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Abstract

The adverse health effect of exposure to high pollutant concentration has

been the focus of many recent studies. This is particularly true for ground

level ozone which is considered in the present thesis. The effect has been es-

timated at different geographic locations, and it has been shown that it may

be spatially heterogeneous. Within such widely accepted studies, two major

issues arise which are the focus of this thesis: how to best measure daily

individual exposure to a pollutant and how the health effect of the exposure

is affected by geographic location both in strength and shape. The first

issue is related to the fact that the concentration of ozone varies widely dur-

ing the day, producing a distinctive daily pattern. Traditionally, the daily

pattern of the pollutant is collapsed to a single summary figure which is

then taken to represent daily individual exposure. In this thesis, we propose

a more accurate approaches to measure pollutant exposure which address

the limitations in the use of the standard exposure measure. The methods

are based on principle of functional data analysis, which treats the daily

pattern of concentration as a function to account for temporal variation of

the pollutant. The predictive efficiency of our approach is superior to that

of models based on the standard exposure measures. We propose a func-

tional hierarchical approach to model data which are coming from multiple

geographic locations, and estimate pollutant exposure effect allowing daily

variation and spatial heterogeneity of the effect at once. The approach is

general and can also be considered as the analogue of the multilevel models

to the case in which the predictor is functional and the response is scalar.
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Sommario

Numerosi studi recenti hanno mostrato l’effetto dannoso che l’esposizione a

elevate concentrazioni di inquinanti ha sulla salute umana. In particolare,

questo avviene per l’ozono, del quale ci occupiamo nel presente lavoro. Stime

ottenute in diversi siti mostrano che l’effetto è geograficamente eterogeneo.

Nel contesto degli studi menzionati emergono due aspetti di particolare im-

portanza, e su cui è incentrato il presente lavoro: come misurare al meglio

l’esposizione individuale e come e in che misura l’effetto vari geograficamen-

te, sia quanto a intensità che a forma. La prima questione è legata al fatto

che la concentrazione di ozono mostra ampie variazioni nel corso di una

giornata. Di tale andamento giornaliero non si tiene conto nella maggior

parte degli studi epidemiologici, e si assume che possa essere efficacemente

riassunto da una statistica unidimensionale. Nel presente lavoro proponia-

mo degli approcci che si basano sull’impiego di misure della concentrazione

che tengono conto dell’andamento temporale della stessa. Tali approcci so-

no basati sulla metodologia dell’analisi dei dati funzionali, che consiste nel

trattare il dato sulla concentrazione giornaliera come una funzione, tenendo

cos̀ı conto delle sue variazioni durante la giornata. In termini previsivi, si

è verificato che tale approccio porta a un miglioramento rispetto ai modelli

basati su una statistica giornaliera. Questo approccio è poi esteso al caso di

dati multisito, per i quali si propone un modello funzionale gerarchico, che

consentono di stimare l’effetto dell’esposizione all’inquinante tenendo conto

da un lato della variazione giornaliera della concentrazione dello stesso e

dell’eterogeneità nello spazio di tale effetto. Questo approccio può essere

visto come l’analogo di un modello multilivello per il caso in cui il predittore

è funzionale e la variabile risposta scalare.
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Chapter 1

Introduction

1.1 Overview

The adverse health effect of exposure to pollutants has become a global issue

since early twentieth century when a series of severe air pollution episodes

occurred in different areas of the world. Some of the episodes that caused

acute respiratory issues were the 1930 Meuse Valley fog in Belgium (Stern,

1973), the air pollution crisis in some cities of the USA in 1930s (Dewey,

2000) and the Poza Rica episode, Mexico in 1950 (Stern, 1973). More se-

vere health episode including deaths were caused by the London ’Great

Smog’ in 1952 (Neidell, 2009) and the Donora killer smog in 1948. These

events led to formulation of strategies to reduce the environmental pollu-

tion levels. The USA and many countries in Europe adopted national air

pollution legislations. For example, the UK had passed the Clean Air Act

in 1956 following the severe London smog episode, and the United States

federal government enacted a similar legislation in 1970. These Clean Air

Acts have been reformulated after some years to drastically improve the air

quality (US Environmental Protection Agency, 2007). Nevertheless, pollu-

tion persists at high levels, and studies continued to detect effect on human

health from exposure to pollutants.
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Environmental studies of exposure to pollutants and health use data which

consist of the concentration measure of pollutants, health outcome data and

various confounding covariates for a particular study region. The health

outcome data contains daily counts of mortality or morbidity (hospital ad-

missions) for the population residing within the study area. The commonly

studied pollutants for their effect on health are Carbon Monoxide (CO),

Nitrogen Dioxide (NO2), ground level Ozone (O3), particulate matter (PM)

and Sulphur Dioxide (SO2), with ground level ozone being the main pollu-

tant studied in this thesis. The association between exposure to ozone and

health is widely studied. A search on PubMed with the search key ”ozone

epidemiology” leads to 1322 papers, the oldest being from 1974. An anal-

ogous search on Google Scholar leads to 35500 results, while a search on

PubMed with search key ”ozone mortality” leads to 732 and ”ozone mor-

bidity” to 72900 results. Research moves toward various directions, among

these the connections with climate change (De Sario et al., 2013), the study

of the effect of ozone on specific pathologies such as asthma (Sousa et al.,

2013), allergies, heart diseases (Shah et al., 2013), birth weight (Stieb et al.,

2012), lung function decrements (Hazucha et al., 1989; Mudway and Kelly,

2000). A thorough review would clearly be out of scope here, we limit our

focus on important aspects of the studies.

One aspect of these studies is the time scale over which adverse effect is most

apparent. Some studies consider the short-term effect of exposure to pollu-

tants estimated over a few days or weeks rather than a long-term exposure

effect estimated by following cohorts over years to decades. Examples of air

pollution effect from long-term exposure studies involving cohorts include

Dockery et al. (1993), Violato et al. (2009) and Pope III and Dockery (2006).

The majority of the studies including this thesis examine the short-term ef-

fect of pollutants on health. For a thorough review of short-term effect of

exposure to pollutants see (Samoli et al., 2001) and (Dominici et al., 2003).
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The short-term exposure studies use measurements of pollutants concen-

tration obtained from a network of monitoring stations located throughout

the study region. The concentrations levels of the pollutants are measured

frequently throughout the day. Although more frequent measures can also

be noticed, usually the concentrations are measured on hourly basis. To

represent a daily exposure to a pollutant, a single summary figure derived

from the hourly records is used, such as the daily average or maximum.

Common statistical approaches used to analyse the data are the generalized

linear models (GLM, McCullagh and Nelder (1989)) or the generalized addi-

tive models (GAM, Hastie and Tibshirani (1990)). These methods are used

to estimate effects associated to exposure to pollutants by regressing day-

varying health outcome against day-varying exposure measure, typically the

daily summary figures, accounting for other confounding covariates. Covari-

ates studied for their confounding effect are weather condition, particularly

temperature and less frequently humidity, days of the week and calendar

year. Some studies consider the confounding effect of concentrations of

other pollutants (see for example, Chiogna and Pauli (2011)).

In this thesis, we shall propose approaches to measure exposure to pollutants

to address the limitations of the standard exposure measures and improve

effect estimation. The standard methods estimate the health effect of a

pollutant by collapsing the hourly measurements into single daily summary

figures. We employ a functional data analysis (FDA) technique to turn all

hourly discrete records of a day into one smooth function with little informa-

tion loss. Thus, the daily exposure to a pollutant is represented by a single

curve which takes into account the daily variation of the concentration. Such

measure will be used as a predictor in a functional regression model, within

such model, the health effect is given by a functional coefficient.

The health effect of exposure has been studied at different geographic loca-

tions (Gryparis et al., 2004; Zhang et al., 2006), and it has been shown that
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the estimated effect is spatially heterogeneous (Bell et al., 2004). To address

the heterogeneity issue, large multi-city studies have been implemented. In

this regard, the European approach (APHEA project, for example Kat-

souyanni et al. (1996)) and the National Morbidity, Mortality and Air Pol-

lution Study (NMMAPS, for example Samet et al. (2000)) in the USA are

well known. The first approach uses the standard Poisson regression meth-

ods and the latter adopts a hierarchical model to combine evidence from

single city analyses. Other researchers advocate meta-analysis techniques

to reduce bias from estimates of single (city) studies (see for example Ji

et al. (2011)). However, like other single city studies, the multi-city and the

meta-analysis studies collapse the daily pattern of pollutant concentration

to represent the daily exposure to the pollutant by a single figure summaries

for each day and city.

We propose a functional hierarchical modeling approach to estimate pollu-

tant exposure effect allowing for the daily variation of the concentration and

spatial heterogeneity of the effect at once. Using this approach, we estimate

an overall functional regression coefficient as well as location-specific coef-

ficients in the Bayesian paradigm using Markov Chain Monte Carlo tech-

niques. We shall also exploit the idea of functional principal component

analysis (FPCA) to derive principal scores from hourly measurements of

ozone, which are believed to capture the most important portion of the

daily concentration curve. These principal scores will form an additional

exposure measures for researchers to be used as alternative to our func-

tional exposure measure and other approaches in literature. The reminder

of this thesis is organized in 6 Chapters and the reminder of this Section

discusses each Chapter in detail.

Chapter 2 reviews the statistical methods which are used to study the health

effect of exposure to pollutants. The first part of the Chapter briefly dis-

cusses Generalized linear models (GLM) and Generalized additive mod-
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els (GAM). We present a review of more advanced methods, Functional

data analysis (FDA) and Bayesian methods. Discussion of functional data

analysis comprises estimating functions from discrete observed measure-

ments, function alignment methods, functional principal component analysis

(FPCA) and functional regression models. In the Bayesian method Section,

we review prior distributions, Markov Chain Monte Carlo (MCMC) simula-

tion and Bayesian hierarchical models.

Chapter 3 motivates the main problem in more detail, and outlines com-

mon issues which are encountered in estimating the association between

exposure to pollutants and health. The Chapter includes discussion of the

nature of pollutant data and how the concentration measures enter to the

model. Particularly, we explore how studies use the available pollutant mea-

surements to represent exposure to the pollutant. This particular aspect of

the pollutant and health is the focus of the work presented in this thesis.

The Chapter includes a brief discussion on overdispersion, model selection,

autocorrelation and lag. The use of confounding covariates is also discussed.

Chapter 4 discusses the use of functional data analysis technique to measure

daily exposure to ozone and presents functional regression models to inves-

tigate the dependence of health outcome on a functional measure of ozone.

The Chapter is intended to study data coming from a single geographic

location. For application, we consider pollutant and health outcome data

from the city of Milan, Italy. A functional exposure measure of the pollu-

tant is estimated from the discrete hourly measurements using functional

data analysis tools. We employ function alignment (Ramsay and Silverman,

2005) which aligns the common features of functional observations to iden-

tify the portion of the daily ozone concentration curve potentially linked

to health. Thus, the functional linear regression model is fitted considering

both the aligned and non-aligned ozone curves as functional covariate and

hospital admission counts as response. Within this Chapter, the assump-
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tion of linearity in the dependence of health on ozone exposure measured as

function is relaxed, and the functional generalized additive model is consid-

ered to estimate a non-linear flexible ozone effect. We close this Chapter by

demonstrating that the functional regression models have superior predic-

tive performance over the standard models using out-of-sample predictive

study. The work presented in this Chapter is currently under revision with

the Journal of Environmetrics with the title Flexible Functional Modelling of

Short-term Effect of Ozone: Application to City of Milan, Italy. The same

work has been published in the proceedings at the 21st International Con-

ference on Computational Statistics (COMPSTAT2014) in Geneva, Switzer-

land, 2014, with the title Functional data modeling to measure exposure to

ozone. A reduced version of the same work has also been presented at

1st International Workshop on Large scale population-based surveys on res-

piratory health in Italy and Europ, Verona, Italy with the title Modeling

exposure to ozone and hospital admission.

Chapter 5 discusses an extension of methods in Chapter 4, used when data

come from multiple geographic locations. We propose a functional hierarchi-

cal modeling approach to estimate pollutant exposure effect allowing for the

daily variation of the concentration and the spatial heterogeneity of the effect

at once. The approach is developed using the functional regression model

discussed in Chapter 4 and the Bayesian hierarchical model paradigm. An

application is considered to data from 15 USA cities for the summer periods

(June-July-August) of years 1987-2000. We consider two possible specifica-

tion, the first specification is an overall model fitted by pooling all the city

data together and can not account spatial heterogeneity. Thus, we estimate

one marginal ozone effect as a function of daily time from the pooled data.

The second specification is a hierarchical model in which we obtain an over-

all functional regression coefficient as well as location-specific coefficients.

The approach is general and can also be considered as the analogue of the

classical multilevel (hierarchical) models to the case in which the predictor
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is functional and the response is scalar. The work presented in this Chapter

is currently under working paper for publication with the title Functional

hierarchical model for pollutants and health. The same work has also been

presented at joint Graybill/ENVR conference on Modern Statistical Meth-

ods for Ecology, Colorado State University, USA with the title Functional

hierarchical model for pollutants and health.

Chapter 6 provides an alternative and simpler approach, which still meets

the aim of providing a representative exposure measure allowing for daily

variation of the pollutant concentration but in a more parsimonious way.

This approach uses a fixed number of principal scores derived from the

hourly concentrations using functional principal component analysis tech-

nique. The principal scores capture the important portion of the variability

of the concentration curve to be used as a potential exposure measure. To

model the health effect of the pollutant exposure measured by principal

scores, we adopt two model specifications, in the same spirit as Chapter 5,

first the effect of principal scores on health is studied assuming homoge-

neous exposure effect across the different geographic locations. The second

approach considers the Bayesian hierarchical model to allow for spatially

heterogeneous effect, which assumes the association between the principal

scores and health can possibly vary across the cities. This framework allows

to estimate city-specific effect as well as the overall scores effect.

Chapter 7 presents the conclusion of this thesis by reviewing the research

questions and discusses the main results. The Chapter synthesises the find-

ings of the thesis in a wider context. The limitations of the thesis and future

work are discussed.
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1.2 Contributions of the Thesis

The work presented in this thesis focuses on two major problems of expo-

sure to environmental pollutants and health. These are how to best measure

daily exposure to a pollutant and how the association between exposure to

the pollutant and health is affected by geographic locations (in strength and

shape). There have been rare methodological analyses to address these prob-

lems. Studies traditionally collapse the daily pattern of ozone concentration

to a single daily summary figures which fail to account for the temporal

variations. Some studies have forwarded their approach to deal with the

issue, Chiogna and Pauli (2011) attempted to address the issue by defining

a number of alternative measures to account for different features of the

daily pattern. Staniswalis et al. (2009) adopted historical functional model

to examine the effect of particulate matter on daily mortality. Our approach

(Arisido, 2014) used the functional regression approach (Ramsay, 2006) to

effectively account for the daily fluctuations of the pollutant. The superior-

ity of measuring exposure in the form of function over the other approaches

is demonstrated using out-of-sample predictive performance.

The other main issue for environmental studies of pollutants and health is

that the estimated health effect is heterogeneous across different geographic

locations or studies (Bell et al., 2004), a circumstance that may be due

to many factors, for instance differences in the industrialization levels of

the cities or their weather conditions. To resolve the issue, meta-analysis

(Dumouchel, 1995; Clayton et al., 1993) and Bayesian hierarchical models

(Dominici et al., 2000) have been advocated to obtain a pooled and an un-

biased location-specific estimates by sharing ’strength’ across the different

locations. However, these multi-study or -location methods depend on the

daily summary measures of ozone exposure, thus ignoring the daily varia-

tion of the pollutant. To address the issue, we shall illustrate a functional

hierarchical regression model using Bayesian paradigm. In general, the con-
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tributions of this thesis can be illustrated as follows:

• Often pollutants are monitored hourly, but in the standard models,

the exposure is typically reduced to an aggregate measure such as the

daily maximum or 24 hour average. We instead propose hourly ozone

measurements of one day as a function, and then using the function

as the exposure measure.

• The health effect of exposure to the pollutant is estimated as a function

of daily time to examine the influence of the exposure continuously

throughout the day in contrast to one single scalar estimate provided

by the standard methods.

• As far as the health effect is concerned, different parts of the daily

concentration curve may be more or less relevant, we identify these

degrees of relevance using functional data analysis.

• We propose a functional version of the Bayesian hierarchical model to

estimate health effect of exposure accounting for temporal variations

of the pollutant and spatial heterogeneity of the effect. The approach

will serve as the analogue of the standard hierarchical/multilevel model

when observations are obtained in the form of functions and is used as

a method of combining functional information from different locations

to make inference in the overall effect of exposure.

• We present an alternative approach in the form of principal scores

to measure the daily exposure to the pollutant. The principal scores

are computed from hourly measurements of pollutant concentration

allowing for daily variation, and capture the most important portion

of the daily concentration curve to be used as potential measure of

daily exposure to explain health. This approach will serve as an ad-

ditional exposure measure for researchers to be used as alternative to

our functional exposure measure and other approaches in literature.





Chapter 2

Statistical Methods Review

Most of the earliest studies estimated the association between exposure to

pollutants and health using Poisson log-linear models. The changes in en-

vironmental and weather conditions, which have a direct influence on pol-

lutants, required to use more general model to accommodate various con-

founders such as seasonal and weather variables. Generalized additive mod-

els (GAM) have been widely used to flexibly control for confounders. De-

spite these advances to model daily exposure to pollutants and health, there

are crucial issues, as highlighted in the introduction, which remain to be

addressed. These issues motivate to implement more flexible complex mod-

elling techniques. In this Chapter, we review both the widely used standard

methodology and the more complex methods which are used in this thesis.

The Chapter is organized as follows. Section 2.1 reviews the standard sta-

tistical methods used to model the association between health outcomes

and exposure to pollutants. Section 2.2 discusses the functional data anal-

ysis technique, which includes representing a function using the spline basis

approach, function alignment, functional principal component analysis and

functional regression methods. Section 2.3 describes the Bayesian method.
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2.1 Classical Statistical Methods

This section discusses the standard inferential tools used to study the as-

sociation between exposure to pollutants and health. The most commonly

used methods are the generalized linear models (GLM) and the generalized

additive models (GAM).

2.1.1 Generalized Linear Models

The classical linear model is used to study the relationship between T in-

dependent response data y = (y1, . . . , yT )′ and a matrix of covariates X

with the assumption that y is normal variate. Despite this restrictive dis-

tributional assumption, the linear model has widespread applications and

the statistical theory for inference on its parameters is well developed. The

generalized linear models (GLM) are an extensions of the classical linear

regression model to non-normal response variables y. All generalized linear

models are based on a family of distribution called exponential family. A

random observation Y taken from a distribution that is a member of the

exponential family, has probability function in the form

f(y|θ, φ) = exp

[
yθ − b(θ)

φ
+ c(y, φ)

]
, (2.1)

where θ is parameter of the exponential family and φ is the dispersion pa-

rameter used to represent the scale parameter of the distribution. In some

cases φ may be known, for example the Poisson distribution, in that case θ

is commonly known as canonical parameter. When φ is unknown, the fam-

ily is more properly called the exponential dispersion family. For instance,

both the Gamma and Normal probability distributions have their own scale

parameter and φ is unknown. The expression b(θ) is a known function which

is useful to derive the mean and the variance of the given exponential family.

E(y) = µ = b′(θ) and Var(y) = φb′′(θ),
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where b′(.) and b′′(.) indicate the first and second derivatives of b respec-

tively. The mean is fully specified by the parameter θ only, while the variance

is a function of θ and the dispersion parameter φ. The variance function

b′′(θ) specifies the link between the mean and the variance. Here, a Poisson

distributed random variable has no dispersion parameter, as a result φ is

assumed to be 1. However, care must be taken before assuming that there

is no extra variation in the data to be accounted by φ, that leads to overdis-

persion issue. We shall discuss overdispersion in Section 3.3.1. Assume that

Yt can come from any exponential family distribution, a generalized linear

model can be specified using the link function g(.) to describe how the mean

response, E(Yt) = µt, is linked to the predictors. Then, a generic form of

generalized linear model is

Yt ∼ f(yt|µt, φ), t = 1, . . . , T

g(µt) = X ′tβ,
(2.2)

where X ′t = (Xt1, . . . , Xtp) is a T × p design matrix of predictors and

β = (β1, . . . , βp)
′ denote coefficients specifying the effect of the associated

predictor on the response. Parameter estimation and inference of a general-

ized linear model is based on the theory of maximum likelihood estimation

(Pfanzagl, 1994). For more details on GLM, see McCullagh and Nelder

(1989), Myers et al. (2012) and Dobson (2001). In epidemiological studies

of pollutants and health, the response is daily mortality or morbidity counts.

Since these daily counts are assumed to have Poisson distribution, a log link

is the natural choice to specify a generalized linear model which describes

the association between exposure to a pollutant and daily mortality or mor-

bidity accounting for confounders. In this context, expression (2.2) can be

modified as

Yt ∼ Poisson(µt), for t = 1, . . . , T

log(µt) = Xtβ + confounders,
(2.3)
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where the predictor X is a measure of daily exposure to a pollutant, the

parameter β represents the effect of exposure to a pollutant as measured by

X on the response. In this modeling approach, the pollutant measure and

confounding covariates have a linear relationship with a transformation of

the mean of the response.

2.1.2 Generalized Additive Models

The generalize linear model specified in (2.2) is fully parametric and some

situations require more flexibility, specifically, to allow for a non-linear ef-

fects. The generalized additive models (GAM, Hastie and Tibshirani (1990))

are a semiparametric extension of generalized linear models. The basic idea

is to replace one or more of the linear predictors in (2.2) by a spline function,

yet other predictors may still be included as linear components. The general

form of a generalized additive model can be presented as

g(µt) = X ′tβ + f1(z1t) + f2(z2t) + · · ·+ fJ(zJt), (2.4)

the first part of the right side of the equation is the same as (2.2), and the

smooth functions fj of the additional covariates zj are included to allow flex-

ibility on the dependence of the response on the covariates zj . To estimate

such a model, each function fj should be specified as a linear combination

of known basis functions φj1(z), . . . , φjK(z). We then have

fj(zjt) =

K∑
k=1

cjkφjk(zjt), (2.5)

where (cj1, . . . , cjK) are unknown coefficients and they will be estimated

from the model fitting techniques. Here, suitable choice of basis functions

has to be made for appropriate representation of f ; the chosen basis should

aid in determining a smooth curve f(zj) that approximates the effect of zj

(for more details about basis functions, see Section 2.2.1). A model matrix
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Zj can be created for each function, so that the functions can be represented

as

fj = Zjcj , (2.6)

where, Zj = (φj1(zjt), . . . , φjK(zjt)) and cj = (cj1, . . . , cjK)′. Consider-

ing both the linear and the non-linear components, the model matrix can

be specified in the form [X : Z1, . . . ,ZJ ] and model parameters θ = [β :

c1, . . . , cJ ]. Parameters in generalized additive models are often estimated

by penalized likelihood maximization, where the penalties are used to sup-

press the roughness of the fj terms. Assume that we have a penalty matrix

Sj to penalize the functions fj . Then, a penalized log-likelihood has the

form

l(θ) = l(θ)− 1

2

∑
j

λjc
′
jSjcj , (2.7)

where λj are smoothing parameters which are used to control the trade-off

between goodness of fit of the model and smoothness. The estimation of

model parameters are conditional on the unknown λj , therefore λj must

be estimated first using, for example, generalized cross-validation (GCV,

Golub et al. (1979)). More discussion on GCV is provided in Section 3.3.2.

Assuming that λj are known, the penalized likelihood maximization esti-

mates parameters using iterative procedures. Different iterative algorithms

have been proposed: local scoring (Hastie and Tibshirani, 1990), backfit-

ting (Buja et al., 1989) or the penalized version of iteratively re-weighted

least squares (P-IRLS, Wood (2006)). For more details of generalized addi-

tive models, see Wood (2006), Li (1986) and Ruppert et al. (2003). Now,

we shall discuss the method to model exposure to environmental pollutants

and health.

The generalized additive models are the most widely used modelling ap-
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proach in pollutants and health studies. The flexibility of the models allow

to introduce confounding covariates as smooth spline functions. Assuming

X is a measure of daily exposure to a pollutant and f(z) is smooth function

of a confounding covariate, we can specify (2.2) in the form of generalized

additive model

Yt ∼ Poisson(µt), t = 1, . . . , T

log(µt) = Xtβ + f(zt).
(2.8)

The parameter of interest is β which describes the association between day-

to-day variability of the pollutant and health. An advantage with this spec-

ification is that the researcher has complete control to decide the degrees of

freedom to estimate f(z). Although such choice is an issue in its own right

(Peng and Dominici, 2008), sensible choice can be made so that the estimate

is not over- or under-smooth. Inferences on β may correspond to quanti-

fying its uncertainty using confidence interval. For the estimate of curve

fj , inference is typically made using point-wise confidence bands. A further

general discussions on the use of generalized additive models for estimating

the association between exposure to pollutants and health are available in

Dominici et al. (2002) and Zanobetti et al. (2000).

2.2 Functional Data Analysis Method

The term ”Functional data” was introduced by Silverman and Ramsay

(2005) to denote when the collected data are available in the form of curves.

The expression ”Functional Data Analysis” (FDA) is used to indicate the

methodology for dealing with functional data (Ferraty, 2011). The func-

tional data analysis is a new area of Statistics and extends established

methodologies and theories from the field of image analysis, generalized lin-

ear models, multivariate data analysis, nonparametric statistics and many

others. This Section presents a review of functional data analysis with the

main focus being on estimating a smooth function from the discrete observa-
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tions, function alignment, functional principal component analysis and the

functional regression models.

Within the field of functional data analysis, there are two schools of thought

based on how they conceptualize functional data (Shang, 2014). On one side,

some researchers consider functional data analysis as a smoothed version of

multivariate data analysis, and functional data analysis represent the multi-

variate data analytical tools in the language of functional analysis. On the

other side, researchers underline that functional data analysis is the devel-

opment of the statistical application of spline functions, particularly in the

scope of nonparametric function estimation. Although there is a difference

between the two stances, the common feature is that a single observation in

a functional data analysis is a whole function defined on bounded common

interval, as opposed to focusing on the discrete number of observed values at

particular points in the interval. When the discrete observed values appear

collectively as a function, they reflect a certain smoothness property which

allows functional data interpretation. Further, the discrete values in a func-

tion may display high correlation, in which case the standard multivariate

data analysis fails. The other feature of functional data analysis is that a

function may be estimated from the fixed number of discrete observed mea-

surements, but functional data are intrinsically infinite dimensional.

These ideas will be made more clear at different stages of this Section. In

particular, in what follows we will discuss how functional data can be rep-

resented and how their representation could be estimated from the discrete

observed data. We consider a situation where a random quantity is observed

at several different times (h1, . . . , hJ), and the discrete observations can be

represented as X̃(h1), . . . , X̃(hJ). Then, a continuous form of the expression

is given by {X(h) : h ∈ (h1, hJ)}. Thus, a functional data is the observation

of T functionals X1(h), . . . , XT (h). These functional data and their discrete

form can be viewed as a traditional data matrix as shown in Table 2.1.
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X1(h1) X1(h2) . . . X1(hJ)

X2(h1) X2(h2) . . . X2(hJ)
...

...
...

...

XT (h1) XT (h2) . . . XT (hJ)

Table 2.1: Functional data and its discretized observations presented in the

form of classical data matrix.

There are J measurements at h1, . . . , hJ for each curve. The basic assump-

tion is that there are underlying continuous functions that generated those

discrete observations and the interest is mainly in such functions. Further,

we assume that the underlying function X(h) is smooth, so that a pair of

adjacent observations X(hj) and X(hj+1) are linked together to some ex-

tent and unlikely to be wildly different from each other. This principle is

the base of treating the data as functional rather than just multivariate.

In order to perform any type of functional data analysis, the first step is to

estimate the underlying function using the discrete observations. The use

of basis functions and smoothing techniques are the main components to

produce a flexible representation of the discrete observations by functional.

Generally, the basis function methods represent a function X(h) by a linear

combination of K know basis functions φ(t) = (φ1(h), . . . , φK(h)) as

X(h) =
K∑
k=1

ckφk(h), (2.9)

where c = (c1 . . . , cK)′ are the coefficients of the basis to be estimated from

the data using smoothing methods. A sufficiently good approximation is

achieved when K is large. However, the approximation depends not only

on K, the type of basis φk(h) and the method used to estimate ck are

particularly important.
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2.2.1 Basis Functions

The basis function representation is used to approximate a function by tak-

ing a linear combination of sufficiently large number K of basis functions.

The most frequently used bases methods are polynomial bases, Fourier series

and the spline bases. Different basis have different properties, and which is

the most appropriate one depends on the characteristics of the function to

be approximated. For instance, Polynomial bases are convenient when the

interest focuses on properties of X(h) in the vicinity of a single specified

point as opposed to over its whole domain (Wood, 2006). A Fourier series

is used if the observed data are periodic and uniformly smooth. In this

Section, we shall discuss the use of the popular spline bases method.

B-Spline Basis Functions

Splines are pieces of polynomials with orderm that are tied together smoothly.

A spline function on a given interval is constructed by dividing the interval

into subintervals, whose limits are called knots. Thus, to define a spline,

the order m of the polynomials must be decided as well as the location and

number of knots. The order m of a polynomial is the number of constants

required to define it and is one more than its highest power (degree). Over

each interval, a spline is a polynomial of specified order m. The locations

of the knots must be chosen according to the nature of the data. Typically,

the knots would either be evenly spaced through the range of observed X(h)

values, or placed at quantiles of the distribution of unique X(h) values (see

for example Ruppert et al. (2003) and Wood (2006)). The higher the order

of the spline, the more flexible the shape can be between the knots and the

better will be the approximation. Increasing the number of knots allows

more flexibility as well. There are different spline basis used to construct

spline function, in this Section, we will illustrate the widely used B-spline

basis, which provides great flexibility and computational efficiency. The ba-

sis functions are local, that means each basis function is only non-zero over
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the intervals between m+ 2 adjacent knots. Assume that a basis composed

of K functions is to be used, and define K+m knots, h1 < h2 < · · · < hK+m,

the m− 1 order B-spline basis functions are defined recursively in the form

φm−1k (h) =
h− hk

hk+m−1 − hk
φm−2k (h) +

hk+m − h
hk+m − hk+1

φm−2k+1 (h), (2.10)

and

φk(h) =

1 hk ≤ h < hk+1

0 otherwise,

see De Boor (1976) for further details. Figure 2.1 illustrates an example of

B-splines basis with varying order, knots and number of basis defined over

the range [0,23], say the range contains the daily hours. The B-splines shown

in panel a is an order one with single knot, and this is a step function, panel

b depicts three piecewise linear B-splines with a single knot, Panel d shows

an eight B-splines of order 4 defined by four equally spaced knots. Looking

at panel d, the basis functions in the middle are non-zero in a maximum

of four adjacent subintervals. The basis functions at both ends are also

positive in at most four adjacent subintervals. This property of B-spline can

be generalized as: an order m B-spline basis function is positive in at most

m adjacent intervals, and this property is the main reason for B-spline being

mathematically efficient and flexible.

2.2.2 Estimating Function from Discrete Measurements

Let yt = (yt1, . . . , ytJ) be the discrete observations for which the replicate

t is observed at each j for j = 1, . . . , J and its functional version be rep-

resented by Xt(h) =
∑K

k=1 ctkφk(h), where φ1(h), . . . , φK(h) denote the B-

spline basis. The classical least square provides a simple linear smoother by

minimizing the sum squared error (SSE)
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Figure 2.1: B-spline basis with 3 basis functions of order 1 with 2 knots

(a), 3 basis functions of order 2 with 1 knots (b), 3 basis functions of order

3 without knot (c) and 8 basis functions of order 4 with 4 knots (d). The

vertical dotted lines are the positions of the knots.

SSE(Xt|yt) =

J∑
j=1

[
ytj −

K∑
k=1

ctkφk(hj)

]2
. (2.11)

The least square procedure has different modifications to obtain a good

approximation. The weighted least square and the localized least square or

the kernel smoothing are among those. For more details, see Eubank (1999),

Green and Silverman (1993) and Fan and Gijbels (1996). Here, we opt to

present the roughness penalty approach, which is more powerful and elegant

in the context of smoothing a function. In the roughness penalty approach

(O’Sullivan, 1986), a penalty is imposed on the sum squared of the error to

control the smoothness of the estimated curve as flexibly as possible. Thus,
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the penalized sum of squared error (PSSE) compromises the smoothness

against the goodness of the fit to the data

PSSEλ(Xt|yt) =
J∑
j=1

[ytj −Xt(hj)]
2 + λ

∫ J

1

[
D2Xt(hj)

]2
dh, (2.12)

where D2 indicates the second derivative, and the integrated squared second

derivative measures the roughness of the curve. The smoothness parameter

λ controls the smoothness of the curve, and can be selected by general-

ized cross-validation criterion (GCV, Golub et al. (1979)). As λ becomes

larger, the weight given to the integrated squared second derivative becomes

larger, consequently the criterion PSSEλ(Xt|yt) places more emphasis on the

smoothness of Xt(h) and less on the goodness of fit. For small λ, the function

becomes more variable. To briefly show how PSSEλ(Xt|yt) is computed, let

us use the matrix form Xt(h) =
∑K

k=1 ctkφk(h) = c′tφ(h), ct is the K-vector

of coefficients associated to replicate t and φ(h) is the K-vector of B-spline

basis functions. From a simple minimization problem of (2.11) without pe-

nalization, ct has the solution ĉt = (Φ′Φ)−1Φ′yt. Here, Φ is the J by K

matrix containing the values of K basis functions at the J sampling points,

and yt is the vector of discrete data associated to replicate t. The idea is

to find the analogous estimate of ct corresponding to the roughness penalty

approach specified in (2.12). The integrated squared of second derivative is

expressed in matrix form as follows

∫ [
D2Xt(hj)

]2
dh =

∫ [
c′tD

2φ(h)
]2

dh

=

∫
c′tD

2φ(h)D2φ′(h)ct dh

= c′t

[∫
D2φ(h)D2φ′(h)dh

]
ct

= c′tQct,
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where Q is the roughness penalty matrix, given by

Q =

∫
D2φ(h)D2φ′(h)dh, (2.13)

we then have a minimization problem in the matrix form

PSSEλ(yt|ct) = (yt −Φct)
′ (yt −Φct) + λc′tQct.

Taking the derivative with respect to ct and manipulating the resulting

expression for the estimated coefficient, we obtain

ĉt =
(
Φ′Φ + λQ

)−1
Φ′yt.

Depending on the type of basis functions,Qmay be computed analytically or

numerically. For example the FDA package by Graves et al. (2009) contains

programming code for the B-spline basis functions. However, in many ap-

plications numerical approximation to the integrals are implemented. Even

in the B-spline case, the details are fairly complicated (see Ramsay (2006)),

and researchers usually opt for numerical approximations.

2.2.3 Aligning Functional Observations

Functional observations often share common features such as the peak, the

minimum or the valley. These observable features vary according to the

size and the position of the features. Thus, functional data display two

type of variations, the first one is amplitude or vertical variation, which is a

variation in the vertical size of a particular feature in a sample of curves. For

instance, the peak of one curve may be greater or less than the other. The

second is phase or horizontal variation, which is a variation in the location

of a sample of curves features along the horizontal axis. For instance, the

position of peaks in a sample of curves my not be obtained at the same time

point. Figure 2.2 presents a synthetic example to illustrate the issues of the

amplitude-phase variations. The existence of these two type of variations in

functional observations poses several issues. For instance the cross-sectional
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mean function may not be used to represent the average of functions, since

the mean function is dissimilar to each of the curves in the presence of phase

variation (Silverman and Ramsay, 2005). This issue can also be observed in

Figure 2.2 (a) where the mean function (shown as dashed curve) does not

resemble any curve.
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Figure 2.2: An illustration of phase and amplitude variations, which exist

in functional observations, taken from Graves et al. (2009). Panel a shows

five curves varying only in phase, panel b shows five curves varying only

in amplitude. The dashed line in each panel indicates the mean of the five

curves.

The issue of phase-amplitude variations is not only restricted to the cross-

sectional functional mean, Kneip and Ramsay (2008) suggests other issues

related to computing variances, correlations and principal components anal-

ysis. Thus, curve aligning or registration is basically a means of avoiding the

unnecessary phase variation by transforming the curves via transformation

of their arguments. We shall implement curve alignment in order to align

the daily pollutant curve to remove unwanted phase variation. Further, it

allows us to identify the portion of the daily curve which is assumed to be

potentially harmful to health. These applications will be discussed in Chap-

ter 4, in this Section, we shall provide general discussion as background
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information.

Different curve alignment methods have been proposed. The commonly

used methods are: shift, landmark and continuous curve alignment. Shift

alignment is the simplest method which is used to align the time scale. The

curves are shifted by an amount δt to align a feature at a common time

point. The aligned curves are then X∗t (h) = Xt(h + δt). The parameter

δt is estimated using the version of least square criterion to identify a shift

δt for curve t. Further details on this method are available in Silverman

and Ramsay (2005). The continuous method is used when there are no

clearly identifiable features. In this case, the method uses the entire curves

rather than their values at specified points. The method involves aligning

the curves to a target curve or other function. This could be the average

curve of the functions, one of the curves or some other function of interest.

The curves are made as similar to a target function as possible. For more

details, see Graves et al. (2009). The most popular method is Landmark

alignment method, used when a curve has a clear feature or landmark that

we can associate with a specific argument value h. We shall discuss this

method in more detail, since it is the method we will use in the next Chap-

ter to align the daily ozone curves.

Landmark alignment method removes phase variation by monotonically

transforming the argument for each curve so that points specifying the lo-

cations of the features are aligned across curves. Features or landmarks of

a curve may be maxima, minima and crossings of fixed thresholds, which

may be defined at the level of one or more derivatives. Notationally, we

can specify the location of a feature f for which f = 1, . . . , F as htf , which

can also be the argument values for each curve associated to the feature.

Assume that Wt is a transformation of curve Xt, then landmark alignment

is given in the form
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X∗t (h) = Xt[Wt(h)],

where X∗t (h) is the aligned curve and Wt is a strictly monotonic function

called warping function which defines the alignment. Through this defi-

nition, each aligned curve has identical argument values at the target lo-

cation h0f . In order to use the warping functions to align curves at the

same location, Wt must satisfy the following properties over the interval

[1,J]: Wt(h1) = h1, Wt(hJ) = hJ and Wt(h0f ) = htf for f = 1, . . . , F .

These properties ensure that the beginning and ending locations are already

aligned and that all the transformation occurs between those locations. We

refer to Chapter 4 for a further illustration with examples.

2.2.4 Functional Principal Component Analysis

Functional Principal Component analysis (FPCA) is one of the main stan-

dard inferential tools for the analysis of functional data. The core objectives

of FPCA are capturing the principal mode of variations on one side and di-

mension reduction on the other side. In order to understand FPCA, consider

a set of variables denoted by a vector X. Variation on X is often summarized

by either the covariance or the correlation matrix in multivariate context.

Then, the vector X is decomposed into components using the spectral de-

composition of symmetric (covariance/correlation) matrix (see Härdle and

Simar (2007) for multivariate statistics). The majority of multivariate PCA

theories carry over to the FPCA. Particularly, Mercer’s theorem (Indritz,

1963) provides an analogous spectral decomposition for functional data. As-

sume that a functional observation Xt(h), where h is observed in the interval

[1, J ], is a square integrable random function with mean µ(h)

µ(h) = E[(Xt(h)], for t = 1, . . . , T

and the covariance operator K(s, h)
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K(s, h) = Cov[Xt(s), Xt(h)] = E{[Xt(s)− µ(s)][Xt(h)− µ(h)]}.

We assume that there is an orthogonal expansion in terms of eigenfunctions

φl(h) for l = 1, . . . and the associated non-increasing eigenvalues λ1 ≥ λ2 . . .

to decompose K(s, h) in the form

K(s, h) =
∞∑
l=1

λlφl(s)φl(h), s, h ∈ [1, J ]. (2.14)

An important advance on the theory of FPCA is the Karhunen-Loeve ex-

pansion (Karhunen (1947); Loeve (1965)) which allows to express a random

curve Xt(h) as

Xt(h) =
∞∑
l=1

ξtlφl(h), h ∈ [1, J ], (2.15)

where the coefficients

ξtl =

∫ J

1
Xt(h)φl(h)dh,

are uncorrelated random variables with zero mean and variance λl. These

random variables are called principal component scores. Hence, Xt is de-

composed into orthogonal components with uncorrelated principal scores as

coefficients. The eigenvalues λl are a measure of the variation in Xt in the φl

direction. The aim is to retain only the first L eigenvalues and eigenfunctions

in Karhunen-Loeve expansion to capture the important modes of variations.

Hence, the FPCA can achieve dimension reduction. To motivate this further,

we choose the first eigenfunction φ1(h) to capture types of variation that are

very strongly represented by the data by maximizing the variance (λ1) of

the principal score ξtl subject to the constraint ||φ21(h)|| =
∫
φ21(h)dh = 1.

The second eigenfunction can be obtained similarly, find φ2(h) and com-

pute ξ2. The value ξ2 has maximum variance λ2, subject to the constraint

||φ22(h)|| =
∫
φ22(h)dh = 1 and additional requirement

∫
φ1(h)φ2(h)dh = 0.
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The idea here is that we seek the dominant mode of variation again, but we

require the second eigenfunction φ2(h) to be orthogonal to the first φ1(h),

so that they are presenting different information. With successive steps the

amount of variation explained will decline on each step.

In practice, the principal scores (ξtl) are popularly used to describe the im-

portant components of variations. They can be estimated by plugging the

estimate of eigenfunction φl(h) in the formula ξtl =
∫
Xt(h)φl(h)dh and

evaluating over the grid of points. This is the standard method in FPCA,

we shall show in Chapter 5 that the ξtl can be estimated as part of model

parameters in the Bayesian model setting. To choose the number of eigen-

functions, the share of estimated explained variance is often used. For illus-

tration, we shall consider ozone data coming from the city of Milan, Italy.

More elaboration and application on the data will be given in Chapter 4.

Now, let Xt(h) denote ozone curve recorded over the daily hour h ∈ [0, 24]

in the day t for t = 1, . . . , T . We want to retain only a few principal compo-

nents to highlight the dominant mode of variability across the daily hours.

We can rely on the traditional scree plot to identify the number of principal

components. Figure 2.3 shows that the first six principal components can be

deemed sufficient to describe the mode of variability observed in the original

functional data. The cumulative variance plot in the right panel shows the

proportion of variance against the associated component which suggests the

same conclusion as the scree plot.

The popular advantage of FPCA is its application in functional regression

models. Postponing details of functional regression models until Section

2.2.5, FPCA can be an important ingredient for the functional regression

models, since the response variable of a model can be specified as a function

of functional principal component scores of the predictor process. The idea

of using principal components of the predictors in place of the predictors was

first raised by Jolliffe (2002). The motivation is that in addition to dimen-
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Figure 2.3: The Scree and cumulative variance plots for the functional prin-

cipal component analysis of the Milan ozone data.

sion reduction, the retained principal components are uncorrelated, which

allows to resolve multicollinearity related issues caused by the presence of

multiple predictors that are potentially correlated. Shang (2014) points out

further practical advantages in the use of PCA for regression model. In the

functional data analysis context, Ramsay and Dalzell (1991) forwarded the

idea of using functional principal scores instead of the functional variable.

Since then FPCA has been used for several functional regression problems.

James (2002) presented a discussion to show how FPCA can be used to gain

insight into the relationship between the response and functional predictors

and applied it to standard missing data problems. James and Silverman

(2005) considered the decomposition of the predictor function into a sum

over its functional principal components for functional adaptive model es-

timation. Müller and Yao (2008) describe the use of functional principal

components in an additive non-linear structure rather than linear way to

explain the response variable. In a further advance, Di et al. (2009) and

Crainiceanu et al. (2009) introduced functional principal component scores

that can be used for multilevel regression models. The approach is also im-

plemented in the Bayesian framework (Crainiceanu and Goldsmith, 2010).
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2.2.5 Functional Regression Models

Functional regression models allow to describe the variability of a response

using covariates. Both the response and the predictor may be functional,

so there are three different scenarios: First, when the response variable y is

functional and the predictor X is scalar. Second, when both the response

and the predictor are functional, and the last scenario is when the response

is scalar and the predictor is functional. The first situation involves pre-

dicting functional response y(h) using multivariate covariates. Particularly,

a T-vector of smooth functions y(h) is related to known T by P design

matrix of covariates (X) by a linear combination of P parameter functions

β(h) which are to be estimated using the data. The general form of the

model is yt(h) = β(h)Xt + εt(h) where εt(h) is an independent realization

of stochastic process with mean zero and same bivariate covariance function

K(h1, h2). The P-vector parameter β(h) can be estimated using the least

square version of the model. For more detail, see Faraway (1997) and Sil-

verman and Ramsay (2005).

The second scenario constitutes a regression problem in which a function

Xt(s), for s ∈ [0, S], is used as predictor to explain the variation in the

response function yt(h), for h ∈ [0, H], through a linear model

yt(h) =

∫ S

0
Xt(s)β(s, h)ds+ εt(h), (2.16)

where εt(h) is a residual function and β(s, h) is the bivariate regression co-

efficient function. Assuming that both s and h are on the same interval

(S = H), three different cases can be identified: the first is yt(h) can be af-

fected by Xt(s) for a future time s > h. This situation is usually applicable

if the process is periodic (Malfait and Ramsay, 2003). The second case is

yt(h) can be affected by Xt(s) at the same time s = h, in this case the model

is called concurrent or point-wise, in the sense that Xt only influences yt(h)

through its value Xt(h) in contrast to the influence of Xt can involve a range
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of argument values Xt(s). The third case addresses when the behaviour of

y at time h depends only on the behaviour of X at times s ≤ h. This case

is the most common implementation of model (2.16), sometimes called the

’historical functional linear model’ named by Malfait and Ramsay (2003).

A well known application is that for an indicator of a patient’s recovery

y(h) which may depend linearly on the time course of treatment X(s) and

the association only involves times s ≤ h. Other applications and more

details are available in Bosq (2000), Cardot et al. (1999) and Ramsay and

Silverman (2002). Since our focus lies on modeling a scalar response and

functional predictor in the subsequent Chapters, we shall not provide any

more discussion on other scenarios.

Let Xt(h) for h ∈ [1, J ] denote the functional predictor and y = (y1, . . . , yT )′

represent the scalar response. The functional linear regression model which

assumes a linear relationship between the functional predictor and the re-

sponse is given by

yt =

∫ J

1
Xt(h)β(h)dh+ εt, t = 1, . . . , T, (2.17)

where β(h) is the coefficient function, εt is the error term. In practice, Xt(h)

is observed at a finite set of discrete time points. We may imagine simply

replacing the integral with a summation over the observed times and see

this as a finely discretized version of the functional model being considered.

However, this approach has two main issues: first it may lead to fit an

extremely high dimensional vector of coefficients, resulting in large or infinite

variance terms (Silverman and Ramsay, 2005). Second, the procedure fails

to make use of the intrinsic relationship between values of Xt observed at

close proximity (James, 2002). Instead, we use a basis expansion approach to

allow for the underlying smooth pattern. Then, both the covariate function

X(h) and the functional coefficient β(h) can be specified as
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Xt(h) =
L∑
l=1

ctlφl(h) = c′tφ(h) and β(h) =
K∑
k=1

bkθk(h) = b′θ(h),

where φl for l = 1, . . . , L and θk for k = 1, . . . ,K are basis functions forXt(h)

and β(h) respectively, ct is L - vector of coefficients (for more discussions on

estimating Xt(h), see Section 2.2.2). However, the real parameter of interest

is the K-vector parameter b which describes the dependence of the response

on the functional covariate. Now, we can re-write (2.17) as

ŷt =

∫ J

1
Xt(h)β(h)dh =

∫ J

1
[ctφ(h)]

[
θ(h)′b

]
dh = ctJφθb, (2.18)

where the L by K matrix Jφθ is defined as

Jφθ =

∫ J

1
φ(h)θ(h)′dh. (2.19)

The objective is to estimate b in order to recover the estimate of the func-

tional coefficient β(h). Recalling from Section 2.2.2 that the roughness

penalty approach allows the trade off between smoothness of the function

and the fit of the data, we can define the penalized residual sum of squares

(PSSE) by imposing a penalty term on β(h) as follows

PSSEλ(β) =

T∑
t=1

[
yt −

∫ J

1
Xt(h)β(h)dh

]2
+ λ

∫ J

1

[
D2β(h)

]2
dh. (2.20)

Using definition (2.19) for Jφθ and redefining Q from (2.13) as

Q =

∫ J

1
D2θ(h)D2θ′(h)dh,

the penalized residual sum of squares can be expressed in the form

PSSEλ(β) = ||y− cJφθb||2 + λb′Qb.

If we represent the coefficient matrix cJφθ by Z, the expression further

simplifies to
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PSSEλ(β) = ||y− Zb||2 + λb′Qb. (2.21)

Thus, the minimizing value b̂ satisfies

(
Z ′Z + λQ

)
b̂ = Z ′y. (2.22)

The smoothing parameter λ can be chosen using the cross-validation paradigm.

Once an estimate of β(h) is found, inferences can be made on the esti-

mated coefficient. Particularly, the variance of the estimated function can

be estimated in order to compute the point-wise confidence intervals. Using

specification (2.22), the variance of estimated b is

Var(b̂) = Var
[(
Z ′Z + λQ

)−1
Z ′y

]
, (2.23)

things are straight here, since the variance-covariance matrix computed from

the residuals is a scalar estimate σ2ε and the other factors are just constants.

Thus, the variance of b̂ is

Var(b̂) = σ2ε
(
Z ′Z + λQ

)−1
Z ′Z

(
Z ′Z + λQ

)−1
.

We have discussed the simplest form of linear functional regression problem

consisting of a scalar outcome and a single functional predictor. Extensions

of the model can be considered, for instance, when there are multiple func-

tional predictors and a mix functional and scalar predictors. In general,

functional linear models are a recent advance and they have crucial limi-

tations. All the above discussions are based on the assumption that the

response is Gaussian, hence the models are restrictive, and a full frame-

work to account several distributions is required. For example, in the next

Chapters we shall consider a functional pollutant curve to predict the daily

mortality counts and hospital admissions, needing to fit a Poisson regression

model. Some researchers have been actively working in this context.
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The functional generalized linear model (FGLM), the extension of the gen-

eralized linear model (GLM) of McCullagh and Nelder (1989), has been

proposed to model various distributional outcomes and functional predic-

tors. Müller and Stadtmüller (2005) put forward a method using a link

function g(.) to associate the expected value of the scalar response E(yt)

and a linear predictor for which the linear predictor is obtained by a scalar

product of the functional predictor Xt(h) and a smooth parameter function

β(h). A related work is presented by James (2002) by extending GLM to

handle functional predictors, and interpretable results are presented by de-

composing Xt(h) using functional principal component analysis. In Chapter

4, we shall adopt a functional generalized linear model in order to explain

the Poisson distributed hospital admission counts using the profile of daily

ozone curve without decomposing Xt(h).

Another limitation of the standard functional linear model is the linear-

ity assumption imposed on the dependence of the scalar response on the

functional predictor. The idea of GAM (see, Section 2.1.2) has been used

for functional data to allow a more flexible association of scalar response

and functional predictor. James and Silverman (2005) presented estima-

tion method to extend various models such as GLM and GAM when the

predictor is a functional observation. The method depends on a functional

principal components decomposition of the predictor function. Müller and

Yao (2008) proposed a functional additive model to replace the linear asso-

ciation with an additive structure, implemented through a projection on the

eigenbasis of the covariance operator of the functional components in the

model. These two are recent advances to establish more general and flexible

functional regression methods. However, these approaches rely on the func-

tional principal component decomposition. Mclean et al. (2014) argues that

a model that is additive in the principal component scores is not additive

in Xt(h) itself, and proposed a functional additive model which regresses on

the functional predictors directly. In Chapter 4, we shall follow this latest
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paradigm to examine the association between pollutant curves and hospital

admission data relaxing the linearity assumption.

2.3 Bayesian Statistical Method

The methods presented in this thesis so far have been related with the

frequentist statistical paradigm. The alternative statistical paradigm is the

Bayesian one. The Bayesian data analysis method estimates a parameter

using two sources of information: the observed data and information about

the parameter that is known before the data is observed. The information

from the observed data is represented by the likelihood f(y|θ), and the

prior knowledge about the parameter is given in the form of a probability

distribution f(θ), which is called prior probability distribution. The interest

in Bayesian method is to obtain an updated distribution for θ by combining

the prior knowledge about the parameter and the data. This can be achieved

using Bayes’ theorem

f(θ|y) =
f(y|θ)f(θ)

f(y)
=

f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

, (2.24)

where f(θ|y), the updated distribution, is called the posterior probability

distribution of θ. The Bayes’ theorem states that the posterior distribution

is proportional to the product of the observed data and the prior distri-

bution, since the denominator which depends only on the data, is simply a

normalizing constant. In the Bayesian statistics, the normalizing constant is

known as marginal likelihood, since it is the weighted average of f(y|θ) with

a weight function being the prior distribution f(θ). Hence, in a Bayesian

model, both the prior distribution and the likelihood must be fully specified.

The likelihood comes from the usual model specification, but the information

about the parameter in the form of prior distribution may not be available.

Thus, choosing plausible prior distribution is needed before embarking on

Bayesian modeling. Here, we present a review of the main classes of prior
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distributions.

2.3.1 Prior Distributions

The choice of prior distributions depends on a variety of situations. Tradi-

tionally, choice of prior has been influenced by computational issues. For

instance, computationally tractable posterior is obtained by adopting con-

jugate prior. This type of prior has the nice property of implying a posterior

of the same distributional family as the prior (Ntzoufras, 2011). This means

that the posterior distribution follows a known parametric form, making

computations simpler. However, in many occasions it may not be possible

to achieve a conjugate prior distribution. Furthermore, the emergence of

powerful and efficient computational algorithms means conjugacy may no

longer be the main driver in choosing a prior. When there is available infor-

mation or personal opinion about the parameter before the data is seen, this

can be incorporated in the model as prior information. Prior can also be

chosen to incorporate information about the model or study design (Berger,

1985). On the other hand, we may be prior ignorant and know nothing

about the parameter before fitting the model. Prior distributions can there-

fore belong to one of two classes: informative or noninformative.

Informative prior distributions reflect the case when substantial prior infor-

mation is available that can be turned into a probability distribution. The

information can be in the form of historical data, previous studies, expert

knowledge or following formal rules which express prior skepticism and op-

timism. Noninformative prior distributions, also called weakly informative,

diffuse or vague, are selected to reflect our ignorance about the parameter,

and the posterior is mainly driven by the data. The motivation is that we

may not wish to make use of prior knowledge for some reasons. For instance,

lack of any prior knowledge or we wish to make inference on the basis of

the data only and we want to let the data to speak for themselves without



2.3. BAYESIAN STATISTICAL METHOD 37

introducing external information. It must be recognized that when a nonin-

formative prior is preferred, we sometimes adopt an improper prior, that is,

f(θ) is not a probability distribution, since it does not integrate to 1, this

is generally accepted as long as it leads to a proper posterior. Otherwise,

the Bayesian analysis is not valid, since the posterior is not a probability

distribution.

2.3.2 Bayesian Hierarchical Models

Hierarchical models are increasingly important to model different types of

complex data, since they allow to capture aspects of the data that can be

interest to study. The Bayesian hierarchical model typically express the

model in multiple levels to estimate the parameters that are connected in

some way. The simplest form of Bayesian hierarchical model is to model the

data y conditional on a parameter θ and this parameter is in turn described

by a probability distribution with the underlying parameter α. The param-

eter α is called hyperparameter. These concepts of Bayesian hierarchical

models are popularly used when the data are grouped. In this type of ap-

plication the parameter θ will be group specific to describe a specific group

and α can be treated as overall parameter. For example, we may have t

observations within each of G groups. Assume that the data are distributed

within groups according to some distribution with group varying parame-

ters (θg). We assume that the group varying parameters (θg) come from a

common distribution with shared parameter α. A posterior distribution for

all unknown parameters is

f(θg, α|y) ∝ f(y|θg, α)f(θg|α)f(α).

Here, θg have the prior distributions f(θg|α), they are conditional on an-

other parameter α (hyperparameter) which has its own prior f(α) (called

hyperprior). The product of the last two terms yield a joint distribution

of f(θg, α), this is the marginal joint distribution of the two parameters,
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which is in turn multiplied by the distribution of the data. By the Bayes’

theorem, this gives the joint posterior distribution of the parameters. In

principle, we can specify a model with any number of levels by introducing

more hyperprior distributions. However, Bayesian hierarchical models that

have greater than three levels involve interpretation issue (Gill, 2007). A

further discussion of Bayesian hierarchical model is available in Chapter 5,

where we incorporate the ideas of this section in the functional hierarchical

modeling procedure.

2.3.3 Markov Chain Monte Carlo (MCMC)

In the Bayesian analysis, when the prior and the likelihood are conjugate,

the posterior distribution of a parameter can be found analytically. In more

general situations, often the parameter space is high dimensional and com-

puting the integrals becomes extremely prohibitive. Thus, to learn about

a particular parameter θq from p dimensional parameter space θ1, . . . , θp,

we wish to summarize the marginal posterior of θq given the data, which

involves integrating out all the parameters except θq

f(θq|y) =

∫
f(θ1, . . . , θq−1, θq+1, . . . θp|y)dθ1 . . . dθq−1dθq+1 . . . dθp,

the posterior distribution needs to be estimated using sampling algorithms.

The Markov Chain Monte Carlo (MCMC) method is widely used sampling

algorithm to simulate samples from the posterior. The Markov Chain Monte

Carlo do not require integration, it uses simulation procedures to simulate

repeatedly from the joint posterior of all parameters. We shall present here

a brief review of Markov Chain Monte Carlo, for a more detailed discus-

sion, see Gill (2007) and Gelman et al. (2003). The foundation of Markov

Chain Monte Carlo is based on two methods: the Monte Carlo simulation

and Markov Chain sampling. The Monte Carlo simulation is a method used

to calculate numerically integrals of complex function. The idea in Monte

Carlo simulation is to simulate random values which are assumed to be
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from the correct distribution, then use these generated empirical values to

approximate the unknown integral quantity. The key assumption in the use

of Monte Carlo simulation is that with large number of independent simu-

lated values, the Monte Carlo approximation will converge to the true values.

This is guaranteed by the strong law of large numbers. On the other hand,

the theory of Markov Chains for a stochastic process is that future states

are independent of past states given the present state. Thus, the Markov

property ensures that the simulated sample values form a chain are slightly

dependent on the previous one. The chain wanders around the parameter

space, remembering only where it has been in the last period. The transition

kernel or transition function governs the probability of moving the chain to

some other state based on the current state (Albert, 2007). The Markov

Chain Monte Carlo therefore simulates draws that are slightly dependent.

The transition kernel is defined so that the ergodic distribution of the chain

is the distribution we want to simulate from, that is the posterior. We then

take the draws and compute quantities of interest for the posterior distri-

bution. In Bayesian statistics, there are generally two Markov Chain Monte

Carlo algorithms that can be used to draw samples: the Gibbs sampler and

the Metropolis-Hastings (MH).

The Gibbs sampler (Geman and Geman (1984)) draws successive samples

from the full conditional probability distribution of each parameter in turn,

conditional on the current values of the other parameters and the data. The

conditional distribution of θq is

f(θq|y, θ1, . . . θq−1, θq+1, . . . θp).

However, to determine the conditional distribution of θq, the joint distri-

bution must be known. The Hammersley-Clifford theorem (Robert and

Casella, 2004) is used as the foundation to obtain the joint distribution from

knowledge of the conditional distribution. Thus, the full conditional distri-
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bution for each parameter is the distribution of the parameter conditional

on the data and all the other parameters. The Gibbs sampler sampling

procedure can be summarized as follows

1 . Choose a vector of initial values θ(0)

2 . Draw a value θ
(1)
1 from the full conditional f(θ1|θ(0)2 , . . . , θ

(0)
p ,y)

3 . Draw a value θ
(1)
2 from the full conditional f(θ2|θ(1)1 , θ

(0)
3 , . . . , θ

(0)
p ,y).

Here,the updated θ
(1)
1 from step 2 is used. Step 3 is repeated for the

remaining parameters.

4 . Draw θ
(2)
1 from the full conditional f(θ1|θ(1)2 , . . . , θ

(1)
p ,y)

5 . Draw a value θ
(2)
2 from the full conditional f(θ2|θ(2)1 , θ

(1)
3 , . . . , θ

(1)
p ,y).

Repeat step 5 for the remaining parameters by continually using the

most updated values.

6 . Repeat the process until we get M draws for each parameter.

The idea is then to regard the final part of the chain as an identically in-

dependently distributed sample from the posterior distribution. The Gibbs

sampler fails when the full conditional distributions can not be obtained.

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)

provides a method to sample from the posterior distribution without the

need to determine the full conditionals. The approach is based on randomly

proposing a new value θ∗ for the parameter. If this proposed value is ac-

cepted according to a specified acceptance criterion, then the next value

in the chain becomes the proposed value θ(m+1) = θ∗. If the proposal is

rejected, then the previous value is retained θ(m+1) = θ(m), and another

proposal is made and the chain progresses by assessing this new proposal.

The most common way to create proposal values is to add a random variable

to the current value: θ∗ = θ(m) +Q. If we wish to make θ∗ closer to θ(m), we

could choose Q from a standard normal distribution with a relatively low
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variance. If we wish all proposals within one unit of the current value to be

equally likely, then we can use the uniform distribution Q ∼ U [−1, 1]. In

either case, the probability distribution of Q is known as proposal density.

The acceptance criterion is given in the form

θ(m+1) =

θ
∗, if U < a

θ(m), otherwise

where U is a randomly drawn from a uniform distribution between 0 and 1,

and a is acceptance probability, which can be given as

a = min

{
f(θ∗|y)

f(θ(m)|y)
.
Q(θ(m)|θ∗)
Q(θ∗|θ(m))

, 1

}
,

under the original Metropolis algorithm constraints, the two conditionals

can be symmetric, that is Q(θ(m)|θ∗) = Q(θ∗|θ(m)), in that case a can be

simplified to

a = min

{
f(θ∗|y)

f(θ(m)|y)
, 1

}
.

Whatever Markov Chain Monte Carlo algorithm has been used, exploratory

analysis is often conducted to monitor if the draws are approximately from

the posterior distribution. This includes assessing the convergence of the

algorithm to the target distribution so that the chain is actually drawn from

the posterior. Part of the convergence assessment is to investigate if the

chain has sufficiently explored the entire posterior distribution. Usually, we

need to ensure that the chain is long enough, since the chain is not immedi-

ately taken from the posterior distribution, rather we have to wait until the

sampling distribution has converged to the posterior. The initial part of the

chain (called burn-in) is therefore not representative for the posterior, and

can be avoided when computing the posterior summary measures. Thus,

we need to determine the size of burn-in as part of convergence assessment.

In general, the convergence can be assessed using graphical and formal di-
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agnostic techniques. The graphical techniques include plots of Trace, Au-

tocorrelation and Running mean. The details of the graphical techniques

are available in Albert (2007). The formal diagnostics include the Geweke

(Geweke et al., 1991) and Brooks-Gelman-Rubin diagnostics (Gelman and

Rubin, 1992).

2.3.4 Inference

Bayesian inference about a parameter θ can be made using the Markov Chain

Monte Carlo sample once the convergence assessment methods ensured that

the Markov chain is drawn approximately from the true posterior. To make

an inference, we need to compute posterior quantities of the Markov chain

to summarize the posterior distribution. The posterior summaries of θ are

a point estimate such as the mean, median or mode. Often, the mean or

the median is widely used, the choice between the two is dependent on the

nature of the posterior density. The posterior mean is the common approach

in most cases. However, the posterior median is preferred if the distribution

is skewed. By definition, the posterior mean is computed from the posterior

distribution f(θ|y) as

E(θ|y) =

∫
θf(θ|y)dθ.

However, in many situations the integrals can not be computed analyti-

cally, and we have a Markov chain which is drawn from the posterior using

appropriate Markov Chain Monte Carlo algorithm. Let assume that our

Markov chain have T sample values after burn-in which are drawn from the

posterior, then the mean is

E(θ|y) ≈ θ̄ =
1

T

T∑
t=1

θt.

The posterior variance is used to specify the uncertainty in the parameter.

The variance is also crucial to make Bayesian inferences in terms of credible

intervals. The credible interval is the analogue of the concept of confidence
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interval used in classical statistics. The posterior variance can be computed

as

Var(θ|y) ≈ σ2θ =
1

t− 1

T∑
t=1

(θt − θ̄)2.





Chapter 3

The Problem and Modeling

Issues

In this Chapter, we shall motivate the main problems in more detail, and

outline common issues which are encountered in estimating the association

between exposure to pollutants and health. We start by presenting a general

description of data commonly used in pollutants and health studies, Section

3.2 focuses on the main issues which are the core of the work presented

in this thesis. Section 3.3 illustrates some issues which commonly arise in

estimating the health effect of exposure to pollutants and gives directions

on how these will be addressed in the subsequent Chapters.

3.1 Data Description

Environmental pollutant exposure studies use data which typically consists

of health data, the measurements of pollutants concentration and various

confounding variables including a measure of weather conditions. The health

data includes daily counts of hospital admission (Morbidity) or death (Mor-

tality). Such health data are usually collected by medical facilities and

should be classified for list of causes using internationally accepted stan-

dards. The classification is used to identify the causes of the admission
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or the mortality. Particularly, to study the health effects of exposure to

pollutants, the total non-accidental causes are commonly used as health

outcome variables. However, there are studies which use cause-specific out-

comes such as respiratory (Mudway and Kelly, 2000) or cardiovascular issues

(Shah et al., 2013). In Chapter 4, we use non-accidental hospital admission

from city of Milan, Italy as health outcome variable and in Chapters 5 and

6 the outcome variable will be mortality from 15 different cities of the USA.

A common issue in those type of health data is the presence of a seasonal

trend, which needs to be adequately addressed before fitting a model. Sec-

tion 3.3.3 assesses seasonal trend in the outcome variables which would be

modeled in the subsequent Chapters.

The commonly studied pollutants for their impacts on health are Carbon

Monoxide (CO), Nitrogen Dioxide (NO2), ground level Ozone (O3), Par-

ticulate Matter (PM) and Sulphur Dioxide (SO2). The concentrations of a

pollutant is typically measured using the metric of micrograms per meter

cube (µg/m3). Among these pollutants, ozone and particulate matter are

frequently studied in different regions of the world. Ozone is the main pol-

lutant studied in the remainder of this thesis, and Section 3.2 gives greater

detailed discussion about ozone. Particulate matter is a complex mixture of

small particles and liquid droplets including acids and other organic chem-

icals. The concentrations of particulate matter are measured in two dif-

ferent metrics: (PM2.5) and (PM10) to denote particles that are less than

2, 5µg/m3 and 10µg/m3 in diameter respectively. Particulate matter is usu-

ally included in the studies of exposure to ozone and health as confounder,

since any observed relationship between ozone and health may reflect Partic-

ulate matter effect. Thus, the models in Chapter 4 accommodate the effect

of particulate matter for the dependence of health on ozone. The Chapter

did not include the other pollutants, since too many pollutants associated

with health outcomes are frequently correlated to each other (Levy et al.,

2005). Further, the health effect of the other pollutants is generally ignored
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(Bell et al., 2005). Chapters 5 and 6 consider only the health effect of ozone,

since the concentrations of particulate matter including the other pollutants

are missing in the majority of the study days.

Commonly included covariates as confounding are related to weather con-

ditions. Such measures include temperature, dew point temperature and

humidity. These measures are used to remove the influence of weather from

the estimated pollutant effect on health. Temperature is the most commonly

included covariate in pollutants and health studies, and its effect on health

is widely studied (Armstrong, 2006). The daily measure of temperature is

often given in the form of daily maximum or average. Figure 3.1(a) reports

daily maximum temperature against hospital admission for the city of Mi-

lan in the years 1996-2002. The Figure shows high mortality rate at more

extreme temperature (low and high). This type of ’U’ shaped temperature

effect is commonly estimated (see for example, Armstrong (2006)), other

researchers have obtained ’N’ shaped estimate (see for example, Pauli and

Rizzi (2006)). To capture this inherent pattern, temperature is include as

smooth function (see Section 2.1.2) into the regression model rather than as

a linear effect.

In the remainder of the thesis, we include a smooth function of daily maxi-

mum temperature in the models. In addition, categorical covariates day of

the week and calendar year will be included in our analysis. Inclusion of day

of the week allows different baseline health outcome within each day of the

week, and calendar year is typically used to protect the association between

pollutant and health from confounding by longer-term trends due to changes

in health status, influenza epidemics and seasonality. Their inclusion in the

studies of pollutants and health have been widely advocated (Staniswalis

et al., 2009; Dominici et al., 2000). Figure 3.1(b) displays the distribution

of hospital admission data for the city of Milan across day of the week.



48 3. The Problem and Modeling Issues

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

● ●●

●

●
●●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

● ●

●

●●

● ●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●
●

●

●
●

●

●● ●

●

●
●

● ●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ● ●

●

●

●

●

●

●
● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

15 20 25 30 35

20
40

60
80

10
0

a

temperature

ad
m

iss
io

n

●

●

●

●

●

●

●
●

Sunday Tuesday Thrusday Saturday

20
40

60
80

10
0

b

day of the week

ad
m

iss
io

n

Figure 3.1: The relationship between the daily maximum temperature and

the number of hospital admission (a), where the shape of the relationship is

indicated by the bold red line. The distribution of hospital admission across

the day of week (b).

3.2 The Problem

Ground level ozone (O3) is a potent environmental pollutant and can cause a

variety of health problems including asthma and other lung diseases. Ozone

is a secondary pollutant, that is the primary pollutants such as hydrocar-

bons and nitrogen oxides which are direct products of combustion, undergo

a chemical reaction in the atmosphere in the presence of sunlight to form

ozone. The process of ozone formation is therefore a continuous process,

which follows different daily fluctuations exhibiting strong daily patterns

(Gao, 2007). The concentrations of ozone are usually measured by a net-

work of fixed number of monitoring sites in a particular study region. Each

monitoring site typically measures hourly throughout the day, which leads

to 24 measurements of pollutant concentrations for a day. Some researchers
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study the between site variability within the study regions. However, the

majority of studies focus on estimating the effect in the region by aggregat-

ing the hourly measurements of each site. Thus, for a given study region

or city there is a T × 24 matrix of measurements, which relate to the T

days of the study. The effect of ozone is likely to be detected in the sum-

mer time (June - July - August) rather than the whole year. During the

summer time, the concentrations of ozone could potentially reach unhealthy

levels, since the presence of a relatively strong sunlight drives the formation

of ozone. All our analyses will therefore be limited to the summer periods.

For example the hourly distributions of ozone for city of Washington DC

is displayed in Figure 3.2. The Figure shows a typical summer time hourly

ozone concentration. There is a clear pattern for which the concentrations

reach maximum in the afternoon hours, and measurements remain low in

the morning and night hours.
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Figure 3.2: The distribution of hourly ozone concentrations for city of Wash-

ington DC.
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Despite the advances in ozone monitoring and recording, there continue to

be gaps in analyzing the monitored data (Seinfeld, 1991). One main issue

in this regard is the method to measure human exposure to ozone. Sys-

tematic modeling that takes into account the daily patterns of ozone has

been particularly rare. Despite the availability of the hourly measurements

from monitoring networks, studies collapse the hourly measurements into

single daily summaries. The most frequently used daily summary figures

are the average and maximum of the 24-hour measurements. Other point

summaries have also been used such as 8-hour maximum (Goldberg et al.,

2001; Marr and Harley, 2002). These summary figures lead to the use of the

classical statistical methods such as the generalized linear models (GLM)

and the generalized additive models (GAM) which are discussed in Section

2.1. However, these daily summary figures are rough synthesis of the hourly

measurements of pollutant concentrations and they totally disregard the

temporal variability observed in the daily concentrations. Further, the daily

summaries may not be representative of the actual personal exposure to indi-

viduals, since they are likely to ignore the portion of the time spent outdoor.

There have been rare methodological analyses that address the problems in

using daily scalar summaries to represent exposure. Gao (2007) proposed

the full use of all hourly measurement of a day to study differences of ozone

concentrations across days of the week, but ozone and health outcome rela-

tionship was not part of the study. Staniswalis et al. (2009) adopted histori-

cal functional model to examine the effects of Particulate Matter (PM2.5) on

daily mortality. They showed that the highest association between particu-

late matter mass concentration and daily mortality was found to occur in the

morning when particulate matter concentrations peak. Chiogna and Pauli

(2011) addressed the issue by defining a number of alternative measures of

ozone which help to account for different features of the daily patterns and

then employing variable selection methods to determine which features are

more relevant. They concluded that the common daily summaries may not
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be the best choice compared to other measures such as the area of the con-

centration curve above a certain threshold. However, the technique still rely

on some form of data reduction: the hourly measurements being collapsed

to two or three summaries. Our proposal (Arisido, 2014) uses the functional

regression approach which is discussed in Section 2.2. The method effec-

tively accounts for the daily fluctuations of the pollutant. We will discuss in

the next Chapter that our approach has superior predictive accuracy than

the standard methods in terms of predictive performance measure.

The other main limitation of studies examining the association between

health outcomes and exposure to pollutant concentrations is modeling spa-

tial heterogeneity when data are coming from multiple geographic locations.

Most of these studies estimated a statistically significant effect of exposure

to pollutants. Such effect has been estimated at various geographic regions

and it is spatially heterogeneous (Gryparis et al., 2004), a circumstance that

may be due to many factors, for instance differences in the industrialization

levels of the locations or their weather conditions. To resolve the issue, meta-

analysis (Dumouchel, 1995; Clayton et al., 1993) and Bayesian hierarchical

models (Dominici et al., 2000) have been considered as more appropriate

methods to assess health effect of exposure to pollutants. These meth-

ods have been advocated to obtain pooled estimate and unbiased location-

specific estimates by sharing information across the different locations. For

instance, Ji et al. (2011) conducted a meta-analysis of short-term ozone ex-

posure and respiratory hospitalizations to evaluate variation across studies.

Dominici et al. (2000) applied the hierarchical methodology to pool the esti-

mates of the pollutant effect from the largest 20 USA cities, and Richardson

and Best (2003) briefly re-considered this same application. However, these

multi-study or -location methods for combining the estimated effects from

exposure to pollutants depend on the daily summary measures of pollutant

concentration to represent daily exposure, thus ignoring the daily variation

of the pollutant.
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We wish to extend the functional regression model to the functional hi-

erarchical approach to model data from different geographic regions. The

standard hierarchical regression models are well established to deal with

a hierarchical or multilevel data. Although functional regression models

are increasingly popular to model observations which are represented by

functions, there has been rare progress in developing methods that can be

used when the observed functions are organized in hierarchical fashion. In

fact, the linear functional regression models which are discussed in Section

2.2.5 are not fully developed yet. For example, the excellent monograph for

functional data analysis presented by Silverman and Ramsay (2005) which

provides a wide range of functional data analysis approaches, allows to fit

a functional regression model only to Gaussian outcomes. Some relevant

extensions have been made in both frequentist and Bayesian point of views.

Di et al. (2009) introduced a multilevel model in the context of functional

principal component analysis, which is designated to extract the intra- and

inter-subject components of multilevel functional data. A similar idea was

implemented in Crainiceanu et al. (2009) to model multi-visit patient data

in cohort study and the approach was extended to Bayesian paradigm by

Crainiceanu and Goldsmith (2010). We shall propose the functional version

of the Bayesian hierarchical model framework in order to estimate pollutant

effects accounting for geographic variation. Further, the method can allow

us to combine functional information across different cities. This approach

is presented in Chapter 5.

3.3 Issues in Pollutants and Health Studies

In the studies of pollutants and health, researchers have been committed

to estimating the health effect of exposure to pollutants, and any critique

on the estimated effect have been directed to the statistical methods used.

However, there are other issues which can influence the estimated effect.

In this Section, we briefly discuss the main issues: overdispersion, model
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selection, autocorrelation and lag.

3.3.1 Overdispersion

A basic issue underlying the use of models for Poisson distributed data is

the presence of overdispersion. Under the Poisson assumption, the vari-

ance is completely determined by the mean, Var(yt) = µt. In practice, the

variance of a count response may be greater than its mean. The existence

of more variability than assumed by the mean-variance relationship of the

model is called overdispersion (McCullagh and Nelder (1989) and Wedder-

burn (1974)). When the data are overdispersed, the variability is under-

estimated, which leads to under coverage of confidence intervals. Different

proposals have been put forward to tackle the issue. Several researchers re-

lax the mean variance equality assumption by introducing an overdispersion

parameter φ, such that Var(yt) = φµt. This approach allows the counts

yt to have variances that might exceed their means µt. Gelman and Hill

(2006) provided a method to estimate the overdispersion parameter φ using

residuals. Ruppert et al. (2003) addressed the issue of overdispersion in the

framework of random effects models. For more discussions of overdispersion

in pollutants and health studies, see Peng and Dominici (2008). To investi-

gate overdispersion in our datasets, we shall use the standardized residuals

computed as

yt − ŷt√
ŷt

, (3.1)

where ŷt denote the fitted values. If we observe that these residuals have a

dispersion larger than 1, this may indicate existence of extra variation than

assumed by the Poisson model. The distributions of the standardized resid-

uals in our models are fairly normal with mean zero and standard deviation

1 and the size of the residuals is between -2 and 2. The estimate of φ in our

model computed from the standardized residuals is 1.05, implying that there

is no serious overdispersion. For this reason, the models in the reminder of
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this thesis use the Poisson assumption.

3.3.2 Model Selection

The objective in this section is to briefly discuss the methods used for model

selection in the studies of pollutants and health when there is a set of can-

didate models. The choice of criterion to select the best model among the

candidates depends on the statistical method used to model health effect of

exposure to pollutants. For instance, if the effect of exposure is estimated

using generalized linear models, then the deviance is mostly used. By def-

inition, the deviance is twice the difference between the log-likelihood for

the saturated model and the log-likelihood for the present model, meaning

that it allows to compare the goodness of the fit of the present model with

the fit of the saturated model. Thus, the deviance can be computed for any

specific generalized linear model. For Gaussian linear regression models, the

deviance is the classical residual sum of squares. For Poisson outcome data,

the deviance can be computed as

D(y; ŷ) = 2
T∑
t=1

[
yt log(

yt
ŷt

)− (yt − ŷt)
]
. (3.2)

For a more detailed specification and discussions of deviance, see Ruppert

et al. (2003) and McCullagh and Nelder (1989). If the health effect of ex-

posure is estimated using generalized additive models (GAM), two criteria

are suggested (Wood, 2006) for model selection and choosing the degree of

smoothness of non-linear components: the unbiased risk estimate (UBRE)

or the generalized cross-validation (GCV). Estimating the smoothing pa-

rameter λ depends on the specific distribution of the response y. When the

dispersion parameter φ is known, for example, Poisson distributed data, we

can base model selection on UBRE, which is given in the form

D

T
+ 2

P

T
,
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where D is the deviance, T is the number of observations and P is the total

degrees of freedom. The lower the UBRE score, the better the model is

in explaining the response by the given predictors. When the dispersion

parameter φ is unknown, the generalized cross-validation (GCV) is used for

model selection. The GCV score is given as

TD

(T − P )2
(3.3)

Further discussions on GCV is available in Golub et al. (1979), Hastie and

Tibshirani (1990) and Wahba (1990).

3.3.3 Autocorrelation

The health outcome data in pollutants and health studies are often mor-

tality or morbidity time series data. Exploratory investigation of such data

can be performed to identify whether there are patterns or seasonal trends.

Particularly, neighbouring values the data are more similar than those far

apart (Brockwell and Davis, 2002). This feature can be examined in any

time series data using autocorrelation function. The autocorrelation func-

tion (ACF) indicates the strength of correlation between successive values.

The function is given usually in the form of

acf(k) =
1

T

T−k∑
t=1

(yt − ȳ)(yt+k − ȳ)/c(0) (3.4)

where

c(0) =
1

T

N∑
t=1

(yt − ȳ)2,

the value k indicates the lag of the variable. The autocorrelation function

can be plotted against the lag k. In this thesis, we model time series data

from Milan, Italy and 15 USA cities. The former dataset contains morbidity

to measure health risks and the latter contain daily mortality counts. The
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presence of significant correlation in these datasets can be an issue. The

autocorrelation function reported in Figure 3.3 shows that the morbidity

counts in Milan and the daily mortality in New York contain correlation

between successive counts.
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Figure 3.3: Autocorrelation function (ACF) computed from daily hospital

admission for the city of Milan in the summer periods of years 1987-2000

and 15 USA cities daily mortality of the summer periods of years 1987-2000.

The New York and Milan ACF plots indicate the presence of correlation.

One way to resolve the presence of autocorrelations in modeling environ-

mental exposure and health is to include adjustment predictors (Peng and

Dominici, 2008), for example seasonality or meteorological measures. In

the reminder of this thesis, we shall include the seasonality adjustment pre-

dictors such as calendar year to control the confounding effects of season in

modelling the association between health outcomes and the pollutant ozone.
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3.3.4 Lag

The adverse effect of exposure to a pollutant may not occur immediately. For

this reason, measure of pollutant exposure is lagged by a number of days.

Some studies still report the health impacts of exposure to the pollutant

measured at the same day (Moolgavkar et al., 1995). When the interest is

to look for an association in the following days, it is advisable to report the

findings for a number of lags. However, if the number of lags is relatively

high and the exposure measure in different lag is serially correlated, this

makes the model susceptible to multicollinearity related issues. Zanobetti

et al. (2000) suggested to use distributed lag model (DLM) to restrict the

estimated parameters to being a low degree polynomial in the lags. The

distributed lag model can be reordered more flexibly using nonparametric

smoothing through spline functions (Corradi, 1977). There is no single lag

that has been consistently used, Zeger et al. (2000) suggested that anywhere

between zero and five days is appropriate. In the following chapters, we shall

use up to three days lag, that is, we assume that the pollutant effect persist

up to three days after exposure. We shall also investigate whether it is likely

to persists more than three days.





Chapter 4

Functional Data Analysis for

Pollutants and Health

In Chapter 3, we have illustrated issues in the use of daily summary mea-

sures, which are obtained by collapsing the daily pattern of pollutant con-

centration, to represent daily exposure. In this Chapter, we tackle these

issues, and propose a more representative daily exposure using functional

data analysis. We adopt the corresponding functional regression models to

estimate health effect of exposure accounting for the temporal variation of

the pollutant. The remainder of this Chapter is organized as follows, Sec-

tion 4.1 discusses the motivation of the work in more detail. Section 4.2

describes the Milan pollution data set. Section 4.3 outlines the functional

data analysis method to estimate a function from the discrete hourly mea-

surements of ozone. Section 4.4 describes aligning the ozone curves using

features from the curves. Section 4.5 discusses functional regression ap-

proach to predict health outcome using the functional exposure measure.

Section 4.5.1 presents the results of the model. Section 4.5.2 compares the

predictive performance of our approach and other candidate models which

are commonly used and finally, Section 4.6 provides concluding discussions.
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4.1 Motivation

One of the main challenges involved in environmental studies of human ex-

posure to ground level ozone has been the approach used for measuring

daily exposure to the pollutant to estimate the association between short-

term effect of ozone and health. Studies usually collapse the hourly moni-

tored ozone concentration to a single daily summary measures and estimate

health effect of exposure by regressing day-varying heath outcome against

day-varying summary measure of ozone. This simplistic approach has severe

limitations (see, Section 3.2). In this Chapter, we adopt Functional Data

Analysis (FDA) to treat all hourly measurements of a day as one function.

The functional form of ozone incorporates all hourly discrete measurements

accounting for the temporal variations, and aids to uncover important fea-

tures in the daily concentration curve that might not be observed from the

discrete hourly observations. Hence, we assume that a daily smooth concen-

tration curve represents a measure of daily exposure to the concentration

of that particular day. We then adopt functional regression techniques to

estimate the effect of the exposure using the concentration curve as predic-

tor and hospital admission as health outcome. We explore how the total

daily admission counts depends on the specific features of the ozone pro-

file of a day. We compare our approach with that of the traditional daily

summary measures and other suggested approaches using out-of-sample pre-

dictive study. For application, we use data from city of Milan, Italy in the

summer periods of the years 1996-2002.

4.2 The Milan Data

The data set used in this Chapter is from the city of Milan, Italy and

comprises the concentrations of pollutants, daily hospital admission, sea-

sonal and weather condition variables for the summer periods (June-July-

August) of the years 1996-2002. The concentrations of Pollutants and
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Figure 4.1: Boxplot of hourly ozone concentrations recorded for the summer

months 1996-2002 (left) and the geographic map of region Lombardia, its

capital city Milan (right).

weather conditions were obtained from the regional agency for environmental

protection (ARPA) of Lombardia (Figure 4.2, right). The agency collects

hourly concentrations of pollutants from the monitoring network stations

in the region. Further details can be obtained from the agency web page

(http://www.arpalombardia.it/qaria/). We only obtained the hourly ozone

concentrations, the other pollutants and temperature data are given in the

form of daily summary statistics. The left panel of Figure 4.2 displays sum-

maries of the hourly ozone measures for the study period, we notice a clear

daily pattern with the peak of the ozone concentrations observed in daily

hours from 2 pm to 5 pm.

Daily hospital admission data was obtained from the regional health infor-

mative system for all hospitals located in the city of Milan. In order to

consider events related to health episodes potentially connected to ozone,

we ignored records related to surgical events, those scheduled to last less

than one day and events for which the reason for admission was not spec-
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ified. Figure 4.2 reports the distribution of hospital admission data across

calendar year and month.
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Figure 4.2: The distribution of hospital admission across calendar year and

the summer months within the calendar year for city of Milan, Italy.

4.3 The Ozone Functional Data

Using the functional data analysis method (Section 2.2), we shall repre-

sent the discrete hourly measurements of ozone data as functions. Let

X̃t1, . . . , X̃tJ be the discrete hourly ozone concentrations in the day t for

t = 1, . . . , T measured at daily hours hj for j = 1, . . . , J = 24. Let the

functional representation be denoted by Xt(h), the function is estimated by

Xt(h) =

K∑
k=1

ctkφk(h), (4.1)
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Figure 4.3: Sample of 20 ozone functional data (left) and the same ozone

functional data after alignment using hour at which the ozone concentrations

of a function is maximum (right).

where φ1(h), . . . , φK(h) are B-spline basis functions, ct1, . . . , ctK are the co-

efficients of the B-spline basis associated to day t. Coefficients ctk are es-

timated using the roughness penalty approach (O’Sullivan, 1986) (Section

2.2.2), selecting the smoothing parameter by generalized cross-validation

(GCV, Golub et al. (1979)). We implemented the technique to the Milan

ozone data using 18 B-spline of order 5 basis functions (K) and the smooth-

ing parameter λ chosen by GCV is 10. Here, other number of basis functions

and order can be selected, but the chosen λ could change to accommodate

the difference. The total number of functional observations estimated is 599,

which is the number of days included in the study. The left panel of Figure

4.3 shows a sample of 20 functions.

4.4 Aligning Ozone Functional Data

In Section 2.2.3, we presented general discussion about function alignment

methods. In this section, we illustrate aligning of the ozone functional ob-
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servations. Our sample of functions in the left panel of Figure 4.3 display

observable common features or landmarks. These common features include

the daily maximum and minimum ozone concentrations. The idea is to ex-

plore variation with respect to specific features of the ozone curves. We

consider the daily maximum as feature of interest, the functions reach max-

imum concentrations at different daily hours. This indicates that while the

overall process of ozone shares common features between days, the time

point of the maximum varies from day to day. We are interested to com-

pare the daily variability of ozone concentrations at their respective hour

where the concentrations reach maximum. To achieve this, the functions

must exhibit their respective peak at the same time point. For instance,

if the functions X1(h) and X2(h) exhibit their peak at two different hours,

then the functions can not be compared at a particular same hour. We then

wish to align the functions to have the maximum ozone concentrations at

the same time point. We require a target time point to align the maximum

of each curve to the target time point. We define the target time point

as the average of the hours at which the daily ozone concentrations reach

maximum.

Formally, the maximum of each function is aligned to the target time point

using X∗t (h) = Xt[Wt(h)], where X∗t (h) is the aligned function and Wt(h)

is called time-warping function. To ensure the alignment of the maximum

of each curve to the target time point, conditions are imposed on Wt(h)

(see Section 2.2.3). The right panel of Figure 4 displays the same sample

of 20 functional observations after alignment. The functions are aligned

approximately at daily hour 3 pm which is the target location at which

ozone concentrations reach maximum on the average. These aligned ozone

functions will be used as a predictor in the next Section to assess the effect

of the aligned ozone on health. In principle, other important features can

be selected as a target time point instead of daily maximum. In pollutants

and health studies, the average concentrations, threshold and the minimum
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concentrations can also be considered. In this context, we shall present

a model for which the ozone functions are aligned at the daily minimum

and average, then the models would be compared with the model which

uses alignment at the daily maximum in order to recognize whether the

functions are aligned fairly at the most plausible time point to capture the

variation observed in the functions.

4.5 Functional Regression Models

The response variable yt denotes hospital admission in the day t. The Pois-

son log-linear model which is specified in (2.2) assumes

Yt ∼ Poisson(µt), for t = 1, . . . , T (4.2)

and uses daily summary of ozone concentration as exposure measure. In-

stead, we wish to measure daily exposure to the pollutant using a daily

ozone function Xt(h) as obtained in (4.1) to allow for the daily pattern of

the concentrations. Thus, a functional generalized linear model (FGLM), the

extension of the standard generalized linear model (McCullagh and Nelder,

1989), is adopted to the case in which the predictor is functional ozone and

the response is scalar hospital admission. The model is given by

logµt =

∫ J

1
Xt(h)β(h)dh, (4.3)

where β(h) is a functional parameter which describes the association between

exposure to ozone measured as function Xt(h) and hospital admission at

daily hour h. The parameter β(h) gives the weight placed on the predictor

Xt(h) at each time of the day in determining the value of the response. For

example, the estimate of the value of β(h) evaluating at the daily hour 2

pm describes the contribution of the ozone concentrations measured at 2

pm on daily hospital admission. The function β(h) is the analogue of the

scalar coefficient β in generalized linear model (2.3). To estimate the model,



66 4. Functional Data Analysis for Pollutants and Health

we can specify β(h) in the same way as the ozone function Xt(h) using L

dimensional B-spline basis

β(h) =
L∑
l=1

blφl(h), (4.4)

where b1 for l = 1, . . . , L are the unknown coefficients to be estimated.

Once bl are estimated, β(h) is directly recovered by multiplying the esti-

mated bl with the known basis functions. We estimate bl using the P-spline

penalty approach (Eilers and Marx, 1996), which incorporates combination

of B-spline basis and difference penalty. The basic idea is instead of using

the integrated second derivative as we have illustrated in the estimation of

Xt(h), a simple difference penalty on bl is imposed. Formally, let the first

difference denoted by ∆ on bl is defined as ∆bl = bl − bl−1, then the second

difference penalty is λ
∑

l

(
∆2bl

)2
. The smoothing parameter λ still controls

the weight of the penalty. Marx and Eilers (1998) suggested to implement

P-spline for computational advantages and allows to choose number and po-

sition of knots more flexibly.

We now discuss confounding predictors. Particularly, the confounding effect

of other functional pollutant or meteorological predictors can be considered.

However, we do not pursue multiple functional predictor, since the hourly

measurements of other pollutants were not available. We then explore the

possible way to include daily summary measures of other pollutants, tem-

perature and seasonal effects in the presence of functional ozone. The cor-

relation matrix in the preliminary analysis suggests that the pair-wise cor-

relations between the pollutants particulate matter smaller than 10µg/m3

denoted by (PM10), Carbon Oxides (CO), Nitrogen Dioxides (NO2) and

Sulphur Dioxides (SO2) are statistically significant. Including all or two

of them in the same model could lead to multicollinearity problems. Levy

et al. (2005) and Bell et al. (2005) recommended to include particulate mat-

ter in the study of ozone effect on health and the former suggested any
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observed relationship between ozone and health outcome may simply reflect

particulate matter effect. Meteorological variables have also been known to

confound the association between ozone and health. We then included daily

maximum temperature as an additive non-linear smooth function f(Temp).

The full functional generalized linear model is then given as:

logµt =

∫ J

1
Xt(h)β(h)dh+αPM10(t)+f(Tempt)+

6∑
j=1

δjDOWtj+

6∑
k=1

γkYeartk,

(4.5)

where,

DOWtj =

 1 if day t is day of the week j ,

0 otherwise ,

Yeartk =

 1 if day t is in the year k ,

0 otherwise.

The smooth non-parametric function f(Temp) is modeled as a linear com-

bination of a cubic B-spline basis. Detailed treatment of the estimation of

this type of function is given in Wood (2006). The other non-functional

covariates day of the week (DOWj) and calendar year (Yeark) are included

as linear terms. Since day of the week is defined as factor variable, it has

given levels for its category, in which Monday = 1, . . . ,Saturday = 6 and

Sunday is the baseline. Similarly, calendar year at which the data was col-

lected, 1996-2002 considered as factor and takes levels 1, . . . 7, and year 1996

considered as baseline. The parameter α measures the effect of PM10, δj

describes the effect of day of the week j relative to Sunday and γk is effect

of year k compared to the effect in year 1996.

Often, the effect of exposure to ozone persists for some days from the date

of exposure. To account such persistence, measures of pollutants are lagged

by a number of days. In the context of functional ozone modeling, the use
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of lagged values to predict the current day admission is even more relevant,

in the sense that the dependence of the same day hospital admission on

ozone exposure measured hourly might not be logical if the time of hospital

admission precedes the portion of the daily ozone function that is identified

as potentially harmful. As for what number of days to lag, Zeger et al.

(2000) suggested anywhere between zero and five days is appropriate. We

consider the lagged values of hourly ozone measure for up to three days. As

a remark, more complex modelling strategies were initially tried in order to

identify the best model in terms of goodness of fit. These strategies include

the use of lagged values over the previous three days for PM10 and daily

maximum temperature. Such strategies did not significantly improve the

goodness of fit. However, we included one day lag PM10 denoted by PMlag
10

to explain the current day hospital admission. The pair-wise correlations

between PMlag
10 and the other explanatory covariates are relatively small.

The functional generalized linear model specified in (4.3) imposes a linearity

assumption on the dependence of hospital admission on functional ozone

which may be too restrictive. We wish to relax the linearity assumption and

estimate a flexible non-linear shape of ozone effect. There are few examples

of additive structures being used in a functional data setting. Müller and

Yao (2008) and James and Silverman (2005) proposed a functional additive

model in which the functional predictor is decomposed through functional

principal components. Mclean et al. (2014) presented the same approach

without decomposing the functional predictor. Model (4.3) can be specified

as functional additive form

logµt =

∫ J

1
F{Xt(h), h}dh. (4.6)

The function F (X,h) is specified using tensor product B-splines (Wood,

2006). That is, F (X,h) is treated as a bivariate function constructed using

the marginal B-splines corresponding to X and h so that
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F (X,h) =
K∑
k=1

L∑
l=1

cklθl(h)φk(x),

where θl(h) for l = 1, . . . , L and φk(x) for k = 1, . . . ,K are B-spline bases,

ckl are the unknown coefficients to be estimated. Here again the P-spline

approach is adopted to estimate F (X,h). The P-spline penalty is even more

appealing in this case, since we want computational efficiency to smooth ckl

which requires row and column penalties in the direction of X and h re-

spectively. Furthermore, the use of P-splines for additive models allow any

degree of B-spline to be used with any order of difference for the penalties,

offering greater flexibility (Marx and Eilers, 1998). A known issue in the use

of tensor products of B-spline is that certain data regions may not have any

observations, which prohibits estimating the coefficients (Fahrmeir et al.,

2013). To avoid this issue, X(h) is transformed using empirical cumula-

tive distribution function (ecdf). A further advantage of the transformation

is that we take the connection between quantile and ecdf to obtain inter-

pretable estimate. Thus, we can interpret the estimated shape of F (p, h) as

the effect of X(h) being at its pth quantile.

The analysis was performed using the freely available R software. The hourly

ozone data was first smoothed and changed to functional data using fda

package (Graves et al., 2009). The parameters of the functional generalized

linear model and the additive version were obtained following the version of

penalized iteratively re-weighted least squares (P-IRLS).

4.5.1 Results

First we fitted the model specified in (4.5) using the summer time functional

ozone exposure measure as a predictor and the number of daily admissions as

scalar response. For the selected non-functional confounding predictors, we

fitted four models with different numbers of lagged days for the functional
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ozone. The parameter of interest β(h) is estimated and 95% point-wise

confidence intervals are computed to describe the uncertainty in the esti-

mate. The estimate of the parameter β(h) together with 95% point-wise

confidence intervals for each model is shown in Figure 4.4. These estimates

are achieved using the P-splines approach using 8 B-spline basis functions

of order 3 and second order difference penalty. The confidence intervals of

the estimated coefficient curve for the current day ozone exposure (lag 0)

involves zero almost throughout the day, which suggest the effect of the pol-

lutant is not significant. The estimate for one day lagged values of ozone

(lag 1) is significant mainly after the daily hour 3 pm, which indicates that

exposure to ozone in the previous day is associated to the current day hos-

pital admission. These 95% point-wise confidence intervals for the estimate

of β(h) from two days lagged values of ozone (lag 2) and three days lagged

ozone (lag 3) involve zero in the majority of the regions, but they show a

significant effect in the night hours. The overall patterns of the estimate of

β(h) for lag 2 and lag 3 ozone are the same. This may indicate that the

persistence of ozone effect may last up to three days from date of exposure.

We fitted a model using 7 days lagged ozone exposure to investigate if the

estimate would be different from the estimate of lag 2 and lag 3. The re-

sulting estimate is very close to that of the estimate from lag 3 ozone.

The estimated values (associated standard deviation in brackets) of con-

founding predictors that were included as linear components are shown in

Table 4.1. The current day PM10 and its one day lag PMlag
10 are significantly

associated with daily number of hospital admission. The factor covariates

day of the week and calendar year are both globally significant. To select

the best lag among the estimated models, we compared the goodness of the

models using the Unbiased Risk Estimate (UBRE) criterion (see Section

3.3.2). The UBRE scores given in Table 4.1 show that there is slight differ-

ence among the models, lag 1 ozone exposure produced lower UBRE score

compared to the other lags. Thus, the dependence of hospital admission on
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Figure 4.4: Estimate of ozone functional coefficient, β(h), under the func-

tional generalized linear model. The response is the current day hospital

admission for each lag and the predictor is the functional ozone with differ-

ent lag controlling other confounding predictors.
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The functional ozone with the following lags:

lag 0 lag 1 lag 2 lag 3

PM10 0.025
∗

0.024
∗

0.024
∗

0.026
∗

(0.008) (0.007) (0.008) (0.008)

PMlag
10 0.019

∗
0.020

∗
0.020

∗
0.021

∗

(0.008) (0.075) (0.007) (0.008)

Observations 599 598 597 596

UBRE 0.511 0.504 0.516 0.523

Table 4.1: Results for predictors with linear components under

the functional linear regression models using different lag for the

functional ozone. The estimates (associated standard deviation

in the bracket) are given for particulate matter (PM10) and its

one day lag (PMlag
10 ).

∗ indicates the significance of the predictor .

UBRE: Unbiased Risk Estimate.

one day lag functional ozone is selected as best. We then use the lag 1 model

for further model improvement, particularly to estimate the aligned ozone

effect and the functional additive model.

A second model estimate is considered for the aligned ozone functions.

Aligning the functions allows us to explore variation at specific time point

and we are interested to capture the portion of ozone curves near maximum

that can be potentially harmful to health (see Section 4.4), and improve the

estimate of the functional coefficient β(h) using the aligned ozone curves

at the daily maximum as predictor. Figure 4.5(a) presents the estimate of
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β(h) for which the ozone curves were aligned at the daily maximum. some

portion of the confidence intervals does not involve zero. Particularly, the

region of the estimated curve after the daily maximum (3 pm ) is significant.

Interestingly, this indicates the region of the estimate of β(h) starting at the

daily maximum, where the original ozone curves were aligned, is significantly

associated to hospital admission.

According to epidemiological studies of exposure, the maximum level reached

during the day is likely to cause health issues. Examining the association

between ozone functions which are aligned at the daily maximum is there-

fore quite reasonable. Nevertheless, to verify whether results would have

been better if the curves had been aligned at different points, we estimated

β(h) by aligning the ozone functions at the daily minimum ozone concentra-

tion and at the daily average concentration. The idea is to check whether

there is a feature which is better than the daily maximum to capture the

portion of the concentrations curve that is harmful to health. The estimate

of β(h) in panel b and c of Figure 4.5 are obtained by aligning the original

functions at the daily minimum and at the daily average respectively. The

former estimate leads to wide confidence intervals in the whole region and

the latter estimate is significant mostly the evening hours. Apparently, the

daily maximum is the best feature to align the ozone concentrations curves

and it leads to obtain an estimate of ozone effect β(h) which clearly points

out relevant features of the daily pattern as compared to the daily minimum

or daily average.

We notice that the results in this Section are coherent with those obtained

using the standard methods. The classical generalized additive model is fit-

ted using each hourly measurements of ozone concentrations as predictor and

hospital admission as response. Since the model is fitted at each daily hour,

we have 24 models which constitute various model information including the

estimated coefficient and the unbiased risk estimate (UBRE) for each model.
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Figure 4.5: Estimated coefficient curves of ozone under the functional gen-

eralized linear model using aligned ozone curves at daily maximum (a), at

daily minimum (b) and at daily average(c).

These results are shown in Figure 4.6, the UBRE score is minimum at the

evening hour which suggests the model fitted at the evening hour come out

as best. The left panel shows the estimated coefficients with associated 95%

confidence intervals. The estimated coefficient is significant at each daily

hour, but the estimated effect is maximum at evening hour. The Figure

includes two more models fitted to the daily average and daily maximum of

ozone concentrations (the vertical lines, in the far right) to compare with

the results of the hourly estimates. The daily maximum produced higher

estimate than the hourly measures, but once again, the UBRE indicates the

model with the daily maximum may not be the preferred model. More em-

pirical comparisons of the classical approaches and the functional regression

method are given in Section 4.5.2.

The model we estimated so far assumes linearity in the dependence of func-
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Figure 4.6: The estimates of ozone effect at each daily hour (left) and the

Unbiased Risk Estimates (UBRE) (right) under the standard generalized

additive model. For comparison, results for the daily average (ave) and

maximum (max) are displayed at the far right side using vertical lines.
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tional ozone X(h) on daily hospital admission. We now estimate a non-linear

flexible shape of F (X,h) as given in (4.6). Following our discussion of Sec-

tion 4.5, we assign 6 cubic B-spline with second order difference penalty for

the ozone axis, and 5 cubic B-spline with second order difference penalty

for the h axis. These marginal B-spline bases are used to construct tensor

product spline bases with dimension 30. Figure 4.7 presents the estimated

shape F̂ (p, h) where the ozone concentrations X is given at its quantile p.

High level of ozone effect (red color) observed as the quantile increases from

0.6 on wards and as the daily hour goes to the evening. This is generally

coherent with the one dimensional coefficient estimate β(h) where the region

of the evening hours are more detrimental (Figure 4.4). We verified that the

results are insensitive to the change in number of B-spline used. However,

different orders of the penalties produce slightly different results. To find

the best model based on UBRE criterion, we refitted the model varying the

order of row and column penalties. The model with order 2 for both the

ozone and daily hour penalties produced smaller UBRE score, and as such

is chosen as the final model.

The non-functional confounding predictors are also estimated. The daily

maximum temperature is estimated as non-linear smooth function using the

nonparametric method. This estimate is shown in Figure 4.8, and it was

achieved using cubic regression spline basis with dimension 10 for which

the actual effective degrees of freedom estimated from the model are 8.254.

The shape of the estimate is non-linear U-shaped in the full range, but

wide confidence bands are observed in the low temperature region where

the effect might not be significant. The estimates of the factor predictors

day of the week and calendar year are given in Table 4.2. The parameters

are significantly different from zero.
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Estimate S.E Estimate/S.E P-value

PM10 0.025 0.009 2.828 0.004

PMlag
10 0.020 0.008 2.367 0.018

Day of the week

Monday -0.056 0.025 -2.238 0.025

Tuesday -0.120 0.025 -4.758 0.000

Wednesday -0.074 0.025 -2.960 0.003

Thursday -0.0714 0.025 -2.812 0.004

Friday -0.161 0.026 -6.192 0.000

Saturday -0.266 0.026 -10.248 0.000

Calendar Year

1997 0.011 0.027 0.396 0.692

1998 0.055 0.026 2.110 0.034

1999 0.104 0.027 3.859 0.000

2000 0.043 0.027 1.589 0.112

2001 0.158 0.025 6.166 0.000

2002 0.139 0.026 5.181 0.000

Note: S.E=standard deviation.

Table 4.2: Estimated coefficients and standard deviations of non-functional

linear components.
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4.5.2 Out-of-Sample Predictive Performance

The objective in this Section is to investigate if our approach to measure ex-

posure in terms of function is superior to the standard generalized additive

models which are simpler approaches that use daily summaries. The func-

tional regression method we employed is more complex and computationally

intensive, thus, we compare the predictive accuracy of the proposed method

against simpler approaches. We selected four exposure models to compare

with our approach, two of these use the daily average and maximum expo-

sure measure. For more broader comparison, we included two more ozone

exposure measure of Chiogna and Pauli (2011), these are (1) the difference

between day time maximum hourly concentrations and the threshold level,

and (2) night time average concentrations. The authors showed that their

approaches capture the daily variability of ozone better than the standard

daily summary measures. However, such approaches still rely on some form

of daily summaries of the pollutant, since the approaches are computed from

the hourly measurements. We denote these two measures as GAM-CP1 and

GAM-CP2 respectively for reference. Our approach of functional regression

exposure model is given in three scenarios, these are functional regressions

based on: un-aligned ozone functions (we refer as FGLM-O), aligned ozone

function (FGLM-A) and additive structure (FGAM).

For prediction, we split the period of study 1996-2002 in two sub periods:

data for years 1996-1999 is used as training set and data for 2000-2002 is

used as validation set. The basic idea is to use the first four years data

to predict daily hospital admission for the latter three years and then to

compute the out-of-sample residual mean squared error (RMSE), which is

given in the form

RMSE =

254−1
∑

t∈{valid}

(yt − ŷt)2
1/2

.
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Exposure model RMSE

GAM-Average 33.391

GAM-Maximum 33.392

GAM-CP1 28.415

GAM-CP2 28.419

FGLM-O 19.034

FGLM-A 19.021

FGAM 19.001

Table 4.3: Out-of-sample RMSE for different ozone exposure models includ-

ing the functional regressions approach.

The training set contains 345 days and the validation set has 254 days.

These sets of days correspond to the number of curves for functional regres-

sion models. We report results of RMSE in Table 4.3 for each model under

consideration. In this context, the RMSE of a model indicates the perfor-

mance of the model in predicting hospital admission in the validation group

using the training group. The smaller the RMSE, the better is the model in

predicting the response. The functional regression models in Table 4.3 have

better predicting ability compared to the other approaches. Here, functional

regression based on aligned functions has improved the forecasting slightly

in terms of RMSE measure. Apparently, exposure models based on daily

summary measures perform worse than other approaches.

4.6 Discussion

In this Chapter, we propose modeling the short-term effect of daily ozone

concentrations on health using a functional representation of daily ozone

concentration as a predictor using data from the city of Milan, Italy. This

method is based on the principles of functional data analysis. The approach

has various advantages, particularly, the daily temporal variability of ozone

concentrations is accounted and the model aids to detect underlying patterns



4.6. DISCUSSION 81

and features such as the hours at which ozone reaches minimum or maxi-

mum. The observed ozone functions are aligned using the hour at which the

daily ozone measurements is maximum to capture the important variability

observed in the functions as discussed in Section 4.4.

A functional regression model in which the response is scalar daily hospital

admission and the predictor is the functional ozone is fitted controlling for

pollutant particulate matter, day of the week, calendar effects and weather

conditions. The persistent effect of exposure to ozone is modeled by taking

the lagged values of the hourly measurements for up to three days. The

results show the dependence of the current day hospital admission on pre-

vious day ozone exposure. The linear functional form of ozone coefficient is

estimated for both un-aligned and aligned ozone functions. The estimated

coefficient from the un-aligned ozone functions is significant mainly in the

evening hours while the aligned ozone functions produce significant esti-

mate in the day hours when the daily ozone concentrations level reaches

near maximum. The region of the estimate near daily maximum is therefore

identified as potentially harmful to health. A flexible non-linear shape of

the ozone effect is estimated by relaxing the linearity assumption imposed

on the dependence of hospital admission on ozone measured by functional

form. The proposed methods improve the simpler alternatives based on

scalar summaries of daily ozone concentration in terms of prediction.

Before closing this Chapter, we illustrate limitations. Spatial variability in

addition to temporal variability that may exist in ozone presents another

modeling challenge that we did not pursue. In the next Chapter, we shall

present a model to address the limitation of this Chapter. Particularly, we

propose a functional regression model which is suitable to deal with the issue

of spatial heterogeneity.





Chapter 5

Functional Hierarchical

Model for Multi-city Data

In the previous Chapter we considered a functional regression model to study

the effect of daily pattern of pollutant ozone on health for the city of Milan.

In this Chapter, we extend the functional regression method to model multi-

city data which come from different geographic locations allowing for spatial

heterogeneity. Thus, we wish to provide a picture of regional variation in

the health effect of ozone over the study region. The Chapter is organized as

follows, Section 5.1 provides a brief motivation of the work. Section 5.2 de-

scribes the multi-city data set. Section 5.3 presents the modeling approach:

two model frameworks are presented. The first is the overall model, which

is used to fit a functional regression model by pooling the different location

data together, thus ignoring geographic variability in the pollutant effect.

The second framework illustrates the more general functional hierarchical

model which accounts for spatial heterogeneity. Section 5.3.3 discusses the

results from the fitted models and finally Section 5.4 presents concluding

discussion.
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5.1 Motivation

In this Chapter, we propose a functional hierarchical modeling approach in

the Bayesian paradigm using Markov Chain Monte Carlo to estimate ozone

effect allowing for the daily variation of the concentration and the spatial

heterogeneity in the estimated effect at once. The approach allows us to

estimate the overall and location-specific ozone effect as a function of daily

hour. our approach is easily generalized to a generic case of regression with

multilevel structure and functional covariate.

5.2 Data

The database contains information about mortality, hourly ozone measure-

ments, meteorological variables, and seasonal data for 15 cities in the USA

for the summer periods of the years 1987-2000 (Table 5.1). Hourly ozone con-

centration measurements (expressed in parts per billion, ppb) were obtained

from the American Environmental Protection Agency’s (APA) Aerometric

Information Retrieval System (AIRS) and AirData System. For those cities

where measurements are available in more than one site, we take the aver-

age. Some typical daily patterns of ozone concentration are shown in figure

5.2. Daily mortality, weather and seasonal variables were obtained from the

NMMAPSdata R package (Peng et al., 2004), originally assembled as part

of the National Mortality, Morbidity, and Air Pollution Study (NMMAPS).

For the response variable, we consider daily death counts for each city, ex-

cluding accidental deaths. As far as confounders are concerned, it is cus-

tomary to allow for meteorological conditions, in particular the temperature,

and possibly other pollutants concentrations. After extensive preliminary

analysis, which includes consideration of various daily summaries of mete-

orological variables, we used the 24 hour maximum temperature for each

day. Other pollutants are often included in the study of ozone exposure,
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Figure 5.1: Map of the 15 USA cities selected for the study. Positions of the

names of the cities correspond to their geographical locations.

particularly, Particulate Matter (PM) may act as confounder of the associ-

ation between ozone and health outcome. However, we do not consider the

effect of Particulate Matter, because measurements for Particulate Matter

were available once every six days, which led to missing measurements in

the majority of the summer periods under consideration.

5.3 Modeling Approach

We consider two modeling approaches, the first approach is an overall model

which fits the same functional regression model for all the cities. That is

the model is estimated by pooling all cities together, assuming a spatially

homogeneous association between exposure to ozone and mortality. In the

second approach, the estimate of ozone effect is assumed to vary across the

cities, and then city-specific effects are estimated.
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City symbol

daily

deaths on

average

total

deaths

number

of days

Austin aust 2.398 2087 870

Baltimore balt 7.170 6439 898

Boston bost 3.497 2087 907

Charlotte char 2.783 3181 1143

Dallas dal 15.841 18534 1170

Washington dc dc 5.401 4888 905

Denver den 4.986 6079 1219

Detroit det 14.466 10445 722

El Paso elp 2.283 2270 994

Jacksonville jack 3.958 4240 1071

Milwaukee mil 4.805 6036 1256

New York new 55.256 47023 851

Oklahoma okl 3.499 4434 1267

Philadelphia phil 11.850 13462 1136

San Francisco sanf 5.365 6905 1287

Table 5.1: Summary information of mortality for 15 USA cities collected in

the summer periods (June-July-August) of the years 1987-2000.

5.3.1 Overall Model

Let ytc represent the number of mortality caused by pollutant related issues

of day t in city c for a pooled data from 15 different cities. The daily ozone

concentration curve Xtc(h) is estimated using the smoothing technique from

its discrete counterparts X̃tc(h1), . . . , X̃tc(hJ) as in Section 4.3

Xtc(h) =
L∑
l=1

ctclθl(h),

where coefficients ctcl, . . . , ctcL are estimated using smoothing techniques
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Figure 5.2: The hourly ozone measurements of 4 days for Washington DC

in the summer of years 1990-2000. The average over the 4 days is the black

solid line.

and θ1(h) . . . , θL(h) are known B-spline basis functions. We employ the

functional regression model described in Section 4.5 as

Ytc ∼ Poisson(µtc) for t = 1, . . . , T

logµtc =

∫ J

1
Xtc(h)β(h)dh+ fc(Temptc) +

6∑
s=1

δsDOWts +
13∑
k=1

γkYeartk.

(5.1)

The parameter of interest β(h) measures the effect of the pollutant at spe-

cific time point h, and is estimated from the pooled data. Daily maximum

temperature is included as a non-linear smooth function fc(Temptc) for city

c. Day of the week and calendar year are denoted by a sets of indicator

variables (DOW) and (Year) respectively. To estimate the model, we need
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to represent β(h) as a linear combination of known B-spline basis functions

φ1(h), . . . , φK(h)

β(h) =
K∑
k=1

bkφk(h).

The expression for Xtc(h) and β(h) are substituted in equation (5.1), leading

to

logµtc =

∫ J

1

L∑
l=1

ctclθl(h)

K∑
k=1

bkφk(h)dh+fc(Temptc)+

6∑
s=1

δsDOWts+

13∑
k=1

γkYeartk.

With this model we obtain a marginal effect β(h) and ignore the possibility

of spatial heterogeneity in the estimated effect.

5.3.2 Functional Hierarchical Model

In this Section, we illustrate the functional hierarchical regression model

designed to estimate coefficients β(h) specific for each city and a pooled

functional coefficient averaged over the cities. The model shall be fitted in

the Bayesian paradigm using Markov Chain Monte Carlo simulation. We

then modify specification (5.1) in the form

logµtc =

∫ J

1
Xtc(h)βc(h)dh+ fc(Temptc) +

6∑
s=1

δsDOWts +

13∑
k=1

γkYeartk,

(5.2)

where βc(h), for c = 1, . . . , 15, are location-specific functional coefficients.

In order to estimate the model, we need a representation for the concen-

tration curve Xtc(h) and the associated parameter βc(h). To this end, we

employ Functional Principal Component Analysis (FPCA, see Section 2.2.4)

to express Xtc(h) as a linear combination orthogonal eigenfunctions which in

turn is obtained by spectral decomposition of the covariance function. Let
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K(s, h) be the overall covariance function of summer time ozone concentra-

tion for all the days in the study. We assume that K(s, h) is the same across

the cities, and can be given by K(s, h) = Cov{Xt(s), Xt(h)}. Where Xt(h)

is a smooth ozone concentration curve common to all the cities. Then, there

is an orthogonal expansion of K(s, t) using eigenfunctions {ψl(.)}l=1,2... and

non-increasing eigenvalues {λl}l=1,2... in the form

K(h, s) =
∞∑
l=1

λlψl(h)ψl(s), h, s ∈ [1, J ]. (5.3)

The covariance function K(h, s) can be consistently estimated using differ-

ent methods, for instance, the method of moments (Di et al., 2009) and

iterative penalized spline (Yao and Lee, 2006). Figure 5.3 shows the smooth

estimate of the overall covariance function K(h, s) obtained by the method

of moments for the summer time ozone concentration of USA cities. Us-

ing Karhunen-Loeve representation (Karhunen (1947); Loeve (1965)), the

orthogonal eigenfunctions {ψl(.)}l=1,2... are assumed as basis functions to

express the function Xtc(h) as

Xtc(h) =
∞∑
l=1

(∫ J

1
ψl(h)Xtc(h)dh

)
ψl(h) =

∞∑
l=1

ξtclψl(h), (5.4)

where the coefficients

ξtcl =

∫ J

1
ψl(h)Xtc(h)dh, (5.5)

are uncorrelated random variables with zero mean and variances λl. Within

principal component analysis, these random variables are called principal

component scores or loadings. Hence, city-specific ozone concentration curves

Xtc(h) are linear combinations of the overall orthogonal eigenfunctions ψl(h)

with city-specific weights ξtcl. In practice, only a small number of eigenfunc-

tions are sufficient to approximate Xtc(h). Based on the share of explained

variance, the first 8 eigenfunctions capture more than 99% of the observed

functional variability (Table 5.2).
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Figure 5.3: Estimate of the covariance function K(s, h) using data from 15

USA cities for the summer ozone concentration.

Eigenvalues

1 2 3 4 5 6 7 8

Var (10−3) 4.8 1.18 0.64 0.32 0.19 0.11 0.06 0.04

%Var 65.20 15.83 8.68 4.29 2.57 1.44 0.83 0.54

Cum.Sum 65.20 81.02 89.7 93.99 96.56 98 98.83 99.37

Table 5.2: The estimated eigenvalues for functional ozone computed from

the hourly summer time ozone concentration.

The city-specific functional parameters βc(h) are specified in terms of a

cubic K dimensional B-spline basis functions φ1(h), . . . , φK(h) with equally

spaced knots, common to all the cities. It follows

βc(h) =

K∑
k=1

bckφk(h) for k = 1, . . . ,K, (5.6)
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Thus, using specifications (5.4) for Xtc(h) and (5.6) for βc(h), the expression

in the integral of (5.2) can be further modified as

log(µtc) =

∫ J

1
Xtc(h)βc(h)dh =

∫ J

1

[
L∑
l=1

ξtclψl(h)

][
K∑
k=1

bckφk(h)

]
dh

= ξ′tcJbc for J =

∫ J

1
ψl(h)φk(h)dh,

(5.7)

where ξ′tc = (ξtc1, . . . , ξtcL) denote the T × L dimensional matrix of princi-

pal scores for city c, J is L ×K dimensional matrix computed by numeric

integration prior to model fitting and bc = (bc1, . . . , bcK)′ are city-specific

parameters of interest. For identifiability constraint, K ≤ L. We assume

the prior distribution for the coefficients

bc ∼ Normal(u, σ2b I)

u ∼ Normal(0, σ2uI),
(5.8)

where u = (u1, . . . , uK) are pooled parameters, representing the overall ef-

fect. With this modeling approach, each city has its own coefficients, and

their mean represent the overall effect, inferences can be made for the dif-

ferent city coefficients and the population average of the coefficients along

with variance parameters. The variance parameters, σ2b , σ
2
u are measures of

between city variability and the average variability respectively. For these

variance components, a gamma distribution with mean one and large vari-

ance is used as a weakly informative prior. The weakly informative priors

are also used to specify the prior distributions of the parameters associ-

ated to the confounding covariates, in particular, normal prior distributions

with mean zero and large variance are used. Two different methods can

be employed to deal with ξtc: the first approach is to obtain a relevant set

of principal components from the covariance operator K(s, h) (as outlined

in Section 2.2.4) and then use the estimate as an input to the hierarchical

model. This approach is the most commonly used and requires to estimate
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ξtc by numerical integration. The second approach suggested by Crainiceanu

and Goldsmith (2010) is to estimate at once both the principal component

scores and the coefficients from the model. Thus, we incorporate estimation

of the principal scores by treating them as additional parameters with prior

distribution ξtc ∼ Normal(0,diag(λ1, . . . , λL)).

5.3.3 Results

Posterior distributions of model parameters are explored using Markov Chain

Monte Carlo (MCMC) simulation. We first consider estimates from the over-

all model (Section 5.3.1). Relatively short chains are deemed sufficient to

grant convergence. Figure 5.4 depicts the estimate of functional coefficient

β(h) together with 95% credible intervals, and shows a strong exposure effect

for concentrations in the late afternoon, coherent with our findings (Arisido,

2014) for the city of Milan.

For the second model (Section 5.3.2), which allows for heterogeneous co-

efficients, 10,000 iterations are needed to converge, we discarded the first

5,000 iterations as burn-in and used the reminder 5,000 for posterior infer-

ence. The convergence of the model is assessed using the standard Bayesian

diagnostic tools and there were no apparent convergence or mixing issues.

Initially, some autocorrelations were detected, but when the simulation num-

ber was increased, the autocorrelations were lowered to the minimum.

Figure 5.5 reports the average of the posterior samples and the associated

95% credible intervals for the city-specific functional coefficients βc(h) and

the pooled functional coefficient. The pooled coefficient is a synthesis of

information from the 15 cities and it shows some interesting features. Par-

ticularly, the 95% credible bands do not involve zero from 3 pm on wards,

coherent with estimate from the overall model (Figure 5.4). Here, the pooled

functional coefficient estimated from functional hierarchical model produced
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Figure 5.4: The estimate of functional ozone coefficient, β(h), estimated

by pooling data from 15 USA cities for the summer periods of the years

1987-2000.

wider credible intervals as compared to the estimate from the overall model

which was estimated by pooling all cities together. As for city-specific es-

timates, except New York and Philadelphia, the other cities showed strong

ozone effect in the afternoon and evening hours. These daily hours in the

summer time are very hot for which ozone level can reach maximum to cause

health issues. This is a general characteristic of ozone irrespective of differ-

ence in the estimated shapes.

The between-city variability is captured by the parameter σ2b . The median

of the posterior samples for σ2b is 0.686 and the associated 95% credible

interval is (0.547, 0.878). The interval is far from zero, this indicates the

presence of relatively strong between-city variability. As far as the con-

founding variables are concerned, the distribution of the posterior samples

and the associated summary information for days of the week and calendar
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year are reported in Figure 5.6.

Often, the health effect of exposure to pollutants can persist for some days

from the date of exposure. We take into consideration the persistent ef-

fect of ozone using the time lagged ozone values to explain the current day

mortality. Thus, the one day lag curve Xt−1(h) is used instead of Xt(h)

as a functional predictor, the estimated coefficients are reported in Figure

5.7. The shape of the pooled functional estimate from lag 0 and lag 1 are

generally the same, the credible band for estimates of lag 1 are slightly wider.

5.4 Discussion

This Chapter presents a method to estimate health effect of exposure to

ozone from multi-city data accounting for temporal and spatial heterogene-

ity. The functional generalized linear model has been extended to functional

hierarchical model using Bayesian paradigm to estimate location-specific and

pooled pollutant effect controlling for confounders. Measuring exposure to

pollutant in the form of function allows to include the daily temporal vari-

ability of the pollutant while a hierarchical structure is used to model spatial

heterogeneity. The Bayesian paradigm is employed because it is convenient

to deal with the hierarchical structure. We estimated both a pooled func-

tional coefficient and coefficients that can vary across the cities. The pooled

estimate showed that the most relevant hours are those around afternoon

where ozone reaches maximum, and we also note that the shape of the

pooled functional coefficient is coherent with the estimate of the pollutant

effect from the overall functional regression model where city level variabil-

ity is ignored. A similar shape of functional pooled coefficient is estimated

from the one day lag ozone but with wider credible intervals. City spe-

cific estimates suggest that the effect of ozone is widely variable according

to location, from being minimal exposure effect (New York, San Francisco,

Philadelphia) to exhibiting a strong effect. The shapes of the functional
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coefficients also vary widely to the point of being opposite (Dallas, El Paso).

This circumstance counts as evidence that a model allowing for location-

dependent estimates is relevant.

The approach discussed in this Chapter can easily be extended to perform

other air pollutants and health outcomes. This can be done for single city

studies as the overall model in Section 5.3.1 or for multi-city studies as the

functional hierarchical model in Section 5.3.2.
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Figure 5.5: The mean of the simulated values for city-specific functional

coefficients including the pooled functional coefficient estimate using data

for 15 USA cities for the summer periods of the years 1987-2000. The

confidence bands are the 95% point-wise credible bands and the mean of

the posterior estimates are shown in solid line.
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Figure 5.6: The upper panel shows the distributions of the simulated values

for day of the week and calendar year parameters. The lower panel shows

the median and 95% credible end points summarized from the simulated

values of the same parameters.
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Figure 5.7: The mean of the simulated values for city-specific functional

coefficients including the pooled functional coefficient estimate using one

day lagged data for 15 USA cities for the summer periods of the years 1987-

2000. The confidence bands are the 95% point-wise credible bands and the

mean of the posterior estimates are shown in solid line.



Chapter 6

Principal Scores to Measure

Exposure to Pollutants

In Chapter 4, we provided a functional measure of pollutant concentrations

and used the measure to explain the health effect of ozone using functional

regression model. The approach was used for single city data and then ex-

tended to the functional hierarchical model in Chapter 5 to model multi-city

data and account for spatial heterogeneity in the estimated effect. In this

Chapter, we provide an alternative approach to measure exposure to the

pollutant concentrations by computing a principal scores from the hourly

measures of ozone via functional principal component analysis. We aim to

obtain an estimate of the effect allowing for the daily variation of concen-

tration, but with a more parsimonious model. The approach is a special

case of the methods in Chapter 5, in the sense that rather than using a

full functional ozone exposure, we extract the important components of the

daily curve in terms of principal scores. The remainder of the Chapter is

organized as follows, Section 6.1 provides the motivation to measure expo-

sure using principal scores. Section 6.2 illustrates the models. Section 6.3

discusses the results, and finally Section 6.4 presents concluding discussion.



100 6. Principal Scores to Measure Exposure to Pollutants

6.1 Motivation

The functional data analysis technique allows to treat all hourly ozone

records of a day as a function instead of collapsing the hourly records into a

single summary measures. An alternative measure of exposure is to use prin-

cipal scores to capture the most important portion of the daily ozone curve.

The principal scores are produced from the hourly ozone records using func-

tional principal component analysis. The main advantage of the approach is

dimension reduction and parsimony. The infinite dimensional functions can

be represented in terms of a few dimensional principal components. This

low-dimensional principal scores will be used suitably as predictors to assess

the effect of exposure to ozone on health controlling for confounders. The

method is applied on 15 USA city data for the summer periods of the years

1987-2000 as discussed in Section 5.2. First, the method is used to estimate

the overall effect by pooling all cities data together, then we fit a Bayesian

hierarchical model to account the spatial heterogeneity in the estimate of

the score effect. The model estimates city-specific ozone effect measured in

the form of scores and the pooled effect averaged over the study cities.

6.2 Principal Score to Measure Exposure

The daily number of deaths in day t of city c, ytc are assumed to be dis-

tributed as a Poisson variable with mean µtc, whose logarithm is modeled

as an additive function of the covariates: the ozone concentration and, as a

control, the temperature, the day of the week and the calendar year using

the functional regression model which is given in (5.1). Proceeding simi-

larly to Section 5.3, the concentration curve Xtc(h) is specified as a linear

combination of an overall orthogonal eigenfunctions {φl(h)}l=1,2..., with co-

efficients ξtcl, which are uncorrelated functional principal scores with zero

mean and variances λl. The eigenfunctions are obtained using the overall

empirical covariance function K(s, h) (see Section 5.3) and normalized in
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the sense that
∫
ψ2
l (h)dh = 1 to be used as basis functions. The main dif-

ference between model specification in this Chapter and the previous lies in

the specification of the coefficient parameter β(h). Rather than expressing

β(h) in terms of B-spline basis functions, we use the estimated orthonormal

basis ψl(h) as basis functions

β(h) =

K∑
k=1

βkψk(h). (6.1)

Using the same orthonormal basis to represent the concentration curveXt(h)

and the coefficient β(h), the linear predictor (5.1) has reduced to

logµt = ξtcβ + fc(Temptc) +
6∑
j=1

δjDOWtj +
13∑
k=1

γkYeartk, (6.2)

which is a generalized linear model with a functional covariate using prin-

cipal component scores ξtc as main predictors. These principal scores are

estimated by plugging the estimator of ψl(h) in (5.5) and evaluating the in-

tegral over a grid of points. The advantage is twofold: dimension reduction

by reducing the number of coefficients and avoids possible multicollinearity

issues among the predictors. Independence between the scores is evident

from Figure 6.1(b) where score 2 is plotted against score 3.

We choose the first 3 principal scores, hence the dimension of covariate ma-

trix ξtc = (ξtc1, ξtc2, ξtc3) is T × 3 with coefficients β = (β1, β2, β3)
′. The

first three eigenfunctions capture 90% of the total variability, suggesting that

the selected scores sufficiently describe important aspects of the daily ozone

curve. The corresponding eigenfunctions are displayed in Figure 6.1(a). We

fit the model using Bayesian paradigm, specifying weakly informative pri-

ors for all model parameters, in particular, normal priors with mean zero

and large variance are assigned for β, δ = (δ1, . . . , δ6) and γ = (γ1 . . . , γ13).

We now focus on extending specification (6.2) to model multi-city data and

account for spatial heterogeneity. Rather than estimating one marginal co-
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Figure 6.1: The three functional principal components with share of ex-

plained variance in the bracket (a) and bivariate plot of principal score 2

against score 3 (b). The principal scores are independent of each other.

efficient parameter β, we estimate exposure to ozone effect that can vary

across cities and estimate the overall effect. The model is

logµtc = ξtcβc + fc(Temptc) +

6∑
j=1

δjDOWtj +

13∑
k=1

γkYeartk, (6.3)

where βc = (βc1, βc2, βc3)
′ indicate the three city-varying score coefficients

for c = 1, . . . , 15. This model is the same as model (5.7) where matrix J

becomes the identity matrix I. The prior specification of βc is similar to the

one adopted in Chapter 5

βc ∼ Normal(µβ, σ
2
βI)

µβ ∼ Normal(0, σ2µI).
(6.4)
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Figure 6.2: Distribution of samples from the posterior distribution of associ-

ated to coefficients; the first principal score (left), the second principal score

(middle) and the third principal score (right). The median for each score

coefficient is indicated by a thick broken line.

The parameter µβ = (µβ1 , µβ2 , µβ3) denote the overall score effect associ-

ated to each score coefficient βc. The variance component σ2βI is a 3 × 3

diagonal matrix with the diagonal elements σ2β1 , σ
2
β2

and σ2β3 which measure

the between city heterogeneity with respect to each estimate of βc and σ2µ

measures the average variability. For these variance components, a weakly

informative prior is used, particularly, a gamma distribution with mean one

and large variance.

6.3 Results

We estimated the models using the Gibbs sampler of Markov Chain Monte

Carlo techniques. Relatively short chains are required to grant convergence,

and the posterior draws are used to summarize the models. First we obtained

estimates of the parameters by pooling the cities together as in model (6.2).

Figure 6.2 displays the posterior distributions of the three score coefficients.
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Mean S.E lower Median upper

score[1] 0.781 0.090 0.680 0.757 1.0259

score[2] 10.208 0.087 10.052 10.220 10.3555

score[3] -9.125 0.135 -9.332 -9.137 -8.8737

Day of the week

Monday -0.110 0.024 -0.134 -0.115 -0.0371

Tuesday 0.073 0.027 0.046 0.067 0.1591

Wednesday 0.028 0.027 -0.001 0.023 0.1084

Thursday -0.129 0.029 -0.156 -0.135 -0.0411

Friday 0.061 0.028 0.036 0.057 0.1559

Saturday 0.039 0.024 0.015 0.034 0.1077

Note: S.E: standard deviation

Table 6.1: Posterior summaries of a model for which separate city data are

pooled. The three principal scores are computed from hourly ozone data

using functional principal component analysis.

Relevant summary measures including 95% credible intervals computed from

the posterior samples are reported in Table 6.1. The credibility intervals for

the score coefficients do not include zero, thus suggesting a statistically

significant effect. The first three eigenfunctions grasp the variation in the

afternoon hours where concentration reaches maximum, hence the strong

effect shown by the associated principal scores may be an expected event

and it appears broadly coherent with the estimate of β(h) according to the

overall model in Chapter 5 (5.1).

A second model is considered to obtain city-varying score effects accounting

for spatial heterogeneity as given in (6.3). Figure 6.3 presents the distribu-

tion of the posterior values (upper) for the parameters βc and the associated

median estimate along with 95% credible set (lower). The Figure also depicts

the pooled parameters for each score. No apparent outliers are observed in

the distribution of the posterior values for βc1 . It appears that the three
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principal scores are not significant for the city of Austin (aust, for short

notation of cities name, see Table 5.1). For the second principal scores,

the posterior values for Dallas (dall) and Milwaukee (mil) are slightly far

from the others. Among the three scores, the third principal score is not

significant for many cities.
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Figure 6.3: The distribution of the posterior values (upper) and the asso-

ciated median along with 95% credible intervals (lower) of the parameters

βc1, βc2 and βc3 from left to right. The posterior information of the pooled

parameters (µβ1, µβ2, µβ3) are given in the far right hand side of each plot.

To measure the persistence of the exposure, up to two days lagged values of

ozone concentrations are used to explain the current day mortality. Figure
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6.4 displays the median and associated 95% credible sets of the posterior

samples for the first two scores coefficients across the cities and their over-

all effect. Exposure estimates for lag 1 effect are similar to the same day

exposure effect (Figure 6.3), while lag 2 estimates seem away from zero,

particularly with respect to score 1.
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Figure 6.4: The medians and associated 95% credible intervals of posterior

samples for lag 1 and lag 2 exposure effect. The pooled information is shown

in the far right hand side of each plot.

The results of the variance components for the same day and lag 1 exposure

are summarized in Table 6.2. The median of the three variances σ2β1 , σ2β2 and

σ2β3 are quite different from zero. The fact that the 95% credible intervals of
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Mean 2.5% Median 97.5%

σ2β1 2.831 1.978 2.758 4.060

σ2β2 7.931 5.571 7.699 11.410

σ2β3 6.724 4.737 6.522 9.852

σ2β1 .lag1 2.931 1.978 2.757 4.060

σ2β2 .lag1 8.226 5.570 7.699 11.410

σ2β3 .lag1 7.036 4.737 6.522 9.850

Table 6.2: The posterior summaries of the variance component under the

city-specific model for lag 0 and lag 1 exposure. These variances describe

the between city variability in the estimate of the three score coefficients.

these between city variabilities are away from zero suggests the existence of

between location variability. Thus employing regression models by pooling

the data may not be appropriate.

6.4 Discussion

In this Chapter, we consider modeling the health effect of ozone for which

its exposure is measured in terms of principal scores which are computed

from the hourly pollutant measurements. Functional principal component

analysis method is used to generate a fixed number of principal scores. We

have selected the first three principal scores that grasp approximately 90%

of the daily ozone variation. These scores also capture important aspects

of the daily ozone curve, particularly, the region of ozone where believed

to be potentially harmful such as the daily maximum region. Two models

are proposed to investigate the effect of the principal scores on health. In

the first model, no attempt were made to consider the heterogeneity effect

of the cities. In this case the model was fitted on pooled data from 15

USA cities. The fact that the principal scores lead to an estimated ozone

effect that is significantly different from zero, may be a confirmation that

the proposed exposure measures reflect important aspects of exposure. In
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the second approach, we fit a Bayesian hierarchical model to account for

spatial heterogeneity which assumes that the association between exposure

to the pollutant and mortality can vary across the cities. The framework

allows to estimate an overall effect and it can be considered as a combined

information across the cities to make inferences regardless of locations.

We used up to two days lagged values of hourly ozone concentration to

measure the persistent effect of exposure. The exposure effect of one day

lag is not quite dissimilar to the same day exposure effect and the effect

of two day exposure seems more influential. A measure of between city

variation among the three scores is estimated, and suggests strong presence

of geographic heterogeneity. This may confirm that estimated environmental

exposure effect is spatially heterogeneous. Finally, the models can be used

to study the health effect of other pollutants or joint pollutants effect.



Chapter 7

Conclusion

7.1 Description

The adverse health effect of exposure to environmental pollutants has be-

come a global issue since early twentieth century when a series of severe air

pollution episodes occurred in different parts of the world. The 1930 Meuse

Valley fog in Belgium and the London ’Great Smog’ in 1952 were some of

the episodes which were associated to a rise in the number of hospital ad-

mission and premature death. These events led to formulation of strategies

to reduce the environmental pollution levels. However, pollution persists at

high levels, and studies continued to detect effect on human health from the

exposure. Studies use data typically consists of health outcome data, the

measurements of pollutants and various confounding variables for a certain

study region. The health outcome data contains daily counts of mortal-

ity (death) or morbidity (hospital admission) for the population residing

within the study area. There are several pollutants studied for their effect

on health, with ozone being the main pollutant studied in this thesis. Con-

centrations of pollutants are obtained from a network of monitoring stations

located throughout the study region. Measurements are typically taken at

various times throughout the day, often on hourly basis.
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To represent the daily exposure to a pollutant concentration, the daily pat-

terns of the pollutant have been reduced to a single summary figures. Then,

the health effect of the exposure has been estimated by regressing day-

varying health outcome against day-varying daily summary measure of ex-

posure using generalized linear models (GLM) or generalized additive mod-

els (GAM). Such exposure effect has been estimated at various geographic

regions (Gryparis et al., 2004; Zhang et al., 2006), and it has been shown

through multi-city studies that the estimated effect is spatially heteroge-

neous (Katsouyanni et al., 1996; Samet et al., 2000). However, the use of

daily summaries to represent daily exposure to the pollutant have been un-

satisfying.

In this thesis, we have proposed approaches to measure exposure to pollu-

tants to address the limitations of the traditional exposure measures and

improve effect estimation. The work presented in this thesis has been cen-

tred around two major themes. The first theme proposes two related rep-

resentative measures of daily exposure to pollutants using functional data

analysis. The first exposure measure attempts to resolve the issue of mea-

suring exposure by treating all hourly measures of a day as one function

accounting for temporal variation of the pollutant. The predictive efficiency

of our approach is superior as compared to the predictive accuracy of models

based on the daily summaries and other related approaches from literature.

A second exposure measure considered is principal scores computed from

hourly ozone measurements using functional principal component analysis

technique. The computed principal scores grasp the most important por-

tion of the daily ozone variation. The second theme is an extension of the

first theme, implemented for data which come from multiple geographic lo-

cations. Both the functional form and principal scores exposure measures

have been embedded into a hierarchical model to allow for spatial hetero-

geneity of the effect. We assumed the exposure effect to vary across the

study location and estimated both location-specific and an overall effect.
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7.2 Synthesis of empirical findings

Pollutants are a potent health and environmental problem. Ground level

Ozone (O3) is one of the main component of pollutants produced by chem-

ical reaction in the presence of sunlight. The process of ozone formation is

a continuous process, it follows different daily fluctuations exhibiting strong

daily patterns. The concentrations of ozone are usually measured by a net-

work of monitoring sites in a particular study region. Each monitoring site

typically measures continuously throughout the day. Despite the advances

in ozone monitoring and recording, there continue to be gaps in analyzing

the monitored data. One main issue in this regard is the method to mea-

sure human exposure to ozone. Systematic models that take into account

the daily patterns of ozone are particularly rare. Despite the availability of

the hourly measurements from monitoring networks, most studies collapse

these measurements into single daily summaries. The most frequently used

daily summaries are the average and maximum of the 24 hour measurements.

The daily summaries are rough synthesis of the daily pattern of pollutant

concentrations and totally disregard the temporal variation observed in the

daily concentrations. Further, high ozone concentrations which can be harm-

ful to health can be recorded at a particular hour of the day, but this would

not necessarily mean that a daily summary is predictive for health outcome.

The daily summaries may not be representative of the actual personal expo-

sure to individuals, since they ignore the portion of the time spent outdoor.

For instance, Figures 3.2 and 4.2 display a clear pattern for which the con-

centrations reach maximum in the afternoon hours, and low measurements

in the morning and night hours. It may be argued that a good measure of

exposure should contain information on the presence of high concentration

during the day. We therefore proposed that the daily exposure of a person

is the concentration level as a function of daily hour. While it is true that

any measure of concentration may not be a precise measure of exposure, we
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argue that allowing for daily pattern is important improvement as compared

to single summaries. Thus, we remark that estimates of exposure effect on

health contain these inherent facts of the pollutant.

In Chapter 4, we used functional data analysis techniques to describe hourly

ozone measurements as a function accounting for temporal variation of the

pollutant. We implemented a functional regression models considering the

functional exposure measure as a predictor and hospital admission counts as

the response, with pollutants measured in the monitoring network of city of

Milan, Italy for the summer periods of years 1996-2002. We estimated the

effect of exposure as a function of daily hour which allows to examine the

influence of the pollutant throughout the day, as opposed to a single scalar

estimate associated to daily summaries. Subsequently, the portion of daily

ozone function potentially linked to health has been recognized. Particu-

larly, the region of the estimate from afternoon hours on wards, where the

concentration level reaches maximum, is identified as potentially harmful to

health. A drawback to the functional regression model in Chapter 4 is that

it has to be applied to a single study region. It is likely that the estimated

effect is spatially heterogeneous across different study regions.

In Chapter 5, we have proposed a functional hierarchical modeling approach

to estimate pollutant exposure effect allowing for the daily variation of the

concentration and spatial heterogeneity of the effect at once. The approach

was developed using functional regression model which has been discussed

in Chapter 4 and the Bayesian hierarchical model paradigm. We estimated

both city-varying and overall exposure effect as a function of time of the day

for 15 USA cities for the summer periods of the years 1987-2000. As shown

in Figure 5.5, the health effect of exposure to the pollutant is widely variable

according to geographic locations, both in strength of the effect and shape.

The pooled estimate is a synthesis of information from the study locations

and used to make inferences in the overall effect, and it is broadly coherent
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with the overall estimate obtained by pooling cities together that assumed

homogeneous exposure effect across locations (see Figure 5.4). However, the

former approach produced wider credible intervals while the latter approach,

which does not use variability across the locations, produced narrow credible

intervals.

In Chapter 6, we have provided an alternative and simpler approach, which

still meets the aim of producing a representative exposure measure allowing

for daily variation. This approach uses a fixed number of principal scores

derived from the hourly concentrations through functional principal compo-

nent analysis. These scores capture the important portion of the concen-

tration curve to be used as a potential exposure measure in the model. We

exploited the orthogonality property of the eigenfunctions to obtain uncorre-

lated principal scores which avoids multicollinearity related issues in the use

of the principal scores as covariates. A further advantage of the approach is

dimension reduction; the infinite dimensional functions can be represented

in terms of a few dimensional principal components. To estimate the model,

we adopted Bayesian hierarchical model using data coming from 15 USA

cities. The model estimated a strong exposure effect which may be a con-

firmation that the proposed exposure measures reflect important aspects of

exposure. Further, the estimated effect broadly coherent with the estimate

of a full functional exposure measure presented in Chapters 4 and 5. This

may be interesting, in the sense that the principal scores exposure measure is

a special case of the functional exposure measure, since the principal scores

are obtained by using orthogonal eigenfunctions as basis functions instead

of the B-splines to specify the effect of the exposure measure. The approach

serves as an alternative pollutant exposure measures to other approaches

such as Chiogna and Pauli (2011) and Arisido (2014).
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7.3 Limitations

In this thesis, we have explored the challenges of exposure measure in en-

vironmental studies of pollutants and health and presented alternative ap-

proaches to address these challenges. The proposed methods are based on

the principle of functional data analysis and Bayesian methods. The ap-

proach is first used for a single study location as illustrated in Chapter 4,

and then extended to study multiple geographic locations as in Chapters 5

and 6.

In Chapter 4, we have compared the predictive performances of different

exposure measures using out-of-sample prediction method. This may not

be a definitely perfect means of comparing different methods, but it is more

of an assessment means to get how the proposed approach works against the

standard approaches before embarking to extend the method to the more

complex approach as done in Chapter 5. The Chapter studied the confound-

ing effect of the daily average of particulate matter in the ozone functional

model. We used the daily average since hourly recorded data for particu-

late matter were not available. It would have been interesting to consider

additional functional predictors to assess which predictors play the most

important role in predicting the response.

Chapter 5 illustrated a model accounting for spatial heterogeneity of esti-

mated exposure effect in the presence of temporal variability in the pollutant

concentrations. It is a more general model to estimate the health effect of a

functional exposure measure for a multi-location study. The relevance of the

model is quite clear as it accounts for spatio-temporal variation and used

to make inference for both location-specific and pooled estimates. However,

two criticisms can be directed at the model, first the model did not account

for spatial correlation that may be present between closest cities. In the

future studies, we shall assume that the functional coefficients βc(h) and
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βc′(h) estimated from the proposed model might be correlated as a function

of distance between two cities c and c′. This type of work is not uncommon

in multivariate setting (see for example Dominici et al. (2000)). In the con-

text of this thesis, investigation of the correlation between two functional

object will be an additional issue. The second limitation is related to com-

paring the method with other approaches. It is rather difficult to compare

the results with other studies, in fact the functional coefficient is not directly

comparable to the scalar coefficient of a single summary measure. Thus, the

functional hierarchical model do not allow the possibility of summarizing the

exposure effect in a single quantity in order to compare with other studies.

Chapters 5 and 6 have illustrated a picture of regional variation in the effect

of exposure to ozone. However, we only included a sample of 15 cities from

USA, and would have been included more number of cities to obtain a more

national representative results. This could also allow to investigate whether

the results be the same if more number of cities were included in the study.

In the future, we shall continue the study by including as many cities as

possible in order to obtain a national health effect of ozone. Further, the

Chapters did not include the confounding effect of other pollutants in any

form, since measurements for all pollutants other than ozone in the summer

of 1987-2000 were obtained only once for every six days. Therefore, the

majority of study days did not have measurements. In the future, we aim to

pursue the joint functional effects of ozone and particulate matter in other

study regions where data are accessible. This would potentially include the

functional confounding effect of weather variables such as temperature.
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(1996). Short term effects of air pollution on health: a european ap-

proach using epidemiologic time series data: the aphea protocol. Journal

of epidemiology and community health, 50(Suppl 1):S12–S18.

Kneip, A. and Ramsay, J. O. (2008). Combining registration and fitting

for functional models. Journal of the American Statistical Association,

103(483):1155–1165.

Levy, J. I., Chemerynski, S. M., and Sarnat, J. A. (2005). Ozone exposure

and mortality: an empiric bayes metaregression analysis. Epidemiology,

16(4):458–468.

Li, K.-C. (1986). Asymptotic optimality of cl and generalized cross-

validation in ridge regression with application to spline smoothing. The

Annals of Statistics.

Loeve, M. (1965). Fonctions aléatoires du second ordre...
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