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Measure what is measurable, and make measurable what is not so.
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Prefazione

La Risonanza Magnetica (RM) è una tecnica di imaging medico che viene uti-
lizzata in radiologia sia per le strutture anatomiche sia per le funzionalità del
corpo umano. Grazie all’elevata risoluzione spaziale di cui dispone e al notevole
livello di contrasto tra le differenti tipologie di tessuto, la RM è diventata lo
strumento per la generazione di immagini anatomiche più diffuso. Negli ultimi
decenni, la RM è stata oggetto di studi approfonditi e notevoli sviluppi, tanto
che oggi sono disponibili macchinari ad elevate prestazioni e un ampio numero
di protocolli d’acquisizione differenti. Di conseguenza, la RM ha cominciato
a essere utilizzata anche per studi funzionali. Attualmente, la Tomografia ad

Emissione di Positroni (PET) è la tecnica di riferimento per gli studi funzion-
ali, ma la RM sta diventando una valida alternativa grazie alla sua maggiore
risoluzione spaziale, alla sua maggiore diffusione e al fatto che non utilizza ra-
diazioni ionizzanti nocive.

Attualmente, la risonanza magnetica di perfusione che ricorre all’uso di un
agente di contrasto esogeno, come il gadolinio, è la tecnica più interessante per
lo studio quantitativo dell’emodinamica. La Dynamic Susceptibility Contrast

- Magnetic Resonance Imaging (DSC-MRI) permette di ricavare importanti
parametri emodinamici che ricoprono un ruolo chiave nello studio di svariate
patologie, quali la neoplasia cerebrale, l’ischemia, l’infarto, l’epilessia, la de-
menza e la schizofrenia.

Per caratterizzare il segnale ottenuto con la DSC-MRI viene generalmente
utilizzato un modello basato sulla teoria dei traccianti non diffusibili (la teoria

della diluizione). Basandosi sulle ipotesi che il tracciante sia intravascolare, che
la barriera emato-encefalica sia intatta e che non ci sia ricircolo di tracciante,
il modello permette di ricavare il Volume Ematico Cerebral (CBV), il Flusso

Ematico Cerebrale (CBF) e il Tempo Medio di Transito (MTT).

I passaggio chiave per la stima di tali parametri è la quantificazione della
funzione residuo, che presenta tuttavia alcuni problemi. In questa tesi saranno
trattati i più importanti tra essi:

• la necessità di ricavare la Funzione dIngresso Arteriale (AIF), che rapp-
resenta l’andamento nel tempo della concentrazione di tracciante nei vasi
che irrorano il tessuto;

• la necessità di ricorrere ad un’operazione di deconvoluzione per ricavare
la funzione residuo.
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La AIF è solitamente ricavata selezionando alcuni pixel che rappresentano
i vasi arteriali principali direttamente sulle immagini di RM. La selezione dei
pixel può essere fatta sia manualmente da un radiologo sia tramite un algo-
ritmo di selezione automatica. Recentemente sono stati proposti numerosi algo-
ritmi per svolgere tale compito, ma non si è ancora raggiunto uno standard. In
questo lavoro il problema relativo all’estrazione della AIF viene discusso appro-
fonditamente. Si propone un nuovo metodo per la selezione dei pixel arteriali
che combina le informazioni anatomiche con l’analisi del segnale DSC-MRI.
L’algoritmo è testato su dati simulati e confrontato con i più interessanti al-
goritmi proposti in letteratura. Successivamente viene applicato anche su dati
reali e confrontato con la AIF ottenuta tramite selezione manuale al fine di val-
utare l’impatto che la scelta della AIF ha sulla stima dei parametri CBF, CBV e
MTT. Il metodo proposto ha dimostrato di essere in grado di ricostruire la AIF
originale, fornendo sia stime accurate che intervalli di confidenza molto stretti.
Inoltre ha dimostrato di essere robusto nei confronti di diversi livelli di rumor-
osità nei dati, contribuendo quindi all’aumento della riproducibilità nello studio
dell’emodinamica cerebrale. Infine, le AIF ottenute tramite il nuovo algoritmo
hanno permesso di effettuare diagnosi più accurate rispetto a quelle ottenute
tramite selezione manuale.

Un altro passaggio critico per l’analisi dei dati DSC-MRI è rappresentato
dall’operazione di deconvoluzione necessaria per la stima della funzione residuo.
I problemi in quest’ambito sono legati sia ai problemi intrinseci della decon-
voluzione (ad esempio il fatto che è un problema matematico mal condizionato
e mal posto), sia ad aspetti dovuti al fatto che si tratta di un sistema fisiologico
(ad esempio vincoli di non negatività). Inoltre, la possibile presenza di dis-
persione e ritardo nella AIF costituisce un’altra importante fonte di errore per
la stima della funzione residuo. Ad oggi, i metodi di deconvoluzione più diffusi
sono la Singular Value Decomposition (SVD) e la block-Circulant Singular Value

Decomposition (cSVD). La SVD è storicamente il primo metodo proposto per
lo studio dei dati DSC-MRI e rappresenta ancora il metodo di riferimento in
quest’ambito. La cSVD è invece la naturale evoluzione della SVD, proposta per
eliminare i problemi dovuti al ritardo nella AIF che caratterizzano la SVD. Nu-
merosi metodi sono stati proposti negli anni in letteratura. Tra i vari, citiamo
la Nonlinear Stochastic Regularization (NSR), che permette di tener conto sia
dei vincoli di non negatività sia della regolarità della funzione residuo.

In questo lavoro si presenta un nuovo metodo di deconvoluzione. La Popu-

lation Deconvolution (PD) che analizza contemporaneamente un ampio numero
di voxel simili sfruttando un approccio di popolazione, quindi migliorando la
qualità dei dati utilizzati per l’operazione di deconvoluzione. Il metodo PD è
stato validato su dati simulati e confrontato sia con la SVD che con la cSVD.
PD riesce a ricostruire funzioni residuo che risultato credibili e fisiologiche in
quanto presentano oscillazioni poco ampie e più smorzate rispetto a quelle pre-
senti nelle funzioni residuo ottenuto con la SVD e la cSVD. PD permette inoltre
di ricavare stime accurate di CBF, sia in presenza che in assenza di disper-
sione nella AIF, fornendo risultati migliori rispetto alla SVD e alla cSVD. PD,
SVD e cSVD sono stati inoltre utilizzati per l’analisi di dati reali e sono stati
confrontati anche con NSR. Le mappe di CBF e MTT ottenute tramite PD
presentano un livello di contrasto migliore rispetto a quelle ottenute con SVD
e cSVD, enfatizzando maggiormente le aree caratterizzate da un diverso flusso
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ematico. Anche le mappe ottenute tramite NSR presentano un alto livello di
contrasto, risultando però più rumorose rispetto a quelle ottenute tramite PD.
Si è inoltre introdotto un nuovo indicatore fisiologico, l’indice di lateralità, che
permette di fornire una rappresentazione grafica e di integrare le informazioni
contenute nelle mappe di CBF e MTT. NSR fornisce valori di lateralità molto
ampi, evidenziando notevolmente le zone caratterizzate da diversi flussi ematici.
Tuttavia, l’individuazione delle aree colpite dalla patologia è resa difficoltosa
dal fatto che anche le aree sane sono caratterizzate da ampi indici di lateralità.
L’opposto si verifica considerando gli indici di lateralità ottenuti tramite SVD o
cSVD; in questo caso l’individuazione delle aree malate è resa difficile dal fatto
che gli indici forniti sono molto piccoli. PD invece permette di ottenere degli in-
dici di lateralità che evidenziano le aree malate più di quanto non facciano SVD
o cSVD, ma con valori meno ampi rispetto a NSR, soprattutto nelle regioni
sane. In questo modo, PD permette di ottenere diagnosi più accurate.

Infine, in questo lavoro viene presentato un ulteriore promettente metodo
di deconvoluzione, chiamato DNP. A differenza di PD, che deve essere utilizzato
per l’analisi di un elevato numero di voxel a causa dell’approccio di popolazione,
DNP è un metodo di deconvoluzione di singoli voxel, quindi può essere applicato
anche all’analisi di regioni contenenti pochi voxel. L’aspetto più interessante del
metodo DNP è che permette di tenere conto sia del fatto che la funzione residuo
deve essere continua, sia del fatto che un sistema fisiologico è, naturalmente,
BIBO stabile. Inoltre, tale metodo permette di stimare anche il ritardo normal-
mente presente nella AIF, migliorando la precisione nella stima della funzione
residuo. Dato che il metodo è ancora in fase di sviluppo, nella tesi sono ripor-
tati solo dei risultati preliminari. Tali risultati mostrano che DNP è in grado
di fornire stime di CBF più accurate rispetto a SVD e cSVD, sia in presenza
che in assenza di dispersione e ritardo. Inoltre, le funzioni residuo ottenute
tramite DNP non presentano valori negativi e le oscillazioni non fisiologiche
generalmente presenti nei risultati forniti da SVD e cSVD. D’altro canto, DNP
presenta ancora dei problemi, il più importante dei quali è il calcolo del ritardo
nella AIF, poco preciso e generalmente sovrastimato, soprattutto in presenza di
dispersione. Inoltre, DNP non riesce ancora a caratterizzare bene l’andamento
della funzione residuo. Un altro problema non ancora risolto è legato alla stima
degli iper-parametri. Infatti questo aspetto richiede alcuni passaggi non lineari
che incrementano notevolmente i tempi di calcolo necessari all’algoritmo.

In conclusione, anche se presenta ancora numerosi limiti nella fase di analisi
del segnale, la DSC-MRI sta diventando uno strumento molto importante sia
nella pratica clinica che nella fase di ricerca medica. Gli algoritmi di selezione
della AIF e di deconvoluzione che sono stati proposti in questa tesi permettono
di migliorare l’informazione clinica e scientifica che si può ottenere dall’analisi
dei dati ottenuti tramite DSC-MRI.





Preface

Magnetic Resonance Imaging (MRI) is a medical imaging technique used in ra-
diology to visualize the anatomical structures and the functions of the body.
Thanks to its fine spatial resolution and to the great contrast between the dif-
ferent soft tissues, MRI has become the most used method for the anatomical
image generation. During the last two decades, MRI was widely studied and
developed, so high performance devices and new analysis protocols are now
available. As an outcome, MR can now be used also to perform functional anal-
ysis. Currently, the Positron Emission Tomography (PET) is the gold standard
technique in functional imaging. However, MRI is becoming a valid alternative
to PET in functional analysis because of its greater spatial resolution, its wide
diffusion and the absence of ionizing radiations.

Currently, perfusion magnetic resonance using an exogenous tracer, such
as gadolinium, is the most interesting technique for the quantitative study of
the hemodynamic. The Dynamic Susceptibility Contrast - Magnetic Resonance

Imaging (DSC-MRI) allows to quantify important hemodynamic parameters
that play an important role in the study of several pathologies, such as cerebral
neoplasia, ischemia or infarction, epilepsy, dementia and schizophrenia.

The commonly used model for describing the DSC-MRI signal is based on
the non diffusible tracer theory, also called dilution theory. It assumes that
the tracer remains intravascular, the blood-brain-barrier (BBB) is intact and
there is no tracer recirculation. Under these assumptions, the model allows to
estimate the Cerebral Blood Volume (CBV), the Cerebral Blood Flow (CBF)
and the Mean Transit Time (MTT).

The most crucial step in the DSC-MRI image quantification is the residue
function estimate that presents some limitations. The most important ones,
that are considered in this work, are:

• the necessity to know the Arterial Input Function (AIF), which is the
concentration time curve in the vessels feeding the tissue;

• the assessment of the residue function requiring to perform a deconvolution
operation, which is a well-known difficult mathematical problem.

Currently, AIF is measured directly on the MR images, by selecting a small
number of pixels containing one of the principal arterial vessels. The pixel se-
lection can be made either manually, by a physician, or by means of automatic
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algorithms. During the past years, several automatic and semiautomatic meth-
ods for the AIF extraction have been proposed, but a standard has not been
achieved, yet. In this work, the AIF selection and deconvolution problems are
discussed in depth. A new selection method, combining anatomical information
with MR-signal analysis in presented. It is compared to the other AIF selection
algorithms proposed in literature on a simulated data set. Then, a comparison
with the manual selection method on a clinical data set is performed and the
AIF selection impact on CBF, CBV and MTT estimate is investigated. The
proposed method has been shown to reliably reconstruct the true AIF, pro-
viding accurate estimates and very narrow confidence bands. Moreover, it is
robust against the different noise levels, thus increasing the reproducibility level
in DSC-MRI image quantification. Furthermore, AIFs obtained with the new
method have been shown to lead to a more accurate diagnosis than the manual
ones.

Another critical step in DSC-MRI data analysis is the deconvolution op-
eration, that allows to estimate the residue function. Problems in this step
are due to the deconvolution intrinsic problems (e.g. the ill-posedness and the
ill-conditioning) and to the physiological system specific problems (e.g. non neg-
ative constrains). Moreover, another important source of error in the residue
function estimate is the possible presence of delay and/or dispersion in AIF.
Currently, the most used deconvolution methods are the Singular Value Decom-

position (SVD) and the block-Circulant Singular Value Decomposition (cSVD).
SVD is historically the first and the most important deconvolution method pro-
posed in the DSC-MRI context and it is currently the reference method. The
cSVD method is the natural evolution of SVD and it has been proposed to over-
come the problem of delay in the AIF. Several other deconvolution methods have
been proposed in literature. Among them all, we focus on a recently proposed
method, the Nonlinear Stochastic Regularization (NSR), that accounts for both
the smoothness and the non-negativity constraint of the residue function.

In this work, a new deconvolution method is presented. The Population

Deconvolution (PD) method exploits a population approach to analyse a large
set of similar voxels at the same time, thus improving the data quality in the
deconvolution operation. PD has been validated on simulated data and com-
pared to SVD and cSVD. PD can reconstruct reliable and physiological residue
functions. The residue functions obtained using PD present very small and
damped oscillations compared to SVD and cSVD ones. Furthermore, PD has
been shown to accurately estimate the CBF both in presence and in absence of
dispersion, providing better results than SVD and cSVD. SVD, cSVD and PD
have been compared also to NSR on clinical data. CBF and MTT maps pro-
vided by PD present a greater contrast level than SVD and cSVD ones, as they
emphasize the flow and transit time differences. Also NSR maps are extremely
contrasted, but they appear noisier than the PD ones. A new physiological in-
dicator, the Laterality Index, has also been introduced. It provides a graphical
representation of the CBF and MTT map information, integrating all the infor-
mation provided by the different parameters. NSR provides very large laterality
indices, thus emphasizing the disease affected regions. Nevertheless, the detec-
tion of the pathological areas is not easy because of the large LI variability also
in the healthy regions. On the contrary, SVD and cSVD laterality indices make
the disease detection difficult because they do not emphasize the pathological
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areas. PD meets the need to underline the pathologic areas without showing
false positive results, providing larger LIs than the SVD and cSVD ones, but
smaller than the NSR ones. Therefore, PD has been shown to lead to a more
accurate diagnosis than the other methods.

Finally, another promising deconvolution method, called DNP, is presented.
Differently from PD, that has to be applied to large data sets because of its
population approach, DNP is a voxel based method, thus it can be applied
also to a small number of voxels. The most interesting DNP feature is that it
accounts for both the residue function continuity and the system BIBO-stability.
Moreover, it can estimate the AIF delay, thus improving the accuracy in the R(t)
estimation. Since it is still under development, only the DNP preliminary results
are presented in this work. DNP has been shown to provide more accurate
CBF estimates than SVD and cSVD, both in presence and absence of delay and
dispersion. Furthermore, the DNP reconstructed residue functions show neither
the negative values nor the spurious oscillations usually present in the SVD and
cSVD ones. However, DNP bears some limitations too. Currently, the most
important DNP limitation is the delay estimation. DNP usually overestimates
the delay, above all in presence of dispersion, thus providing a non accurate
characterization of the residue function. Another DNP problem is that the
hyper-parameter quantification requires a non-linear step, which increases the
computation time of the algorithm.

In conclusion, although they present some limitations in the post-processing
analysis, DSC-MRI techniques are becoming an important tool in medical re-
search and in clinical practice. The development of a fully automatic algorithm
for the AIF selection and of a deconvolution method based on a population ap-
proach would improve the clinical and scientific information provided by DSC-
MRI analysis.





List of Abbreviations

Abbreviation Description

AIF Arterial Input Function
BIBO Bounded-Input Bounded-Output
CBF Cerebral Blood Flow
CBV Cerebral Blood Volume
cSVD Block-Circulant SVD

DSC-MRI Dynamic Susceptibility Contrast-MRI
DNP De Nicolao & Pillonetto deconvolution method
EPI Echo-Planar Imaging
GE Gradient Echo
LI Laterality Indices
ML Maximum Likelihood
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MTT Mean Transit Time
NSR Nonlinear Stochastic Regularization
PD Population Deconvolution method

RKHS Reproducing Kernel Hilbert Space
SD Standard Deviation
SE Spin Echo

SNR Signal to Noise Ratio
SVD Singular Value Decomposition

Table 1: Abbreviation Table
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Chapter 1

Introduction

Magnetic Resonance imaging (MRI) is a medical imaging technique used in ra-
diology to visualize the anatomical structures and the functions of the body.
Thanks to its fine spatial resolution and to the great contrast level between the
different soft tissues, MRI has become the most used method for anatomical
image generation. During the last two decades, MRI was widely studied and
developed. Modern magnetic resonance (MR) scanners are equipped with a
high-field magnet, high performance radio frequency amplifiers and they have
components which generate high intensity gradients. Moreover, a deeper knowl-
edge of the MR signal physics principles allowed to develop new analysis pro-
tocols. As an outcome of this fast development, MR can now be used also
to perform functional analysis. Currently, the Positron Emission Tomography

(PET) is the gold standard technique in functional imaging. However, MRI has
a greater spatial resolution than PET, it is widely used in medical centres and
it does not use ionizing radiations. For these reasons, MRI is becoming a valid
alternative to PET in functional analysis.

Currently, the perfusion magnetic resonance using an exogenous tracer,
such as gadolinium, is the most interesting technique for the quantitative hemo-
dynamic study. Cerebral hemodynamic plays an important role in the study of
several pathologies, such as cerebral neoplasia, ischemia or infarction, epilepsy,
dementia and schizophrenia. Dynamic Susceptibility Contrast - Magnetic Reso-

nance Imaging (DSC-MRI) allows to quantify important hemodynamic param-
eters using a non radioactive contrast agent and without requiring an arterial
sampling.

DSC-MRI measures the T ∗

2 variations due to the tracer passage through
the brain, then it analyses the tracer bolus time course to derive the perfusion
parameters. The commonly used model for describing the DSC-MRI signal is
based on the non diffusible tracer theory, also called dilution theory. It assumes
that the tracer remains intravascular, the blood-brain-barrier (BBB) is intact
and there is no tracer recirculation. Under these assumptions, the model allows
to reconstruct the residue function, i.e. the fraction of contrast agent remaining
inside the tissue at time t. It is therefore possible to estimate the Cerebral

Blood Volume (CBV), the Cerebral Blood Flow (CBF) and the Mean Transit

Time (MTT).



2

The most crucial step in the DSC-MRI image quantification is the residue
function estimate. Its estimation requires to perform a deconvolution opera-
tion, which is a well-known difficult mathematical problem. Troubles in this
step are due to the deconvolution intrinsic problems (e.g. the ill-posedness and
the ill-conditioning) and to the physiological system specific problems (e.g. non
negative constrains). Several methods have been proposed in literature to esti-
mate the residue function in the DSC-MRI context, but no standard has been
achieved yet.

Another important issue in DSC-MRI is that the deconvolution operation
requires the knowledge of the Arterial Input Function (AIF), which is the con-
centration time curve in the vessels feeding the tissue.AIF can be measured
directly by arterial sampling, but its invasiveness has promoted the develop-
ment of alternative approaches. Currently, AIF is measured directly on the MR
images, by selecting a small number of pixels containing one of the principal
arterial vessels. The pixel selection can be made either manually, by a physi-
cian, or by means of automatic algorithms. During the past years, the need
of a fully automatic method has emerged in order to avoid both the need of
trained personnel and the subjectivity in the arterial pixel choice. Such AIF is
also called global AIF, since a unique AIF is used to analyse the whole brain
tissue. However, different brain sites have different feeding vessels, thus they
can present different AIFs. Therefore, AIF should be measured for each brain
site. This solution is called local AIF. Several attempts to measure a local AIF
have been proposed, but they have to face many other problems, such as the
partial volume effect. As for the deconvolution operation, several methods have
been proposed in literature to estimate the AIF in the DSC-MRI images, but
no standard has been achieved yet.

In this work, the above mentioned limitations are considered. An arterial
pixel selection method and two deconvolution approaches will be proposed to
overcome the DSC-MRI open issues.

The outline of the thesis is the following one.

In Chapter 2 the DSC-MRI acquisition experiment using gadolinium as
contrast agent is presented. Contrast agent effects and experimental protocol
are explained. Then, the DSC-MRI signal model is explained, focussing on its
assumptions and problems, such as the recirculation presence and the propor-
tionality constant value. Finally, the dilution theory is presented and the CBF,
CBV and MTT quantification procedure is explained.

In Chapter 3 the AIF selection and deconvolution problems are discussed
in depth. Firstly, the problems due to the AIF selection are explained and the
manual selection method expounded. The AIF selection methods proposed in
literature are also briefly reviewed. Then, the deconvolution problem is faced,
focussing on its mathematical formulation. The singular value decomposition
(SVD) and the block-circulant SVD (cSVD) are currently the most used de-
convolution method in DSC-MRI. They are described with particular attention
to their performances and limitations. A non linear stochastic regularization
(NSR) algorithm, developed in the University of Padua Bioengineer Group, is
also presented.

Chapter 4 is dedicated to the AIF selection. Firstly, a new selection method,
combining anatomical information with MR-signal analysis in presented. Sec-
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ondly, it is compared to the other AIF selection algorithms proposed in literature
on a simulated data set. Then, a comparison with the manual selection method
on a clinical data set is performed and the AIF selection impact on CBF, CBV
and MTT estimate is investigated.

In Chapter 5 a Population Deconvolution (PD) method is presented. It
exploits a population approach to improve the data quality in the deconvolution
operation. PD is validated on simulated data and compared to SVD and cSVD.
Then, SVD, cSVD, NSR and PD are compared on clinical data, with particular
attention to the impact on the clinical diagnosis.

In Chapter 6 a new pixel based deconvolution algorithm is presented. The
original method has been proposed by De Nicolao & Pillonetto (DNP). The
DNP application on DSC-MRI context is presented. SVD, cSVD and DNP are
assessed and compared on simulated data, focussing on DNP merits and defects.
SVD, cSVD and DNP are assessed and briefly compared on clinical data.





Chapter 2

Dynamic Susceptibility

Contrast -MRI: Protocol

and Theory

This chapter presents the DSC-MRI protocol and the acquisition sequences.
Afterwards, the dilution theory (i.e. the model employed) is discussed, with
particular attention to the model assumptions. In the end, the main steps of
the standard paradigm used in DSC-MRI image quantification are presented,
pointing out both the recirculation problem and the limitations of the model
and quantification paradigm.

2.1 Experiment Protocol

and Acquisition Sequence

DSC-MRI is a first-pass bolus tracking technique, which consists of the injection
of a bolus of high-concentrated contrast agent and of the acquisition of a se-
quence of MR-images to observe the signal changes caused by the bolus passage
through the brain.

Figure 2.1 shows a typical acquisition protocol: a bolus of contrast agent
(i.e. Gadolinium at 0.1-0.3 mmol per kg body weight) is delivered to the patient
by a MRI-compatible power injector at a 5-10 ml sec−1 rate via an antecubital
vein. A saline flush of 0.2-0.3 ml kg−1 follows the bolus injection. Since bo-
lus transit time is only few seconds, rapid imaging techniques are necessary
to obtain sequential images in the wash-in and wash-out periods. Finally, the
contrast agent was eliminated by the hepatic biliary system. Typically para-
magnetic tracers are employed, such as gadolinium chelate. The paramagnetic
solution causes the presence of inhomogeneities in the applied magnetic field,
hence it de-phases the transverse magnetization in the surrounding tissue. Thus,
it affects both T2 and T ∗

2 relaxation times. T1, T2 and T ∗

2 are parameters which
characterise the MR-signal and they are properties of the tissue, i.e. they are
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Figure 2.1: A typical acquisition setting.

fixed for a specific tissue at a given magnetic field strength. T1 is the longitu-

dinal relaxation time, it refers to the time the spins take to realign along the
longitudinal axis after the stimulation. T2 and T ∗

2 are the transverse relaxation

time. T2 depends primarily on the spin-spin interactions, while T ∗

2 depends on
the external magnetic field too. DSC-MRI can be performed by using either
Spin Echo (SE) or Gradient Echo (GE) sequences, which are sufficiently fast to
track bolus injection [74]. It has been shown that T ∗

2 -weighted GE sequences are
more sensitive to the agent passage then T2-weighted SE ones [34]. It has also
been shown that the GE relaxation is more sensitive to the vessels larger than
∼20 µm in diameter. Therefore, the GE signal derives from tissues with both
large vessels and microcirculatory contributions [10]. Differently, SE sequences
are mostly influenced by the capillary bed [39]. Refocusing the signal from larger
vessels, SE sequences also allow improve the image quality in particular brain
regions, such as the temporal lobes and the frontal sinus. Nonetheless, GE is
the sequence usually chosen because of the high sensitivity of T ∗

2 in DSC-MRI.
Commonly, sequences used in DSC-MRI include fast GE imaging, GE-weighted
Echo Planar Imaging (EPI), SE-weighted EPI, different forms of fast SE imag-
ing, spiral variants of EPI and three dimensional volume acquisition. A typical
protocol consists of a single shot GE sequence with TE varying from 40 to 60
ms and TR from 800 to 1200 ms with a magnetic field strength of 1.5T. Flip
angles of 60-80 are chosen to maximize signal to noise ratios and minimize any
T1 effect.

2.2 Dilution Theory

The model used to characterize the dynamic of the tracer which passes through
a volume of interest (VOI) follows the principles of tracer kinetics [4, 95, 96]
and it is based on the following assumptions:
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1. the contrast agent is totally nondiffusible;

2. there is no recirculation of the contrast agent;

3. the Blood Brain Barrier (BBB) is intact, i.e. no tracer leakage can occur
from the intravascular to the extra-vascular space;

4. the system is in steady state during the experiment. This means that the
blood flow is assumed constant. As a consequence, DSC-MRI technique
can be used to estimate either constant flows, or flows varying very slowly
within the experiment duration. The latter can be quantified by a series
of consecutive experiments;

5. the contrast agent dose must not appreciably perturb the system.

Under these assumptions, the model allows to describe the tissue concen-
tration (CV OI(t)) of the contrast agent in a considered VOI at time t using the
following functions

• the transport function h(t): consider a unitary amplitude bolus of nondif-
fusible tracer given in the vessels feeding a VOI at time t=0; h(t) is the
density probability function of the transit times of the individual tracer
particles passing through the VOI at time t. When a generic input func-
tion CAIF (t) is given instead of the bolus, the tracer concentration leaving
the VOI at time t (CV (t)) is given by

CV (t) = CAIF (t) ⊗ h(t) (2.1)

h(t) is a system characteristic, it depends on the flow and on the vascular
structure of the VOI. It has the dimension 1/time and, when integrated
over all time, the area is unitary and dimensionless

∫
∞

0

h(τ)dτ = 1 (2.2)

• the residue function R(t): it is defined as

R(t) = 1 −

∫ t

0

h(τ)dτ (2.3)

It represents the tracer fraction present in the VOI at time t after the
injection of a nondiffusible tracer bolus with unitary amplitude into the
vessels feeding the VOI at time t=0. R(t) is a dimensionless, positive and
decreasing function. R(0)=1, that means that at time t=0 the total bolus
of contrast agent is ideally present in the VOI. R(t) and, consequently, h(t)
completely describe the system; once they are known, the concentration
curves of the tracer leaving and remaining in the VOI can be predicted
for any given input function.

• the Arterial Input Function (AIF) CAIF (t): is the concentration of con-
trast agent in the vessels feeding the VOI at time t.
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Considering the previously defined functions, the model allows to quantify
three important parameters characterising the hemodynamic:

• the Cerebral Blood Volume (CBV);

• the Cerebral Blood Flow (CBF);

• the Mean Transit Time (MTT).

In case of intact BBB, the CBV is defined as the ratio between the blood
volume contained in a considered VOI and the VOI volume. CBV can be deter-
mined from DSC-MRI images as the ratio between the area under the concen-
tration time curve of the tracer in the VOI (CV OI(t)) and the area under the
concentration time curve in the vessels feeding the VOI (CAIF (t))

CBV =
kH

ρ

∫
∞

0
CV OI(τ)dτ∫

∞

0
CAIF (τ)dτ

(2.4)

where ρ represents the brain tissue density and kh accounts for the difference
in hematocrit between large and small vessels. Since only plasma volume is ac-
cessible to the tracer, CBV may be split into cerebral plasma volume (CPV) and
red cell volume (CRCV) [5], i.e. CBV = CPV + CRCV . Defining hematocrit
as the ratio H = 100 ·CRCV/CBV one can obtain CBV = CPV +H ·CBV =
CPV/(1 −H). Starting from the definition of CBV

CBV =
amount of blood in a VOI

ρ · area under the blood input curve
(2.5)

defining

kh = (1 − HLV )/(1 − HSV ) (2.6)

and, as the tracer is only in the plasma

CBV =
amount of plasma in a VOI

ρ(1 −HSV )

1 −HLV

area under the plasma input curve
(2.7)

one can obtain Eq. (2.4)

CBV =

∫
∞

0
CV OI(τ)dτ

ρ(1 −HSV )

1 −HLV∫
∞

0
CAIF (τ)dτ

=
kH

ρ

∫
∞

0
CV OI(τ)dτ∫

∞

0
CAIF (τ)dτ

(2.8)

Commonly, CBV units are millilitres per 100 grams of tissue (ml/100g)
and microliters per gram (µml/g).

Another parameter characterising the VOI is MTT. It is defined as the
center of mass of the distribution h(t), that is the probability density function
of the tracer transit time through the VOI. In other words, MTT represents the
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average time required for any given particle of tracer to pass through the VOI.
It can be calculated as

MTT =

∫
∞

0
t× h(τ)dτ∫
∞

0
h(τ)dτ

(2.9)

keeping in mind Eq. (2.2) and (2.3) one can obtain

MTT =

∫
∞

0

t× h(τ)dτ =

∫
∞

0

R(τ)dτ (2.10)

Applying the Central Volume theorem of indicator dilution theory [4, 50, 79]
MTT can be computed also as the ration between CBV and CBF

MTT =
CBV

CBF
(2.11)

MTT has dimension of time and it is usually expressed in seconds (s).

Considering the above given definition CBF can be related to the tracer
concentration inside a given VOI, the residue function and the AIF

CV OI(t) =
ρ

kH
· CBF (CAIF (t) ⊗R(t)) =

ρ

kH
· CBF

∫ t

0

CAIF (t)R(t− τ)dτ

(2.12)

Eq. (2.12) can also be derived from Eq. (2.11), (2.4) and (2.10)

CBF =
CBV

MTT
=
kH

ρ

∫
∞

0
CV OI(τ)dτ∫

∞

0
CAIF (τ)dτ

1∫
∞

0
R(τ)dτ

(2.13)

from which

∫
∞

0

CV OI(τ)dτ =
ρ

kH
CBF

∫
∞

0

CAIF (τ) ·

∫
∞

0

R(τ)dτ (2.14)

thus obtaining Eq. (2.12).

The convolution operator can be explained by considering AIF as a sum
of consecutive ideal boluses. In the simplest case, i.e. if AIF is an ideal single
impulse of amplitude CAIF (0), the tracer concentration within the VOI is the
residue function multiplied by the proportionality factor given by the constants
ρ

kH
·CBF ·CAIF (0). In the generalized case the AIF can be divided into a series

of impulses with different amplitudes. The tracer concentration is then given
by the integral (i.e. the sum) of the responses to each AIF impulse.

Commonly, CBF units are millilitres per 100 grams of tissue per minute
(ml/100g/min) and microliters per gram per second (µml/g/sec).
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2.3 Practice

2.3.1 Paradigm

Eq. (2.12) is the central equation in the standard approach to determine CBF
by using a nondiffusible tracer. Starting from DSC-MRI signal time curves the
tracer concentration time curves for tissue (CV OI(t)) and AIF (CAIF (t)) are to
be computed [80]. The correct estimation of the arterial concentration is one of
the most delicate steps and the commonly used approach will be discussed in
the next chapter.

Given CV OI(t) and CAIF (t), CBV can be easily obtained using Eq. (2.4).
To calculate CBF, a deconvolution operation must be performed between CV OI(t)
and CAIF (t) in order to obtain the product function R∗(t) = CBF ·R(t). From
R∗(t) CBF value can be easily obtained as CBF = R∗(0), since R(0) = 1. The
deconvolution operation is another important open issue in DSC-MRI image
quantification, the principal methods proposed in literature will be exposed in
the next chapter.

Once CBV and CBF values are computed, MTT can be derived using Eq.
(2.11).

Figure 2.2: The quantification process of DSC-MRI image: from signal acqui-
sition (left) to parametric mapping generation (right) of CBF, CBV, and MTT
[9].

Figure 2.2 summarizes the principal steps in the DSC-MRI image quantifi-
cation.
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2.3.2 From signal to concentration

The contrast agent present within a VOI locally perturbs the total magnetic
field, decreasing the relaxation time constants. Assuming a mono-exponential
relaxation, the MR signal intensity in T2- and T ∗

2 -weighted sequences are given
by [60]

S = S0(PD, TR, T1)e
−TE/T2

S = S0(PD, TR, T1)e
−TE/T∗

2 (2.15)

where S0(PD, TR, T1) includes terms depending on the longitudinal relax-
ation time (T1), the repetition time (TR) and the proton density (PD). The
second term describes the loss of transverse relaxation determined by the echo

time (TE) and transverse relaxation time (T2 or T ∗

2 ). When passing through
the vascular bed, the paramagnetic tracer generates a susceptibility difference
between the intra- and the extra-vascular space, leading to field distortions and
de-phasing. De-phasing increases the relaxation rates R2 = 1

T2

and R∗

2 = 1
T∗

2

almost linearly in proportion to the intravascular blood concentration of the
agent Cb [42]

R2 = R20 + r2Cb

R∗

2 = R∗

20 + r∗2Cb (2.16)

where r2 and r∗2 are the transverse relaxivities which depend on the blood
volume and vascular morphology [10, 39] and R20 and R∗

20 are the intrinsic spin
echo and gradient echo relaxation rates without the agent.

Figure 2.3: The effects of the passage of a paramagnetic agent bolus on MR
signal.

The effects of the passage of a bolus of paramagnetic agent are schematically
shown in figure 2.3, when the contrast agent enters the VOI, it increases the
tracer concentration and decreases the MR signal.
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Assuming a linear relationship between paramagnetic tracer concentration
and the change in transverse relaxation rate, the kinetics of the tracer concen-
tration inside the tissue can be related to the time curve of the observed MR
signal intensity. If S0 and S(t) are the SE signal intensities in the baseline state
(i.e. before the bolus arrival) and at a time t after the injection of agent, then
concentration Ct(t) can be derived from Eq.(2.16) and (2.15), thus obtaining

Ct(t) =
1

r2
[R2(t) −R2(0)] = −

κV OI

TE
log

[
S(t)

S(0)

]
(2.17)

in which κV OI is an unknown proportionality constant of the VOI depend-
ing on the tissue, the contrast agent, the field strength, and the pulse sequence.
A similar equation can be derived for the GE signal.

2.3.3 Recirculation

One of the assumptions of the dilution theory is the recirculation absence. How-
ever, this is not usually true in DSC-MRI experiments. The measured CV OI(t)
can include contributions from recirculation, which can be recognized as a sec-
ond, smaller, concentration peak or an incomplete return to the baseline after
the first pass. Therefore, the first pass tracer concentration profile needs to be
separated from these undesired contributions.

A first approach consists in considering only data which include the initial
peak, from the experiment beginning up until the time of recirculation, or the
exceeding of a certain amplitude threshold. The intrinsic arbitrariness of the
threshold choice and the partially overlapping between the first pass and the
recirculation profile, making the bimodal pattern vague, are the main limitations
of this method.

A more refined technique uses a Gamma-variate function to fit a portion
of the CV OI(t) data [7, 61, 62, 70]. The Gamma-variate general form is:

Γ(t;A,α, β, t0) = A · (t− t0)
α · e−

t−t0
β (2.18)

where A, α, β and t0 are parameters to be estimated.

An example of Gamma-variate fit is presented in Figure 2.4 along with
concentration samples from a typical VOI profile. In general, if recirculation
is not accounted for, the calculated blood volume will be systematically larger
and the other parameters will be similarly affected.

2.3.4 Model and Paradigm limitations

An important assumption in the conversion of the MR signal time course to a
concentration time curve is that the relaxivity between the MR signal and the
agent concentration (see Eq.(2.16) and (2.17)) is the same in different tissues
[49]. Theoretical models show that the coupling constant can strongly depend
on the choice of acquisition sequence and vascular morphology. For example,
the extravascular relaxivity in a GE sequence is relatively independent from
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the vessel size for vessels larger than 10-20 µm in diameter [10], giving equal
weighting to venules and arterioles and lesser weighting to capillaries. Thus,
tissues with different vessels proportions may have different relaxivities.

The intravascular relaxivity is often assumed to be the molar relaxivity of
the agent, but this is not perfectly true in a GE sequence. In GE sequences, the
relaxation depends on specific geometrical properties. Besides, using intravas-
cular sources for the AIF, one has to consider that the relaxivity is not the same
as in the microvascular bed.

Using SE sequences, the extravascular signal is more sensitive to the non
re-focusable signal from capillaries and has significantly reduced relaxivity for
large vessels. In this situation, intravascular arterial sources are to be used for
the AIF and the correct molar relaxivity of the agent must be used to convert
the MR signal into concentration.

Another important assumption is the presence of an intact Blood-Brain

Barrier. The presence of a damaged BBB results in tracer leakage to the ex-
travascular space. This effect is often exploited to localize BBB breakdown in
some diseases. However, this leads to a great confusion in vascular measure-
ments, since the tracer has more direct access to the tissue and exerts stronger
relaxation effects on T1, T2 and T ∗

2 . The most direct consequence is a decrease
in the tissue T1 and T ∗

2 , thus altering the image contrast depending on the de-
gree of T1 and T ∗

2 weighting. This leads to a systematic error in the DSC-MRI
signal change.

The MR tracer model assumes that the relaxation rate is linearly propor-

tional to the intravascular concentration of the agent (see Eq.(2.16)). Some
recent studies suggest that in SE-based measurements this may not always be
true: in the limit of high agent concentrations, the relaxation rate varies with
concentration raise, thus introducing systematic errors for absolute quantifica-
tion [39]. Theoretical models also suggest that the extravascular relaxivity from

Figure 2.4: A typical tissue concentration time course (dot curve) in presence
of tracer recirculation and the resulting gamma-variate fit (solid line).
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capillaries in GE sequences may be nonlinear at low agent concentrations.

In general, a recirculation correction must be performed, if recirculation is
not accounted for, the calculated CBV will be systematically larger. Likewise,
also the other parameters will be affected. However, although the Gamma-
variate function is the most commonly used model for the first pass of the
concentration time curve, the model may not be valid in certain pathologies,
such as in severe stroke lesions and tumours. Therefore, the use of Gamma-
variate fitting can potentially introduce errors due to poor fitting. A better
solution is to use the Gamma-variate fit strategy, which better performs with
the type of available data.

Absolute quantification of CBF and CBV values is strongly dependent on
the values of the constant kV OI , ρ, HLV and HSV present in Eq. (2.17), (2.4),
(2.6) and (2.12) [77]. kV OI depends on the tissue, the contrast agent, the
magnetic field strength and the pulse sequence. This means that it is unknown
and usually assumed unitary. As a consequence the tracer concentration curves
obtained from Eq. (2.17) do not result in absolute unit. Moreover, the frequently
used values for the other constants (ρ = 1.04g/ml, HLV = 0.45 and HSV =
0.25 [72]) have been shown to vary among different populations. According
to [72, 73], the values proposed for ρ and kH generated CBF values which
agree with the flow values obtained with other techniques (such as PET) in
normal subjects. Nevertheless the same values used in healthy smoker subjects
are unable to provide reliable CBF values [22]. Moreover, the validity of these
values in pathologic conditions has not been investigated yet. Several approaches
have been proposed to overcome these limitations, in [62] the authors obtained
absolute CBF values by assuming a constant microvascular hematocrit across
the brain and by assigning the mean relative CBF values in white matter to
a standard value of 22ml/100ml/min. The absolute CBF values in the other
brain regions are obtained with a ratio with the white matter. This approach
is based on PET studies, which showed that white matter in normal subjects
has a relative uniform and age-independent blood flow of 22ml/100ml/min
[44]. In [54, 63, 64] a conversion factor to convert relative MRI CBF values to
absolute ones was derived by comparison studies between MRI and PET CBF
measurements.

Issues connected with the AIF estimate and deconvolution operation will
be presented and investigated in the next chapter.



Chapter 3

Dynamic Susceptibility

Contrast -MRI: State of the

Art and Open Issues

This chapter is devoted to introducing the main aspects of the DSC-MRI image
quantification which are investigated in this thesis. In the first part, the role of
the Arterial Input Function (AIF) and the problems due to its selection are ex-
plained. The most interesting AIF selection methods proposed in literature are
also briefly reviewed. The second part of the chapter faces the deconvolution
operation, providing also a mathematical formulation of the problem. Then,
the most widespread deconvolution algorithms in DSC-MRI are presented: the
Singular Value Decomposition (SVD), currently considered the gold-standard
technique and the block-Circulant Singular Value Decomposition (cSVD), pro-
posed to solve the problem of delay in the tracer arrival. Finally, a recently
proposed nonlinear stochastic deconvolution method called Nonlinear Stochas-

tic Regularization (NSR) is presented.

3.1 Arterial Input Function

AIF is the tracer concentration in the vessels feeding the voxel (i.e. the basic
volume unit in MRI image) at time t. Since the AIF has to be known in order
to compute CBF, CBV and MTT, its correct measurement is one of the most
delicate steps in the DSC-MRI image quantification.

AIF depends on the shape of the injected bolus, on the cardiac output,
on the vascular geometry and on the cerebral vascular resistance. As a conse-
quence, the arterial concentration time curve (CAIF (t)) has to be measured for
each subject and for each experiment. Ideally, AIF has to be determined for
each voxel, as it is different for each one. This is called local AIF [2, 20, 33]. This
is not possible in practice and an overall AIF is computed on the basis of the
signal contributions from many voxels, which are assumed to contain a portion
of large vessel feeding the whole image slice [13, 62, 70]. This solution neglects
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any finite distance between the AIF measurement site and the voxels and it is
called global AIF. In this case, AIF should be measured as closest as possible to
the region of interest (ROI) [1, 16], thus reducing the differences between the
true and the measured AIFs. The Middle Cerebral Artery (MCA) is usually the
preferred measurement site because its symmetric position reasonably guaran-
tees a minimum delay whenever the whole slice is considered [35, 46, 62]. Other
measurement sites used in DSC-MRI are the Anterior Cerebral Artery (ACA)
and the Internal Cerebral Artery (ICA) [16].

3.1.1 AIF problems

AIF is involved in the CBF quantification; thus, a biased AIF can concur to
generate inaccurate CBF maps. Unfortunately, the AIF estimates can be easily
influenced by many unwanted effects.

One of the most important problems in estimating AIF is the partial volume

effect. As DSC-MRI images have a relatively low spatial resolution, a selected
arterial voxel might contain both the arterial vessel and the surrounding tissue.
As a consequence, the measured AIF signal also includes tissue contributes,
which introduce bias in the AIF estimate. The partial volume effect depends on
the vessel size, location and orientation [29, 81] and it leads to a CBF overesti-
mation. Many correction methods have been proposed: they are either based on
an appropriate scaling factor [45], or on ad-hoc algorithms to obtain a corrected
AIF [81, 83].

A linear relationship between the tracer concentration and the relaxation
rate is assumed to compute the concentration (CV OI(t)) from the MR sig-
nal (S(t)) using Eq. (2.17). When the tracer concentration into a voxel in-
creases, this assumption is no longer valid and systematic errors are introduced
[29, 30, 39, 41, 71]. This is called saturation effect. In [11] a correction method is
proposed: the authors divide the arterial concentration time curve into reliable
samples (low concentration) and unreliable ones (high concentration). Subse-
quently, the unreliable component of the concentration profile is reconstructed
using a 3 order polynomial combination.

Since there is a finite distance between the AIF measurement site and the
voxels, AIF may be affected by delay and dispersion, especially in presence of
pathology. The bolus dispersion in the AIF estimate has been shown to be
a significant source of errors in DSC-MRI data quantification [14, 65, 85]. If
d(t) denotes the dispersion function, the residue function (R∗(t)), obtained by
deconvolution between the tissue concentration and the AIF, is

R∗(t) = CBF ·R(t) ⊗ d(t) (3.1)

with R∗(0) = 0 and
∫
∞

0
R∗(τ)dτ = CBF ·MTT . Examples of dispersed

and non dispersed AIFs are shown in figure 3.1. Delay and dispersion modify
the AIF shape and, consequently, the R∗(t) shape. As a consequence, CBF
is no more computed as R∗(t) in t=0 (see subsection 2.3.1 at page 10), but
as its maximum value (CBF = max{R∗(t)}) [14, 17, 62]. An error in the
CBF quantification is therefore introduced. In [14] the authors showed that
1-2 second delay can introduce a 40% CBF underestimation and a 60% MTT
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overestimation. Noticeably, delays between the measured and the true AIFs are
common in cerebral regions affected by cerebrovascular diseases. Consequently,
the quality of information provided by MRI image quantification is reduced in
important pathologies, such as cerebral ischemia and carotid stenosis.

A local AIF should be estimated to reduce the delay and dispersion impact
[1, 16], but only few attempts have been carried out in this way [20, 48]. How-
ever, although the use of a local AIF instead of a global AIF can reduce delay
and dispersion, it can increase the presence of partial-volume effect. Thus, as
previously pointed out, particular care is required in selecting the best place for
AIF measurement, by evaluating all technical limitations and physiopathologi-
cal conditions. Using local AIF could be significant not only to minimize delay
and dispersion but also to study patients with cerebral ischemia or stenosis.
Differences among the voxel AIFs can be used by the physicians to detect the
pathological tissue.

AIF is also dependent on the acquisition sequence used in the experiment.
In [10], the authors demonstrated that SE functional images have great mi-
crovascular sensitivity, providing good quality images. On the other hand, the
AIF obtained with these sequences better reflects the situation of the small
vessels and may consequently underestimate the true AIF, as reported in [62].
Although, the GE sequence signal arises from both large and small vessels, but
AIF results are more affected by partial-volume effect errors[82].

3.1.2 Manual Selection

Since the AIF determination is a delicate step in DSC-MRI image quantification,
it is usually carried out by a physician. He/she manually selects the arterial
voxels on an anatomical MR image or directly on a DSC-MRI image. In the
first case, a coregistration operation between the anatomical and the functional
MR images must be performed. This further transformation can introduce bias
in the AIF because of the different slice position or the data rescaling operation.

Figure 3.1: Residue function R(t) in absence (solid) or presence (dashed line)
of arterial dispersion.
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In the second case, the image low spatial resolution can lead to errors in the
arterial voxel selection.

Other manual AIF limitations are the need of trained personnel, the in-
trinsic subjectivity and the low reproducibility. Despite all its problems, the
manual AIF is still the most used AIF estimate method in the DSC-MRI image
quantification.

3.1.3 Automatic Selection

Many automatic and semiautomatic selection methods have been proposed in
literature to overcome the manual AIF limitations.

Rempp Method

One of the first attempts is reported in [72]. Here, the authors define several
parameters describing the concentration time curve of each voxel, such as the
maximum concentration (MC), the moment of maximum concentration (MMC)
and the full width at half maximum (FWHM). Since AIF is expected to be
characterized by an earlier MMC and a smaller FWHM, the candidate arterial
voxels have to respect the following conditions

FWHMAIF < FWHM − 1.5 · σFWHM

MMCAIF < MMC − 1.5 · σMMC
(3.2)

where FWHM and σFWHM are the FWHM mean and standard devia-
tion (SD) above the whole slice respectively. Likewise, MMC and σMMC are
respectively the MMC mean and SD. At last, only the voxels whose MC is at
least 75% of the highest value are selected to reduce the partial volume effect.
The AIF was computed as the mean concentration time curve of the remaining
voxels.

Ibaraki Method

In [35] AIF was measured with a semiautomatic method. Firstly, a rectangular
ROI containing the MCA was manually drawn by a physician. Secondly, the
ratio between the MC and the MMC was computed for each voxel in the selected
ROI. Finally, AIF was determined by averaging the five largest ratio voxels.

Butman Method

Another method, based on the concentration time course SD, was proposed
in [12]. Firstly, the bolus arrival time was computed above the whole brain
time course and an initial concentration rise time was defined 3-6 seconds later.
Secondly, the SD of the concentration time curve in the baseline (i.e. from
the beginning to the bolus arrival time) was computed for each voxel in order
to obtain a baseline SD map (SDmapb). A second map containing the SD in
the baseline plus the initial raise was also computed (SDmapr).Thirdly, both
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SD maps were subtracted, thus obtaining a third map (SDmaps = SDmapr −
SDmapb). The arterial voxels are expected to present high values in SDmaps.
Then, several thresholds were compared. Consider two consecutive threshold
values. For each one, all voxels having SD values above the threshold were used
to compute the mean concentration time curve. The width of both curves was
obtained by assessing their widths at 95% of maximum. If the curve originating
from the lower threshold is narrower than the one originating from the higher
one, then voxels having SD values above the threshold are discarded and a new
comparison is performed. Finally, AIF is determined as the mean concentration
curve obtained with the final threshold.

Carroll Method

Unlike the previously described methods, [23] selected the arterial voxel on the
basis of the voxel MR signal rather than on the concentration time curve. In
the first step, the mean whole brain signal was considered and the precontrast
time frames were detected by the algorithm. Mean and SD (σ) were computed
among the frames acquired before the contrast agent injection. Then, each
following frame was compared to the mean one. If the difference is smaller than
3σ, then the frame is considered precontrast. The first frame, which differs
from the mean for more than 10σ, defines the precontrast arrival time. In the
second step the tracer arrival time was computed on a voxel basis. The mean
signal intensity (S0) and the SD (σv) were computed on the precontrast frames
selected in the previous step. The tracer arrival time is the first sample which
differs from S0 for more than 5σv. In the third step, the difference between
the tracer arrival time and the precontrast arrival time was computed for each
voxel. Voxels having a difference larger than 2 seconds were discarded. In the
final step, the algorithm computes a depletion index for each remaining voxel.
The depletion index is defined as the sum of the difference from S0 of the four
samples measured after the tracer arrival time. AIF was defined as the voxel
having the greatest depletion index.

Clustering Methods

In [52, 55] the arterial voxels were selected using a cluster analysis algorithm.
Clustering is a data analysis technique which classifies a set of objects into
groups (called clusters). Its purpose is to sort the objects so that objects form
the same cluster are more similar to each other than objects from different
clusters. Commonly, similarity is according to a distance measure. The most
widely used cluster algorithms are the k-means clustering and the fuzzy c-means

clustering. The k-means algorithm assumes that the objects to be divided form
a vector space and it minimizes intra-cluster variance:

V =
k∑

i=1

∑

xj∈Ci

(xj − µi)
2

(3.3)

where k is the number of clusters, Ci is the i-th cluster, µi is the centroid
of the i-th cluster (i.e. the curve representing the whole cluster population,
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defined as the mean point) and xj is the j-th object of the data set. Noticeably,
k-means algorithm assigns each object to one single cluster (hard assignment).
In fuzzy c-means clustering, objects can belong to more than one cluster (soft
assignment). The algorithm assigns each object a certain degree of belonging
to each cluster and minimizes the following objective function:

O =

n∑

j=1

k∑

i=1

pm
ji (xj − µi)

2
(3.4)

where k is the number of clusters, n is the number of objects in the data set, µi

is the centroid of the i-th cluster, xj is the j-th object of the data set, m is the
fuzziness parameter (usually an integer value between 1 and 5) and pnk is the
degree level for the j-th object to belong to the i-th cluster. Noticeably, in fuzzy
c-means clustering the cluster centroid is defined as the object mean, weighted
by the degree of belonging to the cluster.

In [55] a rectangular ROI containing the ICA was first manually drawn.
Then a fuzzy cluster analysis was performed. For each cluster centroid the
MC, MMC and FWHM were computed and used to obtain an index M =
MC/(MMC · FWHM). The cluster with the greatest M was selected as AIF.

The method proposed in [52] can be delineated in 5 steps. Firstly, 90% of
voxels with the smallest area under the concentration time curve (CV OI(t)) are
discarded. Secondly, 25% of the remaining voxels with highest roughness index(
Λ(C) =

∫ T

0
(C”V OI(t))

2 dt
)

are excluded. Thirdly, all voxel concentration time

curves are normalized to have a unitary area under the curve. Furthermore, a k -
means cluster analysis is performed to divide the remaining voxels in 5 clusters.
The cluster with the greatest first moment was selected. Finally, a second
cluster analysis was performed on the selected cluster and the arterial cluster
was selected as in the fourth step.

3.2 Deconvolution

As pointed out in subsection 2.3.1 (page 10) a deconvolution operation between
CV OI(t) and CAIF (t) must be performed in order to quantify the CBF from
(2.17).

Deconvolution is a mathematical operation that allows to reconstruct the
unknown system impulse response starting from the input and the output sig-
nals. The main issues about this mathematical problem are its ill-posedness and
ill-conditioning. Ill-posedness means that the same input and output discrete
signals can lead to different equivalent solutions to the deconvolution problem.
Ill-conditioning indicates that a low noise level in the output signal leads to high
errors in the impulse response quantification. This means that low variations
in the output signal can be amplified by the deconvolution operation, thus pro-
viding high variations in the impulse response. Moreover, the ill-conditioning
problem gets worse if the sampling rate increases and in case of slow response
systems. Besides the ill-posedness and the ill-conditioning, deconvolution is also
complicated by some physiological system characteristics [26]. First of all, the
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sampling rate is usually rare and non uniform because of ethical and econom-
ical reasons. Furthermore, signals are usually intrinsically positive, thus the
negative estimates which can be achieved have no physiological meaning.

Deconvolution methods can be classified in two main categories: model-

dependent and model-independent approaches, also called parametric and non-
parametric methods.

In the model-dependent approaches, the unknown function to be decon-
volved is described by a parametric function. In this way, the deconvolution op-
eration becomes a parameter estimation problem, overcoming the ill-posedness
and the ill-conditioning problems. Moreover, unphysiological solutions are dis-
carded by the model assumed for R(t). On the other hand, these methods
introduce heavy assumptions on the R(t) shape and may introduce bias on
CBF estimates. Examples of model-dependent approaches in DSC-MRI image
quantification can be found in [43, 53, 65, 93].

The model-independent approaches make no assumption on the R(t): they
are therefore more powerful and less biased than the model-dependent ones. On
the other hand, they are affected by the ill-posedness and ill-conditioning decon-
volution problems. One of the simplest model-independent methods is to use
the convolution theorem of Fourier transform. It states that the Fourier trans-
form of two convolved functions is equal to the product of the single function
transforms. Applying the theorem to Eq. (2.17)

F{CBF ·R(t) ⊗ CAIF (t)} = F{CV OI(t)} (3.5)

CBF can be easily deduced

CBF ·R(t) = F−1

[
F{CV OI(t)}

F{CAIF (t)}

]
(3.6)

where F−1 denotes the inverse of the Fourier transform F . Dissonant
results were obtained with this method. Whereas [75] showed satisfactory CBF
estimates, in [62] the authors pointed out a systematic CBF underestimation in
presence of high flow.

Another model-independent method is based on the following assumption:
tissue and arterial concentration samples are measured at equidistant time
points, ti = ti+1 + ∆t, and R∗(t) = CBF ·R(t) is reasonably approximated by
a staircase function in each ∆t interval. Under these assumptions the discrete
deconvolution problem in DSC-MRI can be written as

CV OI(tj)∼=CBF ·∆t

j∑

i=0

CAIF (ti)R(tj − ti) (3.7)

which is equivalent to the matrix form

CVOI = CBF ·∆t·CAIF·R (3.8)
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where CVOI is a N × 1 vector, CAIF is a N × N matrix, R is a N × 1
vector (N is the number of CV OI(t) samples). Eq. (3.8) is a standard matrix
equation with an explicit solution if CAIF is invertible (i.e. det(CAIF) = 0)

CBF ·∆t·R = CAIF
−1·CVOI (3.9)

This approach is called raw deconvolution [25] and provides a perfect agree-
ment between the measured and the re-convolved data. Nonetheless, the recon-
structed residue function presents un-physiological wide oscillations.

Philips and Tikhonov separately developed the Philips-Tikhonov regular-

ization method to improve the performances of the raw deconvolution. In this
method the deconvolution problem is reformulated as an optimization problem
(i.e. the minimum of a cost function has to be found). The cost function can
be divided into two terms. The first one coincides with the raw deconvolution
one and accounts for the adherence to the experimental data. The second one
represents an estimate irregularity index, it is computed as the m-derivative en-
ergy of the estimated residue function and it accounts for the regularity of the
solution. In the DSC-MRI context, the optimization problem can be written as

R̂ = min
R̂
{(CVOI − CAIFR̂)T ΣCVOI

−1(CVOI − CAIFR̂) + γR̂T FT FR̂}
(3.10)

where the matrix ΣCVOI
represents the noise covariance matrix, F is the

N × N penalty matrix, chosen so that FR̂ represents the vector of the m-
derivatives of R. γ is a scalar non negative parameter, called regularization

parameter, that makes the trade-off between the two terms in the cost function,
assigning them different relative weights (e.g. high γ values provide extreme
regular solutions; low γ values provide a better adherence to the data). Since
the method key step is selecting the optimum γ value, several methods have
been proposed to fix the regularization parameter, such as the discrepancy cri-
terion, the minimum risk criterion, the ordinary cross-validation criterion, the
generalized cross-validation criterion and the L-curve criterion.

A different interpretation of the regularization problem can be proposed in
a stochastic context. In this case, R and CVOI are assumed to be zero mean
vectors with covariance matrices ΣR and ΣCVOI

. The deconvolution problem
can therefore be solved by means of a Bayesian estimation. In this case the
covariance matrix of R, ΣR = 1

γ (FT F)−1, is needed. The Bayesian estimation
is based on the a priori knowledge of the residue function regularity. A simple
statistical a priori description of a smooth residue function considers R(t) as
the realization of a stochastic process obtained from a series of m integrators
driven by a zero mean white noise with variance 1

γ . E.g. for m = 1 the residue
function is modelled with a random walk model.

During the last decade, several non-parametric deconvolution methods have
been proposed in literature [3, 57, 61, 84, 87, 88]. They show that the deconvo-
lution operation is one of the most important open issues in CBF quantification.
Even if its limitations have been largely reported, SVD currently represents the
gold-standard technique in DSC-MRI image analisys [61, 62]; its evolution, the
cSVD, overcomes some of the SVD limits and it is also widely used in clinical
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practice. In this work the author chose to focus also on a new parametric decon-
volution method, the Nonlinear Stochastic Regularization (NSR) [6, 67]. This
method overcomes the SVD limits by imposing a non negative constrain on the
residue function and estimating the dispersion function.

3.2.1 Singular Value Decomposition

In linear algebra, SVD is an important factorization of rectangular real or com-
plex matrix, with several applications in signal processing and statistics. SVD
can be seen as a generalization of the spectral theorem, which says that normal
matrices can be diagonalized to arbitrary matrices using a basis of eigenvectors.
SVD can be used, for example, to compute the pseudo-inverse of a matrix; SVD
also provides an explicit representation of the range and null space of a matrix.
Therefore, it can be used to determine the effective rank of a matrix. SVD is
also extensively applied to the study of linear inverse problems and is useful to
analyse of Regularization methods. It is widely used in statistics, where it is
related to the Principal Component Analysis (PCA) in signal processing and
pattern recognition and in output-only modal analysis.

A modified version of SVD, called truncated SVD, was introduced for the
first time in the DSC-MRI context in 1996 by Østergaard and colleagues, be-
coming the gold-standard technique to quantify cerebral hemodynamic from
bolus tracking experiments [61, 62].

Each algebraic approach to perform deconvolution is based on a algebraic
reformulation of the convolution integral in Eq.(2.12). Assuming that the ar-
terial and cerebral concentrations are measured at a set of equally spaced time
points t1, t2, ..., tN , and that the residue function and arterial input values are
constant over small time intervals ∆t = ti+1 − ti, the convolution in Eq.(2.12)
can be formulated as a matrix equation

CV OI(tj) =

∫ tj

0

CAIF (τ)R(t− τ)dτ ≈ ∆t

j∑

i=0

CAIF (ti)R(tj − ti) (3.11)

or

∆t




CAIF (t1) 0 . . . 0
CAIF (t2) CAIF (t2) . . . 0

. . . . . . . . . . . .
CAIF (tN ) CAIF (tN−1) . . . CAIF (t1)


 ·




R(t1)
R(t2)
. . .

R(tN )


 =




CV OI(t1)
CV OI(t2)

. . .
CV OI(tN )




The vector notation can be used for Eq.(3.11)

A·b = c (3.12)

where b contains the elements of R(ti), i = 1, 2, ..., N , and c are the mea-
sured tissue tracer concentrations. Eq.(3.11) can be solved iteratively for b
elements. However, this approach is extremely sensitive to noise, hence causes
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the presence of oscillations in R(t). In order to solve Eq.(3.12), both the noise
effects and the distance between predicted and measured data are to be mini-
mized

| A·b − c | (3.13)

where | | in Eq.(3.13) represents the vector norm operation.

The algebraic approach assumes that arterial and tissue concentrations are
constant between measurements. In the DSC-MRI context, both AIF and the
Residue function are expected to vary over small time scales compared to the
measurement temporal resolution. The constancy of both functions between
consecutive measurements is a poor approximation, so CAIF (t) and R(t) are as-
sumed to vary linearly with time. The elements aij of the matrix A in Eq.(3.13)
become

aij =

{
∆t[CAIF (ti−j−1) + 4·CAIF (ti−j) + CAIF (ti−j+1)]/6 0 ≤ j ≤ i
0 otherwise

Considering these elements for matrix A, SVD solves Eq.(3.13) constructing
matrices V, W and UT so that the inverse of A (A−1) can be written as

A−1 = V·W·UT (3.14)

where W is a diagonal matrix (i.e. the off-diagonal elements equal to zero)
containing the eigenvalues of A and V and UT are respectively orthogonal and
transpose orthogonal matrices. Given the inverse matrix, b and consequently
R(t) are calculated as

b = V·W·(UT ·c) (3.15)

The main quality of SVD is that the diagonal elements in W are zero or
close to zero and correspond to the linear equations of Eq.(3.11); moreover, they
are almost linear combinations of each other. This allows to identify elements
in matrix A that cause the solution b to oscillate or otherwise be meaningless
in a biomedical modeling context. In other words, the smaller eigenvalues of
W, linked to the slow modes of the system, are mainly responsible for the de-
convolution ill-conditioning. SVD eliminates these eigenvalues, thus increasing
the regularity of the solution. In terms of sampling data from bolus tracking
experiments, that equations in Eq.(3.11) being close to be linear combinations
of each other allow data to be sampled at time points where changes in con-
centration time curves are small relative to the noise. If the diagonal elements
below a certain threshold in W are set to zero, the effects can be minimized
before calculating b.

SVD represents the most used approach to quantify DSC-MRI data. How-
ever, in the last years its limitations have been widely pointed out [46, 56, 76,
78, 86, 88]. In particular, it has been shown that CBF values obtained by
SVD largely depend on the threshold value (PSV D) selected to eliminate diag-
onal elements in W. The commonly used threshold is 20% of the maximum
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singular value. This value was selected in a simulation study at the typical
signal-to-noise ratio of DSC-MRI data [61, 62]. Although the study presented
in [46] suggests that the threshold has to be optimized for each SNR, the 20%
value remains the most commonly used threshold. The single threshold value
is indeed convenient, and calculating the noise dependence can be a complex
operation. Andersen and colleagues found that the empirical relationship be-
tween threshold value and noise proposed by Liu and colleagues is not optimal
for non-exponential Residue function models [3]. Liu and colleagues’ approach
is better than the fixed-threshold approach only in the simulation conditions,
whereas the curve is better estimated by the fixed threshold method in other
tested circumstances. This suggests that, although the noise dependence for
the threshold level proposed in [46] is real, the actual relationship is probably
very complex and influenced by different factors. In addition, SVD introduces
undesirable oscillations and negative values in the reconstructed CBF ·R(t), pro-
ducing a nonphysiological Residue function. This is far from ideal: in certain
situations the whole shape of the Residue function is of interest, not just its
maximum value. For instance, in presence of bolus delay and dispersion only
an accurate determination of the CBF ·R(t) shape can assess and correct the
error. In such cases, the conventional SVD method is not suitable.

3.2.2 Block-Circulant Singular Value Decomposition

In 2003, Wu and colleagues proposed a modified version of SVD, the cSVD.
This method improves the flow estimates by performing deconvolution with a
block-Circulant matrix. Therefore, it reduces sensitivity to tracer arrival time
difference in AIF and in tissue signal [88].

One of the assumptions built into Eq.(3.11) is that the tissue signal cannot
arrive before the AIF (i.e. causality). In practice, AIF can lag CV OI(t) by a
delay time td, since the measured AIF (C∗

AIF (t)) is not necessarily the true AIF
for that tissue (CAIF (t)), thus resulting in C∗

AIF (t) = CAIF (t− td). Therefore,
the calculated R∗(t) should be R(t+td) for CV OI(t), but, if causality is assumed,
R∗(t) cannot be correctly estimated by inversion of Eq.(3.11) using SVD.

By means of circular deconvolution instead of linear deconvolution, R∗(t)
can be represented with R(t) circularly time shifted by td. Circular deconvolu-
tion has been shown to be equivalent to linear deconvolution with time aliasing.
By zero-padding the N -point time series CAIF (t) and CV OI(t) to length L, with
L ≥ 2N , time aliasing can be avoided. Replacing matrix A in Eq.(3.13) with a
block-Circulant matrix D whose elements are

di,j =

{
ai,j for j ≤ i
aL+i−j,0 otherwise

Eq.(3.12) can be reformulated as

g = D·b (3.16)

where g is the zero-padded c. Using SVD, the inverse of D can be decom-
posed to
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D−1 = Vc·Wc·U
T
c (3.17)

and, solving for b

b = Vc·Wc·(U
T
c ·g) (3.18)

When using circular deconvolution, due to the discontinuities at t = 0 and
t = L, leakage frequencies may be amplified, giving rise to spurious oscillations
dominating the deconvolved signal. If the SVD threshold PSV D increases, the
oscillations are reduced. PSV D can thus be varied until the estimated Residue
function oscillations fall below a desired level. In [88], the optimal PSV D was
determined by computer simulations. It was computed by minimizing the av-
erage CBF estimation error over all considered Residue functions, assuming a
zero time delay.

Results reported by Wu and colleagues show that the hemodynamic es-
timates provided by cSVD are not weighted by the tracer arrival time, thus
overcoming the SVD delay problem. Therefore, cSVD is a model-independent
technique insensitive to the tracer arrival time differences. It also performs com-
parably to the standard SVD when there are no differences between the tracer
arrival time of the AIF and the tissue signal. In particular, Wu and colleagues’
findings suggest that even without tracer arrival time differences, SVD obtained
CBF values are underestimated.

The same work also investigates the effects of changing the sampling rate,
and their implications in the flow determination. As the TR increases, the per-
formance of SVD and cSVD degrades, because the temporal sampling is not
sufficient to properly characterize the tissue hemodynamic properties. Further-
more, the optimal cSVD threshold also changes: it becomes less stringent and
more data points are kept. If the arrival time differences are not multiples of
TR, then cSVD exhibits slight oscillations. These are smaller in magnitude
than those due to noise or obtained with SVD. Moreover, Wu and colleagues
compare a fixed global threshold block-Circulant SVD (cSVD) and a block-
Circulant SVD technique using SVD threshold varying on an individual pixel
basis. They found out that oSVD performs better than cSVD. Since it is based
on an adaptive local threshold, oSVD provides additional accuracy for different
tissue types. cSVD results obtained in clinical images show promise in providing
tracer arrival time-insensitive flow estimates. Therefore, it gives a more specific
indicator of ischemic injury. The delay-insensitive CBF estimates using oSVD
may provide results that are not only robust to differences in tracer arrival time,
but also to AIF selection. If the contamination of flow estimates by tracer ar-
rival time differences between the AIF and tissue signals is reduced, improved
identification of salvageable tissue may be obtained.

Furthermore, td shift maps can contribute to provide a sensitive reflection
of disturbed hemodynamics, while the CBF maps obtained with oSVD provide
a more specific snapshot of the severity of ischemia in tissue at risk of infarc-
tion.The shift maps can represent tissue that is downstream from an occlusion
or stenosis, but which may still receive sufficient flow at the time of imaging.
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The CBF maps, on the other hand, represent the instantaneous flow at the ac-
quisition time. Since CBF is a dynamic process, a single snapshot may not be
a sensitive predictor of future infarction.

cSVD looks promising in providing time-insensitive tracer-arrival flow es-
timates, but more work is necessary to better define its domain of validity.
Furthermore, it shows some limitations. First of all, cSVD and oSVD concen-
trate only on the CBF estimation and use the estimated values to discriminate
among tissue types and characteristics. However, some situations in the clini-
cal context require the whole shape of the Residue function and not only the
CBF. Besides, these techniques do not consider the problem of bolus dispersion.
The characterization of the deconvolved R(t) is therefore poor and shows the
presence of negative values in the deconvolved curve.

As for standard SVD, both cSVD and oSVD need to fix a threshold to
eliminate the spurious oscillation in the deconvolved R(t). In the cSVD case,
the optimal threshold value was found a posteriori by minimizing the average
error in the flow estimation on a simulated data set. This approach cannot be
applied on subject data. In oSVD, this problem can be partly overcome by
means of an adaptive threshold selection technique as the one proposed in [46],
which is based on pixel concentration characteristics. However, the presence of
oscillations in the estimated R(t) shape still remain.

3.2.3 Non linear Stochastic Regularization

The Nonlinear Stochastic Regularization (NSR) [6, 94] is a nonlinear Bayesian
deconvolution method that introduces the non-negative constrain and exploits
the advantages of the Bayesian framework in the R(t) estimation process.

NSR provides a residue function model (in the stochastic sense) that pre-
vents the negative values and ensures the smoothness of the estimated function.
In particular, the unknown CBF · R(t) is described by the convolution of the
exponential of a Brownian motion with a deterministic exponential function

CBF ·R(t) = d(t) ⊗ eR1(t) (3.19)

where

d(t) =
1

θ1
e−

t
θ1 (3.20)

and

R1(t) = α+ θ2β(t) (3.21)

with β(t) Brownian motion [9, 90, 91].

Moreover, in the Bayesian estimation context the covariance matrix of the
measurement noise Σν is needed. The tissue concentration weight model used
in NSR is the following



28 3.2 Deconvolution

SD(t) =
θ3

1 + CV OI(t)
(3.22)

Summarizing the unknown parameters to be estimated in the NSR model
are p = [θ1, θ2, θ3, α].

Let y be the vector containing the measurements of tissue concentration
CV OI(t) and G the linear operator which models the relationship between
CBF ·R(t) and tissue concentration. Then, once determined θ1, θ2, θ3 and
α by means of a maximum likelihood strategy as described in [6], the maximum
a posteriori estimate of R1 is

R̂1 = argmin(y−G[d⊗eR1 ])T Σν−1(y−G[d⊗eR1 ])+γ−2

∫
(Ṙ1)2dt (3.23)

where Ṙ1 denotes the first derivative of R1 and γ is the Regularization
parameter which makes a trade-off between the adherence to the experimental
data and the prior knowledge. It can be shown that the estimate can be effi-
ciently obtained by generating a sequence of finite-dimensional problems whose
solutions rapidly converge to the one of the correspondent infinite-dimensional
problem [6].

For a more detailed description of the NSR theory and its application in
the DSC-MRI context see [6, 9, 90, 91].

Notice that NSR, although requiring a model of the residue function, is
not a deterministic parametric approach. The model in Eq. (3.19), (3.20) and
(3.21) describes the residue function as a stochastic process having the property
of non negativity and smoothness. This means that NSR is not comparable to
deterministic and physiological parametric approaches, such as in [43, 53, 65, 93].

Noticeably, NSR can reconstruct the original non dispersed Residue func-
tion. This is possible because in Eq. (3.19) NSR considers the product function
CBF ·Rdisp(t) as the convolution of the exponential of a Brownian motion and
a deterministic exponential function (d(t)) accounting for the dispersion.

The parameter θ1 accounts for the level of dispersion present in the data.
When the estimated θ1 is very close to zero, NSR considers no dispersion in the
Residue function; when θ1 increases, dispersion has occurred and it increases
accordingly to the parameter. θ2 describes the non dispersed and non negative

R(t): from its maximum the original non dispersed CBF can be calculated. θ3 is
an index of the noise level present in the data; it is substantially constant among
tissue types, depending only on the noise level and increasing as it increases.

However, NSR bears some limitations. Firstly, it is non linear, hence com-
putationally more expensive than SVD and cSVD, which are linear methods.
Secondly, NSR reconstructs R(t) on a virtual grid which is indeed finer than
the sampling grid but does not accept the time t = 0 as the initial point. This
means that, using NSR, the Residue function can be estimated very close to time
t = 0 (for example, by making the virtual grid much finer than the sampling
grid), but not at time t = 0. Anyway, this limitation can be easily overcome by
interpolating the estimate R(t) to the initial value or by translating the time
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domain before applying NSR analysis. In the end NSR, like every method solv-
ing a minimization problem, needs the initial value of the parameters vector
[θ1θ2θ3] to be specified. This value cannot be known a priori in the analysis
of subjects DSC-MRI data. NSR can converge to the exact solution for the
Residue function even if the parameters show bad initial (i.e. θ1, θ2 and θ3 very
different from their final estimated values). Yet, this requires higher compu-
tational time demand and, sometimes, implies the reaching of local instead of
global minimum.
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Chapter 4

The Arterial Input

Function Selection

The AIF selection problem is thoroughly investigated in this chapter. Firstly, a
new selection method combining anatomical information with MR-signal analy-
sis in presented. Secondly, it is compared to the most interesting AIF selection
algorithms proposed in literature on a simulated data set. Then, a comparison
with the manual selection method on a clinical data set is performed and the
AIF selection impact on CBF, CBV and MTT estimate is investigated.

4.1 Theory

AIF is estimated on the slice containing the Middle Cerebral Artery (MCA).
Since the author’s interest is focused on the whole brain analysis, the MCA
symmetrical position relatively guarantees to minimize the delay between AIF
and voxels.

The methodology for selecting the arterial voxels can be summarized in the
following steps [66]:

1. drawing a region of interest (ROI);

2. exclusion of voxels with poor gamma-fit;

3. candidate voxels selection;

4. iterative cluster analysis.

In the first step, a region of interest containing the selected artery is auto-
matically drawn. The MCA arises from the internal carotid and continues into
the lateral sulcus. Here, it branches and projects to many parts of the lateral
cerebral cortex (Figure 4.1). Thus, the MCA main segment is expected to be
located in the middle of the slice, with anterior-posterior direction. The algo-
rithm detects the brain edge and selects the expected MCA location through
an elliptical ROI.
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Figure 4.1: Major arteries supplying blood to the brain.

Successively, the fit between the concentration samples and the gamma-
variate curve is evaluated for each voxel in the ROI to eliminate recirculation
(see subsection 2.3.3, page 12). Once the fit is computed, the algorithm considers
only the gamma-variate curve for each voxel. Thus, voxels presenting a poor fit
are discarded on the basis of the following exclusion criteria:

• convergence is not reached during the fit estimate;

• the maximum values of the gamma-variate function differ from the maxi-
mum concentration sample by more than 10%;

• the difference norm between the gamma-variate and the concentration
curves in the main peak is computed. Then, 2% of voxels with the largest
norm are discarded.

The remaining voxels are all potential arterial voxels, so they are called
candidate voxels. As mentioned before, AIF is computed on the basis of the
signal measured from one of the main arterial vessels. Therefore, the tracer
bolus is expected to arrive earlier in the arterial voxels than in the tissue ones.
Moreover, the tracer bolus is likely to present a low dispersion level, because
it still has to pass through the small vessels and the capillaries. Consequently,
the arterial concentration curve should present a smaller Time To Peak (TTP),
a greater Maximum Concentration (MC) and a smaller Full Width at Half
Maximum (FWHM) than the tissue ones . Therefore, the following criteria are
used to reduce the candidate arterial voxels:

• the area under the curve (AUC) is computed for each voxel. Then, the
PAUC of voxels with the smallest AUC are discarded to minimize the
partial volume effect;

• TTP is computed for each voxel. Since voxels with delayed TTP are
assumed to reflect large venous structures, the PTTP of voxels with the
largest TTP are discarded.
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A cluster analysis of the candidate voxels is performed to estimate the AIF.
Firstly, a hierarchical clustering algorithm separates the candidate voxels into
two cluster on the basis of the Eucledian distance between curves. Secondly, the
centroid, i.e. the mean cluster curve, is computed and the cluster presenting the
highest centroid peak is selected. If the difference between two peaks is smaller
than 5%, then the cluster with the smallest TTP is selected. Iteratively, a new
cluster analysis is performed on the selected cluster until it contains less than 6
voxels.

Finally, the AIF is estimated by averaging the voxels in the last cluster.

Noticeably, the algorithm restricts the searching area through anatomical
knowledge. This solution has already been used in literature [35, 55], but the
searching area was always manually drawn by a physician. Here, anatomical
knowledge is instead integrated for the first time in a fully automated method
to select the arterial voxels in a reliable brain area. Moreover, even if the
algorithm is developed to extract MCA, it can be easily modified to consider
different arteries.

The parameters PAUC and PTTP must be fixed before applying the AIF
extraction algorithm. They depend mostly on the acquisition sequence and on
the artery site of interest. However, once they are optimized, they keep constant
for a particular scanning protocol.

4.2 Simulation: Set up

The simulated data set was obtained starting from a known AIF, achieved as
suggested in [84]. The AIF concentration curve (CAIF (t)) was divided into two
components, the principal peak (CP (t)) and the subsequent recirculation (CR).
CP (t) was modelled as a gamma-variate function. The recirculation consists
of a copy of the principal peak, translated and convolved with an exponential
function. Figure 4.2 shows the components of the simulated AIF.

CAIF (t) = CP (t) + CR(t) (4.1)

CP (t) =

{
0 t < t0

(t− t0)
α · e−

t−t0
β otherwise

(4.2)

CR(t) = k · CP (t− tD) ⊗ e
−

t
τR (4.3)

where t0 is the contrast arrival time, α is a measure of the inflow veloc-
ity steepness, β is the washout velocity, tD is the delay between the principal
peak and the recirculation, τR is the time constant of the exponential function
accounting for the recirculation dispersion and k is a proportionality constant
selected so that the recirculation peak is the third part of the main peak. The
simulation parameter values are reported in table 4.1. Different parameter val-
ues have been used to generate many false AIF (fAIF). Figure 4.3 shows a
comparison between the true and the false AIFs. Table 4.3 reports the fAIF
simulation parameters.
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Figure 4.2: Structural elements in the simulated AIF.

The Residue function R(t) was modelled with a gamma-variate function, as
suggested in [17]. The gamma-variate function was selected among the proposed
Residue functions to simulate the presence of bolus dispersion in the arteries
feeding the tissue volumes. Figure 4.4 shows an example of the gamma-variate
Residue function.

R(t) = t · e
−

t√
MT T (4.4)

Notice that, as required by the definition of the dispersed Residue function,
R(0) = 0 and

∫
0
R(t)t = MTT .

Tissue concentration time curves (CV OI(t)) were obtained from Eq. 2.12,
considering a time range between 0 and 100 seconds. Three different combina-
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Figure 4.3: Comparison between the true and the false AIFs.
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tions between tissue type and pathological state were simulated: normal and
pathological gray matter and normal white matter. CBV and MTT values in
the different combinations are reported in Table 4.2. Notice that MTT is as-
sumed to be Gaussian to generate different realizations of the tissue. As CBF
is obtained from Eq. (2.11), it is also assumed to be Gaussian. A comparison
between the different tissue curves is reported in Figure 4.5.

The corresponding MR signal was obtained deriving Eq. 2.17

SV OI(t) = S0e
−kV OI ·TE·CV OI(t) (4.5)

where S0 is the baseline signal, TR and TE are the acquisition sequence
parameters. Typical parameter values are chosen; they are reported in Table
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Figure 4.4: Example of the gamma-variate Residue function.
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Figure 4.5: Comparison between the true AIF and the concentration curve of
the different tissues.
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4.1. The proportionality factor kV OI was selected so that the signal presents
a 40% peak signal drop from the baseline in the normal gray matter, which
corresponds to values typically found in clinical cases [89].

Several linear combinations between the arterial signal and the different
tissue type signals were generated to simulate the partial volume effect.

Summarizing, each realization of the simulated data set contains:

• 6 arterial voxels;

• 14 false AIF voxels;

• 440 voxels representing normal gray matter tissue;

• 440 voxels representing pathological gray matter tissue;

• 600 voxels representing normal white matter tissue;

• 400 voxels representing the partial volume effect.

For each realization, noise was added to generate 100 different noisy curves.
Noise was modelled as a zero mean Gaussian noise with standard deviation
SDnoise chosen to create signal to noise ratios (i.e. SNR = S0/SDnoise) of 5,
10, 20, 50, thus including the SNR values tipycally found in DSC-MRI clinical
practise (SNR∼20) [17]. Figure 4.6 reports voxel signals in a realization at
SNR=20.

Five different automatic AIF selection methods were applied to this simu-
lated data set:

• the novel approach proposed in this work (see section 4.1),which will be
called HIER;

• the method proposed by Mouridsen and colleagues in [52], called in this
work K-MEANS;

• the method proposed by Butman and colleagues in [12], called in this work
SD-MAP;

• the method proposed by Rempp and colleagues in [72], called in this work
REMPP;

• the method proposed by Ibarakiand colleagues in [35], called in this work
PEAK;

All methods were implemented as proposed in the original publications.
The only exception was the final step. In each method, a gamma variate function
was used to fit the arterial concentration curve. The gamma variate function is
assumed to be the AIF. In the HIER method, the first step, i.e. the detection
of the searching area, was not performed in the simulated data analysis.

AIF was also estimated by manual selection of the six arterial voxels. The
selected voxels contain only the arterial signal, thus such AIF is not biased by
the partial volume effect. This AIF will be called best AIF.
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Figure 4.6: Simulated data set realization.

Simulation Parameters
t0 10 s.
tD 8 s.
α 3 adim.
β 1.5 s.
τR 30 s.

ρ 0.0104 100g
ml

kH 0.73
S0 100 a.u.
TE 50 ms.
TR 1 s.

Table 4.1: Parameter values in the simulated data generation.

Tissue Simulation Parameters
Tissue Clinical State CBV MTT

[ml/100g] (mean ± SD) [s.]
Normal Gray Matter 4 4 ± 0.33
Pathological Gray Matter 3.3 10 ± 0.7
Normal White Matter 2 5.45 ± 0.33

Table 4.2: Hemodynamic parameters
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False AIF Simulation Parameters
t0 [s.] α [adim.] β [s.]

fAIF1 7 1.5 3
fAIF2 7 1.6 3.1
fAIF3 7 1.6 3.5
fAIF4 8 2 2.5
fAIF5 8 2.5 1.5
fAIF6 8 1.1 10
fAIF7 10 2.5 1
fAIF8 10 2.5 1.8
fAIF9 11 1.5 5
fAIF10 11 1 20
fAIF11 12 0.7 30
fAIF12 12 2.8 1.6
fAIF13 13 3.3 1.3
fAIF14 13 0.65 50

Table 4.3: False AIF simulation parameters.



4.3 Simulation: Results 39

4.3 Simulation: Results

4.3.1 Arterial Input Function reconstruction

Figures 4.7 - 4.12 show the mean AIF computed using the different methods in
different noise conditions. Moreover, the arterial voxels were manually selected
and an AIF is estimated. Since it is not biased by the partial volume effect, it
represents the best obtainable solution (best AIF ).

• The HIER method (Figure 4.7) precisely reconstructs the arterial curve
in high, normal and low noise conditions (SNR 10, 20, 50), whereas it
overestimates the peak at a very high noise level (SNR 5). Moreover, it
presents good confidence bands at SNR 10, 20 and 50, showing a high
reproducibility level.

• K-MEANS performs less satisfactorily than HIER (Figure 4.8). Solutions
usually underestimate the true AIF and present wider confidence bands
than HIER.

• The SD-MAP method provides good AIF assessment and good confidence
bands at high, normal and low noise levels (Figure 4.9). But its perfor-
mances crumble when noise considerably increases. Moreover, the esti-
mated arterial curve peaks are usually delayed with respect to the true
AIF ones.

• REMPP (Figure 4.10) shows quite good solutions at low and normal noise
level (SNR 20 and 50). However, it overestimates the peak and provides
very narrow curves at a high noise level. The PEAK method exhibits good
mean AIF estimates among all SNRs (Figure 4.11). However, it presents
wide confidence bands, particularly in the final part of the arterial curve
(i.e. after the main peak) at SNR 10 and 20. Remarkably, the CBV,
CBF and MTT quantification depends on the whole AIF, not only on its
principal peak.

• The Best AIF method usually provides very good mean solutions and
confidence intervals, but it overestimates the peak at high noise level (SNR
50) (Figure 4.12).
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Figure 4.7: AIFs reconstructed with the hierarchical cluster method (Hier).
Black solid lines indicate the true AIF, red solid lines the mean of reconstructed
AIFs and dashed lines the mean ± SD of reconstructed AIFs. The horizontal
axes are time [s.] in logarithmic scale and time scale was shifted by 10 seconds
to improve visualization. The vertical axes are concentration [a.u.].
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Figure 4.8: AIFs reconstructed using [52] (K-means). Black solid lines indicate
the true AIF, red solid lines the mean of reconstructed AIFs and dashed lines
the mean ± SD of reconstructed AIFs. The horizontal axes are time [s.] in loga-
rithmic scale and time scale was shifted by 10 seconds to improve visualization.
The vertical axes are concentration [a.u.].
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Figure 4.9: AIFs reconstructed by the SD map method (SD map) [12]. Black
solid lines indicate the true AIF, red solid lines the mean of reconstructed AIFs
and dashed lines the mean ± SD of reconstructed AIFs. The horizontal axes
are time [s.] in logarithmic scale and time scale was shifted by 10 seconds to
improve visualization. The vertical axes are concentration [a.u.].
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Figure 4.10: AIFs reconstructed by Rempp method (Rempp) [72]. Black solid
lines indicate the true AIF, red solid lines the mean of reconstructed AIFs and
dashed lines the mean ± SD of reconstructed AIFs. The horizontal axes are time
[s.] in logarithmic scale and time scale was shifted by 10 seconds to improve
visualization. The vertical axes are concentration [a.u.].
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Figure 4.11: AIFs reconstructed using [72] (Peak). Black solid lines indicate the
true AIF, red solid lines the mean of reconstructed AIFs and dashed lines the
mean ± SD of reconstructed AIFs. The horizontal axes are time [s.] in loga-
rithmic scale and time scale was shifted by 10 seconds to improve visualization.
The vertical axes are concentration [a.u.].
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Figure 4.12: AIFs reconstructed by selecting only arterial voxels (best solution).
Black solid lines indicate the true AIF, red solid lines the mean of reconstructed
AIFs and dashed lines the mean ± SD of reconstructed AIFs. The horizontal
axes are time [s.] in logarithmic scale and time scale was shifted by 10 seconds
to improve visualization. The vertical axes are concentration [a.u.].
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In each method, the mean partial volume in the selected voxels was com-
puted and reported in Figure 4.13. At a very high noise level (SNR 5), PEAK
performs best, SD-MAP is significantly affected by partial volume and the
other methods exhibit comparable performances. At SNR 10 and 20, HIER
and PEAK provide comparable results and show the best scores. At low noise
levels (SNR 50), all methods have good performances with the exception of K-
MEANS, that is the worst method at SNR 10, 20 and 50. HIER is the best
method at the noise level typically present in the clinical practice (SNR 20).

The performances of the different algorithms to estimate the AIF were also
assessed by measuring the difference between the estimated AIF and both the
true and the best AIFs. The difference was computed as Root Mean Square

Error (RMSE) in each realization of the simulated data as

RMSE =

√∑n
i=1[AIFestimated(ti) −AIFtrue/best(ti)]2

n
(4.6)

where n = 100 is the number of samples in the simulated data, AIFestimated(t)
is the arterial curve provided by each method and AIFtrue/best(t) is the true
AIF or the best AIF.

Mean RMSE indices between the best AIF and the estimated ones are
reported in Figure 4.14. At a very high noise level, PEAK shows the best
result, SD-MAP the worst and the other methods have similar RMSE values.
In other conditions, all methods exhibit comparable performances, but HIER
reaches the best results. At typical SNR, the HIER method has the smallest
RMSE and PEAK the largest one.

Figure 4.15 shows the mean difference, expressed as RMSE, between the
true and the estimated AIFs. The difference between the best and the true
AIFs was also reported. All methods asymptotically come close to the best AIF
results, with the exception of PEAK. At SNR 5, the PEAK method provides
good performance, its reconstructed AIF is nearer to the true one than the best
AIF. At lower noise levels (SNR 10, 20), PEAK RMSE is higher than best AIF
one. Then, at SNR 50, PEAK result is comparable to the other methods. At
typical SNR, HIER method has the smallest RMSE and PEAK the largest one.

Since the CBV quantification depends on the AIF integral (from Eq. (2.4))
, the area under the concentration curve is an important parameter to assess the
estimated AIFs. Figure 4.16 reports the mean AUC computed in each estimated
AIF. Results are compared to the AUC of the true AIF main peak, i.e. the AIF
without recirculation. At SNR 10, 20, 50, all methods underestimate the AUC,
with the exception of PEAK. PEAK shows a very high difference from the true
AUC in SNR 10 and 20, whereas it provides AUC very close to the true one at
SNR 5 and 50. Remarkably, SD-MAP exhibits a very high difference from the
true AIF AUC at SNR 5, but it performs well at other noise levels. SD-MAP
and HIER provide the closest value to the true ones at the typical SNR used in
clinical practice.
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Figure 4.13: Partial volume effect in arterial voxel selection.
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Figure 4.14: Root Mean Square Error computed between the estimated AIF
and the best possible AIF.
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Figure 4.15: Root Mean Square Error computed between the estimated and the
true AIFs.
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Figure 4.16: Area Under the Curve computed on the estimated AIF. The dashed
black line indicates the AUC of the true AIF without recirculation.
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4.3.2 Impact of the Arterial Input Function on estimating

the hemodynamic parameters

Cerebral Blood Flow (CBF), Volume (CBV) and Mean Transit Time (MTT)
have been computed in order to evaluate the impact of the AIF on DSC-MRI
image quantification. CBV was computed according to Eq. (2.4). SVD de-
convolution was performed to estimate CBF from the Residue function. Then,
MTT was obtained from Eq. (2.11). AIF was estimated on simulated data at
SNR 20, i.e. the typical noise level in clinical practice.

CBF, CBV and MTT were estimated from both noisy and non noisy data.
Thus, both the impact of the AIF selection and the combination of the AIF
selection with the noise in data can be evaluated. This allows to assess the
different AIF dependencies and their combination with the noise effects. Nor-
mal and pathological gray matter (GM) and normal white matter (WM) were
simulated to account for the different tissue clinical states.

Tissue without noise

For each AIF selection method, ratios between estimated and true CBFs in
each tissue type were reported in the upper panel of Figure 4.17 (mean ± SD).
Ratios obtained from the best AIF are the closest to the unity in normal white
matter and pathological gray matter, whereas HIER performs best in the normal
gray matter CBF quantification. Except for the PEAK approach, all automatic
AIF selection algorithms overestimate CBF in each tissue type. PEAK leads
to a large CBF underestimate instead. Among all different methods, HIER is
the most accurate in each tissue type, 1.0042 ± 0.0001 in normal gray matter,
1.0123±0.0003 in pathological gray matter and 1.0125±0.0002 in normal white
matter.

In the middle panel of Figure 4.17 CBV ratios were reported (mean ± SD).
Since the CBV estimate depends only on the AIF integral on time, the ratio
between the estimated and the true CBV equals the ratio between the estimated
and the true AIF integrals on time. The best AIF method leads to the best
CBV ratio (1.01). Among all methods, HIER and SD-MAP present the best
CBV ratio (1.04) and PEAK the worst one (0.78). PEAK method provides a
large CBV underestimate, whereas all other algorithms overestimate it.

The lower panel in Figure 4.17 shows ratios between the estimated and
the true MTT (mean ± SD). With the exception of PEAK, all methods quite
overestimate MTT and exhibit comparable results. MTT ratios range from
1.011±0.005 (K-MEANS in pathological gray matter) to 1.0386±0.0002 (HIER
in normal gray matter). On the contrary, MTT ratios computed by using PEAK
method are very small (about 0.81), showing a large MTT underestimate.
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Figure 4.17: Mean CBF, CBV and MTT ratio computed by using the estimated
and the true AIFs. The AIF estimation was performed on data at SNR 20. The
Residue function quantification was performed using SVD on non noisy tissue
data.
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Noisy tissue

Estimated and true CBF mean ratio and SD was reported in Figure 4.18 (upper
panel), divided into AIF selection method and tissue type. The CBF values
obtained using the best AIF are very close to the true ones. Among all other
methods, HIER shows the best results considering both the normal and the
pathological gray matter (1.02± 0.06 and 1.02± 0.11, respectively), whereas in
the normal white matter the PEAK method performs best (1.02 ± 0.11). The
worst mean ratios were obtained using K-MEANS and REMPP algorithms, but
REMPP also presents the largest SD in each tissue type (1.07±0.07, 1.06±0.12
and 1.08±0.14 in normal GM, pathological GM and normal WM, respectively).

The middle panel in Figure 4.18 reports the estimated and true CBV mean
ratio and SD. As previously argued, CBV depends only on the AIF integral on
time. Thus, only the mean CBV ratio is affected by the AIF, whereas the SD
is caused by noise in the data. In this case, the best AIF provides the best
CBV values (1.01 mean ratio). Among all other methods, HIER and SD-MAP
provide comparable ratios (1.046 and 1.045 mean value, respectively). PEAK
is the only method affected by CBV underestimate, showing 0.78 as mean CBV
ratio.

Mean ratio and SD computed between the estimated and the true MTT
are showed in Figure 4.18. With the exception of PEAK, all methods provided
comparable results, ranging from 0.99±0.15 (SD-MAP method on normal WM)
to 1.04±0.14 (REMPP on pathological GM). As in non noisy data analysis, AIF
computed using PEAK method leads to underestimates in MTT values (MTT
ratios: 0.81± 0.06, 0.81± 0.10 and 0.81± 0.12 in normal GM, pathological GM
and normal WM, respectively).
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Figure 4.18: Mean CBF, CBV and MTT ratio computed by using estimated
and true AIFs. The AIF estimation was perfomed on data at SNR 20. The
Residue function quantification was performed using SVD on noisy tissue data
(SNR 20).



50 4.4 Simulation: Discussion

4.4 Simulation: Discussion

The AIF selection is a critical step in the CBF, CBV and MTT quantifica-
tion from DSC-MRI images. For routine clinical use, an automatic, rapid and
objective method to obtain the AIF is essential. In this work, a novel fully
automated algorithm for the AIF estimate was presented and compared to the
most famous methods proposed in literature. The comparison has been made
on a large data set including 3 different tissue types, 4 different noise levels and
the partial volume effect.

The HIER method has been shown to precisely reconstruct the AIF. The
algorithm provides accurate AIF estimates and it is robust against the different
noise level. Thus, it increases the reproducibility level in DSC-MRI image quan-
tification. At the noise level typically found in DSC-MRI images, the HIER
method provides excellent performances. It presents very narrow confidence
bands, hence has a remarkably good reproducibility level. Among all tested
algorithms, it shows the lowest partial volume effect. Moreover, it records the
lowest RMSE from both the true and the best AIF, thus it is able to recon-
struct the true AIF shape. In addition, its AUC is the closest to the true one.
Therefore, it is not very biased by the partial volume effect and its estimate is
very close to the true AIF.

The SD-MAP algorithm provides reliable AIF estimates, too. It presents
narrow confidence bands. It can reconstruct a good AIF shape, close to the true
one. It is more affected by the partial volume effect than the HIER method,
even if its AUC is very close to the true value. The main problem of the SD-
MAP algorithm is its sensitiveness to the noise level, in particular if this is very
high. At very low SNR, the concentration curve SD depends mainly on the
noise, thus standard deviation maps obtained with the SD-MAP method are
not correlated to the vasculature location.

The REMPP method can well characterize the AIF at normal and low
noise levels. Moreover, it is very accurate and presents narrow confidence bands.
Nonetheless, it is noise sensitive. When the SNR decreases, REMPP estimates
become sharper than the true AIF and this leads to underestimate the AUC.

K-MEANS estimates are not satisfactory. They seem highly influenced by
the partial volume effect. It usually underestimates the true AIF, thus providing
low AUC. It presents high RMSE from both the true and the best AIF. There-
fore, it is not able to reconstruct the true AIF shape. Moreover, it provides
wide confidence bands, and this underlines its lack of accuracy in the arterial
voxel selection.

Considering the mean of estimated AIFs, the PEAK method can reliably
reconstruct the arterial curve and it is not particularly affected by the partial
volume effect. Nonetheless, it is characterized by very wide confidence bands at
normal and high noise level, especially in the final part of the curve, after the
main peak. Moreover, it shows high RMSE from both the true and the best
AIF and it widely overestimates the AUC. Therefore, the PEAK method is not
accurate and has a very low reproducibility level.

All methods remarkably overestimate the main peak in very noisy condi-
tions (SNR 05), also when selecting only the arterial voxels (best AIF). This
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is caused by the fit operation. In each method, the estimated arterial concen-
tration curve is fitted with a gamma variate function in order to eliminate the
recirculation. The main peak is the most interesting part of the curve: the
higher the concentration value, the larger the weight. In the fit operation, sam-
ples whose value was significantly increased by noise may lead to overestimate
the concentration peak. Since this effect becomes evident only at very high
noise levels, the bias introduced by the fit operation is lower than the bias due
to the recirculation when considering real data noise levels.

The impact of the AIF selection was also assessed by CBF, CBV and MTT
quantification both in noisy and non noisy data. Since the CBV quantification
depends only on the AIF integral, it is not affected by the arterial curve shape.
On the contrary, a deconvolution operation must be performed to obtain the
CBF value. Deconvolution is very sensitive to the AIF shape, thus the AIF
selection has a large impact on the CBF quantification. The ratios between the
estimated and the true CBF, CBV and MTT values were computed to com-
pare the investigated algorithms. HIER provides the best CBF ratios both in
presence and in absence of noise. When considering noisy data, HIER presents
the lowest difference among the different tissue errors. Therefore, HIER is able
to reconstruct accurate and reliable AIFs, very close to the true one. PEAK
provides significantly underestimated CBV values. This leads to very under-
estimated MTT values, whereas the CBF quantification errors are comparable
to the other method ones. This underlines that PEAK is very affected by the
partial volume. REMPP shows the highest SD values in CBF, CBV and MTT
ratios in noisy data analysis. This means that it is very sensitive to noise and
it has a low reproducibility level. SD-MAP provides the best CBV ratios both
in presence and absence of noise, comparable to the HIER ones. But its per-
formances are worse than the HIER ones in CBF quantification and in MTT
quantification in normal WM and pathological GM. K-MEANS provides good
CBV and MTT ratios, but also poor CBF ones. This underlines that K-MEANS
estimated AIF is biased by the partial volume effect and it is not reliable.

Summarizing, HIER has demonstrated to be a robust method to estimate
the AIF. At the noise level typically present in DSC-MRI images, it provides the
best performances among the implemented methods. Other algorithms appear
to be more sensitive to noise and show a lower reproducibility level than HIER.
Then, HIER is able to extract reliable arterial curves, thus providing accurate
estimates of CBF, CBV and MTT.
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The simulation study allowed to test the AIF selection algorithms in a
controlled environment and to thoroughly analyse their performances. HIER
method has been shown to perform best among the implemented methods. It
can reconstruct a reliable AIF and provide accurate estimates of the hemody-
namic parameters. The next step in the validation process is its application on
clinical data. Since the true AIF is not known in clinical data, the AIF provided
by HIER algorithm is compared to the one obtained by manual selection.

4.5 Clinical data: Experimental set up and sub-

jects

The clinical data set was provided by Doctor Mirco Cosottini, of the Depart-
ment of Neuroscience, University of Pisa, Italy. It is composed by DSC-MRI
data from 11 patients with severe atherosclerotic unilateral stenosis of the in-
ternal carotid artery. All subjects were submitted to conventional angiography
with digital subtraction technique to confirm the stenosis grading. Examina-
tions were executed with MR equipment Signa Horizon CV 1.5 T GE Medical
System using a dedicated phased array neurovascular coil. DSC-MRI imaging
was performed with a single shot EPI GE sequence along the bicommisural axis
(TE = 51 ms and TR = 1560 ms). The injection rate was 5 ml/sec with a
total amount of 14 ml, using a 18 gauge intravenous access connected to an
automated injector. In 8 out of the considered subjects, DSC-MRI acquisition
was repeated 6 months after the surgery intervention to completely or partially
eliminate the stenosis. For subject n◦ 10, only the acquisition after surgery was
available. In total, 18 different clinical cases were considered (i.e. 10 pre-surgery
and 8 post-surgery).

Subject Age Weight Gender Stenosis Pre/Post-Surgery
ID [years] [kg] Loc. [Rad] Imaging

#1 72 69 M dx Pre/Post
#2 77 85 M sx Pre/Post
#3 81 62 M sx Pre/Post
#4 78 60 F dx Pre
#5 75 74 M dx Pre/Post
#6 59 73 M sx Pre/Post
#7 77 83 M dx Pre/Post
#8 58 78 M sx Pre
#9 81 79 F dx - sx Pre/Post
#10 70 72 M sx Post
#11 76 85 M dx Pre/Post

Table 4.4: Age, weight, gender, stenosis location and presence of post-surgery
acquisition of the eleven considered subjects. Noticeably, the stenosis location
is in radiological convention (i.e. the right hemisphere is seen on the left side of
the image).

Table 4.4 shows age, weight, gender of the eleven subjects together with
the stenosis location and the presence of a second DSC-MRI acquisition after
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surgery.

Noticeably, a subset of the whole data set was considered in the comparison
between automatic AIF and manual AIF. It includes subjects #1 pre and post;
#2 pre and post; #3 pre and post and #4 pre.
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4.6 Clinical Data: Results

In each subject, automatic and manual AIFs were extracted. The automatic

AIF was computed using the HIER algorithm presented in this work. The
manual AIF was computed by a physician, who selected the arterial voxels on
the DSC-MRI images.

Figures 4.19 - 4.25 show AIF computed in each subject. The upper panel
shows the slice selected for the automatic AIF extraction, the searching area
drawn by the algorithm and the selected voxel location. In the middle and
lower panel, respectively, the automatic and the manual selection results are
presented. The AIF gamma function is compared to the selected voxel gamma
functions and to the concentration mean samples of the selected voxels. The
abscissa axes (i.e. the time axes) are in logarithmic scale and they are also
shifted by 10 seconds to improve the visualization and to emphasize the curve
differences.

A clinician is asked to examine the selected voxel location to evaluate the
algorithm ability to select voxels containing arterial vessels. For each selected
voxel, he concluded that its position is compatible with the arterial structures
of the subject.

Since DSC-MRI images have a low spatial resolution and are affected by
the partial volume effect, the clinician may select some voxels that are very
different one from each other. For example, he can select voxels with a low
concentration peak (e.g. subject #1 pre surgery, Figure 4.19), very dispersed
ones (e.g. subject #2 pre surgery, Figure 4.21), or delayed ones (e.g. subject
#3 pre surgery, Figure 4.23). Therefore, the manual AIF curve shows a higher
noise level than the automatic one, or at least the same (e.g. subject #1 post
surgery, #3 pre and post surgery, Figures 4.20, 4.23 and 4.24). The automatic
algorithm thus selects voxels with lower variation one from each other than the
manual selection, with the only exception of the subject #1 post surgery.

Differences between manual and automatic AIFs can also be found in the
concentration peak, in the time to peak and in the concentration peak width. In
pre surgery subjects, the automatic algorithm provides a higher AIF than the
manual selection, whereas the state reverses in the post surgery subjects. The
manual AIF is also affected by delay and dispersion in subjects #1, #3, #4 pre
surgery(Figures 4.19, 4.23 and 4.25), whereas all AIFs present comparable time
to peak and width in the other subjects. Ideally, AIF should present a high and
fast peak concentration, followed by one or more little peaks caused by recircula-
tion. For example, in subject #2 pre surgery (Figure 4.21) a second small peak,
following the main one, can be easily found. Moreover, the AIF time to peak
should be anticipated than the tissue one, to preserve the causality between AIF
and tissue. Noticeably, delay and dispersion have been shown to provide very
biased CBF values when using the standard quantification techniques.
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Figure 4.19: Selected AIFs in subject #1 pre surgery. The upper panel shows
the slice containing MCA, the searching area (red line) and the selected voxel
location (red dot). The middle and lower panels report automatic and manual
AIF, respectively. Results are presented as a comparison among the estimated
AIF, the selected voxels and the concentration mean samples. Horizontal axes
are set in logarithmic scale and shifted by 10 seconds in order to emphasize the
curve differences.
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Figure 4.20: Selected AIFs in subject #1 post surgery. The upper panel shows
the slice containing MCA, the searching area (red line) and the selected voxel
location (red dot). The middle and lower panels report automatic and manual
AIF, respectively. Results are presented as a comparison among the estimated
AIF, the selected voxels and the concentration mean samples. Horizontal axes
are set in logarithmic scale and shifted by 10 seconds in order to emphasize the
curve differences.
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Figure 4.21: Selected AIFs in subject #2 pre surgery. The upper panel shows
the slice containing MCA, the searching area (red line) and the selected voxel
location (red dot). The middle and lower panels report automatic and manual
AIF, respectively. Results are presented as a comparison among the estimated
AIF, the selected voxels and the concentration mean samples. Horizontal axes
are set in logarithmic scale and shifted by 10 seconds in order to emphasize the
curve differences.
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Figure 4.22: Selected AIFs in subject #2 post surgery. The upper panel shows
the slice containing MCA, the searching area (red line) and the selected voxel
location (red dot). The middle and lower panels report automatic and manual
AIF, respectively. Results are presented as a comparison among the estimated
AIF, the selected voxels and the concentration mean samples. Horizontal axes
are set in logarithmic scale and shifted by 10 seconds in order to emphasize the
curve differences.
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Figure 4.23: Selected AIFs in subject #3 pre surgery. The upper panel shows
the slice containing MCA, the searching area (red line) and the selected voxel
location (red dot). The middle and lower panels report automatic and manual
AIF, respectively. Results are presented as a comparison among the estimated
AIF, the selected voxels and the concentration mean samples. Horizontal axes
are set in logarithmic scale and shifted by 10 seconds in order to emphasize the
curve differences.
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Figure 4.24: Selected AIFs in subject #3 post surgery. The upper panel shows
the slice containing MCA, the searching area (red line) and the selected voxel
location (red dot). The middle and lower panels report automatic and manual
AIF, respectively. Results are presented as a comparison among the estimated
AIF, the selected voxels and the concentration mean samples. Horizontal axes
are set in logarithmic scale and shifted by 10 seconds in order to emphasize the
curve differences.
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Figure 4.25: Selected AIFs in subject #4 pre surgery. The upper panel shows
the slice containing MCA, the searching area (red line) and the selected voxel
location (red dot). The middle and lower panels report automatic and manual
AIF, respectively. Results are presented as a comparison among the estimated
AIF, the selected voxels and the concentration mean samples. Horizontal axes
are set in logarithmic scale and shifted by 10 seconds in order to emphasize the
curve differences.
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CBF and MTT values were estimated using both manual and automatic
AIF in order to evaluate the AIF selection impact in the clinical image quan-
tification. CBF and MTT maps were computed in each slice for all subjects
by SVD applied voxel by voxel. In each slice, two large ROIs were manually
drawn by a trained physician on the left and on the right hemisphere. The
ROIs are delimited by the inter-hemispheric scissure and by the cerebral exter-
nal border. Each ROI is drawn to contain only white and gray matter. Thus, if
other structures (e.g, the basal ganglia) are visible, they are not included in the
ROIs. Mean CBF and MTT values were computed in each ROI and a laterality
percentage index was defined as follows:

CBFLI =
CBFROIDX−CBFROISX

CBFROIDX

MTTLI =
MTTROIDX−MTTROISX

MTTROIDX

(4.7)

where CBFROIDX , CBFROISX , MTTROIDX and MTTROISX represent
the CBF and MTT mean values in the right and left ROIs. CBV was also
evaluated in order to obtain the MTT maps. However, CBV was not considered
in the AIF impact analysis because it depends only on the AIF integral and
AIF does not affect the CBV laterality index.

CBF and MTT laterality indices can be used to detect disease affected re-
gions. Consider a patient with a stenosis in a carotid. The disease reduces the
hematic support in the pathologic hemisphere: this is revealed by lower CBF
values and higher MTT values than healthy hemisphere ones. Positive CBF lat-
erality index indicates a higher mean CBF value in the right hemisphere than in
the left one, suggesting a pathologic condition in the left hemisphere. Likewise,
negative CBF laterality index points out a difference in CBF values in favour
of the left hemisphere. Opposite remarks have to be done considering the MTT
laterality index. Pathologic tissue is characterized by a slow blood flow, thus by
a higher MTT than the healthy hemisphere. Therefore, positive MTT laterality
index indicates higher MTT values in the right hemisphere than in the left one,
thus suggesting that the right hemisphere is the pathologic one. Negative MTT
laterality index indicates a higher MTT in the left hemisphere than in the right
and that the disease is localized in the left hemisphere. Moreover, high absolute
values in the laterality indices indicate a prominent hemodynamic difference
between the two hemispheres, whereas small values characterize a healthy con-
dition. Therefore, laterality indices can be used to evaluate both the disease
severity and its localization.

Figures 4.26-4.29 report the CBF and the MTT laterality indices estimated
in each slice and in each subject using both the manual and the automatic AIFs.
The slice index indicates the slice position in the head: slice 1 is the nearest to
the neck, whereas slice 12 is on the top of the head. The first and the last slices
are usually very noisy, thus their results are less reliable than the ones of other
slices. Pre surgery results are in the upper panels, whereas the post surgery
analysis are in the lower ones. The CBF laterality indices are in the left panels
and the right ones report the MTT laterality indices.

The CBF laterality indices obtained using the automatic AIF in subject #1
pre surgery indicate a wide difference in slices 6, 7 and 10 in favour of the left
hemisphere (Figure 4.26). In these slices the difference is larger than 22% (slice
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10), up to 47% in slice 6. Therefore, CBF is larger in the left hemisphere than
in the right one. The MTT laterality index obtained with the automatic AIF is
larger than 10% in all slices, with the exception of slices 1, 2 and 11. The largest
MTT laterality indices are achieved in slices 6, 7 and 10. Therefore, both CBF
and MTT laterality indices suggest that the disease is localized in the right
hemisphere of slices 6, 7 and 10. The angiography examination confirms the
information provided by the automatic AIF laterality indices. Analysis carried
out using the automatic AIF also agree with the physician’s diagnosis, but the
differences are less marked than those provided by the automatic AIF analysis.

Laterality indices obtained using the automatic AIF change after the surgery
treatment. CBF laterality indices decrease significantly in the slices affected by
the disease: -28% in slice 6, -29% in slice 7 and -18% in slice 10. Generally,
the CBF laterality index decreases also in the other slices. The MTT laterality
index decreases in all slices, with the exception of slice 2 and 11. The largest
decrease is registered in slices 5, 6, 7, 10 (-11% up to -16%). Therefore, the au-
tomatic AIF analysis suggests a significant improvement in the patient clinical
picture. On the contrary, laterality indices obtained with the manual AIF do
not significantly change before and after surgery. They rather suggest a disease
aggravation in some slices, e.g. the CBF laterality index shows a 10% increase
in slice 6 and the MTT one gets worse in all central slices.

Automatic and manual AIFs provide comparable results in subject #2,
both in pre and post surgery analysis (Figure 4.27). CBF laterality indices
present large negative values in slices 2 and 7 (-97% and -49% respectively),
but they are coupled to small MTT laterality indices. On the contrary, slices 3,
4, 5 present large positive CBF laterality indices (15%, 27%, 18% respectively)
and also large negative MTT laterality indices (-10%, -29%, -16%, respectively).
Large negative MTT laterality indices are also registered in the upper slices, but
the corresponding CBF indices are very small. Results provided by both manual
and automatic AIF agree with the physician diagnosis, that localizes a stenosis
in the left hemisphere.

After the surgery treatment, the anomalous CBF laterality indices almost
disappear. The asymmetry in the pathological slices is recovered both in the
CBF and in the MTT laterality indices. The MTT laterality indices show a
small inversion in the asymmetry, but all values are smaller than 12

Automatic and manual AIFs perform comparably also in subject #3 (Fig-
ure 4.28). All slices present positive CBF and negative MTT laterality indices,
with the only exception of slice 4 (CBF) and 6 (MTT). Therefore, both anal-
yses suggest that the disease is in the left hemisphere, in agreement with the
angiographic examination.

After the treatment the clinical picture appears not to change significantly.
On the one hand, some slices present almost worse CBF laterality index (e.g.
slice 5, 7, 10); on the other hand, other slices show improved CBF laterality
indices (e.g. slice 8, 9, 11). All MTT laterality indices are still negative and
they do not present significant differences between pre and post surgery analysis.

Manual and automatic AIFs provide very different laterality index results
in subject #4 (Figure 4.29). A severe stenosis in the right hemisphere was
pointed out by the physician using the conventional angiography. The analysis
obtained using automatic AIF presents large negative CBF laterality indices,



64 4.6 Clinical Data: Results

most of all in slices 2, 6, 8, 9, 10. Moreover, very large positive MTT laterality
indices are registered in all slices (all larger than 20%). Therefore, both the
CBF and the MTT laterality indices suggest that the disease is localized in
the right hemisphere, as in the diagnosis. On the contrary, the manual AIF
analysis provides large positive CBF laterality indices in all slices except for
slice 2, suggesting a disease in the left hemisphere. However, MTT laterality
indices are also positive in all slices, suggesting a disease in the right hemisphere.
Information provided by the manual AIF analysis are thus conflicting and in
disagreement with the clinical diagnosis considering the CBF values.
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Figure 4.26: CBF and MTT laterality indices in subject #1. Results obtained
using automatic AIF are reported with the red bars, whereas blue bars indicate
the results obtained using manual AIF.
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Figure 4.27: CBF and MTT laterality indices in subject #2. Results obtained
using automatic AIF are reported with the red bars, whereas blue bars indicate
the results obtained using manual AIF.
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Figure 4.28: CBF and MTT laterality indices in subject #3. Results obtained
using automatic AIF are reported with the red bars, whereas blue bars indicate
the results obtained using manual AIF.
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Figure 4.29: CBF and MTT laterality indices in subject #4. Results obtained
using automatic AIF are reported with the red bars, whereas blue bars indicate
the results obtained using manual AIF.
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4.7 Clinical Data: Discussion

The automatic algorithm (HIER) for the arterial function selection has been
proposed and applied to clinical DSC-MRI data. The clinical data set includes
11 patients with atherosclerotic unilateral stenosis of the internal carotid artery.
In 8 out of the considered subjects, the DSC-MRI examination was repeated 6
months after the surgery intervention to completely or partially eliminate the
stenosis. In 4 subjects, the AIF was detected both with automatic and manual
methods, to compare their performances. 3 subjects of this subset also have
post surgery examination.

Manually selected AIF is currently the gold standard in the DSC-MRI
image quantification. However, it requires trained staff and it is scarcely re-
producible as it is operator dependent. Arterial voxels can be selected either
directly on the DSC-MRI images, or on the anatomical MRI images. Yet, in
the first case images feature low spatial resolution, whereas in the second case,
the coregistration problem between anatomical and functional images needs to
be solved.

In this work, manual AIF performances were not optimal. Manually se-
lected voxels are significantly different in their time-concentration curve. For
instance, they present different dispersion levels, they are delayed or they fea-
ture different concentration peaks. This leads to a global AIF with a high noise
level and an irregular shape. Therefore, it appears to be highly affected by
partial volume effect and it is not reliable.

The automatic AIF selection algorithm detects the middle cerebral artery
(MCA) in the first slice above the corpus callosum. Firstly, it highlights the
region where the MCA is expected to be. Then, it extracts the AIF by a di-
chotomously applied hierarchical clustering. Therefore, it integrates anatomical
and functional information in the arterial voxel detection. Many other meth-
ods work on the restricted area containing the artery, but the area is manually
selected. Here, an automatic method to detect the searching area has been
proposed and validated for the first time.

HIER has been shown to select almost identical voxels. Moreover, the ob-
tained AIF presents a very regular shape, sometimes with the typical secondary
peak in recirculation. Therefore, HIER demonstrated to provide an AIF which
is not biased by partial volume effect.

Both automatic and manual AIFs have been used to compute CBF, CBV
and MTT maps using SVD; CBF and MTT laterality indices have been defined.
The laterality indices obtained through automatic AIF offer information which
confirm the patient clinical picture provided by a physician with a standard
angiography. Although laterality indices provided by manual AIF do confirm
the clinical picture, pathology may be less evident, and information may even
be inconsistent.

In conclusion, automatic AIF stands out as an innovative method to over-
come manual AIF shortcomings and gather useful information for the diagnosis
in atherosclerotic patients.
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Chapter 5

Dynamic Susceptibility

Contrast -MRI: Population

Deconvolution

A new deconvolution method for DSC-MRI image quantification is presented
here, the Population Deconvolution (PD) method. First of all, the deconvo-
lution method theory is explained, pointing out how it applies the population
approach to the problem. After describing the simulation set up and assess-
ment criteria, PD is validated on the simulated data and compared to SVD and
cSVD. Subsequently, SVD, cSVD, NSR and PD are assessed and compared on
clinical data.

5.1 Theory

One of the main issues in the deconvolution operation is ill-conditioning. This
means that the deconvolution is highly biased by the noise in the data. Low
noise levels in the sampled data lead to high errors in the estimated results; for
instance, unphysiological oscillations or negative values in the estimated residue
function (R(t)). Furthermore, ill-conditioning gets worse as the sampling rate
increases and in case of low kinetic systems.

The SVD method reduces the noise impact in the estimated R(t) by using
a threshold to eliminate small eigenvalues in matrix W (see section 3.2.1, page
23). SVD is based on the hypothesis that small eigenvalues in (W ) are due
to noise in the data., It reduces the noise impact in R(t), thus increasing the
solution regularity by eliminating these eigenvalues.

All deconvolution methods proposed in DSC-MRI image quantification are
voxel based. This means that the deconvolution operation is performed in each
voxel separately from the others. However, the idea that similar voxels are
characterized by similar residue functions can be easily assumed. Moreover,
tackling the deconvolution problem on a population basis increases the available
information amount available.
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The PD method, proposed in [27, 59], exploits the population approach
to estimate the residue function using a minimum variance estimator. Firstly,
it reconstructs the voxel concentration curve without noise, taking advantage
from the population approach. Then, it obtains the minimum variance R(t) for
each voxel.

Let us consider a population of m voxels with the sampling grid {tk},
k = 1 : n. The concentration samples can be modelled as follows

yj
k = cj(tk) + vj

k j = 1, . . . ,m and k = 1, . . . , n
cj(t) = c̄(t) + c̃j(t)

(5.1)

where yj
k are the noisy concentration samples of j-th voxel; cj(t) are the

concentration samples without noise; vj
k are the noise samples. The noise vectors

{vj} = [v1j . . . v
j
n]T are assumed independent and normally distributed with

E[vj
k] = 0 and variance matrix Σj

v. It is assumed that the individual curve cj(t)
can be decomposed in an average curve c̄(t) and an individual shift from the
average c̃j(t). Both the average curve and the individual shift are assumed to
be zero-mean Gaussian stochastic processes.

The first step of the PD method provides the estimate of the average curve
and the shift from the average for each voxel. In other words, it computes
E[c̄(τ)|y] and E[cj(τ)|y] for j = 1 . . .m, where y = [y1

1 , y
1
2 , . . . , y

1
n, y

2
1 , . . . , y

j
n]T

is a column vector containing the whole voxel population samples. Noticeably,
τ is a generic temporal instant, thus PD allows to reconstruct the voxel concen-
tration curve and the residue function on a generic temporal grid.

The average curve is computed starting from the known formula on the
joint Gaussian vectors

E[c̄(τ)|y] = cov[c̄(τ), y] · V ar[y]−1 · y (5.2)

Where cov[q, w] = E[(q−E[q])(w−E[w])T ] and V ar[q] = E[(q−E[q])(q−
E[q])T ]. Let define the following symbols

c̄ = [c̄(t1) . . . c̄(tn)]T

c̄τ = [c̄(tτ )c̄(t1) . . . c̄(tn)]T

c̃j = [c̃j(t1) . . . c̃
j(tn)]T

Q̄ = V ar[c̄]

Q̃ = V ar[c̃j ]
q̄τ = cov[c̄(τ), c̄]
ξτ = E[c̄(τ)|y]
ξ = E[c̄|y]

Q̃j
v = Q̃+ Σj

v

F =
∑m

i=1(Q̃
j
v)−1

(5.3)

The solution of Eq. (5.2) can be proved to be



5.1 Theory 73

ξτ = E[c̄(τ)|y] = q̄τ b

b =
[∑m

i=1(Q̃
j
v)−1yi

]
− F (Q̄−1 + F )−1

∑m
j=1(Q̃

j
v)−1yj (5.4)

If we consider Eq. (5.2), it seems that the computation of E[c̄(τ)|y] calls
for the inversion of an nm-th order matrix. However, the relationships reported
in Eq. (5.4) demonstrate that only n-th order inverses are required.

The individual curve of the j-th voxel can be computed on a arbitrary
temporal grid as follows

E[cj(τ)|y] = ξτ + q̃τ · (Q̃+ Σj
v)−1 · (yj − ξ) (5.5)

Eq. (5.5) provides the minimum variance estimate of each voxel concen-
tration curve. From it, the minimum variance estimate of each voxel residue
function can be easily obtained using the simple raw deconvolution method.

Now, the problem is estimating the covariance matrices defined in Eq. (5.3).
Starting from Eq. (2.12) the residue function can also be decomposed into a
typical curve and an individual shift

R(t) = R̄(t) + R̃(t)

c(t) = c̄(t) + c̃(t) ≈ CBF ·AIF (t) ⊗ (R̄(t) + R̃(t))
from which
c̄(t) ≈ CBF ·AIF (t) ⊗ R̄(t)

c̃(t) ≈ CBF ·AIF (t) ⊗ R̃(t)

(5.6)

Now, the R(t) stochastic model has to be introduced. R(t) is expected to
be a decreasing function and to tend to zero. However, a stochastic model whose
variance increases with time is easier to define than the contrary. Therefore, a
time transformation is performed so that the new time t̃ ranges from 0 to 1,
according to the formula t̃ = 1/(1+ t/γ). Parameter γ was set to the value that
maximizes the minimum distance between each pair of transformed sampling
instants. Noticeably, t = 0 corresponds to t̃ = 1 and t = γ to t̃ = 0.5, hence the
time axes is inverted in the new temporal space with respect to the old temporal
space. A stochastic model with a variance increasing with time in the new
temporal space corresponds to a stochastic model with a variance decreasing
with time in the old temporal space. Consequently, the time transformation
allows to simply define a stochastic model for a decreasing function tending to
zero. Both the typical residue curve and the individual shifts are modelled as
integrated Wiener processes. For instance, in the case of R̄(t), it is

{
˙̄z(t̃) = Az̄(t̃) + λ̄Bω̄(t̃)
R̄(t̃) = Cz̄(t̃)

(5.7)

where λ̄ is an unknown hyper-parameter (λ̄ estimate problem will be dis-
cussed later), ω̄ is a unit intensity white noise and

A =

(
0 1
0 0

)
B =

(
0
1

)
C =

(
0 1

)
(5.8)
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Therefore, the covariances of the residue function average curve and indi-
vidual shifts are

cov
[
R̄(s), R̄(τ)

]
= λ̄2

{
s2

2 (τ − s
3 ) s ≤ τ

τ2

2 (s− τ
3 ) s > τ

cov
[
R̃j(s), R̃j(τ)

]
= λ̃2

{
s2

2 (τ − s
3 ) s ≤ τ

τ2

2 (s− τ
3 ) s > τ

(5.9)

To obtain the c̄(t) and c̃(t) covariance from the R̄(t) and R̃(t) ones, the
discrete formulation of the convolution in Eq has to be considered. (5.6). Let
C̄ be a square matrix containing the c̄(t) covariance values, AIF the square
Toeplitz matrix containing the AIF samples for the discrete convolution and R̄
be a square matrix containing the R̄(t) covariance values. Then,

C̄ = CBF · (AIF · R̄ · AIFT ) (5.10)

A similar relationship can be derived for the process c̃(t) and R̃(t).

The R̄(t) and R̃(t) models depend on the hyper-parameters p = [λ̄, λ̃]T .
They account for the amplitude of the stochastic processes that model R̄(t)
and R̃(t). However, they are not known in the real data and have thus to be
estimated. The problem can be solved resorting to a Maximum Likelihood (ML)
estimator. The hyper-parameters are estimated by minimizing the following
objective function:

p̂ = argminpL(y; p) (5.11)

with

Ly; p = log [det (V ar[y])] + yTV ar[y]−1y (5.12)

where the likelihood component estimate can be obtained from

yTV ar[y]−1y =
∑

i=1m(yi)T di

di =
[
(Q̃i

v)−1yi − (Q̃i
v)−1(Q̄−1 + F )−1

∑m
j=1(Q̃

j
v)−1yj

]
(5.13)

and

det (V ar[y]) =

(
m∏

i=1

det(Cii)

)2

(5.14)

with Cii n× n matrices such that

Cii = chol[Aii −Di] C(i+1)i = (Q̄−Di)(C
T
ii )

−1

Cki = C(i+1)i k > i+ 1 Di+1 = Di + C(i+1)iC
T
(i+1)i

D1 = 0 C21 = Q̄(CT
11)

−1
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where chol[K] denotes the Cholesky factorization of the matrix K, Akk =
Q̄+ Q̃+ Σk

v indicates the k-yh n× n block of the main diagonal of V ar[y].

Once the hyper-parameters are estimated, they can be substituted in the
equations (5.4) and (5.5) to obtain the individual concentration curve cj(t) and
consequently, the individual residue function Rj(t). This technique is usually
called Empirical Bayes method.

Refer to [27, 59] for a more precise formulation of the PD method and for
the proposed result proofs.

The main feature of the PD method is the population approach. Performing
the deconvolution operation of several voxels at the same time allows the algo-
rithm to exploit a large amount of information. The larger the voxel number
simultaneously analyzed, the greater the available information. However, large
populations may also become a source of errors. If the analysed voxels belong
to two different populations, then a bias is introduced to the noise free concen-
tration curve. As a consequence, the estimated residue function is also biased.
The larger the voxel number simultaneously analyzed, the greater the risk that
different population are considered. Therefore, a good method to separate the
different voxel populations is necessary.

As previously described, PD allows to reconstruct the concentration curve
and the residue function of each voxel on an arbitrary time grid. Thus, PD is
not influenced by the sampling frequency. Furthermore, it can reconstruct the
residue function on a fine temporal grid, which is very useful when the whole
R(t) shape is of interest.

PD is a linear deconvolution method, with the exception of the hyper-
parameters computation step. Thus, it is computationally not much expensive.
However, the hyper-parameters estimation is the most computationally expen-
sive and crucial step in the PD method because provided results are heavily
influenced by the hyper-parameter estimate.

Another important feature of PD is that a noise statistical description (Σv)
is required. Currently, no standard method to evaluate the noise statistical de-
scription from data has been achieved, yet. Since PD results are also influenced
by the noise statistical description, a suitable model is necessary to describe
noise.

5.2 Simulation: Set up

The simulated data set was obtained starting from a known AIF, obtained
as suggested in [17, 61, 88]. The AIF concentration curve was modelled as a
gamma-variate function

CP (t) =

{
0 t < t0
A · (t− t0)

α · e−
t
β otherwise

(5.15)

where A is a proportionality constant, t0 is the contrast arrival time, α
is a measure of the inflow velocity steepness and β is the washout velocity.
The simulation parameter values are reported in table 4.2. Differently from the
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simulation set up in section 4.2 (page 33), the simulated AIF does not present
recirculation, but only the principal peak. Since the deconvolution operation
has to be performed on the data without recirculation, a suitable strategy has
to be adopted to eliminate recirculation. In this work, a fit with a Gamma-
variate function is computed for each voxel concentration curve and for each
AIF before applying the deconvolution algorithm when considering real data.
Thus, this section will not dwell on simulating the recirculation. Four different
residue functions were simulated, as suggested in [17]:

1. Exponential function R(t) = e−
t

MT T ;

2. Lorentzian function R(t) = 1

[1+(0.5π t
MT T

)2]
;

3. Gamma-variate function R(t) = t · e
−

t√
MT T ;

4. Dispersed Exponential function R(t) = e− t
3 −e− t

MT T

3

MT T
−1

;

The Exponential and the Lorentzian functions were selected to simulate the
dispersion absence in the data, whereas the Gamma-variate and the Dispersed
Exponential were selected to simulate the dispersion presence. As required by
the residue function definitions, R(t = 0) = 1 and

∫
0
R(t)t = MTT in absence of

dispersion; whereas R(t = 0) = 1 and
∫
0
R(t)t = MTT in presence of dispersion.

Tissue concentration time curves (CV OI(t)) were obtained from Eq. 2.12
considering a time range between 0 and 120 seconds. CBF was assumed to be a
stochastic Gaussian process with 22±3, 52 ml/100g/min as mean and standard
deviation, respectively. MTT was assumed to be a stochastic Gaussian process
too, with 6, 3 ± 1 sec as mean and standard deviation, respectively. Simulation
parameter settings correspond to values typically found in clinical data white
matter [88] and are reported in table 5.1.

Noisy time concentration curves were obtained adding a zero mean Gaus-
sian noise. Noise standard deviation was varied to simulate different signal to

noise ratio (SNR). SNR is defined as the ratio between the signal power (mean-
ingful information) and the noise power. Four different noise conditions were
generated: clinical data noise typical level (SNR 10), high noise level (SNR 5),
low noise level (SNR 50), virtually non noisy data (SNR 500).

PD was compared to the most applied deconvolution methods in DSC-MRI
image quantification to validate the method. In particular, the simulated data
were analyzed using the following algorithms, implemented as proposed in the
original publications

• Singular value decomposition (SVD) as in [61, 62];

• Block-circulant singular value decomposition (cSVD), as in [88]

• Population deconvolution (PD).
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Simulation Parameters
t0 10 s.
A 8
α 3 adim.
β 1.5 s.

ρ 0.0104 100g
ml

kH 0.73

Table 5.1: Parameter values in the simulated data generation.

5.3 Simulation: Results

5.3.1 Residue Function Reconstruction

The residue function was successfully estimated for each simulated voxel using
PD, SVD and cSVD methods.

The root mean square error (RMSE) between each estimated R(t) and the
true R(t) was computed to evaluate the ability of each algorithm to reconstruct
the true residue function. RMSE was computed using Eq. (4.6). Figure 5.1
reports the RMSE mean and standard deviation (SD) obtained by SVD, cSVD
and PD in each residue function model and in each noise level. The PD method
always provides the best results. Its estimated R(t)s are more similar to the true
ones than the SVD and cSVD ones. In each noise level, PD and SVD present
constant performances in reconstructing exponential, lorentzian and dispersed
exponential residue functions, whereas results get worse when considering the
gamma-variate model for the residue function. Differently, cSVD performs best
when estimating dispersed exponential R(t), whereas its results get worse when
considering the other R(t) models. As expected, SVD performs significantly
better than cSVD when considering non dispersed R(t), whereas the situation
reverses when a dispersed model is considered. Nevertheless, SVD and cSVD
provide very similar results in the dispersed models.

Some realizations of estimated residue functions at the noise level typically
present in the clinical data (SNR 10) are reported in Figure 5.2. The voxel
with the best results and the one with the worst results were chosen in each
residue function model on the basis of the distance between the true R(t) and
the estimated one. In each panel, the true R(t) is compared to the ones re-
constructed by using PD, SVD and cSVD. PD always provides R(t)s which are
closer to the true ones than those obtained by SVD and cSVD. The residue
functions estimated using PD present indeed very small and damped oscillation
if compared to the SVD and cSVD ones, providing a more reliable R(t). In the
worst cases, R(t)s given by SVD and cSVD present non reliable shapes, with
wide oscillations and negative values. Similar results were obtained considering
other noise levels (data not shown).

5.3.2 Impact on Cerebral Blood Flow Estimates

CBF was computed for each voxel as the maximum of the estimated residue
function. Remember that, when dispersion is present in the residue function,
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Figure 5.1: RMSE between the recontructed and the true residue functions.
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Figure 5.2: Examples of reconstructed residue functions at SNR 10. Red lines
represent the PD reconstructed R(t), the blue lines represent the SVD recon-
structed R(t) and yellow lines represent the cSVD results. True R(t) is reported
using black dashed lines.



80 5.3 Simulation: Results

estimated CBFs are intrinsically biased by underestimation. The percentage
error between the estimated CBF and the real CBF was computed for each
voxel. Figure 5.3 shows the percentage error mean and SD obtained using
the different deconvolution methods. Results are subdivided into the different
residue function models and noise levels. PD presents the smallest mean error
in all cases, with the exception of Lorentzian R(t) at SNRs 5 - 10 and dispersed
exponential R(t) at SNR 500. In these cases, SVD provides a smaller mean
error than PD. PD is characterized by a larger SD than SVD and cSVD. When
considering non dispersed residue functions, SVD performs significantly better
than cSVD, providing very small mean error, whereas they provide comparable
results when dispersion is present in the residue function. SVD and cSVD always
underestimate the true CBF for each residue function model. PD presents
overestimated CBF for the exponential, Lorentzian and Gamma-variated R(t),
whereas it underestimates the true CBF when a dispersed exponential R(t) has
to be reconstructed. Across the different R(t) models, the dispersed exponential
residue function is characterized by the worst mean error for each deconvolution
method, with the only exception of SNR 500, when SVD provides very good
CBF estimates.

Considering the whole simulated cases, Figures 5.4 shows the relative per-
centage of the three deconvolution methods in providing the best CBF estimate.
For each noise level, PD provides the best CBF estimates in the majority of the
cases, from 58% at SNR 5 to 79% at SNR 50. SVD is the second best method,
but its percentage results are less than half of the PD ones.

Figure 5.5 compares the true CBF with the ones obtained using PD, SVD
and cSVD at the typical noise level present in the clinical data (SNR 10).
As expected, SVD and cSVD always underestimate the true CBF; moreover,
the larger the true CBF, the larger the bias in the estimates. Differently, PD
overestimates the small CBF values, whereas it underestimates the large ones.
Nevertheless, considering the mean true CBF value (i.e. 22 ml/100g/min) PD
estimates are closer to the true CBF than those provided by SVD and cSVD.
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Figure 5.3: Estimated CBF percentage error.
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Figure 5.4: Method providing the best CBF estimate. For each method, the
percentage of cases in which it provides the best CBF estimate is reported at
each noise level.
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Figure 5.5: PD (red dots), SVD (blue dots) and cSVD (yellow dots) CBF esti-
mates (vertical axes) versus true CBF (horizontal axes) at SNR 10 for the four
different R(t) models.
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5.4 Simulation: Discussion

A novel deconvolution method (PD) has been proposed and compared with
the most popular deconvolution approaches for DSC-MRI image quantification:
SVD and cSVD. The comparison has been made on a large simulated data
set, including 4 different residue function models and 4 different noise levels.
Summarizing, 1600 different situations were considered (100 CBF and MTT
instances × 4 R(t) models × 4 SNR). Simulated data analysis was performed
to validate the PD method and evaluate its performances.

PD has been shown to well characterize the residue function and accurately
estimate the CBF, both in presence and absence of dispersion. PD performs
better than SVD and cSVD, providing residue function estimates less biased by
oscillation. Therefore, PD results are more physiologic and reliable.

SVD and cSVD provide unphysiological residue functions and fail to char-
acterize the initial part of R(t) in presence of dispersion. Their estimates present
oscillations and negative values and appear to be more sensitive to noise level
than PD. As noise increases, oscillations become wider and not damped. Fur-
thermore, one of the most important open issues in SVD and cSVD method
is the threshold value set up. As reported in literature [46, 56], it is a criti-
cal step in both algorithms: small thresholds lead to good CBF estimates, but
extremely noisy R(t) curves, whereas larger ones provide smoother R(t), but
heavily underestimate the CBF.

PD, SVD and cSVD ability to reconstruct the true residue function was
assessed by computing the root mean square error (RMSE). PD provides the
best RMSE index in all cases and the best, or at least a comparable, standard
deviation. Thus, PD provides a better estimation of the peak with respect to
the other methods.

PD also provides the best CBF estimates in most cases. Considering the
different noise level, PD is characterized by the smallest percentage error in at
least 58% of the cases. At the noise level commonly present in clinical data, PD
provides the best CBF estimates in 67% of the cases, SVD in 25% and cSVD
in 8%. SVD and cSVD always underestimate the true CBF values and bias
increases with the true CBF values. This means that tissues with high blood
flow (i.e. gray matter) will be more biased than the other ones. Differently, PD
estimates CBF in all the voxels of the same tissue at the same time. Estimate
percentage error is very close to zero for the CBF population main value, smaller
CBF values are usually overestimated and larger ones are underestimated. In
presence of dispersion, the underestimation problem gets worse: PD underesti-
mates also the population main value, but the bias is smaller than in SVD and
cSVD estimates.

However, the more concentrated the population CBF values, the smaller
the CBF estimate percentage error. Therefore, the impact of the over/ under-
estimation problem can be reduced by analyzing more populations. The most
appealing PD feature is the population approach. Estimating a large number of
voxels at the same time increases the amount of available information, thus re-
ducing the noise effects. The hypothesis that similar concentration time curves
present similar CBF values is not so binding, but a robust method to divide all
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voxels in the different populations is needed. Moreover, PD is a linear deconvo-
lution method, as are SVD and cSVD, so it is not computationally expensive.
An other important PD feature is that it does not require any threshold, as in
SVD and cSVD. The hyper parameters describing the stochastic process that
model the residue function are estimated in the algorithm. The price is the in-
troduction of a non linear step before applying the estimating linear algorithm.

Summarizing, a novel deconvolution method has been proposed and vali-
dated on a simulated data set. PD provides more physiological and accurate
residue function estimates than SVD and cSVD. Therefore, it gives higher qual-
ity information than the most popular methods for DSC-MRI image quantifica-
tion. In the next sections, PD will be tested on a clinical data set and compared
to SVD, cSVD and a deconvolution method recently proposed in this researching
group, nonlinear stochastic regularization (NSR).
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5.5 Clinical Data: Analysis

The clinical data set is the same proposed in section 4.5 (page 52). In summary,
it includes 18 different clinical cases (11 subjects: 10 pre-surgery examinationss
and 8 post-surgery examination). Each examination contains 12 slices. A global
AIF was computed for each examination by using the method presented in
chapter 4. Furthermore, a Gamma-variate fitting procedure was performed on
the arterial and on each voxel concentration curve to eliminate the presence of
recirculation.

CBV maps were calculated pixel-by-pixel in each slice for each clinical case
according to Eq. (2.4). The tissue brain density ρ and the proportionality
constant kH = (1−Hart)/(1−Hcap) were fixed to the commonly used values of
1.04 g/ml and 0.73, respectively. Summarizing, 216 CBV maps were generated
(i.e. 18 examinations × 12 slices).

In each slice, two large ROIs were manually drawn by a trained physician
on the left and on the right hemisphere. The ROIs are delimited by the inter-
hemispheric scissure and by the cerebral external border. Each ROI is drawn
to contain only white and gray matter. Thus, if other structures (e.g, the basal
ganglia) are visible, they are not included in the ROIs. In total, 432 ROIs were
generated (i.e. 18 examinations × 12 slices × 2 hemispheres). In each ROI, CBV
mean was estimated and the ratio between the right and the left hemisphere
was computed to evaluate the differences in blood volume distribution. CBV
ratio mean and SD were computed in all 12 slices for each subject.

According to Eq. (2.12), CBF is defined as the maximum of the CBF ·R(t)
function obtained by a deconvolution operation. CBF values were computed
pixel-by-pixel using five different deconvolution methods: SVD, cSVD, NSR,
dispersion corrected NSR (dcNSR) and PD. In total, 1080 CBF maps were
generated (i.e. 18 examinations × 12 slices × 5 deconvolution methods).

Since the PD algorithm is expected to analyse only a voxel population
at time, a preliminary step is required before performing the deconvolution to
divide the different voxel populations. Voxels are subdivided in several pop-
ulations by mean of a clustering approach. A K-means clustering algorithm
subdivides all the voxels of the same slice into 10 clusters on the basis of the
Euclidean distance among all voxel concentration curves. Each cluster is as-
sumed to contain a unimodal voxel population, thus all voxels in each cluster
are analyzed at the same time using the PD algorithm. Clusters containing less
than 25 elements were discarded because the population is too poor to allow an
accurate residue function estimate.

As previously pointed out, a statistical description of the noise (Σv) is
required to perform PD. The noise is assumed to be Gaussian, with zero mean
and constant variance. (Σv) is computed separately for each cluster because of
PD sensitivity to it. Firstly, the population mean signal is computed and it is
subtracted from each voxel signal. Then, the obtained signal is assumed to be
a noise realization and the statistical analysis is performed. Noticeably, only
the samples acquired before the tracer injection are considered in this step, in
order to exclude the tracer arrival effects in the noise variance matrix estimate.
Moreover, the variance of the peak sample and of the surrounding ones is reduced
by a factor of 10 to increase the weight of the peak over the other samples.
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The first PD algorithm step is the estimate of the hyper parameters char-
acterizing the stochastic processes that model the residue function. Since it is
the most computationally expensive step of the method, an ad hoc strategy was
adopted to reduce the computation costs. If the considered population contains
more than 100 elements, then the hyper parameter estimate step is performed
only on a subpopulation of 100 randomly chosen elements.

Since a gold standard for the CBF absolute quantification has not been
achieved yet, relative CBF values were considered and ratios between different
ROIs were computed to compare the different deconvolution algorithms. As
previously described for CBV, a ROI was drawn in the both hemispheres for
each slice. CBF mean was computed on each ROI and the ratio between the
right and the left hemisphere was also evaluated. Then, CBF ratio mean and
SD was computed across all 12 slices for each deconvolution method.

Moreover, CBF percentage SD was computed in each ROI as

CBFSD% = 100 ·
SDCBF

meanCBF
(5.16)

where meanCBF and SDCBF are the CBF mean and SD in the ROI, re-
spectively. CBFSD% was computed to evaluate the ability of each deconvolution
algorithm to provide reliable CBF estimates.

MTT was obtained as the ratio between CBV and CBF, according to the
Central Volume theorem (Eq. (2.11)). Absolute MTT values were calculated
pixel-by-pixel using the CBF values provided by SVD, cSVD, NSR, dcNSR and
PD. In total, 1080 MTT maps were generated (i.e. 18 examinations × 12 slices
× 5 deconvolution methods). Noticeably, absolute MTT values were obtained
starting from relative CBV (i.e. without accounting for the constant ρ and kH)
and CBF values.

As described previously for CBF and CBV analysis, MTT mean was com-
puted on each ROI and the ratio between the right and the left hemisphere
was obtained. Then, MTT ratio mean and SD was computed on all 12 slices.
Moreover, MTT percentage SD was computed in each ROI as

MTTSD% = 100 ·
SDMTT

meanMTT
(5.17)

where meanMTT and SDMTT are the MTT mean and SD in the ROI,
respectively.

CBF and MTT laterality indices were computed in each slice according to
Eq. (4.7), here reported

CBFLI = CBFDX−CBFSX

CBFDX

MTTLI = MTTDX−MTTSX

MTTDX

where CBFDX , CBFSX , MTTDX and MTTSX represent the CBF and
MTT mean values in the right and left ROIs. CBF and MTT laterality indices
allow to easily detect the brain region which presents high differences in CBF and
MTT distribution. Laterality indices can be used to identify pathologic regions,
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Figure 5.6: CBV maps obtained for subject n◦4 before surgery.

since the stenosis disease is characterized by a low CBF and a high MTT in
the pathologic area compared to the healthy one. Here, laterality indices will
be used to evaluate the ability of the different deconvolution methods to detect
pathologic cases.

5.6 Clinical Data: Results

5.6.1 Cerebral Blood Volume maps

Table 5.2 reports the mean and SD of CBV ratios between the right and the
left hemisphere in all slices for each subject, both in the pre-surgery and post-
surgery examination. In subjects n◦ 1 - 2 - 3 - 5 - 6, the post-surgery CBV ratio
is closer to the unity than the pre-surgery one, suggesting a recovery from the
disease after the treatment. SD is smaller in the post-surgery examination than
in the pre-surgery one for all subjects, too, with the exception of subject n◦ 7.
This remarks the improvement in the subject clinical state after the surgery.
Subject n◦ 7 presents also an inversion of the blood volume distribution after
the treatment: initial CBV ratio of 0.96 becomes 1.22. This indicates that
shun introduction has modified the blood volume distribution across the brain.
Subject n◦ 9 shows an equal CBV ratio and a smaller SD before and after
surgery, suggesting that the treatment had not the desired effects.

Noticeably, subject n◦ 4 present a very high CBV ratio, suggesting a high
impairment in the right hemisphere, the pathologic one. Stenosis thus causes
an accumulation of blood in the pathologic tissues, suggesting that the disease
has probably lead to a blood-brain barrier disruption. Figure 5.6 shows the high
asymmetry in the blood volume distribution in subject n◦ 4. The left hemisphere
(i.e. the healthy one) appears shadowed in all reported slices. According to the
radiologic convention, the left hemisphere is located in the right side of the
figure, whereas the right hemisphere is located in the left side.

In figures 5.7 - 5.8 CBV maps obtained for subject n◦ 6 before surgery and
n◦ 9 after surgery are presented. CBV values are expressed in ml/g percentage,
as commonly done in literature. They are comparable to the ones reported in
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other works, but still outside the ideal range because of the DSC-MRI absolute
quantification problem.

CBV Dx/Sx Pre Surgery Post Surgery
Subject mean SD mean SD

1 1,28 0,31 1,04 0,29
2 1,18 0,29 1,03 0,21
3 1,07 0,40 0,86 0,23
4 1,67 0,58 # #
5 0,94 0,33 1,00 0,29
6 1,17 0,36 1,10 0,33
7 0,96 0,26 1,22 0,38
8 1,05 0,33 # #
9 1,08 0,45 1,08 0,31
10 # # 1,10 0,22
11 1,14 0,16 # #

Table 5.2: Mean CBV ratios and standard deviations (SD) between the right
and the left hemisphere before and after surgery.
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Figure 5.7: CBV maps obtained for subject n◦ 6 before surgery.
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Figure 5.8: CBV maps obtained for subject n◦ 9 after surgery.
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5.6.2 Cerebral Blood Flow maps

Tables 5.3 show the mean CBF ratio between the right and the left hemisphere
obtained by using SVD, cSVD, NSR, dispersion corrected NSR (dcNSR) (i.e.
CBF was computed on the non dispersed residue function) and PD in all subject
before surgery. Mean CBF ratio was computed on all 12 slices for each examina-
tion. Stenosis disease commonly generates differences in CBF distribution, thus
the CBF ratio can be used to investigate the subject clinical state. For instance,
the CBF ratio allows to locate the disease. A CBF ratio greater than 1 indicates
that the CBF is larger in the right hemisphere than in the left one. Therefore,
it suggests that the left hemisphere is affected by the pathology. Vice versa, a
CBF ratio smaller than 1 suggests a larger CBF in the left hemisphere than in
the right one, thus locating the pathology in the right hemisphere. Moreover,
the CBF ratio allows to quantify the disease degree. The further the CBF ratio
from unity, the more serious the pathology.

CBF Dx/Sx - Pre surgery
SVD cSVD NSR dcNSR PD

Sub. mean SD mean SD mean SD mean SD mean SD
1 1,08 0,21 1,07 0,19 0,73 0,23 1,27 0,47 1,01 0,12
2 1,02 0,23 0,95 0,18 1,29 0,59 1,26 0,41 1,01 0,24
3 1,20 0,20 1,13 0,14 1,34 0,50 1,83 1,07 1,27 0,27
4 1,09 0,25 1,11 0,25 0,77 0,29 0,70 0,33 1,03 0,29
5 1,03 0,19 1,00 0,14 1,00 0,24 0,91 0,37 1,02 0,22
6 0,96 0,11 1,02 0,10 0,71 0,19 0,81 0,20 0,82 0,16
7 0,93 0,08 1,01 0,07 1,22 0,71 0,81 0,27 0,94 0,12
8 1,46 0,27 1,33 0,22 2,01 1,27 2,35 1,54 1,77 0,70
9 0,97 0,15 1,06 0,10 0,76 0,29 0,80 0,30 0,93 0,17
10 # # # # # # # # # #
11 1,02 0,18 1,00 0,14 1,17 0,60 1,32 0,56 0,99 0,22

Table 5.3: Mean CBF ratios and standard deviations (SD) between the right
and the left hemisphere before surgery.

In all cases, NSR provides the highest difference between the right and left
hemisphere, thus suggesting a more serious pathologic state than in the other
deconvolution methods. In six cases (i.e. subjects n◦ 1 - 3 - 4 - 5 - 8 - 11),
the CBF distribution difference obtained considering the dispersion corrected
NSR is larger than the one obtained considering the dispersed residue function.
cSVD CBF ratio is the closest to the unity in six cases (i.e. subjects n◦ 3 - 5 -
6 - 7 - 8 - 11), thus making the pathology identification more difficult than in
other methods. Subject n◦ 8 presents the largest difference from the unity in the
CBF ratio: this suggests the presence of a high impairment in the pathological
hemisphere.

For 7 patients, the DSC-MRI examination was repeated after the surgery.
The mean CBF ratio and SD of the post treatment examinations are reported in
table 5.4. NSR still provides the largest difference between the two hemispheres
in each subject. In most cases, post surgery CBF ratio is closer to the unity
than the pre surgery one, suggesting a recovery from the disease. Only subject
n◦ 5 shows a significant deterioration of the CBF distribution after the shunt
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CBF Dx/Sx - Post surgery
SVD cSVD NSR dcNSR PD

Sub. mean SD mean SD mean SD mean SD mean SD
1 1,04 0,12 1,07 0,10 1,21 0,47 1,42 0,80 1,07 0,17
2 0,97 0,14 1,01 0,11 1,48 0,87 1,04 0,61 1,00 0,19
3 1,11 0,19 1,12 0,17 1,51 0,74 1,33 0,90 1,12 0,25
4 # # # # # # # # # #
5 1,13 0,18 1,13 0,19 1,23 0,26 1,36 0,70 1,27 0,35
6 1,05 0,12 1,02 0,08 1,17 0,28 1,13 0,27 1,08 0,14
7 0,92 0,26 0,95 0,25 0,80 0,33 0,84 0,40 0,91 0,35
8 # # # # # # # # # #
9 1,01 0,08 1,04 0,07 0,89 0,21 1,05 0,41 0,98 0,11
10 1,25 0,28 1,15 0,25 1,95 0,97 1,73 1,13 1,60 0,54
11 # # # # # # # # # #

Table 5.4: Mean CBF ratios and standard deviations (SD) between the right
and the left hemisphere after surgery.

introduction, remarked by all methods. In some cases, a CBF ratio inversion
is recorded in the post surgery examination compared to the pre surgery one,
suggesting that the treatment has modified the blood flow across the brain.

However, the different deconvolution methods do not lead to the same diag-
nosis. For instance, in subject n◦ 4 SVD, cSVD and PD indicate a higher blood
flow in the right hemisphere than in the left one, whereas NSR suggests a lower
blood flow in the right hemisphere. Moreover, in subjects n◦ 1 and 7 NSR and
dcNSR provide dissonant CBF ratios between the two hemispheres. In subject
n◦ 1 NSR provides a CBF ratio of 0.73, whereas dcNSR records 1.27. In other
words, NSR suggests that the left hemisphere has a higher CBF than the right
one, whereas dcNSR leads to the opposite conclusion. In subject n◦ 7 a simi-
lar situation is recorded: NSR suggests a larger CBF in the right hemisphere
(mean CBF ratio is 1.22), whereas dcNSR indicates that the left hemisphere
is characterized by a larger CBF (mean CBF ratio is 0.81). Therefore, results
provided in table 5.3 and 5.4 are to be carefully examined because they are
obtained averaging all 12 slices, thus representing the global blood flow state.
Very low CBF values located in a small brain area can almost disappear when
considering the whole brain CBF ratio. Furthermore, very high differences from
the unity of the mean CBF ratio can appear unphysiological if considering the
collateral circulation presence.

The SD values reported in table 5.3 and 5.4 indicate that the CBF ratio
across slices is not constant in the same subject. NSR and dcNSR present the
largest SD in each subject, suggesting that the CBF ratio presents a large varia-
tion across slices. This confirms that particular care is needed when considering
global hemodynamic parameters. Therefore, a way to examine CBF differences
in small brain areas, such as the laterality indices, is advisable.

Table 5.5 shows mean percentage SD obtained by SVD, cSVD, NSR, dc-
NSR and PD in the right and left hemisphere in each subject before surgery.
NSR and dcNSR show the highest values in all cases, suggesting a quite noisy
characterization of CBF maps. As expected, SVD and cSVD always present the



94 5.6 Clinical Data: Results

lowest percentage SD values, since they commonly provide uniform CBF maps.
PD shows SD values higher than SVD and cSVD ones and lower than NSR and
dcNSR ones. Hence, PD provides CBF maps with a higher contrast level than
SVD and cSVD, but not too high as in NSR maps.

CBF SD - Pre surgery
SVD cSVD NSR dcNSR PD

Subject Dx Sx Dx Sx Dx Sx Dx Sx Dx Sx
1 70 68 69 69 237 274 496 456 111 97
2 83 83 70 71 329 254 381 259 120 122
3 103 88 85 78 185 288 511 469 159 147
4 73 79 68 68 128 146 327 437 97 101
5 99 106 88 91 173 218 270 353 125 132
6 75 70 69 67 136 104 313 317 119 106
7 90 83 81 71 505 314 632 858 151 144
8 79 90 74 77 243 359 422 591 123 147
9 86 89 75 79 204 303 502 486 122 114
10 # # # # # # # # # #
11 86 91 72 78 669 574 645 658 111 111

Table 5.5: Mean percentage standard deviation (SD) of CBF obtained by SVD,
cSVD, NSR, dcNSR, PD in the left and right hemisphere of each subject before
surgery.

Results do not change in the post-surgery situation. Figure 5.6shows mean
percentage SD obtained by SVD, cSVD, NSR, dcNSR and PD in the right and
left hemisphere in each subject after surgery. NSR and dcNSR show the highest
values in all the considered subjects; PD presents higher values than SVD and
cSVD ones but lower than NSR and dcNSR ones.

CBF SD - Post surgery
SVD cSVD NSR dcNSR PD

Subject Dx Sx Dx Sx Dx Sx Dx Sx Dx Sx
1 89 75 72 60 552 310 524 377 109 102
2 98 94 74 70 871 569 773 825 142 141
3 104 97 82 72 534 562 622 753 159 163
4 # # # # # # # # # #
5 83 85 83 83 111 144 450 463 102 109
6 89 81 73 66 197 183 287 313 125 115
7 78 98 72 98 138 114 268 278 115 103
8 # # # # # # # # # #
9 82 85 75 81 234 233 322 334 90 93
10 81 88 76 82 368 534 392 596 92 92
11 # # # # # # # # # #

Table 5.6: Mean percentage standard deviation (SD) of CBF obtained by SVD,
cSVD, NSR, dcNSR, PD in the left and right hemisphere of each subject after
surgery.

Particular slices have been selected in each subject to further investigate
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the performances of the deconvolution methods. CBF maps obtained by SVD,
cSVD, NSR, dcNSR and PD in these slices are presented in next pages (Figures
from 5.9 to 5.26). All methods provide only relative CBF values; therefore, all
CBF maps were normalized to the same pixel to allow a direct comparison across
the methods. The pixel selection has been manually performed by considering
the white matter in the non pathologic hemisphere. As expected, PD maps are
comparable to those provided by SVD and cSVD, but they present a higher
contrast level, thus emphasizing the differences in the CBF distribution. NSR
and dcNSR present even higher contrasted CBF maps. Sometimes, NSR and
dcNSR allow to easily detect disease affected areas because of the very high
contrast level. On the other hand, they sometimes provide very noisy maps,
which are difficult to analyse.
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Figure 5.9: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in subject
n◦ 1 before surgery. Relative CBF values are normalized to the same reference
region in each map.
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Figure 5.10: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 1 after surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.11: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 2 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.12: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 2 after surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.13: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 3 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.14: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 3 after surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.15: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 4 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.16: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 5 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.17: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 5 after surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.18: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 6 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.19: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 6 after surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.20: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 7 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.21: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 7 after surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.22: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 8 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.23: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 9 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.24: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 9 after surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.25: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 10 after surgery. Relative CBF values are normalized to the same
reference region in each map.
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Figure 5.26: CBF maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 11 before surgery. Relative CBF values are normalized to the same
reference region in each map.
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5.6.3 Mean Transit Time maps

Table 5.7 shows mean MTT ratios and SD between the right and left hemisphere
obtained in each subject by using SVD, cSVD, NSR, dcNSR and PD. Mean
ratios are obtained averaging all 12 slices of each examination. As for CBF,
mean MTT ratios can be used to investigate the stenosis disease. Pathologic
brain areas are usually characterized by a slow blood flow, thus obtaining a
larger mean transit time than normal one. MTT ratios larger than one indicate
that MTT in the right hemisphere is larger than in the left one, thus suggesting
that pathology affects the right brain area. Vice versa, if MTT is larger in the
left hemisphere than in the right one, MTT ratio becomes smaller than one,
thus indicating that the stenosis is located in the left hemisphere. Moreover,
the further the MTT ratio from the unity, the more serious the pathology.
Therefore, MTT ratios can be used to locate and assess the disease.

MTT Dx/Sx - Pre surgery
SVD cSVD NSR dcNSR PD

Sub. mean SD mean SD mean SD mean SD mean SD
1 1,01 0,04 1,02 0,07 1,19 0,16 1,20 0,21 1,11 0,14
2 0,92 0,09 0,97 0,09 0,87 0,14 0,91 0,15 0,93 0,13
3 0,96 0,07 0,99 0,06 0,90 0,10 0,91 0,09 0,94 0,05
4 1,69 0,24 1,69 0,25 1,99 0,46 1,66 0,27 1,85 0,27
5 0,94 0,08 0,97 0,06 0,88 0,15 0,90 0,12 0,90 0,10
6 1,18 0,06 1,06 0,04 1,72 0,37 1,77 0,29 1,43 0,16
7 1,06 0,06 1,00 0,04 1,08 0,07 1,10 0,11 1,07 0,07
8 0,87 0,16 0,97 0,08 0,70 0,31 0,67 0,27 0,74 0,15
9 1,08 0,12 1,02 0,04 1,23 0,23 1,29 0,27 1,16 0,14
10 # # # # # # # # # #
11 1,01 0,05 1,01 0,05 1,00 0,07 0,98 0,07 1,07 0,11

Table 5.7: Mean MTT ratios and standard deviations (SD) between the right
and left hemisphere before surgery.

In all cases, with the exception of subject n◦ 11, NSR and dcNSR provide
the largest mean MTT ratio estimates, thus suggesting a more serious pathologic
state than the other deconvolution methods. In 5 cases (i.e. subjects n◦ 1 - 6 -
7 - 8 - 9), dcNSR MTT ratio is larger than the NSR one, whereas in subjects n◦

2 - 3 - 4 - 5 the NSR presents the largest MTT ratio. PD presents the largest
MTT ratio only in subject n◦ 11, but in this subject all methods result in a very
close to the unity MTT ratio. As expected, cSVD MTT ratios are the closest
to the unity across all methods, thus making the disease detection difficult.
However, differences in MTT distribution are commonly smaller than differences
in CBF distribution, for all deconvolution methods. This is not unexpected
because of the brain hemodynamic behaviour in the pathologic state. When
stenosis reduces the lumen of a large vessel feeding a brain area, changes happen
in the local hemodynamic. Commonly, CBV increases and CBF decreases to
ensure the hematic support to the pathologic area. Therefore, MTT usually
presents significant variations between healthy and pathologic areas only in
peripheral or heavily impaired areas. For instance, subject n◦ 8 presents very
high differences in CBF distribution between the right and left hemisphere (see
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table 5.3), whereas difference in MTT values is less marked. Another example
is represented by subject n◦ 6. It shows significant differences from the unity
both in mean MTT and CBF ratio (table 5.3), suggesting a high impairment in
the right hemisphere. Noticeably, subject n◦ 4 is characterized by the highest
difference in MTT distribution between the two hemispheres (see also MTT
maps in Figure 5.33). However, particular attention is necessary in interpreting
results because it can be affected by BBB disruption, as reported in the CBV
maps results.

The SD values reported in table 5.7 confirm that MTT ratios remain quite
constant across the slices. NSR and dcNSR present the largest SD values in all
cases with the exception of subject n◦ 11, in which PD is characterized by the
largest SD value.

MTT Dx/Sx - Post surgery
SVD cSVD NSR dcNSR PD

Sub. mean SD mean SD mean SD mean SD mean SD
1 1,03 0,05 0,99 0,04 1,03 0,08 1,01 0,13 1,02 0,08
2 1,04 0,06 0,99 0,04 1,04 0,05 1,02 0,05 1,04 0,06
3 1,00 0,10 0,98 0,09 0,97 0,14 1,05 0,20 1,04 0,14
4 # # # # # # # # # #
5 1,01 0,13 1,02 0,09 1,03 0,36 0,96 0,30 0,96 0,17
6 0,95 0,09 0,97 0,10 0,97 0,17 0,95 0,18 0,96 0,08
7 1,07 0,18 1,01 0,10 1,35 0,53 1,32 0,55 1,14 0,27
8 # # # # # # # # # #
9 1,01 0,04 0,99 0,05 1,10 0,09 1,03 0,16 1,02 0,08
10 0,89 0,08 0,99 0,04 0,76 0,18 0,77 0,20 0,78 0,12
11 # # # # # # # # # #

Table 5.8: Mean MTT ratios and standard deviations (SD) between the right
and left hemisphere after surgery.

Table 5.8 shows the mean MTT ratios and SD between the right and left
hemisphere in each subject after the surgery treatment. In almost all cases,
MTT ratio after surgery is closer to the unity than before, suggesting a recovery
in hemodynamic. Only subject n◦ 7 presents a significant MTT deterioration
after surgery, suggesting that the shunt introduction has modified the blood
dynamic. As in pre-surgery results, NSR and dcNSR usually provide the furthest
from the unity MTT ratios. However, all methods provide comparable results
in most cases. NSR and dcNSR are characterized by the largest SD values, but
they also present a reduction in SD values before and after surgery. cSVD still
presents very close to one MTT ratios and the smallest SD values.

Table 5.9 reports the mean percentage SD obtained by SVD, cSVD, NSR,
dcNSR and PD across all slices in each subject before surgery. NSR and dcNSR
show the largest values in all cases, suggesting that they provide noisy MTT
maps. As expected, SVD and cSVD present the smallest SD values, thus in-
dicating that their MTT maps are very uniform and with low contrast. As in
the CBF percentage SD, PD shows values higher than SVD and cSVD, but also
smaller than NSR and dcNSR.

Results do not change in the post-surgery situation (table 5.10). In each
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MTT SD - Pre surgery
SVD cSVD NSR dcNSR PD

Subject Dx Sx Dx Sx Dx Sx Dx Sx Dx Sx
1 48 46 43 44 132 152 147 162 61 60
2 54 53 57 56 96 88 117 119 55 55
3 46 44 51 47 67 63 80 76 45 42
4 46 48 46 50 56 71 73 86 52 55
5 75 78 62 65 163 157 184 187 93 94
6 47 33 36 30 153 175 157 133 65 77
7 70 72 67 65 101 105 130 133 97 99
8 54 53 50 49 151 125 155 142 76 69
9 42 49 44 47 73 90 91 116 53 67
10 # # # # # # # # # #
11 67 65 41 40 89 95 122 128 97 97

Table 5.9: Mean percentage standard deviation (SD) of MTT obtained by SVD,
cSVD, NSR, dcNSR, PD in the left and right hemisphere of each subject before
surgery.

MTT SD - Post surgery
SVD cSVD NSR dcNSR PD

Subject Dx Sx Dx Sx Dx Sx Dx Sx Dx Sx
1 70 70 61 60 82 85 113 116 79 78
2 64 67 55 56 64 68 99 100 66 67
3 90 83 73 70 116 106 148 135 122 120
4 # # # # # # # # # #
5 78 71 66 60 273 251 301 290 164 144
6 62 69 58 63 157 149 167 175 64 66
7 72 73 56 57 206 234 202 239 84 95
8 # # # # # # # # # #
9 58 63 54 55 127 139 159 177 65 71
10 64 66 49 50 103 86 146 127 80 72
11 # # # # # # # # # #

Table 5.10: Mean percentage standard deviation (SD) of MTT obtained by
SVD, cSVD, NSR, dcNSR, PD in the left and right hemisphere of each subject
after surgery.
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subject, NSR and dcNSR present the largest SD values, whereas SVD and cSVD
provide the smallest one. PD percentage SD are smaller than NSR and dcNSR
ones, but larger than the SVD and cSVD ones.

Particular slices have been selected in each subject to further investigate
the performances of the deconvolution methods. MTT maps obtained by SVD,
cSVD, NSR, dcNSR and PD in these slices are presented in next pages (Figures
from 5.27 to 5.44). Absolute MTT maps are expressed in seconds. As for
the CBF maps, PD MTT maps are comparable to those provided by SVD and
cSVD, but they present a higher contrast level, thus emphasizing the differences
in the MTT distribution. NSR and dcNSR present even higher contrasted MTT
maps. On the one hand, NSR and dcNSR allow to easily detect disease affected
areas. On the other hand, they sometimes provide very noisy maps, which are
difficult to analyse.
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Figure 5.27: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 1 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.28: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 1 after surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.29: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 2 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.30: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 2 after surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.31: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 3 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.32: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 3 after surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.33: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 4 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.34: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 5 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.35: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 5 after surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.36: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 6 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.37: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 6 after surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.38: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 7 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.39: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 7 after surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.40: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 8 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.41: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 9 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.42: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 9 after surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.43: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 10 after surgery. Relative MTT values are normalized to the same
reference region in each map.
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Figure 5.44: MTT maps obtained by SVD, cSVD, NSR, dcNSR and PD in
subject n◦ 11 before surgery. Relative MTT values are normalized to the same
reference region in each map.
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5.6.4 Laterality Indices

MTT and CBF laterality indices were computed for all subjects, before and after
surgery. They are a graphical representation of the CBF and MTT distribution
across all slices. Thus, they allow an easy and immediate interpretation of the
information provided by CBF and MTT maps. Furthermore, they can be used to
monitor the recovery after the surgical treatment. As expected, MTT laterality
indices are commonly smaller than CBF ones. As discussed previously, MTT
distribution differences are usually smaller than the CBF ones because of the
compensation mechanisms in cerebral hemodynamic. However, MTT laterality
indices increase the clinical information in DSC-MRI image quantification, thus
leading to a more accurate disease detection and characterization.

As example of the laterality indices interpretation consider a patient with a
stenosis in a carotid. The disease reduces the hematic support in the pathologic
hemisphere: this is revealed by lower CBF values and higher MTT values than
healthy hemisphere ones. Positive CBF laterality index indicates a higher mean
CBF value in the right hemisphere than in the left one, suggesting a patho-
logic condition in the left hemisphere. Likewise, negative CBF laterality index
points out a difference in CBF values in favour of the left hemisphere. Oppo-
site remarks have to be done considering the MTT laterality index. Pathologic
tissue is characterized by a slow blood flow, thus by a higher MTT than the
healthy hemisphere. Therefore, positive MTT laterality index indicates higher
MTT values in the right hemisphere than in the left one, thus suggesting that
the right hemisphere is the pathologic one. Negative MTT laterality index in-
dicates a higher MTT in the left hemisphere than in the right and that the
disease is localized in the left hemisphere. Moreover, high absolute values in
the laterality indices indicate a prominent hemodynamic difference between the
two hemispheres, whereas small values characterize a healthy condition. There-
fore, laterality indices can be used to evaluate both the disease severity and its
localization.

NSR and dcNSR commonly provide very large laterality indices, which are
usually larger than those obtained by SVD, cSVD and PD. Wide laterality
indices emphasize anomalies in CBF and MTT distribution, thus allowing to
easily detect the pathologic brain areas. However, NSR and dcNSR laterality
indices are sometimes too large and loose any physiological meaning. Moreover,
NSR and dcNSR sometimes provide dissonant results. This can be due to the
high contrast level in NSR and dcNSR CBF and MTT maps; low variations
in CBF and MTT distribution are highlighted, whereas high variations lead to
very noisy maps.

SVD and cSVD laterality indices are usually very close to zero, thus con-
cealing the differences between the left and right hemisphere. Moreover, results
do not change after the treatment; rather, they sometimes get worse in the
post-surgery examination.

PD laterality indices are usually smaller than the NSR and dcNSR ones, but
also larger than the SVD and cSVD ones. They do not present unphysiologically
high values as in NSR and dcNSR results, but they still underline differences in
CBF and MTT distribution between the two hemispheres. Moreover, PD usu-
ally presents significant changes in the post-surgery results, allowing to evaluate
the improvement in the patient clinical state.
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Figures 5.45-5.48 show the CBF and MTT laterality indices obtained by
SVD, cSVD, NSR, dcNSR and PD in subjects n◦ 3 and 9, before and after
surgery. As pointed out previously, cSVD and SVD laterality indices are usually
close to 0, whereas NSR and dcNSR show the largest ones. Furthermore, NSR
and dcNSR sometimes provides very high results, without any physiological
meaning (e.g. Figure 5.46 slices n◦ 3 - 10 - 11 - 12).

In subject n◦ 3, laterality indices detect a pathological area in slice n◦ 9
(Figure 5.45). CBF laterality indices also indicate an irregular flow distribution
in slices n◦ 2 - 6 - 8 - 10, but they are not supported by the MTT laterality
indices. On the one hand, differences in slices n◦ 8 - 10 confirm the pathological
state in slice n◦ 9. On the other hand, the integration between CBF and MTT
laterality indices allow to ignore false positive results obtained in slices n◦ 2 -
6. In the post surgery examination (Figure 5.46) an improvement in CBF and
MTT laterality indices is pointed out by all methods.

Similar results are obtained in subject n◦ 9. The pre-surgery examination
confirms the physician diagnosis, whereas an improvement is shown in the post-
surgery one. Considering the slice n◦ 7 in Figure 5.47, all methods detect
the anomaly in the CBF and MTT distribution, but they do not provide the
same results. On the one hand, NSR and dcNSR report CBF laterality index
larger than 1, thus quite unreliable. On the other hand, the disease is not very
emphasized by SVD and cSVD. PD results are smaller than the NSR and dcNSR
ones and larger than the SVD and cSVD ones, thus providing a good emphasis
without loosing the laterality index physiological meaning.
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Figure 5.45: CBF and MTT laterality indices obtained in subject n◦ 3 before
surgery.
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Figure 5.46: CBF and MTT laterality indices obtained in subject n◦ 3 after
surgery.
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Figure 5.47: CBF and MTT laterality indices obtained in subject n◦ 9 before
surgery.
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Figure 5.48: CBF and MTT laterality indices obtained in subject n◦ 9 after
surgery.
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5.7 Clinical Data: Discussion

SVD, cSVD, NSR, dcNSR and PD have been compared on a clinical DSR-MRI
image data set. The data set includes 11 patients with severe atherosclerotic
unilateral stenosis of the internal carotid artery. For 8 of the considered subjects,
examination was repeated 6 months after the surgical introduction of a shunt
to eliminate or reduce the pathology.

In each subject, a global AIF was automatically detected using the method
proposed in chapter 4. According to [72], a Gamma-variate fit was performed
on each voxel concentration curve to eliminate recirculation. In each slice, two
ROIs were considered in the left and in the right hemisphere to investigate the
deconvolution method performances.

216 CBV maps were obtained according to Eq. (2.4). Ratios between
the right and left hemisphere were computed to investigate the differences in
blood volume distribution between the two hemispheres. Reported CBV maps
are expressed in ml/g percentage as commonly done in literature; results are
comparable to the values reported in literature, but they are still far from ideal
due to the DSC-MRI absolute quantification problem.

1080 relative CBF maps were obtained by applying SVD, cSVD, NSR, dc-
NSR and PD. The ratios between the right and left hemisphere were calculated
(i.e. ROI analysis) to investigate the differences in the estimated blood flow. In
general, NSR and dcNSR show the highest CBF ratios, thus significantly em-
phasizing the CBF distribution anomaly. However, the difference between the
CBF ratio and the unit is sometimes very high, due to the very high contrast
level in the NSR and dcNSR CBF maps. cSVD ratios are very close to unit,
hence make the identification of pathological areas more difficult. PD and SVD
provide comparable CBF ratios, closer to the unit than the NSR and dcNSR
ones, but less than the cSVD ones. In the post-surgery situation, the different
methods provide a closer to unit CBF ratio, suggesting that pathologic situa-
tion has been recovered. Normalized relative CBF maps obtained by PD are
comparable in term of values to those provided by SVD and cSVD, but they
show more contrasted areas, emphasizing the flow differences. NSR and dcNSR
maps are extremely contrasted, but appear noisier than the PD ones.

1080 absolute MTT maps were computed as the ratio between CBV and
CBF. The ratio between the right and left hemisphere was computed in each slice
to investigate the differences in the blood transit time. As expected, differences
in MTT distribution are generally smaller than differences in CBF distribution,
for all deconvolution methods. As in the CBF ratio, NSR and dcNSR show
the highest MTT ratios, thus significantly emphasizing the MTT distribution
anomaly. cSVD MTT ratios are very close to unit, whereas SVD and PD under-
line the differences in MTT distribution better than cSVD. PD MTT ratios are
also slightly further from unit than SVD, but always closer to unit than NSR
and dcNSR. MTT ratios sometimes do not lead to the same diagnosis than CBF
ones. This because of the compensation mechanisms present in patients affected
by stenosis. MTT maps provided by PD are comparable to the SVD ones, but
present a higher contrast level. Therefore, the pathologic area detection is easier
in PD maps than in SVD ones. cSVD maps are extremely uniform, pathologic
areas are very difficult to detect. NSR and dcNSR maps appear to be very
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noisy, thus they are difficult to interpret.

Laterality indices were computed to provide a graphical representation of
the CBF and MTT map information. Since cerebral auto-regulation and com-
pensation mechanisms can modify CBF, CBV and MTT, the integration of the
whole information provided by the different parameters leads to a more accurate
diagnosis. NSR and dcNSR provide very large laterality indices, thus emphasiz-
ing the disease affected regions. Nevertheless, they sometimes present too high
and unphysiological indices. Moreover, healthy areas are still characterized by
laterality indices not close to 0. SVD and cSVD laterality indices are gener-
ally very close to 0 and they make the disease detection difficult. PD laterality
indices are usually larger than the SVD and cSVD ones, but smaller than the
NSR and dcNSR ones. Therefore, it meets the need to underline the pathologic
areas without showing false positive results.

The most crucial step in the PD method is the preliminary elaboration.
If the PD algorithm is provided with a multimodal population, then a bias
is introduced on residue function estimates. If a population is much larger
than the other ones, then it includes the smaller ones, whose residue function
estimates are not accurate. Moreover, including a small population in a larger
one means loosing part of its information because of the mean population curve
computed in the initial steps of the algorithm. If two or more populations
present a comparable number of voxel, then the hyper parameter estimate fails.
In this case, the hyper parameter describing the residue function individual
shift increases and the oscillations in the estimated R(t) get wider. Therefore,
population division has to be carefully performed.

Summarizing, a novel method (PD) for the DSC-MRI image quantification
has been proposed, validated and compared to two classic methods (SVD, cSVD)
and to a recently proposed method (NSR, dcNSR). PD can provide reliable
residue function estimates and high quality CBF and MTT maps. ROI analysis
and laterality indices obtained by PD show that PD is a valid alternative for
the DSC-MRI image quantification.
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Chapter 6

Dynamic Susceptibility

Contrast -MRI: a New

Kernel-Based

Deconvolution Approach

This chapter introduces a novel deconvolution approach, which has been recently
proposed and is still being developed. The method has been tested on simulated
data, providing quite good results. A first attempt on clinical data has been also
performed. This method differs from the PD method proposed in chapter 5 both
in the problem approach and in the application field. Thanks to its population
approach, PD is suitable for large voxel set analysis, providing good results and
a short computation time. However, PD is not applicable when only a small
brain region is considered because the population approach is no longer valid.
On the other hand, the new method is voxel based and can be applied also on
a small brain region. Although it is still under refinement, the obtained results
are promising and make it very interesting. It has therefore been included in
this work.

6.1 Theory

The most crucial step in the DSC-MRI image quantification is the residue func-
tion identification. In other words, the impulsive response of a time-invariant
linear system has to be estimated starting from the noisy output samples (i.e.
the voxel concentration samples) and the system input (i.e. the arterial input).

In literature, the most used methods for the system identification start
from identifying a low-order model by using standard techniques, such as max-
imum likelihood or predictor error methods [31, 32, 47]. Then, they proceed to
quantify bias and variance errors on the basis of the model. In the stochastic
embedding approaches, the a priori knowledge is usually formulated on the bias



128 6.1 Theory

error. Here, a new kernel-based approach is applied to formulate the probabilis-
tic prior directly on the unknown residue function. The a priori knowledge is
hence used to provide a model of R(t), rather than the errors of measure and
model.

Let us begin from the problem statement. In DSC-MRI, the model associ-
ated to the measurements is

c(ti) =

∫ ti

0

R∗(ti − τ − ∆) ·AIF (τ) dτ + vi = LAIF
i [R,∆] + vi (6.1)

where {c(ti} are the concentration samples obtained on the temporal grid {ti}
n
i=1;

R∗(t) is the residue function multiplied by CBF and the proportionality con-
stant (i.e. R∗(t) ∼ CBF · R(t)); ∆ accounts for a possible time-delay in the
system and {vi} is a white Gaussian noise with variance σ2. From now on,
LAIF

i [R,∆] indicates the model prediction at time t = ti, i.e. the convolution
computed at time t = ti between AIF and R(t), with a delay of ∆.

In a kernel based approach a prior is assumed; it consists of a stochastic
model for R∗(t). Commonly, the prior consists of a Gaussian measure in an
infinite-dimensional function space. Such prior can be used to define a transfor-
mation from the normal space to a Hilbert space H . Since the transformation
between space is uniquely identified by its kernel, the prior can be represented
also by the kernel itself. If the prior is indeed composed by a Gaussian mea-
sure, then the associated kernel is a Mercer kernel and the Hilbert space is a
reproducing kernel Hilbert space (RKHS). A RKHS satisfies two proprieties:
the pointwise evaluation is a continuous linear functional spaceand the inner
product satisfies the reproducing property. Thus, a RKHS is equipped by a
norm, which derives from the inner product.

Let us assume that R∗(t) and {vi} are jointly normal and there is no feed-
back in the system (these assumptions are fair in the DSC-MRI context). If
the prior associated to R∗(t) can be represented as a Mercer kernel, then the
minimum variance estimate of the residue function can be proved to be given
by

R̂∗ =
arg min

R∗

n∑

i=1

(
ci − LAIF

i [R∗;∆]
)2

+ γ‖P[R∗]‖2
H (6.2)

where P denotes the orthogonal projection of R∗ onto H ; ‖‖H is the norm
associated with H ; γ is the so-called regularization parameter, which has to
correctly balance the expected regularity of the solution and the adherence to
experimental data.

Typical choices are Gaussian or polynomial kernels. In DSC-MRI context,
the residue function is known to be regular, thus the most popular approach is
to model it as an integrated Wiener process with unknown initial conditions.
The kernel (W) associated to this statistical assumption is

W (s, τ) = cov
(
R̃(s), R̃(τ)

)
=

{
s2

2

(
τ − s

3

)
s ≤ τ

τ2

2

(
s− τ

3

)
s > τ

(6.3)
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and R̃ is a zero-mean Gaussian process with auto-covariance λ2W .

The regularization method described in Eq (6.2) is a Tikhonov-type prob-
lem, thus it presents an explicit solution for every given γ. Kernel based regular-
ization methods are widely employed in the nonparametric system identification,
but they are not suitable to reconstruct the impulse response in a physical con-
text because of several limitations. For instance, they are not able to obtain
unbiased estimates of functions defined on a noncompact domain, such as an
exponential on X = [0,+∞). Moreover, the variance of the processes associated
with the most used kernels increases over time (e.g. W). However, in a physical
context, the impulse response variability is larger in the first time instants and
decreases over time. In particular, the prior defined by W does not include the
BIBO-stability constraint.

The prior defined in the DNP method overcomes these limitations. Firstly,
it defines a time transformation that maps the noncompact domain X into
S = [0, 1] and the exponential functions on X into straight lines on S. Such
time transformation is

τ = e−βt t ∈ X (6.4)

Then, the prior is defined on the new coordinates. It is exactly the inte-
grated Wiener process with zero initial value and arbitrary first-order derivative
at zero. The resulting kernel (K) is

K(s, t) = W
(
e−βt, e−βs

)
(s, t) ∈ X ×X (6.5)

The stochastic model for the residue function becomes

R∗(t) =

{
0 t < 0

θe−βt + R̃(t) t ∈ X
(6.6)

where θ ∈ R and R̃(t) is now a zero-mean Gaussian process with auto-covariance
λ2K.

The residue function stability can be proved to be guaranteed if the function
value is imposed to be null at zero in the new coordinates or, equivalently, that
R∗(t) = 0 for t→ +∞ in the old coordinates.

Once the prioris defined, the residue function estimate can be obtainedfrom
the Tikhonov estimator defined in Eq. (6.2). However, such estimator requires
the knowledge of the parameter vector η = [λ, β, σ,∆, θ]. η is treated as possibly
unknown hyper-parameter vector and it is determined via maximum likelihood.
Once η is determined, the estimator presents an explicit solution

R̂∗(t) = θ̂e−β̂t + λ̂2
n∑

i=1

biL
AIF
i

[
K(s, t; β̂); ∆̂

]
(6.7)

where η̂ = [λ̂, β̂, σ̂, ∆̂, θ̂] is the η estimate and {bi} are the elements of vector
b ∈ R

n given by
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b = V ar [y|η = η̂]
−1
ψ(η̂) (6.8)

where V ar [y|η = η̂] denotes the auto-covariance of the concentration samples
given η and ψ(η) ∈ R

n is the vector whose i-th component is yi−L
AIF
i

[
θe−βt;∆

]
.

A more accurate formulation and the complete proofs of the proposed
method can be found in [28, 68, 69].

The most appealing feature of the DNP approach is that it was developed in
a fully Bayesian context. The prior is defined directly on the residue function,
whereas the most common stochastic methods base their model on the bias
error. DNP assumes that the residue function is regular and it tends to zero for
t→ +∞. These constraints are very light and, most of all, they are physiologic
and reflect the properties of the residue function defined in the dilution theory.

Another interesting feature of DNP is the delay problem treatment. Not
only is DNP insensitive to it, but it can also estimate the delay between the
AIF and the tissue concentration curve. In [14], the authors have shown that a
delay of 1 to 2 seconds can introduce a 40% underestimation of CBF and a 60%
underestimation of MTT. Furthermore, such delays are common in cerebral re-
gions affected by vascular diseases. Therefore, a delay estimate can improve the
CBF estimate accuracy and increase the information provided to the physician.

Moreover, DNP requires no parameter optimisation to provide suitable re-
sults. This makes the method very flexible because it can be applied on different
data sets without a preliminary tuning step.

Although DNP has many advantages, it suffers from a shortcoming: the
hyper-parameter number. DNP has to estimate the delay, the noise variance and
the parameters embedded in the R(t) model. On the one hand, this increases the
method flexibility; on the other hand, it increases the dimensionality problem.
The hyper-parameters have to be estimated for each voxel and their estimate
is obtained via non-linear methods. Therefore, DNP is computationally more
expensive than the linear methods, such as SVD or cSVD.

6.2 Simulation: Set up

The simulated data set was generated as described in section 5.2 (page 75).
Briefly, four different models for the residue function were considered (i.e. Ex-
ponential, Lorentzian, Gamma-variate and Dispersed Exponential functions),
accounting both for the presence and the absence of dispersion.

Different CBF and MTT combinations were used to generate 100 simulated
voxels for each residue function model. Then, a translation was performed on
simulated voxels to replicate the delay effects. Delay of 0, 1, 2 samples were
considered.

Gaussian noise was added to the concentration curves to generate four
different noise conditions (SNR 5, 10, 50, 500), including the noise level which
is commonly presents in patient data (SNR 10).

Summarizing, the simulated data set contains 4800 situations (4 R(t) mod-
els × 100 CBF & MTT combinations × 3 delay × 4 SNR).
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DNP was compared to the most applied deconvolution methods in DSC-
MRI image quantification to be validated. In particular, the simulated data
were analyzed using the following algorithms, implemented as proposed in the
original publications

• Singular value decomposition (SVD) as in [61, 62];

• Block-circulant singular value decomposition (cSVD), as in [88]

• De Nicolao & Pillonetto system identification method (DNP).

6.3 Simulation: Results

The residue function was successfully estimated for each simulated voxel using
the PD, SVD and cSVD methods.

The root mean square error (RMSE) between each estimated R(t) and the
true R(t) was computed to evaluate the ability of each algorithm to reconstruct
the true residue function. RMSE was computed using Eq. (4.6). Figure 6.1
reports the RMSE mean and standard deviation (SD) obtained by SVD, cSVD
and DNP. Results are divided into residue function model and delay. The DNP
method always provides the worst results, with the exception of the dispersed
exponential R(t) with a 2 sample delay. However, its performances become
comparable to the SVD and cSVD ones as delay increases. As expected, cSVD
performs better than SVD when there is dispersion or delay between AIF and
voxel curves. SVD results get significantly worse as delay increases, whereas
cSVD appears to be quite insensitive to delay. DNP and cSVD provide their
best results when considering a dispersed exponential R(t) and the worst ones
when considering a Gamma-variate R(t).

Figure 6.2 reports some instances of estimated residue functions at the
noise level typically presents in the clinical data (SNR 10) when no delay is
present, whereas Figure 6.3 shows some results obtained when a 2 sample delay
is present between the AIF and the concentration data. The voxel with the best
results and the one with the worst results were chosen in each residue function
model. In each panel, the true R(t) is compared to the ones reconstructed by
using DNP, SVD and cSVD. DNP provides very good results in the best cases,
performing better than SVD and cSVD, both in presence and in absence of
delay. However, in the worst cases, DNP shows both over and underestimation
of the residue function peak. Noticeably, residue functions reconstructed using
DNP never present oscillations after the main peak, whereas SVD and cSVD
ones are characterized by a large number of unphysiological oscillations. In
many cases, the spurious oscillations in the SVD and cSVD estimates make the
detection of the residue function main peak very difficult. Thus, DNP provides
more physiological and reliable R(t) than SVD and cSVD.

CBF was computed for each voxel as the maximum of the estimated residue
function. The estimated CBF percentage error was computed for each voxel.
Figure refCBFerrDNP shows the percentage error mean and SD obtained using
the different deconvolution methods. Results are subdivided into the different
residue function models and delay. DNP presents the smallest mean error in
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Figure 6.1: RMSE between the recontructed and the true residue functions.



6.3 Simulation: Results 133

0 50 100 150

Best Case

E
xp

on
en

tia
l

0 50 100 150

Worst Case

0 50 100 150

Lo
re

nt
zi

an

0 50 100 150

0 50 100 150

γ−
V

ar
ia

te

0 50 100 150

0 50 100 150
Time

D
is

p.
 E

xp
.

0 50 100 150
Time

R(t) − SNR 10

Figure 6.2: Examples of reconstructed residue functions at SNR 10 without
delay. Red lines represent the DNP reconstructed R(t), blue lines represent the
SVD reconstructed R(t) and yellow lines represent the cSVD results. True R(t)
is reported using black dashed lines.
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Figure 6.3: Examples of reconstructed residue functions at SNR 10 with a 2
sample delay between the AIF and the concentration curves. Red lines represent
the DNP reconstructed R(t), blue lines represent the SVD reconstructed R(t)
and yellow lines represent the cSVD results. True R(t) is reported using black
dashed lines.
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all cases, with the exception of Gamma-variate R(t) with 0 and 1 sample de-
lays. In the first case, SVD and cSVD show a significantly smaller mean error
than DNP, whereas in the second case all methods provide comparable results.
DNP is characterized by a larger SD than SVD and cSVD. When considering
non dispersed and non delayed residue functions, SVD performs significantly
better than cSVD, providing a very small mean error, whereas they provide
comparable results in the other cases. SVD and cSVD always underestimate
the true CBF for each residue function model. PD presents overestimated CBF
for the exponential, Lorentzian and Gamma-variated R(t), whereas it underesti-
mates the true CBF when a dispersed exponential R(t) has to be reconstructed.
Remember that, when dispersion is present in the residue function, estimated
CBFs are intrinsically biased by underestimation.

Figure 6.4: Estimated CBF percentage error at SNR 10.
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Considering the whole simulated cases at SNR 10, figure 6.5 shows the
relative percentage of the three deconvolution methods in providing the best
CBF estimate. For each delay level, DNP provides the best CBF estimates in
the majority of cases, from 67% at 1 sample delay to 79% when there is no
delay. SVD is the second method, but it results the best method in less than
25% of cases.

Figure 6.5: Percentage for the three deconvolution methods in providing the
lowest CBF estimate error at SNR 10.

Figure 6.6 compares the true CBF with the ones obtained using DNP,
SVD and cSVD at the typical noise level present in the clinical data (SNR 10),
without delay. As expected, SVD and cSVD always underestimate the true
CBF; moreover, the larger the true CBF, the larger the bias in the estimates.
Differently, DNP presents both underestimation and overestimation of the true
CBF. Especially, the difference between the true and the estimated CBF is not
influenced by the true CBF value. Furthermore, considering the mean true CBF
value (i.e. 22 ml/100g/min), the DNP estimates are closer to the true CBF than
those provided by SVD and cSVD, with the exception of the Gamma-variate
residue function. In such cases, the DNP estimates are characterized by a wide
overestimation and SVD provides the best CBF estimate.

Similar results can be found in 6.7, which shows a comparison between the
true CBF and the ones obtained using DNP, SVD and cSVD at the SNR 10 and
with a 2 sample delay. SVD and cSVD always underestimate the true CBF;
as expected, SVD estimates get worse because of the delay presence, whereas
cSVD provides similar results in presence or absence of delay. DNP usually
presents both underestimation and overestimation of the true CBF and the
estimate error is not influenced by the CBF value. However, when considering
the dispersed exponential R(t), DNP always underestimates CBF and it provides
performances comparable to the SVD and cSVD ones. Considering the mean
true CBF value (i.e. 22 ml/100g/min) DNP estimates are closer to the true
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Figure 6.6: PD (red dots), SVD (blue dots) and cSVD (yellow dots) CBF es-
timates (vertical axes) versus true CBF (horizontal axes) for the four different
R(t) models at SNR 10, without delay.
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CBF than those provided by SVD and cSVD.
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Figure 6.7: PD (red dots), SVD (blue dots) and cSVD (yellow dots) CBF es-
timates (vertical axes) versus true CBF (horizontal axes) for the four different
R(t) models at SNR 10, with a 2 sample delay between the AIF and the con-
centration curves.

Figure 6.8 shows the mean delay values obtained by DNP compared to the
true ones for the four different R(t) models at SNR 10. DNP always overesti-
mates the delay, most of all in presence of dispersion. Moreover, delay estimates
get better as delay increases.
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Figure 6.8: DNP delay estimates (vertical axis) versus true delay (horizontal
axis) at SNR 10. Identity line (black line) is reported as term of comparison.
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6.4 Assessment on Clinical Data

Even if DNP has not been validated yet and it is not yet optimized, a first
attempt at a clinical data analysis was performed to evaluate the DNP estimate
quality.

6.4.1 Data Set & Analysis

The clinical data set is the same proposed in section 4.5 (page 52). In summary,
it includes 18 different clinical cases (11 subjects: 10 pre-surgery examinationss
and 8 post-surgery examination). Each examination contains 12 slices. A global
AIF was computed for each examination by using the method presented in
chapter 4. Furthermore, a Gamma-variate fitting procedure was performed on
the arterial and on each voxel concentration curve to eliminate the presence of
recirculation.

According to Eq. (2.12), Cerebral blood flow (CBF) is defined as the max-
imum of the CBF ·R(t) function obtained by a deconvolution operation. CBF
values were computed pixel-by-pixel using three different deconvolution meth-
ods: SVD, cSVD and DNP.

Mean transit time (MTT) was obtained as the ratio between CBV and CBF,
according to the Central Volume theorem (Eq. (2.11)). Absolute MTT values
were calculated pixel-by-pixel using the CBF values provided by SVD, cSVD,
and DNP and the CBV maps computed in section 5.5. Noticeably, absolute
MTT values were obtained starting from relative CBV (i.e. without accounting
for the constant ρ and kH) and CBF values.

6.4.2 Results

CBF maps were computed for each subject using the SVD, cSVD and DNP
deconvolution algorithms. All methods provide only relative CBF values; there-
fore, all CBF maps were normalized to the same pixel to allow a direct compar-
ison between the methods. The pixel selection has been manually performed by
considering the white matter in the non pathologic hemisphere.

Figures 6.9 and 6.10 show the CBF maps obtained for particular slices
selected in subjects n◦ 1 and 3 before surgery. In subject n◦ 1, the CBF map
provided by DNP presents a very high CBF and appears to be characterized
by a higher noise level than SVD and cSVD ones. In subject n◦ 3 all methods
provide comparable CBF maps, with the same contrast and noise levels. Results
obtained in the other subjects are similar to those presented for subjects n◦ 1
and 3. They can be very similar to SVD and cSVD ones, or provide higher CBF
values and noise level.

Figures 6.11 and 6.12 show the MTT maps obtained for particular slices
selected in subjects n◦ 1 and 3 before surgery. In both cases DNP provides
smaller MTT values than SVD and cSVD, but all maps present similar contrast
and noise levels.
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Figure 6.9: CBF maps obtained by SVD, cSVD and DNP in subject n◦ 1 before
surgery. Relative CBF values are normalized to the same reference region in
each map.
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Figure 6.10: CBF maps obtained by SVD, cSVD and DNP in subject n◦ 3 before
surgery. Relative CBF values are normalized to the same reference region in each
map.
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Figure 6.11: MTT maps obtained by SVD, cSVD and DNP in subject n◦ 1
before surgery. MTT values are expressed in seconds.
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Figure 6.12: MTT maps obtained by SVD, cSVD and DNP in subject n◦ 3
before surgery. MTT values are expressed in seconds.
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6.5 Discussion

In Chapter 5 a novel deconvolution method (PD) has been proposed and val-
idated both on simulated and clinical data. PD exploits the population ap-
proach to improve the residue function estimates and, consequently, the CBF
ones. However, in some occasions, the analysis of a small number of voxels is
required. In other occasions, only a region of interest (ROI) mean curve has to
be examined. In such situations, a population approach cannot be applied be-
cause of the considered voxel small number, hence a pixel based deconvolution
algorithm has to be used. SVD and cSVD are the most used pixel based decon-
volution methods, but they present some limitations, such as unphysiological
oscillations and negative values in the estimated residue function. Furthermore,
their CBF estimates depend on the choice of a threshold value and are influenced
by the presence of delay and dispersion in the AIF.

A novel deconvolution method (DNP) has been proposed to overcome the
SVD and cSVD limitations. DNP tackles the problem in a fully Bayesian frame-
work. In particular, a new probabilistic prior has been defined directly on the
unknown residue function, rather than on the bias error. The prior includes
information on both R(t) continuity and on the system BIBO-stability. The
minimum variance estimate is obtained with a Tikhonov estimator defined on
a RKHS which has been fully characterized.

DNP has been compared to SVD and cSVD on simulated data. The data
set includes 4800 different situations (4 R(t) models × 100 CBF & MTT value
combinations × 4 SNR × 3 delay).

DNP has been shown to provide more accurate CBF estimates than SVD
and cSVD. It provides the best CBF estimate in at least 67% of cases at the
typically SNR found in clinical practice (i.e. SNR 10). Furthermore, the advan-
tage of DNP on SVD and cSVD becomes more marked as the delay increases.
As expected, SVD performances get worse in presence of delay, whereas cSVD
appears to be insensitive to delay. As for DNP, not only is it insensitive to
delay; it can also assess the delay, thus improving the quality of the information
provided to the physician. superiority

As DNP includes the BIBO-stability and the R(t) continuity information
in the prior, it can provide physiological R(t) estimate. The DNP reconstructed
residue functions do not show negative values or spurious oscillations, which are
instead present in SVD and cSVD ones. Thus, DNP provides more reliable R(t)
estimates than SVD and cSVD.

Another important feature of DNP is that it requires no parameter opti-
mization before the analysis. All the stochastic model parameters, such as the
delay, the noise variance or the time transformation parameter, are computed
by the algorithm. Differently, when applying SVD or cSVD, a threshold value
has to be determined before performing the analysis. Therefore, DNP is a more
flexible method than SVD and cSVD.

However, DNP presents some limitations, too. In some occasions, the bias
in the peak estimation is very large. Considering the RMSE between the true
residue function and the estimated one, SVD and cSVD show to better char-
acterize the true residue function, in particular in absence of dispersion. DNP
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appears not to assess the true time to peak; therefore, DNP R(t) estimates are
usually translated, if compared to the true one. This is due to a non accurate
delay estimation. More precisely, DNP usually overestimates the delay, most of
all when dispersion is present in the residue function.

Another DNP limitation is its being a non linear algorithm. Even if the
Tikhonov estimator has an explicit solution, the stochastic model parameter
vector estimation requires a non linear step. Therefore, DNP is computationally
more expensive than SVD and cSVD and it will require much time if a large
data set has to be analysed.

DNP has also been compared to SVD and cSVD also on a clinical data
set. The CBF maps obtained by DNP have usually a higher contrast level than
the SVD and cSVD ones, but they appear to be noisier, too. However, DNP
provides more physiological MTT values than SVD and cSVD.

In conclusion, a new pixel based deconvolution method has been proposed
and compared to two classical methods. DNP is very promising and provides an
accurate CBF value estimate, but it presents also some limitations. Therefore,
some optimization work has to be done yet.



Chapter 7

Conclusions

Magnetic resonance imaging techniques measuring the cerebral hemodynamic
have developed rapidly in the last decade, resulting in a wide range of avail-
able methods. The most successful approach is based on dynamic tracking of
a bolus of a paramagnetic contrast agent, commonly gadolinium. In Dynamic

Susceptibility Contrast - Magnetic Resonance Imaging (DSC-MRI), Gadolin-
ium contrast agent is injected and a time series of fast T ∗

2 -weighted images is
acquired. As Gadolinium passes through the tissues, it produces a reduction
of T ∗

2 intensity depending on the local concentration. The acquired data are
then post-processed to obtain perfusion maps with different parameters, such
as the Cerebral Blood Flow (CBF), the Cerebral Blood Volume (CBV), the Mean

Transit Time (MTT). However, there are still some difficulties for an accurate
and absolute quantification of perfusion parameters due, for example, to the
presence of bolus delay and dispersion, to the Arterial Input Function (AIF)
measurement, to the partial volume effect. In this work, two of the most im-
portant limitations in DSM-MRI images quantification have been considered.

A significant DSC-MRI open issue is the estimation of the AIF, that is the
tracer concentration curve in the vessels feeding the tissue. Currently, AIF is es-
timated directly on MR images by selection of a few number of voxels containing
one of the principal arterial vessels. An automatic, rapid and objective method
to select the arterial voxels is essential for routine clinical use. In this work a
novel fully automated algorithm for the AIF estimate was presented. It exploits
anatomical information to detect a small brain area where one of the princi-
pal arterial vessels is expected to locate. Then, it use a hierarchical clustering
approach to select voxels characterized by a high, narrow and early-appeared
shape for the concentration time curve. The mean concentration curve over
these voxels is taken as the global AIF, which therefore is expected to reflect
primarily normal arteries. This new method, called HIER, was compared on
simulated data to the most interesting methods proposed in literature. HIER
has been shown to well reconstruct the true AIF, providing accurate estimates
and very narrow confidence bands. Moreover, it is robust against the different
noise levels. Thus, it has shown to be less influenced by partial volume artefacts
than other automatic methods and to increase the reproducibility level in DSC-
MRI image quantification. AIFs obtained by HIER on a clinical data set have
also been compared to the manual one, provided by a physician. HIER selected



146

arterial voxels are characterized by a smaller intra-variability then the manual
ones; furthermore, HIER AIFs have been shown to lead to a more accurate
diagnosis than manual ones.

Another critical step in DSC-MRI data analysis is the estimation of the
residue function R(t), that is the fraction of contrast agent remaining inside the
tissue at time t following a tracer bolus injection. A deconvolution operation,
which is a well known mathematical problem, has to be performed to estimate
the residue function. Deconvolution methods have to face the operation intrinsic
problems and the physiological system specific constraints. The deconvolution
intrinsic problems are the ill-posedness and the ill-conditioning, whereas the
most common physiological constrains are the smoothness and the non negativ-
ity of R(t). Another important source of error is the possible presence of delay

and/or dispersion in the AIF. Currently, the most used deconvolution methods
are the Singular Value Decomposition (SVD) and the block-Circulant Singular

Value Decomposition (cSVD). SVD is historically the first and the most impor-
tant deconvolution method proposed in DSC-MRI context and it is currently
the reference method. During the last decade, SVD performances have been
deeply analysed and its limitations have been largely pointed out. The cSVD
method is the natural SVD evolution, that is less biased by the presence of
delay in the AIF than the original SVD. Other methods have been proposed to
provide an accurate quantification of the hemodynamic parameters, such as the
Nonlinear Stochastic Regularization (NSR). NSR is a recently proposed method,
that accounts for both the smoothness and the non-negativity constrains of the
residue function.

In this work, we have discussed also a deconvolution method based on a
population approach. The Population Deconvolution (PD) method exploits a
population approach to analyse a large set of similar voxels at the same time,
thus improving the data quality in the deconvolution operation. PD has been
validated and compared to SVD and cSVD on a simulated data set. As already
reported in literature, SVD has been shown to not be able to provide physio-
logical results. Its R(t) estimates present wide oscillations, negative values and
they are largely biased in presence of dispersion in the AIF. cSVD has proved
to achieve time-shift insensitive, but unphysiological oscillations and negative
values still remain in the estimated R(t). Residue functions obtained using PD
present very small and damped oscillations, thus resulting less biased than SVD
and cSVD ones. Furthermore, PD has been shown to accurately estimate the
CBF both in presence and in absence of dispersion, providing better results than
SVD and cSVD. Therefore, PD improves quality of the information obtained in
the DSC-MRI images analysis.

SVD, cSVD and PD have been compared also to NSR on clinical data.
CBF and MTT maps and laterality indices (LI) were computed using all these
methods. CBF and MTT maps provided by PD are comparable to those ob-
tained by SVD and cSVD, but show more contrasted areas, emphasizing the flow
and transit time differences. Commonly, NSR maps are extremely contrasted,
but appear noisier than the PD ones. Laterality indices provide a graphical
representation of the CBF and MTT map information, integrating the whole
information provided by the different parameters. NSR provides very large lat-
erality indices, thus emphasizing the disease affected regions. Nevertheless, the
detection of the pathological areas is not easy because of the large LI variability
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also in the healthy regions. On the contrary, SVD and cSVD laterality indices
make the disease detection difficult because they do not emphasize the patho-
logical areas. PD meets the need to underline the pathologic areas without
showing false positive results, providing larger LIs than the SVD and cSVD
ones, but smaller than the NSR. Therefore, PD have been shown to lead to
a more accurate diagnosis than the other methods. The most crucial step in
the PD method is the preliminary elaboration. If the PD algorithm is provided
with a multimodal population, then a bias is introduced on residue function
estimates. Therefore, population division has to be carefully performed.

The most interesting PD feature is the population approach. However, it
provides good results when a large voxel set is considered. In some cases, only
a small number of voxels or a ROI average curve have to be analyse. In these
cases, PD cannot be applied and a voxel based method is required. In this
work a new deconvolution method, called DNP, is presented and its preliminary
results are shown. DNP formulates the stochastic prior directly on the residue
function and it includes information on both R(t) continuity and system BIBO-
stability. An important DNP feature is that it can estimate the AIF delay, thus
improving the accuracy in the R(t) estimation. Moreover, DNP does not require
to fix any threshold value, which is known to affect SVD and cSVD estimates.

DNP has been compared to SVD and cSVD on a simulated data set, at
noise level typically found in clinical data. Preliminary results have shown
that DNP provide more accurate CBF estimates than SVD and cSVD, both
in presence and absence of delay and dispersion. Furthermore, thanks to the
prior, the DNP reconstructed residue functions do not show negative values
or spurious oscillations, thus providing more physiologic R(t) estimates than
SVD and cSVD. However, DNP is still under refinement because it presents
some limitations, too. Currently, the most important DNP limitation is the
delay estimation. DNP usually overestimates the delay, above all in presence
of dispersion, thus providing a non accurate characterization of the residue
function. Considering the RMSE between the true residue function and the
estimated one, SVD and cSVD provide better results than DNP. Another DNP
problem is that the hyper-parameter quantification requires a non-linear step,
thus increasing the computation time of the algorithm. DNP has also been
compared to SVD and cSVD also on a clinical data set. The CBF maps obtained
by DNP have usually a higher contrast level than the SVD and cSVD ones, but
they appear to be noisier, too. However, DNP provides more physiological MTT
values than SVD and cSVD. Summarizing, DNP provides very promising results,
but it has still to be optimized to improve the residue function characterization.

In conclusion, although it presents some limitation in the post-processing
analysis, DSC-MRI techniques are becoming an important tool in the medical
research and clinical practice. The development of a fully automatic algorithm
for the AIF selection and of a deconvolution method based on a population
approach, would improve the clinical and scientific information provided by
DSC-MRI analysis.
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