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Abstract

The objective in this thesis is to pose and to answer to some questions concerning
the role played by information in decisions on the economic allocation of natural

resources.

In chapter 2 the design of a voluntary incentive scheme for the provision of
ecosystem services is considered, having in mind the forested areas in develop-
ing countries where a governmental agency plans to introduce a set-aside policy.
Payments are offered to the landowners to compensate the economic loss for not
converting land to agriculture. The information asymmetry between the agency
and the landowners on the opportunity cost of conservation gives incentive to
the landowners to misreport their own "type". A principal - agent analysis is
developed, adapted and extended to capture real issues concerning conservation
programs in developing countries. I show that the information asymmetry may
seriously impact on the optimal scheme performance and, under certain condi-
tions, may lead to pay a compensation even if any additional conservation is
induced with respect to that in absence of the scheme.

In chapter 3 an intergenerational dynamic game is solved under time- inconsis-
tency. The optimal harvest timing for a natural forest is determined under uncer-
tainty on the flow of amenity value derived from conservation and irreversibility.

Due to time-varying declining discount rates intertemporal inconsistent harvest
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strategies arise. The value of the option to harvest is eroded and earlier harvest
occurs under both the assumptions of naive and sophisticated belief on future
generations time-preferences. This results in a bias toward the current gener-
ation gratification which affects the intergenerational allocation of benefits and
costs from harvesting and conserving.

In chapter 4 a forest owner with hyperbolic time preferences is considered.
At each period the irreversible decision to harvest an old-growth forest could
be taken, while conservation is the alternative. Flows of future amenity value
are uncertain while the net value of stumpage timber is known and constant.
The decision problem is expressed as an optimal stopping problem and solved an-
alytically in a time-inconsistent framework under the assumption of sophisticated
belief on future trigger strategies. Premature harvesting occurs. To avoid socially
undesirable harvesting the impact of hyperbolic discounting must be accounted
and a modified optimal pigovian tax on the wood revenues is proposed.

Finally, in chapter 5 a government bargains a mutually convenient agreement
with a foreign firm to extract a natural resource. The firm bears the initial in-
vestment in field research and infrastructures and earns as a return a share on the
profits. The firm must cope with uncertainty due to market conditions and, as
initial investment is totally sunk, also due to the risk of successive expropriation.
In a real options framework where the government holds an American call op-
tion on expropriation I show under which conditions Nash bargaining is feasible
and leads to attain a cooperative agreement maximizing the joint venture sur-
plus keeping into account both the sources of uncertainty on profit realizations.
I show that the investment trigger does not change under the threat of expropria-
tion, while the set of feasible bargaining outcomes is restricted and the distributive

parameter is adjusted to account for the additional risk of expropriation.
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Abstract (in Italian)

L’obiettivo di questa tesi & quello di presentare e rispondere ad alcune domande
riguardanti il ruolo svolto dall’informazione nelle decisioni riguardanti 1’allocazione

economica delle risorse naturali.

Nel capitolo 2, viene considerato uno schema volontario per l'incentivazione
della fornitura di servizi di ecosistema. In particolare, si fa riferimento
all’intervento da parte di un’agenzia governativa teso all’introduzione di un piano
di set-aside nelle aree boschive dei Paesi in via di sviluppo. Il piano prevede di
ricompensare tramite un trasferimento i proprietari terrieri per la perdita eco-
nomica sofferta non convertendo 'area di proprieta ad agricoltura. L’asimmetria
informativa esistente tra agenzia e proprietario terriero rispetto al costo opportu-
nita della conservazione incentiva quest’ultimo a non rivelarne la corretta entita.
Viene quindi sviluppata un’analisi principale - agente adattata ed estesa al fine
di incorporare gli aspetti problematici che caratterizzano i programmi per la con-
servazione in Paesi in via di sviluppo nella realta. Viene mostrato il drastico im-
patto che I'informazione asimmetrica puo avere sulla performance dello schema
ottimale. Si verifica che, sotto certe condizioni, paradossalmente si potrebbe
dover compensare anche un proprietario terriero che ha conservato nell’ambito
del programma la stessa area che avrebbe conservato in assenza del programma

governativo.
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Nel capitolo 3, si risolve un gioco dinamico intergenerazionale tra agenti
incoerenti temporalmente. Il timing ottimale del taglio di una foresta natu-
rale viene determinato tenendo in considerazione l'incertezza relativa al valore
di cui si potrebbe beneficiare attraverso la conservazione e l'irreversibilita delle
conseguenze del taglio una volta avvenuto. La strategia ottimale, a causa dei
tassi di preferenza intertemporale varianti col tempo, puo risultare incoerente.
L’erosione del valore dell’opzione di taglio ne induce un esercizio piu affrettato
sia sotto 'ipotesi di aspettative rispetto alle preferenze temporali delle future
generazioni di tipo naive che di tipo sofisticato. Tutto cio si riflette in una distor-
sione della ripartizione intergenerazionale dei benefici e dei costi derivanti dalla

gestione della risorsa a vantaggio della generazione vivente.

Nel capitolo 4, si assume che il proprietario privato di una foresta abbia
preferenze temporali iperboliche e possa decidere il taglio, con conseguenze ir-
reversibili della foresta, oppure conservarla. Il flusso di valore di cui beneficia se
conserva € incerto mentre il valore netto del legno tagliato ¢ noto e costante nel
tempo. Tale problema decisionale viene rappresentato nei termini di un problema
di optimal stopping time e risolto analiticamente in un contesto caratterizzato da
incoerenza temporale sotto I'ipotesi di aspettative di tipo sofisticato rispetto alle
strategie preferite in futuro. Ne risulta che il taglio é realizzato prematuramente.
Si mostra quindi come modificare la tassa Pigouviana sul legno per evitare ef-
fetti socialmente non desiderati dovuti alla particolare definizione delle personali

preferenze temporali.

Infine, nel capitolo 5 il governo di un Paese ospitante negozia con un’impresa
estera un accordo reciprocamente conveniente per lo sfruttamento di una risorsa
naturale. L’impresa dovrebbe farsi carico dell’investimento iniziale necessario a

sondare la consistenza del giacimento e a costruire le infrastrutture necessarie ot-

12



tenendo in cambio una quota sui profitti derivanti dall’estrazione.
L’impresa oltre a far fronte all’incertezza sui profitti futuri dovuta alle variabili
condizioni di mercato deve tener conto anche del rischio di una successiva es-
propriazione, dato che l'investimento e’ totalmente irrecuperabile. Utilizzando
un modello teorico di opzioni reali in cui il governo puo essere visto come de-
tenere un opzione di tipo American call sul’espropriazione, si mostra sotto quali
condizioni, tenendo conto dell’incertezza di mercato e dell’addizionale rischio di
espropriazione, un Nash Bargaining sia realizzabile e permetta di definire un
accordo che massimizzi il valore complessivo dell’attivita economica. Tra i risul-
tati, si mostra che la soglia temporale alla quale sostenere in maniera ottimale
I'investimento non varia in presenza di una minaccia di espropriazione rispetto al
caso in cui tale rischio non esista, mentre I'insieme degli accordi potenzialmente
realizzabili si riduce. Si mostra infine come le quote sui profitti vadano aggiustate

per incorporare il rischio supplementare di espropriazione.
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Chapter 1

Introduction

Natural resources play an important role for current and future societies since
they represent an endowment whose use is crucial to support human welfare
(Heal, 1998). The channels through which natural assets may impact on human
felicity are diverse. For resources such as oil, natural gas and minerals, utility
is derived mainly from their exploitation while for natural assets such as forests,
wetlands, watersheds and related environmental goods and services, welfare could

accrue not only from exploitation but also from conservation.

Decisions regarding the use of these assets must be taken in the light of cur-
rent and future costs and benefits. Normally, in order to assess actual net bene-
fits and to support strategies, information should be gathered. Several research
questions may arise from this simple consideration and a number of them have
been answered by social scientists. Nevertheless, some questions still remain.
The objective of this thesis is to pose and to answer to some questions concerning
the role that information may play for decisions about the economic allocation of

natural resources.
In particular, chapter 2 investigates the problem related to the design of an
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incentive-compatible conservation contract scheme which allowing for the collec-
tion of information needed to optimally allocate forested land to two alternative
uses: agriculture or ecosystem services provision. The idea behind a conserva-
tion contract is relatively simple: an environmental agency proposes to landown-
ers a contract scheme which specifying the extent of land that should be set
aside for conservation, and the transfer compensating for the economic loss suf-
fered for not converting such an extent to agriculture. The cost opportunity
of conservation varies among landowners according to the quality of their land
and it is often private information of landowners (Smith and Shogren, 2002).
The information asymmetry between the landowner and the agency is an ad-
vantage for the former in that, by misreporting the land type, she may be over-
compensated. This clearly represents a problem for the agency which must deal

with limited and costly raised funds for conservation.

In this chapter I deal with such a problem by developing a standard prin-
cipal - agent analysis, adapted and extended to capture real issues concerning
conservation programs in developing countries. In these countries a substantial
extent of land is still forested but "slash and burn" agriculture has become ag-
gressive (Brocas and Carrillo, 1998). I assume first, that the private level of
conservation may be positive and second, that agriculture is risky in that, due
to primitive agricultural practices, the crop yield may be severely reduced by ex-
ogenous shocks such as pest and soil erosion (Arguedas et al., 2007). The second
assumption represents a novelty in the conservation contracts literature but in
my opinion is an important issue to be considered since it may have an impact
on the actual extent of land conversion. Finally, imposing a restriction on the
set of feasible incentive-compatible contracts, I address another important aspect

concerning the perverse effects which may be induced through the conservation
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program. In fact, inconsistently with the agency target, the program may relax
credit constraints and give incentive to clear more land than that cleared without

a program.

In all three chapters 3, 4 and 5, the perspective on the role played by infor-
mation differs from that in chapter 2. Within different contexts, decision-making
accounts for the value of information disclosing as time rolls on. In fact, if this is
the case, it may be profitable to postpone a decision and to collect information
in order to reduce uncertainty about future realizations of benefits and costs.
This consideration becomes crucial, in particular, when the consequences of a de-

cision are costly or impossible to reverse (Arrow and Fisher, 1974; Henry, 1974).

In particular, the model set-up of chapters 3 and 4 is quite similar from a
technical point of view. In both chapters, I merge two different strands of litera-
ture: on the one hand the real option theory which emphasises the importance of
waiting for collecting information, on the other hand the literature on hyperbolic
time-preferences, where decision-makers affected by time-varying impatience are
time-inconsistent and have incentive to rush because of future sub-optimal plan
revisions. The results provided in these two chapters extend the real options tool
box for the analysis of a wider class of economic problems entailing the exercise
of options similar to an "American put" such as an option to exit or an option

to shut down (Dixit and Pindyck, 1994).

Chapter 3 provides a rational for the observed tendency of governments to rush
in undertaking projects which irreversibly impact the stock of natural resources
available to future generations and for the time inconsistency of the conserva-
tion policies. An intergenerational dynamic game is considered to determine the
optimal conservation policy set by the government. I assume that the govern-

ment is truly democratic and at each time period perfectly represents the will
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and the preferences of the politic body, namely the generation living at that time
period (Phelps and Pollak, 1968). Each generation is imperfectly altruist and
lives over a random lifespan benefiting from its own welfare and that of follow-
ing generations. The value of the stand of forest is known and constant and
accrues to society when irreversible harvest occurs, while the flow of amenity
value from conservation randomly fluctuates according to a geometric Brownian
motion and stops forever when the forest is harvested. Under these assumptions
I show that the government is equivalent to an hyperbolic agent with a finite
number of selves. Intertemporal inconsistent harvest strategies arise and due to
time-varying declining discount rates, the value of keeping the option to harvest
is lowered. Therefore, an earlier harvest is induced under both the assumptions

of naive and sophisticated belief on future generations time-preferences.

In chapter 4, the research question is how second best tools for govern-
ment intervention must be adjusted to account for non standard time prefer-
ences (Shogren, 2007). Goods and services provided by a natural forest when
conserved are public in nature and government intervention may be needed to
guarantee the intertemporal socially desirable allocation of this natural asset.
I show that a pigouvian tax on wood revenues should be modified to lead agents
with hyperbolic time preferences toward the social optimum because otherwise
the policy target could not be met. In this chapter, the optimal stopping prob-
lem in continuous time solved in the previous chapter for a finite number of
government "incarnations", is now solved for the case of a private forest owner
represented by an infinite sequence of selves with hyperbolic time preferences.
The solution for this case is more tractable but is qualitatively equivalent to the

one for the finite selves case.
In chapter 5, I analyse the problem of foreign direct investment for the
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exploitation of a natural resource. In developing countries, due to limited budget
often the governments cannot afford the initial investment for the exploitation of
their natural resources and attempt to attain a mutually convenient agreement
with foreign firms willing to bear the initial costs. According to these agree-
ments, the firm bears the initial investment in field research and infrastructures
and earns, as a return, a share of the profits derived from the resource extraction.
In this context, when assessing the convenience of the investment, the firm must
deal with profit uncertainty due to market conditions. Moreover, since the initial
investment is totally sunk, the firm should also deal with the risk of successive
expropriation. In high-profit states in fact the host country’s government may
have incentive to expropriate. I develop the analysis in a real options framework
where the government is seen as holding an American call option on expropriation
while the firm as holding a similar option on investment. Both parties wish to
attain an agreement matching their different economic interests. I show under
which conditions Nash Bargaining is feasible and leads to a cooperative agree-
ment maximizing the joint venture value, keeping into account both sources of
uncertainty on profits.

In chapter 6, I provide a summary of the main issues discussed in this thesis

and suggestions for future research. All the proofs are available in the appendix.
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Chapter 2

Mechanism design for
conservation contracts in

developing countries

2.1 Introduction

In the last decades the Payments for the provision of Ecosystem Services
(hereafter, PES) have become an increasingly popular instrument to induce the
provision of ecosystem services on private lands.! The target for most of the land
managed under PES programs has usually been the conservation of biodiversity
and the soil protection (Salzman, 2005; Ferraro, 2001; Ferraro and Kiss, 2002;
Pagiola et al., 2002). Under a PES program a contract is usually proposed by a
governmental agency to a landowner. The landowner sets aside a part of her own

land and receives a compensation for the economic loss suffered. The contract is

LA well known example is given by the PSA (Pagos por Servicios Ambientales) program
in Costa Rica (FONAFIFO, 2000; Pagiola et al., 2002; Salzman, 2005). For other examples
http://www2.gsu.edu/~ wwwcec/special /ci/index.html.
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designed to allow for the voluntary participation of the landowner to the program
and specifies the extent of land that should be conserved and the compensation
paid for the environmental service provided. To guarantee a voluntary participa-
tion the payment should be at least equal to the landowners’ opportunity cost

and no higher than the value of the benefit provided.

The landowners know their property and the opportunity cost of managing
it for environmental services better than the governmental agency. Landowners
could then have incentive to misreport their true type in order to be over compen-
sated. This opportunistic behaviour produces an additional burden for the agency
and impacts on the total level of conservation which may be induced through a
program becoming a serious issue when funds for conservation are limited and/or
are costly raised through distortionary taxation. This problem is common to
a number of other situations where agents with different cost opportunity type
may take advantage of their private information and the principal searches to
differentiate them through a proper contract scheme. In these cases mechanism
design theory can be used to design contract scheme which induces truth-telling
(Mirrlees 1971; Groves, 1973; Dasgupta, Hammond and Maskin, 1979; Baron
and Myerson, 1982; Guesnerie and Laffont, 1984). This is what has been also
broadly done to deal with information failures impacting on the design of conser-
vation contracts (Smith and Shogren, 2002; Wu and Babcock, 1996; Smith, 1995;
Goeschl and Lin, 2004).

In the reality despite the fact that optimal incentive schemes could be de-
signed, PES programs are usually general subsidy schemes.? A general subsidy

scheme is surely easier to implement but it allocates sub-optimally the funds for

2This is the case for example for the PSA program in Costa Rica where each land unit
conserved is paid the same amount and any landowner in the country is allowed to participate
and choose the extent of land to be conserved (Pagiola et al., 2004).
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conservation in that overpays® landowners which misreport their cost opportu-
nity* type.

The aim of this chapter is to address such concern and design a voluntary
incentive scheme for habitat conservation in developing countries where a sub-
stantial extent of land is still forested but "slash and burn" practices have become

intense.

We investigates the adverse selection issue due to the information asymmetry
between the governmental agency and the landowner on the environmental char-
acteristics of each property. This set of characteristics affects the land agricultural
productivity and determine the opportunity cost of each unit of land conserved.
We are clearly aware that reality is even more complex for the presence of moral
hazard in the contract compliance and for the asymmetry in gathering informa-
tion about conservation costs but we prefer to abstract from these issues and

work on a simpler model.’

We model the agricultural activity undertaken after land conversion as a risky
activity suffering exogenous shocks which negatively affects the landowner’s crop
yield. This is an aspect which has not been considered in the previous contribu-
tions on this topic but that is in our opinion very relevant in that risk affects the
landowner private allocation choice and consequently the actual cost opportu-

nity of conservation.® Moreover, this consideration can be even more important

3This has probably been the case in Costa Rica where the compensation paid has been quite
attractive and a number of applications to the program were not considered because of funding
limits (Pagiola et al., 2004).

4By principle also the different levels of benefit provided by the service should be taken into
account. But as in the case of biodiversity conservation, such benefit is extremely difficult to
assess. In contrast, to collect information on and estimate the landowner’s opportunity cost
may be easier and less costly.

®See White (2002) for the moral hazard problem and Goeschl and Lin (2004) for the asym-
metry in the information gathering.

6There have been in fact no studies up to date assessing how much land managed under a
conservation program would have been cleared in the absence of the program.
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in developing countries where the agricultural activity is still primitive and the
investment in technology is low.

The set-up of our model is completed by first, assuming that the level of con-
servation pursued by the governmental agency through the conservation program
is not fixed ex-ante but results from the social welfare maximization, second,
assuming that the private level of conservation is not necessarily zero but it is
optimally determined by the landowner according to the expected profit associ-
ated to converting land and third, introducing as in the paper by Motte et al.
(2004) a constraint on the surface conserved to control for the effectiveness of the
policy.” The purpose of this constraint is to control for a policy perverse effect
which could induce landowners to clear more forest than they would have cleared
without a contract.

In this frame a program consistent with the conservation target is designed
to guarantee voluntary participation and truthful revelation of land opportunity
cost. We show that the information asymmetry may seriously impact on the
optimal second-best scheme leading under certain conditions to pooling types.
First best conservation can only be attained if raising funds for the transfers
comes at no cost. We also verify that even if any additional conservation is in-
duced with respect to the extent privately undertaken a compensation must be
paid in some cases to landowners. This is done only to induce them to reveal
their private information and limit the information rent that must be paid to
other types. We finally prove that the program designed is the optimal or best
feasible contract scheme available and that social surplus under a general sub-

sidy conservation program cannot be higher than under the optimal second best

"In Motte et al. (2004) the information asymmetry is on the individual cost of clearing
effort. A "policy consistency" constraint is introduced in the standard principal-agent problem
to restrict the set of incentive compatible contract schedules to the one where the conservation
undertaken under the CP is at least equal to that without CP.
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conservation program.

The structure of the chapter is the following: in section 2.2, the landowner
and governmental agency’s preferences are presented; the private allocation in
the absence of a conservation program and the first best allocation with a conser-
vation program in place are presented and discussed. In section 2.3, the second
best outcome is derived and its properties are discussed. Section 2.4 proposes a
parametric example of the optimal conservation program at work. Section 2.5

concludes.

2.2 The basic set-up

We assume that each landowner owns A units of land and that each plot is in
its pristine natural state. Each landowner’s plot is of the same size but not
necessarily has the environmental characteristics® of the one owned by another
landowner. On these private lands the governmental agency (hereafter, GA) plans
to preserve some critical habitat for biodiversity conservation and to induce that
proposes a voluntary contract scheme. According to the scheme, each landowner
is paid to set aside a units of her plot for conservation. We further assume that
the GA and the landowners are risk-neutral agents and that the funding of the

transfers is raised as standard by taxation.

2.2.1 Landowner and government agency’s preferences

Fach landowner’s plot is characterized by a set of characteristics, such as soil
quality, soil erosion and water and distance to market. We use a scale index

6 to represent these characteristics (Wu and Babcock, 1996). This parameter

8Hereafter, we would simply use "type".

29



varies among landowners and defines their type. We assume that the agricul-
tural productivity of the plot is positively related to . The index 6 is private
information of the landowner. However, it is common knowledge that it is drawn
from the interval © = [Q, @] with a cumulative distribution function F' () and
a density function f (). The density function is assumed to be strictly positive
on the support ©. Moreover, f () satisfies the regularity conditions® such that

OLF(0)/£(9)
20

Crop yield to the landowner is represented by
(1-v)Y (A—a,b) (2.1)

where A — a is the surface cultivated, 6 is the land type and v is a random shock
which may reduce the crop production and could be related to the technologi-
cally primitive "slash and burn" agricultural practice that is typical in developing
countries still forested areas.!” We assume that v belongs to the set V = {v,v}
where 0 < v < v < 1 and it is equal to v or v with probability ¢ and 1 — ¢

respectively. Therefore, the expected crop yield is

g(1-0)Y (A=a,0)+(1—q)(1-0)Y (A—a,0) (2.2)

=1-v+q@W—-2)]Y (A-a,0)

Assume that the production is increasing and concave in the units of land con-
verted, increasing in € and that the marginal product with respect to land is in-

creasing in the land type. This is equivalent to following set of

9Most parametric single-peak densities meet this sufficient condition (Bagnoli and
Bergstrom, 1989).

"However, it could be assumed a constant yield and model in the same simple way a shock
on the price of the crop due to changing market conditions. This could be done at no cost and
keeping the model practically intact.
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assumptions: Y7 > 0, Y33 < 0, Y5 > 0 and Yj5 > 0 where Y; = 9Y/0 (X— a) ,
Yy = 0Y /00, Y1, = 0?°Y/O(A — a)?, Yia = 0*Y/O(A — a)b.
In the absence of a conservation program (hereafter, CP), the expected profits

to each landowner’s A — a units of land are represented by
T(A-a,0)=pl-0+q@—0)]Y (A—a,b) —c(A—a) (2.3)

where p is the price of the product and c is the private cost for converting a unit
of land, i.e. the cost of clearing the new plot and settle it.

We assume as in Motte et al. (2004) that given the abundance of forested
land convertible the constraint on land availability is non binding. Other factors
like labour and other inputs, here represented by ¢, are scarcer and more costly
for the landowner. This means that even in the absence of a CP the landowner
do not convert all the available land (a > 0). This is often the case in develop-
ing countries, where landowners are often credit-constrained and can afford the

conversion cost just up to a certain extent of land.

In this situation, each landowner maximizes her expected rents with respect

to the converted surface (A — a)

%ﬂm(Z—a,Q) =pl-0+q@-v)]Y (A—a,b) —c(A—a)

Rearranging the first order condition (hereafter, foc)
pll—=v+q@—0v)]Y: (A—a,b) =c (2.4)

it follows that
c

Vi (A—a,0) T p[l—T+q@—0)
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The surface to be cultivated is determined equalising the expected marginal land
productivity with the private conversion cost. Note that being Y7; < 0 the surface
converted increases as the private conversion cost, ¢/p, decreases. The crop yield
depends on the magnitude of the exogenous shock and its likelihood and as one
can easily check in (2.4) the landowner convert more land as the expected yield
increases.

Define by A — @ () the private optimal level of conversion and substitute it

into the expected profit function to derive the level of expected profit

T(A-a(0),0) =pl—-v+q@—0)Y (A-a(0),0) —c(A—a(F) (2.5
If the GA announces a CP then a voluntary contract schedule {[a (0),T (6)];
0<0< 5} is proposed to landowners. In the contract a (#) represent the surface
of land type € to be conserved and T (0) is the relative transfer. If the landowner

accepts the contract then her expected program rents are given by

IM(A-a(9),0) =n(A—a(9),0) +T () (2.6)

=p[l—T+q@—0)]Y (A-a(0),0) —c(A—a(0)+T(0)

The GA’s objective!! is the maximization of the social surplus, W, with respect

to the pair [a (0),7T (0)]. Social surplus is defined as

W =B(a(0)— (1+\)T(0)+1(A-a(0),0) (2.7)

where ) is the shadow cost of public funds.!> The function B (a (6)) is the social

1The multi-agent problem faced by the GA can be analysed as a single-agent problem re-
peated n times (Smith and Shogren, 2002).
12Funds have been raised by taxes and this parameter reflects the marginal deadweight loss
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benefit deriving from setting aside a (#) units of land. Social benefit may include
the value of good and services such as flood control, carbon sequestration, erosion
control, wildlife habitat, biodiversity conservation, recreation and tourism and
option and existence value associated to the habitat conserved. We assume that

B (a(0)) is increasing and strictly concave in its argument and that A > 0.

2.2.2 Conservation in First Best

We set up the standard mechanism design problem to derive as solution the op-
timal CP. As standard we first solve the problem in a first best situation where
there is perfect information and the GA knows each landowner’s type. The defi-
nition of the properties of the first best solution will be useful later when we will
refer to it as a benchmark. In this case the GA’s problem is given by:

Jmax W=B(a(0) = (1+ )T () +T(A-a().0) (28

a(0)>a(h) for all 9 € [6,0]

The first constraint is the individual rationality constraint which ensures volun-
tary participation to the program. It guarantees that the landowners are at least
not worse off accepting the contract than not accepting it. This constraint is
type-dependent in that the return accruing to the landowner not participating
to the CP is related to the productivity of her own plot. The second constraint
is instead introduced to control that each landowner conserves at least the same

surface of land that she would have conserved without contract. Not introducing

from (distortionary) taxation (Wu and Babcock, 1996).
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this constraint, the CP, could end up providing the perverse incentive to convert

more land.

Proposition 2.1 In first best the surface allocated to agriculture within the CP

15 less than without the CP for every 0 € [Q, 9].

See appendix A.1 for the proof.
From the foc of the maximization problem it comes out that if a (6) = a™? (0)

the following relation must hold if

B'(a(9))

pl-T+q(@-u)]Yi(A-a(0),0) = c+ =375

(2.9)

The GA maximizes its objective function with respect to a (f) when accepting
the contract the landowner equalizes her expected land marginal productivity
with her private cost of clearing land plus the negative externality generated by
converting. The surface converted still depends on the private clearing cost and
on the expectations in terms of crop yield. The risk in the production can have
important consequences in landowner decisions and it has to be considered when
a CP is designed. Internalizing the social cost of her action the landowner reduces
the surface of land converted. Note in (2.9) that the marginal social benefit is
adjusted by (14 \) and this reflects the existence of a trade off between the cost
of raising funds for the payments and the marginal benefit from conservation.
In fact, as A increases the surface cultivated is larger and less conservation is
achieved.

The transfer is paid to each landowner accordingly to her type and is given

by

T"P0) =n (A—a(9),0) —m (A—a"" (6),0) (2.10)
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2.3 Mechanism under adverse selection

The GA announces the voluntary contract scheme {[a (9),T (8)];0 < 6 < 0}.
Now, there is no perfect information and the landowners have more information
about their type than the GA which only knows the types distribution, F' (6).
In this context the first-best contract schedule may not be incentive compatible
and there could be incentive for some landowners to mimic and earn a positive
information rent. Hence, the contract schedule should be designed such that for
each landowner it is optimal to report the land type truthfully.!®> The participa-
tion must be voluntary and after observing the contract schedule proposed, each

landowner chooses whether to enter or not into the CP.

To induce truth-telling an incentive compatibility constraint has to be added
to the principal-agent problem. This will restrict the set of feasible contract

schedules and the resulting optimal CP will be a second best solution.

If type-6 landowner chooses the contract designed for type—g landowners,

[a(f), T(0)], her expected program rents are

(A - a(@),0) =p[L =7+ q@-0)]V (A= a(0),0) - ¢ (A-a(@)) + T(0)
(2.11)
Instead, if she chooses the schedule designed for her type, [a(6),T(0)] her ex-

pected program rents are

M(A-a(®),0)=pl—-0+q@—2)]Y (A—a(0),0) —c(A—a(®)+T(0)
(2.12)

A contract schedule {[a (/) ,T ()] ;0 < 6 < 0} satisfies the incentive compatibility

13In addition to be voluntary the CP mechanism must satisfy a truth-telling condition (Das-
gupta, Hammond and Maskin, 1979).
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constraint if and only if

IM(A-a(9),0) >II(A— a(0),0), for all 6 and 6 € [0,6] (2.13)

This means that type-0 landowners always prefer [a (8),7 (6)] to all other avail-
able contract schedules. Voluntary participation is instead guaranteed imposing

as above in the first best case the incentive rationality constraint

IM(A—a(),0) >n(A-a(0),0) (2.14)

Definition 2.1 A CP is feasible if it satisfies both the incentive compatibility
constraint and the individual rationality constraint.

Under asymmetric information the GA’s problem is then given by

mm<l%ﬂV]::lé[B(a@ﬁ—%w@@—a@%@)—AT(@UK&dG

a(0),7(0) 0
s.t.
A (A—a(8),0) > n(A-a(9),6)
M(A—a(9),0) > T(A-a®),0)
a(f) > a(h) for all 6 € [0,0] (2.15)

Now, we rearrange the incentive rationality and compatibility constraints and
restate (2.15) in order to derive and describe the properties of the optimal second

best contract schedule (see the appendix for the proofs).
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Proposition 2.2 A contract schedule {[a (0),T (0)];0 < 0 < 6} is incentive

compatible if and only if
(a) a'(0) <0

(b) T'(6) = {p[L—7+q(@-v)] i (A—a(0).6) —c}d' (9)

The differential equation stated by the first condition (a) and the monotonicity
constraint (b) define the local incentive constraints set, which ensures local truth-
telling and completely characterizes a truthful direct revelation mechanism!*
(Laffont and Martimort, 2002).

Condition (a) simply states that an incentive compatible program requires

to conserve more units of land where land productivity is low. The landowner’s

private land allocation is defined by Y; (Z —a, 9) = m while under CP
in that there is more conservation Y; (A —a(9),6) > T o Hence, from

condition (b) it follows 7" (#) < 0. This means that under an incentive compatible
CP the GA must lower total transfers as land productivity increases. Otherwise,
every landowner would have an incentive to mimic the highest land type in that
for this type a larger compensation would be paid conserving less (condition a).
Instead, the existence of this trade-off should reduce the incentive to misreport.
However, even if the total transfer decreases with 6, the highest type landowner
must end up earning larger total rents because otherwise she would mimic a lower
type choosing the best combination between contract requirement and relative

compensation (see appendix A.3).

14In the appendix we show that the landowner neither lie globally and that the local incentive
constraints imply also global incentive constraints.
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Proposition 2.3 For any incentive compatible CP, the individual rationality

constraint is satisfied for all 6 when

II(A-a(),0) —7(A—7a(0).0) >0 (2.16)

Provided that it holds, this is sufficient condition for all the land types.

This means that if the highest type enters into the CP, all the other types may

do the same in that their total rents are not reduced.

Proposition 2.4 The GA’s problem in equation (2.15) can be reformulated as

follows:
a)
r%(/ B [0 (6).0]  (0)do
s.t.
a(0) <0
a(0) >a(0) (2.17)
where
P [a(0),0] :(1 Y [113_(6%(?1] ) +pY (A—a(0),0) +
c(A—a(0)) LA i F(0)
T—rra-o) Grn? W00 5
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b) Given the optimal conservation schedule, a®B (0), derived from (2.17), the

optimal transfer schedule, T°P(0), is defined by

T55(0) = —/9 Pl =7+q@— )]V (A-a®P(€),€) —c}a®P'(€)de+

+T58(0) (2.18)

where TSB(0) is the minimum transfer such that (2.16) holds.

The problem in (2.15) may be solved in three steps. At first, determine a*% (0)
solving the problem in (217). Second, minimize II (ﬂ —aP (5) ,5) subject to
(2.16) with respect to 7'(f). Third, substitute a*? () and T°F(0) in (2.18) and

compute the optimal transfer schedule.

2.3.1 Analysis of the optimal Conservation Program

We characterize some of the properties of the solution to (2.17) through the
analysis of the constraints introduced into the problem. First, let start with
the perverse incentive constraint taking apart for the moment the monotonicity

constraint. The problem in (2.17) can be represented by the following Lagrangian:

Lz/e B1a(8).6] f (6)df+ 6 (6) (a(8) — 7 (6))

Under imperfect information the necessary conditions for an optimum include:

oL B’ (a(0)) B i c
5a6) " T NA-v+qo—o] A0+ o m
_ ey
- s (A= a0).0) T 60 <0 (L)
6(0) (a(8) =3 (6) =0, 6(6) >0 L)



Consider an interval [,605] C [0,60] with §; < 05 and suppose a (/) = @ (f) and
¢ (0) > 0. Substituting (2.5) into (L.1)
B (a(9)) A F ()

CO = AN v a—o) T aent e @800 Fgy (219

Note that when 6 = 6, F' (#) = 0 and considering that B’ (a (#)) > 0 by assump-

tion
B'(a(9))

(ESV T I

6(6) = -

By contradiction we can then prove that at least for § = 0, ¢ (6) must be null
and the constraint is not binding. This means that in lowest type land more
conservation is undertaken under the CP than without it. It follows that 6 < 6;.

To analyze what happens in the rest of the interval one should study the derivative

of ¢ (0)

B" (a(0))

7= A+ N[I-T+q(@— y)}a, ®)+ (2.20)
A T a1 o) PO L F(0)
—y [P (A= (0).0) 5@ (0) = pYi (A=3(6).0) 55+
v (A—a0),0) 2 (98>6/f (0]

At this point, given that any particular form has been assumed for the functions
in the program ¢’ (f) can take both signs in [0, 85] . This implies that the perverse

incentive constraint may be binding somewhere.

From (2.19) ¢ (6) > 0 when

Wl =T -]V (-(0).0) ) = F@e) @2

The intuition behind (2.21) is straightforward, if the marginal cost of information
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(LHS) is greater then the marginal social benefit from conservation (RHS) then
the extent of conservation under CP is equalivalent to that privately undertaken.
If (2.21) does not hold then additional conservation can be induced implementing
a CP. If this is the case then a(f) > a(f) and ¢ (0) = 0. It follows that the

optimal a (f) must satisfy the following condition:

B’ (a(0)) — c
Sy TRy ) Rt A Gt O RV rw ey oo
F o

_ﬁpyu (A—a(0).6) 7 =0 (2.22)

~—

Now, we focus on the monotonicity constraint. From condition (a) in Proposition
2.2 an optimal second best CP requires a®?’ (#) < 0. It can be proved that when
a8 (0) = @(0) the monotonicity constraint is always satisfied on the interval
[01,05] (see the appendix A.6).

Let consider then the case a®P () > @ () Differentiating (2.22) and solving for
a®P' (0):

pYi2(A—a®B(0),0)+v 5 pYi22 (A-aSP (0),0) +vpYia(A-aSP (0),0) AEGI O

96
wB" (@SB (0))+pY11(A—a5B(0),0)+v gt pY112(A—-a5B (0),0) (2.23)

aSB/ (9) _

where w =1/(14+ AN [1 =0+ ¢ (T —v)] and v = \/1+ .

Our model is general and given that no assumptions have been introduced for
the sign of the third derivatives Yios (a(6),0), Y112 (a(f),0) we can just say that
the monotonicity constraint may or may not hold. Providing that it does then
{[a®P () ,T57 ()] ;6 < 6 < 6} is the optimal solution and it is separating in

that all types choose the contract intended for them. In this case the optimal
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extent of conservation in second best must satisfy the following relation

(A0 = ey [ )t 2
A v (Aa ()
Ty e (A =al0).9) 5

Considering the restrictions imposed on Y (Z —a(6), 9) and comparing the first-
best optimal allocation rule in (2.9) and the second best one in (2.24) it follows
that

a"” () > a®P (9) V0 € © = [0, 0] (2.25)

Proposition 2.5 Under symmetric information, the extent of conserved land is

never less than that under asymmetric information.

This distortion is due to the presence of the factor

e B0
N (U

~—

This term represents the effect of the information rent that must be paid to
landowners in order to give them appropriate incentives to truthfully report their
type. Note that there is no distortion only for the landowners who own the lowest
type land (since F'(f) = 0). Decreasing the surface of land conserved by higher
land type holders (a°®' (0)) and the compensation paid (7" () < 0) to higher
land type holders the optimal scheme proposed reduces the information rents

that must paid to the lower land type holders.
Proposition 2.6 If A = 0 then the optimal CP is first best.

First-best conservation can be attained under asymmetric information only in

the case where the social cost for raising funds to pay ecosystem services is null.
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Finally if the monotonicity constraint does not hold'® then [a®? (§), T (9)]
is not the solution to the GA problem. The solution (see appendix A.8), which
involves bunching types on the whole support or on some intervals can be derived
using the Pontryagin principle (Guesnerie and Laffont , 1984; Laffont and Marti-
mort, 2002). When it is not possible to separate the types, the GA must consider
that the CP may be costly in that higher type compensation may be paid to each

landowner and less conservation than expected may finally be undertaken.

2.3.2 Transfers

When the perverse incentive constraint is not binding and the monotonicity con-
straint holds the transfers can be computed simply substituting a°? (5) and
a®P (0) into (2.18). If the perverse incentive constraint is binding, the com-
pensation structure changes. As proved in the appendix (A.6) the monotonicity
constraint holds and the contract schedule is separating and all landowners who
conserve a (6) within the contract receive the same transfer (77 () = 0). In
particular, if 6-type landowners conserve @ (5) then all the landowners in the in-
terval [61,60] where a(f) = @(6), will not receive any compensation. Instead if
a () =a(0) is undertaken in [0y, 6] and this interval is strictly included in [6, 6]
then all the landowners in that interval will be paid the compensation computed
for A, for conserving the same extent of land they would have conserved privately.
The GA is essentially paying them to correctly reveal their cost type.

However, without a constraint on the consistency of the policy, less conserva-
tion could have been induced for certain cost types and then controlling for this
perverse effect of the CP at least avoids that payments are destined to convert

more land (Motte et al. 2004). This could be actually the case in developing

Y That is a®B’ (6) > 0 or a®P’ (9) changes sign on the support ©.
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countries where landowners are normally credit constrained and can afford the
conversion cost up to a certain extent of land. Under the program instead this
constraint is relaxed in that conserving land is paying a certain return represented

by the transfer and they may plan to convert more land.!®

2.3.3 Optimal CP vs general subsidy

As said in the introduction the PES programs are implemented as general sub-
sidy schemes (hereafter, GS). In practice any landowner may enter the program,
choose the extent of land to conserve and earn a fixed compensation T /ha/year.
In principle, the GA should fix T in order to attract cheapest land which cost
opportunity is low. Now, suppose that the GA plans to develop a GS conserva-
tion program in areas where 6§ < 0 < f. A GS scheme is equivalent to offer the
contract schedule {[@ (6) ,T - @(0)] ;6 < 6 < #} where @ (0) is the surface that the
landowners voluntarily decides to conserve under the program. It can be proved

(see appendix A.7).

Proposition 2.7 Social surplus from agricultural production and habitat con-
servation is greater under the optimal conservation program (CP) than under a

general subsidy conservation program (GS).

The GS contract schedule {[a (6) ,7 - @ ()] ;0 < 6 < 6} belongs to the feasible
set in that it satisfies the incentive rationality and compatibility constraints. But,
since {[a*? (0),T5P ()] ;0 < 6 < 6} is the best feasible contract schedule and it
is the unique solution to the GA’s maximization problem, social surplus cannot

be lower under the optimal CP than under the GS.

161n these countries land is surely cheaper than investing in technology to enhance the pro-
ductivity of converted land.
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A GA implementing the optimal CP designed needs to gather specific infor-
mation regarding for example the structure of the landholder’s profit function,
the social benefit function, the cost of raising money, the distribution of types
and with respect to the shock, the set of possible outcomes and their probability.
The collection of this information could be costly and make less significant the
gain in welfare that undoubtely may be attainted implementing this program. In
fact, adding this cost to the information rent that must be paid to the landowners
to reveal their type could more than balance this gain and justify the choice quite

common in the reality of implementing general subsidy scheme.!”

2.4 Conservation program at work

Let now illustrate the characteristics of the mechanism under incentive compati-

bility by using an example. Assume

(i) B(a) = fa— % as social benefit function,

(i) Y(A—a,0)=(A—a)0 - (A;a) as agricultural production function,

(iii) the uniform distribution of § with F () = &£, f(9) = -~ and

(iv) B>a,Q>Z—a,§§Z+p[1_§fq@_w], k=[1-7+q@—0).

Without any CP, the amount of land conserved is

a(e))zz—eﬂ%

17See Crepin (2005) and Arguedas et al. (2007).
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With CP in place, first best allocations are given by

1

O = e

X—@)pk—c)(l—l—)\)—i-ﬁ]

(@(0) + a"'2(0))

T20) = (a(d) —a""(0)) |pk (A—0) —c 5

Note that as proved the perverse incentive constraint does not bind in a first best
scenario.
Now, assume that a®” (§) > @ (). The monotonicity constraint holds given
that

oS8 () = pk(1+2X)

_ PRV EA)
L+pk(14+X) —

Second best allocations are then given by

1

O oy )

pk—c) (14+X)+ 3 — (0 — 0) pkA]

Comparing a°B(#) with a??(6) one can see easily realize the impact of information
asymmetry. The term representing the effect of the information rent is

pkA
—H -9 ————
( _)l—l—(l—l-)\)pk‘

The land to be conserved decreases with # and in this manner the optimal mech-
anism reduce the amount of information rent that should be paid to the low type
landowners to correctly reveal their type. If # = @ the surface conserved is as ex-

pected not distorted. To derive the transfer function 7 (f) must be determined.
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Minimizing IT (4 — a5 () , 6) subject to (2.16) with respect to T'(6), it follows

TS2@) = n(A—a(0).0) —x(A—a® (3).9)

The transfer function is then given by

(@(d) + a®2(0))
2

B [ ke - (- @) - )

Note that TSB'(G) < 0 and that the contract proposed is separating. The value

T52(0) = (a(d) — a®(0)) |pk (A—0) —c +

of the private information is higher for the low types and this types have no

incentive to reveal their true cost if an informational rent is not paid.

2.5 Conclusions

Combining agriculture and habitat protection is an appealing but extremely chal-
lenging target. The debate over this issue in the past decades has highlighted the
idea that ecosystem services are valuable and that conservation is an alterna-
tive land use. This is important in order to support the implementation of PES
programs in developing countries not as the way richer countries subsidize the
welfare of the poorer but as a tool for promoting their development paying them
for the valuable contribution they can provide conserving the habitat.

However, some potential weaknesses in the PES programs implementation
must be overcome. We refer in particular to the lack of proper targeting and the

use of undifferentiated transfers (World Bank, 2000).
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This chapter draws using the mechanism design theoretical framework a con-
servation program which allows for the differentiation of the payments with re-
spect to the opportunity cost of providing ecosystem services. The contract sched-
ule proposed in alternative to the more common general subsidy scheme keeps into
account, the risk of poor crop yield which characterizes the agricultural activity
in developing countries and control for the likely perverse effect that a conser-
vation program could have once a compensation is paid, namely less conversion
than that which would be observed without a conservation policy. The recogni-
tion of the incentive for the rational landowner to select, even misreporting, the
best combination of conservation and agriculture leads to impose in addition to
the incentive rationality also the incentive compatibility of the contract schedule
that should be announced. Transfers and contract requirements are then set to
reduce information rents that must be paid for collecting private information on
the conservation costs and maximize social welfare. We verify comparing the two
alternatives that a gain in welfare can be attained implementing our incentive

compatible program.

In the light of the debate on the opportunity of implementing incentive com-
patible programs for conservation we believe that our attempt to contribute to the
broad literature on this topic is completely justified and that our framework al-
lows for the analysis of several aspects characterizing this issue. Nevertheless, the
analysis in this chapter may be weak in some respects and more research would
be needed. In particular, we recognize the lack of an explicit modelling of the
credit constraint for the landowners. Another aspect deserving more research is
the relationship between the probability of unfavourable crop yields and the envi-
ronmental characteristics of the land which may be converted to agriculture. This

analysis could be developed in the standard principal - agent framework where
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differently from the model here presented the private information on 6 enters into
the problem not only affecting the land productivity but also the probability of a
scarce crop yield and as a direct consequence the actual probability that a certain
land type will be cleared. Finally, in our view the uncertainty in the return from
agriculture and the irreversibility of the conversion process matters and must be
introduced into the mechanism design problem. Actually, the landowner can be
seen as holding a portfolio including two assets, the land converted paying a risky
return represented by the crop yield and the land conserved paying a certain re-
turn given by the transfer. It would be interesting to study in which proportions
the two assets are held in the light of the uncertainty on the agricultural return
and of the irreversibility characterizing the decision to convert. We think that
extending the research presented in this chapter in the directions briefly sketched
in these final lines may add insight to the analysis and significantly contribute to

the literature on conservation contracts.

49



50



Chapter 3

Optimal conservation policy
under imperfect intergenerational

altruism

3.1 Introduction

In the debate on the reasons of natural resource depletion, an important role
has been always given to the time preference or myopia resulting from discounted
pay-offs attached to natural assets conservation. While this is surely a convincing
argument, in my opinion however it is not sufficient to explain two characteristics
of current conservation policies: excessive rush and time-inconsistency (Brocas
and Carrillo, 1998; Hepburn, 2003). In this direction, one striking example is
given by the management of publicly owned natural forests in Indonesia where
despite a sustainable exploitation of this natural asset has been targeted by the
government there is evidence of a faster depletion rate and of time-inconsistency

in the application of the policy (Atje and Roesad, 2004).
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Environmental issues such as forest conservation and species preservation are
often characterized by the impact of uncertainty on the pay-offs and by the irre-
versibility of some decisions once taken. In such a context because of the attached
option value waiting before taking an irreversible decision and collect informa-
tion to reduce uncertainty may be a reasonable strategy (Arrow and Fisher, 1974;
Henry, 1974; Dixit and Pindyck, 1994). As said above instead this seems not to
be the case in the reality where often governments revise previous conservation
policies and rush in undertaking projects which have irreversible impact on nat-
ural assets endowment and on the related provision of goods and services (Brocas

and Carrillo, 1998).

The aim of this chapter is to give a rationale for haste and time-inconsistency
developing the analysis of optimal conservation policies in an intergenerational
framework where imperfect altruism is assumed.

In dynamic welfare economics the debate on the issue of intergenerational al-
truism and discounting is not a new one. It starts with a paper on optimal growth
written by Ramsey (1928) where despite being termed "ethically indefensible" dis-
counting at a constant rate of time-preference is allowed. In addition, Ramsey
assumes perfect intergenerational altruism which implies that "each generation’s
preference for its own consumption relative to the next generation’s consump-
tion is no different from their preference for any future generation’s consumption
relative to the succeeding generation".! Phelps and Pollack (1968) instead dis-
cuss this assumption and extend the analysis introducing the possibility that a
"truly democratic" government being representative of an "imperfectly altruistic"
current generation defines its optimal policies according to its time preferences.

In a similar framework I intend to solve the classic problem of optimal timing

!Phelps and Pollack (1968), p. 185.
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of irreversible harvest with known and constant value of the wood harvested and
uncertain flow of amenity value from conservation? (Reed, 1993; Conrad, 1997).
Each generation is imperfectly altruistic and its welfare depends on its own and
on future generations’ consumption. Differently from Phelps and Pollack (1968)
I allow for a finite number of succeeding generations living over a random period
of time drawn by a birth/death Poisson process. Each generation compares the
level of welfare deriving from harvesting the forest with the one attached to the
conservation and sets a critical level for the amenity value that once met makes

optimal to cut.

I show that solving the intergenerational problem described above is equivalent
to solving the standard optimal stopping problem in continuous time relaxing the
assumption of exponential discounting and allowing for a decision-maker using
an hyperbolic discount function® which takes the functional form introduced by
Harris and Laibson (2004). As noted by Strotz (1956) discount functions with
time-varying declining discount rates implies inconsistent planning and belonging

to that set this is also the case for the hyperbolic one.

I assume that the current generation is not able to impose any conservation
plan to the following generations and I solve the problem by backward induction
under the two standard assumptions of naive and sophisticated belief on future
generations time preferences (Strotz, 1956; Pollak; 1968). In the first case the
current generation irrationally believes that future generations will act according

to its own discount function as if they were committed.* I find that under naive

2Reed (1993) and Conrad (1997) determine the optimal harvest timing under a constant
time preference rate. In an intergenerational framework this is equivalent to solve the problem
under the assumption of perfect altruism.

3This is not a complete novelty in the real options literature. See Grenadier and Wang (2007)
where the timing of investment is studied under the assumption of an hyperbolic discounting
entrepreneur.

4One may think to a generation irrationally confident in an ineffective commitment device.
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belief the critical amenity value level that must be met to harvest the forest is
higher than that in the benchmark case represented by the solution of the same
problem under perfect altruism. This implies that in expected terms the forest
will be harvested earlier. The intuition behind this result is that the bias for
current generation’s gratification relative to the future generations’ gratification
due to imperfect altruism and the generational transition rate lowers the value
attached to wait for collecting information and reduce uncertainty on benefit
from conservation and induces haste in the exercise of the option to harvest.
The conservation plan defined by current generation is defined on the basis of
incorrect beliefs and is time-inconsistent in that the following generation will
revise the previous policy setting a time trigger determined according to its own

time preferences.

The solution of the problem under the assumption of sophisticated belief has
even stronger implications for conservation and intergenerational forest value dis-
tribution. In fact, having perfect foresight with respect to future generations’
strategies each generation internalizes the cost of sub-optimal (from its time per-
spective) future conservation plans and sets an higher critical threshold for har-
vesting relative to the "naive generation". In this case the value of waiting is
further eroded by an additional effect due to sophistication and I find that the
critical thresholds set by each generation for harvesting the forest are increasing
in the number of generations ahead. This makes sense considering that the less

generations will succeed the less is the cost due their sub-optimal behaviour.

The chapter is structured as follows. In section 1, the set of assumptions
on which I set up the model is presented. In this section I also briefly present
the basic model by Conrad (1997) that will be used later as a benchmark. In

section 3.2, the problem is solved under naive belief and the solution is derived
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and discussed. In section 3.3, I first solve under sophistication the problem for
a three succeeding generations model. This allows to take things simpler at
no cost in terms of insight. I finally provide the solution for the general case
with a finite number of generations. In Section 3.4 I present and discuss an
alternative application of the model based on political parties turnover at the
government. Section 3.5 concludes. All the proofs and the details regarding the

solving procedure are available in the appendix.

3.2 The basic set-up

Note that when harvest occurs the forest provides to the generation living at
that time the value represented by wood revenue, the flow of amenity value stops

forever and no value will accrue to succeeding generations.

Consider a government representing the will and the preferences of the gen-
eration currently belonging to the body politic. Assume that each generation is
risk neutral and that its welfare depends on its own and on future generations’
consumption but that the value of future generations’ consumption relative to its
own is lowered by a constant factor 0 < § < 1. If 0 < § < 1 the current generation
is imperfectly altruistic while if 6 = 1 it is perfectly altruistic. Being risk-neutral
to maximize the welfare objective function is equivalent to the maximization of
the sum of current and discounted future generations’ consumption of the value
generated by harvesting or conserving the forest. Note that when harvest occurs
the forests provides to the generation living at that time the value represented
by wood revenue while the flow of amenity value stops forever and no value will
accrue to succeding generations. Assume also that each generation i discounts

exponentially at a constant time preference rate p and lives over a random period
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of time delimited by its birth at ¢; and the birth of the next generation at ¢;,;
with births occurring according to a Poisson process with intensity® A € [0, 00). It
can be easily shown that given the assumptions above

Definition 3.1 For any 6 € (0,1] and X € [0,00) the generation i discount
function is given by

e—p(s—t) if se ti, tz
Di(t,s) = i tisa) (3.1)

Se PG if se [ti+1, OO]

for s>t and t; <t <t

This stochastic function discounts at time t a $1 pay-off accruing to generation
1 at time s. Generation ¢ is discounting exponentially at rate p consumption
occurring over its lifespan while consumption by future generations is additionally
discounted by the factor §. This functional form is equivalent to the one introduced
by Harris and Laibson (2004) to model an hyperbolic discounting agent® and
as one can easily note consumption is discounted at a declining discount rate’
showing preference for the current relative to future generations consumption.
Moreover as noted by Strotz (1956), being time-varying this preferences implies
inconsistent planning. This means that each generation wish to revise according
to its own time perspective and discount function the time trigger for harvesting
determined by the previous generation.

In this frame I further and finally assume that the current generation is not
able to commit future generations to any conservation strategy and that each

generation defines its optimal conservation plan on the basis of its expectations

5This parameter represents the rate of generational transition.
6See Grenadier and Wang (2007) for an equivalent hyperbolic investor discount function.

—e P — -P . . . .
TAs 1 = < L 552 , the discount rate between two consecutive periods ¢t and ¢+ 1 increases

as date t comes close.
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on the future generations optimal conservation plans. In this respect, as long as
the absence of an effective commitment device may or may be not realized two
different types of belief, respectively sophisticated and naive, should be taken into

consideration to model the decision-making process (Strotz, 1956; Pollak; 1968).

3.2.1 Harvesting or conserving

Let us focus on the management of a natural forest by each government® in the
light of the benefits and costs described above. The target is given by the maxi-
mization of the represented politic body welfare with respect to the two possible
management policies, namely conservation and total and irreversible harvest.’
In the first case the net value of stumpage timber, M, is known and constant.
Instead, if the forest is conserved at each time period t an uncertain flow of
amenity value,'® A = A(t),accrues to the society. Such flow randomly fluctuates

according to the following geometric Brownian motion

dA(t) = pA(t)dt + o A(t)dz (3.2)

where 1 > 0 is the mean drift rate, ¢ > 0 is the standard deviation rate and

{2(t)} is a standard Wiener process.'!

Each government can be viewed as holding an option to harvest which pays

8From now on being totally representative of the current politic body preferences, each
generation will be represented by the government in charge over its lifespan.

9This makes sense considering that recovering the forest in the initial state could
take time. From a century up to several millennia, according to the cases
(http://en.wikipedia.org/wiki/Old _growth forest).

0Defined by the sum of option and existence values and of the value attached to the pro-
vision of services such as flood control, carbon sequestration, erosion control, wildlife habitat,
biodiversity conservation, recreation and tourism (Reed, 1993; Conrad, 1997).

""Where the usual conditions, E [dz(t)] = 0 and E [dz(t)?] = dt are satisfied. The upward
drift draws the increasing consideration of society for the amenity services and the variance
parameter captures the uncertainty about their actual and future value (Reed, 1993; Conrad,
1997).
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a dividend represented by the flow A(t) if unexercised. Harvesting being an
irreversible action, an option value may be attached to the decision to conserve
in that this strategy allows to the decision maker to collect information about
the uncertain flow of amenity value. The question to be answered is then when
is harvesting optimal with respect to conserving from the time perspective of the
current generation. This can be decided solving the underlying stochastic optimal
stopping problem.

Under the standard assumption of constant time-preference rate (6 = 1) the
solution to this problem has been provided by Conrad (1997). In the following
I briefly describe how the problem has been solved and the characteristics of the

solution.

Denote by V(A) the value function that the government want to maximize.

The Bellman equation of this problem is given by
V(A) = max {M,Adt + e "™ E V(A + dA)]} (3.3)

where p is the time-preference rate.

Definition 3.2 In the continuation region, A > A*, the value function, V(A),

solves the following second-order non-homogenous differential equation'?

1
502A2V”(A) + pAV'(A) — pV(A) = —A, for A> A (3.4)

where A* represents the level of amenity value delimiting the continuation region
where the option to harvest is kept alive. At A* conserving or harvesting is

indifferent and as soon as this level is hit the option is killed. Assuming'® p > p

12This equation is obtained using Ito’s lemma to expand (3.3).
13Note that if p < u conserving forever is the optimal plan.
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(3.4) can be solved attaching the following value-matching and a smooth-pasting

conditions to guarantee optimality:!*

Proposition 3.1 Under constant time-preference the solution to the optimal stop-

ping problem in (3.3) is given by

A= - ) (3.7)

M ([ A\bB: A
A3 1 2 for A > A*
v =4 "n )"+ (3.8)
M for A< A*

where (3, is the mnegative rtoot of the characteristic equation'
0*8(8—1)/2+ uB — p.

The first term on the RHS of (3.8) represents the value of the option to harvest
and it vanishes as A — oo. The second term is the expected present value of
the randomly fluctuating flow A which accrues intertemporally to the society if
the forest is never cut down. As soon as A < A* the option is exercised and the
generation living at that time benefits from revenue M. Note that in this case,
being 6 = 1, the discount function D;(t, s) reduces to the standard exponential
form. This implies that the optimal harvest trigger strategy is time-consistent

and that the conservation policy will not be revised by future governments.

YTn the real options literature this is used as a no-arbitrage condition (Dixit, 1993).
15The solution is 81 = (3 — %) — /(3 — &)2+ 20

o2 o2 o2
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3.3 Optimal harvest timing: imperfect altruism

and naiveté

I relax now the assumption of perfect altruism and I assume that 0 < § < 1.
When in charge each government may exercise the option to harvest and earn
the payoff M or keep it alive and let current generation benefiting from its and
future generations’ consumption of the goods and services provided by the forest.
The option if not exercised is then left as a legacy to the succeeding government

which in turn may or may not exercise it.

In this frame the solution to the optimal stopping problem that the current
government solves to set its optimal harvest time trigger will be represented by
the outcome of the game played over several periods by this government and the
future ones and will internalize the effect of harvesting trigger strategies set by

future governments according to their time perspective.

Let denote the current government by 0 and solve the problem under the
assumption of naive belief on future governments’ harvesting strategies. Being
"naive" the current governement believes that all succeeding governments will set
their policies according to its discount function that is given by

e—Pls0) it selo,
DO(t7 8) -

Se=Ps=t) if s€[ty, oo

for s>t and 0<t<t

This implies that all the succeeding governments are considered by the current
practically as perfect altruistic and discounting exponentially at the same con-

stant rate p.
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According to Dy(t, s) the current government discounts by e~P(5=1) the pay-offs
from forest management occurring at s < t; and by de=?(*~*) the pay-offs occurring
at s > t1. Also in this case, the optimal timing for the option exercise will be given
by a critical threshold for the amenity value. If the next generation is born before
such critical threshold is met the current generation enjoys the flow of amenity
value, A, for the period [0, t;] and the continuation value V.V (A) which is given by
the expected present value of the pay-offs attached to future governments’ strate-
gies.

If as incorrectly believed all future governments are discounting at the constant
rate p the optimal stopping problem they solve to define the harvest timing is
equivalent to the one solved by Conrad (1997). Hence, their critical trigger and
value  function will be respectively given by A* and V(A).
Given that the current government lowers by ¢ all pay-offs from future exer-
cise it follows that VN (A) = 6V (A). Now, let V¥ (A) and Ay be respectively the
current government’s value function and the optimal exercise threshold. In this

case, the Bellman equation is given by

VN (A) = max {M, Adt + e E [e "™V N (A + dA)] + (3.9)

+ (1 — e_’\dt) E [e‘pdtVCN(A + dA)] }

Definition 3.3 In the continuation region, A > Ay, the value function, VN (A),
solves the following second-order non-homogenous differential equation'®

1 " ’
5a2A2VN (A) + pAVY (A) — pV N (A) (3.10)

= (AN (A - VYA)]), for A Ay

16This equation is obtained using Ito’s lemma to expand (3.9) (Dixit and Pindyck, 1994).
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At the critical threshold A, where keeping the option open or exercising it is in-

different, the value-matching and smooth-pasting conditions respectively require

VN(Ay) = M (3.11)

VN (Ax) = 0 (3.12)

Proposition 3.2 Under declining time-preference rate and naive belief the solu-

tion to the optimal stopping problem in (3.9) is given by

Ay =

62 5 /62_/61 (AN)ﬁl

p—p
B—1 "0=B) (=1 \ & M<—> (3.13)

Ui

[ onrsde (39)” —a (5)] () +
VIA) = § 2 () A (L) for A> Ay (3.14)

M  for ASAN

where 1 = ,:\T(S—_: < 1 and 3, < f3; is the negative root of the characteristic

equation'” o?3(8 —1)/2+ uB — (p+ A) . See B.1 for the solving procedure.

Proposition 3.3 Under declining time-preference rate and naive belief each gov-

ernment ezercises the option to harvest at Ay > A*.

The time trigger for a naive and imperfectly altruistic government is higher
than the perfect altruistic one (see B.2 for the proof). The intuition behind
this result is that the value of keeping alive the option has lower value in this

case because due to its present-biased preferences the present value of the utility

"The solution is By = (3 — 4%) — \/(% — )24 2(p+N)



resulting from the decisions of the future governments is lower than the one under
perfect altruism (0 < 6 < 1, n < 1). There is then incentive for this generation to
anticipate future ones in the exercise of the option and this incentive increases as
less altruistic are the generations and the higher is the generational transition rate
(dfl‘—JN <0, %4—/( > 0). Note that the plan here defined is irrational in that is based
on the false belief of being able to have the subsequent generations committed to
the policy defined by the current one. Actually, as soon as the following generation
will be born at ¢ = t; the harvest trigger adopted will not be A* as incorrectly
believed by the current government but higher and fixed according to its discount
function D;(s,t). This will happen also when succeeding generations will enter
into the politic body at ¢, t3 and so on. Note that if also the future governments

are naive then the problem they solve to fix the harvest time trigger is equivalent

to one solved in this section and the time trigger is given by Ay > A*.

3.4 Optimal harvest timing: imperfect altruism

and sophistication

Assume now sophistication'® and imperfect altruism (0 < § < 1). In this case
the current government has perfect foresight and anticipates that each future
government is imperfect altruistic and will define its optimal harvesting strategy
according to its own hyperbolic discount function D;(t,s). From the current
government time-perspective all the future governments’ harvest time triggers are

sub-optimal and being this perfectly anticipated a cost attached to sub-optimality

18The agent decision making is based on rational expectations about future strategies
(O’Donoghue and Rabin, 1999).
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enters into its welfare maximization problem.!? This will produce an additional
effect on the optimal harvest timing with respect to the naive case where only a
present-bias effect is present.

In the next paragraph the implications of perfect foresight will be shown
through a three succeeding governments model where each government sets the
optimal conservation policy fixing a critical threshold for the exercise of the option
to harvest. Finally, I will present the solution to the same problem for the general

case with a finite number of governments /.

3.4.1 A three governments model

Let GG be the current government. On each interval dt the subsequent government
(51 is in power with probability Adt . Once (G; has replaced Gy, according to the
same process it will be replaced by G5 which will be in charge forever. Given
this structure the solution to the optimal stopping problem faced by Gy will be
derived using backward induction and will be represented by a subgame-perfect
equilibrium sequence of critical thresholds.

Consider Gy. Let Ags and Vy°(A) denote its trigger value and her value
function. Since it faces eternity, its maximization problem reduces to the time-

consistent case and

V) = v(A) (3.16)

19 A sophisticated agent may follow two strategies: the "strategy of precommitment" which
consists in committing to a certain plan of action and the "strategy of consistent planning"
which leads the agent not to choose the plans that are going to be disobeyed in the future
(Strotz, 1956).
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Now, G is in charge. Its plan is defined knowing that G5 would exercise the
option to harvest at Ag,. Having present-biased preferences Go’s value function
is worth for G; only ¢ times its value. Note that the problem for GG; is equivalent
to the problem solved for a naive government (Ay, VY (A)). The main difference
is represented by the fact that now the underlying beliefs are rationally formed.

It follows that

As1 = Ay (3.17)

VP(4) = V(4 (3.18)

Finally, it is time for GGy to formulate its optimal harvest plan. Denote respectively
by Aso and Vi(A) its value function and its trigger strategy and let V.5 (A)
represent its valuation of the exercise decisions that could be taken by GG; and G5
which strategies are perfectly anticipated (Agi, As2). The continuation value,
V,fl(A), is recursively determined. If Gy is in charge when the trigger Ag; is hit
then the option is exercised and the payoff for Gq is 0 M. Instead if G5 replaces G
before Ag; is met, then the Gy continuation value is equal to GG1’s continuation
value V.5 (A) = 6V5 (A).
Definition 3.4 In the continuation region, A > Ag,, the continuation value
function, Vfl(A), solves the following second-order non-homogenous differential
equation

LoP AV (A) 4 AV (4) — oV (4) (319)

= —{0A+A[VF(A) = VI(A)] } for A> Agy
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By the continuity of V% (A) it follows that
VE (Ass) = oM (3.20)
Solving (3.19) subject to (3.20) (see appendix B.3.1) one can derive
A"
VE(A) =64 [M— V5 (Asy)] (A—> +V(A)p for A>Agy  (3.21)
S

Having determined (Gy’s continuation value I can now solve its optimal stopping

problem represented by the following Bellman equation

VE(A) = max {M, Adt + e M E [e "V (A+ dA)] + (3.22)

+(1—e?) E[e "V (A+dA)]}

Definition 3.5 In the continuation region, A > Ag1, the value function, V3’ (A),

solves the following second-order non-homogenous differential equation

1 " ’
LoV ()4 AV () - () (323

= ARV ST} for A2 Asg

The solution can then be derived solving (3.23) subject to the value-matching

and smooth-pasting conditions respectively requiring

Vi (Asp) = M (3.24)

VS (Ag0) = 0 (3.25)
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Proposition 3.4 Under declining time-preference rate and sophisticated belief

the solution to the optimal stopping problem in (3.22) is given by

p—H M By — B4 (ASO)Bl
Aso = -9 ) 1+ (326
> < Ui > {(52 - 1) [62 (1—3,) \Asa (3.26)
(By—1)
B1
(Foo = Foalog 4) A% + 5726 ()" +
Vo(A) =14 + (ﬁ) A for A> Agp (3.27)
M for A< Agp

B
where Py, = Aéw ( ! ) *> 0 and Ago > Ag1 > Asa (see B.3.2

502(2B2—1)+u \ As,1
and B.4).

Proposition 3.4 confirms the existence of an additional effect if sophistication
is assumed. The exercise timing of the option to harvest and the value function
are in fact affected by taking into account which threshold will be chosen by the
following government and by how worth is for the current generation the value
accruing to the following generations. For G5 being the last generation there is
any incentive to rush and anticipate. Instead, both G; and Gy undervalue in
that imperfect altruists the utility accruing to the following generations and this
implies that there is a lower cost opportunity in taking the decision to harvest.
This in turn lowers the value of the option to wait and induces earlier harvest.
Having fixed a higher threshold, harvest by G; is more likely in expected terms
and this lowers the value of following generations exercises for Gq. It follows that
Gy has even less incentive to wait and this lead to fix an higher threshold with

respect to G.
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3.4.2 A I-governments model

I generalize the previous model allowing for I governments randomly stepping in
office. I describe in this section only the procedure that should be followed to
solve the problem and the solutions. All the details are provided in the appendix
(see B.5.1 and B.5.2).

As for the three-governments I use for the solution of the problem the back-
ward induction concept. The solutions for governments G; and G;_; are known
and are respectively given by {Ag; = A*, V7(4) =V(A)} and {Ag;1 = An,
V1 (A) =VN(A)} . Instead, for i < I — 2, the solutions may be derived recur-
sively keeping into account that at the tail of the program Ag; 1 = Ay and
VZ(A) = 0V(A). Let Vi7,(A) and V5, (A) be respectively the value function
for GG;11 and the value for G; of the pay-offs attached to the strategies of the
following I — 7 governments.

Definition 3.6 In the continuation region, A > Ag;i1, the continuation value
function, V;Sl +1(A), solves the following second-order non-homogenous differential
equation

]. " !
SO ATV (A) + pAVE 1 (A) = PV (A) (3.28)

- {5*’4 + A [VciH(A) - VcSzH(A)]} for A> AS,¢+1

This equation is then solved attaching the condition V. (As,11) = M that as

explained in the previous section holds by the continuity of VC‘S; 41(A).

The Bellman equation for G, is given by

Vi(A) = max{M Adt+eE [e "V (A+dA)] + (329
+ (1= E[e V5 ,(A+dA)]}
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Definition 3.7 In the continuation region, A > Ag,i1, the value function,
V21 (A), solves the following second-order non-homogenous differential equation
1
2
= {A + A [‘/ci'm(A) - Vzil(A)]} for A> As,z‘+1

2 A2V (A) + AV [(A) — pViE, (A) (3.30)

This equation can be solved subject to the value-matching and smooth-pasting

conditions respectively requiring

Vii(Asi1) = M (3.31)

Vii(Agnn) = 0 (3.32)

Proposition 3.5 Under declining time-preference rate and sophisticated belief

the solution to the optimal stopping problem in (3.29) fori+1 < I —2 is given

by
M pP— [ By — B4 At &
Asi = —0 . )

-2
Z kPiy1n (log AS,iJrl)k_l Ag?m

4 k=1 <p - u)

By —1 n
( 8

A# + 51%1 (%) +

I—2—i
VS (A) =4 + Y Puag(log A A% for A> Agi (3.34)

k=0

M  for A<Agi

where Ag; = A*, Agr—1 = An. See the appendix B.5.2 for the computation
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of coefficients P .

Proposition 3.6 Under declining time-preference rate and sophisticated belief
and for 6 € (0,1) the government exercises the option to harvest

at Agg > Ag1 > ... > Agip1 > Agi > ... > Agr1 > Ag.

See B.4 for the proof.

Proposition 3.6 implies that the continuation region enlarges as ¢ increases
and that the more governments the current government has ahead the higher is
the critical threshold. This result generalizes the one provided in Proposition 3.4.
Provided that A > Ag it follows that in expected terms the more governments
are ahead the less patient is the current government and the more likely is the
harvesting. With respect to a naive government, the current sophisticated gov-
ernment takes into account the burden represented by the sub-optimality (from
its time perspective) of future policies. The more governments will succeed the
more eroded will be the value attached to the option to wait. The anticipation
of future generations exercises is needed in that their harvest plans negatively
affect the current generation welfare and this could be done only fixing an higher
threshold making so more likely the option exercise over the life of current gen-
eration. Finally the effect of changes in 4 and A on the thresholds is confirmed

(s < 0,%s > 0).
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3.5 Government targeting and instability

I suggest an alternative interpretation of the model.?’ Consider a political party,?!
say X, assume that it is risk-neutral and currently in charge at the government.
Suppose that it discounts exponentially at rate p the pay-offs occurring over all
periods but that undervalues pay-offs occurring in the future periods by a fac-
tor 0 < 6 < 1 to account for the probability of being in charge in the future
periods. Assume 6 = p + (1 — p)a < 1 where p is the exogenous probability
of winning an electoral round. Hence, each party gives weight 1 to social wel-
fare when it is in charge and weight a < 1 when it is not. This could be due
for example to the fact that political parties are aware that people when voting
takes into account only their conduct when in charge. Differently from Bro-
cas and Carrillo (1998) I suppose that due to populist or other parties pressure
and /or unexpected events the current government may suddenly fall according to
a Poisson process with intensity A € [0,00) and that an electoral round follows.
Hence, each government is in office for a period lasting from an electoral round
(t;) to the subsequent (¢;,1). The period in office, (¢;, t;11), and future periods
(tiy1, oo) for each of these government are set randomly according to the oc-
currence of the political crisis. It is not difficult to see that on the basis of the
assumptions made each government is an hyperbolic discounting decision maker
and that its discount function is represented by (3.1). It follows that the analysis
provided in the previous sections can be seen under a new light. In fact, it could
allow for the investigation of the impact that the choice of different social ob-

jective functions by the political parties has on harvest timing and conservation

20 A similar frame is provided by Brocas and Carrillo (1998) to justify imperfect intergenera-
tional altruism.

21'We assume that also all the other parties currently not governing but competing with X at
each electoral round have the same preferences.
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policy consistency. Moreover, allowing for random electoral rounds additional
insight may be provided incorporating into the analysis the role of political in-
stability that is driven in this framework by the magnitude of A. This frame is
quite realistic and may represent another argument for explaining the rush in

irreversible harvesting and the time inconsistency of conservation policies.

3.6 Conclusions

This chapter extends the model for the definition of optimal harvest timing un-
der a real options approach by Conrad (1997) to a framework in which time-
inconsistent preferences are considered. These preferences have been and are a
research object which captures the interests of researchers in various fields of eco-
nomics (Strotz, 1956; Phelps and Pollak, 1968; Harris and Laibson, 2004; Laibson,
1996, 1997; O’Donoghue and Rabin, 1999; Brocas and Carrillo, 2005; Dasgupta
and Maskin, 2005).

I set up a model which gives a rationale to the governments’ haste in un-
dertaking irreversible projects leading to the commercial exploitation of natural
resources such as forests and to the time-inconsistency of conservation policies.

As proved by the results provided in this chapter imperfect intergenerational
altruism induces governments to rush the exercise of the option to harvest and
leads through the inconsistent time-preferences to which it gives rise to inconsis-

tent conservation policy.
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Chapter 4

Option value of old-growth forest
and Pigovian taxation under time

inconsistency

4.1 Introduction

The use of option theory has become relevant in resource and environmental
economics' (Brennan and Schwartz, 1985; Mcdonald and Siegal, 1986; Merton,
1998). This approach postulates that when decisions are characterized by irre-
versibility and uncertainty the option value of waiting for additional information?
about future benefits and costs should be taken into account in the decision-
making process (Arrow and Fisher, 1974; Henry, 1974; Dixit and Pindyck; 1994).

The standard real options approach is based on the assumption of agents

!See also for example Clarke and Reed (1989), Reed (1993), Conrad (2000), Bulte et al.
(2002), Kassar and Lasserre (2004), Insley and Rollins (2005).

2"When the purchase of an option or delay of an irreversible action allows an individual
to ascertain the true state with certainty, option value is equivalent to the expected value of
perfect information. When delay only affords the opportunity for probability revision (imperfect
learning), option value will equal the expected value of information" (Conrad, 1980).
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which exponentially discount future payoffs at a constant rate. Such assumption

allows to characterize agent’s decision-making as time-consistent.

A constant rate of time preference is a strong assumption that has been and
is broadly discussed in economics since Strotz (1956) who proposed declining dis-
count rates as an alternative®. The debate has become stronger when also exper-
imental evidence in psychology has supported the idea of an individual taste for
immediate gratification. Such evidence confirms Strotz’s conjecture of individ-
uals discounting at declining rates and recommends to model discount functions

as hyperbolas rather than exponential functions.

However, as noted by Strotz (1956) declining discount rates almost always
implies time-inconsistent planning.’ Time-inconsistency results from time prefer-
ences changing over time i.e. the discount rate between two succeeding periods ¢
and t+1 increases as t comes close. This means that individuals could reconsider

their plans at later dates and disobey the optimal plans originally defined.

In the last several years, the attention of economists on the implications of
hyperbolic discounting in the economic analysis has increased and led to contri-
butions in different fields.® Also in resource economics there is increasing interest
but just few contributions’ determining how hyperbolic discounting can impact
the management of natural resources (Shogren, 2007).

This chapter aims is to contribute in two directions. First, I want to assess

how the assumption of hyperbolic discounting affects the timing of the decision

3Referring to exponential discounting, Strotz (1955) argues that there is “no reason why an
individual should have such a special discount function” (p.172).

4See Loewenstein and Prelec (1992) for a review.

"Heal (1998) shows that logarithmic discounting is an exception.

6See for example contributions by Laibson (1996, 1997), O’Donoghue and Rabin (1999),
Brocas and Carrillo (2004, 2005), Harris and Laibson (2004), Dasgupta and Maskin (2005),
Salanie and Treich (2006) and Frederick, Loewenstein and O’Donoghue (2002) for a review. See
also Rubinstein (2003) for a more cautious position on the use of hyperbolic discounting.

"See for example Hepburn (2003) and Hepburn and Koundouri (2007).
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to harvest a stand of old-growth forest.® I combine two different strands of lit-
erature: the real option theory introduced above which remarks the importance
of waiting for new information and the literature on hyperbolic time-preferences
where individuals showing time-varying impatience may have incentive to rush
because of future sub-optimal decisions. Up to my knowledge this chapter repre-
sents the second attempt of introducing hyperbolic discounting in the real options
framework. The first is by Grenadier and Wang (2007) where the optimal timing
of investment under uncertainty and time-inconsistent preferences is determined.
Differently from them the problem solved in this chapter is instead equivalent to
the optimal disinvestment timing of an activity when a flow of value is paid as a

dividend if the shut-down option is kept alive.”

Second, I investigate the implications of hyperbolic discounting on second-best
public policies used to guarantee the socially optimal allocation of forest resources
when markets fail. As I show in this chapter second-best policy tools should be
designed to account for the behavioural failure arising from time-inconsistent

preferences in that otherwise they may miss the policy target (Shogren, 2007).

I start presenting the model by Conrad (1997) that will serve as benchmark.
In this time-consistent framework, harvesting is irreversible, the value of the wood
harvested is known while future flows of amenity value are uncertain and follow a
geometric Brownian motion. Conrad (1997) solves the optimal stopping problem
in continuous time and provide the analytical solutions for the value function

and the critical level of amenity needed to sustain forest conservation. The main

8This is a standard problem that has been solved in a time-consistent framework using
option-pricing theory (Reed, 1993; Conrad, 1997)

9Technically their problem resembles to optimal timing for exercising an American call option
while in this paper the problem is equivalent to optimal timing for exercising an American put
option. An important difference is given by the dividend earned, in fact, when holding the
investment option the dividend paid is null while holding the harvesting/disinvestment option
a "dividend" represented by the flow of amenity value is paid.
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insight in this paper is represented by the impact of the option value on the

definition of the harvest timing.

I solve then the same problem but in a time-inconsistent framework. Here,
the decision-maker is represented by a sequence of infinite succeeding selves with
time-inconsistent preferences. Fach of them determines the optimal threshold
for the exercise of the harvest option according to her discount function and to
her belief about future selves behaviour. Each self is assumed sophisticated and
perfectly foresee that her time-preferences are going to change over time (Strotz,
1956; Pollak; 1968). I solve the problem on the basis of a result contained in
Di Corato (2007) where a similar problem is solved for a finite number of selves
by backward induction. The solution is represented by the limit to which the
critical threshold determined for a finite number of selves converges when the
number of selves tends to infinity and still incorporates the insight behind the
assumption of hyperbolic time preferences. It is in fact easy to show that the
critical threshold for the exercise of the option to harvest is higher than the one
for a time-consistent agent. The intuition behind this result is that the value
of keeping open the option to harvest is less worth for a time-inconsistent agent
in that at first impatience induces her to undervalue future payoffs and second
because the sub-optimality (from her time perspective) of future selves’ decisions
is anticipated. This means that an effect other than the first due to a preference
for current satisfaction is introduced by perfect foresight. Being sub-optimal
in their decisions, the current self must anticipate future selves and so a higher
threshold for the amenity value is fixed. A higher threshold in fact implies that in
expected terms harvesting occurs earlier. This is done at a cost that is represented
by giving up important amenity value flows but this cost is undervalued by our

time-inconsistent agent.
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The solution to the optimal stopping problem is derived as a steady state so-
lution. Interestingly the critical threshold is represented by a convex combination
of the thresholds that would be fixed by two time-consistent agents which differs
in the discount rate. The higher discount rate term captures the taste for the
present gratification and represents the short-run oriented view of the agent while
the other partially correcting the first stands for the long-run view and is derived
using a lower discount rate.

It follows that taking the Marshallian threshold of the time-consistent agent
as a benchmark the hyperbolic discounting agent seems to exercise the option to
harvest even if the expected net present value is negative but this is simply due
to not having redefined the benchmark for the higher subjective discount rate.

Finally, I move the analysis to public intervention studying Pigovian taxation
of wood revenues to correct market failures in the provision of ecosystem services.
Having proved that hyperbolic discounting induce premature harvesting I show
how the optimal taxation must be redesigned to internalize the behavioral failure
due to time inconsistency and hit the environmental policy target.

The chapter is organized as follows. In section 4.2, I present the basic model
basic and provide the solution to the standard time-consistent problem. In Section
4.3 the optimal timing of harvesting is studied under time-inconsistent preferences
and a discussion of the results is provided. Section 4.4 proposes the analysis
of regulatory intervention with the help of a numerical and graphical analysis.

Section 4.5 concludes.
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4.2 'The basic set-up

Consider a privately owned stand of old-growth forest where the net value of
stumpage timber, M, is known and constant. The old-growth forest generates
at time t a flow of amenity value arising from services such as flood control,
carbon sequestration, erosion control, wildlife habitat, biodiversity conservation,
recreation and tourism, option and existence values (Reed, 1993; Conrad, 1997).
Define by A = A(t) the rent that society is willing to pay for the provision of
such services.!® Assume that due to the uncertainty on the future evaluation of

amenity services A(t) is a stochastic process following geometric Brownian motion
dA(t) = pA(t)dt + o A(t)dz (4.1)

where 1 is the mean drift rate, o is the standard deviation rate and {z(¢)} is a

standard Wiener process.!!

Consider now that the owner!?

can either conserve or totally harvest the
forest. Assume the decision to harvest is irreversible.!® This is similar to having
an option: at each time-period one can exercise the option, harvest and get

the payoff M or keep it open, wait and get as a dividend the flow A(t). Since

harvesting is an irreversible action while preserving is not, there is an option value

10Considering that amenity services have generally public-good nature not all the value gen-
erated could accrue to the forest owner.

""Where the usual conditions, E [dz(t)] = 0 and E [dz(t)?] = dt are satisfied. The upward
drift draws the increasing consideration of society for the amenity services and the variance
parameter captures the uncertainty about their actual and future value (Reed, 1993; Conrad,
1997). Nevertheless, the drift could be negative if for example scientific progress in chemistry
makes less worth the genetic information provided through biodiversity conservation (Bulte et
al., 2002).

12From now on, referring to the private owner of the stand of forest I will use the term agent
and by using the term decision I will always refer to the decision to harvest or conserve.

13This seems plausible considering that depending on the location the
regeneration process could last from a century up to several millennia
(http://en.wikipedia.org/wiki/Old _growth forest).
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attached to the decision to preserve in that the latter action allows the decision
maker for waiting and updating information about the flow of amenity value. In
this framework, the question is when it would be optimal to exercise such option.
The answer lies in the solution of an optimal stopping problem in continuous

time.

4.2.1 Sketch of an agent with hyperbolic preferences

Assume that the agent is time-varying impatient, risk neutral and that she can-
not commit to follow any plan. Having a taste for present gratification our
agent overvalues current payoffs with respect to future ones. This present-biased
(O’Donoghue and Rabin, 1999) preferences have been originally modelled by Laib-
son (1996, 1997) as quasi-hyperbolic using a discrete-time functional form intro-
duced by Phelps and Pollak (1968) to study intergenerational time preferences.!*

In this framework, such formulation cannot be applied and thus, to model
hyperbolic preferences I will use the hyperbolic continuous-time discount function
proposed by Harris and Laibson (2004).

In the version presented by Grenadier and Wang (2006), each self n’s present
period lasts a random lenght of time and is equal to L,, = l,11 — [l,, where l,,, ;11
are respectively the birth date of self n and self n + 1.Each self takes decisions
only in the present period and doing it she keeps into account what future selves
may decide when they will be in charge. Future for self n lasts from [, ;1 to oo.
The birth of future selves is a Poisson process with intensity A € [0, 00). The self
n’s life, L,,, is then stochastic and distributed exponentially with parameter \.

Self n discounts exponentially with instantaneous discount rate p the present

14 Generalizations in continuous-time are presented in Barro (1999) and Luttmer and Mariotti
(2000).
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and future payoffs but she values the future payoffs less because of the additional

discount factor 0 < § < 1. Her discount function, D,(l,t), is given by

e Pt=D if te(l,, 1,
Da(l,t) = s b (4.2)

JePU=D if te [ln—i-la OO]

for t>1 and 1, <Il<l,

Each self n when in charge takes decisions discounting present and future accord-
ing to her own discount function D, (I, t).
As noted by Strotz (1956), changing time-preferences are time-inconsistent.

This can be easily verified comparing the per-period discount rate between the

1—de~ "

present and the future, ~5°5—,

with the per-period discount rate between any

l—e— P A l—e—? < 1—de "

<, < < the discount rate between two
e~ P e~ P de—P

two future periods
consecutive periods ¢t and ¢ + 1 increases as date ¢ comes close.

Time-inconsistency may have serious implications on the individual planning
because in the absence of any commitment device a decision taken by a previous
self and entailing a future payoff may be considered not optimal by a future self
and reconsidered.

In the continuous-time formulation of hyperbolic preferences, the degree of
time-inconsistency is driven by § and \.!° It increases as 6 — 0 and as A — oo

(Harris and Laibson, 2004). Finally, note that this functional form allows also for

the representation of standard time-consistent preferences (6 =1 or A = 0).

15The hazard rate of transition from the present to the future (Harris and Laibson, 2004).

80



4.2.2 Conserving or harvesting: time-consistent case

Let V(A) be the value function that the agent want to maximize'S. The Bellman

equation for her problem is

V(A) = max {M, Adt + E[V(A+dAt+ dt)]} (4.3)

1+ pdt

where p is the instantaneous discount rate. Expanding (4.3) by Ito’s lemma, in the
continuation region the value function, V(A), solves the following second-order

non-homogenous differential equation
1
502142\/"(14) + pAV'(A) — pV(A) = —A, for A > A* (4.4)

where A* is the critical amenity value or the point at which the agent is indifferent

between conserving and harvesting.

Assume'” p > p and solve (4.4) attaching a value-matching condition (4.5)

and a smooth-pasting condition (4.6) to guarantee optimality:!

V(AY) = M (4.5)
VI(A*) = 0 (4.6)
The critical amenity A* is
o= ni(p— ) (A7)
fi—1

16 The optimal stopping problem for a time-consistent agent has been solved in Conrad (1997)
and to save space the interested reader is referred to his paper for the details.

1"Note that if p < p it will be never optimal to harvest.

18Tt rules out arbitrary exercise of the option to harvest at a different point (Dixit, 1994).
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where (3, is the negative root of the characteristic equation'® o28(3—1) /24 u8—p.

The value accruing to the agent is

M AN A
V(A) = — +—— for A> A" 4.8

) 1—61(A*> p— i (48)
The first term on the RHS of (4.8) resembles the value of the option to harvest
and it goes to zero as A — oo. The second term is the expected value of never
harvesting and it is given by the discounted flow of amenity value A. As soon as

A < A* the option is exercised and V(A) = M.

4.3 Conserving or harvesting under time incon-
sistency

Assume that the agent has sophisticated belief?* (Strotz, 1956; Pollak; 1968).
Having perfect foresight she knows in advance that her preferences will change as
time rolls on and that she will wish to revise his original harvest plan according
to her own D, (l,¢). This leads a rational agent to take decisions over her lifes-
pan which accounts for the sub-optimality (from her time perspective) of future
selves’ strategies. Actually, a sophisticated agent could choose a "strategy of pre-
commitment" which consists in committing herself to a certain plan of action and
never revise the critical threshold originally fixed for the exercise of the option to
harvest (Strotz, 1956). This may be possible if an effective commitment device
exists but this has been excluded by assumption in order to study the more in-

teresting and real case of an agent not able to tie her hands. Let then proceed to

2 o2 2
20In a different framework, the solution to the optimal stopping problem under naive belief
is provided in Di Corato (2007).

YThe solution is B = (3 — &) — /(3 — %)2+ 2 <0
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the next paragraph and define the optimal strategy for this agent.

4.3.1 Strategies under sophistication

In Di Corato (2007), the optimal harvest time trigger is determined solving for
a finite number of hyperbolic selves by backward induction. In this paper it
is proved that the critical threshold fixed for harvesting by each self increases
monotonically with the number of selves ahead. Hence, one may conjecture that
the critical threshold for the first self in the sequence has a limit to which converges
when the number of selves ahead tends to infinity. By assuming the existence of
an infinite number of selves it follows that the optimization problem that each
self must solve should be the same and that the position in the sequence, n, does
not matter. Every self is going to play the same strategy in this intra-personal
game and its outcome will be determined imposing stationarity to the solution of

the optimization problem.

Denote by Ag the steady state solution.Now, consider the current self and
let A represent her conjecture on the future selves’ timing trigger. Assume that
current self’s optimal trigger, H(A), depends on her conjecture.?! Let V5(A; A)
and V5 (A; fl) be respectively current self’s value function and continuation value
function. The continuation value function is the current self’s valuation of the
decisions that could be taken once the succeeding self is born. According to (4.2)
the current self has present-biased preferences and the payoff from future selves’

decisions accrues to her only for ¢ times its value.

Given that all future selves are supposed to exercise the option to harvest at

2INote that if H(A) = A then Ag = A.
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the same A then V°(A4; A) is given by

p—i

B1 -
5[M (4) +A] for A> A
oM for A<A

The Bellman equation for the current self is given by

V(A A) = mg,x{M, Adt +eME [e*”dtVS(AerA; 21)] +  (4.10)

(1= ™M) B [ VS (A +da; A)| }

The current self defines her optimal exercise trigger, Ag, maximizing her value
function. V95(A; A) solves in the continuation region (A > A) the following

differential equation

1, 282‘/5(143/1) GVS(A;A) S(A- A
50 A A pA A pV*=(A; A)
_ [A +A (vf(A; A) - vS(A;A))] for A> A (4.11)

where V5(A; A) is defined by (4.9).
At the critical amenity value, Ag, the value-matching and smooth-pasting

conditions require

VIS(H(A);A) = M (4.12)
OVS(H(A); A)
o = 0 (4.13)
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Plugging (4.9) into (4.11) and attaching the two boundary conditions one can

solve the differential equation and find

-\ By
no B . By — By H(A) pP— K
H4)= |:B2 -1 5(1 —B1) (B2 — 1) ( > ] M ) (4.14)

VS(H(A); A) = : ﬁf@ 1-6 (%)Bll (%yz
+15—Mﬁl (%)Bl + A (#) for A>A (4.15)

Now, recalling that in the steady-state equilibrium H(Ag) = Ag and substituting

into H(A) and V5(A; A) it follows that

_ (1=6)(p—n) By B
(e Tt el et AR SC] EREL
S(p+A—n) 5y B
TT=0(—m+olprA—p) [ﬁl—lM(p M)}

= (1—0) A + A"

;

Ba
A A
) [11\452 ()" + pﬂu] +
vS(A4) =< 15 L<A>B1+_A for A>A (4.17)
-6, \ 4s o) 0 s
\ M for A< Ag
S(p+A—p)

< 1, B, is the negative root of the equation®?

where 0 = 1=0)(0—) +3(ptr—p)

o?B(B—1)/2+uB — (p+A) and A = 22 M (p+ A — p).

22The solution is B, = (3 — 4%) — \/(% — 424 LZJQ)‘) <0
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Proposition 4.1 Under sophistication and for any 6 such that 0 < 6 < 1 the

agent exercises the option to harvest at Ag > A*.

The critical threshold, Ag, is a convex combination of two time-consistent
critical thresholds, A*and A**, respectively determined for the discount rates
p and p + A. As expected 0As/05 < 0 and 0Ags/ON > 0. This means that the
sophisticated critical threshold decreases with the degree of time-inconsistency.
Both 6 and A\ are important to rule the intrapersonal conflict between different
levels of patience in discounting and consequently fixing the critical threshold
for the exercise of the cutting option. Note that Ag is always higher than A*
0<o<l,p<1, A¥ > A*).

The present value of the payoff resulting from future selves’ decisions is lower
than that one for a time-consistent agent and consequently there is a lower in-
centive for keeping open the option to harvest and waiting for more information.

The value function in (4.17) is a weighted sum of two time-consistent value
functions respectively weighted by 1 — § and §.2* Both terms measures the value
of the option to wait until As has been hit and the expected present value of
the flow of amenity value if Ag is never touched but using two different discount
rates, respectively p + A and p.

Note that if A > 0 and 6 — 0 then Ag — A* = (Bfil)M(p—i-/\—,u) > A

The extreme impatience leads the agent to practically burn value. In this extreme
case the time trigger can be determined using the standard real option analysis
with a time-consistent agent discounting the future at a rate adjusted by A. The
higher discount rate internalizes the fear of a "catastrophic" future self arrival

that would result in this case as 6 — 0 in the loss of any kind of revenue.

23In Grenadier and Wang (2007), a similar result is derived solving an investment timing
problem.
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These results are in line with findings in Harris and Laibson* (2004) and
in particular with the second interpretation they give to the discount function
drawn by (4.2). They consider the birth of the succeeding self as an event likely
to happen every instant and use for each self a deterministic discount function,
D, (t), simply equal to the expected value of the stochastic discount function in

(4.2). For each self at the birth:

D,(t) = e e M+ (1—eM)se

= (1 —0)e IV 4 sert

The discount function, D,,(t), is a convex combination of two exponential discount
functions with two different discount rates, respectively p + A and p, and it is

straightforward to relate this result with (4.16) and (4.17).

4.3.2 Conservation or harvest: a discussion on timing

The trigger amenity value A* is the level of benefits from conservation at which a
time-consistent agent will find it profitable to exercise the option to harvest. Note
that A* is lower than M (p — ) which represents a myopic flow-equivalent cost
of preservation. The option value multiple 3,/ (5; — 1) lowers the critical trigger
because the agent wants to take into account the irreversibility of harvesting and
the uncertainty. This means that waiting and gathering more information on
the randomly fluctuating amenity value A before harvesting could be a sensible
strategy. Furthermore, as 0A*/Jo < 0,an increase in uncertainty over future

level of A implies an increase in the wedge between A* and M (p — u) and as a

24 Harris and Laibson (2004) deals with intertemporal consumption and show that even if
observationally not equivalent the dynamically-inconsistent optimization problem has the same
value function of a related dynamically-consistent optimization problem.
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consequence an additional increase in the waiting time before harvesting.

Proposition 4.1 states that time-inconsistent preferences lead to premature
harvesting. Even if under sophisticated belief the effect is mitigated by the agent
internalizing future sub-optimality, premature harvesting occurs under both the
assumptions on self-awareness. Note that as 0Ag/dd < 0,0As/0X > 0, an in-
crease in the strength of time-inconsistency induces an increase in the wedge
between Ag and A* with a further decrease in waiting time before harvesting.

Taking A* as benchmark for decision making it can also be proved Ag >
M (p — ) > A*. In other words, the agent may seem to exercise the option to
harvest even if the expected net present value is negative.?’ This is simply due
to the definition of the Marshallian trigger using (p — i) instead of the higher
adjusted rate (p — ) /7.

Given that 0Ag/Jo < 0 then also with time-inconsistent preferences an in-
crease in uncertainty over future level of A implies lower critical thresholds and

as a consequence an increase in the waiting time before harvesting.

4.4 Regulatory intervention

4.4.1 Passage time

The amenity value flow A randomly fluctuates following the process in (4.1).
Above, different optimal stopping problems have been solved. The solutions
provide timing thresholds at which it is optimal to exercise the option to harvest.
Denote by A(t) = A a generic time trigger. The process (4.1) stops as soon as

the absorbing barrier A has been hit. The probability of ever reaching the barrier

25 _ 5 _ (B1=1)[(p—p)+2B5]
For § =6 = A5 (—B2) (B —F) (p A=)

the option value is null.
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A starting from the current Ay > A s given by:

1 if pu<o?/2

i <AO7A> ) (%)(2“_02)/02 if > o0%/2
0

(4.18)
Note that when pu < ¢2/2 there is a drift which does not bring away A from
the barrier and the probability of attaining A is unity. Instead, when y > 02/2
the upward drift moves A away from the barrier and reduces the probability of
absorption to P (Ao, A) < 1. In other words, there is a non-zero probability of
never hitting the barrier.

Given that A follows a stochastic process then also the option exercise time
T = inf (t >0 At) = fl) is a stochastic variable. If the process (4.1) starts at

Ap then the expected time at which the barrier is reached is:

BT =4 opzot/2 (4.19)

21202 In (AA()) it pu<o?/2

Notice that as expected when the drift moves A away from the

barrier’® E(T) = oo (Dixit, 1993).

4.4.2 Time for regulation

In the management of forest resources, decision-making relies not only on market
rules. Market institutions work efficiently when the goods and services provided
by forests are private but they fail when these have public nature. Given that in
some cases the expected private timing of harvesting an old-growth forest may
not be socially acceptable and regulatory measures are needed to fix a nonmarket

allocative rule correcting market failures.

26This happens even when u = 02/2. See for a deeper analysis Cox and Miller (1965).
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In forest economics, the design of policy intervention has not taken into ac-
count behavioural anomalies such as hyperbolic discounting. Above it has been
shown that hyperbolic discounting can have serious implications on the option
exercise timing and can induce premature harvesting. When policy measures are
designed to cope with market failures in forestry, ignoring such behavioural failure

could potentially lead to miss the policy target.

Suppose that the policy maker has identified the date T as socially optimal
for cutting the forest. Also assume that the policy tool used to drive the agents
to the exercise of the cutting option at this date is a Pigovian tax on the wood
revenues. A tax on the revenues makes less desirable to harvest and lowers the

amenity critical threshold at which the forest owner exercises the cutting option.

Authorities must evaluate the opportunity of regulation and in order to make
it the analysis provided in the previous subsection could be useful. Starting from
the current Ag > Ag and if u > 0?/2, according to (4.18) and (4.19) it is unlikely
that the barrier A, may ever be met. In this case, policy intervention may not
be required. Instead, if u < 02/2 then P (A, As) = 1 and regulatory measures

could be needed to move toward the socially optimal target.

Denote by T the private harvesting timing. Given that A follows a stochastic
process then also T becomes a stochastic variable and using (4.19) it is possible

to calculate F (TS ) .

Suppose that the regulator use this rule to fix the tax:

E(T%)-T=m (4.20)

where m > 0 is a constant parameter which represents a safety margin chosen by

the regulator to define the interval into which private harvest should occur (Dosi
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and Moretto, 1996, 1997). The parameter m represents a safety margin chosen by
the regulator when designing the environmental policy. The tax, I', that should

be levied on the wood revenue is then computed using (4.7), (4.16) and (4.19).
Proposition 4.2 Under the policy rule E (TS) — T =m, the optimal tax is

Ag - (% *M) (m+T)

¥=1-
9A 1+ (1—0) A"

(4.21)

IftE (T S ) > T + m, the regulator considers the expected private harvesting time
socially acceptable and no taxes will be levied. Notice that, as 0I'/0§ < 0, a
decrease in § leads to an increase in the tax rate, I'°, that should be charged
on the wood revenues. Ignoring the behavioural failure due to people exhibiting
changing time preferences means that the tax rate is calculated assuming § = 1.
Actually, the tax rate turns out to be too low and being the critical threshold A,
too high, it leads the policy to miss the target, namely to £ (TS) < T +m (see

C.2 for the procedure and the proof).

4.4.3 Numerical and graphical analysis

Some numerical solutions represented by graphs will help to illustrate the results
provided in the previous sections. For the parameters we share I will use the
values used in the numerical analysis provided in Conrad (1997), while for the
others I will choose reasonable values. Let M = $550 x 10%, p = 0.06, = 0.05,
o =0.33, Ay =5, T = 150 and m = 10. Note that the value set for & = 0.33 is
chosen to analyse cases where it is actually likely that harvest occurs (u < 02/2).
Finally, 6 and A\ are taken from the sets 0 < <1 and 0 < A < 0.14.

Given the values hypothesized the expected private harvest timing is repre-

sented in Figure 4.1. As one can see in expected terms all private forest owner
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hyperbolic types miss the policy target (T = 150). Moreover, earlier harvest
occurs as the magnitude of time-inconsistency increases. Note that for A (¢)
starting at Ag = 5 the expected harvest timing for a time consistent agent is
about T = 150 while it decreases rapidly and is dramatically equal to 0 for some

time inconsistent forest owners.

Now, let consider the government intervention through pigovian taxation on
wood revenues. Taxes are fixed according to the rule in (20). Figure 4.3 shows the
level of taxation required to meet the policy target £ (TS ) = T+m = 160. Figure
4.2 and figure 4.4 shows instead respectively the impact of taxation on expected
harvest timing when the hyperbolic nature of the agent is not accounted and
the error made when setting the tax. Note that only the time consistent agent
(0 = 1) meets the policy target and that for certain hyperbolic types the impact

of taxation may be even null.
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4.5 Conclusion

This chapter has illustrated the implications of the assumption of hyperbolic time
preferences in a specific context. According to previous contributions on optimal
harvest timing, ongoing uncertainty induces agents to defer harvesting in order
to keep open the option to harvest and to wait for collecting new information on
the revenues from conservation. In this chapter I show that the effect due to the
presence of option value may instead be significantly lowered if hyperbolic time
preferences are assumed. Premature harvesting may occur in that the agent has
incentive to rush in order to anticipate future selves’ time-inconsistent and sub-
optimal behaviour. In some extreme cases and if the long-run discount rate p is
used as a benchmark, harvest with negative expected NPV may occur. The effects
on the optimal rule of changes in uncertainty and in other parameters have been
discussed. In this framework, I show and discuss how the regulator may intervene
to correct market failures in presence of hyperbolic agents. As illustrated also
with the help of a numerical and graphical analysis the regulator must adjust the
optimal pigovian tax to account for the behavioural failure introduced by such
time preferences. This is crucial to avoid that the environmental policy target is

dramatically missed.
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Chapter 5

Optimal profit sharing under the

risk of expropriation

5.1 Introduction

Natural resources such as oil, natural gas and minerals represent a crucial endow-
ment for many countries in that the profits deriving from the exploitation may
fund their economic growth and welfare.! Developing countries in particular are
often rich in natural resources but must often deal with the limited availability of
funds to be destined to the exploration of resources fields and to the infrastruc-
tures required to extract such resources. Foreign direct investment (hereafter,
FDI) may allow to overcome these difficulties in that multinational firms (here-
after, MNF) may be willing to bear the initial costs and extract the resource if
an adequate return on their investment is paid.

Unfortunately, matching the economic interests of both parties is challenging

and in particular once the investment in the project has been made undertaken.

1See Brunnschweiler and Bulte (2008) for an empirical analysis and a critical discussion of
the so-called "resource curse".
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In fact, being the investment for the exploitation of natural resources high spe-
cific and totally sunk in nature, the HC may be tempted to exercise the option
to expropriate the MNF investment and run the entreprise on its own (Guasch
et al., 2003; Engel and Fischer, 2008). Expropriation is an extreme but still com-
mon event in developing and even developed countries.?> When profits are high
and the government is under populist pressures such opportunistic behaviour be-
comes particularly likely. Moreover, due to the weakness of the legal framework
regulating the agreements between a sovereign country and a foreign firm and to
the scarce weight of the threat of a fall of future FDI, the temptation is hard to
resist in that benefits may largely cover the costs.

As long as there is a light penalty or no penalty at all for the violation of
the agreement’s terms it will be hard to have an HC credibly committed to their
respect (Schnitzer, 1999). Hence, it follows that in addition to uncertainty about
market conditions the MNF must account also for the possibility of expropriation
as a source of uncertainty on the return on investment.

In order to meet the economic interests of both parties and reduce the risk
of expropriation profit sharing agreements have been often proposed (Engel and
Fischer, 2008). Through these arrangements a share of the profits from resources
extraction is offered by the host country (hereafter, HC) to the MNF as a return
on the investment made.

The aim of this chapter is to present a model of cooperative bargaining where
uncertainty on profit level and risk of expropriation are considered and to in-
vestigate the impact they could have on the possibility of signing a mutually

convenient agreement.

?Data on expropriations have been collected and presented in several studies. See Tomz and
Wright (2007) for expropriations from 1900 to 1959, Kobrin (1984) from 1960 to 1979, Minor
(1994) from 1980 to 1992 and finally Hajzler (2007) which updates available data to 2006.
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This analysis is developed in a real options framework in that both the ini-
tial investment and the expropriation are economic decisions characterized by
uncertainty in the pay-offs and irreversibility. In particular, as one can easily
see both players, the MNF and the HC, can be viewed as respectively holding an
American call option on investment and expropriation® (Dixit and Pindyck, 1994;
Mahajan, 1990).

Due to uncertainty about market conditions driven by a geometric Brown-
ian motion, waiting before exercising both options is valuable in that additional
information on profit future realizations can be collected.

Both parties have different economic targets but share the interest in reaching
an agreement that makes them better off with respect to the alternative scenario
where the extractive project is not undertaken. Before the extraction starts then
mutual interest induces them to bargain on a sharing rule which maximizes the
joint venture total rents. This situation resemble to a cooperative game which
outcome can be determined applying the Nash Bargaining Solution concept.

The merger of the cooperative bargaining and real options frameworks pro-
posed in this chapter is the first attempt to shed light on the use of profit sharing
to shape agreements for the exploitation of natural resources under the risk of
expropriation. Up to my knowledge only few contributions have approached the
expropriation applying option pricing methods and differently from this chapter
they were only focused on pricing its risk (Mahajan, 1990; Clark, 1997, 2003).

In this set-up, I present the conditions under which the bargaining may suc-
ceed and leads the two parties to attain a cooperative agreement which maximizes
the joint venture value.

An interesting finding is given by the invariance of the investment time trigger.

3The only difference is the sort of dividend paid to the HC if the option to expropriate is
not exercised and that is represented by the HC’s share of profits fixed through the bargaining.
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With or without expropriation risk the MNF invests at the same level of the
state variable. The impact of the threat of expropriation is instead evident in
the definition of the set of feasible levels of the distributive parameter. I show in
fact that this set shrinks as expropriation risk increases leading at the extreme to
the bargaining failure. Finally, under the risk of expropriation I prove that the
share accruing to the MNF must be higher than without. This makes economic
sense and two possible explanations can justify this result. On the one hand, this
wedge can be simply seen as the way the MNF is compensated for facing this
additional risk, while on the other hand the wedge may be viewed as balancing
for the fact that the HC’s participation to the venture is compensated not only
through the share on profits but also indirectly through the option to expropriate
that the HC gets as soon as the investment is undertaken.

The remainder of the chapter is organized as follows. In section 5.2 the basic
ingredients to set up the model are presented. In section 5.3 I determine the
efficient bargaining set on which the cooperative game is played. In section 5.4
the cooperative game outcome is derived and the agreement between the parties

is characterized and deeply discussed. Section 5.5 finally concludes.
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5.2 The basic set-up

Consider a project for the extraction of a natural resource in the HC. Assume that
the extraction of such resource is lucrative and generates a flow of non-negative*
profits m; which randomly fluctuates over time following a geometric Brownian

motion with instantaneuos growth rate a > 0 and instantaneous volatility o > 0:
drmy = amdt + omydZ;, w9 =17 (5.1)

where {Z,} is a standard Wiener process where the conditions, F [dZ;] = 0 and
E[dZ?] = dt are satisfied. The flow of profits is modelled in a simple way but at
no cost in that one may interpret 7, as a reduced form of a more complex model
7 = 7 (v;) where v is a vector representing the several variables (market price,
technology, taxes, market shocks, etc.) which may affect such flow in the reality
(Moretto and Valbonesi, 2007).

Denote by I the sunk investment that the MNF is willing to make to explore
the field and set up the required extractive infrastructure. As return on such
investment the MNF is entitled to a share of the profits from resources extraction.

For simplicity assume that the venture that the two parties may agree to
jointly run has a term sufficiently long that can be approximated by infinity. If
the bargaining on profit sharing is feasible the two parties agree to divide each
unit of profit in two parts, respectively 6 to the MNF and 1 — 6 to the HC where
0<0<1.

The MNF holds then an option to invest in a project paying if undertaken
the flow of profits characterized above. The MNF faces uncertainty about market

conditions and may gain by waiting for information relative to profit realization.

4Note that m; = 0 is an absorbing barrier.
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Market is not the only source of profit uncertainty for the MNF in that it has
to take into account also the risk of being expropriated by HC. Once the specific
investiment I has been undertaken the HC has in fact the opportunity of expro-
priating MNF and run the venture on its own . But expropriation does not come
at no cost and then let E represent the sunk cost attached to the expropriation
and assume for simplicity that it is known and constant. This cost may include
for instance the compensation that following a legal recourse by the MNF an in-
ternational court may impose to the HC,? the cost associated to the fall of future
FDI due to the loss of reputation, the cost related to the lack of the technological
and managerial competences to run the firm alone. Differently from previous
contributions which applies option theory to evaluate the option to expropriate
a dividend represented by the profit share 1 — 6 is paid if the option is not killed.
Finally, given uncertainty about market conditions drawn by (5.1) also for the
HC waiting to collect information on profit flow is valuable.

Expropriation may in fact results costly if it is very likely that after a legal
recourse by the MNF an international arbitration is going to set an high com-
pensation payment. Other considerations may include the lack of the necessary
expertise to run the firm technology or the cost that the loss of reputation after

an expropriation could have in terms of future foreign investments in the country.

5.2.1 The HC’s and MNF’s objective functions

Being the MNF a foreign firm the HC cares only for the rents accruing to it
and has as unique objective their maximization (Engel and Fischer, 2008). Such

rents are represented by the share of profits to which it is entitled as long as the

5 Also the cost opportunity of the funds destined to pay the compensation should be taken
into account.
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venture is jointly run and by the entire profit once expropriation has occurred.

The expected present value of such profits stream is represented by

H (m,0) = Ele""] - G (,0) (5.2)

T \P o =
_ <_F> E / e P (1 — 0) mdt +/ e Pimdt | Ty =m
™ 0 TH

where p (> ) is the discount rate and T# = inf(t > 0 | 7y = 7y) and TF

= inf(t > 0 | m; = mp) are respectively the stochastic expropriation time and the
stochastic investment time. The HC’s value is represented by the value function
G (m,0) discounted by the stochastic discount factor (WLF)B and it is a function of
the distributive parameter 0.°

On the other side, the MNF maximizes instead the expected present value of

the share of profits, #, that is given by

F(m,0)=F

TH
/ e POmdt | T = 77] (5.3)

0

The economic convenience of the investment I is assessed by the MNF consistently
with the threat of expropriation which presence is represented by the upper limit
of the integral in (5.3). So far I have implicitly assumed that T > T (rp < 7y)
because as it will become clear later it is the only case which makes economic

sense.

5.2.2 The bargaining

The MNF and the HC have different economic interest as shown by their objective

function but share the interest of reaching an agreement on the distribution of

6See Dixit and Pindyck (1994, p. 315) for the computation of the expected values.
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the rents deriving from the resource extraction. The two parties must sign a
binding agreement before the venture starts and determine the sharing rule, 6™,
which maximizes the size of the "pie" they are going to share. This bargaining
game can be solved by using the Nash Bargaining solution concept (Nash, 1950;
Harsany, 1977).

The basic situation behind a Nash bargaining is very simple. Two agents may
share a pie of size one and each of them simultaneuosly and without knowing the
other agent’s proposal presents to a referee her request. If the two requests are
feasible, an agreement is reached and the pie is divided accordingly. Otherwise,
the game ends and the two agents obtain the disagreement pay-off. Note that to
two requests are feasible if both parties have a positive share (0 < 0" < 1) and
their sum is equal to 1. This implies that only internal solutions are considered.

The HC and MNF have the same information on the future dynamics of 7; and
are averse to the risk of internal conflict. Hence, both parties can be represented
by a concave Von Neumann-Morgenstern functions W (H) and U (F') respectively
defined on the HC’s and MNF’s expected share of rents. If an agreement cannot
be reached, the resource is not extracted and both parties earn the disagreement
utility levels w = 0 and v = 0. The bargaining failure is the worst scenario that
may occur in that both parties could get more cooperating. The Nash bargaining

solution can be determined maximizing the following joint objective function’

V =log[W (H) — w] + log [U (F) — u] (5.4)

"See Breccia and Salgado-Banda (2005) and Moretto and Rossini (1995,1996) for bargaining
games over a Nash product driven by a geometric Brownian motion.
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5.3 Efficient bargaining set under uncertainty
and irreversibility

I define in this section the set where the two parties play the efficient bargaining
through which they will attempt to set the mutually agreed distribution of the
rent from the resource extraction. As I will show in the next sections the defi-
nition of the set is affected by both the timing of investment and the timing of

expropriation.

5.3.1 The host country

The HC’s problem is given by the maximization of (5.2) with respect to T%.
This is a stochastic dynamic programming problem which solution can be deter-
mined applying the standard option pricing analysis® (Dixit and Pindyck, 1994).
Being T determined by the MNF it enters into the HC’s problem as an exoge-
nously given parameter. Hence, suppose for the moment that HC is assessing the
proceedings just a while after the MNF has undertaken the investment.

Let Vi (m,0) represent the expected present value of the stream of profits

gained if the option to expropriate is never exercised. Such function is given by

Vi (7.0) = E U:o e (1 — ) mydt | 7 — W} (5.5)
= FE [/:o e~ (Pmt (1 —9) wdt}
= -0

where p > « is the discount rate’ (Harrison, 1985).

8 As discussed in the introduction the option to expropriate resembles to an American call
option.
9Note that if p < a it would be never optimal for the MNF to invest and any profit would
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Let Op (7, 0) represent the value of such option and denote by 7y the critical
threshold at which it is optimal to kill the option. In the region m < 7y the
option is unexercised and by applying Ito’s lemma its expected capital gain is
given by

B[Oy (r,0)] = %ﬁﬁo},m,ewmo}[ (x.0)| dt (5.6)

In equilibrium!® the expected capital gain must be equal to the normal return,

pOp (7, 0)dt, it follows then

1 " !
502712011, (m,0) + arOy (7,0) — pOy (7,0) =0 (5.7)

This differential equation has solution
OH (77', 0) = AHT('B (58)

where 3 is the positive root of the quadratic equation'* o23(8 — 1)/2 + a3 — p.
As standard in the solution to (5.7) the term with the negative root is null to
consider that when m — 0 the option is valueless.

Now, one can jointly determine the constant Ay and 7wy by solving for the

value-mathing and smooth-pasting'? conditions

On (t,0) = 011 F (5.9)

Oy (1g,0) = (5.10)

be shared.

10Tf a market for trading options to expropriate existed, in equilibrium the return from keeping
the option must be equal to what the holder would receive selling the option and putting the
proceeds in the bank at rate p.

UThe solution is 8= (3 — %)+ /(3 — £)2+ 2%

21t rules out the arbitrary exercise of the option to expropriate at a different point (Dixit,
1993).
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The RHS of (5.9) represents the net benefit and cost of the expropriation. Note

that (5.9) is equivalent to

Oy (my1,0) = (p”_HM — (Vi (7u,6) + E)

with the first term representing the expected present value of the entire flow of
profits and the second term standing for the the cost associated to the expro-
priation. The cost is given by the sum of the expected present value at mg of
the share, 1 — 6, of the joint-venture future profits which are implicitly given up

expropriating and of the expropriation £.

Attaching (5.9) and (5.10) to (5.8) and solving for 7y and Ag yields

_ (p—a)
R v E (5.11)

=
A = [Q(p

1
TH

) E} T (5.12)

Finally, plugging (5.12) into (5.8) and adding (5.5) gives

B
9”—H—E] (i> 4 0=0 form < my
G (m,0) = [ (o=e) mH (o=e) (5.13)
ﬁ —F form>mngy

In the first line equation, the first term represents the value of the option to
expropriate while the second stands for the rents gained by the HC if the option
is never exercised. On the second line instead the discounted net pay-off accruing

to the HC once expropriation has occurred.

Note that 7 is decreasing in #. This implies that as § — 1, the expropriation
becomes in expected terms more likely. This result simply confirms the reducing

effect that profit sharing agreements should have on the risk of expropriation.
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5.3.2 The multinational firm

The MNF maximizes (5.3) with respect to 7" and takes TH as given. Also in
this case the underlying stochastic dynamic programming problem can be solved
applying the option pricing analysis.!?

Let Vg (m,0) represent the expected present value of the stream of profits

gained by the HC

TH
Ve (m,0) = E / e POmdt | mp = W] (5.14)
0

TH
= F / 6_(p_a)t97rdt]
0
9 ()
= ™ —TH e
(p— 04) TH

From (5.14) follows that the MNF is accounting for the existence of the threshold

7y at which if reached the flow represented by its share of profits will stop.'*
Now, let F'(m,0) represent the value of the option to invest and 7 be the
critical threshold at which it is optimal to invest. Applying Ito’s lemma to F (7, 6)
such option has in the continuation region, 7 < 7, an expected capital gain given
by
EF (r,6)) = | 30*wF" (n,60) + onF (r,0)| di (5.15)

By the asset market equilibrium condition the expected capital gain must be

equal to the normal return pF (, 0) dt and the following relationship must hold

%027T2FN (7,0) + anF (7,0) — pF (7,0) =0 (5.16)

13Technically the option to invest and the option to expropriate are similar in that they both
resemble to an American call option.

14This means that at least from the MNF perspective the threshold 7y is an absorbing barrier
for (5.1). The other is given but for both parties by 7 = 0.
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The solution to this differential equation is again given by

F(rm,0) = Apr? (5.17)

As above and for the same reasons the term with the negative root is dropped
out.
Appending to (5.16) the value-mathing and smooth-pasting conditions respec-

tively requiring

F(np,0) = Vp(m,60)—1 (5.18)
0 [ 7\’
D _”F‘”H<E)]‘I
F'(rp,0) = Vi(r,0) (5.19)

and solving the system

yields

_ (p— )
T = —6 1 0 I

Ap = { f&) le 7y <:—2)B] — ]} g’ (5.21)

Note mp < my and that the threshold for the exercise of the option does not

(5.20)

B
(p
take into account the risk of expropriation. This can be easily seen by letting

my — oo and solving the MNF’s problem. The threshold would be the same.
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This represents an interesting result meaning that the timing of the investment is
not affected by the presence of expropriation risk. It does not come as a surprise
in that it follows from the dynamic programming principle of optimality applied
to solve the problem. If at ¢ = 0 the MNF fixes mr as the optimal time trigger
for the investment then the same trigger should be optimal for every t > 0,
independently on any possible event occuring after m5.!°

Note also that 7 is decreasing in . The higher the share the earlier the
investment occurs. This makes sense considering that the joint venture time
horizon is restricted by my which is decreasing in 6 as well. Being in fact the
expropriation more likey for high 6, the MNF rushes to have sufficient time to

benefit from the joint venture before being expropriated.

Substituting (5.21) into (5.17) gives

( 0 TF s T s
=] 7TF_7TH<E> -1 (ﬁ) for m < 7p

B
F(m0) = 0 |:7T—7TH <i> ]—] for mp < 7w <7y (5.22)

(p—a) TH

\ -1 form>my

This function represents the expected present value of the net payoff accruing to
the firm if the project is undertaken. The MNF is aware that investing is implicitly
giving an option to expropriate to the HC and internalizes the risk of this event in
the evaluation of the investment opportunity through the term 7y (:—Z)B . Note
in fact that 7y <:—Z>ﬁ =Ty - E[e*pTH| 7y = 7] which represents the amount of
rents expropriated by the HC discounted for the random time period starting at
T and ending at T .16

Finally, from (5.22) follows that 7p < 7y is the only case to matter in our

15See Moretto and Valbonesi (2007) and chapters 8 and 9 in Dixit and Pindyck (1994) for
similar results.
16See again Dixit and Pindyck (1994, p. 315) for further details.
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analysis in that for m7p > 7y the investment would be expropriated as soon as it
is undertaken and would result in a loss equal to —/ . This in turn implies that

only the situations where £ > I should be considered.

5.4 Nash bargaining and cooperative equilibrium

The bargaining on the distributive parameter § must occur before the resource
extraction starts (7 < mp < mpg). In this region the MNF’s and the HC’s value

function are respectively given by (5.22) and (5.2). Provided that F(m, 6) >

7

0 must be positive for the bargaining to make economic sense,'” one can easily

dF(m,0)
dm

and %, are positive. This implies that

note that both derivatives,
the bargaining must occur just a "while" before the critical threshold for the
investment (7r) has been hit. It follows that the objective function (5.4) to be

maximized should be evaluated at 7p.

5.4.1 Cooperative equilibrium

Now, denote respectively by W (H) = H'™? and U (F) = F? the HC’s and MNF’s
utility functions where 0 < p < 1 and 0 < ¢ < 1 represent the respective degree
of relative risk aversion and let the two parties play the cooperative game at T'F.
The equilibrium agreement will be represented by the level of #* which maximizes
the objective function in (5.4).

Recalling that the proceedings are evaluated at mp, that W = u = 0 and
differentiating (5.4) with respect to 6 the f.o.c. of the maximization problem is

given by

l—p dH (7p,0%) N q dF (mp,0")

= 2
T 0 do Flrp 0 df 0 (5:23)

17 This holds if 8 (£)' 7 < 1.
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Given that 7p/my = E/I and rearranging (5.23) the relation that must hold in

order to have a feasible agreement in equilibrium is given by

= 5.24)
1-p8 N 1-8 n (
1=8(5) 5105 (%)
where 1 = %.
I note that for the condition in (5.24) to hold
-1
8- (%)

Being > 1, E > I it follows that there are values of §* which can support a
cooperative outcome in the feasible set 0 < #* < 1. Moreover, as £ — oo, the
feasible region enlarges and at the limit has the following lower bound

-1

A .
> (5.26)

where 60 is the distributive parameter defined if there is no expropriation risk
or expropriation is extremely unlikely (75 — oo). This implies that as long as
the expropriation is perceived as a sensible threat the region which sustains a
cooperative outcome is smaller and this makes more difficult to attain a mutually

convenient agreement.

5.4.2 Some analytical results

In this section I derive and discuss some results which characterizes the properties
of the cooperative agreement. The magnitude of E it is not the only factor

affecting the outcome of the bargaining in that the extent of the feasible region
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is influenced through (5 also by o and o.

For simplicity, in the following I assume
E=~I (5.27)

where v > 1. This is an useful and reasonable assumption that relating the cost
of expropriation to the scale of the investment expropriated allows to discuss the
implications that the magnitude of the penalty'® may have on the HC’s oppor-
tunistic behaviour. The parameter v can also be interpreted as a measure of HC’s
respect of property and contract law. The higher is « the higher is time trigger

at which the HC exercises the option to expropriate.

Under no risk of expropriation
If v — oo, myg — oo in that the expropriation is too costly for the HC. In this

case the region where feasible 0™ can be set is given by

1- % <0 <1 (5.28)

Plugging (5.27) into (5.24) and solving for 6

pr=1--—1_ ~1_

1

Equation (5.29) subject to (5.28) can be used to draw and discuss the outcome

of the cooperative game for different o and ¢. In particular

(i) as o — o0, f — 1 and mp — oo. In this case even if the threat of ex-

18Being out of the focus of this paper it is not important to directly relate such penalty to
an international court or to the market for foreign direct investment.
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propriation is practically extinguished the joint extractive project is never
undertaken because of uncertainty about market conditions which makes

always optimal for the MNF to wait.

(ii) as 0 — 0, if @ > 0 then 8 — p/a and 7p — (£) I and

This result implies that when the uncertainty about market conditions falls
the cooperative sharing rule is shaped by the drift, «, and the discount rate,

p, and adjusted for the respective relative risk adversions.

(iii) as 0 — 0, if @ = 0 then § — oo and mp — (£5%) I and

9** — 1

In this scenario the feasible region drawn by (5.28) collapses and the bar-
gaining fails. Note that for this set of parameters both value functions
become linear. This means that to be maximised extreme ¢ must be chosen
(1 or 0). This makes the two parties’ requests’ not conciliable and leads to

the bargaining failure.
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Under the risk of expropriation

Let turn now to the situations where the risk of expropriation is sensible. The

feasible region for 6* is given by

1— A7

S e

0" <1 (5.30)

Instead, plugging (5.27) into (5.24) and solving for 6" yields

11—y (1= By F) =7
B=Pn(l—pyF)+1 -0

1— A7

0" =1 _—5—717’3

> 1

(5.31)

Note that §* < 1 if and only if > (77 — 5)71 .

It follows that

(a) as 0 — oo, f — 1 and both 7y — oo and mp — o00. As in the previous

section because of high uncertainty the joint extractive project never starts.

(b) as 0 — 0, if & > 0 then 8 — p/a and 7p — (4) I, 7y — (5) E and

_p—a _p—a _p—a
04(1—7 ) n(a—m a)—ow 2
— —

0* = 1 - P p—o
p—ay o« p (a - py‘T) + « (1 — 7_T>

e -1
In this case for the 8 to be feasible it must be 1 > <’ypT — 5) . With
respect to (ii) it is evident that here the threat of expropriation plays a role
in that

0" > 0**

(c) aso — 0, if « =0 then f — o0, Tp — (%)I,WH% (%)Eand&*zl.
Note that as 3 — oo, ¥'™# — 0 and thus the same discussion provided in

(iii) applies.
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5.4.3 Final considerations on the cooperative agreement

I propose now two alternative but related interpretations of a result that is ob-

tained rearranging (5.31) as follows

6* _0** —

1 7 <1 — 71‘5) n n(L=670) =27 1 (5.32)

B+l \B—+"PF)nA—pyF)+1-7"F

Under the risk of expropriation the share of profits accruing to the MNF is higher
than under no risk. This makes economic sense in that to induce the MNF' to
invest the HC must pay a premium for the risk of expropriation. The amount of

this compensation is represented by the term into square brackets.

But changing perspective another interesting explanation could be given to
this wedge. As discussed above as soon as the MNF invests the HC can exercise
the option to expropriate. Being this anticipated by both parties one can see
the option to expropriate and get the entire flow of profits as the way HC is
compensanted for taking part to the joint venture in addition to the share 1 — 6.
This is taken into account when defining the distributive parameter, 6%, which is
consequently adjusted. It follows that then (5.32) express the way the two parties
price the option to expropriate at 7. This is an important aspect which deserves
some comment. Note in fact that after the investment is undertaken the value of
the option to expropriate will randomly fluctuates. This implies that according
to the values taken the government may wish to reconsider the distribution of the
profits. There could be then incentive for the so-called "creeping expropriation"
(Schnitzer, 1999). This is the increasingly common practice by which governments
subtly violate the agreements through a change in the fiscal treatment of MNF’s
earnings, or a change in the regulations regarding the firm’s activity or simply

imposing a new profit sharing rule.
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5.5 Conclusions

Foreign investment may allow to developing countries to undertake the exploita-
tion of their natural resources. The scarcity of this resources makes these projects
a lucrative business for both parties and allow to developing countries to invest the
proceeds in the provision of public goods and infrastructures needed for economic

growth.

The room for these entreprises is unfortunately quite often limited by the
presence of expropriation risk. Expropriation is a temptation hard to resist in
particular when profits are high and governments have to deal with populist pres-
sure for their redistribution. Moreover, being the punishment for such extreme
act generally low with respect to benefits expropriation is definitely a sensible

option in many cases.

The introduction of profit sharing agreements may reduce expropriation risk.
In this chapter this cooperative situation is completely characterized by a model
where the cooperative bargaining theoretical framework meets the real options

approach.

The findings are interesting and are represented by the invariance of the in-
vestment time trigger with respect to the presence of expropriation risk, the
restriction of the set of feasible bargains due to the threat of expropriation and

the need to pay a premium to the MNF for the additional risk.

I believe that this framework may be extended at least in two respects. First,
in this chapter I have considered only the case in which the governments takes all
the "pie". It would be interesting to generalize the model and allow also for the
risk of the so-called "creeping expropriation" (Schnitzer, 1999). Second, and in

some respects related to the first point, the impact of shocks on the government
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time preferences should be internalized in the model. I refer in particular to
shocks caused by the random occurrence of political and economic events such as
political crisis due to populist and political parties pressures and macroeconomic

events which suddenly changes the economic scenario.
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Chapter 6

Concluding remarks

In this thesis I have analysed several issues regarding the use of natural resources
and their importance for social welfare. The analysis has been developed by
looking at the role played by information in each context. In this final chapter, I
intend to summarise the main issues discussed and I will identify lines for future
research.

In chapter 2, I have applied the mechanism design theory to design a conser-
vation program which differentiate payments with respect to the opportunity cost
of providing ecosystem services. Poor targeting and sub-optimal use of the scarce
funding available for conservation often characterizes the general subsidy schemes
through which conservation programs are implemented in the reality (Salzman,
2005). The contract schedule proposed in this chapter can guarantee superior
results in terms of targeting and efficient use of the funding. Nevertheless, when
comparing the two schemes, one should also take into account the cost of the
information required to implement the scheme and the rents that must be paid

to induce revelation of true types.
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These costs could be high and the actual welfare gain may be too little to
justify the adoption of the scheme I propose (Crépin, 2005; Arguedas et al.,
2007). In this respect, I have highlighted the impact that keeping into account
the risk of poor crop yield and the related lower level of land converted by credit
constrained landowners, could have when assessing possible welfare gains. Two
aspects that deserve more future research are an explicit modelling of the credit
constraint for the landowners in the model and exploring the relationship between
the probability of unfavourable crop yields and the environmental characteristics
of the land to be converted. Finally, an interesting extension for future research
in this field will be the analysis of the mechanism design issues in a dynamic
continuous time frame where uncertainty in the return from agriculture and the
irreversibility of the conversion process once undertaken are considered.

In chapters 3 and 4, the model for an optimal harvest timing under a real
options approach of Conrad (1997) is extended to incorporate hyperbolic time-
inconsistent preferences. These preferences have been analysed in various fields
of economics while have been hardly considered by resource economists (Shogren,
2007). I have attempted to start filling the gap first, by generalizing Conrad’s
basic model and second, by addressing in chapter 4 issues related to the impact
of non-standard time preferences on the second best tools used to correct market
failures in the provision of natural goods and services. The findings are inter-
esting and, as shown chapter 3, provide a robust explanation about the haste of
governments in undertaking projects irreversibly impacting on the intertemporal
allocation of natural assets and to the time inconsistency of their conservation

policies.
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As highlighted in chapter 1, I contribute also to the real options literature
presenting a more general framework for the evaluation of options such as the
option to exit, to shut-down, or to abandon (Dixit and Pindyck, 1994). This
framework can be easily applied to the analysis of several economic problems
entailing the exercise of these options. One possible way one can enrich the
model will be to extend the role of government targeting and political instability
on environmental policies.

In chapter 5, the interesting problem of expropriation has been investigated.
Foreign investment may allow to developing countries to undertake the exploita-
tion of their natural resources. The derived revenue could then be used to fund
their welfare improvement and their economic growth. Unfortunately, this op-
portunity can be discouraged by the risk of expropriation. Expropriation is a
temptation hard to resist for the host country’s government, in particular, when
profits are high. The introduction of profit sharing agreements has been sug-
gested to reduce such risk. In this chapter, I have modelled in an original way
this situation merging the cooperative bargaining and the real options theoretical
frameworks. The findings seem encouraging and although the model presented
in this thesis is very simple, it provides significant insight for the analysis of the
issue. I believe that this framework may be easily extended to capture other
aspects of the more complex reality. This should be done at least in two respects.
First, generalizing the model to allow also for the risk of the so-called "creeping
expropriation" (Schnitzer, 1999). This extension requires in order to capture all

the renegotiation aspects to develop a full contract game in a dynamic framework.

119



This would allow to investigate the increasingly common practice by govern-
ments to violate the initial agreement terms, for instance by changing the fiscal
treatment of foreign firms’ earnings, regulation on firms’ activity or the profit
sharing rule. Second, and somehow related to the previous point, I would suggest
to internalize the impact of suddenly occurring shocks such as pressures on the

government exerted by political parties, social and macroeconomic events (Engel

and Fischer, 2008).
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Appendix A

Appendix to Chapter 2

A.1 Proposition 2.1

The Lagrangian of the maximization problem in (2.8) is

L=B(a®)+1+N7(A-a(9),§) —AI(A-a(d),0)+

+y(0) (T (A—a(0),0) —7 (A—a(0),0)) + ¢ () (a(8) —a())

where v () and ¢ () are the lagrangian multipliers attached to the constraints.

Necessary conditions which must hold for an optimum are

oL
da (0)

=B (a(®) -1+ {p[l-7+q@-0)Vi(A—a(0),0) —c}+

(L.1)

Ol (A—a(9),0)
Ja (0)

+ (=A+~(0)) +¢(0)=0
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Under perfect information the payments are set to compensate the landowners
for their actual economic loss. Hence, I (A —a(0),0) = 7 (A—a(0),0). It is

then easy to check that (L.3) holds being by (L.2), v (0) = A > 0.

Now, assume a’® (0) > @ () and ¢ (6) = 0 and substitute (L.2) into (L.1).

Rearranging it follows that

and given the restrictions on the shape of Y (4 —a (6),6)

Yi(A—at2(0).6) > Vi (A—a(6).0)

A—a"P(0) < A-a(0)a"B(9)

B 0) > @)

Our inital assumption is confirmed.

Checking instead the conjecture a’® (0) =@ (0) and ¢ (8) > 0 it is not difficult
to prove that falls by contradiction in that substituting (L.2) and (2.4) into (L.1)
we get

¢(0) = =B'(a(f)) <0
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A.2 Proposition 2.2

If the contract schedule {[a (0),T (0)];0 < 6 < 1} is incentive compatible the
landowners maximize their program rents by revealing their true land type 6.

Hence, 6 must be the solution of the following maximization problem:

H?X@(Z—aw%@]:pu—v+qw—yﬂY(4—M@ﬁ)+

ﬂ{z—M%)+T@) (A.2.1)

If 4 is the solution then the following first and second order conditions must hold:

— =—{pl-v+q@—-0)]Yi (A—a(d),0) —c}d (0)+

+T'(0) =0 (A.2.2)

—{pl-v+q@—0)]Yi (A—a(d),0) —c}a" (§) +T"(F) <0

Condition (b) of Proposition 2.2 can be derived from (A.2.2).
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Given that in the optimal contract schedule (A.2.2) must hold for every 0, it

follows that its derivative with respect to 8 must be zero:

p[l =7+ q@—0v)] Y1 (A—a(8),0)d () — Yi2 (A—a(6),0)]d (0)+ (A.2.4)
—{p1-v+q@—0)Yi (A—a(9),0) —c}a" (0) +T"(0) =0
Comparing (A.2.3) and (A.2.4):
pll—=1+q@W—1)]Yi2 (A—ad),0)d () <0 (A.2.5)

Condition (a) follows considering that by assumption Y35 (A — a(6),6) > 0 and

p[l=7+q(@—20)] >0.

Now, we prove that conditions (a) and (b) are met only if the contract schedule

is incentive compatible. For every 6 and 0e [Q, 5] ,

~ 0 A — Q
IT (A —a(),0) — (A —a(6),0) > /5 oA 5% (©).9) d¢ (A.2.6)

where

OI(A — a(§),0)

5 =—{pl-7+q@- )]V (A-a(§),0) - c}a (&) + T'(c)

(A.2.7)
a(€),&) —cpd (€.

By condition (b) T'(€)) = {p[l—7+q[@—v)]¥; (A4

Plugging it into (A.2.7)

OTI(A — a(€),0)
3

= pl-T+q@— )] [Vi (A a(6).0) +
Vi (A-a(9).€)]d () (A23)
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It ¢ € [0,6] with 0 > 0 then ¥i (A—a(¢),0) — Vi (A~ a(&),€) > 0 since
Yis (A —a(6),60) > 0 by assumption. If condition (a) holds (a’ (#) < 0) then the
integrand in (A.2.6) is nonnegative and IT (A —a(0),0) — II(A — a(f),6) > 0.
By the same arguments, if # < 6 then the integrand in (A.2.6) is nonposi-

tive. But considering that we are integrating backwards then it still follows

II(A—a(8),6) — (A —a(f),0) > 0.

A.3 Larger total rents for the higher type

Total differentiating the program rent function in (2.12)

9 [H (A—G(H)’e)}
00

=—[pl-T+q@—-v)]Yi (A-a(®),0) —c]d (0)+
(A.3.1)

+p[l =T+ q (@ —2)|Ya (A —a(6),0) + T'(0)

plugging condition (b) into (A.3.1), and considering that Y5 (A — a(6),0) > 0 the
following relation holds

O (A—a(9),0)]
0

=pll—v+q@—0)]Ys (A—a(0),0) >0 (A.3.2)
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A.4 Proposition 2.3

By the envelope theorem and using (2.4)

Olr(A-a(0),0)] =—{pl-v+q@W—-0)Yi (A—a(9),0) —c}a (§)+

—i—p[l—@—l—q(ﬁ—y)]Yg(ﬁ—&(&)ﬂ) (A.4.1)

=p[l-T+q(@-v)]Y2 (A-a(0),0) >0

Under the CP a(f) > a(#). Comparing (2.5) with (2.17) and being Yi52 > 0 it

follows that

50 > 50 (A.4.2)
That is, I (A —a(0),0) — 7 (A—a(0),0) is non increasing in 6.
Hence, if II (Z —a (@) ,5) -7 (Z —a (5) ,g) > 0  then

II(A—a(0),0) — 7 (A—a(0),0) >0 for every 6 < 6.
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A.5 Proposition 2.4

Denote the term [1 — T + ¢ (v — v)] by k and use condition (b) in proposition 2.2

to rearrange T'(0) as follows

T(60) = T(5) - /T’(f)df

T(d) - /{pm Ca(e),6) —c)d

@) + /9d {pkY (A - (é)df) —C(X—a(f))}

dé+

/ pkYs (A ) d

=TO)+ {pkY (A—a(0).0) —c(A—a(0))}+

kY (A—a(6),0) —c(A—a(8)} - k/ PYs (A — a(6),€) de

(A a(6).8) — {pkY (A—a(6),6) —c(A—a(6)}+

- /0 pYs (A = al€), €) d (A5.1)
Substituting (A.5.1) into (2.15)

/{B AN PRY (A—a(0),0) —c(A—a(0)}f (0)do+

wf//pyz — a(€),€) def (6) db — NI (A — a (8) ,9)
Integrating by parts the last term of Ey [W]
/{B AN PRY (A—a(0).60) — c(A—a(0)}f (0)do+
+)\k/ pYs (A — a(0),6) F (6) d0 — I (A — a (7) ,0)
0
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:/9 (B(a(®)+ (1+N) [phY (A—a(®),6) —c(A—a®)] +

T NepY (A — a(6),9) %}f (6)d6 — T (A a (5) .9)

_ (1+)\)k:/9<1>[a (0).0] £ (0)d0 — NI (A — a (9) ,) (A5.2)

To maximize (A.5.2) or (2.17) is equivalent.

A.6 Binding perverse incentive constraint

By condition (a) in Proposition 2.2 a5 (§) < 0. Set a°P (0) = a(0). Totally

differentiate (2.4)
pll =T+ q@—)] [Yi (A—a(6),0)@ (0) - Yia (A -7 (0),6)] =0

Solving for @' () , it follows

Y (d-
1_

@ 0) = it

<0 (A.6.1)

This means that the monotonicity constraint is always satisfied on the interval
01, 05].

Substituting @ (#) into condition (b) of Proposition 2.2
T'(0) = {pll—5+q(m— ) Vi (A7 (0),0) —c}@ (6) =0

If type 6 landowners conserve @ () then minimizing 7% (6) such that (2.16) holds
involves

T98(0) =0 (A.6.2)
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Moreover, if §; = 0 being T" () = 0 it follows that all the landowners undertaking

a(9) =a(0) in the interval [6;, 6] will not get any compensation.

A.7 Feasibility of a GS program

Under the GS program T (§) = T - a () and the landowner chooses to conserve

a (). It follows that
m(A-a(0),0)+T a(0) >n(A—a(9),0) (A.7.1)

and this meet the incentive rationality requirement.
If conditions (a) and (b) of Proposition 2.2 are met then the GS program is

incentive compatible. The landowner’s rent is given by

[M(A-a(®),0)=r(A—a(0).,0)+T -a() (A.7.2)

=p[l-v+q@—v)]Y (A-a(0),0) —c(A—a(0)+T- a(0)

Maximizing (A.7.2) with respect to @ (¢) the landowner defines the surface to be

conserved. From the foc

_ c+T
Yi(A—a(0),0) = A7.3
1(4-30).9) = TS m =) (A.7:3)
Differentiating totally (A.7.3) and solving for @ (9)
Yio (A—a(0),0
T (0) = 2 (4 al0), ) o (A.7.4)
Yii (A—a(6),0)

and condition (a) is satisfied.
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If T(0) =T a(f) then T"(9) = T - @ (0) . Substituting 7" () into condition
(b)

T-a@d0)={p[l-v+q@—-0v)]Y1(A- @(9),0) —c} @ (0) (A.7.5)

The relation is satisfied considering that rearranging (A.7.3)

T=pl-1+q@-0)]Yi(A- a(),0) —c (A.7.6)
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A.8 Bunching types

Bunching arises if the monotonicity constraint does not hold. We solve then

(2.17) following Guesnerie and Laffont (1984). Restate the problem as follows

9
max)/e B [0 (6).6]  (6)do

a(0),7(0

s.t.
v(0) = d(0) (C1)
v(@#) < 0 (C2)

where a (0) and 7y (0) are respectively the state and the control variable. Attaching

the multiplier 4 (0) to (C2) the Hamiltonian for the problem is given by

H(a,v,p,0) = ®[a(0),0] f (0) — py (A8.1)

From the Pontryagin principle:

Iu/ (9) _ _86_[; — _%((Z))’Q]f (8) (A82)

p(0)y () = 0, u(0)=0 (A.8.3)

Suppose the existence of an interval where the monotonicity constraint (C2) is
not binding. On this interval, i (6) = 0 everywhere and p’ (6) = 0. In this case

the optimal solution is a”? (9).
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Consider now an interval [6,,,6)/] C [6,6] where a’ (§) = 0. It follows that
v(f#) = 0 and a (0) is constant and equal to a constant h. Observing that on
the left and on the right of [0,,, 0] (C2) is not binding by continuity of u () it
follows that p (6,,) = p (6ar) = 0. Integrate (A.8.2) on [0,,, 0/]:

0 90 [k, 0] B

or

O
/em {le (h,0) f(0) + a H)me (h,e)F(e)}de (A.8.4)
[ 1 B (A - h)

_/em —oirqm—o | azn ¢/ O

One could compute the unknown 6,,,0,; and h, setting the values which satisfies
(A.8.4) and h = a®B (0,,) = a®F (O).

To summarize if o’ (§) > 0 on the whole support, O, then the agency will
bunch types. All landowners will retire the same amount of land, a () = h, and
receive the same transfer 7°(f). Since landowner’s profit is costly for the agency
then the optimal transfer, TP (), is such that II (Z — h, 5) =7 (X — h,@) .There
is no alternative for the GA if she wants to keep feasible the program. If a’ (6)
> 0 on some intervals of © but a' () < 0 on others then it is not possible to
separate some 6. The solution will pool some segments of the interval © with

a’ (#) < 0 and others with a' (#) > 0. On these segments the landowners retire

the same amount of land and get the same transfer.
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Appendix B

Appendix to Chapter 3

B.1 Strategies under naive belief

Equation (3.10) can be rearranged as
1 " ’
502A2VN (A) + pAVY (A) — (p+ N VY (A)
AO Mo (AN
All+ —) + A0 (—)
< p—H 1—p; \A*

The solution to the homogenous part is'

for A> Ay

VN (A) = kAP

where 8, = (3 — %) — /(1 — )2 + 222 <o,

o2

(B.1.1)

Suppose that the particular solution takes the form V;)N (A) = 1 AP + ¢y A.

Plug this candidate and its first two derivatives, V¥ , (A) = Be1 4P~ + ¢y and

IThe solution should have the form VhN (A) = k1 A* + ko AP2 where k1 and ks are coefficients
to be specified and as > 0 and 3, < 0 are the roots of the characteristic equation o23(3 —
1)/2+pB—(p+X). As A — oo, the value of the option to harvest (V;(A4)) should go to zero.
Since az > 0 then k1 must be zero because if not V¥ (A4) — oo as A — 00.The same argument

holds when this functional form is used later.
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VN (A) = (B, — 1) 8,1 AP~ 2 into (B.1.1)

1
502A2 (By — 1) Byer A2 + pA (Byer AP+ ep) + (B.1.2)
) M [ AN™
a1y _) Y (_)
< p— 1=, \A

In order to find the coeficients ¢; and ¢y (B.1.2) can be reduced to

—(p+A) (AP 4+ A) = —

B1
%UQ (B, — 1) Byc1 + ubier — 'O] a-Aa = _)\51 yﬁl <%)
A0
_ A = —|\1+—
(= (p+ N2 < +p—/~b>

The candidate solution satisfies (B.1.1) if the following coeficients are set
oM [ 1\”
A0 ) 1 n
co = |1+ =
’ ( p—n) (p+A—p) p—p

where n = % <1

The general solution is given by the sum of V;V(A) and V,V(A). Substituting

¢; and ¢y into V¥ (A) it follows that

SM [ A\ n
VN(A) = kAP + <—> + A—— B.1.3
() =k, 1 -5, \A* p— I ( )

At the critical amenity value, Ay, the value-matching and smooth-pasting con-

ditions respectively require VN (Ay) = M and VN (Ay) = 0.
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Solving the system

ko AR + 2L (4)7 + Ay = M

—
_ . B
Rafp A 4 OM 2 ()7 s+ 5 =0

one could find the optimal threshold (3.13) and

(SMﬁl(AN)Bl + 17ﬂ](AN)_B? and finally, plugging ko into (B.1.3) the

ko = 52[1 B,

value function (3.14)

e o () 23] )
A= @[W 25 () ()| ()
SM [ A\ n

il Al —1—

15 (A*> i (p—u)
B - 1 Ay 51_ L) <i>ﬁ2
‘[M s () - (G5 ()

oM AN n
+ = +A(—) or A>A
1-5, (A*) o) 7 "
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B.2 Proposition 3.3

To prove this proposition one should look for the fixed point solution for f () = z,

where

f(2) = MP;M (621— 1) {52 —5512__511 (%)B} (B.2.1)

Note that f'(z) > 0 and f” (z) < 0. At A*, f(x) takes the following value

o P 1 By
ray =t () [a-aien] was
p— Bo—DB1| .
> - g -4

Given that ' (z) > 0, f” () < 0and f (A*) > A* it follows that there is a unique

fixed point Ay > A* such that f (Ay) = An.
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B.3 Strategies under sophisticated belief: three

governments

B.3.1 Continuation value function

Equation (3.19) can be rearranged as

1
2
= —0[A+ /\VQS(A)] for A>Agy

G2 A2V (A) + nAVS (A) = (p+ N VS (A) (B.3.1.1)

The solution for the homogenous part is given by

VS

¢lp

(A) = ky AP

Suppose that the particular solution takes the form Vc:glp(A) = w AP + wyA.
Substitute the conjectured form and its first two derivatives, 8;w; A%1~! +w, and

(8, — 1) By A% 2 into (B.3.1.1)

1
502142 (B —1) 5110114[3172 + pnA (51?01145171 + wz) +
A M AN\
A1+———>+A <__>
< p— 1— 58, \Asp

and solve for the undetermined coeficients w; and ws

—(p+A) (w1 A% + wyA) = =6

1 M1\
5‘72 (51_1)51+Mﬁ1—0] wy — AW, = —)\51_51 (A_“)
A
— A = 5|1+ "
b= o+ V] ws (1+-2)
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The solution V;; (A) verifies (B.3.1.1) if the following coeficients are set

o SM (L)ﬁl
P18, \Ass

)
(p— )

The continuation value function is then given by

SM A\ 5
S(A) = kAP - A= B.3.1.2
Verl4) g +1—61 (As,z) +(p—u) (B:3.1.2)

kAP2 4 6V,P (A)

and solving (B.3.1.2) subject to the value-matching condition V% (Ag1) = 6M

one can derive

1 A51>61
k=6<M|1— —
{ [ 1-p5 (As,2
6{M— M (As,1)’81 Ag

1B, \Asa (p— 1)

8 [M — Vi (As1)] Agy?

Asq -3
_ ) A 2
(p— 1) } >

} Agh

and

B 1 A\
Vea4) = {W [1 15 (A_Sz)
SM [ A" )
A
105, <As,z> -
A 62
=0 { [M — V5’ (Asy)] <A—) +V25(A)}
S,1

Note that (B.3.1.1) is solved just appending a value matching condition. Here, I

) A\
(p—u)AS’l} (A—Sl) + (B.3.1.3)

do not need to impose a smooth-matching condition to guarantee the optimality
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of Agq because I are taking it as given and optimally determined maximizing

Vi (A).

B.3.2 Value function

Equation (3.23) can be restated as

1 " !
5#A%§(A»+WM¢(Ay—@+AM¢@Q (B.3.2.1)

:—{A+M

(M — V§(4s)) (%) VS A)

} for A>Agy

The solution to the homogenous part is standard
Vor (A) = kp AP

Guessing for the particular solution to (B.3.2.1) one should be more careful and
consider that VCSl(A) contains the A%z term. This means that there may be a
potential problem with the conjectured functional form of the solution due to

resonance. Suppose then that the particular solution takes the form
Voo (A) = @A + g2A% + g3 A% log A+ g, A™
Substitute it and its first two derivatives into (B.3.2.1)

Voi (A) = q + 1A 4 g3B,A og A+ qs AP+ qu3,A%2 71
VS (A) = By (B — 1) A% 2 4 g3B, (B, — 1) A% 2log A +
+Q352Aﬁ2_2 +q3 (52 - 1) AP2? 4 1B (B — 1) A2
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The guessed solution verifies (B.3.2.1) if the following parameter are set

- (:2)

M

=) AY
42 1— ﬂl S,2
B1
1 Asa Asa —B4
i ()] )
q —
’ %UQ<252_1)+M
M [M = Vi (Asy)] Al
%‘72 (28, = 1) + p
g4 =0

The general solution is then given by

By
S(AY — 1. AP U M (A
Vi (A) ko AP2 + <p_ﬂ> A+51—61 (A&Q) + (B.3.2.2)

_ VS B2
20 (252 - 1) +p AS,I

At the critical amenity value, Ag o, the value-matching and smooth-pasting con-

ditions respectively require V;*(Aso) = M and V° , (Ax) = 0. Solving the system

(

B1
B M [ As,
kA% + (74) Aso+ 0524 (422) " +

B
ARG, (£0) P log Ago = M

302(282—1)+u \ As
B1
By—1 n MpB Aso
k252As,20 + (p—p,) + 51—611 <A5,2> T

_Agw Aso\2 (1+85log As0) 0
\ 502(28,—1)+u \ Asa Aso =
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yields

_ M [ Ago\™
— A M - Agg — 50
o= s = (1) o2 (522)

M —V§(Agq) <A50>ﬂ2
DY) 2 ’ : log A
102 (28, — 1) +pu \Agy) 270

B
Plugging Py = A6 Ve (Asa) ( L ) *> 0 and Poo = ko into (B.3.2.2), (3.26)

502(282-1)+n \ Asa

and (3.27) are finally derived.
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B.4 Proposition 3.6

Following Grenadier and Wang (2007) I prove these two propositions by induction
logic. It can be easily proved using results provided in the three governments

model that Agr—1 > Agr, V.1 (A) < V5 (A) and V7 (A) < VF(A). Assume

C

now, for a generic 1 < i < I —1, that Ag; > Agi1, V5(A) < V5, ,(A) and

(X

VS (A) < Vi, (A). If our conjecture is correct Ag; 1 > Ag;, V.5

c,i—1

(4) < V5(A4)
and V% (A) < V;5(A) must hold for the same i.

Equation (3.30) and the boundary conditions (3.31) and (3.32) can be used
to characterize V;°(A) as the function expressing the value of an asset paying a
dividend equal to {A+ AV, (A)} and a strike price M when the time trigger
Ag; has been hit. This asset resembles to a standard American put option. I can
use the same arguments for V;°,(A4). Comparing the two assets note that the only
difference is in the dividend paid as V.5, (A) > V.5(A) by assumption. Provided
that the first option is paying an higher dividend it should then be exercised later.
This implies that Ag; 1 > Ag; and that V% (A) < V.%(A) being lower the option

value for the second asset.

I characterize now by the same logic VCSZ(A) that in fact can be seen as the func-
tion representing the value of an asset paying a dividend equal to {54 + VS (A)}
and dM as strike price when the time trigger Ag; has been hit (use equa-
tion (3.28) and V,%(As;) = 0M). It is easy to see that the value of this as-

set is equivalent to 6V;%(A) + (1 —06) AV, ,(A). The same holds for V5

c,i—1

(4)
which is equivalent to 6V;%;(A) 4+ (1 —6) AV,5(A). By the result proved above
OVS(A) > 6V (A). Being by assumption V5(A) < V5, (A) and Ag; > Ag,q
it follows that (1 —0) AV, ,(A) > (1 —48) AV5(A). Hence, comparing the two

options V3

ci—1

(4) < VE(A).
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Finally, by proposition 3.3 Ay = Ag1 > Ags = A* and by proposition 3.6, be-
ing Ag; decreasing in i, Ago > As;1 = Ay = Agi. It follows

that A570 > AS,l > A572.
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B.5 Strategies under sophisticated belief: I gov-

ernments

B.5.1 Continuation value function

I solve for the continuation value function by the backward induction solution

concept. Set i = I — (j + 1) and suppose that for j =1,2,..., 1 — 1, is given by

j—1

Ve (A) = VI (A) = 6V (4) + Z Qr—jn (log A)" AP (B.5.1.1)

c?
n=0

where ();_;,, are parameters to be determined. To verify that (B.5.1.1) is the
appropriate continuation value function I first check if it holds for the government

I — 2. In this case

SM [ A\ b
Vc?[—l(A) =71 3 (E) + HA + Q1,04 (B.5.1.2)
Y _

Solving V.5 _,(A) subject to V% _;(Ass—1) = 0M for Q;_1, yields

Qr10=10 {M [1 -3 —1ﬁ1 (A%*)Bl - ‘25’_1‘; } (Asr-1) " (B.5.1.3)
Plugging (B.5.1.3) into (B.5.1.2)
Vs = M (é)ﬁl Ay (B.5.1.4)
’ 1 -5, \A* p— i
oy ()| S s




knowing that Ag;_1 = Ay = Ag; and comparing Vck,qu(A) with (3.21) it follows
that (B.5.1.1) is verified.
Second, if our conjecture is correct then (B.5.1.1) must hold also for i+1 = —j
By induction then V5, ,(A) = V% _,; ,(A). Plugging V,%_;(A), its two first
derivatives and V% _; ,(A) into (3.28)
oM (AN
s (—> FA— NV (A)+  (B5.1.5)

+ [%U2ﬁ2<52_1)+/152 P‘i‘)\]

{%‘7251 (By = 1)+ pby — P]

Jj—
Qr—jn (log A)" A’82—|—

1
n=0

=0
sA L2 , A
+u | —— 4+ nQr_j, (log A" AP | — p——+
— 1 ;0 1=sn (log A) p—
j—1
A [0V (A) + > Qrjirn (log A)" A%
n=0
1,0

e —1
= 57 Qg (o A~ 4 (20214 g )+

Jj—1 j—1

Y nQr_jn (log A)" AP 4 XY Qi1 n (log A)" A% =0

n=0 n=0

Now, group the terms by (log A)* A%z for k = 0,1..., j — 1. To satisfy (B.5.1.5) all

the coefficients for each (log A)* A% must be null. It follows

2
% (28, — 1) (E+1)Qr—jpt1 + (K +2)(k + 1)Qr—jrt2] + (B.5.1.6)

+p(k + 1D)Qr—jpi1 + AQr—ji1 =0
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Rearrange (B.5.1.6)

2 AQr—ji1k

Qrjrr1 =17 [%Uf +2)Qr—jr+2 + 1) (B.5.1.7)

-1
where v = — [%2 (26, — 1) —I—,u] :
By conjecture (B.5.1.1) and Q;_11 = 0 it follows that Q;_;, = 0 for £ > j.

Solving the recursive (B.5.1.7) yields

A T3

Qrjn = 7 [Qlj+1,k1 + (B.5.1.8)

k—2 2 s
o S
(’Y?) Qr—jstss [ [1—o(k +1)
=0

s

for k = 1,2,..j — 1. Note that by continuity of V. ,(A) I may append
V3 11(Agis1) = 0M to (B.5.1.1) and solve for Qg

1 Asi-\"'| Asiy -8
_io= M |1-— : - — Agyr_i) 2 B.5.1.
-1
- Qr—jn (log As ;)"
n=1

j—1
= 6[M = V(As1-)] (As1-)) ™ =D Qu_jn (log Ass—;)"
n=1

where Agr_; = Ag,t1 is the optimal time trigger for i +1 = I — j that can be

determined maximizing the value function S;1(A4) = S;_;(A).

B.5.2 Value function

I proceed in this section as above. First suppose that for j = 1,2,...,1, Vi3, (A4) =

V7 ;(A) takes the following functional form

S n M A o 8
V2 (A=A +90 <—> + P, (log A)" APz B.5.2.1
R = A o () P oAy 4 (8520
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where P;_;, are parameters to be determined. To verify that (B.5.2.1) is the
correct conjecture I check if it holds for the government I — 1. Solving V2 ;(A)

subject to V| (Ags_1) = M for P;_; 4 yields

L0 (Asia\”
1—6, \ A*

Substituting (B.5.2.2) into V/? | (A) it turns out that V°,(A4) = VN (A) = V°(A)

- AS,]—l

Pr_io= {M

} (Asr-1) " (B.5.2.2)

where as I know Ag; 1 = Ay = Agi. Now, I must check if (B.5.2.1) is the
appropriate form also for the generic government ¢ +1 =1 — j.

I plug V5, (A) = VIS—]‘<A)7 VIS—,]‘(A)a VIS—,;(A) and Vc,sz‘+2(A) = VC,SI—jH(A) into
(3.30)

A 61
Ea?ﬁl (61—1)+uﬂl—p} o (A—) FA- R (B523)

1-5 p—
1 A
+ {50262 (B2 = 1)+ pBy— (p+ A)} ; Pr_jn (log A)" AP+

7j—1

1 2 n—1 ,82 n — ].
+50 ;nPIM (log A)" ' A (252 —1+ @) +

Jj—1 B
1 n—1 oM A !
| AL ST P, (log AR AP | — A (—) +
p—p ; s (08 4) 1— 3 \ A
j—1
A |0V (A)+ ) Projian (log A)" A% | =
n=0
1,3 n—1
2 . n=1 A8 _ o--
39 nzz()npj_],n (log A)" " A2 <2/32 1+ logA) +
j—1 Jj—1
+u Y nPr_j, (log A)n_1 APz )\ Z Pr_ji1n (log A)" APz =
n=0 n=0
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Grouping terms again by (log A)k APz for k = 0,1...,j and imposing to all the

coefficients to be null it follows

0.2

5 (282 = 1) (b + 1) Prjprr + (k + 2)(k + 1) Prjpro] +

(B.5.2.4)
p(k+1)Pr_jp1 + AP—ji1, =0
Comparing (B.5.2.4) with (B.5.1.6) yields
Pr_jr=Qr—jk (B.5.2.5)

for k =1,...,j — 1. Last, let determine P;_,,. Rearrange (B.5.1.8) as follows

7j—1

> Qrojn (log As )" (Asi—j) = 6 [M = V(As1-j)] = Qr_jo (Ass—;)™
n=1

(B.5.2.6)
I know that in Ag;_; the following relationship holds
VE (Agiy) = Asy T+ a M (Asrs)” B.5.2.7
1i(Asr—j) = Asi-; . +o7— 7\ + (B.5.2.7)
j—1
+ Z P]_j’n (log A&]_j)n (ASJ_J')ﬁz =M
n=0

Given that P;_;, = Q_;x for k = 1,...,j — 1, I can substitute (B.5.2.6) into
(B.5.2.7) and rearrange as follows

B1
Ui M Asr—j 8
Agr_; ) > Pr_io(Agi_;)?
S’HP—MJF 1_51(/1* ) + Projo (Asi—5)" +

+d [M — V(AS,[_]‘H —Q1-j0 (AS,I—j)B2 =M
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and after a bit of algebra I determine

Asr—j 8
Prio=0Q_; 1-6) (M- —2" | (Ag;_;) "™ B.5.2.8
g0 = Quogo+ (1= 8) (31 = 255 (g, (8529

Appending the standard boundary conditions to V> y (A) one can derive finally

Asi—j = Asit1.
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Appendix C

Appendix to Chapter 4

C.1 Strategies under sophisticated belief

Rearrange equation (4.11) as

21/S( A. A S(A. A
15 p@V3(4:4) ﬂLAav (A; A)

2 0A? 0A

5y

A<1+)‘—6>+/\5 M (é)
p— p 1-p5; \A

The solution to the homogenous part is

—(p+ N V(A A) =

for A>A

VI(A; A) = kp AP

(C.1.1)

Suppose that the particular solution takes the form VPS (4; fl) = 1 AP 4 A,

V3 (A;A)
0A

VS (A A)

Plug this candidate

_ 0? _
= 816147 +¢p and —5m—=(6-1) B APr2

IThe solution should have the form VhS(A; fl) = k1 A® 4 ks AP2 where k; and ko are co-
efficients to be specified and o > 0 and 8, < 0 are the roots of the characteristic equation
02B(8—1)/2+uB—(p+A). As A — oo, the value of the option to harvest (V;%(4; A)) should
go to zero. Since az > 0 then k; must be zero because if not V,%(A; A) — 00 as A — oo.
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into (C.1.1)
1
502/12 (By — 1) B1et AP 72 4 pA (B AP+ eo) +
AN
A<1+/\—5) + Ao M (T)
p—p 1-05; \A4

and solve for the undetermined coefficients

—(p+ ) (1A% + cA) = —

2 1-6,\A
=(p+N]ez = —<1+A—5)

p— ft

B1
102(51_1)51"‘#51_0}01—)\01 = =X M (1>

The candidate solution satisfies (C.1.1) if the following parameter are set
oM < 1 )61
C = —=
1-5\4
A0 1
Cy = (1 + ) = n
p—u) (ptA—p) p—p

The particular solution is then

SM A\ n
VN(A) = (-) + A——
p( ) 1-06; \A p—H

The general solution is given by the sum of V;*(A4; A) and V2 (4; A)

SM [ A\™ n
VN(A) = kAP + <—> +A—— C.1.2
() ’ 1-6; \A pP—H ( )

At the critical amenity value, Ay, the value-matching and smooth-pasting con-

ditions respectively require VS(H(A); A) = M and %W = (. Solving the
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System

yields

~ 81
e By _ By — By H(A)
H<A>[ﬁ21 5(1—@)(@—1)( )

By )
4 oM (i) +A(L> for A>A
A p— i

Finally imposing the intra-personal steady-state condition H(As) = Ag and

V3(A; Ag) = V(A) the solution follows

As = [5&1_5(1—5521)_(55—”}]\4(%)

5 _ 1-5 <£)52 5 <£)51
v M[l—/ﬁg 1) Tiom

C.2 Pigovian taxation

1(2)

The regulator’s rule is given by

E(T%)-T=m (C.2.1)

First, recall that ;4 < 02/2 and that by (4.19) E(T°) = 5251n (iio) . Second,

2u—o2

If a pigovian tax is levied on M then

Af = (1-T%)[(1—0) A™ + 0A"]
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Substitution into (C.2.1) yields

2 AT _
In <—5) = T+m (C.2.2)

o(8) - (-3

We prove now that if I'® is determined not considering the behavioural failure

then F (TS ) < (T + m) . Suppose is given by

A*
If this is the case then
2 Ay~ (% 0) (T4m) 4
E(T%) = n | 25 i
2[& — 02 AO
— 2 In ée— (é—/‘) (T+m)
2u — o? A*
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