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A Fabio 

 

 

Frère, ne t'en va plus si loin.  

D'un peu d'aide j'ai grand besoin,  

Quoi qu'il m'advienne.  

Je ne sais où va mon chemin,  

Mais je marche mieux quand ta main  

Serre la mienne.   

(Alfred De Musset) 
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Riassunto della Tesi 

 

Il diabete mellito è non solo una patologia molto seria, che causa disagi e sofferenze a milioni 

di persone nel mondo, ma, anche a causa dell’affermarsi di uno stile di vita sedentario e 

dell’invecchiamento della popolazione, negli ultimi decenni ha raggiunto proporzioni 

epidemiche, diventando una vera e propria emergenza sanitaria e sociale. Per fronteggiare 

questo problema, molte risorse sono state dedicate all’attività di ricerca scientifica, che ha 

permesso una più profonda conoscenza dell’eziologia del diabete. Tuttavia, il diabete è a 

tutt’oggi ancora inguaribile e molte questioni rimangono aperte, fra cui la completa 

comprensione dei fattori che causano e fanno progredire la malattia. Anni di ricerca hanno 

permesso di sviluppare molti sofisticati strumenti per studiare il sistema metabolico glucosio-

insulina in vivo e poter così fronteggiare il problema dell’inaccessibilità diretta di alcuni dei 

fenomeni chiave che controllano la glicemia. Tali strumenti, fra cui protocolli di studio e 

approcci basati su modello usati per interpretare i dati sperimentali, si sono rivelati armi molto 

potenti nelle mani dei ricercatori, ma le proporzioni epidemiche della malattia e il parziale 

cambiamento delle strategie e obiettivi della ricerca hanno sollevato l’esigenza di poter 

disporre di metodologie meno invasive, più economiche, e quindi più adatte ad essere 

applicate ad estesi studi clinici. Alcuni strumenti matematici e statistici che sono 

collettivamente conosciuti con il nome di “approcci di popolazione” sono già stati sviluppati e 

vengono largamente impiegati in studi di farmacocinetica e farmacodinamica, per lo sviluppo 

di farmaci. Tali approcci si prefiggono come obiettivo primario di stimare la distribuzione dei 

parametri di un modello all’interno di una popolazione e pertanto si avvalgono, per la stima 

individuale, delle informazioni disponibili sull’intero gruppo di soggetti. Sono 

particolarmente adatti a situazioni in cui il campionamento intensivo in un singolo soggetto 

non è possibile, e quando l’interesse del ricercatore è focalizzato sulla variabilità inter-

individuale. Tuttavia, nonostante le loro interessanti potenzialità, gli approcci di popolazione 

non sono ancora apprezzati all’interno dell’ambiente di ricerca sulle malattie metaboliche, e la 

loro applicazione in tali studi è stata molto limitata. Pertanto è necessaria dell’attività di 

ricerca per saggiare l’effettiva fattibilità e rilevanza dell’utilizzo di tali approcci nello studio 

del diabete. La ricerca qui presentata risponde a queste esigenze, proponendosi come obiettivo 

l’applicazione di queste sofisticate tecniche ai modelli di metabolismo del glucosio, prima 

testandone la fattibilità e adattandole al problema in esame, e poi impiegandole nell’analisi di 

dati raccolti in studi di popolazione. 

Poiché in letteratura sono stati proposti molti diversi algoritmi, come primo passo, un dataset 

simulato è stato utilizzato per effettuare un confronto delle metodologie quando applicate al 

modello minimo del glucosio per il Test di Tolleranza IntraVenosa al Glucosio (IVGTT). 
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First-Order Conditional Estimation (FOCE) si è rivelato come l’algoritmo più soddisfacente, 

in quanto ha fornito i risultati più accurati e robusti in caso di scarsità o rumorosità dei 

campioni. Successivamente, per validare i risultati trovati su dati reali, l’analisi è stata ripetuta 

su un dataset più esteso, relativo a 204 soggetti sani testati con IVGTT. Per poter saggiare la 

bontà delle soluzioni fornite dai vari algoritmi, è stato impiegato un sistema di stima della 

likelihood function basato su campionamento Monte Carlo. Questa analisi, non solo ha 

permesso di confermare la scelta di FOCE come metodo preferenziale, ma si è anche rivelata 

come un potente strumento per valutare la precisione delle stime dei parametri di popolazione. 

Successivamente, è stato messo a punto e ottimizzato un modello di popolazione, 

conservando nella matrice di covarianza solo i termini di correlazione fra i parametri SI-P2 e 

SG-VOL. Questo modello è servito come base per la successiva integrazione di covariate nel 

modello. Al momento dell’esecuzione degli esperimenti, infatti, sono stati raccolti alcuni dati 

sui pazienti, fra cui altezza, peso, sesso, età, glicemia e insulinemia basali, informazioni sul 

grasso corporeo. È stata effettuata una analisi per determinare quali fra queste variabili 

potessero essere usate per spiegare parte della variabilità nei valori dei parametri del modello 

minimo fra i diversi soggetti. Il risultato è un modello che integra queste informazioni 

direttamente nelle sue equazioni, mentre i coefficienti di regressione per ognuno dei predittori 

diventano veri e propri parametri del modello e il loro valore viene ottimizzato insieme agli 

altri parametri di popolazione. L’analisi effettuata ha trovato come buoni predittori per SI e 

P2 l’ età, l’insulinemia basale e il grasso addominale, che in ambo i parametri riescono a 

spiegare una buona fetta della variabilità inter-individuale. Sia l’impiego di metodologie di 

popolazione, sia l’introduzione delle covariate nel modello, permettono di aumentarne il 

potere predittivo, e sono in grado di usare informazioni indipendenti dai soli dati sperimentali. 

Questo permette di mettere a punto dei protocolli di studio meno invasivi, meno costosi, e 

pertanto più adatti ad un impiego su larga scala: ulteriore ricerca potrebbe avere come 

obiettivo l’ottimizzazione di una sampling schedule ridotta, che si avvantaggi dell’utilizzo 

degli approcci di popolazione. Ad ogni modo, il dataset utilizzato in questa analisi comprende 

solo soggetti sani, ed è quindi caratterizzato da una quantità limitata di variabilità di 

popolazione. Pertanto, sarebbe necessario ripetere l’analisi su altri dataset, per poter 

confermare questi risultati, in particolare sulle covariate. 

Inoltre, in una sezione successiva, un metodo di popolazione è stato applicato anche ad un 

altro problema diverso, la stima del Disposition Index (DI) del glucosio. Questo è un indice 

calcolato combinando sensitività e responsività all’insulina, che serve per testare l’effettiva 

efficacia del sistema di controllo della glicemia. Ci sono due versioni proposte per la formula, 

una semplificata, che consiste semplicemente nel prodotto (da cui il nome di Legge 

Iperbolica), e una con un parametro aggiuntivo α  ad esponente della sensitività all’insulina. 

Per poter calcolare il DI medio in una popolazione, e per poter saggiare quale delle due 
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formule sia effettivamente più adatta, in letteratura si trovano alcuni approcci basati su un fit 

geometrico. Tuttavia, alcune approssimazioni sono utilizzate per semplificare il fit, e sono 

molte le questioni metodologiche spesso sottovalutate. Pertanto viene presentato qui un nuovo 

metodo Total Least Squares (TLS) che affronta il problema senza l’impiego di 

approssimazioni. Grazie ad alcune simulazioni, si è effettuato un paragone fra i vari metodi 

disponibili, e il nuovo algoritmo è risultato migliore rispetto ai predecessori. Tuttavia, tutti gli 

algoritmi basati su fit si fondano sull’ipotesi che i soggetti appartenenti alla popolazione 

abbiano lo stesso valore di DI, e l’unica fonte di incertezza nei dati sia dovuta alla stima degli 

indici di secrezione e sensitività. Questa ipotesi sembra una forte semplificazione e, in effetti, 

l’analisi di un dataset reale sembra confermare la presenza di variabilità di popolazione nei 

valori del DI. Ulteriori simulazioni hanno confermato che tutti metodi basati su fit, TLS 

compreso, falliscono quando la variabilità di popolazione è presente. Pertanto, è stato ideato 

un altro metodo basato su approcci di popolazione e, in particolare, su NonLinear Mixed-

Effects Models (NLMEM), che è in grado di separare la variabilità nei dati, poiché fondato su 

ipotesi meno restrittive. Tale algoritmo stima i parametri della distribuzione di probabilità 

congiunta degli indici di secrezione e sensitività, e poi estrae le informazioni sul DI dalla 

matrice di covarianza. NLMEM si è rivelato equivalente a TLS quando non c’è variabilità di 

popolazione, ma di gran lunga più affidabile quando le ipotesi per il fit geometrico non sono 

rispettate, pertanto si è deciso di utilizzarlo sul dataset reale per testare la validità della legge 

iperbolica. Anche se una validazione su altri dataset è auspicabile per validare i risultati qui 

presentati, il modello con il parametro aggiuntivo α  sembra spiegare i dati in maniera più 

soddisfacente, e il valore del parametro α  sembra dipendere dalla coppia di parametri usata 

per la definizione del DI, più che dalla popolazione in esame (anziani piuttosto che giovani). 

Inoltre, nello studio qui proposto, il punto di partenza sono stati i valori degli indici di 

secrezione già calcolati, insieme con la loro precisione, grazie ad un metodo tradizionale; un 

approccio ancora più potente consisterebbe nell’utilizzare un modello di popolazione per 

stimare contemporaneamente sia gli indici di secrezione che sensitività, sia i parametri della 

loro distribuzione di popolazione, da cui ricavare le informazioni sul DI. 

 

Riassumendo, in questo lavoro si sono messi in luce i vantaggi dell’applicazione di approcci 

di popolazione nello studio nel diabete. Le potenzialità sono molte, dal miglioramento delle 

stime dei parametri individuali grazie all’uso dei prior di popolazione o di covariate e la 

relativa possibilità di mettere a punto protocolli di studio più leggeri, fino all’analisi di 

situazioni in cui la struttura gerarchica della variabilità è un aspetto cruciale. 
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Abstract 

 

Diabetes mellitus is not only a very serious disease, causing discomfort and pain to millions 

across the world, but with the aging of the population and the prevalence of a sedentary 

lifestyle, it is assuming the proportion of a real epidemic, becoming a public health and social 

emergency. In answer to this call, research on diabetes has been intensely carried out in the 

past decades and the knowledge and understanding of its etiology have been significantly 

improved. However, investigation is still ongoing, many important questions are still 

unanswered, and the causes eliciting the pathogenesis and progression of the diseases are not 

yet fully understood. During all these years of research, sophisticated tools have been 

developed to study the glucose-insulin metabolic system in vivo, and cope with the 

inaccessibility to direct measurement of some of the key phenomena underlying the glycemic 

control. Such tools, as complex test protocols and model-based approaches used to interpret 

the experimental data, have proven powerful weapons of investigation, but, considering the 

epidemic proportion of the disease, there is great demand for approaches that are less 

invasive, less expensive and therefore more suitable for large clinical studies. Mathematical 

and statistical techniques that collectively go under the name of “population approaches” have 

already been developed and are largely employed for pharmacokinetics and 

pharmacodynamics studies in drug development. However, in spite of their interesting 

potential, they have not found significant application yet in the context of metabolism 

research. Thus, investigation is required to probe the feasibility and relevance of such 

approaches in the study of diabetes. The research presented here addresses these issues, and is 

aimed at applying these sophisticated techniques to the modeling of glucose metabolism, first 

assessing the applicability of these approaches and tailoring them to the problem under 

investigation, then employing them to the analysis of data from population studies. 

First, a simulated but physiologically plausible dataset is created based on previous real data 

and employed as a benchmark to assess the applicability of population approaches to the Intra 

Venous Glucose Tolerance Test (IVGTT) minimal model of glucose disappearance.  

Various population algorithms have been proposed in the literature, therefore a thorough 

comparison of the available methodologies is performed, and a sparse data situation is 

replicated to test the robustness of these methods in such cases. The results select the First-

Order Conditional Estimation as method of choice and show its robustness to poor sampling. 

Then, a larger real dataset is employed and analyzed with the same techniques, this time 

assessing the quality of the results with a Monte Carlo sampling approach to profile the 

likelihood function. Then the population model is optimized, to provide a base model for the 

following covariate analysis. In fact, at the time of the experiments, demographic data about 
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the subjects has been collected, and the purpose of the covariate analysis is to determine 

whether some of these variables are significantly correlated with the model parameters and 

can be successfully used to explain part of the differences among the subjects. After a first 

exploratory regression analysis, different models are tested, integrating the most significant 

covariates directly as predictors into the model. In agreement with previous findings in 

literature, basal insulinemia, age and visceral abdominal fat are shown to be good predictors 

of insulin sensitivity and their introduction in the model is able to account for about a third of 

the between-subject variability of the values of this parameter. The use of covariates enhances 

the explanatory power of the model and opens the way for devising new lighter experimental 

protocols. One of the main benefits of the population approaches, in fact, consists in their 

ability to borrow information across the population and use it to improve the individual 

parameter estimates. As a result, the experimental protocols can be less demanding, both in 

invasiveness and economic cost, allowing in this way a broader use in large clinical studies. 

The results presented here, in fact, show that population approaches are very robust and able 

to cope with sparse data situations. In addition, the use of covariates in the model enhances 

even further the power of such techniques and makes them very appealing approaches to the 

study of glucose-insulin metabolism. 

In addition, a population approach is proposed to solve the problem of the estimation of the 

Disposition Index (DI) of glucose tolerance in a population. Since both insulin sensitivity and 

beta-cell response must be taken into account to assess the actual efficiency of the glucose 

disposal system, the DI was proposed to condense the information conveyed by both these 

parameters in a single value. Traditionally, approaches based on a geometrical fit are used to 

determine the value of DI in a population of subjects characterized by the same degree of 

glucose tolerance. However, all these methods rely on the assumption that all the subjects in 

the population share exactly the same value of DI and are therefore not able to account for the 

population variability, which is inevitably inherent to biological data. In this work, a 

NonLinear Mixed-Effects Approach is proposed to analyze the distribution of the insulin 

sensitivity and beta-cell response indices across a population, and then obtaining the 

information on the DI from the population features thus estimates. Comparisons on simulated 

datasets between the newly proposed method and its competitors prove that a proper model of 

the variability structure is essential to avoid severe bias in the estimates. 
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Chapter 1  

Introduction and Outline of the Work 

 

Population approaches are gathering growing interest as a valid alternative to 

traditional individual estimation methods, such as Weighted Least Squares (WLS), to 

biomedical model parameter estimation, especially in cases where a sparse sampling 

schedule or data with large variability make traditional paradigms inadequate to 

provide plausible estimates. In such cases, and if data are available in multiple 

subjects, population approaches are able to borrow information from the entire 

population and include it in the estimation procedure to improve individual parameter 

estimates. In addition, they are a very powerful research instrument to properly 

investigate and possibly identify the sources of variability in a population, making 

them a much more appealing approach than traditional statistical analysis of 

individual results. 

The population approach has become very common in pharmacokinetics and 

pharmacodynamics studies in drug development, but it is not as of now so widely 

used in the context of metabolic models, such as those representing the glucose-

insulin system, which have become a very precious tool for research about diabetes. 

In fact, the delicate metabolic system that ensures a stable glycemia is not only 

extremely complex, but the chemical pathways and tissues involved are hard to probe, 

and imply invasive experiments. In order to circumvent this lack of in vivo 

accessibility of significant variables, very sophisticated mathematical models for data 

analysis have been developed in the last decades, which have proved to the 

researchers very powerful instruments of investigation. Initially the experimental 

protocols, such as the euglycemic/hyperinsulinemic clamp, were very invasive, 

expensive and therefore unsuitable for epidemiological studies. Since the introduction 

and acceptance from the clinical community of protocols such as the intravenous and 

oral glucose tolerance test (IVGTT and OGTT), interpreted with the so-called 

minimal models, a much larger amount of data has become available, preparing the 

ground for the application of population approaches. The advantages are not only a 

deeper insight in the causes underlying population variability, but also the possibility 

of devising even lighter protocols. 

 

In this investigation, we assess the actual advantages of the application of population 

approaches to study of the glucose-insulin system in many ways. In Chapter 3, we use 
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simulated data to test the performance of different population methods when applied 

to the minimal model of glucose disappearance, and the behavior in both serial and 

scarce sampling situations is explored. In Chapter 4 we apply the methodology to a 

real dataset, and propose a population framework for the glucose minimal model of 

disappearance. This model is used as a base for the covariate selection process that is 

described in Chapter 5. At the time of the experiment, in fact, some demographic 

information was collected about the subjects such as age, gender, demographic 

measures and body fat distribution. In our work, the variables resulting more 

significantly correlated with the parameters are integrated in the model and are used 

to explain part of the between-subject variability, improving in this way the predictive 

power of the model. Finally, in Chapter 6, we propose a new population-based 

approach to tackle the problem of the determination of the disposition index. This is 

an important tool which is used to assess the efficiency of the overall glucose-insulin 

metabolic system by considering both insulin secretion and insulin sensitivity.  
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Chapter 2  

Background 

 

Physiological Background 

Glucose Homeostasis  

Glucose is the primary source of metabolic energy for the majority of cells, and the 

ability to access supply sugar is essential for the survival of cells and therefore, the 

entire body. In particular, some cells, such as neurons and erythrocytes, are almost 

totally dependent on it. The brain requires a reasonably stable glycemia for its normal 

functioning, to the point that blood concentrations of glucose of less than 30 mg/dl or 

greater than 300 mg/dl can cause confusion, unconsciousness and convulsions, 

possibly having extreme consequences such as coma and death. 

This is the reason why glucose, in various forms and compounds, is assumed with 

digestion, stored in the body, and constantly supplied, in the right quantity, to all the 

cells via the circulatory system. The glucose metabolic system is so complex and 

efficient that, in a healthy individual, glycemia is tightly regulated in the relatively 

narrow range between about 4 and 6 mM (mmol/l), 71 to 108 mg/dl. The normal 

blood glucose level is about 90mg/dl, so the normal total amount of glucose 

circulating in the blood of an adult male is, assuming an average blood volume of 5 

liters, about 4.5 g. Many are the causes that, in everyday life, perturb this delicate 

equilibrium, the most common physical exercise and the ingestion of a meal. After a 

meal, the glucose tends to fluctuate to higher levels, due to the gastric and intestinal 

absorption of carbohydrates of low molecular weight present in the diet or derived 

from more complex molecules. When this happens, a very complex chain of events is 

initiated, that tends to restore the normoglycemia. First, high levels of glucose per se, 

tend to inhibit the glucose endogenous production, which takes place in the liver and 

in the kidneys and is caused by the processes of gluconeogenesis (generation of 

glucose from non-carbohydrate carbon substrates) and glycogenolysis (production of 

glucose by catabolism of glycogen). This phenomenon is called glucose effectiveness. 

At the same time, the high level of glucose concentration activates an appropriate 

insulin response in the endocrine pancreas; the magnitude of the β-cell response to 

different levels of hyperglycemia characterizes the β-cell responsivity. The secretion 

of insulin and the consequent rise of this hormone’s level in blood enhance the effects 

already elicited by the hyperglycemia to suppress endogenous glucose production 

and, in addition, it increases the uptake and utilization of glucose in insulin dependent 
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tissues (namely liver, muscles and fat tissue cells). The actual promptness and 

efficiency with which the tissues respond to hyperinsulinemia is called as insulin 

sensitivity. 

Although a much more complex series of events at cellular and biochemical level is 

involved, a simple pictogram with a conceptualized depiction of the glycemic 

regulation process is provided in Figure 2.1. If any of the underlying processes is not 

working correctly, this can lead to disease. 

 

Diabetes Mellitus 

Diabetes mellitus is the name given to a number of metabolic disorders having as the 

most evident effect chronic hyperglycemia. The etymology of the word, in fact, refers 

directly to one observable result of persistent high levels of blood sugars. The word 

diabetes comes from Greek and it’s related to the concept of passing through (urine), 

whereas mellitus is Latin for sweet, so the word refers to polyuria (excessive 

urination) and glycosuria (presence of sugar in the urine), which were in antiquity the 

first and most easily detectable manifestations of the disease. Besides the 

abovementioned, other symptoms of diabetes include polydipsia (excessive thirst), 

unexplainable weight loss and blurred vision. On the long run, the effects of chronic 

hyperglycemia can be much more destructive: blindness, renal failure, increased risk 

of cardiovascular disease and peripheral neuropathy that can lead to ulceration and 

amputations. In western countries, the prevalence of diabetes mellitus has grown 

significantly in the last decades reaching a level of about 8%, a level that is expected 

to double in the next decades [2, 81], with severe consequences for public health and 

enormous costs related to its treatment.  

Even though hyperglycemia is the principal factor that all forms of diabetes have in 

common, there are distinct causes underlying the phenomenon, so diabetes is divided 

into categories according to the different etiopathogeneses. The most common types 

of diabetes (1 and 2) are briefly exposed in the following paragraphs. Extensive 

literature is available on diabetes, so it goes beyond the purpose of this work to give 

an extensive review of one of the most broadly studied disease in current medical 

research. However, a schematic description is provided, with a focus on the details 

pertaining the mathematical modeling, which is the main topic of this dissertation.  

 

Type 1 Diabetes 

Type 1 (also insulin-dependent or juvenile) diabetes accounts for about 5 to 10% of 

all cases [2] and is an autoimmune disease that causes the loss of pancreatic β-cells. 

The lack of the set of these specialized cells, which are the only secretors of insulin, 
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causes the absence of this hormone in the blood and therefore the substantial inability 

of the subject to avoid hyperglycemia. As already explained, in fact, even though 

glucose shows per se a capability of inhibiting its own production, insulin cannot be 

substituted as the main regulator of glycemia. This is why the treatment for this kind 

of diabetes includes insulin injection to compensate for the lack of endogenous 

insulin, thus the denomination Insulin Dependent Diabetes. The other formerly used 

name, however, juvenile diabetes, is somehow misleading in the sense that, even 

though the destruction of the β-cells happens in very young age, this is not always the 

case and the illness is nowadays recognized to be caused by both genetic and 

environmental factors.  

Even though there are ongoing studies aimed at finding a way to substitute the lost β-

cells, as of now, the process is irreversible and the only treatment consists in a 

balanced diet and administrations of insulin to maintain the glycemia in the desired 

range. 

 

Type 2 Diabetes 

Type 2 (or Non Insulin-Dependent) diabetes accounts for about 90 to 95% of the 

cases [2]. Rather than by the total absence of insulin, this form of diabetes is caused 

by the relative insufficiency of the hormone, whose quantity in the plasma is not 

adequate to maintain euglycemia. This does not imply that insulin levels in type 2 

diabetic patients are lower than normal; on the contrary, sometimes insulinemia is 

much higher than in healthy subject. The defect in the metabolic system is due to the 

low responsivity to insulin of the body cells. The following effects are present: 

insufficient inhibition of hepatic glucose production, low glucose uptake by muscle 

and adipose tissue, delayed and weaker response of β-cells to a hyperglycemic 

stimulus. This induced low responsivity to insulin of the body cells has been shown to 

be strongly correlated with obesity, sedentary lifestyle and age; however, ongoing 

studies are unearthing a genetic predisposition to type 2 diabetes. Since the described 

process is gradual and the onset of severe hyperglycemia is slow, many cases of type 

2 diabetes go undetected, to the point that it is estimated that about one third of cases 

is undiagnosed [19]. Insulin administration is normally not necessary with this form 

of diabetes, rather changes in dietary habits and lifestyle are prescribed to type 2 

diabetic patients and have been proven to slow down if not partly reverse the process 

of loss of insulin sensitivity.  
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Insulin Sensitivity 

As mentioned in the previous paragraphs, the capacity of insulin to regularize the 

level of glucose in plasma goes under the name of insulin sensitivity. However, this 

denomination encompasses a broad spectrum of phenomena and involves various 

organs in the body and many different biochemical pathways. On the one hand, 

glucose production is inhibited in the liver, so that both the processes of 

gluconeogenesis and glycogenolysis are slowed down and the storage of glucose into 

glycogen is stimulated. On the other, insulin binds to the receptors of muscle and 

adipose cells and initiates a cascade of biochemical events that increases their glucose 

uptake. It is not yet clear which of these metabolic pathways are mostly hampered in 

type 2 diabetes, but research is ongoing in this regard and aimed at understanding the 

causes underlying insulin resistance. So far, many factors have been found correlated 

with insulin resistance [41] are aging [20, 27], obesity [9] (and in particular body fat 

distribution [54, 57]), lack of exercise [36, 58] and pregnancy [16].  

 

β-Cell Function 

Although the actual process of insulin secretion is the result of a complex interaction 

of various factors, the ability of the pancreas to secrete insulin in an efficient fashion 

is denominated β-Cell Function or Responsivity. Many aspects are important in 

assessing the effectiveness of insulin secretion, the more relevant being the actual 

promptness with which β-cells react to a hyperglycemic stimulus and the amount of 

insulin secreted. In addition, it should be mentioned that liver extracts form the blood 

a great amount of insulin (~50%) even before it can reach the peripheral tissues, so 

this is another factor which must be taken into account. To circumvent this problem, 

scientists normally analyze the concentration in blood of C-peptide, a substance 

which is secreted equimolarly with insulin by the β-Cell, but is not subject to hepatic 

extraction and is therefore a better indicator of the pre-hepatic level of insulin. The 

secretion profile in response to an acute stimulus, such as an intravenous infusion of 

glucose, has been shown to be biphasic, with a first phase, in the first 5-10 minutes, 

characterized by an bolus-like secretion, followed by a second phase, in which a 

growing amount of insulin is released in a more continuous and regular fashion, until 

the glucose stimulus is removed. In the more physiologic context of a meal, where the 

glucose absorption in the blood is slightly delayed and more diluted in time, the 

insulin response still shows a similar trend, although the profile of secretion appears 

much smoother.  

In case of type 1 diabetes, the population of β-cells is decimated or totally killed by 

an autoimmune reaction, but this is not the only case in which the response of the β-
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cell becomes impaired. Degrade in β-cell function has been imputed to many different 

factors and research is ongoing in this respect. According to the glucotoxicity 

hypothesis, it is hyperglycemia itself the cause of the desensitization of β-cells [29], 

whereas the lipotoxicity hypothesis points towards high levels of Free Fatty Acids in 

blood as factors causing β-cell apoptosis [51]. Other explanations have been 

proposed, rising from the observation, in diabetic patients, of deposit of amylin (co-

secreted with insulin) that seems affects the number of β-cells in the Islets of 

Langerhans [39] or defects in the metabolic pathway leading to the synthesis of 

insulin [38, 80]. 

 

The Disposition Index 

The estimation of insulin sensitivity and β-cell function is very important and 

necessary to assess the overall efficiency of the glucose-insulin metabolic system, but 

the separate interpretation of just one of these two indices provides only a partial 

picture of the performance of the glycemic control mechanisms. The two parameters 

can assume different combinations of values and still produce a very similar 

promptness in the glycemic normalization response. In particular, the versatility of β-

cells is such that they are able to respond, within a certain limit, to the lowering in 

insulin sensitivity (due e.g. to pregnancy or obesity), and increase the quantity of 

insulin secreted, compensating in this way for the low efficacy of insulin itself. 

Therefore, a more comprehensive paradigm is needed to quantify the actual 

performance of the glucose controlling mechanisms in an individual. First proposed 

in 1981 by Bergman et al [12], and then reviewed and updated in 1993 by Kahn et al. 

[37], the Disposition Index (DI) is the most commonly used method to jointly account 

for insulin sensitivity and secretion. The original formulation, used by Bergman and 

colleagues (whose original chart is reported in Figure 2.2), defines the DI simply as 

the product of the two indices, in formulae: 

 = Φξ∆ ⋅  (2.1) 

where ∆  indicates the DI, ξ  is an insulin sensitivity and Φ  a β-cell responsivity 

index. Subjects with decreasing values of DI have a growing tendency towards 

impaired glucose tolerance and diabetes. The relationship has been baptized 

“Hyperbolic Law” by Kahn et al. [37], who also introduced an additional parameter 

α , accounting for the different leverage of the sensitivity and secretion indices in the 

calculation of the DI. The new formulation proposed is the following 

 = Φαξ∆ ⋅  (2.2) 
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Research is still underway as about which pair of indices used to quantify insulin 

sensitivity and secretion are more suitable for the calculation of DI and if the value of 

α  is actually significantly different from 1, but the DI paradigm is widely used to 

estimate the actual level of glucose tolerance in a subject and identify the possible 

defects either on the sensitivity or on the secretion side. A graphical representation of 

such use of the DI, with typical values found for different categories of subjects, is 

reported in Figure 2.3. 

 

Protocols and Methods for the Study of the Glucose Metabolic System 

In the previous paragraphs, we described the most important factors involved in the 

glycemic control system: insulin sensitivity and β-cell function. However, an 

objective quantification of these variables is not directly available via a simple 

measurement, as it is for blood pressure or white blood cell count. Although some 

researchers propose the use of mere measurements of basal glycemia and insulinemia, 

or indices calculated based on their values such as [79] and QUICKI [43], as 

indicators of the efficiency of the metabolic systems, these approaches provide rather 

limited information and, even if good correlation with other indices has been reported 

[79] they were not always found to be totally reliable [23]. The intrinsically dynamic 

nature of variables such as β-cell response, in fact, requires a more complex 

experiment to be analyzed, and that is the reason that led to the design of the so-called 

“Clamp” experiments”. 

 

The Euglycemic/Hyperglycemic Clamp 

First proposed in 1979 [28], these techniques employ a very invasive experimental 

setup, requiring continuous and adaptive infusions of both glucose and insulin, aimed 

at controlling (or clamping) glycemia at a target level, until the reaching of a steady 

state. In the euglycemic/hyperinsulinemic clamp, the level of glucose is maintained at 

physiologic levels 90 mg/dL, via a constant infusion of insulin (which stimulates 

glucose uptake and inhibits production) and a variable glucose infusion, tailored to 

guarantee the stability of the glycemic level. Blood sampling is very frequent and, 

after the steady state is reached, the flux of glucose injected is assumed to be 

equivalent to the tissues total uptake and is used as an estimate of insulin sensitivity. 

The hyperinsulinemic clamp, instead, provides also a measure of β-cell response. In 

this case, glycemia is clamped to an over basal level: first a glucose bolus is injected, 

and then a continuous glucose infusion, aimed at maintaining the desired glycemic 

level. Average insulin concentrations in the first 10 minutes and between 10-120 

minutes are used to estimate respectively the 1st and 2nd phase secretion indices, 
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whereas insulin sensitivity is estimated similarly to the other clamp protocol. Clearly 

these protocols are very expensive, invasive, require prepared technicians and are 

therefore not suitable for epidemiological studies. 

 

Model-based Approaches 

Also the clamp methods, though, even if they bring the system at a different steady 

state from the basal value, they just use a measurement or a derived quantity, as the 

estimate of insulin sensitivity or β-cell response. A different approach, instead, is 

used by the model-based methods. These methods rely on mathematical models of the 

system under study, and try to use the accessible information to measure the 

inaccessible portion [21, 74]. In the case of the glucose-insulin system, the accessible 

portion is the plasma, where glucose, insulin and C-peptide can be easily measured, 

but the aim of the study is to estimate some inaccessible information: the secretion of 

insulin and its effect on the tissues. Therefore an experiment is carried out to perturb 

the system or introduce a tracer, blood samples are collected and statistical 

assumptions are made for the noisy data. Then the model is used to explain the 

experimental data collected, and by doing these, the model parameter values are 

adapted to the observed system response, providing in this way the information about 

the inaccessible pool. In the study of glucose metabolism, the most popular 

approaches are represented by the minimal models, which will be used in this work 

and are explained in the following paragraphs. 

 

Intra-Venous Glucose Tolerance Test (IVGTT) 

Before explaining the models themselves, it is useful to give some details on the data 

on which they are used, and the experiment that produces them. 

The Intra-Venous Glucose Tolerance Test (IVGTT) [11] consists in an injection of a 

bolus of glucose (~300 mg/kg of body weight), and subsequent drawing of blood 

samples for the following 4 hours. A modification to the original protocol has been 

proposed with either a bolus of tolbutamide [82] or an infusion of insulin [33] at 

minute 20, so that, even in those subjects with insufficient insulin response, the 

estimation of insulin sensitivity is possible. The models used for the interpretation of 

the data are mainly two: the model of glucose disappearance [11] and the one for C-

peptide kinetics [67].  

 

Minimal Model of Glucose Disappearance 

A schematic representation of the model is provided in Figure 2.4. Glucose is present 

in a single compartment, the plasma (although this is a simplification of a two-
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compartment dynamics), and the fluxes in and out of this compartment represent the 

tissue uptake and the Net Hepatic Glucose Balance (NHGB), both controlled by 

insulin. To guarantee the identifiability of all the parameters in the model, however, a 

reparameterization is necessary that leads to the following equations:  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
2 2 -

G G b

I b

Q t S X t Q t S Q

X t p X t p S I t I

G t Q t V

 = − + ⋅ + ⋅ 

 = − ⋅ + ⋅  

=

�

�  
( )

( )

0

0 0

bQ D G V

X

= + ⋅

=
 (2.3) 

where D (mg/kg) denotes the glucose dose per unit of body mass, Q(t) (mg/kg) is 

glucose mass in plasma, G(t) (mg/dL) is plasma glucose concentration, I(t) (pmol/L) 

is insulin concentration, Qb, Gb and Ib are their basal values, and X(t) is insulin action 

(min-1). The model has then four uniquely identifiable parameters: SG (min-1), glucose 

effectiveness, SI (min-1 pmol-1 L), insulin sensitivity, p2 (min-1), the insulin action 

parameter, and V (dL/kg), the apparent glucose distribution volume per unit of body 

mass. SG is defined as the ability of glucose concentration per se to inhibit glucose 

production and promote its uptake, whereas SI is the ability of insulin to enhance the 

same processes elicited by SG. The pool of insulin actually performing the control 

action is not the one in the plasma, I(t), which is assumed as a known, error-free input 

(forcing) function, but rather the insulin in a remote compartment, which mimics the 

insulin concentration in the interstitial fluid. A limitation of the model consists in the 

fact that the parameter of insulin sensitivity does not distinguish between the effect of 

insulin on the liver or the tissues, but this simplification is necessary to ensure model 

identifiability. Another shortcoming of the model consists in the fact glucose 

measurements prior to about 8 minutes must be excluded from the fit. This is due to 

the fact that the 1-compartment kinetics cannot account for the quickest phase of 

glucose kinetics. This is another modeling compromise [18], necessary to guarantee 

the correct parameter identification, and it could represent a drawback if the scope of 

the investigation is, e.g., the effect of a drug on the quickest phase of glucose 

disposal. 

 

C-Peptide minimal model 

This model is not directly used in this work, so a thorough description is beyond the 

scope of this section. However, some of the parameters used in the definition of the 

Disposition Index are obtained with this model, so a brief overview is provided. 

A schematic picture of the model is provided in Figure 4.5. The model assumes the 

glucose profile as an error-free forcing function and fits the C-peptide data. C-peptide 

is used instead of insulin, because they are secreted equimolarly, but the former does 
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not undergo hepatic extraction as the latter. The two-compartmental kinetics is 

modeled using standardized parameters as proposed by Van Cauter et al. [72], while 

the purpose of the model is the estimation of the secretion profile. The model is 

studied on the above-basal state, meaning that all the system is considered at 

equilibrium before the beginning of the IVGTT experiment, and the effect of the 

disruption of this equilibrium on C-peptide (insulin) secretion is studied. The 

equations of the kinetics of C-peptide are:  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 01 21 1 12 2 1

2 21 1 12 2 2

0 0

 0 0

CP t k k CP t k CP t SR t CP

CP t k CP t k CP t CP

= − + ⋅ + ⋅ + =

= + ⋅ − ⋅ =

�

�
 (2.4) 

where 
ij

k  are the kinetics parameter (fixed at standard values, in min-1), CP1(t) and 

CP2(t) are the above-basal C-peptide picomolar concentrations respectively in the 

accessible and peripheral compartment and SR(t) represents the secretion rate (pmol 

L-1 min-1): 

 ( ) ( )SR t m X t= ⋅�  (2.5) 

 ( ) ( ) ( ) ( ) 00X t m X t Y t X X= − ⋅ + =�  (2.6) 

This is the amount of above-basal secretion reaching the accessible compartment. X(t) 

(pmol/L) represents the releasable C-peptide in the β-cells, whereas Y(t) (pmol L-1 

min-1) is the provision of new C-peptide. The initial amount of releasable C-peptide 

X0 is secreted immediately after the glucose bolus and is responsible for the first-

phase secretion, while the second and slower phase is caused by the provision Y(t). 

The provision is a process stimulated by the above-basal concentration of glucose in 

blood ( )( )bG t G−  in mmol/L and obeys the following equation 

 ( ) ( ) ( )( ) ( )0 0
b

Y t Y t G t G Yα β = − ⋅ − ⋅ − = 
�  (2.7) 

The provision will therefore tend with a time constant of 1 α  (min) to a steady-state 

value linearly related to the above-basal concentration by the parameter β  (min-1). 

The first- and second-phase secretion indices are then calculated from the model 

parameters. The first-phase responsivity, 1Φ  (dimensionless), is calculated as the 

ratio between the readily released C-peptide and the total increment of blood glucose 

that elicited the secretion: 

 0
1

X

G
Φ =

∆
 (2.8) 

The second-phase index, 2Φ (min-1) is already in the model as the parameter β , 

which modulates the stimulus of glucose concentration on the provision of new C-

peptide 
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 2 βΦ =  (2.9) 

Finally the two indices can be integrated into a unique parameter totΦ , summarizing 

the overall β-cell responsivity 

 
( )

1
2tot

b

G

G t G dt

Φ ⋅ ∆
Φ = + Φ

 − ⋅ ∫
 (2.10) 

 

Oral Glucose/Meal Tolerance Test 

Even though they are not directly treated in the present investigation, other protocols 

for the study of diabetes are used. The Oral Glucose Tolerance Test (OGTT) and the 

Meal Tolerance Test (MTT) are among those. The first consists in a oral dose (~75 g) 

of glucose assumed in the first 5 minutes of the test, whereas the second in a standard 

meal (10 kcal/kg of body weight) containing 45% carbohydrates, 15% protein and 

40% lipids, consumed in 10 to 15 minutes. Following the dose, blood samples are 

normally collected at 0, 30, 60, 90 and 120 minutes, even though alternative protocols 

have been proposed [15]. Many studies [48-50, 63], included some revised versions 

of the minimal models [15, 24], are available in the literature approaching, either in a 

model-based or a non-parametrical fashion, the estimation of insulin sensitivity and 

beta-cell response. 

 

Methodological Background 

Traditional individual ML approach 

Before exploring the advantages offered by the population approaches, it is 

interesting to review the traditional parameter estimation paradigm, which is used for 

fitting individual data.  

The parameter estimation process takes place once the experiment has been 

completed, the data collected and a model of the physiologic system under evaluation 

has been proposed. The aim of the procedure is finding the model output that better 

describes the collected data. This implies tuning the parameter values to generate a 

profile fitting the experimental observations.  

The most common approach is Maximum Likelihood (ML) estimation. With this 

approach, an assumption is made on the measurement error structure, and the 

observed data is interpreted as the noisy measurement of the model predicted value, 

which is a deterministic quantity depending only on the parameter values.  

In formulae, 

 ( ) ( ) ( ),j j jy t f t tε= +p  (2.11) 
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where ( )jy t represents the data sampled at time jt , ( ),jf t p  is the model prediction 

produced by the set of parameter p  and ( )jtε , is the random variable representing 

the measurement error. 

The probability distribution for the measurement noise can be freely chosen, but 

normally it is assumed as uncorrelated, normally distributed with zero mean and 

variance possibly dependent on the model prediction or the measured data. For 

example 

 ( ) ( )( )2 2~ 0, ,j jt N f tε σ p  (2.12) 

where σ  is a parameter to optimize. 

Under the assumptions of measurement noise in (2.12), the probability distribution 

for the observed data is Gaussian and thus 

 ( ) ( )( ) ( )( )11 1
, exp , ,

22

T
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− 
= − − − 
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In addition, being the errors on the different samples uncorrelated, the overall 

likelihood can be obtained as the product 
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If the data are considered as given, the probability distribution which arises depends 

only on the parameter values. Thus, the set of optimal parameter values is sought, that 

maximizes the probability (likelihood) of observing the data. After some 

simplifications, justified by the fact that points of maximum are not affected by 

monotone transformations the problem can be shown to be equivalent to 
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( )
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2 2
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 (2.15) 

So, in general, it is preferred to minimize the negative log-likelihood.  

 

Population approaches 

In epidemiological studies, when experimental data is available for a large number of 

subjects, the investigator is often interested not only in the individual estimates, but 

also on information about the population distribution of the parameters.  
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Standard Two-Stage (STS) 

The traditional approach to this problem consists in performing a basic statistical 

analysis on the individual results, obtained separately for each individual with the 

traditional ML approach. This methodology is often referred to as Standard Two-

Stage (STS).  

The first stage of the analysis estimates the individual parameter values, and in the 

second step, sample mean and covariance are calculated, as described in the following 

formulae 

 

( )( )

1

1

1

1

n
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n
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STS i STS i STS
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θ
n

θ
n

=

=

=

= − −

∑

∑

p

Ω p θ p

 (2.16) 

where i denotes the different subjects. 

STS is computationally inexpensive, but provides values which are known to be 

upwardly biased [25] and it does not take into account, for example, the precision of 

the individual estimates. In addition, the information about the population distribution 

does not play any role in the individual estimation procedure, and in this way a great 

amount of useful information is disregarded. In some cases, when individual 

experimental data is sparse of very noisy, the parameter evaluation may fail for 

several individuals, or provide imprecise estimates.  An alternative, called "naive 

pooling", consists in treating all data as coming from a single individual, but this 

methodology does not take into account properly (and therefore does not provide any 

estimate of) between-subject variability (BSV), and thus can be very misleading when 

used with models highly non-linear in the parameters and datasets characterized by 

large BSV. 

 

Global (GTS) and Iterative Two-Stage (ITS) 

More sophisticated methods have been designed to take into account the population 

characteristics and use them to improve the robustness and reliability of the individual 

results. A first examples are GTS and ITS, proposed by Steimer et al. [62]. 

These approaches both rely on the STS results as a starting point: the population 

mean ( STSθ ) and covariance ( STSΩ ), and the individual parameter values ip  and their 

uncertainty 1
iV− . Unlike STS, however, the population information is used to refine 

the individual estimates, which are consequently used to update the population 

parameters themselves, and the process is reiterated until a convergence criterion is 

met. 
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GTS employs only linear formulas. At each step, the individual parameter estimates 

are updated using the population parameters from the previous step ( (k)θ  and (k)Ω ), 

according to 

 ( ) ( )
11 1 1 1

i,(k 1) i (k) i i (k) (k)
ˆ Ω Ω θ

−− − − −

+ = + +p V V p  (2.17) 

where i denotes the individuals, so i,(k 1)p̂ + represents the updated individual estimates 

for the parameters of the ith individual. Once the individual estimates have been 

updated, new population values are obtained as follows 

 
n
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This procedure is repeated until convergence. An easy interpretation of the formulae 

can be seen by manipulating (2.19) and obtaining 

 ( ) ( )1 1
i i,(k 1) i (k) i,(k 1) (k 1)

ˆ ˆV p p Ω p θ− −
+ + +− = − −  (2.20) 

From this notation, it can be seen how GTS balances the individual estimation 

uncertainty of the STS estimates, with the deviation from the population typical 

values. 

GTS uses only linear operations, so the computation is very fast. Its main drawback is 

that the ML individual estimates and their precision must be obtainable for each 

subject, which might not be the case if data are sparse. 

ITS, instead, uses a Maximum A Posteriori (MAP) Bayesian estimation to update the 

individual parameters. The population mean and variance are used to define a 

Gaussian prior probability distribution for the parameters, and the probability of the 

parameters belonging to this distribution is maximized jointly with the likelihood 

arising from the adherence of the model prediction to experimental data, (e.g. (2.14)). 

At each step, the population prior assumes the form 

 ( ) ( ) ( )1
,( 1) ,( 1) ( ) ( ) ,( 1) ( )

( )

1 1
, exp

22
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i k i k k k i k k

k

h θ θ θ
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−

+ + +

 
Ω = − − Ω − 

 Ω
p p p  (2.21) 

and therefore the new likelihood function taking into account the population prior and 

the experimental data can be written as 

 ( ) ( ) ( ),( 1) ( ) ( ) ,( 1) ( ) ( ) ,( 1), , , , ,i k k k i k k k i kL θ Ω h θ Ω lσ σ+ + +=y p p y p  (2.22) 

In the individual step, the population parameters are fixed, so these likelihood 

functions (one for each individual) are maximized only in the individual parameters, 
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obtaining their estimates ,( 1)
ˆ

i k +p  and their precision i,(k 1)V + . These values are then 

used to update the population mean and covariance 
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ITS suffers initially from the same weaknesses as GTS, but the subjects for whom the 

individual ML values are not available can be reintroduced into the analysis in a 

second step. On the other hand, it is much more computationally cumbersome than 

GTS, as the MAP step is nonlinear and requires therefore much more calculations 

than GTS’s linear formulas do. 

 

Nonlinear Mixed-Effects Models (NLMEM) 

Another approach is represented by the NLMEMs. These methods make some 

assumptions on the structure of the variability in the data, from which arises a 

population likelihood function that is maximized in order to obtain the optimal 

population parameter values. In other words, NLMEMs are very versatile and allow 

the designer to define various structures of the Between-Subject and Residual 

Unknown Variability; an appropriate probability distribution can be assumed for each 

parameter and for the concentrations’ remaining unexplained variability (a mixture of 

measurement error and other, unforeseen error sources).  

The individual parameters are assumed to be dependant on some features that do not 

vary across the population (the so-called fixed effects denoted θ ) and some 

individual-specific factors (the random effects denoted iη ). This can be written as: 

 ( ),i iθ η=p d  (2.24) 

The random effects are assumed normally distributed, with zero mean and variance 

Ω , but the modeler is granted flexibility in the definition of the function ( ), iθ ηd , 

which can also incorporate other factors such as physiological information about the 

subject (e.g. body height and weight). This makes the NLMEMs very appealing and 

allows easy incorporation of covariates in the model.  

Very commonly the model is nonlinear in the parameters, and one step of the 

likelihood evaluation requires a marginalization (an integral operation) along the 

random effects, which is in general not analytically solvable and therefore 

computationally very intensive. More specifically, the contribution of the ith 

individual to the likelihood function assumes the following form 
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( ) ( )( ) ( ) ( ), , 2 log , , 2 log , ,i i i iL θ Ω Σ p θ Ω Σ l η Σ h η θ Ω dη

+∞

−∞

 
= − = −  

 
∫y y y  (2.25) 

where ( ),il η Σy  is the likelihood of the individual parameter given the data, and 

( ),h η θ Ω  is the population probability distribution of the parameters. All the 

individual contributions to the likelihood, homologous to (2.25), are multiplied 

together to obtain the overall population likelihood, which is generally nonlinear also 

for the population parameters. Thus, a numerical maximization approach like 

Newton-Raphson is normally used, which requires many evaluations of the likelihood 

function and its gradient. For each of these evaluations, the solution of the 

multidimensional integral is necessary, and this must be repeated for each of the 

subjects. Several approximations to the integral have been proposed to render the 

calculation more tractable. The most widely used approximations were developed by 

Beal and Sheiner at UCSF [7], and were made available in their software NONMEM 

[8]; they are the First-Order (FO), the First-Order Conditional Estimation (FOCE), 

and the Laplace approximation (LAP). The first is based on a first-order Taylor series 

linearization of the individual model around the population mean (all =0iη ), whereas 

in the second the first-order approximation is performed separately in each subject 

around a properly individualized parameter estimate ( ˆ=i iη η ). LAP also performs an 

approximation around each subject’s individual parameter estimate, but this is built 

on second-order numerical derivatives. More details on the approximation can be 

found in Bauer et al [6] 

After the optimal population parameter values have been obtained via ML, they are 

used as a prior to perform a MAP Bayesian estimation of the individual parameters. 

This is the so-called post-hoc step. 

Among the advantages of NLMEMs with respect to the Two-Stage methods are the 

greater flexibility in designing the hierarchical population variability and the fact that 

it is not necessary for the individual estimates to be obtainable in the traditional sense 

for all subjects. On the other hand, Nonlinear Mixed-Effects approaches require long 

computational times and a certain expertise for the implementation. 

In chapter 3, the performance of these methods when applied to the glucose minimal 

model is assessed. 

 

Monte Carlo profiling of the likelihood function 

Alternative approaches to the solution of the integral step contained in the population 

likelihood function are represented from sampling techniques. Instead of 
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approximating the integral, this can be evaluated by means of sampling algorithms, 

which extract a large number of random samples from the distribution and provide an 

estimate of the non-approximated likelihood value. The necessary number of samples 

and computational time are very large, and this methodology is then unsuitable to be 

used inside the minimization algorithms, where a large number of likelihood 

evaluations are necessary while exploring the function domain to find the minimum. 

However, these sampling techniques can be used to assess the goodness of the 

solution reached by the approximated methods. The objective function can be 

evaluated at the approximated optimal value and in its surroundings, testing both the 

accuracy of the approximation, and the local precision of the parameter estimates. 

In Chapter 4 this technique is used to test assess the goodness of the solutions 

provided by the different methods and evaluate the precision of the estimates of the 

population parameters. 

 

Integration of covariates in the model 

As already mentioned, one of the main advantages of the NLMEM approach consists 

in the possibility to incorporate covariates into the model. These are physiological 

characteristics of each subject that can be used to explain part of the Between-Subject 

Variability (BSV) in the model parameter values. Once the statistically significant 

correlations have been recognized and the nature of relationship between the model 

parameters and the covariates has been assumed, the regression coefficient can be 

inserted in the model along with the other the fixed effects and their value will be 

optimized together with the other ML population parameters.  

In Chapter 5, we operate a covariate selection for the glucose minimal model, and 

then propose a model integrating several physiological variables. 
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Figure 2.1 Conceptualized scheme of the glucose-insulin system, adapted from [22]. 
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Figure 2.2 Original figure from [12], depicting the proposed hyperbolic relation 

between Insulin Sensitivity and Secretion. 
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Figure 2.3 Example of the application of the DI paradigm, Figure from [40]. 

Different categories of subjects are ranked according to their DI value. The categories 

here represented are Relatives of Type 2 Diabetic Patients, women affected by 

Polycystic Ovarian Disease (PCO), subjects Impaired Glucose Tolerance (IGT), 

women formerly affected by Gestational Diabetes (GDM), Elderly Subjects and Type 

2 Diabetic patients.  
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Figure 2.4 Representation of the glucose minimal model. This is the original set of 

parameters, which, once simplified, yields the identifiable parameterization described 

in the text. Figure from [18]. Insulin, from a remote compartment, influences glucose 

controlling both the Net Hepatic Glucose Balance (NHGB) and the tissue uptake. 
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Figure 2.5 Schematic representation of the C-peptide minimal model, as represented 

in [68]. The section on the right corresponds to the C-peptide kinetics, whereas the 

section on the left represents the secretory component of the model. 
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Chapter 3 

Population Approach to Improve IVGTT Glucose 

Minimal Model Parameter Estimation: a Simulation 

Study in Intensive and Sparse Sampling. 

 

Overview 

As mentioned in the introduction, IVGTT minimal model parameters are commonly 

estimated by Weighted Least Squares (WLS) on each single subject data. Sometimes, 

with sparse data, individual parameters cannot be satisfactorily obtained. This is what 

led us to probe the advantages of a population approach. However, several 

methodologies are available, and these approaches, even if very wide-spread in drug 

development studies, have not been applied in the context of metabolic models. 

Therefore, before starting our analysis, we decided to perform some tests, both to 

assess the reliability and advantages of the population approach vs. the traditional 

WLS, and to perform a comparison between the different methods, as to balance the 

benefits and drawbacks of each one, choosing the most suitable for the purposed of 

our analysis. The work described in this chapter is then a sort of a benchmark. We 

first performed the analysis in an intensive sampling situation, and then we reduced 

the number of samples in the dataset, with the purpose of testing the robustness of a 

population approach when dealing when sparse sampling. In order to perform an 

objective comparison (both among the different methods and among the results on the 

intensive and the sparse sampling situation) we needed to know the real values of the 

parameters, so that there was a gold standard to which the estimates could be 

compared. For this reason, we created and used a simulated dataset, but the set of 

parameters we used in the process was obtained from a real population, so that the 

data was fairly similar to real case-study. Our results reveal the advantages of a 

population approach with respect to the traditional individual WLS estimation 

paradigm even when the sampling scheme can be considered satisfactory. These 

benefits become more appreciable when the paucity of data becomes an issue: in 

these cases, WLS does not allow a proper estimation, whereas population paradigms 

make up for the scarcity of individual data by borrowing information from all the 

subjects. In particular, we found the NLMEMs to be more robust than ITS and GTS 

and less prone to the exclusion of very poorly sampled subjects, which affects TS. 

FO’s approximation, however, seems to be too poor to cope with the nonlinearities of 
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the minimal model and with the large population variability which was characterizing 

some of the model’s parameters. Both FOCE and LAP, instead, provided accurate 

results, but the latter proved computationally slower and required a tedious effort to 

tune the initial estimates, without really yielding much more accurate estimates. 

FOCE resulted therefore as the best choice. We then tested optimal setups of the 

population covariance matrix and concluded that neglecting the least significant off-

diagonal terms, not only simplifies the population model, but also improves 

individual parameter estimation. 

 

Introduction 

Glucose effectiveness (SG) and insulin sensitivity (SI) are two important metabolic 

indices used in clinical and epidemiological studies of diabetes and hyperglycaemia. 

Estimates of SG and SI from an intravenous glucose tolerance test (IVGTT) are 

usually obtained by using the single-compartment minimal model method [11]. 

The traditional estimation paradigm is rooted in a Weighted Least Squares (WLS) 

approach applied on the experimental data of each single subject. Very often, in 

epidemiological studies, it is of interest to obtain also a description of the parameter 

distribution across the population. This information can then be either used as a 

Bayesian prior to facilitate the parameter estimation in further subjects, or for 

subsequent studies aimed at investigating the underlying biological reasons for 

parameter variability. Most frequently, this information is obtained by straightforward 

sample statistics (mean and covariance) on the individual parameter estimate set, 

following the Standard Two-Stage approach. This method does not account for 

individual parameter precision and is known to be prone to an upward bias in the 

estimation of population variance [25]. While this approach generates population 

statistics, the estimation process takes no advantage from the individuals’ ensemble: 

no information is borrowed across individuals, and each subject is treated separately. 

The unintended consequences of this are that a potentially influential amount of 

information is discarded. The analysis of the parameter distribution in the population 

is carried out in a separate step, executed a posteriori, and the estimates of the 

population statistics play no role in the individual analysis. 

Moreover, this traditional approach is feasible only in a data rich situation, i.e. a 

satisfactorily abundant sampling schedule for each subject. In case of more sparse or 

noisy data, the traditional individual approach may fail in some subjects, yielding 

unreliable or unrealistic (e.g. SI virtually zero) estimates [55]. Bayesian approaches 

have been shown to be less prone to these kinds of estimation difficulties [45, 46, 56, 

60], but they require independent (at least approximately) a priori statistical (i.e., 
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mean, variance, covariance) knowledge on the model parameters, which is not always 

trivial to obtain. 

Our purpose in this work is to evaluate the effective advantages of population 

approaches, which take into account the population structure when analyzing the data 

and simultaneously yield individual results and estimates of the population features. 

As already mentioned in Chapter 2, one family of these approaches is represented by 

iterative methods, such as ITS [6, 62, 73] and GTS [25, 62], which alternate 

recursively an individual and a population optimization phase. Both these Two-Stage 

(hereinafter TS) approaches need an individual estimate and its precision for each 

single subject to be available, but this might be difficult to achieve in case of sparse 

data. As we have seen in Chapter 2, another solution is provided by NonLinear 

Mixed-Effect Models (NLMEMs), which consist in maximizing a complex 

population likelihood. Due to the high computational price or even the unfeasibility 

of an exact solution, different approximation algorithms are used. 

Population approaches to minimal model parameter estimation have been proposed 

before. To the best of our knowledge, the first report is by De Gaetano et al. [26], 

where NONMEM was used to fit a tolbutamide-modified IVGTT in 20 subjects. 

Vicini and Cobelli [73] used the ITS approach in 16 subjects studied with a standard 

IVGTT. Agbaje et al. [1] used a Bayesian hierarchical method on 65 insulin-modified 

IVGTTs. More recently Krudys et al. [44] tested both ITS and FOCE on 235 subjects 

given a tolbutamide-modified test. All these contributions focused on a single or few 

population methods applied to real data. Therefore, the true parameter values were 

unknown in all these studies and no unambiguous assessment could be done of the 

results provided by the population methods, except by comparing them to the 

traditional STS. This is a limitation, because STS results, even in a data rich situation, 

might sometimes carry a certain amount of uncertainty. The only other work to 

confront the problem with a simulated dataset is Erichsen et al. [31] which considers 

the performance of ITS, Bayesian hierarchical MCMC and FOCE on 40 simulated 

insulin-modified IVGTTs.  

Our work develops on the concepts introduced by Erichsen et al., limiting our 

performance analysis to parametric methods. We believe this is a more unequivocal 

comparison, due to the fact that no hyper-priors are required in any case. In addition, 

we included other parametric methods such as GTS, FO and Laplace approximations; 

we explicitly addressed the assessment of the robustness of methods by simulating a 

data-poor environment; and we tested different setups for the population covariance 

matrix (full, diagonal and block matrix). All the algorithms have been run first on the 

full dataset to test their performance. Subsequently, the dataset was progressively 
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reduced (by 50% and 75%) and the analysis was repeated in order to asses the 

robustness of the estimates yielded by the different approaches. 

For all our analyses we used the System for Population Kinetics [66] 

 

Materials and methods 

Synthetic Data 

In order to ensure plausibility of data, we obtained our simulated dataset by using as a 

source data from a real IVGTT dataset. The dataset was previously described in [4, 

5], a study in which insulin modified IVGTT (dose 330 mg/kg glucose at time 0, 0.02 

units/kg of insulin at time 20) was performed on 204 healthy subjects, grouped in two 

main clusters according to their age. We chose to use the data from the group of 

young subjects, so 58 individuals (mean age 23±3 and mean BMI 24.5±2.9 kg/m2) in 

the Clinical Research Center at the Mayo Clinic, Rochester, MN, USA. Blood 

samples were collected at -120, -30, -20, -10, 0, 2, 4, 6, 8, 10, 15, 20, 22, 25, 26, 28, 

31, 35, 45, 60, 75, 90, 120, 180 and 240 min for measurement of glucose and insulin 

concentrations. 

The process used to generate our simulated dataset was the following. First of all, the 

individual parameter values of each subject were estimated by means of the 

traditional WLS approach [3]. Once the individual values had been obtained, they 

were considered as true and used to generate new glucose concentration profiles using 

the individual insulin curves of the real dataset as forcing functions. Measurement 

noise equal to 2% or 5% of the simulated concentration value was added to the 

profiles. Hereinafter, these two simulated datasets will be referred to as Dataset A2 

and Dataset A5. Because the simulated data are being fitted with the same model used 

to generate them, the simulations we are considering have no model error. 

 

Undersampling of the dataset 

In order to assess the robustness of estimates, the simulated datasets A2 and A5 were 

reduced by discarding glucose samples at random. In particular, approximately half of 

the samples were discarded from A2 and A5 (Datasets B2 and B5), then a quarter of 

the remaining samples was removed further (Datasets C2 and C5). The probability of 

each sample to be discarded was assumed to be 50%. Because removal was random, 

some individual data profiles were more affected than others. This choice leads to a 

situation common in practice in pharmacokinetics and pharmacodynamics studies: the 

information about some subjects might be very rich, while for others the sampling 

might be so unsatisfactory that individual estimates are impossible to obtain with the 

traditional estimation paradigm. The insulin concentration data are used in the model 
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as a forcing function and insulin was not undersampled. While this situation does not 

realistically reflect a practical experimental setting, where both glucose and insulin 

would be undersampled, here our purpose is the comparison of estimation methods 

and we focus our attention mainly on the effect of sparse glucose sampling. This is 

because glucose is the fitted dataset, while insulin is considered a forcing function in 

the minimal model. Moreover, because of the exogenous bolus of insulin injected 

during the IM-IVGTT protocol, the random discarding of insulin samples could yield 

very diverse outcomes (such as e.g. if in a subject the insulin infusion were totally 

missed by the sampling). Thus, it would be necessary to examine the individual 

results, as they would be subject-dependent. We decided to focus our analysis here on 

the method comparison. However, in order to gauge whether our results could be 

extended to a case where also the insulin samples are missing, we performed some 

test also with a Reduced Sampling Schedule (RSS) proposed by Steil et al. [61], 

discarding, in this case, also the insulin information. 

 

Population Modeling Assumptions 

We built the population model in the following way. Considering the ith individual, 

the model takes the general form: 

 ( )( ),i i iθ η= +y f d ε  (3.1) 

where iy  is the data profile of subject i and iε  is the corresponding measurement 

error assumed to be normally distributed with zero mean and standard deviation 

described, in accordance with the standard minimal model identification approach 

 ( )( )2
~ N 0,ij ijyε σ ⋅  (3.2) 

with σ (proportional error variance) being an additional parameter to estimate. This 

stage of the population model deals with the variability in the data due to 

measurement and model error, in the population analysis jargon, this is referred to as 

Residual-Unknown-Variability (RUV). Parametric mixed-effect modeling requires to 

postulate at least some characteristics of the population probability distribution for the 

random effects (e.g. whether it is Gaussian or lognormal). We assume the random 

effects to be independent, with 

 ( )~ 0,iη N Ω  (3.3) 

with ΩΩΩΩ being a positive definite covariance matrix. This second stage of variability, 

due to the differences among individuals, is called Between-Subject-Variability 

(BSV). In order to ensure the positivity and therefore the physiological plausibility of 
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parameter estimates, the parameters were described by the use of the following 

equation 

 ( ) ( ) ( )i i iexp = exp expθ η θ η= + ⋅p  (3.4) 

which implies a lognormal population distribution for the minimal model parameters 

and requires log-transformation of the original parameters. This assumption was also 

supported by the statistical analysis of the distribution of the individual parameters 

calculated with the traditional WLS methodology from the original dataset. In our 

dataset, potential outliers were detected among the WLS estimates. If these very few 

values (none for V, one for SG and five for SI parameters) are not considered, the 

Kolmogorov-Smirnoff test, run on the log-transformed parameters, detected departure 

from log normality only for p2 (p=0.016). In the simulations, they were intentionally 

left in the dataset to test the behavior of the population algorithms in presence of 

atypical individual values. 

The standard interpretation of STS, ITS and GTS implies a Gaussian distribution for 

the parameters. Thus, in order to make the analysis coherent with our assumption of 

log-normality, we performed all the TS analyses on the natural logarithm of the 

parameters. This design choice yields results consistent with our assumption and 

allows us to compare the results produced by both TS and NLMEM. 

 

Algorithms used 

As a first step, we applied the traditional WLS estimation approach, referred to as 

STS. Then we used ITS and GTS, and finally, we applied the NLMEM approach 

testing the different approximations: First Order (FO), First Order Conditional 

Estimation (FOCE) and Laplace (LAP) In addition, for these last three algorithm 

implementations, SPK allows one to choose whether to neglect all or some of the off-

diagonal terms of the parameter covariance matrix, assuming therefore no correlation 

between selected parameter pairs. This simplification reduces the number of 

parameters, at the expense of model flexibility. Thus, after comparing all the 

algorithms with a full covariance matrix setup, we moved on to test different 

population covariance matrix setups to assess the effective statistical significance of 

the parameters in the model. Details about the different algorithms employed can be 

found in Chapter 2. 
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Analysis of Results 

In order to display and examine the population analysis results in a way that is 

compatible with previous literature and the original parameter units, we decided to 

transform the θ results for each parameter as follows: 

 ( ) ( ) ( ) ( )2 2exp , exp , exp , expSG SG p p SI SI V Vµ θ µ θ µ θ µ θ= = = =  (3.5) 

and to calculate the following values 

 2 2, , ,SG SG p p SI SI V Vδ ω δ ω δ ω δ ω= = = =  (3.6) 

where ωp is the element on the diagonal of Ω corresponding to parameter p. These 

values, obtained with each of the methods, were then compared with their “true” 

value: respectively, the geometric sample mean and standard deviation of the true 

individual parameters. The choice to use these two parameters for the comparison is 

due to readability purposes: µ and δ correspond (and are therefore dimensionally 

similar) to the typical parameter values, and their CVs (since, conditional on a log-

normal model for BSV, the elements of Ω relate to squared CVs, at least 

approximately). The percentages of discrepancy between the estimated and the true 

values are shown in Tables 3.2-3.4-3.6.  

The goodness of the individual estimates was instead assessed by the square Root of 

the Mean Square Error (RMSE):  

 
( )

2

1

ˆN
i i

i

p p
RMSE

N=

−
= ∑  (3.7) 

where ip  is the true parameter value for subject i, ˆ
ip  its estimate, and N is the 

number of subjects in the analysis. This number was sometimes smaller than 58 due 

to the exclusion of some subjects (for example, when individual estimates would fail 

in ITS, GTS and LAP). For readability purposes, these values were indicated as 

percentages of the true population mean of each parameter. 

In order to streamline the comparison across the different methods we defined a 

cumulative index (“discrepancy index of individual estimates”, DIIE) to combine the 

results for each parameter together, and thus make them more readable. We decided 

to use a weighted mean which reflects the relative importance to the physiologist of 

each of the parameters: SI was assigned a weight of 0.5, SG 0.3, and p2 and V 0.1. 

DIIE is used to compare in a more straightforward way the performance of the 

various algorithms and is reported in the last column of each table. Despite being 

heuristic, this proposed index allows us to summarize the results in a more effective 

way than reporting results for each single parameter. 
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Results 

Full Dataset (A2 and A5) 

The results obtained with dataset A2 and A5 are contained in Table 3.1. First of all, it 

should be mentioned that all the methods were successful on datasets A2 and A5. No 

subjects had to be excluded from the analysis and using the STS values as initial 

estimates for the other algorithms was almost always sufficient to get the desired 

procedure to run smoothly. The only exception was LAP, which required more care 

in the choice of the initial values, and for which the FOCE final values were used. 

Analyzing the estimates of the population typical values (i.e. µ, the exponential of the 

geometric mean of the fixed effects estimates), we can see that, in general, all 

methods provide results coherent with the ones that were used for the simulation. The 

only exceptions is FO, which overestimates µSG and µp2 (respectively more than 7% 

and 16%) and underestimates SI (about -36%). The results yielded by the other 

methods are all affected by a much smaller error, which is almost never over 5%. The 

parameters whose mean is estimated more precisely are V and SI, whereas SG and p2 

are affected by a slightly larger error. The population variability was estimated less 

precisely by the various algorithms in dataset A2. Almost all methods heavily 

underestimated δSG (by 20% or more) with the exception of FO, which surprisingly 

performs best with respect to this particular parameter, and STS, which produces an 

overestimate by 90%. δp2 presents a very similar pattern, but less accentuated: all 

methods tend to underestimate its variability, with the exception of FO and STS, 

which respectively slightly and severely overestimate it. FO, on the other hand, is the 

only method to overestimate, and heavily (~38%), δSI, which is instead very well 

evaluated by all the other methods. This may be explained by the large BSV in SI, as 

it is well known that the FO approximation performs poorly in the presence of large 

variation among subjects. The original parameter values from which the simulation 

was created belong to a reasonably “homogeneous” dataset of healthy young subjects; 

nonetheless, for some parameters like SI and p2, remarkable population variability is 

present in the data. As a consequence, we suggest that the use of FO with the minimal 

model should be discouraged because unreliable even in presence of intensely 

sampled data. It is possible that the linearization carried out by this algorithm is too 

simple to cope with the complex non-linearities of the minimal model. These 

considerations are confirmed by the analysis of dataset A5, where STS and FO 

provide once again the worst performance. In particular, the expected amplification of 

population variability following higher noise in the data can be seen in the STS 

results. It is also interesting to note the increasing difficulty to estimate well the 
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minimal model fractional rate parameters, SG and p2. Because these are essentially 

exponential decay rates, one of glucose and the other of insulin action, it would be 

expected for them to be very sensitive to noise levels in the data. On the other hand, 

SI, which is an “area” parameter, seems to be more robust to high noise, 

notwithstanding the poor performance of FO for this metabolic index. 

From the analysis of the individual results, contained in Table 3.2, all methods 

demonstrate similar performances as far as individual estimates are concerned for 

dataset A2. This is not unexpected, since the noise level is low and the intensive 

sampling schedule obfuscates the effect of a misspecified population prior. All the 

methods estimate well V and SI, whereas SG and p2 have a RMSE percent of more 

than 14%. This means that, in general, these two parameters are the ones whose 

estimates are on average more distant from the true values. It is worth mentioning that 

the parameters which are more poorly estimated in this analysis are the same whose 

estimates, obtained with the traditional WLS approach, are affected on average the 

largest estimation uncertainty (CVs about 18% and 22% for SG and p2 respectively, 

compared to about 3% for both SI and V). Therefore it is not surprising that also in 

this analysis they are the ones afflicted by the greatest error. Remarkably, anyway, the 

population approaches all performed slightly better than the mere traditional 

approach, represented by STS. The improvement is not substantial, but the gap due to 

the positive effect of the information borrowed across the population is expected to 

grow with the paucity of data. Dataset A5 shows that the impact of more than 

doubling the noise level is significant, and differences begin to widen. The TS 

methods (especially STS) appear more sensitive to high noise levels, and FOCE and 

LAP performances become measurably better than the other methods. As we 

mentioned, the poor performance of STS with richly sampled data casts fundamental 

doubts on STS as a gold standard procedure. 

 

Undersampled Datasets (B-C) 

From the analysis of the results obtained on dataset A2 and A5, it emerges that the 

benefit of population approaches can be already appreciated with rich sampling, 

although this may be due to a few very badly estimated subjects. However, the aim of 

this work is to assess the advantages of this technique in noisy, undersampled data. 

Let us then analyze the results from datasets B2 and B5 contained in Tables 3.3 and 

3.4 respectively. 

Running on dataset B2, the population methods perform much better than STS, both 

in estimating the population and the individual parameter values. The NLMEM 

methods, GTS and ITS yield more precise estimates of SG and p2’s variability than 
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STS does. Based on dataset B5, the gap between STS and all the other methods 

broadens; also, FO performance is stable and comparable to other methods: as the 

number of individual samples decreases, a first-order linearization will be less 

dramatic than when substantial numbers of data are available for each individual. 

Also, at the individual level (Table 3.4), the STS estimates are much less accurate 

and, in this case, there also emerges a gap between NLMEMs and ITS or GTS. SI is 

estimated with similar precision by NLMEM, ITS and GTS (with a RMSE of ~7%, 

whereas STS reaches 292%, even though this is partly due to several very poorly 

estimated subjects), but the values of SG and p2 produced by NLMEM appear more 

accurate than the ones obtained with any TS method (~20% and ~24% compared to 

~28% and ~31% respectively).  

If the paucity of data is further increased (25% of the original samples), the situation 

becomes very critical (Table 3.5 and 3.6). In the very data-poor framework depicted 

by datasets C2 and C5, some subjects were left with just 2 or 3 samples each, and this 

does not allow a proper individual estimation of both the parameter values and their 

precision with the traditional WLS paradigm. For this reason, some issues were 

encountered with STS and ITS, which were resolved by removing one subject, 

whereas a large amount of subjects had to be excluded from the GTS analysis. The 

reason for this exclusion was almost always the unavailability of the WLS precision 

estimates, which are necessary in the GTS algorithm. Looking at the results, it 

emerges that FOCE and LAP estimates prove definitely more robust and more precise 

than STS, both on a population and on an individual parameter level. The NLMEMs 

also prove more versatile than the TS methods, which encounter difficulties for the 

subjects whose sampling schedule is particularly poor. It is also interesting to have a 

visual representation of the behavior of STS and FOCE individual estimates when the 

data are very scarce. In Figure 3.1 and 2.3, the individual estimates for SG and SI are 

compared with the true values. Please note that for these data, another model for the 

covariance matrix was used, as explained below. The traditional approach (STS) 

produces a certain number of spurious outliers which are not present in the original 

dataset or in the solutions provided by the other methods. This happens because the 

discarding of random samples can drive the traditional WLS method to yield non-

physiological values, which cannot be corrected unless additional information (such 

as from the population) is provided. On the other hand, when using a population 

method in a very data-poor situation, the population information plays a strong role 

and this can have the side-effect of shrinking the individual parameter values towards 

the population mean. This effect increases with growing data scarcity, so in general 

the population methods tend to absorb the outliers into the population main cluster. 
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This phenomenon is clearly shown in Figure 3.1-3.2: STS estimates tend to be 

scattered, whereas FOCE tends to keep the values clustered around the population 

mean, sometimes even excessively, like in the case of SG (Figure 3.1). SI seems 

instead to be reliably estimated also if the data are very scarce. Figure 3.3 offers an 

even clearer depiction of how the values of this parameter are biased towards the 

population mean as a consequence of data scarcity or poor quality. The displayed 

results refer to dataset C2 and C5, so a heavily undersampled situation, however it 

can be noticed that the regression of the values towards the mean is limited, 

suggesting that the population approach does not hinder the detection of outlier values 

for SI. As already mentioned, the situation is different for SG, with respect to which 

the model proves less sensitive. In the case of dataset C5, where the sampling 

schedule is very scarce and the level of noise in the measurements is high, the 

information in the data does not allow the proper estimation of SG (as indicated by the 

negligible R2 value). Therefore, if the only value of interest is SI, the model can be 

simplified by neglecting the BSV for SG, assuming that all the subjects share the same 

value of glucose effectiveness. The results are not reported here, but, with our data, 

this idea proved advantageous only with datasets C2 and C5, and providing only a 

moderate improvement in the overall %RMSE of SI (~2% on 13% and 16% 

respectively). With the other datasets, the simplification did not show improvement in 

the SI estimates, and with the full datasets A2 and A5 the detected effect on SI was 

actually pejorative; p2 is also poorly estimated in scarce sampling schedules 

situations, but this parameter is very strongly correlated with SI and neglecting its 

BSV actually deteriorates its estimates.  

Summarizing, we can say that the behavior of the different algorithms when dealing 

with decimated data confirms our previous findings: the NLMEMs prove more robust 

and are able to cope even with a situation of very scarce data, where the traditional 

approach fails and the TS methods are sometimes unable to run. It should be 

mentioned that, when the dataset is heavily under-sampled, it is often difficult to find 

proper initial values for methods such as Laplace and ITS, and the removal of several 

subjects from the analysis might be necessary, making these methods less appealing 

to the user. 

 

Residual Unknown Variability 

SPK additionally estimates the Residual Unknown Variability (RUV), i.e., the 

variability in the data which is not caused by differences among subjects. This is 

normally interpreted as the estimate of the measurement error, superimposed to model 

error and other sources of noise. In our case, we simulated data with a proportional 
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error structure (see Eq. (3.2)), and we introduced either a 2% or 5% CV. The 

parameter adjusting the RUV in the population model was not fixed in the 

computation, but the algorithms were free to optimize this value by estimating the 

scale parameter σ. It is interesting to inspect the results provided by the algorithms 

for the estimation of this parameter, shown in Table 3.7.  

The size of the measurement error was on average evaluated quite well by FO, FOCE 

and LAP, whereas it is underestimated by the TS methods, by a growing extent as the 

data quantity and quality decreases. The method showing more explicitly this 

underestimation tendency is STS. An explanation could be the following: the 

estimation of the RUV is based on the analysis of the size of the model residuals. 

When the data points are very few, it is easy to accommodate the parameter values to 

fit the experimental data very well and, as STS does not use population information in 

the individual estimates, there are no constraints binding the parameters to remain 

close to a certain value. An effect of this phenomenon is a larger estimated BSV 

(greater values on the diagonal of Ω, see Table 3.1-3.3-3.5). Thus, there is a tradeoff 

between RUV and BSV. ITS and GTS show the same trend to a minor extent, 

whereas the NLMEMs seem able to cope well with the data-poor environment also 

from this point of view, and provide reliable estimates. 

 

Optimal setup of the Ω matrix 

So far, our analysis focused on the values of population mean and variance, but these 

are not the only population parameters. All the algorithms also produce as well 

estimates for the off-diagonal terms of Ω, which characterize the correlations between 

the parameters. For reasons of clarity, we do not go through an in-depth analysis of 

all these results, but some considerations of general validity can be made. The 

estimates of these second-order effects are in general very difficult to obtain; the 

various methods provide very dissimilar results and often completely in disagreement 

with the true values. This is particularly true for the terms representing a very weak 

correlation; in this case, the estimates may even have opposite sign with respect to the 

true value. This phenomenon becomes more and more relevant as the paucity of data 

increases. In fact, while the number of data points decreases, the number of 

parameters remains the same, and this leads inevitably to a degradation in the quality 

of the estimates; the covariance terms are the most prone to this phenomenon, 

whereas the mean is the most robust. 

Therefore it might be a good choice, in a very data-poor framework, to reduce the 

number of parameters by neglecting these correlation terms. A possible option is then 

using a diagonal matrix, which excludes any correlation. This could be however a 
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strong simplification and lead to poor results; an intermediate choice would be 

keeping only the most relevant correlation terms. In our case significant correlations 

were detected between p2 and SI (~0.75) and between SG and Volume (~-0.60), so a 

wise solution would be to include only these parameters in the optimization and 

neglect all the other off-diagonal elements. Therefore, we tested FOCE with different 

setups of the Ω matrix: full, diagonal, only with the P2-SI correlation term, or also the 

SG-Volume one. As far as the calculation of the population parameters is concerned 

(Table 3.8) no modeling strategy resulted as a clear winner. In general, it seems that 

excluding all the off-diagonal terms leads to an underestimation of the population 

variability, but further investigation would be needed to draw appropriate 

conclusions. 

The individual parameter estimation results are included in Table 3.9. In this case the 

indices clearly show that neglecting some of the off-diagonal terms may actually help 

to simplify the model without deteriorating its performance. On the contrary, ignoring 

non-significant correlations seems to improve individual parameter estimation. In this 

case, when the only pairs of correlated parameters are SI-p2 and SG-V, the individual 

parameters are estimated with a precision higher than that obtained with either the full 

BSV or only diagonal matrix. Also the model with only one off-diagonal term (SI-p2) 

performed well. This effect increases when the dataset is poorer, and therefore when 

the ratio between number of parameters and number of data points is very small and 

thus disadvantageous. Obviously, in a real case study the true values are not available, 

but a good decisional tool to test the level of significance of the covariance terms is 

the analysis of the objective function values provided by the algorithm. The results 

are not shown here for reasons of space, but the decision of dropping some 

correlation terms based on significance levels detected by the analysis of the objective 

function would have led to completely similar results, identifying the SI-p2 and SG-V 

terms as the most relevant and worth introducing in the model. 

 

Reduced Sampling Schedule (RSS) 

In the analysis so far, we chose to undersample only the glucose profile while keeping 

the insulin information, so that we were able to probe not only the effect a sparse 

dataset, but also a situation in which several subjects were characterized by an 

extremely low number of samples. The same sample reduction for the insulin profile, 

even if followed by interpolation, in fact, would not in general be able to reconstruct 

the external insulin infusion which is part of the IM-IVGTT. However, in order to test 

the validity of our results in a real-case study, where both glucose and insulin samples 

would be missing, we decided to test also a 13-samples Reduced Sampling Schedule 
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similar to the one proposed by Steil et al. [61]. The samples included in this schedule 

were those taken at times 0-2-4-8-20-22-25-31-45-60-90-120-180, so a bit more than 

50% of the samples were preserved, and the last sample is taken at time 180, thus 

shortening the experiment by 1 hour. The results obtained for these RSS datasets 

(both 2% and 5% CV) are contained in Table 3.10 and 3.11. For the sake of 

comparison, datasets B2 and B5 have a similar number of samples, but insulin was 

not discarded in that case. The use of a RSS, rather than random samples removal, has 

a positive effect on the traditional STS: both the population parameters and the 

RMSEs are more satisfactory, probably because the better undersampling operated by 

the RSS prevents some of the spurious outlier values caused by the extremely poor 

kinetic sampling in some subjects obtained with the random decimation.  

The errors in the estimates yielded with STS, however, are still very large, in 

particular for several subjects. The same applies to GTS, which encounters estimation 

difficulties in some individuals. The advantages provided by the other population 

approaches, therefore, remain significant. In particular, the NLMEMs provide good 

population estimates and the size of the RMSEs is in line with the ones yielded by 

dataset B2 and B5. Overall, the undersampling of the insulin profile, if operated 

wisely, does not substantially deteriorate the parameter estimates obtained with the 

NLMEMs. This is encouraging with respect to the future design of experiments using 

a population method in conjunction with a RSS, resulting in less expensive, invasive 

and labor-intensive test. 

 

Discussion and conclusions 

We can draw several conclusions from the results collected in our analysis. Erichsen 

et al. [31], reported that, in a data rich situation no great advantage is introduced by 

the use of a population method. On the contrary, we detected a significant 

improvement both for the population and individual parameter estimates. Especially 

when the data become very sparse, some spurious outliers are identified by the 

traditional WLS approach (STS), whereas the hierarchical model structure of 

population methods prevents this. Moreover, as the experimental information 

decreases, the traditional approach shows its deficiencies even more, while the 

population methods prove very robust and are able to make up for the lack of 

individual information by borrowing it across the other subjects. SI is estimated very 

accurately by the population methods, whereas SG estimates are less precise, but 

nonetheless more reliable than the STS estimates.  

Among the population methods, the most reliable and versatile are the NLMEMs, 

with a preference for FOCE. FO proved mostly inadequate for the MM, probably 
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because its approximation of the likelihood is too simple to cope with the complexity 

of the model and the amount of variability that characterizes the parameters. LAP, on 

the contrary, yields correct estimates, but not significantly better than FOCE, in 

comparison to which it is much more sensitive to starting values. The estimates we 

obtained with LAP were robust and the sensitivity to initial values purely implied a 

tedious process of tuning, however, we decided to choose FOCE as the reference 

method. 

The TS population methods, ITS and GTS, performed well on the full and the 50% 

reduced datasets. GTS also has the advantage that all the formulas which are used are 

linear and this allows a very short computation time, much shorter than that of ITS or 

any of the NLMEMs. Anyway, these methods revealed unfeasible for some subjects 

in the dataset, in case of very sparsely sampled and noisy data. In addition, they failed 

with the heavily undersampled datasets (C2 and C5). This is probably due to the fact 

that they internally use the WLS individual estimates and their precision to start, 

which are obtained in a very unreliable way for some subjects, if only few samples 

are available.  

Another effect which we experienced is that TS methods tend to overestimate the 

population variability, whereas NLMEMs tend to underestimate it. In addition, in a 

very data-poor situation the traditional estimation paradigm (STS) tends to produce 

outlying estimates. However, some subjects are truly different from the population 

mean: with population methods, the whole population, and therefore also these “true” 

outliers, become biased towards the population mean. The latter phenomenon occurs 

mostly with the parameters to which the model is less sensitive, in our case SG, 

whereas very sensitive parameters, such as SI, are normally less susceptible to this so-

called “regression to the population mean” (shrinkage). This occurrence, well known 

in population modeling [42], was detected with the minimal model also by Erichsen 

et al. [31] and Krudys et al. [44]. This high sensitivity of the model with respect to SI 

suggests that the application to different datasets, possibly including diabetic patients, 

characterized by a very low SI and parameter estimation issues, would be feasible. 

Further research would be necessary to tune the proper setup for such datasets. 

Another part of our analysis was aimed at investigating the optimal setup for the 

covariance random effect matrix Ω. We found out that, especially in data-poor 

situations, the BSV matrix should include only the most significant correlation terms; 

this excludes superfluous parameters from the optimization and improves the quality 

of the estimates of the remaining ones. In our analysis, we found out that the best 

choice is to include the correlation terms relative to SI-p2 and SG-V, with the first pair 

being more tightly correlated than the second. 
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Further improvements can be obtained with the insertion into the model of 

physiologic information on the subjects, such as age, height, weight, body fat, etc. 

This information, obtainable non-invasively, can help in explaining some of the 

between-subject variability, if significantly correlated with the model parameters. A 

model that takes into account such clinical covariates is much more powerful, in that 

it not only uses information about the population, but also the individual 

characteristics of each subject. One of the main advantages of NLMEMs is that the 

regression coefficients for these physiologic variables are optimized by the algorithm 

together with the population parameters. Further studies will be therefore aimed at 

identifying the most significant covariates for the minimal model and incorporating 

them into the model. 

In conclusion, our study confirmed that population approaches are a very appealing 

solution for estimating the minimal model parameters, mostly useful in a data-poor 

environment. In case of very under-sampled data for several subjects, TS methods are 

often unfeasible, whereas FOCE is able to cope even with this very critical situation. 

Our work also revealed the importance and advantages of properly shaping the 

random effect covariance matrix Ω, discarding the terms corresponding to very weak 

parameter correlations among subjects.  
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Table 3.1 Comparison between the true population parameter values and the 

estimates provided by the different methods analyzing dataset A2 and A5 (full 

datasets). The distance of the estimated values for both the µ’s and the δ’s from the 

true values are reported as average percent differences, normalized to the true values. 

 

dataset A2 
∆µSG [%] 

(∆δSG) [%] 
∆µSI [%] 

(∆δSI) [%] 
∆µp2 [%] 

(∆δp2) [%] 
∆µV [%] 

(∆δV) [%] 

STS 
-7 

(90) 
3 

(-1) 
-2 

(38) 
0 

(-1) 

ITS 
1 

(-19) 
-1 
(5) 

1 
(-3) 

0 
(-3) 

GTS 
1 

(-25) 
-1 
(5) 

5 
(-10) 

0 
(-2) 

FO 
7 

(1) 
-36 
(38) 

16 
(8) 

-1 
(-1) 

FOCE 
1 

(-26) 
-1 
(6) 

2 
(-5) 

0 
(-4) 

LAP 
1 

(-20) 
-1 
(5) 

2 
(-6) 

0 
(-4) 

dataset A5 
∆µSG [%] 

(∆δSG) [%] 
∆µSI [%] 

(∆δSI) [%] 
∆µp2 [%] 

(∆δp2) [%] 
∆µV [%] 

(∆δV) [%] 

STS 
-26 

(217) 
10 
(4) 

-7 
(-116) 

0 
(24) 

ITS 
-4 

(25) 
1 

(4) 
6 

(-5) 
1 

(9) 

GTS 
-1 

(11) 
3 

(-2) 
7 

(9) 
1 

(15) 

FO 
35 

(-30) 
-16 
(31) 

-6 
(9) 

-4 
(-2) 

FOCE 
10 

(-26) 
-3 
(9) 

0 
(-36) 

0 
(0) 

LAP 
5 

(-12) 
2 

(8) 
3 

(-19) 
0 

(9) 
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Table 3.2 Square root of the mean square error (RMSE) of the individual parameter 

estimates obtained from the analysis of datasets A2 and A5, expressed as percentage 

of the true population mean. DIIE is an index which combines in a weighted average 

the precision on the four parameters (see text for detail). The last column contains the 

number of warnings indicating that one individual parameter value has hit the 

estimation method’s upper or lower bounds; this happens when the individual random 

effect (η) assumes a value greater than 3 standard deviations. 

 

dataset A2 SG SI p2 V DIIE Warnings 

STS 17.54 11.53 22.50 2.94 13.57 1/232 

ITS 15.17 4.46 18.33 2.83 8.90  

GTS 15.81 4.28 19.19 2.79 9.08  

FO 14.45 4.00 18.65 2.74 8.48 1/232 

FOCE 14.72 4.48 17.53 2.90 8.70 1/232 

LAP 14.69 4.44 17.52 2.89 8.67  

dataset A5 SG SI p2 V DIIE Warnings 

STS 46.60 36.09 135.27 9.36 46.49 4/232 

ITS 31.87 8.22 33.20 7.56 17.75  

GTS 31.59 9.57 37.48 7.89 18.80  

FO 24.63 9.74 23.95 6.61 15.32  

FOCE 20.84 7.93 25.40 6.12 13.37  

LAP 21.57 7.80 22.85 6.51 13.31  
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Table 3.3 Comparison between the true population parameter values and the 

estimates provided by the different methods analyzing dataset B2 and B5 (50% 

decimated datasets). The distance of the estimated values for both the ’s and the ’s 

from the true values are reported as average percent differences, normalized to the 

true values.  

 

dataset B2 
∆µSG [%] 

(∆δSG) [%] 
∆µSI [%] 

(∆δSI) [%] 
∆µp2 [%] 

(∆δp2) [%] 
∆µV [%] 

(∆δV) [%] 

STS 
-8 

(114) 
17 

(26) 
-22 

(134) 
-1 
(8) 

ITS 
0 

(14) 
2 

(3) 
-8 

(16) 
0 

(1) 

GTS 
-0 

(26) 
3 

(1) 
-6 

(17) 
0 

(5) 

FO 
19 

(-6) 
-19 
(18) 

5 
(-17) 

-2 
(-4) 

FOCE 
10 

(-13) 
-1 
(5) 

-11 
(3) 

-1 
(-5) 

LAP 
2 

(-7) 
2 

(1) 
-2 
(4) 

1 
(-6) 

dataset B5 
∆µSG [%] 

(∆δSG) [%] 
∆µSI [%] 

(∆δSI) [%] 
∆µp2 [%] 

(∆δp2) [%] 
∆µV [%] 

(∆δV) [%] 

STS 
-14 

(221) 
36 

(97) 
-51 

(234) 
-1 

(45) 

ITS 
5 

(14) 
3 

(-2) 
-11 
(29) 

1 
(9) 

GTS 
16 

(-4) 
0 

(9) 
-16 
(43) 

0 
(26) 

FO 
39 

(-2) 
-6 

(14) 
-12 
(39) 

-3 
(-5) 

FOCE 
27 

(-25) 
-2 
(5) 

-23 
(-7) 

-2 
(-15) 

LAP 
17 

(-19) 
4 

(4) 
-24 
(-1) 

0 
(-11) 
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Table 3.4 Square root of the mean square error (RMSE) of the individual parameter 

estimates obtained from the analysis of datasets B2 and B5, expressed as percentage 

of the true population mean. DIIE is an index which combines in a weighted average 

the precision on the four parameters (see text for detail). The last column contains the 

number of warnings indicating that one individual parameter value has hit the 

estimation method’s upper or lower bounds. 

 

dataset B2 SG SI p2 V DIIE Warnings 

STS 36.65 292.04 46.93 8.08 162.52 4/232 

ITS 28.16 7.36 30.55 6.72 15.85  

GTS 30.65 7.29 34.49 7.49 17.04  

FO 16.21 6.03 20.53 4.38 10.37  

FOCE 20.35 6.19 23.25 5.04 12.03  

LAP 21.16 6.40 23.79 5.50 12.48 1/232 

dataset B5 SG SI p2 V DIIE Warnings 

STS 59.77 288.57 60.37 13.68 169.62 10/232 

ITS 36.50 11.45 44.73 8.84 22.03  

GTS 39.47 15.70 47.00 10.21 25.41  

FO 33.86 13.07 36.00 8.42 21.14  

FOCE 33.97 12.02 40.29 8.40 21.07  

LAP 29.70 11.32 38.15 7.76 19.16  
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Table 3.5 Comparison between the true population parameter values and the 

estimates provided by the different methods analyzing dataset C2 and C5 (75% 

decimated datasets). The distance of the estimated values for both the ’s and the ’s 

from the true values are reported as average percent differences, normalized to the 

true values. The symbols * and ** indicate the exclusion of respectively a negligible 

or consistent number of subjects (for details, please refer to Table 6). 

 

dataset C2 
∆µSG [%] 

(∆δSG) [%] 
∆µSI [%] 

(∆δSI) [%] 
∆µp2 [%] 

(∆δp2) [%] 
∆µV [%] 

(∆δV) [%] 

STS* 
-36 

(300) 
2 

(115) 
5 

(215) 
-3 

(128) 

ITS 
-19 
(55) 

8 
(-19) 

22 
(27) 

3 
(21) 

GTS** 
-21 
(57) 

3 
(-6) 

42 
(78) 

2 
(-8) 

FO 
31 

(-51) 
-10 
(3) 

-9 
(-10) 

-3 
(-40) 

FOCE 
16 

(-17) 
0 

(-9) 
-9 

(14) 
-2 

(-31) 

LAP 
1 

(-1) 
4 

(-15) 
8 

(26) 
0 

(-17) 

dataset C5 
∆µSG [%] 

(∆δSG) [%] 
∆µSI [%] 

(∆δSI) [%] 
∆µp2 [%] 

(∆δp2) [%] 
∆µV [%] 

(∆δV) [%] 

STS 
-40 

(402) 
29 

(204) 
-37 

(335) 
-8 

(437) 

ITS* 
-2 

(39) 
7 

(-13) 
-4 

(40) 
1 

(13) 

GTS** 
7 

(23) 
-8 

(19) 
-8 

(80) 
1 

(17) 

FO 
46 
(1) 

-3 
(-5) 

-24 
(55) 

-4 
(-24) 

FOCE 
35 

(-11) 
0 

(-6) 
-32 
(6) 

-4 
(-37) 

LAP 
23 

(29) 
9 

(-1) 
-24 
(23) 

-3 
(34) 
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Table 3.6 Square root of the mean square error (RMSE) of the individual parameter 

estimates obtained from the analysis of datasets B2 and B5, expressed as percentage 

of the true population mean. DIIE is an index which combines in a weighted average 

the precision on the four parameters (see text for detail). The column “Warnings” 

contains the number of warnings indicating that one individual parameter value has 

hit the estimation method’s upper or lower bounds, whereas the last column indicates 

how many subjects were removed from the analysis. 

 

dataset C2 SG SI p2 V DIIE Warnings Removed 

STS 53.76 247.61 1182.57 15.67 259.76 12/228 1/58 

ITS 38.52 12.95 69.48 10.84 26.07   

GTS 42.72 18.80 254.63 8.00 48.48 4/120 28/58 

FO 31.61 13.42 29.22 9.98 20.11   

FOCE 34.94 13.10 38.20 10.65 21.92   

LAP 29.88 11.85 41.81 9.09 19.98   

dataset C5 SG SI p2 V DIIE Warnings Removed 

STS 84.54 1257.53 1696.39 60.94 829.86 23/232  

ITS 41.57 19.35 49.03 10.78 28.12  1/58 

GTS 49.21 25.76 107.97 13.67 39.81 6/144 22/58 

FO 50.15 20.34 39.90 13.29 30.53   

FOCE 47.58 16.29 45.78 12.79 28.28   

LAP 44.76 17.64 41.93 12.41 27.68   
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Table 3.7 Measurement %CVs estimated by the various methods on the simulated 

datasets. The symbols * and ** indicate the exclusion of respectively a negligible or a 

consistent number of subjects (for details, please refer to Table 6). 

 

Estimated CV dataset A2 dataset B2 dataset C2 

True 2.0% 2.0% 2.0% 

STS 1.7% 1.4% * 0.9% 

ITS 1.7% 1.4% 1.0% 

GTS 1.7% 1.3% ** 0.8% 

FO 2.1% 2.2% 2.4% 

FOCE 2.0% 2.0% 2.1% 

LAP 2.0% 1.9% 2.0% 

Estimated CV dataset A5 dataset B5 dataset C5 

True 5.0% 5.0% 5.0% 

STS 4.6% 3.9% 2.3% 

ITS 4.7% 4.1% * 2.9% 

GTS 4.5% 3.7% ** 2.1% 

FO 5.4% 5.3% 5.2% 

FOCE 5.3% 5.3% 5.0% 

LAP 5.3% 5.2% 5.1% 
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Table 3.8 Population parameter estimates provided by FOCE with datasets C2 and 

C5 and different setups of the Ω matrix. As in the previous tables, the percentage of 

discrepancy for µ and δ (in brackets) is displayed. 

 

dataset C2 
∆µSG [%] 

(∆δSG) [%] 
∆µSI [%] 

(∆δSI) [%] 
∆µp2 [%] 

(∆δp2) [%] 
∆µV [%] 

(∆δV) [%] 

FOCE, Full Matrix 
16 

(-17) 
0 

(-9) 
-9 

(14) 
-2 

(-31) 

FOCE, Corr. P2-SI and SG-VOL 
12 

(-54) 
-1 

(-8) 
-3 

(-23) 
-1 

(-25) 

FOCE, Corr. P2-SI 
10 

(-76) 
-1 

(-7) 
-1 

(-15) 
0 

(-32) 

FOCE, Diagonal Matrix 
11 

(-59) 
-1 

(-4) 
1 

(-17) 
0 

(-34) 

dataset C5 
∆µSG [%] 

(∆δSG) [%] 
∆µSI [%] 

(∆δSI) [%] 
∆µp2 [%] 

(∆δp2) [%] 
∆µV [%] 

(∆δV) [%] 

FOCE, Full Matrix 
35 

(-11) 
0 

(-6) 
-32 
(6) 

-4 
(-37) 

FOCE, Corr. P2-SI and SG-VOL 
32 

(-30) 
-1 

(-8) 
-25 

(-33) 
-3 

(-30) 

FOCE, Corr. P2-SI 
33 

(-49) 
-1 

(-8) 
-26 

(-27) 
-3 

(-40) 

FOCE, Diagonal Matrix 
36 

(-44) 
-1 
(2) 

-27 
(-12) 

-4 
(-41) 

 



50 

Table 3.9 DIIE values (calculated by combining the square root of the mean square 

errors on the four parameters) obtained with the different setups for the Ω matrix 

(rows) and the different datasets (columns). * indicates that few (1 or 2) individual 

parameters hit the estimation upper or lower bounds. 

 

Ω matrix definitions dataset A2 dataset B2 dataset C2 

FOCE, Full Matrix * 8.70 12.03 21.92 

FOCE, Corr. P2-SI and SG-VOL * 8.07 * 10.40 15.87 

FOCE, Corr. P2-SI * 8.34 * 10.49 16.43 

FOCE, Diagonal Matrix * 8.86 * 12.16 17.22 

Ω matrix definitions dataset A5 dataset B5 dataset C5 

FOCE, Full Matrix 13.37 21.07 28.28 

FOCE, Corr. P2-SI and SG-VOL 13.66 17.87 25.81 

FOCE, Corr. P2-SI 13.82 18.90 24.79 

FOCE, Diagonal Matrix 14.97 20.00 27.76 
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Table 3.10 Comparison between the true population parameter values and the 

estimates provided by the different methods analyzing dataset RSS2 and RSS5. The 

distance of the estimated values for both the µ’s and the δ’s from the true values are 

reported as average percent differences, normalized to the true values. * is a reminder 

of the exclusion of one of subject (for details, please refer to Table 11). 

 

dataset RSS2 
∆µSG [%] 

(∆δSG) [%] 

∆µSI [%] 
(∆δSI) 
[%] 

∆µp2 [%] 
(∆δp2) 
[%] 

∆µV [%] 
(∆δV) 
[%] 

STS 
-7 

(56) 
1 

(2) 
-4 

(76) 
0 

(6) 

ITS 
-1 

(-11) 
-5 
(3) 

-3 
(0) 

0 
(1) 

GTS* 
-1 

(-15) 
-5 
(6) 

9 
(-6) 

20 
(4) 

FO 
9 

(-15) 
-35 
(35) 

17 
(-5) 

-1 
(-4) 

FOCE 
2 

(-23) 
-6 
(5) 

5 
(-7) 

0 
(-2) 

LAP 
2 

(-22) 
-6 
(5) 

3 
(-5) 

0 
(-2) 

dataset RSS5 
∆µSG [%] 

(∆δSG) [%] 

∆µSI [%] 
(∆δSI) 
[%] 

∆µp2 [%] 
(∆δp2) 
[%] 

∆µV [%] 
(∆δV) 
[%] 

STS 
-31 

(274) 
4 

(4) 
8 

(85) 
0 

(32) 

ITS 
-9 

(44) 
0 

(-5) 
14 

(-10) 
2 

(10) 

GTS 
1 

(11) 
0 

(-6) 
14 
(-2) 

1 
(18) 

FO 
31 

(-36) 
-12 
(22) 

-2 
(-31) 

-2 
(-18) 

FOCE 
8 

(-21) 
-6 
(1) 

5 
(-54) 

0 
(-24) 

LAP 
7 

(-10) 
-5 

(10) 
3 

(-21) 
-1 
(5) 
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Table 3.11 Square root of the mean square error (RMSE) of the individual parameter 

estimates obtained from the analysis of the datasets RSS2 and RSS5, expressed as 

percentage of the true population mean. DIIE is an index which combines in a 

weighted average the precision on the four parameters (see text for details). The 

column “Warnings” contains the number of warnings indicating that one individual 

parameter value has hit the estimation method’s upper or lower bounds, whereas the 

last column indicates how many subjects were removed from the analysis. 

 

dataset RSS2 SG SI p2 V DIIE Warnings Removed 

STS 25.37 49.70 28.64 5.13 35.84 1/232  

ITS 20.99 8.81 23.13 4.51 13.47   

GTS 21.16 49.63 23.34 4.36 33.93 1/228 1/58 

FOF 18.25 8.63 20.19 4.40 12.25   

FOCEF 19.00 8.89 20.08 4.32 12.59   

LAPF 19.14 8.82 20.13 4.34 12.60   

dataset RSS5 SG SI p2 V DIIE Warnings Removed 

STS 50.14 34.90 274.09 11.66 61.06 2/232  

ITS 34.62 9.39 40.71 9.73 20.13   

GTS 31.63 13.09 50.94 10.02 22.13   

FOF 27.14 13.28 25.61 9.17 18.26   

FOCEF 26.48 11.26 30.76 9.06 17.56   

LAPF 21.40 10.00 26.62 7.98 14.88   
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SG: Estimated vs. True Values
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Figure 3.1 Scatterplot of the SG individual estimates provided by FOCE (black dots) 

and STS (white dots) based on dataset C5 vs. the true values. The correlation terms 

SI-p2 and SG-V were used. The dashed line is the unity slope. 
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SI: Estimated vs. True Values

R
2
(FOCE)= 0.8657

R
2
(STS)= 0.0007

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003

True Values [pmol
-1

 min
-1

 L]

E
s

ti
m

a
te

d
 V

a
lu

e
s

 [
p

m
o

l-1
 m

in
-1

 L
]

STS

FOCE

Figure 3.2 Scatterplot of the SI individual estimates provided by FOCE (black dots) 

and STS (white dots) based on dataset C5 vs. the true values. The correlation terms 

SI-p2 and SG-V were used. The dashed line is the unity slope. For the sake of clarity, 

the big panel shows an enlarged portion of the chart, excluding some outliers yielded 

by STS. The small panel shows the entire dataset. 
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SI: Err vs. True Values

R
2
(C5)= 0.164

R
2
(C2)= 0.0596

-0.00007

-0.00005

-0.00003

-0.00001

0.00001

0.00003

0.00005

0.00007

0 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003

True Values [pmol
-1

 min
-1

 L]

E
rr

 [
p

m
o

l-1
 m

in
-1

 L
]

Dataset C5

Dataset C2

Figure 3.3 Scatterplot of the estimation error vs. the true values of SI. The values 

were obtained with FOCE based on dataset C2 (square-shaped) and C5 (diamond-

shaped). Only the correlation terms SI-p2 and SG-V were used. The estimation error is 

defined as the difference between the estimated and the true value. Regression lines 

and the R2 coefficient are also displayed. 
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Chapter 4 

Population Approach to Improve IVGTT Glucose 

Minimal Model Parameter Estimation: a Real-Case 

Study with Likelihood Function Profiling via Monte 

Carlo Sampling  

 

Overview 

The purpose of the work exposed in this chapter is the design of an appropriate 

population model of the glucose minimal model, serving as basis for the covariate 

analysis which is the subject of the following chapter. In order to select the suitable 

parameterization, we rely on the value of the objective function that can be employed 

for inference on the statistical significance of the parameters and the 

parameterization, and we also use some profiling techniques, which are useful to 

assess the precision of the estimates and the accuracy of the employed population 

method. The profiling of the true likelihood offers therefore an independent validation 

of the results obtained in the previous chapter, which were obtained from simulated 

data. In this case, as the data are real, there is no “true value” to which the different 

results can be compared, that is why we recur to a true likelihood profiling 

implemented via Monte Carlo sampling. Moreover, in this case, the analysis will be 

applied to the whole dataset, consisting of 204 subjects and encompassing both young 

and elderly individuals and characterized therefore by a broader range of variability. 

So, in a first section, we apply both the Two-Stage methods (STS, ITS and GTS) and 

the NLMEMs (FO, FOCE and LAP) to the new dataset and evaluate the quality of the 

results using the likelihood profiling. As a first step, as the implementation of the TS 

methods only allows a full covariance matrix, we performed a first evaluation to 

compare the accuracy of the solutions provided by the different methods. Confirming 

our finding from the previous chapter, FOCE appears to offer the best approximation, 

possibly even more reliable than LAP. FO dramatically fails in estimating even the 

typical values of the parameters presenting the largest BSV, namely SI and P2, 

whereas the TS approaches seem to provide underestimates of the RUV. Once we 

have confirmed that FOCE is the method of choice, we apply it to tune the 

appropriate model for our dataset. We tried different setups for the model: an 

approach using an error weighting scheme proportional to the model prediction rather 
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than the data, normal versus lognormal distribution for the parameters. Then we 

inspected the optimal setup for the population covariance matrix. 

 

Introduction 

Population kinetic modeling approaches are attracting growing interest in many fields 

of biomedicine thanks to their value in estimating population features from sparsely 

sampled data. However, their application often entails approximations of the original 

model function, whose effect is difficult to gauge. One way of assessing the quality of 

the provided estimates, is to calculate the value of their likelihood. However, some 

methods, like the TS approaches, are based on an iterative algorithm and not a 

likelihood minimization, so they do not provide such value. On the other hand, 

NLMEMs use an approximated version of the likelihood function and, as the 

approximation is different from method to method, the value provided by these 

algorithms is not an objective tool for a comparison among methods. Therefore, to 

perform an objective comparison, the value of the non-approximated likelihood was 

calculated. Since this implies the solution of an analytically intractable integral, so we 

have recurred to a MC sampling technique. We then focused on model refinement, 

selecting the most suitable parameterization, error model structure and setup for the 

population covariance matrix. 

 

Materials and Methods 

Dataset 

A cohort of 204 healthy subjects was tested with insulin-modified IVGTT (IM-

IVGTT) with full sampling schedule (240 min, 21 samples) at Mayo Clinic, 

Rochester, MN. More details on the experimental design and the dataset are available 

in the literature [4, 5]. The individuals had very wide ranges of age (mean 56 yrs, 

range 18-87) and BMI (27 kg/m2, range 20-35) and were clustered into two main 

groups, one (59 individuals) encompassing young subjects (average age 23), and the 

other (145 individuals) elderly individuals (average age 69). At the time of the 

IVGTT experiment, also some relevant demographic information were collected 

about the subjects, and these will be the used in the next chapter for the covariate 

analysis. 

 

Population statistical assumptions 

To perform a population analysis, it is necessary to define a hierarchical model as 

well as establish key assumptions on the parameter probability distribution and the 

statistical structure of the measurement error. In fact, as explained in Chapter 2, when 
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encompassed in a population framework, each subject’s individual parameters pi are 

assumed as extracted from a population probability distribution which is defined by 

some hyper-parameters called fixed effects (that are therefore shared by all subjects). 

Each subject is then characterized by an individual-specific deviation from the 

population typical values. These features, which depend on each subject’s distinctive 

attributes, are called random effects. 

For the first step of this analysis, we chose to assume a lognormal distribution for all 

parameters, guaranteeing in this way the positivity of the individual values. We also 

chose to model the random effects with a full population covariance matrix, including 

all the possible correlations between the minimal model parameters. In formulae: 

( )

( )
( )

exp
~ ,

~ 0,

i i

i

i

LN
N

= + 
→



p θ η
p θ Ω

η Ω
 (4.1) 

where ip  are the parameter values of subject i, the elements of θ  are the population 

typical values, the elements of η  are the individual random effects and Ω  their 

covariance matrix. 

Concerning the part of the model accounting for measurement uncertainty, the model 

explaining the glucose profile for the ith individual takes the general form 

( )( ),i i iθ η= +y f d ε  (4.2) 

where iy  is the data profile of subject i and iε  is the corresponding measurement 

error, assumed to be normally distributed with zero mean and standard deviation 

proportional to the measured experimental data 

( )( )2
~ N 0,ij ijyε σ ⋅  (4.3) 

with σ  being a further unknown parameter common to the whole population and 

considered therefore a fixed effect.  

 

Methods 

As mentioned before, the estimation of population fixed effects is in general not 

trivial and many approaches have been proposed in the literature [7, 25, 62]. In 

Chapter 3, we have already carried out a test on a simulated dataset to explore which 

is the most reliable method. In this chapter, the analysis is performed on a real data, 

so the true values of the parameters are not available and another method to assess the 

quality of the results is necessary.  

Thus, we decided to analyze the value of the likelihood function calculated at the 

optimal values provided by the various algorithms. As previously described in the 

Background section, the evaluation of the likelihood function implies the 
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marginalization (an integral operation) along the random effects, which is in general 

not analytically solvable. For clarity, we report the formula of the ith individual’s 

contribution to the log-likelihood: 

( ) ( )( ) ( ) ( ), , 2 log , , 2 log , ,i i i iL θ Ω Σ p θ Ω Σ l η Σ h η θ Ω dη
+∞

−∞

 
= − = −  

 
∫y y y  (4.4) 

where ( ),il η Σy  is the likelihood of the individual parameter given the data, and 

( ),h η θ Ω  is the population probability distribution of the parameters. This term and 

all the homologous terms corresponding to the other individuals, are summed together 

to obtain the overall population log-likelihood. To overcome this step, all the 

NLMEM approaches, during the function minimization recur to some approximation, 

but these approximations make the estimated value inappropriate for an objective 

comparison among the solutions provided by different methods. Therefore, we 

calculate the value of the true likelihood by solving the integral via a Monte Carlo 

(MC) sampling technique. For each set of fixed effects’ optimal values provided by 

the methods, and for each subject, equation (4.4) is sampled 30,000 times. In addition 

to the optimal values, the likelihood is also evaluated at two other points near the 

supposed minimum along each fixed effect, so as to obtain a profile of the function 

itself along all the population parameters, allowing a visual and numerical assessment 

of the degree of optimization reached by the different algorithms [75].  

For all the population methods included in the comparison, the implementations we 

used are the ones available in the SPK software [10, 66], Resource Facility for 

Population Kinetics (RFPK), a NIH/NIBIB research resource in the Department of 

Bioengineering at the University of Washington. When starting values were 

necessary for the NLMEMs, the estimates provided by the STS analysis were used. 

It should be mentioned that SPK internally transforms the parameters to improve the 

estimation process. With the purpose of ensuring that the matrices Ω and Σ remain 

legitimate covariance matrices (and thus positive definite) throughout the 

optimization process, SPK employs the Cholesky factor of these matrices. More 

precisely, the elements on the diagonal (variance terms) are log-transformed and then 

the Cholesky factor of this transformed matrix is employed. This transformation, 

however, makes the interpretation of the results a bit more challenging, since there is 

in general no one-to-one correspondence between the elements of the covariance 

matrix and its Cholesky factor. The example for the terms of the Ω  matrix is 

reported below. To interpret the notation, SPK internal convention for parameter 

names must be considered. Parameters are renamed as 1α  to 15α , of which the sθ  
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come first ( 1α  to 4α ), then the terms of Cholesky factor of Ω , in row major order 

( 5α  to 14α ) as indicated in (4.5), and finally Σ  ( 15α ). This notation will be used also 

for the figures.  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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 (4.5) 

In our analysis, then, for the parameters used in the optimization of Ω, the profiling 

simply offers a way to evaluate with which accuracy the minimum of the objective 

function was reached, but inference on the precision of the terms of the covariance 

matrix is not trivial. 

The population model was refined after the use of the likelihood profiling. The 

likelihood function test was employed as a decisional tool to rank the different 

models, as commonly done [77]. However, it is important to point out that, in SPK, 

the value of the objective function calculated is the negative log-likelihood (NLL), 

and therefore, in order to be comparable to a Chi-Squared distribution, the values 

should be doubled (i.e. the drop in the NLL value consequent to the introduction of 

one parameter should be at least 1.92 for the parameter to be considered statistically 

significant, with a p-value of 5%).  

 

Results 

Preliminary results 

Before proceeding to the results of the profiler, it is interesting to see how the optimal 

parameter values provided by the various methods differ. The results are in Table 4.1. 

For each method and parameter, the values of θ and the square root of the 

corresponding element on the diagonal of Ω are displayed. Given the assumption of a 

log-normal distribution, θ is the geometric mean of the parameters and the square root 

of the diagonal elements of Ω can be assumed, in first approximation, as the CV of 

the population variability. The estimate of the square root of Σ yielded by the 

different approaches is contained in the last column. 

Even at first glance, the estimates provided by FO appear very distant from the ones 

yielded by all the other methods. Moreover, this happens also for the values of θ, 

whose estimates are very stable across all the other algorithms. This phenomenon is 

particularly evident for SI, which is severely underestimated. Conversely, the 

variance term associated with SI is very large. The same happens with p2, a 

parameter strongly correlated to SI.  
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With the exception of FO, population means are estimated coherently by all methods 

and no significant difference can be detected among them. The variance terms, 

instead, present some differences. As already pointed out in the literature [25], the 

STS analysis tends to detect a larger population variability (likely overestimated) than 

the other methods. This is especially visible in our case for the insulin action 

parameter p2 (78% vs. an average of ~50%) and for glucose effectiveness SG (31% 

vs. ~17%). In general, the TS approaches provide a value ~65% for SI’s variability as 

opposed to ~70% provided by FOCE and LAP. Another discrepancy is represented 

by LAP, which provides a values of 11% for SG’s variability, versus an average of 

~17% for ITS, GTS and FOCE. Finally, the RUV is estimated ~4%, larger than the 

CV normally assumed for glucose concentration measurements, ~2%. In addition, 

two-stage approaches tend to yield a slightly smaller value, ~3.8%, as opposed to 

NLMEMs, ~4.3%. 

 

Likelihood Profiling Results 

The MC evaluation of the Objective Function (Negative Log-Likelihood, or NLL) at 

the parameter optimal values provided by the different methods is shown in Table 

4.2. For the NLMEMs, the value of the approximated NLL is also provided; the TS 

methods do not optimize a likelihood function, so those values are not available. First 

of all it must be reported that we were unable to profile the NLL around the values 

provided as optimal by FO, whose results are very distant from those provided by all 

the other methods. The approximated NLL value returned by FO was the lowest 

among the NLMEMs, but apparently it was only a bad estimate due to the poor 

performance of the approximation; in fact, the failure of the profiler was due to the 

fact that FO’s proposed solution was generating an infinitive value for the NLL. The 

method which provided the “most likely” solution was FOCE, followed by LAP, then 

ITS, GTS and lastly STS. So, in general, it appears that the solution yielded by the 

FOCE and LAP are characterized by a better value for the NLL. 

Analyzing more in details the profiles along each of the parameters, it appear that the 

minimum was reached almost along each direction by FOCE, with the exception of 

3α  (the typical value of SI, discussed below) and 5α  (the term corresponding to the 

variance of SG), which seems slightly overestimated, in which also the performance 

of the other methods was poor. The estimates for most of the parameters are very 

similar, with the exception of 15α , the RUV. The graphical results in Figure 4.4 show 

that the RUV estimate provided by NLMEMs is more accurate than the one provided 

by TS approaches, which tend instead to provide an underestimate.  
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Taking a look at the precision in parameter estimates, Figure 4.5 contains some 

perhaps counterintuitive results for the θ estimates. Despite the large sample size of 

the population in our analysis, V is the only parameter that seems to have been 

estimated at a well-defined likelihood maximum. The same seems to be true for SG, 

although to a minor extent. On the other hand, SI and p2, which are also the 

parameters affected by the largest BSV, are not as accurately estimated, potentially 

pointing to the need for very large sample sizes to determine typical values of 

parameters affected by substantial biological variability. Examining Figure 4.3, in 

addition, some observations about the significance of the terms of the Ω  matrix can 

be done. Bearing in mind that a step in the NLL of 1.92 is the threshold to consider a 

parameter statistically significant (p-value 0.05), it can be observed that, for some of 

the sα , the step of the function between the optimal value and zero is lower or close 

to the threshold. This happens for 8α - 11α - 12α , meaning that these parameters may 

not be significant in the model. We will analyze the setup of the Ω  matrix in the 

following paragraphs, but the results from the profiling indicate that the model can be 

simplified. 

 

Optimal setup for the model 

After confirming that FOCE provides the most accurate approximation, this method 

was used for all the following studies. All the results are summarized in Table 4.4. 

Even though the physiological interpretation of the parameters implies their 

positivity, we decided to test the effect of assuming all the parameters as normal; the 

worsening in the objective function value indicated that the lognormal distribution 

was more appropriate. Then we implemented different structures for the Ω  matrix, 

trying to simplify the model by removing the least significant terms. From the 

analysis of the parameter estimates and their precision (Table 4.3), it was possible to 

infer that the most significant correlations between the parameters are SG-VOL, 

VOL-P2 and SI-P2. In addition VOL-P2 does not appear very strong, and the other 

terms correspond to a very low correlation and their estimates are affected by a large 

uncertainty. The current implementation of SPK allowed multiple-blocks matrices, 

but an implementation preserving all the three terms was not available. So we tested 

all the available combinations comprising the most significant terms.. Results are 

presented in Table 4.4.  

The worsening in the NLL between the model with full Ω matrix and its competitors 

indicates that some of the removed parameters were actually significant in the model; 

nonetheless, as no implementation was possible comprising all the three most 
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significant correlations (likely the best model), we decided that is was better to have a 

slightly under-parameterized model but only with statistically significant parameters, 

rather than an over-parameterization with some serious estimation issues, such as 

CVs>100%. This decision is also due to fact that the final scope of the analysis is the 

integration of covariates in the model, which will inevitably further increase the 

number of parameters. In addition, the model with a 3x3 block for VOL, SI and P2 

was affected by the same problem, since the correlation term VOL-P2 was not 

significantly different from zero. For this reason, it was not excluded from the 

comparison. 

Other models tested for the Ω  matrix presented no parameters whose CI was 

including zero, so they were all considered in the analysis. Comparing the objective 

function values and, bearing in mind that the statistical significance threshold for one 

parameter in SPK is 1.92, the model resulting as most significant was the one 

including the correlations VOL-SG and SI-P2.  

After selecting this model, we also tested the effect of error measurement as 

proportional to the model prediction rather than the experimental data, but the results 

were unsatisfactory.  

The results on the final model are displayed in Figure 4.8. The estimates of the 

population typical values exhibit the same trend as with the model with full 

population covariance matrix. VOLθ , seems both well centered on the minimum and 

precisely estimated, and, to a minor extent, also SGθ  exhibits the same behavior. SIθ  

and 2p
θ , however, are not as accurately estimated, and also the precision is lower. 

The analysis of the variance terms reveals that the estimates of variability of SG and 

P2 are the less precise and possibly slightly overestimated, whereas the RUV seems 

underestimated. Finally, the off-diagonal terms preserved in this final model, are 

estimated with good precision; the other terms of the Ω  matrix, which did not results 

significant in the full model, have been removed. 

 

Final results 

The results obtained with the finally selected model are reported in Table 4.5. Despite 

the relative homogeneity of the subjects in our dataset (all the subjects were healthy 

and had no previous history of glucose intolerance), a large BSV variability is 

detected for SI (70%) and P2 (~51%). Much smaller is the BSV for SG and VOL, 

which does not even reach 20%. 

The RUV is estimated at 4.4%, larger than the degree of error normally assumed for 

glucose measurements (2%). 
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The histograms of the individual parameters’ distribution seem to be compliant with 

the lognormality hypothesis; only one outlier is detected, as its optimal value for VOL 

lies at more than 3 Standard Deviations from the population typical values. 

The scatterplots clearly indicate a strong correlation between log(SI) and log(P2), 

accounted for by the appropriate term in the Ω matrix, which estimates this 

correlation at about 0.87. Another relevant correlation, although less apparent from 

the scatterplots, is detected between log(SG) and log(VOL), r=-0.40. 

 

Conclusions and Discussion 

In this work we have implemented a population model for the glucose minimal 

model, which will be the starting point for the covariate analysis performed in 

Chapter 5. Even if the subjects in the dataset are all healthy and with no previous 

history of glucose intolerance, a certain amount of population variability is present for 

SI and P2, and the purpose of the covariates analysis will be trying to explain in a 

deterministic way this variability. 

The true likelihood profiling via MC sampling proved a useful tool to probe the 

results provided by the different algorithms, and the results obtained in the previous 

chapter found in this work an independent validation. The unsatisfactory quality of 

the approximation provided by FO is more evident with this real dataset than in the 

previous study (Chapter 3), in which a smaller and simulated dataset was employed. 

The profiling also helped in assessing the accuracy and precision with which the 

parameters are estimated, and it confirmed that FOCE and LAP provide more 

accurate estimates of the RUV. A phenomenon revealed by the profiler might result a 

bit counterintuitive: even if our dataset comprised a large number of subjects and 

samples, some difficulties were encountered in the estimation of the population 

typical values for SI and P2. This is most likely due to the large BSV characterizing 

these parameters in our dataset, however, it is interesting to acknowledge this 

relatively low sensitivity of the OF to some of the population typical parameters, 

normally estimated with very satisfactory precision The profiling also allowed to 

inspect the overall quality of the estimates and statistical significance of the terms in 

the Ω matrix, even though the transformation internally operated by SPK made direct 

inference on specific parameters unfeasible. Possible improvements to this approach 

and therefore ideas for further investigation can imply the use of more sophisticated 

sampling algorithms (e.g. Markov Chain Monte Carlo), to gauge whether it is 

possible to obtain reliable results also with a smaller computational effort. 
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Table 4.1 Values for θ, root square of the diagonal terms of Ω and Σ, as provided by 

each of the tested methods. The units for BSV and RUV are % (dimensionless). 

 

 log(SG) log(V) log(SI) log(p2) σ 

θSTS -4.02 0.477 -9.7 -3.6 

ωSTS 31% 13% 65% 79% 
3.89% 

θITS -3.99 0.478 -9.75 -3.51 

ωITS 16% 12% 65% 54% 
3.89% 

θGTS -3.99 0.481 -9.75 -3.46 

ωGTS 17% 12% 66% 48% 
3.73% 

θFO -3.73 0.386 -11.7 -3.36 

ωFO 27% 15% 823% 515% 
3.55% 

θFOCE -3.96 0.471 -9.8 -3.52 

ωFOCE 18% 12% 70% 52% 
4.39% 

θLAP -3.97 0.474 -9.8 -3.5 

ωLAP 11% 11% 70% 46% 
4.44% 
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Table 4.2 The estimated values of the likelihood function, calculated at the maximum 

provided by the different methods. The first line contains, when available (TS 

methods do not provide it), the estimate based on the approximated Likelihood. The 

second line contains the NLL from MC and, in brackets, its standard deviation (SD). 

FO’s likelihood profiling failed. 

 

 STS ITS GTS FO FOCE LAP 

Approx N/A N/A N/A 12492.40 12853.7 12873.7 

MC 

(SD) 

13023.1 
(5.8) 

12943.9 
(4.7) 

12980.3 
(5.0) 

N/A 
(N/A) 

12884.3 
(4.1) 

12912.2 
(6.7) 
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Table 4.3 Estimates and relative precision for the elements on the Ω matrix, as 

provided by the FOCE algorithm. Given the lognormal distribution for the 

parameters, the correlations are to be interpreted between the logarithms of the 

parameters. The “*” symbol, indicates that the confidence intervals include 0, 

indicating that the parameter might not be statistically significant. 

 

Parameter Covariance CV% LB UB Correlation 

VAR(log(SG)) 0.0310 25.4 0.0156 0.0465  

SG-VOL -0.0086 33.5 -0.0142 -0.0030 -0.42 

SG-SI* -0.0081 146.0 -0.0313 0.0151 -0.07 

SG-P2* -0.0069 174.0 -0.0303 0.0166 -0.08 

VAR(log(VOL)) 0.0133 11.6 0.0103 0.0164  

VOL-SI 0.0233 26.4 0.0113 0.0354 0.29 

VOL-P2 0.0114 46.8 0.0009 0.0219 0.19 

VAR(log(SI)) 0.4950 8.9 0.4090 0.5810  

SI-P2 0.3160 10.2 0.2530 0.3790 0.87 

VAR(log(P2)) 0.2660 12.7 0.2000 0.3330  
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Table 4.4 NLL values provided by all the different models and parameterization 

attempted. The first column indicates the distinctive features of the model under 

evaluation, the second contains the NLL value, the third the number of parameters 

included in the model, whereas the last one indicates whether problems of statistical 

significance were detected in the model. 

 

Model 
NLL 
value 

Number of 
Parameters 

Confidence 
intervals 

including 0? 
FULL 

Gaussian parameters 
12919.5 15 YES, 3 

FULL block 12853.7 15 YES, 2 

FULL block for VOL-SI-P2 12861.5 12 YES, 1 

only SG-VOL SI-P2 12862.2 11 NO 

only VOL-SI SI-P2 12862.3 11 NO 

only SG-VOL VOL-SI 12930.3 11 NO 

only SG-VOL 12938.5 10 NO 

only VOL-SI 12938.7 10 NO 

only SI-P2 12869.3 10 NO 

DIAGONAL 12943.3 9 NO 

only SG-VOL SI-P2 
Weight on model 

12888.8 11 NO 

 



 

Table 4.5 Population parameter values for the final model. The typical values are reported as exp(θ), so that the results are dimensionally compatible with the 

minimal model parameters. The terms of the Ω and Σ matrices are reported as CV% (approximated in the case of Ω) and correlations. 

 

 

 

 

 

 

SG VOL SI P2 Ω - Correlations Σ 

exp(θ) 
Ω 

CV % 
exp(θ) 

Ω 

CV % 
exp(θ) 

Ω 

CV % 
exp(θ) 

Ω 

CV % 

corr  

(SG-VOL) 

corr 

(SI-P2) 
CV % 

0.0191 

 (0.0184 0.0196) 

17.1  

(13.2 20.1) 

1.60  

(1.57 1.63) 

11.4  

(10.0 12.6) 

5.58E-5  

(5.01E-5 6.15E-5) 

69.8 

(63.3 75.7) 

0.0298  

(0.0271 0.0326) 

51.3  

(43.8 57.7) 

-0.40 

(-0.65 -0.14) 

0.87  

(0.69 1.00) 

4.4  

(4.2 4.6) 

 

 



 

Figure 4.1 Profiling of the objective function along the θs around the optimal values provided by the different population algorithms. The units in abscissa 

and ordinate are the same for all the panels, so that a graphical comparison of the parameter precision can be easily performed. As the parameters are the 

logarithms of the typical population values, the curvature in the minimum can be interpreted as proportional to the estimation CV. 
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Figure 4.2 NLL profiling along the diagonal elements of the Cholesky factor of the Ω matrix. As explained in the text, inference on the precision of the 

parameters of the original Ω matrix is very hard, so the charts are exposed only as a qualitative evaluation of the optimal values provided by the different 

methods. 
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Figure 4.3 NLL profiling the off-diagonal elements of the Cholesky factor of the Ω matrix. As explained in the text, inference on the precision of the 

parameters of the original Ω matrix is very hard, so the charts are exposed (and without sharing the same scaling) only as a qualitative evaluation of the 

optimal values reached by the different methods. 
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Figure 4.4 NLL profiling for the parameter Σ (log(σ) is actually used). For each 

method (STS, ITS, GTS, FOCE and LAP), the NLL is evaluated at the estimated 

optimal value (the central colored point) and two values around it. Note the biased 

estimate provided by the TS methods. 
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Figure 4.5 Profiling of the θs centered on their optimal value as provided by FOCE 

with full covariance matrix. The curvature of the objective function around the 

minimum provides a graphical evaluation of the precision of the estimates. Bearing in 

mind that in our model the θs are log-transformed with respect to the minimal model 

parameters, in first approximation the curvature can be considered proportional to the 

CV and the entries in abscissa can be approximately read as percentages of the mean 

value. 
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Figure 4.6 Histogram plots and smoothed densities for the log-transformed minimal 

model individual parameter values obtained with the final model. 
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Figure 4.7 Scatterplot of the logarithm of the parameter values, as obtained with final 

model. A very strong correlation is apparent between log(SI) and log(P2), as 

accounted for by the relative term in the covariance matrix Ω.  
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Figure 4.8 Profiling of the along the parameter estimates for the final model. As the population covariance matrix Ω has been optimized and the number of 

parameters reduced, the new meaning of the α  values is reported in the following equations (the θs remain the same).  
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In the following charts, all the parameters have been centered on their optimal value as provided by FOCE. The leftmost panel shows the θs, the central one 

the elements on the diagonal of the Cholesky factor of Ω and Σ, whereas the rightmost displays the off-diagonal elements. Because of the nature of the 

parameters analyzed (mean, variances and covariances) and the internal transformations operated by SPK, comparison of the precision based on the curvature 

is possible only among elements in the same chart. 
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Chapter 5 

IVGTT Glucose Minimal Model Covariate Selection by 

NonLinear Mixed-Effects Approach. 

 

Overview 

The implementation of a population framework for the glucose minimal model 

carried out in the previous chapter was the first step towards the creation of a more 

sophisticated model including covariates. At the time of the IVGTT experiment, in 

fact, demographic information about the subjects were collected and are therefore 

available for our analysis. The aim is to inspect the presence of significant correlation 

between the individual parameter values and the physiological characteristics, and 

explore the possibility to employ the latter as predictors of response. One of the great 

advantages of NLMEMs consists in the flexibility to define the population 

distribution. It is possible to parameterize the population typical values as a function 

of some of the covariates, which are considered as fixed effects and their values 

optimized along with the other parameters. Covariate selection is a very complex 

problem and no method proposed so far has the guarantee to provide the “best 

model”. Normally researchers rely on the Likelihood Ratio Test, inspecting whether 

the introduction of an additional parameter in the model is statistically significant. 

Anyway, the number of possible models is at least (considering, for example, only 

linear models) exponential relative to the number of covariates, and it is unfeasible to 

explore all the possibilities. What is normally done is to recur to stepwise techniques, 

which imply the insertion (and/or removal) of the most (least) significant parameter at 

each step, until no further modification to the model results into statistically 

significant changes in the objective function. However, also this methodology 

implies, at each step, the exploration of all the possible additions (subtractions), and, 

in our case, this would have spawned a huge number of NLMEM regressions. This is 

the reason which urged us to design an alternative approach, based on a preliminary 

skimming of the pool of possible covariate models, carried out by regression analysis 

on the individual parameter values provided by the base model (without covariates). 

After the group of candidate models has been narrowed down, a procedure similar to 

the stepwise is executed. Our method selected age, visceral abdominal fat and basal 

insulinemia as predictors for SI, and age, total abdominal fat and basal insulinemia 

for P2. The volume of distribution was found to be correlated to gender, age, the 
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percentage of total body fat and basal glycemia, whereas SG was best explained by 

height, weight and body surface area. This last model, however, might be due to 

statistical artifacts, rather than actual physiologic significance. Our analysis finds as 

alternatives the use of age or basal glycemia as predictors. For the other parameters, 

and especially for SI and P2, the incorporation of covariates resulted in a significant 

shrinking of the BSV. The overall predictive power of the model was considerably 

increased with the incorporation of easily, inexpensively and non-invasively 

collectible physiological information; a significant portion of the inter-individual 

variability is explained in a deterministic fashion, and a smaller part is left to a 

stochastic component, the random effects. This can not only offer a starting point for 

speculation about the significance of the relationships detected, but can also provide a 

tool to allow the design of less invasive and less expensive protocols for 

epidemiological studies of the glucose disposal metabolic system. 

 

Introduction 

Variability in biological systems is a widespread trait and poses an extremely 

challenging problem. Issues related to variability impinge on the design and execution 

of experiments on biological systems, especially in the clinical setting, where 

measurements are few and far between each other. The challenge posed by variability 

is compounded by the fact that, often, the traits to be measured cannot be quantified 

directly, but are amenable only to indirect quantification. It can be argued that, when 

such quantification is only possible through identification of a mathematical model, 

new, state of the art tools are mandatory to both quantify and explain sources of in 

vivo variability. An example of model-based biomedical investigation is provided by 

the so-called minimal model of glucose kinetics. The model, when fitted to individual 

responses from an intravenous glucose tolerance test (IVGTT), provides useful 

indices of an individual subject’s metabolic state, including measures of insulin 

sensitivity and glucose effectiveness. The traditional paradigm to estimate the IVGTT 

glucose minimal model parameters is by means of Weighted Least Squares (WLS), 

performed on each single subject experimental data. However, in case of an 

epidemiologic study, encompassing large numbers of subjects, the use of a population 

approach has been shown to both improve the quality of the individual parameter 

estimates and to provide an accurate insight on the between-subject variability of the 

parameter in the population. Generally, in fact, the analysis of the population 

variability is performed only as an “a posteriori” step, by means of a statistical 

analysis (namely sample mean and covariance) on the individual results previously 

obtained by the traditional WLS approach. This method, however, does not normally 
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take into account the uncertainty in the estimates of the individual parameters and is 

therefore prone to provide biased values. 

Population approaches, instead, are based on the assumption that all the subjects are 

realizations of the population and they share some common features typical to the 

population itself, called fixed effects. The population information is employed to 

support the individual parameter estimation process, because each subject is 

characterized by a random effect, which represents its deviation from the population 

typical values. In particular, parametric population approaches assume a probability 

distribution for the different subjects and then estimate the parameter values 

characterizing this distribution, i.e. means, variances and correlations. 

A further step in epidemiological studies consists in trying to inspect the causes 

underlying the variability present in the data, in an attempt to identify whether some 

physiological characteristics of the subject significantly correlate with the model 

parameter values. These features, normally referred to in population analysis as 

covariates, can be used not only for speculation about the system being tested, but 

they can also be integrated into the population model itself to improve its predictive 

power. The coefficients driving the relationships between the individual parameter 

values and the covariates, in fact, can be introduced in the model and therefore 

optimized together with the remaining population fixed effects. In this way, a part of 

the population variability, previously accounted for by the individual random effects, 

is explained in a deterministic fashion. Moreover, the equations linking the model 

parameters to the independently measured covariates can be used to predict individual 

parameter values, thus potentially reducing the need for blood samples and invasive 

trials. 

In this work, we apply methods for covariate selection to a large database of IVGTTs. 

We show that it is feasible to use independently measured, relatively easy to obtain 

covariates to explain observed variation in the metabolic parameters provided by the 

glucose minimal model. This work lays the foundation for further research aimed at 

investigating reduced protocols, not only based on blood sampling but also on 

individual-specific covariate values, for the identification of the glucose minimal 

model. 

 

Materials and methods 

In our study, we analyzed a heavily sampled dataset encompassing 204 healthy 

subjects (mean age 56 yrs, range 18-87; mean BMI 27 kg/m2, range 20-35) who 

underwent a full sampling schedule insulin-modified [33] IVGTT (240 min, 21 

samples, insulin infusion at 20 minutes lasting 5 minutes) [4, 5]. A description of the 
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minimal model of glucose disappearance and its parameters is provided in the 

introduction (Chapter 2). At the time of the experiments, additional information about 

the patients was collected, with the purpose of investigating which physiological 

characteristics were more significant predictors of the individual parameter values. 

More in detail, this information included age (AGE), Gender (SEX), Height (BH), 

Weight (BW) and basal levels of glucose (GBSL) and insulin (IBSL). In addition, 

body composition was measured using X-ray absorptiometry and computed 

tomographic scans, as described in [4, 5]; in this way the following quantities were 

obtained: total body fat (TBF, or expressed as a percentage %TBF), visceral (VAF) 

and total abdominal body fat (TAF), lean body mass (LBM). Lastly, some derived 

covariates were calculated: Body Mass Index (BMI), Body Surface Area (BSA). All 

these covariates are listed in Table 5.1 and graphical summaries of the covariates’ 

distributions can be seen in Figure 5.1. Also some regressions between the most 

correlated covariates are reported in Figure 5.3. Three subjects had some missing 

values for VAF, TAF and %TBF, therefore their value was assumed to be the average 

of the population. This seemingly naïve approach is justified by the fact that, when 

the model was fit, regression was carried out on the values of the covariates centered 

each one on its mean, and in this way the effect of that covariate was totally null for 

the subjects with missing data. 

The procedure for covariate selection is described below. As a first step, a population 

model without covariates was implemented (base model, BM), as explained in 

Chapter 4, and estimates obtained for all the population parameters and the individual 

random effects. The statistics of the individual parameter estimates (in log-

transformed units) are shown in Table 5.2, while a histogram representation is shown 

in Figure 5.2. Regressions between the parameters highlighting correlations are 

available in Figure 5.4. Based on previous literature [1, 31, 44] and on these results, 

the parameters ip  were assumed lognormal. In addition, the measurement error 
ij

ε  

proportional to the experimental data ijy  and the covariance matrix of the random 

effects Ω comprised only the correlation terms between SI-P2 and VOL-SG. 

In formulae 
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 ( )( )2
~ 0,ij ijN yε σ ⋅  (5.3) 

In our reports, for the sake of easiness of interpretation of the results, we reported the 

values of ( )exp θ  for each parameter typical value, so that the figures are 

dimensionally similar to reasonable parameters values and more easily interpretable. 

The same reasons led us to report the square root of the elements on the diagonal of 

Ω , which can be interpreted in first approximation in terms of %CV, and the off 

diagonal elements were transformed into the corresponding correlations, rather than 

covariances. 

The Expected Hessian algorithm (FOCE with interaction) as implemented in SPK 

[66] has been employed for all computations. 

The individual random effects obtained from BM were used for the regression 

analysis. The regression analysis could potentially be performed directly with SPK, 

but the long computation time required to fit each single model, makes this approach 

unfeasible. So we decided to adopt the strategy of performing an exploratory 

correlation analysis of parameter estimates and covariates in the statistical software R 

[65] and narrow down this way the pool of potential candidate models to test with a 

full-fledged nonlinear mixed-effects model analysis. Even though the algorithms for 

linear regression analysis are very fast, the number of possible models grows 

exponentially with the number of covariates, in our case 14, and this makes 

impractical the exhaustive exploration of all the possibilities. Therefore, we recurred 

to heuristic procedures which use branch-and-bound techniques to dramatically 

reduce the number of tested models. The criteria which were employed to rank the 

models and select the most significant, are the Adjusted R2 ( 2
aR ) and Mallows’ Cp 

[47]. The Adjusted R2 measures the strength of the correlation existing between each 

parameter and a group of predictors (covariates), at the same time adjusting the result 

for the number of predictors. Its mathematical formulation is the following: 

 2 /
1 1

/
reg reg reg

a

tot tot tot

VAR SS df
R

VAR SS df
= − = −  (5.4) 

where VAR , SS and df denote respectively the (unbiased) variance, the sum of 

squares and the degrees of freedom (# of samples - # of predictors). These quantities 

refer either to the data (subscripted tot) or to the regression model (subscripted reg). 

Mallows’ Cp compares each possible submodel with the full model (i.e. the model 

including all predictors) by calculating the ratio of the submodel’s and the full 

model’s residual unknown variance, further correcting for the number of parameters 

and available samples (degrees of freedom). Mathematically 
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 2reg

all

SS
Cp N P

VAR
= − +  (5.5) 

where N indicates the number of data points, P the number of regressors used in the 

submodel, and subscripted all refers to the model using with all predictors. 

We started by determining the range of model order (number of predictors included), 

based on Mallows’ Cp. For each order in the range, the best model(s) were chosen for 

implementation in SPK. Then, Adjusted R-squared were computed for all these 

models: when the models were close or discrimination was difficult, the Adjusted R-

squared was used to further rank models. These models were implemented as 

nonlinear mixed-effects models in SPK, and for the optimization, the initial values 

were the ones provided by the regression analysis of parameters vs. covariates 

performed in R. Whenever the most promising covariate model order was at the 

bounds of the range which was being analyzed, the range itself was broadened to 

explore the effects of choosing the best fitting models with greater or lower order. 

Once the mixed-effects optimal parameter values were obtained, the objective 

function minima were used to assess the actual significance of the covariates in the 

models, as it is commonly done [77]. In SPK, the value of the objective function 

reported to the user is the negative log-likelihood (NLL), and therefore the 

significance levels are halved with respect to a chi-squared distribution, as performed 

in [77] (i.e. the drop in the NLL value consequent to the introduction of a single 

parameter should be at least 1.92 for the parameter to be statistically significant).  

 

Results 

Results from the exploratory covariate ranking using the Adjusted R2 and Mallows’ 

Cp are reported in Table 5.3 and 5.4. Selection of covariate models to be tested with 

nonlinear mixed effects analysis proceeded as follows. A first selection of the order of 

the model (i.e. the number of predictors included) was performed by visual inspection 

of the Mallows’ Cp charts for each parameter, by highlighting the portion of the chart 

where the best models congregated, and thus determining a preliminary range of 

models orders (i.e., number of covariates to be included). Subsequently, for each 

model order, if models had similar Mallows’ Cp, they were further ranked by 

inspection of Adjusted R-squared values. Models were then run in SPK and the NLL 

value was obtained for every model. Covariates (with the exception of SEX) were 

centered on the mean, i.e. the difference of the individual value from the mean was 

entered in the model, as opposed to the raw value of the covariate. This does not 

affect the covariate selection process or the minimum of the objective function which 

is reached, but we introduced it mainly for two reasons. The first is that it allows us to 
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impute the values of missing covariates to the mean value for several subjects (in our 

case only 3); in this way those specific subjects will not influence the effect of the 

covariate. In addition, centering the regressors on their mean confers more stability to 

the value of the fixed effects modeling each parameter’s typical values, making their 

interpretation easier.  

The covariate selection process is summarized in Table 5.5. All the models which 

were tested in the SPK environment were numbered from 0 to 70, and they are 

grouped according to the “selection step” to which they belong. For each model, the 

value of the NLL and its difference with the value provided for the BM is reported.  

Alternative covariate models were tested, following the sequence VOL-SG-SI-P2, 

and differences in NLL were recorded. We proceeded by steps, choosing the best 

covariate model for each parameter, and then using it as a starting point to further 

advance in the selection for the remaining parameters. For each parameter, all the 

candidates models selected via the explorative regression in R were implemented, and 

then ranked according to their Chi-Squared p-value with respect to the base model. 

The model proving more statistically significant was selected for improvement in the 

following step. It should be borne in mind that the objective function values provided 

by SPK are the NLL, and were therefore doubled before the use of the Chi-Squared 

test. In addition, during the covariate selection process, care was taken in analyzing 

the precision of the parameter estimates. Furthermore, whenever estimation produced 

a 95% confidence interval for a covariate coefficient which included zero, the validity 

of the model was questioned. It is interesting to notice that this additional rule did not 

interfere with the p-value ranking criterion. In other words, no model that would have 

been selected with the analysis of the NLL value was rejected in this way, and the 

presence of zero inside one of the confidence intervals always coincided with the 

model’s p-value being smaller than those characterized by higher precision in the 

coefficient estimates.  

Our covariate selection roadmap proceeded as follows. As a first step, the candidate 

models for Volume were tested. The improvement in the objective function value is 

very pronounced (-76 NLL, +4 parameters), and all the candidate models presented a 

very low p-value, much lower than the cutoff value of 5%. This can partly be 

attributed to the presence of an outlier in the base model, which, when incorporating 

the covariates, reduces considerably the size of its random effect. At this step, the 

model with the lowest p-value included SEX, AGE, %TBF and GBSL. This 

temporarily optimal model for VOL was selected and, in the following step, it was 

expanded to include the candidate models for SG. In this case, the improvement of 

the NLL value was much smaller (-8.2 NLL, +3 parameters). The selected model for 
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SG consisted in the insertion of BH, BW and BSA. Consequently, the models for SI 

were introduced, a large decrease in the NLL was detected (-60.2 NLL, +2 

parameters) and our criterion selected, in this step, VAF and IBSL as predictors. The 

next candidates tested were the models for P2, and the best option was including 

AGE, TAF and IBSL (-22.8 NLL, +3 parameters). At this point, some of the 

previously rejected models for each of the parameters were evaluated once again, to 

test whether the inclusion of covariates for the other model parameters had modified 

the statistical significance level of the other predictors. The models whose 

performance had been very poor in the previous step (whose p-value was 100X or 

higher than those of the competitor models) were excluded from this reevaluation. 

This is also indicated in Table 5.5 with a # symbol following the model number. 

Models for SI were tested once again, and, at this stage, our criterion selected the 

addition of AGE into the model. After this inclusion, once again the performance of 

all the covariate models for other parameters in combination with the newly selected 

one for SI was assessed. However, no other model provided a lower p-value. As a 

further validation of the optimality of the chosen model, some hybrid models were 

implemented by selecting features from the alternative parameterizations providing 

the lowest p-values beside the optimal model. No other model proved better with 

respect to the selection criterion. 

The final model was then number 38 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 9 10 11 1

2 5 6 7 8 2

3 12 13 14 3

4 15 16 17 4

SG= exp BH-BH + BW-BW + BSA-BSA +

VOL= exp SEXM+ AGE-AGE + %TBF-%TBF + GBSL-GBSL +

SI= exp AGE-AGE + VAF-VAF + IBSL-IBSL +

P2= exp AGE-AGE + TAF-TAF + IBSL-IBSL +

θ θ θ θ η

θ θ θ θ θ η

θ θ θ θ η

θ θ θ θ η

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

 (5.6) 

The optimal parameters values for the base and the final covariate model are reported 

in Table 5.6, along with their confidence intervals, and scatterplots of the individual 

parameter values used for the regression vs. the selected covariates are shown in 

Figure 5.5. Our analysis detects a negative correlation between log(SI) and AGE, 

VAF and IBSL, and similarly log(P2) is found to be negatively correlated with AGE, 

TAF and IBSL. All these relationship are apparent also from the scatterplots in Figure 

5.5, and indeed the population variability decreases remarkably from 69.8% to 44.5% 

and from 51.3% to 39.5% for SI and P2 respectively. This means that the model has 

increased its predictive capability and is able to explain part of the inter-subject 

variability in a deterministic way. The drop in population variability for VOL is much 

more contained (from an initial 11.4% to 9.1%), but still statistically significant. A 
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negative correlation is detected with SEXM %TBF and GBSL, and a positive 

correlation with AGE; however, the relationships with %TBF and GBSL are apparent 

also in the scatterplots, whereas, interestingly, the correlation is not evident for AGE 

and SEX. Glucose effectiveness, instead, does not benefit much from the introduction 

of the covariates; in fact, the variability decreases only from 17.1% to 16.5%. 

Moreover, the inspection of the confidence intervals for the estimates of the variance 

terms reveals that this shrinking is not statistically significant.  

The population covariance matrix used in our analysis included, besides the 

parameter variance terms, also the correlations SI-P2 and SG-VOL. Both these off-

diagonal terms of the Ω are to be considered model parameters and both in the base 

and in the final model they result statistically significant, in that their estimation 

confidence interval does not include 0. Even though the results are not published for 

reasons of space, this holds true also for all the other models which were tested. The 

same can be said about the estimate of the RUV, which was not perturbed by the 

incorporation of the covariates. More in general, it can be pointed out that the 

precision of all the population parameters included in the base model ( 1θ , 2θ , 3θ , 4θ  

and the Ω terms) did not change significantly with the introduction of the covariates. 

Besides model 38, which proved the best, there are others which, even if they did not 

result as winners, might be worth some considerations. These are models 44, 56 and 

62, and in addition, if the confidence interval criterion is disregarded, also models 50, 

55, 57, 65 and 67. They might indicate, in addition to the relationships included in the 

optimal model, also the influence of SEX on P2, VAF, TAF or BH on VOL, and the 

model BW-BMI-BSA for SG. 

 

Discussion 

It is interesting to analyze the discrepancies in the results provided by the nonlinear 

mixed-effects analysis and compare them with the initial explorative regression 

carried out on the individual estimates provided by the base model. The best model 

indicated by both Mallows’ Cp and adjusted R2 are larger than the ones finally 

selected by the population ML approach. Adjusted R2 in particular was indicating as 

optimal the inclusion of 5 covariates per parameter, and Cp about 4. Apparently the 

penalization for the number of parameters employed in the model is more marked 

using the Chi-Squared test than the one applied by criteria like Cp or adjusted R2. 

However, it is relevant to notice that the exploratory regression tests allowed 

narrowing down dramatically the number of necessary runs in SPK. The degree of 

accordance between the two regressions (the exploratory one in R and the ML in 
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SPK) has proved to be fairly satisfactory, and even if the exploratory analysis did not 

recognize the correct order and therefore did not single out the optimal model, it still 

provided a very good guess, and the model selected as final for each of the glucose 

minimal model parameters resulted, in the exploratory analysis, the best candidate 

among the ones with the same number of predictors. Our criterion allows to 

dramatically reduce the duration and improve the efficacy of the covariate selection 

process, in that not only the number of nonlinear mixed-effects runs is remarkably 

decreased with respect to a traditional stepwise approach, but also, in contrast to this 

methodology, it permits the evaluation of models in which two or more covariates are 

jointly inserted into the model, a possibility which is normally not explored with a 

tout-court stepwise approach [78]. Moreover, the choice of calculating the Chi-

Squared statistics always with respect to the base model grants the modeler the 

possibility to carry out a comparison among all the models created in the various step 

of the analysis, without having to choose a new base for the comparison at each step. 

In addition, it is interesting to observe how the criterion based on the p-value obtained 

by Chi-Squared test on the NLL, is always in concordance with the statistical 

significance of the regression parameter estimates. In other words, the models 

selected in the steps of our analysis were always characterized by regression 

parameters significantly different from 0. Moreover, if the fit of a model of a larger 

order (with more covariates) was attempted, most of the times the results were 

characterized by some of the parameter’s confidence intervals including 0. This offers 

support to the criterion we have used for the covariate selection and corroborates the 

results about the precision estimates provided by SPK, which, because of the fact that 

they are obtained with a minimization algorithm, are based on the linearization of the 

Objective Function around the minimum. 

Now let us take a look more in specific at the optimal model. Our dataset is composed 

only of healthy patients (meaning they did not present or where ever diagnosed before 

glucose metabolic disorders) and, even if a large span of age and BMI is covered, the 

variability between the subjects is limited and so might the capability of inference. 

However, some results are definitely very interesting.  

The covariates included in the final model as predictors of SI do not come as a 

surprise; they have been reported previously in the literature and have a very 

convincing physiological explanation. It is widely known that insulin sensitivity 

decreases with ageing, and high level of basal insulin are normally used as a marker 

for insulin resistance, and incipient impaired glucose tolerance. Already in a 

pioneering publication by Bergman et al. [12], in Figure 5.6 is evident an inverse 

relationship among basal insulin and the logarithm of SI. And also Godsland and 
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colleagues [35] had already detected a similar correlation, even thought, in this case, 

the log-transformation was not employed. In addition, many studies in the literature 

have pointed out at the correlation between VAF and insulin resistance [34, 52, 76]. 

Basu and coworkers have already recognized the role of VAF when performing a 

regression analysis on part of the same dataset [4, 5]. Besides SI, a very analogous 

model was selected for p2, measuring the inverse of the delay in the insulin action 

with respect to plasma insulin; in fact, with the only difference of TAF which 

substitutes VAF, the behavior of the predictors is at all similar. It is not clear if it is 

indeed the same predictors explaining the two different phenomena (namely the 

insulin sensitivity and its latency in turning into active insulin) or a limitation of the 

model which does not manage to separate these two aspects of the insulin metabolic 

system. In any case, the term in the model expressing the correlation of the random 

effects of SI and p2 does not decrease in value or statistical significance with the 

introduction of the covariates, meaning that also the residual inter-individual 

variability of the two parameters is highly correlated. It should be mentioned that the 

use of TAF instead of VAF as a predictor for P2 might not carry a strong 

physiological meaning, but may simply be caused by the very strong collinearity 

(r=0.874) between these two predictors. As it appears also from the selection process 

in Table 5.5, very often TAF is a good substitute for VAF and vice versa, so further 

validation on other datasets would be useful to investigate if the relationships we have 

found are corroborated or if our findings are just to be considered a proof of the 

correlation between insulin metabolism and abdominal fat, regardless of its specific 

distribution. In any case, all the relationships encompassed in the final model for SI 

and P2 are apparent also from the scatterplots with the individual values from the 

base model displayed in Figure 5.5. The same applies to a certain extent to the 

relationships found for VOL; the inverse correlation is evident in the scatterplots in 

Figure 5.5 for PERTF and GBSL, whereas the relationship with SEX and AGE is not 

encountered graphically. This probably means that these correlations are present only 

after the volume has been corrected for %TBF and GBSL. We have no knowledge of 

studies in the literature regarding regression analysis of the apparent volume of 

distribution for the glucose minimal model, so no comparison with other data is 

possible. However, it should be borne in mind that that the apparent volume of 

distribution provided by the minimal model parameterization, and therefore used for 

the regression analysis, is intended per kg of the subject’s body mass. If this is taken 

into account, the negative correlation with %TBF might find an explanation in the 

fact that the volume is proportional to the lean body mass of the subject, and 
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therefore, subjects with a greater percentage of body fat have a relatively lower 

volume per kg of body mass. In formulae 

 
V LBM BW-TBF TBF %TBF

V  LBM = =1- =1-
BW BW BW BW 100

∝ → ∝  (5.7) 

Slightly different comments are due about the model proposed for SG. From the 

scatterplots, no remarkable relationship is graphically detectable between log(SG) and 

the selected covariates separately. The correlation, in fact, is present only when the 

whole set BH-BW-BSA is used for the regression; if a model with fewer predictors is 

selected, AGE or GBSL (both inversely correlated to log(SG)) result more 

significant, whereas the explanatory power of BH, BW and BSA seem to be 

inconsistent when they are considered separately. This might point towards a more 

complicated nonlinear relationship between SG and these covariates, but it should be 

also considered that the covariates themselves are strongly correlated. In particular, 

BSA is obtained as a function, although non-linear, of BH and BW. Bonate has 

warned about the danger of collinearity in nonlinear mixed-effects models [14], 

reporting biased and very low precision estimates of the correlation coefficients. 

However, in our case, the estimates are affected on average by a 30% CV, which is 

not much larger than the uncertainty affecting the coefficients of the other covariates 

in the model. In addition, all the other lower order alternative models tested for SG 

(models 59-60-61) were affected by even greater problems of statistical significance, 

in that, not only the overall p-value was less satisfactory, but the regression 

parameters were estimated with very low precision and did not result significantly 

different from 0. Another candidate model for SG is BW-BMI-BSA, but, on the one 

hand, it provides a slightly worse p-value, and, on the other, it is prone to the same, if 

not stronger, collinearity issue. In any case, it should be borne in mind that SG is 

affected by model simplification from a two-compartmental into a one-compartment 

glucose kinetics [17, 18], and this can have a confounding effect that hinders the 

proper identification of physiologically plausible predictors.  

 

Conclusions 

In this work we propose a population model for the glucose minimal model, 

incorporating physiological information such as sex and age, easily measurable 

anthropometric data such as height and weight, body fat amount and distribution, 

basal levels of glucose and insulin. It is important to mention that many studies 

encompassing a correlation analysis of glucose-insulin model parameters are present 

in the literature, but we are not aware of any other study actually implementing a 

“dynamic” regression model such as the one we are proposing in this work. Our 
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model does not simply verify correlations on already calculated parameter values; 

instead the regression coefficients are integrated in the model and in this way 

physiological information plays an active role in the parameter estimation process. 

The introduction of the covariates in the model, in fact, helps in explaining a 

substantial fraction of the population variability for the parameters SI and p2, even 

though the inter-subject variability is not too large in the dataset under test, which is 

encompassing only healthy subjects, rather than individuals with different degrees of 

glucose intolerance disorders. The predictive power of the model is then considerably 

increased with the incorporation of easily, inexpensively and non-invasively 

collectible physiological information; a significant portion of the inter-individual 

variability is explained in a deterministic fashion, and only a smaller part involves a 

stochastic component, the random effects. This can not only offer a starting point for 

speculation about the significance of the relationships detected, but can also provide a 

tool to allow the design of less invasive and expensive protocols for epidemiological 

studies of the glucose disposal metabolic system. The advantages of a population 

approach to parameter estimates has been shown extensively in the literature, and 

even so far it has been mostly employed in drug development studies of 

pharmacokinetics and pharmacodynamics, the modeling of metabolic systems can 

greatly benefit from the use of these techniques. Nonlinear mixed-effects modeling, 

in particular, allows not only a more accurate evaluation of the population features, 

but also enhances the individual parameter accuracy and precision, in that the 

population information is used as a prior which supports the individual parameter 

estimation process. In addition, thanks to the introduction of the individual values of 

the significant covariates, this population prior is tailored to each one of the subjects, 

further improving the estimate precision. Our covariate model, being a first proposal, 

suffers from several limitations and gives therefore rise to possible speculation. The 

existence of more complex and possibly nonlinear relationships should be 

investigated, as our analysis was limited simply at linear models. Moreover, different 

parameterization could be tested to see, for example, if aggregating the parameters 

(e.g. using SG*VOL or SI*VOL) allows to unveil additional or stronger relationships. 

Furthermore, additional research is necessary to clarify the relevance of the covariates 

detected for SG, establishing whether the present results are driven by covariate 

collinearity and, in this case, investigate to propose a more satisfactory solution, 

possibly employing more physiologically meaningful predictors, such as age or basal 

glycemia, which our analysis indicates as potential candidates. Finally, since the 

amount of variability in the data is limited and therefore the possibility of statistical 

artifacts and model misspecification can not be excluded, it would be important to 
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validate and corroborate our results by repeating the analysis on different datasets, 

possibly encompassing subjects with a broader range of variation concerning glucose 

disposal. Another idea to assess the robustness and statistical significance of the 

results is the use of a bootstrap analysis, to test whether the covariates identified with 

the full dataset are identifiable also in replicate sub-datasets. 
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Table 5.1 Covariates for the glucose-insulin system measured in our 204 subject 

database. Statistics include: minimum and maximum value, 1st and 3rd quartile, mean 

and median. Covariate 1 is SEX (Gender). 

 

ID Covariate Name Units Min 1stQ Median Mean 3rdQ Max 

2 AGE Age years 18 27 65 55.53 71 87 

3 BH Body height cm 145 163 171 170.9 178 194 

4 BW Body weight kg 53 68.9 79 77.94 87 127 

5 BMI Body mass index kg/m2 19.6 24.23 26.76 26.61 29.06 34.85 

6 BSA Body surface area m2 1.505 1.771 1.937 1.917 2.047 2.596 

7 LBM Lean body mass kg 30.1 38.5 51.84 49.53 58.68 74.58 

8 VAF 
Visceral abdominal 

fat 
cm2/CT slice 11.86 62.62 127.5 141.8 204.7 478.2 

9 TAF Total abdominal fat cm2/CT slice 43.94 195.1 294.5 301.8 404.4 837.5 

10 TBF Total body fat grams 4884 17370 22570 23410 28420 46990 

11 %TBF 
Percent total body 

fat 
% 7.3 25.85 31.55 32.39 39.68 56.7 

12 GBSL 
Basal glucose 

(fasting, pre-dose) 
mg/dL 72.96 86.74 90.31 91.34 94.72 123.8 

13 IBSL 
Basal insulin 

(fasting, pre-dose) 
pmol/mL 5.4 18.71 23.85 27.25 32.29 80.25 
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Table 5.2 Minimal model parameters for the glucose-insulin system estimated in our 

204 subject database using BM-1. Note that all parameters have been log-transformed 

to comply with the normality assumption on the random effects required by 

parametric nonlinear mixed effects modeling. 

 

Parameter Name Units Min. 1stQ Median Mean 3rdQ Max. 

log(SG) 
Glucose 

effectiveness 
log(min-1) -4.263 -4.041 -3.984 -3.979 -3.921 -3.624 

log(VOL) 

Glucose 

volume of 

distribution 

log(dL/kg) 0.2224 0.4028 0.4795 0.4742 0.5496 0.8124 

log(SI) 
Insulin 

sensitivity 

log(min-1 per 

pmol/mL) 
-11.16 -10.28 -9.772 -9.767 -9.208 -8.225 

log(p2) 
Insulin action 

parameter 
log(min-1) -4.576 -3.806 -3.441 -3.498 -3.136 -2.477 
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Table 5.3 Table containing the best candidate models selected by Mallows’ Cp. The 

columns indicate the number of covariates included in the model (order of the model), 

whereas the rows contain the minimal model parameters. For each parameter and for 

each order, the model indicated as “best” by Mallows’ Cp is reported. The overall 

(regardless of the order) “best” model for each parameter is indicated in boldface. A * 

indicates that this criterion seemed to exclude a model of that particular order. 

 

# of 
Covariates 

2 3 4 5 6 

log(SG) 
AGE, 
GBSL 

BH, BW, 
BSA 

BH, BW, 

BSA, 

GBSL 

BH, BW, 
BSA, LBM, 

GBSL 
* 

log(VOL) * * 
SEX, AGE, 

%TBF, 
GBSL 

SEX, AGE, 

VAF, 

%TBF, 

GBSL 

SEX, AGE, 
BH, VAF, 

%TBF, 
GBSL 

log(SI) * 
AGE, 

VAF, IBSL 
SEX, AGE, 

VAF, IBSL 

SEX, AGE, 
BMI, VAF, 

IBSL 
* 

log(P2) * 
AGE, 

TAF, IBSL 

AGE, 

VAF, 

%TBF, 

IBSL 

SEX, AGE, 
BSA, VAF, 

IBSL 
* 
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Table 5.4 Values of R-squared and adjusted R-squared for the candidate models in 

the range selected by Mallows’ Cp, listed by parameter. The “best” model based on 

exploratory analysis is suggested to be the one with the highest adjusted R-squared 

(boldface). 

 

Log(SG) (best covariates based on adjusted R-squared: BH, BW, BSA, LBM, GBSL) 

Covariates R2 adjR2 

GBSL 0.03544 0.03066 

AGE 0.03371 0.02892 

AGE GBSL 0.05097 0.04153 

BH BW BSA 0.06960 0.05564 

BW BMI BSA 0.05821 0.04409 

BH BW BSA GBSL 0.08197 0.06352 

BH BW BSA LBM GBSL 0.08952 0.06653 

 

Log(VOL) (best covariates based on adjusted R-squared: SEX, AGE, VAF, %TBF, 

GBSL) 

Covariates R2 adjR2 

AGE TBF GBSL 0.3995 0.3905 

SEX AGE %TBF GBSL 0.4264 0.4149 

AGE VAF %TBF GBSL 0.4196 0.4080 

SEX AGE VAF %TBF GBSL 0.4365 0.4223 

AGE BH VAF %TBF GBSL 0.4329 0.4186 

SEX AGE TAF %TBF GBSL 0.4324 0.4180 

SEX AGE BH VAF %TBF GBSL 0.4382 0.4211 

 

Log(SI) (best covariates based on adjusted R-squared: SEX, AGE, BMI, VAF, IBSL) 

Covariates R2 adjR2 

TAF 0.3761 0.373 

VAF 0.3418 0.3385 

VAF IBSL 0.4836 0.4784 

TAF IBSL 0.4779 0.4727 

AGE IBSL 0.4734 0.4682 

AGE VAF IBSL 0.5265 0.5193 

AGE TAF IBSL 0.5186 0.5113 

VAF %TBF IBSL 0.5123 0.5050 

SEX AGE VAF IBSL 0.5376 0.5283 

AGE VAF %TBF IBSL 0.5369 0.5276 

SEX AGE BMI VAF IBSL 0.5414 0.5299 
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Log(P2) (best covariates based on adjusted R-squared: SEX, AGE, BSA, VAF, IBSL) 

Covariates R2 adjR2 

TAF 0.3358 0.3325 

AGE IBSL 0.4155 0.4097 

TAF IBSL 0.3880 0.3819 

AGE TAF IBSL 0.4512 0.4429 

AGE VAF IBSL 0.4431 0.4347 

AGE VAF %TBF IBSL 0.4636 0.4528 

SEX AGE VAF IBSL 0.4625 0.4517 

SEX AGE TAF IBSL 0.4583 0.4474 

AGE VAF TBF IBSL 0.4574 0.4465 

AGE TAF %TBF IBSL 0.4565 0.4456 

SEX AGE BSA VAF IBSL 0.4674 0.4539 

SEX AGE BW VAF IBSL 0.4667 0.4533 

 



 

 

Table 5.5 Outline of the covariate selection process. The first column groups the models under test according to the minimal model parameter which was 

analyzed fro covariate inclusion at the current step of the selection process. The second column contains the code of the model: a * indicates that several of 

the regression parameters in the model did not result statistically different from zero according to their estimate’s confidence intervals, whereas a # indicates 

that the performance of the model was so unsatisfactory to lead to its exclusion from being retested in the following steps. Columns 3 to 6 contain the codes 

of the covariate included for each of the parameters. NLL is the value of the Negative Log-Likelihood provided by SPK, whereas the number of θs in the 

model (typical values + regression coefficients) is reported in the following column. ∆NLL and ∆P are the difference in NLL value and number of 

parameters, with respect to the base model. Finally the last column displays the p-value as reported by the Chi-Squared test, in other words, it is the 

probability of committing an error if rejecting the null hypothesis that all the additional parameters added to the base model are insignificant. 

 

Parameter 
under test 

Model SG VOL SI P2 NLL θs NLL P p-value 

BASE 0 0 0 0 0 12862.2 4    

1 0 AGE-TBF-GBSL 0 0 12791.9 7 -70.3 3 2.81E-30 

2 0 SEX-AGE-%TBF-GBSL 0 0 12786.2 8 -76.0 4 7.59E-32 

3# 0 AGE-VAF-%TBF-GBSL 0 0 12791.5 8 -70.7 4 1.42E-29 

4* 0 SEX-AGE-VAF*-%TBF-GBSL 0 0 12785.2 9 -77.0 5 1.88E-31 

5 0 AGE-BH-VAF-%TBF-GBSL 0 0 12785.9 9 -76.3 5 3.73E-31 

6* 0 SEX-AGE-TAF*-%TBF-GBSL 0 0 12785.5 9 -76.7 5 2.52E-31 

VOL 

7* 0 SEX*-AGE-BH*-VAF*-%TBF-GBSL 0 0 12784.1 10 -78.1 6 3.78E-31 

8 GBSL SEX-AGE-%TBF-GBSL 0 0 12783.8 9 -78.4 5 4.76E-32 

9 AGE SEX-AGE-%TBF-GBSL 0 0 12783.4 9 -78.8 5 3.21E-32 

10* AGE*-GBSL* SEX-AGE-%TBF-GBSL 0 0 12782.3 10 -79.9 6 6.53E-32 

11 BH-BW-BSA SEX-AGE-%TBF-GBSL 0 0 12778.0 11 -84.2 7 5.46E-33 

12 BW-BMI-BSA SEX-AGE-%TBF-GBSL 0 0 12780.0 11 -82.2 7 3.80E-32 

13* BH-BW-BSA-GBSL* SEX-AGE-%TBF-GBSL 0 0 12777.3 12 -84.9 8 1.42E-32 

SG 

14* BH-BW-BSA-LBM*-GBSL* SEX-AGE-%TBF-GBSL 0 0 12776.2 13 -86.0 9 2.36E-32 

           

           



 

           

15# BH-BW-BSA SEX-AGE-%TBF-GBSL VAF 0 12747.8 12 -114.4 8 5.31E-45 

16# BH-BW-BSA SEX-AGE-%TBF-GBSL TAF 0 12752.8 12 -109.4 8 6.90E-43 

17 BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL 0 12717.8 13 -144.4 9 6.18E-57 

18# BH-BW-BSA SEX-AGE-%TBF-GBSL TAF-IBSL 0 12726.1 13 -136.1 9 2.03E-53 

19# BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-IBSL 0 12731.0 13 -131.2 9 2.40E-51 

20* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE*-VAF-IBSL 0 12717.2 14 -145.0 10 2.02E-56 

21# BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-TAF-IBSL 0 12724.3 14 -137.9 10 2.00E-53 

22* BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-%TBF*-IBSL 0 12717.8 14 -144.4 10 3.61E-56 

23* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE*-VAF-%TBF*-IBSL 0 12717.2 15 -145.0 11 1.12E-55 

24* BH-BW-BSA SEX-AGE-%TBF-GBSL SEX*-AGE*-VAF-IBSL 0 12717.2 15 -145.0 11 1.12E-55 

SI 

25* BH-BW-BSA SEX-AGE-%TBF-GBSL SEX*-AGE*-BMI*-VAF-IBSL 0 12716.7 16 -145.5 12 3.63E-55 

26 BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL TAF 12699.9 14 -162.3 10 9.68E-64 

27 BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL AGE-IBSL 12700.5 15 -161.7 11 1.02E-62 

28 BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL TAF-IBSL 12697.9 15 -164.3 11 8.11E-64 

29 BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL AGE-TAF-IBSL 12695.0 16 -167.2 12 2.73E-64 

30 BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL AGE-VAF-IBSL 12697.2 16 -165.0 12 2.31E-63 

31 BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL AGE-VAF-%TBF-IBSL 12695.3 17 -166.9 13 1.97E-63 

32 BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL SEX-AGE-VAF-IBSL 12695.4 17 -166.8 13 2.17E-63 

33* BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL AGE-VAF-TBF*-IBSL 12695.9 17 -166.3 13 3.52E-63 

34* BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL SEX*-AGE-TAF-IBSL 12694.5 17 -167.7 13 9.10E-64 

35* BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL AGE-TAF-%TBF*-IBSL 12694.8 17 -167.4 13 1.22E-63 

36* BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL SEX-AGE-BSA*-VAF-IBSL 12695.0 18 -167.2 14 7.65E-63 

P2 

37* BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-IBSL SEX-AGE-BW*-VAF-IBSL 12695.2 18 -167.0 14 9.28E-63 

38 BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12687.6 17 -174.6 13 1.14E-66 

39# BH-BW-BSA SEX-AGE-%TBF-GBSL VAF-%TBF-IBSL AGE-TAF-IBSL 12692.9 17 -169.3 13 1.93E-64 

40* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-%TBF*-IBSL AGE-TAF-IBSL 12687.3 18 -174.9 14 4.53E-66 

41* BH-BW-BSA SEX-AGE-%TBF-GBSL SEX*-AGE-VAF-IBSL AGE-TAF-IBSL 12687.4 18 -174.8 14 4.99E-66 

SI 

42* BH-BW-BSA SEX-AGE-%TBF-GBSL SEX*-AGE-BMI*-VAF-IBSL AGE-TAF-IBSL 12686.1 19 -176.1 15 7.28E-66 

           



 

 

           

43* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE*-VAF-IBSL TAF 12698.6 15 -163.6 11 1.60E-63 

44 BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-IBSL 12690.0 16 -172.2 12 2.13E-66 

45* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE*-VAF-IBSL TAF-IBSL 12696.9 16 -165.3 12 1.72E-63 

46* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-VAF*-IBSL 12689.5 17 -172.7 13 7.20E-66 

47* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-VAF*-%TBF-IBSL 12687.5 18 -174.7 14 5.50E-66 

48* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL SEX-AGE-VAF*-IBSL 12687.5 18 -174.7 14 5.50E-66 

49* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-VAF*-TBF*-IBSL 12688.2 18 -174.0 14 1.08E-65 

50* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL SEX*-AGE-TAF-IBSL 12686.4 18 -175.8 14 1.90E-66 

51* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-TAF*-%TBF*-IBSL 12687.0 18 -175.2 14 3.39E-66 

52* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL SEX-AGE-BSA*-VAF*-IBSL 12687.1 19 -175.1 15 1.91E-65 

P2 

53* BH-BW-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL SEX-AGE-BW*-VAF*-IBSL 12687.3 19 -174.9 15 2.31E-65 

54# BH-BW-BSA AGE-TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12694.5 16 -167.7 12 1.68E-64 

55* BH-BW-BSA SEX-AGE-VAF*-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12686.1 18 -176.1 14 1.42E-66 

56 BH-BW-BSA AGE-BH-VAF-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12687.3 18 -174.9 14 4.53E-66 

57* BH-BW-BSA SEX-AGE-TAF*-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12686.8 18 -175.4 14 2.80E-66 

VOL 

58* BH-BW-BSA SEX*-AGE-BH*-VAF*-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12685.8 19 -176.4 15 5.45E-66 

59* GBSL* SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12692.5 15 -169.7 11 4.23E-66 

60* AGE* SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12692.9 15 -169.3 11 6.25E-66 

61* AGE*-GBSL* SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12692.3 16 -169.9 12 1.99E-65 

62 BW-BMI-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12688.6 17 -173.6 13 3.01E-66 

63* BH-BW-BSA-GBSL* SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12687.4 18 -174.8 14 4.99E-66 

SG 

64* BH-BW-BSA-LBM*-GBSL* SEX-AGE-%TBF-GBSL AGE-VAF-IBSL AGE-TAF-IBSL 12686.9 19 -175.3 15 1.57E-65 

65* BH-BW-BSA SEX-AGE-VAF*-%TBF-GBSL AGE-VAF-IBSL AGE-IBSL 12688.6 17 -173.6 13 3.01E-66 

66* BH-BW-BSA SEX-AGE-TAF*-%TBF-GBSL AGE-VAF-IBSL AGE-IBSL 12689.1 17 -173.1 13 4.89E-66 

67* BH-BW-BSA SEX-AGE-VAF*-%TBF-GBSL AGE-VAF-IBSL SEX*-AGE-TAF-IBSL 12685.0 19 -177.2 15 2.52E-66 

68* BW-BMI-BSA SEX-AGE-%TBF-GBSL AGE-VAF-IBSL SEX*-AGE-TAF-IBSL 12687.3 18 -174.9 14 4.53E-66 

69* BH-BW-BSA SEX-AGE-TAF*-%TBF-GBSL AGE-VAF-IBSL SEX*-AGE-TAF-IBSL 12685.6 19 -176.6 15 4.50E-66 

MIXED 

70* BW-BMI-BSA SEX-AGE-VAF-%TBF-GBSL AGE-VAF-IBSL SEX*-AGE-TAF-IBSL 12685.4 19 -176.8 15 3.71E-66 

 



 

Table 5.6 Summary of nonlinear mixed-effects maximum likelihood regression for the base and the final covariate models for the minimal model of glucose 

kinetics. Values are reported as follows. Typical values for the parameters (θ) are in the original units. Given that the between-subject variability is modeled 

as lognormal, variance measures are reported as coefficients of variation, whereas the covariance terms (the off-diagonal element of Ω) are in terms of 

correlation. Coefficients for the covariates are in logarithmic units; therefore, as a first approximation, they can be interpreted as proportional changes in the 

minimal model parameter per unit change of the covariate. By way of explanation, SI = 5.58E-5*exp(-0.00703*∆AGE), where ∆AGE is the deviation of AGE 

from the mean AGE. This model can be approximated as SI ~ 5.58E-5*(1-0.00703*∆AGE), which predicts approximately a 0.7% drop in SI for every year of 

AGE above mean AGE. The Residual Unknown Variability is reported as CV%, 

 

SG VOL SI P2 Off-diagonal Ω Σ 

Model 
θ CV % θ CV % θ CV % θ CV % 

Ω  

(SG-VOL) 

Ω  

(SI-P2) 
CV % 

NLL 

Base 
0.0191 

 (0.0184 0.0196) 

17.1  

(13.2 20.1) 

1.60  

(1.57 1.63) 

11.4  

(10.0 12.6) 

5.58E-5  

(5.01E-5 6.15E-5) 

69.8 

(63.3 75.7) 

0.0298  

(0.0271 0.0326) 

51.3  

(43.8 57.7) 

-0.40 

(-0.65 -0.14) 

0.87  

(0.69 1.00) 

4.4  

(4.2 4.6) 
12862.2 

1.68  

(1.64 1.73) 0.0186  

(0.018 0.0192) 
SEX 

-0.0813  

(-0.12 -0.0425) 

5.68E-5  

(5.3E-5 6.07E-5) 

0.0299 

(0.0276 0.0323) 

BH 
0.0214  

(0.00732 0.0354) 
AGE 

0.00169  

(0.00113 0.00226) 
AGE 

-0.00703 

(-0.0108 -0.00329) 
AGE 

-0.00814  

(-0.0117 -0.00457) 

BW 
0.0446  

(0.0168 0.0724) 
%TBF 

-0.00981  

(-0.012 -0.0076) 
VAF 

-0.00235  

(-0.00332 -0.00137) 
TAF 

-0.000656  

(-0.00125 -0.0000637) 

Final 

BSA 
-3.78 

(-6.07 -1.49) 

16.5  

(12.7 19.6) 

GBSL 
-0.00473  

(-0.00643 -0.00303) 

9.1  

(7.9 10.1) 

IBSL 
-0.0276  

(-0.0343 -0.0209) 

44.5  

(39.6 48.8) 

IBSL 
-0.0101  

(-0.016 -0.00411) 

39.5  

(32.1 45.7) 

-0.67  

(-0.96 -0.39) 

0.85  

(0.63 1.00) 

4.4  

(4.2 4.6) 
12687.6 



 

102 

Figure 5.1 Histogram plots and smoothed densities for the covariate set (see also 

Table 5.1). See text for abbreviations and details. 
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Figure 5.2 Histogram plots and smoothed densities for the minimal model parameter 

set (see also Table 5.2). See text for abbreviations and details. 
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Figure 5.3 Scatterplot of the covariates most closely correlated. The anthropometric 

covariates (BH, BW, BMI and BSA) and the Body-Fat related covariates (TBF, 

%TBF, LBM, VAF and TAF) were grouped together as they are closely related or 

tied by some functional relation. A smoothed tendency line is superimposed to depict 

the trend of the relation. 
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Figure 5.4 Scatterplot of the logarithm of the parameter values, as obtained with the 

base model. A very strong correlation is apparent between log(SI) and log(P2), as 

accounted for by the relative term in the covariance matrix Ω.  
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Figure 5.5 Scatterplot of the logarithm of the parameter values obtained with the base 

model and the respective covariates included in the final model. 
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Chapter 6 

Assessment of Glucose Disposal Metabolic System. 

The Disposition Index: 

Total Least Squares VS Population Approaches 

 

Abstract  

It is widely recognized that in order to asses the actual performance of the glucose 

disposal metabolic system of a subject, it is important to interpret the data of insulin 

sensitivity together with information concerning insulin secretion. The disposition 

index, first proposed in Bergman et al. [12], is one of the most widely accepted 

methods to do so. This paradigm assumes that subjects with similar efficiency in 

disposing of glucose have a similar value of the product of insulin sensitivity and 

insulin secretion index. Due to the implied inverse relationship between the 

sensitivity and secretion indices, this paradigm is often referred to as the hyperbolic 

law. More recently the validity of this law has been questioned [37] and the 

hypothesis has been put forward that relationship is quasi-inverse, with the 

introduction of an additional parameter α  as exponent of the sensitivity index. The 

method used so far to investigate the validity of the disposition index laws consists in 

analyzing a dataset from a population of subjects with similar glucose disposal 

efficiency and therefore supposedly sharing the same disposition index. For each 

individual, an insulin sensitivity and a secretion index are estimated, together with 

their precision, and a fit approach is normally applied to find the curve which best 

explains the data. In the literature many publications are found that attempt to address 

this problem, but the details of the fit algorithm implementation are often not clearly 

stated, if not overlooked. In the current investigation, we first show the crucial 

importance of the setup of the fitting algorithm and then propose a more statistically 

sound fit approach based on the Total Least Squares (TLS) technique. However, all 

the fit approaches rely on the hypothesis that all the subjects share the same value of 

the disposition index. In this way they fail to account for a very important factor 

which is inevitably intrinsic in biological data: the variability due to inter-individual 

differences. Thus, we propose a new approach to the disposition index estimation, 

which consists in obtaining its value based on population features estimated with a 

nonlinear mixed-effects model. After testing the performance of all the proposed 

methods on simulated datasets, we apply our newly designed tool to the analysis of 
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real data, to investigate the validity of the pseudo-hyperbolic law versus the 

traditional hyperbolic paradigm. 

 

Introduction 

An accurate and exhaustive evaluation of the efficiency of a subject's glucose 

metabolic system must take into account both information on insulin sensitivity and 

on insulin secretion (i.e. β-cell responsivity). These two characteristics must be 

interpreted jointly, because it is indeed the balance of the two that characterizes the 

actual efficiency of the system.  

Even though other authors [69] had previously detected a similar relationship, it is 

widely acknowledged that the Disposition Index (hereinafter DI, ∆  in the formulae), 

was first proposed in 1981 by Bergman and coworkers [12] and it is, to these days, 

one of the most widespread methods to account jointly for both insulin sensitivity ( ξ ) 

and β-cell responsivity ( Φ ). This paradigm assumes that subjects with similar 

efficiency of the glucose disposal metabolic system have a similar value of the 

product = Φξ∆ ⋅ , where ξ  is a sensitivity index (such as insulin sensitivity as 

provided by IVGTT glucose minimal model [11]) and Φ  a β-cell responsivity index 

(such as Φ  as provided by the C-peptide minimal model [67]). Due to the implied 

inverse proportionality among ξ  and Φ , this is widely known as the hyperbolic law. 

Recently a more comprehensive paradigm has been proposed, suggesting that the 

disposition index should be calculated as = Φ
αξ∆ ⋅  thus introducing an additional 

parameter, α . This further parameter is meant to accommodate for a different 

leverage of the secretion and sensitivity indices, with respect to the calculation of the 

DI. It is worth noting that, if the values of α  is 1, this model would degenerate in the 

pure hyperbolic law. Hereinafter, we will refer to this newly proposed DI paradigm as 

pseudo-hyperbolic law. 

In the original paper by Bergman and colleagues, the relationship between 2Φ   and 

SI was considered, but later many different indices (especially for insulin secretion) 

have been used for the same purpose. Many studies in the literature [13, 32, 37, 53, 

70, 71] employ the DI, and address the problem of its determination in different ways, 

inspecting, for different combinations of sensitivity and secretion indices, also about 

whether the parameter α  is significantly different from 1, thus providing evidence 

against the validity of the pure hyperbolic law to the advantage of the more complex 

pseudo-hyperbolic law. The most widely-used approach consists in trying to fit a 

hyperbola (or pseudo-hyperbola) on the data of insulin sensitivity and β-cell 

responsivity. However, the choice of the fit method used raises some issues and the 
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problem needs to be considered with the necessary care. As we show in the present 

work, the setup for the fit algorithm is crucial and what could be thought of as small 

details, and therefore possibly overlooked, might turn out to lead to extremely 

different outcomes.  

In this work, we propose a novel nonlinear approach based on the Total Least Squares 

(TLS) technique, which will be outlined in the Materials and Methods section and we 

compare its performance on several simulated dataset, with that of the other methods 

previously used in the literature. Our algorithm proves more methodologically sound 

and our simulations show that the results provided are more reliable than the 

previously used methods. However, similarly to the all the other fit approaches, our 

algorithm implicitly relies on the hypothesis that all the subjects in the population 

have the same disposition index. So the only variability which is assumed to be 

present in the data is the estimation uncertainty of the parameters of insulin sensitivity 

and β-cell responsivity. This is might be a very strong simplification, and lead to very 

unreliable results.  

Therefore we propose a new approach that considers the Disposition Index and the 

parameter α  as features that characterize the joint population distribution of the 

parameters of insulin sensitivity and β-cell responsivity. The population analysis can 

be carried out with nonlinear mixed-effects modeling tools such as NONMEM [8] or 

SPK [66], and the values of DI and α  can be obtained directly from the analysis of 

the population covariance matrix. 

Finally, after testing also this new population approach on simulated data, we apply it 

on real data [4, 5] to test the validity of the hyperbolic law. 

 

Background  

In this section, we present a brief overview of the problem, introducing the solution 

we propose and a collection of the alternative approaches suggested and used so far in 

the literature to render the problem more easily tractable. The main issues raised by 

each of the proposed simplifications will be underlined to clarify the reasons which 

lead us to design our own approaches. 

The standard scenario in which the analysis is normally carried out is the following: a 

population of subjects whose glucose metabolic system operates with the same degree 

of efficiency is considered and, for each one of the subjects, estimates of both insulin 

sensitivity and secretion indices ( iξ  and iΦ ), along with their precision (the 

variances are denoted 2
iξσ  and 2

iσΦ ) are calculated. Therefore, assuming that the error 
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affecting the estimates is Gaussian, the estimates of the indices are characterized by 

the following probability distributions 

 
( )
( )
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ξξ ξ σ
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 (6.1) 

where the barred values denote the true but unknown values of the indices. At the 

same time, in order to adhere to the DI paradigm, the true values are assumed to be 

obeying to the formula 

 i i i

αξ ⋅Φ = ∆ = ∆  (6.2) 

where i runs across the subjects and ∆  is the DI characterizing the population. It is 

important to note that (6.2) emphasizes the assumption that i∆  has the same value for 

all subjects. This hypothesis is possibly a strong simplification, as it appears quite 

unlikely that all subjects share exactly the same value of DI, however, this 

assumption is implicitly underlying all the fit approaches proposed in the literature. In 

this work, we first analyze the problem relying on assumption (6.2) to be true, and 

then we probe the consequences caused by the fallacy of this hypothesis (i.e., what if 

there is population variability in the DI values?). 

 

Geometrical approaches (fit) 

Total Least Squares Approach 

If we interpret iξ  and iΦ  as the coordinates x and y of a Cartesian coordinate system, 

a geometrical interpretation of the problem is possible. In a Cartesian plane, each 

subject is represented by a point and thus, the reason behind the name of the 

hyperbolic law is explained: (6.2) implies that all the points corresponding to the 

subjects’ true parameter values lie on a curve, a pseudo-hyperbola. Therefore, finding 

the values of α  and ∆  characterizing the population, consists in identifying the curve 

that better fits the data; i.e., the curve lying at the minimum distance from the data 

points. The most common procedure to solve this kind of problem is tuning the 

parameters to minimize the sum of squares of the (weighted) residuals. For each point 

( ),i iξ Φ , the residual is defined as its distance to the closest point lying on the 

pseudo-hyperbola. This point, which in a sense can be considered as the projection on 

the curve, will be denoted ( )ˆ ˆ,
i i

ξ Φ . With this notation, the objective function that is 

minimized in the TLS fit approach can be written as follows: 
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As it can be seen in (6.3), the difference of uncertainty along the x- and y-direction is 

properly taken into account by using the estimation uncertainties as weighting factors. 

The approach of using in the fit all the directions affected by error is generally known 

as Total Least Squares (TLS) or Error-in-variables, and efficient methods are 

available for the TLS fit of a straight line. However, in the case of a pseudo-

hyperbola, the calculation of the closest point is not trivial to achieve. We were not 

able to identify a closed-form solution to the problem, so we had to resort to a 

numerical minimization procedure. We implemented the fit by nesting, inside the 

calculation of objective function, a further level of minimization to compute the 

projections of each data point on the pseudo-hyperbola. The Matlab [64] code is 

available upon request to the authors. 

In order to approximate the distance from each data point to the curve, many different 

simplifications have been proposed in the literature. We briefly go through them in 

the next paragraphs. 

 

1-variable fit 

An easy way to bypass the problem consists in considering the error as affecting only 

one variable, so either the secretion or the sensitivity index. This naïve procedure 

raises several important issues: first of all, it is not clear upon which theoretical 

grounds one should choose to interpret one of the two indices as error-free and, 

secondly, which of the two variables should be chosen and why. The resulting 

objective functions are listed below 
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Log-transformation 

The most widely used approach, inaugurated by Kahn et al. [37], consists in applying 

a log-transformation to the original data, so that, in the log-transformed space, the 

problem is simplified and becomes a linear fit. The log-transformation of both 

variables, ξ  and Φ , turns the hyperbola into a straight line as shown in the following 

formulae: 



 

112 

 ( ) ( ) ( )log ln ln lntransformation

i i i i

αξ α ξ−∆ = ⋅Φ → ∆ = ⋅ + Φ  (6.6) 

However, the transformation is nonlinear and does not preserve the Gaussian error 

structure of the model; in this way, the hypotheses supporting the classical fit 

approach are not satisfied. Therefore, to try to preserve information on the precision 

of the estimates of the individual indices, a first-order approximation can be used. 

This is equivalent to using the numerical values of the Coefficient of Variation (CV) 

of the original estimates as the Standard Error (SE) of the log-estimates, but this 

simplification is quite strong, especially if the uncertainty is high, as in this case the 

non-approximated probability distribution of the log-transformed data is heavily 

skewed to the right. On top of this, one should bear in mind that the optimal solution 

in the log-transformed space does not in general preserve its optimality under 

nonlinear transformations. Therefore, especially if a large variability is present, the 

two solutions might be very different. In addition, even if the log-transformation 

simplifies the problem to the fit of a straight line, the error is still present in both 

variables and a proper technique must be employed to take this into account. Many 

approaches are used in literature, but the most widespread is the Riggs Perpendicular 

Weighted (PW) regression [59]. This method is essentially an orthogonal fit that uses 

a correction factor λ  (ratio of the variances) to correct for the difference of 

uncertainty along the two different directions. So technically a fit along just one 

direction is performed, but the correction factor λ , allows somehow to take into 

account also the second direction. Even though a linear method is available, so no 

minimization of the objective function is required, we propose the formula here for 

the sake of comparison with the other methods 

 ( )
2*

2*
log

ln ln
ln ln ln lni

RIGGS i i i
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F λ ξ α ξ
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⊥
⊥

  ∆ − Φ
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∑  (6.7) 

The symbol *⊥  denotes the orthogonal projection on the straight line, once the axes 

have been rescaled to accommodate for the heteroscedasticity along the different 

directions. However, a strong simplification introduced by this method is represented 

by the fact that it assumes each direction to be affected by a specific degree of 

uncertainty, and the same for all the subjects. In this way, all the data points will be 

considered equally reliable in the fit. In our case, as the uncertainty changed from 

direction to direction and from subject to subject, the following formula was used for 

λ  

 ( )

( )

2 2
ln

2 2
ln

i i

ii

CV
median median

CVξξ

σ
λ

σ

Φ Φ
   
 = =  

  
  

 (6.8) 
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An alternative simplistic approach to execute the fit for the straight line is once again 

considering the error in just one of the log-variables: 
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or, a more consistent TLS approach can be attempted: 
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where ��( )ln , lni iξ Φ  is the prediction in the TLS sense, i.e. the point on the straight 

line lying at the shortest weighted distance from ( )ln , lni iξ Φ . As already mentioned, 

this linear case, the TLS projection can be obtained with a closed-form formula, and 

therefore it is computationally very rapid. 

 

Population approach (NLMEM) 

All the methods described so far are based on a geometrical approach and therefore 

implicitly rely on hypothesis (6.2). This makes them statistically inconsistent in case 

of population variability in the DI values. The methodology exposed in the following 

paragraphs, instead, relies on a hierarchical structure for the variability in the dataset: 

in addition to sharing with the previous models the assumptions on the measurement 

error, a different, broader hypothesis on the population probability distribution of the 

secretion and sensitivity indices is made. The indices 
iξ  and 

iΦ  are assumed as 

lognormally distributed in the population; this is a common assumption in the 

literature, that also guarantees the positivity and physiological plausibility of the 

parameters. The joint population distribution for the true but unknown values iξ  and 

iΦ  has the following general mathematical formulation: 
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 (6.12) 

where µ  and 2ω  denote respectively the population geometric mean and variance of 

the subscripted index, and ρ  is the correlation among the logarithms of the indices. 
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Under this hypothesis, also the probability distribution of the DI is lognormal, and 

more precisely 

 ( )2 2 2~ , 2
i i i

LNα
ξ ξ ξξ αµ µ α ω ω αρω ωΦ Φ Φ⋅Φ = ∆ + + +  (6.13) 

If the whole population is characterized by one value of DI, shared by all the subjects, 

this implies that population variance of the DI is zero. In other words, the following 

constrain holds  

 2 2 2 2 0ξ ξα ω ω αρω ωΦ Φ+ + =  (6.14) 

Working equation (6.14) under the conditions 
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we obtain one uninteresting solution ( 0ξω ωΦ= = , i.e., all subjects have the same SI 

and PHI) and the more complex one 

 

1

ξ

ρ

ω
α

ω
Φ

= −

=
 (6.16) 

So, if the correlation ρ  among ( )log iξ  and ( )log iΦ  is -1, and the ratio between 

their population variances is 2α , then all the subject will share the same value of DI. 

This can be intuitively interpreted graphically by plotting the subjects on a Cartesian 

plane. If the correlation is -1, they all belong to the same pseudo-hyperbola. It is also 

interesting to notice that, once α  is fixed, what controls the population variability of 

the DI is the parameter ρ : as it gets closer to zero, the points get more and more 

scattered around the pseudo-hyperbola. 

So the joint population distribution can be rewritten as follows 
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 (6.17) 

This represents the first stage of the variability in the model, and more specifically the 

between-subject variability. On top of this, the within-subject variability (estimation 

uncertainty) is still present and equations (6.1) still hold. 

The advantage of this model is that its hypotheses are much less restrictive, and it 

accommodates the TLS fit approach as a special case with 1ρ = − . 
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In order to estimate the parameters of the joint population distribution, a population 

approach, such as NonLinear Mixed-Effects Models (NLMEMs) [7, 25], can be 

applied to analyze the insulin sensitivity and secretion data of a group of subjects 

consistently with the statistical model in Eq. (6.17). Once estimates of the population 

parameters are available, the information about the DI can be extracted from the joint 

population covariance matrix Ω . Another even more robust option consists in using a 

population approach to jointly fit the IVGTT glucose and C-peptide minimal models, 

estimating, at the same time, not only the individual sensitivity and secretion indices, 

but also the DI and α , which are features of the whole population.  

 

Real and generated datasets 

Before applying the new TLS and population approaches on a real dataset, a 

comparison of all the methods was carried out on a simulated data to assess their 

performance. With the purpose of making the simulation as realistic as possible, a 

real dataset [4, 5] was first analyzed to inspect the distribution of the indices across a 

population and have guesstimate of the real-life nature and size of their estimation 

errors.  

The real dataset consists of 204 healthy subjects who underwent an insulin-modified 

IVGTT (IM-IVGTT) with full sampling schedule (240 min, 21 samples). The 

individuals belong to two large groups characterized by different age: 59 subjects 

were young (age 23 ± 3) and the remaining 145 were elderly (age 69 ± 6). For each 

subject, the IVGTT glucose minimal model [11] was used for identification and 

estimation of SI (used along with its uncertainty, whereas the IVGTT C-peptide 

minimal model [67] provided the estimates for the secretion indices 1Φ  and 2Φ , 

subsequently combined into totΦ . Both these models are described in Chapter 2. The 

fit of the models for each individual was performed with the modeling software 

SAAMII [3]. 

A lognormal distribution across the population was detected for both iξ  and iΦ  and 

therefore hypothesized for the generation of the simulated dataset, using the general 

structure in Eq. (6.12) and therefore, to respect the DI paradigm, Eq. (6.17). The 

typical values of iξ  and iΦ  ( ξµ  and µΦ ) were tuned so to obtain 100 as a symbolic 

expected value for ∆ , while ω  was fixed to 0.5, implying, for 1α = , a variability of 

about 50%, in agreement with the real dataset. In addition, different values for the 

parameter α  (0.5, 1 and 2) were used and, for each of these values, 100 sets, each 

one consisting of 1000 subjects, were generated. These datasets will be referred to in 

the paper as A, B and C respectively. 
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Analyzing the probability distribution of the estimation uncertainty detected in the 

real dataset, a constant CV pattern was recognized for iΦ , whereas constant SD was 

more suitable for iξ . The error on iΦ  was characterized on average by 8% CV, and 

for
iξ , where SD - and not CV - is constant, an SD corresponding to the 5% of 

iξ ’s 

population typical value was detected. However, this level of estimation error did not 

seem to account for all the variability in the dataset and, when performing the fit of a 

pseudo-hyperbola, a much larger uncertainty was found a posteriori, pointing towards 

a five-fold increase in the weighted residuals ( 2ˆ 25σ ≅ ). Therefore, we decided, for 

our simulation, to use about 40% for iΦ ’s CV and 25% of the typical population 

value for iξ ’s SD.  

After generating the data, for each value of α , all the algorithms were tested on the 

100 repetitions and the results were collected to provide an estimate of bias and 

precision for both ∆  and α .  

As a first step, the subjects were assumed to have all the same DI value, so no 

variability of i∆  was simulated. This was obtained by fixing the correlation 

parameter ρ  to -1. Visually, this means that all the subjects’ parameter values, prior 

to the perturbation due to the simulation of the estimation error, superimpose exactly 

over the pseudo-hyperbola. In a further step of the analysis, population variability for 

DI was introduced in the simulation, and thus hypothesis (6.2) was not respected: in 

this way the possible consequences of using the fit approaches in presence of such a 

misspecification are investigated. Several datasets with progressively increasing 

levels of variability in the DI values were generated, and this was obtained by using 

different values for the parameter ρ  (-0.8, -0.5 and -0.2). At the same time, the level 

of simulated estimation error in the individual values iξ  and iΦ  was decreased, 

trying to maintain about the same level o overall variability. In this way the focus of 

the analysis was on the consequences of the different hierarchy underlying the 

variability, rather than its level. However, as stated in (6.13), the population 

variability in the DI depends both on ρ  and α , so the overall level of variability was 

preserved for the case 1α = . For this particular setting, the generated datasets were 

characterized respectively by an approximate population CV% of 32% ( 0.8ρ = − ), 

50% ( 0.5ρ = − ) and 63% ( 0.2ρ = − ) for the values of i∆ . 

Finally, the real dataset was analyzed with our newly designed approaches (both TLS 

and the population NLMEM method), to inspect the validity of the hyperbolic law 

and probe the statistical significance of the hypothesis 1α ≠ . As different values of 
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DI are expected to characterize the young and elderly population, the fit was also 

executed separately for the two clusters of subjects. We used the Insulin Sensitivity 

provided by the IVGTT glucose minimal model as ξ  (on the x axis), whereas for the 

Φ  we used the first-phase, second-phase and total beta-cell responsivity provided by 

the IVGTT C-peptide model (respectively 1Φ , 2Φ  and totΦ ). The fit approach is 

very sensitive to outlying values and so, in order to detect and remove these subjects 

from the dataset, the jackknife technique [30] was employed. This approach consists 

in refitting each of the datasets several times, excluding each time one single different 

subject and calculating, a posteriori, the residual that the subject presents when not 

included in the parameter optimization process. In this way, the problem of outliers 

with leverage strong enough to “hide” themselves is circumvented. After the 

collection of all the so-called jackknife residuals, the subjects showing an abnormally 

large deviation from the model prediction were excluded.  

 

Results 

For each setting of the parameters used in the simulation (α and ρ ), the estimates of 

the 100 repetitions were collected and displayed in boxplots, which show the size of 

the quartiles and the position of the median value. The median can be used to assess 

the accuracy of the estimation algorithm, whereas the width of the boxes and 

whiskers is an indicator of its precision.  

The number of methods initially included in the comparison was rather large and 

some of them performed extremely poorly. In order to make the presentation of 

results more readable, in a first step all the methods were considered, but, after the 

first comparison, the results from the 1-variable fit approaches were not reported. 

First, the datasets including only estimation uncertainty of the individual parameters 

were tested, then the effect of population variability in the DI values was probed, and 

finally, the real dataset is analyzed. 

 

No population variability in the DI 

In this section, the results obtained on the datasets with no population variability in 

the DI values are reported. These data were generated respecting hypothesis (6.2), 

that is to say, the value of the correlation ρ was fixed to -1. 

All methods were run on simulation Dataset B ( 1α = ), but the results obtained with 

the 1-variable fit approaches were so numerically so different from the others, that, 

for readability purposes, they had to be displayed in separate panels. They are 

collected in Figure 6.2. Even at first glance, it is clear that attempts to estimate the 



 

118 

parameters with approaches considering only one variable produce extremely biased 

estimates. Numerically this seems more apparent when the error is assumed along the 

X-direction, but this is due only to the mathematical formulation of the model, and 

the quality of the estimates provided by the error-on-Y approach is not much more 

satisfactory. Figure 6.1 (upper panel) provides a graphical depiction of the results and 

allows one to realize that, even if the bias in the estimates is numerically much more 

remarkable for the X-algorithms, all the methods based on the fit in one variable 

provide comparably poor results. The 1-variable fit approach is unsatisfactory also 

when used to fit a straight line on the log-transformed data (Log-X and Log-Y). All 

these methods systematically under- or over-estimate the parameters. Since a very 

similar behavior characterizes the results obtained on datasets A and C and they do 

not add much to the present discussion, they are not reported. 

The results provided by all the other approaches are displayed in Figure 6.3. When 

compared to the 1-variable methods, they all yield much more reasonable outcomes, 

but with some important differences with one another. The log-transformation, in 

fact, seems to affect the results, in particular the estimate of ∆ : Log-Riggs tends to 

underestimate ∆  (about -40% or more), whereas Log-TLS provides overestimates 

(about +40% or more). The precision and accuracy with which the other parameter, 

α , is estimated by the 2-variables log-transformation algorithms are more 

satisfactory; Log-TLS, however, performs slightly better. Also with the parameter α , 

in fact, Log-Riggs tends to provide an underestimate (about -15% to -25%) and Log-

TLS an overestimate (about +10%). The newly proposed TLS and population 

(NLMEM) methods yield the best performance, both in terms of precision and 

accuracy, and for both parameters. The size of the bias for ∆  is shrunk very 

significantly compared to the other 2-variables fit approaches, at most ~20% as 

opposed to al least ~40%, and a similar trend is evident also for the precision, in that 

the TLS and NLMEM results are generally less scattered than the other 2-variables’ 

algorithms The improvement in the estimate of α  is also significant: the bias is at 

most ~5%, instead of ~10% for Log-TLS and ~20% for Log-Riggs. The changes in 

the values of the parameter α  used in the simulation (0.5, 1 and 2) do not seem to 

have a clear effect on the results; on the contrary, the methods generally seem to 

provide a similar performance with different values of α . 

 

Population variability in the DI 

In this section, then, the consequences of the introduction of population variability are 

investigated. The outcomes of the methods based on the error in only one variable, 



119 

whose very poor quality is apparent from the results presented in last section, are not 

reported for all the following tests, and the focus is moved on the 2-variables methods 

and NLMEM population approach. Figure 6.4-6.5-6.6 contains the boxplots regarding 

the datasets characterized by population variability in the DI. Figure 6.4 reports the 

results for a situation ( 0.8ρ = − ) in which the effect of population variability is 

limited and comparable to the one due to individual uncertainty. Even if the NLMEM 

method seems to perform overall slightly better, also TLS and Log-TLS, for several 

settings of α , provide satisfactory results. However, while the other methods’ 

performance seem to vary with the value of α , NLMEM seems more robust and 

immune to this phenomenon. As the level of DI variability increases, the estimates of 

α  and ∆  provided by the geometric fit approaches become less and less reliable. In 

the situation depicted in Figure 6.5 ( 0.5ρ = − ), and even more in Figure 6.6 

( 0.2ρ = − ), a large fraction of the variability is caused by differences across subjects 

in the population rather than estimation uncertainty of the individual parameters, and 

hypothesis (6.2) becomes therefore a strong simplification. In such cases, all the 

geometric fit approaches fail. The estimates they yield for both α  and ∆  are affected 

by a very large bias, and the direction of this bias (in the sense of over- or under-

estimation) seems to be strongly dependent on the value of α  used for the generation 

of the dataset. It is very interesting to notice that, even if the accuracy of the estimates 

is very poor, the relative level of precision is almost increased. It can be argued that, 

in this case, the parameter ∆  assumes a slightly different meaning: in this new 

framework there is not anymore one single value of DI for the population, but rather a 

probability distribution centered around the value of ∆ . Therefore, the deterioration 

of the geometric fit estimates of this parameter is somewhat expected, but the 

estimation problems involve also the estimates of α , whose quality degrades 

significantly, even though, at least for 1α = , the overall level of variability in the data 

does not substantially change, what is different is the underlying hierarchy of the 

variability itself. The method that seems to suffer more from the introduction of 

population variability is Log-Riggs, whose bias in the estimate of both ∆  and α  is 

significantly bigger than the one obtained with the other methods.  

Moreover, it is interesting to take a look at the values of 2σ̂  obtained with the 

different datasets and contained in Table 6.1. The value of 2σ̂  is a marker for 

goodness of fit and it can be roughly considered as the average squared residual: the 

average squared weighted distance between each data point and the model prediction, 

i.e., the closest point on the pseudo-hyperbola. If the a priori guesstimate of the level 

of error in the data is reasonable and the model is correct, a value of about 1 is 
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expected. As it can be seen in Table 6.1, the values are around 1 only for the datasets 

with no or relatively small population variability in the DI ( 1ρ = −  or -0.8). This does 

not hold true when the DI variability is larger ( 0.5ρ = −  or -0.2), where the values of 

2σ̂  clearly indicate lack of fit and so that, possibly, the a priori level of uncertainty is 

not large enough to account for all the variability detected in the data. 

 

The real dataset 

Finally, both the TLS and the NLMEM approaches are applied to the real datasets. 

Since the TLS approach is not able to cope with large variability in the population 

and the fit is very sensitive to outliers, a jackknife technique [30] was employed to 

detect and remove these values, as explained in the methods section. On average, one 

or two subjects were removed from each of the datasets. The analysis was executed 

both on the young and elderly populations separately and on the whole group. In this 

last case, there is population variability in the DI by hypothesis, so the TLS approach 

was used only as a mean of comparison, but the results are expected to be unreliable. 

Table 6.2 reports the optimal values provided by the TLS and NLMEM algorithms 

for ∆  and α , for SI coupled with 1Φ , 2Φ  and 
totΦ . The graphical depiction of the 

TLS fits for the separate groups of young and elderly subjects is reported in Figures 

6.5-6.6-6.7. 

A first important result is given by the values of 2σ̂  detected by TLS, which are 

always much bigger than 1, indicating that the level of variability in the data 

unexplained by the model is much greater than the level of estimation uncertainty 

indicated by the estimation CVs. This might either indicate that the estimation 

confidence intervals for the individual indices SI and Φ  are heavily underestimated, 

or that does not manage o consistently explain the data. This could possibly indicate, 

for example, the presence of population variability. A further clue pointing towards 

the DI population variability is given by the values of ρ  provided by the NLMEM 

approach. The correlation detected is never more significant than about -0.5, 

indicating a remarkable level of scattering of the DI values. A particularly low 

correlation is detected for SI- 1Φ , and particularly when fitting the cluster of elderly 

subjects or the whole population.  

All these hints seem to support the presence of population variability in the DI values, 

so the NLMEM results are to be considered more accurate and are used to test the 

statistical significance of the parameter α . The values of α  detected are smaller than 

1 for all the datasets, but the difference is statistically significant only for the elderly 

cluster or when the entire population is employed for the analysis. It should be 
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pointed out, however, that the cluster of young subjects is smaller (59 vs 145) and 

therefore it’s harder to reach statistical significance. The estimate of α  is more 

uncertain when using 1Φ  as secretion index, and the value 1 cannot be excluded in 

this case, whereas for totΦ  and 2Φ , the introduction of α  in the model seems more 

statistically relevant.  

Finally, it is interesting to observe the effect of using the TLS approach on the whole 

population, which, by hypothesis, is affected by population variability. The fit 

degenerates into a straight line ( 0α = ) for SI- 1Φ  and provides very large values of 

2σ̂  in all cases. NLMEM, instead, even if it detects a large amount of variability, 

provides more robust estimates. 

 

Discussion 

The results clearly show that it is essential to consider the error in both variables; 

when only error along one direction is taken into account, the results are very biased. 

In particular, the X and Log-X methods heavily overestimate both ∆  and α , creating 

in this way a curve “rotated clockwise” with respect to the real one. The Y and Log-Y 

methods, on the other hand, have the opposite effect, rotating anti-clockwise the 

pseudo-hyperbola. The explanation for this phenomenon is easy. When just the error 

on X is considered, the data points characterized by a very high ξ  and a very low Φ  

lie in a section of the chart where the pseudo hyperbola is almost flat and therefore 

parallel to the X direction. This causes the residuals for these points to be very large 

and thus, these points have a very strong leverage in the fit. As a consequence, the 

curve rotates clockwise to fit better these data points. When instead, just the error on 

Y is considered, the high-leveraged points become the ones with very low ξ  and very 

high Φ , so the opposite phenomenon is observed. This is shown clearly in Figure 1 

(upper panel), depicting the prediction curves yielded by these 1-variable-fit methods 

on an example dataset. 

On the other hand, when considering the error in both directions, caution should be 

used to calculate the distance between the data points and the curve. The use of a log-

transformation, which significantly simplifies the problem, comes with a price: 

because of its nonlinearity, the logarithm stretches the axes and the distances among 

the points in an uneven way, and this can substantially change the leverage that the 

points have in the fit procedure. Moreover, as already mentioned, also the error 

structure is somehow modified and we had to employ an approximation to deal with 

this problem. It is hard to tell which of the two phenomena affects more severely the 

results. The nonlinear rescaling of the data is expected lead to underestimating ∆ , as 
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the subjects with high ξ  or Φ  values will tend to clustered together, whereas the 

distance among the points close to the axes will increase and drive them farther from 

the real curve. An easy example to clarify this phenomenon is provided by the fact 

that, given any set of positive numbers 
iz  different form each other, 

 ( )( )( ) ( )exp ln i imean z mean z<  (6.18) 

On the other hand, the first-order approximation we used for the error structure is 

expected to have the opposite effect and partially account for the uneven stretching, 

as it attributes a smaller uncertainty, and thus a bigger leverage, to the data points 

with high ξ  and Φ  values. In fact, the application of a first-order approximation to 

the error propagation is numerically the same as considering the values of the CVs in 

the original space as SDs for the log-transformed data. Thus, in case of an 

hypothetical dataset characterized by the same variance for all data points (constant 

SD), after the log-transformation the subjects with higher values of ξ  and Φ , whose 

CVs in the original untransformed space are smaller, carry smaller SDs and therefore 

a bigger leverage in the log-transformed space.  

Possibly, this is why Log-Riggs, which assumes the same degree of uncertainty for all 

the data points in the log-transformed plane and thus it is not prone to this latter 

effect, tends to underestimate ∆ . Log-TLS, on the other hand, tends to provide 

overestimates of ∆  even if the accuracy of the optimal values for α  is not so poor. 

So, rather than being rotated like in the case of the 1-variable fits, these curves 

obtained with a log-transformation approach seem to be affected by a sort of offset. 

The example contained Figure 1 (lower panel) gives a visual representation of this 

phenomenon. TLS, even though computationally much more cumbersome, should 

then be considered as a more reliable alternative, because it is consistent with the ML 

estimator and does not perform approximations to calculate the distance between the 

data points and the curve. The NLMEM, on the other hand, even if it sits on more 

general hypothesis, still accommodates the situation 1ρ = −  as a particular case, and 

indeed the results are similar to if not better than TLS. NLMEM is actually over-

parameterized when there is no population variability in the DI, but it still performs 

very satisfactorily. 

It is also very interesting to investigate the consequences of the presence of 

population variability. As already mentioned, assumption (6.2) is necessary for the 

geometric fit approaches to be statistically sound, and therefore the presence of other 

forms of variability besides the estimation uncertainty of the secretion and sensitivity 

indices undermines the validity of all the methods exposed here, except NLMEM. 
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The effects of the falsification of hypothesis (6.2) are clearly portrayed in our results. 

In fact, even if the overall amount variability in the data is about the same, the 

performance of all the geometry-based approaches degrades significantly when 

population variability in the DI values comes into play. The underlying reason is that, 

as the magnitude of population differences surpasses the effect of individual 

uncertainty, the estimates of precision for iξ  and iΦ , even if correct, become less and 

less informative about the actual distance of the data points from the average curve. 

The uncertainty on the parameters ( 2

iξσ  and 2

i
σ Φ ), in fact, does not have in general 

any relationship with how far their values are from the population mean. The 

geometric fit approaches are not designed to account for this kind of hierarchical 

variability, so they fail when different sources of variability come into play. Their 

inadequacy is stressed by two facts. First, the effect of the introduction of population 

variability does not cause the results of the geometric fit approaches to be less precise 

(i.e., larger scattering of the results obtained on 100 repetitions), possibly indicating 

more uncertainty in the estimates. On the contrary, the relative level of precision is 

even more satisfactory, but the bias becomes very large. Second, the size and 

direction of the bias of the estimates strongly depends on the value of α  used in the 

simulation of the dataset. The different settings of α  introduce asymmetries in the 

data and the fraction of variability which is not explainable as estimation uncertainty 

assumes patterns that lead to either over- or underestimation by the geometrical fit 

methods. The NLMEM, on the contrary, is designed to cope with the hierarchical 

structure of the variability and provides reliable results, regardless of the value of α . 

When running the algorithms on the real datasets (Table 6.2), the TLS fit approach 

yields a high value of 2σ̂  and NLMEM detects low level of correlation ρ  among the 

individual indices. Both these markers indicate the presence of considerable 

population variability in the DI values, so the TLS results should be regarded as 

unreliable. Therefore, with the purpose of investigating the statistical significance of 

parameter α  and thus the validity of the pseudo-hyperbolic versus the hyperbolic 

law, the NLMEM results are used. Even though a validation on other independently 

created datasets would be needed to strengthen the current findings, the estimates of 

α  provided by the NLMEM algorithm seem to point towards a value of α  smaller 

than 1, supporting in this way the pseudo-hyperbolic law with respect to the simple 

hyperbolic law. The statistical significance, however, is not reached for the cluster of 

young subjects, but this might be due to their small number. In addition, it seems that 

the values of α  are not significantly changing with the age characterizing the 

population in analysis; rather they seem related to the combination of indices used to 
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calculate the DI (0.8~0.9 for 1Φ , 0.66~0.8 for 2Φ , and 0.61~0.8 for totΦ ). Further 

research on different datasets would be necessary to corroborate this idea, but this 

phenomenon is encouraging and supports the use of the DI paradigm, also with the 

additional parameter α , as a broader classifier even among subjects belonging to 

heterogeneous populations (i.e. young, elderly, healthy, glucose intolerant, type I and 

I diabetes). In other words, if the value of α  only depends on the parameters used in 

the calculation of the DI and not on the characteristics of the population of subjects in 

exam, then, once the value of α  is determined with an extensive analysis comprising 

large datasets, the DI can be calculated for each subject separately and “off-line”, 

without needing a fit procedure. In this way, the analysis of a population would be 

necessary only in a first phase, in order to determine the correct value of α , but 

consequently, the DI values of a subject can be simply determined by estimating 

insulin sensitivity and secretion, and then applying the formula using the appropriate 

value of α . 

Consistently with the theory underlying the DI paradigm, the values of DI 

characterizing the elderly subjects are lower than the ones related to the young, and 

the graphical representations in Figure 6.7-6.8-6.9 (even though obtained with the 

TLS method) show that the curve for the elderly subjects is closer to the origin than 

the one for the young ones.  

Further research should be aimed at implementing a joint population model, 

estimating the secretion and sensitivity indices directly from glucose and insulin 

profiles, and then extracting the information on the ∆  and α  from the population 

covariance matrix. 
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Table 6.1 The average 2σ̂ obtained across the 100 runs for the TLS method is 

reported for datasets with increasing degrees of population variability. Only the 

results for 1α =  are reported. 

 1ρ = −  0.8ρ = −  0.5ρ = −  0.2ρ = −  

2σ̂  0.912 1.54 23.3 811 
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Table 6.2 Results obtained with the TLS and NLMEM aproach on the real dataset. 

The fit was performed both separately on the young and elderly subjects and then on 

the whole population. The columns contain the estimates for ∆ , α  yielded by both 

methods, for the population approach, also the confidence interval of α  is reported. 

In addition, the value of 2σ̂  provided by TLS and ρ  given by NLMEM are 

contained in the last two columns. The symbol # indicates that, when TLS was used 

to examine the relation SI- 1Φ  in the whole dataset, the lower bound of parameter α  

was hit and the pseudo-hyperbola degenerated into a straight line. The symbol * 

indicates a value of α  not statistically different from 1. 

 

  ∆  POP ∆  TLS α  POP α  TLS 
2σ̂  

TLS 

ρ  
POP 

YY 1132 937 
0.90* 

(0.67-1.13) 
0.85 63 -0.303 

EE 432 332 0.83 
(0.68-0.99) 

0.68 49 -0.222 SI- 1Φ  

AALLLL 493 50 
0.80 

(0.67-0.92) 
0.00# 113 -0.111 

YY 42 25 0.80* 
(0.60-1.01) 

0.58 24 -0.536 

EE 25 26 
0.65 

(0.56-0.74) 
0.66 19 -0.524 SI- 2Φ  

AALLLL 27 16 
0.66 

(0.58-0.74) 
0.50 5080 -0.499 

YY 90 40 
0.80* 

(0.60-1.01) 
0.51 13 -0.376 

EE 35 32 
0.58 

(0.49-0.67) 
0.56 17 -0.367 SI- totΦ  

AALLLL 42 14 0.61 
(0.53-0.68) 

0.19 1982 -0.198 
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Figure 6.1 Graphical example of the behavior of all the geometrical fit approaches on 

a simulated dataset with 300 subjects. The curves provided by the 1-variable (upper 

panel) and 2-variables fits (lower panel), together with the curve characterized by the 

true parameter values are displayed. 
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Figure 6.2 Boxplots displaying the parameter estimates ( ∆  in the upper panel and α  

in the lower one) obtained by running the 1-variable algorithms on Dataset B ( 1α = ). 

Because of large difference among some of the values, the results have been split into 

separate panels. The dashed vertical line indicates the parameter value used in the 

simulation. 
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Figure 6.3 Boxplots displaying the parameter estimates ( ∆  in the upper box and α  

in the lower one) obtained by running the 2-variables geometric algorithms and the 

population method (denoted NLMEM) on Dataset A ( 0.5α = ), B ( 1α = ) and C 

( 2α = ), so with 1ρ = − . The dashed line indicates the parameter value used in the 

simulation. 
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Figure 6.4 Boxplots displaying the parameter estimates obtained on the dataset 

including population variability with 0.8ρ = − . Top to Bottom, in the three panels are 

respectively displayed the versions with 0.5α = , 1α =  and 2α = . The dashed 

vertical lines indicate the real parameter value used in the simulation. 

 

 

40 50 60 70 80 90 100 110 120 130

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

XY-TLS

Log-Riggs

Log-TLS

NLMEM

40 60 80 100 120 140 160

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.5 0.6 0.7 0.8 0.9 1 1.1

XY-TLS

Log-Riggs

Log-TLS

NLMEM

50 100 150 200 250

XY-TLS

Log-Riggs

Log-TLS

NLMEM

1.2 1.4 1.6 1.8 2 2.2 2.4

XY-TLS

Log-Riggs

Log-TLS

NLMEM

∆ values

α values

∆ values

∆ values

α values

α values

α=0.5

α=1

α=2

40 50 60 70 80 90 100 110 120 130

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

XY-TLS

Log-Riggs

Log-TLS

NLMEM

40 60 80 100 120 140 160

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.5 0.6 0.7 0.8 0.9 1 1.1

XY-TLS

Log-Riggs

Log-TLS

NLMEM

50 100 150 200 250

XY-TLS

Log-Riggs

Log-TLS

NLMEM

1.2 1.4 1.6 1.8 2 2.2 2.4

XY-TLS

Log-Riggs

Log-TLS

NLMEM

∆ values

α values

∆ values

∆ values

α values

α values

40 50 60 70 80 90 100 110 120 130

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

XY-TLS

Log-Riggs

Log-TLS

NLMEM

40 60 80 100 120 140 160

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.5 0.6 0.7 0.8 0.9 1 1.1

XY-TLS

Log-Riggs

Log-TLS

NLMEM

50 100 150 200 250

XY-TLS

Log-Riggs

Log-TLS

NLMEM

1.2 1.4 1.6 1.8 2 2.2 2.4

XY-TLS

Log-Riggs

Log-TLS

NLMEM

40 50 60 70 80 90 100 110 120 130

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

XY-TLS

Log-Riggs

Log-TLS

NLMEM

40 60 80 100 120 140 160

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.5 0.6 0.7 0.8 0.9 1 1.1

XY-TLS

Log-Riggs

Log-TLS

NLMEM

50 100 150 200 250

XY-TLS

Log-Riggs

Log-TLS

NLMEM

1.2 1.4 1.6 1.8 2 2.2 2.4

XY-TLS

Log-Riggs

Log-TLS

NLMEM

∆ values

α values

∆ values

∆ values

α values

α values

α=0.5

α=1

α=2

α=0.5

α=1

α=2

α=0.5

α=1

α=2

ρ=−ρ=−ρ=−ρ=−0.80.80.80.8    



131 

Figure 6.5 Boxplots displaying the parameter estimates obtained on the dataset 

including population variability with 0.5ρ = − . Top to Bottom, in the three panels are 

respectively displayed the versions with 0.5α = , 1α =  and 2α = . The dashed 

vertical lines indicate the real parameter value used in the simulation. 
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Figure 6.6 Boxplots displaying the parameter estimates obtained on the dataset 

including population variability with 0.8ρ = − . Top to Bottom, in the three panels are 

respectively displayed the versions with 0.5α = , 1α =  and 2α = . The dashed 

vertical lines indicate the real parameter value used in the simulation. 

 

20 30 40 50 60 70 80 90 100 110

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0 0.1 0.2 0.3 0.4 0.5

XY-TLS

Log-Riggs

Log-TLS

NLMEM

20 40 60 80 100 120

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0 100 200 300 400 500 600 700 800 900 1000

XY-TLS

Log-Riggs

Log-TLS

NLMEM

2 3 4 5 6 7 8

XY-TLS

Log-Riggs

Log-TLS

NLMEM

∆ values

α values

∆ values

∆ values

α values

α values

α=0.5

α=1

α=2

20 30 40 50 60 70 80 90 100 110

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0 0.1 0.2 0.3 0.4 0.5

XY-TLS

Log-Riggs

Log-TLS

NLMEM

20 40 60 80 100 120

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0 100 200 300 400 500 600 700 800 900 1000

XY-TLS

Log-Riggs

Log-TLS

NLMEM

2 3 4 5 6 7 8

XY-TLS

Log-Riggs

Log-TLS

NLMEM

∆ values

α values

∆ values

∆ values

α values

α values

20 30 40 50 60 70 80 90 100 110

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0 0.1 0.2 0.3 0.4 0.5

XY-TLS

Log-Riggs

Log-TLS

NLMEM

20 40 60 80 100 120

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0 100 200 300 400 500 600 700 800 900 1000

XY-TLS

Log-Riggs

Log-TLS

NLMEM

2 3 4 5 6 7 8

XY-TLS

Log-Riggs

Log-TLS

NLMEM

20 30 40 50 60 70 80 90 100 110

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0 0.1 0.2 0.3 0.4 0.5

XY-TLS

Log-Riggs

Log-TLS

NLMEM

20 40 60 80 100 120

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

XY-TLS

Log-Riggs

Log-TLS

NLMEM

0 100 200 300 400 500 600 700 800 900 1000

XY-TLS

Log-Riggs

Log-TLS

NLMEM

2 3 4 5 6 7 8

XY-TLS

Log-Riggs

Log-TLS

NLMEM

∆ values

α values

∆ values

∆ values

α values

α values

α=0.5

α=1

α=2

α=0.5

α=1

α=2

α=0.5

α=1

α=2

ρ=−ρ=−ρ=−ρ=−0.20.20.20.2    



133 

Figure 6.7 TLS results for the real dataset: totΦ  vs SI. The young subjects are 

indicated with a full dot, and the corresponding fit is the solid line, whereas the 

elderly subjects are the hollow dots and the dashed line. 
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Figure 6.8 TLS results for the real dataset: 1Φ  vs SI. The young subjects are 

indicated with a full dot, and the corresponding fit is the solid line, whereas the 

elderly subjects are the hollow dots and the dashed line. 
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Figure 6.9 TLS results for the real dataset: 2Φ  vs SI. The young subjects are 

indicated with a full dot, and the corresponding fit is the solid line, whereas the 

elderly subjects are the hollow dots and the dashed line. 
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Chapter 7 

Discussion and Conclusions 

 

In this work, the advantages that population approaches can introduce in the study of 

glucose-insulin metabolism have been explored and some interesting results have 

been found. 

First of all, in Chapter 3, the application of population methodologies to the 

traditional IVGTT model of glucose disappearance has been tested on simulated data, 

comparing a wide range of different methods and identifying in FOCE the algorithm 

of choice. In addition, the results obtained highlight the robustness of population 

approaches with respect to the traditional estimation paradigm when dealing with 

sparse sampling, and the importance of tuning the structural model by optimizing the 

covariance matrix, i.e., eliminating the most negligible correlation terms. In Chapter 

4, the results obtained with the simulations have been confirmed on real data thanks 

to the likelihood function profiling via a Monte Carlo (MC) sampling technique. In 

first place, the MC sampling proved very useful in assessing the precision of the 

approximations, confirming the choice of FOCE as most accurate method. Moreover, 

the MC likelihood profiling allowed an assessment of the precision of the estimates: 

some estimation uncertainties were unexpectedly detected for the typical values of SI 

and P2 and, more predictably, for some elements of the population covariance matrix. 

In addition, the results about precision were used, together with the analysis of the 

objective function value, to detect over-parameterization and allow simplification of 

the model. In this analysis, the simple implementation of MC sampling was used, but 

further research could be aimed at optimizing and expediting the MC likelihood 

profiling tool by employing more sophisticated tools such as Markov Chain MC. In 

Chapter 5, the population model was further enriched with the integration of 

demographic information (called covariates) collected at the time of experiment. This 

so-called covariate model proved an important tool mainly for two reasons. First, it 

allowed a sophisticated statistical analysis between the minimal model parameters 

and the covariates. In particular, strong relations between SI and age, basal 

insulinemia and abdominal fat have been revealed. Second, the introduction of the 

covariates into the model augmented even further its explanatory power.  

The most interesting advantage of the methodologies proposed consists in the fact 

that, since more information is obtained from the population and the covariates, less 

data is needed from the experiments. This allows the design of less invasive and less 



 

138 

expensive protocols, more suitable to a large-scale application. The dataset used in 

this analysis only comprised healthy subjects and was therefore characterized by a 

limited amount of variability; therefore the application of the same techniques on 

more extensive datasets would be very beneficial to confirm the present findings. 

Finally, in Chapter 6, both a new non-approximated TLS geometrical fit approach and 

a NLMEM approach have been proposed for the estimation of the DI in a population, 

and tested on simulated data against simplified alternative algorithms. The TLS 

approach has been shown to provide more reliable results than the ones obtained with 

other geometrical methods previously used in the literature and based on 

simplifications of the fit. However, all geometrical fit approaches (and thus also the 

TLS one) are based on the assumption that all the subjects in the population in 

consideration share the same value of DI. Indeed, tests on simulated datasets revealed 

that in cases where a hierarchical structure of the variability is present in the data, the 

provided estimates are very unreliable. The novel population approach, instead, has 

been designed to deal with such a situation and yields accurate estimates also in this 

case. The inspection of a real dataset indicates the presence of population variability 

besides the uncertainty characterizing the estimates of the individual indices, 

therefore the newly-proposed population method was employed for the analysis. The 

results support the hypothesis of the pseudo-hyperbolic law with respect to the simple 

hyperbolic formula initially proposed by Bergman and colleagues, but further 

research on larger datasets would be needed to corroborate these results. In the study 

presented here, the values of secretion and sensitivity indices previously obtained in 

each individual with the traditional approach were used, but, since the proposed 

method extracts the information on the DI from the population covariance matrix, an 

alternative and possibly more powerful alternative might consist in interpreting 

directly the glucose, insulin and C-peptide profiles with a joint population model. In 

this way, both estimates of the individual and population parameters can be obtained 

and then the population covariance matrix can be used for inference on the DI. 

 

Summarizing, this work shows the significant potential of population approaches in 

the study of glucose-insulin metabolism. The advantages range from the possibility of 

designing simplified and less invasive alternatives to the traditional IVGTT protocol, 

to the ability to interpret correctly data with an inherently hierarchical structure of the 

variability, such as in the case of the study of the DI. 
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