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Sommario 

 

Il diabete mellito rappresenta una delle patologie più diffuse nel mondo e si stima che la 

sua incidenza aumenterà del 50 % nell’arco di 15 anni, passando da 250 milioni a quasi 

400 milioni di malati nel 2025. La patologia comporta l’insorgenza di devastanti 

complicanze croniche, tra cui disturbi legati al danneggiamento dei vasi sanguigni sia a 

livello macro-vascolare – come coronopatia, infarto, insufficienza cardiaca, angina 

pectoris, ictus – che micro-vascolare, con conseguente danno a carico dei reni (nefropatia) 

e degli occhi (retinopatia). La patologia diabetica ha un’enorme impatto sia in termini di 

qualità di vita dei pazienti, sia a livello economico, in quanto si stima che più del 10 % 

dei costi dell’assistenza sanitaria di tutta l’Europa siano imputabili alla cura del diabete. 

Per questo motivo, nuovi mezzi che permettano di prevenire l’insorgere e il progredire 

della malattia e delle sue complicanze sono assolutamente necessari. 

L’obiettivo del seguente lavoro di tesi è quello di proporre nuovi metodi computazionali 

per lo studio delle complicanze del diabete in un ambito di modellistica multi-livello. 

Il diabete mellito è una malattia fortemente multifattoriale, nella quale molteplici fattori 

di rischio di diversa natura (genetica e ambientale) concorrono a provocarne l’insorgenza 

e lo sviluppo. I meccanismi fisiologici che sottendono allo scatenarsi e al progredire della 

patologia sono ancora per la maggior parte sconosciuti. 

Data la natura multifattoriale del diabete, lo studio delle complicanze si presta ad essere 

affrontato con un approccio multi-livello. Lo schema generale di una malattia 

multifattoriale, come il diabete, prevede l’azione combinata di 3 elementi chiave sullo 

stato patologico (l’outcome) del paziente: i) il fenotipo, ovvero l’insieme di tutte le 

variabili metaboliche, antropometriche e ambientali caratteristiche del paziente, ii)  il 

genotipo, ovvero la sequenza DNA del paziente, iii)  il trattamento, ovvero l’insieme di 

interventi esterni effettuati sul paziente, come terapie ed utilizzo di farmaci. Queste 3 

variabili sono interconnesse tramite interazioni e concorrono tutte insieme a determinare 

l’outcome del paziente. 
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L’approccio multi-livello consente di scomporre il problema completo in sottoproblemi, 

focalizzando l’attenzione di volta in volta solo su un sottoinsieme di variabili e di 

interazioni, a seconda del livello di informazione contenuto nei dati a disposizione. 

Nel seguente lavoro, vengono considerati 3 principali livelli di studio delle complicanze 

diabetiche, e, per ognuno dei 3 ambiti, vengono proposti nuovi metodi sviluppati durante 

il periodo di dottorato. 

I 3 livelli di studio trattati sono: i) modellizzazione dell’effetto del genotipo sull’outcome, 

ii)  modellizzazione dell’effetto combinato di fenotipo e trattamento sulla progressione 

dell’outcome, iii)  modellizzazione dell’azione del trattamento sul fenotipo. 

Il primo livello di studio si propone di studiare le complicanze diabetiche da un punto di 

vista statico, ovvero senza considerare l’evolversi e il progredire di tali complicanze nel 

tempo, ed ha come obiettivo quello di identificare i principali biomarcatori genetici che 

consentano di predire lo stato di malattia dei pazienti, e di stratificare i pazienti in base al 

rischio di sviluppare o meno la malattia. I Genome Wide Association Studies (GWAS), 

sono studi di associazione volti a identificare gli SNPs che, da soli o in combinazioni con 

altri SNPs, consentono di spiegare le differenze che si osservano in un determinato 

outcome (a presenza o meno di una patologia) tra casi (soggetti malati) e controlli 

(soggetti sani) in una popolazione di studio. Diversi metodi di selezione univariata e 

multivariata sono presenti in letteratura per l’identificazione di marcatori genetici da studi 

GWAS. In questo ambito, è stato sviluppato un nuovo metodo per la selezione 

multivariata di biomarcatori genetici e per la classificazione di soggetti a partire da dati di 

SNPs di studi GWAS, basato sui classificatori di Bayes e arricchito da 3 principali 

componenti: i) una predizione ottenuta da un insieme di classificatori di Bayes, 

utilizzando una strategia basata sul bootstrap, ii)  un nuovo metodo per ordinare e 

selezionare gli attributi selezionati da ogni classificatore, iii)  una procedura, bastata sulle 

permutazioni, per selezionare i biomarcatori significativi, sulla base della loro utilità 

marginale nel processo di classificazione. Il metodo è stato validato sui dati genome-wide 

del Wellcome Trust Case-Control Consortium, (WTCCC)  relativi a diabetici di tipo 1 e 

le sue performance confrontate con gli algoritmi rappresentanti lo stato dell’arte in 

letteratura per studi di associazione genetica, in particolare un classificatore di Bayes e un 

algoritmo di regressione logistica penalizzata (HyperLASSO). 

Il secondo livello di studio riguarda l’analisi dinamica delle complicanze, nella quale 

interviene anche la variabile tempo come fattore chiave. In quest’ottica, si vuole 
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modellizzare l’insorgere e la progressione temporale delle principali complicanze legate 

al diabete utilizzando l’informazione fenotipica e terapeutica, con l’obiettivo di stimare la 

probabilità che il paziente diabetico possa o meno sviluppare una certa complicanza, 

ottimizzando quindi i trial clinici ed evitando esami costosi e invasivi. In letteratura, sono 

presenti diversi modelli delle complicanze di diabete, ma nessuno è in grado di integrare 

in maniera flessibile le diverse conoscenze –omiche (proteomica, metabolomica, 

genomica) ad un livello clinico macroscopico. I principali modelli presenti in letteratura 

sono infatti basati sui modelli di Markov (detti anche modelli si transizione di stato) e 

utilizzano l’informazione fenotipica senza la possibilità di integrare facilmente 

informazioni aggiuntive. In questo ambito di studio, viene proposto un nuovo modello in-

silico delle complicanze cardiovascolari e renali del diabete, che propone come aspetto 

innovativo l’utilizzo delle reti dinamiche bayesiane (Dynamic Bayesian Networks, 

DBNs) per modellizzare le interazioni tra le variabili. Rispetto ai modelli di Markov, che 

richiedono tanti nodi quante sono le possibili combinazioni degli stati delle variabili, le 

DBN hanno il vantaggio di rappresentare ogni variabile tramite un singolo nodo e 

permettono quindi una maggiore facilità nella gestione della struttura e nell’integrazione 

di eventuale informazione aggiuntiva. Il modello è stato costruito utilizzando i dati del 

Diabetes Control and Complications Trial (DCCT), un trial clinico randomizzato 

condotto con lo scopo di confrontare gli effetti della terapia intensiva rispetto a quelli 

della terapia convenzionale sullo sviluppo delle complicanze vascolari e neurologiche a 

lungo termine. Il modello sviluppato, è in grado di predire la progressione delle 

complicanze diabetiche trattate con un’accuratezza superiore al 95% a livello di 

popolazione. Il modello si presta quindi ad essere utilizzato come tool di supporto nel 

processo di decisione terapeutica da parte dei clinici e, in quest’ottica, sta portando alla 

realizzazione di un’interfaccia web. La struttura flessibile del modello inoltre consentirà 

di integrare facilmente l’informazione genotipica, con l’obiettivo futuro di migliorare le 

prestazioni a livello di predizione. 

Il terzo ed ultimo livello di studio considerato è lo studio dell’azione di uno specifico 

farmaco su un particolare fenotipo, con l’obiettivo finale di sviluppare metodologie che 

consentano di personalizzare i farmaci, adattandoli alla specifica risposta dell’individuo. 

Nell’ambito specifico delle complicanze cardiovascolari del diabete, una delle terapie più 

diffuse è quella del trattamento con aspirina per la prevenzione di eventi avversi nei 

pazienti ad alto rischio. L’aspirina deve  la sua azione preventiva alla capacità di inibire 
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un enzima chiave (la prostaglandina-endoperossido sintase PTGS-1, conosciuta anche 

come cicloossigenasi COX-1) nella cascata che porta alla formazione di trombossano B2 

(TxB2), il principale responsabile dell’aggregazione piastrinica nel sangue e della 

conseguente formazioni di trombi. È noto, da letteratura, come i pazienti diabetici 

rispondano in maniera differente alla terapia con aspirina rispetto ai soggetti sani, 

evidenziando una risposta ridotta al farmaco, tanto da portare in ambito clinico alla 

coniazione del termine ‘aspirino-resistenza’. Data la mancanza di una trattazione 

matematica del fenomeno in letteratura, si è deciso di studiare il problema utilizzando un 

approccio modellistico di farmacodinamica, con un intento. Utilizzando informazioni 

biologiche ricavate da letteratura, si è sviluppato un modello, in parte compartimentale e 

in parte distribuito, che descrive: i) la cinetica dell’enzima COX-1 a partire dalla sua 

produzione all’interno dei megacariociti del midollo osseo fino a giungere nelle piastrine 

del sangue, ii)  la farmacocinetica e la farmacodinamica dell’aspirina, ovvero la 

distribuzione del farmaco nel corpo e la sua interazione con l’enzima COX-1. Il modello 

è stato testato su dati sperimentali relativi al recupero di trombossano B2 sierico dopo la 

sospensione di aspirina in pazienti sani. Sono stati infine discussi meccanismi 

potenzialmente candidati a spiegare il fenomeno dell’aspirino-resistenza in pazienti 

diabetici. 
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Summary 
 

Diabetes mellitus is a lifelong, incapacitating disease affecting multiple organs. 

Worldwide prevalence figures estimate that there are 250 million diabetic patients today 

and that this number will increase by 50% by 2025. The disease is associated with 

devastating chronic complications including coronary heart disease, stroke and peripheral 

vascular disease (macrovascular disease) as well as microvascular disorders, leading to 

damage of kidneys (nephropathy) and eyes (retinopathy). These complications impose an 

immense burden on the quality of life of the patients and account for more than 10% of 

health care costs in Europe. Therefore, novel means to prevent the onset and the 

progression of  these devastating diabetic complications are needed. 

The aim of the work presented in this thesis is to propose novel computational methods to 

study diabetes complications with a multi-level approach. 

Diabetes mellitus is a strongly multifactorial disease, and several risks factors (such as 

genetic, and environmental factors) are combined together in a complex trait, leading to 

the onset of the disease. 

Physiological mechanisms that underlie the disease and the onset and progression of the 

different complications are still mostly unknown. 

Given the complex nature of diabetes, the study of the complications can be faced with a 

multi-level modeling approach. In the general scheme for complex disease, such as 

diabetes, 3 key elements act together to determine the disease status (outcome) of a 

patient: i) the phenotype, i.e. the set of all metabolic, anthropometric and clinical 

variables characterizing the patient, ii)  the genotype, i.e. the DNA sequence of the patient, 

iii)  the set of interventions on the patient, i.e. therapies and treatments with drugs. All 

these 3 variables are connected each other through interactions and have a joint effect on 

the final outcome of the patient. 

The multi-level approach allows to disjoint the full problem into sub-problems, focusing 

only on a set of variables and interaction (reflecting a specific level of information) 

according to available data. 
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In the present work, 3 main levels of study of diabetes complications are considered, and, 

for each approach, novel methodologies developed during my PhD are proposed. 

The 3 levels of study considered in the present work are: i) modeling the effect of 

genotype on the outcome, ii)  modeling the effect of phenotype and treatment on the 

progression of the outcome, iii)  modeling the effect of treatment on the phenotype. 

In the first level of study, diabetes complications are studied from a static point of view, 

i.e. without considering their progression over time, and the main objective is to identify 

the genetic biomarkers that allow to predict the disease state of the patients with the final 

goal to stratify patients according to the risk of developing the disease. Genome Wide 

Associations Studies (GWAs) are statistical studies aiming at identify those SNPs able to 

explain the differences observed for a certain outcome (the disease status) between cases 

(diseased subjects) and controls (healthy subjects) in a study population. Several methods 

performing univariate and/or multivariate selection have been used in literature for the 

identification of genetic markers from GWAs data. In this thesis, a novel algorithm for 

genetic biomarker selection and subjects classification from genome-wide SNP data has 

been developed. The algorithm is based on the Naïve Bayes classification framework, 

enriched by three main features: i) bootstrap aggregating of an ensemble of Naïve Bayes 

classifiers, ii)  a novel strategy for ranking and selecting the attributes used by each 

classifier in the ensemble, iii)  a permutation-based procedure for selecting significant 

biomarkers, based on their marginal utility in the classification process. The algorithm has 

been validated  on the Wellcome Trust Case-Control Consortium on Type 1 Diabetes and 

its performance compared with the ones of both a standard Naïve Bayes algorithm and 

HyperLASSO, a penalized logistic regression algorithm from the state-of-the-art in 

simultaneous genome-wide data analysis. 

The second level of study is represented by the dynamic analysis of diabetes 

complications, where the variable “time” plays a major role. In particular, the objective is 

to model the onset and the progression of diabetes complications over time, using 

phenotypic and therapeutic information, with the final goal to estimate a probability for 

the diabetic patient to develop a certain complication, thus optimizing clinical trials and 

avoiding invasive and expensive tests. So far, several models of diabetes complications 

are present in literature, but none is able to flexibly integrate accumulating –omics 

knowledge (i.e. proteomics, metabolomics, genomics) into a clinical macro-level. The 

most interesting complication models, in fact, are based on Markov Models (also called 



VII 

 

state transition model) and use phenotypic information to describe the cohort of interest 

without the possibility to easily integrate additional information. A new in-silico model 

for simulating the progression of cardiovascular and kidney complications in diabetic 

patients is presented. The model proposes, as innovative feature, the use of Dynamic 

Bayesian Networks (DBNs) for modeling the interactions between variables. Compared 

to Markov Models, which require as many nodes as the number of combinations of 

variables’ values, DBNs are more advantageous in handling both the structure and 

possible additional information, since each variable is simply represented by a node in the 

network. The model was built relying on data from the Diabetes Control and 

Complications Trial, a multicenter randomized clinical trial designed to compare 

intensive with conventional therapy with regard to their effects on the development and 

progression of the early vascular and neurologic. The developed model is able to predict 

the progression of the main diabetes complications with an accuracy greater than 95% at a 

population level. The model is suitable to be used as a decision support tool to help 

clinicians in the therapy design through cost-effectiveness analysis: exploiting the 

simulations generated through the model, it is possible, for example, to choose the best 

strategy between two different therapies for treating a specific cohort of patients. To this 

aim, a user-interface based on the present model is currently under development. The 

flexible structure of the model will allow to easily add genotypic information in the next 

feature as a potential mean to improve predictions. 

The last level of study focuses on the action of a specific drug on a target phenotype,  

with the final aim to develop rational means to personalize drug therapy and to ensure 

maximum efficacy with minimal adverse effects. Focusing on cardiovascular diseases as 

a direct complication of diabetes, aspirin therapy is an important component of 

cardiovascular prevention  for high risk patients. Aspirin performs its preventive action 

by inhibiting a key enzyme (the prostaglandin-endoperoxide synthase PTGS-1, also 

known as cyclooxygenase COX-1) in the cascade leading to the production of 

thromboxane B2 (TxB2), the major factor involved in the platelets aggregation with 

consequent formation of thrombi. It is known, from literature, that diabetic patients 

exhibit a different response to aspirin therapy in comparison to healthy subjects, showing 

a reduced effectiveness of the drug, which is often referred to as ‘aspirin resistance’. 

Given the lack of a mathematical characterization of these phenomena, the problem was 

faced using a pharmacodynamics modeling approach, with an explorative intent. Relaying 
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on biological knowledge retrieved from literature, a partially lumped and partially 

distributed compartmental model was developed, able to describe: i) the kinetics of COX-

1 enzyme, from its production within megakaryocytes in bone-marrow to circulating 

platelets in blood, ii)  the pharmacokinetics and pharmacodynamics of aspirin, i.e. its 

distribution in the body tissues and its interaction with COX-1. The model was tested 

using data of serum thromboxane TxB2 recovery levels after aspirin withdrawal in healthy 

subjects. Possible mechanisms to explain the so-called ‘aspirin resistance’ have been 

finally discussed. 
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Chapter 1 

 

1 Introduction 
Diabetes mellitus is a metabolic diseases in which a person’s blood sugar is too high, 

either because the pancreas does not produce enough insulin, or because cells do not 

respond to the insulin that is produced, or a combination of the above mechanisms. 

Different variables, such as genetic, metabolic and environmental factors, play together in 

the onset and the progression of the disease, thus classifying diabetes as a complex-trait 

disease. 

Diabetes is associated with severe long-term complications, mainly caused by the damage 

of blood vessels, both at micro and macro-level, because of the high glucose 

concentration in blood. As a result, the main organs involved are the heart and the 

cardiovascular system (diabetic cardiovascular complications), the kidney (diabetic 

nephropathy), the retina (diabetic retinopathy) and the nervous system (diabetic 

neuropathy). These complications heavily affect the quality of life of the patients and 

impose an immense impact on health care costs. 

Therefore, novel means to prevent and/or treat these devastating diabetic complications 

are needed. Since long-term clinical trials are costly, time-consuming, and difficult to 

conduct, the use of computer-simulated disease models has increased considerably in 

recent years to facilitate the simultaneous evaluation of long-term clinical and economic 

effects of treatment. It is now widely accepted that models can provide valuable 

information for clinical practice and are important tools in medical, regulatory, 

governmental, and public health decision-making. A requirement for diabetes simulation 

models has been identified in the medical and healthcare policy community, and, as a 

result, a number of models have been developed and reported in the literature. 

Given the complex nature of diabetes, the problem of investigating its long-term 

complications can be faced with a multi-level modeling approach. 
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In the present chapter, after a brief introduction on diabetes and its complications, the 

complex-trait nature of the disease will be described. Finally, the multi-level modeling 

approach, representing the general framework of this thesis, will be introduced. 

1.1 Diabetes and its complications 

Diabetes mellitus is a lifelong, incapacitating disease affecting multiple organs, that 

causes a person's blood sugar level to become too high. There are two main types of 

diabetes, referred to as type 1 (T1D) and type 2 (T2D). 

T1D is often referred to as insulin-dependent diabetes. It is also sometimes known as 

juvenile diabetes or early-onset diabetes because it often develops before the age of 40, 

usually during the teenage years. T1D is an autoimmune condition, where immune system 

attacks and destroy pancreatic cells, responsible for insulin secretion. Thus, in T1D, the 

pancreas does not produce any insulin. Insulin is a hormone that regulates blood glucose 

levels. If the amount of glucose in the blood is too high, it can seriously damage the 

body's organs [1]. 

T2D occurs when the body doesn't produce enough insulin to function properly, or the 

body’s cells don't react to insulin. This is known as insulin resistance. T2D is far more 

common than T1D and it usually affects people over the age of 40, although increasingly 

younger people are also being affected. It is more common in people of South Asian, 

African-Caribbean or Middle Eastern descent [1]. 

It is important that diabetes is diagnosed as early as possible so that treatment can be 

started. 

Diabetes cannot be cured, but treatment aims to keep blood glucose levels as normal as 

possible, and control symptoms to prevent health complications developing later. The 

therapy usually consists in a mixture of insulin infusions, diet and physical exercise [1]. 

Worldwide prevalence figures estimate that there are 250 million diabetic patients today 

and that this number will increase by 50% by 2025 [56]. The disease is associated with 

devastating chronic complications including coronary heart disease, stroke and peripheral 

vascular disease (macrovascular disease) as well as microvascular disorders leading to 

damage of kidneys (nephropathy) and eyes (retinopathy). These complications impose an 

immense burden on the quality of life of the patients and account for more than 10% of 

health care costs in Europe [27].  
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In the following, we will focus on the main vascular complications in T1D and T2D, i.e. 

diabetic nephropathy and retinopathy in both T1D and T2D and cardiovascular disease in 

T2D. 

1.1.1 Diabetic nephropathy (DN) 

Around 30% of patients with T1D and T2D develop DN [14]. Once manifest, DN is 

characterized by a progressive decline in kidney function, leading to end-stage renal 

disease (ESRD). DN represents the most common cause of ESRD (and hence the major 

precipitant of dialysis and transplantation therapy) in the Western world [23]. Metabolic 

control and elevated blood pressure are important risk factors, but these act in concert 

with genetic and other factors [23].  

1.1.2 Diabetic retinopathy (DR) 

Most patients with diabetes will develop some degree of DR and 2% will become blind. 

There is a strong correlation between duration of diabetes, glycemic control and 

development of DR. The prevalence of proliferative DR increases from 0% in those with 

less than 5 year duration to 26% after 15 years and to 56% after 20 years duration [36]. 

Both hypertension and dyslipidemia accelerate progression of DR. However, genetic 

factors clearly contribute to individual differences in the rate of progression and extent of 

DR. 

1.1.3 Cardiovascular disease (CVD) 

Up to 75% of all deaths in T2D are due to CVD. Also men and women with T1D have a 

fourfold and sevenfold risk of major CVD [48]. In addition to established risk factors 

such as smoking, dyslipidemia, hypertension and glycemic control [34], genetic factors 

are likely to be playing a substantial role in determining individual risk. Although there 

are no reliable heritability estimates for CVD in diabetic families, siblings of diabetic 

patients suffering from an early myocardial infarction have a 7-fold increased risk of 

CVD. The risk for development of a first myocardial infarction is increased 2-5 fold in 

subjects with diabetes, which makes the risk equivalent to that of a non-diabetic person 

with a previous myocardial infarction [25]. Moreover, the risk for recurrent acute cardiac 

events is more than 2-fold higher in diabetics than in non-diabetics. Patients with diabetes 

also have a 2 to 4-fold increased risk for development of stroke and peripheral arterial 

disease. Diabetes affects stroke outcome as well, with increased risk for subsequent 
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development of dementia, recurrence of a new stroke and death. It is also important to 

note that the relative protection from cardiovascular disease that characterizes pre-

menopausal women is diminished by diabetes. 

1.2 Diabetes as a complex-trait disease 

Although hyperglycemia represents one of the most important risk factors for 

development of diabetic vascular complications, not all hyperglycemic patients seem to 

be at equal risk: other factors clearly modify an individual’s susceptibility to develop 

complications, as reported in the previous section. It is thus clear that diabetes can be 

classified as a complex-trait disease, in which different factors such as genetic profile, 

metabolic and anthropometric phenotype and environmental risk factors, as well as 

individual response to treatments, concur to cause the onset of the disease and the 

development of different complications [51]. This complex nature is common both to 

T1D and T2D, even if a preponderant genetic cause characterizes T1D [42]. 

 

A general scheme of the main variables (and their interactions) involved in a complex 

disease such as diabetes is reported in Figure 1.1. 

 

 
Figure 1.1: General scheme of the multi-level model for diabetic complications. 

where, 

• Genotype represents the genotypic profile of the individual, i.e. the Single 

Nucleotide Polymorphisms (genotypic biomarkers). 

• Phenotype represents phenotypic biomarkers such as: 

PHENOTYPE

TREATMENT

GENOTYPE OUTCOME
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o metabolic and physiological biomarkers (lipids, glycosylated hemoglobin, 

blood, pressure, heart rate, etc.); 

o anthropometric measures (weight, body mass index, etc.); 

o environmental factors (smoke status, physical activity, etc.); 

• Outcome is the target of the study, i.e. diabetes or diabetic complications (Cardio 

Vascular Diseases, Nephropathy, Retinopathy, etc.); 

• Treatment is the intervention variable, representing the specific therapy for the 

individual. 

According to this general scheme, the genotype acts both on phenotype and on outcome, 

while the phenotype acts only on outcome. Treatment acts both on phenotype and 

outcome, but not on genotype. 

1.3 Multi-level approach 

Since diabetes is a complex-trait disease, the problem of investigating its long-term 

complications can be faced with a multi-level modeling approach: the scheme of Figure 

1.1, in fact, represents different kind of variables and interaction between them. 

According to the level of detail which available data allows to reach, the interconnected 

structure of a multi-level model can be decomposed in sub-schemes, each one potentially 

analyzable independently on the others. Of course, the final ambitious aim of such an 

approach is to integrate all the possible sub-models (or at least most of them) in order to 

finally obtain a macro-model able to offer a complete characterization of the studied 

phenomena. Unfortunately, this objective is very difficult to achieve for most of the 

biological problems, given both the paucity of available data and the intrinsic limitations 

in the modeling process. 

In this work, three main levels of study of diabetic complications will be considered, 

according to data availability: i) modeling the effect of genotype on the outcome (Figure 

1.2.A), ii)  modeling the combined effect of phenotype and treatment on the progression of 

the outcome (Figure 1.2.B), iii)  modeling the effect of treatment on the phenotype (Figure 

1.2.C). 

For each approach, novel investigation methodologies are proposed. 

The research presented in this thesis has been supported by the European Union's Seventh 

Framework Program (FP7/2007-2013) for the Innovative Medicine Initiative under grant 
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agreement n° IMI/ (the SUMMIT consortium), whose objective is to identify markers that 

predict the risks of developing diabetes chronic micro- and macro-vascular complications 

with focus on Diabetic Nephropathy, Diabetic Retinopathy and Cardiovascular disease. 

For a more detailed presentation of the concept and organization of the SUMMIT 

consortium, see public available information at http://www.imi-summit.eu/. 

 
Figure 1.2: Possible decompositions of the overall model for a multifactorial diseases: A) focus on the effect 

of the genotype on the outcome; B) focus on the combined effect of genotype, phenotype and treatment 

on the outcome; C) focus on the combined effect of treatment and genotype on the phenotype. 

PHENOTYPE

TREATMENT
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TREATMENT
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1.4 Outline 
Chapter 2 will deal with the first level of study – modeling the effect of genotype on the 

outcome. Data exploited to this aim are SNPs data from Genome Wide Association 

Studies, whose objective is to detect correlation between one or more genetic 

polymorphisms and a discrete trait (the presence or absence of a disease condition). 

Chapter 3 will treat the second level of study – modeling the combined effect of 

phenotype and treatment on the progression of the outcome. To this aim, longitudinal data 

(coming from intervention clinical trials) regarding the main diabetes complications, as 

well as information on clinical variables (the phenotype) and on the treatment will be 

exploited. 

Chapter 4 will focus on the last level of study – modeling the effect of treatment on the 

phenotype – in which data regarding the effect of a drug on a specific target phenotype 

will be exploited. 
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Chapter 2 

 

2 Modeling the effect of genotype on 
diabetes: biomarker selection ad 
subject classification 

 

Referring to the multi-level scheme presented in Figure 1.1, this chapter will focus on the 

effect of the genetic variables on the outcome, as shown in Figure 2.1. 

 
Figure 2.1: Modeling the effect of genotype on the outcome. 

Genetic Association Studies and the objective of their study, i.e. SNPs, will be first 

introduced, with particular regard to Genome Wide Association Studies. Then, the most 

widely used approaches to analyze results coming from these studies will be briefly 

described to provide an exhaustive overview of the state of the art. Finally, a new 

algorithm for biomarker selection and subject classification from Genome Wide SNP data 

will be presented and its performance assessed by a comparison with a penalized logistic 

regression algorithm from the state of the art in simultaneous Genome Wide data analysis. 

PHENOTYPE

TREATMENT

GENOTYPE OUTCOME
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2.1 Single Nucleotide Polymorphisms (SNPs) 

The DeoxyriboNucleic Acid (DNA) represents the hereditary material in humans and in 

most of all the other organisms. 

The biological information is stored into the DNA as a string composed by four chemical 

bases: adenine (A), cytosine (C), guanine (G) and thymine (T). The sequence of these 

bases determines the information available for building and maintaining the organisms. 

DNA bases pair with each other (A-T; C-G) and form structures called “base pairs” (bp). 

Each base is linked to a sugar molecule and a phosphate molecule, forming a nucleotide. 

Within the nucleus of each cell, the DNA macromolecules are packed into structures 

called chromosomes. In humans, each somatic cell contains 23 pairs of homologous 

chromosomes (46 chromosomes in total). In each pair of homologous chromosomes, one 

is inherited from the father,  and one from the mother. 

The genes represent the basic unit of heredity. A gene represents a segment of DNA 

(which physical location on the chromosome is called genic locus), and it contains the 

knowledge for coding proteins, macromolecules with either structural or functional 

biological roles [52]. 

In humans, as in other species, the length of the DNA sequence constituting a gene is 

extremely variable (from few hundreds of bp up to more than 2 millions bp). The Human 

Genome Project [http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml] 

estimated that human DNA sequence contains about 20,000 – 25,000 genes (~ 3% of the 

whole human DNA sequence, which is long ~ 3 billion base pairs). 

More than 99.9 % of DNA sequence is identical between any two individuals. Even 

though most of the DNA sequence is identical, since the human genome sequence is so 

long, there are still many genetic variations. 

Alleles are different versions of the same gene, carrying variations in terms of DNA 

sequence, which determinate the physical characteristics that differentiate individuals 

belonging to the same specie. 

The Single Nucleotide Polymorphism (SNP) is defined as a DNA segment showing 2 or 

more alleles in a population and represents the simplest and most common source of 

variability among individuals [52]. For example, a SNP may replace the nucleotide pair 

G-C on a chromosome with the nucleotide pair A-T on the homologous chromosome, in a 

certain position of the DNA (Figure 2.2). 



 

The combination of allele

called genotype, while a set of 

[52]. 

For an SNP showing 2 alleles in a population, since chromosomes are in pairs, we can 

have 3 possible genotype

combination of the 2 alleles

frequent in the population), and with 

the population), the 3 possible genotypes are: 

respectively, common homozygou
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is to detect correlation between one or more genetic polymorphisms and a discrete trait 

(the presence or absence of a disease condition), comparing the frequencies of SNP 

alleles in two well-defined groups of individuals: cases who have been diagnosed with the 

disease under study, and controls, who are either known to be unaffected, or who have 

been randomly selected from the population. An increased frequency  of a SNP allele or 

genotype in the cases class compared with the controls class indicates that presence of the 

SNP  allele may increase risk of disease. 

According to the a priori knowledge defined by the study design, GAS can be classified as 

follows, as the number of analyzed SNPs increases: 

- Candidate SNPs association studies. This kind of studies focus on a single SNP which 

is suspected to have a causal role in the disease of interest. 

- Candidate genes association studies. The object of the study is not a single SNP, but a 

set of markers (typically 5 - 10) located within the same potentially causative gene. 

- Fine mapping. This kind of studies involve typically up to hundreds of nucleotides; the 

aim is to have a better definition (coverage) of a genome region potentially involved in 

physiological/pathological processes and previously identified by linkage studies or 

genome-wide association studies. 

- Genome Wide Association Studies (GWAS). This approach consists in scanning markers 

across the complete sets of SNPs of many people to identify genetic variations associated 

with a particular disease. Such studies are particularly useful in finding genetic variations 

that contribute to common, complex diseases, such as asthma, cancer, diabetes, heart 

disease and mental illnesses. GWAS are essentially “hypotheses free approaches”, i.e. this 

kind of studies do not require a prior knowledge about the right gene to be analyzed, but 

represent hypotheses generating instruments. 

In the following sub-sections, a focus on GWAS will be presented. 
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2.2.1 Study design 

When planning to perform a GWAS on unrelated individuals based on a case-control 

design, cases are selected on the basis of the trait of interest (i.e. type 2 diabetes), while 

control individuals must be clinically proven to be free not only from the condition of 

interest, but also from other traits that are not common to cases, otherwise a second sub-

phenotype may be introduced in the analysis. The choice of the reference group may 

introduce confounding effects, and therefore an appropriate case-controls matching based 

on some phenotypic, exposure or environmental factors (gender, smoking history, 

ancestry) is required, in order to avoid spurious associations. Limiting factors when 

planning a GWAS are often represented by the difficulty of enrolling a sufficient number 

of cases and matched controls, and by the genotyping costs [5]. 

2.2.2 Genotyping 

The process of examining DNA sequence in order to determine individual’s 

polymorphisms is called genotyping. For the past decade, microarrays have grown in 

popularity as the primary tool for genotype analysis. Recently, however, next-generation 

sequencing (NGS) technologies has been introduced as a promising, new platform for 

genetic analysis, since they parallelize the sequencing process (i.e. s the process of 

determining the precise order of nucleotides within a DNA molecule), producing 

thousands or millions of sequences concurrently [26], thereby allowing to measure a huge 

amount of polymorphisms for each individual at the same time (up to > 1,000,000 SNPs). 

Nevertheless, for genotyping studies, microarrays are still widely adopted as they are 

substantially less expensive than NGS and much more conducive to processing thousands 

of samples required for typical genome-wide associations studies [26]. Illumina [Illumina, 

San Diego, CA] and Affymetrix [Affymetrix, Santa Clara, CA] represent the reference 

technologies for cost genotyping large amount of samples with high coverage in a cost 

effectively way (~ 200 $ for a 370 K SNPs chip). 

Genotyping workflow according to Illumina protocols is represented in Figure 2.3. 
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Figure 2.3: Genotyping process according to Illumina protocol. The schema represent the main steps of the 

Illumina Infinium genotyping workflow. Figure from 

[http://res.illumina.com/documents/products/workflows/workflow_infinium_ii.pdf]. 

Even if genotyping protocols differ between manufacturers, the main steps are common 

both to Illumina and Affymetrix protocols. A brief description of the genotyping 

processes is reported below. 

1. DNA extraction, purification and amplification. Peripheral blood is drawn from each 

enrolled individual and successively DNA is extracted, amplified and purified. 

2. Hybridization on the chip. DNA is labeled using fluorochromes and hybridized to the 

chips, each containing a redundant set of probes for each analyzed SNP. Mismatched and 

crosshybridization problems are avoided by different strategies, according to the 

manufacturer. 

3. Fluorescence intensities acquisition. Fluorescence intensity for each SNP is captured 

for each analyzed sample by a scanner or “arrayer” at a fixed wave-length specific for 

different fluorochrome. 
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4. Genotypes determination. Once fluorescence captures have been extracted, “ad-hoc” 

programs allow for the quantization of the fluorescence intensities and for the genotypes 

determination. These softwares have been specifically developed by Illumina (Bead 

Studio and Genome Studio) and by Affymetrix (BRLMM) and implement multivariate 

clustering strategies for genotypes assignment on the basis of fluorescence intensity 

signals corresponding to each of the two alleles. 

2.2.3 Quality Control 

A preliminary analysis step is represented by data Quality Control, which is necessary to 

filter out low quality data in order to reduce the probability of false positive findings. 

Experimental systems involving biological material are typically prone to errors, often 

non-randomly distributed [5]. This lack of randomness is both due to the very nature of 

the available experimental technologies and to the presence of several concurrent factors 

such as DNA quality and preparation, specific experimental conditions or different skills 

of the experimenters, errors during the phase of genotypes assignment. Non random 

distribution of errors can affect results and reduce the power of the study [5]. Since most 

GWAS aim to identify very slight variations in allele frequencies between cases and 

controls, even the presence of small experimental errors could dramatically affect the 

outcome [6], [16]. Therefore it is necessary to apply filtering procedures in order to 

identify specific SNPs yielding errors in multiple individuals (markers-affecting errors), 

or individuals in the sample with errors across multiple SNPs (problems with the DNA 

sample), and simply exclude them from the analysis. 

The basic Quality Control parameters that could help in identifying and removing low-

quality samples and markers are the following: 

- Samples genotyping rate: fraction of determined genotypes for each sample. This 

measure ranges from 0 (no genotype has been assigned) to 1 (all genotypes have been 

assigned). 

- SNPs genotyping rate: fraction of determined genotypes for each SNPs. This 

measure ranges from 0 (no genotype has been assigned) to 1 (all genotypes have been 

assigned). 
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- MAF value: SNPs showing an extremely low value for the Minor Allele Frequency 

(MAF <0.01/0.05), could represent low genotyping-quality markers or too rare 

polymorphisms [5]. 

- HWE p-value: neutral genetic variants in a large random-mating population are 

expected to display Hardy Weinberg Equilibrium (HWE), under which assumption 

expected genotype frequencies satisfy the rules: E[AA]=p2, E[Aa]=2pq, E[aa]=q2, 

where p and q are the frequency of A and a alleles in the population, respectively. 

Genotyping errors can shift the SNPs observed frequencies from the expected 

proportions, and therefore testing for deviations from the HWE in the control 

population defining a cut-off on the result of the test (the HWE p-value) represents a 

standard approach to detect genotyping errors [53]. Such test can be performed using 

a Pearson goodness-of-fit statistic with one degree of freedom (d.f), under the null 

hypothesis of HWE. 

 

2.3 Univariate Analysis 

Once the preliminary phase of data QC has been performed, the next step usually consists 

in analyzing the whole set of markers, one SNP at a time, by univariate association tests 

under the null hypothesis of no association in order to identify SNPs statistically 

associated with the outcome, once a significance threshold P has been fixed. 

The strength of the association between each single variable (SNP) and the outcome 

(disease/trait) is expressed in terms of p-value, which represents the probability of 

detecting an association that is stronger than that derived from data “by chance”, when 

there is no evidence of association (i.e. a false positive): a very low p-value indicates that 

the observed result would be highly unlikely under the null hypothesis, which will be then 

rejected when the p-value turns out to be less than the significance threshold P [46]. 

The common way to represent the results of such a test is the so-called Manhattan Plot, in 

which, for each SNP, the –log(p-value) is reported, thus placing the most significant 

SNPs in the top part of the plot. Figure 2.4 represents, as an example, the association 

results coming from univariate association tests on a GWAS dataset on myopia [31], 



17 

 

where the –log(thresholds) are very high (i.e. the significance thresholds are very low) 

since a correction for multiple test has been performed (see section 2.3.3). 

 
Figure 2.4: The statistical significance values across the 22 autosomes of each SNP's association with 

refractive error (measured as spherical equivalent) are plotted as −log10P values. X-axis represent the 

location of each SNP on the chromosomes, ordered according to their physical position. Y-axis represents 

the strength of association (-log10(p-value)) corresponding to each SNP. The blue horizontal line 

indicates P = 10
−5

 and the red line indicates P = 5 × 10
−8

. 

The way of testing for association depends on the genetic model assumed for the SNP 

[39]. 

By defining the minor allele as a, the common allele as A, and the risk of developing the 

disease given a certain allele or genotype configuration as R, the most commonly used 

genetic models can be defined as follows: 

- Genotypic model (aa vs aA vs AA). No a priori assumption is made about the 

association between genotype and phenotype, therefore the risk R is assumed to be 

equal for each genotype. 

- Dominant Model (aa/aA vs AA). The underlying assumption of this model is that 

having one (aA) or two copies (aa) of the risk allele a induces the same risk R of 

being affected with respect to AA genotypes. The genotypes aA and aa are 

therefore pooled into the same group (aa/aA) and their frequency compared with 

the estimated frequency of the AA genotyes. 
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- Recessive Model (aa vs aA/AA). The assumption is that the risk R linked to a 

certain allele a is manifest only if it occurs in double copy aa. The frequency of aa 

genotype is therefore compared with aA/AA genotypes frequency. 

- Allelic or multiplicative model (a vs A): the unity of the analysis is represented 

by alleles instead of genotypes. It assumes a multiplicative effect of the allele 

dosage (i.e. if heterozygote individuals aA risk R of developing the disease with 

respect to AA individuals, homozygote aa individuals risk R*R with respect to AA 

individuals). 

- Additive or trend model (aa > aA > AA). The unity of risk is represented by 

alleles and it assumes that the risk linked to a certain allele has an additive effect 

on the case/control outcome (i.e. if heterozygote individuals aA risk R of 

developing the disease with respect to AA individuals, homozygote aa individuals 

risk R+R with respect to AA individuals). 

The most widely employed association tests are based on the Pearson’s χ2 test and 

Cochran-Armitage test for trend. 

2.3.1 Pearson χ2 test.  

Considering a pool of ncase unrelated cases, affected by the disease of interest, and 

unaffected ncont controls for which a certain marker with alleles A and a has been 

genotyped, the sample genotype data can be represented by a 2 x 3 contingency table, as 

represented in Table 2.1.a, where the total number of subject is n = ncase + ncont. The 

contingency table can be analyzed directly using an  observed-expected test statistic, 

which has a χ2 distribution on two degrees of freedom.  

The χ2 statistic tests for departure from the expected values across cells in the table. Thus 

the observed value for AA genotype in cases (O1 = N11) is compared with its expected 

value (E1) given the total number of cases and the total number of AA genotypes, so E1 = 

nAA·ncase/n. The full test statistic is given by equation (2.1): 

 

 � = � ��� − ��	
��
�

��
   ~  �
 (2.1)   
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where the summation is over all six cells in the table, and Oi are the observed values N11, 

N12, N13, N21, N22, N23 in each cell. Notice that this test statistic compares the observed 

number of AA genotypes in cases with that expected assuming both cases and controls 

have the same frequency of AA genotypes. 

The Pearson’s χ2 test can be used for each genetic model, simply modifying the 

contingency table, as shown in Table 2.1. 

(a) Full genotype table for a generic genetic model 
  AA Aa aa 
Cases  N11 N12 N13 
Controls  N21 N22 N23 
 

(b) Dominant model: allele B increases risk 
  AA Aa + aa 
Cases  N11 N12 + N13 
Controls  N21 N22 + N23 
 

(c) Recessive model: two copies of allele B required for increased risk 
  AA + Aa aa 
Cases  N11 + N12 N13 
Controls  N21 + N22 N23 
 

(d) Multiplicative model: r-fold increased risk for AB, r2 increased risk for 
BB. Analyzed by allele, not by genotype 

  A a 
Cases  2N11 + N12 N12 + 2N13 
Controls  2N21 + N22 N22 + 2N23 
 

(e) Additive model: r-fold increased risk for AB, 2r increased risk for BB. 
Genotypes analyzed by Armitage’s test for trend 

  AA Aa aa 
Cases  N11 N12 N13 
Controls  N21 N22 N23 
 

Table 2.1: Contingency tables for case control analyses, by genetic model. Test 1 is a baseline analysis, and 

any  further analysis should be driven by prior hypothesis. a, b, c, d, e, f are genotype counts observed in 

cases and controls. Figure from [39]. 

 

2.3.2 Cochran-Armitage test for trend 

For complex traits, it is widely thought that contributions to disease risk from individual 

SNPs will be often roughly additive – that is, the heterozygote risk will be intermediate 

between the two homozygote risk. The Pearson’s χ
2 test have reasonable power regardless 

of the underlying risks, but if the genotype risks are additive they will be not as powerful 
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as tests that are tailored to this scenario. In fact, when data consist of a series of 

proportions occurring in groups which fall into some natural order, the question asked is 

then not so much whether the proportions differ significantly, but whether they show a 

significant trend, upwards or downwards, with the ordering of the groups. In this case, the 

Cochran-Armitage test can be applied [3]. It modifies the Pearson’s χ2 test to incorporate 

a suspected ordering in the effects of the three categories of the SNP. The idea is to test 

the hypothesis of zero slope for a line that fits the three genotypic risk estimates best (see 

example in Figure 2.5). 

 
Figure 2.5: Example of Armitage test of single-SNP association with case–control outcome. The dots 

indicate the proportion of cases, among cases and controls combined, at each of three SNP genotypes 

(coded as 0, 1 and 2), together with their least-squares line. 

Referring to Table 2.1.e, the trend statistic is: 

 � = � ����
��
 − �
��
	�
��
  (2.2)  

where R1 = N11 + N12 + N13 is the number of cases, R2 = N21 + N22 + N23 is the number of 

controls, and the ti are the weights selected according to the suspected mode of 

inheritance. For example, in order to test whether allele A is dominant over allele a, the 

choice t = (1, 1, 0) is locally optimal. To test whether allele A is recessive to allele a, the 

optimal choice is t = (0, 1, 1). To test whether alleles A and a are codominant, the 

choice t = (0, 1, 2) is locally optimal. For complex diseases, the underlying genetic model 

is often unknown. In GWAS, the additive (or codominant) version of the test is often 

used. The test has good power in this case but power is reduced by deviations from 
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additivity. In an extreme scenario, if the two homozygotes have the same risk but the 

heterozygote risk is different (overdominance), then the Armitage test will have no power 

for any sample size even though there is  true association. 

2.3.3 Correction for multiple tests 

Once a set of association tests have been performed, a significance threshold (usually a 

cut-off value on p-value) must be fixed in order to discriminate between statistically 

associated and null SNPs. The question of what strength of evidence should be considered 

significant has yet to be fully resolved in genetic association analysis [19]. On the one 

hand, multiple testing issues arise in most studies, whether based on candidate genes or 

genome wide scans, with attendant issues of how to quantify the multiplicity, what error 

rate to control and which method to use [40]. 

The following most commonly used approaches for dealing with the multiple testing issue 

are the following: 

- Bonferroni Correction. Bonferroni correction [9] is the simplest procedure for 

assessing the significance threshold when multiple tests have been performed. 

This approach consists in rescaling the significance threshold α by the number of 

tests that have been performed N, in order to obtain a new multiple testing-

adjusted significance threshold α’: 

 � = 1 − �1 − ��	� → �′ ≈ �� (2.3)   

 

- False Discovery Rate (FDR). Bonferroni correction is often considered an 

overconservative correction, with the deriving risk of losing biologically relevant 

associations [40]. A less conservative approach for facing the issue of multiple 

testing is represented by the calculation of the False Discovery Rate (FDR) as 

described by Benjamini and Hochberg [8]. For a family of hypothesis tests, let R 

denote the number of rejected null hypotheses, and V the number of falsely 

rejected null hypotheses. The FDR is then computed as follows: 

 ��� = �  !� "� > 0% ∙ '�� > 0	 (2.4)   



22 

 

Benjamini and Hochberg introduced a step-up procedure for the control of FDR: 

given m null hypotheses to test H1, …, Hm, and p1, …, pm their correspondent p-

values, chosen a significance level α, the control procedure works as follows: 

a. order the p-values in increasing order and denote them by p(1), …, p(m) 

b. find ( = max� ,-��	 ≤ �/ �0 

c. reject all H(i) for i = 1, …, k 

This procedure is valid when all the m hypotheses are independent, otherwise step 

b changes into: 

b. find ( = max� 1-��	 ≤ �/ 2∑ 456 78695 : 

 

2.3.4 Univariate Analysis: drawbacks 

The described approaches examine one SNP at the time in relation to a defined trait. This 

over-simplistic strategy is not able to capture the multi-factorial nature of complex 

diseases, leading to the identification of a large set of associated SNPs (correlated by 

Linkage Disequilibrium, i.e. the association between two alleles located near each other 

on a chromosome, such that they are inherited together more frequently than would be 

expected by chance) but missing potential informative interactions [44]. 

Hoh and Ott [30] described the case in which the simultaneous presence of three 

genotypes at different loci induces a disease. By analyzing them though univariate models 

they would not result associated with the trait, since they share a low penetrance (i.e. poor 

association). This example is known as the Simpson’s paradox and it explains also how 

the marginal independence of two variables (i.e. the evidence that knowledge of the first 

variable’s value doesn’t affect the belief in the second variable’s value) does not 

necessary require their independence when other variables are taken into account [44]. 

 

2.4 Multivariate Analysis 
The extremely large numbers involved in a GWAS (O(106) SNPs in O(103) individuals) 

have led the vast majority of studies to rely upon single SNP association tests, as already 
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described. Complex diseases, however, have an heterogeneous nature, arising from 

complex patterns of interaction between a set of genetic traits and the environment: to 

fully capture the optimal set of genetic biomarkers, thus, all SNPs in a GWAS should be 

analyzed simultaneously in a multivariate framework [29].  

Multivariate models aim to do this, thus overcoming the described limitations that 

characterize the standard approaches. Moreover, they allow also to learn a rule for 

classifying unknown subjects as cases or controls, given their genetic profile and, 

possibly, other environmental covariates. 

The most widely employed multivariate tests are based on Penalized Logistic Regression 

models.  

2.4.1 Penalized Logistic Regression 

Although the more usual way of modeling case and control data is in terms of probability 

distribution of genotype conditional upon disease status, reflecting the manner in which 

data are generated, Prentice and Pyke [43] demonstrated that comparable results could be 

obtained by applying a likelihood based approach in which case-control condition is 

considered a random outcome. 

Given the random binary outcome Y (assuming only 2 possible states: 0 = control, or 1 = 

case) and one or more independent variables X = X1, …, Xp (SNPs in this case) the 

relation between Y and X can be modeled as the probability P(Y|X). 

Denoting P(Y = 1| X = x1, …, xp) with π, that is the probability that an individual 

randomly drawn from the population is a case, equation (2.5) reports the logistic 

regression model 

 ln =1 − = = >? + � >�A�
B

��
  (2.5)   

 

Where >? + ∑ >�A�B��
  represents the linear relation between a function of π (named logit) 

and the independent variables xi, in this case the SNPs of interest for the individual. 

From equation (2.5) the probability π can be computed as: 
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 = = CDEF∑ D6G6H6951 + CDEF∑ D6G6H695  (2.6)   

Equation (2.6) states that the probability for the individual to be a case is a non linear 

function of his SNPs’ values x1, …, xp and it ranges between 0 and 1. Figure 2.6 reports 

an example of equation (2.6) with only one independent variable x and parameters value 

β0 = 0 and β1 = 1. 

 
Figure 2.6: Example of logistic regression model in the case of a single independent variable x. 

 

The probability for the observation Y = yi is given by: 

 '�I� = J�|A�	 = �=	L6 ∙ �1 − =	
ML6 (2.7)   

Given N independent observation (i.e. N different patients) the maximum likelihood 

estimation maximizes the log-likelihood for the N observations: 

 N�O	 = �PJ� ∙ lnQ=�∗S + �1 − J�	 ∙ lnQ1 − =�∗STU
��
  (2.8)   

 OV = WXYmaxO PN�O	T (2.9)   

In the case of GWAS, when the number of markers is larger than the number of test 

subjects, since only a very small set of SNPs (compared to the total number of SNPs) is 

π (x)

0

1

x
-5 5
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likely to have an effect on the outcome, a penalization term is introduced in the logistic 

regression model, in order to obtain sparse solution, i.e. select few predictive variable 

without information loss [54]. These methods operate by shrinking the size of the 

coefficients of markers with little or no apparent effect on a trait down to zero. 

The main penalization strategies are the following: 

1. LASSO regression (L1 penalization regression). The Least Absolute Shrinkage 

and Selection Operator (LASSO) penalized regression, proposed by Tibshirani 

[50], estimates the parameters of the logistic model adding to the likelihood 

the penalization term given by: 

 Z
 = |O| = �|>�|B
��
  (2.10)   

The model parameters vector β is then estimated by: 

 OV = WXYmaxO PN�O	 − [ ∙ |O|T (2.11)   

Where λ is the weight of the penalization term. 

In a Bayesian interpretation, Lasso Regression can be derived as Bayes posterior 

mode under independent double-exponential priors for the βi [50]. Lasso 

Regression shrinks coefficients β1, β2, …, βp setting most of them to 0 and thus 

selecting the most significant variables. However, for a problem with N 

observation, it can select no more than N variables. 

2. Ridge regression (L2 penalization regression). The L2 penalized regression, 

proposed by Hoerl and Kennad [28], estimates the parameters of the logistic 

model adding to the likelihood the penalization term given by: 

 Z
 = |O|
 = � >�
B
��
  (2.12)   

The model parameters vector β is then estimated by: 



26 

 

 OV = WXYmaxO PN�O	 − [ ∙ |O|
T (2.13)   

Where λ is the weight of the penalization term. 

In a Bayesian interpretation, Ridge Regression can be derived as Bayes posterior 

mode under independent Gaussian priors for the βi [28]. 

Ridge regression shrinks coefficients β1, β2, …, βp but  does not set any one to 0, 

thus makes no real variable selection. 

3. Elastic Net regression (L1L2 penalization regression). The L1L2 penalized 

regression, proposed by Zou and Hastie [57], estimates the parameters of the 

logistic model adding to the likelihood the penalization term given by a 

convex combination of L1 and L2 penalties. The model parameters vector β is 

then estimated by: 

 OV = WXYmaxO PN�O	 − [ ∙ Q�1 − �	 ∙ |O| + � ∙ |O|
ST (2.14)   

Where λ is the weight of the global penalization and α determines the relative 

weight of L1 and L2 penalties. 

Elastic Net produces sparse models encouraging a grouping effect, where strongly 

correlated predictors tend to be in or out the model together. 

4. Minimax Concav Penalty (MCP regression). Zhang et al. [55] propose a 

penalization term give by: 

 \],_�>	 = `[> − >
2W b\ > ≤ W[12 W[
 b\ > > W[c (2.15)   

The effect of the penalty is determined by the gradient of equation (2.15): 

 
d\],_d> �>	 = e[ − >W b\ > ≤ W[0 b\ > > W[c (2.16)   
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trend ATT) and simple forward stepwise regression (FSTEP). The authors explored the 

performances of penalization in selecting SNPs as predictors in two simulated genetic 

association studies. In particular, the methods were first compared with respect to 

detection of effect, in which detection of an allele in linkage disequilibrium (r2 > 0.05) 

with a true causal variant counted as a success (and any other detection counted as a false 

positive), and second with respect to localization/differentiation, in which only counted 

detection of the true causal locus itself as a success. In the first simulation study, a GWAS 

was simulated by generating 500 replicate datasets, each composed of 1000 cases and 

1000 controls, 4000 SNPs and 6 causal loci. In the second simulation study, a Fine 

Mapping study was simulated by generating 500 replicate datasets, each composed of 

1000 cases and 1000 controls, 3 given gene regions (CYP2D6, CFTR and CTLA4, 

containing 110, 190 and 228 SNPs respectively) and 5 causal loci within each region. 

Since all penalized regression methods required input of one or more values for the 

penalization parameter/s (to which we can refer as λ), rather than finding the best value 

for λ, results were analyzed in terms of AUC (Area Under Curve) in the ROC (Receiver 

Operating Characteristic) space, as the penalty parameter λ was varied. In particular, with 

respect to the first simulation study,  Figure 2.8 shows the relationship between true and 

false-positive detection for each of the methods as λ is varied, while, with respect to the 

second simulation study, Figure 2.9 shows he relationship between true and false-positive 

detection for each of the methods as λ is varied in the three gene regions of interest. 

Figure 2.8 and Figure 2.9 show similar performances between the different multivariate 

methods, with NEG giving the overall best and ATT the overall worst performance. 

Although larger parameter estimates are always more heavily penalized, methods that 

apply larger relative penalties on small parameters estimates and relatively lower 

penalties to larger estimates performed better and more accurately estimate the effect size 

of the selected SNPs. The superior performance of the HyperLasso regression with 

respect to detection as well as with respect to differentiation/localization of effects makes 

it a gold standard for GWAS SNPs analysis [4].  
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The problem of robustness for multivariate approaches
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greatly influence subsequent steps, such as the definition of targets for clinical and 

pharmaceutical applications, as well as early diagnosis and treatment of diseases. 

methods described in the previous section for the discovery of biomarkers 

throughput data often provide results with limited overlap or reduced 

21], [10]. As summarized in [18], these difference in results are 
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The problem of robustness for multivariate approaches 
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methods described in the previous section for the discovery of biomarkers of complex 

data often provide results with limited overlap or reduced 

difference in results are 
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1. heterogeneity of both experimental protocols and computational pipelines 

carried out for the analysis; 

2. dataset size, which often include few subjects (some hundreds) with respect to 

the number of features (up to O(106) SNPs); 

3. heterogeneity of the complex disease,  responsible for high correlation in the 

features, some of these being real causal loci, other being correlated by linkage 

disequilibrium. 

As a result, different features may thus be selected under different settings, even when 

good classification accuracy is reached (it is in principle possible to have a lack of 

stability due to the presence of many highly correlated features, even with accuracy equal 

to one). 

The stability issue in feature selection has received much attention recently, as well as the 

precision of biomarker identification, i.e. the ability to select true biomarkers, defined as 

features biologically related to the physiological or clinical condition under study as cause 

or effect of it [17], [58], [2]. 

In the next section, a new algorithm for biomarker selection and subject classification 

from genome-wide SNPs, developed to effectively handle the problem of robustness in 

the biomarker discovery will be presented. 

 

2.5 Bag of Naïve Bayes 
As described in the previous sections, the analysis of genome-wide SNP data for complex 

diseases mainly suffers from two, intertwined problems: on the one hand, multifactorial 

diseases are caused by complex patterns of interaction between multiple genetic traits and 

the environment, on the other hand, linkage disequilibrium confounds the search for 

genetic biomarkers, because of the non-random association between the true genetic 

causes and the SNPs in genomic regions close to them, thus resulting in a lack of 

precision and stability of the lists of biomarkers selected by different methods, as reported 

in section 2.4.2. 
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In this section a new algorithm, Bag of Naïve Bayes (BoNB), developed to effectively 

tackle both of these problems, is presented. 

As reported in section 2.4, the most widely used methods for the simultaneous SNP 

analysis on a genome wide scale relay on the penalized logistic regression framework, 

where SNPs are modeled as discrete variables from the domain {0,1,2} and a log-additive 

model of genetic effect on the disease is assumed. 

BoNB is based on Naïve Bayes (NB) classification [41], thus it relies on contingency 

table analysis without having to assume a pre-specified model of genetic effect and, 

differently from logistic regression methods, it can easily handle missing values in the 

data, without having to perform imputation. Three main strategies are exploited in BoNB 

to tailor the Naïve Bayes framework to Genome Wide SNP data analysis: (a) a bagging of 

Naïve Bayes classifiers, to improve the robustness of the predictions, (b) a novel strategy 

for ranking and selecting the attributes used by each bagged classifier, to enforce attribute 

independence, and (c) a permutation-based procedure for selecting significant biomarkers, 

based on their marginal utility in the classification process. 

Before describing the algorithm, a brief introduction on the Naïve Bayes Classifier is 

reported in the following. 

2.5.1 Naïve Bayes Classifier 

The Naïve Bayes classifier (NB) is one of the most efficient classification algorithms for 

machine learning and data mining [41]. NB has been widely used for classification 

purposes in the biomedical fields and, more recently, in the context of GWAS [44]. 

The reasons of its diffusion are essentially its good classification performance and 

computational efficiency. NB is the simplest form of Bayesian classifier, in which all the 

variables are assumed to be independent given the value of the outcome [41]. 

Given a dataset X = {X1, …, Xn}, consisting of n observations (subjects) of p attributes 

(SNPs), and a set Y of class labels, one for each observation (case/control), a Naïve Bayes 

classifier estimates, from the dataset D, a classification rule in the form: 

'�I = Jf|�
, ⋯ , ��	 = '�I = Jf	 ∙ ∏ '���|I = Jf	���
∑ '�I = Jf	Bi�
 ∙ ∏ 'j��kI = Jil���
  (2.17)   
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The classification rule of equation (2.17) states that the probability of a subject being in 

class yk, given a combination of values for the attributes X1, . . ., Xp, is equal to the a priori 

probability of class yk, P(Y = yk), times the probability of each attribute given class yk, 

P(Xi|Y = yk): the implicit assumption below this classification rule is that attributes X1, . . ., 

Xp are all conditionally independent given Y. 

Given discrete-valued inputs and binary outcome, the algorithm learns the probability 

distribution of equation (2.17) estimating two sets of parameters. The first is 

m�if = 'j�� = A�ikI = Jfl ≅ #�p�� = A�i˄I = Jfq + N#�PI = JfT + Nr ,
s = 1, … , r (2.18)   

For each input attribute Xi, each of its possible values xij (J = 3 in case of SNPs) and each 

of the two possible values yk of Y. The #D{ x} operator returns the number of elements in 

the set D that satisfy property x. The second is the prior probability over Y: 

=f = '�I = Jf	 = #�PI = JfT + N|�| + 2N  (2.19)   

Where |D| denotes the number of elements in the set D. 

The l term is the only tunable parameter of the Naïve Bayes algorithm and it is known in 

the Bayesian literature as Equivalent Sample Size or Dirichlet Weight [41], and 

represents a prior probability which prevents the class-conditional probabilities from 

becoming zero when training attributes are sparsely populated. 

2.5.2 Methods 

BoNB consists in an ensemble of Naïve Bayes Classifiers, trained on GWAS data with 

the procedure known as Bootstrap Aggregating or Bagging [12]. 

Given a training dataset X, the Bagging procedure starts by computing a set of Bootstrap 

replicates of X, i.e. a set {X(1), …, X(B)} of datasets, each one obtained by sampling n 

observations with replacement from the training set X [20]. A Naïve Bayes Classifier 

NBC(b) is then trained on each Bootstrap sample X(b). Classification of unseen subjects, 

drawn from an independent test set, is then obtained by majority vote or weighted average 

of the output class probabilities computed by each NBC(b) (Figure 2.10). Such an 

approach is known not only to increase the robustness of the predictions in terms of 
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classification accuracy [12], but also to improve the precision and stability in the step of 

feature selection [18]. 

 
Figure 2.10: Schematics of the BoNB algorithm: B Bootstrap samples {X(1),…, X(B)} are drawn from a 

GWAS training dataset X; B Naïve Bayes Classifiers (NBC) are trained on the Bootstrap samples, with the 

novel procedure for attribute ranking and selection; predictions of unseen subjects from a GWAS test 

dataset are carried out independently by each NBC and class probabilities are then averaged; biomarker 

selection is carried out with the novel permutation-based procedure, exploiting Out-of-Bag (OOB) samples. 

 

Given the binary nature of the case/control classification problem and the frequent 

unbalance between the number of cases and controls in a GWAS, classification 

performances are evaluated by the Matthews Correlation Coefficient (MCC, [12]). The 

MCC is defined as: 

 uvv = �- ∙ �� − \- ∙ \�w��- + \-	 ∙ ��- + \�	 ∙ ��� + \-	 ∙ ��� + \�	 (2.20)   

where tp, tn, fp and fn stand for true positives, true negatives, false positives and false 

negatives, respectively. 

The MCC is often preferred to standard classification accuracy, i.e. to the proportion of 

correctly classified examples, because it is not sensitive to class unbalance: the MCC, in 
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fact, ranges from -1 (all examples incorrectly classified) to 1 (all correctly classified) and 

equals 0 in case of majority classification, i.e. when all labels are assigned to the most 

represented class. 

For estimating probabilities as in equation (2.17), the Naïve Bayes Classifier makes the 

assumption that the attributes {X1, …, Xn} are all conditionally independent of one 

another, given Y . Such an assumption is unlikely to hold if all the SNPs of a GWAS are 

exploited as attributes, because of genetic linkage. Moreover, computing equation (2.17) 

for the whole SNP set can be computationally heavy and can lead to numerical and 

overfitting problems. 

A procedure for selecting a good set of independent SNPs for each NBC(b) was thus 

developed. 

The procedure first ranks each SNP according to the classification performance obtained 

on the training set X(b) itself by using the SNP as a single attribute of the NBC(b). To 

account for possible class unbalance, classification performance is assessed with the MCC 

(equation (2.20)). The obtained MCC represents the score of the SNP. SNPs are then 

ranked in decreasing order of score, obtaining a ranked list for each NBC(b). 

In the second step, SNPs are iteratively added, in decreasing order of score, as attributes 

of each NBC(b) from its corresponding ranked list, computed on X(b). Each time a SNP is 

included as an attribute, all the SNPs in the ranked list that are both close to the SNP on 

the genome (distance < 1Mb) and correlated with it (r2 > θ, where r2 is the squared 

correlation coefficient and θ is a user defined threshold) are removed from the list: such 

an approach enforces attribute independence, thus coping with the problems arising from 

genetic linkage. Rather than including one SNP at a time, uncorrelated SNPs are added in 

groups of exponentially increasing size, starting from one SNP and doubling the size at 

each new addition. New SNPs are added as long as the generalization ability of NBC(b) 

increases: to estimate the generalization ability, each NBC(b) is tested on the 

corresponding Out-of-Bag sample OOB(b), consisting of all the observations left out from 

X when sampling X(b), and the MCC of the prediction is measured. The exponential 

increase in the number of added attributes allows BoNB to reach the adequate size for the 

attribute set of each NBC in a logarithmic number of steps. 
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Such an attribute selection procedure, iterated for the B bootstrap samples, results in an 

ensemble of B Naïve Bayes Classifiers, each with a possibly different set of features. 

Classification of new subjects, the first objective of GWASs, is then obtained by having 

each NBC estimate output class probabilities and by averaging the probabilities across all 

the B NBCs. Classification performance of the ensemble of NBCs can then be assessed on 

an independent GWAS test set, by measuring the MCC of the predictions. 

For the second objective of GWASs, biomarker selection, a procedure originally designed 

for the Random Forests bagged classifier [11] was adapted for BoNB: for each of the 

SNPs included as attributes by at least one NBC, the genotype of the SNP is randomly 

permuted in the OOB sets, each NBC(b) is tested on its corresponding OOB(b) and the 

relative decrease in MCC due to the permutation is recorded. Such a measure, which can 

be used as an indicator of the importance of each selected attribute given all other 

selected attributes, is defined marginal utility (MU). 

For each SNP, the permutation procedure returns a list of values of MU, one value for 

each NBC that included the SNP: MUs significantly greater than zero are tested with a 

one-tailed Wilcoxon signed rank test on the list of values, selecting as biomarkers the 

SNPs for which the p-value of the test is lower than 0.05. 

2.5.3 Results 

BoNB was tested on the WTCCC case-control study on Type 1 Diabetes [13], where 

approximately 2000 T1D cases and 3000 healthy controls were examined. Each subject 

was genotyped on the Affymetrix GeneChip 500K Mapping Array Set. A small number 

of subjects was excluded according to the sample exclusion lists provided by the WTCCC. 

In addition, a SNP was excluded if (i) it is on the SNP exclusion list provided by the 

WTCCC; (ii) it has a poor cluster plot as defined by the WTCCC. The resulting dataset 

consists of 458376 SNPs, measured for 1963 cases and 2938 controls. 

The BoNB algorithm exposes two parameters to the user: the number of Bootstrap 

replicates and Naïve Bayes Classifiers, B, and the threshold on the squared correlation 

coefficient above which two SNPs are considered correlated, θ. B and θ were set to200 

and 0.1, respectively (see section 2.5.4 for an analysis of how performance is affected by 

variations of the parameters B and θ). 
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Classification performance was estimated on independent train-test set pairs obtained by 

repeatedly sub-sampling at random 90% of the dataset for training and 10% for testing. 

The procedure was iterated 10 times and classification performance was assessed with the 

MCC of the predictions on the test sets. The list of selected biomarkers, on the other hand, 

was computed on the whole dataset. 

Since BonB is based on the Naïve Bayes classification framework and has been 

developed as a valid alternative to penalized logistic regression methods, classification 

performance was compared with the ones obtained by a standard Naïve Bayes Classifier, 

trained on all the SNPs that reached the significance threshold of 5×10-7 (as in [13]) in a 

single 2df χ2 test of association with a general genetic model, and by HyperLASSO, a 

logistic regression method representing the gold standard for the simultaneous analysis of 

all SNPs in a GWAS, described in section 2.4.1. The former algorithm was chosen to 

assess the improvement of BoNB both in terms of biomarker selection, with respect to a 

standard univariate test, and in terms of classification performance, with respect to the 

algorithm on which BoNB is based. The latter algorithm was chosen because of its best 

performance among classification and biomarker selection methods for genome-wide data, 

as reported in [54] and [4], and because of the complete availability of the source code. 

On the experimental dataset, BoNB reached an MCC of 0.55 ± 0.03 (mean ± standard 

deviation), significantly higher than the ones reached by both the standard Naïve Bayes 

Classifier (0.31 ± 0.05, Wilcoxon signedrank p-value 0.002) and by HyperLASSO (0.45 

± 0.03, p-value 0.002). Figure 2.11 (left panel) shows the boxplots of the MCC obtained 

by the three algorithms on the ten iterations of the sub-sampling procedure. For the sake 

of completeness, Figure 2.11 (right panel) shows also the boxplots of classification 

accuracy. 
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Figure 2.11: Boxplots of MCC (left panel) and classification accuracy (right panel) of the simple Naïve Bayes 

classifier, HyperLASSO and BoNB on ten random sub-samplings of the WTCCC T1D dataset. 

 

To further analyze the behavior of the three methods at different levels of the output 

function (i.e. of the output class probability for BoNB and the standard Naïve Bayes 

classifier and of the logistic regression value for HyperLASSO) in Figure 2.12 the 

Precision vs Recall curve and the Receiver Operating Characteristic, or True Positive 

Rate vs True Negative Rate curve, of the three algorithms on one of the ten random sub-

samplings are reported (the behavior on the other sub-samplings is similar). As it is clear 

from the figure, the performance of the standard Naïve Bayes classifier is completely 

dominated by the performance of both BoNB and HyperLASSO. Concerning the two 

latter algorithms, one can observe that HyperLASSO has a better performance at the two 

extremities of the curves, i.e. for subjects whose logistic regression value is closer to the 

maximum or the minimum; moving from the extremities to the middle scores, BoNB 

outperforms HyperLASSO, being indeed able to reach overall higher MCC and 

classification accuracy. 
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Figure 2.12: Precision vs Recall curve (left panel) and Receiver Operating Characteristic (right panel) of the 

standard Naïve Bayes classifier, HyperLASSO and BoNB on a random sub-sampling of the WTCCC T1D 

dataset. 

 

For biomarker selection, BoNB was run on the whole dataset and its results compred with 

the biomarkers identified by HyperLASSO and by the general 2df test (see section 2.3.1). 

The average number of attributes included by BoNB in each NBC was 3.24, 75 SNPs 

were included by at least one NBC and 9 SNPs by at least 5% of the NBCs (see Table 

2.2). Among the 9 SNPs, only 7 SNPs reached the significance level on the permutation 

test and were chosen as genetic biomarkers (marked in bold in Table 2.2). All the 7 

selected SNPs fall into regions of interest for Type 1 Diabetes according to the on-line 

database T1DBase [http://www.t1dbase.org] (cytobands p13.2 on chromosome 1 and 

p21.32 on chromosome 6, also known as the MHC region) and their association with the 

disease was confirmed in a larger meta-analysis, subsequent to the WTCCC study [7]. 

The squared correlation coefficients between all pairs of selected SNPs are all lower than 

0.155, indicating low redundancy in the information coded by the set of 7 SNPs. 

Compared to the 394 SNPs that reached the significance level on the 2df general test, both 

the list of 75 SNPs used for classification and the list of 7 biomarkers selected by BoNB 

are more compact, but this does not prevent BoNB to reach significantly higher 

classification performance. 

HyperLASSO selected 8 SNPs, all in the MHC region of chromosome 6: 4 of the SNPs 

are in the list of biomarkers selected by BoNB, thus suggesting a certain coherence 

between the two algorithms and providing further confidence on the identified biomarkers. 
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SNP Chr Gene Relation % 
NBCs 

MU 
(median) 

rs6679677 1 RSBN1 downstream 7 0.033 

rs9266774 6 MICA upstream 5.5 0.011 

rs805301 6 BAT3 intron 17.5 0.043 

rs492899 6 SKIV2L intron 8.5 0.025 

rs9273363 6 HLA-DQB1 downstream 100 0.835 

rs9275418 6 HLA-DQB1 upstream 80 0.160 

rs6936863 6 HLA-DQA2 upstream 8 0.08 

rs9784858 6 TAP2 intron 5 0.008 

rs3101942 6 LOC100294145 exon 21.5 0.045 

Table 2.2: SNPs selected as attributes for at least 5% of the Naïve Bayes Classifiers by BoNB on the WTCCC 

T1D dataset, with B = 200 Bootstrap samples and classifiers. First column: dbSNP RS ID. Second column: 

SNP chromosome. Third and fourth column: annotated gene and relation with the SNP. Fifth column: 

percentage of Naïve Bayes Classifiers that included the SNP as attribute. Sixth column: median of the 

marginal utility of the SNP. SNPs selected as genetic biomarkers by the permutation procedure are marked 

in bold. 

2.5.4 Sensitivity analysis 

As already pointed out in the results section, the BoNB algorithm exposes two parameters 

to the user: the number of Bootstrap replicates and Naïve Bayes Classifiers, B, and the 

threshold on the squared correlation coefficient above which two SNPs are considered 

correlated, θ. In this section a brief analysis to describe how performance is affected by 

variations of the parameters B and θ was carried out. 

Figure 2.13, left panel, represents the MCC obtained by BoNB on ten random sub-

samplings of the WTCCC T1D dataset, for B = 200 and θ ranging from 0.02 to 0.5. As it 

is clear from the figure, θ = 0.1 is optimal and results in a significantly higher 

classification performance (Kruskal-Wallis test p-value 3.7×10-4). 

Concerning the number of Bootstrap replicates B, on the other hand, one can observe 

from Figure 2.13, right panel, that classification performance is not much sensitive to 

variations of B (Kruskal-Wallis test p-value 0.98), though it is slightly higher for B = 50 

and 200. Analyzing the list of selected biomarkers, BoNB returns the same seven 

biomarkers reported in Table 2.2 for B = 200 and 500, adds SNP rs2856688 to the list for 

B = 100 and misses SNPs rs6679677 and rs492899 for B = 50. Given the consistency 

among the results for higher values of B, suggested values for BoNB parameters are thus 

θ = 0.1 and B = 200. 
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Figure 2.13: Box plots of the MCC obtained by BoNB on ten random sub-samplings of the WTCCC T1D 

dataset, for B = 200 and θ ranging from 0.02 to 0.5 (left panel) and for θ = 0.1 and B ranging from 50 to 

500 (right panel). 

2.5.5 Computational complexity 

For analyzing the computational complexity of BoNB, the pseudocode summarizing the 

training phase and the biomarker selection phase of the BoNB algorithm is reported in the 

following: 

// Training 

1 for  b = 1 to B 
2     [X(b), OOB(b)] = bootstrap replicate from X 
3     for  s = 1 to p 
4         Compute the contingency table for SNP s from X(b) 
5         Compute the Naïve Bayes attribute score of s 
6     L(b) = list of SNPs in decreasing order of score 
7     Initialize NBC(b) as a Naïve Bayes Classifier with no attributes 
8     Extract M = 1 new attributes for NBC(b) from the top of L(b), excluding from future 
additions all SNPs at distance > 1 Mb and with r2 < θ 
9     while MCC of NBC(b), tested on OOB(b) with the new attributes, increases 
10       Add the new attributes to NBC(b) 
11       Update M = 2 * M 
12       Extract M new attributes from the top of L, excluding each time from future 
additions all SNPs at distance > 1 Mb and with r2 < θ 
 
// Biomarker selection 

13 for  s in all SNPs selected by at least 5% of the NBCs 
14     for  b in all NBCs that selected s 
15         Permute the genotype of s in OOB(b) 
16         Record the Marginal Utility (MU) of s 
17         Select as biomarkers the SNPs with MU significantly larger than zero. 
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For each b in B, the attribute ranking step (lines 3-6) takes O(np) for computing the 

contingency tables and the scores (where n is the number of subjects and p is the number 

of SNPs in the dataset) plus O(p log p) for sorting the score list, thus has a total 

complexity of O[Bpn + Bp log p]. The attribute selection step (lines 7-12), executed for 

each b in B, has a computational complexity dominated by two operations: computation 

of the squared correlation coefficient r2 between SNPs and test of NBC(b) on OOB(b). 

Defining with M* the average number of attributes included by each NBC (which is 

problem dependent) and p*1Mb the average number of SNPs in a 1 Mb section of the DNA 

(which is dataset dependent, but is a roughly linear function of p), the first operation costs 

O(n) for each SNP pair and is executed M* · p*1Mb  times, having thus a total 

computational complexity of O(BnM*p*1Mb) . The second operation, on the other hand, is 

executed log(M* + 2) times, each time with a doubling number of features for NBC (b), 

and its computational complexity is thus expressed by the following summation: 

 � �xxy∗z{|�}∗F
	
��? ∙ 2� = �xxy∗ ∙ j2z{|�}∗F
	 − 1l ≅ ���u∗	 (2.21)   

where n*OOB is the average number of subjects in an OOB set, tending to (1 – 1/e) · n for 

large n [20]; the total complexity of the second operation is thus O(BnM*) , 

asymptotically negligible with respect to the cost of computing the squared correlation 

coefficients. The total computational complexity of the training phase of the BoNB 

algorithm is thus O[B(pn + p log p + nM*p*1Mb)] . For the complexity of the biomarker 

selection phase of BoNB, the number of SNPs selected by at least 5% of NBCs (which is 

problem dependent) is defined as p*5%. The inner loop of lines 15-16 is executed at most 

O(B p*5%) times; since the cost of the two operations in the loop is linear in n, the 

biomarker selection phase has a total computational complexity of O(Bn p*5%). 

2.5.6 Implementation 

BoNB is implemented in C++ and relies only on standard libraries, thus being fully 

portable across operating systems. On the WTCCC case-control study on Type 1 Diabetes, 

BoNB takes approximately 50 minutes for training 200 NBCs and selecting the 

biomarkers on a 3.00 GHz Intel Xeon Processor E5450. A careful allocation strategy 

makes BoNB occupy around 600 MB of RAM for the WTCCC dataset, allowing it to be 

easily run on a desktop computer. 
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2.6 Discussion 

In this chapter the problem of modeling the effect of genotype on the outcome was 

discussed. In the context of  Genome Wide Association Studies, the objective of such a 

modeling is twofold: on the one hand, GWAS aim to perform biomarker selection 

detecting correlation between one or more SNPs and a discrete trait (the presence or 

absence of a disease condition or a complication), on the other the modeling process 

allows also to learn a rule for classifying unknown subjects as cases or controls. 

For complex diseases this is not trivial, since such pathologies have an heterogeneous 

nature, and to fully capture the optimal set of genetic biomarkers, all the SNPs in a GWAS 

should be analyzed simultaneously in a multivariate framework. Moreover, linkage 

disequilibrium confounds the search for genetic biomarkers, because of the non-random 

association between the true genetic causes and the SNPs in genomic regions close to 

them, thus resulting in a lack of precision and stability of the lists of biomarkers selected. 

The standard approaches generally analyze one SNP at time, thus losing information on 

biomarkers interaction and suffering for statistical significance of the selected features. 

Multivariate approaches try to overcome these limitations, but the most widely used 

methods in the literature still suffer for the problem of robustness of the list of selected 

biomarkers. In fact, it is in principle possible to have a lack of stability due to the 

presence of many highly correlated features, even with classification accuracy equal to 

one. 

The presented algorithm, Bag of Naïve Bayes, was developed to effectively tackle this 

problem. 

BoNB is based on Naïve Bayes classification enriched by three main features to tailor the 

Naïve Bayes framework to Genome Wide SNP data analysis: (a) a bagging of Naïve 

Bayes classifiers, to improve the robustness of the predictions, (b) a novel strategy for 

ranking and selecting the attributes used by each bagged classifier, to enforce attribute 

independence, and (c) a permutation-based procedure for selecting significant biomarkers, 

based on their marginal utility in the classification process. 

Learning an ensemble of classifiers from a bootstrap sample of the original dataset 

guarantees a higher generalization ability by increasing the stability of the learning 

process [12]-[18] and, simultaneously, it allows to define a measure of the marginal 
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utility of each SNP, given all the other SNPs exploited for classification, and to select 

significant biomarkers among these SNPs in a statistically robust way. 

Two features of the Naïve Bayes Classifier, chosen as building block of the BoNB 

algorithm, make it more appealing for genome-wide data analysis than logistic regression 

approaches: on the one hand, conditional probability table analysis does not assume a pre-

specified model of genetic effect, on the other hand, missing values are seamlessly 

handled by both the learning and the classification procedure.  

BonB approach to attribute selection, consisting in a univariate ranking step followed by a 

multivariate selection step, has the advantage of favoring informative attributes, but 

without the need of pre-selecting fixed sets of attributes or of defining cut-offs on the 

strength of the association with the disease: attributes, in fact, are added to the classifiers 

as long as their combined effect on the generalization ability increases. 

The effectiveness of BoNB was demonstrated by applying it to the WTCCC case-control 

study on Type 1 Diabetes: BoNB indeed outperforms two algorithms from the state of the 

art, namely a Naïve Bayes Classifier and HyperLASSO, in terms of classification 

performance and all the genetic biomarkers identified by BoNB are meaningful for Type 

1 Diabetes, thus confirming the good performance also in terms of precision of the 

selected biomarkers. 
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Chapter 3 

 

3 Modeling the combined effect of 
phenotype and treatment on the 
progression of diabetes 
complications 

 

Referring to the multi-level scheme of Figure 1.1, this chapter will focus on the combined 

effect of phenotype and treatment on the outcome, as shown in Figure 3.1. 

 
Figure 3.1: Modeling the effect of genotype, phenotype and treatment on the outcome. 

After a brief overview describing the most interesting models already developed in the 

literature to model the progression of diabetes complications, a new in-silico model, 

based on Dynamic Bayesian Networks and accounting for phenotypic information as well 

as information on treatment, will be presented. Validation of the model on the Diabetes 

Control and Complications Trial dataset will be then reported and discussed. Finally, the 

under development web interface as a decision support tool for clinicians will be 

presented.  

PHENOTYPE

TREATMENT

GENOTYPE OUTCOME
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3.1 Introduction 
In complex disease, such as diabetes mellitus, the development of complications and their 

impact on costs are difficult to assess through  short-term studies. Since long-term clinical 

trials are costly, time-consuming, and difficult to conduct, the use of computer-simulate 

disease models has increased considerably in recent years to facilitate the simultaneous 

evaluation of long-term clinical end economic effects of treatment [87],[71]. It is now 

widely accepted that models can provide valuable information for clinical practice and are 

important tools in medical, regulatory, governmental and public health decision-making 

[82],[90]]. 

For example an in-silico model of chronic disease can be used as a tool to simulate a 

clinical trial based on the available medical literature and publicly available data sources. 

Even in situations where a clinical trial does exist, models are often used to incorporate 

the benefits and costs beyond the time horizon of the trial or to consider all the available 

options simultaneously [71]. A good example of the former statement is the cost-

effectiveness analysis alongside the Scandinavian Simvastatin Survival Study [69], where 

the authors used a previous model of Coronary Heart Disease to project beyond the five-

year horizon of the study. An example of the latter statement is the supplement that 

strategies of annual  analysis of  fecal occult blood testing (FOBT) with five-year 

sigmoidoscopy, recommended by the American Cancer Society [60], could bring to an 

analysis of a clinical trial of annual FOBT versus no testing, such a s the Minnesota 

Colon Cancer Control Study [73] 

In-silico models of complex diseases are exploited to predict the evolution (i.e. the 

appearance of events or the persistence in a state devoid of severe complications) of an 

individual (or a population), providing a probability distribution for the individual (or the 

population) to develop a certain complication. 

The aims of complication models do not limit to predict time courses. It is of interest also 

evaluating possible variations of the quality of life during the lifetime that is predicted for 

a patient and the costs that the treatments that are administered to him require, since 

multiple treatments are often possible for the same disease [90]. The choice of the best 

strategy involves the evaluation of both clinical outcomes and costs of the different 
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available strategies. The formal process for comparing available alternative strategies is 

called decision analysis. 

The final aim of an in-silico model is to support decision analysis, helping clinicians in 

taking the best choice among the available ones [90]. 

The steps of constructing, evaluating and interpreting the model are done iteratively to 

give a progressive refinement. 

A requirement for diabetes simulation models has been identified in the medical and 

healthcare policy community, and, as a result, a number of models, mainly based on the 

Markov Models, have been developed and reported in the literature [79], [63], [74]. In the 

next section, a brief introduction on Markov Models and a rapid overview on the 

available models of diabetes complications will be presented. 

 

3.2 Markov Models 
As concerns mathematical aspects, the complication models of major importance are all 

composition of Markov models, each of them representing a complication. 

A Markov Model (MM), also called state transition model, is used to represent recursive 

events [85]. Discrete MMs enumerate a finite set of mutually exclusive possible states 

such that, in any given interval of time (called a cycle or stage), an individual member of 

the Markov cohort is in only one of the states. 

A Markov model is a stochastic model that assumes the Markov property, which is the 

following memoryless property: the state of the system at time instant t depends only on 

the state of the system at time instant t-1; in other words, it does not depend on previous 

time instants.  

A set of initial probabilities is used to specify the distribution of the cohort (group of 

individuals that is homogenous for a set of demographic and clinical aspects) among the 

possible states at the beginning of the process. A matrix of transition probabilities is used 

to specify the transitions among states.  



48 

 

In the original graphical representation of a MM (Figure 3.2), sometimes called “bubble 

diagram”, each state is represented using a circle while arrows represent transitions from 

a state to another one.  

A transition arrow pointing back to the state from which it originates indicates that it is 

possible for a cohort member to remain in the same state for more than one stage. The 

numbers along the arrows indicate the transition probabilities. The probabilities of the 

transition arrows emanating from any state must sum to 1. 

Each complication is represented by a Markov model similar to that in Figure 3.2: 

 
Figure 3.2: 3-state Markov model for a generic complication. Circles represent possible states, i.e. clinical 

conditions that can characterize a person. Arrows indicate possible transitions. 

 

The model of Figure 3.2 is characterized by 3 states: “No complication” representing 

diabetic people without any severe complication; “Complication” representing the people 

that reach the considered endpoint; “Dead” represents death caused by the complication.  

Therefore, Markov models allow representing the evolution over time of a diabetic 

population that is often simulated with time step of 1 year. The Markov models allow 

simulating over time the evolution of a cohort of patients in its mean behaviour and 

performing individual-level simulations. The first one is generally called expected-value 

simulation and is based on a deterministic approach, i.e. if the probability of transition 

no complication

complication dead

0.83

0.15
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0.1

0.72 1



49 

 

from state “No Complication” to state “Complication” is p=0.03, then the 3% of patients 

in the former will transfer to the latter at next 1-year step of the simulation. On the 

opposite, the second is a stochastic simulation where the single in silico individual 

transfers only if the number provided by a random number generator is smaller than 

transition probability p. That is why this kind of simulation is also named Monte-Carlo.  

Obviously, also a high number of single in silico individuals can be considered and the 

results of these multiple simulations can be averaged. Theoretically, higher is the number 

of individual-level simulations, more similar are their average results to the expected-

value predictions. 

On the other hand, a high number of individual-level simulations allows quantifying the 

variability in model outcomes resulting very helpful to establish the reliability of average 

predictions and of the expected-value simulation. 

For instance, the evolution over time of an in silico population obtained with a toy-model 

is reported in Figure 3.3: 

 
Figure 3.3: Evolution over time of a diabetic population obtained with a toy, 3-state Markov model. 

 

Automatically, a survival curve can be obtained from these simulations: 
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Figure 3.4: Survival curve obtained from the simulations of 

 

Transition probabilities are estimated from the data collected during clinical trials. Wrong 

values of these probabilities mean wrong predictions; this is why the availability of high 

quantity of data, derived from homogenous cohorts, is critical.

Simulations do not limit to the predictions of events but extend to the time course of risk 

factors. When data are available, risk factors worsening is based on them, otherwise a 

gradual worsening is usually implemented.  This latter can be slowed by treatm

whose administration can be implemented in the software. Since treatments are 

characterized by a rate of failure, also this occurrence is sometimes inserted in the model 

together with the possibility to administer multiple and subsequent, distinct tr

The most interesting diabetes 

collected by clinical trials are the Palmer 

EAGLE model [74], which will be described in the following
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diabetes complication models that were developed thanks to data 

collected by clinical trials are the Palmer model [79], the Eastman model 

which will be described in the following. 
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together with the possibility to administer multiple and subsequent, distinct treatments. 
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3.2.1 The Palmer model 

One of the most known complication models is the Palmer model (also called CORE 

model), which is based on multiple interconnected sub-models: one for each of the 

considered complications [79], [80], [81]. All the sub-models are Markov models 

characterized by 2, 3 or more states depending on the specific modeled complication. The 

dependences among events are generally expressed by changes in the worsening rate of 

risk factors or in the values of transition probabilities.  

The considered complications or endpoints are: myocardial infarction, angina, heart 

failure, stroke, peripheral vascular disease, neuropathy, foot ulcer, macular edema, 

cataract, limb amputation, blindness, microvascular complications (retinopathy, vitreous 

haemorrhage, nephropathy and renal failure), hypoglycemia, ketoacidosis, and lactic 

acidosis, to which add “surrogate endpoints”, i.e. stages of disease worsening that allowed 

monitoring precisely the evolution over time of neuropathy, orthostatic hypotension, 

impotence. 

Palmer model is also one of the most appreciated models since it is based on original data 

derived from the most recent databases. However, model predictions do not base only on 

these clinical database but on treatment and economics databases. The former stores data 

on treatment pathways, treatment effects and on the change in each physiological 

parameter in the simulation, as a consequence of treatment or patient management. The 

latter is used to perform economic analysis, i.e. to evaluate the cost of patient treatment 

(with and without complication) over the considered time period. In addition, the 

economics database allows evaluating the quality-adjusted life years, which briefly 

consist in life expectancy corrected for the quality of life. 

Palmer model allows simulating both the time evolution of a cohort of patients in its 

mean behavior and the individual-level simulation. 

As regards transition probabilities, they are derived from event rates registered during the 

clinical trials. However, probabilities can depend also on some risk factors [79]. 

3.2.2 The Eastman model 

As Palmer model, also the Eastman model is based on Markov type models and exploits a 

Monte-Carlo approach to simulate possible complication events in single in silico 

individuals [62], [63]. Again, as Palmer model, multiple sub-models are present, each one 
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for a single complication. Considered endpoints are: retinopathy, nephropathy, 

neuropathy and cardiovascular disease.  

A high number of the implementation principles characterizing this model were taken up 

by Palmer and the EAGLE modelers and this highlights the importance of the Eastman 

model in the history of complication model development. In particular, a methodology to 

estimate incidence rates, to be used as transition probabilities of the Markov models, from 

the cumulative incidence observed during the survey, was detailed. The presented 

reasoning that is based on the fit of an exponential model to collected data laid the 

fundamentals for the use of more complicate models exploited by the following modelers, 

like the Cox proportional model [86]. 

3.2.3 The EAGLE model 

The most recent model among the three reported here is the EAGLE model. It 

implements an object-oriented probabilistic Monte Carlo simulation, which is based on a 

Markov process with yearly intervals. Transition probabilities are dependent on the status 

of the simulated patient, with related calculations defined internally.  

Twenty outcomes (e.g., hypoglycemia, retinopathy, macular edema, end stage renal 

disease, neuropathy, diabetic foot syndrome, MI, and stroke) are projected based on data 

from epidemiological and clinical trials.  

The EAGLE model is capable of simulating the progression of type 1 and type 2 diabetes 

and this is the major difference with respect to previous models. In fact, the reader can 

find in this description the basic principles already enunciated for the older Eastman 

model. On the other hand, the model author’s made clear that the EAGLE was not 

developed on original data, but on a subset derived from previous people's publications. 

This is the main drawback of the model. 

A systematic comparison of Palmer, EAGLE and other models is detailed in [78]. 

3.3 Objective of the work 
As resulting from the overview presented in the previous section, models able to integrate 

accumulating –omics knowledge (metabolomics, proteomics, genomics) into a clinical 

macro-level for multifactorial diseases are still missing and, so far, the most interesting 
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complication models, developed from data collected by clinical trials, are based on 

Markov Models and use only phenotypic variables as features to describe the cohort of 

interest.  

The aim of the present work is to model the progression of diabetes vascular 

complications relying on the powerful framework of Dynamic Bayesian Networks 

(DBNs). DBNs provide a more flexible structure with respect to Markov Models, and 

allows to easily enlarge the model with additional information. This is why such a model 

will represents a solid base for future developments, such as the enrichment with 

genotypic information, as it will be discussed at the end of the chapter. 

 

3.4 Methods 

3.4.1 Bayesian Networks 

Bayesian networks are now being used in a variety of applications. The interest in general 

instruments able to compute posterior probability distributions has been quite high in the 

Bioengineering and Biomedical Informatics community. As a matter of fact, DBNs allow 

dealing with a variety of crucial problems in biomedicine, ranging from classification to 

prediction, and from simulation to parameter estimation. Recently, Bayesian network 

approaches were successfully employed in the context of genome biology and in 

biomedical research [64]. One of the most common application is diagnosis problems, as 

in case of medical diagnosis. An example is PATHFINDER [67], a program to diagnose 

diseases of the lymph node by means of Bayesian network approach. 

A Bayesian Network (BN) is a probabilistic graphical model that represents conditional 

dependence over a set of random variables in a compact and human-readable form. 

Probabilistic graphical model possess two important characteristics: i) they clearly 

express the conditional independence between the variables, thus allowing an intuitive but 

sound way to describe the assumptions underlying the modeling process; ii) they 

associate to the graph a probabilistic model that can be used for performing inference, and, 

thus, estimation, simulation and prediction [68]. 
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A Bayesian Network is completely determined by a Directed Acyclic Graph (DAG), 

known also as the network structure, and by a set of conditional probability distributions: 

each node of the network corresponds to a random variable and each edge corresponds to 

a probabilistic dependence between the two nodes (the terms node and random variable 

are used as synonyms).  

More precisely, a Bayesian Network represents a joint probability distribution between its 

nodes for which the Markov condition holds: any node in a Bayesian Network is 

conditionally independent of its non-descendants, given its parents. 

The Markov condition implies that the joint probability distribution of the nodes can be 

decomposed as 

 '��
, … , ��	 = ~ 'j��k'W�6l.�
��
  (3.1)   

Where PaX denotes the set of parents of X: whenever we have an edge �� → �i, we say 

that Xj is a child of Xi and that Xi is a parent of Xj. 

The decomposition of equation (3.1) is called chain rule for Bayesian Networks and 

allows a more compact representation of the full joint probability distribution, requiring 

fewer parameters to be completely specified: the probability distribution of each node can 

in fact be expressed simply as a function of the states of its parent nodes. 

Figure 3.5 reports an example of discrete Bayesian Network with 4 nodes, modeling the 

hypothetical probabilistic relations between the variables HighFatDiet (HFD), 

GlucoseTolerance (GT), Obesity (OB) and RiskOfCardiovascularDisease (CVD). As it is 

clear from the figure, the probability distribution of each node is expressed as a function 

of all possible combination of values of its parents, in the form of a conditional 

probability table (CPT). A natural application of this network is to use it as instrument to 

compute posterior probability distributions, i.e. the posterior probability of any of the 

problem variables given knowledge about any of the other variables of the problem. This 

theme is called inference. For example, such a network can be used to answer queries 

like: “What is the probability of being obese, if on a high fat diet?”, “What is the 

probability of having impaired glucose tolerance, if at risk of cardiovascular disease?”, “If 

obese and on a high fat diet, what is the probability of being at risk of cardiovascular 
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disease?”. Moreover, the Markov condition can be used to infer conditional independence 

relations from the network. For example, we can infer from the network structure that, 

once the values of GlucoseTolerance and Obesity are known, 

RiskOfCardiovascularDisease becomes independent of HighFatDiet. 

 

 
Figure 3.5: Example of a simple Bayesian Network with 4 discrete variables, representing the interactions 

between High Fat Diet (HFD), Glucose Tolerance (GT), Obesity (OB) and Cardio Vascular Disease (CVD). 

 

The example in Figure 3.5 is a BN with discrete variables, i.e. variables with a finite 

number of possible values. Conditional distributions in discrete variable BNs can be 

conveniently represented with probability tables and are able to model dependencies 

between variables without making any assumption on the underlying relationship (e.g. 

linearity). Many real-world variables are of a continuous nature (e.g. blood glucose 

concentration or gene expression levels). In these cases, a possible solution is to discretize 

these variables and resort to discrete BNs. In some cases, though, discretization would 

lead to a major loss of information, unless a high number of discrete states is employed, 
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which would significantly increase model complexity. The other solution is to employ 

continuous-variable BNs. The general BN framework so far presented holds for both 

discrete and continuous variables, as long as the conditional distribution '��|'W�	 

assigned to each node represents for each possible value -W� of 'W� a distribution over X. 

When all variables in the network are continuous, the most commonly employed 

distribution is a linear Gaussian distribution model. Given the continuous variable Y with 

continuous parents X1, …, Xk, the probability density of Y as a function of its parents is: 

 '�I|A
, … , Af	 = ��>? + >
A
 + ⋯ + >fAf; �
	 (3.2)  

This simple model can be extended to cases in which the mean of Y depends on its 

parents in a nonlinear way, or in which the variance also depends on the parent values. 

Hybrid models are also possible, which incorporate both discrete and continuous 

variables. 

Both the graphical structure of a BN and the parameters of the conditional probability 

distributions can be learned from the available data. However, learning these networks is 

often non-trivial due to the high number of variables to be taken into account in the model, 

with respect to the instances of the dataset. 

Structure learning of a BN is NP-complete problem in the general case: given a dataset �, 

containing multiple samples of a set of random variables, the objective is to find the best, 

or the most probable, BN structure in the exponential space of all possible structures. 

Several scoring functions have been proposed to assess the quality of a BN structure: 

some of the most notable are the Akaike Information Criterion (AIC), the Bayesian 

Information Criterion (BIC) and the Bayesian Dirichlet equivalent (BDe) [67]. Regarding 

the learning approaches, from the vast literature, three main approaches can be identified 

to BN structure learning: greedy search, complete search and search based on 

independence tests. Briefly, greedy search attempts to construct a BN structure starting 

with a network without any edge and iteratively adding the “best” set of parents to each 

node, according to a local score; complete search, conversely, explores the entire space of 

possible networks and is guaranteed to return an optimal network, but the huge memory 

and time requirements limit its application to small sized networks; approaches based on 

independence tests start with a complete network and aim at forbidding as many edges as 

possible, by assessing conditional independence between variables with statistical tests. 
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In the present work, an approach based on independence tests evaluated by a Bayesian 

Dirichlet equivalent with uniform priors (BDeu), has been adopted, as described in 

section 3.4.5.3. 

3.4.2 Dynamic Bayesian Networks 

Being interested in modeling the history of diabetic patients, the dynamics of the disease 

will be explicitly modeled by relying on Dynamic Bayesian Networks (DBNs). 

DBNs are an extension of BNs that represent the temporal evolution of variables over 

time. Nodes in the directed acyclic graph associated with a DBN continue to represent 

random variables, while edges represent temporal dependencies. The key assumption is 

that the probability distributions describing the temporal dependencies are time invariant 

so that the overall temporal evolution of the analyzed process can be entirely 

reconstructed by knowing the temporal dependencies represented in the DBN graph [83]. 

Figure 3.6 shows an example of DBN describing the evolution of the expression values of 

three genes G1, G2, and G3. The graph shows that the expression value of each gene at 

time (t + 1) is assumed to depend on the gene’s expression at time t as well as on the 

expression of one or two of the other genes. Furthermore, the example shows that the 

temporal dimension of DBNs allows encoding feedback regulation such as the one 

occurring between G1 and G2, which is not possible in static BNs because of the required 

acyclicity of the graph. The example in the Figure is a DBN of order 1, as all temporal 

dependencies occur between consecutive time points; yet DBNs are not restrict to 

dependencies of order 1 but can represent also higher order dependencies. 
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Figure 3.6: Example of a Dynamic Bayesian Network for three genes G1, G2 and G3. 

DBNs are advantageous with respect to MMs since each variable is represented by one 

node, whereas MMs require as many nodes as the number of combinations of variable 

values [75], [92]. Thus, extending the DBN model with the addition of new variables just 

requires adding as many nodes.  

3.4.3 Model general structure 

The general scheme of a DBN for modeling the dynamics of a complex disease such as 

diabetes is represented in Figure 3.7. 

In the scheme of Figure 3.7, the input variables are called covariates (referred to as U), 

while the output variables are called outcomes (referred to as Y). In particular, the time 

depending covariates are called dynamic (referred to as Udyn), while the remaining 

covariates are called static (referred to as Ustat), since they are not time dependent. To be 

precise, static variables are either constant or time varying, but their variation across time 

is completely predictable (e.g. age, which deterministically increases of 1 year every time 

step). All the outcomes are time-dependent. 
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Figure 3.7: General scheme of a Dynamic Bayesian Network for the dynamics of a multifactorial disease 

The dependences between variables can be summarized as follows: 

• Each dynamic covariate at time t can depend on each other dynamic covariate at time 

t-1  and on each static covariate; 

• Each outcome at time t can depend on each other outcome a time t-1, on each 

dynamic covariate at time t-1 and on each static covariate. 

This network represents the a priori structure of the model. 

The specific structure of the model, i.e. the set of variables used as nodes of the network 

and edges representing their conditional probabilities, depends on the  information 

contained in the available data, and will be presented in section 3.5. 

3.4.4 Data 

3.4.4.1 Datasets 
Databases collecting data over more than ten years allow estimating the event rates that 

are basic for the development of complication models. Therefore datasets represent the 

fundamental starting point for any predictive model. Three of them, i.e. the Framingham 
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Heart Study database, the Diabetes Control and Complications Trial (DCCT) database, 

and the UK Prospective Diabetes Study (UKPDS) resulted particularly important for the 

field [61], [89] and have been used to implement predictive models described in the 

previous section.  

The Framingham Heart Study is a cornerstone of epidemiological studies and, after more 

than 50 years from its beginning, it remains the most famous and influential investigation 

in cardiovascular disease epidemiology. Nowadays, it is considered the epitome of a 

successful epidemiological research, productive of insights and applications and the 

prototype of the cohort study [77]. 

The DCCT was a multicenter, randomized clinical trial designed to compare intensive 

with conventional diabetes therapy with regard to their effects on the development and 

progression of the early vascular and neurologic complications of insulin-dependent 

diabetes mellitus [61]. 

Similarly, the UKPDS was designed to establish whether, in patients with type 2 diabetes, 

intensive blood-glucose control reduced the risk of macrovascular or microvascular 

complications, and whether any particular therapy was advantageous [89]. 

The three databases differed for many aspects, among which the pathologies of interests, 

the surveyed patients, and the duration of the study. However, all of them allowed 

establishing the importance of some clinical factors for the development of 

micro/macrovascular complications in the long period, discarding others.  In particular, 

the Framingham Study was the first one to suggest a relationship between diabetes and 

cardiovascular diseases, on the basis of statistical evaluations, laying the foundations for 

the subsequent two trials, more focused on diabetes. 

Most of all, they share the approach that is based on a survey of the population of interest 

along time, periodical measurements of factors of clinical interest (systolic blood pressure, 

plasma insulin...), which are usually called “risk factors”, and on the effort of relating 

these latter with the observed incidence of micro/macrovascular events. That is why all of 

them were followed by predictive models of complications, which were developed on 

collected data. 
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A forth database that is often used for the implementation of complication models is the 

Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR), which can provide 

additional  information for the specific complication retinopathy [70]. Both Type I and 

Type II diabetes were considered in the survey allowing accomplishing two parallel 

studies.  

With the objective to model the progression of diabetes complications modeling the 

combined effect of phenotype and treatment (and the future prospect of use genotypic 

information too), data needed to learn the model have to satisfy some precise 

requirements: 

- the number of patients composing the cohort has to assure a robust learning; 

- the dataset has to contain information about the main diabetic complications and the 

correlated events, as well as information on phenotypic variables and the main 

treatments; 

- data have to be collected through a longitudinal study over a period of medium-long 

duration (e.g., ten years); 

- the dataset has to contain also genetic information, in particular SNP data. 

Among the available dataset previously described, only the DCCT satisfies all these 

requirements. 

The next section provides a brief description of the DCCT dataset, mainly focused on the 

relevant characteristics for building the prediction model. 

3.4.4.2 DCCT/EDIC description 
The Diabetes Control and Complications Trial (DCCT, 1982-93) and the Epidemiology 

of Diabetes Interventions and Complications  (EDIC,  1994-2006) follow-up study have 

been ongoing for more than twenty years [61]. The clinical trial and subsequent follow-up 

have provided the scientific community with invaluable information regarding the effect 

of glycemia and glycemic control on long-term diabetes complications.  

The DCCT studied a cohort of 1,441 subjects between 13 and 39 years old which had 

suffered type 1 diabetes mellitus (T1DM) for 1-15 years at the time of recruitment. All 

participants were relatively healthy except for diabetes and were free of severe diabetes-

related complications. The Primary Prevention cohort consisted of 726 subjects with 



62 

 

T1DM for 1-5 years and no diabetes related complications (no microaneurysms on fundus 

photography and urine albumin excretion <40 mg/day). The Secondary Intervention 

Cohort consisted of 715 subjects with T1DM for 1-15 years and mild to moderate non-

proliferative retinopathy and a urinary albumin excretion rate <200 mg/day. Subjects 

were randomized to conventional (CT) or intensive diabetes therapy (IT) (Figure 3.8). 

The intent of IT was to achieve blood glucose levels of 70-120 mg/dL in the morning and 

before meals, <180 mg/dL after meals, and an HbA1c in the non-diabetic range (<6.05%). 

Although it was not feasible to achieve these glycemic targets consistently in the majority 

of the subjects assigned to the IT group (fewer than 5% maintained an average HbA1c 

<6.05%), there was a substantial difference in glycemic control between the IT and the 

CT groups. The CT group maintained an average HbA1c of about 9.0% (similar to their 

baseline value) throughout the 3-9 (mean 6.5) years of follow-up. Those in the IT group 

lowered their HbA1c to about 7.0% and maintained this for the duration of the study 

(Figure 3.9).  

Following the end of the DCCT in 1993, and a transitional period during which the 

conventional treatment group was taught intensive therapy and the clinical care of all of 

the subjects was transferred to their own health care providers, an observational study of 

the DCCT cohort, entitled Epidemiology of Diabetes Interventions and Complications, 

was launched. The goal of the EDIC follow-up was to examine the longer term effects of 

the original DCCT interventions, especially concerning complications, such as 

cardiovascular disease and more advanced stages of retinal and renal disease, that require 

a longer period of time to develop. During the transition from the DCCT clinical trial to 

the EDIC observational study, the average difference in glycemic control, measured by 

HbA1c, that had been approximately 2% during the DCCT (7.2% in the intensive 

treatment group compared with 9.1% in the conventional treatment group) narrowed 

(7.9% vs. 8.1% in IT and CT groups, respectively). The difference in mean HbA1c 

between the two original treatment groups has become statistically indistinguishable 

during the most recent six years of EDIC follow-up. (Figure 3.9) Phase 1 of the EDIC 

follow-up study spanned twelve years. The total mean follow-up of the original cohort 

was approximately 16 (range 13-20) years. Retention of the DCCT cohort remained 

outstanding: 96% of the surviving DCCT cohort joined EDIC in 1994 and 94% of the 
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original cohort (n= 1357 of 1441) remained active throughout the first phase of EDIC 

(Figure 3.9) 

 

Figure 3.8: number of patients for therapy during DCCT and EDIC studies. the notations “Conventional” and 

“Intensive” referred to EDIC, have to be meant as “EDIC patients who were treated with Conventional 

therapy during DCCT” and “EDIC patients who were treated with Intensive therapy during DCCT”. 

 

 

Figure 3.9: Glycemic Levels during DCCT/EDIC as measured by glycosylated hemoglobin (HbA1c). Medians 

with 25th to 75th percentiles shown. 
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3.4.4.3 Data analysis and preprocessing 
Data from both DCCT and EDIC studies were used, thus having the possibility to train 

the model on a longer time period. Since the 1441 patients entered the DCCT in different 

years (thus having different follow-up time periods), for each patient the number of 

DCCT-years was computed by comparing the individual date of DCCT enrolling and 

DCCT close-out. For each patient, individual EDIC data were then appended at the end of 

the last DCCT year, as shown in Figure 3.10. 

The computed mean follow-up period was 15.3 years. 

Considering the set of the measures of all the variables for a single patient on a single 

year as an instance of the dataset, that instances for which all the dynamic covariates were 

missing have been discarded, in order to reduce the missingness of the dataset and thus 

avoidind the need for massive imputation. Thus, the number of available (or valid) years 

for each patient was computed. The mean value for the number of available years was 15.  

 
Figure 3.10: For each patient, EDIC data were appended at the end of the DCCT data. The resulting mean 

follow-up period was 15.3 years. 

 

Relaying on previous literature works (see section 3.2) and on data availability in the 

DCCT/EDCI dataset, the following variables were used as covariates for the DBN model: 

Static Covariates 

This group includes both actually static variables, such as patient gender, and variables 

that vary in time but in a completely predictable way (e.g. age) or dependent by external  

decisions (e.g. treatment). 
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1. SEX: 

Patient’s gender, assuming 2 possible discrete values: Male and Female 

2. AGE: 

Patient’s age in years 

3. DURATION: 

Number of years since diabetes was first diagnosed 

4. TREATMENT: 

Annual treatment received by the patient. This variable represents the type of 

treatment the patient received during the year ending with the current visit, and it can 

assume 3 possible discrete values: Conventional treatment, Intensive self-treatment 

(i.e. intensive treatment managed by the patient himself) or Intensive forced treatment 

(i.e. intensive treatment managed by clinicians). Treatment received during the DCCT 

period belongs to the Intensive forced treatment class, while treatment during the 

EDIC period belongs to the Intensive self-treatment class. This variable is considered 

an “intervention variable”, i.e. an independent variable that is known to influence 

Glycosylated Hemoglobin (HbA1C) value and thus is forced to contain this link in the 

DBN. 

5. THERAPY: 

Number of years of diabetes not treated with intensive therapy, either forced or self-

treatment. This variable initially represented the number of years of intensive therapy. 

Then, it was converted into a more informative variable, accounting for the total 

number of years of diabetes not treated with intensive therapy. The variable was 

computed combining information from the original variable THERPAY and the 

variable DURATION 

6. SMOKE: 

Patient’s smoking status, assuming 2 possible discrete values: Never smoked or Ever 

Smoked. The variable was initially a dynamic covariate, assuming 3 possible values 

according to the DCCT/EDIC codification: Smoker (if the patient was actually 

smoking at the visit time), Non Smoker (if the patient never smoked or quit smoking 

more than 3 months before the visit time), Former Smoker (if the patient had smoked 

but quit less than 3 months before the visit time). Since there’s little difference 
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between the states Smoker and Former Smoker from a clinical point of view, this 

latter status was incorporated by the former. Given the high missingness throughout 

the study, the variable was then converted into a static covariate, computed as the 

mode of the available values for each patient, thus giving 2 possible states: Never 

Smoked or Ever Smoked 

7. EXERCISE: 

Patient’s physical activity level, assuming 3 possible values: Sedentary, Moderate and 

Vigorous. This variable was initially a dynamic covariate, assuming 4 possible values 

according to the DCCT codification and 3 possible values according to the EDIC 

codification: Sedentary (less than 5 hours of moderate activity per week), Moderate 

(more than 5 hours of moderate activity per week), Vigorous (more than 8 hour of 

hard activity per week) and Strenuous ( more than 5 hours of very hard activity per 

week) in the DCCT dataset, and Sedentary (occasional physical activity), Moderate 

(considerable, but not constant, physical activity) and Strenuous (constant physical 

activity) in the EDIC dataset. In order to have uniform information, the third status of 

DCCT codification (Vigorous) was incorporated with the last one, thus giving the 

single state Strenuous, as in the EDIC dataset. A correspondence between 

homonymous states in the DCCT and EDIC codifications was then assumed. Given 

the high missingness throughout the study, the variable was then converted into a 

static covariate, computed as the mode of the available values for each patient. 

Dynamic Covariates 

8. WHR: 

Waist circumference to hip circumference ratio; information on WHR in the DCCT 

was available only at the screen visit, while annual measurements were available in 

the EDIC. This variable was thus imputed, for each patient, by performing a linear 

interpolation of the available values, thus obtaining the WHR time-course within the 

study. 

9. HBA1C: 

Glycosylated Hemoglobin (HbA1C) value, expressed as percentage of the total 

hemoglobin. HbA1C is strictly connected to diabetes mellitus, since it is a form of 

hemoglobin that is correlated to the average plasma glucose concentration over 
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prolonged periods of time, thus serving as a marker for average glycemic values. In 

diabetes mellitus, high levels for glycosylated hemoglobin indicate a poor control of 

blood glucose levels, and have been associated with cardiovascular disease, 

nephropathy, and retinopathy [72]; 

10. SBP: 

Systolic Blood Pressure, expressed in millimeters of mercury (mmHg); 

11. TRIG: 

Triglycerides value, expressed in mg/dl. 

12. LDL: 

Low-Density Lipoproteins value, expressed in mg/dl 

13. HDL: 

High-Density Lipoproteins value, expressed in mg/dl. 

Since measures of TRIG, LDL and HDL were available every 2 years in EDIC, we 

decided to impute isolated missing values (i.e. missing values placed between two 

valid measures at the previous and the following year) with a linear interpolation of 

the 2 adjacent measures, as reported in the example of Figure 3.11; 

14. BMI: 

Body Mass Index, given by mass/height2 and thus expressed in Kg/m2. 

 
Figure 3.11: Example of imputation for the covariate TRIG for the i-th patient. Missing values (in gray) 

placed between two valid measures (in yellow) are replaced by a linear interpolation (in green). Discarded 

measures (in black) were not used for imputation. 
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Table 3.1 reports the final list of the variables used as covariates for the model. 

Variable name Variable Description Covariate 
Type 

Variable 
Nature 

Unit of measure / 
Possible States 

SEX Patient’s gender Static Discrete M/F 
AGE Patient’s age Static Continuous years 

DURATION 
Patient’s duration of 

diabetes 
Static Continuous years 

TREATMENT Annual treatment Static Discrete 
CONVENTIONAL/ 
INTENSIVE-SELF/ 

INTENSIVE-FORCED 

THERAPY 
Total number of years 
of diabetes not treated 
with intensive therapy 

Static Continuous years 

SMOKE smoking status Static Discrete NEVER/EVER 

EXERCISE physical activity status Static Discrete 
SEDENTARY/MODER

ATE/STRENUOUS 
WHR Waist-Hip Ratio Dynamic Continuous Unit-less 

HBA1C 
Glycosylated 

Hemoglobin  value 
Dynamic Continuous % 

SBP 
Systolic blood 
Pressure value 

Dynamic Continuous mm Hg 

LDL 
Low-Density 

Lipoproteins value 
Dynamic Continuous mg/dl 

HDL 
High-Density 

Lipoproteins value 
Dynamic Continuous mg/dl 

TRIG Triglycerides value Dynamic Continuous mg/dl 

BMI 
Body-Mass Index 

value 
Dynamic Continuous Kg/m2 

Table 3.1: Variables used for the DBN model of diabetes complications. 

 

Since the DBN wants to model the transition from a year to the following, a variable is 

needed to have a valid measure both at time t and at time t+1. Thus, a variable was 

considered to have a non-missing value only if it had a valid measure both at year t and at 

year t+1. Missingness for each covariate c, for each couple of consecutive years yy, was 

computed as the rate of the number of patients with a missing measure for covariate c to 

the total number of available patients for the couple of consecutive years yy. The resulting 

percentages of missingness for the model’s covariates are reported in Table 3.2, together 

with the number of valid patient for each couple of consecutive years. Covariates with no 

missing values are not reported in the Table. 
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% missing WHR HBA1C SBP LDL  HDL  TRIG  BMI  # valid patients 

year 1-2 3.96 0.28 0.07 0.14 0.00 0.07 0.07 1439 

year 2-3 3.77 0.42 0.14 0.07 0.07 0.07 0.00 1433 

year 3-4 3.51 0.77 0.28 0.00 0.00 0.00 0.07 1426 

year 4-5 3.18 0.64 2.05 0.35 0.35 0.35 0.07 1417 

year 5-6 2.93 1.29 5.00 1.50 1.50 1.50 0.71 1400 

year 6-7 2.49 1.54 6.44 1.61 1.24 1.24 1.54 1366 

year 7-8 2.32 0.97 5.62 3.00 2.55 2.55 3.00 1335 

year 8-9 1.99 1.15 3.51 2.29 1.76 1.76 3.28 1309 

year 9-10 1.00 1.61 2.07 5.74 4.98 4.98 3.14 1306 

year 10-11 0.78 1.41 1.41 3.53 2.59 2.59 4.00 1274 

year 11-12 0.56 1.11 1.43 4.05 3.18 3.18 4.53 1259 

year 12-13 0.00 0.95 1.75 4.44 3.33 3.33 4.68 1260 

year 13-14 0.00 0.82 1.80 16.99 15.60 15.60 5.07 1224 

year 14-15 0.00 0.99 2.17 13.69 12.22 12.22 5.02 1015 

year 15-16 0.00 0.58 0.86 30.22 29.06 29.06 3.02 695 

year 16-17 0.00 1.77 0.51 15.40 13.89 13.89 2.27 396 

year 17-18 0.00 1.61 1.20 6.02 4.02 4.02 3.21 249 

year 18-19 0.00 3.36 1.68 60.92 59.66 59.66 6.72 238 

Table 3.2: Missingness throughout the DCCT-EDIC dataset. 

Analyzing Table 3.2, we decided to use the first 15 years of the data, for which the 

missingness level is always lower than 20%. 

Outcomes 

As reported in section 1.1, the main diabetic vascular complications are cardiovascular 

disease, nephropathy and retinopathy. Since there was no uniformity of information 

between retinopathy status in DCCT and retinopathy status in EDIC, only cardiovascular 

disease and nephropathy were considered as outcomes for the model. As illustrated in 

section 3.2, each complication can be modeled by a state transition model, allowing 

representing the evolution over time of the patients. 

1. CARDIOVASCULAR DISEASE (CVD): 

According to the DCCT design and protocols, the following cardiovascular episodes 

were recorded during the study: Myocardial Infarction, Angina Pectoris, Heart Failure, 

Stroke (or Cerebro-Vascular Accident) and Coronary Artery Disease. Only 64 CVD 

episodes occurred during the entire DCCT/EDIC study, involving 42 patients. Given 

this small number, the CVD status of a patient was modeled as a discrete outcome 

with 2 possible values, as reported in Table 3.3. The possible states transitions are 

reported in the scheme of Figure 3.12: once a patient suffers a CVD episode, he is 
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considered a patient at CVD risk, thus having no possibility to come back to the 

control condition. 

CVD 
STATUS 

Description 

1: Control no CVD episodes 

2: CVD any CVD episode 
Table 3.3: Possible values for the CVD status. 

 

 
Figure 3.12: Possible states transitions for CVD. 

2. NEPHROPATHY: 

According to the DCCT design and protocols, the nephropathy status was computed 

combining the values of 2 clinical variables, respectively Albumin Excretion Rate 

(AER) expressed in mg/day, and Creatinine Clearance (CR-CL) expressed in 

ml/min/1.73m2, and coded in 6 levels of increasing severity, as shown in Table 3.4. 

DCCT nephropathy 
severity level 

AER 
(mg/day) 

CR-CL 
(ml/min/1.73m2) 

1 < 40  

2 [40, 100)  

3 [100,200)  

4 [200, 300)  

5 ≥ 300 ≥ 70 

6 ≥ 300 < 70 
Table 3.4: Nephropathy severity levels according DCCT criteria. 

Following the guidelines for the outcomes codification defined within the SUMMIT 

project by SAIL (Sample AILability system), the nephropathy status of a patient was 

modeled as a discrete outcome with 4 possible values, combining information on the 

patient’s Albumniuria status and End-Stage Renal Disease (ESRD) status, as reported 

in Table 3.5. Both the individual Albuminuria status and ESRD status are coded 

according to the variable codification defined by SAIL and reported in Table 3.6. The 

Control CVD
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Albuminuria status is computed on the basis of the Albumin Excretion Rate value (in 

mg/day). The ESRD status is computed on the basis of estimated Glomerular 

Filtration Rate (eGFR) value (expressed in mg/min) or on the basis of episodes of 

renal insufficiency (dialysis or kidney transplantation). 

The possible states transitions are reported in the scheme of Figure 3.13: any 

transition is allowed, except for any backward step from the last status, which 

represents a clinical condition in which kidney is no longer able to perform its 

function. 

NEPHROPATY 
STATUS 

Description 

1: Control 
NormoAlbuminuria 

and no ESRD episodes 

2: microAlbuminuria 
microAlbuminuria 

and no ESRD episodes 

3: macroAlbuminuria  
macroAlbuminuria 

and no ESRD episodes 

4: ESRD any ESRD episode 
Table 3.5: Possible values for the Nephropathy status. 

 

Albuminuria status AER (mg/day) 
Control < 30 

MicroAlbuminuria [30, 300) 

MacroAlbuminuria  ≥ 300 

ESRD status eGFR (mg/min) 
Control > 15 

ESRD 
≤ 15, or episode of renal insufficiency 

(kidney transplant or dialysis) 
Table 3.6: Albuminuria and ESRD status according to the SAIL definitions. 
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Figure 3.13: Possible states transitions for Nephropathy. 

Table 3.7 lists the number of patients in each status of Diabetic Nephropathy for 

each year of the study, according to codification reported in Table 3.5. 

Nephropathy numbers 
in the DCCT/EDIC dataset 

Year # Controls # Micro # Macro # ESRD 
1 1284 157 0 0 
2 1292 140 6 0 
3 1253 173 7 0 
4 1244 165 16 0 
5 1240 157 21 1 
6 1216 157 25 1 
7 1171 166 32 0 
8 1133 171 35 1 
9 1122 166 33 3 
10 1088 194 35 4 
11 1072 171 39 6 
12 1055 176 51 5 
13 996 179 58 8 
14 946 174 62 12 
15 631 117 48 13 
16 464 87 32 12 
17 222 58 15 8 
18 173 35 18 7 
19 100 19 12 4 

Table 3.7: Number of patients for each state of Diabetic Nephropathy throughout the DCCT/EDIC study. 

 

 

 

Control micro macro ESRD
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3.4.5 Learning 

3.4.5.1 Split TRAIN/TEST 
In order to train and further test the model, the entire dataset was partitioned into 2 

subsets of subjects to be used, respectively, as training set, on which learn the model, and 

as test set, on which test the model. The split train/test was performed stratifying patients 

by the following 3 variables: age, sex and treatment. The TRAIN:TEST proportion is 9:1 

(1298 subjects in the training set and 143 in the test set). 

Missingness is uniformly distributed between the training and the test set, exhibiting 

similar percentages to the ones computed for the entire dataset (see Table 3.8 and Table 

3.9 compared to Table 3.2). 

The proportion 9:1 was respected also in the number of patients which suffered CVDs 

episodes (37 in the training set and 5 in the test set) and renal insufficiency episodes (21 

in the training set and 3 in the test set). 

 

% missing 

TRAIN 
WHR HBA1C SBP LDL  HDL  TRIG  BMI  # valid patients 

year 1-2 4.01 0.23 0.08 0.15 0.00 0.08 0.08 1296 

year 2-3 3.80 0.31 0.08 0.08 0.08 0.08 0.00 1290 

year 3-4 3.50 0.70 0.23 0.00 0.00 0.00 0.08 1284 

year 4-5 3.14 0.63 2.20 0.31 0.31 0.31 0.08 1275 

year 5-6 2.86 1.19 5.32 1.59 1.59 1.59 0.79 1259 

year 6-7 2.44 1.39 6.76 1.63 1.22 1.22 1.63 1227 

year 7-8 2.25 0.92 5.76 3.09 2.59 2.59 3.17 1198 

year 8-9 1.95 1.19 3.48 2.21 1.61 1.61 3.48 1177 

year 9-10 1.02 1.70 1.96 5.79 4.94 4.94 3.15 1175 

year 10-11 0.87 1.48 1.40 3.67 2.71 2.71 4.28 1145 

year 11-12 0.62 1.24 1.50 3.98 3.10 3.10 4.78 1130 

year 12-13 0.00 1.06 1.95 4.69 3.54 3.54 4.77 1131 

year 13-14 0.00 0.91 2.01 17.50 16.13 16.13 5.29 1097 

year 14-15 0.00 1.10 2.20 13.86 12.32 12.32 5.39 909 

year 15-16 0.00 0.49 0.81 30.26 29.13 29.13 3.24 618 

year 16-17 0.00 1.70 0.57 15.01 13.60 13.60 2.55 353 

year 17-18 0.00 1.79 1.34 6.25 4.02 4.02 2.68 224 

year 18-19 0.00 3.72 1.86 62.33 60.93 60.93 6.51 215 

Table 3.8: Missingness throughout the training set. 
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% missing 
TEST 

WHR HBA1C SBP LDL  HDL  TRIG  BMI  # valid patients 

year 1-2 3.50 0.70 0.00 0.00 0.00 0.00 0.00 143 

year 2-3 3.50 1.40 0.70 0.00 0.00 0.00 0.00 143 

year 3-4 3.52 1.41 0.70 0.00 0.00 0.00 0.00 142 

year 4-5 3.52 0.70 0.70 0.70 0.70 0.70 0.00 142 

year 5-6 3.55 2.13 2.13 0.71 0.71 0.71 0.00 141 

year 6-7 2.88 2.88 3.60 1.44 1.44 1.44 0.72 139 

year 7-8 2.92 1.46 4.38 2.19 2.19 2.19 1.46 137 

year 8-9 2.27 0.76 3.79 3.03 3.03 3.03 1.52 132 

year 9-10 0.76 0.76 3.05 5.34 5.34 5.34 3.05 131 

year 10-11 0.00 0.78 1.55 2.33 1.55 1.55 1.55 129 

year 11-12 0.00 0.00 0.78 4.65 3.88 3.88 2.33 129 

year 12-13 0.00 0.00 0.00 2.33 1.55 1.55 3.88 129 

year 13-14 0.00 0.00 0.00 12.60 11.02 11.02 3.15 127 

year 14-15 0.00 0.00 1.89 12.26 11.32 11.32 1.89 106 

year 15-16 0.00 1.30 1.30 29.87 28.57 28.57 1.30 77 

year 16-17 0.00 2.33 0.00 18.60 16.28 16.28 0.00 43 

year 17-18 0.00 0.00 0.00 4.00 4.00 4.00 8.00 25 

year 18-19 0.00 0.00 0.00 47.83 47.83 47.83 8.70 23 

Table 3.9: Missingness throughout the test set. 

 

3.4.5.2 Discretization of continuous covariates 
Dealing with both discrete and continuous variables, an hybrid DBN could appear the 

most appropriate choice. However, since modeling an hybrid DBN requires specific 

assumptions on the distribution of continuous variables, a discrete DBN was adopted. 

Thus, each continuous variable was discretized using specific cut-offs and the whole 

model was fully specified by a set of Conditional Probability Tables (CPTs). Variables 

WHR, SBP, LDL, HDL, TRIG and BMI were discretized according to literature cut-offs 

reported in Table 3.10. 

Variable Cut-offs 
Number of cut-

offs 
Number of 

states 
Reference 

WHR 0.9 (men) and 0.85 (women) 1 2 [76] 
SBP 120 mmHg and 140 mmHg 2 3 [59] 

LDL 100 mg/dl 1 2 [84] 

HDL 
40 mg/dl (men) and 50 mg/dl 

(women) 
1 2 [84] 

TRIG 150 mg/dl 1 2 [84] 

BMI 20 Kg/m2 and 25 Kg/m2 2 3 [91] 

Table 3.10: Literature cut-offs used for continuous variables. 
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Since there are no literature guidelines concerning cut-offs for the age, the duration of the 

disease and the number of years of diabetes not treated with intensive therapy, a search 

strategy to identify the optimal cut-off values while learning the DBN structure was 

defined, and it will be described in the next section. The same cut-off search strategy was 

applied to HbA1c, being it the direct intervention target of the DCCT and EDIC studies.   

3.4.5.3 Structure and cut-offs learning 

The DBN here implemented aimed to merge the data-driven information with literature 

knowledge. Therefore, the DBN structure was learned directly from data, but 

incorporating some constraints derived from the literature both in the network structure 

(i.e. allowing only certain edges to be learned, as detailed in the following) and in 

discretization cut-offs, as explained in the previous section (see Table 3.10). 

Nodes of the DBN can be classified into four classes, each of them with specific edge 

constraints: 

• Static Nodes: 

Each static covariate (see section 3.4.4.3) is represented by a static node (St) in the 

network (except for the covariate TREATMENT, which will discussed later). Thus, the 

static nodes are: SEX, AGE, DURATION, THERAPY, SMOKE and EXERCISE. These 

nodes cannot be influenced by other nodes, i.e. they can be parent but not child nodes. 

Edges from static nodes can be directed to dynamic nodes at time t, Dynv(t), or 

outcome nodes at time t, Outv(t). 

• Dynamic Nodes: 

Each dynamic covariate (see section 3.4.4.3) results in 2 dynamic nodes in the 

network, representing the value at time t, Dynv(t), and t-1, Dynv(t-1), respectively, 

where t is a positive integer representing the year (2 < t < 15). Thus, the dynamic 

nodes are: HBA1C(t), HBA1C(t-1), SBP(t), SBP(t-1), LDL(t), LDL(t-1), HDL(t), 

HDL(t-1), TRIG(t), TRIG(t-1), WHR(t), WHR(t-1), BMI(t) and BMI(t-1). Each Dynv(t-

1) node cannot be a child node. Each Dynv(t) node is forced to be a child of its 

correspondent Dynv(t-1) node and is a candidate child of every other Dyni(t-1) node 

and St node. 
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• Outcome Nodes: 

As for dynamic covariates, each outcome (see section 3.4.4.3) results in 2 outcome 

nodes in the networks, representing the value at time t, Outv(t), and t-1, Outv(t-1), 

respectively. Thus, the outcome nodes are: CVD(t), CVD(t-1), NEPHRO(t)  and 

NEPHRO(t-1). Each Outv(t-1) node cannot have parents. Each Outv(t) node is forced 

to be a child of its correspondent Outi(t-1) node, and can be child of every other 

Dyni(t-1) node, St and Outi(t-1) node. 

• Intervention Nodes: 

The covariate TREATMENT (see section 3.4.4.3) is forced to result in 2 static 

intervention nodes, Int(t) and Int(t-1), representing the state of the treatment at time t 

and t-1 respectively, since, from a clinical point of view, it is relevant not only 

information on the current treatment but also on the recent change in treatment. Thus, 

the intervention nodes are: TREATMENT(t) and TREATMENT(t-1), for a total of 26 

nodes in the network. Since the covariate TREATMENT represents the intervention 

variable of the DCCT and EDIC studies, where the intent of the intensive treatment 

was to achieve HbA1c level in the non-diabetic range (<6.05%) [61], the nodes 

TREATMENT(t) and TREATMENT(t-1) can affect only the HBA1C(t) node. 

Table 3.11 summarizes all node types and the related candidate parent/child node types 

according to the edge constraints. 

Type 
Forced parent 

edge 

Forced child 

edge 

Possible parent 

edge 

Possible child 

edge 

St None None None Dynv(t), Outv(t) 

Dynv(t-1) None Dynv(t) None Dynv(t) 

Dynv(t) Dynv(t-1) None 
Dynv(t), St, 

Int(t)*, Int(t-1)* 
Outv(t) 

Outv(t-1) None Outv(t) None Outv(t-1) 

Outv(t) Outv(t-1) None 
Outv(t-1), 

Dynv(t), St 
None 

Int(t) None None None HBA1C(t) 

Int(t-1) None None None HBA1C(t) 

Table 3.11: Nodes type and edges constraints. * Int(t) and Int(t-1) nodes are possible parents only for the  

HBA1C(t) node. 
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The DBN structure was learned from data by searching the space of all possible network 

structures with a Tabu Search algorithm [66], identical to the Hill Climbing  step of the 

Max-Min Hill Climbing  (MMHC) algorithm for Bayesian Networks structure learning 

described by Tsamardinos et al. in [88]. Basically, the search aims to find both edges and 

discretization thresholds in order to maximize the DBN's prediction ability. 

The search shapes edges connecting Dynv(t-1), Outv(t-1), St, Int(t) and Int(t-1) nodes to 

Dynv(t) and Outv(t) ones. Considering the constraints listed above, each Dynv(t) and 

Outv(t) node has one forced parent node, and a number of candidate ones. For each node, 

the goal is to find the best parent combination, determined by the likelihood-equivalence 

Bayesian Dirichlet score with uniform priors (BDeu), with Equivalent Sample Size α =  5 

[88], [67]. The goal is reached by searching the combination of parent edges that 

maximizes BDeu for each candidate node on the training data. The forced parent is 

always included when computing the score for a combination of candidate parents. Each 

node's parents can be searched independently.  

The implemented search is stepwise. At each step the algorithm determines if an edge is 

to be added or removed from the optimal parent combination obtained at the previous step. 

Since an edge can be either present or absent, each combination of candidate n parents 

can be represented by a binary vector p with a size n (the forced parent is not considered 

in p). The initialization step assumes no candidate parent selected, i.e. the BDeu score for 

a node is computed considering only the edge of its forced parent. Then the search 

algorithm proceeds by evaluating n possible steps, each one determined by switching a 

single binary value of p. For example, the search for a node with n = 3 begins setting p 

equal to [0, 0, 0]. The very first considered steps are [1, 0, 0], [0, 1, 0] and [0, 0, 1]. The 

step associated to the highest BDeu score is then selected, and the search continues. 

Once a step is selected, its vector p is compared to the elements of a Tabu list with 

maximum size t. If p is already present in the Tabu list, its score is set as -Inf. If not, p is 

pushed into the Tabu list. Once the list is full, new vectors push out the previously 

inserted ones, following a first-in-first-out approach. If more than s steps are completed 

without a BDeu score improvement, the search stops. Values for t and s were 100 and 15 

respectively, according to the literature gold standards [66]. 
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Note that in the original MMHC algorithm the edges, at each step, could undergo three 

possible perturbations, namely addition, removal or reversal. In the present case, however, 

edge direction is fixed, so there is no need to test for edge reversal. Furthermore, the 

network is acyclic by construction. This yield two major consequences: on the one hand, 

there is no need to check for acyclicity after every step of the Tabu Search algorithm; on 

the other hand, the optimal parent set for each node can be identified independently of the 

other nodes, thus greatly reducing computational complexity. 

As reported at the end of the previous section, for some nodes discretization thresholds 

have been taken from the literature (Table 3.10), while for variables AGE, DURATION, 

THERAPY and HBA1C the thresholds have been inferred by the data. For these latter 

variables, each one was assumed to have three possible states (low = 1, medium = 2 and 

high = 3), and the thresholds could be computes as 4 possible combinations: (a) the 33th 

and 66th percentile; (b) the 25th and 50th percentile; (c) the 25th and 75th percentile; or (d) 

the 50th and 75th percentile. Thresholds combinations have been explored during the BN 

structure learning described above: in particular, the learning of the edges was performed 

for each possible threshold combination on the variables AGE, DURATION, THERAPY 

and HBA1C, for a total of 44 = 256 combination. For each combination, the whole BN 

score was computed as the sum of each individual Dynv(y) node and Outv(t) node BDeu 

score. 

Table 3.12 reports the learned thresholds for AGE, DURATION, THERAPY and HBA1C, 

thus completing information of Table 3.10. 

Variable Cut-offs Number of cut-offs Number of states 

AGE 28 years and 40 years 2 3 

DURATION  100 months and 157 months 2 3 

THERAPY 4.92 years and 10.17 years 2 3 

HBA1C 7.1 % and 9.1 % 2 3 

Table 3.12: Learned cut-offs for continuous variables 

3.4.5.4 Parameters learning 
Once the structured is fixed, the phase of learning the conditional distributions implied by 

the network consists in estimating, for each variable X, a set of parameters ��|�_� 

describing the dependency of X over its parents PaX.  
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In the case of a discrete network, the parameters to be estimated are all the entries of the 

CPT of each variable, i.e. the values mG|B_� = '(� = A|'W� = -W� ) for each of the 

possible values of X and of its parents 'W�.    

To this aim, the Bayesian maximum a posteriori (MAP) estimates was exploited. The 

Bayesian MAP estimates consists on a maximum likelihood estimates (based on 

calculating the relative frequencies of the different events in the data), augmenting this 

observed data with prior distributions over the values of these parameters. 

The maximum likelihood estimate of mG|B_� is given by: 

 m�G|B_� = �(� = A ∧ 'W� = -W�)�('W� = -W�) , (3.3)  

where N(c) counts the number of observations in the dataset satisfying condition c. 

One of the risks of maximum likelihood is that it can sometimes return estimates equal to 

zero, in case no example satisfying the condition at the numerator is observed in the 

dataset. To avoid this situation, it is often preferred to smooth the estimate with a 

coefficient α known as Equivalent Sample Size (ESS). The smoothed estimate is given by: 

 m�G|B_� = �(� = A ∧ 'W� = -W�) + ��('W� = -W�) + |!WN('W�)| ∙ � , (3.4)  

where |!WN('W�)| is the number of distinct values 'W� can take.  

This expression corresponds to a MAP estimate of mG|B_� , assuming a Dirichlet prior 

distribution with equal-valued hyper-parameters α. An intuitive interpretation of α is the 

number of imaginary samples, for each combination of values of X and 'W�, assumed to 

have been observed before estimating mG|B_�  from  the data, as already explained in 

section 2.5.1. In this context, α was set equal to 5, as already mentioned in the previous 

section. 

3.4.6 Prediction 

Once the  model was fully specified through the learning phase, it was applied on the 

cohort of subjects of the test set to predict the evolution of the patients’ state. 



80 

 

Given the initial discretized values for both covariates and outcomes, the CPTs allow 

predicting the values of all the variables for the following years and thus the probability 

of developing a certain complication. For example, in Figure 3.14 the value of discretized 

HbA1c level at time point t depends only on the values of the same variable at time t-1, 

thus the correspondent CPT is represented by a 3x3 matrix, each column representing the 

conditional probability of HbA1c at time t given the value of its parent (HbA1c at time t-

1). Assuming for the i-th patient that HbA1c has low level at time point t-1, the level at 

time t will be predicted by a roulette wheel selection method where the chance for every 

possible value is given by the conditional probability in the correspondent cells. In the 

case shown in Figure 3.14, given the trained CPT and a low level of HbA1c at time t-1 for 

the i-th patient, the probabilities for low, medium and high level at time t are 5%, 74% 

and 21%, respectively, and the simulation predicts a medium level for HbA1c at time t. 

By applying iteratively this procedure to all the covariates and outcomes, the evolution of 

each patient belonging to the cohort of interest can be predicted year by year. This 

approach permits to predict the progression of a complication also over long period of 

time. 

The described approach was applied to the cohort of patients of the test set, starting from 

the initial values and using a prediction horizon of 15 years. For each patient, 100 

simulations were performed in order to obtain a probability distribution for each variable 

and for each year. The basic idea of this stochastic simulation approach is to run a 

simulation process that, starting from the observations and following a topological order, 

samples a new value of each unobserved variable given the values of all the other 

variables sampled so far. In this way a chain of values is generated. Such chain is known 

to converge to the posterior distribution of the variables given the observations [65]. 



 

Figure 3.14: Example of 

 

3.5 Results 

The final network resulting from the learning step is 

CVD(t-1)

NEPHRONEPHRO(t-1)
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HBA1C(t-1) HBA1C

SBP(t-1)

LDL(t-1)

HDL(t-1)

TRIG(t-1)

BMI(t-1)

Example of a single variable prediction by exploiting the correspondent CPT

The final network resulting from the learning step is represented in Figure 3.

Figure 3.15: Final DBN structure 
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prediction by exploiting the correspondent CPT. 

Figure 3.15. 
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Analyzing Figure 3.15, 2 well-distinct blocks can be observed in the network: a sub-

network for Nephropathy (Figure 3.16), in which a clear short-term effect is played by the 

variable TREATMENT on the nephropathy state through the intermediate effect on the 

variable HBA1C, and a sub-network for the Cardiovascular Disease (Figure 3.17), in 

which a clear long-term effect is played by the variable DURATION on the CVD state 

through an intermediate effect on the variable WHR. It is interesting to note how the lipid 

variables (i.e. TRIG, LDL and HDL) as well as the anthropometric variables (WHR and 

BMI) belong to the same sub-network of CVDs, thus showing a certain consistency with 

clinical knowledge [76]. The variables THERAPY (i.e. the number of years of diabetes not 

treated with intensive therapy), SMOKE and EXERCISE were left out from the network, 

since their effect was likely overcome by the stronger influence of other variables. 

 
Figure 3.16: Nephropathy sub-network. 
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Figure 3.17: CardioVascular Disease sub-network. 

The validation step consisted in comparing results of simulations run on the initial 

population of the test set to real data. In particular, the comparison was performed at a 

population level: for each dynamic variable, the annual population distributions computed 

on simulated data were compared to the annual population distributions computed on real 

data. The annual distribution was computed considering all the 100 simulated values for 

each patient. Figure 3.18 to Figure 3.26 show real distributions (top panel) and percentage 

difference with simulated distributions (bottom panel) for all the dynamic variables in 

order to quantify prediction accuracy. Considering that only the first 15 years of the data 

were used to train the model, the population predictions for the first 15 years fit very well 

real data, exhibiting percentage differences not greater than 10% for all the dynamic 

variables. In particular for the outcomes, the differences are lower than 5% for all the 15 

years. These results are similar to the ones obtained by [74], where the authors defined a 

valid model as one in which the mean simulate event rates correspond to the mean 

published event rates within a range of ±10%. 
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Figure 3.18: Real population distribution of WHR and percentage difference with predicted one for each 

year. 

 
Figure 3.19: Real population distribution of HBA1C and percentage difference with predicted one for each 

year. 
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Figure 3.20: Real population distribution of SBP and percentage difference with predicted one for each 

year. 

 
Figure 3.21: Real population distribution of LDL and percentage difference with predicted one for each 

year. 
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Figure 3.22: Real population distribution of HDL and percentage difference with predicted one for each 

year. 

 
Figure 3.23: Real population distribution of TRIG and percentage difference with predicted one for each 

year. 
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Figure 3.24: Real population distribution of BMI and percentage difference with predicted one for each 

year. 

 
Figure 3.25: Real population distribution of CVD and percentage difference with predicted one for each 

year. 
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Figure 3.26: Real population distribution of NEPHRO and percentage difference with predicted one for each 

year. 

 

3.6 Software tool for diabetes care professionals 
As already pointed out in the Introduction of the current Chapter, the final aim of an in-

silico model is to provide clinicians with a tool for supporting decision analysis, in order 

to predict the risk for long-term complications, thus optimizing clinical trials and 

avoiding invasive and expensive tests.  In this context, the final step of the present work is 

representing by the development of a web application to simulate the progression of 

diabetes long-term complications. In particular, here we developed a standalone Java 

application that implements stochastic simulation based on Bayesian network structure 

and parameters learned from the DCCT and EDIC datasets. The main goal of the 

application is to provide a tool to simulate single patient or population evolution 

dynamics, toward nephropathy and cardiovascular disease.  The tool will allow 

professionals involved in diabetes care to analyze and predict the onset of pathologies 

such as coronary heart disease, stroke and nephropathy with a certain belief, based on 

patients or population anamnestic evidence.  
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In order to reach the highest compatibility with existing operative systems and an easy to 

install and run deployment strategy, we employed Java Standard Edition (Java SE) 

technology to develop this application. Indeed, Java SE Platform lets you develop and 

deploy Java applications on desktops and servers, offering rich user interface, 

performances and portability that today application require. Having as objective the 

distribution of the software over the internet, Java Web Start technology has been selected. 

This technology is being developed as Java Network Launching Protocol & API (JNLP), 

which provides a browser-independent architecture for deploying Java technology-based 

applications to the client desktop. 

3.6.1 Methods 

3.6.1.1 Packages 
Classes and methods are grouped in four Java packages. The package dbn is the main 

package. It provides initialization of the main classes and the application layer control. 

The package libDBN contains all the classes and methods developed to simulate single 

patient or population evolution dynamics and all storage data structures. The package 

dbnGUI has been developed to provide a graphical user interface (GUI) employing Java 

AWT and SWING libraries. Implementing the interfaces ActionListener and ItemListener 

provided by these libraries, it makes possible the interaction with user and events. The 

package visualDBN provides the facilities for visualization of network structure and 

outputs analysis graphs. 

3.6.1.2 Data structures 
The structure and parameters of the Bayesian network learned are stored in an object, 

instance of the class NetStructure. It stores the conditional probability tables (CPTs) 

values and adjacency matrix in matrices and variable names, nodes arity (i.e. number of 

possible states) and discretization levels for each variable in arrays. The object can be 

serialized, indeed the class implements the interface Serializable, and saved to disk. This 

allows loading the entire network structure in a single step, making faster the application 

start up process. In case of network modification due to subsequent learning processes it 

is possible to re-load the structure and all parameters into the NetStructure object and 

save it again to disk. Access to CPTs values is allowed by means of a function that maps 

a combination of indexes given the topological order of a variable to the linear index of 

the CPTs matrix.  
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The data employed for and obtained from the simulation process are stored in a data 

structure implemented with the class evolutionMatrix. Each year of simulation is stored in 

a generic list container, an ArrayList<T> container of the Java Generics library. Several 

auxiliary and temporary data structures are employed to perform internal computation. 

 

3.6.2 Simulations 

Inference in Bayesian network can be accomplished in several ways, such as exact 

inference by enumeration or by variable elimination, message passing algorithms and 

stochastic simulation.  Exact inferences need to rewrite a query P(X|e) in terms of CPT 

entries product. Given any subset of Xi setting them to certain values due to evidence, we 

can calculate the probability distribution of some other subset of Xi by marginalizing over 

the joint. This is costly due to calculating an exponential number of joint probability 

combinations. In this application, we implemented a Markov Chain Monte Carlo 

stochastic simulation, as described in section 3.4.6. Briefly, for each variable the 

distribution of possible values is obtained from the CPT tables. Inserting the covariates 

initial values for the single patient or for the population, distribution probabilities may be 

generated according with the observed data. The new value of the considered variable is 

obtained from a random sampling among possible values according to its conditional 

probability distribution. A stochastically selected value is assigned to current variable. 

This procedure is repeated for each variable to generate a complete dataset for the 

selected number of patients. By this way, users can insert initial values and simulate the 

entire dynamic evolution process of the cohort of patients. 

3.6.3 Visualization 

Simulation results may be visualized in the main windows of the application where a 

table reports the distribution per year of each variable. Incidence of nephropathy and 

cardiovascular disease over the year may be visualized as a graph. We are currently 

finalizing the implementation of the DAG visualization and the exporting functions for 

graph and tables. A preliminary mock-up of the interface is shown in Figure 3.27. 
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Figure 3.27: Preliminary mock-up for the user interface of the software tool. 

 

3.7 Discussion 
In this chapter the problem of modeling the combined effect of phenotype and treatment 

on the outcome was discussed. 

In-silico models of complex diseases are essential to predict the risk for long-term 

complications, thus optimizing clinical trials and avoiding invasive and expensive tests.  

A requirement for diabetes simulation models has been identified in the medical and 

healthcare policy community, and, as a result, a number of models, have been developed 

and reported in the literature. However, these models are mainly based on Markov 

Models, thus requiring as many nodes as the number of combinations of variable values. 

In the present work, the progression of two vascular diabetes complications, 

Cardiovascular disease and Nephropathy, was modeled using Dynamic Bayesian 

Networks and integrating in the model phenotypic information as well as information on 

treatment. A Bayesian Network is a probabilistic graphical model that represents a set of 

random variables and their conditional dependencies via a directed acyclic graph. DBNs 
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are a special class of BNs that model the stochastic evolution of a group of random 

variables over time. DBNs are advantageous with respect to Markov Models since each 

variable is represented by one node, thus, extending a DBN model with the addition of 

new variables just requires adding as many nodes.  

The DBN model was developed on the data collected from the DCCT (Diabetes Control 

and Complication Trial),  a randomized clinical trial which involved 1441 type 1 diabetic 

volunteers between 1982 and 1993, with the aim of comparing the effects of standard 

control of blood glucose versus intensive control on the complications of diabetes. 

In particular, relying on an a-priori information on the network general structure, the 

model was learn directly from a subset of real data, and validated on the subset left out 

during the learning phase.  

Results regarding the network structure show a good consistency with clinical knowledge, 

exhibiting 2 well-distinct blocks of effects: a first block with a stronger short-term effect 

for Nephropathy, regulated by the indirect effect of treatment on HbA1c, and a second 

block with a stronger long-term effect for Cardiovascular Disease, regulated by the 

indirect effect of the duration of diabetes on Waist-Hip Ratio, and involving also all the 

lipid variables. 

Results regarding the simulated progression of complications show very good 

performances, exhibiting a prediction accuracy greater than 90 % for all the dynamic 

covariates and greater than 95 % for the outcomes, Nephropathy and Cardiovascular 

Disease, thus proving the effectiveness of the model. 

The good prediction performances of the model make it rather suitable to be use as a tool 

for support clinical decision analysis. To such an aim, a web Java application that 

implements stochastic simulation based on the structure and parameters learned from the 

DCCT and EDIC datasets is currently under development. The web application 

development is still ongoing, but the current version represents a good starting point for 

future extensions and improvements. 

Future developments, in particular, can regard the extension of the DBN model and the 

refinement of the web application based on it. 

The flexible structure of the DBN will in fact allow the easy introduction of other 

variables: the most interesting variables to be exploited are diabetic Retinopathy, as an 
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additional outcome of the model, and the genotypic information as a potential mean to 

improve predictions. 

A cost-effectiveness analysis to evaluate costs and consequences of possible treatments, 

as well as a cost-utility analysis to quantify eventual improvements in the patients’ quality 

of life, will be implemented, in order to better address the supporting function of the web 

application in the decision analysis process. 
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Chapter 4 

 

4 Modeling the effect of treatment on 
diabetes phenotype: a 
compartmental model of aspirin 
action 

 

Referring to the multi-level scheme presented in Figure 1.1, this chapter will focus on the 

effect of treatment on phenotype, as shown in Figure 4.1. 

 

Figure 4.1: Modeling the effect of treatment on phenotype. 

Aspirin represents an important component of cardiovascular prevention in diabetic 

patients. The biological background regarding the physiological mechanisms of action of 

aspirin as antiplatelet agent will be firstly introduced, then the most relevant results from 

clinical trials and epidemiological studies of aspirin as a therapy for patients at high 

cardiovascular risk will be shown. A compartmental model of aspirin action developed to 

qualitatively explain experimental evidence will be finally presented and its performance 

evaluated by a sensitivity analysis approach.  

PHENOTYPE

TREATMENT

GENOTYPE OUTCOME
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4.1 Introduction 

4.1.1 Atherothrombosis 

Atherosclerosis is a chronic inflammatory disorder in which immune mechanisms interact 

with metabolic risk factors to initiate, propagate, and activate vascular lesions, and 

represents the major cause of ischemic coronary artery disease and cerebrovascular 

disease [104]. 

Arterial thrombosis, an acute complication that develops on the surface of a ruptured 

atheromatous plaque or as a consequence of endothelial erosion, may cause myocardial 

infarction or ischemic stroke. Platelets are key cellular components of arterial occlusive 

thrombi and may participate in the development and progression of atheromatous plaques 

[131]. 

Platelets originate from megakaryocytes in bone marrow and are vital components of 

hemostasis, the physiologic process that arrests hemorrhage after tissue trauma and 

vascular injury. Although the adhesion and activation of platelets can be viewed as a 

repair-oriented response to sudden fissuring or rupture of an atheromatous plaque, 

uncontrolled progression of such a process through a series of self-sustaining 

amplification loops may lead to the intraluminal formation of thrombus, vascular 

occlusion, and transient ischemia or infarction. The ability of platelets to participate in 

both normal hemostasis and atherothrombosis depends on their adhesive properties and 

their capacity to become activated very quickly in response to various stimuli [131]. 

Currently available antiplatelet drugs, such as aspirin, interfere with certain steps in the 

activation process by selectively blocking key platelet enzymes or receptors, reducing the 

risk of arterial thrombosis through mechanisms that cannot be dissociated from an 

increased risk of bleeding complications [121]. 

In particular, randomized trials indicate that low-dose aspirin can prevent arterial 

thrombosis under various circumstances, including first vascular events among low-risk, 

healthy subjects and recurrent vascular events among patients with known acute or 

chronic occlusive vascular disease [121]. However, a diminished responsiveness has been 

reported in patient with type 2 diabetes [127], [100], [101], with the suggestion that this 
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Figure 4.2: Structural formula of aspirin. 
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coagulation factors  as well as increasing platelet aggregation (the enzyme is in fact 

named for its role in clot formation, i.e. thrombosis). 

 
Figure 4.3: Mechanism of action of aspirin on the arachidonic acid cascade. Figure from [122]. 

 

The synthases are colloquially termed cyclooxygenases and exist in two forms, 

cyclooxygenase-1 (COX-1), which is the constitutive form of the enzyme, and 

cyclooxygenase-2 (COX-2), which is an inducible form. Low-dose aspirin mostly inhibits 

COX-1, whereas high-dose aspirin inhibits both COX-1 and COX-2 [122]. In particular, 

by diffusing through cell membranes, aspirin enters the COX channel, a narrow 

hydrophobic channel connecting the cell membrane to the catalytic pocket of the enzyme. 

Aspirin acts on COX-1 permanently inactivating it, trough an irreversible acetylation 

process: a single molecule of aspirin reacts with a single molecule of COX-1 producing a 
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single molecule of salicylic acid and a single molecule of acetylated COX-1 (Figure 4.4), 

thus preventing AA to bind the catalytic site of the enzyme to start the AA cascade [140].  

 
Figure 4.4: Reaction between aspirin and COX-1: aspirin acetylates the hydroxyl group of a serine residue 

at position 529 (Ser529) in the polypeptide chain of platelet prostaglandin G/H synthase, thus inactivating 

the cyclooxygenase catalytic activity of the enzyme which leads to formation of prostaglandin G2 from 

arachidonic acyd.  Figure from [140]. 

 

This process is irreversible and its effect is long-lasting for the entire single platelet 

lifespan, since platelets are not able to synthesize de novo COX-1 and, thus, only new 

platelet generation from megakaryocytes in bone marrow can recover pre-aspirin COX-1 

levels [140]. 

In the next section, exemplifying results from clinical trials of aspirin in cardiovascular 

prevention will be briefly presented. 

 

4.2 Results from clinical trials 
In the context of the multi-level analysis adopted in this thesis, the main clinical trials of 

aspirin can be separated in 2 classes, on the basis of the final end-points considered: 

1. Trials focusing on the outcome (Figure 4.5.A), in which the goal of the study is to 

analyze the effect of aspirin on cardiovascular events; 
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2. Trials focusing on the phenotype (Figure 4.5.B), in which the goal of the study is to 

characterize the effect of aspirin on COX-dependent platelet activity. 

 
Figure 4.5: Scheme for trials focusing on the outcome (A) and for trials focusing on the phenotype (B). 

 

4.2.1 Trials focusing on the outcome 

The efficacy and safety of aspirin on non diabetic patients are document from analysis of 

many randomized clinical trials that included patients at variable risk of thrombotic 

complications of atherosclerosis [120]. Aspirin has been tested in patient demonstrating 

the whole spectrum of atherosclerosis, from apparently healthy low-risk individuals to 

patients presenting acute vascular events. Among patients with occlusive vascular disease, 

both individual studies and meta-analysis of trials of antiplatelet therapy indicate that 

aspirin significantly reduces the risk of a serious vascular event (nonfatal myocardial, 

infarction, nonfatal stroke, or death from  vascular causes) [122]. For example, in [137] a 

meta-analysis of 287 studies involving 135 000 patients in comparisons of aspirin therapy 
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versus control, showed that among a wide range of patients with vascular disease, for 

which the annual risk of a serious vascular event ranges from 4 to 8 percent, aspirin 

significantly prevented at least 10 to 20 fatal and nonfatal vascular events for every 1000 

patients treated for one year (Figure 4.6).  

 

Figure 4.6: Absolute effects of antiplatelet therapy with aspirin on the risk of vasculareEvents 

(nonfatal myocardial infarction, nonfatal stroke, or death from vascular causes) in five groups of high-

risk non diabetic patients. Figure from [122]. 

 

The inhibition of thromboxane-dependent platelet function by aspirin may lead to the 

prevention of thrombosis as well as to excess bleeding, thus assessing the net effect 

requires an estimation of the absolute thrombotic risk versus the hemorrhagic risk of the 

individual patient. In [121], aspirin has been evaluated in six primary prevention trials of 

aspirin versus placebo (the Primary Prevention Project trial on high-risk men and women 

[99], the Hypertension Optimal Treatment trial on hypertensive patients [105], the 

Thrombosis Prevention Trial on high-risk men [136], the Swedish Angina Pectoris 

Aspirin Trial on stable angina patients [112], the Physicians’ Health Study trial on healthy 

men [110] and the United Kingdom Doctors trial on healthy men [124]) for a total of 

approximately 58000 patients who were at variable cardiovascular risk. Results show that 

as the risk of experiencing a major vascular event increases, so does the absolute benefit 

of antiplatelet prophylaxis with aspirin for a number of clinical conditions, including 
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stable and unstable angina pectoris and patients who suffered a myocardial infarction 

(Figure 4.7). 

 

 
Figure 4.7: For each category of patients, the abscissa denotes the absolute risk of experiencing a major 

vascular event. The absolute benefit of antiplatelet treatment is reported on the ordinate as the number of 

subjects in whom an important vascular event is actually prevented by treating 1,000 subjects with aspirin 

for 1 year. Figure from [121]. 

 

In contrast to non-diabetic subjects, for which aspirin has been proofed to have a 

significant effect, a clear benefit of aspirin in the prevention of major cardiovascular 

events in people with diabetes remains unproved [98]. 

For example, in order to examine the efficacy of aspirin for the primary prevention of 

atherosclerotic events in patients with type 2 diabetes, Ogawa and Nakayama studied 

results from the Japanese Primary Prevention of Atherosclerosis With Aspirin for 

Diabetes (JPAD) trial [115], a randomized controlled trial in which patients were 

randomly assigned to assume low-dose aspirin (81 or 100 mg per day) or not. End-points 

were atherosclerotic events, including fatal or nonfatal ischemic heart disease, fatal or 

nonfatal stroke, and peripheral arterial disease as well as death from any cause. The 

incidence of the primary end point of any atherosclerotic event was not significantly 

different in the aspirin group than in the non-aspirin group (log-rank test, p-value = 0.16), 

as shown in  Figure 4.8, thus the authors concluded that aspirin as primary prevention did 

not reduce the risk of cardiovascular events [115]. 
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Figure 4.8: Total percentage of atherosclerotic events according to treatment group in the JPAD trial. CI 

indicates confidence interval; HR, hazard ratio. Figure from [115]. 

 

Similar results were obtained by Belch from the analysis of results from the Prevention of 

Progression of Arterial Disease and Diabetes (POPADAD) trial [94], a multicentre, 

randomized, placebo controlled trial conducted to determine whether aspirin was more 

effective than placebo in reducing the development of cardiovascular events in patients 

with diabetes mellitus and asymptomatic peripheral arterial disease. Two hierarchical 

composite primary end points of death from coronary heart disease or stroke, non-fatal 

myocardial infarction or stroke, or amputation above the ankle for critical limb ischemia, 

and death from coronary heart disease or stroke were the main outcomes measured. 

Overall, the authors concluded that specific adverse events were not significantly 

different between the aspirin and no-aspirin groups [94]. 

Pignone and Alberts performed a meta-analysis that added data from three trials 

performed specifically in patients with diabetes (the already mentioned JPAD [115] and 

POPADAD [94], and the Early Treatment of Diabetic Retinopathy Study [113]) to the 

data from subgroups of patients with diabetes from  the six large trials of aspirin for 

primary prevention in the general population  investigated also in [121], as already 

described. Using a random-effect model, the authors found that aspirin was associated 
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with a 9% decrease in risk of coronary heart disease events (non fatal and fatal 

myocardial infarction) and with a 15% decrease in the risk of stroke, both decreases not 

being statistically significant (Figure 4.9). The authors concluded that aspirin likely 

produces a modest reduction in CVD risk in patients with diabetes, but not statistically 

significant compared to diabetic patients not treated with aspirin [125]. 

 
Figure 4.9: Effect of aspirin on coronary heart disease events, tests for heterogeneity: P =0.367 (A). Effect 

of aspirin on risk of stroke in patients with diabetes, tests for heterogeneity: P =0.131 (B). CI stands for 

confidence interval. BMD indicates British Medical Doctors; ETDRS, Early Treatment of Diabetic 

Retinopathy Study; HOT, Hypertension Optimal Treatment; JPAD, Japanese Primary Prevention of 

Atherosclerosis with aspirin for Diabetes; PHS, Physicians’ Health Study; POPADAD, Prevention of 

Progression of Arterial Disease and Diabetes; PPP, Primary Prevention Project; TPT, Thrombosis Prevention 

Trial; and WHS, Women’s Health Study. Figure from [125]. 
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In the medical literature, the interindividual variability in response to aspirin, which 

brings to treatment failure, has been indicated with the term ‘aspirin resistance’ [118]. To 

be precise, today scientists argue about the term to be used, since the term ‘resistance’ 

implies that something can be measured that has a direct bearing on clinical efficacy of 

aspirin and that may lead to a change in the therapy. Since, so far, a such a relationship 

has not been discovered yet, the term ‘treatment failure’ may be more correct [102]. In 

this thesis, for simplicity, the term ‘aspirin resistance’ will be used  henceforth. 

4.2.2 Trials focusing on the phenotype 

Moving from black box approach adopted by clinical trials focusing on the outcomes, in 

this sub-section the main results from clinical trials focusing on the phenotype will be 

presented. In particular, 2 trials conducted by Rocca and Santilli will be described; the 

former conducted on healthy subjects, and the latter on diabetic ones. 

In both trials, the effect of aspirin on the activity of platelet COX-1 (referred to as simply 

COX henceforth) have been characterized through measurements of serum thromboxane 

B2 (TxB2), which is an indirect measure of the COX activity in serum [133]. More 

precisely, particular attention was paid to the recovery of serum TxB2 during and after 

aspirin therapy. 

4.2.2.1 Healthy subjects 

In the first trial, the authors randomized 48 healthy Caucasian subjects to 1 to 8 groups, 

according to treatment duration, ranging from 1 to 8 weeks [133]. Each patient received 

enteric-coated aspirin 100 mg once a day and was instructed to take tablets at the same 

time of the day. Serum TxB2 (in ng/ml) was measured (together with other blood and 

urine samples) at the end of each week of aspirin, and at days 1, 2, 3 and 7 after 

withdrawal. The authors found that: 

• serum TxB2 was steadily suppressed over 8 weeks, the average percent inhibition 

being constantly above 99% of the baseline, without significant intergroup 

differences: 1-week treatment caused  99.3% ±0.7% inhibition, and 8-weeks treatment 

produced 99.6 ± 0.3% inhibition (Figure 4.10).  

• initial recovery of serumTxB2 levels seem to differ among groups: at days 1 and 2 

following aspirin withdrawal, TxB2 values were similar in the subjects treated for 1 

and 2 weeks and significantly higher than the corresponding values of longer 
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treatment groups (2-factor repeated measurements analysis of variance with the post 

hoc Holm-Sidak test for pairwise comparison, p-value < 0.05). Exposure to aspirin for 

at least 3 weeks showed a 2-day delay before detectable recovery (Figure 4.11); 

• the overall kinetics of TxB2 recovery showed a complex sigmoidal pattern, not 

appropriately described by a simple first-order kinetics (Figure 4.11). 

 
Figure 4.10: Absolute values of TxB2 (mean ± sd) of baseline (week 0) and for each week of treatment. 

Figure from [133]. 

 
Figure 4.11: TxB2 data pooled from 1 to 2 weeks versus 3 to 8 weeks of treatment for the whole post-

treatment period.* indicates significant difference. Figure from [133]. 
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These findings made the authors conclude that: 

• to suppress COX recovery for 2 days after aspirin withdrawal, at least 3 weeks of 

treatment 100 mg once daily are needed; 

• the 2-days delay, exhibited by COX recovery after more than 2 weeks of treatment 

100 mg daily, is interpreted as the evidence that aspirin acetylates COX in 

megakaryocytes, thus leading to generation of inactivated platelets within the first 2 

days after aspirin withdrawal; 

4.2.2.2 Diabetic subjects 

In the second trial, the authors characterized the kinetics of platelet COX recovery in 

aspirin-treated diabetic (and non diabetic) patients [128]. In the first phase of the trial, one 

hundred type 2 diabetic patients on chronic aspirin 100 mg daily were studied and serum 

TxB2 measured every 3 hours, between 12 and 24 hours after a witnessed aspirin intake. 

The linear slope of serum TxB2 recovery between 12 and 24 hours was computed for each 

patient (Figure 4.13). Patients with the fastest TxB2 recovery (i.e. the ones in the upper 

tertile of the slope distribution) underwent phase 2: they were randomized to aspirin 100 

mg once a day, 200 mg once a day or 100 mg twice a day, for 28 days and TxB2 was 

reassessed. The protocol scheme is represented in Figure 4.12. Results from the first 

versus second phase of the study are presented in Figure 4.14. The authors found that: 

• the median serum TxB2 concentration measured at 12 hours after aspirin dosing in the 

100 diabetic patients was comparable to the median value reported in the first clinical 

trial on healthy subjects, treated with the same dose and formulation of aspirin; 

• about one third of the 100 diabetic patients showed a COX recovery significantly 

higher than healthy subjects in the 12-24 interval after aspirin intake; 

• a twice-daily regimen with 100 mg aspirin is significantly more effectiveness with 

respect to a once-daily regimen and a 200 mg once-daily regimen (Figure 4.14). 

The authors, thus, concluded that: 

• aspirin maximal effectiveness in the suppression of COX-dependent platelet function 

is not different between healthy and diabetic patients; 

• the main difference between healthy subjects and a fraction of diabetic patients is 

represented by a faster COX recovery during the 12-24 hours dosing interval; 



108 

 

• inadequate thromboxane inhibition

daily regimen. 

Figure 4.

Figure 4.13: Individual recovery slope of serum TxB

daily administration in patients with type 2 diabetes

inadequate thromboxane inhibition by low-dose aspirin can be corrected by a twice

Figure 4.12: Protocol of the study. Figure from [128]. 

 

Individual recovery slope of serum TxB2 over the 12-24 hours interval of aspirin 100 mg once 

daily administration in patients with type 2 diabetes. Figure from [128]

an be corrected by a twice-

 

 
24 hours interval of aspirin 100 mg once 

. 
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Figure 4.14: Serum TxB2 recovery slope between 12 and 24 hours after aspirin dosing in diabetic patients in 

the upper tertile, before (left panels) and after (right panels) the randomized phase of the study. (A-D) 

patients randomized to 100 mg once a day; (B-E) patients randomized to 200 mg once a day; (C-F) patients 

randomized to 100 mg twice a day. Figure from [128]. 
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4.2.2.3 Conclusions: potential mechanisms 

Combining results from the 2 clinical trials described above, the authors concluded that 

the main difference between healthy and diabetic patients is represented by a faster COX 

recovery between 12 and 24 hours after aspirin intake and that this is likely the cause of 

the so-called ‘aspirin resistance’ leading to treatment failure in most diabetic patients 

treated with aspirin [128]. The authors hypothesize that this mechanism may be caused by 

an enhanced  thromboxane biosynthesis in type 2 diabetics with macrovascular disease 

(as indicated by other literature works [97]), most likely reflecting variable platelet 

turnover. Moreover, they also hypothesize that a reduced systemic bioavailability of 

enteric-coated aspirin can limit the extent of COX acetylation in megakaryocytes [128]. 

 

4.3 Objective of the work 
If, on one hand, a possible approach to the analysis of the ‘aspirin resistence’ problem is 

the same dynamic statistical analysis used for the in silico model of diabetes 

complications adopted in Chapter 3, on the other hand it is interesting to study the 

problem from a physiological point of view as well, searching for the biological 

mechanisms responsible for the different responses to drug, observed in experimental 

data.  

Since, due to limited access to bone marrow megakaryocytes, it is difficult to clinically 

investigate both the causes of experimental evidence as well as the adequacy of different 

aspirin regimens, an in silico model of aspirin responsiveness can be useful to simulate 

interaction between aspirin and COX, and  might help designing personalized antiplatelet 

regimens in T2DM. 

Though some works have tried to explain this process from a mathematical point of view  

[119], [111], a detailed and complete characterization is still missing. 

The object of the work presented in this chapter is, thus, to develop an in silico model of 

aspirin action, able to: 

• explain data in healthy subjects; 

• test hypothesis for faster recovery in diabetic patients; 

• predict correct response to different aspirin regiments. 



111 

 

4.4 Methods 
A compartmental model to describe and simulate the processes of COX inhibition and  

reappearance in serum in response to an aspirin therapy has been developed. 

The model consists of four key-elements: 

1. Thrombopoiesis mechanism 

2. COX kinetics 

3. Aspirin pharmacodynamics (PD) 

4. Aspirin pharmacokinetics 

The following section will describe, for each key-element, the hypotheses and assumption 

used to build the model. 

4.4.1 Thrombopoiesis mechanism 

The term thrombopoiesis refers to the process of thrombocyte generation, i.e. generation 

of platelets from megakaryocytes in bone marrow. The developed model of 

thrombopoiesis is based on available literature, in particular on the most recent work by 

Patel [116], [117] and Thon [135], [134]. 

According to most recent findings, platelets (PLTs) are generated from megakaryocytes 

(MKs) by fragmentation: each MK  is generated in bone marrow by a precursor cell, and, 

after a megakaryocyte-maturation-period (MK_matur) during which each MK increases 

its dimension and  becomes proliferative, i.e. able to generate PLTs. Each MK generates a 

certain number of ProPLTs (N_ProPLTs_per_MK), an intermediate form of platelet, over 

a subsequent time interval called megakaryocyte-proliferation-period (MK_prolif). The 

generation of ProPLTs takes place during the entire MK_prolif, until the complete 

fragmentation of the MK. Each ProPLT, although physically connected to the MK, is 

functionally disconnected, and, after a short period during which it stretches and 

elongates its structure, it detaches from the MK. The detached ProPlLT is a barbell cell, 

which, after a ProPlatelet-life-period (PrePLT_life),  finally generates 2 Platelets (PLTs).  

While megakaryocytes and proplatelets are in bone marrow, platelets are released in 

systemic circulation. 

A MK is supposed to reach its mature state when it starts generating ProPLTs, and to die 

when the last ProPLT is generated. So, the Megakaryocyte life is given by the sum of the 

MK_matur and the MK_prolif. 
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For simplicity, ProPLTs are supposed to form consecutively over the MK_prolif, i.e., the 

number of ProPLTs generated by the MK in the time unit is a constant. 

A ProPLT is supposed to form when it starts protruding from the MK and to die when it 

is divided into 2 Platelets.  

A Platelet simply dies after the Platelet-life-period (PLT_life). 

Figure 4.15 represents the chronologic order of the events for a single MK. 

The population of MKs at the generic time t is supposed to be, with respect to the stage of 

maturation, without any privileged stage, as shown in Figure 4.16. 

 
Figure 4.15: timeline of the process of platelets generation from a single megakaryocyte. The different 

stages of the process, with representative literature  values, are represented with different colors: 

megakaryocyte-maturation-period (yellow), megakaryocyte-proliferation-period (light orange), 

proplatelets-life-period (dark orange), and platelet-life-period (magenta). 

 
Figure 4.16: Whole population of Megakaryocytes uniformly distributed over the interval 0 ÷ MK_life 

Table 4.1 lists the physiological parameters of the thrombopoiesis mechanism with 

literature ranges. 

MK maturation (~ 2 d) ProPLT life

(~ 12-24 h)

PLT life (~ 7 d)

time

MK proliferation

(~ 4-10 h)

MK life

t time

. .

MK life
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Parameter Description Literature value 

N_MKs_per_Kg 

Number of Megakaryocytes per 

kilogram of subject weight 
~ 6.1e6 [106] 

MK_matur Maturation period of Megakaryocytes ~ 2-4 days [117] 

MK_prolif Proliferation period of Megakaryocytes 
~ 4-10 hours [106]-

[116] 

ProPLT_life Lifespan of ProPlatelets ~ 12-24 hours [117] 

PLT_life Lifespan of Platelets ~ 7-10 days [135] 

N_ProPLTs_per_MK 
Number of ProPlatelets generated from 

each Megakaryocyte 
~ 1000 ÷ 1500 [116] 

N_PLTs_per_ProPLT 
Number of Platelets generated from each 

ProPlatelet 
2 [116] 

Table 4.1: Literature values for the parameters of thrombopoiesis. 

 

4.4.2 COX kinetics 

Since PLTs are not able to synthesize de novo COX [140], the enzyme is supposed to be 

constantly produced only within MKs during their maturation period. When the MK 

terminates its maturation and enters the proliferation period, COX synthesis is supposed 

to stop. Each ProPLT is supposed to inherit a certain amount of COX from its MK father. 

The total amount of COX within the MK is supposed to be equally distributed to all the 

ProPLTs generated from the MK, so that COX amount received by each ProPLT is the 

same. COX inherited from the MK remains inside the ProPLT throughout its life period, 

during which the ProPLT stretches and detaches from the MK, without any de-novo 

synthesis occurring. Then, when the ProPLT divides into 2 PLTs, COX is simply 

supposed to be equally divided between the 2 new-forming PLTs. COX degradation is 

supposed to be negligible in MKs and ProPLTs, since COX is a housekeeping enzyme 

(i.e. an enzyme present in all the cells to perform essential metabolic functions), while a 

nonzero degradation is supposed to take place in PLTs, representing enzyme utilization 

and elimination thought platelet death. 

To model the processes of synthesis and transfer of COX from megakaryocytes in bone 

marrow to platelets in blood, accounting also for the temporal dimension of the processes 

involved in thrombopoiesis (see previous section), the compartmental distributed model 

of Figure 4.17 has been developed. 
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Figure 4.17: The compartmental model for COX kinetics. Each compartment represent COX total amount in 

a different cell population: maturing megakaryocytes (yellow), proliferating megakaryocytes (light 

orange), proplatelets (dark orange) and Platelets (magenta). Solid arrows denote fluxes of COX: P 

represent COX synthesis, while k denote its degradation rate. 
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The model is described by the following partial differential equations: 

��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��

c 

d�
(�, �)d� = '(�), �1(0, �) = 0 (4.1)   

d�
(�, �)d� = 0, �1(�, 0) = �10 (4.2)   

v��
(�) = � �
(�, �)��
}�8����

?
, v��1(0) = v��10 (4.3)   

d�
(�, �)d� = \Q�
(�, �), �S, �2(0, �) = \2��1(�, �)� (4.4)   

d�
(�, �)d� = 0, �2(�, 0) = �20 (4.5)   

v��
(�) = � �
(�, �)��
}�H���6�

?
, v��2(0) = v��20 (4.6)   

d��(�, �)d� = 0, �3(0, �) = \3��2(�, �)� (4.7)   

d��(�, �)d� = 0, �3(�, 0) = �30 (4.8)   

v���(�) = � ��(�, �)��
��{����6� 

?
, v��3(0) = v��30 (4.9)   

d�¡(�, �)d� = −( · �¡(�, �), �4(0, �) = \4��3(�, �)� (4.10)   

d�¡(�, �)d� = 0, �4(�, 0) = �40 (4.11)   

v��¡(�) = � �¡(�, �)��
����6� 

?
, v��4(0) = v��40 (4.12)   

J = v��¡(�)  (4.13)   
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Where: 

• t and s are the 2 independent variables, representing ‘time’ and ‘cell maturation state’ 

respectively. The unit of measure is [time] for both the variables, since ‘cell 

maturation state’ represents the age of the cell. 

• Q1, Q2, Q3, and Q4 represent active-COX (i.e. non acetylated COX) distribution over s 

in, all the maturing megakaryocytes, all the proliferating megakaryocytes, all the 

proplatelets and all the platelets, respectively. The unit of measure for COX is [mass]. 

The Q1, Q2, Q3, and Q4 are time-dependent distributions, i.e. function of the 2 

independent variables, and this is why the model is not lumped (i.e. dependent on one 

variable only) but distributed. 

• Q10, Q20, Q30, and Q40 represent the initial distribution over s of, all the maturing 

megakaryocytes, all the proliferating megakaryocytes, all the proplatelets and all the 

platelets, respectively. 

• COX1, COX 2, COX 3, and COX 4 represent active-COX total amount in, all the 

maturing megakaryocytes, all the proliferating megakaryocytes, all the proplatelets 

and all the platelets, respectively, and are function of time only, simply given by the 

integral over s of their respective distributions. 

• COX10, COX20, COX30, and COX40 represent the initial total amount of active-COX in, 

all the maturing megakaryocytes, all the proliferating megakaryocytes, all the 

proplatelets and all the platelets, respectively. 

• P(s) represents the overall synthesis of new COX (which is supposed to take place 

within maturing megakaryocytes only) as a function of the maturation state s. P is 

considered to be constant over time. The unit of measure for P is [mass/time]. 

• f  is a function expressing the partial derivative of the active-COX distribution in all 

the proliferating megakaryocytes (Q2) with respect to the maturation state of the 

proliferating megakaryocytes s. 

• the fi (i = 1,2,3) are functions expressing the dependency of the initial value of the 

distribution over s (where ‘initial’ stands for ‘in the initial maturation state’, i.e. for s 

= 0) of compartment i on the previous variable state Qi-1. 

• k represents the degradation rate coefficient of COX. COX degradation is supposed to 

be a linear process taking place only in the platelets compartment, i.e. the degradation 

flux is proportional to COX amount in the compartment via a rate coefficient k, which 
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is supposed to be  a constant. The unit of measure for k is [time-1]. Information from 

[103] support an indicative value for COX half-life t½  of about 0.8÷1 day, i.e. a 

value for k equal to ln(2) / t½ ~ 4.8e-4÷6.0e-4 min-1.  

• y represents the output of the model, i.e. the measure, which is the time-course of 

active-COX total amount in blood (i.e. in all the circulating platelets). The unit of 

measure for y is [mass]. 

Analytical expression for the P(s), Qio, COXi0, f and fi are derived from the physiological 

parameters of thrombopoiesis mechanism, shown in Table 4.1, and from the COX 

degradation rate coefficient k and the rate of new COX synthesis in the single 

megakaryocyte pMK, following the rationale detailed in the following section 

4.4.2.1 Mathematical formulation 

To derive the mathematical formulation of the model, the steady-states of COX 

distributions separately for each cell type (i.e. maturing megakaryocytes, proliferating 

megakaryocytes, proplatelets and platelets) need to be considered and described. 

Analytical expression for the P(s), Qio, COXi0, f and fi will be highlighted in bold. 

� Maturing megakaryocytes 

COX kinetics within the single maturing MK  is simply given by the constant production 

of COX taking place in the single MK (pMK). Thus, the differential equation describing 

the COX time-course of the single maturing MK (qMKm(t)) is given by: 

 
�¤}�/�� = -}� , ¤}�/(0) = 0 (4.14)  

Since in the initial maturation state (s = 0) COX = 0, the analytical solution for qMKm(t) is 

algebraically described by a linear equation (see Figure 4.18): 

 ¤}�/(�) = -}� · � � = 0 ÷ u¦_-X¨Nb\ (4.15)   

Assuming the population of MKs at the generic time t to be distributed, with respect to 

the state of maturation, without any privileged state (see Figure 4.16), we can state that 

the number of MKs in the single maturation state (N_MKs_per_s) is a constant given by: 
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 �_u¦�_-CX_� = �_u¦�u¦_Nb\C (4.16)   

where N_MKs is the total number of MKs in bone marrow. 

Given the hypothesis of uniform distribution, we can also state that, in steady-state, COX 

distribution of maturing MKs over the maturation state s at the generic instant t (Q10) 

coincides with the time-course of qMKm (equation (4.15)) multiplied by the number of 

MKs in each maturation state: 

 ©ª« = �_u¦�u¦_Nb\C · -}� · �, � = 0 ÷ u¦_Nb\C (4.17)   

COX total amount in all the maturing MKs is given by the sum of COX of each single 

maturing MK, thus is computed integrating equation (4.17) over s, and, in steady-state, is 

given by:  

 

¬­®ª« = � �_u¦�u¦_Nb\C · -}� · � 
}�_/_¯°�

?
�� =

= 12 · �_u¦�u¦_Nb\C · -}� · u¦_±W�²X
 

(4.18)   

The overall synthesis of new COX in the generic state s is a flux given by the single MK 

production pMK multiplied by the number of MKs in the maturation state s: 

 ³(´) = �_u¦�u¦_Nb\C · -}� � = 0 ÷ u¦_±W�²X (4.19)  

P(s) is a constant function defined in the interval 0 ÷ MK_matur, since production is 

supposed to take place in maturing MKs only. 

� Proliferating megakaryocytes 

In the single proliferating MK, a simple constant flux takes place, this flux representing 

COX amount transferred to ProPLTs in the unit time, until the MK is completely devoid 
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of COX. Thus the COX time-course in the single proliferating MK (qMKp(t)) is a linear 

function (see Figure 4.18): 

¤}�B(�) = -}� · u¦_±W�²Xu¦_-X¨Nb\ ˙(u¦_-X¨Nb\ − �), � = 0 ÷ u¦_-X¨Nb\ (4.20)   

 
Figure 4.18: COX time-course within the single megakaryocyte. 

 

Given the usual hypothesis of uniform distribution, we can state that, in steady-state, the 

distribution of proliferating MKs over the maturation state s at the generic time t (Q20) is 

represented by the same linear function of the COX time-course in the single proliferating 

MK (equation (4.20)) multiplied by the number of MKs in each maturation state: 

©¶« = -}� · u¦_±W�²Xu¦_-X¨Nb\ ˙(u¦_-X¨Nb\ − �) · �_u¦�u¦_Nb\C, � = 0 ÷ u¦_-X¨Nb\ (4.21) 

Since the COX distribution of the single MK over its maturation state is a continuous 

function, denoting with s1 the maturation state of the maturing MK and with s2 the 

maturation state of the proliferating MK, for each generic time t it necessarily will be: 

 �
(�
 = u¦_±W�²X, �) = �
(�
 = 0, �) (4.22)   

that is, the initial condition for Q2 it is a function of Q1, and, in particular, coincides with 

the final value of the Q1 distribution: 

time

COX time-course within single MK

0 MK_matur MK_prolif

MK_life

pMK ·MK_matur
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 �
(0, �) = ·¶Q©ª(´, ¸)S = �
(� = u¦_±W�²X, �) (4.23)   

 COX total amount in all the proliferating MKs is given by the sum of COX of each 

single proliferating MK, thus is computed integrating equation (4.21) over s, and, in 

steady-state, is given by: 

¬­®¶« = � �_u¦�u¦_Nb\C · -}� · u¦_±W�²Xu¦_-X¨Nb\ ˙(u¦_-X¨Nb\ − �) 
}�_B�{z�¹

?
�� =

= 12 · �_u¦�u¦_Nb\C · -}� · u¦_±W�²X · u¦_-X¨Nb\ 

(4.24)   

COX total amount in all the MKs (maturing and proliferating), can be computed as the 

sum of equation (4.18) and equation (4.24): 

 v��}�º = v��
? + v��
? = 12 · �_u¦� · -}� · u¦_±W�²X (4.25)  

To derive the differential equation expressing the evolution of COX distribution in the 

proliferating MKs (Q2(s,t)) in function of the maturation state s, the following 

assumptions were made: 

- ProPLTs are constantly generated during the proliferation period of a MK, thus, the 

number of ProPLTs generating in each maturation state of the proliferating MK 

(N_new_ProPLTs_per_s) is supposed to be constant and equal to: 

 �_�C»_'X¨'Z��_-CX_� = �_'X¨'Z��_-CX_u¦u¦_-X¨Nb\  (4.26)   

- COX within the single proliferating MK is considered as a whole amount which, at 

each maturation state s, will be uniformly distributed among the ProPLTs “to be 

generated yet” at sate s. 

From equation (4.26), the number of ProPLTs “to be generated yet” (N_ProPLTs_tbg) is 

given by: 
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�_'X¨'Z��_�¼Y(�) = ju¦B�{z�¹ − �lu¦B�{z�¹ · �_'X¨'Z��_-CX_u¦ (4.27)  

Given the usual hypothesis of uniform distribution for the MKs population, the 

distribution over the maturation state s coincides with the time-course within the single 

MK multiplied by the number of MKs per state, thus, at the generic state s, the COX 

amount leaving the proliferating MK is given by the COX total amount in s, divided by 

the number of ProPLTs “to be generated yet” in s, multiplied by the number of new 

ProPLTs generating in s: 

�
(�, �)�_'X¨'Z��_�¼Y(�) · �_�C»_'X¨'Z��_-CX_� = �
(�, �)u¦_-X¨Nb\ − � 

and the differential equation expressing the dependency of Q2(s,t) on the maturation state 

s, is given by: 

 
d�
(�, �)d� = ·Q©¶(´, ¸), ´S = �
(�, �)u¦_-X¨Nb\ − � (4.28)   

In steady-state, Q2(s,t) is given by equation (4.21), and equation (4.28) becomes: 

 
d�
(�, �)d� = -}� · �_u¦�u¦_Nb\C · u¦_±W�²Xu¦_-X¨Nb\ (4.29)   

which yields to a linear equation for Q2(s,t) over the maturation state s, as confirmed by 

equation (4.21). 

In figure Figure 4.19, 2 examples are shown: in the left column, active-COX time-course 

within the single proliferating MK in steady-state; in the right column, active-COX time-

course within the single proliferating MK in the case of an instant and partial inactivation 

of COX at t = t* . For each column, top panel represents active-COX time-course within 

the single proliferating MK, middle panel the number of ProPLTs to be generated as a 

function of the time, bottom panel active-COX amount leaving the proliferating MK. 

While in steady-state, active-COX amount transferred to ProPLTs is a constant amount 
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(panel C), in the other case, one can see how active-COX amount transferred to ProPLTs 

decreases after the inactivation at t = t*  (panel F). 

 

Figure 4.19: Example of time-course of COX amount leaving the proliferating MK, in steady-state (left 

column), and in the case of an instant inactivation of COX at t = t* (right column). For each column, top 

panel represents active-COX time-course within the single proliferating MK, middle panel the number of 

ProPLTs to be generated as a function of the time, bottom panel active-COX amount leaving the 

proliferating MK.  

� Proplatelets 

The single ProPLT inherits a certain amount of COX when it is generated by its father 

MK, and then stores that COX amount for all its life (ProPLT_life), until it splits into 2 

PLTs. 

At the generic time t, the single newborn ProPLT inherits a COX amount (qProPLT(t)) 

given by the total COX amount in its father proliferating MK at time t (qMKp(t)) divided 

by the number of ProPLTs “to be generated yet” at time t: 
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 ¤��{���(�) = ¤}�B(�)�_'X¨'Z��_�¼Y(�) (4.30)   

The newborn ProPLTs are the ProPLTs whose state of maturation is s = 0. 

The total number of newborn ProPLTs at each instant t (N_new_ProPLTs_s0) is a 

constant given by the number of proliferating MKs at time t multiplied by the number of 

ProPLTs generated in the unit time (which is the constant given by equation (4.26)):  

 �_�C»_'X¨'Z��_�0 = �}�ºu¦z�¹½ · �_'X¨'Z��_-CX_u¦ (4.31)   

Since the ProPLTs population is uniformly distributed, equation (4.31) represents also the 

constant number of ProPLTs in each maturation state. 

The COX amount in all the newborn ProPLTs (Q3(0,t)) is given by the COX-amount 

inherited by the single ProPLT (equation (4.30)) multiplied by the total number of 

newborn ProPLTs (equation (4.31)), which yields to: 

 ��(0, �) = ¤}�B(�, �)u¦_-X¨Nb\ − � · �_u¦� · u¦_-X¨Nb\u¦_Nb\C  (4.32)  

where qMKp(s) is the COX amount in the single proliferating MK, and it is simply given 

by the distribution of COX amount in the proliferating MKs over the maturation state s 

(Q2(s,t)), divided by the number of MKs in each maturation state (equation (4.16)), which 

yields to the following expression: 

 ��(0, �) = ·¾Q©¶(´, ¸)S = �
(�, �) · u¦_-X¨Nb\u¦_-X¨Nb\ − � (4.33)   

In steady-state, Q2(s,t) is Q20. Considering that ProPLTs population is uniformly 

distributed and that the distribution of COX in ProPLTs over the maturation state (Q3(s,t)) 

is constant (see equation (4.7)), Q3(s,t) in steady-state (Q30) is obtained by using the 

expression for Q20, given by equation (4.21), in equation (4.33): 
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©¾« = �_u¦�u¦_Nb\C ∙ -}� ∙ u¦_±W�²X, � = 0 ÷ 'X¨'Z�_Nb\C (4.34)   

COX total amount in all the ProPLTs is given by the sum of COX of each single ProPLT, 

and, in steady-state, is computed integrating equation (4.34) over s: 

¬­®¾« = � �_u¦�u¦_Nb\C · -}� · u¦_±W�²X 
��{���_z�¹½

?
�� =

= �_u¦�u¦_Nb\C · -}� · u¦_±W�²X · 'X¨'Z�_Nb\C 

(4.35)   

� Platelets 

The single PLTs inherits half of the COX amount of its mother ProPLT. COX within 

PLTs is supposed to undergo a degradation process regulated by the degradation rate 

coefficient k. As for MKs and ProPLTs, also the total population of PLTs is uniformly 

distributed over the maturation state, meaning that the number of PLTs in each state of 

maturation is the same. Considering that the whole COX amount stored in all the 

ProPLTs at the end of their life (i.e. for s = ProPLT_life) is transferred to newborn PLTs 

(i.e. the set of all PLTs whose maturation state is s = 0), it is easy to compute the initial 

condition for the distribution of COX in PLTs over s (Q4(s,t)) as a function of the 

distribution of the previous compartment: 

 �¡(0, �) = ·¿Q©¾(´, ¸)S = ��(� = 'X¨'Z�_Nb\C, �) (4.36)  

The differential equation expressing the kinetics of Q4(s,t) over s is the partial differential 

equation (4.10), whose solution yields to the expression for the distribution of COX in 

PLTs over the maturation state s: 

�¡(�, �) = �¡(0, �) ∙ CMf∙º � = 0 ÷ 'Z�_Nb\C (4.37)  

Using equation (4.34), the expression for Q4(s,t) in steady-state is: 
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©¿« = �_u¦�u¦_Nb\C ∙ -}� ∙ u¦_±W�²X ∙ CMf∙º � = 0 ÷ 'Z�_Nb\C (4.38)   

COX total amount in all the PLTs is given by the sum of COX of each single ProPLT, 

and, in steady-state, is computed integrating equation (4.38) over s: 

¬­®¿« = � �_u¦�u¦_Nb\C · -}� · u¦_±W�²X ∙ CMf∙º 
���_z�¹½

?
�� =

= �_u¦�u¦_Nb\C · -}� · u¦_±W�²X · 'Z�_Nb\C ∙ 1 − CMf∙���_z�¹½
(  

(4.39)   

Figure 4.20 shows a summary picture of COX kinetics within each single cell type: in the 

upper panel, COX kinetics within the single MK; in the middle panel, COX kinetics 

within the single ProPLT; in the bottom panel, COX kinetics within the single PLT. 

 

Figure 4.20: COX kinetics within the single MK (top), the single ProPLT (middle) and the single PLT (bottom) 
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4.4.2.2 Why a distributed model? 

The model is distributed meaning that the state variables, i.e. COX amounts, depend not 

only on the time but also on the state of maturation of the cells in which COX is stored: 

the state variables are, in fact, time-dependent distributions. 

The reason why a distributed model was implemented is that a lumped compartmental 

linear model misses the information on how COX is distributed among cells at different 

maturation states, thus not properly describing the timing of COX kinetics. For example, 

a lumped model is not able to explain a pure delay in the time-course recovery of active-

COX in the case of a complete shooting-down of the COX in platelets precursors: in fact, 

if all the COX in the platelets and proplatelets is inactivated, there won’t be any COX re-

appearance in platelets before a ∆t = ProPLT_life, because new active COX, produced in 

megakaryocytes, needs to be transferred from megakaryocytes to proplatelets, and then 

has to wait a period equal to the life of a proplatelet before moving to platelets. A lumped 

model cannot reproduce these behavior. In Figure 4.22, an example in which COX is 

completely and instantly inactivated in proplatelets and platelets at t = 1 day is shown for 

the distributed model (blue curve) and for a lumped version of the model (red curve) 

developed on the same literature knowledge (Figure 4.21) and described by equations 

(4.40)-(4.43). In the example of Figure 4.22, ProPLT_life is set to 1 day. 

 
Figure 4.21: Lumped version of the model for COX kinetics. 
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Figure 4.22: comparison between a lumped model and a distributed one for a complete inactivation of COX 

in both ProPLTs and PLTs. 

 

4.4.3 Aspirin PD 

Aspirin acts on COX permanently inactivating it, trough an irreversible acetylation 

process: a single molecule of Aspirin (ASA) reacts with a single molecule of COX 

producing a single molecule of salicylic acid (SA) and a single molecule of acetylated 

COX (COXA) [140]. The reaction follows a first order kinetics [130] and it is regulated 

by the constant λ (equation (4.44)). λ’s unit of measure is [mass-1time-1]. 

 ÀÁÀ + v�� Â� ÁÀ + v��Ã (4.44)   

Reaction (4.44) can be described by the mass-action law, which states that the speed of a 

reaction is proportional on the product of the molar concentrations of the reagents: 

 

��
��
�
���
��QÀÁÀ(�)S�� = −λ ∙ QÀÁÀ(�)S ∙ Qv��(�)S

�Qv��(�)S�� = −λ ∙ QÀÁÀ(�)S ∙ Qv��(�)S
�QÁÀ(�)S�� = λ ∙ ÀQÁÀ(�)S ∙ Qv��(�)S
�Qv��Ã(�)S�� = λ ∙ QÀÁÀ(�)S ∙ Qv��(�)S

c 
(4.45)   

(4.46)   

(4.47)   

(4.48)   

In the model of COX kinetics (Figure 4.17), a new flux appears from each compartment, 

representing COX acetylation by aspirin, as shown in Figure 4.23. 

The model is still described by the old equations (4.1)-(4.13), with the only difference 

that, now, in the derivative of COX with respect to time in each compartment (equations 
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(4.2), (4.5), (4.8) and (4.11), respectively) a new term appears, representing degradation 

by aspirin, modeled as in equation (4.46). Equations (4.2), (4.5), (4.8) and (4.11) are then 

replaced by the followings: 

��
��
�
��
��

c 

d�
(�, �)d� = −[ · QÀÁÀ(�)Sy} · �
(�, �), �1(�, 0) = �10 (4.49)   

d�
(�, �)d� = −[ · QÀÁÀ(�)Sy} · �
(�, �), �2(�, 0) = �20 (4.50)   

d��(�, �)d� = −[ · QÀÁÀ(�)Sy} · ��(�, �), �3(�, 0) = �30 (4.51)   

d�¡(�, �)d� = −[ · QÀÁÀ(�)Syz · �¡(�, �), �4(�, 0) = �40 (4.52)   

where [ASA(t)]BM and [ASA(t)]Bl represent the time-course of aspirin molar concentration 

in bone marrow and blood, respectively. 

According to equations (4.49)-(4.52), aspirin is supposed to act uniformly on COX, i.e. 

aspirin in blood will uniformly acetylate COX in all the PLTs, and aspirin in bone 

marrow will uniformly acetylate COX in all the MKs and the ProPLTs. 

 
Figure 4.23: Aspirin effect on COX kinetics: Aspirin contributes to COX elimination with a rate coefficient 

equal to λ·ASA(t). Aspirin concentration time-course in bone marrow acts on the compartments of 

maturing megakaryocytes, proliferating megakaryocytes and proplatelets; aspirin concentration time-

course in blood acts on the compartment of platelets. The regulation is represented by dashed red arrows. 
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4.4.4 Aspirin PK 

Aspirin represents the intervention input of the model. As for the thrombopoiesis 

mechanism, information on the time-course of aspirin was derived from the literature. 

A first issue to be faced when approaching aspirin PK is that aspirin can present 2 

different formulations: simple compressed tablets or enteric-coated tablets. Enteric-

coating of drug tablets is achieved by covering tablets with a polymer layer (usually a 

polyacid soluble in aqueous media), and is used to prevent the release of drugs in the 

stomach, either to reduce the risk of gastrointestinal side effects or/and to maintain the 

stability of drugs which are subject to degradation in the gastric environment [126]. 

Aspirin is enteric coated to protect gastric mucosa from corrosion, and this is particularly 

important for patients on chronic aspirin therapy. 

These 2 different formulation of aspirin (to which we will refer as ASA for the non-coated 

formulation and ecASA for the coated one) lead to different kinetics. One of the first work 

conducted with the objective  to compare different aspirin formulation is the one of Ali 

and others [93], where the authors enrolled six healthy subjects and measured, for each 

subject, ASA levels in plasma following a first ingestion of compressed tablets 650 mg 

aspirin, and a second ingestion, after a wash-out interval of 5 weeks, of enteric-coated 

tablets 650 mg aspirin. Figure 4.24 shows the mean time-course of the 2 different 

formulations: as one can see, ASA concentration (in µg/ml) reached its peak in plasma 

about 45 minutes after compressed tablet administration (upper left panel), and about 4 

hours after enteric-coated administration (upper right panel), thus exhibiting a very 

delayed and slower kinetics in the enteric-coated formulation compared to the non-coated 

one. Moreover, the authors observed that both aspirin formulations resulted in widely 

variable ASA levels (as one can see by the error bars of Figure 4.24) and, most notably, 

ASA was undetectable in plasma during 3 experiments involving enteric-coated 

formulation [126]. These results are relevant since they highlight the issue of the 

interindividual variability in response to aspirin. The work provides more complete 

information, since the authors measured also platelets COX activity, as presented in 

Figure 4.24, where the mean COX time-course is shown for the enteric coated 

formulation (bottom right panel) and for the non-coated one (bottom left panel). The 

delayed kinetics of enteric-coated formulation is reflected in COX kinetics too, since 

COX recovery is delayed in response to the enteric-coated administration, even if, apart 

from the delay, COX time-courses appears similar after 24 hours in both cases. 
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Figure 4.24: time-course (mean ± SEM) of ASA (left column) and COX (right column) after ingestion of 

aspirin 650 mg of compressed tablets (upper panels) and enteric-coated tablets (bottom panels) in six 

healthy volunteers. Figure from [126]. 

 

Similar results regarding the kinetics of different formulation of aspirin were obtained by 

Sai and others [132], who enrolled twelve healthy volunteers to receive four separated 

100 mg oral aspirin administration: intact and chewed non-coated tablets, and intact and 

chewed enteric-coated tablets. Figure shows the four resulting time-courses of plasma 

ASA concentration. ASA was detectable in serum within 20 minutes after the ingestion of 

intact non-coated aspirin, although the authors pointed out how significant variability was 

observed. After ingestion of intact coated aspirin, ASA was not detectable in serum until 

4 hours, while, when coated aspirin was chewed, ASA was detectable within 20 minutes 

after ingestion. Moreover, levels of ecASA were significantly lower than the others (even 

if the peak of ecASA concentration could not be determined since there were not 

measurements after 8 hours and ecASA appeared to keep on rising after 8 hours). From 

the experiment, the authors concluded that enteric-coated formulation results in a slower 

kinetics of aspirin and emphasized that a significant interindividual variability was 

observed [132]. 
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Figure 4.25: Serum ASA concentration after ingestion of intact (open) and chewed (closed) non-coated 

(circle) and coated (triangle) tablets was measured for 8 h. Each point represents the mean ± SEM of 10–12 

patients. Figure from [132]. 

This wide variability was confirmed by many other studies, and extreme results were 

obtained by Ross-Lee and others [129], who studied fourteen healthy volunteers 

randomized to receive 1200 mg of ASA or 1300 mg of ecASA. For all the volunteers 

administered with ecASA, ASA levels in serum were below the detection limit of the 

assay (< 0.5 mg/l) at all times of measurements. Only repeating the experiment with 650 

mg and measuring ASA levels with a more sensitive technique, peak concentrations were 

observed (mean 0.24 mg/l ± 11) 4 hours after dosing (mean 0.24 mg/l ± 11) in 3 subjects, 

and at 6 hours in one subject. 

This brief overview on the current literature knowledge on aspirin PK, makes it rather 

clear that: 

- aspirin PK strongly depends on tablet formulation: enteric-coating results in a delayed 

and slower kinetics with respect to the non-coated preparation; 

- interindividual variability plays a major role in the appearance of ASA in serum. 

An in silico model, which aims to investigate the adequacy of different aspirin regimens, 

necessarily needs to mathematically model not only COX but also aspirin kinetics. 

Moreover, as it’s clear from section 4.4.3, not only ASA time-course in blood is needed 

but in bone marrow too, and, due to limited access to bone marrow megakaryocytes, only 

a model allows to simulate this kinetics without invasive and expensive test. 

Thus, a compartmental model of ASA PK was developed (Figure 4.26): 
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Figure 4.26: The compartmental model for ASA kinetics. 

 

The model is described by the following linear differential equations: 

��
�
�� c 

�
Å = � ∙ �j\(�)l�� − (_ ∙ �
, �
? = 0 (4.53)  

�
Å = (_ ∙ �
 − j(_ + (BÆl ∙ �
 + (ÆB ∙ ��, �
? = 0 (4.54)   

��Å = (BÆ ∙ �
 − (ÆB ∙ ��, ��? = 0 (4.55)   

 

where: 

• X1, X2 and X3 represent ASA amounts in gastro-intestinal tract, systemic compartment 

(i.e. systemic circulation) and bone marrow compartment (peripheral compartment), 

respectively. The unit of measure for X1, X2 and X3 is [mass]; 

• ka represents the rate of appearance of ASA from gastro-intestinal compartment to 

systemic compartment; kel represents the rate ASA elimination from systemic 

compartment and ASA distribution to the whole body; kps and ksp represent the rates 

of exchange from systemic to peripheral compartments and vice versa, respectively. 

The unit of measure for ka, kel, kps and ksp is [time-1]; 

• the input of the model is given by the product of the oral dose D (unit of measure: 

[mass]) and the derivative of a suitable function h(t), used to simulated different 

kinetics of ASA, depending on the formulation. h(t) is given by the following 

equation of Hill: 

ℎ(�) = �/
¦ + �/ (4.56)  
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where K is given by: 

¦ = ± + 1± − 1 ∙ �_\NCA/ (4.57)  

and t_flex is the time in which h(t) has its point of inflection (Figure 4.27). 

 
Figure 4.27:  Example of h(t) used to simulate different kinetics of release of ASA. 

 

 h(t) represents the drug availability, thus: 

lim¯�É ℎ(�) = 1 (4.58)  

meaning that all the initial dose is released in the systemic compartment. The 

derivative of h(t) is given by: 

�ℎ(�)�� = ± ∙ �/M
 ∙ ¦(¦ + �/)
  (4.59)  

and it simulates the release of the oral dose D. 

Figure 4.28 shows the effect on h(t) (left column) and on the consequent flux of 

appearance in the systemic compartment ka·X1(t) (right column) caused by a variation 

of the parameter t_flex (upper row) and m (bottom row), following an ingestion of 

100 mg aspirin (the parameter ka was set to a nominal value of 0.1 min-1 in the 

example). As one can see, t_flex is responsible for the delay in the release of the drug 

and for the speed of the kinetics (the grater t_flex the grater the delay and the slower 
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the kinetics), while m mainly controls the speed of the release (the grater m, the faster 

the kinetics). Both the parameters have a direct effect on the peak of the flux of 

appearance, since the faster and earlier is the release, the grater is the peak. 

 
Figure 4.28: Variation of h(t) (left panels) and ka·X1(t) (right panels), for different values of t_flex (upper 

panels) and m (bottom panels), following a dose of 100 mg ASA. Values used for t_flex are 20, 60 and 120 

minutes, values used for m are 2, 3 and 4. ka is set to 0.1 min
-1

. 

 

While COX is physically contained into the cells and its kinetics is dependent on the 

different steps of the thrombopoiesis process, aspirin is free to move through cell 

membranes by diffusion, not depending on the processes of cell maturation. This is why 

aspirin kinetics is described by a traditional lumped model, i.e. the only independent 

variable is time. 

Given mutual interaction between aspirin and COX (see ASA PD in section 4.4.3), the 

model of aspirin PK cannot be modeled separately from the model of COX kinetics, thus 

a unique aggregated model is needed. In the following section the final model will be then 

presented. 
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4.4.5 Final model 

The connection of the 2 sub-models for COX kinetics (section 4.4.2) and for aspirin 

kinetics (section 4.4.4), combined by aspirin pharmacodynamics described in section 

4.4.3, results in the final model of Figure 4.29, described by equations (4.60)-(4.75).  

 
Figure 4.29: final model, partially lumped and partially distributed, of aspirin action. Red dashed lines 

represents interaction between aspirin and COX. 

 

In summary, the input is given by the oral dose of aspirin multiplied by the derivative of 

the hill function h(t) used to simulated enteric-coated formulation. Aspirin enters the 

gastro-intestinal compartment X1 and then appears, with a constant rate ka, in the 

systemic compartment. Aspirin in the systemic compartment is partially eliminated and 

utilized by all the other tissues, with a constant rate kel, and partially transferred to the 

bone marrow compartment X3 with a constant rate kps. Aspirin in bone marrow can move 

back to the systemic compartment with a constant rate ksp. Aspirin in the systemic 

compartment acts on COX in the compartment of circulating platelets Q4, while aspirin in 

bone marrow acts on COX in bone marrow, i.e. on the compartments of maturing and 

proliferating megakaryocytes (Q1 and Q2 respectively) and on the compartment of 

proplatelets Q3. The measure is represented by COX in circulating platelets. 
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? = 0 (4.61)   

��Å = (Bº ∙ �
 − Ê(Bº + [ ∙ �
 + �
 + ��!Ëy} Ì ∙ ��, ��? = 0 (4.62)   
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(�, �)d� = '(�), �1(0, �) = 0 (4.63)   
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(�, �)d� = −[ · ��!�� · �
(�, �), �1(�, 0) = �10 (4.64)   

v��
(�) = � �
(�, �)��}�_/_¯°�
? , v��1(0) = v��10 (4.65)   

d�
(�, �)d� = \Q�
(�, �), �S, �2(0, �) = \2��1(�, �)� (4.66)   

d�
(�, �)d� = −[ · ��!�� · �
(�, �), �2(�, 0) = �20 (4.67)   

v��
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? , v��2(0) = v��20 (4.68)   

d��(�, �)d� = 0, �3(0, �) = \3��2(�, �)� (4.69)   

d��(�, �)d� = −[ · ��!�� · ��(�, �), �3(�, 0) = �30 (4.70)   

v���(�) = � ��(�, �)����{���_z�¹½
? , v��3(0) = v��30 (4.71)   

d�¡(�, �)d� = −( · �¡(�, �), �4(0, �) = \4��3(�, �)� (4.72)   

d�¡(�, �)d� = −[ · �
!�
 · �¡(�, �), �4(�, 0) = �40 (4.73)   

v��¡(�) = � �¡(�, �)�����_z�¹½
? , v��4(0) = v��40 (4.74)   

J = v��¡(�)  (4.75)   
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Since modeling aspirin PD by the mass-action law needs the concentrations of the 

reagents, the volumes of the different compartments have now to be accounted for. 

The volumes appearing now in the equations are: VQBM, VQ4, VX2 and VX3, representing the 

total volume of megakaryocytes and proplatelets together, the total volume of circulating 

platelets, the total volume of the systemic circulation compartment and the total volume 

of bone marrow, respectively. Indicative values for VX2 and VX3 were taken directly from 

[108]. Value for VQBM was derived combining information on megakaryocyte dimensions, 

from [114], and on megakaryocytes numerosity, from [106]. Value for VQ4 was derived 

from [109], as product between the mean number of platelets per liter of blood and the 

mean platelet volume. 

4.4.6 Model Parameters 

Given the final model of Figure 4.29, described by equations (4.60)-(4.75), the complete 

list of parameters of the model, together with the respective literature ranges or nominal 

values, is reported in Table 4.2. 

The total number of parameters is 20, of which:  

• 13 parameters (N_MKs_per_Kg, MK_matur, MK_prolif, ProPLT_life, PLT_life, 

N_ProPLTs_per_MK, N_PLTs_per_MK, k, VQBM, VQ4, ka, VX2, VX3) can be considered 

known directly or derived from the literature. It is important to make clear that 

nominal values of the parameters are to be meant for healthy subjects. 

• 7 parameters (pMK, t_flex, m, kps, ksp, kel and λ) are unknown. 

An a-priori identifiability analysis was performed, using the DAISY (Differential Algebra 

for Identifiability of SYstems) software by Bellu and others [95], which  implements a 

differential algebra algorithm to perform parameter identifiability analysis for linear and 

nonlinear dynamic models described by polynomial or rational equations. The model 

turned out to be neither globally nor locally identifiable.  

However, since the model has an explorative aim and its main objective is to qualitatively 

describe experimental evidence, unknown parameter estimation by fitting real data did 

not appear to be the more suitable strategy, especially considering that: i) only one output 

was available (i.e. measurements in one compartment only) ii)  data are characterized by a 

high variability, which inevitably leads to inaccurate parameters estimates. 

Thus, the model was not simplified and no data fitting was performed.  
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Unknown parameters setting is described in the following section. 

 
Parameter Description Literature value  

T
H

R
O

M
B

O
P

O
IE

S
IS

 

N_MKs_per_Kg 
number of megakaryocytes per 

kilogram of subject weight 
~ 6.1e6 [106] 

MK_matur maturation period of megakaryocytes ~ 2-4 days [117] 

MK_prolif proliferation period of megakaryocytes 
~ 4-10 hours [106]-

[116] 

ProPLT_life lifespan of proplatelets ~ 12-24 hours [117] 

PLT_life lifespan of platelets ~ 7-10 days [135] 

N_ProPLTs_per_MK 
number of proplatelets generated from 

each megakaryocyte 
~ 1000 ÷ 1500 [116] 

N_PLTs_per_ProPLT 
number of platelets generated from 

each proplatelet 
2 [116] 

C
O

X
 K

IN
E

T
IC

S
 pMK 

COX new synthesis within the single 

maturing megakaryocyte 
? 

k COX degradation rate in platelets ~ 4.8e-4 min-1 [103] 

VQBM 
volume of all megakaryocytes and all 

proplatelets together 
~ 1000 ml [114] 

VQ4 volume of all circulating platelets ~ 15 ml [109] 

A
S

A
 P

K
 

t_flex time of inflection of the hill function ? 

m degree of the hill function ? 

ka 
rate of ASA appearance from gastro-

intestinal tract 
~ 0.1875 min-1 [123] 

kel 

rate of ASA elimination and 

distribution to all tissues from systemic 

circulation 

? 

kps 
rate of ASA exchange from systemic 

circulation to bone marrow 
? 

ksp 
rate of ASA exchange from bone 

marrow to systemic circulation 
? 

VX2 volume of systemic circulation ~ 5600 ml [108] 

VX3 volume of bone marrow tissue ~ 1177 ml [108] 

A
S

A
 P

D
 

λ 
rate constant of the reaction between 

ASA and COX 
? 

Table 4.2: Parameters of the final model, with literature ranges and nominal values. 
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4.5 Parameters setting 
With the objective of setting unknown parameters to reasonable values, a set of 

simulations was performed,  where, for each parameter, different values from a search 

interval have been tested, fixing all the others to nominal values. The known parameters 

were set to the mean value of the respective range or to the nominal value reported in 

Table 4.2. For each unknown parameter, Table 4.3 reports the nominal value used and the 

search interval.  

Parameter nominal value used in simulations Search interval 
pMK 1e-15 g/min 1e-18 ÷ 1e-11 

λ 2e3 mol-1min-1 102 ÷ 105 

t_flex 180 mins 20 ÷ 480 

m 4 2 ÷ 8 

kel 0.2 min-1 0.01 ÷ 1 

kps 0.01 min-1 0.001 ÷ 1 

ksp 0.01 min-1 0.001 ÷ 1 
Table 4.3:  Nominal values and search intervals for the unknown parameters. 

A sensitivity analysis was carried out by computing the sensitivity of two main output 

variables to each unknown parameter, performing a simulation of one week therapy 100 

mg ecASA once a day. 

The two output variables are: 

- lag-time: the delay in the recovery of platelets COX, formally defined as the time 

required to reach 10% of steady-state. 

- rise-time: the time required for platelets COX to go from 10% to 90% of its steady-

state level. 

The sensitivity of the output variable out to the parameter p was computed as: 

Á(-) = �¨²�(-)�- ∙ -¨²�(-) (4.76)  

In the following, the variation of each single parameter is discussed and, in section 4.5.1.8, 

the mean sensitivities are summarized in Table 4.4. 
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4.5.1.1 COX production within the single MK: pMK 
There’s no direct information on pMK in the literature. However, since TxB2 is supposed 

to be proportional to COX activity [133], an indicative value for pMK can be computed 

with the hypothesis of a proportion 1:1 between TXb2 and COX. Using the expression for 

platelets COX at steady-state (equation (4.39)) and the baseline value for serum TxB2 in 

healthy subjects (retrieved from [133]), a value of 1.5e-15 g/min cab be computed for pMK. 

Rather than the absolute value of pMK, the amplification effect on pMK has been 

investigated: since the proportion 1:1 between TxB2 and COX is not confirmed in the 

literature, the real production within the single MK is supposed to be N times pMK, and the 

effect of a variation of N has been studied. In particular, an increase of N results in an 

increase of COX levels in each compartment (equations (4.18), (4.24), (4.35) and (4.39)). 

Considering equations (4.45) and (4.46), which describe the interaction between COX 

and ASA, one can see that, if COX increases by N times, COX kinetics (equation (4.45)) 

does not change, while ASA kinetics (equation (4.46)) changes and the effect of COX on 

ASA is amplified by N times. Thus, ASA is consumed much faster if COX increases, and 

this indirectly affects COX too, since if ASA decreases very fast, the effect on COX is 

lower. This is confirmed by simulations, in particular, by simulating a single 100 mg 

aspirin intake, one can see that, as N increases, ASA concentration peak in serum 

decreases (Figure 4.30.A) and, consequently, COX maximal acetylation in PLTs 

decreases too (Figure 4.30.B).  

Figure 4.31 shows the output variables lag-time (panel A) and rise-time (panel B) as 

functions of N, for a simulation of one week therapy 100 mg ecASA once a day. 

 
Figure 4.30: ASA concentration in serum (A) and COX time-course in PLTs (B), increasing the parameter N 

(0.01, 0.1, 10, 100, 1000). Single aspirin intake at t = 0. 
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Figure 4.31: lag-time (A) and rise-time (B) as function of the parameter N. 

The output lag-time is more influenced than the rise-time by a variation of the parameter 

N. It is interest to note how values greater than ~ 102 result in lag-time equal to zero and 

an absence of rise-time. This is because the maximal acetylation reached is too small, as 

one can see in Figure 4.30.B. Values smaller than ~ 102 seem to result in quite constant 

values of both lag-time and rise-time. In particular, the lag-time has a value of about 2 

days for N values between 10-3 and 102. A good choice for N is likely to be within this 

interval. 

4.5.1.2 Reaction constant: λ 
Considering again equations (4.45) and (4.46), which describe the interaction between 

COX and ASA, one can see that a variation on the value of λ affects both COX and ASA 

kinetics. In particular, the grater is λ, the greater is the mutual effect between COX and 

ASA, thus the maximal acetylation of PLTs COX is grater and the acetylation reaction is 

faster (Figure 4.32.A shows this behavior for a simulation of a single intake of 100 mg 

aspirin). This is particular relevant in the case of repeated doses: Figure 4.32.B reports the 

results of a simulation of one week 100 mg ecASA once a day; one can see that, a small 

value of λ allows to obtain an effect of the duration of the therapy, i.e. we need more than 

one intake to achieve the maximal effect. However, a small value for λ does not result in a 

complete acetylation of COX in PLTs, thus not reflecting reality. 

To observe a sensible effect of λ on ASA concentrations, COX levels have to be increased 

(by increasing pMK as explain in the previous section), otherwise no effect of λ can be 

detected (Figure 4.33.A). This is because COX concentration is much smaller than ASA 

concentration, thus, to observe an effect on ASA, COX concentration needs to be grater 

(equation (4.46)). Amplifying pMK for example by 1000 times, an effect of λ on ASA 
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concentration can be observed (Figure 4.33.B): as λ increases, ASA peak decreases, 

meaning that the effect of COX on ASA in greater. 

 
Figure 4.32: COX time-course in PLTs after a single dose (A) and after one week treatment with 24 hours 

intakes (B), increasing the parameter λ (100, 500, 3000, 15000, 10000). Aspirin last intake at t = 0. 

 

 
Figure 4.33: ASA concentration in serum varying λ (100, 500, 3000, 15000 and 10000) with no 

amplification of COX production (N=1, panel A) and with a one thousands amplification of COX production 

(N = 1000, panel B). Single aspirin intake at t = 0. 

Figure 4.34 shows the output variables lag-time (panel A) and rise-time (panel B) as 

functions of λ, for a simulation of one week therapy 100 mg ecASA once a day. 
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Figure 4.34: lag-time (A) and rise-time (B) as function of the parameter λ. 

It is interesting to note how small values of λ result in lag-time equal to zero, meaning 

that there is not enough acetylation of COX in PLTs (see in Figure 4.32). As a 

consequence, no rise-time can be computed for small λ values. For greater values, one can 

see that, as λ increases, the lag-time increases, while the rise-time decreases, becoming 

quite constant for λ values greater than ~ 103, even if the rise-time appears to exhibits a 

minimum for λ values between 103 and 104. A lag-time of about 2 days is obtained for λ 

values between 102 and 104, thus a good choice for N is likely to be within this interval.  

 

4.5.1.3 Time of inflection of h(t): t_flex 
As already described in section 4.4.4, t_flex is the parameter representing the time at 

which the hill function, used o simulate the enteric-coated formulation of aspirin, has its 

point of inflection.  The parameter is responsible for the delay in the release of the drug 

and for the speed of ASA kinetics. Figure 4.35 shows results of a simulation of a single 

100 mg aspirin intake: as one can see, the grater t_flex the grater the delay and the slower 

the kinetics of ASA (panel A). COX kinetics is affected in the same way even if the 

overall effect is not so strong (panel B). 
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Figure 4.35: ASA concentration in serum (A) and COX time-course in PLTs (B), increasing the parameter 

t_flex (20, 60, 120, 240 and 480 minutes). Single aspirin intake at t = 0. 

Figure 4.36 shows the output variables lag-time (panel A) and rise-time (panel B) as 

functions of t_flex, for a simulation of one week therapy 100 mg ecASA once a day. 

 
Figure 4.36: lag-time (A) and rise-time (B) as function of the parameter t_flex. 

The parameter t_flex mainly affects the lag-time: as it increases, the lag-time increases 

too. t_flex exhibits the same effect on the rise-time, even if much weaker. In particular, a 

lag-time of about 2 days is obtained for t_flex values around 200 minutes, thus a good 

choice for t_flex is likely to be near this value. 
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As already described in section 4.4.4, m is the degree of the hill function h(t) and it 

mainly controls the speed of ASA kinetics. Figure 4.37 shows results of a simulation of a 

single 100 mg aspirin intake: as one can see, the grater m, the faster the kinetics and the 

higher the peak of ASA (panel A). The kinetics of COX recovery is affected too, but with 

definitely smaller effect (panel B). 
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Figure 4.37: ASA concentration in serum (A) and COX time-course in PLTs (B), increasing the parameter m 

(2, 3, 4, 5 and 6). Aspirin intake at t = 0. 

Figure 4.38 shows the output variables lag-time (panel A) and rise-time (panel B) as 

functions of m, for a simulation of one week therapy 100 mg ecASA once a day. 

 
Figure 4.38: lag-time (A) and rise-time (B) as function of the parameter m. 

Both the lag-time and the rise-time are decreasing function of m, even if the effect of this 

parameter is not so great. m ~ 4 appears a good choice to obtain a lag-time of about 2 

days. 
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supposed to be proportional to ASA concentration in the systemic compartment, via the 
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4.39 shows results of a simulation of a single 100 mg aspirin intake: as kel increases, ASA 

elimination from the central compartment is faster, thus the peak of ASA concentration 

decreases and the kinetics if faster (panel A); consequently, COX acetylation decreases 

(panel B). 

 
Figure 4.39: ASA concentration in serum (A) and COX time-course in PLTs (B), increasing the parameter kel 

(0.001, 0.01, 0.1, 0.5 and 1 min
-1

). Aspirin intake at t = 0. 

Figure 4.40 shows the output variables lag-time (panel A) and rise-time (panel B) as 

functions of kel, for a simulation of one week therapy 100 mg ecASA once a day. 

As one can see, as kel increases the lag-time decreases, since ASA elimination is greater. 

For kel near to 1, the lag-time becomes almost null, meaning that ASA elimination is so 

great that COX acetylation is too small. The rise-time is quite constant for small values of 

kel, (even if there seems to be a minimum for kel values around 10-1) then it increases as kel 

increases. For kel near to 1, no rise-time can be computed, since COX acetylation is too 

small. Since kel models several mechanism, including uptake from the liver which is 

known to be relevant [123], reasonable values could be in the range of 0.1÷0.5 min-1. This 

appears to be confirmed by Figure 4.40.A, since a correct lag-time of about 2 days is 

obtained for kel values near to 10-1. 
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Figure 4.40: lag-time (A) and rise-time (B) as function of the parameter m. 

 

4.5.1.6 Transfer rate from systemic to peripheral compartment: kps 
This parameters represents the flux of ASA from the central compartment to the bone 

marrow compartment. Figure 4.41 to Figure 4.43 show results of a simulation of a single 

100 mg aspirin intake: as kps increases, a greater amount of ASA is transferred from the 

central compartment to the peripheral one, thus, the peak of ASA concentration in the 

systemic compartment decreases (Figure 4.41.A) and the one in the peripheral 

compartment increases (Figure 4.41.B). This results in a greater acetylation of COX in 

MKs, both maturing and proliferating (Figure 4.42) and ProPLTs (Figure 4.43.A) which 

produces a more delayed recovery of COX in PLTs, as shown in Figure 4.43.B. 

 
Figure 4.41: ASA concentration in serum (A) and in bone marrow (B), increasing the parameter kps (0.001, 

0.005, 0.03, 0.15 and 1 min
-1

). Single aspirin intake at t = 0. 
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Figure 4.42: COX time-course in maturing (A) and proliferating (B) MKs, increasing the parameter kps 

(0.001, 0.005, 0.03, 0.15 and 1 min
-1

). Single aspirin intake at t = 0. 

 
Figure 4.43: COX time-course in ProPLTs (A) and PLTs (B), increasing the parameter kps (0.001, 0.005, 0.03, 

0.15 and 1 min
-1

). Single aspirin intake at t = 0 

Figure 4.44 shows the output variables lag-time (panel A) and rise-time (panel B) as 

functions of kps, for a simulation of one week therapy 100 mg ecASA once a day. 

 
Figure 4.44: lag-time (A) and rise-time (B) as function of the parameter kps. 
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As one can see, small values of kps result in a small lag-time, while great values of kps 

result in a too high lag-time. This is because great values of kps cause ASA to accumulate 

in bone marrow, requiring several days before a complete elimination. This causes a 

slower COX recovery in PLTs. The rise-time seems to exhibits a minimum for a kps 

values of about 10-2. A lag-time of about 2 days is obtained for kps values between 10-2 

and 10-1, thus a good choice for kps is likely to be within this interval. 

 

4.5.1.7 Transfer rate from systemic to peripheral compartment: ksp 
This parameters represents the flux of ASA from the bone marrow compartment to the 

systemic one. Figure 4.45 to Figure 4.47 show results of a simulation of a single 100 mg 

aspirin intake: as ksp decreases, the kinetics of ASA in bone marrow is slower and the 

peak increases, as shown in Figure 4.45.B. ASA in systemic compartment is not 

sensitively affected by ksp (Figure 4.45.A). This is because the flux from the peripheral 

compartment is dominated by the flux from the gastro-intestinal compartment (which is 

grater), thus the overall appearance of ASA in the systemic compartment is little 

influenced by the former flux. As a consequence, as ksp decreases, the acetylation of COX 

in MKs, both maturing and proliferating (Figure 4.46), and ProPLTs (Figure 4.47.A) 

increase, resulting in a more delayed recovery of COX in the PLTs compartment, as 

shown in Figure 4.47.B. 

 
Figure 4.45: ASA concentration in serum (A) and in bone marrow (B), increasing the parameter ksp (0.001, 

0.005, 0.03, 0.15 and 1 min
-1

). Single aspirin intake at t = 0. 
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Figure 4.46: COX time-course in maturing (A) and proliferating (B) MKs, increasing the parameter ksp 

(0.001, 0.005, 0.03, 0.15 and 1 min
-1

). single aspirin intake at t = 0. 

 
Figure 4.47: COX time-course in ProPLTs (A) and PLTs (B), increasing the parameter ksp (0.001, 0.005, 0.03, 

0.15 and 1 min
-1

). Single aspirin intake at t = 0. 

Figure 4.48 shows the output variables lag-time (panel A) and rise-time (panel B) as 

functions of ksp, for a simulation of one week therapy 100 mg ecASA once a day. 

 
Figure 4.48: lag-time (A) and rise-time (B) as function of the parameter ksp. 
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In the opposite way respect to kps, small values of ksp result in a too high lag-time, while 

great values of ksp result in no lag-time (i.e. no sufficient acetylation in bone marrow). 

This is because small values of ksp cause ASA to accumulate in bone marrow, requiring 

several days before a complete elimination. As one can see, for ksp values greater than ~ 

10-1 the lag-time becomes null and, as a consequence, the rise-time cannot be computed 

since the maximal ecetylation of COX in PLTs is too small. The rise-time exhibits a 

minimum for a ksp values of about 10-2. A lag-time of about 2 days is obtained for ksp 

values of about 10-2 results in a lag-time of about 2 days, thus a good choice for ksp is 

likely to be near this value. 

 

4.5.1.8 Sensitivity results 
Table 4.4 reports the mean sensitivity of each output variable to each unknown parameter. 

Output 

variable 

Parameter 

pMK λ t_flex m kel kps ksp 

lag-time -0.005 0.360 0.129 -0.085 -0.274 0.503 -0.516 

rise-time 0.001 -0.035 0.018 0.083 0.044 -0.032 -0.011 

Table 4.4: mean sensitivities of lag-time and rise-time to each unknown parameter. 

The parameters regulating aspirin exchanges between systemic and peripheral 

compartment, i.e. kps and ksp, have a major effect on the output variable lag-time. λ and 

t_flex have a non-negligible effect on lag-time too, even if lower, and the weakest effect 

is the one of pMK. On the other hand, m is the parameter exhibiting the greater effect on 

the output variable rise-time, followed by kel and by λ and kps. Even for the rise-time pMK 

is the parameter with the weakest effect. 

 

4.5.1.9 Final parameter values 
Given the indicative results of simulations performed to investigate the effect of each 

unknown parameter on the output, the final list of values for all the parameters is reported 

in Table 4.5. Each known parameter has been set to its mean literature value (see Table 

4.2), while for each unknown parameter a reasonable value has been set on the basis of 

indications described in the previous sections. 
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 Parameter final value 

T
H

R
O

M
B

O
P

IE
S

IS
 

M_MKs_per_Kg 1.6e6 
N_ProPLTs_per_MK 1000 
N_PLTs_per_ProPLT 2 

MK_matur 3 days 

MK_prolif 7 hours 

ProPLT_life 18 hours 

PLT_life 8.5 days 

C
O

X
 

K
IN

E
T

IC
S

 

VQBM 1000 ml 
VQ4 15 ml 
k  4.8e-4 min-1 

pMK 1e-15 g/min 

A
S

A
 P

K
 

t_flex 180 mins 

m 4 

ka 0.1875 min-1 

kps 0.01 min-1 

ksp 0.01 min-1 

kel 0.2 min-1 

VX2 5600 ml 
VX3 1177 ml 

A
S

A
 P

D
 

λ 2e3 mol-1min-1 

Table 4.5: Final parameter values. 

 

4.6 Data 
Data available to evaluate the model performances come from the clinical trial performed 

on healthy subjects described in section 4.2.2.1. Data are relative to 48 healthy Caucasian 

subjects randomized to 1 to 8 groups, according to treatment duration, ranging from 1 to 8 

weeks. Each patient received enteric-coated aspirin 100 mg once a day and was instructed 

to take tablets at the same time of the day. Serum TxB2 (in ng/ml) was measured at the 

end of each week of aspirin, and at days 1, 2, 3 and 7 after withdrawal [133].  

In Figure 4.49 the mean curves (as percentage of baseline) for each group are presented, 

where also the steady-state value of TxB2 during aspirin treatment was added as initial 

value at time t = 0. 
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Figure 4.49: Mean curves of TxB2 baseline and recovery after aspirin therapy for each group of treatment. 

 

Authors observed that the overall kinetics of TxB2 recovery showed a complex sigmoidal 

pattern and that initial recovery of serumTxB2 levels seem to differ among groups. Since, 

by visual inspection of the data, it is difficult to observe differences among groups, the 

mean curve of all the data was computed (Figure 4.50) and the model was tested on it. 

 
Figure 4.50: Mean curve (± SD) over all the 48 subjects of TxB2 recovery (as percentage of baseline) after 

aspirin therapy. 
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4.7 Simulations 

4.7.1 Healthy subjects 

A qualitative description of the data presented in the previous section was performed, 

running a simulation of one week reproducing the same aspirin regimen of experimental 

data (100 mg ecASA every 24 hours), using parameters values reported in Table 4.5. 

Figure 4.51 shows the results of the simulation against real data. 

 
Figure 4.51: Serum active-COX time-course prediction (in percentage of baseline value) against real data, 

after a week of 100 mg ASA every 24 hours. First aspirin intake is at t = -6 days. Last intake is at t = 0. 

 

As one can see, the prediction is quite good, since the COX time-course in serum exhibits 

the ~2 days delay after aspirin withdrawal and the sigmoidal shape with a complete 

recovery about one week after withdrawal. 

Moreover, it can be seen how 3-4 intakes are needed in order to obtain the maximal effect. 

In particular, the curve of Figure 4.51 is characterized by the following output 

parameters: 
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Simulation on healthy subjects 

maximal acetylation of serum COX 99.2 % of baseline 

lag-time of COX recovery 1.9 days 

rise-time of COX recovery 3.6 days 

COX recovery at 7 days 95 % of baseline 

slope of COX recovery between 12 and 24 hours 0.042 %/h 

Table 4.6: Output parameters of the simulated COX recovery for healthy subjects. 

 

4.7.2 Diabetic subjects 

The model can be used also as a mean to test potential mechanisms for the diminished 

response to aspirin in diabetic patients, leading to treatment failure in most cases (the so-

called ‘aspirin resistance’). In the literature it has been hypothesized that the faster TxB2 

recovery after an aspirin intake characterizing diabetic patients may be caused by an 

enhanced  COX biosynthesis due to faster platelet turnover. 

In order to investigate how variations in the parameters of thrombopoiesis and COX 

kinetics affect the output, a sensitivity analysis, similar to the one conducted for the 

unknown parameter in section 4.5, has been performed. The tested parameters, together 

with nominal values and search intervals, are reported in Table 4.7. 

Parameter nominal value  Search interval 
MK_matur 3 days 0.25 ÷ 4 

MK_prolif 7 hours 1 ÷ 48 

ProPLT_life 18 hours 1 ÷ 48 

PLT_life 8.5 days 2 ÷ 14 

k 4.8e-4 min-1 6.8e-5 ÷ 4.8e-3 
Table 4.7:  Nominal values and search intervals for the parameters of thrombopoiesis and COX kinetics. 

The mean sensitivities of the lag-time and rise-time to each tested parameter are reported 

in Table 4.8. 

Output variable Parameter 

MK_matur MK_prolif ProPLT_life PLT_life k 

lag-time 0.212 0.159 0.388 0.012 -0.152 

rise-time 0.201 0.053 -0.001 0.077 -0.292 

Table 4.8: mean sensitivities of lag-time and rise-time to each tested parameter. 
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As one can see, the parameter which most affect the lag-time is the life of the proplatelets 

(ProPLT_life), in particular, as ProPLT_life increases the lag-time increases. This result 

confirms the hypothesis made in section 4.4.2.2 about the major role of ProPLT_life in 

determining the delay in platelets COX recovery, thus it is quite encouraging. On the 

other hand, ProPLT_life minimally affects the rise-time, meaning that this parameter is 

responsible only for the delay  but not for the slope in the recovery of platelets COX after 

aspirin intakes. The rise-time is most influenced by the rate of COX degradation (k): as k 

decreases the overall COX kinetics becomes slower, thus the rise-time increases. It is 

interesting to note how the parameter MK_matur, representing the maturation period of 

megakaryocytes, has a strong effect on both the lag-time and the rise-time. This means 

that a longer maturation period of megakaryocyte results in a slower recovery of platelets 

COX, producing both a longer delay and a lower slope of the recovery. 

The main difference between healthy and diabetic subjects, depicted in results from 

clinical trials described in section 4.2.2, is the speed of COX recovery after aspirin 

intakes. From Table 4.8, the parameters which most affect the recovery of COX after an 

aspirin intake are the maturation time of megakaryocytes (MK_matur) and the COX 

degradation rate (k). The parameter ProPLT_life instead simply results in a shift of COX 

recovery, but not in a faster recovery. Thus, a possible mechanism to explain the faster 

COX recovery in diabetic patients can be represented by an enhanced megakaryocyte 

turnover (in particular a faster maturation) and an increased utilization of COX by 

platelets. For example, using all the values reported in Table 4.5, except for MK_matur 

and k which were decreased from 3 days to 1 day and from 4.8e-5 min-1 to 1e-5 min-1 

respectively, the recovery of serum COX in a diabetic patient was simulated, in response 

to the same therapy of one week 100 mg ecASA once a day undergone by healthy 

subjects. Results are shown in Figure 4.52, where the simulated time-course of serum 

COX for the diabetic patient (green curve) is compared to the one for healthy subjects 

(blue curve). By visual inspection, COX recovery results markedly faster in case of 

diabetes, though the maximal acetylation is comparable to the one of healthy subjects, as 

confirmed by results from clinical trials (see section 4.2.2.2). Table 4.9 reports the output 

parameters of the diabetic curve, compared to the healthy ones. As one can see, maximal 

acetylation of serum COX is almost complete in both cases, and the main difference is 

represented by the speed of the recovery, in particular both the lag-time and the rise-time 

are smaller and the slope of the recovery between 12 and 24 hours is doubled. 



157 

 

Simulation on  subjects: healthy diabetic 

maximal acetylation 99.2 % of baseline 98 % of baseline 

lag-time 1.9 days 1.2 days 

rise-time 3.6 days 2.5 days 

recovery at 7 days 95 % of baseline 100 % of baseline 

slope of COX recovery between 12 and 24 hours 0.042 %/h 0.098 %/h 

Table 4.9: Output parameters of the simulated COX recovery for a diabetic subject, compared to healthy 

subjects 

 
Figure 4.52: Simulation of COX time-course in diabetic patients (green curve) versus healthy patients (blue 

curve) after a week of aspirin therapy 100 mg once a day. Last aspirin intake is at t = 0. 

 

4.7.3 Different aspirin regimens 

The model was also tested to explain the effect of different aspirin regimens. Following 

the experimental protocol of [128], the slope of COX recovery between 12 and 24 hours 

after aspirin intake was computed for three different aspirin therapies: i) one week of 100 

mg ecASA once a day every 24 hours (100od), ii)  one week of 200 mg ecASA once a day 

every 24 hours (200od), iii)  one week of 100mg ecASA twice a day every 12 hours 

(100bd). Results are reported in and in Figure 4.53 and Table 4.10. The model predicted a 

stronger effect for both the 200od and the 100bd therapy, compared to the 100od therapy, 

but was not able to correctly predict a stronger effect of the 100bd therapy with respect to 

the 200od therapy. The most probable explanation is that, the stronger effect of the 100bd 
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therapy is due to some non-linearity in the kinetics of aspirin, which the model is not able 

to reproduce. 

 
Figure 4.53: Serum COX recovery between 12 and 24 hours after intake (at t = 0) for different aspirin 

regimens: 100 mg once a day (blue), 200 mg once a day (red) and 100 mg twice a day (green). 

 

aspirin regimen slope of COX recovery between 12 and 24 hours 

100od 0.042 %/h 

200od 0.011 %/h 

100bd 0.015 %/h 

Table 4.10: Slope of COX recovery between 12 and 24 hours (as percentage of baseline per hour) for 

different aspirin regimens: 100 mg once a day (100od), 200 mg once a day (200od) and 100 mg twice a day 

(100bd). 

 

4.8 Discussion 
In this chapter the problem of modeling the effect of the treatment on the phenotype was 

discussed, focusing on the preventive effect of aspirin against atherothrombosis and 

cardiovascular episodes. 

The effect of aspirin in the prevention of cardiovascular complications has been widely 

studied and reported in the literature. In particular, the comparison between healthy 

subjects and diabetic ones results in a quite different picture: while for the formers aspirin 
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has been proofed to have a significant effect, a clear benefit of aspirin in the prevention of 

major cardiovascular events in people with diabetes remains unproved. 

From a biological point of view, the best-characterized mechanism of action of aspirin is 

the inhibition of thromboxane-dependent platelet function, through permanent 

inactivation of the COX-1, an enzyme which leads to the final formation of thromboxane 

TxB2, the major promoter of platelets activation and aggregation. 

Although widely studied in many clinical trials, a characterization of this mechanisms 

from a modeling point of view is still missing in the literature. 

A compartmental model of COX kinetics and aspirin pharmacokinetics-

pharmacodynamics has been developed with the objective of qualitatively describing and 

simulating the process of COX inhibition and reappearance in platelets in response to 

aspirin exposure. 

The model consists of four key-elements (interconnected each other), describing: i) the 

timing of the thrombopoiesis mechanism, ii)  COX kinetics, iii)  aspirin PK and iv) aspirin 

PD, respectively. 

The two main innovative features of the work are represented by: i) the distributed 

description adopted for COX kinetics, which makes the model capable to correctly 

simulate COX time-course in the different compartments according to the timing of the 

thrombopoiesis mechanism, ii)  the interconnection between the aspirin PK model and the 

COX kinetics model (which differs from the classical approach of using the drug 

concentration as a forcing input of the model), which allows to correctly model the not 

separable interaction between aspirin and COX.  

The model has been tested on data of serum thromboxane TxB2 (which is proportional to 

platelets COX activity) recovery levels after aspirin withdrawal in 48 healthy subjects, 

treated with aspirin 100 mg daily for 1 to 8 weeks. Data are taken from [133]. Given the 

explorative aim of the model and the available data, the evaluation of the model was 

performed from a qualitative point of view, obtaining a good prediction for the time-

course of COX recovering in serum. 

The model, however, predicts the need for 3-4 aspirin intakes only before reaching the 

maximal effect of the treatment, while the authors concluded from [133] that at least 1-2 

weeks of treatment are required to achieve maximal effect. The authors in fact observed 
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that initial recovery of serumTxB2 levels seem to differ among groups: they performed a 

2-factor repeated measurements analysis of variance with the post hoc Holm-Sidak test 

for pairwise comparison, and found that at days 1 and 2 following aspirin withdrawal, 

TxB2 values were similar in the subjects treated for 1 and 2 weeks and significantly 

higher than the corresponding values of longer treatment groups (p-value < 0.05). Since, 

by visual inspection of the data (see Figure 4.49), it is difficult to observe differences 

among groups (also because of the high interindividual variability), a complete statistical 

analysis was performed, in order to confirm or reject the hypothesis of significant 

differences. 

In particular, a one-side t-test for each sample time t and on each couple of consecutive 

groups (i,i+1 ) was performed, in order to test whether TxB2 levels of group i were 

significantly higher than TxB2 levels of group i+1  at the same times: TxB2
i(t) > TxB2

i+1(t), 

i.e. whether treating one more week with aspirin had a significant effect in the decrease of 

TxB2 recovery. Also clustering group 1 and 2 vs other groups was tested. Results are 

shown in Table 4.11. 

one-sided t-test: group i > group i+1 

 p-value 

test 0 d 1 d 2 d 3 d 7 d 

1 > 2 ? 0.428 0.373 0.067 0.361 0.065 

2 > 3 ? 0.284 0.057 0.214 0.428 0.001 

3 > 4 ? 0.329 0.152 0.123 0.256 0.146 

4 > 5 ? 0.140 0.471 0.408 0.454 0.305 

5 > 6 ? 0.400 0.246 0.068 0.447 0.447 

6 > 7 ? 0.226 0.277 0.480 0.437 0.366 

7 > 8 ? 0.187 0.040 0.061 0.378 0.416 

(1,2) > (3,4,5,6,7,8) ? 0.083 0.048 0.051 0.210 0.015 

Table 4.11: one-sided t-test for each groups couple for each time. 

From Table 4.11, we observe only one p-value < 0.05, coming from testing group 7 (7 

weeks treatment) versus group 8 (8 weeks treatment) at time t = 1 day, all the other tests 

being not significant. Testing group 1 and 2 together (1-2 weeks treatment) versus all the 

other groups (3 to 8 week treatment) resulted in only one weak significant difference at 

time t = 1 day. 

Then, a test for trend was performed, in order to test whether a trend of TxB2 levels exists 

along groups, i.e. whether increasing the duration of aspirin treatment induced a 
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significant decrease of TxB2 levels. A COX-Stuart test for trend for continuous data was 

performed, for each sample time t. All the six p-values were greater than the significant 

threshold 0.05, thus no significant effect of the treatment duration on the decrease of 

TxB2 levels could be found. 

Finally, the same analysis carried out by the authors was re-implemented. A 2-factor 

mixed ANOVA with the post hoc Holm-Sidak test for pairwise comparison was 

performed. The overall ANOVA found a weak significant difference among groups (p-

value = 0.046), but the post hoc Holm-Sidak test was not able to significantly cluster the 

groups (all the p-value were greater than the significant threshold). 

From this statistical analysis it is difficult to conclude about significant differences among 

groups and the effect of therapy duration on platelets COX recovery probably needs 

future insights. 

The model was also tested for a potential mechanism to explain the diminished response 

to aspirin in diabetic patients and for explaining the effect of different aspirin regimens. 

By modifying two key parameters, describing the maturation period of megakaryocytes 

and the COX degradation rate constant respectively, the model was able to simulate a 

faster COX recovery in the 12-24 hours interval after aspirin intake for diabetic subjects, 

thus reproducing literature findings. 

The model, however, was not able to explain the greater effect (resulting in a slower COX 

recovery) of a therapy with intakes of 100 mg ecASA every 12 hours, compared to a 

therapy with intakes of 200 mg ecASA every 24 hours, thus underlining the need for 

future refinements in particular regarding aspirin pharmacokinetics. 

In conclusion, though future improvements are needed, the actual model represents a 

good starting point for further refinements and investigations. Future experiments with 

multiple measurements (i.e. simultaneous measurements in different compartments) could 

help to obtain a deeper understanding of the involved phenomena, providing the model 

with additional information, which could help designing personalized antiplatelet 

regimens in diabetes mellitus. 
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5 Conclusions 
 

In this thesis, the problem of investigating long-term complications of diabetes mellitus 

has been faced with a multi-level approach. Given the complex-nature of such a disease, 

the multi-level approach allows to characterize the phenomena of interest at different 

levels of detail, according to data availability. In the present work of thesis, three main 

levels of study have been discussed and, for each one, novel investigation methodologies 

have been proposed. 

The context of investigation of the first level of study is the one of  Genome Wide 

Association Studies, in which the objective is, on one hand, to detect correlation between 

one or more SNPs and a discrete trait (diabetes, in this case) and, on the other, to learn a 

rule to perform subject classification. The multivariate analysis approaches, developed so 

far, still suffer for the lack of precision and stability of the lists of biomarkers selected, 

mainly due to linkage disequilibrium, i.e. the non-random association between the true 

genetic causes and the SNPs in genomic regions close to them, which confounds the 

search for genetic biomarkers. A new algorithm, Bag of Naïve Bayes, was developed to 

effectively tackle this problem. BoNB is based on Naïve Bayes classification enriched by 

three main features to tailor the Naïve Bayes framework to Genome Wide SNP data 

analysis: (a) a bagging of Naïve Bayes classifiers, to improve the robustness of the 

predictions, (b) a novel strategy for ranking and selecting the attributes used by each 

bagged classifier, to enforce attribute independence, and (c) a permutation-based 

procedure for selecting significant biomarkers, based on their marginal utility in the 

classification process. The effectiveness of BoNB was demonstrated by applying it to the 

WTCCC case-control study on Type 1 Diabetes: BoNB outperforms two algorithms from 

the state of the art (a Naïve Bayes Classifier and HyperLASSO) in terms of classification 

performance, and all the genetic biomarkers identified by BoNB are meaningful for Type 

1 Diabetes, thus confirming the good performance also in terms of precision of the 

selected biomarkers. 

The second level of study deals with the in-silico modeling of complex diseases. Recently, 

due to alarming increasing of world’s diabetic  incidence, a requirement for diabetes 
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simulation models has been identified in the medical and healthcare policy community to 

facilitate the simultaneous evaluation of long-term clinical end economic effects of 

treatment, and, as a result, a number of models have been developed, mainly based on 

Markov Models. In this thesis, the progression of two vascular diabetes complications 

(Cardiovascular disease and Nephropathy) was modeled using Dynamic Bayesian 

Networks, which, differently from Markov Models, are more powerful since they allow a 

more easy handle of information. The model was developed on the DCCT dataset, 

integrating both phenotypic information and information on treatment. Results regarding 

the simulated progression of complications show very good performances, exhibiting a 

prediction accuracy greater than 95 % for the considered outcomes, , thus proving the 

effectiveness of the model. Moreover, the flexible structure of the DBN makes the model 

suitable for future developments, such as the introduction of diabetic Retinopathy, as an 

additional outcome, and the genotypic information, as a potential mean to improve 

predictions. Based on the DBN model, a web Java application, which will implement also 

cost-effectiveness and cost-utility analyses, is currently under development. 

The last level of study focuses on the in-silico modeling of drug action, in particular 

regarding the effect of aspirin against atherothrombosis and cardiovascular episodes. A 

compartmental model of aspirin PKPD was developed from literature information, in 

order to simulate the inhibition of COX enzyme (the major promoter of platelets 

activation and aggregation, which leads to the formation of thrombi) by aspirin. The 

model was built on four interconnected key-elements, describing thrombopoiesis 

mechanism, COX kinetics, aspirin pharmacokinetics and aspirin pharmacodynamics, 

respectively. Innovative features of the work are represented by the distributed 

description adopted for COX kinetics and by the not separable interconnection between 

aspirin PK and COX kinetics, which allow to potentially simulate response to any drug 

exposure, without using any forcing input. Given the explorative aim of the work, the 

model was used to qualitatively describe data of healthy subjects, as well to test potential 

mechanisms for the diminished response, exhibited by diabetic patients, to aspirin therapy 

(the so-called ‘aspirin resistance’). Although representing a good starting point, the model 

needs further refinements and investigations: future experiments and additional data will 

make the model suitable to help designing personalized antiplatelet regimens in diabetes 

mellitus. 
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