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Dipartimento di Scienze Statistiche

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE STATISTICHE

CICLO XXVI

Statistical Approaches in

Genome-Wide Association Studies

Direttore della Scuola: Ch.ma Prof.ssa Monica Chiogna

Supervisore: Ch.ma Prof.ssa Monica Chiogna

Dottoranda: Akram Yazdani

31 January 2014



To My Parents





Acknowledgment

I owe my deepest gratitude to the head of the department Professor

Alessandra Salvan who provided me the opportunity to join a research

project in genome-wide association studies. This experience helped me

to realize my enthusiasm for this field of research. I also express my

warmest gratitude to my supervisor Professor Monica Chiogna for her

support, vision and for considering my interest in Bayesian approach.

I am grateful to Professor Guido Massarotto. His guidance into the

frequentist approach helped me to find my path in this area. Moreover,

I want to give my gratitude to Professor Livio Finos who gave me

valuable suggestions.

I would like to show my deepest gratitude to Professor David Dun-

son, Duke University, who gave me valuable comments and provided

insight and direction-right up to the end. My gratitude is also ex-

tended to Doctor Mohammad Shariati, Ferdowsi University of Mash-

had, who helped me understand better real genetic data set.

I am indebted to my colleagues and friends, Shireen Assaf, Md

Abud Darda, Ivan Luciano Danesi, Lorenzo Maragoni, Roberta Pap-
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Abstract

Genome-wide association studies, GWAS, typically contain hun-

dreds of thousands single nucleotide polymorphisms, SNPs, genotyped

for few numbers of samples. The aim of these studies is to identify

regions harboring SNPs or to predict the outcomes of interest. Since

the number of predictors in the GWAS far exceeds the number of

samples, it is impossible to analyze the data with classical statisti-

cal methods. In the current GWAS, the widely applied methods are

based on single marker analysis that does assess association of each

SNP with the complex traits independently. Because of the low power

of this analysis for detecting true association, simultaneous analysis

has recently received more attention. The new statistical methods

for simultaneous analysis in high dimensional settings have a limita-

tion of disparity between the number of predictors and the number of

samples. Therefore, reducing the dimensionality of the set of SNPs is

required.

This thesis reviews single marker analysis and simultaneous anal-

ysis with a focus on Bayesian methods. It addresses the weaknesses

of these approaches with reference to recent literature and illustrating

simulation studies. To bypass these problems, we first attempt to re-

duce dimension of the set of SNPs with random projection technique.

Since this method does not improve the predictive performance of the

model, we present a new two-stage approach that is a hybrid method

of single and simultaneous analyses. This full Bayesian approach se-

lects the most promising SNPs in the first stage by evaluating the

impact of each marker independently. In the second stage, we de-

velop a hierarchical Bayesian model to analyze the impact of selected

markers simultaneously. The model that accounts for related sam-

ples places the local-global shrinkage prior on marker effects in order

to shrink small effects to zero while keeping large effects relatively

large. The prior specification on marker effects, which is hierarchical

representation of generalized double Pareto, improves the predictive

performance. Finally, we represent the result of real SNP-data analy-

sis through single-maker study and the new two-stage approach.





Sommario

Lo Studio di Associazione Genome-Wide, GWAS, tipicamente com-

prende centinaia di migliaia di polimorfismi a singolo nucleotide, SNPs,

genotipizzati per pochi campioni. L’obiettivo di tale studio consiste

nell’individuare le regioni cruciali SNPs e prevedere gli esiti di una

variabile risposta. Dal momento che il numero di predittori è di gran

lunga superiore al numero di campioni, non è possibile condurre l’a-

nalisi dei dati con metodi statistici classici. GWAS attuali, i metodi

negli maggiormente utilizzati si basano sull’analisi a marcatore unico,

che valuta indipendentemente l’associazione di ogni SNP con i trat-

ti complessi. A causa della bassa potenza dell’analisi a marcatore

unico nel rilevamento delle associazioni reali, l’analisi simultanea ha

recentemente ottenuto più attenzione. I recenti metodi per l’analisi

simultanea nel multidimensionale hanno una limitazione sulla dispa-

rità tra il numero di predittori e il numero di campioni. Pertanto, è

necessario ridurre la dimensionalità dell’insieme di SNPs.

Questa tesi fornisce una panoramica dell’analisi a marcatore singo-

lo e dell’analisi simultanea, focalizzandosi su metodi Bayesiani. Ven-

gono discussi i limiti di tali approcci in relazione ai GWAS, con ri-

ferimento alla letteratura recente e utilizzando studi di simulazione.

Per superare tali problemi, si è cercato di ridurre la dimensione del-

l’insieme di SNPs con una tecnica a proiezione casuale. Poiché questo

approccio non comporta miglioramenti nella accuratezza predittiva del

modello, viene quindi proposto un approccio in due fasi, che risulta es-

sere un metodo ibrido di analisi singola e simultanea. Tale approccio,

completamente Bayesiano, seleziona gli SNPs più promettenti nella

prima fase valutando l’impatto di ogni marcatore indipendentemente.

Nella seconda fase, viene sviluppato un modello gerarchico Bayesiano

per analizzare contemporaneamente l’impatto degli indicatori selezio-

nati. Il modello che considera i campioni correlati pone una priori

locale-globale ristretta sugli effetti dei marcatori. Tale prior riduce

a zero gli effetti piccoli, mentre mantiene gli effetti più grandi relati-

vamente grandi. Le priori specificate sugli effetti dei marcatori sono

rappresentazioni gerarchiche della distribuzione Pareto doppia; queste



a priori migliorano le prestazioni predittive del modello. Infine, nella

tesi vengono riportati i risultati dell’analisi su dati reali di SNP basate

sullo studio a marcatore singolo e sul nuovo approccio a due stadi.
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Chapter 1

Introduction

The ability of cost-efficient genotyping technologies brings the possibility

of studying the relationship between complex traits or diseases with single

nucleotide polymorphisms, SNPs, over entire genome. Genome-wide associa-

tion studies, GWAS, usually include hundreds of thousands of SNPs assayed

for few numbers of experimental units. The aims of studies are prediction or

identifying regions harboring SNPs that affect the outcomes.

In the current GWAS, the widely applied methods are based on single

marker analysis that does assess association of each SNP with the complex

traits independently. However susceptibility loci have successfully identified

from single based studies, the key problem of what threshold to use so as

to select true association remains unresolved. An alternative approach is

to analyze all SNPs simultaneously. This approach has recently received

more attention by presence of new statistical methods appropriate for large

scale problems. The main challenge with the use of these methods is the

large disparity between the number of predictors, SNPs, and the number

of observations in the model that reduces the accuracy of prediction and

selection. Therefore, applying multi-stage analysis in the GWAS is required.

1
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1.1 Overview

In the context of single marker analysis, p-value is the typical measure of

statistical evidence of association between genetic variants and a complex

trait of interest. The computed p-values for the null hypotheses of no asso-

ciations lead to multiple hypotheses testing so as to identify the associated

SNPs through multiple comparisons. Benjamini & Hochberg (1995) adopted

the traditional multiple comparisons methods for large scale problems by

introducing the concept of false discovery rate, FDR. The empirical Bayes

version of FDR named local false discovery rate introduced by Efron et al.

(2001). Then, Storey (2002) discussed the relation between these concepts.

The posterior probability of association, PPA, is a full Bayesian approach

for single marker analysis that can be thought of as the Bayesian analogue

of the p-value (reviewed by Stephens & Balding, 2009).

For large-scale problems, p � n, in linear regression, there is a mass of

literature in both frequentist and Bayesian framework. Frequentist imposes

constraints on the size of coefficients, which can be seen as an extra term,

known as penalization. The most popular one is L1 norm penalty called

the lasso (Tibshirani, 1996). The lasso has a parsimony property and also

computational advantages via LARS algorithm (Efron et al., 2004). Although

the lasso is feasible from the point of view of computational complexity and

selects the variables simultaneously, the rate of shrinkage is not desirable; it

shrinks all coefficients with the same rate. A more desirable penalization is

the one that strongly shrinks the small effects to zero and avoids shrinkage

on the large effects. This can be achieved by imposing a concave penalization

term into the regression model. Smoothly clipped absolute deviation penalty,

SCAD, (Fan & Li, 2001) and minimax concave penalty (Zhang, 2010) can be

named as concave penalization methods.

To deal with the complexity due to p� n, one of the Bayesian approaches

is to consider a mixture prior. A point mass mixture prior is specific form

of this class that is widely applied in variable selection or model selection

contexts. One of the early methods based on mixture prior is the stochastic

Bayes variable selection proposed by George & McCulloch (1993). This kind
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of prior correctly represents sparsity assumption by placing positive mass at

zero. The optimal properties can be also achieved by carefully choosing point

mass mixture prior (Castillo & van der Vaart, 2012). However this approach

gets popularity in different applications as well as in genetic, it is not efficient

for problems like GWAS since its computational complexity is exponential

in the number of predictors.

Another Bayesian approach is based on the global-local shrinkage prior

that models the regression coefficients with absolutely continuous shrinkage

prior at zero. Such a prior is computationally attractive and also capable for

nearly sparse problems. Hence, a large number of literatures is devoted to

present new types of shrinkage priors and discusses their properties. Here,

we just refer to some of those, Armagan et al. (2013), Carvalho et al. (2009),

Park & Casella (2008) and Griffin & Brown (2007). Although global-local

shrinkage priors provide some advantages like computational efficiency, they

create their own challenges because the posterior probability mass on a re-

gression coefficient equal to zero is never positive.

However the aforementioned approaches for simultaneous analysis have

been introduced for p � n, the large disparity between p and n in the

GWAS causes a poor predictive performance. Thus before any analysis,

there is a need to reduce dimension of the parameter space. One of the

dimensional reduction techniques is random projection. The idea is based

on projecting data in low dimensional space randomly while preserving the

distances between points. This ensures that we can learn from projected data

about the response with little loss of information. Various literatures have

discussed the accuracy of random projection by introducing a boundary on

the size of new space (see, e.g., Dasgupta & Gupta, 2003; Achlioptas, 2003; Li

et al., 2006). Typically, random projection has been studied from two points

of view. One idea is to use random projections to compress the samples and

the other one is random projections on the parameter space. The latter can

be related to the problem in the GWAS. In the context of linear regression,

Maillard & Munos (2009) shows a bias-variance trade-off with assumption of

i.i.d. samples. Fard et al. (2012) provides a bias-variance analysis of ordinary
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least-squares regression in compressed spaces with sparsity assumption. It

shows that the sparsity assumption allows working with non i.i.d. samples.

Guhaniyogi & Dunson (2013) introduces Bayesian compressed regression that

shows good performance for dense problems.

Two-stage approaches can be an alternative to improve accuracy of afore-

mentioned statistical approaches in the GWAS. The task in the first-stage

is to screen all markers in order to select the most promising markers. This

provides a small set of predictors appropriate for simultaneous analysis in the

second-stage. Fan & Lv (2008) and Paul et al. (2008) propose two-stage pro-

cedure for variable selection. Li et al. (2011) integrates Paul et al.’s first-stage

procedure into Bayesian Lasso for identifying important SNPs.

1.2 Main contributions of the thesis

The focus of the present thesis is to overcome complexity in high dimensional

settings similar to the GWAS in order to provide an accurate prediction.

Motivation of this study is a Genome-wide problem in animal breeding which

genotyped about 707,962 SNPs for 607 Holstein Bulls. The purpose is to

improve milk productivity through investigating protein yield and longevity

phenotype.

Chapter 2 briefly explores single marker analysis. We first consider mul-

tiple hypotheses testing for large scale problems. To adjust multiple compar-

isons for these kinds of problems, the false discovery rate and the local false

discovery rate are reviewed. Then, we explain how to select associated SNPs

via Bayes factor with reference to recent studies. We also look at the relation

between the Bayes factor and standard frequentist hypothesis testing.

Chapter 3 first looks in on penalization approaches and then explores

Bayesian methods appropriate for large p and small n. However such meth-

ods are widely applied, unfortunately, they face multi-layered challenges in

genome-wide problems. These challenges can be addressed to efficiency and

accuracy of the result. To find a better picture about the predictive perfor-

mance of these methods for the large disparity between p and n, we have
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illustrated a simulation study. The result of the simulation study confirms

that the dimension of the parameter space in the problems like the GWAS

must be reduced before main analysis.

In Chapter 4, we focus on random projection techniques to suppress pre-

dictors into a low dimensional space. Since our analysis is based on a linear

mixed model, we modified Bayesian compress regression by Guhaniyogi &

Dunson (2013) introduced for linear regression. To evaluate the performance

of this approach for SNP-data, a simulation study has been conducted and

the result has been compared with predictive performance of un-projected

data.

In Chapter 5, we present a new two-stage approach for problems with

related samples such as family studies. This approach is a hybrid method of

single marker analysis and simultaneous analysis. In the first-stage, we list

markers by the posterior odds of presence of each SNP in the model at a

time. For selecting the most promising SNPs in this stage, we consider two

different thresholds. One is defined as a typical threshold in single marker

analysis that provides possibility to consider epistatic effects in the model

for simultaneous analysis. The other one is equivalent to safe upper limit

of the number of predictor in the second-stage model. With this choice

of threshold that reduces the risk of missing important SNPs, the second-

stage model includes the marginal effects. In the second-stage, we develop

two models corresponding two the different threshold. In the both linear

mixed models, we implement generalized double Pareto as shrinkage prior

(Armagan et al., 2013) on marker effects. With these prior specifications,

we estimate parameters of the models by sampling from their conditional

posterior distributions through the MCMC algorithm.

The last chapter is devoted to application to the real genome-wide associa-

tion problem. After introducing the problem and some preliminary analyses,

we have attempted to identify true genetic association through the multiple

hypotheses testing reviewed in Chapter 2. Then, predictive performance of

the proposed method in Chapter 5 has been evaluated with 10-fold cross

validation and also comparison with two other prior specifications. We then
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selected SNPs based on the heritability through fitting the model over whole

samples. As the result, 32 SNPs have been selected as the most promising

markers. Then, we have applied the model with epistatic effects for selected

SNPs and calculated the total genetic variance contributed by the marginal

and epistatic effects.



Chapter 2

Single Marker Analysis

In genome-wide association studies, the first attempts to incorporate marker

information into prediction and identify region harboring SNPs were based

on single marker analysis. This analysis for quantitative traits have been

illustrated through linear regression. However fitting a linear regression on

a single marker is simple; the main challenge in this context is how to define

the threshold for detecting a subset of SNPs truly associated with the traits.

In this chapter, we first consider multiple hypotheses testing for large

scale problems. To adjust for multiple comparisons of the large number of

hypotheses, we focus on false discovery rate and its empirical Bayesian version

named local false discovery rate. We then look at full Bayesian approach

particularly in its application in the GWAS. Finally, the relation between

the full Bayesian approach and standard frequentist approach in the GWAS

is presented.

2.1 Multiple Hypothesis Testing

A widely used approach to identify significant association is to analyze one

SNP at a time that is based on univariate linear regression for quantitative

traits. Fitting a linear regression for each SNP at a time leads to test a large

number of hypotheses. If P denotes the number of SNPs that contribute to

7
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the analysis, we have a set of hypotheses asH0i : βi is not significant, i = 1, ..., P

H1i : βi is significant, i = 1, ..., P.

Since many hypotheses are tested simultaneously, a multiple comparisons

procedure needs to be applied in order to avoid spurious detection. The

family wise error rate, FWER, is the classical approach that controls the

overall Type I error at level α. Following the notation in Table 2.1, FWER

is defined as

FWER = p(a ≥ 1),

which is the probability of making one or more false positive discovery among

all the hypotheses.

Decition

Null Non-Null

Null P0 − a a P0

True

Non-Null P1 − b b P1

P −R R P

Table 2.1: multiple hypotheses testing

While in the GWAS P is too large, setting a threshold based on FWER

is too strict and prevents detecting SNPs associated with the traits. Hence,

many studies have been focused on adjusting multiple comparisons to large

scale problems like genetic problems (see, e.g.,Dudbridge & Gusnato, 2008;

Goemana & Aldo Solarib, 2014; and references therein).

2.1.1 False Discovery Rate

In large scale problems with tens of thousands of hypotheses, controlling Type

I error might not provide a good threshold since it is corresponding with
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low power of detecting significant association. To overcome this problem,

Benjamini & Hochberg (1995) introduced false discovery rate, FDR, that

increases the power by tolerating some Type I errors. The FDR controls the

proportion of false discovery, a, to the total discovery, R, as

FDR = E
( a

R ∨ 1

)
(2.1)

where R ∨ 1 ≡ max(R, 1). However the most obvious definition of a false

discovery rate is E (a/R), the FDR in (2.1) is a remedy to prevent unde-

fined situation in the case that R = 0. An alternative can be positive false

discovery rate suggested by Storey (2003) as

pFDR = E
( a
R

∣∣∣R > 0
)
.

Since P is too large in the GWAS, the probability of R > 1 is almost 1 and

both above quantities are approximately equal. Hence, in this context, the

FDR can be estimated simply through E(a)/E(R) for a specific threshold.

The FDR offers less stringent control over Type I errors than the FWER;

therefore, control of the FDR is close to a weak control of the FWER (Ben-

jamini & Hochberg, 1995). For instance in the case that all null hypotheses

are true, i.e. a = R, then
if a ≥ 1⇒ a

R
= 1,

if a = 0⇒ a

R
= 0,

implies

FDR = E
( a
R

)
= p(a ≥ 1) = FWER.

Therefore, we can say the FWER is upper bound of the FDR and controlling

the FWER is equivalent to controlling the FDR.

In practice for selecting significant SNPs based on the FDR, the p-values

for all test statistics are required. After calculating all p-values, we need to

rank them such that p(1) ≤ p(2) ≤ ... ≤ p(P ). We then reject the hypotheses

with p-values under the p(k) where

k = max

[
i ∈ {1, ..., P} : p(i) ≤

iq

P

]
(2.2)
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and q is a fixed value in (0, 1). If no p-value satisfies inequality (2.2), then

no hypothesis test is called significant. The above procedure that is so called

BH-algorithm controls the FDR at level

FDR = q ×
(
P0

P

)
≤ q

if the statistical tests are independent. The main problem with the use

of FDR in the GWAS is the independency assumption that cannot be ful-

filled due to the linkage disequilibrium among SNPs. Although Benjamini

& Yekutieli (2001) weaken the independence condition to positive regression

dependence, this condition does not hold in the GWAS as well.

2.1.2 Local False Discovery Rate

Local false discovery rate, fdr, (Efron et al., 2001) is an empirical Bayesian

version of the false discovery rate. The main assumption underling the theory

behind the fdr is to assume that each statistic probabilistically follows a

random mixture of a null distribution and non-null distribution; it is the

main assumption in some literature (see, e.g., Lee et al., 2000; Newton et al.,

2001; Storey, 2003; Storey & Tibshirani, 2003). To define the fdr, each test

statistics ti requires being converted to z-value as

zi(x) = Φ−1(G0(ti))

where Φ−1 is the inverse function of the standard normal cumulative density

function, cdf, and G0 is a putative null cdf of the ti. The use of z-values

makes analysis more convenient due to the properties of normal theory. With

mixture distribution assumption, marginal density of each z-value is

f(z) = π0f0(z) + π1f1(z),

where f0(z) = f(z | null) with p(null) = π0

f1(z) = f(z | non-null) with p(non-null) = π1.

The fdr is then the posterior probability of null case given the z-value:
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fdr(z) ≡ p(null|z) = π0f0(z)/f(z). (2.3)

In order to illustrate the relationship between the fdr and the FDR, we need

to focus on tail areas rather than densities while the FDR relies on. Thus,

let F0(z) and F1(z) denote the cdf’s corresponding to f0(z) and f1(z) and

define F (z) = p0F0(z) + p1F1(z), then

Fdr(z) ≡ p(null | Z ≤ z) = π0F0(z)/F (z). (2.4)

The (2.4) implies that Benjamini and Hochberg’s FDR control rule depends

on an estimated version of (2.4) where F is replaced by the empirical cdf.

The fdr that is a Bayesian approach offers some insight to define the cutoff

threshold through posterior odds ratio

p(non-null | z)/p(null | z) = (1− fdr)/(fdr)

while there is no consensus on a standard choice of q for the FDR in (2.2).

Bayesian false discovery rates, both the fdr and the Fdr, depend on the

marginal distribution of the z-values, f(z) or F (z). On one side, assumption

of independent z-values is not required despite assumption of independency of

p-values for the FDR. On the other side, the inference is based on analysis of

one SNP at a time, this may be quite different from the posterior probability

of Hi0 given entire P vector of z-values.

As it is clear from (2.3), the fdr does not directly depend on f1(z). i.e., the

density of non-null cases is not required for estimating the fdr. To estimate

the numerator in (2.3), it might be assumed that f0(z) follows the theoretical

null density which is N(0, 1); however in large scale problems, the empiri-

cal density is usually wider (thinner) than theoretical null density. Efron

(2004, 2007) discussed the reasons why f0 might differ from the theoretical

null. In these kinds of cases, one might consider the theoretical null density

as N(µ0, σ
2
0) instead of N(0, 1). With this assumption, the parameters of

theoretical null density need to be estimated.
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2.1.3 Estimating π0f0(z)

To estimate π0f0(z), let assume A0 is a subset of sample space near zero such

that

z ∈ A0 ⇒ f1(z) = 0. (2.5)

This implies

z ∈ A0 ⇒ f(z) = π0f0(z).

Hence, when z ∈ A0, we have

log(f(z)) =

[
log(π0)− 1

2

(
µ2

0

σ2
0

+ log(2πσ2
0)

)]
+
µ0

σ2
0

z − 1

2σ2
0

z2. (2.6)

The parameters (π0, µ0, σ0) can be estimated through maximum likelihood or

central matching methods (Efron, 2004).

• Central Matching Approach

In the central matching, we assume log(f(z)) is a quadratic function

around zero as

log(f(z))
.
= γ0 + γ1z + γ2z

2.

To estimate γ’s, we partition the range Z into K bins, Zk, with width

of ∆ such that

Z = ∪Kk=1Zk.

Then, we define a count variable yk as

yk = # [zi ∈ kth bin] , k = 1, 2, ..., K,

that is order statistic of z when ∆ → 0. By estimating γis from the

histogram counts of yk around z = 0 and matching with coefficients in

(2.6), the estimate of parameters of null density can be obtained.

• Maximum Likelihood Method

To estimate parameters (µ0, σ0, π0) by maximum likelihood method,

the joint density of z-values in A0 should be obtain. To this end, let

define

I0 = {i : zi ∈ A0} and P0 = #I0.
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Then, for z-values belong to A0

f(z) =
[
θP0(1− θ)P−P0

] [∏
I0

ϕµ0,σ0(zi)

H0(µ0, σ0)

]

where ϕ is density function of N(µ0, σ0), H0(µ0, σ0) ≡
∫
A0
ϕµ0,σ0(zi)dz

and θ = π0H0(µ0, σ0) = p(zi ∈ A0). This method yields smaller varia-

tion but more bias for the estimators.

Both aforementioned approaches rely on the assumption (2.5) that may not

hold in practice for all z-values in A0 . This introduces some bias to the

estimator, but it is can be ignored if π0 is close to one.

Although we have possibility to estimate theoretical null density in large-

scale problems, the difference between empirical density and the theoretical

null density might be due to a kind of structure in the data. In genetic prob-

lems, it is very common to have population stratification or related samples.

Ignoring these kinds of structures may be the cause of this difference. For

instance in our experience presented in Chapter 6, by adding random effect

to the model and accounting for related samples the theoretical null density,

N(0, 1), turns to be true for our SNP-data.

2.2 Full Bayesian Approach

Bayesian methods provide an alternative approach to p-value by computing

posterior probability of association, PPA, that is defined as

PPA = PO/(1 + PO). (2.7)

The PO is posterior odd of model with single SNP, M1, against the model

without any marker effects, M0:

PO =

(
ML1

ML0

)
×
(

π

1− π

)
= BF × PriorOdd.



Chapter 2. Single Marker Analysis 14

The probability π quantifies our belief in association of SNP with the complex

trait. The Byes factor, BF, is the ratio of the marginal likelihood of the model

M1 to the model M0; i.e., it measures the consistency of the set of data with

a non null hypothesis in comparison with the null. Therefore, the PO and

consequently the PPA incorporate the prior knowledge in making decision

via evidence from data. The prior knowledge that represent in the model

through π can be varied across SNPs. However, if π is assumed to be the

same for all SNPs, it can be interpreted as a prior estimate of the overall

proportion of SNPs that are truly associated with the phenotype. In this

case, the comparison among SNPs can be done via the BF.

2.2.1 The Choice of Threshold for the BF

Since the PPA can be easily obtained from the BF given π, the BF is often

used as the primary summary of the evidence for association at a SNP. In

many applications, a typical threshold for BF is 10, which is corresponding

to strong evidence against null hypothesis (Jeffreys, 1961). In contrast, this

number cannot be an appropriate threshold in GWAS since it does not pro-

vide high posterior probability of association (Wakefield, 2007; Stephens &

Balding, 2009).

While in single marker analysis the aim is to select the most promising

SNP, it is assumed that a minority of SNPs is expected to be truly associ-

ated with the phenotype ( e.g., Diabetes Genetics Initiative of Broad Insti-

tute of Harvard and MIT, 2007; Wellcome Trust Case Control Consortium,

2007). Due to this assumption, the suggested range of prior probability π

is in (10−4, 10−6) (Stephens & Balding, 2009; Ball, 2011). The use of this

small prior probability of true association provides a very small prior odd.

Therefore, in order to have the PPA close to one, which is correspond to high

posterior odd, the BF is required to be big enough to overcome low prior odd.

For instance, if π = 10−4, the BF greater than 104 is required to provide a

PPA close to one.
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2.3 Relation between the BF and p-value

In the Bayesian approach, we define a threshold on the Bayes factor that

seems strange in compare to many other applications. The requirement for

a large BF is analogous to setting a stringent threshold for the GWAS in

a frequentist approach. For clarity of this claim, let define the posterior

odd based on a quasi-Bayesian argument for a class of tests with T > t as

significant statistics :

p(H1 | T > t)

p(H0 | T > t)
=
p(T > t | H1)

p(T > t | H0)
× p(H1)

p(H0)

=
1− β
α
× p(H1)

p(H0)

where α and β are the Type I and Type II error rates (Wellcome Trust

Case Control Consortium, 2007); hence, with this representation, the Bayes

factor is a function of power and Type I error. Assuming a problem with

106 independent markers with 10 SNPs associated with the trait and average

power 50% to detect an associated SNP. In order to achieve the posterior odds

of 10 : 1 in favor of association, a p-value of 5× 10−7 is required (Dudbridge

& Gusnato, 2008); therefore,

1− β
α

= 106.

In addition to the above argument that make a bridge between Bayes factor

and p-value, experience in the GWAS confirms that p-values and Bayes fac-

tors would give the same ranking of SNPs in order of strength of evidence

for well defined test statistics; although they are different in terms of inter-

pretation and statistic value. For instance in Bayesian analysis, the large BF

is required due to prior belief not the large number of tests that are actually

or potentially performed.
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2.4 Discussion

The single SNP-based studies in genome-wide problems have been instru-

mental in detecting significant genes for various complex diseases or traits.

These approaches may measure the evidence of association through p-value,

z-value or Bayes factor. Typical threshold for selecting significant association

must be adjusted to the GWAS. The false discovery rate and its empirical

Bayes version so called local false discovery rate adjust the cutoff threshold

on p-vales and z-values by controlling the rate of false positive discovery. In

full Bayesian approach, the threshold for Bayes factor should be redefined

due to the prior belief that a few numbers of SNPs are associated with the

trait. However susceptibility loci have successfully identified by these ad-

justments, single marker analysis may not be powerful for identifying weaker

associations and also cannot consider the epistatic effects.



Chapter 3

Simultaneous Analysis

Better understanding of biological system requires considering all markers

simultaneously in the model. This makes the model capable of explaining

phenotipic variance and consequently predicting quantitative traits or disease

susceptibility of future individuals. The main challenge for this kind of stud-

ies is the large number of markers in the model. Typically, in genome-wide

association studies the number of markers, p, vastly exceeds the number of

observations, n, that breaks down the main assumption in classical methods.

To deal with p � n problem, penalization or thresholding methods have

been introduced in the frequentist context. On the other hand, Bayesian ap-

proaches attempt to overcome this difficulty by specifying new form of priors.

These priors can be divided into two main categories, shrinkage priors and

mixture priors. Shrinkage priors are continuous priors concentrated at zero

in order to shrink marker effects toward the origin. The rate of shrinkage

that is controlled by hyperparameters of the priors should be adjusted auto-

matically with the effect sizes, i.e, the magnitude of small effects toward zero

should be stranger than the one for large effects. Another prior specification

in high dimensional settings is based on discrete mixture of distributions.

The main assumption of mixture priors is that set of markers is a collection

of some set of markers with different patterns for size of effect. A widely

applied mixture prior is mixture of set of zero and nonzero effect sizes.

17
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Here, we consider a normal linear regression model

y = x1β1 + ...+ xpβp + ε, ε ∼ N(0, σ2In) (3.1)

where xis are n-vectors of genotyped markers, SNP, βis are marker effects.

We also assume that the xis are centered.

While most of the point penalization estimates of βis correspond to the

mode of a posterior distribution obtained under shrinkage priors, we first

briefly explore some penalization methods. Then we look at the shrinking

concept in the Bayesian framework by making a connection between Bayesian

and frequentist approach. Section 3 and 4 are devoted to shrinkage and

mixture priors. In section 5, we evaluate performance of these methods

through simulation studies for different number of predictors in the model.

3.1 Penalized Method

While classical methods like maximum likelihood estimation break down in

p � n problems, some constraints are required on the size of effects. The

methods which impose some restriction to the model are known as penalized

methods with point estimate of β as

β̂ = arg min
β

(
‖ y −Xβ ‖2

2 +pλ(β)
)

(3.2)

where pλ(β) is the penalized function and λ > 0 is the penalty (tuning)

parameter. This estimate can be thought as shrunken least square estimator.

The rate of shrinkage is related to defined penalized function. Hence, different

penalized functions have been presented in literature in order to improve and

adopt them for different problems. Here we just explore some of the most

popular methods.

3.1.1 The Lasso and Adaptive Lasso

The most popular and widely used penalization method is the lasso with

penalized function λ ‖ β ‖1= λ
∑

i | βi | (Tibshirani, 1996). Applying L1
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norm penalty instead of L2 norm in ridge regression provides the parsimony

property for the lasso. This kind of penalization simultaneously selects a

subset of predictors as effective variables and shrinks the rest exactly to

zero. Hence, L1 penalty makes the lasso a continuous subset selection.

The (3.2) is an optimization problem of a convex function with lasso

penalization. Hence, based on Karush-Kuhn-Tucker (KKT) condition for

the global minimization, a necessary and sufficient condition for β̂ to be a

solution of the lasso is
Gi(β̂) = −sign(β̂i)λ if β̂i 6= 0

| Gi(β̂) |6 λ if β̂i = 0

where G(β̂) = −2XT (Y − Xβ)/n. Moreover, if the solution is not unique

and Gi(β̂) < λ for some solution β̂, then β̂i = 0 for all solutions.

Although the lasso is feasible from the computational point of view and

selects variables simultaneously, it does not have oracle properties unless it

fulfills irrepresentable condition defined in the follow.

Neighborhood Stability and Irrepresentable Condition

The neighborhood stability condition is equivalent to the so called irrepre-

sentable condition (Zou, 2006; Zhao & Yu, 2006). If we denote Σ̂ = n−1XTX

and S0 = {i; β0
i 6= 0} = {1, 2, ..., s0} which consists of the first s0 variables,

we can partition Σ̂ as

Σ̂ =

Σ̂1,1 Σ̂1,2

Σ̂2,1 Σ̂2,2


where Σ̂1,1 is a s0×s0 matrix corresponding to the active variables,Σ̂1,2 = Σ̂

T

2,1

is a s0 × (p− s0) matrix and Σ̂2,2 is a (p− s0)× (p− s0) matrix. Then the

irrepresentable condition is

‖Σ̂2,1Σ̂
−1

1,1sign(β0
1 , ..., β

0
p)‖∞ ≤ θ for some 0 < θ < 1,
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where ‖x‖∞ = maxi |x(i)| and sign(β0
1 , ..., β

0
p) = (sign(β0

1), ..., sign(β0
p))

T .

Having the upper bound θ < 1 requires penalized (tuning) parameter

λ = λn to be chosen of a order larger than
√

log(p)/n. Therefore, if the de-

sign matrix is too much ill posed and exhibits a strong degree of linear depen-

dence within smaller sub-matrices of X, the lasso performance will be poor

and inconsistent. Actually for consistency of lasso, a strong irrepresentable

condition on the covariance matrix XTX and some additional regularity

conditions on {n, p, β} must hold, which are not so practical. Moreover, the

lasso estimator may even violate the sign consistency that causes a converse

interpretation. Therefore, applying lasso for SNP-data may not provide an

accurate result since we usually have highly correlated SNP.

In order to correct the overestimation behavior of the lasso, Zou (2006)

introduces the adaptive lasso. He replaces L1 penalty by a re-weighted version

as
p∑
i=1

|β|/|β̂init,i|,

where β̂init,i is an initial estimator.

This method is a two-stage procedure. By cleverly choosing the weight, the

adaptive lasso shows oracle properties. One choice of weights is based on

a root-n consistent estimator β̂ of β, for example the ML estimator when

p < n. In high dimensional problem, in the first stage β̂init = β̂(λ̂init,CV )

is estimated initially from the lasso, since the tuning parameter λ̂init,CV is

estimated by cross validation. In the second stage, we use cross validation

to select λ in adaptive lasso. Then we can expect that

• if β̂adapt,i = 0 ⇒ β̂adapt,i = 0, and

• if | β̂init,i | is large, the adaptive lasso employs little shrinkage which

provides less bias.
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3.1.2 Minimax Concave Penalty, MCP

The minimax concave plus, MCP, is a penalization method that imposes

concave penalized function to the model as

pλ(β) = λ

∫ β

0

(1− x/(γλ))+dx

with a regularization parameter γ. The main idea behind the MCP is to

shrink only the βis which are small. This can be recognized by looking at

the rate of the penalized function. The MCP shrinks the variables under

threshold λγ with a shrinkage rate that is decreasing with the size of the

βis. Therefore, in MCP we have an unbiased estimator for coefficients above

threshold and a shrunken estimator for the ones under threshold.

Since the MCP function is concave in order to have sparse convex penal-

ized loss function, the convexity of loss function must overcome the convexity

of MCP. This can be fulfilled by considering sparse Rize condition (SRC).

Sparse Riesz condition, SRC

Sparse Riesz condition on design matrix X for suitable 0 < c∗ 6 c∗ <∞ and

rank d∗ is given by

c∗ ≤ min
|S0|≤d∗

cmin(Σ1,1) ≤ max
|s0|≤d∗

cmax(Σ1,1) ≤ c∗,

where S0, Σ1,1 have the same definition in definition of irrepresentable con-

dition and cmin /max(M) is the smallest/largest eigenvalue of M .

3.1.3 Elastic Net

Although, the above penalized methods improve the accuracy of prediction

and minimize the residual sum of squares error, they are not appropriate

methods when predictors are highly correlated. Typically, this kind of data

have a group structure that predictors in each group are highly correlated.

Therefore, this information should be taken into account for imposing con-

straints to the model.
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The Elastic net is one of the penalization methods (Zou & Hastie, 2005)

that is defined for these kind of data as

pλ(β) = λ2 ‖ β ‖2
2 +λ1 ‖ β ‖1 .

This optimization problem is a convex function. Elastic net shrinks in the di-

rection of ridge regression by a lasso-type threshold. So it has characteristics

of both, with the advantage of convexity that makes it useful for correlated

data. It exhibits that correlated variables in the same group tend to have

equal coefficients and the upper bound for difference of those coefficients is

a function of the sample correlation as

1

‖y‖1

| β̂i − β̂j |≤
1

λ2

√
2(1− ρ),

where ρ = xTi xj the sample correlation.

Elastic net also overcomes a limitation of the lasso for the number of

selected predictors which is at most as equal to the number of observations.

This property comes from the idea of solving problem for augmented data.

By adding artificial data set, we increase the rank of design matrix up to p,

i.e., elastic net can potentially select all p predictors in all situation.

However elastic net has good properties, it does not perform satisfactorily

unless it is very close to Ridge regression or the lasso. The weakness arises

by the double shrinkage, first estimating the ridge coefficient and then the

lasso type shrinkage. Shrinking twice does not reduce variance much and

introduces more bias into the model, in comparison with ridge regression

and the lasso. In order to undo the extra shrinkage, the estimate should be

rescaled with (1 + λ2).

3.2 Posterior Expectation and Least Square

Estimate

All penalized methods shrink the standard least square estimator, β̂ =

(XTX)−1XTy, toward the origin. The shrinkage rate depends on the form of
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penalized function. To make a connection between the shrinkage concept in

Bayesian and frequentist framework, let’s define the prior predictive of β̂ as

h(β̂) =

∫
L(β; β̂)π(β)dβ

where L(β; β̂) denotes the likelihood function and π(β) denotes a specified

prior on β. Following the density of β̂ ∼ N
(
β, σ2(XTX)−1

)
, for p < n1 we

have

E(β|β̂) = (I − S(β̂))β̂. (3.3)

Here, S(β̂) = σ2(XTX)−1R(β̂) and R(x) is a diagonal matrix with

Rii(x) = − 1

xi

∂

∂xi
log h(x).

The (3.3) representation of the posterior expectation given by Griffin &

Brown (2010) makes the comparison between the standard least square and

posterior expectation of β easy. As it is clear, the posterior expectation is a

shrunken version of β̂. The rate of shrinkage is controlled by the predictive

prior and variance of β̂.

In the case of orthogonal designs, the posterior expectation can be simply

expressed for each βi as

E(βi|β̂i) = β̂i(I − S(i)(β̂i)),

where

S(i)(β̂i) =
σ2∑n
j x

2
ji

R(ii)(β̂i), R(ii)(β̂i) = − 1

β̂i

∂

∂β̂i
log h(β̂i).

It is clear that the shape of π(βi) is affected by the rate of shrinkage. For

instance, if we place a normal prior on βj, h(β̂i) has normal tails such that

h(β̂i) ≈ exp(−1

2
cβ̂2

i ) ⇒ Rii(βi)→ c.

This leads to undesirable shrinkage because E(βi|β̂i) does not limit to β̂i as

β̂i → ∞; i.e. this choice of prior does not provide tail robustness property

1In the case that p ≥ n, X is singular. Therefore singular value decomposition tech-

niques should be utilized to extend the result.
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which is discussed in section 3.3.5. To avoid this situation, a prior distribution

with heavier tails than normal should be given to βi (David, 1973). While

the natural class of prior density for βis in linear regression model is scale

mixtures of normal, priors with heavier tails can be placed via the hierarchical

form that is discussed in the next section.

3.3 Shrinkage Prior

Shrinkage priors are usually a continuous shrinkage with hierarchy represen-

tation. Hierarchical models conceptually and practically are at the center of

attention in modern Bayesian statistics. On the theoretical side, hierarchi-

cal models allow a more objective approach to the inference by estimating

hyperparameters from data rather than subjective approach (see, e. g,Efron

& Moris, 1975). These models practically are more flexible tools for combin-

ing information and partial pooling of inference (see, e. g., Carlin & Louis,

2001; Gelman, 2003). The continuous shrinkage property is also an impor-

tant characteristic since it avoids instability in model prediction (Fan & Li,

2001).

In high dimensional problems, the main concern is on the prior specifica-

tion of hierarchical variance parameters since it controls the rate of shrinkage.

Generally, a well defined shrinkage prior is a prior with heavy tails like Cauchy

in order to allow strong effects remain large and also provides severe shrink-

age for weak effects. These properties can be achieved by imposing global

and local shrinkage parameters to the model. In order to have both global

and local shrinkage parameters, shrinkage prior applies parameter expansion

technique. Overparameterization reduces dependence among the parameters

in a hierarchical model and improves MCMC converges (Liu et al., 1998).

Adding additional parameters can also increase flexibility of applied model.

This technique was originally constructed to speed up EM and Gibbs sam-

pler computations. However, with shrinkage priors, the aim is to control the

rate of shrinkage through these parameters.

In general, shrinkage priors can be represented as scale mixtures of normal
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distributions as

βi ∼ N(0, λiτ)

In this representation, there are two hyperpaameters :

• Global Shrinkage Parameter, τ :

Global parameters are shared scale parameters that try to estimate

overall sparsity level. This dates back to Stein (1956). These param-

eters reveal the presence of sparsity in the model. Therefore, global

shrinkage parameters are of fundamental importance in high dimen-

sional inference.

• Local Shrinkage Parameter, λi:

Local parameters shrink locally the nonzero parameters of β. In addi-

tion, the key role of local parameters is to reduce the gravity toward

zero on strong effects exercised by global parameters.

Different local-global shrinkage priors can be found in the literature, but we

discuss the shrinkage behavior of some of those priors.

3.3.1 Double-Exponential Prior

One of the most common used shrinkage priors is to specify double-exponential

or Laplace prior on λi (see, e.g., Figueiredo, 2003; Bae & Mallick, 2004; Hans,

2009). Popularity of Laplace-like priors is due to their connection with Lasso

penalization method. The lasso estimate can be interpreted as the mode of

posterior of βis with independent and identical Laplace priors. This is also

known as Bayesian Lasso that is represented as

λi ∼ exp(−η2/2), τ ∝ 1/τ (3.4)

where τ = σ2, the variance of error term in (3.1).

Although the Bayesian Lasso is a Bayesian representation of the Lasso, its

estimate is a compromise between the Lasso and ridge regression estimates;

its path moves like Lasso but is smooth like ridge regression. Moreover, speed

of shrinking βis toward zero with Bayesian lasso is between ridge and Lasso.
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Hyperparameter η can be estimated by empirical Bayes strategy or placed

a hyperprior on it. Park & Casella (2008) suggest to give gamma prior of

the form of

p(η2/2) =
rs

Γ(s)
(η2)s−1 exp(−rη2), r > 0, s > 0, (3.5)

to η2/2. This choice of prior allows easy extension of Gibbs sampler of (3.4)

because η2 can simply join the other parameters without changing their full

conditional distributions.

3.3.2 Generalized Double Pareto, GDP

Generalized double Pareto density is a modified version of generalized Pareto

in order to be appropriate for p � n problems. Armagan et al. (2013)

proposed this distribution by reflecting the positive part of generalized Pareto

around origin as

f(βi|ξ, α) =
1

2ξ

(
1 +
|βi|
αξ

)(1+α)

ξ > 0, α > 0.

The parameter ξ is a scale parameter that controls the dispersion and α is a

shape parameter that controls the tail heaviness. The GDP has Cauchy-like

tails when α = 1. This avoids over-shrinkage on marker effects away from

the origin. Figure 3.1 compares generalized double Pareto in the case that

ξ = α = 1 with Laplace and Cauchy.

Hierarchical representation of GDP as local-global shrinkage prior is

λi ∼ Exp(θ2
i /2), τ ∝ 1/τ, and

θi ∼ Gamma(α, η)

where ξ =
τ 1/2η

α
, α > 0, η > 0 and τ = σ2, the variance of error term

in (3.1). The rate of shrinkage has been affected by the choice of hyperpa-

rameters α and η. For ensuring the continuity property to avoid instability
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Figure 3.1: The GDP (solid line) , double-exponential prior (dash-dotted line) and standard Cauchy

(dashed line).

in prediction, it is necessary and sufficient to select η =
√
α + 1. With this

choice, α is the only hyperparameter to specify. Picking α = 3 induces a

lighter tails than Cauchy distribution, while α = 1 provides Cauchy-like tail

prior. Letting α→∞ leads to an improper prior.

Hierarchical representation of GDP makes it very similar to normal-exponential-

gamma family of priors proposed by Griffin & Brown (2007). The differences

is that here the mixing prior is placed on θi instead of θ2
i in the prior of Griffin

and Brown. This mixing leads to simpler analytic forms for the marginals.

Simple data augmentation Gibbs sampler of GDP can be obtained via the

scale mixture of normals representation.

3.3.3 Horseshoe Prior

Horseshoe prior is a global-local shrinkage prior introduced by Carvalho et al.

(2010) as

λ
1/2
i ∼ C+(0, 1), τ ∼ C+(0, 1), σ ∝ 1/σ,

where C+(0, 1) is a half-Cauchy distribution. The horseshoe prior π(βi|τ)

does not have closed-form representation but it behaves like log(1 + 2/β2
i ).

The main difference of horseshoe prior with aforementioned shrinkage priors

is that the global shrinkage parameter is not the same as the variance of error

term, σ2. Separating τ and σ2 provides more appealing features for this prior.

As it is shown in Figure 3.2, flat Cauchy-like tail of horseshoe prior avoids
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over shrinkage of large βis or strong effects, while its infinity tall spike at

the origin shrinks severely the low effects towards zero. The figure shows

Figure 3.2: The horseshoe prior (solid line), double-exponential prior (dash-dotted line) and standard

Cauchy (dashed line).

behavior of horseshoe priors with respect to two commonly used shrinkage

priors, double-exponential and the Cauchy priors. The double-exponential

prior causes severe shrinkage on low effects and the Cauchy reduces imposed

bias on larger βis since it has heavier tail than two the others.

3.3.4 Shrinkage Coefficient

Shrinkage coefficient, κi, is a random parameter that its behavior provides

an understanding about the way of shrinkage. On the other words, it is the

amount of weight that the posterior mean of βi given y places on zero. Under

local shrinkage prior βi ∼ N(0, λi), the posterior mean is

E(βi | yi, λi) = (1− κi)yi,

where κi =
1

1 + λi
. For κi = 0 there is no shrinkage and for κi = 1 we

have total shrinkage toward origin. This is a motivation to compare dif-

ferent shrinkage prior through behavior of κi in a priori. Table 3.1 lists

density of κi associated with prior of λi for aforementioned shrinkage priors

and Cauchy prior. Presented priors are obtained up to the constant and for

GDP, ξ = α = 1 is considered. Figure 3.3 also shows the shape of these priors.



29 3.3. Shrinkage Prior

Table 3.1: Priors of κi associated with some shrinkage prior where κ∗i = κi/2(1− κi) and Erfc(.) denotes

the complementary function. In addition, for GDP ξ = α = 1.

prior for βi Density for κi

Cauchy

√
κ∗i

κ
3/2
i (1− κi)

e−κ
∗
i

Double-exponential κ−2
i e−1/(2κi)

GDP

√
κ∗iπErfc

[√
κ∗i
]
eκ
∗
i

2κ3
i

− κ∗i
κ2
i

Horseshoe κ
−1/2
i (1− κi)−1/2

Figure 3.3: Densities of κi for Cauchy, Double-exponential, generalized double Pareto (GDP), and horse-

shoe priors.

The double-exponential prior tends to a fixed constant near κi = 1. This

limits the ability of the prior to squelch noise components back to zero. In

addition, the density vanishes entirely near κi = 0; it is not a good feature

for shrinkage priors since no shrinkage for large effects is desired.

Horseshoe prior implies κi ∼ Beta

(
1

2
,
1

2

)
. Since Beta

(
1

2
,
1

2

)
is sym-

metric and unbounded at boundary points, no shrinkage near zero and total

shrinkage near one is expected.

The GDP behaves similar to horseshoe near zero but its behavior is not

unbounded like horseshoe and not a fixed constant like double-exponential

in the neighborhood of one; i.e. it behaves between these two cases. As it is

represented in Armagan et al. (2013), the general density of κi of the GDP is a
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function of hyper-parameters α and η. These two hyper-parameters influence

differently on κi near one. Increasing α places more and more density near

one while increasing η places less and density near one. Therefore, these

hyper-parameters should be chosen carefully.

3.3.5 Tail Robustness

Tail robustness is a property of an estimator on its behavior in situations

where y is very different from the prior mean. Observing the behavior of the

posterior expectation of β for large y provides insight into investigating this

property. However it is not a new concept, the following theory by Carvalho

et al. (2010) characterizes this property by relaxing boundedness condition

on π(β).

THEOREM: Let p(| y − β |) be the likelihood, and suppose that π(β) is a

zero mean scale mixture of normals, β | λ ∼ N(0, λ), with λ1/2 having proper

prior π(λ1/2). Assume further that the likelihood and π(β) are such that the

marginal density m(y) is finite for all y. Define the following pseudo-densities,

which may be improper,

m∗(y) =

∫
R
p(| y − β |)π∗(β)dβ, π∗(β) =

∫
R+

π(β | λ)π∗(λ1/2)dλ1/2,

π∗(λ1/2) = λπ(λ1/2).

Then

E(β | y) =
m∗(y)

m(y)

d

dy
logm∗(y) =

1

m(y)

d

dy
m∗(y).

�

In the case that p(| y − β |) is a normal likelihood, then E(β | y) reduces

to

E(β | y) = y +
d

dy
logm(y), (3.6)

(Masoeliez, 1975; Polson, 1991; Pericchi & Smith, 1992).

To achieve tail robustness, the second term in (3.6) needs to converge

to zero for large | y |. In the case that variance of observations is one and
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π(λ) ∼ λs−1e−ζλL(λ) such that L(tλ)/L(λ)→ 1 when λ→∞ for any t > 0,

we have
d

dy
logm(y) ∼ 2rs− 1

y
−
√

2ζ, (3.7)

where r = 1 if ζ > 0 and r = 0 otherwise (Polson & Scott, 2010). Equations

(3.6) and (3.7) lead to

lim
y→∞

(
y − E(β | y)

)
=
√

2ζ,

i.e., any scale mixture that places exponential prior or lighter tails on π(λ),

always shrinks all observations to zero, no matter how far they are from zero.

But by placing priors with heavier tails on λ like Cauchy in the horseshoe,

the second term in (3.6) converges to zero for large observations (Carvalho

et al., 2010).

3.4 Mixture Prior

Another prior specification, which is widely applied in high dimensional set-

tings, is mixture prior:

βi ∼
∑
j

πjD(0, σ2
j ),

whereD denotes a distribution with mean zero and variance σ2
j . Here πj is the

prior probability of D with σ2
j when

∑
j πj = 1. Although, mixture priors are

comprehensible and adapted for high dimensional problems; they face some

challenges in applications. For instance, label switching is a well known

problem that arises with mixture priors (see e.g., Diebolt & Robert, 1994;

Redner & Walker, 1984). To overcome this problem, different constraints,

known as identifiability constraints, were suggested to be imposed to the

model. In the case of a mixture of two normals with representation

βi ∼ (1− π)N(0, σ2
0) + πN(0, σ2

1),

a common constraint is to restrict σ2
0 such that σ2

0 < σ2
1. Another approach

is to reparameterize the prior so that the variance of one of the components
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is a scaled version of the variance of the other component as σ2
0 = τ−1σ2

1

where τ > 1.

The complexity of MCMC implementation for a large p is another chal-

lenge for dealing with mixture priors. To overcome this problem, let’s put

the constraint |βi| > ωi on the size of βis in order to exclude the markers

that do not have strong impact on complex traits. This can be achieved if

N(0, σ2
0) > N(0, σ2

1) on intervals (−ωi, ωi) where N(0, σ2
0) is a prior on the

set of small effects and N(0, σ2
1) is a prior on the set of large effects. Hence,

this constraint leads to

log(σ1/σ0)/(σ−1
0 − σ−1

1 ) = ω2
i .

Based on such a constraint, σ0 cannot reach zero. This motivates to apply a

mixture of a continuous distribution and a point mass at zero as

βi ∼ πD + (1− π)δ0. (3.8)

While the point mass mixture prior (3.8) is widely used in variable selec-

tion and model choice problems, it is typical to introduce a vector of latent

variables

γ = (γ1, ..., γp)
T

in the model. The γ so-called inclusion indicators is a zero and one variable

corresponding to small or large βi respectively. This modification brings

convenient having a singular prior instead of mixture prior given γ. Hence,

the modified (3.8) with D as a normal distribution is

βi | γ ∼ γiN(0, σ2) + (1− γi)δ0. (3.9)

From (3.9), it is clear that γ has critical influence on the analysis since it

keeps a subset of predictors in the model. A common prior for the inclusion

indicators is p(γ) = πpγ (1−π)p−pγ (George & McCulloch, 1993, 1997; George

& Foster, 2000) where π is inclusion probability for each predictor and pγ is

the number of nonzero predictors in the model given γ. The choice of two

hyperparameters π and σ2 impacts on inference; therefore, dealing appropri-

ately with these unknown parameters is crucial.
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3.4.1 Hyper-prior on Parameters of βγ

To place a hyper-prior on parameters of β, let rewrite the prior as

βγ | γ ∼ N(0,Σγ) (3.10)

where βγ is a set of nonzero regression coefficients given γ. If γ is given,

variance of βγ is the only parameter that should be specified. This hyper-

parameter reflects the size of sparsity of the model and acts like a penalization

parameter. Although we might desire to control the strength of shrinkage

by placing a hierarchical prior, here we discuss about g-prior that is widely

adopted for point mass mixture priors. The g-prior is one of the most popular

priors on the scale parameter of the normal which is introduced by Zellner

(1986) as

Σγ = σ2g(XT
γXγ)

−1

where p(σ2) ∝ 1/σ2. Here, the covariance matrix of βγ is a scalar multiple

g of the Fisher information matrix, which depends on the observed data

through the design matrix X. This particular prior has been widely adopted

in the context of Bayesian variable selection since availability of the closed

form of all marginal likelihoods brings computational advantages. It also has

simple interpretation since it can be derived from the idea of a likelihood for

a pseudo-data set with the same design matrix X as the observed sample

(see, Zellner, 1986; George & Foster, 2000; Smith & Kohn, 1996; Fernandez

et al., 2001).

By the choice of g-prior g is the only hyper-parameter that needs to be

specified. The hyper-parameter g acts like a penalization parameter and

effectively influences on the inference. Therefore, different choices of g are

recommended in literature.

• Kass & Raftery (1995) chose g = n with the belief that the amount of

information about the parameter should be equivalent to the amount

of information in one observation which is defined through Fisher in-

formation. The result of this choice is very close to BIC criterion.
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• Foster & George (1994) recommended the choice of p2
γ for g based on

the Risk Inflation Criterion (RIC).

• Fernandez et al. (2001) made a bridge between BIC and RIC by the

choice of g = max(n, p2
γ). They named this prior benchmark prior.

• George & Foster (2000) and Cui & George (2008) estimated g via em-

pirical Bayes method.

Those such fixed values for g may not bring ability to control the strength

of shrinkage. Instead, it is more natural to consider uncertainty of this pa-

rameter by placing a prior on g.

• Zellner & Siow (1980) considered Inverse-Gamma distribution as hy-

perprior on g. Despite the g-prior, Zellner-Siow prior does not provide

closed form of the marginal likelihoods.

• Liang et al. (2008) placed prior on shrinkage factor of g-prior as

g

1 + g
∼ beta(1,

a

2
− 1)

where a ∈ (2,∞). For a = 4, the prior on the shrinkage factor is a

uniform prior. For any values greater than 4 the prior places more

mass around zero. Conversely, for a ∈ (2, 4), prior of shrinkage factor

concentrates around one.

In some problems like the GWAS, pγ ≥ n for many submodels. In such

cases, the matrix XT
γ Xγ is not invertible; therefore, criteria such as AIC,

BIC and RIC will be unavailable for all submodels. To avoid this problem,

Maruyama & George (2011) introduce generalized g-prior by decomposing

Xγ via singular value decomposition technique.

The g-prior and generalized g-prior assume that regression coefficients or

marker effects are not independent. While in the GWAS βis are reflecting

causal effect of xis on Y , it might be better not to assume the same correlation

structure of xis for βis. Thus, hereafter, we assume that βis are independent.
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3.4.2 Hyper-priors on Inclusion Probability

Inclusion Probability can be fixed with any values between (0, 1), but placing

a prior on π can provide more flexibility. Ley & Steel (2007) has shown that

the hierarchical prior on π outperforms the prior with fixed inclusion proba-

bilities. The common choice of prior for π is a beta distribution, Beta(a, b)

(see e.g., Cui & George, 2008; Scott & Berger, 2010) which induces

p(γ) = Beta (pγ + a, p+ pγ + b) .

By the choice of a = b = 1 the prior will be U(0, 1) where U denotes the

uniform distribution. However, uniform distribution has been applied in

some applications but it may not be appropriate for high dimensional prob-

lems. Considering a uniform prior for π corresponds to have large number

of nonzero β in a priori. Hence, it may not be a good choice for very sparse

problems. Instead, Guan & Stephens (2011) considered a uniform prior for

log(π) as

log(π) ∼ U(log(1/p), log(M/p)).

This uniform prior is defined through prior guess of range of π in (1/p,M/p).

Although the bounds are a function of p to span the order of magnitude for

larger p, the choice of M is not well defined.

3.5 Simulation Study

In this section, we compare out-of-sample predictive performance of Ridge

Regression (RR) and the Lasso (L) as penalization methods, double-exponential

prior by Park & Casella (2008) that we call it Bayesian Lasso (BL), gener-

alized double Pareto (GDP) and horseshoe (HS) as Bayesian approaches.

We also made comparison with Student’s t prior that can be expressed as a

mixture of normal distributions βi ∼ N(0, λi) with the mixing scaled inverse-

gamma distribution,

λi ∼ Inv-gamma(ν, s2). (3.11)
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This prior specification is so called Bayesian ridge (BR). For this experiment,

we consider the following scenarios for n = 100.

Model-1: Ten regression coefficients are 3 and the rest are zero when p = 100.

Model-2: Ten regression coefficients are 3 and the rest are zero when p = 200.

Model-3: Fifty nonzero regression coefficients, 25 generated from U(−3,−2) and

25 from U(2, 3), when p = 1000.

Model-4: All regression coefficient generated from U(−1, 1) when p = 100.

Model-5: All regression coefficient generated from U(−1, 1) when p = 200.

Model-6: All regression coefficient generated from U(−1, 1) when p = 1000.

The three first models are referred to the sparse problems while three last

models are dense problems motivated by genome-wide association studies.

In this study, we aim to generate a set of data similar to SNP-data. Since

in GWAS markers are in linkage disequilibrium which vanishes by physical

distance in genome, predictors x1, ...,xp were first simulated according to a

central multivariate normal distribution such that covariance between xi and

xj is 0.5|i−j|. Additionally, markers in SNP-data set gets 0, 1 and 2 when 1 is

two times more probable than 0 and 2 to occurs. Thus, xi is trichotomized

as 0, 2 and 1 if it is smaller than Φ−1

(
1

4

)
, larger than Φ−1

(
3

4

)
or in be-

tween. The response y was finally simulated from a linear regression model

for each scenarios when the noise term is normally distributed centered at

zero with variance one. After simulating data, y and x is centered and y are

standardized to have unit variance.

To implement MCMC for Bayesian methods, 6000 first samples out of

12000 were considered as burn-in samples. Hence, the inference has been

based on 6000 remained samples. For two penalized methods, tuning param-

eters have been estimated from 10-fold cross validated.

To illustrate this example we used package MASS and Lars for Ridge

regression and the Lasso respectively. For Horseshoe we modified the code

in package monomvn for our model.



37 3.5. Simulation Study

Table 3.2: First rows of sparse models present average of 50 out-of-sample MSPEs for RR, L, BL, BR,

GDP and HS and their standard deviation based on bootstrap samples in subscript. Second rows present

average of 50 correlations between prediction and observed values in validation sets.

Model RR L BR BL GDP HS

Model-1
MSPE 0.107(.008) 0.042(.001) 0.102(.016) 0.0516(.008) 0.093(.010) 0.041(.004)

Cor 0.9204 0.990 0.960 0.983 0.978 0.991

Model-2
MSPE 0.240(.017) 0.049(.005), 0.191(.018) 0.107(.010) 0.154(.013) 0.046(.006)

Cor 0.653 0.988 0.912 0.965 0.932 0.989

Model-3
MSPE 0.893(.018) 0.841(.026) 0.943(.030) 0.831(.033) 0.912(.006) 0.891(.031)

Cor 0.0827 0.374 0.170 0.352 0.224 0.244

For each model, we simulated 50 data set. We evaluated the out-of-sample

predictive performance of each model, by randomly selected 80% of samples

as training set and the rest as validation set. Table 3.2 and 3.3 represents

average of mean square prediction error, MSPE, of 50 simulated data for

each model. The index number shows the average standard error of each

MSPE obtained by averaging 200 bootstrap samples of 50 standard error of

each model. We also represented average of correlation between predicted

and observed values in validation sets. This gives better sight to accuracy of

performance for models with different number of predictors.

Table 3.2 shows that HS outperforms its competitors for sparse models

with p = n and p = 2n. However, the lasso performs very close to HS; the

performance of BL is not as good as the lasso since it is compromises between

ridge and the lasso. For Model-3 with p = 10n, all approaches show very

poor performance and their correlations reveal that any inference based on

these results may not be reliable.
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Table 3.3: First rows of dense models present average of 50 out-of-sample MSPEs for RR, L, BL, BR,

GDP and HS and their standard deviation based on bootstrap samples in subscript. Second rows present

average of 50 correlations between prediction and observed values in validation sets.

Model RR L BR BL GDP HS

Model-4
MSPE 0.252(.014), 0.354(.024) 0.205(.015) 0.295(.026) .308(.012) 0.526(.027)

Cor 0.870 0.780 0.868 0.830 0.824 0.674

Model-5
MSPE 0.496(.022), 0.735(.032), 0.466(.032) 0.525(.043) 0.487(.014) 0.734(.030)

Cor 0.696 0.519 0.701 0.643 0.682 0.486

Model-6
MSPE 0.827(.019) 0.971(.039) 0.832(.020) 0.890(.030) 0.885(.007) 0.979(.041)

Cor 0.358 0.152 0.355 0.262 0.339 0.137

Table 3.3 represents the performance of the methods for dense models. As

it is shown, BR has better performance in comparison with other competitors,

even better than RR. However, MSPE increases by increasing p to 2n in

model-5 for all approaches, performance of GDP turns out to be better than

RR and very close to BR. It also has smaller standard deviation than BR.

Therefore, GDP can be an alternative to BR for dense problems with p > n.

For Model-6, we have the same problem as Model-3, large MSPE and small

correlation.

If we make a comparison between the sparse problems and dense prob-

lems, it is clear that for sparse problems we have better performance.

As we realized from our analysis presented in chapter 6, and previous

studies on SNP-data, genome-wide problems are more similar to the dense

models. Thus, we find BR and GDP as a good choice for our purpose.
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Bayesian Compressed

Regression

In the previous chapter, we have explored Bayesian approaches based on

shrinkage priors and mixture priors. Between those two categories, a shrink-

age prior might be more appropriate choice for SNP-data, while there is a

general agreement that most complex traits are affected by a large number

of small-effect markers. Although shrinkage priors are developed for high di-

mensional problems, they might not provide so accurate results when we face

ultrahigh dimensional problems. Shrinkage priors can be safely applied for

problems with 2 or 3 times more predictors than observations. However, the

true and safe upper limit is specific for each problem due to degree of corre-

lation (co-linearity) among the predictors. Hence, in the first step, reducing

the dimensionality of the set of SNPs is required.

In this chapter, we focus on random projection method that is a dimen-

sional reduction technique. Random projection compresses the data in low

dimension space in such a way that we can learn about the complex trait from

compressed data with little loss of information. The aim of this chapter is

to understand whether random projection can be appropriate for SNP-data.

Hence, we first review the main concepts of random projection. In second

section, we modified Bayesian compress regression by Guhaniyogi & Dunson

(2013) for the problems with related samples. The section three presents

39
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prediction model when we have related samples. In the section four, sensi-

tivity of analysis based on random projection is discussed. The last section

is devoted to illustrate a simulation study to evaluate out-of-sample predic-

tive performance of compressed regression and Bayesian shrinkage prior with

presence of random effects.

4.1 Dimensional Reduction

A widely used approach to dealing with large p is to first reduce the dimension

with a dimensionality reduction techniques. Principal component analysis,

PCA, is an extremely important tool for this aim which has found use in

many experimental and theoretical studies. The PCA finds an m-dimensional

subspace of Rp which captures as much of the variation in the data set as

possible(Maruyama & George, 2011; Paul et al., 2008; Li et al., 2011).

Although the PCA is based on linear mapping, its computational com-

plexity precludes its use in truly large-scale applications. The computational

complexity of PCA is O(p2n) +O(p) which makes it inefficient for a problem

like the GWAS. Although, computing singular value decomposition, SVD, is

somewhat more efficient, it is still expensive for large p.

An alternative to the PCA is random projection, RP, which is also based

on linear mapping. Performing random projection requires only a matrix

multiplication and takes O(npm). Due to the low computational cost of the

RP, it gets some attention in literature during the last two decades. It reduces

dimension of the parameter space down to O(log p) with linear computational

cost in the dimension . Therefore, the RP has been found computationally

efficient and a sufficiently accurate method for dimensionality reduction of

high dimensional settings. The main idea of the RP is to reduce the dimen-

sionality by projecting the data into a lower dimensional subspace formed by

a set of random vector. Let X ∈ Rn×p be our n points in p dimensions. To

reduce the p down to m that is much smaller than p, the random projection
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technique multiplies X by a random matrix Φ ∈ Rp×m , as

X̃ =
1√
m
XΦ, X̃ ∈ Rn×m. (4.1)

Here, the entries of Φ, φijs, should be generated independently from an

identical symmetric α-stable distribution.

A random variable φij is called symmetric α-stable random variable if its

characteristic function is

E
[
exp(
√
−1φijt)

]
= exp(−d | t |α)

where d > 0 is scale parameter. In the case that α = 2 and α = 1, φij is

a normal and Cauchy random variable respectively. The choice of α brings

the properties of Lα norm distance. For instance, if α = 2, the L2 distance

between the rows of original data X is preserved in the projected matrix X̃.

One of the main issues in random projection is to determine m. To this

end, let xi denotes ith row of matrix X and x̃i denotes ith row of X̃. For

convenience, we focus on the leading two rows, x1 and x2 in X, and the

leading two rows, x̃1 and x̃2, in X̃ such that

s1 =‖ x1 ‖α=

p∑
j=1

| x1j |α, s2 =‖ x2 ‖α=

p∑
j=1

| x2j |α,

dα =‖ x1 − x2 ‖α=

p∑
j=1

| x1j − x2j |α .

A typical method to choose m is to bound

P
(
| d̂α − dα |> εdα

)
where d̂α is estimate of dα and ε is a factor to control accuracy of the projec-

tion to preserve Lα distance. This central idea of random projection dates

back to Johnson & Lindenstrauss (1984). It proves that in particular case

α = 2,

(1− ε)d2 ≤ d̂2 ≤ (1 + ε)d2, d̂2 =‖ x̃1 − x̃2 ‖2

holds for m ≥ m0 = O(ε−2 log n), which is so called JL-Lemma. In other

words, JL-lemma says that if we perform an orthogonal projection of n points
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in a vector space Rp onto a selected lower-dimensional subspace, then L2

distances between points are preserved; i.e., not distorted more than a factor

of (1 ± ε), for any 0 < ε < 1. Various JL-Lemma (see, e.g., Dasgupta

& Gupta, 2003; Indyk & Motwani, 1998) have been proved for precisely

determining m given some specified level of accuracy.

4.1.1 The Choice of Random Projection Matrix

A crucial point in random projection is to select a method to generate random

φij since its distribution can change the variances (average errors) and error

tail bounds. This task is equivalent to the choice of α that must be chosen

based on the data and the problem in hand. Here, we just consider common

random projection when α = 2.

Normal random projection

By the choice of α = 2 the random projection matrix has i.i.d normal entries.

This kind of random projection is the simplest random projection in terms

of analysis; although it is not the simplest from generating a random number

view point. For this choice of random projection matrix, we can easily show

that k ‖ x̃1 ‖2 /s1
D
= χ2

k where χ2
k denotes chi-square distribution with k de-

gree of freedom. Based on this result, we can learn more about concentration

of ‖ x̃i ‖2 around its expectation,‖ xi ‖2. Vempala (2004) readily shows

E(‖ x̃1 ‖2) = s1 and E(‖ x̃1 − x̃2 ‖2) = d2

var(‖ x̃1 ‖2) =
2

m
s2

1, var(‖ x̃1 − x̃2 ‖2) =
2

m
d2

2

that gives a hint about how to choose m; i.e. with appropriate choice of m

we can expect an accurate result.

Invoking to well-know Chernoff-inequality, we have

P
(
| d̂2 − d2 |≥ εd2

)
≤ 2 exp

(
−m

4
ε2 +

m

6
ε3
)

for any 0 < ε < 1. By applying Bonferroni union bound as

n2

2
2 exp

(
−m

4
ε2 +

m

6
ε3
)
≤ n(−ζ)
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then

m > m0 =
4 + 2ζ

ε2/2 + ε3/3
log n (4.2)

where 1 − n−ζ is the probability of holding JL-Lemma (Achlioptas, 2003).

On the other words, with this lower bound for m, we control the probability

of success of JL lemma by ζ while ε controls the desired accuracy in distance

preservation.

Sub-Gaussian random projection

Although normal random projection is simple in theory, it is not an efficient

choice for large p because of its computational complexity due to the dense

nature of the projection matrix. Instead, generating a projection matrix from

sub-Gaussian distribution is convenient computationally and theoretically.

A variable x is said a sub-Gaussian random variable if

E [exp(tx)] ≤ exp

(
υ2t2

2

)
,∀t ∈ R (4.3)

for some υ > 0. In other words, if there is a positive real number υ such

that the Laplace transform of x is dominated by the Laplace transform of

a Gaussian random variable with mean zero and variance υ2, then x is a

sub-Gaussian variable with parameter υ2.

Hence, we can easily generate φijs from any zero-mean bounded variance

distribution. A typical choice of this kind of projection matrix is

φij =
√
s


1, with probability 1/2s

0, with probability 1− 1/s

−1, with probability 1/2s.

(4.4)

where s ≥ 1. It is obvious that this choice of random projection is computa-

tionally appealing since 1/s fraction of data is only projected in new space.

The other words, it is s-fold speedup random projection. Achlioptas (2003)

first suggested the use of (4.4) for s = 1, 3. He dropped the spherical condi-

tion of JL-Lemma by presenting new version of JL-Lemma. For any random
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projection matrix generated from unite variance sub-Gaussian distribution

with parameter ν2, we have

P
(
d̂2 ≤ (1 + ε)d2

)
≤ exp

[
−m

2

(
log

δ2

1 + ε
+

1 + ε

δ2
− 1

)]
, ε > 0 (4.5)

where δ2
φ is an optimal value of ν2 and ν2 ≤ 1 + ε. This upper bound can be

obtained by using Chernoff inequality

P
(
d̂2 − d ≥ εd

)
≤

E
[
exp

(
d̂2t
)]

exp [(1 + ε)d2t]
.

Since the upper bound is a function of m, a good choice of m can ensure that

the inequality (4.5) holds with high probability.

For very sparse problem, Li et al. (2006) suggested to generate random

variable from (4.4) with s > 3. They have shown that under some conditions

the upper bound (4.5) can be even reached for s up to
√
p.

4.2 Bayesian Compressed Regression

Linear regression model with presence of random effects is widely applied

in genetic problems. This model is capable of correcting for several forms

of confounding due to genetic relatedness such as population structure and

familial relatedness. Therefore, hereafter, we consider

y = Xβ + u + ε, ε ∼ N(0, τ−1R) (4.6)

where y is an n vector of quantitative trait measured on n experimental

units, X is an n× p matrix of genotypes measured at genetic markers, β is a

p vector of additive genetic effects and R is an n× n known diagonal matrix

so called heterogeneous-residual variance. Random vector u is an n vector

such that

u ∼ N(0, τ−1K)

where K is an n × n known relatedness matrix calculated from pedigree.

Variance covariance matrix of u is a function of relatedness matrix in order

to consider genetic relation among experimental units.
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In compressed regression, we project each row xi ∈ Rp of X to an m

dimensional subspace through an p×m Normal random projection matrix Φ

since our model is a normal linear model. After projecting data in new space,

y is regressed on projected design matrix XΦ. Hence, (4.6) is modified as

y = XΦβ̃ + u + ε (4.7)

where β̃ is an m vector of coefficient in projected space. As suggested by

Guhaniyogi & Dunson (2013), after generating random matrix projection,

we assume that Φ is fixed. Then, we consider two different scenarios

• large p and large n

For large enough n, we can find m0 < n such that (4.2) holds for small

ε with high probability. In such a problem, a usual conjugate priors

can be considered for the model, while we are not in high dimensional

setting anymore. In particular, we choose following priors for parame-

ters

β̃ ∼ N(0, τ−1Σβ), τ ∼ Gamma(a1, b1). (4.8)

Then we obtain the posterior distribution of τ given Φ as

τ | y,Φ ∼ Gamma(n/2 + a, b+ yT (R +K + XΦΣβΦTXT )−1y)

and the posterior distribution of β̃ and u given Φ as

β̃ | y,Φ ∼ tn

(
W−1ΦTXTA−1y, 2

b1

n
W−1

)
,

u | y,Φ ∼ tn

(
[B−1 +K−1]

−1
B−1y, 2

b

n
[B−1 +K−1]

−1

)
for the case that a1 → 0 , b1 → 0. Here

A = R +K, B = XΦΣβ̃ΦTXT +R,

W = ΦTXTA−1XΦ + Σ−1

β̃
,

b = yT
(
R +K + XΦΣβ̃ΦTXT

)−1
y.
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• large p and small n

When n is small, for holding JL-Lemma for small ε with high probabil-

ity, lower bound for m in (4.2) is greater than n. In this case, shrinkage

prior is appropriate choice for model (4.7). For instance, we place gen-

eralized double Pareto on marker effects. Thus, prior specification on

hyperparameters in (4.8) is

Σβ̃ = diag{ηj}, ηj ∼ Exp(λ2
j/2), λj ∼ Gamma(a2, b2), j = 1, ...,m.

We estimate the parameters of the model by sampling from their condi-

tional posterior distributions through MCMC algorithm that is known

as Gibbs sampling scheme. These conditional posterior distributions

are given in the follow.

β̃ | . ∼ N

(
W−1ΦTXTR−1(y − u), τ−1W−1

)
,

τ | . ∼ IG

(
n+ p/2,

1

2

[(
y −XΦβ̃−u

)T

R−1
(
y −XΦβ̃ − u

)
+ β̃

T
Σ−1

β̃
β̃ + uTK−1u

])
,

u | . ∼ N
(

[R−1 +K−1]
−1
R−1

(
y −XΦβ̃

)
, τ−1 [R−1 +K−1]

−1
)
,

η−1
j | . ∼ Inv-Guass

( λ2
j

β̃2
j τ

)1/2

, λ2
j

,

λj | . ∼ Gamma
(
a2 + 1, τ 1/2 | β̃2

j | +b2

)
.

4.2.1 Prediction model

Some problems in the GWAS aim to predict the quantitative trait given

new genotypes measured on new individuals. In these kinds of problems,
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compress regression is more appealing since the initial marker-effects, β, do

not estimate directly with model (4.7).

To predict new observation, we need to consider that new experimental units

might be related to observed samples. Indeed, we assume that random effects

for the observed and future experimental units follow multivariate normal

distribution (
uo
uf

)
∼ N

((
0

0

)
, τ−1

(
Ko,o Ko,f

Kf,o Kf,f

))
.

The index o indicates the observed data and f represents the future one.

Based on standard multivariate theory the conditional distribution of new

random effects given the observed data is

uf | uo ∼ N
(
Kf,oK

−1
o,ouo, τ−1

u

[
Kf,f −Kf,oK

−1
o,oKo,f

])
.

Invoking to the Law of total expectation and variance, one can obtain the

posterior expectation and variance of predictive quantitative trait, yf , given

Xf and yo. The posterior expectation of future data that we call it predictive

model is given by

E
(
yf | Xf ,yo,Φ

)
= E

(
E
(
XfΦβ̃ + uf + εf | Xf ,yo,Φ, β̃,uo, τ

))
= XfΦ E

(
β̃ | yo,Φ

)
+Kf,oK

−1
o,oE

(
uo | yo,Φ

)
and we write it simply as

ŷf = xfΦ
ˆ̃βo +Kf,oK

−1
o,o ûo. (4.9)

The posterior variance of prediction is also obtained as

Var
(
yf | Xf ,yoΦ

)
=XfΦVar

(
β̃ | yo,Φ

)
ΦTXT

f

+Kf,oK
−1
o,o Var

(
uo | yo,Φ

)
K−1
o,oKo,f

+
(
Kf,f −Kf,oK

−1
o,oKo,f

)
E
(
τ−1
u | yo,Φ

)
+Rf,fE

(
τ−1 | yo,Φ

)
.
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4.2.2 Sensitivity of Inference to the choice of m

However random projection is highly efficient from computational point of

view and it has shown noticeable result in high dimensional data analysis in

different applications, the main drawback of random projection is its unstable

result. Different random projections may lead to different inference. This

problem mainly arises due to the choice of m, the dimension of projecting

space. Although, many studies have been done to obtain lower bound for

m, such as (4.2), it is still an open question how to choose m for a random

projection in order to get an stable result.

The instability of the inference in Bayesian compressed regression can be

seen as uncertainty about the model due to the ambiguity in the choice of

(m,Φ). A complete Bayesian solution to this problem involves averaging over

all possible models under investigated problem. Let consider Ml, l = 1, 2, .., s,

represent lth model corresponding to Φl. If we are interested on prediction of

future observation, yf , the posterior distribution of yf given xf and observed

data D = (yo,xo) is

P (yf ) =
s∑
l=1

P (yf | xf ,Ml, D)P (Ml | D).

This is an average of the posterior distribution of yf under each model

weighted by corresponding posterior model probability which is

P (Ml|D) =
P (D|Ml)P (Ml)∑s
k=1 P (D|Mk)P (Mk)

where P (D |Ml) is marginal likelihood under model Ml and

P (D |Ml) =

∫
P (D | θl,Ml)P (θl |Ml)dθl. (4.10)

In equation (4.10), θl = (β̃l,ul, τl), P (D | θl,Ml) is likelihood and P (Ml) is

the prior probability that Ml is the true model. This equation for our model

is obtained as

P (D |Ml) =

∫
P (D |Ml, β̃l,ul, τl)π(β̃l,ul, τl)dβ̃lduldτl

=
Γ
(n

2

)
(π)−n/2

| R +K + XΦΣβΦTXT |1/2 bn/2
.
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Like most of the problems, it is not practical averaging over all possible

models. Guhaniyogi & Dunson (2013) suggested
[
d2 log(p)e,min(n, p)

]
as a

window for possible size of new space, m.

4.3 Simulation Study

In this section, we compare prediction performance of (4.7) for n = 100

by illustrating a simulation study; although random projection is more ap-

propriate for large data. Let consider two different number of predictors

p = 1000 and 2000 for two different scenarios for the size of βis as

Model 1 : Only 20 of regression coefficients are 3 and all others are zero,

Model 2 : All regression coefficients are generated from U(−1, 1).

The first model is referred to a sparse problem while the second one is a

dense model which is motivated by SNP-data.

In order to simulate data similar to the real-SNP data, predictors x1, ...,xp

were simulated as predictors in section 3.5. Then we generated n random

effects from a multivariate normal distribution with zero mean and covari-

ance matrix K. Relatedness matrix, K, should be defined by pedigree that

shows how the samples are related through xjs, j = 1, ..., n. Since for sim-

ulated data we did not have pedigree, we considered an special case that

K = XXT/p. The response y was finally calculated from linear mixed

model for each scenarios when the noise term is normally distributed with

heterogeneous-residual variance. The inverse of heterogeneous-residual vari-

ances are in (0.7, 0.99) that is generated randomly.

In our experiments, y and x is centered and y is standardized to have unit

variance. For each model, we first investigate out of sample prediction perfor-

mance with three different prior specification, Bayesian lasso (BL), Bayesian

Ridge (BR), and generalized double Pareto (GDP). We then projected the

data to a lower dimensional space with m = 300. This time we implement

the MCMC with BL, BR and GDP for projected data that we denoted by

CBR, CBL, CGDP respectively.
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Table 4.1: Rows of each model present average of 20 out-of-sample MSPEs for BR, CBR, BL, CBL, CGDP,

GDP with their standard deviation based on bootstrap samples in subscript.

Model p BR CBR BL CBL GDP CGDP

Model-1
1000 0.843(.029) 0.936(.035) 0.635(.025) 0.647(.034) 0.795(.009) 0.967(.018)

2000 0.901(.029) 0.915(.0515) 0.868(.050) 1.003(.058) 0.89(.012) 1.023(.034)

Model-2
1000 0.880(.011) 0.899(.028) 0.915(.02) 1.008(.034) 0.894(.009) 1.030(.016)

2000 0.902(.019) 0.981(.036) 0.929(.021) 0.964(.041) 0.917(.011) 1.170(.023)

For each experiment, to evaluate the out of sample performance of each

model %80 of samples selected as training set and the rest considered as

validation set. Table 4.1 represents average of MSPEs of 20 simulated data.

The index numbers show the average of standard errors of MSPEs which

obtained by averaging 100 bootstrap samples of 20 standard errors of each

model.

As it is represented in table 4.1, the compress regression for all models

increases the MSPEs respect to non-projected data so as to increase compu-

tational efficiency. This result reveals that Bayesian compressed regression

is a good technique for high dimensional problems that accurate result can

be obtained with high computational cost. Therefore, it is preferred to pay

a little of accuracy to gain a fast algorithm. In such a problem, even if p

exceeds the number of samples, there is still enough information for having a

good predictive performance. Hence, this technique cannot be a good choice

for SNP-data when shrinkage approaches represent poor performance with

original dataset.

We also simulated data with n = 470 for the dense model with p = 1000

in order to evaluate predictive performance with model averaging approach.

The posterior probabilities of each model represented in Table 4.2 claim that

posterior probability of model is skewed. On the other words, only few models

with large m have positive posterior probability and contribute into predic-
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tion. Hence, it seems that model averaging only increases computational

cost.

Table 4.2: Posterior probability, p.p, of the model with m in (33, 450).

m 356 372 407 410 434 o.w.

p.p 0.04 .01 0.91 .02 0.02 0
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Chapter 5

Two-stage Method

Complexity of the genome-wide association studies due to the large p and

the small n prevents to achieve a good performance with statistical methods.

This motivates a continuing effort to develop two-stage methods (see e.g.,

Murcray et al., 2009; Zheng et al., 2007). In these kinds of approaches, first

a subset of most promising markers is selected for main analysis in the second

stage.

In this chapter, we present a new two-stage approach that is a hybrid

method of single and simultaneous analyses. In the first-stage, we indepen-

dently assess the impact of each marker on the complex trait. Then in the

second-stage, the markers that met the first-stage threshold are analyzed si-

multaneously. We develop two models corresponding to two different thresh-

olds. One threshold provides possibility to include marginal and epistatic

effects in the model. The other one that is appropriate for the traits with

low heritability reduces the risk of missing important effects through first-

stage filtering. In these two models, we place a new shrinkage prior, gener-

alized double Pareto (Armagan et al., 2013), on marker effects and obtain

all conditional distributions for Gibbs sampling scheme. These new prior

specifications for mixed models lead to good predictive performance.

53
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5.1 Method

5.1.1 First-Stage

The strategy for the first-stage is to rank SNPs by measuring the impact of

each marker on the complex trait. To assess the association of each marker

at a time, we consider a linear regression model with presence of random

effects as

y = Xψβ + u + ε (5.1)

ε ∼ N(0, τ−1R), u ∼ N(0, τ−1
u K)

where ψ is a p×p diagonal matrix with zero and one entries; if ith predictor is

in the model, the ith diagonal entry is one. Here, R and K are heterogeneous-

residual variance and relatedness matrix respectively.

Although any methods in Chapter 2 can be applied to list markers by their

impact on the complex trait, here we screen all markers through Bayesian

approach. In this stage, usual conjugate priors can be placed on β, τ and τu

since in each time one SNP is in the model. In particular, we consider

ψβ | τ ∼ N(0, τ−1Σβψ), τ ∼ Gamma(a1, b1) τu ∼ Gamma(a2, b2). (5.2)

where Σβψ = diag{ηj}. Then, we rank SNPs through

ML1/ML0

which is the odd of presence of each SNP in the model. Here, the ML

denotes marginal likelihood of the model; the indexes of the MLs represent

the number of predictors in the model. In general, marginal likelihood is

defined as ∫
L(θ | y)π(θ)dθ,

where L(θ | y) is the likelihood function and π(θ) is prior distribution spec-

ified on the set of parameters in the model. Hence, we face high dimension
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integrals due to presence of random effects in the model. By integrating out

parameters β and random effects u, we obtain∫
τ

∫
τu

(2π)−n/2
ba11 b

a2
2

Γ(a1)Γ(a2)
τa1−1τa2−1

u

∣∣∣∣Aτ +
K

τu

∣∣∣∣−1/2

exp(−τb1 − τub2)

× exp

[
−1

2
yT
(
A

τ
+
K

τu

)−1

y

]
dτudτ

where A = K + xψΣβψψxT . These integrals are intractable, so the closed

form of the marginal likelihood is not available. Therefore, we approximate

the ML via Laplace method. In order to apply the Laplace approximation,

we rewrite the integral as∫
τ

∫
τu

exp(−nh(τ, τu))dτdτu,

where −nh(τ, τu) is logarithm of the function under the integrals. If h(τ, τu)

is smooth with local minimum τ̂ and τ̂u in the interior of (0,∞), the approx-

imation of the ML is

2π

N
exp(−Nh(τ̂ , τ̂u)) | H(τ̂ , τ̂u) |−1/2 +O(1/N).

Here, H(τ̂ , τ̂u) is the Hessian matrix of h.

Because the Laplace approximation is based on a linear Taylor series

approximation, it requires certain regularity conditions. However, these con-

ditions fail when the mode lies on the boundary or close to the boundary

(Hasio, 1997; Erkanli, 1994). The approximation of the ML can be problem-

atic because of τ > 0 and τu > 0 restrictions. To prevent this problem, we

parameterize h(τ, τu) by log transformation of τ and τu. This ensures that

the parameter space is unrestricted and so the mode is not on the boundary.

Hence, we can expect an accurate approximation.

Meanwhile, due to the calculation complexity of H(τ̂ , τ̂u), we have to

use the numerical algorithm. For instance, the first order derivative of the

function h(τ, τu) respect to τ is

∂h

∂τ
=
b1

2
−
(a1

2
− 1
) 1

τ
+

1

2
trac

[(
A

τ
+
K

τu

)
A

τ 2

]
+

1

2
yt
(
A

τ
+
K

τu

)−1
A

τ 2

(
A

τ
+
K

τu

)−1

y.
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Evaluating odds of presence of each SNP in the model provides a list

of ranking markers in terms of association. Selecting the most promising

markers based on the typical threshold 10 is inappropriate in the GWAS;

although it is interpreted as a strong evidence of association in many scientific

applications (Jeffreys, 1961). This threshold does not serve our purpose for

reducing the dimension, while it provides a long list of associated SNPs.

Hence, we consider two different thresholds, one is a typical threshold in single

marker analysis and the other one is defined based on the safe upper limit of

the number of predictors in the second-stage model, which is approximated

through simulation study.

5.1.2 Second-stage

In the second stage, we consider different models corresponding to two dif-

ferent thresholds:

• Considering 105 as the threshold

This threshold is the typical threshold in single marker analysis in order

to select the SNPs with high posterior odds of presence in the model.

The posterior odds is given by

PosteriorOdds =

(
ML1

ML0

)
PriorOdds.

As we have seen in the Chapter 2, in single marker analysis the prior

odd of association is very small; however, it can be true only for the

problems with few numbers of large-effect markers. Therefore, having

high posterior odds requires the ML1/ML0 to be large enough in order

to overcome the low prior odds.

By this choice of threshold, the number of selected markers is usually

smaller than the number of individuals. This brings the possibility

to have the corporation of epistatic or interaction effects for better

understanding the nature of genetic and obtaining a more complete

picture of complex biological systems.
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Note that without applying two-stage approach, genome-wide associ-

ation studies are p � n problems. Hence, searching for all possible

pairwise interaction faces practical difficulties due to the large number

of pairwise comparisons. For instance, a small set of data in the GWAS

contains 100,000 SNPs that approximately entail 4.5× 109 pairwise in-

teraction. This motivates many studies based on multistage approach

for selection and prediction in genetic problem (see, e.g., Evans et al.,

2006; Hoh et al., 2000).

After selecting SNPs that met the first-stage threshold, we consider

pairwise-interaction of those markers in the model and we call it epistatic

model. For these kinds of models, using a single shrinkage prior to con-

trol the overall complexity of the model would not be appropriate, be-

cause there are many potential for interaction effects to be zero. Hence,

we consider a model as

y = Xψβ + Zγ + u + ε,

ε ∼ N(0, τ−1R), u ∼ N(0, τ−1
u K)

where ψ has nonzero diagonal entries equal to the number of selected

SNPs through the first-stage. The q vector γ contains all possible

pairwise-interaction and Z is their q × q design matrix.

We place following priors on selected marginal effects, βψ, and their

pairwise interaction effects:

βψ ∼ N(0, τ−1Σβψ), γ ∼ N(0, τ−1Σγ)

where Σβψ = diag{ηj}, j = 1, ..., ps and Σγ = diag{δk}, k = 1, ..., q.

We give the double-exponential prior to local parameters in the second

level of hierarchy such that the hyperparameters are defined locally as

ηj ∼ exp(ξ2
j /2), δk ∼ exp(ζ2

k/2).
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Instead of presetting values for ξjs and ζks, it is appealing to assign

prior distributions to these parameters as

ξj ∼ Gamma(c1, d1), ζk ∼ Gamma(c2, d2). (5.3)

This level of hierarchy automatically accounts for the uncertainty of ξjs

and ζks which affect the rate of shrinkage on each regression coefficients.

These 3-level hierarchical priors on marginal and epistatic effects are

hierarchical representation of the generalized double Pareto (Armagan

et al., 2013). In addition, the prior specification of parameters τ and

τu are the same as the priors in (5.2) in the first-stage.

The parameters of this model can be estimated by sampling from their

full conditional posterior densities through MCMC algorithm. The full

conditional posterior densities are given in Section 5.2.

• A threshold that leads to ps = 2n

In many problems, the complex traits are affected by large numbers of

small-effect markers. In this kind of problems, independent screening

has low power for truly identifying the most promising SNPs. There-

fore, 105 may not be a good choice of the threshold. To reduce the risk

of missing important SNPs through first-stage screening, we define the

threshold equal to the safe upper limit of the numbers of predictors

in the second-stage model. This upper limit has been approximated

through our simulation studies in previous chapters. While the simula-

tion studies have shown a good predictive performance for at most 2n

numbers of predictors in the model, we find it as a good choice of the

threshold.

The model in this stage is the same as the model in (5.1) whereψ has 2n

nonzero diagonal entries equal to the number of selected SNPs through

the first-stage. Since in this model ps > n, we give 3-level hierarchical

shrinkage prior to selected marker effects, βψ, to avoid over fitting

problem. In the first level, prior specifications on parameters of the
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model is the same as (5.2). In the second and third levels, we consider

ηj ∼ exp(ξ2
j /2), ξj ∼ Gamma(c, d). (5.4)

The predictive performance of this model is evaluated in the last chap-

ter by estimating parameters of the model through Gibbs sampling

scheme. The full conditional posterior densities required for Gibbs al-

gorithm are presented in section 5.2.

5.2 Full Conditional Posterior Densities

To simplify notation for the full conditional posterior densities, let Xψ de-

notes an n × ps matrix such that each vector is corresponded to a selected

marker in the first-stage.

• Full conditional posterior densities for the epistatic model

βψ | y,u,γ, τ,Σβψ ∼ N
(
µpβψ ,Σ

p
βψ

)
,

γ | y,βψ,u, τ,Σγ ∼ N
(
µpγ,Σ

p
γ

)
,

u | y,βψ,γ, τ, τu ∼ N (µpu,Σ
p
u) ,

τ | y,βψ,γ,u, ,Σβψ ,Σγ ∼ Gamma (ap1, b
p
1),

τu | u ∼ Gamma
(
a2 + n/2, uTK−1u + b2

)
,

ξj | γj, τ ∼ Gamma
(
c1 + 1, τ 1/2 | γj | +d1

)
,

η−1
j | γj, ξj, τ ∼ IN-Gaussian

((
ξ2
j

τγ2
j

)1/2

, ξ2
j

)
,

ζk | γk, τ ∼ Gamma
(
c2 + 1, τ 1/2 | γk | +d2

)
,

δ−1
k | γk, ζk, τ ∼ IN-Gaussian

((
ζ2
k

τγ2
k

)1/2

, ζ2
k

)
where

µpβψ =
(
XT
ψR
−1Xψ + Σ−1

βψ

)−1 (
XT
ψR
−1(y − Zγ − u) + Σ−1

βψ
µ
)
,

µpγ =
(
ZTR−1Z + Σ−1

γ

)−1
ZTR−1

(
y −Xψβψ − u

)
,

µpu = (K−1τu + τR−1)
−1
R−1

(
y −Xψβψ − Zγ

)
Σp
βψ

= τ−1
(
XT
ψR
−1Xψ + Σ−1

βψ

)−1

,

Σp
γ = τ−1

(
ZTR−1Z + Σ−1

γ

)−1
,
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Σp
u = (K−1τu + τR−1)

−1
,

ap1 =
n+ ps + q

2
+ a1,

bp1 =
1

2

(
(y−Xψβψ −Zγ − u)TR−1(y−Xψβψ −Zγ − u) + γTΣ−1

γ γ +

βTψΣ−1
βψ
βψ

)
+ b1.

Here, we obtained density of ξj | γj, τ as conditional posterior of ξj

instead of ξj | ηj. As we have

π(ξj | γj, τ) ∝ π(γj | ξj, τ)π(τ)π(ξj),

to obtainπ(γj | ξj, τ), we integrate out ηj

π(γj | ξj, τ) =

∫
π(γj | ηj, τ)π(ηj | ξj)dηj

= exp

(
− ξjτ 1/2 | γj |

)
ξj
2
τ 1/2.

• Full conditional posterior densities for 2n top-ranking markers

βψ | y,u, τ ∼ N
(
µpβψ ,Σ

p
βψ

)
u | y,βψ, τ, τu ∼ N (µpu,Σ

p
u)

τ | y,βψ,u,µ,Σβψ ∼ Gamma (ap1, b
p
1),

τu | u ∼ Gamma
(
a2 + n/2, uTK−1u + b2

)
,

ξj | βψj, τ ∼ Gamma
(
c+ 1, τ 1/2 | βψj | +d

)
.

η−1
j | βψj, ξj, τ ∼ IN-Gaussian

( ξ2
j

τβψ
2
j

)1/2

, ξ2
j

 .

where

µpβψ =
(
XT
ψR
−1Xψ + Σ−1

βψ

)−1

XT
ψR
−1 (y − u),

µpu = (K−1τu + τR−1)
−1
R−1

(
y −Xψβψ

)
Σp
βψ

= τ−1
(
XT
ψR
−1Xψ + Σ−1

βψ

)−1

,

Σp
u = (K−1τu + τR−1)

−1
,

ap1 =
n+ ps

2
+ a1,

bp1 =
1

2

(
(y −Xψβψ − u)TR−1(yXψβψ − u) + βTψΣ−1

βψ
βψ

)
+ b1.
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5.3 Discussion

While simultaneous analysis based on shrinkage priors have a limitation of

disparity between the number of predictors and the number of samples, re-

ducing the dimensionality of the data is required. We present a new two-stage

approach that is a hybrid method of single marker analysis and simultaneous

analysis. In the first-stage, we select the most promising SNPs by assess-

ing the association of each SNP independently. We measure the association

through the odd of presents of each SNP in the model, which is common

in Bayesian single-based analysis. To select SNPs from the list of ranking

SNPs in the first-stage, we consider two different thresholds, one appropriate

for very sparse problems and the other for problems with large numbers of

small-effects. Respectively, we develop two different models for problems with

related samples. In these two models, we place generalized double Pareto as

shrinkage prior on marker effects. The parameter of the models are estimated

through Gibbs sampling schemes.
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Chapter 6

Application

Genomic-enabled prediction is becoming increasingly important in animal

and plant breeding and it also receiving attention in human genetics. Pre-

diction of genetic values early in life leads to select the animals or plant with

high quality of desired products or traits and in human leads to diagnose dis-

ease susceptibility. Achieving accurate prediction has been introduced a big

challenge to the statistical analysis as we have discussed in previous chapters.

In this chapter, we represent our real SNP-data analysis. In the first sec-

tion, we introduce the problem. Section 2 to 4 are devoted to some prelimi-

nary analyses, quality control procedure for SNP-data, dimension reduction

by clustering SNPs via linkage disequilibrium and detecting population struc-

ture. In section five, we attempt to identify the associated SNPs based on

single marker analysis. Finally in section 6, we applied the proposed meth-

ods in Chapter 5 and evaluated the prediction performance via a comparison

with two other prior specifications.

6.1 Dataset

The real SNP-data set comes from an animal breading research project. The

aim of the research is to improve the quality and quantity of the milk produc-

tion of cattle. The data contains 707, 962 SNPs genotyped for 607 numbers

of Holestein Bulls.

63
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6.1.1 SNPs as Predictors

The aim of genetic studies is to capture the information in DNA related

to complex traits or diseases. DNA is the genetic material determining the

makeup of all living cells and many viruses. It consists of two long strands

of nucleotides linked together in a structure resembling a ladder twisted into

a spiral. The information in DNA is stored as a code made up of four

chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T).

Adenine always pairs with thymine, and cytosine pairs with guanine.

Four Chemical Bases

Adenine (A)

Guanine (G)

Cytosine (C)

Thymine (T)

The order of these bases in genomic sequence determines the information

available for building and maintaining an organism, similar to the way in

which letters of the alphabet appear in a certain order to form words and

sentences. The most part of DNA sequence is similar among members of

a biological species. For instance, human DNA consists of about 3 billions

bases such that more than 99 percent of those bases are the same in all peo-

ple. Therefore, in genetic problems we attempt to understand the impact of

genetic variants in complex traits. To this end, those single nucleotides or

bases (A, T, C or G) in the genome which are different between members

of a biological species so called single nucleotide polymorphisms, SNPs, are

assayed. The Figure 6.1 represents 3 SNPs in 5 DNA sequences.

Since each marker can be assayed as {T, A} or {C,G} in two-locus studies,
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Figure 6.1: Close-up view of DNA sequences and SNPs in.

three combinations of genotypes can be considered for each SNP; in a simplest

way without considering the name of the bases, these are BB, Bb, or bb. To

convert the genotyped SNPs to count variables, let assume b is minor allele

frequency, which is referred to the least frequent allele in a given population.

Then, for additive model that we have focused on, each SNP represent the

numbers of b for each sample as
0 if the genotype of the SNP is BB

1 if the genotype of the SNP is Bb

2 if the genotype of the SNP is bb.

6.1.2 Phenotype

In the case of genomic prediction for complex traits of animals, the response

might be single or repeated measure of individuals’ phenotypic performance,

information on progeny, estimated breeding values (EBV) from genetic eval-

uations or a pooled mixture of more than one of these information sources.

Our study is based on EBV that is an estimate of breeding value. Breading

value (BV) is the genetic value of an individual determined by the mean value

of its progeny; i.e., it is the genetic transmitting ability from a generation to

the next. This is an efficient way to combine heritability information with

performance of relatives and progeny to predict breeding value.
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6.2 Quality Control

Data cleaning is the first and essential step for data analysis. Whether the

goal is prediction of the outcomes or to discover new biology underlying the

trait of interest, the inference of GWAS depends upon the overall quality of

the data. Even simple statistical tests of association are compromised in the

context of GWAS with data that have not been properly cleaned, potentially

leading to false-negatives and false-positive associations. Hence, we followed

the common steps for quality control in genome-wide association studies to

prevent these problems.

6.2.1 Cleaning Data over SNPs

SNPs Signed to Chromosome zero

Before checking genotype quality of SNPs, it needs to assure that SNPs are

assigned to specific chromosome. It is usual to have some SNPs not aligned

to the current genome assembly. Therefore, they signed to the chromosome

zero. These SNPs must be removed from the data set. In our dataset, 2, 078

numbers of SNPs have been recorded for chromosome zero.

Call Rate

The proportion of a genotype call for each marker, genotyping efficiency,

is a good indicator of marker quality. The SNPs’ assays that failed on a

large number of samples are poor assays, and are likely to result in spurious

data. Hence, SNPs with low call rate must be discarded. A recommended

threshold for removing SNPs with low call rate is approximately 90 − 99%,

although this threshold may vary from study to study and it should be de-

cided by researcher. We excluded 19, 084 SNPs from the dataset based on

%90 threshold. But after doing some analysis, we found %99 a better choice

for our problem, which discarded 38, 900 numbers of SNPs from the data.

Table 6.1 presents the call rate summary of the genotyped SNPs.
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Table 6.1: Summary table of genotype call rate across samples.

X <= .9 .9 < X <= .98 .98 < X <= .99 X > 99

No 19084 62619 38900 775, 884

Prop 0.025 0.08 0.05 0.845

Minor Allele Frequency

Another important issue in quality control is to exclude SNPs with low vari-

ability for minor allele so called rare SNPs. This filtering step helps to

improve statistical power. So, removing extremely rare SNPs including any

monomorphic SNPs has been recommended. The choice of threshold depends

on the size of study and the impact of SNP-effects in priori. In our study,

we removed 191, 936 numbers of SNPs with %5 threshold.

Hardy-Weinberg Equilibrium

Checking for Hardy-Weinberg Equilibrium (HWE) is the final step in the

quality control analysis of markers in genome-wide association studies. Un-

der Hardy-Weinberg assumptions, allele and genotype frequencies can be

estimated from one generation to the next. Typically, HWE deviations to-

ward an excess of heterozygotes reflect a technical problem in the assay,

such as non-specific amplification of the target region. If no technical errors

are detected then a number of biologically plausible explanations exist for

HWE deviations such as population stratification, assortative mating and

inbreeding. In animal studies and some human population, Hardy-Weinberg

equilibrium check may not be as usual due to inbreeding and nonrandom

mating in the sample population. Non random mating and inbreeding are

two conditions that violate crucial assumption of HWE because inbreeding

increases the frequency of homozygous, and decreases the frequency of het-

erozygous genotypes. In our data, samples in the same farms are likely to

share the same alleles, inherited from common ancestors. Therefore, their
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progeny has an increased chance of being autozygous that refers to inherit a

copy of exactly the same ancestral allele from both parents. In our analysis,

81, 720 numbers of SNPs have shown departure from HWE with 0.1 thresh-

old.

6.2.2 Missing Value

Imputation based on Pedigree and Probability

In family based study, using pedigree for imputation is more reliable, es-

pecially in our case that inbreeding increases the rate of homozygous SNP.

High rate of homozygosity reduces the number of possible combination of

genotypes that can be inherit by children and consequently increases the

probability of occurrence of each combination. However this puts pedigree

at the top of the imputation methods, it can be applied only when the genome

of parents have been genotyped. While in our data set a few numbers of pa-

ternal and maternal genotypes are available, we cannot impute missing SNPs

based on pedigree.

Imputation based on Linkage Disequilibrium

Markers in the same chromosome are in linkage disequilibrium, LD, that

vanishes by genetic or physical distance between SNPs. It is therefore desir-

able to develop a flexible imputation approach that takes into account the

LD in neighboring SNPs. A variety of techniques has been applied to the

problem of imputing missing genotypes. A common statistical approach is

to infer missing genotypes from haplotype frequencies of population samples.

More recent approaches incorporate models of recombination by partitioning

markers into haplotype blocks based on entropy measures or by inferring a

mosaic of haplotype clusters. Tree-based imputation methods have been also

developed that impute missing genotypes on the basis of perfect phylogeny

rather than haplotype structure.
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6.2.3 Cleaning over Samples

In the GWAS, the sample size is usually very small respect to the numbers

of SNPs. Therefore, cleaning over samples and detecting for the structure

behind the data must be done very carefully because each sample plays sig-

nificant role in the analysis.

Call Rate

A large proportion of SNP assays failing on an individual DNA sample may

indicate a poor quality DNA sample, which could lead to aberrant genotype

calling. Samples with low genotyping efficiency, or call rate, should be elim-

inated from analysis. The recommended threshold is 98− 99% for excluding

low call rate SNPs over samples after removing low genotyped SNPs across

samples. This threshold is an approximate threshold so the exact threshold

may vary from study to study depending on the used platform for genotyp-

ing, quality of the DNA samples, the variability in population and equipment

error. The threshold should be determined based on a goal whereby a bal-

ance between minimizing the number of samples dropped and maximizing

genotyping efficiency is attained.

Table 6.2: Summary table of genotyped call rate over samples.

X <= .9 .9 < X <= .98 .98 < X <= .99 X > .99

No 40 57 222 328

Prop 0.07 0.09 0.37 0.54

By looking at the Table 6.2, we can realize that the recommended thresh-

old is not appropriate for our data set. If we eliminate the samples with 99%,

we will lost almost 50% of the samples and with 98%, 57 samples. So we

decided to keep most of the samples in the dataset by threshold 90%. Hence,

40 samples have been excluded.

Quality control of SNP-data is very intensive from computational point of
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view since dataset is very large. Thus, it cannot be done with any software

like R. To do this we used Plink software that is a fast software built for

SNP-data. After quality control, our dataset includes 555, 651 SNPs with

567 observations.

6.3 Reducing Dimension via Linkage Disequi-

librium

Many studies have been shown that SNPs in the genome have groups of

neighbors such that they are all nearly perfectly correlated with each other

due to the LD. The other words, the genotype of one SNP can perfectly

predict those of correlated neighboring SNPs. These segments of SNPs in

high linkage disequilibrium in animals are longer than human. One SNP can

thereby serve as proxy for many others in analysis. By considering this fact,

we can reduce dimensionality of the problem.

We applied hierarchical clustering approach in order to detect the corre-

lated neighboring SNPs. Although this clustering did not seem to be prob-

lematic, we could not simply apply the standard algorithm because of the

large numbers of objects, SNPs. To overcome this problem related to calcu-

lating similarity matrix, we defined a window with length of 200 base pairs

that moved with step size of 20 base pairs. The length of window was based

on physical distance while Centimorgan distance could not be calculated be-

fore data analysis. After obtaining the similarity matrix, we clustered the

SNPs with at least 85% correlation in each cluster. Then among all SNPs

in each cluster, the one that was closest to the others were tagged. This

procedure selected 135, 545 numbers of SNPs for the main analysis.

6.4 Population Structure

After quality control, a major practical issue for studying complex traits or

disease is to identify population structure in the data while ignoring this

step reduces the power of genetic studies. Structure in the data might be
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caused by cryptic relatedness or population stratification. Cryptic related-

ness refers to presence of unknown genetic relationships between individuals

within the study samples. Population stratification occurs when the study

samples comprise multiple groups of individuals who differ systematically in

both genetic ancestry and the phenotype under investigation. If we do not

account for population structure, we will identify spurious associations due

to differences in ancestry rather than true association of alleles to the traits.

Thus, it is critical to check for population structure within the samples in

order to avoid false discoveries and bias in prediction.

6.4.1 Principal Components Analysis

Principal component-based methods applied to genotypes provide informa-

tion about population structure, and have been widely used to correct for

the stratification. Typically in the PC analysis, if the first few PCs capture

most of the variation in the data, we have population stratification. In order

to account for the stratification, we need to add those PCs to the model as

extra covariates.

However the use of PCA in genetics can be dated to several decades

ago before the advent of SNP-data, it may be faced more challenges in the

GWAS. In these kinds of problems, predictors or SNPs are in linkage dise-

quilibrium in genetics regions. Hence, by applying the PCA directly on the

whole dataset, the first principal component may simply reflect unusually

stretches of LD rather than population stratification. To avoid this problem,

we first thinned the data by LD in order to make a set of SNPs that are

almost uncorrelated. It should be emphasized that the aim of PCA is to

identify population structure not dimension reduction. Therefore, it differs

with the goal of applying the sparse principal methods (see, e.g., Zou et al.,

2006) for reducing the numbers of variables in each components.

To apply PCA, we first clustered SNPs by LD with similar algorithm

in Section 6.3. In order to select a subset of approximately independent

SNPs, the correlation between each cluster is considered to be less than



Chapter 6. Application 72

4% (Lee et al., 2012). This provided 37, 916 numbers of clusters. Then, the

closest SNPs to all other SNPs within each cluster selected for PCA analysis.

After applying the PCA, we faced with tiny components such that the first

component explained around 1% of the variation in the data. Thus, based

on this analysis, the dataset does not stratify to different populations.

6.4.2 Identical by Descent

Study of relationship between samples is phrased in terms of probabilities

that a set of genes have descended from a single ancestral gene. This criterion

is the probability that individuals are identically-by-decent, IBD. Hence, two

individuals are said to be related if the allele or alleles of one are IBD to

those of the other(Weir, et al., 2006).

Relatedness analysis through IBD depends on the pedigree structure.

This common ancestor may be a parent, grandparent, etc. Since in our

dataset most of the parental and maternal genetic information is missed and

imputation introduces huge bias in this analysis, we found it inadequate to

apply.

6.5 Single Marker Analysis

In this stage, we aimed to identify the truly associated SNPs with longevity

trait through single-based approaches, which we have seen in Chapter 2.

6.5.1 Linear Regression Model

In single marker analysis, we first consider a linear regression to assess the

impact of each SNP on the trait at the time. After fitting the model for

each SNP, we calculated all the p-values based on Wald test for multiple

comparisons. As it can be seen from the histogram of p-values in Figure

6.2, the left side of the histogram is different with U(0, 1). Furthermore,

the histogram density beyond 0.9 looks fairly flat. These can be evidence of
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difference between empirical density of p-values and theoretical null density.

The same conclusion can be also reached from left panel in Figure 6.4.

p−value
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Figure 6.2: p-values histogram of longevity, horizontal line indicates U(0, 1).

To select associated SNPs, we first applied false discovery rate criterion

via BH algorithm. Unfortunately, based on the BH algorithm, a long list

of SNPs were significant that cannot be practical to work with. Then, we

simply defined a cutoff threshold based on Bonferoni correction since it is

widely used in practice in genome-wide association studies. For level 1%

for Type I error, 6 SNPs located in three different chromosomes selected as

associated SNPs. Figure 6.3 so called Manhatan plot represents the location

of selected SNPs.

Although these selected SNPs seems to be spurious association by looking

at left panel in Figure 6.4, we consulted the biologist in research group. Then

we found these SNPs are not neither in genes nor close to genes. They are

not even in the chromosomes that biologist expected in priori for this trait.

Therefore, the result seems to be spurious associations.

We repeated our analysis based on z-values. The left panel in Figure 6.5

represents z-values’ histogram of our statistical tests. The theoretical null

density, standard normal, is drawn with blue dash-line and the empirical

density is drown by green solid-line. The difference between these two den-

sities can be seen easily in the figure. The empirical density is very wider
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Figure 6.3: Manhatan Plot

than normal standard. Selecting SNPs based on (2.3) provides a long list

of SNPs associated with the trait. These SNPs are in the tail areas colored

by pink in the figure. To bypass this problem, we estimated null density by

Figure 6.4: Left panel: q-q plot determined from linear regression. Right panel: q-q plot determined from

linear mixed model.

central matching and maximum likelihood approaches. Following the central
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Figure 6.5: Left panel: green solid-line is spline based estimator of f(z), blue dashed-line is π0f0(z)based

on theoretical null distribution N(0, 1) . Right panel: green solid-line is spline based estimator of f(z),

dashed-line is empirical null density.

matching procedure, we estimated

(δ̂0, σ̂0) = (0.006, 2.124), π̂0 = 1.

The estimations based on maximum likelihood approach are

(δ̂0, σ̂0) = (0.003, 2.147), π̂0 = 1.

that is very similar to central matching estimates. The right panel in Figure

6.5 shows the estimated null density and empirical density that are almost

the same. In other words, we can say the figure dose not represent mixture of

two densities, density of null and non null cases. Thus, we could not detect

any SNPs associated with the trait.

6.5.2 Linear Mixed Model

While estimating null density did not help for detecting any SNP associated

with trait, we guessed the huge deviation between empirical density and

theoretical null density might be the cause of this problem. This deviation

typically arises due to population stratification or relatedness among samples.
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Since we did not find any stratification in the data through PCA, relatedness

samples might be the reason for this deviation. For accounting for related

sample, mixed model is a powerful tool. Therefore, this time we considered

a linear regression with presence of random effects as

y = xiβi + u + ε, u ∼ N(0, τ−1
u K), ε ∼ Nn(0, τ−1R), i = 1, ..., p,

similar to the model (5.1) with one predictor in the model. Relatedness

matrix K is calculated from the pedigree such that its entries represents the

degree of relatedness between pairs of sample and take values in [0, 1].

We did redo our single-based analysis for mixed model. The right panel

in Figure 6.4 is q-q plot based on analysis with linear mixed model. As it

represents, random effects correct the deviation perfectly; but we still cannot

expect to detect any association.

However we did not detect any SNPs associated with the trait, the result of

the analysis reveals that the trait is affected by large numbers of small-effect

markers and single-based analysis is not powerful to detect weak association.

This motivated us to analyze the data through two-stage methods proposed

in Chapter 5. Furthermore, we realized that the best model for our data is

linear mixed model that accounts for related samples.

6.6 Two-stage Analysis

In this section, we evaluated the performance of our proposed model by

ten-fold cross validation in comparison with two other prior specifications,

Bayesian ridge, BR, and Bayesian lasso, BL.

6.6.1 Two-stage methods with threshold 2n

Following our approach that is a two-stage method, we first evaluated odds

of presence of each SNP in the model. After ranking the SNPs by their im-

portance based on calculated odds, we selected 2n = 1134 top-ranking SNPs
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for the second-stage analysis.

To select the values for hyperparameters of the second-stage model in

(5.2) and (5.4), we first ran a 5-fold cross validation. Ideally, we should test

a large set of values for 6 hyperparameters, but this may be time consuming.

Therefore, for hyperparameters of marker effects, we considered d =
√
c+ 1

since this choice ensures having continuity property and creates a trade-off

between sparsity and tail-robustnes (Armagan et al., 2013). We ran cross

validation for different values of c: 1, 2.5, 3, 3.5. Generally, the rate of

shrinkage increases along this path. For the other hyperparameters of the

model, we set (a1, b1) = (a2, b2) as (0.001, 0.001), (0.01, 0.01), (0.1, 0.1),

(0.3, 0.3). Table 6.3 presents average of 5 mean square prediction errors,

MSPEs, for different values of hyperparameters and the standard deviation

from 50 bootstrap samples in subscript.

Table 6.3: Average of 5 out-of-samples MSPEs for different values of hyperparameters and their standard

deviations from 50 bootstrap samples in subscript.

(a1, b1) = (a2, b2)
c

1 2.5 3 3.5

(0.001,0.001) 0.698(0.018) 0.539(0.012) 0.526(0.013) 0.529(0.010)

(0.01, 0.01) 0.686(0.019) 0.528(0.011) 0.519(0.011) 0.523(0.015)

(0.1, 0.1) 0.736(.028) 0.564(0.018) 0.551(.022) 0.557(0.023)

(0.3, 0.3) 0.845(0.028) 0.576(0.018) 0.572(0.058) 0.569(0.023)

It is seen from Table 6.3 that the MSPE for c = 3 and (a1, b1) = (a2, b2) =

(0.01, 0.01) is smaller than the other values. Therefore, the cross validation

gave c = 3 as the best choice for shrinkage parameter and 0.01 for the other

parameters.

To compare prediction performance of our model with the BL and the

BR, we ran 10-fold cross validation. For the BL, the posteriors are not sen-

sitive to the prior specification (3.5) as long as r and s are small so that the
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priors are relatively flat (Park & Casella, 2008; Yi & Xu, 2008). Thus, we set

these hyper parameters as small values, 0.1. For setting the hyperparameters

of the SNP effects in the BR, we first fixed the value of the shape parameters

ν in (3.11) as suggested by Frühwirth-Schnatter & Wagner (2010). Then, we

considered different values for scale parameters as s = 0.001, 0.01, 0.1 and

found 0.01 as the best choice for s.

Table 6.4 represents average of MSPEs of 10-fold cross validation. The

index numbers are the average standard errors of MSPEs obtained by 100

bootstrap samples of 10 MSPEs corresponding to 10 folds. For making better

comparison, we obtained the deviance information criterion, DIC. We also

calculated average of correlation between predicted and observed values in

validation sets. The comparison through MSPEs and DICs shows that our

model out performs the other competitors.

Table 6.4: First column: average of 10-fold cross validation MSPEs of the new two-stage methods denoted

by GDP, the BR and the BL and their standard deviations based on 100 bootstrap samples in subscript.

Second column: average of correlation of observed values and predicted values in 10 validation sets. Third

column: the DIC.

Model MSPE Cor DIC

GDP 0.518(0.0276) 0.701 581.42

BR 0.551(0.0362) 0.662 729.34

BL 0.568(0.0344) 0.653 811.53

The total phenotypic variance for the trait given β can be written as

Vy =

ps∑
j=1

ps∑
j′=1

βjβj′ cov(xj, xj′) + sτ−1 + sbτ
−1
u (6.1)

where s and su are the mean of diagonal elements in R and K respectively.

In other words, s = 1
n

∑n
i=1 rii and su = 1

n

∑n
i=1 kii where rij and kij are the
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Figure 6.6: Left-side: box plot of MSPE obtained through 10-fold cross validation, right-side: box plot of

correlation between predicted and observed values in validation sets.

ijth elements of matrixces R and K. Here, cov(xj, xj′) is covariance between

Xj and Xj′ if j 6= j′ otherwise it is the variance of Xj.

The calculated total phenotypic variance from (6.1) is 1.700. The total

genetic variance contributed by the additive effects of the markers calculated

from the first term of the right hand side of (6.1) is 0.483. The proportion of

the phenotypic variance explained by total genetic variance is called heritabil-

ity denoted with h2. As it is clear from (6.1), h2, accounts for the covariance

between markers as well. If we ignore the contribution from the covariance,

the proportion of the phenotypic variance explained by each marker can be

approximated by

h2
j =

βjvar(xj)

Vy

. (6.2)

To select significant SNPs based on heritability, Hoti & Sillanpaa (2006)

suggested to present a threshold value, c, such that one SNP is included

in the final model if the heritability explained by this SNP is greater than

c. Therefore this threshold can be chosen on more subjective grounds. It is

more appropriate in genetic problems, while heritability is different for differ-

ent complex traits. For instant, the heritability for the milk protein yield is

expected to be small due to previous studies. With this knowledge, we make

a small change in Hoti & Sillanpaa’s strategy. Instead of setting a threshold
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on heritability of each SNP, we consider a threshold on total heritability of

a set of top SNPs ranked based on heritability. After calculating heritability

by substituting the mean of posterior samples of βjs in (6.1), a set of top

ranking SNPs with total heritability above 0.2 was selected. The estimated

effect sizes and marginal heritabilities of 32 selected SNPs as well as their

chromosomes’ numbers are tabulated in Table 6.5.

Table 6.5: Position of selected SNPs with their effect sizes and heritebilities

index Chr β h2(%) index Chr β h2(%)

27 1 -0.0562 0.131 620 13 -0.0578 0.150

40 1 0.0617 0.192 624 13 0.0585 0.173

54 1 -0.0983 2.930 631 13 0.0569 0.138

82 2 -0.0580 0.120 652 14 -0.0595 0.232

116 3 -0.0572 0.156 770 17 0.0905 2.552

122 3 -0.0572 0.138 803 18 0.0569 0.140

151 4 -0.0595 0.204 813 18 0.0790 1.584

180 4 -0.0591 0.206 950 22 0.0586 0.179

192 4 0.0796 1.529 1032 25 0.0715 0.976

293 6 0.0707 0.906 1039 25 -0.0753 1.091

332 7 -0.0726 0.950 1045 25 -0.0553 0.110

371 8 0.0571 0.136 1103 28 -0.0503 0.100

387 8 0.0606 0.798 1106 28 0.0617 0.741

420 9 0.0636 0.821 1111 28 0.0691 0.880

430 10 0.0566 0.140 1114 28 0.0589 0.197

571 12 -0.0581 0.182 1133 29 0.0580 0.200

Among these selected SNPs 19 markers out of 32 makers have been found

in the known genes or close to them. Figure 6.7 shows pieces of chromosome

1 and 10 as examples. The red regions in these pictures indicate the locations

of the genes associated with milk protein yield that have been found through

previously studies. The two vertical red lines represent the locations of two

selected markers in our study. As it is shown in the figure, the selected

SNP in Chromosome 1 is in gene PPP2R3A and the one in Chromosome 10 is
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between genes SAV1 and NIN. The other markers, that are not located close

to known regions in the genome, can be sight to regions that have potential

to be identified as novel-genes if the future studies also detect significant

markers near those locations.

Figure 6.7: Location of two selected markers from chromosome 1 and 10.

We further examined the correlations between the SNPs that are from

the same chromosomes. The correlation matrix of these markers are:

Corchr1=


1 0.254 0.056

1 −0.329∗

1

 , Corchr3=


1 0.75∗∗ 0.110

1 0.088

1


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Corchr4=



1 −0.056 −0.155 0.021

1 −0.133 0.43∗

1 −0.069

1


,

Corchr11=


1 −0.076 −0.099

1 0.251

1

 , Corchr13=


1 0.428∗ 0.238

1 0.231

1



Corchr25=



1 0.009 −0.001 −0.111

1 −0.045 0.05

1 0.108

1


,

Corchr28=



1 −0.244 0.007 −0.130

1 0.235 0.081

1 0.079

1


,

Corchr6 (SNP293, SNP314) = 0.386∗,

Corchr8 (SNP371, SNP387) = 0.005,

Corchr12(SNP571, SNP578) = 0.015 ,

Corchr18(SNP803, SNP813) = 0.313∗,
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Corchr22(SNP950, SNP951) = 0.404∗.

where star denotes significant correlation. Clearly, detected SNPs in most of

the Chromosomes are weekly correlated and we can be sure that they are not

detected due to the LD. Although, the correlation matrix of chromosome 3

shows two markers closely link to each other. Hence, they might be identified

due to the high correlation.

6.6.2 Epistatic Model

In this section, we applied the epistatic model introduced in Chapter 5. As we

have seen in last section, the impact of markers on the trait are small. Hence,

the single marker analysis does not have power to detect true association.

Instead of selecting based on threshold 105 as typical threshold in single

marker analysis, we considered the selected SNPs in the previous section.

The model thereby includes the selected SNPs in previous section and their

pairwise interactions.

To select hyperparameters of the model that affected on the rate of shrink-

age, c1 and c2 in (5.3), we ran a 10-fold cross validation. Table 6.6 represents

the average of 10 out-of-samples MSPEs for different values of hyperparam-

eters and the standard deviation from 100 bootstrap samples in subscript.

Table 6.6: Average of 10 out-of-samples MSPEs for different values of hyperparameters and their standard

deviations from 100 bootstrap samples in subscript.

HHH
HHH

HH
c2

c1
2 2.5 3 3.5

2.5 0.556(0.036) - - -

3.5 0.526(0.033) 0.538(0.031) 0.555(0.031) -

4.0 0.516(0.026) 0.509(0.025) 0.520(0.027) -

4.5 0.550(0.032) 0.547(0.32) 0.549(0.029) 0.550(0.031)

As can be seen from table 6.6, values 2.5 and 4 are the best choice for c1
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and c2 respectively. By these choices of hyperparameters, we ran the MCMC

for the whole dataset. Then similar to our procedure in last section we

selected the SNPs with marginal effects or epistatic effects on the traits. The

Table 6.7 gives the estimated effect sizes and the marginal heritabilities. The

total genetic variance contributed by the main and epistatic effects of the

markers was 0.517 when the total phenotypic variance was estimated 1.723.

Therefore, the total heritability for this model is larger than previous model

with no epistatic effect.
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Table 6.7: The estimated marginal and epistatic effects with total heritability above 0.2.

index(i, j) β̂ ĥ2(%)

(40 , 1032) 0.0661 0.7848

(54 , 54) 0.0678 0.7829

(54 , 813) -0.0994 0.9676

(122 , 332) -0.0688 0.7770

(122 , 620) -0.0695 0.7714

(122 , 1111) -0.0654 0.7624

(151 , 620) -0.0681 0.7805

(180 , 180) -0.0704 0.8247

(192 , 420) 0.0651 0.7507

(192 , 770) 0.0767 0.7811

(293 , 631) 0.1033 1.1427

(332 , 571) -0.0737 0.8079

(371 , 631) 0.0726 0.8044

(387 , 420) 0.1104 1.4580

(420 , 1032) 0.0674 0.7730

(420 , 1111) 0.0685 0.7676

(571 , 1103) -0.0704 0.7799

(624 , 1114) 0.0719 0.8010

(631 , 652) -0.0690 0.7549

(770 , 770) 0.0671 0.7743

(770 , 1111) 0.0761 0.8244

(813 , 813) -0.0660 0.8720

(950 , 950) 0.0687 0.7921

(1032, 1032) 0.0869 0.7719

(1039, 1039) -0.0764 0.7514

(1106, 1106) 0.0811 0.8485

6.7 Discussion

In genome-wide association studies, preliminary analysis plays crucial role to

prevent spurious association. To identify true association, we need to account

for population structures like population stratification and related samples

which are very common in genetic problems. Although, we can improve the

power of detection with preliminary analysis, identifying associated SNPs
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is very difficult in some problem that the heritability of the trait is low.

In these kinds of problems, single marker analysis may not be powerful to

detect any association. Therefore, the multi-stage approach can be more

appropriates. Our proposed model that is based on multi-stage analysis

shows a good predictive performance for problems with weak marker effects

in compare to the BL and BR. It also reveals that in genetic problems, we

face with a complex network and considering epistatic effects can capture

more heritability. This is an issue that cannot be characterized in single

marker analysis.
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