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Abstract

In this thesis we propose a model that we conjecture is a new and original

formulation of the Optimal Transport Problem, a recently expanding area of

mathematics that studies optimal strategies to move resources from one place to

another. The proposed approach is an infinite-dimensional extension of a model

describing the dynamics of Physarum Polycephalum (PP), a slime mold with

surprising abilities to find the shortest path connecting two food sources. The

original model describes the dynamics of the slime mold on a finite planar graph

using a pipe-flow analogy whereby mass transfer occurs because of pressure dif-

ferences with a conductivity coefficient that varies with the flow intensity. This

model has been shown to be equivalent to a problem of “optimal transportation”

on graphs. Our extension abandons the graph structure and moves to a continu-

ous domain, coupling an elliptic diffusion equation enforcing PP density balance

with an ordinary differential equations governing the flow dynamics. We conjec-

ture that the new system of equations presents a time-asymptotic equilibrium

connected to solutions of many instances of OTP, including the standard L1 case

and the conjested and branched transport problems.

From a theoretical point of view, we are only able to prove well-posedness of

the proposed model for sufficiently small times and under restrictive hypothesis

on the the regularity of the diffusion coefficient and the functions describing the

initial and final configurations of the transported mass. However, our extensive

numerical results show that the approximate solution of our proposed formula-

tion converges at large times to an equilibrium configuration that well compares

with the solutions of the different flavors of OTP. In particular, we are able to

efficiently recover the numerical solutions that closely resemble the singular and

ramified structures typical of branched transport problems. These simualtions

provide strong support to our conjectures. Notwithstanding the numerical diffi-

culties related mainly to the ill-conditioning of the algebraic systems, the rather

simple approach adopted for the discretization of the proposed formulation re-

sulted highly efficient and robust in terms of convergence and computational

speed.
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We also propose and tackle several applications to real world problems . In

particular, we discuss how our formulation can be applied to model the geomor-

phology of river networks and the dynamics of plant roots. In addition, based on

numerical evidence, we argue that the emergence of robustness-enhancing loops

in complex networks can be attributed to nonstationarity of the forcing terms

rather than optimality of the network configuration.
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Sommario

In questa tesi proponiamo un nuovo modello che congetturiamo rappresenti una

nuova formulazione del Problema di Trasporto Ottimo, un’area della matematica

notevolmente sviluppatasi negli ultimi ultimi anni e che studia come trasportare

in maniera efficiente delle risorse da un luogo ad un altro. La formulazione da

noi proposta è l’estensione infinito-dimensionale di un modello nato per descri-

vere il comportamento di una muffa, dal nome Physarum Polycephalum (PP),

capace di trovare il cammino minimo tra due fonti di cibo. Nel modello originale,

definito su grafi, il corpo di PP viene schematizzata come un tubo attraverso il

quale il trasporto di risorse avviene per mezzo di un flusso dato dal prodotto di

un gradiente di pressione per un coefficiente di diffusione. Quest’ultimo varia

nel tempo in funzione dell’intensità del flusso stesso, descrivendo in tal modo la

dinamica adattativa della muffa. L’equivalenza tra tale modello e la soluzione di

problemi di trasporto ottimo su grafi è giá stata dimostrata. Il formulazione da

noi proposta abbandona la struttura finito dimensionale del grafo per passare in

un ambiente continuo. Il derivante modello è descritto da un sistema composto

da un’equazione ellittica con un coefficiente di diffusione e un’equazione differen-

ziale ordinaria per il coefficiente. In questa tesi proponiamo la congettura che

quest’ultimo sistema ammetta un equilibrio stazionario legato alla soluzione di

problemi di trasporto ottimo, sia per il caso L1, sia per i problemi di trasporto

congestionato e ramificato.

Da un punto di visto teorico, siamo riusciti a provare che il modello é ben

posto solo assumendo determinate ipotesi di regolarità del coefficiente di dif-

fusione e delle densità che descrivono la configurazione iniziale e finale delle

masse trasportate. Nonostante ciò, numerosi risultati numerici mostrano come

la soluzione approssimata del nostro modello converga a soluzioni stazionarie che

ben si confrontano con la soluzione dei sopracitati problemi di trasporto ottimo.

Riusciamo inoltre ad ottenere soluzioni numeriche che assomigliano fortemente

alle strutture singolari del trasporto ramificato, dando ulteriore supporto alle

nostre congetture. Nonostante alcune difficoltà numeriche, essenzialmente legate

al malcondizionamenteo di sistemi lineari, lo schema numerico utilizzato per la

discretizzazione del nostro modello, la cui implementazione risulta relativamente
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semplice, si é rivelato estremamente efficiente e robusto, sia da punto di visto delle

convergenze numeriche, sia dal punto di vista dell’efficienza computazionale.

Il nostro modello si presta inoltre a numerose applicazioni a problemi reali,

come lo studio della morfologia dei fiumi e la modellizzazione dell’evoluzione delle

radici delle piante, argomenti discussi nella parte finale della tesi. In ultimo, sulla

base di prove numeriche, analizziamo come la presenza di loop in reti complesse,

indice della loro robustezza, possa essere interpretata non come una proprietá di

“ottimalitá” della rete stessa, bens̀ı come un riflesso della non stazionarietà delle

forzanti.
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Introduction

In this thesis we propose a model that we conjecture represents a new and original

formulation of the Optimal Transport Problem. This type of problems naturally

arises in several real life applications in which one seeks least-cost strategies to

reallocate “resources” from one place to another. Many biological transport

systems (for example blood vessels in animal bodies, plant roots, river networks,

etc.) grow as the result of a complex evolutionary process that promotes “op-

timality” in response to natural selection principles. Also many human-built

systems (such as road and communication networks) are designed to minimize

construction costs and, at the same time, to guarantee optimal transport of re-

sources. The study of the leading principles shaping “optimal transportation”

structures is the fundamental question addressed by OT theory.

Optimal Transport Problem (OTP). The first mathematical formulation

of the OTP was introduced by Gaspard Monge in 1781 in “Mémoire sur la théorie

des déblais et des remblais” [52] as a problem of military fortification construc-

tion, where we have to move optimally some material from a starting to a final

configuration. The mathematical formulation of the Monge problem, pictorially

Déblais ≈ f+ Remblais ≈ f−

T

Figure 1: The Monge OTP formulation: find the least effort map T moving the soil

from one excavation (Déblais=f+) to an embankment (Remblais=f−) of equal

volume.
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represented in Figure 1, reads as follows. Consider Ω ⊂ Rd and take two density

functions f+, f− : Ω 7→ [0,∞[ with
∫

Ω
f+ =

∫
Ω
f−, describing respectively the

initial and the final configuration of the mass to be transported. Given a trans-

port cost c : Ω × Ω 7→ R, we want to find among all measurable maps T from Ω

to Ω the optimal solution T ∗ solving

inf
T :Ω 7→Ω





∫

Ω

c(x, T (x))df+(x) s.t. :
T#f

+(A) = f−(A)

∀A measurable set in Ω





where T#f
+(A) := f+(T−1(A)). Monge Problem was reformulated by Leonid

Kantorovich who introduced a relaxed version, inspired by the Linear Program-

ming, nowadays called Monge-Kantorovich Problem. This topic has received a

lot of attention in the last years during which many different formulations and

problems have been introduced (see [73, 64]).

Divergence constrained Problem. One typical formulation of the OTPtries

to find the optimal mass movement in the case where mass concentration along the

transport is penalized. like, for example, in the study of urban traffic or crowd

motion. On the contrary, mass concentration is a common strategy adopted

by different “transport infrastructure” such as tree branches and roots, blood

vessels, river networks, etc. These two problems have a common formulation:

given 0 < q < 2, find among all vector-valued functions v : Ω 7→ Rd, orthogonal

to the boundary of Ω, the optimal v∗ that solves

inf
v

{∫

Ω

|v|q : div(v) = f+ − f−
}

(1)

In the case q ∈]1, 2[, this problem is called Congested Transport Problem since

the convex power penalizes concentration (aq + bq < (a + b)q). When q = 1 it is

called Beckmann Problem and is equivalent to the Monge-Kantorovich OTP with

cost equal to the Euclidean distance. In the case q ∈]0, 1[, mass concentration is

encouraged ((a + b)q < aq + bq) and the problem is called Branched or Ramified

Transport Problem (BTP). Note that in this latter case the singularity of the

resulting structures requires a careful definition of the above integral.

Dynamic Monge-Kantorovich equations. The new formulation of the OTP

proposed in this thesis is an infinite dimensional extension of a discrete model in-

troduced in [68] in order to describe the behavior of a slime mold called Physarum

2
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Polycephalum (PP), that recently captured the interest of mathematicians and

biologists for its optimization abilities (this explain the words “Biologically In-

spired” in the title). The simple structure of PP allows the encoding in a simple

but effective mathematical model of its surviving strategies that can be considered

as optimal, since they have been tuned during thousands of years of natural selec-

tion. Optimal transport policies can be deduced by studying how PP reallocate

nutrients in its body. In [68] the authors note that “Experimental observation

shows that tubes (that form the body of PP) with larger fluxes are reinforced (i.e.

they expand), while those with smaller fluxes degenerate (i.e. they shrink)”. In

order to describe such adaptation the authors introduce a time-varying conductiv-

ity satisfying an evolution equation that, in our infinite-dimensional framework,

is transposed into the second equations of the following system:

− div
(
µ(t, x)∇u(t, x)

)
= f(x) = f+(x)− f−(x) (2a)

∂tµ(t, x) = [µ(t, x)| ∇u(t, x)|]β − µ(t, x) (2b)

µ(0, x) = µ0(x) > 0 µ(t, x)∇u(t, x) · n∂Ω = 0 (2c)

where µ : ([0,+∞[×Ω) 7→]0,+∞[ is an isotropic conductivity coefficient, and

u : ([0,+∞[×Ω) 7→ R is a potential function. The functions f+ and f− represent,

respectively, the mass injected and absorbed, and thus they have to be balanced,

which means
∫

Ω
f+ =

∫
Ω
f−. The adaptive dynamics described by Equation (2b)

has two components: the first one is the increasing part given by the flux magni-

tude modulated by a power β > 0, while the second is a decay term.

Conjectures. Inspired by analogous results developed for the discrete setting

in [13], we conjecture that the solution (µ(t, ·), u(t, ·)) of Equation (2) converges at

large-times to an equilibrium configuration (µ∗β(·), u∗β(·)), and that the vector field

v∗β(·) = −µ∗β(·)∇µ∗β(·) is related to the solution of the problem in Equation (1).

Existence and Uniqueness. Our results are still in the form of conjectures

for the main reason that the problem of showing existence and uniqueness for the

solution pair (µ(t), u(t)) is still open. We are able to prove a partial result, namely

a local-in-time existence and uniqueness theorem in the case β = 1 and under

the assumption of f+, f− ∈ L∞(Ω) and µ0 ∈ Cδ(Ω) with 0 < δ < 1. The proof

requires an original extension of classical results of regularity theory of elliptic

equations in Hölder spaces.

3
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Lyapunov-candidate functional. An additional step in support of our con-

jectures is the fact that we are able to identify a Lyapunov-candidate functional

Lβ that decreases in time along (µ(t), u(t)) and that reads as:

Lβ(µ, u) :=
1

2

∫

Ω

µ| ∇u|2 dx+
1

2

∫

Ω

µ
2−β
β

2−β
β

dx (3)

In the case 0 < β ≤ 1, we are able to show that the minimization of the above

functional is equivalent to the problem in Equation (1) with q = 2 − β. In the

case 1 < β < 2, convincing numerical results and formal calculations persuade

us to conjecture the existence of an extension of the above equivalence, whereby

the relation q = 2 − β (i.e., q ∈]0, 1[ in Equation (1)) relates the steady state

solution (µ∗β(·), u∗β(·)) of our DMK and the solution of the BTP (always given

by Equation (1)). To the writer’s best knowledge, this equivalence represents a

new formulation of the Congested, Beckmann, and Branched Problems.

NewP In addition, we can empirically re-interpret these problems as the search

for the “transport infrastructure” µ∗ that gives the “optimal” trade off between

the energy dissipated in transporting the mass f+ towards f− via potential flow

(the first term of Lβ) and the cost of building the “optimal infrastructure”. The

cost is assumed to be proportional to the total mass of µ weighted with the power

P (β) = 2−β
β

. According to this re-interpretation, for β = 1, the two cost terms

in Lβ are balanced and it is convenient to build a transport infrastructure that

contained within the convex envelop of the supports of f+ and f−. For 0 < β < 1,

since the exponent P (β) is greater than 1, the convexity of the function (·)P (β) en-

courages the spreading of the support of µ beyond the convex envelop (i.e., we can

afford to build a spatially distributed transport infrastructure). On the contrary,

for 1 < β < 2 the formation of concentrated transport patterns is determined by

the concavity of P (β) that favors an infrastructure with a hierarchically increas-

ing transport capacity. In all cases the optimal vector field is −µ∗β∇u∗β where

∇u∗β gives the transport direction. We should remark here that the case β > 1

does not possess a unique solution, but rather the time-asymptotic configuration

depends upon the given initial solution µ0. Another important characteristic of

our formulation is that it provides an empirical dynamics with which the trans-

port density adapts towards the optimal solution, which can be then reinterpreted

as an asymptotic equilibrium of an infinite-dimensional system. We would like

to note that, while our partial theoretical results supply abundant information in

4
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support of our claims for the case 0 < β < 2, convincing numerical results show

that the model could be extended beyond the limit and distinctive fractal-like

structures consistently emerge also for β > 2.

Numerical solution of DMK. An important element of the proposed for-

mulation, actually the distinctive property at the origin this study, is that its

numerical solution is feasible and efficient using “simple”, albeit rigorous, dis-

cretization approaches. In fact, the time-dynamic of the DMK model can be

reinterpreted as pseudo-transient giving rise to approximates the solution of the

minimization problem in Equation (1).

The equations of the DMK model can be easily projected into standard fi-

nite dimensional spaces. The most stable discretization proceeds following the

ensuing steps. First, the ordinary differential equation for the transport density

in Equation (2b) is projected onto a piecewise constant FEM space defined on

a triangulation of the domain. Then the elliptic equation in Equation (2a) is

discretized using a linear Galerkin FEM method defined on uniformly refined tri-

angles. Finally, the resulting non-linear differential-algebraic system of equations

is solved by means of a first order Euler method (forward or backward) and is

coupled with a simple Picard iteration to resolve the non-linearity. The procedure

is iterated in time until relative differences on the spatial norm of the transport

density are smaller than a predefined tolerance.

After a careful verification step aimed at determining experimentally the con-

vergence characteristics of the numerical approach, we solve several numerical

test cases in R2. Some of these tests are taken from the relevant literature, while

some were specifically designed to support our conjectures. The developed solver

turned out to be surprisingly robust and efficient, being able to find convincing so-

lutions even in the most extreme cases with highly irregular patterns. We strongly

presume that these characteristics are inherited by the numerical scheme from the

original DMK model structure. In other words, from the numerical point of view,

time acts as a relaxation parameter that drastically smooths out the difficulties

in finding an approximation to the problem solution.

In all cases, the numerical tests support the conjecture that indeed the dy-

namic model possesses a time-asymptotic equilibrium point, and the asymptotic

solutions confirm our formal results. In the case β > 1 we consistently ob-

tain an approximation of µ∗β that displays a branching structure resembling the

5
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solution of the BTP. In this case, additional numerical difficulties arise in the

solution of the linear systems stemming from the FEM discretization of the el-

liptic equation. We have studied appropriate (and novel) modifications to the

Preconditioned Conjugate Gradient method that allow us to successfully tackle

these highly ill-conditioned systems.

We would like to remark that the numerical efficiency of our solver can be

easily improved by using slightly more complicated but standard numerical algo-

rithms. Currently under study is the development of a Newton method for the

solution of the non-linear systems in the case of implicit Euler time-stepping, to

completely exploit the geometric convergence towards steady state only hinted

at in the present thesis. Still, more theoretical work is needed to determine the

exact relationships between the spatial discretization spaces used for uh and µh

that guarantee stability of the approach.

Gradient Flow structure. Looking to obtain a gradient flow structure, we

modify the extended DMK equations maintaining the power β only on the

transport density term, while fixing β = 2 for the magnitude of the gradient of

the transport potential. We then obtain the following:

− div (µ(t, x)∇u(t, x)) = f+(x)− f−(x) (4a)

∂tµ(t, x) = µβ(t, x)| ∇u(t, x)|2 − µ(t, x) (4b)

µ(0, x) = µ0(x) µ(t, x)∇u(t, x) · n∂Ω = 0 (4c)

The corresponding Lyapunov-candidate functionalcan be evaluated as:

Φβ(µ, u) :=
1

2

∫

Ω

µ| ∇u|2 dx+
1

2

∫

Ω

µ2−β

2− β dx

The conjecture above can be reproposed for Equation (4) simply changing the

relation between the exponents β and q, that now read as q = 22−β
3−β . The principal

interest of the above alternative version is that formal calculations show that the

system in Equation (4) can be recast within the framework of a Gradient Flow

by introducing an appropriate metric in the ambient space of the variable µ. The

Gradient Flow approach would give the proof of existence and uniqueness, and it

would also give a reinterpretation of the model as a steepest decedent algorithm

for the minimization of Φβ.

The complexity contained in the proofs of local existence under the assumption

f+, f− ∈ L∞(Ω) and µ0 ∈ Cδ(Ω), as well the difficult technical issues we are facing

6
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in the Gradient Flow approach show that the proper tuning of the spaces where

the solution of Equations (2) and (4) lives is a very delicate question. Nevertheless

we are convinced that this avenue is worth pursuing and that our model can

represent a new, unified, formulation of transport problem as in Equation (1).

Thesis Structure. The thesis is organized as follows. First, in Chapter 1 we

present common definitions and well known results related to Optimal Transport

Problems , starting from the L1 Monge-Kantorovich problem and concluding with

the Branched and Congested Transport Problems . Then, we expose the original

contributions of this work. In Chapter 2 we describe the deduction of our dynamic

model and we prove local existence and uniqueness of the solution for β = 1.

Moreover, we introduce the Lyapunov-candidate functional L, and prove the

equivalence between its minimization and Beckmann Problem. The chapter con-

cludes with the derivation of the numerical method used to discretize the model,

and with the experiments conducted to support our conjecture In Chapter 3

we describe the extended DMK model, the corresponding Lyapunov-candidate

functional Lβ, and the connections between its minimization and the solution of

the congested and branched transport problems. Subsequently we present the

numerical experiments supporting our conjecture, for the cases 0 < β < 1 and

β > 1. Chapter 4 is dedicated to the development and testing of the numerical

strategies adopted to solve the extremely ill-posed linear system arising from the

discretization of the elliptic equation for β > 1.

In Chapter 5 we present the variant of the DMK model described in Equa-

tion (4) and show the formal calculations that lead to the conjecture that this

variant can be interpreted as a Gradient Flow in metric spaces.

Finally, Chapter 6 discusses a few application examples that show the ap-

plicability of the proposed model and its numerical solver to tackle real-world

problems in the field of geomorphology, plant-root dynamics, complex networks,

etc.
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Chapter 1

Optimal Transport Problem

In this chapter we present an overview of the Optimal Transport Problem (OTP),

that studies how to find the least-cost strategy to reallocate a mass from an initial

configuration to another. This chapter contains a series of fundamental defini-

tions and well known results of the OTP theory, highlighting those arguments

more related to our contribution in this field. We start from the original formula-

tion given in 1781 by Gaspard Monge, then we describe the relaxed Kantorovich

formulation. We focus on the case with the transport cost equal to the Euclidean

distance, called L1-OTP, and discuss in different equivalent formulations. Then

we define of the so-called Monge-Kantorovich partial differential equations that

play a central rule in the L1-OTP theory and in this thesis. In the last two sec-

tions we present the Branched and Congested Transport Problems, that consider

transports where mass concentration along the transport is either penalized or

favored.

1.1 Monge Formulation

The first formulation of the OTP was introduced by Gaspard Monge in 1781 in

“Mémoire sur la théorie des déblais et des remblais” [52] as a problem of military

fortification construction. He studied the least work strategy to move a certain

amount of earth from the original place (the “déblais”) to an embankment of

equal volume (the “remblais”), assuming that the transport cost is given by to

the product of mass to be moved times and the distance to be covered.

In modern mathematical terms the ”Déblais” and the ”Remblais” are repre-

8



1.2 KANTOROVICH RELAXATION

sented as two non-negative measures f+ and f−, with equal volume (hereafter,

we will denote with M+(X) the set of the non-negative measures defined on

a measure space X). In great generality, the ambient spaces for the measures

f+, f− are two complete and separable spaces X and Y , but in most of the cases

we will assume X = Y = Ω where Ω is an open, bounded, convex, and connected

domain in Rd and with smooth boundary. The mass movements of the Monge

problem are called Transport Maps and they belong to the set

T (f+, f−) :=





Measurable map T : X 7→ Y

s.t. : T#f
+ = f−





where the image measure T#f
+ is defined as

T#(f+)(A) := f+(T−1(A)) ∀ A measurable set in X

The Monge problem now reads:

Problem 1 (Monge Problem). Given two non-negative finite measures f+ and

f− on X and Y satisfying f+(X) = f−(Y ), a cost functional c : X × Y 7→ R,

find T ∗ ∈ T (f+, f−) solving

min
T∈T (f+,f−)

I(T ) :=

∫

X

c(x, T (x))df+(x) (1.1)

The problem described by Monge is a particular case with c(x, y) = |x − y|.
In general Problem 1 can be ill-posed and the optimal map may not exist. For

example when f+ is a Dirac measure and f− is not, the class T (f+, f−) is empty

since the image measure T#f
+ is atomic (see [64, Section 1.4] and [72] for more

examples and counterexamples). Even assuming that the the measures f+ and

f− have smooth densities, the idea of using direct method of the calculus of

variation in order to find an optimal plan as the limit of a minimizing sequence

in Tn ∈ T (f+, f−) for the functional I(·) in Equation (1.1) may not always work

(see [30, p. 5-6] or [64, Exercise 1]).

NewP The mathematical difficulties arising from the attempt of solving di-

rectly the Monge Problem were overcome by Leonid Kantorovich who introduced

a relaxed version of the Monge Problem, that we present in the next section.
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x1

f+
1

x2

f+
2

x3

f+
3

y1

f−
1

y2

f−
2

y3

f−
3

y4

f−
4

f+ f−(ci,j, γi,j)

Figure 1.1: The gray ellipses represent the supports of f+ and f− of the Monge

Problem. Consider the points xi ∈ Rd (yi ∈ Rd) in the support of f+ (f−), and

associate to them the mass f+
i (f−j ) concentrated in a small ball centered in xi,

(yi). For any pair of points xi, yj a transport cost ci,j is associated. Then the

optimization problem described in Equation (1.2) is a natural discretization of

the Monge Problem.

1.2 Kantorovich Relaxation

The Monge Problem was reformulated by Leonid Kantorovich in [44] in a re-

laxed version inspired by the following discrete formulation of the Monge Prob-

lem. Consider n points (xi)i=1,n ∈ Rd with associated masses (f+
i )i=1,n and

m points (yj)j=1,m ∈ Rd with masses (f−j )j=1,m, and the additional require-

ment that
∑n

i f
+
i =

∑m
j f

−
j (we may think of them as atomic discretizations

of f+ and f−, as described in Figure 1.1). Given the real numbers (ci,j) for

(i = 1, . . . , n, j = 1, . . . , n) representing the cost of moving one unit of mass

from point xi to point yj, we look for γ∗i,j solution of the following minimization

problem

min
γi,j

n∑

i=1

m∑

j=1

ci,jγi,j (1.2a)

s.t. :
n∑

j=1

γi,j = f+
i

n∑

i=1

γi,j = f−j γi,j ≥ 0 (1.2b)

The discrete problem defined above rewrites the OTP formulated by Monge

in the form of a Linear Programming Problem 1 (see in [30, Appendix] for the

1Kantorovich is consider one of the fathers of the Linear Programming theory and for this

reason he was awarded in 1975 the Nobel Prize in Economics (see [71])
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1.2 KANTOROVICH RELAXATION

details). This reformulation suggests that instead of searching the solution of the

OTP among the transport maps, we should search on the set of Transport Plans

defined as follows

Π(f+, f−) :=
{
γ ∈M+(X × Y ) s.t : (πx)#γ = f+ , (πy)#γ = f−

}

where πx and πy are projection maps (x, y) 7→ x and (x, y) 7→ y. The transport

plan γ and the relative constraints are clearly the continuous version of γi,j and

the constraints described in Equation (1.2b) , respectively.

The infinite dimensional version of the problem in Equation (1.2), nowadays

known as Kantorovich Primal Problem, reads as follow:

Problem 2 (Kantorovich Primal Problem). Given two non-negative finite mea-

sures f+ and f− on X and Y satisfying f+(X) = f−(Y ), and given a cost

function c : X × Y 7→ R+, find the optimal transport plan γ∗ ∈ Π(f+, f−) that

solves

min
γ∈Π(f+,f−)

Kc(γ) :=

∫

X×Y
c(x, y)dγ(x, y)

The Kantorovich formulation is weaker than the Monge’s, since for any map

T ∈ T (X, Y ) we can define the plan γT = (Id, T )#f
+ that belongs to Π(X, Y ),

and if T ∗ solves Problem 1 then γT ∗ solves Problem 2. The first advantage of the

Kantorovich relaxed formulation is that under very mild assumptions on the cost

c it is easy to prove the existence of a minimizer for Problem 2, as stated in the

following theorem.

Theorem 3. For any c : X × Y 7→ R lower semi-continuous, Problem 2 admits

a solution γ∗ ∈ Π(f+, f−)

The proof is a based on the direct method of the calculus of variations and the

proof can be found in [64, Theorem 1.4 and 1.5] for the case with X, Y compact

and c lower semi-continuous and bounded from below. The general proof is then

given in [64, Theorem 1.7].

The second main advantage of the Kantorovich formulation is that Problem 2

admits a dual problem. Denoting with Cb(X) the space of continuous and bounded

functions on a metric space X, we have the following

Problem 4 (Kantorivich Dual Problem). Given two non-negative finite measures

f+ and f− on X and Y satisfying f+(X) = f−(Y ), and given a cost function

11



1. OPTIMAL TRANSPORT PROBLEM

c : X × Y 7→ R. Let Lc be the set

Lc :=





(u, v) ∈ Cb(X)× Cb(Y ) s.t. :

u(x) + v(y) ≤ c(x, y) ∀(x, y) ∈ X × Y





Find (u∗, v∗) ∈ Lc solving the maximization problem

sup
(u,v)∈Lc

I(f+,f−)[u, v] :=

∫

X

u(x)df+(x) +

∫

Y

v(y)df−(y) (1.3)

Problem 4 is called Kantorovich Dual Problem and we have the following theorem:

Theorem 5 (Kantorovich Duality). Given two non-negative finite measures f+

and f− on X and Y satisfying f+(X) = f−(Y ), and a cost function c : X×Y 7→ R

lower semi-continuous, the following equality holds

min
γ∈Π(f+,f−)

Kc(γ) = max
(u,v)∈Lc

I(f+,f−)(u, v)

This last result can be proved by applying Theorem 55, under the assumption

X, Y compact and c continuous. Actually, as already mentioned in [72, Remark

1.4], according to the definitions given in appendix A.1, the Kantorovich Primal

Problem is the “real” dual of Problem 2. The complete proof of these statements

can be found in [72, Theorem 1.3]. In the same book can be found an extension

that considers general assumptions on X, Y and c of Theorem 5.

Remark 1. The dual problem of the Kantorovich formulation can be seen as the

extension to the continuum of the following problem

max
n∑

i=1

uif
+
i +

m∑

j=1

vjf
−
j (1.4)

ui + vj ≤ ci,j (i = 1, ., n; j = 1, .,m)

which is the dual of the discrete problem defined in Equation (1.2). As well known,

Theorem 5 can be viewed as the extension of duality result of linear programming

(see [66]) which says

min
x



c · x s.t. :

Ax = b

x ≥ 0



 = max

y

{
b · y s.t. : ATy ≤ c

}
(1.5)

A ∈ Rm,n x, c ∈ Rn y, b ∈ Rm

In [30, Appendix] the discrete and dual problems in Equations (1.2) and (1.4) are

written in the form of Equation (1.5). The analogies between the continuous and

the discrete problem are summarized in Figure 1.2.
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1.2 KANTOROVICH RELAXATION

Monge Problem

inf
T

∫

Ω

c(x, T (x))df+(x)

s.t. :
T : X 7→ Y

T#f
+ = f−

(Problem 1)

Kantorovich Primal

min
γ

∫

X×Y
c(x, y)dγ(x, y)

s.t. :
γ ∈M+(X × Y )

(πx)#γ = f+ (πy)#γ = f−

(Problem 2)

Kantorovich Dual

max
u,v

{∫

X

u df+ +

∫

Y

v df−
}

s.t. :
(u, v) ∈ (Cb(X)× Cb(Y ))

u(x) + v(y) ≤ c(x, y)

(Problem 4)

Discrete Primal

min
γi,j

∑

i,j

ci,jγi,j

s.t. :

γi,j ≥ 0
∑

j

γi,j = f+
i

∑

i

γi,j = f−j

Equation (1.2)

Discrete Dual

max
ui,vj

n∑

i=1

uif
+
i +

m∑

j=1

vjf
−
j

s.t: ui + vj ≤ ci,j ∀i, j

(Equation 1.4)

Theorem 5
Equation 1.5

Figure 1.2: Schematic representation of the connections among the different for-

mulations of the OTP discussed in this section. We highlight the analogy between

the continuous (left blocks) and the discrete (right dashed blocks) formulations,

as well as the analogy between the Kantorovich Duality in Theorem 55 and the

duality result in Equation (1.5). The deduction of the discrete primal problem

from the Monge Problem is discussed in Figure 1.1.
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1. OPTIMAL TRANSPORT PROBLEM

1.2.1 c-concave function and c-transform

We now introduce the definition of c/c̄-transform and c/c̄-concave functions.

Definition 6 (c and c̄-Transform). Consider a cost function c : X × Y 7→ R̄.

Given u : X 7→ R̄, the c-transform uc : Y 7→ R̄ of u is defined by

uc(y) := inf
x∈X

(c(x, y)− u(x))

Given v : Y 7→ R̄, the c̄-transform vc̄ : X 7→ R̄ of v is defined by

vc̄(x) := inf
x∈Y

(c(x, y)− v(y))

Definition 7 (c-concave and c̄-concave functions). Consider a cost function c :

X × Y 7→ R̄. A function v : Y 7→ R̄ such that exists u : X 7→ R̄ with v = uc

is called c̄-concave. We denote with c̄ − conc(X) the set of c̄-concave functions

defined on Y . A function u : X 7→ R̄ such that exists v : Y 7→ R̄ with u = vc̄

is called c-concave. We denote with c − conc(X) the set of c-concave functions

defined on X.

We introduced the above definitions in order to state the following proposition

Proposition 8. Assume that X, Y are compact and the function c is continuous

then Problem 4 admits a solution pair (u∗, v∗) ∈ Lc with v∗ = (u∗)c ∈ c̄−conc(Y ).

This means that Problem 4 can be rewritten as:

sup
u∈c−conc(X)

∫

X

u(x)df+(x) +

∫

Y

(uc)(y)df−(y)

The function u∗ is called Kantorovich Potential.

Proof. See [64, Proposition 1.11]

1.3 Existence of Optimal Plan and Map

The Kantorovich formulation of the OTP described in previous section is known

as Monge-Kantorovich (MK) Transport Problem, and has been studied by several

authors in the recent years. Many different formulations of the OTP have been

introduced, with connections with areas that are not a priori related to OTP.

For the purposes of this thesis we do not need to present all these results, and
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1.4 THE L1-OTP: C(X, Y ) = |X − Y |

we only the reader to [73, 64] for a complete overview of the recent advances

in the OTP theory. However, we want to report below a general result, taken

from [64], that ensures uniqueness of an optimal transport plan that is solutions

of the Kantorovich Primal Problem and, more remarkably, the existence of an

optimal transport map for the Monge Problem.

Proposition 9. Consider a compact domain Ω ⊂ Rd, two balanced measures

f+, f− ∈M+(Ω), such that ∂Ω is f+-negligible, and f+ is absolutely continuous

with respect to the Lebesgue measure. Assume that the transport cost is of the

form c(x, y) = h(|x − y|) with h a strictly convex function, then there exists

a unique transport plan γ∗ ∈ Π(f+, f−) of the form γ∗ = (Id, T ∗)#f
+, with

T ∗ ∈ T (f+, f−). Moreover, there exists a Kantorovich potential u and T ∗ satisfies

the following relation:

T ∗(x) = x− (∇h)−1(∇(u∗(x)))

The above result is fundamental for the so called Lp-OTP in which the cost

reds as c(x, y) = |x− y|p with p > 1, that is one of the most studied. Moreover it

reconciles the Monge and the Kantorovich formulations. Unfortunately the above

proposition can not be applied when we consider the c(x, y) = |x − y|, which is

the cost studied by in the original Monge Problem, since the strict convexity of

function h plays a crucial rule in the proof of the above theorem.

1.4 The L1-OTP: c(x, y) = |x− y|
In this sections we present some results for the OTP with cost c(x, y) = |x− y|,
called L1-OTP. This case displays more pathological behavior than those de-

scribed in Proposition 9. First, the uniqueness of an optimal plan is not ensured.

The classical counterexample is the book shifting problem ([2]) Given n ≥ 1, we

consider f+ = χ[0, n] ·L1 and f− = χ[1, n+1] ·L1 (χ[a, b] is the indicator function

of an interval [a, b] ⊂ R) . For these measures there exist two optimal maps with

equal total cost n. One map is T ∗1 (t) = t+ 1, the other map is

T ∗2 (t) =




t+ n on [0, 1]

t on [1, n]

thus, also the two plans, γ1 = (Id, T ∗1 )#f
+ and γ2 = (Id, T ∗2 )#f

+ are optimal

for the Kantorovich Primal Problem. However, the minimal assumptions on
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1. OPTIMAL TRANSPORT PROBLEM

Ω, f+, f− that ensure the existence of optimal transport map solution of the

Monge Problem are still a matter of research. Despite these difficulties and pecu-

liarities, the L1-OTP has a rich mathematical theory, with different formulations

that are the main topic of this section.

We will restrict to the case X = Y = Ω, where Ω ⊂ Rd is an open,

bounded, connected, and convex domain with smooth boundary. Note

that most of the following results can be extended to Rd and to more general

framework of Riemanian manifold (see [72]), but for simplicity we consider Ω as

above. The first result on the L1-OTP is the following:

Theorem 10 (Kantorovich-Rubinstein Theorem). Consider Ω ⊂ Rd an open,

bounded, connected, and convex domain with smooth boundary. Take two non-

negative measures f+ and f− on Ω such that df+(Ω) = df−(Ω). The Kantorovich

Dual Problem in Equation (1.3) with cost function c(x, y) = |x−y| can be rewrit-

ten as find u ∈ Lip1(Ω) that solves

sup
u∈Lip1(Ω)

∫

Ω

u df (1.6)

with f = f+ − f−. Lip1(Ω) denotes the set of the Lipschitz continuous functions

of Ω, with Lipschitz constant equal to 1.

The proof can be found in [72, Theorem 1.14], where it is proved the equiva-

lence between the sets Lip1(Ω) and c− conc(Ω) when the cost function c is equal

to the Euclidean distance, and that uc = −u. Then Proposition 8 applies.

We now first present a minimization problem that, as stated in the immedi-

ately following proposition, turns out to be equivalent to the problem in Equa-

tion (1.6)

Problem 11 (Beckmann Problem). Consider Ω ⊂ Rd an open, bounded, con-

nected, and convex domain with smooth boundary. Take two non-negative mea-

sures f+ and f− on Ω such that df+(Ω) = df−(Ω). Find v∗ ∈ [M(Ω)]d solving

inf
v∈[M(Ω)]d

{
|v|(Ω) : div(v) = f

}

with f = f+ − f−. The divergence constraint on v is the sense of distributions,

i.e. ∫

Ω

∇ϕ · dv = −
∫

Ω

ϕdf ∀ϕ ∈ C1(Ω̄)
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Proposition 12. Consider Ω ⊂ Rd an open, bounded, connected, and convex

domain with smooth boundary. Take two non-negative measures f+ and f− on Ω

such that df+(Ω) = df−(Ω), then Problem 11 and problem in Equation (1.6) are

equivalent which means

sup
u∈Lip1(Ω)

∫

Ω

u df = inf
v∈[M(Ω)]d

{
|v|(Ω) : div(v) = f

}

with f = f+ − f−

The proof of the above results is, once again an application of Theorem 55.

The proof can be found in [17]. The proper characterization of the equivalence

between the Beckmann Problem and the the Dual Kantorovich problem, requires

the introduction of the quantity called Optimal Transport Density, described in

the following section.

1.4.1 Optimal Transport Density and Monge Kantorovich

equations

We now give the definition of Optimal Transport Density (OT density) as given

in [14], which is deeply related to all the formulations of the L1-OTP presented

so far.

Definition 13 (Optimal Transport Density). Consider Ω ⊂ Rd an open, bounded,

connected, and convex domain with smooth boundary. Take two non-negative

measures f+ and f− on Ω such that df+(Ω) = df−(Ω). Given γ∗ ∈ Π(f+, f−)

a minimizer for the Kantorovich Primal Problem (Problem 2) with cost function

c(x, y) = |x − y|, the Optimal Transport Density µ∗ ∈ M+(Ω) associated to

f+, f− is defined as:

〈µ∗, ϕ〉 :=

∫

Ω×Ω

∫ 1

0

|w′x,y(t)|ϕ(wx,y(t))dt dγ(x, y) ∀ϕ ∈ C(Ω) (1.7)

where

wx,y(t) = (1− t)x+ ty

(The requirement on Ω to be convex is fundamental to consider the curve wx,y(t)).

The following theorem summarized a series of the results in [2, 35, 24, 25, 62]

obtained by different authors on uniqueness and summability of the OT density.
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1. OPTIMAL TRANSPORT PROBLEM

Theorem 14. Consider Ω ⊂ Rd an open, bounded, connected, and convex domain

with smooth boundary. Take two non-negative measures f+ and f− on Ω such that

df+(Ω) = df−(Ω). If f+ (or f−) admits L1-density with respect to the Lebesgue

measure, then the OT density µ∗ associated to f+, f− is uniquely defined and

admits L1-density with respect to the Lebesgue measure, thus we will indicate it

with µ∗(f+, f−) (or, alternatively, µ∗(f) with f = f+−f−). Moreover, if f+ and

f− admit Lp densities for 1 ≤ p ≤ +∞ then the same holds for µ∗.

The OT density µ∗ plays a crucial rule in the L1-OTP as the following propo-

sition states.

Proposition 15. Consider Ω ⊂ Rd an open, bounded, connected, and convex

domain with smooth boundary. Take two non-negative measures f+ and f− on Ω

such that df+(Ω) = df−(Ω), If f+ and f− admit Lp-density with 1 ≤ p ≤ +∞ a

solution v∗ of Problem 11 belongs to [Lp(Ω)]d and is can be written as

v∗ = −µ∗∇u∗ (1.8)

where µ∗ is OT density µ∗(f+, f−) and u∗ is solution of the Dual Kantorovich

Problem.

A straightforward consequence of the previous proposition and of Theorem 14

it is the following corollary.

Corollary 16. Consider Ω ⊂ Rd an open, bounded, connected, and convex do-

main with smooth boundary. Take two non-negative measures f+ and f− on Ω

such that df+(Ω) = df−(Ω). If f+ and f− admit L1-densities with respect to

the Lebesgue measure, then Problem 11 rewrites as the following minimization

problem

min
v∈[L1(Ω)]d

{∫

Ω

|v| dx : div(v) = f

}
(1.9)

with f = f+ − f−, and it admits a unique solution v∗ given by Equation (1.8)

We finally approach the most important result of L1-OTP for this thesis, which

states that the OT density is described by the following system of equations,

called Monge Kantorovich equations (MK equations), introduced with different

approaches and goals in [16, 32].
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Proposition 17 (Monge-Kantorovich Equations). Consider Ω ⊂ Rd an open,

bounded, connected, and convex domain with smooth boundary. Take two non-

negative measures f+ and f− on Ω such that df+(Ω) = df−(Ω). Assume that

f+ and f− admit L1-densities. The OT density µ∗(f+, f−) (defined in Equa-

tion (1.7)) and the Kantorovich potential u∗ (solution of Equation (1.6)) solve

the following equations

− div(µ∗∇u∗) = f in Ω (1.10a)

| ∇u∗| ≤ 1 in Ω (1.10b)

| ∇u∗| = 1 a.e. in µ∗ > 0 (1.10c)

with f = f+ − f−.

By the results reported in Proposition 15 the OT density µ∗ is uniquely de-

fined, while the Kantorovich Potential u∗ solution of the MK equations is not

uniquely defined outside the support of µ∗.

Remark 2. The MK equations and Proposition 15 are still valid for f+, f− ∈
M+(Ω), but as shown in [15] special tools are needed to define the term ∇u∗.
We prefer not to consider this generalization for sake of simplicity.

1.4.2 MK equations via Mass Optimization Problem

The MK equations were studied in [16] as the following Mass Optimization Prob-

lem (MOP):

Problem 18 (Mass Optimization Problem). Consider Ω ⊂ Rd an open, bounded,

connected, and convex domain with smooth boundary. Take two non-negative

measures f+ and f− on Ω such that df+(Ω) = df−(Ω). Find ν∗ ∈ M+(Ω) that

solves

min
ν∈M+(Ω)

{Ef (ν) : ν(Ω) = 1}

where

Ef (ν) := sup
ϕ∈C1(Ω̄)

Γf (ν, ϕ) (1.11)

Γf (ν, ϕ) :=

∫

Ω

(
ϕdf − |∇ϕ|

2

2
dν

)
(1.12)

with f = f+ − f−.
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In [14] the quantity Ef (µ) is called Compliance and represents the dissipated

energy for a given forcing term f = f+ − f− and a given conductor distribution

ν.

The equivalence between the MOP and MK equations is given by the following

proposition:

Proposition 19. Given the OT density µ∗(f+, f−), a solution of problem Prob-

lem 18 is give by

ν∗ =
µ∗∫

Ω
dµ∗

The proof of the above proposition was first presented in [16].

1.4.3 MK equations via ∞-Poisson Equation

System 1.10 was introduced in [32] in the form of∞-Poisson equation with forcing

term f = f+ − f−, described by the following proposition.

Proposition 20 (∞-Poisson). Consider Ω ⊂ Rd an open, bounded, connected,

and convex domain with smooth boundary. Take two non-negative measures f+

and f− on Ω such that df+(Ω) = df−(Ω). Assume that f+ and f− admit Lipschitz

continuous densities with respect to the Lebesgue measure. The solution pair

(µ∗, u∗) of system 1.10 is the limit for p → ∞ of (| ∇up|p−2, up) in where up

solves the p-Poisson equations

− div(| ∇up|p−2∇up) = f

with f = f+−f−. (the limit for | ∇up|p−2 must be understood in the sense of the

weak∗-topology of L∞(Ω), while for up the limit is in the topology induced by the

uniform norm).

The assumptions on the Lipschitz continuity of the densities is mainly intro-

duced to prove the existence of an optimal map T ∗ moving f+ into f−, as stated

in the following proposition:

Proposition 21 (Solution of the Monge Problem). Consider Ω ⊂ Rd an open,

bounded, connected, and convex domain with smooth boundary. Take two non-

negative measures f+ and f− on Ω such that df+(Ω) = df−(Ω). Assume that f+
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1.4 THE L1-OTP: C(X, Y ) = |X − Y |

and f− admit Lipschitz continuous densities with respect to the Lebesgue measure.

Take x ∈ supp(f+) and consider z(t, x) solution of the ODE

z′(t) = Z(t, z(t)) Z(t, z) =
−µ∗(z)∇u∗(z)

(1− t)f+(z) + tf−(z)

with initial data z(0) = x. The map T ∗ defined as

T ∗(x) := z(1, x)

goes from supp(f+) into supp(f−), and is the solution of the Monge Problem,

with cost equal to Euclidean distance.

The proof of last Proposition can be found in [32] it requires approximation ar-

guments to deal with the term 1/ ((1− t)f+(z) + tf−(z))) outside of the support

of f+ and f−.

Remark 3. The result in Proposition 21 was historically the first solution of the

OTP two centuries after the original Monge formulation .

We summarized in Figure 1.3 a schematic representation of the OTP, with

particular focus on the different formulations for the L1-case.
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1. OPTIMAL TRANSPORT PROBLEM

Monge Problem

inf
T

∫

Ω

|x− T (x)|df+(x)

s.t. :
T : X 7→ Y

T#f
+ = f−

(Problem 1)

Kantorovich Primal

min
γ

∫

Ω×Ω

|x− y|dγ(x, y)

s.t. :

γ ∈M+(X × Y )

(πx)#γ = f+

(πy)#γ = f−

(Problem 2)

Kantorovich Dual

u∗ = argmax
u

∫

Ω

u f

u ∈ Lip1(Ω)

(Problem 4)

Beckmann Problem

v∗ = argmin
v

∫

Ω

|v|

s.t. :
v ∈ [L1(Ω)]d

div(v) = f

(Equation (1.9))

MK equations

− div(µ∗∇u∗) = f

| ∇u∗| ≤ 1 in Ω

| ∇u∗| = 1 a.e. in µ∗ > 0

(Equation (1.10))

Proposition 15

v∗ = −µ∗∇u∗

MOP

min
ν∈M+(Ω)

Ef (ν)

s.t. : ν(Ω) = 1

(Problem 18)

p-Poisson Equation

− div(| ∇up|p−2up) = f

(Equation (1.20) )

Theorems 5 and 10

Proposition 12

Corollary 16
Equation (1.7)

Proposition 19

Proposition 21

(f+, f− ∈ Lip(Ω))

p→ +∞Proposition 20

Figure 1.3: Map of the OTP formulations and results for the case c(x, y) = |x−y|
in a convex, bounded, connected domain Ω ⊂ Rd. The starting measure f+ and

final measure f− are assumed to have densities with respect to the Lebesgue

measure, even if many definition and results do not require this assumption. f

denotes f+ − f−.
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1.4 THE L1-OTP: C(X, Y ) = |X − Y |

1.4.4 Cost in the case of non-uniform distance

In this section we introduce a generalized version of the L1-OTP in which the

Euclidean distance is replaced by a geodetic distance. To this aim we introduce

a positive and smooth function k : Ω 7→ R+, so that the distance induced by k

can be defined as

dk(x, y) := inf
γ∈C1([0,1],Ω)

{∫ 1

0

k(γ(t))|γ′(t)|dt γ(0) = x , γ(1) = y

}
(1.13)

It is clear that, when k ≡ 1, dk(x, y) = |x − y|, thus the we recover the L1-

OTP. But for a general k(x), using the distance dk as cost of the OTP, we can

recover all the formulations and results presented in Section 1.4 for the case

c(x, y) = |x− y|. This is standard extension of the L1-OTP, studied in in [64, 5],

in which the positive function k(x) describes the spatial pattern of the resistance

to flow.

The Kantorovich dual problem in Equation (1.6) for the cost c = dk reads as

sup

{∫

Ω

u df : u ∈ Lipk(Ω)

}
(1.14)

where

Lipk(Ω) =





u : Ω 7→ R s.t. :

sup
x 6=y

|u(x)− u(y)|
dk(x, y)

< +∞





The divergence constrained problem in Equation (1.9) rewrites as

inf
v∈[L1(Ω)]d

{∫

Ω

k(x)|v(x)| : div(v) = f

}
(1.15)

Problems in Equations (1.14) and (1.15) are equivalent to the same problems

previously defined for the for the Euclidean distance case. The analogous of the

MK equations reads:

− div(µ∗∇u∗) = f in Ω (1.16a)

| ∇u∗| ≤ k(x) in Ω (1.16b)

| ∇u∗| = k(x) a.e. in µ∗ > 0 (1.16c)

with f = f+ − f−
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1. OPTIMAL TRANSPORT PROBLEM

1.5 Branched Transport Problems

In the Monge-Kantorovich formulation the total transport cost does not depend

on the intermediate phases between the starting and final configuration of the

mass transported. However in many real-life transport problems one may be

interested in penalizing or favoring mass concentration along the transport. In

this section we present the so called, Branched Transport Problem(BTP) an area

of the OTP theory that studies the case in which we prefer to move the mass

together, (the opposite case where mass concentration is penalized is discussed

in the next session). Gilbert in [38] gave the first formulation of the BTP as a

problem of finding the minimal cost communication network. In the recent years

the Gilbert problem has been reformulated and extended by several authors.

One of the biggest issues in the BTPis that its numerical solution, even in the

discrete case of the Gilbert Problem, is known to be NP hard. In this section

we give a short overview of the main characteristics and formulations of BTP,

following [64, 74].

1.5.1 The Gilbert-Steiner Problem

We now present a simple problem, visualized in Figure 1.4, that exemplifies the

main characteristics of the BTP. Consider a courier that has to deliver some boxes

from a delivery center to different destinations. In terms of the OTP, the final

configuration of the boxes is represented by m Dirac masses (f−j = δxj)j=1,...,n

where xj is the destination location, while f+ is a single Dirac source with mass

m, located at the delivery center. The answer of L1-OTP is to send each box to

the corresponding recipient along straight lines, but it can be more convenient

to first move the boxes together and then split them when we get closer to the

destination. With two delivery destinations the transport path “drawn” by the

L1-OTP is “V” shaped, while it is “Y” shaped when transport aggregation is

encouraged. When we consider multiple destinations we see “star” shaped and

“branched” paths.

In the L1-OTP the “V” or the “star” shaped paths are optimal since the

transport cost per unit length is exactly proportional to the amount of goods

transported (this is clear looking at the OTP described in Sections 1.1 and 1.2

both in the discrete and continuous cases). The requirement that mass concen-
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1.5 BRANCHED TRANSPORT PROBLEMS

Figure 1.4: Schematic approximate representation of the problem of delivering

some boxes from one location (red squares) to different destinations (blue circles).

The upper panel reports the paths “drawn” by the the solutions of L1-OTP

(left panel) and BTP(right panel) for the case with one starting point e two

destinations, while the lower panel reports the case with several destinations.
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1. OPTIMAL TRANSPORT PROBLEM

tration is encouraged is encoded introducing a functions ϕ that describes the

transport cost for unit length and that has to satisfy the following properties:

ϕ(max(m1,m2)) ≤ ϕ( m1 +m2) ≤ ϕ(m1) + ϕ(m2)

ϕ(m1 + c)− ϕ(m1) ≤ ϕ(m2 + c)− ϕ(m2) ∀c > 0 m1 > m2

The first property says that the cost increases with mass transported but it is sub-

additive. The second property says that the marginal cost generated by adding

some mass to a given background quantity is smaller for bigger backgrounds. The

typical choice is the concave function ϕ(m) = mα with 0 < α < 1, which satisfies

both properties.

The first formulation of this type of transport cost was introduced by Gilbert

in [38]. He was studying how to build the minimal cost network connecting the

cities located in some point x1, . . . , xn on the plane. To this aim, he introduced a

generalization the Steiner problem (which looks for the minimal length network

connecting all points x1, . . . , xn) in which the cost of construction for unit length

described by a sub-additive function ϕ. In the case ϕ = mα this problem is called

the Gilbert-Steiner Problem. To properly describe the Gilbert-Steiner Problem,

we need to give the definition of Transport Path as in [74]:

Definition 22 (Transport Path). Consider two atomic measures f+ =
∑n

i f
+
i δxi,

f− =
∑m

j f
−
j δyj with

∑m
j f

−
j =

∑n
i f

+
i (xi, yj are points in Ω ⊂ Rd and δx is the

Dirac measure centered at x). An admissible Transport Path from f+ to f− is a

pair composed by an oriented graph G = (V,E) (V and E denote respectively the

set of nodes and the set of edges of the graph G) and a flow function q : E 7→ [0,∞[

satisfying Kirchhoff law

∑

e∈σ(v)

qe =





f+
i if v = xi for some i

−f−j if v = yj for some j

0 otherwise

(1.17)

where σ(v) is the “star” of v, i.e., the set of edges having vertex v in common.

The set of all admissible Transport Path from f+ to f− is denote by P(f+, f−).

Problem 23 (Gilbert-Steiner Problem). Given f+, f− two balanced atomic masses

as in definition 22, and 0 ≤ α ≤ 1, we want to find find the Transport Path in

(G, q) ∈ P(f+, f−) minimizing the Gilbert-Steiner energy

Eα(G, q) =
∑

e∈E(G)

(qe)
αLe (1.18)

26



1.5 BRANCHED TRANSPORT PROBLEMS

where Le indicates the length of an edge e ∈ E.

When α = 0 we recover Steiner Problem, while the case α = 1 can be seen

as the discrete version of the L1-OTP. The problem with 0 < α < 1 produces

the branching structure described in the introduction, and is the starting point

of the so called Branched Transport Problem (BTP).

It is not trivial to show that the Problem 23 admits a solution. We give

here just a sketch of the proof that can be found in [74, Propositions 2.1 and

2.2]. The first step is to restrict the search into the set of acyclic graphs (i.e.

graphs with no loops or sequences of connected edges which starts and ends at

the same vertex). In fact, given an path (G, q) with G containing loops, we can

always obtain another path (G̃, q̃) with smaller energy Eα, by removing these

loops. This assumption uniformly bounds the number of branching vertices by

m + n − 2. Thus there are finite topologically equivalent Transport Paths and

thus there is enough compactness to prove existence of a minimizer.

This discussions suggests that it can be difficult identify a minimizer since we

have to explore all possible topological configurations, whose number increases

dramatically with the number of source/sink points. Indeed, the solution this

problem is known to be NP-hard.

1.5.2 Extension to the continuum

The extension of Problem 23 to general mass densities f+, f− ∈ M+(Ω) with

Ω ⊂ Rd was introduced by Xia in [74]. The original idea is to consider two

sequence of atomic measures f+
n and f−n such that

f+
n ⇀ f+ f−n ⇀ f−

and define the optimal path from f+ to f− as the limit of the optimal Transport

Paths (P∗n, q∗n) ∈ P(f+
n , f

+
n ). In order to make sense to such limit procedure,

we need to reformulate Problem 23 in term of Measure Theory. To this aim we

need to introduce the notion of 1-rectifiable set in Rd that, without entering into

the details of a proper definition, can be seen as a countable union of Lipschitz

curves. Now, consider a triple composed by a 1-rectifiable set K ⊂ Ω, a vector

field τ : K 7→ Sd−1, and a function q : K 7→ R+ integrable with respect to

the 1-dimensional Hausdorff measure H1: we can define a vector measure v =
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1. OPTIMAL TRANSPORT PROBLEM

[K, τ, q] ∈ [M(Ω)]d through the following equation

〈[K, τ, q], ζ〉 :=

∫

K

q(x)τ(x) · ζ(x)dH1(x) ζ ∈ [C(Ω)]d

Given a path (G, q) ∈ P(f+
n , f

−
n ) we associate to it the vector measure vG,q

composed by the triple [E, τE, q] where E is the union of the graph edges, τE

is the vector measure with unit value defined by the edge direction, and q the

weight satisfying Equation (1.17). Kirchhoff law Equation (1.17) rewrites as

div(v(G,q)) = f+
n − f−n , in the sense of distribution that we recall means
∫

Ω

∇ϕ · dv(G,q) = −
∫

Ω

ϕ(df+
n − df−n ) ∀ϕ ∈ C1(Ω̄)

The Gilbert-Steiner energy in Equation (1.18) becomes

Eα(G, q) =
∑

e∈E
(qe)

αLe =

∫

E

|q(x)|αdH1(x)

We can now extend the definition of Eα to general v ∈ [M(Ω)]d as follows

Eα(v) := inf





lim inf
n

Eα(Gn, qn) :

v(Gn,qn) ⇀ v

f+
n − f−n ⇀ f+ − f−

div(v(Gn,qn)) = f+
n − f−n





(1.19)

It can be proved that those v ∈ [M(Ω)]d with Eα(v) < +∞ are 1-rectifiable and

that the energy functional in Equation (1.19) can be rewritten as:

Eα(v) =





∫

E

|v|αdH1(x) if v = [E, τ, q]

+∞ otherwise

Finally we can give the definition of the BTP for general f+, f− ∈ M+(Ω) as

in [74].

Problem 24. Find v∗ ∈ [M(Ω)]d solving

inf
v∈[M(Ω)]d

{
Eα(v) : div(v) = f+ − f−

}

In general this problem may have no solution. For example if Ω = [−a, a]d,

given f+ ∈ M+(Ω) with total mass equal to 1 and f− equal the unitary Dirac

mass centered at 0, then there exists v with div(v) = f+− f− such that Eα(v) <

+∞ if and only if α > 1 − 1
d
. There exist counterexamples that show that

the threshold α∗ = 1 − 1
d

is sharp (we refer to [64] for more details on these

arguments).
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1.6 Congested Transport Problem and p-Poisson

Equations

In this section we give a short presentation of that area of OTP in which we

want to penalize mass-concentration when we move f+ into f−, called Congested

Transport Problem(CTP). These type of problems has many real-life applications,

for example, in the study of urban traffic or crowd motion. One formulation of

these type problem reads as follows: we want to find the optimal vector field

v∗Ω 7→ Rd that solves

min
v

{∫

Ω

H(|v|) dx : div(v) = f+ − f−
}

where H is a real super-linear function (see [65] for more details). When we con-

sider H(|v|) = |v|q with 1 < q < 2 the above minimization problem is equivalent

to solve a well known non-linear elliptic equation, the p-Poisson that reads:

Problem 25 (p-Poisson Equation). Consider Ω ⊂ Rd an open, bounded, con-

nected, and convex domain with smooth boundary. Take two non-negative mea-

sures f+ and f− on Ω such that df+(Ω) = df−(Ω). Assume that the forcing terms

f+ and f− admit Lq-densities, with q > 1, and let p to be the conjugate exponent

of q, i.e.
1

p
+

1

q
= 1

We want to find the solution of the following non-linear equation

− div(| ∇up|p−2∇up) = f+ − f− = f (1.20)

complemented with zero Neumann boundary condition. The above equation is

called p-Poisson equation.

The p-Poisson equation (in the weak form) are the Euler-Lagrange of the

following minimization problem:

min
u∈W 1,p(Ω)

∫

Ω

(
1

p
| ∇u|p − fu

)
dx

with f = f+ − f−. This formulation of p-Poisson equation, together with the

following proposition, explains the relations between the Congested Transport

Problem and the p-Poisson equations.
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Proposition 26. Consider Ω ⊂ Rd an open, bounded, connected, and convex

domain with smooth boundary. Take two non-negative measures f+ and f− on

Ω such that df+(Ω) = df−(Ω). Assume that forcing term f+ and f− admits

Lq-densities with 1 < q < +∞. Then the following equivalence holds

min
u∈W 1,p(Ω)

∫

Ω

(
1

p
| ∇u|p − fu

)
dx = max

v∈[Lq(Ω)]d

{
−
∫

Ω

|v|q
q
dx : div(v) = f

}

where f = f+−f− and p conjugate exponent of q. The solution up of the left-hand

side problem and solution v̄ the right-hand side problem v̄ satisfy the following

relation

v̄ = −|∇up|p−2∇up

The proof is based on Theorem 55 and can be easily derived from the results

in [29, Example 2.2, Chapter 4] for the case with homogeneous Dirichlet boundary

condition.

In Figure 1.5 we summarize the optimal transport formulations in the form of

minimization problem defined for vector field v : Ω 7→ Rd with divergence equal

to f+ − f−.
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MK equations

− div(µ∗∇u∗) = f

| ∇u∗| ≤ 1 in Ω

| ∇u∗| = 1 in µ∗ > 0

Equation (1.10)

Beckmann

Problem

min
v

∫

Ω

|v|q=1 dx

s.t. :
v ∈ [L1(Ω)]d

div(v) = f

(Equation (1.9))

p-Poisson Eq.

− div(| ∇up|p−2∇up) = f

Equation (1.20)

Congested

Transport

min
v

∫

Ω

|v|q dx

s.t. :
v ∈ [Lq(Ω)]d

div(v) = f

(Section 1.6)

Branched

Transport

min
v

∫

E⊂Ω

|v|qdH1

s.t. :
v ∈ [M(Ω)]d

div(v) = f

(Problem 24)

Proposition 15

Proposition 26

0 1 2 q
0

Figure 1.5: Schematic representation of different transport problems that move

the mass f+ into f− casted in the form of minimization with divergence con-

strained, or as PDE formulations. The exponents q and p satisfy the relation

1/q+1/p = 1 and f = f+−f−. The exponent q ∈ [0, 2] modulates how want the

mass to move between the initial and the final configurations. For q ∈]0, 1[ mass

concentration is encouraged, while the opposite holds for q ∈]1, 2[. In the case

q = 1 the problem is equivalent to the L1-OTP. The extremal values q = 0 and

q = 2 correspond to the Steiner Problem and the Poisson equation, respectively.
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Chapter 2

Dynamic Monge-Kantorovich

In this chapter we develop an original a dynamical formulation of the L1-OTP

and we detail our main conjecture of equivalence between the solution of the MK

equations described in Equation (1.10) and the larger-time equilibrium solution

of the model proposed in this chapter. . We restrict to the case of f+ and

f− continuous with respect to the Lebesgue measure, using f+ and f− to denote

their densities. Our problem is the following: find the pair (µ, u) : ([0,+∞[,Ω) 7→
(R+,R) that solves

− div
(
µ(t, x)∇u(t, x)

)
= f(x) = f+(x)− f−(x) (2.1a)

∂tµ(t, x) = µ(t, x)| ∇u(t, x)| − µ(t, x) (2.1b)

µ(0, x) = µ0(x) > 0 (2.1c)

complemented with zero-Neumann boundary conditions. Even if a complete proof

of our conjecture is still missing, many theoretical and numerical indications

support our thesis. In this chapter we first derive the model and analyze its

theoretical properties. Next we show how the model can be efficiently solved

numerically, and we argue that the proposed approach can be used to approximate

the solution of the L1-OTP. The analysis of existence and uniqueness of the

solution pair (µ(t, x), u(t, x)) of system relies on the transformation of the coupled

system into an ODE in Banach spaces by defining the operator u(µ) as the weak

solution of Equation (2.1a) given µ. Under the hypothesis of µ0 ∈ Cδ(Ω) and

f ∈ L∞(Ω) we prove existence and uniqueness for t ∈ [0, τ0[ with τ0 > 0 depending

on the initial data. Moreover, we identify a Lyapunov-candidate functional L, i.e.

a function that decreases along the µ(t) trajectory, These results are collected in
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the paper [33, 34]. Finally we also prove that the minimization of this functional

is equivalent to the Beckmann Problem and thus it is equivalent to solving the

MK equations.

A schematic summary of the connections between the proposed model and

the different L1-OTP formulations is reported in Figure 2.2.

2.1 From Physarum Polycephalum to Dynamic

Monge-Kantorovich

2.1.1 Modeling the dynamics of Physarum Polycephalum

In a recent paper, [68] proposed a mathematical model proposed describing the

dynamics of Physarum Polycephalum (PP) that, on the basis of experimental ev-

idence [54], is able to find the most efficient network path between food sources.

The experiments suggest that in a maze colonized by PP the slime reorganizes

itself concentrating on the shortest path connecting the two food sources as re-

ported in Figure 2.1. The abilities of PP of shortest path has have been used

effectively for the experimental analysis of transportation networks, with many

researchers suggesting that this slime mold is capable of identifying the optimal

many-site connecting transportation network, such as the railroads of Tokyo and

Spain [69, 1]. Many further surprising properties of PP have been experimen-

tally identified, but we now focus on the mathematical model proposed by [68].

The PP in the channels of the maze is schematized as a undirected planar graph

G = (V,E), reported in figure Figure 2.1, with positive edge length {Le}e∈E, and

two nodes v = 1, n indices where two unitary food sources are located. To each

edge e ∈ E is associated a “conductivity” function De and to each node v ∈ V
is associated a “potential”(or pressure) function pv. The problem is then to find

33



2. DYNAMIC MONGE-KANTOROVICH

v1 vn

e

u

v

Figure 2.1: Setup of the Physarum Polycephalum experiment described in [54].

The top left panel shows the experimental maze initially filled with PP. The

top tight panel shows how, after introduction of two food sources, PP starts

retiring from the dead ends of the maze. The bottom left panel displays the final

configuration of PP, which concentrates only on the shortest path connecting the

two food sources. The bottom right panel shows the graph describing the topology

of the maze channels as used in [68]. (Figures reprinted from [68] Copyright

(2018), with permission from Elsevier)
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the optimal distribution of the pair (De, pv) that satisfies

∑

e∈σ(v)

Qe(t) = fv =





+1 v = 1

−1 v = n

0 v 6= 1, n

∀v ∈ V, (“Kirchhoff-law”) (2.2a)

Qe(t) = De(t)
(pu(t)− pv(t))

Le
∀e ∈ E, (“Fick-Poiseuille”) (2.2b)

D′e(t) = g (|Qe(t)|)−De(t) ∀e ∈ E, (De dynamics) (2.2c)

De(0) = D̂e(0) > 0 ∀e ∈ E, (initial data) (2.2d)

where e = (u, v) denotes the edge of G connecting vertices u and v where σ(v) is

the “star” of v, i.e., the set of edges having vertex v in common, and g : R+ 7→ R+

is a non-decreasing function with g(0) = 0. This model can be explained heuris-

tically using a classical hydraulic analogy, eventually motivating the above in-

troduced terms “balance law-Kirchhoff” and “Fick-Poiseuille”. We think of the

graph G as representing the set of pipes where the flow of a fluid driven by the

vertex source function fv occurs. Then, the first Equation (2.2a) can be identi-

fied as the enforcement of the fluid mass balance, while Equation (2.2b) is the

momentum balance stating that the flux in each graph edge is proportional to

the discrete gradient of the vertex potential function pv via a conductance co-

efficient De (inverse of a resistance). Hydraulic resistance to flow is known to

be proportional to the pipe perimeter, and hence to its diameter. Thus, the

evolutive Equation (2.2c), which forms the innovative core of the model, asserts

the intuitive behavior that to optimally (with minimal energy loss) accommo-

date larger fluxes the pipe diameter must increase, although it needs to remain

bounded. From this observation it can be concluded that the function g(x) must

be non-decreasing. Moreover, to avoid unboundedness, the growth of the hy-

draulic conductivity needs to be compensated by introducing the balancing decay

term −De(t). In [68] several numerical results using this model were presented in

the graph describing the geometry of the maze in Figure 2.1. The authors show

that when g(x) = x the conductivity De at large times tends to localize (have a

local support) on the edges of the shortest path between the two external sources.

More recently Bonifaci et al. proved in [13] that in the case g(x) = x, for

t→∞, indeed the distribution of De converges to the shortest path for a general

planar graph G. Moreover, the same authors prove that the above model is
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equivalent to an optimal transport problem on the graph G when we consider a

balanced forcing term f satisfying

∑

v∈V
fv = 0 (2.3)

Such problem can be recasted as finding Q = {Qe}e∈E such that:

min
Q∈{Qe}e∈E

∑

e∈E
QeLe s.t.: (2.4)

∑

e∈σ(v)

Qe = fv for all v ∈ V.

In fact, under some general assumptions on the graph structure, the solution of

system Equation (2.2) converges to a stationary solution Q∗ that is also solution

of the above optimal transport problem in G.

2.1.2 Dynamic Monge-Kantorovich (DMK) Model

In this section we generalize the model given in eq. Equation (2.2) by removing the

graph structure and defining the problem on an open bounded domain Ω ⊂ Rd.

We restrict this study to the case of g(x) = x. Then, given a forcing function

f : Ω → R, a continuous analogue of Equation (2.3) tries to find the pair of

functions (µ, u) : [0,+∞[×Ω 7→ R+ × Rd that satisfies:

− div
(
µ(t, x)∇u(t, x)

)
= f(x) (2.5a)

∂tµ(t, x) = µ(t, x)| ∇u(t, x)| − µ(t, x) (2.5b)

µ(0, x) = µ0(x) > 0 (2.5c)

complemented by zero Neumann boundary conditions. Here, ∂tµ indicates par-

tial differentiation with respect to time, and ∇ = ∇x. This generalization is

intuitively justified by comparing Equation (2.2) with Equation (2.5). In fact,

Equation (2.5a) states the spatial balance of a (continuum) Fick-Poiseuille flux

q = −µ∇u with potential function u, while Equation (2.5b) is the analogue in

the continuous setting of the dynamics in the original discrete model described

by Equation (2.2c).

In analogy with the discrete model we conjecture that system Equation (2.5)

converges to an equilibrium point as t → +∞. At equilibrium, the time deriva-

tives should vanish (∂tµ→ 0), and thus Equation (2.5b) becomes the constraint
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stating that the norm of the gradient of u must be unitary where µ is strictly

greater than zero. Note that outside the support of µ no constrain is imposed.

In particular, the bound on | ∇u| can not be deduced. These observations are

crucial to the development of our conjecture, which reads as:

Conjecture 1. The solution pair (µ(t), u(t)) of Equation (2.5) with f = f+−f−
converges for t → +∞ to the pair (µ∗, u∗) where µ∗ = µ∗(f+, f−) is the OT

density and u∗ is a Kantorovich potential u∗, solution of the L1-OTP.

2.2 Existence and Uniqueness

We would like to introduce the discussion on existence and uniqueness of the pair

(µ(t), u(t)) solution of Equation (2.5) for all t ≥ 0, by posing three fundamental

questions related to the proposed model:

1. which kind of solution pair for system 2.5, we expect to find?

2. What are the necessary assumptions on Ω, µ0, f+, and f−?

3. In which function space does the solution pair (µ, u) live?

In [33] we approach the first question requiring the PDE in Equation (2.5a) to

be in weak form, and the dynamic equation Equation (2.5b) to be in mild form.

In this setting we give in [33] the following result

Theorem 27. Given Ω an open, bounded, convex, and connected domain in Rd

with smooth boundary, f ∈ L∞(Ω) with zero mean and µ0 ∈ Cδ(Ω) with µ0 > 0

and 0 < δ < 1 there exists τ0 > 0 depending on f and µ0, such that the system

∫

Ω

µ(t, x)∇u(t, x)∇ϕ(x) dx =

∫

Ω

f(x)ϕ(x) dx ∀ϕ ∈ H1(Ω) (2.6a)

∂tµ(t, x) = µ(t, x)| ∇u(t, x)| − µ(t, x) (2.6b)

µ(0, x) = µ0(x) > 0 (2.6c)
∫

Ω

u(t, x) dx = 0 (2.6d)

admits a unique solution pair

(µ, u) ∈ C1([0, τ0[, Cδ(Ω))× C1
(
[0, τ0[, C1,δ(Ω)

)
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The proof of Theorem 27 is based on the idea of rewriting Equation (2.6) in

the form of an Ordinary Differential Equation (ODE) in the variable µ. In fact

observe that Equation (2.6a) uniquely defines u for a fixed µ, and thus uniquely

defining the right hand of Equation (2.6b). Thanks to results on the regularity of

the solution of elliptic equation, properly extended to be applied to our problem,

we can proof that the right hand of Equation (2.6b) contains only functionals

that are Lipschitz continuous in µ, at least locally. Standard arguments in the

theory of ODEs in Banach Spaces ensure local existence and uniqueness of the

solution µ(t). In other words, there exists a sufficiently small τ(µ0) > 0 such that

the fix point problem Equation (2.32) admits a solution µ ∈ C1([0, τ(µ0); Cδ(Ω)).

In order to present the complete of Theorem 27, we first need to introduce some

definitions and results to describes properly such ideas.

2.2.1 Elliptic Equations: weak solutions and regularity

As already mentioned above, the proof of Theorem 27 is based on regularity re-

sults of solution of elliptic equations in weak form, thus in this preliminary part

we introduced this type of PDEs. We focus on equations in the form of Equa-

tion (2.6a), in the general case of a forcing term in the form f + div(G) with

G : Ω 7→ Rn, for a reason that will be clear later.

Problem 28. Given Ω an open, bounded, convex, and connected domain in Rd

with smooth boundary, consider f ∈ L2(Ω) such that
∫

Ω
f dx = 0, G ∈ [L2(Ω)]d,

and µ ∈ L∞(Ω) bounded from below i.e.:

∃λ > 0 : µ(x) ≥ λ ∀x ∈ Ω

Find u ∈ H1(Ω) with
∫

Ω
u dx = 0 that satisfies the following equation

∫

Ω

µ∇u∇ϕdx =

∫

Ω

fϕ dx+

∫

Ω

G · ∇ϕdx ∀ϕ ∈ H1(Ω)

The above problem is well posed, as stated by the following:

Proposition 29. Problem 28 admits a unique solution, denoted by

uf,G(µ)

When G = 0 we write simply uf (µ).

38



2.2 EXISTENCE AND UNIQUENESS

The proof of the previous proposition is based on the Lax-Milgram Theorem and

on the Poincare-Wirtinger Inequality ([31]).

Now let us define two sets: the first one is given by

F :=

{
f ∈ L∞(Ω) : supp(f) ( Ω and

∫

Ω

f dx = 0

}
.

The second set is given by:

D :=

{
µ ∈ Cδ(Ω) such that λ(µ) := min

x∈Ω̄
µ(x) ≥ α > 0

}
,

where 0 < δ < 1. Here we denote with Cδ(Ω) the set of the Hölder continuous

functions in Ω with Hölder exponent δ:

Cδ(Ω) =

{
v : Ω 7→ R : v[δ,Ω] := sup

x 6=y

|v(x)− v(y)|
|x− y|δ < +∞

}

with the norm

‖v‖Cδ := sup
Ω
v + v[δ,Ω]

We now prove a fundamental lemma, whose long proof is given later in proof

of 33, that extends classical results of regularity theory of elliptic equations with

Hölder continuous coefficients taken from [70, 37]. Our contribution to the

statement of the lemma is a detailed description of the dependence upon ‖µ‖Cδ(Ω)

and λ(µ) of the constants the appearing in these estimates.

Lemma 30. Given Ω an open, bounded, convex, and connected domain in Rd

with smooth boundary, Consider f , G, and µ as in Problem 28 with the additional

assumptions that f ∈ F , G ∈ [Cδ(Ω)]d, and µ ∈ D. Then the solution uf,G(µ)

of Problem 28 belongs to C1,δ(Ω) and the following estimate holds:

‖∇uf,G(µ)‖Cδ(Ω) ≤ K(d,Ω, δ)Kµ(µ)
(
‖f‖L∞(Ω) + ‖G‖Cδ(Ω)

)
(2.7)

where K(d,Ω, δ) is a constant depending on the dimension d, the domain Ω, and

the Hölder regularity δ of µ, and:

Kµ(µ) = Kµ

(
λ(µ), ‖µ‖Cδ(Ω)

)
=

1

λ(µ)

(‖µ‖Cδ(Ω)

λ(µ)

) d+δ
2δ

. (2.8)

This Lemma is analogous to Theorem 5.19 of [37] simplified to a scalar elliptic

equation but extended to explicitly determine the dependence of the inequality
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constants upon µ. We will denote with C or c generic constants that may depend

upon d, Ω, and the Hölder continuity exponent δ but are always independent of

µ. Before detailing the proof of Lemma 30, we recall and adapt some classical

results of regularity theory of elliptic PDEs

Lemma 31 (Elliptic Decay). Let v ∈ H1(Ω) be any solution of
∫

Ω

∇ v∇ϕdx = 0 ∀ϕ ∈ H1
0 (Ω) (2.9)

then there exists a constant c(d) such that:
∫

B(x0,ρ)

| ∇ v|2 dx ≤ c(d)
( ρ
R

)d ∫

B(x0,R)

| ∇ v|2 dx (2.10)

∫

B(x0,ρ)

| ∇ v − (∇ v)x0,ρ|2 dx ≤ c(d)
( ρ
R

)d+2
∫

B(x0,R)

| ∇ v − (∇ v)x0,R|2 dx

(2.11)

for arbitrary balls B(x0, ρ) b B(x0, R) b Ω.

The above lemma is a revisited version of from Proposition 5.8 in [37]. The proof

follows from the observation that the derivatives of v satisfy the weak form of

Laplace equation (see also [3], page 61). Note that the constant c(d) depends

only on the problem dimension d as we are considering Laplace equation.

We also use the following result from Lemma 5.13 in [37] and Lemma 9.2

in [2]:

Lemma 32 (Iteration lemma). Let φ : R+ 7→ R+ be a non-negative and non

increasing function satisfying

φ(ρ) ≤ A
[( ρ
R

)α
+ ε
]
φ(R) +B Rβ (2.12)

for some A,α, β > 0, with α > β and for all 0 < ρ ≤ R ≤ R0, where R0 > 0 is

given.

Then there exist constants ε0 = ε0(A,α, β) and C = C(A,α, β) such that

if ε ≤ ε0 =

(
1

2A

) 2α
α−β

then φ(ρ) ≤ C

[
φ(R)

Rβ
+B

]
ρβ. (2.13)

We will be using thebootstrap technique introduced by [53, 19] and used

more recently by [22] to show the regularity of local minimizers of double phase

variational integrals. The technique can be described by the following steps.
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First we consider a compact set K b Ω and prove that u ∈ L2,ν(K) for

a suitable regularity exponent ν with 0 < ν < d. Then, u ∈ L2,d+2δ(K) where

L2,ν(K) and L2,d+2δ(K) are the Morrey and Campanato spaces, respectively. The

results are extended to the entire domain by assuming enough regularity of ∂Ω.

This latter step is not reported in the following proof for brevity. Finally, the

equivalence between the Campanato spaces L2,d+2δ(Ω) and Cδ(Ω̄) is used to prove

estimate Equation (2.7) and to derive the expression of the constant Kµ given in

Equation (2.8).

We recall that the norm of a function u : Ω→ Rm (in our case we have either

m = 1 or m = d) belonging to a Morrey space is given by:

‖u‖L2,γ(Ω) =
(

sup
x0∈Ω
ρ>0

ρ−γ
∫

Ω(x0,ρ)

|u|2 dx
) 1

2

where Ω(x0, ρ) = Ω ∩ B(x0, ρ) and 0 ≤ γ < d. For 0 ≤ γ < d + 2, the norm of u

belonging to a Campanato space is given by:

‖u‖L2,γ(Ω) = ‖u‖L2(Ω) +
(

sup
x0∈Ω
ρ>0

ρ−γ
∫

Ω(x0,ρ)

|u− (u)x0,ρ|2 dx
) 1

2

where (u)x0,ρ =
∫

Ω(x0,ρ)
u dx/|Ω(x0, ρ)| is the average integral.

Proof of 33. The first step of the bootstrap proceeds as follows. Consider x0 ∈ K
and the ball BR := B(x0, R) b Ω. In this ball we use Korn’s technique (freezing

the coefficients) to decompose the solution as u = v + w where v ∈ H1(BR)

satisfies the equations:
∫

BR

µ(x0)∇ v∇ϕdx = 0 ∀ϕ ∈ H1
0 (BR) (2.14)

with v = u in ∂BR and the second equation is to be interpreted in the sense that

v − u ∈ H1
0 (BR). The second function w ∈ H1

0 (BR) satisfies the equation:
∫

BR

µ(x0)∇w∇ϕdx =

∫

BR

[
fϕ+G · ∇ϕ−

(µ(x)− µ(x0))∇u · ∇ϕ
]
dx ∀ϕ ∈ H1

0 (BR) (2.15)

with w = 0 in ∂BR. Since µ(x0) in Equation (2.14) is a strictly positive and

bounded scalar number it can be eliminated from the equation, hence w simply

solves the weak form of Laplace equation:
∫

BR

∇ v∇ϕdx = 0 ∀ϕ ∈ H1
0 (Ω) (2.16)
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with v = u in ∂Ω. Thus we can use Lemma 31 to obtain:

∫

Bρ

| ∇ v|2 dx ≤ c(n)
( ρ
R

)n ∫

BR

| ∇ v|2 dx (2.17)

Recall that at this point our goal is to estimate the Morrey norm ‖∇u‖L2,ν(K) with

ν < d. We use the above decomposition of u to estimate φ(ρ) :=
∫
Bρ
| ∇u|2 dx,

0 < ρ ≤ R. Thus we can write:

∫

Bρ

| ∇u|2 dx =

∫

Bρ

| ∇ v +∇w|2 dx ≤ 2

∫

Bρ

| ∇ v|2 dx+ 2

∫

Bρ

| ∇w|2 dx

≤ c(d)
( ρ
R

)d ∫

BR

| ∇ v|2 dx+ 2

∫

Bρ

| ∇w|2 dx

= c(d)
( ρ
R

)d ∫

BR

| ∇u−∇w|2 dx+ 2

∫

Bρ

| ∇w|2 dx

≤ c(d)
( ρ
R

)d ∫

BR

| ∇u|2 dx+ c(d)
( ρ
R

)d ∫

Bρ

| ∇w|2 dx

+ 2

∫

Bρ

| ∇w|2 dx

≤ c(d)
( ρ
R

)d ∫

BR

| ∇u|2 dx+ c(d)

∫

BR

| ∇w|2 dx

Note that, somewhat improperly, we always use the symbol c(d) to indicate a

constant depending on d only and that may assume different meaning even within

the same equation. To estimate

∫

BR

| ∇w|2 dx we use ϕ = w in Equation (2.15)

to get:

λ(µ)

∫

BR

| ∇w|2 dx ≤
∫

BR

µ(x0)| ∇w|2 dx

=

∫

BR

[fw +G · ∇w − (µ(x)− µ(x0))∇u∇w] dx

(2.18)

Using Hölder continuity of µ, and Poincaré and Cauchy-Schwarz inequalities, we

can bound the right-hand-side of the previous equation to obtain:

∫

B(x0,R)

fw dx ≤ ‖f‖L2(B(x0,R)) c(d) ‖∇w‖L2(B(x0,R))

∫

B(x0,R)

G · ∇w dx ≤ ‖G‖L2(B(x0,R)) ‖∇w‖L2(B(x0,R))

∫

B(x0,R)

(µ(x)− µ(x0))∇u∇w dx ≤ Rδ‖µ‖Cδ(Ω̄)‖∇u‖L2(B(x0,R)) ‖∇w‖L2(B(x0,R))
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In the end, using Minkowski inequality to remove the double products, we can

write: ∫

BR

| ∇w|2 dx ≤ 2
1

(λ(µ))2

[
(c(d))2‖f‖2

L2(BR)

+‖G‖2
L2(BR) +R2δ‖µ‖2

Cδ(Ω̄)‖∇u‖2
L2(BR)

] (2.19)

Since f ∈ L∞(Ω), implying that f ∈ L2,ν(Ω) and ‖f‖2
L2,ν(Ω) ≤ c(d)‖f‖2

L∞(Ω) for

0 ≤ ν < d, we obtain:

‖f‖2
L2(BR) ≤ c(d)‖f‖2

L∞(BR)R
ν ≤ c(d)‖f‖2

L∞(Ω)R
ν (2.20)

Since G ∈ Cδ(Ω̄) implies that (each component of) G ∈ L2,γ(Ω) for all 0 ≤ γ ≤
d + 2δ, noting that we require 0 ≤ ν < d and in this case L2,ν(Ω) ≡ L2,ν(Ω), we

obtain:

‖G‖2
L2(BR) ≤ ‖G‖2

L2,γ(BR)R
γ ≤ c(d)‖G‖2

Cδ(Ω̄)R
γ (2.21)

Taking ν < d in Equation (2.20) and γ = ν in Equation (2.21) we get:

∫

Bρ

| ∇u|2 dx ≤ c(d)

[( ρ
R

)d
+R2δ

(‖µ‖Cδ(Ω̄)

λ(µ)

)2
]∫

BR

| ∇u|2 dx

+ c(d)

(
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

)
Rν (2.22)

Now we rewrite inequality Equation (2.22) in the form of the hypotheses of Lemma 32,

i.e.:

φ(ρ) :=

∫

Bρ

| ∇u|2 dx, α = d, β = ν,

ε = R2δ

(‖µ‖Cδ(Ω̄)

λ(µ)

)2

, A = c(d), B = c(d)

(
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

)

for ρ ≤ R. Considering R such that:

R2δ

(‖µ‖Cδ(Ω̄)

λ(µ)

)2

≤
(

1

2A

) 2n
d−ν

= A0

we have that:

R ≤ R0 = A
1
2δ
0

(
λ(µ)

‖µ‖Cδ(Ω̄)

) 1
δ

(2.23)

We can now apply Lemma 32 to arrive at the following estimate valid for 0 <

ρ ≤ R ≤ R0:

∫

Bρ

| ∇u|2 dx ≤ C(A, d, ν)ρν

(∫
BR
| ∇u|2 dx
Rν

+B

)
(2.24)
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Incorporating all the constants into one single constant C(d, ν) we obtain:

∫

Bρ

| ∇u|2 dx ≤ C(d, ν)ρν

(∫
BR
| ∇u|2 dx
Rν

+
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

)
(2.25)

The previous estimate is valid for every BR b Ω. Varying x0 ∈ K and using the

continuity inequality in the Lax-Milgram Lemma we obtain the desired estimate

of this first step of the bootstrap procedure, i.e.:

‖∇u‖2
L2,ν(K) ≤ C(d, ν)

(∫
BR0
| ∇u|2 dx
Rν

0

+
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

)

≤ C(d, ν)

(
C(Ω)‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

1

Rµ
0

+
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

)

≤ C(d, ν)C(Ω)
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

(‖µ‖Cδ(Ω̄)

λ(µ)

) ν
δ

(2.26)

where C(d, ν) is bounded for all ν < d.

The second step of the bootstrap procedure starts by noting that Equation Equa-

tion (2.15) can be rewritten using R = R0 as defined above:
∫

BR

µ(x0)∇w∇ϕdx =

∫

BR

[
fϕ+ (G− (G)R) · ∇ϕ−

(µ(x)− µ(x0))∇u · ∇ϕ
]
dx ∀ϕ ∈ H1

0 (BR)

w = 0 in ∂BR

(2.27)

We continue by using again the decomposition u = v+w and Lemma 31 to obtain:
∫

Bρ

| ∇u− (∇u)ρ|2 dx =

∫

Bρ

| ∇ v + (∇ v)ρ +∇w + (∇w)ρ|2 dx

≤ c(d)
( ρ
R

)d+2
∫

BR

| ∇ v − (∇ v)R|2 dx+ 2

∫

Bρ

| ∇w − (∇w)ρ|2 dx

≤ c(d)
( ρ
R

)d+2
∫

BR

| ∇u− (∇u)R|2 dx+ c(d)

∫

BR

| ∇w|2 dx

where the last inequality arises from the minimality of the mean. We follow the

same developments as before, but now we explicitly include the factor R in the

constant of Poincaré inequality to obtain:
∫

Bρ

| ∇u− (∇u)ρ|2 dx ≤ c(d)
( ρ
R

)d+2
∫

BR

| ∇u− (∇u)R|2 dx

+2c(d)
R2‖f‖2

L2(BR) + ‖G− (G)R‖2
L2(BR) +R2δ‖µ‖2

Cδ(Ω̄)
‖∇u‖2

L2(BR)

(λ(µ))2 (2.28)
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Since ∇u ∈ L2,ν(K) for 0 < ν < d we can take ν = d− δ in Equation (2.26) to

get:

‖∇u‖2
L2(BR) =

∫
BR
| ∇u|2 dx
Rn−δ Rd−δ ≤ ‖∇u‖L2,d−δRd−δ

Using ν = d−2+δ in Equation (2.20) we obtain ‖f‖2
L2(BR) ≤ c(d)‖G‖2

L∞(Ω)R
d−2+δ,

while using γ = d+δ in Equation (2.21) we have ‖G−(G)R‖2
L2(BR) ≤ ‖G‖2

Cδ(Ω̄)
Rd+δ.

Substitution of these inequalities in Equation (2.28) yields:

∫

Bρ

| ∇u− (∇u)ρ|2 dx ≤ c(d)
( ρ
R

)d+2
∫

BR

| ∇u− (∇u)R|2 dx

+ c(d)
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2
Rd+δ

+R2δ
‖µ‖2

Cδ(Ω̄)

(λ(µ))2
C(d, d− δ)C(Ω)

‖f‖2
L∞(Ω) + ‖G‖2

Cδ(Ω̄)

(λ(µ))2

((‖µ‖Cδ(Ω̄)

λ(µ)

) d−δ
δ

)
Rd−δ

≤ c(d)
( ρ
R

)d+2
∫

BR

| ∇u− (∇u)R|2 dx

+ C(d,Ω, δ)
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

(
1 +
‖µ‖2

Cδ(Ω̄)

(λ(µ))2

(‖µ‖Cδ(Ω̄)

λ(µ)

) d−δ
δ

)
Rd+δ

≤ c(d)
( ρ
R

)d+2
∫

BR

| ∇u− (∇u)R|2 dx

+ C(d,Ω, δ)
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

(λ(µ))2

(‖µ‖Cδ(Ω̄)

λ(µ)

) d+δ
δ

Rd+δ

Application of Lemma 32 with φ(ρ) :=
∫
Bρ
| ∇u− (∇u)ρ|2 dx yields for 0 < ρ ≤

R ≤ R0:

∫

Bρ

| ∇u− (∇u)ρ|2 dx ≤ ρd+δC(d,Ω, δ)·

·
[∫

BR
| ∇u− (∇u)R|2 dx

Rd+δ
+

(
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

λ(µ)2

)(‖µ‖Cδ(Ω̄)

λ(µ)

) d
δ

+1
]

from which, using again the minimality of the mean and the estimate of R0 given
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in Equation (2.23), we can evaluate:

∫
Bρ
| ∇u− (∇u)ρ|2 dx

ρd+δ
≤ C(d, δ,Ω)·

·
[∫

BR0
| ∇u− (∇u)R0 |2 dx

Rd+δ
0

+

(
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

λ(µ)2

)(‖µ‖Cδ(Ω̄)

λ(µ)

) d
δ

+1
]

≤ C(d, δ,Ω)

(∫

BR0

| ∇u− (∇u)R0|2 dx+
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

λ(µ)2

)(‖µ‖Cδ(Ω̄)

λ(µ)

) d
δ

+1

≤ C(d, δ,Ω)

(∫

Ω

| ∇u|2 dx+
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

λ(µ)2

)(‖µ‖Cδ(Ω̄)

λ(µ)

) d
δ

+1

≤ C(d, δ,Ω)

(
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

λ(µ)2

)(‖µ‖Cδ(Ω̄)

λ(µ)

) d
δ

+1

Hence ∇u ∈ L2,d+δ(K) and we can write:

‖∇u‖2
L2,d+δ(K) ≤ C(d, δ,Ω)

(
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

λ(µ)2

)(‖µ‖Cδ(Ω̄)

λ(µ)

) d
δ

+1

(2.29)

The bootstrap procedure is restarted from Equation (2.27) using ν = d− 2 + 2δ in

Equation (2.20) and γ = d+2δ in Equation (2.21), and estimate Equation (2.29)

in Equation (2.28) so that a term Rd+2δ can be factored. Thus we can write:

∫

Bρ

| ∇u− (∇u)ρ|2 dx ≤ c(d)
( ρ
R

)d+2
∫

BR

| ∇u− (∇u)R|2 dx

+ c(d)
‖f‖2

L∞(Ω) + ‖G‖Cδ(Ω̄)

(λ(µ))2
Rd+2δ

+ C(d, δ,Ω)
‖f‖2

L∞(Ω) + ‖G‖2
Cδ(Ω̄)

λ(µ)2

(‖µ‖Cδ(Ω̄)

λ(µ)

) d
δ

+1

Rd+2δ

and finally, applying once again Lemma 32, we have the final result:

‖∇u‖2
L2,d+2δ(K) ≤ C(d, δ,Ω)

‖f‖2
L∞(Ω) + ‖G‖2

Cδ(Ω̄)

λ(µ)2

(‖µ‖Cδ(Ω̄)

λ(µ)

) d
δ

+1

(2.30)

Extension of the previous estimate to the entire domain Ω can be obtained follow-

ing the same bootstrap procedure starting from the analogue of the elliptic decay

Lemma 31 on hemispheres (similarly to what is proposed in [37], Theorem 5.21).

Such process introduces a dependence on the regularity of the boundary ∂Ω in

the constant C(d, δ,Ω) in Equation (2.30), but we do not explicitly write such
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dependence. By the equivalence between L2,d+2δ(Ω) and Cδ(Ω̄) we get:

‖∇u‖Cδ(Ω̄) ≤ C(d, δ,Ω)
‖f‖L∞(Ω) + ‖G‖Cδ(Ω̄)

λ(µ)

(‖µ‖Cδ(Ω̄)

λ(µ)

) d+δ
2δ

which proves Equation (2.7) and Equation (2.8). From this, using Theorem 1.40

of [70], we directly obtain that u ∈ C1,δ(Ω).

2.2.2 Proof of Theorem 27

We can now resume the proof Theorem 27. First we can give the following

definitions, that are well defined thanks to Proposition 29 and Lemma 30 and the

fact the Cδ(Ω)-norm is sub-multiplicative

Definition 34 (Potential). Let µ ∈ D and f ∈ F . The Potential Operator

U : D 7→ C1,δ(Ω), that maps µ into U(µ), is defined as follows

µ 7→ U(µ) := uf,0(µ)

where uf,0(µ) is defined in Proposition 29

Definition 35 (Flux). Let µ ∈ D and f ∈ F . The operator Q : D 7→ Cδ(Ω) is

defined as:

µ 7→ Q(µ) := µ| ∇U(µ)|.

Thus we can recast Equation (2.6) in ODE-form in the variable µ:

∂tµ(t) = Q (µ(t))− µ(t) (2.31a)

µ(0) = µ0 (2.31b)

The solution pair (µ(t), u(t)) of system Equation (2.6) introduced in Theorem 27

is defined as (µ(t),U(µ(t)). The mild (C0-semigroup) formulation of Equation (2.31)

reads as:

µ(t) = e−tµ0 +

∫ t

0

es−tQ (µ(s)) ds (2.32)

This shows immediately that µ(t) ≥ e−t min(µ0) for all t ≥ 0, ensuring that

U(µ(t)) is well-posed, i.e., the associated bilinear form is coercive. Moreover we

are then able to show that the operator Q(µ) is locally Lipschitz continuous,

and we can then invoke Banach-Caccioppoli fixed-point theorems to show local

existence and uniqueness of the solution µ. However, the fact that Lipschitz
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continuity is only local in µ, prevents the extension of this result to larger times.

The proof of the local-Lipschitz continuity of the operator Q starts by re-defining

the subspace D the union of open and convex subsets:

D =
⋃

0<a<b<+∞
D(a, b)

D(a, b) :=
{
µ ∈ Cδ(Ω) such that a < λ(µ) ≤ ‖µ‖Cδ(Ω) < b

}

for 0 < a < b <∞.

2.2.3 Local Lipschitz Continuity

We can now state the following proposition that establishes the sufficient hypoth-

esis for the application of standard fix point theorem for existence and uniqueness

of the solution of ODEs of the type:

∂tµ(t) = Q (µ(t))− µ(t)

Proposition 36. The Potential and Flux operators U and Q are Lipschitz con-

tinuous and bounded in D(a, b) for all a and b, 0 < a < b < ∞. In other words

we have that for every µ ∈ D(a, b),

‖U(µ)‖C1,δ(Ω) ≤ C1(a, b)

‖Q(µ)‖Cδ(Ω) ≤ C2(a, b)

and there exist constants LU(a, b) and LQ(a, b) such that, for every µ1, µ2 ∈
D(a, b):

‖U(µ1)− U(µ2)‖C,1(Ω) ≤ LU(a, b)‖µ1 − µ2‖Cδ(Ω)

‖Q(µ1)−Q(µ2)‖Cδ(Ω) ≤ LQ(a, b)‖µ1 − µ2‖Cδ(Ω)

Proof. From Lemma 30 the boundedness of U(µ) for µ ∈ D(a, b) follows immedi-

ately with G = 0 in Equation (2.7). The local Lipschitz continuity of U derives

from the following considerations. Given µ1, µ2 ∈ D(a, b) and uk = U(µk) with

k = 1, 2, we note that
∫

Ω

µ1∇u1∇ϕdx =

∫

Ω

fϕ dx =

∫

Ω

µ2∇u2∇ϕdx ∀ϕ ∈ H1(Ω)
∫

Ω

µ1∇(u1 − u2)∇ϕdx =

∫

Ω

(µ2 − µ1)∇u2∇ϕdx ∀ϕ ∈ H1(Ω)
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Application of Lemma 30 with f = 0 and G = −(µ1−µ2)∇U(µ2)), which belongs

to [Cδ]d, yields:

‖∇(u1 − u2)‖Cδ(Ω) ≤ K(Ω, d, δ)Kµ(µ1)‖(µ1 − µ2)∇u2‖Cδ(Ω)

≤ K(Ω, d, δ)Kµ(µ1)‖µ1 − µ2‖Cδ(Ω)‖∇u2‖Cδ(Ω)

= K(Ω, d, δ)2Kµ(a, b)2‖f‖L∞(Ω)‖µ1 − µ2‖Cδ(Ω) (2.33)

We can also prove that the flux operator Q is bounded in D(a, b). In fact, since

the Hölder norm is sub-multiplicative, we can write:

‖Q(µ)‖Cδ(Ω) = ‖ µ| ∇U(µ)| ‖Cδ(Ω) ≤ K(Ω, d, δ) bKµ(a, b)‖f‖L∞(Ω)

Lipschitz continuity of Q derives from Equation (2.33) as follows:

‖Q(µ1)−Q(µ2)‖Cδ(Ω) = ‖µ1| ∇u1| − µ2| ∇u2| ‖Cδ(Ω)

= ‖µ1 (| ∇u1| − |∇u2|)− (µ2 − µ1) | ∇u2| ‖Cδ(Ω)

≤ ‖µ1‖Cδ(Ω)‖ |∇ [u1 − u2] | ‖Cδ(Ω)

+K(Ω, d, δ)Kµ(a, b)‖f‖∞‖µ1 − µ2‖Cδ(Ω)

≤ Lq(a, b)‖µ1 − µ‖Cδ(Ω)

The C1-regularity in time of u(t) is stated in the proposition that follows.

Heuristically, the proof is based on the observation that, assuming that both

∂tµ(t) and ∂tu(t) exist, we can take the derivative in time equation− div(µ(t)∇u(t)) =

f and use the fact that the source function is independent on time, thus obtaining

the following equation for u(t)

− div(µ(t)∇ ∂tu(t))− div(∂tµ(t)∇u(t)) = 0

.

Proposition 37. The solution u(t) of Equation (2.6) belongs to C1([0, τ(µ0)[; C1,δ(Ω)).

For each t ∈ [0, τ(µ0)[ its time derivative ∂tu(t) solves the following equation:

∫

Ω

µ(t)∇ ∂tu(t) · ∇ϕdx = −
∫

Ω

∂tµ(t)∇u(t) · ∇ϕdx ∀ϕ ∈ H1(Ω)
∫

Ω

∂tu(t) dx = 0

(2.34)
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Proof. Let t ∈ [0, τ(µ0)[ and choose h > 0 such that t + h < τ(µ0). The solu-

tion µ(t) of Equation (2.31) belongs to a ball B(µ0, R) centered in µ0 and with

appropriate radius R. From Equation (2.32), it is possible to find two constants

a(µ0), b(µ0) such that µ(t) ∈ D (a(µ0), b(µ0)). This allows us to write:

Kµ(µ(t)) =
1

λ(µ(t))

(‖µ(t)‖Cδ(Ω̄)

λ(µ(t))

)n+δ
2δ

≤ 1

a(µ0)

(
b(µ0)

a(µ0)

)n+δ
2δ

∀t ∈ [0, τ(µ)[

which shows that both the Potential and Flux operators are bounded and Lipschitz-

continuous in D (a(µ0), b(µ0)). We first note that u(t) = U(µ(t)) is Lipschitz-

continuous in time, since u is locally Lipschitz-continuous and µ ∈ C1
(
[0, τ(µ0)[ ; Cδ(Ω)

)
.

Next, we can write the following equation, that holds ∀ϕ ∈ H1(Ω)
∫

Ω

µ(t)∇u(t) · ∇ϕdx =

∫

Ω

fϕ dx =

∫

Ω

µ(t+ h)∇u(t+ h) · ∇ϕdx

Changing sign and adding to both sides the term
∫

Ω
µ(t)∇u(t+h)·∇ϕdx, yields:

∫

Ω

µ(t)∇[u(t+ h)− u(t)] · ∇ϕdx =

−
∫

Ω

[µ(t+ h)− µ(t)]∇u(t+ h) · ∇ϕdx (2.35)

Now, at each time t ∈ [0, τ(µ0)[, we define w(t), that heuristically should be

∂tu(t), as the unique solution of:
{ ∫

Ω
µ(t)∇w(t) · ∇ϕdx = −

∫
Ω
∂tµ(t)∇u(t) · ∇ϕdx ∀ϕ ∈ H1(Ω)∫

Ω
w(t) dx = 0

(2.36)

Thanks to Lemma 30 it is easy to verify that w(t) ∈ C1,δ(Ω̄). Now we multi-

ply Equation (2.36) by −h with and Equation (2.35) to obtain:
∫

Ω

µ(t)∇[u(t+ h)− u(t)− hw(t)] · ∇ϕdx

= −
∫

Ω

[µ(t+ h)− µ(t)]∇u(t+ h) · ∇ϕdx+ h

∫

Ω

∂tµ(t)∇u(t) · ∇ϕdx

= −
∫

Ω

{[µ(t+ h)− µ(t)− h∂tµ(t)]∇u(t+ h)

+ h∂tµ(t) (∇u(t+ h)−∇u(t))} · ∇ϕdx

= −
∫

Ω

[G1(t, h) + h G2(t, h)] · ∇ϕdx

with

G1(t, h) = [µ(t+ h)− µ(t)− h∂tµ(t)]∇u(t+h); G2(t, h) = ∂tµ(t) [∇u(t+ h)−∇u(t)]
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Since µ ∈ C1(0, τ ; Cδ(Ω̄)), we can estimate the above functions G1 and G2 as:

‖G1(t, h)‖Cδ(Ω̄) ≤ ‖µ(t+ h)− µ(t)− h∂tµ(t)‖Cδ(Ω̄)‖∇u(t+ h)‖Cδ(Ω̄)

≤ K(n,Ω, δ)Kµ(µ(t))‖f‖L∞(Ω) · o(h)

≤ K(n,Ω, δ)K(µ0)‖f‖L∞(Ω) · o(h)

and, since the Potential operator is Lipschitz-continuous, we have also:

‖G2(t, h)‖Cδ(Ω̄) = ‖∂tµ(t) [∇u(t+ h)−∇u(t)] ‖Cδ(Ω̄)

≤ ‖∂tµ(t)‖Cδ(Ω̄)‖∇u(t+ h)−∇u(t)‖Cδ(Ω̄)

≤ L(µ0)h

where L(µ0) is a function of f , K. Thus we can write:

‖G1 + hG2‖Cδ(Ω̄) ≤ ‖G1‖Cδ(Ω̄) + ‖G2‖Cδ(Ω̄) = o(h)

and, for Lemma 30 using G = −(G1 + hG2), we obtain:

lim
h→0

‖∇[u(t+ h)− u(t)− hw(t)]‖Cδ(Ω̄)

h
= 0

that shows that ∂tu ∈ C1(0, τ ; Cδ(Ω̄)) with ∂tu = w.

These results are collected in [33].

2.3 The Lyapunov-candidate functional

The existence and uniqueness result obtained in the previous section is only local

in time and it does not allow us to pass to the limit with t → +∞ in Equa-

tion (2.6). Nevertheless we are able to identify a Lyapunov-candidate functional,

i.e., a function that decreases along the µ(t)-trajectories.

NewP The Lyapunov-candidate functional, that we introduced for the first

time in [34], is defined for general µ ∈ L1(Ω) and is given by

L(µ) := Ef (µ) +M(µ) (2.37)

Ef (µ) = sup
ϕ∈C1(Ω̄)

∫

Ω

(
fϕ− µ | ∇ϕ|

2

2

)
dx M(µ) :=

1

2

∫

Ω

µ dx (2.38)

Note that Ef (µ) was already defined in Equation (1.11) for general µ ∈M+(Ω).

When we restrict f ∈ F and µ ∈ D the functional rewrites as

L(µ) :=
1

2

∫

Ω

µ| ∇u(µ)|2 dx+
1

2

∫

Ω

µ dx (2.39)

We can state the following:
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Proposition 38. The function L : D 7−→ R+ defined above is strictly decreasing

in time along the solution µ(t) of Equation (2.6) for t ∈ [0, τ(µ0)[. Its time

derivative is given by

dL(µ(t))

dt
= −1

2

∫

Ω

µ(t) (| ∇u(t)| − 1)2 (| ∇u(t)|+ 1) dx

Proof. Thanks to the C1-regularity in time of the solution pair (µ(t), u(t)) given

by Theorem 27, we can compute the time derivative of L(µ(t)) and prove it is

strictly negative. In fact we have:

dL(µ(t))

dt
=

1

2

∫

Ω

(
∂tµ(t)| ∇u(t)|2 + 2µ(t)∇ ∂tu(t)∇u(t)

)
dx+

1

2

∫

Ω

∂tµ dx

Substituting ϕ = u(t) in Equation (2.34) we obtain
∫

Ω

µ(t)∇ ∂tu(t) · ∇u(t) dx = −
∫

Ω

∂tµ(t)| ∇u(t)|2 dx

Thus

dL(µ(t))

dt
=

1

2

∫

Ω

−∂tµ(t)| ∇u(t)|2 + ∂tµ(t) dx

= −1

2

∫

Ω

∂tµ(t)
(
| ∇u(t)|2 − 1

)
dx

= −1

2

∫

Ω

µ(t) (| ∇u(t)| − 1)
(
| ∇u(t)|2 − 1

)
dx

= −1

2

∫

Ω

µ(t) (| ∇u(t)| − 1)2 (| ∇u(t)|+ 1) dx < 0

It is clear from previous equation that the time-derivative of L along µ(t)-

trajectory is equal to zero only if | ∇u(t)| = 1 on the support of µ(t). Again, this

result gives only one of the constrains of the MK equations, whit the bound on

the norm of the gradient in the whole domain not imposed.

Since L(µ(t)) decreases in time, it is natural to investigate if L admits a

minimum. The following proposition, shows the equivalence between the mini-

mization of Lyapunov-candidate functional L and the Beckmann Problem which

is equivalent to solve the MK equations by in Proposition 15. This original result

provides further support to Conjecture 1.

Proposition 39. Given Ω an open, bounded, convex, and connected domain in

Rd with smooth boundary. Consider f ∈ L1(Ω) with zero mean, then Beckmann
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Problem (as given in Corollary 16) and the minimization of L are equivalent

which means

min
v∈[L1(Ω)]d

{∫

Ω

|v| dx : div(v) = f

}
= min

µ∈L1
+(Ω)

L(µ) (2.40)

where L1
+(Ω) indicates the space of the non-negative function in L1(Ω).

Moreover, the OT density µ∗(f) is a point of minimum for L.

The proof makes use of the following duality result, already used in [15], that

holds for general µ ∈M+(Ω) and f ∈M(Ω).

Lemma 40. Given Ω an open, bounded, convex, and connected domain in Rd

with smooth boundary. Consider µ ∈ M+(Ω), f ∈ M(Ω) with zero mean, then

the following equalities hold

inf
ϕ∈C1(Ω̄)

If,µ(ϕ) = sup
ξ∈[L2

µ(Ω)]d

{
−
∫

Ω

|ξ|2dµ : div(ξµ) = f

}
= −Ef (µ) (2.41)

where

If,µ(ϕ)

∫

Ω

1

2
| ∇ϕ|2dµ− dfϕ

Proof. The proof is based on Theorem 55. In fact functional If,µ rewrites in the

following form

If,µ(u) = F (u) +G(Λ(u))

with

F : C1(Ω̄) 7→ R : F (u) = −
∫

Ω

udf

G : (L2
µ(Ω))d 7→ R : G(p) =

∫

Ω

|p|2
2
dµ

Λ : V 7→ (L2
µ(Ω))d : Λ(u) = ∇u

The Legendre transform of F and G, and the conjugate operator of Λ are

F ∗ : V ∗ 7→ R : F ∗(u∗) = sup
u∈V
〈u∗ − f, u〉 =





0 if u∗ − f = 0

+∞ otherwise

G∗ : (L2
µ(Ω))d 7→ R : G∗(p∗) =

1

2

∫

Ω

|p∗|2dµ

Λ∗ : (L2
µ(Ω))d 7→ V ∗ : Λ∗(p∗) = divµ p

∗
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where f = divµ(p∗) means

∫

Ω

ϕdf = −
∫

Ω

p∗ · ∇ϕ dµ (2.42)

The dual problem P∗ in Equation (A.18) reads as

sup
p∗∈(L2

µ(Ω))d

{
−F ∗(div(p∗))−

∫

Ω

|p∗|2
2

dµ

}
=

sup
p∗∈(L2

µ(Ω))d

{
−
∫

Ω

|p∗|2
2
dµ : divµ(p∗) = f

}

proving the equivalence in Equation (2.41) The extremality condition in Equa-

tion (A.20) says that the following equality holds

∫

Ω

| ∇ ū|2
2

dµ+

∫

Ω

|p̄∗|2
2

dµ = −
∫

Ω

p̄∗ · ∇ ū dµ (2.43)

which implies, by Young inequality, that

p̄∗ = −µ∇ ū µ− a.e on (2.44)

This completes the proof.

We can now proceed withe the proof of Proposition 39.

Proof. We begin rewriting Ef (µ) for µ ∈ L1
+(Ω) in the following variational form:

Ef (µ) = sup
ϕ∈C1(Ω̄)

∫

Ω

(
fϕ− µ | ∇ϕ|

2

2

)
dx

By using the duality result in Lemma 40, we can write ∀µ ∈ L1
+(Ω) the following

equalities

L(µ) = Ef (µ) +M(µ) = inf
ξ∈L2

µ(Ω))d

{
Υ(µ, ξ) : div(ξµ) = f

}

where

Υ(µ, ξ) :=
1

2

∫

Ω

|ξ|2µ dx+
1

2

∫

Ω

µ dx

Now for any µ ∈ L1
+(Ω) and for any ξ ∈ (L2

µ(Ω))d, by Young inequality we obtain:

∫

Ω

|ξ|µ dx ≤ 1

2

∫

Ω

|ξ|2µ dx+
1

2

∫

Ω

µ dx = Υ(µ, ξ) ∀ξ ∈ (L2
µ(Ω))d (2.45)
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By taking the infimum on ξ ∈ (L2
µ(Ω))d with div(ξµ) = f in the last inequality

we obtain

inf
ξ∈(L2

µ(Ω))d

{∫

Ω

|ξ|µ dx : div(ξµ) = f

}
≤ L(µ) ∀µ ∈ L1

+(Ω)

Using these last inequalities and the fact that, by Proposition 15, the integral of

OT density µ∗(f) is equal to value of the Beckmann we can write the following

equalities and inequalities
∫

Ω

µ∗ dx = inf
v∈[L1(Ω)]d

{∫

Ω

|v| dx : div(v) = f

}

≤ inf
µ,ξ





∫

Ω

|ξ|µ dx :
(µ, ξ) ∈ L1

+(Ω)× [L2
µ(Ω)]d

div(ξµ) = f





≤ L(µ)

that hold for any µ ∈ L1
+(Ω). Thus the last inequality holds also for infµ∈L1

+(Ω) L(µ).

But now

inf
µ∈L1

+(Ω)
L(µ) ≤ L(µ∗) =

∫

Ω

µ∗ dx

All the above inequalities are equalities and the proof is complete.

2.3.1 Deduction of the Lyapunov-candidate functional

In this section we describe an empirical rationale corroborating the deduction

of the Lyapunov-candidate functional L. No real proofs are reported here, but

this, together with Proposition 39 and the numerical experiments reported in the

next chapter, contributes to forming the idea that the DMK is a valid alternative

for the approximate quantification of the MK equations. Given the necessarily

informal character of this paragraph, we restrict our analysis to absolutely con-

tinuous measure (with respect to Lebesgue) with L1− density. thus the same

holds for the OT density associated to f . In the second part of this paragraph we

report a (again empirical) derivation starting form the Kantorovich Dual Problem

in Equation (1.6).

From Mass Optimization Problem. We rewrite the Mass Optimization

Problem (MOP) by definition of Ef in Equation (1.11):

min
ν∈L1

+(Ω)

{
Ef (ν) :

∫

Ω

ν dx = 1

}
= min

ν∈L1
+(Ω)

{
max

ϕ∈Lip(Ω)
Γf (ν, ϕ) :

∫

Ω

ν dx = 1

}

(2.46)
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Instead of studying the above constrained minimization problem we can introduce

a Lagrange multiplier λ ∈ R and write following equivalent problem

max
λ∈R

min
ν∈L1(Ω)

{
Ef (ν) + λ

∫

Ω

(
ν − 1

|Ω|

)
dx

}
=

max
λ∈R

min
ν∈L1(Ω)

{
max

ϕ∈Lip(Ω)
Γf (ν, ϕ) + λ

∫

Ω

(
ν − 1

|Ω|

)
dx

}
=

max
λ∈R

min
ν∈L1(Ω)

max
ϕ∈Lip(Ω)

Φ(ν, ϕ, λ)

where

Φ(ν, ϕ, λ) :=

∫

Ω

fϕ− ν | ∇ϕ|
2

2
dx+ λ

∫

Ω

(
ν − 1

|Ω|

)
dx

Since the pair (ν∗, ϕ∗) = (µ
∗

c∗
, c∗ · u∗) where c∗ :=

∫
Ω
dµ∗ solves the saddle point

problem in Equation (2.46), and satisfies the constrain
∫

Ω
ν = 1, for any λ ∈ R.

Computing the first variation of Φ with respect to ν we can determine the value

of optimal Lagrange Multiplier, which is λ∗ = (c∗)2/2). By removing additive

constants from the minimization problem of Φ(ν, ϕ, (c∗)2/2) we obtain

argmin
ν∈L1

+(Ω)

{
Ef (ν) :

∫

Ω

ν dx = 1

}
= argmin

ν∈L1
+(Ω)

{
C(ν) : ν ∈ L1(Ω)

}

where

C(ν) := Ef (ν) +
(c∗)2

2

∫

Ω

ν dx

We now introduce the change of variable Ψ : L1(Ω) 7→ L1(Ω) defined as Ψ(µ) =

µ/c∗, and let C̃(µ) := C(Φ(µ)) such that

C̃(µ) = C(Φ(µ)) = c∗Ef (µ) + c∗/2

∫

Ω

dµ = c∗L(µ) (2.47)

from which we readily obtain

argmin
µ∈L1(Ω)

L(µ) = argmin
µ∈L1(Ω)

C̃(µ) = Ψ−1

(
argmin
ν∈L1(Ω)

C(ν)

)

= Ψ−1

(
argmin
ν∈L1

+(Ω)

{
Ef (ν) :

∫

Ω

ν dx = 1

})

= Ψ−1

(
µ∗∫

Ω
µ∗ dx

)

= µ∗
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2.4 EXTENSION TO NON-UNIFORM METRIC

From Kantorovich Dual Problem. We now show an informal proof of the

equivalence between the minimization of L and the Kantorovich Dual Problem,

that we recall, as given in Theorem 10, can be stated as the following optimization

problem:

sup
u∈Lip1(Ω)

∫

Ω

uf dx

The constraint u ∈ Lip1(Ω) can be written as | ∇u| ≤ 1, or, equivalently, as
|∇u|2−1

2
≤ 0. Then we can introduce a Lagrange multiplier λ ∈ L1

+(Ω) and study

the unconstrained problem

inf
λ∈L1

+(Ω)
sup

u∈Lip(Ω)

∫

Ω

uf dx−
∫

Ω

λ

( | ∇u|2 − 1

2

)
dx = inf

λ∈L1
+(Ω)
Ef (λ) +M(λ)

recalling that

Ef (λ) = sup
ϕ∈Lip(Ω)

∫

Ω

fϕ− λ | ∇ϕ|
2

2
dx M(λ) = 1/2

∫

Ω

λ dx

thus the equivalence is proved.

Remark 4. These simple deduction of the functional L, which reinterprets the

OT density as a Lagrange multiplier of problem in Equation (1.6), was already

present as comment in the first lines in [30, p. 36] but the computation were not

developed.

2.4 Extension to non-uniform metric

We now introduce a generalized version of Equation (2.6) that extends the results

obtained in the previous section to the case of the OTP with cost equal to a

geodetic distance described in Section 1.4.4. To this aim the function k(x), that

defines the metric, can be used to describe, for example, the spatial pattern of

the resistance to flow, whereby large values of k imply large energy losses and

hence large gradients of the potential u. Thus Equation (2.31) is replaced by

∂tµ(t, x) = µ(t, x)| ∇u(t, x)| − k(x)µ(t, x) (2.48)

Existence and uniqueness of above ODE can be obtained as a straight for-

ward extension of Theorem 27, while the Lyapunov-candidate functionalin Equa-
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tion (2.37) rewrites as

Lk(x)(µ) := Ef (µ) +Mk(x)(µ) (2.49)

Ef (µ) =
1

2

∫

Ω

µ| ∇u(µ)|2 dx Mk(x)(µ) :=
1

2

∫

Ω

k2(x)µ dx

We can easily obtain the generalization of Propositions 38 and 39, summarized

in the followings

Proposition 41. The functional Lk(x) defined in Equation (2.49) is decreasing

along the µ-trajectories of Equation (2.48). Its time derivative is given by

dLk(x)(µ(t))

dt
= −1

2

∫

Ω

µ(t) (| ∇u(t)| − k(x))2 (| ∇u(t)|+ k(x)) dx < 0

Moreover the minimization of Lk(x) over the field µ ≥ 0 is equivalent to the

generalized Beckmann Problem in Equation (1.15), i.e.:

min
v∈[L1(Ω)]d

{∫

Ω

k(x)|v| dx : div(v) = f

}
= min

µ∈L1
+(Ω)

Lk(x)(µ)

The proof of this last result is a straightforward adaptation of the arguments used

in the proof of Equation (2.40).
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2.4 EXTENSION TO NON-UNIFORM METRIC

PP model on graph G = (V,E)

∑

e∈σ(v)

Qe(t) = fv ∀v ∈ V

Qe(t) = De(t)
(pu(t)− pv(t))

Le
∀e ∈ E

D′e(t) = |Qe(t)| −De(t) ∀e ∈ E
De(0) = D̂e(0) > 0 ∀e ∈ E

Equation (2.2)

OTP on graph

min
Q

∑

e∈E
QeLe

∑

e∈σ(v)

Qe = fv ∀v ∈ V

Equation (2.4)

DMK

− div
(
µ(t)∇u(t)

)
= f

∂tµ(t) = µ(t)| ∇u(t)| − µ(t)

µ(0) = µ0 > 0

(Equation (2.6))

Local Existence, Theorem 27

∃(µ(t), u(t)) ∈ Cδ(Ω)× C1,δ(Ω) , t ∈ [0, τ0[

µ0 ∈ Cδ(Ω) f ∈ L∞Ω

Conjecture 1
t→ +∞

(µ(t), u(t))→ (µ∗, u∗)

Lyapunov-candidate

functional for DMK

L(µ) = Ef (µ) +M(µ) =

1

2

∫

Ω

µ| ∇u(µ)|2 dx+
1

2

∫

Ω

µ dx

(Equation (2.37))

MK equations

− div(µ∗∇u∗) = f

| ∇u∗| ≤ 1 in Ω

| ∇u∗| = 1 in µ∗ > 0

Equation (1.10))

Kantorovich

Dual

sup
u

∫

Ω

uf dx

s.t.u ∈ Lip1(Ω)

(Problem 4)

Mass Opt.

min
ν∈L1

+(Ω)
Ef (ν)

s.t. :

∫

Ω

ν = 1

(Problem 18)

Beckmann

Problem

min
v∈[L1(Ω)]d

∫

Ω

|v|

s.t. : div(v) = f

(Equation (1.9))

Prop. 39

Prop.38

(t→ +∞)

Proved in[13]

Section 2.3.1

Figure 2.2: Map of the results of this chapter. We highlight the connections

among the discrete models (green block), the DMK model(blue block), and the

different formulations of the L1-OTP(red block).
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2.5 Numerical Solution of MK equations by us-

ing DMK

In this section we analyze how the DMK model presented in Chapter 2 can be

used as new method for the numerical solution of the L1-PDE based optimal

transportation model. We describe and test different numerical approaches for

the solution of our problem based on the finite element method. Because of

the lack of global control on | ∇u|. proof of the convergence of the FEM is

beyond reach. Thus we resort to numerical experimentation. the Choices of

the discretization spaces is guided by the expected regularity of the OT density

and potential (µ∗, u∗) suggested by Theorem 14. Thus it seems reasonable to

look fora continuous approximation of the Kantorovich potential and a more

flexible and less regular approximation of the OT density. It is then intuitive

to use linear conforming Finite Elements for the elliptic equation coupled with

piecewise constant. Independently of the spatial discretization, the ensuing

nonlinear differential-algebraic equation is discretized by means of a first order

Euler method (forward or backward) and a simple Picard iteration is used to

resolve the nonlinearity when necessary. The procedure is iterated in time until

relative differences of spatial norm of the transport density are smaller than a

predefined tolerance.

We study the experimental convergence rate of the proposed solution ap-

proaches and discuss limitations and advantages of these formulations. An ex-

tensive set of test cases, including problems that admit an explicit solution to

the MK equations so that error norms can be accurately evaluated, are appropri-

ately designed to verify and test the expected numerical properties of the solution

methods. The results show optimal convergence toward the asymptotic equilib-

rium point is achieved for sufficiently regular forcing function. All the obtained

numerical solutions support Conjecture 1 that indeed the dynamic model pos-

sess a time-asymptotic equilibrium point that coincides with the solution of the

MK equations . Also the existence and coherence of the Lyapunov-candidate

functional is confirmed.

We obtain similar results also for the case k 6≡ 1 described in Section 2.4,

and we were able to reproduced the PP experiment who inspired the the discrete

model in [68].
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2.5 NUMERICAL SOLUTION OF MK EQUATIONS BY USING DMK

2.5.1 Numerical discretization

2.5.1.1 Projection spaces

The numerical approach at the solution of Equation (2.6) is based on the method

of lines. Spatial discretization is achieved by projecting the weak formulation of

the system of equations onto a pair of finite dimensional spaces (Vh,Wh). We

denote with Th(Ω) a regular triangulation of the (assumed polygonal) domain Ω,

characterized by n nodes and m triangles, where h indicates the characteristic

length of the elements. We also denote with P0(Th(Ω)) = span{ψ1(x), . . . , ψM(x)}
the space of element-wise constant functions on Th(Ω), i.e., ψi(x) is the charac-

teristic function of triangle Ti, and with P1(Th(Ω)) = span{ϕ1(x), . . . , ϕN(x)}
the space of element-wise linear Lagrangian basis functions defined on Th(Ω).

We consider two different choices of the space Vh used in the projection of the

elliptic Equation (2.6a), namely Vh = P1,h = P1(Th(Ω)) and Vh = P1,h/2 =

P1(Th/2(Ω)). Here Th/2(Ω) is the triangulation generated by conformally refining

each triangle Tk ∈ Th(Ω) (.i.e. each element Tk is divided in 2d sub-elements

having as nodes the gravity centers of the 2d−1-faces contained in Tk) . Again

we consider different choices of spaces also for the projection of the dynamic

equation Equation (2.6b) by using alternatively Wh = P1,h and Wh = P0,h =

P0(Th(Ω)), when the projection is done on the same mesh used for the elliptic

equations, or Wh = P1,h/2 Wh = P0,h = P0(Th(Ω)), when we use the sub-grid.

NewP Following this approach and separating the temporal and spatial vari-

ables, the discrete potential uh(t, x) and diffusion coefficient µh(t, x) are written

as:

uh(t, x) =
N∑

i=1

ui(t)ϕi(x) ϕi ∈ Vh µh(t, x) =
M∑

k=1

µk(t)ψk(x) ψk ∈ Wh

where N and M are the dimensions of Vh andWh, respectively. The finite element

discretization yields the following problem: for t ≥ 0 find (uh(t, ·), µh(t, ·)) ∈
Vh ×Wh such that

aµh(uh,ϕj) =

∫

Ω

µh∇uh · ∇ϕj dx = (f, ϕj) =

∫

Ω

fϕj dx j = 1, . . . , N (2.51a)
∫

Ω

∂tµhψl dx =

∫

Ω

(|µh ∇uh| − µh)ψl dx l = 1, . . . ,M (2.51b)
∫

Ω

µh(0, ·)ψj dx =

∫

Ω

µ0ψl dx l = 1, . . . ,M (2.51c)
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where we add to Equation (2.51a) the zero-mean constraint
∫

Ω
uh dx = 0 to

enforce well-posedness. In matrix form, indicating with u(t) = {ui(t)}, i =

1, . . . , N , and µ(t) = {µk(t)}, k = 1, . . . ,M , the vectors that describe the time

evolution of the projected system, we can write the following index-1 nonlinear

system of differential algebraic equations (DAE):

A[µ(t)] u(t) = b, (2.52a)

M ∂tµ(t) = B(u(t)) µ(t), M µ(0) = µ0 (2.52b)

The N ×N stiffness matrix A[µ(t)] is given by:

Aij[µ(t)] =
M∑

k=1

µk(t)

∫

Ω

ψk∇ϕi · ∇ϕj dx

The N -dimensional source vector b whose components are bi =
∫

Ω
f ϕi dx. The

singularity due to the homogeneous Neumann boundary conditions is removed

by forcing the solution u to remain orthogonal to vector ai =
∫

Ω
ϕi dx [11]. The

M ×M mass matrix M is expressed by:

Mk,l =

∫

Ω

ψkψl dx,

The M ×M matrix B has the same structure of M and is defined as

Bk,l[u(t)] =

∫

Ω

(
|
N∑

i=1

ui(t)∇ϕi| − 1

)
ψkψl dx

and the M -dimensional vector µ0 contains the projected initial condition µ0,l =∫
Ω
µ0ψl dx. When we consider Wh = P0,h, matrices M and B are diagonal

and Equation (2.52) simplifies to:

A[µ(t)]u(t) = b, a · u(t) = 0 (2.53a)

∂tµ(t) = D[u(t)]µ(t), µ(0) = µ̃0 (2.53b)

where D is the M ×M diagonal matrix given by:

Dk,k[u(t)] =
1

|Tk|

∫

Tk

(
|
N∑

i=1

ui(t)∇ϕi| − 1

)
dx

where |Tk| is the measure of the element Tk, and µ̃0 is the M -dimensional vector

with components given by µ̃0k = 1
|Tk|
∫
Tk
µ0 dx,i.e., the L2-projection of µ0 on the

triangles of Th.
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2.5.1.2 Time discretization

In order to solve the DAE Equation (2.52) or Equation (2.53) we define a dis-

cretization in time using either a forward or a backward Euler scheme. Denoting

with ∆tk the time-step size so that tk+1 = tk + ∆tk and (uk,µk) = (u(tk),µ(tk)),

the approximate solutions at time tk can be written as ukh(x) =
∑N

i u
k
iϕi(x) and

µkh(x) =
∑M

l=1 µ
k
l ψl(x).

Case µh(t, ·) ∈ P1,h. In this case, the forward Euler scheme yields:

A[µk] uk = b, a · uk = 0

µk+1 = (I + ∆tkM
−1B[uk])µk, µ0 = M−1µ0

When backward Euler is employed, the time-stepping scheme becomes:

A[µk+1]uk+1 = b, a · uk+1 = 0

Mµk+1 = Mµk + ∆tkB[uk+1]µk+1, µ0 = M−1µ0

and the nonlinearity is resolved by means of the following successive iteration

(Picard) scheme:

µ0,k+1 = µk

for m = 0, 1, 2, . . .

A[µm,k+1]um,k+1 = b, a · um,k+1 = 0

(2.54)

µm+1,k+1 = (M −∆tkB[um,k+1])−1
(
Mµk

)

which can be repeated until the relative difference ρ(µm+1,k+1
h , µm,k+1

h ) ≤ τNL,

where

ρ(µm+1,k+1
h , µm,k+1

h ) =
‖µm+1,k+1

h − µm,k+1
h ‖L2(Ω)

‖µm,k+1
h ‖L2(Ω)

or the number of Picard iterations m reaches a prefixed maximum mMAX.

Case µh(t, ·) ∈ P0,h. In this case the forward Euler scheme reads:

A[µk] uk = b, a · uk = 0

µk+1 = (I + ∆tkD[uk])µk, µ0 = µ̃0
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while the backward Euler discretization yields the non-linear system of equations:

A[µk+1] uk+1 = b, a · uk+1 = 0

µk+1 = µk + ∆tk
(
D[uk+1]µk+1

)
, µ0 = µ̃0

solved again by Picard iteration:

µ0,k+1 = µk

A[µm,k+1]um,k+1 = b, a · um,k+1 = 0

(2.55)

µm+1,k+1 = (I −∆tkD[um,k+1])−1µk

repeated until ρ(µm+1,k+1
h , µm,k+1

h ) ≤ τNL or m > mMAX. Note again that the

matrix (I −∆tkD) in Equation (2.55) is trivially invertible being diagonal.

2.5.1.3 Solution of the linear system

At each Picard iteration we need to solve a large sparse symmetric linear system

that is positive semi-definite because homogeneous Neumann boundary condi-

tions are used. We solve the system by a preconditioned conjugate gradient

(PCG) method and employ the approach suggested by [11] to construct the

Krylov subspace orthogonal to the null space of the system matrix. We choose

this iterative linear solver for two reasons: first, we are solving a sequence of

slightly varying linear systems, thus at each system solution we can obtain addi-

tional data, like the initial solution or spectral informations (a strategy exploited

in Chapter 4) to solve more efficiently the next linear system. Second, we can

cope with the near singularity of the stiffness matrix more easily than by using a

direct solver.

Convergence of the PCG iteration is considered achieved when the Euclidean

norm of the residual relative to the initial residual norm is smaller than the

tolerance τCG. We start the iteration from ukh, i.e., solution at the previous time

step and use an incomplete Choleski factorization with no fill-in as preconditioner.

Since the system dynamics drives the transport density µh to zero in large portions

of the domain Ω, we set a lower limit to it and impose that µh ≥ 10−10 everywhere.

This is sufficient to guarantee the ellipticity of the FEM bilinear form and allows

the system condition number to remain bounded so that PCG converges within

a limited number of iterations.
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Figure 2.3: Domain Ω and supports Q+, Qc, and Q− for Test Case 1. Unrefined

initial meshes. From the left to the right: Mesh 1 (constrained Delaunay, 438

nodes and 810 elements), and Mesh 2 (constrained Delaunay, 297 nodes and 528

elements). The edges of Mesh 1 are aligned with the supports of f and µ∗(f).

Mesh 2 is aligned only with the supports of f .

2.5.2 Numerical experiments

We study the numerical scheme described in Section 2.5.1 with two test-cases.

In the first test-case we compare the large-time solution of the projected system

against the closed form solution proposed by [18] for sufficiently regular forcing

functions. We also verify the convergence toward steady-state for increasingly

refined grids. In the second test-case, we extend the comparison against those

reported in [5]. We also analyze the stability of the spatial discretization method

used.

2.5.2.1 Test Case 1: comparison with closed-form solutions

In this first set of tests we experiment the convergence of the different numerical

schemes toward the OT density by comparing the numerical solution with the

closed-form solution of the MK equations discussed in [18]. To this aim, we

consider a square domain in R2, Ω = [0, 1] × [0, 1], and a zero-mean forcing

function f supported in two rectangles Q+ and Q− contained in Ω, where f
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assumes opposite signs (Figure 2.3). The different supports are given by:

Q+ =

{
(x, y) ∈ Ω : (x, y) ∈

[
1

8
,
3

8

]
×
[

1

4
,
3

4

]}

Qc =

{
(x, y) ∈ Ω : (x, y) ∈

[
3

8
,
5

8

]
×
[

1

4
,
3

4

]}

Q− =

{
(x, y) ∈ Ω : (x, y) ∈

[
5

8
,
7

8

]
×
[

1

4
,
3

4

]}

We are optimally transporting f+ = f(Q+) into f− = f(Q−) and look for the

density µ(t, x) and the potential u(t, x) that satisfy Equation (2.6) as t→∞ and

approximate µ∗ solution of Equation (1.10). We consider that a time-equilibrium

condition has been achieved when the relative variation in µh (var(µh)) is smaller

than a tolerance, i.e.,

var(µh) := ρ(µk+1
h , µtsteph )/∆tk < τT.

We indicate with t∗ the time when time equilibrium is numerically reached and

with µ∗h the corresponding µkh.

To test our numerical schemes we set up two different problems that differ-

entiate by the specific choice of f . In particular, the first test case considers a

continuous forcing function f1 with opposite sign in Q+ and Q−, while the second

case considers a piecewise constant function f2:

f1(x, y) =





2 sin

(
4π

(
x− 1

8

))
sin

(
2π

(
y − 1

4

))
in Q+

− 2 sin

(
4π

(
x− 5

8

))
sin

(
2π

(
y − 1

4

))
in Q−

0 elsewhere

and

f2(x, y) =





2 in Q+

− 2 in Q−

0 elsewhere
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Correspondingly, the OT density µ∗(f) is given by [18]:

µ∗(f1)(x, y) =





1

2π

(
1− cos

(
4π

(
x− 1

8

)))
sin

(
2π

(
y − 1

4

))
in Q+

1

π
sin

(
2π

(
y − 1

4

))
in Qc

1

2π

(
1− cos

(
4π

(
7

8
− x
)))

sin

(
2π

(
y − 1

4

))
in Q−

0 elsewhere

and

µ∗(f2)(x, y) =





2

(
x− 1

8

)
in Q+

1

2
in Qc

2

(
7

8
− x
)

in Q−

0 elsewhere

Note that the support of µ∗(f) is given by Qµ = Q+∪Qc∪Q−. With this explicit

solution, we can verify the experimental convergence rates in space at infinite

times for the different proposed schemes. We use two different initial triangu-

lation settings (Mesh 1 and Mesh 2, Figure 2.3) that are uniformly refined four

times to assess FEM convergence. Both meshes are constrained to be aligned

with the exact supports of f+ and f−, so that the condition
∑

i

∫
Ω
f(x)ϕi dx = 0

can be imposed exactly, and have approximately the same number of nodes and

elements. Mesh 1 (Figure 2.3, left) is a constrained Delaunay triangulations with

edges aligned with the boundary of Qµ. Mesh 2 is also a constrained Delaunay

triangulation but is not aligned with Qµ in the area between Q+ and Q−. Hence,

in the latter case, we expect convergence to be influenced also by the geometric

convergence of the mesh element boundaries toward the support Qµ of µ∗. Sen-

sitivity to initial conditions is tested by employing the following different initial

data µ
(i)
0 :

µ
(1)
0 (x, y) = 1; µ

(2)
0 (x, y) = 0.1 + 4

(
(x− 0.5)2 + (y − 0.5)2

)
;

(2.56)

µ
(3)
0 (x, y) = 3 + 2 sin(8πx) sin(8πy).

Note that in these tests we are not interested in computational speed, but only

on the numerical behavior of the schemes. Thus we do not limit the minimum
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time step size and the maximum number of iterations (in both time-stepping

and the PCG algorithm used to solve the linear system of algebraic equations),

and use a very tight tolerance to determine when time equilibrium is reached.

We employ very tight tolerances, i.e., τNL = 10−11 and τT = 5 × 10−9, and a

PCG exit tolerance on the relative residual τCG = 10−13 in order to test the

actual limits of the numerical scheme. We would like to remark that much more

efficient simulations are obtained with much more relaxed tolerances (≈ 10−3)

maintaining meaningful quantitative results, for which the spatial distribution of

µ∗h is approximated with an accuracy that can be compared with the discretization

error. In the simulations presented here we adopted, both for the forward and

back time-stepping, a varying ∆tk by setting ∆tk+1 = min(1.05 × ∆tk,∆tmax),

where ∆tmax = 0.5 was found experimentally to ensure the stability of the forward

Euler scheme, or equivalently, the convergence of the Picard iteration, (more

detailed discussion on the Picard scheme is discussed later). Convergence as

h → 0 is explored by looking at the time behavior of the L2(Ω) relative error

defined as:

err(µh(t), f) :=
‖µh(t)− µ∗(f)‖L2(Ω)

‖µ∗(f)‖L2(Ω)

Convergence toward steady-state equilibrium. We analyze the experi-

mental convergence toward an equilibrium point (µ∗h, u
∗) by looking at the time

evolution of var(µh(t)) and err(µh(t)). Figure 2.4 reports the log-log scale plots of

these two quantities calculated in the case of continuous forcing function. The dif-

ferent curves in each sub-plot display the behavior obtained on successive uniform

refinements of the two different initial meshes of Figure 2.3, while the columns

identify the different combinations of spatial discretizations. Only results of the

Explicit Euler time-stepping scheme are shown, the results of the Implicit Euler

method being identical. The first set of plots (first two rows) are relative to the

Qµ-aligned mesh set, while the lower set reports the results for the Qf -aligned

meshes.

The µh variation, var(µh(t)), displays a monotone behavior for all schemes,

with an expected geometric convergence rate toward steady-state, as evidenced

by the slope of the rectilinear portions of the curves which coincides for all mesh-

levels and for both mesh types. At increasing refinement levels the plots deviate as

a consequence of the higher accuracy of the spatial discretization. This is testified
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Figure 2.4: Convergence toward equilibrium in the case of continuous forcing

(f = f1). The log-log plots of var(µh(t, ·)) and err(µh(t, ·)) vs. time are reported

for Mesh 1 (Qµ-aligned, top block) and for Mesh 2 (Qf -aligned, bottom block).

The columns refer from left to right to the results obtained with P1,h − P0,h,

P1,h/2 − P0,h, P1,h − P1,h, P1,h/2 − P1,h, respectively.
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also by the fact that the convergence curves for all schemes initially coincide,

starting to diverge approximately when the corresponding spatial accuracy limit

is attained. Accuracy saturation in the error plots (err(µh(t)) vs. t) occurs

at the same time at which var(µh(t)) start diverging. More uncertain profiles

are obtained when spatial discretization is performed on the same mesh for the

pair (µh, uh) for both P1 − P0 and P1 − P1 discretization spaces. The reason

for the loss of regularity is to be attributed to oscillations in the cell gradients

that cause amplified oscillations in the corresponding transport density. Spatial

average of the gradient magnitudes, leading to the Th − Th/2, shows a much

smoother behavior with a faster convergence towards equilibrium. We postpone

a more detailed discussion of this phenomenon to Section 2.5.2.2, where a more

challenging test case is approached.

Looking at the bottom half of Figure 2.4, we see the effect of using meshes that

are not aligned with the support of the OT density . Because of the discontinuity

in µh occurring across the boundary of Qµ, convergence is limited by the geomet-

ric convergence of the triangular shapes towards this boundary, and the global

attainable accuracy is bounded by this error. We observe a consistent behavior

of the error for both mesh-types at different h levels. The accuracy levels at

which the error saturates decrease consistently with the expected order of spatial

convergence of the different schemes, when the geometric error is negligible. This

is clearly observable by looking at the plots of var(µh(t)) for the P1,h/2 − P0,h,

and the P1,h/2 − P1,h, cases, where the optimal second order convergence of the

latter approach is observable from the fact that difference in the attained accu-

racy levels are doubled with respect to the first order approach. In the case of the

Qf -aligned mesh, the higher order approach displays more accurate results with

respect to the first order method, but the geometric error prevents the realization

of optimal convergence rates.

Convergence of the spatial discretization. We would like to recall that

continuity of the transport density µ∗(f) when the forcing term f is continuous

was proved in R2 in [36] under some assumptions over f . However, except for

partial regularity results along transport rays [18], the general case seems to be

open question. In our test cases, for both f1 and f2 forcings, strong variations

in µh are present in a direction orthogonal to the boundary of Qµ in the cen-

tral portion of the domain (outside Qf ). Because of these variations, which in
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Figure 2.5: Behavior of err(µ∗h) vs. h for the different discretization methods. The

results for the continuous forcing function f1 are shown in the left column, while

the right column reports the results for f2. The top row is relative to the Mesh-1

sequence (aligned with Qµ), while the bottom row corresponds to the Mesh-2

sequence (aligned only with Qf ). For visual reference, the first order convergence

line is also plotted with a thick solid trait. The average experimental convergence

rates are reported in the legends of each plot next to the discretization method.
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Figure 2.6: Spatial distribution of the error µ∗h − µ∗(f2) at steady state for the

piecewise constant forcing function f2. The upper row reports the results on

the finest level of Mesh-1 obtained with the P1,h − P0,h, (left) and P1,h − P1,h,

(right). The lower row shows the results on the finest level of Mesh-2 from the

P1,h/2 − P0,h, (left) and P1,h/2 − P1,h, (right) approaches. Note that classical

checkerboard oscillations clearly appear for the scheme that use a single grid,

while no oscillations are produced by the two-grid algorithm.
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the discontinuous forcing case are actual µ∗-discontinuities, we expect a loss of

convergence in the FE solution. We note, however, that convergence towards

steady-state is not affected by spatial errors, as shown in the previous discussion.

The experimental convergence profiles for the different methods are reported

in Figure 2.5. The column on the left groups the results relative to the more

regular case raised by the continuous forcing function f1 (left). The right column

reports the results obtained in the case with the piecewise constant forcing f2.

The top and bottom rows identify the mesh sequences aligned with the boundary

of Qµ or with the boundary of Qf , respectively. From the two plots on the left, we

can argue that all methods attain optimal convergence when the Mesh-1 sequence

is used. The Th−Th/2 combination is characterized by a smoother behavior. The

use of the Mesh-2 sequence, which we recall is aligned only with the boundaries of

Qf and not those of Qµ, triggers the emergence of geometrical errors that cause a

sizeable reduction on the convergence rates of both P1−P1 and P1−P0 schemes.

As expected, the results for the discontinuous forcing function (right column)

are characterized by an important loss of convergence rate for all schemes, except

the P1,h/2−P0,h in combination with the Qµ-aligned meshes. The loss of regularity

in the solution due the lower regularity of f , together with the eventual geometric

error in the Mesh-2 sequence, reduces the convergence rates of the schemes. The

use of a Th − Th/2 combination seems to alleviate somehow the rate loss. This is

confirmed by the spatial distribution of the error µ∗h−µ∗(f2) shown in Figure 2.6.

In this figure we report the results obtained with the P1,h−P0,h (upper left panel)

and the P1,h − P1,h (upper right panel) for Mesh 1, and the P1,h/2 − P0,h (lower

left panel) the P1,h/2−P1,h (lower right panel) for Mesh 2. The plots suggest that

the P1 − P1 approach localizes the error on the north and south boundaries of

Qµ, where the jump in µ∗ from 0 to 0.5 localizes. The P1 −P0 approach, on the

other hand, displays an additional small but non negligible error on the support

of the forcing function Qf . The zooms on the pictures show clear oscillations for

the one-mesh methods (upper row) in both directions orthogonal and parallel to

the µh-discontinuity. On the contrary, the methods based on two-meshes (lower

row) exhibit a monotone error behavior along the boundary of Qµ, but the mis-

alignment of the triangle edges causes an increased error as compared to the

Mesh-1 results. The error slightly oscillates in the direction normal to the µh-

jump due to the gradient reconstruction. It is evident that the smoothing due to
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Figure 2.7: Number of iterations required by the PCG scheme to solve the linear

system arising from the discretization of the elliptic equation, when µh ∈ P0,h

(left panel) and µh ∈ P1h (right panel). Both panels include the results obtained

with and without the use of the sub-grid.

the averaging of the gradient magnitude on the larger triangles helps in reducing

overall oscillations. This will become more evident when we will discuss these

oscillations in connection with a more challenging test case in Section 2.5.2.2.

Computational cost. We would like to remark here that our numerical ap-

proach is not optimized for computational cost. In fact, we are mainly interested

in exploring the accuracy and feasibility of our solution approach. Nonetheless,

it is interesting to include a discussion on computational cost in the worst-case

scenarios described here. A number of cost-saving strategies could be envis-

aged, including using coarse-mesh solutions to extrapolate initial guesses, re-use

of stiffness and preconditioning matrices, developing a Newton-Raphson strategy

to improve stability and employ larger time-step sizes, etc. On the other hand,

here we are interested in showing that, although far from optimal, our approach

is potentially very effective and competitive with literature approaches in the

solution of the Monge-Kantorovich equations.

Before initiating this discussion, we note that our transient simulations show

an initial phase (approximately until var(µkh) ≈ 10−3) showing profiles of var(µkh)

and err(µkh) that are superimposed for all mesh-refinements. This initial phase

is characterized by strong variations of µh, during which the support Qµ starts

to delineate with a fast decay of µh in the regions where the OT density is zero.

After this initial phase, µh varies more slowly and stabilizes within Qµ to its
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final value. At the same time, in Ω \ Qµ, the decay continues towards the final

preset limit. This phase is characterized by larger time-step sizes and faster PCG

convergence.

We measure computational cost by looking at the total number of iterations

needed by the PCG method to achieve convergence at each linear system solve,

which is obtained when the relative residual is smaller than τCG. The linear solve

phase is prevalent with respect to the matrix assembly phase, being approximately

between 60 and 80% of the total cost. Moreover, it is the only phase whose cost

varies with time, the assembly phase having a constant computational effort. We

remark here that the nonlinearity of the problem and the time-variability of µh

forces the reassembly of the stiffness matrix at each time-step for Explicit Euler,

and at each Picard iteration for Implicit Euler.

Figure 2.7 shows the number of PCG iterations to convergence vs. time in the

solution of the linear system arising from the FEM discretization of the elliptic

equation Equation (2.6a) using either the P1,h/p−P0,h (left panel) or P1,h/p−P1,h

(right panel) approaches on the finest Mesh-1 refinement level (p = 1 or 2). Both

methods based on a single mesh (p = 1) and on the use of the sub-mesh (p = 2)

are reported in each panel. For both approaches the initial transient is the most

expensive, with p = 2 characterized by a doubled number of linear iterations,

reflecting the fact that the meshes are parametrized by the mesh parameter h

used for the discretization of µh. After the initial transient the number of linear

iterations starts decreasing, and tends to zero as time progresses, with a faster

reduction for the two-mesh methods.

Implicit Euler and convergence of the Picard scheme. In the case of

implicit Euler time-stepping, the nonlinear system is solved by Picard iteration

as described in Equation (2.54) or in Equation (2.55). All numerical experiments

show that the number of iterations of the Picard scheme increases linearly with

the time step ∆tk, suggesting a fixed rate of contraction. We estimated it by

computing the relative µh-variation defined as:

C(k) :=
‖µm∗,kh − µm∗−1,k

h ‖L2(Ω)

‖µm∗−1,k
h − µm∗−2,k

h ‖L2(Ω)

(2.57)
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where m∗ is the Picard iteration number when convergence occurs. Independently

of the spatial discretization method used we obtain the following estimate

C(k) ≈ K∆tk K = 1

This suggests that ∆tk can be used as a proxy to control the time-step evolution

in the case of implicit Euler. Unfortunately, since there is no uniform bound on

| ∇u(T )|∀t ≥ 0 we can not deduced the experimental estimate. C(k) ≈ K∆tk

by the numerical analysis of the convergence scheme. In fact, at the first Pi-

card iteration the constant C(k) can be fixed equal to maxk | ∇um,kh |Tk , but this

quantity is useless already at the next Picard iteration. In fact, in other nu-

merical experiments, not reported in here, we noted that, using ∆tk ≥ 1, the

Picard scheme fails. While adopting the maximum time step ∆tmax = 0.5, we

ensure convergence of the Picard scheme with a number of Picard iterations much

smaller than pre-fixed maximum number mMAX = 30. In fact, in all simulations,

the maximum number of iterations experimented is 23, while the average number

of iterations, computed as the (total number of Picard iterations)/(total number

of time iterations), is between 2.19 and 7.19. The choice of ∆tmax = 0.5 offers a

good trade-off between minimizing the number of Picard iterations and maximiz-

ing the time step. With fixed time step ∆tk, the number of iterations required

by the Picard scheme monotonically decreases as we approach the equilibrium,

and at the end of the time-iterations very few fix-point iterations are required by

the Picard scheme to converge ( between 2 and 5 ). This is clearly due to the

exponential decay of the solution as time progresses, as predicted by the mild

solution of Equation (2.31).

Dynamics of L (µ(t)). As a further verification to test the convergence towards

steady state, we look at the time behavior of the Lyapunov-candidate functional

L(µh(t)) for the different initial conditions described in Equation (2.56). Fig-

ure 2.8 reports this behavior for the finest mesh of set 2 of the P1,h/2 − P0,h

method using a log scale in time. The results for other methods and mesh sets are

practically indistinguishable, and are not reported here. We see that L decreases

monotonically and always attains the same minimum value in time independently

on the initial conditions. After t ≈ 100 the value of L(µh(t)) becomes apparently

stationary.
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Figure 2.8: Time behavior of the Lyapunov-candidate functional L(µkh).

2.5.2.2 Test Case 2: comparison with literature

Homogeneous case. In this section we compare our algorithm to the results

obtained by [5] using a finite element method to solve a regularized mixed formu-

lation of the MK equations. Their discretization approach yields a highly non-

linear algebraic system that is solved using a modified successive over-relaxation

method. They propose a set of test problems that we use here to practically show

the characteristics of our method for the solution of the MK equations, and, at

the same time, we highlight how the use of different spatial discretization methods

affects the results. We address the first test case proposed by [5], which considers

the transport of a uniform density supported on a circle towards a disjoint ellipses

. Figure 2.9 (left) shows the domain Ω where problem Equation (1.10) is defined

and the supports Q+ and Q− of the forcing term f = f+ − f−, with f+(x) = 2

for x ∈ Q+ and zero otherwise, and f−(y), appropriately rescaled for y ∈ Q− to

ensure mass balance. The coarse initial mesh is also shown in light blue lines,

and its uniform refinement is shown in thin dashed lines. This mesh, character-

ized by 820 nodes and 1531 triangles, is a constrained Delaunay triangulation

that follows the boundaries of both Q+ and Q−. The forcing function is adapted

to this triangulation to enforce the compatibility condition of zero mean. The

same Figure shows in the right panel the time-converged spatial distribution of

the transport density numerically evaluated with the most stable discretization

method, P1,h/2 − P0,h, on the finest mesh, which is used as a reference solution.

The spatial distribution of µh is in good agreement with the results obtained

by [5], achieving its maximum value (0.482) on the boundary of the left circle,
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Q+

f+

Q−

f−

Figure 2.9: Domain and supports of the forcing function used in the discretization

of the problem in Equation (1.10) for the solution of Example 1 of [5]. The

two triangulations Th and Th/2 are also shown with blue and dashed black lines,

respectively.

and its minimum value 10−10 set by the prescribed lower bound as discussed in

Section 2.5.1.3. In this section we use this sample test to experimentally dis-

cuss the need to use different FEM spaces for the discretization of the transport

density and of the transport potential.

We start this discussion by presenting the results obtained using the P1,h −
P0,h approach on the coarsest grid and look at three different times during the

evolution. The times are selected so that var(µkh) reaches the values 10−3, 10−4,

5× 10−8, namely t1 = 2.73× 102, t2 = 1.36× 103, and t3 = 2.5× 105, the latter

time corresponding to the time-converged solution. We plot in Figure 2.10 both

µh (upper panels) and | ∇uh| (lower panels).

NewP At the first time the solution clearly resembles the reference solution

shown in Figure 2.9 (right), although at a much coarser resolution. Correspond-

ingly, the gradient in the second row displays some slight but acceptable over-

shoots in a region that resembles Qµ. Already at this early time, which occurs

after 1630 time steps, some oscillations are visible.

NewP At time t2 these oscillations are much more pronounced with a checker-

board pattern that suggests an intrinsic instability of the scheme. We should

note that the color scale in the plots are limited above and below by suitable

values that emphasize the oscillations. The maximum and minimum values for

both µh and | ∇uh| are reported right below each legend. We observe that there
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Figure 2.10: Solution of Test Case 2 at t1 = 2.73 × 102 (left), t2 = 1.36 ×
103(center) , and t3 = 2.5× 105(right), using the P1,h −P0,h approach. Top row:

spatial distribution of µh ∈ P0,h. Bottom row: spatial distribution of | ∇uh| ∈
P0,h as calculated from uh ∈ P1,h.

is no overshoot in | ∇uh|, which at the final time is never greater than one. Still,

checkerboard-like oscillations are visible. These fluctuations cause the dynamic

equation to drive µh to zero quickly, causing a drastic deterioration of the solution

accuracy.

The situation does not improve by using higher order spaces for µh. Fig-

ure 2.11 shows the results obtained by using a P1,h − P1,h approach. We still

observe oscillations, albeit appearing at a later time and with a different pattern.

Once oscillations in | ∇uh| around the unit value start developing the dynamic

equation determines a decay of µh within the elements where | ∇uh| < 1 even if

located within Qµ. This decay quickly reinforces in time leading to the observed

checkerboard pattern. This behavior resembles the classical lack of stability due

to a violation of an inf-sup-like constraint, but at this point we are not able to

identify this condition.

On the other hand, oscillations completely disappear if we employ a two-mesh

approach. Looking at the checkerboard oscillations displayed in Figure 2.10, it

is intuitive to think that averaging the gradient magnitude between neighboring

triangles should compensate the fluctuations. This observation led us to employ

the P1,h/2 − P0,h discretization described in Section 2.5.1. Indeed, with this ap-

proach the gradients calculated from uh ∈ P1(Th/2) are projected onto the space
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Figure 2.11: Solution of Test Case 2 at t1 = 6.821 (left), t2 = 5.36×102 (center),

and t3 = 9.65× 103 , (left), using the P1,h−P1,h discretization. Top row: spatial

distribution of µh ∈ P1,h. Bottom row: spatial distribution of | ∇uh| ∈ P0,h

calculated from uh ∈ P1,h.

P0(Th) for insertion into the dynamic equation Equation (2.51b). This projection

is equivalent to averaging the piecewise constant gradients over the four trian-

gles of Th/2 that form one triangle of Th. This results in a oscillation free µh

field, as shown in Figure 2.12. It is evident that no µh oscillations form even at

the coarsest mesh level used in this test. Note that the spatial discretization of

the elliptic equation does not guarantee monotonicity [57]. In fact, the gradient

magnitudes arising from uh ∈ P1,h/2 still show the classical checkerboard fluctu-

ations (Figure 2.12, middle row). However, the projection of | ∇uh| onto P0,h

(Figure 2.12, bottom row) does not show oscillations, albeit small overshooting

occurs especially at the earlier times. We should emphasize that | ∇uh| is plotted

here using an extremely narrow color scale ranging within [0.9999, 1.0001].

Looking at the final time-converged solution, the value | ∇u∗h| within the sup-

port of µ∗h and neighboring regions is exactly unitary, and remains bounded by 1

almost everywhere, in compliance with the constraint of the MK equations. Only

one small region with | ∇u∗h| > 1 develop with a maximum value approaching

1.00009, considered consistent with the tolerance used in the PCG linear solve

and the lower bound set on µh that cannot be smaller than 10−10. Indeed, oscil-

lations of the order of 10−5 in the gradient magnitude may be indistinguishable

by the linear solver of the uh equation.
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Figure 2.12: Solution of Test Case 2 at t1 = 6.75 × 101 (left), t2 = 2.04 ×
102 (center), and t3 = 1.54 × 103 (right) using the P1,h/2 − P0,h discretization.

Top row: spatial distribution of µh ∈ P0,h. Middle row: spatial distribution of

| ∇uh| ∈ P0,h/2 calculated from uh ∈ P1,h/2. Bottom row: spatial distribution of

| ∇uh| ∈ P0,h.
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2. DYNAMIC MONGE-KANTOROVICH

Similar considerations can be done in the case µh ∈ P1,h (not shown here)

but in this case some oscillations in | ∇uh| persist even when uh ∈ P1,h/2. This

reinforces the conjecture that some sort of inf-sup stability condition exists that

couples the discretization spaces for uh and µh, and will be the subject of further

studies.

One final observation for this test case concerns the computational cost of our

approach. In comparison with the technique proposed by [5], our method seems to

be computationally advantageous. In fact, as already mentioned, the simulations

reported in [5] where obtained using a mixed FEM approach in combination with

adaptive mesh refinement, leading to nonlinear systems of dimension approaching

60000. In our case, the dimensions for the smallest test case are 1531 (number

of triangles in Th) and 3170 (number of nodes in Th/2) for the diagonal dynamic

algebraic system and the elliptic system, respectively, leading to a total of 4701

degrees of freedom. Note that the finest solution of Figure 2.9 was obtained with a

total of 73917 degrees of freedom. Our confidence that the approach we propose

is superior to that [5] is is reinforced by the observation that effective simulations

can be obtained at intermediate mesh levels. Moreover, time-convergence can be

considered achieved at much earlier times then the ones employed in this section

if we look at the stationarity of the Lyapunov-candidate functional. Obviously,

adding simple adaptive mesh refinement strategies would greatly enhance the

performance of the studied methodology.

2.5.3 Heterogeneous k(x)

The numerical method described in Section 2.5.1 can be easily adapted to approx-

imate Equation (2.48) with k(x) 6≡ 1. The numerical results for the heterogeneous

case are shown in Fig. 2.13 where the steady-state spatial distribution of the flux

magnitude |qh| = µh|∇u| is plotted in the case of ke = 0.01 (top panels) and

ke = 100 (bottom panels). We first note that in this heterogeneous case the

gradient is bounded by k(x) and not by one as in the previous test case. For this

reason we chose to to plot the flux magnitude |qh| = µh|∇uh| instead of µh. Two

successively refined triangulations are used, leading to linear systems of dimen-

sions Nh + M2h = 3603 + 1738 and Nh + M2h = 14157 + 6952 for the coarser

and the finer meshes, respectively. The results are qualitatively comparable with

those of [5], although obtained with a much coarser discretization. It is interest-
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2.5 NUMERICAL SOLUTION OF MK EQUATIONS BY USING DMK

Figure 2.13: Numerical solution of the heterogeneous test case for ke = 0.01 (top)

and ke = 100 (bottom) in the central ellipse. The figures show the optimal flux

magnitude |qh| = µh|∇uh| for the mesh with 1738(6952) triangles and 933(3603)

(left) and the once-refined mesh 6952(27808) triangles and 3603(14157) nodes

(right).
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2. DYNAMIC MONGE-KANTOROVICH

Figure 2.14: Numerical solution of the heterogeneous test case with ke = 3 in the

central ellipse in terms of OT flux magnitude |qh| = µh|∇uh| for 3 different times

(var(µh) = 0.1, 0.01, 5× 10−9 from left to right) and 2 refinement levels (from top

to bottom). On the lower panels we report uh at three times considered for the

finest mesh. The left circle and the right ellipse represent the support of f+ and

f−, respectively. The central ellipse represents the portion of the domain where

k(x) = 3.

ing to note that the qualitative features of the solution are obtained already at

the coarser mesh, with no visible numerical artifacts barring mesh roughness. We

would like to stress here the fact that, notwithstanding the fact that the mesh

nodes are not aligned with the support of µh, the geometrical features of the solu-

tion are well captured at all mesh resolution levels. From the spatial distribution

of the flux magnitude, we see that values of ke lower than one promotes larger

fluxes across the central ellipses. On the contrary, values substantially larger

than one restricts through-flow, and promotes the circumnavigation of the high

low conductivity areas.

Finally, Fig. 2.14 shows the distribution of |qh| = µh|∇uh| for the case of
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Figure 2.15: Time evolution for Lk(x)(µh) for with different initial data µ0.

The values k(x) = 0.01, 3, 100 are imposed inside the central ellipse reported

in Figure 2.13.

ke = 3 at three different times (left to right) and two successive refinement levels

(top to bottom). The three times are chosen so that the µh variation reaches

the thresholds var(µh(t̂1)) = 0.1, var(µh(t̂2)) = 0.01, and var(µh(t̂3)) = 5× 10−9.

Correspondingly, we have t̂1 ≈ 5.2 and t̂2 ≈ 21, remaining the same for both

tested triangulations, and t̂3 = 1600 for the coarser level and t̂3 = 2200 for the

finer mesh as steady state is achieved at a later time for the finer mesh, reflecting

the fact that the overall error is smaller. In fact, the converged steady state solu-

tion occurs after 6616 and 8955 time steps for the coarse and fine triangulations,

respectively. Note that, for this last heterogeneous test case, the time-stepping

sequence employed an upper bound on ∆tk equal to 0.25. Also in this case the

steady-state numerical solution is similar to the results reported by [5]. We see

from the time sequence that our model constructs the transport map gradually.

Starting from the uniformly distributed initial condition, it first identifies the

larger flow paths and then refines them to arrive at the final configuration. The

last numerical results we report is the time behavior of the Lyapunov-candidate

functional Lk(x), defined in Equation (2.49). As reported in Figure 2.15 the

numerical simulations confirm that Lk(x)(µh(t)) is the strict decreasing and it

converges to the same asymptotic value for different initial configurations of µ0.

The overall results are consistently pointing towards the veracity of the conjecture

that the infinite-time solution to our problem indeed coincides with the solution

of the Monge-Kantorovich equations in the support of the OTP path.
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2. DYNAMIC MONGE-KANTOROVICH

Figure 2.16: Simulation of the dynamics of PP mass reorganization in the maze

experiment of [68, 54]: distribution of PP transport density at dimensionless

times t = 60.3 (central panel), and t = 9.6 × 103 (right panel), compared to the

experimental distribution shown on the left (from [54], reprinted with permission).

The simulation was done on a triangulation Th with 32768 triangles and 16641

nodes. At the last time step of the simulation the µh variation was smaller than

τT = 5× 10−9.

2.5.3.1 Numerical simulation of PP dynamics

The proposed model and its numerical discretization just described can deal with

function k(x) describing very complex geometry. We applied the method to

the simulation of the dynamics of the experiment described in [68, 54]. The

domain encompassing the entire maze setup is discretized by means of a uniform

triangulation obtained by subdividing each edge of the square-shaped maze into

128 subdivisions yielding the coarser mesh Th comprised of 32768 elements and

16641 nodes. This high resolution is required to follow accurately the walls of

the maze, which are described by setting κ(x) = 1000 (brown colors in the upper

left panel of Fig. 2.16) while the maze paths are characterized by κ(x) = 1.

These values are calibrated experimentally to enforce that no measurableflux

through the maze walls occurs. The initial condition µ0 is set to 10−10 on the

maze walls and one elsewhere. The two food sources f+ = 1 and f− = −1 are

shown as red squares in the figure. We employ a variable time step size starting

from ∆t0 = 10−2 and with ∆tj+1 = min(1.01∆tk, 0.5), to ensure stability of

the Forward Euler scheme is verified for all times with an ample safety margin.

The simulation is stopped when var(µh) ≤ 5 × 10−9. Again, this tolerance is

exceedingly small, and could be replaced with no noticeable changes by a tolerance

several orders of magnitude larger, We use low tolerance to verify the robustness of
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our approach. Fig. 2.16 shows the distribution of µh at two different times, chosen

in agreement with the simulations reported in [68, 54]. These times are useful to

identify the intermediate phase when the P.Polycephalum starts retreating from

the dead ends (t = 60.3) and the final steady state configuration achieved at

t = 9.6×103. Note that the same numerical solution is obtained, albeit at different

dimensionless times, starting from different initial conditions µ0. The central

panel shows the intermediate phase when PP completely retreated from the dead

end paths of the maze but persists on all the possible paths connecting the two

food sources. We note a stronger concentration of µh at the edges of the maze

walls, indicating that PP starts accumulating around a narrow band along the

shortest route. At the final time (right panel), µh is distributed along the optimal

route displaying varying approximation levels depending on the alignment of the

mesh triangles with the support of µh. In fact, the vertical portion is one element

thick, while the oblique routes encompass more than one triangle. This is a

common feature that is reproduced experimentally at all mesh refinement levels.

All these observations are in line with the results proposed by [68], although in our

case the graph structure is not imposed a-priori but it is mimicked through the

appropriate definition of k(x). Note that in our continuous setting the presence

of k(x) is related to the cost of through-flow, while the original graph-based

formulation allows only flow through the graph edges.
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Chapter 3

Extension of the DMK equations.

An unexpected branching source

In this chapter we discuss a simple extension of the DMK model described

in Chapter 2 that leads to solutions that resembles the congested and the the

branched transport discussed in Section 1.5. This extension, already suggested

in [68], considers a dynamics where by the time derivative of the transport density

grows non-linearly with the transport flux. A sub-linear growth penalizes the flux

intensity (i.e. the transport density) and promotes distributed transport. Corre-

sponding solutions are reminiscent of the CTP described in Section 1.6. Indeed,

for this case we are able to relate our proposed dynamics with the p-Poisson equa-

tions, typical of CTP. On the contrary, a super-linear growth favors flux intensity

and promotes a transport that occurs preferentially in a concentrated manner,

leading to ”singular” and “fractal-like” solutions that resemble those of the BTP

(Problem 24). In this case we are able to formally derive a Lyapunov-candidate

functional that resembles the functional L defined in Chapter 2, albeit we remain

in Lebesgue-measure setting and we are unable to formally address concentrated

measures. Hence, using the necessary caution, we conjecture that the proposed

extend DMK is a version of branched transport, and again its numerical is highly

efficient and, using ad-hoc linear solver strategies, we are able to obtain highly

promising results.

The extended DMK modifies the dynamical equation for µ(t) raising the flux
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|µ(t)∇u(t)| to the power β > 0, thus leading to the following system

− div (µ(t)∇u(t)) = f(x) = f+(x)− f−(x) (3.1a)

∂tµ(t) = [µ(t)| ∇u(t)|]β − µ(t) (3.1b)

µ(0) = µ0(x) > 0 (3.1c)

complemented with zero Neumann boundary conditions. Assuming existence and

uniqueness of a solution of the above equations, we claim that the solution pair

(µ(t), u(t)) converges toward a steady state configuration (µ∗, u∗), as in the case

β = 1. We find that the behavior of our model changes drastically for the case

for the case 0 < β < 1 and the case β > 1. For the case 0 < β < 1, we claim that

for 0 < β < 1 the pair (µ(t), u(t)) tends to (| ∇up|p−2, up), with

p =
2− β
1− β

where up is the solution of the p-Poisson equation with forcing term f . Note that

analogously to the case β = 1, this new formulation of the p-Poisson equation

leads to very efficient and accurate numerical solutions schemes.

In the case β > 1 the numerical evidence suggests a connection between the

steady state (µ∗, u∗) and the BTP solution described in Section 1.5.Although, in

this case we are still not able to exactly identify the relations, formal calculations

supported by several numerical results, are used to derive these relationships

that suggests possible connections to a far-fetching “negative p-Laplacian”. In

the next sections we will described these formal arguments and the implications

and the intuitions that are drawn by these calculations. Then we report the

numerical results that back-up our claims, and some future research suggested by

the numerical indications. For this case, the numerical simulations show a strong

dependence of the steady state configuration on the initial data µ0. We conjecture

that this is due to the non-convexity of the Lyapunov-candidate functional, which

causes the numerical algorithm to stall in local minima configurations.

3.1 Lyapunov-candidate functional

In this section we present the formal derivation of the Lyapunov-candidate func-

tional for all β > 0. The local existence result presented in Section 2.2 can be, a
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3. EXTENSION OF THE DMK EQUATIONS

priori, extended to the case β > 1, but numerical results and theoretical consider-

ations suggest that the assumption of Hölder-continuous µ is too strong. Never-

theless, since we are mostly concerned on the asymptotic behavior of (µ(t), u(t))

solution of Equation (3.1), we assume existence and uniqueness of a solution pair

for all t ≥ 0.

The most important result is that, similarly to the case β = 1, we can identify

a Lyapunov-candidate functional given by

Lβ(µ) := Ef (µ) +Mβ(µ) (3.2)

Ef (µ) :=
1

2

∫

Ω

µ| ∇u(µ)|2 dx Mβ(µ) :=





1

2

∫

Ω

ln(µ) if β = 2

1

2

∫

Ω

µ
2−β
β

2−β
β

otherwise

Assuming that the formal computations done to obtain the time derivative of

the term Ef (µ(t)) can be reproposed also for the case β 6= 1, we can state the

following proposition

Proposition 42. Assume that a solution pair (µ(t), u(t)) of Equation (3.1) ex-

ists and is C1-regular in time. Then the derivative along the µ(t) trajectory of

functional Lβ is given by

d

dt
(Lβ(µ(t))) = (3.3)

−1

2

∫

Ω

µ(t)β
(
| ∇u(µ(t))|β − µ( 1−β

β )β(t)
)(
| ∇u(µ(t))|2 −

(
µ

1−β
β (t)

)2
)
dx

Proof.

d

dt
(L(µ(t))) = −1

2

∫

Ω

∂tµ(t)
(
| ∇u(t)|2 − µ

2−β
β
−1
)
dx

= −1

2

∫

Ω

(
[µ(t)| ∇u(t)|]β − µ(t)

)(
| ∇u(t)|2 − µ

2−β
β
−1
)
dx

= −1

2

∫

Ω

µ(t)β
(
| ∇u(t)|β − µ1−β(t)

) (
| ∇u(t)|2 − µ2 1−β

β

)
dx

= −1

2

∫

Ω

µ(t)β
(
| ∇u(t)|β − µ

1−β
β
β(t)

)(
| ∇u(t)|2 −

(
µ

1−β
β

)2
)
dx

Setting (
g1(t, x) = | ∇u(t, x)| g2(t, x) = µ

1−β
β (t, x)

)

90



3.2 CASE 0 < β < 1

we can write:

d

dt
(Lβ(µ(t))) = −1

2

∫

Ω

µ(t)β
(
g1(t, x)β − g2(t, x)β

) (
g1(t, x)2 − g2(t, x)2

)
dx < 0

where we introduced the functions g1 and g2 to make clear that the last equation

is strictly negative, since
(
g1(t, x)β − g2(t, x)β

)
and (g1(t, x)2 − g2(t, x)2) have the

same sign.

Equation (3.3) shows that Lβ(µ(t)) is strictly decreasing in time and we can

also deduce, at least formally, that its derivative is equal to zero if the following

equations are satisfied



− div (µ∗∇u∗) = f+ − f−

µ∗ = | ∇u∗|
β

1−β on {µ∗ > 0}
(3.4)

It is clear that Equation (3.4) is equivalent to ∂tµ(t) = 0 in Equation (3.1b).

Moreover Equation (3.4) immediately suggests a link between the large-time equi-

librium state of Equation (3.1) and the p-Poisson equation

− div
(
| ∇up|p−2∇up

)
= f+ − f−

if the following relation between the exponents β and p holds

p− 2 =
β

1− β

3.2 Case 0 < β < 1

The informal equivalence between the steady state version of Equation (3.1) and

the p-Poisson equation, together with the decrease in time of the functional

Lβ, suggests to investigate if the Lyapunov-candidate functional Lβ admits a

minimum and if this minimum is related to the p-Poisson equations. This intuitive

idea is confirmed by the following generalization of Proposition 39 to the case

0 < β < 1.

Proposition 43. Let 0 < β < 1, q = 2−β and P (β) = 2−β
β

. Then the following

equality holds

inf
µ∈LP (β)

+ (Ω)

Lβ(µ) = inf
v∈[Lq(Ω)]d

{∫

Ω

|v|q
q
dx : div(v) = f

}
(3.5)
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Moreover, the functional Lβ admits a unique minimizer µ∗β ∈ L
2−β
β

+ (Ω) given by

µ∗β = | ∇up|p−2

where up is the solution of p-Poisson equation

− div(| ∇up|p−2∇up) = f

with p the conjugate exponent of q:

p =
2− β
1− β

Proof. The proof is an adaptation of the arguments used to prove Proposition 39.

Equation (3.5) can be shown as follows. First, by Lemma 40, we can rewrite Lβ(µ)

as follows

Lβ(µ) = inf
ξ∈[L2

µ(Ω)]d
{Θ(µ, ξ) : div(ξµ) = f} ∀µ ∈ LP (β)

+ (Ω) (3.6)

where

Θβ(µ, ξ) :=
1

2

∫

Ω

|ξ|2µ dx+
1

2

∫

Ω

µ
2−β
β dx.

Now, by using Young/Hölder inequality with conjugated exponents 2/q and 2
2−q ,

we obtain the following inequality
∫

Ω

|ξµ|q dx =

∫

Ω

|ξ|qµq/2µq/2 dx ≤ q

2

∫

Ω

|ξ|2µ dx+
2− q

2

∫

Ω

(µ
q
2 )

2
2−q dx,

which holds for any pair (µ, ξ) ∈
(
L
P (β)
+ (Ω), [L2

µ(Ω)]d
)

. Imposing q
2−q = 2−β

β

(which gives the relation q = 2− β) and dividing by q, yields

∫

Ω

|ξµ|(2−β)

(2− β)
dx ≤ 1

2

∫

Ω

|ξ|2µ dx+
1

2

∫

Ω

µ
2−β
β

2−β
β

dx = Θβ(µ, ξ),

which holds for all µ ∈ LP (β)
+ (Ω) and all ξ ∈ [L2

µ(Ω)]d. Now we take the infimum

over the µ-divergence constrained ξ ∈ [L2
µ(Ω)]d on both side of the previous

inequality, and use Equation (3.6) to obtain :

inf
ξ∈[L2

µ(Ω)]d

{∫

Ω

|ξµ|(2−β)

(2− β)
dx : div(ξµ) = f

}
≤ Lβ(µ) ∀µ ∈ LP (β)

+ (Ω).

Now, taking the infimum over all µ ∈ LP (β)
+ (Ω) yields:

inf
µ∈LP (β)

+ (Ω)

{
inf

ξ∈[L2
µ(Ω)]d

{∫

Ω

|ξµ|(2−β)

(2− β)
dx : div(ξµ) = f

}}
≤ inf

µ∈LP (β)
+ (Ω)

Lβ(µ).

(3.7)
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According to Proposition 26 we have that for any q > 1

argmin
v∈[Lq(Ω)]d

{∫

Ω

|v|q
q
dx : div(v) = f

}
= v∗ = −|∇up|p−2∇up,

where p is the conjugate exponent of q. Now considering q = 2 − β (and thus

p = (2− β)(1− β)) the following chain of equalities and inequalities holds

∫

Ω

| ∇up|p
2− β dx =

∫

Ω

|v∗|(2−β)

(2− β)
dx

= inf
v∈[L(2−β)(Ω)]d

{∫

Ω

|v|(2−β)

(2− β)
dx : div(v) = f

}

≤ inf
µ∈LP (β)

+ (Ω)

{
inf

ξ∈[L2
µ(Ω)]d

{∫

Ω

|ξµ|(2−β)

(2− β)
dx : div(ξµ) = f

}}
(3.8)

by Equation (3.7) we obtain

≤ inf
{
Lβ(µ) : µ ∈ LP (β)

+ (Ω)
}

≤ L(| ∇up|p−2) = Ef (| ∇up|p−2) +Mβ(| ∇up|p−2)

=

∫

Ω

| ∇up|p
2

dx+
1

2

∫

Ω

| ∇up|(p−2) 2−β
β

2−β
β

dx

=

∫

Ω

| ∇up|p
(2− β)

dx

(3.9)

where in the last equality we used

∫

Ω

| ∇up|p
2

dx =

∫

Ω

fup − |∇up|p−2 | ∇up|2
2

dx

≤ sup
V ∈C1(Ω)

∫

Ω

fϕ− |∇up|p−2 | ∇ϕ|2
2

dx

= Ef (µp = | ∇up|p−2)

= inf
ξ∈[L2

µp
(Ω)]d

{∫

Ω

|ξ|2
2
µp dx : div(ξµp) = f

}

≤
∫

Ω

| ∇up|p
2

dx

Thus, all the inequalities in Equations (3.8) and (3.9) are actually equalities,

which shows that µ∗β is a unique minimum, with uniqueness following from the

strict convexity of Lβ. In fact, Ef is convex, being the sup of functionals that

are linear with respect to µ, and Mβ is strictly convex for 0 < β < 1. Thus the

sum is strictly convex. This completes the proof.
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3. EXTENSION OF THE DMK EQUATIONS

Propositions 43 and 45 suggest the following conjecture for the case 0 < β < 1

Conjecture 2. For 0 < β < 1 the pair (µ(t), u(t)) solution of Equation (3.1)

converges to the pair (| ∇up|p−2, up) where up is the solution of the p-Poisson

equation with

p =
2− β
1− β (3.10)

This holds for any initial data µ0.

We want to highlight two remarkable facts regarding Proposition 43 and Con-

jecture 2 when β → 1 and β → 0. In the first case, according to Equation (3.10),

when β tends to 1 we have that p→ +∞, in good agreement with the fact that

the MK equations are the limit of the p-Poisson equation as reported in Proposi-

tion 20. Similarly, the exponent q = 2− β tends to 1, which is coherent with the

equivalent formulation of the MK equations described in Equation (1.9). Note

that it is possible to include the case β = 0 in Conjecture 2 since in this case

µ(t)→ 1 and the system of equations converges to the classical Poisson equation

(p = 2).

3.3 Case β > 1

In this section we discuss our attempts to extend the arguments presented in

previous section to the case β > 1. We are particularly interested in under-

standing if functional Lβ admits a minimizer and, if it does, if µ(t) is converging

to this minimizer as t → ∞. The first part of the proof of Proposition 43

partially answers these questions and it can be reproposed, at least for the case

1 < β < 2, where, by the relations q = 2 − β, the exponent q remains positive.

From Equations (3.8) and (3.9) we obtain:

inf
v∈[Lq+(Ω)]d

{∫

Ω

|v|q
q
dx : div(v) = f

}
(3.11)

≤ inf
µ,ξ





∫

Ω

|ξµ|q
p

dx :
(µ, ξ) ∈ LP (β)

+ (Ω)× [L2
µ(Ω)]d

div(ξµ) = f





≤ inf
µ∈LP (β)

+ (Ω)

Lβ(µ)

Unfortunately we are not able to identify a candidate minimum for Lβ and state

the analogous of Proposition 43 for 1 < β < 2. Nevertheless, the minimization
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problem in Equation (3.11) resembles the BTP formulated by Xia, described

in Problem 24, with the exponent q playing the rule of the branch exponent α.

However, we have to highlight an important difference between Equation (3.11)

and Problem 24. In fact, in Xia’s formulation the integrals are computed with

respect to 1-dimensional Hausdorff measure, while in our computations we always

used the Lebesgue measure.

Despite these differences, the numerical simulations presented in Chapter 3

suggest that system 3.1 admits a steady state solution (µ∗, u∗) where the supports

of the numerical solutions µ∗h seem to approximate the 1-dimensional structures

related to the BTP.

Thus, we can state the following:

Conjecture 3. For β > 1, the solution (µ(t), u(t) of Equation (3.1) admits

an equilibrium point (µ∗β, u
∗
β), which depends on the initial condition µ0. This

solution is a minimum of the Lyapunov-candidate functional Lβ.

Another informal argument supporting our claims is to look at Equation (3.4)

describing the steady state of system Equation (3.1). Relation p = (2−β)/(1−β)

suggests that the steady state should solve a p-Poisson equation with a negative

p exponent. The only reference found in the literature regarding the existence of

solutions of this equation is contained in the BTP theory of Xia in[75], even if

there the results are defined only on graphs. Note how the exponents q = 2− β
and p = (2 − β)/(1 − β) are one the conjugate of the other. In Figure 3.1 we

summarize the behavior of exponents p and q with respect to β.

Remark 5. One possible strategy that can be adopted to reconcile the incompat-

ibility in the measure used for the integration, is inspired by the Modica-Mortola

approach described in [63]. The main idea is to introduce a parameter ε > 0

in Equation (2.45) using the Young’s inequality with ε

ab ≤ εp

p
ap +

1

εqq
aq

in order to weight differently the terms Ef (µ) andMβ(µ) that form Lβ(µ). In Sec-

tion 3.4.3.1 we will present some preliminary numerical results that go into this

direction. We do not know at this moment if such procedure will introduce a new

relation between the exponent β and α of the BTP.
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L1-MK
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−10
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0
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β

p

p = 2−β
1−β

L1-MK
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−2

−1
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1

2

β

q

q = 2− β

Figure 3.1: Values of p (left) given by Equation (3.10) and its conjugate q = p′

(right) with 0 ≤ β < 3. We divided each graph in three portions. The first

portion (dashed line) restricted to the case 0 < β < 1 represents the p and

q values for which we claim (Conjecture 2) the equivalence with the p-Poisson

equations. The second portion (sold line) corresponds to the interval 1 < β < 2,

for which we conjecture (and see numerically) a connection with the BTP, where

the exponent q belongs to ]0, 1[. The last part (dotted line), β > 2, is where even

the heuristic analysis of the minimization problem associate to the Lyapunov-

candidate functionalfails, with q < 0, even if in our numerical experiments we see

branching structures appear. We also remark the case β = 1 which corresponds

to the MK equations and to the p-Poisson equations for p→∞
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3.3 CASE β > 1

Extended DMK (Eq. 3.1)

− div (µ(t)∇u(t)) = xf

∂tµ(t) = [µ(t)| ∇u(t)|]β − µ(t)
︸ ︷︷ ︸

(µ(t), u(t))
t→+∞−→ (µ∗β, u

∗
β)

Conj. 1

(µ∗β, u
∗
β)=(µ∗, u∗)

MK eqs. (1.10)

− div(µ∗∇u∗)=f

| ∇u∗|=1 in µ∗>0

Beck. Prob. (1.9)

min
v

∫

Ω

|v|q=1 dx

s.t. :
v ∈ [L1(Ω)]d

div(v) = f

Conj. 2 (p = 2−β
1−β )

(µ∗β, u
∗
β)=(| ∇up|p−2, up)

p-Poisson Eq. 1.20

− div(|∇up|p−2∇up)=f

CTP (Section 1.6)

min
v

∫

Ω

|v|q dx

s.t. :
v ∈ [Lq(Ω)]d

div(v) = f

Conj. 3 (p = 2−β
1−β )

(µ∗β, u
∗
β)=(| ∇up|p−2, up)

(p < 0)-Poisson ([75])

− div(|∇up|p−2∇up)=f

BTP (Prob.24)

min
v

∫

E⊂Ω

|v|qdH1

s.t. :
v ∈ [M(Ω)]d

div(v) = f

Lyapunov-candidate functional for DMK

Lβ(µ) = Ef (µ)+Mβ(µ)

(Equation (3.2))

∂tLβ(µ(t)) < 0

(Proposition 45)

Proposition 43
For β ∈ [0, 1] the minimization of Lβ is equiva-

lent to the above problems for [1, 2] 3 q = 2−β

012 β

0 1 2

q

Figure 3.2: Schematic representation of the results and statements in this section.

It is a revisited version of Figure 1.5 (blue box) where we highlight the connec-

tions between the extended DMK model and the transport problems written as

minimization problems with divergence constraint.
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3. EXTENSION OF THE DMK EQUATIONS

3.4 Simulations of the Extended DMK equa-

tions

In this section we present numerical evidence in support of the conjectures that

system 3.1 admits a steady state configuration for t → +∞ connected with the

congested transport problem for 0 < β < 1 and with the Branched Transport

Problem for β > 1. The discretization method used is the combination of the

P1,h/2 − P0,h spatial discretization with forward Euler time stepping described

in Section 2.5.1. By using this scheme the necessary adjustments for β 6= 1 are

minimal.

For 0 < β < 1 we test Conjecture 2 in a 2-dimensional example, comparing

our result with an exact solution up of the p-Poisson equation. All the simulations

considered confirm our conjecture, showing that the numerical solution via the

discretization of Equation (3.1) can be proposed also for the numerical solution

of the p-Poisson equations. For the case β > 1 we present some examples of the

equilibrium configurations for different powers β and different types of f+ and

f−.

3.4.1 Numerical approach

We discretize Equation (3.1) with the P1,h/2 − P0,h strategy for the spatial dis-

cretization of (u, µ), combined with forward Euler scheme. Accordingly, the ap-

proximate pair (µh(t, x), uh(t, x) can be written as

uh(t, x) =
N∑

i=1

ui(t)ϕi(x) ϕi ∈ P1(Th/2)

µh(t, x) =
M∑

k=1

µk(t)ψk(x) ψk ∈ P0(Th)

Following the notation adopted in Section 2.5, the discretization scheme described

above leads to the following sequence of linear systems

A[µk]uk = b (3.12)

µk+1 = µk + ∆tk

[
Bβ[uk]

(
µk
)β − µk

]
(3.13)

where A[µk] is the stiffness matrix associate to µk and Bβ[uk] is matrix defining

the norm of the gradient of uh(t
k, x) raised to the power β. Starting from the
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3.4 SIMULATIONS OF THE EXTENDED DMK EQUATIONS

f = −0.572

f = 2.866

f = 0.0

Figure 3.3: Triangulation Th (with 5191 nodes and 10179 triangles) and the

forcing term f(x, y) = F (r). The mesh points follow the concentric circles that

compose the boundary of the supports of f+ and f−. The right panel reports

spatial distribution of f+ and f− on their supports.

projected initial data µ0
h, we iterate until

var(µkh) :=
‖µk+1

h − µkh‖L2(Ω)

∆tkk‖µkh‖L2(Ω)

)

is below a fixed threshold τT, in which case we assume a steady state configuration

is reached. We impose a lower bound of 10−10 to µh(t, x) to avoid singularity of

the linear system arising from the elliptic equation in Equation (3.1a).

The linear system in Equation (3.12) is solved via Preconditioned Conjugate

Gradient (PCG). In Chapter 4 we will discuss this problem and the strategies

devised for the efficient solution of the sequence of linear systems given in Equa-

tions (3.12) and (3.13), in particular in the case β > 1.

3.4.2 Numerical Experiments for 0 < β ≤ 1

We now present a series of numerical experiments relative to the case 0 < β ≤ 1.

We compare the long-time limit of µh(t, x), denoted as µ∗h, with µ∗β := | ∇up|p−2,

where up is the solution of the p-Poisson equation for which an explicit formula

is known. The test case considered is a two dimensional example taken from [4],

where the forcing term is radially symmetric, which means that f(x, y) = F (r)
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3. EXTENSION OF THE DMK EQUATIONS

with r =
√
x2 + y2, and F :]0, 1[7→ R. Under these assumptions, the exact

solution of the p-Poisson equation reads:

up(x, y) = U(r) = −
∫ 1

r

sign(Z(t))|Z(t)| 1
p−1dt Z(r) = −1

r

∫ r

0

tF (t)dt

According to the relation p = (2 − β)/(1 − β) in Equation (3.10), we can write

an explicit formula for µ∗β that reads as

µ∗β(x, y) = |Z(r)|
p−2
p−1 = |Z(r)|β (3.14)

In our numerical experiment we take F as a piecewise constant function, positive

on the interval ]0, 1/3[, zero [1/3, 2/3], and negative on ]2/3, 1[. The value of F

on the positive and the negative parts are two constants c1, c2 calculated such

that the right hand side of the linear system arising from the elliptic equation

is orthogonal to the constant vector, up to machine precision. The tuning of

the constants corrects quadrature errors c1, c2 is necessary to provide accurate

approximation of the integrals and correct errors introduced during the triangu-

lation of the supports of f+ and f−. The mesh Th and the forcing term f are

plotted in Figure 3.3.

Our numerical experiments consist in testing the existence of a steady state µ∗h

for different values of β and evaluating the the error with respect to the candidate

exact solution µ∗β, error defined as

err(µkh) :=
‖µkh − µβ‖L2(Ω)

‖µβ‖L2(Ω)

We repeat the procedure for a sequence of conformally refined grid and we eval-

uate the experimental rate of convergence err(µ∗h). We consider the exponents

β = 0.25, 0.5, 0.75 and the limit value 1.0, which corresponds to the case p = +∞,

exploiting the fact that expression in Equation (3.14) is well defined also for β = 1

and represents the optimal transport density of the MK equations for the consid-

ered forcing term.

In Figure 3.4 we report the time evolution of var(µh(t)) and err(µh(t)) (that

are the linear interpolations of the (var(µkh), err(µkh)), as in Section 2.5), for the

values of β considered, and the four levels of mesh refinement. The tolerance τT

used to fix the achievement of the steady state configuration is 5×10−7. As shown

in Figure 3.4, in all simulations the equilibrium configuration is achieved, with

rate of convergence that increase at lower values of β. For practical purposes, the
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Figure 3.4: Log-log plots of var(µh(t, ·)) (upper panels) and err(µh(t, ·)) (lower

panels) vs. time. The columns refer, from left to right, to the results obtained

with β = 0.25, 0.5, 0.75, 1.0.

value of τT could be raised to much bigger tolerance without affecting the err(µ∗h),

since in all simulations err(µh(t)) is practically stationary after t = 10, when

var(µh(t) ∈ [10−3, 10−4]. Instead, for reason of numerical testing we continua the

simulations until the indicated threshold is achieved.

In Figure 3.5 we report the behavior of err(µ∗h) for successive refinements

of the mesh Th, for the four values of β considered. The experimental rate of

convergence of the scheme (reported in the legend in Figure 3.5) is proportional

to hm where the power m increases with β, passing from m = 0.775 for β = 0.25

to from m = 0.981 for β = 1.

We report in Figure 3.6 the time evolution of the functional Lβ(µh(t)), start-

ing from three different initial data µi0 (i = 1, 2, 3) with formulas given in Equa-

tion (2.56). In all simulations Lβ(µh(t)) decreases monotonically and always

attains the same minimum value in time independently on the initial conditions.

After t ≈ 10 the value of Lβ(µh(t)) becomes apparently stationary, even if con-

tinues to decrease. This result is further confirmation of the correctness of Con-

jecture 2 and of Proposition 45.

3.4.3 Numerical Experiments for β > 1

In this section we present the numerical results obtained when β > 1 is imposed

in Equation (3.1). We adopt the same discretization method adopted for the
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h h/2 h/4 h/8

5 · 10−3

10−2

5 · 10−2

err(µ∗
h) β = 0.25 err(µ∗

h) ∝ h+0.775

β = 0.5 err(µ∗
h) ∝ h+0.881

β = 0.75 err(µ∗
h) ∝ h+0.925

β = 1.0 err(µ∗
h) ∝ h+0.981

Figure 3.5: Log-log plot of err(µ∗h) vs. the mesh parameter h for β =

0.25, 0.5, 0.75, 1.0. In the legend we report the average experimental convergence

rate for each power β.
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Figure 3.6: Time behavior of the Lyapunov-candidate functional Lβ(µh(t), for

β = 0.25, 0.5, 0.75, 1.0 (from left to right) starting from three different initial data

µ0. We report the results of the coarser mesh, without refinement, since for the

other cases they are practically indistinguishable.
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3.4 SIMULATIONS OF THE EXTENDED DMK EQUATIONS

the case 0 < β ≤ 1. In our numerical experiments we consider two test cases.

In the first case we take f equal to the piecewise constant function f2 defined

in Section 2.5.2.1. We will refer to this study test as (TC1).

(NewP) The second test case (TC2) considers a forcing term f = f+ − f−

with f+ is formed by 50 Dirac sources with unit mass randomly distributed in the

region Ω = [0.1, 0.9]× [0.1, 0.9], while f− is a single Dirac located at (0.05, 0.05)

that balances f+. We also consider different initial data µ0, using a uniformly

unitary transport density and the initial data µ2,3
0 defined in Equation (2.56). The

simulations are conducted for different values of β (in particular β = 1.1,1.2, 1.3,

1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.5, 3.0). Higher values of β are not considered

since the linear systems arising from the discretization of the elliptic equations

become extremely ill-conditioned and their solution with standard schemes un-

feasible. In Chapter 4 we will discuss about these problems and the strategies

adopted to cope with it.

We proceed with successive refinements of an initial grid Th. For (TC1) we

use a grid of 1615 nodes and 3100 triangles, aligned with the support of f , while

for the (TC2) we use an initial triangulation of the domain [0, 1]× [0, 1] with 1661

nodes and 3192 triangles. The 51 points where the f is concentrated coincide with

some nodes of the grid. The magnitude of the atomic forcing terms is calculated

so that the elements of the right-hand side vector b in Equation (3.12) have the

same values for different refinement. Again, τT = 5 × 10−7. We discuss the

behavior of the model solution by looking at the results obtained for β = 1.5 as

representative examples for the other values of β. In fact, most of considerations

that now we will present still hold for true any other value of β, grid or initial

data µ0 considered. We will discuss later the main differences when different

values of β are employed. In all the numerical simulations, we experimented

strong and sudden variations of µh, since the term ∆µkh = Bβ[uk]
(
µk
)β − µk in

Equation (3.13) can rapidly increases by several orders of magnitude. This effect

is amplified for greater values of β. To preserve the stability of the forward Euler

scheme we use a time step ∆tk whose size is tuned according to term ∆µkh.

In Figure 3.7 we report the time evolution of var(µh(t)) with initial data

µ0 ≡ 1, for both test cases considered. Unlike the numerical experiments for

β ≤ 1 we see that the var(µh(t)) is not monotonically decreasing in time, and

oscillations are present for different levels of refinement.
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Figure 3.7: Time evolution of var(µh(t)) on successive refinement of grid Th for

β = 1.5 and µ0 ≡ 1. The results for TC1 are reported on the left, while those

obtained for TC2 on the right.

Despite the worrying and irregular behavior of var(µh(t)), the average vari-

ation is decreasing steadily and for both test cases all the simulations show

convergence toward an equilibrium configuration (µ∗h, u
∗
h) for all values of β and

for every grid and initial data µ0 we have considered.

Looking at the results for both test cases, we see that the support of µ∗h

(i.e. the union of all triangles in me Th where µh is above the minimal imposed

threshold) tends to create a network. This network is made of narrow channels

connecting the supports of f+ and f−. We denoted these supports by the symbols

Q+ and Q−, respectively. The created network presents a hierarchical structure

in which the channels with higher flow capacity, determined by the values of µh,

repetitively branch into sub-channels until the whole support of f is covered. The

networks described above are shown in Figures 3.8 and 3.9, where we report the

spatial distribution behavior of µ∗h at successive grid refinements for β = 1.5,

and µ0 ≡ 1. Even if it is difficult to compare µ∗h for different refinement levels,

an underlying limit network is clearly appearing. This result is confirmed for

any other values of β, grid or initial data µ0 considered. In particular for TC1,

we see in Figure 3.8 that inside Q+ and Q− µ∗h forms a branching structures

with allegedly fractal features. In the region outside Q+ and Q−, the support µ∗h

concentrates on a series of connected triangles, creating a tight channel with high

conductivity. These effects persists at each refinement level, and the support of

µ∗h seems to approximate a 1-dimensional structure.

In TC2 we perceive another phenomenon, severe several branches in the µ∗h

104
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Th Th/2

Th/4 Th/8

Figure 3.8: Numerical approximation µ∗h for β = 1.5 for the piecewise constant

forcing term The initial data µ0 is uniformly equal to 1 on the entire domain. We

show the results obtained on different mesh refinements levels. The supports of

f+ and f− are contoured in black. A constant unit mass is transported from the

left to the right rectangles.
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Th Th/2

Th/4 Th/8

Figure 3.9: Numerical approximation µ∗h for β = 1.5 for TC2. The initial

data µ0 is uniformly equal to 1 on the entire domain. We show the results

obtained on different levels of mesh refinements. The small black circles indicate

the approximate position of the Dirac masses. In the bottom panels we have

indicated with dashed circles the area where topological changes on the network

structures occur.
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Figure 3.10: Zoom of the small dotted rectangles located on the central channels

indicated in in Figure 3.8. The left panel reports the zoom for Th and Th/2, while

the right panel those for Th/4 and Th/8. We overlap the support of µ∗h for a finer

grid above the support of µ∗h for the coarser one. We show only the triangles

where µ∗h is above the threshold 10−10. We see that the first two triangles (blue)

of Th, those of Th/2 (green), those of Th/4 (red), and finally those of Th/8 (pink).

tree are not straight lines. We attribute this occurrence to a problem of grid-

alignment of the numerical solution, presumably attributable to the extreme

spatial irregularity of µ∗h. Indeed, we are surprised by the capabilities of our

numerical scheme to reproduce, albeit with inaccuracies, these singular struc-

tures.

In Figure 3.10 we show a small region inside the dashed rectangles in Fig-

ure 3.8. The “section” of these channel decreases with h, while the crossing flux

remains constant (since the leading area as the same), thus the values of µ∗h in-

crease using finer grids. This means that for finer grids we obtain µ∗h with more

irregular support and with increasing maximal values reported in Figures 3.8

and 3.9. As consequence of such effects we have a rapid increase of the condition-

ing number of the matrix in the linear system arising from the elliptic equation,

not shown here, with extreme cases in which the PCG scheme does not converges.

We cope to this problem with the strategy described in Chapter 4. Nevertheless

the method requires the construction of Incomplete Cholesky (IC) factorization

with partial fill-in of the SPD A[µh] in Equation (3.12), that in the cases of very

refined meshes and high values of β can not always be computed.

Unlike the case β ≤ 1, for β > 1 there is a dependence with respect to

the initial data µ0. In Figure 3.11 we report the results obtained for µ∗h on the

finest grid starting with µ2
0, µ

3
0 (left) as described in Equation (2.56). In the

case µ0 = µ2
0, in which the initial data attain the minimum value of 0.01 at the

center of the square, the support of the equilibrium configuration seems to avoid

altogether regions with lower values of µ0. We conjecture that the converged
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Figure 3.11: Spatial distribution of initial data (µh)i for i = 2, 3 defined in Equa-

tion (2.56) (left panel), and the corresponding asymptotic state µ∗β for TC1 (cen-

tral panel) and TC2 (right panel). We report only the results obtained using the

finest grid and β = 1.5.

numerical solutions correspond to local minima for Lβ. As a consequence, the

patterns reported in Figure 3.9 display topological changes (highlighted with

circles) between different mesh levels. For example, from the figure we can see

that going from the third to the fourth level four topological changes are found.

We would like to highlight that, independently of initial data, power β, or

grid, the support of µ∗h in TC2 has the structure of an acyclic graph connecting

all the sink/source points. The absence of loops is a fundamental characteristic of

the solution of the BTP, that is never imposed a priori in our model, and provides

a further confirmation of the strong connection of the extend DMKmodel and the

BTP.

Finally, Figures 3.12 and 3.13 report a comparison among the approximations

µ∗h obtained for the different values of β, using the finest grid and the initial

data µ0 ≡ 1. The panels show the results at increasing values of β from left

to right and top to bottom. For all test cases the tendency for creating more

concentrated networks with high conductivity channels increases with the power

β. In fact, we note that the number of central channels created at the equilibrium

varies from three for β = 1.1 to one for β = 3. The final configurations shows
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β = 1.1 β = 1.3

β = 1.5 β = 1.8

β = 2.0 β = 3.0

Figure 3.12: Behavior of the spatial distribution of µ∗β for TC1 for different values

of β. We remark that, although the color scale starts from the value 10−4, the

white regions indicate where µ∗β attains the minimal value 10−10.
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β = 1.1 β = 1.3

β = 1.5 β = 1.8

β = 2.0 β = 3.0

Figure 3.13: Behavior of the spatial distribution of µ∗β for TC2 for different values

of β. We remark that, although the color scale starts from different initial values,

the white regions indicate where µ∗β attains the minimal value 10−10.
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no branching points in the channel and seems to be the most affected by grid

alignment problems.

3.4.3.1 Lyapunov, Energy, and Mass Functionals

In this section we analyze numerically the time evolution of the Lyapunov-

candidate functional Lβ(µh(t)), its constituents Ef (µh(t)) and Mβ(µh(t)), and∫
Ω

(µh(t)). In addition, we look for a power-law scaling of these quantities as

the mesh parameter h is refined. This latter exercise is an attempt to find a

proper scaling in the search for a mean to approximate singular measure using

the Lebesgue integrals typical of the FEM method (see also remark 5).

Figure 3.14 shows the time evolution of the different components of of Lβ(µh(t))

at the different refinement levels, using β = 1.5, and the initial data µ0 ≡ 1. The

numerical simulations support the statements in Proposition 45 on the decrease

in time of the Lβ(µh(t)). These results are confirmed for all the powers β, initial

data µ0, and for both forcing terms considered. The dependence on the initial

data µ0 clearly influences the asymptotic value Lβ(µ∗h), that unlike for the cases

0 < β < 1, is not the same.

As already anticipated, we note that the value of Lβ(µ∗h) scales with respect

to the mesh parameter h, in a form that resembles a power law:

Lβ(µ∗h) ∝ hm (3.15)

Also functionals Ef (µ∗h),Mβ(µ∗h) and total mass
∫

Ω
µ∗h dx present similar behav-

iors, as shown in Figure 3.15, where we report the log-log plots of the different

quantities vs the mesh parameter h for β = 1.5. We have also calculated the

least-square lines whose slope gives the value of the power m in Equation (3.15)

(the values of m for the different functionals are reported in the legend).

We note that the total mass always decreases with h. This is due to the

tendency of µh to concentrate in progressively narrower channels. Intuitively,

this limit structure should be measured via a singular Hausdorff-type measure,

while the FEM method used in our calculations employees the Lebesgue measure.

The components Ef and Mβ of the Lyapunov-candidate functional increase at

a practically constant rate that depends on the forcing, as seen from the values

of the power m that approaches 0.3 or TC1 and 0.5 for TC2. The value of m

changes with the power β of the dynamics, as seen in Figure 3.16 that reports
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Figure 3.14: Time evolution of Lβ(µh(t)), Ef (µh(t)),Mβ(µh(t)), and
∫

Ω
µh(t) dx

(top to bottom) for the test case 1 (left) and 2 (right). Each figure reports the

time evolution for each grid refinement level. We used the exponent β = 1.5 and

the initial data µ0 ≡ 1.
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Figure 3.15: Log-log plot values of Lβ(µ∗h), Ef (µ∗h),Mβ(µ∗h), and
∫

Ω
µ∗h dx vs the

mesh parameter h. The left panels show the results obtained for the piecewise

constant forcing term, the right panel those for the atomic forcing term. We used

the exponent β = 1.5 and the initial data µ0 ≡ 1. Note that the scale of the

abscissa is reversed.

m vs. β. It is interesting to note that while the power m for the total mass

varies linearly with β, the behavior for the Lyapunov-candidate functional is

different and varies with the forcing term. The results of this section are an

attempt at finding a proper scaling for the two components of the Lyapunov-

candidate functional function as an effort to approximate singular measures using

the Lebesgue integrals characteristic of the finite element method. While this

essay has been unsuccessful, we are reassured by these results that show the

power of an accurate and robust numerical tool to suggest possible strategies for

the deeper understanding of the considered phenomenon.

In conclusion of this chapter, we would like to remark that there exist sparse

examples in the literature addressing the numerical solution of the BTP both in

the discrete and in the continuous settings. For example, for the case of L1-OTP,

in addition to the work of [5], we can cite the work of [26] who propose a numerical

approach based on finite difference discretization and an original application of

Newton method. In the case of BTP [55] address the minimization problem via

finite difference discretization and a conjugate gradient minimization method, but

they report problems similar to those described in this section (grid alignment and

convergence to local minima). Despite all the criticalities that are still present in
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Figure 3.16: The left panels show the results obtained for the piecewise constant

forcing term, the right panel those for the atomic forcing term. Approximate

exponent m for Lβ(µ∗h), Ef (µ∗h), Mβ(µ∗h), and
∫

Ω
µ∗h dx for β = 1.1,1.2, 1.3, 1.4,

1.5, 1.6, 1.7, 1.8, 1.9. The initial data considered is µ0 ≡ 1.
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our approach, starting from the fact that we are not able to formulate an exact

relationship between the equilibrium configurations (µ∗β, u
∗
β) and the solutions of

BTP, we are confident that our conjectures, or some appropriate variants, are

true. Then our numerical formulation would represent an original and highly

efficient approach for the numerical solution of OTP and BTP.
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Chapter 4

Spectral Preconditioner for

Extended DMK with β > 1

In this chapter we present the strategy we have developed to efficiently solve the

sequences of linear systems arising form FEM discretization of Equation (3.1)

described in Section 3.4. As already mentioned in Section 3.4.3, when β > 1

the linear systems to be solved at each time step are characterized by a large,

sparse, ill conditioned symmetric positive definite (SPD) matrix A. Extreme

cases in same instances prevent the convergence of PCG with standard precondi-

tioners such as the Incomplete Cholesky (with partial fill-in) factorization of A.

We investigate several preconditioning strategies that incorporate partial approx-

imated spectral information. We present numerical evidence that the proposed

techniques are efficient in reducing the condition number of the preconditioned

systems, not only decreasing the number of PCG iterations and the overall CPU

time, but also enabling the correct solution of linear system in the cases where

standard preconditioners fail. These results are collected in the manuscript [6].

4.1 Spectral Method

The numerical discretization by finite elements in space and explicit Euler in time

described in Sections 3.4 and 3.4.3 requires the solution of the large, sparse SPD

linear system. Following the notation adopted in Section 2.5 and Equation (3.12),
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this sequence of linear systems reads as

A[µk]uk = b (4.1)

µk+1 = µk + ∆tk

[
Bβ[uk]

(
µk
)β − µk

]
(4.2)

where k is the time step index, A[µk] is the stiffness matrix associated to µk, and

Bβ[uk] is the matrix defining the norm of the approximate gradient of uh(t
k, x)

raised to the power β. Because of typically large dimensions, we use the Pre-

conditioned Conjugate Gradient (PCG) method solver to solve the linear system

in Equation (4.1). PCG convergence becomes increasingly difficult as time pro-

gresses since the condition number of the system matrix grows with β. In fact,

the dynamics of the model is such that µh tends to zero in large portions of Ω.

To avoid non-coerciveness of the elliptic partial differential equation, we impose

a minimum threshold for µh equal to 10−10. However, the maximum value of µh

increases as its support concentrates along thinner paths appearing for increasing

values of β, as shown in Section 3.4.3.

According to [58] we can estimate the minimum and maximum eigenvalue of

the stiffness metric A[µh] as follows

λmin(A[µh]) ≤ C1h
2µmin λmax(A[µh]) ≥ C2µmax

with the constants depending on the domain Ω and the triangulations Th and

Th/2. Thus the condition number of A[µkh] increases with time, possibly leading

to non-convergence of the PCG iteration with a standard preconditioner such

as an Incomplete Cholesky (IC) factorization with partial fill-in, which can not

always be computed.

The strategy to develop efficient preconditioners adopted in [6] explicitly takes

into consideration the spatial and temporal variability of the transport density

by calculated spectral information of the involved stiffness matrices. The idea

of using partial spectral knowledge to accelerate linear system solvers has been

described in several papers such as [20, 27, 39] and, more recently in [50]. In

all these papers the authors start with an initial preconditioner P 0 and use an

approximation of a few eigenvectors of the preconditioned matrix to update P 0

with a low-rank matrix. Another characteristic shared by all these previous pa-

pers is that the coefficient matrix of the linear systems to be solved Axk = bk

remains unchanged throughout the whole sequence. This allow the incremental
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4. SPECTRAL PRECONDITIONER FOR EXTENDED DMK WITH β > 1

refinement of the set of eigenvectors used to update the low-rank correction ma-

trix. In this model we consider instead sequences of sparse linear systems with

changing coefficient matrices dynamically depending on the transport density.

We present numerical evidence that the proposed techniques are efficient in re-

ducing the condition number of the preconditioned systems, thus decreasing the

number of PCG iterations and the CPU time. In the section we investigate sev-

eral strategies that incorporate incomplete spectral information [8] on previous

matrices to update the preconditioner for the current and future system.

4.2 The spectral preconditioner

Consider the sequence of linear systems of the form

Akxk = b, (4.3)

where Ak ∈ Rn×n is an SPD matrix, xk, b ∈ Rn. For a given linear system

Akxk = b we study the acceleration of the PCG solver provided by the following

spectral preconditioner:

P = P 0 + V pΛ
−1
p V

T
p , (4.4)

where V p = [v1, . . . ,vp] and vj, j = 1, . . . , p are approximate eigenvectors either

of P 0Ak or ofAk; Λp = diag(λ1, . . . , λp), and λj, j = 1, . . . , p are the correspond-

ing smallest eigenvalues. When V p contains eigenvectors of P 0Ak, the effect of

the low-rank correction is easily shown to be:

PAkvj = (λj + 1)vj, j = 1, . . . ,m.

so that some of the eigenvalues of the new preconditioned matrix are incremented

by 1 with an obvious reduction of the condition number.

We propose two different ways to obtain the approximated eigenvectors needed

to construct the spectral preconditioner: evaluating the sought eigenpairs with

an external enslave (Deflation-Accelerated Conjugate Gradient, DACG) or ap-

proximating them directly from the PCG iterations at previous time-steps. For

simplicity, from now on we will write A for Ak when no confusion arises.

4.2.1 Approximating the smallest eigenpairs by DAGC

Following [8], we propose to approximate some of the leftmost eigenvectors of a

given coefficient matrixAk by performing some preliminary iterations of an eigen-
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4.2 THE SPECTRAL PRECONDITIONER

Algorithm 1 DACG method

• Input: tolerance τDACG,P 0, p. Set V p = 0.

• for j = 1 to p

1. Choose a unit 2−norm x0 such that V T
px0 = 0;

2. Find the minimum of the RQ over all x such that V T
px = 0 by a

nonlinear PCG procedure, with starting point x0 and preconditioner

P 0. Stop whenever the following test is satisfied:

‖AxDACG − q(xDACG)xDACG‖
q(xDACG)‖xDACG‖

≤ τDACG (4.5)

3. Set λj = q(xDACG), vj =
xDACG

‖xDACG‖
, V p = [V p, vj].

• end for

value solver. We chose the Deflation-Accelerated Conjugate Gradient (DACG)

eigensolver [7, 10], which is based on the preconditioned conjugate gradient (non-

linear) minimization of the Rayleigh Quotient (RQ) q(x) = xTAx/xTx. The

leftmost eigenpairs are computed sequentially, by minimizing RQ over a subspace

orthogonal to the previously computed eigenvectors. This method, which applies

only to symmetric positive definite matrices, has been proven very efficient in

the solution of eigenproblems arising from discretization of PDEs in [10]. DACG

also proved very suited to parallel implementation as documented in [9] where an

efficient parallel matrix vector product has been employed. Our implementation

of DACG is shown in Alg. Section 4.2.1. The main computational cost of one

DACG iteration is given by:

1. One matrix-vector product.

2. One application of the preconditioner.

3. Orthogonalization of the search direction against the previously computed

eigenpairs (columns of matrix V p). The cost of this step is increasing with

the number of eigenpairs begin sought.
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4. SPECTRAL PRECONDITIONER FOR EXTENDED DMK WITH β > 1

Convergence of DACG is strictly related to the relative separation between con-

secutive eigenvalues, namely

ξj =
λj

λj+1 − λj
. (4.6)

When two eigenvalues are relatively close, DACG convergence may be very slow.

Also DACG takes advantage of preconditioning, which in our case is chosen to

be the IC factorization of matrix A.

Once a small number of leftmost eigenvectors has been computed and stored

as columns of V p, different low-rank corrections of a given preconditioner P 0 can

be defined as e.g. described in [49]. For example a BFGS-style preconditioner

can be written as

P = V p(V
T
pAV p)

−1V T
p

+
(
I − V p(V

T
pAV p)

−1V T
pA
)
P 0

(
I −AV p(V

T
pAV p)

−1V T
p

)
(4.7)

≈ V pΛ
−1
p V

T
p +

(
I − V pV

T
p

)
P 0

(
I − V pV

T
p

)

A simplified version of this BFGS preconditioner neglects the left and right pro-

jectors on P 0, and thus takes the same form as in (Equation (4.4)):

P = V pΛ
−1
p V

T
p + P 0.

It can be shown [49] that the preconditioned matrix PA has a better spectral

distribution than P 0A.

4.2.2 Recovering spectral information by the Lanczos pro-

cess

Another strategy we are going to use is to recover the partial eigenspectrum of

A from the Krylov subspace built by the linear solver, using the Lanzcos process

embedded within the PCG algorithm. Denoting again by P 0 an initial precondi-

tioner for matrix A, during the PCG method we save the first m preconditioned

residuals as columns of a matrix Wm:

Wm =

[
P 0r0√
rT0P 0r0

,
P 0r1√
rT1P 0r1

, . . . ,
P 0rm−1√
rTm−1P 0rm−1.

]

Matrix Wm is such that W T
mP

−1
0 Wm = Im, in view of the P 0−orthogonality of

the residuals generated by the PCG method. Moreover, we can form the Lanczos
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tridiagonal matrix using the PCG coefficients αk, βk as follows:

Tm =




1

α0

−
√
β1

α0

−
√
β1

α0

1

α1

+
β1

α0

−
√
β2

α1
. . .

−
√
βm−1

αm−2

−
√
βm−1

αm−2

1

αm−1

+
βm−1

αm−2




Matrices Wm and Tm obey to the classical Lanczos relation i.e.:

W T
mAWm = Tm.

After eigensolving Tm we obtain Tm = QΛmQ
T , where the coefficients of the

diagonal matrix Λm approximate the eigenvalues of P 0A while the columns of

V p = WmQp (where Qp contains the first p columns of Q) are approxima-

tions of the p leftmost eigenvectors of P 0A. In fact, first note that V T
pAV p =

QT
pW

T
mAWmQp = QT

p TmQp = Λp ≡ diag(λ1, . . . , λp). Then, let U = P
−1/2
0 V p

we obtain:

UTU = V T
pP

−1
0 V p = Im (4.8)

Λp = V T
pAV p = UTP

1/2
0 AP

1/2
0 U (4.9)

corresponding to the Lanczos process applied to matrix P
1/2
0 AP

1/2
0 . Hence the

columns of U approximate the eigenvectors of P
1/2
0 AP

1/2
0 and the columns of

V p approximate the eigenvectors of P 0A, as can be seen from the following

relationships:

P
1/2
0 AP

1/2
0 U ≈ UΛp ⇐⇒ P 0AP

1/2
0 U ≈ P 1/2

0 UΛp

⇐⇒ P 0AV p ≈ V pΛp,

4.3 Implementation

Approximation of a number of leftmost eigenpairs is a costly task and cannot be

performed at each linear system solution. To reduce the impact of this cost on

the overall process we devise different strategies depending on how we obtain the

spectral information.
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4.3.1 Initial preconditioner P 0

For all the experiments the initial preconditioner is an IC preconditioner obtained

by setting the maximum number of nonzero elements per row lfil= 30 and a

drop tolerance τIC = 10−4. The use of a smaller lfil and/or a larger τIC does

not guarantee the existence of the IC factorization for all systems leading to a

breakdown of the simulations. This choice of parameters produced a rather dense

Cholesky factor with a number of nonzero elements roughly 8 times that of the

triangular part of A. For this reason, the computation of this preconditioner for

each linear system of the sequence was not effective. We decided to compute

the IC preconditioner for a given matrix Ak if k = 1 or the number of PCG

iterations in the previous linear system was above a fixed value, itchol. We used

the previously computed IC preconditioner, otherwise.

4.3.2 Eigenpairs of A obtained by DACG

The computation of a number of the leftmost eigenpairs by DACG is a prepro-

cessing stage that in principle should be executed prior to every system solution.

However, in view of the slow variability of the system matrices Ak at increasing

k, we propose to evaluate selectively the eigenpairs, whenever the PCG solution

of a generic linear system Akxk = b takes more than a fixed number of iterations

(itk ≥ itprec). In this case, except for k = 1, it is effective to use as initial DACG

guess the previously computed eigenvectors. The final algorithm is reported in

Alg. algorithm 2.

4.3.3 Eigenpairs of P 0A obtained by Lanczos-PCG

Computation of matrices Tm and Wm is carried out during the PCG process

and adds negligible computational costs due to the saving of the PCG residual

vectors. The main computational burden in this strategy is given by the matrix-

matrix product V m = WmQp implemented via BLAS-3 subroutines, with a

consequent optimal use of memory accesses. Due to the slow convergence of the

Lanczos process to the smallest eigenvalues, and also for memory reasons, it is

convenient to recover a relatively small number of eigenpairs (independently of the

size m of V m, which nonetheless should be taken sufficiently large to ensure the

completeness of the calculated leftmost eigenspectrum). In the Lanczos process
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Algorithm 2 PCG with spectral DACG preconditioner

• input: itprec, itchol, p, τDACG.

• Set chol switch = true; switch = true;

• for k = 1 to n sys

– if chol switch then

compute P 0 = IC(Ak); set chol switch = false;

– if switch then

1. Compute the p leftmost eigenpairs by the DACG procedure with

preconditioner P 0 and accuracy τDACG.

2. Form matrices V p,Λp.

3. Solve the k−th linear system by PCG preconditioned by P 0 +

V pΛ
−1
p V

T
p .

4. switch= false.

– if itk > itprec switch = true

– if itk > itchol chol switch = true

end for
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Algorithm 3 PCG with spectral Lanczos preconditioner

• input: itprec, itchol,mmax, p.

• Set chol switch = true; switch = true;

• for k = 1 to n sys

– if chol switch then

compute P 0 = IC(Ak); set chol switch = false;

– if switch then

1. Solve the k−th linear system by the PCG method preconditioned

by P 0.

2. Construct the tridiagonal Lanczos matrix Tm, with m =

min{mmax, itk}.
3. Extract from Tm and Wm the p smallest eigenpairs and form

matrices V p,Λp.

4. switch= false.

– else

1. Solve the k−th linear system by PCG preconditioned by P 0 +

V pΛ
−1
p V

T
p .

– if itk > itprec switch = true

– if itk > itchol chol switch = true

end for
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we use only the p = {10, 20} smallest eigenvalues and corresponding eigenvectors

thus obtaining a n × p matrix V p and a p × p diagonal matrix Λp. The final

algorithm is reported in Alg. algorithm 3.

4.4 Numerical results

In this section we illustrate the behavior of the spectral preconditioner on a

sequence of linear systems arising in the discretization of (Equation (3.1a)). The

code is written in Fortran 90. All the experiments were run on a 2 x Intel Xeon

CPU E5645 at 2.40GHz (six core) and with 4GB RAM for each core. Times are

expressed in seconds. The stopping criterion for the linear solver is independent

of the preconditioner used and it is based on the relative residual:

‖Akxk − b‖
‖b‖ < ε = 10−11.

We solve the piecewise-constant sources test case for β = 5 because it is the case

that presents the strongest time-variability of the transport density among the

considered test cases. All the simulations employ a mesh Th of 412417 nodes

and nnz = 1647617 nonzero elements. Efficient simulations that ensure stability

of explicit Euler are obtained using an initial time step size ∆t(0) = 10−3 and

then increasing ∆t(k) by a factor 1.05 at each time step up to a maximum value

of ∆t(k) = 10−1. This leads to a sequence of almost 4000 linear systems as

in Equation (4.3) to reach equilibrium at the chosen tolerance τ .

For this type of problems, homogeneous Neumann boundary conditions are

natural but lead to a singular system matrix, with a non trivial kernel contain-

ing the constant vectors c. However, the use of unnatural Dirichlet conditions

often yielded linear solver failures, due most probably to extreme matrix ill-

conditioning. Hence, we employ homogeneous Neumann condition and guarantee

the well-posedness of the resulting linear systems (and of the PCG process) by

projecting the right hand side onto the range of Ak, R(Ak), as follows:

b̃ = b− cTb

‖c‖2
c

(see [42]). Note that such projection simply corrects quadrature errors in the

construction of b, since f is assumed to have zero-means.
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Figure 4.1: Effect of imposing Dirichlet boundary conditions on the smallest eigen-

values of P kAk, for system k = 200 in the sequence (no spectral acceleration).

Denoting with λ1 = 0 < λ2 < . . . λn the eigenvalues of Ak in this case, the

effective spectral condition number of matrix Ak is κ(Ak) =
λn
λ2

since the zero

eigenvalue does not affect convergence of the PCG iteration after the projection of

b on R(Ak). On the other hand, in the case of Dirichlet boundary conditions, all

the eigenvalues of AD
k change and the zero eigenvalue occurring in the Neumann

case is moved by to a positive value close to zero (near 10−6 for the example

shown in Figure 4.1), yielding a spectral condition number much greater than in

the Neumann case: κ(AD
k ) =

λDn
λD1
� κ(Ak).

All the linear systems have been symmetrically scaled with the diagonal of

Ak in order to reduce their initial condition number, namely, defining D =

diag(a11, . . . , ann):

solve D−1/2AkD
−1/2yk = D−1/2b̃,

compute xk = D1/2yk.

The efficacy of the proposed algorithms is verified by looking at the overall

iteration count of the PCG solver and the CPU times for solving the entire linear

systems sequence. We test different numbers of eigenvectors p used to build the

low rank correction to the initial preconditioner for both algorithms based on the

Lanczos (LAN(p)) and DACG (DACG(p)) eigensolution. We report CPU timings

accounting for the computation of the preconditioner (Tprec), of the approximated
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eigenvectors (Teig), the PCG solver (TPCG), and the total CPU time (Ttot).

4.4.1 Influence of eigenvector accuracy in DACG prepro-

cessing

We first perform a preliminary study on the influence of accuracy of eigenvectors

computations in the PCG acceleration. To this end we considered the first 200

linear systems and use three different tolerances for the relative eigenresidual test

(4.5): τDACG ∈ {0.1, 0.3, 0.5}. Other parameters were: iteig = 60, itchol = 60, p =

20. As a benchmark, we also solved the first 200 systems by the PCG method

preconditioned by an IC factorization computed selectively (with itchol = 100).

The results are shown in Table 4.1. We find that high accuracy in eigenpairs

computation is not needed to reduce the number of PCG iterations. With a very

low accuracy (τDACG = 0.5) the number of iterations is halved and the CPU time

reduced of a factor 1.5 with respect to the fixed IC preconditioner (Table 4.1,

first row).

τDACG ITER Teig Tprec TPCG Ttot

– 20646 0.00 187.9 1687.8 1875.7

0.1 9907 326.9 117.9 1002.1 1446.2

0.3 10006 198.5 117.2 1011.5 1327.8

0.5 10055 150.0 117.2 1017.7 1284.9

Table 4.1: Influence of the DACG tolerance on the performance of the PCG with

spectral preconditioner.

4.4.2 Smallest eigenvalues of P 0Ak

In Figure 4.2 we plot the computed eigenvalues of P 0Ak, where P 0 is the IC

preconditioner of Ak, by the spectral Lanczos-PCG procedure. In particular

we plot the 10 smallest eigenpairs of preconditioned systems #1, 21, 40, . . . , 181.

From the figure we notice that the “stars” a re vertically clustered, this showing

that the smallest eigenvalues of the preconditioned matrices only slightly change

among systems at close simulation times.
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Figure 4.2: 10 smallest eigenvalues of P kAk for k = 20j + 1, j = 0, . . . , 9.

4.4.3 Results of the simulations

We report in Table 4.2 the results of the complete simulation corresponding to

different values of the parameter β i.e. the cumulative number of PCG iterations

and CPU times in solving the sequence of almost 4000 linear systems needed to

reach the steady-state. In addition to the previously described parameters we

used as the maximum size of the Lanczos subspace mmax = 80, which experimen-

tally revealed the optimal value.

Inspection of Table 4.2 reveals that both DACG and Lanczos acceleration

provide an improvement in the number of iterations and total CPU time. For

the easier β = 1.5 case we tried various values for parameters itchol and iteig. For

the challenging case β = 5, the optimal spectral preconditioner turns out to be

the one based on the Lanczos approach which provides a gain of more than 40%

CPU time with respect to using the Cholesky preconditioner, computed at each

time-step.

4.4.4 Further analysis on a portion of the simulation

To better inspect the optimal choice of the parameters we analyzed the first 800

time-steps, after which the solution is near its steady-state. From Table 4.3 we

notice that the proposed low-rank update of preconditioners is effective in both

variants, providing an important reduction of the number of iterations as well of

the CPU time. On the average, our spectral preconditioners provide a halving

of the total CPU time and a 30% − 40% reduction in the number of iterations.
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Prec. (p) itchol iteig ITER Tprec Teig TPCG Ttot

β = 1.5

DACG(10) 25 25 170111 6262.3 1869.0 14276.7 22758.7

LAN(10) 25 25 219515 11753.4 2077.5 17604.6 31800.1

IC 25 – 261964 16909.1 0.0 19348.9 36644.2

DACG(10) 30 30 190075 3453.1 1228.5 15949.9 20977.9

LAN(10) 30 30 230242 8080.1 1437.3 18699.8 28572.5

IC(10) 30 – 272779 13043.8 0.0 19981.0 33392.3

DACG(10) 40 40 232004 1660.2 811.1 19329.4 22146.1

LAN(10) 40 40 259569 3591.5 688.1 21420.5 26049.4

IC(10) 40 – 299100 9040.8 0.0 21858.1 31254.6

β = 5

DACG(10) 60 60 220110 1305.8 446.3 18853.5 20785.3

LAN(10) 60 60 208481 910.2 166.2 17834.9 19092.0

IC 60 – 263477 9532.6 0.0 19900.5 29632.0

IC – – 257219 13041.1 0.0 19415.9 32666.6

Table 4.2: Timings and iterations related to the whole sequence of linear systems

corresponding to two different values of β using PCG with different precondition-

ers and parameters.

Using p = 10 or p = 20 eigenvectors produces only slight variations in the number

of iterations/CPU time. Hence, the choice p = 10 seems to be preferred in terms

of memory storage.

Surprisingly, the DACG variant, although affected by a CPU-intensive offline

(outside the PCG algorithm) phase for the eigenvector approximation, reveals

as effective as the Lanczos variant. This is mainly due to the fact that after

the initial assessment of the leftmost eigenpairs, the subsequent computations

are very cheap since the previously computed eigenvectors are very good initial

guesses for the next systems. However, we may expect a different behavior of

the two techniques in cases of higher variations of the matrices involved. In

this case, the DACG preprocessing time will increase as opposite to the Lanczos

technique. Moreover, the Lanczos approach can be accelerated by employing a

method similar to that described in [67]. This is a topic for a future work.
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Prec. (p) itchol iteig ITER Teig Tprec TPCG Ttot

IC – – 64248 0.0 2841.2 5432.5 8273.7

IC 100 – 74511 0.0 447.4 6062.9 6510.3

LAN(10) – 60 41148 29.6 2814.2 3372.1 6215.9

LAN(10) 50 70 44765 30.9 1767.2 3746.4 5544.5

LAN(10) 60 60 44041 196.0 572.7 3606.9 4375.6

LAN(20) 60 60 41738 190.4 459.2 3775.8 4425.4

DACG(10) 60 60 45502 185.4 516.0 3811.6 4512.9

DACG(20) 60 60 42050 263.5 272.2 3922.0 4457.7

Table 4.3: Timings and iterations related to the first 800 systems in the sequence

corresponding to β = 5. PCG with different preconditioners and parameters.

4.4.5 Handling high density variations

As clear from Figure 4.3 there is a portion of the simulation in which the largest

value of the density vector abruptly increases and rapidly reaches its maximum

value. Since, as anticipated in Section 4.1, λmin(A) ≤ C1h
2µmin and λmax(A) ≥

C2µmax, the sudden increase of µmax produces a high variation in the condition

number of the matrices in the sequence. Hence, in this time interval, the spectral

properties of the system matrices change significantly and PCG is not able to

take advantage of the spectral information provided by the previous systems.

To this aim we forced the code to recompute the Cholesky preconditioner

whenever the following test on µ is satisfied:

‖µ(k+1) − µ(k)‖L2(Ω

∆tk‖µ(k+1)‖L2(Ω

> δ (4.10)

with δ = 100 in the experiments. Also the time-step is dynamically reduced in

this portion of the simulation to correctly capture the dynamics.

To appreciate the benefit of this modification we report in Figure 4.4 the number

of iterations (averaged over the last 5 linear systems) needed by the PCG solver

for systems #40 to #80 (corresponding to time interval: [4, 5.43] where the µ

variation is more pronounced). We display in the Figure results with the Cholesky

preconditioner only and Lanczos(10) and DACG(10) spectral acceleration with

and without test (4.10).

The new switching strategy is clearly effective and particularly so in combi-
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Figure 4.3: Maximum and minimum value of µ during the simulation.
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nation with the DACG spectral acceleration.
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Chapter 5

The Gradient Flow Approach

In this chapter we present a modification of the dynamical system Equation (3.1)

which reads as

− div (µ(t, x)∇u(t, x)) = f(x) = f+(x)− f−(x) (5.1a)

∂tµ(t, x) = µβ(t, x)| ∇u(t, x)|2 − µ(t, x) (5.1b)

µ(0, x) = µ0(x) µ(t, x)∇u(t, x) · n∂Ω = 0 (5.1c)

where, unlike System 3.1, only the term µ is raised to the power β, while the

| ∇u|2 is fixed. Equation (5.1) admits the Lyapunov-candidate functional given

by:

Φβ(µ) = Ef (µ) +Mβ(µ) (5.2)

Mβ(µ) :=





1

2

∫

Ω

ln(µ) if β = 2

1

2

∫

Ω

µ2−β

2− β otherwise

If we introduced an appropriate change of variable, i.e., an appropriate metric for

µ, then the formal only calculations show that Equation (5.1b) is the Gradient

Flow (GF) of the functional Φβ, for 0 < β < 2. We are not able to present a

complete proof of this claim, but many considerations presented below towards

the correctness of this conjecture.

5.1 Brief Introduction to Gradient Flow

We now present a very brief introduction to the main ideas of the Gradient Flow

in metric spaces. We refer the reader to [3, 65] for a complete overview on this
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5. THE GRADIENT FLOW APPROACH

topic and its applications.

The GF in metric spaces may be thought of as the infinite-dimension extension

of the following, finite dimensional, Cauchy Problem. Take Φ : Rd 7→ R sufficiently

smooth and consider the ODE

∂tx(t) = −∇Φ(x(t)) x(0) = x0 ∈ Rd

the equations describes a curve that follows the steepest descent trajectory of

functional Φ. Fixing a time step τ > 0, its backward Euler discretization consists

in build the sequence (xk)k=0,..., defined by the following recursion:

xk+1 − xk
τ

= −∇Φ(xk+1) k = 0, . . .

For each k this equation is the Euler-Lagrange equation of the functional

Jxk,τ (x) = Φ(x) +
|x− xk|2

2τ

This variational structure of the implicit Euler Time-Stepping can be used also

for functionals Φ : X 7→ R defined on a general metric space X. Under the proper

assumptions, the linear interpolation of the sequence generated by the variational

problems given by:

xk+1 = argmin
x∈X

Jxk,τ (x) = Φ(x) +
‖x− xk‖2

X

2τ

converges, for τ → 0, to a curve x(t) ∈ X for t ∈ [0,+∞[ that solves the ODE

in metric space

∂tx(t) = −∇x Φ(x(t)) x(0) = x0 ∈ X (5.3)

with a proper notion of gradient in the space X. A typical requirement to ensure

that the discrete sequence xk converges to the “curve” x(t) as τ tends to zero, is

that the functional Φ be geodesically λ-convex (see [3]), i.e., there exists λ ∈ R

such that

Φ((1− s)x0 + sx1) ≤ (1− s)Φ(x0) + sΦ(x1)− 1

2
λs(1− s)‖x0 − x1‖X

∀x0, x1 ∈ X, ∀s ∈ [0, 1]
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5.2 Case β = 1 - The Hellinger/Fisher-Rao Met-

ric

We first consider the case β = 1 and we see how to reinterpret Equation (5.1b)

as a GF of the form

µ′(t) = −∇µ Φ1(µ(t))

where Φ1 is defined in Equation (5.2). The basic idea is the introduction of a

metric for µ induced by a change of variable µ = Ψ(σ). The same approach

can used to show analogous results not only for general β > 0, but also for more

complicated versions of Equation (5.1b), but their interpretation becomes at least

questionable, the most basic result presented here needs to be completely unveiled

before addressing more complicated dynamics.

We assume that for β = 1 the domain of Equation (5.1b) is L1
+(Ω) and the

change of variable we consider is

µ = Ψ(σ) :=
σ2

2

We find immediately that σ ∈ L2
+(Ω). The transformation Ψ induces a distance

in L1(Ω) given by the following metric:

‖µ1 − µ2‖FR := ‖ σ1︸︷︷︸
Ψ−1(µ1)

− σ2︸︷︷︸
Ψ−1(µ2)

‖L2(Ω) =
√

2

(∫

Ω

(
√
µ1 −

√
µ2)2 dx

) 1
2

(5.4)

called Fisher-Rao (or Hellinger) distance. Rewriting Equation (5.1b) in terms of

the new variable σ we first obtain

σ(t)σ′(t) =
1

2

(
σ2(t)| ∇u(t)|2 − σ2(t)

)

and then, by dividing by σ(t),





σ′(t) = 1
2

(σ(t)| ∇u(t)|2 − σ(t))

σ(0) = σ0 =
√

2µ0 ∈ L2
+(Ω)

(5.5)

with u(t) = u(µ(t)) = u(Ψ(σ(t))). In the following, given a functional F in µ we

will use the symbol F̃ to indicate its composition with Ψ. Thus Ẽf (σ) = Ef (Ψ(σ)),

M̃ = M(Ψ(σ)), and Φ̃ = Φ(Ψ(σ)). We can now formulate the following

result, which claims that Equation (5.5) can be interpreted as a GF in L2
+(Ω).
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5. THE GRADIENT FLOW APPROACH

Consequently the same holds in the µ variable with the metric induced by Ψ.

There are several critical points in the following proof, essentially because the L2-

norm is too weak to ensure continuity of Ẽf (σ). In any case it can be a heuristic

explanation to introduce the functional Φ and ensuing GF. During the derivation

we will detail the critical points that prevents a full proof of this statement. We

are looking for alternative avenues, but at this point we are able to show only

formal calculations. We thus want to derive the fact that the ODE Equation (5.5)

is a GF in L2
+(Ω) of the form

σ′(t) = −∇σ Φ̃(σ(t)) (5.6)

where

Φ̃(σ) = Ẽf (σ) + M̃(σ)

The formal derivation is based on the observation that Φ̃(σ) is the sum of the

energy functional Ẽf (σ) and the mass functional M̃(σ) = 1/2
∫

Ω
σ2/2.

The gradient with respect to σ of M̃(σ) is clearly σ/2. The gradient of the

energy Ẽf (σ) can be calculated as follows: consider σε = σ∗ + εζ with ζ ∈ L2(Ω)

and ε > 0 small enough. Note that unfortunately this definition is such that

µε does not belong to L2
+(Ω) for all ζ ∈ L2(Ω)). Denote with uε = u(µε),

(µε = (σε)
2/2) and u∗ = u(µ∗) (µ∗ = (σ∗)2/2). The Euler-Lagrange equations of

the variational problem in Equation (1.11) are:

∫

Ω

(
σ2
ε

2
∇uε · ∇ϕ− fϕ

)
dx = 0 ∀ϕ ∈ C1(Ω̄)

Differentiating with respect to ε and applying the chain rule (assumed to be valid

in this context) we obtain

∫

Ω

σ2
ε

2
(∂ε∇uε) · ∇ϕdx = −

∫

Ω

∂ε

(
σ2
ε

2

)
∇uε · ∇ϕdx ∀ϕ ∈ C1(Ω̄) (5.7)

The first variation of the energy is given by

∂Ẽf (σε)
∂ε

|ε=0 =

(
1

2

∫

Ω

∂ε

(
σ2
ε

2
| ∇uε|2

)
dx

)

ε=0

=

(
1

2

∫

Ω

∂ε

(
σ2
ε

2

)
| ∇uε|2 + 2

σ2
ε

2
∂ε (∇uε) · ∇uε dx

)

ε=0
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Using in Equation (5.7) ϕ = u∗ we get (again here we are assuming this possible)

∂Ẽf (σε)
∂ε

|ε=0 =

(
1

2

∫

Ω

∂ε

(
σ2
ε

2

)
| ∇uε|2 − 2∂ε

(
σ2
ε

2

)
∇uε · ∇u∗ dx

)

ε=0

=

(
1

2

∫

Ω

σε∂ε (σε)∇uε · (∇uε − 2∇u∗) dx
)

ε=0

=

(
1

2

∫

Ω

σεζ∇uε · (∇uε − 2∇u∗) dx
)

ε=0

and evaluating in ε = 0 we obtain (assuming ∇uε|ε=0 = ∇u∗)

∂Ẽf (σε)
∂ε

|ε=0 =

∫

Ω

−ζ σ
∗| ∇u∗|2

2
dx

Since this holds for any ζ ∈ L2(Ω), this means that

∇σ Ẽf (σ) = −σ
2
| ∇u(Ψ(σ))|2

In conclusion Equation (5.5) can be rewritten as

∂tσ(t) = −∇σ Φ̃ (σ(t)) = −∇σ

(
Ẽf (σ(t)) + M̃(σ(t))

)

Several inconsistent assumptions have been made to arrive at this point, but

these observations strengthen our speculation that the model we are proposing is

a sound OTP model with several interesting properties.

5.3 More Gradient Flows

We now consider a further generalization of Equation (5.1b) given by

µ′(t) = g (µ(t)) | ∇u(t)|2 − h (µ(t)) (5.8)

where g, h :]0,+∞[7→]0,+∞[ are functions of R+ into itself. We assume that

both functions are regular enough to allow the following computations. By us-

ing the same procedure described in the previous derivation, it is possible to

rewrite Equation (5.8) in the form of a GF. To this aim we need to find a trans-

formation µ = Ψ(σ) (with Ψ a diffeomorphism of R+ into itself) that induces a

new metric for µ

‖µ1 − µ2‖Ψ := ‖Ψ−1(µ1)−Ψ−1(µ2)‖ = ‖σ1 − σ2‖L2(Ω) (5.9)

given by the L2-distance. The results are given in the following proposition:
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5. THE GRADIENT FLOW APPROACH

Proposition 44. Given g, h functions from R+ into itself, if there exists a dif-

feomorphism Ψ : R+ 7→ R+ with Ψ′ > 0 (or Ψ′ < 0) such that

(Ψ′(σ))2

2
= g(Ψ(σ)) (5.10)

then Equation (5.8) can be rewritten in the form of a GF

µ′(t) = −∇µ Φg,h(µ(t)) (5.11)

in the space Ψ(L2
+(Ω)) (the set of µ such that Ψ−1(µ) ∈ L2

+(Ω)) endowed with the

metric defined in Equation (5.9). The functional Φg,h is defined as

Φg,h(µ) := Ef (µ) +Mg,h(µ) (5.12)

with

Mg,h(µ) :=
1

2

∫

Ω

I(µ) dx I(s) =

∫
h(s)

g(s)
ds (5.13)

In the variable σ = Ψ−1(µ) Equation (5.11) can be rewritten as a GF of the form

σ′(t) = −∇σ Φ̃g,h(σ(t))

in L2
+(Ω) where Φ̃g,h = Φg,h ◦Ψ

We recall again that these are all formal calculations where all the necessary

regularity hypothesis are implicitly assumed.

Proof. Assuming that a diffeomorphism Ψ exists, satisfies Equation (5.10), and

is such that Ψ′ > 0, we can substitute µ(t) = Ψ(σ(t)) into

µ′(t) = g (µ(t)) | ∇u(t)|2 − h (µ(t))

Then, expanding all the derivatives and dividing by Ψ′(σ(t)), we obtain

σ′(t) =
g (Ψ (σ(t)))

Ψ′(σ(t))
| ∇u(t)|2 − h (Ψ(σ(t)))

Ψ′(σ(t))
(5.14)

where u(t) = u(Ψ(σ(t))). The proof follows by showing that the first and the

second terms on the right hand side of Equation (5.14) are respectively the gradi-

ent of the functional Ẽf and M̃, evaluated along σ(t). Thus we first compute the

gradient with respect to σ of Ẽf (σ), with the same procedure used in Section 5.2,

where we obtained

∇σ Ẽf (σ) = −σ
2
| ∇u((σ)2/2)|2
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that in this case reads as follows:

∇σ Ẽf (σ) = −Ψ′(σ)

2
| ∇u(Ψ(σ))|2

Thanks to Equation (5.10) we obtain

∇σ Ẽf (σ) = −g (Ψ(σ))

Ψ′(σ)
| ∇u(Ψ(σ))|2

Finally the gradient of M̃g,h can be calculated formally as

∇σ M̃g,h(σ) = ∇µMg,h(µ)|µ=Ψ(σ) Ψ′(σ) =
h(Ψ(σ))

2g(Ψ(σ))
Ψ′(σ) =

h(Ψ(σ))

Ψ′(σ)

where in the last step we used again Equation (5.10).

Remark 6. Note that the metric for µ is uniquely defined by the transformation

Ψ, that depends only on function g by Equation (5.10), while the function h does

not affect the metric.

5.3.1 Case g = µβ β > 0, h = µ

We are now able to reinterpret Equation (5.1b) as GF simply by taking g(µ) = µβ

and h(µ) = µ in Equation (5.8). The transformation Ψ defined by Equation (5.10)

takes on the form

µ = Ψ(σ) =





C2(β)σC1(β) if β 6= 2

exp
(
±
√

2σ
)

if β = 2

(5.15)

with

C1(β) =
2

2− β C2(β) =





(
2−β√

2

)C1(β)

if β < 2
(
β−2√

2

)C1(β)

if β > 2

We use the change of variable Ψ defined in Equation (5.15) and assume that

σ(t) ∈ L2
+(Ω). We can introduce the distance

‖µ1 − µ2‖β := ‖σ1 − σ2‖L2(Ω) = Cβ

(∫

Ω

(
µ

2−β
2

1 − µ
2−β
2

2

)2

dx

)1/2

(5.16)

where we indicate with Cβ a constant depending only on β. Moreover, computing

Mg,h in Equation (5.13) we recover the functional Mβ given in Equation (5.2).
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We are now able to reinterpret system 5.1 as a GF in L2−β(Ω) given by

∂tµ(t) = µβ(t)| ∇u(t)|2 − µ(t) = −∇µ Φβ(µ(t)) (5.17)

Φβ(µ) := Ef (µ) +
1

2

∫

Ω

µ2−β

2− β dx

Using the variable σ, the ODE and the functional Φ̃g,h = Φ̃g,h ◦Ψ become

σ′(t) = Cβ

(
σ

β
2−β (t)| ∇u(t)|2 − σ(t)

)
= −∇σ Φ̃β(σ(t))

Φ̃β(σ) := Ẽf (σ) +

(
2− β

2

)2 ∫

Ω

σ2 dx

The connection with OTPs for an asymptotic state of Equation (5.1) follows

the same ideas described in Chapter 3. We reproposed below the statements,

mutata mutandis, of Propositions 38 and 39, together with Conjectures 2 and 3

Proposition 45. The derivative along the µ(t) trajectory of functional Lβ is

given by

d

dt
(Lβ(µ(t))) = −1

2

∫

Ω

µ(t)β
(
| ∇u(µ(t))|2 − µ1−β(t)

)2
dx

and it is strictly decreasing in time. For σ = Ψ−1(µ) the above expression rewrites

as:
d

dt

(
L̃β(σ(t))

)
= −1

2

∫

Ω

(∂tσ(t))2 dx

Proposition 46. For 0 < β ≤ 1 and for q = 22−β
3−β the following equality holds

inf
v∈(Lq(Ω))d

{∫

Ω

|v|q
q
dx : div(v) = f

}
= inf

µ∈L2−β
+ (Ω)

Φβ(µ)

For 0 < β < 1, Lβ admits a unique minimizer µ∗β ∈ L2−β
+ (Ω) of given by

µ∗β = | ∇up|p−2

where up is the solution p-Laplacian

− div(| ∇up|p−2∇up) = f

with p the conjugate exponent of q:

p = 2
2− β
1− β

For β = 1 the OT density µ∗(f+, f−) is a minimum for Φ.
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Conjecture 4. For 0 < β ≤ 1 Equation (5.1b) represents the GF in L2−β(Ω) of

functional

Φβ(µ) = Ef (µ) +
1

2

∫

Ω

µ2−β

2− β dx

with metric defined in Equation (5.16). For 0 < β < 1 the pair (µ(t), u(t)) solu-

tion of Equation (5.1) converges toward (| ∇up|p−2, up) where up is the solution

of the p-Poisson equation with

p = 2
(2− β)

1− β
For β = 1 the pair (µ(t), u(t)) converges towards the pair (µ∗, u∗) solution asso-

ciate the MK equations associated to f+, f−. For 0 < β ≤ 1 the convergence does

not depend on the initial data µ0 in Equation (5.1c).

Conjecture 5. For β > 1, the solution (µ(t), u(t) of Equation (3.1) admits

an equilibrium point (µ∗β, u
∗
β), which depends on the initial condition µ0. This

solution is a minimum of the Lyapunov-candidate functional Φβ.

5.4 Technical difficulties in the formal applica-

tion of the GF approach

The main idea in applying the GF method is to use the Implicit Euler scheme

to obtain a sequence (µk) whose convergence towards the minimum of Φβ, if

it exists, can be proved. To this aim, as described in [65], we first derive the

variational formulation of the Implicit Euler scheme that approximates the GF

in Equation (5.17). We fix τ > 0 and write the k-th step of Euler scheme as:

µk+1 = argmin
µ∈L2−β

+ (Ω)

{
Φβ(µ) +

‖µ− µk‖2
β

2τ

}
(5.18)

= argmin
µ∈L2−β

+ (Ω)

{
Ef (µ) +Mβ(µ) +

‖µ− µk‖2
β

2τ

}

where ‖ · ‖β is defined in Equation (5.16). This problem can be written in terms

of the variable σ as:

σk+1 = argmin
σ∈L2

+(Ω)

{
Φ̃β(σ) +

‖σ − σk‖2
L2(Ω)

2τ

}
(5.19)

= argmin
σ∈L2

+(Ω)

{
Ẽf (σ) + M̃β(σ) +

‖σ − σk‖2
L2(Ω)

2τ

}

141



5. THE GRADIENT FLOW APPROACH

Unfortunately, we are not able to prove the existence of a minimizer µk for the

variational problems in Equations (5.18) and (5.19), already for the first time

step k = 0.

To exemplify the difficulties encountered, consider the case β = 1, and the

corresponding variational problem in Equation (5.19) written in terms of the

variable σ ∈ L2
+(Ω). The mass and distance functionals given by

M̃1(σ) = 1/2

∫

Ω

σ2/2 dx ,
‖σ − σk‖2

L2(Ω)

2τ

are clearly lower semi-continuous and λ-geodesically convex, with λ equal to 1

and 1/2τ , respectively. But the energy functional Ẽf (σ), given by:

Ẽf (σ) = sup
ϕ∈C1(Ω̄)

∫

Ω

(
fϕ− σ2

2

| ∇ϕ|2
2

)
dx

is not lower semi-continuous since the term
∫

Ω
σ2/2| ∇ϕ|2/2 dx is not. However,

if we look at the variational Equation (5.18) written in terms of the variable

µ ∈ L1(Ω), the functional Ef (µ) is lower semi-continuous (being the supremum

of functionals that are linear with respect to µ) and convex, and the same holds

for the corresponding mass and distance functionals

M1(µ) ,
‖µ− µk‖2

FR

2τ

In this case, since L1(Ω) is not reflexive, we cannot apply the direct method of

the calculus of variations. On the other hand, the dichotomy described above

obtained by switching variables, whereby one functional is lower semi-continuous

in one variable but not the other, seems to suggest that these are technical dif-

ficulties that may be overcome by means of finer variational tools, possibly on

appropriately relaxed versions of the problem. The case β > 1 is evidently more

complicated because of the presence of the concave factor
∫

Ω
µ2−β dx. We leave

these issues for future work.
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Chapter 6

Applications

In this chapter we discuss some applications of the optimal transport theory that

were initiated but not completed during the course of this study. Some of

these applications motivated the initial interest in the OT theory. In fact, our

early interests concerned in particular two phenomena: i) geomorphology of river

networks and ii) dynamics of plant roots in soils. These two problems, of great

importance in the general field of climate research, have a long scientific history.

The former started at the end of the 19th century with the first experimental

observations of Horton [41, 46], arriving to more recent work of [59], summarized

in the context of Optimal Transport by [61]. The history of plant root models

is more recent but not less rich. The second half of the last century, starting

with the work of [40], has seen a great activity on the modeling of root dynamics.

The complex mechanisms leading to root branching structures has been studied

in details [76], and several attempts at modeling these structures have been pro-

posed [28, 43]. We noted that the theory of BTP seems to be ideally suited to

these applications.

More broadly, we have identified a number of applications such as angiogene-

sis, formation of the Purkinje network, and in general in the dynamics of complex

natural transport structures. After the two main application topics of geomor-

phology and root dynamics, we report a short discussion on general issues related

to complex networks. In the overview of the BTP presented in Section 1.5 we

mentioned how these types of mathematical problems have been introduced trying

to give a common explanation to the recurrent emergence of branching structures

in natural systems. According to the least-action principle, this attempt is done
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describing these branching structures as solutions of minimal energy problems,

fitting perfectly within the general framework of our BTP models.

6.1 Geomorphology of river basins

In the study of river network the idea of looking for general energy minimizing

principle is pervasive in the all the work on Optimal Channel Networks well

described in [48] and summarized in [60]. There it is suggested that river networks

are solution of the following minimization problem:

min
Q

∑

e∈G
Q

1
2
e Le

where G denotes a graph that schematizes the river network, while Qe and Le

are, respectively, the flux of water passing through each edge and the edge length.

The flux Qe satisfies the water conservation principle stating that rainfall volumes

must be conserved through the domain.

These results clearly connect the study of river network with the Gilbert-

Steiner Problem described in Problem 23. The minimal-energy properties of the

river network is deduced by looking at the steady state equations of a dynamics

describing the landscape evolution of river basin. Since this is the same idea

behind our model (the optimal solution is an equilibrium point), our claim is that

the coupled system of equations of our model (or some ad-hoc modifications) can

represent the evolution of river catchments leading naturally to a model for the

generation of the river network.

We found a first attempt that points to this direction in [21], where the authors

encode into a system of three partial differential equations the main phenomena

shaping the formation of river network that, according to literature on this topic,

are erosion, sedimentation, and creep, together with the conservation laws for

water and sediment.

Trying to recast everything into the framework of our BTP model, f+ and f−

represent the rain-fall rate on the river basin and the water efflux into the estu-

ary or the delta, respectively. The elliptic equation plays the role of a stationary

balance stating conservation of sediments and water flowing together. The diffu-

sion coefficient µ represents the spatially varying flow capacity of the basin. The

dynamics for µ(t) should encase all the main evolutive equations that governs
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6.2 GEOMORPHOLOGY OF RIVER BASINS

the formation of the river networks. Then the branching structures of the river

networks arise as minimizers of the Lyapunov-candidate functional Lβ.

To test the capability of our BTP model, we proceed to simulate the formation

of the Po river network in Northern Italy. The aim here is to test the hypothesis

that with minimal geometric and hydrologic information the BTP model is able

to reconstruct a network structure with branching characteristics that are similar,

at least in an intuitive way, to observations. To this aim we have drastically sim-

plified the geometry, shown in Figure 6.1, assuming an unrealistically symmetric

pattern of the mountain and plain regions. We have separated the Po network

basin from the delta area in the Adriatic Sea to represent, always schematically,

the presence of the Adige river that does not contribute to the Po river basin.

Rainfall rates are assumed unitary in the mountains and are halved in the central

plain, to simulate the effect of groundwater recharge with the hypothesis that half

of the rainfall infiltrates. The mass balance is imposed introducing a sink term

f− supported in the right rectangle in Figure 6.1 that approximately delimits the

area of the Po Delta. We used a BTP exponent β = 1.5 corresponding the the

exponent suggested by [60]. Despite the crude approximations just described, the

numerical results of our model (Figure 6.1, lower panel) show a promising ability

to capture the main features of the Po river network. A central stream connects

the source-aggregating areas to the distributive region, collecting the rainfall via

a network of hierarchically distributed tributaries. Striking similarities of these

results with observable features of the real network show affluents that change

direction according to the geometry of the external arch, a clear pattern of the

true network. However, channel meandering is not visible in the numerical re-

sults , which is believed that these features can indeed be represented with our

framework, but they are phenomena acting at a different temporal scales with

respect to the network (and thus valley) formation, and are not incorporated in

the current simulations.

Another problem is that our model cannot reproduce is the formation of loops

in the delta area. Our patterns are (as theory suggests) tree-like networks. How-

ever, we would like to draw the attention of the reader to the last section of

this chapter where a possible suggestion for the formation of loops as equilibrium

points is proposed.
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Figure 6.1: Domain of the Po River basin simulation. The upper panel reports the

river basin of the Po river in Northern Italy (image taken from [23]). The lower

panel shows the spatial distribution of µ∗h using β = 1.5 and µ0 ≡ 1. The source

term f+ assumes two values. The value 1/2 is imposed in the in the center of the

horse-shoe shape representing the Po river basin, honoring the assumption that

in the central plain half of the rainfall water infiltrates and does not contribute to

the river discharge. In the external arch, representing the surrounding mountains,

we imposed f+ = 1. Mass conservation is ensured by the presence of a sink term

f− supported in the right rectangle that represents the Po delta.
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6.2 Modeling Plant-Root Dynamics

Another field of study that we want to approach with our model is the simulation

of plant-root dynamics. Roots plays a crucial role in the so-called Soil-Plant-

Atmosphere Continuum (SPAC), an integrated approach introduced in [56] to

describe the interaction between soil, biota, and atmosphere in terms of mass

(water, carbon, nutrients) and energy exchanges. The SPAC concept is used

for modeling both above-ground atmospheric processes and below-ground soil

processes.

The roots are an important component of the biota that contributes to the

control and modulation of the mass and energy exchanges between the ground

surface and the atmosphere. In meteo-climatic models the rhizosphere is taken

into account using simplified models and parametrizations, the so-called”land-

surface models”. This over-simplification is thought to be the cause of inaccu-

racies [51, 12] in weather predictions, in particular in terms of rainfall spatial

distribution and rates, with obvious consequential effects on climate modeling.

Despite the fundamental rule played by plant roots in the SPAC concept,

little is know about their real behavior. While there is a tendency to include

root activity in plant modeling using an absolutely continuous density distribu-

tion [28], the highly nonlinear character of the coupling between soil water and

root channels prevents an easy solution to this problem. On the other hand, the

modeling of branching roots has received some attention in the literature but no

satisfactory approach has been proposed until now [43].

From an evolutionary point of view, the adaptation capability of roots, that

seems to point towards optimal response to the environmental stresses, is of-

ten postulated in the description of what roots do or aim at, but rarely, if not

ever, truly verified. We think that our model provides a structured answer to

this last fundamental question, supplying the necessary mathematical framework

that connects energy and biomass allocation functionals. The idea, intrinsic to

our branched transport model, of finding the optimal trade-off between the min-

imal cost of transportation, explicated in terms of dissipated energy, and cost of

building the transport infrastructure, explicated in terms of root biomass allo-

cation, finds an ideal setting within the optimality theories stating that plants

try to maximize carbon (biomass) allocation in the aerial system while minimiz-

ing at the same time energy expenditure to secure enough water and nutrient
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uptake [45, 47].

Starting from the coupled model of water flow in the soil and plant dynamics

developed in [47], we recast all the relevant variables into our branched model.

Thus, we reinterpret µ as the density distribution of roots in the soil space. The

forcing function f = f+ − f− is given by the difference between the “potential

root-water uptake” (f−) provided by the plant model for a given atmospheric

condition. The soil water content f+ is given by the solution of Richards’ equa-

tion governing flow of water in partially saturated soils. The plant model, given

the plant parameters, the atmospheric conditions, and the water content distri-

bution, returns the root water uptake and the additional total biomass to be

allocated to the root network. The DMK model takes as input the water con-

tent distribution (in our mind equal to f+) and the root water uptake (f−) and

the constraint on the total marginal biomass, and returns a new root network.

Note that the latter DMK problem is in reality a mass-optimization problem to

be cast within our framework miming the shape-optimization problem of [15] as

described in Section 1.4.2. This process constitutes a nonlinear feedback that can

be solved by iteration.

In this test case, schematically represented in Figure 6.2 (left) we consider a

two-dimensional slice of a heterogeneous soil formed by a sand in the left half and a

silty clay in the other half. A plant with standard features is located in the center

of the domain and is equipped with a root density distribution (shown in the figure

with contour lines) that decays with depth. A fixed groundwater table depth

is considered together an initial equilibrium water content vertical distribution

above the water table. We first run the CATHY simulator (coupled Richards

equation-plant model) described in [47] to evaluate the root water uptake fluxes.

The resulting spatial distribution is shown in the right panel of Figure 6.2 in the

background. Clearly, the plant prefers to take up the water from the sandy soil as

the corresponding dissipated energy is smaller than in the case of the silty-clayey

soil. The corresponding optimal network calculated by an off-line application of

our DMK is shown in the foreground. Most of the large network structure is

visible in the sandy portion of the domain. However, a few minor branches are

exploring the clayey area, ready to become active in the occurrence of a drought

and exploit the high residual saturation and low seepage velocities characteristics

of clays.
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Figure 6.2: Setup of the hydrological (Richards equation) simulation of the plant

dynamics (left). Spatial distribution (right) of the root water uptake estimated

by the plant model coupled to Richards equation with superimposed the DMK

network “optimally” transporting the soil water satisfying the atmospheric de-

mand. No iterations of the integrated CATHY-DMK solvers are performed in

this initial simulation, and only a one-way coupling with the DMK is considered.

6.3 Time varying forcings

It is well known in the field of complex networks that network trees are often

optimal, but the presence of loops is fundamental to ensure the robustness of a

network. In fact, in a tree any broken connection separates the network into two

disjoint components. In the presence of loops, network are more robust in the

sense that one single cut will never divide the network into separate components.

At the end of Section 6.1 we reported a critical incongruence in our model

of river networks, namely that, contrary to observations, no loops are formed

in the delta areas. This behavior prompted a closer inspection of the dynamics

leading to the final equilibrium configuration. Looking at the µ∗h distribution

at intermediate times in test case 2 with Dirac forcings (Section 3.4.3), we note

that loops actually form in the support of µh, as shown in Figure 6.3. After

this intermediate phase, loops are destroyed by the dynamics and the system

converges invariably to a tree-like structure.

The conjecture we can gain from the previous observation is that time-dependent
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Figure 6.3: Test case TC2. Spatial distribution of µh at intermediate times

before the equilibrium configuration µ∗h is achieved. The black points highlight

the center of the loops that are surviving in this intermediate phase.
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Figure 6.4: Spatial distribution of µh for test case E1. We report the large-

time meta-equilibrium configuration µ∗h, considered achieved when the topological

structure does not change. The black circles indicate the approximate positions

of the source points, while the circle size is proportional to the actual (current

time) value of f+.

forcings in our DMK model may lead to “meta-equilibrium” configurations that

present loops. We refer here as “meta-equilibrium” a state where µ may vary but

its support, i.e., the topological structure of the network, does not. To test this

hypothesis, we introduce source and sink terms that vary in time faster then the

µ dynamics. Thus we devised two experiments based on TC2 in Section 3.4.3.

In the first experiment (E1) the value of the 50 source points is rapidly varying

according to a Brownian motion reflected between zero and two, while in the

second experiment (E2) the reflections is between minus one and plus one. Thus

in E1 the 50 points in [0.1, 0.9] × [0.1, 0.9] always play the role of source terms,

while in E2 sources and sinks are rapidly exchanging. In both cases, at each time

t, a sink/source point located in (0.05, 0.05) balances the system.

Figures 6.4 and 6.5 show the results of test cases E1 and E2, respectively. In
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Figure 6.5: Spatial distribution of µh for test case E2. We report the large-

time meta-equilibrium configuration µ∗h, considered achieved when the topological

structure does not change. The black (blue) circles indicate the approximate

positions of the source (sink) points, while the circle size is proportional to the

actual (current time) value of f+ (Sink).
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test case E1, even if the value of f+ is changing in all source points, no switch

between source and sink functioning occurs. The transport density µh converges

towards a tree-shaped equilibrium configuration µ∗h that connects all the points

where f is concentrated. On the other hand, in test case E2, the support µh

shrinks towards a network structure connecting all points, but the continuous

sink/source switching preserves the initial loops. Intuitively, we can explaining

this phenomenon by observing that, if the forcings vary sufficiently rapidly, the

fluxes settle to a nonzero value corresponding to a nonzero µ. If the time variation

of f is too slow, then the decay term in the dynamics of the transport density

dominates over the flux term, and transient loops are removed. The Lyapunov-

candidate functional oscillates around a decreasing average behavior in test case

E1, and converges towards an “average” equilibrium that seems to be time sta-

tionary. In the E2 test case, the behavior turns out to be similar, albeit more

oscillatory.

The results allow us to conjecture that indeed loops form whenever the forcings

oscillate with zero temporal mean, while they disappear with nonzero-average

forcings. These observations would imply that natural systems always tend to an

optimal equilibrium point given by a tree-like network. Non optimal, but robust,

loops emerge as a response of the system to non-stationary forcings characterized

by a zero average (i.e. always balanced) and a fast oscillatory behavior.
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Appendix

A.1 Convex analysis

In this chapter we present a brief introduction to the Convex Analysis Theory.

We try to compress in a few pages the definitions and the results that will be

used to develop our work. We start from the basic basic concepts followed by

well known result in minimization problems. We conclude with some results of

the duality theory. We do not report the proofs of the results but we address the

reader to [29], from which this chapter borrows.

A.1.1 Definitions of Convex Analysis

We recall here some basic notions of convex analysis taken from Chapter 1 of [29].

We try to follow the same notation of the book, with minimal changes to adapt

to the variables and the functionals in this thesis. We hereafter denote with

R̄ = R ∪ {−∞,+∞} and with V a real vector space.

Definition 47 (Convex Set). A set C ⊆ V is said convex if

(1− λ)u0 + λu1 ∈ C ∀u0, u1 ∈ C ∀ 0 ≤ λ ≤ 1 (A.1)

Definition 48 (Convex and Proper Functionals). Given C a convex subset in V ,

a functional J : C 7→ R̄ is convex if

J((1− λ)u0 + λu1) ≤ (1− λ)J(u0) + λJ(u1) ∀ 0 ≤ λ ≤ 1 (A.2)

for all u0, u1 ∈ C. The functional is strictly convex if u0 = u1 when strict
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inequality holds in Equation (A.2). Moreover J is said to be proper if it nowhere

takes the value −∞.

We now consider the topological properties of V that will be here after a locally

convex vector space with Hausdorff topology. We recall that V is a locally convex

space is the origin posses a fundamental system of convex convex neighborhood,

and that V is a topological vector space if it is endowed with a topology for which

the sum operator between elements of V and the multiplication with real scalars

are continuous.

Definition 49 (Lower Semi-Continuous Functionals). A functional J : V 7→ R̄

is said to lower semi-continuous (l.s.c.) if

∀a ∈ R {u ∈ V | J(u) ≤ a} is closed (A.3)

∀ū ∈ V lim inf
u7→ū

J(u) ≥ J(ū) (A.4)

Definition 50 (Sub-differential). A functional J : V 7→ R̄ is said to be sub-

differentiable at u ∈ V if it has a continuous affine minorant that is exact at u.

The slope u∗ ∈ V ∗ of such minorant is called a sub-gradient of J at u, and the set

of sub-gradients at u is called the sub-differential at u and it is denoted by ∂J(u).

If J is not sub-differentiable at u, we have ∂J(u) = ∅. Thus we can state thee

following characterization of the sub-differential of J at u∗:

u∗ ∈ ∂J(u) if and only if J(u) is finite (A.5)

and

〈v − u, u∗〉+ J(u) ≤ J(u) ∀v ∈ V

Definition 51 (Legendre-Fenchel Transform). Given a functional J : V 7→ R̄,

the Legendre-Fenchel Transform of J is defined as

J∗ : V ∗ 7→ R̄

J∗(u∗) := sup
u∈V
{〈u∗, u〉V ∗,V − J(u)}

A.1.2 Minimization of Convex Function

One of the main arguments of study in the convex analysis is to ensure existence

and uniqueness of solution for problems of the form

inf
u∈C

J(u) (A.6)
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where C is a convex subset of V and J : C 7→ R̄ is a l.s.c.convex and proper

functional. A standard tool used to ensure the existence of a minimum of in

problem A.6 is the direct method of the calculus of variations, that when V is a

reflexives space applies as follows ([29, Proposition 1.2 Chapter 2]).

Proposition 52. Let V be a reflexive space (a Banach space with coincides with

its bi-dual). Given C ⊆ V and l.s.c., convex and proper functional J : C 7→ R̄.

Assume that is C is bounded or that J satisfies the following hypothesis

lim
‖u‖V 7→+∞

u∈C

J(u) = +∞ (A.7)

then problem in Equation (A.6) admits at least one solution, which is unique if

J is strictly convex.

Remark 7. Problem A.6 can be always reformulated on the whole space V . We

just have to replace J with

J̃(u) :=




J(u) if u ∈ C
+∞ if u 6∈ C

For this reason, hereafter we will consider functionals J defined on the whole

domain V .

A.1.3 Duality

Given a convex, l.s.c.and proper functional J : V 7→ R̄, we denote as the Primal

Problem the following minimization problem

P : inf
u∈V

J(u) (A.8)

Consider another Hausdorff topological vector space Y and a functional Φ :

V × Y 7→ R̄ (we call it perturbation functional), such that

J(u) = Φ(u, 0) ∀u ∈ V (A.9)

The Dual Problem P∗ of the primal problem A.8 is defined as

P∗ : sup
p∈Y
{−Φ∗(0, p∗)} (A.10)

where

Φ∗ : V ∗ × Y ∗ 7→ R̄

is the conjugate function of Φ in the duality pairing between V ×Y and V ∗×Y ∗
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Proposition 53. ([29, Proposition 2.1, Chapter 3])

−∞ ≤ inf
u∈V

J(u) ≤ sup
p∈Y
{−Φ∗(0, p∗)} ≤ +∞ (A.11)

Proposition 54. [29, Proposition. 2.4, Chapter 3] If problems in P ,P∗ admit

solutions and

inf
u∈V

J(u) = sup
p∈Y
{−Φ∗(0, p∗)} =< +∞ (A.12)

then the following, called extremality relation, holds for all solution ū of Equa-

tion (A.8) and all solutions p̄∗ of Equation (A.10)

Φ(ū, 0) + Φ∗(0, p̄∗) = 0 (A.13)

or

(0, p̄∗) ∈ ∂Φ(ū, 0) (A.14)

Conversely if ū ∈ V and p̄∗ ∈ Y ∗, then ū is a solution of P, p̄∗ is a solution of

P∗ and Equation (A.12) holds.

A.1.3.1 A case of direct interest

We now focus on a particular, important, problem. Given V and Y two Banach

spaces, let Λ be a linear operator from V to Y (Λ ∈ L(V, Y )), F : V 7→ R̄, and

G : Y 7→ R̄. Next, we consider a particular form for J

J(u) = F (u) +G(Λ(u)) (A.15)

In this case the perturbation functional Φ can be defined as

Φ(u, p) = F (u) +G(Λ(u)− p) (A.16)

and the dual problem in Equation (A.10) becomes

sup
p∗∈Y ∗

{−F ∗(Λ∗(p∗))−G∗(−p∗)} (A.17)

where Λ∗ : L(Y ∗, V ∗) indicates the adjoint of operator Λ. Under these assump-

tions we can state the following theorem:

Theorem 55. [29, Section 4, Chapter 3] Assume that F,G are convex functions

as above, assume that there exists u0 ∈ V such that F (u0) < +∞, G(Λ(u0)) <

+∞, G being continuous at Λ(p0) then

sup
p∗∈Y ∗

{−F ∗(Λ∗(p∗))−G∗(−p∗)} = inf
u∈V

F (u) +G(Λ(u)) (A.18)
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and Equation (A.10) has at least one solution p̄∗. The extramality relation in Equa-

tion (A.13) reads as

F (ū) + F ∗(Λ∗(p̄∗))− 〈Λ∗(p̄∗), u〉V ∗,V = 0 (A.19)

G(Λ(ū)) +G∗(−p̄∗)− 〈p̄∗,Λū〉Y ∗,Y = 0 (A.20)

These last conditions amount to saying that

Λ∗(p̄∗) ∈ ∂F (ū) p̄∗ ∈ ∂G (Λ(ū)) (A.21)
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[60] I. Rodŕıguez-Iturbe and A. Rinaldo, Fractal river basins: chance and

self-organization, Cambridge University Press, 2001.

[61] F. Santambrogio, Optimal channel networks, landscape function and

branched transport, Interfaces Free Bound., 9 (2007), pp. 149–169.

[62] , Absolute continuity and summability of transport densities: simpler

proofs and new estimates, Calc. Var. Partial Differential Equations, 36

(2009), pp. 343–354.

[63] , A Modica–Mortola approximation for branched transport, Comptes

Rendus Mathematique, 348 (2010), pp. 941–945.

[64] , Optimal transport for applied mathematicians, Birkäuser, NY, 2015.
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