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Abstract

This thesis is focused on the development of advanced techniques for quantum com-

munications in free-space channels.

At present there are several demonstrations of quantum communication proto-

cols at long distances, many of these exploit optical fiber as transmission channel.

The optical fiber is very advantageous in that it is scarcely influenced by external

conditions and allows to connect remote localities that are not in direct line of sight.

On the other hand, it presents strong limitations in transmission distance because

of dispersion and attenuation.

It is therefore necessary to explore new transmission channels in order to al-

low a global spread of quantum communication. The free-space channels are good

candidates, both the vertical ones (between earth and space) and the horizontal

ones. The study of these is of fundamental importance for the extension of quantum

communication over a global scale.

Since the eighties to present day have been defined several quantum commu-

nication protocols such as Bennet-Brassard 84 [1] (BB84) , Bennet 92 [2] (B92),

Ekert 91 [3], Decoy State [4], Dense Coding [5], etc.. These protocols present differ-

ent characteristic such as reliability, security and key rate. These three parameters

are very important for the characterization of a communication protocol and are

directly related to each other. The development of new quantum communication

(QC) protocols that maximize these parameters is very important for future progress

of quantum communications.

This thesis is divided into three parts. In the first part we consider the charac-

teristics and the behaviour of a free-space horizontal quantum channel. We study

the impact of atmospheric turbulence in the case of single beam propagation and



x Contents

twin-beam propagation. We then measure the losses of the channel and analyze the

effect of turbulence on photon statistics. Finally, we propose a method that exploits

the turbulence to improve the signal to noise ratio (SNR) of the channel.

In the second part we take into consideration the security and efficiency of Quan-

tum Key Distribution (QKD) protocols . We propose the experimental demonstra-

tion of the B92 protocol with non-maximally entangled states . Using this kind of

states allow us to improve the security and the key rate of this protocol.

Finally, in the last part, we presented a possible way to improve the quantum

channel capacity exploiting hyperentangled photon pairs. We designed and experi-

mentally tested a system that can be used to transmit hyperentangled states at long

distances.



Sommario

Questa tesi è incentrata sullo sviluppo di tecniche avanzate per le comunicazioni

quantistiche in canali nello spazio libero.

Al stato attuale esistono diverse dimostrazioni di protocolli di comunicazione

quantistica a lunga distanza, molte di queste sfruttano le fibre ottiche come canale

di trasmissione. Le fibre ottiche sono molto vantaggiose in quanto sono scarsamente

influenzate da condizioni esterne e permettono di collegare località remote che non

sono in linea visiva diretta. Per contro, presentano forte limitazioni nella distanza

di trasmissione in quanto hanno problemi di dispersione e di attenuazione.

Per permettere una diffusione globale delle comunicazioni quantistiche è neces-

sario esplorare nuovi canali di trasmissione. Lo spazio libero è un buon candidato,

sia per quanto riguarda i canali verticali tra la terra e lo spazio, sia per quanto

riguarda i collegamenti orizzontali. Lo studio di questi è quindi di fondamentale

importanza per l’estensione delle comunicazioni quantistiche su larga scala.

Dagli anni ottanta a oggi sono stati definiti molti protocolli di comunicazione

quantistica come Bennet-Brassard 84 [1] (BB84) , Bennet 92 [2] (B92), Ekert 91 [3],

Decoy State [4], Dense Coding [5], ecc. Questi protocolli si distinguono tra loro

per affidabilità, sicurezza e capacità di trasmissione. Questi tre parametri sono

molto importanti nella caratterizzazione di un protocollo di comunicazione e hanno

la particolarità di essere direttamente legati uno all’altro. Lo sviluppo di nuovi

protocolli che massimizzino questi parametri è molto importante per l’avanzamento

e lo sviluppo futuro delle comunicazioni quantistiche.

Questa tesi è divisa in tre parti. Nella prima parte sono state considerate le

caratteristiche e il comportamento di un canale quantistico orizzontale nello spazio

libero. In primo luogo è stato studiato l’impatto della turbolenza atmosferica nel
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caso di propagazione di singoli fasci ottici e di fasci ottici paralleli. Successivamente

sono state misurate le perdite del canale ed è stato analizzato l’effetto della tur-

bolenza sulla statistica dei fotoni. Infine è stato proposto un metodo che sfrutta la

turbolenza per migliorare il rapporto segnale-rumore del canale.

Nella seconda parte sono state prese in considerazione la sicurezza e l’efficienza

dei protocolli di Quantum Key Distribution (QKD). È stata proposta la dimostrazione

sperimentale del protocollo B92 con stati non-massimamente entangled. L’utilizzo

di questa tipologia di stati ha permesso di migliorare la sicurezza e l’efficienza di

questo protocollo.

Infine, nell’ultima parte si è proposto un possibile metodo per migliorare la ca-

pacità di canale sfruttando coppie di fotoni hyperentangled. A riguardo, è stato

progettato e collaudato un sistema per la trasmissione di stati hyperentangled a

lunga distanza.
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CHAPTER 1

Introduction

Quantum Key Distribution (QKD) represents an unconditional secure way to share

a secret key between two authenticated users, usually called Alice and Bob. It is

fundamentally based on the principle that is impossible to observe a quantum system

without changing its state. The first QKD scheme was the one proposed by Bennet

and Brassard in 1984, commonly known as Bennet-Brassard 84 [1] (BB84). Since

then, several QKD schemes were presented and many efforts have been devoted to

improve both the theories and the experimental implementation of these systems.

As represented in figure 1.1 typical QKD schemes involves two or three remote

parties which communicate by means of quantum and classical channels. In this the-

sis we take in consideration some parts of a quantum communication (QC) system,

we analyze them and propose some improving solutions.

We start our study from the quantum channel, especially we analyse free-space

quantum channels considering their characteristics and their interactions with the

transmitted photons. One of the main problems of this kind of channels is atmo-

spheric turbulence. A turbulent channel acts as an increment of the losses on the

transmitted photons due to beam wandering of the beam centroid or to scintillation,

increasing the role of the noise [6–10]. The understanding of the propagation effects

induced by turbulence at the receiver as well as the temporal statistics of the in-

coming photons is crucial to assess the quality of the communication and eventually

the feasibility of the free-space ground-ground and space-ground links [11–13].
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(a) Scheme for two-party QKD protocol

(b) Scheme for three-party QKD protocol

Figure 1.1: Schematic representation of two different QKD systems.

The second issue we address is the security of the QC systems, in particu-

lar we propose and demonstrate a device independent-Quantum Key Distribution

(DI-QKD) protocol based on non-maximally entangled states(NMESs). In common

QKD protocols the security of the shared key is typically proven under the assump-

tion of trusted apparatuses. In the last years, great effort have been devoted to the

so called DI-QKD, aiming at the demonstration of the security when the measur-

ing devices are completely untrusted and their working mechanism is not known to

the users. The key ingredient for DI-QKD is the exploitation of entangled states
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shared between two parties: by violating a Bell’s inequality, it is possible to prove

the secrecy of the obtained bits. The DI-QKD offers the advantage that security

is independent on the practical details of the implementation: Alice and Bob could

even purchase their devices directly from Eve, because the violation of a Bell’s in-

equality would certify the secrecy of the transmission in any case. On the other side,

the violation of a Bell test without any additional assumption requires a very high

overall (from the light source to the detectors) detection efficiency. It is well known

that NMESs offer an advantage for the violation of the Clauser Horne Shimony Holt

(CHSH) inequality in terms of required detection efficiency, with respect to max-

imally entangled state [14, 15]. Recently, detection loophole-free violations of the

CHSH inequality by non-maximally entangled photons were indeed reported [16,17].

NMESs were proven to be also useful for several bipartite Bell inequalities [18] and

for quantum steering [19].

Finally we focus on the transmission rate and the channel capacity of the QC

systems. About that, we developed and tested a system for the generation and

measurement of hyperentangled states. Most of the proposed QKD protocols are

still not able to compete with actual classical communication. Hyperentanglement,

that is entanglement in more than one degree of freedom (DOF), represent a great

resource for QC and QKD because offer many advantages on security and channel

capacity enhancement. Dense coding, proposed in 1992 in [20], were experimentally

demonstrated using entangled photon pairs and simple linear optics [21–23]. This

kind of realizations unfortunately does not permit to fully exploit the channel ca-

pacity, indeed the best reached rate was 1.585 bits. Hyperentanglement represents

a resource for dense coding, in fact enables a complete Bell state discrimination, as

proposed by [24].

This Ph.D. thesis is organized as follows:

Chapter 2 - In this chapter we propose the study of the propagation in free-

space of a single or twin beam in a scale of several tens to a few hundred

kilometers optical links. The experimental models were realized in different

localities of Italian Alps as well as between Tenerife and La Palma Islands of

the Canary archipelago. We first analyse the single beam propagation taking

in consideration the turbulence effects and in particular the beam wander. We
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then take in consideration the twin-beam propagation in order to study the

correlation of the beam centroids.

Chapter 3 - In this chapter we consider the photon statistic and the link atten-

uation in a 143 km free-space optical link. We propose a transmitting setup

with an active pointing system for a fine alignment. For the determination of

the turbulence intensity we analyse the weather condition. We then present

the analysis of temporal statistic of the received photons and the measure-

ment of the link losses. We finally develop a technique for signal to noise ratio

(SNR) improvement.

Chapter 4 - In this chapter we present the entangled-based Bennet 92 QKD

protocol (ent-B92) protocol, a version of the Bennet 92 [2] (B92) protocol

realized with NMES, proposed recently in [25]. Particular attention is given

to the analysis of security and the estimation of secure key rate. We then

propose the generalizations of ent-B92 protocol and analyse its secret key rate

when detection inefficiencies are taken into account.

Chapter 5 - In this chapter we propose the implementation of the ent-B92 pro-

tocol. We design and realize the experimental setup considering in particular

the compactness and the reliability of the system. We report the measure-

ment of Bell’s inequality, secure key rate and detection threshold compared

with theoretical models. We present also a noise model that takes into account

all the non-idealities of the system.

Chapter 6 - In this chapter we propose the design and the experimental im-

plementation of a system for the generation of photon pairs entangled in both

polarization and energy-time. We consider the stability of the measurement

system and propose some solutions for its improvement. Finally we present

some measurement of the hyperentangled photon states.

Chapter 7 - In this chapter we present the conclusions of the thesis with a

summary of the principal findings.



CHAPTER 2

Atmospheric turbulence investigation in

free-space optical links

Quantum communication (QC) aims to share quantum states between terminals do-

ing quantum operations. The essential requirement of a QC protocol is the preser-

vation of the information carried by the states, which is attacked by the interaction

with the environment as well as by the attenuation due to the propagation [26–29].

The partner may be as close as two logic gates in the proposed design of a quan-

tum computer as far away as a terminal in orbit and a telescope on ground, in the

proposed schemes of planetary QKD scenarios [6, 13, 30–34]. In the perspective of

the extension of QC in free-space to long distances, the analysis of the phenomena

that occur to a visible or near-infrared beam in the propagation in atmosphere and

their understanding is of crucial importance for devising the most convenient opti-

cal terminal. The investigation on the ground-ground case is used also to envisage

the space QC, along with a vast area of research in satellite Classical Communica-

tions [35].

More in details, optical propagation in atmosphere in the case of links length of

over 100 km is affected by several transformations of the beam parameters, resulting

in an increase of the link losses. Moreover, the long range optical communication at

the single photon limit exploiting quantum protocols, on the other side, differs from

the classical protocols in that the signal to be transmitted cannot be intensified,
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being a train of very weak pulses with an average about one photon per pulse.

The understanding of the effects induced by the propagation in both the irra-

diance at the receiver as well as in the temporal statistics is crucial to assess the

quality of the communication and eventually the feasibility of the link. Moreover,

for the very long links, fading and losses are induced by the decoupling of the beam

with the receiver due to large wandering of the beam spot, as it was also investigated

for the space channel [36].

In this chapter we first propose a brief introduction on atmospheric turbulence

and on effects induced by turbulence. Therefore we present the main characteristics

of the investigated links. We then address the study of the phenomena induced

in very long propagation by using of laser beams to investigate the links. In the

experiments, we performed the observation of the whole beam combined to the

measure of the local irradiance at the receiver side. In addition, with the aim

to stabilize the centroid position at the receiver, we studied the propagation of two

beams forming a small mutual angle in the framework of the isoplanatic angle spread

for low and high orders of the beam spatial modes.

The results contained in this chapter and in the next one (chapter 3) are pub-

lished in [J1,P1–P5] and in the Ph.D. thesis of Tomaello [37] who took part at most

of the experiments.

2.1 Atmospheric turbulence

An optical beam that propagates in the atmosphere can experience attenuation

losses and random degradation of the beam quality itself. The first effect is induced

by absorption and scattering due to molecolar constituents and particulates present

in the atmosphere. The second effect is related to turbulent motion in the atmo-

sphere, which is caused by small variations in temperature (< 1◦ C) that give rise to

random changes in wind velocity (eddies). The air mixing due to the temperature

gradient induces small change in atmospheric density and, hence, in the refractive

index. The random variation of refractive index can be cumulative, and this can

cause significant inhomogeneities in the index profile of the atmosphere. Therefore,

a beam propagating in the atmosphere can experience deviation of direction which
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lead to beam wander, intensity fluctuation (scintillation) and beam spreading.

The small changes in the refractive index can be thought as a set of small lenses

in the atmosphere, which focus and redirect the beam. We can assume that each of

these small lenses has the size of the turbulence eddy that generated it. This model

is a useful approximation of turbulence effects, although is not completely accurate.

Since the complexity of atmosphere does not allow a deterministic description of

its phenomena, all the theories related to turbulence are based on statistical analysis.

A detailed description of atmospheric turbulence phenomena can be found in

[35, 38].

2.1.1 Refractive index structure parameter

The refractive index structure parameter C2
n is the most significant parameter that

determines the turbulence strength. This parameter depends on season, geograph-

ical location, weather, altitude and time of day. There exist a lot of model that

describe the profile of C2
n, the more used is the Hufnagel-Valley [40] that is given

by:

C2
n =

{[

(
2.2× 10−53

)
h10
(
W

27

)2
]

e−h/1000+10−16 e−h/1500

}

er(h,t)
[
m−2/3

]
(2.1)

where h is the height above the sea level in meters, W is the wind correlation factor

which is defined as:

W =

[(
1

15 km

)∫ 20 km

5 km

v2(h)dh

]1/2

(2.2)

and r(h, t) is a zero-mean homogeneous Gaussian random variable. The term v(h)

is the wind speed at height h, as developed by Bufton [38] is equal to:

v(z) = 5 + 30 · e−( z−9.4
4.8 )

2

(2.3)

where z is in [km] and the wind speed v is in [m/s]. In figure 2.1 the wind speed

profile as a function of the altitude is reported.

2.2 Turbulence effects

The effects of turbulence can be divided by spatial frequency as beam spreading

(high frequency) and beam wandering (low frequency). The first effect is produced
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Figure 2.1: Wind speed profile as a function of altitude.

by eddies smaller than the beam size whereas the second one is given by eddies

that are larger than the beam size. Another turbulence induced effect is intensity

variation that is induced by eddies with sizes on the order of
√
λL, where L is the

propagation distance and λ is the wavelength.

2.2.1 Fried coherence length

An useful quantity that describe the atmospheric turbulence is the Fried coherence

length. It is defined as the maximum allowable diameter of a receiver collector

before atmospheric distortion seriously limits the transmitting performance [38].

Particularly, for a plane wave propagating from altitude h0+L to h0 (downlink) the

Fried parameter can be expressed as [35]:

r0 =

[

0.423 · k2 sec(ζ)
∫ h0+L

h0

C2
n(h)dz

]−3/5

(2.4)

where L is the path length, ζ is the zenith angle and C2
n can vary with altitude h.

For an horizontal path, i.e. when the parameter C2
n is constant, the Fried coherence

length r0 is equal to [38]:

r0 = 1.68 ·
(
k2C2

nL
)−3/5

(2.5)
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whereas for spherical waves is given by [38]:

r0 = 3 ·
(
k2C2

nL
)−3/5

(2.6)

2.2.2 Scintillation index

The scintillation index (SI) describes the intensity fluctuation of the signal irradi-

ance. It can be expressed as the normalized variance of the intensity fluctuation [35]

σ2
I =

〈(I − 〈I〉)2〉
〈I〉2 =

〈I2〉
〈I〉2 − 1 (2.7)

where I is the signal intensity. Using the results of Rytov method [39] we can

describe the SI as the variance of the field log-amplitude σ2
χ:

σ2
I = A

[

e4σ
2
χ −1

]

[W/cm2] (2.8)

where A is the aperture average factor, that for weak turbulence and small value of

the eddies size can be predicted by:

A =

[

1 + 1.07

(
kD2

4L

)7/6
]−1

(2.9)

where L is the link distance and D is the aperture diameter of the system. For a

plane wave the field log-amplitude is defined as:

σ2
χ = 0.307k7/6L11/6C2

n (2.10)

whereas for a spherical wave is equal to:

σ2
χ = 0.124k7/6L11/6C2

n (2.11)

2.2.3 Beam wander

One of the effect of the air turbulence is beam wander. Considering the temporal

velocity of this effect one can also divide it in: beam jitter when the wander is fast

and drift when the wander is slow.

The variance of the waveform tilt angle can be expressed as a function of the

Fried coherence length as [38]:

α2 = 0.364

(
D

r0

)5/3(
λ

D

)2

(2.12)

where as already mentioned above D is the aperture diameter of the system.
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2.3 Experimental links

Here is explained the characteristic of the three principal channels that were used

in the experiments.

2.3.1 Short range links

The fist link that was studied is an urban link of 2.2 km between the Department

of Information Engineering (DEI) building roof to the Specola tower of Department

of Physics and Astronomy, across downtown Padua, as shown in Fig. 2.2(a).

We then increased the distance with a 13 km free-space link between two places

in the Italian Alps above Santa Croce lake at 1400 m of altitude as shown in Fig.

2.2(b).

2.3.2 143 km Canary Islands link

The longest free-space optical link that was studied is between Tenerife and La

Palma Islands of the Canary archipelagos, as shown in Fig 2.2(c). The channel was

probed in both the direction, i.e. from the roof of the JKT at La Palma to the OGS

at Tenerife and vice versa. The length of the link is 143 km at a mean altitude of

2300 m over Atlantic Ocean. The experiments reported in this chapter were taken

during three different campaign in which different properties of the channel were

investigated:

1. May 2010 - single beam propagation from OGS to JKT, especially the wan-

dering and broadening of the beam spot due to atmospheric turbulence.

2. September 2010 - twin beam-propagation from OGS to JKT

3. May 2011 - symmetry of the optical channel.
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(a) Downtown Padua link of 2.2 km from Department of Information Engineering building roof to the

Specola tower of Department of Physics and Astronomy

(b) Alpine link of 13 km above Santa Croce lake

(c) Bidirectional path from the JKT of ING in La Palma and the OGS of ESA in Tenerife

Figure 2.2: Experimental links
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2.4 Single beam propagation

The optical link between distant terminals may be modeled by combining the diffrac-

tion, attenuation and turbulence effects. This latter has been intensively investigated

for decades and is suitably parametrized according to the geographical and meteoro-

logic conditions [7,8,10,35,41]. However, for what concerns the spatial distribution

of the spot and its coupling with a receiver in the case of very long path, of tens or

hundreds of kilometers, the knowledge of actual atmospheric parameters along the

whole distance is hardly feasible in practice. Therefore, the spatial effects induced

by the turbulence, that in principle have to be expected significantly larger than

the diffractive ones, call for direct testings. With this purpose, we set up the con-

ditions to analyze the parameters of the beam by extending the acquisition of the

gathered signal in the time domain to the capture of images at different integration

time of the whole beam, in order to point out the effect of the spatial scintillation

and the coupling to the receiving telescope. The initial tests were realized across

downtown Padova, to test the equipment, and then over mountain links and finally

in the Canary archipelagos.

The use of a refractor telescope is convenient in order to avoid the severe cut of

the central portion of the gaussian beam by the central obstruction in the case of

the reflecting telescopes. For this reason, transmitting refractors have been used in

all the trials.

We used different types of optics to investigate the propagation. In the design

of these instruments, the spherical aberration was always corrected. Due to the on

axis use of the instrument, no further Seidel aberrations are acting, beside defocus.

The use of an apochromatic lens was tested in order to simplify the transmission of

two beams with different wavelength. When not possible, the chromatic aberration

was canceled by separating the optical origin of the beams using a beamsplitter. We

have used three different instruments:

1. a commercial 120mm-f/7.5 refractor, SkyWatcher Black Diamond Telescope,

that use an apochromatic design and have a 120 mm optical aperture;

2. the secondary telescope of OGS, thank to the kind permission of ESA, that is
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a 200mm-f/15 doublet telescope from Zeiss;

3. a 230mm-f/10 aplanatic telescope realized with a custom aspheric singlet from

Costruzioni Ottiche Zen, Venezia, Italy.

In the case of both urban and mountain links up to 13 km, we have observed that an

Airy-pattern may be obtained in clear nighttime conditions. In particular, the urban

link of 2.2 km across downtown Padua, was investigated with refractor telescopes

of different diameter. In the case of telescope n.1 above, the direct observation of

the spot has shown an Airy pattern of about 30 mm between the two first zeros

and with a beam wandering extension of about the spot radius. The Airy pattern

was due to beam clipping. Similar results were obtained in the Alpine link where in

this case the observed Airy pattern was of about 170 mm. These conditions are well

described in the case of weak turbulence [8,10,41]. We investigated the case of longer

lengths, finding that the beam is subjected to significant transformation that ends

up to an irregular spot distribution. In the case of the Canary link above described

and shown in Fig. 2.2(c), we initially studied the propagation from OGS to JKT

using the telescope n. 2. The JKT location is fortunate because it is in direct sight

of Tenerife top and the Observatory building results nearly normal to the link, so

that it may be used as a screen for the spot detection. The telescope was used to

transmit toward La Palma one or two beams, at the wavelength of 532 nm, from

single mode continuous wave (CW) laser source, realized from an OptoEngineMGL-

III-532-100 DPSS laser. An optical front-end was designed to realize a Gaussian

beam of about 65 mm of waist and with a wavefront of adjustable curvature. The

detection in La Palma was done with a refractive optic of 230 mm diameter equipped

with both a power meter and a photodiode. In addition, the whole spot was imaged

on the JKT wall with different exposure times. The weather conditions may change

radically the results of the propagation, due to a series of causes. Some of these

may block the propagation, as in the case of rising of clouds, which due to the

local atmospheric conditions are usually lower than the link altitude, (2300 m), or

the presence of calima that is sand from central Africa, brought by high-altitude

winds and that invades the link altitude with enough density to diffuse completely

the beam. The presence of strong wind or high level of humidity are often cause of
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widening of the spot but that remain still clearly visible. However, with fair weather

condition, a remarkable small spot was observed. Fig. 2.3 shows one image of the

Figure 2.3: Spot size at JKT, La Palma. The two circles are of the same diameter.

The top encircles a man whose height is about 1.85 m.

beam spot onto the JKT dome with optimal weather condition, taken in the night of

27 May 2010 with 500 ms exposure time, in which the diameter of the spot compares

with a circle with the size of one person of height 1.85 m. From this observation,

we may assess the diameter of the integrated spot to about 2 m. This particular

condition was observed for and extended period of several hours in that night. For

observations with clear sky but with stronger wind, the observed spot diameter was

typically equal to 3 ± 0.5 m, with an increase of about 50 % in worst case. In the

best case, the full angle subtended by this spot is of 14 µrad. The diffraction limited
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full angle of a collimated beam may be calculated from the estimated beam waist

at the transmitter as follows:

2θ =
2

π

λ

wo
= 5.6 µrad (2.13)

with w0 = 60 mm. The comparison of these two values shows that the observed

spot in optimal conditions is less than a factor three of the diffraction limit, in the

hypothesis that the beam is collimated at the telescope. The dimension of the spot

at a distance of x = 143 km may be described in terms of the mean-square long-

term beam radius 〈ρ2L〉 by the combined effect of the propagation in vacuum and

the turbulence effect, expressed in Eq. 37 of the 1975 paper of Fante [8]:

〈ρ2L〉 ≃
4x2

k2D2
+
D2

4

(

1− x

F

)2

+
4x2

k2ρ20
(2.14)

in which D is the beam diameter at the transmitter, that is defined in the case of

a gaussian beam of radius w as D =
√
2w, that have an initial curvature of radius

−F and k as the wavevector, and ρ0 is the turbulence coherent radius. This latter

is a function of the local value of the structure constant of the refractive index C2
n

along the path length. It is computed using different approximations depending on

the type of beam. Again, using the previous reference [8], ρ0 is expressed by the

following equation:

ρ0 =

[

1.46k2x

∫ 1

0

(1− χ)
5
3C2

n (χx) dχ

]− 3
5

(2.15)

where it is evident that the link is in general asymmetric if the value of C2
n is

not uniform. We have proven that in the case of realistic values, the inequality

x≪ (k2C2
nl

5
3
0 )

−1 is verified, where l is the inner scale size of the turbulent eddies [8].

We may note that the expression for the ρL as a function of ρ0 and the definition of

ρ0 itself are defined differently in Dios et al. [6] as they are discussed in the case of

collimated beam only. However, an adequate up scaling by a factor
√
8 provides a

similar overall description.

In the optimal condition for the propagation, the value of ρ0 which results from

inverting Eq. (2.14) is of 28 mm. From this estimation, we may note that the

propagation corresponds to the fourth case described by Fante, as kρ20 ≪ x and it
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effectively corresponds to a beam that at the receiver plane breaks up in multiple

spots [8].

The dependence of ρL on the radius of curvature F of the beam at the transmitter

in eq. (2.14) has been verified in the experiment by varying the source position of

telescope n. 2 from the front focal length. By observing the back-scattering of the

beam with an auxiliary telescope 100 mm diameter −f/10 mounted beside the n. 2,

it was possible to assess the correct focal position. The feedback from the observer

at the receiver-end allowed us to optimize the focal position in order to minimize

ρL. This condition was observed in the experiment upon the focus at the path end,

and corresponds to the minimum of the term D2

4

(
1− x

F

)2
.

The asymmetry of the link was tested by using telescope n.3 located on the top of

JKT in La Palma pointing the OGS building in Tenerife. In this new instrument, we

designed the beam shaping in order to exploit the 230 mm diameter of the primary

singlet lens using the maximum on-axis irradiance criteria in the Prof. Siegman

book (Ch. 18), obtained with the waist-to-aperture-radius rate of 0.89 [42]. The

weather condition during the campaign of May 2011 was unfavorable for several

nights. However, we had the possibility to observe the spot and, in the most clear

night of May 23th 2011 (which had still not optimal weather conditions), we had

recorded a spot of about 3.5± 0.5 m.

2.4.1 Beam-wander analysis

Since one of the most predominant effect of turbulence is beam-wandering we devel-

oped a feedback system to stabilize the beam centroid at the receiver. The system

was tested in the campaign of September 2010 in order to measure the spot position

and correct it. The experimental setup is pictured in Fig. 2.4. A probe beam is

sent from OGS telescope n. 2 to JKT where there is a CCD camera positioned at

about 15 meter far from the telescope building and pointing the dome. The cam-

era acquire the whole spot and send the data to a PC that elaborates the images

and extract the coordinates of the beam centroid. At the OGS side the measured

coordinates are used to move the position of the secondary lens of telescope n.2 in

order to compensate the spot drift measured at JKT. Lens positioning at OGS is

realized with an XY stage controlled by stepper motors with micrometric accuracy.
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Figure 2.4: Beam-wander correction system

Due to the camera acquisition time the correction frequency is about 2-4 seconds

depending on the intensity of the received beam.

In Fig. 2.6 are plotted the spot centroid displacement with respect to a deter-

minate position without (Fig. 2.6(a)) and with (Fig. 2.6(b)) the correction system.

We can notice that displacement of the centroid is relevant without the control sys-

tem, indeed the expectation value and the standard deviation of the displacement

are both about 2.6 m. Furthermore, acquisition time is shorter than the controlled

one because few minutes after the alignment the beam exited from field of view of

the CCD camera. Otherwise, in Fig. 2.6(b) we can see that when the correction

system was active the displacement of the beam was on average much smaller (mean

displacement = 0.92 m) as well as the standard deviation (STD = 0.55 m). The

reliability of the correction system can be observed in the measurements of the re-

ceived power, in Fig. 2.7 the collected power in both case with and without active

correction are shown.

We analyzed also the spatial beam displacement in order to find some evidence

between this one and the wind direction. In Fig. 2.8 the centroid displacement
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Figure 2.5: Wind direction during data acquisitions

and its spatial frequency in the surface perpendicular to the beam direction are

plotted, corresponding to acquired data of September 28, 2010. It seems that beam

displacement has a predominant direction as if there was something that pushed

the beam from bottom right to top left. As reported in Fig. 2.5 the measured

wind direction that night was about 300◦, which corresponds to an angle of 40◦ with

the beam direction. The vertical displacement can also be caused by the constant

updrafts whose were present during the night due to the thermal gradient between

the land-sea and air. According with this considerations we can then say that there

is a correlation between wind direction and beam displacement.



2.4 Single beam propagation 19

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

Beam wander without active correction (STD = 2.59 m)

Time [s]

D
is

pl
ac

em
en

t [
m

]

 

 

Measured data   
Mean = 2.57 m   

(a) Spot centroid displacement with respect to a determinate position without correction system

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

0.5

1

1.5

2

2.5

3

3.5
Beam wander with active correction (STD = 0.55 m)

Time [s]

D
is

pl
ac

em
en

t [
m

]

 

 

Measured data   
Mean = 0.92 m   

(b) Spot centroid displacement with respect to a determinate position with correction system

Figure 2.6: Beam-wander measurements
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Figure 2.7: Power measurements
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Figure 2.8: Analysis of the spatial beam displacement
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2.5 Twin-beam propagation: isoplanatic angles

for different modes

We analyzed the propagation of two beams along the same path to study the corre-

lation of the beam centroids. We considered this scheme in order to use one beam

for the quantum channel - i.e. for the single-photon exchange - and the other as

beacon for the beam pointing, in the same direction of propagation. In this way, if

the two beams are correlated in their centroids, the instantaneous beam wandering

introduced by the turbulence may be compensated by using an error signal from the

acquisition of the second beam. In Fig. 2.9 on the left, the image of the JKT build-

ing with the two green beams is shown, while on the right the dispersion of the two

beam centroids is reported for an extended measurement. The average separation

is of 7.7 ± 0.5 meters, corresponding to a subtended angle of θ = 53 µrad. From

the analysis of the centroids we have seen that the beams movements are correlated

with a standard deviation of 37.9 pixels, equivalent to 0.75 m. We may conclude

that at this separation θ, the two beams are correlated at least in a common mode

that involve the wander of both beams. This results is not valid for the higher order

spatial fluctuations as the centroid is the first order momentum of the distribution.

Indeed, the separation angle can be compared with the set of reference values intro-

duced in adaptive optical corrections of phase front, as the isoplanatic angle θ0 and

the independence angle θφind. The former is the largest angle between two paths for

which the turbulence-induced wavefront variations in the two paths are relatively

similar, for the vertical propagation is equal to:

θ0 =

[

2.05k2 (sec ζ)8/3
∫ ∞

0

dhC2
nh

5/3

]−3/5

(2.16)

where k is the wavenumber, ζ is the zenith angle and h is the height in meter at

the sea level. On the other hand, the θφind parameter quantify the angle over which

the phase effects between the propagation paths of two point sources are nearly

uncorrelated [43–47].

The angle θ0 decrease as the order of the spatial mode of interest increase [48],

and its values for vertical observations spans from 7 to 17 µrad [45, 46] even if

values of tilt as large as 100 µrad are reported by the Telescopio Nazionale Galileo
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Figure 2.9: Spot of the two green lasers sent from Tenerife in the dome of OGS

during the night of Sept. 29th and temporal analysis. 50 pixels = 1 meter.

(TNG) Observatory. Direct calculation of these two values were obtained using the

condition of the experiment as follows: wavelength λ = 532 nm, link length L = 143

km, C2
n = 2× 10−17 m− 2

3 , transmitting aperture D = 200 mm, wind speed V = 10

m/s, outer scale L0 = 70 m and inner scale li = 7.5 mm, where for the turbulence

parameters we extracted the values from the various meteo stations of Instituto de

Astrof́ısica de Canarias (IAC). The results are:

θ0 = 0.18 µrad θφind = 3.1 mrad (2.17)

This results show a strong correlation in the spot movement, which is in agreement

with the following interpretation: the separation angle is greater than the isoplanatic

angle. This can be deduced from the different scintillation patterns and the centroid

relative motion. However the separation is significantly lower than the independence

angle, thus attesting the feasibility of the above described type of control.

In chapter 3 we will present a different and more efficient control for the beam

stabilization that was tested in the same link.

2.6 Conclusion

The observation of the propagation of a single or a pair of beams along very long

paths of over 100 km have shown that the beam is subjected to splitting into multiple
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spots but its long-term diameter may be confined into a spot which is only a factor

3 to 5 the diffraction limit. This results have been obtained by using a suitable

large aperture aplanatic refractive transmitter. In this way a significant reduction

of the link losses for quantum communication channels in this extreme conditions

are possible by the implementation of such scheme. This setup was used in both the

OGS-to-JKT propagation and the reverse. This latter case have shown a larger spot

than the former, although in the poorer weather conditions. The correlations of the

two spots in the twin-beam propagation have demonstrated the possibility of the

centroid control of the quantum channel by the use of an auxiliary co-propagating

beam. These results have been propaedeutical to experiments upon the impact of

turbulence on temporal statistics explained in chapter 3.



CHAPTER 3

Impact of turbulence on temporal statistics

In chapter 2 we have seen that a beam propagating in the atmosphere is subjected to

beam-wandering, broadening and scintillation due to turbulence. However, for the

study of the free-space propagation of quantum correlations is necessary to have a

complete framework of all the turbulence-induced effects. In this chapter we first in-

troduce the optical setup used to investigate the free-space channel and consider the

weather conditions during the experiments. We then analyse the temporal statistic

of the received photons and we present the link budget of the channel considering

different measurement conditions. From the analysis of the data we finally propose

the exploitation of turbulence to improve the signal to noise ratio of the channel.

3.1 Experiment description

The experiments were taken in the Canary archipelagos link described in 2.3.2 during

the campaign of September 2011. We placed the transmitter in La Palma island at

JKT observatory whereas the receiver was in Tenerife island at OGS observatory.

We designed a feedback system for the beam stabilization in order to improve the

SNR of the transmission. It consists in a complementary metal oxide semiconductor

(CMOS) camera placed at JKT which acquire a beacon signal sent from OGS. Using

the centroid position calculated from the camera data it is possible to correct the

direction of the laser beam sent from JKT. In next section we will describe in detail
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the optical setup of the experiment.

3.1.1 Optical setup

Figure 3.1: Schematic of the optical setup. DM: dichroic mirror

The optical setup of the transmitter is shown in Fig. 3.1. It consists of a suitably

designed telescope whose key component is a singlet aspheric lens of 23 cm diameter

and 220 cm focal length at 810 nm. The lens diameter was chosen to be significantly

greater than the estimated Fried parameter r0 [49] in order to obtain at the OGS a

beam whose spot is comparable to the telescope primary mirror and consequently

enhance the power transfer between the two sites. The fact that the lens is not

achromatic was solved inserting a dichroic mirror (DM) to separate the path of the

two wavelengths used in the experiment.

Our light source is an infrared (IR) diode at 808 nm coupled into a single mode

fiber with an output power of about 6 mW and suitable attenuators. In order to

facilitate the raw pointing, a mechanical XY stage has been added (we define the

Z direction as the optical axis of the system). This stage moves all the 2.5 m long

telescope in theXY plane. All the structure is assembled by three aluminum flanges;
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one holds the lens and one the focal plane, and the other is attached to the XY back

stage. The lens is fixed to an articulated mount to prevent bending of the structure.

The IR source has been aligned by means of the DM that reflect the 808 nm

radiation. The platform carrying the focusing lens, the collimating lens, and the

fiber port for the IR can be moved by a micrometric XY Z system based on stepper

motors. In this way, the beam can be slightly steered by moving the focal spot at

the singlet focus. The instantaneous deviation from the initial pointing direction is

acquired by using a 532 nm beacon beam sent from the receiver by using a small

portable low power laser module directly pointed towards La Palma without any

optics. The beacon laser is acquired with a CMOS camera placed on the movable

platform after the DM transmission. The centroid of the beacon spot on the camera

determines the correction on the outcoming IR laser by means of an error signal

with respect to the reference position. The position of the spot at the camera is

sampled about once a second and averaged for a number of frames; these data feed

a control software that calculates the movement for the fine XY stage in order to

compensate slow drifts in the beam direction.

We collected data at the OGS in Tenerife in order to measure the received power

and the scintillation and analyze the temporal structure of the signal. We placed in

the OGS Coudé focus a photodiode and a power meter. When the beam was suitably

attenuated at the transmitter with a neutral density filter we also collected data at

the receiver with a single photon avalanche diode (SPAD) (Excelitas SPCM-AQRH

model).

3.2 Weather conditions

Weather conditions play an important role in determining the turbulence intensity.

We analyse the seeing, the Fried coherence parameter r0 and the structural constant

of the refraction index C2
n for different weather conditions. In table 3.1 we report the

average meteorological data of the two sites during the observing nights compared

with the turbulence parameters.

The determination of r0 is obtained starting from the vertical seeing. First we

estimate the value r(V ) i.e. the Fried coherence length for the vertical propagation,
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Night WS (T) WD (T) RH (T) WS (R) WD (R) RH (R) Seeing (R) r0 (R) C2
n(R) C

17-18 14,31 328 4 23,55 271 1 0,9 3,4 0,19 G

18-19 15,17 186 6,5 31,6 221 6 1,165 2,6 0,3 G

19-20 5,9 129,5 4,5 12,4 151 3 1,75 1, 7⋆ 0,59 P

20-21 15,4 241,5 18,5 18,6 98,5 8 0,695 4,4 0,12 M

23-24 7,57 193,5 21 24,95 229,5 26 0,775 3,9 0,15 M

Table 3.1: Weather Data on both sites (T=Teide OGS, R=Roque JKT) for all the

observing nights. Wind Speed (WS) is in [km/h], Wind Direction (WD) in degrees,

Relative Humidity (RH) in percent, the seeing in [arcsec] whereas r0 in [cm]. The

value of C2
n is to be intended as explained in section 3.2 multiplied by 10−14 for 1

km along the path and by 10−16 for the others 143 km. C is the validity index for

seeing based on the number of seeing data: Poor, Medium, Good. Value with ⋆ has

been recalculated with video data (as explained in 3.2)

which is given by [50]:

r(V ) = 2.013× 105 · λ/seeing (3.1)

then we estimate two C2
n using the Hufnagel-Valley (H-V) model [51], the first for

the first 100 m (Lv1) and the second for the rest of the vertical propagation (Lv2).

This is done by resolving the system given by this equations:

C2
n(2)

=

(

r
(V )
0

)−5/3

0.423k2
(

Lv2 + C2
n(1)

Lv1

) (3.2)

and the equation derived from the mean ratio of C2
n close to ground and far above

the ground in the H-V model:

C2
n(1)

= 100C2
n(2)

(3.3)

At this point the value of r0 for the horizontal propagation is easily obtained with

the standard formula using the two distances Lh1 = 1 km e Lh2 = 143 km. In this

way it is better taken into consideration the fact that for some km the beam travel

close enough to the ground especially in Tenerife, therefore we have:

r0 = 0.423k2
(

Lh1 · C2
n(1)

+ Lh2 · C2
n(2)

)−3/5

(3.4)
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This approach is good when the weather conditions are acceptable in the sense that

the approximation of the C2
n can be considered valid even for horizontal propagation

using the formulas above. Moreover in the table 3.1 a validity index in three levels

is reported indicating whether the r0 approximation is good or poor. This index

takes into consideration the amount of seeing data available for the calculation. In

a particular case, the 3rd night, only one value of seeing was obtained not at ING

weather station (close to JKT) but at the TNG site. In that night it was recorded

also a number of videos which allow to estimate directly the value of C2
n and r0 from

a measure of the spot size at the CCD and considering the optical setup. These

values are: C2
n = 3× 10−17 and r0 = 3.76 cm.

3.3 Temporal statistic analysis

Let us first describe the single photon detection acquisition. We performed several

measurements by setting the counting interval T to 0.1, 1, and 10 ms. Because of

turbulence effects, the mean photon number q in a counting interval at the receiver

should follow a lognormal probability distribution [30]:

P (q) =
1

q
√
2πσ2

e−[ln(q/〈q〉)+(1/2)σ2]/(2σ2) (3.5)

where 〈q〉 is the average, σ2 = ln(1 + SI), and SI = ∆q2

〈q〉2 is the scintillation index

(SI). If the counting interval T is large compared with the coherence time of the

source and T is short compared with the turbulence time scale, the probability of

detecting n photon in each interval follows the Mandel distribution:

pn =

∫

dq
qne−q

n!
P (q) (3.6)

Note that the mean number of detected photons is 〈n〉 =∑n npn = 〈q〉. In Fig. 3.2

(top) the analysis of the temporal distribution of an acquisition with 1 ms counting

interval is reported. It is possible to observe that, when the average number of

detected photons 〈n〉 is large (typically larger than 50) and the SI bigger than 1,

the lognormal and Mandel distribution are quite similar. Given the experimental

scintillation as 2.23± 0.01 and the mean value of detected photons as 234, we show

the counting occurrences together with the corresponding lognormal distribution in
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Figure 3.2: SPAD temporal distribution of count occurrences and corresponding

lognormal and Mandel curves. We can compare the data with the corresponding

Poissonian distribution with the same mean value 234± 0.1 that would be obtained

without turbulence.

Fig. 3.2 (bottom). For comparison, it has been also inserted the corresponding

Mandel distribution with the 〈q〉 = 234.1 ± 0.1 and σ = 349.2 ± 0.2 parameters

obtained from the raw data. We evaluated the similarity between the experimental

data and the lognormal or the Mandel curve, defined as:

S =

[(∑√
piqj

)2
]

/
(∑

pi
∑

qj

)

(3.7)

where pi and qi are, respectively, the theoretical and experimental occurrences. The

similarity of the lognormal curve with the data is 0.9959, while the Mandel curve

has a similarity of 0.9967 showing clear evidence of the statistic transformation.

The green curve represents the corresponding Poisson distribution with the same

observed mean value, to compare what would have been obtained if the statistic
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of the arrival photon were purely Poissonian. In Table 3.2, the data obtained for

several different SPAD acquisitions are reported.

As mentioned, we also measured the intensity of received light with a fast photo-

diode by using an intense laser source. In Fig. 3.3 the temporal distribution of the

photodiode voltage of a data set covering 20 s is plotted. The intensities are recorded

with 50 kHz frequency. Also in this case the intensity occurrences follow a lognormal

distribution (3.5) as shown from the lognormal curve with a similarity of 0.9896. In

this case, the SI evaluated from the experimental data is SI = ∆I2

〈I〉2 = 1.19± 0.01.
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Figure 3.3: Photodiode temporal distribution intensity occurrences and correspond-

ing lognormal curve.

3.4 Link budget

As already mentioned, one of the most important effects induced by turbulence is the

attenuation. With the setup described in section 3.1.1 we measured the link losses
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Mean Std Time(s) Window(ms) SI Bound(Hz)

backgr. 0.4732 0.7256 10 1 2.3515 475

Hi 5291 9135 650 10 2.9805 22

Hi 678.7 820.8 65 1 1.4626 43

Hi 510.4 751.9 65 1 2.1704 45

Hi 781.5 951.9 65 1 1.4834 42

Hi 180.2 312.0 65 1 2.997 39

Hi 234.1 349.2 65 1 2.2251 51

Hi 43.18 48.76 6.5 0.1 1.2748 81

Hi 21.17 26.34 6.5 0.1 1.5485 88

Hi 75.37 132.10 6.5 0.1 3.072 35

Hi 59.97 105.01 6.5 0.1 3.0659 37

Low 37.86 48.42 200 10 1.6355 35

Low 20.83 24.18 200 10 1.3479 35

Low 2.862 3.795 65 1 1.7578 384

Low 5.267 7.519 65 1 2.0383 258

Table 3.2: Data obtained for different single photon acquisition compared to the

background (first line). For each acquisition is reported the total duration of the

acquisition (Time), the temporal windows defining the counting interval (Window),

the mean number of counts in the counting interval (Mean) and its the standard

deviation (Std). It is also reported the SI and the frequency bound defined in such a

way that all the frequencies below the bound contribute to 95% of the SI (Bound).

With High (Low) it is indicated acquisition with high (low) mean photon number

detected during 1 s. We can notice that for the last two data sets the bound is higher

due to the low signal compared to the background (having flat frequency spectrum).
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and we also demonstrated the capability of the system to maintain low attenuation

and high stability along the night. The attenuation was calculated from the fiber

and not from the singlet lens: telescope losses are thus included in the measured

attenuation. The experiments were taken during the nights between 21 and 24

September 2011.

We measured an average attenuation that vary between 30 dB to 35 dB and

during the best run we obtained an average attenuation of about 30 dB with peaks

of 27 dB averaged over 2 minutes, as we can see in Fig. 3.4.

We also tried to correlate the losses with the weather conditions: as expected

the lower the wind and the relative humidity, the lower the losses. In Fig. 3.5, 3.6,

3.7 and 3.8 we reported the attenuation for different night compared to wind speed

and relative humidity at the transmitter (JKT) and at the receiver (OGS).
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Figure 3.4: Measured attenuation averaged over 2 minutes. Red line states for the

total average attenuation.
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Figure 3.5: Measured attenuation compared with wind speed at the transmitter and

the receiver.
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Figure 3.6: Measured attenuation compared with wind speed at the transmitter and

the receiver - Night 23-24
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Figure 3.7: Measured attenuation compared with relative humidity at the transmit-

ter and the receiver - Night 19-20
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Figure 3.8: Measured attenuation compared with relative humidity at the transmit-

ter and the receiver
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3.5 Improving the Signal to Noise Ratio

For both quantum and classical communication, it is of paramount importance to

achieve a high SNR. If a qubit state |Φ〉 encoded in the photon polarization must be

sent between two remote locations, it is possible to determine the effect of (white)

noise on the polarization fidelity, which is defined as:

F = 〈Φ|ρ|Φ〉 (3.8)

where |Φ〉 is the polarization state of the sent photon and ρ is the polarization

density matrix of the received photon. Let us measure the SNR in dB, namely,

SNR = 10 log10
Ns

Nn
(3.9)

where Nn is the average amount of noise (coming from dark detections or background

radiation) and Ns is the average number of detected photons. It is easy to show

that the fidelity depends on the SNR as

F = 1− 1

2(10SNR/10)
(3.10)

In fact, since the background photons are completely depolarized, the received quan-

tum state can be written as

ρ =
Ns −Nn

Ns
|Φ〉〈Φ|+ Nn

Ns

11

2
(3.11)

In order to improve the SNR for the transmission of single photons in a long distance

free-space link as the present one, which uses a 1 m optical receiver, out of this

findings we can envisage the exploitation of the following procedure. With a given

frequency (slower than the single photon transmission rate), the free-space channel is

probed by means of a classical signal that gives the information of the instantaneous

transmission of the channel. Only if the transmission is above a given threshold

the single photon signal is acquired. It is crucial for the protocol to be efficient

to correctly identify the “probing” frequency and the threshold to be used. This

technique can also be used in the classical case, for instance, in on-off keying.

We report in Fig. 3.9 the frequency spectrum and the cumulative power spectrum

of the data plotted in Fig. 3.2. The normalized plot of the power spectrum is
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Figure 3.9: SPAD power spectrum and cumulative power spectrum. Frequency

bound (red vertical line): The frequencies below 51 Hz contribute to 95% of the SI.

obtained by normalizing the intensities by the average I ′ = I/〈I〉. The power

spectrum is related to the SI as follows. We can write the set of (normalized)

acquisitions as I ′k with k = 0, . . . , N − 1 and N = 20 s/20 µs = 106 the number of

intensity acquisitions over 20 s. The Fourier components are given by

Ĩ =
∑

k

I ′kω
nk (3.12)

with ω = e−(2πi/N). By Parseval’s theorem it is easy to show that the SI can be

rewritten as:

SI =
2

N2

N/2
∑

n=1

|Ĩn|2 (3.13)

namely, it is the cumulative power spectrum without the zero frequency (Ĩ0) com-

ponent. We can notice that the frequencies contributing to the scintillation (up to

95%) are within (almost) 50 Hz. For frequencies above around 500 Hz, the spectrum

becomes flat, indicating that at this frequency the random noise is dominant. The
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typical fluctuations of the transmission channel due to turbulence are within 100 Hz

(see Table 3.2). The frequency analysis of the temporal scintillation indicates that

the probing frequency does not need to be higher than 1 KHz.

In order to obtain further evidence, we analysed the features of the counts above

a given threshold of the signal reported in Fig. 3.2. By considering a threshold of

1, 2, 4, and 6 dB above the average, we considered the duration (in milliseconds)

of events with overthreshold counting. The results are shown in Fig. 3.10. The

probability of obtaining an event above a given threshold q0 can be predicted from

the lognormal distribution1:

p(q > q0) =
1

2
− 1

2
erf

[
ln q0

〈q〉 +
1
2
σ2

√
2σ2

]

(3.14)

where erf(x) is the Gaussian error function erf(x) = (2/
√
π)
∫ x

0
e−t2 dt. Acquiring

the single photon channel only if the probed transmission is above a given threshold

implies an increase of the average photon counts in each time slot. It is possible to

show that, by considering only the events in which the transmission satisfy T > T0,

the new mean value 〈n〉thres is

〈n〉thres
〈n〉 =

1− erf

[
ln

T0
〈T〉

− 1
2
σ2

√
2σ2

]

1− erf

[
ln

T0
〈T〉

+ 1
2
σ2

√
2σ2

] > 1 (3.15)

Clearly, this threshold selection increases the SNR but at the same time decreases

the overall counts in a given time. In Fig. 3.11, we show the increase (in decibels) of

the SNR and the percentage of the overall counts that will be detected. In cases of

strong turbulence and high noise, this technique could help the qubit transmission by

“exploiting turbulence”, namely, considering only the particular moments in which

the turbulence increases the channel transmission.

1Here the Mandel distribution was replaced with the lognormal distribution
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Figure 3.10: Duration (in milliseconds) of events with overthreshold counting. In

the different plots we considered a threshold of 1, 2, 4, and 6 dB above the average.
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Figure 3.11: SNR and the percentage of the overall counts that will be detected in

the function of the threshold selection.
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3.6 Conclusions

In this chapter we studied the effect of atmospheric turbulence on the statistic

of arrival of single photons over a free-space 143 km optical link, demonstrating

the transformation from Poissonian to lognormal distribution. We also carried out

the analysis of the temporal losses in order to improve the SNR of the channel.

The evidence of consecutive sub-intervals of low losses allow us to envisage the

exploitation of turbulence as a SNR improvement technique.



CHAPTER 4

Device-independent Quantum Key Distribution

Quantum Key Distribution (QKD) is a method that allows two distant parties, Alice

and Bob, to share secure keys. It makes use of a quantum channel (typically optical)

and an authenticated classical channel. Since the first QKD protocol proposed by

Bennet and Brassard (Bennet-Brassard 84 [1] (BB84)), many security proofs were

carried out [52–55], including also finite-size key demonstrations [56, 57].

Great importance in this last years has been devoted to the so-called device

independent-Quantum Key Distribution (DI-QKD) protocols [58]. Unlike typical

QKD protocols, in a device-independent scenario the security assumptions are not

related to the internal working of the used quantum devices but are based on the

violation of a Bell’s inequality.

A fundamental part of the QKD protocols is data processing that permits to

distill a secure key from the transmitted raw key. In this chapter we first consider

the main structure of this processing as explained in [59], hence we present a brief

description of DI-QKD protocols. Therefore, we analyse in detail a QKD protocol

and its implementation in a one-side device independent-Quantum Key Distribution

(1SDI-QKD) scenario [60]. We then present a version of the Bennet 92 [2] (B92)

protocol implemented with non-maximally entangled states(NMESs) [25]. This kind

of implementation offers some advantages regarding efficiency and key rate with

respect to DI-QKD protocols realized with maximally entangled states. Starting

from this protocol we propose its generalizations and analyse its secret key rate
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when detection inefficiencies are taken into account. This theoretic results are also

published in [J2].

4.1 Data processing of a QKD protocol

Typical QKD protocols involve two phases: the physical phase in which a key is

shared between the two distant parties by means of quantum signals (typically pho-

tons) and the data processing phase that enables to obtain secure keys. By definition

a secure key has to be identical between Alice and Bob (respectively the transmit-

ter and the receiver) and private, i.e. unknown to a possible eavesdropper (Eve).

Data processing can typically be divided in three steps:

• sifting process: in which Alice and Bob select the data received correctly, it

always needs two-way communication;

• error correction: thanks to which the keys shared became identical;

• privacy amplification: after which the key is private, namely the informa-

tion owned by a third party is equal to zero.

The main goal of a QKD protocol is to maximize the rate of the secure key, in fact

every step of the data processing reduces the size of the raw key making the final

key much smaller than the initial one. There exist many security proofs for QKD

protocols, usually these are referred to the infinite key limit case. For a generic

QKD protocol the length of secure key rate can be lower bounded by:

Rinf ≥ H(A)− fH(A|B)− Ipa (4.1)

where H(A) is the Shannon entropy of Alice’s data after the sifting. H(A|B) is

the error correction term, that is the minimum number of bits that Alice has to

send to Bob in order for him to be able to correct his data to match Alice’s data.

The f term is the efficiency of error correction protocol that usually is greater than

1. The last term Ipa is related to the privacy amplification process, and takes into

account the information gained by Eve. The form of Ipa depends on many factors,

in particular the security definition and the security proof technique. This latter is
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the reason why the secret key rate is lower bounded, in fact any valid security proof

guarantees that at least this amount of secret key can be extracted from the raw

key.

4.2 Device independent protocols

The aim of DI-QKD protocols is to generate secret keys between two parties without

making any assumption about the implementation of their devices. These protocols

are divided into 1SDI-QKD when only one of the two devices is trusted and fully

DI-QKD when both devices are untrusted. Since in DI-QKD protocols one or both

the quantum apparatuses are non trusted, they can be seen as black boxes with

some classical inputs and some classical outputs. In figure 4.1 it is possible to see

different QKD protocol scenarios.

In usual QKD protocols two parties named Alice and Bob receive entangled

particles from a common source which is not trusted by the parties. By making

random measurements on the particles and by comparing some results, Alice and

Bob can estimate if the source is controlled by an eavesdropper or not. In a DI-QKD

scenario Alice and Bob would not trust only the source but also their devices.

The DI-QKD protocols represent a relaxation of the security assumptions of

usual QKD protocols. The minimal set of required security assumption for DI-QKD

protocols are:

• the physical location of Alice and Bob are secure

• they own a quantum random generator

• they have trusted classical device for key processing

• they share an authenticated public channel

• Quantum Mechanics is a valid and complete theory

The security of the DI-QKD is proven by means of the Bell’s inequality, in fact

the violation of this inequality guarantees the secrecy of the communication. Non-

locality is not only a necessary condition for the security of these protocols but is
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the physical principle which all device-independent security proofs are based on. For

the 1SDI-QKD case the security requirements are less stringent since it is sufficient

the violation of a steering inequality.

A very detailed review on DI-QKD protocols can be found in [58].

ALICE BOB

TRUSTED DEVICE QKD

ONE-SIDE DEVICE-INDEPENDENT QKD

DEVICE INDEPENDENT QKD

Figure 4.1: Schematic representation of different QKD scenarios.

4.2.1 Bell’s inequalities

In 1935, in their famous article [62], Einstein, Podolsky and Rosen formulated the

so-called Einstein Podolsky Rosen (EPR) paradox in which they stated that Quan-

tum Mechanics is not a complete theory and therefore there exists some kind of

“hidden variables” which were not taken into account. In 1964 John Bell expressed

a mathematical model to demonstrate the implicit assumption of the EPR para-

dox [63], meaning that physic world should be characterized by realism and locality.

Bell introduced an inequality based on physical measurements made by observers on

pairs of particles which have interacted and then separated. This inequality is true

for any local realistic theory; on the other side is violated by Quantum Mechanics

predictions. In 1969 Clauser, Horne, Shimony and Holt proposed a generalization
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of original Bell’s inequality with four correlation measurements [64]. The Clauser

Horne Shimony Holt (CHSH) inequality is defined as:

S(a, a′, b, b′) = E(a, b)− E(a′, b) + E(a, b′) + E(a′, b′) (4.2)

where E is the correlation between the measurements of the pair of particles and

a, a′, b, b′ are referred to arbitrary angles of measurement. It can be shown that for

any realistic local theory the CHSH inequality holds:

|S(a, a′, b, b′)| ≤ 2 (4.3)

whereas quantum mechanics expected to violate it. Therefore the CHSH inequality

and more in general any Bell-like inequality represents a Quantum Mechanics test

against classical hidden-variable theories. There exists many experimental violation

of the Bell’s inequalities and recently detection loophole-free violations of the CHSH

inequality by non-maximally entangled photons were indeed performed [16, 17].

4.3 One-side device independent BBM92 proto-

col

We consider a modified version of the B92 protocol with entangled photons proposed

by [60], in which both parties, Alice and Bob, receive some entangled pairs from an

external source. Alice can choose between two measurement basis, A0 and A1, there-

fore she has two possible outputs for each pair, however she does not trust her device

so she considers it as a black box. On the other side Bob trusts his measurement de-

vice to make two projective measurements B0 and B1 typically corresponding to the

Pauli operators σx and σz. After Alice and Bob made their measurement they use

the conclusive results from A0 and B0 to extract the raw key while the measurement

in A1 and B1 basis will be used to perform the security test.

Alice and Bob have to deal with the losses and the inefficiencies of the detectors

because of whom they not always detect the photons generated by the source. Alice

can not simply discard no-detection events because she has an untrusted device and

the eavesdropper Eve could control her detectors and influence the measurement

results. Bob instead can consider only the detection event since he trust his device
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can not be controlled by Eve. If N is the length of the raw keys A0 and B0, after

the post selection process Alice and Bob will have two strings of bits Aps
0 and B

ps
0

with length n ≤ N .

4.3.1 Security proof and key rate

As proposed recently by Tomamichel, Renes, Lim, Gisin and Renner in [56, 61, 65]

the length of the final secret key can be bounded by:

ℓ ≥ Hmin(B
ps
0 |E)−H(Bps

0 |Aps
0 ) (4.4)

where Hmin(B
ps
0 |E) is the smooth min-entropy [66] of B

ps
0 conditioned to Eve’s

information. The error correction term is equal to:

H(Bps
0 |Aps

0 ) = nh2(Q
ps
0 ) (4.5)

where h2 is the binary entropy function: h2(Q) = −Q log2Q − (1 − Q) log2(1 − Q)

and Qps
0 is the bit error rate between A

ps
0 and B

ps
0 . As demonstrated in [60], by using

the chain rule and the data-processing inequality for smooth min-entropies [65, 67],

it is possible to bound Eve’s information on the sifted bits by using her information

on Bob’s raw key B0:

Hmin(B
ps
0 |E) ≥ Hmin(B0|E) +N − n (4.6)

When performing the security test Alice and Bob measure in the A1 and B1 basis

obtaining two strings of bits A1 and B1. From the generalized uncertainty relation

in [68] we have:

Hmin(B0|E) ≥ qN −Hmax(B1|A1) (4.7)

where q is the orthogonality of the measurement basis B1, for orthogonal mea-

surements q = 1. The term Hmax(B1|A1) is the smooth max-entropy [66] of B1

conditioned on A1 and according to [56] satisfy the following:

Hmax(B1|A1) . Nh2(Q1) (4.8)

where Q1 is the bit error rate between A1 and B1. Substituting (4.6), (4.7) and

(4.8) in equation (4.4) we have:

ℓ & n [1− h2(Q
ps
0 )]−N [h2(Q1) + 1− q] (4.9)
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We denote ηA = n/N as the fraction of photons detected by Alice respect to Bob

detections. Therefore, the final secret key rate r = l/N , which is the the number of

secret bits obtained per photon detected by Bob, is equal to:

r > ηA [1− h2(Q
ps
0 )]− h2(Q1)− (1− q) (4.10)
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Figure 4.2: Secure key rate (4.10) as a function of Alice’s detection efficiency, for

visibilities V = 1, 0.99, 0.98, 0.95 (from top to bottom) and q = 1

4.3.2 Feasibility analysis

It will be considered now a typical experimental setup where Alice and Bob receive

maximally-entangled photons from a source through a depolarizing channel with

visibility V . As in BBM92 protocol (see 4.3) the measurement basis are A0 = B0 =

σz and A1 = B1 = σx and quantum bit error rates(QBERs) are equal to:

Qps
1 = (1− V )/2, Q2 = (1− ηAV )/2 (4.11)



50 Chapter 4. Device-independent Quantum Key Distribution

In figure (4.2) is reported the values of the bound (4.10) as a function of ηA, and for

different values of V . With perfect visibility V = 1 it is possible to have positive

secret key rates for ηA > 65.9%. This bound is lower than those required for fully

device independent QKD, this is related to the fact that it is much easier to close

the detection loophole with a steering equipment than in a Bell test.

It is interesting to note that for the one side device independent case the losses

between the source and Bob’s apparatus do not affect the security of the protocol

(since Bob is trusted). Thus, in principle it is possible to reach long distances if

Alice is close to the source of entangled photons.

4.4 ent-B92 QKD protocol

Entangled-based Bennet 92 QKD protocol (ent-B92) is a protocol proposed in [25]

which is based on the implementation of the standard B92 protocol with NMESs.

The configuration of the protocol is very similar to the one proposed in the section

above 4.3, but the use of NMESs instead of maximally entangled ones gives some

advantages that will be described below.

Let’s now consider Alice and Bob sharing the following NMES:

|Φ〉AB = cos
θ

2
|H〉A|H〉B + sin

θ

2
|V 〉A|V 〉B (4.12)

where |H〉 and |V 〉 are the horizontal and vertical polarization states and 0 < θ ≤
π/2. The parameter θ is monotonically related to the amount of entanglement. The

protocol works as follow: Alice measures with low probability p≪ 1 its photon along

the A1 = {|a1〉, |a1〉} basis, with |a1〉 = |V 〉 and |a1〉 = |H〉. With high probability

1−p she measures along the A0 = {|a0〉, |a0〉} basis, where |a0〉 = 1√
2
(|H〉+ |V 〉 and

|a0〉 is its orthogonal state; Bob randomly and with probability 1/2 measures the

incoming states in the B0 or B1 basis where Bk =
{
|bk〉, |bk〉

}
and

|bk〉 = sin ϕ
2
|H〉 − (−1)k cos ϕ

2
|V 〉

|bk〉 = cos ϕ
2
|H〉+ (−1)k sin ϕ

2
|V 〉

(4.13)

In figure 4.3 it is presented the scheme for ent-B92 protocol. The results from Alice’s

A0 basis measurements are used as bits of the raw key together with Bob’s results,
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Figure 4.3: Scheme of the ent-B92 protocol

while those from the A1 basis will be used to perform a test against the eavesdropper

attack, as in the unconditionally secure - B92 protocol (us-B92) [69]. On Alice’s side,

the states |a0〉 and |a0〉 correspond to bits 0 and 1 respectively. Upon obtaining the

state |bk〉 Bob decodes Alice’s bit as j = k ⊕ 1 (the symbol ⊕ means “addition

modulo 2”) and labels the result as conclusive; on the contrary, upon obtaining the

state |bk〉, Bob labels the result as inconclusive. The probability of a conclusive

event is given by

Pconc =
1

2
(1− cos θ cosϕ) (4.14)

that is independent on Alice’s measurements. The sifted key is obtained by selecting

the conclusive results corresponding to Alice’s A0 measurements. The so-called

ent-B92 protocol described in [25] corresponds to the choice ϕ = θ. The theoretical

QBER, defined as the ratio of the number of errors over the number of conclusive

outcome, can be calculated as

Qth =
nerr

nconc
=

1− cos(θ − ϕ)

2− 2 cos θ cosϕ
(4.15)

and the choice ϕ = θ, used in the ent-B92 protocol, gives null QBER.

4.4.1 Security proofs of ent-B92 QKD protocol

For the derivation of the secure key rate it is considered a general case in which both

Alice and Bob can have inefficiencies. Let’s consider a transmission with N pairs

where Alice choose the A0 basis and Bob chooses with probability 1/2 the basis B0

or B1. The ±1 outputs of Alice’s measurement correspond to bit 1 and 0 of the

sifted key. On Bob’s side, only +1 outputs, the so called conclusive outcomes, are

taken into account to build the key: thus, on Bob side, non-detection event will be

associated to −1 output (corresponding to non-conclusive outcomes). Then, all the
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Alice’s bits corresponding to non-conclusive Bob’s outcome, can be simply discarded

as it is usually done in the sifting phase of the BB84 protocol.

If the efficiencies are given by ηA and ηB, Bob receives NPcηB conclusive counts

and Alice obtains N ηA detections where Pc is the probability of obtaining a Bob

conclusive outcome in case of perfect detection efficiency, defined in (4.14). Alice

and Bob will perform a post-selection on the conclusive events, by selecting the bits

in which Alice obtained a physical detection: then the number of bits of the final

sifted key is given by NPcηAηB. Let’s call Aps and Bps the Alice and Bob strings

of bits after the post selection, while Bc is the original Bob’s string of conclusive

outcomes. The equation of the length of the secure key rate can be derived from

(4.4):

ℓ ≥ Hmin(B
ps|E)−H(Bps|Aps) (4.16)

The term related to error correction is now equal to:

H(Bps|Aps) = NPcηAηBh2(Q
ps) (4.17)

The relation between smooth min-entropies defined in (4.6) can be now rewritten

as:

Hmin(B
ps|E) ≥ Hmin(B

c|E)−NPcηB(1− ηA) (4.18)

where NPcηB(1 − ηA) is the difference between the Bc and Bps string length. As

shown in [68], the min-entropy can be related to the maximal probability of guessing

the key bits, namely

Hmin(B
c|E) = −NPcηB log2 Pguess(B

c|E) (4.19)

By using the results of [70], the probability of guessing the bits can be related to

the Bell’s inequality by

Pguess(B
c|E) ≤ 1

2

[

1 +
√

1− 4SCH − 4S2
CH

]

=
f(SCH)

2
(4.20)

where SCH is the Clause-Horne (CH) parameter:

SCH = P (a1b1) + P (a0b1) + P (a1b0)− P (a0b0)− P (a1)− P (b1) (4.21)

In the previous expression P (ai, bj) is the joint probability that Alice measures the

state |ai〉 and Bob detects the state |bi〉, while P (a1) and P (b1) are the probabilities
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that Alice and Bob respectively measure |a1〉 and |b1〉, regardless of what is measured

by the other user. The final secure key length can be thus written as

ℓ ≥ NPcηB [ηA(1− h2(Q
ps))− log2 f(SCH)] (4.22)

and the final rate r = ℓ/N is given by

r = ηBPc [ηA(1− h2(Q
ps))− log2 f(SCH)] (4.23)

as usual the h2(Q
ps) corresponds to the bits used for error correction, while the log2

contribution is related to Eve’s knowledge on the key and the required compression

in the privacy amplification stage. In case of standard QKD (corresponding to ηA =

ηB = 1), the achievable rate with the ent-B92 protocol (corresponding to ϕ = θ), is

shown in Fig. 4.4 with the maximum rate obtained for θ ≃ 65.28◦. By using the

angle that maximizes the violation of the Bell inequality (ϕ = arctan(sin θ)) it is

possible to improve the rate when θ & 71.62◦ (see Fig. 4.4). More generally, it is

possible to numerically optimize the value of the parameter ϕ = ϕ⋆(θ) as a function

of θ to maximize the achievable rate, as shown with dashed line in Fig. 4.4. Note

that, whenever ϕ 6= θ, the theoretical QBER is not vanishing: however, the non-

vanishing QBER can be compensated by a larger violation of the CH inequality,

allowing more secrecy in the privacy amplification stage. The rate in (4.23) can

be compared to the one obtained with the post-selection technique in section (4.3)

using the usual DI-QKD protocol of [70] implemented with maximally entangled

states:

r′ = [ηAηB(1− h2(Q
ps))− log2 f(SCH)] (4.24)

The difference between r and r′ arises from the fact the in the BBM92 protocol the

key is obtained by using the results of Bob in a single basis, while in the generalized

ent-B92 protocol the key is obtained by keeping the Bob’s conclusive results in the

basis B0 and B1. It is also useful to compare the equation (4.23) with the one

proposed in [25], where the key rate of the ent-B92 protocol was given as

r̃ = ηAηBPc [1− h2(Q)− log2 f(SCH)] (4.25)

where now the QBER Q must be evaluated over all conclusive events. When Alice

and Bob do not get a detection they must decide which value should outcome:
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Figure 4.4: Theoretical secure key rate r for the generalized ent-B92 protocol, in

case of perfect detection efficiencies (ηA = ηB = 1)

discarding the data is in fact equivalent to the fair sampling assumption in Bell’s

inequalities. If Bob assign to non-detection events the |bk〉 outcomes, the non-

detection events do not contribute to the key, since only |bk〉 outcomes will be

contained in the key. When Alice measure the A1 basis, on the other side, whatever

value she decides to output, the bit will enter into the key. If Alice assigns to non-

detection events the |a1〉 or |a1〉 outcomes with probability 1/2, the QBER of the

sifted key will be

Q = ηAQ
ps +

1− ηA
2

(4.26)

It is easy to show that the rate r̃ (4.25) is lower than the rate r (4.23) achievable

with the post-selection technique in the fully DI-QKD scenario, while r̃ = r in the

one-side device independent-Quantum Key Distribution (1SDI-QKD) scenario with

Alice’s trusted device.
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4.4.2 Clause-Horne inequality

The theoretical value of the CH parameter SCH (4.21) for the NMES (4.12) and for

the measurement defined in (4.13) is given by

SCH(θ, ϕ) =
1

2
(cosϕ+ sin θ sinϕ− 1) (4.27)

The choice of ent-B92 protocol ϕ = θ gives the following expression for the CH

inequality:

SCH(θ) =
1

2
cos θ (1− cos θ) (4.28)

θ

SCH
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Figure 4.5: Plot of SCH as a function of θ; red dashed line for ent-B92 protocol, blue

solid line for ϕ = arctan(sin θ) protocol.

Figure (4.5) shows the value of SCH as a function of the angle θ; in red dashed

line is plotted the value obtainable with the expression above. As we can see the CH

parameter is positive in the interval 0 < θ < π/2, i.e. it violates the Bell’s inequality

for the same interval of θ in which the ent-B92 protocol is defined. The maximum

of the function is approximately at π/3, corresponding to SCH = 1/8, and it reaches

the zero for (θ = 0) and (θ = π/2), respectively when the state (4.12) is separable

and when is maximally entangled. However the choice of ent-B92 protocol does not
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give the maximum achievable violation, the best choice is for ϕ = arctan(sin θ) that

gives

Smax
CH (θ) =

1

2

(√

sin2 θ + 1− 1
)

(4.29)

In figure 4.5 Smax
CH is represented in solid blue line, the maximum is now at θ = π/2

and it reaches the zero value when the state is separable θ = 0, as we expected. The

violation of the CH inequality SCH ≤ 0 can be then used as a test against the local-

realism of quantum physics: it can be trivially checked that, when the inequality is

not violated, the secure rate (4.23) is zero. Further, if the key rate (4.23) is negative,

no secure key can be distilled.

4.4.3 Detection efficiency

The main problem of the fully DI-QKD is related to the so-called detection loophole,

namely the fact that the photon detection is inefficient and, if the detectors are not

trusted, an eavesdropper can exploit this inefficiency to gain information on the

key. In case of detection inefficiencies ηA and ηB we can predict the values of each

probability of the CH parameter 4.21. In the generalized ent-B92 protocol, non-

detection events are associated to the states |a1〉, |b0〉 and |b1〉 with the observables

A1, B0 and B1. Then the probabilities P can be predicted as:

P (a1, b1) = ηAηBp(a1b1), P (a1) = ηAp(a1) = ηA
[
p(a1b0) + p(a1b0)

]

P (a1, b0) = ηAηBp(a1b0), P (b1) = ηBp(b1) = ηB [p(a0b1) + p(a0b1)]
(4.30)

where p(aibj) are the probabilities normalized on the post-selected events in which

Alice and Bob have a coincidence. On the other side, when measuring the A0

observable, it is necessary to remember that the state |a0〉 is randomly chosen, with

probability 1/2, in case of non-detection. Then

P (a0, b0) = ηAηBp(a0b0) + (1− ηA)ηB
1

2
p(b0)

= ηAηBp(a0b0) + (1− ηA)ηB
1

2
[P (a0b0) + p(a0b0)]

P (a0, b1) = ηAηBp(a0b1) + (1− ηA)ηB
1

2
p(b1)

= ηAηBp(a0b1) + (1− ηA)ηB
1

2
[P (a0b1) + p(a0b1)]

(4.31)
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By inserting equation (4.30) and (4.31) into (4.21) we obtain the predicted Bell

parameter

SCH = ηAηB

[

p(a1b1) +
1

2
p(a0b1) + p(a1b0)−

1

2
p(a0b0) +

1

2
p(a0b0)−

1

2
p(a0b1)

]

− · · ·

− ηA
[
p(a1b0) + p(a1b0)

]
− ηB

2
[p(a0b1) + p(a0b1) + p(a0b0) + p(a0b0)]

(4.32)

It is worth noting that considering a trusted measurement device is equivalent to

consider perfect efficiencies, namely ηA = 1 and/or ηB = 1. In fact, if the device is

trusted, we can safely consider only the detected events. In this way, we can have

three possible scenarios: fully DI-QKD when the actual efficiencies are considered,

1SDI-QKD in which only one of the two devices (Alice or Bob) is trusted, and

standard QKD with both trusted devices.

It is clear that, when Alice and Bob have trusted devices (corresponding to the

fair sampling assumption of non-locality tests), the ent-B92 protocol cannot offer

advantages with respect to the entangled version of the BB84 protocol [3, 70]. In

fact, in this case, the secure key rate of ent-B92 is always lower than the BB84,

given by rBB84 = 1−2h2(Q). The advantages come when one (or both) device is not

trusted: in this case, the lower threshold detection required by the ent-B92 protocol

to violate the CH inequality, gives considerable improvement on the secure key rate

with respect to protocols based on maximally entangled states. From the equation

(4.32) we can derive the threshold detection efficiencies required to violate the Bell’s

inequality. For the 1SDI-QKD case (ηA = ηB = ηth) we have:

ηth =
p(a1b0) + p(a1b0) +

1
2
p(a0b1) +

1
2
p(a0b1) +

1
2
p(a0b0) +

1
2
p(a0b0)

p(a1b1) +
1
2
p(a0b1) + p(a1b0)− 1

2
p(a0b0) +

1
2
p(a0b0)− 1

2
p(a0b1)

(4.33)

If ηA = 1 (corresponding to Alice trusted device), the Bob’s threshold detection

efficiency ηB, can be be predicted to be:

ηthB =
P (a1b0) + P (a1b0)

P (a1b0) + P (a1b1)− P (a0b0)− P (a0b1)
(4.34)

The two expression above can be expressed also as a function of the angles θ and ϕ

using the states (4.13):

ηth =
2− cos θ(1 + cosϕ)

1 + cosϕ− cos θ − cos(θ + ϕ)
(4.35)

ηthB =
1− cos θ

cosϕ− cos θ + sin θ sinϕ
(4.36)
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Figure 4.6: Threshold detection efficiency as a function of the angle θ for the ηA =

ηB = η case (top) and the ηA = 1 case (bottom) for the different choice of the angle

ϕ.
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In figure 4.6 are shown the theoretical curve for ηth and ηthB for both the choice ϕ = θ

(ent-B92 protocol) and ϕ = arctan(sin θ).

4.4.4 Feasibility analysis

Considering a real scenario, we can estimate the value of the Bell parameter in case

of arbitrary efficiencies ηA and ηB and thus predict the secure key rate achievable.

Let’s first consider fully DI-QKD with Alice and Bob having the same efficiency

ηA = ηB = ηth. For each value of ηth it is possible to optimize the value of θ (or

both θ and ϕ) that maximize the key rate for the ent-B92 protocol: in figure 4.7 it

is illustrated the achievable key rate as a function of the detection efficiency for this

case. We note that positive secure key rate can be obtained up to 90.57% efficiency,

improving the results of 90.9% and 91.1% obtained respectively in [59] and [60].

Great improvement with respect to previous results are obtained by considering

1SDI-QKD in which Alice device is trusted, corresponding to ηA = 1 in the secure

key rate (4.23) and in the predicted Bell parameter (4.32). In this case the rate

r correspond to the fraction of secure bits over the Alice’s detected bits. In figure

4.7 it is shown the achievable key rate as a function of the detection efficiency

in the 1SDI-QKD case. For the ent-B92 protocol, the secure key rate (without

experimental imperfection) becomes

r = ηBPc [1− log2 f(SCH)] (4.37)

which is positive whenever the Bell inequality SCH ≤ 0 is violated. We note that

with this protocol it is possible to obtain positive secure key rate up to 50% detection

efficiency, improving the result obtained in previous section (4.3) in which an effi-

ciency greater than 65.9% is required for key generation. This result closes the gap

between one-side Bell inequality (also known as steering inequality [60, 71, 72]) and

key generation, since the violation of the Bell’s inequality corresponds to a positive

secure key rate. It still remains the gap for fully DI-QKD, where there is a difference

between the threshold of η > 82.8% for a violation of the CHSH inequality [15] and

the efficiency required for the security of fully DI-QKD, namely η > 90.57% .
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Figure 4.7: Achievable key rate as a function of the threshold detection efficiency

for (top) the fully DI-QKD case (ηA = ηB = η) and for (bottom) the 1SDI-QKD

(ηA = 1). For 1SDI-QKD the rate is the amount of secure bits over the detected

Alice bits.
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4.5 Conclusions

In this chapter was presented two QKD protocols in the 1SDI-QKD and fully

DI-QKD implementation scenarios. For ent-B92 protocol has been derived an ef-

ficient key rate in case of detection inefficiencies. While the improvement for the

fully DI-QKD case is small (it was lowered the threshold efficiency from 90.9% to

90.57%), great improvement was obtained in the 1SDI-QKD case: it was in fact

possible to achieve positive secure key rate up to 50% efficiency, in comparison with

the state of the art result of 65.9% [60].





CHAPTER 5

Feasibility of B92 protocol with non-maximally

entangled states

In this chapter we consider the experimental realization of the ent-B92 protocol

proposed in chapter 4. First the design and the realization of the experimental

setup is described, then we illustrate the noise model used to take into account the

non-idealities of the system. Finally, we present the measurement results compared

with theoretic curves proposed in section 4.4. The results presented in this chapter

are published in [J2] and in the master thesis of Tomasin [73].

5.1 Experimental setup

The experimental setup for the ent-B92 protocol feasibility demonstration (see Fig.

5.1) was designed and developed in order to generate and measure the NMES:

|Φ〉AB = cos
θ

2
|H〉A|H〉B + sin

θ

2
|V 〉A|V 〉B (5.1)

A typical scheme for the generation of NMES in polarization is the one proposed

by Kwiat in [74], which is given by two identical spontaneous parametric down

conversion (SPDC) crystals with orthogonal axis. The used source consists of two

overlapped Type-I non-linear Beta Barium Borate (BBO) crystals, with 1 mm length

which are pumped by a laser with 810 nm of wavelength, 10 ps of pulse width, 76

MHz of repetition rate and about 100 mW of mean power. To generate different
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Coincidences

PBS

Alice

Bob

Figure 5.1: Experimental setup used for generation and measurement of the NMESs.

NMES, i.e. to vary the angle θ of the generated NMES (5.1), we positioned before

the crystal an half waveplate retarder mounted on a rotating stage. The pump

light is focused on the crystal with a lens of focal f = 200 mm in order to have an

appropriate Rayleigh distance. As represented in figure 5.2, the experimental setup

after the crystal is composed by two lenses (f = 100 mm) and some tip-tilt mirrors

in order to select the intersection of the two parametric circles. The measurement

stages are given by a half and a quarter waveplates followed by a polarizing beam-

splitter for each measurement channel. The outcoming photons are then collected by

two single mode fibers through 20× focusing objective. In front of fibers we placed

also two band-pass filters with 810 nm of center wavelength and 7 nm of full width

half maximum (FWHM) bandwidth in order to select only the entangled photons.

The fibers are attached to two single photon avalanche diodes(SPADs) with 40 %

of photon detection efficiency, 50 photon/s of dark counts and 40 ns of dead time.

The entire setup, except for the pump source, was designed to be compact in

order to be mounted over a 300 × 600 mm breadboard. Due to the long coherence

time of the pump laser compared with the crystals length, it was not necessary to

compensate the temporal walk-off in the BBO crystals.

The signals coming from the SPADs were collected by dedicated electronics which

enables to detect the coincidence events. We used a time-tagger with 81 ps of
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Figure 5.2: Experimental setup after the SPDC crystal

temporal resolution which is far below the temporal resolution of the SPADs. The

coincidence time window, that is the maximum delay between the two revealed

photons to be considered a coincidence, was set to ∆T = 2.4 ns.

The detection efficiency of the entire system was calculated taking into account

the coupling efficiency of the fibers and the photon detection efficiency of the SPADs,

the overall measured efficiency is about 10 %.

5.2 Noise estimation

In order to take into account imperfections in the setup we elaborated a noise model.

Principal sources of noise are background photons and decoherence of the generated

state. Background noise is produced by all detected photon pairs that are not

entangled, the best model for this is white noise since is totally depolarized. In

the generation of the NMES (5.1) it is difficult to produce the contributions |HH〉



66 Chapter 5. Feasibility of B92 protocol with non-maximally entangled states

and |V V 〉 perfectly distinguishable. This, indeed, introduces a decoherence in the

generated state that can be modeled with colored noise. Considering these noise

contributions we can express the experimental generated state as:

ρexp = (1− ǫc − ǫw)|Φ(θ)〉〈Φ(θ)|+ ǫcρc + ǫw
11

4
(5.2)

In the previous equation ρc = cos2 θ
2
|HH〉〈HH|+ sin2 θ

2
|V V 〉〈V V | and ǫc (ǫw) rep-

resent the amount of colored (white) noise. The effect of the noise contribution can

be easily seen also making explicit the density matrix:

ρexp =










1
4
(2− ǫw + 2(1− ǫw) cos θ) 0 0 1

2
(1− ǫw − ǫc) sin θ

0 1
4
ǫw 0 0

0 0 1
4
ǫw 0

1
2
(1− ǫw − ǫc) sin θ 0 0 1

4
(2− ǫw − 2(1− ǫw) cos θ)










(5.3)

As we can see, white noise affects the elements in the diagonal while colored one

introduces some off-diagonal components.

With this noise definition it is possible to recalculate all the theoretic curve of

section 4.4 in presence of noise. The Bell’s parameter SCH becomes:

SCH =
1

2
((1− ǫw) cosϕ+ (1− ǫw − ǫc) sin θ sinϕ− 1) (5.4)

and the QBER is equal to:

QBER =
1

2

(

1− (1− ǫw − ǫc) sin θ sinϕ

1− (1− ǫw) cos θ cosϕ

)

(5.5)

It is easy to see that in presence of noise also the choice ϕ = θ gives a non-zero

quantum bit error rate, as expected. The probability of a conclusive event is given

by:

Pconc =
1

2
(1− (1− ǫw) cosϕ cos θ) (5.6)

It is interesting noting that the colored noise term ǫc is not present in this equation,

since distinguishability between |HH〉 and |V V 〉 contributions in (5.1) does not

affect the measurement in the basis used to produce the raw key but affects only

the ones used for the violation of the Bell’s inequality. The threshold detection

efficiencies in presence of noise can be rewritten as:

ηth =
2− (1− ǫw) cos θ(1 + cosϕ)

1 + (1− ǫw) (cosϕ− cos θ − cos(θ + ϕ))− ǫc sin θ sinϕ
(5.7)
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ηthB =
1− (1− ǫw) cos θ

(1− ǫw)(cosϕ− cos θ) + (1− ǫw − ǫc) sin θ sinϕ
(5.8)

since the parameter ǫc is multiplied with a sine function in both the equations we

can predict that the colored noise is more effective for low values of the angles θ and

ϕ.

5.3 Experimental results for ent-B82

All the parameters of ent-B92 protocol can be directly derived from the measurement

probabilities. These are given by the ratio between the number of events when Alice

measures the state |ak〉 and Bob measures the state |bk〉 upon the sum of the counts

when Alice and Bob measure in the basis A1 = {|H〉, |V 〉}:

P (ak, bk) =
N(ak, bk)

N(H,H) +N(V, V ) +N(H, V ) +N(V,H)
(5.9)

5.3.1 Measurements

The measurements taken for both the ent-B92 protocol (θ = ϕ) and the ϕ =

arctan(sin θ) protocol are listed in tables 5.1 and 5.2. For every measurement we

reported the number of coincidence collected for different time windows. We took in

consideration also the accidental coincidences that can be given by the generation

of double pairs in the SPDC process, the estimated rate is equal to:

Racc =
NANB

ν∆T
(5.10)

where N1 and N2 are the counts of single events for Alice and Bob respectively, ν is

the repetition rate of the laser pump and ∆T is the temporal observation interval.

We evaluated also the SPDC efficiency, i.e. the ratio between the single count events

and the coincidence counts:

ηS =
Ns

Nc

(5.11)

the measured efficiency is about ηS ≃ 10%. To assess the quality of the generated

NMES we also measured the average visibilities for the basis L = {|H〉, |V 〉} and
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D = {|+〉, |bk〉} (with ϕ = θ):

VL =
N(H,H) +N(V, V )−N(H, V )−N(V,H)

N(H,H) +N(V, V ) +N(H, V ) +N(V,H)
& 99%

VD =
N(+, b1) +N(−, b0)−N(+, b0)−N(−, b1)
N(+, b1) +N(−, b0) +N(+, b0) +N(−, b1)

& 96%

Those values confirm a good interference in the generated entangled state.

The angles θ reported in tables 5.1 and 5.2 were not calculated from the rotation

of the half-waveplate placed in front of the SPDC crystal, but directly from the

measurements as:

θ =
90

π
arctan

(√

N(H,H)

N(V, V )

)

(5.12)
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θ [deg] N(H,H) N(V, V ) N(H, V ) N(V,H) N(V, b0) N(V, b1) N(V, b0) N(+, b0) N(+, b1) N(−, b1) N(−, b0)
12◦ 25969 272 45 27 59 274 246 35 699 27 370

16◦ 17278 357 25 17 53 362 341 24 805 35 511

25◦ 11362 549 29 17 47 516 547 37 957 22 934

29◦ 2977 196 10 7 29 228 232 13 412 12 357

35◦ 2279 220 7 4 40 245 184 9 410 12 405

41◦ 2465 336 6 8 65 309 297 10 584 14 490

45◦ 6771 1182 11 10 179 1020 1004 39 1986 35 1895

52◦ 4331 1045 17 8 260 940 761 27 1581 41 1652

57◦ 4450 1318 82 16 282 1097 1107 34 1832 44 2072

65◦ 5068 2030 20 12 609 1521 1225 35 2871 40 2558

70◦ 1700 833 3 4 317 625 605 23 1095 14 1090

74◦ 4089 2341 15 41 1012 1730 1308 37 3048 52 2640

82◦ 2772 2060 27 17 957 1388 1045 28 2519 37 2078

83◦ 1355 1061 2 7 486 622 562 18 1222 21 1227

90◦ 1483 1460 5 17 709 743 753 22 1386 23 1463

Table 5.1: Measurements for ent-B92 protocol with ϕ = θ



7
0

C
h
a
p
ter

5
.

F
ea
sib

ility
o
f
B
9
2
p
ro
to
co
l
w
ith

n
o
n
-m

a
x
im

a
lly

en
ta
n
g
led

sta
tes

θ [deg] N(H,H) N(V, V ) N(H, V ) N(V,H) N(V, b0) N(V, b1) N(V, b0) N(+, b0) N(+, b1) N(−, b1) N(−, b0)
11◦ 12013 119 33 6 36 113 89 14 304 8 166

15◦ 11858 208 28 9 57 206 187 12 496 13 319

25◦ 11804 568 22 15 102 584 515 39 1178 19 849

29◦ 4785 318 12 3 49 344 281 16 550 12 497

35◦ 9620 938 66 16 126 1006 859 30 1403 30 1285

40◦ 5612 744 9 36 101 757 598 28 1115 48 1023

48◦ 4577 910 13 7 142 846 734 49 1256 47 1110

52◦ 4166 990 11 11 155 961 877 68 1255 72 1255

58◦ 6187 1868 19 62 369 1788 1450 142 2219 92 2022

64◦ 3946 1567 11 15 263 1433 1373 111 1686 153 1802

69◦ 3502 1662 15 9 291 1568 1372 137 1675 179 1699

72◦ 3644 1928 12 38 402 1800 1569 177 1925 209 1926

82◦ 1304 975 4 10 180 911 880 140 950 149 967

83◦ 2859 2233 9 34 463 1989 1856 344 2262 184 1820

89◦ 3108 2965 10 39 624 2612 2239 399 2436 363 2579

Table 5.2: Measurements for ent-B92 protocol with ϕ = arctan(sin θ)
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5.3.2 Measurements plots

In this subsection we present the plots of the measured parameters regarding the

ent-B92 protocol. For each experimental parameter we report also the errors calcu-

lated by means of standard propagation of the Poissonian photon-counting statistic.

A detailed description of the calculation of all the standard deviations can be found

in appendix A.

In figure 5.3 we report the experimental values for the CH inequality SCH as a

function of the amount of entanglement parameter θ. We can see that the presence

of noise does not affect significantly the experimental curve. Otherwise in the secure

key rate the noise plays an important role in fact as we can see in figure 5.4, for some

values of θ, it lowers the experimental curve below the minimum achievable secret

key rate. In figure 5.6 it is possible to observe the effect of noise on the threshold

θ

SCH
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Figure 5.3: Experimental values of the parameter SCH and corresponding errors for

the ent-B92 (blue circles) and the ϕ = arctan(sin θ) (red stars) protocol. Continu-

ous lines refer to theoretical predictions, corresponding to perfect state generation.

Dashed lines refer to noise model of equation (5.2) with ǫw = 0.007 and ǫc = 0.015.
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detection efficiencies required to violate the CH inequality, it is interesting noting

that noise has a huge impact on the measurements as the NMES get closer to the

separable state. The same can be observed in the plot of the QBER as a function of

θ in figure 5.5 in which it is possible noting that also the choice ϕ = θ has non-zero

QBER in presence of noise. In figure 5.7 the maximum achievable secure key rate

as a function of the threshold detection efficiency is proposed, in this case noise acts

as an increment of the minimum required threshold detection efficiency. The only

term in which the noise is negligible is the probability of a conclusive event, as we

can see in figure 5.8.

θ

r

 

 

π/8 π/4 π/3 π/2

no secure key region

     

−0.05

0

0.05

0.1

0.15

0.2
ent-B92 (ϕ = θ)

ϕ = arctan (sin θ)

Figure 5.4: Experimental key rates as a function of angle θ with trusted measurement

devices for the ent-B92 (blue circles) and the ϕ = arctan(sin θ) (red stars) protocol.

Dashed lines refer to noise model of equation (5.2) with ǫw = 0.007 and ǫc = 0.015.
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Figure 5.5: Quantum Bit Error Rate as a function of the angle θ for the ent-B92

(blue circles) and the ϕ = arctan(sin θ) (red stars) protocol. Continuous lines refer

to theoretical predictions, corresponding to perfect state generation. Dashed lines

refer to noise model of equation (5.2) with ǫw = 0.007 and ǫc = 0.015.

5.4 Conclusions

In this chapter we proposed the experimental feasibility of the protocol ent-B92

exposed in chapter 4. We illustrated the setup and the experimental results, in

particular we analyzed in detail the incidence of noise in the measurements. The

results show a good agreement between the theory and the experiment.
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Figure 5.6: Threshold detection efficiency as a function of the angle θ for the ηA =

ηB = ηth case (top) and the ηA = 1 case (bottom) for the ent-B92 (blue circles)

and the ϕ = arctan(sin θ) (red stars) protocol. Continuous lines refer to theoretical

predictions, corresponding to perfect state generation. Dashed lines refer to noise

model of equation (5.2) with ǫw = 0.007 and ǫc = 0.015.
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dots) protocol. Continuous lines refer to theoretical predictions, corresponding to

perfect state generation. Dashed lines refer to noise model of equation (5.2) with

ǫw = 0.007 and ǫc = 0.015.
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CHAPTER 6

Hyperentanglement as a resource for QKD

Entanglement represents a great resource for Quantum Mechanics and plays an

important role in experimental tests of quantum information theories. Quantum

state of photons are easily generated by means of spontaneous parametric down

conversion (SPDC), as already seen in chapter 5. SPDC typically generates no more

than one photon pair time by time, and this corresponds to deal with a 2×2 Hilbert

space. However, information tasks and fundamental tests of Quantum Mechanics

involve large number of qubits. Thus, it is necessary to add more than one qubit

to the quantum states in order to fully exploit the advantages offered by quantum

mechanics. For example, the greater the number of qubits, the stronger the violation

of Bell’s inequalities.

In order to increase the number of qubits it is possible to enhance the number

of entangled particles or, as treated in this chapter, to encode more than one qubit

in each particle. This latter can be obtained exploiting different degrees of freedom

(DOFs) of the photon, as proposed by [75–80]. This kind of entanglement in more

than one DOFs is called hyperentanglement.

Hyperentanglement gives the possibility to perform many quantum non-locality

tests, such as the demonstration of Mermin’s growing-with-size quantum non-locality

effect [81]. It also allows to generalize the Greenberger-Horne-Zeilinger (GHZ) the-

orem [82] with only two entangled particles. As seen in chapter 4 and 5, one of the

main limitation of the non-locality tests performed with photons is represented by
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the so-called “detection loophole”. Recently was demonstrated that by using hyper-

entangled states with two DOFs the threshold detection efficiency can be lowered

to 61.8 % [83]. Massar in [84] also shown that lower bounds decrease exponentially

with the dimension of the Hilbert space by increasing the dimension of the entangled

state.

Bell state analysis, i.e. the discrimination between the four orthogonal Bell

states, is a fundamental resource in several quantum information processing and ap-

plications, such as dense coding [20, 21], teleportation [85–87], entanglement swap-

ping [85, 88–90], cryptography [91, 92]. However, the complete deterministic dis-

crimination between the four states is not possible using linear optical elements and

classical communications. Enlarging the size of the Hilbert space and using hyper-

entangled (HE) states allow us to achieve a complete Bell state analysis [93–96].

In this chapter we first make an overview on HE states generation, focusing on

hyperentangled states in polarization and energy-time DOFs. We then present the

design and the implementation of an experimental system for the generation and

measurement of photon pairs entangled in both polarization and energy-time. To

access the quality of the generated states we propose the results of the separate

tomography of both the DOFs. Detailed informations on hyperentanglement can be

also found in [97].

6.1 Hyperentangled states generation

As early mentioned, the entanglement of two particles in different DOFs corresponds

to so-called HE state. We now propose a more formal definition of HE state. Let

us consider two photons A and B and n independent DOFs {aj} and {bj}, with
j = 1, . . . n. Each DOF spans a 2-dimensional Hilbert space with basis {|0〉aj , |1〉aj}
({|0〉bj , |1〉bj}) for particle A (B). Therefore, each particle carries exactly n qubits.

A state |ϕ〉 is separable in the HE sense if it satisfies the following condition:

∃ a j such that |ϕ〉 = |ϕ1〉ajI|ϕ2〉bjJ (6.1)

where {I,J } represents a generic bi-partition of the set Tj ≡ {a1, b1, . . . , an, bn} \
{aj, bj}, so that I ∪ J = Tj and I ∩ J = ∅.
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Definition: A (mixed) state is hyperentangled in n degrees of freedom if it is

separately entangled in each of them and cannot be written as a mixture of states

satisfying equation (6.1) [97].

Hyperentanglement can be experimentally checked by means of measurement

of an (hyper-)entanglement witness. A witness W is an hermitian operator whose

expectation value is non-negative for any separable state, whereas it is negative for

entangled states. For HE states this consists in verifying the presence of entangle-

ment for each DOF and measuring an hyperentanglement witness which is positive

for the states that can be written as a mixture of states satisfying equation (6.1).

A very useful technique to generate entangled photons is the SPDC process.

Typically an intense pump laser beam (p) shines a non-linear birefringent crystal

from which are probabilistically generated pairs of photons, referred as idler (i) and

signal (s). For the maximization of the emission probability is necessary to satisfy

the following condition:

phase-matching: ~kp = ~ki + ~ks, energy matching: ωp = ωi + ωs (6.2)

The SPDC two-photon state can be expressed as [97]:

|Ψ〉 = N
∫

d2ksd
2kidωsdωiAp(ks + ki, ωs + ωi)sinc

(
∆kzL

2

)

|ks, ωs〉|ki, ωi〉 (6.3)

where ki and ks are the transverse momentum coordinates, |k, ω〉 = a†(k, ω)|0〉,
Ap(k, ω) is the pump profile in the momentum-frequency space, N is a normaliza-

tion constant, and L is the crystal length. ∆kz represents the longitudinal phase

mismatch ∆kz(ks,ki, ωs, ωi) = kpz(ks + ki, ωs + ωi) − ksz(ks, ωs) − kiz(ki, ωi) and

the longitudinal component of momentum is given by kz(k, ω) =

√
[
n(ω)ω

c

]2

− k2.

The phase-matching condition is satisfied when ∆kz = 0. Usually, there exist two

kinds of phase-matching condition, depending on the polarization of ordinary (o)

and extraordinary (e) axes of the SPDC crystal:

Type-I: e→ o+ o, Type-II: e→ e+ o (6.4)

In the first case the phase-matching condition is satisfied for all the wavevectors

~ki and ~ks lying on the external surface of a single emission cone. For Type-II
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phase-matching, the two degenerate photons are emitted over two different, mutually

crossing, emission cones.

In our experiment the photon pairs are entangled in the polarization and the

energy-time DOFs. The generation of polarization entangled photon pairs was al-

ready mentioned in chapter 5. In next section we will briefly introduce the process

of generation of entangled photon pairs in energy-time.

6.1.1 Entanglement in energy-time

Let us define |ω〉 = a†ω|0〉 and consider only two definite spatial modes and a Gaussian

pump profile Ap(k, ω) = C0 e
−w2

0
4
k2
p e

τ2p
4
(ω−ωp)2 , with τp and w0 respectively represent-

ing the coherence time and the beam waist of the pump laser beam. Considering

a perfect phase-matching and constant refractive indices n0(ω) ∼ no(ω0), one can

express the SPDC two-photon state as:

|Ψ〉 =
√

τpT

π

∫

dωsdωi e
−T2

4
(ωs−ωi) e

τ2p
4
(ωs+ωi−ωp)2 |ωs〉|ωi〉 (6.5)

The time constant is equal to T = n0(ω0)wθ
c

, where w is the beam waist of the pump

and the selected photons, and θ is the emission angle. Let us define the following

quantity |t〉 = 1√
2π

∫
dω e−iωt |ω〉. The SPDC state 6.5 can be expressed as:

|Ψ〉 =
√

1

πTτp

∫

dt1dt2 e
− (t1−t2)

2

4T2 e
(t1+t2)

2

4τ2p eiω0(t1+t2) |t1〉|t2〉 (6.6)

When the condition T 6= τp is satisfied the SPDC state is entangled in energy-

time. In figure 6.1 is represented the scheme proposed by Franson [98] which allows

to measure energy-time entanglement. For each generated photon, it consists of

two unbalanced Mach-Zehnder interferometer with a long (L) and a short (S) arm.

If cτp ≫ L − S, when both the photon of the pair are detected in coincidence

interference is observed since it is not possible to ascertain if they followed both the

long or the short path.
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Figure 6.1: Experimental scheme for the measurement of energy-time entanglement.

M: mirror, BS: beamsplitter, L: long arm, S: short arm.

Considering the scheme in figure 6.1 and the equation (6.6) we can write the four

Bell states for the energy-time DOF as:

|Φ±〉 = 1√
2
(|L〉A|L〉B ± |S〉A|S〉B) (6.7)

|Ψ±〉 = 1√
2
(|L〉A|S〉B ± |S〉A|L〉B) (6.8)

where |L〉 (|S〉) corresponds to the long (short) arm of the interferometer.

6.1.2 Hyperentanglement in polarization and energy-time

Combining the scheme described above and the one presented in chapter 5 it is pos-

sible to generate photon states that are entangled in both polarization and energy-

time. This kind of HE state can be written as:

|ΨPT 〉 =
1√
2
(|H〉A|V 〉B + |V 〉A|H〉B)
︸ ︷︷ ︸

POLARIZATION

⊗ 1√
2
(|L〉A|L〉B − |S〉A|S〉B)
︸ ︷︷ ︸

ENERGY-TIME

(6.9)

where the polarization DOF is the Bell state |Ψ+〉 whereas the energy-time DOF

is the Bell state |Φ−〉. With this state it is possible to encode four qubits into two

photons.
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6.2 Design of experimental QKD system with hy-

perentangled states

The aim of the experiment is to build a system for the propagation of HE states at

long distances. We focus on the design of a measurement apparatus that is portable

and stabilized also in an environment outside the laboratory. Therefore, we place

one of the two measurement apparatus upon a breadboard. The outputs of the

source and the inputs of the receivers are connectorized with fiber optics in order to

make easy the connection between them. This does not affect the use of free-space

links in the future as the fibers can always be used to connect the apparatuses to

telescopes. In next section we will describe in detail all the experimental setup.
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Figure 6.2: Scheme of the experimental setup for the generation and measurement of

HE states. DM: dichroic mirror, M: mirror, FC: fiber coupler, TS: translation stage,

PD: photodiode, BS: beamsplitter, HWP: half waveplate, QWP: quarter waveplate,

PBS: polarizing beamsplitter.
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6.2.1 Experimental setup

The scheme of the experimental setup is shown in figure 6.2, the light source is a

titanium sapphire laser with 810 nm of wavelength, 150 fs of pulse width and 76

MHz of repetition rate. The laser is focused with a f= 50 mm lens inside a BiBo

(Bismuth Borate, BiB3O6) crystal for the second harmonic generation (SHG) at

405 nm, after the crystal is placed a second lens with the same focal length of the

previous one. The fundamental wavelength is then filtered with a dichroic mirror,

the rejected 810 nm pump is sent to a photodiode which is used as a trigger source.

The pulsed light then enters inside an unbalanced Michelson interferometer which

divides the incoming pulses into two identical pulses of one-quarter the original

intensity and separates them of 1.5 ns each other.

After the interferometer we placed a f = 200 mm lens that focus the light into

a type-II BBO SPDC crystal which generates the entangled photon pairs that are

then injected into two single mode optical fibers through a couple of 20 × focusing

objectives. In front of the fibers we positioned also two band-pass filters with 810

nm of center wavelength and 7 nm of FWHM bandwidth in order to select only the

entangled photon pairs.

The measurement setup consists in two identical Michelson interferometer which

have arms with same path difference as the source interferometer. The mirrors of

the longest paths are placed upon two positioning stages with nanometric accuracy

which can be remotely controlled in order to adjust the path differences. After the

interferometers we put some linear optical elements for polarization tomography of

the entangled state.

The photons are then injected into two single mode optical fibers which are

connected to two SPADs with 40 % of photon detection efficiency, 50 photon/s of

dark counts and 40 ns of dead time.

A dedicated time tagger collects then the signals from the SPADs and the trigger

photodiode. Since the frequency of the photodiode signal is equal to the laser repe-

tition rate (f = 76 MHz) and the time tagger maximum event rate is 3 MEvents/s,

we used a field programmable gate array (FPGA) board to decimate the photodiode

signal by a factor of 100.
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At the end, all the data from the time-tagger are collected by a Personal Com-

puter (PC) for the elaboration. For individuation of the interference in energy-time

entanglement it is necessary to select only the coincidences that are collected in a

determinate time window.

6.3 Interferometers stabilization

One of the main problem we had to face was the interferometers stabilization, in fact

this is a crucial point for the generation and detection of energy-time entanglement.

The path difference between the interferometers arms must be equal for all the three

interferometers of the experiments, moreover, also the relative phase between them

must be stable for all the duration of the measurements. We tested the stability

measuring the coincidence during a long time period, the results are reported in

figure 6.3. As we can see the phase of the interferometers is not stable because it

varies rapidly.
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Figure 6.3: Interferometers phase stability before the stabilization during a time

period of 60 seconds
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To prevent this instability the following solutions were adopted:

• closing the interferometers inside boxes to keep stable the temperature and

prevent air flows;

• using feedback stabilized translation stages with nanometric accuracy;

• shortening of the interferometer arms of about one half the previous distance.

The idea of using an active feedback system for the stabilization was discarded

because it would have inevitably increased the background noise.

In figure 6.4 we can see that after the stabilization process the relative phase

is pretty stable, therefore during the measurements period (about 10 s) it can be

considered constant.
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Figure 6.4: Interferometers phase stability after the stabilization during a time

period of 33 minutes
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6.4 Measurements and analysis of experimental

data

We assess the quality of the generated state and the reliability of the measurement

system taking the separate tomography of the hyperentangled state. We first took

the tomography of the state in the energy-time DOF in two different polarization

measurement basis. We then measured the polarization state in the energy-time

basis {|L〉A, |L〉B} and in the basis {|S〉A, |S〉B}. The coincidence measurements

are taken within a time window of 20 seconds, whereas for the coincidence window

we set a period of 2.43 ns. For the density matrix reconstruction we used the

maximum-likelihood method described in [99]. For every tomography measurement

we calculated also the principal entanglement parameters which are described in

appendix B.

6.4.1 Energy-time tomography

In tables 6.1 we present the measurement in the energy-time DOF with the polariza-

tion measurement basis {|H〉A, |V 〉B} and {|V 〉A, |H〉B} respectively. The expected

Bell state from the tomography is Φ−, which gives the following density matrix:

σET =
1

2










1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1










(6.10)

The reconstructed density matrix when the polarization measurement basis is set

to {|H〉A, |V 〉B} is:

ρHV =










0.477 0.015 + 0.015i 0.016− 0.013i −0.488 + 0.013i

0.015 + 0.015i 0.006 −0.002 + 0.002i −0.013 + 0.014i

0.016 + 0.013i −0.002 + 0.002i 0.009 −0.0− 0.01i

−0.488− 0.013i −0.013− 0.014i −0.01− 0.01i 0.508










(6.11)

and the entanglement parameters are equal to:
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Fidelity: F (ρHV , σET ) = 0.98

Tangle: T (ρHV ) = 0.94

Purity: P (ρHV ) = 0.96

Linear entropy: SL(ρHV ) = 0.05

While for the polarization measurement basis set to {|V 〉A, |H〉B} the recon-

structed density matrix is given by:

ρV H =










0.494 −0.018− 0.013i −0.017− 0.001i −0.46 + 0.013i

−0.018 + 0.013i 0.006 0.01− 0.006i 0.007 + 0.003i

−0.017 + 0.001i 0.001 + 0.006i 0.007 −0.002 + 0.01i

−0.46− 0.013i 0.007− 0.003i −0.002 + 0.01i 0.493










(6.12)

and the entanglement parameters are equal to:

Fidelity: F (ρV H , σET ) = 0.95

Tangle: T (ρV H) = 0.86

Purity: P (ρV H) = 0.91

Linear entropy: SL(ρV H) = 0.11

The graphical representations of the density matrix for both the tomographies

are reproduced in figures 6.5 and 6.6.
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Figure 6.5: The density matrix (real part on the left and imaginary part on the

right) of the measured polarization state with {|H〉A, |V 〉B} polarization basis.
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right) of the measured polarization state with {|V 〉A, |H〉B} polarization basis.
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(a) With {|H〉, |V 〉} polarization basis

Alice Bob Coincidences

|L〉 |L〉 942

|L〉 |S〉 5

|L〉 |D〉 1005

|L〉 |P 〉 7

|S〉 |L〉 515

|S〉 |S〉 486

|S〉 |D〉 495

|S〉 |P 〉 526

|D〉 |L〉 483

|D〉 |S〉 10

|D〉 |D〉 491

|D〉 |P 〉 519

|P 〉 |L〉 505

|P 〉 |S〉 500

|P 〉 |D〉 512

|P 〉 |P 〉 16

(b) With {|V 〉, |H〉} polarization basis

Alice Bob Coincidences

|L〉 |L〉 686

|L〉 |S〉 5

|L〉 |D〉 685

|L〉 |P 〉 3

|S〉 |L〉 343

|S〉 |S〉 340

|S〉 |D〉 355

|S〉 |P 〉 311

|D〉 |L〉 339

|D〉 |S〉 5

|D〉 |D〉 326

|D〉 |P 〉 320

|P 〉 |L〉 331

|P 〉 |S〉 327

|P 〉 |D〉 327

|P 〉 |P 〉 4

Table 6.1: Coincidence for energy-time DOF measurement. The states |D〉 and |P 〉
are equal to: |D〉 = 1/

√
2(|L〉+ |S〉) and |P 〉 = 1/

√
2(|L〉+ i|S〉
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6.4.2 Polarization tomography

In tables 6.2 we listed the measurement in the energy-time DOF with the polariza-

tion basis {|L〉A, |L〉B} and {|S〉A, |S〉B} respectively. The expected Bell state from

the tomography is Ψ+, which gives the following density matrix:

σP =
1

2










0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0










(6.13)

The reconstructed density matrix when the energy-time measurement basis is set to

{|L〉A, |L〉B} is:

ρLL =










0.019 −0.01− 0.02i 0.01 + 0.018i 0.002i

−0.01 + 0.02i 0.485 0.433− 0.038i −0.001− 0.01i

0.01− 0.018i 0.433 + 0.038i 0.481 −0.002− 0.005i

−0.002i −0.001 + 0.01i −0.002 + 0.005 0.014










(6.14)

and the entanglement parameters are equal to:

Fidelity: F (ρLL, σP ) = 0.92

Tangle: T (ρLL) = 0.73

Purity: P (ρLL) = 0.85

Linear entropy: SL(ρLL) = 0.2

While for the energy-time measurement basis set to {|S〉A, |S〉B} the recon-

structed density matrix is given by:

ρSS =










0.004 0.002 + 0.007i 0.009 + 0.015i −0.009 + 0.001i

0.002− 0.007i 0.446 0.462 + 0.067i −0.006− 0.049i

0.009− 0.015i 0.462− 0.067i 0.520 −0.03− 0.028i

−0.009− 0.001i −0.006 + 0.049i −0.03 + 0.028i 0.029










(6.15)

and the entanglement parameters are equal to:
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Fidelity: F (ρSS, σP ) = 0.95

Tangle: T (ρSS) = 0.86

Purity: P (ρSS) = 0.92

Linear entropy: SL(ρSS) = 0.11

The graphical representations of the density matrix for both the tomographies

are reproduced in figures 6.7 and 6.8.
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Figure 6.7: The density matrix (real part on the left and imaginary part on the

right) of the measured polarization state with {|L〉A, |L〉B} energy-time basis.
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Figure 6.8: The density matrix (real part on the left and imaginary part on the

right) of the measured polarization state with {|S〉A, |S〉B} energy-time basis.
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(a) With {|L〉, |L〉} energy-time basis

Alice Bob Coincidences

|H〉 |H〉 13

|H〉 |V 〉 369

|H〉 |+〉 12

|H〉 |R〉 361

|V 〉 |H〉 157

|V 〉 |V 〉 197

|V 〉 |+〉 183

|V 〉 |R〉 197

|+〉 |H〉 175

|+〉 |V 〉 361

|+〉 |+〉 185

|+〉 |R〉 165

|R〉 |H〉 172

|R〉 |V 〉 178

|R〉 |+〉 150

|R〉 |R〉 12

(b) With {|S〉, |S〉} energy-time basis

Alice Bob Coincidences

|H〉 |H〉 12

|H〉 |V 〉 437

|H〉 |+〉 23

|H〉 |R〉 515

|V 〉 |H〉 226

|V 〉 |V 〉 296

|V 〉 |+〉 233

|V 〉 |R〉 264

|+〉 |H〉 269

|+〉 |V 〉 477

|+〉 |+〉 192

|+〉 |R〉 209

|R〉 |H〉 221

|R〉 |V 〉 239

|R〉 |+〉 192

|R〉 |R〉 10

Table 6.2: Coincidence for polarization DOF measurement. The states |+〉 and |R〉
are equal to: |+〉 = 1/

√
2(|H〉+ |V 〉) and |R〉 = 1/

√
2(|H〉+ i|V 〉
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6.5 Conclusions and future steps

In this chapter we proposed the design and the experimental realization of a system

for the generation and measurement of photon states which are entangled in both

polarization and energy-time. We realized the apparatus considering the portability

of the system and a possible use for long-range transmission. We focused in the

temporal stability of the interferometers which is a crucial point for the energy-time

measurements. We finally presented the separate tomographic measurement of both

the DOF to verify the validity and the reliability of the system.

As future steps we envisage the complete tomography of the HE state and the

demonstration of hyperentanglement distribution at long distances.





CHAPTER 7

Conclusions

This thesis studies the impact of atmospheric turbulence in free-space quantum

communication channels and investigates new QKD protocols in order to improve

the security and the channel capacity in quantum communications.

We started our study in Chapter 2 with the analysis of atmospheric turbulence

by means of propagation at long distances of single beam and twin beam. We showed

that also for very long paths propagation the beam diameter is confined to a spot

that is only a factor 3 to 5 the diffraction limit. The study of the correlation of two

spot in twin beam propagation demonstrated the possibility of the centroid control

of the quantum channel by the use of an auxiliary co-propagating beam.

In Chapter 3 we studied the effect of the atmospheric turbulence on the statistic

of arrival of single photons over a free-space 143 km optical link. We demonstrated

the transformation of the single photon statistic from Poissonian to lognormal dis-

tribution. The analysis of the losses along the same link gave us the possibility to

develop a technique to exploit the turbulence to improve the signal to noise ratio

(SNR) of the channel.

In Chapter 4 we presented the ent-B92 QKD protocol in the 1SDI-QKD and fully

DI-QKD scenarios. We derived an efficient key rate in case of detection efficiencies

with a great improvement in the 1SDI-QKD case in comparison with the state of

the art.

In Chapter 5 we implemented the ent-B92 QKD protocol presented in Chapter
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4 using non-maximally entangled states. It was designed and developed an experi-

mental setup for the demonstration of the experimental feasibility of the protocol.

Our results showed a good agreement between the theory and the experiments.

Finally, in chapter 6 we developed a system for the generation and the measure-

ment of photon states entangled in both polarization and energy-time DOFs. We

designed and realized an experimental apparatus taking particular attention to the

temporal stability of the system. We took the separate tomography of each DOF

to verify the validity and the reliability of the system. As future steps we envis-

age the complete tomography of the hyperentangled state and the demonstration of

hyperentanglement distribution at long distances.

The study of the QKD had a remarkable development in last thirty years both

theoretically and experimentally. Recently, the QKD has also started to grow in the

global market, as evidenced by some spin-off companies [100–102]. In the future,

the European roadmap [103] envisage further developments in this field to a global

quantum network extent.



APPENDIX A

Errors calculation

In this appendix chapter we report the error calculation of the experimental mea-

surements presented in chapter 5. The uncertainty on the measurement is an im-

portant parameter to take into account to establish the goodness of experimental

results. To calculate the errors in the measurement, the photon source was modeled

with a Poissonian statistics, therefore standard deviations were calculated taking

the square root of the measured photon counts. Here we report the error estimation

for all the analysis parameter of the protocol.

Let’s define the parameter N that will be useful in the error calculation:

N = N(H,H) +N(V, V ) +N(H, V ) +N(V,H) (A.1)

The measurement probability (5.9) can be rewritten as:

P (ak, bk) =
N(ak, bk)

N (A.2)

Then the variance for the measurement probability is given by:

σ2
P (ak ,bk)

=
P (ak, bk)

N (1 + P (ak, bk)) (A.3)

and the variance of the parameter N is equal to the parameter itself σ2
N = N .

Let’s define three other useful quantities with their respective variance:

A = N(a1b1)−N(a1b0), σ2
A = N(a1b1) +N(a1b0) (A.4a)

B = N(a0b1) +N(a0b0), σ2
B = B (A.4b)

C = N(a0b1) +N(a0b0), σ2
C = C (A.4c)
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With this definition it is possible to write the Bell’s parameter (4.21), the probability

of a conclusive event (4.14) and the QBER (4.15) as:

SCH =
A− B

N (A.5a)

Pconc =
1

2

B + C

N (A.5b)

QBER =
B

B + C
(A.5c)

Standard deviations concerning to the parameters above are equal to:

σSCH
=

√

σ2
A +B

N 2
+

(A−B)2

N 3
=

√

σ2
A +B

N 2
+
S2
CH

N

σQBER
=

√

BC

(B + C)3
=

1

B + C

√

QBERC

σPconc
= Pconc

√

1

B + C
+

1

N

(A.6)

A.0.1 Key rate for trusted device case

For the calculation of the standard deviation of the rate let us introduce the following

quantity:

S =
(2 log2 e)(1 + 2SCH)

N
(√

1− 4SCH − 4S2
CH + 1− 4SCH − 4S2

CH

) (A.7)

The rate for the trusted device case can be written as:

r = PconcG (A.8)

where Pconc is the probability of a conclusive event (4.14) and G is defined as:

G = 1− log2

(

1 +
√

1− 4SCH − 4S2
CH

)

− h2(QBER) (A.9)

Using the definition (A.5c) for the CH parameter, the probability of a conclusive

event and the QBER, we can write the standard deviation for the key rate as:

σr =

√

σ2
A(SPconc)2 +B

(
G

2N − Pconc

(
(1−QBER)2

C
log2

(
1−QBER

QBER

)

+ S
))2

+ · · ·

+
C

(2N )2

(

G+ QBER log2

(
1−QBER

QBER

))2

+NP 2
conc

(
G

N + SCHS
)2

(A.10)
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A.0.2 Key rate for 1S-DI case

The rate for the 1S-DI case can be written as:

r = PconcG (A.11)

where G is defined as:

G = ηB

[

1− log2

(

1 +
√

1− 4SCH − 4S2
CH

)

− h2(QBER)

]

(A.12)

The CH parameter is now equal to:

SCH =
ηB[N(a1, b1) +N(a1, b0)−N(a0, b0)−N(a0, b1)]−N(a1, b0)−N(a1, b0)

N
=
A− ηBB

N
(A.13)

The quantities B and C are the ones defined in (A.4), while the parameter A become:

A = ηB [N(a1, b1) +N(a1, b0)]− · · · σ2
A = η2BN(a1, b1) + · · · (A.14)

−N(a1, b0)−N(a1, b0) + (ηB − 1)2N(a1, b0) +N(a1, b0) (A.15)

Then the standard deviation for the key rate is:

σr =

√

σ2
A

(SPconcηB
N

)2

+ · · ·

+B

[
G

2N − ηBPconc

(

SηB +
C

(B + C)2
log2

1−QBER

QBER

)]2

+ · · ·

+C

[
G

2N + ηBPconc

(
Q2

BER

B
log2

1−QBER

QBER

)]2

+ · · ·

+N
[
Pconc

N G+ ηBPconc (SSCH)

]2

(A.16)

A.0.3 Key rate for Fully-DI case

The rate for the Fully-DI case can be written as:

r = PconcG (A.17)



100 Appendix A. Errors calculation

where G is defined as:

G = η

[

η (1− h2(QBER))− log2

(

1 +
√

1− 4SCH − 4S2
CH

)]

(A.18)

The CH parameter is now equal to:

SCH =
η2 [N(a1, b1) +N(a1, b0)]

N + · · ·

+
η2 [N(a0, b1) +N(a0, b0)−N(a0, b1)−N(a0, b0)]

2N − · · ·

− η
[
N(a1, b0) +N(a1, b0)

]

N − · · ·

− η [N(a0, b1) +N(a0, b1) +N(a0, b0) +N(a0, b0)]

2N

(A.19)

Let us define the following quantities:

A = ηN(a1, b1)−N(a1, b0) + · · · σ2
A = η2N(a1, b1) +N(a1, b0) + · · ·

+ (η − 1)N(a1, b0), + (η − 1)2N(a1, b0)

B = N(a0, b1), σ2
B = B

C = N(a0, b1), σ2
C = C

D = N(a0, b0), σ2
D = D

E = N(a0, b0), σ2
E = E

(A.20)

The CH parameter (A.19), the probability of a conclusive event (4.14) and the

QBER (4.15) can be rewritten as:

SCH =
ηA− η

2
((η + 1)(B +D)− (η − 1)(C + E))

N (A.21a)

Pconc =
1

2

B + C +D + E

N (A.21b)

QBER =
B + C

B + C +D + E
(A.21c)
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Then the standard deviation for the key rate is equal to:

σr =

√

σ2
A [η2SPconc]

2 + · · ·

B

[
G

2N − η2Pconc

(S
2
(η + 1) + log2

(
1−QBER

QBER

)
1−QBER

2NPconc

)]2

+ · · ·

+C

[
G

2N + η2Pconc

(S
2
(η − 1)− log2

(
1−QBER

QBER

)
1−QBER

2NPconc

)]2

+ · · ·

+D

[
G

2N − η2Pconc

(S
2
(η + 1)− log2

(
1−QBER

QBER

)
QBER

2NPconc

)]2

+ · · ·

+E

[
G

2N + η2Pconc

(S
2
(η − 1) + log2

(
1−QBER

QBER

)
QBER

2NPconc

)]2

+ · · ·

+NP 2
conc

[
G

N − ηSSCH

]2

(A.22)

Threshold detection efficiency for 1sDI case

The threshold detection efficiency for the ηA = 1 case can be written as:

ηB =
N(a1, b0) +N(a1, b0)

N(a1, b0) +N(a1, b1)−N(a0, b0)−N(a0, b1)
(A.23)

where:

A = N(a1, b0) σ2
A = A

B = N(a1, b0) σ2
B = B

C = N(a1b0) +N(a1b1)− · · · σ2
C = N(a1b0) +N(a1b1) + · · ·

−N(a0b0)−N(a0b1) +N(a0b0) +N(a0b1)

(A.24)

Then the standard deviation for the threshold detection efficiency is equal to:

σηB =
1

A+ C

√

A

(
C −B

A + C

)2

+B + σ2
Cη

2
B (A.25)

Threshold detection efficiency for Fully-DI case

The threshold detection efficiency for the ηA = ηB = ηth case can be written as:

ηtr =
N(a1b0) +N(a1b0)

1
2
(N(a0b1) +N(a0b1) +N(a0, b0) +N(a0, b0))

N(a1b0) +N(a1b1) +
1
2
(N(a0b1) +N(a0, b0)−N(a0, b0)−N(a0b0))

=
A+B + C

A−B +D

(A.26)
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where:

A = N(a1, b0) + · · · σ2
A = N(a1, b0) + · · ·

+
1

2
(N(a0, b1) +N(a0, b0)) +

1

4
(N(a0, b1) +N(a0, b0))

B =
1

2
(N(a0, b1) +N(a0, b0)) σ2

B =
B

2

C = N(a1, b0) σ2
C = C

D = N(a1, b1) σ2
D = D

(A.27)

The standard deviation for the threshold detection efficiency become:

σηth =
1

A−B +D

√

σ2
A

(
2B + C +D

A− B +D

)2

+
B

2

(
2A+ C +D

A−B +D

)2

+ C +D(ηth)2

(A.28)



APPENDIX B

Entanglement measurements

B.1 Fidelity

The fidelity is the measurement of the closeness of two quantum states with density

matrices ρ and σ. It is defined as [104]:

F (ρ, σ) ≡
(

Tr

(√√
σρ

√
σ

))2

(B.1)

In particular, if ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| are pure states, then

F (ρ, σ) = |〈ψ||φ〉|2 (B.2)

Fidelity is a distance measurement with range 0 ≤ F (ρ, σ) ≤ 1. It can be demon-

strated that F (ρ, σ) = 1 if and only if ρ = σ.

B.2 Tangle

Let ρAB be the density matrix of a pair of qubits A and B. The spin-flipped density

matrix is defined as:

ρ̃AB = (σy ⊗ σy)ρ
∗
AB(σy ⊗ σy) (B.3)

where

σy =




0 −i
i 0



 (B.4)
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is the Pauli matrix. Since ρAB and ρ̃AB are positive operators their product ρAB ρ̃AB

has real and non-negative eigenvalues. Let us take the square root of these eigen-

values in decreasing order: λ1, λ2, λ3, λ4. Then the tangle of the density matrix ρAB

is defined as [105]:

T (ρAB) = (max{λ1 − λ2 − λ3 − λ4, 0})2 (B.5)

We can notice that T (ρAB) = 0 corresponds to an unentangled state whereas

T (ρAB) = 1 corresponds to a completely entangled state, and the entanglement

of formation is a monotonically increasing function of T .

B.3 Purity

The degree of information about the preparation of a quantum state ρ can be char-

acterized by its purity which is defined as [106]:

P (ρ) = Tr(ρ2) (B.6)

The range of purity span from P (ρ) = 1, corresponding to a completely pure state,

to P (ρ) = 1/d, corresponding to a mixed state. d is the dimension of the density

matrix ρ.

B.4 Linear entropy

To quantifies the mixedness of a given state ρ we can introduce the linear entropy

SL, which is based on the purity as [107]:

SL(ρ) =
d

d− 1
[1− P (ρ)] (B.7)

When the state ρ is completely pure we have SL(ρ) = 0 whereas if ρ is completely

mixed we have SL(ρ) = 1.
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