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Sommario

Il diabete mellito rappresenta una delle patolgmiediffuse nel mondo e si stima che la
sua incidenza aumentera del 50 % nell’arco di Ih, grassando da 250 milioni a quasi
400 milioni di malati nel 2025. La patologia comigor’insorgenza di devastanti
complicanze croniche, tra cui disturbi legati ahgaggiamento dei vasi sanguigni sia a
livello macro-vascolare — come coronopatia, infartsufficienza cardiaca, angina
pectoris, ictus — che micro-vascolare, con consggu#anno a carico dei reni (nefropatia)
e degli occhi (retinopatia). La patologia diabeti@aun’enorme impatto sia in termini di
gualita di vita dei pazienti, sia a livello econami in quanto si stima che piu del 10 %
dei costi dell'assistenza sanitaria di tutta I'Epacsiano imputabili alla cura del diabete.
Per questo motivo, nuovi mezzi che permettano eveamire I'insorgere e il progredire
della malattia e delle sue complicanze sono assuolerite necessari.

L’obiettivo del seguente lavoro di tesi € quellopdoporre nuovi metodi computazionali
per lo studio delle complicanze del diabete in onbido di modellistica multi-livello.

Il diabete mellito &€ una malattia fortemente mattibriale, nella quale molteplici fattori
di rischio di diversa natura (genetica e ambiehtad&@corrono a provocarne l'insorgenza
e lo sviluppo. | meccanismi fisiologici che sottend allo scatenarsi e al progredire della
patologia sono ancora per la maggior parte scoatsci

Data la natura multifattoriale del diabete, lo studelle complicanze si presta ad essere
affrontato con un approccio multi-livello. Lo schamgenerale di una malattia
multifattoriale, come il diabete, prevede I'aziooembinata di 3 elementi chiave sullo
stato patologico ('outcome) del pazienig:il fenotipo, ovvero l'insieme di tutte le
variabili metaboliche, antropometriche e ambientaratteristiche del paziente) il
genotipo, ovvero la sequenza DNA del pazienig,il trattamento, ovvero l'insieme di
interventi esterni effettuati sul paziente, comepee ed utilizzo di farmaci. Queste 3
variabili sono interconnesse tramite interaziomoacorrono tutte insieme a determinare

I'outcome del paziente.



L’approccio multi-livello consente di scomporrepiloblema completo in sottoproblemi,
focalizzando l'attenzione di volta in volta solo sm sottoinsieme di variabili e di
interazioni, a seconda del livello di informaziamntenuto nei dati a disposizione.

Nel seguente lavoro, vengono considerati 3 prirticipelli di studio delle complicanze
diabetiche, e, per ognuno dei 3 ambiti, vengon@@st nuovi metodi sviluppati durante
il periodo di dottorato.

| 3 livelli di studio trattati sonoi) modellizzazione dell’effetto del genotipo sull’catme,

i) modellizzazione dell’effetto combinato di fenotigotrattamento sulla progressione
dell’outcome,iii) modellizzazione dell’azione del trattamento sulokgpo.

Il primo livello di studio si propone di studiare tomplicanze diabetiche da un punto di
vista statico, ovvero senza considerare I'evolvergiprogredire di tali complicanze nel
tempo, ed ha come obiettivo quello di identificapgincipali biomarcatori genetici che
consentano di predire lo stato di malattia dei guatzj e di stratificare i pazienti in base al
rischio di sviluppare o meno la malattia. | Genowigle Association Studies (GWAS),
sono studi di associazione volti a identificareRMNPs che, da soli o in combinazioni con
altri SNPs, consentono di spiegare le differenze shosservano in un determinato
outcome (a presenza o meno di una patologia) tsa (saggetti malati) e controlli
(soggetti sani) in una popolazione di studio. Dsvanetodi di selezione univariata e
multivariata sono presenti in letteratura per Fitigcazione di marcatori genetici da studi
GWAS. In questo ambito, € stato sviluppato un nuawetodo per la selezione
multivariata di biomarcatori genetici e per la sifisazione di soggetti a partire da dati di
SNPs di studi GWAS, basato sui classificatori diy&ae arricchito da 3 principali
componenti:i) una predizione ottenuta da un insieme di clasddic di Bayes,
utilizzando una strategia basata sul bootstigpun nuovo metodo per ordinare e
selezionare gli attributi selezionati da ogni diésstore, iii) una procedura, bastata sulle
permutazioni, per selezionare i biomarcatori sigativi, sulla base della loro utilita
marginale nel processo di classificazione. Il metédstato validato sui dati genome-wide
del Wellcome Trust Case-Control Consortium, (WTCC@Jativi a diabetici di tipo 1 e
le sue performance confrontate con gli algoritnppr@asentanti lo stato dell’arte in
letteratura per studi di associazione geneticpaiticolare un classificatore di Bayes e un
algoritmo di regressione logistica penalizzata (HASSO).

Il secondo livello di studio riguarda I'analisi @mica delle complicanze, nella quale

interviene anche la variabile tempo come fattoréaveh In quest'ottica, si vuole
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modellizzare I'insorgere e la progressione temmgodalle principali complicanze legate
al diabete utilizzando l'informazione fenotipicaezapeutica, con I'obiettivo di stimare la
probabilita che il paziente diabetico possa o mewituppare una certa complicanza,
ottimizzando quindi i trial clinici ed evitando esacostosi e invasivi. In letteratura, sono
presenti diversi modelli delle complicanze di dig@yena nessuno e in grado di integrare
in maniera flessibile le diverse conoscenze —omi¢peteomica, metabolomica,
genomica) ad un livello clinico macroscopico. Ingipali modelli presenti in letteratura
sono infatti basati sui modelli di Markov (dettickie modelli si transizione di stato) e
utilizzano linformazione fenotipica senza la padgia di integrare facilmente
informazioni aggiuntive. In questo ambito di stydi@ne proposto un nuovo modeiie
silico delle complicanze cardiovascolari e renali debédia, che propone come aspetto
innovativo l'utilizzo delle reti dinamiche bayesanDynamic Bayesian Networks,
DBNs) per modellizzare le interazioni tra le vaiialiRispetto ai modelli di Markov, che
richiedono tanti nodi quante sono le possibili comabioni degli stati delle variabili, le
DBN hanno il vantaggio di rappresentare ogni valealramite un singolo nodo e
permettono quindi una maggiore facilita nella gewti della struttura e nell'integrazione
di eventuale informazione aggiuntiva. Il modellstato costruito utilizzando i dati del
Diabetes Control and Complications Trial (DCCT), tmal clinico randomizzato
condotto con lo scopo di confrontare gli effettilaeerapia intensiva rispetto a quelli
della terapia convenzionale sullo sviluppo dellenpbcanze vascolari e neurologiche a
lungo termine. Il modello sviluppato, € in grado hiedire la progressione delle
complicanze diabetiche trattate con un’accurategaperiore al 95% a livello di
popolazione. Il modello si presta quindi ad ess#ilezzato come tool di supporto nel
processo di decisione terapeutica da parte ddcickn in quest’ottica, sta portando alla
realizzazione di un’interfaccia web. La struttulessibile del modello inoltre consentira
di integrare facilmente I'informazione genotipican I'obiettivo futuro di migliorare le
prestazioni a livello di predizione.

Il terzo ed ultimo livello di studio consideratol@ studio dell'azione di uno specifico
farmaco su un particolare fenotipo, con I'obiettiuzale di sviluppare metodologie che
consentano di personalizzare i farmaci, adattarallali specifica risposta dell'individuo.
Nell’ambito specifico delle complicanze cardiovdacodel diabete, una delle terapie piu
diffuse € quella del trattamento con aspirina @epilevenzione di eventi avversi nei

pazienti ad alto rischio. L'aspirina deve la su#ae preventiva alla capacita di inibire
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un enzima chiave (la prostaglandina-endoperossittase PTGS-1, conosciuta anche
come cicloossigenasi COX-1) nella cascata che @ddaormazione di trombossano B2
(TxBy), il principale responsabile dell'aggregazione spiaica nel sangue e della
conseguente formazioni di trombi. E noto, da latiea, come i pazienti diabetici
rispondano in maniera differente alla terapia cepirma rispetto ai soggetti sani,
evidenziando una risposta ridotta al farmaco, tatdoportare in ambito clinico alla
coniazione del termine ‘aspirino-resistenza’. Dd#a mancanza di una trattazione
matematica del fenomeno in letteratura, si e dedistudiare il problema utilizzando un
approccio modellistico di farmacodinamica, con atemto. Utilizzando informazioni
biologiche ricavate da letteratura, si € sviluppatomodello, in parte compartimentale e
in parte distribuito, che descriv@: la cinetica dellenzima COX-1 a partire dalla sua
produzione all'interno dei megacariociti del midotisseo fino a giungere nelle piastrine
del sangue,ii) la farmacocinetica e la farmacodinamica dell’dspir ovvero la
distribuzione del farmaco nel corpo e la sua irtiersee con I'enzima COX-1. Il modello
e stato testato su dati sperimentali relativi aupero di trombossano B2 sierico dopo la
sospensione di aspirina in pazienti sani. Sonoi stdine discussi meccanismi
potenzialmente candidati a spiegare il fenomendadplirino-resistenza in pazienti

diabetici.



Summary

Diabetes mellitus is a lifelong, incapacitating edise affecting multiple organs.
Worldwide prevalence figures estimate that theee2&0 million diabetic patients today
and that this number will increase by 50% by 202Be disease is associated with
devastating chronic complications including corgniaeart disease, stroke and peripheral
vascular disease (macrovascular disease) as welli@svascular disorders, leading to
damage of kidneys (nephropathy) and eyes (retihghathese complications impose an
immense burden on the quality of life of the paseand account for more than 10% of
health care costs in Europe. Therefore, novel mdangprevent the onset and the
progression of these devastating diabetic conpdica are needed.

The aim of the work presented in this thesis igrtipose novel computational methods to
study diabetes complications with a multi-level qzezh.

Diabetes mellitus is a strongly multifactorial dise, and several risks factors (such as
genetic, and environmental factors) are combingetteer in a complex trait, leading to
the onset of the disease.

Physiological mechanisms that underlie the diseaskthe onset and progression of the
different complications are still mostly unknown.

Given the complex nature of diabetes, the study@fcomplications can be faced with a
multi-level modeling approach. In the general scheior complex disease, such as
diabetes, 3 key elements act together to deternmieedisease status (outcome) of a
patient: i) the phenotype, i.e. the set of all metabolic, mpbmetric and clinical
variables characterizing the patieijt,the genotype, i.e. the DNA sequence of the patient
iii) the set of interventions on the patient, i.e. dpers and treatments with drugs. All
these 3 variables are connected each other thriotgactions and have a joint effect on
the final outcome of the patient.

The multi-level approach allows to disjoint thel fpioblem into sub-problems, focusing
only on a set of variables and interaction (refterta specific level of information)

according to available data.



In the present work, 3 main levels of study of digls complications are considered, and,
for each approach, novel methodologies developedglmy PhD are proposed.

The 3 levels of study considered in the presentkware: i) modeling the effect of
genotype on the outcom@) modeling the effect of phenotype and treatmentthon
progression of the outcomi@) modeling the effect of treatment on the phenotype.

In the first level of study, diabetes complicatiare studied from a static point of view,
i.e. without considering their progression overdjmrand the main objective is to identify
the genetic biomarkers that allow to predict theedse state of the patients with the final
goal to stratify patients according to the riskdefveloping the disease. Genome Wide
Associations Studies (GWAS) are statistical studiesing at identify those SNPs able to
explain the differences observed for a certain @ute (the disease status) between cases
(diseased subjects) and controls (healthy subjeti&)study population. Several methods
performing univariate and/or multivariate selectiveve been used in literature for the
identification of genetic markers from GWAs data.this thesis, a novel algorithm for
genetic biomarker selection and subjects classificdrom genome-wide SNP data has
been developed. The algorithm is based on the NR&ases classification framework,
enriched by three main featurésbootstrap aggregating of an ensemble of Naive 8aye
classifiers,ii) a novel strategy for ranking and selecting theibattes used by each
classifier in the ensembldj) a permutation-based procedure for selecting scgmt
biomarkers, based on their marginal utility in thassification process. The algorithm has
been validated on the Wellcome Trust Case-Coftosisortium on Type 1 Diabetes and
its performance compared with the ones of bothaadstrd Naive Bayes algorithm and
HyperLASSO, a penalized logistic regression algonitfrom the state-of-the-art in
simultaneous genome-wide data analysis.

The second level of study is represented by theamym analysis of diabetes
complications, where the variable “time” plays ajonaole. In particular, the objective is
to model the onset and the progression of diabetesplications over time, using
phenotypic and therapeutic information, with theafigoal to estimate a probability for
the diabetic patient to develop a certain comphbegtthus optimizing clinical trials and
avoiding invasive and expensive tests. So far, raéveodels of diabetes complications
are present in literature, but none is able toilblgxintegrate accumulating —omics
knowledge (i.e. proteomics, metabolomics, genomieg) a clinical macro-level. The

most interesting complication models, in fact, besed on Markov Models (also called
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state transition model) and use phenotypic infolonato describe the cohort of interest
without the possibility to easily integrate additad information. A new in-silico model
for simulating the progression of cardiovasculad &dney complications in diabetic
patients is presented. The model proposes, as atinevfeature, the use of Dynamic
Bayesian Networks (DBNs) for modeling the interacs between variables. Compared
to Markov Models, which require as many nodes &s ribmber of combinations of
variables’ values, DBNs are more advantageous mdlivy both the structure and
possible additional information, since each vagablsimply represented by a node in the
network. The model was built relying on data frofmme tDiabetes Control and
Complications Trial, a multicenter randomized dadi trial designed to compare
intensive with conventional therapy with regardtheir effects on the development and
progression of the early vascular and neurologne d@eveloped model is able to predict
the progression of the main diabetes complicatwitis an accuracy greater than 95% at a
population level. The model is suitable to be uasda decision support tool to help
clinicians in the therapy design through cost-difeness analysis: exploiting the
simulations generated through the model, it is iptessfor example, to choose the best
strategy between two different therapies for trept specific cohort of patients. To this
aim, a user-interface based on the present modalriently under development. The
flexible structure of the model will allow to eastkdd genotypic information in the next
feature as a potential mean to improve predictions.

The last level of study focuses on the action @pacific drug on a target phenotype,
with the final aim to develop rational means tospealize drug therapy and to ensure
maximum efficacy with minimal adverse effects. Faiog on cardiovascular diseases as
a direct complication of diabetes, aspirin therapyan important component of
cardiovascular prevention for high risk patiemspirin performs its preventive action
by inhibiting a key enzyme (the prostaglandin-eraiogide synthase PTGS-1, also
known as cyclooxygenase COX-1) in the cascade ngadbo the production of
thromboxane B (TxBy), the major factor involved in the platelets aggt®on with
consequent formation of thrombi. It is known, frditerature, that diabetic patients
exhibit a different response to aspirin therapgomparison to healthy subjects, showing
a reduced effectiveness of the drug, which is ofefierred to as ‘aspirin resistance’.
Given the lack of a mathematical characterizatibthese phenomena, the problem was

faced using a pharmacodynamics modeling approaith aw explorative intent. Relaying
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on biological knowledge retrieved from literatura, partially lumped and partially
distributed compartmental model was developed, tabtkescribei) the kinetics of COX-

1 enzyme, from its production within megakaryocyiesbone-marrow to circulating
platelets in bloodji) the pharmacokinetics and pharmacodynamics of iaspie. its
distribution in the body tissues and its interactiith COX-1. The model was tested
using data of serum thromboxane ©xBcovery levels after aspirin withdrawal in heglth
subjects. Possible mechanisms to explain the $edcahspirin resistance’ have been
finally discussed.

Vil
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Chapter 1

Introduction

Diabetes mellitus is a metabolic diseases in wiaigherson’s blood sugar is too high,
either because the pancreas does not produce emaggin, or because cells do not
respond to the insulin that is produced, or a coatimn of the above mechanisms.
Different variables, such as genetic, metabolic@amdronmental factors, play together in
the onset and the progression of the disease,cthasifying diabetes as a complex-trait
disease.

Diabetes is associated with severe long-term caaiins, mainly caused by the damage
of blood vessels, both at micro and macro-levelcabee of the high glucose
concentration in blood. As a result, the main osgamvolved are the heart and the
cardiovascular system (diabetic cardiovascular dmapns), the kidney (diabetic
nephropathy), the retina (diabetic retinopathy) ah@& nervous system (diabetic
neuropathy). These complications heavily affect qoality of life of the patients and
impose an immense impact on health care costs.

Therefore, novel means to prevent and/or treatetllevastating diabetic complications
are needed. Since long-term clinical trials aretlgpsime-consuming, and difficult to
conduct, the use of computer-simulated disease Is\ddes increased considerably in
recent years to facilitate the simultaneous evaloatf long-term clinical and economic
effects of treatment. It is now widely acceptedttinaodels can provide valuable
information for clinical practice and are importatdols in medical, regulatory,
governmental, and public health decision-makingeduirement for diabetes simulation
models has been identified in the medical and heatfe policy community, and, as a
result, a number of models have been developedegpuited in the literature.

Given the complex nature of diabetes, the probldmingestigating its long-term

complications can be faced with a multi-level madghlpproach.



In the present chapter, after a brief introductoondiabetes and its complications, the
complex-trait nature of the disease will be desibFinally, the multi-level modeling

approach, representing the general framework eftttasis, will be introduced.

1.1 Diabetes and its complications

Diabetes mellitus is a lifelong, incapacitating edise affecting multiple organs, that
causes a person's blood sugar level to becomeigho There are two main types of
diabetes, referred to as type 1 (T1D) and type2DjT

T1D is often referred to as insulin-dependent diedelt is also sometimes known as
juvenile diabetes or early-onset diabetes becausken develops before the age of 40,
usually during the teenage years. T1D is an autain@ondition, where immune system
attacks and destroy pancreatic cells, responsdsléngulin secretion. Thus, in T1D, the
pancreas does not produce any insulin. Insulinhsranone that regulates blood glucose
levels. If the amount of glucose in the blood is tugh, it can seriously damage the
body's organs [1].

T2D occurs when the body doesn't produce enoughimnt function properly, or the
body’s cells don't react to insulin. This is knoas insulin resistance. T2D is far more
common than T1D and it usually affects people dkerage of 40, although increasingly
younger people are also being affected. It is ntmn@mon in people of South Asian,
African-Caribbean or Middle Eastern descent [1].

It is important that diabetes is diagnosed as easlypossible so that treatment can be
started.

Diabetes cannot be cured, but treatment aims tp kémd glucose levels as normal as
possible, and control symptoms to prevent healtmptications developing later. The
therapy usually consists in a mixture of insulifugions, diet and physical exercise [1].
Worldwide prevalence figures estimate that theee250 million diabetic patients today
and that this number will increase by 50% by 2026].[ The disease is associated with
devastating chronic complications including corgriaeart disease, stroke and peripheral
vascular disease (macrovascular disease) as welli@svascular disorders leading to
damage of kidneys (nephropathy) and eyes (retihgphathese complications impose an
immense burden on the quality of life of the paseand account for more than 10% of

health care costs in Europe [27].
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In the following, we will focus on the main vascut@mplications in T1D and T2D, i.e.
diabetic nephropathy and retinopathy in both T1D &8D and cardiovascular disease in
T2D.

1.1.1 Diabetic nephropathy (DN)
Around 30% of patients with T1D and T2D develop PIMd]. Once manifest, DN is

characterized by a progressive decline in kidneyction, leading to end-stage renal
disease (ESRD). DN represents the most common cdUs8RD (and hence the major
precipitant of dialysis and transplantation thejapythe Western world [23]. Metabolic

control and elevated blood pressure are importahtfactors, but these act in concert
with genetic and other factors [23].

1.1.2 Diabetic retinopathy (DR)

Most patients with diabetes will develop some degreDR and 2% will become blind.
There is a strong correlation between duration @betes, glycemic control and
development of DR. The prevalence of proliferald/ increases from 0% in those with
less than 5 year duration to 26% after 15 yearstarib% after 20 years duration [36].
Both hypertension and dyslipidemia accelerate msgjon of DR. However, genetic
factors clearly contribute to individual differerscm the rate of progression and extent of
DR.

1.1.3 Cardiovascular disease (CVD)

Up to 75% of all deaths in T2D are due to CVD. Alsen and women with T1D have a
fourfold and sevenfold risk of major CVD [48]. Irddition to established risk factors
such as smoking, dyslipidemia, hypertension andeghic control [34], genetic factors
are likely to be playing a substantial role in det@ing individual risk. Although there
are no reliable heritability estimates for CVD iralketic families, siblings of diabetic
patients suffering from an early myocardial infamthave a 7-fold increased risk of
CVD. The risk for development of a first myocardiafarction is increased 2-5 fold in
subjects with diabetes, which makes the risk ed@intao that of a non-diabetic person
with a previous myocardial infarction [25]. Moreoyéhe risk for recurrent acute cardiac
events is more than 2-fold higher in diabetics timanon-diabetics. Patients with diabetes
also have a 2 to 4-fold increased risk for develeptrof stroke and peripheral arterial

disease. Diabetes affects stroke outcome as wdlh, wcreased risk for subsequent
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development of dementia, recurrence of a new stewice death. It is also important to
note that the relative protection from cardiovaacullisease that characterizes pre-

menopausal women is diminished by diabetes.

1.2 Diabetes as a complex-trait disease

Although hyperglycemia represents one of the masportant risk factors for
development of diabetic vascular complications, albhyperglycemic patients seem to
be at equal risk: other factors clearly modify adividual’s susceptibility to develop
complications, as reported in the previous sectibims thus clear that diabetes can be
classified as a complex-trait disease, in whiclied#nt factors such as genetic profile,
metabolic and anthropometric phenotype and enviestad risk factors, as well as
individual response to treatments, concur to cabseonset of the disease and the
development of different complications [51]. Thigntplex nature is common both to
T1D and T2D, even if a preponderant genetic cahaeacterizes T1D [42].

A general scheme of the main variables (and thmeeractions) involved in a complex

disease such as diabetes is reported in Figure 1.1.

GENOTYPE

Figure 1.1: General scheme of the multi-level model for diabetic complications.

where,
» Genotyperepresents the genotypic profile of the indiviqueé. the Single
Nucleotide Polymorphisms (genotypic biomarkers).

* Phenotypeaepresents phenotypic biomarkers such as:



o metabolic and physiological biomarkers (lipids,agigylated hemoglobin,
blood, pressure, heart rate, etc.);
0 anthropometric measures (weight, body mass indey; e
o0 environmental factors (smoke status, physical @gtietc.);
» Outcomeis the target of the study, i.e. diabetes or diabmimplications (Cardio
Vascular Diseases, Nephropathy, Retinopathy, etc.);
» Treatmentis the intervention variable, representing thecdmetherapy for the

individual.

According to this general scheme, thenotypeacts both orphenotypeand onoutcome
while the phenotypeacts only onoutcome Treatment acts both ophenotypeand

outcomebut not ongenotype

1.3 Multi-level approach

Since diabetes is a complex-trait disease, thel@molof investigating its long-term
complications can be faced with a multi-level mauglapproach: the scheme of Figure
1.1, in fact, represents different kind of variabland interaction between them.
According to the level of detail which availabletalallows to reach, the interconnected
structure of a multi-level model can be decompasesiib-schemes, each one potentially
analyzable independently on the others. Of coutse final ambitious aim of such an
approach is to integrate all the possible sub-nsoft®al at least most of them) in order to
finally obtain a macro-model able to offer a conleharacterization of the studied
phenomena. Unfortunately, this objective is verffidilt to achieve for most of the
biological problems, given both the paucity of dafglie data and the intrinsic limitations
in the modeling process.

In this work, three main levels of study of diabetiomplications will be considered,
according to data availabilityy modeling the effect of genotype on the outcomguyfé
1.2.A),ii)) modeling the combined effect of phenotype anditneat on the progression of
the outcome (Figure 1.2.8B)i) modeling the effect of treatment on the phenoiypegure
1.2.C).

For each approach, novel investigation methodosogie proposed.

The research presented in this thesis has beeoegy the European Union's Seventh

Framework Program (FP7/2007-2013) for the InnoeaMedicine Initiative under grant
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agreement n° IMI/ (the SUMMIT consortium), whosgealive is to identify markers that
predict the risks of developing diabetes chronicrotiand macro-vascular complications
with focus on Diabetic Nephropathy, Diabetic Repathy and Cardiovascular disease.
For a more detailed presentation of the concept @mgdnization of the SUMMIT

consortium, see public available informatiorm#p://www.imi-summit.eu/

A) GENOTYPE > OUTCOME

B)

C)

Figure 1.2: Possible decompositions of the overall model for a multifactorial diseases: A) focus on the effect
of the genotype on the outcome; B) focus on the combined effect of genotype, phenotype and treatment
on the outcome; C) focus on the combined effect of treatment and genotype on the phenotype.



1.4 Outline

Chapter 2 will deal with the first level of studymrodeling the effect of genotype on the
outcome. Data exploited to this aim are SNPs daimn fGenome Wide Association
Studies, whose objective is to detect correlaticgtwben one or more genetic

polymorphisms and a discrete trait (the presen@absence of a disease condition).

Chapter 3 will treat the second level of study —delmg the combined effect of

phenotype and treatment on the progression ofdteme. To this aim, longitudinal data
(coming from intervention clinical trials) regardithe main diabetes complications, as
well as information on clinical variables (the pbempe) and on the treatment will be

exploited.

Chapter 4 will focus on the last level of study edeling the effect of treatment on the
phenotype — in which data regarding the effect dfwg on a specific target phenotype

will be exploited.






Chapter 2

Modeling the effect of genotype on
diabetes: biomarker selection ad
subject classification

Referring to the multi-level scheme presented guFe 1.1, this chapter will focus on the

effect of the genetic variables on the outcomeshasvn in Figure 2.1.

GENOTYPE

Figure 2.1: Modeling the effect of genotype on the outcome.

Genetic Association Studies and the objective eirtistudy, i.e. SNPs, will be first
introduced, with particular regard to Genome Widssdéciation Studies. Then, the most
widely used approaches to analyze results comiom fthese studies will be briefly
described to provide an exhaustive overview of skete of the art Finally, a new
algorithm for biomarker selection and subject dfasgion from Genome Wide SNP data
will be presented and its performance assessedcbyngarison with a penalized logistic

regression algorithm from thstate of the arin simultaneous Genome Wide data analysis.
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2.1 Single Nucleotide Polymorphisms (SNPs)

The DeoxyriboNucleic Acid (DNA) represents the i@y material in humans and in
most of all the other organisms.

The biological information is stored into the DNA a string composed by four chemical
bases: adenine (A), cytosine (C), guanine (G) &ydine (T). The sequence of these
bases determines the information available fordiug and maintaining the organisms.
DNA bases pair with each other (A-T; C-G) and fatructures called “base pairs” (bp).
Each base is linked to a sugar molecule and a pladspnolecule, forming ucleotide
Within the nucleus of each cell, the DNA macromales are packed into structures
called chromosomes. In humans, each somatic cellacs 23 pairs of homologous
chromosomes (46 chromosomes in total). In eachgbdiomologous chromosomes, one
is inherited from the father, and one from the meot

The genesrepresent the basic unit of heredity. A gene reprssa segment of DNA
(which physical location on the chromosome is calienic locus), and it contairibe
knowledge for codingproteing macromolecules with either structural or funcéibn
biological roles [52].

In humans, as in other species, the length of tN&\ Bequence constituting a gene is
extremely variable (from few hundreds of bp up torenthan 2 millions bp). Thduman
Genome Project [http://www.ornl.gov/sci/techresources/Human_Gentmome.shtml]
estimated that human DNA sequeroatains about 20,000 — 25,000 genes (~ 3% of the
whole human DNA sequence, which is long ~ 3 billi@se pairs).

More than 99.9 % of DNA sequence is identical betwany two individuals. Even
though most of the DNA sequence is identical, sith@ehuman genome sequence is so
long, there are still many genetic variations.

Alleles are different versions of the same gene, carryiagations in terms of DNA
sequence, which determinate the physical charatiterithat differentiate individuals
belonging to the same specie.

The Single Nucleotide Polymorphis(BNP) is defined as a DNA segment showing 2 or
more alleles in a population and represents thelesh and most common source of
variability among individuals [52]. For example S&lP may replace the nucleotide pair
G-C on a chromosome with the nucleotide pair A-Ttlehomologous chromosome, in a

certain position of the DNA (Figure 2.2).
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The combination oélleles in the same position on the two homologous chromesois
calledgenotypewhile a set oalleleson the same chromosomepresents ahaplotype
[52].

For an SNP Isowing 2 alleles in a population, since chromosorresin pairs, we cg
have 3 possiblggenotyp for the single individual, each corresponding tgassible
combination of the 2lleles. Denoting withA the common form of the allele (i.e. m«
frequent in the population), and wia the rare form of the allele (i.e. the less frequar
the population), the 3 possible genotypes AA, Aa andaa, which are referred to a

respectively, common homozycs, heterozygous and rare homozyg[52].

Maternal

Paternal

Figure 2.2: Example of Single Nucleotide Polymorphism at a given locus.

SNPs are not directly involved in causing a diseasedition, but they modulate tl
probability of its occurrence, by interacting witkher nor-genetic predisposing factc
(e.g. smoke or alcohol intake for some classesn€er)and modulating the eict of the

external interventions, such as treatments and assgmptiol[5].

2.2 Genome Wid( Association Studies

The study of complex disea, such as diabetesequires adequate tools. Gen
Association studiesGAS) are variants of the clinical and epidemiologicase-control
association studies applied to the field of popotagenetic(5]. The objective of aGAS
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is to detect correlation between one or more gerpgllymorphisms and a discrete trait
(the presence or absence of a disease conditiomparing the frequencies of SNP
alleles in two well-defined groups of individuatsises who have been diagnosed with the
disease under study, and controls, who are eithewk to be unaffected, or who have
been randomly selected from the population. Andased frequency of a SNP allele or
genotype in the cases class compared with thealsrlass indicates that presence of the

SNP allele may increase risk of disease.

According to the a priori knowledge defined by gedy designGAScan be classified as
follows, as the number of analyzed SNPs increases:

- Candidate SNPs association studi€his kind of studies focus on a single SNP which

is suspected to have a causal role in the disdastecest.

- Candidate genes association studi€ke object of the study is not a single SNP,aut
set of markers (typically 5 - 10) located withire tbame potentially causative gene.

- Fine mappingThis kind of studies involve typically up to hundseof nucleotides; the
aim is to have a better definition (coverage) afemome region potentially involved in
physiological/pathological processes and previoudgntified by linkage studies or

genome-wide association studies.

- Genome Wide Association Studies (GWABIs approach consists in scanning markers
across the complete sets of SNPs of many peopteeidify genetic variations associated
with a particular disease. Such studies are péatiguuseful in finding genetic variations
that contribute to common, complex diseases, sschsthma, cancer, diabetes, heart
disease and mental illness€8NASare essentially “hypotheses free approachesthie.
kind of studies do not require a prior knowledgeulthe right gene to be analyzed, but

represenhypotheses generatinmgstruments.

In the following sub-sections, a focus GNVASwill be presented.
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2.2.1 Study design

When planning to perform &WASon unrelated individuals based on a case-control
design, cases are selected on the basis of thetraterest (i.e. type 2 diabetes), while
control individuals must be clinically proven to ree not only from the condition of
interest, but also from other traits that are reshimon to cases, otherwise a second sub-
phenotype may be introduced in the analysis. Thacehof the reference group may
introduce confounding effects, and therefore arr@mmate case-controls matching based
on some phenotypic, exposure or environmental fac{gender, smoking history,
ancestry) is required, in order to avoid spuriogsoaiations. Limiting factors when
planning aGWASare often represented by the difficulty of enralia sufficient number

of cases and matched controls, and by the genatyuists [5].

2.2.2 Genotyping

The process of examining DNA sequence in order terchine individual’s
polymorphisms is callegjenotyping For the past decade, microarrays have grown in
popularity as the primary tool for genotype anay$tecently, howevenext-generation
sequencingNGS technologies has been introduced as a promisiag, platform for
genetic analysis, since they parallelize the segjugnprocess (i.e. s the process of
determining the precise order of nucleotides witlinDNA molecule), producing
thousands or millions of sequences concurrently, fp@reby allowing to measure a huge
amount of polymorphisms for each individual at saene time (up to > 1,000,000 SNPs).
Nevertheless, for genotyping studies, microarrays sill widely adopted as they are
substantially less expensive than NGS and much carducive to processing thousands
of samples required for typical genome-wide assioeia studies [26]. lllumina [lllumina,
San Diego, CA] and Affymetrix [Affymetrix, Santa &@h, CA] represent the reference
technologies for cost genotyping large amount ofgas with high coverage in a cost
effectively way (~ 200 $ for a 370 K SNPs chip).

Genotyping workflow according to Illumina protocadsrepresented in Figure 2.3
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Figure 2.3: Genotyping process according to lllumina protocol. The schema represent the main steps of the
Hlumina Infinium genotyping workflow. Figure from
[http://res.illumina.com/documents/products/workflows/workflow_infinium_ii.pdf].

Even if genotyping protocols differ between mantdfeers, the main steps are common
both to Illlumina and Affymetrix protocols. A brieflescription of the genotyping

processes is reported below.

1. DNA extraction, purification and amplificatiofPeripheral blood is drawn from each

enrolled individual and successively DNA is exteatamplified and purified.

2. Hybridization on the chipDNA is labeled using fluorochromes and hybridizedhe
chips, each containing a redundant set of prolbresdoh analyzed SNP. Mismatched and
crosshybridization problems are avoided by differastrategies, according to the

manufacturer.

3. Fluorescence intensities acquisitioRluorescence intensity for each SNP is captured
for each analyzed sample by a scanner or “arraged fixed wave-length specific for
different fluorochrome.
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4. Genotypes determinatio®nce fluorescence captures have been extraceehdc”
programs allow for the quantization of the fluokswe intensities and for the genotypes
determination. These softwares have been spetjficveloped by Illumina (Bead
Studio and Genome Studio) and by Affymetrix (BRLMIEInd implement multivariate
clustering strategies for genotypes assignmenthenbiasis of fluorescence intensity

signals corresponding to each of the two alleles.

2.2.3 Quality Control

A preliminary analysis step is represented by datality Control, which is necessary to
filter out low quality data in order to reduce theobability of false positive findings.
Experimental systems involving biological materaé typically prone to errors, often
non-randomly distributed [5]. This lack of randorasés both due to the very nature of
the available experimental technologies and toptiesence of several concurrent factors
such as DNA quality and preparation, specific eixpental conditions or different skills
of the experimenters, errors during the phase obypes assignment. Non random
distribution of errors can affect results and redtlee power of the study [5]. Since most
GWASaim to identify very slight variations in alleleefjuencies between cases and
controls, even the presence of small experimentalrse could dramatically affect the
outcome [6], [16]. Therefore it is necessary to lpdptering procedures in order to
identify specific SNPs yielding errors in multipledividuals (markers-affecting errors),
or individuals in the sample with errors acrosstipld SNPs (problems with the DNA
sample), and simply exclude them from the analysis.
The basic Quality Control parameters that coulg helidentifying and removing low-
guality samples and markers are the following:

- Samples genotyping ratéaction of determined genotypes for each sampkhes

measure ranges from 0 (no genotype has been adpignk (all genotypes have been

assigned).

- SNPs genotyping ratefraction of determined genotypes for each SNRss T
measure ranges from 0 (no genotype has been adsipne (all genotypes have been

assigned).
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- MAF value SNPs showing an extremely low value for the MiAtlele Frequency
(MAF <0.01/0.05), could represent low genotyping-qyaliarkers or too rare
polymorphisms [5].

- HWE p-value neutral genetic variants in a large random-matwogulation are
expected to display Hardy Weinberg EquilibriuldWE), under which assumption
expected genotype frequencies satisfy the ruleAEp®, E[Aa]=2pg, E[aal=c?,
wherep and q are the frequency oA anda alleles in the population, respectively.
Genotyping errors can shift the SNPs observed @&eges from the expected
proportions, and therefore testing for deviatiomsnf the HWE in the control
population defining a cut-off on the result of tlest (theHWE p-valug represents a
standard approach to detect genotyping errors [53¢h test can be performed using
a Pearson goodness-of-fit statistic with one degfeEeedom (d.f), under the null
hypothesis oHWE

2.3 Univariate Analysis

Once the preliminary phase of data QC has beeonpeefl, the next step usually consists
in analyzing the whole set of markers, one SNP taha, by univariate association tests
under the null hypothesis of no association in ortie identify SNPs statistically

associated with the outcome, once a significan@stioldP has been fixed.

The strength of the association between each swayliable (SNP) and the outcome
(diseasef/trait) is expressed in terms pafalug which represents the probability of
detecting an association that is stronger thandbated from data “by chance”, when
there is no evidence of association (i.e. a fatsatipe): a very lowp-valueindicates that

the observed result would be highly unlikely untter null hypothesis, which will be then

rejected when thp-valueturns out to be less than the significance thriesR¢46].

The common way to represent the results of suelstad the so-called Manhattan Plot, in
which, for each SNP, thelog(p-value)is reported, thus placing the most significant
SNPs in the top part of the plot. Figure 2.4 repnés as an example, the association

results coming from univariate association testsadBWASdataset on myopia [31],
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where the —log(thresholds) are very high (i.e. slgmificance thresholds are very low)

since a correction for multiple test has been peréal (see section 2.3.3).
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Figure 2.4: The statistical significance values across the 22 autosomes of each SNP's association with
refractive error (measured as spherical equivalent) are plotted as -log,,P values. X-axis represent the
location of each SNP on the chromosomes, ordered according to their physical position. Y-axis represents
the strength of association (-log10(p-value)) corresponding to each SNP. The blue horizontal line
indicates P = 10”° and the red line indicates P = 5 x 10,

The way of testing for association depends on #metic model assumed for the SNP
[39].

By defining the minor allele ag the common allele &, and the risk of developing the
disease given a certain allele or genotype cordijum asR, the most commonly used

genetic models can be defined as follows:

- Genotypic modefaa vs aA vs AA). No a priori assumption is made about the
association between genotype and phenotype, thmertfe riskR is assumed to be

equal for each genotype.

- Dominant Modelaa/aA vs AA). The underlying assumption of this model is that
having one §A) or two copiesda) of the risk allelea induces the same rigk of
being affected with respect tAA genotypes. The genotypesA and aa are
therefore pooled into the same groa/dA) and their frequency compared with

the estimated frequency of tAé\ genotyes.
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- Recessive Moddha vs aA/AA). The assumption is that the rigklinked to a
certain allelea is manifest only if it occurs in double copg. The frequency cha

genotype is therefore compared walAA genotypes frequency.

- Allelic or multiplicative mode(a vs A): the unity of the analysis is represented
by alleles instead of genotypes. It assumes a phattive effect of the allele
dosage (i.e. if heterozygote individu@A risk R of developing the disease with
respect to AA individuals, homozygaa@ individuals riskR* R with respect tAAA
individuals).

- Additive or trend modefaa > aA > AA). The unity of risk is represented by
alleles and it assumes that the risk linked torgaceallele has an additive effect
on the case/control outcome (i.e. if heterozygatdividuals aA risk R of
developing the disease with respect to AA individuhomozygot@a individuals
risk R+R with respect taAA individuals).

The most widely employed association tests are chase the Pearson’s® test and

Cochran-Armitage test for trend.

2.3.1 Pearsony” test.

Considering a pool ohcase Unrelated cases, affected by the disease of stfeamd
unaffectedngon: controls for which a certain marker with allelésand a has been
genotyped, the sample genotype data can be repedsgya 2 x 3 contingency table, as
represented in Table 2.1.a, where the total numbesubject isn = Ncase + Neon: The
contingency table can be analyzed directly using aloserved-expected test statistic,
which has a? distribution on two degrees of freedom.

They? statistic tests for departure from the expectddesacross cells in the table. Thus
the observed value for AA genotype in cas®s £ N;;) is compared with its expected
value (&) given the total number of cases and the totalbarmof AA genotypes, so.E

Naa'NcasdN. The full test statistic is given by equation §2.1

6
0; — E))?
i—1 l

2
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where the summation is over all six cells in the@ldaandO; are the observed valubl;,
N1z, N13, N2z, N2z, Nz in each cell. Notice that this test statistic can@s the observed
number of AA genotypes in cases with that expeeziming both cases and controls
have the same frequency of AA genotypes.

The Pearson’sy’® test can be used for each genetic model, simplyifying the

contingency table, as shown in Table 2.1.

(a) Full genotype table for a generic genetic model

AA Aa aa
Cases N N, N3
Controls N, N2, Na3

(b) Dominant model: allele B increases risk

AA Aa + aa
Cases BV N1z + Nig
Controls N1 Naz + Nog

(c) Recessive model: two copies of allele B requiredrforeased risk

AA + Aa aa
Cases M + Npo N13
Controls Ni + Nos N3

(d) Multiplicative model: r-fold increased risk for AR, increased risk fof
BB. Analyzed by allele, not by genotype

A a
Cases 2N + Ny, N1z + 2Niz
Controls 2N; + Ny, N2, + 2Nps

(e) Additive model: r-fold increased risk for AB, 2rareased risk for BB|
Genotypes analyzed by Armitage’s test for trend

AA Aa aa
Cases N N2 Ni3
Controls N; N2, Na3

Table 2.1: Contingency tables for case control analyses, by genetic model. Test 1 is a baseline analysis, and
any further analysis should be driven by prior hypothesis. a, b, c, d, e, f are genotype counts observed in
cases and controls. Figure from [39].

2.3.2 Cochran-Armitage test for trend

For complex traits, it is widely thought that cobtitions to disease risk from individual
SNPs will be often roughly additive — that is, theterozygote risk will be intermediate
between the two homozygote risk. The Pearsghtest have reasonable power regardless

of the underlying risks, but if the genotype riske additive they will be not as powerful

19



as tests that are tailored to this scenario. Ir, fatien data consist of a series of
proportions occurring in groups which fall into sematural order, the question asked is
then not so much whether the proportions diffenisicantly, but whether they show a
significant trend, upwards or downwards, with tih@esing of the groups. In this case, the
Cochran-Armitage test can be applied [3]. It madifthe Pearson’¢ test to incorporate

a suspected ordering in the effects of the thréegosies of the SNP. The idea is to test
the hypothesis of zero slope for a line that fies three genotypic risk estimates best (see
example in Figure 2.5).

0.66

0.64

0.62

0.60

0.58

Case / (Case + Control)

0.56

T T
0 1 2

Genotype score

Figure 2.5: Example of Armitage test of single-SNP association with case—control outcome. The dots
indicate the proportion of cases, among cases and controls combined, at each of three SNP genotypes
(coded as 0, 1 and 2), together with their least-squares line.

Referring to Table 2.1.e, the trend statistic is:

3
7= t(NyR, = NyRy) 2.2)
i=1

whereR; = Ni; + Ni2 + Ni3 is the number of case’; = Na; + Naz + Nps is the number of
controls, and thet; are the weights selected according to the suspewtele of
inheritance. For example, in order to test whe#tlete A is dominant over allele, the
choicet = (1, 1, 0) is locally optimal. To test whetheletd A is recessive to allele, the
optimal choice is=(0, 1, 1). To test whether allelés and a are codominant, the
choicet = (0, 1, 2) is locally optimal. For complex diseasthe underlying genetic model
is often unknown. In GWAS, the additive (or codoamt) version of the test is often

used. The test has good power in this case but p@veeduced by deviations from
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additivity. In an extreme scenario, if the two haygotes have the same risk but the
heterozygote risk is different (overdominance)nttiee Armitage test will have no power

for any sample size even though there is trueceestsan.

2.3.3 Correction for multiple tests

Once a set of association tests have been perforaregnificance thresholdusually a
cut-off value onp-valug must be fixed in order to discriminate betweeatistically
associated and null SNPs. The question of whatgitneof evidence should be considered
significant has yet to be fully resolved in genetgsociation analysis [19]. On the one
hand, multiple testing issues arise in most stydidgether based on candidate genes or
genome wide scans, with attendant issues of hoguamtify the multiplicity, what error

rate to control and which method to use [40].

The following most commonly used approaches fotidgavith the multiple testing issue

are the following:

- Bonferroni Correction Bonferroni correction [9] is the simplest procesidior
assessing the significance threshold when multipsts have been performed.
This approach consists in rescaling the signifieaticesholdx by the number of
tests that have been performBil in order to obtain a new multiple testing-

adjusted significance threshatd

a=1-(1—-a)"->a = (2.3)

S|

- False Discovery RatéFDR). Bonferroni correction is often considered an
overconservative correction, with the deriving riffklosing biologically relevant
associations [40]. A less conservative approachfdoing the issue of multiple
testing is represented by the calculation of Ha¢se Discovery RatéFDR) as
described byBenjamini and Hochber{B]. For a family of hypothesis tests, Bt
denote the number of rejected null hypotheses, \artie number of falsely

rejected null hypotheses. TR®R is then computed as follows:
%4
FDR = E <E|R > o) .P(R > 0) (2.4)
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Benjamini and Hochberg introduced a step-up proeefr the control of FDR:
given m null hypotheses to test;, ..., Hn, andp, ..., pm their correspondent p-

values, chosen a significance lewgthe control procedure works as follows:

a. order the p-values in increasing order and derm@mtbyp.y, ..., Pm)
b. find k = max; {p(i) < %a}

c. rejectallHg fori=1, ...,k

This procedure is valid when all the m hypothesesraependent, otherwise step

b changes into:

b. find k = max; {p@ <Ll_¢ }

my,(3)

2.3.4 Univariate Analysis: drawbacks

The described approaches examine one SNP at thartinelation to a defined trait. This
over-simplistic strategy is not able to capture thalti-factorial nature of complex
diseases, leading to the identification of a lasgé of associated SNPs (correlated by
Linkage Disequilibriumi.e. the association between two alleles locatear each other
on a chromosome, such that they are inherited hegehore frequently than would be
expected by chance) but missing potential informeaitnteractions [44].

Hoh and Ott [30] described the case in which the simultaneoresgnce of three
genotypes at different loci induces a disease.ri&yaing them though univariate models
they would not result associated with the trarncsithey share a low penetrance (i.e. poor
association). This example is known as the Simgspatradox and it explains also how
the marginal independence of two variables (i.e.a@hidence that knowledge of the first
variable’s value doesn't affect the belief in thecend variable’s value) does not

necessary require their independence when othexbles are taken into account [44].

2.4 Multivariate Analysis

The extremely large numbers involved in a GWAS @®(BNPs in O(1% individuals)

have led the vast majority of studies to rely ugorgle SNP association tests, as already
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described. Complex diseases, however, have anobetezous nature, arising from
complex patterns of interaction between a set okege traits and the environment: to
fully capture the optimal set of genetic biomarkehsis, all SNPs in a GWAS should be
analyzed simultaneously in a multivariate framew@%.

Multivariate models aim to do this, thus overcomitige described limitations that
characterize the standard approaches. Moreovey, dhew also to learn a rule for
classifying unknown subjects as cases or contrgien their genetic profile and,

possibly, other environmental covariates.

The most widely employed multivariate tests areedasn Penalized Logistic Regression

models.

2.4.1 Penalized Logistic Regression

Although the more usual way of modeling case amdrobdata is in terms of probability
distribution of genotype conditional upon diseasdus, reflecting the manner in which
data are generateHrentice and Pyk§t3] demonstrated that comparable results could be
obtained by applying a likelihood based approactwhich case-control condition is

considered a random outcome.

Given the random binary outconYglassuming only 2 possible states: 0 = control, er
case) and one or more independent varialfles Xy, ..., X% (SNPs in this case) the

relation betweerY andX can be modeled as the probabilityJX{.

Denoting PY = 1| X = X3, ..., Xp) with =, that is the probability that an individual
randomly drawn from the population is a case, eqnaf2.5) reports the logistic

regression model

p
Vs
In = ﬁ + ,Bl-xi (25)

1—-m

Wheref, + XF_, Bix; represents the linear relation between a funaifon(namediogit)

and the independent variabbesin this case the SNPs of interest for the indiaid

From equation (2.5) the probabilitycan be computed as:
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oBo+Zl, Bix;

(2.6)

m= D
1 + ePotZizi Pixi

Equation (2.6) states that the probability for theéividual to be a case is a non linear

function of his SNPs’ values, ..., X, and it ranges between 0 and 1. Figure 2.6 reports

an example of equation (2.6) with only one indemetd/ariablex and parameters value

po=0 and81= 1.

7 (X)

-5 0 5

Figure 2.6: Example of logistic regression model in the case of a single independent variable x.

The probability for the observation=y; is given by:
P(Y; = yilx) = (m)¥i- (1 — )7 (2.7)

Given N independent observation (i.&l different patients) thenaximum likelihood

estimationmaximizes the log-likelihood for tHe observations:

N
1B) = ) i+ Inlr] + (1 = y) - In[1 = ;1) 28)

B = argmax{i()} (2.9)

In the case of GWAS, when the number of markeranger than the number of test

subjects, since only a very small set of SNPs (@etto the total number of SNPs) is
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likely to have an effect on the outcomepenalizationterm is introduced in the logistic
regression model, in order to obtaparsesolution, i.e. select few predictive variable
without information loss [54]. These methods operhy shrinking the size of the
coefficients of markers with little or no appareffiect on a trait down to zero.

The main penalization strategies are the following:

1. LASSO regressiofL1 penalization regressignThelLeast Absolute Shrinkage
and Selection Operatdi. ASSQ penalized regression, proposed by Tibshirani
[50], estimates the parameters of the logistic rhadeling to the likelihood

the penalization term given by:

14
L =181 = ) I (2.10)
i=1
The model parameters vecprs then estimated by:

B= argmax{1(B) —1- 181} (2.11)

Where/ is the weight of the penalization term.

In a Bayesian interpretation, Lasso Regressionbeaderived as Bayes posterior
mode under independent double-exponential prions the £ [50]. Lasso
Regression shrinks coefficiens, $», ..., fp setting most of them to 0 and thus
selecting the most significant variables. Howevesr a problem with N

observation, it can select no more tiNaariables.

2. Ridge regressiorfL2 penalization regressignThe L2 penalized regression,
proposed by Hoerl and Kennad [28], estimates thanpeters of the logistic
model adding to the likelihood the penalizatiomrtegiven by:

p
L =8I = ) B/ 2.12)
i=1

The model parameters vecprs then estimated by:
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B = argmax{l(B) —1-1BI") (2.13)

Where/ is the weight of the penalization term.

In a Bayesian interpretation, Ridge Regressionbmderived as Bayes posterior
mode under independent Gaussian priors fopitfes].

Ridge regression shrinks coefficiefis B3, ..., fp but does not set any one to O,

thus makes no real variable selection.

3. Elastic Net regressioiiL1L2 penalization regressipnThe L1L2 penalized
regression, proposed by Zou and Hastie [57], estisndne parameters of the
logistic model adding to the likelihood the penalian term given by a
convex combination of L1 and L2 penalties. The nh@deameters vectgt is

then estimated by:

B = argmax((B) 2+ [(1 ) - Bl +a- 1B} (2.14)

Where 1 is the weight of the global penalization amddetermines the relative
weight of L1 and L2 penalties.

Elastic Net produces sparse models encouragingupigrg effect, where strongly
correlated predictors tend to be in or out the rhtmgether.

4. Minimax Concav PenaltfMCP regressioh Zhang et al. [55] propose a
penalization term give by:

MB-— iff<al

fa@® =4, *@ (2.15)
—al®  ifp>al

The effect of the penalty is determined by the gnatdof equation (2.15):

B .
0fra -z
;}; (ﬁ):l . if p<ai
0 if B>al

(2.16)



Where/ is determines the magnitude of the penalizationa the range over
which the penalization is applied. MCP regressi@auses unimportal

variables to be eliminated, leaving the importaresunpenalize

5. HyperLASSOregression(NEG regression Hoggart et al.[29] propose a
variant of the Bayesian interpretation of the LAS$&Yyression, usir a
Normal Exponential GammiNEG) distribution as a sparsen-inducing prior
on the weights3y, S, ..., fp. NEGis a generalization cdouble-exponential
distribution with 2 extra parameters regulatingls@nd sharpe of the cu..
The sharper peak induces sparse solt, while heavy tails result in variable

being minimally shrunk once included in the m¢[29].

In Figure 2.7, plotsof the negative of the penalty ictions — Af(f) are shown.
Considering that the effect of the penalty is dateed by the derivative of the pena
function, one can observe the different beh: of the different methods. he Lasso
encourages sparsjtgetting most small coefficients zero, due to the penalty functior
sharp peak at zerblowever, given a sufficiently large penalty paraenethe Lasso als
imposes heavy shrinkage on large coefficients dubd absence of tails (constant rat
penalization), leading to biased cficient estimates. A similar issue of bias can ben
also for other penalty functions such as the Riggealty and the Elastic Net. MPC ¢
HyperLassaostrive to relieve some of this bias introducing g&as with flatter tails, s
that large coefficiets are only minimally shrun

Lasso Elastic Net Ridge MCP NEG

21 (B) A (B) 21 (B) f(B.A) f (B

Figure 2.7: Plots of the negative of the penalty functions — Af(8). The penalty (y-axis) is plotted against 8 (x-
axis) for the Lasso, Elastic Net, Ridge, MCP and NEG. The peaks of each function are at 8=0. Figure from

[4].

Ayers and Cordell [4lised computer simulation compared the five penalties descril
above L1, L2, L1L2, MCP andNEG) to standard single locus analysis (Armitage tes
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trend ATT) and simple forward stepwise regressi&i®TEB. The authors explored the
performances of penalization in selecting SNPsragligtors in two simulated genetic
association studies. In particular, the methodsewinst compared with respect to
detectionof effect, in which detection of an allele in lage disequilibrium > 0.05)
with a true causal variant counted as a succesdiay other detection counted as a false
positive), and second with respectlogalization/differentiation in which only counted
detection of the true causal locus itself as aesgdn the first simulation study, a GWAS
was simulated by generating 500 replicate dataseis) composed of 1000 cases and
1000 controls, 4000 SNPs and 6 causal loci. Instbeond simulation study, a Fine
Mapping study was simulated by generating 500 caf#i datasets, each composed of
1000 cases and 1000 controls, 3 given gene redioN$2D6 CFTR and CTLA4
containing 110, 190 and 228 SNPs respectively)macausal loci within each region.

Since all penalized regression methods requiredtimd one or more values for the
penalization parameter/s (to which we can refet)asather than finding the best value
for A, results were analyzed in terms of AUC (Area Undarve) in the ROC (Receiver
Operating Characteristic) space, as the penalgnpeterl was varied. In particular, with
respect to the first simulation study, Figure g®ws the relationship between true and
false-positive detection for each of the method$ &svaried, while, with respect to the
second simulation study, Figure 2.9 shows he welahiip between true and false-positive
detection for each of the methodsias varied in the three gene regions of interest.

Figure 2.8 and Figure 2.9 show similar performartoetsveen the different multivariate

methods, with NEG giving the overall best and ATk toverall worst performance.

Although larger parameter estimates are always rheswily penalized, methods that

apply larger relative penalties on small parametesimates and relatively lower

penalties to larger estimates performed bettemamiek accurately estimate the effect size
of the selected SNPs. The superior performancehefHyperLasso regression with

respect to detection as well as with respect tewmdhtiation/localization of effects makes

it a gold standard for GWAS SNPs analysis [4].
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Figure 2.8: Sensitivity (detection rates) versus 1-specificity (false positive rates) as the penalty parameter A
is varied, for simulation study 1. Figure from [4].
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Figure 2.9: Sensitivity (detection rates) versus 1-specificity (false positive rates) as the penalty parameter A
is varied, for the three gene regions of simulation study 2. Figure from [4].

2.4.2 The problem of robustness for multivariate approaas

The identification of robust lists of biomarkerepresents a fundamental ie as it may
greatly influence subsequesteps,such as the definition of targets for clinical ¢
pharmaceutical applicationas well as early diagnosis and treatment of diseAll the

methods described in the previous section for ikeostery of biomarkerof complex
diseases from higtiroughpu data often provide results with limited overlapreducec
statistical significance?[l], [10]. As summarized in [18], theskfference in results ai

mainly imputable to:
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1. heterogeneity of both experimental protocols andthmatational pipelines
carried out for the analysis;

2. dataset size, which often include few subjects ésbomdreds) with respect to
the number of features (up to OfLENPs);

3. heterogeneity of the complex disease, respongiplbigh correlation in the
features, some of these being real causal locerditeing correlated by linkage

disequilibrium.

As a result, different features may thus be seteateder different settings, even when
good classification accuracy is reached (it is rmg@ple possible to have a lack of
stability due to the presence of many highly cated features, even with accuracy equal

to one).

The stability issue in feature selection has reaimuch attention recently, as well as the
precision of biomarker identification, i.e. the l#lito select true biomarkers, defined as
features biologically related to the physiologioatlinical condition under study as cause
or effect of it [17], [58], [2].

In the next section, a new algorithm for biomarketection and subject classification
from genome-wide SNPs, developed to effectivelydterthe problem of robustness in

the biomarker discovery will be presented.

2.5 Bag of Naive Bayes

As described in the previous sections, the anabfsignome-wide SNP data for complex
diseases mainly suffers from two, intertwined peof: on the one hand, multifactorial
diseases are caused by complex patterns of intemdmttween multiple genetic traits and
the environment, on the other hand, linkage disdgiuim confounds the search for
genetic biomarkers, because of the non-random iaseoc between the true genetic
causes and the SNPs in genomic regions close tu, theus resulting in a lack of
precision and stability of the lists of biomarkeedected by different methods, as reported

in section 2.4.2.
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In this section a new algorithm, Bag of Naive Bag®eNB), developed to effectively

tackle both of these problems, is presented.

As reported in section 2.4, the most widely usedhods for the simultaneous SNP
analysis on a genome wide scale relay on the peghlogistic regression framework,
where SNPs are modeled as discrete variables frerddmain {0,1,2} and a log-additive

model of genetic effect on the disease is assumed.

BoNB is based on Naive Bayes (NB) classificatioh][4hus it relies on contingency

table analysis without having to assume a pre-fpdcmodel of genetic effect and,

differently from logistic regression methods, inceaasily handle missing values in the
data, without having to perform imputation. Threaimstrategies are exploited in BoNB
to tailor the Naive Bayes framework to Genome WBHP data analysis: (a) a bagging of
Naive Bayes classifiers, to improve the robustiéske predictions, (b) a novel strategy
for ranking and selecting the attributes used mhdmmgged classifier, to enforce attribute
independence, and (c) a permutation-based procéaiuselecting significant biomarkers,
based on their marginal utility in the classificatiprocess.

Before describing the algorithm, a brief introdoation the Naive Bayes Classifier is

reported in the following.

2.5.1 Naive Bayes Classifier

The Naive Bayes classifieNB) is one of the most efficient classification aligfoms for
machine learning and data mining [4NB has been widely used for classification
purposes in the biomedical fields and, more regeintlthe context o66WAJ44].

The reasons of its diffusion are essentially it®odyclassification performance and
computational efficiencyNB is the simplest form of Bayesian classifier, iniethall the

variables are assumed to be independent giveralbe wf the outcome [41].

Given a dataseX = {Xy, ..., Xn}, consisting ofn observations (subjects) pfattributes
(SNPs), and a satof class labels, one for each observation (cas&), a Naive Bayes
classifier estimates, from the dataBet classification rule in the form:

P(Y =yi) - [z PCXGIY = wi)

P(Y = yklxl;'”:X ) =
YUXEL P =y - T, P(XiY =)

(2.17)
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The classification rule of equation (2.17) statest the probability of a subject being in
classyi, given a combination of values for the attribuXgs. . .,X,, is equal to the a priori
probability of classyk, P(Y = yk), times the probability of each attribute giveasdy,
POK]Y =yi): the implicit assumption below this classificatiale is that attributeX,, . . .,
X, are all conditionally independent giv&n

Given discrete-valued inputs and binary outcome, dlgorithm learns the probability

distribution of equation (2.17) estimating two setparameters. The first is

#D{Xl = xij/\Y = Yk} +1
DY =y )+ (2.18)

Oijk = P(X; = xi5|Y = yie) =
i=1.,]

For each input attribut¥;, each of its possible valugs (J = 3 in case of SNPs) and each
of the two possible valueg of Y. The #D{x} operator returns the number of elements in

the seD that satisfy property. The second is tharior probability overy:

#D{Y =y, } + 1

2.19
|D| + 21 ( )

T, =P =y) =

Where |D| denotes the number of elements in thB.set

Thel term is the only tunable parameter of the NaiveeBaglgorithm and it is known in
the Bayesian literature as Equivalent Sample SizeDwichlet Weight [41], and
represents a prior probability which prevents thesssconditional probabilities from
becoming zero when training attributes are spamsabuylated.

2.5.2 Methods

BoNB consists in an ensemble of Naive Bayes Classjftrained on GWAS data with
the procedure known as Bootstrap Aggregating ogBag[12].

Given a training dataseq, the Bagging procedure starts by computing a sBbotstrap
replicates ofX, i.e. a set X, ..., X®)} of datasets, each one obtained by sampfing
observations with replacement from the training X%d20]. A Naive Bayes Classifier
NBC® is then trained on each Bootstrap sam¥fé Classification of unseen subjects,
drawn from an independent test set, is then olddnyemajority vote or weighted average
of the output class probabilities computed by e&BC? (Figure 2.10). Such an

approach is known not only to increase the robusstrad the predictions in terms of
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classification accuracy [12], but also to improfie precision and stability in the step of

feature selection [18].

Bootstrap Ensemble of NBCs
Attribute Selection
X(1) NBCO) > Prediction(!)
GWAS
Train Data

SNPs 00B!"
8
Q 2
% X : Blomal_'ker Weighted
- Selection Prediction

X(B) NBC®) > Prediction(®)

(

GWAS Test Data

Figure 2.10: Schematics of the BoNB algorithm: B Bootstrap samples {X(1),..., X(B)} are drawn from a
GWAS training dataset X; B Naive Bayes Classifiers (NBC) are trained on the Bootstrap samples, with the
novel procedure for attribute ranking and selection; predictions of unseen subjects from a GWAS test
dataset are carried out independently by each NBC and class probabilities are then averaged; biomarker
selection is carried out with the novel permutation-based procedure, exploiting Out-of-Bag (OOB) samples.

Given the binary nature of the case/control clasgibn problem and the frequent
unbalance between the number of cases and contiolda GWAS, classification
performances are evaluated by tlatthews Correlation CoefficiefMCC, [12]). The
MCC is defined as:

tp-tn—fp-fn

MCC =
S+ /o) - Gptfm)-(n t /p)-(n + /) (2.20)

wheretp, tn, fp andfn stand for true positives, true negatives, falssitpes and false
negatives, respectively.
The MCC is often preferred to standard classification a&cy, i.e. to the proportion of

correctly classified examples, because it is nosisige to class unbalance: tMCC, in
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fact, ranges from -1 (all examples incorrectly sifisd) to 1 (all correctly classified) and
equals 0 in case of majority classification, i.dhew all labels are assigned to the most

represented class.

For estimating probabilities as in equation (2.1fig Naive Bayes Classifier makes the
assumption that the attribute{{ ..., X} are all conditionally independent of one
another, giverY . Such an assumption is unlikely to hold if ak tBNPs of a GWAS are

exploited as attributes, because of genetic linkdygeover, computing equation (2.17)
for the whole SNP set can be computationally heangt can lead to numerical and

overfitting problems.

A procedure for selecting a good set of indepen®\Ps for eaciNBC® was thus
developed.

The procedure first ranks each SNP according taldssification performance obtained
on the training seX® itself by using the SNP as a single attribute haf NBC®. To
account for possible class unbalance, classifiogigrformance is assessed with M@C
(equation (2.20)). The obtain@dCC represents the score of the SNP. SNPs are then
ranked in decreasing order of score, obtaininqiked list for eactNBC®.

In the second step, SNPs are iteratively addedeaneasing order of score, as attributes
of eachNBC® from its corresponding ranked list, computedX®} Each time a SNP is
included as an attribute, all the SNPs in the rdrlgt that are both close to the SNP on
the genome (distance < 1Mb) and correlated wittrét> 0, wherer? is the squared
correlation coefficient and is a user defined threshold) are removed fromlighesuch

an approach enforces attribute independence, tpiag with the problems arising from
genetic linkage. Rather than including one SNPtaha, uncorrelated SNPs are added in
groups of exponentially increasing size, startirapf one SNP and doubling the size at
each new addition. New SNPs are added as longeagetheralization ability oRBC®
increases: to estimate the generalization abilegch NBC® is tested on the
corresponding Out-of-Bag samplEOB®, consisting of all the observations left out from
X when samplingX®, and theMCC of the prediction is measured. The exponential
increase in the number of added attributes alloadBto reach the adequate size for the

attribute set of each NBC in a logarithmic numbiesteps.
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Such an attribute selection procedure, iteratedHerB bootstrap samples, results in an
ensemble of B Naive Bayes Classifiers, each wiffossibly different set of features.
Classification of new subijects, the first objectafeGWASS, is then obtained by having
eachNBC estimate output class probabilities and by aveagie probabilities across all
the BNBCs Classification performance of the ensembl&BCscan then be assessed on

an independent GWAS test set, by measuringA8€ of the predictions.

For the second objective of GWASSs, biomarker selact procedure originally designed
for the Random Forests bagged classifier [11] waepted for BoNB: for each of the
SNPs included as attributes by at least NBC, the genotype of the SNP is randomly
permuted in theDOB sets, eactNBCY is tested on its correspondi®OB® and the
relative decrease iMCC due to the permutation is recorded. Such a meaatnieh can

be used as an indicator of the importance of eatbcted attribute given all other
selected attributes, is defingthrginal utility (MU).

For each SNP, the permutation procedure returnst &fl values ofMU, one value for
eachNBC that included the SNRVUs significantly greater than zero are tested with a
one-tailed Wilcoxon signed rank test on the listvafues, selecting as biomarkers the

SNPs for which the p-value of the test is lowentBz05.

2.5.3 Results

BoNB was tested on the WTCCC case-control studyl'yoe 1 Diabetes [13], where

approximately 2000 T1D cases and 3000 healthy clentvere examined. Each subject
was genotyped on the Affymetrix GeneChip 500K MagpArray Set. A small number

of subjects was excluded according to the sampikision lists provided by the WTCCC.
In addition, a SNP was excluded if (i) it is on tB&IP exclusion list provided by the

WTCCC,; (ii) it has a poor cluster plot as defingdtbe WTCCC. The resulting dataset
consists of 458376 SNPs, measured for 1963 case3%a8 controls.

The BoNB algorithm exposes two parameters to ther:uhe number of Bootstrap
replicates and Naive Bayes Classifidds,and the threshold on the squared correlation
coefficient above which two SNPs are consideredetated,f. B and & were set t0200
and 0.1, respectively (see section 2.5.4 for atyaisaof how performance is affected by

variations of the parameteBsand?).

35



Classification performance was estimated on indégentrain-test set pairs obtained by
repeatedly sub-sampling at random 90% of the diafasdraining and 10% for testing.
The procedure was iterated 10 times and classdicg@erformance was assessed with the
MCC of the predictions on the test sets. The listebected biomarkers, on the other hand,

was computed on the whole dataset.

Since BonB is based on the Naive Bayes classificaframework and has been
developed as a valid alternative to penalized tagigegression methods, classification
performance was compared with the ones obtaineal signdard Naive Bayes Classifier,
trained on all the SNPs that reached the signifieahreshold of 5x10(as in [13]) in a
single 2if »* test of association with a general genetic moaet] by HyperLASSO, a
logistic regression method representing the ga@ddsrd for the simultaneous analysis of
all SNPs in a GWAS, described in section 2.4.1. Tdrener algorithm was chosen to
assess the improvement of BoNB both in terms ofbider selection, with respect to a
standard univariate test, and in terms of clasgibo performance, with respect to the
algorithm on which BoNB is based. The latter altjori was chosen because of its best
performance among classification and biomarkerctele methods for genome-wide data,
as reported in [54] and [4], and because of theptetm availability of the source code.
On the experimental dataset, BoNB reached an MCQ.58 + 0.03 (mean * standard
deviation), significantly higher than the ones frest by both the standard Naive Bayes
Classifier (0.31 + 0.05, Wilcoxon signedrank p-val002) and by HyperLASSO (0.45
+ 0.03, p-value 0.002). Figure 2.11 (left panelpwh the boxplots of the MCC obtained
by the three algorithms on the ten iterations ef$bb-sampling procedure. For the sake
of completeness, Figure 2.11 (right panel) shovws® dhe boxplots of classification

accuracy.
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Figure 2.11: Boxplots of MCC (left panel) and classification accuracy (right panel) of the simple Naive Bayes
classifier, HyperLASSO and BoNB on ten random sub-samplings of the WTCCC T1D dataset.

To further analyze the behavior of the three methatl different levels of the output
function (i.e. of the output class probability fBoNB and the standard Naive Bayes
classifier and of the logistic regression value KyperLASSO) in Figure 2.12 the
Precision vs Recall curve and the Receiver Opeayafiharacteristic, or True Positive
Rate vs True Negative Rate curve, of the threerdhgos on one of the ten random sub-
samplings are reported (the behavior on the otliersamplings is similar). As it is clear
from the figure, the performance of the standardvéldayes classifier is completely
dominated by the performance of both BoNB and Hyp&SO. Concerning the two
latter algorithms, one can observe that HyperLA3@® a better performance at the two
extremities of the curves, i.e. for subjects whioggstic regression value is closer to the
maximum or the minimum; moving from the extremitiesthe middle scores, BoNB
outperforms HyperLASSO, being indeed able to reacterall higher MCC and

classification accuracy.
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Figure 2.12: Precision vs Recall curve (left panel) and Receiver Operating Characteristic (right panel) of the
standard Naive Bayes classifier, HyperLASSO and BoNB on a random sub-sampling of the WTCCC T1D
dataset.

For biomarker selection, BONB was run on the widataset and its results compred with
the biomarkers identified by HyperLASSO and by geeeral #f test (see section 2.3.1).
The average number of attributes included by BoNE:ach NBC was 3.24, 75 SNPs
were included by at least one NBC and 9 SNPs bgaat 5% of the NBCs (see Table
2.2). Among the 9 SNPs, only 7 SNPs reached thefisignce level on the permutation
test and were chosen as genetic biomarkers (markédld in Table 2.2). All the 7
selected SNPs fall into regions of interest for &yjp Diabetes according to the on-line
database T1DBase [http://www.tldbase.org] (cytobap#l3.2 on chromosome 1 and
p21.32 on chromosome 6, also known as the MHC mng¢giad their association with the
disease was confirmed in a larger meta-analysissesjuent to the WTCCC study [7].
The squared correlation coefficients between atkspat selected SNPs are all lower than
0.155, indicating low redundancy in the informationded by the set of 7 SNPs.
Compared to the 394 SNPs that reached the signdéckevel on thed general test, both
the list of 75 SNPs used for classification andlisieof 7 biomarkers selected by BoNB
are more compact, but this does not prevent BoNBretch significantly higher
classification performance.

HyperLASSO selected 8 SNPs, all in the MHC regibrcldomosome 6: 4 of the SNPs
are in the list of biomarkers selected by BoNB,stlauggesting a certain coherence

between the two algorithms and providing furtherfence on the identified biomarkers.
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SNP Chr Gene Relation % MU
NBCs (median)
rs6679677 1 RSBN1 downstream 7 0.033
rs9266774 6 MICA upstream 55 0.011
rs805301 6 BAT3 intron 17.5 0.043
rs492899 6 SKIV2L intron 8.5 0.025
rs9273363 6 HLA-DQB1 downstream 100 0.835
rs9275418 6 HLA-DQB1 upstream 80 0.160
rs6936863 6 HLA-DQA2 upstream 8 0.08
rs9784858 6 TAP2 intron 5 0.008
rs3101942 6 LOC100294145 exon 215 0.045

Table 2.2: SNPs selected as attributes for at least 5% of the Naive Bayes Classifiers by BONB on the WTCCC

T1D dataset, with B = 200 Bootstrap samples and classifiers. First column: dbSNP RS ID. Second column:

SNP chromosome. Third and fourth column: annotated gene and relation with the SNP. Fifth column:

percentage of Naive Bayes Classifiers that included the SNP as attribute. Sixth column: median of the
marginal utility of the SNP. SNPs selected as genetic biomarkers by the permutation procedure are marked

in bold.

2.5.4 Sensitivity analysis
As already pointed out in the results section,BbBIB algorithm exposes two parameters
to the user: the number of Bootstrap replicates Mdaive Bayes Classifier&, and the
threshold on the squared correlation coefficierdvabwhich two SNPs are considered
correlated . In this section a brief analysis to describe hpaxformance is affected by
variations of the parameteBsandé was carried out.
Figure 2.13, left panel, represents thi€CC obtained by BoNB on ten random sub-
samplings of the WTCCC T1D dataset, Bbr 200 and ranging from 0.02 to 0.5. As it
is clear from the figurep = 0.1 is optimal and results in a significantlyglner
classification performance (Kruskal-Wallis t@svalue3.7x10%).
Concerning the number of Bootstrap replicaBeson the other hand, one can observe
from Figure 2.13, right panel, that classificatiparformance is not much sensitive to
variations ofB (Kruskal-Wallis tesp-value0.98), though it is slightly higher f& = 50
and 200. Analyzing the list of selected biomarkeB®NB returns the same seven
biomarkers reported in Table 2.2 Br= 200 and 500, adds SNP rs2856688 to the list for
B = 100 and misses SNPs rs6679677 and rs49289B fo50. Given the consistency
among the results for higher valuesByfsuggested values for BONB parameters are thus
6 =0.1 andB = 200.
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Figure 2.13: Box plots of the MCC obtained by BoNB on ten random sub-samplings of the WTCCC T1D
dataset, for B = 200 and ¢ ranging from 0.02 to 0.5 (left panel) and for & = 0.1 and B ranging from 50 to
500 (right panel).

2.5.5 Computational complexity

For analyzing the computational complexity of BoNBe pseudocode summarizing the

training phase and the biomarker selection phasieeoBoNB algorithm is reported in the

following:

/[ Training

lfor b=1to B

2 [X® 00BY] = bootstrap replicate from X

3 fors=1top

4 Compute the contingency table for SNRmIfX®

5 Compute the Naive Bayes attribute scbee o

6 L® =list of SNPs in decreasing order of score

7 Initialize NBGb) as a Naive Bayes Classifier with no attributes

o

Extract M = 1 new attributes for NEGfrom the top of [, excluding from future
additions all SNPs at distance > 1 Mb and witk 6

9 while MCC of NBCY), tested on OO® with the new attributes, increases

10  Add the new attributes to NBC

11 Update M=2*M

12 Extract M new attributes from the top ofelxcluding each time from future
additions all SNPs at distance > 1 Mb and witk 6

// Biomarker selection

13for sin all SNPs selected by at least 5% of the NBCs

14 for bin all NBCs that selected s

15 Permute the genotype of s in B

16 Record the Marginal Utility (MU) of s

17 Select as biomarkers the SNPs with MjdiScantly larger than zero.
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For eachb in B, the attribute ranking step (lines 3-6) take@p) for computing the
contingency tables and the scores (wherethe number of subjects apds the number
of SNPs in the dataset) plW3(p log p for sorting the score list, thus has a total
complexity of O[Bpn + Bp log 3. The attribute selection step (lines 7-12), exeduor
eachb in B, has a computational complexity dominated by twerations: computation
of the squared correlation coefficierft between SNPs and test KBC® on OOBY.
Defining with M* the average number of attributes included by dd4BIC (which is
problem dependent) aqd v, the average number of SNPs in a 1 Mb section obtiA
(which is dataset dependent, but is a roughly tifieaction ofp), the first operation costs
O(n) for each SNP pair and is execut®tt - p*1mp times, having thus a total
computational complexity dd(BnM*p*1mp) . The second operation, on the other hand, is
executed log(I* + 2) times, each time with a doubling number oftdess forNBC ®,

and its computational complexity is thus expredsethe following summation:

log(M*+1)
Z NHop 2" = Npop * (Zlog(M*”) — 1) = 0(nM*) (2.21)

i=0

wheren*pog is the average number of subjects in an OOB sadijrig to (1 — 1/e) n for
large n [20]; the total complexity of the second operati® thus O(BnM*) ,
asymptotically negligible with respect to the coftcomputing the squared correlation
coefficients. The total computational complexity thle training phase of the BoNB
algorithm is thuO[B(pn + p log p + nM*p*1ump)] . For the complexity of the biomarker
selection phase of BoNB, the number of SNPs seldnyeat least 5% of NBCs (which is
problem dependent) is defined @S« The inner loop of lines 15-16 is executed at most
O(B p*sy) times; since the cost of the two operations i@ lbop is linear inn, the

biomarker selection phase has a total computatimraplexity ofO(Bn p*se,).

2.5.6 Implementation

BoNB is implemented in C++ and relies only on stddlibraries, thus being fully

portable across operating systems. On the WTCCE& @astrol study on Type 1 Diabetes,
BoNB takes approximately 50 minutes for training028lIBCs and selecting the

biomarkers on a 3.00 GHz Intel Xeon Processor E5#6@areful allocation strategy

makes BoNB occupy around 600 MB of RAM for the WTC@ataset, allowing it to be

easily run on a desktop computer.
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2.6 Discussion

In this chapter the problem of modeling the effettgenotype on the outcome was
discussed. In the context of Genome Wide AssariaBtudies, the objective of such a
modeling is twofold: on the one han@GWAS aim to perform biomarker selection
detecting correlation between one or more SNPsawliscrete trait (the presence or
absence of a disease condition or a complication)the other the modeling process

allows also to learn a rule for classifying unknosutjects as cases or controls.

For complex diseases this is not trivial, sincehspathologies have an heterogeneous
nature, and to fully capture the optimal set ofedenbiomarkers, all the SNPs irGAWAS
should be analyzed simultaneously in a multivarill®mework. Moreover, linkage
disequilibrium confounds the search for genetiaviadkers, because of the non-random
association between the true genetic causes an8NiRs in genomic regions close to
them, thus resulting in a lack of precision andiits of the lists of biomarkers selected.
The standard approaches generally analyze one EhiAea thus losing information on
biomarkers interaction and suffering for statidtisgnificance of the selected features.
Multivariate approaches try to overcome these &tions, but the most widely used
methods in the literature still suffer for the plern of robustness of the list of selected
biomarkers. In fact, it is in principle possible bave a lack of stability due to the
presence of many highly correlated features, evith elassification accuracy equal to
one.

The presented algorithm, Bag of Naive Bayes, wa®ldped to effectively tackle this
problem.

BoNB is based on Naive Bayes classification enddiethree main features to tailor the
Naive Bayes framework to Genome Wide SNP data aisalya) a bagging of Naive
Bayes classifiers, to improve the robustness ofptteelictions, (b) a novel strategy for
ranking and selecting the attributes used by eadugéd classifier, to enforce attribute
independence, and (c) a permutation-based procéaluselecting significant biomarkers,
based on their marginal utility in the classificatiprocess.

Learning an ensemble of classifiers from a bogissample of the original dataset
guarantees a higher generalization ability by iasieg the stability of the learning

process [12]-[18] and, simultaneously, it allows define a measure of the marginal
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utility of each SNP, given all the other SNPs exphb for classification, and to select
significant biomarkers among these SNPs in a sitatily robust way.

Two features of the Naive Bayes Classifier, choaenbuilding block of the BoNB
algorithm, make it more appealing for genome-widtadinalysis than logistic regression
approaches: on the one hand, conditional probgléiile analysis does not assume a pre-
specified model of genetic effect, on the otherdyamissing values are seamlessly
handled by both the learning and the classificgpimtedure.

BonB approach to attribute selection, consisting imivariate ranking step followed by a
multivariate selection step, has the advantageawbring informative attributes, but
without the need of pre-selecting fixed sets ofilaites or of defining cut-offs on the
strength of the association with the disease:baties, in fact, are added to the classifiers
as long as their combined effect on the generabzatbility increases.

The effectiveness of BONB was demonstrated by apgly to the WTCCC case-control
study on Type 1 Diabetes: BoNB indeed outperfomsdlgorithms from the state of the
art, namely a Naive Bayes Classifier and HyperLAS8Oterms of classification
performance and all the genetic biomarkers idettiby BoNB are meaningful for Type
1 Diabetes, thus confirming the good performana® ah terms of precision of the

selected biomarkers.
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Chapter 3

Modeling the combined effect of
phenotype and treatment on the
progression of diabetes
complications

Referring to the multi-level scheme of Figure 1tis chapter will focus on the combined
effect of phenotype and treatment on the outcomehawn in Figure 3.1.

Figure 3.1: Modeling the effect of genotype, phenotype and treatment on the outcome.

After a brief overview describing the most intenegtmodels already developed in the
literature to model the progression of diabetes glarations, a newin-silico model,
based on Dynamic Bayesian Networks and accountingtfenotypic information as well
as information on treatment, will be presented.idédlon of the model on the Diabetes
Control and Complications Trial dataset will berthheported and discussed. Finally, the
under development web interface as a decision sugpol for clinicians will be

presented.
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3.1 Introduction

In complex disease, such as diabetes mellitusjelrelopment of complications and their
impact on costs are difficult to assess througbrtsferm studies. Since long-term clinical
trials are costly, time-consuming, and difficult¢onduct, the use of computer-simulate
disease models has increased considerably in rgeans to facilitate the simultaneous
evaluation of long-term clinical end economic eféeof treatment [87],[71]. It is now
widely accepted that models can provide valuald@mmation for clinical practice and are
important tools in medical, regulatory, governméiatad public health decision-making
[82],[90]].

For example ann-silico model of chronic disease can be used as a tosintalate a
clinical trial based on the available medical hiteire and publicly available data sources.
Even in situations where a clinical trial does gxmsodels are often used to incorporate
the benefits and costs beyond the time horizomefttial or to consider all the available
options simultaneously [71]. A good example of toemer statement is the cost-
effectiveness analysis alongside the Scandinavilanv&astatin Survival Study [69], where
the authors used a previous model of Coronary Haiadase to project beyond the five-
year horizon of the study. An example of the lat@tement is the supplement that
strategies of annual analysis of fecal occultobldesting (FOBT) with five-year
sigmoidoscopy, recommended by the American Canoerey [60], could bring to an
analysis of a clinical trial of annual FOBT versos testing, such a s the Minnesota
Colon Cancer Control Study [73]

In-silico models of complex diseases are exploited to pretlie evolution (i.e. the
appearance of events or the persistence in adgatad of severe complications) of an
individual (or a population), providing a probatyildistribution for the individual (or the

population) to develop a certain complication.

The aims of complication models do not limit togice time courses. It is of interest also
evaluating possible variations of the quality & kiuring the lifetime that is predicted for

a patient and the costs that the treatments tleatdministered to him require, since
multiple treatments are often possible for the samsease [90]. The choice of the best

strategy involves the evaluation of both clinicaltammes and costs of the different
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available strategies. The formal process for compaavailable alternative strategies is
calleddecision analysis

The final aim of arnn-silico model is to support decision analysis, helpingicians in
taking the best choice among the available onds [90

The steps of constructing, evaluating and intempgethe model are done iteratively to

give a progressive refinement.

A requirement for diabetes simulation models hasnbiglentified in the medical and
healthcare policy community, and, as a result, mber of models, mainly based on the
Markov Models, have been developed and reportédetiterature [79], [63], [74]. In the

next section, a brief introduction on Markov Modelad a rapid overview on the

available models of diabetes complications wilpbbesented.

3.2 Markov Models

As concerns mathematical aspects, the complicaiodels of major importance are all

composition of Markov models, each of them represgra complication.

A Markov Model(MM), also called state transition model, is useddpresentecursive
events [85]. Discrete MMs enumerate a finite setiftually exclusive possible states
such that, in any given interval of time (calledyale orstagg, an individual member of

the Markov cohort is in only one of the states.

A Markov model is a stochastic model that assurhesMarkov property, which is the
following memoryless property: the state of thetsysat time instant depends only on
the state of the system at time instafi in other words, it does not depend on previous

time instants.

A set ofinitial probabilities is used to specify the distribution of the coh@nmtoup of
individuals that is homogenous for a set of demplgiaand clinical aspects) among the
possible states at the beginning of the processaix oftransition probabilitiess used

to specify the transitions among states.
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In the original graphical representation of a MMg(ki¥e 3.2), sometimes called “bubble
diagram”, each state is represented using a aivblee arrows represent transitions from

a state to another one.

A transition arrow pointing back to the state frarhich it originates indicates that it is
possible for a cohort member to remain in the satate for more than one stage. The
numbers along the arrows indicate the transitiavbabilities. The probabilities of the

transition arrows emanating from any state must &ufn

Each complication is represented by a Markov meteilar to that in Figure 3.2:

0.83

no complication

complication

0.02
dead
0.1
1

Figure 3.2: 3-state Markov model for a generic complication. Circles represent possible states, i.e. clinical

0.72

conditions that can characterize a person. Arrows indicate possible transitions.

The model of Figure 3.2 is characterized by 3 statdo complication” representing
diabetic people without any severe complicationprilication” representing the people

that reach the considered endpoint; “Dead” repitssdeath caused by the complication.

Therefore, Markov models allow representing thel#i@an over time of a diabetic
population that is often simulated with time stdployear. The Markov models allow
simulating over time the evolution of a cohort dtipnts in its mean behaviour and
performing individual-level simulations. The firghe is generally called expected-value

simulation and is based on a deterministic approeehif the probability of transition
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from state “No Complication” to state “Complicatiois p=0.03, then the 3% of patients
in the former will transfer to the latter at nextydar step of the simulation. On the
opposite, the second is a stochastic simulationravitke singlein silico individual

transfers only if the number provided by a randommber generator is smaller than

transition probability p. That is why this kind simulation is also named Monte-Carlo.

Obviously, also a high number of singtesilico individuals can be considered and the
results of these multiple simulations can be avetagheoretically, higher is the number
of individual-level simulations, more similar areetr average results to the expected-
value predictions.

On the other hand, a high number of individual-lesimulations allows quantifying the
variability in model outcomes resulting very helptoi establish the reliability of average

predictions and of the expected-value simulation.

For instance, the evolution over time ofiarsilico population obtained with a toy-model
is reported in Figure 3.3:

- Dead
I Mo complication
O complication

Probability

-

02468 111417202320 29 32 35 3841 44 47 50
Stage

Figure 3.3: Evolution over time of a diabetic population obtained with a toy, 3-state Markov model.

Automatically, a survival curve can be obtainedirthese simulations:
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Survival Curve
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Figure 3.4: Survival curve obtained from the simulations of Figure 3.3.

Transition probabilities are estimated from theadadllected during clinical trials. Wror
values of these probabilities mean wrong predistidhis is why the availability of hig

guantity of data, derived from homogenous cohdaststitical

Simulations do not limit to the predictions of evemiut extend to the time course of r
factors. When data are available, risk factors emirgy is based on them, otherwis
gradual worsening is usually implemented. Thisetatan be slowed by treeents,
whose administration can be implemented in thewso#. Since treatments ¢
characterized by a rate of failure, also this omnoge is sometimes inserted in the mc

together with the possibility to administer mulé@nd subsequent, distinceatments.

The most interestingiabetescomplication models that were developed thanksaia
collected by clinical trials are the Palmmodel [79] the Eastman mod(63], and the
EAGLE model [74]which will be described in the followil.
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3.2.1 The Palmer model

One of the most known complication models is thémea model (also called CORE
model), which is based on multiple interconnectet-sodels: one for each of the
considered complications [79], [80], [81]. All theub-models are Markov models
characterized by 2, 3 or more states depending®specific modeled complication. The
dependences among events are generally expressdthbges in the worsening rate of

risk factors or in the values of transition proli#ibs.

The considered complications or endpoints are: agbal infarction, angina, heart
failure, stroke, peripheral vascular disease, rgathy, foot ulcer, macular edema,
cataract, limb amputation, blindness, microvascatanplications (retinopathy, vitreous
haemorrhage, nephropathy and renal failure), hygeghia, ketoacidosis, and lactic
acidosis, to which add “surrogate endpoints”,stages of disease worsening that allowed
monitoring precisely the evolution over time of repathy, orthostatic hypotension,

impotence.

Palmer model is also one of the most appreciatedefasince it is based on original data
derived from the most recent databases. Howevedghpredictions do not base only on
these clinical database but on treatment and eciosatatabases. The former stores data
on treatment pathways, treatment effects and onctienge in each physiological
parameter in the simulation, as a consequencesaftntient or patient management. The
latter is used to perform economic analysis, beevtaluate the cost of patient treatment
(with and without complication) over the considertche period. In addition, the
economics database allows evaluating the qualiystéetl life years, which briefly

consist in life expectancy corrected for the qyadit life.

Palmer model allows simulating both the time evolutof a cohort of patients in its

mean behavior and the individual-level simulation.

As regards transition probabilities, they are dedifrom event rates registered during the

clinical trials. However, probabilities can depeaisio on some risk factors [79].

3.2.2 The Eastman model

As Palmer model, also the Eastman model is basédiaokov type models and exploits a
Monte-Carlo approach to simulate possible compbecatevents in singlein silico
individuals [62], [63]. Again, as Palmer model, tiple sub-models are present, each one
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for a single complication. Considered endpoints: aretinopathy, nephropathy,

neuropathy and cardiovascular disease.

A high number of the implementation principles euaerizing this model were taken up
by Palmer and the EAGLE modelers and this hightighe importance of the Eastman
model in the history of complication model devela In particular, a methodology to
estimate incidence rates, to be used as trang@tmbabilities of the Markov models, from

the cumulative incidence observed during the suyrwegs detailed. The presented
reasoning that is based on the fit of an exponentiadel to collected data laid the
fundamentals for the use of more complicate moebgidoited by the following modelers,

like the Cox proportional model [86].

3.2.3 The EAGLE model

The most recent model among the three reported Ierthe EAGLE model. It
implements an object-oriented probabilistic Mongrl€ simulation, which is based on a
Markov process with yearly intervals. Transitioolpabilities are dependent on the status

of the simulated patient, with related calculatide$ined internally.

Twenty outcomes (e.g., hypoglycemia, retinopathygcuar edema, end stage renal
disease, neuropathy, diabetic foot syndrome, Mil, stroke) are projected based on data

from epidemiological and clinical trials.

The EAGLE model is capable of simulating the pregien of type 1 and type 2 diabetes
and this is the major difference with respect tevpyus models. In fact, the reader can
find in this description the basic principles attgaenunciated for the older Eastman
model. On the other hand, the model author's mddar chat the EAGLE was not

developed on original data, but on a subset derikad previous people's publications.

This is the main drawback of the model.

A systematic comparison of Palmer, EAGLE and othedels is detailed in [78].

3.3 Objective of the work

As resulting from the overview presented in thevmes section, models able to integrate
accumulating —omics knowledge (metabolomics, prmoies, genomics) into a clinical
macro-level for multifactorial diseases are stiissing and, so far, the most interesting
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complication models, developed from data colledwdclinical trials, are based on
Markov Models and use only phenotypic variableseasures to describe the cohort of

interest.

The aim of the present work is to model the progices of diabetes vascular
complications relying on the powerful framework Bfynamic Bayesian Networks
(DBNs). DBNs provide a more flexible structure witbspect to Markov Models, and
allows to easily enlarge the model with additiomfbrmation. This is why such a model
will represents a solid base for future developmersuch as the enrichment with
genotypic information, as it will be discussedret &€nd of the chapter.

3.4 Methods

3.4.1 Bayesian Networks

Bayesian networks are now being used in a varieypplications. The interest in general
instruments able to compute posterior probabilistrdbutions has been quite high in the
Bioengineering and Biomedical Informatics communig a matter of fact, DBNs allow

dealing with a variety of crucial problems in biadi@ne, ranging from classification to

prediction, and from simulation to parameter estioma Recently, Bayesian network
approaches were successfully employed in the cbraéxgenome biology and in

biomedical research [64]. One of the most commaiiegtion is diagnosis problems, as
in case of medical diagnosis. An example is PATHPHER [67], a program to diagnose

diseases of the lymph node by means of Bayesiavonetipproach.

A Bayesian NetworkEN) is a probabilistic graphical model that represesunditional
dependence over a set of random variables in a @cimgnd human-readable form.
Probabilistic graphical model possess two importaharacteristics: i) they clearly
express the conditional independence between tiebles, thus allowing an intuitive but
sound way to describe the assumptions underlyirgy tiodeling process; ii) they
associate to the graph a probabilistic model thatle used for performing inference, and,
thus, estimation, simulation and prediction [68].
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A Bayesian Network is completely determined by aebtied Acyclic Graph AG),
known also as theetworkstructure and by a set of conditional probability distriiouis:
each node of the network corresponds to a randorablka and each edge corresponds to
a probabilistic dependence between the two nodestérmsnodeandrandom variable

are used as synonyms).

More precisely, a Bayesian Network representsra miobability distribution between its
nodes for which theMarkov conditionholds: any node in a Bayesian Network is

conditionally independent of its non-descendant&mits parents.

The Markov condition implies that the joint prob#lidistribution of the nodes can be
decomposed as

P(Xq, ... X)) = HP(XL-|PaXi). (3.1)
i=1

WherePayx denotes the set of parentsXifwhenever we have an edge— X;, we say

thatX; is achild of X; and thatX; is aparentof X;.

The decomposition of equation (3.1) is callgthin rule for Bayesian Networksnd
allows a more compact representation of the futitjprobability distribution, requiring
fewer parameters to be completely specified: tlobgiility distribution of each node can

in fact be expressed simply as a function of tagestof its parent nodes.

Figure 3.5 reports an example of discrete BayeNiginvork with 4 nodes, modeling the
hypothetical probabilistic relations between therialdes HighFatDiet (HFD),
GlucoseTolerancéGT), Obesity(OB) andRiskOfCardiovascularDiseag€VD). As it is
clear from the figure, the probability distributiaf each node is expressed as a function
of all possible combination of values of its pasgnin the form of a @nditional
probability table(CPT). A natural application of this network is to usas instrument to
compute posterior probability distributions, i.betposterior probability of any of the
problem variables given knowledge about any ofatiner variables of the problem. This
theme is callednference For example, such a network can be used to anguaes
like: “What is the probability of being obese, i a high fat diet?”, “What is the
probability of having impaired glucose tolerandetirisk of cardiovascular disease?”, “If

obese and on a high fat diet, what is the prolighdai being at risk of cardiovascular
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disease?”. Moreover, the Markov condition can bexlus infer conditional independence
relations from the network. For example, we carmrirffom the network structure that,
once the values of GlucoseTolerance and Obesity are  known,
RiskOfCardiovascularDiseas®comes independentldighFatDiet

t f
HFD| net
t |05
£ 107

HFD| t f

OB GT| t f t 0.8 0.2
t ngt| 02 0.8 f 0.1 09
t igt| 0.5 05
t t2d| 0.8 0.2
f ngt|0.01 0.99
f igt| 0.1 09
f t©2d]| 03 07

Figure 3.5: Example of a simple Bayesian Network with 4 discrete variables, representing the interactions
between High Fat Diet (HFD), Glucose Tolerance (GT), Obesity (OB) and Cardio Vascular Disease (CVD).

The example in Figure 3.5 is BN with discrete variables, i.e. variables with aitén
number of possible values. Conditional distribusion discrete variabl&Ns can be
conveniently represented with probability tablesl amme able to model dependencies
between variables without making any assumptiorthenunderlying relationship (e.g.
linearity). Many real-world variables are of a donbus nature (e.g. blood glucose
concentration or gene expression levels). In tisases, a possible solution is to discretize
these variables and resort to discrBtds In some cases, though, discretization would

lead to a major loss of information, unless a mgimber of discrete states is employed,
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which would significantly increase model complexifyhe other solution is to employ
continuous-variabldBNs The generaBN framework so far presented holds for both
discrete and continuous variables, as long as tmalittonal distributionP(X|Pay)
assigned to each node represents for each possibkepay of Pay a distribution ovek.
When all variables in the network are continuoudse most commonly employed
distribution is a linear Gaussian distribution miod&ven the continuous variab¥with

continuous parents,, .., Xk, the probability density of Y as a function of tarents is:
P(Y|x1, .., i) = N(Bo + B1X1 + = + Bixy; 0%) (3.2)

This simple model can be extended to cases in wtiiehmean ofY depends on its
parents in a nonlinear way, or in which the vareaatso depends on the parent values.
Hybrid models are also possible, which incorporatigh discrete and continuous

variables.

Both the graphical structure of BN and the parameters of the conditional probability
distributions can be learned from the availabledBiowever, learning these networks is
often non-trivial due to the high number of varedbto be taken into account in the model,
with respect to the instances of the dataset.

Structure learning of BN is NP-complete problem in the general case: gavdataseD,
containing multiple samples of a set of randomalass, the objective is to find the best,
or the most probableBN structure in the exponential space of all posssttactures.
Several scoring functions have been proposed tesashe quality of &N structure:
some of the most notable are the Akaike Informai@niterion (AIC), the Bayesian
Information Criterion (BIC) and the Bayesian Diriehequivalent (BDe) [67]. Regarding
the learning approaches, from the vast literatimee main approaches can be identified
to BN structure learning: greedy search, complete seamtth search based on
independence tests. Brieflgreedy searchattempts to construct BN structure starting
with a network without any edge and iteratively iagdthe “best” set of parents to each
node, according to a local scooemplete searcltonversely, explores the entire space of
possible networks and is guaranteed to return a&mapnetwork, but the huge memory
and time requirements limit its application to sihsé&ed networks; approaches based on
independence tessdart with a complete network and aim at forbigdas many edges as

possible, by assessing conditional independeneeckeatvariables with statistical tests.
56



In the present work, an approach based on indepeadests evaluated by a Bayesian
Dirichlet equivalent with uniform priors (BDeu), $idbeen adopted, as described in
section 3.4.5.3.

3.4.2 Dynamic Bayesian Networks
Being interested in modeling the history of diabgtatients, the dynamics of the disease

will be explicitly modeled by relying on Dynamic esian Networks (DBNS).

DBNs are an extension of BNs that represent theoeah evolution of variables over
time. Nodes in the directed acyclic graph assodiaigh a DBN continue to represent
random variables, while edges represent tempoardiencies. The key assumption is
that the probability distributions describing tleenporal dependencies are time invariant
so that the overall temporal evolution of the amelly process can be entirely

reconstructed by knowing the temporal dependemeg®sented in the DBN graph [83].

Figure 3.6 shows an example of DBN describing thaution of the expression values of
three gene§1, G2, andG3. The graph shows that the expression value of gaok at
time (¢ + 1) is assumed to depend on the gene’s expressiobmet as well as on the
expression of one or two of the other genes. Furtbee, the example shows that the
temporal dimension of DBNs allows encoding feedbaegulation such as the one
occurring betwee1 andG2, which is not possible in static BNs because efréquired
acyclicity of the graph. The example in the Figisea DBN of order 1, as all temporal
dependencies occur between consecutive time poyets;DBNs are not restrict to

dependencies of order 1 but can represent alsehaytder dependencies.
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1@
Figure 3.6: Example of a Dynamic Bayesian Network for three genes G1, G2 and G3.

DBNs are advantageous with respect to MMs sincé gadable is represented by one
node, whereas MMs require as many nodes as thearuofilcombinations of variable
values [75], [92]. Thus, extending the DBN modelhathe addition of new variables just

requires adding as many nodes.

3.4.3 Model general structure

The general scheme of a DBN for modeling the dyesaraf a complex disease such as

diabetes is represented in Figure 3.7.

In the scheme of Figure 3.7, the input variablescailedcovariates(referred to ad)),
while the output variables are calledtcomeqreferred to a%). In particular, the time
depending covariates are calldginamic (referred to adJdyn), while the remaining
covariates are callestatic (referred to atJstaf), since they are not time dependent. To be
precise, static variables are either constantioee trarying, but their variation across time
is completely predictable (e.g. age, which deteistizally increases of 1 year every time

step). All the outcomes are time-dependent.
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Udyn,(t-1) Udyn,(t) ) --+ ( Udyny(t)

C iates U
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Figure 3.7: General scheme of a Dynamic Bayesian Network for the dynamics of a multifactorial disease

The dependences between variables can be summasZetiows:

» Each dynamic covariate at tihean depend on each other dynamic covariate at time

t-1 and on each static covariate;

* [Each outcome at timé can depend on each other outcome a tirie on each

dynamic covariate at tintel and on each static covariate.
This network represents tlepriori structure of the model.

The specific structure of the model, i.e. the detaviables used as nodes of the network
and edges representing their conditional prob#&slitdepends on the information

contained in the available data, and will be pressbim section 3.5.

3.4.4 Data

3.4.4.1 Datasets
Databases collecting data over more than ten y@lnw estimating the event rates that
are basic for the development of complication med&herefore datasets represent the

fundamental starting point for any predictive moddiree of them, i.e. the Framingham
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Heart Study database, the Diabetes Control and Gwatipns Trial (DCCT) database,
and the UK Prospective Diabetes Study (UKPDS) teduparticularly important for the
field [61], [89] and have been used to implemergdptive models described in the

previous section.

The Framingham Heart Study is a cornerstone ofespiological studies and, after more
than 50 years from its beginning, it remains thesinfiamous and influential investigation
in cardiovascular disease epidemiology. Nowadays$s iconsidered the epitome of a
successful epidemiological research, productiveingfghts and applications and the
prototype of the cohort study [77].

The DCCT was a multicenter, randomized clinicadltdesigned to compare intensive
with conventional diabetes therapy with regardheirt effects on the development and
progression of the early vascular and neurologimpaations of insulin-dependent

diabetes mellitus [61].

Similarly, the UKPDS was designed to establish Wweetin patients with type 2 diabetes,
intensive blood-glucose control reduced the risknzdcrovascular or microvascular
complications, and whether any particular therapg advantageous [89].

The three databases differed for many aspects, @mbith the pathologies of interests,
the surveyed patients, and the duration of theystttbwever, all of them allowed
establishing the importance of some clinical fastdior the development of
micro/macrovascular complications in the long peridiscarding others. In particular,
the Framingham Study was the first one to suggestationship between diabetes and
cardiovascular diseases, on the basis of statigi@duations, laying the foundations for

the subsequent two trials, more focused on diabetes

Most of all, they share the approach that is based survey of the population of interest
along time, periodical measurements of factordiofaal interest (systolic blood pressure,
plasma insulin...), which are usually called “riglctors”, and on the effort of relating
these latter with the observed incidence of micemimavascular events. That is why all of
them were followed by predictive models of comgiimas, which were developed on

collected data.
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A forth database that is often used for the implatetgon of complication models is the
Wisconsin Epidemiologic Study of Diabetic Retindpa{ WESDR), which can provide
additional information for the specific compliaati retinopathy [70]. Both Type | and
Type Il diabetes were considered in the surveywatlg accomplishing two parallel

studies.

With the objective to model the progression of digls complications modeling the
combined effect of phenotype and treatment (andfuh&e prospect of use genotypic
information too), data needed to learn the modeleh# satisfy some precise

requirements:

- the number of patients composing the cohort hass$are a robust learning;

- the dataset has to contain information about thm miabetic complications and the
correlated events, as well as information on phgnotvariables and the main
treatments;

- data have to be collected through a longitudinadlytover a period of medium-long
duration (e.g., ten years);

- the dataset has to contain also genetic informatioparticular SNP data.

Among the available dataset previously describedy the DCCT satisfies all these

requirements.

The next section provides a brief description @ ERCCT dataset, mainly focused on the

relevant characteristics for building the predictinodel.

3.4.4.2 DCCT/EDIC description
The Diabetes Control and Complications Trial (DCQ¥82-93) and the Epidemiology

of Diabetes Interventions and Complications (EDIT394-2006) follow-up study have
been ongoing for more than twenty years [61]. Tihreoal trial and subsequent follow-up
have provided the scientific community with invadleinformation regarding the effect

of glycemia and glycemic control on long-term dit#secomplications.

The DCCT studied a cohort of 1,441 subjects betwkmand 39 years old which had
suffered type 1 diabetes mellitus (T1DM) for 1-léaxs at the time of recruitment. All
participants were relatively healthy except forbaites and were free of severe diabetes-
related complications. The Primary Prevention cbluansisted of 726 subjects with
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T1DM for 1-5 years and no diabetes related comiitina (no microaneurysms on fundus
photography and urine albumin excretion <40 mg/day)e Secondary Intervention
Cohort consisted of 715 subjects with T1DM for 1yEars and mild to moderate non-
proliferative retinopathy and a urinary albumin eston rate <200 mg/day. Subjects
were randomized to conventional (CT) or intensivabdtes therapy (IT) (Figure 3.8).
The intent of IT was to achieve blood glucose Is\@#l70-120 mg/dL in the morning and
before meals, <180 mg/dL after meals, and an HbAllce non-diabetic range (<6.05%).
Although it was not feasible to achieve these glyicetargets consistently in the majority
of the subjects assigned to the IT group (fewen th% maintained an average HbAlc
<6.05%), there was a substantial difference ineajyic control between the IT and the
CT groups. The CT group maintained an average Hi&Ibout 9.0% (similar to their

baseline value) throughout the 3-9 (mean 6.5) yehfsllow-up. Those in the IT group

lowered their HbAlc to about 7.0% and maintained tbr the duration of the study

(Figure 3.9).

Following the end of the DCCT in 1993, and a traosal period during which the
conventional treatment group was taught intendnegapy and the clinical care of all of
the subjects was transferred to their own healtd peoviders, an observational study of
the DCCT cohort, entitled Epidemiology of Diabetaterventions and Complications,
was launched. The goal of the EDIC follow-up wagxamine the longer term effects of
the original DCCT interventions, especially conaegn complications, such as
cardiovascular disease and more advanced stagesnafl and renal disease, that require
a longer period of time to develop. During the sitian from the DCCT clinical trial to
the EDIC observational study, the average diffegeimcglycemic control, measured by
HbAlc, that had been approximately 2% during theCDC(7.2% in the intensive
treatment group compared with 9.1% in the convealidreatment group) narrowed
(7.9% vs. 8.1% in IT and CT groups, respectivelihe difference in mean HbAlc
between the two original treatment groups has becatatistically indistinguishable
during the most recent six years of EDIC follow-(Bigure 3.9) Phase 1 of the EDIC
follow-up study spanned twelve years. The total misdlow-up of the original cohort
was approximately 16 (range 13-20) years. Retentibthe DCCT cohort remained
outstanding: 96% of the surviving DCCT cohort janEDIC in 1994 and 94% of the
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original cohort (n= 1357 of 1441) remained actitieotighout the first phase of EDIC
(Figure 3.9)

DCCT-EDIC: Therapy comparison
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Figure 3.8: number of patients for therapy during DCCT and EDIC studies. the notations “Conventional” and
“Intensive” referred to EDIC, have to be meant as “EDIC patients who were treated with Conventional
therapy during DCCT” and “EDIC patients who were treated with Intensive therapy during DCCT”.
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Figure 3.9: Glycemic Levels during DCCT/EDIC as measured by glycosylated hemoglobin (HbA1c). Medians
with 25th to 75th percentiles shown.
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3.4.4.3 Data analysis and preprocessing
Data from both DCCT and EDIC studies were useds thaving the possibility to train

the model on a longer time period. Since the 14aiepts entered the DCCT in different
years (thus having different follow-up time peripdfor each patient the number of
DCCT-years was computed by comparing the individiete of DCCT enrolling and
DCCT close-out. For each patient, individual ED&alwere then appended at the end of
the last DCCT year, as shown in Figure 3.10.

The computed mean follow-up period was 15.3 years.

Considering the set of the measures of all thealbes for a single patient on a single
year as an instance of the dataset, that instdaceich all the dynamic covariates were
missing have been discarded, in order to reducenibsingness of the dataset and thus
avoidind the need for massive imputation. Thus,nilmaber of available (or valid) years

for each patient was computed. The mean valuh®ntimber of available years was 15.

pat1 DCCTdata, EDICdata,
pat2 DCCTdata, EDICdata,
pat3 DCCTdata, EDICdata, |

pati DCCTdata, EDICdata, |

patN DCCTdatay, EDICdata, |

S
>

time (years)

Figure 3.10: For each patient, EDIC data were appended at the end of the DCCT data. The resulting mean
follow-up period was 15.3 years.

Relaying on previous literature works (see sec8d?) and on data availability in the

DCCT/EDCI dataset, the following variables weredias covariates for the DBN model:

Static Covariates

This group includes both actually static variablsch as patient gender, and variables
that vary in time but in a completely predictablaye.g. age) or dependent by external

decisions (e.g. treatment).
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. SEX

Patient’s gender, assuming 2 possible discreteesdilale andFemale

. AGE

Patient’s age in years

. DURATION

Number of years since diabetes was first diagnosed

. TREATMENT

Annual treatment received by the patient. This aldde represents the type of
treatment the patient received during the yearrgndiith the current visit, and it can
assume 3 possible discrete valu€Esnventional treatmenintensive self-treatment
(i.e. intensive treatment managed by the patienséif) orintensive forced treatment
(i.e. intensive treatment managed by cliniciansgalment received during the DCCT
period belongs to théntensive forced treatmerdiass, while treatment during the
EDIC period belongs to thatensive self-treatmemiass. This variable is considered
an “intervention variable”, i.e. an independentiaile that is known to influence
Glycosylated Hemoglobin (Hb®) value and thus is forced to contain this linkhe
DBN.

. THERAPY

Number of years of diabetes not treated with intentherapy, either forced or self-
treatment. This variable initially represented tloenber of years of intensive therapy.
Then, it was converted into a more informative afleé, accounting for the total
number of years of diabetes not treated with intensherapy. The variable was
computed combining information from the originalrishle THERPAY and the
variableDURATION

. SMOKE

Patient’s smoking status, assuming 2 possible eliscraluesNever smokedr Ever

Smoked The variable was initially a dynamic covariates@ming 3 possible values

according to the DCCT/EDIC codificatiorBmoker (if the patient was actually

smoking at the visit timeNlon Smoke(if the patient never smoked or quit smoking

more than 3 months before the visit timedrmer Smoke(if the patient had smoked

but quit less than 3 months before the visit tin®nce there’s little difference
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between the stateSmokerand Former Smokerfrom a clinical point of view, this
latter status was incorporated by the former. Gitrenhigh missingness throughout
the study, the variable was then converted intdaticscovariate, computed as the
mode of the available values for each patient, thiusg 2 possible statedNever
Smokedr Ever Smoked

EXERCISE

Patient’s physical activity level, assuming 3 pbksivaluesSedentaryModerateand
Vigorous This variable was initially a dynamic covariaéssuming 4 possible values
according to the DCCT codification and 3 possib#&ues according to the EDIC
codification: Sedentary(less than 5 hours of moderate activity per weblgderate
(more than 5 hours of moderate activity per weskgyorous (more than 8 hour of
hard activity per week) an8trenuouy more than 5 hours of very hard activity per
week) in the DCCT dataset, asedentary(occasional physical activityModerate
(considerable, but not constant, physical activagy Strenuous(constant physical
activity) in the EDIC dataset. In order to havefarm information, the third status of
DCCT codification Yigoroug was incorporated with the last one, thus givihg t
single state Strenuous as in the EDIC dataset. A correspondence between
homonymous states in the DCCT and EDIC codificaiamms then assumed. Given
the high missingness throughout the study, thealteiwas then converted into a

static covariate, computed as the mode of the abailvalues for each patient.

Dynamic Covariates

8.
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WHR

Waist circumference to hip circumference ratiopmfiation on WHR in the DCCT

was available only at the screen visit, while ammeasurements were available in
the EDIC. This variable was thus imputed, for epatient, by performing a linear

interpolation of the available values, thus obtagnihe WHR time-course within the
study.

HBA1C
Glycosylated Hemoglobin (Hb#) value, expressed as percentage of the total
hemoglobin. HbAc is strictly connected to diabetes mellitus, siitces a form of

hemoglobin that is correlated to the average plaginaose concentration over



prolonged periods of time, thus serving as a mafieeaverage glycemic values. In
diabetes mellitus, high levels for glycosylated begfobin indicate a poor control of
blood glucose levels, and have been associated watiiovascular disease,

nephropathy, and retinopathy [72];

10.SBP

Systolic Blood Pressure, expressed in millimetéraercury (mmHg);

11.TRIG

Triglycerides value, expressed in mg/dl.

12.LDL:

Low-Density Lipoproteins value, expressed in mg/dl

13.HDL:
High-Density Lipoproteins value, expressed in mg/dl

Since measures of TRIG, LDL and HDL were availablery 2 years in EDIC, we
decided to impute isolated missing values (i.e.smg values placed between two
valid measures at the previous and the followingryevith a linear interpolation of

the 2 adjacent measures, as reported in the exarhplgure 3.11;

14.BMI:
Body Mass Index, given by mass/hefglind thus expressed in Kgfm

E]measure -missing -discarded -imputed

| | interpolation

| | interpolation

v

EDIC year
Figure 3.11: Example of imputation for the covariate TRIG for the i-th patient. Missing values (in gray)
placed between two valid measures (in yellow) are replaced by a linear interpolation (in green). Discarded
measures (in black) were not used for imputation.
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Table 3.1 reports the final list of the variablegd as covariates for the model.

Variable name

Covariate

Variable Description

Variable

Unit of measure /

Type

Nature

Possible States

SEX Patient’'s gender Static Discrete M/F
AGE Patient’s age Static Continuous years
Patient’s duration of . .
DURATION diabetes Static Continuous years
CONVENTIONAL/
TREATMENT Annual treatment Static Discrete  INTENSIVE-SELF/
INTENSIVE-FORCED
Total number of years
THERAPY of diabetes not treated  Static Continuous years
with intensive therapy
SMOKE smoking status Static Discrete NEVER/EVER
. - : . SEDENTARY/MODER
EXERCISE physical activity status Static Discrete ATE/STRENUOUS
WHR Waist-Hip Ratio Dynamic Continuous Unit-less
Glycosylated : : 0
HBA1C Hemoglobin value Dynamic Continuous %0
Systolic blood : .
SBP Pressure value Dynamic Continuous mm Hg
LDL _Low-Density Dynamic  Continuous mg/dl
Lipoproteins value
High-Density : .
HDL Lipoproteins value Dynamic Continuous mg/dl
TRIG Triglycerides value Dynamic Continuous mg/dl
BMI Body-\?g?us: Index Dynamic  Continuous Kg/fn

Table 3.1: Variables used for the DBN model of diabetes complications.

Since the DBN wants to model the transition frorpear to the following, a variable is

needed to have a valid measure both at tilmed at timet+1. Thus, a variable was

considered to have a non-missing value only i k valid measure both at yéand at

yeart+1. Missingness for each covariatefor each couple of consecutive yegyswas

computed as the rate of the number of patients avithissing measure for covariatéo

the total number of available patients for the deug consecutive yeass. The resulting

percentages of missingness for the model’'s coeariate reported in Table 3.2, together
with the number of valid patient for each couplecofsecutive years. Covariates with no

missing values are not reported in the Table.
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% missing | WHR HBA1C SBP LDL HDL TRIG BMI |# valid patients
year 1-2 3.96 0.28 0.07 0.14 0.00 0.07 0.07 1439
year 2-3 3.77 0.42 0.14 0.07 0.07 0.07 0.00 1433
year 3-4 3.51 0.77 0.28 0.00 0.00 0.00 0.07 1426
year 4-5 3.18 0.64 2.05 035 035 035 0.07 1417
year 5-6 2.93 1.29 500 150 150 150 0.71 1400
year 6-7 2.49 154 644 161 124 124 154 1366
year 7-8 2.32 097 562 3.00 255 255 3.00 1335
year 8-9 1.99 1.15 351 229 176 176 3.28 1309
year 9-10 | 1.00 1.61 207 574 498 498 3.14 1306

year 10-11 | 0.78 141 141 353 259 259 4.00 1274

year 11-12 | 0.56 1.11 143 4.05 3.18 3.18 4.3 1259

year 12-13 | 0.00 095 175 444 333 333 468 1260

year 13-14 | 0.00 0.82 1.80 16.99 15.60 15.60 5.07 1224

year 14-15 | 0.00 0.99 2.17 13.69 12.22 12.22 5.02 1015

year 15-16 | 0.00 0.58 0.86 30.22 29.06 29.06 3.02 695

year 16-17 | 0.00 1.77 051 15.40 13.89 13.89 2.27 396

year 17-18 | 0.00 161 1.20 6.02 4.02 4.02 3.21 249

year 18-19 | 0.00 3.36 1.68 60.92 59.66 59.66 6.72 238

Table 3.2: Missingness throughout the DCCT-EDIC dataset.

Analyzing Table 3.2, we decided to use the firsty#ars of the data, for which the

missingness level is always lower than 20%.

Outcomes

As reported in section 1.1, the main diabetic viescoomplications are cardiovascular
disease, nephropathy and retinopathy. Since the® mo uniformity of information
between retinopathy status in DCCT and retinopathtus in EDIC, only cardiovascular
disease and nephropathy were considered as outdomése model. As illustrated in
section 3.2, each complication can be modeled lsfate transition model, allowing

representing the evolution over time of the patient

1. CARDIOVASCULAR DISEASE (CVD):
According to the DCCT design and protocols, théofeing cardiovascular episodes
were recorded during the study: Myocardial InfanetiAngina Pectoris, Heart Failure,
Stroke (or Cerebro-Vascular Accident) and Cororfargry Disease. Only 64 CVD
episodes occurred during the entire DCCT/EDIC stualyolving 42 patients. Given
this small number, the CVD status of a patient wasleled as a discrete outcome
with 2 possible values, as reported in Table 38 Ppossible states transitions are

reported in the scheme of Figure 3.12: once a matieffers a CVD episode, he is
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considered a patient at CVD risk, thus having nespmlity to come back to the

control condition.

CVvD
STATUS
1: Control no CVD episode$

2: CVD any CVD episode
Table 3.3: Possible values for the CVD status.

Description

Figure 3.12: Possible states transitions for CVD.

2. NEPHROPATHY:
According to the DCCT design and protocols, thehnepathy status was computed
combining the values of 2 clinical variables, regpely Albumin Excretion Rate
(AER) expressed in mg/day, and Creatinine Clearaf@RBR-CL) expressed in
ml/min/1.73n%, and coded in 6 levels of increasing severitystamvn in Table 3.4.

DCCT nephropathy AER CR-CL
severity level (mg/day) (ml/min/1.73n7¥)
1 <40
2 [40, 100)
3 [100,200)
4 [200, 300)
5 > 300 >70
6 > 300 <70

Table 3.4: Nephropathy severity levels according DCCT criteria.

Following the guidelines for the outcomes codificatdefined within the SUMMIT
project by SAIL (Sample AlLability system), the meppathy status of a patient was
modeled as a discrete outcome with 4 possible gsakk@mbining information on the
patient’s Albumniuria status and End-Stage Renak&se (ESRD) status, as reported
in Table 3.5. Both the individual Albuminuria statand ESRD status are coded

according to the variable codification defined W\MISand reported in Table 3.6. The
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Albuminuria status is computed on the basis ofAlimin Excretion Rate value (in
mg/day). The ESRD status is computed on the bakigsbmated Glomerular
Filtration Rate (eGFR) value (expressed in mg/noinpn the basis of episodes of

renal insufficiency (dialysis or kidney transplarda).

The possible states transitions are reported insttteeme of Figure 3.13: any
transition is allowed, except for any backward stepm the last status, which

represents a clinical condition in which kidneyns longer able to perform its

function.
NEPHROPATY Description
STATUS
1- Control NormoAIbumingria
and no ESRD episodes

2: microAlbuminuria microAIbuminu.ria

and no ESRD episodes

3: macroAlbuminuria macroAIbumingria

and no ESRD episodes
4: ESRD any ESRD episode
Table 3.5: Possible values for the Nephropathy status.
Albuminuria status AER (mg/day)

Control <30
MicroAlbuminuria [30, 300)
MacroAlbuminuria > 300

Control > 15

< 15, or episode of renal insufficiengy
ESRD (kidney transplant or dialysis)

Table 3.6: Albuminuria and ESRD status according to the SAIL definitions.
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Figure 3.13: Possible states transitions for Nephropathy.

Table 3.7 lists the number of patients in eactustaf Diabetic Nephropathy for
each year of the study, according to codificatigported in Table 3.5.

Nephropathy numbers
in the DCCT/EDIC dataset

Year # Controls # Micro # Macro # ESRD
1 1284 157 0 0
2 1292 140 6 0
3 1253 173 7 0
4 1244 165 16 0
5 1240 157 21 1
6 1216 157 25 1
7 1171 166 32 0
8 1133 171 35 1
9 1122 166 33 3
10 1088 194 35 4
11 1072 171 39 6
12 1055 176 51 5
13 996 179 58 8
14 946 174 62 12
15 631 117 48 13
16 464 87 32 12
17 222 58 15 8
18 173 35 18 7
19 100 19 12 4

Table 3.7: Number of patients for each state of Diabetic Nephropathy throughout the DCCT/EDIC study.
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3.4.5 Learning

3.4.5.1 Split TRAIN/TEST

In order to train and further test the model, tidire dataset was partitioned into 2
subsets of subjects to be used, respectivelyaasrig set, on which learn the model, and
as test set, on which test the model. The split/tesst was performed stratifying patients
by the following 3 variablesage sexandtreatment The TRAIN:TEST proportion is 9:1
(1298 subijects in the training set and 143 in dst¢ set).

Missingness is uniformly distributed between thaining and the test set, exhibiting
similar percentages to the ones computed for thiecemataset (see Table 3.8 and Table
3.9 compared to Table 3.2).

The proportion 9:1 was respected also in the nurobgratients which suffered CVDs
episodes (37 in the training set and 5 in thegeBtand renal insufficiency episodes (21

in the training set and 3 in the test set).

% missing | \WHR HBA1C SBP LDL HDL TRIG BMI | yalid patients
TRAIN

year1-2 | 401 023 008 015 000 008 0.08 1296
year2-3 | 3.80 031 008 008 008 0.08 0.00 1290
year3-4 | 3.50 070 023 000 000 000 0.08 1284
yeard5 | 3.14 063 220 031 031 031 008 1275
year5-6 | 2.86 119 532 1.59 159 159 0.79 1259
year6-7 | 244 139 676 1.63 122 122 163 1227
year7-8 | 225 092 576 3.09 259 259 3.17 1198
year89 | 1.95 119 348 221 161 161 3.48 1177
year9-10 | 1.02 170 196 579 494 494 3.15 1175
year10-11| 0.87 148 140 3.67 271 271 4.28 1145
year11-12| 0.62 124 150 3.98 3.10 3.10 4.78 1130
year12-13| 0.00 1.06 195 4.69 3.54 3.54 4.77 1131
year13-14| 000 091 201 17.50 16.13 16.13 5.29 1097
year14-15| 0.00  1.10 220 13.86 12.32 1232 5.9 909
year15-16| 0.00  0.49 0.81 30.26 29.13 29.13 3.24 618
year16-17| 0.00 170 057 15.01 13.60 13.60 2.55 353
year17-18| 0.00 179 134 625 4.02 4.02 2.68 224
year18-19| 0.00 372 1.86 62.33 60.93 60.93 6.51 215

Table 3.8: Missingness throughout the training set.
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%TmEi;S_;ng WHR HBAIC SBP LDL HDL TRIG BMI | yalid patients
year1-2 | 350 070 0.00 000 0.00 0.0 0.00 143
year2-3| 350 140 070 000 000 0.00 0.00 143
year3-4 | 352 141 070 000 000 0.0 0.00 142
year4-5|352 070 070 070 070 0.70 0.00 142
year5-6 | 355 213 213 071 071 071 0.00 141
year 6-7 | 288 288 3.60 144 144 144 0.72 139
year7-8 | 292 146 438 219 219 219 1.46 137
year8-9 | 227 076 379 3.03 3.03 3.03 152 132
year9-10] 0.76 076 3.05 534 534 534 3.05 131
year 10-11 0.00 078 1.55 233 155 1.55 1.55 129
year 11-171 0.00 000 0.78 4.65 3.88 3.88 2.33 129
year 12-13 0.00 0.00 0.0 233 155 155 3.88 129
year 13-14 0.00 0.00 0.0 12.60 11.02 11.02 3.15 127
year 14-14 0.00 000 1.89 12.26 11.32 11.32 1.89 106
year 15-1¢ 0.00 130 1.30 29.87 2857 28.57 1.30 77
year 16-171 0.00 233 0.00 18.60 16.28 16.28 0.00 43
year 17-14 0.00 0.00 0.0 4.00 4.00 4.00 8.00 25
year 18-19 0.00  0.00 0.00 47.83 47.83 47.83 8.70 23

Table 3.9: Missingness throughout the test set.

3.4.5.2 Discretization of continuous covariates
Dealing with both discrete and continuous variabbes hybrid DBN could appear the

most appropriate choice. However, since modelinghgbrid DBN requires specific
assumptions on the distribution of continuous \#des, a discrete DBN was adopted.
Thus, each continuous variable was discretizedguspecific cut-offs and the whole

model was fully specified by a set of ConditionabBability Tables (CPTs). Variables
WHR SBR LDL, HDL, TRIG andBMI were discretized according to literature cut-offs
reported in Table 3.10.

Variable Cut-offs Number of cut- Number of Reference
offs states
WHR 0.9 (men) and 0.85 (women) 1 2 [76]
SBP 120 mmHg and 140 mmHg 2 3 [59]
LDL 100 mg/dl 1 2 [84]
HDL 40 mg/dl (men) and 50 mg/dl 1 5 [84]
(women)

TRIG 150 mg/dl 1 2 [84]
BMI 20 Kg/nt and 25 Kg/m 2 3 [91]

Table 3.10: Literature cut-offs used for continuous variables.
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Since there are no literature guidelines conceraoutigpffs for the age, the duration of the
disease and the number of years of diabetes raiettevith intensive therapy, a search
strategy to identify the optimal cut-off values hiearning the DBN structure was
defined, and it will be described in the next sattiThe same cut-off search strategy was
applied to HbA., being it the direct intervention target of the ©Tand EDIC studies.

3.4.5.3 Structure and cut-offs learning

The DBN here implemented aimed to merge the dat@minformation with literature
knowledge. Therefore, the DBN structure was learrditectly from data, but
incorporating some constraints derived from therditure both in the network structure
(i.e. allowing only certain edges to be learned,datiled in the following) and in

discretization cut-offs, as explained in the pregisection (see Table 3.10).

Nodes of the DBN can be classified into four classach of them with specific edge

constraints:

» Static Nodes
Each static covariate (see section 3.4.4.3) isesgmted by a static node (St) in the
network (except for the covarialREATMENT which will discussed later). Thus, the
static nodes areSEX AGE, DURATION THERAPY SMOKEandEXERCISE These
nodes cannot be influenced by other nodes, i.g.dhe be parent but not child nodes.
Edges from static nodes can be directed to dynamades at time, Dyn,(t), or

outcome nodes at timieOut,(t).

 Dynamic Nodes

Each dynamic covariate (see section 3.4.4.3) esunlt2 dynamic nodes in the
network, representing the value at timeDyn,(t), andt-1, Dyn,(t-1), respectively,
wheret is a positive integer representing the year (2<15). Thus, the dynamic
nodes are:HBA1C(t) HBAL1C(t-1) SBP(t) SBP(t-1) LDL(t), LDL(t-1), HDL(t),
HDL(t-1), TRIG(t) TRIG(t-1) WHR(t) WHR(t-1) BMI(t) andBMI(t-1). Each Dyg(t-

1) node cannot be a child node. Each [Pynnode is forced to be a child of its
correspondent Dy(t-1) node and is a candidate child of every ofbgn;(t-1) node
and St node.
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e Qutcome Nodes

As for dynamic covariates, each outcome (see se&id.4.3) results in 2 outcome
nodes in the networks, representing the valuenag¢ tj Out(t), andt-1, Out(t-1),
respectively. Thus, the outcome nodes &¥D(t), CVD(t-1) NEPHRO(t) and
NEPHRO(t-1) Each Ouf(t-1) node cannot have parents. Each,@uhode is forced
to be a child of its correspondent (il) node, and can be child of every other
Dyni(t-1) node, St and Oyt-1) node.

» Intervention Nodes
The covariateTREATMENT (see section 3.4.4.3) is forced to result in Zicta

intervention nodes, Int(t) and Int(t-1), represegtthe state of the treatment at time
and t-1 respectively, since, from a clinical point of view is relevant not only
information on the current treatment but also anrégcent change in treatment. Thus,
the intervention nodes aréREATMENT (tland TREATMENT (t-1) for a total of 26
nodes in the network. Since the covariRREATMENTrepresents the intervention
variable of the DCCT and EDIC studies, where thtenhof the intensive treatment
was to achieve HbAlc level in the non-diabetic mr{g6.05%) [61], the nodes
TREATMENT (tandTREATMENT (t-1kan affect only théiBA1C(t)node.

Table 3.11 summarizes all node types and the teleadidate parent/child node types
according to the edge constraints.

Forced parent  Forced child  Possible parent Possible child

Type
edge edge edge edge
St None None None Dyxt), Out,(t)
Dyn,(t-1) None Dyn(t) None Dyn(t)
Dyny(t) Dyn,(t-1) N Pynt), St out(t)
n,(t ny(t- one u
Y Y Int(t)*, Int(t-1)*
Out,(t-1) None Oui(t) None Oug(t-1)
Out(t-1),
Out,(t) Out,(t-1) None None
Dyn,(t), St
Int(t) None None None HBALC(t)
Int(t-1) None None None HBALC(t)

Table 3.11: Nodes type and edges constraints. * Int(t) and Int(t-1) nodes are possible parents only for the
HBA1C(t) node.
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The DBN structure was learned from data by seagcthie space of all possible network
structures with a Tabu Search algorithm [66], itEtto theHill Climbing step of the
Max-Min Hill Climbing (MMHC) algorithm for Bayesian Networks structuesafning
described by Tsamardinos et al. in [88]. Basicdhlg, search aims to find both edges and

discretization thresholds in order to maximize BigN's prediction ability.

The search shapes edges connecting, @), Out(t-1), St, Int(t) and Int(t-1) nodes to
Dyn,(t) and Ouj(t) ones. Considering the constraints listed ab@axh Dyg(t) and
Out,(t) node has one forced parent node, and a nunfilzandidate ones. For each node,
the goal is to find the best parent combinatiorieaeined by the likelihood-equivalence
Bayesian Dirichlet score with uniform priors (BDeuwjth Equivalent Sample Size= 5
[88], [67]. The goal is reached by searching thenlwmation of parent edges that
maximizes BDeu for each candidate node on theimgidata. The forced parent is
always included when computing the score for a doatlon of candidate parents. Each

node's parents can be searched independently.

The implemented search is stepwise. At each seltforithm determines if an edge is
to be added or removed from the optimal parent ¢oation obtained at the previous step.
Since an edge can be either present or absent,ceatbination of candidate parents

can be represented by a binary vegtavith a sizen (the forced parent is not considered
in p). The initialization step assumes no candidatergaselected, i.e. the BDeu score for
a node is computed considering only the edge ofatsed parent. Then the search
algorithm proceeds by evaluatimgpossible steps, each one determined by switching a
single binary value op. For example, the search for a node with 3 begins setting
equal to [0, O, 0]. The very first considered steps|[1, 0, 0], [0, 1, O] and [O, O, 1]. The
step associated to the highest BDeu score is #lented, and the search continues.

Once a step is selected, its vegors compared to the elements of a Tabu list with
maximum sizd. If p is already present in the Tabu list, its scorgeisasInf. If not, p is
pushed into the Tabu list. Once the list is fukwnvectors push out the previously
inserted ones, following a first-in-first-out appah. If more thars steps are completed
without a BDeu score improvement, the search stdakies fort ands were 100 and 15

respectively, according to the literature gold deads [66].
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Note that in the original MMHC algorithm the edges,each step, could undergo three
possible perturbations, namely addition, removakeersal. In the present case, however,
edge direction is fixed, so there is no need t¢ f@sedge reversal. Furthermore, the
network is acyclic by construction. This yield twaajor consequences: on the one hand,
there is no need to check for acyclicity after gva&ep of the Tabu Search algorithm; on
the other hand, the optimal parent set for eacle mwaa be identified independently of the

other nodes, thus greatly reducing computationadptexity.

As reported at the end of the previous sectionstone nodes discretization thresholds
have been taken from the literature (Table 3.10)enfor variablesAGE, DURATION
THERAPYand HBA1C the thresholds have been inferred by the data.ttiese latter
variables, each one was assumed to have threédjgostites (low = 1, medium = 2 and
high = 3), and the thresholds could be compute$ passible combinations: (a) the"33
and 68' percentile; (b) the 25and 58" percentile; (c) the 25and 7%' percentile; or (d)
the 50" and 7%' percentile. Thresholds combinations have beencesglduring the BN
structure learning described above: in particuta,learning of the edges was performed
for each possible threshold combination on theadesAGE, DURATION THERAPY
and HBA1G for a total of 4 = 256 combination. For each combination, the wigie
score was computed as the sum of each individual(ynode and Oyft) node BDeu

score.

Table 3.12 reports the learned thresholdsAiGiE, DURATION THERAPYandHBA1C

thus completing information of Table 3.10.

Variable Cut-offs Number of cut-offs Number of states
AGE 28 years and 40 years 2 3
DURATION 100 months and 157 months 2 3
THERAPY  4.92 years and 10.17 years 2 3
HBA1C 7.1% and 9.1 % 2 3

Table 3.12: Learned cut-offs for continuous variables

3.4.5.4 Parameters learning
Once the structured is fixed, the phase of leartiiegconditional distributions implied by

the network consists in estimating, for each vagiak, a set of parameteBy p.,

describing the dependencyXbver its parentPa.

78



In the case of a discrete network, the parametebe testimated are all the entries of the
CPT of each variable,e. the valuedy,q, = P(X = x|Pay = pay) for each of the
possible values of and of its parentBay.

To this aim, the Bayesiamaximum a posterior(MAP) estimates was exploited. The
Bayesian MAP estimates consists onmaximum likelihoodestimates (based on
calculating the relative frequencies of the différevents in the data), augmenting this
observed data with prior distributions over theueal of these parameters.

The maximum likelihood estimate 6§, is given by:

5 _ N(X =x A Pay = payx)
Hpax = N(Pay =pay)

(3.3)

whereN(c) counts the number of observations in the daegedfying conditiorc.

One of the risks of maximum likelihood is that @ncsometimes return estimates equal to
zero, in case no example satisfying the conditibtha numerator is observed in the

dataset. To avoid this situation, it is often prefd to smooth the estimate with a

coefficienta known asEquivalent Sample SiZESS). The smoothed estimate is given by:

~ N(X =xAPay =pay) +«

_ 3.4
Oxipas N(Pay = pay) + |Val(Pax)| - a’ &9

where|Val(Pay)| is the number of distinct valu®s, can take.

This expression corresponds to a MAP estimaté,@f, , assuming a Dirichlet prior
distribution with equal-valued hyper-parameterdAn intuitive interpretation o# is the
number of imaginary samples, for each combinatiomatues ofX andPay, assumed to
have been observed before estimating, from the data, as already explained in

section 2.5.1. In this context,was set equal to 5, as already mentioned in tbeiqus

section.

3.4.6 Prediction

Once the model was fully specified through therew phase, it was applied on the
cohort of subjects of the test set to predict thadwgion of the patients’ state.
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Given the initial discretized values for both coates and outcomes, the CPTs allow
predicting the values of all the variables for thbowing years and thus the probability
of developing a certain complication. For exampierigure 3.14 the value of discretized
HbA1c level at time point depends only on the values of the same variabiienatt-1,
thus the correspondent CPT is represented by anZuBx, each column representing the
conditional probability of HbAlc at timegiven the value of its parent (HbAlc at titre
1). Assuming for the-th patient that HbAlc has low level at time paii, the level at
time t will be predicted by a roulette wheel selectiortime where the chance for every
possible value is given by the conditional prokabih the correspondent cells. In the
case shown in Figure 3.14, given the trained CRilaalow level of HbAlc at time1 for
the i-th patient, the probabilities for low, medium andhigvel at timet are 5%, 74%
and 21%, respectively, and the simulation prediatsedium level for HbAlc at tinte

By applying iteratively this procedure to all thevariates and outcomes, the evolution of
each patient belonging to the cohort of interest ba predicted year by year. This
approach permits to predict the progression of mpdization also over long period of

time.

The described approach was applied to the cohgraténts of the test set, starting from
the initial values and using a prediction horizdn1® years. For each patient, 100
simulations were performed in order to obtain aphulity distribution for each variable
and for each year. The basic idea of this stoahastnhulation approach is to run a
simulation process that, starting from the obsématand following a topological order,
samples a new value of each unobserved variablengilie values of all the other
variables sampled so far. In this way a chain dtdesis generated. Such chain is known
to converge to the posterior distribution of theafales given the observations [65].
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. Ustat Udyn Y
Patient | Year SEX GENO BMI CHOL SBP DN VD
1 1-1
HbA1¢ al -
- Low | Medium | High
Low 0.05 0.03 0.01 (
t | Medium 0.74 0.62 0.20 N
High 0.21 0.35 0.7¢

Figure 3.14: Example of a single variable prediction by exploiting the correspondent CPT.

3.5 Results

The final network resulting from the learning sterepresented ifrigure 315.

HDL(t-1)

TRIG(t-1)

SBP(t-1)

BMI(t-1)

CVD(t-1)

HBA1C(t)
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WHR(t)

NEPHRO(t-1)

f O%O

:{ cvD(t) i

NEPHRO(t)

Figure 3.15: Final DBN structure

81




Analyzing Figure 3.15, 2 well-distinct blocks cae bbserved in the network: a sub-
network for Nephropathy (Figure 3.16), in whichl@ac short-term effect is played by the
variable TREATMENTon the nephropathy state through the intermedifiext on the
variable HBA1C and a sub-network for the Cardiovascular Disg&sgure 3.17), in
which a clear long-term effect is played by theialsle DURATIONon the CVD state
through an intermediate effect on the variablelR It is interesting to note how the lipid
variables (i.eTRIG, LDL andHDL) as well as the anthropometric variablg¢HR and
BMI) belong to the same sub-network of CVDs, thus sihgw certain consistency with
clinical knowledge [76]. The variabl@$HERAPY(i.e. the number of years of diabetes not
treated with intensive therapy§MOKEandEXERCISEwere left out from the network,
since their effect was likely overcome by the sreminfluence of other variables.

HBA1C(t)

v

I NEPHRO(t-1) |—>| NEPHRO(t) I

Figure 3.16: Nephropathy sub-network.
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Figure 3.17: CardioVascular Disease sub-network.
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The validation step consisted in comparing resaoftssimulations run on the initial
population of the test set to real data. In paldicuthe comparison was performed at a
population level: for each dynamic variable, thaewal population distributions computed
on simulated data were compared to the annual populdistributions computed on real
data. The annual distribution was computed consigall the 100 simulated values for
each patient. Figure 3.18 to Figure 3.26 showdesatibutions (top panel) and percentage
difference with simulated distributions (bottom pBnfor all the dynamic variables in
order to quantify prediction accuracy. Considettingt only the first 15 years of the data
were used to train the model, the population ptemtis for the first 15 years fit very well
real data, exhibiting percentage differences netgr than 10% for all the dynamic
variables. In particular for the outcomes, thead#hces are lower than 5% for all the 15
years. These results are similar to the ones adatdny [74], where the authors defined a
valid model as one in which the mean simulate evatdgs correspond to the mean

published event rates within a range of +10%.
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Real population frequencies: WHR(t)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time (years)
% difference REAL - PRED
5 T T T T T T T T T T T T T T T
0
_5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (years)

Real population distribution of WHR and percentage difference with predicted one for each
year.

Real population frequencies: HBAL1C(t)
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Real population distribution of HBA1C and percentage difference with predicted one for each
year.



Real population frequencies: SBP(t)
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Figure 3.20: Real population distribution of SBP and percentage difference with predicted one for each
year.

Real population frequencies: LDL(t)
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Figure 3.21: Real population distribution of LDL and percentage difference with predicted one for each
year.
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Real population frequencies: HDL(t)
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Figure 3.22: Real population distribution of HDL and percentage difference with predicted one for each
year.
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Figure 3.23: Real population distribution of TRIG and percentage difference with predicted one for each
year.
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Real population frequencies: BMI(t)
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Figure 3.24: Real population distribution of BMI and percentage difference with predicted one for each
year.
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Figure 3.25: Real population distribution of CVD and percentage difference with predicted one for each
year.
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Real population frequencies: NEPHRO(t)
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Figure 3.26: Real population distribution of NEPHRO and percentage difference with predicted one for each
year.

3.6 Software tool for diabetes care professionals

As already pointed out in the Introduction of therent Chapter, the final aim of am-
silico model is to provide clinicians with a tool for gguting decision analysis, in order
to predict the risk for long-term complications,ush optimizing clinical trials and
avoiding invasive and expensive tests. In thigednthe final step of the present work is
representing by the development of a web applinatem simulate the progression of
diabetes long-term complications. In particularreheve developed a standalone Java
application that implements stochastic simulati@sdal on Bayesian network structure
and parameters learned from the DCCT and EDIC eitaghe main goal of the
application is to provide a tool to simulate singlatient or population evolution
dynamics, toward nephropathy and cardiovasculaeadis. The tool will allow
professionals involved in diabetes care to anabme@ predict the onset of pathologies
such as coronary heart disease, stroke and nephyopéh a certain belief, based on

patients or population anamnestic evidence.
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In order to reach the highest compatibility withsting operative systems and an easy to
install and run deployment strategy, we employedaJ&tandard Edition (Java SE)
technology to develop this application. Indeed,aJ&€ Platform lets you develop and
deploy Java applications on desktops and servelferimy rich user interface,
performances and portability that today applicatrequire. Having as objective the
distribution of the software over the internet,a&Veb Start technology has been selected.
This technology is being developed as Java Netwatkching Protocol & API (JNLP),
which provides a browser-independent architectaredéploying Java technology-based

applications to the client desktop.

3.6.1 Methods

3.6.1.1 Packages

Classes and methods are grouped in four Java peskage packagdbn is the main
package. It provides initialization of the mainsdas and the application layer control.
The packagdibDBN contains all the classes and methods developsthiolate single
patient or population evolution dynamics and afiraje data structures. The package
dbnGUI has been developed to provide a graphical userfate (GUI) employing Java
AWT and SWING libraries. Implementing the interfadkctionListener and ltemListener
provided by these libraries, it makes possibleititeraction with user and events. The
packagevisualDBN provides the facilities for visualization of netkostructure and

outputs analysis graphs.

3.6.1.2 Data structures
The structure and parameters of the Bayesian nktigarned are stored in an object,

instance of the class NetStructure. It stores theditional probability tables (CPTs)
values and adjacency matrix in matrices and vaiabimes, nodes arity (i.e. number of
possible states) and discretization levels for ezaimble in arrays. The object can be
serialized, indeed the class implements the interfderializable, and saved to disk. This
allows loading the entire network structure in g step, making faster the application
start up process. In case of network modificatiore tb subsequent learning processes it
is possible to re-load the structure and all patarseinto theNetStructureobject and
save it again to disk. Access to CPTs values asnvaitl by means of a function that maps
a combination of indexes given the topological orofea variable to the linear index of
the CPTs matrix.
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The data employed for and obtained from the sinarlaprocess are stored in a data
structure implemented with the clasglutionMatrix Each year of simulation is stored in
a generic list container, arrayList<T> container of the Java Generics library. Several
auxiliary and temporary data structures are emplaggerform internal computation.

3.6.2 Simulations

Inference in Bayesian network can be accomplisiredeveral ways, such as exact
inference by enumeration or by variable eliminatiomessage passing algorithms and
stochastic simulation. Exact inferences need Wwite a query P(X|e) in terms of CPT
entries product. Given any subsetafsetting them to certain values due to evidence, we
can calculate the probability distribution of sootber subset oXi by marginalizing over
the joint. This is costly due to calculating an emential number of joint probability
combinations. In this application, we implementedMarkov Chain Monte Carlo
stochastic simulation, as described in section63.8riefly, for each variable the
distribution of possible values is obtained frone BPT tables. Inserting the covariates
initial values for the single patient or for theppdation, distribution probabilities may be
generated according with the observed data. Thevadwe of the considered variable is
obtained from a random sampling among possibleegakccording to its conditional
probability distribution. A stochastically selectgdlue is assigned to current variable.
This procedure is repeated for each variable toegéa a complete dataset for the
selected number of patients. By this way, usersisert initial values and simulate the
entire dynamic evolution process of the cohortatfgnts.

3.6.3 Visualization

Simulation results may be visualized in the maimdews of the application where a
table reports the distribution per year of eachiaide. Incidence of nephropathy and
cardiovascular disease over the year may be vimdhlas a graph. We are currently
finalizing the implementation of the DAG visualikat and the exporting functions for
graph and tables. A preliminary mock-up of therifatee is shown in Figure 3.27.
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Figure 3.27: Preliminary mock-up for the user interface of the software tool.

3.7 Discussion

In this chapter the problem of modeling the comdie&ect of phenotype and treatment

on the outcome was discussed.

In-silico models of complex diseases are essential to preidéc risk for long-term
complications, thus optimizing clinical trials aadoiding invasive and expensive tests.
A requirement for diabetes simulation models hasnbiglentified in the medical and
healthcare policy community, and, as a result, mber of models, have been developed
and reported in the literature. However, these rnsodee mainly based on Markov

Models, thus requiring as many nodes as the nuofl@mbinations of variable values.

In the present work, the progression of two vascutbabetes complications,
Cardiovascular disease and Nephropathy, was modesdg Dynamic Bayesian
Networks and integrating in the model phenotypfonmation as well as information on
treatment. A Bayesian Network is a probabilistiagdrical model that represents a set of

random variables and their conditional dependendees directed acyclic grapRBNs
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are a special class @Ns that model the stochastic evolution of a grouprasidom
variables over timeDBNs are advantageous with respect to Markov Modelsesaach
variable is represented by one node, thus, extgnralDBN model with the addition of

new variables just requires adding as many nodes.

The DBN model was developed on the data collected fronDIBET (Diabetes Control
and Complication Trial), a randomized clinicabtrivhich involved 1441 type 1 diabetic
volunteers between 1982 and 1993, with the aimoofiparing the effects of standard

control of blood glucose versus intensive controtlee complications of diabetes.

In particular, relying on am-priori information on the network general structure, the
model was learn directly from a subset of real datal validated on the subset left out

during the learning phase.

Results regarding the network structure show a goodistency with clinical knowledge,

exhibiting 2 well-distinct blocks of effects: adirblock with a stronger short-term effect
for Nephropathy, regulated by the indirect effettreatment on HbAlc, and a second
block with a stronger long-term effect for Cardisgalar Disease, regulated by the
indirect effect of the duration of diabetes on W&igp Ratio, and involving also all the

lipid variables.

Results regarding the simulated progression of dicatpns show very good

performances, exhibiting a prediction accuracy gretghan 90 % for all the dynamic
covariates and greater than 95 % for the outcorNephropathy and Cardiovascular

Disease, thus proving the effectiveness of the inode

The good prediction performances of the model niakaher suitable to be use as a tool
for support clinical decision analysis. To such @m, a web Java application that
implements stochastic simulation based on the tstre@nd parameters learned from the
DCCT and EDIC datasets is currently under develogmd&he web application
development is still ongoing, but the current vemsiepresents a good starting point for
future extensions and improvements.

Future developments, in particular, can regardetktension of thdBN model and the
refinement of the web application based on it.

The flexible structure of th®BN will in fact allow the easy introduction of other
variables: the most interesting variables to belatqul are diabetic Retinopathy, as an
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additional outcome of the model, and the genotypicrmation as a potential mean to
improve predictions.

A cost-effectiveness analysis to evaluate costscamdequences of possible treatments,
as well as a cost-utility analysis to quantify ewahimprovements in the patients’ quality
of life, will be implemented, in order to betterdress the supporting function of the web

application in the decision analysis process.

93






Chapter 4

Modeling the effect of treatment on
diabetes phenotype: a
compartmental model of aspirin
action

Referring to the multi-level scheme presented guFe 1.1, this chapter will focus on the
effect of treatment on phenotype, as shown in [Edgut.

Figure 4.1: Modeling the effect of treatment on phenotype.

Aspirin represents an important component of camaboular prevention in diabetic
patients. The biological background regarding thgsmlogical mechanisms of action of
aspirin as antiplatelet agent will be firstly induaced, then the most relevant results from
clinical trials and epidemiological studies of aBpias a therapy for patients at high
cardiovascular risk will be shown. A compartmemtaldel of aspirin action developed to
gualitatively explain experimental evidence will fogally presented and its performance

evaluated by a sensitivity analysis approach.
95



4.1 Introduction

4.1.1 Atherothrombosis

Atherosclerosis is a chronic inflammatory disorgiewhich immune mechanisms interact
with metabolic risk factors to initiate, propagatmd activate vascular lesions, and
represents the major cause of ischemic coronasryadisease and cerebrovascular
disease [104].

Arterial thrombosis, an acute complication that eleps on the surface of a ruptured
atheromatous plaque or as a consequence of endob#resion, may cause myocardial

infarction or ischemic stroke. Platelets are keuta components of arterial occlusive

thrombi and may participate in the development progression of atheromatous plaques
[131].

Platelets originate from megakaryocytes in bonerowarand are vital components of
hemostasis, the physiologic process that arrestsofthage after tissue trauma and
vascular injury. Although the adhesion and actoratof platelets can be viewed as a
repair-oriented response to sudden fissuring oturepof an atheromatous plaque,
uncontrolled progression of such a process throaghseries of self-sustaining
amplification loops may lead to the intraluminalrrf@tion of thrombus, vascular
occlusion, and transient ischemia or infarctione Hbility of platelets to participate in
both normal hemostasis and atherothrombosis depamdkeir adhesive properties and

their capacity to become activated very quicklydasponse to various stimuli [131].

Currently available antiplatelet drugs, such asraspnterfere with certain steps in the
activation process by selectively blocking key @lett enzymes or receptors, reducing the
risk of arterial thrombosis through mechanisms tbatnot be dissociated from an

increased risk of bleeding complications [121].

In particular, randomized trials indicate that ldese aspirin can prevent arterial
thrombosis under various circumstances, includirgy ¥ascular events among low-risk,
healthy subjects and recurrent vascular events gnpatients with known acute or
chronic occlusive vascular disease [121]. Howeaealiminished responsiveness has been
reported in patient with type 2 diabetes [127],JJ1Q101], with the suggestion that this
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might explain the apparent failure of the drug éoluce the risk of atherothrombo
events in individual trials and m~analysis of aspirin in diabetes [94115], [98], [125].
A more comprehensive picture of the main results fctinmical trials will be presented |
section 4.2.

4.1.2 Aspirin as antiplatelet agel

Aspirin, also known ascetylsalicylic acii (CoHgO,), is a salicylate drug belonging tc
group of medications called nonsteroidal -inflammatory drugs (NSAID.. It was first
synthesized by Felix Hoffman, a chemist with ther@m company Bayer, in 18, even
if the active metabolite of aspirisalicylic acid was first extracted from the bark of
willow in 1763 by Edward Stone of Wadham Collegefddd University.Today, aspirin
is one of the most widely used medications in tloeld asan analges to relieve minor
aches and pains, as an antipyretic to reduce famdras an ar-inflammatory medicatic,
with an estimated 40,000 tones of it being consuesaxth yee [139].

HO ¢O

O.__CH;
|

O

Figure 4.2: Structural formula of aspirin.

The besteharacterized mechanism of action of aspirithe inhibition of thromboxar-
dependent platelet function, through permanent tivetton of the cyclooxygenas
(COX) activity of prostaglandin H synthase 1 (alederred to as CO-1) [122]. As
shown in Figure 4.3prostaglandi H synthaseswhich have both cyclooxygenase ¢
hydroperoxidase (HOX) activi, converts arachidonic ac{@A), a precursor primaril’
involved in cellular signaling and inflammatory pess, to a complex set of derivati
which are collectively known as the ‘arachidonicdacascade One of the final produc

of the cascade is thrdmoxane, an enzyme which stimulates plat to produce the
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coagulation factors as well as increasing platafggregation (the enzyme is in

named for its role in clot formation, i.e. thromix)s

fact

Free arachidonic acid

Phospholipase A,

Inhibition of COX-1 4 I Inhibition of COX-2
— by low-dose and by high-dose aspirin —
high-dose aspirin COX-1 COX-2
Conversion by Prostaglandin G, Conversion by
prostaglandin prostaglandin
H-synthase 1 H-synthase 2
HOX HOX
Prostaglandin H;
Conversion by tissue-specific isomerases
J
Thromboxane A; Prostaglandin D; Prostaglandin E; Prostaglandin Fy, Prostacyclin
Activation
of specific
prostanoid
receptors

Figure 4.3: Mechanism of action of aspirin on the arachidonic acid cascade. Figure from [122].

The synthases are colloquially termed cyclooxygesaand exist in two forms,
cyclooxygenase-1 (COX-1), which is the constitutil@m of the enzyme, and
cyclooxygenase-2 (COX-2), which is an induciblenfiol.ow-dose aspirin mostly inhibits
COX-1, whereas high-dose aspirin inhibits both CD&nd COX-2 [122]. In particular,
by diffusing through cell membranes, aspirin enténe COX channel, a narrow

hydrophobic channel connecting the cell membrartbegaatalytic pocket of the enzyme.

Aspirin acts on COX-1 permanently inactivating tipugh an irreversible acetylation

process: a single molecule of aspirin reacts wisingle molecule of COX-1 producing a
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single molecule of salicylic acid and a single ncale of acetylated COX-1 (Figure 4.4),

thus preventing AA to bind the catalytic site of #tnzyme to start the AA cascade [140].

Arachidonic acid

Ser 529 —OH
Prostaglandin G/H synthase e

/\

COOH COOH

@COCHS @I )
Aspirin Salicylic acid

\_/ Ser 529 — OCOCH,

—Prostaglandin G/H synthase (inactive)

1

Arachidonic acid

Prostaglandin G,

Figure 4.4: Reaction between aspirin and COX-1: aspirin acetylates the hydroxyl group of a serine residue
at position 529 (Ser529) in the polypeptide chain of platelet prostaglandin G/H synthase, thus inactivating
the cyclooxygenase catalytic activity of the enzyme which leads to formation of prostaglandin G, from

arachidonic acyd. Figure from [140].

This process is irreversible and its effect is keging for the entire single platelet

lifespan, since platelets are not able to syntleedé&z novoCOX-1 and, thus, only new

platelet generation from megakaryocytes in boneemacan recover pre-aspirin COX-1

levels [140].

In the next section, exemplifying results from wal trials of aspirin in cardiovascular

prevention will be briefly presented.

4.2 Results from clinical trials

In the context of the multi-level analysis adopiedhis thesis, the main clinical trials of

aspirin can be separated in 2 classes, on the difabie final end-points considered:

1. Trials focusing on the outcon{€igure 4.5.A), in which the goal of the studytis

analyze the effect of aspirin on cardiovasculanése
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2. Trials focusing on the phenotygEigure 4.5.B), in which the goal of the studytas
characterize the effect of aspirin on COX-depengiéatielet activity.

A)

B)

Figure 4.5: Scheme for trials focusing on the outcome (A) and for trials focusing on the phenotype (B).

4.2.1 Trials focusing on the outcome

The efficacy and safety of aspirin on non diabptaitients are document from analysis of
many randomized clinical trials that included patise at variable risk of thrombotic
complications of atherosclerosis [120]. Aspirin le®n tested in patient demonstrating
the whole spectrum of atherosclerosis, from appbrdrealthy low-risk individuals to
patients presenting acute vascular events. Amongnpsi with occlusive vascular disease,
both individual studies and meta-analysis of triafsantiplatelet therapy indicate that
aspirin significantly reduces the risk of a seriaascular event (nonfatal myocardial,
infarction, nonfatal stroke, or death from vascuauses) [122]. For example, in [137] a
meta-analysis of 287 studies involving 135 000grds in comparisons of aspirin therapy
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versus control, showed that among a wide rangeatémts with vascular disease, for
which the annual risk of a serious vascular evanges from 4 to 8 percent, aspirin
significantly prevented at least 10 to 20 fatal aodfatal vascular events for every 1000
patients treated for one year (Figure 4.6).

[1 Aspirin therapy [ Control

254 P<0.001 P<0.001 P=0.001 P<0.001 P=0.001
21.8
204 19.1
s'Q" 16.8
9 145
's' 15+ 13.5 134
>
%‘ 10 8.2 9.2
)
]
>
5_
Patients wtih Patients with Patients with Patients with Other
Previous Acute Myocardial Previous Stroke  Acute Stroke High-Risk
Myocardial Infarction or Transient Patients
Infarction Ischemic Attack

Figure 4.6: Absolute effects of antiplatelet therapy with aspirin on the risk of vasculareEvents
(nonfatal myocardial infarction, nonfatal stroke, or death from vascular causes) in five groups of high-
risk non diabetic patients. Figure from [122].

The inhibition of thromboxane-dependent plateleiction by aspirin may lead to the
prevention of thrombosis as well as to excess blgedhus assessing the net effect
requires an estimation of the absolute thrombasic versus the hemorrhagic risk of the
individual patient. In [121], aspirin has been exéd in six primary prevention trials of
aspirin versus placebo (the Primary Preventioneetdjial on high-risk men and women
[99], the Hypertension Optimal Treatment trial ogpértensive patients [105], the
Thrombosis Prevention Trial on high-risk men [13@)e Swedish Angina Pectoris
Aspirin Trial on stable angina patients [112], Bteysicians’ Health Study trial on healthy
men [110] and the United Kingdom Doctors trial agahhy men [124]) for a total of
approximately 58000 patients who were at variableliovascular risk. Results show that
as the risk of experiencing a major vascular eusreases, so does the absolute benefit

of antiplatelet prophylaxis with aspirin for a nuemnbof clinical conditions, including
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stable and unstable angina pectoris and patients suffered a myocardial infarction
(Figure 4.7).

60 -
50 - Unstable Angina ®
Subjects 40
in whom a
vascular event 30 -

is prevented by
aspirin

per 1,000 treated /yr 20 - e Survivors of Ml

10 4 Stable Angina
‘» Healthy Subjects
0 T T LS 1
0 5 10 15 20 %

Annual risk of a vascular event on placebo

Figure 4.7: For each category of patients, the abscissa denotes the absolute risk of experiencing a major
vascular event. The absolute benefit of antiplatelet treatment is reported on the ordinate as the number of
subjects in whom an important vascular event is actually prevented by treating 1,000 subjects with aspirin

for 1 year. Figure from [121].

In contrast to non-diabetic subjects, for which i@sphas been proofed to have a
significant effect, a clear benefit of aspirin imetprevention of major cardiovascular
events in people with diabetes remains unprovefl [98

For example, in order to examine the efficacy giiras for the primary prevention of
atherosclerotic events in patients with type 2 éiab, Ogawa and Nakayama studied
results from the Japanese Primary Prevention oferdgtlerosis With Aspirin for
Diabetes (JPAD) trial [115], a randomized contmbllgial in which patients were
randomly assigned to assume low-dose aspirin (8D0rmg per day) or not. End-points
were atherosclerotic events, including fatal or fatal ischemic heart disease, fatal or
nonfatal stroke, and peripheral arterial diseasevelé as death from any cause. The
incidence of the primary end point of any atheresatic event was not significantly
different in the aspirin group than in the non-aspgroup (log-rank tesp-value= 0.16),
as shown in Figure 4.8, thus the authors concltig@daspirin as primary prevention did

not reduce the risk of cardiovascular events [115].
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Figure 4.8: Total percentage of atherosclerotic events according to treatment group in the JPAD trial. Cl
indicates confidence interval; HR, hazard ratio. Figure from [115].

Similar results were obtained by Belch from thelgsia of results from the Prevention of
Progression of Arterial Disease and Diabetes (PO®RBPtrial [94], a multicentre,
randomized, placebo controlled trial conducted étednine whether aspirin was more
effective than placebo in reducing the developnw#ntardiovascular events in patients
with diabetes mellitus and asymptomatic periphardérial disease. Two hierarchical
composite primary end points of death from cororfagrt disease or stroke, non-fatal
myocardial infarction or stroke, or amputation abolre ankle for critical limb ischemia,
and death from coronary heart disease or strokes e main outcomes measured.
Overall, the authors concluded that specific adwveesents were not significantly
different between the aspirin and no-aspirin grq9gs.

Pignone and Alberts performed a meta-analysis #ddded data from three trials
performed specifically in patients with diabetdse(tlready mentioned JPAD [115] and
POPADAD [94], and the Early Treatment of DiabetietiRopathy Study [113]) to the
data from subgroups of patients with diabetes frahe six large trials of aspirin for
primary prevention in the general population inigeged also in [121], as already

described. Using a random-effect model, the autfmuad that aspirin was associated
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with a 9% decrease in risk of coronary heart diseagents (non fatal and fatal
myocardial infarction) and with a 15% decreasehim fisk of stroke, both decreases not
being statistically significant (Figure 4.9). Thetlors concluded that aspirin likely
produces a modest reduction in CVD risk in patienith diabetes, but not statistically

significant compared to diabetic patients not tdatith aspirin [125].

A
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Figure 4.9: Effect of aspirin on coronary heart disease events, tests for heterogeneity: P =0.367 (A). Effect
of aspirin on risk of stroke in patients with diabetes, tests for heterogeneity: P =0.131 (B). Cl stands for
confidence interval. BMD indicates British Medical Doctors; ETDRS, Early Treatment of Diabetic
Retinopathy Study; HOT, Hypertension Optimal Treatment; JPAD, Japanese Primary Prevention of
Atherosclerosis with aspirin for Diabetes; PHS, Physicians’ Health Study;, POPADAD, Prevention of
Progression of Arterial Disease and Diabetes; PPP, Primary Prevention Project; TPT, Thrombosis Prevention
Trial; and WHS, Women'’s Health Study. Figure from [125].
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In the medical literature, the interindividual \ability in response to aspirin, which
brings to treatment failure, has been indicatedh Wit term ‘aspirin resistance’ [118]. To
be precise, today scientists argue about the terbetused, since the term ‘resistance’
implies that something can be measured that haseet dhearing on clinical efficacy of
aspirin and that may lead to a change in the tlyei@mce, so far, a such a relationship
has not been discovered yet, the term ‘treatmehiréa may be more correct [102]. In

this thesis, for simplicity, the term ‘aspirin resince’ will be used henceforth.

4.2.2 Trials focusing on the phenotype

Moving from black box approach adopted by clinicéls focusing on the outcomes, in
this sub-section the main results from clinicaalgifocusing on the phenotype will be
presented. In particular, 2 trials conducted by d@oand Santilli will be described; the
former conducted on healthy subjects, and therlatialiabetic ones.

In both trials, the effect of aspirin on the adivof platelet COX-1 (referred to as simply
COX henceforth) have been characterized throughsamements of serum thromboxane
B, (TxB,), which is an indirect measure of the COX activilty serum [133]. More
precisely, particular attention was paid to theowery of serum TxB during and after

aspirin therapy.

4.2.2.1 Healthy subjects

In the first trial, the authors randomized 48 hHealCaucasian subjects to 1 to 8 groups,

according to treatment duration, ranging from Btaeeks [133]. Each patient received

enteric-coated aspirin 100 mg once a day and wstsucied to take tablets at the same
time of the day. Serum TxB(in ng/ml) was measured (together with other blaod
urine samples) at the end of each week of aspimm at days 1, 2, 3 and 7 after
withdrawal. The authors found that:

* serum TxB was steadily suppressed over 8 weeks, the averagent inhibition
being constantly above 99% of the baseline, withgignificant intergroup
differences: 1-week treatment caused 99.3% +Ortfhition, and 8-weeks treatment
produced 99.6 + 0.3% inhibition (Figure 4.10).

» initial recovery of serumTxBlevels seem to differ among groups: at days 1 2and
following aspirin withdrawal, TxB values were similar in the subjects treated for 1

and 2 weeks and significantly higher than the spweding values of longer
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treatment groups (2-factor repeated measuremeatgsa of variance with the post
hoc Holm-Sidak test for pairwise comparispryalue< 0.05). Exposure to aspirin for
at least 3 weeks showed a 2-day delay before déleatecovery (Figure 4.11);

» the overall kinetics of TxBrecovery showed a complex sigmoidal pattern, not

appropriately described by a simple first-orderekics (Figure 4.11).
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Figure 4.10: Absolute values of TxB, (mean + sd) of baseline (week 0) and for each week of treatment.
Figure from [133].
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Figure 4.11: TxB, data pooled from 1 to 2 weeks versus 3 to 8 weeks of treatment for the whole post-
treatment period. * indicates significant difference. Figure from [133].
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These findings made the authors conclude that:

* to suppress COX recovery for 2 days after aspinthdvawal, at least 3 weeks of
treatment 100 mg once daily are needed;

* the 2-days delay, exhibited by COX recovery aftarenthan 2 weeks of treatment
100 mg daily, is interpreted as the evidence thspirlm acetylates COX in
megakaryocytes, thus leading to generation of ivatetd platelets within the first 2
days after aspirin withdrawal;

4.2.2.2 Diabetic subjects

In the second trial, the authors characterizedkihetics of platelet COX recovery in

aspirin-treated diabetic (and non diabetic) pasi¢b28]. In the first phase of the trial, one

hundred type 2 diabetic patients on chronic as{difi@ mg daily were studied and serum

TxB, measured every 3 hours, between 12 and 24 harsaafvitnessed aspirin intake.

The linear slope of serum TxBecovery between 12 and 24 hours was computesbichr

patient (Figure 4.13). Patients with the fastesB,Isecovery (i.e. the ones in the upper

tertile of the slope distribution) underwent ph@sehey were randomized to aspirin 100

mg once a day, 200 mg once a day or 100 mg twidaya for 28 days and TxBwvas

reassessed. The protocol scheme is representedjure.12. Results from the first
versus second phase of the study are presentegurer.14. The authors found that:

* the median serum TxRoncentration measured at 12 hours after aspasmg in the
100 diabetic patients was comparable to the mediare reported in the first clinical
trial on healthy subjects, treated with the samsednd formulation of aspirin;

* about one third of the 100 diabetic patients showedOX recovery significantly
higher than healthy subjects in the 12-24 inteafdr aspirin intake;

* a twice-daily regimen with 100 mg aspirin is sigraintly more effectiveness with

respect to a once-daily regimen and a 200 mg oadg4@gimen (Figure 4.14).

The authors, thus, concluded that:

» aspirin maximal effectiveness in the suppressio@©OX-dependent platelet function
is not different between healthy and diabetic pase

» the main difference between healthy subjects amfichaion of diabetic patients is

represented by a faster COX recovery during thedlBeurs dosing interval;
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» inadequate thromboxane inhibit by low-dose aspirinan be corrected by a tw-

daily regimen.

Protocol of the Study

100 type-2 diabetic patients on long-
term aspirin 100 mg od

Screen for Serum TXB,
during the 12-24 hr interval

1

Select Those in the Upper Tertile
of Platelet COX-1 Recovery

Randomize

100 mg od 100 mg bid 200 mg od for 4 wk

l

Repeat Serum TXB, Measurements

Figure 4.12: Protocol of the study. Figure from [128].
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Figure 4.13: Individual recovery slope of serum TxB, over the 12-24 hours interval of aspirin 100 mg once
daily administration in patients with type 2 diabetes. Figure from [128].
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Figure 4.14: Serum TxB, recovery slope between 12 and 24 hours after aspirin dosing in diabetic patients in
the upper tertile, before (left panels) and after (right panels) the randomized phase of the study. (A-D)
patients randomized to 100 mg once a day; (B-E) patients randomized to 200 mg once a day; (C-F) patients
randomized to 100 mg twice a day. Figure from [128].
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4.2.2.3 Conclusions: potential mechanisms

Combining results from the 2 clinical trials debed above, the authors concluded that
the main difference between healthy and diabetiepis is represented by a faster COX
recovery between 12 and 24 hours after aspirirkengand that this is likely the cause of
the so-called ‘aspirin resistance’ leading to tmeait failure in most diabetic patients
treated with aspirin [128]. The authors hypothesie this mechanism may be caused by
an enhanced thromboxane biosynthesis in type lZetics with macrovascular disease
(as indicated by other literature works [97]), mdgkely reflecting variable platelet
turnover. Moreover, they also hypothesize that duced systemic bioavailability of

enteric-coated aspirin can limit the extent of Capetylation in megakaryocytes [128].

4.3 Objective of the work

If, on one hand, a possible approach to the arsabfsihe ‘aspirin resistence’ problem is
the same dynamic statistical analysis used for ithesilico model of diabetes
complications adopted in Chapter 3, on the otherdhia is interesting to study the
problem from a physiological point of view as wefiearching for the biological
mechanisms responsible for the different respotsedrug, observed in experimental
data.

Since, due to limited access to bone marrow megakgtes, it is difficult to clinically
investigate both the causes of experimental evel@scwell as the adequacy of different
aspirin regimens, aim silico model of aspirin responsiveness can be usefuintalate
interaction between aspirin and COX, and mighp figsigning personalized antiplatelet
regimens in T2DM.

Though some works have tried to explain this predesm a mathematical point of view
[119], [111], a detailed and complete characteireis still missing.

The object of the work presented in this chaptethigs, to develop am silico model of
aspirin action, able to:

» explain data in healthy subjects;

» test hypothesis for faster recovery in diabeticguas;

» predict correct response to different aspirin remits.
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4.4 Methods

A compartmental model to describe and simulatepitoeesses of COX inhibition and
reappearance in serum in response to an aspiraphéas been developed.
The model consists of four key-elements:

Thrombopoiesis mechanism
COX kinetics

Aspirin pharmacodynamics (PD)

0N

Aspirin pharmacokinetics

The following section will describe, for each kegraent, the hypotheses and assumption

used to build the model.

4.4.1 Thrombopoiesis mechanism

The term thrombopoiesis refers to the process mittbocyte generation, i.e. generation
of platelets from megakaryocytes in bone marrow.e THeveloped model of
thrombopoiesis is based on available literaturggarticular on the most recent work by
Patel [116], [117] and Thon [135], [134].

According to most recent findings, platelets (PL&8 generated from megakaryocytes
(MKSs) by fragmentation: each MK is generated iméonarrow by a precursor cell, and,
after a megakaryocyte-maturation-periddK(_matui) during which each MK increases
its dimension and becomes proliferative, i.e. ablgenerate PLTs. Each MK generates a
certain number of ProPLT&I( ProPLTs_per_MK an intermediate form of platelet, over
a subsequent time interval called megakaryocytéfpration-period MK_prolif). The
generation of ProPLTs takes place during the erdi€ prolif, until the complete
fragmentation of the MK. Each ProPLT, although ptaty connected to the MK, is
functionally disconnected, and, after a short merguring which it stretches and
elongates its structure, it detaches from the MKe @etached ProPILT is a barbell cell,
which, after a ProPlatelet-life-perioBrePLT _lifg, finally generates 2 Platelets (PLTSs).
While megakaryocytes and proplatelets are in bomaerow, platelets are released in
systemic circulation.

A MK is supposed to reach its mature state whetaits generating ProPLTs, and to die
when the last ProPLT is generated. So, the Megakstg life is given by the sum of the

MK_maturand theMK_prolif.
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For simplicity, ProPLTs are supposed to form conseely over theMK_prolif, i.e., the
number of ProPLTs generated by the MK in the timi¢ is a constant.

A ProPLT is supposed to form when it starts pratrgdrom the MK and to die when it

is divided into 2 Platelets.

A Platelet simply dies after the Platelet-life-periPLT _life).

Figure 4.15 represents the chronologic order okthents for a single MK.

The population of MKs at the generic timis supposed to be, with respect to the stage of
maturation, without any privileged stage, as showfigure 4.16.

MK life

MK maturation (~ 2 d) MK proliferation ProPLT life PLT life (~7d)
P (~12-24h)

Figure 4.15: timeline of the process of platelets generation from a single megakaryocyte. The different
stages of the process, with representative literature values, are represented with different colors:
megakaryocyte-maturation-period (yellow), megakaryocyte-proliferation-period (light orange),
proplatelets-life-period (dark orange), and platelet-life-period (magenta).

MK life

t time
Figure 4.16: Whole population of Megakaryocytes uniformly distributed over the interval 0 + MK_life

Table 4.1 lists the physiological parameters of theombopoiesis mechanism with

literature ranges.
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Parameter Description Literature value

Number of Megakaryocytes per

N_MKs_per_Kg kilogram of subject weight - 6.1¢106]
MK_matur Maturation period of Megakaryocytes ~ 2-4 days 117
MK _ prolif Proliferation period of Megakaryocytes B 4_10[22‘:;3 [106}-

ProPLT _life Lifespan of ProPlatelets ~12-24 hours [117]
PLT life Lifespan of Platelets ~ 7-10 days [135]

Number of ProPlatelets generated from
N_ProPLTs_per_MK ~ 1000 + 1500 [116]
each Megakaryocyte

Number of Platelets generated from each
N_PLTs_per_ProPLT 2 [116]
ProPlatelet

Table 4.1: Literature values for the parameters of thrombopoiesis.

4.4.2 COX kinetics

Since PLTs are not able to synthesizenovoCOX [140], the enzyme is supposed to be
constantly produced only within MKs during their ton@ation period. When the MK
terminates its maturation and enters the prolif@naperiod, COX synthesis is supposed
to stop. Each ProPLT is supposed to inherit a iceaiaount of COX from its MK father.
The total amount of COX within the MK is supposedoe equally distributed to all the
ProPLTs generated from the MK, so that COX amoentived by each ProPLT is the
same. COX inherited from the MK remains inside BmePLT throughout its life period,
during which the ProPLT stretches and detaches filmenMK, without anyde-novo
synthesis occurring. Then, when the ProPLT dividgse 2 PLTs, COX is simply
supposed to be equally divided between the 2 nemifg PLTs. COX degradation is
supposed to be negligible in MKs and ProPLTs, si@€X is a housekeeping enzyme
(i.,e. an enzyme present in all the cells to perfessential metabolic functions), while a
nonzero degradation is supposed to take place s Plepresenting enzyme utilization

and elimination thought platelet death.

To model the processes of synthesis and transf@Qdf from megakaryocytes in bone
marrow to platelets in blood, accounting also fe¥ temporal dimension of the processes
involved in thrombopoiesis (see previous sectitmd,compartmental distributed model

of Figure 4.17 has been developed.
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1 P Bone MarrowI I y Blood
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, Q1 Q2 .
I COX —> COX T
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Figure 4.17: The compartmental model for COX kinetics. Each compartment represent COX total amount in
a different cell population: maturing megakaryocytes (yellow), proliferating megakaryocytes (light
orange), proplatelets (dark orange) and Platelets (magenta). Solid arrows denote fluxes of COX: P

represent COX synthesis, while k denote its degradation rate.
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an (S, t) _
s P(s),
an (S, t) _
o
MKmatur
COXl(t) = Ql(s, t)ds,
0
29D oy 0.5),
aQZ (S, t) _
e
MKprolif

COX,(t) = f Q, (s, t)ds,

aQ3 (S, t) — 0
ds ’
aQ3 (S, t) =0
ot '
PTroPLT|ife
COX3 (t) = J Q3 (S, t)ds,
0
6Q4(S, t) _
as - _k Q4(SI t);
6Q4(S, t) =0
at '
PLTlife

COX,(t) = f Q4(s, t)ds,
0

y = COX,(¢t)

The model is described by the following partiafetiéntial equations:

Q,(0,6) =0

Ql(s: 0)= Q10

COXl(O) = COX10

Q,0,0) = fz[Q1(5r t)]

Qz(S: 0) = on

COX,(0) = COXo

Q3(0: t) = f3[Q2(S: t)]

Q3(5; 0) = Q3o

COX3(O) = COX30

Q,00,0) = f4[Q3(5r t)]

Q4(S: 0)= Q40

COX4(0) = COXy

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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t ands are the 2 independent variables, representing*tand ‘cell maturation state’
respectively. The unit of measure ismg for both the variables, since ‘cell
maturation state’ represents the age of the cell.

Q1, Q2, Qs, and Q represent active-COX (i.e. non acetylated COX)ritlistion overs

in, all the maturing megakaryocytes, all the peshting megakaryocytes, all the
proplatelets and all the platelets, respectivehe Tinit of measure for COX imps$.
The Q1, @2, Qs, and Q are time-dependent distributions, i.e. functiontioé 2
independent variables, and this is why the modebtdumped (i.e. dependent on one
variableonly) but distributed.

Q10 Q20, Qz0, and Qo represent the initial distribution overof, all the maturing
megakaryocytes, all the proliferating megakaryogytdl the proplatelets and all the
platelets, respectively.

COX, COX, COX3 and COX 4 represent active-COX total amount in, all the
maturing megakaryocytes, all the proliferating meggocytes, all the proplatelets
and all the platelets, respectively, and are fmctf time only, simply given by the
integral overs of their respective distributions.

COX10, COXp, COXg0, andCOXyp represent the initial total amount of active-COX in
all the maturing megakaryocytes, all the prolifergt megakaryocytes, all the
proplatelets and all the platelets, respectively.

P(s) represents the overall synthesis of new COX (wlscbupposed to take place
within maturing megakaryocytes only) as a functadnthe maturation state P is
considered to be constant over time. The unit adisuee foiP is [mass/timg

f is a function expressing the partial derivativeled active-COX distribution in all
the proliferating megakaryocyte€4) with respect to the maturation state of the
proliferating megakaryocytes

thef; (I = 1,2,3) are functions expressing the dependendpeinitial value of the
distribution overs (where ‘initial’ stands for ‘in the initial matutian state’, i.e. fors

= 0) of compartmenton the previous variable sta@e;.

k represents the degradation rate coefficient of CO®X degradation is supposed to
be a linear process taking place only in the pdddetompartment, i.e. the degradation

flux is proportional to COX amount in the compartmeia a rate coefficierk, which



is supposed to be a constant. The unit of medsuteis [time']. Information from
[103] support an indicative value for COX half-lif&2 of about 0.8+1 day, i.e. a
value fork equal tdn(2) / tva~ 4.8¢"+6.06* min™.

* y represents the output of the model, i.e. the nreasuvhich is the time-course of
active-COX total amount in blood (i.e. in all thecalating platelets). The unit of

measure foy is [mas$.

Analytical expression for thB(s) Qi,, COXo, f andf; are derived from the physiological
parameters of thrombopoiesis mechanism, shown inleT4.1, and from the COX
degradation rate coefficierkk and the rate of new COX synthesis in the single

megakaryocyt@vk, following the rationale detailed in the followisgction

4.4.2.1 Mathematical formulation

To derive the mathematical formulation of the modile steady-states of COX
distributions separately for each cell type (i.eatuming megakaryocytes, proliferating
megakaryocytes, proplatelets and platelets) needeoconsidered and described.
Analytical expression for thé(s), Qi,, COXo, f andf; will be highlighted in bold.

» Maturing megakaryocytes

COX kinetics within the single maturing MK is sitgmiven by the constant production
of COX taking place in the single MK \R). Thus, the differential equation describing
the COX time-course of the single maturing Mkukgl(t)) is given by:

dq
T = P Quem (0) = 0 (4.14)

Since in the initial maturation state (s = 0) COX,zhe analytical solution foh@m(t) is
algebraically described by a linear equation (d9garg 4.18):
AQurm () =pPuk - t t =0+ MK_prolif (4.15)

Assuming the population of MKs at the generic tite be distributed, with respect to
the state of maturation, without any privilegedtestgsee Figure 4.16), we can state that

the number of MKs in the single maturation stateN¥s_per_s) is a constant given by:
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N_MKs

N MK -
~HRSPETS =k life

(4.16)

where N_MKs is the total number of MKs in bone roarr

Given the hypothesis of uniform distribution, wenadso state that, in steady-state, COX
distribution of maturing MKs over the maturatioratsts at the generic instarit(Qyo)
coincides with the time-course of,g, (equation (4.15)) multiplied by the number of

MKs in each maturation state:

N_MKs

Ql() :W.pMK-S’ S = 0+MK_llfe (417)

COX total amount in all the maturing MKs is givep the sum of COX of each single

maturing MK, thus is computed integrating equairi?) overs, and, in steady-state, is

given by:
MK _matur
COXon — f N_MKs s —
0= MK _life PMK’S 45 =
0 1 N_MKs (4.18)
= — . - MK tur?
2 MK _life Pmx - MR-matur

The overall synthesis of new COX in the generitestas a flux given by the single MK

production g multiplied by the number of MKs in the maturatistates:

P(s)=——- s = 0+ MK_matur (4.19)

P(s) is a constant function defined in the inter@at MK_matur, since production is

supposed to take place in maturing MKs only.

» Proliferating megakaryocytes

In the single proliferating MK, a simple constahixftakes place, this flux representing

COX amount transferred to ProPLTs in the unit tinnatjl the MK is completely devoid
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of COX. Thus the COX time-course in the single feohting MK (gukp(t)) is a linear

function (see Figure 4.18):

MK _matur

Pmk MK _prolif (MK _prolif —t), t =0+ MK _prolif (4.20)

qmkp (t)

COXtime-course within single MK

Pux - MK_matur

A

0 MK_matur ' MK _prolif ' time
—

—

MK_life

Figure 4.18: COX time-course within the single megakaryocyte.

Given the usual hypothesis of uniform distributiare can state that, in steady-state, the
distribution of proliferating MKs over the maturati states at the generic time(Qx) is
represented by the same linear function of the @i@X-course in the single proliferating
MK (equation (4.20)) multiplied by the number of Mknh each maturation state:

_ MK_matur‘(MK i ) N_MKs
20 = Puk oy (MK-prolif =) pres

Q s =0+ MK_prolif (4.21)

Since the COX distribution of the single MK oves inaturation state is a continuous
function, denoting with ;sthe maturation state of the maturing MK and wighttse
maturation state of the proliferating MK, for eaggneric time it necessarily will be:

Q.(s; = MK_matur,t) = Q,(s, = 0,t) (4.22)

that is, the initial condition for it is a function of @, and, in particular, coincides with

the final value of the Qdistribution:
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Q2(0,8) = f2[Q1(s, )] = Q:(s = MK_matur,t) (4.23)

COX total amount in all the proliferating MKs isvgn by the sum of COX of each
single proliferating MK, thus is computed integnatiequation (4.21) oves, and, in

steady-state, is given by:

MK prolif
COXo — J N_MKs MK _matur (MK i ) ds =
20 — MK life Pmk MK prolif prolif —s) ds =
0 1 N_MKs (@29
=5 m - Puk - MK_matur - MK _prolif

COX total amount in all the MKs (maturing and pfelating), can be computed as the

sum of equation (4.18) and equation (4.24):

1
— - N_MKs - pyg - MK_matur (4.25)

COXMKS = COXIO + COXZO = 2

To derive the differential equation expressing ¢évwelution of COX distribution in the
proliferating MKs (Q(s,t)) in function of the maturation state s, thalofwing

assumptions were made:

- ProPLTs are constantly generated during the pratifen period of a MK, thus, the
number of ProPLTs generating in each maturatiote st the proliferating MK

(N_new_ProPLTs_per_s) is supposed to be constantgunal to:

N_ProPLTs_per_MK
MK prolif

N_new_ProPLTs_per_s = (4.26)

- COX within the single proliferating MK is consider@as a whole amount which, at
each maturation statg will be uniformly distributed among the ProPLT® “be

generated yet” at sase

From equation (4.26), the number of ProPLTs “taybeerated yet” (N_ProPLTs_tbg) is
given by:
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N_ProPLTs_thg(t) = (M Mlglr‘; - ) - N_ProPLTs_per_ MK (4.27)
Given the usual hypothesis of uniform distributibor the MKs population, the
distribution over the maturation stagecoincides with the time-course within the single
MK multiplied by the number of MKs per state, thas,the generic statg the COX
amount leaving the proliferating MK is given by tB8®X total amount irs, divided by
the number of ProPLTs “to be generated yet'sirmultiplied by the number of new

ProPLTs generating is

QZ (S, t) QZ (S' t)
-N ProPLT =
N_ProPLTs_tbg(s) -new rrorLisper.s MK prolif —s

and the differential equation expressing the depecyl of Q(s,t) on the maturation state

S, Is given by:

00:(s, 1) Q2(s,t)
— s Qs ) sl = “prolif —s (4.28)

In steady-state, £05,t) is given by equation (4.21), and equatio@&%#becomes:

an(s,t)_ N_MKs MK_matur
ds ~ Pux MK life MK prolif

(4.29)

which yields to a linear equation for®,t) over the maturation state s, as confirmed by

equation (4.21).

In figure Figure 4.19, 2 examples are shown: inléfiecolumn, active-COX time-course
within the single proliferating MK in steady-state;the right column, active-COX time-
course within the single proliferating MK in theseaof an instant and partial inactivation
of COX att =t*. For each column, top panel represents active-@@x-course within
the single proliferating MK, middle panel the numioé ProPLTs to be generated as a
function of the time, bottom panel active-COX amblegaving the proliferating MK.

While in steady-state, active-COX amount transtkme ProPLTs is a constant amount
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(panel C), in the other case, one can see howeaCiiyX amount transferred to ProPLTs

decreases after the inactivatiort att* (panel F).

A)/\ COXtime-course within the single prolif MK D)/\ COXtime-course within the single prolif MK

Y 7 i .7
0 i time 0 ; i time
B) A #ProPLTs to be generated E)A#ProPLTs to beigenerated :

1 . 7 ] h . 7
0 i time 0 5 i time
C) A COX amount leaving the prolif MK ; F) ACOX amount Iea:ving the prolif MK
R t N
0 MK _ prolif 1 time 0 MK _prolif 1 time

N N

Figure 4.19: Example of time-course of COX amount leaving the proliferating MK, in steady-state (left
column), and in the case of an instant inactivation of COX at t = t* (right column). For each column, top
panel represents active-COX time-course within the single proliferating MK, middle panel the number of

ProPLTs to be generated as a function of the time, bottom panel active-COX amount leaving the
proliferating MK.

» Proplatelets

The single ProPLT inherits a certain amount of C@ben it is generated by its father
MK, and then stores that COX amount for all ite I{ProPLT_life), until it splits into 2
PLTs.

At the generic timd, the single newborn ProPLT inherits a COX amouptof (t))
given by the total COX amount in its father praléfetng MK at timet (quxp(t)) divided
by the number of ProPLTs “to be generated yetina¢ t:
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qumkp(t)
N_ProPLTs_tbg(t)

qpropLr(t) = (4.30)

The newborn ProPLTs are the ProPLTs whose statetfration iss = 0.

The total number of newborn ProPLTs at each instafl_new_ProPLTs_s0) is a
constant given by the number of proliferating MKdime t multiplied by the number of

ProPLTs generated in the unit time (which is thestant given by equation (4.26)):

N_new_ProPLTs_s0 = NLZK; - N_ProPLTs_per_MK (4.31)
ife
Since the ProPLTs population is uniformly distriaitequation (4.31) represents also the
constant number of ProPLTs in each maturation.state
The COX amount in all the newborn ProPLTs3(()) is given by the COX-amount
inherited by the single ProPLT (equation (4.30))Itplied by the total number of
newborn ProPLTs (equation (4.31)), which yields to:

aukp(s,t)  N_MKs- MK _prolif

0,t) =
0(0,0) MK _prolif —s MK life

(4.32)

where qip(S) is the COX amount in the single proliferating<Mand it is simply given
by the distribution of COX amount in the proliferey MKs over the maturation stase
(Q2(s,1)), divided by the number of MKs in each matiarastate (equation (4.16)), which

yields to the following expression:

MK _prolif

05(0.0) = f3[Qa(5,0)] = Q25 0) g —

(4.33)

In steady-state, £05,t) is Qo Considering that ProPLTs population is uniformly
distributed and that the distribution of COX in Ptd’s over the maturation state;(Qt))

is constant (see equation (4.7));(€X) in steady-state (g is obtained by using the
expression for g, given by equation (4.21), in equation (4.33):
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N_MKs

Q30 = m - Puk - MK_matur, s = 0+ ProPLT_life (4.34)

COX total amount in all the ProPLTs is given by shuen of COX of each single ProPLT,
and, in steady-state, is computed integrating éguét.34) oves:

ProPLT_life

N_MKs
COX30 = f
0

W “Puk - MK_matur ds =

(4.35)
N_MKs

= W ‘Puk - MK_matur - ProPLT_life

> Platelets

The single PLTs inherits half of the COX amountitsf mother ProPLT. COX within
PLTs is supposed to undergo a degradation proeggdated by the degradation rate
coefficientk. As for MKs and ProPLTs, also the total populatanPLTs is uniformly
distributed over the maturation state, meaning thatnumber of PLTs in each state of
maturation is the same. Considering that the who@X amount stored in all the
ProPLTs at the end of their life (i.e. fe= ProPLT _life) is transferred to newborn PLTs
(i.e. the set of all PLTs whose maturation state 3s0), it is easy to compute the initial
condition for the distribution of COX in PLTs over (Q(s,t)) as a function of the

distribution of the previous compartment:

04(0,) = £41Q3(s, )] = Qs (s = ProPLT life, ) (4.36)

The differential equation expressing the kinetitQg(s,t) over s is the partial differential
equation (4.10), whose solution yields to the esgian for the distribution of COX in

PLTs over the maturation state s:

Q4(s,t) = Q4(0,t) - e7Fs s =0+ PLT_life (4.37)

Using equation (4.34), the expression fQ(gQ) in steady-state is:
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N_MKs

Q40 = MK life’ Puk - MK _matur - e %S s = 0+ PLT_life (4.38)

COX total amount in all the PLTs is given by thensaf COX of each single ProPLT,
and, in steady-state, is computed integrating éguét.38) oves:

PLT_life
N_MKs ks
COXy = MK life Puk - MK_matur - e ds =
) (4.39)
N_MKs _ 1 — g~KkPLT life
= W *Puk - MK_matur - PLT life -

Figure 4.20 shows a summary picture of COX kinetitkin each single cell type: in the
upper panel, COX kinetics within the single MK; tine middle panel, COX kinetics
within the single ProPLT; in the bottom panel, C&iXetics within the single PLT.

. — N

MK_matur | MK_prolif | ProPLT_life PLT life

A COXwithin singkle MK Bone Marrow

'
—_—
>

0 i itime

ACOXwithin single ProPLT

'
A

0 ! | | time

A COXwithin single PLT Blood

—>
0 time

Figure 4.20: COX kinetics within the single MK (top), the single ProPLT (middle) and the single PLT (bottom)
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4.4.2.2 Why a distributed model?

The model is distributed meaning that the statéabbgs, i.e. COX amounts, depend not
only on the time but also on the state of maturatibthe cells in which COX is stored:
the state variables are, in fact, time-dependesttildutions.

The reason why a distributed model was implemergetiat a lumped compartmental
linear model misses the information on how COXigributed among cells at different
maturation states, thus not properly describingtitheng of COX kinetics. For example,
a lumped model is not able to explain a pure delahe time-course recovery of active-
COX in the case of a complete shooting-down ofGKEX in platelets precursors: in fact,
if all the COX in the platelets and proplateletsniactivated, there won't be any COX re-
appearance in platelets befordta= ProPLT _lifg because new active COX, produced in
megakaryocytes, needs to be transferred from megakgdes to proplatelets, and then
has to wait a period equal to the life of a pragkttbefore moving to platelets. A lumped
model cannot reproduce these behavior. In Figu2&,4an example in which COX is
completely and instantly inactivated in proplatelahd platelets &t= 1 dayis shown for
the distributed model (blue curve) and for a lumpedsion of the model (red curve)
developed on the same literature knowledge (Figu?d) and described by equations
(4.40)-(4.43). In the example of Figure 4.P20PLT _lifeis set to 1 day.

——————————————————————— 1 = - . E—m S E— S -
P BoneMarrowl

Q3
COX
ProPLTs

L el J
Figure 4.21: Lumped version of the model for COX kinetics.
(d t
(let( )) = P1(t) — k31 - Q:1(t), Q1(0) = Qqo (4.40)
d t
{ (Q;t( ) s 0u— ke 03D, 03(0) = Oag .4
d t
(stt( )) =k3y Qy —kys - Q3(t), Q3(0) = Q30 (4.42)
d
k (Q;t(t)) = kys Q3 — Koy - Qu(1),  04(0) = Quo (4.43)
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delay = ProPLT_life
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Figure 4.22: comparison between a lumped model and a distributed one for a complete inactivation of COX
in both ProPLTs and PLTs.

4.4.3 Aspirin PD

Aspirin acts on COX permanently inactivating itpugh an irreversible acetylation
process: a single molecule of Aspirin (ASA) reaatith a single molecule of COX

producing a single molecule of salicylic acid (S#&)d a single molecule of acetylated
COX (COX") [140]. The reaction follows a first order kinetif130] and it is regulated

by the constant (equation (4.44))'’s unit of measure isfiasstime?].

A
ASA + COX > SA + COXA (4.44)

Reaction (4.44) can be described by the mass-aletwnwhich states that the speed of a
reaction is proportional on the product of the malancentrations of the reagents:

f@ = A [ASA(D)] - [COX(D)] (4.45)

@ = —A- [ASA(D)] - [COX(8)] (4.46)

4

d[S;t(t)] = A~ A[SAD)] - [COX(D)] (4.47)
A

AUEOXON 3 asac) - (cox) (4.48)

In the model of COX kinetics (Figure 4.17), a nduxfappears from each compartment,
representing COX acetylation by aspirin, as shawfigure 4.23.
The model is still described by the old equatiohd)(4.13), with the only difference

that, now, in the derivative of COX with respecttitne in each compartment (equations
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(4.2), (4.5), (4.8) and (4.11), respectively) a newn appears, representing degradation
by aspirin, modeled as in equation (4.46). Equati@n2), (4.5), (4.8) and (4.11) are then

replaced by the followings:

ana—(ts,t) = —4-[ASAD]pm - Q1(s,0), Q4(5,0) = Qy (4.49)
ana—(:'t) =—1-[ASA®)]sm - Q2(s,0), Q,(5,0) = Qy (4.50)
| 6(233—(:’0 = —1-[ASA®)]pm - Q5(s, 1), Q5(5,0) = Qs (4.51)
\ w“a—(ft) = —2- [ASA®)]5 - Qu(s, 1), Q4(5,0) = Qg (4.52)

where[ASA(t)]sm and[ASA(t)]s represent the time-course of aspirin molar conaéoh
in bone marrow and blood, respectively.

According to equations (4.49)-(4.52), aspirin ipposed to act uniformly on COX, i.e.
aspirin in blood will uniformly acetylate COX inlalhe PLTs, and aspirin in bone

marrow will uniformly acetylate COX in all the Mkand the ProPLTs.

| P BoneMarrow = | Blood :
I 1 | 1
I 1 | 1
| (I |
| Q1 Q2 Q3 L Q4 !
I COX COX COX T > COX
) MKs matur MKs prolif ProPLTs P PLTs :
: L3 7, 1! |
I \ 4 1 | 'A I
\.____4____/ _______ I T 4
\ I 7/ /
\ I 7
\ / !
1, d
\\ 4 /
[ASA]in BM [ASA]in Blood
N N
o o
S S
5 k 5
< <
time time

Figure 4.23: Aspirin effect on COX kinetics: Aspirin contributes to COX elimination with a rate coefficient
equal to A-ASA(t). Aspirin concentration time-course in bone marrow acts on the compartments of
maturing megakaryocytes, proliferating megakaryocytes and proplatelets; aspirin concentration time-
course in blood acts on the compartment of platelets. The regulation is represented by dashed red arrows.
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4.4.4 Aspirin PK

Aspirin represents the intervention input of thedelo As for the thrombopoiesis
mechanism, information on the time-course of aspiras derived from the literature.

A first issue to be faced when approaching asghif is that aspirin can present 2
different formulations: simple compressed tablets eateric-coated tablets. Enteric-
coating of drug tablets is achieved by coverindetabwith a polymer layer (usually a
polyacid soluble in aqueous media), and is useprévent the release of drugs in the
stomach, either to reduce the risk of gastroimiastside effects or/and to maintain the
stability of drugs which are subject to degradationthe gastric environment [126].
Aspirin is enteric coated to protect gastric muciosen corrosion, and this is particularly
important for patients on chronic aspirin therapy.

These 2 different formulation of aspirin (to whiale will refer asASAfor the non-coated
formulation andecASAfor the coated one) lead to different kineticse@ the first work
conducted with the objective to compare differaspirin formulation is the one of Ali
and others [93], where the authors enrolled siXthgaubjects and measured, for each
subject, ASA levels in plasma following a first eggion of compressed tablets 650 mg
aspirin, and a second ingestion, after a wash+aetval of 5 weeks, of enteric-coated
tablets 650 mg aspirin. Figure 4.24 shows the m@ae-course of the 2 different
formulations: as one can see, ASA concentrationugtml) reached its peak in plasma
about 45 minutes after compressed tablet admitistrgupper left panel), and about 4
hours after enteric-coated administration (uppghtripanel), thus exhibiting a very
delayed and slower kinetics in the enteric-coatethtilation compared to the non-coated
one. Moreover, the authors observed that both iasformulations resulted in widely
variable ASA levels (as one can see by the errss bAFigure 4.24) and, most notably,
ASA was undetectable in plasma during 3 experimanislving enteric-coated
formulation [126]. These results are relevant siticey highlight the issue of the
interindividual variability in response to aspirifthe work provides more complete
information, since the authors measured also glEteCOX activity, as presented in
Figure 4.24, where the mean COX time-course is shdar the enteric coated
formulation (bottom right panel) and for the noratam one (bottom left panel). The
delayed kinetics of enteric-coated formulation éflected in COX kinetics too, since
COX recovery is delayed in response to the entarated administration, even if, apart

from the delay, COX time-courses appears similr &4 hours in both cases.
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Figure 4.24: time-course (mean + SEM) of ASA (left column) and COX (right column) after ingestion of
aspirin 650 mg of compressed tablets (upper panels) and enteric-coated tablets (bottom panels) in six
healthy volunteers. Figure from [126].

Similar results regarding the kinetics of differéotmulation of aspirin were obtained by
Sai and others [132], who enrolled twelve healtlbjumteers to receive four separated
100 mg oral aspirin administration: intact and cadwon-coated tablets, and intact and
chewed enteric-coated tablets. Figure shows the fesulting time-courses of plasma
ASA concentration. ASA was detectable in serum wifD minutes after the ingestion of
intact non-coated aspirin, although the authoratedi out how significant variability was
observed. After ingestion of intact coated aspiiBA was not detectable in serum until
4 hours, while, when coated aspirin was chewed, A®A detectable within 20 minutes
after ingestion. Moreover, levels of ecCASA werengligantly lower than the others (even
if the peak of ecASA concentration could not beedwined since there were not
measurements after 8 hours and ecASA appearecef die rising after 8 hours). From
the experiment, the authors concluded that enterdted formulation results in a slower
kinetics of aspirin and emphasized that a significanterindividual variability was
observed [132].

130



Serum ASA concentration

Time (h)

Figure 4.25: Serum ASA concentration after ingestion of intact (open) and chewed (closed) non-coated

(circle) and coated (triangle) tablets was measured for 8 h. Each point represents the mean + SEM of 10~12
patients. Figure from [132].

This wide variability was confirmed by many otheudies, and extreme results were
obtained by Ross-Lee and others [129], who studmagteen healthy volunteers
randomized to receive 1200 mg of ASA or 1300 mgoASA. For all the volunteers
administered with ecASA, ASA levels in serum werdol the detection limit of the
assay (< 0.5 mg/l) at all times of measurementsy @apeating the experiment with 650
mg and measuring ASA levels with a more sensitahnique, peak concentrations were
observed (mean 0.24 mg/l + 11) 4 hours after dogmean 0.24 mg/l £ 11) in 3 subjects,

and at 6 hours in one subject.

This brief overview on the current literature knedde on aspirin PK, makes it rather

clear that:

- aspirin PK strongly depends on tablet formulatiemteric-coating results in a delayed
and slower kinetics with respect to the non-coategaration;

- interindividual variability plays a major role ing appearance of ASA in serum.

An in silico model, which aims to investigate the adequacyiftérént aspirin regimens,
necessarily needs to mathematically model not &@@®X but also aspirin kinetics.
Moreover, as it's clear from section 4.4.3, notyoABA time-course in blood is needed
but in bone marrow too, and, due to limited actedsone marrow megakaryocytes, only

a model allows to simulate this kinetics withoutasive and expensive test.

Thus, a compartmental model of ASA PK was develdpegure 4.26):
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Figure 4.26: The compartmental model for ASA kinetics.
The model is described by the following linear eliéfntial equations:
, d(f(t
( Xl:D'%_ka'Xll X10=0 (453)
Xz = ka'Xl _(ka‘l‘kpc)'Xz +ka.X3l XZO =0 (454)
Xs =kpe Xz —kep - X3, X30=0 (4.55)
where:

* X, Xp andXz represent ASA amounts in gastro-intestinal treg$temic compartment
(i.e. systemic circulation) and bone marrow comparit (peripheral compartment),
respectively. The unit of measure &, X, andXs is [mas$;

* Kk, represents the rate of appearance of ASA fronr@astiestinal compartment to
systemic compartmentk, represents the rate ASA elimination from systemic
compartment and ASA distribution to the whole bokly;andks, represent the rates
of exchange from systemic to peripheral compartsyxand vice versa, respectively.
The unit of measure fde, ke, kos andksp is [time™];

» the input of the model is given by the product leé bral dosé (unit of measure:
[mas$) and the derivative of a suitable functitrit), used to simulated different
kinetics of ASA, depending on the formulation(t) is given by the following

equation of Hill

m

hD) =35

(4.56)
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where K is given by:

m+1
K = e t_flex™ (4.57)

andt_flexis the time in whicth(t) has its point of inflection (Figure 4.27).

Hill function

’ f”(tﬂex) =0

1 tﬂexl L 1 L 1
0 2 4 6 8 10 12
time (hours)

v

0

Figure 4.27: Example of h(t) used to simulate different kinetics of release of ASA.

h(t) represents the drug availability, thus:
lim h() = 1 (4.58)

meaning that all the initial dose is released ie #ystemic compartment. The

derivative ofh(t) is given by:

dh(t) m-t™ K
dt (K +tm)2

(4.59)

and it simulates the release of the oral dose

Figure 4.28 shows the effect drft) (left column) and on the consequent flux of
appearance in the systemic compartnke,(t) (right column) caused by a variation
of the parameter_flex (upper row) andn (bottom row), following an ingestion of
100 mg aspirin (the parametky was set to a nominal value of 0.1 fhiin the
example). As one can seeflexis responsible for the delay in the release ofitug

and for the speed of the kinetics (the gratélexthe grater the delay and the slower
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the kinetics), whilen mainly controls the speed of the release (theegnatthe faster
the kinetics). Both the parameters have a direfeiceion the peak of the flux of

appearance, since the faster and earlier is thage] the grater is the peak.
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Figure 4.28: Variation of h(t) (left panels) and k,-X(t) (right panels), for different values of t_flex (upper
panels) and m (bottom panels), following a dose of 100 mg ASA. Values used for t_flex are 20, 60 and 120
minutes, values used for m are 2, 3 and 4. k, is set to 0.1 min™.,

While COX is physically contained into the cellsdats kinetics is dependent on the
different steps of the thrombopoiesis processfiasisi free to move through cell
membranes by diffusion, not depending on the ps®=eef cell maturation. This is why
aspirin kinetics is described by a traditional lledpnodel, i.e. the only independent

variable is time.

Given mutual interaction between aspirin and CO2€(BSA PD in section 4.4.3), the
model of aspirin PK cannot be modeled separateiy fhe model of COX kinetics, thus
a unique aggregated model is needed. In the faligwection the final model will be then

presented.
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4.4.5 Final model

The connection of the 2 sub-models for COX kinetsection 4.4.2) and for aspirin
kinetics (section 4.4.4), combined by aspirin phecadynamics described in section
4.4.3, results in the final model of Figure 4.28scribed by equations (4.60)-(4.75).

dh
D-—;
dt
X3 Ks X2 Ky X1
Asp Asp Asp
Perif Syst Gl
Ksp TT=a
~ ~
7/ ~
/ \\ ~ ~o keI [N S
/ ! \ S~o ~ - RS
\ — -~ — \
Il \ Mo ~ o RN \
\ S \
1 \ N \ \ \
____‘____'\____;\_ ____________ \
I p | N ~ < — _ COXBoneMarrow! \y I
'y T 1 AL
| | \
1 Q1 Q2 Q3 1 Q4
1 COX > COX p—> COX ! > COX
1 MKs matur MKs prolif ProPLTs : PLTs
|

S — - I

Figure 4.29: final model, partially lumped and partially distributed, of aspirin action. Red dashed lines
represents interaction between aspirin and COX.

In summary, the input is given by the oral dosasgirin multiplied by the derivative of
the hill functionh(t) used to simulated enteric-coated formulation. Aspénters the
gastro-intestinal compartmer; and then appears, with a constant ride in the
systemic compartment. Aspirin in the systemic commpent is partially eliminated and
utilized by all the other tissues, with a constate ke, and partially transferred to the
bone marrow compartmeXt with a constant ratk,s Aspirin in bone marrow can move
back to the systemic compartment with a constate kg Aspirin in the systemic
compartment acts on COX in the compartment of @tog platelet,, while aspirin in
bone marrow acts on COX in bone marrow, i.e. onahmpartments of maturing and
proliferating megakaryocytesQ( and Q. respectively) and on the compartment of

proplatelet€)s. The measure is represented by COX in circulgtiatglets.
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X1=D_ka'X1,

Q4
Voa
- X3,

Xs=kys Xy — |kps + -

an (S' t)
ds

an(S, t) _ X3
T -1 Ve Q:(s, 1),

= P(s),

MK _matur
COXl(t) - f Ql(S, t)dS,
0

ana—(SS,t) = f[QZ (S, t), S]:
{ 0Q(st) . X3
at - /‘l@ QZ(S' t)r

MK prolif
COXz(t) = f Qz(s, t)ds,
0
an (S' t)
ds

aQ3 (S, t)
Jat

=0,

- -2y
=y, Bl

ProPLT_life
0

Qs(s, t)ds,
aQ4- (S, t)
ds

6Q4(S, t)
Jat

=—k- Q4_(S, t):

R R
=y, G,

PLT_life

COX,(t) = f Q4(s, t)ds,

0

\
y = COX,(1)
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XZ =ka'X1_[kel+kps+l'_]'xz+ksp

Q1 +0Q,+0Q3

X10 =0
X20=0
X30=0
Ql(or t) = O
Ql(s: 0)= QlO

COXl(O) = COX10

Qz(or t) = fz [Q1(5r t)]

Qz(s; 0)= on

COX,(0) = COX59

Q3(O: t) = f3 [Qz(S: t)]

Q3(S,0) = Q30

COX3(O) = COX30

Q4(0r t) = f4[Q3(5r t)]

Q4(5; 0)= Q40

COX4(0) = COX40

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)



Since modeling aspirin PD by the mass-action laadeghe concentrations of the
reagents, the volumes of the different compartmleat® now to be accounted for.

The volumes appearing now in the equations\&sgw, Vos, Vx2 andVys, representing the
total volume of megakaryocytes and proplateletsttogy, the total volume of circulating
platelets, the total volume of the systemic cirtatacompartment and the total volume
of bone marrow, respectively. Indicative values\fgs andVxs were taken directly from
[108]. Value forVgoem was derived combining information on megakaryoaciiteensions,
from [114], and on megakaryocytes numerosity, f{@66]. Value forVqs was derived
from [109], as product between the mean numbeftatélets per liter of blood and the

mean platelet volume.

4.4.6 Model Parameters

Given the final model of Figure 4.29, describedeoyations (4.60)-(4.75), the complete
list of parameters of the model, together with thgpective literature ranges or nominal
values, is reported in Table 4.2.

The total number of parameters is 20, of which:

* 13 parameters N_MKs_per_Kg MK_matur, MK_prolif, ProPLT_life PLT _life
N_ProPLTs_per_MKN_PLTs_per_MKKk, Voem Vos, k&, Vxz, Vx3) can be considered
known directly or derived from the literature. B important to make clear that
nominal values of the parameters are to be meamhieflthy subjects.

e 7 parametergfuk, t_flex m, ko, ksp, ke andz) are unknown.

An a-priori identifiability analysis was performeadking the DAISY (Differential Algebra
for Identifiability of SYstems) software by Bellind others [95], which implements a
differential algebra algorithm to perform parameatantifiability analysis for linear and
nonlinear dynamic models described by polynomialraironal equations. The model
turned out to be neither globally nor locally id&able.

However, since the model has an explorative aimisn@iain objective is to qualitatively
describe experimental evidence, unknown parametemnation by fitting real data did
not appear to be the more suitable strategy, eslheconsidering that) only one output
was available (i.e. measurements in one compartorén}ii) data are characterized by a
high variability, which inevitably leads to inaceie parameters estimates.

Thus, the model was not simplified and no datanfittvas performed.
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Unknown parameters setting is described in thefohg section.

138

Parameter Description Literature value
number of megakaryocytes per
N_MKs_per Kg ] 9 ) Y yt P ~ 6.1€[106]
kilogram of subject weight
MK _matur maturation period of megakaryocytes ~ 2-4 days][117
g ) ) ) ) ~ 4-10 hours [106]-
wl MK _prolif proliferation period of megakaryocytes
o) [116]
a
8 ProPLT_life lifespan of proplatelets ~ 12-24 hours [117
% PLT_life lifespan of platelets ~ 7-10 days [135]
% number of proplatelets generated from
- N_ProPLTs_per_MK ~ 1000 + 1500 [116]
each megakaryocyte
number of platelets generated from
N_PLTs_per_ProPLT 2 [116]
each proplatelet
COX new synthesis within the single R
8 Puak maturing megakaryocyte '
o k COX degradation rate in platelets ~ 4'8min™ [103]
zZ
v volume of all megakaryocytes and all
x Vosm ~ 1000 ml [114]
8 proplatelets together
Vo volume of all circulating platelets ~ 15 ml [109]
t_flex time of inflection of the hill function ?
m degree of the hill function ?
rate of ASA appearance from gastro- )
K ) ) ~ 0.1875 mift [123]
intestinal tract
rate of ASA elimination and
« Kel distribution to all tissues from systemic ?
% circulation
< rate of ASA exchange from systemic 5
fos circulation to bone marrow '
K rate of ASA exchange from bone R
P marrow to systemic circulation '
Vo volume of systemic circulation ~ 5600 ml [108]
Vs volume of bone marrow tissue ~ 1177 ml [108]
E ; rate constant of the reaction between R
§ ASA and COX '

Table 4.2: Parameters of the final model, with literature ranges and nominal values.



4.5 Parameters setting

With the objective of setting unknown parametersréasonable values, a set of
simulations was performed, where, for each parameéifferent values from a search
interval have been tested, fixing all the othersdminal values. The known parameters
were set to the mean value of the respective range the nominal value reported in
Table 4.2. For each unknown parameter, Table 48t the nominal value used and the

search interval.

Parameter nominal value used in simulations Search interval

Pk le™” g/min le°+1le
2 2¢€’ mol'min™ 100 + 10°
t flex 180 mins 20 + 480
m 4 2+8
Kel 0.2 min* 0.01+1
Kps 0.01 min' 0.001+1
Ksp 0.01 miri* 0.001+1

Table 4.3: Nominal values and search intervals for the unknown parameters.

A sensitivity analysis was carried out by computthg sensitivity of two main output
variables to each unknown parameter, performingnalation of one week therapy 100
mg ecASA once a day.

The two output variables are:

- lag-time the delay in the recovery of platelets COX, follsnaefined as the time
required to reach 10% of steady-state.
- rise-time the time required for platelets COX to go fromPd@ 90% of its steady-

state level.

The sensitivity of the output variabdeit to the parametgr was computed as:

dout(p) p
B ou®) (4.76)

S(p) =

In the following, the variation of each single paeter is discussed and, in section 4.5.1.8,

the mean sensitivities are summarized in Table 4.4.
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4.5.1.1 COX production within the single MK: pk
There’s no direct information opwk in the literature. However, since TxB supposed

to be proportional to COX activity [133], an indice value forpykx can be computed
with the hypothesis of a proportion 1:1 between Fxibd COX. Using the expression for
platelets COX at steady-state (equation (4.39))thedbaseline value for serum TxB
healthy subjects (retrieved from [133]), a valueld ™ g/min cab be computed foRx.
Rather than the absolute value mjk, the amplification effect on pMK has been
investigated: since the proportion 1:1 between ;JaBd COX is not confirmed in the
literature, the real production within the singlé&KNs supposed to b timespuk, and the
effect of a variation oN has been studied. In particular, an increashl oésults in an
increase of COX levels in each compartment (eqnat{d.18), (4.24), (4.35) and (4.39)).
Considering equations (4.45) and (4.46), which dlescthe interaction between COX
and ASA, one can see that, if COX increase$ltiynes, COX kinetics (equation (4.45))
does not change, while ASA kinetics (equation ().46anges and the effect of COX on
ASA is amplified byN times. Thus, ASA is consumed much faster if COtaeases, and
this indirectly affects COX too, since if ASA deases very fast, the effect on COX is
lower. This is confirmed by simulations, in partexy by simulating a single 100 mg
aspirin intake, one can see that, Msincreases, ASA concentration peak in serum
decreases (Figure 4.30.A) and, consequently, COXimz acetylation in PLTs
decreases too (Figure 4.30.B).

Figure 4.31 shows the output variablag-time (panel A) andrise-time (panel B) as
functions ofN, for a simulation of one week therapy 100 mg ecAfBle a day.

Serum ecASA concentration time-course, varying N Active-COX amount time-course in PLTs, varying N
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Figure 4.30: ASA concentration in serum (A) and COX time-course in PLTs (B), increasing the parameter N
(0.01, 0.1, 10, 100, 1000). Single aspirin intake at t = 0.
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Figure 4.31: lag-time (A) and rise-time (B) as function of the parameter N.

The output lag-time is more influenced than the-time by a variation of the parameter
N. It is interest to note how values greater that0~result in lag-time equal to zero and
an absence of rise-time. This is because the mdvdosdylation reached is too small, as
one can see in Figure 4.30.B. Values smaller thaf*seem to result in quite constant
values of both lag-time and rise-time. In particuthe lag-time has a value of about 2
days forN values between 10and 16. A good choice foN is likely to be within this

interval.

4.5.1.2 Reaction constantl
Considering again equations (4.45) and (4.46), Wwhiescribe the interaction between

COX and ASA, one can see that a variation on thgevaf 1 affects both COX and ASA
kinetics. In particular, the grater is the greater is the mutual effect between COX and
ASA, thus the maximal acetylation of PLTs COX istgr and the acetylation reaction is
faster (Figure 4.32.A shows this behavior for awdation of a single intake of 100 mg
aspirin). This is particular relevant in the cafeepeated doses: Figure 4.32.B reports the
results of a simulation of one week 100 mg ecASAeoa day; one can see that, a small
value of allows to obtain an effect of the duration of therapy, i.e. we need more than
one intake to achieve the maximal effect. Howeaesmall value fof does not result in a
complete acetylation of COX in PLTs, thus not refileg reality.

To observe a sensible effectiobn ASA concentrations, COX levels have to be iaseel

(by increasingouk as explain in the previous section), otherwiseeffect of 1 can be
detected (Figure 4.33.A). This is because COX aainagon is much smaller than ASA
concentration, thus, to observe an effect on ASBXQoncentration needs to be grater

(equation (4.46)). Amplifyingowk for example by 1000 times, an effect obn ASA
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concentration can be observed (Figure 4.33.B)%1 ascreases, ASA peak decreases,

meaning that the effect of COX on ASA in greater.

Active-COX amount time-course in PLTs, varying A
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Figure 4.32: COX time-course in PLTs after a single dose (A) and after one week treatment with 24 hours
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Figure 4.33: ASA concentration in serum varying A (100, 500, 3000, 15000 and 10000) with no

amplification of COX production (N=1, panel A) and with a one thousands amplification of COX production

Figure 4.34 shows the output variablag-time (panel A) andrise-time (panel B) as

(N = 1000, panel B). Single aspirin intake at t = 0.

functions ofi, for a simulation of one week therapy 100 mg ecAfh&e a day.

142



lag-time vs A rise-time vs A

w
»
w

N —
o
0
—
&
)

»
i

N}
S
T

39

=
o

lag-time (days)
rise-time (days)

38r

-

37

05
36

. . 35 .
10° 10° 10* 10° 10° 10° 10 10°
A (molimin-1) A (moltmin-1)

Figure 4.34: lag-time (A) and rise-time (B) as function of the parameter A.

It is interesting to note how small values/ofesult in lag-time equal to zero, meaning
that there is not enough acetylation of COX in PLEse in Figure 4.32). As a
conseqguence, no rise-time can be computed for drmallies. For greater values, one can
see that, ag increases, the lag-time increases, while thetise-decreases, becoming
quite constant fof values greater than ~ lGven if the rise-time appears to exhibits a
minimum for 1 values between £Gand 106. A lag-time of about 2 days is obtained for
values between £@&nd 16, thus a good choice fo¥ is likely to be within this interval.

4.5.1.3 Time of inflection of h(t): t_flex
As already described in section 4.4t4flex is the parameter representing the time at

which the hill function, used o simulate the ertaated formulation of aspirin, has its
point of inflection. The parameter is responsilolethe delay in the release of the drug
and for the speed of ASA kinetics. Figure 4.35 shosults of a simulation of a single
100 mg aspirin intake: as one can see, the grdlexthe grater the delay and the slower
the kinetics of ASA (panel A). COX kinetics is afted in the same way even if the

overall effect is not so strong (panel B).
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Figure 4.35: ASA concentration in serum (A) and COX time-course in PLTs (B), increasing the parameter
t flex (20, 60, 120, 240 and 480 minutes). Single aspirin intake at t = 0.

Figure 4.36 shows the output variablag-time (panel A) andrise-time (panel B) as
functions oft_flex for a simulation of one week therapy 100 mg ecAfBBe a day.
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Figure 4.36: lag-time (A) and rise-time (B) as function of the parameter t_flex.

The parametet_flex mainly affects the lag-time: as it increases, ldgetime increases
too.t_flexexhibits the same effect on the rise-time, evenuth weaker. In particular, a
lag-time of about 2 days is obtained foflex values around 200 minutes, thus a good

choice fort_flexis likely to be near this value.

4.5.1.4 Degree of h(t): m
As already described in section 4.4M.is the degree of the hill function(t) and it

mainly controls the speed of ASA kinetics. Figur@7shows results of a simulation of a
single 100 mg aspirin intake: as one can see, hergn, the faster the kinetics and the
higher the peak of ASA (panel A). The kinetics @Xrecovery is affected too, but with

definitely smaller effect (panel B).
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Serum ecASA concentration time-course, varying m Active-COX amount time-course in PLTs, varying m
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Figure 4.37: ASA concentration in serum (A) and COX time-course in PLTs (B), increasing the parameter m
(2, 3, 4, 5 and 6). Aspirin intake at t = 0.
Figure 4.38 shows the output variablag-time (panel A) andrise-time (panel B) as
functions ofm, for a simulation of one week therapy 100 mg ecAfh&e a day.
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Figure 4.38: lag-time (A) and rise-time (B) as function of the parameter m.

Both the lag-time and the rise-time are decreafingtion ofm, even if the effect of this
parameter is not so greah ~ 4 appears a good choice to obtain a lag-timabout 2

days.

4.5.1.5 Elimination rate from the systemic compartmentg k
ke represents the overall ASA elimination from thatcal compartment, sum of several

mechanisms: pre-systemic uptake from the livemielation with urine, and utilization

by other tissues. All these mechanisms have beeteled as a single flux, which is
supposed to be proportional to ASA concentratiothan systemic compartment, via the
rate coefficiente. Thus, it is clear hovw plays a major role in the kinetics of ASA in

the systemic compartment, and, as a consequencdl e other compartments. Figure
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4.39 shows results of a simulation of a single d@Paspirin intake: al increases, ASA
elimination from the central compartment is fastbus the peak of ASA concentration

decreases and the kinetics if faster (panel A)sequently, COX acetylation decreases
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Figure 4.39: ASA concentration in serum (A) and COX time-course in PLTs (B), increasing the parameter k.,
(0.001, 0.01, 0.1, 0.5 and 1 min'l). Aspirin intake at t = 0.

Figure 4.40 shows the output variablag-time (panel A) andrise-time (panel B) as

functions ofke, for a simulation of one week therapy 100 mg ecAfe a day.

As one can see, &g increases the lag-time decreases, since ASA diiom is greater.
For ke near to 1, the lag-time becomes almost null, nmgathat ASA elimination is so
great that COX acetylation is too small. The riseetis quite constant for small values of
kei, (even if there seems to be a minimumKgralues around Ib then it increases &3
increases. Foke near to 1, no rise-time can be computed, since @@xylation is too
small. Sinceks models several mechanism, including uptake from lther which is
known to be relevant [123], reasonable values cbalih the range of 0.1+0.5 minThis
appears to be confirmed by Figure 4.40.A, sinceraect lag-time of about 2 days is

obtained folke values near to 10
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Figure 4.40: lag-time (A) and rise-time (B) as function of the parameter m.

4.5.1.6 Transfer rate from systemic to peripheral compartnieks
This parameters represents the flux of ASA from d¢bkatral compartment to the bone

marrow compartment. Figure 4.41 to Figure 4.43 shesults of a simulation of a single
100 mg aspirin intake: dgs increases, a greater amount of ASA is transfein@u the
central compartment to the peripheral one, thus,pisak of ASA concentration in the
systemic compartment decreases (Figure 4.41.A) #oed one in the peripheral
compartment increases (Figure 4.41.B). This resnl& greater acetylation of COX in
MKs, both maturing and proliferating (Figure 4.4#)d ProPLTs (Figure 4.43.A) which
produces a more delayed recovery of COX in PLTshasvn in Figure 4.43.B.

Serum ecASA concentration time-course, varying kpS BM ecASA concentration time-course, varying kpS
A 0.5 T T T T T T T T T T B 50 T T
)0.45 r g )45 E
0.4F i a0l
0.35} J 350
= 03r = 30
> =)
£ £
= 025 =3
9 . | 0.001 min~t | 2 sl 0.001 min! |
- 0.005 min~? - 0.005 min™?
0.15} ——o0.03min"t | 15} ——0.03min"! ||
0.15 min? 0.15 min™*
0L 1 min™t ] 1or 1min~t
0.05F g 5t
0 . . . n — . | 0 . A_ — . . - :
-0.2 0 02 04 06 08 1 12 14 16 18 -0.2 0 02 04 06 08 1 12 14 16 18
time (days) time (days)

Figure 4.41: ASA concentration in serum (A) and in bone marrow (B), increasing the parameter ks (0.001,
0.005, 0.03, 0.15 and 1 min’"). Single aspirin intake at t = 0.
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Active-COX amount time-course in maturing MKs, varying kps Active-COX amount time-course in proliferating MKs, varying kps
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Figure 4.42: COX time-course in maturing (A) and proliferating (B) MKs, increasing the parameter ki,
(0.001, 0.005, 0.03, 0.15 and 1 min™). Single aspirin intake at t = 0.
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Figure 4.43: COX time-course in ProPLTs (A) and PLTs (B), increasing the parameter k,s (0.001, 0.005, 0.03,
0.15and 1 min'l). Single aspirin intake at t =0

Figure 4.44 shows the output variablag-time (panel A) andrise-time (panel B) as

functions ofkps, for a simulation of one week therapy 100 mg ecAf&e a day.
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Figure 4.44: lag-time (A) and rise-time (B) as function of the parameter k.
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As one can see, small valueskg§ result in a small lag-time, while great valueskgf
result in a too high lag-time. This is because gvatues ofkys cause ASA to accumulate
in bone marrow, requiring several days before apieta elimination. This causes a
slower COX recovery in PLTs. The rise-time seemsexbibits a minimum for &s
values of about I8 A lag-time of about 2 days is obtained kgt values between 10-

and 10, thus a good choice féips is likely to be within this interval.

4.5.1.7 Transfer rate from systemic to peripheral compartnieks,
This parameters represents the flux of ASA from libee marrow compartment to the

systemic one. Figure 4.45 to Figure 4.47 show tesifla simulation of a single 100 mg
aspirin intake: a¥s, decreases, the kinetics of ASA in bone marromosver and the
peak increases, as shown in Figure 4.45.B. ASA yistemic compartment is not
sensitively affected b¥sp (Figure 4.45.A). This is because the flux from pegipheral
compartment is dominated by the flux from the gasttestinal compartment (which is
grater), thus the overall appearance of ASA in #ystemic compartment is little
influenced by the former flux. As a consequencesgdecreases, the acetylation of COX
in MKs, both maturing and proliferating (Figure @4 and ProPLTs (Figure 4.47.A)
increase, resulting in a more delayed recovery OXdn the PLTs compartment, as
shown in Figure 4.47.B.
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Figure 4.45: ASA concentration in serum (A) and in bone marrow (B), increasing the parameter ki, (0.001,
0.005, 0.03, 0.15and 1 min'l). Single aspirin intake at t = 0.
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Active-COX amount time-course in maturing MKs, varying ksp Active-COX amount time-course in proliferating MKs, varying kSp
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Figure 4.46: COX time-course in maturing (A) and proliferating (B) MKs, increasing the parameter ks,
(0.001, 0.005, 0.03, 0.15 and 1 min™). single aspirin intake at t = 0.
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Figure 4.47: COX time-course in ProPLTs (A) and PLTs (B), increasing the parameter ki, (0.001, 0.005, 0.03,
0.15and 1 min'l). Single aspirin intake at t = 0.

Figure 4.48 shows the output variablag-time (panel A) andrise-time (panel B) as

functions ofks, for a simulation of one week therapy 100 mg ecAf&e a day.
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Figure 4.48: lag-time (A) and rise-time (B) as function of the parameter ki,
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In the opposite way respect kgs, small values oks, result in a too high lag-time, while
great values oks, result in no lag-time (i.e. no sufficient acetidat in bone marrow).
This is because small valueslgf cause ASA to accumulate in bone marrow, requiring
several days before a complete elimination. As caresee, foks, values greater than ~
10 the lag-time becomes null and, as a consequeneejse-time cannot be computed
since the maximal ecetylation of COX in PLTs is ®mall. The rise-time exhibits a
minimum for aks, values of about 18 A lag-time of about 2 days is obtained fQp
values of about 16-results in a lag-time of about 2 days, thus a golosice forksp is

likely to be near this value.

4.5.1.8 Sensitivity results
Table 4.4 reports the mean sensitivity of eachwutpriable to each unknown parameter.

Output Parameter
variable Puk A t_flex m Kel Kos Ksp
"lag-time | -0.005 0.360 0.129 -0.085  -0.274 0.503 -0.516
rise-time | 0.001 -0.035 0.018 0.083 0.044 -0.032  -0.011

Table 4.4: mean sensitivities of lag-time and rise-time to each unknown parameter.

The parameters regulating aspirin exchanges betwegstemic and peripheral
compartment, i.ek,s andksp, have a major effect on the output variable lagetil and

t flexhave a non-negligible effect on lag-time too, eifdower, and the weakest effect
is the one opyk. On the other handn is the parameter exhibiting the greater effect on
the output variable rise-time, followed ky and by. andk,s Even for the rise-timewx

is the parameter with the weakest effect.

4.5.1.9 Final parameter values
Given the indicative results of simulations perfednto investigate the effect of each

unknown parameter on the output, the final listalies for all the parameters is reported
in Table 4.5. Each known parameter has been s&t toean literature value (see Table
4.2), while for each unknown parameter a reasonadlée has been set on the basis of

indications described in the previous sections.
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Parameter final value

% M_MKs per Kg 1.6e6
TN N_ProPLTs per MK 1000
& _N_PLTs_per ProPLT 2
g MK_matur 3 days
8 MK_prolif 7 hours
|j_: ProPLT _life 18 hours
PLT life 8.5 days
9 3 Voew 1000 ml
oh Vo 15 ml
Oz k 4.8¢" min™
x Pwx 1e™ g/min
t flex 180 mins
m 4
X Ka 0.1875 mirt
< Kos 0.01 min'
< Ksp 0.01 min'
Kel 0.2 min®
Vs 5600 mi
Vs 1177 ml
&
< A 2€’ mol'min™
<

Table 4.5: Final parameter values.

4.6 Data

Data available to evaluate the model performanoesedrom the clinical trial performed
on healthy subjects described in section 4.2.2ata@re relative to 48 healthy Caucasian
subjects randomized to 1 to 8 groups, accordirigeiment duration, ranging from 1 to 8
weeks. Each patient received enteric-coated aspd@dhmg once a day and was instructed
to take tablets at the same time of the day. SérkBy (in ng/ml) was measured at the
end of each week of aspirin, and at days 1, 2 d37aafter withdrawal [133].

In Figure 4.49 the mean curves (as percentagesdliba) for each group are presented,
where also the steady-state value of IxlBring aspirin treatment was added as initial

value at timd = 0.
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Figure 4.49: Mean curves of TxB2 baseline and recovery after aspirin therapy for each group of treatment.

Authors observed that the overall kinetics of TxBcovery showed a complex sigmoidal
pattern and that initial recovery of serumpx{Bvels seem to differ among groups. Since,
by visual inspection of the data, it is difficuti bbserve differences among groups, the

mean curve of all the data was computed (Figuré)4dbd the model was tested on it.
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Figure 4.50: Mean curve (+ SD) over all the 48 subjects of TxB2 recovery (as percentage of baseline) after

aspirin therapy.
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4.7 Simulations

4.7.1 Healthy subjects
A qualitative description of the data presentedhe previous section was performed,
running a simulation of one week reproducing thmeaspirin regimen of experimental

data (100 mg ecASA every 24 hours), using parametdues reported in Table 4.5.

Figure 4.51 shows the results of the simulationrejaieal data.
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Figure 4.51: Serum active-COX time-course prediction (in percentage of baseline value) against real data,
after a week of 100 mg ASA every 24 hours. First aspirin intake is at t = -6 days. Last intake is at t = 0.

As one can see, the prediction is quite good, dime€COX time-course in serum exhibits
the ~2 days delay after aspirin withdrawal and $igmoidal shape with a complete
recovery about one week after withdrawal.

Moreover, it can be seen how 3-4 intakes are neededler to obtain the maximal effect.

In particular, the curve of Figure 4.51 is charaegdl by the following output

parameters:
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Simulation on healthy subjects

maximal acetylation of serum COX

99.2 % of baseling

174

lag-time of COX recovery 1.9 days
rise-time of COX recovery 3.6 days
COX recovery at 7 days 95 % of baseline
slope of COX recovery between 12 and 24 hours  0.042 %/h

Table 4.6: Output parameters of the simulated COX recovery for healthy subjects.

4.7.2 Diabetic subjects

The model can be used also as a mean to test bter@chanisms for the diminished

response to aspirin in diabetic patients, leadingdatment failure in most cases (the so-

called ‘aspirin resistance’). In the literaturéhés been hypothesized that the faster;TxB

recovery after an aspirin intake characterizingodie patients may be caused by an

enhanced COX biosynthesis due to faster platetabver.

In order to investigate how variations in the pagters of thrombopoiesis and COX

kinetics affect the output, a sensitivity analyssnilar to the one conducted for the

unknown parameter in section 4.5, has been perfbrifiee tested parameters, together

with nominal values and search intervals, are tepgan Table 4.7.

Parameter nominal value Search interval
MK_matur 3 days 0.25+4
MK_prolif 7 hours 1+48
ProPLT _life 18 hours 1+48
PLT life 8.5 days 2+14
k 4.8¢" min™ 6.8¢°+ 4.8¢

Table 4.7: Nominal values and search intervals for the parameters of thrombopoiesis and COX kinetics.

The mean sensitivities of the lag-time and risestiim each tested parameter are reported

in Table 4.8.
Output variable Parameter
MK_matur  MK_prolif ProPLT _life PLT life k
lag-time 0.212 0.159 0.388 0.012 -0.152
rise-time 0.201 0.053 -0.001 0.077 -0.292

Table 4.8: mean sensitivities of lag-time and rise-time to each tested parameter.
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As one can see, the parameter which most affedagigme is the life of the proplatelets
(ProPLT _lifg, in particular, a®roPLT _lifeincreases the lag-time increases. This result
confirms the hypothesis made in section 4.4.2.2uabdwe major role oProPLT _lifein
determining the delay in platelets COX recoverysthit is quite encouraging. On the
other handProPLT _life minimally affects the rise-time, meaning that therameter is
responsible only for the delay but not for thepslan the recovery of platelets COX after
aspirin intakes. The rise-time is most influencgdh®e rate of COX degradatiok){ ask
decreases the overall COX kinetics becomes slothas the rise-time increases. It is
interesting to note how the paramel#K matur, representing the maturation period of
megakaryocytes, has a strong effect on both theireg and the rise-time. This means
that a longer maturation period of megakaryocysellte in a slower recovery of platelets
COX, producing both a longer delay and a lower slopthe recovery.

The main difference between healthy and diabetlgests, depicted in results from
clinical trials described in section 4.2.2, is thgeed of COX recovery after aspirin
intakes. From Table 4.8, the parameters which raffstt the recovery of COX after an
aspirin intake are the maturation time of megakeytes MK_matu) and the COX
degradation ratek]. The parametdProPLT _lifeinstead simply results in a shift of COX
recovery, but not in a faster recovery. Thus, asiisbs mechanism to explain the faster
COX recovery in diabetic patients can be represebie an enhanced megakaryocyte
turnover (in particular a faster maturation) and inareased utilization of COX by
platelets. For example, using all the values regbm Table 4.5, except fédK_matur
and k which were decreased from 3 days to 1 day and #®8° min' to 16> min™
respectively, the recovery of serum COX in a diabeatient was simulated, in response
to the same therapy of one week 100 mg ecASA ondayaundergone by healthy
subjects. Results are shown in Figure 4.52, wheeestmulated time-course of serum
COX for the diabetic patient (green curve) is compato the one for healthy subjects
(blue curve). By visual inspection, COX recoverguks markedly faster in case of
diabetes, though the maximal acetylation is conipartp the one of healthy subjects, as
confirmed by results from clinical trials (see $sewct4.2.2.2). Table 4.9 reports the output
parameters of the diabetic curve, compared to ¢adtly ones. As one can see, maximal
acetylation of serum COX is almost complete in bodlses, and the main difference is
represented by the speed of the recovery, in pdatiboth the lag-time and the rise-time

are smaller and the slope of the recovery betw@esmtl 24 hours is doubled.
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Simulation on subjects: EENY diabetic

maximal acetylation 99.2 % of baseline 98 % of baseling)
lag-time 1.9 days 1.2 days
rise-time 3.6 days 2.5 days
recovery at 7 days 95 % of baseline 100 % of baselipe
slope of COX recovery between 12 and 24 hours  0.042 %/h 0.098 %/h

Table 4.9: Output parameters of the simulated COX recovery for a diabetic subject, compared to healthy
subjects

Serum Active-COX concentration time-course in percentage of baseline
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Figure 4.52: Simulation of COX time-course in diabetic patients (green curve) versus healthy patients (blue
curve) after a week of aspirin therapy 100 mg once a day. Last aspirin intake is at t = 0.

4.7.3 Different aspirin regimens

The model was also tested to explain the effedifférent aspirin regimens. Following
the experimental protocol of [128], the slope of>XCf@covery between 12 and 24 hours
after aspirin intake was computed for three différ@spirin therapies) one week of 100
mg ecASA once a day every 24 hours (100odpne week of 200 mg ecASA once a day
every 24 hours (2000d)ii) one week of 100mg ecASA twice a day every 12 hours
(100bd). Results are reported in and in Figure &8 Table 4.10. The model predicted a
stronger effect for both the 2000d and the 100kedattyy, compared to the 1000d therapy,
but was not able to correctly predict a strongéatfof the 100bd therapy with respect to

the 2000d therapy. The most probable explanatidimaits the stronger effect of the 100bd
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therapy is due to some non-linearity in the kireeti€ aspirin, which the model is not able

to reproduce.

Serum Active-COX concentration time-course in percentage of baseline
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Figure 4.53: Serum COX recovery between 12 and 24 hours after intake (at t = 0) for different aspirin
regimens: 100 mg once a day (blue), 200 mg once a day (red) and 100 mg twice a day (green).

aspirin regimen slope of COX recovery between 12 and 24 houl

1000d 0.042 %/h
2000d 0.011 %/h
100bd 0.015 %/h

Table 4.10: Slope of COX recovery between 12 and 24 hours (as percentage of baseline per hour) for
different aspirin regimens: 100 mg once a day (1000d), 200 mg once a day (2000d) and 100 mg twice a day
(100bd).

4.8 Discussion

In this chapter the problem of modeling the effgicthe treatment on the phenotype was
discussed, focusing on the preventive effect ofires@gainst atherothrombosis and

cardiovascular episodes.

The effect of aspirin in the prevention of cardissalar complications has been widely
studied and reported in the literature. In paréculthe comparison between healthy

subjects and diabetic ones results in a quitereiffiepicture: while for the formers aspirin
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has been proofed to have a significant effecteardbenefit of aspirin in the prevention of

major cardiovascular events in people with diabetegins unproved.

From a biological point of view, the best-charaized mechanism of action of aspirin is
the inhibition of thromboxane-dependent plateletnction, through permanent
inactivation of the COX-1, an enzyme which lead$h® final formation of thromboxane
TxB,, the major promoter of platelets activation angragation.

Although widely studied in many clinical trials, characterization of this mechanisms

from a modeling point of view is still missing ihd literature.

A compartmental model of COX kinetics and aspirinhapnacokinetics-
pharmacodynamics has been developed with the olgeaft qualitatively describing and
simulating the process of COX inhibition and reappece in platelets in response to
aspirin exposure.

The model consists of four key-elements (intercoted each other), describing:the
timing of the thrombopoiesis mechanism,COX kinetics,iii) aspirin PK andv) aspirin
PD, respectively.

The two main innovative features of the work arpresented byi) the distributed
description adopted for COX kinetics, which makbe model capable to correctly
simulate COX time-course in the different comparitseaccording to the timing of the
thrombopoiesis mechanisii), the interconnection between the aspirin PK moddltae
COX kinetics model (which differs from the classiapproach of using the drug
concentration as a forcing input of the model), chhallows to correctly model the not

separable interaction between aspirin and COX.

The model has been tested on data of serum thraamleokxB (which is proportional to
platelets COX activity) recovery levels after agpwithdrawal in 48 healthy subjects,
treated with aspirin 100 mg daily for 1 to 8 weelRsta are taken from [133]. Given the
explorative aim of the model and the available d#ia evaluation of the model was
performed from a qualitative point of view, obtaigia good prediction for the time-
course of COX recovering in serum.

The model, however, predicts the need for 3-4 mspitakes only before reaching the
maximal effect of the treatment, while the authooacluded from [133] that at least 1-2

weeks of treatment are required to achieve maxeffatt. The authors in fact observed
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that initial recovery of serumTxHevels seem to differ among groups: they performed
2-factor repeated measurements analysis of variamtbethe post hoc Holm-Sidak test
for pairwise comparison, and found that at daysnd 2 following aspirin withdrawal,
TxB, values were similar in the subjects treated faant 2 weeks and significantly
higher than the corresponding values of longettrineat groupsg-value< 0.05). Since,
by visual inspection of the data (see Figure 4.49s difficult to observe differences
among groups (also because of the high interindaligariability), a complete statistical
analysis was performed, in order to confirm or c¢ejthe hypothesis of significant
differences.

In particular, a one-side t-test for each sampteetiand on each couple of consecutive
groups (,i+1) was performed, in order to test whether TX¥Bvels of groupi were
significantly higher than TxBlevels of group+1 at the same times: Txf) > TxB,"*(t),
i.e. whether treating one more week with aspirid aaignificant effect in the decrease of
TxB, recovery. Also clustering group 1 and 2 vs otherugs was tested. Results are
shown in Table 4.11.

one-sided t-test: group i > group i+1

p-value
test od 1d 2d 3d 7d
1>27 0.428 0.373 0.067 0.361 0.065
2>37 0.284 0.057 0.214 0428 0.001
3>47? 0.329 0.152 0.123 0.256 0.146
4>57? 0.140 0.471 0.408 0.454 0.305
5>67 0.400 0.246 0.068 0.447 0.447
6>77? 0.226 0.277 0.480 0.437 0.366
7>87? 0.187 0.040 0.061 0.378 0.416
(1,2)>(3,4,5,6,7,8) ? 0.083 0.048 0.051 0.210 0.015

Table 4.11: one-sided t-test for each groups couple for each time.

From Table 4.11, we observe only one p-value <,0cOfning from testing group 7 (7
weeks treatment) versus group 8 (8 weeks treatnag¢tithe t = 1 day, all the other tests
being not significant. Testing group 1 and 2 toget1-2 weeks treatment) versus all the
other groups (3 to 8 week treatment) resulted iy one weak significant difference at
time t = 1 day.

Then, a test for trend was performed, in ordeesd whether a trend of TxBevels exists
along groups, i.e. whether increasing the duratdnaspirin treatment induced a
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significant decrease of TxBevels. A COX-Stuart test for trend for continualeta was
performed, for each sample timeAll the six p-values were greater than the sigaiit
threshold 0.05, thus no significant effect of theatment duration on the decrease of
TxB; levels could be found.

Finally, the same analysis carried out by the astiwias re-implemented. A 2-factor
mixed ANOVA with the post hoc Holm-Sidak test fomipwise comparison was
performed. The overall ANOVA found a weak signifitalifference among groups (p-
value = 0.046), but the post hoc Holm-Sidak test wat able to significantly cluster the
groups (all the p-value were greater than the Bggmit threshold).

From this statistical analysis it is difficult torclude about significant differences among
groups and the effect of therapy duration on pddtelCOX recovery probably needs
future insights.

The model was also tested for a potential mechatosexplain the diminished response
to aspirin in diabetic patients and for explainihg effect of different aspirin regimens.
By modifying two key parameters, describing the umation period of megakaryocytes
and the COX degradation rate constant respectivké/,model was able to simulate a
faster COX recovery in the 12-24 hours intervatiaétspirin intake for diabetic subjects,
thus reproducing literature findings.

The model, however, was not able to explain thatgreeffect (resulting in a slower COX
recovery) of a therapy with intakes of 100 mg ecA8&4ry 12 hours, compared to a
therapy with intakes of 200 mg ecASA every 24 hptinsis underlining the need for

future refinements in particular regarding asppirarmacokinetics.

In conclusion, though future improvements are ndedee actual model represents a
good starting point for further refinements andesigations. Future experiments with
multiple measurements (i.e. simultaneous measursnredifferent compartments) could
help to obtain a deeper understanding of the ireclghenomena, providing the model
with additional information, which could help desigg personalized antiplatelet

regimens in diabetes mellitus.
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Conclusions

In this thesis, the problem of investigating loegat complications of diabetes mellitus
has been faced with a multi-level approach. Gilendomplex-nature of such a disease,
the multi-level approach allows to characterize gilenomena of interest at different
levels of detail, according to data availability. the present work of thesis, three main
levels of study have been discussed and, for eaehrmvel investigation methodologies
have been proposed.

The context of investigation of the first level sfudy is the one of Genome Wide
Association Studies, in which the objective is,ame hand, to detect correlation between
one or more SNPs and a discrete trait (diabetethisrcase) and, on the other, to learn a
rule to perform subject classification. The multiage analysis approaches, developed so
far, still suffer for the lack of precision and lsilay of the lists of biomarkers selected,
mainly due to linkage disequilibrium, i.e. the n@mdom association between the true
genetic causes and the SNPs in genomic regiong ¢toshem, which confounds the
search for genetic biomarkers. A new algorithm, Bad@laive Bayes, was developed to
effectively tackle this problem. BoNB is based oaie Bayes classification enriched by
three main features to tailor the Naive Bayes fraonk to Genome Wide SNP data
analysis: (a) a bagging of Naive Bayes classifismsimprove the robustness of the
predictions, (b) a novel strategy for ranking amdesting the attributes used by each
bagged classifier, to enforce attribute independerend (c) a permutation-based
procedure for selecting significant biomarkers, eob®n their marginal utility in the
classification process. The effectiveness of BoNds wwemonstrated by applying it to the
WTCCC case-control study on Type 1 Diabetes: BoNgerforms two algorithms from
the state of the art (a Naive Bayes ClassifiertaygerLASSO) in terms of classification
performance, and all the genetic biomarkers idietiby BoNB are meaningful for Type

1 Diabetes, thus confirming the good performana® ah terms of precision of the
selected biomarkers.

The second level of study deals with thesilico modeling of complex diseases. Recently,

due to alarming increasing of world’s diabetic id®nce, a requirement for diabetes
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simulation models has been identified in the mddiod healthcare policy community to
facilitate the simultaneous evaluation of long-tealimical end economic effects of
treatment, and, as a result, a number of models baen developed, mainly based on
Markov Models. In this thesis, the progressionwb tvascular diabetes complications
(Cardiovascular disease and Nephropathy) was mibdatng Dynamic Bayesian
Networks, which, differently from Markov Models,eamore powerful since they allow a
more easy handle of information. The model was ldpesl on the DCCT dataset,
integrating both phenotypic information and infotioa on treatment. Results regarding
the simulated progression of complications showy \god performances, exhibiting a
prediction accuracy greater than 95 % for the a®rsid outcomes, , thus proving the
effectiveness of the model. Moreover, the flexstieicture of the DBN makes the model
suitable for future developments, such as the ditton of diabetic Retinopathy, as an
additional outcome, and the genotypic informatias, a potential mean to improve
predictions. Based on the DBN model, a web Javécapion, which will implement also
cost-effectiveness and cost-utility analyses, rsenly under development.

The last level of study focuses on timesilico modeling of drug action, in particular
regarding the effect of aspirin against atherothyosis and cardiovascular episodes. A
compartmental model of aspirin PKPD was develogednfliterature information, in
order to simulate the inhibition of COX enzyme (theajor promoter of platelets
activation and aggregation, which leads to the &rom of thrombi) by aspirin. The
model was built on four interconnected key-elemerdsscribing thrombopoiesis
mechanism, COX kinetics, aspirin pharmacokinetiosl aspirin pharmacodynamics,
respectively. Innovative features of the work aepresented by the distributed
description adopted for COX kinetics and by the separable interconnection between
aspirin PK and COX kinetics, which allow to potatlyy simulate response to any drug
exposure, without using any forcing input. Givee #xplorative aim of the work, the
model was used to qualitatively describe data afthg subjects, as well to test potential
mechanisms for the diminished response, exhibiyedidbetic patients, to aspirin therapy
(the so-called *aspirin resistance’). Although esganting a good starting point, the model
needs further refinements and investigations: &axperiments and additional data will
make the model suitable to help designing perspedlantiplatelet regimens in diabetes

mellitus.
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