
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

SCUOLA DI DOTTORATO DI RICERCA IN: Ingegneria dell’Informazione

INDIRIZZO: Scienza e Tecnologia dell’Informazione

CICLO: XXVI

ROBOT LEARNING BY OBSERVING HUMAN ACTIONS

Direttore della Scuola: Ch.mo Prof. Matteo Bertocco

Coordinatore d’indirizzo: Ch.mo Prof. Carlo Ferrari

Supervisore: Ch.mo Prof. Emanuele Menegatti

Dottorando:
Stefano Michieletto

Abstract

Nowadays, robotics is entering in our life. One can see robot in industries,
offices and even in homes. The more robots are in contact with people, the more
requests of new capabilities and new features increase, in order to make robots
able to act in case of need, help humans or be a companion. Therefore, it becomes
essential to have a quick and easy way to teach new skills to robots. That is the
aim of Robot Learning from Demonstration. This paradigm allows to directly
program new tasks in a robot through demonstrations.

This thesis proposes a novel approach to Robot Learning from Demonstration
able to learn new skills from natural demonstrations carried out from naive users.
To this aim, we introduce a novel Robot Learning from Demonstration framework
by proposing novel approaches in all functional sub-units: from data acquisition
to motion elaboration, from information modeling to robot control.

A novel method is explained to extract 3D motion flow information from both
RGB and depth data acquired by using recently introduced consumer RGB-D
cameras. The motion data are computed over the time to recognize and classify
human actions.

In this thesis, we describe new techniques to remap human motion to robotic
joints. Our methods allow people to natural interact with robots by re-targeting
the whole body movements in an intuitive way. We develop algorithm for both
humanoids and manipulators motion and test them in different situations.

Finally, we improve modeling techniques by using a probabilistic method: the
Donut Mixture Model. This model is able to manage several interpretations that
different people can produce performing a task. The estimated model can also be
updated directly by using new attempts carried out by the robot. This feature is
very important to rapidly obtain correct robot trajectories by means of few human

iii

demonstrations.
A further contribution of this thesis is the creation of a number of new virtual

models for the different robots we used to test our algorithms. All the developed
models are compliant with ROS, so they can be used to foster research in the field
from all the community of this very diffuse robotics framework. Moreover, a new
3D dataset is collected to compare different action recognition algorithms. The
dataset contains both RGB-D information coming directly from the sensor and
skeleton data provided by a skeleton tracker.

iv

Sommario

La robotica sta ormai entrando nella nostra vita. Si possono trovare robot
nelle industrie, negli uffici e perfino nelle case. Pi i robot sono in contatto con le
persone, pi aumenta la richiesta di nuove funzionalit e caratteristiche per rendere i
robot capaci di agire in caso di necessit, aiutare la gente o di essere di compagnia.
Perci essenziale avere un modo rapido e facile di insegnare ai robot nuove abilit
e questo proprio l’obiettivo del Robot Learning from Demonstration. Questo
paradigma consente di programmare nuovi task in un robot attraverso l’uso di
dimostrazioni.

Questa tesi propone un nuovo approccio al Robot Learning from Demonstra-
tion in grado di apprendere nuove abilit da dimostrazioni eseguite naturalmente
da utenti inesperti. A questo scopo, stato introdotto un innovativo framework per
il Robot Learning from Demonstration proponendo nuovi approcci in tutte le sub-
unit funzionali: dall’acquisizione dei dati allelaborazione del movimento, dalla
modellazione delle informazioni al controllo del robot.

Allinterno di questo lavoro stato proposto un nuovo metodo per estrarre l
informazione del flusso ottico 3D, combinando dati RGB e di profondit acquisiti
tramite telecamere RGB-D introdotte di recente nel mercato consumer. Questo
algoritmo calcola i dati di movimento lungo il tempo per riconoscere e classificare
le azioni umane.

In questa tesi, sono descritte nuove tecniche per rimappare il movimento umano
alle articolazioni robotiche. I metodi proposti permettono alle persone di intera-
gire in modo naturale con i robot effettuando un re-targeting intuitivo di tutti i
movimenti del corpo. stato sviluppato un algoritmo di re-targeting del movi-
mento sia per robot umanoidi che per manipolatori, testando entrambi in diverse
situazioni.

v

Infine, sono state migliorate le tecniche di modellazione utilizzando un meto-
do probabilistico: il Donut Mixture Model. Questo modello in grado di ge-
stire le numerose interpretazioni che persone diverse possono produrre eseguendo
un compito. Inoltre, il modello stimato pu essere aggiornato utilizzando diretta-
mente tentativi effettuati dal robot. Questa caratteristica molto importante per ot-
tenere rapidamente traiettorie robot corrette, mediante luso di poche dimostrazioni
umane.

Un ulteriore contributo di questa tesi la creazione di una serie di nuovi model-
li virtuali per i diversi robot utilizzati per testare i nostri algoritmi. Tutti i modelli
sviluppati sono compatibili con ROS, in modo che possano essere utilizzati da
tutta la comunit di questo framework per la robotica molto diffuso per promuo-
vere la ricerca nel campo. Inoltre, stato raccolto un nuovo dataset 3D al fine di
confrontare diversi algoritmi di riconoscimento delle azioni, il dataset contiene sia
informazioni RGB-D provenienti direttamente dal sensore che informazioni sullo
scheletro fornite da uno skeleton tracker.

vi

Contents

1 Introduction 1
1.1 Thesis Outline and Contributions 4

1.2 Publications . 5

2 Action Recognition 7
2.1 Related Work . 8

2.2 3D Motion Flow . 9

2.3 3D Pose . 11

2.4 Descriptors . 13

2.4.1 SUMFLOW . 13

2.4.2 Skeleton Descriptor . 14

2.4.3 Sequence Descriptor . 14

2.5 Experiments . 15

2.6 Summary . 22

3 Motion re-targeting 23
3.1 Data acquisition . 24

3.2 Human to humanoids re-targeting 24

3.2.1 Motion evaluation . 24

3.2.2 Upper body motion and refinement 30

3.2.3 Lower body motion: stability control 34

3.3 Human to manipulator re-targeting 37

3.3.1 Motion evaluation . 37

3.4 Summary . 41

vii

CONTENTS

4 Visual Robot Learning by Demonstration 43
4.1 Related Works . 44
4.2 Gaussian Mixture Model . 46
4.3 Gaussian Mixture Regression . 47
4.4 Number of Mixture . 48
4.5 Industrial environment . 49
4.6 Donut Mixture Model . 53
4.7 Density Function Maximization 56

4.7.1 Quasi-Newton methods 56
4.7.2 Conjugate Gradient methods 58
4.7.3 Simplex-based methods 60
4.7.4 Methods performance analysis 61

4.8 Kinesthetic demonstrations . 64
4.9 Human observations . 65
4.10 Summary . 67

5 Conclusions 77

Appendices

A RGB-D Datasets 83
A.1 IAS-Lab Action dataset . 83

A.1.1 IAS-Lab Action Dataset 83

B Robot models 87
B.1 Virtual robots in ROS . 87

B.1.1 Gazebo . 87
B.1.2 VRep . 88
B.1.3 Comparison . 89

B.2 Comau Smart5 SiX . 90
B.3 Vstone Robovie-X . 94
B.4 Aldebaran NAO . 95

Bibliography 105

viii

List of Figures

2.1 Example of 3D flow estimation results reprojected to the image
(a-b) for action Check watch. Flow is visualized as green arrows
in the image, before (a) and after (b) outlier removal. 12

2.2 Two different views of the computed 3D grid: 4 partitions along
the x, y and z axis are used. 13

2.3 Confusion matrix obtained on the dataset presented in [7]. 16
2.4 Example of 3D flow estimation for some key frames of the Throw

from bottom up action of the IAS-Lab Action Dataset. 17
2.5 Mean recognition accuracy obtained with the SUMFLOW descrip-

tor on the IAS-Lab Action Dataset when varying the number of
frames used for composing the sequence descriptor. 18

2.6 Confusion matrix obtained on the IAS-Lab Action Dataset with
the descriptor in [7], our SUMFLOW descriptor (b) without and
(c) with outlier rejection and (d) the skeleton-based descriptor. . . 21

2.7 Mean recognition accuracy when varying the number of frames
used for composing the sequence descriptor. 22

3.1 Skeleton joints provided by the tracker. 25
3.2 The trend of the λ parameter depending on the hand distance from

the shoulder. 28
3.3 Aldebaran NAO, right arm working area. 31
3.4 Vectors calculated starting from skeleton joints. 32
3.5 Main joint angles involved in balance. 36
3.6 Comau Smart5 SiX operating area (red line). The overall dimen-

sions are also reported. 38

ix

LIST OF FIGURES

3.7 Vectors calculated starting from skeleton joints. 39

4.1 Overview of the first experimental scenario in the simulated world.
The three subtasks performed by the demonstrators are numbered
in the corresponding order. 50

4.2 An actor performing the movement of the box requested in the
second task. 51

4.3 Overview of the second simulated scenario. 52

4.4 Results obtained in the first task using a GMM trained with 11
examples (blue) to calculate the regression (red) through GMR for
Axis1 (a), Axis2 (b), Axis3 (c). The vertical straight-lines peaks are
out-layers due to the sensor noise. Using the GMM/GMR model
the robot avoid rapid accelerations between timesteps and large
oscillations in its velocity. 68

4.5 Simplex reflection operation applied to the current polygon com-
posed by 3 vertices. 69

4.6 Simplex expansion operation applied to the current polygon com-
posed by 3 vertices. 69

4.7 Simplex inside contraction (a) and outside contraction (b) opera-
tion applied to the current polygon composed by 3 vertices. . . . 69

4.8 Simplex shrinkage operation applied to the current polygon com-
posed by 3 vertices. 70

4.9 Overview of the experimental scenario: the NAO is manually
moved by a human to score in a basket placed at 40 cm from
it. 71

4.10 Trajectories used to generate the DMM during the kinesthetic demon-
stration task. The blue dotted trajectories corresponds to the initial
dataset, while the ones in red were generated by the framework. . 72

4.11 Screen-shots from the Throw Over Head action performed by dif-
ferent actors in the IAS-Lab Action Dataset. 72

4.12 Overview of experimental scenario: the NAO is placed at 40 cm
from the basket. 74

x

LIST OF FIGURES

4.13 Results obtained from the demonstrations collected from human
observations (blue dots) using our framework (in red) and a GMM/GMR
framework (black). 75

A.1 Examples of images for the 15 actions present in the dataset. . . . 85

B.1 The small manipulator Comau Smart5 SiX. 92
B.2 The Comau Smart5 SiX robot represented through URDF links

and joints (a), and simulated in Gazebo (b). 94
B.3 The small humanoid Vstone Robovie-X. 95
B.4 The Robovie-X simulated in Gazebo. 96
B.5 Aldebaran NAO: physical robot (a) and his URDF model (b). . . 98
B.6 Results of the task straight walk along x direction. This is not the

real distance walked by the robot, but the projection along x. . . . 100
B.7 Results of the task straight walk along y direction. A positive

value corresponds to a right deviation of the robot, a negative
value corresponds to a left deviation of the robot. 101

B.8 Result of the task turn around. The absolute value of rotation
angle is showed. At 90◦ and 360◦ the robot has turned counter-
clockwise, while at 180◦ and 270◦ the robot has turned clockwise.

. 103

xi

List of Tables

4.1 Comparison between different implementation of the described
optimization algorithms on a well-know function. 62

4.2 Comparison between different implementation of the described
optimization algorithms on the probability density function of a
randomly generated Donut Mixture Model. 63

4.3 A more detailed comparison between BFGS 21 and Gradient Ascendant1

optimization algorithms on the probability density function of a
randomly generated Donut Mixture Model. 63

4.4 A more detailed comparison between BFGS 21 and Gradient Ascendant1

optimization algorithms on the probability density function of a
randomly generated Donut Mixture Model. 64

4.5 Comparison between standard BFGS 21 and the same algorithm
plus the MW policy. 64

4.6 The trajectories collected by using kinesthetic demonstrations. . . 73
4.7 The trajectories collected by using kinesthetic demonstrations. . . 74

A.1 Datasets for 3D Human Action Recognition. 84

B.1 Summary of the main features of Gazebo and V-Rep simulators. . 91
B.2 Summary of the main Comau Smart5 SiX features. 93

xiii

Chapter 1

Introduction

Robot Learning From Demonstration (RLfD) [9] [6] also called Imitation
Learning is a programming paradigm that uses demonstrations in order to make
a robot learn new tasks. Several approaches were adopted in RLfD: Schaal et
al. [81] used motion primitives to encode learning data, Akgun et al. [3] ex-
tracted keyframes to correctly model a skill, Calinon et al. [16] proposed an Hid-
den Markov Model/Gaussian Mixture Regression technique to reproduce human
demonstrations in a multiple constraints environment. In the last years, Robot
Learning from Demonstration (RLfD) has become a major topic in robotics re-
search. The main reason for this is that direct programming a robot motion can
be a very difficult and time consuming task. Acquiring examples from humans
provides a powerful mechanism to simplify the process of programming complex
robot motions.

In this thesis, a novel approach to Robot Learning From Demonstration is
exploited. We analyzed how humans approach robots, and in particular robot
motion programming, in order to understand an effective way to let people teach
new tasks to robots. We focus on allowing non expert users to naturally interact
with robots to teach them new behaviors.

This capability is useful in both industrial and service robotics scenarios. In
industrial robotics, a natural demonstration of the task could be the proper way
to fast automatize the production process without the need of tedious and errors
prone manual programming. In service robotics, the robot could be able to learn

1

1. Introduction

new tasks by itself, interacting with non skilled users in very different circum-
stances.

In the past, different modalities have been used in Robot Learning From Demon-
stration to convey the demonstrations from the teacher to the robot: motion sen-
sors [13], kinesthetic teaching [37], or vision systems [22]. Motion sensors have
to be worn from the user to acquire proper information. In kinesthetic demonstra-
tion, instead, the motion are collected directly from the robot moved by the user.
Naive users hardly deal with such methods, that are unnatural or uncomfortable.
Moreover, as highlighted in [53], state of the art approaches are based on expen-
sive or sophisticated hardware normally inappropriate for household applications.
On the other hand, 2D vision systems are usually not diffuse in this field because
they used to be often slow and sensitive to clutter and occlusions. In our work,
we used a low-cost RGB-D sensor to provide 3D data to Robot Learning from
Demonstration system.

The introduction of low-cost RGB-D sensors [36] with good resolution and
frame-rate has generated a rapid boosting of computer vision algorithms to esti-
mate human pose [85], skeleton tracking [44] and activities recognition [7]. In
this work, novel action recognition algorithms have been developed to extract in-
formation about human motion by simply observing local flow in the actor body.
Information have been collected from 3D motion flow extracted directly from
the person point cloud, we compared these data with skeleton joint positions and
orientations. Both 3D motion flow and skeleton joints has been analyzed using
several descriptors and classifiers in order to compare the performances of these
two methods. The considered techniques use RGB-D data in order to maintain the
spatial information about motion with respect the best 2D algorithms, which ex-
tract local features from consecutive video frames classifying actions by a bag-of-
words approach and do not take track of where these features have been extracted.

Spatial information can be used as input for motion re-targeting techniques
making an avatar replicate the same poses performed by an actor. Computer
graphics [31] [51] uses such kind of techniques to generate off-line feasible mo-
tion for virtual characters, but robotics requires on-line methods to be applied in
dynamic environments, in which sensors can provide feedback to avoid dangerous
collisions, follow moving objects, or react to changing requests.

2

In this work, we developed a motion re-targeting system motion able to work
on-line to remap human movements to humanoid robots taking account of similar
works, which are previously proposed by Pollard [77], Dariush [19], and Miura
[64].

We also apply similar remapping techniques to industrial robots, and in par-
ticular manipulators. In the past, some attempts were done using an anthropo-
morphic mapping [23] [57]. These approaches force the demonstrator to act in a
“robotic” way, but they can not be adopted if the user is acting in a natural way.
For example, if the human knows that his arm directly controls a manipulator,
the movement he perform will be concentrated on the arm, with no lower-body
motion. A natural execution, instead, involves the whole body. In this thesis, we
developed a novel mapping from the whole human body to a manipulator.

In this work a number of models suitable for Robot Learning by Demonstra-
tion are tested. Some of them are good for well formed correct demonstrations,
some others are feasible to reconstruct trajectories from failed examples.

At first we develop an original version of a state-of-the-art framework based
probabilistic method, namely Gaussian Mixture Model (GMM) and Gaussian
Mixture Regression (GMR). Good results can be reached with this framework
with a relative high number of demonstrations in high repeatable industrial tasks.
On the other hand, the GMM/GMR framework can not handle the different inter-
pretations feasible in a generic service robotics environment and another solution
has to be found. In particular, this thesis deeply analyzed the possible capabili-
ties of a novel Robot Leaning from Failure Demonstration [35]. We extended the
Donut Mixture Model used in Grollman work in order to adapt human demonstra-
tions to robot degrees of freedom. In fact, the mapping between human and robot
joints can generate a failed robot attempt, even starting from a successful human
example. The model estimated using our approach is then updated using the at-
tempts performed by the robot. This feature is very important to rapidly obtain
correct robot trajectories by means of few human demonstrations. The complete
framework has been tested in several situations and with different robots. Tests
have been done by using both kinesthetic demonstrations and RGB-D data.

3

1. Introduction

1.1 Thesis Outline and Contributions

In Chapter 2, we will describe a novel approach to action recognition based
on RGB-D data which exploits 3D motion flow algorithms to build up different
kind of gridded descriptors that merge together color and depth information. We
will compare this approach with a skeleton information based descriptor that rec-
ognizes human action estimating joint positions and orientations from the human
body.

In Chapter 3, we will propose novel motion re-targeting techniques for both
humanoids and manipulators by elaborating the same skeleton information used
in the previous chapter. On one hand, the proposed techniques are thought to
be used from naive users that act in a natural way. On the other hand, they are
required to be very fast and robust in different situations. In both, humanoids and
manipulators, the whole body will be involved in the re-targeting algorithm, so
that humanoids re-targeting will take care of robot stability, while manipulators re-
targeting will exploit a remapping from human body to a non humanoid structure.

The motion re-targeting techniques will lead to a novel approach to Robot
Learning from Demonstration, which will be described in Chapter 4. In Robot
Learning from Demonstration, users usually are constrain to modalities under-
standable by the robot. In this work we will remove such constrain in order to
let the demonstrator act as natural as possible. An initial framework based on
Gaussian Mixture Model and Gaussian Mixture Regression will be applied on an
industrial task. While a more flexible Donut Mixture Model framework will be
tested in service robotics environment.

Finally, Chapter 5 will conclude the thesis and summarizes the results achieved.

Appendix A will describe a further contribution of this thesis, which is the cre-
ation of a new RGB-D action recognition dataset called IAS-Lab Action Dataset.
This dataset has been use to perform the comparison between the action recogni-
tion techniques developed in this thesis. A brief presentation of the robots used
in this work will be listed in Appendix B. A virtual model has been developed for
most of them in order to test the algorithms proposed in this thesis in a simulated
environment. Both dataset and virtual models have been publically released in
order to foster research in the field.

4

1.2 Publications

1.2 Publications

The work described in this thesis has also been presented in the publications
listed here below, divided by topic.

People detection and tracking

• [30] S. Ghidoni, S. M. Anzalone, M. Munaro, S. Michieletto and E. Menegatti.
A distributed perception infrastructure for robot assisted living. To appear
in Robotics and Autonomous Systems (RAS) Journal, Elsevier, 2014.

• [68] M. Munaro, F. Basso, S. Michieletto, E. Pagello and E. Menegatti. A

software architecture for RGB-D people tracking based on ROS framework

for a mobile robot. Frontiers of Intelligent Autonomous Systems, Volume
466, pp 53-68, Springer 2013.

• [8] F. Basso, M. Munaro, S. Michieletto and E. Menegatti. Fast and robust

multi-people tracking from RGB-D data for a mobile robot. In Proceedings
of the 12th Intelligent Autonomous Systems (IAS) Conference, Jeju Island
(Korea), 2012

Robot Learning by Demonstration

• [59] S. Michieletto, S. Ghidoni, E. Pagello, M. Moro and E. Menegatti.
Why teach robotics using ROS. To appear in Journal of Automation, Mobile
Robotics & Intelligent Systems (JAMRIS). 2014.

• [10] A. Bisson, A. Busatto, S. Michieletto and E. Menegatti. Stabilize

humanoid robot teleoperated by a RGB-D sensor. Popularize Artificial In-
telligence (PAI2013). 2013.

• [79] G. Pozzato, S. Michieletto and E. Menegatti. Towards smart robots:

rock-paper-scissors gaming versus human players. Popularize Artificial In-
telligence (PAI2013). 2013.

5

1. Introduction

• [62] S. Michieletto, D. Zanin and E. Menegatti. NAO robot simulation

for service robotics purposes. European Modelling Symposium EMS2013
(EMS2013). 2013.

• [58] S. Michieletto, N. Chessa and E. Menegatti. Learning how to ap-

proach industrial robot tasks from natural demonstrations. IEEE Workshop
on Advanced Robotics and its Social Impacts (ARSO2013). 2013.

• [61] S. Michieletto, A. Rizzi and E. Menegatti. Robot learning by observ-

ing humans activities and modeling failures. IROS workshops: Cognitive
Robotics Systems (CRS2013). 2013.

• [60] S. Michieletto and E. Menegatti. Human action recognition oriented to

humanoid robots action reproduction. In Matteo Baldoni, Federico Chesani,
Bernardo Magnini, Paola Mello, Marco Montai (eds.), Popularize Artificial
Intelligence, proceedings of the AI*IA Workshop and Prize for Celebrating
100th Anniversary of Alan Turing’s Birth (PAI. 2012), Rome, Italy, June.
2012. pp. 35-40.

Action recognition

• [66] M. Munaro, G. Ballin, S. Michieletto and E. Menegatti. 3D flow esti-

mation for human action recognition from colored point clouds. Journal on
Biologically Inspired Cognitive Architectures, vol. 5, pp 42-51, 2013.

• [69] M. Munaro, S. Michieletto and E. Menegatti. An evaluation of 3D

motion flow and 3D pose estimation for human action recognition. In Pro-
ceedings of Robotics Science and Systems 2013: Workshop on RGB-D -
Advanced Reasoning with Depth Cameras, Berlin (Germany), 2013.

6

Chapter 2

Action Recognition

In recent years, robotics perception has grown very fast, introducing new ap-
plications that were considered unfeasible before. This success has been fostered
by the introduction of RGB-D sensors with good resolution and framerate [1] and
open source software for robotics development [80]. Thanks to these progresses,
we can now think about robots capable of smart interaction with humans. One of
the most important skills for a robot interacting with a human is the ability to rec-
ognize what the human is doing. For instance, a robot with this skill could assist
elderly people by monitoring them and understanding if they need help or if their
actions can lead to a dangerous situation.

In this work a novel method for real time 3D flow estimation from point cloud
data is presented in which the whole person motion is encoded by using a 3D
grid-based descriptor. Our 3D motion flow technique is compared with features
based on skeleton information by means of a newly created dataset which contains
RGB-D and skeleton data for 15 actions performed by 12 different actors.

The remainder of the chapter is organized as follows: Section 2.1 provides a
review about the recent advances in human action recognition systems. In Sec-
tion 2.2, the 3D motion flow estimation algorithm is described, while in Sec-
tion 2.3 the characteristics of the skeleton data are explained. In Section 2.4 we
detail the descriptors used for encoding person motion and skeletal information.
Section 2.5 reports experiments on the IAS-Lab Action Dataset and on the dataset
used in [7], while Section 2.6 summarize the the chapter and outlines the future

7

2. Action Recognition

work.

2.1 Related Work

The first RGB-D related work is signed by Microsoft Research [54]. In [54],
the relevant postures for each action are extracted from a sequence of depth maps
and represented as bags of 3D points. The motion dynamics are modeled by means
of an action graph and a Gaussian Mixture Model is used to robustly capture the
statistical distribution of the points. Subsequent studies mainly refer to the use
of three different sensor technologies: Time of Flight cameras [38, 39], motion
capture systems [73], [47], [88] and active matricial triangulation systems (i.e.:
Kinect-style cameras) [87], [96], [97], [71], [78], [52], [11], [98], [63], [93]. The
most used features are related to the extraction of the skeleton body joints [87],
[96], [11], [73], [93], [88]. Usually, these approaches first collect raw information
about the body joints (e.g.: spatial coordinates, angle measurements). Next, they
summarize the raw data into features, in order to characterize the posture of the
observed human body. Differently from the other joints-related publications, [73]
computes features which carry a physical meaning. Indeed, in [73], a Sequence
of Most Informative Joints (SMIJ) is computed based on measures like the mean
and variance of joint angles and the maximum angular velocity of body joints.

Other popular features are the result of the extension to the third dimension of
typical 2D representations. Within this category, we should distinguish between
local and global representations. Features in [97], [71], [98], [63] are local rep-
resentations since they aim to exploit the well-known concept of STIPs [49, 50]
by extending it with depth information. Examples of global representations in the
3D domain can be found in [78], [38, 39]. In [78], Popa et al. propose a Kinect-
based system able to continuously analyze customers’ shopping behaviours in
malls. Silhouettes for each person in the scene are extracted and then summarized
by computing moment invariants. In [38, 39], a 3D extension of 2D optical flow
is exploited for the gesture recognition task. Holte et al. compute optical flow
in the image using the traditional Lukas-Kanade method and then extend the 2D
velocity vectors to incorporate also the depth dimension. At the end of this pro-
cess, the 3D velocity vectors are used to create an annotated velocity cloud. 3D

8

2.2 3D Motion Flow

Motion Context and Harmonic Motion Context serve the task of representing the
extracted motion vector field in a view-invariant way. With regard to the clas-
sification task, [38] and [39] do not follow a learning-based approach, instead a
probabilistic Edit Distance classifier is used in order to identify which gesture best
describes a string of primitives. [39] differs from [38] because the optical flow is
estimated from each view of a multi-camera system and is then combined into a
unique 3D motion vector field.

Finally, works in which trajectory features are exploited [52], [47] recently
emerged. While in [52] trajectory gradients are computed and summarized, in
[47], an action is represented as a set of subspaces and a mean shape.

Unlike [38] and [39], which compute 2D optical flow and then extend it to 3D,
a method to compute the motion flow directly on 3D points with color has been
proposed in [7]. From the estimated 3D velocity vectors, a motion descriptor is
derived and a sequence of descriptors is concatenated and classified by means of
Nearest Neighbor. Tests are reported on a dataset of six actions performed by six
different actors.

2.2 3D Motion Flow

Optical flow is a powerful cue to be used for a variety of applications, from
motion segmentation to structure-from-motion passing by video stabilization. As
reported in Section 2.1, some researchers proved its usefulness also for the task
of action recognition [24], [94], [4]. The most famous algorithm for optical flow
estimation was proposed by Lukas and Kanade [56]. The main drawbacks of
this approach were that it only works for highly textured image patches and, if re-
peated for every pixel of an image, it results to be highly computational expensive.
Moreover, 2D motion estimation in general has the limitation to be dependent on
the viewpoint and closer objects appear to move faster because they appear bigger
in the image.

When depth data are available and registered to the RGB/intensity image, the
optical flow computed in the image can be extended to 3D by looking at the corre-
sponding points in the depth image or point cloud [38,39]. This procedure allows
to compute 3D velocity vectors, thus overcoming some of the limitations of 2D-

9

2. Action Recognition

only approaches, such as viewpoint and scale dependence. However, the motion
estimation process is still completely based on the RGB image and it does not ex-
ploit the available 3D information for obtaining a better estimate. Moreover, the
computational onerosity is still high.

In this work, we improve the technique recently proposed in [7] for comput-
ing 3D motion of points in the 3D-color space directly. This method consists in
estimating correspondences between points of clouds belonging to consecutive
frames. Our approach is fast and able to overcome some singularities of optical
flow estimation in images by relying also on 3D points coordinates. Moreover, it
is applicable to any point cloud containing XYZ and RGB information, and not
only to those derived from a 2D matrix of depth data (projectable point clouds).

Given two point clouds (called source and target) containing 3D coordinates
and RGB/HSV color values of an object of interest (in this work, a person), the
following pipeline is applied:

1. correspondence finding: for every point of the target point cloud, we select
K nearest neighbors in the source point cloud in terms of Euclidean distance
in the XYZ space; among the resulting points, we select the nearest neigh-
bor in terms of HSV coordinates. We preferred HSV to RGB because it is
more perceptually uniform. If Nptarget

i
is the set of K nearest neighbors in

the source point cloud to the point pi in the target point cloud, then ptarget
i is

said to match with

psource
∗ = argmin

psource
i ∈Nptarget

i

dHSV
(
ptarget

i ,psource
i

)
, (2.1)

where dHSV is the distance operator in the HSV space. The number of
neighbors K is a function of the point cloud density. In this work, we filter
the point clouds to have a voxel size of 0.02m and we set K to 50.

2. outlier rejection by means of reciprocal correspondences: this method con-
sists in estimating correspondences from target to source and from source
to target. Then, points which match in both directions are kept.

3. computation of 3D velocity vectors vi for every match i as spatial displace-

10

2.3 3D Pose

ment over temporal displacement of corresponding 3D points pi from target
and source:

vi =
(
ptarget

i −psource
i

)
/
(
ttarget
i − tsource

i
)

(2.2)

4. unlike in [7], we perform an additional outlier rejection: points with 3D
velocity magnitude ‖vi‖ below a threshold are discarded. Isolated mov-
ing points (not near to other moving points) are also deleted. In particular,
points moving faster than 0.3 m/s are retained and a moving point is con-
sidered to be isolated if none of its neighbors moves faster than 0.75 m/s.

The reciprocal correspondence technique for outlier rejection can be considered
as a 3D extension of the Template Inverse Matching method [55], which has been
widely used to estimate the performance of 2D optical flow estimation. The con-
straints we apply on the flow magnitude and on the proximity to other moving
points are meant to remove spurious estimates which can be generated from the
noise inherent in the depth values.

In this work, we segment point clouds to isolate humans from the rest of the
scene by means of the people detection and tracking method for RGB-D data
described in [67] and then we apply the flow estimation algorithm to the detected
the clusters containing a person.

In Figure 2.1, we report two consecutive RGB frames of a person performing
the Check Watch action. Green arrows show magnitude and direction of the esti-
mated flow when reprojected to the image. It can be noticed how outlier rejection
successfully removes the majority of the noisy measurements, while preserving
the real motion at the right arm position.

2.3 3D Pose

In this work skeletal tracking capabilities comes from a software development
kits released by OpenNI. In particular, the skeletal tracking algorithm is imple-
mented in a freeware middleware called NiTE1 built on top of the OpenNI SDK.

1http://www.primesense.com/solutions/nite-middleware

11

http://www.primesense.com/solutions/nite-middleware

2. Action Recognition

(a) Before (b) After

Figure 2.1: Example of 3D flow estimation results reprojected to the image (a-b)
for action Check watch. Flow is visualized as green arrows in the image, before
(a) and after (b) outlier removal.

NiTE uses the information provided by a RGB-D sensor to estimate the po-
sition of several joints of the human body. The framerate working on CPU at 30
Hz that means a very good performance in terms of precision and velocity with
respect to its image-based counterparts. Since this technique is based on depth
data, it is also invariant to illumination changes.

NiTE skeletal tracker is able tracks people in the range 1.2-3.5 m by using
a people detection algorithm based on motion detection and exploiting the in-
formation from multiple depth frames to improve the tracking performance. As
drawback, a person has to move at startup for being detected. It can track upto
9 skeletons and 15 joints for each person providing a label for every joint stating
if it is tracked or inferred. Differently from the skeletal tracker implemented in
the Microsoft Kinect SDK2 that is trained on frontal people, NiTE skeletal tracker
is able to track also people seen from the back side. On the other hand, it often
poorly estimates the whole skeleton when some joints are not visible. For this
reason, when using NiTE skeletal tracker in this work, we used only frames with
all joints marked as tracked.

2http://www.microsoft.com/en-us/kinectforwindows/develop

12

2.4 Descriptors

2.4 Descriptors

In this section, we describe the frame-wise and sequence-wise descriptors we
extract for describing actions.

2.4.1 SUMFLOW

In order to compute a descriptor accounting for direction and magnitude of
motion of every body part, we center a 3D grid of suitable dimensions around a
person point cloud. This grid divides the space around the person into a number
of cubes. In Figure 2.2, a person point cloud is reported, together with the 3D grid
which divides its points into different clusters represented with different colors.
The size of the grid is proportional to the person’s height in order to contain the
whole limbs motion and to make the flow descriptor person-independent.

Figure 2.2: Two different views of the computed 3D grid: 4 partitions along the x,
y and z axis are used.

For every cube of the grid, we extract flow information from all the points
inside the cube. Unlike [7], which exploits the mean flow vector of every cube,
we compute the sum of the motion vectors of every cube. This choice is due to
the fact that the mean would amplify the noise contribution when little motion
is present. The resulting vectors for all the cubes are concatenated into a single
descriptor which is then L2-normalized for making it invariant to the speed at

13

2. Action Recognition

which an action is performed. We will refer to our descriptor as the SUMFLOW

descriptor. If this work, the grid is divided into four parts in every dimension, thus
the total number of cubes is C = 64. If xsF

i ,ysF
i ,zsF

i are the coordinates of the flow
sum vector for the i− th cube, the SUMFLOW descriptor can be written as

dSUMFLOW =
[
xsF

1 ysF
1 zsF

1 . . . xsF
C ysF

C zsF
C
]
. (2.3)

2.4.2 Skeleton Descriptor

The skeleton information provided by the NITE middleware consists of N =

15 joints from head to foot. Each joint is described by position (a point in 3D
space) and orientation (a quaternion). On these data, we perform two kinds of
normalization: the former scales the joints positions in order to report the skeleton
to a standard height, thus achieving invariance to people height, the latter makes
every feature to have zero mean and unit variance. Starting from the normalized
data, we extracted three kinds of descriptors: a first skeleton descriptor (dP) is
made of the set of joints positions concatenated one to each other; for the second
one (dO), normalized joints orientations are gathered. Finally, we tested also a
descriptor (dTOT) concatenating both position and orientation of each normalized
joint:

dP = [x1 y1 z1 . . . xN yN zN] , (2.4)

dO =
[
q1

1 q2
1 q3

1 q4
1 . . . q1

N q2
N q3

N q4
N
]
, (2.5)

dTOT =
[
d1

P d1
O . . . dN

P dN
O
]
. (2.6)

2.4.3 Sequence Descriptor

Since an action actually represents a sequence of movements over time, the
use of multiple frames can provide more discriminant information to the recog-
nition task with respect to approaches in which only a single-frame classification
is performed. For this reason, we compose a single descriptor from every pre-
segmented sequence of frames to be classified. In particular, we select a fixed
number of frames evenly spaced in time from every sequence and we concate-
nate the single-frame descriptors to form a single sequence descriptor. Thanks to

14

2.5 Experiments

this approach, we take into account the temporal order in which the single frame
descriptors occurs.

2.5 Experiments

In this section, we report the human action recognition experiments we per-
formed by exploiting the descriptors presented in Section 2.4.

We used the people detection and tracking algorithm described in [67] for seg-
menting people point clouds out from raw Kinect data. That method also performs
a voxel grid filtering of the whole point cloud in order to reduce the number of
points that should be handled. It is worth noting that a voxel size of 0.06m proved
to be ideal for people tracking purposes, but it resulted to be insufficient for cap-
turing local movements of the human body useful in an action recognition context.
For this reason, we chose the voxel size to be of 0.02m.

We first evaluated our 3D motion flow descriptor on the action dataset used
in [7]. That dataset contains six types of human actions: getting up, pointing,

sitting down, standing, walking, waving. Each action is performed once by six
different actors and recorded from the same point of view. Every action is already
segmented out into a video containing only one action. Each of the segmented
video samples spans from about 1 to 7 seconds. Unfortunately, no skeleton infor-
mation is provided, thus the skeleton-based descriptors could not be tested.

For assigning an action label to every test sequence, we performed Nearest
Neighbor classification with a leave-one-person-out approach, that is we trained
the actions classifiers on the videos of all the persons except one and we tested on
the video containing the remaining person. Then, we repeated this procedure for
all the people and we computed the mean of all the rounds for obtaining the mean
recognition accuracy. In Figure 2.3(b), we report the confusion matrix obtained
on this dataset with our approach based on the SUMFLOW descriptor when using
10 frames for composing the sequence descriptor. The mean accuracy is 94.4%
and the only errors occur for recognizing the standing action, which is sometimes
confused with the getting up and sitting down actions. The accuracy we obtained
in this work is considerably higher than what obtained in [7] (Figure 2.3(a)), which
was of 80.5%. This improvement is due to: The outlier rejection performed after

15

2. Action Recognition

the motion flow estimation, the use of the SUMFLOW descriptor, which is less
sensitive to noise than the one in [7], and the choice of the frames which are
concatenated to compose the sequence descriptor. In fact, we select frames evenly
spaced within a sequence, while, in [7], the central frames of every sequence were
chosen, thus encoding only the central part of an action.

(a) [7] (b) This work

Figure 2.3: Confusion matrix obtained on the dataset presented in [7].

The single contributions of this work have been also evaluated on the IAS-Lab

Action Dataset(Appendix A). In Figure 2.4, we show an example of 3D flow esti-
mation for some key frames of the Throw from bottom up action. We adopted the
same leave-one-person-out approach described above for computing the recogni-
tion accuracy.

In Figure 2.5, we report the mean recognition accuracy obtainable on the IAS-

Lab Action Dataset when using the SUMFLOW frame-wise descriptor and vary-
ing the number of frames used for composing the sequence descriptor. It can be
noticed how the accuracy rapidly increases until 5 frames per sequence and con-
tinues to considerably improve until 30 frames are used, reaching a recognition
rate of 85.2%, which can be considered as a very good score given that the peo-
ple used as test set were not present in the training set. In the confusion matrices
shown in Figure 2.6, 30 frames have been selected from every action sequence to
compute the sequence descriptors. It can be noticed how the SUMFLOW descrip-

16

2.5 Experiments

(a) (b)

(c) (d)

Figure 2.4: Example of 3D flow estimation for some key frames of the Throw
from bottom up action of the IAS-Lab Action Dataset.

17

2. Action Recognition

Figure 2.5: Mean recognition accuracy obtained with the SUMFLOW descrip-
tor on the IAS-Lab Action Dataset when varying the number of frames used for
composing the sequence descriptor.

tor (Figure 2.6(c)) reaches the best recognition accuracy of 85.2%. Most of errors
occurred for the action Point and Wave, and in particular actions with little motion
are sometimes confused with the Standing action. As a reference, Figure 2.6(a)
shows the confusion matrix obtained with the descriptor in [7] and (b) reports the
results obtained with the SUMFLOW descriptor if outlier rejection is not applied
in the motion flow estimation process. The clear drop in performance, of 27.2%
and 3.3% respectively, confirms the validity of the choices made in this work. It
is worth noting that, even if the Standing action is not included in all the datasets
we reported in Section A.1, it is very important for the task of action detection: an
algorithm able to reliably distinguish this action from the rest could be easily ex-
tended to detect actions from an online stream, rather than needing pre-segmented
sequences.

For what concerns the skeleton-based descriptors, the classification of the
joints orientation and position descriptors reaches, respectively, 55.9% and 76.7%
accuracy, while the combined use of joints angles and positions leads to a result

18

2.5 Experiments

which is in the middle of the two, namely 66.9%. In Figure 2.6(b), the confusion
matrix relative to the joints position descriptor is reported. The majority of errors
obtained are due to the fact that the Standing, Turn Around and Walk actions are
featured by very similar skeleton poses. These results prove that 3D local motion
is highly discriminative for the action recognition task and can also lead to bet-
ter results than those which can be obtained by exploiting skeleton information.
This is also due to the fact that the noise intrinsic in a consumer depth camera and
some challenging human poses can make the skeleton to be sometimes unreliably
estimated.

It is worth noting that both the approaches we considered in this work would
obtain similar performances also in cluttered environments or when the back-
ground is less clean than in the IAS-Lab Action Dataset. The background is re-
moved since only moving points of a person or its skeleton are considered for
computing a descriptor.

In Figure 2.7, we report the mean recognition accuracy obtainable on the IAS-

Lab Action Dataset when varying the number of frames used for composing the
sequence descriptor. By comparing the curves with and without PCA projection,
it can be noticed how the accuracy obtainable without PCA and 30 frames per
sequence can be obtained with PCA and half (15) of the frames, thus allowing
faster comparison between sequence descriptors.

In terms of runtime performance, the skeleton description is very fast to com-
pute, because all the information is already provided by the skeletal tracker algo-
rithm. Instead, the overall runtime of the 3D motion-based classification approach
is of about 0.25s, meaning a framerate of 4 frames per second on a notebook with
an Intel i7-620M 2.67GHz processor and 4GB of RAM, which suggests that an
optimized version of this algorithm could be executed onboard of robots with
limited computational resources. The most demanding operation is the matching
between the previous and current point clouds, that is the search for correspon-
dences.

19

2. Action Recognition

(a) Descriptor in [7]

(b) SUMFLOW without outlier rejection
20

2.5 Experiments

(c) SUMFLOW

(d) Skeleton joints position descriptor dP

Figure 2.6: Confusion matrix obtained on the IAS-Lab Action Dataset with the
descriptor in [7], our SUMFLOW descriptor (b) without and (c) with outlier re-
jection and (d) the skeleton-based descriptor.

21

2. Action Recognition

Figure 2.7: Mean recognition accuracy when varying the number of frames used
for composing the sequence descriptor.

2.6 Summary

In this chapter, we presented a novel method for real-time estimation of 3D
motion flow from colored point clouds and a complete system for human action
recognition which exploits this motion information. Moreover, we compared this
method with an action recognition technique which classify the skeleton infor-
mation on a newly created dataset with a high number of people performing the
actions and providing both RGB-D data and skeleton pose for every frame. The
tested 3D flow technique reported very good results in classifying all the actions of
the dataset, reaching 85.2% of accuracy and outperforming of 8.5% the skeleton-
based method.

As future works, on one hand we plan to extend our 3D flow-based action
recognition approach in order to make it work from a mobile robot in conjunc-
tion with our people tracking and re-identification system. On the other hand we
schedule to test histogram-based descriptors for encoding 3D motion information
inside each grid partition.

22

Chapter 3

Motion re-targeting

Motion re-targeting techniques capture information from an actor and replicate
them on an avatar assuming similar poses. In this work, we developed novel
mapping from the whole human body to two different kind of robots: humanoids
and manipulators. The aim is to use the human joints remapped on robots as input
of a Learning from Demonstration framework.

First works about motion re-targeting was developed in the Computer Graph-
ics community. In this field such kind of techniques are used to generate off-line
feasible motion for virtual characters [31] [51]. Computer Graphics require very
sophisticated algorithms involving the whole body of both actor and avatar. In-
stead, Robotics requires on-line methods to be applied in dynamic environments,
in which sensors can provide feedback to avoid dangerous collisions, follow mov-
ing objects, or react to changing requests.

On-line robotics-oriented systems have been developed to re-target motion
from human to humanoids [77] [19] [64] or from human to robot limbs [23] [57].
In the cited works, the mapping from human to robot is anthropomorphous. This
practice is good if the demonstrator is conscious to teach tasks to a robot, while a
different approach should be adopted if he is acting in a natural way. For example,
if the human knows that his arm directly controls a manipulator, the movement he
perform will be concentrated on the arm, with no lower-body motion. A natural
execution, instead, involves the whole body.

The reminder of the chapter is organized as follow. In Section 3.1, the data

23

3. Motion re-targeting

acquisition system is presented. Section 3.2 describe the approach we used in
humanoids remapping, while the manipulator motion re-targeting technique is re-
ported in Section 3.3. A brief summary of the chapter is contained in Section 3.4.

3.1 Data acquisition

The aim in this work is to make a robot learn a new task from human demon-
strations and one of our main objective is to let the demonstrator act as more
natural as possible, thus choosing the right acquisition system is a crucial step.
Different data acquisition systems can be used to convey the demonstrations from
users to the robot: motion sensors [13], kinesthetic teaching [37], or vision sys-
tems [22].

A visual technique fits our needs better than a kinesthetic demonstration be-
cause the user is not required to rethink the task from a robot point of view. By
using a motion capture system (MoCap) we can achieve a great accuracy in data
acquisition, but the demonstrator have to wear some markers in order to make
the system works. In some circumstances a marker system could be unwieldy or
dangerous (i.e. in an industrial environment). Naive users hardly deal with such
methods, that are unnatural or uncomfortable.

We propose to use a RGB-D sensor able to acquire the scene at 30 fps with
a resolution of 640x480 pixels for both color and depth information. Recently, a
large variety of computer vision algorithms using RGB-D sensors has been devel-
oped to estimate human pose [85], perform skeleton tracking [44] and recognize
actions and activities [66]. We used a skeleton tracking algorithm [43] running at
30 fps to acquire joint positions and orientations (Figure 3.1) subsequently pro-
cessed to understand the motion and guide the robot in the learning phase.

3.2 Human to humanoids re-targeting

3.2.1 Motion evaluation

In this subsection human movements are mapped on a small humanoid, namely
the Vstone Robovie-X (Section B.3). Referring to Figure 3.1, we chose the refer-

24

3.2 Human to humanoids re-targeting

Figure 3.1: Skeleton joints provided by the tracker.

25

3. Motion re-targeting

ence system on the neck, so if we consider two joints a and b the vectors from the
neck to the joints will be respectively va and vb, while the vector between the two
joints is denoted by va−b.

The remapping algorithm can be split into two phases: upper limbs and lower
limbs. For each part only the equation to map the right side are explained, the left
side equations can be easily calculated with symmetric operations.

We start with the upper limbs. It is easy to see that the arm position is
connected to the three vectors vshoulder, velbow, and vhand . In particular, for the
Robovie-X, the three mentioned vectors have to lie on the same plane Π to obtain
a valid arm position. The plane Π can be defined by means of the two vectors
vshoulder−elbow and vshoulder−hand . It is important to choose the proper correspon-
dences: movements in the vectors have to correspond to similar movements in the
plane to avoid that small shifts lead to high plane changes.

Shoulder Pitch

The right shoulder pitch angle α can vary between −π

2 and π

2 . The value of
the angle depends directly from the elbow position as described in Equation 3.1.

α =

{
arctan(zshoulder−elbow,−yshoulder−elbow) i f yshoulder−elbow ≤ 0;
arctan(−zshoulder−elbow,yshoulder−elbow) i f yshoulder−elbow > 0.

(3.1)

where

• yshoulder−elbow is the y component of the vector vshoulder−elbow;

• zshoulder−elbow is the z component of the vector vshoulder−elbow.

Shoulder Roll

The right shoulder roll angle β also depends on the elbow position and it
ranges from −π to 0. The formula is reported in Equation 3.2.

β =

 arcsin
(

xshoulder−elbow
‖vshoulder−elbow‖

)
i f yshoulder−elbow ≤ 0;

−π + arcsin
(

xshoulder−elbow
‖vshoulder−elbow‖

)
i f yshoulder−elbow > 0.

(3.2)

26

3.2 Human to humanoids re-targeting

where xshoulder−elbow is the x component of the vector vshoulder−elbow.

Elbow Roll

The last joint to consider is the right elbow roll γ , which ranges between −5
4π

and π

4 . It depends from the two angles previously calculated and from the vector
velbow−hand . The resulting formula is reported in Equation 3.3.

γ = arctan
(
velbow−hand v̂α,β ,velbow−hand v̂shoulder−elbow

)
(3.3)

where

• v̂α,β is the versor e1 = (1,0,0) rotated of a roll angle−α and of a yaw angle
−β ;

• v̂shoulder−elbow =
vshoulder−elbow
‖vshoulder−elbow‖ is the versor in the vshoulder−elbow direction.

We also have to avoid singularities in which the plane equation has multiple
solution and the robot configuration suddenly changes from one to another due to
the noisy sensor. An hysteresis threshold has been used to maintain the system
stable even with relatively uncertain data.

The parameter λ is introduced to set the hysteresis size and it depends on the
distance between the hand and the shoulder, so that the it continuously changes in
time following Equation 3.4.

vshoulder−hand = λvshoulder−elbow +(1−λ)velbow−hand (3.4)

Figure 3.2 shows the trend of the λ parameter depending on the hand distance
from the shoulder.

The lower limbs motion is quite similar to upper limbs, if we consider the
three vectors vhip, vknee, and vankle. However, there is a difference: the reference
system is not integral with the joints involved in the motion, that is the case of the
upper limbs. We have to take account of the rotation between vshoulder and vtorso

27

3. Motion re-targeting

Figure 3.2: The trend of the λ parameter depending on the hand distance from the
shoulder.

(Equation 3.5).

Rshoulder−torso =

 v̂shoulder

v̂torso

v̂shoulder×torso

−1

(3.5)

where

• v̂shoulder =
vshoulder
‖vshoulder‖ is the versor in the vshoulder direction;

• v̂torso =
vtorso
‖vtorso‖ is the versor in the vshoulder direction;

• v̂shoulder×torso =
vshoulder×torso
‖vshoulder×torso‖ is the versor in the vshoulder×torso direction.

The resulting rotation matrix Rshoulder−torso is used to compute the vectors:

• whip = Rshoulder−torso× vhip;

• wknee = Rshoulder−torso× vknee;

• wankle = Rshoulder−torso× vankle;

• whip−knee = whip−wknee;

28

3.2 Human to humanoids re-targeting

• wknee−ankle = wknee−wankle.

The remapping for the lower limbs can now be calculated in a proper way.

Hip Pitch

The right hip pitch angle ϕ can vary between −π

2 and π

2 . The value of the
angle depends directly from the knee position as described in Equation 3.6.

ϕ =−arctan
(
−zhip−knee,yhip−knee

)
(3.6)

where

• yhip−knee is the y component of the vector whip−knee;

• zhip−knee is the z component of the vector whip−knee.

Hip Roll

The right hip roll angle ψ also depend from the elbow position and it varies
from −3

4π to 0. The formula is reported in Equation 3.7.

ψ = arcsin
(

xhip−knee

‖whip−knee‖

)
(3.7)

where xhip−knee is the x component of the vector whip−knee.

Knee Pitch

The last joint to consider it the right knee roll ω , its range is between −5
4π

and π

4 . It depends from the two angles previously calculated and from the vector
vknee−ankle. The resulting formula is reported in Equation 3.8.

ω = arctan
(
wknee−ankleŵϕ,ψ ,wknee−ankleŵhip−knee

)
(3.8)

where

• ŵϕ,ψ is the versor e2 = (0,1,0) rotated of a yaw angle −ψ and of a roll
angle ϕ;

29

3. Motion re-targeting

• ŵhip−knee =
whip−knee
‖whip−knee‖ is the versor in the whip−knee direction.

By using the equation described the Robovie-X is able to copy human move-
ments. However, the resulting motion still has some limitations due to the different
degrees of freedom between human and robot.

3.2.2 Upper body motion and refinement

The robot considered in this subsection is an Aldebaran NAO H25 v 4.0. NAO
is one of the most popular humanoid robots in the market, it is used for both re-
search and service purposes and for these reasons we chose it to test our algo-
rithms.

NAO also has more degrees of freedom with respect to Robovie-X, this aspect
is particularly critical in the upper body movements of the new robot. Thus, a
novel approach has been used in order to take account of the additional joints and
to solve the problems highlighted from the previous technique.

Starting from the skeleton data, we extract the information relative to the right
arm movement (Figure 3.4), but as before a similar approach can be used to the
left arm as well. The information is used to properly control the robot arm (Fig-
ure 3.3)1.

Shoulder Roll

The right shoulder roll angle α is computed using the normalized scalar prod-
uct of vector u(neck,r soulder), starting from the neck skeleton joint and ending
to the right shoulder skeleton joint, and the vector v(r soulder,r elbow), starting
from the right shoulder skeleton joint and ending to the right elbow skeleton joint.
In Equation 3.9 the complete analytic formula is reported.

α =
π

2
− arccos

(
u · v
‖u‖‖v‖

)
(3.9)

1More information can be found at http://www.aldebaran-
robotics.com/documentation/family/nao h21/joints h21.html

30

3.2 Human to humanoids re-targeting

Figure 3.3: Aldebaran NAO, right arm working area.

31

3. Motion re-targeting

Figure 3.4: Vectors calculated starting from skeleton joints.

32

3.2 Human to humanoids re-targeting

Shoulder Pitch

The right shoulder pitch angle β is calculated projecting the vector v(r soulder,r elbow),
starting from the right shoulder skeleton joint and ending to the right elbow skele-
ton joint, onto the XY plane, and then using the formula in Equation 3.10.

β =

arccos

(
yv

PXY (v)

)
i f zv < 0;

π− arccos
(

yv
PXY (v)

)
i f zv ≥ 0,yv ≥ 0;

−π− arccos
(

yv
PXY (v)

)
i f zv ≥ 0,yv < 0.

(3.10)

where yv and zv are respectively the y and z components of the considered vector
v.

Elbow Roll

In order to compute the right elbow roll angle γ , the vector−v(r soulder,r elbow),
from the right elbow skeleton joint to the right shoulder skeleton joint, and the
vector w(r elbow,r hand), from the right elbow skeleton joint to the right hand
skeleton joint, are treated in a similar way than in Equation 3.9. The resulting
formula is reported in Equation 3.11

γ = π− arccos
(
−v ·w
‖v‖‖w‖

)
(3.11)

Elbow Yaw

The right elbow yaw angle δ is calculated considering the y component of the
vector w(r elbow,r hand), starting from the right elbow skeleton joint and ending
to the right hand skeleton joint. In Equation 3.12 the complete analytic formula is
reported.

δ =−arcsin(yw) (3.12)

No data are available from the skeleton tracker to properly calculate the wrist
rotations.

Human joints are more “advanced” than the robotic ones: the angle values can
overcome the limits of the robot and the movements vary a lot from one person

33

3. Motion re-targeting

to another. Some thresholds were introduced to clearly identify the human move-
ment to remap. All the data before a starting angle and after an ending angle are
automatically discarded as outliers. Finally the angle distance between the maxi-
mum and minimum angle of each motion are properly rescaled from the algorithm
to fulfill the robot joint limits.

3.2.3 Lower body motion: stability control

A further step should be developed in order to properly re-targeting the lower
part of a humanoid: the robot has to automatically avoid unstable situations. In
this subsection is described a simple stability algorithms to make a robot picking
up an object teleoperated by an human actor.

Base strategy

As we said before, our primary goal is to make a robot picking up an object
laying in front of it by imitating the human movements coming from a skeleton
tracking system. The main challenge is to keep the robot stable while it is crouch-
ing and grasping the object.

A consolidated method to maintain the robot stability [90] is to keep the Center
of Mass (CoM) projection point inside the contact area of the feet with the ground.
The CoM projection point of the robot should be calculated in order to reach two
different purposes: maintain the point inside the safe balanced area and keep the
robot movements as similar as possible to the user motions.

At each instant, the CoM is equal to:

CoMx =

N
∑

k=1
mk xk

M
; CoMy =

N
∑

k=1
mk yk

M
; CoMz =

N
∑

k=1
mk zk

M
(3.13)

where N = 17 is the number of joints, mk is the kth joint inertial mass, M is the
mass of the robot, and xk, yk, zk are the coordinates of the kth joint with respect to
the Torso joint.

Thus, the ground projection of the CoM is given by (CoMx,CoMy), and it has
to satisfy the constraints−90cm<Comx < 90cm and−35.5cm<Comy < 35.5cm

34

3.2 Human to humanoids re-targeting

that is the area covered by the robot foot in the initial standing position. The
selected movement is quite simple, so several solutions are feasible to solve the
problem. We imposed a strong relation between hip, knee an ankle joints in order
to involve all the lower body joints and at the same time adapt to the human natural
behavior.

γ = α =
β

2
, 0≤ β ≤ 157o (3.14)

where

• α is the pitch hip angle at instant t;

• β is the knee angle at instant t;

• γ is the pitch ankle angle at instant t.

Figure 3.5 shows the three described angles in the robot model. The method was
tested experimentally on both simulated and real robot.

Refinement

We refine the described technique applying different strategies in order to
avoid some rough robot movements we noticed during the initial tests. Study-
ing the dynamics of the task, we decided to limit roll movements (i.e. lateral
movements) in joints not involved in reaching the goal, like hips and ankles.

Fast and sudden movements could threaten the robot stability while perform-
ing an activity. Ensuring the smoothness of all robot moves is essential to correctly
balance the robot. Without any focused control, the input data can make the robot
move jerkily. This problem is due to the fast human movements compared with
the frame rate of the sensor and to the margin of error of the skeleton tracker
computing joints positions.

The data acquired by the RGB-D sensor are filtered to remove the noise by
calculating the mean value of the last three angle values of every joint in order to
avoid rough robot movements and obtain a smoother motion.

35

3. Motion re-targeting

Figure 3.5: Main joint angles involved in balance.

The pose feedback equation is:

ξ̂t =
ξ̂t−2 + ξ̂t−1 +ξt

3
(3.15)

where

• ξt is the raw value given by the skeleton tracker for a certain joint;

• ξ̂t is the computed value at the instant t for the considered joint;

• ξ̂t−1 is the computed value at the instant t−1 for the considered joint;

• ξ̂t−2 is the computed value at the instant t−2 for the considered joint.

Moreover, the movements of the right and left side of the robot body are co-
ordinated in order to make easier for the robot to grasp the object. In this way, we
also increase the robot stability and its precision during the motion.

36

3.3 Human to manipulator re-targeting

Finally, the proportions between lower body angles are computed according to
the Equation 3.14. These refined data are used as input to the algorithm checking
if the CoM projection on the ground is inside the stability area.

Again, the whole system has been tested with many users and different ob-
jects2 on both real and simulated environment. The applied refinements signifi-
cantly improved the performance and the users easily reached the goal. It is worth
to notice that a slight delay is introduced by USB connection between the system
and the real robot, nevertheless no delay is present in the simulated model, that
works at 30 fps. We also can make real and simulated robot work together, so
humans can take advantage of the information provided by the virtual model.

3.3 Human to manipulator re-targeting

3.3.1 Motion evaluation

In this section, the motion re-targeting system has to consider two different
articulated models: the human body and the manipulator. The robot used is the
Comau Smart5 SiX (Section B.2). The robot measures and operating area are
showed in Figure 3.6. A novel virtual model of this robot has been developed
in order to avoid damages on the real robot, so the re-targeting was tested on the
virtual model. This model is suitable for different Open Source 3D simulators. In
particular, we tested it in Gazebo [45] and V-REP [28].

Recent works in computer graphics highlighted that re-targeting from the whole
human body to a non-humanoid avatar are feasible also for complex models [95] [83].
In this work, the motion captured from the 15 skeleton joints are remapped to 3
robot joints related to the “rough” robot motion: Axis1, Axis2, Axis3. We did not
take into account the 3 remaining axes (Axis4, Axis5, Axis6), which control the
“fine-grained” end effector motion. A vision based hand gesture interface [33]
could be used to get a more effective control of the end effector, especially if
combined with recent manipulation techniques from uncertain depth data [99].

2Few videos of some tests realized: https://www.youtube.com/watch?v=LJyXT6gAyo8
https://www.youtube.com/watch?v=AOIkVLn3Kng https://www.youtube.com/watch?

v=GS9A4prXfpI

37

https://www.youtube.com/watch?v=LJyXT6gAyo8
https://www.youtube.com/watch?v=AOIkVLn3Kng
https://www.youtube.com/watch?v=GS9A4prXfpI
https://www.youtube.com/watch?v=GS9A4prXfpI

3. Motion re-targeting

Figure 3.6: Comau Smart5 SiX operating area (red line). The overall dimensions
are also reported.

38

3.3 Human to manipulator re-targeting

Figure 3.7: Vectors calculated starting from skeleton joints.

39

3. Motion re-targeting

The Axis1 rotation angle α is the projection P onto the XY plane of the robot
coordinate system of the vector v(neck,r hand) starting from the neck skeleton
joint and ending in the right hand skeleton joint (Figure 3.7). In Equation 3.16 the
analytic formula is reported.

α =

 arccos
(

xv
PXY (v)

)
i f yv ≥ 0,

−arccos
(

xv
PXY (v)

)
i f yv < 0

(3.16)

where xv and yv are the x and y components of the considered vector v.
The rotation β around the Axis2 is referred to the relative motion of the demon-

strator with respect to his initial position. In order to be robust to the sensor noise
we considered the position of the segment w(l shoulder,r shoulder) from left
shoulder skeleton joint to right shoulder skeleton joint (Figure 3.7), in such way
also the orientation of the vector w can easily be included in the formula (Equation
3.17).

β =
π

2
− arccos

PX
(
M−1

R ·dw
)

lAxis2
; (3.17)

MR =

 yw/‖w‖ xw/‖w‖ 0
−xw/‖w‖ yw/‖w‖ 0

0 0 1

 (3.18)

where

• MR is the rotation matrix between initial and current w segment (Equation
3.18);

• dw is the distance between initial and current position of the w mean point
pm ∈ w;

• PX denotes the projection onto X ;

• lAxis2 is the length of the robot part involved in the motion (namely Axis2 -
Axis1).

The Axis3 rotation γ really represents the human arm and it depends from both
v and w. Equation 3.19 explains how to calculate the desired angle γ starting from
skeleton joints.

40

3.4 Summary

γ =

 β − π

2 − arccos
√

x2
v+y2

v
‖v‖ i f zv ≥ 0,

β − π

2 + arccos
√

x2
v+y2

v
‖v‖ i f zv < 0

(3.19)

where the notation is the same used in the previous equations.
Different tests on several people have been performed to guarantee that the

interaction is natural. In a first session, the users were asked to freely move, while
they were looking at the virtual robot environment. The aim was to understand
if the robot motion was the same expected from the users. A second test was
designed to compare an actor and a robot execution. The users involved in this
session had to guess the correspondence between the two performances. Thanks to
the described tests we were able to apply the proper corrections and modifications,
so that the algorithm has assumed the formulation presented in this work.

3.4 Summary

In this chapter, information extracted from human natural motion were repro-
jected to the robot joints space using both humanoids and manipulators. Tests
highlighted that naive users are able to control the whole humanoid robot, with
particular attention to the upper body motion and showing good potentiality in
tasks involving robot stability. Moreover, a novel motion re-targeting technique
was proposed to control a manipulator by using the whole body. Some other tests
on the described methods will be presented in Chapter 4, where the data provided
using these algorithms will be used as input of different Robot Learning from
Demonstration frameworks.

As future work we will test both the motion re-targeting systems in more chal-
lenging scenarios to better exploit their potentials.

41

Chapter 4

Visual Robot Learning by
Demonstration

As we already said, the aim of the Robot Learning from Demonstration (RLfD)
is to easily teach new skills to a robot. Instead of using a so called “programming
language”, this paradigm makes the robot learn by means of demonstrations.

Collecting demonstrations from human beings can be particularly effective in
case of anthropomorphic robots, like humanoids or manipulators. A key point of
the RLfD process is to extract useful information from the great amount of data
gathered through human demonstrations. In this regard, it is very important to find
out the constraints that control the motion and modeling them by using a proper
model.

The model we used in developing this work is based on a probabilistic ap-
proach. Such a kind of approach allows us to catch the variability in the perfor-
mances coming from several subjects acting in different ways to obtain the same
goal. In fact, when we describe a task, we usually focus our attention on the result
we would like to obtain, omitting the details on how to do it. For example, if we
can ask someone ”Could you please bring me that pen?” we will not say anything
about the movement this person should do, or about the grasping point on the pen.

Even in the simplest task, it is easy to find a great variety of different solu-
tions. In this chapter we briefly describe some related works (Section 4.1). Sec-
tion 4.2 and Section 4.3 introduce respectively Gaussian Mixture Model (GMM)

43

4. Visual Robot Learning by Demonstration

and Gaussian Mixture Regression (GMR). Section 4.4 describes how to selected
the number of Gaussian components to initialize the GMM, while Section 4.5
explains how GMM/GMR can be applied to compose a framework suitable to
model natural demonstrations for a manipulator in an industrial environment. In
Section 4.6 an alternative way to encode information from visual demonstrations
is reported: the Donut Mixture Model (DMM). Section 4.7 explains how to gen-
erate an output trajectory by maximizing the DMM probability density function.
Subsequently, the DMM framework is tested on a real task, namely score a basket,
by means of kinesthetic demonstrations (Section 4.8) and by using RGB-D videos
of human trials (Section 4.9).

4.1 Related Works

The idea of learning a task by using examples appeared in the early 90’s in
order to define a computer program without any knowledge of programming lan-
guages [18] [86]. The idea was to observe the commands inputed by an end-user
and reiterate the sequence in similar situations considering that the graphical user
interface strategies are almost similar in all the developed applications.

When the paradigm was introduces in robotics [22], the problem assumed
physical characteristics: operators do not have the programming skills to code the
robot motion into tasks they implicitly know how to achieve. First attempts focus
on teleoperating the robot to perform the task and then apply the same strategy
used in the computer programming field [48].

The introduction of machine learning techniques leads the research to take
account of real world variabilities by generalizing robot behaviors, object posi-
tions and orientations, structure. Several levels of abstraction and segmentation
have been used on both trajectory level [89] and symbolic level [65]. The trajec-
tory level includes continuous signals like joint positions or orientations, motor
current or torques changing over time, while the symbolic level extracts discrete
features using a set of defined rules in order to hierarchically organize them.

Several researchers in robotics proposed a way to generalize a skill, in fact
the robot can not correctly reproduce a task in a unknown situation without this
capability. Nicolescu et al. [72] represented a skill by using a graphical model:

44

4.1 Related Works

the nodes identifies the robot behaviors, while the arcs connecting the graph are
the common subsequences used to generalize the task. More recently Koppula
et al. [46] proposed graphical model to represent human behaviors, understand
their intentions and make the robot choose the right way to interact. Schaal et
al. [81] used motion primitives to encode learning data. Similarly, Alissandrakis et
al. [5] subdivided a motion into pre-defined postures, positions and configurations
depending on the granularity at the symbolic level. Akgun et al. [3] extracted
keyframes to correctly model a skill. Pardowitz et al [75] organized skills into a
incremental sequence of objects to arrange in order to set up a table: each object,
such as plates or cups, represents a hierarchical level to be set before going to the
next one.

Different techniques based on statistics have been proposed to extract only the
essential constraints characterizing a task across multiple demonstrations. In sev-
eral works Calinon and Billard proposed a generic methodology to represent in
a probabilistic manner continuous data, like human gestures or robot motions.
In [14], they encoded the trajectories draw by an actor performing a gestures
by using a Hidden Markov Model (HMM): a sequence of states is extracted
from the observed trajectories to compose the HMM. To overcome reproduction
problems due to Hidden Markov Model, in [15] they used a Gaussian Mixture
Model (GMM) to encode multiple trajectories, while a smooth trajectory can be
extracted by means of a Gaussian Mixture Regression (GMR). In [16], they pro-
posed an Hidden Markov Model/Gaussian Mixture Regression technique to main-
tain the characteristic of HMM and otain a easy way reproduce human demonstra-
tions in a multiple constraints environment. Finally, they also explored the use of
binary signals encoding them in a Bernoulli Mixture Model (BMM) [17]. The
use of a probabilistic framework allows them to autonomously and incrementally
learn by classifying them by an efficient and compact representation. The infor-
mation modeled can be then used to evaluate reproduction attempts performed by
using robot self-experimentation by extracting the fundamental constraints that
characterize different tasks. The same constraints can be used to reproduce the
skill in an unknown situation.

All the cited works are based on examples that are usable by a robot. There
are two main conditions imposed to achieve this kind of examples: demonstrators

45

4. Visual Robot Learning by Demonstration

are constrain to modalities understandable by the robot and the number of demon-
strations has to be large enough to guarantee the desired generality. In this thesis,
we relaxed the first constraint in order to extract information directly from human
natural demonstrations. An initial work based on a GMM/GMR framework are
tested on high repetitively industrial tasks, but to obtain similar results in very dy-
namic environment like service robotics we adopted a more flexible model able to
infer key constrains even from failed demonstration [35] [34]: the Donut Mixture
Model.

4.2 Gaussian Mixture Model

Gaussian Mixture Model is a probability manner to encode a set of N data,
in this work temporal components of continuous trajectories coming from natural
human demonstrations. In particular, the total number of data will be N = nT ,
where n is the number of collected demonstrations, and T is the number of obser-
vations acquired from the sensor at a constant frame rate.

The aim is to obtain the best sum of K Gaussian components which approx-
imate the input dataset ξ =

{
ξ j
}

j=1,...,N , ξ j ∈ RD, with D the dimensionality of
the problem. Each demonstration consists on a sequence of robot joint angles
ξs ∈ RD−1 recorded in a specific temporal instant ξt ∈ R. The resulting probabil-
ity density function is described in Equation 4.1.

p
(
ξ j
)
=

K

∑
k=1

πk N
(
ξ j; µk,Σk

)
(4.1)

where

• πk are priors probabilities;

• N
(
ξ j; µk,Σk

)
are Gaussian distribution defined by µk and Σk, respectively

mean vector and covariance matrix of the k-th distribution.

The Expectation-Maximization (EM) [21] algorithm is iteratively used to es-
timate the optimal mixture parameters θ = (πk,µk,Σk). The algorithm can be
separated in two cyclic phases: expectation and maximization. The iteration stops

46

4.3 Gaussian Mixture Regression

when the increase of the log-likelihood L = ∑
N
j=1 log

(
p
(
ξ j|θ

))
at each iteration

becomes smaller than a defined threshold ε , given by L (t+1)
L (t) < ε .

The expectation step (E-step) is described in Equation 4.2.

pk, j(t +1) =
πk(t)N (ξ j; µk(t),Σk(t))

∑
K
i=1 πi(t)N (ξ j; µi(t),Σi(t))

(4.2)

While the maximization step (M-step) is reported in Equation 4.3

πk(t +1) =
1
N

N

∑
i=1

pk, j(t +1) (4.3)

µk(t +1) =
∑

N
i=1 pk, j(t +1)ξ j

∑
N
i=1 pk, j(t +1)

Σk(t +1) =
∑

N
i=1 pk, j(t +1)(ξ j−µk(t +1))(ξ j−µk(t +1))>

∑
N
i=1 pk, j(t +1)

The algorithm optimize the parameters of the K Gaussian components by
maintaining a monotone increasing likelihood during the local search of the max-
imum.

4.3 Gaussian Mixture Regression

The aim of Gaussian Mixture Regression is to retrieve a smooth generalized
version of the signal encoded in the associated Gaussian Mixture Model. In this
work, we calculated the conditional expectation of robot joint angles ξ̂s, starting
from the consecutive temporal values ξt known a priori. As we already said, a
Gaussian component k is defined by the parameters (πk, µk, Σk), with:

µk =
{

µt,k µs,k
}

Σk =

[
Σt,k Σts,k

Σst,k Σs,k

]
(4.4)

47

4. Visual Robot Learning by Demonstration

The conditional expectation and its covariance can be estimated respectively using
Equation 4.5 and 4.6.

ξ̂s = E [ξs |ξt] =
K

∑
k=1

βkξ̂s,k (4.5)

Σ̂s =Cov [ξs |ξt] =
K

∑
k=1

β
2
k Σ̂s,k (4.6)

where

• βk =
πkN (ξt|µt,k,Σt,k)

∑
K
j=1 N (ξt|µt, j,Σt, j)

is the weight of the k-th Gaussian component through

the mixture;

• ξ̂s,k = E
[
ξs,k |ξt

]
= µs,k +Σst,k

(
Σt,k
)−1 (

ξt−µt,k
)

is the conditional expec-
tation of ξs,k given ξt ;

• Σ̂s,k =Cov
[
ξs,k |ξt

]
= Σs,k+Σst,k

(
Σt,k
)−1

Σts,k is the conditional covariance
of ξs,k given ξt .

Thus, the generalized form of the motions ξ̂ =
{

ξt , ξ̂s

}
is generated by keep-

ing in memory only the means and covariance matrices of the Gaussian compo-
nents calculated through the GMM.

4.4 Number of Mixture

In order to calculate the appropriate number of Gaussian components K to
initialize the GMM, two criteria have been considered: the Akaike Information
Criterion (AIC) [2] and the Bayesian Information Criterion (BIC) [82].

Both AIC and BIC are largely used to estimate the optimal number K of Gaus-
sian components in the Mixture. The score assigned at each considered k for the
Akaike Information Criterion is described in Equation 4.7, while Equation 4.8
represents the Bayesian Information Criterion.

SAIC =−2L +2np (4.7)

SBIC =−2L +np logN (4.8)

48

4.5 Industrial environment

where for both equations

• L = ∑
N
j=1 log

(
p
(
ξ j|θ

))
is the log-likelihood for the considered model θ ;

• np = (K− 1)+K(D+ 1/2D(D+ 1)) is the number of free parameters re-
quired for a mixture of K components with full covariance matrix.

The log-likelihood measures how well the model fits the data, while the second
term aims to avoid data overfitting to keep the model general.

4.5 Industrial environment

Some tests have been performed to validate the framework on real acquisition
data and challenging scenarios. In the experiments, an industrial robot have been
used, namely a simulated Comau Smart5 SiX (Section B.2). The motion of the
whole actors body demonstrating the tasks are remapped on three joints on the
manipulator as described in Section 3.3. The tasks tested consist of two different
scenarios.

In the first experiment the robot learns how to reach an object at a specific
position in a set of several similar items stacked one near each other. The scenario
(Figure 4.1) is composed by three stacks of boxes placed in front of the demon-
strator who pushes a specific box. Three demonstrators repeated the task reaching
three different boxes, 15 times per box. The first selected box is the one on the top
of the central stack, the second box is the one on the bottom of the right stack, and
the third box is the one in the middle of the left stack. The robot has to reproduce
the three subtasks reaching the right object each time.

In the second scenario the demonstrators are asked to move a box along a
linear path from the beginning to the end of a small table (Figure 4.2); the covered
distance is 45 cm. As in the previous experiment, three demonstrators repeated
the task 15 times. The robot should be able to correctly reproduce the task showed
by the actors in a similar simulated environment (Figure 4.3) . The virtual box is
equivalent to the real one less than the color; instead, the table is larger in order to
avoid singularities in the simulator when the box reach the end of the table.

The experiments were performed on the Comau Smart5 SiX simulated in
Gazebo. No experiments are actually been performed on the real robot, but we

49

4. Visual Robot Learning by Demonstration

Figure 4.1: Overview of the first experimental scenario in the simulated world.
The three subtasks performed by the demonstrators are numbered in the corre-
sponding order.

50

4.5 Industrial environment

Figure 4.2: An actor performing the movement of the box requested in the second
task.

51

4. Visual Robot Learning by Demonstration

are working on testing our system also in the real world. The demonstrations
were manually segmented and, subsequently, resampled using a spline interpola-
tion technique to T = 1750 data-points. All the collected examples are properly
re-targeted to the robot motion system, but only 107 out of 180 led to a qualita-
tively correct task once performed by the robot. In the first task the wrong box
was pushed, while in the second one the box was not properly moved.

Figure 4.3: Overview of the second simulated scenario.

This experiment aims to test the precision and the repeatability of each task
using the data collected through our motion re-targeting system. These features
are very important to achieve the high performances required in an industrial en-
vironment.

We tested the repeatability reproducing the first task 20 times for each selected
box, while the second task is simulated 25 times. Finally, the robot is able to
correctly reproduce both a task 85 times. From the first experiment we do not
have an accurate measure of the precision, thus we used the covered distance in the

52

4.6 Donut Mixture Model

second scenario to test this aspect. The data collected from the 25 attempts vary
from 44.286 to 46.542 cm, giving a resulting mean of 45.011± 0.402 cm. This
is a good simulation result, in fact the variability is due mainly to two factors:
the initial conditions in the simulation environment and the sensor noise. Such
precision can be feasible if we are working with a big gripper and large plates, but
it is not so good as expected in a soldering task.

The results (Figure 4.4) showed that using our GMM/GMR framework the
tasks are well learned with a low number of demonstrations (11 examples in the
worst case). We test single actor and multi-actors learning: even if the tasks can
be correctly performed in both methods, the single actor approach needs less ex-
amples that the multi-actors one. The path generated by the framework avoids
rapid accelerations between timesteps and large oscillations in robot velocity. The
resulting trend is very smooth and it is easy to notice that the sensor noise is re-
moved, in fact the vertical straight-lines peaks present in the blue demonstrations
are completely absent in the final red path.

In this work, we did not look at velocity, acceleration or force of the robot
during the performance. This is a directly consequence of using positions to con-
trol the robot. We chose on purpose this modality to better focus on precision and
repeatability, even omitting other important parameters.

4.6 Donut Mixture Model

In spite of the good results showed in an high repetitively industrial setting,
the GMM/GMR framework lack of flexibility in more dynamic environment. In
fact, the same framework does not work as well in service robotics, where the
actors motion are not constricted from the constraint intrinsic in tasks. The Donut
Mixture Model was tested to overcome the limitations showed by the GMM/GMR
framework.

As the GMM, the Donut Mixture Model (DMM) is a probability manner to
encode a set of data, in this work demonstrations. The input dataset X = {xn}N

n=1

is a set of N trajectories xn = {ξn,t ξ̇n,t}Tn
t=1, of possibly different dimensions Tn.

Each trajectory is composed by joint positions ξ = {ξ j}D
j=1 and velocities ξ̇ =

fθ (ξ) = {ξ̇ j}D
j=1, where D is the number of joints involved in the trajectory. The

53

4. Visual Robot Learning by Demonstration

DMM is used to approximate the non-linear function ξ̇ = fθ (ξ).

A Donut component in the mixture model is defined as the difference between
two Gaussian components:

D(x|µα ,µβ ,Σα ,Σβ ,γ) = γN (x|µα ,Σα)− (γ−1)N (x|µβ ,Σβ) (4.9)

where

• D is the Donut distribution;

• x is a trajectory;

• N is a standard normal distribution;

• µα and Σα are respectively the mean vector and the covariance matrix of
the first Gaussian;

• µβ and Σβ are respectively the mean vector and the covariance matrix of the
second Gaussian;

• γ > 1.

The aim of a Donut distribution is looking for a good trajectory in the co-
variance space between the two Gaussian distributions. In order to explore this
space the distribution has to avoid the best approximation of the collected demon-
strations obtained from a Gaussian distribution. Therefore the mean of the two
Gaussians should be the same, µα = µβ . In order to keep constant the shape of
the covariance, a parameterization is applied to the Donut covariance matrices,
such that Σα = Σ/r2

α and Σβ = Σ/r2
β

.

The Donut distribution changes as follow:

D(x|µ,Σ,rα ,rβ ,γ) = γN (x|µ,Σ/r2
α)− (γ−1)N (x|µ,Σ/r2

β
) (4.10)

In order to calculate the Gaussian distributions, a Gaussian Mixture Model is com-
puted from the input data. A weighted version of the Expectation-Maximization (EM) [70]
process is used to iteratively adjust the (πk, µk, Σk) parameters of the K Gaussians

54

4.6 Donut Mixture Model

composing the mixture, namely the priors vector, the mean vector and the covari-
ance matrix. The Bayesian Information Criterion (BIC) [82] was used, as before,
to estimate the optimal number of Gaussian components K in the Mixture. The
overall state of the GMM is described by θ = {K,{πk,µk,Σk}K

k=1}.
The probability that a joint assumes a certain velocity given its position is

p(ξ̇ |ξ) =
K

∑
k=1

π̃k D(ξ̇ |µ̃k, Σ̃k,ε) (4.11)

µ̃k = µ̃k(ξ) = µk(ξ̇)+Σk(ξ̇ ,ξ)Σ
−1
k (ξ ,ξ)(ξ −µk(ξ))

Σ̃k = Σk(ξ̇ , ξ̇)+Σk(ξ̇ ,ξ)Σ
−1
k (ξ ,ξ)Σk(ξ , ξ̇)

π̃k = π̃k(ξ) =
πkN (ξ ; µk(ξ),Σk(ξ ,ξ))

∑
K
k=1 πkN (ξ ; µk(ξ),Σk(ξ ,ξ))

ε = 1− 1

1+‖Ṽ [ξ̇ ,ξ ,θ]‖

Ṽ [ξ̇ |ξ ,θ] =−Ẽ[ξ̇ |ξ ,θ]Ẽ[ξ̇ |ξ ,θ]>+
K

∑
k=1

πk(µkµ
>
k +Σk)

where

• γ is set to 2, so in Equation 4.10 the first Gaussian is doubled and than the
second Gaussian is subtracted;

• µ̃k is the k-th mean vector derived from the estimated GMM;

• Σ̃k is the k-th covariance matrix derived from the estimated GMM;

• π̃k is the k-th mean vector derived from the estimated GMM, with ∑
K
k=1 πk =

1;

• ε is the (exploration) exploratory factor, with 0 ≤ ε ≤ 1, so we have max-
imum exploration (high variability) for ε → 1, while the minimum explo-
ration (low variability) is reached for ε → 0;

• Ṽ [ξ̇ |ξ ,θ] is the overall variance of the estimated GMM connecting the vari-
ability generated by human demonstrators to the system exploration.

55

4. Visual Robot Learning by Demonstration

A novel trajectory can be generated from the computed DMM. If this new
trajectory fails in reaching the task, the model should be updated reiteratively in
order to get success. A first technique consists of recomputing the model using
the EM process on the entire dataset plus the generated trajectory. This method
grows in time and memory proportionally to the input dataset. An alternative uses
a sample and merge approach to maintain constant both time and memory.

4.7 Density Function Maximization

The DMM probability density function have to be maximized in order to gen-
erate the new trajectory. Differently from GMM, DMM has no analytical solution
to the problem, so an optimization technique should be used. Grollman [35] pro-
posed gradient ascendant (steepest gradient) to find a maximum around an initial
guess. The result could be both global or local maxima depending on the starting
point.

During this work, we analyzed different optimization techniques and several
implementations comparing them on different aspects like convergence, number
of iterations and starting point. Optimization methods we tested can be divided
into three categories: Quasi-Newton methods, Conjugate Gradient methods and
Simplex-based methods.

4.7.1 Quasi-Newton methods

These methods find a stationary point of a function by using a Newton-based
method. They look at the gradient and the Hessian matrix of second derivatives in
order to converge to a stationary point (where the gradient is 0) by assuming that
the function can be locally approximated as a quadratic in the region around the
optimum. In particular, quasi-Newton methods approximates the inverted Hessian
matrix by mean of successive gradient vectors, so that it does not need to be
computed directly.

56

4.7 Density Function Maximization

Davidon-Fletcher-Powell method

The DavidonFletcherPowell (DFP) algorithm [20] [26] was the one of the first
quasi-Newton method created and the first one that generalize the secant method
to a multidimensional problem.

Given f : Rn→R with x0 ∈Rn starting point in the f domain, H0 = I identity
matrix, initial approximation of the Hessian matrix and d0 = H0∇ f (x0). At each
iteration k the point xk and the matrix Hk are updated using the formulas:

xk = xk−1 +∆xk−1 (4.12)

Hk = Hk−1 +
∆xk−1∆x>k−1

∆x>k−1qk−1
+

Hk−1qk−1q>k−1Hk−1

q>k−1Hk−1qk−1
(4.13)

where

• ∆xk−1 = λk−1dk−1 is the Displacement Vector;

• λk−1 is the value of λ that minimizes f (xk−1 +λdk−1);

• dk−1 = Hk−1∇ f (xk−1) is the direction to move to find the maxima, it is also
used as stopping criterion in the case it is lower than a predefined threshold;

• qk = ∇ f (xk)−∇ f (xk−1).

This method is quite effective because it simultaneously generates conjugate
directions and constructs an approximation of the inverse of the Hessian matrix.

Broyden-Fletcher-Goldfarb-Shanno method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [12] [25] [32] [84]
is one of the most powerful methods to solve unconstrained optimization problem.

Given f convex, continuously differentiable function to maximize, x0 starting
point in the f domain and B0 initial approximation of the Hessian matrix set to
any symmetric positive definite matrix (i.e. identity matrix), at each iteration k the
point xk and the matrix Bk are updated using the formulas:

xk+1 = xk + t∆x (4.14)

57

4. Visual Robot Learning by Demonstration

Bk+1 = Bk−
Bksks>k Bk

s>k Bksk
+

yky>k
y>k sk

(4.15)

where

• t is the step size;

• ∆x =−B−1
k−1∇ f (xk−1) is the direction to move to find the maxima, it is also

used as stopping criterion in the case it is lower than a predefined threshold;

• sk = xk− xk−1;

• yk = ∇ f (xk)−∇ f (xk−1).

This method assures fast convergence, it avoids calculation of second-order
information, that is computationally expensive using numerical differentiation.
BFGS is a general purpose method, very effective in several situations, and with
a minimal variation also with large scale applications.

4.7.2 Conjugate Gradient methods

Conjugate Gradient methods are a class of algorithms for the numerical solu-
tion of systems of linear equations. They are often implemented as iterative algo-
rithms. These methods typically require less computation than a Quasi-Newton as
there is no need to compute the Hessian matrix, on the other hand they tend to con-
verge in more iterations. Conjugate Gradient methods also require less memory
to operate.

Fletcher-Reeves method

The Fletcher-Reeves algorithm [27] belongs to a group of methods called non-
linear conjugate gradient methods able to generalize the techniques used in con-
jugate gradient methods to nonlinear optimization.

Given a quadratic function g(x) = ‖Ax− b‖2 the minimum is obtained when
∇g(x) = 2A>(Ax− b) = 0. The method searches for a minimum in a given non-
linear function f : Rn→ R by approximating it with a quadratic near the area of
interest, which is the case when the function is twice differentiable in the interval.

58

4.7 Density Function Maximization

Considered x0 ∈ Rn starting point in the f domain and s0 = −∇ f (x0) initial
conjugate direction. At each iteration k the point xk and the subsequent conjugate
direction sk are updated using the formulas:

xk = xk−1 +αk−1sk−1 (4.16)

sk =−∇ f (xk)+βksk−1 (4.17)

βk =
∇ f (xk)

>∇ f (xk)

∇ f (xk−1)>∇ f (xk−1)
(4.18)

where

• αk−1 is the value of α that minimizes f (xk−1 +αsk−1);

• βk is the updating factor;

• ‖∇ f (xk)‖ is used as stopping criterion in the case it is lower than a prede-
fined threshold.

Polak-Ribiere method

The Polak-Ribiere algorithm [76] belongs to the same group than Fletcher-
Reeves method. This method approximate the nonlinear function f : Rn→ R in
the interval around a presumed minimum starting by an initial point x0 ∈Rn in the
f domain and, as before, s0 = −∇ f (x0) initial conjugate direction. The update
formula differentiates the two methods: at each iteration k the point xk and the
subsequent conjugate direction sk are updated by using:

xk = xk−1 +αk−1sk−1 (4.19)

sk =−∇ f (xk)+βksk−1 (4.20)

βk =
(−∇ f (xk))

>(∇ f (xk−1)−∇ f (xk)

∇ f (xk−1)>∇ f (xk−1)
(4.21)

where

• αk−1 is the value of α that minimizes f (xk−1 +αsk−1);

59

4. Visual Robot Learning by Demonstration

• βk is the updating factor;

• ‖∇ f (xk)‖ is used as stopping criterion in the case it is lower than a prede-
fined threshold.

4.7.3 Simplex-based methods

The latter category iteratively approximates a stationary point of a n dimen-
sional function with a special polytope of n+1 vertices called Simplex when the
objective function varies smoothly and is unimodal. The algorithm starts from
an initial Simplex. Then it calculates the objective function for each point in the
Simplex. The worst performing point is replaced by a new testing position gener-
ated from the ones composing the Simplex. Depending on the situation the new
point will reflect (Figure 4.5), expand (Figure 4.6), contract(Figure 4.7) or shrink
(Figure 4.8)the initial Simplex. The algorithm iterates until a stopping criteria is
satisfied or the maximum number of iterations is reached.

Nelder-Mead method

The NelderMead algorithm, also called Downhill Simplex or Amoeba method,
is the most commonly used Simplex-based optimization technique. It is compu-
tationally quite simple, because it does not require any derivative information,
which makes it suitable for problems with non-smooth functions.

The initial n+1 vertices composing the Simplex S = (x0,x1, ...,xn) are gener-
ated around a starting point x0 ∈ Rn by satisfying two constraints:

• x j = x0 + h je j, j = 1, ...,n where h j is the step-size of the direction repre-
sented by the versor e j;

• S is a regular Simplex: all the edges have the same length.

At each iteration k the Simplex S and consequently the N + 1 points x j, j =

0,1, ...,n are updated using the following procedure. The algorithm determines

• xh = argmax j(f (x j)) the worst performing point;

• xs = argmax j 6=h(f (x j)) the second worst performing point;

60

4.7 Density Function Maximization

• xl = argmin j(f (x j)) the best performing point;

• c = 1
n ∑ j 6=h x j the centroid of the n best points.

Depending on the four parameters:

• α the reflection parameter,

• β the expansion parameter,

• γ the contraction parameter,

• δ the shrinkage parameter;

the worst vertex xh is replaced by a better test point lying on the line defined by
xh and c. If no better point is founded, the Simplex S is shrank towards the best
vertex xl and n new vertices are computed. The selected parameters have to satisfy
the constraints α > 0, 0 < β < 1, γ > 1∧γ > α , 0 < δ < 1. In our implementation
α = 1, β = 1

2 , γ = 2, δ = 1
2 .

To find the new point, the reflection point xr = c+(α − xh) is computed. If
f (xl)≤ f (xr)< f (xs) then xr is accepted as new point (Figure 4.5). Otherwise, if
f (xr) < f (xl) the expansion point xe = c+ γ(xr− c) is calculated, xe is accepted
if f (xe)< f (xr) (Figure 4.6), if not xr is accepted. While if f (xr)≥ f (xs) the con-
traction point xc is used: in this algorithm the formula to compute the contraction
point use the better performing point between xh and xr. If f (xs)≤ f (xr)< f (xh)

then xc = c+ β (xr − c) and an outside contraction (Figure 4.7 (a)) will be ap-
plied if f (xc) ≤ f (xr). Instead, if f (xr) ≥ f (xh) then xc = c+β (xh− c) and an
inside contraction (Figure 4.7 (b)) will be applied if f (xc) < f (xh). If no one of
the previous condition is satisfied the algorithm perform a shrink transformation
(Figure 4.8) by computing the n new vertices x j = xl +δ (x jxl) for j 6= l.

4.7.4 Methods performance analysis

The algorithms described have been used to calculate the maximum in a well-
know function in order to evaluate the number of iterations in which each algo-
rithm converges to the maximum. The starting point was x0 = 0. The results are
showed in Table 4.1. The same algorithms are tested on the probability density

61

4. Visual Robot Learning by Demonstration

function of a randomly generated Donut Mixture Model: the collected data are
reported in Table 4.2.

Table 4.3 shows more tests comparing a gradient ascendant implementation
and the BFGS algorithm performing better between the algorithms we tested.
Three initial points were considered on a DMM generated randomly. The con-
vergence of the algorithm, the number of iterations, the resulting point and its
corresponding value in the Donut are considered.

Table 4.1: Comparison between different implementation of the described opti-
mization algorithms on a well-know function.

Method Convergence Iterations x0 xmax f (xmax)

Grad. Asc.1 Yes 143 0.0 -0.0222 17.126
DFP2 Yes 6 0.0 -0.0222 17.126

BFGS 11 Yes 6 0.0 -0.0222 17.126
BFGS 21 Yes 2 0.0 -0.0222 17.126
BFGS 32 Yes 6 0.0 -0.0222 17.126

FR1 Yes 6 0.0 -0.0222 17.126
PR1 Yes 6 0.0 -0.0222 17.126

NM 11 Yes 6 0.0 -0.0222 17.126
NM 21 Yes 6 0.0 -0.0222 17.126

NM Rand1 Yes 6 0.0 -0.0222 17.126

The result still could be a local maximum, this is an intrinsic problem due to
use of gradient as moving direction. It mainly depends from the designed starting
point, for example if it is near to a local maximum. Another typical error might
happen when the curvature near to the starting point is lower than the threshold
and the algorithm stops at the first iteration even if the selected point is in the
Donut tail.

In order to avoid these situations, we introduced two polices:

• Start Check (SC): the starting point is changed if the neighborhood presents
a gradient already lower than the selected threshold;

1This implementation was based on the GNU Scientific Library (GSL) http://www.gnu.
org/software/gsl/

2This implementation was based on MATLAB Unconstrained Nonlinear Optimization

62

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

4.7 Density Function Maximization

Table 4.2: Comparison between different implementation of the described opti-
mization algorithms on the probability density function of a randomly generated
Donut Mixture Model.

Method Convergence Iterations x0 xmax f (xmax)

Grad. Asc.1 No 250 0.0 -0.10989 3.51196
DFP2 Yes 111 0.0 -0.9353 5.24314

BFGS 11 Yes 23 0.0 -0.9353 5.24314
BFGS 21 Yes 7 0.0 -0.9353 5.24314
BFGS 32 Yes 18 0.0 -0.9353 5.24314

FR1 Yes 29 0.0 -0.9353 5.24314
PR1 Yes 24 0.0 -0.9353 5.24314

NM 11 Yes 38 0.0 -0.9353 5.24314
NM 21 Yes 38 0.0 -0.9353 5.24314

NM Rand1 Yes 42 0.0 -0.9353 5.24314

Table 4.3: A more detailed comparison between BFGS 21 and Gradient
Ascendant1 optimization algorithms on the probability density function of a ran-
domly generated Donut Mixture Model.

Method Convergence Iterations x0 xmax f (xmax)

Grad. Asc.1 No 250 -0.02 -0.0029 114.23
BFGS 21 Yes 4 -0.02 -0.0029 114.23

Grad. Asc.1 Yes 194 0.0 -0.0029 114.23
BFGS 21 Yes 2 0.0 -0.0029 114.23

Grad. Asc.1 No 250 0.02 -0.0029 114.23
BFGS 21 Yes 5 0.02 -0.0029 114.23

• Multi-way Search (MW): the research of the maximum is reiterated starting
from S different initial points simultaneously. The number of starting points
S can vary with the number of processors and the response time requested
by the application. In this work, we set S = K, and the starting points are
the means of the K Donut components. Finally, we considered the overall
maximum, thus only the best resulting maximum is used. This policy allows
us to avoid local maxima that lead to sub-optimal trajectories.

In Table 4.4, three different tests are reported in which SC policy is applied
to non converging or local converging BFGS instances. The implementation used

63

4. Visual Robot Learning by Demonstration

is the one giving us the best performances in the previous tests. Table 4.5 shows
the MW policy with S = 4 compared with two different standard BFGS iterations.
For both Table 4.4 and Table 4.5 the same DMM generated for the Table 4.3
comparison was used as function to maximize.

Table 4.4: A more detailed comparison between BFGS 21 and Gradient
Ascendant1 optimization algorithms on the probability density function of a ran-
domly generated Donut Mixture Model.

Method Conv. L/G Iters x0 ∇ f (x0) xmax f (xmax)

BFGS 21 No - 1 -0.25 0.0 -0.25 0.0
BFGS 21 + SC Yes G 4(8) -0.031 1.25 -0.0029 114.23

BFGS 21 Yes L 2 -0.063 -2.48 E-19 -0.0053 -1.47 E -17
BFGS 21 + SC Yes G 5(3) -0.034 0.027 -0.0029 114.23

BFGS 21 Yes L 5 -0.114 0 -0.10 -1.73 E -84
BFGS 21 + SC Yes G 3(5) 0.006 -197.3 -0.0029 114.23

Table 4.5: Comparison between standard BFGS 21 and the same algorithm plus
the MW policy.

Method Conv. L/G Iters x0 ∇ f (x0) xmax f (xmax)

BFGS 21 No - 1 -0.07 0.0 -0.07 0.0
BFGS 21 Yes G 5 -0.038 7.29 E-6 -0.0029 114.23

MW 1 Yes L 2 -0.063 -2.48 E-19 -0.0053 -1.47 E -17
MW 2 Yes G 3 -0.062 2597.8 -0.0029 114.23
MW 3 Yes G 5 -0.001 -2026.36 -0.0029 114.23
MW 4 Yes G 3(5) 0.024 0.24 -0.0029 114.23

4.8 Kinesthetic demonstrations

The developed framework was initially tested by using the kinesthetic demon-
stration technique. Joints positions and velocities in input to the Donut Mixture
Model were collected from the robot manually moved by a human being.

The task selected was throwing a ball to score a basket and the robot used for
these tests was a small humanoid: the Aldebaran NAO (Figure 4.9). The only joint

64

4.9 Human observations

involved in the the task was the right shoulder pitch. The ball was autonomously
released by opening the robot fingers when the angle overcomes a threshold. At
each trial the robot arm was placed at an initial angle of −2.0857 rad, the person
moved it forward until the ball was released at −1.30 rad, so that the joint angles
and velocities were the only relevant information we had to acquire. At each
instant t, the joint angle ξt came directly from the encoder, while the velocity was
computed as the single-step difference between angle samples: ξ̇t = ξt−ξt−1.

The choice of a good optimization method is crucial in order to manage data
provided by devices working at 20-30 Hz, like the encoders mounted on the NAO.
Moreover, the number of the collected trajectories is higher with respect to other
similar kinesthetic demonstration tests in which the data were recorded at 500 Hz
([34]). In Table 4.6 are reported the 30 failure demonstrating trajectories used
to train the Donut Mixture Model, while Table 4.7 show the generated trajec-
tories, the successful trial are highlighted. In Figure 4.10, the blue trajectories
corresponds to the initial dataset, while the ones in red were generated by the
framework.

4.9 Human observations

Finally, our approach is also tested using the skeleton data provided in the
Throw Over Head action from the IAS-Lab Action Dataset (Section A.1) [69]
[66], in which 12 actors threw a ball using a basketball approach (Figure 4.11).
The arm is raised, the elbow is bent, the limb is extended, and the wrist is rotated
so that the ball reaches the target; the entire movement is correctly repeated 3
times for each actor. The acquired data were refined as described in Section 3.2
and remapped to the robot joint space. From the original 36 trajectories, we re-
moved 2 samples in which the number of skeleton joint data provided is too low
to be effective in the robot movement.

These demonstrations are the input to our Learning from Demonstration frame-
work. The aim is to make an Aldebaran NAO learn how to play basketball. The
robot should be able to put the ball into a basket placed 40 cm in front of it
(Figure 4.12). The results of the system are compared with the output trajecto-
ries computed using well-know GMM/GMR framework [17] suitable for robot

65

4. Visual Robot Learning by Demonstration

learning when the task is successfully performed by the demonstrators. As in the
original article, the means of the Gaussian components are used to generate the
trajectory from the system.

Looking at our input trajectories we notice, as we expected, that only few (11
over 34) throws enter correctly into the basket, the remaining 23 throws score
no points; even if all the 34 demonstrations were successfully performed by the
actors. This result is due to difference between the human and the robot DoFs, and,
as we said before, we chose a Learning from Failure Demonstrations framework
to model human observations mainly for this reason. It is also worth to notice that
the difference is further augmented by the noise introduced by the sensor.

We divided the 34 demonstrations into three groups:

• successful and failed demonstrations (34 trajectories)

• failed demonstrations only (23 trajectories)

• successful demonstrations only (11 trajectories)

for each of these groups we generated 15 new trajectories coming from 15 differ-
ent DMM, where the 1st DMM models the initial dataset (34, 23 or 11 demon-
strations), the 2nd DMM models the initial dataset plus the previously generated
trajectory, the nth DMM models the initial dataset plus the (n− 1)th trajectories
generated previously. Differently than in Grollman’s work, where the generation
is stopped when a successful trajectory comes out, we preferred to generate all the
15 trajectories in order to observe the system behavior even with a high number
of correct demonstrations.

In the first group, the input trajectories are both correct and incorrect. The
generated trajectories are showed in Figure 4.13 (a), the 15 trajectories from our
framework are drawn in red; in black the one generated from the GMM/GMR
framework; the input trajectories are dotted in blue. The 5th, 6th, 13th and 15th
trajectories scored a point, while the one from GMM/GMR did not.

The results from the second group are showed in Figure 4.13 (b). As before the
23 incorrect input trajectories are dotted in blue; in red the ones from our frame-
work; the trajectory generated by the GMM/GMR framework is black. Since this
group is composed by failed demonstrations only, we expected an improvement in

66

4.10 Summary

our framework performances and still a bad throw from GMM/GMR framework.
As we expected, only 5 generated trajectories failed, the 2nd, the 6th, the 8th, the
13th and the one from GMM/GMR.

Figure 4.13 (c) shows the third group results. As usual the 11 successful tra-
jectories are dotted in blue; the ones in red are generated from our framework; the
GMM/GMR trajectory is in black. Differently from what we thought, our frame-
work overcomes the GMM/GMR one even in this group. In fact, the GMM/GMR
throw touches the basket border, but finally goes out. On the other hand, our
framework generated only 2 failed trajectories: the 1st and the 11th.

4.10 Summary

In this chapter, two different Robot Learning from Demonstration framework
were developed. The former was based on Gaussian Mixture Model and Gaussian
Mixture Regression, the latter used Donut Mixtures to model information. Both
frameworks were tested in modeling natural demonstrations. The GMM/GMR
framework was able to correctly reproduce tasks in a high repeatability industrial
environment. The same framework did not work as well with different interpreta-
tions of the same task that occurred in a more dynamic service robotics environ-
ment. The DMM framework introduced the proper flexibility showed to be a able
to overcome the differences between the different demonstrations.

In the future, we will focus on time performances in order to make both frame-
works work real-time.

67

4. Visual Robot Learning by Demonstration

(a) Results of GMM/GMR applied to Axis2.

(b) Results of GMM/GMR applied to Axis2.

(c) Results of GMM/GMR applied to Axis3.

Figure 4.4: Results obtained in the first task using a GMM trained with 11
examples (blue) to calculate the regression (red) through GMR for Axis1 (a),
Axis2 (b), Axis3 (c). The vertical straight-lines peaks are out-layers due to the
sensor noise. Using the GMM/GMR model the robot avoid rapid accelerations
between timesteps and large oscillations in its velocity.

68

4.10 Summary

Figure 4.5: Simplex reflection operation applied to the current polygon composed
by 3 vertices.

Figure 4.6: Simplex expansion operation applied to the current polygon composed
by 3 vertices.

(a) (b)

Figure 4.7: Simplex inside contraction (a) and outside contraction (b) operation
applied to the current polygon composed by 3 vertices.

69

4. Visual Robot Learning by Demonstration

Figure 4.8: Simplex shrinkage operation applied to the current polygon composed
by 3 vertices.

70

4.10 Summary

Figure 4.9: Overview of the experimental scenario: the NAO is manually moved
by a human to score in a basket placed at 40 cm from it.

71

4. Visual Robot Learning by Demonstration

Figure 4.10: Trajectories used to generate the DMM during the kinesthetic
demonstration task. The blue dotted trajectories corresponds to the initial dataset,
while the ones in red were generated by the framework.

Figure 4.11: Screen-shots from the Throw Over Head action performed by differ-
ent actors in the IAS-Lab Action Dataset.

72

4.10 Summary

Table 4.6: The trajectories collected by using kinesthetic demonstrations.
Trail Datapoints Initial ξ Final ξ ξ̇max Result

1 7 -2.0857 -1.34 0.29 TP
2 5 -2.0857 -1.30 0.52 TD
3 8 -2.0857 -1.36 0.22 P
4 5 -2.0857 -1.30 0.59 TD
5 5 -2.0857 -1.30 0.54 TD
6 4 -2.0857 -1.32 0.56 TD
7 8 -2.0857 -1.35 0.26 P
8 9 -2.0857 -1.36 0.21 P
9 5 -2.0857 -1.30 0.57 TD

10 7 -2.0857 -1.34 0.25 P
11 7 -2.0857 -1.34 0.30 TP
12 4 -2.0857 -1.30 0.58 D
13 5 -2.0857 -1.31 0.55 TD
14 5 -2.0857 -1.31 0.64 TD
15 7 -2.0857 -1.35 0.24 P
16 5 -2.0857 -1.30 0.61 TD
17 5 -2.0857 -1.30 0.60 TD
18 7 -2.0857 -1.33 0.27 P
19 6 -2.0857 -1.31 0.34 TD
20 7 -2.0587 -1.33 0.28 P
21 9 -2.0857 -1.37 0.20 P
22 8 -2.0857 -1.35 0.23 P
23 6 -2.0857 -1.32 0.32 TP
24 6 -2.0857 -1.32 0.33 TD
25 5 -2.0857 -1.32 0.62 D
26 5 -2.0857 -1.30 0.63 D
27 5 -2.0857 -1.31 0.51 TD
28 6 -2.0857 -1.30 0.50 TD
29 5 -2.0857 -1.31 0.64 D
30 6 -2.0857 -1.31 0.31 TP

73

4. Visual Robot Learning by Demonstration

Table 4.7: The trajectories collected by using kinesthetic demonstrations.
Trail Datapoints Initial ξ Final ξ ξ̇max Result

1 43 -2.0857 -1.30 0.38 D
2 51 -2.0857 -1.30 0.22 C
3 52 -2.0857 -1.31 0.17 TP
4 60 -2.0857 -1.30 0.19 C
5 59 -2.0857 -1.30 0.30 TP
6 70 -2.0857 -1.30 0.17 TP
7 70 -2.0857 -1.30 0.18 TP
8 56 -2.0857 -1.30 0.22 TP
9 46 -2.0587 -1.30 0.20 C

10 57 -2.0857 -1.31 0.19 C

Figure 4.12: Overview of experimental scenario: the NAO is placed at 40 cm from
the basket.

74

4.10 Summary

(a) Generated trajectories from both successful and failed demonstrations.

(b) Generated trajectories from failed demonstrations only.

(c) Generated trajectories from successful demonstrations only.

Figure 4.13: Results obtained from the demonstrations collected from human ob-
servations (blue dots) using our framework (in red) and a GMM/GMR framework
(black).

75

Chapter 5

Conclusions

In this thesis a novel paradigm for Robot Learning from Demonstration was
explored. The aim was to learn new skills from human natural observations to
foster the development of service robotic. In fact, if we think at personal robots
to help people in everyday life, one of the most important characteristics would
the ability to learn new tasks depending on the circumstances. Recognize actions
performed from people, generalize them, and reproduce similar tasks in different
situations are basic bricks composing the puzzle. During this work we analyzed
all these aspects using as input device a small and inexpensive RGB-D sensor,
deeply tested in an home environment and able to acquire both depth and color
information.

In Chapter 2, we compared two approaches to human action recognition based
on RGB-D data. The former estimate joint positions and orientations from a skele-
ton tracking system. The latter computes 3D motion flow by exploiting joint color
and depth information. Both of them have been classified with a Nearest Neighbor
classifier for performing action recognition. The two algorithms were tested on a
large variety of actions and actors available in a our own novel publically released
action dataset which provides RGB and depth data as well as skeleton informa-
tion. Particularly good results were obtained from the 3D motion flow approach
that was able to outperform the skeleton based technique reaching about 85% of
accuracy. As future works we plan to automatize the segmentation procedure to
test action recognition on autonomous mobile robots.

77

5. Conclusions

In Chapter 3, we presented fast on-line procedure to re-target human motion
to a small humanoid called Robovie-X by analyzing both upper limbs and lower
limbs. A more accurate analysis of the upper body motion was also reported and
applied on a different and more complex humanoid, namely the Aldebaran NAO.
The stability issue in lower body motion re-targeting was discussed by using a
toy example in which a human operator have to teleoperate the robot to pick up
an object laying in front of it. Finally we proposed a novel re-targeting approach
involving whole body motion to control an industrial manipulator, the Comau
Smat5 SiX. All the described re-targeting techniques were designed to be used
by naive people acting in natural way. As future works, we schedule to extend
the stability algorithm capabilities and perform more challenging tests on both the
proposed motion re-targeting systems.

In Chapter 4 we proposed different Robot Learning from Demonstration frame-
works to model the data provided from the re-targeting system in a probability
manner. A first framework based on Gaussian Mixture Model and Gaussian Mix-
ture Regression was successfully used to model natural demonstrations in an in-
dustrial environment. The model also highlighted a good precision due to the in-
trinsic repetitive nature of the tested tasks. In a more dynamic situation, the same
framework showed flexibility limitations. Thus, a different framework based on
Donut Mixture Model was introduced. This model can work properly even with
failed demonstrations, so it is flexible enough to failed robot attempts and different
interpretations of the same task. We deeply discussed the optimization techniques
used to maximize the probability density function of the Donut Mixture in order
to improve the performance of the model. The use of Broyden-Fletcher-Goldfarb-
Shanno optimization algorithm leaded us to obtain good results even with a few
input datapoints. The Donut Mixture Model framework was tested on a simple
task, namely score a basket. Both kinesthetic and natural demonstrations were
used for testing. Natural demonstrations was extracted from the IAS-Lab Action

Datasetby using the action Throw Over Head Results showed that the Donut Mix-
ture Model framework was able to outperform the GMM/GMR framework in all
the considered configurations. As future work, we plan to try out the model with
more complex task in order to verify the scalability of the system.

This thesis contributed to Robot Learning from Demonstration by proposing

78

a generic probabilistic framework able to let users act in a natural way. The effec-
tiveness of the proposed system open new interesting possibilities by relaxing the
restrictive constrain that forced demonstrators to robot understandable modalities.
Moreover, consumer RGB-D sensors, like the ones used in this thesis, are going
to be more and more precise and resolute. Consequently, we expect to obtain a
corresponding improvement also in the techniques proposed in this work.

79

Appendices

81

Appendix A

RGB-D Datasets

A.1 IAS-Lab Action dataset

As we already said, the rapid dissemination of inexpensive RGB-D sensors
boosted the research on several field, included action recognition. At the same
time a new need arose: the acquisition of new datasets in which the RGB stream
is aligned with the depth stream. Currently, the following action recognition
3D datasets have been released: RGBD-HuDaAct Database [97], Indoor Activ-
ity Database [87], MSR-Action3D Dataset [54], MSR-DailyActivity3D Dataset
[91], LIRIS Human Activities Dataset [92] and Berkeley MHAD [74]. All these
datasets are targeted to recognition tasks in indoor environments. The first two
are thought for personal or service robotics applications, while the two from MSR
are also targeted to gaming and human-computer interaction. The LIRIS dataset
concerns actions performed from both single persons and groups, acquired in dif-
ferent scenarios and changing the point of view. The last one was acquired using
a multimodal system (mocap, video, depth, acceleration, audio) to provide a very
controlled set of actions to test algorithms across multiple modalities.

A.1.1 IAS-Lab Action Dataset

Two key features of a good dataset are size and variability. Moreover, it should
allow to compare as many different algorithms as possible. For the RGB-D action
recognition task, that means that there should be enough different actions, many

83

A. RGB-D Datasets

Table A.1: Datasets for 3D Human Action Recognition.
#actions #people #samples RGB skel

[97] 6 1 198 yes no
[87] 12 4 48 yes yes
[54] 20 10 567 no2 yes
[91] 16 10 320 no yes
[92]3 10 21 461 yes4 no
[74] 11 12 660 yes yes5

Ours 15 12 540 yes yes

different people performing them and RGB and depth synchronization and regis-
tration. Moreover, the 3D skeleton of the actors should be saved, given that it is
easy available and many recent techniques rely on it. Hovewer, we noticed the
lack of a dataset having all these features, thus we acquired the IAS-Lab Action

Dataset1, which contains 15 different actions performed by 12 different people.
Each person repeats each action three times, thus leading to 540 video samples.
All these samples are provided as ROS bags containing synchronized and regis-
tered RGB images, depth images and point clouds and ROS tf for every skeleton
joint as they are estimated by the NiTE middleware. Unlike [74], we preferred
NiTE’s skeletal tracker to a motion capture technology in order to test our algo-
rithms on data that could be easily available on a mobile robot and, unlike [92],
we asked the subjects to perform well defined actions, because, beyond a certain
level, variability could bias the evaluation of an algorithm performance.

In Table A.1, the IAS-Lab Action Dataset is compared to the already men-
tioned datasets, while in Figure A.1 an example image for every action is reported.

1http://robotics.dei.unipd.it/actions.
2The RGB images are provided, but they are not synchronized with the depth images.
3Only the set provided with depth information was considered.
4The RGB information has been converted to grayscale.
5Obtained from motion capture data.

84

http://robotics.dei.unipd.it/actions

A.1 IAS-Lab Action dataset

(a) Check watch (b) Cross arms (c) Get up (d) Kick (e) Pick up

(f) Point (g) Punch (h) Scratch head (i) Sit down (j) Standing

(k) Throw from
bottom up

(l) Throw over
head

(m) Turn around (n) Walk (o) Wave

Figure A.1: Examples of images for the 15 actions present in the dataset.

85

Appendix B

Robot models

B.1 Virtual robots in ROS

In this work, the Unified Robot Description Format (URDF) has been used to
create an accurate model to simulate the physical robot in a ROS [80] environ-
ment.

The URDF is the ROS standard way to represent a robot model. This format
can be read from the ROS Visualizer (RViz) and any simulator integrated in ROS
should be able to import this kind of models. Tn this thesis we analyzed two
specific simulator: Gazebo and VRep.

B.1.1 Gazebo

Gazebo [45] is an Open Source 3D simulator which is capable of simulating a
wide population of robots, sensors and objects. The project started in 2002 at the
University of Southern California. It was designed to help researchers working
on robotic vehicles in outdoor environments, but it manages also indoor situa-
tions. Gazebo has historically been used as a research and development tool to
rapid prototyping, locomotion, robot competition, person simulation, and regres-
sion testing. It nominally provides multiple physics engines including ODE [41]
and Bullet [40] (not completely supported also in the last software release) and
general parameters such as accuracy and performance are exposed to better suite
to user needs. Gazebo relies on OGRE [42] to render 3D graphics and improve re-

87

B. Robot models

alism generating correct lighting and shadows using state of the art GPU shaders.

Several objects can be loaded ranging from simple shapes like cubes or spheres
to complex models like buildings or animals. Each object has his own attributes:
mass, velocity, friction and several other properties to push physic and aspect as
realistic as possible. Many robot models are provided in a community-supported
database, and everyone can create his own model defining a physical entity with
dynamic, kinematic, and visual properties. Gazebo can also generate information
from different kind of sensors: laser range finder, 2D and RGB-D cameras, contact
sensors, inertial measurement units (IMUs) and radio-frequency identifications
(RFIDs). The use of sensors is very important: in this way robots can to act
in different ways depending on data read in the simulated world. Custom plug-
ins can be developed to make the robot model interact with the world. Plug-ins
provide direct control over all robot aspects and manage data collected by sensors.

Many simulation parameters can be directly controlled also by a QT-based
graphical interface. Gazebo is compatible with several Linux distributions and
a native interface to ROS [80] and Player [29] is provided in order to integrate
different kind of robots. In this way, it is not necessary to use the API to develop
a specific interface for each robot or sensor, but any device working with ROS or
Player can be simulated. The supported programming language are C, C++, Java
and Python.

B.1.2 VRep

The 3D robot simulator V-REP [28] has been developed to perform simulation
of factory automation systems. V-REP is available in 4 licenses: Player (free), Pro
Edu (free for educational), Pro Eval (not for commercial use) and Pro (commercial
use) and it is Open Source for not commercial use. The first public release was in
March 2010, in August 2012 started the ROS integration and at the beginning of
2013 it became Open Source. V-REP offers fast prototyping and verification, fast
algorithm development, robotics related education, remote monitoring, hardware
control, safety monitoring, and product presentation. V-REP can rather be seen
as a hybrid simulator that combines kinematics and dynamics in order to obtain
the best performance for various simulation scenarios. It is based on two physics

88

B.1 Virtual robots in ROS

engine: Bullet [40] and ODE [41] (the same as Gazebo) and user is free to switch
from one to the other at any time.

The integrated development environment is based on a distributed control ar-
chitecture: each object/model can be individually controlled via an embedded
script, a plugin, a ROS node, a remote API client, or a custom solution. Con-
trollers can be written in C/C++, Python, Java, Lua, Matlab or Urbi.

V-REP is compatible with Windows, Linux and Mac OS X. Documentation is
very good and cover all aspect of the simulator. A lot of tutorials and examples
allow users to learn quickly how use it.

B.1.3 Comparison

In Table B.1, a selection of simulators parameters are summarized. The fol-
lowing features are compared:

1. Available licenses(License);

2. Operating system (OS); it describes which OS is supported by the robotic
software.

3. Simulator type; it describes if the robotic software provides either a 2-D or
3-D simulation environment.

4. Programming language; it describes the language supported by the robotic
software.

5. Year of origin; it specifics the year of commencement of the simulator;

6. Collision Detection;

7. Sensors; it describes the supported sensors. Only the most requested sensors
are reported in the table due to space limitations.

8. Graphical User Interface; it describes if it is possible to modify objects and
the environment during run-time and/or program functions in an develop-
ment environment. The graphical user interface does not include windows
that open to display the simulation.

89

B. Robot models

9. Portability; “Yes” means that the code written for a simulation is portable
to a real robotic platform.

10. Scalability “High” means that the simulator does not require a lot a resource
for running complex simulation and that it can simulate more robot simulta-
neously, “Medium” means that the simulator in some case required a lot re-
source and “Low” specifics that the simulator can’t simulate multiple robot
at the same time;.

11. Real Time; it specifics the number of allowed operation during the simula-
tion. “High” means that you can do a very large number of operation in real
time, “Low” means that only a few operation can do in real time.

12. Interfaces; it describes the facility of integration the simulator with another
system.

13. Documentation level provided with the simulator (Documentation); it can
be “High” or “Low”. “High” means the documentation only provides de-
scriptions of the functions in the robotic software libraries; “Low” means
the documentation provides the code for the functions in the robotic soft-
ware libraries.

14. Tutorial; it describes if examples and a step-by-step guide are provided.
“Yes” means that a well defined guide with examples is available; “limited”
means a guide exists, but not enough details and examples are provided.
Finally, “No” means there is not a useful tutorial and/or examples.

15. Debugging/Logging; describes if the simulator debugging, fault tolerances,
play-back, and logging features are provided by the robotic software.

B.2 Comau Smart5 SiX

The robot used is a Comau Smart5 SiX (Figure B.1). It is a small manipulator
with 6 DoF particularly suitable for all operations that require low payload, fast

90

B.2 Comau Smart5 SiX

Table B.1: Summary of the main features of Gazebo and V-Rep simulators.
Gazebo V-Rep

License Open Source Open Source for not com-
mercial use

OS Linux Linux, Win, MacOSX
Programming
Language

C++/Python/Java C/C++/Python/Java/Matlab/
Urbi

Year of origin 2002 2010
Collision
detection

Yes Yes

Sensors Laser Range Finders, 2D
and RGB-D Cameras,
Contact Sensors, IMU,
RFID

Proximity, Vision, Force

GUI Sufficient Good
Portability Yes Yes
Scalability Medium High
Real time Low High
Interfaces ROS (Excellent), Player

(Excellent)
ROS (Good)

Documentation Low High
Tutorial Yes High
Debugging/
Logging

Yes Yes

91

B. Robot models

movement, and a high degree of repeatability. In Table B.2, the main characteris-
tics of the robot are listed1.

Figure B.1: The small manipulator Comau Smart5 SiX.

From these technical data a URDF model (Figure B.2 (a)) has been built. In-
formation not provided by Comau, like mass and inertial matrices, has been esti-
mated from the original 3D robot model by approximating the different parts to
parallelepipeds and applying formulas in Equation B.1 and B.2:

1A more exhaustive description of the robot and its technical specifications can be found at
http://www.comau.com

92

http://www.comau.com

B.2 Comau Smart5 SiX

Table B.2: Summary of the main Comau Smart5 SiX features.
Lock lower
angle

Lock upper
angle

Speed

Axis
1

−170o 170o 140o/s

Axis
2

−85o 155o 160o/s

Axis
3

−170o 0o 170o/s

Axis
4

−210o 210o 450o/s

Axis
5

−130o 130o 375o/s

Axis
6

−2700o 2700o 550o/s

m = w ·h ·d ·SW steel; I =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 (B.1)

Ixx = 1/12 m(h2 +d2)

Iyy = 1/12 m(w2 +d2)

Izz = 1/12 m(w2 +h2)

(B.2)

where:

• m is the parallelepiped mass;

• w, h, and d are respectively the parallelepiped width, height, and depth;

• SWsteel is the steel specific weight approximated to 8 ·10−3 Kg/m3;

• I is the parallelepiped inertial matrix.

The final model has been integrated in both Gazebo and V-REP, but only the
first one (Figure B.2 (b)) has been used as experimental environment due to the
Gazebo robot plug-in can be better customized for our purposes.

93

B. Robot models

(a) (b)

Figure B.2: The Comau Smart5 SiX robot represented through URDF links and
joints (a), and simulated in Gazebo (b).

B.3 Vstone Robovie-X

The Robovie-X (Figure B.3) is a small bipedal robot emerged from the creative
labs of KumoTek Robotics and Vstone Corporation. The robot is designed to
offer an entertaining, low-cost alternative to high-end robotics, while stylishly
combining the latest in sleek design and cutting-edge robotics engineering.

In this work we used the standard model,it tall 35 cm and it comes with 17
degrees of freedom (5 per leg, 3 per arm, 1 for the head) and a 60 MHz processor
with 512 kB ROM and 64 kB RAM to store pre-defined movements and manage
the motor control. The VS-S092J servos it features, give the Robovie-X high mo-
tion performances, making it capable of fast walking, dancing, fighting, playing
soccer.

In fact, the X in the name stands for flexible because of the large range of op-
tional accessories that allows you to expand the basic model. A standard software
called RobovieMaker2 for Microsoft Windows is also supplied with the Robovie-
X. This software allows you to interface with the robot by calibrating and control-
ling it. It also provides a simple graphical overview of the installed motion, but
there is no APIs available at the moment.

For this reason we developed a Linux C++ driver for the Robovie-X able to

94

B.4 Aldebaran NAO

Figure B.3: The small humanoid Vstone Robovie-X.

communicate directly with the robot by means of a USB cable connected to the in-
ternal control board. The driver also has a ROS wrapper that integrate Robovie-X
with the well-known robotics framework. A URDF model (Figure B.4)) has also
been built in order to simulate the Robovie-X in a virtual environment. The tech-
nical data to compose the virtual model are extracted from an already virtualized
similar robot.

B.4 Aldebaran NAO

The Aldebaran NAO H25 v 4.0 (Figure B.5) is a small humanoid robot with
25 DoF and an integrated Intel Atom CPU @ 1.6GHz. NAO comes with two
gyroscopes, an accelerometer, a feedback provided from all its joints and pres-
sure sensors on its feet. It can communicate with external systems using a Wi-Fi
connection. A complete software suite and a SDK2 package are also provided
to fully program the humanoid platform and interact with the NAOqi application
programming interface (API).

2http://www.aldebaran-robotics.com/documentation/dev/sdk.html

95

B. Robot models

Figure B.4: The Robovie-X simulated in Gazebo.

We based our work on the documentation3 by Aldebaran Robotics. The vir-
tual model is not manually composed, but we auto-generate it starting from some
xacro scripts in order to better structure our model. The xacro language is based
on XML and it allows us to define basic macros to create more complex URDF
models.

Four basic macros has been created to build the complete model:

• Joint: defines the model joints;

• Link: defines the model links;

• Visual: defines the model visual meshes;

• Collision: defines the model collision meshes.

this division is very important in order to easily update the model to new robot
versions or attach NAO accessories to the main body.

All joints are defined using a single macro setting an effort limit of 100N, a
velocity limit of 5rad/s, a damping factor of 0N·m·s

rad and a friction factor of 25N ·m.

3NAO documentation http://www.aldebaran-robotics.com/documentation/

96

B.4 Aldebaran NAO

For each link composing NAO, we defined the inertial matrices starting from
the ones declared from Aldebaran and referring them to the CoM (Center of Mass)
using the Huygens-Steiner or Parallel axis Theorem. In Equation B.3 the used
formula is explained

(B.3)ΓCoM = ΓNAO + m
{∥∥tCoM,NAO

∥∥2 I − tCoM,NAOtT
CoM,NAO

}
were:

• ΓCoM is the calculated inertia matrix referred to the Center of Mass;

• ΓNAO is the original inertia matrix given by Aldebaran Robotics;

• m is the mass of the considered NAO part;

• tCoM,NAO is relative translation between the Center of Mass and the original
reference system.

An URDF model already exists in the NAO ROS package from Freiburg Uni-
versity, but inertial matrices are not correctly defined, no realistic meshes has been
provided and the xacro scripting only take account of visual and structure separa-
tion. The resulting model is very hard to read and modify, consequently we start
to building our new model from zero. It is worth to notice that, with no proper
inertial matrices, the model coming with the actual ROS package is not suitable
for simulation and so no comparison with our model is possible.

Both Gazebo and V-REP are able to import URDF models, we only have to
develop the specific plugin. Model and plugins will be released as a Open Source
software4. In Figure B.5 the physical and the simulated5 robot are shown.

In order to evaluate our model characteristics on the selected simulators, we
tested two concrete, challenging robot tasks, namely walking straight and turning
around. The system developed is able to generate suitable movements based on
standard motion provided by Aldebaran. The same joint movements could be used

4ROS model and plugins for Alderan NAO are available respectively at
https://github.com/iaslab-unipd/nao_description,
https://github.com/iaslab-unipd/nao_gazebo_plugin,
https://github.com/iaslab-unipd/nao_vrep_plugin

5NAO users can download official meshes from the Aldebaran Robotics site. A script is
available to properly split in parts the provided 3D mesh file.

97

https://github.com/iaslab-unipd/nao_description
https://github.com/iaslab-unipd/nao_gazebo_plugin
https://github.com/iaslab-unipd/nao_vrep_plugin

B. Robot models

(a) NAO physical robot. (b) NAO URDF model.

Figure B.5: Aldebaran NAO: physical robot (a) and his URDF model (b).

98

B.4 Aldebaran NAO

as input for both real and simulated robot. Thus, the tasks were also performed
using a real NAO platform in order to better compare the results coming from the
simulators.

The first test was based on the standard walking straight command included
in Aldebaran NAO Drivers. The robot walked 3 different distances (0.5, 1, and
3 meters) at 3 different velocities (40%, 80%, and 100% of the maximum effort
given by NAO motors). Every single trail was repeated 7 times. The real robot,
V-REP simulator with both ODE and Bullet engines, and Gazebo simulator were
tested. The robot were stopped when the distance theoretically walked reach the
goal, the joint positions feedback coming from robot motors were considered to
better approximate the measure. On the other hand, the algorithm did not take
advantage of any feedback to refine the movements.

The space walked by simulated and real robots was analyzed with respect the
expected distance in the xy ground plan. Figure B.6 shows the distances measured
along the x axis, where x is the walking direction; while Figure B.7 describes y as
the lateral deviation with respect the straight trajectory.

The typical trajectory followed by the robot is a curve progressively deviating
from the straight direction for both simulation and reality. All the tested modalities
are able to correctly perform the walk with no falls. Analyzing the collected data,
it is easy to see that the real robot exceeded the goals, while simulators usually
underestimated the distance.

Looking at the requested task, ODE engine, in particular Gazebo, has per-
formed a great work. The distance walked is about 70-80% of the goal, the devia-
tion is minimal, and the variability between the attempts and the tested velocities
is low. On the other hand, the performances are quite poor compared with the real
robot trajectory. The difference along the x axis starts from 20-25% to walk 0.5
m at 40% of the maximum effort, and reach 35-40% to walk 3.0 m at 80% of the
maximum effort. The gap is even higher along the y axis: the deviation performed
by the real robot is up 2 m, while the ODE simulations return substantially zero
drift.

The results from Bullet engine are deeply different. Along x axes, the walked
distance is 60-65% less then expected at low velocities, while it consistently grows
augmenting the speed. The lateral deviation follows the same trend, and it is

99

B. Robot models

aligned to the to the real robot drift, at high velocities.

It is also worth to notice that Gazebo presents a great repeatability, while V-
REP shows a great variability with both ODE and Bullet engines.

Figure B.6: Results of the task straight walk along x direction. This is not the real
distance walked by the robot, but the projection along x.

The second test was based on a standard motion implemented in Aldebaran
NAO Drivers to let the robot perform the turning around task. NAO turned of 4
distinct angles (90◦ and 360◦ counterclockwise, 180◦ and 270◦ clockwise) at 3
different velocities (again 40%, 80%, and 100% of the maximum effort given by
NAO motors). As before, each trail were performed 7 times using the four tested
modalities: real robot, V-REP (ODE and Bullet) and Gazebo. Again, the robot
were stopped when the desired turning angle has been reached. The feedback
coming from robot joint positions helped us in the measure approximation, but
the motion did not depend from this feedback.

The angle turned by simulated and real robots was analyzed with respect the
expected rotation. Figure B.8 shows the absolute value of the robot rotation

100

B.4 Aldebaran NAO

Figure B.7: Results of the task straight walk along y direction. A positive value
corresponds to a right deviation of the robot, a negative value corresponds to a left
deviation of the robot.

101

B. Robot models

around itself.
The robot turned with no falls and a minimal deviation from its theoretical

rotation center in all the considered modalities, so we did not further investigate
this parameter. Again, the real robot usually overcame the goals, while simulators
highly underestimated the desired rotation.

ODE engine has not performed a great work as in the first task. The angle
turned is usually less than 50% with respect to the goal, on the other hand the vari-
ability between the attempts and the tested velocities is still low for both Gazebo
and V-REP.

The results from Bullet engine are quite similar, the rotation performed is
more effective than ODE engine and the angle is 60-65% less then expected. at
low velocities, while it consistently grows augmenting the speed. The variability
decreases with respect the walking task reaching the ODE engine accuracy.

Gazebo has maintain the great repeatability showed in the first task, V-REP
has performed better than walking task, but a certain variability still persists.

102

B.4 Aldebaran NAO

Figure B.8: Result of the task turn around. The absolute value of rotation angle
is showed. At 90◦ and 360◦ the robot has turned counterclockwise, while at 180◦

and 270◦ the robot has turned clockwise.

103

Bibliography

[1] http://www.microsoft.com/en-us/kinectforwindows/.

[2] H. Akaike. Information theory and an extension of the maximum likelihood
principle. In 2nd International Symposium on Information Theory, pages
267–281, 1973.

[3] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz. Keyframe-based learn-
ing from demonstration. International Journal of Social Robotics, 4(4):343–
355, 2012.

[4] S. Ali and M. Shah. Human action recognition in videos using kinematic
features and multiple instance learning. Pattern Analysis and Machine Intel-

ligence, IEEE Transactions on, 32(2):288 –303, feb. 2010.

[5] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn. Correspondence map-
ping induced state and action metrics for robotic imitation. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(2):299–
307, 2007.

[6] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[7] G. Ballin, M. Munaro, and E. Menegatti. Human Action Recognition
from RGB-D Frames Based on Real-Time 3D Optical Flow Estimation. In
A. Chella, R. Pirrone, R. Sorbello, and K. R. Jóhannsdóttir, editors, Biolog-

ically Inspired Cognitive Architectures 2012, pages 65–74. Springer Berlin
Heidelberg, 2012.

105

http://www.microsoft.com/en-us/kinectforwindows/

BIBLIOGRAPHY

[8] F. Basso, M. Munaro, S. Michieletto, E. Pagello, and E. Menegatti. Fast
and robust multi-people tracking from rgb-d data for a mobile robot. In
12th Intelligent Autonomous Systems Conference (IAS-12), pages 265–276.
Springer, Jeju Island, Korea, June 2013.

[9] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by
demonstration. In B. Siciliano and O. Khatib, editors, Handbook of Robotics,
pages 1371–1394. Springer, Secaucus, NJ, USA, 2008.

[10] A. Bisson, A. Busatto, S. Michieletto, and E. Menegatti. Stabilize humanoid
robot teleoperated by a rgb-d sensor. In Proceedings of the Workshop Popu-

larize Artificial Intelligence (PAI2013), pages 97–102, 2013.

[11] V. Bloom, D. Makris, and V. Argyriou. G3d: A gaming action dataset
and real time action recognition evaluation framework. In Computer Vi-

sion and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer

Society Conference on, pages 7 –12, june 2012.

[12] C. G. Broyden. The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA Journal of Applied Mathematics,
6(1):76–90, 1970.

[13] S. Calinon and A. Billard. Stochastic gesture production and recognition
model for a humanoid robot. In Intelligent Robots and Systems, 2004.(IROS

2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3,
pages 2769–2774. IEEE, 2004.

[14] S. Calinon and A. Billard. Recognition and reproduction of gestures using a
probabilistic framework combining pca, ica and hmm. In Proceedings of the

22nd international conference on Machine learning, pages 105–112. ACM,
2005.

[15] S. Calinon and A. Billard. A probabilistic programming by demonstration
framework handling constraints in joint space and task space. In Intelligent

Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference

on, pages 367–372. IEEE, 2008.

106

BIBLIOGRAPHY

[16] S. Calinon, F. D’halluin, D. G. Caldwell, and A. G. Billard. Handling of mul-
tiple constraints and motion alternatives in a robot programming by demon-
stration framework. In Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-

RAS International Conference on, pages 582–588. IEEE, 2009.

[17] S. Calinon, F. Guenter, and A. Billard. On learning, representing, and gen-
eralizing a task in a humanoid robot. Systems, Man, and Cybernetics, Part

B: Cybernetics, IEEE Transactions on, 37(2):286–298, 2007.

[18] E. Cypher and D. C. Halbert. Watch what I do: programming by demonstra-

tion. The MIT Press, 1993.

[19] B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. Fujimura, and
C. Goerick. Online transfer of human motion to humanoids. International

Journal of Humanoid Robotics, 6(02):265–289, 2009.

[20] W. C. Davidon. Variable metric method for minimization. SIAM Journal on

Optimization, 1(1):1–17, 1991.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), pages 1–38, 1977.

[22] R. Dillmann. Teaching and learning of robot tasks via observation of human
performance. Robotics and Autonomous Systems, 47(2):109–116, 2004.

[23] G. Du, P. Zhang, J. Mai, and Z. Li. Markerless kinect-based hand track-
ing for robot teleoperation. INTERNATIONAL JOURNAL OF ADVANCED

ROBOTIC SYSTEMS, 9, 2012.

[24] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance. In
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference

on, pages 726 –733 vol.2, oct. 2003.

[25] R. Fletcher. A new approach to variable metric algorithms. The computer

journal, 13(3):317–322, 1970.

107

BIBLIOGRAPHY

[26] R. Fletcher and M. J. Powell. A rapidly convergent descent method for
minimization. The Computer Journal, 6(2):163–168, 1963.

[27] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradi-
ents. The computer journal, 7(2):149–154, 1964.

[28] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira. Virtual robot experimen-
tation platform v-rep: a versatile 3d robot simulator. In Proceedings of the

Second international conference on Simulation, modeling, and programming

for autonomous robots, SIMPAR’10, pages 51–62, Berlin, Heidelberg, 2010.
Springer-Verlag.

[29] B. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project: Tools
for multi-robot and distributed sensor systems. In Proceedings of the 11th

international conference on advanced robotics, volume 1, pages 317–323,
2003.

[30] S. Ghidoni, S. Anzalone, M. Munaro, S. Michieletto, and E. Menegatti. A
distributed perception infrastructure for robot assisted living. To appear in

Robotics and Automous Systems (RAS) Journal.

[31] M. Gleicher. Retargetting motion to new characters. In Proceedings of the

25th annual conference on Computer graphics and interactive techniques,
pages 33–42. ACM, 1998.

[32] D. Goldfarb. A family of variable-metric methods derived by variational
means. Mathematics of computation, 24(109):23–26, 1970.

[33] R. Gopalan and B. Dariush. Toward a vision based hand gesture interface
for robotic grasping. In Intelligent Robots and Systems, 2009. IROS 2009.

IEEE/RSJ International Conference on, pages 1452–1459. IEEE, 2009.

[34] D. H. Grollman and A. Billard. Donut as i do: Learning from failed demon-
strations. In Robotics and Automation (ICRA), 2011 IEEE International

Conference on, pages 3804–3809. IEEE, 2011.

[35] D. H. Grollman and A. G. Billard. Robot learning from failed demonstra-
tions. International Journal of Social Robotics, 4(4):331–342, 2012.

108

BIBLIOGRAPHY

[36] J. Han, L. Shao, D. Xu, and J. Shotton. Enhanced computer vision with
microsoft kinect sensor: A review. IEEE Transactions on Cybernetics, 2013.

[37] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical system mod-
ulation for robot learning via kinesthetic demonstrations. Robotics, IEEE

Transactions on, 24(6):1463–1467, 2008.

[38] M. Holte and T. Moeslund. View invariant gesture recognition using 3d mo-
tion primitives. In Acoustics, Speech and Signal Processing, 2008. ICASSP

2008. IEEE International Conference on, pages 797 –800, 31 2008-april 4
2008.

[39] M. Holte, T. Moeslund, N. Nikolaidis, and I. Pitas. 3d human action recogni-
tion for multi-view camera systems. In 3D Imaging, Modeling, Processing,

Visualization and Transmission (3DIMPVT), 2011 International Conference

on, pages 342 –349, may 2011.

[40] http://bulletphysics.org/. Bullet Physics Library. [online].

[41] http://www.ode.org/. Open Dynamics Engine. [online].

[42] http://www.ogre3d.org/. OGRE 3D. [online].

[43] http://www.primesense.com/solutions/nite middleware. Nite middleware
[online].

[44] A. Kar. Skeletal tracking using microsoft kinect. Methodology, 1:1–11,
2010.

[45] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In Intelligent Robots and Systems, 2004. (IROS

2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3,
pages 2149–2154 vol.3, Sept.-2 Oct.

[46] H. S. Koppula and A. Saxena. Learning spatio-temporal structure from rgb-d
videos for human activity detection and anticipation. ICML, 2013.

109

BIBLIOGRAPHY

[47] M. Korner and J. Denzler. Analyzing the subspaces obtained by dimen-
sionality reduction for human action recognition from 3d data. In Advanced

Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International

Conference on, pages 130 –135, sept. 2012.

[48] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: Extracting
reusable task knowledge from visual observation of human performance.
Robotics and Automation, IEEE Transactions on, 10(6):799–822, 1994.

[49] I. Laptev and T. Lindeberg. Space-time interest points. In Proc. Ninth IEEE

Int Computer Vision Conf, pages 432–439, 2003.

[50] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic
human actions from movies. In Proc. IEEE Conf. Computer Vision and

Pattern Recognition CVPR 2008, pages 1–8, 2008.

[51] J. Lee, J. Chai, P. S. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive
control of avatars animated with human motion data. In ACM Transactions

on Graphics (TOG), volume 21, pages 491–500. ACM, 2002.

[52] J. Lei, X. Ren, and D. Fox. Fine-grained kitchen activity recognition using
rgb-d. In Proceedings of the 2012 ACM Conference on Ubiquitous Comput-

ing, UbiComp ’12, pages 208–211, New York, NY, USA, 2012. ACM.

[53] A. León, E. F. Morales, L. Altamirano, and J. R. Ruiz. Teaching a robot
to perform task through imitation and on-line feedback. In Progress in Pat-

tern Recognition, Image Analysis, Computer Vision, and Applications, pages
549–556. Springer, 2011.

[54] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d
points. In IEEE International Workshop on CVPR for Human Communica-

tive Behavior Analysis (in conjunction with CVPR 2010), San Francisco,

CA,, pages 9 –14, June 2010.

[55] R. Liu, S. Z. Li, X. Yuan, and R. He. Online Determination of Track Loss
Using Template Inverse Matching. In The Eighth International Workshop

110

BIBLIOGRAPHY

on Visual Surveillance - VS2008, Marseille, France, 2008. Graeme Jones
and Tieniu Tan and Steve Maybank and Dimitrios Makris.

[56] B. Lukas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In IJCAI ’81, pages 674–679, 1981.

[57] M. M. Marinho, A. A. Geraldes, A. P. Bó, and G. A. Borges. Manipulator
control based on the dual quaternion framework for intuitive teleoperation
using kinect. In Robotics Symposium and Latin American Robotics Sympo-

sium (SBR-LARS), 2012 Brazilian, pages 319–324. IEEE, 2012.

[58] S. Michieletto, N. Chessa, and E. Menegatti. Learning how to approach
industrial robot tasks from natural demonstrations. In Advanced Robotics

and its Social Impacts (ARSO), 2013 IEEE Workshop on, pages 255–260.
IEEE, 2013.

[59] S. Michieletto, S. Ghidoni, E. Pagello, M. Moro, and E. Menegatti. Why
teach robotics using ros. To appear in Journal of Automation, Mobile

Robotics & Intelligent Sysyems (JAMRIS).

[60] S. Michieletto and E. Menegatti. Human action recognition oriented to hu-
manoid robots action reproduction. In Proceedings of the Workshop Popu-

larize Artificial Intelligence (PAI2012), pages 35–40, 2012.

[61] S. Michieletto, A. Rizzi, and E. Menegatti. Robot learning by observing
humans activities and modeling failures. In IROS workshops: Cognitive

Robotics Systems (CRS2013), IEEE (Nov 2013), 2013.

[62] S. Michieletto, D. Zanin, and E. Menegatti. In Z. X. David Al-Dabass,
Alessandra Orsoni, editor, European Modelling Symposium (EMS2013),
pages 448–453, Manchester, UK.

[63] Y. Ming, Q. Ruan, and A. Hauptmann. Activity recognition from rgb-d cam-
era with 3d local spatio-temporal features. In Multimedia and Expo (ICME),

2012 IEEE International Conference on, pages 344 –349, july 2012.

111

BIBLIOGRAPHY

[64] K. Miura, M. Morisawa, S. Nakaoka, F. Kanehiro, K. Harada, K. Kaneko,
and S. Kajita. Robot motion remix based on motion capture data towards
human-like locomotion of humanoid robots. In Humanoid Robots, 2009.

Humanoids 2009. 9th IEEE-RAS International Conference on, pages 596–
603. IEEE, 2009.

[65] S. Muench, J. Kreuziger, M. Kaiser, and R. Dillman. Robot program-
ming by demonstration (rpd)-using machine learning and user interaction
methods for the development of easy and comfortable robot programming
systems. In Proceedings of the International Symposium on Industrial

Robots, volume 25, pages 685–685. INTERNATIONAL FEDERATION OF
ROBOTICS, & ROBOTIC INDUSTRIES, 1994.

[66] M. Munaro, G. Ballin, S. Michieletto, and E. Menegatti. 3d flow estima-
tion for human action recognition from colored point clouds. Biologically

Inspired Cognitive Architectures, 2013.

[67] M. Munaro, F. Basso, and E. Menegatti. Tracking people withing groups
with rgb-d data. In Proc. of the International Conference on Intelligent

Robots and Systems (IROS), Vilamoura (Portugal), 2012.

[68] M. Munaro, F. Basso, S. Michieletto, E. Pagello, and E. Menegatti. A soft-
ware architecture for rgb-d people tracking based on ros framework for a
mobile robot. In Frontiers of Intelligent Autonomous Systems, pages 53–68.
Springer, 2013.

[69] M. Munaro, S. Michieletto, and E. Menegatti. An evaluation of 3D motion
flow and 3D pose estimation for human action recognition. In RSS Work-

shops: RGB-D: Advanced Reasoning with Depth Cameras, 2013.

[70] R. M. Neal and G. E. Hinton. A view of the em algorithm that justifies
incremental, sparse, and other variants. In Learning in graphical models,
pages 355–368. Springer, 1998.

[71] B. Ni, G. Wang, and P. Moulin. Rgbd-hudaact: A color-depth video database
for human daily activity recognition. In Computer Vision Workshops (ICCV

112

BIBLIOGRAPHY

Workshops), 2011 IEEE International Conference on, pages 1147 –1153,
nov. 2011.

[72] M. N. Nicolescu and M. J. Mataric. Natural methods for robot task learning:
Instructive demonstrations, generalization and practice. In Proceedings of

the second international joint conference on Autonomous agents and multi-

agent systems, pages 241–248. ACM, 2003.

[73] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Sequence of the
most informative joints (smij): A new representation for human skeletal ac-
tion recognition. In Computer Vision and Pattern Recognition Workshops

(CVPRW), 2012 IEEE Computer Society Conference on, pages 8 –13, june
2012.

[74] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Berkeley MHAD:
A comprehensive multimodal human action database. In Proceedings of

IEEE Workshop on Applications of Computer Vision (WACV), Jan. 2013.

[75] M. Pardowitz, S. Knoop, R. Dillmann, and R. Zollner. Incremental learning
of tasks from user demonstrations, past experiences, and vocal comments.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
37(2):322–332, 2007.

[76] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions
conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis-

Modélisation Mathématique et Analyse Numérique, 3(R1):35–43, 1969.

[77] N. S. Pollard, J. K. Hodgins, M. J. Riley, and C. G. Atkeson. Adapting
human motion for the control of a humanoid robot. In Robotics and Au-

tomation, 2002. Proceedings. ICRA’02. IEEE International Conference on,
volume 2, pages 1390–1397. IEEE, 2002.

[78] M. Popa, A. Koc, L. Rothkrantz, C. Shan, and P. Wiggers. Kinect sensing of
shopping related actions. In undefined, K. Van Laerhoven, and J. Gelissen,
editors, Constructing Ambient Intelligence: AmI 2011 Workshops, Amster-
dam, Netherlands, 11 2011.

113

BIBLIOGRAPHY

[79] G. Pozzato, S. Michieletto, and E. Menegatti. Towards smart robots: rock-
paper-scissors gaming versus human players. In Proceedings of the Work-

shop Popularize Artificial Intelligence (PAI2013), pages 89–95, 2013.

[80] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng. Ros: an open-source robot operating system. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 2009.

[81] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement prim-
itives. In Robotics Research, pages 561–572. Springer, 2005.

[82] G. Schwarz. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

[83] Y. Seol, C. OSullivan, and J. Lee. Creature features: Online motion pup-
petry for non-human characters. In Proceedings of the 2013 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, 2013.

[84] D. F. Shanno. Conditioning of quasi-newton methods for function minimiza-
tion. Mathematics of computation, 24(111):647–656, 1970.

[85] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, and R. Moore. Real-time human pose recognition in parts from
single depth images. Communications of the ACM, 56(1):116–124, 2013.

[86] D. C. Smith, A. Cypher, and J. Spohrer. Kidsim: programming agents with-
out a programming language. Communications of the ACM, 37(7):54–67,
1994.

[87] J. Sung, C. Ponce, B. Selman, and A. Saxena. Unstructured human activity
detection from rgbd images. In ICRA, 2012.

[88] H. L. U. Thuc, P. V. Tuan, and J.-N. Hwang. An effective 3d geometric
relational feature descriptor for human action recognition. In Computing

and Communication Technologies, Research, Innovation, and Vision for the

Future (RIVF), 2012 IEEE RIVF International Conference on, pages 1 –6,
27 2012-march 1 2012.

114

BIBLIOGRAPHY

[89] A. Ude. Trajectory generation from noisy positions of object features for
teaching robot paths. Robotics and Autonomous Systems, 11(2):113–127,
1993.

[90] M. Vukobratović and J. Stepanenko. On the stability of anthropomorphic
systems. Mathematical Biosciences, 15(1):1–37, 1972.

[91] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for ac-
tion recognition with depth cameras. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR 2012), Providence, Rhode Island,, June
2012.

[92] C. Wolf, J. Mille, E. Lombardi, O. Celiktutan, M. Jiu, M. Baccouche, E. Del-
landra, C.-E. Bichot, C. Garcia, and B. Sankur. The LIRIS Human activi-
ties dataset and the ICPR 2012 human activities recognition and localiza-
tion competition. Technical Report RR-LIRIS-2012-004, LIRIS UMR 5205
CNRS/INSA de Lyon/Universit Claude Bernard Lyon 1/Universit Lumire
Lyon 2/cole Centrale de Lyon, Mar. 2012.

[93] L. Xia, C.-C. Chen, and J. Aggarwal. View invariant human action recogni-
tion using histograms of 3d joints. In Computer Vision and Pattern Recog-

nition Workshops (CVPRW), 2012 IEEE Computer Society Conference on,
pages 20 –27, june 2012.

[94] Y. Yacoob and M. Black. Parameterized modeling and recognition of activ-
ities. In Computer Vision, 1998. Sixth International Conference on, pages
120 –127, jan 1998.

[95] K. Yamane, Y. Ariki, and J. Hodgins. Animating non-humanoid char-
acters with human motion data. In Proceedings of the 2010 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’10, pages
169–178, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics As-
sociation.

[96] X. Yang and Y. Tian. Eigenjoints-based action recognition using naive-
bayes-nearest-neighbor. In IEEE Workshop on CVPR for Human Activity

Understanding from 3D Data, 2012.

115

BIBLIOGRAPHY

[97] H. Zhang and L. E. Parker. 4-dimensional local spatio-temporal features for
human activity recognition. In Intelligent Robots and Systems (IROS), 2011

IEEE/RSJ International Conference on, pages 2044 –2049, sept. 2011.

[98] Y. Zhao, Z. Liu, L. Yang, and H. Cheng. Combing rgb and depth map fea-
tures for human activity recognition. In Signal Information Processing As-

sociation Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific,
pages 1 –4, dec. 2012.

[99] C. Zito, M. Kopicki, R. Stolkin, and J. L. Wyatt. Sequential re-planning for
dextrous grasping under object-pose uncertainty. In RSS 2013 Workshop:

Manipulation with Uncertain Models, 2013.

116

	Introduction
	Thesis Outline and Contributions
	Publications

	Action Recognition
	Related Work
	3D Motion Flow
	3D Pose
	Descriptors
	SUMFLOW
	Skeleton Descriptor
	Sequence Descriptor

	Experiments
	Summary

	Motion re-targeting
	Data acquisition
	Human to humanoids re-targeting
	Motion evaluation
	Upper body motion and refinement
	Lower body motion: stability control

	Human to manipulator re-targeting
	Motion evaluation

	Summary

	Visual Robot Learning by Demonstration
	Related Works
	Gaussian Mixture Model
	Gaussian Mixture Regression
	Number of Mixture
	Industrial environment
	Donut Mixture Model
	Density Function Maximization
	Quasi-Newton methods
	Conjugate Gradient methods
	Simplex-based methods
	Methods performance analysis

	Kinesthetic demonstrations
	Human observations
	Summary

	Conclusions
	RGB-D Datasets
	IAS-Lab Action dataset
	IAS-Lab Action Dataset

	Robot models
	Virtual robots in ROS
	Gazebo
	VRep
	Comparison

	Comau Smart5 SiX
	Vstone Robovie-X
	Aldebaran NAO

	Bibliography

