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Abstract

River pollution is the contamination of river water by pollutant being discharged

directly or indirectly on it. Depending on the degree of pollutant concentration,

subsequent negative environmental effects such as oxygen depletion and severe re-

ductions in water quality may occur which affect the whole environment. River

pollution can then cause a serious threat for fresh water and as well as the entire

living creatures. Dispersion in natural stream is the ability of a stream to dilute

soluble pollutants. Different types of pollution, such as accidental spill of toxic

chemicals, industrial waste, intermittent discharge from combined sewer overflows

and temperature variations produced by thermal outflows, may generate a cloud

whose longitudinal spreading strongly affects the pollutant concentration dynamics.

Pollutants discharging form a point source is easier to control where as pollutant

discharging from non point sources are hardly controllable and may represent se-

vere threat to the river ecosystem. The longitudinal dispersion coefficient is used to

describe the change in characteristics of a solute cloud from an initial state of high

concentration and low spatial variance to a downstream state of lower concentration

and higher spatial variance. Therefore, in order to correctly estimate the degree

of pollution within a stream and ensure an efficient and informed management of

riverine environments, a reliable estimation of the dispersion within the stream is a

crucial concern.

The objective of my research is to develop a mathematical model for determining
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2 ABSTRACT

the dispersion in alluvial river. In order to achieve the goal, a model has been

developed which provides an analytical relation for the prediction of the dispersion

coefficient in natural streams, given the planimetric configuration of the river and

the relevant hydrodynamic and morphodynamic parameters (i.e., width to depth

ratio, the sediment grain size, scaled with the flow depth, the Shields stress).

One of the most striking features of alluvial rivers is their tendency to develop

regular meandering plan forms. Their geometry is in fact characterized by a sequence

of symmetrical curves which amplify over time due to erosion processes at the outer

bank and deposition at the inner bank. This planimetric pattern affects both the

hydrodynamics of the river and the distribution of bed elevations, as well as its

hydraulic response, as the average bed slope is progressively reduced along with the

flow cross sections. The flow filed that establishes in meandering rivers has clearly a

great relevance on the behavior of the pollutant cloud and hence on the dispersion

that drives its microscopic evolution.

To develop a dispersion coefficient predicting model, the analytical models of

flow field establishing in the cross section of a straight river [Tubino ans Colombini,

1992] and of a meandering river [Frascati and Lanzoni, 2013] are developed. The

two dimensional mass balance equation governing the dynamics of a pollutant is

then solved using asymptotic expression and Morse and Feshbach [1953] formalism.

Finally, using the two dimensional spatial distributions of the concentration, the flow

depth and the velocity, the dispersion coefficient are obtained. For straight rivers the

cross-sectional velocity and the theoretically predicted dispersion coefficients with

the field data collected by Godfrey and Frederick (1970) in two rivers (Clinch River,

Copper Creek). The comparison is reasonably good. The performance of the model

is also tested with reference to the predictions provided by the model proposed by

Deng (2001). The resultant model is found to give prediction closer to 80% of the

experimental data, a much better performance agreement with respect to the model



ABSTRACT 3

of Deng (2001). The results of the model developed to estimate the dispersion

coefficients in meandering river, have been compared with the experimental data

available in experimental and referring to six different rivers. Also in this case

the agreement between the dispersion coefficient predicted theoretically and those

calculated on the basis of tracer tests is quite good and better than that ensured by

the other theoretical and empirical predictors available in literature.
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Sommario

Lo studio della dinamica di un inquinante convenzionale (e.g., BOD) all’interno di un

corso d’acqua naturale richiede la conoscenza del campo di moto e della batimetria

che si realizzano nel corso d’acqua stesso, delle modalità di immissione (continua o

localizzata, accidentale o sistematica) e delle reazioni chimiche a cui l’inquinante è

soggetto. L’obiettivo della presente tesi è quello di caratterizzare la distribuzione

spazio-temporale della nuvola di inquinante, in modo da poter valutare i carichi

inquinanti e controllare il soddisfacimento, o meno, dei requisiti di legge.

In particolare, l’attenzione è stata concentrata sul comportamento dell’inquin-

ante nel cosiddetto campo lontano, ovvero a una distanza dalla sorgente tale per cui

l’inquinante si è mescolato verticalmente e trasversalmente, distribuendosi quasi uni-

formemente sulla sezione. In tali condizioni, ai fini applicativi è sufficiente studiare

il comportamento della concentrazione media sulla sezione. Tale comportamento è

retto dalla classica equazione dell’avvezione-dispersione la cui soluzione, nel caso di

immissione istantanea e localizzata di una determinata massa di sostanza inquinante

e tratto di corso d’acqua omogeneo, è data dal classico andamento Gaussiano.

La stima del coefficiente di dispersione da utilizzare nella suddetta equazione

risulta di fondamentale importanza per una corretta previsione del comportamento

spazio-temporale dell’inquinante. La struttura di tale coefficiente, d’altra parte,

è strettamente legata al campo di moto che si realizza in un alveo naturale e, in

particolare, alle deviazioni rispetto ai valori medi sulla sezione della velocità e della

5



6 SOMMARIO

concentrazione.

Utilizzando le attuali conoscenza relative al campo di moto in alvei a fondo mo-

bile, nella presente tesi viene derivata una soluzione analitica del coefficiente di dis-

persione dipendente da parametri in ingresso quali il rapporto larghezza-profondità

desumibile dalla geometria della sezione, il diametro dei sedimenti, normalizzato con

la profondità della corrente, la pendenza del corso d’acqua.

Il problema è inizialmente affrontato nel caso di alveo rettilineo e sezione in

equilibrio con il trasporto in cui il fondo varia gradualmente in direzione trasver-

sale. Risulta cos̀ı possibile suddividere la generica sezione in una zona centrale,

dove la profondità della corrente si mantiene approssimativamente costante, e due

regioni di sponda, nelle quali la profondità si riduce gradualmente a zero. Il campo

di moto calcolato tendendo conto di questa lenta variazione trasversale del fondo

(che consente di semplificare opportunamente l’equazione della quantità di moto),

raccordato con quello che si realizza nella regione centrale, unitamente all’equazione

del bilancio di massa dell’inquinante, consentono di determinare analiticamente il

coefficiente di dispersione.

Il passo successivo è stato quello di considerare in caso di alvei alluvionali ad

andamento meandriforme. Si tratta di una tipologia di configurazione planimetrica

molto comune in natura, caratterizzata da una sequenza più o meno regolare di curve

alternate. Sfruttando il fatto che molto spesso la curvatura dell’asse del canale

è debole, risulta possibile ottenere una soluzione analitica del campo di moto e

della topografia del fondo. Tale soluzione, associata all’equazione del bilancio di

massa dell’inquinante riscritta in coordinate curvilinee, opportunamente semplificata

sfruttando l’ipotesi di deboli curvature, consente di determinare analiticamente il

coefficiente di dispersione.

Le stime del coefficiente di dispersione ottenute nei casi di alveo rettilineo e ad

andamento meandriforme, sono state infine confrontate con i dati di campo reperibili
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in letteratura, ottenuti tramite campagne di misura con traccianti. Per entrambe le

configurazioni planimetriche analizzate(rettilinea e meandriforme), l’accordo tra co-

efficienti osservati in campo e i risultati delle previsioni teoriche appare generalmente

buono e, comunque, decisamente migliore di quello offerto dalle varie formulazioni

semi-empiriche e teoriche attualmente disponibili in letteratura.
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Chapter 1

Introduction

1.1 Motivation

River pollution is the contamination of river water by pollutant discharged directly or

indirectly on it. River pollution is a serious problem for the entire riverine ecosystem.

Depending on the degree of pollutant concentration, subsequent negative environ-

mental effects such as oxygen depletion and severe reductions in water quality may

occur, affecting fish, population and other species. Generally pollutants discharged

form a point source are easier to control then diffused pollution which often causes

a sever threat to the river ecosystem. Different types of pollution such as acciden-

tal spill of toxic chemicals, industrial waste, intermittent discharge from combined

sewer overflows may generate a cloud whose longitudinal spreading strongly affects

the pollutant concentration dynamics. The longitudinal dispersion coefficient is used

to describe the change in characteristics of a solute cloud from an initial state of high

concentration and low spatial variance to a downstream state of lower concentration

and higher spatial variance. On the other hand within portable water network it is

important to qualify the changing characteristics of solute as they travel the network

[Hart et al., 2013].

9



10 CHAPTER 1. INTRODUCTION

Estimating accurate value of the longitudinal dispersion coefficient is required

in several applied hydraulic problems such as environmental engineering, river engi-

neering, intake design and risk assessment of injection of pollutant and contaminants

into river stream [Seo and Baek, 2004].

The reliable estimation of longitudinal dispersion coefficient is important for

devising water diversion strategies, designing treatment plants, intakes and out-

falls, and studying environmental impact due to injection of polluting effluents into

streams [Ho et al., 2002].

To forecast and control the solubility of any accidental spill in any river channel

the longitudinal dispersion coefficient is the key coefficient.

Objective of this research is to develop a mathematical model to determine the

longitudinal dispersion coefficient in alluvial rivers considering the morphological

parameters in input.

1.2 State of the Art

The first attempt to quantify the effects of river morphology (i.e., bends) on longi-

tudinal dispersion goes back to the seminal work of Fischer [1969]. The dispersion

coefficient turns out to be given by a triple integral given depending on the devia-

tions local value of the depth averaged longitudinal velocity from the cross sectionally

averaged value. Nearly contemporaneously, Sooky [1969] attempted to obtain the

longitudinal dispersion coefficient using the transverse velocity distribution, taken to

be a combination of the logarithmic velocity profile and a linear function. Since then,

various approaches have been proposed to estimate longitudinal dispersion of solutes

in natural streams, as described by Fischer et al. [1979]. Although velocity mea-

surements at a number of cross sections and concentration monitoring carried out

at suitably placed stations can provide reliable predictions of dispersion processes,

these data are not easily available in most cases, owing to the costs associated with
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measurements or to the large spatial scales implied by a given study [Rutherford,

1994]. In order to fit the velocity data measured in both the Sacramento River and

the Old River in the U.S., [1997] Bogle suggested an empirical equation based on

a quartic function. Deng et al. [2001] also proposed a transverse velocity distribu-

tion as a power-law function, to determine the longitudinal dispersion coefficient in

Fischers expressed triple integral expression [Deng et al., 2001].

Widely used solution procedures for determining longitudinal dispersion coeffi-

cient are the analytical solution of the triple integral described by Fischer [1979], nu-

merical integration [Fischer, 1979], geomorphological estimation [Deng et al., 2001],

one step Huber method or nonlinear multiregression method [Seo and Cheong, 1998],

dye studies [Yotsukura etal., 1983]. Some of the proposed predictors are based

on dimensional analysis and regression techniques applied to laboratory and field

data, including both straight and meandering rivers [Iwasa and Aya, 1991; Seo and

Cheong, 1998; Kashefipour and Falconer, 2002]. Other relationships have been de-

rived combining theoretical analysis and empirical closures [Fischer, 1967; Deng et

al., 2001; Deng et al., 2002; Liu, 1977]. Among these latter formulations, only those

developed by Fischer [1967] and Deng et al., [2002] explicitly tackle out, even if in an

approximate form, the effects of stream meandering. The analytical expression for

the longitudinal dispersion coefficient obtained by Deng et al. [2002], in particular,

was based on an empirical relationship for transverse distribution of flow depth in

stable straight channels, corrected to account for channel sinuosity. The relation-

ship, which is in general valid for straight and sinuous channel, turned out to predict

the longitudinal dispersion coefficient with a certain accuracy, i.e., 90% of calculated

values ranged from 0.5 to 2 times the observed values, including indistinctly both

straight and meandering streams.

Consequently, a number of empirical or semi-empirical relationships has been so

far developed which do not require detailed dye tests. All these relationships can be
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Table 1.1: Values attained by the constants of the formula (1.1), summarizing the
various longitudinal dispersion predictors available in literature. (a) Fischer et al.
[1979]; (b) Seo and Cheong, [1998]; (c) Liu, [1977]; (d) Kashefipour and Falconer,
[2002]; (e) Iwasa and Aya, [1991]; (f) Deng et al., [2001].

(a) (b) (c) (d) (e) (f)
κ0 0.044 9.1 0.72 10.612 5.66 0.4105
κ1 1.0 -0.38 1.0 -1.0 0.5 0.67
κ2 1.0 4.38 -0.5 1.0 -1.0 1.0

cast in the general form

D∗ = κ0
βκ1

√
cf

κ2
B∗U∗

0 (1.1)

where β is the ratio of half channel with, B∗, to mean flow depth, D∗
0, cf is the

friction coefficient, U∗
0 is the mean value of the cross sectionally average flow velocity

within the reach of interest, and ki(i = 0, 1, 2) are suitable constants, specified in

Table 1.1.

In the work a theoretical method for predicting the longitudinal dispersion co-

efficient is developed based on the flow depth and velocity distribution in natural

streams. An adequate velocity profile is implemented for the cross sections of fluvial

rivers, and this profile is incorporated into the expression providing the longitudinal

dispersion coefficient.

In particular, it will be shown that, introducing a rational perturbative frame-

work and exploiting the most recent knowledge on the structure of the flow field

which actually establishes in alluvial movable bed rivers, it is possible to obtain a

relatively simple analytical expression which yields a robust estimation of the disper-

sion coefficient in these streams. Moreover, the proposed approach has the advantage

to explicitly distinguish the contributions of the different physical mechanisms to

the spreading of the contaminant along the channel.

The purpose of this work is to explicitly address this balance, to provide a
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physically-based, yet relatively simple analytical relationship which relates the lon-

gitudinal dispersion coefficient to the bulk properties of the flow and, owing to

sediment dynamics shaping the bed, to sedimentological parameters. To this aim,

we apply to the flow field which establishes in sinuous movable bed channels the

perturbative procedure developed by Smith [Smith, 1983] to account for the fast

variations of concentration induced across the section by irregularities in channel

geometry and the presence of bends. This methodology, introducing a reference

system moving downstream with the contaminant cloud and using a multiple scale

perturbation technique, allows one to derive a dispersion equation relating entirely

to shear flow dispersion the along channel changes in the cross-sectionally averaged

concentration. Moreover, taking advantage of the weakly meandering character of

many natural rivers, it is possible to clearly separate the contributions to longitudi-

nal dispersion provided by the various physical mechanisms.

A close comparison between mathematical models and field observations is un-

doubtedly rather difficult to achieve, but at the same time it would mark a major

step forward in the knowledge of longitudinal dispersion processes.

1.3 Approach

In chapter 2, the description of concentration dynamics for a passive pollutant has

been considered, starting from the advection-diffusion equation of the depth aver-

aged concentration [Yotsukura, 1977]. Then, dispersion coefficient is derived in-

troducing a rational perturbative framework eventually providing the longitudinal

dispersion coefficient for straight and meandering channels.

In chapter 3, the model is particilarized to the case of a the straight alluvial chan-

nel. The cross sectional shape of the channel is expressed in terms of the transverse

distribution of flow depth which is used to find out the flow field. The structure

of the flow field that establishes in a given section is determined by considering
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separately a central region of, nearly uniform depth, and a bank region where it is

assumed that the bed shear stress equals the threshold for incipient sediment mo-

tion. The solution is determined analytically by assuming that transverse variations

of the bed topography are relatively slow [Tubino and Colombini, 1992]. The general

analytical solution, obtained by matching together the bank and the central region

solutions, is used to estimate in closed form the longitudinal dispersion coefficient.

In chapter 4, a comparisn has been done with Elder [1959], alluvial dispersion

co-efficient obtained for a plane flow (i.e. very wide cross section). The predicted

dispersion coefficients have then been compared with those resulting from the tracer

experimentscarried out by Godfrey and Frederick [1970] which also provides the

measurements of the velocities in a number of cross section of some alluvial rivers

compared with [Godfrey and Fedrick, 1970]. Finally the dispersion predictions are

compared with Deng et al., [2001].

In chapter 5 and 6, the second phase of the model is developed by considering

an alluvial river characterized by a given but arbitrary distribution of the channel

axis curvature. In this case the flow field solution proposed by Frascati and Lanzoni,

[2013] is adopted to calculate the longitudinal dispersion coefficient of meandering

river. Comparison has been made with test data of six mindering rivers

1.4 Literature Review

1.4.1 Stream

A stream is a body of water with a current, confined within a bed and stream

banks [Langbain and Iseri, 1995]. Every stream in their natural state is a dynamic

hydrological system that is continually altered by the changing character of the

watershed. Natural streams convey water and sediment, filter and entrap sediment

and pollutants in overbank areas, recharge and discharge groundwater. Modification
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of a stream channel (through which a natural stream of water runs or used to run)

causes channel adjustments such as bank erosion, channel deepening, or sediment

deposition, for some distance both upstream and downstream [Perez et al., 1997].

1.4.2 Channel

Stream channels can be classified either on the basis of observable bed morphology

or on the basis of their dynamics. On the basis of bed morphology five types of

natural water stream channel can be defined: (1) alluviallive bed sand; (2) alluvial

live bed gravel; (3) alluvial threshold gravel; (4) mixed bedrock-alluvial; and (5)

bedrock [Howard, 2013; Howard et al., 1994; Howard, 1987; Howard, 1980].

Alluvial channels are typified by their transportable sediment on both the bed

and the banks which consist of riverine deposits that determine channel geometry

in response to changes in flow conditions and sediment load. Live alluvial channel

bed conditions imply that the channel gradient is set primarily by sediment flux,

whereas threshold conditions imply that the channel gradient is set primarily by the

critical shear stress for the initiation of motion. Alluvial channels in a given drainage

basin tend to share similarity in their hydraulic geometry, that is, the mean depth,

top width and velocity relationships for typical cross sections [Whipple, 2002; Allen,

1970].

Bedrock channels are characterized by frequent exposures of bedrock in the bed

and banks and a lack of a coherent blanket of sediment. Mixed bedrock-alluvial

channels either have alternating bedrock and alluvial segments or are bedrock chan-

nels with a thin and patchy alluvial cover (at low flow). Hard-bed or rock-bed

channels are relatively resistant to down cutting but may have alluvial banks that

allow for rapid lateral adjustments. Sediment deposits may cover portions of a hard-

bed or rock-bed channel giving it the appearance of an alluvial channel [Whipple,

2002; Allen, 1970].
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1.4.3 Channel Pattern

Natural stream channels can be classified as straight, meandering or braided. The

distinction between straight and meandering channels depends on the degree of

sinuosity, that is, the ratio of channel length to valley length see equation (1.2) and

figure (1.1) . Channels with sinuosity greater than 1.5 are generally considered to be

meandering. Braided channels contain sediment bars that cause multiple channels

to form during low-flow conditions [Shelby, 1990; Ferguson, 1977; Mueller, 1968;

Bridge, 2009; Gupta, 2011]. Figure (1.1) reports a table classifying the different

pattern of channels depending on sinuosity, as well as a sketch of the main planform

features, straight, meander and braided channels. Finally figure (1.3) reports a

skchematic diagram of meandering channel in an alluvial floodplain.

sinuosity =
Lc

Lv

(1.2)

Figure 1.1: sinuosity=Lc

Lv
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(a)

Channel Pattern View Sinuosity

straight 1-1.5

Meander > 1.5

(b)

Figure 1.2: (a)The above table reporting the classification of alluvial streams interms
of sinuosity; (b) Plain view of the typical planform features of straight, meander and
braided channel. (Source: http: // ohiodnr.com/ water/ pubs/ fs st/ stfs03/ tabid/
4159/ Default.aspx).

1.4.4 Straight Channels

Straight segments in alluvial streams are typical (Figure 1.4), but common to

bedrock-controlled channels. Straight channels, mainly unstable, develop along the

lines of faults and master joints, on steep slopes where rills closely follow the sur-

face gradient, and in some delta outlets. A straight alluvial stream typically has a
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Figure 1.3: Meandering stream in an alluvial floodplain. (Source: http: //
ohiodnr.com/ water/ pubs/ fs st/ stfs03/ tabid/ 4159/ Default.aspx).

suspended-load channel, low gradient, sluggish flow, and very little load. Although

the channel is straight there is a tendency for the flow to oscillate from side-to-side

like all other channels. Flume experiments show that straight channels of uniform

cross section rapidly develop pool-and-riffle sequences [Allen, 1970].

Figure 1.4: A Straight river channel. (Source: http: //www.geograph. org. uk/
photo/ 483359).
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1.4.5 Meander Channels

Channel meandering is quantify by the degree of sinuosity (Figure 1.5). Meander

forms of alluvial streams tend to exhibit sine wave patterns of predictable geometry,

but non-uniformities in the alluvial deposits (consisting of erosion resistant material)

along the streams and in the flood plains as well as cutoff events generally disrupt

the regular pattern [Ferguson, 1977; Allen, 1970].

Figure 1.5: A meander river channel. Source: http://www.geo.uu.nl/ fg/ palaeo-
geography/ results/ fluvialstyle.

Meandering streams upstream may have gentle sinuous bends to broadly looping

channels, which strongly reflect channel load. The spacing of bends is controlled by

flow resistance, which reaches a minimum when the radius of the bend is between

two and three times the width of the bed. As bedload increases channels become less

sinuous, bars develop, the width to depth ratio increases and eventually braiding

occurs. The longitudinal profile of the bed of a meandering stream includes pools

at (or slightly downstream upstream of) the extremities of bends and riffles at the

inflections between bends. Increased tightness of bend, expressed by reduction in
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radius and increase in total angle of deflection, is accompanied by increased depth of

pool. A highly meandering stream typically has a cohesive, suspended-load channel

and low flow velocity. All of the various positions that a meandering stream occupies

over time defines a meander belt with outer boundaries at the extreme meander

positions (Figure 1.3). The meandering pattern typical of many alluvial streams is

an adjustment of the stream to its most stable form [Gore, 1985].

1.4.6 Channel flow

Channel flow or runoff, is the flow of water in streams, rivers, and other channels.

It is a function of water discharge and velocity. Flow in natural channels normally

occurs as turbulent, gradually-varied flow. Under conditions of gradually-varied

flow, the streams velocity, cross-section, bed slope and roughness vary from section

to section. Steady-uniform flow occurs when conditions at any given point in the

channel remain the same over time and velocity of flow along any streamline (line of

flow) remains constant in both magnitude and direction. Flow disturbances caused

by channel obstructions, sinuosity, and channel roughness, create different forms

of large-scale turbulence that are important because of their connection to channel

erosion and sediment transport processes. Depth of flow has an equally complex

and varied effect on the relationship between discharge of bed material and stream

power and has, except at low shears, a large but simpler effect on the discharge of

bed material as related to shear velocity with respect to the sediment particles. In

most flume experiments, the range of depth is relatively small and the discharge

of bedload frequently is on the order of magnitude smller then the discharge of

suspended bed material.
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1.4.7 Channel bed

A channel bed is the bottom of a stream, river or creek, the area between the banks

of a channel that confines the normal water flow. As a general rule, the bed is that

part of the channel, just at the ”normal” water line and the banks are that part

above the water line. The nature of any stream bed is always a function of the

flow dynamics and the local geologic materials, influenced by that flow. The nature

of the stream bed is strongly responsive to conditions of precipitation runoff [NC

Division of Water Quality, 2010]. Gravel riffle bed is one of he natural channel bed

example (Fgure 1.6).

Many rivers exhibit a sinuous planar pattern which determines, within each bend,

a centrifugally induced secondary flow directed outwards close to the free surface

and inward close to the bed. In fixed-bed conditions, the flow at the inner bend

accelerates relative to the outer bend; proceeding downstream, the secondary flow

transfers momentum towards outer bend and, hence, the thread of high velocity

progressively moves from the inner to the outer bend. The erodible nature of river

beds further complicates the flow field structure. Secondary helical currents enhance

a transverse, inward directed, sediment transport which leads to the formation of

a rhythmic sequence of bars and pools at inner and outer bends, respectively. The

topographically induced component of the secondary flow promoted by this bed

configuration further affects the non-uniform distribution of the velocity field across

the channel section [Seminara, 2006] and, hence, the dispersion dynamics.

1.4.8 Channel depth-width

The physical changes to the channel bed and banks ultimately cause a modification

to the bed morphology, i.e, depth and width of the channel. A natural stream chan-

nel generally shows a degree of width and depth variability, supporting deep, narrow
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Figure 1.6: Example of gravel riffle bed. Source: http://www.dnr.state.oh.us/ wa-
ter/ pubs/ fs-st/ stfs22/ tabid/ 4177/ Default.aspx

reaches and wider, shallower reaches depending on localized geomorphological con-

trols. The width-depth variability of a channel is dependent upon factors such as

the substrate type, flow regime and underlying geology [Finnegan et al., 2005].

1.4.9 Channel velocity

The velocity of a channel is the speed at which water flows along it. The velocity

will change along the course of any channel, and is determined by factors such

as the gradient (how steeply the river is losing height), the volume of water (flow

discharge), the shape of the river channel and the amount of friction created by the
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bed, rocks and plants [http: //www.ehow.com/ info 8223150 factors- affecting-

rivers- velocity.html]. The velocity of a river channel is influenced by three factors:

Shape of cross section The shape of the channel or its cross section affects the

wetted perimeter. The wetted perimeter refers to the extent to which water is

in contact with the channel sediments. The greater is the wetted perimeter,

the greater is the friction between the water and the banks and the bed of the

channel, and the slower is the flow of river.

Roughness of channel banks and bed A smooth stream bottom allows a higher

velocity. Conversely, a channel that flows through a rough or an uneven bed

with boulders on it as well as with rocks that protrude out from the bankex-

periences a larger friction and, therefore, the velocity of the river is reduced.

Channel slope A channel flowing down a steep slope (or gradient) has higher

velocity than one which flows down a gentler slope. In general, the higher is

the gradient, the faster is the flow.

1.4.10 Dispersion in natural stream

Dispersion in natural stream is the ability of a stream to dilute soluble pollutants.

Different types of pollution such as accidental spill of toxic chemicals, intermittent

discharge from combined sewer overflows and temperature variations produced by

thermal outflows may generate a cloud whose longitudinal spreading strongly affects

the pollutant concentration dynamics. Estimating the dispersion of a stream is a vi-

tal issue for the efficient management of riverine environment. The flow depth within

a flow of channel is correlated with the morphology of the channel and strongly in-

fluence the pollutant dynamics. In figure (1.7) shows an example of diluting of

asoluable pollutant observed in a river.
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Figure 1.7: Example of Dispersion of real channel (www.utsc.utoronto.ca ).

1.4.11 Longitudinal dispersion

The longitudinal dispersion coefficient in a river generally depends on the channel

geometry, the velocity distribution, the rate of transverse mixing and a dimensionless

parameter that includes the mean velocity and length of an average bend [Fischer,

1969]. The formulation of relationships relating cross sectional area, lateralcoor-

dinate, local flow depth, deviation of local depth averaged velocity from the cross

sectional mean velocity, channel width and local transverse mixing coefficient in

natural streams then requires the knowledge of the cross sectional geometry and of

the flow field that establishes on it. A schematic diagram of longitudianl dispersion

process with time is shown in figure (1.8).

A reliable estimation of longitudinal dispersion in natural streams is crucial for

determining both acceptable levels of relation and estimating efficient inputs into

natural streams. Early modeling was based of experimental laboratory and field
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Figure 1.8: Typical behaviour of the pollutant cloud resulting from a point injection
in a stream (http://proceedings.esri.com/ library /userconf /proc98 /proceed /to200
/pap193 /p193.htm).

test carried out with passive tracers (e.g. Rhodamine WT). A relevant improve-

ment in understanding longitudinal dispersion has been ensured by the analysis of

interactions between the pattern of bed deformation, transverse mixing coefficient

and velocity flow [e.g., Fischer, 1979; Deng et al., 2001]. Nevertheless, the recent

advances in modelling the flow field in alluvial rivers [e.g., Frascati and Lanzoni,

2013] pose the basis for a physical based estimation of the longitudinal dispersion

coefficientand, hence, the derivation of more robust predictions.
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Chapter 2

Longitudinal Dispersion in

Alluvial River

2.1 Introduction

In the late 1960s early 1970s, many waterways in the US and in many other indus-

trial countries were heavily polluted [Forsman, 2000; Bartlett, 1995]. For example,

the Cuyahoga River in Ohio (USA) caught fire; the Lake Erie was so polluted that it

was close to be declared dying, pollution due to human sewage, agricultural practices

and industrial waste commonly caused the dramatic reduction of fish pollutants and

significant damages of the riverine ecosystem. Public concern grew so overwhelm-

ing that in 1972 the United States Congress enacted the Federal Water Pollution

Control Act. The law, commonly known as the Clean Water Act, set two national

goals: elimination of the discharge of pollutants into the various waterbodies, and

achievement of water quality to protect biodiversity, economical activities as fish-

ing, and recreatinal activities [Zhang, 2011], A reliable assesment of the dynamics

of the concentration of a given pollutant has thus a crucial role for a correct and

rational management of water bodies. The estimation of the longitudinal dispersion

27
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coefficient a fundamental step represents to quantify the rate of pollutant decay in

rivers and natural streams. Fick [1855] on the other hand was thw first to tackle

the problemof diffusion of a passive substance, by introducing the well known the

Fick’s law, covering molecular diffusion, Taylor [1953; 1954], introduced the con-

cept of dispersion, by analyzing the spreading of a solute due to the joint effects of

molecular turbulent diffusion and cross-sectional velocity gradient in circular pipes.

The longitudinal disppersion coefficient resulting from Taylor’s analysis in the case

of turbulent flow conditions reads

Ks = 10.1ru∗ (2.1)

Where r is the pipe radius and u∗ is the shear velocity (= τ0/ρ)
1/2, with τ0 the

shear stress at the wall and ρ the fluid density. Taylor’s work resulted in the general

advection-dispersion theory that, since then, has been widely applied to the analysis

of transport phenomena in different fluids and with various boundary conditions.

Among these analysis, transport in open channels is one of those of most inter-

esting to environmental hydrologists. Elder [1959] extended Taylor’s analysis to a

plane channel flow (i.e., with infinite width, vanishing transverse velocity gradient)

whereby the vertical velocity gradient is the major component of dispersion. He

obtained

Ks = 5.93du∗ (2.2)

where d is the flow depth, u∗ is the shear velocity. One of the most recognized con-

tributors to the study of transport in open channel flow is Hugo B. Fischer. He was

the first who applied Taylor’s analysis to natural open channel flow. Fischer [1967]

showed that Elder’s equation significantly underestimates the dispersion coefficient,

because it does not take into account the transverse variation of the velocity profile

across the river. He thus used the lateral distribution of the depth averaged veloc-
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ity instead of the vertical velocity profile considered by Elder [1959] to obtain the

following relationship for the longitudinal dispersion coefficient:

Ks = − 1

A

∫ B

0

h(y)u′(y)

∫ y

0

1

ǫyh(y)

∫ y

0

h(y)u′(y) dy dy dy (2.3)

where B is the channel width; h(y) is the local water depth; A is the cross sec-

tional area; y is the coordinate in lateral direction; ǫy is the local transverse mixing

coefficient and u′(y) is the deviation of local depth-average velocity from the cross

sectional mean velocity. The fundamental difficulty in determining dispersion co-

efficient from equation (2.3) is the lack of knowledge of transverse profiles of both

velocity and depth. Hence, Fischer (1975) developed a simpler equation by in-

troducing a reasonable approximation of the triple integral, velocity deviation and

transverse turbulent diffusion coefficient as follows:

Ks = 0.11
U2B2

HU∗ (2.4)

McQuivey and Keefer [1974] developed the following simple equation to predict

the dispersion coefficient, using the similarity based on combining the linear one-

dimensional flow and the dispersion equation for the Froude number less than 0.5

as follows:

Ks = 0.058
HU

s
(2.5)

Liu [1977] obtained a dispersion coefficient equation using Fischer’s equation ac-

counting for the role of lateral velocity gradient, namely

Ks = β
U2B2

Hu∗ (2.6)
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the parameter β depending on the channel cross section shape and the velocity

distribution across the stream, and can be computed as:

β = 0.18
(u∗

U

)1.5

(2.7)

Iwasa and Aya [1991] derived an equation to predict the dispersion coefficient in

natural streams using a regression of laboratory data and previous field data which

yields:
Ks

HU∗ = 2
(B2

H

)1.5

(2.8)

Seo and Cheong [1998], dimensional analysis and a regression analysis for the one

step Huber method obtained the following equation:

Ks

Hu∗ = 5.915
(B

d

)0.620(U

u∗

)1.428

(2.9)

More recently, Deng et al.[2001] using an improved formula for the transverse mixing

coefficient derived the following equation predict the longitudinal dispersion coeffi-

cient in natural rivers:
Ks

du∗ =
0.15

8ǫt0

(B

d

) 5
3
(U

u∗

)2

(2.10)

in which ǫt0 is the transverse mixing coefficient calculated as:

ǫt0 = 0.145 +
1

3520

(B

d

)1.38(U

u∗

)

(2.11)

Kashefipour and Falconer (2002) developed an equation for predicting dispersion

coefficient in rivers based on data collected in several US rivers. This equation can

be written as:

Ks = 10.612 dU
(U

u∗

)

(2.12)
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combining equation (2.12) with that’s proposed by Seo and Cheong [1998] they

obtained as:

Ks =
[

7.428 +
(B

d

)0.620(U

u∗

)0.572]

HU
(U

u∗

)

(2.13)

Most of the researches in this period of time were imprinted with the characteris-

tics of the background. The discrepancies between the predicted and the observed

results range from 1 to 3 orders of magnitude of the observed values. Such sub-

stantial discrepancies are attributed to the irregularity, spiral flow and the storage

in dead zones in natural streams [Deng et al., 2002]. While the one-dimensional

(1D) advection-dispersion (AD) model have been successfully used in the streams

that are physically low slope, deeper than the roughest bed feature, and relatively

uniform (possibly due to flow regulation), it is found not applicable to model many

other situations. Fischer et al. [1979] concluded that, some streams may be so ir-

regular that no reasonable analysis can be applied. For instance, a mountain stream

that consists of a series of pools and riffles is not a suitable place to apply Tay-

lor’s analysis. Because Taylor’s analysis was developed on idealized conditions (i.e.,

straight, uniform channels) and resulted in a Fickian-type diffusion equation that

predicts a Gaussian solute concentration distribution. In the seminal work, Fischer

[1967], demonstrated that a meandering stream has a twofold role on longitudinal

dispersion. Firstly, the concentration of the thread of high velocity on the outside

of river bends and transverse variations of bed topography associated to the rhyth-

mic sequence of bars and pools result in an increased shear flow dispersion. On

the other hand, secondary currents favor transverse mixing, enhancing a more uni-

form distribution of pollutant concentration across the section, and thus reducing

the longitudinal dispersion. Simplest channel has longitudinal dispersion as there

is velocity gradients in the flow, caused by friction velocity. When the channel is

complex then its flow is complex which effects the dispersion. Also dispersion in-

crease with increasing discharge as turbulence develops [Wallis and Manson,2004].
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So an injected tracer or spilled contaminant moves downstream, it spreads and the

peak concentration reduced. The variation of dispersion coefficients is more im-

portant in natural rivers with meandering configuration, which is one of the most

typical geometric configurations. In meandering rivers, one must consider not only

the undulating primary flow path along watercourses but also the repeating gener-

ation and dissipation of secondary currents. Following the alternating bends, the

flow periodically induces the secondary currents that alter the magnitude of both

transverse mixing and longitudinal dispersion [Fischer, 1969]. Therefore, when ac-

curate results are required in the modeling of solute mixing in meandering rivers,

the more detailed information of the spatially varied dispersion coefficient is needed

to be incorporated into the model than the modeling in the field with any other

geometric configurations. Research on the variable mixing coefficient in meandering

streams has been performed based on the tracer test in the Chang [1971] conducted

studies of transverse mixing in meandering channels and suggested a cyclic variation

in the transverse mixing coefficient [Boxall and Guymer, 2003; Boxall et al., 2003;

Marion and Zaramella, 2006] analyzed the characteristics of transverse dispersion

coefficients in sinuous open channel flows on the basis of the laboratory experiments

that allowed natural development of the channel bed. They maintained that the

maximum values of the transverse dispersion coefficient are found in the regions of

strong secondary circulation, directly downstream of the bend apex and minimum

values are found in the straighter regions. They showed the inverse relationship

between the variation of longitudinal and transverse coefficients in the longitudinal

direction in their later research on the prediction of longitudinal dispersion coeffi-

cient in meandering channel [Boxall and Guymer 2007]. The mathematical model

formulated in the following section tackles the problem of two-dimensional (i.e.,

depth averaged) pollutant mixing for the steady flow in an alluvial channel. The

model generally,which accounts for the dynamic effects of secondary flows induced
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by the planform meandering configuration of the river enhancing transverse mixing,

and, hence, a more uniform distribution of the pollutant concentration across the

section. The novel feature of the present model is the solution of the problem in

terms of pertubations of a basic flow, consisting of the uniform flow in a straight

prismatic channel.

2.2 Formulation of the Problem

2.2.1 Notation

We analyze the behavior of a passive, non-reactive contaminant which (e.g., due

to an accidental spill) is suddenly released in an alluvial channel which, in general,

have a meandering planform configuration. The channel has non erodible banks, a

constant width 2B∗, large enough for the flow to be modeled as two dimensional, and

a quite small mean slope S, as typically occurs in alluvial rivers. A given constant

discharge Q∗ flows under uniform condition with average flow depth D∗
0 and mean

velocity U∗
0 . This system is characterized by the depth averaged velocity (u∗, v∗)

and the eddy viscosity ν∗
T . The erodible bed is assumed to be made up of a uniform

cohesionless sediment with grain size d∗gr, which is transport mainly as bedload. The

gravity acceleration is g. Hereafter a star superscript denotes dimensional quantities.

2.2.2 Reference system

The problem can be conveniently studied introducing the curvilinear orthogonal co-

ordinate system (s∗, n∗, z∗), where s∗ is the longitudinal coordinate (directed down-

stream), n∗ is the transverse curvilinear coordinate (with origin at the channel axis)

and z∗ is the axis normal to the bed (pointing upward). In alluvial channel the cross

sectionally averaged concentration undergoes relatively small and rapidly changing

gradient associated with the spatial variations of the flow field and a slower evolution
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due to longitudinal dispersion. In order to deal with the fast concentration changes

acting at the meander scale, it proves convenient to introduce a pseudo-lagrangian,

volume following co-ordinate ξ∗ , which travels downstream with the contaminat

cloud [Shinohara et al., 1969; Smith 1983] and accounts for the fact that the cross

sectionally averaged velocity U∗
0 is not constant along the channel. This co-ordinate

is defined as:

bank
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Figure 2.1: Sketch of Meandering channel

ξ∗ =
V∗

A∗
0

=
1

A∗
0

∫ s∗

0

hs0A
∗ds∗ (2.14)

where, V∗ is the water volume from the origin of the coordinate system to the

generic co-ordinate s∗, A∗
0(= 2B∗D∗

0) is the average cross sectional area within the
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investigated reach, while

A∗ =

∫ B∗

−B∗

d∗dn∗, hs0 =
1

A∗

∫ B∗

−B∗

hsd
∗dn∗ (2.15)

with hs the metric coefficient associated withthe longitudinal co-ordinates Gener-

ally, V∗, hs0 and A∗ can vary along s∗ as a consequence of the variations of section

geometry induced by bed topography and/or channel narrowing or widening. How-

ever, requiring that the volume V∗ is a material one (and, hence, that ξ∗ is a volume

following coordinate) leads, in general, to the following derivation rules

∂

∂s∗
=

A∗

A∗
0

∂

∂ξ∗
,

∂

∂t∗
=

∂

∂t∗
− U∗

ξ

A∗

A∗
0

∂

∂ξ∗
(2.16)

where, A∗ = hs0A
∗ is a modified cross sectional area and U∗

ξ is the velocity of

the moving pseudo lagrangian co-ordinate ξ∗. Denoting by L∗
c the length of the

pollutant cloud and L∗ the length of the reach under investigation The later can be

determined recalling that, for a stationary flow field as the one investigated here, the

flow discharge is constant and therefore U∗
ξA∗ = U∗A∗

0. Thus adopting the scaling

ξ = ξ∗

L∗

c
, A = A∗

A∗

0
we obtain

ξ =
ξ∗

L∗
c

=
ǫ

γ

∫ s

0

A(ŝ)dŝ (2.17)

Note that, for an observed pollutant cloud moving with velocity U∗
ξ the dillution

of the pollutant concentration associated with longitudinal dispersion occurs at a

length scale comparable with the length of the contaminant cloud, L∗
c .
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2.2.3 Two dimensional Advection-Diffusion Equation

The two dimensional advection diffusion equation for the depth averaged concentra-

tion equation is [Yotsukura, 1997]

hsd
∗c,t∗ +d∗u∗c,s∗ +hsd

∗v∗c,n∗ =
(d∗

hs

k∗
sc,s∗

)

,s∗ +
(

hsd
∗k∗

nc,
∗
n

)

,n∗ (2.18)

Where c is the depth averaged concentration, t∗ denotes time, d∗ is the local flow

depth, u∗ and v∗ are the depth averaged longitudinal and transverse component of

the velocity k∗
s and k∗

n the longitudinal and transverse mixing coefficient, hs is the

metric coefficient arising from curvilinear character of the longitudinal coordinate,

defined as,

hs = 1 +
n∗

r∗
= 1 + νnC (2.19)

where ν = B∗

R∗

0
is the curvature ratio, C =

R∗

0

r∗
, is the dimensionless channel curvature,

r∗(s∗) is the local radius of the channel axis of curvature, assumed to be positive

when the center of curvature lies along the negative n∗ axis and R∗
0 is twice the

minimum value of r∗ within the meandering reach. The governing equation of this

system assumed the shallow water conditions. This assumption applies when the

longitudinal and the lateral scales are much larger than the flow depth, and implies

a hydrostatic distribution of the mean pressure. In the following, the assumption of

slowly varying flow field conditions will be assumed. For a straight river this implies

that the central part of the cross section is connected gradually to the banks; for a

meandering river the bends are assumed to be mild. Moreover, steady conditions

for the flow is assumed considering a typical hiearchy of scales whereby meander

geometry varies on a much longer time span with respect to bed defomation, and to

the scale of flow unsteadiness.
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2.2.4 Scaling

In order to investigate the order of magnitude of the various terms contributing

to equation (2.18) it is useful to make it dimensionless introducing the following

scaling:

t =
B∗2t

k∗
n0

, s =
s∗

L∗ , n =
n∗

P ∗
0 + b∗

, d =
d∗

D∗
0

u =
u∗

U∗
0

, v =
V ∗

U∗
0

L∗

B∗ , kn =
k∗
n

k∗
n0

, ks =
k∗
s

k∗
n0

(2.20)

where, B∗ the overall is half channel width, b∗ is (the half width of the central part

of the channel), L∗ is the average intrinsic meander length within the investigated

reach, B∗2t
k∗n0

is the typical scale of transverse mixing and k∗
n0 is the transverse mixing

coefficient for a straight channel configuration. We then obtain,

hsdc,t +γ[duc,s +
( δβ

1 + δβc

)

hsdvc,n ] =

( δβ

1 + δβc

)2(

hsdknc,n

)

,n +
(

γ ǫ
)2( d

hs

ksc,s

)

,s

(2.21)

Three fundamental parameters arise from the above scaling namely δ =
D∗

0

P ∗

0
, γ =

B∗2U∗

0

k∗n0L
∗
and,

ǫ =
k∗
n0

B∗U∗
0

= kn0

√
cf

β
(2.22)

This latter parameter physically represents the inverse of a Peclet number in the

transverse direction. It typically attains small values as it immediately results con-

sidering the equivalent form ǫ = kn0
√
cf
β
, where the dimensionless transverse mixing

coefficient kn0 =
k∗n0√

gD∗

0SD
∗

0

usually falls in the range 0.15 − 0.30 [Rutherford, 1994]

The parameter γ describes the relative importance of transverse mixing, which tends

to homogenize the contaminant concentration, enhances, and nonuniform transport
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at the bend-scale which, on the contrary, concentration gradients. Typically,

γ = λ/(2ǫπ) (2.23)

where the dimensionless meander wavenumber λ = 2πB∗

L∗
usually ranges between 0.1

to 0.3 [Leopold et al., 1964]. It then turns out that typically ǫ and γ can be taken

as small parameters. We exploit this fact in the following section.

2.3 Expansion

The derivation of the longitudinal dispersion coefficient takes advantage of the small

character of the parameter ǫ. Equation (2.17) indicates that the spatial variations of

c associated with longitudinal dispersion at the scale of the contaminant cloud are

described by the slow ( ǫ
γ
= L∗

L∗

c
<< 1) variable ξ whereas the comparatively small and

rapidly changing variations in concentration across the flow associated with stream

meandering are accounted for through the fast variables s, n. Similarly, a fast and a

slow temporal variable emerge as a consequence of the sharp separation between the

time scales characterizing the various physical processes [Taylor, 1953; Fischer, 1967;

Smith, 1983]. The fast time variable, t1(=
t∗U∗

0

L∗

c
) is related to non-uniform advection

within the cloud, which typically acts much slowly than transverse mixing. It is in

fact easy to show that t1 = ǫt, provided that, B∗

L∗

c
= ǫ2 i.e., the contaminant cloud

has reached a length of order of kilometers. On the other hand slow time variable

t2 =
t∗D∗

L∗2
c

is determined by the time scale at which longitudinal dispersion operates.

In terms of ǫ it results that t2 = ǫ2t, provided that D∗ is at maximum of order

ǫ−1B∗U∗
0 , a condition typically satisfied in natural channel, as also suggested by the

semi-empirical relationship developed by [Fischer et al., 1979], according to which

D∗ = 0.044kn0ǫ
−1B∗U∗

0 (see Table 1.1 and Figure 1.1). The presence of different

spatial and temporal scales can be handled employing a multiple scale technique
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[Nayfeh, 1973]. To this purpose we assume that c = c(s, n, ξ, t1, t2) and transform

the governing equation making use of the derivation chain rules . We end up wit

following advection-diffusion equation for c:

Lc = −ǫ
(

hsdc,t1 +duAc,ξ

)

− ǫ2hsdc,t2 +
(

ǫγ
)2( d

hs

ksc,s

)

,s +ǫ4A
( d

hs

ksAc,ξ

)

,ξ

(2.24)

where the differential operator L reads:

L = γ
[

du
∂

∂s
+
( δβ

1 + δβc

)

hsdv
∂

∂n

]

−
( δβ

1 + δβc

)2 ∂

∂n

(

hsdkn
∂

∂n

)

(2.25)

We next introduce the following expansion for c

c = c0 + ǫc1 + ǫ2c2 + ... (2.26)

into equation (2.24) and considering exploiting the small parameter ǫ, substituting

the problem arising at various order of approximations we obtain:

O(ǫ0) ⇒ Lc0 = 0, (2.27)

O(ǫ) ⇒ Lc1 = −hsdc0,t1 − duAc0,ξ , (2.28)

O(ǫ2) ⇒ Lc2 = −hsdc0,t2 − (hsduc1,t1 + duAc1,ξ), (2.29)

These equations used to be coupled with the requirements that ∂ci
∂n

=0(i = 1, . . . )

at the channel banks, where the normal component of the contaminant flux vanishes.

The partial differential equation (2.27),(2.28),(2.29) provide a clear insight into the

structure of the contaminant and concentration. It is easily seen from equation

(2.27) that does not depend on s, n and hence, it is not affected by the fluctuations
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induced by flow with the channel, i.e.it coincides with the cross sectional average C0.

Equation (2.28) suggests for c1a solution of the form c1 = [g1(s, n) + α1]
∂C0

∂ξ
, with

α1 an arbitrary constant and g1 a function describing the nonuniform distribution

across the section of the contaminant concentration, Similarly equation (2.29) can

be solved by setting c2 = [g2(s, n) + α2]
∂2C0

∂2ξ
, with α2 an arbitrary constant. The

depth averaged contaminant concentration then results;

c(s, n, ξ, t1, t2) = C0(ξ, t1, t2) + ǫ[g1(s, n) + α1]
∂C0

∂ξ
+ ǫ2[g2(s, n) + α2]

∂2C0

∂ξ2
+O(ǫ3)

(2.30)

This relationship clearly discriminates the slower evolution due to longitudinal dis-

persion, embodied by the terms C0,
∂C0

∂ξ
, ∂2C0

∂2ξ
, from the small and rapidly varying

changes associated with the spatial variations of the flow field, described by the

function g1 and g2. Integrating equation (2.30) across the section and along an allu-

vial channel, it is immediately recognized that with a suitable choice of the arbitrary

constants α1 and α2, the effects of c1 and c2, leading to a term proportional to ∂C0

∂ξ
,

∂2C0

∂2ξ
, will not emerge until O(ǫ3) i.e., (C= C0 +O(ǫ3)). Such a result is met by set-

ting αi = − < Gi > (i = 1, 2), where, cross section averaging and reads averaging

are defined by :

Gi =
1

A

∫ 1

−1

hs gi fdn (2.31)

< Gi >=
1

L

∫ s−L
2

s+L
2

Gids (2.32)

It is important to note that only averaging gi(s, n), (i = 1, 2) along the entire me-

ander length leads to a value of αi which does not depend on s, as required by the

O(ǫ0) and O(ǫ2) problems.
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2.4 Longitudinal Dispersion Coefficient

We are now ready to derive the advection diffusion equation, governing the evolu-

tion of the cross sectionally averaged concentration C0 and the related longitudinal

dispersion coefficient. We sum together equations (2.28) and (2.29), averaged across

the section, and require that the flux of contaminant does not vary on the fast scale

s, a condition needed in order to eliminate secular term which would lead c2 to grow

systematically with s. We obtain the following equation

∂C0

∂t
+ ǫ

∂C0

∂ξ
= ǫ2Ks

∂2C0

∂ξ2
+O(ǫ3) (2.33)

Where the longitudinal dispersion coefficient defined as

Ks =
1

A

∫ 1

−1

(

hsd

∫ 1

−1
duA
A − dũA

)

g1dn (2.34)

and the function g1 results from the solution of the O(ǫ) equation

Lg1 = hsd− duA (2.35)

Supplimented with the requirement that ∂g1
∂n

= 0 at the channel banks, where the

normal component of the contaminant flux vanishes. Before to proceed further on

some observations on equation (2.34) are worthwhile. In accordance with [Fischer,

1967], the contribution to longitudinal dispersion provided by vertical variations of

the velocity profile (embodied by the term of (2.21) containing ks) is of minor im-

portance. Longitudinal dispersion is essentially governed by shear flow dispersion

induced by the nonuniform distribution across the section of both the contaminant

concentration accounted for through the function g1(s, n) and the flow field quanti-

fied by (hs − uA)d. This later term, however, differs from the much simpler term
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1 − u using in the classical treatment persued by [Fischer 1967] as a consequence

at the fact that here the mean flow vwlocity can in general vary along the channel,

a circumstance specifically accounted for through the volume following coordinate

ξ. It is in particular important to observe that in the presence of river reaches

characterized by rapid longitudinal variations of the flow field the dispersion coeffi-

cient K can locally attain negative values, thus favoring spurious instabilities. As

pointed out by Smith [1983] such a problem can be prevented by introducing a bend

averaged longitudinal dispersion coefficient defined as:

K =< AK > (2.36)

that is always positive. Finally, it can be demonstrated that the local and the

bend averaged coefficient K and K , are related to the classically adopted local

coefficient K arising when considering the usual coordinate s, by the relationships

K = A2K and K =< A3K >. The perturbation technique developed so far allows

us to calculate the dimensionless longitudinal dispersion coeffiient, in natural streams

once the structure of the flow field, of bottom topography and of depth averaged

concentration distributions are specified. To this aim, we take advantage of the fact

that in nature the curvature ratio appearing in equation (2.19) is typically a small

parameter, ranging in the interval 0.1-0.2 [Leopold et al. 1964). We then assume

that flow and topography perturbations originating from deviations from a straight

channel configuration are small enough to inroduce the expansions:

[u(s, n), d(s, n),A(s, n)] = [u0(n), d0(n),A0(n)]

+ν[uc(s, n), dc(s, n),A1(s, n)] +O(ν2)
(2.37)

The unperturbed O(ν0) straight channel configuration is in general characterized

by a cross section in which the transverse variations of both u0 and d0 are mainly
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concentrated near the banks (see fig 3.3), where the depth (and, therefore the ve-

locity) varies smoothly from the cocstant value characterizing the central part of

the section zero. [Parker, 1978]. In many alluvial rivers, however the aspect ratio

β is high enough (ranging approximately in the intervals 5-20, 20 and 60 in gravel

and in sandy river, respectively) to neglect the effect of this side wall regions. By

substituting (2.37) into the two dimensional continuity and momentum equations

for the fluid and in the sediment balance equation, it is then possible to obtain,

although at a linearized level of approximation, the spatial distribution of the flow

field and of the bed tpopography in movable bed meandering channels [Blondaux

and Seminara, 1985; Seminara and Tubino, 1992; Zolezzi and Seminara, 2001]. We

will use this information later on to determine the effects of centrifugally and topo-

graphically induced secondary helical flow on contaminant spreading. Let us now

move to quantify the nonuniform distribution in the natural stream of the depth

averaged contaminant concentration. As for the flow field, we expand in terms of

ν the relevant quantifies, namely the dimensionless transverse mixing coefficient kn

and the function g1

[kn(s, n), g1(s, n)] = [kn0(s, n), g10(n)] + ν[kn1(s, n), g11(s, n)] +O(ν2) (2.38)

The structure of the longitudinal dispersion coefficientnt in meandering channels is

easily determined by substituting (2.37) and (2.38) (2.34), and recalling (3). We

obtain:

K = Ks0 + νKs1 + ν2Ks2 +O(ν3) (2.39)

The O(ν) and O(ν2) terms are specifically related to the complex structure of flow

field. Substituting (2.37) and (2.38) into (2.35), we obtain a sequence of problems



44 CHAPTER 2. DISPERSION IN ALLUVIAL RIVER

whose general form reads

γ[du
∂g1i
∂s

+ (
δβ

1 + δβc

)hsdv
∂g1i
∂n

]− (
δβ

1 + δβc

)2
∂g1i
∂n

(hsdkn
∂g1i
∂n

) = f1i(s, n) (2.40)

subject to the constraint that ∂g1i
∂n

= 0 at the walls. As it will be shown in the

following it is sufficient to know only the functions, g10 and g11, solution of the

O(ǫν0) and O(ǫν) problems respectively to get and estimate of K correct up to the

order O(ν3). The function g10, accounts for the non uniform distribution of the

concentration across the section in the case of a straight channel. It is determined

solving the problem,

(
δβ

1 + δβc

)2
∂

∂n

(

d0kn0
∂g10
∂n

)

= −f10 (2.41)

∂g10
∂n

=
1

d0 kno

∫ n

−1

−f10

(1 + δβc

δβ

)2

dn∗ (2.42)

g10(n)− g10(−1) =

∫ n

−1

dn̂

d0kn0

∫ n̂

−1

−f10

(1 + δβc

δβ

)2

dn∗ (2.43)

with the boundary conditions:

∂g10
∂n

= 0, n = ±1 (2.44)

∫ 1

−1

g10(n) dn = 0, (2.45)

At the order O(ǫν0) f10 reads:

f10 =

∫ 1

−1

(

∫ 1

−1
d0u0A0

A0

−A0ũ
)

d0 dn (2.46)

The solution g10 must account for the fact that, in the case of a sudden release

of contaminat here considered, the concentration tends to be distributed uniformly
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across the section, far downstream of the input section, i.e., g10(s → ∞) = 0. This

condition equivalent to imposing that the O(ǫ) contribution to the pollutant flux

must vanish. The solution of (2.40) can be easily obtained.

g10(n) =

∫ n

−1

1

d0 kn0

∫ n̂

−1

(

∫ 1

−1
d0u0A0

A0

−A0ũ
)

d0

(1 + δβc

δβ

)

dn̂ dn (2.47)

Owing to the symmetry of the generalized channel shape, the numerical integration

is conducted only for n = 0 to 1.

Figure 2.2: River water concentration layer with WWTP effluent concentration
layer (Source: http://proceedings. esri. com/ library/ userconf/ proc02/ pap1259/
p1259.htm).

The river water concentration layer with WWTP effluent concentration layer is

shown in figure (2.2).
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Figure 2.3: Concentration profile of Coelitz River (Source: http://www.sequoiasci.
com/ article/ lisst- sl- data- from- cowlitz- river- march- 2011)

For a straight channel (γ = 0), we can write (2.34) and (2.35) as:

Ks0 =
1

∈A0

∫ 1

−1

(

∫ 1

−1
d0u0A0

A0

−A0ũ) d0 g10 dn+ g10(−1) (2.48)

The longitudinal dispersion coefficient,then turns out yo be (2.48):

Ks0 = (
δβ

1 + δβc

)2
1

A0

∫ 1

−1

(

∫ 1

−1
d0u0A0

A0

−A0ũ) d0

∫ n

−1

1

d0 kn0

∫ n

−1

(

∫ 1

−1
d0u0A0

A0

−A0ũ)

d0 dn dn dn

(2.49)
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and returning to dimensional quantities:

K∗
s0 = Ks0B

∗U∗
0 (2.50)

It is immediately recognised that the leading order contribution (2.49) corresponds

to the classical solution obtained by Fischer [1967] and accounts for dispersion ef-

fects which arise in a straight uniform flow as a consequence of the nonuniform

distribution of the contaminant and of the cross sectional gradients, concentrated

mainly near the banks (see figure 3.3). However, natural river involve many sources

of nonuniformities, e.g., the secondary helical flow driven by channel bending. These

uniformities are accounted for at the order O(ǫν), we obtain,

∂

∂n
(d0kn0

∂g11
∂n

)− γ(d0u0)
∂g11
∂s

= −
(1 + δβc

δβ

)2

f11 (2.51)

f11 =
[

(dc + ncd0)− (d0u0A1 + d0ucA0 + dcu0A0

]

−
[

γ(dc + uc)
∂g10
∂s

+ vc
∂g10
∂n

− ∂

∂n
(nc+ dc + kn1)

]

(2.52)

The structure of f11 indicates the existence of two distinct additive contributions to

g11. The first is related to the structure of the flow field which establishes in movable

bed meandering channels. The second, decaying exponentially with s, depends also

on the transverse distribution of the contaminant at the injection section, embodied

by g10, and on the deviation kn1 of the transverse mixing coeffcient from its straight

flow value. It is then suffcient to move a few mixing lengths, γL∗, downstream of

the source, where g10 is no more a function of s and tends to vanish,

∂g10
∂n

=
1

d0 kno
− f10

(1 + δβc

δβ

)2

dn∗ (2.53)



48 CHAPTER 2. DISPERSION IN ALLUVIAL RIVER

to ensure that the specific effect of flow meandering on g11 dominates. Separating

the variables (i.e., writing the forcing term as f11 = p(s)q(n)), and introducing a

suitable Green function [Morse and Feshbach, 1953]. We eventually obtain:

g11(s;n) =
∞
∑

m=1

cos[µm(n+ 1)]

∫ s−∞

0

p(s− χ)e
−µ2mχ

γ

(

δβ
1+δβc

)2

dχ

∫ 1

−1

q(n0) cos[µm(n0 + 1)]dn0

(2.54)

and hence,

Ks1 =
1

2

1
∫

−1

(1− u0A0)(d0g11 + d1g10) dn

+
1

2

1
∫

−1

(nC − ucA0 − u0A1)d0g10 dn (2.55)



Chapter 3

Flow Field in a Straight

Equilibrium Channel

3.1 Introduction

The velocity of a stream, is responsible for determining the size of particles a stream

can transport, as well as the way in which it carries the particles, or load (Larson

and Birkland, 1994). Velocity is dependent on several factors which such as:

• width and confinement

• roughness of bed, bank and bottom of channel,

• discharge

• amount of sediment

In general, the higher the gradient, the faster the flow. Streams mountainous

areas are thus characterized by higher and much more irregular velocities (Figure

3.1). Wide, shallow rivers have usuallu a smaller gradient and hence, lower velocities.

Therefore, the wide character of the sectionimplies a more regular distribution of

49
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Figure 3.1: Example of a rock bed river (Source http://www.krisweb.com/ hydrol/
channel.htm).

Figure 3.2: Example of sand bed river (Source http://www.doi.gov/ restoration/
news/ UCR-Draft-Injury-Assessment-Plan.cfm).

the flow across the section (Figure 3.2). Several procedure have so far been proposed

to estimate the longitudinal dispersion coefficient from velocity measurements at a
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number of cross sections [Fischer, 1967; Liu, 1977; Iwasa and Aia, 1991; Kashefipour

and Falconer , 2002]. In many cases, however, the proposed predictor provides only

a rough estimate of longitudinal dispersion and the discrepancy between predicted

and observed coefficient is quite high. The transverse distribution of local flow depth

strictly depends on the section shape of a natural river. Owing to its importance,

the cross-sectional shape of stable channels has long been the subject of numerous

investigations [ASCE, 1998]. The channel shapes proposed by different investigators

can be classified into three types: cosine shaped, exponential shaped and parabolic

shaped. However, these channel shapes are usually applicable to irregular canals or

to the bank regions of straight rivers. To predict the cross-sectional shape of natural

alluvial rivers, the channels are usually schematized with a central flat-bed region

and two curvature bank regions [Vigilar and Diplas 1997]. The width of the flat-bed

region is determined numerically. It means that no available channel shape equa-

tion can be directly used to describe the cross-sectional channel shape of natural

rivers. To investigate the river channel shape and the flow field establishing within

it, it is assumed that the river channel is straight, its cross sectionis symmetrical

about its axis and constant along the river. The cross-sectional channel shape of

an alluvial river is governed by its hydraulic geometry, namely the interrelationship

among water discharge, channel width, flow depth, velocity, and so forth. The first

attempt to obtain the longitudinal dispersion coefficient taking into account the flow

field variation due to the transverse velocity distribution within a cross section of a

straight channel was made by Sooky [Sooky, 1969]. He proposed a transverse veloc-

ity distribution made by a combination of the logarithmic velocity profile and the

linear function for the triangular channel cross section. In order to fit the velocity

data measured in the Sacramento River and the Old River in the U.S., Bogol [1997]

suggested an empirical equation based on a fourth degree polynomial, It has been

shown that, in some Sacramento Delta channels, values of longitudinal dispersion
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were at least one order of magnitude greater than those derived from the measured

velocity profiles [Bogol 1997]. Seo and Gadalrab [1999] proposed a combined form of

a fourth-degree polynomial and an exponential function.They applied this equation

to the velocity data collected in the Han River and the Naktong River, in South

Korea [Seo and Gadalrab, 1999]. The prediction thus derived gives values on average

greater than there provided by Seo and Cheong’s [Seo and Cheong, 1998] equations.

Deng et al. [2001] used a power-law distribution of the transverse velocity to de-

termine the longitudinal dispersion coefficient in Fischer’s triple integral expression

[Deng et al.2001]. This mathematical model gives closer predictions in 60.3% of

cases of observed data. The statistical model declared by Seo and Cheong [1998]

gives closer predictions in 50% of cases of observed data. In the present thesis an

transverse velocity profile is derived for irregular cross sections of natural streams.

following the perturbation approach of Tubino and Colombini [1992]; this velocity

distribution then is incorporated into the expression for estimating the longitudinal

dispersion coefficient.

3.2 Reference System
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Figure 3.3: Sketch of the investigated half channel cross-section, divided into a center
and a bank region, and relevant notations.
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We consider the flow field of an incompressible fluid in a straight channel and assume

that the bed is slowly variable in the transverse direction. This assumption allows

for the adoption of a model of turbulence in which the turbulent viscosity ν∗
T is a

function of the local flow condition. We want to determine the flow field and the

bed shear stress distribution in a generic section of the channel, assumed to be in

equilibrium. To this aim, the channel cross section (see Figure 3.3) is subdivided into

D
*
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D
o


*


P
o

*


P
*


*
z

s
*


Figure 3.4: Sketch of the channel cross-section considered to determine the flow field
in the bank region and relevant notations.

two distinct regions: i) a bank region and ii) a central region, In order to solve the

flow field in the bank region, we consider the equilibrium section that is obtained by

assuming that everywhere the bed shear stress equals the critical threshold for the

sediment movement. We use the curvilinear coordinate system (s∗, p∗, z∗) shown in

Figure (3.4), where s∗ is the longitudinal coordinate, p∗ is the transverse curvilinear

coordinate (with origin at the channel axis) and z∗ is the axis normal to the bed.

Because of the transverse axis curvature, lateral distances measured along different

transverse coordinate surfaces are in general not equal when moving from one normal

co-ordinate surface to another, we need to introduce the metric coefficient

hp = 1− z∗

R∗ (3.1)
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where R∗ is the local axis of curvature of the cross-section bed profile. It can be

easily demonstrated that, denoting by D∗ the local flow depth, the local curvature

radius reads:

R∗ = − 1

cos β

∂2D∗

∂p∗
(3.2)

with β the angle that the vertical forms with the normal to the cross sectionbed,

resulting from the relation

cos β =

√

(

1− ∂2D∗

∂p∗

)

(3.3)

3.3 Longitudinal Momentum Conservation Equa-

tion

Observing that in the investigated problem the horizontal scale of the relevant hydro-

dynamic processes largely exceeds the flow depth, we can assume that the pressure

is distributed hydrostatically along the vertical and replace the pressure and the

gravitational term with the gradient of the water surface elevation. Under the as-

*
D
*
R
 *

z
D


*
z


*
r


*
s


*
H


*
y


*
p

a


a


Figure 3.5: Sketch of the investigated cross-section and notations.
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sumption of uniform flow conditions, the longitudinal momentum equation, averaged

over turbulence, then reads:

∂U∗

∂t∗
+ U∗∂U

∗

∂s∗
+

V ∗

hp

∂U∗

∂p∗
+W ∗ ∂U

∗

∂z∗
+

V ∗W ∗

hp

∂hp

∂z∗
= −ρg

∂H∗

∂s∗
+

1

hp

[

∂(hpT
∗
ss)

∂s∗
+

∂T ∗
ps

∂p∗
+

∂(hpT
∗
zs)

∂z∗

]

(3.4)

with U∗, V ∗,W ∗ the components of the velocity along the three coordinate axes, H∗

the elevation of water surface with respect to a given, p the pressure, ρ the water

density, g the gravitational constant, h the elevation with respect to a given datum,

and on T ∗
ss, T

∗
ps, T

∗
zs the s∗ component of the stress tensor of normal s∗, p∗ and z∗.

We then take advantage of the uniform character of the turbulent flow in the

longitudinal direction, simplifying equation (3.4 ) as

∂T ∗
ps

∂p∗
+

∂hpT
∗
zs

∂z∗
= ρghp

∂H

∂s∗
(3.5)

In order to specify the distributions along the normal to the bed of both the eddy

viscosity ν∗
T and of the longitudinal velocity u∗, we write:

ν∗
T (z

∗) = u∗ D
∗
z N (z∗), (3.6)

with N (z∗) a function giving the required distributions, u∗ (= (τ ∗/ρ)0.5) the friction

velocity, D∗
z the distance of the water surface from the bed and D∗ the local flow

depth. Moreover assuming the classical eddy viscosity closure to the stress tensor

we can write:
(

T ∗
ss, T

∗
ps, T

∗
zs

)

= ρ νT

(

∂u

∂s∗
,
1

hp

∂u

∂p∗
,
∂u

∂z∗

)

(3.7)

We are interested to estimate the shear stresses τ ∗ acting at the channel bed, re-
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sponsible of its morphological evolution. The instantaneous value of τ at each node

of a given transect (see Figure 3.6) is calculated by considering the longitudinal

momentum conservation equation (3.4). We next integrate the equation (3.5) along

z∗, from the bed (at z∗ = 0) to the free surface (at z∗ = D∗
z),, requiring that the

longitudinal shear stresses vanishes at the free surface, and takes the value τ ∗ at the

bed:
[

Tz∗s∗ −
1

hp

∂D∗
z

∂p
Tp∗s∗

]

z∗=D∗

z

= 0, [Tz∗s∗ ]z∗=0 = τ (3.8)

where S = −∂H∗/∂s∗ is the longitudinal slope of the water surface.
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Figure 3.6: Bed shear stress of the investigated cross-section and notations.
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3.4 Scaling and Expansion

In order to investigate the order of magnitude of the various terms contributing to

equation (3.4) it is useful to make it dimensionless introducing the following scaling:

Dz∗ = D∗
0

D
√

1− δ2( ∂D
∂ηb

)2
, z =

z∗

D∗
z

, ηb =
p∗

P ∗
0

, D =
D∗

D∗
0

,

U =
U∗

√

gSD∗
0

, νT =
ν∗
T

D∗
0

√

gSD∗
0

(3.9)

F1 =
1

D

∂D

∂ηb

[

1 +
δ2D

1− δ2( ∂D
∂ηb

)2
∂2D

∂(ηb)2

]

, F2 =

√

1− δ2( ∂D
∂ηb

)2

D
,

hηb =
z D

1− δ2( ∂D
∂ηb

)2
∂2D

∂(ηb)2

(3.10)

where D∗
0 is the mean flow depth in the central region (see Figure 3.3) and P ∗

0 is the

wetted perimeter of the bank under uniform flow conditions (hereafter a star apex

will denote dimensional quantities). We assume that the bed variations of the cross

section profile are slow enough such that the dimensionless parameter δ =
D∗

0

P ∗

0
is

small. Taking advantage of this fact, we expand the dimensionless form of equation

(3.4) in terms of δ, obtaining:

F 2
2

∂

∂z

[

(1 + δ2hηb)νT
∂U

∂z

]

+ δ2
(

∂

∂ηb
− zF1

∂

∂z

)[

νT
1 + δ2hηb

(

∂

∂ηb
− zF1

∂

∂z

)

U

]

+

1 + δ2hηb = 0

(3.11)

The dimensionless turbulent viscosity then can be expressed as:

νT =
uf D

√

1− δ2( ∂D
∂ηb

)2
N (z) (3.12)
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where uf = uf (η
b) is the dimensionless friction velocity along the section wetted

perimeter, scaled as uf = u∗/(gSD∗
0)

1/2 and, hence, expressed as

uf = N ∂U

∂z

∣

∣

∣

z=0
(3.13)

In the following we will assume either N (z) = 1/13 [Engelund, 1964] a parabolical

distribution corrected for the presence of the wake function [Dean, 1974], namely:

N (z) =
κ z(1− z)

1 + 2Az2 + 3Bz3
(3.14)

with κ (= 0.41), the von Karman constant, A = 1.84 and B = −1.56.

Taking advantage of the slow variability of the boundary (i.e., δ2 ≪ 1), we introduce

the following expansions for the bank region:

(U b, ub
f ) = (U b

0 , u
b
f0
) + δ2(U b

1 , u
b
f1
) +O(δ4) (3.15)

and the central region:

[U c, uc
f ] = [U c

0 , 1] + δ2[U c
1 , u

c
f1
] +O(δ4) (3.16)

However,in order to ensure that the solution at the river banks matches the solution

obtained for the central part of the cross section, we must modify the expansion in

the bank region as follows:

(U b, ub
f ) = (U b

0 , u
b
f0) + δ2(U b

1 + UH
1 , ub

f1
+ uH

f1
) +O(δ4) (3.17)

where UH
1 and uH

f1 are provided by the homogeneous solution of the boundary value

problem. We next introduce the following expansion for the entire channel cross
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section:

(û, uf ) = (û0, uf0) + δ2(û1, uf0) +O(δ4) (3.18)

We can solve the governing equation for bank region, central region, for patching of

solution and for overall entire cross section of the channel for various order of the

above equatios written for O(δ0) and O(δ2).

3.5 Flow field in the Bank Region

In the following equation (3.11) is solved to find the flow field for bank region. The

boundary condition to be associated with the equation requires that the flow velocity

at the bed is given by the classical logarithmic profile, i.e:

U |z=0 = uf



2 + 2.5 ln





D

dgr
√

1− δ2( ∂D
∂ηb

)2)







 (3.19)

with dgr (= d∗gr/D
∗
0) the dimensionless grain roughness. Moreover we prescribe that

the stress at the water surface vanishes while at the bed takes the value τ0, namely:

[

νT (
1

D

∂U

∂z
− δ2

1 + δ2hp1

∂D

∂ηb
)

]

z=1

= 0,

[

F2νT
∂U

∂z

]

z=0

= u2
f (3.20)

Substituting expansions (3.15) into equation (3.11) with the conditions (3.19) and

(3.20), at the various order of approximation we find:

• O(δ0)

ub
f0
(ηb) =

√
D (3.21)

U b
0(z, η

b) =

(

− z2

2N
+

z

N
+ 2 +

5

2
ln

D

dgr

)√
D (3.22)
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• O(δ2)

ub
f1
(ηb) =

√
D

13

[

(

5 +
5

8
ln

D

dgr

)

D
∂2D

∂ηb2
+

(

59

8
+

5

4
ln

D

dgr

)(

∂D

∂ηb

)2
]

(3.23)

U b
1(z, η

b) =
√
D

[{

(45

8
ln(

D

dgr
) +

7

2
+

25

16
ln(

D

dgr
)2
)

N +

(

− 7

8
− 5

16
ln(

D

dgr
)
)

z2 +
(7

4
+

5

8
ln(

D

dgr
)
)

z +

5

8
ln(

D

dgr
) +

1

2
+

1

N

(1

4
z − 1

16
z4 +

1

4
z3 − 3

8
z2
)

}

D
∂2D

∂ηb2
+ Bigg{

(205

16
ln(

D

dgr
) +

33

4
+

25

8
ln(

D

dgr
)2
)

N −

5

16
z2 +

(33

8
+

5

4
ln(

D

dgr
)
)

z + 2 +
15

16
ln(

D

dgr
) +

1

N

(

− 1

16
z2 − 1

16
z4 +

1

12
z3 − 3

8
z
)

}

(∂D

∂ηb

)2
]

(3.24)

In particular, the longitudinal velocity at the bed (i.e. at z = 0,) reads:

U b
10(z = 0, ηb) =

√
D

[{

1

13

(7

2
+

35

4
ln(

D

dgr
)
)

+
5

8
ln(

D

dgr
) +

1

2

}

D
∂2D

∂(ηb)2
+

{

1

13

(33

4
+

305

16
ln(

D

dgr
)
)

+
15

16
ln(

D

dgr
) + 2

}

(∂D

∂ηb

)2
]

(3.25)

Clearly, in order to determine the values attained by the friction velocity and the

longitudinal velocity described by equations (3.21), (3.23) and (3.22), (3.24), we

must specify the bed roughness dgr (e.g., 3d90 or 2d50, with d50 and d90 provided by

the grain size distribution of bed sediment) and, more importantly, the distribution

of the flow depth D(ηb) across the section. This latter distribution is obtained by

assuming that the friction velocity at the bed is equal to the threshold value for

sediment incipient motion and at the leading order of approximation takes the form
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of parabola [Glover and Florey, 1951], namely:

D(ηb) = 1− (ηb)2 (3.26)
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Figure 3.7: Depth of the flow at bank region as a fuction of the transverse coordinate
ηb.
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Figure 3.8: The second order correction to the friction velocity is plotted as a
function of the transverse co-ordinate ηb at the bed of the bank region: (a) ub

f1

for constant value of N = 1
13

and various values of δ, (b) ub
f1 for δ = 0.256 and

N (z) = kz(1−z)
1+2Az2+3Bz3

(here, k = 0.41).
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Figure 3.9: The friction velocity ub
f (= ub

f0 + δ2ub
f1) is plotted versus the transverse

curvilinear coordinate ηb of the bank region for, dgr = 0.02, and a parabolic profile
N = 1

13
.
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Figure 3.10: The second order velocity δ2U b
1 is plotted as a function of the transverse

coordinate ηb at the bed of the bank region (z = 0), N = 1
13
, δ = 0.256 and

dgr = 0.02.
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Figure 3.11: The velocity U b = U b
0 + δ2U b

1 is plotted as a function of the curvilinear
coordinate p in the bank region for (z = 0), N = 1

13
, δ = 0.256 and dgr = 0.02 .

Figure (3.8) reports the transverse distribution of the O(δ2) correction to the

dimensionless friction velocity δ2ub
f1 for various values of the relevant parameters

while figure (3.9) presents the transverse distribution of the overall dimensionless

friction velocity ub
f . Both Figures (3.10) and (3.11) refer to the case of a parabolic

bank profile. Figure (3.8) (b), on the other hand, reports velocity for ζ = 0.1, 0.3,

0.6 and 0.9 at bank for D(ηb).

3.5.1 Flow field in the central region

In the central region (see Figure 3.3), where ∂D/∂ηc = 0 , the differential problem

given by equation (3.11), complemented by the boundary conditions (3.19) and

(3.20), can be rewritten in terms of the transverse coordinate ηc (= p∗/D∗
0), and

takes the form:
∂

∂z
(νc

T

∂U c

∂z
) +

∂

∂ηc
(νc

T

∂U c

∂ηc
) = −1 (3.27)
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under the conditions:

∂U c

∂z

∣

∣

∣

z=1
= 0, U c|z=0 = uc

f [2− 2.5ln(dgr)], (3.28)

νc
T

∂U c

∂z

∣

∣

∣

z=0
= (uc

f )
2,

∂U c

∂ηc
|ηc=0 = 0, U c|ηc=β = U b|ηb=0. (3.29)

Stipulating that τ = 0 at the water surface, τ = τb at the bed , βc = b∗/D∗
0 and

that the velocities has to match in the overlapping region located between the bank

region and central region.
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Figure 3.12: Depth of the flow in central region, the relation between the transverse
coordinate ηb and ηc of the bank and central region is ηb = ηcδ.

The O(δ0) solution can be obtained by a simple integration, and reads:

U c
0(z) =

z

N
− z2

2N
+ (2− 2.5 ln(dgr)), uc

f0 = 1 (3.30)

The O(δ2) solution can be obtained by separating the variables and assuming a

solution of the form:



3.5. FLOW FIELD IN THE BANK REGION 65

U c
1(z, η

c) =
∑

k

Ac
k

cosh(λkη
c)

eλkβ
Fk(z) (3.31)

where

Fk(z) = cotλk cos(λkz)−cotλk+sin(λkz)+Rλk, R =
1

13
[2−2.5ln(dgr)] (3.32)

where the coefficients Ac
k are obtained by solving the linear systems

Ac
kCkm = bm (m = 0, 1, 2, ...) (3.33)

with Cλm and bm derived from equations (3.31) and (3.15), and reading:

Ckm = − 2λ2
k cot(λk)

Mπ[λ2
k − (Mπ)2]

, bm =
23− 5

4
ln(dgr)− 39

(Mπ)2

(Mπ)3
∂2D

∂(ηb)2

∣

∣

∣

ηb=0
,

M =
2m+ 1

2
.

(3.34)

Values of Ac
k are:

Ac
k1 = −10.8494, Ac

k2 = −0.3352, Ac
k3 = −0.0166, Ac

k4 = −0.0023,

Ac
k5 = −0.0005, Ac

k6 = −0.0002, Ac
k7 = −0.0001, Ac

kj = 0 j ≥ 8(3.35)

At the channel bed (z = 0) it then results:

U c
1(0, η

c) =
∑

k

Ac
kRλk

cosh(λkη
c)

eλkβc
(3.36)

The friction velocity at the bed then yields:

uc
f1 = N(0)

∂U c
1

∂z

∣

∣

∣

z=0
=
∑

k

Ac
k

λk

13

cosh(λkη
c)

eλkβc
(3.37)
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where the eigenvalues λk are the positive roots of the equation:

λk cot(λk) = Rλ2
k − 1 (3.38)

namely: λ1 = 1.25, λ2 = 3.48, λ3 = 6.46, λ4 = 9.54, λ5 = 12.65, λ6 =

15.78, λ7 = 18.91, λ8 = 22.04, λ9 = 25.17, λ10 = 28.31, λ11 = 31.45, λ12 =

34.59, λ13 = 37.73, λ14 = 40.86, λ15 = 44.0 . . . .
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Figure 3.13: The second order contribution to the velocity (= δ2U c
1), is plotted as a

function of the transverse coordinate ηc in the central part of the cross section for δ
= 0.30328, dgr =0.02 and βc= 3.

Figure (3.12) represents the depth of flow for the central coordinte system such that

D = 1 at the cross section ηc = 0. Figure (3.13) shows second order velocity in

central region, δ2U c
1 , while the Figure (3.14) shows the transverse distributions of

the overall velocity U c.

The solution (3.31) quantifies the effect of bank region on the flow field in the

central region. In the absence of these effects the velocity profile (and hence the

depth averaged velocity, as well as the friction velocity) would not vary in the trans-
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Figure 3.14: The velocity U c = U c
0 + δ2U c

1 , is plotted as a function of the transverse
coordinate ηc in the central part for δ = 0.30328, dgr = 0.02 and βc = 3.
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Figure 3.15: The second order contribution to the velocity δ2UH
1 is plotted as a

function of the transverse coordinate ηc of the central region for δ = 0.256, dgr = 0.02
and βc = 4.

verse direction. This effect is proportional to δ2 and increases with decreasing βc
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and, conversely, it decreases with increasing βc. Indeed,

lim
βc→0

cosh(λkp)

eλkβc
= 1, lim

βc→∞

cosh(λkη
c)

eλkβc
=

1

2
(3.39)

3.5.2 Patching of the solutions
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Figure 3.16: The friction velocity O(δ2) is plotted as a function of the transverse
coordinate ηc for δ = 0.256, dgr = 0.02 and βc = 4.

The homogeneous solution of equation (3.27) is used to match together the bank and

central region solutions under the assumption that the overlapping is concentrated

in a layer of thickness O(δ) near the section ηb = 0 (i.e., p=βc). In this layer we can

assume that:

D = 1 +O(δ2),
∂D

∂ηc
= O(δ2),

∂2D

∂(ηc)2
= O(δ2) (3.40)
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Moreover, recalling the boundary conditions (3.20), in the limit of ηb → 0 (i.e,

ηc → βc), we require that:

lim
ηc→βc

UH
1 −→ 0,

∂UH
1

∂ηc

∣

∣

∣

∣

∣

ηb=0

=
∂U c

1

∂ηc

∣

∣

∣

∣

∣

ηc=βc

(3.41)

The solution that meets these conditions is:

UH
1 (z, ηc) =

∑

k

−Ac
k

sinh(λkβc)

eλkβc
e−λk(η

c+βc) Fk(z) (3.42)

Figure (3.16) shows second order corrected bank region friction velocity δ2uH
f1 at

central region. It then turns out that, at the bed (z = 0),

UH
1 (0, ηc) = −

∑

k

Ac
k Rλk

sinh(λkβc)

eλkβc
e−λk(η

c+βc) (3.43)

uH
f1 = N

∂U c
1

∂z

∣

∣

∣

z=0
=

1

13

∂U c
1

∂z

∣

∣

∣

z=0
(3.44)

and, hence,

uH
f1 = −

∑

k

Ac
k

λk

13

sinh(λkβc)

eλkβc
e−λk(η

c+βc) (3.45)

3.5.3 Overall solution

In order to solve the flow field, we consider the equilibrium stable channel section

that, under uniform flow conditions, is obtained by assuming that everywhere the

bed shear stress equals the critical threshold for sediment movement. We assume

the curvilinear coordinate system (s∗, n∗, z∗) shown in Figure (3.17), where s∗ is the

longitudinal coordinate, n∗ is the transverse curvilinear coordinate (with origin at

the channel axis) and z∗ is the axis normal to the bed. The cross section in subdivide

in i) a central region, of width 2b∗ and depth D∗
0 and ii) two bank regions, of width
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(B∗ − b∗)/2, varying flow depth d∗ and a overall wetted perimeter P ∗
0 (see Figure

(3.17)).
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Figure 3.17: Sketch of the entire channel cross-section considered to determine the
flow field and related notations.
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Figure 3.19: Depth of flow and corresponding velocity of entire cross section is

plotted as a function of the normalized co-ordinate η, D =erf
(
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√
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)

.

Under the assumption of uniform flow conditions, the longitudinal momentum
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Figure 3.18: Depth of flow of entire cross section is plotted as a function of the

normalized co-ordinate η for a bank region profile for the type, D =erf
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Figure 3.20: The corrected friction velocity uf (= δ2uf1) of entire cross section as a
function of the transverse coordinate η for δ = 0.256, ks = 0.02 and β = 4.

equation, averaged over turbulence, reads:

∂

∂z∗
(hην

∗
T

∂u∗

∂z∗
) +

∂

∂n∗ (
ν∗
T

hη

∂u∗

∂z∗
) + gShη = 0 (3.46)
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Figure 3.21: Friction velocity δ2uf1 is plotted as a function of the normalized co-
ordinate (η) across the entire equilibrium section for δ = 0.194, ks = 0.02 and β = 5.
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Figure 3.22: Channel cross section (of the friction velocity given below) is plotted

as a function of the normalized co-ordinate D =erf
(

β(1−
√

(η))
)

for β = 6.

where g is the gravitational constant, S is channel bed slope, u∗(z∗, n∗) is the tur-

bulence averaged longitudinal velocity component, ν∗
T is the turbulent viscosity and
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Figure 3.23: The corrected friction velocity uf (= uf0+δ2uf1) of entire cross section
as a function of the transverse coordinate η for δ = 0.256, dgr = 0.02 and for β = 6.
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Figure 3.24: The corrected velocity (= U0+δ2U1) of entire cross section as a function
of the transverse coordinate η for δ = 0.256, dgr = 0.02.

hη is the transverse metric coefficiente defined as:

hη = 1 + z∗
∂2d∗/∂n∗2

√

1− (∂d∗/∂η∗)2
(3.47)
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In order to express the solution with respect to a unique reference system, we intro-

duce the normalized coordinate η defined as:

η =
n∗

P ∗
0 + b∗

(3.48)

Expressing the governing equation (3.46) in terms of dimensionless co-ordinate n,

and assuming that the transverse variations of the transverse profile are slow (i.e.,

the dimensionless parameter δ = D∗
0/P

∗
0 is small), βc =

b∗

D∗

0
then yields,

F 2
2

∂

∂z

[(

1 + (
δ

1 + δβc

)2hη1

)

νT
∂û

∂z

]

+ (
δ

1 + δβc

)2
(

∂

∂η
− zF1

∂

∂z

)

[

νT

1 + ( δ
1+δβc

)2hη1

(

∂

∂η
− zF1

∂

∂z

)

û

]

+ 1 +

(

δ

1 + δβc

)2

hη1 = 0 (3.49)

where,

z =
z∗

D̂∗
, d =

d∗

D∗
0

, D̂∗ =
d∗

cosα
= D∗

0

d
√

1− ( δ
1+δβc

)2(∂d
∂η
)2
, û =

u∗
√

gSD∗
0

,

νT =
ν∗
T

D∗
0

√

gSD∗
0

(3.50)

F1 =
1

d

∂d

∂η

[

1 +
( δ
1+δβc

)2d

1− ( δ
1+δβc

)2( ∂d
∂n
)2
∂2d

∂η2

]

, F2 =

√

1− ( δ
1+δβc

)2(∂d
∂η
)2

d

hη1 =
z d

1− ( δ
1+δβc

)2(∂d
∂η
)2
∂2d

∂η2

(3.51)

Moreover, the dimensionless turbulent viscosity can be expressed as:

νT =
uf d

√

1− ( δ
1+δβc

)2(∂d
∂η
)2

N (z) (3.52)
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where uf = uf (η) is the dimensionless friction velocity along cross section bed,

scaled as uf = u∗
f/(gSD

∗
0)

1/2, and N (z) is the vertical distribution of the turbulent

viscosity.

The boundary condition to be associated with equation (3.49) requires that the

flow velocity at the bed follows a classical logarithmic profile, i.e:

û|z=0 = uf



2 + 2.5ln





d

dgr
√

1− ( δ
1+δβc

)2(∂d
∂η
)2)







 (3.53)

with dgr (= d∗gr/D
∗
0) the dimensionless grain roughness.dgr is from 0.001 to 0.05.

Moreover we prescribe that the stresses at the water surface and at the bed are

equal to τ = 0 and τ = τb, respectively, and hence :

[

νT (
1

d

∂û

∂z
−

( δ
1+δβc

)2

1 + ( δ
1+δβc

)2hη1

∂d

∂η
)

]

z=1

= 0,

[

F2νT
∂û

∂z

]

z=0

= u2
f (3.54)

Moreover, we assume that the dimensionless friction velocity can be expressed as:

uf = N ∂û

∂z

∣

∣

∣

z=0
(3.55)

At the various order of approximation we find:

• O(δ0)

û0(z, η) =

(

− z2

2N
+

z

N
+ 2 +

5

2
ln

d

dgr

)√
d (3.56)
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• O(δ2)

û1(z, η) =

√
d

1 + δβc

{[

(45

8
ln(

d

dgr
) +

7

2
+

25

16
ln(

d
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)2
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(
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8
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16
ln(
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4
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8
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1
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1
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4
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16
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4
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8
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d
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16
ln(
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16
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ln(
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ln(
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− 1

8
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1

16
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1

4
z
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]

(∂d

∂η

)2
}

(3.57)

where d = d(η) describes the cross section profile (Figure 3.18). And Figure

(3.19) represents the depth of flow and corresponding velocity for various β

d(η) = erf
(

β(1−√
η
)

(3.58)

where η describes the cross section profile at the bank region. Following equation

(3.58), we assume that this region is described by a function of the form and β = B∗

D∗

0

is the channels aspect ratio.

Finally, we calculate the depth averaged longitudinal velocity, ū(η) (= ū0+δ2ū1),

by along the vertical, obtaining:

ū0(η) =

√
d

3N
+

[

2 +
5

2
ln(

d

dgr
)

]√
d

=
(19

3
+ 2.5ln

d

dgr

)√
d (3.59)
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ū1(η) =

√
d

1 + δβc

(

(781

390
d+

229

256
dln(

d

dgr
)
)

d
∂2d

∂n2

+
(5357

780
+

315

104
ln(

d

dgr
)
)(∂d

∂n

)2
)

(3.60)

We now recall that the cross section area A and the cross sectionally averaged

velocity are given by:

A∗ = 2
(

P ∗

0
∫

0

d∗ dn∗ +

b∗
∫

P ∗

0

d∗ dn∗
)

U∗
0 =

1

A∗

(

P ∗

0
∫

0

d∗ū∗ dn∗ +

b∗
∫

P ∗

0

d∗ū∗ dn∗
)

(3.61)

and, in dimensionless form:

A(η) =
A∗

D∗
0(P

∗
0 + b∗)

= 2

∫ 1

0

d dη U0(η) =
U∗
0

√

gD∗
0S

=
1

A

∫ 1

0

d ū dη

(3.62)

We finally rescale the depth averaged velocity as:

û(n) =
ū

U0

= A
ū0 + δ2ū1

2
∫ 1

0
d ū dη

(3.63)

so that the depth averaged velocity can be written in the form:

û = u0(n) = 1 + ũ(n) (3.64)

As a consequence, the term ũ which quantifies the departure from the cross section-

ally average controlling longitudinal dispersion process, is given by:

ũ(n) = u0(n)− 1 = A
ū0 + δ2ū1

2
∫ 1

0
d ū dη

− 1 (3.65)
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and flow depth is

d0(n) = erf
(

β(1−
√

(n))
)

(3.66)

Figure (3.18) shows theoritical depth of flow for the entire channel cross section
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Figure 3.25: Channel cross section (of the rescaled velocity given below) is plotted

as a function of the normalized co-ordinate n, d0 =erf
(

β(1−
√

(n))
)

for β = 6.

for varios width and figure (3.19) represents both channel cross section for both

bank and central part and corresponding velocity. The calculated friction velocity

(δ2uf1) is justified with Tubino and Colombini [1992] (see figure (3.20) and (3.21)).

In figure (3.22), channel cross section is drawn for the corrected friction velocity

given in figure (3.23) uf and corrected velocity u figure (3.24). And figure (3.25),

(3.26) are for rescaled channel cross section and rescaled velocity.
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Chapter 4

Longitudinal Dispersion in

Straight Equilibrium Channel

In this chapter we compare the theoretical dispersion coefficient estimated on the

basis of the flow field considered in 3 with the data collected by Godfrey and Fred-

erick [1970] in a few rivers. Substituting eqution (3.64) and (3.58) into (2.49) and

assuming that the cross sectional bed profile is described by the relation 83.66) we

obtained the dispesion coefficient for various β (See Figure 4.1).

4.1 Determination of transverse mixing

coefficient

In order to estimate the longitudinal dispersion coefficient through equation (2.49)

it is convenient to express the transverse mixing coefficient kn as a sum of the two

terms, reflecting two different kinds of mixing process:

kn = En + ǫn (4.1)

81
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Figure 4.1: The Longitudinal dispersion coefficient in a straight river for various
values of the width to depth ratio β.

where En accounts for the transverse turbulent diffusion coefficient and ǫn is related

to the transverse dispersion.

The transverse turbulent diffusion coefficient En usually falls in the range 0.15−
0.30 [Rurherford, 1994], with the average value 0.145 determined on the basis of 138

sets of experimental data collected from different investigators,

On the other hand, for large rivers the transverse dispersion coefficient can be esti-

mated through the relation [Smeithlov, 1990]:

ǫn =
1

3520

( U∗
0

√

gD∗
0S

)(2B∗

D∗
0

)1.38

(4.2)

As a first approximation, we can estimate the transverse mixing coefficient through

the relation

kn = 0.145 +
1

3520

( U∗
0

√

gD∗
0S

)(2B∗

D∗
0

)1.38

(4.3)
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4.2 Comparison with the theory of Elder [1959]

From Figure (4.1)(i.e., theKs0 − β graph), it can be observed that the dispersion

coefficient is higher for smaller aspect ratios (i.e., the ratio of width to depth) for

large enough values of β, the dispersion coefficient approaches the constant value

prescribed by Elder [1959]. For example, if we consider β = 46 we obtain

Ks0 = 0.05201 (4.4)

and returning to similar dimensionless quatities,
K∗

s0

D∗

0u∗

= 5.20, which is quite close

to the value 5.86 corresponding to an infinitely wide channel.

4.3 Comparison with the experiments of Godfrey

and Frederick (1970)

Godfrey and Frederick [1970] carried out a series of tracer experiments to estimate

the dispersion coefficient in six reaches of four rivers. To this aim they measured the

concentration and the velocity across a number of cross sections (6) of the following

rivers.

1. Clinch River (above gage), near Clinchport, Va.,

2. Clinch River (below gage), near Speers Ferry, Va.,

3. Copper Creek (above gage), near Gate City, Va.,

4. Copper Creek (below gage), near Gate City, Va.,

5. Powell River, near Sneedville, Tenn.,

6. Coachella Canal, near Holtville, Calif..
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The cross sections (six for each channel reach) interested by the flow field measure-

ments are shown in Figures (4.2) - (4.4).

(a)

(b)

Figure 4.2: Experimental cross section considered in the case of the Clinch River for
tests 2, 7 and 10 carried out by Godfrey and Frederick [1970] a) Google map image;
b) Planform river configuration

Godfrey and Frederick [1970] examined the influence of channel geometry and

flow characteristics on dispersion. They calculated the longitudinal dispersion co-

efficient dividing the variance of concentraion by double of time and calculated the

concentration from the basic equations for turbulent dispersion under steady uni-

form flow that satisfies the initial condition of concentration material. To determine

the longitudinal dispersion coefficient they also measured the discharge, mean ve-

locity, shear velocity, slope, flow depth, width, cross sectional area of each surveyed

cross section . In particular, for each vertical, the velocities are measured at relative

elevations with respect to the flow depth
z∗1
d∗n

= 0.1, 0.2, 0.4, 0.6, 0.8 and 0.9
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(a)

(b)

Figure 4.3: Experimental cross section considered in the case of the Clinch River
for test 5 carried out by Godfrey and Frederick [1970] a) Google map image; b)
Planform river configuration

(a)

(b)

Figure 4.4: Experimental cross section considered in the case of the Copper River
for test 6 carried out by Godfrey and Frederick [1970] a) Google map image; b)
Planform river configuration

The cross-section distributions of the dimensional and dimensionless depth av-

eraged velocities resulting from the analysis presented in 3 are here compared with
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Figure 4.5: Sketch of the equilibrium cross-section considered to determine the di-
mensional Depth average velocity, wetted perimeter, central part and related nota-
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Figure 4.6: Dimensional flow depth (d∗) and depth averaged velocity (u∗) measured
across sections surveyed by Godfrey and Frederick (1970) in various tests (The solid
black circles denote the central region while the white circles are located in the bank
regions).

those measured by Godfrey and Frederick [1970]. The cross sectional area A∗, the

depth-averaged velocity, ū∗, and the cross sectional averaged velocity, U∗
0 , are de-

termined by integrating along the vertical across the section, using the trapezoidal
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Figure 4.7: Dimensional flow depth (d∗) and depth averaged velocity (u∗) measured
across sections surveyed by Godfrey and Frederick (1970) in various tests (The solid
black circles denote the central region while the white circles are located in the bank
regions).

rule. The wetted perimeter P ∗
0 is evaluated as follows:

P ∗
0 = P ∗

10 + P ∗
20 + . . .+ P ∗

n0 (4.5)

where, (4.5) P ∗
i0 are the straight segments approximating the transverse bed profile.

The predicted and observedtransverse distributions of depth averaged velocities are

shown in figures (4.6) and (4.7). In the figures the bank and central regions are

distinguished with white and black circles, respectively. Similarly, Figures (4.8) and

(4.9) shows the dimensionless transverse velocity profiles. To investigate the accu-

racy of the predicted longitudinal dispersion coefficients. Their values are reported

in Table (4.1) and in Figure (4.10) together with measured values and the estima-

tions provided by some empirical and theoretical relations. Note that only the data

concerning straight channel reaches are considered.
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Figure 4.8: Comparison with dimensionless depth flow (d) and depth average ve-
locity (u) of entire cross section from Godfrey and Frederick (1970) in various tests
(The solid black circles denote the central region while the white circles are located
in the bank regions).

Table 4.1: Comparison of observed longitudinal Dispersion Coefficient of Godfrey
and Frederick [1970] and with others.

Dispersion co-efficient Ks0

Koussis
Iwasa Seo and
and and Ridriguez

Present Fischer Liu Aya Cheong -Mirasol
Stream Measured model [1975] [1977] [1991] [1998] [1998]

Test-2, sec-2 0.96 0.81 1.30 5.04 13.12 2.00 10.74
Test-2, sec-4 1.60 1.0 2.16 8.40 21.83 3.35 17.88
Test-5, sec-5 3.19 2.10 9.25 11.15 37.57 6.86 16.07
Test-6, sec-3 4.20 1.80 2.44 1.88 18.9 6.90 5.70
Test-6, sec-6 4.33 1.95 32.5 3.89 9.58 7.12 5.89
Test-7, sec-4 1.70 1.32 3.58 2.70 17.07 7.45 3.28
Test-10, sec-4 1.91 1.53 3.27 2.90 17.8 7.70 3.70
Test-10, sec-5 1.97 1.19 3.30 3.00 18.30 7.90 3.8
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Figure 4.9: Comparison with dimensionless depth flow (d) and depth average ve-
locity (u) of entire cross section from Godfrey and Frederick (1970) in various tests
(The solid black circles denote the central region while the white circles are located
in the bank regions
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It clearly appears that that the present theoretical presentationsare in reason-

able in good agreementwith the measured data and in any case, ensure a better

accuracythen the other predictors available in literature (see figure 4.10).

4.4 Comparison of dispersion with the theoretical

predictions of Deng [2001]

The prediction given the present modelare here compared with the longitudinal dis-

persion coefficient (53) measured in the reaches of 29 rivers in the United States.

These data are taken from Deng (2001) who usedthe dataset to validate his theo-

retical predictor. The relation developed by Deng [2001] gives the dispersion coeffi-

cient on the basis of empirical description of transverse velocity, distribution of the

transverse mixing coefficient. The data reported in Table (4.2) indicate that the

percentage of predictions falling within the range of 0.5 < Dpredicted/Dmeasured < 2

are 51/53 in the present methodology is employed and 47/53 when the relation-

ship proposed by Deng[2001] is used. Moreover, as predictions given by the present

theory are closer to the observed values than Deng′s. This means that 81% of the

estimates obtainedwith the present modelare close to the observed dispersion co-

efficients. Figure (4.11) presents the corresponding comparison to a ±30% error

usually adopted measured data of Deng [2001] to quantify the maximum acceptable

error. Present model shows a better agreement with respect to observed data. The

discrepancy ratios shown in Figure (4.12) confirm that the present model provides an

overall better agreement with the measure dispersion coefficient than the approach

developed by Deng [2001].
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Table 4.2: Comparison of Dispersion Coefficient of measured, present study and
Deng [2001].

Dispersion co-efficient Ks0

No River Measured Calculated Deng[2001]

1 Antietam creek, MD. 6.51 5.24 6.52
2 14.28 17.59 6.65
3 8.23 7.40 5.90
4 3.97 4.35 6.8
5 Monocacy River, MD. 1.86 1.23 5.38
6 Conococheague creek, MD. 8.4 5.99 4.7
7 3.93 4.35 6.87
8 Chattahoochee River, GA. 3.17 3.04 6.02
9 6.98 7.92 6.13
10 Difficult Run, Va. 1.04 2.87 5.22
11 Bear Creek, Colo. 0.35 9.55 3.41
12 Little Pincy Creek, MD. 2.29 2.59 5.24
13 Bayou Anacoco, LA. 2.06 2.24 7.77
14 Bayou Bartholomew, LA. 16.38 18.19 6.89
15 Tickfau River, LA. 5.1 5.77 4.78
16 Tangipahoa River, LA. 5.98 6.74 6.51
17 Red River, LA. 1.85 0.22 3.5
18 Red River, LA 5.57 5.1 5.73
19 Red River, LA 6.63 5.26 6.70
20 Sabine River, LA. 3.88 1.98 5.59
21 Sabine River, TEX. 13.89 16.28 4.98
22 Sabine River, TEX. 10.48 9.98 7.48
23 Sabine River, TEX. 6.3 6.49 8.52
24 Mississippi River, La. 1.19 1.87 8.12
25 Mississippi River, Mo. 1.63 0.58 4.44
26 Mississippi River, Mo. 0.92 0.93 6.35
27 Wind River, Wyo. 8.43 9.47 6.89
28 Wind River, Wyo. 6.25 5.62 7.77
29 Copprer Creek, Va. 10.1 8.77 4.14
30 Clinch River, Va. 2.9 3.69 4.67
31 Copper Creek, Va. 15.09 14.33 2.88
32 Powell River, Tenn. 6.48 6.64 4.13
33 Clinch River, Va. 2.13 2.5 5.66
34 Copper River, Va. 4.33 5.61 5.9
35 Clinch River, Va. 1.86 4.75 7.27
36 Clinch River, Va. 2.1 5.48 6.73
37 Missouri River, Iowa. 12.24 11.51 4.62
38 Bayou Anacoco, La. 7.38 6.74 6.08
39 Bayou Anacoco, La. 5.39 4.64 6.21
40 Nooksack River, Wash. 1.62 1.97 3.85
41 Wind River, Wyo. 1.59 1.63 5.98
42 Wind River, Wyo. 3.05 2.87 7.63
43 John Day River, Oreg. 1.10 2.24 6.46
44 John Day River, Oreg. 4.64 10.06 5.08
45 Minnesota River 6.23 7.54 8.9
46 Minnesota River 4.32 4.65 5.29
47 Amite River 3.42 3.99 5.77
48 Susquehanna River 2.96 5.61 3.78
49 Bayou Anacoco 4.79 4.62 6.06
50 Muddy River 5.77 8.53 5.32
51 Muddy River 7.22 8.2 5.35
52 Comite River 3.47 3.96 6.1
53 Missouri River 4.69 4.98 6.55
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Figure 4.13: Scatter-matrix plot representation, comparing the present model data
with measured dispersion coefficient and the prediction given by Deng [2001]

In order to better quantify the degree of accuracy of the predictions, a com-

parison analysis has also been carried out. Scatter-matrix plots shown in Figure

(4.13) represent the multivariate relationship among a almost similar behaviour in

the box-whisker plots characterized the measured dispersion coefficients and the

estimates obtained with the present model. In particular an almost linear relation-

ship seem to exist between these two sets of data (see box a and c). On the other

hand, estimates obtained by Deng [2001] model have a shrinked variation (box —

)but different from the actual measurements as well as present model. Table (4.3)

summeries the statistics for each of the selected sets of data (i.e., measured values,

estimates obtained with the present model, estimaates provided by Deng [2001]).

It includes measures of central tendency (average), measures of variability (stan-

dard deviation, coefficient of variation, minimum, maximum, range), and measures

of shape (standadized skewnwss and kurtosis). Of particular interest are the latter

measures, which can be used to determine whether the sample comes from a nor-

mal distribution. Values of these statistics outside the range of -2 to +2 indicate

significant departures from normality, which would tend to invalidate many of the

statistical procedures normally applied to this data.
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Table 4.3: Summery Statistics

Measured present model Deng [2001]
Count 53 53 53
Average 5.32868 5.93679 5.87302
Standard deviation 3.84048 4.07989 1.31969
Coeff. of variation 72.0719% 68.7222% 22.4704%
Minimum 0.35 0.22 2.88
Maximum 16.38 18.19 8.9
Range 16.03 17.97 6.02
Stnd. skewness 3.55902 3.89008 -0.120823
Stnd. kurtosis 1.62868 2.74084 -0.209883



Chapter 5

Flow Field in Equilibrium

Channels with Arbitrary

Curvatures

5.1 Introduction

The development of the mathematical model that predict the longitudinal dispersion

coefficient of alluvial rivers is based on a physical model simulating the outer bank

erosion and the inner bank reconstruction considering distributions of channel axis

curvature and cross section width.

The two dimensional flows plays a vital role in hydraulic geometry of alluvial

channels i.e, defining flow patterns in meandering channel, determining the particle

migration rate and the rate of alluvial channel deformation. A flow with secondary

currents, has a structure with skewed shear profiles having different velocity profiles

in two orthogonal directions.

Curvature, and sediment are acting planimetric effect considered for flow field

(see Figure 5.1). Both of these predict the development of alternate bar topography

95
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Figure 5.1: Flow field of a meandering channel (Source: http: //www.geologycafe.
com/ class/ chapter9. html)

Figure 5.2: Depth of flow of a meandering river (Source: http: //www4.uwm.edu/
course/ geosci697/ rivers -deltas/ rivers-deltas.html.)

identified as the most typical antisymmetrical patterns in meander bends. In the

classical linear meander solution [Ikeda et al., 1981; Blondeaux and Seminara, 1985;

Zolezzi and Seminara, 2001] the bank erosion and the opposite bank accretion (see

Figure 5.2) are assumed to work on the long term scale. Secondary flow (see Fig-

ure 5.4) contribute to river bed deformation through the construction of transverse

near-bed shear stresses and the redistribution of longitudinal momentum. Several

experimental and theoretical contributionsons flow field structure and bed topog-



5.1. INTRODUCTION 97

raphy are available in literature (see Figure 5.3) [Rojovskij, 1957: Johanesson, and

Parker, 1989b; Seminara and Solari 1998; Blanckaert and de Vriend, 2004a; Kalk-

wijk and de Vriend, 1980; Seminara and Tubino, 1980; Zolezzi and Seminara, 2001;

Repetto et al. 2002]. Linear models of the steady flow in meandering channels

have crucial role in disclosing the meandering dynamics [Seminara, 2006], and in

exploring the long term (order of centuries) evolution [Howard, 1992; Sun et al.,

1996; Frascati and Lanzoni, 2009]. Odgaard and Bergs [1988] used a power law to

model velocity distribution in a curved channel, whereas Odgaard [1981] extended

Falcon′s [1979] analysis based on the power law to propose an improved model for

steady-state transverse bed profile. As a next step for investigate longitudinal

Figure 5.3: Flow field of a meandering river (Source: http: // snippetseam-
stress.blogspot.it/ 2009/ 01/ middle -course -of- river -formation -of.html).

dispersion coefficient in meandering river, in the present section flow field and depth

of flow are considered for meandering river. The spatial variation of dispersion co-

efficients is more important in natural rivers with meandering configuration, which

often occur in nature. In meandering rivers not both the primary flow path along

watercourses and the repeating generation and dissipation of secondary currents



98 CHAPTER 5. FLOW FIELD IN CURVATURES

Figure 5.4: Helical flow in meandering river (Source: http:// thebritishgeogra-
pher.weebly.com/ river -landforms.html)

control the dispersion. The alternating bends, induces secondary currents that alter

the magnitude of both transverse mixing and longitudinal dispersion [Fischer, 1969].

Therefore, when accurate results are required in the modeling of solute mixing in

meandering rivers, a more detailed information on the spatially varied dispersion

coefficient has possibly to be incorporated into the model. In open channels, once

vertical mixing is completed in the initial period of solute transport, the vertical

shear velocity profile increases the longitudinal spreading in the streamline direc-

tion [Taylor, 1953]. However, the secondary current around pronounced curvatures

in many open channels introduces a large magnitude of transverse circulation com-

bined with the principal longitudinal flow. Hence, the solute dispersion by the

secondary current cannot be described by only the dispersion in the longitudinal

direction; there is a dispersion effect in the transverse direction that is much more

effective than the transverse turbulent diffusion. To introduce the spatial varia-

tion of mixing characteristics in modeling of solute transport, several efforts have

been put forward that solved the depth-averaged advection dispersion equation us-

ing spatially varying mixing coefficients. The variation in the magnitude of the

dispersion process in natural rivers has been reported through the determination of
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dispersion coefficients by a dye tracer test; Day [1977] and Marivoet and Van Crae-

nenbroeck [1986] perceived a wide variation of longitudinal and transverse dispersion

coefficients in natural streams. Piasecki and Katopodes [1999] determined spatially

distributed dispersion coefficients in a channel of variable depth and a natural river

by adopting the adjoint sensitivity equation. Jamali et al. [2005] derived an approx-

imate analytical solution to the one-dimensional 1D advective dispersion equation

for rivers with variable dispersion coefficients. But their derivation is only limited

to the slow variation of the longitudinal dispersion coefficient accompanied by the

typical increase of hydraulic geometry in downstream of natural rivers. Barros et

al. [2006] obtained numerical-analytical solutions for 2D mathematical models with

spatially variable mixing coefficients that predict the dispersion of dissolved pollu-

tants in rivers, streams, and channels. Deng [2002] has established a method which

predict the dispersion coefficient using a channel shape equation.

In this chapter the flow field and depth of flow proposed by Frascati and Lanzoni

[Frascati and Lanzoni, 2013] is used to predict the spatial distribution of longitudinal

dispersion coefficient and the corresponding reach averaged value. The morphody-

namic model that predicts, at a linear level, the spatial distribution of the flow field

and depth of flow of an alluvial river characterized by a prescribed (generally irreg-

ular) distribution of channel axis curvature in a constant channel width. The two

dimensional depth averaged flow field is then used to estimate the correction ks1 to

the longitudinal dispersion coefficient for a straight channel analyzed in section 2.4

of the present thesis. And obtained the longitudinal dispersion coefficient for allu-

vial river using equation (2.55) figure (5.1) displays the flow variation of meandering

river with erosion a nd deposition.
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5.2 Formulation of the problems

5.2.1 Notations

Let us consider the steady flow occurring in a meandering cohesionless channel

characterized by a spatilly varying distribution of both channel axis curvature C∗(s∗)

and channel width local B∗(s∗). Moreover, D∗(s∗) is the local flow depth, R∗
0 is the

minimum along reach, B∗
0 is the maximum along reach B∗ and D∗

u is uniform flow

depth, θc is the angle that the local tangent to the channel axis form with a given

(but arbitrary) reference axis x∗, d∗gn is the mean bed grain size, h∗ is the free

surface elevation, computed with respect to the local horizontal plane containing n∗

and x∗, ν∗
T is the turbulent eddy viscosity, q∗ = (q∗s , q

∗
n) is the sediment flux per unit

width, g is the acceleration due to gravity, ρ and ρs are water and sediment density,

respectively. Hereafter, a superscript asterisk will indicate a dimensional variables.

Dimensionless parameters relevant to the problem we are going to investigate, the

channel aspect ratio, βu =
B∗

avg

D∗

u
the dimensionless grain size, ds = d∗s

D∗

u
the Shields

parameter, τ∗u = τ∗

(ρs−ρ)gd∗s
and the Reynolds particle number, Rep =

√
( ρs
ρ−1

)gd3s

ν
.

5.2.2 Coordinate system

Flow and bed topography are referred to as an ortogonal intrinsic reference sys-

tem (s∗, n∗, z∗), where s∗ is the longitudinal axis coordinate n∗ is transverse axis

coordinate and z∗ is the vertical co-ordinate, pointing upward figure (5.5).

5.2.3 Scaling

In order to account for the curvilinear nature of the axis s∗ following the channel

axis, we must account for the fact that horizontal distances measured along different

longitudinal coordinate surfaces are in general are not equai when moving from one
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transverse coordinate surface to the other. The metric coefficient account for the

fact is,

hs = 1 +
n∗

R∗(s∗)
(5.1)

Considering channels with nonuniform width and curvature axis, it is convenient to

define the following dimensionless variables

s = s∗/B∗
avg, n = n∗/B∗

D = D∗/D∗
u, B = B∗/B∗

avg

u = u∗/U∗
u , v = v∗/U∗

u

U = U∗/U∗
u , V = V ∗/U∗

u

ξ = z−(F 2
uh−D)
D

ν =
B∗

avg

R∗

0

C(s) = R∗

0

R∗(s∗)

(5.2)

Furthermore, the longitudinal metric coefficient of the co-ordinate system, N = 1
hs
,

and the differential operator Lb are arising as a consequence of width variation
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defined as follows

N =
1

1 + νnBC Lb =
∂

∂s
− n

B
Bs

∂

∂n
(5.3)

Indeed, since the transverse co-ordinate n is normalized with the half channel width

that, the following derivation chain rule has

∂

∂s
→ ∂

∂s
+ n

B, s

B

∂

∂n
,
∂

∂n
→ 1

B

∂

∂n
(5.4)

5.2.4 Dimensionless equations

The model is represented by the steady-Reynolds equations for longitudinal and

transversal momentum, along with the continuity equations for the fluid and solid

phases.The dimensionless form of these equations reads as follows:

NuLbu+ B−1vu,n +wu,z +NνCuv = −N(Lbh− βCfu(νTu,z z)) (5.5)

NuLbv + B−1vv,n+wv,z −NνCu2 = −B−1h, n+ βCfu(νTv,z z)) (5.6)

NLbu+ (B−1 ∂

∂n
+NνC)v + w,z = 0 (5.7)

NLbqs + (B−1 ∂

∂n
+NνC)qn = 0 (5.8)

where a comma indicate the partial derivative. In these equations C is the dimen-

sionless channel axis curvature and ν is the curvature ratio, such that,

ν =
B∗

avg

R∗
0

, C(s) = R∗
0

R∗(s∗)
,

∂θc
∂s

= −νC(s) (5.9)

with θc is the angle that the local tangent to the channel axis forms with the direction

of an arbitrary selected cartesian axis of reference, x∗ and R∗
0 of the channel axis

(e.g., its minimum value in the meandering reach). The operator Lb arises as a
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consequence of the stretching of the co-ordinate n normalized with the local width

B∗(s∗) such that it varies in the interval ±1. The above equations are associated

with following boundary and integral conditions;

u = v = w = 0 (z = z0)

u,z = v,z = w −NLb(F
2
uhu)−B−1F 2

uh,n v = 0 (z = F 2
0 h)

∫ F 2
0 h

z0

~u.~nb dz = ~q.~nb = 0 (n = ±1) (5.10)

Where ~nb is the unit vector locally normal to the banks. These conditions impose

no-slip condition at the bed z = z0, no stress at the free surface, the requirement

that the latter must be a material surface and the requirement that the, channel

walls are impermeable both to the flow and channel sediment flux.

To close the problem three integral conditione are required, ensuring that flow dis-

charge, sediment supply and averaged reached slope are not affected by perturbations

of either the flow field or the bed configuration. The following velocity structured is

then assumed to account for curvature driven and topographic drivensecondary flow

[Kalkwijk and De vriend, 1980: Smith and Mclean, 1984; Johanesson and Parker,

1989; Zolezzi and Seminara, 2001]

u = U(s, n)F(ξ)

v = ν ṽ(s, n, ξ) + V (s, n)F(ξ)
(5.11)

Here U and V denote the depth averaged values of u, v, ṽ denotes the local distri-

butionof the transverse secondary flow and F is a dimensionless function describing

the vertical structure of the uniform flow (Figure 5.6). Furthemore, ξ is a normalized

vertical coordinate defined as follows:

ξ =
z − (F 2

uh−D)

D
(5.12)



104 CHAPTER 5. FLOW FIELD IN CURVATURES

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

F (ξ)

ξ

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

G
i
(ξ)

ξ

G
0

G
1

a)

b)

Figure 5.6: a) Vertical distribution of F and b) Vertical distribution of G0 and G1

From equation (5.11) it follows that

∫ 1

ξ0

F(ξ) dξ = 0

∫ 1

ξ0

ṽ(s, n, ξ) dξ = 0 (5.13)

If we assume that the curvature ratio is small, we can expand the solutionin terms

of ν, at the leading order of approximation O(ν)0, the function F(ξ) is found to

follow the classical logarithmic distribution in a straight channel, corrected by the

wake function. Moreover, from the first of the integral conditions (5.13) it results



5.2. FORMULATION OF THE PROBLEMS 105

that ξ0 = exp(−k/Cfu − 0.777). At the order of O(ν) we obtain,

ṽ(s, n, ξ) =
DUC

βu

√

Cfu

G0(ξ) +
D2(UC),s
β2
uCfu

G1(ξ) (5.14)

where the functions G0(ξ), and G1(ξ), obtained through the solutions of two second-

order boundary value problems, describe the vertical structure of secondary flow

(Figure 5.6). Substituting (5.11) and (5.14) into the governing equations (5.5)-(5.5),

and neglecting the ν2 terms yields the depth averaged shallow water equations. If

as a first approximation, we neglect the effects width variations, we obtain

(UU,s +V U,n ) +H,s +βu
τs
D

= ν f10 (5.15)

(UV,s +V V,n ) +H,n +βu
τn
D

= ν g10 (5.16)

(DU),s +(DV ),n = ν m10 (5.17)

qs,s + qn,n = ν n10 (5.18)

The quantities f10, g10, m10 and n10 which appear on the right hand side of equations

(5.18) are the first order effects due to the presence of an arbitrary (although weak)

curvature. The boundary conditions to be coupled with equations

V = 0, −qn = 0 (n = ±1) (5.19)

Moreover considering flow decomposition (5.11) and the solution for G0(ξ) and G1(ξ),

we find

(τs, τn) = Cf

√

(U2 + V 2)(U, Ṽ ) (5.20)
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where

Ṽ = V + v
( DUC

βu

√

(Cfu)
k2 +

D(DUC),s
β2
uCfu

k3

)

(5.21)

where the coefficients k2 and k3 read

k2 =
[G′,F

F,ξ

]

ξ0
(5.22)

k3 =
[G∞,F

F,ξ

]

ξ0
(5.23)

Moreover, the longitudinal and transverse components of the sediment flux vector

can be expressed as [Frascati and Lanzoni, 2013]

(qs, qn) = Φ(τ∗;D;Rp)
(

1,
τn
τ

− B−1

βu

r

τ∗
η,n

)

(5.24)

Finally, the above formulated problemis is subject to the following integral con-

straints, namely,
∫ 1

−1

UDB dn = 2,

∫ 1

−1

ΦB dn = 2Φu (5.25)

∫ 1

−1

∫ 1

−1

(F 2
uH −D)B dnds = const (5.26)

5.2.5 Expansion

Taking advantage of the typically wide character of river bends, we expand the

solution in powers of the small perameter ν

(U, V,D,H) = (1, 0, 1, H0) + ν(uc, vc, dc, hc) + · · · (5.27)
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Similarly, the friction, the bed shear stress,the intensity of bedload can be written

as

Cf = Cfu (1 + ν Cf1)

τ∗ = τ∗u (1 + ν τ∗1)

Φ = Φu (1 + ν Φ1)

(5.28)

5.3 Solution

The flow field induced by a spatially varying distribution of the channel curvature

is described by O(ν) non-homogeneous linear differential problem

L

















uc

vc

dc

hc

















=

















nb1C
b2C + b3C ′ + b4C ′′

0

0

















(5.29)

Subjected to the non-homogeneous boundary conditions

vc = 0, (F 2
uhc − dc) ,n = b5C + b6C ′ (n = ±1) (5.30)

with C ′ and C ′ the first and second derivatives of the curvature. The general solution

for the flow field and depth obtained by solving above problem:

uc =
4
∑

j=1

ccmje
λcmj + Acm

4
∑

j=1

[

gcj0

s
∫

0

C(ζ)eλcmj(s−ζ) dζ + gcj0C
]

(5.31)

dc =
4
∑

j=1

δmjccmje
λcmj + Acm

4
∑

j=1

[

δmjgcj0

s
∫

0

C(ζ)eλcmj(s−ζ) dζ + δcmjgcj0C
]
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where gcjk(j = 1, · · · , 4; k = 0, 1) are constant co-efficients depending on βu, ds,

τ∗u,λcmj, (m = 1, · · · ,∞), are characterstic exponent for the mth lateral fourier

mode and ccmj are integration constants to be specified on the basis of the boundary

conditions at the channel ends. The curvature distribution function C(s) depends

on the investigated meandering pattern formed by C(s), which can be determined by

the analysis of satellite or aerial images of the river of interest. The two dimensional

spatial distribution of the linearized flow field and depth of flow can be used to

estimate the longitudinal dispersion coefficient, as well as the spatial distribution of

the tracer concentration.



Chapter 6

Longitudinal Dispersion in

Meandering Channels with

Arbitrary Curvature

6.1 Available Data

Let us now move to examine the reliability of the theoretical framework developed

so far by considering the dispersion data obtained from tracer tests carried out in

meandering/ sinuous reaches of six natural streams, namely the Green-Duwamish

River [Fischer, 1968a,b], the Missouri River [Yotsukura et al., 1970], the Powell River

and the Copper Creek river [Godfrey and Frederick, 1970], the Lesser Slave River

[Beltaos and Day, 1978], and the Miljacka River [Dobran, 1983]. Figure (6.1) shows

the planform configurations of the investigated reaches, extracted from topographic

maps, the location of the section in which the tracer has been injected and the ex-

tension of the equilibrium zone, where the theory can be applied. The geometrical

and hydraulic parameters of each stream, averaged along the equilibrium reach,are

reported in Table (6.1). Both the curvature ratio and the wavenumber, determined

109
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Figure 6.1: Planimetric patterns of some meandering rivers in which the longitu-
dinal dispersion coeffcient has been determined experimentally through field tracer
tests. a) Copper Creek (Virginia, USA); b) Powell River (Tennessee, USA); c)
Missouri River, between Decatur (Iowa, USA) and Omaha (Nebraska, USA); d)
Miljacka River (Sarajevo, Bosnia and Herzegovina); e) Green-Duwamish River, be-
tween Renton Junction and Foster Gould Course (Washington USA); f) Lesser Slave
River (Alberta, Canada). Scales are expressed in meters.

through the automatic extraction procedure described by Marani et al. [2002], at-

tain quite low values, thus ensuring the applicability of the theoretical analysis. The

sinuosity sr, defined as the ratio of intrinsic to cartesian meander length, indicates
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that the Copper Creek, the Green-Duwamish (Figure 6.2), and the Powell River

(Figure 6.3), having a sinuosity greater than 1.5, can be regarded as meandering,

while the Lesser Slave River, the Missouri River (Figure 6.4) and the Miljacka River

(Figure 6.5), exhibiting a sinuosity smaller than 1.5., can be ascribed to the category

of sinuous streams [Leopold et al., 1995]. The mean grain size estimates reported

in Table 6.1 have been determined on the basis of information available from lit-

erature [Beltaos and Day, 1978; Yotsukura et al., 1970; Shen et al., 1978], from

the USGS National Water Information System [http://waterdata.usgs.gov/nwis] or

from direct inspection (Dobran 2007, personal communication). The relevant

Figure 6.2: Green river (Source:http://your.kingcounty.gov/ dnrp/ library/ archive-
documents/ wlr/ watersheds/ green/ pdf/ green- river- watershed- map.pdf).

dimensionless parameters β, ds, τ∗ and λ, transverse mixing coefficient kn1 also re-

ported in Table 6.1, determine completely the characteristics of the linearized flow

field. The transverse mixing coefficient are obtained from Deng [2002]. Here we

only recall that the choice of bed configurations used in the computation of the



112 CHAPTER 5. DISPERSION IN MEANDERING CHANNELS

Figure 6.3: Powell river (Source: http: //en.wikipedia.org/ wiki/ File: Powellt-
nrivermap. png).

Figure 6.4: Missouri river (Source:Bhttp://earthobservatory. nasa. gov/ Natural-
Hazards/ view. php ?id= 51261).
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Figure 6.5: Miljacka river (Source: http://bosepo. ba/ wp- content/ uploads/ 2012/
11/ BOSNIA PROJECT 2.pdf).

friction coefficient has been made according to the classification procedure proposed

by van Rjin [1984]. In the particular case of the Miljacka River, a gravel bedded

stream in which the tracer test was carried out for a flow discharge lower than

that corresponding to incipient motion of sediment, the related bottom configura-

tion was determined by assuming a value of the Shields stress slightly larger than

its critical value (say τ∗ = 0.1). This assumption is in accordance with the ob-

servation that gravel bed rivers are shaped by a bankfull stress that is close to

the critical value [Parker, 2004]. Copper creek and Powell rivers are gravel bed-

ded rivers while Green-Duwamish [http://green.kingcounty.gov/ WLR/ Waterres/

StreamsData/ WaterShedInfo.aspx? Locator=0311] is a sand bed river. The Mis-

souri river depending on the reach can have both a sand and a gravel bed river

[http://www.epa.gov/ region07/ factsheets/ 2010/ lower/ missouri/ river/ sand/

gravel/ dredging.htm]. Similarly, The Lesser Slave river exhibits either sand or

gravel bed river [http://www.10714.com/ pdf/ rgwa/ lesserslave.pdf].
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Table 6.1: Reach averaged geometric and hydraulic parameters of the considered
meandering streams. Sources of data are: 1. Fischer [1968a]; 2. Fischer [1968b];
3. Yotsukura et al. [1970]; 4. Godfrey and Frederick [1970]; 5. Fukuoka and Sayre
[1973]; 6. Dobran [1982]. Definitions are as follows: B∗

0 , half channel width; D
∗
0,

cross sectionally averaged channel depth; U∗
0 : cross sectionally averaged channel

velocity; u∗ =
√

gD∗
0S: cross sectionally averaged friction velocity; R∗

0: twice of
average radius of curvature within the reach of interest; L∗, average intrinsic meander
length; d∗s, average grain size; β, aspect ratio; ds, dimensionless grain size; θ, Shields
parameter; ν, curvature ratio; λ, wavenumber; sr, sinuosity.

Channel source B∗

0
D∗

0
U∗

0
u∗ R∗

0
L∗ d∗s β ds θ ν λ sr kn1

(m) (m) (m/s) (m/s) (m) (m) (mm) 10−3 10−2

Copper Creek 1,4,5 9.0 0.37 0.22 0.110 220 1460 7.00 24.3 1.89 1.07 4.1 0.04 2.53 0.237a

Green-Duwamish 2,4,5 20.0 1.10 0.27 0.049 481 1170 0.20 18.2 0.18 0.74 4.2 0.11 1.59 0.424a

Lesser Slave 3,5 25.4 3.10 0.50 0.055 590 1680 0.20 8.2 0.064 0.93 4.3 0.10 1.42 0.33b

Missori 3,5 95.3 2.93 1.73 0.076 5180 12100 0.20 32.5 0.68 1.78 1.8 0.05 1.48 2.20a

Poweell 2,4,5 18.5 0.88 0.16 0.052 600 2800 0.15 21.0 0.17 1.11 3.1 0.04 2.37 0.265a

Miljacka 6 11.3 0.28 0.34 0.055 285 878 5.00 40.4 6.67 0.02 4.0 0.08 1.18 0.042a

a Deng et al. [2002], b Engmann and Kellerhals [1974]

6.2 Transverse mixing coefficient

Longitudinal dispersion in meandering river is also influenced by the intensity of

tranverse mixing coefficient. As mentioned previously (see section 4.2) it is assumed

the transverse mixing coefficient is estimated through the relation [Deng et al., 2001]

kn0 = 0.145 +
1

3520

( U∗
0

√

gD∗
0S

)(2B∗

D∗
0

)1.38

(6.1)

We can then account for the effects of the local flow depth following the suggestion

of Deng et al. [2002], defining the transverse mixing coefficient as

kn1 = kn0d
3
2
0 (6.2)

where d0 is local dimensionless flow depth.
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6.3 Comparison with the theory
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Table 6.2: Comparison between observed (Kexp) and predicted K (equation 2.36)
longitudinal dispersion coefficients. The values attained by the discrepancy ratio dr
are also reported.

River K∗
exp(m

2/s) K∗
exp K dr

Copper Creek 9.9 5.00 4.16 -0.1839
Green-Duwamish 7.4 1.37 1.8 0.2730
Lesser Slave 27.9 2.20 2.7 0.2048
Missouri 1490 9.04 7.8 -0.1475
Powell 9.5 3.21 3.7 0.1421
Miljacka 2.7 0.71 0.92 -0.2591

Table 6.3: Comparison between observed (Kexp) and predicted K (equation 2.36)
longitudinal dispersion coefficients with present model and other model available in
literature. [1] Present model; [2] Fischer et al.[1979]; [3] Seo and Cheong [1998]; [4]
Deng et al. [2001]; [5] Kashefipour; and Falconer [2002].

River Kexp [1] [2] [3] [4] [5]

Copper Creek 5.00 4.16 2.14 3.63 5.21 0.87
Green-Duwamish 1.37 1.8 4.40 6.26 9.83 3.21
Lesser Slave 2.20 2.7 3.27 10.51 11.45 11.77
Missouri 9.04 7.8 32.57 9.22 14.76 7.42
Powell 3.21 3.7 2.84 4.62 6.85 1.55
Miljacka 0.71 0.92 10.97 4.86 9.97 1.62

The comparison between the longitudinal dispersion coefficients observed experi-

mentally and those predicted by the relationship (2.55), is pursued in Table (6.3)

and in Figure (6.6). The latter also reports the longitudinal dispersion coeffficients

estimated through the semi-empirical and empirical relationships of Table (6.1). To

evaluate the difference between measured and predicted dispersion coefficients more

quantitatively, the discrepancy ratio dr (= log(Kcalc/Kexp)) is introduced as mea-

sure of the error. This ratio vanishes if predicted and measured values coincide while
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positive (negative) values of dr indicate that the predicted longitudinal dispersion

coeffcient is overestimated (underestimated) [White et al., 1973], shown in Table 6.2.

The lines beside perfect agreement line reported in figure (6.6) identify the range

corresponding to a ±25% error usually adopted [Seo and Cheong, 1998; Kashefipour

and Falconer, 2002; Deng et al., 2002] to quantify the maximum acceptable error.

Present model shows a better agreement then any of the either models so far pre-

sented in literature (see also table 6.3). On the other hand Figure (6.7) shows that

accounting for the effects of river meandering on the flow field leads to a general

improvement of the estimate provided by the relation developed for a straight river.
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