + log log g + 3) +O((log log g)−1)

y

+ lim
y→∞

∫ y

1

Ceγ(log(t2 + 1) + log log g + 3) +O((log log g)−1)

t2
dt

= Ceγ lim
y→∞

∫ y

1

log(t2 + 1)

t2
dt+

(
Ceγ(log log g + 3) +O

(
1

log log g

))
lim
y→∞

∫ y

1

dt

t2

= Ceγ

(
log 2 +

π

2
+ log log g + 3

)
+O

(
1

log log g

)
.

The last equality follows by partial integration, since we have∫ y

1

log(t2 + 1)

t2
dt =

(
− 1

t
log(t2 + 1)

)∣∣∣y
1

+ 2

∫ y

1

dt

t2 + 1

= − log(y2 + 1)

y
+ log 2 + 2 arctan y − π

2
.

Thus the needed limit is

lim
y→∞

∫ y

1

log(t2 + 1)

t2
dt = log 2 + 2 · π

2
− π

2
=
π

2
+ log 2,

whose value is ≈ 2.2639435; so, for every fixed g, F ′′g =
∑

d≥1 µ
2(d) f(d)

ξg(d)
converges. This

proves Lemma 3.6. �

Remark 3.7. We recall that the sum in R
(5)
M (N) is∑

(d,g)>1

µ2(d)
f(d)

ξg(d)
.

We have already observed that whenever (d, g) = 1, ξg(d) = ξg(d); so the sum in R
(4)
M (N) is∑

(d,g)=1

µ2(d)
f(d)

ξg(d)
=
∑

(d,g)=1

µ2(d)
f(d)

ξg(d)
.
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Since we can write∑
d≥1

µ2(d)
f(d)

ξg(d)
=
∑
d≥1

(d,g)=1

µ2(d)
f(d)

ξg(d)
+
∑
d≥1

(d,g)>1

µ2(d)
f(d)

ξg(d)
,

then, proving that the left-hand side converges, we actually prove that both the series at the
right-hand side converge, since their summands are non-negative.

Lemma 3.8. Let f(d) be as in definition (3.21) and µ(d) the Möbius function, then for
every positive integers m∑

d|m

µ2(d)f(d) < Ceγ(log logm+ 3) +O
(

1

log logm

)
,

where C < 0.7574 is an absolute constant and γ ≈ 0.577216 is the Euler constant.

Proof. We follow the argument in Corollary 2.3 of Murty-Rosen-Silverman [MRS96] which
is a refinement of Erdős-Turán [Erd35] technique. Using (3.20) and splitting the product
into “large primes” and “small primes”. So we obtain∑

d|m

µ2(d)f(d) =
∏
p|m
p>2

p− 1

p− 2
= PL(m) · PS(m) (3.39)

with

PL(m) =
∏
p|m

p>logm

p− 1

p− 2
and PS(m) =

∏
p|m

2<p≤logm

p− 1

p− 2
.

Estimation of PL(m). Let us define the quantity ω+(m) = | {p ∈ P : p|m; p > logm} |,
then

m ≥
∏
p|m

p ≥
∏
p|m

p>logm

p >
∏
p|m

p>logm

logm = (logm)ω
+(m)

and taking the logarithms of both sides

ω+(m) <
logm

log logm
.

Therefore

PL(m) =
∏
p|m

p>logm

(
1 +

1

p− 2

)
<

∏
p|m

p>logm

(
1 +

1

logm− 2

)

=
(

1 +
1

logm− 2

)ω+(m)

<
(

1 +
1

logm− 2

) logm
log logm



92 V. Settimi - On some additive problems with primes and powers of a fixed integer

= e
logm

log logm
log(1+ 1

logm−2
) ≤ e

logm
log logm

1
logm−2 ≤ e

3
log logm

= 1 +
3

log logm
+O

(
1

(log logm)2

)
.

Here we used log(1 + x) ≤ x for every x > −1, the Taylor expansion of the exp function
and logm

logm−2
≤ 3 (since we can assume logm ≥ 3, because otherwise the product in (3.39)

is empty). We remark that the implicit constant in the error term above can be effectively
estimate (e.g., it is easy to prove that it is ≤ e32/2).�

Estimation of PS(m). Recalling the definition of the Riemann ζ-function and the related
Euler product (see, e.g., Apostol [Apo76], §11.5), we get

PS(m) =
∏
p|m

2<p≤logm

(
1 +

1

p− 2

)
≤

∏
2<p≤logm

(
1 +

1

p− 2

)

=
1

ζ(2)

∏
2<p≤logm

(
1 +

1

p− 2

)∏
p

(
1− 1

p2

)−1

=
4

3

1

ζ(2)

∏
2<p≤logm

[(
1 +

1

p− 2

)(
1− 1

p2

)−1] ∏
p>logm

(
1− 1

p2

)−1

. (3.40)

Since 1
1−1/p2

is the sum of the geometric series with common ratio 1/p2, we have∏
p>logm

(
1− 1

p2

)−1

=
∏

p>logm

∑
n≥0

( 1

p2

)n
=

∏
p>logm

(
1 +

∑
n≥1

1

p2n

)
= 1 +O

( ∑
n>logm

1

n2

)
= 1 +O

(∫ +∞

logm

dt

t2

)
= 1 +O

(
1

logm

)
. (3.41)

We can deal with the first product in (3.40) by splitting the difference of two squares as
follows∏

2<p≤logm

[(
1 +

1

p− 2

)(
1− 1

p2

)−1]
=

∏
2<p≤logm

[(
1 +

1

p− 2

)(
1− 1

p

)−1(
1 +

1

p

)−1]
=

∏
2<p≤logm

(p− 1)p

(p− 2)(p+ 1)

∏
2<p≤logm

(
1− 1

p

)−1

=
1

2

∏
2<p≤logm

(p− 1)p

(p− 2)(p+ 1)

∏
p≤logm

(
1− 1

p

)−1

. (3.42)

We now define

V (m) =
∏

2<p≤logm

(p− 1)p

(p− 2)(p+ 1)
,



Chapter 3. On the sum of two primes and k powers of g ≥ 3 93

and we estimate
∏

p≤logm

(
1 − 1

p

)−1
using Vasil’kovskaja’s theorem in Result (R.18) (which

is a sharper version of Mertens’ theorem), that is:∏
p≤x

(
1− 1

p

)−1
= eγ log x

(
1 +O

(
L(x)−c

))
, (3.43)

with L(x) = exp((log x)3/5(log log x)−1/5) and c > 0 absolute constant.
So, by (3.40)-(3.43), we finally have

PS(m) ≤ 2

3

V (m)

ζ(2)
eγ log logm

(
1 +O

(
L(logm)−c

))(
1 +O

(
1

logm

))
≤ 2

3

V (m)

ζ(2)
eγ log logm

(
1 +O

(
L(logm)−c

))
,

since V (m) is dominated by a convergent product (see the next Lemma 3.14) and

1

logm
= exp(− log logm)� exp

(
− c (log logm)3/5

(log log logm)1/5

)
= L(logm)−c.�

We now put the estimates of PL(m) and PS(m), into (3.39). Observing that

1

(log logm)2
= exp(−2 log log logm)� exp

(
− c (log logm)3/5

(log log logm)1/5

)
= L(logm)−c,

and recalling again that V (m) is dominated by a convergent product, we obtain

∑
d|m

µ2(d)f(d) <
2

3

V (m)

ζ(2)
eγ log logm

(
1 +

3

log logm
+O

(
1

(log logm)2

))

=
2

3

V (m)

ζ(2)
eγ(log logm+ 3) +O

(
1

log logm

)
.

Since V (m) ≤ 1.8687 by the next Lemma 3.14, then

C =
2

3

V (m)

ζ(2)
<

2 · 1.8687

3π2/6
=

7.4748

π2
< 0.7574

and this proves the lemma. �

We remark that a direct application of the Murty-Rosen-Silverman strategy (see [MRS96]
Lemma 1.2 for general setting and Remark at page 378 for sums over odd square-free integers)
gives

∑
d|m µ

2(d)f(d) ≤ 1
ζ(2)

eγ log logm+O(1) and hence our Lemma 3.8 can be considered

a sharper version of this result. We also remark that our Lemma 3.6 can be extended to∑
d≥1 µ

2(d) f(d)
ξg(d)ε

for any ε > 0, as in Theorem 1.1 of [MRS96].

From Lemma 3.8, we get the following corollary.
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Corollary 3.9. Let f(d) and ξg(d) be as defined in (3.21) and (3.31) resp., and let µ(d) be
the Möbius function, then∑

ξg(d)≤x

µ2(d)f(d) < Ceγ(log(x2 + 1) + log log g + 3) +O
(

1

log log g

)
,

for every x ≥ 1, where C < 0.7574 is an absolute constant and γ ≈ 0.577216 is the Euler
constant.

Proof. By definition, ξg(d) ≤ x implies that there exists ` ≤ x such that d̄|(g` − 1), with
d̄ = d/(d, g), eventually d itself or 1. Thus d̄|pg(x), with

pg(x) =
∏
`≤x

(g` − 1).

In order to apply Lemma 3.8, we need a divisibility condition for d, instead of for d̄. So
we argue as follow: using the notation f = (d, g), g = ḡf and d = d̄f , we have that d̄|pg(x)
implies the existence of an integer a ≥ 1 such that pg(x) = ad̄. But

pg(x) = ad̄ ⇒ pg(x)f = ad̄f ⇒ pg(x)fḡ = ad̄f ḡ (⇔ pg(x)g = adḡ).

Therefore ξg(d) ≤ x implies d|pg(x)g and so, by Lemma 3.8

∑
ξg(d)≤x

µ2(d)f(d) ≤
∑

d|pg(x)g

µ2(d)f(d) < Ceγ(log log(pg(x)g) + 3) +O
(

1

log log(pg(x)g)

)
.

To conclude, we observe that pg(x)g ≤ (
∏

`≤x g
`)g = gx(x+1)/2g ≤ gx

2+1 since x ≥ 1. Thus,
taking twice the logarithms of both sides, we get

log log(pg(x)g) ≤ log(x2 + 1) + log log g.

We also have pg(x)g ≥ g since pg(x) =
∏
≤n≤x(g

n − 1) ≥ g − 1 ≥ 1 and hence

log log(pg(x)g) ≥ log log g,

thus Corollary 3.9 follows. �

In the next lemma, we study the function Ag(m, r) defined in (3.14), following the argu-
ment in [LPZ07] adapted to powers of g.

Lemma 3.10. Let m ∈ [X/2, X] be such that m ≡ g (mod 2) and r a positive odd integer
such that r � (logX)2. Then, given Ag(m, r) as in (3.14), we have

Ag(m, r)� ωL

for ω > 0 arbitrary.



Chapter 3. On the sum of two primes and k powers of g ≥ 3 95

Proof. We first remark that Ag(m, r) is defined for m > gν . This leads to the hypothesis

m ≥ X/2 in the statement of the lemma, because m ≥ X/2 > X/g
√
L ≥ gν , for any

1 ≤ ν ≤ L′.
Since m−gν is even by hypothesis, according to the property (3.18) of the singular series

and by relation (3.20), we have

S(m− gν) = 2c0

∏
p|(m−gν)
p>2

p− 1

p− 2
= 2c0

∑
d|(m−gν)

µ2(d)f(d).

Thus, by definition (3.14) of Ag(m, r) we get

Ag(m, r) = 2c0

∑
1≤ν≤L′
gν<m

r|(m−gν)

∑
d|(m−gν)

µ2(d)f(d)

≤ 2c0

∑
d≤X

µ2(d)f(d)
∑

1≤ν≤L′
gν<m

gν≡m mod [r,d]

1, (3.44)

since d ≤ m− gν ≤ m ≤ X and with [r, d] = lcm(r, d).
Recalling the definitions (3.28) of Sg(m, [r, d]), we can bound the inner sum in (3.44) as∑

1≤ν≤L′
gν<m

gν≡m mod [r,d]

1 ≤ Sg(m, [r, d])
( L′

ξg([r, d])
+ 1
)
. (3.45)

In fact, if there’s no ν ∈ [1, L′] such that gν ≡ m (mod [r, d]), then both sides of the
inequality are null: Sg(m, [r, d]) = 0 by definition and the sum in the left-hand side is over
an empty set. Otherwise, Sg(m, [r, d]) = 1 and so the inequality trivially follows by definition

(3.31) of ξg([r, d]).

Remark 3.11. By (3.32) and Remark 3.5, whenever [r, d]|g, we have

[r, d] = 1 = ξg([r, d])

Sg(m, [r, d]) =

{
1 if [d, r]|m,
0 otherwise.

Moreover, if [r, d]|m, then gν ≡ m ≡ 0 (mod [d, r]) for every 1 ≤ ν ≤ L′. So whenever
[r, d]|(g,m), we have ∑

1≤ν≤L′
gν<m

gν≡m mod [r,d]

1 = L′,

and therefore inequality (3.45) holds.
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Putting (3.45) in (3.44), we get

Ag(m, r) ≤ 2c0

∑
d≤X

µ2(d)f(d)Sg(m, [r, d])
( L′

ξg([r, d])
+ 1
)

≤ 2c0L
′
∑
d≤X

µ2(d)
f(d)

ξg([r, d])
+ 2c0

∑
d≤X

µ2(d)f(d)Sg(m, d)

= 2c0L
′
∑
d≤X

µ2(d)
f(d)

ξg([r, d])
+ 2c0S

′(tot)
g (m,X), (3.46)

with S
′(tot)
g (m,X) = S ′g(m,X) + S ′g(m,X). Here we used the definition of S ′g(m,X) and

S ′g(m,X) in (3.28) and (3.34) resp., and the inequality Sg(m, [r, d]) ≤ Sg(m, d), which follows
from d|[r, d].

Similarly we also have ξg([r, d]) ≥ ξg(d), ξg(r). In fact a|b implies a
(g,a)
| b
(g,b)

since

a|b ⇒ b = an ⇒ b

(b, g)
=

an

(an, g)
=

an

(a, g)(n, g
(g,a)

)
.

So both d̄ and r̄ divide [r, d]. By this and splitting the sum in (3.46) into d ≤ D and

d > D, with D = D(ω) such that
∑

d>D µ
2(d) f(d)

ξg(d)
≤ ω/4 (such a D exists, since the series∑

d µ
2(d) f(d)

ξg(d)
converges by Lemma 3.6 and f(d)/ξg(d) ≥ 0), we get

Ag(m, r) ≤ 2c0L
′
( 1

ξg(r)

∑
d≤D

µ2(d)f(d) +
∑

D<d≤X

µ2(d)
f(d)

ξg(d)

)
+O

(
S ′(tot)g (m,X)

)
≤ 2c0L

′
( 1

ξg(r)

∑
d≤D

µ2(d)f(d) +
ω

4

)
+O

(
S ′(tot)g (m,X)

)
.

It is easy to see that ξg(r) ≥ logg(r̄ + 1), with r̄ = r/(r, g): in fact otherwise we would

have gξg(r) − 1 < r̄, against the definition of ξg(r), which implies r̄|(gξg(r) − 1). Moreover∑
d≤D µ

2(d)f(d)� logD by Friedlander-Goldston [FG95], Lemma 2.1. So

Ag(m, r)� L′
( logD

logg(r̄ + 1)
+
ω

4

)
+ S ′(tot)g (m,X)� ωL+ S ′(tot)g (m,X), (3.47)

since logD/ logg(r̄ + 1) � ω/4, being r � (logX)2. To conclude, we have to estimate

S
′(tot)
g (m,X).

Estimation of S
′(tot)
g (m,X). Letting now

pg(m) =
∏

1≤ν≤L′
(m− gν),
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by the definition of Sg(m, d), S ′g(m,X) and S ′g(m,X) in (3.28) and (3.34), and recalling that

S
′(tot)
g (m,X) = S ′g(m,X) + S ′g(m,X), we get

S ′(tot)g (m,X) =
∑

1≤ν≤L′

∑
d|(m−gν)

µ2(d)f(d) ≤
∑

d|pg(m)

µ2(d)f(d) =
∏

p|pg(m)
p>2

p− 1

p− 2

= exp
[

log
( ∏
p|pg(m)
p>2

(
1 +

1

p− 2

))]
= exp

( ∑
p|pg(m)
p>2

log
(
1 +

1

p− 2

))

� exp
( ∑
p|pg(m)
p>2

1

p− 2

)
� exp

( ∑
p|pg(m)

1

p

)
, (3.48)

where we used the Taylor series expansion of the log function and 1/(p − 2) ≤ 3/p, for all
p ≥ 3. We now split the last sum in (3.48) into p > (logX)3 and p ≤ (logX)3 and we
observe that∑

p|pg(m)
p>(logX)3

1

p
≤

∑
p|pg(m)

p>(logX)3

log p

p
≤ 1

(logX)3

∑
p|pg(m)

p>(logX)3

log p ≤ 1

(logX)3

∑
p|pg(m)

log p ≤ 1

logX
,

(3.49)

because it is easy to see that

exp
( ∑
p|pg(m)

log p
)

=
∏

p|pg(m)

p ≤ pg(m) ≤
∏

1≤ν≤L′
X = XL′ ≤ exp((logX)2). (3.50)

On the other hand, we have∑
p|pg(m)

p≤(logX)3

1

p
≤

∑
p≤(logX)3

1

p
� log log((logX)3) + 1� log log logX, (3.51)

by Result (R.18). So by (3.48)-(3.51) we get

S ′(tot)g (m,X)� exp
( 1

logX
+ log log logX + 1

)
� log logX.�

Then by (3.47)
Ag(m, r)� ωL+ log logX � ωL

which proves the lemma. �

Remark 3.12. We can prove the same estimation for S
′(tot)
g (m,X) in a different way: by

Lemma 3.8 we have

S ′(tot)g (m,X) =
∑

1≤ν≤L′

∑
d|(m−gν)

µ2(d)f(d) ≤
∑

d|pg(m)

µ2(d)f(d)
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< Ceγ(log log(pg(m)) + 3) +O
(

1

log log(pg(m))

)
,

where C < 0.7574 is an absolute constant and γ is the Euler constant. Arguing as in (3.50)
and observing that

∏
p|pg(m) p ≥ 2 since m− gν is even, we get

2 ≤ pg(m) ≤ exp((logX)2).

So, taking twice the logarithm, we obtain again

S ′(tot)g (m,X) < Ceγ(2 log log(X)) + 3) +O(1)� log logX.

Remark 3.13. By construction

S ′g(m,X), S ′g(m,X), T ′g(m,X) ≥ 0,

and

S ′(tot)g (m,X) = S ′g(m,X) + S ′g(m,X),

T ′g(m,N) = S ′g(m,N)−
∑
d≤N
d|(g,m)

µ2(d)f(d).

Then

S ′(tot)g (m,X)� log logX ⇒ S ′g(m,X), S ′g(m,X), T ′g(m,X)� log logX.

Lemma 3.14. Given m ∈ N, ∏
2<p≤logm

p(p− 1)

(p− 2)(p+ 1)
< 1.8687.

Proof. It is easy to see that V (m) =
∏

2<p≤logm
p(p−1)

(p−2)(p+1)
<
∏

p>2
p(p−1)

(p−2)(p+1)
=
∏

p>2

(
1 +

2
p2−p−2

)
= V which is convergent. We apply Cohen’s method (see [Coh07], §10.3.6, we also

refer to Cohen’s unpublished preprint [Coh] for more details) to prove that V ≈ 1.8687 with
at least 100 correct digits (see Section 3.8 for the PARI-GP program we used to compute V
and to estimate the error). To this end we will introduce the parameters B, M and J and we
will decompose V into two parts: one is effectively computable and give rise to the numerical
value, the other one measures the error and it depends on the parameters. To conclude, we
will optimize the parameters in order to make the error to be less than the fixed tolerance
of 100 correct digits.

We start by fixing a parameter B > 2 and splitting the product in V into p ≤ B and

p > B. Clearly, the product
∏B

p>2
p(p−1)

(p−2)(p+1)
is finite, so its value can be effectively computed

and we call it TB.
By a simple trick, we can write

V = TB
∏
p>B

[(
1− 2

p

)−1(
1− 1

p

)(
1 +

1

p

)−1]
,



Chapter 3. On the sum of two primes and k powers of g ≥ 3 99

and taking the logarithm of both sides, using the Taylor series expansion of the log function
and recalling that V converges, we obtain

logV = log TB +
∑
p>B

[
− log

(
1− 2

p

)
+ log

(
1− 1

p

)
− log

(
1 +

1

p

)]
= log TB +

∑
p>B

[∑
m≥1

1

mpm
(
2m − 1 + (−1)m

)]
= log TB +

∑
m≥2

2m − 1 + (−1)m

m

∑
p>B

1

pm
, (3.52)

since the contribution of m = 1 is null.
We now fix another parameter M > 2 and we split the external sum in (3.52) into

2 ≤ m ≤M and m > M . Let us define

err1 = err1(M,B) =
∑
m>M

2m − 1 + (−1)m

m

∑
p>B

1

pm
. (3.53)

As an application of Möbius’ inversion formula, we have∑
p>B

1

pm
=
∑
j≥1

µ(j)

j
log(ζp>B(jm)),

where ζp>B(n) =
∏

p>B(1−p−n)−1 (see Cohen [Coh07], page 209). So, collecting this formula

and (3.52)-(3.53), we get

logV = log TB + err1 +
∑

2≤m≤M

2m − 1 + (−1)m

m

∑
j≥1

µ(j)

j
log(ζp>B(jm)).

We now fix the last parameter J > 1 and we split the inner sum above into j ≤ J and
j > J , so that the finite sum

TJ =
∑

2≤m≤M

2m − 1 + (−1)m

m

∑
1≤j≤J

µ(j)

j
log(ζp>B(jm))

can be effectively computed. Let us define

err2 = err2(M,B, J) =
∑

2≤m≤M

2m − 1 + (−1)m

m

∑
j>J

µ(j)

j
log(ζp>B(jm)). (3.54)

Using this notation we get

logV = log TB + TJ + err1 + err2

and so, taking the exp of both sides and using the Taylor series expansion of the exp function
we obtain

V = TBeTJ eerr1 + err2 = TBeTJ (1 +O(| err1 + err2 |)). (3.55)
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As said before, TBeTJ can be effectively computed and its value is ≈ 1.8687 with error
less than 10−100 (see Section 3.8). So it is left to estimate the error term | err1 + err2 |, in
particular, our aim is to set the parameters M , B and J in order to have the error term less
than a fixed tolerance.

Estimation of err2. It is easy to see that

| log(ζp>B(jm))| =
∑
p>B

∑
n≥1

1

npnjm
≤
∑
n>B

1

njm
≤
∫ +∞

B

dt

tjm
=

B1−jm

jm− 1
.

It follows that, by the definition (3.54), the triangular inequality and trivial bounds, we have

| err2 | ≤
∑

2≤m≤M

2m

m

∑
j>J

B1−jm

j(jm− 1)

≤ B

(J + 1)(2J + 1)

∑
2≤m≤M

2m

m

∑
j>J

1

(Bm)j

=
B

(J + 1)(2J + 1)

∑
2≤m≤M

2m

m

( 1

BmJ(Bm − 1)

)
≤ B

(J + 1)(2J + 1)

∑
2≤m≤M

2m

m

( 2

Bm(J+1)

)
≤ B

(J + 1)(2J + 1)

∑
2≤m≤M

( 2

BJ+1

)m
=

BJ+2

(J + 1)(2J + 1)(BJ+1 − 2)

(( 2

BJ+1

)M+1

+
( 2

BJ+1

)2)
� BJ+2

(J + 1)(2J + 1)(BJ+1 − 2)

( 2

BJ+1

)2

=
4

(J + 1)(2J + 1)(BJ+1 − 2)BJ
, (3.56)

where we used Bm − 1 ≥ Bm/2 being Bm > 2.�

Estimation of err1. Using definition (3.53), trivial bounds and the geometric series formula,
we get

| err1 | ≤
∑
m>M

2m

m

∑
n>B

1

nm
≤
∑
m>M

2m

m

∫ +∞

B

dt

tm
=
∑
m>M

2m

m
· B

1−m

m− 1

≤ B

(M + 1)M

∑
m>M

( 2

B

)m
=

2M+1

(M + 1)MBM−1(B − 2)
.� (3.57)
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We now fix 100 to be the number of correct digits we want in the effective computation
of V . So by (3.55), we are asking

V − TBeTJ = O
(
TBeTJ | err1 + err2 |

)
≤ 10−100.

Since the effective computation (see Section 3.8) gives that TBeTJ ≈ 1.8687 ≤ 10, we want

| err1 |, | err2 | ≤ 10−101 i.e. log10(| err1 |), log10(| err2 |) ≤ −101. (3.58)

Bound for err1 = err1(M,B). We want to fix the parameters M and B in such a way that
(3.58) holds. From (3.57) we get

log10(| err1(M,B)|) ≤ log10

( 2M+1

(M + 1)MBM−1(B − 2)

)
= (M + 1) log10 2− log10(M + 1)− log10M − (M − 1) log10B

− log10(B − 2)

< (M − 1) log10 2−M log10(B − 2)

≤ (M − 1)
31

100
−M log10(B − 2),

since log10M > log10 2 by construction of M . Therefore, by this inequality and (3.58), if we
fix B = 50, we get log10(B − 2) ≥ 1.68 and so

M
( 31

100
− 168

100

)
≤ −101 +

31

100
i.e. M ≥ 74,

so let us set B = 50 and M = 74.�

Bound for err2 = err2(M,B, J). Using the values of B and M set above, we want to fix J
in such a way that (3.58) holds. From (3.56) with B = 50 and M = 74 we get

log10(| err2(M,B, J)|) ≤ log10

( 4

(J + 1)(2J + 1)(50J+1 − 2)50J

)
= log10 4− log10(J + 1)− log10(2J + 1)− log10(50J+1 − 2)

− J log10 50

≤ log10 4− 2 log10 J − log10 2− 2J log10 50

< log10 2− 2J log10 50

≤ 31

100
− 17

5
J

where we used 50J+1 − 2 ≥ 50J and log10 J > 0. So (3.58) implies

31

100
− 17

5
J ≤ −101 i.e. J ≥ 30,

so let us set J = 30.�
We now compute TBeTJ with the fixed values M = 74, B = 50 and J = 30, thus obtaining

V ≈ 1.8687 with at least 100 correct digits (see Section 3.8 below); this concludes the proof
of Lemma 3.14. �
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3.8 PARI-GP program

To compute V with 100 correct digits, we used the following PARI-GP program:

/****************************** V. SETTIMI *********************************

********************** COMPUTATION OF CONSTANT V ***************************

************ WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS ***************

***************************************************************************/

\\ Global variables:

\\ zetavector: vector of the needed values of the Riemann zeta function

\\ B1: level B of the primes used for the finite products

global(zetavector, B1);

global(defaulterror=0);

{V()=local(

B,J,M, S, P, freq, maxim1,col,

defaultprecision,v,err1,err2,totalerr,finalerr

);

print("****** V. SETTIMI *******");

print("****** COMPUTATION OF CONSTANT V *******");

print("****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS *******");

defaultprecision=120;

default(realprecision,defaultprecision);

defaulterror=10^(-defaultprecision);

B= 50;

M= 74;

J= 30;

\\ B1 is the parameter B, as global variable

B1=B;

print("B= ", B);

print("M= ", M);

print("J= ", J);

print(" ");

\\ Initialization of zetavector: zetavector[i]=zeta(i), starting from i=2

maxim1=max(M,J);

zetavector=vector(M*J,col,0);
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freq=vector(M*J,col,0);

for(j=2,maxim1,zetavector[j]=zeta(j); freq[j]=freq[j]+1);

for(m=2, M,

for (j=2,J,zetavector[m*j]=zeta(m*j); freq[m*j]=freq[m*j]+1));

\\ Computation of the truncated product over primes TB

TB=1;

forprime(p=3, B, TB = TB * (1+2/((p-2)*(p+1))); );

\\ Computation of the truncated sum TJ

TJ=0;

for(m=2, M, TJ= TJ+ ((2^m-1+(-1)^m)/m) * Sm(m,B,J));

\\ Computation of V

v = TB*exp(TJ);

print("The constant V is: ");

print(v);

print(" ");

\\ Estimation of error terms

print("With error: ");

err1= 2^(M+1)/(M*(M+1)*B^(M-1)*(B-2));

print("err1= ", err1*1.0);

err2= 4/(B^J*(B^(J+1)-2)*(J+1)*(2*J+1));

print("err2= ", err2*1.0);

print(" ");

totalerr= err1+err2;

finalerr=abs(v)*abs(totalerr);

print("Total Error: ",finalerr*1.0);

print("Correct digits: ",floor(abs(log(finalerr)/log(10)))-4);

print(" ");

}

/********************** COMPUTATION OF TAIL OF *****************************

********* ZETA FUNCTION WITH s>1 AND B THE UPPER BOUND ON PRIMES ***********

***************************************************************************/

{zetaprodtail(s,B)= local(P, u);

P=1;

u=-s;
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forprime(p=2, B , P=P*(1-p^u));

P= zetavector[s] * P;

return(P)

}

/********************* COMPUTATION OF TRUNCATED SUM ************************

************** sum_{p prime > B} p^{-m}, WITH J UPPER BOUND ****************

***************************************************************************/

{Sm(m,B,J)= local(Smtail, u);

u=-m;

Smtail=0;

for(j=1,J,Smtail=Smtail+ moebius(j)*log(zetaprodtail(j*m,B))/j);

return(Smtail)

}

Running this program we obtain:

****** V. SETTIMI *******

****** COMPUTATION OF CONSTANT V *******

****** WITH A PRECISION OF AT LEAST 100 DECIMAL DIGITS *******

B= 50

M= 74

J= 30

The constant V is:

1.86878507741856078888507271748736990090514780190946668884849658286686065613

405340008108643442329768257722845773758152989

With error:

err1= 1.33938409600784523372586896532422591627510006006006006006006006006006

006006006006006006006006006006006006006006006006006 E-107

err2= 4.87751033149380000423056583818085668958223162347964061139122822386128

395966142341618191433104177683765204495722810473132 E-107

Total Error: 1.1618039534001681249631400484290186422301622473137252237630151

4294598985094633189419773910807325714258050630130055023936 E-106

Correct digits: 101



Appendix A

Point-counting using cohomology

A.1 Introduction

A.1.1 Point-counting problems

The first clear presentation of modular arithmetic can be found in Carl Friedrich Gauss’
“Disquisitiones Arithmeticae”, dated 1801, where, among other things, the author studies
the number of solutions of equations modulo prime numbers.

More generally, we can ask for the number of simultaneous solutions of a system of
polynomial equations modulo q, where q = pa for p prime number and a positive integer.
Recalling that the set of solutions of a system of polynomial equations defines an algebraic
variety, we can rewrite such a question geometrically, asking for the number of points of an
algebraic variety over Fq. This is the so called point-counting problem.

The naive solution is checking all the qs points in Fsq, where s is the number of indeter-
minates occurring in the polynomials defining the variety. However, when q or s are too
large, this becomes an “impossible task”, that means it is too costly, even for a computer.
Therefore, for effective solutions, smarter methods are needed.

Given q = pa, where p is a prime number and a is a positive integer, let X be an algebraic
variety over the finite field Fq. We define

N(X) = |X(Fq)|

to be the number of rational points of X. The crucial observation is that these Fq-rational
points are precisely those points of X that are fixed by the Frobenius endomorphism

Frob : X → X,

which is the identity on the topological space of X and raises the elements of the structural
sheaf to their q-power (see Hartshorne [Har77], page 301). In general, for every n ∈ N \ {0}
we define

Nn(X) = |X(Fqn)|
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to be the number of Fqn-rational points of X. This sequence of integers is used to the define
the zeta function of X as follows

ζ(X, t) = exp
(∑
n≥1

Nn(X)

n
tn
)
.

A priori ζ(X, t) is an element of the ring of formal power series over Q, but it turns out to be
a rational function. This fundamental property is one of the famous Weil conjectures which
investigate the behavior of the zeta function (see Hartshorne [Har77], Appendix C). These
conjecture were introduced by Weil in [Wei49] and proved by Dwork [Dwo60], Grothendieck
[Gro65] and Deligne [Del74].

A.1.2 Application to cryptography

Although the point-counting problem is an interesting problem in itself, in recent years it has
received a lot of attention because of a number of applications, especially in cryptography.
As example, we describe here how the point counting problem can be applied to the Diffie-
Hellman protocol.

Suppose that Alice and Bob want to communicate with each other over an unsafe channel
in a safe way, which means without letting their messages open to outsiders. Therefore, they
have to encrypt their messages and this is, usually, done by means of a secret key, shared by
Alice and Bob. So the problem is how can they safely exchange this key.

A well known method of exchanging keys is the so called Diffie-Hellman protocol, intro-
duced in [DH76], which works as follows:

a) Alice and Bob first choose a commutative group G and an element g ∈ G. This informa-
tion is public.

b) Alice arbitrarily chooses an integer a, then she computes a · g ∈ G and sends it to Bob.

c) Similarly, Bob arbitrarily chooses an integer b, computes b · g ∈ G and sends it to Alice.

d) Both Alice and Bob can then compute k = a · (b · g) = b · (a · g), which is their shared
secret key.

Such a key k is truly secret provided that an eavesdropper cannot compute it, given the
public key (G, g) and both a · g and b · g. This is known as the Diffie-Hellman problem
and it is closely related to the so called discrete logarithm problem, which is the problem of
retrieving n, given (G, g) and n · g. Clearly, if we can solve the discrete logarithm problem,
we can also solve the Diffie-Hellman one, however, if G and g are well chosen, both the
problems are considered to be very hard. We refer to [CFA+06], §1.5-1.6 for a survey on
these subjects.

The discrete logarithm and Diffie-Hellman problems can be related to point-counting
algorithms, since, given a curve C defined over a finite field Fq, if we consider its Jacobian
J = Jac(C), which is an abelian variety over Fq, then the set of its rational points J(Fq) is a
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commutative group and so it can be used to perform the Diffie-Hellman protocol. However,
to guarantee the security of the protocol, we need |J(Fq)| to have a suitably large prime
factor. Therefore, to determine whether a curve is good for cryptography, one has to be able
to compute the number of rational points of its Jacobian.

A.1.3 Weil cohomology

The turning point in finding smart solutions to point-counting problems is due to Weil
[Wei49]. He started from the fact that, as observed in A.1.1, the rational points of a Fq-
variety are those points that stay fixed under the action of Frobenius. For varieties over
C, the problem of counting the fixed points of a given endomorphism had been extensively
studied before Weil and an important result in this field was the Lefschetz fixed point theorem
for C-variety (see Greenberg-Harper [GH81], Theorem 30.9). Weil’s idea was to find an
analogous theorem for varieties over finite fields. In order to do this, he developed a suitable
cohomology theory, which is defined as follows (we refer to the classical survey by Kleiman
in [GGK+68], in particular to §1.2).

Definition A.1. Let Fq be a finite field of characteristic p and let K be a field of character-
istic zero, called coefficient field. A Weil cohomology is a contravariant functor X 7→ H?(X)
from the category of smooth, proper, geometrically irreducible Fq-varieties to the category of
graded K-algebras, satisfying the following three properties:

1. ( Poincaré duality) If d is the dimension of X, then

i) the H i(X) are finite dimensional K-vector spaces and H i(X) = 0, whenever i < 0
or i > 2d;

ii) H2d(X) ' K;

iii) there are perfect pairings H i(X)×H2d−i(X)→ H2d(X), for every 0 ≤ i ≤ 2d.

2. ( Künneth formula) For every Fq-varieties X and Y , the projections X × Y → X and

X × Y → Y canonically induce an isomorphism H?(X)⊗K H?(Y )
∼→ H?(X × Y ).

3. ( Cycle map) Let Ci(X) be the group of all the formal sums of subvarieties of codimen-
sion i in X. Then there exist group homomorphisms γX : Ci(X)→ H2i(X) which are
functorial, multiplicative ( i.e. compatible with the Künneth formula) and non-trivial.

By functoriality, if H? is a Weil cohomology, then the Frobenius endomorphism Frob
induces maps

Frob∗ : H i(X)→ H i(X)

on cohomology, for every Fq-variety X. Moreover, by the properties defining a Weil coho-
mology, we can deduce (see Kleiman [GGK+68], Proposition 1.3.6 and §4) that the number
of Fnq -rational points of X is given by the formula

Nn(X) =

2 dim(X)∑
i=0

(−1)i Tr((Frobn)∗|H i(X)), (A.1)
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where Frobn is the n-th iterate of Frob. This is the key relation in point-counting algorithms.
From (A.1), arguing as in Hartshorne [Har77], Lemmas 4.1-4.2 of Appendix C, we obtain

the following explicit formula for the zeta function of X as an element of Q(t):

ζ(X, t) =

2 dim(X)∏
i=0

det
(
1− Frob∗ t|H i(X)

)(−1)i+1

.

Up to now, there are two main Weil cohomologies in characteristic p: the `-adic coho-
mology, with values in Q`, and the p-adic rigid cohomology:

• In the 1960’s Grothendieck introduced the étale cohomology, which is a very general
type of cohomology that specializes to the usual singular cohomology for varieties over
C. For varieties over a finite field of characteristic p, if we take as coefficient field Q`,
with ` a prime different from p, than this étale `-adic cohomology is a Weil cohomology.
See, e.g., Harshorne [Har77], §3 of Appendix C or Milne’s book [Mil80].

• The p-adic rigid cohomology was first introduced by Dwork in [Dwo60] and settled by
Berthelot in [Ber86]. This p-adic cohomology is more handy because it is associated to
a de Rham complex and not to a site as the étale one. For a comprehensive survey on
it, we refer to Le Stum’s monographic book [LS07].

A.1.4 Point-counting algorithms

The first point-counting algorithm is due to Schoof [Sch85] and it uses the `-adic cohomology
to attack elliptic curves over finite fields. More precisely, Schoof’s algorithm uses `i-torsion
points to compute the number of rational points modulo `i, where `i are small prime numbers
different from the characteristic of the base field. Then it recovers the number of rational
points via the Chinese Remainder Theorem. Schoof’s algorithm was generalized by Pila
[Pil90] for abelian varieties over finite fields and improved several times (see, e.g., Elkies
[Elk98]). However, a more fruitful approach is to use p-adic methods.

The first algorithm making use of p-methods is due to Satoh [Sat00] and it uses the p-adic
canonical lift to attack elliptic curves over a finite fields of small characteristic.

A year later, Kedlaya [Ked01] exhibited a sort of generalization of Satoh’s algorithm to
hyperelliptic curve over finite fields of odd characteristic: instead of the p-adic canonical lift,
which only fits for elliptic curves, Kedlaya’s algorithm uses a rigid analytic lift. This kind of
lift was introduced by Monsky-Washnitzer [MW68] and it applies to arbitrary non-singular
affine varities1. The idea which underlies Kedlaya’s method is to lift the curve, defined
over the finite field Fq, to one defined over Zq. Since the Frobenius morphism does not lift
algebraically, one has to lift it analytically, using the so called dagger (or weakly complete)
algebras (see the next Definition A.2). Then, as proved by Monsky-Washnitzer, we can
compute the wanted rigid cohomology, using the classical algebraic de Rham cohomology.

1We remark that, when applied to an affine variety, rigid cohomology is isomorphic to the so called Monsky-
Washnitzer cohomology. See [MW68] and also [vdP86].
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Soon afterwards similar algorithms were developed for superelliptic curves (see Gaudry-
Gürel [GG01]), for hyperelliptic curves in characteristic 2 and for Ca,b-curves (see Denef-
Vercauteren [DV06b, DV06a]) and for non-degenerate curves (see Castryck-Denef-Vercaute-
ren [CDV06]).

Another algorithm that can be seen as a generalization of Kedlaya’s method, is the
Chatel-Lubicz’s one, introduced in [CL09], which uses the Monsky-Washnitzer cohomology
with compact support to count the rational points of an hyperelliptic curve on a finite field
of odd characteristic.

A different kind of p-adic algorithms was introduced by Lauder in [Lau04], using Dwork’s
deformation theory [Dwo63]. Lauder’s idea is that, in order to compute the zeta function of
a smooth hypersurface, one embeds it in a one-parameter family, such that the fiber at the
origin is smooth and it has an easily computable zeta function. Dwork’s theory associates to
the one-parameter family a p-adic differential equation and, by computing a basis of solutions
to such an equation around the origin (which is the “easy fiber”) one can then recover the
zeta function of the original hypersurface.

More recently, Lauder [Lau06] introduced another p-adic method for point-counting which
is based on computing the zeta function by induction on the dimension. This method is called
fibration method and it reduces the problem of calculating the action of the Frobenius on
the rigid cohomology of a smooth projective variety over a finite field, to that of performing
the same calculation for a smooth hyperplane section. In the inductive step, the algorithm
uses the main technique developed for the deformation method.

We conclude this section remarking that, using p-adic algorithm, the main computational
problem lies in the estimation of the analytic precision (since dagger algebra are involved)
and the p-adic precision (since the coefficients are p-adic numbers) necessary to recover the
action of the Frobenius.

A.2 Generalization of Chatel-Lubicz’s algorithm

The starting point for our work is Chatel-Lubicz’s algorithm for hyperelliptic curves. These
curves are double covers of the projective line and our idea was to generalize the algorithm
to non-plane curves, in particular to trigonal curves which are triple covers of the projective
line. Before introducing our work, we briefly describe Chatel-Lubicz’s algorithm.

Throughout this section let p be a prime number, let k be finite field of characteristic p
and cardinality q = pa, for some a positive integer a. Moreover, let V be a complete DVR
having k as residue field and K as fraction field, where K is a characteristic zero field2. Let
M be the maximal ideal of V . Finally we will denote by ↪→◦ an open immersion.

A.2.1 Chatel-Lubicz’s algorithm

Let Ck be a smooth affine plane curve defined by a polynomial fk(X, Y ) in k[X, Y ]. Our aim
is to find H i

MW,c(Ck/K), called the Monsky-Washnitzer cohomology with compact support

2For example V might be thought as the ring W (k) of Witt vectors of k. See Serre [Ser79], Chapter II, §6.
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spaces of Ck.
Let πk : Ck → A1

k be the projection on the Y -axis. Actually, instead of considering
H i
MW,c(Ck/K), it will be useful to deal with H i

MW,c(Uk/K), where Uk is the open subset of
Ck defined as the étale locus of πk (see Hartshorne [Har77], page 299). We remark that,
since Uk ↪→◦ Ck, than H i

MW,c(Ck/K) ↪→ H i
MW,c(Uk/K).

The first goal in Chatel-Lubicz’s algorithm is therefore finding such an étale locus. It is
done in three steps: (1) finding the branch locus Λk ⊆ A1

k; (2) removing Λk from A1
k and so

defining Vk = A1
k \ Λk; (3) finding Uk = π−1

k (Vk) ⊆ Ck.

1. By definition, y ∈ A1
k is in the branch locus of πk if and only if there exists x ∈ A1

k

such that the point (x, y) ∈ A2
k is actually in Ck and it is a ramification point of πk. It

means that y ∈ A1
k is in the branch locus of πk if and only if fk(X, y) has multiple roots

as function of X, which is equivalent to fk(X, y) and ∂fk(X,y)
∂X

having common zeros.
We remark that in this case the characterization of the brach locus is straightforward,
because πk is simply the projection on the Y -axis.

To investigate such common zeros, we consider the Bézout relation

fk(X, Y )uk(X, Y ) +
∂fk(X, Y )

∂X
vk(X, Y ) = ∆k(Y ),

where ∆k(Y ) ∈ k[Y ] is the resultant of fk(X, Y ) and ∂fk(X,Y )
∂X

in (k[Y ])[X] with respect
to X and uk(X, Y ), vk(X, Y ) ∈ k[X, Y ] are coprime in Y . Using this notation, we can
finally define the branch locus of πk as

Λk = { y ∈ A1
k : ∆k(y) = 0 }.

2. By definition, we have

Vk = Spec(k[Y ]) \ {y ∈ A1
k : ∆k(y) = 0} = Spec

(
k
[
Y,

1

∆k(Y )

])
.

Let Bk = k[Y, 1
∆k(Y )

], so that Vk = SpecBk.

3. Finally, the étale locus of πk is

Uk = π−1
k (SpecBk) = Spec

(
k
[
X, Y,

1

∆k(Y )

]
/(fk(X, Y ))

)
,

where the last step follows from the fact that πk is the projection on the Y -axis. Let
Ak = k[X, Y, 1

∆k(Y )
]/(fk(X, Y )), so that Uk = SpecAk.

Using the notation just introduced, we have the following commutative diagram

Ck

πk
��

Uk? _ooo

πk|Uk
��

A1
k Vk? _ooo

(A.2)

where πk |Uk : Uk → Vk is finite étale (see [Har77], page 299). This πk |Uk induces a ring

homomorphism Bk → Ak, that we will denote again by πk with abuse of notation. Since
fk(X, Y ) = 0 in Ak, if we set d = degX(fk(X, Y )), then {1, . . . , Xd−1} is a basis af Ak as
Bk-module.
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Lifting in characteristic 0

The next step is lifting the diagram (A.2) in characteristic 0. It is possible thanks to Elkik
[Elk73], Theorem 6, and we refer to Chatel’s PhD thesis [Cha07], Chapter 3, for the details.

We recall that V is a complete DVR of mixed characteristic, having k as residue field and
K as fraction field. We define f(X, Y ) ∈ V [X, Y ] to be a lift of fk(X, Y ) such that it defines
a smooth variety, say C, over V . Moreover let π : C → A1

V be the projection on the Y -axis,
lifting πk. By analogy with characteristic p, let ∆(Y ) ∈ V [Y ] be the resultant of f(X, Y )

and ∂f(X,Y )
∂X

with respect to X and let

f(X, Y )u(X, Y ) +
∂f(X, Y )

∂X
v(X, Y ) = ∆(Y )

be the associated Bézout relation in (V [Y ])[X], with u(X, Y ), v(X, Y ) ∈ V [X, Y ] coprime in
Y . Therefore the branch locus of π is

Λ = { y ∈ A1
V : ∆(y) = 0 }.

Finally let V = A1
V \ Λ and U = π−1(V ). Using this notation, we obtain the following

commutative diagram

C

π
��

U?
_

ooo

π|U
��

A1
V V?

_
ooo

where π|U : U → V is finite étale and it induces a ring homomorphism π : B → A which is
again finite étale, with

B = V
[
Y,

1

∆(Y )

]
, A = V

[
X, Y,

1

∆(Y )

]
/(f(X, Y )).

As before, {1, . . . , Xd−1} is a basis of A as a finitely generated B-module.

Monsky-Washnitzer with compact support cohomology spaces

We don’t give here the general definition of rigid cohomology with compact support (see,
e.g, Le Stum [LS07], §6.4). However, for non-singular affine varieties, as in our situation,
the rigid cohomology reduces to the Monsky-Washnitzer cohomology, which is more explicit.
We write

H i
MW,c(Uk/K,OUk),

for the needed compact support Monsky-Washnitzer cohomology. We will denote it simply
by H i

MW,c(Uk/K), when there is no ambiguity. Following van der Put [vdP86], §2, we may

define it using A†K = A†⊗VK, where A† is defined as follows (see Le Stum [LS07], page 117).

Definition A.2. Let t = (t1, . . . , tn), ts = ts11 · . . . · tsnn and |s| = max1≤i≤n |si|. We define
the weak completion of V [t] as

V [t]† =
{ ∑

s

ast
s ∈ V [[t]] : ∃ρ > 1 s.t. lim

|s|→∞
|ak|ρ|s| = 0

}
.
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A weakly complete algebra is any quotient of V [t]† over an ideal of finite type. Moreover, if
A = V [t]/I is the V-algebra defined by the ideal I, then the weak completion of A is

A† = V [t]†/(I · V [t]†).

Hence, in our situation

A†K = K
[
X, Y,

1

∆(Y )

]†
/(f(X, Y )).

By finite étale descent (see Tsuzuki [Tsu99], Corollary 2.6.6), since the induced morphism
π : B → A is finite étale, we have that

H i
MW,c(Uk/K,OUk) = H i

MW,c(Vk/K, πk∗OUk),

which is easier to handle because Vk ⊆ A1
k. The space on the right-hand side is defined using

A†K , endowed with the structure of B†K-module given by π and

B†K = K
[
Y,

1

∆(Y )

]†
.

It’s easy to see that {1, . . . , Xd−1} is again a basis of A†K as B†K-module.
By definition (see [LS07], Proposition 6.4.15) and recalling that C has dimension 1, we

get
H i
MW,c(Vk/K, πk∗OUk) = H i

dR((A†K)c[−1]),

which is the i-th cohomology space of the complex

0 −→ (A†K)c
∇c−→ (A†K)c ⊗B†K Ω1

B†K

∇c−→ (A†K)c ⊗B†K Ω2

B†K

∇c−→ . . . ,

with (A†K)c at degree 1. Since A†K is a finitely generated B†K-module, according to [LS07],
Proposition 6.1.18, we have the isomorphism

(A†K)c ' (B†K)c ⊗B†K A
†
K , (A.3)

where, by the definition of B†K and by [LS07], page 150, we have

(B†K)c =

{ ∑
i,j<0

ai,j
Y i

∆(Y )j
: ai,j ∈ K; ∀η > 1, lim

|(i,j)|→∞
|ai,j|η|(i,j)| = 0

}
.

Since dim(C) = 1, then (A†K)c ⊗B†K Ω2

B†K
= 0 and so we get

H0
MW,c(Uk/K) = 0;

H1
MW,c(Uk/K) =

Ker
[
(A†K)c → (A†K)c ⊗B†K Ω1

B†K

]
Im
[
0→ (A†K)c

] = Ker
[
(A†K)c → (A†K)c ⊗B†K Ω1

B†K

]
;
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H2
MW,c(Uk/K) =

Ker
[
(A†K)c ⊗B†K Ω1

B†K
→ 0

]
Im
[
(A†K)c → (A†K)c ⊗B†K Ω1

B†K

] ' K.

So the only non-trivial space is H1
MW,c(Uk/K) and, to get it, we have to construct (A†K)c,

(A†K)c ⊗B†K Ω1

B†K
, the connection ∇c : (A†K)c → (A†K)c ⊗B†K Ω1

B†K
and finally find Ker(∇c).

By (A.3), (A†K)c is constructed via (B†K)c which can be explicitly written as a direct sum
over the branch locus Λ (see [Cha07], §3.2.1) In the case of hyperelliptic curve it’s easy to
impose that the points in branch locus are rationals, thus obtaining an explicit construction
for (B†K)c and consequently for (A†K)c. In fact, if Ck is the affine model of a smooth genus

g hyperelliptic curve over k given by the equation Y 2 =
∏2g+1

i=1 (X − λi), where λi ∈ k are
distinct roots, then the brach locus in characteristic 0 is just Λ = {λ1, . . . , λ2g+1,∞}, where

λi ∈ V lifts λi, for every 1 ≤ i ≤ 2g + 1. According to [CL09], §2.2-2.3, we have that an
element of H1

MW,c(Uk/K) can be therefore written as a vector (mλ1 , . . . ,mλ2g+1 ,mλ∞) where

mλ =
∑
j=0,1

Y j ⊗
∞∑
i=0

bλj,i(t− λ)i,

with bλj,i ∈ K and b∞j,i = 0. From this construction, the explicit computation of the trace of
the Frobenius follows.

A.2.2 Generalization

Our idea is to generalize Chatel-Lubicz’s construction to trigonal curves. More precisely, we
take a quartic Ck ⊆ P2

k and we consider the projection of Ck from one of its points, say Pk,
to a line, say Lk. Since Ck is a quartic and we project from one of its points, the projection
is, outside the ramification points, a 3:1-map from Ck to Lk ' P1

k, that shows the trigonality
of the curve.

Let k be a finite field of characteristic p 6= 2, 3 and let Ck ⊆ P2
k be a quartic defined by

the equation

Y 4 = fk(X,Z),

with fk(X,Z) ∈ k[X, Y ] homogeneous of degree 4, that is

fk(X,Z) = aX4 + bX3Z + cX2Z2 + dXZ3 + eZ4.

If e = 0 = a, than Ck would be defined by the equation Y 4 = bX3Z + cX2Z2 + dXZ3 =
XZ(bX2 + cXZ + dZ2) which is a degenerate case, so we must have a 6= 0 or e 6= 0. Since
fk(X,Z) is symmetric with respect to X and Z, we can suppose e 6= 0, without any loss of
generality.

The next step is fixing the projection point. Suppose that e is such that there exists
ξ ∈ k with ξ4 = e, therefore [0 : ξ : 1] ∈ Ck. Let Pk = [0 : ξ : 1] be the projection point and
Lk : Y = 0 be the projection line.
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Now we have to define the projection map πk from Ck to Lk via Pk. For every Q =
[x : y : z] ∈ Ck \ {Pk}, the line of P2

k passing through Pk and Q is given by the equation
` : αX + βY + γZ = 0, with α, β, γ ∈ k not all zero and such that{

(αX + βY + γZ)(Pk) = 0
(αX + βY + γZ)(Q) = 0

;

{
βξ + γ = 0
αx+ βy + γz = 0

;

{
γ = −βξ
αx+ β(y − ξz) = 0

. (A.4)

• If y − ξz 6= 0, form the second equation in (A.4) we obtain β = x
ξz−yα and so

` : X +
x

ξz − y
(Y − ξZ) = 0,

where we used the fact that α 6= 0, otherwise we would have α = β = γ = 0. Thus, if
Q = [x : y : z] ∈ Ck \ {Pk} such that y 6= ξz, then

πk(Q) = ` ∩ Lk =
{

[a : 0 : c] ∈ P2
k : a− ξx

ξz − y
c = 0

}
= [ξx : 0 : ξz − y].

• If y − ξz = 0, then Q = [x : ξz : z]. We can assume x 6= 0, in fact otherwise
Q = [0 : ξz : z] with z 6= 0, thus Q = Pk against the hypothesis Q ∈ Ck \ {Pk}. So,
from the second equation in (A.4), we get α = 0. Hence

` : Y − ξZ = 0,

where we used the fact that β 6= 0, otherwise we would have α = β = γ = 0. Thus, if
Q = [x : ξz : z] ∈ Ck \ {Pk}, then

πk(Q) = ` ∩ L =
{

[a : 0 : c] ∈ P2
k : −ξc = 0

}
= [1 : 0 : 0].

We remark that Q = [x : ξz : z] ∈ Ck \ {Pk} if and only if x 6= 0 and

(ξz)4 = ez4 = fk(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4,

that is
ax3 + bx2z + cxz2 + dz3 = 0,

which has three, possibly coincident, solutions in x as function of a, b, c, d and z. That
means that [1 : 0 : 0] is the image of at most three different points of Ck \ {Pk}.

Summarizing, for every Q = [x : y : z] ∈ Ck \ {Pk}, both if y = ξz or y 6= ξz, we have

πk(Q) = [ξx : 0 : ξz − y].

Therefore
πk : Ck \ {Pk} → Lk

∼→ P1
k

[x : y : z] 7→ [ξx : 0 : ξz − y] 7→ [ξx : ξz − y]
,

with y4 = fk(x, z). We remark that πk is well-defined since if both ξx = 0 and y = ξz, then
[0 : ξz : z] = Pk.

Let us define the following open subsets of P2
k

W0 = { [x : y : z] ∈ P2
k : z 6= 0 } and W1 = { [x : y : z] ∈ P2

k : x 6= 0 }.
It’s straightforward that W0∪W1 is an open covering of Ck, since P2

k \ (W0∪W1) = [0 : 1 : 0]
which is not a point of Ck.
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Reduction to the affine coordinates: Z 6= 0

We now reduce ourself to the affine case, by setting Z 6= 0. We will denote Ck ∩W0 by Ck,0
and, since Pk ∈ W0, then Pk ∈ Ck,0. In this situation, the needed projection is

πk,0 : Ck,0 \ {Pk} → P1
k → A1

k

(x, y) 7→ [ξx : ξ − y] 7→
{

ξx
ξ−y if y 6= ξ

P∞ othewise

,

where y4 = fk(x, 1) = f̃(x) = ax4 + bx3 + cx2 + dx+ e and P∞ is the point at infinity in A1
k.

In the reduction to the affine coordinates, we will miss out P∞, but the only thing we have
to know is whether it is a branch point or not.

It’s easy to see that P∞ is in the brach locus of πk,0 if and only if there exists x ∈ k such
that (x, ξ) is a point of Ck,0 \{Pk} and it is a ramification point of πk,0, that is (x, ξ) 6= 3(0, ξ)

is a multiple root of Y 4 = f̃(X). Recalling that ξ4 = e and x 6= 0, it is equivalent to asking
that aX3 + bX2 + cX + d = 0 has a multiple non-zero root in X. Therefore, P∞ is in
the brach locus of πk,0 if and only if the determinant of aX3 + bX2 + cX + d vanishes
(i.e. b2c2 + 4ac3 − 4b3d+ 18abcd− 27a2d2 = 0) and d 6= 0 or c 6= 0.

Let us now consider the following change of coordinates:

s =
ξx

ξ − y
, t =

y

ξ
,

we remark that t 6= 1, since y 6= ξ in the affine setting. The inverse transformation is

y = ξt, x =
s(ξ − y)

ξ
= s(1− y

ξ
) = s(1− t),

where s, t ∈ k and t 6= 1. Thus

π−1
k,0 : Ck,0 \ {Pk} ← A1

k(
s(1− t), ξt

)
←[ s ,

with t 6= 1 such that

(ξt)4 = et4 = f̃(s(1− t)) = as4(1− t)4 + bs3(1− t)3 + cs2(1− t)2 + ds(1− t) + e,

that is

as4(1− t)4 + bs3(1− t)3 + cs2(1− t)2 + ds(1− t) + e(1− t4) = 0. (A.5)

Since 1− t4 = (1 + t2)(1 + t)(1− t) and t 6= 1, we can divide (A.5) by t− 1, obtaining

as4(1− t)3 + bs3(1− t)2 + cs2(1− t) + ds+ e(1 + t2)(1 + t) = 0.

Therefore Ck,0 is defined by g(S, T ) ∈ k[S, T ], where

g(S, T ) = aS4(1− T )3 + bS3(1− T )2 + cS2(1− T ) + dS + e(1 + T 2)(1 + T )

3We remark that x 6= 0⇔ (x, ξ) 6= Pk
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= T 3(e− aS4) + T 2(e+ bS3 + 3aS4) + T (e− cS2 − 2bS3 − 3aS4)

+ (e+ dS + cS2 + bS3 + aS4).

The next step is finding the branch locus Λk,0 ⊆ A1
k of πk,0: s ∈ A1

k is in the branch locus
of πk,0 if and only if there exists t ∈ k \ {1} such that (s(1− t), ξt) is a point of Ck,0 \ {Pk}
and it is a ramification point for πk,0. That is, if and only if g(s, T ) has multiple non-1 roots

as function of T , which is equivalent to asking whether g(s, T ) and ∂g(s,T )
∂T

have a common
zero, different from 1. Let

g(S, T )u(S, T ) +
∂g(S, T )

∂T
v(S, T ) = ∆(S)

be the Bézout relation between g(S, T ) and ∂g(S,T )
∂T

as elements of (k[S])[T ], with ∆(S) ∈ k[S]
their resultant and u(S, T ), v(S, T ) ∈ k[S, T ] coprime in S.

Recalling that the characteristic of k is different from 2 or 3, we get ∂g(S,T )
∂T

= 3T 2(e −
aS4) + 2T (e + bS3 + 3aS4) + (e − cS2 − 2bS3 − 3aS4) and using the Extended Euclidean
Algorithm we get4:

∆(S) = (−27a3d2 + 18a2bcd− 4a2c3 − 4ab3d+ ab2c2)S14

+ (−216a3de+ 72a2bce− 16ab3e)S13

+ (−432a3e2 − 108a2bde+ 72a2c2e− 12ab2ce)S12

+ (−432a2be2 + 72a2cde− 48ab2de+ 8abc2e)S11

+ (−144a2ce2 + 81a2d2e− 156ab2e2 − 36abcde+ 8ac3e+ 4b3de− b2c2e)S10

+ (216a2de2 − 240abce2 + 16b3e2)S9

+ (432a2e3 + 24abde2 − 128ac2e2 + 12b2ce2)S8

+ (384abe3 − 144acde2 + 48b2de2 − 8bc2e2)S7

+ (96ace3 − 81ad2e2 + 156b2e3 + 18bcde2 − 4c3e2)S6

+ (−40ade3 + 168bce3)S5 + (−16ae4 + 84bde3 + 56c2e3)S4

+ (48be4 + 72cde3)S3 + (48ce4 + 27d2e3)S2 + 40de4S + 16e5.

Thus
Λk,0 = { s ∈ A1

k : ∆(s) = 0 }.
As seen in Section A.2.1, to explicitly construct H i

MW,c(Uk,0/K), where Uk,0 is the étale
locus of πk,0, we need that Λk,0 is made of distinct rational points, but we cannot impose this
condition without loss of generality. The same problem occurs if we consider the reduction
in W1 and in the general setting (we skip the details, since they are almost standard5).

We tried to overcome this obstacle, in many ways, for example by using nondegenerate
curves (see, e.g., Castryck et al. [CV09, CDV06] for a survey on nondegenerate curves and
on their zeta function), but without success. We believe that the generalization we had in
mind is achievable, but much more work is needed.

4We implemented a MAGMA program to perform this computation.
5We remark that we also tested the curve C : X4 + Y 4 − Z4 = 0, suggested by Michele Bolognesi,

http://blogperso.univ-rennes1.fr/michele.bolognesi/.

http://blogperso.univ-rennes1.fr/michele.bolognesi/
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(Recherches analytiques sur la théorie des nombres premiers.), Ann. Soc. Sci. Brux-
elles 20 (1896), 183–256, 281–362, 363–397.
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