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Abstract

Treatment of complex diseases such as cancer, HIV, leukemia and depression usually

follows complex treatment sequences. In two-stage randomization designs, patients are

randomized to first-stage treatments, and upon response, a second randomization to the

second-stage treatments is done. The clinical goal in such trials is to achieve a response

such as complete remission of leukemia, 50% shrinkage of solid tumor or increase in CD4

count in HIV patients. These responses are presumed to predict longer survival.

The focus in two-stage randomization designs with survival endpoints is on estimat-

ing survival distributions and comparing different treatment policies. In this thesis,

we make contributions in these two areas. A simulation study is conducted to com-

pare three non-parametric methods for estimating survival distributions. A parametric

method is proposed for estimating survival distributions in time-varying SMART de-

signs. The proposed estimator is studied using simulations and also applied to a clinical

trial dataset. Thirdly, we propose a method for comparing different treatment policies.

The new method works well even if the survival curves from the treatment policies

cross. Simulation studies show that the new method has better statistical power than

the weighted log-rank test in cases where survival curves cross. The last part of this the-

sis focuses on analyzing adverse events data from two-stage randomization designs. We

develop a methodology for analyzing adverse events data in the competing risk setting

which has been applied to a leukemia clinical trial dataset.



Sommario

Il trattamento di malattie complesse come cancro, AIDS, leucemia e depressione richie-

dono solitamente l’applicazione sequenziale di terapie complesse multiple. Nei disegni

randomizzati a due stadi, inizialmente i pazienti sono randomizzati al primo stadio di

trattamenti, e successivamente, sulla base della risposta al trattamento, i pazienti sono

randomizzati ad un secondo stadio di trattamenti. In questi studi randomizzati, l’o-

biettivo clinico è quello di ottenere una risposta all’intero piano di trattamento, come

per esempio la remissione completa dalla leucemia, la riduzione del 50% di un tumore

solido, o l’aumento della proteina CD4 in pazienti con infezioneda HIV. Si presume che

la risposta al trattamento possa predire una sopravvivenza più lunga.

Nei disegni randomizzati a due stadi che coinvolgono una risposta sul tempo di so-

pravvivenza, l’interesse principale è rivolto sia a stimare le distribuzioni di sopravvivenza

sia a confrontare le variepolitiche di trattamento. La tesi di dottorato fornisce contributi

di ricerca su questi due aspetti. È stato condotto uno studio di simulazione per confron-

tare diversi metodi non parametriciesistenti in letteratura per la stima delle distribuzioni

di sopravvivenza. È stato proposto un metodo parametrico per stimarele distribuzioni

di sopravvivenza in disegni randomizzati a due stadi di tipo SMART tempo-dipendente

(“time-varying SMART designs”). Lo stimatore proposto è stato verificato tramite stu-

di di simulazione ed è stato applicato a dati relativi a prove cliniche di trattamenti per

la leucemia.

In terzo luogo, è stato proposto un metodo di verifica di ipotesi per il confronto delle

diverse strategie di trattamento, sotto l’assunzione di non proporzionalità delle funzioni

di sopravvivenza. Questo metodo risulta particolarmenteutile quando le funzionidi so-

pravvivenza stimata si incrociano tra loro. Gli studi di simulazione condotti su questo

metodo hanno mostrato che esso presenta una potenza più elevata rispetto al test pe-

sato dei ranghi logaritmici, nel caso in cui le curve di sopravvivenza si incrociano e non

sono quindi proporzionali tra loro. L’ultima parte della tesi si concentra sull’analisi di

eventi avversi nell’ambito degli studi randomizzati a due stadi. È stata sviluppata una

metodologia per analizzare dati relativi ad eventi avversi, che si basa anche sui modelli

a rischi competitivi. Questa metodologia è stata poi applicata per analizzare dati di

eventi avversi in prove cliniche di trattamenti per la leucemia.
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Introduction

Overview

Treatment and management of chronic illnesses such as cancer, leukemia and HIV often

require multiple courses of treatment. The clinical goal in such trials is to achieve

a response such as complete remission of leukemia, 50% shrinkage of solid tumor or

increase in CD4 count in HIV patients. These responses are presumed to predict longer

survival. Dynamic treatment regimes, also known as dynamic treatment strategies or

treatment policies, have become popular in the conduct of cancer trials (Lokhnygina and

Helterbrand, 2007). These designs use a sequence of decision rules that link the observed

patient’s history with treatment recommendations. In two-stage randomization designs,

for instance in cancer clinical trials, patients are initially randomized to an induction

treatment followed by another randomization into a maintenance regimen provided that

the patient responds to the induction therapy and consents to further study. These

designs are sometimes referred to as sequential multiple assignment randomized trials

(SMART).

The focus in two-stage randomization designs with survival endpoints is on esti-

mating survival distributions and comparing the different treatment policies. Several

methods for estimating the survival distributions have been proposed in the literature.

The weighted risk set estimator (WRSE) is an extension of the Nelson-Aalen estimator

by incorporating inverse probability weights (Guo and Tsiatis, 2005). This estimator is

derived based on the counting processes. Another estimator was proposed by Lunce-

ford et al. (2002) which also uses inverse probability weights. Miyahara and Wahed

(2010) proposed the weighted Kaplan-Meier estimator for the estimation of survival

distributions in two-stage randomization designs. This estimator is a modification of

the usual Kaplan-Meier estimator. Wahed (2010) developed a parametric inference ap-

proach based on mixture distributions to compare different treatment policies. The

comparison is based on the survival means for the treatment strategies. In the same

1



2 Main contributions of the thesis

paper, Wahed (2010) also proposed a method for estimating survival distributions for

two-stage randomization designs where response to the first stage treatment is measured

at a single fixed time point. SMART design where response is measured at a fixed point

in the first stage are known as standard SMART designs. In time-varying SMART de-

signs, patients are randomized to second stage as soon as a response to the first stage

treatment is observed.

In his unpublished thesis, Guo (2005) proposed a weighted version of the log-rank

test for comparing separate-path treatment policies. Treatment policies are regarded

as separate-path if they do not share the same first stage treatment. Kidwell and Wa-

hed (2013) extended Guo (2005) approach to include shared path treatment strategies.

Two treatment strategies are shared-path if they share the same first stage treatment.

However, the paper by Kidwell and Wahed (2013) did not directly addressed the case

where the survival curves cross. In this thesis, we propose a testing approach based on

the absolute difference of the area under the survival curves which works well even if

the survival curves cross.

In this thesis, we review some non-parametric methods used in the estimation of

survival distributions for two-stage randomization designs. We provide a simulation

study to compare these methods when extreme values of the simulation parameters

are used. A parametric approach for estimating survival distributions for time-varying

SMART designs is introduced. The method is evaluated using a simulation study and

also applied to a dataset from a clinical trial. Safety data are not usually given the

same attention as efficacy data in the analysis of clinical trials data (Allignol et al.,

2016). In this thesis we develop a methodology for analyzing safety data from two-stage

randomization designs.

Main contributions of the thesis

The main contributions of this thesis can be summarized as follows,

• Comparative study of the non-parametric estimators for estimating survival dis-

tributions in two-stage randomization designs.

• Proposal of a parametric method for estimating survival distributions for time-

varying SMART designs. Numerical evaluation of the proposed estimator. Ap-

plication to the CALGB 19808 study dataset. This dataset is from a leukemia

clinical trial for patients under the age of 60 obtained from Mayo Clinic (Kolitz

et al., 2010).
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• Introduction of the weighted Lin and Xu test for comparing treatment policies.

Extension of the Lin and Xun test to accommodate shared-path treatment policies.

• Development of competing risk model and the related inference for analyzing safety

data from two-stage randomized designs. Application to the CALGB study 19808

toxicity dataset.



Chapter 1

A review of methods for estimating

survival distributions

Randomized controlled trials (RCTs) are regarded as the gold standard in biomedical

research. When they can be implemented, RCTs provide the strongest evidence in terms

of the unbiasedness and consistency of the estimate of the treatment effect. Though

regarded as the gold standard, there are criticisms against RCTs. One of these criticisms

is the one size fits all approach. To remedy this, there has been a shift from the

traditional one size fits all approach. Researchers in many fields are acknowledging

that single interventions may be limited in their effectiveness due to heterogeneity on

treatment response between individuals or within an individual over time. Even in real

life situations, individuals use multiple interventions. For example, if weight loss is the

objective, an individual may increase from exercising once per week to say three times

a week. If exercise does not yield the desired outcome, the individual may switch to

another intervention such as dieting or to a combination of both. Switching interventions

or sequences of interventions as opposed to a single stage intervention can have a huge

effect on the outcome.

1.1 Dynamic treatment regimes

Adaptive interventions, also known as dynamic treatment regimes use a sequence of

decision rules which recommend when and how the intervention should be modified in

order to optimize long term primary outcomes. These recommendations are based on

factors such as individual characteristics, intermediate response collected in the course

of the intervention such as the individual’s response and adherence. In adaptive treat-

ment strategies, the intervention is personalized depending on the specific needs of the

4



Chapter 1 - A review of methods for estimating survival distributions 5

individual, secondly, the intervention is time varying, that is, the intervention is repeat-

edly adapted overtime in response to the participant’s performance and changing needs.

An important aspect of adaptive interventions is the periodic assessment to ascertain

weather the treatment selected initially is in fact helpful. If not helpful, adaptation

procedures become necessary and sometimes these adjustments are done several times

during the course of the treatment (Kidwell and Hyde, 2016).

One way to operationalize adaptive interventions is to use decision rules to link

individual’s characteristics and ongoing performance with specific treatment options.

Adjustments of intervention options are based on the individual’s values on tailoring

variables. Candidates for tailoring variables depends largely on the problem at hand.

An individual’s responsiveness to an intervention is considered as an important tailoring

variable in many clinical trials. Response is defined based on the disease under study.

For an example, in an HIV clinical trial, reaching a certain threshold in CD4 count may

be regarded as a response. Alternatively, the choice of intervention options can also be

tailored based on treatments already received.

A multistage randomized trial in which each stage corresponds to a decision is referred

to as a SMART design. At each stage of the trial, individuals are assigned to one of

the several treatment options. Data from SMART designs can be used in addressing

questions concerning comparison of different interventions, they can also be used in

making comparisons of different treatment regimes embedded in the SMART design

(Nahum-Shani et al., 2012).

1.1.1 Time-varying SMART designs

We differentiate between two SMART designs. SMART designs with outcome assess-

ments at fixed time point are referred to as standard SMART designs (Dai and Shete,

2016). In such a SMART design, we take the time to response to be the same for every

individual in the study. This is because the time to measure response to the first stage

treatments is fixed for every individual, for example at six months. Figure 1.1 shows a

standard SMART design where individuals in the first stage are randomized to either

A1 or A2. Responders are randomized to either B1 or B2 in the second stage.
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Figure 1.1: An example of a two-stage standard SMART design.

In a time-varying SMART design, individuals are randomized to the second stage

treatments as soon as a response is observed. This means that the response times for

the individuals vary. There are, however, advantages for this type of design especially

in cancer trials where medications have some side effects. Prolonged intake of such

medications in the first stage even when a response has been observed may lead to

several side effects and thereby making patients refused second stage treatments. Also

this type of design may lead to reduction in costs (Dai and Shete, 2016). Figure 1.2 shows

an example of a time-varying SMART design where only responders are randomized to

the second stage. In this figure, individual 3 responds at time TR3 and is then randomized

to the second stage treatments. We do not show the second stage randomization for the

other individuals to avoid having many lines on the figure.
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Figure 1.2: An example of a two-stage time-varying SMART design.

1.2 Counterfactuals

Counterfactuals play an important role in causal inference. The focus in causal inference

is on the effects of causes or treatments on specific units. In a clinical trial the units

are the individuals in the study. Consider a study where half of the units are exposed

to the experimental treatment (E) and the other half exposed to the control treatment

(C). If the treatments E and C are assigned randomly to the experimental units such

that each unit was equally likely to be exposed to E as to C, then such a study is

referred to as a randomized experiment, otherwise the study is an observational study

or a non-randomized study. For a particular unit, say u, the causal effect of E versus C

is the difference between what would have happened at some time, say t2, if u had been

exposed to E initiated at t1, and what would have happened if u was exposed to C at

t2 started at t1. Denote by Y the outcome variable such that YE(u) and YC(u) are the

outcomes if unit u is assigned to E or C, respectively.

The effect of the treatment E on the unit u as measured by Y at t2, and relative

to treatment C, is the difference YE(u) − YC(u) . Defining the causal effect in this

manner leads to a problem. Practically it is impossible to observe the value of YE(u)

and YC(u) on the same unit u. YE(u) and YC(u) are called potential outcomes or
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counterfactuals. From unit u, either YE(u) or YC(u) is observed but not both, which

means that one of these potential outcomes is always missing. From a statistical view

point, the estimation of causal effects can be regarded as a particular problem of missing

data. One of the important assumptions in causal inference is the stable unit treatment

assumption which states that what is observed in one unit should not be affected by the

particular assignment of treatments to other units (Holland, 1986).

1.3 Model framework

Consider a two-stage randomization design where patients are first randomized to receive

treatment A with levels A1 and A2, and individuals who respond and consent to further

study are randomized to the second treatment with levels say B1 and B2. For simplicity

we shall henceforth use the word “response” to indicate response to previous treatment

and consent to second randomization. The strategy AjBk, for j, k = 1, 2 entails treating

with Aj followed by Bk if the patient responds to the first treatment. Our objective

is to estimate and compare survival distributions for the different treatment policies.

For this scope, we conceptualize the problem using potential outcomes (Rubin, 1974).

This does not mean that focus is on causal inference but we use potential outcomes as

a vehicle for formalizing the problem.

In reality, each individual follows only one treatment strategy, we observe only one

outcome for the specific treatment strategy. However, in theory individuals in the

population can follow any treatment policy AjBk, that is, for each individual in the

population one can envision one outcome for each possible strategy. Each individual has

his/her set of potential outcomes, the entire set of possible outcomes for each individual

is referred to as his/her counterfactuals.

Here, we shall focus on data from patients who received induction therapy A1, since

data from patients who received different induction therapies are independent. Data

from patients who received A2 are analyzed in a similar manner. Interest is on estimating

survival distributions for treatment policies A1B1 and A1B2. We assume that, associated

with subject i is a set of potential outcomes

{
R∗i , (1−R∗i )T0i, R∗iTRi , R∗iT ∗1i, R∗iT ∗2i

}
where R∗i is the response status if patient i was assigned to A1. R∗i = 1 if patient i

responds to treatment A1, R
∗
i = 0 otherwise. TRi is the time from initial randomization

to response for patient i defined only when R∗i = 1; T0i is the survival time for a patient
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who do not respond to first stage treatment. T ∗1i is the time from second randomization

to death if patient i receives B1, and similarly T ∗2i is the time from second randomization

to death if patient i receives B2 instead. If patient i is assigned to A1Bk, his/her survival

time would be

Tki = (1−R∗i )T0i +R∗i (T
R
i + T ∗ki), k = 1, 2. (1.1)

We note that we can only observe T1i or T2i hence, Tki are potential outcomes. If R∗i = 0

then T1i = T2i = T0i.

Let Tk denote the survival time for the population if all participants were assigned

to the treatment strategy A1Bk. Inference on features of these distributions address

directly the intent-to-treat question of interest. Using data from two-stage design we

estimate the distribution of Tk.

Without right censoring, the observed data can be represented as a set of independent

and identically distributed (iid) random vectors (R∗i , R
∗
iT

R
i , R

∗
iZi, Ti) for i = 1, . . . , n,

where Zi is an indicator for the B treatment defined only if R∗i = 1. We have Zi = 1 if

patient i is assigned to B1 and Zi = 0 if assigned to B2. The observed survival time, Ti,

is related to the potential outcomes as follows:

Ti = (1−R∗i )T0i +R∗i
{
TRi + ZiT

∗
1i + (1− Zi)T ∗2i

}
. (1.2)

To incorporate right censoring, let Ci be the time to censoring for the ith patient. The

observed data can then be represented as independent and identically distributed vectors

(Ri, RiZi, RiT
R
i , Ui,∆i), where ∆i = I(Ti < Ci) is the failure indicator, Ui = min(Ti, Ci)

is the observed time to either death or censoring. Ri = 0 if patient i is censored without

having had a response to treatment A1 otherwise Ri = R∗i .

We assume that the second stage randomization is made independently of the other

potential outcomes, that is

πz = P (Zi = 1|Ri = 1, TRi , T1i, T2i, Ci)

= P (Zi = 1|Ri = 1).

We note that πz, defined only if Ri = 1, is the probability of being randomized to the

B treatment and it is typically fixed by design.
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1.4 Standard methods for estimating survival dis-

tributions

Prior to the introduction of the weighted methods for analyzing data from two-stage

randomization designs, the analysis was typically separated into two parts under an

intent-to-treat principle, where patients are analyzed according to the group to which

they were randomized. The data from the first stage was analyzed separately ignoring

the second stage data. A similar analysis was done for the second stage data. With

time-to-event endpoints, standard survival analysis methods are used to analyze the data

from the two stages. We give a brief overview of the standard methods for estimating

survival distributions.

1.4.1 Kaplan-Meier estimator

The widely used estimator for the survival function is the Kaplan-Meier estimator. Let

t1 < t2 < ... be the distinct event times, suppose that at time tm for m = 1, 2, ... there

are dm events. Let Ym be the number of individuals at risk at time tm, that is, the set

of individuals who did not yet have the event until time tm
−, where tm

− is the time

instant just before tm. The Kaplan-Meier estimator is as follows:

Ŝ(t) =

1, t < t1∏
tm≤t

(
1− dm

Ym

)
, t ≥ t1.

The Kaplan-Meier estimator is a step function with jumps at the observed event times.

The variance of the Kaplan-Meier estimator is estimated using the Greenwood’s formula.

1.4.2 Nelson-Aalen estimator

One possible estimator for the cumulative hazard, Λ(t) =
∫ t
0
α(s)ds, is the Nelson-Aalen

estimator, defined as

Λ̂(t) =

0, t ≤ t1∑
tm≤t

dm
Ym
, t ≤ t1.

The variance of the Nelson-Aalen estimator is estimated by

V̂ (Λ̂(t)) =
∑
tm≤t

dm
Y 2
m

.
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The Nelson-Meier estimator for the cumulative hazard rate can be used as an alter-

native estimator for the survival function since Ŝ(t) = exp(−Λ̂(t)).

The use of standard survival methods cannot answer questions regarding treatment

sequences. One cannot tell which treatment policy leads to longer survival and also the

data is not used efficiently if analysis is done separately for the two stages. To answer

questions on treatment policies, an alternative design would randomize the patients up

front to the treatment policies. This approach, however, requires a large number of

patients and it is not efficient (Lunceford et al., 2002).

1.5 Estimating survival distributions for two-stage

designs

Several nonparametric estimators have been proposed. The most popular ones are the

weighted risk set estimator (WRSE) of Guo and Tsiatis (2005), the inversely weighted

estimators proposed by Lunceford et al. (2002) which we shall refer to as the LDT

estimator and the weighted Kaplan-Meier estimator of Miyahara and Wahed (2010).

1.5.1 LDT estimator

The LDT estimator (Lunceford et al., 2002) is derived using the inverse weighting tech-

nique (Robins et al., 1994). Consider the estimation of the survival distributions for the

treatment policy A1Bk, that is, S1k(t) = 1−P (T1k ≤ t) = 1−F1k, for k = 1, 2. For sim-

plicity, consider A1B1. In two-stage designs, difficulties arise from subjects who are not

consistent with the treatment policy of interest. In this case we treat them as missing. If

all the patients are assigned to A1B1 and there is no censoring, meaning Ui = Ti = T1i,

the natural estimator for F11(t) is n−1
∑n

i=1 I(Ui ≤ t). With censoring and second stage

randomization upon response, only a subset of patients would have their observed sur-

vival time and actual treatment received being consistent with A1B1 since some patients

are randomized to A1B2. Lunceford et al. (2002) proposed an estimator based on inverse

probability weighting (Robins et al., 1994) to weight observations in this subset in such

a way that the distribution of the weighted observations mimic that in an ideal case.

Let W1i = 1−Ri +RiZi/πz be the weight function. When the ith patient is consistent

with treatment policy A1B1, W1i acts as a weight. Non-responders consistent with A1B1

represent themselves and they get a weight of 1, that is, W1i = 1. Each responder con-

sistent with A1B1 represents 1/πz remitting or consenting individuals who could have
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been potentially assigned to B1 and gets a weight of 1/πz. Responders not consistent

with the policy A1B1 get a weight of 0.

This weighting scheme motivates the estimator

F̂ 1
1k(t) = n−1

n∑
i=1

∆iWki

K̂(Ui)
I(Ui ≤ t), k = 1, 2; (1.3)

where K̂(Ui) is the Kaplan-Meier estimator for the censoring distribution given by

K̂(Ui) =
∏

u≤t{1 − dN c(u)/Y (u)} with N c =
∑n

i=1 I(Ui ≤ u,∆i = 0) and Y (u) =∑n
i=1 I(Ui ≥ u).

Instead of dividing by n in (1.3), a second estimator can be obtained by dividing by

a probabilistically adjusted sample size;

F̂ ∗1k(t) =

{
n∑
i=1

∆iWki

K̂(Ui)

}−1 n∑
i=1

∆iWki

K̂(Ui)
I(Ui ≤ t), k = 1, 2. (1.4)

From (1.4), the survival distributions for A1Bk are estimated using

Ŝ1k(t) = 1− F̂ ∗1k(t); (1.5)

and the variance is estimated by

v̂ar(Ŝ1k(t)) =
1

n

{
1

n

n∑
i=1

∆iWki

K̂(Ui)
{I(Ui ≤ t)− F̂ ∗1k}2

+

∫ L

0

dN c(u)

K̂(u)Y (u)
Ê{L∗1ki(t, u)}2

}
, (1.6)

where L is the restricted lifetime which is smaller than the maximum follow-up of the

study,

E{L∗1ki(t, u)}2 =
1

n

n∑
i=1

∆i

K̂(Ui)

[
Wki{I(Ui ≤ t)− F̂ ∗1k(t)} − Ĝ∗1k(t, u)

]2
I(Ui ≥ u), (1.7)

and

Ĝ∗1k(t, u) = {nŜ(u)}−1
n∑
i=1

∆iWki

K̂(Ui)

{
{I(Ui ≤ t)− F̂ ∗1k(t)}

}
I(Ui ≥ u). (1.8)

More details on the variance derivation can be found on the appendix of Lunceford et al.

(2002).
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1.5.2 Weighted risk set estimator

The derivation of the WRSE estimator relies heavily on the counting processes. For a

one-stage study with survival endpoints, the cumulative hazard rate can be estimated

by the Aalen-Nelson estimator

Λ̂(t) =

∫ t

0

dN(u)

Y (u)
,

where N(u) =
∑n

i=1 I(Ui ≤ u,∆i = 1) denotes the number of deaths up to and including

time u, and Y (u) =
∑n

i=1 I(Ui ≥ u) is the number of patients at risk at time u. The

WRSE is here showed for A1B1, as the development of the estimator for A1B2 follows

similarly. Consider the case when all individuals are assigned to A1B1 in which case the

observed death or censoring time is U1i = min(T1i, Ci). Let N1i(u) = I(U1i ≤ u,∆i = 1)

and Y1i(u) = I(U1i ≥ u) then the cumulative hazard estimator becomes

Λ̂11(t) =

∫ t

0

∑n
i=1 dN1i(u)∑n
i=1 Y1i(u)

.

In reality, some of the patients who could have received B1 received instead B2

after randomization to the second stage. N1i(u) and Y1i(u) cannot be observed directly

and the WRSE propose to incorporate inverse weighting where the weight function

depending on u is defined as Wi(u) = 1 − Ri(u) + Ri(u)Zi/πz, where Ri(u) is the

response status at time u. Ri(u) = 0, if at time u a response has not been achieved

for patient i but patient i is still consistent with A1B1 and gets a weight of 1. For a

patient i with Ri(u) = 1 and Zi = 0, a weight of 0 is assigned since this patient is no

longer consistent with the treatment strategy A1B1. For a responder assigned to B1,

this patient is consistent with A1B1 and gets a weight of 1/πz at time u. This patient

represents 1/πz individuals who could have been potentially assigned to B1. The weight

function W ∗
i (u) = 1 − Ri(u) + Ri(u)(1 − Zi)/(1 − πz) is used for A1B2 and a similar

argument is made.

The difference between the LDT and the WRSE is that the WRSE uses time depen-

dent weights. A patient who is a responder and is randomized to B2 gets a weight of 0

under the LDT at any time u including the time before the second randomization. This

leads to a loss in efficiency. On the contrary, the WRSE includes this subset of patients

and assigns a weight Wi = 1 at any time u before the second randomization, thereafter

the weight changes to Wi = 0.
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The cumulative hazard estimator for A1B1 using the above weight function is

Λ̂11(t) =

∫ t

0

∑n
i=1Wi(u)dNi(u)∑n
i=1Wi(u)Yi(u)

where Ni(u) = I(Ui ≤ u,∆i = 1) and Yi(u) = I(Ui ≥ u). The survival estimator is

Ŝ1(t) = exp

{
−
∫ t

0

∑n
i=1Wi(u)dNi(u)∑n
i=1Wi(u)Yi(u)

}
. (1.9)

The variance is given by

V̂ar(SA1B1(t)) = n−1{SA1B1(t)}2σ̂2, (1.10)

where

σ̂2 = n−1
n∑
i=1

∫ t

0

Wi(u)
[
dNi(u)− Yi(u)

{∑n
i=1Wi(u)dNi(u)∑n
i=1Wi(u)Yi(u)

}]
n−1

∑n
i=1Wi(u)Yi(u)

2

1.5.3 Weighted Kaplan-Meier estimator

Miyahara and Wahed (2010) proposed two forms of the weighted Kaplan-Meier esti-

mators for two-stage randomization designs. Consider the case where all patients are

treated with A1Bk, the survival function at time t can be estimated as

ŜA1Bk
(t) =

1, t < t1∏
tm≤t

(
1− dm

Ym

)
, t ≥ t1,

for k = 1, 2, where dm =
∑n

i=1 ∆iI(Ui = tm), Ym =
∑n

i=1 I(Ui ≥ tm) and tm are the

ordered death or failure times for m = 1, 2, . . . . However, we know that in a two-stage

randomization design some patients will potentially receive treatment not consistent

with A1Bk, so an adjustment for such a loss is done using inverse probability weighting.

The weighted Kaplan-Meier estimator (WKME) is

ŜwA1Bk
(t) =

1, t < t1∏
tm≤t

(
1− dwm

Y w
m

)
, t ≥ t1,

(1.11)

for k = 1, 2 and where dwm =
∑n

i=1 ∆iI(Ui = tm)Wki, Y
w
m =

∑n
i=1 I(Ui ≥ tm)Wki.

The death process and the at risk process are weighted by the inverse probability of

randomization. The weights used in this estimator are the same as in the LDT estimator
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above. A modified version of the Greenwood formula can be used to estimate the

variance of the estimator

v̂ar(ŜA1Bk
(t)) = {Ŝ1k(t)}2

∑
m:tm≤t

1− ŝ1km
M̂1kmŝ1km

, (1.12)

where

M̂1km =

(
n∑
i=1

WkiI(Ui ≥ tm)

)2

/
n∑
i=1

{WkiI(Ui ≥ tm)}2 , (1.13)

and ŝ1km = 1− dwm/Y w
m ,m = 1, 2, ...

A version of this estimator with time-dependent weights was also developed. For

the estimator with time dependent weights, the variance was calculated using bootstrap

(Efron and Tibshirani, 1994)

1.6 Sensitivity analysis

We performed a simulation study to compare the performance of the three non-parametric

methods, namely the WRSE, LDT and the WKM estimators. The aim of this simulation

study is to ascertain how these methods perform when extreme values of the parame-

ters are used. We note that in the simulation studies on WKM estimators reported in

the paper by Miyahara and Wahed (2010), only two response rates were used (0.4 and

0.7) and also, in their simulation scenarios, the censoring rates were 5.4% for the 40%

response rate and 6.4% for the 70% response rate. The papers on the LDT estimator

(Lunceford et al., 2002) and the WRSE (Guo and Tsiatis, 2005) used only one censoring

rate in their simulations. In the paper about the WRSE (Guo and Tsiatis, 2005), two

response rates were used, (0.5 and 0.8). In the LDT estimator simulations, 20% and 50%

were used as response rates. In real world application, one can find datasets with higher

censoring rates than those considered in the simulation studies of the above papers, and

perhaps higher or relatively lower response rates than the ones used in these studies.

How do these methods perform when extreme values of the simulation parameters are

used? How are these methods affected by higher censoring rates?

In this simulation study, we used the following censoring rates: 0%, 10%, 30%, 50%

and 60%. For the response rates we used 20%, 40%, 60%, and 80%. We considered three

sample sizes, that is, n = 100, 200, 400. The simulation study is done similar to that

of the WRSE. The response and consent indicator, Ri, is simulated from a Bernoulli
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distribution with P (Ri = θ), where θ = (0.2, 0.4, 0.6, 0.8). For non-responders we simu-

lated T0i from an exponential distribution with mean 182.5 days. T0i is generated only

if Ri = 0. The time to response, TRi , is generated following an exponential distribution

with mean 300 days. In all the simulation scenarios, the indicator for the B-treatment

is generated from a Bernoulli (0.5) distribution. If Z = 1, T ∗1i is generated from an

exponential distribution with mean 370 days and if Z = 0, T ∗2i is generated from an

exponential distribution with mean 547.5 days.

The observed survival time for patient i is defined as Ti = (1−Ri)T0i+Ri{TRi +ZiT
∗
1i+

(1− Zi)T ∗2i). The censoring time was generated from a uniform (0, v) distribution, v is

chosen such that 0%, 10%, 30%, 50% and 60% of the times are censored. The observed

survival time is defined to be Ui = min(Ti, Ci). For simplicity, we only calculate survival

distributions for A1B1.

In all the simulation scenarios, 1000 datasets were generated and the methods were

applied. We estimated S1(t) at t = 100, 300, 450 days. We report the survival prob-

abilities together with their standard errors, coverage probabilities, and bias for the

three methods at the times mentioned above. In addition, we also report the rel-

ative efficiency (RE) of WRSE and WKM estimators which is calculated as RE =

sample variance of WRSE/sample variance of WKM. Guo and Tsiatis (2005) estab-

lished that the WRSE is more efficient than the LDT estimator, so we did not repeat

the calculation of the relative efficiency here.

We present the results of the simulation study for n = 100 in Table 1.1, n = 200

in Table 1.3 and n = 400 in Table 1.3. The LDT estimator is mostly affected by

the censoring rates. In all the sample sizes, the bias of the LDT estimator increases

drastically as the censoring rate is increased independently of the response rate, (πr).

At the lower end of the survival curve, the LDT estimator approaches zero in cases

where the response rate is low and the censoring rate is high. This is more evident when

the sample size is small, that is, n = 100. The calculation of of the LDT depends on

the censoring distribution. Higher values of the censoring distribution leads to a bigger

denominator, hence this estimator approaches zero at the lower end when high censoring

rates are used. For low censoring rates, all three estimators yield similar estimates, this

happens when the censoring rate is less than 30%. The bias of the LDT estimator

becomes greater when the censoring rate is 30% and above. The bias of the WRSE and

the WKM estimator also increase when the censoring rate is high, and becomes more

pronounced in the lower end of the survival curve.

The LDT estimator has the best coverage probabilities in cases where the censoring

rate is low. In cases where the censoring rate is high, the coverage probabilities for the
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LDT estimator are far from the nominal level of 95%. The coverage probabilities of the

WRSE and the WKPE are are also affected by high censoring rates and low response

rates. For a sample size of n = 100, and response rate of 20%, the coverage probabilities

are 47.4% and 50.6% for the WRSE and the WKM estimator for the censoring rate of

60%. With increase in response rates, the coverage probabilities for the WRSE and the

WKM estimator get closer to the desired nominal level. For a response rate of 80%

and a censoring rate of 60%, the coverage probabilities for the WRSE and the WKPM

estimator are 93.0% and 85.3% respectively. Increasing the sample size from n = 100

to n = 400, the coverage probabilities get closer to the desired nominal level for the

WRSE and the WKM estimator whilst the coverage probabilities of the LDT estimator

lags behind when the censoring rate is high. At the lower end of the survival curve, the

coverage probabilities for the WKM estimator are not close to the nominal level.

As expected, increasing the sample size leads to decrease in the standard errors for

the three methods. In all the simulation scenarios, the LDT estimator has the largest

standard errors. This is a result that was established in the Guo and Tsiatis (2005)

paper. The standard errors for the WRSE and the WKM estimator are similar. There

is a small gain in efficiency in using the WKM estimator. The WRSE and the WKM

estimator are less affected by high censoring rates and low response rates. The survival

estimates from the WRSE and the WKM estimator are similar and their standard errors

are similar as well.
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Table 1.1: Simulation results for n = 100

WRSE WKM LDT
t S1(t) Ŝ1(t) SE Bias CP Ŝ1(t) SE Bias RE CP Ŝ1(t) SE Bias CP

πr = 0.2 c = 0%
100 0.655 0.655 0.047 0.00 93.9 0.653 0.047 0.00 1.01 93.2 0.653 0.050 0.00 94.9
300 0.309 0.311 0.048 0.00 92.4 0.308 0.046 0.00 1.11 93.0 0.307 0.054 0.00 95.0
450 0.190 0.192 0.042 0.00 92.4 0.188 0.038 0.00 1.20 88.6 0.187 0.048 0.00 93.3

πr = 0.2 c = 10%
100 0.655 0.656 0.048 0.00 93.2 0.654 0.048 0.00 1.01 92.9 0.654 0.051 0.00 93.9
300 0.309 0.312 0.050 0.00 94.2 0.308 0.047 0.00 1.10 93.0 0.307 0.058 0.00 94.2
450 0.190 0.198 0.045 0.01 95.1 0.192 0.041 0.00 1.21 88.7 0.190 0.053 0.00 94.4

πr = 0.2 c = 30%
100 0.655 0.656 0.049 0.00 95.4 0.653 0.049 0.00 1.00 94.6 0.626 0.052 0.03 88.9
300 0.309 0.313 0.054 0.00 93.2 0.307 0.051 0.00 1.10 94.1 0.253 0.057 0.06 70.9
450 0.190 0.196 0.051 0.01 91.8 0.186 0.047 0.00 1.17 89.9 0.124 0.047 0.07 56.9

πr = 0.2 c = 50%
100 0.655 0.658 0.051 0.00 95.7 0.654 0.051 0.00 1.00 94.8 0.547 0.050 0.10 46.9
300 0.309 0.318 0.066 0.00 93.1 0.305 0.065 0.00 1.02 91.0 0.098 0.035 0.21 16.1
450 0.190 0.247 0.066 0.05 75.5 0.222 0.067 0.03 0.87 74.2 0.000 0.000 0.19 0.00

πr = 0.2 c = 60%
100 0.655 0.659 0.053 0.00 94.3 0.657 0.053 0.00 1.00 93.7 0.481 0.049 0.17 22.3
300 0.309 0.343 0.076 0.03 83.6 0.322 0.078 0.01 0.89 81.8 0.000 0.000 0.30 0.00
450 0.190 0.343 0.076 0.15 47.4 0.322 0.078 0.13 0.89 50.6 0.000 0.000 0.19 0.00

πr = 0.4 c = 0%
100 0.732 0.732 0.045 0.00 93.5 0.730 0.044 0.00 1.03 92.3 0.731 0.048 0.00 95.2
300 0.425 0.428 0.053 0.00 94.6 0.423 0.049 0.00 1.18 92.0 0.425 0.060 0.00 95.1
450 0.295 0.298 0.051 0.00 95.3 0.293 0.045 0.00 1.29 88.7 0.295 0.059 0.00 95.9

πr = 0.4 c = 10%
100 0.732 0.734 0.045 0.00 93.7 0.731 0.044 0.00 1.04 91.5 0.732 0.049 0.00 95.0
300 0.425 0.429 0.055 0.00 94.1 0.424 0.050 0.00 1.18 91.6 0.425 0.063 0.00 94.7
450 0.295 0.300 0.053 0.00 93.9 0.295 0.047 0.00 1.29 87.6 0.295 0.062 0.00 94.3

πr = 0.4 c = 30%
100 0.732 0.734 0.046 0.00 92.6 0.731 0.045 0.00 1.03 93.7 0.714 0.050 0.01 91.0
300 0.425 0.431 0.057 0.01 93.7 0.425 0.053 0.00 1.17 92.1 0.386 0.067 0.04 83.5
450 0.295 0.304 0.057 0.01 92.8 0.295 0.051 0.00 1.27 88.3 0.248 0.067 0.05 76.6

πr = 0.4 c = 50%
100 0.732 0.735 0.047 0.00 94.5 0.732 0.046 0.00 1.04 91.6 0.640 0.050 0.09 53.3
300 0.425 0.430 0.065 0.01 91.9 0.422 0.060 0.00 1.16 92.1 0.228 0.058 0.19 26.6
450 0.295 0.305 0.072 0.01 88.5 0.289 0.067 0.01 1.14 82.3 0.057 0.023 0.24 14.7

πr = 0.4 c = 60%
100 0.732 0.735 0.048 0.00 93.7 0.732 0.047 0.00 1.03 91.9 0.584 0.049 0.14 29.7
300 0.425 0.431 0.072 0.01 93.0 0.420 0.069 0.01 1.11 87.7 0.110 0.036 0.31 9.90
450 0.295 0.360 0.078 0.06 74.3 0.335 0.074 0.04 1.00 71.4 0.000 0.000 0.29 0.00

πr = 0.6 c = 0%
100 0.809 0.809 0.041 0.00 94.2 0.806 0.039 0.00 1.08 90.9 0.807 0.044 0.00 94.7
300 0.541 0.543 0.056 0.00 93.4 0.538 0.050 0.00 1.27 91.7 0.540 0.062 0.00 95.0
450 0.400 0.406 0.057 0.01 93.8 0.399 0.049 0.00 1.38 88.7 0.401 0.064 0.00 95.5

πr = 0.6 c = 10%
100 0.809 0.811 0.041 0.00 93.2 0.810 0.039 0.00 1.09 90.7 0.810 0.044 0.00 93.6
300 0.541 0.548 0.057 0.01 94.2 0.544 0.050 0.00 1.28 91.0 0.545 0.064 0.00 94.9
450 0.400 0.408 0.059 0.01 93.5 0.402 0.050 0.00 1.38 87.5 0.403 0.067 0.00 94.4

πr = 0.6 c = 30%
100 0.809 0.811 0.041 0.00 93.1 0.810 0.039 0.00 1.09 91.3 0.801 0.045 0.01 93.2
300 0.541 0.544 0.059 0.00 93.6 0.541 0.052 0.00 1.28 89.9 0.521 0.069 0.02 90.1
450 0.400 0.407 0.062 0.01 93.5 0.401 0.053 0.00 1.38 87.0 0.375 0.074 0.03 85.3

πr = 0.6 c = 50%
100 0.809 0.813 0.042 0.00 94.0 0.811 0.040 0.00 1.08 90.0 0.764 0.046 0.04 76.8
300 0.541 0.551 0.063 0.01 91.9 0.544 0.056 0.00 1.27 91.4 0.430 0.070 0.11 57.5
450 0.400 0.409 0.070 0.01 92.3 0.399 0.060 0.00 1.36 86.4 0.248 0.070 0.15 45.9

πr = 0.6 c = 60%
100 0.809 0.813 0.042 0.00 92.3 0.811 0.041 0.00 1.08 90.5 0.717 0.046 0.09 53.0
300 0.541 0.550 0.067 0.01 92.6 0.543 0.059 0.00 1.26 87.4 0.319 0.066 0.22 29.2
450 0.400 0.412 0.079 0.01 90.4 0.397 0.070 0.00 1.29 84.6 0.108 0.039 0.29 18.0

πr = 0.8 c = 0%
100 0.886 0.887 0.034 0.00 91.3 0.885 0.032 0.00 1.19 93.8 0.886 0.036 0.00 91.9
300 0.657 0.659 0.057 0.00 93.1 0.655 0.047 0.00 1.45 87.9 0.656 0.061 0.00 93.9
450 0.505 0.509 0.062 0.00 93.6 0.504 0.050 0.00 1.54 86.6 0.505 0.067 0.00 94.4

πr = 0.8 c = 10%
100 0.886 0.887 0.035 0.00 92.4 0.886 0.032 0.00 1.20 89.1 0.886 0.036 0.00 93.2
300 0.657 0.660 0.058 0.00 94.8 0.655 0.048 0.00 1.45 86.7 0.656 0.063 0.00 94.7
450 0.505 0.510 0.063 0.01 94.4 0.503 0.051 0.00 1.53 86.1 0.504 0.070 0.00 95.2

πr = 0.8 c = 30%
100 0.886 0.887 0.035 0.00 90.5 0.886 0.032 0.00 1.20 88.5 0.883 0.037 0.00 90.8
300 0.657 0.658 0.060 0.00 94.2 0.654 0.049 0.00 1.45 86.3 0.645 0.067 0.01 92.9
450 0.505 0.511 0.066 0.01 93.7 0.504 0.053 0.00 1.54 85.5 0.492 0.076 0.01 91.4

πr = 0.8 c = 50%
100 0.886 0.889 0.035 0.00 89.6 0.887 0.032 0.00 1.20 88.6 0.868 0.038 0.01 85.7
300 0.657 0.661 0.062 0.00 94.9 0.657 0.051 0.00 1.46 87.2 0.597 0.070 0.06 77.3
450 0.505 0.512 0.071 0.01 93.6 0.505 0.057 0.00 1.53 83.6 0.419 0.080 0.08 71.4

πr = 0.8 c = 60%
100 0.886 0.887 0.035 0.00 91.4 0.886 0.032 0.00 1.20 88.7 0.844 0.039 0.04 73.7
300 0.657 0.660 0.064 0.00 93.2 0.655 0.053 0.00 1.45 85.8 0.529 0.071 0.12 55.2
450 0.505 0.511 0.075 0.01 93.0 0.502 0.061 0.00 1.51 85.3 0.323 0.076 0.18 41.0
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Table 1.2: Simulation results for n = 200

WRSE WKM LDT
t S1(t) Ŝ1(t) SE Bias CP Ŝ1(t) SE Bias RE CP Ŝ1(t) SE Bias CP

πr = 0.2 c = 0%
100 0.655 0.655 0.034 0.00 94.5 0.654 0.034 0.00 1.01 93.9 0.655 0.036 0.00 95.9
300 0.309 0.311 0.034 0.00 94.1 0.309 0.033 0.00 1.12 94.8 0.309 0.038 0.00 96.0
450 0.190 0.192 0.030 0.00 92.1 0.190 0.028 0.00 1.22 91.8 0.190 0.035 0.00 95.3

πr = 0.2 c = 10%
100 0.655 0.657 0.034 0.00 94.1 0.656 0.034 0.00 1.02 94.6 0.655 0.036 0.00 95.0
300 0.309 0.312 0.036 0.00 95.0 0.310 0.034 0.00 1.12 93.2 0.308 0.041 0.00 95.6
450 0.190 0.193 0.032 0.00 94.1 0.190 0.029 0.00 1.22 93.0 0.188 0.038 0.00 94.3

πr = 0.2 c = 30%
100 0.655 0.655 0.035 0.00 95.3 0.654 0.035 0.00 1.02 94.8 0.628 0.037 0.02 85.1
300 0.309 0.311 0.039 0.00 94.5 0.308 0.037 0.00 1.11 94.7 0.256 0.042 0.05 64.3
450 0.190 0.194 0.037 0.00 94.2 0.190 0.034 0.00 1.20 93.6 0.129 0.037 0.06 53.5

πr = 0.2 c = 50%
100 0.655 0.657 0.036 0.00 93.5 0.656 0.036 0.00 1.01 93.7 0.550 0.036 0.10 28.6
300 0.309 0.314 0.048 0.01 94.3 0.309 0.046 0.00 1.08 93.8 0.099 0.030 0.21 8.50
450 0.190 0.241 0.054 0.05 75.5 0.226 0.054 0.04 0.95 74.9 0.000 0.000 0.19 0.00

πr = 0.2 c = 60%
100 0.655 0.657 0.038 0.00 94.7 0.656 0.037 0.00 1.01 93.5 0.486 0.036 0.16 9.50
300 0.309 0.332 0.060 0.02 84.8 0.321 0.062 0.01 0.95 84.6 0.000 0.000 0.30 0.00
450 0.190 0.332 0.060 0.14 34.5 0.321 0.062 0.13 0.95 38.5 0.000 0.000 0.19 0.00

πr = 0.4 c = 0%
100 0.732 0.733 0.032 0.00 95.8 0.731 0.031 0.00 1.06 93.1 0.732 0.034 0.00 97.3
300 0.425 0.428 0.038 0.00 95.3 0.425 0.035 0.00 1.21 94.4 0.426 0.043 0.00 96.6
450 0.295 0.298 0.037 0.00 94.0 0.295 0.032 0.00 1.31 91.8 0.296 0.042 0.00 95.6

πr = 0.4 c = 10%
100 0.732 0.732 0.032 0.00 93.9 0.731 0.031 0.00 1.05 93.9 0.731 0.035 0.00 95.5
300 0.425 0.427 0.039 0.00 94.1 0.424 0.036 0.00 1.20 94.1 0.424 0.045 0.00 95.4
450 0.295 0.296 0.038 0.00 93.5 0.293 0.033 0.00 1.31 91.5 0.293 0.044 0.00 95.7

πr = 0.4 c = 30%
100 0.732 0.733 0.033 0.00 95.4 0.732 0.032 0.00 1.05 92.9 0.717 0.036 0.01 92.0
300 0.425 0.428 0.041 0.00 94.4 0.426 0.037 0.00 1.21 93.2 0.393 0.049 0.03 83.4
450 0.295 0.297 0.041 0.00 94.5 0.294 0.036 0.00 1.31 92.7 0.254 0.050 0.04 76.6

πr = 0.4 c = 50%
100 0.732 0.732 0.034 0.00 95.0 0.730 0.033 0.00 1.05 92.9 0.643 0.036 0.08 35.7
300 0.425 0.425 0.047 0.00 93.6 0.419 0.043 0.01 1.20 93.1 0.235 0.045 0.19 14.2
450 0.295 0.298 0.055 0.00 92.8 0.287 0.050 0.01 1.25 92.2 0.064 0.024 0.23 10.2

πr = 0.4 c = 60%
100 0.732 0.733 0.034 0.00 93.5 0.732 0.034 0.00 1.05 93.9 0.589 0.036 0.14 13.9
300 0.425 0.429 0.053 0.00 94.5 0.423 0.049 0.00 1.18 93.7 0.120 0.034 0.30 4.80
450 0.295 0.353 0.063 0.05 72.7 0.339 0.060 0.04 1.11 71.0 0.000 0.000 0.29 0.00

πr = 0.6 c = 0%
100 0.809 0.809 0.029 0.00 93.4 0.809 0.028 0.00 1.11 92.1 0.809 0.031 0.00 93.9
300 0.541 0.544 0.040 0.00 93.8 0.542 0.035 0.00 1.30 92.6 0.543 0.044 0.00 95.7
450 0.400 0.403 0.041 0.00 93.4 0.400 0.038 0.00 1.42 91.9 0.400 0.045 0.00 94.1

πr = 0.6 c = 10%
100 0.809 0.810 0.029 0.00 94.7 0.808 0.028 0.00 1.10 94.6 0.809 0.031 0.00 96.4
300 0.541 0.542 0.041 0.00 94.8 0.538 0.036 0.00 1.31 93.9 0.539 0.046 0.00 96.7
450 0.400 0.401 0.042 0.00 94.8 0.397 0.037 0.00 1.42 90.1 0.397 0.048 0.00 95.1

πr = 0.6 c = 30%
100 0.809 0.812 0.029 0.00 93.6 0.810 0.028 0.00 1.10 92.1 0.805 0.032 0.00 93.6
300 0.541 0.543 0.042 0.00 94.1 0.540 0.037 0.00 1.31 93.4 0.525 0.050 0.02 91.0
450 0.400 0.404 0.045 0.00 93.6 0.400 0.038 0.00 1.42 92.4 0.381 0.054 0.02 88.9

πr = 0.6 c = 50%
100 0.809 0.809 0.030 0.00 94.0 0.809 0.029 0.00 1.11 94.6 0.763 0.033 0.05 68.1
300 0.541 0.542 0.045 0.00 95.6 0.539 0.040 0.00 1.31 93.7 0.430 0.052 0.11 45.5
450 0.400 0.403 0.051 0.00 94.6 0.398 0.049 0.00 1.42 91.8 0.257 0.055 0.14 36.8

πr = 0.6 c = 60%
100 0.809 0.810 0.030 0.00 93.3 0.809 0.029 0.00 1.11 92.7 0.718 0.034 0.09 32.3
300 0.541 0.542 0.048 0.00 93.8 0.538 0.042 0.00 1.31 92.5 0.321 0.051 0.22 13.8
450 0.400 0.403 0.059 0.00 92.9 0.396 0.050 0.01 1.39 90.7 0.116 0.038 0.28 9.70

πr = 0.8 c = 0%
100 0.886 0.886 0.025 0.00 93.9 0.885 0.023 0.00 1.22 93.9 0.886 0.026 0.00 93.9
300 0.657 0.658 0.041 0.00 94.9 0.656 0.034 0.00 1.48 93.3 0.657 0.043 0.00 94.6
450 0.505 0.507 0.044 0.00 94.2 0.503 0.035 0.00 1.57 92.2 0.505 0.048 0.00 94.5

πr = 0.8 c = 10%
100 0.886 0.886 0.025 0.00 92.1 0.886 0.022 0.00 1.23 91.4 0.886 0.026 0.00 92.6
300 0.657 0.659 0.041 0.00 94.2 0.657 0.034 0.00 1.49 93.7 0.658 0.044 0.00 95.0
450 0.505 0.507 0.045 0.00 94.7 0.504 0.038 0.00 1.58 92.9 0.504 0.049 0.00 95.4

πr = 0.8 c = 30%
100 0.886 0.886 0.025 0.00 92.4 0.886 0.023 0.00 1.23 90.3 0.883 0.027 0.00 92.2
300 0.657 0.657 0.043 0.00 93.3 0.655 0.035 0.00 1.49 90.5 0.647 0.048 0.01 93.0
450 0.505 0.508 0.047 0.00 92.6 0.504 0.038 0.00 1.57 90.0 0.494 0.054 0.01 91.8

πr = 0.8 c = 50%
100 0.886 0.886 0.025 0.00 92.3 0.885 0.023 0.00 1.23 91.5 0.867 0.027 0.01 85.3
300 0.657 0.660 0.044 0.00 94.8 0.658 0.036 0.00 1.49 93.8 0.603 0.051 0.05 77.4
450 0.505 0.507 0.051 0.00 94.5 0.503 0.049 0.00 1.58 93.2 0.425 0.059 0.08 66.7

πr = 0.8 c = 60%
100 0.886 0.887 0.025 0.00 91.6 0.886 0.023 0.00 1.23 91.8 0.847 0.028 0.03 68.2
300 0.657 0.658 0.046 0.00 93.4 0.655 0.038 0.00 1.49 93.0 0.539 0.052 0.11 43.7
450 0.505 0.509 0.055 0.00 93.0 0.504 0.048 0.00 1.58 92.8 0.338 0.059 0.16 32.7
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Table 1.3: Simulation results for n = 400

WRSE WKM LDT
t S1(t) Ŝ1(t) SE Bias CP Ŝ1(t) SE Bias RE CP Ŝ1(t) SE Bias CP

πr = 0.2 c = 0%
100 0.655 0.655 0.024 0.00 95.3 0.655 0.024 0.00 1.03 94.5 0.655 0.025 0.00 96.2
300 0.309 0.310 0.024 0.00 95.3 0.309 0.023 0.00 1.12 92.9 0.309 0.027 0.00 97.4
450 0.190 0.191 0.022 0.00 96.2 0.190 0.020 0.00 1.22 92.5 0.189 0.024 0.00 97.1

πr = 0.2 c = 10%
100 0.655 0.656 0.024 0.00 95.2 0.655 0.024 0.00 1.02 94.5 0.655 0.026 0.00 96.0
300 0.309 0.311 0.025 0.00 94.2 0.310 0.024 0.00 1.12 93.5 0.309 0.029 0.00 95.2
450 0.190 0.192 0.023 0.00 94.9 0.190 0.021 0.00 1.22 93.4 0.189 0.027 0.00 94.7

πr = 0.2 c = 30%
100 0.655 0.656 0.025 0.00 95.5 0.656 0.024 0.00 1.02 95.8 0.632 0.026 0.02 80.8
300 0.309 0.310 0.028 0.00 94.1 0.309 0.026 0.00 1.13 94.4 0.262 0.031 0.05 55.9
450 0.190 0.192 0.027 0.00 93.4 0.190 0.024 0.00 1.22 93.1 0.135 0.029 0.06 46.1

πr = 0.2 c = 40%
100 0.655 0.656 0.026 0.00 96.1 0.655 0.026 0.00 1.02 95.2 0.554 0.026 0.10 10.8
300 0.309 0.310 0.035 0.00 94.4 0.307 0.033 0.00 1.12 95.0 0.105 0.025 0.20 3.60
450 0.190 0.231 0.042 0.04 73.8 0.223 0.042 0.03 1.03 72.8 0.000 0.000 0.19 0.00

πr = 0.2 c = 60%
100 0.655 0.656 0.027 0.00 93.9 0.654 0.026 0.00 1.02 94.3 0.489 0.026 0.17 3.30
300 0.309 0.327 0.047 0.02 85.7 0.319 0.048 0.01 1.00 86.0 0.000 0.000 0.30 0.00
450 0.190 0.327 0.047 0.13 22.2 0.319 0.048 0.13 1.00 26.2 0.000 0.000 0.19 0.00

πr = 0.4 c = 0%
100 0.732 0.731 0.023 0.00 94.6 0.731 0.022 0.00 1.06 94.3 0.731 0.024 0.00 95.9
300 0.425 0.425 0.027 0.00 94.3 0.424 0.025 0.00 1.21 93.3 0.424 0.030 0.00 96.2
450 0.295 0.296 0.026 0.00 95.1 0.294 0.023 0.00 1.32 92.7 0.295 0.029 0.00 96.5

πr = 0.4 c = 10%
100 0.732 0.732 0.023 0.00 93.0 0.731 0.022 0.00 1.06 94.8 0.731 0.025 0.00 94.5
300 0.425 0.427 0.028 0.00 94.9 0.426 0.025 0.00 1.21 93.2 0.425 0.032 0.00 96.4
450 0.295 0.297 0.027 0.00 95.7 0.295 0.023 0.00 1.32 92.1 0.295 0.032 0.00 95.9

πr = 0.4 c = 30%
100 0.732 0.734 0.023 0.00 93.9 0.733 0.023 0.00 1.06 93.1 0.720 0.026 0.01 89.4
300 0.425 0.426 0.029 0.00 94.7 0.424 0.027 0.00 1.22 93.0 0.396 0.036 0.03 80.8
450 0.295 0.296 0.030 0.00 95.5 0.294 0.026 0.00 1.33 92.9 0.259 0.037 0.04 73.8

πr = 0.4 c = 40%
100 0.732 0.733 0.024 0.00 95.7 0.732 0.023 0.00 1.06 94.8 0.647 0.026 0.08 21.2
300 0.425 0.427 0.033 0.00 95.7 0.425 0.030 0.00 1.22 93.5 0.241 0.034 0.18 6.05
450 0.295 0.300 0.040 0.01 92.5 0.296 0.035 0.00 1.33 92.0 0.072 0.024 0.22 4.80

πr = 0.4 c = 60%
100 0.732 0.733 0.024 0.00 95.4 0.732 0.024 0.00 1.06 93.9 0.595 0.026 0.13 5.30
300 0.425 0.427 0.038 0.00 94.0 0.425 0.035 0.00 1.22 90.5 0.132 0.029 0.29 2.70
450 0.295 0.341 0.051 0.04 73.8 0.332 0.047 0.04 1.87 72.1 0.000 0.000 0.29 0.00

πr = 0.6 c = 0%
100 0.809 0.810 0.021 0.00 94.8 0.810 0.020 0.00 1.11 94.5 0.810 0.022 0.00 95.6
300 0.541 0.541 0.029 0.00 95.5 0.540 0.025 0.00 1.32 93.2 0.540 0.031 0.00 96.6
450 0.400 0.402 0.029 0.00 96.4 0.400 0.024 0.00 1.43 92.4 0.400 0.032 0.00 96.8

πr = 0.6 c = 10%
100 0.809 0.810 0.021 0.00 95.3 0.809 0.020 0.00 1.11 94.9 0.809 0.022 0.00 96.3
300 0.541 0.542 0.029 0.00 94.7 0.541 0.025 0.00 1.32 93.7 0.541 0.032 0.00 95.7
450 0.400 0.402 0.030 0.00 93.7 0.400 0.025 0.00 1.43 92.0 0.400 0.034 0.00 94.7

πr = 0.6 c = 30%
100 0.809 0.810 0.021 0.00 94.3 0.810 0.020 0.00 1.12 93.0 0.803 0.023 0.01 94.1
300 0.541 0.542 0.030 0.00 94.0 0.541 0.026 0.00 1.32 93.0 0.526 0.036 0.02 90.9
450 0.400 0.402 0.032 0.00 94.9 0.401 0.027 0.00 1.44 93.0 0.381 0.039 0.02 88.4

πr = 0.6 c = 50%
100 0.809 0.810 0.021 0.00 95.2 0.809 0.020 0.00 1.11 94.5 0.766 0.024 0.04 54.3
300 0.541 0.542 0.032 0.00 95.1 0.541 0.028 0.00 1.33 93.9 0.438 0.038 0.10 31.0
450 0.400 0.402 0.036 0.00 95.1 0.400 0.030 0.00 1.46 93.8 0.265 0.041 0.13 23.0

πr = 0.6 c = 60%
100 0.809 0.809 0.022 0.00 95.2 0.809 0.021 0.00 1.12 93.9 0.719 0.024 0.09 14.0
300 0.541 0.543 0.035 0.00 93.4 0.541 0.030 0.00 1.34 93.1 0.327 0.038 0.21 5.00
450 0.400 0.403 0.043 0.00 94.7 0.399 0.040 0.00 1.46 92.6 0.122 0.034 0.27 3.00

πr = 0.8 c = 0%
100 0.886 0.887 0.018 0.00 92.9 0.886 0.016 0.00 1.24 92.6 0.887 0.018 0.00 93.2
300 0.657 0.657 0.029 0.00 94.3 0.656 0.024 0.00 1.50 93.9 0.657 0.031 0.00 95.2
450 0.505 0.506 0.032 0.00 95.8 0.505 0.028 0.00 1.59 91.7 0.505 0.034 0.00 96.2

πr = 0.8 c = 10%
100 0.886 0.886 0.018 0.00 94.1 0.886 0.016 0.00 1.25 93.5 0.886 0.018 0.00 95.1
300 0.657 0.658 0.029 0.00 94.5 0.657 0.024 0.00 1.50 94.8 0.657 0.031 0.00 95.7
450 0.505 0.507 0.032 0.00 94.7 0.505 0.028 0.00 1.59 92.9 0.505 0.035 0.00 94.8

πr = 0.8 c = 30%
100 0.886 0.886 0.018 0.00 94.3 0.886 0.016 0.00 1.24 94.8 0.884 0.019 0.00 93.7
300 0.657 0.659 0.030 0.00 95.4 0.657 0.025 0.00 1.51 94.4 0.652 0.034 0.01 94.5
450 0.505 0.507 0.034 0.00 95.4 0.506 0.029 0.00 1.60 93.3 0.497 0.039 0.01 93.2

πr = 0.8 c = 50%
100 0.886 0.887 0.018 0.00 94.1 0.886 0.016 0.00 1.24 93.9 0.869 0.020 0.01 83.2
300 0.657 0.659 0.032 0.00 95.8 0.658 0.026 0.00 1.51 94.3 0.605 0.037 0.05 65.8
450 0.505 0.509 0.037 0.00 95.0 0.507 0.034 0.00 1.61 93.8 0.431 0.043 0.07 57.1

πr = 0.8 c = 60%
100 0.886 0.887 0.018 0.00 94.2 0.886 0.016 0.00 1.25 93.9 0.851 0.020 0.04 55.8
300 0.657 0.659 0.033 0.00 94.7 0.658 0.027 0.00 1.52 91.6 0.550 0.038 0.11 27.9
450 0.505 0.509 0.039 0.00 96.0 0.507 0.031 0.00 1.62 90.7 0.351 0.045 0.15 18.9
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1.7 Conclusion

In this chapter, adaptive treatment interventions are introduced and a brief review of

counterfactuals is done. The model framework used in inference for dynamic treatment

regimes is also introduced. We review three non-parametric estimators for survival

distributions. All these estimators use the concept of inverse probability weighting.

Patients who could have been randomized to a treatment policy of interest but end

up in another treatment policy are regarded as missing in the treatment of interest.

To address such missingness which happens because of the nature the trial is done,

inverse weights are used. The first estimator, which we referred to as the LDT, uses

two forms two forms of inverse probability weighting. The WRSE is an extension of the

Nelson-Aalen estimator and the the WKM estimator is an extension of the Kaplan-Meier

estimator. No comparative study has been done for the three methods. We provide

a simulation study to compare the three methods in cases of extreme response rates

and censoring rates. Three sample sizes are considered. The estimators are affected

by response rates and censoring rates. The LDT estimator is drastically affected by

low response rates and censoring rates. The other two estimators are affected by low

response rates and high censoring rates but the impact is minimal. The WRSE and the

WKPM estimator perform better and the WRSE has better coverage probabilities than

the WKM estimator.
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The data

2.1 CALGB 19808 Study

In the Cancer and Leukemia Group B 19808 (CALGB 19808) study, 302 patients were

randomized to receive induction chemotherapy regimens consisting of cytosine arabi-

noside (Ara-C;A), daunorubicin (D), and etoposide (E) without (ADE) or with (ADEP)

PSC-833 (P) (Kolitz et al., 2010). The study was done to patients under the age of 60

with newly diagnosed acute myeloid leukemia. To be eligible, the patients should not

have been previously treated for leukemia and be under the age of 60. The study was

designed to compare the two induction chemotherapy regimens, ADE and ADEP, with

both treatments given at their highest clinically feasible doses.

For the first stage, the main objective of the trial was to determine whether the use

of the Pgp-modulating agent PSC-833 in the ADEP regimen improved overall survival

and disease free survival compared to ADE only. The randomization between ADE and

ADEP was done at 1:1 ratio. The analysis of the first stage data is reported in Kolitz

et al. (2010). In both treatment arms, 75% of the patients achieved complete remission

(CR). Complete remission was defined using the National Cancer Institute Workshop

criteria (Cheson et al., 1990). The results of the first stage analysis showed no significant

difference for the two treatments in terms of overall and disease free survival.

The 75% who achieved complete remission were further randomized to the second

stage treatments namely recombinant interleukin-2 (rIL-2) and no rIL-2 (observation).

The goal of the second stage was to assess the effect of rIL-2 immunotherapy on disease

free survival. Neither disease free or overall survival was found to be significantly im-

proved from the analysis of the second stage data. Patients who were alive and still in

compete remission at the time of the last follow-up were considered as right-censored
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observations. Overall survival was measured from the date of randomization to the

treatments to death, patients still alive at the last follow-up were censored. The trial

suffered setbacks in the second stage due to unexpected refusals by patients or their med-

ical doctors to comply with protocol as preplanned. Figure 2.1, a CONSORT diagram

taken from Kolitz et al. (2010), summarizes the study before the refusals.

Figure 2.1: CONSORT diagram for the CALGB 19808 study.

2.2 Exploratory analysis

Since some of the patients refused to take the second stage treatments, we regard

this as withdrawn consent and are regarded as non-responders. A treatment regime, say

AjBk, means treating with Aj followed by Bk if the patient is eligible and consents to

next stage therapy. Not only were the refusals the reasons patients went off treatment.

We shall in turn summarize some of the other reasons below. The following table

summarizes the numbers in both stages of the trial, that is, the actual numbers who

eventually completed the second stage as per the protocol.
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Table 2.1: Actual numbers

First stage Second stage

N Response Obs rIL-2

ADE 151 114 (75%) 26 23

ADEP 151 113 (75%) 21 25

The second stage suffered heavily because of the refusals and the other reasons for

patients to leave the treatment. The response rate also declined as some of these patients

were then regarded as non responders in the analysis. Among those who had responded

to the first stage treatments, 56 refused the second stage treatments and follow-up was

done to them. Three patients refused with no followup done to them. Twenty three

patients left for alternative therapy. Other patients were put off treatment for other

reasons.

The first component of the survival mixture in (3.23) can come from any survival

distribution deemed suitable, while the second component requires a parametric con-

volution of survival distributions. Since we can assume any distribution for the first

component in the mixture, it is useful to check which survival distribution fits well the

data for the non-responders in the two treatment arms. In Figure 2.2, we compared the

fits from the assumed parametric distributions to the Kaplan-Meier estimator, where

we used the exponential, Weibull and Gompertz distributions.
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Figure 2.2: Fitting exponential, Weibull and Gompertz distributions to the non-
responders data: Non-responders to ADE (first three graphs) and to ADEP (last
three graphs).

The first three set of plots are from data on non-responders to ADE and the last

three set of plots are from data from non-responders to ADEP. In both instances the

exponential model fits poorly the data as there is big discrepancy between the curve

and the one from the Kaplan-Meier estimator. The Weibull provides a better fit than

the exponential but there is still a big difference from the graph of the Kaplan-Meier

estimator. In both cases, the Gompertz distribution provides the best fit. Similar

graphs for the times to response and the times from response to an event (TRi , T
∗
ki ) are
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also shown in Figures 2.3 and 2.4 where we fitted survival curves for ADE-rIL-2 and

ADEP-rIL-2. The graphs from the other treatment policies are similar.
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Figure 2.3: Comparison of parametric models: exponential, Weibull and Gompertz
for times to response to ADE (on the top) and to ADEP (on the bottom)

.

Figure 2.3 shows the survival curves for the times to response to ADE and ADEP

(TRi ). In both cases, the exponential model provides a very poor fit. The Weibull

model and the Gompertz model fits are reasonable in both cases though the Gompertz

model fit is slightly better. Figure 2.4 shows the survival curves for rIL-2 under ADE

and ADEP (T ∗1 , T
∗
2 ). Again the exponential model provides a poor fit when compared

to the Kaplan-Meier curve. The Weibull model provides a better fit. The Gompertz
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model provides the best fit in both instances. Survival curves for observation (OBS),

also referred to as no rIL-2, under ADE and ADEP are similar and are not shown here.
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Figure 2.4: Comparison of parametric models: exponential, Weibull and Gompertz
for rIL-2 under ADE (top) and ADEP (bottom).

2.2.1 Weighted analysis

In Figure 2.5, we show the survival curves for the four treatment policies embedded in

the CALGB 19808 study. The curves were estimated using the WRSE. The four curves

are clustered together and there seems to be no difference in the survival experiences of

the patients in these treatment policies. Also the curves cross at different points, this
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poses a challenge in the comparison of the survival curves. We take this problem further

in Chapter 4.
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Figure 2.5: Survival curves for CALGB 19808.



Chapter 3

Estimating survival distributions for

time-varying SMART designs

In addition to the nonparametric approaches for survival distributions in two-stage

designs, some parametric approaches have been proposed in literature. Thall et al.

(2002) developed a parametric approach for selecting the best strategy on the basis of

the mean overall failure times. A Bayesian framework was proposed but the method

suffers from overparametrization as so many parameters need to be estimated. Since

the study by Thall et al. (2002) is Bayesian in nature we will not consider it further.

3.1 Parametric mixture approach

Wahed (2010) developed a likelihood based method for estimating the survival means

for adaptive treatment strategies upon which inferences are made to compare different

treatment policies. The development of this approach is also based on counterfactuals.

Hereafter, we describe Wahed (2010) approach in a design where we consider first stage

treatments Aj, j = 1, 2 and second stage treatments Bk, k = 1, 2. Let

Tjki = (1−Rji)Tj0i +RjiT
∗∗
jki, j = 1, 2; k = 1, 2, (3.1)

and the observed survival time is

Ti =
n∑
i=1

Xji

{
(1−Rji)Tj0i +RjiZkiT

∗∗
jki

}
, j = 1, 2; k = 1, 2,

where Xji is the first treatment indicator and T ∗∗jki is the overall survival time for the

ith patient assigned to treatment policy AjBk. Note that this survival time is different

29
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from T ∗jk previously defined in Chapter 2. T ∗∗jki is the total survival time from first

randomization to an event while T ∗jk is the time from second randomization to an event.

Define X2 = 1 − X1 and Z2 = 1 − Z1. It is further assumed that, by design, the

randomization probabilities are independent of the observed data.

To construct the likelihood for the observed data, probability models are assumed for

the counterfactual times. Let E[h(T ∗∗jki)] ≡ γjk, j = 1, 2; k = 0, 1, 2., where h(.) is some

function based on the data. Noting that the survival times for the treatment policy

AjBk is a mixture of two survival counterfactual variables, the expected value for the

treatment policy AjBk can be written as

µjk = (1− πrj)γj0 + πrjγjk, j = 1, 2; k = 1, 2, (3.2)

where πrj is the proportion of responders in arm Aj, j = 1, 2. Let Xji ∼ Bernoulli(πxj),

Rji|Xji ∼ Bernoulli(πrj), Zki|Ri ∼ Bernoulli(πzk), T
∗∗
jk ∼ f(.; θjk) j = 1, 2; k = 1, 2 and

Tj0 ∼ f(.; θj0), j = 1, 2. πxj is the proportion of subjects assigned to Aj, j = 1, 2 and

πzk is the proportion of subjects assigned to Bk, k = 1, 2. We define πz2 = 1− πz1 and

πx2 = 1 − πx1. Let ri be a realization of Ri and δ be a realization of ∆, with right

censoring, the observed data are Di = (X1i, RiZ1i, Ui,∆i) and the full likelihood is

L(θ, π; {Di}ni=1) = L1(π; {x1i, ri, riz1i}ni=1)L
2(θ; {x1i, ri, riz1i, ui, δi}ni=1, (3.3)

where π = (πr1, πr2, πx1, πz1), θ = (θjk j = 1, 2; k = 0, 1, 2),

L1(π; {x1i, ri, riz1i}ni=1) =
n∏
i=1

b(x1i; πx1)
2∏
j=1

{b(ri; πrj)b(z1i; πz1)}xji , (3.4)

where b(.; p) is the probability mass function for a Bernoulli random variable with success

probability p and

L2(θ; {x1i, ri, riz1i, ui, δi}ni=1 =
n∏
i=1

2∏
j=1

([
2∏

k=1

{fjk(ui; θjk)δiSjk(ui; θjk)1−δi}zki
]ri

× {fjk(ui; θj0)δiSj0(ui; θj0)1−δi}1−ri
)xji

.

(3.5)

The likelihood factorizes into two components: the likelihood contribution for π and

the likelihood contribution for θ. To estimate survival distributions for the treatment
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strategies one replaces the means in (3.2) with survival functions to get

Sjk(u) = (1− πrj)Sj0(u) + πrjSjk(u), j = 1, 2; k = 1, 2. (3.6)

This is a well known result from the theory of mixture distributions (McLachlan and

McGiffin, 1993).

3.2 Parametric approach for time-varying SMART

designs

We introduced time-varying SMART designs in Chapter 1. For simplicity, let us consider

the treatment A1 since results are similar for treatment A2. Wahed (2010), defined using

counterfactuals, the survival time for patient i, if assigned to A1Bk, as

Tki = (1−Ri)T0i +RiT
∗∗
ki , k = 1, 2. (3.7)

This way of definition is not appropriate for two-stage time-varying SMART designs.

In addition to T ∗∗ki , we need to consider another variable for responders, TRi , which is

the time to response for the ith patient in the first stage. An example of a time-varying

SMART design is shown in Figure 1.2. Since time to the first-stage response varies

among the responders, it must be accounted for in the likelihood. In a time-varying

SMART design the survival time should be defined as

Tki = (1−Ri)T0i +Ri(T
R
i + T ∗ki), k = 1, 2. (3.8)

The observed survival time in this case is the sum of two random variables for the

responders. One cannot put a single distribution on a sum as that could be theoretically

incorrect. To solve this problem, we propose a parametric approach for the estimation of

survival functions of treatment policies AjBk in the presence of a time-varying SMART

design. This work follows the lines of Wahed (2010), extending some of the theory

therein, to a more general setting.
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3.2.1 Density of Tk

Let T̃ki = TRi + T ∗ki, then Tki = (1−Ri)T0i +RiT̃ki for k = 1, 2. Let r be a realization of

R, r ∈ (0, 1). Then we can write

FTk = P (Tk ≤ t) = P ([(1− r)T0 + rT̃k] ≤ t)

=
∑
r∈(0,1)

P ([(1− r)T0 + rT̃k] ≤ t|R = r)P (R = r)

= P (T0 ≤ t)P (R = 0) + P (T̃k ≤ t)P (R = 1)

= (1− πr)P (T0 ≤ t) + πrP (T̃k ≤ t), k = 1, 2;

where P (R = 1) = πr. This leads to

fTk(t) = (1− πr)f0(t) + πrfk(t), k = 1, 2; (3.9)

where f0(t) and fk(t) are the density functions of T0 and T̃k, respectively.

We note that fT̃k(t) is obtained from a convolution of TR and T ∗k . Using the rela-

tionship between a mixture density and the survival function (McLachlan and McGiffin,

1993), then the survivor function for treatment policy A1BK is given as;

STk(t) = (1− πr)S0(t) + πSk(t), (3.10)

where S0(t) and Sk(t) are the survival functions of T0 and T̃k respectively.

Example: Exponential model

Suppose that

TR ∼ λRexp(−λRt), λR > 0

T ∗k ∼ λkexp(−λkt), λk > 0, k = 1, 2.



Chapter 3 - Estimating survival distributions for time-varying SMART designs 33

We are interested in the density of T̃k:

fT̃k(z̃) =

∫ z̃

0

λRλke
−λRte−λk(z̃−t)dt

=

∫ z̃

0

λRλke
−λRte−λk z̃+λktdt

= λRλke
−λk z̃

∫ z̃

0

e−(λR−λk)tdt

=
λRλk
λk − λR

e−λRz̃ +
λRλk
λR − λk

e−λk z̃;λR, λk > 0, z ≥ 0.

(3.11)

Likewise, we can obtain the distribution function

FT̃k(z̃) = P (T̃k ≤ z̃)

=
λRλk
λk − λR

∫ z̃

0

(
e−λRt − e−λkt

)
dt

= 1 +
λR

λk − λR
e−λk z̃ − λk

λk − λR
e−λRz̃.

Consequently, the survival function for T̃k is

ST̃k(z̃) = 1− FT̃k(z̃)

= 1−
[
1 +

λR
λk − λR

e−λk z̃ − λk
λk − λR

e−λRz̃
]

=
λk

λk − λR
e−λRz̃ +

λR
λR − λk

e−λk z̃.

(3.12)

3.2.2 Likelihood and survival function

Supposed that the time-to-event is subject to right censoring. We assume that everyone’s

response status is always observed. To estimate the parameters needed for the survival

distribution, we construct the likelihood for the observed data in a two-stage design.
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The joint distribution of the data can be obtained as

f(Ui = ui,∆i = δi, RiZi = rizi|Ri = ri)P (Ri = ri)

= f(Ui = ui,∆i = δi|RiZi = rizi, Ri = ri)P (RiZi = rizi|Ri = ri)P (Ri = ri)

=


f(U0i = ui,∆i = δi|RiZi = 0, Ri = 0)P (RiZi = 0|Ri = 0)P (Ri = 0), Ri = 0

f(U1i = ui,∆i = δi|RiZi = 1, Ri = 1)P (RiZi = 1|Ri = 1)P (Ri = 1), Ri = 1, Zi = 1

f(U2i = ui,∆i = δi|RiZi = 0, Ri = 1)P (RiZi = 0|Ri = 1)P (Ri = 1), Ri = 1, Zi = 0

=


(1− πr)f0(ui)δiS0(ui)

1−δi

πrπzf1(ui)
δiS1(ui)

1−δi

πr(1− πz)f2(ui)δiS2(ui)
1−δi ,

(3.13)

where P (Zi = 1|Ri = 1) = πz which is the probability of being randomized to B1 in the

second stage. Clearly, P (Zi = 0|Ri = 1) = 1 − πz is the probability to be randomized

to B2.

Let Oi denote the observed data, (ri, rizi, ui, δi) for patient i. Then, the full likelihood

is

L(θ, π;O) =
n∏
i=1

[(1− πr)f0(ui)δiS0(ui)
1−δi ]1−ri

× {[πrπzf1(ui)δiS1(ui)
1−δi ]zi .[πr(1− πz)f2(ui)δiS2(ui)

1−δi ]1−zi}ri ,
(3.14)

where O = (O1, O2, ..., On), π = (πr, πz) and θ = (θR, θk), k = 1, 2. The likelihood

factorizes into two parts, with one part depending only on the parameters π and the

other part on the parameters θ;

L1(π;O) = (1− πr)
∑n

i=1(1−ri).π
∑n

i=1 ziri
r .π

∑n
i=1 ziri

z .(1− πz)
∑n

i=1 ri(1−zi).π
∑n

i=1 ri(1−zi)
r

= (1− πr)
∑n

i=1(1−ri).π
∑n

i=1 ziri+
∑n

i=1 ri−
∑n

i=1 ziri
r .π

∑n
i=1 ziri

z .(1− πz)
∑n

i=1 ri(1−zi)

= (1− πr)
∑n

i=1(1−ri).π
∑n

i=1 ri
r .π

∑n
i=1 ziri

z .(1− πz)
∑n

i=1 ri(1−zi).

(3.15)
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The corresponding log-likelihood is

l1(π;O) = logL1(π;O) (3.16)

=
n∑
i=1

(1− ri)log(1− πr) +
n∑
i=1

rilogπr +
n∑
i=1

zirilogπz +
n∑
i=1

ri(1− zi)log(1− πz),

(3.17)

and

∂l1(π;O)

∂πr
=
−∑n

i=1(1− ri)
1− πr

+

∑n
i=1 ri
πr

∂l1(π;O)

∂πz
=

∑n
i=1 ziri
πz

−
∑n

i=1 ri(1− zi)
1− πz

.

(3.18)

Setting the two score equations from (3.18) to zero we get

π̂r =

∑n
i=1 ri
n

(3.19)

π̂z =

∑n
i=1 riri∑n
i=1 ri

, (3.20)

which are maximum likelihood estimators (MLEs) from L1(π;O). The likelihood for θ

is,

L2(θ;O) =
n∏
i=1

[f0(ui)
δiS0(ui)

1−δi ]1−ri{[f1(ui)δiS1(ui)
1−δi ]zi .[f2(ui)

δiS2(ui)
1−δi ]1−zi}ri ,

(3.21)

and the log-likelihood, l2(θ;O) = logL2(θ;O), becomes

l2(θ;O) =
n∑
i=1

{(1− ri)logf0(ui)
δiS0(ui)

1−δi

+ rizilogf1(ui)
δiS1(ui)

1−δi + ri(1− zi)logf2(ui)
δiS2(ui)

1−δi}.
(3.22)

To estimate the survival distributions for the treatment policy A1Bk, we propose using

ŜA1Bk
(u) = (1− π̂r)Ŝ0(u) + π̂rŜk(u); k = 1, 2, (3.23)

where Ŝ0(u) and Ŝk(u) are obtained by replacing the MLEs of θ in the parametric

survival functions of S0(u) and Sk(u). Estimating survival distributions for treatment

policy A2Bk follows analogously.
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Example: Exponential model

Assuming exponential distribution we have

f0(u) = λ0e
−λ0u

f1(u) =
λRλ1
λ1 − λR

e−λRu +
λRλ1
λR − λ1

e−λ1u

f2(u) =
λRλ2
λ2 − λR

e−λRu +
λRλ2
λR − λ2

e−λ2u,

and the log-likelihood becomes

l(θ;Oi) =
n∑
i=1

{(1− ri)log[λ0e
−λ0ui ]δi [e−λ0ui ]1−δi

+ rizilog

[
λRλ1
λ1 − λR

e−λRui +
λRλ1
λR − λ1

e−λ1ui
]δi [ λ1

λ1 − λR
e−λRui +

λR
λR − λ1

e−λ1ui
]1−δi

+ ri(1− zi)log

[
λRλ2
λ2 − λR

e−λRui +
λRλ2
λR − λ2

e−λ2ui
]δi [ λ2

λ2 − λR
e−λRui +

λR
λR − λ2

e−λ2ui
]1−δi

}.

(3.24)

Since the full likelihood factorizes into two parts, each part can be maximized sep-

arately. The maximum likelihood estimates for L1(π;O) are given in (3.20) above.

L2(θ;O) can be maximized numerically since the estimates of the parameters from the

convolution do not have close form solutions. Assuming an exponential distribution for

k = 1 leads to

ŜA1B1(u) = (1− π̂r)e−λ̂0u + π̂r

(
λ̂1

λ̂1 − λ̂R
e−λ̂Ru +

λ̂R

λ̂R − λ̂1
e−λ̂1u

)

3.2.3 Large sample properties

Consider the case when k = 1, that is when estimating survival curve for treatment

policy A1B1

ŜA1B1(u) = (1− π̂r)Ŝ0(u) + π̂rŜ1(u), for u ∈ [0, τ ].

Let φ̂ = (π̂r, θ̂) and G(u) denote the vector of partial derivatives with respect to each

parameter in φ = (πr, θ). Also define V = var(φ̂) to be the variance-covariance matrix

for the MLEs. Then by the delta method, we have that

ŜA1B1(u)) ∼̇ N(SA1B1(u),Σ(u)) (3.25)
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where Σ(u) = G(u)V G(u)T . We estimate Σ(u) by replacing φ = (πr, θ) with φ̂ = (π̂r, θ̂),

this leads to Σ̂ = ĜV̂ ĜT , where V̂ is the estimated variance-covariance matrix of φ̂.

Example: Exponential model

Using the delta method, we compute the variance of ŜA1B1 , when exponential distri-

butions are assumed. Taking partial derivatives with respect to the parameters, we

get

d1 =
∂SA1B1(u)

∂πr

= −e−λ0u +

(
λ1

λ̂1 − λR
e−λRu +

λR
λR − λ1

e−λ1u
)
,

d2 =
∂SA1B1(u)

∂λ0

= −u(1− πr)e−λ0u,

d3 =
∂SA1B1(u)

∂λR

=
λ1

(λ1 − λR)2
e−λRu − λ1u

λ1 − λR
e−λRu − λ1

(λR − λ1)2
e−λ1u,

d3 =
∂SA1B1(u)

∂λ1

=
λR

(λR − λ1)2
e−λ1u − λR

(λ1 − λR)2
e−λRu − λRu

λR − λ1
e−λ1u.

Now, given G =
(
d1 d2 d3 d4

)
, we obtain

Σ = G


var(π̂r) 0 0 0

0 var(λ̂0) 0 0

0 0 var(λ̂R) cov(λ̂R, λ̂1)

0 0 cov(λ̂1, λ̂R) var(λ̂1)

GT . (3.26)

We plug-in φ̂ to obtain Ĝ =
(
d̂1 d̂2 d̂3 d̂4

)
. V = var(φ̂) is estimated by the observed

Fisher information matrix.
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3.3 Simulation study

To study the performance of the proposed estimator, a simulation study was conducted

and comparison with other estimators was done. The generation of the datasets was

done following a two-stage SMART design with two first stage treatments and two

second stage treatments. We focused on data from A1 as data from A1 and A2 are

independent. All simulation were done in R.

Different simulation scenarios were considered with different response rates. Ri was

taken to be a Bernoulli distribution with P (Ri = 1) = πr, and πr ∈ (0.5, 0.7) so as

to achieve 50%, and 70% of individuals responding to the first stage intervention. T0i

was generated from an exponential distribution with mean of 3 years for those with

Ri = 0. The second stage indicator was generated from a Bernoulli distribution with

P (Zi = 1) = πz, and πz was set to be 0.5 in all simulations. We generated TRi from

an exponential distribution with a mean of 5 years for the responders to the first stage

treatment. For those with Zi = 1, T ∗1i was generated from an exponential distribution

with a mean of 7 years and T ∗2i was generated from an exponential distribution with

a mean of 8 years. The observed survival time, Ti, was obtained using equation (1.2).

The right censoring time,Ci,, was generated from a uniform distribution, U(0, v), such

that 20% and 40% of the sample were censored. Finally, the observed time was defined

as Ui = min(Ti, Ci).

The DTR package was used for simulating the WRSE and the LDT estimator (Tang

and Melguizo, 2005). For our estimator, an ad-hoc R function was written and max-

imized using optim function in R. For purely abbreviation purposes, we denote our

parametric approach for time -varying SMART designs as TVS. The simulation study

is done similar to the one in Chapter 1.
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Table 3.1: Simulation Results

TVS WRSE LDT

πr t True Ŝ1(u) SE Bias CP Ŝ1(u) SE Bias CP RE Ŝ1(u) SE Bias CP

n = 100 c=20%
0.5 1 0.851 0.859 0.021 0.01 95.2 0.855 0.035 0.00 95.7 0.370 0.851 0.038 0.00 95.6

3 0.638 0.642 0.041 0.00 95.4 0.648 0.051 0.01 94.7 0.652 0.640 0.057 0.00 95.1
6 0.434 0.439 0.048 0.01 94.2 0.453 0.057 0.02 93.7 0.715 0.439 0.067 0.01 93.4
8 0.340 0.347 0.049 0.01 94.6 0.367 0.058 0.03 92.2 0.736 0.350 0.068 0.01 93.1
12 0.211 0.223 0.047 0.01 94.6 0.241 0.055 0.03 92.5 0.778 0.220 0.064 0.01 89.4

n = 300 c=20%
0.5 1 0.851 0.854 0.013 0.00 96.1 0.852 0.021 0.00 95.0 0.370 0.850 0.022 0.00 95.6

3 0.638 0.637 0.024 0.00 95.9 0.643 0.030 0.01 95.7 0.637 0.639 0.034 0.00 96.6
6 0.434 0.432 0.028 0.00 95.9 0.447 0.034 0.01 94.2 0.707 0.441 0.039 0.01 94.8
8 0.340 0.339 0.029 0.00 95.0 0.358 0.034 0.02 93.9 0.723 0.350 0.040 0.01 94.5
12 0.211 0.213 0.027 0.00 94.6 0.232 0.032 0.02 90.5 0.728 0.223 0.038 0.01 92.7

n = 100 c=40%
0.5 1 0.851 0.860 0.022 0.01 95.3 0.855 0.036 0.00 95.6 0.385 0.838 0.038 0.01 89.9

3 0.638 0.643 0.042 0.01 94.6 0.648 0.052 0.01 94.6 0.672 0.607 0.060 0.03 86.0
6 0.434 0.444 0.051 0.01 94.7 0.452 0.060 0.02 92.9 0.737 0.387 0.070 0.05 77.4
8 0.340 0.355 0.054 0.02 95.2 0.368 0.062 0.03 93.1 0.769 0.292 0.071 0.05 75.3
12 0.211 0.238 0.055 0.03 95.1 0.243 0.061 0.03 90.7 0.847 0.150 0.061 0.06 62.1

n = 300 c=40%
0.5 1 0.851 0.854 0.013 0.00 94.2 0.853 0.021 0.00 95.8 0.387 0.839 0.022 0.01 86.2

3 0.638 0.637 0.025 0.00 94.9 0.643 0.030 0.01 94.0 0.653 0.607 0.036 0.03 78.5
6 0.434 0.433 0.029 0.00 95.1 0.447 0.035 0.01 94.1 0.718 0.392 0.043 0.04 72.9
8 0.340 0.342 0.029 0.00 94.6 0.358 0.037 0.02 93.3 0.729 0.293 0.044 0.05 68.6
12 0.211 0.219 0.030 0.01 94.8 0.235 0.037 0.02 92.1 0.731 0.158 0.041 0.05 59.6

n = 100 c=20%
0.7 1 0.906 0.912 0.018 0.01 94.8 0.908 0.029 0.00 95.4 0.374 0.906 0.031 0.00 95.6

3 0.746 0.747 0.037 0.00 94.9 0.755 0.048 0.01 94.7 0.623 0.748 0.052 0.00 95.0
6 0.553 0.552 0.050 0.00 94.1 0.573 0.060 0.02 93.3 0.710 0.562 0.068 0.01 93.3
8 0.449 0.450 0.053 0.00 94.6 0.476 0.063 0.03 92.3 0.739 0.461 0.071 0.01 92.4
12 0.288 0.296 0.054 0.01 94.0 0.322 0.062 0.03 92.5 0.769 0.302 0.071 0.01 90.0

n = 300 c=20%
0.7 1 0.906 0.908 0.010 0.00 94.4 0.907 0.017 0.00 94.4 0.372 0.906 0.018 0.00 94.4

3 0.746 0.746 0.022 0.00 94.8 0.754 0.028 0.01 93.3 0.596 0.751 0.031 0.01 93.3
6 0.553 0.551 0.029 0.00 95.5 0.573 0.035 0.02 92.2 0.697 0.567 0.039 0.01 92.2
8 0.449 0.448 0.031 0.00 95.0 0.475 0.037 0.03 91.8 0.726 0.468 0.042 0.02 91.8
12 0.288 0.290 0.031 0.00 94.4 0.320 0.037 0.03 89.6 0.717 0.310 0.042 0.02 89.6

n = 100 c=40%
0.7 1 0.906 0.912 0.018 0.01 94.2 0.908 0.030 0.00 95.1 0.392 0.892 0.032 0.01 87.6

3 0.746 0.747 0.039 0.00 94.2 0.753 0.049 0.01 95.0 0.651 0.712 0.055 0.03 83.4
6 0.553 0.556 0.053 0.00 94.2 0.576 0.063 0.02 92.8 0.744 0.506 0.072 0.05 77.0
8 0.449 0.456 0.059 0.01 94.0 0.481 0.067 0.03 91.6 0.770 0.395 0.076 0.05 73.8
12 0.288 0.310 0.062 0.02 94.2 0.328 0.071 0.04 91.0 0.806 0.215 0.072 0.07 61.8

n = 300 c=40%
0.7 1 0.906 0.908 0.011 0.00 95.2 0.908 0.017 0.00 95.0 0.391 0.895 0.019 0.01 86.3

3 0.746 0.745 0.022 0.00 95.2 0.753 0.029 0.01 94.0 0.626 0.719 0.033 0.03 80.3
6 0.553 0.552 0.031 0.00 94.1 0.572 0.037 0.01 93.4 0.723 0.513 0.043 0.04 75.4
8 0.449 0.450 0.034 0.00 93.2 0.474 0.040 0.03 92.0 0.747 0.401 0.047 0.5 72.3
12 0.288 0.296 0.036 0.01 94.2 0.319 0.043 0.03 91.4 0.738 0.224 0.047 0.06 57.0

Table 3.1 shows the results of the simulation study. The results for our estimator

are given under the TVS columns. We report the standard errors, absolute bias, and

95% coverage probabilities (CP) for the three estimators for treatment policy A1B1.

Relative efficiency (RE) is also reported between our parametric estimator and the

WRSE. The relative efficiency is calculated as sample variance of our estimator divided

by the sample variance of the WRSE for estimating the survival function. Guo and

Tsiatis (2005) established that the WRSE is more efficient as compared to the LDT
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estimator, for this reason, we only computed the relative efficiency of our estimator and

the WRSE. Two different censoring and response rates are considered.

The results of this simulation study show that our estimator is more precise compared

to its nonparametric counterparts. This is shown by the small standard errors across all

the simulation scenarios. The LDT estimator has the largest standard errors among the

estimators. Our estimator is more efficient than the other two estimators. This result

is not surprising. Inferences based on parametric distributions is more precise provided

the parametric assumptions are valid (Collett, 2015). The coverage probabilities of our

method are close to the nominal level, the same applies to the WRSE. The coverage

probabilities of the LDT estimator are highly affected by the change in censoring rates.

In cases where the censoring rate is high, that is, 40% the coverage probabilities are way

below the desired nominal level.

In terms of biasedness, all the three methods performed fairly well with the exception

of the LDT estimator in the case of 40% censoring. Increasing the censoring rate from

20% to 40% for the LDT estimator leads to an increase in bias. There is, however,

a minimal increase in bias for the other two estimators when the censoring rate was

increased. The bias vanished with increase in sample size as expected. Our parametric

estimator has the least bias among the three methods, and when the sample size is 300,

the bias of our method diminishes. Changing the response rates changes the survival

estimates. In general all the three methods yield similar survival estimates. The differ-

ences in the survival estimates is profound for the LDT when the censoring rate is 40%.

With a lower censoring rate, the survival estimates from the three methods are mostly

similar.

3.4 Convolutions by numerical methods

The methodology developed in this chapter is not restricted to the exponential distri-

bution. The exponential distribution is used to illustrate this methodology because of

the availability of closed form solution for the convolution integral. Convolution in-

tegrals for other parametric distributions are hard to solve. The methodology can be

generalized to other distributions using either numerical approaches (Ruckdeschel and

Kohl, 2010) or approximations to the convolution integral (Bessate and El Bouanani,

2016). In statistics, convolution of probability distributions is a standard problem. Fast

Fourier Transforms (FFT) have been used in approximating convolutions numerically.
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3.4.1 FFTs and convolutions

The Fourier transform of a convolution of two functions is the product of the Fourier

transforms of the functions. Let f and g be two functions with convolution f ∗ g, and

let F denote the Fourier transform operator such that F(f) and F(g) are the Fourier

transforms of f and g respectively. The Fourier transform of the convolution is then

F(f ∗ g) = F(f) · F(g). (3.27)

Using the inverse Fourier transform, we can write

f ∗ g = F−1{F(f) · F(g)}. (3.28)

This result also holds for Laplace transforms. For numerical computation of convolu-

tions, the FFT is used for efficiency (Brigham and Morrow, 1967).

Algorithm

Let f = (f0, f1, ..., fm−1) and g = (g0, g1, ..., gk−1) be two discrete probability vectors,

the convolution can be evaluated using the following algorithm:

• Pad the given vectors f and g with zeroes so that each has length n ≥ m+ k.

• Apply to each vector the FFT, f̃ = FFT (f) and g̃ = FFT (g).

• Compute the inner product for the two vectors, h̃ = f̃ · g̃.

• Lastly, apply the inverse function of the FFT to h̃ to obtain the probability vector

as a convolution of f and g.

3.4.2 Implementation

The ‘distr’ package in R computes convolutions of distributions using the FFT (Ruckde-

schel and Kohl, 2010). In this package, the convolutions can be computed for almost any

arbitrary univariate distribution. The distributions can either be continuous or discrete.

The convolution operator “+” returns a distribution object consisting not only of either

a cumulative distribution function (cdf) or a density function but automatically all four

constitutive functions, that is, cdf, density, quantile function and a random number

generator. For example, if X1 and X2 are two independent Weibull random variables,

Y = X1 +X2 can be computed in the distr package.

> X1 <- Weibull(shape =1.2, scale =1.5)

> X2 <- Weibull(shape=2, scale =2.5)

> Y <- convpow(X1 + X2, 1)
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> d(Y)(0.8)

[1] 0.04505478

> q(Y)(1/3)

[1] 2.762783

> r(Y)(5)

[1] 2.869811 6.237388 2.506635 4.457062 1.943053

3.5 Application: CALGB 19808 study

We apply our methodology to the CALGB 19808 study. Table 3.2 summarizes the

results of the application.

Table 3.2: Application results

t Policy Ŝ(t)expTV S SEexp Ŝ(t)gomTV S SEgom Ŝ(t)WRSE SE

0.03 ADEP-rIL-2 0.9952 0.0006 0.9845 0.0026 0.9868 0.0092

ADEP-OBS 0.9952 0.0006 0.9844 0.0027 0.9868 0.0092

ADE-rIL-2 0.9953 0.0006 0.9847 0.0027 0.9801 0.0114

ADE-OBS 0.9953 0.0006 0.9847 0.0030 0.9801 0.0114

1.3 ADEP-rIL-2 0.8114 0.0186 0.6356 0.0402 0.6302 0.0407

ADEP-OBS 0.8007 0.0188 0.6249 0.0429 0.5964 0.0436

ADE-rIL-2 0.8146 0.0188 0.6427 0.0430 0.6157 0.0433

ADE-OBS 0.8034 0.0189 0.6315 0.0420 0.6210 0.0422

4.1 ADEP-rIL-2 0.5233 0.0352 0.4422 0.0438 0.4286 0.0449

ADEP-OBS 0.4890 0.0334 0.4079 0.0422 0.3815 0.0463

ADE-rIL-2 0.5337 0.0356 0.4571 0.0419 0.4144 0.0471

ADE-OBS 0.4988 0.0338 0.4221 0.0446 0.3624 0.0452

8.0 ADEP-rIL-2 0.3186 0.0389 0.3676 0.0262 0.3547 0.0445

ADEP-OBS 0.2663 0.0325 0.3153 0.0435 0.3199 0.0452

ADE-rIL-2 0.3344 0.0389 0.3888 0.0331 0.3787 0.0470

ADE-OBS 0.2796 0.0329 0.3341 0.0311 0.3407 0.0450

Table 3.2 shows the results of fitting our method to the CALGB 19808 study. This

analysis is based on the overall survival. For the first component in the survival mixture

model (S0), we assumed either the exponential or the Gompertz distributions. Under

the columns Ŝ(t)expTV S and Ŝ(t)gomTV S, we report the survival estimates when the exponential

or the Gompertz distribution is used for the non-responders. The second component,

(TRi +T ∗ki), is the convolution of exponential distributions. The results when a Gompertz
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distribution was used provide a better fit with similar estimates to the WRSE. This is

not surprising as the Gompertz distribution provided a better fit to the data for non-

responders from the comparisons in Figure 2.2. The fit with an exponential distribution

gives a poor fit. It tends to overestimate the survival probability in the middle of the

curve and the discrepancy is profound.
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Figure 3.1: Survival curves using the Gompertz distribution for non-responders.

Figure 3.1 shows the survival curves for two treatment policies when the Gompertz

distribution is used for the non-responders in the survival mixture model. The fit is

plotted together with the curve from the WRSE and the naive Kaplan-Meier estimator

(NKM). The survival curves from the two methods are similar except in the middle

part of the curves where the parametric method tends to overestimate the survival

probability. The difference is minimal except in the middle of the curve. In both cases,

the naive Kaplan-Meier underestimates the survival distributions, and the differences are

quite large after 2 years. This result is consistent with the results from Guo and Tsiatis

(2005), where the naive Kaplan-Meier method was found to be biased in estimating the

survival curve.

3.6 Conclusion

We can differentiate between two types of SMART designs. In some SMART designs,

the response is measured at one time point. In some other SMART designs, response is
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measured at different time points in the first stage. The time to response then differs

from patient to patient. This makes the observed survival times differ in these two

types of designs. In the latter, the observed survival times are a sum of two random

survival times for the responders. This makes it to be theoretically flawed to just assume

a single survival model for the sum. The density of a sum of two random variable is

always given by a convolution. In this chapter, we have proposed to use convolution

based density function in modeling the total times for responders. Maximum likelihood

estimation was used and the results are compared to the non-parametric estimates

from the WRSE. The proposed approach is not restricted to only convolutions of the

exponential distribution but can be generalized to other distributions using numerical

methods based on the discrete Fourier transforms or other approximations. The distr

package provides a platform where such probability densities can be computed.

We note that the way the survival time is defined in a standard SMART design makes

it easier for the parametric analysis to be conducted as it avoids the use of convolutions.

The way the survival time is defined for responders in time-varying SMART designs

poses a challenge in the analysis.



Chapter 4

Weighted Lin and Xu test for

two-stage randomization designs

4.1 Motivating example

In Figure 2.5, we showed the survival curves for the four treatment strategies in the

CALGB 19808 study. To estimate the survival curves consistently, the WRSE of Guo

and Tsiatis (2005) was used. These curves are weighted using the inverse probabilities of

being in that particular treatment strategy of interest. We are interested in comparing

overall survival between the treatment strategies. The survival curves cross at some

time points. In cases where the survival curves cross, standard comparison techniques

could lead to misleading conclusions.

In comparing the survival curves, we want to find the sequence that yields better long-

term survival. To accomplish this, one may select a single long-term time point and

then compare the survival estimates between the treatment strategies. This approach,

however, may not work well since results can be sensitive to the time point selected

(Klein et al., 2007). Another approach is to use the weighted log-rank test (Kidwell and

Wahed, 2013). Even with carefully chosen weight functions there is no guarantee that

the weighted log-rank test would perform well when the survival curves cross. Kidwell

and Wahed (2013) proposed a modification of the log-rank test to be used in comparing

treatment policies in two-stage designs. It is not guaranteed that the weighted log-rank

test would work well in cases of crossing survival curves since none of their simulation

scenarios addressed directly the case where the survival curves cross. To this end, we

propose the weighted Lin and Xu test. The Lin and Xu (2010) test is based on the

45
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absolute differences between the two survival curves and is robust in cases when the

proportional hazards assumption is violated.

4.2 Weighted log-rank test

Kidwell and Wahed (2013) proposed the weighted log-rank test for comparing treatment

policies in two-stage SMART designs. Consider testing the hypothesis H0 : Λ11(t) −
Λ12(t). The treatment strategies A1B1 and A1B2 are shared path strategies. The group of

non-responders is the same in both treatment strategies hence they are not independent.

In the case where there was no second stage randomization, that is, if patients are

randomized to follow either A1B1 or A1B2, in such an instance, data from patients

receiving A1B1 could be regarded as independent of data from patients receiving A1B2.

In such a case, the unweighted log-rank test for comparing two independent samples is

employed,

Zn(t) =

∫ t

0

Y11(s)Y12(s)

Y11(s) + Y12(s)

{
dN11(s)

Y11(s)
− dN12(s)

Y12(s(

}
,

where N1ki(s) = I(U1ki ≤ s,∆1ki = 1), Y1ki(s) = I(U1ki ≥ s), N1k(s) =
∑n

i=1N1ki,

Y1k(s) =
∑n

i=1 Y1ki(s) for k = 1, 2. When the null hypothesis is true, n1/2Zn(t) is asymp-

totically normally distributed with mean zero and variance that can estimated consis-

tently from the observed event times.

On the other hand, in a two-stage SMART design, patients are randomized to the

second stage treatments. Assuming independence between A1B1 and A1B2 cannot be

done. To account for the second stage randomization, a weighted version of standard

log-rank (SLR) test should be used and to account for the dependence between A1B1

and A1B2 , a modification of the SLR should be made.

4.2.1 Weighted two-sample statistic

To develop the two-sample statistic, time dependent weights similar to those in Guo

and Tsiatis (2005) are used. Let W11(s) = (Xi/φ){1 − Ri(s) + Ri(s)Zi/πz} be the

weight function given to patient i at time s for the purposes of estimating quantities

related to treatment policy A1B1. Ri(s) = RiI(TRi ≤ s) such that if at time s patient

i has responded then Ri(s) = 1, and zero otherwise; πz is the probability of being

randomized to B1, and φ is the probability of being randomized to A1. A similar weight

is defined for A1B2 where now W12(s) = (Xi/φ){1 − Ri(s) + Ri(s)(1 − Zi)/(1 − πz)}.
For non-responders, W11(s) = W12(s) = 1/φ, non-responders are consistent with both
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treatment policies. For responders assigned to A1B1, W11(s) = 1/φπz and W12 = 0.

If the patient has responded and is assigned to B2 at time s then, W11i(s) = 0 and

W12i(s) = 1/φ(1 − πz). With this weight function, the weighted log-rank test statistic

for testing H0 : Λ11(t)− Λ12(t) is

Zw
n (t) =

∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{
dN̄11(s)

Ȳ11(s)
− dN̄12(s)

Ȳ12(s(

}
,

where Ȳjk(s) =
∑n

i=1WjkiYi(s), and N̄jk(s) =
∑n

i=1WjkiNi(s).

When H0 is true, the weighted log-rank statistic has expectation zero since with

respect to F (t) = σ{Xi, Ri(s), Ri(s)Zi, I(Ci ≤ s), Ni(s), i = 1, ..., n; j = 1, 2; 0 ≤ s ≤ t},
the term {Ȳ11(s)Ȳ12(s)/Ȳ11(s) + Ȳ12(s)} is predictable. The variance is modified to

account for the correlation between the two treatment policies. A consistent variance

estimator of n1/2Zw
n (t) is given by

σ̂2(t) = n−1
∫ t

0

Ȳ 2
12(s)

∑n
i=1W

2
11i(s)Yi(s) + Ȳ 2

11(s)
∑n

i=1W
2
12i(s)Yi(s)

(Ȳ11(s) + Ȳ12(s))2

{
dN1.(s)

Y1.(s)

}
− 2(nφ2)−1

∫ t

0

Ȳ11(s)Ȳ12(s)

(Ȳ11(s) + Ȳ12(s))2

{
Y NR
1 (s)

dNNR
1 (s)

Y NR
1 (s)

}
,

(4.1)

where Y NR
j =

∑n
i=1 I(Xi = 2 − j)(1 − Ri(s))Yi(s) is the number of individuals who

have yet to respond to treatment Aj and are at risk at time s, Yj.(s) =
∑n

i=1 I(Xi =

2− j)Yi(s) is the number of individuals with initial treatment Aj and are at risk at time

s, NNR
j =

∑n
i=1 I(Xi = 2− j)(1−Ri(s))Ni(s), and, Nj.(s) =

∑n
i=1 I(Xi = 2− j)Ni(s).

A table of the description of the notation is found in Kidwell and Wahed (2013). For

testing equality between two independent path treatment policies one simply ignores

the covariance term in the variance formula above.

4.3 Lin and Xu test

The SLR test has optimal power in detecting differences between two survival distribu-

tions if the assumption of proportional hazards is not violated. In clinical trials with

survival endpoints, survival curves may cross at some point and this complicates the

analysis as the usual SLR test may not work well. Alternatives to the SLR test in-

cludes weighted versions of the same, Kolmogorov-Smirnov test and many others. The

Kolmogorov-Smirnov test has better power than the Wilcoxon test, a weighted version

of SLR, when the survival curves cross but there is no guarantee that the Kolmogorov-

Smirnov test is always better in the case of crossing survival curves. Lin and Xu (2010)
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proposed a test for the equality of survival distributions that is robust in instances where

the assumption of proportional hazards is violated. This test is based on the absolute

difference between the survival curves.

4.3.1 Notation and assumptions

Consider a comparison of survival experience between two treatment groups. Denote

by U = min(T,C), where T is the survival time and C is the censoring time. Let

δ = I(T ≤ C) be an indicator for an event, that is, δ = 1 if an event is observed and

0 otherwise. Let G be the group indicator, G = 1 for group I and G = 2 for group II.

Given G, we assume that C is independent of T. Denote by NG the sample size in G.

For G = 1, 2, let UG(i), i = 1, 2...Ng be the ordered survival times in each group with δGi

being the corresponding survival status. Denote the pooled distinct event times in the

two samples as t1 < t2 < ... < tk. Let dGj
and nGj

be the number of observed events and

the number at risk at time tj in the two groups. To estimate the survival distribution

at time t, SG(t), the Kaplan-Meier estimator is used:

ŜG(t) =
∏
j:tj≤t

(
1− dGj

nGj

)
.

For the two survival curves, the observed absolute difference is given by

∆ =

∫ τ

0

|Ŝ1(t)− Ŝ2(t)|dt

=
∑
j:tj<τ

|Ŝ1(tj)− Ŝ2(tj)|(tj+1 − tj),
(4.2)

where τ is the largest time point by which areas under the curves can be calculated for

both groups based on data available.

We define τ for three cases: τ = minG(UG(NG)) if the last two points in the two

groups are both censored; τ = maxG(UG(NG)(1 − δG(NG))) if, in one group, the last

time point is an event and in the other group it is a censored observation, and finally

τ = maxG(UG(NG)) if the last time points in both groups are events. To estimate the

variance of ŜG(t), the Greenwood formula is used

σ̂2
SG

= Ŝ2
G(t)

∑
j:tj≤t

dGj

nGj(nGj − dGj)
. (4.3)
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4.3.2 Test statistic

If Z is a standard normal random variable then the density of |Z| is given by

f|Z|(z) =

 2√
2π
e−

1
2
z2 , if z ≥ 0

0, if z < 0.

The expectation of |Z| is

E[|Z|] =

√
2

π

∫ ∞
0

ze−
1
2
z2

=

√
2

π
,

and

E[|Z|]2 =

√
2

π

∫ ∞
0

z2e−
1
2
z2

= 1

hence

var|Z| = 1− 2

π
.

Consider H0 : S1(t) − S2(t) = 0, then if H0 is true S1(t) − S1(t) is approximately

normally distributed with mean 0 and variance [σ2
S1

(t) + σ2
S2

(t)]. Then

Ê[|Ŝ1(t)− Ŝ2(t)|] .=
{

2/π[σ̂2
S1

(t) + σ̂2
S2

(t)]
} 1

2 ,

and

V̂ar[|Ŝ1(t)− Ŝ2(t)|] .= (1− 2

π
)[σ̂2

S1
(t) + σ̂2

S2
(t)].

Using the normal approximation by the Greenwood’s formula we get

Ê[∆]
.
=
∑
j:tj<τ

{
2/π[σ̂2

S1
(tj) + σ̂2

S2
(tj)]

} 1
2 (tj+1 − tj). (4.4)
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The variance is estimated by

V̂ar(∆) = V ar

∑
j:tj<τ

|Ŝ1(tj)− Ŝ2(tj)|(tj+1 − tj)


=
∑
j:tj<τ

(tj+1 − tj)2V ar
{
|Ŝ1(tj)− Ŝ2(tj)|

}
+

∑
j<j′:tj ,tj′<τ

2Cov
{
|Ŝ1(tj)− Ŝ2(tj)|(tj+1 − tj), |Ŝ1(tj′)− Ŝ2(tj′)|(tj′+1 − tj′)

}
.
=
∑
j:tj<τ

(tj+1 − tj)2(1− 2/π)[σ̂2
S1

(tj) + σ̂2
S2

(t)]

+
∑
j:tj<τ

2(tj+1 − tj)(tj′+1 − tj′)Cov
{
|Ŝ1(tj)− Ŝ2(tj)|, |Ŝ1(tj′)− Ŝ2(tj′)|

}
=
∑
j:tj<τ

(tj+1 − tj)2(1− 2/π)[σ̂2
S1

(tj) + σ̂2
S2

(t)]

+
∑
j:tj<τ

2ρj,j′(tj+1 − tj)(tj′+1 − tj′)(1− 2/π)
{

[σ̂2
S1

(tj) + σ̂2
S2

(tj)][σ̂
2
S1

(tj′) + σ̂2
S2

(tj′)]
} 1

2 ,

where ρj,j′ is the correlation coefficient between |Ŝ1(tj)− Ŝ2(tj)| and |Ŝ1(tj′)− Ŝ2(tj′)|,
j 6= j′.

The variance depends on the correlation coefficient and Lin and Xu (2010) suggested

setting ρj,j′ = 0.5 for all j and j′. With this choice, the variance of ∆ can be estimated

by

V̂ ar(∆)
.
=
∑
j:tj<τ

(tj+1 − tj)2(1− 2/π)[σ̂2
S1

(tj) + σ̂2
S2

(t)]

+
∑
j:tj<τ

(tj+1 − tj)(tj′+1 − tj′)(1− 2/π)

×
{

[σ̂2
S1

(tj) + σ̂2
S2

(tj)][σ̂
2
S1

(tj′) + σ̂2
S2

(tj′)]
} 1

2 .

(4.5)

Lin and Xu (2010) proposed using the test statistic

∆∗ =
∆− Ê(∆)√

V̂ar(∆)

, (4.6)

which is asymptotically normally distributed with mean 0 and variance 1. Large values

of ∆∗ leads to rejection of the null hypothesis, that is, we reject H0 if |∆∗| > Z1−α/2

where Z1−α/2 is the (1− α/2) cutoff point for the standard normal random variable.
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4.4 Weighted Lin and Xu test

As is, the Lin and Xu test cannot be applied in testing for equality between two treat-

ment policies in two-stage designs. We propose a way of adapting the Lin and Xu test

to two-stage designs for comparison of separate-path treatment strategies then later

we extend the methodology to shared-path treatment strategies. For the comparison

of treatment strategies, we propose the weighted Lin and Xu test where the weighted

version of the survival distributions are used. To obtain weighted survival estimates,

inverse probability weights are used. Instead of using Kaplan-Meier estimates we use

estimates of survival distributions given by the WRSE (Guo and Tsiatis, 2005). The

WRSE is a natural extension of the Nelson-Aalen estimator and makes use of time

dependent weights.

Consider estimating survival distributions for treatment policy A1B1, then

ŜA1B1(t) = exp

{
−
∫ t

0

∑n
i=1Wi(u)dNi(u)∑n
i=1Wi(u)Yi(u)

}
. (4.7)

where Wi(u) is the weight function depending on time u, Ni(u) is a counting process

and Yi(u) is the at risk process. The variance is given by

V̂ar(SA1B1(t)) = n−1{SA1B1(t)}2σ̂2, (4.8)

where

σ̂2 = n−1
n∑
i=1

∫ t

0

Wi(u)
[
dNi(u)− Yi(u)

{∑n
i=1Wi(u)dNi(u)∑n
i=1Wi(u)Yi(u)

}]
n−1

∑n
i=1Wi(u)Yi(u)

2

Using the weighted versions of the survival curves

∆w =

∫ τ

0

|Ŝw1 (t)− Ŝw2 (t)|dt

=
∑
j:tj<τ

|Ŝw1 (tj)− Ŝw2 (tj)|(tj+1 − tj),
(4.9)

that is, we calculate the observed absolute difference of the areas between the two

survival curves. Ŝw1 (t) and Ŝw2 (t) are estimated using the WRSE. UnderH0, Ŝ
w
1 (t)−Ŝw2 (t)

has an approximate normal distribution with mean 0 and variance [σ2
Sw
1

+ σ2
Sw
2

].
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Based on the WRSE variance formula above, E(∆w) can be estimated by

Ê[∆w]
.
=
∑
j:tj<τ

{
2/π[σ̂2

Sw
1

(tj) + σ̂2
Sw
2

(tj)]
} 1

2
(tj+1 − tj). (4.10)

The variance is

V̂ar(∆w) =
∑
j:tj<τ

(tj+1 − tj)2(1− 2/π)[σ̂2
Sw
1

(tj) + σ̂2
Sw
2

(t)]

+
∑
j:tj<τ

2ρj,j′(tj+1 − tj)(tj′+1 − tj′)(1− 2/π)

×
{

[σ̂2
Sw
1

(tj) + σ̂2
Sw
2

(tj)][σ̂
2
Sw
1

(tj′) + σ̂2
Sw
2

(tj′)]
} 1

2
,

(4.11)

where ρj,j′ is the correlation coefficient between |Ŝw1 (tj)− Ŝw2 (tj)| and |Ŝw1 (tj′)− Ŝw2 (tj′)|,
j 6= j′. Setting ρj,j′ at 0.5 leads to the following variance estimator

V̂ ar(∆w)
.
=
∑
j:tj<τ

(tj+1 − tj)2(1− 2/π)[σ̂2
Sw
1

(tj) + σ̂2
Sw
2

(tj)]

+
∑
j:tj<τ

(tj+1 − tj)(tj′+1 − tj′)(1− 2/π)

×
{

[σ̂2
Sw
1

(tj) + σ̂2
S2

(tj)][σ̂
2
Sw
1

(tj′) + σ̂2
Sw
2

(tj′)]
} 1

2

(4.12)

The proposed test statistic is

∆∗w =
∆w − Ê(∆w)√

V̂ar(∆w)

, (4.13)

which is asymptotically normally distributed with mean 0 and variance 1. Large values

of ∆∗w leads to rejection of the null hypothesis, that is, we reject H0 if |∆∗| > Z1−α/2

where Z1−α/2 is the (1− α/2) cutoff point for the standard normal random variable.

4.5 Weighted Lin and Xu test for shared-path treat-

ment strategies

In two-stage designs, not only do we compare separate-path treatment strategies but

also shared-path treatment strategies. Shared-path treatment strategies are dependent.

The dependence arise because non-responders are common to paths sharing the same

first stage treatments. To use all data available in comparing two shared-path treatment
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strategies, a modification of the weighted Lin and Xu should be made. Consider the

treatment policies A1B1 and A1B2, the survival functions for these treatment policies,

that is, Sw1 (t) and Sw2 (t) are dependent. Under H0, S
w
1 (t) − Sw2 (t) is approximately

normally distributed with mean 0 and variance [σ2
Sw
1

+σ2
Sw
2
−2Cov(Sw1 (t), Sw2 (t))]. Using

an approximation by the WRSE variance formula, E(∆w) can be estimated as

Ês[∆
w]

.
=
∑
j:tj<τ

{
2/π[σ̂2

Sw
1

(tj) + σ̂2
Sw
2

(tj)− 2Cov(Ŝw1 (tj), Ŝ
w
2 (tj))]

} 1
2

(tj+1 − tj). (4.14)

The variances can be estimated from the WRSE. To estimate the covariance term in

(4.14), we appeal to the following theorem.

Covariance inequality 1. Suppose that X1, X2 are two real valued random variables

such that E[X1X2] and E[X2
1 ],E[X2

2 ] are all finite, then

Cov2(X1, X2) ≤ V [X1]V [X2]. (4.15)

Proof. Write Cov(X1, X2) = E {(X1 − µ1)(X2 − µ2)} where µi = E[Xi], i = 1, 2. Define

Ũi = Xi − µi, i = 1, 2. By the Cauchy-Schwartz inequality

Cov2(X1, X2) = E2(Ũ1Ũ2) ≤ E[Ũ1]E[Ũ2] = V [X1]V [X2].

The covariance term can be approximated using the theorem above, that is,

Cov(Ŝw1 (t), Ŝw2 (t)) ≈ σ̂Sw
1

(tj)σ̂Sw
2

(tj).

The variance can be estimated by

V̂ ars(∆
w)

.
=
∑
j:tj<τ

(tj+1 − tj)2(1− 2/π)[σ̂2
Sw
1

(tj) + σ̂2
Sw
2

(tj)− 2σ̂Sw
1

(tj)σ̂Sw
2

(tj)]

+
∑
j:tj<τ

(tj+1 − tj)(tj′+1 − tj′)(1− 2/π)

×
{

[σ̂2
Sw
1

(tj) + σ̂2
S2

(tj)− 2σ̂Sw
1

(tj)σ̂Sw
2

(tj)][σ̂
2
Sw
1

(tj′) + σ̂2
Sw
2

(tj′)− 2σ̂Sw
1

(tj′)σ̂Sw
2

(tj′)]
} 1

2

(4.16)
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To compare two shared-path treatment strategies, the proposed test statistic is

∆∗ws =
∆w − Ês(∆w)√

V̂ars(∆w)

. (4.17)

When the covariances are zero, then this statistic reduces to (4.13). This statistic is

also approximately normally distributed with mean 0 and variance 1. Large values of

|∆∗ws | lead to the rejection of the null hypothesis.

4.6 Simulation studies

To evaluate the performance of the weighted Lin and Xu test, simulation studies were

conducted to study the type I error and the statistical power of the new method. Data

was generated from a two-stage SMART design with two first stage treatments and two

second stage treatments. The first stage treatment indicator, Xi, was generated from

a Bernoulli distribution with P (Xi = 1) = 0.5. The response or consent indicator,

Ri, was generated from a Bernoulli distribution with P (Ri = 1) = πr, where πr ∈
(0.4, 0.6) to achieve a response rate of 40% and 60%. Tj0i, j = 1, 2 was generated

from an exponential distribution with mean θj0 when Ri = 0 and when Ri = 1, the

time to response, TRji , j = 1, 2, was generated from an exponential distribution with

mean θRj . The second stage treatment indicator, Zi, was generated from a Bernoulli

distribution with P (Zi = 1) = 0.5, equal randomization of responders between B1

and B2. The time from response to an event, T ∗jki, j, k = 1, 2, was simulated from an

exponential distribution with mean θjk, j, k = 1, 2. For responders the total survival

time is T̃jki = TRji + T ∗jki, j, k = 1, 2. Of interest are the time to event variables, Tjki

where Tjki = (1−Ri)Tj0i +RiT̃jki, j, k = 1, 2. The observed survival time is given by

Ti = Xi

[
(1−Ri)T10i +Ri

{
ZiT̃11i + (1− Zi)T̃12i

}]
+ (1−Xi)

[
(1−Ri)T20i +Ri

{
ZiT̃21i + (1− Zi)T̃22i

}]
.

To account for right censoring, Ci was generated from a uniform distribution, U(0, v)

and v set to give the desired censoring rate. We defined the observed time as Ui =

min(Ti, Ci) with the event indicator δi = I(Ti ≤ Ci).
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4.6.1 Power estimation

Different scenarios of the alternative distributions were considered. For illustration

purposes we considered A1B1 and A2B1 for independent path treatment policies, for

shared path treatment policies we considered A1B1 and A1B2. Comparison of other

treatment sequences can be done similarly. We set α to be 0.05 in all simulations and

1000 iterations were done, we estimated the power as the proportion in the 1000 samples

in which the null hypothesis was rejected at 5% level of significance. Below are graphical

displays of our simulation scenarios.
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(i) Situation 1
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(ii) Situation 2
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(iii) Situation 3
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(iv) Situation 4

(shared path)

Figure 4.1: Survival curves for A1B1 (black), A2B1 (red) for separate-path treat-
ment policies. A1B1 (black) and A1B2 (red) for shared-path treatment policies. Re-
sponse rate is 60%

Situation 1: Crossing survival curves (lower)

In Situation 1, we have late crossing of the survival curves. The null hypothesis is

H0 : S11(u) = S21(u). To simulate the data for this scenario, the parameters were set

as follows: θ10 = 0.5, θ20 = 4, θR1 = 3, θR2 = 3, θ∗11 = 15, θ∗12 = 3, θ∗21 = 9, θ∗21 = 3. We

set c = (90, 45, 22, 8) to achieve 5%, 10%, 20% and 40% censoring for the response rate

of 0.6. For a response rate of 0.4, we set c = (95, 50, 25, 9). Figure 4.1 (a) shows the
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survival curves for the alternative hypothesis for this scenario. The two survival curves

cross at some point at the lower end of the graph. In all our simulations, the sample

size is 300.

Table 4.1: Simulation results for Situation 1

πr Censoring rate(%) WLX WLR

0.4 5 1.000 0.231

10 0.993 0.368

20 0.989 0.709

40 0.975 0.998

0.6 5 0.927 0.151

10 0.906 0.051

20 0.903 0.092

40 0.890 0.778

Table 4.1 shows the results for this scenario. In this scenario of late crossing of

the survival curves, the WLX test has better power in detecting the difference in the

survival curves than the WLR test. For a response rate of 0.4, the power of the WLR

test increases with an increase in the censoring rate. Increasing the censoring rate affects

the area at the lower end after the two survival curves have crossed. With 40% censoring

rate, the power for the WLR test is 0.998 and the power for the WLX test is 0.975, both

tests have good statistical power when the censoring rate is around 40%. The power of

the WLX test decreases with an increase in the censoring rate. When the response rate

is 0.6, the WLX test maintains better power than the WLR test. The statistical power

of the WLR test is much reduced when the response rate is 60%. For 10% censoring,

the power for the WLR test is 0.051 compared to 0.906 for the WLX test.

Situation 2: Crossing survival curves (upper)

In this scenario, we have early crossing of survival curves. The data was generated as

follows; θ10 = 3, θ20 = 0.05, θR1 = 1, θR2 = 3, θ∗11 = 1, θ∗12 = 3, θ∗21 = 7, θ∗21 = 3. For right

censoring, we set c = (47, 25, 12, 3) to obtain about 5%, 10%, 20% and 40% censoring

for the response rate of 0.6. When πr = 0.4, we set c = (60, 33, 15, 5). The results of

this simulation are shown in Table 4.2.
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Table 4.2: Simulation results for Situation 2

πr Censoring rate(%) WLX WLR

0.4 5 0.999 0.072

10 1.000 0.136

20 0.998 0.552

40 0.986 0.751

0.6 5 1.000 0.928

10 1.000 0.909

20 1.000 0.875

40 0.998 0.104

In this scenario, the WLX test has better power than the WLR test. There is a slight

impact on the power of the WLX test when the response rate is increased from 0.4 to

0.6. The power of the WLR test increases with an increase in the censoring rate for 40%

response rate. The opposite happens when the response rate is 60%. One explanation

for this is the nature of the survival curves for the two response rates. For a response

rate of 0.6, the survival curves are as shown in the figure above. Not shown here, the

areas between the survival curves are a bit bigger for the response rate of 40% and the

crossing point is a bit lower. High censoring rate has an effect to both tests when the

response rate is 60%. The WLX test has the power of 0.998 whilst the WLR test has

a much reduced power of 0.104. The power of the WLR test decreases with increase in

censoring rate .

Situation 3: proportional hazards

In this scenario, we consider survival curves that do not cross, that is, where the hazards

are proportional. The data was generated as follows: θ10 = 2, θ20 = 2, θR1 = 1, θR2 = 1,

θ∗11 = 1, θ∗12 = 3, θ∗21 = 8, θ∗21 = 3. For right censoring we set c = (60, 33, 16, 6) to obtain

about 5%, 10%, 20% and 40% censoring for the response rate of 0.6. When πr = 0.4,

we set c = (50, 30, 13, 6). The results of this simulation are shown in Table 4.3.
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Table 4.3: Simulation results for Situation 3

πr Censoring rate(%) WLX WLR

0.4 5 1.000 0.998

10 1.000 0.997

20 0.999 0.989

40 0.987 0.920

0.6 5 1.000 1.000

10 1.000 0.995

20 1.000 1.000

40 0.999 1.000

In this scenario, the results suggest that there is no much difference in the statis-

tical power of the two methods. Both methods have good statistical power to detect

differences in the survival curves. When the response rate is 40%, both methods have

decreasing power as the censoring rate increases. For 40% censoring the WLX test has

power of 0.987 and the WLR test has power of 0.920. This is a reduction in power

compared to when the censoring rate is 5%. Increasing the response rate from 40% to

60% leads to increase in statistical power in the two methods, the increase in power is

more evident for the WLR test. The WLX test has better power than the WLR test

only in the case of 10% censoring rate (1.000 and 0.995 respectively). In general, there

is no difference in the performance of the two methods in terms of the statistical power

when the survival curves do not cross.

Situation 4: shared path

We consider the comparison of two shared path treatment policies, A1B1 and A1B2.

Shared path treatment policies share the same non-responders and as such they are

not independent. To account for this lack of independence, we modify the variance

to include the covariance term. To simulate data for this scenario, we set: θ10 = 0.5,

θ20 = 0.5, θR1 = 1, θR2 = 1, θ∗11 = 1.5, θ∗12 = 5, θ∗21 = 1.5, θ∗21 = 1.5. For right censoring we

set c = (23, 10, 5, 2) to obtain about 5%, 10%, 20% and 40% censoring for the response

rate of 0.6. When πr = 0.4, we set c = (27, 13, 7, 3). The results of this simulation are

shown in Table 4.4.
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Table 4.4: Simulation results for Situation 4

πr Censoring rate(%) WLX WLR

0.4 5 0.991 0.960

10 0.990 0.917

20 0.927 0.742

40 0.498 0.243

0.6 5 0.998 0.961

10 0.990 0.934

20 0.972 0.858

40 0.690 0.453

The results of this scenario suggests that both methods have good statistical power

when the censoring rate is low. When the censoring rate is increased, both methods

suffer in terms of power. In the case of 0.4 response rate, the power of the WLX test is

0.498 and the power of the WLR test is 0.243 when the censoring rate is 40%. This is

also the case when the response rate is 0.6, the power of the WLX test is 0.690 whilst

the power of the WLR test is 0.453. The decline in statistical power of the two tests is

severe when the response rate is 0.4.

4.6.2 Type I error estimation

To evaluate the type I error, we simulated null distributions that the treatment policies

(A1B1 and A2B1) are equal. 1000 datasets were generated as follows θ10 = 0.5, θ20 = 0.5,

θR1 = 3, θR2 = 3, θ∗11 = 6, θ∗12 = 6, θ∗21 = 6, θ∗21 = 6. For right censoring we set

c = (60, 35, 20, 6) to obtain about 5%, 10%, 20% and 40% censoring for the response

rate of 0.6. When πr = 0.4, we set c = (65, 25, 10, 3). The type I error was measured

as the proportion in which the null hypothesis of equality was rejected at 5% level of

significance in the 1000 simulated datasets. The results are shown in Table 4.5 below.
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Table 4.5: Simulation results for type I error

πr Censoring rate(%) WLX WLR

0.4 5 0.059 0.059

10 0.066 0.054

20 0.060 0.055

40 0.014 0.053

0.6 5 0.049 0.042

10 0.053 0.041

20 0.026 0.038

40 0.010 0.050

The simulation study indicates that the WLR test has better type I error compared

to the WLX test. The type I error for the WLR test are closer to the nominal level.

The WLX test generally has its type I error inflated when the response rate is 0.4, the

type I error of the WLX test is 0.066 whilst the type I error rate of the WLR is 0.054

for the censoring rate of 10%. Increasing the censoring rate affects the type I error of

the WLX test. For a response rate of 0.6 and 40% censoring rate, the type I error of

the WLX test is 0.014 compared to 0.053 for the WLR test. The WLX test becomes

conservative when the censoring rate is high, this is also true for the response rate of

0.4.

4.7 Application

We applied the WLX test to the CALGB 19808 study. There are four treatment regimes

in this study. The survival curves for these four policies are estimated using the WRSE

estimator. Table 4.6 summarizes the results of applying the WLX and WLR tests to

the clinical trial data. For each pairwise comparison, we report the test statistic and

p-value obtained using the two methods. For the shared path analysis, we extended the

Lin and Xu test to accommodate dependent samples. The two testing methods give rise

to the same conclusions concerning the treatment policies. No treatment policy leads to

a better overall survival. Eventhough the analysis in the two papers regarding this trial

was done separately for each stage, similar conclusions could be reached even when the

analysis focused on the entire treatment sequences as is done here.
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Table 4.6: Application to CALGB 19808 Study

WLX WLR

H0 Test statistic P-value Test statistic P-value

ADEP-OBS =ADEP-rIL-2 0.605 0.545 1.181 0.237

ADEP-OBS = ADE-OBS 1.262 0.206 0.383 0.702

ADEP-OBS =ADE-rIL-2 0.718 0.473 0.974 0.330

ADEP-rIL-2 = ADE-OBS 0.642 0.521 0.425 0.671

ADEP-rIL-2 = ADE-rIL-2 0.863 0.388 0.157 0.875

ADE-OBS = ADE-rIL-2 0.537 0.591 0.851 0.395

We show in a graph the treatment policies ADEP-OBS versus ADE-OBS and ADE-

OBS versus ADE-rIL-2. It can be seen that in the first graph, the survival curves cross

many times. The WLX test gives p = 0.521 and for the WLR test p = 0.671. In cases

of crossing survival curves, the WLX test has better power in detecting differences. The

second figure is for shared-path treatment policies. Both tests give a non significant

result which is appropriate when looking at the graphs.
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Figure 4.2: Survival curves for the treatment policies, p refers to p-value.
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4.8 Conclusion

In this chapter, we proposed the use of WLX test in comparing two treatment policies.

The treatment policies may either be shared paths or independent paths treatment

policies. The survival curves are estimated using the WRSE of Guo and Tsiatis (2005).

To be able to compare shared paths treatment policies, we modified the Lin and Xu

test by incorporating the covariances between the two treatment strategies. In cases

where the survival curves cross, the WLX test has better power than the WLR test.

Where the survival curves do not cross, the WLR test performs better than the WLX

test though the differences are minimal. The type I error for the WLX is a bit inflated.

Simulations studies in a study by Li et al. (2015) also revealed that the type I error for

Lin and Xu test is inflated. More research is needed in this regard.



Chapter 5

Analyzing safety data for two-stage

randomization designs

The safety of patients is an important aspect in the development of new pharmaceutical

products. Any biologically active pharmaceutical product is meant to produce benefit

to its users but can potentially cause harm as well. Of importance in the development of

pharmaceutical products is the understanding of how the potential harms can manifest

themselves and at what stage these potential harmful effects can be identified. Some

pharmaceutical products fail at the development stage because of unanticipated safety

issues. Some products pass through the development stage only to be called from the

market place because of some undesired side effects that place the patients at serious

health risks (Gould, 2015).

Although safety data are the most common and one of the most important types of

data collected in clinical trials, in general more emphasis is given to the efficacy data.

More methods are developed to analyze efficacy data but less attention is given to safety

data, for example, more methodological developments have happened in the analysis of

efficacy data for two-stage randomization designs (Guo and Tsiatis, 2005; Lunceford

et al., 2002; Lokhnygina and Helterbrand, 2007; Wahed, 2010; Kidwell and Wahed,

2013) and to our knowledge no study has focused on the analysis of safety data from

these designs. There is need to develop sound statistical methodology that provides an

accurate and reliable assessment of drug safety.

An adverse event is any untoward medical occurrence in a patient during the course

of a clinical trial. An adverse event can be any unfavorable and unintended sign, symp-

tom or disease temporally associated with the use of a medical product, whether it is

related to the medical product or not. Adverse events can be classified into different

63
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categories, and in this study we shall focus on serious adverse events. A serious ad-

verse event is defined as any untoward medical occurrence that; (1) may result in death,

(2) is life threatening , (3) requires inpatient hospitalization or prolongation of existing

hospitalization, (4) results in persistent or significant disability and (5) is a congenital

anomaly (Chow and Liu, 2008).

5.1 Review of some methods

Below we give a brief review of methods used in the analysis of safety data for clinical

trials with only one stage of randomization. For trials with two treatment arms, that is,

the control and new treatment, we have g = 1, 2, where g denotes the treatment groups.

In some studies there are more than two treatment groups, so g = 1, 2...

5.1.1 Incidence proportions

Analysis of safety data is often done using incidence proportions (IPs). These incidence

proportions are only valid summaries under the assumption of similar exposure times in

both treatment groups. In most cases this assumption is violated because in some trials

the exposure times differ. The crude incidence proportion is defined as the number

of patients experiencing the adverse event of interest divided by the total number of

subjects in each study group. The IP is calculated as

IPg =
ag
ng
,

where ag is the number of patients in treatment group g experiencing at least one serious

AE and ng is the total number of patients in treatment group g. The IPs of two groups

can be compared using the risk ratio, that is,

Risk Ratio =
IP1

IP2

.

Another way of summarizing adverse events data is by using the incidence rate. The

incidence rate (IR) is defined as

IRg =
ag

(population-time at risk)g
,

where ag is the number of patients in treatment group g experiencing at least one serious

AE and (population-time at risk)g is the population time at risk of the first serious AE
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in treatment group g. The denominator in the above equation is the sum of all patients

and the times at risk for the first serious AE. A patient who does not experience an AE

contributes his/her follow-up time. The incidence rate ratio (IRR) is calculated as

IRR =
IR1

IR2

,

with IRg being the incidence rate in group g to experience a serious AE.

5.1.2 Exposure adjusted incidence rate

To accommodate patient exposure times, the exposure adjusted incidence rates (EAIR)

is defined as the number of subjects experiencing a serious AE divided by the total

exposure time among the patients in the treatment group g;

EAIRg =
ag∑
tig
,

where ag is the number of patients in treatment group g experiencing at least one serious

AE and tig is the subject exposure time for individual i until the occurrence of first

serious AE in treatment group g. For a subject with no AE, tig corresponds to the last

follow-up time. This type of incidence rate is a valid statistic for treatment comparison

when the incidence rate of a specific event is relatively constant over the study period.

We interpret the EAIR as the number of serious AEs occurring in a population per unit

time. The difference between the IR and the EAIR is that the denominator in the IR

is the sum of all patients and the times at risk for the first serious AE. In the EAIR we

sum the exposure times only.
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5.2 Adverse events and competing risks

Adverse events data are subject to competing risks.

Figure 5.1: Competing risks situation for adverse events data.

A patient that enters the study can either experience the AE of interest, die before

experiencing the AE or be censored. Since patients may actually die before experiencing

the AE, then death is a competing risk for the AE. Figure 5.1 shows the competing

events situation. After the patient has died, the AE cannot occur any more. With

infinite follow-up and without censoring,

ag
ng

+
dg
ng

= 1,

where dg is the number of deaths without an AE and ng is the total number of patients

in treatment group g.

Consider the time interval [0, t]. Without censoring, the probability to experience

the composite event (AE or death) is

Pg(AE ∈ [0, t]) + Pg(Death ∈ [0, t]) = 1− Pg(T > t).
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For estimation, without censoring;

P̂g(AE ∈ [0, t]) + P̂g(Death ∈ [0, t]) =
atg
ng

+
dtg
ng

=
atg + dtg
ng

= 1− P̂g(T > t),

(5.1)

where T is the time to the first serious AE or death without an AE, atg is the number

of patients in treatment group g experiencing at least one serious AE before or at time

t and dtg is the number of deaths in group g before or at time t.

5.2.1 Kaplan-Meier estimator

The Kaplan-Meier (KM) estimator is sometimes used to estimate the cumulative in-

cidence function (CIF), P (AE ∈ [0, t]), where death without experiencing an AE is

treated as censored observation. In this case,

P̂g(AE ∈ [0, t]) = 1−
∏
u≤t

(
1− ag(u)

rg(u)

)
, (5.2)

where ag(u) is the number of AEs in treatment group g at u and rg(u) denotes the

number of patients with no AE before u, the so-called risk set, the product is over all

AE times.

There has been a number of criticisms in using this approach in estimating Pg(AE ∈
[0, t]). Clearly, it ignores the competing risk set-up that exists in safety data. Another

argument against this approach is that 1 − KMg estimator aims at approximating a

distribution function which approaches 1 as t becomes larger. On the other hand,

Pg(AE ∈ [0, t]) + Pg(Death ∈ [0, t]) tends to 1 as t becomes larger, hence the KM

based estimator of Pg(AE ∈ [0, t]) is biased upwards (Allignol et al., 2016). Contrary

to these arguments, the Kaplan-Meier is still being used in some studies. In defense

of this approach, in a response to Schmoor et al. (2016), the authors of the paper

(Thanarajasingam et al., 2016) argued that even though the Kaplan-Meier estimator

tends to overestimate the Pg(AE ∈ [0, t]), the bias is minimal.

5.2.2 Aalen-Johansen estimator

To estimate the Pg(AE ∈ [0, t]), the Aalen-Johansen estimator should be used in the

competing risks situation (Allignol et al., 2016). The cumulative incidence function
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(CIF) of an AE is the expected proportion of patients experiencing an AE over the

course of time. We note that

1− P̂g(T > t) =
∑
u

P̂g(T > u−).
ag(u) + dg(u)

rg(u)
, (5.3)

where P̂g(T > u−) is the KM estimator of the probability of not experiencing the

composite event AE or death in treatment group g just before time u and dg(u) is the

number of deaths in treatment group g at time u. The sum in (5.3) is the empirical

probability to have an AE or death event in [0, t], that is, we are summing over all

events times. Now, to get the probability of an adverse event in [0, t], we sum over the

empirical probability of experiencing an AE, that is,

P̂g(T ≤ t, AE) =
∑
u

P̂g(T > u−)
ag(u)

rg(u)
, (5.4)

we sum over only event times for AEs. Without censoring, (5.4) equals

ag ∈ [0, t]

ng
,

this confirms that the incidence proportion is the correct estimate in the absence of

censoring.

5.2.3 Hazard functions

In the competing risks situation, a model for the cause-specific hazard function for an

AE can be considered. First, we write the total hazard function;

α̂g(t)dt =
ag(t) + dg(t)

rg(t)
,

where g denotes the treatment group. This can be decomposed into the sum of two

cause-specific hazards, αAEg (t)dt + αDg (t)dt (D denotes death), which can be estimated

by

ag(t)

rg(t)
+
dg(t)

rg(t)
.
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Having decomposed the hazards in this manner, the Nelson-Aalen estimator of the

cumulative hazard to experience an AE is given by∫ t

0

α̂g(u)AEdu =
∑
u

ag(u)

rg(u)
, (5.5)

where the sum is over all AE times before t. Only AEs are counted in the numerator

of (5.5). In practice, death times are considered as right-censored times. Similarly, for

estimating the cumulative hazard function for death, only death events are counted and

AE events are censored.

5.3 Analysis of AE data for dynamic treatment regimes

Consider a two-stage randomization design where we have two first stage treatments

(A1, A2) and two second stage treatments (B1, B2). Our interest is in analyzing the AE

data for the treatment policies embedded in the SMART design. Different treatment

sequences can lead to varying occurrences of adverse events. The aim here is to compare

treatment policies in terms of their toxicities or adverse events. To our knowledge, no

study has compared treatment policies in terms of their toxicities yet such informa-

tion can be valuable to many stakeholders involved in the development of personalized

medicine. In dynamic treatment regimes, interest is in identifying a treatment strategy

that leads to better survival but also such a strategy should be less toxic to the patients.

Allignol et al. (2016) advocate the use of survival analysis methods for analyzing

safety data when the primary endpoint in a clinical trial is a time-to-event. In the

sequel, we also advocate the use of survival analysis techniques suitable for two-stage

randomization designs in the analysis of safety data from these designs. To this end,

we propose a methodology to be used in the analysis of safety data from two-stage

randomization designs.

Consider a hypothetical experiment where there is no second stage randomization,

that is, all patients are assigned to A1B1. In such a case, the methods from the previous

section apply in the analysis of the safety data. In a two-stage randomization design,

we know that some of the patients who could have received B1 receive B2 because of the

second stage randomization. In the analysis of safety data for two-stage randomization

designs, we suggest the use of inverse probability weights since subjects who end up in

B2 are considered missing under A1B1. We show how weighting can also be applied in

the analysis of safety data for treatment policies. In the literature, two types of weights
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have been proposed (Guo and Tsiatis, 2005; Lunceford et al., 2002), in this discussion

we shall only focus on time independent weights.

Let g = 1, 2, ... denote the treatment policies. We make the following simplifying

assumptions. We note that the events of interest can occur in both stages of the trial and

we assume that the AEs occur after response for those who achieve complete remission.

This makes the application of the inverse weights to be straight forward. Also, we assume

that the states in the competing risk situation are absorbing. Let Wi1 = 1−Ri+RiZi/πz

be the weight function for A1B1, that is, g = 1. For A1B2, let Wi2 = 1−Ri +RiZi/(1−
πz). Similar weights are defined for the treatment policies A2B1 and A2B2.

5.3.1 Weighted incidence proportions

For treatment policies, we define the incidence proportion as the weighted number of

patients experiencing the adverse event divided by the weighted number of subjects in

each study group. The weighting is done in such a way that the contribution of a non-

responder is given a weight of 1 and a responder is given a weight of 1/πz or 1/(1− πz)
where πz is the probability of being randomized to second stage treatment. With this

definition,

WIPg =
awg
nwg
,

=

∑n
i=1WigIig(event = AE)∑n

i=1Wig

(5.6)

where awg is the weighted number of patients in treatment policy g experiencing at

least one serious AE, nwg is the weighted number of patients in treatment policy g and

Iig(event = AE) = 1 if patient i in treatment group g experiences at least one serious

AE, it is zero otherwise. As an hypothetical example, we consider a trial where 100

patients are assigned to A1 and of these 100 patients, 80 respond to the A1 treatment

and are equally randomized between B1 and B2. So about 40 patients are randomized

to B1. Suppose that among the responders 15 develop serious AEs and among the

non-responders 5 develop AEs. In calculating the WIP, the 5 patients receive a weight

of 1 and the 15 patients receive a weight of 2, therefore we have 5 + 30 = 35. So,

WIPA1B1 = 35/100 = 0.35. Without weighting: IPA1B1 = 20/60 = 0.33. In the theory

of analyzing dynamic treatment regimes, patients who would have been randomized to

B1 but end up in B2 are considered missing under the treatment policy A1B1. To deal

with this ‘missingness’, inverse weights are used such that we still have 100 patients in

the denominator in the above example.
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To compare two treatment policies one can use the weighted risk ratio,

WRR =
WIP1

WIP2

. (5.7)

5.3.2 Weighted exposure adjusted incidence rate

We define the weighted exposure adjusted incidence rate (WEAIR) as the weighted num-

ber of subjects experiencing at least one serious AE divided by the weighted exposure

time among the subjects in a treatment policy, that is,

EAIRg =
awg∑
twig

=

∑ng

i=1WigIig(event = AE)∑n
i=1Wigtig

,

(5.8)

where awg is the weighted number of patients in treatment policy g experiencing at least

one serious AE and tig is the subject exposure time until the occurrence of first serious

AE in treatment policy g. For a subject with no AE, tig corresponds to the last follow-up

time, and Wig is the inverse weight given to individual i in the treatment policy g. To

compare two treatment policies one can use the weighted exposure adjusted incidence

risk ratio,

WEAIRR =
EAIR1

EAIR2

. (5.9)

5.3.3 Weighed Kaplan-Meier estimator

Instead of using the usual Kaplan-Meier estimator, we suggest the use of the weighted

Kaplan-Meier estimator in analyzing safety data from dynamic treatment regimes. To

estimate the probability of an AE in some time interval [0, t], we can use 1 −WKM ,

that is,

P̂g(AE ∈ [0, t]) = 1−
∏
u≤t

(
1− awg (u)

rwg (u)

)
, (5.10)

where w denotes that the event and the at risk processes are weighted. The numerator

counts the AE events and the denominator gives the number at risk at time u. We

weight these processes using the inverse probability weights depending on whether the

individual is a responder or non-responder. Deaths before an AE are treated as censored

observations. This estimator ignores the competing risks situation that exist in safety

data. The most appropriate estimator is based on the Aalen-Johansen estimator.
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5.3.4 Weighted Aalen-Johansen estimator

The weighted Kaplan-Meier estimator ignores the competing risks situation that exists

in AEs data. Death before an AE is a competing event. For the analysis of AEs data

for dynamic treatment regimes, we propose the use of the weighted Aalen-Johansen

estimator. The weighted Aalen-Johansen estimator of weighted cumulative incidence

function is an appropriate method for estimating the probability of an AE in a competing

risks situation:

1− P̂g(T > t) =
∑
u

Ŝ(u−)wg
awg (u) + awd (u)

rwg (u)
,

where Ŝ(u−)wi is the weighted Kaplan-Meier estimator of the probability of not expe-

riencing the composite event AE or death just before time u. We sum over all events

times (death or AE). Again, we weight the event processes with inverse weights. The

probability of an AE in the time interval [0, t] is given

P̂g(T ≤ t, AE) =
∑
u

Ŝ(u−)wg
awg (u)

awg (u)
, (5.11)

where here the sum is over all times of AE before t.

5.3.5 Analysis based on weighted hazards

The all events (AE and death) weighted hazards is given by

α̂wg (t)dt =
awg (t) + dwg (t)

rwg (t)
.

This decomposes into the so-called cause specific weighted hazards, αwgAE(t)dt+αwgD(t)dt,

which can be estimated by

awg (t)

rwg (t)
+
dwg (t)

rwg (t)
,

where awg (t) and awg (t) are the weighted event processes. The quantity rwg (t) is the

weighted at risk process for treatment policy g.
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From the decomposition above, the Nelson-Aalen estimator for the weighted cumu-

lative hazard to experience an AE is∫ t

0

α̂gAE(t)wdu =
∑
u

awg (u)

rwg (u)
. (5.12)

In the numerator of (5.12) we only count AEs, that is, we are summing over AEs times.

We weight using the inverse probability of being in treatment policy g. In practice, we

censor death events before an AE to estimate the weighted cumulative hazard for an

AE. The procedure is similar for the weighted cumulative hazard for death without an

AE.

5.4 Illustration: CALGB 19808 Toxicity dataset

We illustrate the proposed methodology on the toxicity dataset from the CALGB 19808

study. The efficacy dataset has been described in previous chapters. Several variables

were recorded in the toxicity dataset. The adverse events were graded in terms of their

severity. The adverse event were graded as mild, moderate, severe, life-threatening and

fatal. The adverse event names and their categories are also given. In this illustration, we

focus on the analysis of serious adverse events which are called life-threatening (serious

AEs) in this dataset. Most of the analysis (other than the incidence proportions and

ratios) will be based on the time to the first serious adverse event.

In the development of this methodology, we made some simplifying assumptions. One

of them is that we assumed that for responders, the AE occurs after response to the

first treatment. This makes it straightforward to apply the inverse probability weights.

In this dataset, this assumption is not violated. The efficacy dataset has a variable

named ind crdays which gives the number of days from registration to when complete

remission was reported. It can be seen that, for almost all the patients who responded,

complete remission was achieved very early, for some as early as 24 days. We can then

apply the methodology of this chapter assuming the AE occurred after response to the

responders to the induction treatments.

In the toxicity dataset, there is not an explicit time to the first serious adverse event.

The time is given as an interval made up of two variables which are: AE starting day

and AE ending day. The AE ending day refers to the number of days from registration

to the end of AE reporting period. The AE occurred in the interval given by the two

times. For purposes of this application, we used the AE ending day as our time variable

. We could have used the middle value of the interval as our time variable. Interest is in
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comparing occurrences of AEs in different treatment policies. To achieve this, we merge

the efficacy dataset and the toxicity dataset. The merging was done using the patient

number which is present in both datasets.

As described earlier, there are four treatment policies embedded in the CALGB

19808 study, namely; ADE - OBS, ADE - rIL-2, ADEP - OBS and ADEP - rIL-2. In

the second stage, some patients were randomized to observation. No active treatment

was given to this group as patients were simply observed. There are no adverse events

associated with the observation treatment option. In doing the analysis for the AEs, we

only considered two treatment policies, which are ADE - rIL-2 and ADEP - rIL-2 for

reasons given above. Other than the creation of the time to first serious AE variable,

the data was analyzed without any further modifications.

Ignoring the censoring, we calculated the weighted incidence proportions for the

treatment policies. The weighted incidence proportion for ADE - rIL-2 is 0.9797 and

the weighted incidence proportion for the ADEP - rIL-2 is 0.9615. The probability

of having a serious adverse event was slightly higher in the ADE - rIL-2 treatment

policy. The weighted risk ratio, WRR = 0.9797/0.9615 = 1.015. The estimated risk of

experiencing at least one serious AE is approximately the same in the two treatment

policies.

To calculate the weighted exposure-adjusted incidence rate, we consider three sce-

narios a patient might be in during the trial. A patient who experiences a serious

AE while still in the exposure time contributes to the time at risk his/her weighted

time to the AE. A patient who dies without experiencing an AE contributes to the

time at risk his/her weighted time to death. Lastly, a patient who does not experi-

ence a serious AE contributes to the time at risk for an AE his/her weighted time to

the end of exposure. The weighted time at risk of exposure in the ADE - rIL-2 treat-

ment policy is 9498.593 days and for the ADEP - rIL-2 is 10079.83 days. The WEAIR

in the ADE - rIL-2 treatment policy is 0.0128 and WEAIR in the ADEP - rIL-2 is

0.0124. There is no major difference in the WEAIRs for the two treatment policies.

This can be shown by calculating the weighted exposure-adjusted incidence risk ratio,

WEAIRR = WEAIR1/WEAIR2 = 0.0128/0.0124 = 1.036. There is no difference in

number of serious AEs occurring daily in the two treatment policies.

Figure 5.2 is obtained by treating death as censored and then taking 1−WKM . The

probability of an AE is estimated by 1−WKM and this approach has been criticized

as it ignores the competing risks situation. The graph shows no differences in the

probabilities of experiencing an AE in the two treatment regimes.
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Figure 5.2: Estimating the probability of an AE using weighted Kaplan-Meier esti-
mator.

As mentioned before, the most appropriate approach of estimating the probability of

an AE is the use of the weighted Aalen-Johansen estimator of the CIF.
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Figure 5.3: Estimating the probability of an AE using weighted Aalen-Johansen
estimator.

The graphs obtained from the weighted Kaplan-Meier looks similar to the ones from

the weighted Aalen-Johansen estimator in Figure 5.3. This is not surprising since there

were few deaths in the dataset. One should expect the two estimators to be similar if

there are few deaths (competing risks). For this reason we do not show the graph for

CIF for death events.

The estimation of the probability of an AE by the weighted Kaplan-Meier tends to

overestimate the probability. This could not be shown clearly in this analysis as there

were few competing events (deaths). It can be seen though, that the graph of the

weighted Kaplan-Meier is slightly above the graph from the Weighted Aalen-Johansen

estimator in the tail of the distribution. This is depicted in Figure 5.4.
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Figure 5.4: A comparison of weighted Aalen-Johansen and weighted Kaplan-Meier
estimators.

In the reply to Schmoor et al. (2016) by Thanarajasingam et al. (2016) they argued

that, even though the Kaplan-Meier estimator is biased upwards, its bias is minimal.

This may not be true in all cases, but only in the case where the competing events are

few. Since interest is in the probability of a competing event, that is, AE or death, if

the count for deaths is close to zero, then the two estimators will be similar.

In doing the analysis based on event-specific hazards, we only report the weighted

cumulative hazards for an AE. Due to lower numbers of death before a serious AE,

we did not include the graphs for death before an AE. When ignoring the competing

event of death, we observe some differences between the cumulative hazards of ADEP

- rIL-2 and ADEP - rIL-2. The cumulative hazard of experiencing an AE was higher

in the ADEP - rIL-2 than in the ADE - rIL-2 treatment policy in the time period 100

days to about 180 days, thereafter the hazard of an AE is higher in the ADEP - rIL-2

treatment policy. For the earlier times, there is no much difference in the hazards of an

AE between the two treatment policies. The cumulative hazard of experiencing an AE

was equal in the first 100 days. This is shown in Figure 5.5 below.
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Figure 5.5: Weighted cumulative hazards for AEs using the Nelson-Aalen estimator.

5.5 Conclusion

There has been an acknowledgment that safety data does not receive the attention as

efficacy data (Gould, 2015). In most cases, the analysis of safety data has been done

using crude incidence rates and this type of analysis may not be adequate. The use of

time-to-event statistical methods is common practice for efficacy endpoints in clinical

studies but such methods are rarely applied in the analysis of safety data. In this chapter,

we give a general overview of the methods that are applicable to single stage study with a

time-to-event endpoint. We then propose a methodology for analyzing safety data from

two-stage randomization designs which uses inverse probability weights. The weighting

is done in a similar way as in the analysis of efficacy data. We used time-independent

inverse weights. A responder represents 1/πz patients who could have potentially been

assigned to the treatment policy of interest. A non-responder only represents himself.

In doing so, we have made the analysis of the safety data be in sync with the analysis of

efficacy data from these study designs. We have focused on the time to the first serious

AE.

The important aspect to note in safety data is the presence of competing risks sit-

uation. A patient who enters the study can experience the AE of interest, die before
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experiencing the AE or be censored. The use of the Kaplan-Meier estimator is not en-

couraged but if the competing events are few, then the bias is minimal. In the general

practice, it is recommended to use the weighted Aalen-Johansen estimator proposed in

this chapter.



Chapter 6

Conclusions

6.1 Discussion

Treatment of complex diseases such as cancer, HIV, leukemia and depression usually

follows complex treatment sequences. Patients are randomized to first-stage treatments,

and upon response, a second randomization to the second-stage treatments is done. In

this thesis, we focused on two-stage randomization designs with time-to-event endpoints.

For these designs, interest is on estimating survival distributions and comparing different

treatment policies.

We started by reviewing statistical methods for estimating survival distributions in

two-stage randomization designs. A simulation study was conducted to compare the

performance of the three methods. The LDT estimator was found to be affected by

high censoring rates and low response rates. All three methods give similar survival

probabilities if the censoring rate is low and the response rate is not very low.

Wahed (2010) proposed a parametric approach for estimating survival distributions

for standard SMART designs. We extended Wahed’s approach to accommodate time-

varying SMART designs. Our approach uses the notion of convolution of two random

variables. Crossing survival curves can pose a challenge in comparing survival distri-

butions. To remedy this problem in two-stage randomization designs, we proposed a

weighted version of the Lin and Xu test (Lin and Xu, 2010). Our simulation studies

suggest that the weighted Lin and Xu test has better statistical power to detect differ-

ences in treatment policies even if the survival curves cross. In cases where the survival

curves do not cross, there is no gain in statistical power in using our approach.

The analysis of adverse events data has not been given the same attention as the

analysis of efficacy data. The key point in adverse event data is the presence of the

competing risks situation. We developed a methodology for analyzing adverse events

80



Chapter 6 - Conclusions 81

data. We believe that adverse events data should be given the same focus as efficacy

data.

6.2 Future directions of research

The parametric approach developed in the second chapter depends on the convolution

of random variables. There is a challenge in finding probability density functions for

some survival distributions other than the exponential distribution. Future research is

needed in this aspect where numerical methods could be used. An R package that can

implement the parametric approach could help in making the methodology useful. The

weighted Lin and Xu test depends on a fixed value of the correlation coefficient. This

restriction can be removed by finding a way of estimating the correlation coefficient.

This is one direction we intend to follow in future to remove the dependence on a

fixed given correlation coefficient. Also, the weighted Lin and Xu test is at the present

restricted to pairwise comparisons, we intend to extend it in the future to be able to

compare more than two groups.

There are many directions for future research in the area of analyzing safety data from

two-stage randomization designs. In the analysis of adverse events, we assumed that

the adverse event of interest occurs after response for the responders. This assumption

can be relaxed. One way of doing this is to treat as a non-responder a responder who

experiences an adverse event in the first stage.
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