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Dipartimento di Scienze Statistiche

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE STATISTICHE

CICLO XXVI

Forecasting Mortality in Related

Populations Using Lee-Carter Type

Models

Direttore della Scuola: Ch.ma Prof.ssa Monica Chiogna

Supervisore: Ch.mo Prof. Nicola Torelli

Co-supervisori: Ch.mo Prof. Steven Haberman

Dott. Pietro Millossovich

Ch.mo Prof. Ermanno Pitacco

Dottorando: Ivan Luciano Danesi

31 Gennaio 2014





Acknowledgements

Many people have helped and supported me during these past few years and I

have learned valuable lessons from each of them.

I am grateful for the guidance of my advisor Professor Torelli. He helped me to

choose a field appropriate to my background, he constantly reminded me of the

aims that I had to pursue and he encouraged me when I needed it the most. He

has been a great mentor.

Professor Pitacco introduced me to the idea of forecasting mortality, and he al-

ways gave me supportive advice that helped me to see the topic from the right

perspective.

I am also grateful to Professor Haberman for giving me the opportunity to work

with him at the Sir John Cass Business School in London. He provided me with

invaluable help in deciding on a fruitful research direction.

I am extremely indebted to Dr. Millossovich who spent a lot of time with me and

patiently followed my research, step by step. From Dr. Millossovich, I learned

about programming, the research process and the importance of being reflective

and precise.

I would like to thanks Dr. Kaucic, with whom I had several interesting discussions

in Trieste. One of these discussions evolved into a project last year.

Best wishes to my Ph.D. fellows, Akram, Erlis, Lorenzo, Luca, Md Abud Darda,

Roberta and Shireen. Thank you all for the laughs and challenges we shared over

the years. In Padova, other than first-class courses, I found friends. Regarding

this, I should mention Tonio, my Wednesday guest.

Finally, special thanks to my family and my girlfriend. Their love and support

have made all of this possible.

Padua, Ivan Luciano Danesi

24 January 2014





Abstract

Some aspects of modern society are planned according to the values of expected

future mortality rates. Due to the relevance of this issue, several approaches for

treating this problem have been proposed. Among them, one of the most influential

is the Lee-Carter model.

The aim of this thesis is to forecast mortality rates of related populations. In order

to do this, some models based on Lee-Carter approach are considered; the models

are applied to central death rates and to mortality improvement rates. Firstly, the

models are discussed in a qualitative way. Secondly, the models are evaluated on

a real dataset and their ability in fitting the data and forecasting are compared.

The results highlight strengths and weaknesses of the different approaches.

A further discussion relates applications of the models on mortality improvement

rates. More specifically, the hypothesis of constant variance of the parametric

structure is discussed and the impact of changes in this assumption is investigated

by means of an application on a real dataset.





Sommario

Alcuni aspetti della società moderna sono pianificati tenendo conto dei valori futuri

attesi dei livelli di mortalità. La rilevanza di tali questioni ha determinato un

forte interesse riguardo ai modelli per la previsione dei tassi di martalità futuri, e

a fatto s̀ı che negli anni numerosi approcci siano stati proposti per trattare questo

problema. Tra questi, il modello di Lee-Carter presentato nel 1992 è senza dubbio

uno dei più influenti.

Nella presente tesi, a partire dal modello di Lee-Carter si considera il problema di

previsione dei tassi di mortalità per più popolazioni che presentano caratteristiche

in comune. A tal fine vengono proposti diversi modelli, alcuni dei quali sono

applicati ai tassi centrali di mortalità, mentre altri sugli incrementi di questi ultimi.

Innanzitutto i modelli proposti sono analizzati e confrontati in modo qualitativo.

Successivamente i modelli sono applicati a dati reali e sono comparati riguardo

le capacità di adattamento e previsiva. I risultati evidenziano punti di forza e di

debolezza dei modelli considerati.

Infine, con riguardo ai modelli applicati agli incrementi dei tassi centrali di mor-

talità, viene analizzata l’ipotesi di varianza costante della struttura parametri-

ca. L’impatto di cambiamenti in questa assunzione viene analizzato mediante

un’ulteriore applicazione a dati reali.
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Chapter 1

Introduction

Life expectancy at birth has changed during the history in response to human life

changes and technological improvements. Among early humans this figure was

very different from that observed nowadays and ranged between 20 and 30 years.

Around 1750, life expectancy at birth in the more developed countries was still

around 30-40 years. The improvements began to increase more rapidly starting

by the end of the 19th century: it raised from 40-45 years to 60-65 around 1950,

up to over 70 years in the first years of the 21st century. Much of these changes

have happened in the last 150 years and there is no evidence that improvements

in longevity are slowing down. These changes in longevity are not uniform with

respect to ages: the age specific mortality levels structure changed its shape in re-

sponse to the evolution of society. An example of this is the reduction of mortality

at early ages due to improvements in medicine.

The level of mortality influence several aspects of our society. As a matter of fact,

the private and the public retirement systems, as well as other components of the

social security system, are planned and modified according to the values assumed

by mortality rates. In this context, it is important to know and forecast mortality

for any age and calendar year. Among the applications, one of the more notable

examples is related to correctly pricing and reserving for life insurance products.

Due to the relevance of this issue, several models have been proposed for forecast-

ing future mortality, and the literature is now wide. Nonetheless, none of these

approaches is considered uniformly better than the others. In the recent years,

interest on such models has grown and this is one of the hottest topic in actuarial

research. The present dissertation is aimed at studying developments on one of

1
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the most relevant models, introduced by Lee and Carter (1992). More specifically,

in this work the model is generalized to take into account multiple populations;

then the model variants are applied both on central death rates and on mortality

improvement rates.

A short review on the topic is given in Section 1.1. In Section 1.2 the summary

and the main contributions of the thesis are outlined.

1.1 Overview

In the previous section it is mentioned the fact that the structure of mortality

rates is changing, and that this process became faster in the last 100-150 years.

Observing a survival function (defined in Section 2.3.1), two main phenomena, the

so called rectangularization and expansion, emerge. The first one, rectangulariza-

tion, refers to the fact that deaths tend to concentrate around the upper limit age,

and the second one, expansion, means that this boundary tends to increase with

time. There are different views about what should be expected for the future;

some authors (Olshansky et al., 2005) argue that life expectancy might level off

or decline, while others (Oeppen and Vaupel, 2002) claim that there could not be

a limit to human life.

In actuarial sciences, one of the fields where this issue is strongly discussed, the

risk of underestimating mortality is called longevity risk. An insurance company

cannot consider too much prudential levels of mortality, otherwise they would

be not able to offer competitive prices. On the other hand, underestimating the

longevity of the customers could influence the solvency of the insurance company.

In population studies, many models were proposed for modelling and projecting

demographic quantities (see Booth (2006) for a review of the modern demographic

projection models). Regarding the forecasting of mortality, in many fields, such

as the actuarial one, the level of mortality is computed for every age and for every

calendar year of interest, then these values are ordered in a mortality matrix: this

is the data here considered.

Among the models used for projecting mortality rates, one of the most influential is

the one proposed in Lee and Carter (1992). This approach has received, in the last

years, great deal of attention and has been extended in several directions. Some of
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the extensions focus on different error structure (Brouhns et al., 2002), addition of

extra time factors (Renshaw and Haberman, 2003b) and the introduction of the

cohort effect (Renshaw and Haberman, 2006).

In this work the Lee-Carter model is taken as starting point for mortality mod-

elling. The reasons for choosing this model are related to its main characteristics.

First of all it has a simple structure and do not incorporate any knowledge on the

studied phenomenon. Therefore without particular intensive computations and

without taking into account biological, environmental or other factors, it is possi-

ble to obtain a set of parameters which describe the observed phenomenon. This

simplicity is not a drawback of the model: should be borne in mind that the aim

of the study is, in fact, to obtain a good projection regarding the future evolution

of mortality, not to analyse the observed values. The Lee-Carter model catch the

general trend of a mortality table and permits to project it into the future.

This thesis focuses on a specific issue related to forecasting mortality rates, that

is forecasting the mortality of more than one population at the same time. It is

then necessary that the different populations share some common characteristics,

such as similar socio-economic conditions, climate and geographical environment,

common genetic traits between the individuals, as well as other close connections.

Another important requirement is that these conditions should be expected to

continue in the future.

When a group of linked populations is observed, it is expected that similarities

and differences among them would be reflected even on mortality. In such a group

of populations the mortality should be considered linked but not equal, therefore

a specific way of forecasting mortality is needed.

In Li and Lee (2005) the importance of forecasting mortality jointly for related

populations was highlighted and, subsequently, other approaches for dealing with

multiple population data were proposed, as presented in the next chapter.

1.2 Summary and main contributions

The main contributions of this thesis regard extensions of the Lee-Carter model

in order to apply it to multiple populations datasets. The proposed approaches to

the problem consider common and/or specific factors, in order to give a series of
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models with different complexity, applied to the dataset or a transformed version

of it, the relative mortality improvement rates.

A short introduction to mortality rates, as well as some notions about forecasting

mortality, are outlined in Chapter 2. In the same chapter, a presentation of the

Lee-Carter model, with the review of the extensions that are relevant for this work

is provided.

In Chapter 3 the ten models used for the analysis are presented. The models are

explained giving attention to similar approaches present in the literature and the

relations between the models themselves. The models are then applied to regional

Italian mortality data in Chapter 4.

Chapter 5 discusses the introduction of an additional parameter in the case of

forecasting mortality improvement rates. In fact, in the model presented in Chap-

ter 3, the transformed mortality rates are modelled as realizations of independent

normal random variables with constant variance. The hypothesis of constant vari-

ance can be seen as too much restrictive, therefore the variance is allowed to vary

with respect to the age. The extended models are then applied to a set of Nordic

Countries.

Chapter 6 contains some concluding remarks.



Chapter 2

Introduction to mortality models

2.1 Introduction

The aim of this chapter is to introduce the problem of forecasting mortality. In

particular, the mortality phenomenon of human populations is studied using life

tables: a definition is given in Section 2.2 while Section 2.3 discusses some ba-

sic functions which are useful for better understanding the mortality models. In

Section 2.4 the concept of projected life tables is briefly revised and a possible

classification of existing models is presented. One of the most influential approach

which deals with mortality rates, the Lee-Carter model, is presented in Section

2.5, together with some extensions. In Section 2.6 the possibility of forecasting

mortality improvements is presented, with details about the most relevant pro-

posals. Section 2.7 deals with the notion of multiple population forecasts, with

focus on extensions of the Lee-carter model. In Section 2.8 a brief discussion is

provided.

2.2 Life tables

The life (or mortality) tables are an appropriate tool for conveniently study the

mortality phenomenon. A life table, for a specific population, is defined as a

decreasing sequence l0, l1, . . . , lω where lx represent the estimated number of people

alive at age x. The age takes the values x = 0, 1, . . . , ω, where ω is the upper limit

age, i.e. the age such that lω > 0 and lω+1 = 0.

5
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The decreasing sequence l0, l1, . . . , lω represents the number of people alive at every

age from an initial group of l0 individuals aged 0 in a specific year.

2.2.1 Cohort life table

The most intuitive approach for obtaining a life table consists in two steps. At first,

an initial group of l0 individuals in a specific year t is considered: this constitutes

the cohort of people born in the year t. Subsequently, this cohort is observed

longitudinally across the years. The object of observation is, year by year, the

actual number of individuals from the selected cohort alive at year t + x, with

x = 1, 2, . . . , ω.

A life table l0, l1, . . . , lω obtained with this procedure is called a cohort life table.

2.2.2 Period life table

There is another method for obtaining a mortality table, which does not require

to observe a cohort of individuals across years until its extinction. The first step

consists in estimating the qx, that is the probability of an individual age x dying

within one year, and is defined as

qx = P [Tx < 1]

where Tx is a random variable representing the remaining life for a person age

x. Once values of the age-specific probability of deaths qx are estimated for x =

0, 1, . . . , ω, the life table is computed recursively using the formula

lx+1 = lx(1− qx)

starting by an assigned value for l0 (usually is fixed equal to 100, 000). A life table

obtained in this way is called a period life table and represents the number of

survivors out of a hypothetical cohort composed by l0 individuals. The procedure

for the construction of a period life tables requires the observation of the mortality

phenomenon only for the chosen period, that can be one or a few years. This

approach is based on the assumption that the mortality pattern does not change

over time.
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2.3 Death probabilities

2.3.1 Basic functions

The random variable Tx is considered again, but it is studied in a continuous

context: ages and time are now assumed to take any number, not just integers.

The survival function S(t) is defined as

S(t) = P [T0 > t]

for t ≥ 0. A similar function of t is the distribution function of T0, defined as

F0(t) = P [T0 ≤ t] for t ≥ 0. Obviously, F0(t) = 1− S(t).

The force of mortality µx is defined by

µx = lim
t→0

P [Tx ≤ t]

t

and represents the instantaneous rate of mortality at a given age x. The force of

mortality is strictly connected with the survival function, in fact µx can be written

in terms of S(x). Since

P [Tx < t] =
P [x < T0 ≤ x+ t]

P [T0 > x]
= P [T0 ≤ x+ t|T0 > x] =

F0(x+ t)− F0(x)

S(x)

therefore

µx = lim
t→0

F0(x+ t)− F0(x)

tS(x)
=

1

S(x)
lim
t→0

F0(x+ t)− F0(x)

t

=
1

S(x)

∂

∂x
F0(x) = − 1

S(x)

∂

∂x
S(x).

It follows that S(x) = exp{−
∫ x

0
µz dz}.

The central death rate summarises the force of mortality over a given interval and

is denoted by mx for a given age x. The definition of mx is

mx =

∫ 1

0
S(x+ u)µx+u du∫ 1

0
S(x+ u) du

(2.1)
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that is the weighted mean of µz over the interval (x, x + 1), where the weighting

function is the probability of being alive at age x+ u (i.e. the survival function).

The formula (2.1) can be rewritten in a simplified way, since

∫ 1

0

S(x+ u)µx+u du = S(x)− S(x+ 1).

Furthermore, as
∫ 1

0
S(x+ u) du is often approximated using the trapezoidal rule,

(2.1) becomes

mx '
S(x)− S(x+ 1)

(S(x) + S(x+ 1))/2

which should be used when only some data are available, for example when only

a life table is available. In fact, the quantities defined above regards a time-

continuous phenomenon, but are often in practice treated in a discrete context.

A model used for describing mortality age patterns in terms of parametric func-

tions, e.g. µx or S(x), is called a mortality law.

2.3.2 Approximations and estimating procedure

Approximation methods are widely used in actuarial practice in order to obtain

the survival function for all real ages x starting by a life table. The assumption

adopted here is the piece-wise constant force of mortality within each integer age

band. This means that, for every age x and every value t such that 0 ≤ t < 1, we

have µx+t = µ(x), where µ(x) is the force of mortality corresponding to age x. Due

to this assumption, from the definition of central death rate, it follows that

mx = µx.

So far, the calendar year has been kept fixed. In the study of mortality data

through time, more than one calendar year is considered, hence a new notation

should be used. From now on we indicate with the index t the calendar year and

with mx,t the central death rate relative to age x in the calendar year t. The

central death rates, and consequently the corresponding forces of mortality, are

estimated with the crude death rate which is, for age x and year t, defined as

m̂x,t =
Dx,t

ETRx,t

,
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where Dx,t is the number of deaths recorded at age x last birthday during the

calendar year t and ETRx,t is the exposure to risk for age x and year t. The

exposure to risk is a measure of individuals with a certain age x in the calendar

year t. This number can be seen as the average of the individuals aged x over the

selected calendar year. Clearly, this average is adjusted by the length of time the

individuals actually remains in the population.

Once the central death rates has been estimated, the values of qx,t should be

obtained for the construction of the life table. Central death rates and death

probabilities are usually very close to one another in value and, under the assump-

tion of piece-wise constant force of mortality, are approximately related with the

formula

qx,t ' 1− exp{−mx,t}.

For more details on life tables and mortality estimation procedures see Pitacco

et al. (2009).

2.4 Forecasting mortality

2.4.1 Projected life table

Due to the fact that human mortality has strongly declined over the last decades,

period life tables cannot be used in actuarial practice for all the life insurance

products. As mentioned before, such life tables are constructed under the as-

sumption that mortality phenomenon is time constant. For this reasons, the use

of period life table in actuarial practice is restricted to short or medium term in-

surance products, i.e. applied to a time interval of 5 or 10 years. However, many

life insurance products, as life annuities and pension plans, require to consider

longer time intervals. The life tables used in this case should be constructed in

order to incorporate the experienced mortality trend, with the aim to anticipate

its future evolution. Such a life table is called a projected life table and it is based

on forecast mortality rates.
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2.4.2 Classification of forecasting methods

The problem of forecasting mortality has been widely discussed, and it is still

considered a hot topic among actuaries and demographers. There are several

different mortality models in the literature, and there is more than one way to

classify these methods (Tabeau et al., 2001). The classification shortly summarized

below is the one used in Booth (2006), where three main approaches to forecast

demographic processes are indicated.

The first approach refers to extrapolative methods, which are based on the as-

sumption that trends observed in the past are likely to remain constant into the

future. Such an approach does not incorporate into the analysis any knowledge

about the studied phenomenon. An example of extrapolative methods is the direct

application of univariate ARIMA models (Box and Jenkins, 1976) to demographic

time series in order to obtain forecasts.

The second one is the expectation approach, and it is based on demographic devel-

opments that are considered more likely to occur. The expectation about future

trends are usually decided using the intuition or the informed judgement of ex-

perts in the considered field. Some demographic projections performed using the

expectation approach can be found in Lutz (1996).

The third approach collects the theory-based structural modelling involving ex-

ogenous variables. These models are constructed in order to explain demographic

quantities using the relationship between the index object of interest and other

variables. Many of these models start by collecting informations about the phe-

nomena, then they are estimated using regression. A review of structural models

for population projections by a socio-economic perspective is in Sanderson (1998).

In some cases, the classification of a particular model into the three approaches

presented may be ambiguous.

Between the extrapolative methods applied to mortality data, one in particular is

receiving great deal of attention due to its good predictive power and its simple

structure: the Lee-Carter model (Lee and Carter, 1992).
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2.5 Lee-Carter model and principal extensions

2.5.1 The original Lee-Carter formulation

The original formulation of the Lee-Carter model, presented in Lee and Carter

(1992), is

logmx,t = ax + bxkt + εx,t. (2.2)

The logarithm of the central death rates mx,t is specified as a function of x, ax,

which is the general mortality shape across age, a bilinear term bxkt and an error

term εx,t ∼ N(0, σ2) which reflects the age-specific variability that is not captured

by the model. The bilinear term is composed by kt, an index of the level of

mortality across time, and bx, the age specific response to variations in the time

index. A model written in this way is overparametrised, therefore Lee and Carter

introduced two additional constraints to determine a unique solution, i.e.

∑
x

bx = 1 and
∑
t

kt = 0. (2.3)

This model does not describe mortality age patterns in terms of parametric func-

tions, therefore cannot be considered a mortality law. In fact, the dependence on

age is non parametric, as it is given by the sequences ax and bx. Another charac-

teristic that should be noticed is that there are no observable variables between

the independent variables. Due to this aspect, the Lee-Carter model cannot be es-

timated by simple regression. Lee and Carter proposed to estimate the parameters

with two steps, at first the âx are computed, then the bilinear term b̂xk̂t.

The values of âx are the averages over time of the logmx,t: this follows by con-

sidering the sum over time of (2.2), then applying the second of the constraints

in (2.3). Once the âx are computed, they are subtracted from the corresponding

logarithm of the death rates, and results are placed in a matrix, with ages on rows

and years on columns, where the generic element is the centered log death rate

log m̂x,t = logmx,t − âx. (2.4)

The estimated values for the bilinear term bxkt are the two first terms of the singu-

lar value decomposition of the centered log death rates matrix. A solution obtained

in this way does not satisfy (2.3), thus the following operations are performed
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1. obtain k̄ as the average of k̂t;

2. compute B =
∑

x b̂x;

3. replace âx with âx + b̂xk̄;

4. substitute k̂t with (k̂t − k̄)B;

5. replace b̂x with b̂x/B.

Once the parameters are estimated, the time varying coefficients kt are modelled

as an ARIMA process. The time series of the kt is the only part of the model

that should be forecast in order to obtain the future mortality rates. Lee and

Carter observed that in most cases a random walk with drift can be appropriate

for modelling the time varying coefficients.

2.5.2 The Poisson assumption

In the specification of the model described in the previous section the random er-

rors are homoscedastic, which is commonly a strong and often unrealistic hypoth-

esis. In order to solve this problem, Brouhns et al. (2002) proposed a modification

of the Lee-Carter model assuming that the number of deaths is a realisation of a

Poisson random variable:

Dx,t ∼ Poisson (ETRx,t µx,t) ,

where ETRx,t is the central number of exposure to risk and

log µx,t = αx + βxkt,
∑
x

bx = 1,
∑
t

kt = 0

which has the form of the Lee-Carter model.

The procedure for estimating the parameters proposed in Lee and Carter (1992)

is no longer valid. The approach proposed by Brouhns et al. (2002) consists in

maximising the log-likelihood function

l =
∑
x,t

{Dx,t(αx + βxkt)− ETRx,t exp(αx + βxkt)}+ constant. (2.5)
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Optimisation is done with an iterative procedure, such as the Newton-Raphson

method. The starting points for the algorithm are 0 for α̂x and k̂t, whereas β̂x are

set equal to 1. If j denotes the generic iteration, the parameter θ at the (j+ 1)-th

iteration is obtained using the updating scheme

θ̂(j+1) = θ̂(j) − ∂l(j)/∂θ

∂2l(j)/∂2θ2

where l(j) is (2.5) in which the values of the parameters are the ones obtained in

iteration j. This updating scheme applied to (2.5) is formalized in the following

three formulas

1. α̂
(j+1)
x = α̂

(j)
x −

∑
t(Dx,t − ETRx,t exp(α̂

(j)
x + β̂

(j)
x k̂

(j)
t ))∑

t−ETRx,t exp(α̂
(j)
x + β̂

(j)
x k̂

(j)
t )

2. k̂
(j+1)
t = k̂

(j)
t −

∑
x(Dx,t − ETRx,t exp(α̂

(j+1)
x + β̂

(j)
x k̂

(j)
t ))β̂

(j)
x∑

x−ETRx,t exp(α̂
(j+1)
x + β̂

(j)
x k̂

(j)
t )(β̂

(j)
x )2

3. β̂
(j+1)
x = β̂

(j)
x −

∑
t(Dx,t − ETRx,t exp(α̂

(j+1)
x + β̂

(j)
x k̂

(j+1)
t ))k̂

(j+1)
x∑

t−ETRx,t exp(α̂
(j+1)
x + β̂

(j)
x k̂

(j+1)
t )(k̂

(j+1)
x )2

.

The updating scheme is repeated until the variation of the log-likelihood function

into successive iterations is below a given threshold. At the end of the estimating

procedure the identifiability constraints are applied using the steps described in

the previous section.

The time index kt is then forecast as in the Lee-Carter model.

2.5.3 Other relevant extensions

Due to its diffusion, the Lee-Carter model has been a hot research topic over the

last twenty years. What follows are some of the most relevant proposed extensions.

Evaluating more complex model structures

When mortality data are described using parsimonious models as the Lee-Carter

one, a significant part of the variance remains not explained. In order to improve

the approximation of the model to the phenomenon, some generalizations of the

Lee-Carter model were proposed.
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In the original version of Lee-Carter model, parameters are obtained as the first

terms of singular value decomposition (SVD). The idea of considering the second

and possibly higher terms of SVD was introduced in Booth et al. (2002a). In that

work a Lee-Carter model with n bilinear components, i.e.

logmx,t = ax +
n∑
i=1

b(i)
x k

(i)
t ,

is taken as a starting point for further analysis. The first bilinear term is obtained

by applying SVD to the data, then the authors suggest an estimating procedure

which incorporates the bilinear components one by one. At every step, the pa-

rameters are adjusted, then a new SVD is performed.

In Renshaw and Haberman (2003c) the quality of modelling mortality data with

particular attention to the residuals using Lee-Carter models is discussed. This

analysis not only shows that the first SVD component fails in capturing some

important aspects of the data, but also highlights the presence of noteworthy

residual patterns in the second SVD vectors. A further discussion on Lee-Carter

models with more than one bilinear component can be found in Renshaw and

Haberman (2003b), where the first two sets of SVD vectors are used. A different

perspective is adopted in Renshaw and Haberman (2003a), where the Lee-Carter

model is estimated using two or more terms of the SVD, then the time-varying

coefficients are forecast using multivariate time series.

The idea of generalising Lee-Carter model incorporating other terms is stressed

in Hyndman and Ullah (2007), where some examples of models based on this

intuition are listed. These variants are designed in order to threat differences

between groups, or to incorporate more complex cases where several parameters

are included, as

yt,j(x) = µj(x) +
K∑
k=1

βt,kφk(x) +
L∑
l=1

γt,j,lψl,j(x) + et,j(x)

where yt,j(x) is used to define the central death rates. By choosing the parameters

appropriately, the previous general formula includes a wide number of different

model designs.
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Smoothing the parameters

One strengths of the Lee-Carter model is its simplicity. As a matter of fact, in the

original formulation, once the parameters has been estimated, the forecast values

are obtained by modelling just one time series. However, this aspect can be a

problem in some cases. In fact, parameters irregularities are magnified when future

values are computed. Whereas it is reasonable that the time-varying coefficients

kt present an irregular path, it is intuitive to think that the ax and bx should have

a smooth shape. The idea of smoothing the age-dependent parameters is used in

Renshaw and Haberman (2003d). In that work the mortality is expressed in terms

of reduction factors RF , defined by the equation

µx,t = µx,0RFx,t

for all t ≥ 0 such that RFx,0 = 1 for every x, and 0 < RFx,t ≤ 1 for every x

when t > 0. Once estimated the reduction factors, the authors applied the Lee-

Carter model to forecast these values, but they modified appropriately the original

approach and incorporate a smoothing of ax and bx. This approach is used also in

Renshaw and Haberman (2003c), where different approaches are compared.

In De Jong and Tickle (2006) the notion of smoothing is applied again in this

context and a smooth version of the Lee-Carter model was proposed. The smooth

version is here obtained using some terms of SVD applied to a generalised version

of the approach proposed in Lee and Carter (1992). The aim in this case is to

ensure smoothness in the age direction.

Another application of smoothing idea in this context can be found in Delwarde

et al. (2007). In that work the attention is on the coefficients bx, and the proposed

approach assures values that are smooth. This is applied to the classical Lee-Carter

model and the Poisson log-bilinear model (Brouhns et al., 2002). The choice of the

optimal value for the smoothing parameter is performed using cross validation.

The cohort effect

The cohort effect modelled with an additional parameter of Lee-Carter model was

introduced in Renshaw and Haberman (2006). In that work, the authors consider

logmx,t = ax + b(0)
x ιt−x + b(1)

x kt
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which is the Lee-Carter classical model formulation with a new term: b
(0)
x ιt−x. The

parameter ιt−x depends on the specific age of birth t− x. In Renshaw and Haber-

man (2006) this approach is applied using different choices of the error distribution.

The results evidence how the introduction of cohort effect reduces significantly the

presence of systematic behaviours in the residuals. This reduction is more evident

if the residuals are analysed with respect to years of birth.

2.6 Mortality improvement rates

Modelling the central death rates or the force of mortality is not the only way to

forecast future mortality. An alternative approach proposed in the literature is to

model the improvements in mortality rates, rather than the rates themselves.

One example of this approach was used in Group Annuity Valuation Table Task

Force (1995), where a procedure used for obtaining a new mortality table is de-

scribed. In that work, the use of observed trends in mortality improvement rates

for obtaining the future mortality values is considered appropriate. In fact, given

qx,t, the value of qx,t+n is obtained with the relation

qx,t+n = qx,t(1− AAx)n

where AAx is the annual improvement factor in the mortality rate for age x.

2.6.1 The volatility of the improvements

With a different perspective, the mortality improvement rates were used in Willets

(2004), where the cohort effect in U.K. is analysed using three-dimensional block

graphs of the improvement rates, as in Willets (1999). In the former work the

representation regards the average mortality improvement rates by 5 years age

groups and by 5 calendar years groups: each represented value is the mean of

25 mortality improvement rates. Furthermore, Willets (2004) gives some other

remarks using the values of the improvements, but always taking into account the

average of grouped data.

Some similarities can be seen in Baxter (2007), where the existence of a minimum

level of improvement in mortality rates for future years is discussed. The rate of
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improvements in mortality

1− qx,t
qx,t−1

is studied in its historic trends. Furthermore, it is argued that an appropriate

average of the past improvements can be used for actuarial projections.

Averaging these modified version of mortality values can help in the analysis:

improvements in mortality are usually much more volatile rather than the rates

themselves. In fact, if we apply the ratio between one mortality rate and that of

the previous year, considering real data, we would obtain quite unstable results.

Another work where this problem is also discussed is Richards et al. (2005) where

the mortality improvement rates are defined as

∆mx,t = 1− mx,t

mx,t−1

.

Subsequently, the authors removed the effects of random variations by smoothing

with a moving average.

2.6.2 Recent developments

A different approach was proposed in Haberman and Renshaw (2012), where a

more stable formulation for mortality improvement rates was introduced. The

idea is to create values that do not need to be smoothed in a second stage. The

transformation applied to the central death rates is

zx,t = 2
1−mx,t/mx,t−1

1 +mx,t/mx,t−1

.

The authors refer to this version of mortality improvement rates as scaled or rela-

tive, due to its structure that reduces the magnitude of the extreme values (further

remarks on this formula are in Section 3.2.2). The aim of Haberman and Renshaw

(2012) is to model and forecast the values of zx,t from an extrapolative perspec-

tive. That work is extended in order to include the cohort effect in Haberman and

Renshaw (2013).
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2.7 Multiple populations mortality models

The approaches for modelling and forecasting mortality catch the general mortality

trend of a population. However, there are cases when the observed population is

divided into subpopulations, or it is the combination of more than one population.

In spite of models such as Lee-Carter, which are single population oriented, in the

above mentioned cases two or more populations must be dealt with. One simple

solution consists in merging the considered populations (or subpopulations) and

to study them as an aggregate. This could be useful in terms of stability, since

larger population usually implies less variability in the mortality process. However,

if someone chooses to follow that way, there is a relevant waste of informations

about the mortality process. The alternative is to separately study the mortality

of all considered populations. In this way it is possible to observe and study

differences in the mortality patterns.

2.7.1 Common and specific factors

Convergence and coherence

In Wilson (2001) an important concept was documented: a global convergence in

mortality levels. This should be taken in consideration for multiple populations

analysis. Clearly, in a medium-short time horizon it is not possible to observe

a global convergence. Conversely, a similar mortality path can be expected be-

tween populations which shares similar characteristics. An example where this is

valid could be given in neighbouring countries with similar economies and welfare

systems. These similarities are obviously stronger if we consider regions (or other

subpopulations) within a country. Starting with this idea, Li and Lee (2005) shows

the importance of avoiding that the difference of general mortality levels in the

forecasts for related population increase across the years. The authors propose an

extension of Lee-Carter model that considers more than one population and guar-

antee non-divergent forecasts of life expectancy in the long run, and they called

such an analysis a coherent forecast.

In Li and Lee (2005) the model assumes the form of

logmx,t,i = ax,i +BxKt + bx,ikt,i + εx,t,i, (2.6)
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where the index i refers to the i-th population. We can observe, in (2.6), the

presence of two bilinear terms: a common factor BxKt, that assures a long-term

convergence in mortality, and a specific factor bx,ikt,i, which allows for short or

medium term differences. The authors show that the convergence is guaranteed

if the time varying coefficients of the specific terms tend toward a constant value,

hence kt,i should has a null long-term mean. This is to assure the coherence of the

forecasts.

Relative approach

As in Li and Lee (2005), the mortality rates are studied following a relative per-

spective in Villegas and Haberman (2014). In particular, the mortality modelling

of subpopulations within a larger population is investigated. The authors specify

the larger population mortality with an age-period-cohort Lee-Carter model

logm′x,t = α′x + β′xk
′
t + γ′t−x,

then mortality of the subpopulation i as

logmx,t,i = logm′x,t + αx,i + βxkt,i.

Considering the entire population and a part of it as a subpopulation assures to

have consistency between them. The mortality data of the larger population are

usually more accurate and allow to introduce a cohort effect, that is reasonably

in common for socio-economic subpopulations within a country. Furthermore, the

data of the larger population are usually available for a longer years interval. In

their work, the authors suggest a way to consider these additional data into the

analysis, in order to obtain a more precise estimation of the long-run mortality

trend.

2.7.2 Other extensions of Lee-Carter model

One of the first extensions of the Lee-Carter model regarding more than one pop-

ulation was introduced in Carter and Lee (1992), where the U.S. population is

divided into two groups: male and females. In that work three alternatives are

presented in order to study the two subpopulations together. The first is the
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straightforward separate application of the Lee-Carter model, with the possibility

of searching for dependence between the two time varying coefficients after the

estimation procedure. The second approach proposed is to estimate a single vec-

tor kt which could be appropriate for both the populations. The third approach

consists in modelling the data as a co-integrated process. However, in the paper

Lee and Carter discuss with more emphasis the first approach, and use the other

two approaches for results comparison or for making further considerations.

Subsequently, other extensions of the Lee-Carter model for treating multiple pop-

ulations were proposed. The philosophy that connect some of these approaches is

the idea of adding terms to the original formulation of Lee-Carter model. The aim

is to introduce terms that allow to reproduce differences and similarities among

several populations instead of adding terms in order to explain more accurately the

data of a single population, as seen in most of the approaches presented in Section

2.5.3. Many of these proposals can be seen as particular cases of the general form

logmx,t,i =
L∑
l=1

β
(l)
x,ik

(l)
t γ

(l)
i (2.7)

where i is the considered population. Formula (2.7) is similar to the general

formulation used in Cairns et al. (2009).

Common factor model

Considering a common factor is a first extension of the Lee-Carter model which

permits to deal with more than one population. It can be obtained by choosing

in (2.7) a formulation with two terms, i.e. L = 2, with k
(1)
t = γ

(1)
i = γ

(2)
i = 1 and

β
(2)
x,i = βx. Accordingly, the formula

logmx,t,i = ax,i + bxkt + εx,t,i (2.8)

where ax,i is the general level of mortality of the i-th population is obtained.

Conversely, the bilinear component is common to all the groups. It follows that

this approach considers a common evolution of the mortality, which is added to a

population-specific mortality level. This approach was used as a starting point in

Li and Lee (2005). In fact, in their paper, the authors start by using the formula

(2.8), then they add the specific terms and obtained the formulation described in



Chapter 2. Introduction to mortality models 21

(2.6). This model is also discussed in Li and Hardy (2011), where it is compared

with other three approaches. In this last work, formula (2.8) is extended in a

second step as in (2.6) in order to add population-specific terms. The extended

version of this formula is also known as augmented common factor model (Li and

Hardy, 2011).

Common time-varying coefficient

Another perspective for dealing with the problem of coherent forecasting can be

obtained with a specification which is slightly different with respect to (2.8). It

consists in

logmx,t,i = ax,i + bx,ikt + εx,t,i, (2.9)

where bx,i substitutes bx. This means that, with this specification, only the time

varying coefficient kt is common to all the populations. This model was introduced

as one of the possible implementations of Lee-Carter model in Carter and Lee

(1992). Furthermore, specification (2.9) is one of the four considered variants of

Lee-Carter model compared in Li and Hardy (2011).

In Wilmoth and Valkonen (2001) the authors considered Finnish mortality data

partitioned by social group, and use a generalised Lee-Carter model to deal with

it. The generalisation consists in a Lee-Carter model with C covariates, each with

one or more categories. For instance, considering two covariates, denoted by c1

and c2, the approach described in Wilmoth and Valkonen (2001) can be written

as

logmx,t,τ1,τ2 = λ(0) + λ(1)
τ1

+ λ(2)
τ2

+ α(0)
x + α(1)

x,τ1
+ α(2)

x,τ2
+ (β(0)

x + β(1)
x,τ1

+ β(2)
x,τ2

)kt

where

• τ1 and τ2 are respectively the categories of the covariates c1 and c2;

• λ(0) is the overall level of mortality, with an adjustment of λ
(c)
τ , for the τ -th

category of the c-th factor;

• α(0) is the typical age pattern of mortality, with an adjustment of α
(c)
τ , for

the τ -th category of the c-th factor;
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• β(0) is the age pattern of mortality decline, with an adjustment of β
(c)
τ , for

the τ -th category of the c-th factor;

• kt represents the time pattern of mortality.

Note that the time-varying component kt is assumed to be constant across social

categories.

Stratified Lee-Carter model

The classical Lee-Carter model is extended in Butt and Haberman (2009) in order

to include an additional covariate. It can be obtained by (2.7) in the same way as

in the common factor Lee-Carter models, i.e. choosing a formulation with L = 2

and k
(1)
t = γ

(1)
i = γ

(2)
i = 1 and β

(2)
x,i = βx. The proposed variation aims to quantify

the differences in mortality of populations subgroups. Unlike the common factor

Lee-Carter models, the general shape term ax term of (2.2) is seen here as

ax,i = ax + ai.

With this modification applied to (2.8), the authors define the stratified Lee-Carter

model as

logmx,t,i = ax + ai + bxkt + εx,t,i. (2.10)

The additional parameter ai is the relative difference between the age-specific

mortality profiles of the subpopulation i with respect to the generic ax. The

stratified Lee-Carter model has similarities with the approach seen in Li and Lee

(2005), due to its structure with a common factor plus specific terms.

A similar approach can be seen in Currie (2009a) and Currie (2010). The specifi-

cation of this model is similar to (2.10), with the addition of another term. The

Author proposed

logmx,t,i = ax + a0
i + a1

ix+ bxkt + εx,t,i, (2.11)

where a0
i + a1

ix is a linear adjustment term which depends on the considered

population. This population-specific linear adjustment determines the popula-

tion mortality levels. The idea of levels in mortality is the same as in Butt and

Haberman (2009), but in (2.11) the levels are defined proportionally to the age,
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rather than with an additive constant. Equation (2.11) is a variant of the Piggy-

back model, presented in Currie (2009b) and Currie (2009c), that was designed to

make estimation and forecast which are based on an existing Lee-Carter model.

Three-way Lee-Carter model

The so called three-way Lee-Carter model was introduced in Russolillo et al.

(2011). Its formulation is

logmx,t,i = ax,i + bxktγi, (2.12)

which is (2.7) with L = 2, k
(1)
t = γ

(1)
i = 1 and β

(2)
x,i = β

(2)
x for all i. The interpreta-

tion of the parameters in (2.12) is the classical one for ax,i, bx and kt. The term γi

is the factor associated to the i-th population. This factor influence the mortality

levels in a multiplicative way. In Russolillo et al. (2011) the authors consider the

mean-centered death rates, as defined in (2.4), then estimate the parameters using

singular value decomposition, as in Lee and Carter (1992). Conversely, a gener-

alised SVD should be used here, due to the three dimensions of the considered

data, and the SVD first components gives (2.12).

2.7.3 Focus on the time varying coefficient

In this Section we want to emphasise the possibility of forecasting the populations

separately, each with its own time index. In a second stage the correlation between

the populations is introduced from modelling jointly the time varying coefficients.

Lee-Carter model is not the only starting point in this approach. In particular

there are two important proposals, the first is the so called gravity model and the

second is based on a Bayesian perspective. These two approaches, as well as some

applications to the Lee-Carter model, are presented in the sequel.

Lee-Carter models with co-integrated time indices

As mentioned before, Carter and Lee (1992) introduced some possible extensions of

their model in order to consider more than one population. One of these methods

considers the time varying coefficients as a co-integrated process. This follows from
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the intuition that there are common components across the considered kt series.

An example of this is when time series share the same trend. The authors refer

to the relationship between the series not as direct and explicit, but it is assumed

that all the series respond similarly to unknown and exogenous forces. In order to

obtain forecast values that move together in the long-term, Carter and Lee (1992)

suggested to use co-integrated time series, rather than multivariate structural time

series. This means that, when looking at two populations, the mortality evolution

is determined by just one unobserved driving force, instead of two.

The Lee-Carter model with co-integrated time indices is also studied in Li and

Hardy (2011), among other models. The authors explain the importance of testing

for co-integration before proceeding with this method. In Li and Hardy (2011) the

co-integration is proved for the considered dataset using both a statistic test and

a graphical analysis.

The co-integration analysis of the time indices applied to the Lee-Carter model is

also performed in Yang and Wang (2013), where further a vector error correction

model (VECM) is applied to mortality forecast. Another work where the VECM

approach is studied is Zhou et al. (2013).

The gravity model

The so called gravity model was introduced in Dowd et al. (2011). The main idea

is to create a model inspired to the gravitational force. The authors distinguish

between two cases: two populations with similar size (such as males and females

within a country), and one population much larger than the other. In Dowd

et al. (2011) the focus is on this last case, following the intuition that the larger

population exerts a pull on the smaller one. Two mortality datasets, coming from

a larger population, denoted by (1), and a smaller population, denoted by (2), are

considered. The data are modelled with the following age-period-cohort model

logm
(1)
x,t = β(1)

x + n−1
a k

(1)
t + n−1

a γ
(1)
t−x (2.13)

logm
(2)
x,t = β(2)

x + n−1
a k

(2)
t + n−1

a γ
(2)
t−x (2.14)

where, for i = 1, 2, can be seen

• k(i)
t , the time dependent parameter;
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• β(i)
x , the age dependent parameter;

• γ(i)
t−x, the cohort effect;

• n−1
a , the number of ages in the sample data used to estimate the parameters.

The gravity effect depends on the way of modelling k
(i)
t and γ

(i)
t−x. The time varying

coefficients of the two populations are modelled by

k
(1)
t = k

(1)
t−1 + µ(1) + C(11)Z

(1)
t

k
(2)
t = k

(2)
t−1 + φ(k

(1)
t−1 − k(2)

t−1) + µ(2) + C(21)Z
(1)
t + C(22)Z

(2)
t

where, for i = 1, 2,

• µ(i) is a constant drift term;

• φ(k) ≥ 0 is the gravity parameter;

• C =

[
C(1,1) C(1,2)

C(2,1) C(2,2)

]
is the two by two dimensions correlation matrix;

• Z(i)
t is an independent error distributed as a standard normal random vari-

able.

Notice that the time varying coefficient of the larger population k
(1)
t is described

as a random walk with drift. Its path influences the behaviour of the time index

of the smaller population k
(2)
t , proportionally to φ. The cohort time index γ

(i)
t−x is

specified similarly.

Introducing a Bayesian perspective

A version of the age-period-cohort model in (2.13) and (2.14) is used as a starting

point in Cairns et al. (2011). As in the gravity model, in that work two cases are

discussed: one where one population is dominant, and the other where two equal

populations are considered. The model is then estimated in a Bayesian framework,

in order to allow for different trends in the short run, but parallel improvements

in the long run. The authors show how it is possible to obtain the parameters

of the mortality models jointly for the two populations. These parameters should

determine mortality forecast values in short and long term, according to opportune
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characteristics in short and long term. The estimation procedure is based on the

Bayesian Markov chain Monte Carlo approach. The approach presented in Cairns

et al. (2011) can help in dealing with small populations, where usually there is a

strong volatility, or in presence of missing values.

2.7.4 Relative models

Another perspective adopted for forecasting multiple populations mortality is

given by relative models. A model is called relative if the mortality of the target

population is specified as difference with respect to the reference one. Examples

of this in the context of Lee-Carter type models, are the Li and Lee (2005), Li and

Hardy (2011) and the Piggyback model. However, there are examples of relative

models which are not defined as extensions of the Lee-Carter structure. Some of

the most influential models are presented in the following subsections.

The SAINT model

Jarner and Kryger (2011) proposed an approach for the robust forecasting of small

population mortality. The main idea consist in estimating the long term trend of

a large population at first. In a second stage the small population mortality level

is specified in terms of deviation from the long term trend obtained for the large

population. The mortality levels estimated in large populations are usually less

volatile and more regular than those estimated in smaller populations. With this

perspective, death counts of the large population, denoted by l, are modelled as

independent Poisson random variables, thus

Dl
x,t ∼ Poisson(µ̂lx,tE

l
x,t)

where µ̂lx,t is the force of mortality. It should be noticed that, if µ̂lx,t is defined

through a Lee-Carter model, this specification is the same as that in Brouhns et al.

(2002). However, other parametric structures for µ̂lx,t can be considered.

Subsequently, death counts of the small population, denoted by s, are modelled as

Ds
x,t ∼ Poisson(µ̂sx,tE

s
x,t)
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with

µ̂sx,t = µ̂lx,t exp(y′trx).

The bilinear term y′trx is a measure of the difference in mortality between the

large population and the small one. This spread is defined in a way which allows

different parametric specifications, such as the Lee-Carter one. This method,

based on the spread between the mortality data, is called SAINT (Spread Adjusted

InterNational Trend).

A similar approach is used in Jarner and Møller (2013), where longevity risk is

considered. In that work the authors first estimate a mortality benchmark then,

given the benchmark, each company estimates its own specific mortality.

Plat relative model

Similarly to the SAINT model, in Plat (2009b) a relative approach is proposed.

The aim is to quantify the mortality level for a specific insurance portfolio. It is

clear that the size of an insurance portfolio is much smaller than the entire popu-

lation. The author suggests to use a stochastic model which target the insurance

portfolio, and to combine it with the mortality process of the entire population.

This last process drives the mortality rates evolution of the specific portfolio.

The object of analysis is the quantity Px,t, defined by

Px,t =
qsx,t
qlx,t

which is the ratio between the portfolio specific mortality rate qsx,t and the country

population mortality rate qlx,t, for every age x and year t. As the difference between

the two populations is expected to reduce at higher ages, the value of Px,t should

approach 1 for x close to the upper limit ω.

The proposed model for Px,t is

Px,t = 1 +
n∑
i=1

b(i)
x k

(i)
t + εx,t,
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where n is the number of bilinear components bixk
i
t considered in the model and

εx,t is the error term. In order to ensure that Px,t approaches 1, the constraint

n∑
i=1

b(i)
x k

(i)
ω = 0

is added. The authors explain how the model can be set in different ways, de-

pending on the characteristics of the data.

The sum of two models

Another approach for studying the mortality of a small population with respect

to the changes in a larger population can be found in Wan et al. (2013). The

proposed specification consists in the combination of two different models. In

fact, the authors consider

logmx,t,i = βx + k1
t + k2

t (x− x̂) + γt−x + ax,i +
m∑
j=1

b
(j)
x,ik

(j)
t,i . (2.15)

The first part of this formula, i.e.

βx + k1
t + k2

t (x− x̂) + γt−x,

is the Plat age-period-cohort model (Plat, 2009a) and it is used to model the

mortality of the larger population. It is composed by

• x̂, the mean age in the sample range;

• βx, the general mortality shape by age;

• k1
t , the changes in the level of mortality for all ages with respect to the year;

• k2
t , which allows the changes in mortality to vary by ages;

• γt−x, the cohort effect.

The second part of (2.15), that is

ax,i +
m∑
j=1

b
(j)
x,ik

(j)
t,i ,
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is a Lee-Carter model with a generalised number of bilinear terms (Booth et al.,

2002a), and it is used for modelling the spread between the large and the small

populations. Clearly, formula (2.15) requires additional constraints, some for the

Plat model part and some for the Lee-Carter model part, summarised in Wan

et al. (2013).

The product ratio method

In Hyndman et al. (2013), the authors study the mortality of two populations, but

not directly in terms of mortality rates. Instead, two other quantities are defined.

Considering two populations, e.g. males and females, denoted respectively by M

and F , the defined quantities are the products

px,t =
√
mM
x,tm

F
x,t (2.16)

and the ratios

rx,t =
√
mM
x,t/m

F
x,t, (2.17)

where mi
x,t are the smoothed mortality rates of the i-th population, i = M,F . The

quantities px,t and rx,t are then modelled by a Lee-Carter type model, as proposed

in Hyndman and Ullah (2007), that is

log px,t = µpx +
K∑
k=1

β
(k)
t φ(k)

x + εpx,t (2.18)

log rx,t = µrx +
L∑
l=1

β
(l)
t φ

(l)
x + εrx,t, (2.19)

where K and L are the number of considered bilinear terms. Formulas (2.16) and

(2.17) can be generalised in order to deal with more than two populations. The

corresponding versions of (2.16) and (2.17) are then

px,t =
[
f

(1)
x,t f

(2)
x,t . . . f

(I)
x,t

]1/I

for the products and

r
(i)
x,t = f

(i)
x,t/px,t
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for the ratios, where the index i = 1, . . . , I refers to the considered population.

The parametric structures (2.18) and (2.19) are opportunely modified in order to

deal with I populations, as shown in Hyndman et al. (2013).

Generalised linear model approach

Hatzopoulos and Haberman (2013) used a method for multiple populations mor-

tality forecasting which is based on generalised linear modelling. The authors

select a pool of countries characterised by a common pattern of mortality dynam-

ics. The selection is performed using cluster analysis.

Once the countries with similar mortality dynamics has been selected, death counts

for all the populations are specified using a generalised linear model. A system of

weights is introduced in order to avoid that the larger populations dominate the

overall mortality trend. In this way the authors give equal weight to the mortality

dynamic of each country.

Generalised linear models in a multi-population framework are also used in Biatat

and Currie (2010). In that paper, mortality tables are smoothed, then classified

and compared in terms of their distance from a reference table.

2.7.5 Forecasting mortality using mixed mortality data

The problem of small population mortality forecasting is analysed in Ahcan et al.

(2014) with a perspective that differs from the approaches seen so far. In fact, in

that work a method is developed to deal with data which present problems, such

as missing data or a very high volatility. The idea is here to replicate the mortality

of the small population using mortality data of similar countries. In Ahcan et al.

(2014) neighbouring countries are used as reference populations. New data are

obtained by mixing the observed mortality of the small population with that of

the reference populations.
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2.8 Discussion

This chapter outlines how the mortality phenomenon can be summarised in order

to being conveniently used in practice. However, the mortality is a dynamic phe-

nomenon, thus the described synthetic quantities cannot be applied on wide time

intervals.

The consequence of this problem is the need of projected mortality tables, in order

to anticipate the future trends. Several models were proposed in the literature in

order to obtain accurate forecasts. In particular, in this thesis the focus in on

the Lee-Carter model and its extensions, that produce good quality forecasts with

reasonable and simple model structures.

A specific aspect of forecasting mortality is here investigated: forecasting mortality

of more than one population. Some of the most influential models are reviewed

in this chapter. Many of these approaches use Lee-Carter model as a starting

point or in some step of the method. In these works, new parameters are added

to the Lee-Carter model in order to catch some further characteristics of the data.

Nevertheless, it is desirable that a model for coherent forecast is as parsimonious as

possible. In fact, theoretic Lee-Carter generalisations in the number of parameters,

as proposed in Hyndman and Ullah (2007), have been used mostly in the more

concise forms possible.





Chapter 3

Generalized Lee-Carter type

models for multiple populations

3.1 Introduction

This chapter outlines the models here considered. That are versions or extensions

of the one proposed by Lee and Carter. The focus is on possible approaches

that allow to forecast multiple populations mortality data at the same time, by

considering two parametric structures.

Section 3.2 gives a presentation of the two selected parametric structures, and

these specifications are generalized in Section 3.3. Once defined the generalised

parametric structures, the models are defined in Section 3.4. In Section 3.5 each

model is briefly discussed and, in the same section, the link between the presented

models and similar approaches is evaluated. Section 3.6 describes the forecast

procedure used.

3.2 The two selected parametric structures

3.2.1 Central mortality rates

The Lee-Carter model is here considered in the version proposed in Brouhns et al.

(2002), already introduced in Subsection 2.5.2. It is worth noting that in its

33
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original formulation (Brouhns et al., 2002), the target of the Lee-Carter model

with Poisson error structure is the force of mortality µx,t, while here the mortality

rates mx,t are used (since µx,t = mx,t due to the assumption in Subsection 2.3.2).

With this change of notation, the number of deaths Dx,t is described by

Dx,t ∼ Poisson (ETRx,tmx,t)

where ETRx,t is the central number of exposed to risk and

logmx,t = αx + βxkt,
∑
x

bx = 1,
∑
t

kt = 0. (3.1)

3.2.2 Mortality improvement rates

The alternative parametric structure considered derives from modelling the im-

provements in mortality rates, rather than the rates themselves. Among the ap-

proaches presented in Section 2.6, the chosen formulation is the one introduced in

Haberman and Renshaw (2012), which defines improvement rates as

zx,t = 2
1−mx,t/mx,t−1

1 +mx,t/mx,t−1

. (3.2)

Formula (3.2) can be seen as the ratio between the incremental mortality im-

provements (mx,t−1 − mx,t) and the average of the two adjacent mortality rates

(mx,t + mx,t−1)/2. The values of zx,t are modelled as realizations of independent

Gaussian random variables Zx,t assuming constant dispersion and mean ηx,t, hence

Zx,t ∼ N(ηx,t, σ
2).

The new first moment predictor structure

For the expected values ηx,t, the predictor structure is

ηx,t = βxkt,
∑
x

βx = 1. (3.3)
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Clearly, the coefficients kt are not the same as in (3.1). (3.3) can be obtained as

a derivation of (3.1) (Haberman and Renshaw, 2012). In fact, deriving (3.1)

1

mx,t

∂mx,t

∂t
= βx

∂kt
∂t

and, with the redefinition ∂kt
∂t
→ kt

1

mx,t

∂mx,t

∂t
= βxkt.

The left hand side of this last formula can be approximated in a context of discrete

time as zx,t.

The reason of this particular formulation of mortality improvement

rates

The computation of the mortality improvement rates is performed using the for-

mula (3.2) instead of the more simple and intuitive rate mx,t/mx,t−1, in order to

reduce the impact of extreme values. In fact, it is reported in Subsection 2.6.1

how some authors just apply the ratio between one mortality rate and the previ-

ous year’s one, but then the effects of random variations need to be removed by

smoothing. An example of this is the approach proposed by Richards et al. (2005)

(see Subsection 2.6.1).

Here the choice is not to smooth in a second stage, but rather to use a formulation

that generates improvement rates where the size of the outliers is reduced.

3.3 The generalized parametric structures

3.3.1 Notation for multiple population

From now on, the index i = 1, . . . , I denotes subpopulation i among the I popula-

tions under study. For each i, it is assumed that the following data are available:

for ages x = x1, . . . , xk and (consecutive) calendar years t = t1, . . . , tn

• Di
x,t, the number of deaths last birthday x in year t
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• ETRi
x,t, the central exposure at age x in year t.

3.3.2 Central mortality rates

The next step consists in computing central death rates

mi
x,t =

Di
x,t

ETRi
x,t

and year-on-year improvement rates

zix,t =
1−mi

x,t/m
i
x,t−1

1 +mi
x,t/m

i
x,t−1

using the definitions outlined in Subsections 2.3.2 and 3.2.2, and considering the

notation introduced in Section 3.3.1.

In this context, the Brouhns et al. (2002) version of the Lee-Carter model specified

in (3.1), models the number of deaths as Poisson random variables

Di
x,t ∼ Poisson(ETRi

x,tm
i
x,t),

independent across ages, years and subpopulations. The mean of these variables

is modelled linearly through a number of time factors, according to

logmi
x,t = αix +

L∑
j=1

βix,jkt,j (3.4)

where L is the number of considered factors. This expression is in spirit similar to

those found in Booth et al. (2002b) and Hyndman and Ullah (2007).

3.3.3 Mortality improvement rates

When modelling improvement rates, it is assumed that the zix,t are realizations of

Gaussian random variables

Zi
x,t ∼ N(ηix,t, σ

2
i ),

independent across ages, years and subpopulations. Note that the variance is

allowed to vary between populations. The mean of these variable is expressed by
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generalising (3.3) in a form similar to (3.4), that is

ηix,t =
L∑
j=1

βix,jkt,j. (3.5)

3.3.4 The philosophy of the models

The aim of (3.4)-(3.5) is to consider a general framework allowing for different

levels of complexities and interactions in and between the subpopulations. The

number L of factors will usually be driven by the number of populations and

the chosen degree of complexity. Some particular cases of (3.4) and (3.5) are

considered, in order to make estimation feasible and ease comparison between the

models. More precisely, five specifications of (3.4) are selected. Subsequently, the

counterparts of these five models are defined in terms of mortality improvement

rates (3.5). The considered models are ten in total.

3.4 The proposed models

The considered models will be defined in Subsections 3.4.1 and 3.4.2. The names

of the models are composed by two parts. The first part is a capital letter which

refers to the parametric structure:

• P for the models that target the central mortality rates (P is for the Poisson

random variable used for modelling the number of deaths);

• M for the ones which model the mortality improvement rates (M is for MIR,

the abbreviation used in Haberman and Renshaw (2013) for mortality im-

provement rates).

The second part is a word which recall the type of particular case of the selected

generalized parametric structure: double, common, simple, division and one.

3.4.1 The P models

The five specifications of (3.4) are listed below.
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1. P-double:

logmi
x,t = αix + βix,1k

i
t,1 + βix,2k

i
t,2

with the identifiability constraints
∑

t k
i
t,1 = 0,

∑
x β

i
x,1 = 1,

∑
t k

i
t,2 = 0,∑

x β
i
x,2 = 1 and

∑
x β

i
x,1β

i
x,2 = 0 for all i.

2. P-common:

logmi
x,t = αix + βix,1kt,1 + βix,2k

i
t,2

with the identifiability constraints
∑

t kt = 0,
∑

x β
i
x,1 = 1,

∑
t k

i
t = 0,∑

x β
i
x,2 = 1 and

∑
x βxβ

i
x = 0 for all i.

3. P-simple:

logmi
x,t = αix + βixk

i
t

with the identifiability constraints
∑

t k
i
t = 0,

∑
x β

i
x = 1 for all i.

4. P-division:

logmi
x,t = αix + βixk

i
t

with kit = k
(h)
t for i ∈ Jh, where J1, . . . , JI′ is a partition of {1, . . . , I};

the identifiability constraints are
∑

t k
h
t = 0 and

∑
i∈Jh,x β

i
x = |Jh| for h =

1, . . . , I ′. Here |J | is the cardinality of the set J .

5. P-one:

logmi
x,t = αix + βixkt

with the identifiability constraints
∑

t kt = 0 and
∑

i,x β
i
x = I.

3.4.2 The M models

The five particular cases of (3.5) are defined below.

6. M-double:

ηix,t = βix,1k
i
t,1 + βix,2k

i
t,2

with the identifiability constraints
∑

x β
i
x,1 = 1,

∑
x β

i
x,2 = 1 and

∑
x β

i
x,1β

i
x,2 =

0 for all i.

7. M-common:

ηix,t = βix,1k
i
t,1 + βix,2k

i
t,2
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with the identifiability constraints
∑

x β
i
x,1 = 1,

∑
x β

i
x,2 = 1 and

∑
x βxβ

i
x =

0 for all i.

8. M-simple:

ηix,t = βixk
i
t

with the identifiability constraint
∑

x β
i
x = 1 for all i.

9. M-division:

ηix,t = βixk
i
t

with kit = k
(h)
t for i ∈ Jh, where J1, . . . , JI′ is a partition of {1, . . . , I}; the

identifiability constraints are
∑

i∈Jh,x β
i
x = |Jh| for h = 1, . . . , I ′.

10. M-one:

ηix,t = βixkt

with the identifiability constraint
∑

i,x β
i
x = I.

3.5 Discussion about the models

3.5.1 P-double and M-double

The models (1) and (6), called respectively P-double and M-double, are inspired

by Renshaw and Haberman (2003b), where a Lee-Carter model with two bilinear

components is considered. P-double is a Lee-Carter model with the error struc-

ture of (3.1) with a second bilinear component. Analogously, M-double is the

parametric structure used for modelling ηix,t with an additional bilinear compo-

nent. The models are then estimated separately for every population. The aim of

these parametric structures is to provide a good approximation to the data, using

more parameters than in the other considered approaches.

P-double and M-double models will be the starting point for further reduction of

the number of parameters. Furthermore, these general structures are important

in order to compare the quality of the forecast and its descriptive capacity.
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3.5.2 P-common and M-common

Models (2) and (7), called respectively P-common and M-common, are very similar

to the models marked with double, but with the introduction of a common factor.

As a matter of fact, the time index in the first bilinear component is in common

for all of the considered populations. Nevertheless, the model still has two bilinear

components, allowing for a good approximation to the data. However, the number

of parameters is reduced. These are the first models, between the presented ones,

that allow for common factors in this step of the analysis.

This model is inspired by Li and Lee (2005) which used a common factor esti-

mated on all the considered populations and, in a second stage, a second bilinear

component was estimated in a specific way for every population. This model struc-

ture allow to explain the general trend with the first component and the specific

mortality values in terms of distance from this general component. The intuition

behind these formulations is that mortality has a general trend for related popu-

lations, and hence the dissimilarities can be explained with a second component

that merges the specific characteristics as well as the random variations.

3.5.3 P-simple and M-simple

Models (3) and (8), called respectively P-simple and M-simple, are obtained from

the previous ones by removing the common factors. P-simple and M-simple present

one bilinear component and correspond to the original formulations of the models,

as presented in (3.1) and (3.3). Like in the models marked with double, the pa-

rameters are now estimated at this step without considering interactions between

the populations. P-simple and M-simple are the complete form of the models

considering only one bilinear component.

3.5.4 P-division and M-division

Models (4) and (9), called respectively P-division and M-division, are similar to

the models marked with simple. The case that is investigated regards a number

I of populations. The intuition behind these division approaches is that in the I

populations data, there is a number of different mortality trends which is less than

or equal to I. If I is large enough, it is likely that some of the mortality trends
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would be very similar and create clusters of similar paths. In this case it is possible

to define a model with a number of time-varying coefficients I ′ lower than the

number of populations I. This allow to reduce the number of parameters without

a strong reduction in the descriptive capacity of the model. These formulations

have some common time varying coefficients, one for each cluster of populations.

3.5.5 P-one and M-one

Models (5) and (10), called respectively P-one and M-one, follow the same idea

of the models marked with division, but assume that there is a unique cluster.

In fact, the hypothesis is that only one time varying coefficient exists, and hence

all the populations share the time pattern of mortality and differ only in the age

varying coefficients. The number of parameters is the smallest among the models

presented.

3.5.6 Complexity

Both set of models (1)-(5) and (6)-(10) are presented in decreasing order of com-

plexity and number of parameters (see Table 3.1).

Models (2)-(5) and (6)-(10) can be seen as particular cases of the more general

forms P-double and M-double. Recall that P-common model can be obtained from

P-double model by assuming

βix,1k
i
t,1 = β∗x,1k

∗
t,1 ∀i = 1, . . . , I.

P-simple model derives by P-common if β∗x,1 = 0. In the same way, P-division

model can be obtained from the P-simple model by just requiring some of the time

varying coefficients to have the same value with respect to the similar populations.

Note that the P-one model is an P-division model when all the time varying

coefficients have the same values. The same idea applies to M-models.

It follows that each model includes the next one by restricting some of the pa-

rameters. In other words (1)-(5) is a complete sequence of nested models, and the

same applies to (6)-(10).



Chapter 3. Generalized Lee-Carter type models for multiple populations 42

number of number of number of
model time factors parameters constraints

1. P-double 2I I(3k + 2n) 5I
2. P-common I + 1 k(2I + 1) + n(I + 1) 3I + 2
3. P-simple I I(2k + n) 2I
4. P-division I ′ 2kI + nI ′ 2I ′

5. P-one 1 2kI + n 2

6. M-double 2I 2I(k + n− 1) 3I
7. M-common I + 1 (I + 1)(k + n− 1) 1 + 2I
8. M-simple I I(k + n− 1) I
9. M-division I ′ kI + (n− 1)I ′ I ′

10. M-one 1 kI + (n− 1) 1

Table 3.1: Number of time factors (H), parameters (d) and constraints for
the ten models.

3.5.7 The identifiability constraints

P models

Due to its formulation, P-simple needs the identifiability constraints defined for

the classical version of the model (Lee and Carter, 1992). When the time-varying

coefficients are reduced, as in P-division and in P-one, it is no longer possible to

use the same constraints.

In P-division the number kt vectors coincides with the number of partitions. Every

one of this time-varying coefficients have the constraint regarding its sum, that

should be equal to 0. Regarding the constraints on the βix, they are outlined

in order to consider jointly all the parameters within the same partition. The

identifiability constraints in P-one are designed following the same idea than in

P-division, as if the considered populations were all in the same partition.

A different approach should be followed in order to understand the identifiability

constraints in the models with two bilinear components, i.e. P-double and P-

common. In P-double five constraints are present for every population. Two of

them regard the first bilinear component, one on βix,1 parameters and one on kit,1

parameters. Other two constraints interest the second bilinear component, one on

βix,2 parameters and one on kit,2 parameters. These four constraints follow the same

logic than the P-simple constraints, just replaced for the second bilinear term. The

fifth constraint, which is
∑

x β
i
x,1β

i
x,2 = 0 for every i, links the two bilinear terms.

This is imposed in order to assure the orthogonality between the estimated values
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of βix,1k
i
t,1 and βix,2k

i
t,2. The exigence of imposing this fifth constraint follows by

the estimation procedure. In fact, the estimated parameters are orthogonal if they

are obtained using SVD, as in Renshaw and Haberman (2003b).

The identifiability constraints used for P-common are an opportune variant of the

P-double ones.

M models

The identifiability constraints used for M models are the opportune adaptation of

the ones presented above for the P models. The number of constraints is reduced

with respect to P models. This is due to the fact that the term αx is no longer

present. Considering the M-simple model, it follows that just one constraint on

the βix parameters is enough for identify the bilinear term of the i-th population.

The constraints for the other M models are derived using this concept and the

guidelines applied to the P models.

3.6 Forecast procedure

The next step is to model the time varying coefficients as a time series and pro-

ceed with forecast. The time series selected are a random walk with drift for the

P-models and an auto regressive time series of order 1 for the M-models. These

time series are the ones used in Lee and Carter (1992) and Haberman and Ren-

shaw (2012). Note that, except for P-one and M-one, all the models require a

multidimensional time series as they include multiple time indices (see Table 3.1).

Therefore, the univariate random walk with drift

kt = a+ kt−1 + εt with εt ∼ N(0, σ2)

where a is the trend, is used for P-one, while for the other P-models, the multi-

variate random walw with drift
k1
t
...

kHt

 =


a1

...

aH

+


k1
t−1
...

kHt−1

+


ε1
t
...

εHt

 with


ε1
t
...

εHt

 ∼ NH(0,ΣH)
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is used, where H is the number of time indices. Conversely, an the auto regressive

time series of order one

kt = a+ ρkt−1 + εt with εt ∼ N(0, σ2)

where ρ is the multiplicative constant, is used for M-one, while for other M-models,

the corresponding multidimensional version


k1
t
...

kHt

 =


a1

...

aH

+


ρ11 . . . ρ1H

...
...

ρH1 . . . ρHH



k1
t−1
...

kHt−1

+


ε1
t
...

εHt

 with


ε1
t
...

εHt

 ∼ NH(0,ΣH)

is considered.

Once the forecast of the time varying coefficients has been completed, the values

of m̂i
x,t for P-models can be computed. For the M-models, applied to mortality

improvement rates, a further step is needed in order to get the mortality rates

using the forecast values of ẑix,t. The forecast data m̂i
x,t are obtained by applying

iteratively the formula

m̂i
x,t+j = m̂i

x,t+j−1

(2− zix,t+j)
(2 + zix,t+j)

, j = 1, 2, 3, . . . (3.6)

starting with mi∗
x,t, an adjusted value of mi

x,n, the last column of the observed

matrix mi
x,t. The adjustment adopted consists in computing the mean of the last

three observed values of mi
x,t and use the mean of the last two observed zix,t for

obtaining mi∗
x,t. This procedure is done in order to diminish the influence of the

last observed value in the construction of the forecast values, thus have results less

affected by outliers.

3.7 Discussion

The Lee-Carter model is taken as starting point for forecasting mortality in the

case of multiple populations data. The model is set in order to target the count

of deaths (Brouhns et al., 2002), and it is written in (3.4). This is the Lee-

Carter model with generalised number of bilinear components. Five approaches are
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obtained as particular cases of (3.4), with the aim of considering the interactions

between the populations in different ways. These five models are inspired by the

approaches present in literature (reviewed in Chapter 2), and are selected with

two main characteristics:

• every model should have notable aspects;

• they should be as parsimonious as possible.

A modified version of these five models is also considered, where the object of the

modelling is the mortality improvement rates, as defined in Haberman and Ren-

shaw (2012). This is done in order to evaluate an alternative equivalent approach

to mortality forecasting.

These ten methods are an attempt to consider different multiple populations Lee-

Carter type models. The analysis of differences and similarities across them, as well

as some results (in the next Chapter), can help to better understand some aspects

of this problem. The aim is to discuss the characteristics that a Lee-Carter type

model should have for being adequate for multiple populations mortality analysis.





Chapter 4

Application of generalized

Lee-Carter models to Italian

regions

4.1 Introduction

In Chapter 3 ten models have been introduced. All of those models can be applied

to multiple population mortality data. However, each model has strengths and

drawbacks, and this makes the selection of an appropriate model for an application

to real populations a not simple problem.

In this chapter the ten models are applied to a multiple population mortality

dataset. The aim is to make considerations about the characteristics of the models

observing the performance of them. The performance of them is compared in terms

of quality of fitting and forecast capacity.

In Section 4.2 the dataset considered for the application is introduced. Section 4.3

presents some further specifications of the models, with regard to the estimation

and the forecast procedures. Section 4.4 and 4.5 outline the quantities consid-

ered for the model selections and introduce specific comments for all the models.

Section 4.6 of this chapter presents some overall conclusions.

47



Chapter 4. Application of generalized Lee-Carter models to Italian regions 48

4.2 The application

4.2.1 The dataset

The considered data are the mortality rates of Italian regions. Italy is divided into

18 regions out of the official 20, since two regions (Val d’Aosta and Molise) are

too small to be kept alone. These two last regions are merged with one of their

neighbours.

The regions of a country are clearly related: such populations share some common

characteristics. However, it is also true that Italian regions can be very different,

either economically as well as along other dimensions, and this may be reflected

in the mortality experience: so that the considered populations should be treated

as linked but not equal. In this application I = 18, and the index i = 1, . . . , 18 is

used for indicating the regions, along this order: Piemonte-Valle d’Aosta, Lombar-

dia, Trentino-Alto Adige, Veneto, Friuli-Venezia Giulia, Liguria, Emilia-Romagna,

Toscana, Umbria, Marche, Lazio, Abruzzo-Molise, Campania, Puglia, Basilicata,

Calabria, Sicilia, Sardegna. The geographical areas can be seen in Figure 4.1.

Figure 4.1: Italy divided in the considered 18 areas.
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The data cover a span of 35 years, from 1974 to 20081. In the analysis the focus is

on the male mortality data for the age interval 20-89. The ages over 89 years are

excluded due to the exiguous number of subjects involved, especially for smaller

regions. Conversely, the ages 0-19, are excluded because of in this age interval there

is a significant presence of empty values of Dx,t and high variance of the mortality

phenomenon, especially for smaller regions. In the Lee-Carter model, the problem

of null values of mx,t can be solved in many ways. An example of this is the

introduction of weights in the estimation procedure, as in Haberman and Renshaw

(2012). That weights assume value 0 when there are empty or omitted data in mx,t

matrix, and 1 elsewhere. By way of contrast, the high value of variance at lower

ages could create problems due to the hypothesis of constant variance considered

in the models with mortality improvement rates (the possibility of age-varying

variance is studied in the next chapter).

The choice of the ages 20 to 89 is not uncommon. In fact, this age interval is

adopted in many actuarial applications since the lower ages are not relevant for

most insurance products. Regarding the higher ages, in practice it is often pre-

ferred to reconstruct the corresponding values with some extrapolative procedures.

In this case also there are algorithms that can be used to obtain high-age values,

such as the approaches proposed by Coale and Kisker (1990) and Haberman and

Renshaw (2009).

As a first step, some graphical exploration analyses of the data are performed.

Due to the number of populations and the huge variety of possible graphs, these

plots are here omitted, with the exception of Figure 4.2, where four plots are

shown, representing the evolution of logmi
x,t for fixed ages for three out of the

18 populations (Lombardia, Lazio and Sicilia) with respect to the period 1974 to

2008. These plots confirm that the evolution of mortality follows similar patterns

for the different populations (the phenomenon is less evident at lower ages, since

the mortality rates are so low that random variations have more influence).

4.2.2 The number of groups

A further step must be done before estimating the models: the classification in

P-division and M-division models. This classification is done in order to define

1The data were provided by Istat (www.istat.it).
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Figure 4.2: Evolution of logmi
x,t for fixed ages of Lombardia (solid line), Lazio

(dashed line) and Sicilia (dotted line).

groups of populations with similar mortality characteristics. The procedure for

creating these groups here is inspired by the assignment of model life tables (as,

for example, in the United Nations (1982) classification). The procedure consists

in computing some indices regarding the target populations, then dividing the

populations according to the values of the indices. More precisely, here the groups

are obtained in terms of similarity with respect to life expectancy at birth, whose

values are taken from Minelli et al. (2012). In this procedure only contiguous

regions are allowed to merge together. The resulting group number is five. The

two models become

• P-division: Di
x,t ∼ Poisson(ETRi

x,tm
i
x,t), where

logmi
x,t = αix + βixk

i
t

with kit = k
(1)
t for i ∈ I1 = {1, 2, 3, 4, 5, 6}, kit = k

(2)
t for i ∈ I2 = {7, 8, 9} and

kit = k
(3)
t for i ∈ I3 = {10, 11, 12}, kit = k

(4)
t for i ∈ I4 = {13, 18}, kit = k

(5)
t for

i ∈ I5 = {14, 15, 16, 17}; the identifiability constraints are
∑

t k
(1)
t = 0 and∑

i∈I1,x β
i
x = 1,

∑
t k

(2)
t = 0 and

∑
i∈I2,x β

i
x = 1,

∑
t k

(3)
t = 0 and

∑
i∈I3,x β

i
x =

1,
∑

t k
(4)
t = 0 and

∑
i∈I4,x β

i
x = 1,

∑
t k

(5)
t = 0 and

∑
i∈I5,x β

i
x = 1;



Chapter 4. Application of generalized Lee-Carter models to Italian regions 51

• M-division: Zi
x,t ∼ N(ηix,t, σ

2
i ),, where

ηix,t = βixk
i
t

with kit = k
(1)
t for i ∈ I1 = {1, 2, 3, 4, 5, 6}, kit = k

(2)
t for i ∈ I2 = {7, 8, 9} and

kit = k
(3)
t for i ∈ I3 = {10, 11, 12}, kit = k

(4)
t for i ∈ I4 = {13, 18}, kit = k

(5)
t

for i ∈ I5 = {14, 15, 16, 17}; the identifiability constraints are
∑

i∈I1,x β
i
x = 1,∑

i∈I2,x β
i
x = 1,

∑
i∈I3,x β

i
x = 1,

∑
i∈I4,x β

i
x = 1 and

∑
i∈I5,x β

i
x = 1.

The groups for the models P-division and M-division can be obtained in other

ways, that could be considering different variables rather than life expectancy

(e.g. consider some aspects of the behaviour of the time varying coefficient kt,

estimated with a classical Lee-Carter model on each population) or using different

statistics techniques (e.g. cluster analysis).

4.3 Specifications about the method

4.3.1 Estimation procedure

The models are estimated considering only the first 25 years of observed data,

from 1974 to 1998 (the remaining 10 years, from 1999 to 2008, are used in order

to assess the quality of the resulting forecasts).

The parameters of the ten models are estimated by maximum likelihood using

iterative numerical procedures. Regarding the starting point for the optimisation

procedure, the values used were set using the following criteria:

• for P-models, the starting points assuming the normal distribution for the

errors and using the procedure described in Lee and Carter (1992);

• for M-models, the starting points are obtained using the first (or the first

two) components of the singular value decomposition of the improvement

rates matrix;

• in all the models, in the presence of common factors, the chosen starting

points (for the common parameters) are those computed on the larger pop-

ulations, since the latter are likely to be more stable and reliable.
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In order to reduce the possibility that the algorithm converges to a local max-

ima, the optimisation procedure is repeated with modified starting values and is

interrupted when there are no further improvements in the optimised likelihood.

4.3.2 Forecast procedure

There is a number of time series involved in this application, namely:

• two sets of eighteen time varying coefficients in the P-double and M-double

models;

• one set of eighteen plus one time varying coefficients in the P-common and

M-common models;

• eighteen time varying coefficients in the P-simple and M-simple models;

• five in the P-division and M-division models.

For these cases, one or more multivariate time series need to be used. In the other

cases, the P-one and M-one models, a single time series is involved. The time

series used in this application are those described in Section 3.6.

Regarding the starting adjusted value m∗x,t from which the iterative procedure

described in Section 3.6 starts, in this application it is equal to

m∗x,25 =
mx,23 +mx,24 +mx,25

3

(2− zx,23−24)

(2 + zx,23−24)
,

where zx,23−24 is the average between zx,23 and zx,24. Recall that the values cor-

responding to zx,24 are the most recent in-sample data, due to the transformation

from mortality rates to mortality improvement rates.

4.4 Model selection

4.4.1 Goodness of fit indices based on information criteria

The indices described above are composed of two parts: the log-likelihood and a

function of the number of parameters. In such an index the number of parameters
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has the opposite sign with respect to the log-likelihood, since the goal is to consider

as the best model the one with the higher log-likelihood but fewer parameters.

Due to the fact that the number of parameters is used as a penalisation of the

log-likelihood, it is possible to refer to these indices as penalised log-likelihood

indices.

The two most commonly used indices for the goodness of fit based on the penalised

log-likelihood indices are (see Burnham and Anderson (2004))

• AIC = 2d−2` with d the dimension of the parametrised prediction structure;

• BIC = d log(g)− 2` with g the numbers of data;

where

` =
∑
i

∑
x

∑
t

(Di
x,t(log m̂i

x,t)− ETRi
x,tm̂

i
x,t)

for P-models, defined up to an additive constant independently of the chosen

model, and

` = −1

2

∑
i

∑
x

∑
t

{
log(2πσ̂2

i ) +
(zix,t − η̂ix,t)2

σ̂2
i

}
for M-models.

When the value of d is large relative to the number of data g, the index AICc, an

adjusted version of the Akaike information criterion, defined by

AICc = 2d+
2d(d+ 1)

g − d− 1
− 2`

can be considered (Burnham and Anderson, 2004). AICc can be used when g/d <

40 . Clearly the value of AICc converges to AIC as g gets large relative to d.

The best models are those with smaller values of the indices. That indices cannot

be compared across the two main model structures. In fact, the values can be

used to compare the five models applied to mortality rates and, separately, the

five models applied to mortality improvement rates. For this reason, the results

are presented separately for the first five and the other models.

Considering penalised log-likelihood indices, the absolute values are less important

than the relative values of the indices themselves and their ranked order. This is

due to the fact that the values of the penalised log likelihood indices contain
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arbitrary constants and are affected by the dimension of the data. In order to

make the values easy to interpret and to highlight the ranked order, the difference

∆ between the target index and its minimum value is computed. It follows that

∆ = 0 for the best model and ∆ > 0 for the others, selecting as the best model

the one with smaller values of these differences.

The values of AIC, AICc and BIC are presented in Table 4.1, together with other

related quantities.

P-double P-common P-simple P-division P-one
d 4590 3009 2934 2635 2543
` -28332454 -28332976 -28334463 -28334716 -28335099
g 31500 31500 31500 31500 31500

AIC 56674088 56671969 56674794 56674702 56675285
∆-AIC 2119 0 2825 2733 3315

rank-AIC 2 1 4 3 5

g/d 7 10 11 12 12
AICc 56675654 56672605 56675397 56675183 56675731

∆-AICc 3049 0 2792 2578 3127
rank-AICc 4 1 3 2 5

BIC 56712450 56697118 56699316 56696725 56696538
∆-BIC 15912 579 2777 186 0

rank-BIC 5 3 4 2 1

M-double M-common M-simple M-division M-one
d 3330 1749 1674 1375 1283
` 42056 39903 38760 37058 36617
g 30240 30240 30240 30240 30240

AIC -77453 -76309 -74173 -71366 -70668
∆-AIC 0 1144 3280 6086 6785

rank-AIC 1 2 3 4 5

g/d 9 17 18 22 24
AICc -76628 -76094 -73977 -71235 -70554

∆-AICc 0 534 2652 5393 6074
rank-AICc 1 2 3 4 5

BIC -49757 -61763 -60250 -59931 -59997
∆-BIC 12005 0 1512 1832 1765

rank-BIC 5 1 2 4 3

Table 4.1: Dimension of the parametrised prediction structure (d), likelihood
of the model (`), dimension of the data (g), value of g/d, AIC, AICc and BIC
(and its ∆ and its rank) of the ten models (when applicable, the values are

rounded to the integer)

4.4.2 The likelihood-ratio test

As the ten models can be seen as two sets of nested models (see Subsection 3.5.6),

it is possible to use the likelihood ratio test to select the best model. The null

hypothesis is that the restricted model is correct, and the alternative hypothesis

is in favour of the more general one (in Cairns et al. (2009) there is an example of
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likelihood ratio test used in this framework). The test statistic LR is equal to

LR = 2(`G − `R),

where `G is the likelihood of the general model and `R the likelihood of the re-

stricted model. Under the null hypothesis, LR could be approximated by a chi

square random variable with v = dG − dR degrees of freedom, where dG and dR

are the dimensions of the parametrised prediction structure of the general and the

restricted models, respectively. The null hypothesis is rejected if LR is too large,

therefore

LR > χ2
v,0.95

where χv,0.95 is the 95th percentile of a chi square random variable with v degrees

of freedom, corresponding to the significance level 0.05.

In Table 4.2 are considered all the possible combinations between general and

restricted models, 20 in total, with the value of v, the value of the test statistic,

the critical value and the p-value, this latter obtained as

p = 1− Prob(χ2
v > 2(`G − `R)).

Restricted General LR v χ2
v,0.95 p-value

P-common P-double 1 043 1 581 1 675 1
P-simple P-double 4 018 1 656 1 752 <0.001
P-division P-double 4 524 1 955 2 059 <0.001
P-one P-double 5 291 2 047 2 153 <0.001
P-simple P-common 2 975 75 96.2 <0.001
P-division P-common 3 481 374 420 <0.001
P-one P-common 4 247 466 517 <0.001
P-division P-simple 506 299 340 <0.001
P-one P-simple 1 273 391 438 <0.001
P-one P-division 766 92 115 <0.001

M-common M-double 4 306 1 581 1 675 <0.001
M-simple M-double 6 592 1 656 1 752 <0.001
M-division M-double 9 996 1 955 2 059 <0.001
M-one M-double 10 879 2 047 2 153 <0.001
M-simple M-common 2 286 75 96.2 <0.001
M-division M-common 5 690 374 420 <0.001
M-one M-common 6 573 466 517 <0.001
M-division M-simple 3 405 299 340 <0.001
M-one M-simple 4 287 391 438 <0.001
M-one M-division 883 92 115 <0.001

Table 4.2: Likelihood ratio test for all the possible combinations
of general and restricted models
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4.4.3 Mean absolute percentage errors

The goodness of fit or forecast of a model can be measured, for instance, with the

Mean Absolute Percentage Error (MAPE). This index applied to in-sample data

is defined as

MAPEi =
1

n1k

∑
x,t

∣∣∣∣mi
x,t − m̂i

x,t

mi
x,t

∣∣∣∣ (4.1)

where n1 ≤ n (in this case n1 = 25 and k = 70), mi
x,t are the observed values and

m̂i
x,t the values predicted by using the model. The MAPE for out-of-sample data

can be easily derived by (4.1).

The values of MAPE obtained for in-sample fitting are summarized in Table 4.3.

The fitted values m̂x,t in the case of M-models are obtained iteratively starting

from the last year of the considered data. The formula that should be used for this

procedure can be derived by (3.6), that is the equation used for the construction

of the predicted data.

This MAPE is also applied, for the ten models, to the out-of-sample forecast

computed with a time horizon of 10 years. The values of MAPE for every model

and for every population are shown in Table 4.4.

The values of MAPE seem high, but it should be noted that the underlying phe-

nomena have a high volatility, so there is a level of error that cannot be avoided.

This error can be observed both in the in-sample and in the out-of-sample analysis.

The MAPE for the in-sample analysis is always lower than the MAPE of out-of-

sample analysis. This is due to the structure of the forecast data. If the observed

pattern of mortality evolves in an unusual way for even a few years, this impacts

markedly on the values of MAPE.

4.4.4 Graphical analysis

Due to the nature of the phenomenon, graphical analysis is a powerful tool for

analysing the models and comparing them. A graphical analysis of the residual

plots can be useful for investigating if the models are able to describe the general

shape of the data and to capture any systematic patterns. The residual plots are

constructed by plotting the scaled residuals with respect to age, year and cohort.
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The scaled residuals are obtained with

rix,t =
Di
x,t − ETRi

x,tm̂
i
x,t√

ETRi
x,tm̂

i
x,t

for P-models, where m̂i
x,t are the estimated data, and

rix,t =
zix,t − η̂ix,t√

σ̂2
i

, with σ̂i
2 =

∑
x,t

(zix,t − η̂ix,t)2

ν

for M-models, where ν is the dimension of the dataset, i.e. number of years

multiplied by the number of ages. It should be noted that the scaled residuals are

computed with respect to the target quantity in the optimisation procedure: the

number of deaths Di
x,t in the first case and the mortality improvement rates in the

second one.

The value of d, i.e. the dimension of the parametrised prediction structure, refers

to the single population, therefore is the number of parameters that influence mi
x,t

(or zix,t in the other case).

The aim of this analysis is to check if the residuals are randomly distributed above

and below the horizontal line representing the value 0. Additionally, the presence

of any regular patterns in the residual plot should be checked: its presence would

suggest that the model has not captured the general evolution of the underlying

phenomena.

The residual plots for the ten models for one region (Lombardia) are presented in

4.3 and 4.4 (the others are not reported here).

4.4.5 Actuarial application

Since the presented models are used to evaluate the general trend of mortality, an

index which takes into account several years of forecast values would be a more

appropriate way for comparing the predictive capacity of the models. An actuarial

index, the truncated expected residual lifetime computed along cohort trajecto-

ries, is considered for evaluating the quality of the forecasts. The computation

is performed considering a time horizon of 10 years in order not to introduce a

mortality extrapolation at higher ages.
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Figure 4.3: Age, year and cohort residual plots for P-models - population (2),
Lombardia
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Figure 4.4: Age, year and cohort residual plots for M-models - population (2),
Lombardia
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Since the probability of death qix,t are now needed, they are evaluated applying

the transformation

qix,t ≈ 1− exp(−mi
x,t).

The expected residual lifetime truncated after 10 years for population i, denoted

by ei
x:10

, is computed by

eix:10 =

∑10
j=1 l

i
x+j(tn + j){1− 1

2
qix+j,tn+j}

lix(tn)
,

lix+1(tn + 1) = (1− qix,t)lix(tn),

where tn is the most recent time period for which data are available and lix(tn) are

set to an arbitrary value (Haberman and Renshaw, 2013). This index is computed

for all the regions for ages 60, 70 and 80. The results are summarised in Table

4.5, Table 4.6 and Table 4.7, for ages 60, 70 and 80, respectively. In these tables,

other than the observed values and the values obtained by the models with its

percentage error, means and standard deviations of the errors are reported.

4.5 Discussion of the results

In this section, taking into account all the diagnostic tools and test introduced,

the alternative models are compared and discussed. The indices are shown in the

tables 4.1-4.7 for all models and populations (where appropriate). As explained

before, the indices based penalised log-likelihood are clearly used to compare only

models that share the same error structure.

4.5.1 P-double model

This is the model configuration with the highest number of parameters among

those here considered.

According to the likelihood-ratio test this model should be preferred over the

models nested in it, with the exception of P-common. As for the penalised log-

likelihood indices, the model is ranked second best after P-common according to

AIC. On the other hand, when looking at corrected AIC and BIC, this model is
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the worst in the class of models with the Poisson error structure, due to the very

high number of parameters.

The average MAPE for both in-sample fit and out-of-sample forecast for this model

is the best across all models, with a relatively low dispersion, and a similar con-

clusion holds when looking at annuity values. The residual plots suggest that this

model can adequately describe the data, although it cannot catch the variability

across all the ages. No systematic pattern with respect to year is apparent, al-

though for some of the considered populations there seems to be the evidence of

a cohort effect which is not explained by the model.

4.5.2 P-common model

This is the second model in terms of number of parameters. The reduction of the

total likelihood makes this model preferable to both the P-double and the other

nested models, according to likelihood ratio test, with a test value much higher

than the critical value.

The AIC and its corrected version single out this model as the best one, while the

BIC ranks this third due to the heavy penalization for the number of parameters.

In-sample and out-of-sample performance are only slightly worse than the P-double

model, while annuity values cannot be reproduced well, as percentage errors are

the highest among Poisson models.

The residual plots has no evidence of systematic deviations, although residuals are

higher due to the reduction of the complexity of the parametric structure. Some

evidence of an unexplained cohort effect is present for this model too.

4.5.3 P-simple model

This is the first model with just one bilinear component and can be seen as a sort of

benchmark since it is essentially a Lee-Carter model applied to each subpopulation.

The likelihood ratio test indicates that this model is preferable over its special

cases. Regarding the penalised log-likelihood indices, P-simple is the fourth ranked
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model out of five (third if the corrected version of AIC is used). In-sample and out-

of-sample performance distinctly worsen when one of the two bilinear components

is dropped. This is less evident when considering the residual lifetime which is, on

average, similar to P-double for ages 60 and 70 and even better for age 80.

The standardised residuals plots show more dispersion with respect to the models

with two bilinear components: clearly, this model is simpler and cannot capture

the variance as well as more complex model can do.

4.5.4 P-division model

This model is strongly influenced by the choice of the partition of the set of

populations. With the 5 considered groups, this model has a reduced number

of parameters but a high likelihood value. In fact, this model is indicated as

the second best choice by the adjusted AIC and the BIC, better than the model

P-simple.

Looking at forecast values, this model has more or less the same MAPE value of

P-simple, with reduced variance. The standardised residuals display a significant

variability on the quality of the results. In fact, the models capture the mortality

shape of some populations much better than others.

4.5.5 P-one model

The P-one model, with his single time varying coefficient, has the smallest number

of parameters among the Poisson error models. The decrease in likelihood is not

counterbalanced by a reduction in the number of parameters, since the likelihood

ratio test rejects this model with a large difference between the test value and the

critical value.

Unsurprisingly, the BIC index shows this as the preferred model, while it is the

worst one, and second worst according to AIC and its corrected version. This

performance reduction is not strong if it is considered the reconstruction of the

theoretical data. On the contrary, this model does not perform well with respect

to forecast data compared to the other Poisson based models, considering both

the MAPE and truncated expected residual lifetime.
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As expected, the residuals show the weaknesses of such a simple model in capturing

specific mortality behaviour.

4.5.6 M-double model

M-double is the first model applied to mortality improvement rates. The number of

parameters is the maximum within M-models, but it is strongly reduced compared

to P-double. This model is indicated as the preferable one considering AIC and

its adjusted version, and the worst one accordingly to BIC.

Regarding the fit of the observed data, this model does not perform well compared

to the ones commented above. This is due to the fact that the historical data

obtained here are reconstructed starting by the last observation, therefore the

historical shape could be too much smoothed. Regarding the forecast data, the

same considerations are valid. The values of truncated expected residual lifetime

are better than in P-one model, the less accurate models between the Poisson

structured data.

The graphical analysis of the residuals suggest that M-double is able to capture

the mortality shape without significant systematic deviations.

4.5.7 M-common model

M-common model differs in this analysis from M-double due a reduction in the

number of parameters and in likelihood levels that seems not to reduce the quality

of the forecast.

This model is the second best according to AIC (and its adjusted version) and the

best for BIC. Considering the penalised log-likelihood indices, this model would be

the best choice. This model gives back the best result in the study of theoretical

data and has the more accurate actuarial indices, between the models applied to

mortality improvement rates. M-double is better than M-common only in the

MAPE of forecast data and for one actuarial index out of the three computed

here.

The results of graphical analysis do not provide evidence of significant systematic

behaviours.
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4.5.8 M-simple model

M-simple seems to be the second best choice, after M-common, considering the

penalised log-likelihood. In fact this model is second or third ranked in AIC and

BIC. The MAPE of the forecast data is only slightly higher than MAPE for M-

common. The drawback of this model is higher in the reconstruction of historical

data. Considering the computed actuarial indices M-simple is not particularly

accurate compared with the other models.

Observing the graphical representation of standardised residuals, for almost all

the populations this model seems not to create systematic errors.

4.5.9 M-division model

M-division is ranked in fourth position with respect to the penalised log-likelihood

indices, and this is a worse performance compared to its counterpart, P-division.

The results of this model are not good if the fitted data or the forecast data are

observed. In contrast, this model has a quality of the actuarial indices which is

at the same level of the others and for one of the observed ages (60 years) the

truncated expected residual lifetime is the best of all the models.

The results of graphical analysis shows some systematic behaviours of standardised

residuals, especially with respect to age and years.

4.5.10 M-one model

M-one has the smallest number of parameters of the models considered, but this

simplification leads to a drawback in terms of the likelihood level, and therefore

the AIC rank this as the fifth model and BIC the third among the mortality

improvement rate versions.

The MAPE of the theoretical and forecast errors are similar to the ones of the

other mortality improvement rate models. The computed actuarial indices are

quite accurate: Mone is the second-third best model in this analysis.
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The graphical analysis shows again some systematic behaviours of standardised

residuals, especially with respect to age and years and the presence of more outlier

values.

4.6 Conclusions

From the indices computed on the models, the best performance is observed in

the ones with Poisson error structure with higher number of parameters. A good

choice could be the P-common which has a reduced number of parameters, good

level of likelihood, not significant behaviour of the errors and predictive capacity.

Reducing the number of parameters in the Poisson error structure models, it is

possible to observe that there is a drawback in the performance of the models.

The drawback is less evident in the models applied to mortality improvement

rates. The overall performance of such models is comparable to the Poisson ones.

Summing up, it is possible to conclude that, in a study where the predictive

capacity is the aim, P-common model is the best choice between the proposed

models. A good alternative could be M-division or M-one when the aim is to

consider

• a simpler version of the model;

• a stronger common structure;

• it is preferable not considering the number of exposure to risk (sometimes

this data are not available).

The standardised residuals with respect to age and year for the 18 populations are

reported in Figures 4.5 and 4.6 for P-common model and in Figures 4.7 and 4.8

for M-one model.

Some further considerations are presented below.
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Small different populations are considered

One important aspect of the application which should be recalled is that the

selected populations are 18 regions within a country. These regions are far from

being homogeneous in the exposure to risk amount.

All of the considered populations can be considered ‘small populations’: this means

that a significant variability of the parameters cannot be avoided. However, the di-

mension of the populations is taken into account during the estimation procedure.

This is true for P-models since in the log-likelihood function which is optimised

there is the number of exposure to risk and the number of deaths. In M-models

this is due to the variance of the normal distribution: that value is usually higher

for smaller populations, therefore the influence of the small populations is lower

with respect to the larger ones.

Parsimony

The penalised log-likelihood indices indicate as preferable, most of the time, the

model which is the best in terms of likelihood value or the most parsimonious (in

the number of parameters). In fact the preferable models according to AIC are the

most complex models. On the other hand, observing BIC, the preferable model

is usually the simpler. The adjusted version of AIC it seems to be in the middle

between these two criteria.

Starting by these considerations, when a model does not follows these rules and

have better rank than expected, it is likely a model with remarkable character-

istics. Such a model is probably the best choice considering at the same time

approximation and parsimony.

The common models, i.e. P-common and M-common, seem to be the preferable

model designs considering both AIC and BIC.

Not only one best model

In the analysis performed above there are some graphical analysis and some indices

designed for understanding the quality of the forecast, and others for understand-

ing if the model can capture the historical behaviour of the phenomenon.
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Based on the results, there is not a model which is the best in all of these analysis.

Therefore, the choice between the approach should be done taking in account

the strength and weakness of the models, according to the purpose for which the

chosen model should be used.

The risk of a wrong partition

As highlighted by the indices, models P-division and M-divison could be a good

choice for forecasting mortality.

However, further attention should be paid to choosing the groups, and to exploring

different ways for classifying the populations. This is evident from the graphical

analysis, where it can be seen that the mortality behaviour of some populations

is explained by the model much better than for other populations. Such a phe-

nomenon could be justified as differences in population volatility or with a non

efficient partition.
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Figure 4.5: Standardised residuals with respect to age for the 18 populations
- Model P-common
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Figure 4.6: Standardised residuals with respect to year for the 18 populations
- Model P-common
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Figure 4.7: Standardised residuals with respect to age for the 18 populations
- Model M-one
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Figure 4.8: Standardised residuals with respect to year for the 18 populations
- Model M-one



Chapter 5

Forecasting mortality

improvement rates for related

populations with non-costant

variance

5.1 Introduction

Some of the models considered in the previous chapters target mortality improve-

ment rates. This parametric structure is based on the strong assumption that

the variance of the mortality improvement rates is constant. In this chapter this

assumption is dropped.

In Section 5.2 the new parametric structure is presented. The modified models

are defined in Section 5.3. The estimation procedure which is needed for the new

formulation is outlined in Section 5.4. Section 5.5 reports the tools and the results

of an application performed on Nordic Countries mortality data. In Section 5.6

there are some concluding remarks.

77
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5.2 The parametric structure

In Section 3.3.3 the mortality improvement rates zx,t are modelled as realizations of

independent Gaussian random variables Zx,t assuming constant dispersion, hence

Zi
x,t ∼ N(ηix,t, σ

2
i ), (5.1)

with variance σ2
i that is only population-dependent. The hypothesis of constant

dispersion could be restrictive. As a matter of fact the variance of Zi
x,t is not

constant over ages and years.

The heterogeneity of the variance in (5.1) is introduced by the weights φix,t (Haber-

man and Renshaw, 2012). Such weights modify the population-specific variance

σ2
i allowing it to vary with ages and years. These weights are population-specific.

The model specified in (5.1) becomes

Zi
x,t ∼ N(ηix,t, φ

i
x,tσ

2
i ). (5.2)

The first moment predictor structure is still specified by ηix,t = βixk
i
t, or by its

generalised version

ηix,t =
L∑
j=1

βix,jkt,j (5.3)

as in (3.5). Like in Chapter 3, some special cases of (5.3) are considered. The aim

here is to stress the impact of φix,t on (5.2).

In the models described in the following section one bilinear component is consid-

ered, hence L = 1 in (5.3).

5.3 The selected models

5.3.1 Constant variance

The first two models are defined assuming φix,t = 1 for every x, t and i. It follows

that (5.2) becomes equal to (5.1).

Two models are selected by (5.3).
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1. M-simple:

ηix,t = βixk
i
t

with the identifiability constraint
∑

x β
i
x = 1 for all i.

2. M-one:

ηix,t = βixkt

with the identifiability constraint
∑

i,x β
i
x = I.

These two models are analogous to the ones defined in Chapter 3. The first moment

predictor structure do not change also in the following four models presented below.

5.3.2 Population-age-specific variance

The third and the fourth models are defined by setting φix,t equal to φix. It means

that the variance σ2
i is assumed constant across time. This implies that (5.2)

becomes

Zi
x,t ∼ N(ηix,t, φ

i
xσ

2
i ).

The first moment predictor structure is not changed with respect to the previous

case, then the following two models are defined.

3. M-φ-simple:

ηix,t = βixk
i
t

with the identifiability constraint
∑

x β
i
x = 1 for all i.

4. M-φ-one:

ηix,t = βixkt

with the identifiability constraint
∑

i,x β
i
x = I.

5.3.3 Age-specific variance

The fifth and the sixth models are obtained by a further restriction on φix,t. In

fact these coefficients are set equal to φx. It follows that the variances φxσ
2
i for

i = 1, . . . , I are
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• different for each population;

• constant across time;

• have the same age-dependency structure.

Formula (5.2) becomes

Zi
x,t ∼ N(ηix,t, φxσ

2
i )

then the following two models are defined (cφ is for ‘common φ’).

5. M-cφ-simple:

ηix,t = βixk
i
t

with the identifiability constraint
∑

x β
i
x = 1 for all i.

6. M-cφ-one:

ηix,t = βixkt

with the identifiability constraint
∑

i,x β
i
x = I.

5.3.4 The philosophy of the models

The six models are designed in order to be very similar to each others, and differ

only for a single detail. This is because they are oriented to evaluate whether the

introduction of the parameter φx improves the ability of the model to fit the data.

This parameter is clearly age-dependent. When more than one related population

is considered, the differences in the nature of the parameter φix need to be explored.

Regarding the first and the second models, they are here reported in order to create

the benchmark with respect to compare the models with non constant variance.

Among the models proposed in Chapter 3, the models M-simple and M-one are

considered relevant since

• M-simple is the mortality improvement rate counterpart of the classical Lee-

Carter model;

• in Chapter 4, M-one is indicated as a good choice in presence of multiple

populations data, due to its parsimony and good performance.
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The third and the fourth models are the first two models with a different variance

of Zi
x,t distribution. In fact, this becomes equal to φixσ

2
i . The meaning of this is

to allow the variance varying with respect to the ages and populations.

The fifth and the sixth models are defined in the middle of the other two perspec-

tives. In fact, the variance of the distribution of Zi
x,t is not constant. However,

the general level of variance defined for every population is modified with respect

to the vector of parameters φx, which is in common for all the populations.

5.4 The estimation procedure

Regarding the first and the second models, the estimation procedure is equivalent

to the one presented in Chapter 4. It consists in maximising the log-likelihood

function

` = −1

2

∑
i

∑
x

∑
t

{
log(2πφ̂ix,tσ̂

2
i ) +

(zix,t − η̂ix,t)2

φ̂ix,tσ̂
2
i

}
(5.4)

where φ̂ix,t is equal to 1 for every x, t and i.

For the other models, a two-stages iterative estimation procedure is adopted, as

presented in Haberman and Renshaw (2012). Initially the weights φ̂ix,t are set

equal to 1.

The first stage consists in maximising (5.4).

The second stage consists in obtaining the values of φ̂ix,t. This is done by assuming

that the squared residuals

r2
x,t,i = (zix,t − η̂ix,t)2

are realisations of independent gamma random variables. In practice, these values

are computed by minimising the model deviance

Dev = 2
∑
x,t,i

[
r2
x,t,i − φ̂ix,t
φ̂ix,t

− log

(
r2
x,t,i

φ̂ix,t

)]

under the condition that φ̂ix,t > 0.

These two stages are iterated until the variations of the log-likelihood and deviance

functions into successive iterations are below a given threshold.
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5.5 Application to Nordic Countries mortality

data

5.5.1 The dataset

A different dataset than the one used in Chapter 4 is now considered. The data

are now the mortality rates of four Nordic Countries (in Figure 5.1): Denmark

(DK), Norway (N), Sweden (SE) and Finland (FI)1. It follows that I = 4, and

i = 1, . . . , 4. These four countries share common traits in their respective societies,

therefore can be considered as related populations.

Denmark

Finland

Norway

Sweden

Figure 5.1: Nordic Countries

The models defined in Section 5.3 are applied to female mortality data for the ages

20-89 and for the years 1965-1994. The data for the years 1995-2009 are used to

check the quality of the forecast.

The time series used for the forecast are those considered in Chapter 3.

5.5.2 The results

Goodness of fit

Three indicators for the goodness of fit based on the penalised log-likelihood indices

are considered, described in Section 4.4.1. The difference with the formulas in

1The data were downloaded from Human Mortality Database (www.mortality.org).
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Chapter 4 are in the log-likelihood function, that take in account the weights φ̂ix,t,

i.e. (5.4). The values of the penalised log-likelihood indices are summarised in

Table 5.1.

M-simple M-one M-φ-simple M-φ-one M-cφ-simple M-cφ-one
d 392 308 392 308 392 308
` 10381 10271 14044 13794 13542 13357
g 8120 8120 8120 8120 8120 8120

AIC -19978 -19926 -27304 -26972 -26300 -26098
∆-AIC 7326 7378 0 332 1003 1206

rank-AIC 5 6 1 2 3 4

g/d 21 26 21 26 21 26
AICc -19938 -19902 -27264 -26947 -26261 -26074

∆-AICc 7326 7362 0 317 1003 1191
rank-AICc 5 6 1 2 3 4

BIC -17233 -17770 -24559 -24815 -23556 -23941
∆-BIC 7582 7046 256 0 1259 874

rank-BIC 6 5 2 1 4 3

Table 5.1: Dimension of the parametrised prediction structure (d), likelihood
of the model (`), dimension of the data (g), value of g/d, AIC, AICc and BIC
(and its ∆ and its rank) of the ten models (when applicable, the values are

rounded to the integer)

The scaled residuals are obtained considering the values of φ̂ix,t, and are now defined

as

rix,t =
zix,t − η̂ix,t√
σ̂2
i φ̂

i
x,t

, with σ̂i
2 =

∑
x,t

(zix,t − η̂ix,t)2

φ̂ix,tν

where ν is the size of the dataset. For the Finnish population, the residual plots

with respect to age, year and cohort of the six models are presented in 5.2 (the

others are not reported here).

Forecast

The quality of the forecasts is evaluated using the mean absolute percentage error

and an actuarial index, the truncated expected residual lifetime. These two values

are used in the form presented in Chapter 4.

The MAPE is applied to the forecast computed using the six models with a time

horizon of 15 years and compared with the observed data. The values of MAPE

for every model and for every population are shown in Table 5.2.

The truncated expected residual lifetime is computed for all the populations for

ages 55, 65 and 75. This index is obtained considering a time horizon of 15 years.

The results are summarised in Table 5.3.
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Figure 5.2: Age, year and cohort residual plots - population (2), Finland
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POP M-simple M-one M-φ-simple M-φ-one M-cφ-simple M-cφ-one
DK 29.74 29.34 29.07 30.71 29.07 30.8
FI 26.39 26.35 25.11 24.9 25.2 24.89
N 23.27 23.3 23.82 23.62 23.44 23.63
SE 23.73 23.52 21.51 21.36 21.62 21.51
mean 25.78 25.63 24.87 25.15 24.83 25.21
st. dev. 2.58 2.46 2.74 3.45 2.76 3.45

Table 5.2: MAPE of forecast data with respect to observed data

Obs M-simple M-one M-φ-simple M-φ-one M-cφ-simple M-cφ-one
e55:15
DK 13.97 13.95 0.15 13.95 0.13 13.97 0.01 13.97 0.02 13.97 0.02 13.96 0.05
FI 14.39 14.38 0.05 14.38 0.05 14.42 0.21 14.41 0.13 14.42 0.19 14.41 0.11
N 14.32 14.31 0.05 14.31 0.06 14.32 0.04 14.33 0.08 14.32 0.02 14.33 0.06
SE 14.36 14.35 0.03 14.35 0.03 14.38 0.14 14.37 0.09 14.38 0.13 14.37 0.08

mean 0.07 0.07 0.1 0.08 0.09 0.07
st.dev. 0.05 0.04 0.09 0.05 0.08 0.03

e65:15
DK 12.62 12.6 0.12 12.61 0.06 12.66 0.38 12.67 0.46 12.66 0.33 12.67 0.4
FI 13.23 13.19 0.32 13.19 0.29 13.32 0.65 13.28 0.4 13.3 0.53 13.28 0.36
N 13.29 13.27 0.16 13.27 0.18 13.31 0.19 13.32 0.26 13.3 0.06 13.32 0.23
SE 13.42 13.41 0.12 13.41 0.1 13.5 0.58 13.49 0.46 13.5 0.55 13.47 0.38

mean 0.18 0.16 0.45 0.4 0.37 0.34
st.dev. 0.1 0.1 0.21 0.09 0.23 0.08

e75:15
DK 9.95 9.94 0.18 9.94 0.1 10.05 0.99 10.08 1.24 10.04 0.87 10.06 1.07
FI 10.02 9.98 0.41 9.98 0.39 10.27 2.51 10.18 1.58 10.23 2.08 10.17 1.49
N 10.45 10.42 0.24 10.42 0.31 10.52 0.7 10.54 0.89 10.48 0.25 10.53 0.75
SE 10.66 10.64 0.13 10.65 0.07 10.84 1.74 10.8 1.39 10.83 1.67 10.78 1.18

mean 0.24 0.22 1.49 1.27 1.22 1.12
st.dev. 0.12 0.16 0.81 0.29 0.82 0.31

Table 5.3: Expected residual lifetimes truncated after 15 years for age 55, 65
and 75 (each couple of columns refers to a model: on the left one the estimated
index and on the right one the percentage error with respect to the observed

value)

5.6 Discussion

The results of the application presented in the previous section both reject and

support the introduction of the the weights φix,t. In fact, setting non constant

variance for the mortality improvement rates, this do not lead to universally better

results.

The penalised log-likelihood indices indicate as preferable the models contain-

ing the weights φix,t. In particular, accordingly to Table 5.1 the M-φ-simple and

M-φ-one models are preferable. This is clearly due to the improvements in the

log-likelihood value, while the dimension of the first moment predictor structure

is unchanged. This last value does not changes because of it is referred to the

dimension of the first moment predictor structure (5.3).
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Besides observing the likelihood, the higher accuracy of the models with weights

φix,t in fitting the in-sample data can be seen by observing Figure 5.2. The residual

plots highlight how the first two models cannot catch the differences in variance of

zix,t, in particular with respect to age and cohort. Conversely, it seems that models

with non constant variance do not have significant systematic behaviours in the

residuals.

Due to its ability in describing data with non constant variance, models that

include weights φix,t could be applied to data with a larger age interval than 20-89.

Regarding the quality of the forecast, the results need to be observed more crit-

ically. The mean of MAPE applied to the forecast have slightly lower values in

third to sixth models. It is also true that in these latter models the variance of

the MAPE values is higher.

Despite the previous remarks, in the expected residual lifetime the M-simple and

M-one models are the more accurate. Observing again the expected residual life-

time, the M-φ-simple and M-φ-one models, that were considered so far as the best

choice, are here the worst.

It seems by these latter commented results that the models catching more accu-

rately the pattern of the data cannot be conveniently used for the forecast. It is

also true that the computation of the expected residual lifetimes involves 15 years

forecast data at the same time: the errors in the expected residual lifetimes could

be attributed to just a few values of the forecast.

Clearly, these results could also follow by the choice of the data, that consist into

a small amount of populations with few millions of individuals each.



Chapter 6

Concluding remarks

In this thesis some models are evaluated in order to investigate the mortality

phenomena. The aim is to consider a reasonable number of different approaches

for facing with multiple population mortality data.

Starting by Lee-Carter model, ten different approaches for studying multiple pop-

ulation mortality data are considered: five applied to central death rates and

five to mortality improvement rates. Regarding the models applied to mortality

improvement rates, it is then discussed the introduction of a further parameter.

The methods are evaluated by analysing their performance regarding two charac-

teristics: (i) the goodness in approximating the in-sample mortality data and (ii)

the ability of anticipating the out-of-sample mortality data. Observing the results

of the two applications performed, it seems that it is not possible to identify one

model as the best in all the considered analysis. Conversely, it appears appropriate

to think this problem as target oriented, thus to choose the approach which can

better pursue the goal of the study.

With reference to the applications here considered, the models with Poisson er-

ror structure and two bilinear components are probably the most performing ap-

proaches. However, the models applied to mortality improvement rates are good

alternatives, and allow to consider more parsimonious model structures. In these

latter cases, when it is important to have a good approximation to the in-sample

data, it is not opportune to introduce the assumption of constant variance of the

mortality improvement rates.
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Università Cattolica del Sacro Cuore
Instructor: Dr. Diego Attilio Mancuso


	Acknowledgements
	Abstract
	Sommario
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Summary and main contributions

	2 Introduction to mortality models
	2.1 Introduction
	2.2 Life tables
	2.2.1 Cohort life table
	2.2.2 Period life table

	2.3 Death probabilities
	2.3.1 Basic functions
	2.3.2 Approximations and estimating procedure

	2.4 Forecasting mortality
	2.4.1 Projected life table
	2.4.2 Classification of forecasting methods

	2.5 Lee-Carter model and principal extensions
	2.5.1 The original Lee-Carter formulation
	2.5.2 The Poisson assumption
	2.5.3 Other relevant extensions

	2.6 Mortality improvement rates
	2.6.1 The volatility of the improvements
	2.6.2 Recent developments

	2.7 Multiple populations mortality models
	2.7.1 Common and specific factors
	2.7.2 Other extensions of Lee-Carter model
	2.7.3 Focus on the time varying coefficient
	2.7.4 Relative models
	2.7.5 Forecasting mortality using mixed mortality data

	2.8 Discussion

	3 Generalized Lee-Carter type models for multiple populations
	3.1 Introduction
	3.2 The two selected parametric structures
	3.2.1 Central mortality rates
	3.2.2 Mortality improvement rates

	3.3 The generalized parametric structures
	3.3.1 Notation for multiple population
	3.3.2 Central mortality rates
	3.3.3 Mortality improvement rates
	3.3.4 The philosophy of the models

	3.4 The proposed models
	3.4.1 The P models
	3.4.2 The M models

	3.5 Discussion about the models
	3.5.1 P-double and M-double
	3.5.2 P-common and M-common
	3.5.3 P-simple and M-simple
	3.5.4 P-division and M-division
	3.5.5 P-one and M-one
	3.5.6 Complexity
	3.5.7 The identifiability constraints

	3.6 Forecast procedure
	3.7 Discussion

	4 Application of generalized Lee-Carter models to Italian regions
	4.1 Introduction
	4.2 The application
	4.2.1 The dataset
	4.2.2 The number of groups

	4.3 Specifications about the method
	4.3.1 Estimation procedure
	4.3.2 Forecast procedure

	4.4 Model selection
	4.4.1 Goodness of fit indices based on information criteria
	4.4.2 The likelihood-ratio test
	4.4.3 Mean absolute percentage errors
	4.4.4 Graphical analysis
	4.4.5 Actuarial application

	4.5 Discussion of the results
	4.5.1 P-double model
	4.5.2 P-common model
	4.5.3 P-simple model
	4.5.4 P-division model
	4.5.5 P-one model
	4.5.6 M-double model
	4.5.7 M-common model
	4.5.8 M-simple model
	4.5.9 M-division model
	4.5.10 M-one model

	4.6 Conclusions

	5 Forecasting mortality improvement rates for related populations with non-costant variance
	5.1 Introduction
	5.2 The parametric structure
	5.3 The selected models
	5.3.1 Constant variance
	5.3.2 Population-age-specific variance
	5.3.3 Age-specific variance
	5.3.4 The philosophy of the models

	5.4 The estimation procedure
	5.5 Application to Nordic Countries mortality data
	5.5.1 The dataset
	5.5.2 The results

	5.6 Discussion

	6 Concluding remarks
	Bibliography

