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Abstra
tA mixed-integer program is an optimization problem where one is required to minimize (ormaximize) a linear fun
tion over a subset of R
n de�ned by a system of linear inequalities, withthe additional restri
tion that some of the variables must take an integer value. Mixed-integerprogramming is a fundamental area of operations resear
h, as many real-world problems 
anbe formulated as mixed-integer programs.Solving mixed-integer programs is di�
ult in general. A 
ommon approa
h to ta
kle thiskind of problems exploits the fa
t that (under mild assumptions) the 
onvex hull of feasiblesolutions is a polyhedron, i.e. a subset of R

n de�ned by a system of linear inequalities. Whenthe inequalities des
ribing su
h a polyhedron are known expli
itly, the mixed-integer programredu
es to a linear program, whi
h is a tra
table problem. Unfortunately it is usually very hardto �nd a linear inequality des
ription of the 
onvex hull of feasible solutions of a mixed-integerprogram. However in some 
ases the introdu
tion of additional variables allows one to give asimple des
ription of su
h a 
onvex hull by means of linear inequalities in a higher dimensionalspa
e. Su
h a des
ription is 
alled an extended formulation. If an extended formulation isknown that is 
ompa
t (i.e. it uses a polynomial number of variables and 
onstraints), theoriginal mixed-integer programming problem 
an be solved in polynomial time by means oflinear programming algorithms.In this dissertation we study the family of mixed-integer programs whose feasible regionsare de�ned by linear systems with totally unimodular matri
es (i.e. all subdeterminants are
0, 1 or −1) having at most two nonzero entries per row. This 
lass of problems is interestingbe
ause many instan
es arising e.g. in the 
ontext of produ
tion planning 
an be formulatedas mixed-integer programs of this type.We illustrate a te
hnique to 
onstru
t an extended formulation for any problem in thisfamily. The approa
h is based on the enumeration of all possible fra
tional parts that thevariables take at the verti
es of the 
onvex hull of the feasible region. The expli
it knowledgeof su
h values allows us to model the problem as a pure integer program (i.e. all variables arepres
ribed to take an integer value) by means of additional variables. For su
h a pure integerreformulation the 
onvex hull 
an be obtained very easily and thus an extended formulationfor the original problem is derived.We then dis
uss the 
ompa
tness of our extended formulation: we give su�
ient 
onditionsensuring that the formulation is 
ompa
t. When one of these 
onditions holds, the mixed-integer program 
an be solved in polynomial time. We also show how our te
hnique 
an besu

essfully applied to some interesting pra
ti
al problems.v



vi Next we 
onsider the possibility of des
ribing the 
onvex hull of the feasible region in theoriginal spa
e of de�nition of the problem (i.e with no additional variables). Su
h a formulationis found expli
itly for some spe
ial 
ases by using e.g. �ow te
hniques or linear programmingduality.Finally a possible extension is dis
ussed: we show how a generalization of our te
hnique
an lead to a 
ompa
t extended formulation for a problem that does not belong to the familyintrodu
ed above.Most of the results presented in this thesis are joint work with Mi
hele Conforti, Friedri
hEisenbrand and Lauren
e A. Wolsey.A
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Sommario (Italian abstra
t)Un programma intero misto è un problema di ottimizzazione in 
ui si ri
hiede di minimizzare(o massimizzare) una funzione lineare su un sottoinsieme di R
n de�nito da un sistema di di-sequazioni lineari, 
on la 
ondizione aggiuntiva 
he al
une delle variabili devono assumere unvalore intero. La programmazione intera mista è un'area molto importante della ri
er
a opera-tiva, poi
hé numerosi problemi di interesse prati
o possono essere formulati 
ome programmiinteri misti.Risolvere un programma intero misto è in generale di�
ile. Un appro

io 
omunemente u-sato per a�rontare problemi di questo tipo sfrutta il fatto 
he (sotto deboli ipotesi) l'inviluppo
onvesso delle soluzioni ammissibili è un poliedro, 
ioè un sottoinsieme di R

n de�nito da unsistema di disequazioni lineari. Quando le disequazioni 
he des
rivono tale poliedro sono noteespli
itamente, il programma intero misto può essere ri
ondotto ad un programma lineare, 
heè un problema trattabile. Purtroppo è generalmente molto 
ompli
ato trovare una des
rizionein termini di disequazioni lineari dell'inviluppo 
onvesso delle soluzioni ammissibili di un pro-gramma intero misto. Tuttavia in 
erti 
asi l'introduzione di variabili aggiuntive permettedi dare una sempli
e des
rizione di questo inviluppo 
onvesso tramite disequazioni lineari inuno spazio di dimensione superiore. Una tale des
rizione è detta formulazione estesa. Se si
onos
e una formulazione estesa 
ompatta (
he usi 
ioè un numero polinomiale di variabili evin
oli), il programma intero misto iniziale può essere risolto in tempo polinomiale per mezzodi algoritmi per la programmazione lineare.In questa tesi studieremo la famiglia di programmi interi misti le 
ui regioni ammissibilisono de�nite da sistemi lineari 
on matri
i totalmente unimodulari (
ioè tutti i sottodeter-minanti valgono 0, 1 o −1) 
ontenenti al massimo due elementi non nulli per riga. Questafamiglia è interessante per
hé molti problemi prati
i (ad esempio nel 
ampo della program-mazione della produzione) possono essere formulati 
ome programmi interi misti di questotipo.Illustreremo una te
ni
a 
he permette di 
ostruire una formulazione estesa per un qualun-que problema nella famiglia de�nita sopra. L'appro

io 
he useremo si basa sull'enumerazionedi tutte le parti frazionarie 
he le variabili assumono nei verti
i dell'inviluppo 
onvesso dellaregione ammissibile. La 
onos
enza espli
ita di questi valori 
i permetterà di modellare ilproblema 
ome un programma intero puro (dove, 
ioè, tutte le variabili devono assumere unvalore intero) per mezzo di variabili aggiuntive. Per tale riformulazione l'inviluppo 
onvessopotrà essere ottenuto fa
ilmente e deriveremo quindi una formulazione estesa per il problemainiziale. vii



viii Dis
uteremo poi la 
ompattezza della nostra formulazione estesa: daremo 
ondizioni su�-
ienti sotto le quali la formulazione è 
ompatta. Quando una di queste 
ondizioni è soddisfatta,il programma intero misto può essere risolto in tempo polinomiale. Mostreremo an
he 
omela nostra te
ni
a possa essere appli
ata 
on su

esso ad al
uni problemi di interesse prati
o.In seguito analizzeremo la possibilità di des
rivere l'inviluppo 
onvesso della regione ammis-sibile nello spazio originale di de�nizione del problema (
ioè senza l'introduzione di variabiliaggiuntive). Per al
uni 
asi spe
iali rius
iremo a trovare espli
itamente una tale formulazioneusando ad esempio te
ni
he di �usso o la dualità della programmazione lineare.In�ne dis
uteremo una possibile estensione: mostreremo 
ome una generalizzazione dellanostra te
ni
a possa essere usata per trovare una formulazione estesa 
ompatta per un proble-ma 
he non appartiene alla famiglia introdotta sopra.Gran parte dei risultati presentati in questa tesi sono stati ottenuti in 
ollaborazione 
onMi
hele Conforti, Friedri
h Eisenbrand e Lauren
e A. Wolsey.
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Chapter 1Introdu
tionA mixed-integer linear program (or simply mixed-integer program) is an optimization problemwhere one is required to minimize (or maximize) a linear fun
tion over a subset of R
n de�nedby a system of linear inequalities, with the additional restri
tion that some of the variablesmust take an integer value. Any mixed-integer program 
an then be formulated as

min cx (1.1)subje
t to Ax ≥ b, (1.2)
xi integer for i ∈ I, (1.3)where A is an m × n matrix, b is a 
olumn ve
tor in R

m, c is a row ve
tor in R
n and I is anonempty subset of {1, . . . , n}. In the above problem, cx is the obje
tive fun
tion, while theset de�ned by 
onditions (1.2)�(1.3) is the feasible region. Variables xi for i ∈ I are 
alled theinteger variables, while xi for i /∈ I are the 
ontinuous variables. A subset of R
n that is thefeasible region of a mixed-integer program is 
alled a mixed-integer set.When I = {1, . . . , n}, problem (1.1)�(1.3) is a pure integer program (or simply integerprogram). Thus we view integer programs as spe
ial types of mixed-integer programs. Aproblem of the form (1.1)�(1.2), with no integrality restri
tions, is a linear program.Linear and mixed-integer programming are fundamental areas of operations resear
h. Alarge number of real-world problems 
an be formulated as linear or mixed-integer programs,su
h as problems arising in transportation, manufa
turing, s
heduling and many other �elds(see e.g. [33, 49, 55℄).While linear programming is a tra
table problem, mixed-integer programming is di�
ult ingeneral, as the region de�ned by 
onditions (1.2)�(1.3) is usually very 
ompli
ated to des
ribe.In some spe
ial 
ases, the introdu
tion of new variables in the problem allows one to give asimpler des
ription of a mixed-integer set. A des
ription of this type, whi
h is given in a higherdimensional spa
e, is 
alled an extended formulation of the set (a more pre
ise de�nition isgiven in Se
tion 1.4).In this work we study mixed-integer sets (1.2)�(1.3) whose 
onstraint matrix A has somespe
ial stru
ture that we will spe
ify later. We present and dis
uss a te
hnique that allowsone to 
onstru
t extended formulations for an arbitrary set having su
h a stru
ture, and we1



2 Chapter 1. Introdu
tionalso explore the possibility of des
ribing the set in its original spa
e of de�nition. Furthermore,possible extensions to other sets are dis
ussed.Before giving a more detailed outline of the thesis, we need to introdu
e some general 
on-
epts and known results that will be used throughout. Spe
i�
ally, in Se
tion 1.1 some usefulfa
ts about polyhedra are re
alled. In Se
tions 1.2�1.3 we brie�y dis
uss linear programming,integer programming and mixed-integer programming. In Se
tion 1.4 we introdu
e the notionof extended formulation, whi
h is a key 
on
ept of this work, and in parti
ular we fo
us on theimportan
e of extended formulations in mixed-integer programming. Some of the most well-known approa
hes to 
onstru
ting extended formulations of a mixed-integer set are surveyedin Se
tion 1.5. Finally, an outline of the 
ontents of this dissertation is given in Se
tion 1.6.1.1 PolyhedraThis se
tion brie�y surveys the main de�nitions and results about polyhedra. A 
ompletepresentation of polyhedral theory, as well as the proofs of the theorems that are re
alled here,
an be found in [49℄ or [58℄.We start with some well-known de�nitions about 
onvexity.Given a subset X of R
n, a point x ∈ R

n is a 
onvex 
ombination of the points in X if
x =

∑p
i=1 δix

i for some 
hoi
e of an integer p ≥ 1 and real numbers δ1, . . . , δp ≥ 0 satisfying
∑p

i=1 δi = 1. A set is 
onvex if it 
ontains all 
onvex 
ombinations of its points.The 
onvex hull ofX, denoted conv(X), is the smallest 
onvex set 
ontaining X: it 
onsistsof all possible 
onvex 
ombinations of its points.A polyhedron is the interse
tion of a �nite number of half-spa
es. This de�nition immedi-ately implies that every polyhedron is a 
onvex set.We dis
uss below two fundamental ways of des
ribing a polyhedron. We then 
on
ludethe se
tion by presenting a 
lassi
al result of Balas.1.1.1 External des
ription of a polyhedronSin
e a polyhedron is the interse
tion of a �nite number of half-spa
es, it follows that apolyhedron in R
n 
an be des
ribed as the set of points x ∈ R

n satisfying a linear system ofinequalities Ax ≥ b, where A is an m×n matrix and b is an m-ve
tor: this is 
alled an externaldes
ription of the polyhedron.When an external des
ription of a polyhedron is given, some of the inequalities of thesystem Ax ≥ b may be redundant, that is, their removal do not modify the set of solutionsto the system. We say that an external des
ription of a polyhedron is minimal if it does not
ontain any redundant inequalities. We illustrate below a fundamental result of polyhedraltheory 
on
erning the number of inequalities in an external des
ription of a polyhedron, butbefore doing this, some standard terminology has to be re
alled.Let P be a polyhedron in R
n. Given an inequality cx ≥ δ whi
h is satis�ed by all points in

P , the set of points F := {x ∈ P : cx = δ} is 
alled a fa
e of P .1 We then say that inequality1Some authors require F to be nonempty.



1.1. Polyhedra 3
cx ≥ δ indu
es or de�nes fa
e F . A fa
e of P is a proper fa
e if it is nonempty and doesnot 
oin
ide with the whole polyhedron P . A fa
et of P is a proper fa
e of P whi
h is not
ontained in any other proper fa
e of P .Let aff(P ) be the a�ne hull of P , i.e. the smallest a�ne variety 
ontaining P . Thedimension of P , denoted dim(P ), is the dimension of aff(P ) as an a�ne variety. P is full-dimensional if aff(P ) = R

n.To state the next result, we assume that an external des
ription of P is given as a systemof linear inequalities and equations Ax ≥ b, A′x = b′, where the system Ax ≥ b does not
ontain any pair of inequalities of the type ax ≥ β, −ax ≥ −β (su
h a pair 
ould be repla
edwith equation ax = β).Theorem 1.1 Let Ax ≥ b, A′x = b′ be a minimal external des
ription of P , where the system
Ax ≥ b does not 
ontain any pair of inequalities of the type ax ≥ β, −ax ≥ −β. Then:(i) A′x = b′ 
onsists of n− dim(P ) linearly independent equations su
h that aff(P ) = {x ∈

R
n : A′x = b′};(ii) ea
h inequality in the system Ax ≥ b indu
es a distin
t fa
et of P and ea
h fa
et of P isindu
ed by a distin
t inequality of the system Ax ≥ b.The above theorem shows that all minimal external des
riptions of a given polyhedron usethe same number of equations and inequalities.1.1.2 Internal des
ription of a polyhedronGiven a polyhedron P ⊆ R

n, a nonempty fa
e F of P is minimal if no proper fa
e of P isstri
tly 
ontained in F . It 
an be proven that all minimal fa
es of P are a�ne varieties of thesame dimension.When the minimal fa
es of a polyhedron P 
onsist of single points, they are 
alled verti
esor extreme points of P . In this 
ase P is 
alled a pointed polyhedron. An equivalent de�nitionof vertex 
an be given: a point v ∈ P is a vertex of P if and only if there do not exist
x1, x2 ∈ P \ {v} su
h that v = 1

2x
1 + 1

2x
2. Every polyhedron has only a �nite numberof verti
es. However, su
h a number may be exponential in the number of variables andinequalities used to give an external des
ription of the polyhedron.A ray of a nonempty polyhedron P is a ve
tor r ∈ R

n su
h that x + r ∈ P for all x ∈ P .If there do not exist two rays r1, r2 of P su
h that r = 1
2r

1 + 1
2r

2 and r1 6= λr2 for all λ ≥ 0,then r is 
alled an extreme ray of P . It 
an be proven that P has an extreme ray if and onlyif it is a pointed polyhedron. Also, every polyhedron has only a �nite number of extreme rays.Similarly to extreme points, su
h a number might be exponentially large.The set of rays of P form a 
onvex 
one C(P ), i.e. C(P ) is nonempty (as 0, the all-zerove
tor, is a ray of P ) and λ1r
1 + λ2r

2 ∈ C(P ) for all r1, r2 ∈ C(P ) and λ1, λ2 ≥ 0. C(P ) is
alled the re
ession 
one (or 
hara
teristi
 
one) of P . If P = ∅, the standard de�nition is
C(P ) := {0}. It 
an be proven that C(P ) is a polyhedron: if P is de�ned by the linear system
Ax ≥ b, then C(P ) is de�ned by Ax ≥ 0. It is easy to see that every system of the form



4 Chapter 1. Introdu
tion
Ax ≥ 0 de�nes a 
one, whi
h is therefore 
alled a polyhedral 
one. A polyhedral 
one haseither a unique vertex (
alled apex ) or no verti
es at all. In the former 
ase, the apex is 0.The following theorem summarizes fundamental results that are due to Minkowski [47℄,Motzkin [48℄ and Weyl [67℄:Theorem 1.2 (Minkowski-Weyl theorem) A subset P of R

n is a polyhedron if and onlyif there exist a �nite set of points {v1, . . . , vp} and a �nite set of ve
tors {r1, . . . , rq} su
h that
P =

{
x ∈ R

n : x =
∑p

i=1 δiv
i +
∑q

j=1 λjr
j,

∑p
i=1 δi = 1, δi ≥ 0, 1 ≤ i ≤ p,

λj ≥ 0, 1 ≤ j ≤ q
}
.Furthermore, if P is a pointed polyhedron then {v1, . . . , vp} 
an be 
hosen as the set of extremepoints of P and {r1, . . . , rq} as the set of extreme rays of P .A des
ription of a polyhedron P as in the above theorem is 
alled an internal des
riptionof P . We say that P is generated by points v1, . . . , vp and rays r1, . . . , rq. Every pointedpolyhedron is generated by its extreme points and extreme rays.Note that the des
ription of P given by Theorem 1.2 uses additional variables δ1, . . . , δpand λ1, . . . , λq. This is an example of extended formulation, a 
on
ept that will be dis
ussedin Se
tion 1.4.1.1.3 Union of polyhedraWe 
on
lude this se
tion by presenting a result due to Balas [4℄, whi
h 
an be viewed as anextension of Minkowski-Weyl theorem.Suppose that we know the external des
riptions of k polyhedra P1, . . . , Pk in R

n and weare interested in �nding a des
ription of the 
onvex hull of P1 ∪ · · · ∪ Pk. The result belowprovides su
h a des
ription.Theorem 1.3 For 1 ≤ i ≤ k, let Pi :=
{
x ∈ R

n : Aix ≥ bi
} be polyhedra in R

n having thesame re
ession 
one. Then the set P := conv(P1 ∪ · · · ∪ Pk) is a polyhedron and
P =

{
x ∈ R

n : x =
∑k

i=1w
i,

Aiwi ≥ biδi, 1 ≤ i ≤ k,
∑k

i=1 δi = 1, δi ≥ 0, 1 ≤ i ≤ k
}
.This version of the theorem is not the most general one (see [4, 18℄), but is su�
ient forour purpose.We remark that if P is a bounded polyhedron, then Theorem 1.2 
an be obtained byapplying the above result to the polyhedra Pi := {vi} for 1 ≤ i ≤ p. (One 
ould write avariant of Theorem 1.3 that subsumes the Minkowski-Weil theorem for unbounded polyhedratoo.) Also, if k = 1 the des
ription given above is essentially the original external des
riptionof the polyhedron P1 = P . Therefore Theorem 1.3 provides in a sense an �intermediate�formulation of a polyhedron P , whi
h 
oin
ides with the external or internal des
ription inthe extreme 
ases.



1.2. Linear programming 51.2 Linear programmingRe
all that a linear program is a problem of the form
min cx (1.4)subje
t to Ax ≥ b. (1.5)where A is an m × n matrix, b is a 
olumn ve
tor in R

m and c is a row ve
tor in R
n. Notethat the feasible region of a linear program is a polyhedron.Linear programming is a well-developed area of operations resear
h. The systemati
 studyof this subje
t was initiated by Dantzig and von Neumann. Here we only re
all a few basi
aspe
ts that will be useful in the remainder of the thesis. A 
omprehensive presentation ofthe theory of linear programming 
an be found e.g. in [58℄.Given a linear program (1.4)�(1.5), exa
tly one of the following alternatives holds:(i) the problem is infeasible (i.e. no point in R

n satis�es Ax ≥ b);(ii) the problem has an optimal solution;(iii) the problem is unbounded (i.e. system Ax ≥ b is feasible and there exists r ∈ R
n su
hthat Ar ≥ 0 and cr < 0).Even though system (1.5) may de�ne a polyhedron without verti
es, every problem of theform (1.4)�(1.5) 
an be transformed into a linear program whose feasible region is a pointedpolyhedron. So we assume without loss of generality that the feasible region (1.5) has at leastone vertex (and thus it has at least one extreme ray).A fundamental result in linear programming is the following.Theorem 1.4 If a linear program (1.4)�(1.5) has an optimal solution, then it has an optimalsolution whi
h is an extreme point of the feasible region. If a linear program is unbounded,then there is an extreme ray r of the feasible region su
h that cr < 0.Sin
e a polyhedron has only a �nite number of extreme points and extreme rays, a �rstapproa
h to solve a linear program in a �nite number of operations is simple enumeration.However, as mentioned in Se
tion 1.1.2, the number of extreme points and extreme rays of apolyhedron might be exponentially large, thus su
h a te
hnique 
annot be used in pra
ti
e.The �rst algorithm proposed to solve linear programming problems, the simplex method,is a re�nement of this approa
h. This method, whi
h was introdu
ed by Dantzig [19℄, 
onsistsin visiting some of the verti
es of the feasible region, ea
h time 
hoosing the next vertex witha 
lever rule. This algorithm has a good performan
e in pra
ti
e and is 
ommonly used by
ommer
ial softwares. However, as shown by Klee and Minty [37℄, it is possible to 
onstru
tlinear programs that 
ause the simplex method to perform an exponential number of iterations.The �rst polynomial time algorithm for linear programming, the ellipsoid method, wasobtained by Kha
hiyan [36℄, who adapted to this problem a te
hnique that was already usedin nonlinear programming. Though Kha
hiyan's algorithm is not used in pra
ti
e, it yieldedthe �rst proof that linear programming 
an be solved in polynomial time:
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tionTheorem 1.5 There is a polynomial time algorithm for solving linear programming (withrational input) that �nds an optimal extreme point solution (if the problem has an optimalsolution).Apart from the above result, the theoreti
al importan
e of the ellipsoid method 
omesfrom the fa
t that it does not require that the inequalities de�ning the feasible region beexpli
itly given. It is su�
ient to have a polynomial time algorithm for the separation problem:given a point x̄, either de
ide that x̄ is feasible or �nd an inequality that is satis�ed by allpoints in the feasible region and violated by x̄. If the separation problem on a polyhedron issolvable in polynomial time, so is the linear optimization problem, even if the polyhedron hasexponentially-many fa
ets. In fa
t the two problems are equivalent, as shown by Gröts
hel,Lovász and S
hrijver [28℄:Theorem 1.6 Linear optimization is solvable in polynomial time if and only if so is theseparation problem.2A good tradeo� between running time in the worst 
ase and pra
ti
al performan
e isa
hieved by interior point methods. The �rst algorithm of this type was introdu
ed by Kar-markar [35℄. Instead of moving on the boundary (like the simplex method), these algorithmsfollow a path in the interior of the feasible region that 
onverges to an optimal solution of theproblem.We 
on
lude this se
tion by re
alling a well-known result due to Farkas (see e.g. [58℄),whi
h will be used in a subsequent 
hapter.Theorem 1.7 (Farkas' lemma) A linear system Ax ≥ b is feasible if and only if ub ≤ 0 forea
h u ≥ 0 satisfying uA = 0.If some inequalities of the system Ax ≥ b are repla
ed by equations, the nonnegativitybounds on the 
orresponding 
omponents of u must be removed.1.3 Integer and mixed-integer programmingRe
all that a mixed-integer program is a problem of the form (1.1)�(1.3) with I 6= ∅, and a(pure) integer program is a problem of the same type with I = {1, . . . , n}.In 
ontrast to linear programming, whi
h 
an be solved e�
iently, integer programmingand mixed-integer programming are di�
ult problems: they are both NP-
omplete problems[17℄. Thus a polynomial time algorithm for solving these two problems in the general 
ase isnot known.Given a mixed-integer set (1.2)�(1.3), the polyhedron de�ned by Ax ≥ b is 
alled the linearrelaxation (or 
ontinuous relaxation) of (1.2)�(1.3). The following fundamental result is dueto Meyer [44℄:2This result holds under some mild te
hni
al assumptions (see [29℄ for the details).



1.3. Integer and mixed-integer programming 7Theorem 1.8 If all entries of A and b are rational numbers, then the 
onvex hull of (1.2)�(1.3) is a polyhedron. Furthermore su
h a polyhedron and the linear relaxation of (1.2)�(1.3)have the same re
ession 
one.Under the hypothesis of the above theorem, let P be the 
onvex hull of (1.2)�(1.3). Ifa linear inequality des
ription of the polyhedron P is known, then the optimization problem
min{cx : x ∈ P} is a linear program. Using the above result and Theorem 1.5, one 
an provethat su
h a linear program is essentially equivalent to problem (1.1)�(1.3).Theorem 1.9 Assume that all entries of A and b are rational numbers and let P be the
onvex hull of the mixed-integer set (1.2)�(1.3). Then one 
an solve the mixed-integer program(1.1)�(1.3) by applying an algorithm for linear programming to the problem min{cx : x ∈ P},provided that a linear inequality des
ription of P is available.Unfortunately, the 
onvex hull of (1.2)�(1.3) may be de�ned by a number of fa
et-de�ninginequalities whi
h is exponential in the size of the original des
ription of the problem, and itis usually very hard to 
hara
terize them. Thus the approa
h in the above theorem does notresult (in general) in a polynomial time algorithm.We do not dis
uss here the various te
hniques that are 
ommonly used to solve pure andmixed-integer programs either exa
tly or approximately (see e.g. [49, 69℄). We only spendsome words on two important aspe
ts of this �eld: valid inequalities and total unimodularity.1.3.1 Valid inequalitiesIn the general 
ase, the linear relaxation of a mixed-integer set X is only a superset of conv(X).Thus the linear relaxation 
ontains points that should be �
ut o�� in order to des
ribe conv(X).This leads to the following standard de�nitions.Given a mixed-integer set X ⊆ R

n, a valid inequality for X is a linear inequality whi
h issatis�ed by all points in X. It is readily 
he
ked that a linear inequality is valid for X if andonly if it is valid for conv(X). A 
utting plane for X is a inequality that is valid for X but isviolated by at least one point in the linear relaxation of X.Given a mixed-integer set (1.2)�(1.3), di�erent kinds of valid inequalities 
an be derivedin several ways (see [18℄ for a survey of the various te
hniques). Methods based on 
uttingplanes are 
ommonly used to solve mixed-integer programs either exa
tly or approximately.Here we only re
all two types of valid inequalities that will be used in the next 
hapters.The Chvátal-Gomory pro
edure [27℄ 
an be used to generate valid inequalities for a pureinteger set:Theorem 1.10 (Chvátal-Gomory rounding) Given a pure integer set (1.2)�(1.3) (thus
I = {1, . . . , n}), take a 
ombination of its inequalities: that is, for a nonnegative ve
tor
u ∈ R

m, 
onsider the valid inequality uAx ≥ ub, whi
h we denote by ax ≥ β. If a is anintegral ve
tor, then the inequality ax ≥ ⌈β⌉ is valid for (1.2)�(1.3).



8 Chapter 1. Introdu
tionGiven a polyhedron P = {x ∈ R
n : Ax ≥ b} where A and b are rational, the set de�nedby all the inequalities that 
an be derived by using the above pro
edure is a polyhedron [57℄,denoted P (1) and 
alled the Chvátal-Gomory 
losure (or trun
ation) of P . For ea
h k ≥ 1,

P (k+1) is de�ned as the Chvátal-Gomory 
losure of P (k). S
hrijver [57℄ proved that for everyrational polyhedron there is an integer k su
h that P (k) = conv(P ∩ Z
n). (A similar resultholds if P is a bounded polyhedron, independently of the rationality assumption [10℄.) Su
ha number k is the Chvátal rank of P .We also need to introdu
e the simple mixed-integer rounding inequality, or simple MIR-inequality for short.Theorem 1.11 (Simple MIR-inequality [49℄) Let X be the mixed-integer set de�ned by

s+ z ≥ b,

s ≥ 0,

z integer,for some real number b. The simple mixed-integer rounding inequality s+f(b)z ≥ f(b)(⌊b⌋+1),where f(b) := b− ⌊b⌋ denotes the fra
tional part of b, is valid for X.1.3.2 Totally unimodular matri
esA matrix A is totally unimodular if every square submatrix of A has determinant 0, 1 or −1.Note that all entries of a totally unimodular matrix are 0, 1 or −1.Totally unimodular matri
es appear in several 
ombinatorial optimization problems, seee.g. [49℄. The main reason for the importan
e of this 
lass of matri
es 
omes from the following
hara
terization, whi
h is due to Ho�man and Kruskal [34℄:Theorem 1.12 An m×n matrix A is totally unimodular if and only if for ea
h ve
tor b ∈ Z
m,all verti
es of the polyhedron {x ∈ R

n : Ax ≥ b, x ≥ 0} are integral.Sin
e in the next 
hapter the variables of our problems will not be for
ed to be all nonneg-ative, we will a
tually use the result below rather than Theorem 1.12:Theorem 1.13 If A is an m× n totally unimodular matrix and b is an integral ve
tor, then
conv{x ∈ Z

n : Ax ≥ b} = {x ∈ R
n : Ax ≥ b}.In other words, if A is totally unimodular and b is integral, the 
onvex hull of the pureinteger set {x ∈ Z

n : Ax ≥ b} and its linear relaxation {x ∈ R
n : Ax ≥ b} are the samepolyhedron. It follows that in this 
ase pure integer programming 
an be solved in polynomialtime by means of linear programming.We will make 
onstant use of totally unimodular matri
es. In parti
ular, we will need a
hara
terization due to Ghouila-Houri [26℄. To introdu
e it, the following de�nition is needed.



1.4. Extended formulations 9Given a 0,±1-matrix A, with entries aij for 1 ≤ i ≤ m and 1 ≤ j ≤ n, an equitablebi
oloring of the 
olumns of A is a partition of {1, . . . , n} into two 
lasses R and B su
h that
∣
∣
∣
∣

∑

j∈R

aij −
∑

j∈B

aij

∣
∣
∣
∣
≤ 1 for 1 ≤ i ≤ m.The two 
lasses R and B are sometimes 
alled 
olors, hen
e the term bi
oloring (the names

R,B stand for red and blue respe
tively).Theorem 1.14 [26℄ A 0,±1-matrix A is totally unimodular if and only if every 
olumn sub-matrix of A admits an equitable bi
oloring of its 
olumns.Note that sin
e a matrix is totally unimodular if and only if so is its transpose, the abovetheorem admits a symmetri
 version in whi
h the roles of rows and 
olumns are inter
hanged.1.4 Extended formulationsAs dis
ussed in Se
tion 1.1.1, for a �xed polyhedron P the number of inequalities in anyexternal des
ription of P in its original spa
e is bounded from below by the number of fa
ets of
P . Therefore, if P has a huge number of fa
ets, it is impossible to give an external des
riptionof P having �small� size. Nonetheless, P may admit a des
ription of smaller size in a higherdimensional spa
e. To formalize this 
on
ept, we now give two de�nitions.Given a set Q in the spa
e R

n+p (that uses variables x ∈ R
n and y ∈ R

p), the proje
tionof Q onto the spa
e of the x-variables is the set of points x ∈ R
n that 
an be 
ompleted to ave
tor (x, y) of Q:

projx(Q) := {x ∈ R
n : there exists y ∈ R

p su
h that (x, y) ∈ Q}.The proje
tion of a polyhedron is always a polyhedron (see also Se
tion 1.4.2).Given a polyhedron P in the spa
e R
n (that uses variables x), an extended formulationof P is the external des
ription of a polyhedron Q in a spa
e R

n+p (that uses variables xand y) su
h that P = projx(Q). In other words, an extended formulation of P is a linearsystem in the variables (x, y) that de�nes a polyhedron whose proje
tion onto the spa
e ofthe x-variables is exa
tly P . We 
all R
n the original spa
e of variables and R

n+p the extendedspa
e.Every polyhedron P admits in�nitely-many extended formulations. The number of fa
etsof an extended formulation of P 
an be very far from that of P . In parti
ular, it may happenthat a polyhedron with an exponential number of fa
ets admits an extended formulation withonly a polynomial number of fa
ets. Su
h an example is given by the permutahedron, whi
his the 
onvex hull of the ve
tors in R
n whose 
omponents form a permutation of the numbers

1, . . . , n. The permutahedron has 2n − 2 fa
ets, but it is the proje
tion of a polyhedron Q inan n(n−1)
2 -dimensional spa
e that has only n(n− 1) fa
ets (Q is the image of a 
ube under ana�ne transformation). (See [74℄ for the details.)Therefore, among all the possible extended formulations of a polyhedron P , one 
an hopeto �nd a des
ription of P that requires a small number of fa
et-de�ning inequalities. However,
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tionYannakakis [71℄ proved a very interesting (and perhaps surprising) theorem that gives a lowerbound on the size of any extended formulation of a �xed polyhedron. Though su
h a bound
annot be easily used to predi
t the minimum size of an extended formulation of a given set,as an a priori knowledge of the fa
ets and verti
es is required, the theoreti
al relevan
e of thisresult is remarkable.1.4.1 The role of extended formulations in mixed-integer programmingAs dis
ussed in Se
tion 1.3 (see Theorem 1.9), a mixed-integer program redu
es to a linearprogram on
e a linear inequality des
ription of the 
onvex hull of the feasible region is known.However su
h a 
onvex hull may have a huge number of fa
ets and it may be very hard to�nd them. We point out here how extended formulations 
an be useful in this 
ontext.Let X ⊆ R
n be a mixed-integer set and suppose that we want to solve the problem

min{cx : x ∈ X}, or equivalently min{cx : x ∈ conv(X)}. Assume that we know an extendedformulation of conv(X) and let Q ⊆ R
n+p be the polyhedron de�ned by su
h a formulation.It is immediate to see that then problem min{cx : x ∈ conv(X)} is equivalent to problem

min{cx : (x,w) ∈ Q}.This shows that if one knows an extended formulation of the 
onvex hull of the feasibleregion of a mixed-integer program, then the problem 
an be equivalently solved in the extendedspa
e by means of linear programming. If, in addition, the size of su
h an extended formulationis polynomial in the size of the original des
ription of X, this allows one to solve the mixed-integer program in polynomial time.We say the an extended formulation of a mixed-integer set is 
ompa
t if its size is poly-nomial in the size of the original des
ription of the set. The above dis
ussion 
an then besummarized in the following result:Theorem 1.15 If a mixed-integer set X admits an extended formulation whi
h is 
ompa
t,then linear optimization over X 
an be 
arried out in polynomial time by means of linearprogramming.1.4.2 Proje
tionsWhen an extended formulation of a polyhedron P is available, in order to �nd a linear in-equality des
ription of P in its original spa
e one has to 
al
ulate the proje
tion of Q (thepolyhedron de�ned by the extended formulation) onto the spa
e where P is de�ned. We 
on-
lude this se
tion by brie�y dis
ussing two possible ways of 
omputing the proje
tion of apolyhedron.A �rst approa
h is Fourier-Motzkin elimination [25, 22, 48℄ (see e.g. [74℄). This te
hnique
onsists in eliminating one variable at a time.Theorem 1.16 Let Q ∈ R
n+1 be a polyhedron in the variables (x1, . . . , xn, y). Assume withoutloss of generality that Q is des
ribed by a system of linear inequalities of the form ajx+βjy ≥ djfor j ∈ J , where βj ∈ {0,±1} for all j ∈ J . Then a linear inequality des
ription of the



1.5. Some well-known types of extended formulations 11polyhedron projx(Q) in the x-spa
e is given by the inequalities
ajx ≥ dj for j ∈ J su
h that βj = 0,

(
aj + ak

)
x ≥ dj + dk for j, k ∈ J su
h that βj = 1 and βk = −1.If p variables have to be eliminated, p repetitions of the above pro
edure are needed. Notethat at ea
h iteration the number of inequalities may be squared, thus the elimination of pvariables may result in a system with an exponential number of inequalities. This is 
oherentwith what we observed above, namely that an extended formulation of a polyhedron may haveless fa
et-de�ning inequalities than the polyhedron itself.Note that the above theorem yields a proof of the fa
t that the proje
tion of a polyhedronis a polyhedron. We also remark that Fourier-Motzkin elimination often produ
es a numberof redundant inequalities.A se
ond approa
h, whi
h allows one to eliminate all extra-variables together and will beused in Chapter 5, is now des
ribed. This result, whi
h appears in �ernikov [8℄, is based onFarkas' lemma (Theorem 1.7).Theorem 1.17 Let Q be a polyhedron in R

n+p de�ned by the linear system Ax+Dy ≥ b. Theproje
tion of Q onto the spa
e of the x-variables is the polyhedron de�ned by the inequalities
u(Ax− b) ≥ 0 for all ve
tors u (of suitable dimension) that are extreme rays of the polyhedral
one de�ned by

uD = 0, u ≥ 0. (1.6)If some inequalities of the system Ax+Dy ≥ b are repla
ed by equations, the nonnegativitybounds on the 
orresponding 
omponents of u must be removed. In this 
ase 
one (1.6) maybe non-pointed and �extreme rays� should be repla
ed with �rays� in the statement of thetheorem.Note that even if the system de�ning Q has few 
onstraints, the number of inequalitiesdes
ribing the proje
tion 
an be huge, as one has to write an inequality for ea
h extreme rayof 
one (1.6). Similarly to Fourier-Motzkin elimination, this method 
an produ
e redundantinequalities.In [6℄ the above result was applied for the �rst time to 
ompute a linear inequality des
rip-tion of a 
ombinatorial optimization problem by proje
ting an extended formulation.1.5 Some well-known types of extended formulationsIt is not possible to give a systemati
 presentation of all the te
hniques that have been su

ess-fully used to 
onstru
t extended formulations in the past years, as su
h formulations usuallyexploit the pe
uliarities of the set under 
onsideration. Nonetheless some of these approa
hesapply to a wide 
lass of problems and have been used by several authors. In this se
tion we sur-vey some of the most relevant te
hniques that 
an be used to 
onstru
t extended formulationsof mixed-integer sets.
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tion1.5.1 Hierar
hies of formulationsWe 
onsider here mixed 0-1 programs, i.e. mixed-integer programs in whi
h every integervariable must take a value in {0, 1}. We also assume that all 
ontinuous variables are nonneg-ative. Mixed 0-1 programs arise in many important 
ombinatorial optimization problems, seee.g. [38, 49, 59℄.Let X be a mixed 0-1 set, whi
h we write in the form
Ax ≥ b, (1.7)
x ≥ 0, (1.8)

xi ∈ {0, 1}, i ∈ I, (1.9)where al entries of A and b are rational numbers. Without loss of generality we assume thatthe linear system Ax ≥ b in
lude (or imply) inequalities xi ≤ 1 for i ∈ I.Let P be the 
onvex hull of X and P0 be the linear relaxation of X. Several authorsdeveloped hierar
hies of approximate formulations of P , i.e. sequen
es of polyhedra P1, . . . , P|I|su
h that
P0 ⊇ P1 ⊇ · · · ⊇ P|I| = P. (1.10)In the hierar
hies that we 
onsider here, ea
h of the polyhedra Pt for 1 ≤ t ≤ |I| is de�nedimpli
itly as the proje
tion of a polyhedron Qt, whi
h is expli
itly given in a higher dimensionalspa
e. Thus we are provided with a sequen
e of approximate extended formulations of P ,where the last formulation of the sequen
e is an exa
t extended formulation of P . As one 
anexpe
t, in general su
h an exa
t formulation is non-
ompa
t.We des
ribe below three of the main hierar
hies of formulations that one 
an �nd in theliterature. The approa
hes that we des
ribe are also 
alled lift-and-proje
t te
hniques, as thedes
ription of the set is �rst lifted (and strengthened) in a higher dimensional spa
e and thenproje
ted onto the original spa
e.For the pure integer 
ase, a presentation of these hierar
hies in a unitary setting as wellas an interesting 
omparison of the various relaxations 
an be found in [40℄.The Sherali-Adams hierar
hySherali and Adams [60, 61℄ proposed the hierar
hy of relaxations (1.10) that we now des
ribe.For ea
h �xed index 1 ≤ t ≤ |I|, the polyhedra Qt and Pt are 
onstru
ted as follows.1. Let S be the set of all polynomials of the form

∏

i∈J1

xi

∏

i∈J2

(1 − xi),where J1, J2 are disjoint subsets of I satisfying |J1| + |J2| = t. Constru
t the nonlinearsystem 
onsisting of all inequalities obtained by multiplying an inequality of the system
Ax ≥ b by a polynomial in S.2. Linearize the resulting system by performing the following two operations:



1.5. Some well-known types of extended formulations 13(a) for i ∈ |I|, substitute xi for x2
i in all the inequalities of the system;(b) for ea
h monomial ∏i∈J xi, where J ⊆ {1, . . . , n} and |J | ≥ 2, introdu
e a newvariable yJ and substitute yJ for ∏i∈J xi throughout.Let Qt be the polyhedron de�ned by the resulting linear system of inequalities and let

Pt be the proje
tion of Qt onto the x-spa
e of variables.Note that Steps 1 and 2 (a) give rise to inequality that are valid for X, as any point in Xsatis�es xi ∈ {0, 1} for all i ∈ I.Sherali and Adams [60, 61℄ proved that (1.10) holds for the polyhedra thus 
onstru
ted. Itis 
lear that the exa
t extended formulation Q|I| 
onsists of an exponential number of variablesand 
onstraints.The Sherali-Adams relaxation 
an be de�ned for a more general 
lass of sets, namelymixed 0-1 polynomial sets that are linear in the 
ontinuous variables [61℄. These sets have theform (1.7)�(1.9), ex
ept that the linear system Ax ≥ b is repla
ed by a system of inequalitiesinvolving polynomials in whi
h the 
ontinuous variables appear with degree at most one.The pro
edure is similar to that des
ribed above and produ
es two sequen
es of polyhedra
Q1, . . . , Q|I| and P1, . . . , P|I|, where for ea
h t the polyhedron Pt is the proje
tion of Qt ontothe original spa
e. Condition (1.10) is again satis�ed, ex
ept for the in
lusion P0 ⊇ P1 whi
hmight be violated. Note that linear optimization over a mixed 0-1 polynomial set of this typeis 
onverted into linear programming over Q|I|.A generalization of the pro
edure presented above was des
ribed in [62℄, while an extensionto a more general 
lass of sets was studied re
ently in [1℄.The Lovász-S
hrijver hierar
hyLovász and S
hrijver [41℄ proposed two hierar
hies of formulations of P (in fa
t their original
onstru
tion is for pure 0-1 problems only). The �rst hierar
hy 
an be de�ned iteratively asfollows: for 1 ≤ r ≤ |I|, the polyhedra Qr and Pr are obtained by applying the Sherali-Adamspro
edure with t = 1 to the linear system de�ning Pr−1. That is, the inequalities des
ribing
Pr−1 have to be multiplied only by xi and 1 − xi for ea
h i ∈ I and then linearized.It 
an be shown that (1.10) holds for the polyhedra thus 
onstru
ted. Note in parti
ularthat P|I| = P even though the above 
onstru
tion uses only a partial version of the Sherali-Adams pro
edure.The de�nition of the polyhedra P1, . . . , P|I| given above is di�erent from (though equivalentto) that appearing in [41℄. The original equivalent 
onstru
tion of Pt is given below.1. De�ne the 
one P̃t−1 :=

{

λ

(

1

x

)

: x ∈ Pt−1, λ ≥ 0

}

⊆ R
n+1. The additional 
oordinateis indexed by 0.2. Let Mt−1 be the set of symmetri
 (|I| + 1) × (|I| + 1) matri
es Y = (yij : i, j ∈ I ∪ {0})su
h that(a) Yii = Y0i for i ∈ I,
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tion(b) Y0, Y0 − Yi ∈ P̃t−1 for i ∈ I, where Yi denotes the 
olumn of Y 
orresponding toindex i.3. De�ne Pt :=

{

x ∈ R
n :

(

1

x

)

= Y0 for some Y ∈Mt−1

}.The relaxation that is 
ommonly referred to as the Lovász-S
hrijver relaxation is obtainedas above, ex
ept that Step 3 is repla
ed by the following:3'. De�ne P+
t :=

{

x ∈ R
n :

(

1

x

)

= Y0 for some Y ∈M+
t−1

}, where M+
t−1 
onsists of thematri
es in Mt−1 that are positive semide�nite.The 
onvex sets P+

t satisfy (1.10). Furthermore it is 
lear that P+
t ⊆ Pt for 1 ≤ t ≤ |I|.Note however that P+

t is not a polyhedron: it is the feasible region of a semide�nite program.The interest in a relaxation of this type 
omes from the fa
t that semide�nite programs 
anbe solved e�
iently through interior point algorithm (see e.g. [66℄ for a survey on semide�niteprogramming).Another hierar
hy of semide�nite relaxations was given by Lasserre [39℄.The Balas-Ceria-Cornuéjols hierar
hyBalas, Ceria and Cornuéjols [5℄ proposed the following lift-and-proje
t pro
edure:1. Pi
k an index i1 ∈ I.2. Constru
t the nonlinear system 
onsisting of all inequalities obtained by multiplying aninequality of the system Ax ≥ b by one of xi1 and 1 − xi1 .3. Linearize the resulting system by performing the following two operations:(a) substitute xi1 for x2
i1
in all the inequalities of the system;(b) for ea
h i 6= i1, introdu
e a new variable yi and substitute yi for xi1xi throughout.Let Q1 be the polyhedron de�ned by the resulting linear system of inequalities and let

P1 be the proje
tion of Q1 onto the x-spa
e of variables.The polyhedra Q2 and P2 are 
onstru
ted by 
hoosing a di�erent index i2 ∈ I \ {i1}and performing the above operations on the linear system de�ning P1. By iterating this
onstru
tion, one de�nes the polyhedra Qt and Pt for 1 ≤ t ≤ |I|.Results of Balas, Ceria and Cornuéjols [5℄ and Balas [3℄ show that
Pt = conv

(
{x ∈ Pt−1 : xit = 0} ∪ {x ∈ Pt−1 : xit = 1}

)

= conv
(
{x ∈ P0 : xir ∈ {0, 1} for 1 ≤ r ≤ t}

)
,whi
h implies all the in
lusions and the equation in (1.10). In other words, at ea
h iterationthe lift-and-proje
t pro
edure 
omputes the 
onvex hull of the 
urrent relaxation, where ea
h



1.5. Some well-known types of extended formulations 15time a single variable xi ∈ I is treated as a binary variable. Su
h a sequential 
onvexi�
ationleads to the 
onvex hull of the original set, i.e. P|I| = P .We remark that though this pro
edure requires mu
h less e�ort than the Sherali-Adamsand Lovász-S
hrijver relaxations, still the |I|-th step yields a des
ription of the 
onvex hullin the original set. However, the intermediate relaxations P1, . . . , P|I|−1 are not as strong asthose arising from the Sherali-Adams and Lovász-S
hrijver pro
edures.In [5℄ it is also shown how lift-and-proje
t 
an be used to generate 
utting planes.1.5.2 Extended formulations based on Minkowski-Weyl theoremWe remarked in Se
tion 1.1.2 that the formulation of a polyhedron given by Theorem 1.2 usesadditional variables. Thus that theorem yields an extended formulation of a polyhedron.In general an extended formulation of this type 
an hardly be expli
itly given for the
onvex hull of a mixed-integer set, as it is usually di�
ult to 
hara
terize the extreme pointsand extreme rays of su
h a polyhedron (assuming it is pointed). Furthermore, the number ofextreme points and extreme rays of the 
onvex hull of a mixed-integer set is often huge, evenif the original des
ription of the set is small.1.5.3 Extended formulations based on the properties of the extreme pointsA re�nement of the approa
h des
ribed in Se
tion 1.5.2 is sometimes possible: the key idea isthat some basi
 properties of the verti
es, rather than their 
omplete enumeration, may su�
eto des
ribe the 
onvex hull of a mixed-integer set. This idea, whi
h already appears in [53℄,will be exploited in the next 
hapters.We demonstrate this te
hnique by showing how Miller and Wolsey [45℄ used this approa
hto 
onstru
t an extended formulation of the 
onvex hull of the following mixed-integer set:
s+ zi ≥ bi, 1 ≤ i ≤ n, (1.11)
s ≥ 0 (1.12)

zi integer, 1 ≤ i ≤ n, (1.13)where bi ∈ R for 1 ≤ i ≤ n. The above set, whi
h is now 
alled mixing set, has important ap-pli
ations in produ
tion planning problems (in parti
ular lot-sizing [55℄). We will be analyzingit again in Se
tions 4.2 and 5.2.3.The 
onstru
tion of an extended formulation of (1.11)�(1.13) 
an be divided into the threemain steps below. We do not go into details or give any proofs, as we only want to 
onveythe main idea of the te
hnique. Furthermore, sin
e an extension of this approa
h is des
ribedin Chapter 2, rigorous proofs 
an be found there.1. First one observes that in every extreme point of the 
onvex hull of (1.11)�(1.13), thefra
tional part of s is one of the values f0, . . . , fn, where for 1 ≤ i ≤ n, fi := bi − ⌊bi⌋ isthe fra
tional part of bi, and f0 := 0.
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tion2. Then one adds the following 
onstraints to the original formulation (1.11)�(1.13):
s = µ+

∑n
i=0 fiδi, (1.14)

∑n
i=0 δi = 1, δ1, . . . , δn ≥ 0, (1.15)
µ, δ1, . . . , δn integer. (1.16)The above 
onditions for
e variable s to take a fra
tional part in the set of values

{f0, . . . , fn}. One 
an show that adding 
onstraints (1.14)�(1.16) does not 
hange the
onvex hull of feasible solutions.3. The set of 
onstraints (1.11)�(1.13) and (1.14)�(1.16) is then tightened and an equivalentdes
ription is obtained that has the following form:
s = µ+

∑n
i=0 fiδi, (1.17)

Aµ+Bδ + Cz ≥ d, (1.18)
µ, δ1, . . . , δn, z1, . . . , zn integer, (1.19)where [A | B | C] is a totally unimodular matrix and d is an integral ve
tor. Sin
evariable s does not appear in any of inequalities (1.18), by Theorem 1.13 the integrality
onditions (1.19) 
an be removed without a�e
ting the 
onvex hull of feasible solutions.The resulting linear system is an extended formulation of the mixing set (1.11)�(1.13).Step 3 suggests that su
h an approa
h 
an only be used for some parti
ular mixed-integersets, as one needs to obtain a linear system with totally unimodular matrix. The idea of ex-ploiting the total unimodularity of a pure integer reformulation of a mixed-integer set appearsin [53℄.The general idea underlying the above te
hnique �modeling the 
ontinuous variable a
-
ording to the possible fra
tional parts taken at the verti
es� 
an be extended to mixed-integersets with more than one 
ontinuous variable. Su
h an extension was su

essfully used by Millerand Wolsey [45, 46℄, Van Vyve [63, 65℄ and Conforti, Di Summa and Wolsey [12℄ in ta
klingspe
i�
 mixed-integer sets that appear in lot-sizing problems.In Chapter 2 we present a modeling te
hnique that generalizes that des
ribed here and
an be used to formulate a quite large family of mixed-integer sets, whi
h in
ludes as spe
ial
ases several sets studied by the authors 
ited above.We remark that the te
hnique sket
hed above is just one of the possible ways of exploitingthe properties of the verti
es (see e.g. [53, 63, 65℄).1.5.4 Extended formulations based on the union of polyhedraTheorem 1.3 yields an extended formulation for the 
onvex hull of several polyhedra P1, . . . , Pkin R

n, provided that external des
riptions of these polyhedra are available. We remark thatsu
h an extended formulation is 
ompa
t, while the des
ription of conv(P1 ∪ · · · ∪ Pk) in itsoriginal spa
e R
n may have an exponential number of fa
et-de�ning inequalities (su
h anexample is given in [18℄).



1.5. Some well-known types of extended formulations 17Balas' result was re
ently applied by Conforti and Wolsey in [16℄, where a te
hnique isintrodu
ed and used to �nd extended formulations of some mixed-integer sets arising in lot-sizing problems. The same idea, whi
h we present below, had been also used by Atamtürk [2℄to formulate a simple mixed-integer set that has appli
ation in robust optimization.To summarize the approa
h, we use the following notation: given a mixed-integer set X,let V be the set of verti
es of conv(X) and let R be the set of its extreme rays (we assume that
conv(X) is a pointed polyhedron). The te
hnique proposed in [16℄ is as follows (we present itin a simpli�ed version):1. First the set of verti
es V is partitioned into subsets V1, . . . , Vk a

ording to some 
rite-rion (usually the fra
tional part of one or some of the 
ontinuous variables).2. For ea
h 1 ≤ i ≤ k, let Pi be the polyhedron generated by the points in Vi and therays in R. Note that conv(X) = conv(P1 ∪ · · · ∪ Pk), as all these polyhedra have thesame re
ession 
one. For 1 ≤ i ≤ k, an extended formulation Qi of Pi is 
onstru
ted insome way: this is usually done by (i) introdu
ing new variables to model the 
ommonproperty of the verti
es in Vi and (ii) observing that the resulting set belongs to a 
lassof mixed-integer sets for whi
h an extended formulation is known.3. Balas' result is then applied either to the polyhedra P1, . . . , Pk (whi
h 
an be deter-mined by 
omputing the proje
tion of Q1, . . . , Qk), or to their extended formulations

Q1, . . . , Qk. In both 
ases an extended formulation of conv(X) is found.The above approa
h will be used in Se
tion 8.3 to ta
kle a mixed-integer set whi
h hasappli
ation both in deterministi
 and sto
hasti
 lot-sizing problems with ba
klogging.1.5.5 Extended formulations more generallyThe de�nition of extended formulation of a polyhedron that we gave at the beginning ofSe
tion 1.4 
an be stated in a di�erent way, as the following result shows:Proposition 1.18 Let P be a polyhedron in the variables x ∈ R
n and Q a polyhedron in thevariables (x,w) ∈ R

n+p. The following 
onditions are equivalent:(i) P is the proje
tion of Q onto the x-spa
e of variables;(ii) for every ve
tor c ∈ R
n, x̄ is an optimal solution of the linear program min{cx : x ∈ P}if and only if there exists w̄ su
h that (x̄, w̄) is an optimal solution of the linear program

min{cx : (x,w) ∈ Q}.Thus 
ondition (ii) 
ould be taken as de�nition of extended formulation. We now showthat su
h a de�nition is sometimes too restri
tive, in the sense that a softer version may besu�
ient to transform a mixed-integer program into a linear program on a di�erent spa
e ofvariables.
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tionSpe
i�
 obje
tive fun
tionsIn many 
ases the mixed-integer program under 
onsideration is the model of a real-worldproblem for whi
h not all possible obje
tive fun
tions are meaningful. For instan
e, when theobje
tive fun
tion cx represents a 
ost, one will probably be interested only in ve
tors c thathave nonnegative 
omponents.For a �xed mixed-integer set X, let F be the set of ve
tors c ∈ R
n that 
orrespond to�interesting� obje
tive fun
tions, i.e. obje
tive fun
tions that 
an really o

ur in the problemthat is modeled by X. De�ne P := conv(X) and let Q be a polyhedron in the variables

(x,w) ∈ R
n+p that satis�es the following weak version of 
ondition (ii) of Proposition 1.18:(ii') For every ve
tor c ∈ F , x̄ is an optimal solution of the linear program min{cx : x ∈ P}if and only if there exists w̄ su
h that (x̄, w̄) is an optimal solution of the linear program

min{cx : (x,w) ∈ Q}.Su
h a polyhedron Q is not an extended formulation of P a

ording to the de�nition givenin Se
tion 1.4, however it is su�
ient to 
onvert the mixed-integer program min{cx : x ∈ X}into the linear program min{cx : (x,w) ∈ Q} for all �interesting� obje
tive fun
tions.To demonstrate that su
h a weaker version of the 
on
ept of extended formulation 
anbe useful, we 
onsider lot-sizing problems. In a lot-sizing problem several 
osts need to be
onsidered: for ea
h period i, one usually has a per unit produ
tion 
ost pi, a �xed 
ost qithat one must pay if produ
tion takes pla
e in period i, a per unit holding 
ost hi for storingthe ex
ess of produ
tion at the end of period i and a per unit ba
klogging (re
overy) 
ost ri.Several kinds of lot-sizing problems (and relaxations of them) were studied and su

essfullyformulated without any assumptions on the obje
tive fun
tion (i.e. on the 
osts), see e.g. [12,13, 16, 30, 45, 46, 64, 65℄, but many others do not seem to be easily tra
table in the general 
ase.However it turns out that in pra
ti
e many instan
es satis�es the following spe
ial 
ondition:for 2 ≤ i ≤ N (where N is the total number of periods), pi−1 +hi−1 ≥ pi and pi + ri−1 ≥ pi−1.A problem satisfying su
h a property is said to have Wagner-Whitin 
osts.A number of lot-sizing problems with Wagner-Whitin 
osts were studied in the last years,see e.g. [45, 53, 63, 65℄. Under Wagner-Whitin hypotheses, the optimal solutions satisfy somespe
ial properties that 
an be exploited to 
onstru
t 
ompa
t extended formulation in theweaker sense dis
ussed above.Linear inequality formulations based on dynami
 programming(We use here some basi
 
on
epts about dynami
 programming, shortest path problems ondigraphs and linear programming duality, see e.g. [7, 38, 58℄ respe
tively. Our presentation ismostly based on [68℄.)A number of problems that 
an be solved through dynami
 programming 
an be formalizedas follows: states are labeled 0, . . . , N and the re
ursive fun
tion has the form
F (0) = 0, F (j) = min

0≤i<j
{F (i) + c(i, j)} for 1 ≤ j ≤ n, (1.20)where c(i, j) is the nonnegative 
ost of the transition from state i to state j. The appli
ation ofthe re
ursion yields the optimal value F (n) along with an optimal solution that is determined



1.5. Some well-known types of extended formulations 19as follows: if 0 = j0 < j1 < · · · < jk = N is a sequen
e of indi
es su
h that F (jℓ) =

F (jℓ−1)+c(jℓ−1, jℓ) for 1 ≤ ℓ ≤ k, then the optimal solution 
onsists of the following de
isions:for ea
h 1 ≤ ℓ ≤ k, go from state jℓ−1 to state jℓ.Let D = (V,A) be the dire
ted graph with node set V := {0, . . . , N} and ar
 set A :=

{(i, j) : 0 ≤ i < j ≤ N}. Note that D 
ontains no 
y
les. If we assign weight c(i, j) to ar
 (i, j),then the dynami
 programming re
ursion amounts to �nding a shortest path in D 
onne
tingnodes 0 and N . The well-known linear programming formulation of su
h a problem is
min

∑

0≤i<j≤N

c(i, j)wijsubje
t to ∑

j>0

w0j = 1,

∑

j>k

wjk −
∑

i<k

wik = 0, 1 ≤ k ≤ N − 1,

∑

i<N

wiN = 1,

wij ≥ 0, 0 ≤ i < j ≤ N.The above problem has an optimal solution with wij ∈ {0, 1} for all 0 ≤ i < j ≤ N . Ar
s
(i, j) 
orresponding to variables that take value 1 form an optimal path. By interpreting ea
h
wij as a de
ision variable 
orresponding to the transition from state i to state j, su
h a pathyields an optimal solution of the original problem.This shows that the above linear program is a linear formulation of the original problem,in the sense that solving it yields the optimal solution of the original problem. This propertyis similar to 
ondition (ii) of Proposition 1.18, in the sense that a given problem is 
onvertedinto a linear program on a di�erent spa
e.The same linear program 
an also be obtained by using linear programming duality. Spe
if-i
ally, observe that the following linear program is the equivalent of re
ursion (1.20):

max F (n)subje
t to F (j) − F (i) ≤ cij , 0 ≤ i < j ≤ N,

F (0) = 0.By interpreting F (0), . . . , F (n) as variables, the dual of the above linear program is essentiallythe linear programming formulation of the shortest path problem seen above.Clearly su
h a shortest path formulation 
an be given only for problems that admit adynami
 programming algorithm with a re
ursion of type (1.20). However Martin, Rardinand Campbell [43℄ showed that this approa
h 
an be generalized to a wider 
lass of problemthat 
an be solved by dis
rete dynami
 programming: given a dynami
 programming algo-rithm, they formulate the original instan
e as a linear program arising from a problem on ahypergraph.



20 Chapter 1. Introdu
tionGeneral a�ne transformationsThe de�nition of extended formulation given in Se
tion 1.4 is based on the notion of proje
tion.Sin
e a proje
tion is a parti
ular type of full-rank a�ne transformation, su
h a de�nition 
anbe generalized as we now des
ribe.Let P be a polyhedron in the variables x ∈ R
n and Q a polyhedron in the variables y ∈ R

m,where m ≥ n. Let T be a full-rank n×m matrix and let t be a ve
tor in R
n. The mapping gde�ned by g(y) := Ty + t for y ∈ R

m is a full-rank a�ne transformation of R
m into R

n.Assume that g(Q) = P . Then one 
an easily 
he
k that the following analogue of 
ondi-tion (ii) of Proposition 1.18 holds:(ii�) For every c ∈ R
n, x̄ is an optimal solution of the linear program min{cx : x ∈ P}if and only if x̄ = T ȳ + t, where ȳ ∈ Q is an optimal solution of the linear program

min{cTy + ct : y ∈ Q}.Note that if t = 0 and T = [In | O] (where In is the n × n identity matrix), we reobtain
ondition (ii) of Proposition 1.18 and Q is an extended formulation of P a

ording to ourde�nition.This more general kind of extended formulation was studied by Padberg and Sung [50℄,who proved a generalization of Theorem 1.17 that we now des
ribe. Following [50℄, we assumewithout loss of generality that the 
olumns of T are ordered so that T = [T1 | T2], where T1 isa non-singular n× n matrix.Theorem 1.19 Let Q be a polyhedron in R
m de�ned by the linear system

Ay ≥ b, Cy = d.Partition A = [A1 | A2] and C = [C1 | C2], where A1, C1 are the 
olumn submatri
es formedby the �rst n 
olumns of A,C respe
tively. The polyhedron g(Q) is de�ned by the inequalities
(uA1 + vC1)T

−1
1 (x− t) ≥ ub+ vdfor all ve
tors (u, v) (of suitable dimension) belonging the following polyhedral 
one:

u(A2 −A1T
−1
1 T2) + v(C2 − C1T

−1
1 T2) = 0, u ≥ 0.If the above is a polyhedral 
one with apex, then its extreme rays are su�
ient.If t = 0 and T = [In | O], the above statement 
oin
ides with Theorem 1.17. Padberg andSung [50℄ used this result to 
ompare four approximate extended formulations of the travelingsalesman problem, ea
h de�ned on a di�erent spa
e of variables.1.6 Outline of the thesisThe main subje
t of this work is the study of a 
lass of mixed-integer sets whose 
onstraintmatri
es are totally unimodular. A te
hnique is presented that allows one to 
onstru
t ex-tended formulations for su
h sets, and the des
ription in the original spa
e is also 
onsideredfor some spe
ial 
ases. Furthermore, possible extensions to other sets are 
onsidered.



1.6. Outline of the thesis 21In Chapter 2 we study mixed-integer sets of the type
MIXTU := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I}, (1.21)where A is a totally unimodular matrix, b is a 
olumn ve
tor and I is a nonempty subset of
{1, . . . , n}. By a result of Eisenbrand [23, 11℄, the problem of 
he
king nonemptiness of a set
MIXTU is NP-
omplete, even if A is a totally unimodular matrix with at most two nonzeroentries per 
olumn and b is a half-integral ve
tor (i.e. 2b is integral). This, together withthe equivalen
e between separation and optimization (Theorem 1.6), indi
ates that �nding anexpli
it inequality des
ription of the polyhedron conv

(
MIXTU

) will most likely be an elusivetask.We then fo
us on sets of the type MIXTU for whi
h the matrix A 
ontains at most twononzero entries per row (a set of this type is denoted by MIX2TU ), and sets of the type
MIXTU for whi
h A is the transpose of a �ow network matrix (denoted MIXDN ). Weprovide an extended formulation for the polyhedron conv

(
MIXDN

), and this will also yieldan extended formulation for conv
(
MIX2TU

). We summarize below the approa
h used to�nd an extended formulation of conv
(
MIXDN

), whi
h is based on a general idea that wasalso adopted by Miller and Wolsey [45, 46℄ and Van Vyve [63, 65℄ to ta
kle some spe
i�
mixed-integer sets arising from lot-sizing problems.First we study a mixed-integer set XF , whi
h is the set of points that satisfy the system
Ax ≥ b (whi
h de�nes MIXDN ), where all variables are required to take a fra
tional partbelonging to a given list F . We introdu
e additional variables to model the 
onditions de�ning
XF and obtain a pure integer des
ription of this set. The 
onstraints are then strengthenedand an equivalent pure integer des
ription is obtained, where the 
onstraint matrix is nowtotally unimodular. This will provide an extended formulation of conv

(
XF

).Next we study the 
ase in whi
h the list F is 
omplete: that is, it 
ontains all possiblefra
tional parts that the variables take over the set of verti
es of conv
(
MIXDN

). We provethat under this assumption the above result yields an extended formulation of conv
(
MIXDN

).We show that a 
omplete list for a set of the type MIXDN 
an always be exhibited, thusan extended formulation of our type 
an be 
onstru
ted in all 
ases. We also show that ifthere is a 
omplete list F that 
ontains a polynomial number of elements, then the extendedformulation is 
ompa
t. This proves that linear optimization over sets of the typeMIXDN (or
MIX2TU ) that have this property 
an be 
arried out e�
iently through linear programming.This is in 
ontrast to the NP-
ompleteness result mentioned above, whi
h holds when thematrix A in (1.21) has at most two nonzero entries per 
olumn.In Chapter 3 we dis
uss the size of an extended formulation of the type introdu
ed inChapter 2.On the negative side, we show that there exist mixed-integer sets of the type MIX2TUthat do not admit a 
omplete list of fra
tional parts 
ontaining only a polynomial number ofelements. This implies that for su
h sets, no extended formulation of our type is 
ompa
t.On the other hand, we give some su�
ient 
onditions ensuring that a mixed-integer set
MIX2TU admits a 
omplete list of polynomial length, thus proving that under these 
onditionsthe extended formulation of Chapter 2 is polynomial in the original des
ription of the set. The
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tionlist of fra
tional parts is expli
itly given through a 
onstru
tion based on a graph asso
iatedwith the set.In Chapter 4 we show that several mixed-integer sets that have been studied in the litera-ture 
an be transformed into sets of the typeMIX2TU and thus admit an extended formulationof the type introdu
ed in Chapter 2. For many of these sets, one of the 
onditions ensuringthe existen
e of a 
omplete list of fra
tional parts with a polynomial number of elements is sat-is�ed, and su
h a list 
an be expli
itly given. Therefore the extended formulation is 
ompa
tfor su
h sets.We will see that most of the mixed-integer sets 
onsidered in this 
hapter have appli
ationin real-word problems, su
h as produ
tion planning. Our results provide a uni�ed frameworkfor the extended formulations of these sets found in the last years.In Chapter 5 we 
onsider the problem of 
arrying out expli
itly the proje
tion of anextended formulation of a mixed-integer set of the type MIX2TU . When this 
an be done, weobtain a linear inequality des
ription of the polyhedron conv
(
MIX2TU

) in its original spa
e.Sin
e 
omputing the proje
tion of our extended formulation seems to be an extremely hardtask in general, we only 
onsider two spe
ial 
ases for whi
h the proje
tion 
an be 
al
ulated:the �rst 
ase is a general set of the type MIX2TU having a single 
ontinuous variable, whilethe se
ond set studied is a mixed-integer set arising from some lot-sizing problems.We will see that the problem of 
omputing the proje
tion of an extended formulation ofthe type given in Chapter 2 amounts to solving a family of 
ir
ulation problems on a networkdepending on 
ontinuous parameters.Chapter 6 is entirely devoted to mixed-integer sets of the type MIX2TU having a singleinteger variable. We give a linear inequality des
ription (in the original spa
e) of the 
onvexhull of an arbitrary set in this 
lass. In 
ontrast to the �opposite� 
ase of a single 
ontinu-ous variable 
onsidered in Chapter 5, su
h a des
ription is obtained without 
onstru
ting orproje
ting any extended formulation of the set. A te
hnique appearing in [24℄ will be used.We will point out that all the inequalities of the formulation 
an be derived as simple MIR-inequalities, while the Chvátal-Gomory pro
edure is not su�
ient to generate all of them.In Chapter 7 we 
onsider two examples of a mixed-integer set whose 
onstraint matrix hasa simple stru
ture but is not totally unimodular (in fa
t, it is not even a 0,±1-matrix). Weshow how the approa
h des
ribed in Chapter 2 
an be extended and how this yields extendedformulations for the two sets that are analyzed.The 
oe�
ients of the �rst set form a sequen
e of divisible number, while the 
onstraintsof the se
ond set 
ontain only two distin
t (but arbitrary) 
oe�
ients on the integer variables.For the former set the size of the extended formulation is polynomial in the size of the originaldes
ription of the set, while for the latter we 
an only obtain a pseudo-polynomial des
ription.We will also point out that in both 
ases the su

ess in �nding su
h formulations reliesupon the very spe
ial properties that ea
h integer variable appears in a single inequality ofthe original des
ription of the set.



1.6. Outline of the thesis 23In Chapter 8 we present a di�erent approa
h to 
onstru
t formulations of mixed-integersets in the original spa
e or in an extended spa
e. In 
ontrast to the te
hnique of Chapter 2and its extension des
ribed in Chapter 7, no expli
it enumeration of fra
tional parts or othernumbers is required (ex
ept possibly in the �nal phase of the pro
ess). We adopt this te
hniqueto formulate two spe
i�
 sets, but we 
annot determine a 
lass of mixed-integer sets for whi
hthis approa
h 
an be used.The idea 
an be summarized as follows. A given mixed-integer set X is written as X = Z∩

P for some mixed-integer set Z and some polyhedron P that is des
ribed by a small number ofinequalities. Then one proves that for a parti
ular 
hoi
e of Z and P , conv(X) = conv(Z)∩P .Next the set Z is shown to be equivalent to a mixed-integer set for whi
h a formulation isknown either in the original spa
e or in an extended spa
e. This 
an be used to derive aformulation of X.Finally in Chapter 9 some open problems in this �eld are dis
ussed.Note The results presented in Chapters 2�4 are joint work with Mi
hele Conforti, Friedri
hEisenbrand and Lauren
e A. Wolsey. The results of Chapter 8 and partly of Chapters 5 and 7are joint work with Mi
hele Conforti and Lauren
e A. Wolsey.
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Chapter 2Extended formulations of dualnetwork setsIn this 
hapter we study mixed-integer sets of the type
MIXTU := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I}, (2.1)where A is a totally unimodular matrix, b is a 
olumn ve
tor and I is a nonempty subset of
{1, . . . , n}.We point out in Se
tion 2.1 that the problem of 
he
king nonemptiness of a set MIXTUis NP-
omplete, even if A is a totally unimodular matrix with at most two nonzero entriesper 
olumn and b is a half-integral ve
tor (i.e. 2b is integral). This, together with the equiv-alen
e between separation and optimization (Theorem 1.6), indi
ates that �nding an expli
itinequality des
ription of the polyhedron conv

(
MIXTU

) will most likely be an elusive task.In Se
tion 2.2 we introdu
e two families of matri
es that are studied in this 
hapter: oneis the 
lass of dual network matri
es, i.e. the transposes of matri
es of 
ir
ulation problemson a network; the other 
onsists of the totally unimodular matri
es with at most two nonzeroentries per row. We re
all some well-known results about these matri
es and in parti
ular weobserve that the matri
es of the se
ond 
lass 
an be easily �transformed� into matri
es of the�rst 
lass.LetMIXDN be a mixed-integer set of the typeMIXTU de�ned above, with the additionalrestri
tion that A is a dual network matrix. Similarly, let MIX2TU be a mixed-integer set ofthe type MIXTU where A has at most two nonzero entries per row. In Se
tions 2.3�2.4 weprovide an extended formulation for the polyhedron conv
(
MIXDN

). This, together with theobservations made in Se
tion 2.2, gives an extended formulation of conv
(
MIX2TU

).The te
hnique that we present is based on a general idea that was also used by Miller andWolsey [45, 46℄ and Van Vyve [63, 65℄ to ta
kle some spe
i�
 mixed-integer sets arising fromlot-sizing problems. Their 
ommon approa
h 
onsisted in modeling the 
ontinuous variablesof the problem by introdu
ing integer variables, so that a pure integer des
ription of the setwas derived. A linear inequality des
ription of this pure integer formulation was then obtained(see also Se
tion 1.5.3). In this last step total unimodularity usually plays a 
entral role. The25



26 Chapter 2. Extended formulations of dual network setsidea of 
onstru
ting 
ompa
t extended formulations by exploiting the total unimodularity ofa pure integer reformulation of the set appears in a paper by Po
het and Wolsey [53℄.The approa
h used here to �nd an extended formulation of conv
(
MIXDN

) is now sum-marized. In Se
tion 2.3 we study a mixed-integer set XF , whi
h is the set of points thatsatisfy the system Ax ≥ b (whi
h de�nes MIXDN ), where all variables are required to takea fra
tional part belonging to a given list F . We introdu
e additional variables to model the
onditions de�ning XF and obtain a pure integer des
ription of this set. The 
onstraints arethen strengthened and an equivalent pure integer des
ription is obtained, where the 
onstraintmatrix is now totally unimodular. This will provide an extended formulation of conv
(
XF
).In Se
tion 2.4 we study the 
ase in whi
h the list F is 
omplete: that is, it 
ontains allpossible fra
tional parts that the variables take over the set of verti
es of conv

(
MIXDN

). Weprove that under this assumption the result of Se
tion 2.3 yields an extended formulation of
conv

(
MIXDN

). We show that a 
omplete list for a set of the type MIXDN 
an always beexhibited, thus an extended formulation of our type 
an be 
onstru
ted in all 
ases. We alsoshow that if there is a 
omplete list F that 
ontains a polynomial number of elements, thenthe extended formulation is 
ompa
t. This proves that linear optimization over sets of thetype MIXDN (or MIX2TU ) that have this property 
an be 
arried out in polynomial timethrough linear programming. This is in 
ontrast to the NP-
ompleteness result mentionedabove, whi
h holds when the matrix A in (2.1) has at most two nonzero entries per 
olumn.Finally in Se
tion 2.5 we dis
uss a variant of the above approa
h whi
h allows one toredu
e the size of the extended formulation. Su
h a variant 
onsists in using a di�erent list offra
tional parts Fi for ea
h variable xi rather than a single list F for all variables of the set.This redu
es the number of variables and 
onstraints of the extended formulation.The results of this 
hapter are joint work with Mi
hele Conforti, Friedri
h Eisenbrand andLauren
e A. Wolsey and are also summarized in [11℄.2.1 ComplexityAs re
alled in Se
tion 1.3.2, a linear system with totally unimodular matrix and integralright-hand side de�nes an integral polyhedron, i.e. a polyhedron whi
h is the 
onvex hull ofits integral points. Thus optimization of a linear fun
tion over pure integer sets de�ned bysystems of this type 
an be 
arried out in polynomial time by means of linear programming.It is then natural to wonder whether a similar result also holds in the mixed-integer 
ase.A result due to Eisenbrand [23℄ (whi
h also appears in [11℄) shows that the answer to theabove question is negative (unless P = NP) even under some more restri
tive assumptions.Theorem 2.1 [23, 11℄ The problem of de
iding whether a mixed-integer set with totally uni-modular 
onstraint matrix 
ontains a feasible point is NP-
omplete, even if the 
onstraintmatrix has at most two nonzero entries per 
olumn and all 
omponents of the right-hand sideve
tor are half-integer. In parti
ular, it follows that linear optimization over su
h sets is an
NP-hard problem.The proof of the above theorem is via redu
tion to CNF-SAT.



2.2. Dual network matri
es 27Consider a mixed-integer set of the type
MIXTU := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I},where A is a totally unimodular matrix and I is a nonempty subset of {1, . . . , n}. Let cx bean obje
tive fun
tion to be minimized over MIXTU and assume that we know the fra
tionalparts f1, . . . , fn of the 
omponents of an optimal solution. For 1 ≤ i ≤ n, we introdu
e aninteger variable µi that represents the integer part of xi and we 
onsider the mixed-integer set
xi = µi + fi, 1 ≤ i ≤ n,

Ax ≥ b,

µi integer, 1 ≤ i ≤ n.The above 
onstraints de�ne a subset of MIXTU (as fi = 0 for i ∈ I) whi
h 
ontains anoptimal solution of the minimization problem. Thus optimizing cx over this set is the same asoptimizing over the original set. Furthermore, sin
e we know that f1, . . . , fn are the fra
tionalparts of an optimal solution, we 
an equivalently minimize the fun
tion cµ.System Ax ≥ b 
an now be rewritten as Aµ ≥ b − Af , whi
h 
an be tightened to Aµ ≥

⌈b−Af⌉, where ⌈b−Af⌉ indi
ates the ve
tor whose 
omponents are ⌈bj − (Af)j⌉. We thenobtain the system
xi = µi + fi, 1 ≤ i ≤ n,

Aµ ≥ ⌈b−Af⌉,

µi integer, 1 ≤ i ≤ n.Note that ea
h variable xi only appears in one equation, whi
h determines its value. Sin
e
A is a totally unimodular matrix and the right-hand side ⌈b−Af⌉ is an integral ve
tor, byTheorem 1.13 we 
an drop the integrality 
onstraints from the above system. The originalminimization problem 
an now be solved by means of linear programming.Together with Theorem 2.1, the above dis
ussion shows that given an optimization problemof the form min

{
cx : x ∈MIXTU

}, �nding the fra
tional parts of the 
omponents of anyoptimal solution is an NP-hard problem (even if the 
onstraint matrix 
ontains at most twononzero entries per 
olumn and all 
omponents of the right-hand side ve
tor are half-integer).2.2 Dual network matri
esWe re
all here some basi
 fa
ts about the matri
es that are the obje
t of this study.Given a network N = (V,A) with node set V and ar
 set A, the node-ar
 in
iden
e matrixof N is the matrix M = (mv,a : v ∈ V, a ∈ A) de�ned by
mv,a :=







+1 if v is the head of a,
−1 if v is the tail of a,
0 otherwise.



28 Chapter 2. Extended formulations of dual network setsSu
h a matrix has exa
tly two nonzero entries per 
olumn (one +1 and one −1). If we allowar
s having only one endpoint in the network (the other endpoint being a dummy node),matrix M has at most two nonzero entries per 
olumn, and ea
h 
olumn with two nonzeroentries 
ontains one +1 and one −1. The matri
es of this type are the 
onstraint matri
es of
ir
ulation problems on networks (this will be dis
ussed in Se
tion 5.1).We say that a 0,±1-matrix A with at most two nonzero entries per row is a dual networkmatrix if ea
h row of A having two nonzero entries 
ontains one +1 and one −1. Thus dualnetwork matri
es are the transposes of the 
onstraint matri
es of 
ir
ulation problems onnetworks.In this 
hapter we study mixed-integer sets whose 
onstraint matrix is totally unimodularand 
ontains at most two nonzero entries per row. A matrix of this type 
an be 
onverted intoa dual network matrix by 
hanging the sign of some of its 
olumns. To see this, we �rst re
allthe following 
hara
terization, whi
h is due to Heller and Tompkins [32℄, see e.g. Theorem 2.8in [49℄.Theorem 2.2 Let A be a 0,±1-matrix with at most two nonzero entries per row, where {aj :

j ∈ N} is the set of 
olumns of A. Then A is totally unimodular if and only if the set N 
anbe partitioned into two 
lasses R,B su
h that all entries of the ve
tor ∑j∈R aj −
∑

j∈B aj are
0,±1.This is a parti
ular 
ase of the 
hara
terization of totally unimodular matri
es given byGhouila-Houri [26℄ (see also Theorem 1.14). The 
ondition in the above theorem 
an be statedthis way: in every row of A with two nonzero elements, the nonzero entries have the samesign if and only if they belong to 
olumns in distin
t 
lasses.Corollary 2.3 Every dual network matrix is totally unimodular.Proof. Just 
hoose R := N and B := ∅. �Another well-known 
onsequen
e of Theorem 2.2 is the following:Corollary 2.4 Let A be a 0,±1-matrix with at most two nonzero entries per row, where
{aj : j ∈ N} is the set of 
olumns of A. Then A is totally unimodular if and only if N
ontains a subset R su
h that the matrix AR, obtained by multiplying by −1 the 
olumns ajfor j ∈ R, is a dual network matrix.Proof. If A is a totally unimodular matrix with at most two nonzero entries per row, take apartition (R,B) of N satisfying the 
ondition of Theorem 2.2. It is easily 
he
ked that then
AR is a dual network matrix.For the 
onverse, observe that if there is a subset R ⊆ N su
h that AR is a dual networkmatrix, then the partition (R,B), where B := N \ R, satis�es the 
ondition of Theorem 2.2and thus A is totally unimodular. �



2.3. Dual network systems and lists of fra
tional parts 292.3 Dual network systems and lists of fra
tional partsThe goal of this 
hapter is to provide an extended formulation for a set of the type MIX2TU ,i.e. a mixed-integer set whose 
onstraint matrix is totally unimodular and 
ontains at mosttwo nonzero entries per row. To a
hieve this result, we �rst study subsets of R
n that arede�ned by a linear system with dual network matrix, with the additional restri
tion that allvariables 
an only take a fra
tional part belonging to a given list.Given a real number α, we write f(α) to denote the fra
tional part of α. Also, throughoutthis dissertation fra
tional part stands for any real number in the interval [0, 1).De�ne N := {1, . . . , n} and 
onsider a general linear system with dual network matrix inthe variables x1, . . . , xn:

xi − xj ≥ lij , (i, j) ∈ N e, (2.2)
xi ≥ li, i ∈ N l, (2.3)
xi ≤ ui, i ∈ Nu, (2.4)where N e ⊆ N × N and N l, Nu ⊆ N . The set N e does not 
ontain any pair of the type

(i, i) for i ∈ N . The values lij , li, ui are arbitrary real numbers. We remark that the abovesystem may also in
lude 
onstraints of the type xi − xj ≤ uij , as this inequality is equivalentto xj − xi ≥ lij for lij := −uij.Suppose we are given a list of fra
tional parts F = {f1, . . . , fk}, with f1 > · · · > fk, andlet K := {1, . . . , k} be its set of indi
es. Let XF be the set of points x satisfying inequalities(2.2)�(2.4) along with the additional 
ondition that all variables take a fra
tional part in F :
XF := {x ∈ R

n : x satis�es (2.2)�(2.4), f(xi) ∈ F for i ∈ N}.That is, XF is the set of points x ∈ R
n su
h that there exist µi, δi

ℓ, for i ∈ N and ℓ ∈ K,satisfying the following 
onstraints:
xi = µi +

∑k
ℓ=1 fℓδ

i
ℓ, i ∈ N, (2.5)

∑k
ℓ=1 δ

i
ℓ = 1, δi

ℓ ≥ 0, i ∈ N, ℓ ∈ K, (2.6)
xi − xj ≥ lij, (i, j) ∈ N e, (2.7)

xi ≥ li, i ∈ N l, (2.8)
xi ≤ ui, i ∈ Nu, (2.9)

µi, δi
ℓ integer, i ∈ N, ℓ ∈ K. (2.10)In other words, XF is the proje
tion of the mixed-integer set (2.5)�(2.10) onto the x-spa
e ofvariables. In the remainder of this se
tion we give an extended formulation of the polyhedron

conv
(
XF

).Consider the following transformation:
µi

0 := µi, µi
ℓ := µi +

ℓ∑

j=1

δi
j for i ∈ N and ℓ ∈ K. (2.11)



30 Chapter 2. Extended formulations of dual network setsSin
e the above is a unimodular transformation (see e.g. [38℄), we 
an equivalently study thetransformed of (2.5)�(2.10) under (2.11).De�ne f0 := 1 and fk+1 := 0. For �xed i ∈ N , under transformation (2.11) an equationin (2.5) be
omes
xi =

k∑

ℓ=0

(fℓ − fℓ+1)µ
i
ℓ (2.12)and the k + 1 
onstraints in (2.6) be
ome

µi
k − µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0 for ℓ ∈ K. (2.13)In the following we strengthen 
onstraints (2.7)�(2.9). Consider �rst an inequality of thetype xi ≤ li with i ∈ N l. Let ℓ(li) be the highest index ℓ ∈ {0, . . . , k} su
h that fℓ ≥ f(li).Lemma 2.5 Assume that xi, δi
ℓ and µi

ℓ for ℓ ∈ K satisfy (2.5), (2.6), (2.10) and (2.11). Then
xi ≥ li if and only if

µi
ℓ(li)

≥ ⌊li⌋ + 1. (2.14)Proof. The result 
an be 
he
ked dire
tly. We show here that inequality (2.14) 
an be obtainedthrough the Chvátal-Gomory pro
edure (see Theorem 1.10).By equation (2.5), inequality xi ≥ li is equivalent to µi +
∑k

ℓ=1 fℓδ
i
ℓ ≥ li. For ε > 0 smallenough, 
ombining su
h inequality with equation

−(f(li) − ε)

k∑

ℓ=1

δi
ℓ = −(f(li) − ε)(whi
h holds by (2.6)) and with the nonnegativity of the δi

ℓ, and then applying Chvátal-Gomoryrounding, gives inequality µi +
∑

ℓ≤ℓ(li)
δi
ℓ ≥ ⌊li⌋ + 1, whi
h is equivalent to (2.14). �For i ∈ Nu, let ℓ′(ui) be the highest index ℓ ∈ {0, . . . , k} su
h that fℓ > f(ui).Lemma 2.6 Assume that xi, δi

ℓ and µi
ℓ for ℓ ∈ K satisfy (2.5), (2.6), (2.10) and (2.11). Then

xi ≤ ui if and only if
µi

ℓ′(ui)
≤ ⌊ui⌋. (2.15)Proof. The proof is similar to that of Lemma 2.5, with ε = 0. �We now 
onsider an inequality of the type xi − xj ≥ lij for (i, j) ∈ N e. De�ne kij to bethe highest index ℓ ∈ {0, . . . , k} su
h that fℓ + f(lij) ≥ 1. Given an index t ∈ K, de�ne t′ij tobe the highest index ℓ ∈ {0, . . . , k} su
h that fℓ ≥ f(ft + f(lij)).Lemma 2.7 Assume that xi, xj , δi

ℓ, δj
ℓ , µi

ℓ, µj
ℓ for ℓ ∈ K satisfy (2.5), (2.6), (2.10) and(2.11). Then xi − xj ≥ lij if and only if the following inequalities are satis�ed:

µi
t′ij

− µj
t ≥ ⌊lij⌋ + 1, 1 ≤ t ≤ kij, (2.16)

µi
t′ij

− µj
t ≥ ⌊lij⌋, kij < t ≤ k. (2.17)
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tional parts 31Proof. Substituting for xj using equation (2.5), inequality xi − xj ≥ lij be
omes
xi ≥ µj +

k∑

ℓ=1

fℓδ
j
ℓ + ⌊lij⌋ + f(lij). (2.18)First we show that inequality (2.17) is valid for t > kij . As ∑k

ℓ=1 fℓδ
j
ℓ ≥

∑

ℓ≤t fℓδ
j
ℓ ≥

ft

∑

ℓ≤t δ
j
ℓ , we obtain from (2.18) the following valid inequality:

xi ≥ µj + ft

∑

ℓ≤t

δj
ℓ + ⌊lij⌋ + f(lij).Adding the valid inequality (1 − ft) ≥ (1 − ft)
∑

ℓ≤t δ
j
ℓ and isolating xi gives

xi ≥ µj +
∑

ℓ≤t

δj
ℓ + ⌊lij⌋ + f(lij) − 1 + ft. (2.19)Let β be the right-hand side of the above inequality. We now strengthen inequality xi ≥ β byusing Lemma 2.5. For this purpose, we observe that 
ondition t > kij implies ft + f(lij) < 1,so ⌊β⌋ = µj +

∑

ℓ≤t δ
j
ℓ + ⌊lij⌋− 1 = µj

t + ⌊lij⌋− 1. Also f(β) = f(ft + f(lij)), thus Lemma 2.5yields the valid inequality µi
t′
ij
≥ µj

t + ⌊lij⌋ and the validity of (2.17) is proven.The argument when t ≤ kij is the same, ex
ept that ft + f(lij) ≥ 1.To establish the 
onverse, let t ∈ K be the index su
h that δj
t = 1. Then µj

t = µj
0 + 1,

µj
t−1 = µj

0 and xj = µj
0 +ft. Inequality µi

t′ij
≥ µj

t + ⌊lij⌋ implies that either µi
0 ≥ µj

0 +1+ ⌊lij⌋,or µi
0 = µj

0 + ⌊lij⌋ and ∑ℓ≤t′
ij
δi
ℓ = 1. In both 
ases, this implies that xi ≥ µj

0 + ⌊lij⌋ + ft′ij
.Now, assuming t > kij ,

xi − xj ≥ µj
0 + ⌊lij⌋ + ft′ij

− µj
0 − ft

= ⌊lij⌋ + ft′ij
− ft

≥ ⌊lij⌋ + f(lij),as ft′ij
≥ f(ft + f(lij)) and ft + f(lij) < 1. Again the other 
ase with t ≤ kij is similar. �We 
an now give an extended formulation of conv

(
XF

). For this purpose, let QF be thepolyhedron in the spa
e of the variables (xi, µ
i
ℓ : i ∈ N, ℓ ∈ K ∪ {0}

) de�ned by the inequalities(2.12), (2.13), (2.14), (2.15) and (2.16)�(2.17):
xi =

∑k
ℓ=0(fℓ − fℓ+1)µ

i
ℓ, i ∈ N, (2.20)

µi
k − µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, i ∈ N, ℓ ∈ K, (2.21)
µi

ℓ(li)
≥ ⌊li⌋ + 1, i ∈ N l, (2.22)

µi
ℓ′(ui)

≤ ⌊ui⌋, i ∈ Nu, (2.23)
µi

t′ij
− µj

t ≥ ⌊lij⌋ + 1, i ∈ N e, 1 ≤ t ≤ kij, (2.24)
µi

t′ij
− µj

t ≥ ⌊lij⌋, i ∈ N e, kij < t ≤ k. (2.25)
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(
XF

) is the proje
tion of the polyhedron QF onto thespa
e of the x-variables.Proof. Re
all that XF is the proje
tion onto the x-spa
e of the mixed-integer set (2.5)�(2.10),whi
h, as the above dis
ussion shows, is equivalent to the mixed-integer set
{
(x, µ) ∈ QF : µ is integral} . (2.26)Therefore conv

(
XF
) is the proje
tion of the 
onvex hull of (2.26) onto the x-spa
e of variables.We then have to show that su
h a 
onvex hull is given by inequalities (2.20)�(2.25).Sin
e, for i ∈ N , variable xi is determined by the 
orresponding equation (2.20) (and thisvariable does not appear in any other 
onstraints), we only need to show that the polyhedronde�ned by inequalities (2.21)�(2.25) is integral.Let Aµ be the 
onstraint matrix of the above system. By 
onstru
tion, Aµ is a dual networkmatrix. Sin
e dual network matri
es are totally unimodular (see Theorem 2.3) and the right-hand sides of the above inequalities are all integer, the statement follows from Theorem 1.13.

�2.4 Complete lists of fra
tional partsWe use the results of the previous se
tion to 
onstru
t an extended formulation of a set ofthe type MIX2TU , i.e. a mixed-integer set whose 
onstraint matrix is totally unimodular and
ontains at most two nonzero entries per row. For this purpose, we now introdu
e the 
on
eptof 
ompete list of fra
tional parts for an arbitrary mixed-integer set.Let X := {x ∈ R
n : Ax ≥ b, xi integer for i ∈ I} be a mixed-integer set, where (A | b)is an arbitrary matrix and I is a nonempty subset of the set of 
olumn indi
es of A. A list

F = {f1, . . . , fk} of fra
tional parts is 
omplete for X if the following property is satis�ed:Every minimal fa
e of conv(X) 
ontains a point x̄ su
h that
f(x̄i) ∈ F for ea
h i ∈ N , and f(x̄i) = 0 for ea
h i ∈ I. (2.27)In our appli
ations (Chapters 4�5), minimal fa
es are verti
es and the above 
ondition be-
omes: If x̄ is a vertex of conv(X), then f(x̄i) ∈ F for ea
h i ∈ N ,as every vertex x̄ of conv(X) 
ertainly satis�es f(x̄i) = 0 for all i ∈ I. However, for the sakeof generality we do not assume here that minimal fa
es are verti
es.We now 
onsider a mixed-integer set
MIXDN := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I},where A is a dual network matrix. That is, the system Ax ≥ b 
onsists of inequalities of type(2.2)�(2.4). We sometimes 
all a set of this type a dual network set.



2.4. Complete lists of fra
tional parts 33We assume that we are given a list of fra
tional parts F = {f1, . . . , fk}, with f1 > · · · > fk,whi
h is 
omplete for MIXDN . Note that sin
e I is nonempty, F must in
lude the value 0,thus fk = 0.We �rst give an extended formulation of the polyhedron conv
(
MIXDN

) and then showhow this easily leads to an extended formulation for the 
onvex hull of a more general set
MIX2TU .In order to obtain an extended formulation of conv

(
MIXDN

), we 
onsider the followingmixed-integer set:
xi = µi +

∑k
ℓ=1 fℓδ

i
ℓ, i ∈ N, (2.28)

∑k
ℓ=1 δ

i
ℓ = 1, δi

ℓ ≥ 0, i ∈ N, ℓ ∈ K, (2.29)
δi
k = 1, i ∈ I, (2.30)

xi − xj ≥ lij, (i, j) ∈ N e, (2.31)
xi ≥ li, i ∈ N l, (2.32)
xi ≤ ui, i ∈ Nu, (2.33)

µi, δi
ℓ integer, i ∈ N, ℓ ∈ K, (2.34)where inequalities (2.31)�(2.33) 
onstitute the system Ax ≥ b.Let MIXF be the set of points x ∈ R

n su
h that there exist µi, δi
ℓ, for i ∈ N and ℓ ∈ K,satisfying 
onstraints (2.28)�(2.34). Note that equations (2.30) for
e variables xi for i ∈ I tobe integer valued in MIXF .Lemma 2.9 conv

(
MIXDN

)
= conv

(
MIXF

).Proof. If x̄ ∈ MIXF then x̄ satis�es the system Ax ≥ b (i.e. inequalities (2.31)�(2.33)).Furthermore equations (2.30) for
e xi for i ∈ I to take an integer value. So x̄ ∈ MIXDN .This shows that MIXF ⊆MIXDN and therefore conv
(
MIXF

)
⊆ conv

(
MIXDN

).To prove the reverse in
lusion, we show that all rays and minimal fa
es of conv
(
MIXDN

)belong to conv
(
MIXF

). Re
all that sin
e the 
onstraint matrix of the system Ax ≥ b isrational, the extreme rays of conv
(
MIXDN

) and conv
(
MIXF

) 
oin
ide with those of theirlinear relaxations (see Theorem 1.8). Now, if x̄ is a ray of conv
(
MIXDN

), the ve
tor de�nedby
xi := x̄i, µi := x̄i, δ

i
ℓ := 0 for i ∈ N and ℓ ∈ Kis a ray of the polyhedron that is the 
onvex hull of (2.28)�(2.34). This implies that x̄ is a rayof conv

(
MIXF

).Sin
e the list F is 
omplete, every minimal fa
e F of conv
(
MIXDN

) 
ontains a point
x̄ ∈ MIXF . Furthermore F is an a�ne subspa
e whi
h 
an be expressed as {x ∈ R

n : x =

x̄+
∑h

t=1 λtrt, λt ∈ R
} for some subset of rays r1, . . . , rh of conv

(
MIXDN

). Sin
e x̄ ∈MIXFand r1, . . . , rh are all rays of conv
(
MIXF

), then F ⊆ conv
(
MIXF

). �As shown in Se
tion 2.3, by applying the unimodular transformation (2.11) inequali-ties (2.28)�(2.29) be
ome inequalities (2.20)�(2.21), while (2.31)�(2.33) be
ome (2.22)�(2.25).



34 Chapter 2. Extended formulations of dual network setsLet Q be the polyhedron in the spa
e of the variables (xi, µ
i
ℓ : i ∈ N, ℓ ∈ K ∪ {0}

) de�ned byinequalities (2.20)�(2.25), whi
h 
orrespond to inequalities (2.28), (2.29), (2.31), (2.32), (2.33)under transformation (2.11), and let QI be the fa
e of Q de�ned by equations
µi

k − µi
k−1 = 1, i ∈ I, (2.35)whi
h are equivalent to equations (2.30) under transformation (2.11). More expli
itly, QI isthe polyhedron de�ned by the following linear system:

xi =
∑k

ℓ=0(fℓ − fℓ+1)µ
i
ℓ, i ∈ N, (2.36)

µi
k − µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, i ∈ N, ℓ ∈ K, (2.37)
µi

k − µi
k−1 = 1, i ∈ I, (2.38)

µi
ℓ(li)

≥ ⌊li⌋ + 1, i ∈ N l, (2.39)
µi

ℓ′(ui)
≤ ⌊ui⌋, i ∈ Nu, (2.40)

µi
t′ij

− µj
t ≥ ⌊lij⌋ + 1, i ∈ N e, 1 ≤ t ≤ kij , (2.41)

µi
t′ij

− µj
t ≥ ⌊lij⌋, i ∈ N e, kij < t ≤ k. (2.42)Theorem 2.10 The polyhedron conv

(
MIXDN

) is the proje
tion of the fa
e QI of Q ontothe spa
e of the x-variables. In other words, the linear system (2.36)�(2.42) is an extendedformulation of conv
(
MIXDN

).Proof. Theorem 2.8 shows that every minimal fa
e of Q 
ontains a ve
tor (x̄, µ̄) with integral
µ̄. So the same holds for QI , whi
h is a fa
e of Q. By applying the transformation that is theinverse of (2.11), this shows that every minimal fa
e of the polyhedron de�ned by (2.28)�(2.33)
ontains a point (x̄, µ̄, δ̄) where (µ̄, δ̄) is integral. So the proje
tion of this polyhedron ontothe x-spa
e 
oin
ides with conv

(
MIXF

) and by Lemma 2.9 we are done. �We now 
onsider a more general mixed-integer set of the type MIX2TU := {x ∈ R
n :

Ax ≥ b, xi integer for i ∈ I}, where A is a totally unimodular matrix with at most twononzero entries per row. By Corollary 2.4, A 
an be transformed into a dual network matrixby 
hanging the sign of some of its 
olumns. Then MIX2TU is transformed into a set of thetype MIXDN . Note that if F = {f1, . . . , fk} is a list of fra
tional parts whi
h is 
omplete for
MIX2TU , then the list F ′ := {fℓ, 1−fℓ : 1 ≤ ℓ ≤ k−1}∪{0} is 
omplete for the transformedset MIXDN . This shows that an extended formulation of MIX2TU 
an be easily obtainedfrom the extended formulation of the 
orresponding set MIXDN . We also remark that thelist F ′ 
ontains at most the double of the number of elements in F .2.4.1 An expli
it 
omplete list of fra
tional partsClearly an extended formulation of the type (2.36)�(2.42) 
an be derived only if a 
ompletelist of fra
tional parts is known for the set. However, the following result holds:



2.4. Complete lists of fra
tional parts 35Lemma 2.11 Let X := {x ∈ R
n : Ax ≥ b, xi integer for i ∈ I} be a mixed-integer set, where

A is an m × n totally unimodular matrix, b ∈ R
m and I ⊆ {1, . . . , n}. Then every minimalfa
e of conv(X) 
ontains a point x̄ ∈ X su
h that

f(x̄i) = f
(
∑m

j=1 σijbj

) for i /∈ I, (2.43)where σij ∈ {0,±1} for all i /∈ I and 1 ≤ j ≤ m.Proof. Let F be a minimal fa
e of conv(X) and pi
k any point x̂ ∈ F ∩ X. De�ne thenonempty polyhedron
P := {x ∈ R

n : Ax ≥ b, xi = x̂i for i ∈ I}.Let G be a minimal fa
e of P . Then G is an a�ne variety in R
n. Let d denote the dimensionof G. Sin
e the equations x̄i = x̂i for i ∈ I are linearly independent, then d ≤ n−|I| and thereexists a subsystem A′x ≥ b′ of Ax ≥ b with n− |I| − d rows su
h that the n− d equations

A′x = b′, xi = x̂i for i ∈ Iare linearly independent and de�ne G.By standard linear algebra, there is a subset J ⊆ {1, . . . , n} \ I, with |J | = d, su
h thatthe n equations of the system
A′x = b′, xi = x̂i for i ∈ I, xi = 0 for i ∈ J (2.44)are linearly independent.Let x̄ be the unique solution to system (2.44). Sin
e x̄ ∈ G and x̄i = x̂i ∈ Z for i ∈ I, then

x̄ belongs to X. We now prove that x̄ satis�es 
onditions (2.43).Sin
e A is a totally unimodular, the 
onstraint matrix of system (2.44) is totally unimodularas well. Equation (2.43) then follows from the observation that the inverse of a nonsingulartotally unimodular matrix is a 0,±1-matrix. �Lemma 2.11 is useful for at least two reasons. First, it provides an expli
it (though long)list of fra
tional parts whi
h is guaranteed to be 
omplete for the set, thus showing that anextended formulation of the type (2.36)�(2.42) 
an be expli
itly given for the 
onvex hull ofan arbitrary set MIXDN . We will show in Chapter 3 that su
h a huge list 
an sometimes beshortened.To illustrate the se
ond reason why the above lemma is useful, observe that the size offormulation (2.36)�(2.42) depends not only on the number of variables and 
onstraints of theoriginal system Ax ≥ b, but on the size of the list F too. The size of F in turn depends ontwo elements: the number k of fra
tional parts that it 
ontains and the size of su
h fra
tionalparts. However Lemma 2.11 shows that one 
an assume without loss of generality that thefra
tional parts of a 
omplete list F are all of the form f
(∑m

j=1 σjbj
) for σj ∈ {0,±1}, where

m is the dimension of b. Observe that the size of a number of this type is bounded by apolynomial fun
tion of the size of ve
tor b (assuming that b has rational 
omponents). Thus



36 Chapter 2. Extended formulations of dual network setsfrom now on, when 
onsidering the size of a list of fra
tional parts, we will only take intoa

ount its length (i.e. 
ardinality) k.We remark that the latter 
onsideration implies the following immediate 
onsequen
e ofTheorem 2.10:Corollary 2.12 If a mixed-integer set of the type MIX2TU (with rational right-hand side)admits a 
omplete list of fra
tional parts F whose length k is polynomial in the size of itsdes
ription (given by the system Ax ≥ b), the extended formulation (2.36)�(2.42) of the 
or-responding set conv
(
MIXDN

) is 
ompa
t: it uses O(nk) variables and O((n+ |N e|)k) 
on-straints. Therefore the problem of optimizing a linear fun
tion over sets of the type MIX2TUwith this property 
an be solved in polynomial time.2.4.2 A di�erent approa
h?As observed above, a list in
luding all values of the form f
(∑m

j=1 σjbj
) for σj ∈ {0,±1} isalways 
omplete. Unfortunately su
h a list has (in general) an exponential number of elements.We will see in Chapter 3 that in fa
t there exist mixed-integer sets with dual network 
onstraintmatrix that do not admit a 
omplete list of 
ompa
t size.In order to obtain a 
ompa
t extended formulation of a set MIX2TU even if there is no
omplete list for the set having 
ompa
t size, one 
ould try to modify the approa
h des
ribedin the previous se
tions by modeling the variables of the problem in a di�eren way, e.g.

xi = µi +
∑m

ℓ=1 f(bℓ)δ
i
ℓ, i ∈ N, (2.45)

µi integer, δi
ℓ ∈ {0,±1}, i ∈ N, 1 ≤ ℓ ≤ m. (2.46)By the above observation, every minimal fa
e of conv

(
MIX2TU

) 
ontains a point x thatsatis�es the above 
onditions for some µi, δi
ℓ. Note that for ea
h i ∈ N , only m+ 1 additionalvariables are used.Unfortunately tightening the inequalities de�ning MIX2TU under the above 
onditionsseems to be hard. To demonstrate this, assume that some variable x is de�ned by the 
ondi-tions

x = µ+ 0.9δ1 + 0.5δ2 + 0.3δ3, (2.47)
µ integer, δ1, δ2, δ3 ∈ {0,±1}. (2.48)Suppose that one of the 
onstraints des
ribingMIX2TU is inequality x ≥ 0. It 
an be 
he
ked(we did so by using PORTA [9℄) that a linear inequality des
ription of the set of points (x, µ, δ)satisfying (2.47)�(2.48) and x ≥ 0 is given by the following 
onstraints:

µ+ 0δ1 + 0δ2 + δ3 ≥ 0,

µ+ 0δ1 + 0δ2 + δ3 ≥ 0,

2µ+ 2δ1 + 0δ2 + δ3 ≥ 0,

4µ+ 3δ1 + 2δ2 + δ3 ≥ 0,

−1 ≤ δ1, δ2, δ3 ≤ 1.



2.5. Spe
i�
 lists of fra
tional parts 37When 
onsidering the systems originating from similar examples, we 
ould not see anyparti
ular stru
ture that 
ould lead us to 
hara
terize the 
onvex hull of the integral points.This is not surprising: for instan
e, modeling x ≥ 0 under 
onditions (2.47)�(2.48) amountsto �nding the 
onvex hull of the following integer knapsa
k set:
10µ+ 9δ1 + 5δ2 + 3δ3 ≥ 0,

µ integer, δ1, δ2, δ3 ∈ {0,±1}.It is well-known that problems of this type are hard. Furthermore, if two or more 
onstraints�instead of a single inequality� are 
onsidered, tightening ea
h inequality separately doesnot give (in general) the 
onvex hull of the mixed-integer set. This suggests that it is unlikelyto �nd a straightforward modi�
ation of our approa
h that uses the modeling 
onditions(2.45)�(2.46).Note that 
onditions δi
ℓ ∈ {0,±1} in (2.46) 
ould be repla
ed with 
onditions δi

ℓ ∈ Z. Inthis 
ase the strengthening of a single inequality is easy: after transforming all 
oe�
ientsinto 
oprime integers by multiplying the inequality by a suitable number (provided that all
oe�
ients are rational), it is su�
ient to round up the right-hand side. However, when thereare two or more 
onstraints, tightening ea
h inequality separately does not give (in general)the 
onvex hull of the mixed-integer set.Finding a 
ompa
t extended formulation of the 
onvex hull of a set MIX2TU that doesnot admit a �short� list of fra
tional parts is an open problem.2.5 Spe
i�
 lists of fra
tional partsWe dis
uss here a simple variant of the results presented in Se
tions 2.3�2.4. Su
h a variantallows us to redu
e the size of the extended formulation given by Theorem 2.10 and will beuseful in Chapter 5, where for some spe
ial sets we 
ompute expli
itly the proje
tion of theextended formulation onto the original spa
e of variables.2.5.1 A more 
ompa
t extended formulationIn Se
tion 2.3 we 
onsidered a system of inequalities of the form (2.2)�(2.4) and a list F offra
tional parts, and we gave an extended formulation of the polyhedron whi
h is the 
onvexhull of the set of points x satisfying (2.2)�(2.4) along with the additional 
ondition that
f(xi) ∈ F for all i ∈ N .Now assume that instead of a single list F , we are given a (possibly) di�erent list offra
tional part Fi for ea
h i ∈ N . We assume Fi =

{
f i
1, . . . , f

i
ki

}, with f i
1 > · · · > f i

ki
, and set

Ki := {1, . . . , ki}. We de�ne XF as the set of points x satisfying the linear system (2.2)�(2.4)along with the additional 
ondition that f(xi) ∈ Fi for all i ∈ N . That is, XF is the setof points x ∈ R
n su
h that there exist µi, δi

ℓ, for i ∈ N and ℓ ∈ Ki, satisfying the following
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onstraints:
xi = µi +

∑ki

ℓ=1 f
i
ℓδ

i
ℓ, i ∈ N, (2.49)

∑ki

ℓ=1 δ
i
ℓ = 1, δi

ℓ ≥ 0, i ∈ N, ℓ ∈ Ki, (2.50)
xi − xj ≥ lij , (i, j) ∈ N e, (2.51)

xi ≥ li, i ∈ N l, (2.52)
xi ≤ ui, i ∈ Nu, (2.53)

µi, δi
ℓ integer, i ∈ N, ℓ ∈ Ki. (2.54)Similarly to Se
tion 2.3, XF is the proje
tion of the mixed-integer set (2.49)�(2.54) onto the

x-spa
e.An extended formulation of conv
(
XF

) 
an be found as in Se
tion 2.3, with just some slight
hanges. We summarize the 
onstru
tion of the extended formulation below; the details andthe proofs are perfe
tly analogous to those of Se
tion 2.3.First of all, we de�ne a unimodular transformation whi
h is identi
al to transforma-tion (2.11), ex
ept that now K has to be repla
ed with Ki:
µi

0 := µi, µi
ℓ := µi +

ℓ∑

j=1

δi
j for i ∈ N and ℓ ∈ Ki. (2.55)Similarly, after setting f i

0 := 1 and f i
ki+1 := 0 for all i ∈ N , 
onstraints (2.49)�(2.50) transforminto 
onstraints that are almost identi
al to (2.12)�(2.13):

xi =
∑ki

ℓ=0(f
i
ℓ − f i

ℓ+1)µ
i
ℓ,

µi
ki
− µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, ℓ ∈ Ki.For i ∈ N l, inequality xi ≥ li 
an be modeled as µi
ℓi(li)

≥ ⌊li⌋+1, where ℓi(li) is the highestindex ℓ ∈ {0, . . . , ki} su
h that fℓ ≥ f(li). For i ∈ Nu, inequality xi ≤ ui 
an be modeled as
µi

ℓ′i(ui)
≤ ⌊ui⌋, where ℓ′i(ui) is the highest index ℓ ∈ {0, . . . , ki} su
h that fℓ > f(ui).Finally, to model inequality xi − xj ≥ lij for (i, j) ∈ N e, we de�ne kij to be the highestindex ℓ ∈ {0, . . . , kj} su
h that f j

ℓ + f(lij) ≥ 1. Given an index t ∈ Kj , de�ne t′ij to be thehighest index ℓ ∈ {0, . . . , ki} su
h that f i
ℓ ≥ f

(
f j

t + f(lij)
). Now a result almost identi
al toLemma 2.7 (just repla
e k with ki in (2.17)) 
an be proven exa
tly as in Se
tion 2.3.With a proof that is identi
al to that of Theorem 2.8 one 
an prove that an extendedformulation of conv

(
XF
) is given by the following linear system:
xi =

∑ki

ℓ=0(f
i
ℓ − f i

ℓ+1)µ
i
ℓ, i ∈ N, (2.56)

µi
k − µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, i ∈ N, ℓ ∈ Ki, (2.57)
µi

ℓi(li)
≥ ⌊li⌋ + 1, i ∈ N l, (2.58)

µi
ℓ′i(ui)

≤ ⌊ui⌋, i ∈ Nu, (2.59)
µi

t′ij
− µj

t ≥ ⌊lij⌋ + 1, i ∈ N e, 1 ≤ t ≤ kij , (2.60)
µi

t′ij
− µj

t ≥ ⌊lij⌋, i ∈ N e, kij < t ≤ kj. (2.61)



2.5. Spe
i�
 lists of fra
tional parts 39We now extend the de�nition of 
omplete list given in Se
tion 2.4. For i ∈ N , a list
Fi =

{
f i
1, . . . , f

i
k

} of fra
tional parts is 
omplete for X with respe
t to variable xi if thefollowing property is satis�ed:Every minimal fa
e F of conv(X) 
ontains a point x̄ su
h that
f(x̄i) ∈ Fi for ea
h i ∈ N , and f(x̄i) = 0 for ea
h i ∈ I.When conv(X) is a pointed polyhedron, the above de�nition reads as follows:If x̄ is a vertex of conv(X), then f(x̄i) ∈ Fi for ea
h i ∈ N .Let MIXDN := {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I} be a mixed-integer set withdual network 
onstraint matrix A. If for ea
h i ∈ N we are given a list of fra
tional parts
Fi =

{
f i
1, . . . , f

i
ki

} whi
h is 
omplete for MIXDN with respe
t to variable xi, one 
an repeatthe pro
ess of Se
tion 2.4 and prove the following result (as usual, f i
1 > · · · > f i

ki
):Theorem 2.13 The following linear system is an extended formulation of the polyhedron

conv
(
MIXDN

):
xi =

∑ki

ℓ=0(f
i
ℓ − f i

ℓ+1)µ
i
ℓ, i ∈ N, (2.62)

µi
ki
− µi

0 = 1, µi
ℓ − µi

ℓ−1 ≥ 0, i ∈ N, ℓ ∈ Ki, (2.63)
µi

ki
− µi

k−1 = 1, i ∈ I, (2.64)
µi

ℓi(li)
≥ ⌊li⌋ + 1, i ∈ N l, (2.65)

µi
ℓ′i(ui)

≤ ⌊ui⌋, i ∈ Nu, (2.66)
µi

t′ij
− µj

t ≥ ⌊lij⌋ + 1, i ∈ N e, 1 ≤ t ≤ kij , (2.67)
µi

t′ij
− µj

t ≥ ⌊lij⌋, i ∈ N e, kij < t ≤ kj . (2.68)The extension to a set of the type MIX2TU 
an be done as in Se
tion 2.4.Corollary 2.14 Given a mixed-integer set of the type MIX2TU (with rational right-handside), let F1, . . . ,Fn be lists of fra
tional parts whi
h are 
omplete forMIX2TU with respe
t tovariables x1, . . . , xn respe
tively. De�ne k̄ := max1≤i≤n |Fi|. Then the extended formulation(2.62)�(2.68) of the 
orresponding set MIXDN uses O
(
nk̄
) variables and O

(
(n+ |N e|)k̄

)
onstraints.Let us 
ompare Corollaries 2.12 and 2.14. Let F be a list of fra
tional parts whi
h is
omplete for MIX2TU and whose length is minimum. Similarly, let F1, . . . ,Fn be lists offra
tional parts whi
h are 
omplete for MIX2TU with respe
t to variables x1, . . . , xn respe
-tively and whose lengths are minimum. It is 
lear that F = F1 ∪ · · · ∪ Fn, thus in this 
ase
k̄ ≤ k ≤ nk̄. This implies that formulation (2.62)�(2.68) 
an be more 
ompa
t than formula-tion (2.36)�(2.42). However inequalities k̄ ≤ k ≤ nk̄ show that a mixed-integer set MIX2TUadmits a 
ompa
t extended formulation of type (2.36)�(2.42) if and only if it admits a 
ompa
textended formulation of type (2.62)�(2.68). Therefore, when aiming at showing the existen
eof a 
ompa
t extended formulation of a set of the type MIX2TU , one 
an 
onsider withoutloss of generality a single list F of fra
tional parts as in Se
tion 2.4.



40 Chapter 2. Extended formulations of dual network sets2.5.2 Inequalities involving integer variablesTo 
on
lude this se
tion, we show more expli
itly the form of inequalities (2.65)�(2.68) when
i and/or j belong to I. This will be useful in Chapter 5.If i ∈ I (i.e. xi is an integer variable), we 
an safely 
hoose Fi := {0}: su
h a list is
ertainly 
omplete for MIXDN with respe
t to variable xi. So we now assume that Fi = {0}for all i ∈ I. We also observe that when xi is an integer variable, we do not need to introdu
evariables µi

ℓ, as µi
0 = xi and µi

1 = xi + 1. In other words variables xi for i ∈ I 
an be kept inthe formulation without introdu
ing any additional variables to model them.Given an index i ∈ I ∩N l, inequality xi ≥ li 
an be trivially tightened to xi ≥ ⌈li⌉. It isinteresting to observe that this is equivalent to inequality (2.65), as we now prove.Note that
ℓi(li) =

{

0 if li /∈ Z,

1 if li ∈ Z.In the former 
ase inequality (2.65) reads µi
0 ≥ ⌊li⌋ + 1 = ⌈li⌉, as li /∈ Z; in the latter 
aseinequality (2.65) reads µi

1 ≥ ⌊li⌋ + 1, whi
h is equivalent to µi
0 ≥ ⌈li⌉, as µi

1 = µi
0 + 1 and

⌊li⌋ = ⌈li⌉. Thus in both 
ases inequality (2.65) is equivalent to µi
0 ≥ ⌈li⌉, that is, xi ≥ ⌈li⌉.Given an index i ∈ I ∩Nu, inequality xi ≤ ui 
an be trivially tightened to xi ≤ ⌊ui⌋, thatis, µi

0 ≤ ⌊ui⌋. This is equivalent to (2.66), as ℓ′i(ui) = 0.Now 
onsider a pair (i, j) ∈ N e with j ∈ I. Sin
e xj is an integer variable, inequality
xi − xj ≥ lij 
ould be modeled as done for the inequalities of group (2.52), thus obtaining
µi

ℓi(lij)
− xj ≥ ⌊lij⌋ + 1, or in other words, µi

ℓi(lij ) − µj
0 ≥ ⌊lij⌋ + 1. We now show that in fa
tthe set of inequalities (2.67)�(2.68) redu
es to this single inequality.Note that kij = 0. For t = 1, it easily 
he
ked that t′ij = ℓi(lij). Thus 
onstraints (2.67)�(2.68) redu
e to the single inequality µi

ℓi(lij)
− µj

1 ≥ ⌊lij⌋, that is, µi
ℓi(lij)

− xj ≥ ⌊lij⌋ + 1.If (i, j) ∈ N e with i ∈ I, inequality xi − xj ≥ lij 
ould be modeled as done for inequalitiesof group (2.53): after writing the inequality as xj −xi ≤ −lij, we obtain µj
ℓj(−lij)

−xi ≤ ⌊−lij⌋.However, in this 
ase the set of inequalities (2.67)�(2.68) 
onsists of kj 
onstraints, thuswhenever kj > 1 (i.e. xj is a 
ontinuous variable) there are redundant inequalities in (2.67)�(2.68). We only mention that it is possible to swap to role of xi and xj in the tightening of
xi − xj ≥ lij , thus obtaining a set of ki inequalities. In the 
ase (i, j) ∈ N e with i ∈ I, su
h aset of inequalities redu
e to a single 
onstraint.When (i, j) ∈ N e and both i, j ∈ I, the set of inequalities (2.67)�(2.68) redu
es to thesingle (obvious) inequality xi − xj ≥ ⌈lij⌉.The above observations are summarized below:Observation 2.15 If no variable is introdu
ed to model the integer variables, then:(i) If i ∈ I ∩N l, inequality (2.65) reads xi ≥ ⌈li⌉.(ii) If i ∈ I ∩Nu, inequality (2.66) reads xi ≤ ⌊li⌋.
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 lists of fra
tional parts 41(iii) If (i, j) ∈ N e with j ∈ I, the set of inequalities (2.67)�(2.68) redu
es to the singleinequality µi
ℓi(lij ) − xj ≥ ⌊lij⌋ + 1.(iv) If (i, j) ∈ N e with i ∈ I, the set of inequalities (2.67)�(2.68) 
an be repla
ed with thesingle inequality xi − µj

ℓj(−lij)
≥ ⌈lij⌉.(v) If (i, j) ∈ N e with j ∈ I, the set of inequalities (2.67)�(2.68) redu
es to the singleinequality xi − xj ≥ ⌈lij⌉.The simple observation in (v) implies the following result:Proposition 2.16 Let MIXDN be a mixed-integer set with dual network 
onstraint matrixand let Bx ≥ d be a linear system whose inequalities are all of the type xi − xj ≥ dij with

i, j ∈ I, where d is an integral ve
tor. Then
conv

(
MIXDN ∩ {x ∈ R

n : Bx ≥ d}
)

= conv
(
MIXDN

)
∩ {x ∈ R

n : Bx ≥ d}.Proof. Sin
e all variables appearing with nonzero 
oe�
ient in the inequalities of system
Bx ≥ d are integer variables, Observation 2.15 (v) implies that an extended formulation of
conv

(
MIXDN ∩ {x ∈ R

n : Bx ≥ d}
) 
onsists of 
onstraints (2.62)�(2.68) together with theinequalities of the system Bx ≥ d. It 
an be easily shown (e.g. by using Theorem 1.16) thatthe proje
tion of su
h an extended formulation onto the spa
e of the x-variables is given bythe proje
tion of (2.62)�(2.68) along with the inequalities of the system Bx ≥ d. This provesthe result, as the proje
tion of (2.62)�(2.68) is conv

(
MIXDN

). �A similar result for some spe
i�
 mixed-integer sets was proven by Miller and Wolsey [45℄,Van Vyve [65℄ and Conforti, Di Summa and Wolsey [13℄.
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Chapter 3On the length of a 
omplete listAs shown in Chapter 2, any mixed-integer set MIX2TU admits an extended formulation ofthe type (2.36)�(2.42). We also observed that there is a 
ompa
t extended formulation of thistype if and only if MIX2TU admits a 
omplete list of fra
tional parts that is 
ompa
t.We show in Se
tion 3.1 that there exist mixed-integer sets of the type MIX2TU that donot admit a 
omplete list of fra
tional parts that is 
ompa
t. This implies that for su
h sets,no extended formulation of the form (2.36)�(2.42) is 
ompa
t.On the other hand, we give in Se
tion 3.2 some su�
ient 
onditions ensuring that amixed-integer set MIX2TU admits a 
omplete list of polynomial length, thus proving thatunder these 
onditions the extended formulation of the type (2.36)�(2.42) is polynomial inthe original des
ription of the set. The list of fra
tional parts is expli
itly given through a
onstru
tion based on a graph asso
iated with the set.The results of this 
hapter are joint work with Mi
hele Conforti, Friedri
h Eisenbrand andLauren
e A. Wolsey and are also summarized in [11℄.3.1 A non-
ompa
t exampleAs remarked in Se
tion 2.4, given an arbitrary mixed-integer set MIXTU := {x ∈ R
n :

Ax ≥ b, xi integer for i ∈ I} de�ned by a totally unimodular 
onstraint matrix A, the list
F 
onsisting of all fra
tional parts f(∑m

j=1 σjbj
) for σj ∈ {0,±1} is 
omplete for the set.Therefore this holds in parti
ular for the sets MIX2TU .It is easy to 
hoose the 
omponents of b so that the list F de�ned above 
ontains anexponential number of elements. However, this does not prove that a set MIX2TU asso
iatedwith su
h a ve
tor b does not admit a 
ompa
t extended formulation of the form (2.36)�(2.42),as F may 
ontain super�uous elements, i.e. fra
tional parts that do not appear the verti
esof conv

(
MIX2TU

).We show here that in fa
t there are sets of the type MIX2TU for whi
h any 
omplete listof fra
tional parts is exponentially long. This implies that our extended formulation 
annotbe 
ompa
t for su
h sets.The result that we prove is the following: 43



44 Chapter 3. On the length of a 
omplete listTheorem 3.1 In the set of verti
es of the polyhedron P de�ned by the inequalities
si + rj ≥

3(j−1)n+i

3n2+1
, 1 ≤ i, j ≤ n, (3.1)

si ≥ 0, rj ≥ 0, 1 ≤ i, j ≤ n, (3.2)the number of distin
t fra
tional parts taken by variable sn is exponential in n.We remark the Theorem 3.1 implies the following fa
t:Observation 3.2 Sin
e the 
onstraint matrix of inequalities (3.1)�(3.2) is a totally unimod-ular matrix with at most two nonzero entries per row, there exists a mixed-integer set X ofthe type MIX2TU , whi
h is de�ned on 
ontinuous variables si, rj , for 1 ≤ i, j ≤ n and integervariables zh for h ∈ I, su
h that the polyhedron conv(M) ∩ {(s, r, z) : zh = 0 for h ∈ I} is anonempty fa
e of conv(X) des
ribed by inequalities (3.1)�(3.2). Therefore Theorem 3.1 showsthat any extended formulation of conv(X) that expli
itly takes into a

ount a list of all possiblefra
tional parts of the 
ontinuous variables will not be 
ompa
t in the des
ription of X.The remainder of this se
tion is entirely devoted to proving Theorem 3.1.Let bij be as in the theorem, i.e. bij = 3(j−1)n+i/3n2+1 for 1 ≤ i, j ≤ n. The followingobservation is immediate.Observation 3.3 bij < bi′j′ if and only if (j, i) ≺ (j′, i′), where ≺ denotes the lexi
ographi
order. Thus b11 < b21 < · · · < bn1 < b12 < · · · < bnn.Lemma 3.4 The two properties below hold:(i) Let α ∈ Z
q
+ with αt < αt+1 for 1 ≤ t ≤ q − 1. De�ne

Φ(α) :=

q
∑

t=1

(−1)q−t3αt .Then Φ(α) satis�es the following inequalities:
1

2
3αq < Φ(α) <

3

2
3αq .(ii) Suppose that α is as above and β ∈ Z

q′

+ satis�es βt < βt+1 for 1 ≤ t ≤ q′ − 1. Then
Φ(α) = Φ(β) if and only if α = β.Proof. First of all note that

αq−1
∑

t=0

3t =
3αq − 1

3 − 1
<

1

2
3αq .
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ompa
t example 45This implies the following 
hains of inequalities, whi
h prove (i):
Φ(α) ≥ 3αq −

αq−1
∑

t=0

3t > 3αq −
1

2
3αq =

1

2
3αq ,

Φ(α) ≤ 3αq +

αq−1
∑

t=0

3t < 3αq +
1

2
3αq =

3

2
3αq .To prove (ii), suppose α 6= β. Without loss of generality we assume q ≥ q′. Assume�rst that (αq−q′+1, . . . , αq) = β. Then q > q′ (otherwise α = β) and, after de�ning ᾱ :=

(α1, . . . , αq−q′), we have Φ(α) − Φ(β) = Φ(ᾱ) > 0 by (i). Now assume (αq−q′+1, . . . , αq) 6= β.De�ne h = min{τ : αq−τ 6= βq′−τ} and suppose αq−h > βq′−h (the other 
ase is similar). If wede�ne the ve
tors ᾱ := (α1, . . . , αq−h) and β̄ := (β1, . . . , βq′−h), (i) gives
Φ(α) − Φ(β) = Φ(ᾱ) − Φ(β̄) >

1

2
3αq−h −

3

2
3βq′−h ≥ 0,as αq−h > βq′−h. This proves that Φ(α) 6= Φ(β) whenever α 6= β. �We now give a 
onstru
tion of an exponential family of verti
es of P su
h that at ea
h vertexvariable sn takes a distin
t fra
tional part. Therefore this 
onstru
tion proves Theorem 3.1.Let (i1, . . . , im) and (j1, . . . , jm−1) be two in
reasing sequen
es of indi
es in {1, . . . , n} with

i1 = 1 and im = n. For 1 ≤ i, j ≤ n, de�ne p(i) := max{t : it ≤ i} and q(j) := max{t : jt ≤ j},with q(j) = 0 if j < j1.Consider the following system of equations:
si1 = 0, (3.3)

sit + rjt = bitjt , 1 ≤ t ≤ m− 1, (3.4)
sit+1 + rjt = bit+1jt , 1 ≤ t ≤ m− 1, (3.5)
siq(j)+1

+ rj = biq(j)+1j , j /∈ {j1, . . . , jm−1}, (3.6)
si + rjp(i)

= bijp(i)
, i /∈ {i1, . . . , im}. (3.7)The unique solution to this system is:

si1 = 0, (3.8)
sit =

t−1∑

ℓ=1

biℓ+1jℓ
−

t−1∑

ℓ=1

biℓjℓ
, 2 ≤ t ≤ m, (3.9)

rjt =

t∑

ℓ=1

biℓjℓ
−

t−1∑

ℓ=1

biℓ+1jℓ
, 1 ≤ t ≤ m− 1, (3.10)

si = bijp(i)
− rjp(i)

, i /∈ {i1, . . . , im}, (3.11)
rj = biq(j)+1j − siq(j)+1

, j /∈ {j1, . . . , jm−1}. (3.12)Lemma 3.5 The ve
tor de�ned by (3.8)�(3.12) is a vertex of P .
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omplete listProof. We start by showing that the ve
tor de�ned above is feasible in P . First, as ea
hof the variables si, rj takes a value of the form Φ(α)/3n2+1, by Lemma 3.4 (i) we have that
sit >

1
2bitjt−1 > 0 for 2 ≤ t ≤ m, rjt >

1
2bitjt > 0 for 1 ≤ t ≤ m − 1, si >

1
2bijp(i)

> 0 for
i /∈ {i1, . . . , im}, and rj > 1

2biq(j)+1j > 0 for j /∈ {j1, . . . , jm−1}. Therefore the nonnegativity
onstraints (3.2) are satis�ed.We now show that inequalities (3.1) are satis�ed as well. Consider the i, j 
onstraint with
j /∈ {j1, . . . , jm−1}. We distinguish some 
ases.1. p(i) ≤ q(j). In this 
ase

si + rj ≥ rj >
1

2
biq(j)+1j ≥

1

2
bip(i)+1j ≥

3

2
bij > bij .2. p(i) > q(j) and i /∈ {i1, . . . , im}. Then

si + rj ≥ si >
1

2
bijp(i)

≥
1

2
bijq(j)+1

≥
3n

2
bij > bij .3. p(i) = q(j) + 1 and i = it for some 1 ≤ t ≤ m (thus p(i) = t = q(j) + 1). In this 
asethe i, j 
onstraints is satis�ed at equality by 
onstru
tion.4. p(i) > q(j) + 1 and i = it for some 1 ≤ t ≤ m (thus p(i) = t > q(j) + 1). Then

si + rj ≥ si >
1

2
bijt−1 ≥

1

2
bijq(j)+1

≥
3n

2
bij > bij .The argument with i /∈ {i1, . . . , im} is similar.Finally suppose that i = it and j = ju with u /∈ {t − 1, t}. If u > t then si + rj ≥ rj >

1
2biuju ≥ 3

2bitju > bij. If u < t− 1 then si + rj ≥ si >
1
2bitjt−1 ≥ 3

2bitju > bij.This shows that the ve
tor de�ned by (3.8)�(3.12) is feasible. Sin
e this ve
tor is theunique solution to system (3.3)�(3.7), it de�nes a vertex of P . �Now let aij = (j − 1)n+ i, so that bij = 3aij/3n2+1 and take
α := (ai1j1 , ai2j1, ai2j2, ai3j2 , . . . , aimjm−1).As sn = Φ(α)/3n2+1, it follows from Lemma 3.4 (ii) that in any two verti
es 
onstru
ted asabove by di�erent sequen
es (i1, . . . , im), (j1, . . . , jm−1) and (i′1, . . . , i

′
m′), (j′1, . . . , j

′
m′−1), thevalues of sn are distin
t numbers in the interval (0, 1). As the number of su
h sequen
es isexponential in n, this proves Theorem 3.1.3.2 Su�
ient 
onditions for the 
ompa
tness of a 
omplete listThe previous se
tion shows that a formulation of the type (2.36)�(2.42) is not guaranteedto be 
ompa
t in the original des
ription of the set. We des
ribe here some 
onditions thatensure the existen
e of a 
omplete list whi
h is 
ompa
t for a mixed-integer set of the type
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MIX2TU , thus proving that the 
orresponding extended formulation (2.36)�(2.42) is 
ompa
tunder these assumptions.Let X be a mixed-integer set of the typeMIX2TU . Sin
e X is des
ribed by a linear system
Ax ≥ b where A is a totally unimodular matrix with at most two nonzero entries per row, the
onstraints de�ning X are of the following type:

xi + xj ≥ l++
ij , (i, j) ∈ N++, (3.13)

xi − xj ≥ l+−
ij , (i, j) ∈ N+−, (3.14)

−xi − xj ≥ l−−
ij , (i, j) ∈ N−−, (3.15)

xi ≥ li, i ∈ N l, (3.16)
xi ≤ ui, i ∈ Nu, (3.17)

xi integer, i ∈ I, (3.18)where N++, N+−, N−− ⊆ N × N and N l, Nu, I ⊆ N . The sets N++, N+−, N−− do not
ontain any pair of the type (i, i) for i ∈ N . Without loss of generality we assume that if
(i, j) ∈ N++ then (j, i) /∈ N++ and if (i, j) ∈ N−− then (j, i) /∈ N−−.We 
onstru
t a graph GX = (V,E) asso
iated with the mixed-integer set X. The nodeset of GX is V := L := N \ I and 
orresponds to the 
ontinuous variables of X. E 
ontainsan edge ij for ea
h inequality of types (3.13)�(3.15) with i, j ∈ L appearing in the linearsystem that de�nes X. The total unimodularity of A implies the following: for �xed i, j, if thesystem Ax ≥ b 
ontains an inequality of type (3.14), then it does not 
ontain any inequalityof type (3.13) or (3.15). Therefore, for ea
h pair of nodes i, j ∈ V , E 
ontains at most twoparallel edges 
onne
ting i and j.We impose a bi-orientation ω on GX : with ea
h edge e ∈ E (
orresponding to an inequality
aixi + ajxj ≥ lij) and ea
h endnode i of e, we asso
iate the value

ω(e, i) :=

{

tail if ai = 1,

head if ai = −1.Thus ea
h edge of GX might have one head and one tail (if 
orresponding to an inequal-ity (3.14)), two tails (if 
orresponding to an inequality (3.13)) or two heads (if 
orrespondingto an inequality (3.15)).Given a path P = (v0, e1, v1, e1, . . . , vt) in GX , where v0, . . . , vt ∈ V and e1, . . . , et ∈ E,we want to de�ne the ω-length of P , denoted lω(P ). To do this, we �rst de�ne the reverse ofan edge e ∈ E as the edge obtained by turning ea
h head of e into a tail and ea
h tail into ahead.We 
onstru
t a path P ′ = (v0, e
′
1, v1, e

′
1, . . . , vt) from P by reversing some of its edges, sothat v0 is a tail of e1, and every node vj for 1 ≤ j < t is a head of one edge of P ′ and a tailof the other. Note that given P , the path P ′ is uniquely determined.Now we de�ne lω(P ) :=

∑t
j=1 σ(P, ej)lej

, where for e ∈ E, le is the right-hand side of theinequality 
orresponding to edge e and
σ(P, ej) :=

{

−1 if ej has been reversed in P ′,
+1 otherwise.
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omplete listWe also de�ne a list L as the set of values f(lω(P )) for all paths P in GX .Theorem 3.6 Let X be a mixed-integer set of the type MIX2TU and de�ne the list L asabove. Then X admits a 
omplete list whose length is O(mh), where m is the number ofinequalities in the des
ription of X and h := |L|.Proof. We assume that X is nonempty, otherwise the above statement is trivial. This proofis a re�nement of that of Lemma 2.11. Let F be a minimal fa
e of conv(X) and x̂ be a pointin F ∩X. We 
hoose J and 
onstru
t a nonsingular system of linear equations
A′x = b′, xi = x̂i for i ∈ I, xi = 0 for i ∈ J (3.19)as des
ribed in the proof of Lemma 2.11. Re
all that J ∩ I = ∅.Let x̄ be the unique solution to system (3.19). Equations xi = x̂i for i ∈ I 
an be used toeliminate variables xi for i ∈ I from system (3.19). After su
h elimination, system (3.19) hasthe following form:

xi + xj = l++
ij , (i, j) ∈ N++

x̄ , (3.20)
xi − xj = l+−

ij , (i, j) ∈ N+−
x̄ , (3.21)

−xi − xj = l−−
ij , (i, j) ∈ N−−

x̄ , (3.22)
xi = di, i ∈ Nx̄, (3.23)where N++

x̄ ⊆ N++, N+−
x̄ ⊆ N+−, N−−

x̄ ⊆ N−− and the three sets N++
x̄ , N+−

x̄ , N−−
x̄ only
ontain pairs of indi
es (i, j) with both i, j ∈ L. It is easily 
he
ked that Nx̄ ⊆ L. For ea
h

i ∈ Nx̄, the value di satis�es one of the following 
onditions:(a) either di ∈ {li, ui},(b) or di = 0 and i ∈ J ,(
) or f(di) ∈
{
f(l++

ij ), f(l+−
ij ), f(−l−−

ij )
} for some j ∈ I ∪ J .Observe that if we 
onstru
t the bi-oriented graph 
orresponding to the above system, weobtain a subgraph of the graph GX asso
iated with the original set X.Re
all that system (3.20)�(3.23) 
onsists of |L| linearly independent equations. It is well-known (and easy to see) that the edges of GX 
orresponding to inequalities of type (3.20)�(3.22)de�ne a forest Fx̄ in GX . Let Cx̄ = (V (Cx̄), E(Cx̄)) be a 
onne
ted 
omponent of su
h a forest.Sin
e |V (Cx̄)| = |E(Cx̄)| + 1, Cx̄ 
ontains a unique node r whose value is determined by oneof equations (3.23). Then (a)�(
) imply that the fra
tional part of x̄r 
an only take O(m)possible values, where m is the number of inequalities in the des
ription of X.If v is a node of Cx̄ distin
t from r, then the value of x̄v is determined by the value of x̄rand the inequalities (3.20)�(3.22) 
orresponding to the edges in the path Pvr in Cx̄ having vas �rst node and r as last node: if e is the edge in Pvr in
ident with r and P ′

vr is 
onstru
tedfrom Pvr as des
ribed above, we have
x̄v =

{

lω(Pvr) + x̄r if r is a head of e,
lω(Pvr) − x̄r otherwise. (3.24)
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e the list L has h elements, this shows that the fra
tional part of ea
h variable xv at avertex 
an take at most O(mh) values. �The following easy observation will be used in the next 
hapter.Observation 3.7 If conv(X) is a pointed polyhedron, the set J of the above proof is empty.In this 
ase, given i ∈ Nx̄, the value di satis�es one of the following 
onditions:(a) either di ∈ {li, ui},(b) or f(di) ∈
{
f(l++

ij ), f(l+−
ij ), f(−l−−

ij )
} for some j ∈ I.We now show how Theorem 3.6 
an be applied in some spe
ial 
ases.Corollary 3.8 Assume that a mixed-integer set X of the type MIX2TU (with rational right-hand side) satis�es at least one of the following 
onditions:(i) The number of paths in GX is bounded by a polynomial fun
tion of the size of the de-s
ription of X;(ii) The number of elements in the sets {f(l++

ij ) : (i, j) ∈ N++
}, {f(l+−

ij ) : (i, j) ∈ N+−
}and {f(l−−

ij ) : (i, j) ∈ N−−
} is bounded by a 
onstant.(iii) GX is a bipartite graph with vertex 
lasses U, V and the inequalities de�ning X whi
h
ontain two 
ontinuous variables xu, xv (u ∈ U, v ∈ V ) have the form xu + xv ≥ bv − bufor some �xed ve
tor b with indi
es in U ∪ V .Then X admits a 
omplete list of fra
tional parts that is 
ompa
t.Proof. If 
ondition (i) holds, the length of the list L is bounded by a polynomial fun
tion ofthe size of the des
ription of X. Then Theorem 3.6 implies that there is a 
omplete list for Xwhi
h is 
ompa
t.Now suppose that 
ondition (ii) holds and assume that {f1, . . . , ft} is the set of all elementsof type f(l++

ij ), f(l+−
ij ) and f(l−−

ij ). Ea
h value f(lω(Pvr)) 
an be expressed as
f(lω(Pvr)) = f

(
∑t

ℓ=1 αℓfℓ

)

, (3.25)where αℓ is an integer for 1 ≤ ℓ ≤ t. Sin
e GX has |L| nodes, the maximum length of a path in
GX is |L|−1. This implies |αℓ| ≤ |L|−1 for 1 ≤ ℓ ≤ t. Then the length of the list L is at most
(2|L| − 1)t. Thus by Theorem 3.6 there is a 
omplete list for X of size O

(
m|L|t

)
= O

(
mnt

),as t is a 
onstant by assumption.Finally assume that 
ondition (iii) holds. In this 
ase it is easy to verify that for v ∈ U ∪V ,
lω(Pvr) = br − bv (3.26)and thus X admits a 
omplete list whi
h is 
ompa
t. �We remark that if the size of ea
h 
onne
ted 
omponents of GX is bounded by a 
onstant,then X satis�es 
ondition (i) of the above 
orollary.Finally it is interesting to note that if one of the 
onditions of Corollary 3.8 is satis�ed, theknowledge of the stru
ture of GX allows one to expli
itly 
ompute a 
omplete list of fra
tionalparts whi
h is 
ompa
t (see Chapter 4 for some examples).
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Chapter 4Examples of formulations of dualnetwork setsIn this 
hapter we show that several mixed-integer sets that have been studied in the literature
an be transformed into sets of the type MIX2TU and thus admit an extended formulation ofthe type introdu
ed in Chapter 2. For many of these sets, one of the 
onditions of Corollary 3.8is satis�ed and thus a 
omplete list of fra
tional parts whi
h is 
ompa
t 
an be expli
itly given.Therefore the extended formulation is 
ompa
t for su
h sets.We will see that most of the mixed-integer sets 
onsidered in this 
hapter have appli
ationin real-word problems, su
h as produ
tion planning. Our results provide a uni�ed frameworkfor the extended formulations of these sets found in the last years.Before presenting the examples, we need to explain pre
isely the meaning of the wordtransformed used above. This is done in Se
tion 4.1.The results of this 
hapter are joint work with Mi
hele Conforti, Friedri
h Eisenbrand andLauren
e A. Wolsey and are also summarized in [11℄.4.1 Mixed-integer linear mappingsGiven a polyhedron P ⊆ R
n and an invertible linear transformation of the spa
e R

n, withasso
iated matrix A (thus A is an n×n nonsingular matrix), it is well-known that the polyhedra
P and P ′ := {Ax : x ∈ P} are equivalent. This means that the polyhedral stru
ture (fa
es,fa
ets, verti
es, et
.) of P and P ′ are identi
al under the 
hange of 
oordinates x 7→ Ax.Now assume that we are interested in the 
onvex hull of the integral points in P . In otherwords, we want to study the pure integer set de�ned by the inequalities that des
ribe P (plusthe integrality 
onditions). If we apply an arbitrary invertible linear transformation, we 
ouldloose information about the integral points of P : more spe
i�
ally, there is no guarantee that
conv(P ′∩Z

n) is the transformed of conv(P ∩Z
n). Thus studying the original pure integer setor the transformed set is not the same at all.However, if the matrix A asso
iated with the linear transformation is a unimodular matrix,i.e. A has integer entries and det(A) = ±1, then the transformation is a bije
tion on Z

n (see51
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ase there is a one-to-one 
orresponden
e between the integral pointsin P and those in P ′.When dealing with mixed-integer sets, say with 
ontinuous variables yi and integer vari-ables zi, it is natural to wonder whi
h invertible linear transformations preserve the integralityof the z-variables. The following result fully answers this question.Theorem 4.1 Consider the linear transformation de�ned by (y′
z′

)

:= A

(

y

z

), where (y, z) ∈

R
m+n, (y′, z′) ∈ R

m′+n′, m+n = m′ +n′ and A is an (m+n)× (m′ +n′) nonsingular matrix.The following are equivalent:(i) For ea
h (y, z) ∈ R
m+n, z is integral if and only if z′ is integral.(ii) m = m′, n = n′ and A =

[

A1 A2

O U

], where A1 is an m×m nonsingular matrix, A2 isan m× n matrix and U is an n× n unimodular matrix.Proof. We �rst prove that (i) implies (ii). Suppose A =

[

A1 A2

A3 A4

], where A1 ∈ R
m′×m,

A2 ∈ R
m′×n, A3 ∈ R

n′×m and A4 ∈ R
n′×n. If A3 6= O, one of the entries of A3 is a nonzeronumber a. Without loss of generality we assume that this entry is in the �rst row and �rst
olumn of A3. Then the ve
tor A(e1/2a

0

), where e1 denotes the m-ve
tor with 1 in the �rstentry and 0 elsewhere, 
ontains a 
omponent equal to 1/2 in the entry 
orresponding to z′1,
ontradi
ting (i). Thus A3 = O.If B =

[

B1 B2

B3 B4

] is the inverse of A (where B1 ∈ R
m×m′ , B2 ∈ R

m×n′ , B3 ∈ R
n×m′ and

B4 ∈ R
n×n′), a similar argument shows that B3 = O.Thus we obtain z′ = A4z and z = B4z

′ for all z ∈ R
n. We now prove that this implies

n = n′. Equation z = B4A4z for all z ∈ R
n yields B4A4 = In (where In denotes the n × nidentity matrix), thus rk(A4) ≥ n. Sin
e A4 is n′ × n, this implies n′ ≥ n. Similarly, startingfrom z′ = A4B4z

′ for all z′, one obtains n ≥ n′. Thus n = n′ and 
onsequently m = m′. (i)then implies that A4 is unimodular.To prove that (ii) implies (i), note that if (ii) holds then the transformation and its inverseare
{

y′ := A1y +A2z

z′ := Uy
and {

y := A−1
1

(
y′ −A2U

−1z′
)

z := U−1z′
.Sin
e U is a unimodular matrix, these two transformations preserve the integrality of z and

z′. �We 
all a transformation of the type des
ribed in Theorem 4.1 a mixed-integer linearmapping. Theorem 4.1 shows that if the des
ription of a mixed-integer set is given (as usual)



4.2. The mixing set and its variants 53as the set of mixed-integer points belonging to a polyhedron P , then, after applying a mixed-integer linear mapping, we 
an equivalently study the mixed-integer set de�ned by P ′ (thetransformed of P ).Taking the above theorem for n = 0 or m = 0 shows that in the linear 
ase (no integervariables) the mixed-integer linear mappings are pre
isely the invertible linear transformations,while in the pure integer 
ase we �nd the unimodular transformations. Thus in the extreme
ases Theorem 4.1 mat
hes the known results.Consider an arbitrary mixed-integer set X and let F be a 
omplete list of fra
tional partsfor X having 
ompa
t size. In general, if we apply a linear mapping of the kind des
ribedin Theorem 4.1, the transformed mixed-integer set X ′ may not have a 
omplete list whi
h is
ompa
t. For instan
e, 
hoose
X := {x ∈ R

n : 0 ≤ xi ≤ 2−i for i ∈ N}(so here I = ∅; similar examples with I 6= ∅ 
an be easily derived from this instan
e). Thelist F := {0; 2−i : i ∈ N} is 
omplete for X and its size is linear in the size of the des
riptionof X. The mixed-integer linear mapping
x′1 := x2 + · · · + xn, x

′
i := xi for i ∈ N \ {1}transforms X into

X ′ :=
{
x′ ∈ R

n : 0 ≤ x′1 − x′2 − · · · − x′n ≤ 2−1, 0 ≤ x′i ≤ 2−i for i ∈ N \ {1}
}
.Now, for ea
h subset S ⊆ N \ {1} the ve
tor de�ned by

x′i :=







2−i if i ∈ S,

0 if i ∈ (N \ {1}) \ S,
∑

j∈S 2−j if i = 1is a vertex of X ′. Sin
e for ea
h S the value of the sum ∑

j∈S 2−j is a di�erent number inthe interval [0, 1), any 
omplete list for X ′ 
ontains a number of fra
tional parts whi
h isexponential in the size of the des
ription of X.However, for the mixed-integer sets that we study below (ex
ept those 
onsidered in Se
-tions 4.3 and 4.5), we will apply mixed-integer linear mappings whi
h give rise to mixed-integersets of the type MIX2TU satisfying at least one of the 
onditions of Corollary 3.8. Thus inthese 
ases the existen
e of a 
omplete list whi
h is 
ompa
t is guaranteed. Furthermore, forthese sets su
h a list is expli
itly given.4.2 The mixing set and its variantsGünlük and Po
het [31℄ introdu
ed a mixed-integer set that is now referred to as mixing set(the authors do not give a name to su
h a set in [31℄):
s+ zi ≥ bi, 1 ≤ i ≤ n, (4.1)
s ≥ 0, (4.2)

zi integer, 1 ≤ i ≤ n, (4.3)



54 Chapter 4. Examples of formulations of dual network setswhere bi ∈ R for 1 ≤ i ≤ n. The mixing set was introdu
ed as an abstra
tion arising from somemixed-integer sets that have appli
ation in pra
ti
al problems, su
h as produ
tion planning[55℄. More spe
i�
ally, the mixing set provides a relaxation for a number of lot-sizing problems(see e.g. [21, 45, 55, 63℄).Despite the simple stru
ture of 
onstraints (4.1)�(4.3), the 
onvex hull of the mixing setis des
ribed by an exponential number of fa
et-de�ning inequalities. The name of the setoriginates from the fa
t that Günlük and Po
het [31℄ used this set to demonstrate the strengthof a te
hnique that they 
alled mixing pro
edure: given a mixed-integer set, su
h a pro
edure
onsists in mixing the original inequalities that des
ribe the set to obtain a new valid inequality.In fa
t the mixing pro
edure allowed the authors to 
ompute the linear inequality des
riptionof the 
onvex hull of the mixing set (4.1)�(4.3).Several variants of the mixing set (4.1)�(4.3) have been introdu
ed. Some of them are
onsidered in this se
tion, others are dis
ussed in Chapter 7. As we explain below, all thesevariants are important in pra
ti
al problems. For the sake of 
onvenien
e, the variants ofthe mixing set studied in this se
tion are treated starting with the most 
ompli
ated one andending with the mixing set itself.4.2.1 The 
ontinuous mixing set with �owsThe 
ontinuous mixing set with �ows, studied in [12℄, is de�ned as follows:
s+ ri + yi ≥ bi, 1 ≤ i ≤ n, (4.4)

yi ≤ zi, 1 ≤ i ≤ n, (4.5)
s ≥ 0, ri ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (4.6)

zi integer, 1 ≤ i ≤ n, (4.7)where bi ∈ R for 1 ≤ i ≤ n.Before proving that the 
ontinuous mixing set with �ows 
an be transformed into a set ofthe type MIX2TU that admits a 
omplete list of fra
tional parts whose length is polynomial,we demonstrate the pra
ti
al usefulness of this set by showing two links with lot-sizing.The �rst link is to the single-item 
onstant-
apa
ity lot-sizing problem with ba
kloggingover n periods, whi
h 
an be formulated (in
luding redundant equations) as:
sj−1 +

∑i
l=j xl + ri =

∑i
l=j dl + si + rj−1, 1 ≤ j ≤ i ≤ n,

xl ≤ Cwl, 1 ≤ l ≤ n,

si ≥ 0, ri ≥ 0, xl ≥ 0, wl ∈ {0, 1}, 1 ≤ i ≤ n, 0 ≤ l ≤ n.Here dl is the demand in period l, sl and rl are the sto
k and ba
klog at the end of period
l, wl takes value 1 if there is a set-up in period l allowing produ
tion to take pla
e, xl isthe produ
tion in period l and C is the 
apa
ity (i.e. the maximum produ
tion allowed). Tosee that this set has a relaxation as the interse
tion of n 
ontinuous mixing sets with �ows,take C = 1 without loss of generality, �x j, set s := sj−1, yi :=

∑i
l=j xl, zi :=

∑i
l=j wl and
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bi :=

∑i
l=j dl, giving a �rst relaxation:

s+ ri + yi ≥ bi, j ≤ i ≤ n, (4.8)
0 ≤ yl − yl−1 ≤ zl − zl−1 ≤ 1, j ≤ l ≤ n (4.9)

s ≥ 0, ri ≥ 0, yl ≥ 0, j ≤ i ≤ n, j − 1 ≤ l ≤ n, (4.10)
zl integer, j − 1 ≤ l ≤ n. (4.11)Now summing (4.9) over j ≤ l ≤ i (for ea
h �xed i = j, . . . , n) and dropping the upper boundon zi,1 one obtains pre
isely a set of the type (4.4)�(4.7).The 
ontinuous mixing set with �ows (4.4)�(4.7) also provides an exa
t model for the two-stage sto
hasti
 lot-sizing problem with 
onstant 
apa
ities and ba
klogging. The problem isas follows. At time 0 one must 
hoose to produ
e a quantity s at a per unit 
ost of h. Thenin period 1, there are n possible out
omes. For ea
h 1 ≤ i ≤ n, the probability of event i is

φi, the demand is bi and the unit produ
tion 
ost is pi, with produ
tion in bat
hes of size upto C; there are also a �xed 
ost of qi per bat
h and a possible bound mi on the number ofbat
hes. As an alternative to produ
tion there is a linear ba
klog (re
overy) 
ost ei. Finallythe goal is to satisfy the demands in all possible out
omes and minimize the total expe
ted
ost. The resulting problem is
min hs+

∑n
i=1 φi(piyi + qizi + eiri)subje
t to s+ ri + yi ≥ bi, 1 ≤ i ≤ n, (4.12)
yi ≤ Czi, zi ≤ mi, 1 ≤ i ≤ n, (4.13)
s ≥ 0, ri ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (4.14)

zi integer, 1 ≤ i ≤ n. (4.15)When mi = 1 for all 1 ≤ i ≤ n, this is a standard lot-sizing problem, and in general, as-suming C = 1 without loss of generality, (4.12)�(4.15) is the 
ontinuous mixing set with�ows (4.4)�(4.7) plus inequalities zi ≤ mi for 1 ≤ i ≤ n, whi
h 
an be treated as shown byProposition 2.16.We now prove the existen
e of a 
ompa
t extended formulation for the 
ontinuous mixingset with �ows (4.4)�(4.7) (provided that b is a rational ve
tor).Note that the mixed-integer linear mapping
s′ := s; σi := s+ ri, y

′
i := yi, z

′
i := zi for 1 ≤ i ≤ n (4.16)transforms (4.4)�(4.7) into the following mixed-integer set:

σi + y′i ≥ bi, 1 ≤ i ≤ n, (4.17)
y′i ≤ z′i, 1 ≤ i ≤ n, (4.18)

s′ ≥ 0, σi − s′ ≥ 0, y′i ≥ 0, 1 ≤ i ≤ n, (4.19)
z′i integer, 1 ≤ i ≤ n. (4.20)1The only reason for dropping the upper bound on zi is to obtain a set of the type (4.4)�(4.7). If the upperbound is kept, an extended formulation for the resulting set 
an be obtained immediately from that of the set(4.4)�(4.7) by applying Proposition 2.16.
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e the 
onstraint matrix of inequalities (4.17)�(4.19) is a totally unimodular matrixwith at most two nonzero entries per row, (4.17)�(4.20) is a mixed-integer set of the type
MIX2TU .If we let X denote the mixed-integer set (4.17)�(4.20), then the graph GX (as de�ned inSe
tion 3.2) is a tree, with leaves 
orresponding to variables y′i for 1 ≤ i ≤ n. Therefore GXsatis�es 
ondition (i) of Corollary 3.8 and X admits a 
omplete list of 
ompa
t size. Belowwe expli
itly give su
h a list.Lemma 4.2 The list of fra
tional parts F := {0; f(bi) : 1 ≤ i ≤ n; f(bi − bj) : 1 ≤ i, j ≤ n}is 
omplete for the mixed-integer set (4.17)�(4.20).Proof. We use the notation of the proof of Theorem 3.6. Note that conv(X) is a pointedpolyhedron (as all variables are bounded from below), thus Observation 3.7 applies. Givena vertex x̄ = (s̄′, σ̄, ȳ′, z̄′) of conv(X) and a 
onne
ted 
omponent Cx̄ of Fx̄, Observation 3.7shows that node r 
orresponds to a variable that assumes an integer value. Then by equa-tion (3.24) we only need to 
ompute the values f(lω(P )) for all paths P in GX . It is easy to
he
k that the list F := {0; f(bi) : 1 ≤ i ≤ n; f(bi − bj) : 1 ≤ i, j ≤ n} in
ludes all thesevalues. �Therefore the result of Se
tion 2.4 provides a 
ompa
t extended formulation of the 
onvexhull of the set (4.17)�(4.20). Applying the inverse of linear transformation (4.16) gives a
ompa
t extended formulation of the 
ontinuous mixing set with �ows. Sin
e |F| = O

(
n2
),Corollary 2.12 shows that su
h an extended formulation uses O(n3

) variables and 
onstraints.The formulation 
an be made more 
ompa
t if one uses the approa
h des
ribed in Se
-tion 2.5.1. Spe
i�
ally, the following result holds:Lemma 4.3 (i) The list of fra
tional parts Fs′ := {0; f(bj) : 1 ≤ j ≤ n} is 
omplete forthe mixed-integer set (4.17)�(4.20) with respe
t to variable s′.(ii) For ea
h 1 ≤ i ≤ n, the list of fra
tional parts Fσi
:= {0; f(bj) : 1 ≤ j ≤ n} is 
ompletefor the mixed-integer set (4.17)�(4.20) with respe
t to variable σi.(iii) For ea
h 1 ≤ i ≤ n, the list of fra
tional parts Fy′

i
:= {0; f(bi − bj) : 1 ≤ j ≤ n} is
omplete for the mixed-integer set (4.17)�(4.20) with respe
t to variable y′i.Proof. The proof is just a re�nement of the proof of Lemma 4.2: for instan
e, if v is the nodein GX 
orresponding to variable y′i for some 1 ≤ i ≤ n, the list Fy′

i
given above 
ontains allvalues of the type f(lω(Pvr)), where r is a node in GX and P is a path in GX with r as lastnode. �Sin
e all the lists given in the above lemma 
ontain O(n) elements, Corollary 2.14 impliesthe following result:Proposition 4.4 The 
ontinuous mixing set with �ows (4.4)�(4.7) admits an extended for-mulation with O

(
n2
) variables and 
onstraints.



4.2. The mixing set and its variants 57Conforti, Di Summa and Wolsey [12℄ gave two less 
ompa
t extended formulations of (4.4)�(4.7): one, using an approa
h quite similar to that des
ribed here, involves O
(
n2
) variablesand O

(
n3
) 
onstraints; the other, whi
h is based on the approa
h of Conforti and Wolsey [16℄des
ribed in Se
tion 1.5.4, uses O(n3

) variables and O
(
n4
) 
onstraints. Su
h results are alsopresented in Se
tion 8.3.The linear inequality des
ription of the 
onvex hull of the 
ontinuous mixing set with �owsin the original spa
e is not known.4.2.2 The mixing set with �owsThe mixing set with �ows is de�ned as follows:

s+ yi ≥ bi, 1 ≤ i ≤ n, (4.21)
yi ≤ zi, 1 ≤ i ≤ n, (4.22)

s ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (4.23)
zi integer, 1 ≤ i ≤ n, (4.24)where bi ∈ R for 1 ≤ i ≤ n.This mixed-integer set is obtained from the 
ontinuous mixing set with �ows (4.4)�(4.7)by setting ri = 0 for all 1 ≤ i ≤ n. We showed in Se
tion 4.2.1 that the 
ontinuous mixing setwith �ows (4.4)�(4.7) provides relaxations for two kinds of lot-sizing problems with ba
klogging.Sin
e in those formulations variables ri represented the ba
klogged amount, it follows that themixing set with �ows (4.21)�(4.24) provides a relaxation for the single-item 
onstant-
apa
itylot-sizing problems (without ba
klogging) and an exa
t formulation for the two-stage sto
hasti
lot-sizing problem with 
onstant 
apa
ities (see also [13℄).Sin
e the 
onvex hull of (4.21)�(4.24) is the fa
e of the 
onvex hull of (4.4)�(4.7) de�nedby the equations ri = 0 for 1 ≤ i ≤ n, an extended formulation for the mixing set with�ows (4.21)�(4.24) is obtained by in
luding equations ri = 0 for 1 ≤ i ≤ n in any extendedformulation of the 
ontinuous mixing set with �ows (4.4)�(4.7). Then Proposition 4.4 impliesthe following result:Proposition 4.5 The mixing set with �ows (4.21)�(4.24) admits an extended formulationwith O

(
n2
) variables and 
onstraints.In Se
tion 5.3 we 
onstru
t the extended formulation and then proje
t it onto the originalspa
e, thus obtaining a linear inequality des
ription of the 
onvex hull of the set in its spa
eof de�nition.A di�erent extended formulation, whi
h also uses O

(
n2
) variables and 
onstraints, wasgiven by Conforti, Di Summa and Wolsey [13℄. Furthermore they gave a linear inequalitydes
ription of the 
onvex hull of the set in its original (s, y, z)-spa
e without using proje
tions.Su
h results are also presented in Se
tion 8.2.In [13℄ a 
omplete 
hara
terization of the extreme points and extreme rays of the 
onvexhull of this set was also given. This was used to derive a simple algorithm for optimizing arational linear fun
tion over the mixing set with �ows (4.21)�(4.24) (with rational right-handside).
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ontinuous mixing setThe 
ontinuous mixing set, introdu
ed by Miller and Wolsey [45℄, is the mixed-integer setde�ned as follows:
s+ ri + zj ≥ bi, 1 ≤ i ≤ n, (4.25)
s ≥ 0, ri ≥ 0, 1 ≤ i ≤ n, (4.26)
zi integer, 1 ≤ i ≤ n, (4.27)where bi ∈ R for 1 ≤ i ≤ n.It is immediate to see that system (4.25)�(4.27) is a relaxation of the feasible regionof the 
ontinuous mixing set with �ows (4.4)�(4.7). Therefore the 
ontinuous mixing set(4.25)�(4.27) itself is a relaxation of both the single-item 
onstant-
apa
ity lot-sizing problemwith ba
klogging and the two-stage sto
hasti
 lot-sizing problem with 
onstant 
apa
ities andba
klogging. Other possible appli
ations of the 
ontinuous mixing set (e.g. in 
hemistry) aredes
ribed in [64℄.Sin
e the 
onvex hull of (4.25)�(4.27) is the fa
e of the 
onvex hull of (4.4)�(4.7) de�nedby the equations yi = zi for 1 ≤ i ≤ n, an extended formulation for the 
ontinuous mixingset (4.25)�(4.27) is obtained by in
luding equations yi = zi for 1 ≤ i ≤ n in any extendedformulation of the 
ontinuous mixing set with �ows (4.4)�(4.7). Then Proposition 4.4 impliesthe following result:Proposition 4.6 The 
ontinuous mixing set (4.21)�(4.24) admits an extended formulationwith O

(
n2
) variables and 
onstraints.Miller and Wolsey [45℄ gave a di�erent 
ompa
t extended formulation whi
h also uses

O
(
n2
) variables and 
onstraints, and so did Van Vyve [65℄. The formulation by Van Vyve alsoworks when an additional system of the type Bz ≥ d, where B is a dual network matrix and

d is an integral ve
tor, is in
luded in the original des
ription of the set. In a di�erent paper,Van Vyve [64℄ gave a more 
ompa
t extended formulation involving only O(n) variables and
O
(
n2
) 
onstraints. He also gave a linear inequality des
ription of the 
onvex hull of the setin its original spa
e, as well as an O

(
n3
) algorithm for the separation problem in the originalspa
e.4.2.4 The mixing setRe
all that the mixing set is de�ned by 
onstraints (4.1)�(4.3). Clearly this set is a relaxationof ea
h of the sets 
onsidered in Se
tions 4.2.1�4.2.3, thus it provides relaxations for lot-sizingproblems. In fa
t the mixing set appears as a substru
ture in many produ
tion planningproblems [21, 45, 55, 63℄.Sin
e the 
onvex hull of the mixing set (4.1)�(4.3) is the fa
e of the 
onvex hull of (4.25)�(4.27) de�ned by the equations ri = 0 for 1 ≤ i ≤ n, an extended formulation for the mixingset is obtained by in
luding equations ri = 0 for 1 ≤ i ≤ n in any extended formulationof the 
ontinuous mixing set (4.25)�(4.27). This observation, together with Proposition 4.6,



4.3. The interse
tion set 59shows that the mixing set (4.1)�(4.3) admits an extended formulation with O
(
n2
) variablesand 
onstraints. However, a better result 
an be a
hieved, as the mixing set admits a shorter
omplete list of fra
tional parts.Lemma 4.7 The list of fra
tional parts Fs := {0; f(bi) : 1 ≤ i ≤ n} is 
omplete for themixing set (4.1)�(4.3) with respe
t to variable s.Proof. Let (s̄, z̄) be a vertex of the 
onvex hull of (4.1)�(4.3). Sin
e z̄ is an integral ve
tor, if

f(s̄) were not in the list F de�ned above then both points (s̄± ε, z̄) would satisfy (4.1)�(4.3)for some ε 6= 0. However, this 
ontradi
ts the assumption that (s̄, z̄) is a vertex. �Note that the mixing set (4.1)�(4.3) is a set of the type MIX2TU and the above list
ontains O(n) elements. If one uses the approa
h des
ribed in Se
tion 2.5 to deal with integervariables, the following result is easily obtained:Proposition 4.8 The mixing set (4.1)�(4.3) admits an extended formulation with O(n) vari-ables and 
onstraints.Su
h a formulation, whi
h is essentially the same as that proposed by Miller and Wolseyin [45℄, is given in Se
tion 5.2 in a more general 
ontext. Miller and Wolsey [45℄ also provedthat if one interse
ts the mixing set with a system of inequalities Bz ≥ d, where B is a dualnetwork matrix and d is an integral ve
tor, an extended formulation of the resulting set isobtained by just in
luding the system Bz ≥ d in the extended formulation of the mixing set.Note that this result also follows from our study (see Proposition 2.16).The 
onvex hull of the mixing set in its original spa
e, whi
h was �rst des
ribed by Günlükand Po
het [31℄, is obtained in Se
tion 5.2 as a 
onsequen
e of the 
hara
terization of the
onvex hull of any set of the type MIX2TU having a single 
ontinuous variable. Su
h a
hara
terization is found by proje
ting the extended formulation onto the original spa
e ofvariables.4.3 The interse
tion setThe following mixed-integer set was studied in [12℄ under the name of interse
tion set:
si + rj + zj ≥ bij , 1 ≤ i, j ≤ n, (4.28)

si ≥ 0, ri ≥ 0, zi ≥ 0, 1 ≤ i ≤ n, (4.29)
zi integer, 1 ≤ i ≤ n, (4.30)where bij ∈ R for 1 ≤ i, j ≤ n. Note that this set is the interse
tion of n 
ontinuous mixing sets(4.25)�(4.27), ea
h having its own si variable but all sharing the same (r, z) variables. Conforti,Di Summa and Wolsey [12℄ analyzed this set as an instrument to study the 
ontinuous mixingset with �ows de�ned in Se
tion 4.2.1.By applying the mixed-integer linear mapping

s′i := si, ρi := ri + zi, z
′
i := zi for 1 ≤ i ≤ n,



60 Chapter 4. Examples of formulations of dual network setsthe set (4.28)�(4.30) is transformed into the following mixed-integer set:
s′i + ρj ≥ bij, 1 ≤ i, j ≤ n, (4.31)

si ≥ 0, ρi − z′i ≥ 0, z′i ≥ 0, 1 ≤ i ≤ n, (4.32)
z′i integer, 1 ≤ i ≤ n. (4.33)The above mixed-integer set is of the type MIX2TU . If we denote it by X, the graph GX(as de�ned in Se
tion 3.2) is the 
omplete bipartite graph with n nodes in ea
h 
lass of thebipartition, where all edges have two tails.Lemma 4.9 Given two sequen
es of indi
es i1, . . . , im and j1, . . . , jm in {1, . . . , n}, whereea
h sequen
e 
onsists of pairwise distin
t elements, de�ne

ϕ(i1, . . . , im; j1, . . . , jm−1) :=

m−1∑

t=1

(bitjt − bitjt+1),

ψ(i1, . . . , im; j1, . . . , jm) :=

m−1∑

t=1

(bitjt − bitjt+1) + bimjm .Then the list of fra
tional parts F 
onsisting of all values of the types
f
(
ϕ(i1, . . . , im; j1, . . . , jm−1)

)
, f

(
ψ(i1, . . . , im; j1, . . . , jm)

)is 
omplete for the mixed-integer set (4.31)�(4.33).Proof. We use again the notation of the proof of Theorem 2.10. Given a vertex x̄ = (s̄′, ρ̄, z̄′) of
conv(X) and a 
onne
ted 
omponent Cx̄ of Fx̄, node r 
orresponds to a variable that assumesan integer value (this follows from Observation 3.7, as conv(X) is a pointed polyhedron). Thenby equation (3.24) we only need to 
ompute the values f(lω(P )) for all paths P in GX . It iseasy to 
he
k that the list F de�ned above in
ludes all these values. �The number of distin
t fra
tional parts 
ontained in the list F given above depends onthe values bij for 1 ≤ i, j ≤ n. Note that the fa
e of conv(X) de�ned by equations z′j = 0 for
1 ≤ j ≤ n is a polyhedron of the same form as (3.1)�(3.2). This, together with Observation 3.2,shows that there exists a 
hoi
e of the values bij for 1 ≤ i, j ≤ n su
h that any 
omplete listfor the set (4.31)�(4.33) 
ontains an exponential number of distin
t fra
tional parts.4.3.1 The di�eren
e setConforti, Di Summa and Wolsey [12℄ payed parti
ular attention to instan
es of the interse
tionset (4.28)�(4.30) with bij = di−dj for some �xed ve
tor d ∈ R

n. The motivation for the studyof this type of set, 
alled di�eren
e set in [12℄, relied again on the fa
t that the di�eren
e set
an be useful in the study of the 
ontinuous mixing set with �ows (see also Se
tion 8.3)It is readily 
he
ked that if bij = di−dj for some �xed ve
tor d ∈ R
n, then the 
orrespondingtransformed set X de�ned by (4.31)�(4.33) satis�es 
ondition (iii) of Corollary 2.12, thus inthis 
ase the existen
e of a 
omplete list of polynomial length is guaranteed.



4.4. Lot-sizing 61Lemma 4.10 If bij = di − dj for some �xed ve
tor d ∈ R
n, the list of fra
tional parts

F := {0; f(di) : 1 ≤ i ≤ n; f(di − dj) : 1 ≤ i, j ≤ n} is 
omplete for (4.31)�(4.33).Proof. Dire
tly from equations (3.24) and (3.26). �Sin
e the above list 
ontains O
(
n2
) elements, Corollary 2.12 implies that the di�eren
eset admits an extended formulation with O

(
n3
) variables and O

(
n4
) 
onstraints. However, abetter result 
an be obtained if one uses the approa
h des
ribed in Se
tion 2.5. Spe
i�
ally,observe �rst that the following improvement of Lemma 4.10 holds:Lemma 4.11 If bij = di − dj for some �xed ve
tor d ∈ R

n, then for ea
h index 1 ≤ i ≤ nthe list of fra
tional parts Fi := {0; f(dj) : 1 ≤ j ≤ n; f(di − dj) : 1 ≤ j ≤ n} is 
omplete for(4.31)�(4.33) with respe
t to ea
h of variables s′i, ρi.Proof. Again dire
tly from equations (3.24) and (3.26). �The following results is then implied:Proposition 4.12 The di�eren
e set admits an extended formulation that uses O
(
n2
) vari-ables and O

(
n3
) 
onstraints.Proof. From Lemma 4.11 and Corollary 2.14. �Two kinds of extended formulations of the di�eren
e set were given in [12℄ (and also herein Se
tion 8.3): one is essentially the same as that des
ribed here, while the other, whi
h isbased on the te
hnique by Conforti and Wolsey [16℄ des
ribed in Se
tion 1.5.4, involves O(n4

)variables and 
onstraints.4.4 Lot-sizingVan Vyve [65℄ studied a mixed-integer set of the following form:
si + rj + C

∑j
t=i zt ≥ dj − di, 1 ≤ i < j ≤ n, (4.34)

si ≥ 0, ri ≥ 0, 0 ≤ zi ≤ mi, 1 ≤ i ≤ n, (4.35)
zi integer, 1 ≤ i ≤ n. (4.36)He showed that optimizing a linear fun
tion over the above set is equivalent to solving a 
ertainlot-sizing problem, provided that the 
osts satisfy the Wagner-Whitin 
onditions re
alledin Se
tion 1.5.5. In su
h lot-sizing problem the 
apa
ity is a 
onstant C and ba
kloggingis allowed. There is also a bound mj on the number of bat
hes that 
an be produ
ed inperiod j. The value dj is the 
umulative demand up to period j. Van Vyve [65℄ providedan extended formulation for the 
onvex hull of (4.34)�(4.36) whi
h uses O(n2

) variables and
O
(
n3
) 
onstraints.



62 Chapter 4. Examples of formulations of dual network setsAssuming C = 1 without loss of generality, the mixed-integer linear mapping
wi :=

i∑

t=1

zt, σi := si − wi−1, ρi := ri + wi for 1 ≤ i ≤ n, (4.37)where w0 := 0, maps (4.34)�(4.36) into the following mixed-integer set:
σi + ρj ≥ dj − di, 1 ≤ i < j ≤ n, (4.38)
σi +wi−1 ≥ 0, 1 ≤ i ≤ n, (4.39)

ρi − wi ≥ 0, 0 ≤ wi −wi−1 ≤ mi, 1 ≤ i ≤ n, (4.40)
wi integer, 1 ≤ i ≤ n. (4.41)The above is a set of the type MIX2TU . If we denote it by X, the graph GX , as de�nedin Se
tion 3.2, is a bipartite graph where all edges have two tails.Lemma 4.13 The list F := {0; f(di) : 1 ≤ i ≤ n; f(di − dj) : 1 ≤ i, j ≤ n} is 
omplete for(4.38)�(4.41).Proof. After noting that Observation 3.7 
an be applied (as conv(X) is a pointed polyhedron)and 
ondition (iii) of Corollary 2.12 holds, the result follows dire
tly from equations (3.24)and (3.26). �The above lemma, together with the result of Se
tion 2.4, yields a 
ompa
t extendedformulation of (4.34)�(4.36) with O
(
n3
) 
onstraints and O

(
n4
) variables. However, a propertysimilar to Lemma 4.11 holds and thus the result 
an be improved:Proposition 4.14 The set (4.34)�(4.36) admits an extended formulation that uses O

(
n2
)
onstraints and O

(
n3
) variables.Proof. Just observe that for ea
h index 1 ≤ i ≤ n, the list of fra
tional part Fi := {0; f(dj) :

1 ≤ j ≤ n; f(di − dj) : 1 ≤ j ≤ n} is 
omplete for X with respe
t to ea
h of variables σi, ρi(this follows from equations (3.24) and (3.26)). The result now follows from Corollary 2.14.
�Su
h an extended formulation is essentially the same as that given by Van Vyve [65℄.4.5 Bipartite 
over inequalitiesGiven a bipartite graph G = (V1, V2;E), let (I, L) be a partition of V1 ∪ V2 with I 6= ∅. We
onsider here the following mixed-integer set:

xi + xj ≥ bij , ij ∈ E, (4.42)
xi ≥ 0, i ∈ V1 ∪ V2, (4.43)

xi integer, i ∈ I, (4.44)where bij ∈ R for ij ∈ E.The above is obviously a set of the type MIX2TU . The example of Se
tion 3.1 shows thatthis set does not admit in general a 
omplete list of polynomial length. However, su
h a listexists in the following two spe
ial 
ases.



4.5. Bipartite 
over inequalities 634.5.1 The interse
tion of mixing setsThe �rst 
ase is the set (4.42)�(4.44) with I = V1 and L = V2 (i.e. the integer variables
orrespond to the nodes of one side of the bipartition of G). Note that in this 
ase theset (4.42)�(4.44) is the interse
tion of |V2| mixing sets (see Se
tion 4.2), ea
h one having itsown 
ontinuous variable but all sharing the same integer variables. (Here we also requirenonnegativity of the integer variables.)This set was studied by Miller and Wolsey in [45℄, where a 
ompa
t extended formulationwas given. Their result 
an be easily reobtained by using our approa
h, as we now show.Lemma 4.15 If I = V1 and L = V2, then for ea
h j ∈ V2 the list of fra
tional parts Fj :=

{0; f(bij) : i ∈ V1} is 
omplete for the set (4.42)�(4.44) with respe
t to variable xj.Proof. Let X denote the mixed-integer set de�ned by 
onditions (4.42)�(4.44). The graph GX(see Se
tion 3.2) has no edges. Sin
e conv(X) is a pointed polyhedron, it follows immediatelyby Observation 3.7 that the list given above is 
omplete for the set with respe
t to variable
xj. �Proposition 4.16 If I = V1 and L = V2, the set (4.42)�(4.44) admits an extended formula-tion with O(|V1||V2|) variables and 
onstraints.Proof. Just 
ount the variables and the 
onstraints of the extended formulation (2.62)�(2.68)
orresponding to the set (4.42)�(4.44) and the list given above (the general bound providedby Corollary (2.14) is weaker than O(|V1||V2|)). �Miller and Wolsey [45℄ gave a formulation of this set in its original spa
e of variables.They showed that su
h a formulation is obtained by just interse
ting the linear inequalitydes
riptions of the |V2| mixing sets that form (4.42)�(4.44).4.5.2 Constant number of fra
tional partsThe se
ond 
ase we 
onsider is the set (4.42)�(4.44) with the additional 
ondition that forsome integer 
onstant K, the value Kbij is an integer for all ij ∈ E; in other words, f(bij) ∈

{0, 1/K, . . . , 1−1/K} for all ij ∈ E. Note that this set satis�es 
ondition (ii) of Corollary 3.8.As stated in Corollary 3.8, every set of the typeMIX2TU su
h that the number of distin
tfra
tional parts taken by the right-hand sides is bounded by a 
onstant admits a 
ompa
textended formulation. Thus one might wonder why we pay parti
ular attention to the sets(4.42)�(4.44) with the above property. The reason for this is the fa
t that the spe
ial 
ase
K = 2 was studied re
ently by Conforti, Gerards and Zambelli [15℄. They �rst gave a 
ompa
textended formulation (of the same type as that des
ribed in Chapter 2) and then 
omputedthe linear inequality des
ription of the set in the original spa
e by proje
ting the extendedformulation.
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Chapter 5Proje
tions onto the original spa
e ofvariablesRe
all that given an extended formulation of a mixed-integer set, Theorem 1.17 
an be usedin prin
iple to 
ompute the proje
tion of the extended formulation onto the original spa
eof variables, thus obtaining a linear inequality des
ription of the 
onvex hull of the set in itsspa
e of de�nition.In this 
hapter we 
onsider the problem of 
arrying out expli
itly the proje
tion of anextended formulation of a mixed-integer set with dual network 
onstraint matrix. Sin
e 
om-puting the proje
tion onto the x-spa
e of a general polyhedron of the type (2.36)�(2.42) or(2.62)�(2.68) seems to be an extremely hard task, we only 
onsider a few spe
ial 
ases forwhi
h we 
an expli
itly �nd an inequality des
ription in the original spa
e.Ex
ept for equations (2.62), whi
h de�ne the original variables, the 
onstraint matrix of aformulation of the type (2.62)�(2.68) is a dual network matrix. Thus, when using Theorem 1.17to 
ompute the proje
tion, one essentially has to solve a family of 
ir
ulation problems on anetwork depending on 
ontinuous parameters. In fa
t, some �ow te
hniques are used in this
hapter to 
ompute the proje
tions. This is dis
ussed in Se
tion 5.1.In Se
tion 5.2 we 
onsider a general mixed-integer set of the type MIXDN (or MIX2TU )with a single 
ontinuous variable. We 
onstru
t an extended formulation of the form (2.62)�(2.68) for su
h a set and then proje
t it onto the original spa
e of variables. This will providea linear inequality des
ription of the set in its spa
e of de�nition. The �opposite� 
ase, i.e. asingle integer variable, is treated in Chapter 6.In Se
tion 5.3 we re
onsider the mixing set with �ows (see Se
tion 4.2.2), whi
h is of thetype MIX2TU and therefore admits an extended formulation (2.62)�(2.68). We expli
itlygive su
h a formulation and then proje
t it onto the original spa
e. As we will see, while theproje
tion is 
omputed quite easily for the family of sets 
onsidered in Se
tion 5.2, mu
h moree�ort is required for the mixing set with �ows studied in Se
tion 5.3.A further example of expli
it 
omputation of the proje
tion of an extended formulationwhi
h is essentially of the type (2.36)�(2.42) was 
arried out re
ently by Conforti, Gerardsand Zambelli in [15℄, where the set des
ribed in Se
tion 4.5.2 with K = 2 was studied.65



66 Chapter 5. Proje
tions onto the original spa
e of variables5.1 Cir
ulation problemsA linear system of the type (2.36)�(2.42) or (2.62)�(2.68) has the following form:
Ix = Bµ, (5.1)
Mµ ≥ d, (5.2)where I is the identity matrix of suitable dimension, M is a dual network matrix and µ is theve
tor of all additional variables. By Theorem 1.17, the proje
tion of the above polyhedrononto the spa
e of the x-variables is des
ribed by inequalities wx − ud ≥ 0 for all row ve
tors

(w, u) that are extreme rays1 of the following 
one:
−wB + uM = 0, (5.3)
w free, u ≥ 0. (5.4)Sin
e M is a dual network matrix, for ea
h �xed ve
tor w the above 
onditions de�nethe feasible region of a 
ir
ulation (or b-�ow) problem.2 Therefore 
omputing the proje
tionof an extended formulation of a dual network set amounts to solving a family of 
ir
ulationproblems parameterized on w. The basi
 results about problems of this type that are used inthe remainder of the 
hapter are now re
alled.Let N = (V,A) be a network with vertex set V and ar
 set A. For v ∈ V , we denote by

δ+(v) (resp. δ−(v)) the set of ar
s entering (resp. leaving) node v.Suppose we are assigned real numbers bv for v ∈ V . We denote byN (b) the networkN withthe 
orresponding 
ir
ulation requirements bv assigned to its nodes. A (feasible) 
ir
ulationin N (b) is a ve
tor x with indi
es in A that satis�es the following 
onstraints:
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv, v ∈ V, (5.5)
xa ≥ 0, a ∈ A. (5.6)Equations (5.5) require that at ea
h node v ∈ V the balan
e between entering and exiting�ow is exa
tly the 
ir
ulation requirement bv. As inequalities (5.6) suggest, we allow anyamount of �ow on the ar
s, provided that su
h a �ow goes in the �
orre
t dire
tion�. In amore general version of the 
ir
ulation problem, a lower and an upper bound are assigned tothe �ow on ea
h ar
. However, for our purpose, we always take 0 as lower bound and +∞ asupper bound.Remark that the 
onstraint matrix of the system of equations (5.5) has exa
tly one +1and one −1 per 
olumn, while the 
onstraint matrix of (5.3) (i.e. the transpose of M) may1Sin
e w is unbounded in (5.3)�(5.4), it is not obvious that su
h a 
one does have extreme rays (i.e. ispointed). Note however that the stru
ture of system (2.62)�(2.68) shows that ea
h 
olumn of B has at mostone nonzero entry and ea
h row of B has at least one nonzero entry. This observation 
an be used to showthat (5.3)�(5.4) is a pointed 
one.2Though many authors 
all 
ir
ulation problems only the b-�ow problems where b = 0, we give here thesame meaning to the two terms.



5.1. Cir
ulation problems 67also 
ontain 
olumns with only one nonzero entry. This aspe
t is dis
ussed at the end of these
tion.Summing all equations (5.5) gives
0 =

∑

v∈V

bv. (5.7)Therefore this is a ne
essary 
ondition for the existen
e of a feasible 
ir
ulation in N (b).Conditions (5.5)�(5.6) de�ne a polyhedron. In the next se
tions we will be interested in�nding the extreme points and extreme rays of su
h a polyhedron. The following well-known
hara
terization will be useful:Theorem 5.1 The following hold:(i) the extreme points of (5.5)�(5.6) 
orrespond to the a
y
li
 
ir
ulations in N (b);(ii) the extreme rays of (5.5)�(5.6) are the 
hara
teristi
 ve
tors of dire
ted 
y
les in N .In the above theorem �a
y
li
� means �not 
ontaining any undire
ted 
y
le�. We will alsoneed the following result:Theorem 5.2 Let x̄ be a feasible 
ir
ulation in N (b). Let F be a forest 
ontained in thesupport of x̄ and let ∆ ∈ R
V be a ve
tor satisfying the following two 
onditions:(i) the support of ∆ is 
ontained in the node set of F ;(ii) for ea
h 
onne
ted 
omponent C = (V (C), A(C)) of F , ∑v∈V (C) ∆v = 0.If ε > 0 is small enough, then there exists a unique 
ir
ulation x̃ in N (b + ε∆) su
h that x̄and x̃ 
oin
ide on all ar
s not belonging to F .Proof. Note that it is su�
ient to prove that the statement holds when F is 
onne
ted (i.e. itis a tree). For �xed ε > 0, 
onsider the following linear system:
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = ε∆v, v ∈ V (F ), (5.8)
xe = 0, e /∈ A(F ). (5.9)De�ne m := |V (F )|. Sin
e F is a tree, it is well-known that the 
onstraint matrix ofequations (5.8), restri
ted to variables xe for e ∈ A(F ), is an m× (m − 1) matrix with rank

m− 1. Summing up all equations (5.8) and using (5.9) gives equation 0 =
∑

v∈V (F ) ∆v. Sin
ethis 
ondition is satis�ed by assumption, one of equations (5.8) is redundant. After removingthis redundant equation, (5.8)�(5.9) be
omes a nonsingular system. Let ξ(ε) be its uniquesolution and de�ne x(ε) := x̄+ ξ(ε). Note that x(ε) satis�es equations (5.5) for all v ∈ V and
xe(ε) = x̄e for all e /∈ A(F ). Sin
e x(ε) is a 
ontinuous fun
tion of ε and x(0) = x̄, then for
ε > 0 su�
iently small x(ε) also satis�es 
onditions (5.6). �



68 Chapter 5. Proje
tions onto the original spa
e of variablesSin
e some rows of M may have exa
tly one nonzero entry, we need to 
onsider a moregeneral version of a network, where some ar
s may have only one endpoint in the network. If
H (resp. T ) denotes the set of ar
s having only their head (resp. tail) in the network, summingall equations (5.5) now gives (after 
hanging all the signs)

∑

a∈T

xa −
∑

a∈H

xa = −
∑

v∈V

bv. (5.10)Su
h an equation 
an be viewed as a 
onstraint of type (5.5) 
orresponding to a dummy node
d /∈ V , with asso
iated balan
e bd := −

∑

v∈V bv. Su
h a dummy node d is the head ofall ar
s in T and tail of all ar
s in H. Thus adding this node yields a network 
ontainingboth endpoints of ea
h of its ar
s. Furthermore, equation (5.7) is now satis�ed and thereforeTheorem 5.1 
an be applied to this new network.Remark that the insertion of the dummy node does not 
hange the feasible region (5.5)�(5.6), as equation (5.10) is impli
it in that system.5.2 Dual network sets with a single 
ontinuous variableWe study here mixed-integer sets with dual network 
onstraint matrix and a single 
ontinuousvariable. For su
h sets, we expli
itly give an extended formulation of the type presented inChapter 2 and then proje
t it onto the original spa
e of variables. This will give us a linearinequality des
ription of the set in its spa
e of de�nition. The results of this se
tion are jointwork with Mi
hele Conforti and Lauren
e A. Wolsey.We �rst explain why the proje
tion 
an be 
arried out easily when there is a single 
ontin-uous variable. As remarked in Se
tion 5.1, an extended formulation of a dual network set hasthe form (5.1)�(5.2) and 
omputing the proje
tion amounts to dete
ting the extreme rays ofthe 
one de�ned by (5.3)�(5.4). As observed in Se
tion 2.5.2, it is not ne
essary to introdu
eany additional variables to model the integer variables of the set. It follows that when thereis a single 
ontinuous variable in the original dual network set, system (5.1) a
tually 
onsistsof a single equation, thus the ve
tor w in (5.3)�(5.4) has only one 
omponent. Then, givenan extreme ray (w̄, ū) of (5.3)�(5.4), one 
an assume (after normalization) that w̄ ∈ {0,±1}.Sin
e on
e the value of w̄ is �xed we obtain a 
ir
ulation problem on a network, we only haveto study three di�erent 
ir
ulation problems. It will be then su�
ient to apply Theorem 5.1in the three 
ases.Every mixed-integer set with dual network 
onstraint matrix and a single 
ontinuous vari-able 
an be written as follows:
s− zi ≥ li, i ∈ I l, (5.11)
s− zi ≤ ui, i ∈ Iu, (5.12)
l0 ≤ s ≤ u0, (5.13)
zi integer, 1 ≤ i ≤ n, (5.14)
Bz ≥ d, (5.15)



5.2. Dual network sets with a single 
ontinuous variable 69where I l, Iu ⊆ {1, . . . , n} and B is a dual network matrix. Note that to treat the most general
ase, ea
h of the two inequalities in (5.13) may be omitted.It is 
onvenient to introdu
e a dummy variable z0 whose value is always zero. This allowsus to write the above 
onstraints in a more homogeneous form:
s− zi ≥ li, i ∈ J l, (5.16)
s− zi ≤ ui, i ∈ Ju, (5.17)
zi integer, 0 ≤ i ≤ n, (5.18)
Bz ≥ d, (5.19)
z0 = 0, (5.20)where

J l :=

{

I l ∪ {0} if inequality s ≥ l0 appears in (5.13),
I l otherwiseand

Ju :=

{

Iu ∪ {0} if inequality s ≤ u0 appears in (5.13),
Iu otherwise.Sin
e z1, . . . , zn are integer variables, we 
an assume without loss of generality that all
omponents of d are integer (otherwise round them up). By Proposition 2.16, we only need to
ompute the 
onvex hull of the set (5.16)�(5.18): inequalities (5.19)�(5.20) will be then addedto the formulation of that 
onvex hull.5.2.1 The extended formulationLet f1, . . . , fk be the k distin
t elements in {f(li) : i ∈ J l

}
∪
{
f(ui) : i ∈ Ju

}
∪ {0}, with

f1 > · · · > fk = 0, and de�ne f0 := 1 and fk+1 := 0. For ea
h index i ∈ J l, we denote by
p(i) the unique index in {1, . . . , k} su
h that fp(i) = f(li). Similarly, for ea
h index i ∈ Ju, wedenote by q(i) the unique index in {1, . . . , k} su
h that fq(i) = f(ui).Lemma 5.3 The list of fra
tional parts Fs := {f1, . . . , fk} is 
omplete for the set (5.16)�(5.18)with respe
t to variable s.Proof. Let (s̄, z̄) be a vertex of the 
onvex hull of (5.16)�(5.18). Sin
e z̄ is an integral ve
tor, if
f(s̄) were not in the list F de�ned above then both points (s̄±ε, z̄) would satisfy (5.16)�(5.18)for some ε 6= 0. However, this 
ontradi
ts the assumption that (s̄, z̄) is a vertex. �Note that unless f(li) = 0 or f(ui) = 0 for some index i, it is not ne
essary to in
lude thevalue 0 in Fs. However, in the following we �nd useful to have fk = 0.



70 Chapter 5. Proje
tions onto the original spa
e of variablesBy Theorem 2.13 and using Observation 2.15 to model inequalities (5.16)�(5.17), an ex-tended formulation of the set (5.16)�(5.18) is given by the following linear system:
s =

k∑

ℓ=0

(fℓ − fℓ+1)µℓ, (5.21)
µk − µ0 = 1, (5.22)

µℓ − µℓ−1 ≥ 0, 1 ≤ ℓ ≤ k, (5.23)
µp(i) − zi ≥ ⌊li⌋ + 1, i ∈ J l, (5.24)

µq(i)−1 − zi ≤ ⌊ui⌋, i ∈ Ju. (5.25)Instead of immediately proje
ting the above system, it is useful to write it in a slightlydi�erent form. To do this, we �rst need to introdu
e some new notation.Given a real number α, f ′(α) will denote the fra
tional part of α, ex
ept that f ′(α) = 1 if
α is an integer. That is,

f ′(α) :=

{

f(α) = α− ⌊α⌋ if α /∈ Z,

1 if α ∈ Z.
(5.26)Also, for ea
h index i ∈ J l, we denote by p′(i) the unique index in {0, . . . , k − 1} su
h that

fp′(i) = f ′(li). Note that
p′(i) =

{

p(i) if li /∈ Z,

0 if li ∈ Z.In other words p′(i) = p(i) if 0 ≤ p(i) ≤ k − 1, while p′(i) = 0 if p(i) = k. We also set
p′(n+ 1) := k.Using equation (5.22), one 
an readily verify that for all indi
es i ∈ J l, inequality µp(i)−zi ≥

⌊li⌋+1 is equivalent to inequality µp′(i)−zi ≥ ⌈li⌉. System (5.21)�(5.25) 
an then be rewrittenas follows:
s =

k∑

ℓ=0

(fℓ − fℓ+1)µℓ, (5.27)
µk − µ0 = 1, (5.28)

µℓ − µℓ−1 ≥ 0, 1 ≤ ℓ ≤ k, (5.29)
µp′(i) − zi ≥ ⌈li⌉, i ∈ J l, (5.30)

µq(i)−1 − zi ≤ ⌊ui⌋, i ∈ Ju. (5.31)Equation (5.28) 
an be used to eliminate variable µk from the above system. Note thatthe 
oe�
ient of µk in equation (5.27) is equal to zero, as fk = fk+1 = 0. Furthermore, noneof inequalities (5.30)�(5.31) 
ontains variable µk in its support, as p′(i) < k for i ∈ J l and
q(i) ≤ k for i ∈ Ju. System (5.27)�(5.31) is then equivalent to the following (we assign dual



5.2. Dual network sets with a single 
ontinuous variable 71variables to the 
onstraints as indi
ated on the left):
w : s =

k−1∑

ℓ=0

(fℓ − fℓ+1)µℓ, (5.32)
uℓ : µℓ − µℓ−1 ≥ 0, 1 ≤ ℓ ≤ k − 1, (5.33)
u0 : µ0 − µk−1 ≥ −1, (5.34)
vl
i : µp′(i) − zi ≥ ⌈li⌉, i ∈ J l, (5.35)

vu
i : µq(i)−1 − zi ≤ ⌊ui⌋, i ∈ Ju. (5.36)Note that ex
ept for the �rst equation, the 
onstraint matrix of the above system is still adual network matrix.5.2.2 The proje
tionBy Theorem 1.17, a linear inequality des
ription of the 
onvex hull of (5.16)�(5.18) in itsoriginal spa
e is given by inequalities

w̄s−
∑

i∈J l

v̄l
i (zi + ⌈li⌉) +

∑

i∈Ju

v̄u
i (zi + ⌊ui⌋) + ū0 ≥ 0 (5.37)for all ve
tors (w̄, ū, v̄l, v̄u) that are extreme rays of the following polyhedral 
one (beside ea
h
onstraint, the 
orresponding primal variable is indi
ated):

µℓ : uℓ − uℓ+1 +
∑

i∈J l:p′(i)=ℓ

vl
i +

∑

i∈Ju:q(i)=ℓ+1

vu
i = (fℓ − fℓ+1)w, 0 ≤ ℓ ≤ k − 2, (5.38)

µk−1 : uk−1 − u0 +
∑

i∈J l:p′(i)=k−1

vl
i +

∑

i∈Ju:q(i)=k

vu
i = (fk−1 − fk)w, (5.39)

w free, u ≥ 0, vl ≥ 0, vu ≥ 0. (5.40)In the following we study the extreme rays of the polyhedral 
one de�ned by inequalities(5.38)�(5.40).Re
all that the 
onstraint matrix of inequalities (5.33)�(5.36) is a dual network matrix.This implies that for ea
h �xed w ∈ R, system (5.38)�(5.40) de�nes the feasible region of a
ir
ulation problem on a network N . The value of w determines the requirement of the nodesof the network, but the stru
ture of the network (nodes and ar
s) is independent of w. Thisstru
ture is now des
ribed.For ea
h 0 ≤ ℓ ≤ k − 1, the 
orresponding equation (5.38) or (5.39), whi
h is asso
iatedwith the primal variable µℓ, 
orresponds to a node of N whi
h we also 
all µℓ. The ar
s of
N inherit the name of the 
orresponding variables of system (5.38)�(5.40). The stru
ture ofnetwork N is depi
ted in Figure 5.1, where w > 0 is assumed. Note that a dummy node d hasbeen added to the network as des
ribed in Se
tion 5.1: node d is the tail of ar
s vl

i for i ∈ J land the head of ar
s vu
i for i ∈ Ju. For ea
h i ∈ J l, the head of ar
 vl

i is node µp′(i). For ea
h
i ∈ Ju, the tail of ar
 vu

i is node µq(i)−1. We also remark that the thi
k arrows in the �guredo not represent ar
s of the network, but 
ir
ulation requirements.
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tions onto the original spa
e of variables

µ0

u1

(f0 − f1)w

vl
2

µ1

u2

(f1 − f2)w
vl
3

vu
1

d µ2

u3

(f2 − f3)w
vl
0

µ3

u4

(f3 − f4)w
vu
0

vu
3

µ4

u0

(f4 − f5)w

vl
1

Figure 5.1: The network 
orresponding to a possible instan
e of problem (5.38)�(5.40). Here
n = 3 and k = 4. Also J l = {0, 1, 2, 3}, Ju = {0, 1, 3}, p′(0) = 2, p′(1) = 4, p′(2) = 0,
p′(3) = 1, q(0) = 4, q(1) = 2 and q(3) = 4.



5.2. Dual network sets with a single 
ontinuous variable 73The 
ase w̄ = 0Let (w̄, ū, v̄) be an extreme ray of 
one (5.38)�(5.40) with w̄ = 0. Then (ū, v̄) is an extremeray of the polyhedral 
one obtained by setting w = 0 in (5.38)�(5.40). Theorem 5.1 showsthat (ū, v̄) de�nes a dire
ted 
y
le in network N . In the following we use (ū, v̄) to denote boththe ve
tor and the 
orresponding 
y
le.The stru
ture of N immediately shows that every dire
ted 
y
le in N 
onsists of an ar

vl
i for some i ∈ J l, a (possibly zero-length) path formed by ar
s of type uℓ, and an ar
 vu

j forsome j ∈ Ju. More spe
i�
ally, if f ′(li) > f(uj) then ar
 u0 is not 
ontained in the support ofthe 
y
le and the 
orresponding inequality (5.37) is zj −zi ≥ ⌈li⌉−⌊uj⌋. If f ′(li) ≤ f(uj) thenar
 u0 is part of the 
y
le and the 
orresponding inequality (5.37) is zj − zi ≥ ⌈li⌉ − ⌊uj⌋ − 1.It is easy to 
he
k that in both 
ases the inequality is
zj − zi ≥ ⌈li − uj⌉. (5.41)The 
ase w̄ > 0Let (w̄, ū, v̄) be an extreme ray of 
one (5.38)�(5.40) with w̄ > 0. Without loss of generalitywe 
an assume w̄ = 1. In this 
ase (ū, v̄) is an extreme point of the polyhedron obtained bysetting w = 1 in (5.38)�(5.40). By Theorem 5.1, this implies that (ū, v̄) de�nes an a
y
li

ir
ulation in the 
orresponding network N .Note that v̄u

i = 0 for all i ∈ Ju, as otherwise the 
ir
ulation (ū, v̄) would ne
essarily 
ontaina 
y
le (of the type des
ribed in the analysis of the 
ase w̄ = 0) and (ū, v̄) would not be anextreme point.We 
learly have v̄l
i > 0 for at least an index i ∈ J l, as otherwise the 
ir
ulation requirementswould not be satis�ed. Let i1, . . . , ir be the indi
es in J l su
h that v̄l

it
> 0 for 1 ≤ t ≤ r. Notethat there do not exist two distin
t indi
es t, t′, with 1 ≤ t, t′ ≤ r, su
h that p′(it) = p′(it′), asotherwise the ar
s vl

it
, vl

it′
would form a 
y
le 
ontained in the support of 
ir
ulation (ū, v̄). Sowe 
an assume without loss of generality that p′(i1) < · · · < p′(ir) (in other words, f ′(bi1) >

· · · > f ′(biq)). We also de�ne ir+1 := n+ 1 (thus p′(ir+1) = k).The stru
ture of the network easily implies that the nonzero entries of v̄l are (see theexample in Figure 5.2 (a))
v̄l
it

=

p′(it+1)−1
∑

ℓ=p′(it)

(fℓ − fℓ+1) = fp′(it) − fp′(it+1) for 1 ≤ t ≤ r − 1,

v̄l
ir

=
k−1∑

ℓ=p′(ir)

(fℓ − fℓ+1) +

p′(i1)−1
∑

ℓ=0

(fℓ − fℓ+1) = fp′(ir) +
(
1 − fp′(i1)

)
,while ū0 = 1 − fp′(i1). The 
orresponding inequality (5.37) is then

s−
r∑

t=1

(
fp′(it) − fp′(it+1)

)
(zit + ⌈lit⌉) −

(
1 − fp′(i1)

)
(zir + ⌈lir⌉ − 1) ≥ 0,
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e of variables
µ0 f0 − f1

µ1 f1 − f2

d µ2 f2 − f3

µ3 f3 − f4

µ4 f4 − f5(a) Case w̄ = 1.

µ0 f0 − f1

µ1 f1 − f2

d µ2 f2 − f3

µ3 f3 − f4

µ4 f4 − f5(b) Case w̄ = −1.Figure 5.2: A
y
li
 
ir
ulations in network N .whi
h 
an be equivalently be written as
s−

r∑

t=1

(
f ′(lit) − f ′(lit+1)

)
(zit + ⌈lit⌉) −

(
1 − f ′(li1)

)
(zir + ⌈lir⌉ − 1) ≥ 0, (5.42)where f ′(lir+1) := 0.The 
ase w̄ < 0Let (w̄, ū, v̄) be an extreme ray of 
one (5.38)�(5.40) with w̄ < 0. Without loss of generalitywe 
an assume w̄ = −1. In this 
ase (ū, v̄) is an extreme point of the polyhedron obtained bysetting w = −1 in (5.38)�(5.40). By Theorem 5.1, this implies that (ū, v̄) de�nes an a
y
li

ir
ulation in the 
orresponding network N . Su
h a network has the same stru
ture as thatdepi
ted in Figure 5.1, ex
ept that the thi
k arrows should be reversed (i.e. there are suppliesinstead of demand on the nodes).Similarly to the 
ase w̄ > 0, one proves that v̄u

i = 0 for all i ∈ J l and v̄u
i > 0 for at least anindex i ∈ Ju. Let i1, . . . , ir be the indi
es in Ju su
h that v̄u

it
> 0 for 1 ≤ t ≤ r. Note that theredo not exist two distin
t indi
es t, t′, with 1 ≤ t, t′ ≤ r, su
h that q(it) = q(it′), as otherwisethe ar
s vu

it
, vu

it′
would form a 
y
le 
ontained in the support of 
ir
ulation (ū, v̄). So we 
anassume without loss of generality q(i1) > · · · > q(ir) (in other words, f(bi1) < · · · < f(bir)).The stru
ture of the network easily implies that the nonzero entries of v̄u are (see the



5.2. Dual network sets with a single 
ontinuous variable 75example in Figure 5.2 (b))
v̄u
it

=

q(it)−1
∑

ℓ=q(it+1)

(fℓ − fℓ+1) = fq(it+1) − fq(it) for 1 ≤ t ≤ r − 1,

v̄u
ir =

q(ir)−1
∑

ℓ=0

(fℓ − fℓ+1) +

k−1∑

ℓ=q(i1)

(fℓ − fℓ+1) =
(
1 − fq(ir)

)
+ fq(i1),while ū0 = fq(i1). The 
orresponding inequality (5.37) is then

s+

r∑

t=1

(
fq(it+1) − fq(it)

)
(zit + ⌊uit⌋) + fq(i1) (zir + ⌊uir⌋ + 1) ≥ 0,where q(ir+1) := 0. The above inequality 
an be equivalently written as

s+

r∑

t=1

(
f(uit+1) − f(uit)

)
(zit + ⌊uit⌋) + f(ui1) (zir + ⌊uir⌋ + 1) ≥ 0, (5.43)where f(uir+1) := 1.We have proven the following result:Theorem 5.4 The 
onvex hull of (5.11)�(5.15), a general mixed-integer set with dual network
onstraint matrix and a single 
ontinuous variable, is given by the following linear inequalities(where ea
h o

urren
e of z0 should be repla
ed by 0):

• (5.41) for all i ∈ J l and j ∈ Ju;
• (5.42) for all sequen
es of indi
es i1, . . . , ir in J l su
h that f ′(bi1) > · · · > f ′(bir);
• (5.43) for all sequen
es of indi
es i1, . . . , ir in Ju su
h that f(bi1) < · · · < f(bir);
• the inequalities of the system Bz ≥ d.5.2.3 The mixing setWe re
all the de�nition of the mixing set given in Se
tion 4.2:

s+ zi ≥ bi, 1 ≤ i ≤ n, (5.44)
s ≥ 0, (5.45)

zi integer, 1 ≤ i ≤ n, (5.46)where bi ∈ R for 1 ≤ i ≤ n. The importan
e of this set in the 
ontext of lot-sizing was dis
ussedin Se
tion 4.2. The 
onvex hull of the above set was given by Günlük and Po
het [31℄. Herewe obtain the 
onvex hull as an appli
ation of Theorem 5.4.



76 Chapter 5. Proje
tions onto the original spa
e of variablesProposition 5.5 The 
onvex hull of the mixing set (5.44)�(5.46) is des
ribed by s ≥ 0 alongwith the linear inequalities
s+

r∑

t=1

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥ 0, (5.47)

s+

r∑

t=1

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) +

(
1 − f ′(bi1)

)
(zir − ⌈bir⌉ + 1) ≥ 0 (5.48)for all sequen
es of indi
es i1, . . . , ir in {1, . . . , n} su
h that f ′(bi1) > · · · > f ′(biq), where

f ′(bir+1) := 0.Proof. The set (5.44)�(5.46) 
an be transformed into a mixed-integer set with dual network
onstraint matrix by applying the following mixed-integer linear mapping:
s′ := s, z′i := −zi for 1 ≤ i ≤ n. (5.49)The transformed set is

s′ − z′i ≥ bi, 1 ≤ i ≤ n, (5.50)
s′ ≥ 0, (5.51)

z′i integer, 1 ≤ i ≤ n. (5.52)The set (5.50)�(5.52) is of the type (5.11)�(5.15), with J l = {0, . . . , n} and Ju = ∅.By Theorem 5.4, a linear inequality des
ription of the 
onvex hull of this set is given byinequalities (5.42) for all sequen
es of indi
es i1, . . . , ir in {0, . . . , n} su
h that f ′(bi1) > · · · >

f ′(bir) (where ea
h o

urren
e of z0 should be repla
ed by 0).Assume �rst that the sequen
e i1, . . . , ir does not 
ontain index 0. After applying theinverse of (5.49), the 
orresponding inequality (5.42) is pre
isely inequality (5.48).Now assume that the sequen
e i1, . . . , ir 
ontains index 0. Sin
e the lower bound l0 is 0 forthe mixing set, f ′(0) = 1 and thus i1 = 0. If r = 1 then the 
orresponding inequality (5.42)is s′ − z0 ≥ 0, i.e. s ≥ 0. If r > 1 then after applying the inverse of (5.49) and setting z0 = 0,inequality (5.42) be
omes
s+

r∑

t=2

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥ 0.Renumbering the indi
es gives inequality (5.47). �Inequalities (5.47)�(5.48) are 
alled mixing inequalities, as they 
an be obtained from theoriginal inequalities (5.44) through a mixing pro
edure (see [31℄). An O(n log n) separationalgorithm for the mixing inequalities is known [53℄.When r = 1, the mixing inequality (5.47) is the simple MIR-inequality by Nemhauser andWolsey [49℄ (see also Theorem 1.11), while the mixing inequality (5.48) 
oin
ides with theoriginal inequality s+ zi1 ≥ bi1 .



5.3. The mixing set with �ows 77Miller and Wolsey [45℄ showed that if a system Bz ≥ d, where B is a dual network matrixand d is an integral ve
tor, is added to 
onstraints (5.44)�(5.46), a linear inequality des
riptionof the resulting set in its original spa
e is obtained by just in
luding the system Bz ≥ d in thedes
ription of the mixing set given by the above proposition. This result is also implied byTheorem 5.4 or Proposition 2.16 (in fa
t the proof of Proposition 2.16 uses the same te
hniqueas that adopted by Miller and Wolsey).5.3 The mixing set with �owsWe re
all the de�nition of the mixing set with �ows given in Se
tion 4.2.2:
s+ yi ≥ bi, 1 ≤ i ≤ n, (5.53)
yi ≤ zi, 1 ≤ i ≤ n, (5.54)

s ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (5.55)
zi integer, 1 ≤ i ≤ n, (5.56)where bi ∈ R for 1 ≤ i ≤ n. Sin
e all variables are nonnegative (as zi ≥ yi ≥ 0 for 1 ≤ i ≤ n),we 
an assume without loss of generality that bi ≥ 0 for 1 ≤ i ≤ n. We dis
ussed inSe
tion 4.2.2 the relevan
e of this set in the 
ontext of lot-sizing.As shown in Se
tion 4.2.2, this set admits an extended formulation with O

(
n2
) variablesand 
onstraints (see Proposition 4.5). In this se
tion, after transforming the above set intoa mixed-integer set with dual network 
onstraint matrix, we expli
itly give the extendedformulation and then proje
t it onto the original spa
e of variables.The 
omputation of this proje
tion will be more di�
ult and te
hni
al than that 
arriedout in Se
tion 5.2.5.3.1 The extended formulationTo transform (5.53)�(5.56) into a dual network set, we apply the following mixed-integer linearmapping:

y′0 := s; y′i := −yi, z
′
i := −zi for 1 ≤ i ≤ n.The transformed set is then

y′0 − y′i ≥ bi, 1 ≤ i ≤ n, (5.57)
y′i − z′i ≥ 0, 1 ≤ i ≤ n, (5.58)

y′0 ≥ 0, y′i ≤ 0, 1 ≤ i ≤ n, (5.59)
z′i integer, 1 ≤ i ≤ n. (5.60)Let f0

1 , . . . , f
0
k be the k distin
t elements in {0, f(b1), . . . , f(bn)}, with f0

1 > · · · > f0
k = 0.For ea
h index 1 ≤ i ≤ n, let f i

1, . . . , f
i
k be the k elements in {f (f0

1 − bi
)
, . . . , f

(
f0

k − bi
)},with f i

1 > · · · > f i
k . (Note that f i

1, . . . , f
i
k are pairwise distin
t be
ause so are f0

1 , . . . , f
0
k .) Weset f i

0 := 1 and f i
k+1 := 0 for 0 ≤ i ≤ n.



78 Chapter 5. Proje
tions onto the original spa
e of variablesLemma 5.6 For ea
h index 0 ≤ i ≤ n, the list of fra
tional parts Fi :=
{
f i
1, . . . , f

i
k

} is
omplete for (5.57)�(5.60) with respe
t to variable y′i.Proof. We use the notation of the proof of Theorem 3.6. If we let X denote the mixed-integerset (5.57)�(5.60), the graph GX is a star with 
enter node 
orresponding to variable y′0. For
1 ≤ i ≤ n, there is an ar
 leaving the 
enter node and entering the node 
orresponding tovariable y′i. Given a vertex x̄ = (ȳ′, z̄′) of conv(X) and a 
onne
ted 
omponent Cx̄ of Fx̄,node r 
orrespond to a variable that takes an integer value (this follows from Observation 3.7).The result is then a 
onsequen
e of equation (3.24). �Similarly to Se
tion 5.2, for ea
h index 1 ≤ i ≤ n we de�ne p(i) to be the unique index in
{1, . . . , k} su
h that f0

p(i) = f(bi). One 
an 
he
k that for ea
h index 1 ≤ i ≤ n,
f i

ℓ =







f0
p(i)+ℓ

− f0
p(i) + 1 if 0 ≤ ℓ ≤ k − p(i),

f0
p(i)+ℓ−k

− f0
p(i) if k − p(i) + 1 ≤ ℓ ≤ k.

(5.61)By Theorem 2.13 and using Observation 2.15 to model inequalities (5.58), an extendedformulation for (5.57)�(5.60) is given by the following linear system:
y′i =

k∑

ℓ=0

(
f i

ℓ − f i
ℓ+1

)
µi

ℓ, 0 ≤ i ≤ n, (5.62)
µi

k − µi
0 = 1, 0 ≤ i ≤ n, (5.63)

µi
ℓ − µi

ℓ−1 ≥ 0, 0 ≤ i ≤ n, 1 ≤ ℓ ≤ k, (5.64)
µ0

p(i)+ℓ − µi
ℓ ≥ ⌊bi⌋ + 1, 1 ≤ i ≤ n, 1 ≤ ℓ ≤ k − p(i), (5.65)

µ0
p(i)+ℓ−k − µi

ℓ ≥ ⌊bi⌋, 1 ≤ i ≤ n, k − p(i) + 1 ≤ ℓ ≤ k, (5.66)
µi

k − z′i ≥ 1, 1 ≤ i ≤ n, (5.67)
µ0

k ≥ 1, (5.68)
µi

k−1 ≤ 0, 1 ≤ i ≤ n. (5.69)Before 
omputing the proje
tion onto the original spa
e of variables, we write the abovesystem in a more 
onvenient form.Similarly to Se
tion 5.2, for ea
h index 1 ≤ i ≤ n we denote by p′(i) the unique index in
{0, . . . , k−1} su
h that f0

p′(i) = f ′(bi), where notation f ′ is de�ned in (5.26). We set p′(0) := 0and p′(n+ 1) := k.Using equations (5.63), one 
an 
he
k that inequalities (5.65)�(5.66) are equivalent to theinequalities
µ0

p(i)+ℓ − µi
ℓ ≥ ⌊bi⌋ + 1, 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k − p(i) − 1,

µ0
p(i)+ℓ−k − µi

ℓ ≥ ⌊bi⌋, 1 ≤ i ≤ n, k − p(i) ≤ ℓ ≤ k − 1.



5.3. The mixing set with �ows 79It is not di�
ult to see that the above inequalities are in turn equivalent to the following (the
ase bi /∈ Z is trivial as p(i) = p′(i), the 
ase bi ∈ Z is less trivial but easy �just re
all that
p(i) = k and p′(i) = 0):

µ0
p′(i)+ℓ − µi

ℓ ≥ ⌈bi⌉, 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k − p′(i) − 1,

µ0
p′(i)+ℓ−k − µi

ℓ ≥ ⌈bi⌉ − 1, 1 ≤ i ≤ n, k − p′(i) ≤ ℓ ≤ k − 1.If for an integer α we write [α] to denote the remainder of the division of α by k, system(5.62)�(5.69) is then equivalent to the following:
y′i =

k∑

ℓ=0

(
f i

ℓ − f i
ℓ+1

)
µi

ℓ, 0 ≤ i ≤ n, (5.70)
µi

k − µi
0 = 1, 0 ≤ i ≤ n, (5.71)

µi
ℓ − µi

ℓ−1 ≥ 0, 0 ≤ i ≤ n, 1 ≤ ℓ ≤ k, (5.72)
µ0

[p′(i)+ℓ] − µi
ℓ ≥ ⌈bi⌉, 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k − p′(i) − 1, (5.73)

µ0
[p′(i)+ℓ] − µi

ℓ ≥ ⌈bi⌉ − 1, 1 ≤ i ≤ n, k − p′(i) ≤ ℓ ≤ k − 1, (5.74)
µi

k − z′i ≥ 1, 1 ≤ i ≤ n, (5.75)
µ0

k ≥ 1, (5.76)
µi

k−1 ≤ 0, 1 ≤ i ≤ n. (5.77)Equations (5.71) 
an be used to eliminate variables µi
k for 0 ≤ i ≤ n. Note that for

0 ≤ i ≤ n, the 
oe�
ient of µi
k in equation (5.70) is equal to zero, as f i

k = f i
k+1 = 0.Furthermore, none of inequalities (5.73)�(5.74) 
ontains variable µi

k in its support.System (5.70)�(5.77) is then equivalent to the following one (we assign dual variables tothe 
onstraints as indi
ated on the left):
wi : y′i =

k−1∑

ℓ=0

(
f i

ℓ − f i
ℓ+1

)
µi

ℓ, 0 ≤ i ≤ n,

ui
ℓ : µi

ℓ − µi
ℓ−1 ≥ 0, 0 ≤ i ≤ n, 1 ≤ ℓ ≤ k − 1,

ui
0 : µi

0 − µi
k−1 ≥ −1, 0 ≤ i ≤ n,

ξi
ℓ : µ0

[p′(i)+ℓ] − µi
ℓ ≥ ⌈bi⌉, 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k − p′(i) − 1,

ξi
ℓ : µ0

[p′(i)+ℓ] − µi
ℓ ≥ ⌈bi⌉ − 1, 1 ≤ i ≤ n, k − p′(i) ≤ ℓ ≤ k − 1,

vi : µi
0 − z′i ≥ 0, 1 ≤ i ≤ n,

v0 : µ0
0 ≥ 0,

ϑi : −µi
k−1 ≥ 0, 1 ≤ i ≤ n.Note that ex
ept for the equations on the �rst line, the 
onstraint matrix of the above systemis still a dual network matrix.
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tions onto the original spa
e of variables5.3.2 The proje
tionBy Theorem 1.17, a linear inequality des
ription of the 
onvex hull of (5.57)�(5.60) in itsoriginal spa
e is given by inequalities
n∑

i=0

w̄iy′i −
n∑

i=1

v̄iz′i ≥ −
n∑

i=0

ūi
0 +

n∑

i=1





k−p′(i)−1
∑

ℓ=0

ξ̄i
ℓ ⌈bi⌉ +

k−1∑

ℓ=k−p′(i)

ξ̄i
ℓ(⌈bi⌉ − 1)



 (5.78)for all ve
tors (w̄, ū, ξ̄, v̄, ϑ̄) that are rays of the following 
one (beside ea
h 
onstraint the
orresponding primal variable is indi
ated):
µ0

0 : u0
0 − u0

1 +
∑n

i=1 ξ
i
[−p′(i)] + v0 =

(
f0
0 − f0

1

)
w0, (5.79)

µ0
ℓ : u0

ℓ − u0
ℓ+1 +

∑n
i=1 ξ

i
[ℓ−p′(i)] =

(
f0

ℓ − f0
ℓ+1

)
w0, 1 ≤ ℓ ≤ k − 2, (5.80)

µ0
k−1 : u0

k−1 − u0
0 +

∑n
i=1 ξ

i
k−1−p′(i) =

(
f0

k−1 − f0
k

)
w0, (5.81)

µi
0 : ui

0 − ui
1 − ξi

0 + vi =
(
f i
0 − f i

1

)
wi, 1 ≤ i ≤ n, (5.82)

µi
ℓ : ui

ℓ − ui
ℓ+1 − ξi

ℓ =
(
f i

ℓ − f i
ℓ+1

)
wi, 1 ≤ i ≤ n, 1 ≤ ℓ ≤ k − 2, (5.83)

µi
k−1 : ui

k−1 − ui
0 − ξi

k−1 − ϑi =
(
f i

k−1 − f i
k

)
wi, 1 ≤ i ≤ n, (5.84)

wi free; ui
0, . . . , u

i
k−1 ≥ 0, vi ≥ 0, 0 ≤ i ≤ n, (5.85)

ξi
0, . . . , ξ

i
k−1 ≥ 0, ϑi ≥ 0, 1 ≤ i ≤ n. (5.86)In the original variables, inequality (5.78) reads

w̄0s−
n∑

i=1

w̄iyi +
n∑

i=1

v̄izi ≥ −
n∑

i=0

ūi
0 +

n∑

i=1





k−p′(i)−1
∑

ℓ=0

ξ̄i
ℓ ⌈bi⌉ +

k−1∑

ℓ=k−p′(i)

ξ̄i
ℓ(⌈bi⌉ − 1)



 ,or equivalently
w̄0s−

n∑

i=1

w̄iyi +
n∑

i=1

v̄izi ≥ −
n∑

i=0

ūi
0 +

n∑

i=1





k−1∑

ℓ=0

ξ̄i
ℓ ⌈bi⌉ −

k−1∑

ℓ=k−p′(i)

ξ̄i
ℓ



 . (5.87)Let C denote the polyhedral 
one de�ned by inequalities (5.79)�(5.86). In the following westudy the rays of C generating inequalities (5.87) that are non-redundant in the des
ription ofthe 
onvex hull of (5.53)�(5.56). This will reveal simpler than 
hara
terizing the extreme raysof C (as we did in Se
tion 5.2), and will also allow us to ignore a large number of redundantinequalities (5.87) arising from the extreme rays of C.Note that summing up all equations (5.79)�(5.81) gives
− w0 + v0 +

n∑

i=1

k−1∑

ℓ=0

ξi
ℓ = 0, (5.88)whi
h implies w0 ≥ 0, as all other variables appearing in the above equation are nonnegative.Let (w̄, ū, ξ̄, v̄, ϑ̄) be a ray of 
one C. If w̄i = 0 for all 0 ≤ i ≤ n, the above equation showsthat ξ̄i

ℓ = 0 for all 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1, and the 
orresponding inequality (5.87) is
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∑n

i=1 v̄
izi ≥ −

∑n
i=0 ū

i
0. Among the inequalities of this form, the only non-redundant onesare zi ≥ 0 for 1 ≤ i ≤ n, whi
h are 
learly super�uous in the des
ription of the 
onvex hull of(5.53)�(5.56). Thus from now on we assume that w̄ 6= 0 (and w̄0 ≥ 0).The networkFor ea
h �xed ve
tor w̄ 6= 0, let C(w̄) be the polyhedron obtained from C by setting wi = w̄ifor 0 ≤ i ≤ n. That is,

C(w̄) := {(u, ξ, v, ϑ) : (w̄, u, ξ, v, ϑ) ∈ C}.Note that C(w̄) is the feasible region of a 
ir
ulation problem on a network N whi
h is inde-pendent of w̄. Similarly to Se
tion 5.2, we use the primal variables µi
ℓ to denote the nodes of

N and the dual variables ui
ℓ, ξ

i
ℓ, v

i, ϑi to denote the ar
s. The stru
ture of N is now des
ribed.For 0 ≤ i ≤ n, let Si be the subnetwork of N indu
ed by nodes µi
0, . . . , µ

i
k−1 (ar
s havinga node µi

ℓ and the dummy node d as endpoints belong to Si). We 
all S0, . . . , Sn the se
torsof N . Note that every ar
 whose endnodes lie on two distin
t se
tors of N has its head in S0and its tail in Si for some 1 ≤ i ≤ n.Figure 5.3 represents the stru
ture of a se
tor Si for some 1 ≤ i ≤ n and se
tor S0, as wellas the 
onne
tions between Si and S0. Note that the nodes of ea
h se
tor are aligned on averti
al line. The k positions on su
h a line are 
alled levels: the highest position 
orrespondto level 0, the lowest one to level k − 1. For ea
h 0 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1, node µi
ℓ islo
ated at level [p′(i) + ℓ]. There are at least two good reasons for su
h a 
hoi
e.The �rst good reason for lo
ating node µi

ℓ at level [p′(i) + ℓ] is that this simpli�es therepresentation of the network, as all ar
s ξi
ℓ are horizontal.To illustrate the se
ond reason, let N (w̄) denote network N with the 
ir
ulation require-ments 
orresponding to w̄. It is readily 
he
ked that for 0 ≤ i ≤ n, the total requirement ofall nodes in se
tor Si in N (w̄) is w̄i. For 0 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1, the requirement ofnode µi

ℓ in N (w̄) is (f i
ℓ − f i

ℓ+1

)
w̄i. Using equation (5.61) and re
alling that [p(i)] = [p′(i)] for

0 ≤ i ≤ n, one 
an 
he
k that
(
f i

ℓ − f i
ℓ+1

)
w̄i =

(

f0
[p(i)+ℓ] − f0

[p(i)+ℓ]+1

)

w̄i =
(

f0
[p′(i)+ℓ] − f0

[p′(i)+ℓ]+1

)

w̄i (5.89)for all indi
es 0 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1. Sin
e node µi
ℓ is lo
ated at level [p′(i) + ℓ], thisshows that nodes of distin
t se
tors lo
ated at the same level are asso
iated with the samefra
tion of the total requirement of their se
tors.It is 
lear that a ve
tor (w̄, ū, ξ̄, v̄, ϑ̄) belongs to C if and only if (ū, ξ̄, v̄, ϑ̄) 
orresponds toa feasible 
ir
ulation in N (w̄). Similarly to Se
tion 5.2, we use (ū, ξ̄, v̄, ϑ̄) to denote both theve
tor and the 
orresponding 
ir
ulation.We say that a 
y
le in N , possibly 
ontaining the dummy node d, is a heavy 
y
le if the
orresponding inequality (5.87) is anything but 0 ≥ 0.The following observations will be used several times in the remainder of the se
tion:
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0 µ0

0

u0
1

v0

1 µ0
1

ui
k−1

µi
k−1

ui
0

ξi
k−1

ϑi

p′(i) µi
0

ui
1

ξi
0vi

µ0
p′(i)

µi
1

ξi
1

u0
k−1

k − 1 µ0
k−1

u0
0

︸ ︷︷ ︸

Si

︸ ︷︷ ︸

S0Figure 5.3: The stru
ture of a se
tor Si for 1 ≤ i ≤ n and se
tor S0, and the 
onne
tionsbetween them. Levels are indi
ated on the left. Cir
ulation requirements are not represented.



5.3. The mixing set with �ows 83Lemma 5.7 For w̄ 6= 0, let (w̄, ū, ξ̄, v̄, ϑ̄) be a ve
tor in C generating an inequality (5.87) thatis non-redundant in the linear inequality des
ription of the 
onvex hull of (5.53)�(5.56). Thefollowing hold:(i) The support of (ū, ξ̄, v̄, ϑ̄) 
ontains no heavy 
y
le in N .(ii) Fix 1 ≤ i ≤ n and assume that the support of (ū, ξ̄, v̄, ϑ̄) 
ontains a forest F in N whi
hspans all nodes in se
tors S0 and Si. Also suppose that ea
h 
onne
ted 
omponent of Fis(a) either a tree 
ontaining the dummy node d,(b) or a single ar
 ξi
ℓ for some 0 ≤ ℓ ≤ k − 1.Then w̄0 = −w̄i and w̄j = 0 for all j /∈ {0, i}.(iii) Fix 1 ≤ i ≤ n and assume that the support of (ū, ξ̄, v̄, ϑ̄) 
ontains a tree T in N whi
hspans all nodes in se
tor Si as well as the dummy node d. Then the inequality (5.87)
orresponding to ve
tor (w̄, ū, ξ̄, v̄, ϑ̄) is implied by inequalities yi ≥ 0, yi ≤ zi and zj ≥ 0for 1 ≤ j ≤ n.Proof. (i) Assume that (ū, ξ̄, v̄, ϑ̄) 
ontains a heavy 
y
le C in its support. For ε > 0 smallenough, let (û, ξ̂, v̂, ϑ̂) be the feasible 
ir
ulation in N (w̄) obtained from (ū, ξ̄, v̄, ϑ̄) by in
reas-ing by ε the variables 
orresponding to the ar
s of C. Similarly, let (ǔ, ξ̌, v̌, ϑ̌) be the feasible
ir
ulation in N (w̄) obtained from (

ū, ξ̄, v̄, ϑ̄
) by de
reasing by ε the variables 
orrespondingto the ar
s of C. Clearly (w̄, ū, ξ̄, v̄, ϑ̄) = 1

2

(
w̄, û, ξ̂, v̂, ϑ̂

)
+ 1

2

(
w̄, ǔ, ξ̌, v̌, ϑ̌

). Sin
e the inequal-ity (5.87) 
orresponding to (w̄, ū, ξ̄, v̄, ϑ̄) is non-redundant in the des
ription of the 
onvex hullof (5.53)�(5.56), it follows that su
h inequality is identi
al (up to multipli
ation by a positivenumber) to those 
orresponding to (w̄, û, ξ̂, v̂, ϑ̂) and (w̄, ǔ, ξ̌, v̌, ϑ̌). However this 
ontradi
tsthe fa
t that C is a heavy 
y
le in N (w̄).(ii) Assume that there is a forest F as above (note that F has at most one 
onne
ted
omponent of type (a)). Let ε > 0 be a su�
iently small number. De�ne
ŵ0 := w̄0 + ε, ŵi := w̄i − ε, ŵj := w̄j for j /∈ {0, i}.It 
an be 
he
ked that in ea
h 
onne
ted 
omponent of F the total requirement of the nodesis un
hanged. Then by Theorem 5.2 there exists a unique 
ir
ulation (û, ξ̂, v̂, ϑ̂) in N (ŵ) that
oin
ides with (ū, ξ̄, v̄, ϑ̄) on all ar
s not belonging to F . Similarly, if one de�nes
w̌0 := w̄0 − ε, w̌i := w̄i + ε, w̌j := w̄j for j /∈ {0, i},there exists a unique 
ir
ulation (ǔ, ξ̌, v̌, ϑ̌) in N (w̌) that 
oin
ides with (ū, ξ̄, v̄, ϑ̄) on all ar
snot belonging to F .It is easy to see that (w̄, ū, ξ̄, v̄, ϑ̄) = 1

2

(
ŵ, û, ξ̂, v̂, ϑ̂

)
+ 1

2

(
w̌, ǔ, ξ̌, v̌, ϑ̌

). As in (i), this impliesthat these three ve
tors generate the same inequality (5.87) (up to multipli
ation by a positivenumber). The 
oe�
ients of variables s and yi in the inequality (5.87) 
orresponding to ve
tor
(
ŵ, û, ξ̂, v̂, ϑ̂

) are w̄0 + ε and −w̄i − ε respe
tively. On the other hand, if α > 0 is the real
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tions onto the original spa
e of variablesnumber su
h that (w̄, ū, ξ̄, v̄, ϑ̄) = α
(
ŵ, û, ξ̂, v̂, ϑ̂

), then su
h 
oe�
ients are also equal to αw̄0and −αw̄i respe
tively. However, this is possible only if w̄0 = −w̄i.Similarly, for j /∈ {0, i} the 
oe�
ient of variable yj in the inequality (5.87) 
orrespondingto ve
tor (ŵ, û, ξ̂, v̂, ϑ̂) is −w̄j on the one hand and −αw̄j on the other hand. This is possibleonly if w̄j = 0.The proof of (iii) begins as that of (ii), ex
ept that now one has to de�ne
ŵi := w̄i − ε, ŵj := w̄j for j 6= i, w̌i := w̄i + ε, w̌j := w̄j for j 6= i.As in (ii) one de�nes 
ir
ulations (û, ξ̂, v̂, ϑ̂) in N (ŵ) and (ǔ, ξ̌, v̌, ϑ̌) in N (w̌) that 
oin
idewith (ū, ξ̄, v̄, ϑ̄) on all ar
s not belonging to T . The same argument as that used above showsthat w̄j = 0 for all j 6= i. Note in parti
ular that 
ondition w̄0 = 0 and equation (5.88) implythat ξ̄j

ℓ = 0 for 1 ≤ j ≤ n and 0 ≤ ℓ ≤ k − 1. Then the inequality (5.87) 
orresponding tove
tor (w̄, ū, ξ̄, v̄, ϑ̄) is
− w̄iyi +

n∑

j=1

v̄jzj ≥ −
n∑

j=0

ūj
0. (5.90)If w̄i ≤ 0 then the above inequality is implied by inequalities yi ≥ 0 and zj ≥ 0 for 1 ≤ j ≤ n.So we assume w̄i > 0, say w̄i = 1 without loss of generality. In this 
ase summing up equations(5.82)�(5.84) and using ξ̄i

ℓ = 0 for 0 ≤ ℓ ≤ k − 1 shows that v̄i ≥ 1. Then inequality (5.90) isimplied by inequalities yi ≤ zi and zj ≥ 0 for 1 ≤ j ≤ n. �Assume that there is an index 1 ≤ i ≤ n su
h that w̄i > 0, say w̄i = 1 without loss ofgenerality. Sin
e vi is the only ar
 entering se
tor Si, then all ar
s vi, ui
1, . . . , u

i
k−1 belong tothe support of 
ir
ulation (ū, ξ̄, v̄, ϑ̄). By Lemma 5.7 (iii) we 
an then ignore this 
ase.Therefore from now on we assume that w̄i ≤ 0 for all 1 ≤ i ≤ n (and re
all that we havealready shown that w̄0 ≥ 0). Note that w̄0 is the total demand of the nodes in se
tor S0, andfor 1 ≤ i ≤ n, −w̄i is the total supply of the nodes in se
tor Si.Standard 
ir
ulationsFor a 
ir
ulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) and an index 1 ≤ j ≤ k − 1, we de�ne βj

(
ū, ξ̄, v̄, ϑ̄

) asthe total balan
e of �ow of the set of nodes {µ0
ℓ : j ≤ ℓ ≤ k − 1

}, where the �ow 
arried byar
s u0
0 and u0

j is ignored. After re
alling that for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k− 1 the ar
 leavingse
tor Si end entering node µ0
ℓ is ar
 ξi

[ℓ−p′(i)], we 
an write
βj

(
ū, ξ̄, v̄, ϑ̄

)
:=

k−1∑

ℓ=j

(
n∑

i=1

ξ̄i
[ℓ−p′(i)] − (fℓ − fℓ+1)w̄

0

)

. (5.91)Lemma 5.8 Any 
ir
ulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) generating an inequality (5.87) that is non-redundant in the linear inequality des
ription of the 
onvex hull of (5.53)�(5.56) satis�es
ū0

0 = max

{

0, max
1≤j≤k−1

βj

(
ū, ξ̄, v̄, ϑ̄

)
}

. (5.92)
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e βj

(
ū, ξ̄, v̄, ϑ̄

) is the total balan
e of �ow of the set of nodes {µ0
ℓ : j ≤ ℓ ≤ k − 1

},where the �ow 
arried by ar
s u0
0 and u0

j is ignored, then 
learly ū0
0 = ū0

j +βj

(
ū, ξ̄, v̄, ϑ̄

) for all
1 ≤ j ≤ k − 1. Sin
e ū0

j ≥ 0 for all 1 ≤ j ≤ k − 1, we see that ū0
0 ≥ max1≤j≤k−1 βj

(
ū, ξ̄, v̄, ϑ̄

).Assume that ū0
0 > max1≤j≤k−1 βj

(
ū, ξ̄, v̄, ϑ̄

). Then 
learly ū0
j > 0 for all 1 ≤ j ≤ k − 1.Then, if also ū0

0 > 0, the support of (ū, ξ̄, v̄, ϑ̄) 
ontains the heavy 
y
le u0
1, . . . , u

0
k−1, u

0
0. The
on
lusion now follows from Lemma 5.7 (i). �We say that two 
ir
ulations in N (w̄) are equivalent if they give rise to the same inequal-ity (5.87). Similarly we say that 
ir
ulation (ū, ξ̄, v̄, ϑ̄) dominates 
ir
ulation (û, ξ̂, v̂, ϑ̂) if theinequality (5.87) 
orresponding to (ū, ξ̄, v̄, ϑ̄) dominates that 
orresponding to (û, ξ̂, v̂, ϑ̂).Lemma 5.9 Any 
ir
ulation in N (w̄) is equivalent to a 
ir
ulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) sat-isfying the following 
onditions for all 1 ≤ i ≤ n:(i) If ūi

ℓ > 0 for some 0 ≤ ℓ ≤ k − 1, then ξ̄i
ℓ = 0.(ii) If ūi

ℓ > 0 for some 0 ≤ ℓ ≤ k − 1, then ūi
l > 0 for all ℓ ≤ l ≤ k − 1.(iii) If ξ̄i

ℓ = 0 for some 0 ≤ ℓ ≤ k − 1, then ξ̄i
l = 0 for all ℓ ≤ l ≤ k − 1.Proof. Let (ū, ξ̄, v̄, ϑ̄) be a 
ir
ulation in N (w̄) that violates 
ondition (i) and let ℓ be themaximum index in {0, . . . , k − 1} su
h that ūi
ℓ > 0 and ξ̄i

ℓ > 0. De�ne ρ := min{ūi
ℓ, ξ̄

i
ℓ}. Notethat ar
s ui

ℓ, ξ
i
ℓ, ξ

i
[ℓ−1], u

0
[p′(i)+ℓ] are as in Figure 5.4 (a) or (b), depending on the value of ℓ.If we de
rease the �ow on ar
s ui

ℓ, ξ
i
ℓ by a quantity equal to ρ and in
rease the �ow on ar
s

ξi
[ℓ−1], u

0
[p′(i)+ℓ] by the same amount, the resulting feasible 
ir
ulation gives rise to the sameinequality (5.87) as before. Furthermore, at least one of the ar
s ui

ℓ, ξ
i
ℓ now 
arries a �ow ofvalue 0. By iterating this pro
edure, we eventually �nd an equivalent 
ir
ulation satisfying
ondition (i).Now assume that 
ondition (ii) is violated. Then there exists an index 0 ≤ ℓ ≤ k − 2su
h that ūi

ℓ > 0 and ūi
ℓ+1 = 0. Note that ar
 ξi

ℓ ne
essarily 
arries a positive �ow, thatis, 
ondition (i) is not satis�ed. Thus any 
ir
ulation satisfying 
ondition (i) also satis�es
ondition (ii).Finally we show that (i) implies (iii). Assume that 
ondition (iii) is violated. Then thereexists an index 0 ≤ ℓ ≤ k − 2 su
h that ξ̄i
ℓ = 0 and ξ̄i

ℓ+1 > 0. By (i), ūi
ℓ+1 = 0, thusequation (5.83) for the indi
es i, ℓ + 1 (or equation (5.84) if ℓ = k − 2) implies w̄i < 0. Nowequation (5.83) for the indi
es i, ℓ gives ξ̄i

ℓ > 0, whi
h 
ontradi
ts our assumption. �Let (ū, ξ̄, v̄, ϑ̄) be a 
ir
ulation in N (w̄) satisfying 
onditions (i)�(iii) of Lemma 5.7 andassume ūi
1 > 0 for some index 1 ≤ i ≤ n. Condition (ii) then implies that all ar
s ui

1, . . . , u
i
k−1belong to the support of (ū, ξ̄, v̄, ϑ̄). Furthermore, by 
ondition (i), ξ̄i

ℓ = 0 for 1 ≤ ℓ ≤ k − 1,thus ne
essarily ϑ̄i > 0 (as all nodes in se
tor Si have a nonnegative supply). Then ar
s
ui

1, . . . , u
i
k−1, ϑ

i form a tree in N satisfying the 
onditions of Lemma 5.7 (iii). Then this 
ase
an be ignored and we 
an assume ūi
1 = 0 for 1 ≤ i ≤ n, whi
h also implies ūi

0 = 0 for
1 ≤ i ≤ n (again by 
ondition (ii) of Lemma 5.7).
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ui

ℓ

ξi
[ℓ−1]

......
u0

[p′(i)+ℓ]

......
ξi
ℓ...... ......

(a) Case ℓ 6= [−p′(i)].

ξi
ℓ...... ......

ui
ℓ

ξi
[ℓ−1]

u0
0

(b) Case ℓ = [−p′(i)].Figure 5.4: Illustration of the proof of Lemma 5.9, depending on the value of ℓ.We say that a 
ir
ulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) is a standard 
ir
ulation if the following
onditions hold for (ū, ξ̄, v̄, ϑ̄):
• equation (5.92);
• 
onditions (i)�(iii) of Lemma 5.9;
• ūi

0 = 0 for 1 ≤ i ≤ n.Figure 5.5 demonstrates the above de�nition.The above dis
ussion shows that every 
ir
ulation that generates an inequality (5.87) whi
his non-redundant in the des
ription of the 
onvex hull of (5.53)�(5.56) is equivalent to astandard 
ir
ulation. Thus from now on we only study the standard 
ir
ulations in N (w̄).It is easily 
he
ked that any 
ir
ulation (ū, ξ̄, v̄, ϑ̄) in N (w̄) satis�es 
onditions
v̄i − w̄i − ϑ̄i ≥ 0 for 1 ≤ i ≤ n, n∑

i=1

(v̄i − w̄i − ϑ̄i) − w̄0 ≤ 0 (5.93)(this 
an be dedu
ed dire
tly from 
onditions (5.79)�(5.86) or from the stru
ture of the net-work.) Furthermore, given values of (v̄, ϑ̄) satisfying the above inequalities, it is always possi-ble to 
omplete (v̄, ϑ̄) to a feasible 
ir
ulation (ū, ξ̄, v̄, ϑ̄) in N (w̄).Let (ū, ξ̄, v̄, ϑ̄) be a standard 
ir
ulation in N (w̄). We 
laim that the knowledge of
v̄1, . . . , v̄n and ϑ̄1, . . . , ϑ̄n is su�
ient to 
ompletely determine (ū, ξ̄, v̄, ϑ̄). To see this, ob-serve the following: the values ξ̄i

ℓ, ū
i
ℓ for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k − 1 are determined by
onditions (i)�(iii) of Lemma 5.9 together with 
onditions ūi

0 = 0 for 1 ≤ i ≤ n; the value of
ū0

0 is given by equation (5.92); the value of v̄0 
an be obtained from equation (5.79).This means that a standard 
ir
ulation in N (w̄) is 
ompletely determined by nonnegativevalues of v̄1, . . . , v̄n and ϑ̄1, . . . , ϑ̄n satisfying 
onditions (5.93). Then when 
onsidering a
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µ0
0

v0

ϑi

µi
0

vi

ϑj

µj
0

vj

Figure 5.5: A standard 
ir
ulation. Only nodes and ar
s of se
tor S0 (in the middle) andtwo other se
tors Si (on the left) and Sj (on the right) are depi
ted. Dotted lines indi
atepossible ar
s. Cir
ulation requirements are not represented (re
all that nodes in Si and Sjhave a nonnegative supply, nodes in S0 have a nonnegative demand).
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tions onto the original spa
e of variablesstandard 
ir
ulation (ū, ξ̄, v̄, ϑ̄), we will use the short notation βj

(
v̄, ϑ̄
) instead of βj

(
ū, ξ̄, v̄, ϑ̄

),as this is not ambiguous. Similarly, in any further de�nition of notation relative to standard
ir
ulations we will only write the dependen
e on v, ϑ.De�ne J(w̄) as the set of indi
es in {1, . . . , n} su
h that w̄i < 0.Let (ū, ξ̄, v̄, ϑ̄) be a standard 
ir
ulation in N (w̄). For i ∈ J(w̄), we de�ne
λi

(
v̄, ϑ̄
)

:= max
{

ℓ : ξ̄i
[ℓ−p′(i)] > 0

}

. (5.94)To explain the above de�nition in words, re
all that ar
 ξi
[ℓ−p′(i)] is lo
ated at level ℓ. Then

λi

(
v̄, ϑ̄
) is the maximum (i.e. the lowest) level of an ar
 that 
onne
ts Si and S0 and 
arriesa positive amount of �ow.Note that the above maximum is well de�ned, be
ause for a standard 
ir
ulation and anindex i ∈ J(w̄) one has ξ̄i

0 = vi − (f i
0 − f i

1)w̄
i > 0, as w̄i < 0.It is also 
onvenient to use notation

ri
(
v̄, ϑ̄
)

:=
[
λi

(
v̄, ϑ̄
)
− p′(i)

]
,so that

ri
(
v̄, ϑ̄
)

= max
{
ℓ : ξ̄i

ℓ > 0
}
.Our analysis has now to be divided into two 
ases: we �rst assume J(w̄) 6= ∅ and then

J(w̄) = ∅.The 
ase J(w̄) 6= ∅To study the 
ase J(w̄) 6= ∅, another de�nition is needed. Given a standard 
ir
ulation
(
ū, ξ̄, v̄, ϑ̄

) in N (w̄) and two indi
es i, j ∈ J(w̄), we write Si ≻ Sj with respe
t to 
ir
ulation
(
ū, ξ̄, v̄, ϑ̄

) (or just Si ≻ Sj if there is no ambiguity) to indi
ate that the following 
onditionis satis�ed: For ea
h index ℓ 6= p′(j), if ξ̄j
[ℓ−p′(j)] > 0 then ξ̄i

[ℓ−p′(i)] > 0.In order to make the above 
ondition less odd, we remark that for ea
h 0 ≤ ℓ ≤ k − 1, ar
s
ξi
[ℓ−p′(i)] and ξj

[ℓ−p′(j)] are lo
ated at the same level. An example is depi
ted in Figure 5.6.By using the fa
t that the 
ir
ulation is standard, one 
an see that if ϑ̄i = 0 then ξ̄i
ℓ > 0for 0 ≤ ℓ ≤ k − 1 and thus Si ≻ Sj . Also, if ϑj = vj − w̄j then ξ̄j

ℓ = 0 for 0 ≤ ℓ ≤ k − 1 andthus Si ≻ Sj .De�ne h as an index in J(w̄) su
h that bh = maxj∈J(w̄) bj . The following result is 
ru
ial.Unfortunately, its proof is rather long, tedious and te
hni
al and is for patient readers only.Lemma 5.10 Any standard 
ir
ulation in N (w̄) is dominated by a standard 
ir
ulation in
N (w̄) satisfying Sh ≻ Sj for all j ∈ J(w̄).
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µ0

0

v0

ϑi

µi
0

vi ϑj

µj
0

vjFigure 5.6: A standard 
ir
ulation satisfying the 
ondition Si ≻ Sj . Only nodes and ar
sof se
tor S0 (in the middle) and two other se
tors Si (on the left) and Sj (on the right) aredepi
ted. Dotted lines indi
ate possible ar
s. Cir
ulation requirements are not represented.Proof. Let m (v̄, ϑ̄) be the number of indi
es j ∈ J(w̄) su
h that Sh 6≻ Sj. We show thatif m (v̄, ϑ̄) > 0, it is possible to 
onstru
t a 
ir
ulation (û, ξ̂, v̂, ϑ̂) dominating (ū, ξ̄, v̄, ϑ̄)su
h that m(v̂, ϑ̂) < m
(
v̄, ϑ̄
). Thus, by repeating this 
onstru
tion, one eventually �nds a
ir
ulation dominating (ū, ξ̄, v̄, ϑ̄) su
h that Sh ≻ Sj for all j ∈ J(w̄).Pi
k any j ∈ J(w̄) su
h that Sh 6≻ Sj and de�ne ρmax := min

{
ϑ̄h, v̄j − w̄j − ϑ̄j

}. Forevery value 0 ≤ ρ ≤ ρmax we de�ne a standard 
ir
ulation (u(ρ), ξ(ρ), v(ρ), ϑ(ρ)) in N (w̄) bysetting
ϑh(ρ) := ϑ̄h − ρ, ϑj(ρ) := ϑ̄j + ρ, ϑi(ρ) := ϑ̄i for i /∈ {h, j}, vi(ρ) := v̄i for 1 ≤ i ≤ n. (5.95)Condition 0 ≤ ρ ≤ ρmax ensures that inequalities (5.93) are satis�ed by the above values andthus the standard 
ir
ulation (u(ρ), ξ(ρ), v(ρ), ϑ(ρ)) is well de�ned.In order to give the reader a better understanding of this proof, we �nd useful to point outhow the standard 
ir
ulation (u(ρ), ξ(ρ), v(ρ), ϑ(ρ)) depends on ρ. Note that as ρ in
reases,the subset of ar
s ξh

ℓ (for 0 ≤ ℓ ≤ k − 1) that belongs to the support of the 
ir
ulation eitherenlarges or does not 
hange at all. In other words, rh(v(ρ), ϑ(ρ)) is a non-de
reasing fun
tionof ρ. Symmetri
ally, rj(v(ρ), ϑ(ρ)) is a non-in
reasing fun
tion of ρ.Conditions (5.95) easily imply that
k−1∑

ℓ=0

(
ξh
ℓ (ρ) − ξ̄h

ℓ

)
= ρ = −

k−1∑

ℓ=0

(
ξj
ℓ (ρ) − ξ̄j

ℓ

)
. (5.96)
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tions onto the original spa
e of variablesIn words, the �ow on ar
s ξh
0 , . . . , ξ

h
k−1 (resp. ξj

0, . . . , ξ
j
k−1) has been in
reased by ρ (resp. −ρ).For 1 ≤ i ≤ n, de�ne αi(ρ) as the total variation of �ow on the ar
s ξi

ℓ that are lo
ated ata level that is at least p′(i). That is,
αi(ρ) :=

k−1∑

ℓ=p′(i)

(

ξi
[ℓ−p′(i)](ρ) − ξ̄i

[ℓ−p′(i)]

)

=

k−1−p′(i)
∑

ℓ=0

(
ξi
ℓ(ρ) − ξ̄i

ℓ

)
, (5.97)Clearly 0 ≤ αh(ρ) ≤ ρ, −ρ ≤ αj(ρ) ≤ 0 and αi(ρ) = 0 for i /∈ {h, j}.Using the fa
t that (u(ρ), ξ(ρ), v(ρ), ϑ(ρ)) is a standard 
ir
ulation for all 0 ≤ ρ ≤ ρmax,one 
an verify the following:(i) There exists a value 0 ≤ ρh ≤ ρmax su
h that

αh(ρ) =

{

ρ if 0 ≤ ρ ≤ ρh,

ρh if ρh ≤ ρ ≤ ρmax.
(5.98)Furthermore ρ ≤ ρh if and only if λh(v(ρ), ϑ(ρ)) ≥ p′(h).(ii) There exists a value 0 ≤ ρj ≤ ρmax su
h that

αj(ρ) =

{

0 if 0 ≤ ρ ≤ ρj,

ρj − ρ if ρj ≤ ρ ≤ ρmax.
(5.99)Furthermore ρ ≥ ρj if and only if λj(v(ρ), ϑ(ρ)) ≥ p′(j).Re
all that ρmax = min

{
ϑ̄h, v̄j − w̄j − ϑ̄j

}. Note that if ρmax = ϑ̄h then ϑh(ρmax) = 0,and if ρmax = v̄j − w̄j − ϑ̄j then ϑj(ρmax) = v̄j − w̄j . As observed before this lemma, in both
ases this implies Sh ≻ Sj with respe
t to 
ir
ulation (u(ρmax), ξ(ρmax), v(ρmax), ϑ(ρmax)). We
an then safely de�ne a number ρ̂ su
h that:(a) 0 ≤ ρ̂ ≤ ρmax;(b) Sh ≻ Sj with respe
t to 
ir
ulation (u(ρ̂), ξ(ρ̂), v(ρ̂), ϑ(ρ̂));(
) under the above 
onditions, the number
∣
∣
{
ℓ : ξh

ℓ (ρ̂) > 0
}∣
∣+
∣
∣
{
ℓ : ξj

ℓ (ρ̂) = 0
}∣
∣ (5.100)is minimum.3We now set (û, ξ̂, v̂, ϑ̂) := (u(ρ̂), ξ(ρ̂), v(ρ̂), ϑ(ρ̂)) and αi(ρ̂) := α̂i for 1 ≤ i ≤ n. We alsoshorten the notation by de�ning λ̂i := λh

(
v̂, ϑ̂
) for 1 ≤ i ≤ n.The following observation will be useful: the de�nition of ρ̂ implies that

λ̂j ≥ λ̂h, (5.101)3Sin
e both terms in (5.100) are nonde
reasing fun
tions of ρ, one might think that 
ondition (
) 
ould berepla
ed with the easier request that ρ̂ is minimum. However this would produ
e some te
hni
al 
ompli
ations,as the existen
e of su
h a minimum is not guaranteed.
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ondition (
) above would be violated (just de
rease ρ̂ by a suitable value).In the following we show that (û, ξ̂, v̂, ϑ̂) gives rise to an inequality (5.87) that dominatesthat 
orresponding to (ū, ξ̄, v̄, ϑ̄). First of all, note that the left-hand side of inequality (5.87)is the same in both 
ases, thus we only need to show that the right-hand side 
orrespondingto (û, ξ̂, v̂, ϑ̂) is greater than or equal to that 
orresponding to (ū, ξ̄, v̄, ϑ̄).Let ∆ be the di�eren
e between the right-hand side of inequality (5.87) 
orresponding to
(
û, ξ̂, v̂, ϑ̂

) and that 
orresponding to (ū, ξ̄, v̄, ϑ̄). As observed above, we have to prove that
∆ ≥ 0. If one writes down patiently the expression for ∆ given by (5.87), re
alling that ūi

0 = 0for 1 ≤ i ≤ n (as the 
ir
ulation is standard) and α̂i = 0 for i /∈ {h, j}, and then uses (5.96)for ρ = ρ̂ together with the se
ond expression for α̂h and α̂j in (5.97), one �nds
∆ = −û0

0 + ū0
0 + ρ̂ ⌈bh⌉ + α̂h − ρ̂ ⌈bj⌉ + α̂j . (5.102)We now distinguish two 
ases.Case 1: p′(h) ≤ p′(j) (in other words, f ′(bh) ≥ f ′(bj)).Assume that α̂h < ρ̂ and α̂j < 0. Then (5.98) and (5.99) show that ρ̂ > max{ρh, ρj}. One
an verify that by setting ρ̃ := max{ρh, ρj}, 
onditions (a)�(b) above are satis�ed and the
orresponding number (5.100) is smaller than that 
orresponding to ρ̂. This means that ρ̂does not satis�es 
ondition (
), a 
ontradi
tion. Therefore α̂j = 0 whenever α̂h < ρ̂, whi
halso implies that α̂h + α̂j ≥ 0 (as 0 ≤ α̂h ≤ ρ̂ and −ρ ≤ α̂j ≤ 0).If û0

0 = 0 then equation (5.102) shows that ∆ ≥ 0, as ū0
0 ≥ 0, bh ≥ bj and α̂h + α̂j ≥ 0.So we now assume û0

0 > 0. By equation (5.92), there is an index 1 ≤ l ≤ k − 1 su
h that
û0

0 = βl

(
v̂, ϑ̂
). Again by (5.92), ū0

0 ≥ βl

(
v̄, ϑ̄
). Equation (5.102) then gives

∆ ≥ −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

+ ρ̂(⌈bh⌉ − ⌈bj⌉) + α̂h + α̂j.Sin
e bh ≥ bj and ρ̂ ≥ 0, the above inequality implies
∆ ≥ −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

+ α̂h + α̂j . (5.103)Using (5.91), one �nds
− βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

= −
k−1∑

ℓ=l

(

ξ̂h
[ℓ−p′(h)] − ξ̄h

[ℓ−p′(h)]

)

−
k−1∑

ℓ=l

(

ξ̂j
[ℓ−p′(j)] − ξ̄j

[ℓ−p′(j)]

)

. (5.104)By (5.96) for ρ = ρ̂ and the fa
t that ξ̂h
ℓ ≥ ξ̄h

ℓ for all ℓ, the value of the �rst summation in theabove equation does not ex
eed ρ̂. Similarly, sin
e ξ̂j
ℓ ≤ ξ̄j

ℓ for all ℓ, the value of the se
ondsummation is at most 0.We 
onsider two possibilities:1.1 Assume �rst that α̂h = ρ̂, or in other words ρ̂ ≤ ρh, or in other words λ̂h ≥ p′(h). Notethat ξ̂h
[ℓ−p′(h)] = ξ̄h

[ℓ−p′(h)] for all ℓ > λ̂h, and ξ̂j
ℓ ≤ ξ̄j

ℓ for all ℓ. By equation (5.104), thisimplies that if l > λ̂h then −βl

(
v̂, ϑ̂
)
+ βl

(
v̄, ϑ̄
)
≥ 0. Together with (5.103) and inequality

α̂h + α̂j ≥ 0 proven above, this shows that ∆ ≥ 0 if l > λ̂h.
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tions onto the original spa
e of variablesSo we assume l ≤ λ̂h. Sin
e λ̂j ≥ λ̂h by (5.101), we have l ≤ λ̂j . Sin
e ξ̂j
ℓ ≤ ξ̄j

ℓ for all ℓand ξ̂j
[ℓ−p′(j)] = ξ̄j

[ℓ−p′(j)] for p′(j) ≤ ℓ ≤ λ̂j , the se
ond summation in (5.104) is (we alsouse the �rst expression for α̂j in (5.97))
k−1∑

ℓ=l

(

ξ̂j
[ℓ−p′(j)] − ξ̄j

[ℓ−p′(j)]

)

≤
k−1∑

ℓ=λ̂j

(

ξ̂j
[ℓ−p′(j)] − ξ̄j

[ℓ−p′(j)]

)

= α̂j . (5.105)Sin
e the value of the �rst summation in (5.104) is at most ρ̂ = α̂h, we then have−βl

(
v̂, ϑ̂
)
+

βl

(
v̄, ϑ̄
)
≥ −α̂h − α̂j , whi
h together with (5.103) shows that ∆ ≥ 0.1.2 Now assume α̂h < ρ̂, or in other words λ̂h < p′(h). As remarked above, α̂j = 0 in this
ase. Also note that ξ̂h

[ℓ−p′(h)] = ξ̄h
[ℓ−p′(h)] for λ̂h < ℓ < p′(h). Then if l > λ̂h then the valueof the �rst summation in (5.104) is at most α̂h. Sin
e the value of the se
ond summationin (5.104) is at 0, we then have −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)
≥ −α̂h = −α̂h − α̂j . This, togetherwith (5.103), shows that ∆ ≥ 0.So we assume l ≤ λ̂h. Sin
e λ̂j ≥ λ̂h by (5.101), we have l ≤ λ̂j . Note that ξ̂j

[ℓ−p′(j)] =

ξ̄j

[ℓ−p′(j)] for 0 ≤ ℓ < λ̂j , thus the value of the se
ond summation in (5.104) is exa
tly −ρ̂.Sin
e the value of the �rst summation in (5.104) is at most ρ̂, we then have −βl

(
v̂, ϑ̂
)

+

βl

(
v̄, ϑ̄
)
≥ −ρ̂+ ρ̂ = 0, thus ∆ ≥ 0 by (5.103), as α̂h + α̂j ≥ 0.Case 2: p′(h) > p′(j) (in other words, f ′(bh) < f ′(bj)).Note that sin
e bh ≥ bj and f ′(bh) < f ′(bj), then ⌈bh⌉ ≥ ⌈bj⌉ + 1. If û0

0 = 0 then equa-tion (5.102) shows that ∆ ≥ 0, as ū0
0 ≥ 0, ⌈bh⌉ ≥ ⌈bj⌉ + 1 and α̂h + α̂j ≥ −ρ̂. So we nowassume û0

0 > 0. By equation (5.92), there is an index 1 ≤ l ≤ k − 1 su
h that û0
0 = βl

(
v̂, ϑ̂
).Again by (5.92), ū0

0 ≥ βl

(
v̄, ϑ̄
). Equation (5.102) then gives

∆ ≥ −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

+ ρ̂(⌈bh⌉ − ⌈bj⌉) + α̂h + α̂j .Sin
e bh ≥ bj and ρ̂ ≥ 0, the above inequality implies
∆ ≥ −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)

+ ρ̂+ α̂h + α̂j . (5.106)Note that equation (5.104) still holds.We 
onsider two possibilities.2.1 Assume �rst that α̂h = ρ̂. Sin
e −βl

(
v̂, ϑ̂
)
+βl

(
v̄, ϑ̄
)
≥ −ρ̂ by (5.104) and sin
e α̂h + α̂j =

ρ̂+ α̂j ≥ 0, we obtain ∆ ≥ 0.2.2 Now suppose that α̂h < ρ̂. As in Case 1.2, if l > λ̂h then the value of the �rst summationin (5.104) is at most α̂h. This implies that ∆ ≥ 0, as −βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)
≥ −α̂h and

ρ̂+ α̂j ≥ 0.So we assume l ≤ λ̂h, whi
h together with λ̂j ≥ λ̂h implies l ≤ λ̂j . As in the se
ond partof Case 1.1, the value of the se
ond summation in (5.104) is at most α̂j. Then ∆ ≥ 0, as
−βl

(
v̂, ϑ̂
)

+ βl

(
v̄, ϑ̄
)
≥ −ρ− α̂j and α̂h ≥ 0.
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ases the inequality (5.87) 
orresponding to (û, ξ̂, v̂, ϑ̂) domi-nates that 
orresponding to (ū, ξ̄, v̄, ϑ̄). To 
on
lude we have to show that m(v̂, ϑ̂) < m
(
v̄, ϑ̄
).This follows from the following two observations: �rst, for any i, if Sh ≻ Si with respe
t to

(
ū, ξ̄, v̄, ϑ̄

) then Sh ≻ Si with respe
t to (û, ξ̂, v̂, ϑ̂) as well; se
ond, Sh 6≻ Sj with respe
t to
(
ū, ξ̄, v̄, ϑ̄

) but Sh ≻ Sj with respe
t to (û, ξ̂, v̂, ϑ̂). �From now on we only 
onsider standard 
ir
ulations in N (w̄) satisfying Sh ≻ Sj for all
j ∈ J(w̄).For the next lemmas it is useful to introdu
e some simple notation. Given two indi
es
0 ≤ ℓ, ℓ′ ≤ k− 1, we de�ne 〈ℓ, ℓ′〉 as the set of indi
es ranging from ℓ to ℓ′ in �
ir
ular� fashion.That is,

〈ℓ, ℓ′〉 :=







{ℓ, . . . , ℓ′} if 0 ≤ ℓ ≤ ℓ′ ≤ k − 1,

{ℓ, . . . , k − 1} ∪ {0, . . . , ℓ′} if 0 ≤ ℓ′ < ℓ ≤ k − 1,

∅ if ℓ = k or ℓ′ = k.(The third 
ase in the above de�nition is given for te
hni
al reasons.)Given indi
es 0 ≤ i ≤ n and 0 ≤ ℓ, ℓ′ ≤ k − 1, let P i(ℓ, ℓ′) be the set of ar
s in the uniquedire
ted path in Si 
onne
ting nodes µi
ℓ and µi

ℓ′ . That is,
P i(ℓ, ℓ′) :=

{{
ui

l : l ∈ 〈ℓ+ 1, ℓ′〉
} if ℓ 6= ℓ′,

∅ if ℓ = ℓ′.In the following we will be 
onsidering a �xed standard 
ir
ulation (ū, ξ̄, v̄, ϑ̄) in N (w̄)su
h that Sh ≻ Sj for all j ∈ J(w̄). Thus we 
an safely drop the dependen
e on (v̄, ϑ̄) innotation λi

(
v̄, ϑ̄
) and just write λi. Similarly we write ri for ri(v̄, ϑ̄).Lemma 5.11 If a standard 
ir
ulation in N (w̄) satis�es Sh ≻ Sj for all j ∈ J(w̄), then

w̄0 = −w̄h and w̄j = 0 for all j /∈ {0, h}.Proof. It is su�
ient to show that the support of (ū, ξ̄, v̄, ϑ̄) 
ontains a forest F as inLemma 5.7 (ii), with i := h. The 
onstru
tion of F is divided into several steps, whi
hare illustrated in Figure 5.7. Note that the pi
ture represents only the forest F : other nodesand ar
s have not been drawn.Step 1. Sin
e (ū, ξ̄, v̄, ϑ̄) is a standard 
ir
ulation, its support 
ontains ar
s ξh
ℓ for 0 ≤ ℓ ≤ rh,whi
h we in
lude in F (solid ar
s in Figure 5.7). Su
h ar
s span nodes µh

ℓ for 0 ≤ ℓ ≤ rh and
µ0

ℓ for ℓ ∈ 〈p′(h), λh〉. Thus, if λh = p′(h)− 1 (or in other words, rh = k− 1), the 
onstru
tionof F is 
omplete. We then assume λh 6= p′(h) − 1 and go to the next step.Step 2. The support of (ū, ξ̄, v̄, ϑ̄) also 
ontains ar
s ui
ℓ for ℓ ∈ 〈rh + 2, k − 1〉 and ar
 ϑh,whi
h we add to F (dashed ar
s in Figure 5.7). Now all nodes in Sh are spanned by F . Itremains to 
over nodes µ0

ℓ for ℓ ∈
〈
[λh + 1], [p′(h) − 1]

〉. If ū0
[λh+1] > 0 we go to Step 3,otherwise we skip to Step 4.Step 3. (To be exe
uted if and only if ū0

[λh+1] > 0.) Note that in this 
ase we 
an assumewithout loss of generality that ūh
[rh+1] > 0: if not, we 
an de
rease by a small ε > 0 the �ow
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µ0

0

µ0
ℓ2 µi2

0

vi2

µh
k−1

ϑh

µh
0

ξh
0 µ0

p′(h)

µh
rh

ξh
rh

µ0
λh

µ0
ℓ1 µi1

0

vi1

µ0
k−1Figure 5.7: Illustration of the steps of the proof of Lemma 5.11. Solid ar
s 
orrespond toStep 1, dashed ar
s to Step 2, double ar
s to Step 3 and dotted ar
s to Step 4.
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s ξh
rh
, u0

[λh+1] and in
rease by the same amount the �ow on ar
s uh
[rh+1], ξ

h
[rh+1], thusobtaining an equivalent 
ir
ulation.4 Choose the index ℓ1 ∈

〈
[λh + 1], p′(h)

〉 su
h that thepath P 0(λh, [ℓ1 − 1]) is 
ontained in the support of (ū, ξ̄, v̄, ϑ̄) and has maximum length. Weadd the ar
s of su
h path to F (double ar
s in Figure 5.7). If ℓ1 = p′(h), the 
onstru
tion of
F is 
omplete. Otherwise we go to the next step.Step 4. If ū0

[λh+1] > 0, ℓ1 has already been de�ned in the previous step. If ū0
[λh+1] = 0, set

ℓ1 := [λh + 1]. In both 
ases, it remains to 
over nodes µ0
ℓ for ℓ ∈

〈
ℓ1, [p

′(h) − 1]
〉. Sin
e

Sh ≻ Sj for all j ∈ J(w̄) and sin
e ξ̄h
ℓ1

= 0, node µ0
ℓ1

re
eive a positive amount of �ow from(a) either ar
 v0 (
learly this is possible only if ℓ1 = 0),(b) or an ar
 ξi1
0 su
h that p′(i1) = ℓ1.In the former 
ase we add ar
 v0 to F , in the latter 
ase we add ξi1

0 . Note that if (b) holdsthen ar
 vi1 
arries a positive �ow as well, and we also add vi1 to F . Now let ℓ2 be the indexin 〈ℓ1, p
′(h)〉 su
h that the path P 0(ℓ1, [ℓ2 − 1]) is 
ontained in the support of (ū, ξ̄, v̄, ϑ̄) andhas maximum length. We add the ar
s of su
h path to F . If ℓ2 = p′(h), the 
onstru
tion of

F is 
omplete. Otherwise we repeat this step with ℓ2 in pla
e of ℓ1, and so forth. (The ar
sadded in this step are the dotted ar
s in Figure 5.7.)At the end of the above pro
ess, a forest F as in Lemma 5.7 (ii) is dete
ted in the supportof (ū, ξ̄, v̄, ϑ̄). �Note that for i /∈ {0, h}, 
ondition w̄i = 0 and the fa
t that the (ū, ξ̄, v̄, ϑ̄) is a standard
ir
ulation imply that ξ̄i
ℓ = 0 for all 1 ≤ ℓ ≤ k − 1, ūi

ℓ = 0 for all 0 ≤ ℓ ≤ k − 1 and ϑ̄i = 0.Therefore the network 
an now be simpli�ed by removing all su
h ar
s: the resulting redu
ednetwork 
onsists of the following ar
s:
• the ar
s of se
tors Sh and S0;
• the ar
s 
onne
ting se
tors Sh and S0, i.e. ar
s ξh

0 , . . . , ξ
h
k−1;

• the ar
s vi, ξi
0 for all 1 ≤ i ≤ n.Also, using (5.89) and the fa
t that w̄0 = −w̄h, one sees that for ea
h index 0 ≤ ℓ ≤ k thedemand of node µ0
ℓ is exa
tly equal to the supply of the node of se
tor Si pla
ed at level ℓ,i.e. node µh

[ℓ−p′(h)]. The stru
ture of a possible redu
ed network is depi
ted in Figure 5.8.Therefore we 
an restri
t to the redu
ed network our sear
h for 
ir
ulations generatingnon-redundant inequalities. Before showing expli
itly su
h 
ir
ulations we make a few �nalobservations.Lemma 5.12 Assume w̄0 = 1, w̄h = −1 and w̄i = 0 for i /∈ {0, h}. Every standard 
ir
ulation
(
ū, ξ̄, v̄, ϑ̄

) in N (w̄) generating an inequality (5.87) that is non-redundant in the des
riptionof the 
onvex hull of (5.53)�(5.56) satis�es the following 
onditions:4This 
ir
ulation is non-standard, but the remainder of the proof still works.
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µ0
0

v0

ϑh

µi
0

ξi
0 vi

µh
0

vh

︸ ︷︷ ︸

ξi
0, µ

i
0, v

i for i /∈ {0, h}Figure 5.8: The redu
ed network when w̄0 = 1, w̄h = −1 and w̄i = 0 for i /∈ {0, h}. Thi
karrows represent 
ir
ulation requirements. The supply of ea
h node in Sh is equal to thedemand of the node of S0 lo
ated at the same level. Note that the nodes µi
0 aligned on thesame verti
al line on the right a
tually belong to distin
t se
tors Si for i ∈ {0, h}. This pi
turerepresents the spe
ial 
ase in whi
h the values p′(i) for 1 ≤ i ≤ n are all distin
t.
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0 = v̄h + fh

0 − fh
1 and ξ̄h

ℓ = fh
ℓ − fh

ℓ+1 for 1 ≤ ℓ ≤ rh;(ii) ūh
[rh+1] = 0;(iii) v̄i = ξ̄i

0 for all i /∈ {0, h};(iv) v̄i = 0 for all indi
es i su
h that p′(i) ∈ 〈p′(h), λh〉;(v) ū0
ℓ = 0 for all ℓ ∈ 〈p′(h), [λh + 1]

〉.Proof. We prove the above statements in the 
ase rh > 0. If rh = 0 the idea is the same butsome notation used below is meaningless.Sin
e (ū, ξ̄, v̄, ϑ̄) is a standard 
ir
ulation, ūh
ℓ = 0 for 0 ≤ ℓ ≤ rh. This immediately impliesthat ξ̄h

0 = v̄h + fh
0 − fh

1 and ξ̄h
ℓ = fh

ℓ − fh
ℓ+1 for 1 ≤ ℓ ≤ rh − 1, whi
h partly proves (i).Sin
e ūh

rh
= 0 and the supply of node µh

rh
is fh

rh
−fh

rh+1, we have ūh
[rh+1] + ξ̄

h
rh

= fh
rh
−fh

rh+1.Also note that for 1 ≤ ℓ ≤ rh − 1 the �ow 
arried by ar
 ξh
ℓ is equal to the demand of itshead-node, and the �ow 
arried by ar
 ξi

0 is at least as large as the demand of its head-node.In other words, nodes µ0
ℓ for p′(h) ≤ ℓ ≤ λh − 1 are saturated by these ar
s. Furthermorere
all that ar
s ξh

ℓ for ℓ > rh do not 
arry any amount of �ow (by de�nition of rh). If weassume ξ̄h
rh
< fh

rh
−fh

rh+1 (i.e. ar
 ξh
rh

does not saturate node µ0
λh
), all these 
onsiderations 
anbe used to show the existen
e of a path Q 
ontained in the support of 
ir
ulation (ū, ξ̄, v̄, ϑ̄)that 
onne
ts node µ0

λh
with the dummy node d without using ar
 ϑh. In this 
ase the ar
s

ϑh, P h
(
[rh + 1], k − 1

)
, ξh

rh
, Qform a 
y
le 
ontained in the support of (ū, ξ̄, v̄, ϑ̄). It is easy to see that su
h a 
y
le isheavy, 
ontradi
ting Lemma 5.11 (i). This 
ompletes the proof of (i) and also shows (ii), as

ūh
[rh+1] + ξ̄h

rh
= fh

rh
− fh

rh+1.To see that (iii) holds, assume v̄i > ξ̄i
0 for some i /∈ {0, h}. Sin
e w̄i = 0 and the 
ir
ulationis standard, then ne
essarily the support of (ū, ξ̄, v̄, ϑ̄) 
ontains the path P i(0, k−1). The ar
sof this path, together with ar
s vi and ϑi, form a heavy 
y
le, 
ontradi
ting Lemma 5.11 (i).If rh = k − 1 then (iv)-(v) 
an be 
he
ked easily, so we now assume 0 < rh < k − 1.To prove (iv), let i be an index su
h that v̄i > 0 and p′(i) ∈ 〈p′(h), λh〉. Note that if

i 6= 0 then we also have ξ̄i
0 > 0, as ūi

0 = 0 in a standard 
ir
ulation. Sin
e for 0 ≤ ℓ ≤ rhthe �ow 
arried by ar
 ξh
ℓ is at least as large as the demand of its head-node (and thus nodes

µ0
ℓ for p′(h) ≤ ℓ ≤ λh are saturated by these ar
s), we see that all ar
s in P 0

(
p′(i), [λh + 1]

)belong to the support of (ū, ξ̄, v̄, ϑ̄). We 
an then de
rease by a small ε > 0 the �ow onar
s ξh
[p′(i)−p′(h)], P

0
(
p′(i), [λh + 1]

) and in
rease by the same amount the �ow on P h
(
[p′(i) −

p′(h)], [rh +1]
)
, ξh

[rh+1], thus obtaining an equivalent 
ir
ulation. However, this new 
ir
ulation
ontains in its support all ar
s
vi, ξi

0, ξ
h
[p′(i)−p′(h)], P

h([p′(i) − p′(h)], k − 1), ϑh,where ar
 ξi
0 must be removed from the above sequen
e if i = 0. This set of ar
s forms (or
ontains, if i = h) a heavy 
y
le, 
ontradi
ting Lemma 5.11 (i).
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tions onto the original spa
e of variablesTo prove (v), let ℓ ∈ 〈p′(h), [λh+1]
〉 be su
h that ū0

ℓ > 0. Similarly to the proof of part (iv),one shows that all ar
s in P 0
(
p′(h), [λh +1]

) belong to the support of (ū, ξ̄, v̄, ϑ̄). We 
an thende
rease by a small ε > 0 the �ow on ar
s ξh
0 , P

0
(
p′(h), [λh + 1]

) and in
rease by the sameamount the �ow on P h
(
0, [rh + 1]

)
, ξh

[rh+1], thus obtaining an equivalent 
ir
ulation. However,this new 
ir
ulation 
ontains in its support all ar
s uh
0 , . . . , u

h
k−1, whi
h form a tree (a
tuallya path) as in Lemma 5.7 (iii). Thus (ū, ξ̄, v̄, ϑ̄) is equivalent to a 
ir
ulation generating aredundant inequality, that is, (ū, ξ̄, v̄, ϑ̄) itself generates a redundant inequality. �Sin
e part (iv) of the above lemma applies to index i = h, the statement in (i) 
an bewritten this way: ξ̄h

ℓ = fh
ℓ −f

h
ℓ+1 for 0 ≤ ℓ ≤ rh. In other words, for ea
h 0 ≤ ℓ ≤ rh the supplyof node µh

ℓ is entirely 
arried to node µ0
[p′(h)+ℓ] by ar
 ξh

ℓ , and this amount of �ow satis�espre
isely the demand of node µ0
[p′(h)+ℓ].Using the fa
t that vi = ξ̄i

0 and ξ̄i
1 = · · · = ξ̄i

k−1 = 0 for i /∈ {0, h}, inequality (5.87) 
annow be rewritten as follows:
s+ yh +

n∑

i=1

v̄i(zi − ⌈bi⌉) + ū0
0 ≥

k−1∑

ℓ=0

ξ̄h
ℓ ⌈bh⌉ −

k−1∑

ℓ=k−p′(h)

ξ̄h
ℓ . (5.107)By the above 
onsiderations, the right-hand side of inequality (5.107) is

k−1∑

ℓ=0

ξ̄h
ℓ ⌈bh⌉ −

k−1∑

ℓ=k−p′(h)

ξ̄h
ℓ =







(
f0

p′(h) − f0
λh+1

)
⌈bh⌉ if p′(h) ≤ λh,

f0
p′(h) ⌈bh⌉ +

(
1 − f0

λh+1

)
(⌈bh⌉ − 1) if p′(h) > λh.

(5.108)Assume v̄i = 0 for all indi
es 1 ≤ i ≤ n. Lemma 5.12 
an be used to show that two 
asesare possible: either v̄0
0 = 0 and λh = [p′(h) − 1] (i.e. rh = k − 1), or v̄0 = 1 − f ′(bh) and

λh = k − 1. In the former 
ase, the 
orresponding inequality (5.107) is
s+ yh ≥ f0

p′(h) ⌈bh⌉ + (1 − f0
p′(h))(⌈bh⌉ − 1), (5.109)while in the latter 
ase it is

s+ yh ≥ f0
p′(h) ⌈bh⌉.The above inequality 
an be dis
arded be
ause it is dominated by (5.109), as bh ≥ 0. Re
allingthat f0

p′(h) = f ′(bh), inequality (5.109) is readily 
he
ked to be equivalent to s+ yh ≥ bh.Now we assume that v̄i > 0 for at least one index 1 ≤ i ≤ n. Let i1, . . . , im−1 be the indi
esin {1, . . . , n} su
h that v̄it > 0 and p′(it) < p′(h) for 1 ≤ t ≤ m−1. (Note that m−1 might beequal to zero.) Set im := h and let im+1, . . . , ir be the indi
es in {1, . . . , n} su
h that v̄it > 0and p′(it) > λh for m+ 1 ≤ t ≤ r. (Note that r might be equal to m). By Lemma 5.12 (iv),there does not exist an index i su
h that p′(h) ≤ p′(i) ≤ λh, thus {it : t 6= m} is pre
isely theset of indi
es i 6= 0 su
h that v̄i > 0. Also note that there do not exist two distin
t indi
es t, t′,with t 6= m 6= t′, su
h that p′(it) = p′(it′), as otherwise the ar
s vit , ξit
0 , ξ

it′
0 , vit′ would form aheavy 
y
le 
ontained in the support of 
ir
ulation (ū, ξ̄, v̄, ϑ̄). We 
an then assume withoutloss of generality that p′(i1) < · · · < p′(im−1) < p′(im) = p′(h) < p′(im+1) < · · · < p′(ir). Wealso de�ne ir+1 := n+ 1 (thus p′(ir+1) = k) and f ′(bn+1) := 0.We now distinguish two 
ases.
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laim that in this 
ase ū0
0 = 0. This follows immediatelyfrom Lemma 5.12 (v) if λh = k − 1, so assume λh < k − 1. Then if ū0

0 > 0 the sequen
eof ar
s vir , P 0(p′(ir), 0), v
0 would form a heavy 
y
le 
ontained in the support of the
ir
ulation (ū, ξ̄, v̄, ϑ̄).Thus ū0

0 = 0. Also observe that p′(h) ≤ λh, as otherwise Lemma 5.12 (iv) would beviolated by index i = 0. The nonzero entries of v̄ are (see Figure 5.9)
v̄it =

p′(it+1)−1
∑

ℓ=p′(it)

(
f0

ℓ − f0
ℓ+1

)
= f0

p′(it)
− f0

p′(it+1)
for t 6= m,

v̄0 =

p′(i1)−1
∑

ℓ=0

(
f0

ℓ − f0
ℓ+1

)
= 1 − f0

p′(i1).The 
orresponding inequality (5.107) is then (also using equation (5.108))
s+ yh +

∑

t6=m

(
f0

p′(it)
− f0

p′(it+1)

)
(zit − ⌈bit⌉) ≥

(
f0

p′(h) − f0
λh+1

)
⌈bh⌉.Re
all that im = h and observe that p′(im+1) = λh + 1. Then, after re
alling that

f0
p′(i) = f ′(bi) for all indi
es 1 ≤ i ≤ n, the above inequality reads
s+ yim +

∑

t6=m

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥

(
f ′(bim) − f ′(bim+1

)
⌈bim⌉. (5.110)2. Now suppose v̄0 = 0. In this 
ase the two alternatives m < r and m = r need to be
onsidered separately.If m < r then p′(h) ≤ λh, as otherwise Lemma 5.12 (iv) would be violated by index

i = ir. The nonzero entries of v̄ are (see Figure 5.10)
v̄it =

p′(it+1)−1
∑

ℓ=p′(it)

(
f0

ℓ − f0
ℓ+1

)
= f0

p′(it)
− f0

p′(it+1)
for t /∈ {m, r},

v̄ir =
k−1∑

ℓ=p′(ir)

(
f0

ℓ − f0
ℓ+1

)
+

p′(i1)−1
∑

ℓ=0

(f0
ℓ − f0

ℓ+1) = f0
p′(ir) +

(
1 − f0

p′(i1)

)
,while ū0

0 = 1 − f0
p′(i1). The 
orresponding inequality (5.107) is then

s+yh+
∑

t6=m

(
f0

p′(it)
−f0

p′(it+1)

)
(zit−⌈bit⌉)+

(
1−f0

p′(i1)

)
(zir−⌈bir⌉+1) ≥

(
f0

p′(h)−f
0
λh+1

)
⌈bh⌉,whi
h 
an be equivalently be written as

s+ yh +
∑

t6=m

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉)

+
(
1 − f ′(bi1)

)
(zir − ⌈bir⌉ + 1) ≥

(
f ′(bim) − f ′(bim+1

)
⌈bim⌉. (5.111)
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vi3Figure 5.9: The 
ase v̄0 > 0. Here r = 3 and m = 2.
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vi4Figure 5.10: The 
ase v̄0 = 0 and m < r. Here r = 4 and m = 2.
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µ0

0

µi1
0

vi1

ϑh

µi2
0

vi2

µh
0

Figure 5.11: The 
ase v̄0 = 0 and m = r. Here m = r = 3.Now assume m = r. We 
laim that in this 
ase ū0
0 = 0. This follows immediately fromLemma 5.12 (v) if λh = k− 1, so assume λh < k− 1. Then, sin
e m = r, we ne
essarilyhave p′(h) > λh. Lemma 5.12 (v) then implies ū0

0 = 0.The nonzero entries of v̄ are (see Figure 5.11)
v̄it =

p′(it+1)−1
∑

ℓ=p′(it)

(
f0

ℓ − f0
ℓ+1

)
= f0

p′(it)
− f0

p′(it+1)
for t 6= m.The 
orresponding inequality (5.107) is then

s+ yh +
∑

t6=m

(
f0

p′(it)
− f0

p′(it+1)

)
(zit − ⌈bit⌉) ≥ f0

p′(h) ⌈bh⌉ +
(
1 − f0

λh+1

)
(⌈bh⌉ − 1),whi
h 
an be equivalently be written as

s+ yh +
∑

t6=r

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥

f ′(bir) ⌈bir⌉ +
(
1 − f ′(bir+1)

)
(⌈bir⌉ − 1). (5.112)This 
on
ludes the analysis of the 
ase J(w̄) 6= ∅.
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e of variablesThe 
ase J(w̄) = ∅We now 
onsider the 
ase J(w̄) = ∅, that is w̄i = 0 for all 1 ≤ i ≤ n. Sin
e w̄ 6= 0 and w̄0 ≥ 0,we 
an assume w̄0 = 1 without loss of generality.Note that in this 
ase ϑ̄i = 0 for 1 ≤ i ≤ n, as otherwise the support of (ū, ξ̄, v̄, ϑ̄) would
ontain the heavy 
y
le vi, ui
1, . . . , u

i
k−1, ϑ

i. The same argument also shows that v̄i = ξ̄i
0 for

1 ≤ i ≤ n. Inequality (5.87) 
an then be rewritten as
s+

n∑

i=1

v̄i(zi − ⌈bi⌉) + ū0
0 ≥ 0. (5.113)The above 
onsiderations shows that the only ar
s that 
an 
arry a positive �ow (in a
ir
ulation that generates a non-redundant inequality) are the ar
s of se
tor S0 and ar
s vi, ξi

0for 1 ≤ i ≤ n. Furthermore, for ea
h 1 ≤ i ≤ n we 
an identify ar
s vi, ξi
0 into a single ar
.The network then redu
es to that 
onsidered in Se
tion 5.2 (Figure 5.1), where no ar
 entersthe dummy node.The a
y
li
 
ir
ulations in su
h a network were shown in Se
tion 5.2 (here we are 
learly in-terested in the 
ase w̄ > 0). It 
an be easily 
he
ked that the 
orresponding inequalities (5.113)are pre
isely s ≥ 0 and the mixing inequalities listed in Se
tion (5.2.3):

s+
r∑

t=1

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) ≥ 0, (5.114)

s+

r∑

t=1

(
f ′(bit) − f ′(bit+1)

)
(zit − ⌈bit⌉) +

(
1 − f ′(bi1)

)(
zir − ⌈bir⌉ − 1

)
≥ 0 (5.115)for all sequen
es of indi
es i1, . . . , ir in {1, . . . , n} su
h that f ′(bi1) > · · · > f ′(bir).We have therefore proven the following result:Proposition 5.13 A linear inequality des
ription of the 
onvex hull of the mixing set with�ows (5.53)�(5.56) in its original spa
e is obtaining by adding to the original inequalities thefollowing 
onstraints:

• (5.110) for all sequen
es of indi
es i1, . . . , ir in {1, . . . , n} su
h that f ′(bi1) > · · · > f ′(bir)and all indi
es 1 ≤ h ≤ n and 1 ≤ m ≤ r;
• (5.111) for all sequen
es of indi
es i1, . . . , ir in {1, . . . , n} su
h that f ′(bi1) > · · · > f ′(bir)and all indi
es 1 ≤ h ≤ n and 1 ≤ m < r;
• (5.112) for all sequen
es of indi
es i1, . . . , ir in {1, . . . , n} su
h that f ′(bi1) > · · · > f ′(bir)and all indi
es 1 ≤ h ≤ n;
• (5.114)�(5.115) for all sequen
es of indi
es i1, . . . , ir in {1, . . . , n} su
h that f ′(bi1) >
· · · > f ′(bir).Conforti, Di Summa and Wolsey [13℄ obtained the linear inequality des
ription of themixing set with �ows in a di�erent form (see also Se
tion 8.2).



Chapter 6Dual network sets with a single integervariableRe
all that we denote by MIX2TU any mixed-integer set of the form {x ∈ R
n : Ax ≥

b, xi integer for i ∈ I}, where A is a totally unimodular matrix with at most two nonzeroentries per row and I is a nonempty subset of N := {1, . . . , n}. In this 
hapter we 
onsiderproblems of this type with |I| = 1, i.e. with a single integer variable. We give a linear inequalitydes
ription of the 
onvex hull of su
h sets in the original spa
e. In 
ontrast to Chapter 5, the
onvex hull is obtained here without 
onstru
ting or proje
ting any extended formulation ofthe set.In Se
tion 6.1 we state the main result of the 
hapter, whi
h provides a linear inequalityformulation (in the original spa
e) of the 
onvex hull of an arbitrary dual network set witha single integer variable. By a result of Se
tion 2.2 this also yields a formulation of a set
MIX2TU with a single integer variable.The theorem stated in Se
tion 6.1 is proven in Se
tions 6.2�6.3. More spe
i�
ally, inSe
tion 6.2 we prove the validity of the inequalities by showing that ea
h of them is a simpleMIR-inequality. In Se
tion 6.3 we prove that the inequalities of the theorem are also su�
ientto des
ribe the 
onvex hull of the set. This is done by following an idea that was applied inthe study of sets de�ned by 
ir
ular-ones matri
es [24℄.We 
on
lude in Se
tion 6.4 by dis
ussing the Chvátal rank of a pure integer set that
onstitutes an equivalent formulation of a set MIX2TU with a single integer variable. Inparti
ular, we show that there are very small and simple instan
es having Chvátal rank greaterthan one.6.1 The 
onvex hull in the original spa
eLet X = {x ∈ R

n : Ax ≥ b, xi integer for i ∈ I} be a mixed-integer set of the type MIX2TUwith |I| = 1. We assume without loss of generality that the integer variable 
orresponds tothe last 
olumn of A.By Corollary 2.4, by multiplying by −1 a subset R of 
olumns of A we 
an transform Xinto a set with dual network 
onstraint matrix. Note that given a linear inequality des
ription103



104 Chapter 6. Dual network sets with a single integer variableof the 
onvex hull of the transformed set, a des
ription of the original set is immediatelyobtained by 
hanging again the sign of the variables with indi
es in R. Therefore we 
anassume without loss of generality that our set X is de�ned by a dual network matrix A, i.e Xis a set of the type MIXDN .The linear system Ax ≥ b has then the form
xi − xj ≥ lij, (i, j) ∈ N e, (6.1)

xi ≥ li, i ∈ N l, (6.2)
xi ≤ ui, i ∈ Nu, (6.3)where N e ⊆ N ×N and N l, Nu ⊆ N . The set N e does not 
ontain any pair of the type (i, i)for i ∈ N . If the set of inequalities (6.2) does not in
lude an expli
it lower bound ln on xn,we set ln := −∞ (but we do not in
lude the bound in the formulation). Similarly if no upperbound on xn is in
luded in the above system, we set un := +∞. We also assume that thesystem Ax ≥ b is feasible.De�ne P := conv(X) = conv{x ∈ R

n : Ax ≥ b, xn integer}. In order to give a linearinequality des
ription of P in the x-spa
e, we need to assume that ln and un are tight boundsfor xn: that is, we assume that
ln = min{xn : x ∈ P}, un = max{xn : x ∈ P}. (6.4)If this is not the 
ase, we 
an use the following easy result:Lemma 6.1 De�ne the values m := min{xn : Ax ≥ b} and M := max{xn : Ax ≥ b}. If

⌈m⌉ ≤ ⌊M⌋,1 then min{xn : x ∈ P} = ⌈m⌉ and max{xn : x ∈ P} = ⌊M⌋.Proof. We assume that both m and M are �nite (the other 
ases are similar). Let x1, x2 betwo points satisfying system Ax ≥ b, with x1
n = m and x2

n = M . All points in the segment
[
x1, x2

] satisfy Ax ≥ b. Sin
e ⌈m⌉ ≤ ⌊M⌋ by assumption, the segment [x1, x2
] 
ontains points

x̄1, x̄2 su
h that x̄1
n = ⌈m⌉ and x̄2

n = ⌊M⌋. This proves the result. �If 
onditions (6.4) are not satis�ed, we 
an 
ompute the values m and M de�ned in theabove lemma (this amounts to solving two linear programs). If ⌈m⌉ = ⌊M⌋ + 1 then P = ∅(and we have found the 
onvex hull of X). Otherwise ⌈m⌉ ≤ ⌊M⌋ and we 
an rede�ne
ln := ⌈m⌉ and un := ⌊M⌋. By the above lemma, 
onditions (6.4) are now satis�ed.We now prepare to present our result. Let G = (V,E) be the dire
ted graph with vertexset V := {0, . . . , n − 1} and ar
 set E de�ned as follows:(a) for ea
h pair (i, j) ∈ N e, where i, j 6= n, E 
ontains an ar
 from node i to node j;(b) for ea
h pair (i, n) ∈ N e, E 
ontains an ar
 from node i to node 0; symmetri
ally, for ea
hpair (n, j) ∈ N e, E 
ontains an ar
 from node 0 to node j;(
) for ea
h index i ∈ N l with i 6= n, E 
ontains an ar
 from node i to node 0;1Here ⌊+∞⌋ := +∞ and ⌈−∞⌉ := −∞.
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e 105(d) for ea
h index i ∈ Nu with i 6= n, E 
ontains an ar
 from node 0 to node i.Note that G may 
ontain several pairs of parallel or opposite ar
s.Thus every inequality of the system Ax ≥ b (i.e. system (6.1)�(6.3)) gives rise to an ar
of G, ex
ept for the inequalities ln ≤ xn ≤ un (if appearing in the system). We give weightsto the ar
s of G in the following very natural way: ar
s arising from a pair (i, j) ∈ N e re
eiveweight lij , ar
s of type (
) re
eive weight li and ar
s of type (d) weight −ui. The weight of anar
 e ∈ E is denoted be. In other words be is the right-hand side of the inequality of (6.1)�(6.3)(written in the �≥� form) 
orresponding to ar
 e.Let C denote a sequen
e of ar
s forming an undire
ted 
y
le in G. Assume that the sequen
eof nodes and ar
s in the 
y
le is (i0, e0, i1, . . . , ik, ek, ik+1), where i0 = ik+1. Let E+(C) bethe set of ar
s of C that are traversed a

ordingly to their orientation, i.e. E+(C) := {et :

it is the tail of et}. Symmetri
ally, let E−(C) := {et : it is the head of et} be the set of ar
sof C that are traversed in the wrong dire
tion. Let T+(C) (resp. T−(C)) be the set of indi
es
t su
h that et is in E+(C) (resp. E−(C)). We de�ne

b+(C) :=
∑

e∈E+(C)

be, b−(C) :=
∑

e∈E−(C)

be.We also de�ne d(C) := b+(C) − b−(C). Note that if one reverses the sequen
e of nodes andar
s forming C, the values b+(C), b−(C) and d(C) 
hange sign. Thus, rather than just a 
y
le,
C indi
ates in whi
h order the ar
s of that 
y
le are traversed.We now present the main result of this 
hapter. As in the previous 
hapters, for a realnumber α we write f(α) to denote the fra
tional part of α, i.e. f(α) := α− ⌊α⌋.Theorem 6.2 A linear inequality des
ription of P in its original spa
e is given by the originalsystem (6.1)�(6.3) plus all linear inequalities of the form

∑

t∈T+(C)

(xit − xit+1) +
(
ε(C) + f(d(C))

)
xn ≥ b−(C) + f(d(C)) ⌊d(C) + 1⌋, (6.5)with the following meaning of notation:

• C = (i0, e0, i1, . . . , ik, ek, ik+1) is an undire
ted 
y
le in G, with k ≥ 2 and i0 = ik+1 = 0.Ar
 e0 is an ar
 of type (b) de�ned above, while ek is not of type (b).
• Any o

urren
e of x0 stands for a zero.
• The value ε(C) is de�ned by ε(C) :=

{

0 if e0 ∈ E+(C),

−1 otherwise.In Se
tion 6.2 we prove that inequalities (6.5) are valid for P , while in Se
tion 6.3 we showthat they su�
e to des
ribe P . We 
on
lude in Se
tion 6.4 by dis
ussing the Chvátal rank ofan equivalent pure integer formulation of P .



106 Chapter 6. Dual network sets with a single integer variable6.2 Validity of the inequalitiesWe show here that ea
h of inequalities (6.5) 
an be obtained as a simple MIR-inequality (seeTheorem 1.11) from an inequality that is implied by the original linear system (6.1)�(6.3).This proves that all inequalities (6.5) are valid for P .Let C be an undire
ted 
y
le satisfying the 
onditions des
ribed in Theorem 6.2. Note that
ek is an ar
 of either type (
) or type (d). We now distinguish four possibilities. In all 
asesbelow, the following easy identity will be used:

∑

t∈T+(C)

(xit − xit+1) +
∑

t∈T−(C)

(xit − xit+1) = 0. (6.6)Case 1: e0 ∈ E+(C) and ek is an ar
 of type (
).First of all note that ek ∈ E+(C), as ek is an ar
 of type (
). We 
laim that the followinginequalities are all in
luded in the original system (6.1)�(6.3):(i) inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T+(C) \ {0, k};(ii) inequality xn − xi1 ≥ ln,i1 ;(iii) inequality xik ≥ lik .The inequalities of group (i) belong to the original system be
ause for ea
h t ∈ T+(C) \ {0, k},ar
 et is ne
essarily of type (a). The inequality in (ii) is part of the original system as it
orresponds to ar
 e0, whi
h is of type (b) by assumption. As to the last inequality, re
allthat we are assuming that ek is an ar
 of type (
).Summing up all the above inequalities gives (re
all that x0 = 0 and 0, k ∈ T+(C))
∑

t∈T+(C)

(xit − xit+1) + xn ≥ b+(C), (6.7)whi
h we rewrite as
∑

t∈T+(C)

(xit − xit+1) − b−(C) + xn ≥ d(C). (6.8)Similarly, all inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T−(C) belong to the originalsystem. Summing them up gives
∑

t∈T−(C)

(xit+1 − xit) ≥ b−(C). (6.9)Then if we set s :=
∑

t∈T−(C)(xit − xit+1) − b−(C), we have s ≥ 0. Using equation (6.6),inequality (6.8) 
an now be written as s + xn ≥ d(C). Sin
e s is a nonnegative variable and
xn is an integer variable, the 
orresponding simple MIR-inequality is valid:

s+ f(d(C))xn ≥ f(d(C)) ⌊d(C) + 1⌋.Substituting ba
k for s, we obtain inequality (6.5).Case 2: e0 ∈ E+(C) and ek is an ar
 of type (d).In this 
ase ek ∈ E−(C), as ek is an ar
 of type (d). Similarly to the previous 
ase, one 
an
he
k that the following inequalities are all in
luded in the original system (6.1)�(6.3):



6.2. Validity of the inequalities 107(i) inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T+(C) \ {0, k};(ii) inequality xn − xi1 ≥ lni1 .Summing up the above inequalities gives (re
all that x0 = 0 and 0 ∈ T+(C))
∑

t∈T+(C)

(xit − xit+1) + xn ≥ b+(C),whi
h we rewrite as
∑

t∈T+(C)

(xit − xit+1) − b−(C) + xn ≥ d(C). (6.10)The following inequalities are also part of the original system:(i) inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T−(C) \ {k};(ii) inequality −xik ≥ −uik .If we sum them up and re
all that x0 = 0 and k ∈ T−(C), we �nd
∑

t∈T−(C)

(xit+1 − xit) ≥ b−(C).We 
an now set s :=
∑

t∈T−(C)(xit − xit+1) − b−(C) and pro
eed as in the previous 
ase.Case 3: e0 ∈ E−(C) and ek is an ar
 of type (
).As in Case 1, ek ∈ E+(C). Summing up all the inequalities 
orresponding to ar
s et with
t ∈ T+(C) and subtra
ting b−(C) from both sides gives

∑

t∈T+(C)

(xit − xit+1) − b−(C) ≥ d(C). (6.11)The following inequalities are in
luded in the original system:(i) inequalities (6.1) for (i, j) = (it, it+1) with t ∈ T−(C) \ {k};(ii) inequality xi1 − xn ≥ li1,n.Adding up all these inequalities and subtra
ting b−(C) from both sides gives
∑

t∈T−(C)

(xit − xit+1) − xn − b−(C) ≥ 0.If we de�ne s to be the left-hand side of the above inequality, by equation (6.6) inequality (6.11)be
omes s + xn ≥ d(C). Applying the MIR-inequality and substituting ba
k for s givesinequality (6.5).Case 4: e0 ∈ E−(C) and ek is an ar
 of type (d).This 
ase is very similar to the previous one.This 
on
ludes the proof of the validity of inequalities (6.5).



108 Chapter 6. Dual network sets with a single integer variable6.3 Su�
ien
y of the inequalitiesWe prove here that the original 
onstraints (6.1)�(6.3) and all inequalities (6.5) are su�
ientto des
ribe P = conv(X). We use an idea appearing in a paper by Eisenbrand, Oriolo, Stau�erand Ventura [24℄. We �nd useful to present here the approa
h used by the authors 
ited above,as we need to extend it to the 
ase of a polyhedron that is not full-dimensional (the polyhedronstudied in [24℄ is full-dimensional, and this property was impli
itly used there).6.3.1 Extending a sli
ing approa
hThe results presented in this subse
tion extend those appearing in [24℄ to the 
ase of a poly-hedron whi
h is not full-dimensional. We remark that in this subse
tion we do not need anyparti
ular assumptions on X, ex
ept that X is a mixed-integer set in R
n with a single integervariable xn, and that 
onditions (6.4) hold.For ea
h integer number α su
h that ln ≤ α ≤ un, we de�ne the polyhedra Pα := {x ∈

X : xn = α} = {x ∈ P : xn = α} and Pα,α+1 := conv
(
Pα ∪ Pα+1

). Clearly
P = conv

(⋃un

α=ln
Pα
)

= conv
(⋃un−1

α=ln
Pα,α+1

)
.Moreover, the following simple result holds.Lemma 6.3 Given x̄ ∈ R

n, x̄ ∈ P if and only if x̄ ∈ Pα,α+1 for α = ⌊x̄n⌋.Proof. The `if' part is obvious. To prove the `only if' part, let x̄ be a point in P . If x̄n is aninteger then x̄ ∈ Pα for α = x̄n. So assume x̄n /∈ Z and de�ne α = ⌊x̄n⌋. By de�nition of P , x̄
an be written as 
onvex 
ombination of two points x1, x2 ∈ P , where x1
n ≤ α and x2

n ≥ α+ 1.Then the segment [x1, x2
], whi
h is 
ontained in P , interse
ts Pα and Pα+1, thus showingthat x̄ is the 
onvex 
ombination of a point in Pα and a point in Pα+1, i.e. x̄ ∈ Pα,α+1. �Note that for ea
h integer α satisfying ln ≤ α ≤ un, the polyhedron Pα is nonempty (thisfollows from 
onditions (6.4) and basi
 
onvexity). Then for ln ≤ α < un, the polyhedra

Pα and Pα+1 are nonempty fa
es of Pα,α+1 (indu
ed by inequalities xn ≥ α and xn ≤ α + 1respe
tively). De�ne Fα,α+1 as a family of equations and inequalities that 
onstitute a minimaldes
ription of Pα,α+1, ex
ept that we do not in
lude in Fα,α+1 any inequality de�ning fa
e
Pα or Pα+1. We assume without loss of generality that all inequalities in Fα,α+1 are of the�≥� kind. We write cx ∼ δ to denote a linear 
onstraint that 
an be either inequality cx ≥ δor equation cx = δ.Lemma 6.4 P is the set of points in R

n satisfying inequalities ln ≤ xn ≤ un and all equationsand inequalities in ⋃un−1
α=ln

Fα,α+1.Proof. Let Q be the set of points in R
n satisfying inequalities ln ≤ xn ≤ un and all equationsand inequalities in ⋃un−1

α=ln
Fα,α+1. We prove that Q = P .If x̄ ∈ Q then ln ≤ x̄n ≤ un and x̄ satis�es all equations and inequalities in Fα,α+1 where

α = ⌊x̄n⌋. Sin
e α ≤ x̄n ≤ α + 1 also holds, we have x̄ ∈ Pα,α+1, hen
e x̄ ∈ P . This showsthat Q ⊆ P .
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ien
y of the inequalities 109To prove the reverse in
lusion, we show that for ln ≤ α < un, every equation or inequalityin Fα,α+1 is valid for P . Assume that the 
ontrary holds, i.e. there exist an integer α su
hthat ln ≤ α < un, an equation or inequality cx ∼ δ in Fα,α+1 and a point x̄ ∈ P su
h that
cx̄ 6∼ δ. If α ≤ x̄n ≤ α + 1, Lemma 6.3 implies that x̄ ∈ Pα,α+1, thus x̄ satis�es cx ∼ δ, a
ontradi
tion.So we assume x̄n ≤ α (the 
ase x̄n ≥ α+ 1 is similar). We now 
laim that there is a point
xα+1 ∈ Pα+1 su
h that cxα+1 = δ. To prove this, we distinguish two 
ases.1. Assume �rst that cx ∼ δ is an inequality. Then inequality cx ≥ δ de�nes a fa
et F of

Pα,α+1 and we let k be the dimension of F . Sin
e Pα,α+1 = conv
(
Pα ∪ Pα+1

), thereexist k+ 1 a�nely independent points in F ∩
(
Pα ∪Pα+1

) that satisfy equation cx = δ.If all these k + 1 points belonged to Pα, then inequality cx ≥ δ would indu
e fa
e2 Pα,
ontradi
ting the fa
t that inequality cx ≥ δ belongs to Fα,α+1. Thus there is a point
xα+1 ∈ Pα+1 su
h that cxα+1 = δ.2. The other possibility is that cx ∼ δ is an equation and thus Pα,α+1 ⊆ {x ∈ R

n : cx = δ}.Sin
e Pα+1 6= ∅, there is a point xα+1 ∈ Pα+1 ⊆ {x ∈ R
n : cx = δ}.Thus in both 
ases there is a point xα+1 ∈ Pα+1 su
h that cxα+1 = δ. Sin
e cx̄ 6∼ δ, thesegment [x̄, xα+1

], whi
h is 
ontained in P , interse
ts Pα in a point xα su
h that cxα 6∼ δ.This is a 
ontradi
tion, as the equation or inequality cx ∼ δ is valid for Pα. �Therefore, in order to �nd a linear inequality des
ription of P , we have to �nd all equationsand inequalities in the family Fα,α+1 for ln ≤ α < un.In the following we write A = [M | an], where M is the 
olumn submatrix 
onstituted bythe �rst n− 1 
olumns of A and an is the n-th 
olumn of A. Similarly we de
ompose a point
x ∈ R

n as x = (xM , xn).Lemma 6.5 Fix a point x̄ ∈ R
n with µ(x̄) := f(x̄n) > 0 and an integer ln ≤ α < un. De�ne

bα := b− αan, bα+1 := b− (α+ 1)an. (6.12)Then x̄ ∈ Pα,α+1 if and only if the optimum value of the following linear program is zero:
max −vαMx̄M + (1 − µ(x̄))vαbα + µ(x̄)vα+1bα+1 (6.13)subje
t to vαM − vα+1M = 0, (6.14)

vα, vα+1 ≥ 0. (6.15)Proof. The point x̄ belongs to Pα,α+1 if and only if there exist xα ∈ Pα, xα+1 ∈ Pα+1 and
0 ≤ λ ≤ 1 su
h that

x̄ = λxα + (1 − λ)xα+1. (6.16)By writing equation (6.16) for the n-th 
omponent, one �nds µ(x̄) = 1− λ. Then x̄ ∈ Pα,α+1if and only if there exist xα ∈ Pα and xα+1 ∈ Pα+1 su
h that
x̄M = (1 − µ(x̄))xα

M + µ(x̄)xα+1
M .2A
tually fa
et in this 
ase.



110 Chapter 6. Dual network sets with a single integer variableIf we de�ne bα and bα+1 as in (6.12), the polyhedron Pα (resp. Pα+1) is des
ribed by the
onditions xn = α, MxM ≥ bα (resp. xn = α + 1, MxM ≥ bα+1). Thus x̄ ∈ Pα,α+1 if andonly if there exist xα, xα+1 ∈ R
n su
h that

x̄M = (1 − µ(x̄))xα
M + µ(x̄)xα+1

M , Mxα
M ≥ bα, Mxα+1

M ≥ bα+1.After de�ning yα := (1 − µ(x̄))xα
M and yα+1 := µ(x̄)xα+1

M , we obtain that x̄ ∈ Pα,α+1 if andonly if the following linear system admits a feasible solution (yα, yα+1) ∈ R
n−1 × R

n−1:
yα + yα+1 = x̄M ,

Myα ≥ (1 − µ(x̄))bα,

Myα+1 ≥ µ(x̄)bα+1.By Farkas' lemma (Theorem 1.7), this happens if and only if all feasible solutions of thefollowing linear program have non-positive 
ost:
max ux̄M + (1 − µ(x̄))vαbα + µ(x̄)vα+1bα+1subje
t to u+ vαM = 0,

u+ vα+1M = 0,

vα, vα+1 ≥ 0.After eliminating variable u and observing that the all-zero solution is feasible, the proof is
omplete. �Note that the feasible region (6.14)�(6.15) does not depend on x̄.Now �x ln ≤ α < un, let cx ∼ δ be an equation or inequality in Fα,α+1 and 
all F thefa
et (or improper fa
e) of Pα,α+1 that is indu
ed by cx ∼ δ. Let x̄ be a point in the relativeinterior of F (note that then 0 < µ(x̄) < 1, as assumed in Lemma 6.5). Sin
e x̄ ∈ Pα,α+1, theoptimum value of the linear program (6.13)�(6.15) is zero. We 
all Z(x̄) the set of optimal(i.e. zero-
ost) solutions of the linear program (6.13)�(6.15).Lemma 6.6 For ea
h feasible ve
tor (vα, vα+1
) in (6.14)�(6.15), the inequality

vαMxM +
(
vαbα − vα+1bα+1

)
xn ≥ vαbα +

(
vαbα − vα+1bα+1

)
α (6.17)is valid for Pα,α+1. Furthermore, the equation or inequality cx ∼ δ is implied by the family ofinequalities (6.17) for (vα, vα+1

)
∈ Z(x̄).Proof. For a point x ∈ Pα, xn = α holds and thus inequality (6.17) redu
es to vαMxM ≥ vαbα,whi
h is valid for Pα (as it is a nonnegative 
ombination of the inequalities of the system

MxM ≥ bα). Similarly, for a point x ∈ Pα+1, xn = α + 1 holds and thus, re
alling that
vαM = vα+1M by (6.14), inequality (6.17) redu
es to vα+1MxM ≥ vα+1bα+1, whi
h is validfor Pα+1.Therefore inequality (6.17) is valid for Pα,α+1. Also, sin
e (vα, vα+1

) is a zero-
ost so-lution of (6.13)�(6.15) and re
alling that x̄n = α + µ(x̄), it is straightforward to verify thatinequality (6.17) is tight for x̄.



6.3. Su�
ien
y of the inequalities 111To prove the se
ond part of the lemma, let x̂ ∈ R
n be any point violating cx ∼ δ. Weshow that there exists a ve
tor (v̄α, v̄α+1

)
∈ Z(x̄) su
h that x̂ violates the 
orrespondinginequality (6.17).De�ne γ := x̂ − x̄ and x̂(ε) := x̄ + εγ (thus the mapping ε 7→ x̂(ε) for ε ∈ [0, 1] is aparameterization of the segment [x̄, x̂]). Sin
e all inequalities (6.17) for (vα, vα+1

)
∈ Z(x̄) aretight for x̄, it is su�
ient to prove the above 
laim for the points of the type x̂(ε) with ε > 0small enough.Sin
e µ(x̄) = f(x̄n) > 0, for ε > 0 su�
iently small we have µ(x̄ + εγ) = f(x̄n + εγn) =

f(x̄n) + εγn = µ(x̄) + εγn, thus the obje
tive fun
tion (6.13) 
orresponding to the point
x̂(ε) = x̄+ εγ is

φε

(
vα, vα+1

)
:= −vαM(x̄M + εγM ) + (1 − µ(x̄) − εγn)vαbα + (µ(x̄) + εγn)vα+1bα+1.Note that for ε = 0 we �nd exa
tly obje
tive fun
tion (6.13).Let R be the set of extreme rays of 
one (6.14)�(6.15) with unit Eu
lidean norm. Wepartition R into two subsets R+

ε :=
{(
vα, vα+1

)
∈ R : φε

(
vα, vα+1

)
> 0
} and R−

ε := R \ R+
ε .Sin
e cx̄ ∼ δ whereas cx̂ 6∼ δ, the point x̂(ε) violates 
onstraint cx ∼ δ for all ε > 0. Then

x̂(ε) /∈ P for all ε > 0. By Lemma 6.5 this implies that R+
ε 6= ∅ for all ε > 0.Note that for a �xed ve
tor (vα, vα+1

), the mapping ε 7→ φε

(
vα, vα+1

) is linear. Also
φ0

(
vα, vα+1

)
≤ 0 for all (vα, vα+1

)
∈ R. These two observations imply that if 0 < ε < ε′ then

R+
ε ⊆ R+

ε′ and R−
ε ⊇ R−

ε′ . Sin
e R+
ε 6= ∅ for all ε > 0 and sin
e R is a �nite set, this showsthat there is a ve
tor (v̄α, v̄α+1

) su
h that φ0

(
v̄α, v̄α+1

)
= 0 and φε

(
v̄α, v̄α+1

)
> 0 for ε > 0.It is readily 
he
ked that the inequality (6.17) 
orresponding to this ve
tor is violated by x̂(ε)for ε > 0 su�
iently small.Thus we have found a ve
tor (v̄α, v̄α+1

)
∈ Z(x̄) su
h that the 
orresponding inequal-ity (6.17) is violated by x̂(ε) for ε > 0 su�
iently small. This 
on
ludes the proof of thelemma. �Therefore in order to �nd the inequalities and equations in Fα,α+1 we have to �nd thezero-
ost solutions of problem (6.13)�(6.15). Note that we have not used any assumptions onthe stru
ture of the original system. Thus the above 
onsiderations yield a polynomial timeseparation algorithm for any mixed-integer set with a single integer variable: given x̄, solvethe linear program (6.13)�(6.15) with α = ⌊x̄n⌋; if there is a positive 
ost solution, then the
orresponding inequality (6.17) separates x̄ from P , otherwise x̄ ∈ P (see also [24℄).6.3.2 Finding the inequalitiesWe now 
onsider our mixed-integer set X with dual network 
onstraint matrix and a singleinteger variable xn. In the following we investigate the zero-
ost solutions of (6.13)�(6.15).First of all, if the linear program (6.13)�(6.15) has a zero-
ost solution, then it has azero-
ost extreme ray. So we look for the extreme rays of the 
one de�ned by (6.14)�(6.15).Sin
e M is a dual network matrix, the 
onstraint matrix 
orresponding to system (6.14),i.e. matrix [ M

−M

], is totally unimodular. Then the extreme rays of (6.14)�(6.15) are 0-1ve
tors.



112 Chapter 6. Dual network sets with a single integer variableNote that M may have some all-zero rows (
orresponding to inequalities xn ≥ ln and/or
xn ≤ un). Let us suppose that the t-th row is the all-zero ve
tor. Then the ve
tors (et,0)and (0, et) are extreme rays of (6.14)�(6.15). However, the 
orresponding inequalities (6.17)are s
alar multiples of xn ≥ α and xn ≤ α + 1. So in the following we only 
onsider rays of(6.14)�(6.15) with vα

t = vα+1
t = 0.Let H be the dire
ted graph having [ M

−M

] as ar
-node in
iden
e matrix. Sin
e some rowsof M may 
ontain a single nonzero entry, we in
lude a dummy node 0 in the vertex set of
H as explained in Se
tion 5.1. Thus the vertex set of H is {0, . . . , n − 1}. Note that H andthe graph G de�ned in Se
tion 6.1 are de�ne on the same vertex set. Furthermore there is aone-to-one 
orresponden
e between ar
s in G and pairs of opposite ar
s in H. If an ar
 e of
G 
orresponds to the pair of opposite ar
s e+, e− in H, we say that e is the ar
 underlying e+and e−. Given any subset of ar
s of H, the underlying subset of ar
s of G is de�ned similarly.By Theorem 5.1, the 0-1 extreme rays (vα, vα+1

) of (6.14)�(6.15) 
orrespond to dire
ted
y
les in H. Note however that not all dire
ted 
y
les of H generate valid inequalities for
X, as not all extreme rays of (6.14)�(6.15) are zero-
ost solutions of (6.13)�(6.15) for some x̄belonging to the relative interior of a fa
e de�ned by an inequality or an equation in Fα,α+1.In the following, we dete
t whi
h 
y
les need to be really 
onsidered. The simple lemma belowwill be useful.Lemma 6.7 For ln ≤ α < un, let (vα, vα+1

) be a feasible solution of (6.14)�(6.15) (notne
essarily a zero-
ost solution). If the 
orresponding inequality (6.17) belongs to Fα,α+1 andis valid for {x ∈ R
n : Ax ≥ b, α ≤ xn ≤ α+ 1}, then it is implied by the system Ax ≥ b.Proof. Let cx ≥ δ denote inequality (6.17). Assume that cx ≥ δ is in Fα,α+1 and is valid for

{x ∈ R
n : Ax ≥ b, α ≤ xn ≤ α + 1} but not for {x ∈ R

n : Ax ≥ b}. Then there exists apoint x̂ su
h that Ax̂ ≥ b, cx̂ < δ and either x̂n < α or x̂n > α + 1. Sin
e inequality cx ≥ δis in Fα,α+1, there exist two points xα ∈ Pα and xα+1 ∈ Pα+1 su
h that cxα = cxα+1 = δ.If x̂n < α (the 
ase x̂n > α + 1 is similar), the segment [x̂, xα+1
] interse
ts Pα in a point ysu
h that cy < δ. However this is not possible, as all points in the segment [x̂, xα+1

] satisfy
Ax ≥ b. �Remark 6.8 By Lemma 6.7, whenever we �nd an inequality cx ≥ δ of the form (6.17) thatis valid for {x ∈ R

n : Ax ≥ b, α ≤ xn ≤ α+ 1}, we 
an ignore it, as one of the following twopossibilities holds: either cx ≥ δ is implied by the original 
onstraints Ax ≥ b, or it does notbelong to Fα,α+1.3For �xed ln ≤ α < un, let (vα, vα+1
) be an extreme ray of (6.14)�(6.15). Re
all that thepolyhedron P that we want to 
hara
terize is de�ned by inequalities of the form (6.17), whi
hwe rewrite here for 
onvenien
e:

vαMxM + ρxn ≥ vαbα + ρα, (6.18)3This se
ond alternative is possible be
ause Lemma 6.7 does not require (vα, vα+1
) to be a zero-
ostsolution.



6.3. Su�
ien
y of the inequalities 113where we use notation ρ := vαbα − vα+1bα+1. Sin
e vαM = vα+1M , the above inequality 
analso be written this way:
vα+1MxM + ρxn ≥ vα+1bα+1 + ρ(α+ 1). (6.19)We will use both versions of the inequality.Let D be the dire
ted 
y
le in H de�ned by ray (vα, vα+1

). If D 
onsists of a pair ofopposite ar
s that 
orrespond to the same ar
 of C, then vα = vα+1. Using (6.12) andequation vα = vα+1 one immediately obtains ρ = an. Then inequality (6.18) is equivalent to
vα[M | an]x ≥ vαbα + αan, i.e. vαAx ≥ vαb. This shows that inequality (6.18) is implied bythe original system Ax ≥ b.Therefore from now on we assume that D is a dire
ted 
y
le in H 
onsisting of at leastthree ar
s. Let C be the underlying undire
ted 
y
le in G. We denote the sequen
e of nodesand ar
s of C as follows: (i0, e0, i1, . . . , ik, ek, ik+1) where k ≥ 2 and i0 = ik+1.The support of vα 
orresponds to the ar
s of D for whi
h the underlying ar
s of C arein E+(C). Symmetri
ally, the support of vα+1 
orresponds to the ar
s of D for whi
h theunderlying ar
s of C are in E−(C). This implies

vαb = b+(C), vα+1b = b−(C). (6.20)Note that the support of 
olumn an 
orresponds to ar
s of type (b) of G. Then the value
vαan is the di�eren
e between the number of ar
s of type (b) in E+(C) entering node 0 andthe number of ar
s of type (b) in E+(C) leaving node 0. Similarly, the value vα+1an is thedi�eren
e between the number of ar
s of type (b) in E−(C) entering node 0 and the numberof ar
s of type (b) in E−(C) leaving node 0. It then follows that vαan and vα+1an 
an onlytake values in {0,±1}. Furthermore, using the above interpretation one 
an 
he
k that the
ase vαan = 1 = −vα+1an 
annot hold. For 
onvenien
e of notation we de�ne δ := vαan and
ε := vα+1an.Using (6.12), one �nds

vαbα = vαb− δα, vα+1bα+1 = vα+1b− ε(α+ 1), (6.21)
vαA = (vαM, δ) and vα+1A = (vα+1M,ε). This implies that inequalities vαAx ≥ vαb and
vα+1Ax ≥ vα+1b are equivalent respe
tively to

vαMxM + δxn ≥ vαbα + δα, vα+1MxM + εxn ≥ vα+1bα+1 + ε(α + 1), (6.22)thus the above two inequalities are implied by the original system Ax ≥ b.We now distinguish three 
ases.1. Assume ρ ≥ δ. If xn ≥ α holds, summing the �rst inequality in (6.22) and (ρ− δ)xn ≥

(ρ−δ)α gives inequality (6.18). This means that su
h an inequality is valid for all pointsin {x : Ax ≥ b, xn ≥ α} and by Remark 6.8 we 
an ignore this 
ase.



114 Chapter 6. Dual network sets with a single integer variable2. Now assume ρ < ε. If xn ≤ α + 1 holds, summing the se
ond inequality in (6.22) and
(ρ − ε)xn ≥ (ρ − ε)(α + 1) gives inequality (6.19). This means that su
h an inequalityis valid for all points in {x : Ax ≥ b, xn ≤ α+ 1} and this 
ase 
an also be ignored.3. Finally assume ε ≤ ρ < δ. This 
ase is possible only if δ ≥ ε + 1. Sin
e, as observedabove, the 
ase δ = 1, ε = −1 
annot hold, we ne
essarily have δ = ε + 1. Then, alsousing (6.21) and (6.20), we have
ρ = vαbα − vα+1bα+1 = vαb− vα+1b− α+ ε = b+(C) − b−(C) − α+ ε = d(C) − α+ ε,whi
h implies ρ = f(d(C)) + ε and α = ⌊d(C)⌋. We now show that C satis�es the
onditions of Theorem 6.2 and inequality (6.18) is pre
isely inequality (6.5).Sin
e δ, ε ∈ {0,±1} and δ = ε+ 1, we have either δ = 1 and ε = 0, or δ = 0 and ε = −1.Re
alling the de�nition of δ and ε, one 
an verify that in both 
ases ar
 e0 is of type (b)while ek is not of type (b). Furthermore if δ = 1 and ε = 0 then e0 ∈ E+(C), while if
δ = 0 and ε = −1 then e0 ∈ E−(C). Thus C satis�es the 
onditions of Theorem 6.2 and
ε = ε(C).Sin
e vαbα = vαb − (ε + 1)α = b+(C) − (ε + 1) ⌊d(C)⌋ = b−(C) + d(C) − (ε + 1) ⌊d(C)⌋,one 
an 
he
k that the right-hand side of inequality (6.18) is
vαbα + ρα = b−(C) + d(C) − (ε+ 1) ⌊d(C)⌋ + (f(d(C)) + ε) ⌊d(C)⌋

= b−(C) + f(d(C)) ⌊d(C) + 1⌋,whi
h is exa
tly the right-hand side of inequality (6.5).One 
an also verify that vαMxM =
∑

t∈T+(C)(xit −xit+1), with the 
onvention that x0 =

0. Finally the 
oe�
ient of xn in inequality (6.18) is ρ = ε+ f(d(C)) = ε(C) + f(d(C)).Thus inequalities (6.18) and (6.5) 
oin
ide.This 
on
ludes the proof of Theorem 6.2.6.4 Chvátal rankWe proved in Se
tion 6.3 that all inequalities (6.5) are simple MIR-inequalities (thus the splitrank of the system (6.1)�(6.3) is one). We investigate here whether inequalities (6.5) 
anbe obtained through Chvátal-Gomory rounding, when 
onsidering an equivalent pure integerformulation of P . That is, we dis
uss the Chvátal rank of su
h a formulation (see Se
tion 1.3.1).From now on we assume that all right-hand sides of the inequalities of the system Ax ≥ b(i.e. inequalities (6.1)�(6.3)) are rational number. Let K be the smallest positive integer su
hthat Kbij ∈ Z for all ij ∈ E. Sin
e the 
onstraint matrix A of the system (6.1)�(6.3) is totallyunimodular, Lemma 2.11 shows that for every vertex x̄ of P , Kx̄ is an integral ve
tor. Thisproves that the 
hange of variables
yi := Kxi for i 6= n, yn := xn (6.23)



6.4. Chvátal rank 115maps P into Q, where Q is the 
onvex hull of the following pure integer set:
yi − yj ≥ Klij, (i, j) ∈ N e, i, j 6= n, (6.24)

yi −Kyn ≥ Klin, (i, n) ∈ N e, (6.25)
Kyn − yi ≥ Klnj, (n, j) ∈ N e, (6.26)

yi ≥ Kli, i ∈ N l \ {n}, (6.27)
yi ≤ Kui, i ∈ Nu \ {n}, (6.28)

ln ≤ yn ≤ un, (6.29)
yi integer, i ∈ N, (6.30)where the lower (resp. upper) bound in (6.29) appears if and only if n ∈ N l (resp. n ∈ Nu).We prove here that if K ≤ 3 then the Chvátal rank of the polyhedron (6.24)�(6.29) isone, while for every K ≥ 4 it is possible to 
onstru
t very simple instan
es with Chvátal rankgreater than one.For the 
ase K = 2, a similar result was proven by Conforti, Gerards and Zambelli [15℄for the set 
onsidered in Se
tion 4.5.2 (with an arbitrary number of integer variables).Lemma 6.9 If K ∈ {2, 3}, the polyhedron de�ned by (6.24)�(6.29) has Chvátal rank one.Proof. We prove that every inequality of the type (6.5) 
an be obtained by applying theChvátal-Gomory pro
edure (Theorem 1.10) to the inequalities (6.24)�(6.29).Let C be as in Theorem 6.2. We only 
onsider the 
ase ε(C) = 0, the other 
ase beinganalogous.Re
all from Se
tion 6.2 that inequality (6.7) is valid for the original system Ax ≥ bwhenever ε(C) = 0. In the y-variables, this inequality reads
∑

t∈T+(C)

(yit − yit+1) +Kyn ≥ Kb+(C). (6.31)Also re
all that inequality (6.9) is valid for the original system whenever ε(C) = 0. Usingrelation (6.6), this inequality in the y-variables reads
∑

t∈T+(C)

(yit − yit+1) ≥ Kb−(C). (6.32)We now 
ombine inequalities (6.31) and (6.32) with 
oe�
ients f(d(C)) and 1 − f(d(C))respe
tively. The resulting inequality is
∑

t∈T+(C)

(yit − yit+1) +Kf(d(C))yn ≥ Kf(d(C))b+(C) +K
(
1 − f(d(C))

)
b−(C).Using d(C) = b+(C) − b−(C), we 
an rewrite the above inequality as follows:

∑

t∈T+(C)

(yit − yit+1) +Kf(d(C))yn ≥ Kb−(C) +Kf(d(C))d(C). (6.33)



116 Chapter 6. Dual network sets with a single integer variableClearly Kf(d(C)) ∈ {0, . . . ,K − 1}. If Kf(d(C)) = 0, the right-hand side of inequal-ity (6.33) is Kb−(C). Then in this 
ase inequality (6.33) 
oin
ides with (6.5) under the 
hangeof variables (6.23).If Kf(d(C)) = 1, the right-hand side of inequality (6.33) is Kb−(C) + d(C). Sin
e the left-hand side of the inequality is an integer while d(C) is fra
tional, we 
an round the right-handside to Kb−(C) + ⌊d(C) + 1⌋. The resulting inequality 
oin
ides with (6.5) under the 
hangeof variables (6.23).If Kf(d(C)) = 2 (and K = 3), the right-hand side of inequality (6.33) is 3b−(C) + 2d(C).Note that the fra
tional part of this number is 1/3. Sin
e the left-hand side of the inequalityis an integer, we 
an round the right-hand side to
3b−(C) + 2d(C) + 2/3 = 3b−(C) + 2(d(C) + 1/3) = 3b−(C) + 2 ⌊d(C) + 1⌋.The resulting inequality 
oin
ides with (6.5) under the 
hange of variables (6.23). �We remark that if K = 4, 
ase Kf(d(C)) = 2 of the above proof fails, as in this 
ase theright-hand side of inequality (6.33) is 4b−(C) + 2d(C). Sin
e this number is now an integer,the rounding is not possible and we obtain an inequality whi
h is weaker than (6.5).In fa
t the result of the above lemma is best possible, as shown below.Lemma 6.10 For any K ≥ 4 there exists a polyhedron of the type (6.24)�(6.29) with n = 3having Chvátal rank greater than one.Proof. Consider the following dual network set:

−x1 + x2 ≥ 1/K, (6.34)
−x1 + x3 ≥ 3/K, (6.35)

x2 ≥ 0, (6.36)
x3 integer. (6.37)Applying the 
hange of variables (6.23), the pure integer reformulation of the type (6.24)�(6.30)is the following:

−y1 + y2 ≥ 1, (6.38)
−y1 +Ky3 ≥ 3, (6.39)

y2 ≥ 0, (6.40)
y1, y2 integer. (6.41)De�ne the graph G as explained in Se
tion 6.1 and let C be the undire
ted 
y
le in Gformed by the sequen
e of ar
s (0, 1), (2, 1), (2, 0). The 
orresponding valid inequality (6.5) for(6.34)�(6.37) is −x1 + x2 + 2

K
x3 ≥ 3

K
, whi
h in the y variables reads
− y1 + y2 + 2y3 ≥ 3. (6.42)We prove that this inequality is not a Chvátal-Gomory 
utting plane for the polyhedron(6.38)�(6.40).



6.4. Chvátal rank 117Any Chvátal-Gomory inequality for (6.38)�(6.40) is obtained by 
ombining (6.38)�(6.40)with nonnegative 
oe�
ients and then rounding up the right hand side:
u(−y1 + y2) + v(−y1 +Ky3) + wy2 ≥ ⌈u+ 3v⌉,where u, v,w ≥ 0. Then (6.42) is a Chvátal-Gomory inequality if and only if the optimumvalue of the following linear program is greater than 2:

max u+ 3v (6.43)subje
t to −u− v = −1, (6.44)
u+ w = 1, (6.45)
Kv = 2, (6.46)

u, v,w ≥ 0. (6.47)However 
onditions (6.46) and K ≥ 4 imply v ≤ 1/2. By (6.44) the obje
tive fun
tion isthen u+ 3v = 2v + 1 ≤ 2 and thus inequality (6.42) 
annot be obtained via Chvátal-Gomoryrounding. �We 
an summarize the results of this se
tion as follows:Theorem 6.11 The Chvátal rank of the polyhedron (6.24)�(6.30) is one if K ∈ {2, 3}, whileit is (in general) greater than one for K ≥ 4.If K = 1, the Chvátal rank of (6.24)�(6.30) is 
learly equal to zero (i.e. the polyhedron isintegral), as the 
onstraint matrix is totally unimodular and the right-hand side is an integralve
tor.
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Chapter 7Extension to simple non dual networksetsIn Chapters 2�5 we presented, dis
ussed and demonstrated a te
hnique to 
onstru
t extendedformulations for mixed-integer sets with dual network 
onstraint matrix. Su
h a te
hnique isbased on the expli
it enumeration of all the fra
tional parts taken by the 
ontinuous variablesin the verti
es of the 
onvex hull of the set. It is natural to wonder whether this approa
h 
anbe extended to other kinds of mixed-integer sets.In this 
hapter we 
onsider two examples of a mixed-integer set whose 
onstraint matrixhas a simple stru
ture but is not totally unimodular (in fa
t, it is not even a 0,±1-matrix).Both sets are spe
ial 
ases of the following quite natural generalization of the mixing set (seeSe
tion 4.2):
s+ Cizi ≥ bi, 1 ≤ i ≤ n, (7.1)

s ≥ 0, (7.2)
zi integer, 1 ≤ i ≤ n, (7.3)where bi, Ci ∈ R for 1 ≤ i ≤ n. Clearly the mixing set is the above set with Ci = 1 for allindi
es 1 ≤ i ≤ n.The motivation for the study of the above set is the same as that des
ribed for the mixingset in Se
tion 4.2. In parti
ular, the presen
e of more general 
oe�
ients Ci allows oneto model lot-sizing problems with non-
onstant 
apa
ities (for this reason these 
oe�
ientsare also 
alled 
apa
ities). However, the above set is also interesting in its own right, as
onstraints (7.1) have a very simple form and thus a deep understanding of su
h a set wouldprobably be useful to ta
kle more 
ompli
ated mixed-integer sets. Unfortunately, it is stillunknown whether linear optimization over a general set of the type (7.1)�(7.3) 
an be 
arriedout in polynomial time.In the next se
tions we show how the approa
h des
ribed in the previous 
hapters 
an beextended and how this yields extended formulations for the two sets that are analyzed here.However, we will point out that the su

ess in �nding su
h formulations relies upon the fa
tthat ea
h integer variable zi appear in a single 
onstraint (7.1).119



120 Chapter 7. Extension to simple non dual network setsIn Se
tion 7.1 we 
onsider the set (7.1)�(7.3) where the 
apa
ities Ci satisfy a divisibil-ity assumption, while in Se
tion 7.2 we study the 
ase of only two distin
t 
apa
ities. Forthe former set the size of the extended formulation is polynomial in the size of the originaldes
ription of the set, while for the latter we 
an only obtain a pseudo-polynomial des
ription.The results of Se
tion 7.1 are joint work with Mi
hele Conforti and Lauren
e A. Wolseyand are also summarized in [14℄.7.1 The mixing set with divisible 
apa
itiesThe mixing set with divisible 
apa
ities is a set of the type (7.1)�(7.3) where the 
oe�
ients(
apa
ities) Ci for 1 ≤ i ≤ n 
an be ordered in su
h a way that they form a sequen
e ofdivisible numbers. Here we also allow arbitrary lower and upper bounds on the 
ontinuousvariable. If we group together 
onstraints of type (7.1) asso
iated with the same value of Ci,the mixing set with divisible 
apa
ities 
an be des
ribed as follows:
s+Ckzi ≥ bi, i ∈ Ik, 0 ≤ k ≤ m, (7.4)
bl ≤ s ≤ bu, (7.5)
zi integer, i ∈ I0 ∪ · · · ∪ Im, (7.6)where Ck/Ck−1 is an integer greater than one for 1 ≤ i ≤ m and Ij ∩ Ik = ∅ for j 6= k. Weassume that l, u /∈ I0 ∪ · · · ∪ Im and all numbers Ck, bi are rational. We denote by DIV theabove mixed-integer set.The assumption of divisibility of the 
oe�
ients was exploited by several authors to ta
kleinteger sets that are otherwise untra
table, su
h as integer knapsa
k problems. Under thedivisibility assumption, Mar
otte [42℄ gave a simple formulation of the integer knapsa
k setwithout upper bounds on the variables. Po
het and Wolsey [54℄ studied the same set wherethe knapsa
k inequality is of the �≥� type. They gave both a formulation of the set in itsoriginal spa
e (
onsisting of an exponential number of inequalities) and a 
ompa
t formulationin an extended spa
e. Po
het and Weismantel [51℄ provided a linear inequality des
riptionof the knapsa
k set where all variables are bounded. Other hard problems studied underthe assumption of divisibility of the 
oe�
ients in
lude network design [52℄ and lot-sizingproblems [16℄.The set (7.4)�(7.6) with just two distin
t 
apa
ities (i.e. m = 2) and without upper boundon s was studied by Van Vyve in [63℄, where both a 
ompa
t extended formulation and alinear inequality des
ription of the set in its original spa
e were given. The set DIV withgeneral m and without upper bound on s was treated re
ently by Zhao and de Farias [72℄,who 
hara
terized the extreme points and extreme rays of the set and provided an O

(
n4
)algorithm for optimizing a rational linear fun
tion (su
h a running time 
an be improved to

O
(
n3
) [20℄). However, they did not give a linear inequality formulation of the set either inthe original spa
e or in an extended spa
e.We give here an extended formulation of the polyhedron conv(DIV ) whose size is poly-nomial in the size of the original des
ription (7.4)�(7.6). In Se
tion 7.1.1 we introdu
e an



7.1. The mixing set with divisible 
apa
ities 121expansion of a real number x:
x = α0(x) +

m+1∑

j=1

αj(x)Cj−1,where 0 ≤ αj(x) <
Cj

Cj−1
for 1 ≤ j ≤ m, and 0 ≤ α0(x) < C0. Furthermore αj(x) is an integerfor 1 ≤ j ≤ m+ 1. We show in Se
tion 7.1.3 that for �xed j, the number of possible valuesthat αj(s) 
an take over the set of verti
es of conv(DIV ) is bounded by a linear fun
tion ofthe number of 
onstraints (7.4). This property allows us to asso
iate a binary variable withea
h of these possible values. These binary variables are the important additional variablesof our 
ompa
t extended formulation, whi
h is 
onstru
t in Se
tions 7.1.3�7.1.6. In 
ontrastto Van Vyve's result [63℄ for the 
ase m = 2, our formulation de�nes an integral polyhedronin the extended spa
e. In Se
tion 7.1.7 we brie�y dis
uss how to formulate the polyhedron

conv(DIV ) when there are lower bounds on the integer variables. Finally, in Se
tion 7.1.8 wepoint out some unsatisfa
tory aspe
ts of our result.7.1.1 Expansion of a numberThe te
hnique that we use here generalizes that adopted in Chapter 2 for mixed-integer setswith dual network 
onstraint matrix. In that 
hapter, the 
ontinuous variables were de
om-posed into an integer part plus a fra
tional part. Here the presen
e of several distin
t 
oe�-
ients in 
onstraints (7.4) leads us to iterate a de
omposition of that type. This requires theintrodu
tion of some notation.Our arguments are based on the following expansion of a real number x:
x = α0(x) +

m+1∑

j=1

αj(x)Cj−1, (7.7)where 0 ≤ αj(x) <
Cj

Cj−1
for 1 ≤ j ≤ m, and 0 ≤ α0(x) < C0. Furthermore αj(x) is an integerfor 1 ≤ j ≤ m + 1 (this is not required for α0(x)). Note that the above expansion is unique.If we de�ne

f0(x) := α0(x), fk(x) := f0(x) +

k∑

j=1

αj(x)Cj−1 for 1 ≤ k ≤ m, (7.8)we have that
x = fk(x) +

m+1∑

j=k+1

αj(x)Cj−1 for 0 ≤ k ≤ m. (7.9)Therefore fk(x) is the remainder of the division of x by Ck and it 
an be 
he
ked that
αk(x) =

⌊
fk(x)

Ck−1

⌋

=
fk(x) − fk−1(x)

Ck−1
for 1 ≤ k ≤ m, αm+1(x) =

⌊
x

Cm

⌋

=
x− fm(x)

Cm
.We also de�ne ∆k(x) as the quotient of the division of x by Ck. That is,

∆k(x) =

⌊
x

Ck

⌋

=
x− fk(x)

Ck

=
m+1∑

j=k+1

Cj−1

Ck

αj(x) for 0 ≤ k ≤ m. (7.10)



122 Chapter 7. Extension to simple non dual network setsWe remark that the above expression yields the following expansion of x:
x = Ck∆k + fk(x) for 0 ≤ k ≤ m. (7.11)Note that if Ck = 1 then (7.11) is pre
isely the de
omposition of a real number into an integerpart plus a fra
tional part.It is also useful to introdu
e the following notation: for 0 ≤ k ≤ m, we de�ne Jk :=

Ik ∪ Ik+1 ∪ · · · ∪ Im ∪ {l, u}.7.1.2 Assumptions on the upper boundIn this se
tion we make some 
onvenient assumptions on the value of bu. As we now explain,this 
an be done without loss of generality.If for any γ ∈ R we apply the mixed-integer linear mapping (see Se
tion 4.1)
s′ := s+ γ, z′i := zi for i ∈ I0 ∪ · · · ∪ Im,the mixed-integer set (7.4)�(7.6) be
omes

s′ + Ckz
′
i ≥ b′i, i ∈ Ik, 0 ≤ k ≤ m, (7.12)

b′l ≤ s′ ≤ b′u, (7.13)
zi integer, i ∈ I0 ∪ · · · ∪ Im, (7.14)where b′i := bi +γ for all i ∈ J0. Sin
e the above set is of the same type as (7.4)�(7.6), withoutloss of generality we 
an study the set (7.12)�(7.14) for a spe
i�
 value of γ. We now 
hoose avalue of γ whi
h will allow us to 
onstru
t an extended formulation of the 
onvex hull of theabove set.Lemma 7.1 De�ne the set of indi
es T := {i ∈ J0 \ {u} : α0(bi) > α0(bu)} and the value

α∗ :=

{

mini∈T α0(bi) if T 6= ∅,

C0 if T = ∅.If one sets γ∗ := C0 − α∗, then α0(bu + γ∗) = maxi∈J0 α0(bi + γ∗).Proof. First of all note that sin
e α∗ > α0(bu), then α0(bu) + γ∗ < C0. Thus α0(bu + γ∗) =

α0(bu) + γ∗. Let i be any index in J0. If α0(bi) + γ∗ ≥ C0 then
α0(bi + γ∗) = α0(bi) + γ∗ − C0 < γ∗ ≤ α0(bu) + γ∗ = α0(bu + γ∗).We then assume α0(bi) + γ∗ < C0, whi
h is equivalent to α0(bi) < α∗. Then by de�nition of

α∗ we have α0(bi) ≤ α0(bu), thus
α0(bi + γ∗) = α0(bi) + γ∗ ≤ α0(bu) + γ∗ = α0(bu + γ∗).This 
on
ludes the proof of the lemma. �



7.1. The mixing set with divisible 
apa
ities 123We 
hoose γ to be any number su
h that α0(bu + γ) = γ∗ and αk(bu + γ) = Ck

Ck−1
− 1for 1 ≤ k ≤ m − 1. Note that 
ondition α0(bu + γ) = γ∗ and Lemma 7.1 together imply

α0(b
′
u) = maxi∈J0 α0(b

′
i).Without loss of generality, we assume dire
tly that the above properties hold for ouroriginal set (7.4)�(7.6):

α0(bu) = max
i∈J0

α0(bi), αk(bu) =
Ck

Ck−1
− 1 for 1 ≤ k ≤ m− 1. (7.15)The above assumption, whi
h will be useful in modeling the upper bound s ≤ bu, will bedis
ussed in Se
tion 7.1.8.7.1.3 Properties of the verti
esThe te
hnique des
ribed in Chapter 2 is based on the expli
it enumeration of all the possiblefra
tional parts taken by the 
ontinuous variables at a vertex of the 
onvex hull of the setunder 
onsideration. More information is now needed to �nd an extended formulation of

conv(DIV ): in parti
ular, for all 0 ≤ k ≤ m we need to list all the possible values αk(s) forthe verti
es (s, z) of conv(DIV ).This se
tion des
ribed properties of the verti
es of conv(DIV ) that will be used to 
on-stru
t the extended formulation. The assumption des
ribed in Se
tion 7.1.2 is not neededhere.Given a real number s and an index 0 ≤ k ≤ m, for i ∈ Jm \ {u} we de�ne
bi,k(s) =

{

bi + Ck if fk(bi) > fk(s),

bi if fk(bi) ≤ fk(s),while we set
bu,k(s) =

{

bu if fk(bu) ≥ fk(s),

bu − Ck if fk(bu) < fk(s).We will see that the dis
repan
y in the above de�nitions re�e
ts the fa
t that all 
onstraints(7.4)�(7.5) are of the type �≥�, ex
ept s ≤ bu.Lemma 7.2 Consider two indi
es 0 ≤ k ≤ ℓ. Then for i ∈ Iℓ the inequality
∆k(s) +

Cℓ

Ck

zi ≥ ∆k(bi,k(s)) (7.16)is valid for (7.4)�(7.6) and implies inequality s+ Cℓzi ≥ bi.Proof. Expanding s and bi as in (7.11), inequality s+ Cℓzi ≥ bi 
an be rewritten as
∆k(s) +

Cℓ

Ck

zi ≥ ∆k(bi) +
fk(bi) − fk(s)

Ck

.Sin
e ℓ ≥ k, the left-hand side of the above inequality is an integer. Therefore the followinginequality is valid for (7.4)�(7.6):
∆k(s) +

Cℓ

Ck
zi ≥ ∆k(bi) +

⌈
fk(bi) − fk(s)

Ck

⌉

= ∆k(bi,k(s)).This also shows that inequality (7.16) implies the original inequality s+ Cℓzi ≥ bi. �



124 Chapter 7. Extension to simple non dual network setsA similar argument 
an be used to prove the following lemma:Lemma 7.3 Consider an index k ≥ 0. Then the inequalities
∆k(bl,k(s)) ≤ ∆k(s) ≤ ∆k(bu,k(s)) (7.17)are valid for (7.4)�(7.6) and imply inequalities bl ≤ s ≤ bu.Proof. For the lower bound, the proof is essentially identi
al to that of Lemma 7.2. As to theupper bound, it is su�
ient to make obvious 
hanges to the above proof. �Note that inequalities (7.16) and (7.17) involve the term bi,k(s) and thus are not linearinequalities. We will show in Se
tion 7.1.4 how to linearize these 
onstraints, using the fa
tthat for �xed k, there are only two possible values for bi,k(s).Lemma 7.4 Let (s̄, z̄) be a point in conv(DIV ).(i) Given indi
es 1 ≤ k ≤ ℓ and i ∈ Iℓ, if αk(s̄) 6= αk(bi,k−1(s̄)) then s̄+ Cℓz̄i ≥ bi + Ck−1.(ii) Given an index k ≥ 1, if αk(s̄) 6= αk(bl,k−1(s̄)) then s̄ ≥ bl + Ck−1, and if αk(s̄) 6=

αk(bu,k−1(s̄)) then s̄ ≤ bu − Ck−1.Proof. We prove (i). By Lemma 7.2, (s̄, z̄) satis�es inequality (7.16) for the pair of indi
es
k − 1, ℓ, that is,

∆k−1(s) +
Cℓ

Ck−1
zi ≥ ∆k−1(bi,k−1(s)).By (7.10) the above inequality 
an be rewritten as

m+1∑

j=k

Cj−1

Ck−1
αj(s) +

Cℓ

Ck−1
zi ≥

m+1∑

j=k

Cj−1

Ck−1
αj(bi,k−1(s)),or equivalently as

m+1∑

j=k+1

Cj−1

Ck−1
αj(s) +

Cℓ

Ck−1
zi −

m+1∑

j=k+1

Cj−1

Ck−1
αj(bi,k−1(s)) ≥ αk(bi,k−1(s)) − αk(s). (7.18)Sin
e {Cj−1

Ck−1
: k + 1 ≤ j ≤ m+ 1

} is a sequen
e of divisible integers and sin
e ℓ ≥ k, the left-hand side of the above inequality is an integer multiple of Ck/Ck−1. Sin
e the right-handside is an integer satisfying Ck/Ck−1 < αk(bi,k−1(s)) − αk(s) < Ck/Ck−1, this shows that if
αk(s̄) 6= αk(bi,k−1(s̄)), then inequality (7.18) 
annot be tight for (s̄, z̄), thus

∆k−1(s̄) +
Cℓ

Ck−1
z̄i ≥ ∆k−1(bi,k−1(s̄)) + 1.Sin
e bi,k−1(s̄) = bi + Ck−1 if fk−1(bi) > fk−1(s̄) and bi,k−1(s̄) = bi if fk−1(bi) ≤ fk−1(s̄), thisshows that in both 
ases

fk−1(s̄)

Ck−1
+ ∆k−1(s̄) +

Cℓ

Ck−1
z̄i ≥ ∆k−1(bi) +

fk−1(bi)

Ck−1
+ 1.Multiplying the above inequality by Ck−1 gives s̄+ Cℓz̄i ≥ bi + Ck−1.The proof of (ii) is similar. �
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apa
ities 125The following result gives us the list of all possible values αk(s) taken at the verti
es of
conv(DIV ).Lemma 7.5 If (s̄, z̄) is a vertex of conv(DIV ), then the following properties hold:(i) α0(s̄) = α0(bi) for some i ∈ J0.(ii) For 1 ≤ k ≤ m, αk(s̄) = αk(bi,k−1(s̄)) for some i ∈ Jk.Proof. Let (s̄, z̄) be a vertex of conv(DIV ). Sin
e z̄ is an integral ve
tor, if (i) is violated thenthere exists a number ε 6= 0 su
h that (s̄ ± ε, z̄) ∈ DIV , a 
ontradi
tion.Assume that (ii) is violated, that is, there exists an index 1 ≤ k ≤ m su
h that αk(s̄) 6=

αk(bi,k−1(s̄)) for all i ∈ Jk. By Lemma 7.4 we have that bl + Ck−1 ≤ s̄ ≤ bu − Ck−1 and
s̄ + Cℓz̄i ≥ bi + Ck−1 for all i ∈ Iℓ with ℓ ≥ k. Consider the ve
tor v whose 
omponents arede�ned as follows:

s = −Ck−1; zi =
Ck−1

Cℓ

for i ∈ Iℓ with ℓ ≤ k − 1; zi = 0 for i ∈ Iℓ with ℓ ≥ k.Sin
e both points (s̄, z̄) ± v belong to DIV , (s̄, z̄) is not a vertex of conv(DIV ). �We now introdu
e extra variables to model the possible values taken by s at a vertex of
conv(DIV ). The new variables are the following:

• ∆0, w0,i for i ∈ J0;
• ∆k, w↓

k,i, w
↑
k,i for 1 ≤ k ≤ m and i ∈ Jk.The role of the above variables is as follows:

• Variables ∆k for 1 ≤ k ≤ m represent the quotients of the division of s by Ck. That is,
∆k = ∆k(s) as de�ned in (7.10).

• Variables w0,i for i ∈ J0 are binary variables. Exa
tly one of them is equal to 1: 
ondition
w0,i = 1 indi
ates that α0(s) = α0(bi).

• For �xed 1 ≤ k ≤ m, variables w↓
k,i, w

↑
k,i for i ∈ Jk are binary variables. Exa
tly one ofthem is equal to one:(a) for i ∈ Jk \ {u}, 
ondition w↓

k,i = 1 indi
ates that αk(s) = αk(bi), while 
ondition
w↑

k,i = 1 indi
ates that αk(s) = αk(bi + Ck−1);(b) for i = u, 
ondition w↓
k,u = 1 indi
ates that αk(s) = αk(bu −Ck−1), while 
ondition

w↑
k,u = 1 indi
ates that αk(s) = αk(bu)In order to write the up
oming 
onstraints in a 
ompa
t form, we introdu
e the followingsimple notation: for 1 ≤ k ≤ m and i ∈ Jk, we de�ne

bi,k =

{

bi if i 6= u,

bi − Ck if i = u.This de�nition allows us to unify (a) and (b) (see above) into the following:



126 Chapter 7. Extension to simple non dual network sets(a)�(b) for all i ∈ Jk, 
ondition w↓
k,i = 1 indi
ates that αk(s) = αk(bi,k−1), while 
ondition

w↑
k,i = 1 indi
ates that αk(s) = αk(bi,k−1 + Ck−1).Now 
onsider the following 
onditions:

s = C0∆0 +
∑

t∈J0

α0(bt)w0,t, (7.19)
∆k−1 =

Ck

Ck−1
∆k +

∑

t∈Jk

(
αk(bt,k−1)w

↓
k,t + αk(bt,k−1 + Ck−1)w

↑
k,t

)
, 1 ≤ k ≤ m, (7.20)

w0,t ≥ 0, t ∈ J0;
∑

t∈J0

w0,t = 1, (7.21)
w↓

k,t, w
↑
k,t ≥ 0, t ∈ Jk;

∑

t∈Jk

(
w↓

k,t + w↑
k,t

)
= 1, 1 ≤ k ≤ m, (7.22)

∑

t∈J0:
α0(bt)≥α0(bi)

w0,t ≥ w↓
1,i, i ∈ J1, (7.23)

∑

t∈Jk:
fk(bt,k−1)≥fk(bi,k)

w↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bi,k)+1

w↑
k,t ≥ w↓

k+1,i, i ∈ Jk+1, 1 ≤ k < m,(7.24)
∆k, w0,t, w

↓
k,t,w

↑
k,t integer, t ∈ Jk, 0 ≤ k ≤ m.(7.25)Lemma 7.6 Every vertex (s̄, z̄) of conv(DIV ) 
an be 
ompleted to a ve
tor (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

)satisfying 
onditions (7.19)�(7.25).Proof. Given a vertex (s̄, z̄) of conv(DIV ), let t0 be any index in J0 su
h that α0(bt0) = α0(s̄)(t0 exists by Lemma 7.5 (i)). Take w̄0,t0 := 1 and w̄0,t := 0 for t 6= t0.Now �x k ≥ 1 and de�ne
Tk(s̄) := {t ∈ Jk : αk(s̄) = αk(bt,k−1), fk−1(s̄) ≥ fk−1(bt,k−1)}.If Tk(s̄) 6= ∅ then de�ne tk as any element in Tk(s̄) su
h that fk−1(btk ,k−1) is maximum andtake w̄↓

k,tk
:= 1. Otherwise (Tk(s̄) = ∅) de�ne tk as any index in Jk su
h that αk(s̄) =

αk(btk ,k−1 + Ck−1) (tk exists by Lemma 7.5 (ii)) and take w̄↑
k,tk

:= 1.Finally take ∆̄k := ∆k(s̄) for 0 ≤ k ≤ m.We prove that the point thus 
onstru
ted satis�es 
onditions (7.19)�(7.25). To see that(7.19) is satis�ed, note that
C0∆̄0 +

∑

t∈J0

α0(bt)w̄0,t = C0∆0(s̄) + α0(bt0) = C0∆0(s̄) + f0(bt0) = s̄.To prove the validity of (7.20), note that the following 
hain of equations holds:
Ck

Ck−1
∆̄k +

∑

t∈Jk

(
αk(bt,k−1)w̄

↓
k,t + αk(bt,k−1 + Ck−1)w̄

↑
k,t

)

=
Ck

Ck−1
∆k(s̄) + αk(s̄) = ∆k−1(s̄) = ∆̄k−1.
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apa
ities 127To see that (7.23) is veri�ed, suppose that w̄↓
1,i = 1 for the index i ∈ J1. Then ne
essarily

i = t1 ∈ T1(s̄) and thus f0(s̄) ≥ f0(bi,0) = f0(bi), that is, α0(s̄) ≥ α0(bi). Then α0(bt0) =

α0(s̄) ≥ α0(bi) and (7.23) is satis�ed.We now 
onsider (7.24) for k ≥ 1. Suppose that w↓
k+1,i = 1 for the index i ∈ Jk+1. Thenne
essarily i = tk+1 ∈ Tk+1(s̄). Therefore αk+1(s̄) = αk+1(bi,k) and fk(s̄) ≥ fk(bi,k). Thisimplies αk(s̄) ≥ αk(bi,k). We distinguish two 
ases.1. Assume αk(s̄) ≥ αk(bi,k) + 1. If Tk(s̄) 6= ∅ then w̄↓

k,t = 1 for an index t ∈ Jk su
hthat αk(bt,k−1) = αk(s̄) ≥ αk(bi,k) + 1 and thus fk(bt,k−1) ≥ fk(bi,k). If Tk(s̄) = ∅ then
w̄↑

k,t = 1 for an index t ∈ Jk su
h that αk(bt,k−1 +Ck−1) = αk(s̄) ≥ αk(bi,k)+ 1. In both
ases (7.24) is satis�ed.2. Now assume αk(s̄) = αk(bi,k). Then inequality fk(s̄) ≥ fk(bi,k) implies fk−1(s̄) ≥

fk−1(bi,k), thus i ∈ Tk(s̄) 6= ∅. Then the 
hoi
e of tk shows that αk(btk ,k−1) = αk(s̄) =

αk(bi,k) and fk−1(btk ,k−1) ≥ fk−1(bi,k), thus fk(btk ,k−1) ≥ fk(bi,k) and (7.24) is satis�ed.Constraints (7.21)�(7.22) and (7.25) are 
learly satis�ed. �We say that (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) is a standard 
ompletion of the vertex (s̄, z̄) of conv(DIV )if ∆̄, w̄, w̄↓, w̄↑ are 
hosen as in the above proof. Then the above proof shows that every vertexof conv(DIV ) has a standard 
ompletion satisfying (7.19)�(7.25).Note that the �nal part of the proof of Lemma 7.6 also shows the following:Lemma 7.7 Fix 0 ≤ k ≤ m and i ∈ Ik. If (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

) is a standard 
ompletion of thevertex (s̄, z̄) of conv(DIV ), where fk(s̄) ≥ fk(bi), then
∑

t∈J0:
α0(bt)≥α0(bi)

w̄0,t = 1 if k = 0, (7.26)
∑

t∈Jk:
fk(bt,k−1)≥fk(bi,k)

w̄↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bi,k)+1

w̄↑
k,t = 1 if k ≥ 1. (7.27)7.1.4 Linearizing the 
onstraintsAs already observed, 
onstraints (7.16) and (7.17) are not linear inequalities. We show herehow they 
an be linearized. For this purpose we need to prove a result whi
h is stronger thanthe inverse of Lemma 7.7, as it holds not only for standard 
ompletions, but for all otherve
tors too.Lemma 7.8 Fix 0 ≤ k ≤ m and i ∈ Ik. If a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

) satis�es 
onditions(7.19)�(7.25) along with equation (7.26) if k = 0 or (7.27) if k ≥ 1, then fk(s̄) ≥ fk(bi).Proof. Assume that k = 0 and equation (7.26) is satis�ed. If t ∈ J0 is the index su
h that
w̄0,t = 1 then, by (7.19) and (7.26), f0(s̄) = α0(bt) ≥ α0(bi) = f0(bi).
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tion, we now assume that the result holds for an index 0 ≤ k < m. We have toprove that if
∑

t∈Jk+1:
fk+1(bt,k)≥fk+1(bi,k+1)

w̄↓
k+1,t +

∑

t∈Jk+1:
αk+1(bt,k+Ck)≥αk+1(bi,k+1)+1

w̄↑
k+1,t = 1, (7.28)then fk+1(s̄) ≥ fk+1(bi).If w̄↑

k+1,t = 1 for some t ∈ Jk+1, then (7.20) and the above equation give αk+1(s̄) =

αk+1(bt,k + Ck) ≥ αk+1(bi,k+1) + 1, thus fk+1(s̄) ≥ fk+1(bi,k+1) = fk+1(bi).If w̄↓
k+1,t = 1 for some t ∈ Jk+1, equation (7.28) implies that fk+1(bt,k) ≥ fk+1(bi,k+1),thus αk+1(bt,k) ≥ αk+1(bi,k+1). Assume �rst αk+1(bt,k) ≥ αk+1(bi,k+1) + 1. Then αk+1(s̄) =

αk+1(bt,k) ≥ αk+1(bi,k+1) + 1, thus fk+1(s̄) ≥ fk+1(bi,k+1) = fk+1(bi).Finally assume that w̄↓
k+1,t = 1 for some t ∈ Jk+1 su
h that αk+1(bt,k) = αk+1(bi,k+1).Sin
e (7.28) implies fk+1(bt,k) ≥ fk+1(bi,k+1), we then have fk(bt,k) ≥ fk(bi,k+1). Inequal-ity (7.24) for the index t implies that

∑

j∈Jk:
fk(bj,k−1)≥fk(bt,k)

w̄↓
k,j +

∑

j∈Jk:
αk(bj,k−1+Ck−1)≥αk(bt,k)+1

w̄↑
k,j = 1.Then, by indu
tion, fk(s̄) ≥ fk(bt), whi
h 
an also be written as fk(s̄) ≥ fk(bt,k). This, to-gether with inequality fk(bt,k) ≥ fk(bi,k+1) proven above, shows that fk(s̄) ≥ fk(bi,k+1). Using

αk+1(s̄) = αk+1(bt,k) = αk+1(bi,k+1), we 
on
lude that fk+1(s̄) ≥ fk+1(bi,k+1) = fk+1(bi). �The following result gives a linear version of inequality (7.16).Lemma 7.9 For 0 ≤ k ≤ m and i ∈ Ik, the following properties hold:(i) Every vertex (s̄, z̄) of conv(DIV ) 
an be 
ompleted to a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) thatsatis�es 
onditions (7.19)�(7.25) along with the linear inequality

∆0 +
∑

t∈J0:
α0(bt)≥α0(bi)

w0,t + zi ≥

⌊
bi
C0

⌋

+ 1 if k = 0, (7.29)
∆k +

∑

t∈Jk:
fk(bt,k−1)≥fk(bi,k)

w↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bi,k)+1

w↑
k,t + zi ≥

⌊
bi
Ck

⌋

+ 1 if k ≥ 1.(7.30)(ii) If a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) satis�es 
onditions (7.19)�(7.25) and inequality (7.29) if

k = 0 or (7.30) if k ≥ 1, then s̄+ Ckz̄i ≥ bi.Proof. (i) Let (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) be a standard 
ompletion of the vertex (s̄, z̄) of conv(DIV ).By Lemma 7.2 (with ℓ = k), (s̄, z̄) satis�es inequality

∆k(s) + zi ≥

{

∆k(bi) + 1 if fk(s̄) < fk(bi),

∆k(bi) if fk(s̄) ≥ fk(bi).
(7.31)
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apa
ities 129After re
alling that ∆̄k = ∆k(s̄) and ∆k(bi) = ⌊bi/Ck⌋, the result follows form Lemma 7.7.(ii) Note that for every point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) satisfying (7.19)�(7.25), equation ∆̄ =

∆(s̄) holds. Then, by Lemma 7.2 (with ℓ = k), it is su�
ient to prove that (7.31) is satis�ed.This follows from Lemma 7.8. �In the above proof we used Lemma 7.2 with ℓ = k. In fa
t, the same lemma 
ould be usedto �nd di�erent (but similar) linear versions of inequality (7.16). However, the 
hoi
e ℓ = k ispreferable as it leads to inequalities (7.29)�(7.30), whi
h have a 
oe�
ient of 1 in variable zi.This property will be 
ru
ial in the proof of Theorem 7.15 �the main result of this se
tion.We now show how to model the lower bound on s. As before, we present a linear inequalitywhose form will allow us to prove the main result of the se
tion. Su
h a linear inequalityinvolves variables ∆m, w
↓
i,m, w

↑
i,m for i ∈ Jm. However, for ea
h k the same te
hnique allowsone to write a similar inequality that uses variables ∆k, w

↓
i,k, w

↑
i,k for i ∈ Jk.Lemma 7.10 The following properties hold:(i) Every vertex (s̄, z̄) of conv(DIV ) 
an be 
ompleted to a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

) thatsatis�es 
onditions (7.19)�(7.25) along with the linear inequality
∆m +

∑

t∈Jm:
fm(bt,m−1)≥fm(bi,m)

w↓
m,t +

∑

t∈Jm:
αm(bt,m−1+Cm−1)≥αm(bi,m)+1

w↑
m,t ≥

⌊
bl
Cm

⌋

+ 1. (7.32)(ii) If a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) satis�es 
onditions (7.19)�(7.25) and inequality (7.32), then

s̄ ≥ bl.Proof. The proof is similar to that of Lemma 7.9 (Lemma 7.3 with k = m is needed). �We now turn to the upper bound 
onstraint s ≤ bu. We would like to model this inequalityin a way that is similar to what we did above. Without any spe
i�
 assumptions on the valueof bu, the only simple way to do this seems to be the following (the proof is similar to that ofthe above lemma):
∆0 +

∑

i∈J0:
α0(bi)>α0(bu)

w0,i ≤

⌊
bu
C0

⌋

. (7.33)However, su
h an inequality would not allow us to prove the main result of the se
tion. Wewill re
onsider this aspe
t in Se
tion 7.1.8.The non-restri
tive assumption on the upper bound bu made in Se
tion 7.1.2 allows us tomodel the upper bound on s in a more 
onvenient way.Lemma 7.11 The following properties hold:(i) Every vertex (s̄, z̄) of conv(DIV ) 
an be 
ompleted to a point (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) thatsatis�es 
onditions (7.19)�(7.25) along with the linear inequality

∆m ≤

⌊
bu
Cm

⌋

. (7.34)
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) satis�es 
onditions (7.19)�(7.25) and inequality (7.34), then

s̄ ≤ bu.Proof. (i) Consider any 
ompletion (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑
) of (s̄, z̄) satisfying 
onditions (7.19)�(7.25). Inequality s ≤ bu implies ∆̄m = ∆m(s̄) ≤ ∆m(bu) = ⌊bu/Cm⌋.(ii) Assume that (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑

) satis�es 
onditions (7.19)�(7.25) along with inequal-ity (7.34). By Lemma 7.3, it is su�
ient to show that
∆m(s̄) ≤

{

∆m(bu) if fm(s̄) ≤ fm(bu),

∆m(bu) − 1 if fm(s̄) > fm(bu).By assumption (7.15), αk(s̄) ≤ αk(bu) for all 0 ≤ k ≤ m − 1, thus fm(s̄) ≤ fm(bu) byequation (7.8) (with k = m). The result now follows by (7.34). �The same result holds if inequality (7.34) is repla
ed by ∆k ≤ ⌊bk/Ck⌋ for any k, but theabove is the most 
onvenient form.Let X be the mixed-integer set in the spa
e of the variables (s, z,∆, w,w↓, w↑
) de�ned bythe following 
onditions:

• (7.19)�(7.25),
• (7.29) for i ∈ J0,
• (7.30) for i ∈ Jk with k ≥ 1,
• (7.32) and (7.34).Proposition 7.12 The polyhedron conv(DIV ) is the proje
tion of the polyhedron conv(X)onto the spa
e of the variables (s, z).Proof. Parts (ii) of Lemmas 7.9�7.11 show that proj(s,z)(X) ⊆ DIV , thus proj(s,z)(conv(X)) ⊆

conv(DIV ). Furthermore, parts (i) of the same lemmas show that every vertex of conv(DIV )belongs to proj(s,z)(X). To 
on
lude, we only need to prove that every extreme ray of
conv(DIV ) is a ray of conv(X).Re
all that sin
e the values Ck and bi are all rational numbers, by Theorem 1.8 the rays of
conv(X) are pre
isely the rays of the linear relaxation of X (that is, the polyhedron de�nedby inequalities (7.19)�(7.24), (7.29)�(7.30), (7.32) and (7.34)). It is easily 
he
ked that theextreme rays of conv(DIV ) are the ve
tors de�ned by setting zi := 1 for some i ∈ J0 \ {l, u}and all other variables to zero. Ea
h of these ve
tors 
an be 
ompleted to a feasible ray of
conv(X) by setting all other variables to zero. �By the above proposition, in order to give an extended formulation of conv(DIV ) we haveto �nd a linear inequality des
ription of conv(X).
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ities 1317.1.5 Strengthening the 
onstraintsLemma 7.13 The following inequalities are valid for X and dominate (7.23)�(7.24):
∑

t∈J0:
α0(bt)≥α0(bi)

w0,t ≥
∑

t∈J1:
f0(bt)≥f0(bi)

w↓
1,t, i ∈ J1, (7.35)

∑

t∈Jk:
fk(bt,k−1)≥fk(bi,k)

w↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bi,k)+1

w↑
k,t ≥

∑

t∈Jk+1:
fk(bt,k−1)≥fk(bi,k)

w↓
k+1,t, i ∈ Jk+1, 1 ≤ k < m.(7.36)Proof. Fix i ∈ Jk+1 for k ≥ 1 and de�ne L := {t ∈ Jk+1 : fk(bt,k−1) ≥ fk(bi,k)}. Inequal-ity (7.36) 
an be derived by applying the Chvátal-Gomory pro
edure (Theorem 1.10) to thefollowing |L| + 1 inequalities, whi
h are all valid for X:

∑

t∈Jk:
fk(bt,k−1)≥fk(bℓ,k)

w↓
k,t +

∑

t∈Jk:
αk(bt,k−1+Ck−1)≥αk(bℓ,k)+1

w↑
k,t ≥ w↓

k+1,ℓ, ℓ ∈ L, (7.37)
1 ≥

∑

ℓ∈L

w↓
k+1,ℓ, (7.38)with multipliers 1/|L| for ea
h of inequalities (7.37) and 1 − 1/|L| for inequality (7.38).The derivation of inequalities (7.35) is similar. �7.1.6 The extended formulationLet P be the polyhedron in the spa
e of the variables (s, z,∆, w,w↓, w↑

) de�ned by thefollowing linear equations and inequalities:
• (7.19)�(7.22),
• (7.29) for i ∈ J0,
• (7.30) for i ∈ Jk with k ≥ 1,
• (7.32) and (7.34),
• (7.35)�(7.36).We denote by Ax ∼ b the linear system 
omprising the above equations and inequalities.Lemma 7.14 Let M be the submatrix of A indexed by the 
olumns 
orresponding to vari-ables ∆m, w,w

↓, w↑ and the rows 
orresponding to 
onstraints (7.21)�(7.22), (7.32) and (7.35)�(7.36). The matrix M is totally unimodular.Proof. We use the 
hara
terization of Ghouila-Houri [26℄ des
ribed in Se
tion 1.3.2. Wepartition the rows of M into the submatri
es M0, . . . ,Mm de�ned as follows:
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• M0 
onsists of the rows 
orresponding to equation (7.21) and inequalities (7.35) for
i ∈ J1;

• for 1 ≤ k ≤ m − 1, Mk 
onsists of the rows 
orresponding to equation (7.22) andinequalities (7.36) for i ∈ Jk+1;
• Mm 
onsists of the rows 
orresponding to equation (7.22) for k = m and inequal-ity (7.32).For ea
h odd k, we multiply by −1 the rows of M that belongs to Mk and the 
olumns of

M 
orresponding to variables w↓
k,i, w

↑
k,i for all i ∈ Jk. Then M be
omes a 0-1 matrix.For 1 ≤ k ≤ m − 1, we order the rows of Mk as follows: �rst equation (7.22), theninequalities (7.36) a

ording to a non-de
reasing order of the values fk(bi,k). The order of therows of M0 is analogous. The two rows of Mm are order as follows: �rst equation (7.22) andthen inequality (7.32). Note that in every matrixMk the support of any row, say the j-th row,
ontains that of the (j + 1)-th row (in other words, the rows of Mk form a laminar family).We 
an now give an equitable bi
oloring of the rows of M : for k even (resp. odd), we givealternating 
olors to the rows of Mk starting with red (resp. blue). Sin
e every submatrixof M has the same stru
ture as M itself, this proves that every submatrix of M admits anequitable bi
oloring of its rows and thus, by Theorem 1.14, M is totally unimodular. �Theorem 7.15 If x̄ = (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑) is a vertex of P , then (z̄, ∆̄, w̄, w̄↓, w̄↑) is an integralve
tor.Proof. Note that the 
olumns of A 
orresponding to variables s and zi for i ∈ Ik, 0 ≤ k ≤ m,are unit 
olumns (as s only appears in equation (7.19) and ea
h variable zi only appears inone of (7.29)�(7.30)).Also note that in the subsystem of Ax ∼ b 
omprising inequalities (7.20)�(7.22), (7.32),(7.34) and (7.35)�(7.36) (i.e. with (7.19) and (7.29)�(7.30) removed) variables ∆0, . . . ,∆m−1appear with nonzero 
oe�
ient only in equations (7.20). Furthermore the submatrix of Aindexed by the rows 
orresponding to (7.20) and the 
olumns 
orresponding to variables

∆0, . . . ,∆m−1 is an upper triangular matrix with 1 on the diagonal.Let Cx = d be a nonsingular subsystem of tight inequalities taken in Ax ∼ b that de�nesa vertex x̄ = (s̄, z̄, ∆̄, w̄, w̄↓, w̄↑) of P . The above observations show that (7.19)�(7.20) and(7.29)�(7.30) must be present in this subsystem. Furthermore let C ′ be the submatrix of Cindexed by the 
olumns 
orresponding to variables ∆m, w,w
↓, w↑ and the rows that do not
orrespond to (7.19)�(7.20) or (7.29)�(7.30). Then the 
omputation of a determinant withLapla
e expansion shows that |det(C)| = |det(C ′)| 6= 0.Sin
e C ′ is a submatrix of the matrix M de�ned in Lemma 7.14 and C ′ is nonsingular,then |det(C)| = |det(C ′)| = 1. Sin
e all entries of A (ex
ept those 
orresponding to equa-tion (7.19)) are integer and the right-hand side ve
tor b is integral, by Cramer's rule we havethat (z̄, ∆̄, w̄, w̄↓, w̄↑) is an integral ve
tor. �Note that the proof of the above theorem strongly depends on the fa
t that ea
h variable

zi appears in a single inequality of the system Ax ∼ b. Even adding nonnegativity 
onstraintson the integer variables would 
reate serious problems (see Se
tions 7.1.7�7.1.8 below).
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ities 133Corollary 7.16 The linear inequalities of the system Ax ∼ b de�ning P 
onstitute an ex-tended formulation of conv(DIV ) with O(mn) variables and 
onstraints, where n := |I0| +

· · · + |Im|.Proof. Consider the set X de�ned in Se
tion 7.1.4 and let R(X) be its linear relaxation.By 
omparing the inequalities of the system Ax ∼ b (de�ning P ) with those appearing inthe de�nition of X, and using Lemma 7.13, one sees that X ⊆ P ⊆ R(X). The abovetheorem then implies that P = conv(X). By Proposition 7.12, a linear inequality des
riptionof conv(X) is an extended formulation of conv(DIV ), so the result follows. �Observation 7.17 If we drop the lower (resp. upper) bound from 
onstraint (7.4)�(7.6), anextended formulation is given by the same inequalities as above, ex
ept that 
onstraint (7.32)(resp. (7.34)) must be removed.7.1.7 Lower bounds on the integer variablesWe now 
onsider the set DIV +, the mixing set with divisible 
apa
ities and lower bounds onthe integer variables. Without loss of generality su
h bounds 
an be assumed to be all equalto zero. The set DIV + is des
ribed by the following 
onditions:
s+ Ckzi ≥ bi, i ∈ Ik, 0 ≤ k ≤ m, (7.39)
bl ≤ s ≤ bu, (7.40)

zi ≥ 0 integer, i ∈ I0 ∪ · · · ∪ Im. (7.41)Di Summa [20℄ gave a polynomial time algorithm to optimize a linear fun
tion over
DIV +. We dis
uss the problem of �nding a 
ompa
t extended formulation of the polyhe-dron conv(DIV +).We do not know how to in
orporate the bounds zi ≥ 0 in a formulation of the type givenin Se
tion 7.1.6, as the standard approa
h requires that the system Ax ∼ b, purged of theequations de�ning s and ∆k, be de�ned by a totally unimodular matrix (see for instan
e[11, 45, 53, 63, 65℄, as well as Chapter 2 of this thesis). However this is not the 
ase, asdis
ussed in Se
tion 7.1.8. So we use an approa
h based on union of polyhedra, following anidea appearing in [2, 16℄.Let {β1, . . . , βq} be the set of distin
t values in the set {bi : i ∈ J0, bl < bi < bu}. Assume
β1 < · · · < βq and de�ne β0 := bl and βq+1 := bu. For ea
h 0 ≤ ℓ ≤ q, let DIV (ℓ) be thefollowing set:

s+ Ckzi ≥ bi, i ∈ Ik : bi > βℓ, 0 ≤ k ≤ m, (7.42)
βℓ ≤ s ≤ βℓ+1, (7.43)

zi ≥ 0, i ∈ Ik : bi ≤ βℓ, 0 ≤ k ≤ m, (7.44)
zi integer, i ∈ I0 ∪ · · · ∪ Im. (7.45)Lemma 7.18 conv(DIV +) = conv

(⋃q
ℓ=1DIV (ℓ)

).



134 Chapter 7. Extension to simple non dual network setsProof. Fix 0 ≤ ℓ ≤ q and assume that (s̄, z̄) is a feasible point in DIV (ℓ). If i ∈ Ik is su
hthat bi ≤ βℓ, then s̄ + Ckz̄i ≥ βℓ ≥ bi. Thus (s̄, z̄) satis�es all inequalities (7.39). If i ∈ Ik issu
h that bi > βℓ (thus bi ≥ βℓ+1), then Ckzi ≥ bi − s̄ ≥ βℓ+1 − s̄ ≥ 0. Thus (s̄, z̄) satis�esall nonnegativity bounds on z. This shows that conv
(⋃q

ℓ=1DIV (ℓ)
)
⊆ conv(DIV +). Thereverse in
lusion is obvious. �Proposition 7.19 The set conv(DIV +) admits an extended formulation with O

(
m2n

) vari-ables and 
onstraints, where n := |I0| + · · · + |Im|.Proof. Fix an index 1 ≤ ℓ ≤ q. Note that the variables zi appearing in inequalities (7.44) arenot used by any other inequality of the system. This means that the above set is the 
artesianprodu
t X1 ×X2 of the following two sets: X1, whi
h is de�ned by the 
onditions
s+ Ckzi ≥ bi, i ∈ Ik : bi > βℓ, 0 ≤ k ≤ m,

βℓ ≤ s ≤ βℓ+1,

zi integer, i ∈ Ik : bi > βℓ, 0 ≤ k ≤ m,and X2, whi
h is des
ribed by the 
onditions
zi ≥ 0 integer, i ∈ Ik : bi ≤ βℓ, 0 ≤ k ≤ m. (7.46)Relation DIV (ℓ) = X1×X2 easily implies conv(DIV (ℓ)) = conv(X1)×conv(X2). The set

X1 is a mixing set with divisible 
apa
ities (without lower bounds on the integer variables),thus it admits an extended formulation with O(mn) variables and 
onstraints, where n := |I0|+

· · ·+|Im| (Corollary 7.16). The 
onvex hull ofX2 is 
learly obtained by removing the integralityrequirements from (7.46). Therefore there is an extended formulation of conv(DIV (ℓ)) thatuses O(mn) variables and 
onstraints.The result now follows from Lemma 7.18 and Theorem 1.3. �7.1.8 A di�erent approa
h?We 
on
lude our study of the mixing set with divisible 
apa
ities by dis
ussing two unsatis-fa
tory aspe
ts of the formulation that we 
onstru
ted.Upper boundThe �rst aspe
t 
on
erns the assumption on the upper bound bu made in Se
tion 7.1.2. Eventhough su
h an assumption 
an be made without loss of generality, it would be interesting tounderstand whether our formulation really needs it.As already pointed out in Se
tion 7.1.4, the upper bound s ≤ bu 
ould be model byinequality (7.33) independently of the value of bu. It is now 
lear that su
h a 
hoi
e wouldhave prevented us from proving Theorem 7.15, as in the proof of that result we used thefa
t that in the matrix obtained from A by removing the rows 
orresponding to (7.19) and(7.29)�(7.30), the 
olumn 
orresponding to variable ∆0 is a unit ve
tor.
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apa
ities 135In fa
t, examples 
an be 
onstru
ted whi
h show that if one uses inequality (7.33) to model
onstraints s ≤ bu, the resulting formulation is not tight, in the sense that it 
ontains points
(
s, z,∆, w,w↓, w↑

) su
h that (s, z) /∈ conv(DIV ). An example of this type is now sket
hed.Consider the following instan
e of DIV :
s+ 10z0 ≥ 0.5,

s+ 10z1 ≥ 7.8,

1.4 ≤ s ≤ 15.6,

z0, z1 integer.Our formulation in the extended spa
e, with inequality (7.33) instead of (7.34), is:
s = ∆0 + 0.5w0,0 + 0.8w0,1 + 0.4w0,l + 0.6w0,u, (7.47)

w0,0, w0,1, w0,l, w0,u ≥ 0, w0,0 + w0,1 + w0,l + w0,u = 1, (7.48)
∆0 = 10∆1 + 7w↓

1,1 + 8w↑
1,1 + 1w↓

1,l + 2w↑
1,l + 4w↓

1,u + 5w↑
1,u, (7.49)

w↓
1,1, w

↑
1,1, w

↓
1,l, w

↑
1,l, w

↓
1,u, w

↑
1,u ≥ 0, (7.50)

w↓
1,1 + w↑

1,1 + w↓
1,l + w↑

1,l + w↓
1,u + w↑

1,u = 1, (7.51)
w0,1 ≥ w↓

1,1, w0,1 + w0,u ≥ w↓
1,1 + w↓

1,u, (7.52)
w0,0 + w0,1 + w0,l + w0,u ≥ w↓

1,1 + w↓
1,l + w↓

1,u, (7.53)
∆0 + w0,0 + w0,1 + w0,u + z0 ≥ 1, (7.54)

∆1 + w↓
1,1 +w↑

1,1 + z1 ≥ 1, (7.55)
∆0 + w0,0 + w0,1 + w0,l + w0,u ≥ 2, (7.56)

∆0 + w0,1 ≤ 15. (7.57)The following point is a vertex of the above polyhedron:
s = 15.6, z0 = −15, z1 = −0.7, ∆0 = 15, w0,u = 1, ∆1 = 0.7, w↑

1,1 = 1. (7.58)(Apart form nonnegativity 
onstraints, inequalities (7.53), (7.54) and (7.56) are the only non-tight inequalities.) The 
orresponding point in the original (s, z)-spa
e does not belong to
conv(DIV ), as all points in DIV su
h that s = 15.6 satisfy z1 ≥ 0.In order to make the proof of Theorem 7.15 work, 
onstraint s ≤ bu should be modeledwithout using any of the variables ∆0, . . . ,∆m−1, thus one should use ∆m. Without anyassumptions on the value of bu, this seems to be hard. The main reason for this is that thebound s ≤ bu is the only 
onstraint of the type �≤�, whereas our formulation (in parti
ular
onditions (7.23)�(7.24)) essentially �ts the inequalities of the type �≥�.For the above example, we 
ould think of two (wrong) ways to model the upper boundusing ∆1. The �rst way is

∆1 + w↓
1,1 + w↑

1,1 ≤ 1. (7.59)However, this is too weak, as the point
s = 15.8, z1 = −15, z2 = 0, ∆0 = 15, w0,1 = 1, ∆1 = 1, w↑

1,u = 1



136 Chapter 7. Extension to simple non dual network setswould be feasible even though it violates inequality s ≤ 15.6. The other way is
∆1 + w↓

1,1 + w↑
1,1 + w↑

1,u ≤ 1,but this 
ut o� the feasible point (7.58).Total unimodularityWe now turn to the se
ond unsatisfa
tory aspe
t. One might wonder whether it is possible togeneralize the te
hnique used for the set DIV to 
onstru
t an extended formulation for DIV +without using Balas' result on the union of polyhedra. In other word, one 
ould try to adaptthe results of Lemma 7.5 to the set DIV +.However, for ea
h i ∈ J0 \ {l, u}, su
h an extended formulation would 
ontain at leasttwo inequalities with zi in their support: inequality (7.30) (or (7.29)) and inequality zi ≥ 0.It follows that the te
hnique used to prove Theorem 7.15 
annot be used in this 
ase, thusto prove a result similar to that of Theorem 7.15 we should �rst show that the 
onstraintmatrix of the extended formulation is totally unimodular (ignoring equations (7.19)�(7.20)).However, in general this is false even for the set DIV , as the example below shows.Consider the following instan
e of DIV (without upper bound on s):
s+ 100z1 ≥ 0.1, 0

s+ 110z2 ≥ 6.3, 0

s+ 100z3 ≥ 81.4,

s+ 100z4 ≥ 48.6,

s+ 000z0 ≥ 0, 0.0

z1, . . . , z4 integer.Note that I0 = {1}, I1 = {2}, I3 = {3, 4}.Among the 
onstraints de�ning the extended formulation of the 
onvex hull of the aboveset, we 
onsider the following four inequalities:
w↓

1,2 + w↑
1,2 + w↓

1,3 + w↑
1,3 + w↓

1,4 + w↑
1,4 ≥ w↓

2,3 + w↓
2,4,

w0,3 + w0,4 ≥ w↓
1,3 + w↓

1,4,

w↓
1,4 + w↑

1,4 ≥ w↓
2,4,

∆1 + w↓
1,2 + w↑

1,2 + w↓
1,4 + w↑

1,4 + z2 ≥ 1,whi
h 
orrespond respe
tively to inequality (7.36) for k = 1 and i = 3, inequality (7.35) for
i = 3, inequality (7.36) for k = 1 and i = 4, and inequality (7.30) for k = 1 and i = 2.The submatrix of the 
onstraint matrix of the above four inequalities, restri
ted to variables
w↓

1,4, w
↓
1,3, w

↓
2,4, w

↑
1,2, is 






1 1 −1 1

−1 −1 0 0

1 0 −1 0

1 0 0 1







,whi
h is not totally unimodular as its determinant is −2.
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apa
ities 1377.2 The mixing set with two 
apa
itiesThe su

ess in �nding an extended formulation of the mixing set with divisible 
apa
ities(Se
tion 7.1) strongly depends on the divisibility assumption. The study of a general set ofthe type (7.1)�(7.3) seems to be a mu
h more di�
ult problem: it is not known whether linearoptimization over a general set of this type 
an be 
arried out in polynomial time.In this se
tion we 
onsider an instan
e of the mixed-integer set (7.1)�(7.3) where there areonly two distin
t 
apa
ities C1, C2. We denote su
h a set by 2CAP :
s+ C1zi ≥ bi, i ∈ I1,

s+ C2zi ≥ bi, i ∈ I2,

s ≥ 0,

zi integer, i ∈ I1 ∪ I2,where 0 < C1 < C2, I1 ∩ I2 = ∅. We assume without loss of generality that C1 and C2 are
oprime integer numbers. We set bl := 0, where l /∈ I1 ∪ I2, and de�ne C0 := 1.We give an extended formulation of conv(2CAP ) with O(nC1) variables and 
onstraints,where n := |I1| + |I2|. Note that the formulation in non-
ompa
t, as its size depends on thevalue of C1. However the size is independent of C2, thus the formulation is 
ompa
t wheneverthe value of the smallest 
oe�
ient C1 is not �too large�.The formulation is obtained by adapting the te
hnique used in the divisible 
ase (in fa
t,if C1 = 1 the two formulations 
oin
ide). However, 
ompli
ations will soon arise.7.2.1 NotationWe �rst introdu
e some notation.Given a real number x and an index 0 ≤ k ≤ 2, we denote by ∆k(x) and fk(x) respe
tivelythe quotient and the remainder of the division of x by Ck. Thus x = Ck∆k(x) + fk(x).Similarly we de�ne ∆12(x) and f12(x) respe
tively as the quotient and the remainder of thedivision of x by C1C2.Finally we set J1 := I1 ∪ I2 ∪ {l} and J2 := I2 ∪ {l}.7.2.2 Properties of the verti
esLemma 7.20 If (s̄, z̄) is a vertex of conv(2CAP ) then the following 
onditions hold:(i) f0(s̄) = f0(bi) for some i ∈ J1.(ii) f2(C1∆1(s̄)) = f2(⌊bi⌋ + ℓ) for some i ∈ J2 and some integer ℓ su
h that:(a) either 1 ≤ ℓ ≤ C1,(b) or −C1 + 1 ≤ ℓ ≤ 0 and f1(s̄) ≥ −ℓ+ f0(bi).Proof. If (i) is violated then, sin
e z̄ is an integral ve
tor, there exists ε 6= 0 su
h that
(s̄± ε, z̄) ∈ 2CAP , a 
ontradi
tion.



138 Chapter 7. Extension to simple non dual network setsTo prove (ii) we �rst observe that there exists an index i ∈ J2 su
h that bi ≤ s̄ + C2z̄i <

bi + C1: if not, after de�ning a ve
tor v by setting
s := −C1, zi := 1 for i ∈ I1, zi := 0 for i ∈ I2,we would have that (s̄, z̄) ± v ∈ 2CAP , a 
ontradi
tion.So we let i ∈ J2 be su
h that bi ≤ s̄+ C2z̄i < bi + C1. Then

f2(⌊s̄⌋) ∈ {f2(⌊bi⌋), f2(⌊bi⌋ + 1), . . . , f2(⌊bi⌋ + C1)}. (7.60)Sin
e C1∆1(s̄) = s̄− f1(s̄) = ⌊s̄⌋ − f1(⌊s̄⌋) and 0 ≤ f1(⌊s̄⌋) ≤ C1 − 1, it follows by (7.60) that
f2(C1∆1(s̄)) = f2(⌊bi⌋ + ℓ) for some integer ℓ su
h that −C1 + 1 ≤ ℓ ≤ C1.If ℓ ≥ 1 then (a) holds, so we assume −C1 + 1 ≤ ℓ ≤ 0. Suppose �rst that ℓ ≤ C1 − C2and de�ne ℓ′ := C2 + ℓ. Then f2(⌊bi⌋+ ℓ) = f2(⌊bi⌋+ ℓ′) and 1 ≤ ℓ′ ≤ C1, thus (a) holds with
ℓ′ in pla
e of ℓ. So from now on we assume C1 − C2 + 1 ≤ ℓ ≤ 0.We now distinguish some 
ases.1. If f2(s̄) ≥ f2(bi) and f2(⌊bi⌋) + ℓ ≥ 0, then f2(C1∆1(s̄)) = f2(⌊bi⌋ + ℓ) = f2(⌊bi⌋) + ℓand

f1(s̄) = f2(f1(s̄)) = f2(s̄− C1∆1(s̄)) ≥ f2(s̄) − f2(C1∆1(s̄))

≥ f2(bi) − f2(⌊bi⌋) − ℓ = f0(bi) − ℓ,thus (a) holds.2. Now assume f2(s̄) ≥ f2(bi) and f2(⌊bi⌋) + ℓ < 0. Then f2(⌊bi⌋ + ℓ) = f2(⌊bi⌋) + ℓ+ C2and
f2(s̄) ≤ f2(bi) + C1 ≤ f2(bi) + ℓ+ C2 − 1 ≤ f2(⌊bi⌋ + ℓ),where the �rst inequality follows from (7.60) and the se
ond one holds be
ause C1 −

C2 + 1 ≤ ℓ. This implies that f2(s̄− (⌊bi⌋ + ℓ)) = f2(s̄) − f2(⌊bi⌋ + ℓ) + C2, thus
f1(s̄) = f2(f1(s̄)) = f2(s̄− C1∆1(s̄)) = f2(s̄ − (⌊bi⌋ + ℓ))

= f2(s̄) − f2(⌊bi⌋ + ℓ) + C2 ≥ f2(bi) − f2(⌊bi⌋) − ℓ = f0(bi) − ℓand (a) holds.3. We now 
onsider the 
ase f2(s̄) < f2(bi). In this 
ase inequalities bi ≤ s̄+C2z̄i < bi +C1imply f2(bi) > C2 − C1. Then f2(⌊bi⌋) + ℓ > f2(⌊bi⌋) + C1 − C2 > 0. This implies
f2(⌊bi⌋ + ℓ) = f2(⌊bi⌋) + ℓ. Furthermore,

f2(s̄) ≤ f2(bi) + C1 − C2 ≤ f2(bi) + ℓ− 1 ≤ f2(⌊bi⌋ + ℓ),where the �rst inequality follows from f2(s̄) < f2(bi) and (7.60). This implies
f1(s̄) = f2(f1(s̄)) = f2(s̄− C1∆1(s̄)) = f2(s̄ − (⌊bi⌋ + ℓ))

= f2(s̄) − f2(⌊bi⌋ + ℓ) + C2 ≥ 0 − f2(⌊bi⌋) − ℓ+ C2 ≥ −ℓ+ 1and (a) holds.
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apa
ities 139This 
on
ludes the proof of the lemma. �For i ∈ J2 and −C1 + 1 ≤ ℓ ≤ C1, we de�ne cℓi to be the unique integer number su
h that
0 ≤ cℓi < C1C2, f2

(
cℓi
)

= f2(⌊bi⌋ + ℓ), f1

(
cℓi
)

= 0.Existen
e and uniqueness of su
h a number follow from the Chinese remainder theorem (seee.g. [56℄ or any basi
 algebra book).Remark 7.21 Let i, ℓ be two indi
es as in part (ii) of Lemma 7.20. Then f12(C1∆1(s̄)) = cℓi ,as the integer number f12(C1∆1(s̄)) satis�es the three 
onditions that de�ne ciℓ.We now introdu
e extra variables to model the possible values taken by s at a vertex of
conv(2CAP ). The new variables are the following:

• ∆, wℓ
i for i ∈ J1 and 0 ≤ ℓ ≤ C1 − 1;

• Γ, πℓ
i for i ∈ J2 and −C1 + 1 ≤ ℓ ≤ C1.The role of the above variables is as follows:

• Variable ∆ represents the quotient of the division of s by C1. That is, ∆ = ∆(s) asde�ned in Se
tion 7.2.1.
• Variable Γ represents the quotient of the division of s by C1C2. That is, Γ = ∆12(s) asde�ned in Se
tion 7.2.1.
• Variables wℓ

i for i ∈ J1 and 0 ≤ ℓ ≤ C1 − 1 are binary variables. Exa
tly one ofthem is equal to 1: 
ondition wℓ
i = 1 indi
ates that f0(s) = f0(bi) and f1(⌊s⌋) = ℓ, i.e.

f1(s) = ℓ+ f0(bi).
• Variables πℓ

i for i ∈ J2 and −C1 + 1 ≤ ℓ ≤ C1 are binary variables. Exa
tly one of themis equal to one: 
ondition πℓ
i = 1 indi
ates that f12(C1∆1(s̄)) = cℓi .Consider the following 
onditions:

s = C1∆ +

C1−1∑

ℓ=0

∑

t∈J1

(ℓ+ f0(bt))w
ℓ
t , (7.61)

C1∆ = C1C2Γ +

C1∑

ℓ=−C1+1

∑

t∈J2

cℓtπ
ℓ
t , (7.62)

wℓ
t ≥ 0, t ∈ J1, 0 ≤ ℓ ≤ C1 − 1;

C1−1∑

ℓ=0

∑

t∈J1

wℓ
t = 1, (7.63)

πℓ
t ≥ 0, t ∈ J2, −C1 + 1 ≤ ℓ ≤ C1;

C1∑

ℓ=−C1+1

∑

t∈J2

πℓ
t = 1, (7.64)

C1−1∑

j=−ℓ+1

∑

t∈J1

wj
t +

∑

t∈J1:
f0(bt)≥f0(bi)

w−ℓ
t ≥ πℓ

i , i ∈ J2, −C1 + 1 ≤ ℓ ≤ 0, (7.65)
∆, wℓ

t ,Γ, π
ℓ
t integer. (7.66)



140 Chapter 7. Extension to simple non dual network setsLemma 7.22 Every vertex (s̄, z̄) of conv(2CAP ) 
an be 
ompleted to a ve
tor (s̄, z̄, ∆̄, w̄, Γ̄, π̄)satisfying (7.61)�(7.66).Proof. Lemma 7.20 and Remark 7.21 show that f12(C1∆1(s̄)) = cℓi for some i ∈ J2 and
−C1 + 1 ≤ ℓ ≤ C1. The vertex (s̄, z̄) 
an be 
ompleted as follows.If there exist an index i ∈ J2 and an integer −C1 +1 ≤ ℓ ≤ 0, su
h that f12(C1∆1(s̄)) = cℓiand f1(s̄) ≥ −ℓ + f0(bi), then we set π̄ℓ

i = 1. For 
onvenien
e, if su
h a 
hoi
e of ℓ is notunique, we 
hoose ℓ as small as possible. If, after this, the 
hoi
e of i is not unique, we 
hoose
i so that f0(bi) is as large as possible. (Further ties 
an be broken arbitrarily.)Otherwise there exist an index i ∈ J2 and an integer 1 ≤ ℓ ≤ C1 su
h that f12(C1∆1(s̄)) =

cℓi , and we set π̄ℓ
i = 1 for any su
h 
hoi
e of i and ℓ.By Lemma 7.20, there exist t ∈ J1 and 0 ≤ h ≤ C1 − 1 su
h that f1(s̄) = h + f0(bt). Wethen set w̄h

t = 1 for any su
h 
hoi
e of t and h.Finally we set ∆̄ = ∆1(s̄) and Γ̄ = ∆12(s̄).It is easily 
he
ked that the vertex thus 
onstru
ted satis�es (7.61)�(7.64) and (7.66). Tosee that (7.65) is satis�ed, suppose π̄ℓ
i = 1 for some i ∈ J2 and−C1+1 ≤ ℓ ≤ 0. Lemma 7.20 (ii)then implies that h+ f0(bt) = f1(s̄) ≥ −ℓ+ f0(bi), that is, either h ≥ −ℓ+ 1, or h = −ℓ and

f0(bt) ≥ f0(bi). In both 
ases the left-hand side of (7.65) is equal to 1 and the inequality issatis�ed. �We say that (s̄, z̄, ∆̄, w̄, Γ̄, π̄) is a standard 
ompletion of the vertex (s̄, z̄) of conv(2CAP ) if
∆̄, w̄, Γ̄, π̄ are 
hosen as des
ribed in the above proof. Then the above proof shows that everyvertex of conv(2CAP ) has a standard 
ompletion satisfying (7.61)�(7.66).7.2.3 Modeling the 
onstraintsProposition 7.23 For i ∈ I1, a point (s̄, z̄) satis�es inequality s + C1zi ≥ bi if and onlyif every 
ompletion (s̄, z̄, ∆̄, w̄, Γ̄, π̄) of (s̄, z̄) ful�lling 
onditions (7.61)�(7.66) also satis�esinequality

∆ +

C1−1∑

ℓ=k+1

∑

t∈J1

wℓ
t +

∑

t∈J1:
f0(bt)≥f0(bi)

wk
t + zi ≥

⌊
bi
C1

⌋

+ 1, (7.67)where k := f1(⌊bi⌋).Proof. Using (7.61), inequality s+C1zi ≥ bi 
an be rewritten as
∆ +

C1−1∑

ℓ=0

∑

t∈J1

ℓ+ f0(bt)

C1
wℓ

t + zi ≥
bi
C1
. (7.68)Observe that ℓ+f0(bt)

C1
≥ f0

(
bi

C1

) if and only if ℓ+ f0(bt) ≥ f1(bi), that is, if and only if either
ℓ ≥ f1(⌊bi⌋) + 1, or ℓ = f1(⌊bi⌋) and f0(bt) ≥ f0(bi). Inequality (7.67) 
an then be obtainedby summing inequalities (7.68) and

−(f0(bi/C1) − ε)

C1−1∑

ℓ=0

∑

t∈J1

wℓ
t ≥ −(f0(bi/C1) − ε)
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apa
ities 141for ε > 0 small enough and then applying Chvátal-Gomory rounding (see Theorem 1.10). �Proposition 7.24 For i ∈ I2, the following properties hold:(i) Every vertex (s̄, z̄) of conv(2CAP ) 
an be 
ompleted to a point (s̄, z̄, ∆̄, w̄, Γ̄, π̄) thatsatis�es 
onditions (7.61)�(7.66) along with the linear inequality
C1Γ +

C1∑

ℓ=−C1+1

∑

t∈J2

βℓ
tπ

ℓ
t + zi ≥

⌊
bi
C2

⌋

+ 1, (7.69)where βℓ
t is de�ned as follows:

βℓ
t :=







∆2

(
cℓt
) if f2

(
cℓt
)
− f2(⌊bi⌋) ≤ min{0, ℓ− 1},

∆2

(
cℓt
) if ℓ = f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0 and f0(bt) < f0(bi),

∆2

(
cℓt
)

+ 1 if ℓ = f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0 and f0(bt) ≥ f0(bi),

∆2

(
cℓt
)

+ 1 if ℓ < f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0,

∆2

(
cℓt
)

+ 1 if 0 < f2

(
cℓt
)
− f2(⌊bi⌋) ≤ C2 −C1,

∆2

(
cℓt
)

+ 1 if C2 − C1 < f2

(
cℓt
)
− f2(⌊bi⌋) < ℓ+C2,

∆2

(
cℓt
)

+ 1 if C2 − C1 < f2

(
cℓt
)
− f2(⌊bi⌋) = ℓ+C2 and f0(bt) < f0(bi),

∆2

(
cℓt
)

+ 2 if C2 − C1 < f2

(
cℓt
)
− f2(⌊bi⌋) = ℓ+C2 and f0(bt) ≥ f0(bi),

∆2

(
cℓt
)

+ 2 if f2

(
cℓt
)
− f2(⌊bi⌋) > max{C2 −C1, ℓ+ C2}.(ii) If a point (s̄, z̄, ∆̄, w̄, Γ̄, π̄) satis�es 
onditions (7.61)�(7.66) along with inequality (7.69),then s̄+ C2zi ≥ bi.Proof. (i) We show that every standard 
ompletion of a vertex of conv(2CAP ) satis�esinequality (7.69).Let (s̄, z̄, ∆̄, w̄, Γ̄, π̄) be a standard 
ompletion of the vertex (s̄, z̄) of conv(2CAP ) andassume π̄ℓ

t = 1. By (7.61)�(7.62),
s̄ = C1C2Γ̄ + cℓt + f1(s̄) = C1C2Γ̄ + C2∆2

(
cℓt
)

+ f2

(
cℓt
)

+ f1(s̄). (7.70)Assume �rst βℓ
t = ∆2

(
cℓt
)

+ 2. Then, using (7.70),
C1Γ̄+

C1∑

ℓ=−C1+1

∑

t∈J2

βℓ
t π̄

ℓ
t + z̄i = C1Γ̄+∆2

(
cℓt
)
+2+ z̄i =

s̄+ C2z̄i − f2

(
cℓt
)
− f1(s̄) + 2C2

C2
>

bi
C2
,where the last inequality holds be
ause s̄ + C2z̄i ≥ bi and f2

(
cℓt
)

+ f1(s̄) < C2 + C1 < 2C2.Thus inequality (7.69) is satis�ed in this 
ase.Now assume βℓ
t = ∆

(
cℓt
)

+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) ≤ C2 − C1. Using (7.70),

C1Γ̄+

C1∑

ℓ=−C1+1

∑

t∈J2

βℓ
t π̄

ℓ
t + z̄i = C1Γ̄+∆2

(
cℓt
)
+1+ z̄i =

s̄+ C2z̄i − f2

(
cℓt
)
− f1(s̄) +C2

C2
>

bi
C2
,
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ause s̄+C2z̄i ≥ bi and −f2

(
cℓt
)
−f1(s̄)+C2 ≥ C1−f2(⌊bi⌋)−

f1(s̄) > −f2(bi). Thus inequality (7.69) is satis�ed in this 
ase.If βℓ
t = ∆

(
cℓt
)
+1 and f2

(
cℓt
)
−f2(⌊bi⌋) > C2−C1, the proof is by 
ontradi
tion: we assumethat (7.69) is violated, that is (after multiplying by C2),

C1C2Γ̄ + C2∆2

(
cℓt
)

+ C2 + C2z̄i ≤ C2∆2(bi). (7.71)De�ne k := f2

(
cℓt
)
− f2(⌊bi⌋) − C2. Sin
e f2

(
cℓt
)
− f2(⌊bi⌋) > C2 − C1, we have k ≥ −C1 + 1.Furthermore, k ≤ 0. Sin
e f2

(
cℓt
)

= f2(⌊bi⌋) + k + C2 = f2

(
cki
), we see that cℓt = cki . In thefollowing we show that (s̄, z̄, ∆̄, w̄, Γ̄, π̄) is not a standard 
ompletion of the vertex (s̄, z̄), assetting πk

i = 1 would be a preferable 
hoi
e.By (7.70), s̄ = C1C2Γ̄+C2∆2

(
cℓt
)
+f2(⌊bi⌋)+k+C2+f1(s̄). Then inequality s̄+C2z̄i ≥ bireads

C1C2Γ̄ + C2∆2

(
cℓt
)

+ f2(⌊bi⌋) + k + C2 + f1(s̄) + C2z̄i ≥ C2∆2(bi) + f2(bi).By 
ombining the above inequality with (7.71), we derive f1(s̄) ≥ −k + f0(bi).On the other hand, 
onditions βℓ
t = ∆

(
cℓt
)

+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) > C2 − C1, togetherwith the de�nition of βℓ

t , show that ne
essarily k ≤ ℓ, and if k = ℓ then f0(bi) > f0(bt). This,along with inequality f1(s̄) ≥ −k+ f0(bi) derived above and the fa
t that cℓt = cki , shows thatsetting πk
i = 1 would be a preferable 
hoi
e for representing the vertex (s̄, z̄).The above shows that inequalities (7.69) holds whenever βℓ

t > ∆2

(
cℓt
). We now assume

βℓ
t = ∆2

(
cℓt
) and f2

(
cℓt
)
− f2(⌊bi⌋) > −C1. The proof is again by 
ontradi
tion: we assumethat (7.69) is violated, that is, C1C2Γ̄ + C2∆2

(
cℓt
)

+ C2z̄i ≤ C2∆2(bi). In this 
ase we de�ne
k := f2

(
cℓt
)
− f2(⌊bi⌋) and pro
eed as in the previous 
ase (note that −C1 + 1 ≤ k ≤ 0).Finally, assume βℓ

t = ∆2

(
cℓt
) and f2

(
cℓt
)
− f2(⌊bi⌋) ≤ −C1. Using (7.70),

C1Γ̄ +

C1∑

ℓ=−C1+1

∑

t∈J2

βℓ
t π̄

ℓ
t + z̄i = C1Γ̄ + ∆2

(
cℓt
)

+ z̄i =
s̄+ C2z̄i − f2

(
cℓt
)
− f1(s̄)

C2
>

bi
C2
,where the last inequality holds be
ause s̄+C2z̄i ≥ bi and f2

(
cℓt
)
+f1(s̄) < (f2(⌊bi⌋)−C1)+C1 ≤

f2(bi). Thus inequality (7.69) is satis�ed in this 
ase.(ii) We now show that if (s̄, z̄, ∆̄, w̄, Γ̄, π̄) satis�es (7.61)�(7.66) and (7.69), then s̄+C2z̄i ≥

bi. Let (s̄, z̄, ∆̄, w̄, Γ̄, π̄) be a point satisfying (7.61)�(7.66) and (7.69), and assume π̄ℓ
t = 1 and

w̄h
j = 1. Note that (7.70) holds and f1(s̄) = h+ f0(bj).If βℓ

t = ∆2

(
cℓt
) then, using (7.70) and (7.69),

s̄+C2z̄i = C1C2Γ̄ +C2∆2

(
cℓt
)
+ f2

(
cℓt
)
+ f1(s̄) +C2z̄i ≥ C2∆2(bi +C2) + f2

(
cℓt
)
+ f1(s̄) ≥ bi.Now assume βℓ

t = ∆2

(
cℓt
)

+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) > 0. Using (7.70) and (7.69),

s̄+ C2z̄i = C1C2Γ̄ + C2∆2

(
cℓt
)

+ f2

(
cℓt
)

+ f1(s̄) + C2z̄i ≥ C2∆2(bi) + f2

(
cℓt
)

+ f1(s̄) ≥ bi,
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ities 143where the last inequality holds be
ause f2

(
cℓt
)
≥ f2(⌊bi⌋) + 1.If βℓ

t = ∆
(
cℓt
)
+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0, the proof is by 
ontradi
tion: we assume that

s̄+ C2z̄i < bi, that is (again using (7.70)),
C1C2Γ̄ +C2∆2

(
cℓt
)

+ f2

(
cℓt
)

+ f1(s̄) + C2z̄i < bi. (7.72)Summing the above inequality with inequality (7.69), whi
h 
an be written as
−C1C2Γ̄ − C2∆2

(
cℓt
)
− C2 − C2z̄i ≤ −C2∆2(bi + C2),gives f2

(
cℓt
)

+ f1(s̄) < f2(bi). If we de�ne k := f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0, the latter inequalityreads f1(s̄) < −k + f0(bi). Sin
e f1(s̄) = h+ f0(bj), this implies

h+ f0(bj) < −k + f0(bi). (7.73)On the other hand, 
onditions βℓ
t = ∆

(
cℓt
)

+ 1 and f2

(
cℓt
)
− f2(⌊bi⌋) ≤ 0, together withthe de�nition of βℓ

t , show that ne
essarily ℓ ≤ k ≤ 0, and if ℓ = k then f0(bt) ≥ f0(bi). Then(7.73) implies h + f0(bj) < −ℓ + f0(bi). This implies that either h < −ℓ, or h = −ℓ and
f0(bj) < f0(bi). In the former 
ase, inequality (7.65) is 
learly violated for the indi
es t ∈ J2and ℓ ≤ 0. So we assume h = −ℓ and f0(bj) < f0(bi).By (7.73), h ≤ −k. This, together with h = −ℓ ≥ −k, shows that ℓ = k. As seen above,this implies that f0(bt) ≥ f0(bi), thus f0(bj) < f0(bt). This shows that inequality (7.65) isagain violated for the indi
es t ∈ J2 and ℓ ≤ 0.The above shows that s̄ + C2z̄i ≥ bi whenever βℓ

t ≤ ∆2

(
cℓt
)

+ 1. We now assume βℓ
t =

∆2

(
cℓt
)

+ 2. The proof is again by 
ontradi
tion: we assume that (7.72) holds. In this 
aseinequality (7.69) reads
−C1C2Γ̄ − C2∆2

(
cℓt
)
− 2C2 − C2z̄i ≤ −C2∆2(bi + C2),whi
h together with (7.72) gives f2

(
cℓt
)

+ f1(s̄) < f2(bi) + C2. We then de�ne k := f2

(
cℓt
)
−

f2(⌊bi⌋) − C2 ≤ 0 and 
ontinue as in the previous 
ase. �Proposition 7.25 A point (s̄, z̄) satis�es inequality s+C1zi ≥ bi if and only if every extension
(s̄, z̄, ∆̄, w̄, Γ̄, π̄) of (s̄, z̄) ful�lling 
onditions (7.61)�(7.66) also satis�es inequality

Γ ≥ 0. (7.74)Proof. The result is obvious. �Let X be the mixed-integer set in the spa
e of the variables (s, z,∆, w,Γ, π) de�ned by
onditions
• (7.61)�(7.66),
• (7.67) for i ∈ I1,
• (7.69) for i ∈ I2,
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• (7.74).Proposition 7.26 The polyhedron conv(2CAP ) is the proje
tion of conv(X) onto the spa
eof the variables (s, z).Proof. The proof is similar to that given in Se
tion 7.1 for the mixing set with divisible
apa
ities (see Proposition 7.12). The only di�eren
e is that now there is one more extremeray, namely the ve
tor de�ned by setting s := 1, zi := 1/C1 for i ∈ I1 and zi := 1/C2 for

i ∈ I2. �By the above proposition, in order to give an extended formulation of conv(2CAP ) wehave to �nd a linear inequality des
ription of conv(X).7.2.4 Strengthening the 
onstraintsLemma 7.27 The following inequalities are valid for (7.61)�(7.66) and dominate (7.65):
C1−1∑

j=−ℓ+1

∑

t∈J1

wj
t +

∑

t∈J1:
f0(bt)≥f0(bi)

w−ℓ
t ≥

ℓ−1∑

j=−C1+1

∑

t∈J2

πj
t +

∑

t∈J2:
f0(bt)≥f0(bi)

πℓ
t , i ∈ J2, −C1 + 1 ≤ ℓ ≤ 0.(7.75)Proof. Fix −C1 + 1 ≤ ℓ ≤ 0 and i ∈ J2. De�ne

L := {(λ, τ) ∈ {−C1 − 1, . . . , 0} × J2 : either λ ≤ ℓ− 1, or λ = ℓ− 1 and f0(bτ ) ≥ f0(bi)}.Inequality (7.75) 
an be derived by applying the Chvátal-Gomory pro
edure to the following
|L| + 1 inequalities, whi
h are all valid for (7.61)�(7.66):

C1−1∑

j=−λ+1

∑

t∈J1

wj
t +

∑

t∈J1:
f0(bt)≥f0(bτ )

w−λ
t ≥ πλ

τ , (λ, τ) ∈ L, (7.76)
1 ≥

ℓ−1∑

j=−C1+1

∑

t∈J2

πj
t +

∑

t∈J2:
f0(bt)≥f0(bi)

πℓ
t , (7.77)with multipliers 1/|L| for ea
h of inequalities (7.76) and 1 − 1/|L| for inequality (7.77). �7.2.5 The extended formulationWe show here the main result of the se
tion. The proofs are similar to those of Se
tion 7.1.6.Let P be the polyhedron in the spa
e of the variables (s, z,∆, w,Γ, π) de�ned by thefollowing linear equations and inequalities:

• (7.61)�(7.64),
• (7.67) for i ∈ I1,
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• (7.69) for i ∈ I2,
• (7.74) and (7.75).Note that if we divide equation (7.62) by C1, all 
oe�
ients remain integer and the 
oe�
ientof ∆ be
omes 1. We denote by Ax ∼ b the linear system 
omprising the above equations andinequalities, where equation (7.62) has been divided by C1.Lemma 7.28 Let M be the submatrix of A indexed by the 
olumns 
orresponding to variables

w, π and the rows 
orresponding to 
onstraints (7.63)�(7.64) and (7.75). The matrix M istotally unimodular.Proof. We use the 
hara
terization of Ghouila-Houri [26℄ des
ribed in Se
tion 1.3.2. We orderthe rows 
orresponding to inequalities (7.75) a

ording �rstly to a de
reasing order of index ℓand se
ondly to a non-de
reasing order of f0(bi). Note that with su
h an ordering, the supportof any row, say the j-th row, 
ontains that of the (j + 1)-th row (in other words, the rowsform a laminar family).We now give an equitable bi
oloring to the rows of M : we assign 
olor red to the rows 
or-responding to equations (7.63)�(7.64) and then alternate the 
olors starting with blue. Sin
eevery submatrix of M has the same stru
ture as M itself, this proves that every submatrixof M admits an equitable bi
oloring of its rows and thus, by Theorem 1.14, M is totallyunimodular. �Theorem 7.29 If x̄ = (s̄, z̄, ∆̄, w̄, Γ̄, π̄) is a vertex of P then (z̄, ∆̄, w̄, Γ̄, π̄) is an integralve
tor.Proof. Note that the 
olumns of A 
orresponding to variables s and zi for i ∈ I1 ∪ I2 areunit 
olumns (as s only appears in equation (7.61) and ea
h variable zi only appears in oneof (7.67), (7.69)).In the subsystem of Ax ∼ b 
omprising inequalities (7.62)�(7.64), (7.74) and (7.75) (i.e.with (7.61), (7.67) and (7.69) removed) variables ∆,Γ appear with nonzero 
oe�
ient only inequations (7.62) and (7.74). Furthermore the submatrix of A indexed by the rows 
orrespond-ing to (7.62), (7.74) and the 
olumns 
orresponding to variables ∆,Γ is an upper triangularmatrix with 1 on the diagonal.Let Cx = d be a nonsingular subsystem of tight inequalities taken in Ax ∼ b that de�nesa vertex x̄ = (s̄, z̄, ∆̄, w̄, Γ̄, π̄) of P . The above observations show that (7.61)�(7.62), (7.67),(7.69) or (7.74) must be present in this subsystem. Furthermore let C ′ be the submatrix of Cindexed by the 
olumns 
orresponding to variables w, π and the rows that do not 
orrespond to(7.61)�(7.62), (7.67), (7.69) and (7.74). Then the 
omputation of a determinant with Lapla
eexpansion shows that |det(C)| = |det(C ′)| 6= 0.Sin
e C ′ is a submatrix of the matrix M de�ned in Lemma 7.28 and C ′ is nonsingular,then |det(C)| = |det(C ′)| = 1. Sin
e all entries of A (ex
ept those 
orresponding to equa-tion (7.61)) are integer and the right-hand side ve
tor b is integral, by Cramer's rule we havethat (z̄, ∆̄, w̄, Γ̄, π̄) is an integral ve
tor. �



146 Chapter 7. Extension to simple non dual network setsCorollary 7.30 The linear inequalities of the system Ax ∼ b de�ning P 
onstitute an ex-tended formulation of conv(2CAP ) with O(nC1) variables and 
onstraints, where n := |I1| +

|I2|.Proof. The proof is identi
al to that of Corollary 7.16. �The extended formulation 
onstru
ted here is only pseudo-polynomial, as it depends onthe value C1. Note however that the size of the formulation is independent of the value C2.It was re
ently proven by Zhao and de Farias [73℄ that linear optimization over the set 2CAP
an be 
arried out in polynomial time, but it is not known whether there exists a 
ompa
textended formulation of conv(2CAP ). Also, it seems hard to extend the above 
onstru
tionto the 
ase of three 
apa
ities.We �nally remark that the proofs of both Theorem 7.29 above and Theorem 7.15 inSe
tion 7.1.6 exploit the fa
t that ea
h integer variable appears in a single 
onstraint. We donot know how to deal with a more general mixed-integer set of the form
sj + Ckzi ≥ bji, 1 ≤ j ≤ q, i ∈ Ik, 0 ≤ k ≤ m,

blj ≤ sj ≤ buj
, 1 ≤ j ≤ q,

zi integer, i ∈ I0 ∪ · · · ∪ Im,where either the 
apa
ities are divisible or take few values. In the 
ase C0 = · · · = Cm = 1 theabove is a set of the type MIX2TU for whi
h an extended formulation was given by Millerand Wolsey [45℄ (when there are no upper bounds buj
).



Chapter 8A di�erent te
hniqueThe approa
h to 
onstru
t extended formulations introdu
ed in Chapter 2 is based on theexpli
it enumeration of all the fra
tional parts that the variables take over the verti
es ofthe 
onvex hull of the set. The extension dis
ussed in Chapter 7 is based on a re�nement ofthe same te
hnique, due to the presen
e of several distin
t 
oe�
ients in the 
onstraints thatde�ne the set.We explore here another way of 
onstru
ting a formulation of a mixed-integer set eitherin the original spa
e or in an extended spa
e. No expli
it enumeration of fra
tional parts orother numbers is required (ex
ept possibly in the �nal phase of the pro
ess). We adopted thiste
hnique to formulate two spe
i�
 sets, but we 
ould not determine a 
lass of mixed-integersets for whi
h this approa
h 
an be used.Both mixed-integer sets 
onsidered here have been already dis
ussed in this thesis: one isthe mixing set with �ows (Se
tions 4.2.2 and 5.3), the other is the 
ontinuous mixing set with�ows (Se
tion 4.2.1). We observed in Chapter 4 that ea
h of these sets is equivalent to a dualnetwork set and therefore admits an extended formulation of the type presented in Chapter 2.We also 
omputed the proje
tion of the extended formulation of the mixing set with �ows,thus obtaining a linear inequality des
ription in the original spa
e (Chapter 5).We re
onsider here the above two sets and we give formulations for them by using a
ommon approa
h, whi
h is summarized below.We �rst re
all a well-known fa
t. Let X be a mixed-integer set. Suppose that there exista mixed-integer set Z and a polyhedron P su
h that X = Z ∩ P . It is easy to see that then
conv(X) ⊆ conv(Z) ∩ P, (8.1)but equality does not hold in general.To des
ribe the 
ommon approa
h used for the two sets, we let X denote any of the twosets.Step 1. The �rst step of our pro
ess is writing X = Z ∩ P for some mixed-integer set Z andsome polyhedron P that is des
ribed by a simple linear system.Step 2. Next we prove that for this parti
ular 
hoi
e of Z and P , equality holds in (8.1).147



148 Chapter 8. A different te
hniqueStep 3. We introdu
e another mixed-integer set Y and prove that the polyhedra conv(Z) and
conv(Y ) are in a one-to-one 
orresponden
e via an a�ne transformation.Step 4. The �nal step is to give a formulation of conv(Y ) either in the original spa
e or in anextended spa
e. In the former 
ase we immediately derive a formulation of conv(Z),and thus of conv(X) = conv(Z)∩P , in its original spa
e; in the latter 
ase an extendedformulation is obtained.The 
ru
ial point is proving that equality holds in (8.1). This will be done by using apolyhedral result that we introdu
e in Se
tion 8.1.The �nal step is di�erent for the two sets. In the 
ase of the mixing set with �ows(Se
tion 8.2) we give a formulation of Y both in the original spa
e and in an extended spa
e,thus both kinds of des
ription are also obtained for X �the mixing set with �ows itself. Forthe 
ontinuous mixing set with �ows (Se
tion 8.3) only extended formulations are given.The results of this 
hapter are joint work with Mi
hele Conforti and Lauren
e A. Wolsey,and also appear in [13, 12℄.8.1 Some equivalen
es of polyhedraStep 2 of the pro
ess des
ribed above will be possible thanks to a result on the equivalen
e ofpolyhedra that we introdu
e here.For a nonempty polyhedron P in R

n and a ve
tor α ∈ R
n, de�ne µP (α) := min{αx :

x ∈ P} and let MP (α) be the fa
e {x ∈ P : αx = µP (α)}, where MP (α) = ∅ whenever
µP (α) = −∞.Lemma 8.1 Let P ⊆ Q be two nonempty polyhedra in R

n and let α be a nonzero ve
tor in
R

n. Then the following 
onditions are equivalent:(i) µP (α) = µQ(α);(ii) MP (α) ⊆MQ(α).Proof. Suppose µP (α) = µQ(α). Sin
e P ⊆ Q, every point in MP (α) belongs to MQ(α). Soif (i) holds, then (ii) holds as well. The 
onverse is obvious. �Lemma 8.2 Let P ⊆ Q be two nonempty polyhedra in R
n, where P is not an a�ne variety.Suppose that for every inequality αx ≥ β that is fa
et-indu
ing for P , at least one of thefollowing holds:(i) µP (α) = µQ(α);(ii) MP (α) ⊆MQ(α).Then P = Q.



8.1. Some equivalen
es of polyhedra 149Proof. We prove that ifMP (α) ⊆MQ(α) for every inequality αx ≥ β that is fa
et-indu
ing for
P , then every fa
et-indu
ing inequality for P is a valid inequality for Q and every hyperplane
ontaining P also 
ontains Q. This shows that Q ⊆ P and therefore P = Q. By Lemma 8.1,the 
onditions µP (α) = µQ(α) and MP (α) ⊆MQ(α) are equivalent and we are done.Let αx ≥ β be a fa
et-indu
ing inequality for P . Sin
e MP (α) ⊆ MQ(α), then β =

µP (α) = µQ(α) and αx ≥ β is an inequality whi
h is valid for Q.Now let γx = δ be a hyperplane 
ontaining P . If Q 6⊆ {x : γx = δ}, then there exists
x̄ ∈ Q su
h that γx̄ 6= δ. We assume without loss of generality σ = γx̄ − δ > 0. Sin
e P isnot an a�ne variety, there exists an inequality αx ≥ β whi
h is fa
et-indu
ing for P (and soit is valid for Q). Then, for λ > 0 the inequality (λα − γ)x ≥ λβ − δ is also fa
et-indu
ingfor P , so it is valid for Q. Choosing λ > 0 su
h that λ(αx̄ − β) < σ gives a 
ontradi
tion, as
(λα− γ)x̄ = λαx̄− γx̄ < λβ + σ − γx̄ = λβ − δ. �If P is not full-dimensional, for ea
h fa
et F of P there are in�nitely many distin
t inequal-ities that de�ne F (two inequalities are distin
t if their asso
iated half-spa
es are distin
t: thatis, if one is not a positive multiple of the other). Observe that the hypotheses of the lemmamust be veri�ed for all distin
t fa
et-de�ning inequalities (not just one fa
et-de�ning inequal-ity for ea
h fa
et), otherwise the result is false. For instan
e, 
onsider the polyhedra

P = {(x, y) : 0 ≤ x ≤ 1, y = 0} ⊂ Q = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}The hypotheses of Lemma 8.2 are satis�ed for the inequalities x ≥ 0 and x ≤ 1, whi
h de�neall the fa
ets of P .Also note that the assumption that P is not an a�ne variety 
annot be removed: indeed,in su
h a 
ase P does not have proper fa
es, so the hypotheses of the lemma are triviallysatis�ed, even if P 6= Q.Corollary 8.3 Let P ⊆ Q be two pointed polyhedra in R
n, with the property that every vertexof Q belongs to P . Let Cx ≥ d be a system of inequalities that are valid for P su
h thatfor every inequality γx ≥ δ of the system, P 6⊆ {x ∈ R

n : γx = δ}. If for every α ∈ R
nsu
h that µP (α) is �nite but µQ(α) = −∞, Cx ≥ d 
ontains an inequality γx ≥ δ su
h that

MP (α) ⊆ {x ∈ R
n : γx = δ}, then P = Q ∩ {x ∈ R

n : Cx ≥ d}.Proof. We �rst show that dim(P ) = dim(Q). If not, there exists a hyperplane αx = β
ontaining P but not Q. Without loss of generality we 
an assume that µQ(α) < β = µP (α).So µQ(α) = −∞, otherwise there would exist an α-optimal vertex x̄ of Q su
h that αx̄ < β,
ontradi
ting the fa
t that x̄ ∈ P . Now the system Cx ≥ d must 
ontain an inequality γx ≥ δsu
h that P = MP (α) ⊆ {x ∈ R
n : γx = δ}, a 
ontradi
tion to the hypotheses of the 
orollary.Let Q′ = Q ∩ {x ∈ R

n : Cx ≥ d}. Note that P ⊆ Q′ ⊆ Q, thus dim(P ) = dim(Q′) =

dim(Q). Let αx ≥ β be a fa
et-indu
ing inequality for P . If µQ(α) is �nite, then Q 
ontains an
α-optimal vertex whi
h is in P and therefore β = µP (α) = µQ′(α) = µQ(α). If µQ(α) = −∞,the system Cx ≥ d 
ontains an inequality γx ≥ δ su
h that MP (α) ⊆ {x ∈ R

n : γx = δ} and
P 6⊆ {x ∈ R

n : γx = δ}. It follows that γx ≥ δ is a fa
et-indu
ing inequality for P and thatit de�nes the same fa
et of P as αx ≥ β (that is, MP (α) = MP (γ)). This means that there
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hniqueexist ν > 0, a ve
tor λ and a system Ax = b whi
h is valid for P su
h that γ = να+ λA and
δ = νβ + λb. Sin
e dim(P ) = dim(Q′) and P ⊆ Q′, the system Ax = b is valid for Q′, as well.As γx ≥ δ is also valid for Q′, it follows that αx ≥ β is valid for Q′ (be
ause α = 1

ν
γ − λ

ν
Aand β = 1

ν
δ − λ

ν
b). Therefore β = µP (α) = µQ′(α).Thus in all 
ases µP (α) = µQ′(α). Now assume that P 
onsists of a single point and P 6= Q.Then Q is a 
one having P as apex. Given a ray α of Q, µP (α) is �nite while µQ(α) = −∞,so the system Cx ≥ d 
ontains an inequality γx ≥ δ su
h that P ⊆ {x ∈ R

n : γx = δ},a 
ontradi
tion. So we 
an assume that P is not a single point and thus P is not an a�nevariety, as it is pointed. Now we 
an 
on
lude by applying Lemma 8.2 to the polyhedra Pand Q′. �We remark that in the statement of Corollary 8.3 the 
ondition that the two polyhedraare pointed is not ne
essary: if we repla
e the property �every vertex of Q belongs to P � with�every minimal fa
e of Q belongs to P �, the proof needs a very slight modi�
ation to remainvalid. (However, in this 
ase we should assume that P is not an a�ne variety, so that we 
anapply Lemma 8.2 in the proof.)We also observe that the 
ondition �for every inequality γx ≥ δ of the system, P 6⊆ {x ∈

R
n : γx = δ}� is indeed ne
essary. For instan
e, 
onsider the polyhedra

P = {(x, y) : 0 ≤ x ≤ 1, y = 0} ⊂ Q = {(x, y) : x ≥ 0, y = 0}and the system 
onsisting of the single inequality y ≥ 0.8.2 The mixing set with �owsIn this se
tion we re
onsider the mixing set with �ows introdu
ed in Se
tion 4.2.2:
s+ yi ≥ bi, 1 ≤ i ≤ n, (8.2)
yi ≤ zi, 1 ≤ i ≤ n, (8.3)

s ≥ 0, yi ≥ 0, 1 ≤ i ≤ n, (8.4)
zi integer, 1 ≤ i ≤ n, (8.5)where we assume without loss of generality 0 ≤ b1 ≤ · · · ≤ bn. We denote the above set by

XMF .The original motivation for studying XMF was to generalize the mixing set XMIX

s+ zi ≥ bi, 1 ≤ i ≤ n,

s ≥ 0,

zi integer, 1 ≤ i ≤ n,by introdu
ing the 
ontinuous (�ow) variables x (see also Se
tion 4.2). However the mixing setwith �ows is also 
losely related to two lot-sizing models, as explained in Se
tions 4.2.1�4.2.2.A linear inequality des
ription of the 
onvex hull ofXMF in its original spa
e was 
omputedin Se
tion 5.3 by proje
ting an extended formulation of the set. In this se
tion we obtain a
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ription of conv
(
XMF

) both in the original spa
e and in an extendedspa
e by using the approa
h summarized in Steps 1�4 above.Steps 1�2 are performed in Se
tion 8.2.1, while Steps 3�4 are the subje
t of Se
tion 8.2.2.We 
on
lude in Se
tion 8.2.3 by studying a mixed-integer set that is 
losely related to XMF .8.2.1 A relaxationWe introdu
e a mixed-integer set Z whi
h is the following relaxation of the set XMF :
s+ zi ≥ bi, 1 ≤ i ≤ n, (8.6)

s+ yj + zi ≥ bi, 1 ≤ j < i ≤ n, (8.7)
s+ yi ≥ bi, 1 ≤ i ≤ n, (8.8)
s ≥ 0, zi ≥ 0, 1 ≤ i ≤ n, (8.9)
zi integer, 1 ≤ i ≤ n. (8.10)Note that variables yi are not required to take a nonnegative value in Z.The following easy lemma 
onstitutes Step 1 of the pro
ess.Lemma 8.4 Let XMF and Z be de�ned on the same ve
tor b. Then XMF = Z ∩ {(s, y, z) :

0 ≤ y ≤ z}.Proof. Observe that for (s, y, z) ∈ XMF , s + zi ≥ s + yi ≥ bi holds, so s + zi ≥ bi is a validinequality for XMF . Also, inequalities s + zi ≥ bi and yj ≥ 0 imply that s + yj + zi ≥ bi isvalid for XMF . Inequalities zi ≥ 0 follow from yi ≥ 0 and yi ≤ zi. This proves that Z is arelaxation of XMF .The only inequalities that de�ne XMF but do not appear in the de�nition of Z are theinequalities 0 ≤ y ≤ z, thus XMF = Z ∩ {(s, y, z) : 0 ≤ y ≤ z}. �We prove here that conv
(
XMF

)
= conv(Z) ∩ {(s, y, z) : 0 ≤ y ≤ z} (Step 2). To do this,we need to establish some properties of the polyhedra conv

(
XMF

) and conv(Z). We start by
hara
terizing their extreme rays. In the following ej denotes the n-dimensional ve
tor with 1in the �rst 
omponent and 0 elsewhere, while 1 is the n-dimensional all-one ve
tor.Lemma 8.5 The extreme rays (s, y, z) of conv
(
XMF

) are the following 2n+ 1 ve
tors:
(1,0,0), (0,0, ej) for 1 ≤ j ≤ n, (0, ej , ej) for 1 ≤ j ≤ n.The extreme rays (s, y, z) of conv(Z) are the following 2n + 1 ve
tors:
(1,−1,0), (0,0, ej) for 1 ≤ j ≤ n, (0, ej ,0) for 1 ≤ j ≤ n.Proof. Sin
e the left-hand sides of inequalities (8.2)�(8.5) and (8.6)�(8.10) have integer 
oef-�
ients, the re
ession 
ones of XMF and Z 
oin
ide with the re
ession 
ones of their linearrelaxations (Theorem 1.8). One 
an 
he
k that the extreme rays of su
h relaxations are thoselisted above. �
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hniqueCorollary 8.6 The polyhedra conv
(
XMF

) and conv(Z) are full-dimensional.Proof. One 
an 
he
k that the extreme rays of conv
(
XMF

) (resp. conv(Z)) listed above arelinearly independent. This shows that the re
ession 
one of conv
(
XMF

) (resp. conv(Z)) isfull-dimensional and the 
on
lusion follows. �The following observation is easy.Lemma 8.7 Let (s̄, ȳ, z̄) be a vertex of conv(Z) and let 1 ≤ j ≤ n. Then
s̄ = max







0,

bi − z̄i, 1 ≤ i ≤ n,

bi − ȳi, 1 ≤ i ≤ n,

bi − z̄i − ȳj, 1 ≤ j < i ≤ n







, ȳj = max

{

bj − s̄,

bi − s̄− z̄i, j < i ≤ n

}

.Proof. If s̄ is not as above then there exists ε 6= 0 su
h that both points (s̄ ± ε, ȳ, z̄) satisfy
onditions (8.6)�(8.10), whi
h 
ontradi
t the fa
t that (s̄, ȳ, z̄) is a vertex of conv(Z). For ȳjthe proof is similar. �The following result is 
ru
ial for proving that conv
(
XMF

)
= conv(Z) ∩ {(s, y, z) : 0 ≤

y ≤ z}.Lemma 8.8 Let (s̄, ȳ, z̄) be a vertex of conv(Z). Then 0 ≤ ȳ ≤ z̄.Proof. Assume ȳk < 0 for some index k. Then s̄ > 0, otherwise, if s̄ = 0, the 
onstraints
s+ yk ≥ bk and bk ≥ 0 would imply ȳk ≥ 0.We now 
laim that there is an index 1 ≤ i ≤ n su
h that s̄ = bi − z̄i. If not, s̄ > bi − z̄ifor 1 ≤ i ≤ n and there exists ε 6= 0 su
h that (s̄, ȳ, z̄) ± ε(1,−1,0) belong to conv(Z), a
ontradi
tion.So there is an index 1 ≤ i ≤ n su
h that s̄ = bi − z̄i > 0. Sin
e bi − z̄i ≥ bi − z̄i − ȳj for
1 ≤ j < i, this implies ȳj ≥ 0 for 1 ≤ j < i. Lemma 8.7 also implies bi − z̄i ≥ bj − ȳj for
1 ≤ j ≤ n. Together with z̄i ≥ 0 and bi ≤ bj for j ≥ i, this implies ȳj ≥ z̄i ≥ 0 for j ≥ i. This
ompletes the proof that ȳ ≥ 0.Now assume ȳj > z̄j for some index j. Then z̄j ≥ 0 implies ȳj > 0. Assume ȳj = bj − s̄.Then inequality s̄ + z̄j ≥ bj implies that ȳj ≤ z̄j, a 
ontradi
tion. Therefore by Lemma 8.7,
ȳj = bi − s̄− z̄i for some i > j. Sin
e ȳj > 0, then bi − s̄− z̄i > 0, a 
ontradi
tion to s̄+ z̄i ≥ bi.This shows that ȳ ≤ z̄. �We 
an now prove the main theorem of this subse
tion:Theorem 8.9 Let XMF and Z be de�ned on the same ve
tor b. Then conv

(
XMF

)
=

conv(Z) ∩ {(s, y, z) : 0 ≤ y ≤ z}.
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(
XMF

) and
conv(Z) and the system 0 ≤ y ≤ z. To do this, we show that the hypotheses of that 
orollaryare satis�ed.By Lemma 8.4, conv

(
XMF

)
⊆ conv(Z). By Lemmas 8.8 and 8.4, every vertex of conv(Z)belongs to conv

(
XMF

).Let α = (h, p, q), with h ∈ R, p ∈ R
n, q ∈ R

n, be su
h that µconv(XMF )(α) is �nite and
µconv(Z)(α) = −∞. Sin
e by Lemma 8.5, the extreme rays of conv(Z) that are not rays of
conv

(
XMF

) are (0, ej ,0) for 1 ≤ j ≤ n and (1,−1,0), then either pj < 0 for some index j or
h <

∑n
i=1 pi. Also note that h ≥ 0, as otherwise µconv(XMF )(α) = −∞ be
ause of ray (1,0,0).If pj < 0 for some index j, then Mconv(XMF )(α) ⊆ {(s, y, z) : yj = zj}.If h <∑n

i=1 pi, let N+ := {i : pi > 0}. We 
an assume that N+ 6= ∅: if not, either thereis an index j su
h that pj < 0 (and we are in the previous 
ase) or pj = 0 for all 1 ≤ j ≤ n,in whi
h 
ase we have h < 0, 
ontradi
ting our assumption h ≥ 0. Thus N+ 6= ∅ and we
an safely de�ne j := min{i : i ∈ N+}. We show that Mconv(XMF )(α) ⊆ {(s, y, z) : yj = 0}.Suppose that yj > 0 in some optimal solution. As the solution is optimal and pj > 0, we
annot just de
rease the variable yj and remain feasible. Thus s + yj = bj, hen
e s < bj.However this implies that for all i ∈ N+, we have yi ≥ bi − s > bi − bj ≥ 0 as i ≥ j. Now as
yi > 0 for all i ∈ N+, we 
an in
rease s by ε > 0 and de
rease yi by ε for all i ∈ N+. Thenew point is feasible in XMF and has lower obje
tive value, a 
ontradi
tion.Therefore we have shown that for every ve
tor α su
h that µconv(XMF )(α) is �nite and
µconv(Z)(α) = −∞, the system 0 ≤ y ≤ z 
ontains an inequality whi
h is tight for the pointsin Mconv(XMF )(α). To 
omplete the proof, note that sin
e conv

(
XMF

) is full-dimensional(Corollary 8.6), the system 0 ≤ y ≤ z does not 
ontain an inequality de�ning an improperfa
e of conv
(
XMF

). So we 
an now apply Corollary 8.3 to the polyhedra conv
(
XMF

) and
conv(Z) and the system 0 ≤ y ≤ z. �8.2.2 The interse
tion setWe now 
ome to Step 3 of the pro
ess des
ribed at the beginning of the 
hapter. In this stepa new mixed-integer set Y is introdu
ed, whi
h in our 
ase is the interse
tion set :1

σj + zi ≥ bi − bj , 0 ≤ j < i ≤ n, (8.11)
σj ≥ 0, zi ≥ 0, 0 ≤ j ≤ n, 1 ≤ i ≤ n, (8.12)
zi integer, 1 ≤ i ≤ n, (8.13)where 0 := b0 ≤ b1 ≤ . . . ≤ bn.Note that Y is the interse
tion of the following n+1 mixing setsXMIX

j (with nonnegativitybounds on the integer variables), ea
h one asso
iated with a distin
t variable σj (in the
onstraints below j is a �xed index in {0, . . . , n}):
σj + zi ≥ bi − bj, j < i ≤ n,

σj ≥ 0, zi ≥ 0, j < i ≤ n,

zi integer, j < i ≤ n.1Note that this is not the same set as the interse
tion set de�ned in Se
tion 4.3.
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hniqueThe theorem below shows that the polyhedra conv(Z) and conv(Y ) are equivalent via ana�ne transformation (Step 3).Theorem 8.10 Let Z and Y be de�ned on the same ve
tor b. The a�ne transformation
σ0 := s; σi := s+ yi − bi, zi := zi for 1 ≤ i ≤ n (8.14)maps conv(Z) into conv(Y ).Proof. It is straightforward to 
he
k that (8.14) transforms the inequalities in (8.6)�(8.10) intothe inequalities in (8.11)�(8.13). Sin
e this transformation is a mixed-integer linear mapping(see Se
tion 4.1) plus a translation, the result follows. �An immediate 
onsequen
e is the following:Corollary 8.11 Let XMF and Y be de�ned on the same ve
tor b. The a�ne transforma-tion (8.14) maps conv
(
XMF

) into
conv(Y ) ∩ {(σ, z) : 0 ≤ σi − σ0 + bi ≤ zi for 1 ≤ i ≤ n}.Proof. The result follows from Theorems 8.9 and 8.10. �The above 
orollary shows that an external des
ription of conv

(
XMF

) 
an be obtainedfrom an external des
ription of conv(Y ).Re
all that Y is the interse
tion of n+1 mixing sets de�ned on distin
t 
ontinuous variablesbut sharing some of the integer variables. For the mixing set, both a 
ompa
t extendedformulation and a linear inequality des
ription in the original spa
e are known: the formerwas �rst obtained by Miller and Wolsey [45℄, the latter by Günlük and Po
het [31℄. Bothformulations were illustrated in Chapter 5.The following result of Miller and Wolsey [45℄ shows that the 
onvex hull of the interse
tionset Y is given by the interse
tion of the 
onvex hulls of the single mixing sets.Proposition 8.12 (Miller and Wolsey [45℄) For 1 ≤ j ≤ m, let XMIX
j be a mixing set.Assume that ea
h set XMIX

j is de�ned on a distin
t 
ontinuous variable σj , while some or allinteger variables are in 
ommon. De�ne X∗ :=
⋂m

j=1X
MIX
j . Then

conv(X∗) =

m⋂

j=1

conv
(
XMIX

j

)
.It follows from Corollary 8.11 and Proposition 8.12 that an external des
ription of thepolyhedron conv

(
XMF

) in its original spa
e 
an be obtained by writing the external des
rip-tions of all the polyhedra conv
(
XMIX

j

) together with the inequalities 0 ≤ σi − σ0 + bi ≤ zifor 1 ≤ i ≤ n and then applying the inverse of transformation (8.14). Similarly, a 
ompa
textended formulation of conv
(
XMF

) 
an be obtained by writing the extended formulationsof all the polyhedra conv
(
XMIX

j

) together with the inequalities 0 ≤ σi − σ0 + bi ≤ zi for
1 ≤ i ≤ n and then applying the inverse of transformation (8.14). The resulting extendedformulation uses O(n2

) variables and 
onstraints.
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ontinuous mixing set with �ows 1558.2.3 A variantHere for the purpose of 
omparison we examine the 
onvex hull of a set 
losely related to
XMF . Su
h a set is the relaxation obtained by dropping the nonnegativity 
onstraints on the�ow variables y. The unrestri
ted mixing set with �ows XUMF is the set:

s+ yi ≥ bi, 1 ≤ i ≤ n,

yi ≤ zi, 1 ≤ i ≤ n,

s ≥ 0,

zi integer, 1 ≤ i ≤ n.Its 
onvex hull turns out to be mu
h simpler and in fa
t the unrestri
ted mixing set with �owsand the mixing set are 
losely related.Proposition 8.13 For an unrestri
ted mixing set with �ows XUMF and the mixing set XMIXde�ned on the same ve
tor b,
conv

(
XUMF

)
=
{
(s, y, z) : (s, z) ∈ conv

(
XMIX

)
, bi − s ≤ yi ≤ zi for 1 ≤ i ≤ n

}
.Proof. Let P :=

{
(s, y, z) : (s, z) ∈ conv

(
XMIX

)
, bi − s ≤ yi ≤ zi for 1 ≤ i ≤ n

}. The in
lu-sion conv(XUMF ) ⊆ P is obvious. In order to show that P ⊆ conv
(
XUMF

), we prove thatthe extreme rays (resp. verti
es) of P are rays (resp. feasible points) of conv
(
XUMF

).The 
one {(s, y, z) ∈ R+ × R
n × R

n
+ : −s ≤ yi ≤ zi, 1 ≤ i ≤ n} is the re
ession 
one ofboth P and conv

(
XUMF

), thus P and conv
(
XUMF

) have the same rays.We now prove that if (s̄, ȳ, z̄) is a vertex of P , then (s̄, ȳ, z̄) belongs to conv
(
XUMF

). It issu�
ient to show that z̄ is integer. We do so by proving that (s̄, z̄) is a vertex of conv
(
XMIX

).If not, there exists a nonzero ve
tor (u,w) ∈ R × R
n su
h that (s̄, z̄) ± (u,w) ∈ conv

(
XMIX

)and wi = −u whenever z̄i = bi − s̄. De�ne a ve
tor v ∈ R
n as follows: If ȳi = bi − s̄, set

vi = −u and if ȳi = z̄i, set vi = wi. (Sin
e ȳi satis�es at least one of these two equations,this assignment is indeed possible). It is now easy to 
he
k that, for ε > 0 su�
iently small,
(s̄, ȳ, z̄)±ε(u, v,w) ∈ P , a 
ontradi
tion. Therefore (s̄, z̄) is a vertex of conv

(
XMIX

) and thus
(s̄, z̄) ∈ XMIX . Then (s̄, ȳ, z̄) ∈ XUMF and the result is proven. �8.3 The 
ontinuous mixing set with �owsIn this se
tion we re
onsider the 
ontinuous mixing set with �ows introdu
ed in Se
tion 4.2.1:

s+ ri + yi ≥ bi, 1 ≤ i ≤ n,

yi ≤ zi, 1 ≤ i ≤ n,

s ≥ 0, ri ≥ 0, yi ≥ 0, 1 ≤ i ≤ n,

zi integer, 1 ≤ i ≤ n,where we assume without loss of generality 0 ≤ b1 ≤ · · · ≤ bn (as all variables are nonnegative).We write XCMF to denote this mixed-integer set.
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hniqueThe pra
ti
al usefulness of XCMF in lot-sizing problems was dis
ussed in Se
tion 4.2.1,where we showed that the 
onvex hull of this set 
an be transformed into a dual network setand thus admits a 
ompa
t extended formulation (Proposition 4.4). We propose here somedi�erent 
ompa
t extended formulations of the polyhedron conv
(
XCMF

) that are derived byusing the approa
h sket
hed in Steps 1�4 at the beginning of this 
hapter.For the set XCMF studied here, the set Y of Steps 3�4 is an instan
e of the di�eren
eset de�ned in Se
tion 4.3.1. We propose three 
ompa
t extended formulations for the 
onvexhull of this set and therefore we obtain three di�erent 
ompa
t extended formulations of thepolyhedron conv
(
XCMF

). All formulations derived here are less 
ompa
t than that givenin Se
tion 4.2.1. However the existen
e of a 
ompa
t extended formulation of conv
(
XCMF

)was �rst proven by using the approa
h presented here, when the generality of the results ofChapter 2 was not 
lear.Steps 1�2 of the pro
ess des
ribed at the beginning of the 
hapter are performed in Se
-tion 8.2.1, while Steps 3�4 are the subje
t of Se
tion 8.2.2.8.3.1 A relaxationWe introdu
e a mixed-integer set Z whi
h is the following relaxation of the set XCMF :
s+ ri + zi ≥ bi, 1 ≤ i ≤ n, (8.15)

s+ rj + yj + ri + zi ≥ bi, 1 ≤ j < i ≤ n, (8.16)
s+ ri + yi ≥ bi, 1 ≤ i ≤ n, (8.17)

s ≥ 0, ri ≥ 0, zi ≥ 0, 1 ≤ i ≤ n, (8.18)
zi integer, 1 ≤ i ≤ n. (8.19)Note that variables yi are not required to take a nonnegative value in Z.The following lemma 
onstitutes Step 1 of the pro
ess:Lemma 8.14 Let XCMF and Z be de�ned on the same ve
tor b. Then XCMF = Z ∩

{(s, r, y, z) : 0 ≤ y ≤ z}.Proof. Observe that for (s, y, r, z) ∈ XMF , s+ri+zi ≥ s+ri+yi ≥ bi holds, so s+ri+zi ≥ biis a valid inequality for XCMF . Also, inequalities s + ri + zi ≥ bi and yj, rj ≥ 0 imply that
s+ rj + yj + ri + zi ≥ bi is valid for XCMF . Inequalities zi ≥ 0 follow from yi ≥ 0 and yi ≤ zi.This proves that Z is a relaxation of XMF .The only inequalities that de�ne XCMF but do not appear in the de�nition of Z are theinequalities 0 ≤ y ≤ z, thus XCMF = Z ∩ {(s, r, y, z) : 0 ≤ y ≤ z}. �Similarly to what we did in Se
tion 8.2.1, we prove here that conv

(
XCMF

)
= conv(Z) ∩

{(s, r, y, z) : 0 ≤ y ≤ z} (Step 2). To do this, we need to establish some properties of thepolyhedra conv
(
XCMF

) and conv(Z). We start by 
hara
terizing their extreme rays.Lemma 8.15 The extreme rays (s, r, y, z) of conv
(
XCMF

) are the following 3n+ 1 ve
tors:
(1,0,0,0); (0, ej ,0,0), (0,0,0, ej), (0,0, ej , ej) for 1 ≤ j ≤ n.
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ontinuous mixing set with �ows 157The extreme rays (s, r, y, z) of conv(Z) are the following 3n+ 1 ve
tors:
(1,0,−1,0); (0,0, ej ,0), (0,0,0, ej), (0, ej ,−ej ,0) for 1 ≤ j ≤ n.Proof. The �rst part is easy. We 
hara
terize the extreme rays of conv(Z). The re
ession
one C of conv(Z) is de�ned by

s+ rj + yj + ri + zi ≥ 0, 1 ≤ j < i ≤ n,

s+ ri + yi ≥ 0, 1 ≤ i ≤ n,

s ≥ 0, ri ≥ 0, zi ≥ 0, 1 ≤ i ≤ n.One 
an verify that the ve
tors ρ := (1,0,−1,0), uj := (0, ej ,−ej ,0), vj := (0,0, ej ,0),
wj := (0,0,0, ej) for 1 ≤ j ≤ n are extreme rays of conv(Z) by 
he
king that ea
h of themsatis�es at equality 3n linearly independent inequalities de�ning C.Thus we only have to show that every ve
tor in C 
an be expressed as 
oni
 
ombinationof the above rays. Let (s̄, r̄, ȳ, z̄) be in C. Note that

(s̄, r̄, ȳ, z̄) = s̄ρ+

n∑

j=1

r̄juj +

n∑

j=1

(s̄+ r̄j + ȳj)vj +

n∑

j=1

z̄jwj.Sin
e (s̄, r̄, ȳ, z̄) ∈ C, all the 
oe�
ients appearing in the above 
ombination are nonnegative.
�Corollary 8.16 The polyhedra conv

(
XCMF

) and conv(Z) are full-dimensional.Proof. One 
an 
he
k that the extreme rays of conv
(
XCMF

) (resp. conv(Z)) listed above arelinearly independent. This shows that the re
ession 
one of conv
(
XCMF

) (resp. conv(Z)) isfull-dimensional and the 
on
lusion follows. �Lemma 8.17 Let (s̄, r̄, ȳ, z̄) be a vertex of conv(Z) and let 1 ≤ j ≤ n. Then
s̄ = max{0; bi − r̄i − z̄i : 1 ≤ i ≤ n},

ȳj = max{bj − s̄− r̄j; bi − s̄− r̄j − r̄i − z̄i : 1 ≤ j < i ≤ n}.Proof. Assume s̄ > 0 and s̄ + r̄i + z̄i > bi for 1 ≤ i ≤ n. Then there exists ε 6= 0 su
h that
(s̄, r̄, ȳ, z̄) ± ε(1,0,−1,0) belong to conv(Z), a 
ontradi
tion. This proves the �rst statement.The se
ond one is obvious. �The following result is 
ru
ial for proving that conv

(
XCMF

)
= conv(Z)∩{(s, r, y, z) : 0 ≤

y ≤ z}.Lemma 8.18 Let (s̄, r̄, ȳ, z̄) be a vertex of conv(Z). Then 0 ≤ ȳ ≤ z̄.
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hniqueProof. Assume that {i : ȳi < 0} 6= ∅ and let h = min{i : ȳi < 0}. Then s̄ + r̄h > bh ≥ 0 andtogether with z̄h ≥ 0, this implies s̄+ r̄h + z̄h > bh.Claim: r̄h > 0.Proof. Assume r̄h = 0. Then s̄ > bh ≥ 0. By Lemma 8.17, s̄ + r̄i + z̄i = bi for some index
i. It follows that s̄ ≤ bi, thus i > h (as bh < s̄ ≤ bi). Equation s̄+ r̄i + z̄i = bi, together with
s̄ + r̄h + ȳh + r̄i + z̄i ≥ bi, gives r̄h + ȳh ≥ 0, thus r̄h > 0, as ȳh < 0, and this 
on
ludes theproof of the 
laim.Inequalities s̄+ r̄h + z̄h > bh and r̄j + ȳj ≥ 0 for 1 ≤ j < h imply s̄+ r̄j + ȳj + r̄h + z̄h > bhfor 1 ≤ j < h.All these observations show the existen
e of an ε 6= 0 su
h that both points (s̄, r̄, ȳ, z̄) ±

ε(0, eh,−eh,0) belong to conv(Z), a 
ontradi
tion to the fa
t that the point (s̄, r̄, ȳ, z̄) is avertex of conv(Z). Thus ȳ ≥ 0.Suppose now that there exists h su
h that ȳh > z̄h. Then 
onstraint s + rh + zh ≥ bhgives s̄ + r̄h + ȳh > bh. Lemma 8.17 then implies that s̄ + r̄h + ȳh + r̄i + z̄i = bi for some
i > h. This is not possible, as inequalities ȳh > z̄h ≥ 0, r̄h ≥ 0 and s̄ + r̄i + z̄i ≥ bi imply
s̄+ r̄h + ȳh + r̄i + z̄i > bi. Thus ȳ ≤ z̄. �We 
an now prove the main theorem of this subse
tion:Theorem 8.19 Let XCMF and Z be de�ned on the same ve
tor b. Then conv

(
XCMF

)
=

conv(Z) ∩ {(s, r, y, z) : 0 ≤ y ≤ z}.Proof. We prove the result by applying Corollary 8.3 to the polyhedra conv
(
XCMF

) and
conv(Z) and the system 0 ≤ y ≤ z. To do this, we show that the hypotheses of that 
orollaryare satis�ed.By Lemma 8.14, conv

(
XCMF

)
⊆ conv(Z). By Lemmas 8.18 and 8.14, every vertex of

conv(Z) belongs to conv
(
XCMF

).Let α = (h, d, p, q), with h ∈ R, d ∈ R
n, p ∈ R

n, q ∈ R
n, be su
h that µconv(XCMF )(α) is�nite and µconv(Z)(α) = −∞. Sin
e by Lemma 8.15, the extreme rays of conv(Z) that are notrays of conv

(
XCMF

) are the ve
tors (0,0, ej ,0) for 1 ≤ j ≤ n, (0, ej ,−ej ,0) for 1 ≤ j ≤ n and
(1,0,−1,0), then either pj < 0 for some index j, or dj < pj for some index j, or h <∑n

i=1 pi.Also note that h ≥ 0, as otherwise µconv(XMF )(α) = −∞ be
ause of ray (1,0,0,0).If pj < 0 for some index j, then Mconv(XCMF )(α) ⊆ {(s, r, y, z) : yj = zj}.If dj < pj for some index j, then Mconv(XCMF )(α) ⊆ {(s, r, y, z) : yj = 0}, otherwise, givenan optimal solution with yj > 0, we 
ould in
rease rj by a small ε > 0 and de
rease yj by ε,thus obtaining a feasible point with lower obje
tive value.If h <∑n
i=1 pi, let N+ := {i : pi > 0}. We 
an assume that N+ 6= ∅: if not, either thereis an index j su
h that pj < 0 (and we are in the �rst 
ase above) or pj = 0 for all 1 ≤ j ≤ n,in whi
h 
ase we have h < 0, 
ontradi
ting our assumption h ≥ 0. Thus N+ 6= ∅ and we 
ansafely de�ne j := min{i : i ∈ N+}. We show that Mconv(XCMF )(α) ⊆ {(s, r, y, z) : yj = 0}.Suppose that yj > 0 in some optimal solution. As the solution is optimal and pj > 0, we
annot just de
rease yj and remain feasible. Thus s+ rj + yj = bj, whi
h implies that s < bj .Then for all i ∈ N+ we have ri + yi ≥ bi − s > bi − bj ≥ 0, as i ≥ j. Sin
e we 
an assume
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di ≥ pi for every i (otherwise we are in the previous 
ase), ri = 0 for every i: if not, 
hosenan index i su
h that ri > 0, one 
an de
rease ri by a small ε > 0 and in
rease yi by ε, thusobtaining a feasible point with lower obje
tive value, a 
ontradi
tion. So ri = 0 for every iand thus, sin
e ri +yi > 0 for all i ∈ N+, we have yi > 0 for all i ∈ N+. Then we 
an in
rease
s by a small ε > 0 and de
rease yi by ε for all i ∈ N+. The new point is feasible in XCMFand has lower obje
tive value, a 
ontradi
tion.Therefore we have shown that for every ve
tor α su
h that µconv(XCMF )(α) is �nite and
µconv(Z)(α) = −∞, the system 0 ≤ y ≤ z 
ontains an inequality whi
h is tight for thepoints in Mconv(XCMF )(α). To 
omplete the proof, sin
e conv

(
XCMF

) is full-dimensional(Corollary 8.16), the system 0 ≤ y ≤ z does not 
ontain an inequality de�ning an improperfa
e of conv
(
XCMF

). So we 
an now apply Corollary 8.3 to the polyhedra conv
(
XCMF

) and
conv(Z) and the system 0 ≤ y ≤ z. �8.3.2 The di�eren
e setWe now arrive to Step 3 of the pro
ess, where a new mixed-integer set Y is introdu
ed. Inour 
ase Y is the di�eren
e set, whi
h was also dis
ussed in Se
tion 4.3:

σj + ri + zi ≥ bi − bj , 0 ≤ j < i ≤ n, (8.20)
σj ≥ 0, ri ≥ 0, zi ≥ 0, 0 ≤ j ≤ n, 1 ≤ i ≤ n, (8.21)

zi integer, 1 ≤ i ≤ n. (8.22)where 0 = b0 ≤ b1 ≤ . . . ≤ bn. Note that this de�nition is equivalent to that given inSe
tion 4.3, be
ause for j ≥ i the 
onstraint σj + ri + zi ≥ bi − bj is redundant (as bj ≥ bi andall variables are nonnegative).The theorem below shows that the polyhedra conv(Z) and conv(Y ) are equivalent via ana�ne transformation (Step 3).Theorem 8.20 Let Z and Y be de�ned on the same ve
tor b. The a�ne transformation
σ0 := s; σi := s+ ri + yi − bi, zi := zi for 1 ≤ i ≤ n (8.23)maps conv(Z) into conv(Y ).Proof. It is straightforward to 
he
k that (8.23) transforms the inequalities in (8.15)�(8.19) intothe inequalities in (8.20)�(8.22). Sin
e this transformation is a mixed-integer linear mapping(see Se
tion 4.1) plus a translation, the result follows. �An immediate 
onsequen
e is the following:Corollary 8.21 Let XCMF and Y be de�ned on the same ve
tor b. The a�ne transforma-tion (8.23) maps conv
(
XCMF

) into
conv(Y ) ∩ {(σ, r, z) : 0 ≤ σi − σ0 − ri + bi ≤ zj for 1 ≤ i ≤ n}.Proof. The result follows from Theorems 8.19 and 8.20. �
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hniqueThe above 
orollary shows that an external des
ription of conv
(
XCMF

) 
an be obtainedfrom an external des
ription of conv(Y ). Unfortunately, the 
onvex hull of a set of the type
Y in its spa
e of de�nition is not known. However there are several ways of giving a 
ompa
textended formulation of conv(Y ) (Step 4).First approa
h: transforming Y into a dual network setRe
all that in Se
tion 4.3 we showed that conv(Y ) admits a 
ompa
t extended formulation, asit 
an be transformed into a dual network set having a short 
omplete list of fra
tional parts.Thus that extended formulation yields a 
ompa
t extended formulation for conv

(
XCMF

).This approa
h might appear quite odd, as the set XCMF itself 
an be transformed into a dualnetwork set, thus it seems more 
onvenient to write the 
orresponding extended formulationdire
tly for su
h set. Nonetheless this approa
h was adopted by Conforti, Di Summa andWolsey [12℄ to provide the �rst 
ompa
t extended formulation for conv
(
XCMF

), when thegenerality of the results of Chapter 2 was not 
ompletely 
lear.Se
ond approa
h: formulating 
onv(Y ) as a union of polyhedraA se
ond possible way of 
onstru
ting a 
ompa
t extended formulation of conv(Y ) 
onsistsin using the approa
h sket
hed in Se
tion 1.5.4, whi
h exploits Balas' result on the union ofpolyhedra (Theorem 1.3). Su
h a te
hnique was used by Atamtürk [2℄ to model a simple setand was dis
ussed and demonstrated in a paper by Conforti and Wolsey [16℄.Enumeration of fra
tional parts is still present in this formulation. However, the fra
tionalparts are listed in a way that is di�erent from that 
onsidered in Chapter 2. To explain this,let us 
onsider the σ-variables. Instead of giving a list of values 
ontaining all the fra
tionalparts taken by the σ-variables over the set of verti
es of conv(Y ), we provide a list of (n+ 1)-dimensional ve
tors F =
{
f1, . . . , fk

} su
h that ea
h vertex (σ̄, r̄, z̄) of conv(Y ) satis�es
(
f(σ̄0), . . . , f(σ̄n)

)
∈ F .Su
h a list is given by the following result:Proposition 8.22 Let (σ̄, r̄, z̄) be a vertex of conv(Y ). Then there exist two indi
es 0 ≤ h ≤

ℓ ≤ n su
h that f(σ̄j) = 0 for h ≤ j ≤ n and f(σ̄j) = f(bℓ − bj) for 0 ≤ j < h.Proof. Let (σ̄, r̄, z̄) be a vertex of conv(Y ), de�ne α := max1≤i≤n{bi − r̄i − z̄i} and let
Tα ⊆ {1, . . . , n} be the subset of indi
es for whi
h this maximum is a
hieved.Claim 1: For ea
h 1 ≤ j ≤ n, σ̄j = max{0, α − bj}.Proof. The inequalities that de�ne Y show that σ̄j ≥ max{0, α−bj}. If σ̄j > max{0, α−bj},then there is an ε > 0 su
h that (σ̄, r̄, z̄) ± ε(ej ,0,0) are both in conv(Y ), a 
ontradi
tion tothe fa
t that (σ̄, r̄, z̄) is a vertex of conv(Y ). This 
on
ludes the proof of the 
laim.De�ne h := min{j : α− bj ≤ 0}. (This minimum is well de�ned: sin
e the only inequalityinvolving σn is σn ≥ 0, 
ertainly σ̄n = 0; then, by Claim 1, α− bn ≤ 0.) Sin
e 0 = b0 ≤ b1 ≤

· · · ≤ bn, Claim 1 shows that σ̄j > 0 for j < h and σ̄j = 0 for j ≥ h and this proves part ofthe proposition. Furthermore σ̄j + r̄i + z̄i = bi − bj for all j < h and i ∈ Tα.
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t that (σ̄, r̄) is a vertex of the polyhedron:
Q :=

{
(σ, r) ∈ R

n+1
+ × R

n
+ : σj + ri ≥ bi − bj − z̄i for 0 ≤ j < i ≤ n

}
.We now 
onsider the following two 
ases:Case 1: α− bh < 0.For j ≥ h, the only inequality that is tight for (σ̄, r̄) and 
ontains σj in its support is σj ≥ 0.For j < h, the only inequalities that are tight for (σ̄, r̄) and 
ontain σj in their support are

σj + ri ≥ bi − bj − z̄i for i ∈ Tα.Let eH be the (n + 1)-ve
tor having the �rst h 
omponents equal to 1 and the others to 0,let eTα be the in
iden
e ve
tor of Tα and assume that r̄i > 0 for all i ∈ Tα. Then the ve
tors
(σ̄, r̄)± ε(eH ,−eTα) for some ε > 0 are both in Q, 
ontradi
ting the fa
t that (σ̄, r̄) is a vertexof Q. So r̄i = 0 for some i ∈ Tα.Case 2: α− bh = 0.Then (σ̄, r̄, z̄) satis�es σ̄h + r̄i + z̄i = bi − bh for all i ∈ Tα. Sin
e σ̄h = 0 and z̄i is integer, then
f(r̄i) = f(bi − bh) for all i ∈ Tα and this 
ompletes the proof of Claim 2.Assume r̄i = 0 for some i ∈ Tα. Sin
e σ̄j + r̄i + z̄i = bi − bj for all j < h and z̄i is aninteger, then f(σ̄j) = f(bi − bj) for all j < h. Note that if i < h then α − bh > 0 and thus(re
alling that i ∈ Tα) bi − r̄i − z̄i − bh > 0, whi
h is not possible as bi ≤ bh and r̄i, z̄i ≥ 0.Thus i ≥ h and the result holds with ℓ = i.If f(r̄i) = f(bi − bh) for all i ∈ Tα, sin
e σ̄j + r̄i + z̄i = bi − bj for all i ∈ Tα and for all
j < h and sin
e z̄ is an integral ve
tor, then f(σ̄j) = f(bh − bj) for all j < h. Then the resultholds with ℓ = h. �A similar result 
an be proven for the variables rt:Proposition 8.23 Let (σ̄, r̄, z̄) be a vertex of conv(Y ). Then there exist two indi
es 0 ≤ ℓ′ ≤

h′ ≤ n su
h that f(r̄i) = 0 for 1 ≤ i ≤ h′ and f(r̄i) = f(bi − bℓ′) for h′ < i ≤ n.Proof. We omit the proof, whi
h is symmetri
 to that of Proposition 8.22. We only remarkthat throughout the proof, the role of a variable σj is now played by the sum ri + zi: forinstan
e, one de�nes α′ := max0≤j≤n{−bj − σ̄j} and then proves that for ea
h 0 ≤ i ≤ n,
r̄i + z̄i = max{0, α′ + bi}. �Let T be the set of quadruples of indi
es τ = (h, ℓ, h′, ℓ′) with 0 ≤ h ≤ ℓ ≤ n and
0 ≤ ℓ′ ≤ h′ ≤ n. For ea
h τ ∈ T , let Y τ be the set of points (σ, r, z) ∈ Y for whi
h thevalues f(σj), f(ri) satisfy the properties of Propositions 8.22�8.23. Note that every vertex of
conv(Y ) belongs to Y τ for some τ ∈ T . Furthermore, it 
an be 
he
ked that the re
ession
one of ea
h polyhedron conv(Y τ ) 
oin
ides with that of conv(Y ). This is su�
ient to seethat conv(Y ) = conv

(⋃

τ∈T Y
τ
). Then, if we give a formulation of conv(Y τ ) for ea
h τ ∈ T ,Balas' result (Theorem 1.3) will provide an extended formulation for conv(Y ).
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hniqueFix τ = (h, ℓ, h′, ℓ′) ∈ T . Sin
e the fra
tional part of ea
h 
ontinuous variable is �xed in
Y τ , we 
an model the 
ontinuous variables as shown below:

σj = µj + f(bℓ − bj), 0 ≤ j ≤ h, (8.24)
σj = µj, h < j ≤ n, (8.25)
ri = νi, 1 ≤ i ≤ h′, (8.26)
ri = νi + f(bi − bℓ′), h′ < i ≤ n, (8.27)
µj, νi integer, 0 ≤ j ≤ n, 1 ≤ i ≤ n. (8.28)Under the above 
onditions, inequalities (8.20)�(8.22) 
an be rewritten as follows:

µj + νi ≥ bi − bj − f(bℓ − bj) − f(bi − bℓ′), 0 ≤ j ≤ h, h′ < i ≤ n, j < i,

µj + νi ≥ bi − bj − f(bℓ − bj), 0 ≤ j ≤ h, 1 ≤ i ≤ h′, j < i,

µj + νi ≥ bi − bj − f(bi − bℓ′), h < j ≤ n, h′ < i ≤ n, j < i,

µj + νi ≥ bi − bj, h < j ≤ n, 1 ≤ i ≤ h′, j < i,

µj ≥ 0, νi ≥ 0, zi ≥ 0, 0 ≤ j ≤ n, 1 ≤ i ≤ n,

zi integer, 1 ≤ i ≤ n.Sin
e the 
onstraint matrix of the above system is totally unimodular and all variables areinteger, the 
onvex hull is obtained by rounding up the right-hand sides and removing theintegrality restri
tions. The resulting linear system, together with equations (8.24)�(8.27)(whi
h de�ne the original variables) is an extended formulation of conv(Y τ ). By applyingBalas'result (Theorem 1.3) we obtain an extended formulation of conv(Y ).Third approa
h: a mixture of the above methodsWhen dis
ussing the �rst approa
h to formulate conv(Y ), we pointed out that Conforti, DiSumma and Wolsey used that te
hnique in [12℄, where the �rst 
ompa
t extended formulationof conv
(
XCMF

) was given. In fa
t that paper des
ribes two 
ompa
t extended formulationsof conv
(
XCMF

). The other formulation was given by using in a sense a mixture of the twoapproa
hes illustrated above, as we now explain.The �rst part of the pro
ess is as in the se
ond approa
h above, ex
ept that only Propo-sition 8.22 is used. More spe
i�
ally, let T be the set of pairs of indi
es τ = (h, ℓ) with
0 ≤ h ≤ ℓ ≤ n. For ea
h τ ∈ T , let Y τ be the set of points (σ, r, z) ∈ Y for whi
h the values
f(σj) for 0 ≤ j ≤ n satisfy the properties of Proposition 8.22. As above, one 
an prove that
conv(Y ) = conv

(⋃

τ∈T Y
τ
). Then, if we give a formulation of conv(Y τ ) for ea
h τ ∈ T , Balas'result (Theorem 1.3) will provide an extended formulation for conv(Y ).Fix τ = (h, ℓ) ∈ T . Sin
e the fra
tional parts of variables σj are �xed in Y τ , we 
an modelthese variables as shown below:

σj = µj + f(bℓ − bj), 0 ≤ j ≤ h, (8.29)
σj = µj , h < j ≤ n, (8.30)
µj integer, 0 ≤ j ≤ n. (8.31)
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onditions, inequalities (8.20)�(8.22) 
an be rewritten as follows:
µj + ri + zi ≥ bi − bj − f(bℓ − bj), 0 ≤ j ≤ h, 0 ≤ j < i ≤ n, (8.32)
µj + ri + zi ≥ bi − bj , h < j ≤ n, 0 ≤ j < i ≤ n, (8.33)
µj ≥ 0, ri ≥ 0, zi ≥ 0, 0 ≤ j ≤ n, 1 ≤ i ≤ n (8.34)
µj, zi integer, 0 ≤ j ≤ n, 1 ≤ i ≤ n. (8.35)In [12℄ the above system is strengthened in a way that is similar to that dis
ussed inChapter 2:2 for ea
h 1 ≤ i ≤ n, a list Fi is given that 
ontains all the fra
tional parts taken byvariable ri over the verti
es of the 
onvex hull of (8.32)�(8.35). In other words, Fi is 
ompletefor the above mixed-integer set with respe
t to variable ri.Lemma 8.24 The list of fra
tional parts Fi := {0, f(bi − bℓ)} ∪ {f(bi − bj) : 0 ≤ j < i} is
omplete for (8.32)�(8.35) with respe
t to variable ri.Proof. First of all note that the fra
tional part of the right-hand side of inequality (8.32) is

f(bi − bℓ). Let (µ̄, r̄, z̄) be a vertex of the 
onvex hull of (8.32)�(8.35). Sin
e µ̄ and z̄ areintegral ve
tors, if f(r̄i) were not in the list Fi de�ned above then both points (µ̄, r̄ ± εei, z̄)would satisfy (8.32)�(8.35) for some ε 6= 0. This 
ontradi
ts the assumption that (µ̄, r̄, z̄) is avertex. �For ea
h index 1 ≤ i ≤ n, de�ne f j
i := f(bi − bj) for 0 ≤ j ≤ i and f i+1

i := f(bi − bℓ), sothat Fi =
{
f0

i , . . . , f
i+1
i

}. We model the r-variables as follows:
ri = νi +

∑i+1
t=0 f

t
i δ

t
i , 1 ≤ i ≤ n, (8.36)

∑i+1
t=0 δ

t
i = 1, δt

i ≥ 0, 1 ≤ i ≤ n, 0 ≤ t ≤ i+ 1, (8.37)
νi, δ

t
i integer, 1 ≤ i ≤ n, 0 ≤ t ≤ i+ 1. (8.38)Under the above 
onditions and using Chvátal-Gomory rounding similarly to what we did inthe proof of Lemma 2.5, inequalities (8.32)�(8.33) be
ome

µj + νi +
∑

t:ft
i ≥f(bi−bℓ)

δt
i + zi ≥ ⌊bi − bj − f(bℓ − bj)⌋ + 1, 0 ≤ j ≤ h, 0 ≤ j < i ≤ n, (8.39)

µj + νi +
∑

t:ft
i ≥f(bi−bj)

δt
i + zi ≥ ⌊bi − bj⌋ + 1, h < j ≤ n, 0 ≤ j < i ≤ n. (8.40)Therefore the set Y τ is des
ribed by 
onditions (8.29)�(8.31), (8.36)�(8.38) and (8.39)�(8.40).Proposition 8.25 The 
onstraint matrix of the system 
omprising inequalities (8.37) and(8.39)�(8.40) is totally unimodular.2In fa
t the set de�ned by (8.32)�(8.35) 
ould be mapped into a dual network set. However we present theresult as in [12℄.
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hniqueProof. Let A be the 
onstraint matrix of the system 
omprising inequalities (8.37) and (8.39)�(8.40). Order the 
olumns of A a

ording to the following ordering of the variables:
µ0, . . . , µn; z1, ν1, δ

1
1 , δ

2
1 ; z2, ν2, δ

1
2 , δ

2
2 , δ

3
2 ; . . . ; zi, νi, δ

1
i , . . . , δ

i+1
i ; . . . ; zn, νn, δ

1
n, . . . , δ

n+1
n .For ea
h row of A, the 1's that appear in a blo
k [zi, νi, δ

1
i , . . . , δ

i+1
i

] are 
onse
utive andstart from the �rst position. Furthermore, for ea
h row of A only one of these blo
ks 
ontainsnonzero elements.Consider an arbitrary 
olumn submatrix of A. We give 
olor red to all the µj (if any) andthen, for ea
h of the blo
ks [zi, νi, δ
1
i , . . . , δ

i+1
i

], we give alternating 
olors, always starting withblue, to the 
olumns of this blo
k that appear in the submatrix. Sin
e this is an equitablebi
oloring, the result of Ghouila-Houri (Theorem 1.14) shows that A is totally unimodular.
�Sin
e ea
h variable σj, ri is de�ned by the 
orresponding equation in (8.29)�(8.30) or (8.36),and does not appear in any other 
onstraint, the above proposition implies that the integralityrequirements 
an be dropped. Thus inequalities (8.29)�(8.30), (8.36)�(8.37) and (8.39)�(8.40)form an extended formulation of conv(Y τ ). By applying Balas'result we obtain an extendedformulation of conv(Y ).To 
on
lude, we point out that ea
h of the three extended formulations of conv

(
XCMF

)dis
ussed here is less 
ompa
t than that given in Se
tion 4.2.1. In parti
ular the formulationobtained here by using the se
ond approa
h is very large, as it uses O
(
n6
) variables and
onstraints.



Chapter 9Open problemsWe 
on
lude this dissertation by addressing some questions that remain unanswered.In Chapter 2 we introdu
ed a te
hnique to 
onstru
t extended formulations for mixed-integer setsMIX2TU whose 
onstraint matrix is totally unimodular and 
ontains at most twononzero entries per row. The te
hnique is based on the expli
it enumeration of all possiblefra
tional parts that the variables take at the verti
es of conv
(
MIX2TU

). As shown in Chap-ter 3, sin
e there exist sets of the typeMIX2TU that do not admit a 
omplete list of fra
tionalparts whose size is 
ompa
t, a formulation of this type might have exponential size.A �rst natural question is then the following: Is it possible to modify our approa
h so thata 
ompa
t extended formulation is obtained even if no 
omplete list for the set is 
ompa
t? A�rst failed attempt was brie�y dis
ussed in Se
tion 2.4.2, but the answer to the above questionis not known.We remark that even if no 
omplete list for the set is 
ompa
t, still we do have an extendedformulation for the set, as Lemma 2.11 provides us with a list whi
h is always 
omplete.Thus we 
an weaken the above question to the following: Is it possible to use our extendedformulation to optimize in polynomial time even if no 
omplete list for the set is 
ompa
t?The inequalities 
onstituting our formulation are expli
itly given. The fa
t that the numberof these inequalities might be exponential is probably a minor issue, thanks to the equivalen
ebetween separation and optimization (Theorem 1.6). The major problem is the fa
t that thenumber of variables 
an be exponentially large with respe
t to the original des
ription of theset. Nonetheless there is mu
h stru
ture in our extended formulation, so there may be a hopeto handle this problem.This thesis 
ontains no 
omputational experiment. However this is also an aspe
t thatshould be explored. As pointed out for instan
e in [70℄, 
ompli
ated mixed-integer sets 
anbe e�e
tively ta
kled by 
onstru
ting relaxations that have a simpler stru
ture and thentightening or reformulating su
h relaxations. As shown for instan
e in Chapter 4, there areseveral well studied simple-stru
tured mixed-integer sets that are of the type MIX2TU , andmany others 
an probably arise in other 
ontexts. It would be interesting to understand howe�e
tive an extended formulation of our type 
an be when used to tighten a substru
ture ofa more 
ompli
ated mixed-integer set. Also, it is not obvious how su
h a formulation should165



166 Chapter 9. Open problemsbe used: one 
ould for instan
e add all or only some of the inequalities of the formulation tothe original set, or use the extended formulation to separate.Another interesting aspe
t is the following. Note that even if all 
omplete list of fra
-tional parts for a set are non-
ompa
t, one 
an 
onsider a short sublist and 
onstru
ting the
orresponding extended formulation. By doing so, one obtains the des
ription of a subset(not a relaxation) of the 
onvex hull of the original set. Can this idea be used to e�e
tivelyapproximate a mixed-integer set of our family?A question that arises naturally is about proje
tions. It is probably hard to 
ompute theproje
tion of our extended formulation onto the original spa
e of variables in the general 
ase.Still, sin
e su
h formulations have a 
ommon stru
ture, there is a hope that the extendedformulations 
an be used to �nd some general properties of the fa
et-de�ning inequalities inthe original spa
e. (However information about the 
onvex hull in the original spa
e 
an alsobe found without using extended formulations or proje
tions, as demonstrated in Chapters 6and 8.)Another question that we address 
on
erns the possible generalizations of the approa
hpresented in Chapter 2. In Chapter 7 we 
onsidered two variants of a spe
i�
 set MIX2TU(namely the mixing set) obtained by multiplying the 
olumns of the 
onstraint matrix by some
onstants. Under the assumption of divisibility, we 
ould (non-trivially) extend the approa
hpresented in the previous 
hapters. It would be ni
e to understand whether a generalizationof this type is only possible for those spe
i�
 sets, or the idea underlying our extension 
anbe pushed further.Re
all that we pointed out in Se
tion 7.1.8 that for the formulations of Chapter 7 the
onstraint matrix is not (in general) totally unimodular. In fa
t, the 
onstru
tion of integralextended formulations was possible be
ause of the presen
e of a single 
onstraint for ea
hinteger variable. It would be useful to remove this strong limitation.Finally, we observe that the approa
h illustrated in Chapter 8 is somehow mysterious.First, it is not 
lear to whi
h 
lass of sets it 
an be applied. Se
ond, even restri
ting ourselvesto the 
ases studied in that 
hapter (i.e. the mixing set with �ow and the 
ontinuous mixingset with �ows), it is di�
ult to see a rational 
riterion for 
hoosing that relaxation Z ratherthan another one (ex
ept for the a posteriori 
onsideration that su
h a 
hoi
e works!).
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