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ABSTRACT 

In recent years increasing interest in thermo-hydro-mechanical analysis of multiphase porous materials, i.e. saturated 

and partially saturated porous materials, is observed, because of a wide spectrum of their engineering applications. An 

area of particular interest is Environmental Geomechanics, where some challenging problems are of interest. Examples 

are subsidence above gas reservoirs, injection of fluids into deep or superficial aquifers, long-term storage of carbon 

dioxide, onset of flowslides and catastrophic landslides, nuclear and other hazardous waste disposal and stability of salt 

marshes. 

In all the aforementioned situations, the soil or rock need to be considered as multiphase porous medium in isothermal 

or non-isothermal conditions, made of a solid phase and voids containing one or more fluids, in which the interaction 

between all the components of the material cannot be neglected. In case of liquid and gaseous fluids, capillary effects 

cannot be a priori neglected and also phase change for liquid water and its vapour can play a role. 

This thesis aims to contribute to develop a general framework for the computational analysis of geo-environmental 

engineering problems analysed as coupled multi-physics processes. 

To this end, advanced constitutive models for isothermal and non-isothermal water saturated or unsaturated soils have 

been implemented and numerically validated in the finite element code COMES-GEO. 

In this THM model the porous medium is assumed to be a multiphase system where interstitial voids of the deforming 

solid matrix may be filled with liquid water, water vapour and dry air or other gas. To handle this multiphase system, an 

analytical multi-scale approach has been used by the general frame of averaging theories in deriving the governing 

balance equations. These equations have been discretized in space and time by means of the finite element method for 

a numerical solution. 

These following advanced constitutive models for soil have been implemented: 

1. ACMEG-T for water saturated clays in non isothermal condition; 

2. ACMEG-TS for water saturated and partially saturated clays in non isothermal condition; 

3. Pastor-Zienkiewicz for water saturated sands in isothermal condition; 

4. Bolzon-Schrefler-Zienkiewicz for partially saturated sands in isothermal condition; 

5. Bolzon-Schrefler for partially saturated sands in non isothermal condition. 

Validation of the implemented models was performed by comparison between the F.E.M. results and the results 

obtained by experimental tests or by the model driver. Three different tests were simulated: isotropic compression test, 

oedometric compression test and triaxial compression test in different conditions of confining pressure, temperature and 

suction and for different kind of soils. This comparison was done in cooperation with the research group of Prof. Lyesse 

Laloui (EPFL of Lausanne) and the research group of the Prof. Manolo Pastor (UPM of Madrid). 

Preliminary results concerning typical geo-environmental problems such as the thermo-hydro-mechanical behaviour of 

deep nuclear waste disposal in a geological clay formation and the simulation of the subsidence above gas reservoirs 

due to gas production close this present work, pointing out that with a sufficiently general thermo-hydro-mechanical 

model the main couplings occurring in soils may be reproduced in a relevant manner and that very different situations 

can be modelled without special assumptions. 
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SOMMARIO 

Negli ultimi anni è aumentato notevolmente l’interesse per le analisi termo-idro-meccaniche sui mezzi porosi multifase, 

che possono essere ad esempio analisi rivolte allo studio del comportamento dei terreni in parziale o totale saturazione, 

per via della vasta gamma di applicazioni ingegneristiche che è possibile investigare. In particolare un’area di grande 

interesse è rappresentata dai problemi di Geomeccanica Ambientale, dove si incontrano fenomeni di considerevole 

importanza per la salvaguardia della società.  

Alcuni esempi sono la subsidenza dovuta all’estrazione di gas dal sottosuolo, iniezione di fluidi dentro acquiferi profondi 

o superficiali, stoccaggio a lungo termine di biossido di carbonio per la mitigazione del riscaldamento globale, innesco di 

frane, stoccaggio di scorie nucleari o pericolose e la stabilità delle barene marine. 

In tutte le situazioni menzionate, il terreno deve essere considerato come un mezzo poroso multifase, in condizioni 

anche non isoterme, costituito da uno scheletro solido e da vuoti riempiti da uno o più fluidi dove le interazioni fra tutti i 

costituenti non possono essere trascurate. In particolare nel caso di fluidi liquidi e gassosi, l’effetto delle pressioni 

capillari non può essere tralasciato a priori, come anche il cambiamento di fase dell’acqua liquida e del vapor acqueo. 

Lo scopo di questa tesi di dottorato è quello di contribuire a sviluppare uno strumento di carattere generale per l’analisi 

computazionale di problemi ingegneristici di geomeccanica ambientale e questo è stato fatto mediante 

l’implementazione e la validazione numerica di due modelli costitutivi avanzati nel codice agli elementi finiti COMES-

GEO. 

Considerando il mezzo poroso multifase costituito da uno scheletro solido deformabile dove i vuoti possono essere 

riempiti da acqua, vapore e aria secca (o un altro gas), tramite un approccio multiscala basato sulla teoria ibrida delle 

miscele, con opportune procedure di media sono state derivate le equazioni di bilancio del modello. Queste equazioni 

sono state poi discretizzate nello spazio e nel tempo per poter ottenere una soluzione numerica col metodo degli 

elementi finiti. 

I modelli costitutivi implementati sono i seguenti: 

1. ACMEG-T per argille sature in condizioni non isoterme; 

2. ACMEG-TS per argille parzialmente sature in condizioni non isoterme; 

3. Pastor-Zienkiewicz per sabbie sature in condizioni isoterme; 

4. Bolzon-Schrefler-Zienkiewicz per sabbie parzialmente sature in condizioni isoterme; 

5. Bolzon-Schrefler per sabbie parzialmente sature in condizioni non isoterme. 

La validazione dell’implementazione numerica dei modelli costitutivi è stata fatta tramite il confronto fra i risultati F.E.M. e 

risultati sperimentali od ottenuti con il driver del modello. Le prove simulate sono di tre tipi: compressione isotropa, 

compressione edometrica e compressione triassiale eseguite in differenti condizioni di pressione di confinamento, 

temperatura e grado di saturazione per diversi tipi di materiale. Il lavoro di validazione è stato svolto in collaborazione col 

gruppo di ricerca del Prof. Lesse Laloui (EPFL di Losanna) e quello del Prof. Manolo Pastor (UPM di Madrid). 

Infine vengono mostrati alcuni risultati preliminari riguardanti due tipici problemi di Geomeccanica Ambientale, quali lo 

stoccaggio di scorie nucleari e la subsidenza, per dimostrare come con un modello termo-idro-meccanico di carattere 

sufficientemente generale, senza particolari assunzioni, sia possibile studiare un numero rilevante di problematiche 

inerenti i problemi di accoppiamento nei terreni. 
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1 INTRODUCTION 

In recent years, increasing interest in thermo-hydro-mechanical analysis of multiphase porous materials, i.e. saturated 

and partially saturated porous materials, is observed, because of a wide spectrum of their engineering applications. An 

area of particular interest is Environmental Geomechanics [Vul02], [Sch01] and [S&D10], where some challenging 

problems are of interest. Examples are subsidence above gas reservoirs with possible water injection to maintain 

pressure (Figure 1.1), injection of other fluids into deep or superficial aquifers, long-term storage of carbon dioxide for 

the mitigation of global warming, problems linked with soil failure such as the onset of flowslides and catastrophic 

landslides (Figure 1.2), problems connected with nuclear and other hazardous waste disposal (Figure 1.3 and Figure 

1.4), or groundwater, saturation response and stability of salt marshes subjected to both tide fluctuation and flooding 

(Figure 1.5).  

 

 

Figure 1.1: Scheme of extraction of gas and injection of CO2 [Sci09] 

 

In all the aforementioned situations, the soil or rock need to be considered as multiphase porous medium in isothermal 

or non-isothermal conditions, made of a solid phase and voids containing one or more fluids, in which the interaction 

between all the components of the material cannot be neglected. In case of liquid and gaseous fluids, capillary effects 

cannot be a priori neglected, and also phase change for liquid water and its vapour can play a role. 
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Figure 1.2: Geologic section of Vajont slide before and after 9 October 1963 [R&S65] and [H&P85] 

 

 

Figure 1.3: Repository tunnel with used fuel containers (Yucca tunnel, USA. NAI) 

 

For enabling significant predictive simulations to be carried out, in particular for the long term behaviour, suitable 

physical and mathematical models have to be developed and based on robust science; then, powerful and well validated 
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software is necessary. To this end, coupled Thermo-Hydro-Mechanical (THM) finite element codes are of paramount 

importance for simulation and analysis of geo-environmental engineering problems.  

There are no general purpose codes available which handle all the above mentioned situations. There exist only a few 

specialized codes which need however improvement. 

 

Figure 1.4: Geological disposal of nuclear waste (M. Nuth, EPFL) 

 

 

Figure 1.5: View of Venice lagoon marshes and view of a marsh border [Col08] 

 

This thesis aims to contribute to develop a general framework for the computational analysis of geo-environmental 

engineering problems analysed as coupled multi-physics processes.  

To this end, advanced constitutive models for isothermal and non-isothermal water saturated or unsaturated soils have 

been implemented and numerically validated in the finite element code COMES-GEO [G&S96], [L&S98], [S&P04], 

[San06], [G&S09]. This code is based on an existing fully coupled Thermo-Hydro-Mechanical (THM) model developed 

during years at the University of Padua [G&S96], [L&S98], [Sch02], [G&S09]. 

 

In this THM model the porous medium is assumed to be a multiphase system where interstitial voids of the deforming 

solid matrix may be filled with liquid water, water vapour and dry air [L&S98] or other gas such as methane. To handle 
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this multiphase system, an analytical multi-scale approach has been used by the general frame of averaging theories in 

deriving the governing balance equations, [H&G79/1] and [H&G79/2]. These equations have been discretized in space 

and time by means of the finite element method for a numerical solution [L&S98] and [Zie99]. 

 

In particular, the following advanced constitutive models for soil have been implemented: 

1. ACMEG-T (Advanced Constitutive Model for Environmental Geomechanics – Thermal effects) for water 

saturated clays in non isothermal condition, [M&L97] and [L&C08]; 

2. ACMEG-TS (Advanced Constitutive Model for Environmental Geomechanics – Thermal and Suction effects) for 

water saturated and partially saturated clays in non isothermal condition [Fra08]; 

3. Pastor-Zienkiewicz for water saturated sands in isothermal condition, [Pas90] and [Zie99]; 

4. Bolzon-Schrefler-Zienkiewicz for partially saturated sands in isothermal condition [Bol96]; 

5. Bolzon-Schrefler for partially saturated sands in non isothermal condition [B&S05]. 

The first two models are based on the multi-mechanism elastoplasticity theory integrated by the bounding surface 

theory, while the other three are based on the Generalized Plasticity theory. 

 

The computational formulation of the elastoplastic algorithms developed for this thesis is of explicit type (Euler Forward 

Method); for the tangent operator of the linearized system of equations [3.12] elastoplastic continuum tangent operator 

has been computed. 

 

Validation of the implemented models was performed by comparison between the F.E.M. results and the results 

obtained by experimental tests or by the model driver. Three different tests were simulated: isotropic compression test, 

oedometric compression test and triaxial compression test in different conditions of confining pressure, temperature and 

suction and for different kind of soils. 

This comparison was done in cooperation with: 

1. the research group of Prof. Lyesse Laloui (EPFL of Lausanne) and in particular with the Dr. Bertrand Francois 

for the ACMEG models; 

2. the research group of the Prof. Manolo Pastor (UPM of Madrid) and in particular with the Dr. Pablo Mira for the 

PZ model. 

Validation of the implementation of BS model will be performed in the near future. 

 

As further numerical validation a linear thermo elastic consolidation in fully saturated condition proposed originally by 

Aboustit et al. [Abo85] and then by Lewis and Schrefler [L&S98] was analyzed. Then this case was extended to non liner 

elasticity and [San08]. 

 

Preliminary results concerning typical geo-environmental problems such as the thermo-hydro-mechanical behaviour of 

deep nuclear waste disposal in a geological clay formation and the simulation of the subsidence above gas reservoirs 

due to gas production close this present work, pointing out that with a sufficiently general thermo-hydro-mechanical 
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model the main couplings occurring in soils may be reproduced in a relevant manner and that very different situations 

can be modelled without special assumptions.  

 

This thesis is organized as follows: 

 

After the introduction, CHAPTER 2 presents the governing equations of the T-H-M model following [L&S98]. 

 

Then CHAPTER 3 describes the space and time discretization of the mathematical model, a brief summary of the 

elastoplasticity in soils and the F.E.M. modelling approach need in this work. 

 

CHAPTER 4 to 7 present the constitutive models implemented in the finite element code COMES-GEO and the main 

results concerning the validation of their FEM implementation. 

 

CHAPTER 8 shows the preliminary results of the thermo-hydro-mechanical behaviour of deep nuclear waste disposal in 

a geological clay formation and the simulation of the subsidence above gas reservoirs due to gas production. 
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2 MATHEMATICAL MODEL* 

2.1 INTRODUCTION 

In this chapter the governing equations for the full dynamic behaviour of a partially saturated porous medium are 

developed. In particular, we consider here the voids filled with water and air. Today the description of multiphase 

systems made of interpenetrating continuous bodies, such as porous media, is based either on the mixture theory 

integrated by the concept of volume fractions, or on averaging theories and from a classical point of view on Biot's 

theory. Since the averaging theories offer the possibilities of a better understanding of the microscopic situation and its 

relation to the macroscopic one, which is, however, the natural domain of all continuum mechanical models, we use in 

the following the averaging theory based on spatial averaging operators. Within this theory we make use of macroscopic 

variables which correspond to real measurable quantities directly linked to laboratory practice, e.g. in soil mechanics. It 

has to be pointed out that, under appropriate assumptions, the averaging theory yields the same equations as the 

classical mixture theory, as shown in [deB91]. Care has to be taken, however, in the linear momentum balance equation 

as explained in section 2.3.3. 

For the reader mainly interested in the resulting governing equations and their numerical solution we derive these 

equations again in section 2.6 using Biot's theory. This also permits us to establish a link between the classical, 

phenomenological approach and the description of the real microscopic composition of the multiphase system. 

Furthermore, it shows the essential correctness of Biot's findings. 

Tensorial notation is used throughout this chapter. 

 

2.2 AVERAGING PRINCIPLES 

Here only a short summary of the principles necessary for the development of the governing equations is given. For a 

full account of the averaging theories the reader is referred to References [deB91] and [B&D83]. Sections 2.2 and 2.3 

follow, in particular, the work by Hassanizadeh and Gray [H&G79/1] and [Has86/2] and by de Boer et al. [deB91]. 

We introduce the following definitions:  

1. microscopic level:  we consider the real nonhomogeneous structure of the porous medium domain (Figure 

2.1). The scale of inhomogeneity is of the order of magnitude of the dimensions of a pore or a grain, say d. 

Attention is focussed on what happens at a mathematical point within a single phase and the field variables 

describing the status of a phase are defined only at the points occupied by that phase. For the practical 

                                                           

* From Chapter 2: Mechanics of saturated and partially saturated porous media of: “Lewis R.W. and Schrefler B.A. The Finite 

Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. J. Wiley, Chichester 1998”. 
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description of the processes taking place in a porous medium, this level is not useful since microscopic 

quantities are generally not measurable. Only their average values are measurable. 

2. macroscopic level:  the real multiphase system that occupies the porous medium domain is replaced by a 

model in which each phase is assumed to fill up the entire domain. This means that at every point all phases 

are supposed present at the same time (overlapping continua). This is the level of interest of continuum 

mechanics, where we investigate the continuous distribution of the constituents through a macroscopic control 

space. At this level, we usually deal with homogeneous media, but nonhomogeneities may still be present, e.g. 

strata. Their scale is of the order of magnitude comparable with the order of magnitude of the entire domain, 

say L. 

3. megascopic level: at this level the conditions are similar to those of the previously defined level. The difference 

depends on the fact that some macroscopic inhomogeneities are eliminated by averaging and/or  on the fact 

that the mathematical model is stated in a domain which has less dimensions than the real domain, e.g. 2-D 

problem with field values averaged over the thickness [B&C81] and [S&S89]. Typical applications of this level 

are found in the simulation of land subsidence problems of regional scale. 

 

Figure 2.1: Typical averaging volume dv of a porous media consisting of three constituents 

 

2.2.1 Averaging process 

We consider here a multiphase system occupying a total volume, V, and bounded by surface, A. The constituents 

p=1,2,….,k have the partial volumes Vp. Each point of the total volume, V, is considered to be the centroid of a 

representative elementary volume (R.E.V.) or average volume element, dv. The position of the centre of an R.E.V. in a 

global coordinate system is described by position vector x while r indicates the position of a microscopic volume 
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element, dvm, see Figure 2.1. The volume of constituent p within an R.E.V, called average volume element dvp, is 

obtained by defining a phase distribution function, gp 







≠∈
∈=

απ

π
γ

α

π

      r  0

  r  1),r(
dvfor

dvfort  [2.1] 

where ξ+= xr  

and the integration refers to the microscopic local coordinate system with its origin in x (Figure 2.1). 

Similarly we write for the part of area dap of the R.E.V., occupied by constituent p 

( ) ( ) m
da

dattda ,rx, ∫= ππ γ  [2.2] 

where mda  is the microscopic area element 

The knowledge of dvp enables the introduction of the concept of volume fraction, hp, which is of paramount importance 

in multiphase systems  

( ) ( ) m
dv

dvt
dvdv

dv
t ,

1
, rx ∫== π

π
π γη  [2.3] 

with 

1
1

=∑
=

κ

π

πη  [2.4] 

In fact, as indicated under the heading "macroscopic level" in paragraph 2.2, substitute continua fill the entire domain 

simultaneously, instead of the real fluids and the solid which each fill only part of it. These substitute continua have a 

reduced density which is obtained through the volume fractions. 

dvmin dv

A
ve

ra
g
e 

va
lu

e 
o
f 

dvmax

Domain of
microscopic

inhomogeneity

Domain of
macroscopic

inhomogeneity

Range for dv

Homogeneous
medium

Inhomogeneous
medium

 

Figure 2.2: Averaged value zzzz versus size of the average volume dv 
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In the following, averaged quantities are obtained by integrating (averaging) a microscopic quantity over the volume, dv, 

or the area, da, of an R.E.V. A field of macroscopic variables results from this, where the average volume, dv, and the 

average area, da, is associated with material points. 

The importance in the choice of size of an R.E.V. is self evident. Average quantities have to be independent of the size 

of the average volume and continuous in space and time. Thus an R.E.V. has to fulfil the following requirements: 

 - dv has to be small enough to be considered as infinitesimal, i.e. the partial derivatives appearing in the governing 

equations must make sense and  

-dv must be large enough, with respect to the heterogeneities of the material to give average quantities without 

fluctuations depending on the size of the R.E.V., Figure 2.2. 

To obtain meaningful average values, the characteristic length, l, of the average volume must satisfy the inequality 

Lld <<<<  [2.5] 

where l is dependent on the specific material which constitutes the medium. 

Some typical values of l are given in [L&C88]  

 

 l [mm] 

metals 0.5 

plastics 1.0 

wood 10.0 

Table 2.1: characteristic length l for some materials 

 

The following average operators are now defined and applied to a function, z, which is a microscopic field variable. 

Volume average operators  

phase average 

( ) ( ) ( ) m
dv

dvtt
dv

t ,,
1

, rrx π

π
γζζ ∫=  [2.6] 

intrinsic phase average  

( ) ( ) ( ) m
dv

dvtt
dv

t ,,
1

, rrx π
π

π

π
γζζ ∫=  [2.7] 

From the definition of volume fraction [2.3] it follows that 

( ) ( ) ( )ttt ,,, xxx
π

π

π

π
ζηζ =  [2.8] 

 

Mass average operator, with ( )t,rρ  microscopic mass density as weighting function 

( )
( ) ( ) ( )

( ) ( )∫
∫=

dv m

dv m

dvtt

dvttt
t

,,

,,,
,

rr

rrr
x

π

π
π

γρ

γζρ
ζ  [2.9] 

with constant microscopic mass density the following equation holds 
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( ) ( ) ( )tt
t

,,
,

1
xx

x

π

ππ
ζζ

η
=  [2.10] 

Area average operator 

( ) ( ) ( ) m
da

datt
da

t , . ,
1

, rnrx π
π

γζζ ∫=  [2.11] 

with n the outward normal unit vector of an area element dam and z has a tensorial nature. 

In the following, averages of velocity, external body force, internal energy, external supply of heat, internal entropy, 

external supply of entropy and total production of entropy are obtained through the mass average operator [H&G79/1].  

2.2.2 Microscopic balance equations 

We now consider the classical balance equations of continuum mechanics which are used to describe the microscopic 

situation of any p phase. At the interfaces with other constituents, the material properties and thermodynamic quantities 

may present step discontinuities. 

For a generic conserved variable, y, the conservation equation within the p phase may be written as  

( ) ( ) Gbir ρρρψ
ρψ =−−+
∂

∂
 divdiv

t
&  [2.12] 

where r&  is the local value of the velocity field of the phase in a fixed point in space 

 i  is the flux vector associated with y 

 b  is the external supply of y 

 G  is the is the net production of y 

At the interface between two constituents p and a, the jump condition holds  

( )[ ] ( )[ ] 0 .   .  =+−++− απ

α

πα
π ρψρψ nirwnirw &&  [2.13] 

where w  is the velocity of the interface 

 παn  is the unit normal vector pointing out of the p phase and into the a phase, with 

αππα nn −=  [2.14] 

and π  indicates that the preceding term [...] must be evaluated with respect to the p phase 

No thermomechanical properties are attributed to these interfaces. This assumption does not exclude the possibility of 

exchange of mass, momentum or energy between the constituents. 

Moreover the local thermodynamic equilibrium hypothesis is assumed to hold because the time scale of the modelled 

phenomena is substantially larger than the relaxation time required to reach equilibrium locally. 

2.2.3 Macroscopic balance equations 

Instead of deriving the macroscopic balance equation separately for each quantity to which the conservation law applies, 

we derive it for the generic quantity, y, as in [deB91] and [B&D83] and specialise the law afterwards for specific 
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quantities: mass, linear momentum, angular momentum and energy. Note that the balance equations are written in a 

material free manner. The constitutive equations are introduced successively. 

A general, average macroscopic balance equation is obtained from the microscopic balance equation [2.12] by 

multiplying it with the distribution function ( )t,rπγ  and by integrating this product over the volume element, dv, and 

over the total volume, V. In this elaboration of the balance equations, macroscopic quantities are obtained through the 

previously defined averaging operators. 

This averaging procedure yields that ([deB91] and [B&D83]) 

( ) ( )( ) ( ) dVdvt
t

tt
dvV dv

m  ,
,,1

∫ ∫ 








∂
∂

r
rr πγ

ψρ
 

(( ) ( ) )( ) ( ) dVdvttttdiv
dvV dv

m  ,,, ,
1

∫ ∫ 







+ rrrrr πγψρ &  

( ) ( )∫ ∫ 






−
V dv m dVdvttdiv

dv
 , ,  

1
rri πγ  [2.15] 

( ) ( )∫ ∫ 






−
V dv m dVdvttdiv

dv
 , ,  

1
rri πγ  

 
( ) ( ) ( ) dVttt

dvV dv
 ,,  ,

1
∫ ∫ 







− rrbr πγρ
 

( ) ( ) ( ) dVdvttt
dvV dv

m  ,,,
1

∫ ∫ 







= rrGr πγρ  

As suggested in References [H&G79/1], [H&G79/2], [H&G80/3] and [deB91], it is possible obtain the following form of 

the general balance equation for the macroscopic thermodynamic property, πψ , associated with the phase 

( ) ( ) ( ) ( ) ( )∫












+





∂
∂

V
dVtttdivtt

t
,,v,,, xxxxx

ππ

π

π

π
ψρψρ  

( ) ( ) ( ) ( )[ ] ( )∫ ∑∫






 ⋅−−

≠
V

k

da m dVdattttt
dv πα

πα
πα

ψρ ,,,,,
1

rnrrrwrr &   

( ) ( ) dVdatt
dvV

k

mda∫ ∑∫ 






 ⋅−
≠πα

πα
πα

,, 
1

rnri  [2.16] 

( ) ( ) ( )[ ] ( )∫ ∫






 ⋅−−

A da m dAdatttt
da

πππ γξψρ ,
~

,,
~

,,
1

rnrxrri &

 

( ) ( ) ( ) ( )dVttdVtt
VV

,,,, xGxxbx
π

π

π

π
ρρ ∫∫ =−  

or in more concise form 

πππ

π

π

π
ψρψρ i  v divdiv

tV
−





+
















∂
∂

∫  
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( ) dvdVeb
V

π

π
πππ

π
ρρψρ GI ∫=



 ++−   [2.17] 

where πi  is the flux vector associated with πψ  

 πb  is the external supply of πψ  

 
π

ρ  is the volume average value of mass density 

This last balance equation contains two further interaction terms, which describe chemical and physical exchanges. 

Exchange of due to mechanical interactions between the constituents is given by 

∑ ∫
≠

⋅=
πα

πα

π

π

παρ
da

mda
dv

  
1

inI  [2.18] 

Phase change of a constituent or possible mass exchange between the constituent p and the other constituents a is 

given by 

( ) ( ) mda
da

dv
πα

παπ

π
πα
ρψ

ρ
ρψ nrw ⋅−= ∑∫

≠

&
1

e  [2.19] 

 

2.3 MACROSCOPIC BALANCE EQUATIONS FOR A NON ISOTHERMAL 

PARTIALLY SATURATED POROUS MATERIAL 

In this section, the macroscopic balance equations for mass, linear momentum, angular momentum and energy 

(enthalpy) are obtained and then specialised for a deforming porous material where heat transfer and flow of water 

(liquid and vapour) and of dry air is taking place. The starting points are the microscopic balance equations [2.12], 

where, for each constituent, the generic thermodynamic variable, z, is replaced by appropriate microscopic quantities, 

suitable for a microscopic non polar material. 

For the proper description of the nonisothermal unsaturated porous medium we need to take into account not only heat 

conduction and vapour diffusion, but also heat convection, liquid water flow due to pressure gradients or capillary effects 

and latent heat transfer due to water phase change (evaporation and condensation) inside the pores. Furthermore the 

solid is deformable, resulting in coupling of the fluid, the solid and the thermal fields. All fluid phases are in contact with 

the solid phase. 

The constituents are assumed to be immiscible except for dry air and vapour, and chemically non reacting. Because of 

the local thermodynamic equilibrium hypothesis, the temperatures of each constituent at a point in the multiphase 

medium are taken to be equal. This does not mean that the temperature is uniform throughout the medium but only that 

at each point one temperature is sufficient to characterize the state. 

Momentum exchanges due to mechanical interaction are independent of the temperature gradient. 

In the following, the stress is defined as tension positive for the solid phase, while pore pressure is defined as 

compressive positive for the fluids. 
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It should be noticed that in this section the formulation is still material free, i.e. no specific assumptions for the material 

behaviour have been introduced so far, except for the quite general ones, indicated above. For the development of the 

macroscopic balance equations in the following sections, we still need to specify kinematics. 

2.3.1 Kinematic Equations 

As indicated in section 2.2, a multiphase medium can be described as the superposition of all p phases, whose material 

points, Xn, can be thought of as occupying simultaneously each spatial point x in the actual configuration. The state of 

motion of each phase is, however, described independently. Based on these assumptions, the kinematics of a 

multiphase medium is dealt with next. 

In a Lagrangian or material description of motion, the position of each material point, xp, at time, t, is function of its 

placement in a chosen reference configuration,  and of the current time, t  

( ) ( ) ( ) ( ) 321321 ,,   i,tXX,t,X,XXx,tXxx ti ===== ππππππ ff  [2.20] 

To have this mapping continuous and bijective at all times, the Jacobian, J, of this transformation must be non zero and 

strictly positive, since it is equal to the determinant of the deformation gradient tensor,   

( ) ππππ XF                     xF
1

gradGrad ==
−

 [2.21] 

Because of the non-singularity of the Lagrangian relationship [2.20], its inverse can be written and the Eulerian or spatial 

description of motion follows 

( )t,πππ xXX =  [2.22] 

It is also assumed that functions which describe the motion have continuous derivatives. If the path of the particle of the 

p-phase is known, its velocity and acceleration are, in the material description 

( )
t

t
∂

∂= , ππ
π Xx

V  [2.23] 

( )
2

2 ,
t

t
∂

∂=
ππ

π Xx
A  [2.24] 

The corresponding spatial expression can be obtained by introducing equation [2.22] into the above two equations. But, 

if only the spatial description is given for the velocity field in the form 

),( tπππ xvv =  [2.25] 

to evaluate its time derivative with material coordinates held constant, we introduce the description of motion of equation 

[2.20] into the last equation. By applying the chain rule of differentiation, it follows 

    
 ππ
π

π vv
v

a ⋅+
∂

∂= grad
t

 [2.26] 

The material time derivative of any differentiable function, ( )tf ,xπ , given in its spatial description and referring to a 

moving particle of the phase is  

ππ
ππ

π

v  ⋅+
∂

∂= fgrad
t

f
Dt
fD

 [2.27] 
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If superscript a is used for the operator 
Dt
D

 

απ
ππ

α

v    ⋅+
∂

∂= fgrad
t

f
Dt
fD

 [2.28] 

the time derivative is taken moving with the a-phase. 

Subtraction of equation [2.27] from equation [2.28] yields the following relation 

αππ
π

π
π

α

v    ⋅+= fgrad
Dt
fD

Dt
fD

 [2.29] 

where 

πααπ v v v −=  [2.30] 

is the velocity of the a phase with respect to the p phase. This velocity is called the diffusion velocity [H&G80/3]. 

The operator 
Dt
D

 is a scalar operator and may be applied either to a vector quantity or a scalar quantity. If πf  is a 

vector property per unit volume referring to the p phase, the total time derivative of its integral over a volume, V, is given 

by 

( )∫∫∫ 







⊗+

∂
∂=








+⋅+

∂
∂=

vvv
dVdiv

t
Vddivgrad

t
dV

dt
d

  
f

       
f ππ

π
ππππ

π
π vfvfvff  [2.31] 

For a scalar property, πf  

( ) dVdiv
t

dV
dt
d

v v
∫ ∫ 








+

∂
∂= ππ
π

π vf
f

f  [2.32] 

In the above equations, velocities and accelerations of the p phase are considered as mass averaged quantities since 

these are the quantities usually measured in a field situation or in laboratory practice. In porous media theory it is 

customary to describe the motion of the fluid phases in terms of mass averaged velocities relative to the moving solid. 

Their motion is described with reference to the actual configuration assumed by the solid skeleton. The velocities and 

accelerations of each fluid particle can then be written with reference to the ones of corresponding solid points, once the 

relative velocities are introduced. We specify the superscripts p now as s for soil, w for the liquid phase and g for the 

gas phase (dry air plus vapour) and write for the relative velocities of water and gas phase respectively, 

swws vvv −=  [2.33] 

sggs vvv −=  [2.34] 

Water and gas acceleration are given from [2.26], [2.28], [2.33] and [2.34] as  

( )     wswss
ws

s

sw grad
Dt

D
vvv

v
aa ⋅+++=  [2.35] 

( ) gsgss
gs

s

sg grad
Dt

D
vvv

v
aa    ⋅+++=  [2.36] 
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The deformation process of the solid skeleton can be described by the velocity gradient tensor, Ls, which, referred to 

spatial co-ordinates, is given by [C&T92] and [Mol86]: 

ssss grad WDvL +=≡   [2.37] 

Its symmetric part Ds, is called the eulerian strain rate tensor, being related to pure straining while its skew-symmetric 

component Ws is the spin tensor. 

2.3.2 Mass balance equations 

 

Figure 2.3: Schematic composition of soil 

In the following, we identify the volume fractions, hp, of the constituents as  

solid phase 

ns −= 1η  [2.38] 

where 
dv

dvdv
n

gw +=  is the porosity  

water 

w
w Sn ⋅=η  [2.39] 

where gw

w

w dvdv
dv

S
+

=  is the degree of water saturation 

gas 

g
g Sn ⋅=η  [2.40] 

where gw

g

g dvdv
dv

S
+

=  is the degree of gas saturation 

It follows immediately that 

1=+ gw SS  [2.41] 

2.3.2.1 Solid phase 

In the microscopic situation, the variables for solid in equation [2.12] assume the following values 
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0 ,0 ,0 ,1 ==== Gbiψ  [2.42] 

and the microscopic mass balance equation results in 

( ) 0 =+
∂
∂

r&ρ
ρ

div
t

 [2.43] 

The averaged macroscopic solid mass balance equation is 

( )ρρρ
ρ s

s

s

s
s evdiv

t
=





+

∂
∂

 [2.44] 

Where rs stands simply for
π

ρ , the phase averaged solid density and sv  is the mass averaged solid velocity. The 

same simplified notation will be used for the other constituents, once p is accordingly specified. 

From [2.27] we have 

s

s
ss

s

grad
tDt

D
v ⋅+

∂
∂= ρ
ρρ

 [2.45] 

By introducing the latest in the previous equation we obtain 

0v =+
s

s
s

s

div
Dt

D
ρ

ρ
 [2.46] 

By introducing intrinsic phase averaged densities through equation [2.8] we have finally 

( ) ( ) 0v 1
1 =−+− ss

s
s

divn
Dt

nD
ρ

ρ
 [2.47] 

where the shorthand 
s

ss ρρ =  has been introduced for the intrinsic phase averaged density. 

2.3.2.2 Liquid phase: water 

As for the solid phase we have: 

( )ρρρ
ρ w

w

w

w
w ediv
t

 v =




+

∂
∂

 [2.48] 

( )ρρρ
ρ w

w

w

w
w

w

ediv
Dt

D
 v  =+  [2.49] 

( ) mew
w

&−=ρρ   [2.50] 

Is the quantity of water per unit time and volume, lost through evaporation. 

2.3.2.3 Gaseous phases: dry air and vapour 

The gaseous phase here is a multi-component material, composed of two different species: dry air and vapour. These 

species are miscible. We first write the mass balance equations for both species. 

Their microscopic mass balance equations are again given by equation [2.43] if we neglect net production of mass of 

each species, due to chemical reactions with the other species [Has86/2]. 
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The macroscopic mass balance equation for dry air is given by equation [2.44] with appropriate super/subscripts and 

with exchange term zero. We introduce intrinsic phase averaged densities and use super/subscript ga to indicate dry air. 

Because the two species, dry air and vapour, are miscible, they have the same volume fraction nSg 

( ) 0v  =




+

∂
∂ gaga

g
ga

g SndivSn
t

ρρ  [2.51] 

Similarly we write for vapour, using super/subscript   

( ) ( ) meSnSndivSn
t

gwgw
g

gwgw
g

gw
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&==




+

∂
∂

ρρρρ  v    [2.52] 

We now derive the mass balance equation for the whole gaseous phase. This is obtained by summing the macroscopic 

balance equations of the two species and using appropriate definitions for bulk properties of the gaseous phase 

[Has86/2]. 

( ) mSndivSn
t

gg
g

g
g

&=




+

∂
∂

v  ρρ  [2.53] 

with 

gwgag ρρρ +=  [2.54] 

and  

gwgwgagagwgwgaga
g

g
cc vvvvv +=





 += ρρ

ρ

1
 [2.55] 

where 
gc ρρππ =  is the mass fraction of component p, subject to 

gagwc ,  ,1 ==∑ π
π

π

 [2.56] 

We introduce further the macroscopic diffusive dispersive velocity, gwga,, =ππu  defined as [Has86/1] 

gg
vvvu −==

πππ
 [2.57] 

and subject to  

∑ ==+
π

ππρρρ 0uuu cggwgwgaga
 [2.58] 

Transformation of [2.53] as in the case of the mass balance equation for the solid phase yields for gas 

( )
mdivSn

Dt

SnD gg
g

g
g

g

&=+ v    
 

ρ
ρ

 [2.59] 

With a proceedings similar to the earlier we obtained the following form of the mass balance equation for vapour 

( ) ( ) mdivSnSndivSn
Dt
D ggw

g
gwgw

g
gw

g

g

&=++ vu     ρρρ  [2.60] 

We introduce now the diffusive-dispersive mass flux of component gw as [E&S64] 

gwgw
g

gw
g Sn uJ ρ =  [2.61] 

and now we can write 
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( ) mdivSndivSn
Dt
D ggw

g
gw
g

gw
g

g

&=++ vJ      ρρ  [2.62] 

2.3.3 Linear momentum balance equation 

Solid phase 

( ) 0tagt =+−+ s
s

ss
s

sdiv ˆ ρρ  [2.63] 

Liquid phase 

( ) ( )[ ] 0treagt =++−+ ππ
π

ππ
π

π ρρρ ˆ &div  [2.64] 

where m
dv

dv
dv

π

π

π γρ
ρ ∫= gg

1
 is the external momentum supply, which we assume to be related to 

gravitational effects 

 ππ
π

ππ vv
v

va ⋅+==  grad
t∂
∂&  is the p-phase acceleration 

The term 

m

k

da m da
dv

πα

παπ

ππ
παρ

nttI  
1ˆ ⋅== ∑∫

≠
 [2.65] 

accounts for the exchange of momentum due to mechanical interaction of p-phase with the other a-phases. 

2.3.4 Angular momentum balance equation 

As indicated in section 2.3, all phases of the semi-saturated porous medium are considered microscopically non-polar. 

The following microscopic variables are necessary for the balance equation [2.12] when angular momentum balance is 

considered 

0=

  =

  =

  

G

grb

tri

rr

x

x

x

m

&=ψ

 [2.66] 

With a proceedings similar to the earlier balance equation, or with an appropriate method chosen for the development of 

the average angular momentum equation [deB91] and [H&G79/2], that for non-polar media, also at macroscopic level, it 

can be shown that the partial stress tensor is symmetric 

( )Tππ tt =  [2.67] 

and that the sum of the coupling vectors of angular momentum between the phases vanishes. 

2.3.5 Balance of energy equation 

For the energy balance, the following components must be taken into account in the generic microscopic balance 

equation [2.12]: 
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 [2.68] 

where ( )tE ,r  is the specific intrinsic energy 

( )t,rρ  is the heat flux vector 

( )th ,r  is the intrinsic heat source 

The energy balance equation can be written as follows 

π
π

ππ
π

ππ
π

π

π ρρρ Rdivh
Dt
ED +−+= qDt ~:  [2.69] 

where ( ) ( )[ ]ππππ
π

π
π ρρρρ QEeEeR +−= ˆ   

The equilibrium between all the phases can be write 

( ) ( ) ( ) 0ˆ
2
1~ˆ =







 +⋅+⋅+⋅+∑
π

πππππππππ
π ρρρρ QeeEe vtvvvr&  [2.70] 

and physically means that the total balance of energy exchange between all the phases is zero. 

2.3.6 Entropy inequality 

Exploitation of entropy inequality is a tool for developing constitutive equations in a systematic manner, leading to a 

consistent thermodynamic description of the material behaviour at macroscale. The use of entropy inequality further 

assures that the second law of thermodynamics is not violated. The procedure was proposed by Coleman and Noll 

[C&N63]. It is, for instance, exploited in [S&W79], and by Gray and Hassanizzadeh [G&H91/1] for the development of 

constitutive equations for unsaturated flow in dry or partially saturated soil, including interfacial phenomena. 

The variables in the microscopic balance equation [2.12] are now 

f=

=

G

b

i

s

Ø

=

=λψ

 [2.71] 

where l is the specific entropy 

 Ø is the entropy flux vector 

 s is an intrinsic entropy source 

The net production f denotes an increase of entropy. The balance equation becomes then 

( ) ( ) ρρρλρλ =−−+
∂
∂

sr     Ødivdiv
t

&  [2.72] 

Starting from this last equation, lp, the averaged specific entropy of constituent p, and the entropy supply due to mass 

exchange are determined for obtain the entropy inequality for the mixture 
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where m
dv

dv
dv

π

π

π γρλ
ρ

λ ∫= 1
 

 qp the flux of entropy for unit of temperature 

 
π

π

Q

h
 is the source of entropy for each phase 

Again, this corresponds to the form used in the mixture theory as shown in [deB91]. 

Before further transformations of the macroscopic balance equations are made, we introduce the constitutive equations 

for the constituents. 

 

2.4  CONSTITUTIVE EQUATIONS 

To complete the description of the mechanical behaviour, we now need to specify the constitutive equations. The 

balance equations developed in the previous sections allows for the introduction of quite elaborate constitutive theories, 

especially if the balance equations presented in the previous sections for the bulk material are extended to the 

interfaces, as done by Gray and Hassanizadeh in [G&H91/1] and [G&H91/2] for the aspects concerning multiphase flow. 

For the solid phase, second-grade material theories are also possible, where the gradients of relevant thermodynamic 

properties, such as densities, are considered as independent variables [Ehl89]. However, since this book is application 

oriented, i.e. we aim for the quantitative solution of real engineering problems, we make a different choice. 

We select constitutive models which are based on quantities currently measurable in laboratory or field experiments, and 

which have been extensively validated both with reference to known exact solutions and to experiments. Many of these 

constitutive models correspond to linearization of more complex arguments. 

We deal first with the properties of the fluid phases, and only briefly mention the solid phase here, because this is the 

main aspect of this thesis and then this will be seen later. 

2.4.1 Stress tensor in the fluid phases 

By applying entropy inequality for the bulk material [H&G80/3] [G&H91/1], it can been shown that the stress tensor in the 

fluid phases, is  

It πππ η p−=  [2.74] 

where I is the identity tensor 

 pp is the macroscopic pressure of the   p-phase 

The volume fraction, hp, appears in equation [2.74] because tp is the force exerted on the fluid-phase per unit area of 

multiphase medium. It should be noted that the stress vector in the fluid phase does not have any dissipating part. The 
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macroscopic effects of deviatoric stress components will be accounted for in linear momentum balance equations 

through momentum exchange terms. 

2.4.2 Gaseous mixture of dry air and water vapour  

The moist air in the pore system is usually assumed to be a perfect mixture of two ideal gases, i.e. dry air and water 

vapour. Hence the ideal gas law, relating the partial pressure, pgp, of species p, the mass concentration, rgp, of 

species p in the gas phase and the absolute temperature, Q, is used. 

The equations of state of a perfect gas, applied to dry air (ga), vapour (gw) and moist air (g) are 
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 [2.76] 

where Mp is the molar mass of constituent p 

 R is the universal gas constant 

The second of equations [2.76] expresses Dalton's law [M&S93]. For the averaging process it is reminded that dry air, 

vapour and moist air occupy the same volume fraction, nSg. 

2.4.3 Sorption equilibrium 

If an oven-dry porous medium is exposed to moist air, the weight of such solid increases because the moisture is 

adsorbed on the inner surfaces of the pores starting with the finest ones. In the cases of interest here, the water is 

usually present as a condensed liquid that, because of the surface tension, is separated from its vapour by a concave 

meniscus (capillary water). There is then a relationship between the relative humidity, the water content (saturation) and 

the capillary pressure in the pores. 

The capillary pressure is defined as the pressure difference between the gas phase and the liquid phase, by the capillary 

pressure equation 

wgc ppp −=  [2.77] 

where pw is the pressure of the liquid-phase (water). 

In [G&H91/2], it is shown that pc=pg-pw is not just a definition, but a derived relationship between two independent 

quantities pc and pg-pw, at equilibrium. 

For the relationship between the relative humidity (R.H.) and the capillary pressure in the pores, Kelvin-Laplace law is 

assumed to be valid 
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 [2.78] 
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The water vapour saturation pressure, pgws, which is a function of the temperature only, can be obtained from the 

Clausius-Clapeyron equation indicated below, or from empirical formulas such as the one proposed by Hyland and 

Wexler [ASH93]. 

Assuming zero contact angle between the liquid phase and the solid phase, as is usually accepted for pore water, the 

capillary pressure can be obtained through the Laplace equation from the pore radius, r 

r
pc σ2

 =  [2.79] 

where s is the surface tension 

These considerations are applicable if the water is present in the pores, as a condensed liquid (capillary region). When, 

instead, the water is present as one or more molecular layers adsorbed on the surface of a solid because of the Van der 

Waals and/or other interactions, the capillary pressure no longer has an obvious meaning, even if it can be retained, 

referring to the broader concept of water potential or moisture stress. In such a case, a direct relationship between the 

water content and the relative humidity is assumed to hold such as the BET equation. [ASH93]. 

2.4.4 Clausius-Clapeyron equation 

As indicated above, this equation links the water vapour saturation pressure with temperature  

( ) 

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
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
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




−−=
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0 11 
 exp

QQ

∆
Q

R

HM
pp gwwgwsgws

 [2.80] 

where Q0 is a reference temperature 

 pgws is the water vapour saturation pressure at Q 

 pgws0 is the water vapour saturation pressure at Q0 

DHgw is the specific enthalpy of evaporation 

The equation is obtained from the second law of thermodynamics and is valid in the vicinity of Q0. 

In the following, we denote T as the temperature difference above a reference value such that 

0QQ-T =
 [2.81] 

2.4.5 Pore size distribution 

As it turns out from equations [2.78] and [2.79], the problem is to know the pore size distribution of the considered 

porous medium, to relate the size of the largest pore filled (from which the capillary pressure depends) with the actual 

water content. This relationship is obtained through experimental tests, usually centrifuge tests, sorption isotherm 

measurements or mercury porosimetry. 

The question is somewhat complex, because both the Laplace equation [2.79] and the Kelvin equation [2.78] are 

obtained from a force equilibrium, evaluated in a cylindrical capillary tube, and the porous medium is considered as a 

bundle of capillary tubes that do not intersect. The real porous media are more correctly represented as three-

dimensional networks of sites (or bodies) interconnected by narrower bonds (or throats) and then intrusion, extrusion, 

adsorption and desorption are subjected to hysteresis. In this case, the actual value of capillary pressure can be only 
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interpreted as a measurable quantity describing complex adsorbed water-solid matrix interaction. The determination of 

pore size distribution from sorption isotherms, results of centrifuge tests and mercury porosimetry should then be done 

following the percolation theory approach, [B&S78]. 

The Rayleigh distribution or the log-normal distributions are often a good estimation of the pore size and often such 

distribution can be bi-modal or multi-modal. 

For soils, we need the Kelvin-Laplace equation [2.78], the Clausius-Clapeyron equation [2.80] and the capillary pressure 

relationship 

( )TpSS c  ,ππ =  [2.82] 

which is directly obtained in laboratory. 

In later chapters, where the constitutive models are introduced, will show different relationships for the pore size 

distribution and one of them gives 

( )v
c TpSS εππ , ,=  [2.83] 

where vε  is the volumetric strain 

2.4.6 Equation of state for water 

From the mass conservation in differential form 
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ρ
 [2.84] 

It can be possible to obtain 
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where wβ  is the thermal expansion coefficient 
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wC  is the compressibility coefficient 
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2.4.7 Darcy's law 

Darcy's law, generalized to allow for relative permeability 

( )g   ππ
π

π
ππ ρ

µ
η +−= pgrad

k r
s k

v  [2.88] 
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where k is the permeability of the medium 

 m is the dynamic viscosity 

 krp the relative permeability, a dimensionless parameter varying from zero to one 

is assumed valid for the transport of both water and gas in slow phenomena. 

For each particular porous medium, the relations ( )w
r Sk π  are either predicted by models based on some more or less 

realistic capillary assumption or experimentally determined in laboratory as well as field conditions. For typical curves of 

relative permeabilities to water and air the reader is referred to Corey [Cor57]. 

The relative permeability goes to zero before the saturation reaches the value zero. The water saturation at which the 

relative permeability goes to zero is termed the residual water saturation or displacement residual water saturation. 

Relationships used in the following are e.g. those by Brooks and Corey [B&C66] 

( )
λ

λ32+
= e
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where 
wc

wcw
e S

SS
S

−
−=

1
 is the effective saturation 

 Swc is the irreducible saturation 

 l the pore size distribution index 

 pb the bubbling pressure 

2.4.8 Fick's law 

Diffusive-dispersive mass flux is governed by Fick's law 
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where π
αD  is the effective dispersion tensor 

 p is diffusing phase 

 a is the phase in which diffusion takes place (a=w,g) 

π
αD  is a function of the tortuosity factor, which accounts for the tortuous nature of the pathway in soil; because of 

mechanical dispersion, π
αD  is also correlated with seepage velocity. 

For dry air and water vapour (binary system) we have in particular, by the first of equations [2.76] and from the relation 
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It is worthwhile to emphasise that gas diffusion can take place even in the absence of a gas pressure gradient, i.e. when 

its mass weighted velocity gv  is zero. 

2.4.9 Stress tensor in the solid phase and total stress 

From the entropy inequality written in [G&H91/1] for unsaturated flow, including interfacial phenomena, it can be shown 

that the stress vector in the solid phase is  

( )( )ss
e

s pn Itt −−= 1  [2.93] 

pressure in the solid phase is  

g
g

w
ws SpSpp   +=  [2.94] 

and  

( ) s
en tσ  1' −=  [2.95] 

is the effective stress tensor. 

Introduction of [2.94] into [2.93] yields  

( ) ( )[ ]g
g

w
w

s
e

s pSpSn     1 +−−= Itt  [2.96] 

The volume fraction (1-n) indicates that ts is the stress exerted on the solid phase per unit area of a multiphase medium. 

The sum of [2.96] and of [2.74] written for gas and for water gives the total stress, s, acting on a unit area of a 

multiphase medium 
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This can be put in the usual soil mechanics form as 

( )g
g

w
w pSpS +−′= Iσσ  [2.98] 

or 

( )g
g

w
w pSpS ++=′ Iσσ  [2.99] 

From this last equation, it follows that the relationship between effective stress and total stress, in partially saturated 

porous media, is no longer independent of the soil type because of the saturations, while in fully saturated soils, where 

Sg=0 and Sw=1, the effective stress principle is unique for all soil types. 

An expression of the effective stress principle was obtained by Bishop and Blight [B&B63] using a phenomenological 

approach. 

The effective stress is responsible for all major deformations in the skeleton and is linked to the strain rate tensor, Ds, by 

means of a constitutive relationship 

( )[ ]ss
TDt

D
0

'
DDD −=σ

 [2.100] 

where 

( )Tpcs
TT ,,',σDDD =  [2.101] 

is a fourth order tensor and s
0D  represents the increment of all other strains not directly associated with stress changes.  
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2.4.10 Solid density 

When considering the solid phase as compressible, a relationship for the material time derivative of the solid density can 

be obtained from the mass conservation equation in differential form 

( )
0=

Dt
VD ss

s

ρ
 [2.102] 

By assuming that the solid density is a function of ps, of temperature and of the first invariant of the effective stress, and 

defining the Biot’s constant [B&W57] as 

s
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we obtain 
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where KT is the bulk modulus of the skeleton 

 Ks is the bulk modulus of the of the grain material 

 bs is the thermal expansion coefficient for the solid 

In soils volumetric strain is relatively insignificant and can be ignored (a=1), but it is important in rock mechanics and in 

concrete, where the compressibility of the solid phase is comparable to that of the skeleton. 

2.4.11 Fourier's Law 

A constitutive assumption for the heat flux is the generalized Fourier's Law 

Tgradeff  ~ χ−=q  [2.105] 

where ceff is the effective thermal conductivity tensor and is the heat flux of the multiphase medium 

For isotropic media the generalized Fourier’s Law becomes the well known empirical Fourier's Law  

Tgradq eff   χ−=  [2.106] 

where ceff is the effective thermal conductivity 

The effective thermal conductivity can be predicted theoretically as well as determined experimentally. 

For porous building materials, for instance, the following linear relationship may be used, which represents with sufficient 

accuracy the data by Bomberg and Shirtliffe [B&S78]  
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2.5 GENERAL FIELD EQUATIONS 

The macroscopic balance laws are now transformed, and the constitutive equations introduced, to obtain the general 

field equations, which will be used in the subsequent chapters. The averaging symbol, overbar, will be omitted in the 

remainder of this book, because all quantities belong to the macroscopic situations. 

2.5.1 Mass balance equation 

2.5.1.1 Solid phase 

The macroscopic mass balance equation for the solid phase [2.47], divided by rs is 
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s divn
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 [2.108] 

2.5.1.2 Liquid phase 

Upon introduction of the relative velocity [2.33] and the material time derivative with respect to the moving solid [2.29] 

equation [2.49] for liquid water becomes 
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Introduction of intrinsic phase averaged densities with the appropriate volume fractions, use of vector identity written for 

water and division by Swrw allows us to transform last equation into 

( )
w

w

swsw
ww

w

w

s

w

w
s

w

s

S
m

divnSndiv
SDt

SD
S
n

Dt
Dn

Dt
nD

ρ
ρ

ρ

ρ

ρ

&
−=++++ v  v    

 
1  

 [2.110] 

Summation with [2.108], to eliminate 
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nD
s

 gives 
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Introduction of [2.85] and [2.104] for the material derivatives of the solid and water densities and of [2.94] gives  

( ) ( )

( ) m
S

Sndiv
SDt

SD
S
n

Dt
TD

Dt
pD

K
ndiv

Dt
TD

npSpS
Dt
D

K
n

w
w

wsw
ww

w

w

s

w

s

w

w
s

w

s

s

s
ggww

s

s

&

ρ
ρ

ρ

βααβ
α

1
v 

1 

 
  1

v  
 

  

−=++














−++−−+−

 [2.112] 

where pw, pg and T are independent variables 

 ( )[ ]wswsw nnS ββαβ +−=   
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For incompressible grains ( 1=α  and 0
1 =

sK
) this equation may be simplified as follows 
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2.5.1.3 Gaseous phase 

The mass balance equation for gas as a mixture of dry air and vapour is dealt with next. 

In the same mode of the liquid phase, starting from [2.59] we obtain 
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where pw, pg and T are independent variables 

For incompressible grains ( 1=α  and 0
1 =

sK
) this equation may be simplified as follows 
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For heat transfer analysis, in partially saturated porous media, it is more convenient to consider the mass balance 

equation for dry air separately from that of vapour [Bag93] [Gaw95] and to sum the mass balance equations for both 

water species, liquid water and water vapour. In this way, the mass rate of water evaporation, m& , disappears from the 

mass balance equations. An evolution equation needed and this will be given by the energy balance equation. Note that, 

in this way, no constitutive model for the mass rate of water evaporation is needed. 

2.5.1.4 Gaseous phase: dry air 

The mass balance equation for dry air is transformed in the following equation 
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The resulting equation is divided by g
gaSρ  and summed with [2.108] we obtained 
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For incompressible solid grains this equation is simplified as 
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Introducing now the constitutive equations for rga and for 
ga
gJ  to obtain 
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2.5.1.5 Gaseous phase: vapour 

The way to derive the mass balance equation for vapour is identical to that of dry air and results, for the case of 

incompressible solid grains, in 
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This equation is now multiplied by rgw and added to the mass balance equation of liquid water, in turn multiplied by rw. 

This sum gives the mass balance equation for the water species, liquid and vapour, without mass rate of water 

evaporation as 
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where 

( )( ) w
w

ww
wgw

gsswg SnSSn ρβρρββ  1 ++−=  [2.122] 

In these equations Darcy's law for the fluid velocities relative to the solid has still to be introduced. This law was 

introduced in section Darcy's law2.4.7and will be derived again in its generalized form in the next section from the linear 

momentum balance equations. 
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2.5.2 Linear momentum balance equation 

2.5.2.1 Fluids 

A more suitable form for the linear momentum balance equation for the fluid-phases is now obtained by introducing 

kinematic equations and constitutive relationships. 

Equations [2.35] and [2.36] allow us to write for acceleration, ap 

ππππ vvaaa  gradsss ⋅++=  [2.123] 

where aps is the relative acceleration 

Introduction in [2.64] of [2.123], [2.64], the momentum exchange term and of the intrinsic phase averaged density yields 

( ) ( ) ( ) 0vRgrIvvaa =−++−⋅++− ssss peppdivgrad πππππππππππππππ ηηρηηρη &  [2.124] 

By neglecting the term dependent on the gradient of the fluid velocity, the effects of phase change and by applying a 

vector identity, for the divergence of the stress tensor in the fluid-phase, we obtain the relative velocity of the fluid as  

( ) ( )[ ]sss pgrad πππππππ ρηη aagRv −−+−=
−1

 [2.125] 

[ ])  ( 
 ss

r
s pgrad

k πππ
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ππ ρ
µ

η aag
k

v −−+−=  [2.126] 

Finally, neglecting the soil acceleration and the relative acceleration terms, it yields Darcy's law in the form [2.88] 

( )g   ππ
π

π
ππ ρ

µ
η +−= pgrad

k r
s k

v  [2.127] 

Due to the simplifications introduced, this law is valid as a first approximation for slow flow of a macroscopically inviscid 

fluid through a porous medium with incompressible grains. 

2.5.2.2 Solid-phase 

Taking into account equations [2.93], [2.94], [2.95], the linear momentum balance equation for the solid-phase becomes 

( )( )[ ] ( ) ( ) 0  1 11 ' w =++−−−++−− wgggwswsssg
g

w
w nnpSpSndiv vRvRagIσ ηηρρ  [2.128] 

2.5.2.3 Multiphase medium 

By summing the momentum balance equations, written for water and gas-phase respectively, with that of the solid phase 

[2.128], by taking into account the definition of total stress, assuming continuity of stress at the fluid-solid interfaces and 

by introducing the averaged density of the multiphase medium 

( ) g
g

w
w

s SnSnn ρρρρ     1 ++−=  [2.129] 

we obtain the linear momentum balance equation for the whole multiphase medium 
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wwswsw
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s
 [2.130] 

2.5.3 Energy balance equation 

The energy balance equation for the single phase is 
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where ( )ππππ Q,pHH =  is the specific enthalphy of the phase p 
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For the continuum multiphase, with the impose of thermodynamic equilibrium, the energy balance equation is 
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where ( )  g
pg

w
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s
pseffp CCCC ρρρρ ++=  

 gws
eff χχχχ ++=  

 wgw
vap HHH −=∆  

 

2.6 PHYSICAL APPROACH: EXTENDED BIOT'S THEORY 

The governing equations, using Biot's theory [Bio41/1] [Bio41/2] [Bio55] [Bio56/1] [Bio56/2] [Bio63] are again derived but 

extended to the case of non-isothermal two-phase flow in deforming porous media. This extension was made in 

References [Sch95] [S&Z93] for the case of slow phenomena. Also, inertia forces are taken into account, as was done in 

[Zie90] for the isothermal case with the air phase at atmospheric pressure. 

The physical approach works directly with macroscopic variables. However, the distinction between a macroscopic and 

microscopic domain is not so clear as in the previous sections, because macroscopic variables are sometimes directly 

used in the microscopic domain. 

For the sake of simplicity, small displacements are assumed for the solid phase. The governing equations in the form 

needed for finite strain analysis are those of the previous section. For all queries regarding the assumed hypotheses the 

interested reader is referred to the first part of this chapter. 

2.6.1 The physical model 

The voids of the skeleton are filled partly with water and partly with moist air (mixture of dry air and water vapour), which 

is referred to as gas. The degree of water saturation Sw is given as the ratio between the pore space occupied by the 

water and the total pore volume in a representative elementary volume element 

gw

w

w dvdv
dv

S
+

=  [2.133] 

In the following equations the super or subscript p refers to the generic phase, p=s to the solid phase, p=w to water 

and p=g to gas. The volume of the R.E.V. is dv, while the partial volumes are dvs, dvw and dvg. Their sum is dv while the 

sum of the respective fluid volumes is  dvT=dvw+dvg. The definition of the degree of gas saturation Sg is  
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gw

g

g dvdv
dv

S
+

=  [2.134] 

and both degrees of saturation sum to one i.e. 

1=+ gw SS  [2.135] 

The porosity n is defined as the ratio between the volume of voids and the total volume of the R.E.V., 

dv
dvdv

n
gw +=  [2.136] 

As in the first part of this chapter, the stress is defined as tension positive for the solid phase, while pore pressure is 

defined as compressive positive for fluids. The water pressure pw and the gas pressure pg are related through the 

capillary pressure pc 

wgc ppp −=  [2.137] 

The relation [2.137] is determined experimentally and usually shows hysteresis characteristics, which are ignored in this 

case. Equation [2.137] is numerically inverted to obtain 

( )p
v

c TpSS εππ , ,=  [2.138] 

The constitutive law of the solid phase is introduced through the concept of effective stress   

sp ' I+=σσ  [2.139] 

which stipulates that the main characteristics of the solid phase constitutive relation can be written in terms of s where 

s is the total stress tensor, I the second order unit tensor and ps is the average pressure of both the water and air 

surrounding the grains. In the case of immiscible two-phase flow we need a simple averaging technique for the 

calculation of ps as described in section 2.2. Thus the modified effective stress principle may be obtained as stated 

previously. The effective stress resulting from equation [2.138] is also referred to as Bishop's stress. 
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where σ  is the macroscopic total stress tensor 

For the fluid phases, the stress tensor is given by 

πππ τσ p I−=  [2.141] 

where πσ  is the intrinsic phase averaged stress tensor in the p phase 

 πτ  is the shear stress 

Under the assumption that the shear stress πτ  is negligible in fluids, we obtain  

( ) [ ]w
w

g
g

s pSpSnn +−−=   1 Iσσ
 [2.142] 

The term in square brackets of equation [2.141] represents the intrinsically averaged (or mean) pressure ps of the fluid 

phases i.e. 

( )w
w

g
g

s pSpSp   +=  [2.143] 
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This weighted pore pressures produce a stress state in the grains, but, for the moment, we assume these will not 

undergo any deformation due to this stress, i.e. we introduce the hypothesis of incompressible grains. The deformation 

of the solid skeleton, which depends on the effective stress, will be a function of the grain rearrangement only. 

Equation [2.142] can be modified to 
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 [2.144] 

where the overbar for the total stress has been omitted. 

The stress tensor is split into two components: the pore pressure effect and the part which deforms the solid skeleton, 

i.e. the effective stress. This latter is given by 

( ) ( )ss pn    1 I+−=′ σσ  [2.145] 

Equation [2.144] results in a splitting of the stress tensor similar to that of Terzaghi's principle, which, in presence of 

several fluid phases reads 

( )g
g

w
w pSpS     ++=′ Iσσ  [2.146] 

For greater generality, a corrective term known as Biot's constant, has to be introduced to account for the deformability 

of the grains [B&W57]. Therefore a more general expression of the effective stress is assumed as follows 

( )g
g

w
w pSpS +=′ ασσ  + I  [2.147] 

where the corrective coefficient a will be determined in section 2.6.2. Note that this equation differs substantially from 

the previous one: for the determination of a we need the constitutive equations of the solid phase. This effective stress 

is indicated in this chapter by σ ′′  as in [Zie90]. 

Another, more intuitive way of deriving equation [2.145] follows Bishop [Bis59] and Skempton [Ske61]. Here the 

microscopic and macroscopic aspects are somewhat mixed. We consider for this purpose the mean stresses, i.e. 

3
 ˆ
σ

σ tr=  [2.148] 

and 

3
 ˆ
σ

σ
′

=′ tr  [2.149] 

If the pores (Figure 2.4) are filled with water and air, then due to the surface tension effect we have  

gw pp <  [2.150] 

If the degree of saturation is relatively low, the water is present as menisci and the corresponding pressure acts over an 

area c per unit gross area, [A&D56]. 

Consequently, the equivalent pore pressure is given by  

( ) gw pp  1 χχ −+  [2.151] 

and the equivalent pore pressure may be written as 

( )wgg ppp −− χ  [2.152] 
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or 

( ) ( )wgw ppp −−+  1 χ  [2.153] 

For the fully saturated case, Bishop suggested the following expression for the mean effective stress σ ′ˆ  

( )[ ]wgg ppp −−+=′ χσσ ˆˆ  [2.154] 

For the full stress tensor, this equation assumes the form 

( )[ ]wgg ppp −−+=′ χσσ   I  [2.155] 

das

da

pore water
pressure pw

pore air
pressure pg

 

Figure 2.4: Contact area between two grains in the partially saturated case 

 

The coefficient c is not the same as for problems involving shear strength and consolidation [Ske61]. For a given degree 

of saturation the coefficient c must be determined experimentally for both types of problems. 

In general the pressure is implied as being an absolute value, but in many soil mechanics problems relative pressures 

are used and pg is often assumed to be equal to the atmospheric pressure. If this is the case and the atmospheric 

pressure is assumed as the reference pressure then the effective stress principle becomes 

wp   χσσ I+=′  [2.156] 

The comparison between [2.146] and [2.155] is noteworthy. The former may be written as a function of the degree of 

saturation Sw 

( )[ ]wg
w

g ppSp −−−   ' = Iσσ  [2.157] 

and coincides with equation [2.155] if wS=χ . 

The coefficient c is related to the area of contact between solid and fluids, whereas the degrees of saturation Sp 

depend on the volume occupied by the p phase. We define the volume fraction as 

dv
dvππη =  [2.158] 

and cross sectional area fraction as 

da
daππα =  [2.159] 
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For the case of microstructurally isotropic constituents, such that ap is independent of the orientation of the surface, 

and assuming that  

( )πππ ηαα =  [2.160] 

it can be shown that [Mor72] 

ππ ηα =  [2.161] 

This conclusion coincides with the basic supposition of Delesse's law, see section 2.2.1. 

If this assumption regarding the area and volume fraction is valid, then little difference exists between the definition of 

Bishop's coefficient c and the degree of water saturation Sw. Bishop's equation [2.154] has been experimentally 

validated by means of a triaxial tests carried out on soil samples [Ske61]. 

The assumption 

wS=χ  [2.162] 

is acceptable for many materials as shown experimentally in [B&B63]. 

However, other expressions may also be used, e.g. by Gudehus for clay [Gud95]  

( )SS −= 2χ  [2.163] 

If the solid phase is completely surrounded by a single wetting fluid phase, which is the only one in direct contact with 

the porous medium, then Li and Zienkiewicz [L&Z92] use equation [2.156] with 1=χ , as in the case of a fully 

saturated  porous medium. This assumption is widely used when the two fluids are water and bitumen: only water is in 

contact with the solid grains. 

A new expression for the effective stress principle in fully saturated conditions only, involving four parameters, has been 

proposed by Lade and de Boer [L&B96] and experimentally tested. This formulation, based on principles of mechanics is 

valid for all types of materials. A distinction is made between the compressibilities of the grain particles and the skeleton 

due to total stresses and pore pressures. 

Two distinct expressions are then obtained for effective stresses in granular material and in solid rock with 

interconnected pores respectively. For various special conditions these expressions become similar to the expressions 

found in the literature, in particular to the expression used here with Biot's constant a. Lade and de Boer [L&B96] 

conclude that Terzaghi's proposed effective stress principle works well for stress magnitudes encountered in most 

geotechnical applications, but significant deviations occur at very high stresses. 

2.6.2 Constitutive equations 

For a full account of the constitutive relationships used the reader is referred to section 2.4, and only a few equations, 

needed for the remaining part of this section, are recalled. In particular an expression for Biot's constant a is derived, 

which was omitted in section 2.4. 

The averaged pore pressure ps of the fluids occupying the void space induce a hydrostatic stress distribution in the solid 

phase. The ensuing deformation is a purely volumetric strain  

s

s
s
v K

p−=ε  [2.164] 
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where Ks is the averaged bulk modulus of the solid grains. 

As stated previously, the effective stress causes all relevant deformation of the solid skeleton. The constitutive 

relationship may be written as  

( )[ ]°−−−=′ εεεεσ ddddd s
v

c D  T
 [2.165] 

where σ ′d is the stress responsible for all deformations, except for the grain compressibility 

 εd  represents the total strain of the solid 

 TD  is the tangent constitutive tensor 

( )εεσ &,,DD ′= TT  [2.166] 

 ( )dtgd c σε ′=  accounts for the creep strain 

 odε  represents all other strains in the solid skeleton not directly dependent on effective stress 

A modified effective stress σ ′′  will now be introduced which will also account for grain compression. This allows the use 

of Biot's constant a. Omitting, for brevity, cdε  and odε  we obtain 

( )[ ] [ ] [ ]
s

s

TT
s
vT K

dp
   Ddε =DdεdεDσd
3

I+−=′  [2.167] 

Consequently, the effective stress equation written in incremental form becomes 

[ ] s

s

s

T
s  dp

K
dp

   Dσd dpσddσ III −+′′=−′=
3

 [2.168] 

where σ ′′  represents the stress responsible for all deformation of the solid. 

For the following developments we use indicial notation and the Kronecker Symbol d instead of the unit tensor I. 

It can be immediately verified that equation [2.168] can be written as given by Zienkiewicz and Shiomi [Z&S85] 

s
ij

s
klmnklmnnmmnijij dp
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Ddd δδδδδσσ 




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
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   [2.169] 

For an isotropic, elastic material  

Tklmnklmn K
E

D 9
21

3 =
−

=
υ

δδ  [2.170] 

where E is the Young's modulus 

 n is the Poisson's ratio 

 KT is the bulk modulus of the overall skeleton 

Hence equation [2.169] can be written as 

s
ijij

s
ij

s

T
ijij dpdpd

K
K

dd    =   1  δασδσσ −′′







−−′′=  [2.171] 

where a is Biot's constant. 

The resultant expression of the constitutive relationship is therefore 

εσ dd T  D=′′  [2.172] 
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The intrinsic pore pressure pp of the p fluid phase causes a purely volumetric strain of that phase, which is represented 

by 

π

π
πε

K
p

v −=  [2.173] 

2.6.3 Governing equations 

In the following a material coordinate system is employed for the solid phase and a spatial coordinate system for the fluid 

phases; convective terms, unless specified otherwise, are neglected. Because of this choice of reference systems the 

fluid velocities are conveniently referred to the solid phase by means of the relative velocities for water and gas 

respectively  

swws vvv −=  [2.174] 

sggs vvv −=  [2.175] 

and the accelerations, without convective terms, are  

wssw aaa +=  [2.176] 

gssg aaa +=  [2.177] 

where aws is the acceleration of water relative to the solid phase and ags the relative acceleration of gas. 

2.6.3.1 Linear momentum balance equation of the multiphase medium 

The linear momentum balance equation for the multiphase system is the sum of the dynamics equations for the 

individual constituents, but relative to the solid phase via equations [2.176] and [2.176] 

0=     gaaa ρσρρρ ++−−− divSnSn gsg
g

wsw
w

s
 [2.178] 

where 

( ) g
g

w
w

s SnSnn ρρρρ   1 ++−=
 [2.179] 

is the averaged density of the multiphase systems 

rs is the intrinsic density of the solid phase, i.e. the density referred to the volume occupied by the solid phase 

only, as opposed to the volume occupied by the multiphase system 

rw is the intrinsic density of water 

rg the intrinsic density of gas 

g an acceleration usually related to gravitational effects 

The linear momentum balance equation for each fluid phase yields the generalized form of Darcy's law, where the 

dissipative terms arising in a multiphase flow system at the interfaces are taken into account through the relative 

permeabilities  

( )[ ]wssww

w

rw
ws

w pgrad
k

nS aag
k

v −−+−= ρ
µ

 
 [2.180] 
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( )[ ]gssgg

g

rg
gs

g pgrad
k

nS aag
k

v −−+−= ρ
µ

  
 [2.181] 

Where k is the intrinsic permeability 

krw and krg the relative permeabilities of water and gas 

mw and mg are the dynamic viscosities 

The relative permeabilities vary between 0 and 1 and are a function of the degree of saturation; the dynamic viscosities 

are temperature dependent. In the generalized form of Darcy's law for the gas phase the body forces are usually 

neglected. The L.H.S. of equations [2.180] and [2.181] are multiplied by the volume fractions nSp because Darcy's law 

is expressed in terms of volume averaged relative velocities. These are the velocities measured from experiment work. 

2.6.3.2 Mass balance equations 

The summation of mass balance equations of mass and fluid, with opportune arrangements and yields the so-called 

continuity equation of the fluid phase i.e. 
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We consider first the continuity equation for water. Introduction of the constitutive relationships for the time derivatives of 

water density and solid density, of the pressure in the solid phase, and multiplication by Sw allows the continuity equation 

for water and then with the introduction of Darcy's law and of the definition of capillary pressure yields 
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In the same way the continuity equation for gas is obtained  
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2.6.3.3 Energy balance equation 

By subtracting the kinetic energy from a global energy balance, the balance equation of thermal energy may be written 

for constituent p as [Bir60] 
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where Ep is the specific internal energy 

t is the deviatoric part of the stress tensor 

µp the hydrostatic part of the stress tensor 

The L.H.S. represents the rate of accumulation of internal energy in a control volume. The R.H.S. terms express 

respectively the rate of internal energy change due to convection and to conduction, the reversible rate of internal energy 

increase due to pressure, the irreversible rate of internal energy increase by viscous dissipation and the contribution of 

heat sources. 

In small strain the energy balance equation becomes 

ππππππππππ
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The irreversible part of the internal energy increase by viscous dissipation is neglected in what follows. It is convenient to 

express this equation in terms of temperature and heat capacity instead of internal energy [Bir60]. This is done through 

the concept of enthalpy. Hence with sufficient accuracy for geomechanical applications the energy balance equation can 

be rewritten as 
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for p=s,w, which for the purpose of the energy balance only may be considered as incompressible, and 
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where g
pC is the specific heat at constant pressure 

Some insignificant terms which are related to the mechanical work induced by density variations due to temperature 

changes of the water and solid phases have been neglected. 

Gas pressure changes are usually very slow and their gradients small in geomaterials, hence the time derivatives of gas 

pressure, as well as the convective terms, are negligible with respect to other terms in equation [2.188]. Also, because 

gas pressure changes are usually small when compared to atmospheric pressure, the specific heat at constant pressure 

may be utilised instead of specific heat at constant volume. 

A local equilibrium state is assumed to hold i.e. 

TTTT gws ===  [2.189] 

We also introduce the constitutive equation for heat fluxes, and add together equations [2.187] and [2.188], and 

introduce the appropriate heat sources to obtain the following form of the energy balance equation 
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where vapH∆  is the latent heat of evaporation 

The convective heat flux in the solid phase has been neglected. 
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2.7 QUASI STATIC CASE 

The relationship shown in 2.6.3 are now presented for quasi static conditions. In poor words, the equations are rewritten 

by not taking into account the terms in which appear the acceleration, so is possible neglect the terms aw, as, aws, ag and 

ags used in the relationship [2.176] and [2.177]. 

For this work of PhD, the equations used are those in quasi static condition. 

2.7.1.1 Linear momentum balance equation of the multiphase medium 

The equation [2.178] becomes 

0=  gρσ +div  [2.191] 

Where, as for the case seen in 2.6.3.1, 
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is the averaged density of the multiphase systems 

rs is the intrinsic density of the solid phase 

rw is the intrinsic density of water 

rg the intrinsic density of gas 

g is the gravity acceleration 

2.7.1.2 Mass balance equations 

The equations [2.183] and [2.184] becomes 
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In the same way the continuity equation for gas is obtained  
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2.7.1.3 Energy balance equation 

The equation [2.190] write in 2.6.3.3 not change for the quasi static case but, using Darcy’ law, can be rewritten in a 

complete mode as follow 
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2.7.1.4 Further developments of the model 

The same equations see for this model, hence the linear momentum balance equation, the mass balance equations and 

the energy balance equation, were developed  by considering air dissolved in water by Gawin and Sanavia. For further 

information, see [G&S10/1] and [G&S10/2]. 

2.8 BOUNDARY AND INITIAL CONDITIONS 

For the model closure the initial and boundary conditions are needed. The initial conditions specify the full fields of 

primary state variables at time t=t0, in the whole analysed domain B and on its boundary jB: 
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The boundary conditions (BCs) can be of Dirichlet’s type on jBp for t≥t0: 
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or of Cauchy’s type (the mixed BCs) on jBq
p for t≥t0: 
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q
uB    ∂=⋅ ontnσ  [2.202] 

where n(x,t) is the unit normal vector 

 qga(x,t) is the imposed fluxes of dry air 
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 qgw(x,t) is the imposed fluxes of vapour 

 qw(x,t) is the imposed fluxes of liquid water 

 qT(x,t) is the imposed imposed heat flux 

 t (x,t) is the imposed traction vector related to the total Cauchy stress tensor s(x,t) 

 gw
∞ρ (x,t) is the mass concentration of water vapour 

 ∞T (x,t) is the temperature in the far field of undisturbed gas phase 

 e(x,t) is the emissivity of the interface 

 0σ (x,t) is the Stefan-Boltzmann constant 

 bc(x,t) is the convective heat exchange coefficients 

ac(x,t) is the convective mass exchange coefficients 

The boundary conditions with only imposed fluxes are called Neumann’ BCs. The purely convective boundary conditions 

for heat and moisture exchange are also called Robin’ BCs. 
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3 FEM MODEL 

3.1 THE CODE COMES-GEO 

3.1.1 Introduction 

The COMES-GEO code carries out the mechanical analysis of porous materials with interconnected pores in which the 

flow of one or more fluid phases takes place. 

The interactions between fluid and solid phases are taken into account. Geomaterials (soils, rocks, concrete), are the 

most common examples of such porous media. The general purpose codes, currently available in the market, do not 

deal with more than a single fluid phase. Therefore it is not possible to carry out realistic numerical studies of porous 

materials structures in partially saturated conditions as: 

1. seismic analysis of soil dams where in the upper part wide zones, containing pores filled with air and water, are 

present; 

2. stability analysis of soil slopes; 

3. simulation of the subsidence phenomena in presence of gas extraction from deep reservoir. In this case water 

and different gases are present in the pores. The gas reservoirs in the northern Adriatic Sea are an important 

example in Italy. 

The COMES-GEO code, developed by the University of Padua, is able to deal with these problems and also with many 

others applications in the environmental geomechanics. 

Due to the high frequency of earthquakes in Italy associated with the rich historical and architectural heritage potentially 

affected by seismic or subsidence phenomena (Ravenna, Chioggia, Venezia), it is absolutely necessary to provide the 

scientific community and the public institutions (as civil guard) with a COMES-GEO-like code. 

Some simplified versions of the same code are already successfully applied to problems of environmental geomechanics 

in Holland, United Kingdom and South Africa. 

The problem unknowns are the following: temperature, capillary pressure, gas pressure and displacements. These data 

allow the calculation of interesting derived outputs (saturation, stress-strain fields). 

To reach the solution of the problem using the considered model, four balance equations are imposed (see chapter 2): 

mass of the dry air, mass of the water species (both liquid water and vapour; phase change are considered); energy 

conservation of the mixture and the linear momentum of the multiphase medium. They are completed by an appropriate 

set of constitutive and state equations, as well as some thermodynamic relationships. 

COMES-GEO allows any finite element analysis in plane strain and axialsymmetric conditions, using four node bilinear 

elements or Serendipity eight node elements or Lagrange nine node elements. 

The source is written in FORTRAN 90. 
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3.1.2 Finite Element Method 

Numerical solution to the mathematical system presented in chapter 2, is done through use of the finite element method. 

In what follows, we describe the particular method employed for the spatial discretization of the numerical system. 

Specifically, we have elected to apply the Galerkin form of the method of weighted residuals (MWR) to produce an 

integral representation of the basic conservation laws. 

These relations are then specialized to finite element method. 

For further information see Sanavia et al. [San05] and [San06]. 

3.1.2.1 Method of Weighted Residuals: discretization in space 

To apply the MWR to the particular problem at hand, we assume that the region of interest W is divided into a number of 

simply shaped regions, the finite elements, as shown in Figure 3.1. 

y

x

Finite Element

Surface 

Boundary Node

 

Figure 3.1: Schematic division in simply regions 

 

Within each element, a set of nodal points is established at which the dependent variables pg, pc, T, ux and uy are 

evaluated, where 

1. pg is the pressure of gas (dry air, vapour or any other perfect gas) expressed in Pa 

2. pc is the capillary pressure (or suction) expressed in Pa 

3. T is the temperature expressed in K 

4. ux and uy are the displacement expressed in m 

For the purpose of developing the equations for these nodal unknowns, an individual element is separated from the 

assemblage. 

Within each element, it is assumed that the dependent variables can be expressed in terms of approximating function to 

shape functions by: 



CHAPTER 3 

53 

)()( tpNtp gpg =  [3.1] 

)()( tpNtp cpc =  [3.2] 

)()( tTNtT t=  [3.3] 

)()( tuNtu u=  [3.4] 

where the upper line indicates the nodal values. Substitution of the relations [3.1], [3.2], [3.2] and [3.4] into the partial 

differential equations see in chapter 2, and boundary conditions, will result in a set of residual equations due to the 

approximate nature of relations [3.1], [3.2], [3.2] and [3.4]. 

The MWR is then used to reduce the residual expression to zero in a weighted integral sense through the introduction of: 

 ∫∫ =+
ΓΩ

ΓΩ 0RNRN xxxx dd  [3.5] 

where { }uTppx ,,, cg
T =  

Nx are weighting or test functions 

R is the residual for a field equation 

Rx(b.c.) is the residual for the boundary condition 

The integral or weak form of the heat and mass transfer equations (and of the other ones required to complete the 

model), obtained by means of the Galerkin procedure (weighted residuals), [Z&T89] and [Z&T91], can be expressed in 

matrix form as [Gaw96] and [S&G96]: 

0fTCpCpCuC

0fTKpKpKuCTCpCpC

0fTKpKpKuCTCpCpC

0fTKpKpKuCTCpCpC

=++++

=+++++++

=+++++++

=+++++++

uuTcucguguu

TTTcTcgTgTuTTcTcgTg

ccTcccgcgcucTcccgcg

ggTcgcggggugTcgcggg

 [3.6] 

The above non-symmetric, non-linear and coupled system of ordinary differential equations can be rewritten in compact 

form as: 

( ) ( ) ( ) 0xfxxKxxC =++&  [3.7] 

where { }uTppx ,,, cg
T =  

and the non-linear (matrix) coefficients C(x), K(x) and f(x) are obtained by assembling the sub-matrices 

indicated in [3.6]. 

3.1.2.2 Linearization: Discretization in time 

Finite differences in time, [Z&T89] and [Z&T91], are used for the solution of the initial value problem over a finite time 

step 

nn ttt −= +1∆  [3.8] 

where n is the time step number 

Following the Generalised Trapezoidal Method as shown for instance in [L&S98], equation [3.7] is rewritten at time tn+1 

using the relationships 
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tt

nn

n ∆Q

xxx −=
∂

∂ +

+

1  [3.9] 

( ) [ ]10      with1 1 ,nnn =+−= ++ QQQQ xxx  [3.10] 

where nx  is the state vector at time tn 

1+nx  is the state vector at time tn+1 

Dt is the time step length 

thus obtaining 

( ) ( ) ( )( ) 011 =−−−+= +++++ QQQ ∆∆-Q1∆Q nnnnnn ttt FxKCxKCxG  [3.11] 

Linearized analysis of accuracy and stability suggest the use of 2/1≥Q . In the present work implicit one-step time 

integration has been performed ( 1=Q ). 

After time integration the non-linear system of equation is linearized, thus obtaining the equations system that can be 

solved numerically (in compact form) 

( )ii
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+ xGx
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∆  [3.12] 

where ( ) 1
1

+
+• i

n  indicates the current iteration (i+1) in the current time step (n+1) 

The Jacobian matrix has the following form 
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Owing to the strong coupling between the mechanical, thermal and the pore fluids problem, a monolithic solution of 

[3.12] is preferred using a Newton scheme, equation [3.8] can be rewritten as: 
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 [3.14] 

Finally, the solution vector { }uTppx ,,, cg
T =  is then updated by the incremental relationship 
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l
n

l
n

l
n 11

1
1 ++

+
+ += xxx ∆  [3.15] 

For the convergence and error analysis of the method applied here the interested reader is referred to [G&S96]. 

3.1.3 Finite Element Library 

Three basic elements are utilized in the COMES-GEO code: the isoparametric quadrilateral elements with four and eight 

node and the Serendipity nine node lagrangian element. 

Within a particular element, the state’s variables are approximated using linear or quadratic shape functions. 

)()( ttpp gpgg pN==  [3.16] 

)()( ttpp cpcc pN==  [3.17] 

)()( ttTT t TN==  [3.18] 

)()( ttuu uuN==  [3.19] 

Basic concepts of Finite Element Method element construction and isoparametric element formulation are thoroughly 

described e.g. by Zienkiewicz [Z&T89]. 

The interpolation functions for any elements show below can be found in [Z&T89]. 

 

3.1.3.1 Four node quadrilateral elements 

The basic four node quadrilateral element used in the code has 20 degrees of freedom as shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: 4 node quadrilateral element 

 

 

 

X 

Y 

Pg1,Pc1,T1,ux1,uy1 
Pg2,Pc2,T2,ux2,uy2 

Pg3,Pc3,T3,ux3,uy3 
Pg4,Pc4,T4,ux4,uy4 

ξ 

η 
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3.1.3.2 Eight node quadrilateral elements 

The basic four node quadrilateral element used in the code has 40 degrees of freedom as shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: 8 node quadrilateral element 

 

 

3.1.3.3 Nine node quadrilateral elements 

The basic nine node quadrilateral element used in the code has 45 degrees of freedom as shown in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: 9 node quadrilateral element 

 

 

X 

Y 

Pg1,Pc1,T1,ux1,uy1 
Pg3,Pc3,T3,ux3,uy3 

Pg5,Pc5,T5,ux5,uy5 

Pg7,Pc7,T7,ux7,uy7 

ξ 

η 

Pg8,Pc8,T8,ux8,uy8 

Pg6,Pc6,T6,ux6,uy6 

Pg4,Pc4,T4,ux4,uy4 

Pg2,Pc2,T2,ux2,uy2 

X 

Y 

Pg1,Pc1,T1,ux1,uy1 
Pg3,Pc3,T3,ux3,uy3 

Pg5,Pc5,T5,ux5,uy5 

Pg7,Pc7,T7,ux7,uy7 

ξ 

η 

Pg8,Pc8,T8,ux8,uy8 

Pg6,Pc6,T6,ux6,uy6 

Pg4,Pc4,T4,ux4,uy4 

Pg2,Pc2,T2,ux2,uy2 

Pg9,Pc9,T9,ux9,uy9 
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3.1.3.4 Mixed elements 

The mixed element is shown in Figure 3.4 and is an element with eight node where the node on the corner are the only 

with all the d.o.f.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Mixed element 

 

3.1.4 Numerical Integration 

As far as the numerical integration is concerned, the classical Gauss method is implemented in the code.  

In this method the required matrix integrals, used in F.E.M., are in practice evaluated numerically using, for the case 

treated here: 

 ( ) ( )∑∫ =
ji

jiij srdrdssr
,

,, FF α  [3.20] 

The above formula is directly applicable to the calculation of matrices of rectangular elements, in which all integration 

limits are -1 to +1. Thus we can apply the one-dimensional integration formulas successively in each direction. As the 

analytical evaluation of multi-dimensional integrals, in this procedure, successively, the innermost integral is evaluated 

by keeping the variables corresponding to the other integrals constant. 

Therefore, we have for a two dimensional integral: 
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or 

( ) ( )∑∫ ∫ =
+

−

+

− ji
jiji srdrdssr

,

1

1

1

1

,, FF αα  [3.22] 
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Pg1,Pc1,T1,ux1,uy1 
Pg3,Pc3,T3,ux3,uy3 

Pg5,Pc5,T5,ux5,uy5 

Pg7,Pc7,T7,ux7,uy7 

ξ 

η 

ux8,uy8 

ux6,uy6 

ux4,uy4 

ux2,uy2 

Pg9,Pc9,T9,ux9,uy9 
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In COMES-GEO code we have the possibility to use different orders of integration. The possible numerical integration 

are presented in the following table, but for the kind of problems resolved using COMES-GEO, fully coupled and strongly 

non-linear, it is suggest to use eight node quadrilateral elements with a 3×3 numerical integration. 

 

 

Type of element Order of integration Note 

 

2×2 

There is not stabilization in 
case of reduced 

interpolation (i.e. with 1 
gauss point) 

 

3×3 also 2×2 is available 

Table 3.1: Type of element and order of integration 

 

3.1.5 Matrix Solution Procedure 

When the solution algorithms of the theory section are applied to a given iteration or time step, the general result is a 

matrix equation of the form: 

Ax = b 

In the problem considered here the A matrix is large (e.g. several thousand equations), sparse, banded, and generally 

unsymmetric. 

The solution of the equations system [3.14] may be approached by a direct method. 

The solution procedure used in COMES-GEO is a form of Gauss elimination developed by Irons, called frontal solution 

method. In particular it is a super fast frontal elimination routine using diagonal pivoting reduced fill-in version which 

assembles the contribution of each element to form the global stiffness matrix and global load vector and to solve the 

resulting set of simultaneous equations by Gaussian direct elimination [Bia03]. 

The main feature of the frontal solution technique is that it assembles the equations and eliminates the variables at the 

same time. 

In fact the basic premise of the frontal method is that the process of assembling the system matrix A, from the individual 

element matrices and the reduction of A by standard Gauss elimination may be efficiently intertwined. 

In processing each element in sequence, the frontal procedure passes through the following steps: 

1. assembly of element equations into global matrix A; 

2. check each equation in the assembled system to determine if all contributions to this equation have been made; 
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3. condense from the system (by Gaussian elimination) the equations for all degrees of freedom that have been 

completely assembled; 

4. return to step 1. for the next element. 

By combining the assembly and reduction process, computer storage is effectively minimized since only the currently 

“active” (i.e. incompletely assembled) degrees of freedom are retained in the core storage. 

Following the reduction of the matrix A to an upper triangular form, a back-substitution algorithm completes the solution 

process for the vector x. 

Since the frontal method is structured around the individual element, it is especially adaptable for general purpose code 

with an element library. 

The processing of higher order elements (e.g. quadratic basis functions) is also handled efficiently by frontal method. 

The frontal procedure in COMES-GEO employs diagonal pivoting reduced fill-in. In our case it is a total pivoting which is 

related to the numerical stability in a strong manner, and works on rows and columns to find the “pivot”. The pivoting 

technique allows improving the convergence of the numerical system. 

3.1.6 Convergence and error analysis 

The discretization in space of the balance equations (and of the other ones required to complete the model) with the 

standard Galerkin method (weighted residuals), results in a non-symmetric, non-linear and coupled system of ordinary 

differential equations as shown in the section 3.1.2: 

  ( ) ( ) ( ) 0xfxxKxxC =++&  [3.23] 

where { }uTppx ,,, cg
T =  

and the non-linear (matrix) coefficients C(x), K(x) and f(x) are obtained by assembling the sub-matrices indicated in 

[3.6]. 

We assume consistency and convergence of the finite element discretization in space. 

The time discretization is accomplished through a fully implicit finite difference scheme (backward difference) 

0FBxAx =−−+ nn 1  [3.24] 

where 

( ) ( ) tnn ∆11 ++ += xKxCA  [3.25] 

( )1+= nxCB  [3.26] 

( ) tn ∆1+−= xfF  [3.27] 

where n is the time step number 

Dt the time step length 

We focus our attention on the global error 

 L
nn

L
n 111

~~
+++ −= xxe  [3.28] 

where 1
~

+nx is the exact solution of the equation [3.24] 

L is the number of performed iterations for the time step n+1 
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To simplify calculations, we assume that there are not round-off errors generated by the algorithm, except those 

introduced by the initial values at time t0. 

If we replace 1+nx  and nx  in equation [3.24] by the corresponding exact values, we obtain: 

11
~~~

++ ++= nnn rFxBxA  [3.29] 

where rn+1 is the local truncation error of equation [3.24] 

The calculated numerical solution L
n 1+x  satisfies equation [3.24], so we can subtract equation [3.24] written for L

n 1+x  

and L
nx  respectively from the equation [3.29]. 

This results in: 

11 ++ += n
L
n

L
n rBeAe  [3.30] 

Neither symmetry not positive definiteness of the matrices is assumed here. 

By a recursive application for the index n, we have from equation [3.29] that: 

( ) ( ) ( )
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+⋅⋅⋅
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nn

L
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rArAAB

ABeABABe
 [3.31] 

The total error L
n 1+e  is influenced by the local truncation error rk, being  k ≤ n+1 and by the initial round-off error 0

0e  

made at the starting step, because then for n=0 and L=0 

0
00

0
0

~ xxe −=  [3.32] 

where 00
~ xx =  is the exact solution of the equation [3.24] 

Thus 

n∀<− 11BA  [3.33] 

where ⋅  is the spectral norm 

is the sufficient stability condition for applied solution procedure. 

The stability condition and the consistency property 

 ( )2tk ∆0r =  [3.34] 

together with the iteration convergence, indicated below, are sufficient for the above procedure to be globally 

convergent. 

Considering the non-linearity of the system of equations [3.24] the solution is obtained with a Newton-Raphson type 

procedure [3.14] and [3.15]. 

 

3.2 PLASTICITY IN SOILS 

The aim of this PhD thesis is, as its title suggest, the implementation of advanced constitutive models. These advanced 

models are of two different types, the first one belong to ACMEG family and the second one to Generalized Plasticity 

family. 
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The ACMEG models are modified Cam-Clay models based on Critical State concept developed with the Classical 

Plasticity theory, while the second family models is based on the Generalized Plasticity [Z&M84] [M&Z84]. 

In this part we will first give a short summary of the classic elastoplastic models for soils (see for further details section 

4.5 of [L&S98]). 

3.2.1 Classical elastoplasticity 

In the case of classical elastoplasticity both Mohr-Coulomb and critical state yield surfaces will be considered in the 

present work. The critical state component requires an associated flow rule, whereas the Mohr-Coulomb component can 

also consider a non-associated flow rule. A more extensive development of the theory presented in this section can be 

found elsewhere, e.g. Zienkiewicz [Zie77], Nayak and Zienkiewicz [N&Z72], Naylor [Nay75] and Humpheson [Hum76]. 

A yield criterion defines the limits of elasticity under any possible combination of stresses. When written in terms of 

stress components, this is called a yield function and represents a surface in the n-dimensional stress space, which 

separates the elastic state from an outer zone of impermissible stress states. The position and size of the surface 

depends upon the initial yield surface and the hardening law which specifies the manner in which the surface changes 

during plastic flow. Hardening is considered here to depend only on plastic strain pε . 

The yield surface F can therefore be defined as 

( ) 0, =′ pF εσ  [3.35] 

Irreversible (plastic) straining occurs when the stress state reaches the yield surface, while for F<0 the behaviour is 

elastic. The direction of the plastic strain is defined by the plastic potential surface ( )σ′Q .  

The increment of plastic strains is given by the flow rule 

σ
ε

′∂
∂= Q

d p λ  [3.36] 

where l is a yet unknown scalar (plastic multipliers) giving the amplitude of the plastic strain 

If F≡Q the flow rule is said to be associated. 

Differentiating equation [3.35] gives the relationship 
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lf the flow rule [3.31] is taken into account, then equation [3.37] becomes 

0=
′∂

∂









∂
∂+′









′∂
∂

σε
σ

σ

Q
d

F
d

F
T

p

T

λ  [3.38] 

hence 
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Once the elastic limit has been exceeded for an elastoplastic model, the total strain εd  can be expressed as the sum of 

the elastic and the plastic components edε  and pdε . This is valid for small-strain plasticity theory, which is always 

assumed in this work and can also be used in finite strain situations when an updated Lagrangian procedure is used: 

0
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=
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∂+′=+=
−

σ
σD

Q
ddddd epe λεεε  [3.40] 

where De is the tangent elastic stiffness matrix 

ln the present context only isotropic linear elasticity is considered, so that De is defined by 
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Premultiplying equation [3.40] by e
T

D
F
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 by means of equation [3.38], leads to 

the following 
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The term dl is now obtained from equation [3.42] and may be substituted into equation [3.40], premultiplying by eD  

and rearranging gives the equation defining the tangent elastoplastic modulus matrix epD  
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Construction of the elastoplastic constitutive matrix requires the vectors 
σ′∂

∂Q
, 
σ′∂

∂F
 and p

F
ε∂

∂
 to be evaluated. These 

vectors will be formulated in the follows sections for the Mohr-Coulomb and critical state yield surfaces. 

The surfaces will be defined using the stress invariants p, q and q. lt is therefore necessary to evaluate the derivatives 

of these invariants with respects to σ′ . 

From the definition of the invariants (see 6.2) it follows that 
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Differentiating q yields 
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so that 
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For the plane stress and axial symmetry tyz=0 and tzx=0, so 
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This derivatives are replaced in 6.2. 
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3.2.2 Mohr-Coulomb yield surface 

Mohr’s theory of failure involves the construction of an envelope for all possible circles of stress that can be drawn for a 

particular problem. These envelopes are generally curved but are usually replaced by a straight line. 

n13
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21-
3

=c- n�tanØ

 

Figure 3.6: Mohr-Coulomb failure envelope 

 

This is equivalent to assuming that the soil conforms to the Coulomb failure criterion [Cou1776], which states there is a 

linear relationship between the shear stress t at failure and the normal stress, sn (Figure 3.6): 

Øc n tanστ +=  [3.50] 

where c is the apparent cohesion 

 Ø is the angle of internal friction 

From Figure 3.6 it may be deduced that 

( )

( )
2tan

2sin
31

31

σσ

σσ

++

−

=

Ø
c

Ø  [3.51] 

or, by rearranging. 

( ) ( ) ØØc sincos2 3131 σσσσ ++=−  [3.52] 

where s1 and s3 are the major and minor principal stresses at failure. This yield criterion is independent of the 

intermediate principal stress s2 and is therefore not a complete generality of the true behaviour. This criticism applies to 

any yield criterion that can be represented by a single line in a two dimensional stress space. 

The sum and the difference of the maximum and minimum principal stresses are, considering the definition of stress 

invariants 
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031 cos
3

2
qq=−σσ  [3.53] 

031 sin
3
2

2 qqp +=+σσ  [3.54] 

which, after substitution into equation [3.52], results in the following expression for the Mohr-Coulomb failure surface 

( ) 0cos3sin3sinsincos3 00 =−−−= ØcØpqØF qq  [3.55] 

 

Figure 3.7: Mohr-Coulomb and Tresca yield surfaces in the principal stress space 
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Figure 3.8: Mohr-Coulomb and Tresca yield surfaces in the pppp-plane 
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In a principal stress space, equation [3.55] represents an irregular right hexagonal pyramid, the axis of which lies along 

the space diagonal (Figure 3.7). The p-plane section of the yield surface is shown in Figure 3.8. 

The plastic potential surface Q(p, q, qO) = 0, passing through the current stress point can be obtained in a similar 

manner. The direction of plastic straining in the t-sn plane is usually expressed by the normal to a line defined as 

follows 

ψστ tannc +=  [3.56] 

where the value of c  ensures that the line passes through the current stress point 

y is the dilatancy angle 

The potential surface Q, in terms of p, q, qO can be obtained in the same way as the yield surface and results in the 

following expression 

( ) 0cos3sin3sinsincos3 00 =−−−= ψψψ cpqQ qq  [3.57] 

Equations [3.55] and [3.56] may be applied to either total or effective stresses by taking into account the appropriate 

material properties. 

When Ø = y = 0, which is the case in the total stress analysis of undrained, saturated soil, both surfaces assume the 

form of a Tresca prism. In the principal stress space this surface is represented by a regular hexagonal cylinder with its 

axis also lying along the space diagonal (Figure 3.7 and Figure 3.8). 

Strain hardening or softening may be dealt with by making c a function of volumetric plastic strain by using the following 

equation 

χε

c
d
dc

p
v

=  [3.58] 

where c is a constant 

The vectors 
σ′∂

∂Q
, 
σ′∂

∂F
 and p

F
ε∂

∂
 required for the constitutive matrix of equation [3.43] are now derived. The chain 

rule of differentiation gives 

σσσσ ′∂
∂

∂
∂+

′∂
∂

∂
∂+

′∂
∂

∂
∂=

′∂
∂ q

q

Fq
q
Fp

p
FF

 [3.59] 

where 

Ø
p
F

sin3−=
∂
∂

 [3.60] 

Ø
q
F

sinsincos3 00 qq −=
∂
∂

 [3.61] 

( )qØ
F

sincossin3 00 qq
q

+−=
∂
∂

 [3.62] 

Similarly 

σσσσ ′∂
∂

∂
∂+

′∂
∂

∂
∂+

′∂
∂

∂
∂=

′∂
∂ q

q

Qq
q
Qp

p
QQ

 [3.63] 



CHAPTER 3 

67 

where 

ψsin3−=
∂
∂

p
Q

 [3.64] 

ψsinsincos3 00 qq −=
∂
∂

q
Q

 [3.65] 

( )qQ
ψsincossin3 00 qq

q
+−=

∂
∂

 [3.66] 

Equation [3.55] and [3.58] also lead to 

p
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FFF
εεε ∂
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∂
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ε
 [3.67] 

but 

0=
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∂

∂
∂
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ε
 [3.68] 

hence 
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 [3.69] 

since 

[ ]
p
QQ

∂
∂=

′∂
∂−−−
σ

000111  [3.70] 

it follow that 

ψ
χχ

sincoscos
3

Ø
qc

p
Q

Ø
cQF

T

p −=
∂
∂=

′∂
∂










∂
∂

σε
 [3.71] 

which is needed for the constitutive matrix. 

3.2.3 Critical state model 

The critical state model is a form of elastoplastic isotropic strain-hardening law. It introduces a distinction between 

yielding and ultimate collapse by using the concept of a critical state line in conjunction with a strain-dependent yield 

surface. A soil is at the critical state [R&P63] if, during continuous deformation, there is no change in the void ratio and 

the effective stress components. In this model a soil undergoing shear deformation can pass through a yield point 

without collapse and continue to deform until eventually the critical state line is reached, where ideal plasticity conditions 

exist. The soil continues to deform without further change of void ratio or stress. Starting from two alternative 

assumptions regarding the dissipation of energy during plastic yielding. 
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Roscoe and Schofield [R&S63] and Schofield and Wroth [S&W68] proposed the ‘Cam clay’ model and Roscoe and 

Burland [R&B68] the ‘modified Cam clay’ model. 

3.2.3.1 Modified Cam Clay model 

The modified Cam clay model fits experimental data quite satisfactorily and is selected here. Its yield surface is an 

ellipse in the p-q plane (Figure 3.9) and is defined by the equation 

( ) 02 2
2

2

=+⋅−= ppp
M
q

F p
vc

cs

ε  [3.72] 

where Mcs is the slope of the failure line in the p-q plane 

( )p
vcp ε  is the current semidiameter of the ellipse in the p-direction 

The full surface is a surface of revolution about the q-axis and is therefore defined by p and q only. 

As the ellipse changes in magnitude, the locus of the critical state points is a pyramid with its apex at the origin shown by 

the critical state line in the plane (Figure 3.9). The flow rule is associative, i.e. F≡Q and the principle of normality 

therefore applies to the yield surface. Since the surface is smooth, the direction of plastic straining is uniquely defined for 

every point of the surface. At the intersection of the critical state line and the ellipse, the normal to the yield surface is 

vertical. Hence at this point no component of plastic volumetric strain exists and all the plastic strain is distortional: the 

soil can deform at a constant volume. 

The yield surface is therefore strain dependent and expands or contracts as the soil hardens or softens. Strain hardening 

is associated with compaction and strain softening with a volume increase. The initial size of the ellipse is governed by 

the maximum preconsolidation pressure 2pc0 to which the soil has previously been subjected during its past history. If 

the soil has been overconsolidated at some time in its history, then pc0 may be quite large and the soil could sustain 

substantial loads before any yielding occurred. For a stress path of type 1-2 (Figure 3.9) the plastic strain vector normal 

to the ellipse produces a plastic volumetric decrease which causes the soil to harden. The ellipse expands until 

eventually position 2 is reached, at which point no further volumetric strain occurs. The soil flows as a frictional fluid with 

constant volume.  

The stress 3-4 shows a strain-softening behaviour due to the expansion of the material. Consequently, the ellipse 

decreases in size and eventually at point 4 the no-volume-change limit is reached and collapse occurs at constant 

volume. Many investigators have serious misgivings about the validity fl the strain-softening behaviour thus described 

[Zie75]. 

The strain-hardening law uses the consolidation parameter l and k obtained by isotropic loading and unloading of 

normally consolidated soil. The parameter l it is the slope of the void ratio versus In(p) plot during loading whereas, k 

is the initial value of the slope during rebound (Figure 3.11). From the geometry of Figure 3.11 it may be seen that the 

relationship between the plastic component of the void ratio change and the mean stress p is given by 

( ) ( )00 2ln2ln)( cc
p ppee −−−=− κλ  [3.73] 

or 

( )
)(

ln 0

0 κλ −
−−=







 p

c

c ee
p
p

 [3.74] 
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Figure 3.9:Modified Cam clay model in the space of the two stress invariants p and q 
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Figure 3.10: Strain hardening and strain softening behaviour in modified Cam clay model 

 

The changes in volumetric strain are related to changes in void ratio as follows 

e
ee

vv +
−−=−

1
0

0εε  [3.75] 

Hence equation [3.74] may be rewritten in the form 
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( )
χ

εε p
vv

epp cc

0

0

−

⋅=  [3.76] 

where 
01 e−

−= κλ
χ  is an empirical constant. 

e

ln p'

e0

 

Figure 3.11: Consolidation parameters llll and kkkk 

 

Denoting the accumulated plastic volumetric strain by h, i.e. 

( )p
vv

p
vdh 0εεε −== ∫  [3.77] 

the hardening law assumes the form 

χ

h

cc epp ⋅= 0  [3.78] 

The derivatives 
σ′∂

∂F
 and p

F
σ∂
∂

 required to set up the constitutive matrix are next obtained. From equation [3.72] it 

follows that 

σσσ ′∂
∂

∂
∂+

′∂
∂

∂
∂=

′∂
∂ q

q
Fp

p
FF

 [3.79] 

where 

( )cpp
p
F −=

∂
∂

2  [3.80] 

2

2

csM
q

q
F =

∂
∂

 [3.81] 

Equation [3.72] also lead to 
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hence 
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 [3.84] 

Equation [3.76] leads to the following result 

χ

ε p
v

c

c d
p

dp =  [3.85] 

Hence, equation [3.84] becomes 

[ ]Tc
p

ppF
000111

2 −−−⋅−=
∂
∂

χε
 [3.86] 

From equations [3.43], [3.72] and [3.76] it can be seen that before defining the parameters of the modified Cam clay 

model, a knowledge of E, v, pc0, Mcs, e0, l and k is required. A more general critical state model involving the third 

stress invariant is discussed in the next section. This requires one more parameter. 

3.2.3.2 p-q-qqqq Critical State Model 

The generalisation of the model to include the effect of the variation of the third stress invariant q is achieved by letting 

the slope of the critical state line vary with q. Zienkiewicz et al. [Zie75] developed an elliptical model whose p-plane 

section was the same as that of the Mohr-Coulomb surface. An alternative to that model uses the critical state ellipse 

only in the subcritical region (to the right of the critical region, to the right of the critical state line) whereas the 

supercritical region may be cut off by a Mohr-Coulomb surface [Hum76]. 

The model dealt with here consists of the full ellipse with a Mohr-Coulomb, p-plane section and with the critical state 

line passing through the origin [Dru59] 

( )[ ] ( ) ( ) 02

2
2

=−






+−= p
v

p
vp a

n
q

pF εεα
q

 [3.87] 

where ( )p
vp εα  is the p-coordinate of the centre of the elliptical surface 

( )qn  is the ratio of the diameters in the q and p directions, defined by the Mohr-Coulomb equation for c=0 

( )p
vaε  is the semi-diameter of the ellipse in the p-direction (Figure 3.12) 

Plastic yielding is again of the associated form and strain hardening depends on the plastic changes of void ratio or 

volumetric strain. From inspection of the critical state line passing through the origin, it follows that 
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Figure 3.12: p-q-qqqq critical state model 

 

The hardening rule can be obtained in a similar manner [Dru59] as in the previous section, resulting in 

χαα
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pp e⋅= 0  [3.89] 

and 
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eaa ⋅= 0  [3.90] 

hence 
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p d
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==  [3.91] 

A formula is required for one more term; n is needed to define the yield surface of equation [3.87]. 

It is assumed that the ‘critical state’ lies on a Mohr-Coulomb surface for which c equals zero. From equation [3.55] with 

c=0 it follows that 
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The geometry of Figure 3.12 reveals that 
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 [3.93] 

The derivatives 
σ′∂

∂F
 and p

F
ε∂

∂
, required for the constitutive matrix, are now derived. Hence, for equations [3.87] and 

[3.88] it can be seen that 
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where 
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From equations [3.87] and [3.91], and also [3.84], obtain 
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For associated flow, 
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using [3.95], so 
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3.2.4 Corners of Yield and Potential Surfaces 

The Mohr-Coulomb potential surface and the elliptic p-q-q surface show corners for 
60

π±=q , where the plastic 

strain direction is no longer uniquely defined. In the Mohr-Coulomb case there is a further complexity when q = 0, at the 

apex of the potential surface. In the case of associative plastic How, Drucker [Dru59] concluded that the plastic strain 

direction is confined by the normals to the conjoint potential surfaces. For simplicity, in the models described here, the 

plastic strain direction is assumed to lie in the planes for which 
60

π±=q  and at the apex of the Mohr-Coulomb 

potential surface, in the negative direction of the p-axis [Nor80]. 
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3.2.5 Advanced constitutive model 

The advanced constitutive models implemented in this work are described in Chapters 4, 5, 6 and 7.  

3.3 SIMULATION METHOD 

3.3.1 Introduction 

Numerical validation of the implementation of the advanced models described in Chapters 4, 5, 6 and 7 are performed 

by using a single finite element with four node and 2×2 gauss points, eight node with 2×2 or 3×3 gauss points and 100 

eight node elements. Three different types of tests have been used: isotropic compression, oedometric compression and 

triaxial compression. 

In the following a brief summary on the type of elements used, the simulations performed and the F.E.M. modelling 

approach are given. 

 

3.3.2 Finite elements used for the numerical validation 

As mentioned before, the finite elements used for the numerical validations are the isoparametric quadrilateral elements 

with four or eight node. 

One single element (see 3.1.3.2 and Figure 3.3 for the eight node) is used for almost all simulations as described in 

section 3.3.4. If not otherwise specified one eight node element has been used. 

Figure 3.13 depicts this element, with dimensions chosen of 1×1 m as explained in section 3.3.4. 

 

node 4
(0.0;0.0)

node 8
(1.0;0.0)

node 6
(0.5;0.0)

node 1
(0.0;1.0)

node 5
(1.0;1.0)

node 2
(0.5;1.0)

node 3
(0.0;0.5)

node 7
(1.0;0.5)

 

Figure 3.13: 8 node quadrilateral element 
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As reported in Figure 3.15, the degrees of freedom of this element are 5 for each node. 

 

[pg1,pc1,T1,ux1,uy1] [pg5,pc5,T5,ux5,uy5][pg2,pc2,T2,ux2,uy2]

[pg4,pc4,T4,ux4,uy4] [pg8,pc8,T8,ux8,uy8][pg6,pc6,T6,ux6,uy6]

[pg7,pc7,T7,ux7,uy7][pg3,pc3,T3,ux3,uy3]

 

Figure 3.14: Degree of freedom for the 8 node element 

 

3.3.3 Types of tests 

The types of test that we have simulated are three: isotropic compression, oedometric compression and triaxial 

compression. All these three types of test are performed in axialsymmetric conditions because the geotechnical samples 

are usually cylindrical. 

We will depict below for each kind of test the boundary and loading conditions (Figure 3.15, Figure 3.17 and Figure 

3.19). 

Node 5, for each test, has been selected to plot stress and strain variables. 
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3.3.3.1 Isotropic compression 
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Figure 3.15: Scheme of the isotropic compression test 
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Figure 3.16: Mesh of the isotropic compression test 

 

 

 



CHAPTER 3 

77 

3.3.3.2 Oedometric compression 
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Figure 3.17: Scheme of the oedometric compression test 
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Figure 3.18: Mesh of the oedometric compression test 
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3.3.3.3 Triaxial compression 
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Figure 3.19: Scheme of the triaxial compression test 
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Figure 3.20: Mesh of the triaxial compression test 
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N d.o.f. d.o.f. N. condition Value u.o.m. 

1 pg 1 Impose pg Pa  

  2 Impose air flux 
sm

kg
2

 

2 pc 1 Impose pc Pa  

  2 Impose vapour flux 
sm

kg
2

 

  3 Impose value of RH %  

  4 Impose vapour pressure Pa  

3 T 1 Impose T K  

  2 Impose heat flux 
Km

W
2  

  3 Impose room T (convective) K  

  4 Impose room T (radiation) K  

4 ux 1 Impose ux m  

  2 Impose sx Pa  

5 uy 1 Impose uy m  

  2 Impose sy Pa  

Table 3.2: Model conditions 

 

3.3.4 Remarks on the F.E.M. modelling approach 

As mentioned before, one single eight node square element of 1 m has been usually adopted to simulate the isotropic, 

oedometric and triaxial tests of the validation phase of this work. 

The dimension of this element was chosen for simplicity so that the axial strain equals the axial displacement (in small 

strain). 

Moreover, during the computations, gravity acceleration was neglected. This was motivated from the experimental 

behaviour of the samples during the common geotechnical laboratory tests, in which the effect of the gravity load on the 

stress field can be neglected due to the small dimension of the samples (i.e. 72×19 mm, Figure 3.21) and the applied 

confining pressure. In addition, also the model drivers neglect the gravity load. 

The quadratic element was preferred to the linear one because it is the typical finite element used to discretize the 2D 

displacement field of saturated and unsaturated porous media. 

Accuracy of the numerical solution was analyzed by solving the same isotropic compression test (see 4.4.3 Elastoplastic 

isotropic compression in isothermal condition) with 1 quadratic element of the dimension of a geotechnical sample 

(Figure 3.21 integrated with 3×3 gauss points), 30 quadratic element (Figure 3.22), 1 quadratic element of unit 
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dimension (Figure 3.23 and Figure 3.24 integrated with 2×2 or 3×3 gauss points respectively), 100 quadratic element 

(Figure 3.25) and also discretizing the unit domain with 1 quadratic four node element (Figure 3.26 integrated with 2×2 

gauss points). 

Figure 3.27 and Figure 3.28 show the numerical results, where it can be observed that the solution obtained with 1 unit 

element is accurate from the numerical point of view. Instead the Figure 3.29 shows that the numerical solution obtained 

with the use of 1 four node element is also accurate. 

As a further remark it is observed that in case of strain localization test, a suitable spatial discretization has to be used in 

[San06]. 
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Figure 3.21: Eight node quadrilateral element used 
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Figure 3.22: Eight node quadrilateral elements used 
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Figure 3.23: Eight node quadrilateral element used 
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Figure 3.24: Eight node quadrilateral element used 
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Figure 3.25: Eight node quadrilateral elements used 

 

 

 

 

N° OF ELEMENTS
1

HEIGHT
1 m

WIDTH
1 m

ORDER OF
INTEGRATION

2×2

1 
m

1 m

 

Figure 3.26: Four node quadrilateral element used 
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Figure 3.27: Comparison with different meshes and sample dimensions 
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Figure 3.28: Comparison with the same sample dimensions and different discretizations 
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Figure 3.29: Comparison with the same sample dimensions and different elements 
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4 THE THERMO-ELASTO-PLASTIC CONSTITUTIVE MODEL 

ACMEG-T 

4.1 TEMPERATURE EFFECTS IN SOILS 

4.1.1 Thermal problem in soils 

Thermal effects in geomechanical problems are important for several specific applications as, for instance, nuclear 

waste isolation and the use of soil deposits for heat energy storage. Some other applications are related to geothermal 

structures, petroleum drilling, injection and production activity, zones around buried high-voltage cables and in soil tests 

for to take into account the thermal problem during the time from the situ to the laboratory. In more of the applications 

mentioned above, the temperature values considered are between 5 and 95 °C, but, in case of failure situation for 

nuclear waste storage, the temperature can reach 400 °C. Research work has shown that an increase in temperature 

affects soil characteristics (friction angle, permeability, elastic modulus, etc.) and behaviour is different for the influence 

of soil type or stress state or drainage condition or more. 

The effect of the temperature, and in greater way the effect of the high temperature, on soils behaviour is not completely 

clear, although the relevance of the thermo-mechanical applications and the many test in the literature. This is due to the 

complex influence of temperature on the behaviour of soils, and the fact that thermo-mechanical testing of soils is much 

more complex than conventional isothermal testing. In fact, for the presence of temperature is necessary an additional 

reliable system with specific property. System must maintains constant temperature on sample, must have an heating 

equipment that work independently from the other part  and more. 

In this chapter, for the ACMEG-T model, the soils that we want to model are clay. The model has been developed by the 

research group of the Professor Lyesse Laloui in Lausanne at the EPFL, Ecole Polytechnique Federale de Lausanne, 

[M&L97] and [L&C08], and it represents an extension in non-isothermal conditions of the modified CAM-CLAY model.  

4.1.2 Thermo-mechanical behaviour of soils 

Clay is a material with a not common behaviour under non isothermal conditions. In fact, in normally consolidated 

conditions (NC), clay contracts under heating, and this is atypical of the normal material, while in over consolidated 

conditions, clay dilate under heating (see Figure 4.2). Another important aspect of clay under heating is that a not 

negligible part of this contractive deformation is irreversible. Moreover, from the experimental tests, it is possible to note 

that the variation of volume is non-linear during heating and linear upon cooling.  

The irreversibility of strain due to thermal loading is an evident thermal hardening. 

It is clearly impossible to simulate this behaviour with a thermo-elastic model cause the irreversibility of strain, it is 

necessary a more complex model, a thermo-elastoplastic model. 
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Plasticity induced by temperature, is due to and explained by a combination of certain mechanisms at micro level. The 

first one is the partial collapse of the soil structure and a decrease in void ratio until a number of additional bonds are 

formed, these bonds are able to allow the soil to carry the stress at the higher temperature [C&M68]. The second micro-

mechanical processes is the thermal degradation of the adsorbed layer, which tends to group particles closer together 

and may produce large voids between the platelet aggregates [Pus87]. Another mechanism is the difference in rigidity 

and in thermal expansion between the dissimilar minerals forming the solid skeleton that generates a modification of the 

contact force networks as temperature increases [Kin76]. The last mechanism of soil under temperature increase, if the 

particle arrangement are assumed to be fixed, is the increase of pore size and the inter-particle distance due to the 

thermal expansion of each soil constituent that would produce a global dilation of the solid skeleton. This change the 

equilibrium between the Van der Waals attractive forces and the electrostatic repulsive forces, which results in the 

particles rearranging to reach a new equilibrium [Lal01]. 

A good indicator of the importance of the water-mineral interactions in clays is the soil plasticity index, Demarks and 

Charles [D&C82] show this axpect for six different clays at normally consolidated state. The volumetric thermo-plastic 

strain of normally consolidated soil, reported by unit temperature change, seems to increase when the plasticity index 

increases (Figure 4.1). 

 

Figure 4.1: Relation between the plasticity index and the temperature-induced contractile strain (redrawn from [Fra08]). 
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Table 4.1: Contractile volumetric strain induced by a temperature change at constant mean effective stress in different NC 

clay. Correlation with the plasticity index of the soil. Thermal cycle: Yes: Heating-cooling cycle; No: only heating. (Redrawn 

from [Fra08]). 

 

Different by the behaviour of NC clays under temperature increase are OC clays. Indeed, the latter show an almost 

completely reversible deformation after a thermal cycle of heating and cooling. The micro-mechanical processes that 

could explain the thermoplasticity of NC soils remain active for highly OC soils but, the low stress level does not supply 

enough acting force between particles to modify the soil structure. In that sense, the particle arrangement remains fixed, 

and only thermo-elastic strain is produced. 

In conclusion the typical behaviour of NC clays under a thermal cycle of heating and cooling is the production of 

irreversible deformations of contraction and the behaviour of OC clays is, at the opposite, the reversibility of the 

deformations of dilatation (Figure 4.2). 
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Figure 4.2: Typical volumetric strain induced by heating-cooling cycles at different overconsolidation ratios. (a) Boom clay 

[Bal91]; (b) Bangkok clay [A-N07]; (c) Kaolin clay [C&L04]; (d) Pasquasia clay [DeO96]. (Redrawn from [Fra08]). 
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4.1.3 Temperature effect on preconsolidation pressure 

In this work, is indicate with p’c the preconsolidation pressure, that is the stress yield limit that separates the elastic  part 

from the plastic one in terms of behaviour under isotropic or oedometric conditions. Several results from the literature 

show a decrease in the preconsolidation pressure with increasing temperature. Laloui and Cekerevac [L&C03] proposed 

the following equation to describe this thermo-mechanical behaviour: 

















−=

0

'
0

' log1
T
T

pp Tcc γ  [4.1] 

where p’c is the preconsolidation pressure at a given temperature T 

 p’c0 is the preconsolidation pressure at the reference temperature T0 

 gT is a material parameters 

Others author proposed the following different relations: 

( )[ ]0'
0

' TT
cc epp −−= α

          Cui et al., 2000 [4.2] 

( ) ( )[ ]00201
'
0

' 2 TTTTaTTapp cc −−+−+=           Hueckel and Baldi, 1990 [4.3] 

( )[ ]0
'
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' 1 TTCpp cc −+=           Boudali et al., 1994 [4.4] 
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cc T
T
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






=

0

'
0

'
          Moritz, 1995 [4.5] 

 

Figure 4.3: Relation between Ip and ggggT (redrawn from [Fra08]). 
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Table 4.2: Ip, ggggT and reduction of p’c0 from T0 and T1 (redrawn from [Fra08]). 

4.1.4 Temperature effects on shearing behaviour 

In terms of elastic behaviour of soil, experimental results show what the temperature has a stiffening effect. Cekerevac 

and Laloui [C&L04] observed an higher soil stiffness in Kaolin clay (Figure 4.4 a) as for Kuntiwattanakul et al. [Kun95] in 

MC clay where, the increase of the secant modulus is confirmed both for NC clay and OC clay (Figure 4.4 b). 

Approximately the same results were found from Abuel-Naga [A-N05] in Bangkok clay.  

 

Figure 4.4: Secant elastic modulus at different temperature for a) Kaolin clay [C&L04] and b) MC clay [Kun95]. (Redrawn 

from [Fra08]) 

Burghignoli et al. [Bur00] instead found that in Tody clay there is not a significant effect of temperature on stiffness of 

material if the temperature is the highest temperature experienced by the soil. However, they noted that a thermal cycle 

performed before triaxial shearing tends to increase the stiffness of the soil. 
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Not unique is the behaviour of soil under the increase of temperature in terms of shear strength, some research in fact 

had found a decrease in strength with heating and others, contrariwise, had found slightly increase of strength. 

A series of experimental results summarised by Cekerevac and Laloui [C&L04] tend to confirm that the friction angle at 

the critical state can either slightly increase or decrease with temperature. However, comparison is not always possible 

due to the variability in experimental techniques, stress and strain paths and drainage conditions during heating and 

shearing. For instance, Hueckel and Pellegrini [H&P89] observed that the slope of the friction angle at the critical state of 

Pontida clay is unaffected by temperature under both drained and undrained shearing. In contrast, the same authors 

noticed a slight increase in friction angle of Boom clay under undrained shearing. 

In term of maximal deviatoric stress, Cekerevac [Cek03] in tests performed in a Kaolin clay and Kuntiwattanakul et al. 

[Kun95] in tests performed MC clay observed a slight increase in the peak strength during heating (Figure 4.5). 

Because of the different results found in literature it is not possible to draw any general conclusion. In fact, for instance, 

Abuel-Naga et al. [A-N06] also noticed an increase of the maximal deviatoric stress upon triaxial shearing of normally 

consolidated Bangkok clay, while Hueckel et al. [Hue98] suggested that the peak strength of a Spanish clay decreases 

by about 25% for a temperature increase from 22° to 120 °C. 

 

Figure 4.5: Maximal deviatoric stress at different temperature for a) Kaolin clay [Cek03] and b) MC clay [Kun95]. (Redrawn 

from [Fra08]) 

 

4.2 ACMEG-T MODEL 

4.2.1 Introduction 

The ACMEG-T model [Lal05] [L&F08] is the extension to non-isothermal conditions of the model ACMEG [M&L97] and 

[L&C08]. The model can reproduce the different behaviour of NC and OC clay, the decrease of preconsolidation 

pressure, and if present, the variation of frictional angle value with temperature. 

Here, the considered temperature range is from 5 °C to 95 °C. 
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4.2.2 ACMEG Model 

The ACMEG model ([M&L97] and [L&C08]) (Advanced Constitutive Model for Environmental Geomechanics), here 

presented as in [Fra08], is composed of two parts, one that take into account the volumetric response upon isotropic 

compression, and one that take into account the stress-strain behaviour upon soil distortions (deviatoric loading). 

The model considers under isotropic conditions: 

1. the effect of stress level on the elastic rigidity of soil; 

2. the plastic volumetric strain generated when the preconsolidation pressure is surpassed; 

3. the progressive transition between the reversible elastic and the irreversible elasto-plastic response; 

4. the existence of an elastic nucleus in the stress space in which the produced strains are fully reversible; 

5. the volumetric response of soil upon several isotropic loading-unloading-reloading cycles (without 

accommodations effects). 

 

The model considers under deviatoric conditions: 

1. the effect of stress level on the elastic rigidity of soil; 

2. the unique critical state reached upon various distortional paths; 

3. the hardening process occurring from the elastic domain to the critical state of normally or slightly 

overconsolidated soils; 

4. the peak behaviour observed on distortion paths of highly overconsolidated soils; 

5. the progressive transition between the reversible responses and the full mobilization of the hardening or 

softening processes; 

6. the existence of an elastic nucleus in the stress space in which the produced strains are fully reversible; 

7. the accurate volumetric response upon distortional paths which can involve a non-associated flow rule. 

4.2.2.1 Non linear elasticity 

The elastic moduli present a strong dependency from the mean effective stress and the equations governing this 

phenomenon are: 

en
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for the bulk modulus, and: 
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 [4.7] 

for the shear modulus  

where Kref is the bulk modulus at the reference mean effective stress p’ref 

 Gref is the shear modulus at the reference mean effective stress p’ref 

 ne is a material parameter 

It is possible prove that this non-linear elasticity relation is non-conservative in terms of the work input. Indeed, upon any 

purely elastic loading-unloading path for which the final stress state corresponds to the initial one, the total work input 
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must be null. The use of the proposed elastic module does not guarantee such a conservation condition. In other words 

the elastic behaviour of model is ipoelastic. 

4.2.2.2 The multi-mechanism theory 

Starting from the Original Cam-Clay model and its deviatoric yielding mechanism, adding an isotropic mechanism in 

agreement with Hujeux [Huj79], it is possible to build a two-mechanism model. 

The isotropic mechanism have the following form: 

0=′−′= ciso ppf  [4.8] 

where p’c is the preconsolidation pressure and evolves according to the equation 

( )p
vepp cc

βε
0′=′  [4.9] 

where b is the plastic compressibility modulus 

The two yield functions define a closed domain in the effective stress space inside which the behaviour of the material is 

reversible. If the volumetric plastic strain increases due to the activation of one of the mechanisms, the yield limit of the 

other mechanism will also move. When the two mechanisms are activated simultaneously, two consistency conditions 

must be met leading to two interrelated plastic multipliers ( lp
iso and lp

dev). Thus, the total increment of volumetric 

plastic strain is: 

 
devp

v
isop

v
p
v ddd ,, εεε +=  [4.10] 

where isop
vd ,ε is the volumetric plastic strain induced by the isotropic mechanism 

 devp
vd ,ε is the volumetric plastic strain induced by the deviatoric mechanism 

4.2.2.3 Improvement of deviatoric mechanism of Cam Clay model 

Ratio between the preconsolidation pressure and the critical pressure is equal to 2.718 in the Original Cam Clay model. 

In the ACMEG model, this ratio it is not constant, but, as in realty, depends from the material and it is indicate with d 

[Huj79]. The deviatoric yield limit begins now: 

0ln1 =








′
′⋅−′−=

c
dev p

pd
pMqf  [4.11] 
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p
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′

=  [4.12] 

and where p’cr is the critical pressure. 

Moreover, for simulate better the heavily overconsolidated soils, the Cam Clay model is modified by introducing the 

parameter b for the control of the shape of the yield limit. The deviatoric yield limit begins as: 

0ln1 =
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This expression is similar to the failure locus proposed by Nova and Wood [N&W79] with 
M

b
*β= , where *β  is a 

parameter of the Nova-Wood model. The b parameter varies from 0 (corresponding to a Mohr-Coulomb criterion) to 1 

(for the Original Cam-Clay model) as shown in Figure 4.6. As stated by Hujeux [Huj85], the role of this parameter is 

particularly important for highly overconsolidated soils. Generally, the value of b is lower for sand than for clays. 

 

Figure 4.6: Deviatoric yield limit for different values of b (redrawn from [Fra08]) 

4.2.2.4 Degree of mobilization of the isotropic mechanism 

Typical isotropic compression experimental results on a remoulded soil, as shown in Figure 4.7, clearly exhibit 

progressive mobilization of the plasticity before reaching the virgin consolidation line.  

 

Figure 4.7:Comparison between experimental results [Jam03] and a numerical simulation (redrawn from [Fra08]) 
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Therefore, even before surpassing the isotropic yield limit (i.e. the preconsolidation pressure), the soil undergoes 

generally irreversible strains upon isotropic loading. This behavioural feature can have a major effect on the response of 

an overconsolidated soils submitted to loading-unloading cycles. In order to reproduce this effect, the model needs to be 

improved by means of an additional constitutive artifice. The isotropic yield limit is modified as follows [Huj79]: 

0=⋅′−′= isociso rppf  [4.14] 

where riso is the degree of mobilization of the isotropic mechanism. 

During loading, riso is a hyperbolic function of the volumetric plastic strain induced by the isotropic mechanism (Figure 

4.8), isop
v

,ε : 
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and (see [Huj85] and [Fra08]) 
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where c is a material parameter 

e
isor  is the radius of the isotropic elastic nuclei inside which the produced strains are fully reversible. 

During unloading the behaviour is purely elastic. 

 

Figure 4.8: dependence of riso by volumetric plastic strain 

In the same way as the isotropic mechanism, the deviatoric mechanism needs to be enhanced by a progressive 

plasticity process inside the external deviatoric yield limit. Hujeux [Huj79] proposed to introduce an additional hardening 

variable, the deviatoric plastic strain p
dε , governing the evolution of the degree of mobilization of the deviatoric 

mechanism rdev. The deviatoric yield limit is modified as follows: 
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During loading, rdev is an hyperbolic function of the deviatoric plastic strain p
dε : 
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and (see [Huj85] and [Fra08]) 
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where a is a material parameter 

e
devr  is the radius of the deviatoric elastic nuclei inside which the produced strains are fully reversible. 

4.2.2.5 Isotropic plastic mechanism 

Here, the constitutive equations are summarized in a concise way. Within the small strain assumptions, the total strain 

increment vector can be written as follow: 

p
ij

e
ijij ddd εεε +=  [4.20] 

and, the total strain increment induced by plasticity (hardening of the material) is a linear combination of two irreversible 

processes: an isotropic as well as a deviatoric process. Therefore, the “total” plastic strain increment, p
ijdε , is the sum 

of “partial” plastic strain increments, induced by the isotropic and the deviatoric mechanisms, isop
ijd ,ε  and devp

ijd ,ε , 

respectively:  
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The isotropic yield limit fiso is: 
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The flow rule is assumed to associated (fiso=giso) and hence: 
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The plastic multiplier, p
isoλ , is determined using Prager’s consistency equation [Pra49]. 

4.2.2.6 Deviatoric plastic mechanism 

The deviatoric yield limit fdev is: 
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 is the slope of the critical state line (CSL) in the p’-q plane, 
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 Φ′  is the friction angle at critical state 

Assuming the following dilatancy rule, 
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the plastic potential can be write as: 
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and thus, the hardening rule is: 
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The plastic multiplier, p
devλ , is determined using Prager’s consistency equation [Pra49]. 

4.2.2.7 Coupling between the two mechanisms 

The isotropic and the deviatoric yield limits are coupled through the hardening variable, p
vε  which appears in the 

expression of the two yield limits. When the two mechanisms are activated simultaneously, the total volumetric plastic 

strain increment, p
vdε , is the sum of the volumetric plastic strain increments due to each mechanism: 
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The two consistency conditions must be met simultaneously, leading to the solving of two equations with two unknowns 

[Riz96]: 
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where p is the internal variable vector 

j is the gradient of stress of the loading vectors function F: 
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 pλ  is the plastic multiplier vector 
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H is the matrix of hardening moduli p
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0≤Fd  expresses Prager’s consistency condition [Pra49] extended to multiple dissipation processes [Riz96]. The 

elasto-plastic framework enables the stress increment response with respect to prescribed strain increment to be 

expressed as: 

( )pdd λ⋅−=′ mεEσ :  [4.37] 

where E is the current elastic stiffness tensor of the material 

m defines the collection of flow directions and is: 
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Thus, the consistency equation can be re-written as follows: 
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4.3 ACMEG-T MODEL 

In this sections, the ACMEG model is modiefied, taken into account the temperature influence on the behaviour of soils, 

to obtain the ACMEG-T model. 

4.3.1 Thermo elasticity 

The non-isothermal case causes, in elasticity, a reversible strain increment: 

dTdEddd ijTklijkl
Te
ij

me
ij

e
ij ,

1 βσεεε −′=+= −  [4.40] 

where ijT ,β  is the thermal expansion tensor which depends on the temperature, T. 

Considering isotropic thermal behaviour, one can express ijT ,β  as ijsijT δββ ′=
3
1

,  with sβ ′  being the volumetric 

thermal expansion coefficient of the solid skeleton. 

The volumetric and deviatoric parts of the tensor of the elastic strain increment are, respectively: 
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The volumetric thermal expansion coefficient of the solid skeleton, sβ ′ , it is not constant but increases with temperature 

and decreases as stress level increases [L&C03]: 

( )[ ]ξζββ 00 TTss −+′=′  [4.43] 

where 0sβ ′  is the isotropic thermal expansion coefficient at a reference temperature, T0 (usually ambient 

temperature) 
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

′
′

= 0ξ  is the ratio between the initial critical state pressure at ambient temperature, p’cr0, and the 

mean effective stress, p′ and nT is a material parameter, 

 ζ  is the slope of the variation of sβ ′  with respect to the current temperature, T and when 1=ξ  

ζ  could be approximated as proposed by Laloui [Lal93] with the following reletionship: 

C 100
0

°
′

−= sβζ  [4.44] 

and its dimension is °C-2. 
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Obviously, the relation [4.43] with the approximation 
C 100

0

°
′

−= sβζ  [4.44][4.44], is correct only for temperature 

between 20 °C (room temperature) and 95 °C, as mentioned. In fact, when T-T0 is greater then 100 °C, the coefficient 

sβ ′  begins negative. 

4.3.2 Thermo plasticity 

The thermo-plastic strain increment can be expressed as the part of the total strain increment which is not recoverable: 

klijklijTij
e
ijij

p
ij dEdTdddd σβεεεε ′−+=−= −1

,  [4.45] 

The yield limits of the isotropic and deviatoric mechanism, respectively, are recalled and the temperature-induced 

modifications of those relations are presented. 

4.3.2.1 Isotropic thermo-plastic mechanism 

The thermal effect on the isotropic mechanism is introduced through the evolution of the preconsolidation pressure p’c0 

with temperature (Figure 4.9). 

 

Figure 4.9: a) Isotropic yield limit. b) dependency of p’c from ggggT [L&C03] (redrawn from [Fra08]) 

As shown in section 4.1.3, several authors suggested analytical expressions to describe the shrinkage of the yield limit 

with increasing temperature. The evolution of p’c with temperature being rapid for low temperature changes and 

becoming asymptotic for the high ones, the logarithmic function of Laloui and Cekerevac [L&C03] is a very suitable 

expression to model this phenomenon. The thermo-mechanical evolution of isotropic yield surface is expressed as: 
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where p’c is the preconsolidation pressure at a given temperature T 

 p’c0 is the preconsolidation pressure at the reference temperature T0 

 gT is a material parameters 
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 b  is the plastic compressibility modulus 

 p
vε  is the volumetric plastic strain 

riso is the degree of plastification of the isotropic mechanism 

The flow rule of the isotropic mechanism remains unchanged regarding to the isothermal mechanism [4.23]. 

4.3.2.2 Deviatoric thermo-plastic mechanism  

Starting from the equation seen in section 4.2.2.6 [Huj79] 
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dev r
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where p’c is the preconsolidation pressure 

 d is the ratio between the preconsolidation pressure, p’c, and the critical pressure, p’cr 

 b is a material parameter defining the shape of the deviatoric yield limit 

rdev is the degree of plastification of the deviatoric mechanism 

 M is the slope of the critical state line in the p’−q plane 

As shown by Laloui [Lal03], the friction angle may be depend on temperature with the following expression: 

( )00 TTgMM −−=  [4.48] 

where M0 is the is the slope of the critical state line at ambient temperature T0 

g is an average slope of variation of friction angle at critical state with temperature 

Obviously, if for some soil there is no influence of temperature on the frictional angle, the parameter g is equal to zero. 

 

Figure 4.10: Effective stress path on Boom clay in isotropic condition. Influence of temperature on M (redrawn from [Fra08]) 

Thus, the deviatoric yield surface becomes, under non-isothermal conditions: 
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The flow rule of the deviatoric mechanism remains unchanged regarding to the isothermal mechanism [4.25] and [4.29]. 
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4.3.2.3 Coupling between the two thermo-plastic mechanisms 

The coupling between the two thermo-plastic mechanisms is similar to the isothermal model. However, inclusion of the 

derivation of the yield limits with respect to temperature is required in the consistency conditions for multi-mechanism  

due to the evolution of both yield limits with temperature state [Pra58]. In that sense, the effective stress and the 

temperature are the two state variables of the model: 
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where t is the temperature-gradient of the loading function F 

The stress increment is now: 

( ) ( )pp dTdddd λλ ⋅−−=⋅−−=′ mβεEmεεEσ T
Te ::  [4.51] 

where E is the current elastic stiffness tensor of the material 

m defines the collection of flow directions and is: 
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where G being the potential vector function 

The consistency equation is now: 
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4.4 VALIDATION OF THE IMPLEMENTATION OF ACMEG-T MODEL IN 

COMES-GEO F.E. CODE 

4.4.1 Introduction 

In this section the implementation of ACMEG-T in COMES-GEO is validated by comparison between the results of  the 

ACMEG-T model’s driver and the results obtained with COMES-GEO. 

Obviously, the ACMEG-T model is considerated validate [Lal05], [San08], [Fra08].  

The validation in COMES-GEO is performed by checking separately elastic linear and non linear behviour and the two 

plastic mechanisms, first in isothermal conditions and then in non-isothermal conditions. For each analysis is reported 

the loading path, the material parameters and the most important results. For some of these analysis there is a 

comparison with experimental results that have been used for the validation of the driver ACMEG-T. 

4.4.2 Elastic isotropic compression in non-isothermal condition 

In elastic domain, an isotropic compression is simulated, the material is considerated first as linear elastic, then as non 

linear elastic.  

The mechanical linear elastic case is a sub-case of the non-linear elastic case, as derived from the relations [4.6] and 

[4.7] with 0=en  
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Similarly the thermal linearity, is simulated by the non linear relationship 

( )[ ] ( )[ ] 00000 10 ssss TTTT ββξζββ ′=⋅−⋅+′=−+′=′  [4.58] 
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assuming 0=ζ  and 0=Tn  from which results 0ss ββ ′=′ . 

 

 ne nT 

Case 0 0.0 0.0 

Case 1 1.0 0.2 

Case 2 0.7 0.4 

Case 3 1.0 0.0 

Table 4.3: Summary of elastic cases 
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In addition to the linear elastic case, other three cases are simulated and are reported in Table 4.3. 

The other material parameters are the following: 

 

Elastic parameters 

Kref [MPa] Gref [MPa] b’s [°C-1] 

100.00 40.00 3.0�10-5 

Table 4.4: Material parameters of the elastic cases 

 

The loading path is composed, starting from the initial condition of 50 kPa and 20°C of temperature, by four step (Figure 

4.11: Isotropic mechanical and thermal loading pathFigure 4.11): 

1. Mechanical compression loading from 50 kPa to 800 kPa 

2. Thermal heating from 20°C to 80°C 

3. Mechanical compression unloading from 800 kPa to 50 kPa 

4. Thermal cooling from 80°C to 20°C 

The results are shown in four different plane graphs: 

1. Mean stress and Deviatoric stress p-q 

2. Mean stress and Volumetric strain p-ev 

3. Temperature and Volumetric strain T-ev 

4. Temperature and Mean stress T-p 
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Figure 4.11: Isotropic mechanical and thermal loading path 
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4.4.2.1 Case 0 
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Figure 4.12: Mean stress and Deviatoric stress p-q 
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Figure 4.13: Mean stress and Volumetric strain p-eeeev 
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Figure 4.14: Temperature and Volumetric strain T-eeeev 
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Figure 4.15: Temperature and Mean stress T-p 
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4.4.2.2 Case 1 
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Figure 4.16: Mean stress and Deviatoric stress p-q 
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Figure 4.17: Mean stress and Volumetric strain p-eeeev 
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Figure 4.18: Temperature and Volumetric strain T-eeeev 
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Figure 4.19: Temperature and Mean stress T-p 
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4.4.2.3 Case 2 
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Figure 4.20: Mean stress and Deviatoric stress p-q 
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Figure 4.21: Mean stress and Volumetric strain p-eeeev 
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Figure 4.22: Temperature and Volumetric strain T-eeeev 
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Figure 4.23: Temperature and Mean stress T-p 
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4.4.2.4 Case 3 
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Figure 4.24: Mean stress and Deviatoric stress p-q 
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Figure 4.25: Mean stress and Volumetric strain p-eeeev 
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Figure 4.26: Temperature and Volumetric strain T-eeeev 

 

-0,90

-0,80

-0,70

-0,60

-0,50

-0,40

-0,30

-0,20

-0,10

0,00

0 10 20 30 40 50 60 70 80 90 100

Temperature [°C]

M
ea

n
 s

tr
es

s 
[M

p
a]

COMES-GEO

driver ACMEG-T

 

Figure 4.27: Temperature and Mean stress T-p 
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For the four cases, the linear elastic and the three non linear elastic, graph from Figure 4.12 to Figure 4.29 show the 

perfect agreement between the FEM results and the results of the drive ACMEG-T. Then, frpm which it follows that the 

validation of the elastic part of the model implemented has been obtained. 

Moreover it can be noted the difference between the linear elastic and the non linear elastic behaviour in the graph T-ev, 

where for the non linear elasticity the final point at the end of the cycle is different from the starting point, due to the 

ipoelastic behaviour of the model because of the dependence on the elastic moduli and on the isotropic thermal 

expansion coefficient from the mean isotropic stress p’. 

Another important aspect of this first analysis is the strong dependence of the volumetric strain on the parameters ne and 

nT as shown in Table 4.5. 

 

 ne nT ev
max 

Case 0 0.0 0.0 -0.0075 

Case 1 1.0 0.2 -0.0285 

Case 2 0.7 0.4 -0.0179 

Case 3 1.0 0.0 -0.0403 

Table 4.5: Maximum volumetric strain for the four elastic non linear analysis. The maximum volumetric strain is reached at 

the end of the mechanical load of 800 kPa (Point 2 of Figure 4.11) 

4.4.3 Elastoplastic isotropic compression in isothermal condition 

After the validation of the implementation of the elastic part of the model, the plastic one is studied by simulating a pure 

isotropic case (isotropic compression) in isothermal condition, and in non-isothermal condition to analyze the isotropic 

mechanism then by analyzing the deviatoric mechanism simulating triaxial tests. 

The isotropic compression test consist in a double cycle of mechanical loading and unloading at constant temperature of 

20°C, as shown in Figure 4.28, starting from an isotropic stress of 5 kPa. 

The material parameters for this simulation are reported in the Table 4.6 and are the parameters of a silty sand deduced 

from the experimental test performed by Jamin [Jam03] (Figure 4.7). 

 

Elastic parameters 

Kref [MPa] Gref [MPa] ne b’s0 [°C-1] 

100.00 - 1.0 - 

Isotropic plastic parameters 

b c re
iso p’c [kPa] 

22.0 0.001 0.001 28.0 

Table 4.6: Material parameters of the plastic isotropic compression 
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Gref is not necessary for the analysis because the deviatoric mechanism is not activate by the isotropic test. The 

coefficient sβ ′  is not necessary because the test is in isothermal condition. 

t [s]

p' [kPa]

p'1=77.5 kPa

p'0=5 kPa

p'2=155 kPa

t0=0 s t1=180 s t2=360 s t3=540 s t4=720 s
1 3 5

2

4T=20°C

 

Figure 4.28: Mechanical loading and unloading path 

The results of the simulations performed with the F.E. code and with the driver are shown in the p-ev plane (Figure 4.29) 

where the good agreement of the results can be observed. 
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Figure 4.29: Mean stress and Volumetric strain p-eeeev 
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Moreover, in Figure 4.29 it is possible to compute the value of the material p’c, k and l (see Figure 4.30) and the value 

of b. 

In fact, from the relation of the volumetric strain vε  from the void ratio e  

0

0

1 e
ee

v +
−=ε  [4.60] 
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Hence from the plotted graph it is possible to compute κ  and λ  as 
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Figure 4.30: Graphic extrapolation of p’c, kkkk and llll 

From which the parameter β  is 

85.22
1 0 =

−
+=
κλ

β
e

 [4.64] 

similar to the value used in the simulation ( 22=β ). 
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The difference between the imposed value and the extrapolated one is due to the imprecision of the slope of the two 

lines of the graph due to the effect of the very small value of re
iso on the elastic and the plastic curves of Figure 4.30. 

Additionally the experimental test performed by Jamin [Jam03] was simulated and the results of the numerical 

simulations are showed together with the experimental results (Figure 4.31). 

-0,15

-0,13

-0,11

-0,09

-0,07

-0,05

-0,03

-0,01

1 10 100 1000

Mean stress [kPa]

V
o
lu

m
et

ri
c 

st
ra

in
 [
-]

COMES-GEO

driver ACMEG-T

Jamin 2003

 

Figure 4.31: Comparison between numerical results by COMES-GEO and driver ACMEG-T and experimental results by 

Jamin [Jam03] 

 

Also for this simulation, as for the elastic one, the finite element results of COMES-GEO coincide with those of the driver 

ACMEG-T.  

From the simulations of sections 4.4.2and 4.4.3 it can be concluded that the isotropic mechanism is validate. 
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4.4.4 Elastoplastic triaxial compression in isothermal condition 

This analysis consists in a triaxial compression test obtained by applying vertical deformation from 0% to 30% in a 

normally consolidated clay the constant temperature of 20°C. 

As seen for the sections 4.4.2 and 4.4.3, the results of the two simulation, Finite Elements simulation with COMES-GEO 

and driver simulation with ACMEG-T, coincide. 

Hence, the implementation of ACMEG-T model in COMES-Geo is validated for both the mechanisms in isothermal 

condition. 

Elastic parameters 

Kref [MPa] Gref [MPa] ne b’s0 [°C-1] 

131.30 78.66 1.0 - 

Isotropic plastic parameters 

b c re
iso p’c [kPa] 

43.7 - - 800.00 

Deviatoric plastic parameters 

b d Ø’0 [°] re
dev 

1.0 2.0 25 1.0 

Table 4.7: Material parameters of the elastoplastic triaxial compression 
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Figure 4.32: Axial strain and Deviatoric stress eeee1-q 
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Figure 4.33: Axial strain and Volumetric strain eeee1-eeeev 

Therefore, the next analysis will be done with the aim to validate the model in non-isothermal conditions. 

4.4.5 Elastoplastic isotropic compression in non-isothermal condition 

For the validation of the isotropic mechanism in non-isothermal conditions, an isotropic compression is performed by 

applaying a thermal cycle. Starting from the ambient temperature of 21.5 °C, the sample is heated until the temperature 

of 95 °C and then cooled until the initial temperature, 21.5 °C (Figure 4.34). 

The material parameters are reported in the Table 4.8 and are those of a Boom clay. 

 

Elastic parameters 

Kref [MPa] Gref [MPa] ne b’s0 [°C-1]  

150.00 130.00 0.4 3.0�10-5  

Isotropic plastic parameters 

b c re
iso p’c [MPa] gT 

47.0 0.0004 0.01 6.0 0.18 

Table 4.8: Material parameters of Boom clay 

 

The test is repeat for three times for three different degree of consolidation: OCR=1, OCR=2 and OCR=6. 
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t0=0 s t [s]t1=200 s t2=400 s
 

Figure 4.34: Thermal path of heating and cooling 

The results of the simulation are shown in the ev-T plane, three simulation are shown in Figure 4.35 to outline the 

behaviour of normal consolidated clay (OCR=1) that contracts with the increase of temperature, while on the contrary, 

the overconsolidate clay (OCR=6) dilates. Figure 4.35 show also the other main aspect of the behaviour of clays under 

heating which is the irreversible dilatant deformation for NC clays. 
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Figure 4.35: Volumetric strain and Temperature eeeev-T 
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In the following graph there is the comparison between the results of the finite element simulation with COMES-GEO 

and the experimental results obtained by Baldi [Bal91] on Boom clay for OCR=1 and OCR=2. 
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Figure 4.36: Comparison between finite element COMES-GEO and experimental results obtained by Baldi et al. [Bal91] on 

Boom clay for OCR=1 and OCR=2 
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4.5 A NON ISOTHERMAL CONSOLIDATION EXAMPLE† 

In this section a case of non-isothermal elastic and elasto-plastic consolidation is studied. 

The following example aims to validate the finite element formulation solving an initial boundary value problem. It deals 

with the simulation of a non-isothermal fully saturated consolidation problem, for which the numerical solution of the 

linear thermo-mechanical problem is known [Abo85]. 

A column of 7 m height and 2 m width is subjected to an external surface compressive load of 1.0 kPa and to a surface 

temperature jump of 50 K above the initial ambient temperature of 293.15 K. The material is initially water saturated. The 

upper surface is drained (pw = 0 Pa); the lateral and the bottom surfaces are insulated. Horizontal displacements are 

constrained along the vertical boundaries and vertical displacements are constrained at the bottom surface. The column 

is discretized by nine eight-node isoparametric elements Figure 4.37. Furthermore, 3×3 Gauss integration points are 

used. The material parameters used in the computation are listed in Table 4.9. Gravity forces are taken into account. 

Plane strain conditions are assumed. 

 

 

Figure 4.37: Spatial discretization and boundary conditions for the non-isothernal consolidation example 

 

 

 

 

                                                           

† This section is reproduced from: Sanavia L., François B., Bortolotto R., Luison L., Laloui L. (2008). Finite element modelling of 

thermo-elasto-plastic water saturated porous materials. Journal of Theoretical and Applied Mechanics, 38, 1-2, pp 7-34.  
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Elastic parameters 

Kref [MPa] Gref [MPa] ne b’s0 [°C-1]    

10.0 2.14 0 9.0�10-7    

Isotropic plastic parameters 

b c re
iso p’c [kPa] gT   

20.0 0.001 0.001 800.00 0.2   

Diffusive law parameters 

rs [kg/m³] n k [m²] ls [W/(m�K)] cs [J/(kg�K)] lw [W/(m�K)] cw [J/(kg�K)] 

2000 0.2 4.6�10-17 0.84 16760 0.6 4181 

Table 4.9: Material parameters for Aboustit example 

 

The case studied in [Abo85], which assumed constant Young modulus (E = 6.0 MPa) and Poisson ratio (n = 0.4) and 

constant cubic thermal expansion coefficient, is here used as validation example. To this aim, the results of [Abo85] as 

published in [L&S98] and labelled “Aboustit” in the Figure 4.38 to Figure 4.43, are used to compare the solution obtained 

with the finite element formulation proposed in this chapter and labelled “COMES-GEO”. The time histories for the water 

pressure (Figure 4.38), the temperature (Figure 4.39) and the vertical displacement (Figure 4.40) of several nodes of the 

mesh show the coincidence of the two solutions. The linear behaviour of the thermo-mechanical problem adopting the 

ACMEG-T model is obtained by using the mechanical moduli independent of the stress state (ne = 0). 

As shown all along the present chapter, soils are often subject to irreversible processes induced by thermal effect. In this 

context, the last simulation extends the problem of Figure 4.37 towards elasto-thermoplastic analysis. The material 

parameters are listed in Table 4.9, where it can be observed that the linear elasticity is kept for comparison with the 

previous simulation; thermo-plasticity is introduced by reducing the preconsolidation pressure to get a mechanical and 

thermal hardening when loaded to 1kPa and introducing the decrease of the isotropic yield surface with temperature. 

The comparison between the elastic and the elasto-plastic solution shows that the inclusion of the plasticity effects 

delays the dissipation of pore water pressure in time (Figure 4.41), because of the reduced thermo-plastic stiffness of the 

solid skeleton with respect to the elastic one. Moreover, the predicted water pressures at the same time station are 

therefore higher than those from the elastic analysis. 

Temperature evolution is almost not modified with respect to the previous simulation, as it can be observed in Figure 

4.42. Indeed, because parameters of thermal conduction and convection are almost independent on porosity changes, 

at least for this range of volumetric strain, [2.190] remains almost unaffected by mechanical change. On the contrary, the 

time history for the vertical displacements appears to be strongly affected by the thermo-plastic behaviour of the solid 

skeleton. In particular, an increase of two order of magnitude for the vertical displacements is observed in Figure 4.43, 

that makes negligible the thermal component that can be observed in Figure 4.40. 
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Figure 4.38: Elastic case: Evolution of pore water pressure 
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Figure 4.39: Elastic case: Evolution of temperature 
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Figure 4.40: Elastic case: Evolution of vertical displacement 
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Figure 4.41: Elastoplastic case: Evolution of pore water pressure 
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 Figure 4.42: Elastoplastic case: Evolution of temperature 
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Figure 4.43: Elastoplastic case: Evolution of vertical displacement 
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5 THE THERMO-HYDRO-ELASTO-PLASTIC CONSTITUTIVE 

MODEL ACMEG-TS 

5.1 PARTIAL SATURATION IN SOIL 

Most soils in nature are in condition of partial saturation, and hence is of fundamental importance the development of 

constitutive model able to take into account the effects of this state. 

As explained in the previous sections, the soils are composed by a solid porous skeleton with voids. The voids can be 

filled with water, and soils are said fully saturated, or can be filled with water and air, and soils in this case are defined as 

unsaturated or partially saturated. If in a saturated soil the pore fluid pressure can generally be assumed as a neutral 

stress, on the contrary, under unsaturated conditions, a new internal stress, namely the suction, s, or the capillary 

pressure, pc, (seen in chapter 2), plays a significant role in the behaviour of unsaturated soils and must be, directly or 

indirectly, considered in the formulation of the stress-strain relationship. The relative amounts of the pore air and pore 

water phases play a key role in the mechanical properties of the unsaturated soils. This proportion, usually defined by 

the degree of saturation, Sw, should be considered, directly or indirectly, in the complete description of the hydro-

mechanical soil state. 

The degree of saturation is defined as (see 2.6.1): 

gw

w

w dvdv
dv

S
+

=  [5.1] 

where dvw is the volume of voids filled with water 

 dvg is the volume of voids filled with the air phase, that can be assumed to be a mixture of dry air and vapour 

Sw is connected to the pc through experimental laws that was proposed during the years from some authors as shown in 

5.3. 

As seen in 2.6, for unsaturated soils we need of an appropriate definition of the effective stress. 

Starting from the well known relationship by Terzaghi [Ter36] 

ij
w

ijij p δσσ −=′  [5.2] 

the effective stress ijσ ′  must used for unsaturated soils has been proposed by Bishop [2.155] is 

ij
c

ijnetij
wg

ij
g

ijij pppp δχσδχδσσ ⋅+=−+−=′ , )(  [5.3] 

where ij
g

ijijnet p δσσ −=,   

 wgc ppp −=  

As shown in 2.6.1, equation [2.162], we assume that 

wS=χ  [5.4] 
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as proposed by Schrefler [Sch84]. 

Others authors proposed expressions for c which depend on a suction ratio rather than on the degree of saturation 

[Ait60] [K&K98]. From a micromechanical standpoint, theoretical approaches were also developed to evaluate the c 

parameter by examining the forces and fluid pressures that arise in unsaturated soils with idealized soil particles. That 

kind of analysis shows that the shape and the arrangement of grains, as well as the contact angle at the solid-liquid 

interface, may have a significant impact on the behaviour of the c parameter [L&L04]. 

 

Figure 5.1: Effective stress parameter with respect to the degree of saturation for various soils, as reported in [Zer91]. Here 

Sr is the notation used for the degree of saturation. (Redrawn from [Fra08]). 

 

5.1.1 Mechanical behaviour 

This section presents the stress-strain behaviour of unsaturated soils under isothermal conditions [Fra08]. It will be 

shown that the mechanical response of partially saturated soils is significantly affected by the soil suction. The 

characterization of the mechanical response of unsaturated soils depends strongly on the stress reference used in the 

representation of the experimental results. The curves obtained from laboratory tests are usually displayed according to 

net stresses because they are the direct data monitored during the experiments. This provides a consistent framework to 

analyse the obtained results. However, the pseudo-effective stress approach may bring substantial clarification to some 

observed features of soil behaviour. Therefore, where possible in this section, the experimental results will be presented 

using the Bishop-type effective stress with c=Sw , called the generalized effective stress (Nuth and Laloui [N&L08]), in 

parallel with the net stress. This interpretation is possible only if the water retention information is available. 

5.1.1.1 Effect of suction on the compressive behaviour in isothermal conditions 

The apparent preconsolidation pressure increases remarkably upon desaturation. This increase of the elastic domain 

with suction is narrowly linked to capillary effects. During a consolidation process, the yield limit corresponds to the 



CHAPTER 5 

133 

stress level that begins to produce a rearrangement of particles. As suction increases, air enters in pores and the 

menisci that form at the air-water interface stabilize the particle-particle contact. This stabilizing effect pushes back the 

soil yielding limit. 

 

Figure 5.2: Evolution of the yielding limit with respect to suction determined from oedometric compression tests on 

compacted Boom clay at ambient temperature [Rom99] (redrawn from [Fra08]) 

 

Figure 5.2 shows the evolution of the preconsolidation pressure with suction, as determined from compression tests on 

compacted Boom clay in both net stress and generalized effective stress [Rom99]. The evolution of the preconsolidation 

pressure appears to be rapid for low values of suction and then becomes asymptotic for higher ones. The Figure 5.2 

also shows that the increase in the elastic limit is noticeable only for suction higher than a given limit suction, the air-

entry suction, which is the capillary pressure value at which air begins to enter the pores. Above this limit, a logarithmic 

function might be suitable to model this phenomenon. Based on its similarity with the temperature effect and the 

evolution law proposed by Laloui and Cekerevac [L&C03], Nuth and Laloui [N&L07] proposed the same logarithmic 

formulation to quantify the one-to-one relationship between suction and the preconsolidation pressure in the generalized 

effective stress reference: 
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where 0cp′  is the preconsolidation pressure at saturation 

 ( )spc′  is the preconsolidation pressure at a given suction s 

 se is the air-entry suction 

gs is a material parameter 
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In the saturated domain (i.e. for suction lower than the air-entry suction value), equation [5.5] assumes that a positive 

suction can take place without affecting directly the preconsolidation pressure, which remains equal to its value in fully 

saturation condition, provided that no volumetric plastic strains are produced during the suction evolution. 

Figure 5.3 shows the logarithmic law [5.5] compared with the experimental data referred to two different soil type. 

 

Figure 5.3: Comparison between experimental data and value predicted by the law [5.5]. a) Oedometric test on Boom clay 

[Rom99] b) Isotropic compression test on Sion silt [Gei99]. (Redrawn from [Fra08]). 

 

5.1.1.2 Effect of suction on the compressive behaviour in non-isothermal conditions 

In addition to the observed behaviour of unsaturated soils at ambient temperature and of saturated soils under non-

isothermal conditions, some coupled effects between suction and temperature arise in soils when unsaturated and non-

isothermal conditions are simultaneously met. These interactions must be considered in the development of constitutive 

models in order to cover the range of thermo-hydro-mechanical couplings occurring in fine-grained soils. These coupling 

effects, experimentally observed on compression and wetting-drying paths, are described in the following sections.  

From experimental programs studying the thermal and the suction effects on the compressive behaviour of soils 

separately, the experimental results clearly show a decrease of the preconsolidation pressure with temperature and an 

increase with suction. 

However, the combined effects of temperature and suction on the preconsolidation pressure lacks of confirmation. On 

compacted Boom clay loaded under oedometric conditions, Romero [Rom99] noticed a very small effect due to 

temperature, regarding the suction effect, on the evolution of the preconsolidation pressure (Figure 5.4 a). However, the 

results confirm the usual decreases of p’c with temperature and its increases with suction. Tang et al. [Tan08] observed 

similar behaviour on MX80 bentonite (Figure 5.4 b). 
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Figure 5.4: Effect of temperature and suction on the yield limit. a) Oedometric test on Boom clay [Rom99] b) Isotropic 

compression test on MX80 bentonite [Tan08]. (Redrawn from [Fra08]). 

5.1.2 Conclusion 

For a more complete description of the experimental behaviour of partially saturated soils, in isothermal and non-

isothermal conditions, the interested reader can refers to the Phd thesis of Francois [Fra08] at which part of this chapter 

is referred. 

In particulary, in the second part of this thesis is presented the influence of temperature on the hydro-mechanical 

response of unsaturated soils. The analysis performed in the thesis show the strong link between the mechanical and 

the water retention behaviour. Hence, because temperature affects both the stress-strain and degree of saturation-

suction relationships, temperature plays an important role in the global response of unsaturated soils. 

In particular, the generated plastic strains upon various thermo-hydro-mechanical paths have been shown to be closely 

related to the temperature and suction of the soil. Among other examples, the collapse propensity of a soil, occurring 

upon soil humidification, is not only affected by the external stress level but also by temperature. Similarly, the elastic 

domain is enhanced with increasing suction, while it decreases with increasing temperature. This has conseguences in 

terms of volumetric strains, which implies modification of the water retention capability of unsaturated soil. In fact, the 

water retention curve is affected by the mechanical state of the soil and by the temperature [Fra08]. The denser the soil, 

the higher its degree of saturation for an equivalent suction. On the other hand, temperature tends to reduce the degree 

of saturation at a given suction. This behaviour has to be taken into account in a constitutive model, as it has been 

proposd in section 5.3. 
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5.2 ACMEG-TS MODEL‡ 

5.2.1 Isotropic plastic mechanism 

Similarly to equation [4.14], the yield limit, fiso, of the isotropic plastic mechanism is expressed by : 

0=⋅′−′= isociso rppf  [5.6] 

where isor  is the degree of mobilization of the isotropic mechanism. 

The enhancement of the isotropic elastic domain with increasing suction is introduced through the evolution of the 

preconsolidation pressure p’c Figure 5.5. As experimentally observed, the evolution of p’c with combined temperature T 

and suction s can be expressed by a logarithmic function [F&L08] 
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Figure 5.5: a) Evolution of the isotropic yield limit with suction at difference temperatures; b) dependence of the isotropic 

yield limit on the ggggs parameter. (Redrawn from [Fra08]). 

In addition, the mechanical hardening produces an evolution of the preconsolidation pressure with the generated 

volumetric plastic strain and hence the thermo-hydro-mechanical evolution of the preconsolidation pressure is expressed 

as 
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‡ Refernce [F&L08] 
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where 0cp′  is the preconsolidation pressure in fully saturation conditions and at temperature T0 

 cp′  is the preconsolidation pressure at a given suction s and at the reference temperature T 

 se is the air-entry suction 

gs is a material parameter for the dependence of preconsolidation pressure on s 

 gT is a material parameter for the dependence of preconsolidation pressure on T 

 b is the plastic compressibility modulus (the slope of the linear function in the p
vε - ln p’c plane) 

The flow rule for the isotropic mechanism is given by equation [4.23]. 

5.2.2 Deviatoric plastic mechanism 

Similarly to equation [4.24], the yield limit, fdev, of the deviatoric plastic mechanism is expressed by Hujeux [Huj79]: 

0ln1 =⋅
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p
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where 
Φ

Φ
M=

′−
′

sin3
sin6

 is the slope of the critical state line (CSL) in the p’-q plane 

 p
d

p
de

devdev a
rr

ε

ε

+
+=  is the degree of plastification of the deviatoric mechanism 

 Φ′  is the friction angle at critical state 

 b is a material parameter defining the shape of the deviatoric yield limit 

d is the ratio between the preconsolidation pressure, p’c, and the critical pressure, p’cr.  

The ACMEG-TS model assumes that the friction angle may depend on temperature by the equation 

( )00 TTgMM −−=  [5.10] 

where M0 is the is the slope of the critical state line at ambient temperature T0 

g is an average slope of variation of friction angle at critical state with temperature 

but remains unaffected by suction change in the generalized effective stress reference, as noticed by Nuth and Laloui 

[N&L08]. 

The hardening and dilatancy rules of the deviatoric mechanism are expressed by equations [4.25] to [4.29]. 

5.2.3 Coupling between the two plastic mechanisms 

The shape of the elastic domain follows from the combinations of the deviatoric yield limit [4.47] with the thermo-hydro-

mechanical evolution of the preconsolidation pressure [5.8]. Figure 5.6 [F&L08] [Fra08] illustrates the effect of suction, 

temperature and generated volumetric plastic strain on the evolution of the elastic domain. 

It must be noted that the temperature and suction dependence of the isotropic yield limit is a one-to-one relationship. 

Provided that the stress point remains in the elastic domain, a suction and/or a temperature cycle does not modify the 

final preconsolidation pressure with respect to the initial one, if the final state is identical to the initial one. On the 

contrary, the volumetric plastic strain produces irreversible modification of the isotropic yield limit. In other words, the 

volumetric plastic strain is a hardening variable, while temperature and suction are not. 
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The coupling between the two plastic mechanisms is similar to that in the ACMEG-T model under saturated conditions. 

However, inclusion of the derivative of the yield limits with respect to suction is required in the consistency conditions for 

multi-mechanism [4.50] due to the evolution of both yield limits with suction level. The consistency condition of the two 

yielding mechanisms must be met simultaneously, requiring solution of two equations with two unknowns. 

 

  

Figure 5.6: Effect of (a) suction, (b) temperature and (c) volumetric plastic strain on the shape of coupled mechanical yield 

limits [F&L08]. (Redrawn from [Fra08]). 
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where σ′  is the generalized effective stress vector 

p is the internal variable tensor 

j collects the stress-gradient 

t is the temperature-gradient of the loading function F 

H is the matrix of hardening moduli p

f

β

α
αβ λ∂

∂−=H  

pλ  is the plastic multiplier vector 

0≤Fd  expresses Prager’s consistency condition extended to multiple dissipation processes 

i collects the suction-gradient of the loading function 

 

In the framework of generalized effective stress, Borja [Bor04] proved that including suction in the argument of the yield 

functions is motivated by thermodynamic considerations. 

Within the adopted generalized stress framework, σ′  depends on s, which makes these two state variables dependent. 

In order to avoid the two effects of the suction increment (in σ′d  and ds itself) in the consistency equation, numerical 

integration at the local (Gauss point) level is performed by considering suction fixed at its final value during the plastic 

corrector phase. In other words, as suggested by Borja, there is no return map on the suction axis during numerical 

integration of the model, which makes ds equal to zero in equation [5.11]. Hence, there is no change in the consistency 

relations with respect to the saturated model, excepted that, at each time step, the value of the preconsolidation 

pressure is calculated considering the suction at the end of the time step through equation [5.8]. 
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5.3 WATER RETENTION CONSTITUTIVE PART 

In 2.4.5 we have seen that the pore size distribution is dependent on the capillary pressure, the temperature and  the 

volumetric strain. 

In this section we will summarize the relationship between the degree of saturation Sw and suction s taking into account 

also the influence of temperature and usually neglected volumetric strain, following [Fra08]. 

( )v
c TpSS εππ , ,=  [5.12] 

Generally speaking all the relationship that can be found in literature are derived from experimental data (see Figure 5.7 

and Table 5.1). 

For this work the following relationship are used and are called Brooks and Corey, Safai and Pinder (from the name of 

the authors that have proposed them) and ACMEG-HYDRO (from the name of the model where this law is shown 

[Fra08]). 

These relationship are summarize in the following togheter with their derivatives necessary for the Jacobian matrix after 

linearization of the discretized governing equations (see 3.1.2.2). 

 

 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

0 1 10 100 1000

Suction [MPa]

D
eg

re
e 

o
f 
sa

tu
ra

ti
o
n
 [
-]

 

Figure 5.7: Experimental data (from Lyesse Laloui with personal communication) 
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S [MPa] Sw 

0,50 0,972 

1,00 
1,00 

0,983 
1,041 

4,12 
4,12 
4,12 

0,951 
0,931 
0,944 

20,41 
20,41 
20,41 

0,510 
0,539 
0,531 

37,13 
37,13 
37,13 

0,369 
0,407 
0,428 

80,89 
80,89 
80,89 

0,365 
0,315 
0,348 

111,08 
111,08 
111,08 

0,256 
0,242 
0,260 

150,00 
150,00 
150,00 

0,235 
0,221 
0,196 

286,86 
286,86 
286,86 

0,078 
0,115 
0,103 

325,79 
325,79 
325,79 

0,056 
0,064 
0,049 

Table 5.1: Experimental data 

 

5.3.1 Brooks and Corey 

The relation proposed by Brooks and Corey [B&C64] is the follow 
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where Sirr is the irreducible degree of saturation 

λ  is the index of the pore size distribution which is defined as the negative slope of the effective Sw 

 pref is the reference pressure 

 pb is the bubble pressure 
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The material parameter filling from the experimental data of Table 5.1 and the graph are 

 

Sirr l pref [MPa] Pb [MPa] 

0.0563 1.5 28.00 0.50 

Table 5.2: Parameters for Brooks-Corey (equation [5.13]) 

 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

0 1 10 100 1000

Suction [MPa]

D
eg

re
e 

o
f 
sa

tu
ra

ti
o
n
 [
-]

EXPERIMENTAL DATA

BROOKS-COREY

 

Figure 5.8: Graph of the Brooks and Corey law 
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5.3.2 Safai and Pinder 

The relationship proposed by Safai and Pinder [S&P77] is the following: 

( )
( )[ ]r

s

r

s

r
ww

s
sSS ′

+

′
′

−
+

′
′

==
γβ1

1
Q

Q

Q

Q
 [5.16] 

where irr
s

r S=
′
′
Q

Q
 is the irreducible degree of saturation 

b is express in cm-1 if s is expressed in cm as the high of a coloumn of water 

First and second derivatives are 
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The material parameters filling from the experimental data of the Table 5.1 and the graph are 

 

Sirr b [cm-1] g r’ 

0.0563 0.035 1.20 1.00 

Table 5.3: Parameters for Safai-Pinder (equation [5.16]) 
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Figure 5.9: Graph of the Safai and Pinder law 
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5.3.3 ACMEG-HYDRO 

If the laws proposed by Brooks and Corey and Safai and Pinder are similar, the retention relantionship proposed for the 

ACMEG-TS model [Fra08] presents three additional features: 

1. Sw depend not only from s but also from T (temperature) and ev (volumetric strain) 

2. it takes into account of the suction entry value se 

3. it considers the hysteretic behaviour during drying and wetting 

The relationship ACMEG-HYDRO is the following: 
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with 
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where se is the suction entry value 

bh is the slope of the desaturation curve in the ln(s)-Sw plane (Figure 5.10) 

se0 is the suction entry value for T=T0 and ev=0 

 T0 is the reference temperature 

 TQ is a material parameters describing the evolution of suction entry value with respect to temperature 

 eQ is a material parameters describing the evolution of suction entry value with respect to volumetric strain 

CHYD=1
1.0

Sw

ln sse0(T, v)

shys

Sirr

CHYD=1

CHYD=-1

CHYD=-1

CHYD=-2

sHYST,DRY

sHYST,WET

h

 

Figure 5.10: Schematic representation of water retention curve ACMEG-HYDRO 
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It’s important note that in the equation [5.20] if the temperature T is T<T0 the value of se decrease (because 

0log
0

>
T
T

), while if ev increase (in this relation ev are positive in compression) the value of se increase (because 

( ) 01log <− vε ). In other words, is more easy for the soil enters in partially saturation if temperature increases and is 

more difficult if ev increase. 

For the implementation of the ACMEG-HYDRO water retention curve in COMES-GEO we need to introduce the history 

of the hydraulic load due to hysteresis. For this reason we have introduced a coefficient (CHDY in Figure 5.10) that 

identifies the drying or wetting part  of the retention curve and a memory of the saturation reached. 

The hysteresis is modelled with the introduction of the parameter shys which that is a material parameter considering the 

size of the water retention hysteresis. 

Since Sw also depends on the temperature, the derivatives with respect to this variable is needed. 
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Second derivative 
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The material parameters fitting the experimental data Figure 5.7 and the graph are 

 

se0 [MPa] bh 

3.25 4.8 

Table 5.4: Parameters for ACMEG-HYDRO (equation [5.19]) 

 

For the test case in exam, the parameters TQ , eQ  and Shys have not been reported because the data about different 

temperature and different volumetric strain were not available. 
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Figure 5.11: Graph of the ACMEG-HYDRO law 

5.3.4 Comparison 
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Figure 5.12: Comparison between the experimental data and the values given by the three water retention relationship 

implemented in COMES-GEO 
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5.4 VALIDATION OF THE IMPLEMENTATION OF ACMEG-TS MODEL IN 

COMES-GEO F.E. CODE 

In this section the implementation of ACMEG-TS in COMES-GEO is validated by comparison between the results of  the 

ACMEG-T model’s driver and the F.E.M. results obtained using COMES-GEO. 

As for 4.4: “Validation of the implementation of ACMEG-T model in COMES-GEO” the model ACMEG-TS is considerate 

validate [Fra08] and [F&L08].  

A series of tests are performed starting from experimental or fictitious data for material parameters and type of tests. 

5.4.1 Triaxial compression test 

Here a series of numerical simulations of triaxial compressions at two confining pressures, two temperatures and three 

suctions levels are presented. The material parameters and the data for the comparison are taken from Appendix D of 

[Fra08]. 

 

Elastic parameters 

Kref [MPa] Gref [MPa] ne b’s [°C-1]    

130.00 130.00 0.4 4.0�10-5    

Isotropic plastic parameters 

b gs gT c re
iso p’c [MPa]  

18.0 1.5 0.2 0.012 0.001 6.0  

Deviatoric plastic parameters 

b d Ø’0 [°] g a a re
dev 

0.6 1.3 16 4.5�10-4 1.0 0.007 0.3 

Water retention parameters for Safai and Pinder type law (Equation [5.16]) 

Sirr b [cm-1] g r’    

0.40 0.60 1.80 1.0    

Table 5.5: Material parameters of the triaxial compression 

 

The water retention reletionship chosen for this test is the one modified by Safai and Pinder (see Figure 5.13) where the 

three suctions and the corresponding degree of saturation are: 

s=0.0 MPa Sw=1.000 

s=1.1 MPa Sw=0.807 

s=2.5 MPa Sw=0.595 
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The two compressive pressures are s’c=2.0 MPa and s’c=3.0 MPa, while the two temperatures are T=20 °C and T=80 

°C (only for the case with s=2.5 MPa). 
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Figure 5.13: Water retention constitutive law Safai and Pinder for this series of simulation 

In the tests run by Francois [Fra08] (se0=0.5 MPa, bh=4.0) the water retention curve used is the ACMEG-HYDRO. As is 

possible to observe from Figure 5.14 for the chosen suctions, the degree of saturation coincides. 
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Figure 5.14: Comparison between the SAFAI-PINDER (COMES-GEO) and ACMEG-TS water retention law used 
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Figure 5.15: Axial strain versus Deviatoric Stress for s=0.0 MPa and T=20 °C 
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Figure 5.16: Axial strain versus Volumetric strain for s=0.0 MPa and T=20 °C 
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Figure 5.17: Axial strain versus Deviatoric Stress for s=1.1 MPa and T=20 °C 
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Figure 5.18: Axial strain versus Volumetric strain for s=1.1 MPa and T=20 °C 
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Figure 5.19: Axial strain versus Deviatoric Stress for s=2.5 MPa and T=20 °C 
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Figure 5.20: Axial strain versus Volumetric strain for s=2.5 MPa and T=20 °C 
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Figure 5.21: Axial strain versus Deviatoric Stress for s=2.5 MPa and T=80 °C 
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Figure 5.22: Axial strain versus Volumetric strain for s=2.5 MPa and T=80 °C 
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The results check difference between the F.E. and the driver simulation in the ey-ev plane. This is due to the different 

water retention law used; in fact, the simulation performed with COMES-GEO considers the water saturation dependent 

by suction only while the simulation performed with the driver ACMEG-TS, considers also the volumetric strain 

contribution. 

The comparison of the results obtained with the driver ACMEG-TS and the F.E. code COMES-GEO (Figure 5.15 to 

Figure 5.22) shows a good agreement for different degree of saturation (i.e. different suction), for different temperature 

and for different confining pressure. 

 

5.4.2 Oedometric compression tests 

Here a comparison with experimental results of oedometric tests on Sion silt is shown. Triaxial tests are used by 

Francois [Fra08] for the calibration of the material parameters. 

The triaxial tests are performed at the room temperature (T=22 °C) and in fully saturation conditions (s=0 kPa)., while 

the oedometric tests are performed at different temperature (T=22 °C and T=80 °C) and at different suctions (s=0 kPa 

and s=300 kPa). 

The water retention curve is depicted in Figure 5.23 and the relation ACMEG-HYDRO is used. 

The material parameters are listed in Table 5.6. 

 

Elastic parameters 

Kref [MPa] Gref [MPa] ne b’s [°C-1]    

30.00 19.00 0.5 4.2�10-5    

Isotropic plastic parameters 

b gs gT c re
iso p’c [MPa]  

50.0 0.6 0.46 0.001 0.15 0.60  

Deviatoric plastic parameters 

b d Ø’0 [°] g a a re
dev 

1.0 2.0 30 0.0 1.0 0.0035 0.01 

Water retention parameters (ACMEG-TS model) 

se0 [MPa] bH      

0.05 2.52      

Table 5.6: Material parameters of Sion silt 

 

 

The oedometric tests consist in two successive loading and unloading paths. Starting from the slurry state (i.e. quasi 

virgin state) the first load is applied to consider the entire THM history of the material. Then, after the first unloading, the 
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second load is applied to simulate the real behaviour of the material. The initial preconsolidation pressure of the slurry 

has been adjusted for each simulation to fit with experimental results. Results are shown only for the second loading and 

unloading path. 

Two comparisons with the experimental results and with those predicted from the driver [Fra08] are shown. 

In the following, the results of the triaxial test used for the calibration of the material prameters are shown in Figure 5.24 

to Figure 5.31, then the results predicted for the oedometric tests are depicted in Figure 5.32 to Figure 5.35. 
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Figure 5.23: Water retention curve for Sion silt 
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5.4.2.1 Triaxial tests 
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Figure 5.24: Axial strain versus Deviatoric Stress for s=0.0 MPa and T=22 °C 
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Figure 5.25: Axial strain versus Volumetric strain for s=0.0 MPa and T=22 °C 
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Figure 5.26: Axial strain versus Deviatoric Stress for s=0.0 MPa and T=80 °C 
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Figure 5.27: Axial strain versus Volumetric strain for s=0.0 MPa and T=80 °C 
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Figure 5.28: Axial strain versus Deviatoric Stress for s=0.3 MPa and T=22 °C 
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Figure 5.29: Axial strain versus Volumetric strain for s=0.3 MPa and T=22 °C 
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Figure 5.30: Axial strain versus Deviatoric Stress for s=0.3 MPa and T=80 °C 
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Figure 5.31: Axial strain versus Volumetric strain for s=0.3 MPa and T=80 °C 

 



CHAPTER 5 

159 

5.4.2.2 Oedometric tests 
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Figure 5.32: Vertical net Stress versus Axial strain for s=0.0 MPa and T=22 °C 
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Figure 5.33: Vertical net Stress versus Axial strain for s=0.0 MPa and T=80 °C 
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Figure 5.34: Vertical net Stress versus Axial strain for s=0.3 MPa and T=22 °C 
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Figure 5.35: Vertical net Stress versus Axial strain for s=0.3 MPa and T=80 °C 
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A good agreement between the driver and the F.E.M results is shows for both the triaxial and oedometric tests. 

The differences on Figure 5.32 to Figure 5.35 are due to the not accurate evaluation of the material parameters because 

of the initial slurry state of the samples.  
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6 THE GENERALIZED PLASTICITY MODEL FOR WATER 

SATURATED SANDS 

The second class of constitutive laws, shown in this chapter and the following, is based on the generalised plasticity 

theory by Zienkiewicz and Morz [Z&M84] [M&Z84]. 

In this chapter the Pastor-Zienkiewicz model for sand under monotonic and cyclic loading is presented [Zie85] [Pas85] 

[P&Z86] following [Pas90]. This model can be applied also for clay [Pas90]. Then the validation of the implementation of 

this constitutive model is presented.  

This model was developed to reproduce phenomena as liquefaction, cycling mobiliy or densification under cyclic loading. 

After the PZ model other models have been proposed during years to study the above mentioned phenomena but in any 

case they are more complex then the generalized plasticity. 

The main advantage of the proposed model is that no plastic potential or yield surface are needed to be explicitly defined 

and  hence  neither the consistency rule need to be applied. 

6.1 GENERALIZED PLASTICITY 

The incremental non-linear constitutive relationship between strain and stress can be written as 

εDσ dd :=′  [6.1] 

where σ′ is the stress tensor 

 D is the elastoplastic constitutive tensor 

 ε is the strain tensor 

The inverse relation of [6.1] is 

σCε ′= dd :  [6.2] 

Both the tensor D  and C  depend on the current state variables and on the directions of loading. If we indicate with l 

the direction of loading and with a the state variables, then we can write 

( )αλ ,,σDD ′=  [6.3] 

( )αλ ,,σCC ′=  [6.4] 

with 

( )2
1

: σσ

σ

′′

′
=

dd

d
λ  [6.5] 

Constitutive tensors should be such that all materials symmetries are preserved. This model further assume that 

deformation of the material can be considered as the result of deformations produced by M separate mechanism, all of 

these subjected to the same state of stress (series models). 
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The strain increment can be written as 

∑
=

=
M

m

mdd
1

)(εε  [6.6] 

And, from [6.2] follows that 

σCε ′=∑
=

dd
M

m

m :
1

)(  [6.7] 

∑
=

=
M

m

m

1

)(CC  [6.8] 

If irreversible strain are to be produced, the constitutive tensor has to be dependent on the increment of stress direction, 

otherwise application of σ′d  followed by σ′− d  will be produce an increment of strain 

( ) 0:: =′−+′ σCσC dd  [6.9] 

and hence no plastic permanent deformation can be induced. 

For practical purposes, two directions of σ′d  provide a sufficiently accurate description of the material behaviour during 

loading and unloading. 

To this end, a direction vector n(m) in the stress space discriminating between loading and unloading, that depends on 

σ′  and α , is thus postulated for each mechanism. 

This of course defines a set of surfaces which are equivalent to those used in classical plasticity but these surfaces need 

never be explicitly defined. 

Loading and unloading are defined by 

0: >′ md nσ  [6.10] 

0: <′ md nσ  [6.11] 

There is a limit case of neutral loading which is defined as 

0: =′ md nσ  [6.12] 

The above definitions hold for hardening and perfecting plastic materials and will be generalized to account for softening 

later. Incremental stress-strain relations for a single mechanism (m) thus have the form 

loading   :)()( σCε ′= dd mLm  [6.13] 

unloading   :)()( σCε ′= dd mUm  [6.14] 

Continuity between loading and unloading processes requires that constitutive tensors )(mLC  and )(mUC  are of the 

form [Z&M84] 

)()()()( 1 mm
gL

L

memL

H
nnCC ⊗+=  [6.15] 

)()()()( 1 mm
gU

U

memU

H
nnCC ⊗+=  [6.16] 

where UgL /n , are arbitrary unit tensors and ULH / , are plastic moduli corresponding to loading and unloading. 

It can be verified that both laws predict the same strain increment under neutral loading in which both expressions are 

valid and hence non-uniqueness is avoided. 
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Material behaviour under neutral loading is reversible and it can therefore be regarded as elastic, as, given an 

infinitesimal cycle σσ dd −→+   , we will have 

( ) 0:: )()()( =′−+′= σCσCε ddd mUmLm  [6.17] 

In small strains, the increment of strain caused by the mechanism (m) due to σ′d  can thus be assumed to have two 

components, elastic and plastic, and 

)()()( mpmem ddd εεε +=  [6.18] 

where 

σCε ′= dd meme :)()(  [6.19] 

[ ] σnnε ′⊗= d
H

d mm
UgL

UL

mp :
1 )()(

/
/

)(  [6.20] 

We note that irreversible plastic deformations have been introduced without the need for specifying any yield or plastic 

potential surfaces, nor hardening rules. All that is necessary to specify the behaviour for mechanism (m) are two scalar 

functions ULH / and three directions, UgL /n  and n . 

To account for softening behaviour of material, i.e. when LH  is negative, definitions of loading and unloading haven to 

be modified. We can now write 

loading   0: )()( >′ mem dn σ  [6.21] 

loading neutral   0: )()( =′ mem dn σ  [6.22] 

unloading   0: )()( <′ mem dn σ  [6.23] 

where 

)()()( :
1 mmeme dd εCσ

−

=′  [6.24] 

It is easily verified that for positive definite )(meC  the two definitions are identical when no softening exists.   

Finally, total increment of strain is given by the summation of all mechanism 

[ ]∑∑
==

′⊗+=
M

m

mm
UgL

UL

M

m

me d
H

dd
1

)()(
/

/1

)( :
1

: σnnσCε  [6.25] 

or, the equivalent 

σCε ′= dd ep
UL :/  [6.26] 

Inversion of epC  will give epD  as 

e
UgL

eeep DBnDDD 1
/

−−=  [6.27] 

where { }mnn  =  

 { }m
UgLUgL //  nn =  

and matrix B  is [Pas90] 

UgL
eT

/nDnHB +=  [6.28] 

where )(m
iijij HH δ=  
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It is possible to proof that the classical plasticity theory and the bounding surface models are a particular case of the 

theory outlined above [Pas90]. 

6.2 PASTOR-ZIENKIEWICZ MODEL FOR SAND 

The behaviour of sands is considerably different, in fact under drained monotonic loading, dense and loose sands exhibit 

different characteristic stress-strain curves, which reach a common residual asymptotic state. 

However, while very loose sands behaviour can be reproduced by critical state models, dense sands show a peak in 

deviatoric stress after which the material softens and local effects such as shear band development begin, making it 

difficult to analyse the experimental results. 

Even if such phenomena obscure the test results, it seems logical to believe that a peak should exist, although less 

pronounced than the ones shown by standard experiments. This pattern could only be qualitatively reproduced by critical 

state models if the sand were to be assumed heavily overconsolidated (Figure 6.1). 

q

y

q

y

NORMALLY CONSOLIDATED SOIL

LOOSE SAND

OVERCONSOLIDATED SOIL

DENSE SAND

 

Figure 6.1: Predictions of a Classical Plasticity Model for NC and OC soils and loose and dense sands 

However, with such a model, if the confining pressure is raised, a change from dense to loose behaviour for a dense 

sand is predicted and accuracy decreases. 

A more suitable form of plastic potential can be derived from the analysis of plastic deformations under shearing. If 

crushing of sand grains is neglected, particle rearrangement under shear produces volumetric and shear strains related 

by dilatancy rules. 

Following the experimental results obtained by Frossard [Fro83] in drained triaxial tests it may be observed that dilatancy 

dg can be approached by a linear function of the stress ratio h 

( )( )ηα −+= ggg Md 1  [6.29] 

where ag and Mg are material parameters 

 and where h is defined as 

p
q

′
=η  [6.30] 
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q and p’ are two of the three stress invariant that are defined as 

( )zyxJp σσσ ′+′+′==′
3
1

3
1

1  [6.31] 

( ) ( ) ( ) ( )[ ]222222
2 2

2
3

3 zxyzxyzyx pppJq τττσσσ +++′−′+′−′+′−′=′=  [6.32] 















′

′
−= −

2
3

2

31

2
33

sin
3
1

J

J
q  [6.33] 

where 

zyxtrJ σσσ ′+′+′=′= )(1 σ  [6.34] 

zxxzzyyzyxxyxzzyyxJ ττττττσσσσσσ −−−′′+′′+′′=2  [6.35] 

( )σ ′= det3J  [6.36] 

( )2
2
12 3

3
1

JJJ −=′  [6.37] 

( )321
3
13 2792

27
1

JJJJJ +−=′  [6.38] 

It may be seen that dilatancy is zero at the line 

( ) 0    =⇒= gg dM η  [6.39] 

which coincides with the projection on the p’-q plane of the critical state line. Also, note that the flow is non-associated 

and the dilatancy serves only in determining the strain vector h. 

Once again the zero dilatancy line Mg represents all residual stress states as continuing yield can only be sustained 

without volume changes without creating (or destroying) material. 

The plastic flow directions ngL/U that from now we call m to simplify the following relations [Mir09], and the loading 

direction n, are expressed as 

321 uuum ⋅+⋅+⋅= qmmm sv  [6.40] 

321 uuun ⋅+⋅+⋅= qnnn sv  [6.41] 

where the base vectors u1, u2 and u3 are the derivatives of the stress invariants p’, q, q with respect to the stress σ′ . 
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where pS ii ′−′=σ  i=1,2,3 

 44 σ ′=S   

For loading stress increments, the mL components are given by [N&W79] 

2,
1 g

g
vL

d

d

+
=m  [6.45] 

2,
1

1

g

sL
d+

=m  [6.46] 

2,
12

)3cos(

g

g
L

d

qM

+

−
=

q
qm  [6.47] 

In unloading conditions irreversible strains are contractive. Hence the mU components change as follows: 

vLvU ,, mm −=  [6.48] 

sLsU ,, mm =  [6.49] 

qq ,, LU mm =  [6.50] 

The model assumes a non-associated flow rule; thus, the loading direction n is different from m, but with similar 

expressions for its components nv, ns, nq that are given by 
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21 f

f
v

d

d

+
=n  [6.51] 

21

1

f

s
d+

=n  [6.52] 

212

)3cos(

f

f

d

qM

+
−= q

qn  [6.53] 

where 

( )( )ηα −+= fff Md 1  [6.54] 

with af and Mf material parameters 

The PZ model assumes a non-linear elastic response of the soils. As in a large number of constitutive models, the non-

linear reversible behaviour is described by Pastor et al. [Pas90] through a hypoelastic approach, in which the tangent 

bulk modulus K and shear modulus G only depend on the hydrostatic part of the effective stress tensor, according to the 

following relationships 

en

ref
ref p

p
K=K 









′
′

 [6.55] 

en

ref
ref p

p
G=G 









′
′

 [6.56] 

where Kref is the bulk modulus at the reference mean effective stress p’ref 

 Gref is the bulk modulus at the reference mean effective stress p’ref 

 ne is a material parameters that in PZ model is assumed ne=1 

hence 

ref
ref p

p
K=K

′
′

 [6.57] 

ref
ref p

p
G=G

′
′

 [6.58] 

Although widely used, one of the major shortcomings of such hypoelastic formulation is that it results in a non-

conservative elastic response and energy dissipation over closed stress paths [Zyt78]. 

In recent years attempts (e.i. [Lor85] [L&N87] [Mol88]) have been made to describe the elastic response of soils within a 

conservative framework and a number of energy-conserving elastic models have been proposed in the literature. 

6.2.1 PZ in loading conditions 

As suggested in [Z&P77] Mg/f is assumed to depend on lode’s angle q. The model define a smoothed version of Mohr’s 

criterion widely used in practice 

( )( )q3sin1318

18

−+
=

c
g

g

M
M  [6.59] 
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( )( )q3sin1318
18

−+
=

c
f

f

M
M  [6.60] 

where Mg/f are the critical state line slope 

It has to be remarked that both directions have been defined without reference to any yield or potential surfaces, though 

of course these can be established a posteriori. 

q

p'

Mg Mf

CSL

 

Figure 6.2: Theoretical yield surface (Equations [6.57] [6.58]) 

A classical plasticity model would require obtaining those surfaces from mL and n by integration arriving at 
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A relative position of yield and flow surfaces indicates the possibility of material densification occurring in most of the 

loading region which coincides with observed facts. 

If we now consider the behaviour under undrained conditions a critical state model with modified surfaces such as given 

by expression [6.48] can perform correctly for very loose to medium loose states in monotonic triaxial loading. 

Modelling of the behaviour of very dense sands still causes difficulties as failure occurs as soon as the critical state line 

is reached. 

As proposed by Pastor et al. [Pas85], the relative density of sands can be expressed by 

g

f
R M

M
D =  [6.63] 

DR values for the various types of sand are given in Table 6.1. 
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Figure 6.3: Schematic behaviour of undrained sand (from [Cas69]) for different DR of material 

 

DR [%] Type 

0-20 Very loose 

20-40 Loose 

40-60 Medium 

60-80 Dense 

80-100 Very dense 

Table 6.1: Classification of sands for different DR 

 

A solution for the difficulties in the modelling of very dense sands is to introduce deviatoric strain hardening as 

suggested by Wilde [Wil77] and indeed incorporated earlier in equation, that we will see later, that give the hardening 

modulus HL. 

For this reasons, we now can make the surface size parameter pc such that 

cp
v

c p
ep
κλε −

+=
∂
∂ 1

 [6.64] 

and then define 

ξβββ
ξ

0
10

−=
∂
∂

e
pc  [6.65] 

where x is the accumulated deviatoric plastic strain 

 l is the slope of virgin loading in isotropic compression 
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 k is the slope of virgin reloading in isotropic compression 

The parameter l is strongly dependent on the confining pressure [L&S67], this only accounts for densification caused 

by crushing of sand grains, which is of secondary importance to the densification actually occurring owing to 

rearrangement under shear. 

e

ln p'

e0

 

Figure 6.4: Graphical identification of kkkk and llll 

It thus appears more logical to define the hardening modulus without reference to any consistency condition on the yield 

surface based on non realistic hardening laws and to return to the generalized plasticity forms without reference to any 

surfaces. With m and ng defined previously, a suitable model can be directly constructed. 

An expression for plastic modulus HL has to take into account several well established experimental facts: 

1. Residual conditions take place at the critical state line h=Mg. 

2. Failure does not necessarily occur when this line is first crossed. 

3. The frictional nature of material response requires the establishment of a boundary separating impossible 

exterior states from those which are permissible. 

As suggested from [P&Z86] and [Pas90], a suitable expression accounting for the stiffness decrease as the shear plastic 

deformation increases and the material state get closer to the critical state for the plastic modulus in loading HL is 

( )svfL HHHpHH +⋅⋅′⋅= 0  [6.66] 

where 

κλ−
+= 0

0

1 e
H  [6.67] 

4

1 
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

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f
fH

η

η
 [6.68] 
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g
v M

H
η−= 1  [6.70] 

ξβββ 0
10

−= eHs  [6.71] 

 

v

ln p'

-

p

1+e0

 

Figure 6.5: Graphical identification of H0 

6.2.1.1 Very loose sand liquefaction under undrained shearing 

This case exhibs a peak in the deviatoric stress after which the strength is reduced to zero while the pore pressure 

increases continuously. In this case the stress path approaches the origin, and the soil loses its resistance to shear, 

reaching a liquefied state. 

It must be emphasized that sand contracts or ‘densifies’ during the whole process which is shown by a continuous 

increase in pore pressure, suggesting in turn that hardening is taking place. This seems to be in contradiction to the fact 

that a peak exists and the material can be thought of as being softening, but in a frictional material strength has to be 

analysed in terms of stress ratios, and no peak is presented by this parameter. 

This behaviour can be considered unstable in the sense of Drucker [Dru56] [Dru59] 

0<′ pTdd εσ  [6.72] 

having thus 

0
1 <′







′ σnnσ d
H

d T
g

T  [6.73] 

If such a feature is to be modelled with a positive plastic modulus, associated plasticity has to be abandoned by 

choosing 

nn ≠g  [6.74] 

The modification introduced in the definition of equation [6.64] altering the critical state model described earlier is 

enough to deal with liquefaction under monotonic loading. 
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6.2.1.2 Deviatoric stress during drained shear of very dense sands 

At the other end of the density range, peak exists in deviatoric stress during drained shear of very dense sand, this effect 

developing progressively as density is increased. 

The factor Hs, is introduced in the expression [6.66] for the plastic modulus to account for 

1. crossing of the critical state line (h=Mg) without immediately producing failure; 

2. reproduction of softening; 

3. residual conditions taking place at CSL. 

Deviatoric stress can be increased from zero in drained tests while Hv, and Hs decrease. Infact Hv reaches zero when 

CSL is crossed, taking negative values afterwards. A moment arrives at which 

0=+ sv HH  [6.75] 

gp M>η  [6.76] 

If the rest is run under strain control, at this point 

0==′ dqpd  [6.77] 

Immediately after the peak is reached, Hs, decreases whiIe Hv does not, resulting in 

0<+ sv HH  [6.78] 

and 

0<LH  [6.79] 

From this moment, softening of the material will take place, producing a descending branch in deviatoric stress against 

axial strain plot. 

Deviatoric strain hardening function Hs will vanish as deformations progress, reaching a final asymptotic value of zero. 

Residual conditions will then take place at CSL. 

During the softening 

0<′ pTdd εσ  [6.80] 

and 

0
1 <′







′ σnnσ d
H

d T
g

T  [6.81] 

It can be seen that there is no need on this occasion for non associativeness to ensure the existence of peaks as HL is 

negative, and, in fact, very dense sands exhibit the limiting associative behaviour with 

fg MM =  [6.82] 

6.2.1.3 Undrained shearing of medium loose to dense sands 

The critical state line is reached and an upturn in the stress path produced as soil changes from contractive to dilative 

behaviour. 

Determination of CSL position can easily be performed from a point at which the undrained stress path has a vertical 

tangent in p’-q space, as then 
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Figure 6.3 shows how relative density influences the undrained behaviour of sand together with predictions of the 

proposed model. 

6.2.1.4 Conclusion 

At this point, a model has been developed such that  

1. it reproduces the most salient features of sand under monotonic shearing; 

2. no surfaces are involved and consistency conditions do not have to be fulfilled; 

3. it is computationally efficient in FE codes, as the stress point does not have to be brought back to the yield 

surface and tangent moduli are easily established. 

6.2.2 PZ in unloading conditions 

A very important feature of sand behaviour is that plastic strains develop during unloading of the material, their 

importance increasing with the stress ratio from which unloading takes place, which is referred to the unloading stress 

ratio 

u

u p
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=η  [6.84] 

Elastic behaviour during undrained shearing is characterized by vertical stress path because the undrained nature of the 

test prevents volumetric strains from developing. It can be seen that unloading from a higher stress ratio results in higher 

plastic volumetric strain. 

A simple expression for a plastic modulus fulfilling these requirements was proposed by Pastor et al. [Pas85] 
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and extends the range of the model so far proposed hierarchically. 

To determine the direction of plastic flow produced upon unloading Pastor et al. [Pas90] noted that irreversible strains 

are of contractive (densifying) nature. 

Direction ng are those described at [6.48], [6.49] and [6.50]. 

6.2.3 Liquefaction and cyclic mobility phenomena 

When subject to drained cyclic loading of moderate amplitude, sand is observed to exhibit an overall densifying 

character. Under undrained conditions this mechanism causes progressive pore pressure buildup leading to failure. 

In the case of very loose sands, liquefaction takes place following a series of cycles in which the stress path migrates 

towards lower confining pressures. 
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Denser sands do not exhibit liquefaction but cyclic mobility. Failure is progressive since the stress path approaches the 

CSL by its shift caused by the pore pressure buildup. Deformation during unloading causes the stress path to check 

towards the origin, and strains produced during the next loading branch are of higher amplitude. 

Effects of the stress-strain history can be incorporated in the model with the largest intensity events superseding the 

memory of preceding ones. 

Although the model so far developed predicts liquefaction satisfactorily, a further extension is necessary to account more 

accurately for cyclic loading phenomena. 

This can be introduced by means of a new discrete memory factor Hdm multiplying the plastic modulus 

( ) dmsvfL HHHHpHH ⋅+⋅⋅′⋅= 0  [6.86] 

where 

γ

ζ

ζ








= MAX

dmH  [6.87] 

where z is a mobilized stress function defined as 

f

ff

f

M
p

αη

α

α
ζ

1

1
1

−
















 +−′=  [6.88] 

Discrete memory factor is thus simply unity during virgin loading. After unloading, however, reloading takes place with a 

higher plastic modulus. 
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6.3 VALIDATION OF THE IMPLEMENTATION OF PZ MODEL IN COMES-

GEO 

Here experimental tests have been simulated with three different sands : Banding sand (section 6.3.1), Adige sand 

(section 6.3.2) and a dense sand (section 6.3.3). The results of the simulation with COMES-GEO have been compared 

with the experimental results (for Banding and Adige sands)and with the results obtained with the driver ot the PZ model 

(for all the three simulations). 

6.3.1 Banding sand 

The first case simulated with the PZ model implemented in COMES-GEO is the one with DR=29 % shown in Figure 6.3 

where a series of tests in sands at different relative density are simulated. These tests are triaxial compressions 

performed by Castro [Cas69] in undrained condition on Banding sand. 

The material parameters are 

 

Material parameters 

Kref [MPa] Gref [MPa] Mf Mg af ag H0 b0 b1 

35.00 52.50 0.40 1.50 0.45 0.45 350 4.20 0.20 

Table 6.2: Material parameters of the undrained tests performed by Castro [Cas69] 

 

from which the Young’s modulus E and the Poisson coefficient n  can be calculated 

0
5.522356
5.522353

26
23 =

⋅+⋅
⋅−⋅=

+
−=

refref

refref

GK
GK

ν  [6.89] 

( ) ( ) MPa 105015.52212 =+⋅=+= νGE  [6.90] 

For this reason, the value zero of n, the load apply is a vertical and horizontal impress displacements. The two 

displacement are not equal and they are Dy=0.048�ly and Dx=0.024�lx. 

The finite element results are plotted in the p’-q and ev-q plane and comparate with experimental data and the results 

obtained by the PZ driver. 

Constant temperature (room temperature T=293.15 °K), constant gas pressure (atmospheric pressure pg=101325 Pa) 

and constant capillary pressure (fully saturated condition pc=0 Pa) are assumed during the f.e. simulation. 
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Figure 6.6: Comparison between COMES-GEO and experimental results [Cas69] in p’-q plane 
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Figure 6.7: Comparison between COMES-GEO and PZ driver in p’-q plane 
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Figure 6.8: Comparison between COMES-GEO and experimental results [Cas69] in eeeev-q plane 
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Figure 6.9: Comparison between COMES-GEO and PZ driver in eeeev-q plane 
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Figure 6.10: Comparison between COMES-GEO, experimental results [Cas69] and PZ driver in p’-q plane 
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Figure 6.11: Comparison between COMES-GEO, experimental results [Cas69] and PZ driver in eeeev-q plane 
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6.3.2 Adige sand 

This case consist in a series of triaxial compression test performed a three different isotropic compression pressure 

(p’c=50 kPa, p’c=100 kPa and p’c=200 kPa) on a sample of Adige sand [Mir09]. The Adige sand is a very dense (DR=87 

%) sand taken from the mouth of the river Adige in Veneto, Italy. 

Starting from the initial isotropic compression mentioned above, a compressive axial displacement is applied until a 

deformation of ey=15 % is reached. 

 

Material parameters p’c=50 kPa 

Kref [MPa] Gref [MPa] Mf Mg af ag H0 b0 b1 

40.00 10.00 1.10 1.33 0.45 0.45 1100 2.0 0.18 

Table 6.3: Material parameters of Adige sand for p’c=50 kPa [Mir09] 

 

Material parameters p’c=100 kPa 

Kref [MPa] Gref [MPa] Mf Mg af ag H0 b0 b1 

50.00 15.00 1.10 1.33 0.45 0.45 800 2.0 0.18 

Table 6.4: Material parameters of Adige sand for p’c=100 kPa [Mir09] 

 

Material parameters p’c=200 kPa 

Kref [MPa] Gref [MPa] Mf Mg af ag H0 b0 b1 

55.00 20.00 1.10 1.33 0.45 0.45 550 2.0 0.18 

Table 6.5: Material parameters of Adige sand for p’c=200 kPa [Mir09] 

 

The finite element results are plotted in the ey-q and ey-ev plane and comparate with experimental data and the results 

obtained by the PZ driver. 

Constant temperature (room temperature T=293.15 °K), constant gas pressure (atmospheric pressure pg=101325 Pa) 

and constant capillary pressure (fully saturated condition pc=0 Pa) are assumed during the f.e. simulation. 
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Figure 6.12: Comparison between COMES-GEO and experimental results [Mir09] in eeeey-q plane 
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Figure 6.13: Comparison between COMES-GEO and PZ driver in eeeey-q plane 
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Figure 6.14: Comparison between COMES-GEO and experimental results [Mir09] in eeeey-eeeev plane 
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Figure 6.15: Comparison between COMES-GEO and PZ driver in eeeey-eeeev plane 
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Figure 6.16: Comparison between COMES-GEO, experimental results [Mir09] and PZ driver in eeeey-q plane 
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Figure 6.17: Comparison between COMES-GEO, experimental results [Mir09] and PZ driver in eeeey-eeeev plane 
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6.3.3 Dense sand 

This case consist in a triaxial compression test performed with COMES-GEO and PZ driver for a dense sand [Ton03]. 

In fact, from Table 6.6, the value of Mf and Mg are Mf=0.95 and Mg=1.41 and then 

% 4.67100
41.1
95.0 ===

g

f
R M

M
D  [6.91] 

The isotropic compression pressure is p’c=124 kPa, and the loading path is compressive axial displacement applied until 

a deformation of ey=15 % is reached. 

 

Material parameters p’c=50 kPa 

Kref [MPa] Gref [MPa] Mf Mg af ag H0 b0 b1 

20.71 19.00 0.95 1.41 0.45 0.45 1000 2.2 0.12 

Table 6.6: Material parameters of dense sand 

 

The finite element results are plotted in the ey-q plane and comparate with the results obtained by the PZ driver. 

Constant temperature (room temperature T=293.15 °K), constant gas pressure (atmospheric pressure pg=101325 Pa) 

and constant capillary pressure (fully saturated condition pc=0 Pa) are assumed during the f.e. simulation. 
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Figure 6.18: Comparison between COMES-GEO and PZ driver in eeeey-q plane 
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7 THE GENERALIZED PLASTICITY MODEL FOR 

UNSATURATED SANDS 

7.1 INTRODUCTION 

Starting from the Pastor-Zienkiewicz model [Pas90] developed within the generalized plasticity theory for water saturated 

soils, Bolzon et al. [Bol96] have proposed a model taking into account the conditions in partially saturated (Sw<1). This 

new model is call here as BSZ model, results to be an extension of PZ model for partially saturated materials. 

Since it was impossible to reproduce the behaviour of a soil in partially saturation only with the introduction of the 

Bishop’s stress (see 2.6.1) in PZ model because the increase of soil compressibility with suction is not reproduced, the 

largest amount of volumetric collapse appear always for fully saturated conditions for varying net mean stress, and the 

isotropic yield limit decreases with increasing suction and this is in contrast with experimental observations, the authors 

of [Bol96], proposed the BSZ model where a proper enhancement of the hierarchical PZ model allows to overcome 

these drawbacks and that experimentally observed behaviour can be reproduced. 

Hence the BSZ model gives advantages in partially saturated problems and where there is a transition from saturated to 

unsaturated conditions. This is in particular the case when modelling dynamic behaviour of fully saturated and partially 

saturated zones, as for instance in embankments, earth dams and slopes. 

In literature other mathematical models were presented as for instance the one proposed by Wheeler and Sivakumar 

[W&S95] where the BBM (Basic Barcelona Model) was improved, the bitensorial elastoplastic model HiSS-d1-unsat 

proposed by Geiser [Gei99] or the model proposed by Jommi and Di Prisco [J&D94] where the degree of saturation was 

introduce as second independent state variable in the hardening rule, and the ACMEG-S model [Fra08], which can be 

derived by the already presented in chapter 5. 

A further development of the BSZ model to non isothermal conditions has been proposed by Bolzon and Schrefler (BS 

model) [B&S05] and will be presented at the end of this chapter. 

Both these models have been implemented in COMES-GEO but only the implementation of the BSZ model has been 

validated because of lack of material parameters for the non isothermal BS model. 

For these reasons, the BSZ model can be considered validated although other tests was searching for a next future work 

for have further evidence of predictive ability of the model, and the same is in progress for the BS model. 
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7.2 BSZ MODEL 

From section 6.2.1, and from Figure 6.4, we can write for a fully saturated soil 

p
pd

v
dd e

vv ′
′

==
0

κ
εε  [7.1] 

in case of elastic loading and 

p
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v
ddd p

v
e
vv ′

′
=+=
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εεε  [7.2] 

In case of plastic loading, where 

0

0

0

0

1 e
ee

v
vv

v +
−=−=ε  [7.3] 

p
pd

H
d p

v ′
′

=
0

1
ε  [7.4] 

Substitution of Bishop's definition [2.157] for partially saturated soil in terms of mean stress p' 

sSpp wnet +=′  [7.5] 

where g
net ppp −=  

 and s is the suction 

in [7.1], [7.2] and [7.4], it would introduce a dependence of water content on volumetric strains. 

Under monotonic loading, equation [7.4], can be integrated to give: 

00

ln
1

p
p

H
p
v ′

′
=ε  [7.6] 

and if a rigid plastic behaviour is assumed (evp=ev) 
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0
0 ln
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p

H
v
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′
′

−=  [7.7] 

Introducing the Bishop’s stress [7.5] in [7.6] and [7.7] we obtain 

sSp
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,00
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As far as suction is kept constant, equations [7.6], [7.7], [7.8] and [7.9] give relationships between pressure and volume 

changes which are similar to those of saturated soils, in accordance with experimental results (for instance [Kar86]) but it 

is clear that the generally observed increase of soil compressibility with suction (for instance [Jos88]) is not taken into 

account. 

The yield function [6.63] begin now 
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Because BSZ model does not consider explicitly the yield function, it is assumed to changing the plastic modulus H 

[6.66]. 

This is done by introducing the multiplicative function Hw, which is linearly related to suction through the relationship 

proposed in [Bol96] 

asHw += 1  [7.11] 

where a is a material parameters expressed in MPa-1 if s is expressed in MPa. 

The plastic modulus under isotropic compression is now 

wHpHH ⋅′⋅= 0  [7.12] 

Since in fully saturated condition (see equation [6.67]) 

κλ−
+= 0

0

1 e
H  [7.13] 

we can write the compressibility as 

( ) ( ) κκλ +
+

+=++=
asH

e
HH
e

s
w 1

11

0

0

0

0  [7.14] 

From some experimental observation on compacted kaolin [Jos88], l(s) can be considered constant for a sufficiently 

high applied pressure. 

Function Hw can be computed to fit different experimental data. As suggested by Alonso et al. [Alo90], a two parameter 

exponential function has been proposed 

( )11

1
2

1 −+
=

− sb
w

eb
H  [7.15] 

where b1 is a material parameter 

 b2 is a material parameter [MPa-1] 

In some cases, a dependence of Hw on p' has to be assumed, to describe the behaviour of soils which exhibits a 

maximum collapse at some value of the mean effective stress. This feature can be dealt with in the above formulation by 

assuming the dependence of the parameter a introduced in [7.11] on the effective mean stress p' through the function 

21 aeaa p −= ′−  [7.16] 

Hence the plastic modulus H becomes: 

( )[ ]saeapHH p
210 1 −+⋅′⋅= ′−  [7.17] 

where a1 is a material parameter [MPa-1] 

 a2 is a material parameter [MPa-1] 

In this way, the original formulation for fully saturated soils is still recovered when suction is equal to zero (also with 

[7.11]). 

Integration of the following relationship 

( )[ ] p
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v
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1
 [7.18] 

and introducing the [7.5] 
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it can been shown that the maximum collapse is obtained at 

2

1ln
a
a

p
MAXv

=′
∆

 [7.19] 

The ratio between the material constants a1, and a2 hence gives the critical value of the effective mean stress, at which 

the maximum collapse is detected. On the other hand, the total amount of the collapse depends on the absolute value of 

these parameters. The choice of assuming the material function a [7.11] a polynomial of p', would lead to undesired 

singularities of the material behaviour, and has then been discarded. 

Further refinements of the function Hw will require the determination of new material parameters, which may be 

troublesome. This is out of the main purpose of the authors of BSZ model [Bol96], which is to give a simple and handily, 

although reliable model of the behaviour of partially saturated soils. 

As far as yield limits are concerned, a dependence of the hardening parameter pc on suction must be hypothized to find 

correspondence between simulations and experimental observations. Once experiments give the initial yield limit p'y0 for 

saturated condition, and value of p'y(s) at different suction values, a linear regression of data may often be considered 

satisfactory 

( ) ispsp y +′=′ 0  [7.20] 

whence 

( )sSipp wynety −+′= 0,  [7.21] 

Since Sw<1, the condition i>1 is sufficient (not necessary) for py,net(s) to be an increasing function of suction. 

The evolution of the yield surface during the plastic process will be then governed by the development of plastic strains. 

Due to this assumption, one could introduce the reference value p'c of Bishop's pressure, characterizing the limit 

situation where no plastic strains develop as a consequence of suction changes. Then it must result that 
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As a consequence, the evolution of the yield surface will be governed by the following relationship: 
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7.3 BS MODEL 

This model [B&S05], has been developed from the BSZ model with the aim to model the behaviour of soils under 

temperature changes. In particular, functions describing the yield surface and the compressibility modulus are modified 

to account for the shrinking of the elastic domain and for the increase of irreversible volumetric strain with heating. 

The behaviour of soils in non isothermal conditions was already describes in Chapters 4 and 5. Here we would like to 

remark only a controversial aspect related to the effect of temperature upon compressibility with respect to loading. 

According to most experimental observations, compressibility is slightly affected by temperature changes, especially in 

fully saturated or nearly saturated conditions (see references [C&M68], [C&L04], [Sul02], [M&L97], [S&J90], [Sai91], 

[Bur00] and [Del00]). 
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On the contrary, the experimental results obtained by Romero [Rom99] testing clay samples with different water content 

and saturation degree, show a marked influence of the temperature on the virgin consolidation line as suction 

decreases, i.e. toward fully saturated condition. 

A mentioned before, in the BS model, starting from BSZ model, some enhancements are proposed, taking advantage of 

the hierarchical structure of the original formulation. The resulting constitutive model can be introduced into general 

coupled thermo-hydraulical-mechanical frameworks recently put forward (see references [Sch01], [W&S03] and 

[Tho03]). 

The presented BS model is alternative to that proposed by Wu et al. [Wuw04]. 

7.3.1 BS Model for saturated soils 

The hardening rule can be obtained by integration of the relationship [7.4], where equations [7.13] and [7.3] have been 

introduced, during continuous plastic flow [B&S05], to give 

p
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000 )(  [7.24] 

where p’0 is the initial elastic limit at the reference temperature 

 l0 is the slope of the virgin consolidation line at s=0 

p’c0 is p’ during plastic flow 

Temperature variations influence the elastic strains, which develop at constant effective pressure; this dependence can 

be analytically described as follows 

dTTd s
e
v βε ′= 3)(  [7.25] 

where b’s is the isotropic thermal expansion coefficient of the solid skeleton [K-1] (see 4.3.1) 

The coefficient b’s varies with temperature and, slightly, with pressure [Bal88], [HBa90] and [C&L04], however, this 

constitutive model assumed that b’s is almost constant and relatively small. 

In equation [7.25] reversible thermal strains are disregarded, because it is assumed that inelastic phenomena prevail. 

Irreversible volumetric thermal strains are observed upon heating of clay soils, which usually undergo compaction as in 

standard consolidation test. 

Thermal consolidation can be ascribed to a variation of the pre-consolidation pressure, namely to shrinking of the yield 

surface in the p’-T space, as suggested by Hueckel and Borsetto [HBo90]. This contraction can be described by the 

following expression, proposed by Picard [Pic94] and experimentally verified by Sultan et al. [Sul02] 

T
ccT epp ∆β−′=′ 0  [7.26] 

where p’cT is the consolidation pressure at temperature T 

DT=T-T0 

T0 is the reference temperature 

b is a material parameter, possibly depending on T 

 

A good fit of experimental data is usually obtained by assuming 
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where  ap is a positive scalar (function) [K-1] 

so that 3apDT represents the equivalent unrecoverable volumetric strain. 

Relationship [7.27] is equivalent to that proposed by Modaressi and Laloui [M&L97] when 

TT

p

bTa +
=

∆

1
3α  [7.28] 

A different analytical expression has been considered by Cekerevac and Laloui [C&L04], but the essential features of the 

above-modelled material response to heating are maintained unaltered (see chapter 4).  

Combination of [7.24], [7.26] and [7.27] returns 

)3(
0

0),( THp
vcT

pp
vepTp ∆∆ αεε −′=′  [7.29] 

The influence of temperature on both elastic and post-yield compressibility parameters (k and l0, and henceforth H0) is 

somewhat controversial, but in most materials in saturated or nearly saturated condition, consolidation curves remain 

substantially parallel at different temperature (see references [C&M68], [Rob96], [HBa90], [C&L04], [Sul02], [M&L97] and 

[Bur00]). 

The capability of this model to reproduce the peculiar features of fully saturated soil behaviour under temperature 

changes is visualized in [B&S05]. 

Some clays tested in oedometric conditions at nearly saturated states [Rom99], show a peculiar behaviour characterized 

by an increase of both the compression modulus l and the amount of irreversible volumetric strain with temperature, 

which develops for a given effective pressure change under isothermal conditions. 

These correlated effects are easily accounted for in the present model, by introducing a suitable dependence of the 

hardening modulus H0 on temperature, as proposed in [B&S05] 

Thh
TH

T∆+
=

0
0

1
)(  [7.30] 

Relationship [7.30] returns the simplest approximation for lo(T) which thus increases linearly with temperature. 

The evolution of the yield surface, and its consequences on the amount of irreversible collapse developed by a material 

sample loaded at different temperature, are shown in [B&S05]. 

7.3.2 BS Model for partially saturated soils 

Available experimental results show that the behaviour of partially saturated soils is substantially similar at room and at 

high temperature. Main differences may concern the amount of irreversible volumetric strain which develops upon 

wetting. Shrinkage upon drying is also enhanced at high temperature [Rom03] but this aspect is not included in the BS 

model. 

Following some results published by Saix and Jouanna [S&J90], Saix [Sai91], Recordon [Rec93] and Romero [Rom99] 

[Rom03], the authors of [B&S05] have outlined the following main features of the thermal behaviour of partially saturated 

soils on which base the developed model: 
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1. water content at higher temperature is smaller than at reference (ambient) temperature, but the shape of water 

retention curve is almost insensitive to heating (differently from that proposed in ACMEG-TS); 

2. suction versus saturation relationship is even less affected by temperature changes; 

3. the amount of irreversible strains which develop during wetting may increase with temperature for those soils 

which exhibit, as peculiar features, irreversible swelling with suction decrease (even at reference temperature) 

and thermal dependence of the hardening moduli. 

The water content and the saturation degree of soils were described in 5.3. 

As seen for the family of ACMEG models, partially saturated soils develop unrecoverable volumetric strains with heating 

in normally consolidated conditions, while thermal strains are mainly reversible in overconsolidated states, exactly as in 

the case of full saturation. The amount of thermal deformation can be quantified by the relationships [7.4], [7.25], [7.26] 

and [7.27]. 

As already observed for BSZ model, in most instances preconsolidation stress reduces with heating, while temperature 

changes do not affect significantly the elastic and plastic material compressibility. Therefore, yield surface can be 

described as follows in the p’-s-T space 
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Writing the relation [7.11] in terms of l and k changing with s 
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and then introducing equations [7.32] and [7.29] into [7.31], the yield surface is obtained as 
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Equation [7.33] is validated in [B&S05]. 

A compaction process usually takes place during soil wetting. The corresponding unrecoverable strain can be evaluated 

through relation 

( ) p
pd

sHH
d

w

p
v ′

′
=

0

1
ε  [7.34] 

being p’=p’csT, account taken of the fact that plastic compatibility implies the evolution of the consolidation stress with 

suction changes. The amount of irreversible strain which develops upon wetting is substantially similar at room and high 

temperature, consistently with the results of some available experimental investigation [Rom99] and [Rom03]. 

In the same references [Rom99] and [Rom03], is shown that by some soils irreversible swelling upon wetting occurs 

even at reference temperature. Contemporarily both of the slopes of the virgin compression line and of the 

unrecoverable volumetric strain increasing with temperature is observed during oedometric tests. 

Irreversible swelling can be described by a proper choice of the hardening function; for instance, expression [7.16] 

foresees volume increments corresponding to suction reduction for some pressure ranges and suitably chosen 

parameters a1 and a2 [Bol96]. 
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The possible increase of irreversible strain with temperature during the soil wetting is instead easily accounted for even 

by the simplest version of the present constitutive model, account taken of the contemporarily observed variation of the 

compressibility modulus. 

7.4 VALIDATION OF THE IMPLEMENTATION OF THE BSZ MODEL IN 

THE F.E. CODE COMES-GEO 

As mentioned in section 7.1, the validation of the implementation in the finite element code COME-GEO has been done 

only for the BSZ model. BS model has been only implemented and the numerical implementation will be validated in the 

near future. 

For the numerical validation of the BSZ model, a series of triaxial compression test in saturated state served to calibrate 

the model, and then, some predictive triaxial compression tests were made in unsaturated conditions. The tests were 

taken from the extensive experimental investigation conduced by Geiser [Gei99] and [S&S05]. The soil used is a slime of 

the Sion region in Switzerland composed by slime (72%), clay (8%) and sand (20%).  

The tests performed by Geiser were made for different preconsolidation pressure. For validation of the BSZ model it was 

considered the cases with p’c=600 kPa, p’c=400 kPa and p’c=100 kPa. 

 

Material parameters (Geiser) 

Eref [MPa] n Kref [MPa] Gref [MPa] ne pref [MPa] Mg0 n (porosity) 

110.00 0.35 122.22 40.74 0.5 0.40 1.18 0.4286 

Material parameters (calibrated) 

Mf0 af ag H0 b0 b1 a [MPa-1]  

1.18 0.45 0.45 235 1.70 0.25 5.00  

Hydraulic parameters (modified Safai and Pinder) 

Sirr b [cm-1] g r’     

0.086 6.50 2.20 1.00     

Table 7.1: Material parameters of Sion silt tested by Geiser 

 

The material parameters were found through the calibration of the model with the triaxial tests at fully saturated state. 

Therefore, before moving on to the analysis in partially saturation conditions, a comparison was made, with other triaxial 

test with different p’c having the same parameters. 

For the elastic modulus, Geiser suggest to use a relationship similar to [4.6] and [4.7] 
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 [7.35] 

where Eref=110 MPa 
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 ne=0.5 

 pref=0.4 MPa 

Being n=0.35, Kref and Gref are computed according to [4.6] and [4.7]. 

The material parameters are shown in Table 7.1. 

Temperature and gas pressure are constant at T=20 °C and pg=101325 Pa. 

The water retention constitutive law chosen for this test is the one proposed from Safai and Pinder (see Figure 7.1) 

where at three suctions (in add at the saturated case s=0 MPa) correspond the following degree of saturation 

s=50 kPa Sw=0.930 

s=100 kPa Sw=0.740 
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Figure 7.1: Water retention constitutive law Safai and Pinder for Sion silt 

 

In the next graphs (Figure 7.2 and Figure 7.3) are shown first the comparison between the experimental data [Gei99] 

and the simulation of the triaxial compression test with a confining pressure p’c=600 kPa and in fully saturated state and 

then the comparison with the tests performed with p’c=100 kPa and p’c=400 kPa. 

The simulation referred to the Figure 7.2 served, as mentioned above, for the calibration of the model through the fitting 

experimental data for the parameters that are properly only of the BSZ model. 

In the Figure 7.3 instead the results was predicted and then compared with the experimental one. 

Until this point, the BSZ model coincide with the PZ (because s=0). 

At the same mode, the parameter a for the extension of the PZ model to BSZ model is obtained with a calibration for the 

triaxial compression at s=0.10 MPa for the two confining pressure p’c=400 kPa and p’c=600 kPa. 
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The simulation with the predicted results are the two triaxial tests at p’c=600 kPa at two different suction s=0.05 MPa and 

s=0.20 Mpa. 
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Figure 7.2: Triaxial test for the calibration of the model p’c=600 kPa and s=0.00 MPa 
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Figure 7.3: Comparison between experimental data [Gei99] and BSZ model in COMES-GEO after calibration of material 

parameter (Figure 7.2) p’c=100 kPa and p’c=400 kPa and s=0.00 MPa 
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Figure 7.4: Triaxial test for the calibration of the parameter a p’c=400 kPa and s=0.10 MPa 
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Figure 7.5: Triaxial test for the calibration of the parameter a p’c=600 kPa and s=0.10 MPa 
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Figure 7.6: Comparison between experimental data [Gei99] and BSZ model in COMES-GEO after calibration of material 

parameter a p’c=600 kPa and s=0.05 MPa 
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Figure 7.7: Comparison between experimental data [Gei99] and BSZ model in COMES-GEO after calibration of material 

parameter a p’c=600 kPa and s=0.20 MPa 
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7.5 REMARKS 

1. Numerical validation of the BSZ and BS models need of further investigations once the complete set of material 

parameters of these models could be determined or identified. 

2. An enhanced BSZ constitutive model was developed by Santagiuliana and Schrefler [S&S06] based on the 

constitutive model proposed by Jommi and Di Prisco [J&D94] for partially saturated soils. 

3. A future development of this Phd thesis will be the implementation of the eBSZ (enhanced Bolzon-Schrefler-

Zienkiewicz constitutive model).  
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8 APPLICATION TO GEO-ENVIRONMENTAL ENGINEERING 

PROBLEMS 

As reported in the first chapter of this work, the implementation and the numerical validation of advanced constitutive 

models for soils, is needed to study the complex THM nature of several geo-environmental engineering problems. In this 

chapter two works in progress are shown: the simulation of the long-term behaviour of a deep nuclear waste disposal 

and of land subsidence due to gas production. Both the cases are complex and it is difficult to completely define their 

study because of the multitude of uncertainties and variables. For each case, it will be shown a description of the 

problem, the finite element discretization with the boundary conditions and, the most significant preliminary results. 

Furthermore, future developments will be suggested. 

8.1 DEEP NUCLEAR WASTE DISPOSAL 

8.1.1 Introduction 

This work is the results of collaboration with the research group of Prof. L. Laloui. 

The exercise proposed from the Agence nationale pour la gestion des déchets radioactifs [BRGM91] has been simulated 

with the aim to analyze the THM interaction of a theoretical storage system for radioactive waste of and many steps of 

type B and C (i.e. intermediate and high level waste). The results described in the following summarize those reported in 

[Lui06], [Pas08], [Pas09] and [San10]. 

The storage system consists of three horizontal tunnels 80 distant with a vertical section 6 m high and 5 m large. In each 

tunnel, a series of vertical wells are drilled with a diameter of 50 cm and an high of 55 m (of which 40 m are filled with the 

radioactive waste and the last 5 to form a clay stopper). 

Two wheelbases between the wells, 10 m or 20 m, and two depths of the tunnels, 400 m or 750 m, have been analyzed. 

In particular the following analyses have been performed: 

1. Case 1-A: tunnels’ dept of 400 m and wells’ wheelbase of 20 m 

2. Case 1-B: tunnels’ dept of 400 m and wells’ wheelbase of 10 m 

3. Case 2-A: tunnels’ dept of 750 m and wells’ wheelbase of 20 m 

4. Case 2-B: tunnels’ dept of 750 m and wells’ wheelbase of 10 m 
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Figure 8.1: Tunnels and wells scheme 

 

 

8.1.2 Source of temperature 

Here a nuclear waste of type C for a period of about 200 years starting from the storage 

of the containers into the wells is considered. Each container has the same releases of 

heat described from the power law depicted in Figure 8.3. 

This release has been transformed in five equivalent heat sources applied in five 

specific points at a constant distance of 12.5 m (see Figure 8.2) that are considered to 

be direct in contact with the host rock. This temperature history increases, from 30 °C to 

98 °C in the first 30 years and then a slowly decreases in the next 180 years (Figure 

8.4).  

 

 

 

 

 

Figure 8.2: Distribution of temperature source 
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Figure 8.3: Power released on time from each container 
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Figure 8.4: Temperature released on time from each source 
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8.1.3 Material parameters 

The material parameters are obtained from a series of triaxial compression tests made by the B.R.G.M. geotechnical 

laboratory of Orleans on samples of clay of Montcornet [BRGM91] and are listed in Table 8.1and Table 8.2 for Case 1 

and Case 2 respectively. The tests were performed in drained and undrained conditions, monotonic or cyclical load 

conditions and with different confining pressure and load speed. 

 

CASE 1 

sample name  
sample deep  

[m] 
confining 

[MPa] 
gs [kg/m³] n k [m/s]  

A 1950 437.7-438.0 5.30-10.60 2070 0.37 10-12  

Elastic parameters 

Kref [MPa] Gref [MPa] ne b’s [°C-1]    

200.0 120.0 0.70 3.0�10-5    

Isotropic plastic parameters 

b c re
iso p’c [MPa] gT   

12.0 0.002 0.005 15.00 0.4   

Deviatoric plastic parameters 

b d Ø’0 [°] re
dev a g a 

1.0 1.5 15 0.005 0.001 4.5�10-5 1.0 

Table 8.1: Material parameters for Case 1 

CASE 2 

sample name  
sample deep  

[m] 
confining 

[MPa] 
gs [kg/m³] n k [m/s]  

A 2149 779.7-780.0 12.00-19.80 2320 0.22 10-13  

Elastic parameters 

Kref [MPa] Gref [MPa] ne b’s [°C-1]    

250.0 130.0 0.70 3.0�10-5    

Isotropic plastic parameters 

b c re
iso p’c [MPa] gT   

12.0 0.002 0.005 36.00 0.4   

Deviatoric plastic parameters 

b d Ø’0 [°] re
dev a g a 

1.0 1.5 28 0.005 0.007 4.5�10-5 1.0 

Table 8.2: Material parameters for Case 2 



CHAPTER 8 

211 

Not all the parameters necessary for ACMEG-T model were found in the B.R.G.M. report [BRGM91], in particular for the 

missing parameter those relative to Boom clay have been selected. 

8.1.4 Initial and boundary conditions 

The problem can be analyzed in plane strain conditions and hence two different bi-dimensional problems are solved: a 

vertical section surrounding the central tunnel and containing a well (Figure 8.5) and an horizontal section containing 

three wells (Figure 8.6). 
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Figure 8.5: Boundary and initial condition of vertical section 

 

40 40

5
10

10
5

30

80

SOURCE POINT
PLOT POINT

719834911 642 618
634

 

Figure 8.6: Boundary conditions of horizontal section 
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The initial and boundary conditions are described now. 

8.1.4.1 Gas pressure 

Because the host rock is initially water saturated, the gas pressure is assumed constant and equal to the atmospheric 

pressure patm=101325 Pa for all the nodes of the spatial discretization. 

8.1.4.2 Capillary pressure 

Similarly the water pressure presents the hydrostatic distribution. From the relation  

( ) hhppppp ww
atmgwgc γγ −=+−=−=  [8.1] 

where h is the deep from the top surface 

it is possible to calculate the capillary pressure (negative) to be imposed on the boundaries. 

8.1.4.3 Temperature 

A temperature gradient of 30 K/100 m starting from the ambient temperature of 15 °C at the surface in contact with the 

atmosphere has been assumed. Hence the following relationship has been used to compute the temperature distribution 

on the lateral boundaries: 

hTT amby ⋅+= 03.0  [8.2] 

where h is the deep from the top (positive quantities) 

 Tamb=15 °C 

For the two cases the initial conditions are the following 

 

 Case 1 Case 2 

y0 [m] -400.00 -750.00 

ysup [m] -350.00 -700.00 

yinf [m] -550.00 -900.00 

T0 [°C] 27.00 37.50 

Tsup [°C] 25.00 36.00 

Tinf [°C] 31.50 42.00 

Table 8.3: Summary of initial condition of temperature 

 

8.1.4.4 Displacement 

For symmetry (see Figure 8.1) the boundary conditions for the horizontal displacement are those shown in Figure 8.5. 

Vertical displacements are constrained on the bottom surface (see Figure 8.5). 

At the top of the mesh a total vertical stress is applied to simulate the weight of 350 m of water saturated soil for Case 1 

and 700 m for Case 2. 
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For the calculation of the soil load the following relation was used 

( )[ ] ghnnq wsy ⋅⋅+−= γγ 1  [8.3] 

where gs [kg/m3] is the solid grain density 

 gw=1000 kg/m3 is the water density 

 n is the porosity 

 g=9.81 m/s2 is the gravity acceleration 

 h [m] is the high of soil from the surface in contact with the atmosphere. 

For Case 1 we have from Table 8.1 that qy= 5’748’022,35 Pa (because gs=2070 kg/m3 and n=0.37). 

For Case 2 we have from Table 8.2 that qy=13’937’263,20 Pa (because gs=2320 kg/m3 and n=0.22). 

8.1.5 Mesh 

The mesh for both the horizontal and vertical sections is composed by eight node quadrilateral elements, as shown in 

Figure 8.5 and Figure 8.6. 

The vertical section is discretized with 896 elements and 2836 nodes (14180 dof), while the horizontal one with 384 

elements and 1241 nodes (6205 dof). 

8.1.6 Simulations 

As reported in the following Table 8.4, seven different analysis have been performed. The early three present different 

peak value Tmax of the temperature law of Figure 8.4, see Figure 8.7. 

In particular, the third case simulates a failure condition of the canisters. 

 

N° 
simulations 

Deep 
[m] 

Well’s wheelbase 
[m] 

Time analysis 
[Year] 

Tmax 

[K] 

1 400 10 210 95 

2 400 10 210 178 

3 400 10 210 300 

4 400 10 400 95 

5 400 20 210 95 

6 400 10 210 95 

7 400 20 210 95 

Table 8.4: Summary of simulations 
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Figure 8.7: Temperature of simulations 

8.1.7 Results 

The finite element analysis is performed first by computing the initial mechanical conditions in equilibrium with the given 

boundary conditions and the gravity load. To this end two different elastic analysis have been performed. The first one is 

an analysis that considers the material as linear elastic while the second one considers the material as non-linear elastic. 

Then the transient analysis is applied by considering the temperature loading function plotted in Figure 8.7. 

In particular a comparison between the node 290, 582 and 927 (see Figure 8.5) of vertical section are shown for Case 1 

(with dept 400 m) and Case 2 (with dept 750 m). 

Then, the results of horizontal section are shown for nodes 618 and 634 (see Figure 8.6) for Case A (with wheelbase of 

20 m) and Case B (with wheelbase of 10 m). 

From the time histories plotted in Figure 8.8 to Figure 8.13 it could be concluded that the results in terms of T, ev and 

ev
p is similar for the two selected tunnel depth. The only difference is in the initial temperature due to different initial and 

boundary conditions. An opposite conclusion should be done when analyzing the effect of different wheelbase. The 

deformation due to the thermal gradient is bigger in the case with wheelbase of 10 m (about twice). 

However the amount of the deformation is negligible because the high confining pressure, and therefore both the 

wheelbase can be adopted. 
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Figure 8.8: Vertical section – Temperature T 
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Figure 8.9: Vertical section – Volumetric total strain eeeevT 
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Figure 8.10: Vertical section – Volumetric plastic strain eeeevp 
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Figure 8.11: Horizontal section – Temperature T 
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Figure 8.12: Horizontal section – Volumetric total strain eeeevT 
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Figure 8.13: Horizontal section – Volumetric plastic strain eeeevp 
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Now the contours of the volumetric total strain ev in the time are shown for the vertical section (Case 1: tunnels’ dept of 

400 m). 

 

 

Figure 8.14: t=2 years 

 

 

Figure 8.15: t=7,5 years 

 

Figure 8.16: t=15 years 

 

Figure 8.17: t=22,5 years 
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Figure 8.18: t=30 years 

 

 

Figure 8.19: t=45 years 

 

Figure 8.20: t=145 years 

 

Figure 8.21: t=200 years 
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8.1.8 Failure conditions 

 

As mentioned in 8.1.6 a nuclear accident due to the failure of the containers in a well is simulated by the temperature law 

reaching the 300 °C. At this temperature the liquid water in the soil close the heat source starts to evaporate and causes 

desaturation of the near host rock (Figure 8.22). 

At the same time, a quite large volumetric plastic bulb surrounding the well is described, as depicted in Figure 8.22. 

For this simulation, ACMEG-TS model should be used to model correctly the occurrence of the partially saturated 

condition. This will be performed in the near future. 

 

 

 

 

Figure 8.22: Volumetric plastic strain and Degree of saturation state for the reached temperature of 300 °C. 
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8.2 SUBSIDENCE DUE TO GAS PRODUCTION 

8.2.1 Introduction 

In this section the problem described by Zhang et al. [Zha01] has been simulated. A gas reservoir of the type 

investigated in this section contains gaseous and liquid phases at the same time and within it pressure gradients are 

possible. As a consequence, the pressure measurements usually performed cannot represent what happens in the 

whole reservoir. Moreover the reservoirs are in hydraulic continuity with confining aquifers and aquitards. A complete 

mathematical model to simulate the mechanical behaviour of such a multiphase system needs therefore a mass balance 

equation for all present fluids together with momentum balance equations for fluids and the mixture. All these equations 

are coupled owing to the interactions between the fluids and the solid. 

In this case the constitutive law BSZ is used because the reservoir is in partially saturated conditions. 

Part of the material parameters are taken from Papamichos and Schei: “Characterization of Adriatic soft weak sediments 

for subsidence” [P&S98], the others are taken from the parameter identification of Simoni and Schrefler [S&S01] or 

extrapolated as illustrated in section 8.2.2. 

8.2.2 Identification of parameters 

8.2.2.1 Parameter from test 

 

Figure 8.23: Location of the Ravenna Terra gas field and wells (Redrawn from [Men08]). Into the red circle there is the 

Angela reservoir from which Core 1305 comes. 

 



CHAPTER 8 

221 

In the following table the parameters given from Papamichos and Schei for “Core 1305”, which is one of the tests 

performed by the authors (Figure 8.23), are reported. This is a laboratory experiment performed at IKU Petroleum 

Research, Trondheim [P&S98] on behalf of AGIP (Italian National Petroleum Company). The problem deals with a silty 

consolidated sandstone sample extracted from a gas bearing formation in the Northern Adriatic basin at a depth of 3400 

m. 

As mentioned in the previous chapter, the parameters for the BSZ model are not so easy to be determined, hence part 

of the parameters missing in [P&S98] for the Core 1305 are taken from the parameter identification of Simoni and 

Schrefler [S&S01]. The other parameters are extrapolated by the comparison between the F.E.M. results obtained with 

COMES-GEO and the experimental one obtained by [P&S98] in an oedometric test performed on Core 1305. 

 

N° Test 
Deep 
[m] 

ID Core 
Height 
[mm] 

Diameter 

[mm] 
Material 

description 

Core 1305 
3401.4 
3401.5 

Angela 14 
Core 13 

61.5 37.3 
Silty (68%), consolidated sandstone (18%) with 

some clay/shale layers (14%) 

Table 8.5: Identification of sample 

 

N° Test Porosity 
In situ water 
saturation 

Irreducible water 
saturation 

Core 1305 0.21 0.38-0.45 0.22-0.34 

Table 8.6: Parameter from Papamichos and Schei 

8.2.2.2 Test on Core 1305 

 

Figure 8.24: Results in terms of volumetric strain and axial stress from Papamichos and Schei [P&S98] 
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The loading process was scheduled as follows: the sample at in situ saturation (0.38-0.45) is firstly stressed with an 

initial hydrostatic phase presenting sh-rate equal to 0.01 MPa/s until sh=0.5 MPa. This is followed by a uniaxial phase 

with s-rate of 0.004 MPa/s until s reaches 35M Pa; the sample is then held at constant stress level and water is 

injected for 25 hours until full saturation is attained. This procedure is simulated through the specification of change of 

saturation (suction) from 0.38 to 1.0. During this period of time, volumetric changes of the specimen are recorded, as 

during the phases of stress changes. Once full saturation is reached, a second uniaxial phase, at constant water 

content, with stress rate of 0.004 MPa/s till about 110 MPa is performed. 
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Figure 8.25: Phases of mechanical and hydraulic loading for Core 1305 
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The test includes also unloading cycles to determine the elastic behaviour and recoverable deformation. The water 

injection test (hydric-path) simulates the behaviour of the gas reservoir rock during artificial water injection or during the 

flooding associated with gas extraction. For this reason the axial stress level at which the sample is injected is 

representative of the vertical stress in reservoir conditions. In the absence of other information, we assume that gas 

pressure during the test maintains the same value (atmospheric pressure). 

In the scheme of Figure 8.25 the test is illustrated with the different time length and load speed for each phase. 

The total time necessary to perform the test is 117375 s, that is equal to 32 hours, 36 minutes and 15 seconds. 

The results of this test are reported from Papamichos and Schei in terms of volumetric strain and axial stress (Figure 

8.24). 

It is important to note that there is a further decrease in volume during the injection but the reason is not so clear, it can 

be due to the rearrangement of the soil (saturation under high confining pressure) or to the viscous behaviour of the soil, 

but without a creep test on Core 1305 it is impossible to say how much of this volumetric deformation is due to the first or 

the second aspect. 

8.2.2.3 Pore size distribution 
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Figure 8.26: Suction vs Degree of saturation for Core 1305 

 

The retention curve is taken accordingly to Zhang et al. [Zha01] adjusting the Safai and Pinder law see in 5.3.2. 
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where 22.0=
′
′

s
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 b=2.448 cm-1 

 g=2 

 r’=1 

The relation [8.4] is plotted in Figure 8.26.  

8.2.2.4 Identification of parameters 

In the Figure 8.27 the comparison between the experimental results and those obtained by the numerical simulation 

performed with COMES-GEO are shown. The material parameters used in the simulation are listed in the Table 8.7. 

For the elastic moduli the law proposed for the ACMEG-T model 
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are used. 
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Figure 8.27: Comparison between experimental results [P&S98] and simulation 
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Elastic material parameters identifier 

Kref [MPa] Gref [MPa] pref [MPa] ne     

570.00 220.00 0.50 0.97     

BSZ material parameters identifier 

Mf0 Mg0 af ag H0 b0 b1 a [MPa-1] 

1.20 1.00 0.45 0.45 180 0.80 0.90 0.9604 

Hydraulic parameters (Safai and Pinder) 

Sirr b [cm-1] g r’     

0.22 2.448 2.00 1.00     

Table 8.7: Material parameters identified 

 

The comparison between the numerical and the experimental results (Figure 8.27) shows a good agreement. The 

difference between the results can be attributed to several aspects: the retention curve which is supposed by [Zha01] 

and not obtained with experimental tests, the need of other tests to determine correctly all the parameters and the need 

of a careful study on the behaviour of the soils under high confining pressure for the BSZ model. 

8.2.3 Reservoir analysis 

A gas (methane) reservoir of the type investigated in this section contains gaseous and liquid phases at the same time. 

Moreover the reservoir is in hydraulic continuity with confining aquifers. Obviously, for this geo-environmental 

engineering problem, a complete mathematical model to simulate the mechanical behaviour of such a multiphase 

system needs therefore a mass balance equation for all the fluids together with momentum balance equations for fluids 

and the mixture. 

This numerical simulation has already been studied from Evangelisti and Poggi [E&P70] and, with an additional clay 

layer, in [L&S98]. 

8.2.3.1 Boundary conditions 

The reservoir is studied in axialsymmetric conditions and its dimensions are: 

 R=14000 m Radius 

 Z=1080 m Height 

As shown in Figure 8.28, the reservoir (cell number 1) is bounded by two layers of clay (cell number 3) and by a zone of 

sand in fully saturated state (cell number 2). 

The capillary pressure is imposed equal to the hydrostatic pressure along all the sides of the mesh, except for the left 

boundary of the reservoir (note that the problem is axialsymmetric) where the capillary pressure is assumed pc=4�105 Pa. 

The gas pressure is assumed equal to the atmospheric pressure pg=101325 Pa for all the mesh except for the reservoir 

where the gas pressure is pg=11 MPa. 
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The temperature is assumed to be constant at every point and equal to T=320 K (hence about 47 °C). Vertical 

displacements are constrained at the bottom and horizontal displacements are constrained along the lateral surfaces. 
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Figure 8.28: Boundary Conditions 

The loading function is represented by an outflow of gas coming out from the reservoir, the basic idea is to simulate the 

gas production history of a real reservoir (see Figure 8.29). 
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Figure 8.29: Gas production history for numerical simulation 

 

From the graph of the gas production history, is possible to see that the extraction starts after 3 years and continues for 

25 years, and then the simulation continues without extraction for a total of 50 years. 
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8.2.3.2 Results 
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Figure 8.30: Displacement of the top of surface 
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Figure 8.31: Displacement at radial distance of 1200 m 
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The results shown in Figure 8.30 and Figure 8.31 are relative to the early 23 years of extraction. The rest of the analysis 

is still in progress. However, from the first results, is possible to see that the qualitative behaviour predicted from the 

model is correct. In fact, as it is possible to see in Figure 8.30, there is the maximum vertical displacement, measured at 

the top of the surface about in the middle of the reservoir (between 1000 m and 1200 m). Part of this deformation is 

recovered near to the end of the reservoir (little farther than the 2000 m). This zone in fact is in expansion for the water 

flux that enters in the reservoir (see Figure 8.32 and Figure 8.33).  

 

 

Figure 8.32: Water flow vectors 

 

 

Figure 8.33: Contour of water flow velocity 

 

 

Figure 8.34: Degree of saturation 

 

Figure 8.32, Figure 8.33 and Figure 8.34 show that the water flux goes from the saturated sand zone into the reservoir. 

This cause an advancement of the saturated front that is, for the time of about 23 years, of more than 200 m. 

Figure 8.35 shows the equivalent plastic strain distribution for the zone of the reservoir close to the aquifer. 
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Figure 8.35: Equivalent plastic strain 

8.2.3.3 Conclusion 

The results shown for this hypothetical case of subsidence can be considered just qualitative because the deformation 

compute on the ground surface is smaller than expected. This is due to the uncertainly of the parameters assumed for 

the simulation in particular for the material outside the reservoir. 

However, the qualitative behaviour of the reservoir during the gas extraction seems reasonable. 

A thorough investigation will be performed in the near future too. 
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9 CONCLUSIONS AND FUTURE DEVELOPMENTS 

This thesis contributed to develop a general framework for the computational analysis of geo-environmental engineering 

problems analysed as coupled multi-physics processes.  

Advanced constitutive models for isothermal and non-isothermal water saturated or unsaturated soils have been 

implemented and numerically validated in the finite element code COMES-GEO based on an existing fully coupled 

Thermo-Hydro-Mechanical (THM) model developed during years at the University of Padua. 

Summarizing, the following advanced constitutive models for soil have been implemented with the collaboration of the 

research group of Prof. Lyesse Laloui and of the research group of the Prof. Manolo Pastor: 

1. ACMEG-T for water saturated clays in non isothermal condition; 

2. ACMEG-TS for water saturated and partially saturated clays in non isothermal condition; 

3. Pastor-Zienkiewicz for water saturated sands in isothermal condition; 

4. Bolzon-Schrefler-Zienkiewicz for partially saturated sands in isothermal condition; 

5. Bolzon-Schrefler for partially saturated sands in non isothermal condition. 

As further numerical validation, a linear thermo elastic consolidation in fully saturated condition was analyzed and 

preliminary results concerning typical geo-environmental problems such as the thermo-hydro-mechanical behaviour of 

deep nuclear waste disposal in a geological clay formation and the simulation of the subsidence above gas reservoirs 

due to gas production, close this present work. 

 

Obviously, speaking about soils, the word complete can never be used because of the inhomogeneity typical of this 

material and because of the many phenomena that play a rule in the behaviour of soils (i.e. creep). 

For this reason, the future developments following this works can be infinite. 

In this moment, there are two works in progress and are the continuation of the geo-environmental problems illustrate in 

the chapter 8: nuclear waste disposal and subsidence. 

Future developments in the field of the applications will be the simulation of other case of nuclear waste disposal and 

subsidence different from the two presented, and the simulation of the onset of flowslides and catastrophic landslides. 

Several developments will concern the extension to 3D cases for which multiprocessing calculation is needed. 

Further development in terms of constitutive models will be a further enhanced model for the Generalized Plasticity 

proposed by Jommi and Di Prisco (Reference [J&D95] of chapter 7). 
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