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Abstract

A mized-integer program is an optimization problem where one is required to minimize (or
maximize) a linear function over a subset of R™ defined by a system of linear inequalities, with
the additional restriction that some of the variables must take an integer value. Mixed-integer
programming is a fundamental area of operations research, as many real-world problems can
be formulated as mixed-integer programs.

Solving mixed-integer programs is difficult in general. A common approach to tackle this
kind of problems exploits the fact that (under mild assumptions) the convex hull of feasible
solutions is a polyhedron, i.e. a subset of R™ defined by a system of linear inequalities. When
the inequalities describing such a polyhedron are known explicitly, the mixed-integer program
reduces to a linear program, which is a tractable problem. Unfortunately it is usually very hard
to find a linear inequality description of the convex hull of feasible solutions of a mixed-integer
program. However in some cases the introduction of additional variables allows one to give a
simple description of such a convex hull by means of linear inequalities in a higher dimensional
space. Such a description is called an extended formulation. If an extended formulation is
known that is compact (i.e. it uses a polynomial number of variables and constraints), the
original mixed-integer programming problem can be solved in polynomial time by means of
linear programming algorithms.

In this dissertation we study the family of mixed-integer programs whose feasible regions
are defined by linear systems with totally unimodular matrices (i.e. all subdeterminants are
0, 1 or —1) having at most two nonzero entries per row. This class of problems is interesting
because many instances arising e.g. in the context of production planning can be formulated
as mixed-integer programs of this type.

We illustrate a technique to construct an extended formulation for any problem in this
family. The approach is based on the enumeration of all possible fractional parts that the
variables take at the vertices of the convex hull of the feasible region. The explicit knowledge
of such values allows us to model the problem as a pure integer program (i.e. all variables are
prescribed to take an integer value) by means of additional variables. For such a pure integer
reformulation the convex hull can be obtained very easily and thus an extended formulation
for the original problem is derived.

We then discuss the compactness of our extended formulation: we give sufficient conditions
ensuring that the formulation is compact. When one of these conditions holds, the mixed-
integer program can be solved in polynomial time. We also show how our technique can be
successfully applied to some interesting practical problems.
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Next we consider the possibility of describing the convex hull of the feasible region in the
original space of definition of the problem (i.e with no additional variables). Such a formulation
is found explicitly for some special cases by using e.g. flow techniques or linear programming
duality.

Finally a possible extension is discussed: we show how a generalization of our technique
can lead to a compact extended formulation for a problem that does not belong to the family
introduced above.

Most of the results presented in this thesis are joint work with Michele Conforti, Friedrich
Eisenbrand and Laurence A. Wolsey.

Acknowledgements [ am particularly grateful to my PhD advisor Michele Conforti, who
dedicated a lot of his time to me in the last years. I also thank Laurence Wolsey for having
given me the opportunity of working with him at CORE. I consider myself very lucky to have
been supervised by them.



Sommario (Italian abstract)

Un programma intero misto é un problema di ottimizzazione in cui si richiede di minimizzare
(o massimizzare) una funzione lineare su un sottoinsieme di R™ definito da un sistema di di-
sequazioni lineari, con la condizione aggiuntiva che alcune delle variabili devono assumere un
valore intero. La programmaszione intera mista ¢ un’area molto importante della ricerca opera-
tiva, poiché numerosi problemi di interesse pratico possono essere formulati come programmi
interi misti.

Risolvere un programma intero misto ¢ in generale difficile. Un approccio comunemente u-
sato per affrontare problemi di questo tipo sfrutta il fatto che (sotto deboli ipotesi) I'inviluppo
convesso delle soluzioni ammissibili ¢ un poliedro, cioé un sottoinsieme di R™ definito da un
sistema di disequazioni lineari. Quando le disequazioni che descrivono tale poliedro sono note
esplicitamente, il programma intero misto puo essere ricondotto ad un programma lineare, che
¢ un problema trattabile. Purtroppo ¢ generalmente molto complicato trovare una descrizione
in termini di disequazioni lineari dell’inviluppo convesso delle soluzioni ammissibili di un pro-
gramma intero misto. Tuttavia in certi casi l'introduzione di variabili aggiuntive permette
di dare una semplice descrizione di questo inviluppo convesso tramite disequazioni lineari in
uno spazio di dimensione superiore. Una tale descrizione é detta formulazione estesa. Se si
conosce una formulazione estesa compatta (che usi cioé un numero polinomiale di variabili e
vincoli), il programma intero misto iniziale puo essere risolto in tempo polinomiale per mezzo
di algoritmi per la programmazione lineare.

In questa tesi studieremo la famiglia di programmi interi misti le cui regioni ammissibili
sono definite da sistemi lineari con matrici totalmente unimodulari (cioé tutti i sottodeter-
minanti valgono 0, 1 o —1) contenenti al massimo due elementi non nulli per riga. Questa
famiglia ¢ interessante perché molti problemi pratici (ad esempio nel campo della program-
mazione della produzione) possono essere formulati come programmi interi misti di questo
tipo.

Illustreremo una tecnica che permette di costruire una formulazione estesa per un qualun-
que problema nella famiglia definita sopra. L’approccio che useremo si basa sull’enumerazione
di tutte le parti frazionarie che le variabili assumono nei vertici dell’inviluppo convesso della
regione ammissibile. La conoscenza esplicita di questi valori ci permettera di modellare il
problema come un programma intero puro (dove, cioe, tutte le variabili devono assumere un
valore intero) per mezzo di variabili aggiuntive. Per tale riformulazione l'inviluppo convesso
potra essere ottenuto facilmente e deriveremo quindi una formulazione estesa per il problema,

iniziale.
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Discuteremo poi la compattezza della nostra formulazione estesa: daremo condizioni suffi-
cienti sotto le quali la formulazione ¢ compatta. Quando una di queste condizioni ¢ soddisfatta,
il programma intero misto puo essere risolto in tempo polinomiale. Mostreremo anche come
la nostra tecnica possa essere applicata con successo ad alcuni problemi di interesse pratico.

In seguito analizzeremo la possibilita di descrivere I'inviluppo convesso della regione ammis-
sibile nello spazio originale di definizione del problema (cioé senza l'introduzione di variabili
aggiuntive). Per alcuni casi speciali riusciremo a trovare esplicitamente una tale formulazione
usando ad esempio tecniche di flusso o la dualita della programmazione lineare.

Infine discuteremo una possibile estensione: mostreremo come una generalizzazione della
nostra tecnica possa essere usata per trovare una formulazione estesa compatta per un proble-
ma che non appartiene alla famiglia introdotta sopra.

Gran parte dei risultati presentati in questa tesi sono stati ottenuti in collaborazione con
Michele Conforti, Friedrich Eisenbrand e Laurence A. Wolsey.
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Chapter 1

Introduction

A mized-integer linear program (or simply mized-integer program) is an optimization problem
where one is required to minimize (or maximize) a linear function over a subset of R™ defined
by a system of linear inequalities, with the additional restriction that some of the variables
must take an integer value. Any mixed-integer program can then be formulated as

min cx (1.1)
subject to Az > b, (1.2)
x; integer for i € I, (1.3)

where A is an m X n matrix, b is a column vector in R", ¢ is a row vector in R"™ and [ is a
nonempty subset of {1,...,n}. In the above problem, cx is the objective function, while the
set defined by conditions (L2)-(L3) is the feasible region. Variables x; for i € I are called the
integer variables, while x; for i ¢ I are the continuous variables. A subset of R™ that is the
feasible region of a mixed-integer program is called a mized-integer set.

When I = {1,...,n}, problem (LI)-(L3]) is a pure integer program (or simply integer
program). Thus we view integer programs as special types of mixed-integer programs. A
problem of the form (LI)-(L2)), with no integrality restrictions, is a linear program.

Linear and mixed-integer programming are fundamental areas of operations research. A
large number of real-world problems can be formulated as linear or mixed-integer programs,
such as problems arising in transportation, manufacturing, scheduling and many other fields
(see e.g. [33] 49] 53]).

While linear programming is a tractable problem, mixed-integer programming is difficult in
general, as the region defined by conditions (L2)—(L3) is usually very complicated to describe.
In some special cases, the introduction of new variables in the problem allows one to give a
simpler description of a mixed-integer set. A description of this type, which is given in a higher
dimensional space, is called an extended formulation of the set (a more precise definition is
given in Section [[4]).

In this work we study mixed-integer sets ([L2)—(L3]) whose constraint matrix A has some
special structure that we will specify later. We present and discuss a technique that allows
one to construct extended formulations for an arbitrary set having such a structure, and we
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also explore the possibility of describing the set in its original space of definition. Furthermore,
possible extensions to other sets are discussed.

Before giving a more detailed outline of the thesis, we need to introduce some general con-
cepts and known results that will be used throughout. Specifically, in Section [[LT] some useful
facts about polyhedra are recalled. In Sections we briefly discuss linear programming,
integer programming and mixed-integer programming. In Section [[L4] we introduce the notion
of extended formulation, which is a key concept of this work, and in particular we focus on the
importance of extended formulations in mixed-integer programming. Some of the most well-
known approaches to constructing extended formulations of a mixed-integer set are surveyed
in Section Finally, an outline of the contents of this dissertation is given in Section [L6l

1.1 Polyhedra

This section briefly surveys the main definitions and results about polyhedra. A complete
presentation of polyhedral theory, as well as the proofs of the theorems that are recalled here,
can be found in [49] or [58].

We start with some well-known definitions about convexity.

Given a subset X of R", a point x € R™ is a conver combination of the points in X if
z =Y " &z for some choice of an integer p > 1 and real numbers d1,...,5, > 0 satisfying
P 16 =1. A set is convez if it contains all convex combinations of its points.

The convez hull of X, denoted conv(X), is the smallest convex set containing X: it consists
of all possible convex combinations of its points.

A polyhedron is the intersection of a finite number of half-spaces. This definition immedi-
ately implies that every polyhedron is a convex set.

We discuss below two fundamental ways of describing a polyhedron. We then conclude
the section by presenting a classical result of Balas.

1.1.1 External description of a polyhedron

Since a polyhedron is the intersection of a finite number of half-spaces, it follows that a
polyhedron in R™ can be described as the set of points x € R" satisfying a linear system of
inequalities Az > b, where A is an m X n matrix and b is an m-vector: this is called an ezternal
description of the polyhedron.

When an external description of a polyhedron is given, some of the inequalities of the
system Ax > b may be redundant, that is, their removal do not modify the set of solutions
to the system. We say that an external description of a polyhedron is minimal if it does not
contain any redundant inequalities. We illustrate below a fundamental result of polyhedral
theory concerning the number of inequalities in an external description of a polyhedron, but
before doing this, some standard terminology has to be recalled.

Let P be a polyhedron in R”. Given an inequality cx > § which is satisfied by all points in
P, the set of points F' := {x € P : cx = ¢} is called a face of PEl We then say that inequality

'Some authors require F' to be nonempty.
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cx > ¢ induces or defines face F. A face of P is a proper face if it is nonempty and does
not coincide with the whole polyhedron P. A facet of P is a proper face of P which is not
contained in any other proper face of P.

Let aff(P) be the affine hull of P, i.e. the smallest affine variety containing P. The
dimension of P, denoted dim(P), is the dimension of aff(P) as an affine variety. P is full-
dimensional if aff (P) = R™.

To state the next result, we assume that an external description of P is given as a system
of linear inequalities and equations Az > b, A’z = V', where the system Az > b does not
contain any pair of inequalities of the type ax > (3, —az > —f (such a pair could be replaced
with equation ax = f3).

Theorem 1.1 Let Az > b, A'x = b’ be a minimal external description of P, where the system
Ax > b does not contain any pair of inequalities of the type ax > (3, —ax > —(3. Then:

(i) A’z =V consists of n — dim(P) linearly independent equations such that aff(P) = {x €
R™: Alz =V'};

(ii) each inequality in the system Ax > b induces a distinct facet of P and each facet of P is
induced by a distinct inequality of the system Ax > b.

The above theorem shows that all minimal external descriptions of a given polyhedron use
the same number of equations and inequalities.

1.1.2 Internal description of a polyhedron

Given a polyhedron P C R"™, a nonempty face F' of P is minimal if no proper face of P is
strictly contained in F. It can be proven that all minimal faces of P are affine varieties of the
same dimension.

When the minimal faces of a polyhedron P consist of single points, they are called vertices
or extreme points of P. In this case P is called a pointed polyhedron. An equivalent definition
of vertex can be given: a point v € P is a vertex of P if and only if there do not exist
zl,2% € P\ {v} such that v = 2! + 222, Every polyhedron has only a finite number
of vertices. However, such a number may be exponential in the number of variables and
inequalities used to give an external description of the polyhedron.

A ray of a nonempty polyhedron P is a vector » € R" such that x +r € P for all z € P.
If there do not exist two rays r',r2? of P such that r = %7“1 + %1"2 and r! # \r? for all A > 0,
then r is called an extreme ray of P. It can be proven that P has an extreme ray if and only
if it is a pointed polyhedron. Also, every polyhedron has only a finite number of extreme rays.
Similarly to extreme points, such a number might be exponentially large.

The set of rays of P form a conver cone C(P), i.e. C(P) is nonempty (as 0, the all-zero
vector, is a ray of P) and A\ir! + Aor? € C(P) for all 1,72 € C(P) and A1, A2 > 0. C(P) is
called the recession cone (or characteristic cone) of P. If P = &, the standard definition is
C(P) := {0}. It can be proven that C(P) is a polyhedron: if P is defined by the linear system
Az > b, then C(P) is defined by Az > 0. It is easy to see that every system of the form
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Az > 0 defines a cone, which is therefore called a polyhedral cone. A polyhedral cone has
either a unique vertex (called apex) or no vertices at all. In the former case, the apex is 0.

The following theorem summarizes fundamental results that are due to Minkowski [47],
Motzkin [48] and Weyl [67]:

Theorem 1.2 (Minkowski-Weyl theorem) A subset P of R™ is a polyhedron if and only

if there exist a finite set of points {v',... vP} and a finite set of vectors {r',... r9} such that
P={zeR": z=3%" v+ 2_(71':1 Ajrd,
P 6i=1,04 >0, 1<i<p,
Aj >0, 1<j<q}.
Furthermore, if P is a pointed polyhedron then {vl, ... vP} can be chosen as the set of extreme

points of P and {r',... r%} as the set of extreme rays of P.

A description of a polyhedron P as in the above theorem is called an internal description
of P. We say that P is generated by points v',...,v” and rays r!,...,79. Every pointed
polyhedron is generated by its extreme points and extreme rays.

Note that the description of P given by Theorem uses additional variables d1,...,6,
and Ag,...,Aq. This is an example of extended formulation, a concept that will be discussed
in Section [[4]

1.1.3 Union of polyhedra

We conclude this section by presenting a result due to Balas [4], which can be viewed as an
extension of Minkowski-Weyl theorem.

Suppose that we know the external descriptions of k polyhedra Pi,..., P, in R™ and we
are interested in finding a description of the convex hull of Py U--- U P;. The result below
provides such a description.

Theorem 1.3 For 1 < i < k, let P; := {:C eR™: Alg > bi} be polyhedra in R™ having the
same recession cone. Then the set P := conv(Py U---U Py) is a polyhedron and

P={zeR": x:Zlewi,
Atw® > bi6;, 1<i<k,
S 6i=1,82>0, 1<i<k}.

This version of the theorem is not the most general one (see [4, [I8]), but is sufficient for
our purpose.

We remark that if P is a bounded polyhedron, then Theorem can be obtained by
applying the above result to the polyhedra P; := {v'} for 1 < i < p. (One could write a
variant of Theorem that subsumes the Minkowski-Weil theorem for unbounded polyhedra
too.) Also, if £ = 1 the description given above is essentially the original external description
of the polyhedron P, = P. Therefore Theorem provides in a sense an “intermediate”
formulation of a polyhedron P, which coincides with the external or internal description in
the extreme cases.
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1.2 Linear programming

Recall that a linear program is a problem of the form

min cx (1.4)

subject to Az > b.

where A is an m X n matrix, b is a column vector in R™ and c is a row vector in R™. Note
that the feasible region of a linear program is a polyhedron.

Linear programming is a well-developed area of operations research. The systematic study
of this subject was initiated by Dantzig and von Neumann. Here we only recall a few basic
aspects that will be useful in the remainder of the thesis. A comprehensive presentation of
the theory of linear programming can be found e.g. in [58].

Given a linear program (L4)—(LH), exactly one of the following alternatives holds:

(i) the problem is infeasible (i.e. no point in R™ satisfies Az > b);
(ii) the problem has an optimal solution;

(iii) the problem is unbounded (i.e. system Ax > b is feasible and there exists r € R™ such
that Ar > 0 and cr < 0).

Even though system (LL3]) may define a polyhedron without vertices, every problem of the
form (C4)—-(L3) can be transformed into a linear program whose feasible region is a pointed
polyhedron. So we assume without loss of generality that the feasible region (LI]) has at least
one vertex (and thus it has at least one extreme ray).

A fundamental result in linear programming is the following.

Theorem 1.4 If a linear program ([L4)-([L5) has an optimal solution, then it has an optimal
solution which is an extreme point of the feasible region. If a linear program is unbounded,
then there is an extreme ray r of the feasible region such that cr < 0.

Since a polyhedron has only a finite number of extreme points and extreme rays, a first
approach to solve a linear program in a finite number of operations is simple enumeration.
However, as mentioned in Section [[T.2] the number of extreme points and extreme rays of a
polyhedron might be exponentially large, thus such a technique cannot be used in practice.

The first algorithm proposed to solve linear programming problems, the simplex method,
is a refinement of this approach. This method, which was introduced by Dantzig [19], consists
in visiting some of the vertices of the feasible region, each time choosing the next vertex with
a clever rule. This algorithm has a good performance in practice and is commonly used by
commercial softwares. However, as shown by Klee and Minty [37], it is possible to construct
linear programs that cause the simplex method to perform an exponential number of iterations.

The first polynomial time algorithm for linear programming, the ellipsoid method, was
obtained by Khachiyan [36], who adapted to this problem a technique that was already used
in nonlinear programming. Though Khachiyan’s algorithm is not used in practice, it yielded
the first proof that linear programming can be solved in polynomial time:
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Theorem 1.5 There is a polynomial time algorithm for solving linear programming (with
rational input) that finds an optimal extreme point solution (if the problem has an optimal
solution).

Apart from the above result, the theoretical importance of the ellipsoid method comes
from the fact that it does not require that the inequalities defining the feasible region be
explicitly given. It is sufficient to have a polynomial time algorithm for the separation problem:
given a point Z, either decide that z is feasible or find an inequality that is satisfied by all
points in the feasible region and violated by z. If the separation problem on a polyhedron is
solvable in polynomial time, so is the linear optimization problem, even if the polyhedron has
exponentially-many facets. In fact the two problems are equivalent, as shown by Grotschel,
Lovész and Schrijver [28]:

Theorem 1.6 Linear optimization is solvable in polynomial time if and only if so is the

separation problem

A good tradeoff between running time in the worst case and practical performance is
achieved by wnterior point methods. The first algorithm of this type was introduced by Kar-
markar [35]. Instead of moving on the boundary (like the simplex method), these algorithms
follow a path in the interior of the feasible region that converges to an optimal solution of the
problem.

We conclude this section by recalling a well-known result due to Farkas (see e.g. [58]),
which will be used in a subsequent chapter.

Theorem 1.7 (Farkas’ lemma) A linear system Ax > b is feasible if and only if ub < 0 for
each u > 0 satisfying uA = 0.

If some inequalities of the system Ax > b are replaced by equations, the nonnegativity
bounds on the corresponding components of « must be removed.

1.3 Integer and mixed-integer programming

Recall that a mixed-integer program is a problem of the form (LCI)-(L3) with I # &, and a
(pure) integer program is a problem of the same type with [ = {1,...,n}.

In contrast to linear programming, which can be solved efficiently, integer programming
and mixed-integer programming are difficult problems: they are both AN/P-complete problems
[I7]. Thus a polynomial time algorithm for solving these two problems in the general case is
not known.

Given a mixed-integer set (L2)—(L3), the polyhedron defined by Az > b is called the linear
relazation (or continuous relazation) of (L2)-(L3). The following fundamental result is due

to Meyer [44]:

®This result holds under some mild technical assumptions (see [29] for the details).
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Theorem 1.8 If all entries of A and b are rational numbers, then the convex hull of (L2)-
(T3] is a polyhedron. Furthermore such a polyhedron and the linear relazation of (L2])-(L3)
have the same recession cone.

Under the hypothesis of the above theorem, let P be the convex hull of (L2)—(L3). If
a linear inequality description of the polyhedron P is known, then the optimization problem
min{cz : © € P} is a linear program. Using the above result and Theorem [[L5] one can prove
that such a linear program is essentially equivalent to problem (LI))-(TL3]).

Theorem 1.9 Assume that all entries of A and b are rational numbers and let P be the
convez hull of the mized-integer set (L2A)—([L3). Then one can solve the mized-integer program
[CI)-@C3) by applying an algorithm for linear programming to the problem min{cx : x € P},
provided that a linear inequality description of P is available.

Unfortunately, the convex hull of (L2)—(L3]) may be defined by a number of facet-defining
inequalities which is exponential in the size of the original description of the problem, and it
is usually very hard to characterize them. Thus the approach in the above theorem does not
result (in general) in a polynomial time algorithm.

We do not discuss here the various techniques that are commonly used to solve pure and
mixed-integer programs either exactly or approximately (see e.g. [49] 69]). We only spend
some words on two important aspects of this field: valid inequalities and total unimodularity.

1.3.1 Valid inequalities

In the general case, the linear relaxation of a mixed-integer set X is only a superset of conv(X).
Thus the linear relaxation contains points that should be “cut off” in order to describe conv(X).
This leads to the following standard definitions.

Given a mixed-integer set X C R", a valid inequality for X is a linear inequality which is
satisfied by all points in X. It is readily checked that a linear inequality is valid for X if and
only if it is valid for conv(X). A cutting plane for X is a inequality that is valid for X but is
violated by at least one point in the linear relaxation of X.

Given a mixed-integer set (L2)—(L3]), different kinds of valid inequalities can be derived
in several ways (see [I8] for a survey of the various techniques). Methods based on cutting
planes are commonly used to solve mixed-integer programs either exactly or approximately.
Here we only recall two types of valid inequalities that will be used in the next chapters.

The Chvdtal-Gomory procedure [27] can be used to generate valid inequalities for a pure
integer set:

Theorem 1.10 (Chvatal-Gomory rounding) Given a pure integer set (L2)-(L3) (thus
I = {1,...,n}), take a combination of its inequalities: that is, for a nonnegative vector
u € R™, consider the valid inequality uAx > ub, which we denote by ax > (3. If a is an
integral vector, then the inequality ax > [ 3] is valid for (L2)—([T3).
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Given a polyhedron P = {x € R"™ : Az > b} where A and b are rational, the set defined
by all the inequalities that can be derived by using the above procedure is a polyhedron [57],
denoted P and called the Chuvdtal-Gomory closure (or truncation) of P. For each k > 1,
P+1) ig defined as the Chvatal-Gomory closure of P*). Schrijver [57] proved that for every
rational polyhedron there is an integer k such that P*) = conv(P NZ"). (A similar result
holds if P is a bounded polyhedron, independently of the rationality assumption [I0].) Such
a number k is the Chwvdtal rank of P.

We also need to introduce the simple mized-integer rounding inequality, or simple MIR-
inequality for short.

Theorem 1.11 (Simple MIR-inequality [49]) Let X be the mized-integer set defined by

s+ z>b,
s >0,

z integer,

for some real number b. The simple mized-integer rounding inequality s+ f(b)z > f(b)(|b]+1),
where f(b) :==b— |b| denotes the fractional part of b, is valid for X.

1.3.2 Totally unimodular matrices

A matrix A is totally unimodular if every square submatrix of A has determinant 0, 1 or —1.
Note that all entries of a totally unimodular matrix are 0, 1 or —1.

Totally unimodular matrices appear in several combinatorial optimization problems, see
e.g. [49]. The main reason for the importance of this class of matrices comes from the following
characterization, which is due to Hoffman and Kruskal [34]:

Theorem 1.12 An m xn matriz A is totally unimodular if and only if for each vector b € 7™,
all vertices of the polyhedron {x € R™ : Ax > b, x > 0} are integral.

Since in the next chapter the variables of our problems will not be forced to be all nonneg-
ative, we will actually use the result below rather than Theorem [[.12k

Theorem 1.13 If A is an m x n totally unimodular matriz and b is an integral vector, then
conv{zx € Z" : Az > b} = {z € R": Ax > b}.

In other words, if A is totally unimodular and b is integral, the convex hull of the pure
integer set {z € Z"™ : Ax > b} and its linear relaxation {z € R™ : Az > b} are the same
polyhedron. It follows that in this case pure integer programming can be solved in polynomial
time by means of linear programming.

We will make constant use of totally unimodular matrices. In particular, we will need a
characterization due to Ghouila-Houri [26]. To introduce it, the following definition is needed.
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Given a 0, £1-matrix A, with entries a;; for 1 < i < m and 1 < j < n, an equitable
bicoloring of the columns of A is a partition of {1,...,n} into two classes R and B such that

E CLZ‘J‘—E aij

jJER jeB

<1forl1<i<m.

The two classes R and B are sometimes called colors, hence the term bicoloring (the names
R, B stand for red and blue respectively).

Theorem 1.14 [26] A 0, £1-matriz A is totally unimodular if and only if every column sub-
matriz of A admits an equitable bicoloring of its columns.

Note that since a matrix is totally unimodular if and only if so is its transpose, the above

theorem admits a symmetric version in which the roles of rows and columns are interchanged.

1.4 Extended formulations

As discussed in Section [LTI] for a fixed polyhedron P the number of inequalities in any
external description of P in its original space is bounded from below by the number of facets of
P. Therefore, if P has a huge number of facets, it is impossible to give an external description
of P having “small” size. Nonetheless, P may admit a description of smaller size in a higher
dimensional space. To formalize this concept, we now give two definitions.

Given a set @ in the space R"™P (that uses variables z € R and y € RP), the projection
of @) onto the space of the x-variables is the set of points x € R™ that can be completed to a
vector (z,y) of @Q:

proj,(Q) := {x € R" : there exists y € RP such that (z,y) € Q}.

The projection of a polyhedron is always a polyhedron (see also Section [[4.2]).

Given a polyhedron P in the space R™ (that uses variables x), an extended formulation
of P is the external description of a polyhedron @ in a space R™™? (that uses variables x
and y) such that P = proj,(Q). In other words, an extended formulation of P is a linear
system in the variables (z,y) that defines a polyhedron whose projection onto the space of
the x-variables is exactly P. We call R™ the original space of variables and R™"? the extended
space.

Every polyhedron P admits infinitely-many extended formulations. The number of facets
of an extended formulation of P can be very far from that of P. In particular, it may happen
that a polyhedron with an exponential number of facets admits an extended formulation with
only a polynomial number of facets. Such an example is given by the permutahedron, which
is the convex hull of the vectors in R™ whose components form a permutation of the numbers
1,...,n. The permutahedron has 2" — 2 facets, but it is the projection of a polyhedron @ in
an @—dimensional space that has only n(n — 1) facets (Q is the image of a cube under an
affine transformation). (See [74] for the details.)

Therefore, among all the possible extended formulations of a polyhedron P, one can hope
to find a description of P that requires a small number of facet-defining inequalities. However,
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Yannakakis [71] proved a very interesting (and perhaps surprising) theorem that gives a lower
bound on the size of any extended formulation of a fixed polyhedron. Though such a bound
cannot be eagsily used to predict the minimum size of an extended formulation of a given set,
as an a priori knowledge of the facets and vertices is required, the theoretical relevance of this
result is remarkable.

1.4.1 The role of extended formulations in mixed-integer programming

As discussed in Section (see Theorem [[0), a mixed-integer program reduces to a linear
program once a linear inequality description of the convex hull of the feasible region is known.
However such a convex hull may have a huge number of facets and it may be very hard to
find them. We point out here how extended formulations can be useful in this context.

Let X C R"™ be a mixed-integer set and suppose that we want to solve the problem
min{cz : € X}, or equivalently min{cz : x € conv(X)}. Assume that we know an extended
formulation of conv(X) and let @ C R"*? be the polyhedron defined by such a formulation.
It is immediate to see that then problem min{cx : € conv(X)} is equivalent to problem
min{cz : (z,w) € Q}.

This shows that if one knows an extended formulation of the convex hull of the feasible
region of a mixed-integer program, then the problem can be equivalently solved in the extended
space by means of linear programming. If, in addition, the size of such an extended formulation
is polynomial in the size of the original description of X, this allows one to solve the mixed-
integer program in polynomial time.

We say the an extended formulation of a mixed-integer set is compact if its size is poly-
nomial in the size of the original description of the set. The above discussion can then be
summarized in the following result:

Theorem 1.15 If a mized-integer set X admits an extended formulation which is compact,
then linear optimization over X can be carried out in polynomial time by means of linear
programming.

1.4.2 Projections

When an extended formulation of a polyhedron P is available, in order to find a linear in-
equality description of P in its original space one has to calculate the projection of @ (the
polyhedron defined by the extended formulation) onto the space where P is defined. We con-
clude this section by briefly discussing two possible ways of computing the projection of a
polyhedron.

A first approach is Fourier-Motzkin elimination [25), 22], 48] (see e.g. [74]). This technique
consists in eliminating one variable at a time.

Theorem 1.16 Let Q € R™"! be a polyhedron in the variables (x1,. .., 2,,y). Assume without
loss of generality that Q is described by a system of linear inequalities of the form o/ x+ 37y > &
for j € J, where 87 € {0,£1} for all j € J. Then a linear inequality description of the
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polyhedron proj,,(Q) in the x-space is given by the inequalities

adx > d for j € J such that 37 =0,
(aj +ak)x >d +d*  forj, ke J such that 37 =1 and f* = —1.

If p variables have to be eliminated, p repetitions of the above procedure are needed. Note
that at each iteration the number of inequalities may be squared, thus the elimination of p
variables may result in a system with an exponential number of inequalities. This is coherent
with what we observed above, namely that an extended formulation of a polyhedron may have
less facet-defining inequalities than the polyhedron itself.

Note that the above theorem yields a proof of the fact that the projection of a polyhedron
is a polyhedron. We also remark that Fourier-Motzkin elimination often produces a number
of redundant inequalities.

A second approach, which allows one to eliminate all extra-variables together and will be
used in Chapter [ is now described. This result, which appears in Cernikov [8], is based on
Farkas’ lemma (Theorem [L7]).

Theorem 1.17 Let Q be a polyhedron in R"P defined by the linear system Ax+Dy >b. The
projection of QQ onto the space of the x-variables is the polyhedron defined by the inequalities
u(Ax —b) > 0 for all vectors u (of suitable dimension) that are extreme rays of the polyhedral
cone defined by

uD =0, u>0. (1.6)

If some inequalities of the system Az+ Dy > b are replaced by equations, the nonnegativity
bounds on the corresponding components of u must be removed. In this case cone (LG) may
be non-pointed and “extreme rays” should be replaced with “rays” in the statement of the
theorem.

Note that even if the system defining @ has few constraints, the number of inequalities
describing the projection can be huge, as one has to write an inequality for each extreme ray
of cone (LL6]). Similarly to Fourier-Motzkin elimination, this method can produce redundant
inequalities.

In [6] the above result was applied for the first time to compute a linear inequality descrip-
tion of a combinatorial optimization problem by projecting an extended formulation.

1.5 Some well-known types of extended formulations

It is not possible to give a systematic presentation of all the techniques that have been success-
fully used to construct extended formulations in the past years, as such formulations usually
exploit the peculiarities of the set under consideration. Nonetheless some of these approaches
apply to a wide class of problems and have been used by several authors. In this section we sur-
vey some of the most relevant techniques that can be used to construct extended formulations
of mixed-integer sets.
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1.5.1 Hierarchies of formulations

We consider here mixed 0-1 programs, i.e. mixed-integer programs in which every integer
variable must take a value in {0,1}. We also assume that all continuous variables are nonneg-
ative. Mixed 0-1 programs arise in many important combinatorial optimization problems, see
e.g. [38, 49, (9].

Let X be a mixed 0-1 set, which we write in the form

Ax > b, (1.7)
x>0, 1.8
x; €{0,1}, 1€, 1.9

where al entries of A and b are rational numbers. Without loss of generality we assume that
the linear system Az > b include (or imply) inequalities z; < 1 for i € I.

Let P be the convex hull of X and P, be the linear relaxation of X. Several authors
developed hierarchies of approximate formulations of P, i.e. sequences of polyhedra Py, ..., Py
such that

Ph2P2--- 2P =P (1.10)

In the hierarchies that we consider here, each of the polyhedra P; for 1 < ¢t < |I] is defined
implicitly as the projection of a polyhedron @), which is explicitly given in a higher dimensional
space. Thus we are provided with a sequence of approximate extended formulations of P,
where the last formulation of the sequence is an exact extended formulation of P. As one can
expect, in general such an exact formulation is non-compact.

We describe below three of the main hierarchies of formulations that one can find in the
literature. The approaches that we describe are also called lift-and-project techniques, as the
description of the set is first lifted (and strengthened) in a higher dimensional space and then
projected onto the original space.

For the pure integer case, a presentation of these hierarchies in a unitary setting as well
as an interesting comparison of the various relaxations can be found in [40].

The Sherali-Adams hierarchy

Sherali and Adams [60] [61] proposed the hierarchy of relaxations ([LI0]) that we now describe.
For each fixed index 1 <t < |I], the polyhedra @; and P, are constructed as follows.

1. Let S be the set of all polynomials of the form
H s H (1 — IL’Z‘),
i€y i€J2

where Ji, Jy are disjoint subsets of I satisfying |J1| + |J2| = ¢t. Construct the nonlinear
system consisting of all inequalities obtained by multiplying an inequality of the system
Axz > b by a polynomial in S.

2. Linearize the resulting system by performing the following two operations:
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(a) for i € |I|, substitute z; for 2 in all the inequalities of the system;

(b) for each monomial [[;c;®;, where J C {1,...,n} and [J| > 2, introduce a new
variable y; and substitute y s for Hie 7 x; throughout.

Let @ be the polyhedron defined by the resulting linear system of inequalities and let
P; be the projection of (); onto the x-space of variables.

Note that Steps 1 and 2 (a) give rise to inequality that are valid for X, as any point in X
satisfies ; € {0,1} for all ¢ € I.

Sherali and Adams [60], [61] proved that (L.I0) holds for the polyhedra thus constructed. It
is clear that the exact extended formulation @7 consists of an exponential number of variables
and constraints.

The Sherali-Adams relaxation can be defined for a more general class of sets, namely
mixed 0-1 polynomial sets that are linear in the continuous variables [61]]. These sets have the
form (L7)-(LA), except that the linear system Az > b is replaced by a system of inequalities
involving polynomials in which the continuous variables appear with degree at most one.
The procedure is similar to that described above and produces two sequences of polyhedra
Q1,..., Q) and Pp,..., Py, where for each ¢ the polyhedron P; is the projection of @ onto
the original space. Condition (LI0]) is again satisfied, except for the inclusion Py O P; which
might be violated. Note that linear optimization over a mixed 0-1 polynomial set of this type
is converted into linear programming over Q|z;.

A generalization of the procedure presented above was described in [62], while an extension
to a more general class of sets was studied recently in [I].

The Lovasz-Schrijver hierarchy

Lovasz and Schrijver [41] proposed two hierarchies of formulations of P (in fact their original
construction is for pure 0-1 problems only). The first hierarchy can be defined iteratively as
follows: for 1 <r < |I], the polyhedra @, and P, are obtained by applying the Sherali-Adams
procedure with £ = 1 to the linear system defining P._;. That is, the inequalities describing
P,._1 have to be multiplied only by z; and 1 — z; for each 7 € I and then linearized.

It can be shown that (LI0) holds for the polyhedra thus constructed. Note in particular
that P; = P even though the above construction uses only a partial version of the Sherali-
Adams procedure.

The definition of the polyhedra Py, ..., P given above is different from (though equivalent
to) that appearing in [4I]. The original equivalent construction of P, is given below.

. 1
1. Define the cone P;_1 := {)\ ( ) rx €EP_1, A> O} C R™*!. The additional coordinate
x
is indexed by 0.

2. Let M;_1 be the set of symmetric (|| + 1) x (|I| + 1) matrices Y = (y;; : 4,5 € I U{0})
such that

(a) Yy =Yy, fori eI,
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(b) Yp,Yy - Y; € P4 for i € I, where Y; denotes the column of Y corresponding to
index 7.

1

T

3. Define P; := {xER”: ( ) =Y for someYeMt_l}.

The relaxation that is commonly referred to as the Lovasz-Schrijver relaxation is obtained
as above, except that Step 3 is replaced by the following:

1
3. Define Pt := {x € R": =Y, for some Y € Mttl}, where M," | consists of the
x

matrices in M;_ 1 that are positive semidefinite.

The convex sets P, satisfy (LI0). Furthermore it is clear that P;" C P, for 1 < ¢ < |I|.
Note however that PtJr is not a polyhedron: it is the feasible region of a semidefinite program.
The interest in a relaxation of this type comes from the fact that semidefinite programs can
be solved efficiently through interior point algorithm (see e.g. [66] for a survey on semidefinite
programming).

Another hierarchy of semidefinite relaxations was given by Lasserre [39].

The Balas-Ceria-Cornuéjols hierarchy

Balas, Ceria and Cornuéjols [5] proposed the following lift-and-project procedure:
1. Pick an index i1 € I.

2. Construct the nonlinear system consisting of all inequalities obtained by multiplying an
inequality of the system Az > b by one of z;, and 1 — xz;,.

3. Linearize the resulting system by performing the following two operations:

(a) substitute x;, for x?l in all the inequalities of the system;

(b) for each i # 41, introduce a new variable y; and substitute y; for z;, z; throughout.

Let @1 be the polyhedron defined by the resulting linear system of inequalities and let
P; be the projection of (1 onto the z-space of variables.

The polyhedra @2 and P, are constructed by choosing a different index io € I\ {i1}
and performing the above operations on the linear system defining P;. By iterating this
construction, one defines the polyhedra @; and P, for 1 <t¢ < |I].

Results of Balas, Ceria and Cornuéjols [5] and Balas [3] show that

P, =conv ({z € Py a5, =0} U{z € Py : wy, = 1})
=conv ({z € Py : x;, € {0,1} for 1 <r < t}),

which implies all the inclusions and the equation in (LI0). In other words, at each iteration
the lift-and-project procedure computes the convex hull of the current relaxation, where each
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time a single variable x; € [ is treated as a binary variable. Such a sequential convexification
leads to the convex hull of the original set, i.e. F; = P.

We remark that though this procedure requires much less effort than the Sherali-Adams
and Lovész-Schrijver relaxations, still the |I|-th step yields a description of the convex hull
in the original set. However, the intermediate relaxations P, ..., P _; are not as strong as
those arising from the Sherali-Adams and Lovész-Schrijver procedures.

In [5] it is also shown how lift-and-project can be used to generate cutting planes.

1.5.2 Extended formulations based on Minkowski-Weyl theorem

We remarked in Section that the formulation of a polyhedron given by Theorem uses
additional variables. Thus that theorem yields an extended formulation of a polyhedron.

In general an extended formulation of this type can hardly be explicitly given for the
convex hull of a mixed-integer set, as it is usually difficult to characterize the extreme points
and extreme rays of such a polyhedron (assuming it is pointed). Furthermore, the number of
extreme points and extreme rays of the convex hull of a mixed-integer set is often huge, even
if the original description of the set is small.

1.5.3 Extended formulations based on the properties of the extreme points

A refinement of the approach described in Section is sometimes possible: the key idea is
that some basic properties of the vertices, rather than their complete enumeration, may suffice
to describe the convex hull of a mixed-integer set. This idea, which already appears in [53],
will be exploited in the next chapters.

We demonstrate this technique by showing how Miller and Wolsey [45] used this approach
to construct an extended formulation of the convex hull of the following mixed-integer set:

stz >b, 1<i<n, (1.11)
s>0 (1.12)
z; integer, 1 <1i<n, (1.13)

where b; € R for 1 < i <n. The above set, which is now called mizing set, has important ap-
plications in production planning problems (in particular lot-sizing [55]). We will be analyzing
it again in Sections and B.2.3]

The construction of an extended formulation of (LITI)-(TI3]) can be divided into the three
main steps below. We do not go into details or give any proofs, as we only want to convey
the main idea of the technique. Furthermore, since an extension of this approach is described
in Chapter ] rigorous proofs can be found there.

1. First one observes that in every extreme point of the convex hull of (LII)-(TI3]), the
fractional part of s is one of the values fo,..., f,, where for 1 <i <mn, f; :=b; — |b;] is
the fractional part of b;, and fy := 0.



16 CHAPTER 1. INTRODUCTION

2. Then one adds the following constraints to the original formulation (LIII)-(TI3):

s =p+ 0 fidi, (1.14)
Z?:Oéi: 15 515---55n 20; (].]_5)
1,01, ...,0, integer. (1.16)

The above conditions force variable s to take a fractional part in the set of values
{fo,---, fa}- One can show that adding constraints (LI4)—(LI6) does not change the
convex hull of feasible solutions.

3. The set of constraints (LII)-(LI3]) and (LI4)-(LI6) is then tightened and an equivalent
description is obtained that has the following form:

s=p+ g fidi, (1.17)
Ap+ Bé+Cz > d, (1.18)
[y 01y vy Oy 21, -+, 2n iNteger, (1.19)

where [A | B | C] is a totally unimodular matrix and d is an integral vector. Since
variable s does not appear in any of inequalities (LI8]), by Theorem [[T3] the integrality
conditions (LT9) can be removed without affecting the convex hull of feasible solutions.
The resulting linear system is an extended formulation of the mixing set (LII)—(TI3).

Step [B suggests that such an approach can only be used for some particular mixed-integer
sets, as one needs to obtain a linear system with totally unimodular matrix. The idea of ex-
ploiting the total unimodularity of a pure integer reformulation of a mixed-integer set appears
in [53].

The general idea underlying the above technique —modeling the continuous variable ac-
cording to the possible fractional parts taken at the vertices— can be extended to mixed-integer
sets with more than one continuous variable. Such an extension was successfully used by Miller
and Wolsey [45] [46], Van Vyve [63], [65] and Conforti, Di Summa and Wolsey [12] in tackling
specific mixed-integer sets that appear in lot-sizing problems.

In Chapter 2l we present a modeling technique that generalizes that described here and
can be used to formulate a quite large family of mixed-integer sets, which includes as special
cases several sets studied by the authors cited above.

We remark that the technique sketched above is just one of the possible ways of exploiting
the properties of the vertices (see e.g. [53], 63, 65]).

1.5.4 Extended formulations based on the union of polyhedra

Theorem [[3]yields an extended formulation for the convex hull of several polyhedra Py, ..., P
in R™, provided that external descriptions of these polyhedra are available. We remark that
such an extended formulation is compact, while the description of conv(P; U--- U Pyg) in its
original space R™ may have an exponential number of facet-defining inequalities (such an
example is given in [I§]).
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Balas’ result was recently applied by Conforti and Wolsey in [16], where a technique is
introduced and used to find extended formulations of some mixed-integer sets arising in lot-
sizing problems. The same idea, which we present below, had been also used by Atamtiirk [2]
to formulate a simple mixed-integer set that has application in robust optimization.

To summarize the approach, we use the following notation: given a mixed-integer set X,
let V be the set of vertices of conv(X) and let R be the set of its extreme rays (we assume that
conv(X) is a pointed polyhedron). The technique proposed in [16] is as follows (we present it
in a simplified version):

1. First the set of vertices V' is partitioned into subsets Vi, ...,V according to some crite-
rion (usually the fractional part of one or some of the continuous variables).

2. For each 1 < ¢ < k, let P; be the polyhedron generated by the points in V; and the
rays in R. Note that conv(X) = conv(P; U--- U Py), as all these polyhedra have the
same recession cone. For 1 < i < k, an extended formulation ); of P; is constructed in
some way: this is usually done by (i) introducing new variables to model the common
property of the vertices in V; and (ii) observing that the resulting set belongs to a class
of mixed-integer sets for which an extended formulation is known.

3. Balas’ result is then applied either to the polyhedra Pi,..., Py (which can be deter-
mined by computing the projection of Q1,...,Q%), or to their extended formulations
Q1,...,Qk. In both cases an extended formulation of conv(X) is found.

The above approach will be used in Section to tackle a mixed-integer set which has
application both in deterministic and stochastic lot-sizing problems with backlogging.

1.5.5 Extended formulations more generally

The definition of extended formulation of a polyhedron that we gave at the beginning of
Section [[4] can be stated in a different way, as the following result shows:

Proposition 1.18 Let P be a polyhedron in the variables x € R™ and Q a polyhedron in the
variables (z,w) € R"™P. The following conditions are equivalent:

(i) P is the projection of Q onto the x-space of variables;

(ii) for every vector ¢ € R™, T is an optimal solution of the linear program min{cx : x € P}
if and only if there exists w such that (Z,w) is an optimal solution of the linear program
min{cz : (z,w) € Q}.

Thus condition (ii) could be taken as definition of extended formulation. We now show
that such a definition is sometimes too restrictive, in the sense that a softer version may be
sufficient to transform a mixed-integer program into a linear program on a different space of
variables.
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Specific objective functions

In many cases the mixed-integer program under consideration is the model of a real-world
problem for which not all possible objective functions are meaningful. For instance, when the
objective function cx represents a cost, one will probably be interested only in vectors ¢ that
have nonnegative components.

For a fixed mixed-integer set X, let F' be the set of vectors ¢ € R™ that correspond to
“Interesting” objective functions, i.e. objective functions that can really occur in the problem
that is modeled by X. Define P := conv(X) and let ) be a polyhedron in the variables
(x,w) € R™P that satisfies the following weak version of condition (ii) of Proposition [T

(ii") For every vector ¢ € F, T is an optimal solution of the linear program min{cz : x € P}
if and only if there exists w such that (Z,w) is an optimal solution of the linear program
min{cz : (z,w) € Q}.

Such a polyhedron @ is not an extended formulation of P according to the definition given
in Section [[L4] however it is sufficient to convert the mixed-integer program min{cz : x € X'}
into the linear program min{cz : (x,w) € Q} for all “interesting” objective functions.

To demonstrate that such a weaker version of the concept of extended formulation can
be useful, we consider lot-sizing problems. In a lot-sizing problem several costs need to be
considered: for each period i, one usually has a per unit production cost p;, a fixed cost g;
that one must pay if production takes place in period i, a per unit holding cost h; for storing
the excess of production at the end of period i and a per unit backlogging (recovery) cost r;.

Several kinds of lot-sizing problems (and relaxations of them) were studied and successfully
formulated without any assumptions on the objective function (i.e. on the costs), see e.g. [12],
13, (161, 30L [45], [46), [64], 65], but many others do not seem to be easily tractable in the general case.
However it turns out that in practice many instances satisfies the following special condition:
for 2 < i < N (where N is the total number of periods), p;—1 +hi—1 > p; and p;+7r;—1 > pi—_1.
A problem satisfying such a property is said to have Wagner- Whitin costs.

A number of lot-sizing problems with Wagner-Whitin costs were studied in the last years,
see e.g. [45], 53] 63, [65]. Under Wagner-Whitin hypotheses, the optimal solutions satisfy some
special properties that can be exploited to construct compact extended formulation in the
weaker sense discussed above.

Linear inequality formulations based on dynamic programming

(We use here some basic concepts about dynamic programming, shortest path problems on
digraphs and linear programming duality, see e.g. [7, [38], 58] respectively. Our presentation is
mostly based on [68].)

A number of problems that can be solved through dynamic programming can be formalized

as follows: states are labeled 0,..., N and the recursive function has the form
F(0)=0, F(j) = Oriun{F(z) +c(iyj)} for 1 < j <nmn, (1.20)
s1<g

where ¢(i, j) is the nonnegative cost of the transition from state ¢ to state j. The application of
the recursion yields the optimal value F'(n) along with an optimal solution that is determined
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as follows: if 0 = jo < j1 < -+ < jr = N is a sequence of indices such that F(j;) =
F(je—1)+c(je—1,7je) for 1 < ¢ < k, then the optimal solution consists of the following decisions:
for each 1 < ¢ < k, go from state jy_1 to state jy.

Let D = (V, A) be the directed graph with node set V' := {0,..., N} and arc set A :=
{(i,7) : 0 <i < j < N}. Note that D contains no cycles. If we assign weight ¢(i, 7) to arc (3, j),
then the dynamic programming recursion amounts to finding a shortest path in D connecting
nodes 0 and N. The well-known linear programming formulation of such a problem is

min Z c(i, j)wi;
0<i<j<N
subject to Zwoj =1,
7>0
dowip— ) wik =0, 1<k<N-1,
>k i<k
Z WwiN = 1a
<N
’U)Z'jZO, 0§Z<]§N

The above problem has an optimal solution with w;; € {0,1} for all 0 < i < j < N. Arcs
(i,7) corresponding to variables that take value 1 form an optimal path. By interpreting each
w;; as a decision variable corresponding to the transition from state 7 to state j, such a path
yields an optimal solution of the original problem.

This shows that the above linear program is a linear formulation of the original problem,
in the sense that solving it yields the optimal solution of the original problem. This property
is similar to condition (ii) of Proposition [LI8], in the sense that a given problem is converted
into a linear program on a different space.

The same linear program can also be obtained by using linear programming duality. Specif-
ically, observe that the following linear program is the equivalent of recursion (L20):

subject to  F(j) — F(i) <c¢5, 0<i<j<N,
F(0) =0.

By interpreting F'(0), ..., F'(n) as variables, the dual of the above linear program is essentially
the linear programming formulation of the shortest path problem seen above.

Clearly such a shortest path formulation can be given only for problems that admit a
dynamic programming algorithm with a recursion of type (L20). However Martin, Rardin
and Campbell [43] showed that this approach can be generalized to a wider class of problem
that can be solved by discrete dynamic programming: given a dynamic programming algo-
rithm, they formulate the original instance as a linear program arising from a problem on a
hypergraph.
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General affine transformations

The definition of extended formulation given in Section [[4lis based on the notion of projection.
Since a projection is a particular type of full-rank affine transformation, such a definition can
be generalized as we now describe.

Let P be a polyhedron in the variables x € R™ and @ a polyhedron in the variables y € R™,
where m > n. Let T be a full-rank n x m matrix and let ¢ be a vector in R"™. The mapping g
defined by ¢(y) := Ty + t for y € R™ is a full-rank affine transformation of R™ into R"™.

Assume that g(Q)) = P. Then one can easily check that the following analogue of condi-
tion (ii) of Proposition [[L.I8 holds:

(ii”) For every ¢ € R"™, & is an optimal solution of the linear program min{cz : x € P}
if and only if z = Ty + t, where § € @ is an optimal solution of the linear program
min{cTy +ct:y € Q}.

Note that if ¢ = 0 and T" = [I,, | O] (where I,, is the n x n identity matrix), we reobtain
condition (ii) of Proposition [[LI8 and @ is an extended formulation of P according to our
definition.

This more general kind of extended formulation was studied by Padberg and Sung [50],
who proved a generalization of Theorem [[LT7] that we now describe. Following [50], we assume
without loss of generality that the columns of T" are ordered so that 7' = [T} | T»], where T is
a non-singular n X n matrix.

Theorem 1.19 Let @Q be a polyhedron in R™ defined by the linear system
Ay > b, Cy=d.

Partition A = [Ay | Ag] and C = [C1 | Ca], where Ay, Cy are the column submatrices formed
by the first n columns of A, C respectively. The polyhedron g(Q) is defined by the inequalities

(udy +vC)T; Hx —t) > ub+ vd
for all vectors (u,v) (of suitable dimension) belonging the following polyhedral cone:
u(Ay — Ay T Ty) +v(Cy — O T M T,) = 0, w > 0.
If the above is a polyhedral cone with apez, then its extreme rays are sufficient.

Ift=0and T = [I, | O], the above statement coincides with Theorem [[LT7l Padberg and
Sung [50] used this result to compare four approximate extended formulations of the traveling
salesman problem, each defined on a different space of variables.

1.6 Outline of the thesis

The main subject of this work is the study of a class of mixed-integer sets whose constraint
matrices are totally unimodular. A technique is presented that allows one to construct ex-
tended formulations for such sets, and the description in the original space is also considered
for some special cases. Furthermore, possible extensions to other sets are considered.
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In Chapter 2] we study mixed-integer sets of the type
MIXTY .= {x € R": Az > b, ; integer for i € I}, (1.21)

where A is a totally unimodular matrix, b is a column vector and [ is a nonempty subset of
{1,...,n}. By a result of Eisenbrand [23] [IT], the problem of checking nonemptiness of a set
MIXTU is N'P-complete, even if A is a totally unimodular matrix with at most two nonzero
entries per column and b is a half-integral vector (i.e. 2b is integral). This, together with
the equivalence between separation and optimization (Theorem [[]), indicates that finding an
explicit inequality description of the polyhedron conv (M X TU) will most likely be an elusive
task.

We then focus on sets of the type MIXTU for which the matrix A contains at most two
nonzero entries per row (a set of this type is denoted by MIX?TY) and sets of the type
MIXTY for which A is the transpose of a flow network matrix (denoted MIXPN). We
provide an extended formulation for the polyhedron conv (M IXPN ), and this will also yield
an extended formulation for conv (M X QTU). We summarize below the approach used to
find an extended formulation of conv (M IXDPN ), which is based on a general idea that was
also adopted by Miller and Wolsey [45], 46] and Van Vyve [63] [65] to tackle some specific
mixed-integer sets arising from lot-sizing problems.

First we study a mixed-integer set X7, which is the set of points that satisfy the system
Az > b (which defines MIXPY), where all variables are required to take a fractional part
belonging to a given list F. We introduce additional variables to model the conditions defining
X7 and obtain a pure integer description of this set. The constraints are then strengthened
and an equivalent pure integer description is obtained, where the constraint matrix is now
totally unimodular. This will provide an extended formulation of conv (X 7 )

Next we study the case in which the list F is complete: that is, it contains all possible
fractional parts that the variables take over the set of vertices of conv (M IXPN ) We prove
that under this assumption the above result yields an extended formulation of conv (M IXPN )
We show that a complete list for a set of the type MIXPN can always be exhibited, thus
an extended formulation of our type can be constructed in all cases. We also show that if
there is a complete list F that contains a polynomial number of elements, then the extended
formulation is compact. This proves that linear optimization over sets of the type MIXPN (or
MIX?TU) that have this property can be carried out efficiently through linear programming.
This is in contrast to the NP-completeness result mentioned above, which holds when the
matrix A in (L2I)) has at most two nonzero entries per column.

In Chapter Bl we discuss the size of an extended formulation of the type introduced in
Chapter 21

On the negative side, we show that there exist mixed-integer sets of the type MIX?TU
that do not admit a complete list of fractional parts containing only a polynomial number of
elements. This implies that for such sets, no extended formulation of our type is compact.

On the other hand, we give some sufficient conditions ensuring that a mixed-integer set
MIX?TU admits a complete list of polynomial length, thus proving that under these conditions
the extended formulation of Chapter 2lis polynomial in the original description of the set. The
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list of fractional parts is explicitly given through a construction based on a graph associated
with the set.

In Chapter ] we show that several mixed-integer sets that have been studied in the litera-
ture can be transformed into sets of the type MIX?TV and thus admit an extended formulation
of the type introduced in Chapter Bl For many of these sets, one of the conditions ensuring
the existence of a complete list of fractional parts with a polynomial number of elements is sat-
isfied, and such a list can be explicitly given. Therefore the extended formulation is compact
for such sets.

We will see that most of the mixed-integer sets considered in this chapter have application
in real-word problems, such as production planning. Our results provide a unified framework
for the extended formulations of these sets found in the last years.

In Chapter [Bl we consider the problem of carrying out explicitly the projection of an
extended formulation of a mixed-integer set of the type MIX?TV. When this can be done, we
obtain a linear inequality description of the polyhedron conv (M X QTU) in its original space.

Since computing the projection of our extended formulation seems to be an extremely hard
task in general, we only consider two special cases for which the projection can be calculated:
the first case is a general set of the type MIX?TV having a single continuous variable, while
the second set studied is a mixed-integer set arising from some lot-sizing problems.

We will see that the problem of computing the projection of an extended formulation of
the type given in Chapter 2] amounts to solving a family of circulation problems on a network

depending on continuous parameters.

Chapter [ is entirely devoted to mixed-integer sets of the type MIX?TU having a single
integer variable. We give a linear inequality description (in the original space) of the convex
hull of an arbitrary set in this class. In contrast to the “opposite” case of a single continu-
ous variable considered in Chapter Bl such a description is obtained without constructing or
projecting any extended formulation of the set. A technique appearing in [24] will be used.

We will point out that all the inequalities of the formulation can be derived as simple MIR-
inequalities, while the Chvatal-Gomory procedure is not sufficient to generate all of them.

In Chapter [[lwe consider two examples of a mixed-integer set whose constraint matrix has
a simple structure but is not totally unimodular (in fact, it is not even a 0, +1-matrix). We
show how the approach described in Chapter ] can be extended and how this yields extended
formulations for the two sets that are analyzed.

The coefficients of the first set form a sequence of divisible number, while the constraints
of the second set contain only two distinct (but arbitrary) coefficients on the integer variables.
For the former set the size of the extended formulation is polynomial in the size of the original
description of the set, while for the latter we can only obtain a pseudo-polynomial description.

We will also point out that in both cases the success in finding such formulations relies
upon the very special properties that each integer variable appears in a single inequality of
the original description of the set.
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In Chapter 8 we present a different approach to construct formulations of mixed-integer
sets in the original space or in an extended space. In contrast to the technique of Chapter
and its extension described in Chapter [, no explicit enumeration of fractional parts or other
numbers is required (except possibly in the final phase of the process). We adopt this technique
to formulate two specific sets, but we cannot determine a class of mixed-integer sets for which
this approach can be used.

The idea can be summarized as follows. A given mixed-integer set X is written as X = ZN
P for some mixed-integer set Z and some polyhedron P that is described by a small number of
inequalities. Then one proves that for a particular choice of Z and P, conv(X) = conv(Z)NP.
Next the set Z is shown to be equivalent to a mixed-integer set for which a formulation is
known either in the original space or in an extended space. This can be used to derive a
formulation of X.

Finally in Chapter [l some open problems in this field are discussed.

Note The results presented in Chapters BH4l are joint work with Michele Conforti, Friedrich
Eisenbrand and Laurence A. Wolsey. The results of Chapter Rland partly of Chapters [ and [
are joint work with Michele Conforti and Laurence A. Wolsey.



24

CHAPTER 1.

INTRODUCTION



Chapter 2

Extended formulations of dual
network sets

In this chapter we study mixed-integer sets of the type
MIX™Y .= {z € R": Az > b, x; integer for i € I}, (2.1)

where A is a totally unimodular matrix, b is a column vector and [ is a nonempty subset of
{1,...,n}.

We point out in Section 1] that the problem of checking nonemptiness of a set MIXTV
is N'P-complete, even if A is a totally unimodular matrix with at most two nonzero entries
per column and b is a half-integral vector (i.e. 2b is integral). This, together with the equiv-
alence between separation and optimization (Theorem [[6]), indicates that finding an explicit
inequality description of the polyhedron conv (M 11X TU) will most likely be an elusive task.

In Section we introduce two families of matrices that are studied in this chapter: one
is the class of dual network matrices, i.e. the transposes of matrices of circulation problems
on a network; the other consists of the totally unimodular matrices with at most two nonzero
entries per row. We recall some well-known results about these matrices and in particular we
observe that the matrices of the second class can be easily “transformed” into matrices of the
first class.

Let MIXPN be a mixed-integer set of the type MIXTY defined above, with the additional
restriction that A is a dual network matrix. Similarly, let MIX?"V be a mixed-integer set of
the type MIX™V where A has at most two nonzero entries per row. In Sections we
provide an extended formulation for the polyhedron conv(M IXPN ) This, together with the
observations made in Section 2] gives an extended formulation of conv (M X ZTU).

The technique that we present is based on a general idea that was also used by Miller and
Wolsey [45] 46] and Van Vyve [63] 65] to tackle some specific mixed-integer sets arising from
lot-sizing problems. Their common approach consisted in modeling the continuous variables
of the problem by introducing integer variables, so that a pure integer description of the set
was derived. A linear inequality description of this pure integer formulation was then obtained
(see also Section [[5.3]). In this last step total unimodularity usually plays a central role. The

25
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idea of constructing compact extended formulations by exploiting the total unimodularity of
a pure integer reformulation of the set appears in a paper by Pochet and Wolsey [53].

The approach used here to find an extended formulation of conV(M IXPN ) is now sum-
marized. In Section we study a mixed-integer set X7, which is the set of points that
satisfy the system Az > b (which defines MTXPY), where all variables are required to take
a fractional part belonging to a given list . We introduce additional variables to model the
conditions defining X7 and obtain a pure integer description of this set. The constraints are
then strengthened and an equivalent pure integer description is obtained, where the constraint
matrix is now totally unimodular. This will provide an extended formulation of conv (X 7 )

In Section 2.4l we study the case in which the list F is complete: that is, it contains all
possible fractional parts that the variables take over the set of vertices of conv (M IXPN ) We
prove that under this assumption the result of Section 23] yields an extended formulation of
conv (MIXDN). We show that a complete list for a set of the type MIXPN can always be
exhibited, thus an extended formulation of our type can be constructed in all cases. We also
show that if there is a complete list F that contains a polynomial number of elements, then
the extended formulation is compact. This proves that linear optimization over sets of the
type MIXPN (or MIX?TV) that have this property can be carried out in polynomial time
through linear programming. This is in contrast to the NP-completeness result mentioned
above, which holds when the matrix A in (2.) has at most two nonzero entries per column.

Finally in Section we discuss a variant of the above approach which allows one to
reduce the size of the extended formulation. Such a variant consists in using a different list of
fractional parts F; for each variable x; rather than a single list F for all variables of the set.
This reduces the number of variables and constraints of the extended formulation.

The results of this chapter are joint work with Michele Conforti, Friedrich Eisenbrand and
Laurence A. Wolsey and are also summarized in [IT].

2.1 Complexity

As recalled in Section [[32] a linear system with totally unimodular matrix and integral
right-hand side defines an integral polyhedron, i.e. a polyhedron which is the convex hull of
its integral points. Thus optimization of a linear function over pure integer sets defined by
systems of this type can be carried out in polynomial time by means of linear programming.
It is then natural to wonder whether a similar result also holds in the mixed-integer case.

A result due to Eisenbrand [23] (which also appears in [I1]) shows that the answer to the
above question is negative (unless P = N'P) even under some more restrictive assumptions.

Theorem 2.1 [23, [11] The problem of deciding whether a mized-integer set with totally uni-
modular constraint matriz contains a feasible point is N'P-complete, even if the constraint
matriz has at most two nonzero entries per column and all components of the right-hand side
vector are half-integer. In particular, it follows that linear optimization over such sets is an

NP-hard problem.

The proof of the above theorem is via reduction to CNF-SAT.
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Consider a mixed-integer set of the type
MIX™Y .= {z € R": Az > b, ; integer for i € I},

where A is a totally unimodular matrix and I is a nonempty subset of {1,...,n}. Let cx be
an objective function to be minimized over MIXTY and assume that we know the fractional
parts fi,..., fn of the components of an optimal solution. For 1 < i < n, we introduce an
integer variable u; that represents the integer part of x; and we consider the mixed-integer set

Ax > b,
w; integer, 1 <7< n.

The above constraints define a subset of MIX™V (as f; = 0 for i € I) which contains an
optimal solution of the minimization problem. Thus optimizing cz over this set is the same as
optimizing over the original set. Furthermore, since we know that fi,..., f, are the fractional
parts of an optimal solution, we can equivalently minimize the function cpu.

System Ax > b can now be rewritten as Ay > b — Af, which can be tightened to Ay >
[b— Af], where [b— Af] indicates the vector whose components are [b; — (Af);]. We then
obtain the system

W; integer, 1 <7< n.

Note that each variable z; only appears in one equation, which determines its value. Since
A is a totally unimodular matrix and the right-hand side [b — Af] is an integral vector, by
Theorem we can drop the integrality constraints from the above system. The original
minimization problem can now be solved by means of linear programming.

Together with Theorem 2.T], the above discussion shows that given an optimization problem
of the form min{cx xe MIX TU}, finding the fractional parts of the components of any
optimal solution is an A'P-hard problem (even if the constraint matrix contains at most two
nonzero entries per column and all components of the right-hand side vector are half-integer).

2.2 Dual network matrices

We recall here some basic facts about the matrices that are the object of this study.
Given a network N/ = (V, A) with node set V' and arc set A, the node-arc incidence matrix
of N is the matrix M = (myq : v € V,a € A) defined by

+1 if v is the head of a,
Myq = —1 if vis the tail of a,

0 otherwise.
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Such a matrix has exactly two nonzero entries per column (one +1 and one —1). If we allow
arcs having only one endpoint in the network (the other endpoint being a dummy node),
matrix M has at most two nonzero entries per column, and each column with two nonzero
entries contains one +1 and one —1. The matrices of this type are the constraint matrices of
circulation problems on networks (this will be discussed in Section G.1]).

We say that a 0, £1-matrix A with at most two nonzero entries per row is a dual network
matriz if each row of A having two nonzero entries contains one +1 and one —1. Thus dual
network matrices are the transposes of the constraint matrices of circulation problems on
networks.

In this chapter we study mixed-integer sets whose constraint matrix is totally unimodular
and contains at most two nonzero entries per row. A matrix of this type can be converted into
a dual network matrix by changing the sign of some of its columns. To see this, we first recall
the following characterization, which is due to Heller and Tompkins [32], see e.g. Theorem 2.8

in [49].

Theorem 2.2 Let A be a 0, +1-matriz with at most two nonzero entries per row, where {a; :
j € N} is the set of columns of A. Then A is totally unimodular if and only if the set N can
be partitioned into two classes R, B such that all entries of the vector EjeR aj — ZJEB a; are
0,+1.

This is a particular case of the characterization of totally unimodular matrices given by
Ghouila-Houri [26] (see also Theorem [[LT4]). The condition in the above theorem can be stated
this way: in every row of A with two nonzero elements, the nonzero entries have the same

sign if and only if they belong to columns in distinct classes.

Corollary 2.3 FEvery dual network matriz is totally unimodular.

Proof. Just choose R:= N and B := @. O
Another well-known consequence of Theorem is the following:

Corollary 2.4 Let A be a 0,+1-matriz with at most two nonzero entries per row, where
{aj : j € N} is the set of columns of A. Then A is totally unimodular if and only if N
contains a subset R such that the matriz AR, obtained by multiplying by —1 the columns a;
for 7 € R, is a dual network matrix.

Proof. If A is a totally unimodular matrix with at most two nonzero entries per row, take a
partition (R, B) of N satisfying the condition of Theorem 2.2 It is easily checked that then
AP is a dual network matrix.

For the converse, observe that if there is a subset R C N such that A is a dual network
matrix, then the partition (R, B), where B := N \ R, satisfies the condition of Theorem
and thus A is totally unimodular. O
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2.3 Dual network systems and lists of fractional parts

The goal of this chapter is to provide an extended formulation for a set of the type MIX?TU
i.e. a mixed-integer set whose constraint matrix is totally unimodular and contains at most
two nonzero entries per row. To achieve this result, we first study subsets of R” that are
defined by a linear system with dual network matrix, with the additional restriction that all
variables can only take a fractional part belonging to a given list.

Given a real number «, we write f(«) to denote the fractional part of . Also, throughout
this dissertation fractional part stands for any real number in the interval [0, 1).

Define N := {1,...,n} and consider a general linear system with dual network matrix in
the variables z1,...,x,:

ry —xj > iy, (i,7) € N€,
x; >1;, i€ N,
x; <wu, 1€ NY, (24:)

where N¢ C N x N and N!, N* C N. The set N¢ does not contain any pair of the type
(,3) for i € N. The values [;;,1;, u; are arbitrary real numbers. We remark that the above
system may also include constraints of the type x; — x; < w;;, as this inequality is equivalent
to Tj — Ty Z lij for lij R

Suppose we are given a list of fractional parts F = {f1,..., fx}, with f; > --- > fi, and
let K :={1,...,k} be its set of indices. Let X7 be the set of points z satisfying inequalities
22)-([2Z4) along with the additional condition that all variables take a fractional part in F:

X7 .= {z e R" : z satisfies @) @4), f(x;) € F forie N}.

That is, X7 is the set of points € R™ such that there exist ;ﬂ,é};, fori € N and ¢ € K,
satisfying the following constraints:

wi=p' + Yy, fid}, €N, (2.5)
Sk 8i=1,8,>0, ieN,leK, (2.6)
z; — xj > i, (i,7) € N°¢, (2.7)

xi > 1, i e N, (2.8)

x; < uy, ie NY, (2.9)

i, 8% integer, 1€ N,le K. (2.10)

In other words, X7 is the projection of the mixed-integer set (Z3)—(ZI0) onto the z-space of
variables. In the remainder of this section we give an extended formulation of the polyhedron
conv (X]: )

Consider the following transformation:

¢
ph =yt = ,ui—i-z5§ fori e N and ¢ € K. (2.11)
j=1
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Since the above is a unimodular transformation (see e.g. [38]), we can equivalently study the

transformed of (2.3)—(2I0) under Z.IT)).

Define fo:= 1 and fr11 := 0. For fixed ¢ € N, under transformation (ZII]) an equation
in (Z3) becomes

k
vi =Y (fo— fer)uh (2.12)
=0
and the k + 1 constraints in (Z.6) become
ph— 1o =1, pyp—pp_y >0 for L € K. (2.13)

In the following we strengthen constraints (Z7)-([2.9). Consider first an inequality of the
type z; < I; with 4 € N'. Let £(I;) be the highest index ¢ € {0,...,k} such that f, > f(I;).

Lemma 2.5 Assume that z;, 5, and p} for ¢ € K satisfy (Z35), 0), ZI0) and ZII). Then
x; > 1; if and only if
oy = 6] + 1. (2.14)

Proof. The result can be checked directly. We show here that inequality (2.I4]) can be obtained
through the Chvatal-Gomory procedure (see Theorem [[LI0).

By equation (Z3), inequality x; > ; is equivalent to p® + 25:1 fgéé > 1l;. For € > 0 small
enough, combining such inequality with equation

k
~(f) =) D0 == (f(t) — 2)
/=1
(which holds by ([Z6]) and with the nonnegativity of the &, and then applying Chvatal-Gomory
rounding, gives inequality u® + doe<e(ts) 68 > |l;] + 1, which is equivalent to (ZI4). O
For i € N*, let ¢'(u;) be the highest index ¢ € {0,...,k} such that f, > f(u;).

Lemma 2.6 Assume that x;, 5, and pi, for { € K satisfy 23), 28), @I0) and @II). Then
x; < wu; if and only if

Proof. The proof is similar to that of Lemma 23] with ¢ = 0. O

We now consider an inequality of the type x; — x; > l;; for (i,5) € N¢. Define k;; to be
the highest index £ € {0, ..., k} such that f; + f(l;;) > 1. Given an index ¢ € K, define t}; to
be the highest index ¢ € {0,...,k} such that fo > f(fi + f(li;))-

Lemma 2.7 Assume that x;, x;, 6}, 5?, 1, ug for ¢ € K satisfy 23), 26), ZI0) and
(ZI0). Then x; — xj > li; if and only if the following inequalities are satisfied:

Mﬁ;j —pd > L] +1, 1<t < Ky, (2.16)

,U,:;;j — ,U,g > I_lijJ7 kij <t<k. (2.17)
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Proof. Substituting for z; using equation (Z3), inequality x; — z; > l;; becomes

k
2 > )+ 6] + (L] + (). (2.18)
/=1
First we show that inequality 2I7) is valid for ¢ > k;;. As Zif:l fgdg > D <t fgdg >
ftD o< 5?, we obtain from (ZI8)) the following valid inequality:
z >+ ftZ%' + lij] + f(lij)-

<t

Adding the valid inequality (1 — f¢) > (1 — f¢) 32y, 55 and isolating x; gives

x>+ Zég + [lij] + f(lij) — 1+ fe. (2.19)
<t

Let 8 be the right-hand side of the above inequality. We now strengthen inequality x; > G by
using Lemma For this purpose, we observe that condition ¢ > k;; implies f; + f(l;;) < 1,
so [B] =+ 0 &+ ;] —1 :',u{ + [lij] — 1. Also f(B) = f(fe+ f(lij)), thus Lemma 2.5]
yields the valid inequality ui( > + [l;;] and the validity of (2I7) is proven.
ij

The argument when ¢t < k;; is the same, except that f; + f(l;;) > 1.

To establish the converse, let t € K be the index such that 6] = 1. Then u} = uf) + 1,
pi_y = pd and 2 = ) + fy. Inequality pl, > pf + 1] implies that either p§ > p) + 1+ [1i;],

. 3 4 .
or puh = pd + [li;] and Y, 05 = 1. In both cases, this implies that z; > ud + [li;] + fu-
—"ij 4

Now, assuming ¢ > ki,

vy — x>+ i) + fe, = 1 — fo
= i) + fu, = fu
> i) + f (i),
as fy > f(fe + f(li;)) and fi + f(l;;) < 1. Again the other case with ¢ < k;; is similar. [

We can now give an extended formulation of conv (X 7 ) For this purpose, let Q7 be the
polyhedron in the space of the variables (xi, ,ué i eEN,Le KU {O}) defined by the inequalities

RI12), @13), @I4), @I3) and @I6)-EID):

zi =Y ioo(fe = feruh, i €N, (2.20)
P —po =1, pp—pp_1 >0, i€N,LeK, (2.21)
Moy = Ll +1, ic N, (2.22)

i) < il i€ N, (2.23)

Mi;j =l > ]+ 1, i€ N° 1<t<ky, (2.24)
py — il > (1], ieN® ki <t<k. (2.25)
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Theorem 2.8 The polyhedron CODV(X]:) is the projection of the polyhedron QF onto the
space of the x-variables.

Proof. Recall that X7 is the projection onto the z-space of the mixed-integer set (Z3)—(Z10),
which, as the above discussion shows, is equivalent to the mixed-integer set

{(z,p) € Q7 :puis integral } . (2.26)

Therefore conv (X a ) is the projection of the convex hull of ([2:26]) onto the x-space of variables.
We then have to show that such a convex hull is given by inequalities (220)-(2.23]).

Since, for i € N, variable x; is determined by the corresponding equation ([2.20) (and this
variable does not appear in any other constraints), we only need to show that the polyhedron
defined by inequalities (Z2I)—(Z23]) is integral.

Let A, be the constraint matrix of the above system. By construction, A, is a dual network
matrix. Since dual network matrices are totally unimodular (see Theorem [23]) and the right-
hand sides of the above inequalities are all integer, the statement follows from Theorem [[.13]

O

2.4 Complete lists of fractional parts

We use the results of the previous section to construct an extended formulation of a set of
the type MIX?TU i.e. a mixed-integer set whose constraint matrix is totally unimodular and
contains at most two nonzero entries per row. For this purpose, we now introduce the concept
of compete list of fractional parts for an arbitrary mixed-integer set.

Let X := {z € R" : Az > b, x; integer for i € I} be a mixed-integer set, where (A | b)
is an arbitrary matrix and I is a nonempty subset of the set of column indices of A. A list
F ={f1,..., fr} of fractional parts is complete for X if the following property is satisfied:

Every minimal face of conv(X) contains a point T such that

f(z;) € F for each i € N, and f(z;) =0 for each i € I. (2.27)

In our applications (Chapters @H]), minimal faces are vertices and the above condition be-
comes:

If T is a vertex of conv(X), then f(z;) € F for each i € N,

as every vertex Z of conv(X) certainly satisfies f(z;) = 0 for all i € I. However, for the sake
of generality we do not assume here that minimal faces are vertices.

We now consider a mixed-integer set
MIXPN .= {2 ¢ R": Az > b, z; integer for i € I},

where A is a dual network matrix. That is, the system Az > b consists of inequalities of type
22)—(24]). We sometimes call a set of this type a dual network set.
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We assume that we are given a list of fractional parts F = {f1,..., fx}, with f1 > - > fi,
which is complete for MIXPN . Note that since I is nonempty, F must include the value 0,
thus fr = 0.

We first give an extended formulation of the polyhedron conv(M IXPN ) and then show
how this easily leads to an extended formulation for the convex hull of a more general set
MIX*U.

In order to obtain an extended formulation of conv(M IXPN ), we consider the following
mixed-integer set:

zi= '+ b fidh, i €N, (2.28)
Sk 8i=1,6,>0, ieN K, (2.29)
6 =1, i€l (2.30)

x; —xj > lij, (i,7) € N°¢, (2.31)

z; > 1, ie N, (2.32)

x; < g, ie N, (2.33)

pt, 6% integer, i€ N,leK, (2.34)

where inequalities (231)-(233) constitute the system Az > b.

Let MIX7 be the set of points € R™ such that there exist u?, 8%, fori € N and £ € K,
satisfying constraints (Z28)—(234)). Note that equations (230) force variables x; for i € I to
be integer valued in MIX7.

Lemma 2.9 conV(MIXDN) = CODV(MIX}—).

Proof. If & € MIX” then 7 satisfies the system Az > b (i.e. inequalities (Z31)-(Z33)).
Furthermore equations (Z30) force x; for i € I to take an integer value. So z € MIXPN.
This shows that MIX7 C MIXPN and therefore CODV(MIX]:) - conV(MIXDN).

To prove the reverse inclusion, we show that all rays and minimal faces of conv (M IXPN )
belong to conv (M IX” ) Recall that since the constraint matrix of the system Az > b is
rational, the extreme rays of conv (M IXPN ) and conv(M X7 ) coincide with those of their
linear relaxations (see Theorem [[8). Now, if Z is a ray of conv(MIXPY), the vector defined
by

Ti = Ty, i = Ty, 5@::0 forie Nand e K

is a ray of the polyhedron that is the convex hull of (2.28))-(234]). This implies that Z is a ray
of conv(MIXf).

Since the list F is complete, every minimal face F' of conv(M IXPN ) contains a point
T € MIX”. Furthermore F is an affine subspace which can be expressed as {:c eR":xz =
§:+E?:1 ATy A\t € R} for some subset of rays rq,..., 7 of conv(MIXDN). Since z € MIX”
and 71,...,7, are all rays of CODV(MIX}—), then F' C conv(MIXF). O

As shown in Section 23] by applying the unimodular transformation (2I1]) inequali-

ties (2.28)-(2.29) become inequalities (2.20)—(221]), while (231))-([233]) become (2.22))-(2.23)).
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Let @ be the polyhedron in the space of the variables (xi, ,ué i eEN,Le KU {O}) defined by

inequalities (2.20)-(2.23]), which correspond to inequalities (2Z.28), (2.29), (2.31), (232), 233)
under transformation (211, and let Q! be the face of Q defined by equations

= pyp =1, i €1, (2.35)

which are equivalent to equations (230]) under transformation ([ZITI]). More explicitly, Q7 is
the polyhedron defined by the following linear system:

i = Yyoo(fe = frs)up, €N, (2.36)
e — o =1, pp—pyp_y >0, i€ N, LeK, (2.37)
M = tthoq = 1, i€l (2.38)
fyay = L)+ 1, i€ N, (2.39)
Py < i) ie N, (2.40)
=l > ]+ 1, i€ N°1<t<ky, (2.41)

ij
=l > |l i€ N kij <t<k. (2.42)

ij

Theorem 2.10 The polyhedron conV(MIXDN) is the projection of the face Q' of Q onto
the space of the x-variables. In other words, the linear system (Z306)—2.42) is an extended
formulation of conv (MIXDN).

Proof. Theorem shows that every minimal face of @) contains a vector (Z, i) with integral
fi. So the same holds for @, which is a face of Q. By applying the transformation that is the
inverse of (Z.I1]), this shows that every minimal face of the polyhedron defined by (2.28)(2.33)

contains a point (z, fi,d) where (f,0) is integral. So the projection of this polyhedron onto
the z-space coincides with conv (M IxX* ) and by Lemma we are done. O

We now consider a more general mixed-integer set of the type MIX?"V .= {x ¢ R" :
Az > b, z; integer for ¢ € I}, where A is a totally unimodular matrix with at most two
nonzero entries per row. By Corollary 4] A can be transformed into a dual network matrix
by changing the sign of some of its columns. Then MIX?"V is transformed into a set of the
type MIXPN . Note that if F = {f1,..., fx} is a list of fractional parts which is complete for
MIX?TU then the list ' := {fy, 1— f;: 1 < £ <k—1}uU{0} is complete for the transformed
set MIXPN. This shows that an extended formulation of MIX?TV can be easily obtained
from the extended formulation of the corresponding set MIXPYN. We also remark that the
list 7' contains at most the double of the number of elements in F.

2.4.1 An explicit complete list of fractional parts

Clearly an extended formulation of the type ([236)-([2.42]) can be derived only if a complete
list of fractional parts is known for the set. However, the following result holds:
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Lemma 2.11 Let X := {z € R": Az > b, z; integer for i € I} be a mized-integer set, where
A is an m X n totally unimodular matriz, b € R™ and I C {1,...,n}. Then every minimal
face of conv(X) contains a point & € X such that

f(@) = f (S oibs) fori ¢, (2.43)
where 0;; € {0,%£1} for alli ¢ I and 1 < j < m.

Proof. Let F be a minimal face of conv(X) and pick any point & € F N X. Define the
nonempty polyhedron

P:={xeR": Ax > b, x; = &; for i € I}.

Let G be a minimal face of P. Then G is an affine variety in R"™. Let d denote the dimension
of G. Since the equations Z; = &; for ¢ € I are linearly independent, then d < n—|I| and there
exists a subsystem A’z > b of Az > b with n — |I| — d rows such that the n — d equations

Ar=V, v;, =%, foriel

are linearly independent and define G.
By standard linear algebra, there is a subset J C {1,...,n} \ I, with |J| = d, such that
the n equations of the system

A=V, xj=2; foriel, ;=0 foricJ (2.44)

are linearly independent.

Let & be the unique solution to system (2.44]). Since € G and &; = &; € Z for i € I, then
T belongs to X. We now prove that = satisfies conditions (2.43]).

Since A is a totally unimodular, the constraint matrix of system (2.44]) is totally unimodular
as well. Equation (243]) then follows from the observation that the inverse of a nonsingular
totally unimodular matrix is a 0, +1-matrix. U

Lemma 2IT] is useful for at least two reasons. First, it provides an explicit (though long)
list of fractional parts which is guaranteed to be complete for the set, thus showing that an
extended formulation of the type (Z30)—([242) can be explicitly given for the convex hull of
an arbitrary set MIXPN. We will show in Chapter Bl that such a huge list can sometimes be
shortened.

To illustrate the second reason why the above lemma is useful, observe that the size of
formulation (Z306)—(2.42]) depends not only on the number of variables and constraints of the
original system Az > b, but on the size of the list F too. The size of F in turn depends on
two elements: the number k of fractional parts that it contains and the size of such fractional
parts. However Lemma [ZT1] shows that one can assume without loss of generality that the
fractional parts of a complete list F are all of the form f( > e o;jb;) for oj € {0, %1}, where
m is the dimension of b. Observe that the size of a number of this type is bounded by a
polynomial function of the size of vector b (assuming that b has rational components). Thus
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from now on, when considering the size of a list of fractional parts, we will only take into
account its length (i.e. cardinality) k.

We remark that the latter consideration implies the following immediate consequence of
Theorem 210

Corollary 2.12 If a mized-integer set of the type MIX?*TY (with rational right-hand side)
admits a complete list of fractional parts F whose length k is polynomial in the size of ils
description (given by the system Ax >b), the extended formulation (Z30)—2.42) of the cor-
responding set conv(MIXPN) is compact: it uses O(nk) variables and O((n + |[N¢|)k) con-
straints. Therefore the problem of optimizing a linear function over sets of the type MIX?*TU

with this property can be solved in polynomial time.

2.4.2 A different approach?

As observed above, a list including all values of the form f(ZT:l ojb;) for o; € {0,%1} is
always complete. Unfortunately such a list has (in general) an exponential number of elements.
We will see in Chapter Blthat in fact there exist mixed-integer sets with dual network constraint
matrix that do not admit a complete list of compact size.

X2TU gyen if there is no

In order to obtain a compact extended formulation of a set M [
complete list for the set having compact size, one could try to modify the approach described

in the previous sections by modeling the variables of the problem in a differen way, e.g.

wi = '+ 30 f(be)d;, i €N, (2.45)
i integer, 0 € {0, £1}, i€ N, 1< /0 <m. (2.46)
By the above observation, every minimal face of conV(M 1 XQTU) contains a point x that

satisfies the above conditions for some p, 5@. Note that for each i € N, only m + 1 additional

variables are used.

X2TU

Unfortunately tightening the inequalities defining M T under the above conditions

seems to be hard. To demonstrate this, assume that some variable x is defined by the condi-
tions

w integer, 01,092,093 € {0,+1}. (2.48)
Suppose that one of the constraints describing M IX?"V is inequality = > 0. It can be checked

(we did so by using PORTA [J]) that a linear inequality description of the set of points (z, i, §)
satisfying (2.47)-(248) and = > 0 is given by the following constraints:

U >0,
pA4 01+ 0o > 0,
2+ 261+ 62+ 93 >0,
4+ 301 + 262 + 93 > 0,
1< 8y, 80,05 < 1.
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When considering the systems originating from similar examples, we could not see any
particular structure that could lead us to characterize the convex hull of the integral points.
This is not surprising: for instance, modeling x > 0 under conditions (2:47))-([2:48]) amounts
to finding the convex hull of the following integer knapsack set:

10p + 941 + 5dy + 363 > 0,
w integer, 01,092,093 € {0,+1}.

It is well-known that problems of this type are hard. Furthermore, if two or more constraints
—instead of a single inequality— are considered, tightening each inequality separately does
not give (in general) the convex hull of the mixed-integer set. This suggests that it is unlikely
to find a straightforward modification of our approach that uses the modeling conditions

2.45)-2.46).

Note that conditions &) € {0,%+1} in (ZZ6) could be replaced with conditions &} € Z. In
this case the strengthening of a single inequality is easy: after transforming all coefficients
into coprime integers by multiplying the inequality by a suitable number (provided that all
coefficients are rational), it is sufficient to round up the right-hand side. However, when there
are two or more constraints, tightening each inequality separately does not give (in general)
the convex hull of the mixed-integer set.

Finding a compact extended formulation of the convex hull of a set MIX?"V that does
not admit a “short” list of fractional parts is an open problem.

2.5 Specific lists of fractional parts

We discuss here a simple variant of the results presented in Sections 2:3HZ4l Such a variant
allows us to reduce the size of the extended formulation given by Theorem 210 and will be
useful in Chapter B, where for some special sets we compute explicitly the projection of the
extended formulation onto the original space of variables.

2.5.1 A more compact extended formulation

In Section 23] we considered a system of inequalities of the form ([22)-(24]) and a list F of
fractional parts, and we gave an extended formulation of the polyhedron which is the convex
hull of the set of points z satisfying ([22)—(2Z4) along with the additional condition that
f(z;) € Fforallie N.

Now assume that instead of a single list F, we are given a (possibly) different list of
fractional part F; for each ¢ € N. We assume F; = {ff, o ,flii}, with fi > - > flii, and set
K;:={1,...,k;}. We define X7 as the set of points x satisfying the linear system (22))—(Z4)
along with the additional condition that f(z;) € F; for all i € N. That is, X7 is the set
of points x € R™ such that there exist /ﬂ,d}ﬁ, for i € N and ¢ € K, satisfying the following
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constraints:
zi=p' o+ Y0 fish, i€ N, (2.49)
Shidi=1,0>0, ieN/{cK, (2.50)
x; —xj > lij, (1,7) € N°¢, (2.51)
z; >, ie N, (2.52)
x; < uy, ie N, (2.53)
pt, 8% integer, i€ N,lcK;. (2.54)

Similarly to Section 23] X7 is the projection of the mixed-integer set ([249)—(Z54) onto the
x-space.

An extended formulation of conv (X 7 ) can be found as in Section [Z3], with just some slight
changes. We summarize the construction of the extended formulation below; the details and
the proofs are perfectly analogous to those of Section 2.3l

First of all, we define a unimodular transformation which is identical to transforma-
tion (ZIT]), except that now K has to be replaced with Kj:

ph =ty =t Zéi» fori e N and ¢ € K. (2.55)

Similarly, after setting f& := 1 and f,i#l :=0forall i € N, constraints (2.49)—(2.50) transform
into constraints that are almost identical to (Z12)—(2I3):

zi = po(fi — fis1) g,
Hie — 1o =1, pj—pp_y >0, (€K,

For i € N, inequality z; > I; can be modeled as ”Z(Zi) > [li] 41, where ¢;(l;) is the highest
index ¢ € {0,...,k;} such that f, > f(l;). For i € N, inequality x; < u; can be modeled as
,uz;(ui) < |ui], where ¢(u;) is the highest index ¢ € {0, ..., k;} such that f; > f(u;).

Finally, to model inequality x; — x; > l;; for (i,j) € N€¢, we define k;; to be the highest
index ¢ € {0,...,k;} such that fg + f(lij) = 1. Given an index ¢ € Kj, define t;; to be the
highest index ¢ € {0,...,k;} such that f; > f(ft] + f(lij)). Now a result almost identical to
Lemma 2.7 (just replace k with k; in (2.17))) can be proven exactly as in Section 23]

With a proof that is identical to that of Theorem 2§ one can prove that an extended
formulation of conv (X 7 ) is given by the following linear system:

2= Yyio(fi = fla)ih, €N, (2.56)
pe — ko =1, pp—ppy =0, i€ N, leK (2.57)
oy = L) +1, i€ N, (2.58)

Py < Luil, i€ N, (2.59)

p, = py = i) + 1, i€ N°1<t<ky, (2.60)
=l > L], i€ N® kij <t<kj. (2.61)
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We now extend the definition of complete list given in Section 224l For ¢ € N, a list
Fi = {flz,,f,z} of fractional parts is complete for X with respect to variable x; if the
following property is satisfied:

Every minimal face F of conv(X) contains a point & such that
f(&;) € F; for each i € N, and f(Z;) =0 for each i € I.
When conv(X) is a pointed polyhedron, the above definition reads as follows:
If T is a vertex of conv(X), then f(z;) € F; for each i € N.

Let MIXPN = {2 € R" : Az > b, x; integer for i € I} be a mixed-integer set with
dual network constraint matrix A. If for each ¢ € N we are given a list of fractional parts
Fi = {f{, . ,fliz} which is complete for MITXPVN with respect to variable x;, one can repeat
the process of Section 4] and prove the following result (as usual, fi > --- > f,él)

Theorem 2.13 The following linear system is an extended formulation of the polyhedron
conV(MIXDN):

zi = Yyo(fi = fiy)uy, P €N, (2.62)
f, = Ho =1, pp—ppy 20, €N, Le K, (2.63)
[, — Py =1, i€l (2.64)

H?i(zi) > I;] +1, ie N, (2.65)

My < Luil, ienN", (2:66)

Mi;]. — ol > L] + 1, i€ N° 1<t<ky, (2.67)
iy~ wl > L), i€ N¢ ky <t<kj. (2.68)

XZTU

The extension to a set of the type M1 can be done as in Section [Z4]

Corollary 2.14 Given a mized-integer set of the type MIX*TVY (with rational right-hand
side), let Fi, ..., Fy be lists of fractional parts which are complete for MIX?TU with respect to
variables x1, ..., x, respectively. Define k := maxi<;<n |Fi|. Then the extended formulation
Z62)-@2BR) of the corresponding set MIXPYN uses O(nk) wariables and O((n+ |N¢|)k)
constraints.

Let us compare Corollaries 212 and T4l Let F be a list of fractional parts which is
complete for MIX?"V and whose length is minimum. Similarly, let Fi,...,F, be lists of

X?TU with respect to variables x1, ..., z, respec-

fractional parts which are complete for M1
tively and whose lengths are minimum. It is clear that F = F; U --- U F,,, thus in this case
k < k < nk. This implies that formulation ([Z62)-(Z68) can be more compact than formula-
tion (Z36)-(Z242). However inequalities k < k < nk show that a mixed-integer set MIX?TV
admits a compact extended formulation of type (Z30)—(242) if and only if it admits a compact
extended formulation of type (Z62)—(2.68]). Therefore, when aiming at showing the existence
of a compact extended formulation of a set of the type MIX?"V one can consider without

loss of generality a single list F of fractional parts as in Section 241
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2.5.2 Inequalities involving integer variables

To conclude this section, we show more explicitly the form of inequalities (2.65)—([2.68]) when
i and/or j belong to I. This will be useful in Chapter

If i € I (i.e. x; is an integer variable), we can safely choose F; := {0}: such a list is

certainly complete for MIXPN

with respect to variable ;. So we now assume that F; = {0}
for all ¢ € I. We also observe that when z; is an integer variable, we do not need to introduce
variables u@, as pé = z; and pi = z; + 1. In other words variables z; for i € I can be kept in

the formulation without introducing any additional variables to model them.

Given an index i € I N N, inequality x; > [; can be trivially tightened to z; > [I;]. Tt is
interesting to observe that this is equivalent to inequality (2.63]), as we now prove.
Note that
0 ifl; ¢7Z
0l = { i ¢ Z,

1 ifl; € Z.

In the former case inequality @85) reads uly > |l;| + 1 = [I;], as I; ¢ Z; in the latter case
inequality ([Z68) reads ui > [l;] + 1, which is equivalent to uf > [l;], as pi = pé + 1 and
|l;] = [l;]. Thus in both cases inequality ([2.65)) is equivalent to u} > [I;], that is, z; > [I;].

Given an index i € I N N*, inequality z; < u; can be trivially tightened to x; < |u;], that
is, pb < |u;). This is equivalent to (ZB6), as £;(u;) = 0.

Now consider a pair (i,j) € N¢ with j € I. Since z; is an integer variable, inequality
x; — x; > l;; could be modeled as done for the inequalities of group (Z52), thus obtaining
,uéi(lij) —xj > |l;j] + 1, or in other words, uéi(l”) — 1y, > |lij] +1. We now show that in fact
the set of inequalities (Z.67)—(268]) reduces to this single inequality.

Note that k;; = 0. For t = 1, it easily checkgd that ¢;; = £;(l;j). Thus constraints (Z67)-

([268)) reduce to the single inequality uéi(lij) — p] > |lij], that is, ,U,Z( )T = i ] + 1.

lij

If (i,j) € N® with i € I, inequality x; — x; > l;; could be modeled as done for inequalities
of group (Z353): after writing the inequality as x; —x; < —l;;, we obtain H‘Zj(_lij) —x; < | —li;].
However, in this case the set of inequalities (Z67)-(2G68) consists of k; constraints, thus
whenever k; > 1 (i.e. x; is a continuous variable) there are redundant inequalities in (Z67)—-
(Z68). We only mention that it is possible to swap to role of x; and z; in the tightening of
x; — xj > l;;, thus obtaining a set of k; inequalities. In the case (4, j) € N¢ with i € I, such a
set of inequalities reduce to a single constraint.

When (i,7) € N€ and both ¢,5 € I, the set of inequalities (2.67)-(2Z68) reduces to the
single (obvious) inequality x; — x; > [l;;].

The above observations are summarized below:
Observation 2.15 If no variable is introduced to model the integer variables, then:
(i) Ifi € I N N, inequality 283 reads x; > [1;].

(ii) Ifi € INN", inequality 260) reads z; < |l;].
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(iii) If (¢,j) € N¢ with j € I, the set of inequalities [267)-([268) reduces to the single
inequality uéi(l”) —xj > i) +1.

(iv) If (i,7) € N€ with i € I, the set of inequalities [2.67)-([2.68) can be replaced with the
L : j
single inequality x; — F, (1) > [lij].
(v) If (i,j) € N¢ with j € I, the set of inequalities [26717)-([268) reduces to the single
inequality x; — x; > [1;;].

The simple observation in (v) implies the following result:

Proposition 2.16 Let MIXPN be a mized-integer set with dual network constraint matriz
and let Bx > d be a linear system whose inequalities are all of the type x; — x; > d;; with
1,7 € I, where d is an integral vector. Then

conv(MIXPN n{z € R" : Bz > d}) = conv(MIXPN)N{z € R": Bx > d}.

Proof. Since all variables appearing with nonzero coefficient in the inequalities of system
Bx > d are integer variables, Observation (v) implies that an extended formulation of
conv(MIXPN N {z € R": Bx > d}) consists of constraints ([262)-(ZG68) together with the
inequalities of the system Bx > d. It can be easily shown (e.g. by using Theorem [[LTG]) that
the projection of such an extended formulation onto the space of the x-variables is given by
the projection of (2.62)—(2.68]) along with the inequalities of the system Bx > d. This proves
the result, as the projection of (Z62)—(ZER) is conv(MIXPYN). O

A similar result for some specific mixed-integer sets was proven by Miller and Wolsey [45],
Van Vyve [65] and Conforti, Di Summa and Wolsey [13].



42

CHAPTER 2. EXTENDED FORMULATIONS OF DUAL NETWORK SETS



Chapter 3

On the length of a complete list

As shown in Chapter [, any mixed-integer set MIX?TV admits an extended formulation of

the type (2.30)-([2.42]). We also observed that there is a compact extended formulation of this
type if and only if MIX?TU admits a complete list of fractional parts that is compact.

We show in Section 1] that there exist mixed-integer sets of the type MIX?TU that do
not admit a complete list of fractional parts that is compact. This implies that for such sets,
no extended formulation of the form (236)-(2.42]) is compact.

On the other hand, we give in Section some sufficient conditions ensuring that a
mixed-integer set MIX?TU admits a complete list of polynomial length, thus proving that
under these conditions the extended formulation of the type (236)—(Z42) is polynomial in
the original description of the set. The list of fractional parts is explicitly given through a
construction based on a graph associated with the set.

The results of this chapter are joint work with Michele Conforti, Friedrich Fisenbrand and
Laurence A. Wolsey and are also summarized in [I1].

3.1 A non-compact example

As remarked in Section 4] given an arbitrary mixed-integer set MIXTV := {z € R" :
Az > b, x; integer for ¢ € I} defined by a totally unimodular constraint matrix A, the list
F consisting of all fractional parts f(zgnzl ajbj) for o; € {0,%1} is complete for the set.
Therefore this holds in particular for the sets MIX?TV,

It is easy to choose the components of b so that the list F defined above contains an
exponential number of elements. However, this does not prove that a set MIX?TV associated
with such a vector b does not admit a compact extended formulation of the form (2306])—-(2:42]),
as JF may contain superfluous elements, i.e. fractional parts that do not appear the vertices
of conv(MIXQTU).

We show here that in fact there are sets of the type MIX?TV for which any complete list
of fractional parts is exponentially long. This implies that our extended formulation cannot
be compact for such sets.

The result that we prove is the following:

43
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Theorem 3.1 In the set of vertices of the polyhedron P defined by the inequalities

3(G—1)n+i o
Si+erW’ 1<4,j<n, (3.1)
5i>0,r; >0, 1<4,j<n, (3.2)

the number of distinct fractional parts taken by variable s, is exponential in n.
We remark the Theorem B] implies the following fact:

Observation 3.2 Since the constraint matriz of inequalities [BI)—B2) is a totally unimod-
uwlar matriz with at most two nonzero entries per row, there exists a mized-integer set X of
the type MIX?TY  which is defined on continuous variables si, 1, for 1 <1,5 < n and integer
variables zy, for h € I, such that the polyhedron conv(M) N{(s,r,z) : z, =0 for h € I} is a
nonempty face of conv(X) described by inequalities BI)-B2). Therefore Theorem [31] shows
that any extended formulation of conv(X) that explicitly takes into account a list of all possible
fractional parts of the continuous variables will not be compact in the description of X.

The remainder of this section is entirely devoted to proving Theorem .11

Let b;; be as in the theorem, i.e. b;; = 3U=Dnti/3n*+1 for 1 < 4,j < n. The following
observation is immediate.

Observation 3.3 b;; < by if and only if (j,1) < (j',7"), where < denotes the lexicographic
order. Thus byy < bap < - <bpp <bpo <+ < bpp.

Lemma 3.4 The two properties below hold:
(i) Let o € Z% with oy < oy for 1 <t < q—1. Define
q
D) =Y (-1)7"3%.
t=1

Then ®(«) satisfies the following inequalities:

1 3
—3% < @ —3%,
53 < (o) < 5

(ii) Suppose that « is as above and (3 € Zf{ satisfies By < Prr1 for 1 <t < ¢ —1. Then
®(a) = ©(B) if and only if a = .

Proof. First of all note that

ag—1

300 —1 1
Z 3t = s < 53%.
=0 -
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This implies the following chains of inequalities, which prove (i):

ag—1

3aq _ Z 3t 3aq _ _3aq — %Baq’

ozq—l

1 3
< 3% 3t < 3% 4 —3% = Z3%,
(@) <3% 4 ) 3" < 3%+ 5 5

To prove (ii), suppose a # (3. Without loss of generality we assume ¢ > ¢’. Assume
first that (ag_g41,...,04) = 8. Then ¢ > ¢’ (otherwise a = ) and, after defining & :=
(a1,...,04-q), we have ®(a) — ®(8) = (&) > 0 by (i). Now assume (g_q/+1,-..,0q) # 0.
Define h = min{7 : ag—r # By—-} and suppose ag_p, > By—p (the other case is similar). If we
define the vectors & := (o, ..., 04_p) and B = (p,... By—n), (i) gives

O(a) — d(B) = (a) — 2(B) > %30‘4141 _ ;35q/,h > 0,

as ag—p, > By —p. This proves that ®(a) # ®(3) whenever o # (3. O

We now give a construction of an exponential family of vertices of P such that at each vertex
variable s,, takes a distinct fractional part. Therefore this construction proves Theorem [3.11

Let (i1,...,%m) and (J1,..., jm—1) be two increasing sequences of indices in {1,...,n} with
i1 = 1l and i,, = n. For 1 <4, j < n, define p(i) := max{t : i <i} and ¢(j) := max{t: j; < j},
with ¢(j) =0if j < j1.

Consider the following system of equations:

sy, =0, (3.3)

i, + 15, = bijys 1<t<m-—1, (3.4)
Sipr + 75, = birje,  1<t<m—1, (3.5)
Sigyrr T 75 = biggyais I {1, Jme1)s (3.6)
$i iy = bijoy, 8 E {i1,- - yim} (3.7)

The unique solution to this system is:

Sip = 07 (38)
t—1 t—1
Sip = Z bie+1je - Z bigje, 2<t<m, (3.9)
(=1 (=1
t t—1
Tje = Zbilje - Z bigsrjor 1<t <m—1, (3.10)
/=1 /=1
S; = bi.jp(i) _ij(i)’ 7 ¢ {il,...,im}, (311)
ry = biq(j)+1j = Siggyr1 J& g, Imat (3.12)

Lemma 3.5 The vector defined by (B8)-BI12) is a vertex of P.
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Proof. We start by showing that the vector defined above is feasible in P. First, as each
of the variables s;,7; takes a value of the form ®(a )/3"**+1 by Lemma B4 () we have that
Siy > b, > 0for 2 <t <m,rj, >3b;, >0for 1 <t<m-—1,s > b,]p(l) > 0 for
i ¢ {i1,...,im}, and r; > 2b1q(j)+1] > 0 for j ¢ {ji,...,Jm—1}. Therefore the nonnegativity
constraints (3.2) are satisfied.

We now show that inequalities (3.I) are satisfied as well. Consider the i, j constraint with
J & {1, Jm-1}- We distinguish some cases.

1. p(i) < q(j). In this case

1

Si+7j = rj > blq(])+1] Z Qb%(Z)HJ = QbU > bl]

2. p(i) > q(y) and i & {i1,...,im}. Then

1 3"
s;+r; >8> b —b; > —b;; >bij.

”p(l) =9 iJq(j)+1 = 2
3. p(i) = q(j) + 1 and i = 4; for some 1 <t < m (thus p(i) =t = ¢(j) + 1). In this case
the 7, j constraints is satisfied at equality by construction.

4. p(i) > q(j) + 1 and i = i; for some 1 <t < m (thus p(i) =t > q(j) + 1). Then

n
sit+r; >8> bm > ;szq(])+l > 32 bij > bj.
The argument with ¢ ¢ {i1,... 4, } is similar.
Finally suppose that ¢ = i; and j = j, with v ¢ {t — 1,¢}. If u > ¢ then s; +1; > r; >
%biuju > %bizju > bij. If u<t—1then s; + T > 8 > %bit]‘Fl > %bizju > bij.
This shows that the vector defined by (B.8)-(B.I2) is feasible. Since this vector is the
unique solution to system ([B.3)—([B.7), it defines a vertex of P. O

Now let a;j = (j — 1)n + 4, so that by; = 3% /3"**1 and take

Q= (ai1j1 sy Qigjis Qiggos Qiggoy - - - 7aimjm—1)'

As s, = ®(a)/3" L, it follows from Lemma B4 (ii) that in any two vertices constructed as
above by different sequences (i1,...,%m), (Ji,---,Jm—1) and (¢},...,2 /), (J1,---. 4., _1), the
values of s, are distinct numbers in the interval (0,1). As the number of such sequences is
exponential in n, this proves Theorem .11

3.2 Sufficient conditions for the compactness of a complete list

The previous section shows that a formulation of the type (236)-(242) is not guaranteed
to be compact in the original description of the set. We describe here some conditions that
ensure the existence of a complete list which is compact for a mixed-integer set of the type
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MIX?TU  thus proving that the corresponding extended formulation ([Z36)-(2.42)) is compact
under these assumptions.

Let X be a mixed-integer set of the type MIX?TV . Since X is described by a linear system
Az > b where A is a totally unimodular matrix with at most two nonzero entries per row, the
constraints defining X are of the following type:

wi+xp > U5, (4,5) e NTT, (3.13)
wi—xp > U5, (4,5) e N7, (3.14)
—x; —xj >, (i,7) e N~ 7, (3.15)
z; >1l;, ieN!, (3.16)

x; <w;, 1E€NY (3.17)

x; integer, i€ 1, (3.18)

where N*T Nt= N~= C N x N and N, N*,] C N. The sets N*T,N*T=, N~~ do not
contain any pair of the type (i,i) for @ € N. Without loss of generality we assume that if
(i,7) € NTT then (j,4) ¢ N*F and if (i,j) € N~ then (j,i) ¢ N~ .

We construct a graph Gx = (V, E) associated with the mixed-integer set X. The node
set of Gx is V := L := N \ I and corresponds to the continuous variables of X. E contains
an edge ij for each inequality of types BI3)—BI5) with ¢,j € L appearing in the linear
system that defines X. The total unimodularity of A implies the following: for fixed 14, j, if the
system Az > b contains an inequality of type ([B.I4)), then it does not contain any inequality
of type BI3) or (BI5). Therefore, for each pair of nodes ¢, € V, E contains at most two
parallel edges connecting ¢ and j.

We impose a bi-orientation w on Gx: with each edge e € E (corresponding to an inequality
a;x; + ajz; > l;;) and each endnode i of e, we associate the value

(e,1) tail if a; =1,
w(e, i) :=
head if a; = —1.

Thus each edge of Gx might have one head and one tail (if corresponding to an inequal-
ity (B14))), two tails (if corresponding to an inequality (BI3])) or two heads (if corresponding
to an inequality (BI5)).

Given a path P = (vg,e1,v1,€1,...,v¢) in Gx, where vg,...,v; € V and ey,...,e; € E,
we want to define the w-length of P, denoted [, (P). To do this, we first define the reverse of
an edge e € F as the edge obtained by turning each head of e into a tail and each tail into a
head.

We construct a path P' = (vg, €}, v1,€],...,v;) from P by reversing some of its edges, so
that vg is a tail of e;, and every node v; for 1 < j < t is a head of one edge of P’ and a tail
of the other. Note that given P, the path P’ is uniquely determined.

Now we define [,,(P) := Zj’:l o (P, ej)le;, where for e € I, I, is the right-hand side of the
inequality corresponding to edge e and

—1 if e; has been reversed in P’,
o(Pej) =

+1 otherwise.
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We also define a list £ as the set of values f(l,(P)) for all paths P in Gx.

Theorem 3.6 Let X be a mized-integer set of the type MIX?*TU and define the list L as
above. Then X admits a complete list whose length is O(mh), where m is the number of
inequalities in the description of X and h := |L|.

Proof. We assume that X is nonempty, otherwise the above statement is trivial. This proof
is a refinement of that of Lemma 211l Let F' be a minimal face of conv(X) and Z be a point
in F'N X. We choose J and construct a nonsingular system of linear equations

Ar=V, 2, =3; foriel, ;=0 forieJ (3.19)

as described in the proof of Lemma .11l Recall that J NI = @.

Let Z be the unique solution to system (BI9]). Equations x; = &; for i € I can be used to
eliminate variables x; for i € I from system (3I9). After such elimination, system (B.I9]) has
the following form:

wi+xy =15, (4,7) € NI T,

wi—xp =15, (4,5) € Nf7,

—z; —x; =1, (i,5) € Ny,
x; = d;, i € Nz,

3.20
3.21
3.22

(
(
(
(3.23

)
)
)
)
where N7 7 C N*+ Nf~ C Nt=, N;~ C N~ and the three sets N 7, N ~, N; ~ only

contain pairs of indices (4,j) with both 4,5 € L. It is easily checked that Nz C L. For each
1 € Nz, the value d; satisfies one of the following conditions:

(a) either d; € {l;,u;},
(b) ord; =0and i € J,

(c) or f(d;) € {f(l;f),f(l;;*),f(—l;j*)} for some j € I U J.

Observe that if we construct the bi-oriented graph corresponding to the above system, we
obtain a subgraph of the graph Gx associated with the original set X.

Recall that system ([B.20)-([3.23) consists of |L| linearly independent equations. It is well-
known (and easy to see) that the edges of Gx corresponding to inequalities of type (B.20)—(3.22)
define a forest Fz in Gx. Let C; = (V(Cz), E(Cz)) be a connected component of such a forest.
Since |V (Cz)| = |E(Cz)| + 1, Cz contains a unique node 7 whose value is determined by one
of equations ([B.23). Then (a)-(c) imply that the fractional part of Z, can only take O(m)
possible values, where m is the number of inequalities in the description of X.

If v is a node of Cz distinct from r, then the value of Z, is determined by the value of Z,
and the inequalities [B20)-([B.22]) corresponding to the edges in the path P, in Cz having v
as first node and r as last node: if e is the edge in P, incident with r and P/, is constructed
from P, as described above, we have

(3.24)

- lo(Py) + 2, if ris a head of e,
X =
! ly(Pyr) — T otherwise.
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Since the list £ has A elements, this shows that the fractional part of each variable z, at a
vertex can take at most O(mh) values. O

The following easy observation will be used in the next chapter.

Observation 3.7 If conv(X) is a pointed polyhedron, the set J of the above proof is empty.
In this case, given i € Nz, the value d; satisfies one of the following conditions:

(a) either d; € {l;,u;},
(b) or f(d;) € {f(l;;Jr),f(l;;*),f(—l;j*)} for some j € I.

We now show how Theorem can be applied in some special cases.

Corollary 3.8 Assume that a mized-integer set X of the type MIX?TU (with rational right-
hand side) satisfies at least one of the following conditions:

(i) The number of paths in Gx is bounded by a polynomial function of the size of the de-
seription of X ;

(ii) The number of elements in the sets {f(l;;Jr) : (i,5) € NTT}, {f(l;;f) : (i,5) € Nt~}
and {f(ll_]_) : (i,5) € N~} is bounded by a constant.

(i) Gx s a bipartite graph with vertez classes U,V and the inequalities defining X which
contain two continuous variables x,,x, (u € Ujv € V) have the form x, + x, > b, — by,
for some fized vector b with indices in U UV .

Then X admits a complete list of fractional parts that is compact.

Proof. Tf condition (@) holds, the length of the list £ is bounded by a polynomial function of
the size of the description of X. Then Theorem implies that there is a complete list for X
which is compact.

Now suppose that condition ({Il) holds and assume that {fi, ..., fi} is the set of all elements
of type f(l;;Jr), f(l;;*) and f(l;;”). Each value f(lu(Pyr)) can be expressed as

Fo(Por)) = £ Shy acke). (3.25)

where ay is an integer for 1 < ¢ < t. Since Gy has |L| nodes, the maximum length of a path in
Gx is |L| —1. This implies |ay| < |L|—1 for 1 < ¢ <t. Then the length of the list £ is at most
(2|L| — 1)*. Thus by Theorem B8] there is a complete list for X of size O(m|L|") = O(mn!),
as t is a constant by assumption.

Finally assume that condition (i) holds. In this case it is easy to verify that forv € UUV,
lw(Pvr) — br - bv (326)
and thus X admits a complete list which is compact. O

We remark that if the size of each connected components of Gx is bounded by a constant,
then X satisfies condition () of the above corollary.

Finally it is interesting to note that if one of the conditions of Corollary B.8lis satisfied, the
knowledge of the structure of Gy allows one to explicitly compute a complete list of fractional
parts which is compact (see Chapter [ for some examples).
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Chapter 4

Examples of formulations of dual
network sets

In this chapter we show that several mixed-integer sets that have been studied in the literature
can be transformed into sets of the type MIX?TV and thus admit an extended formulation of
the type introduced in Chapter[2l For many of these sets, one of the conditions of Corollary B.8]
is satisfied and thus a complete list of fractional parts which is compact can be explicitly given.
Therefore the extended formulation is compact for such sets.

We will see that most of the mixed-integer sets considered in this chapter have application
in real-word problems, such as production planning. Our results provide a unified framework
for the extended formulations of these sets found in the last years.

Before presenting the examples, we need to explain precisely the meaning of the word
transformed used above. This is done in Section E1]

The results of this chapter are joint work with Michele Conforti, Friedrich Fisenbrand and
Laurence A. Wolsey and are also summarized in [I1].

4.1 Mixed-integer linear mappings

Given a polyhedron P C R" and an invertible linear transformation of the space R", with
associated matrix A (thus A is an nxn nonsingular matrix), it is well-known that the polyhedra
P and P’ := {Az : x € P} are equivalent. This means that the polyhedral structure (faces,
facets, vertices, etc.) of P and P’ are identical under the change of coordinates = — Az.

Now assume that we are interested in the convex hull of the integral points in P. In other
words, we want to study the pure integer set defined by the inequalities that describe P (plus
the integrality conditions). If we apply an arbitrary invertible linear transformation, we could
loose information about the integral points of P: more specifically, there is no guarantee that
conv(P'NZ"™) is the transformed of conv(P NZ"™). Thus studying the original pure integer set
or the transformed set is not the same at all.

However, if the matrix A associated with the linear transformation is a unimodular matrix,
i.e. A has integer entries and det(A) = £1, then the transformation is a bijection on Z" (see

ol
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e.g. [38]). Thus in this case there is a one-to-one correspondence between the integral points
in P and those in P’.

When dealing with mixed-integer sets, say with continuous variables y; and integer vari-
ables z;, it is natural to wonder which invertible linear transformations preserve the integrality
of the z-variables. The following result fully answers this question.

/
Theorem 4.1 Consider the linear transformation defined by (y/) =A (y) , where (y,z) €
z z

R™7 (y,2) € R m+n=m'4+n' and A is an (m+n) x (m’ +n') nonsingular matriz.
The following are equivalent:

(i) For each (y,z) € R™™ 2 is integral if and only if 2’ is integral.

A Ay
O U

an m X n matriz and U is an n X n unimodular matriz.

(i) m=m/,n=n" and A = , where Ay is an m X m nonsingular matriz, Ay s

A Ay
Az Ay
Ay € Rm/X", A € RV*M and Ay € RV, If As # O, one of the entries of A3 is a nonzero

number a. Without loss of generality we assume that this entry is in the first row and first
e1/2a

Proof. We first prove that (i) implies (ii). Suppose A = , where A; € R™>*m

column of As. Then the vector A , where e; denotes the m-vector with 1 in the first

entry and 0 elsewhere, contains a component equal to 1/2 in the entry corresponding to zf,
contradicting (i). Thus Az = O.
By By
B3 By
By € R™™), a similar argument shows that Bz = Q.

Thus we obtain 2/ = A4z and z = By2’ for all z € R". We now prove that this implies
n = n'. Equation z = ByA,z for all z € R” yields B4A4 = I, (where I, denotes the n x n

If B= is the inverse of A (where By € R™*™ By € R™*" By € R™™ and

identity matrix), thus rk(A4) > n. Since A4 is n’ X n, this implies n’ > n. Similarly, starting
from 2/ = A4B42’ for all 2/, one obtains n > n’. Thus n = n/ and consequently m = m'. (i)
then implies that A4 is unimodular.

To prove that (ii) implies (i), note that if (ii) holds then the transformation and its inverse
are

{y/ = Aly + AQZ and {y = A;l (yl _ AQU—lzl)

2 =Uy z:=U"1

Since U is a unimodular matrix, these two transformations preserve the integrality of z and
2. O

We call a transformation of the type described in Theorem 1] a mized-integer linear
mapping. Theorem AT shows that if the description of a mixed-integer set is given (as usual)
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as the set of mixed-integer points belonging to a polyhedron P, then, after applying a mixed-
integer linear mapping, we can equivalently study the mixed-integer set defined by P’ (the
transformed of P).

Taking the above theorem for n = 0 or m = 0 shows that in the linear case (no integer
variables) the mixed-integer linear mappings are precisely the invertible linear transformations,
while in the pure integer case we find the unimodular transformations. Thus in the extreme
cases Theorem Il matches the known results.

Consider an arbitrary mixed-integer set X and let F be a complete list of fractional parts
for X having compact size. In general, if we apply a linear mapping of the kind described
in Theorem 1] the transformed mixed-integer set X’ may not have a complete list which is
compact. For instance, choose

X:={zeR":0< ;<2 " foric N}

(so here I = @; similar examples with I # @& can be easily derived from this instance). The
list F := {0; 27%:4 € N} is complete for X and its size is linear in the size of the description
of X. The mixed-integer linear mapping

ryi=ax9+ -+ xy, @, i=x; forie N\ {1}

7

transforms X into
X' = {:C'GR":Olel—x'z—---—x;SQ*l, 0§x;§27ifori€N\{1}}.
Now, for each subset S C N \ {1} the vector defined by
271 ifie S,
7 =40 ifie (N\{1})\ S,
Yieg2) ifi=1
is a vertex of X’. Since for each S the value of the sum Zje ¢277 is a different number in

the interval [0,1), any complete list for X’ contains a number of fractional parts which is
exponential in the size of the description of X.

However, for the mixed-integer sets that we study below (except those considered in Sec-
tions[L.3and 1)), we will apply mixed-integer linear mappings which give rise to mixed-integer
sets of the type MIX?TV satisfying at least one of the conditions of Corollary 3.8 Thus in
these cases the existence of a complete list which is compact is guaranteed. Furthermore, for
these sets such a list is explicitly given.

4.2 The mixing set and its variants
Giinliik and Pochet [31] introduced a mixed-integer set that is now referred to as mizing set
(the authors do not give a name to such a set in [31]):
s+zi>b, 1<i<n, (4.1)
s >0,

z; integer, 1 <i<n, (4.3)
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where b; € R for 1 < i < n. The mixing set was introduced as an abstraction arising from some
mixed-integer sets that have application in practical problems, such as production planning
[55]. More specifically, the mixing set provides a relaxation for a number of lot-sizing problems
(see e.g. [21], 45l (5] 63]).

Despite the simple structure of constraints (LI)—(L3]), the convex hull of the mixing set
is described by an exponential number of facet-defining inequalities. The name of the set
originates from the fact that Giinliik and Pochet [31] used this set to demonstrate the strength
of a technique that they called mizing procedure: given a mixed-integer set, such a procedure
consists in mizing the original inequalities that describe the set to obtain a new valid inequality.
In fact the mixing procedure allowed the authors to compute the linear inequality description
of the convex hull of the mixing set ([L.I)—(E3]).

Several variants of the mixing set ([LI])-(3]) have been introduced. Some of them are
considered in this section, others are discussed in Chapter [l As we explain below, all these
variants are important in practical problems. For the sake of convenience, the variants of
the mixing set studied in this section are treated starting with the most complicated one and
ending with the mixing set itself.

4.2.1 The continuous mixing set with flows

The continuous mizing set with flows, studied in [12], is defined as follows:

541 +yi > by, 1<i<n, (4.4)
yi < zi, 1<i<n, (4.5)
$>0,1>0,y, >0, 1<i<n, (4.6)
z; integer, 1<i<n, (4.7)

where b; € R for 1 < i <n.

Before proving that the continuous mixing set with flows can be transformed into a set of
the type MIX?TV that admits a complete list of fractional parts whose length is polynomial,
we demonstrate the practical usefulness of this set by showing two links with lot-sizing.

The first link is to the single-item constant-capacity lot-sizing problem with backlogging
over n periods, which can be formulated (including redundant equations) as:

3j—1+z;:j$l+ri :Zf:jlerSz‘Jr?“j—h 1< <i<n,
x; < Cuwy, 1<1<n,
$i >0, 1, >0, 2 >0, w € {0,1}, 1<i<n,0<I1<n.

Here d; is the demand in period [, s; and r; are the stock and backlog at the end of period
[, w; takes value 1 if there is a set-up in period [ allowing production to take place, x; is
the production in period [ and C' is the capacity (i.e. the maximum production allowed). To
see that this set has a relaxation as the intersection of n continuous mixing sets with flows,
take C' = 1 without loss of generality, fix j, set s 1= s;j_1, y; 1= D>_j_; @, 2 == Y |_;w; and
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b := Zf:j d;, giving a first relaxation:

s+ri+yi > b, J<i<n, (4.8)
O<y—y1<z—-z-1<1 j<I<n (4.9)
s>0,r, >0,y >0, j<i<n,j—1<Il<n, (4.10)

z; integer, j—1<1<n. (4.11)

Now summing ([3]) over j <[ < (for each fixed i = j,...,n) and dropping the upper bound
on zzﬁl one obtains precisely a set of the type ({4])—(LT).

The continuous mixing set with flows ([@4])—(@T) also provides an exact model for the two-
stage stochastic lot-sizing problem with constant capacities and backlogging. The problem is
as follows. At time 0 one must choose to produce a quantity s at a per unit cost of h. Then
in period 1, there are n possible outcomes. For each 1 < ¢ < n, the probability of event 7 is
¢i, the demand is b; and the unit production cost is p;, with production in batches of size up
to C'; there are also a fixed cost of ¢; per batch and a possible bound m; on the number of
batches. As an alternative to production there is a linear backlog (recovery) cost e;. Finally
the goal is to satisfy the demands in all possible outcomes and minimize the total expected
cost. The resulting problem is

min hs + Z?zl ¢i(piyi + qizi + €iri)

subject to s+r; +y; > b, 1<i<n, (4.12)
yi < Czi, 2z < my, 1<i<n, (4.13)

s>0,7,>0,y; >0, 1<i<n, (4.14)

z; integer, 1<i< (4.15)

When m; = 1 for all 1 < ¢ < n, this is a standard lot-sizing problem, and in general, as-
suming C' = 1 without loss of generality, ([ALI2)-(@I5) is the continuous mixing set with
flows ([@4)- (@) plus inequalities z; < m; for 1 < i < n, which can be treated as shown by
Proposition

We now prove the existence of a compact extended formulation for the continuous mixing
set with flows ([E4)—(ET) (provided that b is a rational vector).
Note that the mixed-integer linear mapping

=85 opi =547, Y=y, 2=z for1<i<n (4.16)

transforms ({L4)—(E1) into the following mixed-integer set:

oi +y, > b, 1<i<n, (4.17)

y; < 2, 1<i<n, (4.18)
§>0,0;—5>0,y,>0, 1<i<n, (4.19)
z} integer, 1<i< (4.20)

!The only reason for dropping the upper bound on z; is to obtain a set of the type @4)—@Z). If the upper
bound is kept, an extended formulation for the resulting set can be obtained immediately from that of the set
(E4)-ED) by applying Proposition [Z10
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Since the constraint matrix of inequalities ([LI7)—(£I9) is a totally unimodular matrix
with at most two nonzero entries per row, ([LI7)-(£20) is a mixed-integer set of the type
MIX?TY.

If we let X denote the mixed-integer set (LI7)—(@20), then the graph Gx (as defined in
Section B2) is a tree, with leaves corresponding to variables y, for 1 < i < n. Therefore Gx
satisfies condition () of Corollary B8 and X admits a complete list of compact size. Below
we explicitly give such a list.

Lemma 4.2 The list of fractional parts F := {0; f(b;) : 1 <i<mn; f(bi—b;):1<14,5 <n}
is complete for the mized-integer set (EIT)—Z20).

Proof. We use the notation of the proof of Theorem Note that conv(X) is a pointed
polyhedron (as all variables are bounded from below), thus Observation B.7] applies. Given
a vertex T = (§,5,7,Z') of conv(X) and a connected component Cz of Fz, Observation BTl
shows that node r corresponds to a variable that assumes an integer value. Then by equa-
tion ([B:24)) we only need to compute the values f(l,(P)) for all paths P in Gx. It is easy to
check that the list F := {0; f(b;) : 1 < i < mn; f(bi —bj) : 1 < i,5 < n} includes all these
values. O

Therefore the result of Section [Z4] provides a compact extended formulation of the convex
hull of the set (AI7)—-(@20). Applying the inverse of linear transformation (I6]) gives a
compact extended formulation of the continuous mixing set with flows. Since |F| = O(n?),
Corollary shows that such an extended formulation uses (’)(n3) variables and constraints.

The formulation can be made more compact if one uses the approach described in Sec-
tion 22501 Specifically, the following result holds:

Lemma 4.3 (i) The list of fractional parts Fg = {0; f(b;) : 1 < j < n} is complete for
the mized-integer set (LI0)—(E20) with respect to variable s'.

(ii) For each 1 <1i < n, the list of fractional parts Fo, := {0; f(b;) : 1 < j < n} is complete
for the mized-integer set (AI1)-E20) with respect to variable o;.

(iii) For each 1 < i < n, the list of fractional parts Fy = {0; f(by —b;) : 1 < j < n}is
complete for the mized-integer set ([ELIT)-E20) with respect to variable y.,.

Proof. The proof is just a refinement of the proof of Lemma 2} for instance, if v is the node
in Gx corresponding to variable y} for some 1 < i < n, the list JF, given above contains all
values of the type f(l,(Py)), where r is a node in Gy and P is a path in Gx with r as last
node. ]

Since all the lists given in the above lemma contain O(n) elements, Corollary 2-14] implies
the following result:

Proposition 4.4 The continuous mizing set with flows ([E4)-ED) admits an extended for-
mulation with (’)(nQ) variables and constraints.



4.2. The mixing set and its variants o7

Conforti, Di Summa and Wolsey [12] gave two less compact extended formulations of ([A4])—
([@D): one, using an approach quite similar to that described here, involves (’)(nz) variables
and (’)(n3) constraints; the other, which is based on the approach of Conforti and Wolsey [16]
described in Section [L5.4] uses (’)(n3) variables and O(n4) constraints. Such results are also
presented in Section R3]

The linear inequality description of the convex hull of the continuous mixing set with flows
in the original space is not known.

4.2.2 The mixing set with flows

The mizing set with flows is defined as follows:
s+yi>bi, 1<i<n,
yi < i, 1<i<n

(4.21
<i<n, (
(
(

4.22
4.23
4.24

SZO’inO’ 1§/L§n)

)

)

)
z; integer, 1 <1i<mn, )
where b; € R for 1 <7 <n.

This mixed-integer set is obtained from the continuous mixing set with flows (@41
by setting r; = 0 for all 1 < i < n. We showed in Section E2.T] that the continuous mixing set
with flows ([@4])-(@T) provides relaxations for two kinds of lot-sizing problems with backlogging.
Since in those formulations variables r; represented the backlogged amount, it follows that the
mixing set with flows (£2I))-(#24]) provides a relaxation for the single-item constant-capacity
lot-sizing problems (without backlogging) and an exact formulation for the two-stage stochastic
lot-sizing problem with constant capacities (see also [13]).

Since the convex hull of ([@2I)-(@.24) is the face of the convex hull of ([L4)-(47) defined
by the equations r; = 0 for 1 < ¢ < n, an extended formulation for the mixing set with
flows (A2I)—([@24) is obtained by including equations r; = 0 for 1 < ¢ < n in any extended
formulation of the continuous mixing set with flows (@4])-(@T). Then Proposition L4 implies
the following result:

Proposition 4.5 The mizing set with flows [E2I)—E24)) admits an extended formulation
with O(n2) variables and constraints.

In Section [0.3] we construct the extended formulation and then project it onto the original
space, thus obtaining a linear inequality description of the convex hull of the set in its space
of definition.

A different extended formulation, which also uses (’)(nz) variables and constraints, was
given by Conforti, Di Summa and Wolsey [13]. Furthermore they gave a linear inequality
description of the convex hull of the set in its original (s, y, z)-space without using projections.
Such results are also presented in Section B2

In [I3] a complete characterization of the extreme points and extreme rays of the convex
hull of this set was also given. This was used to derive a simple algorithm for optimizing a
rational linear function over the mixing set with flows ([£21))-([£24]) (with rational right-hand
side).
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4.2.3 The continuous mixing set

The continuous mizing set, introduced by Miller and Wolsey [45], is the mixed-integer set
defined as follows:

s+ri+z; > by, 1<i<n, (4.25)
$s>0,1r>0, 1<i<n, (4.26)
z; integer, 1<i<n, (4.27)

where b; € R for 1 <7 <n.

It is immediate to see that system (@20)—-([Z27) is a relaxation of the feasible region
of the continuous mixing set with flows (£4])-(LT). Therefore the continuous mixing set
([A25) - ([A27) itself is a relaxation of both the single-item constant-capacity lot-sizing problem
with backlogging and the two-stage stochastic lot-sizing problem with constant capacities and
backlogging. Other possible applications of the continuous mixing set (e.g. in chemistry) are
described in [64].

Since the convex hull of ([@23)-([@27) is the face of the convex hull of ([L4)-(47) defined
by the equations y; = z; for 1 < i < n, an extended formulation for the continuous mixing
set (A23)-(@Z1) is obtained by including equations y; = z; for 1 < ¢ < n in any extended
formulation of the continuous mixing set with flows ([L4)—(@1). Then Proposition 4] implies
the following result:

Proposition 4.6 The continuous mizing set [E2I)-E24) admits an extended formulation
with O(n?) variables and constraints.

Miller and Wolsey [45] gave a different compact extended formulation which also uses
O(nQ) variables and constraints, and so did Van Vyve [65]. The formulation by Van Vyve also
works when an additional system of the type Bz > d, where B is a dual network matrix and
d is an integral vector, is included in the original description of the set. In a different paper,
Van Vyve [64] gave a more compact extended formulation involving only O(n) variables and
(’)(nQ) constraints. He also gave a linear inequality description of the convex hull of the set
in its original space, as well as an (’)(n3) algorithm for the separation problem in the original
space.

4.2.4 The mixing set

Recall that the mizing set is defined by constraints (£1)—(3]). Clearly this set is a relaxation
of each of the sets considered in Sections LZIHA23] thus it provides relaxations for lot-sizing
problems. In fact the mixing set appears as a substructure in many production planning
problems [21] [43], 55, [63].

Since the convex hull of the mixing set (@I])-(£3) is the face of the convex hull of ([@25])-
[#27)) defined by the equations r; = 0 for 1 < ¢ < n, an extended formulation for the mixing
set is obtained by including equations r; = 0 for 1 < 4 < n in any extended formulation
of the continuous mixing set (£20)-([#27)). This observation, together with Proposition 0],
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shows that the mixing set (@I)-(3) admits an extended formulation with O(n?) variables
and constraints. However, a better result can be achieved, as the mixing set admits a shorter
complete list of fractional parts.

Lemma 4.7 The list of fractional parts Fs := {0; f(b;) : 1 < i < n} is complete for the
mizing set (A1) -E3) with respect to variable s.

Proof. Let (8, Z) be a vertex of the convex hull of (I)-(@3]). Since Z is an integral vector, if
f(5) were not in the list F defined above then both points (5 + ¢, Z) would satisfy (@I])-(Z3)
for some € # 0. However, this contradicts the assumption that (s, Z) is a vertex. ]

Note that the mixing set ([I)-(@3) is a set of the type MIX?TV and the above list
contains O(n) elements. If one uses the approach described in Section 25 to deal with integer
variables, the following result is easily obtained:

Proposition 4.8 The mizing set [@I)-(@3]) admits an estended formulation with O(n) vari-
ables and constraints.

Such a formulation, which is essentially the same as that proposed by Miller and Wolsey
in [45], is given in Section in a more general context. Miller and Wolsey [45] also proved
that if one intersects the mixing set with a system of inequalities Bz > d, where B is a dual
network matrix and d is an integral vector, an extended formulation of the resulting set is
obtained by just including the system Bz > d in the extended formulation of the mixing set.
Note that this result also follows from our study (see Proposition 2.T0]).

The convex hull of the mixing set in its original space, which was first described by Giinliik
and Pochet [31], is obtained in Section as a consequence of the characterization of the
convex hull of any set of the type MIX?'V having a single continuous variable. Such a
characterization is found by projecting the extended formulation onto the original space of
variables.

4.3 The intersection set

The following mixed-integer set was studied in [I2] under the name of intersection set:

sitrjtz2by,  1<i4,j<n, (4.28)
$;,>0,1,>0,2>0 1<i<n, (4.29)
2; integer, 1<i<n, (4.30)

where b;; € R for 1 <14, j < n. Note that this set is the intersection of n continuous mixing sets
([#23)-([#2T), each having its own s; variable but all sharing the same (r, z) variables. Conforti,
Di Summa and Wolsey [12] analyzed this set as an instrument to study the continuous mixing

set with flows defined in Section E2T1
By applying the mixed-integer linear mapping

/ / .
8; =8, pi=7Ti+zi, 7=z forl1<i<mn,
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the set (E28)-([#30) is transformed into the following mixed-integer set:

8; + pj = bij, 1 <4, <n, (4.31)
$i>0,pi—2>0,2>0, 1<i<n, (4.32)
2} integer, 1<i<n. (4.33)

The above mixed-integer set is of the type MIX?TV. If we denote it by X, the graph Gx
(as defined in Section B.2)) is the complete bipartite graph with n nodes in each class of the
bipartition, where all edges have two tails.

Lemma 4.9 Given two sequences of indices i1,...,im and ji,...,0m i {1,...,n}, where
each sequence consists of pairwise distinct elements, define

m—1

ity ims gty dme1) = D (B, = bigjer);

—_

lb(ih cesdm J1 e 7]m) = (bitjt - bitjt+1) + bimjm'

I

i
I\

Then the list of fractional parts F consisting of all values of the types
f(QO('Ll, R 7im;j17 s ajm—l))a f(¢(21, s 7im;j1a s a.]’m))
is complete for the mized-integer set (AL31])—([Z33).

Proof. We use again the notation of the proof of Theorem 2I0. Given a vertex T = (5, p, z’) of
conv(X) and a connected component Cz of Fj, node r corresponds to a variable that assumes
an integer value (this follows from Observation B as conv(X) is a pointed polyhedron). Then
by equation ([3.24]) we only need to compute the values f(I,(P)) for all paths P in Gx. It is
easy to check that the list F defined above includes all these values. O

The number of distinct fractional parts contained in the list F given above depends on
the values b;; for 1 < 4,5 < n. Note that the face of conv(X) defined by equations z;- =0 for
1 < j < nisapolyhedron of the same form as (B.I)—([B.2]). This, together with Observation B.2],
shows that there exists a choice of the values b;; for 1 < ,5 < n such that any complete list
for the set (£3T)-(A33]) contains an exponential number of distinct fractional parts.

4.3.1 The difference set

Conforti, Di Summa and Wolsey [12] payed particular attention to instances of the intersection
set ([£28)-(@30) with b;; = d; — d; for some fixed vector d € R™. The motivation for the study
of this type of set, called difference set in [12], relied again on the fact that the difference set
can be useful in the study of the continuous mixing set with flows (see also Section E.3))

It is readily checked that if b;; = d;—d; for some fixed vector d € R", then the corresponding
transformed set X defined by (E3T)-([#33) satisfies condition () of Corollary 212 thus in
this case the existence of a complete list of polynomial length is guaranteed.
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Lemma 4.10 If b;; = d; — d; for some fized vector d € R", the list of fractional parts
F:={0; f(di):1<i<mn; f(di —dj):1<i,j <n} is complete for [@3I)-E33).

Proof. Directly from equations (8:24]) and (3.20)). O

Since the above list contains (’)(nQ) elements, Corollary implies that the difference
set admits an extended formulation with O(n3) variables and O(n4) constraints. However, a
better result can be obtained if one uses the approach described in Section Specifically,
observe first that the following improvement of Lemma 10 holds:

Lemma 4.11 If bj; = d; — d; for some fized vector d € R", then for each index 1 < i < n
the list of fractional parts F; = {0; f(d;):1<j <n; f(d; —d;):1<j<n} is complete for
@31 -(E33) with respect to each of variables s, p;.

Proof. Again directly from equations (3.24]) and (B.20]). O
The following results is then implied:

Proposition 4.12 The difference set admits an extended formulation that uses (’)(ng) vari-
ables and O(n3) constraints.

Proof. From Lemma [T and Corollary 214} O

Two kinds of extended formulations of the difference set were given in [I2] (and also here
in Section B3)): one is essentially the same as that described here, while the other, which is
based on the technique by Conforti and Wolsey [I6] described in Section [L5.4] involves O (n*)
variables and constraints.

4.4 Lot-sizing

Van Vyve [65] studied a mixed-integer set of the following form:

sitr+CYa>dj—d, 1<i<j<n, (4.34)
5i>0,7,>20,0<2<m; 1<i<n, (4.35)
z; integer, 1<i<n. (4.36)

He showed that optimizing a linear function over the above set is equivalent to solving a certain
lot-sizing problem, provided that the costs satisfy the Wagner-Whitin conditions recalled
in Section [L50l In such lot-sizing problem the capacity is a constant C' and backlogging
is allowed. There is also a bound m; on the number of batches that can be produced in
period j. The value d; is the cumulative demand up to period j. Van Vyve [65] provided
an extended formulation for the convex hull of {34)—(E30) which uses O(n?) variables and
(’)(n3) constraints.
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Assuming C' = 1 without loss of generality, the mixed-integer linear mapping
i
w; = Zzt, 0; =8 —wi_1, p;i:i=1r; +w; for 1 <i<n, (4.37)
t=1

where wp := 0, maps ([£34)-(@30]) into the following mixed-integer set:

o+ pj > dj — d;, 1<i<j<n, (4.38)

o+ wi_g >0, 1<i<n, (4.39)

pi—w; >0, 0<w, —wi_1 <m;, 1<i<n, (4.40)
w; integer, 1<i<n. (4.41)

The above is a set of the type MIX?TV. If we denote it by X, the graph Gy, as defined
in Section B.2] is a bipartite graph where all edges have two tails.

Lemma 4.13 The list F := {0; f(d;) : 1 <i < n; f(di —dj) : 1 <i,j < n} is complete for
(E.38) -(£.41).

Proof. After noting that Observation B.7] can be applied (as conv(X) is a pointed polyhedron)
and condition () of Corollary holds, the result follows directly from equations (B.24)

and (20). O

The above lemma, together with the result of Section 4] yields a compact extended
formulation of ([E34)-[36) with O(n?) constraints and O(n?) variables. However, a property
similar to Lemma [£11] holds and thus the result can be improved:

Proposition 4.14 The set [@34)-@36) admits an extended formulation that uses O(n?)
constraints and (’)(n3) variables.

Proof. Just observe that for each index 1 <14 < n, the list of fractional part F; := {0; f(d;) :
1 <j<mn; f(di—dj):1<j < n}is complete for X with respect to each of variables oy, p;
(this follows from equations ([B.24]) and (826)). The result now follows from Corollary 2.14]

]

Such an extended formulation is essentially the same as that given by Van Vyve [65].

4.5 Bipartite cover inequalities

Given a bipartite graph G = (V1,Va; E), let (I, L) be a partition of V; U Vo with I # @. We
consider here the following mixed-integer set:

e T bija 1J € B, (4.42)
xz; > 0, 1€ ViU Vg, (4.43)
x; integer, 1€ 1, (4.44)

where b;; € R for ij € E.

The above is obviously a set of the type MIX?TV. The example of Section B shows that
this set does not admit in general a complete list of polynomial length. However, such a list
exists in the following two special cases.
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4.5.1 The intersection of mixing sets

The first case is the set ([L42)-[@44]) with I = Vi and L = V5 (i.e. the integer variables
correspond to the nodes of one side of the bipartition of G). Note that in this case the
set (A42)-(£44) is the intersection of |Va| mixing sets (see Section E.2]), each one having its
own continuous variable but all sharing the same integer variables. (Here we also require
nonnegativity of the integer variables.)

This set was studied by Miller and Wolsey in [45], where a compact extended formulation
was given. Their result can be easily reobtained by using our approach, as we now show.

Lemma 4.15 If I = Vi and L = Vs, then for each j € Vo the list of fractional parts F; :=
{0; f(bij) i € Vi} is complete for the set [EA2)—EZD) with respect to variable x;.

Proof. Let X denote the mixed-integer set defined by conditions ({42)-([444)). The graph Gx
(see Section [B.2]) has no edges. Since conv(X) is a pointed polyhedron, it follows immediately
by Observation B7] that the list given above is complete for the set with respect to variable
fL’j. ]

Proposition 4.16 If I = Vi and L = Vs, the set [EA2)—(ZL44) admits an extended formula-
tion with O(|V1||Va|) variables and constraints.

Proof. Just count the variables and the constraints of the extended formulation (Z:62])—(268)
corresponding to the set (L42)-(@44) and the list given above (the general bound provided
by Corollary (2.14) is weaker than O(|Vi||V2])). O

Miller and Wolsey [45] gave a formulation of this set in its original space of variables.
They showed that such a formulation is obtained by just intersecting the linear inequality
descriptions of the |V5| mixing sets that form (@.42])—(@.44).

4.5.2 Constant number of fractional parts

The second case we consider is the set ([L42)-(@44) with the additional condition that for
some integer constant K, the value Kb;; is an integer for all ij € E; in other words, f(b;;) €
{0,1/K,...,1—1/K} for all ij € E. Note that this set satisfies condition (T of Corollary B8l

As stated in Corollary B8] every set of the type MIX?TV such that the number of distinct
fractional parts taken by the right-hand sides is bounded by a constant admits a compact
extended formulation. Thus one might wonder why we pay particular attention to the sets
({42)-(@44)) with the above property. The reason for this is the fact that the special case
K = 2 was studied recently by Conforti, Gerards and Zambelli [I5]. They first gave a compact
extended formulation (of the same type as that described in Chapter ) and then computed
the linear inequality description of the set in the original space by projecting the extended
formulation.
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Chapter 5

Projections onto the original space of
variables

Recall that given an extended formulation of a mixed-integer set, Theorem [[.I7] can be used
in principle to compute the projection of the extended formulation onto the original space
of variables, thus obtaining a linear inequality description of the convex hull of the set in its
space of definition.

In this chapter we consider the problem of carrying out explicitly the projection of an
extended formulation of a mixed-integer set with dual network constraint matrix. Since com-
puting the projection onto the z-space of a general polyhedron of the type ([236)-(Z42) or
[(262)-([268]) seems to be an extremely hard task, we only consider a few special cases for
which we can explicitly find an inequality description in the original space.

Except for equations (2.62)), which define the original variables, the constraint matrix of a
formulation of the type ([2.62])-(2.68)) is a dual network matrix. Thus, when using Theorem [[.I7]
to compute the projection, one essentially has to solve a family of circulation problems on a
network depending on continuous parameters. In fact, some flow techniques are used in this
chapter to compute the projections. This is discussed in Section .11

In Section we consider a general mixed-integer set of the type MIXPN (or MIX?TV)
with a single continuous variable. We construct an extended formulation of the form (2.62)—
([2.68)) for such a set and then project it onto the original space of variables. This will provide
a linear inequality description of the set in its space of definition. The “opposite” case, i.e. a
single integer variable, is treated in Chapter [l

In Section we reconsider the mixing set with flows (see Section [£.2.2)), which is of the
type MIX?"VU and therefore admits an extended formulation [2.62)-(Z68). We explicitly
give such a formulation and then project it onto the original space. As we will see, while the
projection is computed quite easily for the family of sets considered in Section [5.2] much more
effort is required for the mixing set with flows studied in Section (.31

A further example of explicit computation of the projection of an extended formulation
which is essentially of the type (230)-([242)) was carried out recently by Conforti, Gerards
and Zambelli in [I5], where the set described in Section with K = 2 was studied.

65
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5.1 Circulation problems

A linear system of the type ([230)-(2Z42) or (Z62)—([2.68]]) has the following form:

Iz = By, (5.1)
My > d, (52)

where [ is the identity matrix of suitable dimension, M is a dual network matrix and g is the
vector of all additional variables. By Theorem [[LI7, the projection of the above polyhedron
onto the space of the z-variables is described by inequalities wx — ud > 0 for all row vectors
(w,u) that are extreme raysEl of the following cone:

—wB 4+ uM =0, (5.3)

w free, u > 0.

Since M is a dual network matrix, for each fixed vector w the above conditions define
the feasible region of a circulation (or b-flow) problemE Therefore computing the projection
of an extended formulation of a dual network set amounts to solving a family of circulation
problems parameterized on w. The basic results about problems of this type that are used in
the remainder of the chapter are now recalled.

Let NV = (V, A) be a network with vertex set V' and arc set A. For v € V, we denote by
5% (v) (resp. 6~ (v)) the set of arcs entering (resp. leaving) node v.

Suppose we are assigned real numbers b, for v € V. We denote by N (b) the network N with
the corresponding circulation requirements b, assigned to its nodes. A (feasible) circulation
in NV (b) is a vector = with indices in A that satisfies the following constraints:

Z Ty — Z Ty =0b,, veEV, (5.5)

a€dt(v) a€d~ (v)
xq >0, a€ A (5.6)

Equations (B.3]) require that at each node v € V' the balance between entering and exiting
flow is exactly the circulation requirement b,. As inequalities (B.0) suggest, we allow any
amount of flow on the arcs, provided that such a flow goes in the “correct direction”. In a
more general version of the circulation problem, a lower and an upper bound are assigned to
the flow on each arc. However, for our purpose, we always take 0 as lower bound and +o0o as
upper bound.

Remark that the constraint matrix of the system of equations (.3 has exactly one +1
and one —1 per column, while the constraint matrix of (5.3]) (i.e. the transpose of M) may

'Since w is unbounded in [3)-{4), it is not obvious that such a cone does have extreme rays (i.e. is
pointed). Note however that the structure of system (Z.62)—(2.68]) shows that each column of B has at most
one nonzero entry and each row of B has at least one nonzero entry. This observation can be used to show
that (E3)—-(E4) is a pointed cone.

Though many authors call circulation problems only the b-flow problems where b = 0, we give here the
same meaning to the two terms.
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also contain columns with only one nonzero entry. This aspect is discussed at the end of the
section.

Summing all equations (B.0]) gives

0="> by (5.7)

veV

Therefore this is a necessary condition for the existence of a feasible circulation in N (b).

Conditions (B.5)-(5.6) define a polyhedron. In the next sections we will be interested in
finding the extreme points and extreme rays of such a polyhedron. The following well-known
characterization will be useful:

Theorem 5.1 The following hold:
(i) the extreme points of (3-8 correspond to the acyclic circulations in N(b);

(ii) the extreme rays of (BD)—([6) are the characteristic vectors of directed cycles in N .

In the above theorem “acyclic” means “not containing any undirected cycle”. We will also
need the following result:

Theorem 5.2 Let T be a feasible circulation in N'(b). Let F be a forest contained in the
support of Z and let A € RV be a vector satisfying the following two conditions:

(i) the support of A is contained in the node set of F';
(ii) for each connected component C'= (V(C), A(C)) of F, -,y (cy Av = 0.

If € > 0 is small enough, then there exists a unique circulation & in N'(b+ eA) such that T
and x coincide on all arcs not belonging to F.

Proof. Note that it is sufficient to prove that the statement holds when F' is connected (i.e. it
is a tree). For fixed € > 0, consider the following linear system:

Z Ty — Z Tq =€, vEV(F), (5.8)

a€dt (v) acd™ (v)
ze =0, ed A(F). (5.9)
Define m := |V(F)|. Since F is a tree, it is well-known that the constraint matrix of

equations (0.8)), restricted to variables z. for e € A(F'), is an m x (m — 1) matrix with rank
m — 1. Summing up all equations ([B.8) and using [B.9) gives equation 0 = > ¢y, (p) Ay. Since
this condition is satisfied by assumption, one of equations (0.8)) is redundant. After removing
this redundant equation, ([5.8)—([5.9]) becomes a nonsingular system. Let &(¢) be its unique
solution and define z(¢) := z +£(¢). Note that z(e) satisfies equations (5.5)) for all v € V' and
ze(e) = T, for all e ¢ A(F). Since z(¢) is a continuous function of ¢ and x(0) = Z, then for
e > 0 sufficiently small x(e) also satisfies conditions (5.6]). O
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Since some rows of M may have exactly one nonzero entry, we need to consider a more
general version of a network, where some arcs may have only one endpoint in the network. If
H (resp. T') denotes the set of arcs having only their head (resp. tail) in the network, summing
all equations (B3] now gives (after changing all the signs)

> wa= Y wa==Y by (5.10)

acT acH veV

Such an equation can be viewed as a constraint of type (.0 corresponding to a dummy node
d ¢ V, with associated balance by := — ) cy by. Such a dummy node d is the head of
all arcs in T and tail of all arcs in H. Thus adding this node yields a network containing
both endpoints of each of its arcs. Furthermore, equation (B.7) is now satisfied and therefore
Theorem .1l can be applied to this new network.

Remark that the insertion of the dummy node does not change the feasible region (5.5)—
(1), as equation (B.I0) is implicit in that system.

5.2 Dual network sets with a single continuous variable

We study here mixed-integer sets with dual network constraint matrix and a single continuous
variable. For such sets, we explicitly give an extended formulation of the type presented in
Chapter Bl and then project it onto the original space of variables. This will give us a linear
inequality description of the set in its space of definition. The results of this section are joint
work with Michele Conforti and Laurence A. Wolsey.

We first explain why the projection can be carried out easily when there is a single contin-
uous variable. As remarked in Section [b.1], an extended formulation of a dual network set has
the form (B.I)-(52) and computing the projection amounts to detecting the extreme rays of
the cone defined by (B.3)—(5.4]). As observed in Section [Z5.2] it is not necessary to introduce
any additional variables to model the integer variables of the set. It follows that when there
is a single continuous variable in the original dual network set, system (B.1) actually consists
of a single equation, thus the vector w in (5.3)—(54]) has only one component. Then, given
an extreme ray (w,u) of (B3)—(24), one can assume (after normalization) that w € {0, £1}.
Since once the value of w is fixed we obtain a circulation problem on a network, we only have
to study three different circulation problems. It will be then sufficient to apply Theorem [T
in the three cases.

Every mixed-integer set with dual network constraint matrix and a single continuous vari-
able can be written as follows:

s—z >l il (5.11)
s—z <w, 1e€l" ( )
lp < s < uyg, (5.13)
z; integer, 1 <4< n, ( )

Bz > d, ( )
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where I', I* C {1,...,n} and B is a dual network matrix. Note that to treat the most general
case, each of the two inequalities in (.I3]) may be omitted.

It is convenient to introduce a dummy variable zy whose value is always zero. This allows
us to write the above constraints in a more homogeneous form:

s—z>1;, ielJ, (5.16)
s—zi <w, i€JY (5.17)
z; integer, 0 <i<n, (5.18)
Bz > d, (5.19)
20 = O, (5.20)
where
S I'u {0} if inequality s > Iy appears in (513),
I! otherwise
and
Ju._ I*U {0} if inequality s < ug appears in (L.I3)),
. I otherwise.
Since z1,...,2, are integer variables, we can assume without loss of generality that all

components of d are integer (otherwise round them up). By Proposition 2I6], we only need to
compute the convex hull of the set (5.16)-(5I8): inequalities (519)-(5.20) will be then added
to the formulation of that convex hull.

5.2.1 The extended formulation

Let fi,..., fr be the k distinct elements in {f(l;) i€ J'} U {f(u;) : i € J*} U {0}, with
fi>---> fr. =0, and define fy := 1 and f,1 := 0. For each index i € J!, we denote by
p(i) the unique index in {1,...,k} such that f,;) = f(l;). Similarly, for each index i € J*, we
denote by ¢(i) the unique index in {1,...,k} such that fo;) = f(us).

Lemma 5.3 The list of fractional parts Fs := {f1,..., fr} is complete for the set (B.16])—-(5I8)
with respect to variable s.

Proof. Let (5, z) be a vertex of the convex hull of (I6)—(5I8]). Since Z is an integral vector, if
f(5) were not in the list F defined above then both points (5+¢, z) would satisfy (G.16])-(518)
for some € # 0. However, this contradicts the assumption that (s, 2) is a vertex. O

Note that unless f(I;) = 0 or f(u;) = 0 for some index ¢, it is not necessary to include the
value 0 in F;. However, in the following we find useful to have f; = 0.
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By Theorem 213l and using Observation 2.I5] to model inequalities (L.I0)—-(EI7), an ex-
tended formulation of the set (B.16)—(5.I8]) is given by the following linear system:

k
Z fe— fev1) e, (5.21)
/=0
P — fo =1, (5.22)
pe — pe—1 = 0, 1<t <k, (5.23)
fpey — 2 > L]+ 1, i€, (5.24)
Pa(iy—1 — % < [uil, ie Ju (5.25)

Instead of immediately projecting the above system, it is useful to write it in a slightly
different form. To do this, we first need to introduce some new notation.

Given a real number «, f/(«) will denote the fractional part of «, except that f/'(«) =1 if
« is an integer. That is,

—a- if o ¢ Z
1 if o € Z.
Also, for each index i € J', we denote by p/(i) the unique index in {0, .. — 1} such that

foy = ['(l;). Note that

» p(i) ifl; ¢ Z,
p(i) = _
0 if [; € Z.

In other words p'(i) = p(i) if 0 < p(i) < k — 1, while p'(i) = 0 if p(i) = k. We also set
pn+1):=k.

Using equation ([5.22), one can readily verify that for all indices i € J!, inequality (i) —Zi =
|li] +1is equivalent to inequality p,;—2; > [l;]. System (B.2I)-(2.25) can then be rewritten
as follows:

k
=> (fe = feer) e, (5.27)
(=0
e — Ho =1, (5.28)
e — pe—1 = 0, 1<l<k, (5.29)
ppay — 2 = [L], i€ J, (5.30)
Pa(iy—1 — % < |uq], i€ J" (5.31)

Equation (5.28]) can be used to eliminate variable uy from the above system. Note that
the coefficient of uy in equation (B.27)) is equal to zero, as fx = fr+1 = 0. Furthermore, none
of inequalities (5.30)-(531) contains variable py, in its support, as p/(i) < k for i € J' and
q(i) < k for ¢ € J*. System ([B27)—(@31) is then equivalent to the following (we assign dual
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variables to the constraints as indicated on the left):

k—1

wi s =Y (fr— for)me, (5.32)
=0

Uy - e — po—1 > 0, 1<i<k—1, (5.33)

up : po — pk—1 = —1, (5.34)

ol Uy — 2 > [L], i€ J, (5.35)

’U;L : Hq(i)—1 — Zi < Luzj, e J (5.36)

Note that except for the first equation, the constraint matrix of the above system is still a
dual network matrix.
5.2.2 The projection

By Theorem [[I7], a linear inequality description of the convex hull of (B.I6)—([EI8) in its
original space is given by inequalities

ws — Z (z + [l]) Z (z + )+ up >0 (5.37)

ieJt e

for all vectors (w, @, o', 7%) that are extreme rays of the following polyhedral cone (beside each
constraint, the corresponding primal variable is indicated):

et up— Upyl + Z vl + Z vl = (fo— for1)w, 0<€<k—2 (5.38)

i€ Jbp! (i)=¢ i€ Juq(i)=0+1

peers wer—uo+ > vk Y ol = (fier — fo)w, (5.39)
ieJlp/ (i)=k—1 ieJv:q(i)=k
w free, u >0, v' >0, v* > 0. (5.40)

In the following we study the extreme rays of the polyhedral cone defined by inequalities
(38) - (G20).

Recall that the constraint matrix of inequalities (5.33)-(E.30]) is a dual network matrix.
This implies that for each fixed w € R, system (G5.38])-(5.40) defines the feasible region of a
circulation problem on a network A. The value of w determines the requirement of the nodes
of the network, but the structure of the network (nodes and arcs) is independent of w. This
structure is now described.

For each 0 < ¢ < k — 1, the corresponding equation (5.38]) or (539]), which is associated
with the primal variable py, corresponds to a node of N' which we also call ;. The arcs of
N inherit the name of the corresponding variables of system (GL38)—(40). The structure of
network N is depicted in Figure 5] where w > 0 is assumed. Note that a dummy node d has
been added to the network as described in Section BIE node d is the tail of arcs vﬁ for i € J!
and the head of arcs v} for 7 € J“. For each i € J !, the head of arc vﬁ is node ;). For each
i € J*, the tail of arc vj" is node pi4;)—1. We also remark that the thick arrows in the figure
do not represent arcs of the network, but circulation requirements.
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(fo— fow
(fi = fo)w
(fa = fa)w
(fs = fa)w
(fa— fs)w

Figure 5.1: The network corresponding to a possible instance of problem (5.38)-(5.40]). Here
n=3and k = 4. Also J' = {0,1,2,3}, J* = {0,1,3}, p'(0) = 2, p'(1) = 4, p'(2) = 0,
P'(3) =1, q(0) =4, ¢q(1) = 2 and ¢(3) = 4.
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The case w =0

Let (w,u,v) be an extreme ray of cone (B38)—(Z40) with w = 0. Then (u,v) is an extreme
ray of the polyhedral cone obtained by setting w = 0 in (.38)-(E40). Theorem [B.] shows
that (#,v) defines a directed cycle in network N. In the following we use (@, ) to denote both
the vector and the corresponding cycle.
The structure of N immediately shows that every directed cycle in N consists of an arc
l for some i € J!, a (possibly zero-length) path formed by arcs of type u,, and an arc v} for
some j € J". More specifically, if f'(l;) > f(u;) then arc ug is not contained in the support of
the cycle and the corresponding inequality (B37) is zj — z; > [I;] — [u;]. If f'(l;) < f(u;) then
arc ug is part of the cycle and the corresponding inequality (@37) is z; — z; > [l;] — |u;] — 1.

It is easy to check that in both cases the inequality is

Zj — Z; Z ”l - Uj-|. (541)

The case w > 0

Let (w,u,v) be an extreme ray of cone (B.38)-(G.40) with w > 0. Without loss of generality
we can assume w = 1. In this case (u,v) is an extreme point of the polyhedron obtained by
setting w = 1 in (B38)—(40). By Theorem [l this implies that (uz,v) defines an acyclic
circulation in the corresponding network N.

Note that o} = 0 for all i € J*, as otherwise the circulation (@, v) would necessarily contain
a cycle (of the type described in the analysis of the case w = 0) and (@,v) would not be an
extreme point.

We clearly have ﬁé > 0 for at least an index i € J!, as otherwise the circulation requirements
would not be satisfied. Let i1, ...,4, be the indices in J* such that ﬁft > (0for 1 <t¢<r. Note
that there do not exist two distinct indices ¢,¢', with 1 < ¢, ¢ < r, such that p/(i;) = p'(iy), as
otherwise the arcs vﬁ ,vf would form a cycle contained in the support of circulation (@, v). So
we can assume without loss of generality that p/(i1) < --- < p'(ir) (in other words, f'(b;,) >

- > f(b;,)). We also define 4,41 :=n + 1 (thus p'(i,41) = k).

The structure of the network easily implies that the nonzero entries of o' are (see the

example in Figure (a))

p'(it41)—1
v, = Z (fo = for1) = fprii) = (i) for 1<t <r—1,
L=p'(it)
p'(i1)—1

k—1
Q_)é'r - Z (f@ B f@+l + f@ - f@+l fp’(ir) + (1 — fp/(il)) s
£=p'(ir) =0
while 4y = 1 — fy(;,). The corresponding inequality (2.37) is then

- Z (fp/(it) - fp/(it.H)) (zit + ”Zt—l) - (1 - fp’(i1)) (Zir + ”Zr—l - 1) > 07

t=1
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a a

@ Jfo— N @ Jo— N
@ Jfi—fe @ fi—fe
Q @ fa—f3 @ @ fa—1f3
(n3y> fs— fa (1)< f5— fi
() f1— fs (nay< fa— f
o o
(a) Case w = 1. (b) Case w = —1.

Figure 5.2: Acyclic circulations in network N

which can be equivalently be written as
s =Y (F) = F'Uiy)) (i + T10) = (1= f/)) (20 + [l ] = 1) =0, (5.42)
=1
where f'(l;..,) = 0.

The case w < 0

Let (w,u,v) be an extreme ray of cone (B.38)-(G.40) with w < 0. Without loss of generality
we can assume w = —1. In this case (@, ) is an extreme point of the polyhedron obtained by
setting w = —1 in (B38)—(E40). By Theorem 1] this implies that (u,v) defines an acyclic
circulation in the corresponding network A. Such a network has the same structure as that
depicted in Figure 5], except that the thick arrows should be reversed (i.e. there are supplies
instead of demand on the nodes).

Similarly to the case w > 0, one proves that v}' = 0 for all ¢ € J " and v > 0 for at least an
index i € J*. Let iy,. .., be the indices in J* such that vj! > 0for 1 <¢ < r. Note that there
do not exist two distinct indices ¢,¢’, with 1 < ¢, < r, such that ¢(i;) = q(i¢), as otherwise
the arcs vg‘t,vz‘i, would form a cycle contained in the support of circulation (u,v). So we can

assume without loss of generality ¢(i1) > --- > ¢q(i,) (in other words, f(b;,) < --- < f(bi,)).

The structure of the network easily implies that the nonzero entries of v" are (see the
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example in Figure (b))

q(ig)—1
T}Z Z (fe = fer1) fq(z‘tﬂ) —fq(it) for 1 <t <r-—1,

0=q(it4
(ir)—1 k—1
vy = Z (fe = foq1) + Z (fo = fer1) = (L= foun) + fan)s
=0 l=q(i1)

while @g = fy(;,)- The corresponding inequality (5.37) is then

S+ (Fatiorn) = Fatin) Gi + (i) + Fotin) (zip + Lui, ] +1) >0,
t=1

where ¢(i,41) := 0. The above inequality can be equivalently written as

s+ Z u'lt+1 - (u'lt)) (zit + {ou) + f(ull) (zir + lulrj + 1) >0, (5-43)

where f(u;,,,) = 1.
We have proven the following result:

Theorem 5.4 The convez hull of (BI1)-(EI5), a general mized-integer set with dual network
constraint matriz and a single continuous variable, is given by the following linear inequalities
(where each occurrence of zy should be replaced by 0):

o [BA) for alli € J' and j € J¥;
o (BA2) for all sequences of indices iy,. .. i, in J' such that f'(by) > --- > f'(b;,);
o [BA3) for all sequences of indices iy, ... i, in J* such that f(b;,) < --- < f(b;,);

e the inequalities of the system Bz > d.

5.2.3 The mixing set

We recall the definition of the mixing set given in Section

s+zi>0b, 1<i<n, (5.44)
§>0, (5.45)
z; integer, 1 <1i<n, (5.46)

where b; € R for 1 < ¢ < n. The importance of this set in the context of lot-sizing was discussed
in Section L2l The convex hull of the above set was given by Giinliik and Pochet [31]. Here
we obtain the convex hull as an application of Theorem (.41
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Proposition 5.5 The convex hull of the mizing set (B.44)-(46)) is described by s > 0 along
with the linear inequalities

s+ Z (f,(blt) - f,(bit+1)) (Zit - [blt]) =0, (547)
t=1
s+ Y (F'(0i) = F'(bigy)) (20 = [bi, 1)+ (1= £/ (b)) (25, — [bi, ] +1) >0 (5.48)
t=1

for all sequences of indices i1,...,i, in {1,...,n} such that f'(by) > --- > f'(b;,), where
f'(biyy) = 0.

Proof. The set (5.44)-([5.46]) can be transformed into a mixed-integer set with dual network
constraint matrix by applying the following mixed-integer linear mapping:

s'i=s, 2= —z for1 <i<n. (5.49)
The transformed set is
s' =2 >b;, 1<i<n, (5.50)
s >0, (5.51)
2} integer, 1<i<mn. (5.52)

The set (B50)-(E52) is of the type (EII)-(GEIH), with J' = {0,...,n} and J* = @.
By Theorem B4, a linear inequality description of the convex hull of this set is given by
inequalities (542) for all sequences of indices 41, ...,4, in {0,...,n} such that f'(b;;) > -+ >
1'(b;,) (where each occurrence of zy should be replaced by 0).

Assume first that the sequence iy,...,4, does not contain index 0. After applying the
inverse of (5.49)), the corresponding inequality (5.42]) is precisely inequality (.48).
Now assume that the sequence 41, ..., %, contains index 0. Since the lower bound [y is 0 for

the mixing set, f'(0) = 1 and thus iy = 0. If »r = 1 then the corresponding inequality (5.42))
is s — 29 >0, 1i.e. s>0. If r > 1 then after applying the inverse of (5.49) and setting zy = 0,

inequality (5.42]) becomes

Renumbering the indices gives inequality (G.47). O

Inequalities (B.4T)—(E48) are called mizing inequalities, as they can be obtained from the
original inequalities (5.44) through a mizing procedure (see [3I]). An O(nlogn) separation
algorithm for the mixing inequalities is known [53].

When r = 1, the mixing inequality (5.47) is the simple MIR-inequality by Nemhauser and
Wolsey [49] (see also Theorem [[LI1]), while the mixing inequality (5.48]) coincides with the
original inequality s + z;; > b;, .
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Miller and Wolsey [45] showed that if a system Bz > d, where B is a dual network matrix
and d is an integral vector, is added to constraints (5.44])-(5.40]), a linear inequality description
of the resulting set in its original space is obtained by just including the system Bz > d in the
description of the mixing set given by the above proposition. This result is also implied by
Theorem (.4 or Proposition (in fact the proof of Proposition uses the same technique
as that adopted by Miller and Wolsey).

5.3 The mixing set with flows

We recall the definition of the mixing set with flows given in Section [L.2.2}

9.53
0.04
9.55
9.56

s+y; > b;,
yi<zi)

1 (5.53)
< 1 n, ( )
s>0,y, >0, 1<i<n, (5.55)

1 (5.56)

z; integer, <1<n,

where b; € R for 1 < i < n. Since all variables are nonnegative (as z; > y; > 0 for 1 <i < n),
we can assume without loss of generality that b; > 0 for 1 < ¢ < n. We discussed in
Section the relevance of this set in the context of lot-sizing.

As shown in Section 2.2] this set admits an extended formulation with O(nQ) variables
and constraints (see Proposition [L0]). In this section, after transforming the above set into
a mixed-integer set with dual network constraint matrix, we explicitly give the extended
formulation and then project it onto the original space of variables.

The computation of this projection will be more difficult and technical than that carried
out in Section 5.2

5.3.1 The extended formulation

To transform (553)—(5.56) into a dual network set, we apply the following mixed-integer linear
mapping:

Yo =8 Yh =~y 2= —z for 1 <i<n.

The transformed set is then

2.07
5.58
5.99
5.60

vh—yl>b;, 1<i<n,
yp > 0,4, <0, 1<i<n,

(5.57)
(5.58)
(5.59)
(5.60)

2} integer, 1<i<n
Let f,..., f be the k distinct elements in {0, f(b1),..., f(by)}, with f) > --- > f0 = 0.
For each index 1 < i < n, let f{,...,fli be the k elements in {f (f{) —bi) ,...,f(flg —bi)},

with fi > -+ > fi . (Note that f{,..., f} are pairwise distinct because so are f7,..., f2.) We
set f§:=1 and f,iH =0 for 0 <i<n.
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Lemma 5.6 For each index 0 < i < n, the list of fractional parts F; := {f{,,f,f;} 18
complete for ([G5T)-(E60) with respect to variable y,.

Proof. We use the notation of the proof of Theorem If we let X denote the mixed-integer
set (L57)—(G60), the graph Gx is a star with center node corresponding to variable y). For
1 < ¢ < n, there is an arc leaving the center node and entering the node corresponding to
variable y;. Given a vertex T = (¢',Z') of conv(X) and a connected component Cz of Fj,
node r correspond to a variable that takes an integer value (this follows from Observation B.7]).
The result is then a consequence of equation (B.24]). O

Similarly to Section [(5.2] for each index 1 < i < n we define p(i) to be the unique index in
{1,...,k} such that f;;)(i) = f(b;). One can check that for each index 1 <1i <mn,

0 0 . .
gi = Vo = fyy +1 HOSE<k=p(D), o
Foiyeew = T ifk=p(E)+1<L<k.

By Theorem [ZT3] and using Observation T3] to model inequalities (5.58]), an extended
formulation for (B.57)—([E60) is given by the following linear system:

k
vi=Y (fi—fix)up, 0<i<n, (5.62)
=0
ph — =1, 0<i<n, (5.63)
wh — gy >0, 0<i<n,1<l<k, (5.64)
PO — 1 > (bl +1, 1<i<n, 1<0<k—p(i), (5.65)
Pty ok — Mo > il 1<i<n, k—p(i)+1<L<k, (5.66)
ph — 2> 1, 1<i<n, (5.67)
=1, (5.68)
pi o <0, 1<i<n. (5.69)

Before computing the projection onto the original space of variables, we write the above
system in a more convenient form.

Similarly to Section (2] for each index 1 < i < n we denote by p/(i) the unique index in
{0,...,k—1} such that f}?,(i) = f'(b;), where notation f’is defined in (B26). We set p’(0) := 0
and p'(n+ 1) := k.

Using equations (5.63)), one can check that inequalities (5.65)-(5.66]) are equivalent to the
inequalities

Poyee — He > b 1, 1<i<n, 0<L<k—p(i)—1,

IS TS
Vv
—
S
7
(I

ug(i)Jrg_k_M 1<i<n, k—phi)<l<k-—1.
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It is not difficult to see that the above inequalities are in turn equivalent to the following (the
case b; ¢ 7 is trivial as p(i) = p/(i), the case b; € Z is less trivial but easy —just recall that
p(i) = k and p/(i) = 0):

Hoy(iye — K 2 [0,

Por(iyre—k — e > [bi] =1,

If for an integer o we write [ to denote the remainder of the division of « by k, system
(E62)- (569)) is then equivalent to the following:

k
vi=Y (fi=fix))up, 0<i<n, (5.70)
(=0
wh, — b =1, 0<i<n, (5.71)
wh — ph_y >0, 0<i<n, 1<(<k, (5.72)
M%)/(i)w] — > [bi], 1<i<n, 0<0<k-—p(i)-1, (5.73)
Wiy — e = [l =1, 1<i<n, k—p'@i)<l<k-1, (5.74)
pho— 2l >1, 1<i<n, (5.75)
=1, (5.76)
pio <0, 1<i<n. (5.77)

Equations (571) can be used to eliminate variables ui for 0 < i < n. Note that for
0 < i < n, the coefficient of u in equation (G70) is equal to‘zero, as fi = f/i+1 = 0.
Furthermore, none of inequalities (B.173)—(2.74) contains variable y; in its support.

System (B.70)(B.77) is then equivalent to the following one (we assign dual variables to
the constraints as indicated on the left):

k—1
w' : yz, - (flz - flerl)M;a 0 < { < n,
=0
ul wh — iy >0, 0<i<n 1<l<k—1,
wp: o py — Mg = 1, 0<i<n,
€t Mg — Mo = (b, 1<i<n, 0<(<k-p(i)-1,
é} M[p’(z)+€]_u;2 (bz—‘ —1, 1SZSTL,k—p,(Z)S€§k—1,
v ué—z{ZO, 1 <1< n,
00 g >0,
9 —ul >0, 1<i<n.

Note that except for the equations on the first line, the constraint matrix of the above system
is still a dual network matrix.
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5.3.2 The projection

By Theorem [[LI7] a linear inequality description of the convex hull of (L57)—([E60) in its
original space is given by inequalities

n n n k—p'(i)—1 k—1
iy =) vl > - Z a+y [ g+ D &bnil-1 (5.78)
i=0 i=1 i=0 i=1 =0 (=k—p’ (i)

for all vectors (u? a,€,7, 15) that are rays of the following cone (beside each constraint the
corresponding primal variable is indicated

):
o =+ €y 0 = (1) — D), (5.79)
pe: g = 3 &y = (O ) v’ 1< U<k -2, (5.80)
rot wo w6 (i) = (fk 1= ) ; (5.81)
1l : ul) — uh — §0+v (fo— f) ' 1<i<n, (5.82)
,ué: uz—u“_1 ( f£+1) 1<i<n,1<l¢<k-2 (583)
T Upy —uh — &y — V' = (fkfl - fk) w', 1<i<n, (5.84)
w' free; ug, . .. ,uz_l >0, v" >0, 0<i<n, (5.85)
&y &1 >0,9" >0, 1<i<n (5.86)

In the original variables, inequality (5.78]) reads

n k—p'(i)—1 k—1
ws—Zwyz—i—szZZ ZUO+Z Z gﬁ(b Z _é([bi—l_l) )
i=1 l=k—p’(7)
or equivalently
n n n n k—1 k—1
s =Y @yt Y v ==Y up+ Yy AR (5.87)
i=1 i=1 i=0 i=1 \4=0 t=k—p'(3)

Let C denote the polyhedral cone defined by inequalities (5.79)(5.86). In the following we
study the rays of C generating inequalities (5.87)) that are non-redundant in the description of
the convex hull of (E53)—(%.56]). This will reveal simpler than characterizing the extreme rays
of C (as we did in Section [(5.2]), and will also allow us to ignore a large number of redundant
inequalities (5.87)) arising from the extreme rays of C.

Note that summing up all equations (5.79)-(B.81) gives

n k—1

—w0+v0+ZZ£é:0, (5.88)

i=1 {=0

which implies w® > 0, as all other variables appearing in the above equation are nonnegative.
Let (u_J, u, &, 7, 75) be a ray of cone C. If w' = 0 for all 0 < i < n, the above equation shows
that 5_; =0foralll <i<nand0</¢<Fk-—1,and the corresponding inequality (5.87) is
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S vz > =31 uh. Among the inequalities of this form, the only non-redundant ones
are z; > 0 for 1 <4 < n, which are clearly superfluous in the description of the convex hull of
(553)-(5.58). Thus from now on we assume that w # 0 (and @ > 0).

The network

For each fixed vector w # 0, let C(w) be the polyhedron obtained from C by setting w’ = '
for 0 <4 < n. That is,

C(w) :=={(u,&,v,9) : (w,u,&,v,9) € C}.

Note that C(w) is the feasible region of a circulation problem on a network N which is inde-
pendent of w. Similarly to Section 5.2, we use the primal variables ,ué to denote the nodes of
N and the dual variables u@, fé, v', 9" to denote the arcs. The structure of A is now described.

For 0 <i <n, let S* be the subnetwork of N induced by nodes p, ..., ui ; (arcs having
a node u@ and the dummy node d as endpoints belong to S?). We call S°,...,S™ the sectors
of N. Note that every arc whose endnodes lie on two distinct sectors of N has its head in S°
and its tail in S* for some 1 < i < n.

Figure represents the structure of a sector S? for some 1 < i < n and sector S, as well
as the connections between S* and SY. Note that the nodes of each sector are aligned on a
vertical line. The k positions on such a line are called levels: the highest position correspond
to level 0, the lowest one to level kK — 1. For each 0 < i <mnand 0 < /¢ < k — 1, node ,ué is
located at level [p/(i) + ¢]. There are at least two good reasons for such a choice.

The first good reason for locating node ), at level [p/(i) + ¢] is that this simplifies the
representation of the network, as all arcs fé are horizontal.

To illustrate the second reason, let N'(w) denote network N with the circulation require-
ments corresponding to w. It is readily checked that for 0 < i < n, the total requirement of
all nodes in sector S in N(w) is w'. For 0 <i<nand 0 < /¢ <k —1, the requirement of
node pf) in N(w) is (f; — fi,,) w'. Using equation (5.6I) and recalling that [p(i)] = [p/(¢)] for
0 <17 < n, one can check that

(7 = Tt 0 = (Fyen = Thwwas) @ = (Froren = Myoreasn) @ (5:89)

for all indices 0 < i <n and 0 < ¢ <k — 1. Since node y} is located at level [p'(i) + ¢], this
shows that nodes of distinct sectors located at the same level are associated with the same
fraction of the total requirement of their sectors.

It is clear that a vector (QI/, u, &, 7, 15) belongs to C if and only if (ﬂ, £,7, 15) corresponds to
a feasible circulation in N (w). Similarly to Section (2] we use (ﬂ, £,7, 19) to denote both the
vector and the corresponding circulation.

We say that a cycle in N, possibly containing the dummy node d, is a heavy cycle if the
corresponding inequality (B.87)) is anything but 0 > 0.
The following observations will be used several times in the remainder of the section:
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St S0

Figure 5.3: The structure of a sector S* for 1 < i < n and sector S°, and the connections
between them. Levels are indicated on the left. Circulation requirements are not represented.
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Lemma 5.7 For @ # 0, let (w,4,&,0,1) be a vector in C generating an inequality (5.87) that
is non-redundant in the linear inequality description of the conver hull of (553)-(E.58). The
following hold:

(i) The support of (71,5,17,19) contains no heavy cycle in N .

(ii) Fiz 1 <i<n and assume that the support of (ﬂ,f,@,ﬁ) contains a forest F in N which
spans all nodes in sectors SO and S*. Also suppose that each connected component of F
15

(a) either a tree containing the dummy node d,

(b) or a single arc & for some 0 < £ <k — 1.
Then @w° = —w" and w? = 0 for all j ¢ {0,i}.

(i) Fiz 1 < i < n and assume that the support of (ﬂ,f,@,ﬁ) contains a tree T in N which
spans all nodes in sector S* as well as the dummy node d. Then the inequality (5.87)
corresponding to vector (w,a,{,@,ﬁ) is implied by inequalities y; > 0, y; < z; and z; > 0
for1 <75 <n.

Proof. () Assume that (ﬂ,f_ ,1‘),19) contains a heavy cycle C' in its support. For £ > 0 small
enough, let (22, £, 0, 19) be the feasible circulation in N (w) obtained from (ﬂ, £,7, 19) by increas-
ing by ¢ the variables corresponding to the arcs of C'. Similarly, let (22, £, 0, 5‘) be the feasible
circulation in NV (w) obtained from (ﬂ, £,7, 5) by decreasing by e the variables corresponding
to the arcs of C. Clearly (u’;,ﬂ,f,@,@) = %(w,ﬂ,f,@,@) + %(u’),ﬂ,f,@,ﬂ). Since the inequal-
ity (B.87) corresponding to (ﬂ), w,€,7, 15) is non-redundant in the description of the convex hull
of (B.53)—-(E50), it follows that such inequality is identical (up to multiplication by a positive
number) to those corresponding to (u‘;,ﬁ,é,f),ﬁ) and (11‘),71,5,{),19). However this contradicts
the fact that C is a heavy cycle in NV (w).

() Assume that there is a forest F' as above (note that F' has at most one connected
component of type (a)). Let € > 0 be a sufficiently small number. Define

= +e, =0 —e, @ :=w’ for j ¢ {0,i}.

It can be checked that in each connected component of F' the total requirement of the nodes
is unchanged. Then by Theorem there exists a unique circulation (11, £, 0, 19) in MV(w) that
coincides with (ﬂ, £,7, 19) on all arcs not belonging to F'. Similarly, if one defines

W’ = a0’ — e, W' =+ e, w =’ for j ¢ {0,i},

there exists a unique circulation (22, &, 0, 19) in MV (w) that coincides with (ﬂ, £,7, 19) on all arcs
not belonging to F'.

It is easy to see that (QI/, w,€,7, 1§) = %(u?, i, f, 0, 19) +%(u§, a, &, 0, 19). Asin (), this implies
that these three vectors generate the same inequality (L.87) (up to multiplication by a positive
number). The coefficients of variables s and y; in the inequality (B.87) corresponding to vector
(12),71,5,@,19) are w” + ¢ and —w' — ¢ respectively. On the other hand, if a > 0 is the real
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number such that (u_J, u, &, 7, 75) = a(w, ﬁ,é, 0, 79), then such coefficients are also equal to o

and —aaw’ respectively. However, this is possible only if @w® = —w*.
Similarly, for j ¢ {0,i} the coefficient of variable y; in the inequality (&.87) corresponding
to vector (w U f, 0 19) is —w’ on the one hand and —aw’ on the other hand. This is possible

only if w’/ = 0.

The proof of (i) begins as that of (), except that now one has to define

wi=w' —e, W =w for j £i, W =w" +e, w :=w for j#£i.

As in () one defines circulations (ﬁ,é,f),ﬁ) in V() and (71,5,17,19) in NV (w) that coincide
with (ﬂ, £,7, 15) on all arcs not belonging to T'. The same argument as that used above shows
that w/ = 0 for all j # i. Note in particular that condition @w® = 0 and equation (G.88) imply
that fj =0for1<j<nand0</¢<k—1. Then the inequality (L.87) corresponding to
vector (w,a,{,@,ﬁ) is

—wlyi+ Y vz > =) ), (5.90)
j=1 =0

If @’ < 0 then the above inequality is implied by inequalities y; > 0 and zj > 0forl1 <j<n.
So we assume @' > 0, say @' = 1 without loss of generality. In this case summing up equations
(E82)- (5:84) and using £ = 0 for 0 < ¢ < k — 1 shows that o* > 1. Then inequality (E90) is
implied by inequalities y; < z; and z; > 0 for 1 < j < n. U

Assume that there is an index 1 < ¢ < n such that @’ > 0, say @’ = 1 without loss of
generality. Since v’ is the only arc entering sector S, then all arcs v, ul, ... ,u}%fl belong to
the support of circulation (ﬂ, £,7, 5). By Lemma [5.7] (i) we can then ignore this case.

Therefore from now on we assume that w! < 0 forall 1 <i<n (and recall that we have
already shown that @w® > 0). Note that @ is the total demand of the nodes in sector S°, and
for 1 <i<n, —w' is the total supply of the nodes in sector S°.

Standard circulations

For a circulation (ﬂ,f_,@,ﬁ) in V(w) and an index 1 < j < k — 1, we define 3; (ﬂ,f_,z’;,@) as
the total balance of flow of the set of nodes {M? 1 <U<k-— 1}, where the flow carried by
arcs u8 and ug) is ignored. After recalling that for 1 <i <mnand 0 < /¢ < k — 1 the arc leaving
sector S* end entering node M? is arc f[igip,(i)}, we can write

k—1 n
ﬂj (ﬂ,g,’[},lg) = Z (Z g[( —p/( (fﬁ ff-ﬁ-l)wO) . (591)

Lemma 5.8 Any circulation (a,é,a,@) in N(w) generating an inequality (B.87) that is non-
redundant in the linear inequality description of the convexr hull of ([L.53)-([B.50) satisfies

iy = max {0, | Jnax (u,é,v,ﬁ)}. (5.92)
SISR—
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Proof. Since [3; (7?1,, £,7, '9) is the total balance of flow of the set of nodes {M? j<L<k-— 1},
where the flow carried by arcs u8 and ug-) is ignored, then clearly 7?1,8 = @? + 0 (7?1,, £,7, '9) for all
1<j<k-—1. Since ag? >0forall 1 <j<k-—1, we see that 7?1,8 > maxi<;<i—1 0 (71,5,6,19).
Assume that 118 > maxi<j<k—105;j (ﬂ,f,@,ﬁ). Then clearly ﬂ? >0forall<j<k-—1
Then, if also ﬂg > (), the support of (ﬂ,f,@,ﬁ) contains the heavy cycle u{,.. uk 1,u0 The
conclusion now follows from Lemma 571 (1). O

We say that two circulations in N (w) are equivalent if they give rise to the same inequal-
ity (&87). Similarly we say that circulation (u £,7, 19) dominates circulation (u f,v 19) if the
inequality (5.87)) corresponding to (u £,7, 79) dominates that corresponding to (u 5 L0, 19)

Lemma 5.9 Any circulation in N'(w) is equivalent to a circulation (ﬂ,f,@,z?) in N(w) sat-
1sfying the following conditions for all 1 < i < n:

(i) If @i > 0 for some 0 < € <k —1, then & = 0.
(ii) Ifa;>0f0rsom60§€§k:—1, then@f>0forall€§l§k—l.
(iii) If& =0 for some 0 <L <k—1, then & =0 for all £ <1<k —1.

Proof. Let (@,£,v,9) be a circulation in M (w) that violates condition () and let ¢ be the
maximum index in {0, ...,k — 1} such that @, > 0 and & > 0. Define p := min{u}, & }. Note
that arcs u},f@,ffg_l},u&,(i)+€] are as in Figure 54 (a) or (b), depending on the value of /.
If we decrease the flow on arcs uy, &, by a quantity equal to p and increase the flow on arcs
{fzfl],ug),(i) W by the same amount, the resulting feasible circulation gives rise to the same
inequality (0.87) as before. Furthermore, at least one of the arcs uj,&; now carries a flow of

value 0. By iterating this procedure, we eventually find an equivalent circulation satisfying
condition ().

Now assume that condition () is violated. Then there exists an index 0 < ¢ < k — 2
such that ﬂ% > 0 and 1124_1 = 0. Note that arc f@; necessarily carries a positive flow, that

is, condition (i) is not satisfied. Thus any circulation satisfying condition (fl) also satisfies
condition ().

Finally we show that ({l) implies (). Assume that condition () is violated. Then there
exists an index 0 < ¢ < k — 2 such that 5_; = 0 and 5;;+1 > 0. By (@), 17,@4_1 = 0, thus
equation (B.83) for the indices i,¢ + 1 (or equation ([5.84) if £ = k — 2) implies w' < 0. Now
equation (B.83) for the indices i, ¢ gives 5_; > 0, which contradicts our assumption. O

Let (@,£,v,9) be a circulation in N (@) satisfying conditions (i)—(iii) of Lemma [.7] and
assume Tﬂl > 0 for some index 1 < i < n. Condition () then implies that all arcs uil, o ,u}%_l
belong to the support of (ﬂ,f,z’;,zg). Furthermore, by condition (i), f@ =0for1 <l<k-—1,
thus necessarily 9% > 0 (as all nodes in sector S’ have a nonnegative supply). Then arcs
ul, ... ,u}%fl, ¥' form a tree in N satisfying the conditions of Lemma [5.7 (). Then this case
can be ignored and we can assume @} = 0 for 1 < i < n, which also implies @} = 0 for
1 <4 < n (again by condition (i) of Lemma [ET).
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)

&y

(a) Case £ # [—p'(1)]. (b) Case £ = [—p'(4)].

Figure 5.4: Illustration of the proof of Lemma [5.9] depending on the value of /.

We say that a circulation (E,E,T),ﬁ) in V() is a standard circulation if the following
conditions hold for (7?1,, £,7, 19):

e equation (2.92);
e conditions (i)—(iii) of Lemma G0
o Uy =0for1<i<n.

Figure demonstrates the above definition.

The above discussion shows that every circulation that generates an inequality (5.87]) which
is non-redundant in the description of the convex hull of (E53)—-(E.50) is equivalent to a
standard circulation. Thus from now on we only study the standard circulations in AV (w).

It is easily checked that any circulation (a,é U, 5) in N (w) satisfies conditions

n
v - =9 >0 for 1 <i<n, Y (0 —w' —9)—w’ <0 (5.93)
i=1
(this can be deduced directly from conditions (B.79)—(586) or from the structure of the net-
work.) Furthermore, given values of (T), '19) satisfying the above inequalities, it is always possi-
ble to complete (v,7) to a feasible circulation (@, &, v,9) in N(w).

Let (@,&,0,9) be a standard circulation in N(w). We claim that the knowledge of
o, ..., 0" and 9',...,9" is sufficient to completely determine (ﬂ,f,z’;,ﬁ). To see this, ob-
serve the following: the values f},ﬂ% for 1 <7 <nand 0<?¢ < k—1 are determined by
conditions (i)-(iii) of Lemma together with conditions @} = 0 for 1 <4 < n; the value of
ul is given by equation ([5.92)); the value of ?° can be obtained from equation (E.79).

This means that a standard circulation in A/ (w) is completely determined by nonnegative
values of ©',...,o" and 9J',...,9" satisfying conditions (503). Then when considering a
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Figure 5.5: A standard circulation. Only nodes and arcs of sector S° (in the middle) and
two other sectors S° (on the left) and S’ (on the right) are depicted. Dotted lines indicate
possible arcs. Circulation requirements are not represented (recall that nodes in S and S’
have a nonnegative supply, nodes in S° have a nonnegative demand).
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standard circulation (7?1,, £,7, 19), we will use the short notation 3; (T), 5) instead of 3; (a, £,7, 19),
as this is not ambiguous. Similarly, in any further definition of notation relative to standard
circulations we will only write the dependence on v, 1.

Define J(w) as the set of indices in {1,...,n} such that @’ < 0.
Let (@,&,v,9) be a standard circulation in N'(w). For i € J(w), we define

Ai(9,9) = max {E : gfﬁfp/(i)] > O} : (5.94)

To explain the above definition in words, recall that arc f@_p,(i)} is located at level ¢. Then
Ai (1‘),5) is the maximum (i.e. the lowest) level of an arc that connects S* and S° and carries
a positive amount of flow.

Note that the above maximum is well defined, because for a standard circulation and an
index i € J(w) one has & = v' — (f§ — fHw® > 0, as w' < 0.

It is also convenient to use notation

so that
ri(@,ﬁ) = max {6 : f@ > O} .

Our analysis has now to be divided into two cases: we first assume J(w) # @ and then
J(w) = 2.

The case J(w) # &

To study the case J(w) # o, another definition is needed. Given a standard circulation
(@,€,9,9) in N(w) and two indices i,j € J(w), we write S* = S7 with respect to circulation
(22,{_,17,5) (or just S? = S7 if there is no ambiguity) to indicate that the following condition
is satisfied:

. 1o e g -
For each index ¢ # p/(j), if 5[571),0.)} > 0 then &

e-p) > 0

In order to make the above condition less odd, we remark that for each 0 < ¢ < k — 1, arcs

Sfﬁ—p’(i)] and ffg_p,(j)} are located at the same level. An example is depicted in Figure .01

By using the fact that the circulation is standard, one can see that if 9" = 0 then 5_; >0
for 0 < ¢ < k—1 and thus S* = S7. Also, if ¥/ = v/ — w’ thenf_ﬁ =0for0</¢{<Ek-—1and
thus S = 7.

Define h as an index in J(w) such that b, = max;c j(z)b;. The following result is crucial.
Unfortunately, its proof is rather long, tedious and technical and is for patient readers only.

Lemma 5.10 Any standard circulation in N (w) is dominated by a standard circulation in

N (w) satisfying S* = S for all j € J(w).
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Figure 5.6: A standard circulation satisfying the condition S* = S7. Only nodes and arcs
of sector S (in the middle) and two other sectors S® (on the left) and S’ (on the right) are
depicted. Dotted lines indicate possible arcs. Circulation requirements are not represented.

Proof. Let m (v,9) be the number of indices j € J(w) such that S" # S7. We show that
if m(z’;,ﬁ) > (0, it is possible to construct a circulation (ﬂ,f,@,l@) dominating (ﬂ,{,@,ﬁ)
such that m(@,@) <m (17,15). Thus, by repeating this construction, one eventually finds a
circulation dominating (ﬂ,f,@,ﬁ) such that S" = S7 for all j € J(w).

Pick any j € J(w) such that S" # S7 and define puax = min {9", v/ —w/ —¥7}. For
every value 0 < p < ppax we define a standard circulation (u(p),&(p),v(p),¥(p)) in N(w) by
setting

I (p) =" —p, ¥ (p) := 0 + p, 9'(p) := " for i & {h,j}, v'(p) := 7' for 1 <i<mn. (5.95)

Condition 0 < p < pmax ensures that inequalities (5.93]) are satisfied by the above values and
thus the standard circulation (u(p),&(p),v(p),¥(p)) is well defined.

In order to give the reader a better understanding of this proof, we find useful to point out
how the standard circulation (u(p),&(p),v(p),¥(p)) depends on p. Note that as p increases,
the subset of arcs f? (for 0 < ¢ < k — 1) that belongs to the support of the circulation either
enlarges or does not change at all. In other words, r,(v(p),?(p)) is a non-decreasing function
of p. Symmetrically, ;(v(p),?¥(p)) is a non-increasing function of p.

Conditions (5.95]) easily imply that

N
—_

k—1
(&) - =p== (&) - ). (5.96)

0 (=0

~
I
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In words, the flow on arcs €8, ..., &0 | (resp. fé, . ’5271) has been increased by p (resp. —p).
For 1 < i < n, define «;(p) as the total variation of flow on the arcs fé that are located at
a level that is at least p/(i). That is,

k—1 k—1—p' (i)

<5V —p'( 5@—;9/(@')1) = (&) — &), (5.97)

~
Il
=)

L=p’ (i)

Clearly 0 < ap(p) < p, —p < j(p) < 0 and a4(p) = 0 for i ¢ {h,j}.
Using the fact that (u(p),&(p),v(p),¥(p)) is a standard circulation for all 0 < p < ppax,
one can verify the following:

(i) There exists a value 0 < pp, < pmax such that
p if0<p<pp,
an(p) = { | (5.98)
prh 1 pp < p < pmax.
Furthermore p < py, if and only if A (v(p), ¥ (p)) > p'(h).

(ii) There exists a value 0 < p;j < pmax such that
0 if 0 <p <pj,
a(p) = { | : (5.99)
pi—p if pj < p < pmax-
Furthermore p > p; if and only if A;(v(p),9¥(p)) > p'(j).

Recall that ppax = min{@h,ﬁj —wl — 193'}. Note that if pmax = 9" then ﬁh(pmax) =0,
and if ppax = 90 — W — 97 then ¥ (pmax) = #/ — w’. As observed before this lemma, in both
cases this implies S = S7 with respect to circulation (u(pmax); € (Pmax), V(Pmax)s ¥ (Pmax)). We
can then safely define a number p such that:

(@) 0 <)< pmax;
(b) S" = S7 with respect to circulation (u(p),&(p),v(p), V(p));
(¢) under the above conditions, the number
[{¢: €1 (p) > 0} +|{¢: & (p) = 0}] (5.100)
is minimumEl

We now set (4, &,9,9) = (u(p),£(p),v(p),9(p)) and a;(p) := & for 1 < i < n. We also
shorten the notation by defining N = Ah (@, 19) for1 <i<n.
The following observation will be useful: the definition of p implies that

Aj > A, (5.101)

3Since both terms in (GI00) are nondecreasing functions of p, one might think that condition (c) could be
replaced with the easier request that p is minimum. However this would produce some technical complications,
as the existence of such a minimum is not guaranteed.
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as otherwise condition (c) above would be violated (just decrease p by a suitable value).

In the following we show that (ﬂ, £,0, 19) gives rise to an inequality (5.87)) that dominates
that corresponding to (ﬂ, £,7, 15). First of all, note that the left-hand side of inequality (G.87)
is the same in both cases, thus we only need to show that the right-hand side corresponding
to (ﬁ,é,@,@) is greater than or equal to that corresponding to (a,ﬁ_,ﬁ,ﬁ).

Let A be the difference between the right-hand side of inequality (5.87)) corresponding to
(ﬁ,f,@,'ﬁ) and that corresponding to (a,ﬁ_,ﬁ,ﬁ). As observed above, we have to prove that
A > 0. If one writes down patiently the expression for A given by (5.87), recalling that ) = 0
for 1 < ¢ < n (as the circulation is standard) and &; = 0 for ¢ ¢ {h,j}, and then uses (L.90])
for p = p together with the second expression for &; and &; in (L97), one finds

A= —af +ad + p[ba] + an — pb;] + a;. (5.102)

We now distinguish two cases.

Casg 1: p/(h) < p/(j) (in other words, f'(by) > f'(b;))-
Assume that &, < p and &; < 0. Then (G98) and (5.99) show that p > max{ps, p;}. One
can verify that by setting p := max{ps, p;}, conditions (a)-(b) above are satisfied and the
corresponding number (B.I00) is smaller than that corresponding to p. This means that p
does not satisfies condition (c), a contradiction. Therefore &; = 0 whenever &, < p, which
also implies that Gj, +&; >0 (as 0 < &, < pand —p < &5 <0).

If @) = 0 then equation (BI02) shows that A > 0, as @) > 0, b, > bj and & + &; > 0.
So we now assume 4) > 0. By equation (532)), there is an index 1 < [ < k — 1 such that
a9 = (13,19). Again by (£92), 4) > 8 (17,75). Equation (.102) then gives

A > —B(6,9) + B(9,9) + p([br] — [b;]) + én + ;.

Since by, > b; and p > 0, the above inequality implies

A > —p(0,9) + Bi(7,9) + ap, + a;. (5.103)
Using (B.91)), one finds
k—1 k—1 »
— i(9,0) + 1(v,9) ( Sl () — Ele=prii) ) ( Sle—p () _5fe—p'<j>]>' (5.104)
L=l 1=l

By (&.96) for p = p and the fact that fé’ > fé’ for all ¢, the value of the first summation in the
above equation does not exceed p. Similarly, since fg < fz for all ¢, the value of the second
summation is at most 0.

We consider two possibilities:

1.1 Assume first that & = p, or in other words p < pn, or in other words )\h > p/(h). Note
that f[é )] = { ()] for all £ > )\, and {E < {E for all /. By equation (5.104]), this

implies that if [ > )\, then — 8, (v, 19) + 5 (v, 79) > 0. Together with (5.103]) and inequality
&, + &; > 0 proven above, this shows that A > 0if [ > S\h.
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So we assume [ < \j,. Since 5\ > A\, by (MHI), we have | < 5\ Since {3 < {3 for all £
and 52 oG] Efzfp,(m for p'(j) < £ < \j, the second summation in (EI04) is (we also
use the first expression for ¢&; in (B.97))

k—1 k—1

(G~ Glwin) < 2. (Evin = Gewin) =05 (5.105)

=l =

Since the value of the first summation in (5104]) is at most p = &y, we then have — 3 (@, 19) +
I/ (17,15) > —ay, — G, which together with (LI03) shows that A > 0.

1.2 Now assume &j < p, or in other words 5\h < p'(h). As remarked above, &; = 0 in this
case. Also note that f&_p,(h)] = f_[fé_p/(h)] for A\, < £ < p/(h). Then if [ > X, then the value
of the first summation in (5.I04) is at most &y,. Since the value of the second summation
in (BI04 is at 0, we then have —f; (@,19) + 4 (17,1?) > —ap, = —ap, — &;. This, together
with (5.I03]), shows that A > 0.

So we assume [ < \,. Since )\ > A, by GI0I), we have | < )\ Note that 52 ) =
ff o)) for0 </l < )\J, thus the value of the second summation in (B.I04) is exactly —p.
Since the value of the first summation in (G.I04]) is at most p, we then have —f; (13,79) +
ﬁl(ﬁ,'@) > —p+p =0, thus A > 0 by (LI03), as &, + &; > 0.

CASE 2: p/(h) > p/(j) (in other words, f'(bn) < f'(bj)).

Note that since by, > b; and f'(by) < f'(bj), then [by] > [b;] + 1. If 45 = 0 then equa-
tion (FI02) shows that A > 0, as 4} > 0, [by] > [b;j] + 1 and &, + &; > —p. So we now
assume 4 > 0. By equation (5.02), there is an index 1 <1 < k — 1 such that 43 = (@,19)

Again by (2.92)), 118 > B (17,5). Equation (G.102)) then gives
A > —0(0,9) + 51 (9,0) + p([o] = [651) + G + G5
Since b, > b; and p > 0, the above inequality implies
A > —B(9,9) + Bi(9,9) + p + én, + d. (5.106)

Note that equation (B104) still holds.
We consider two possibilities.

2.1 Assume first that & = p. Since —f; (@,19) + 05 (17,19) > —p by ([I04) and since &y, + & =
p+ & >0, we obtain A > 0.

2.2 Now suppose that &, < p. Asin Case 1.2,if [ > A, then the value of the first summation
in (B.I04) is at most &p. This implies that A > 0, as —/; (v 79) + 05 (v 79) > —@j, and
p+a; > 0.

So we assume [ < j\h, which together with 5\3- > j\h implies [ < j\j. As in the second part
of Case 1.1, the value of the second summation in (5I04]) is at most é&;. Then A > 0, as
—B(9,9) + By(5,9) > —p — &; and é, > 0.
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We have proven that in all cases the inequality (B.87) corresponding to (&,é,@,@) domi-
nates that corresponding to (7?1,, £,7, 19). To conclude we have to show that m(f), 79) <m (T), 19).
This follows from the following two observations: first, for any i, if S” >~ S? with respect to
(ﬂ,f,@,ﬁ) then S" >~ S with respect to (ﬁ,f,f),ﬁ) as well; second, S" £ S7 with respect to
(ﬂ,f,@,ﬁ) but S* > S7 with respect to (ﬂ,f,f;,ﬁ). O

From now on we only consider standard circulations in A (w) satisfying S"* = S7 for all
Jj € J(w).

For the next lemmas it is useful to introduce some simple notation. Given two indices
0<?,0 <k—1, we define (¢,¢') as the set of indices ranging from ¢ to ¢ in “circular” fashion.
That is,

{0,....0'} fo</<l <k-1,
(00) = {6,....k=1}U{0,....0'} f0o<l <l<k-—1,
1%} if¢=Fkort¢ =k.

(The third case in the above definition is given for technical reasons.)
Given indices 0 <i <nand 0 </, <k —1, let P({,{') be the set of arcs in the unique
directed path in S* connecting nodes ,ufé and ,ué,. That is,

{uf:le(@+1,0)} L0,

P00 =
(&£) {@ if6=1.

In the following we will be considering a fixed standard circulation (ﬂ,f,@,z?) in V(o)
such that S* = S7 for all j € J(w). Thus we can safely drop the dependence on (17,15) in
notation \; (T), 19) and just write \;. Similarly we write r; for r; (T), 19).

Lemma 5.11 If a standard circulation in N (w) satisfies S* = S7 for all j € J(w), then
w® = —w" and W/ =0 for all j ¢ {0,h}.

Proof. Tt is sufficient to show that the support of (22,{_,17,5) contains a forest F' as in
Lemma B (), with ¢ := h. The construction of F' is divided into several steps, which
are illustrated in Figure @7 Note that the picture represents only the forest F: other nodes
and arcs have not been drawn.

STEP 1. Since (ﬂ, £,7, 15) is a standard circulation, its support contains arcs f? for 0 <0 <y,
which we include in F' (solid arcs in Figure [5.7). Such arcs span nodes pf for 0 < ¢ < rj, and
Y for £ € (p'(h), An). Thus, if Ay, = p/(h) —1 (or in other words, r;, = k — 1), the construction
of F is complete. We then assume A\, # p’(h) — 1 and go to the next step.

STEP 2. The support of (ﬂ,f,@,@) also contains arcs u} for ¢ € (r, +2,k — 1) and arc 9P,
which we add to F' (dashed arcs in Figure 5.7). Now all nodes in S” are spanned by F. It
remains to cover nodes uf for £ € {[\, + 1], [p'(h) — 1]). If ﬁ?/\hﬂ} > 0 we go to Step 3,
otherwise we skip to Step 4.

STEP 3. (To be executed if and only if ﬁ([)Ah+1] > 0.) Note that in this case we can assume

h

without loss of generality that B[Th 41

| > 0: if not, we can decrease by a small ¢ > 0 the flow
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/
\

Figure 5.7: Illustration of the steps of the proof of Lemma [EIIl Solid arcs correspond to
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Step 1, dashed arcs to Step 2, double arcs to Step 3 and dotted arcs to Step 4.
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on arcs {fh,u?)\hﬂ} ﬁ'h‘f’l]’f[};‘h‘f’l]’ thus
obtaining an equivalent circulationﬂ Choose the index ¢1 € {[\ 4+ 1],p/(h)) such that the
path PY(\y,[¢f1 — 1]) is contained in the support of (7?1,, £,7, 19) and has maximum length. We
add the arcs of such path to F' (double arcs in Figure 7). If /1 = p/(h), the construction of

F'is complete. Otherwise we go to the next step.

and increase by the same amount the flow on arcs u

STEP 4. If ﬂ([)AhH] > 0, /1 has already been defined in the previous step. If ﬂ([)AhH] =0, set
{1 == [Ay + 1]. In both cases, it remains to cover nodes pf for £ € (¢1,[p'(h) — 1]). Since

Sh — Si for all j € J(w) and since {?1 = 0, node '“21 receive a positive amount of flow from
(a) either arc v° (clearly this is possible only if ¢; = 0),
(b) or an arc &' such that p/(iy) = £;.

In the former case we add arc v° to F, in the latter case we add {él. Note that if (b) holds
then arc v"! carries a positive flow as well, and we also add v*! to F. Now let /5 be the index
in (¢1,p/(h)) such that the path P%(¢y, [l — 1]) is contained in the support of (a,¢,v, ) and
has maximum length. We add the arcs of such path to F. If 5 = p/(h), the construction of
F is complete. Otherwise we repeat this step with ¢5 in place of ¢1, and so forth. (The arcs
added in this step are the dotted arcs in Figure £.7])

At the end of the above process, a forest F' as in Lemma [5.7] () is detected in the support
of (,&,0,9). O

Note that for i ¢ {0,h}, condition @’ = 0 and the fact that the (u,&,v,9) is a standard
circulation imply that f}, =0forall 1 </< k-1, ﬂ% =0forall0 </ <k—1and ¥ =0.
Therefore the network can now be simplified by removing all such arcs: the resulting reduced
network consists of the following arcs:

e the arcs of sectors S and S°;

: h 0 ; h h .
e the arcs connecting sectors S" and SV, i.e. arcs &j,..., & ;
e the arcs vi,ﬁé forall 1 <i<n.

Also, using (5:89) and the fact that @ = —w", one sees that for each index 0 < £ < k the
demand of node M? is exactly equal to the supply of the node of sector S placed at level ¢,
i.e. node ”&—p’(h)]' The structure of a possible reduced network is depicted in Figure B8

Therefore we can restrict to the reduced network our search for circulations generating
non-redundant inequalities. Before showing explicitly such circulations we make a few final
observations.

Lemma 5.12 Assumew® = 1, w" = —1 and @' = 0 fori ¢ {0,h}. Every standard circulation
(ﬂ,f,f},ﬁ) in N (@) generating an inequality [.81) that is non-redundant in the description
of the convez hull of (B53)-([E.50) satisfies the following conditions:

“This circulation is non-standard, but the remainder of the proof still works.
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&b, b, v* for i ¢ {0, h}

Figure 5.8: The reduced network when @’ = 1, w" = —1 and @’ = 0 for i ¢ {0,h}. Thick
arrows represent circulation requirements. The supply of each node in S” is equal to the
demand of the node of S® located at the same level. Note that the nodes pf aligned on the
same vertical line on the right actually belong to distinct sectors S? for i € {0, h}. This picture
represents the special case in which the values p/(7) for 1 <4 < n are all distinct.
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() & ="+ fo = J{' and & = fi' = fiyy for L < <rn;
(it) af, .y =0;
(iii) v° =& for all i ¢ {0,h};
(iv) ©° =0 for all indices i such that p'(i) € (p'(h), \n);
(v) @§ =0 for all £ € (p'(h), [An + 1]).

Proof. We prove the above statements in the case r, > 0. If r, = 0 the idea is the same but
some notation used below is meaningless.

Since (ﬂ, £,7, 15) is a standard circulation, ﬂ? = 0 for 0 < ¢ < rp. This immediately implies
that &8 = o + fb — fl and & = f - f£h+1 for 1 < /¢ <, — 1, which partly proves (i).

Since u = 0 and the supply of node ,urh is h fﬁhH, we have ﬂﬁ;ﬂrl} +fﬁh = fﬁh —fﬁhﬂ.
Also note that for 1 < ¢ < rp — 1 the flow carrled by arc f? is equal to the demand of its
head-node, and the flow carried by arc 56 is at least as large as the demand of its head-node.
In other words, nodes p for p'(h) < ¢ < A, — 1 are saturated by these arcs. Furthermore
recall that arcs fz for ¢ > ry do not carry any amount of flow (by definition of r5,). If we
assume Ef}h < ﬁh — ffh 41 (e arc fffh does not saturate node ugh), all these considerations can
be used to show the existence of a path () contained in the support of circulation (7?1,, £,7, '9)
that connects node ugh with the dummy node d without using arc 9. In this case the arcs

19h Ph([rh+1] ) Srh’ Q

form a cycle contained in the support of (ﬂ,f ,17,15). It is easy to see that such a cycle is
heavy, contradicting Lemma [B.IT] (). This completes the proof of (i) and also shows (ii), as
af, g & ==l

To see that (iii) holds, assume o > &} for some i ¢ {0,h}. Since w' = 0 and the circulation
is standard, then necessarily the support of (a, £,7, 5) contains the path P*(0,k—1). The arcs
of this path, together with arcs v* and 9, form a heavy cycle, contradicting Lemma B ().

If r,, = k — 1 then (iv)-(v) can be checked easily, so we now assume 0 < r, < k — 1.

To prove (iv), let i be an index such that o* > 0 and p'(i) € (p'(h),\n). Note that if
i # 0 then we also have & > 0, as @) = 0 in a standard circulation. Since for 0 < ¢ < 7y,
the flow carried by arc fé’ is at least as large as the demand of its head-node (and thus nodes
) for p/'(h) < € < Xy, are saturated by these arcs), we see that all arcs in PY(p/(i), [\, + 1])
belong to the support of (ﬂ,f,z’;,zg). We can then decrease by a small ¢ > 0 the flow on
arcs f[’; ()] PO(p/(4),[An + 1]) and increase by the same amount the flow on P ([p'(i) —
p'(h)], [rh + 1]) f[r 4+1)» thus obtaining an equivalent circulation. However, this new circulation
contains in its support all arcs

’U 507 f[p Ph([ ( ) _p/(h’)]’k - 1)3 /lgha

where arc £ must be removed from the above sequence if i = 0. This set of arcs forms (or
contains, if 1 = h) a heavy cycle, contradicting Lemma 5111 ().
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To prove (v), let £ € (p/(h), [Ap+1]) be such that @) > 0. Similarly to the proof of part (iv),
one shows that all arcs in P° (p’(h), [An + 1]) belong to the support of (7?1,, £,7, 19). We can then
decrease by a small ¢ > 0 the flow on arcs &, PO(p/(h),[A\y + 1]) and increase by the same

amount the flow on P (0, [ry, + 1]) , ff;h ] thus obtaining an equivalent circulation. However,
this new circulation contains in its support all arcs ug, . ,uZ_l, which form a tree (actually

a path) as in Lemma 57 (). Thus (@,{,v,9) is equivalent to a circulation generating a
redundant inequality, that is, (7?1,, £,7, 19) itself generates a redundant inequality. ]

Since part (iv) of the above lemma applies to index ¢ = h, the statement in (i) can be
written this way: fé’ = flf‘—flf‘le for 0 < £ < rp. In other words, for each 0 < ¢ < rp, the supply

of node ué‘ is entirely carried to node ,u[op,(h) by arc f?, and this amount of flow satisfies

+/)
precisely the demand of node ,u([)p,(h) e

Using the fact that o' = & and & = --- =& | =0 for i ¢ {0,h}, inequality (587) can

now be rewritten as follows:
n ‘ B k—1 ~
styn+ Y 0z — [bi]) + 1y > L D (5.107)
i=1 =0 t=k—p'(h)

By the above considerations, the right-hand side of inequality (G.I07) is

k—1 k—1 .

;. o _ ) Py = Fagn) [0n] if p'(h) < An,

& Ton] — g = vrh) (5.108)
;; o ék—Zp’(h) Sy T+ (= 1) (] = 1) P (R) > A

Assume o = 0 for all indices 1 < i < n. Lemma can be used to show that two cases
are possible: either ) = 0 and A, = [p'(h) — 1] (ie. 7, = k — 1), or 2° = 1 — f/(by,) and
A = k — 1. In the former case, the corresponding inequality (G.I07) is

s+ yn = o 0]+ (L= fu)([on] = 1), (5.109)
while in the latter case it is
s + Yh Z fz()J/(h) ’Vbh—l

The above inequality can be discarded because it is dominated by (109, as b, > 0. Recalling
that f;?/(h) = f'(bp), inequality ([B.I09) is readily checked to be equivalent to s + y;, > by.

Now we assume that o* > 0 for at least one index 1 < i < n. Let iy,...,i,_1 be the indices
in {1,...,n} such that v;, > 0 and p'(i;) < p/(h) for 1 <t <m—1. (Note that m—1 might be
equal to zero.) Set i, := h and let iy, 11,...,%, be the indices in {1,...,n} such that v;, >0

and p'(it) > A, for m +1 < ¢ <r. (Note that r might be equal to m). By Lemma (iv),
there does not exist an index i such that p'(h) < p/(i) < Ay, thus {i; : t # m} is precisely the
set of indices 7 # 0 such that #° > 0. Also note that there do not exist two distinct indices ¢, ’,
with t # m # ¢/, such that p/(i;) = p'(iy), as otherwise the arcs v’, ét, éi',vit’ would form a
heavy cycle contained in the support of circulation (ﬂ, £,7, 5). We can then assume without
loss of generality that p'(i1) < -+ < p'(im—1) < P'(im) = p'(h) < p'(im+1) < -+ < P'(ir). We
also define i,11 :=n + 1 (thus p/(iy11) = k) and f/(by41) := 0.
We now distinguish two cases.
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. Suppose first that ° > 0. We claim that in this case %) = 0. This follows immediately

from Lemma B2 (v) if A, = k — 1, so assume A, < k — 1. Then if 49 > 0 the sequence
of arcs v, P°(p'(i,),0),v" would form a heavy cycle contained in the support of the
circulation (u £,7, 19)

Thus @) = 0. Also observe that p'(h) < A, as otherwise Lemma (iv) would be
violated by index ¢ = 0. The nonzero entries of v are (see Figure £.0)

p'(it41)—1

o= Y (=) = Fay — Fey fort#m,
£=p' (i)
p'(i1)—1

00 = Z (f0 = f) =1- f;?/(il)-

£=0
The corresponding inequality (5.107)) is then (also using equation (5.I08])
s+ Yyn+ Z P(ir) (“H))(Zit —[bi,1) > (f;?/(h) - ff\]h+1) [bn]-
t#m

Recall that i, = h and observe that p’(i;,+1) = A\ + 1. Then, after recalling that
19,(2.) = f'(b;) for all indices 1 < i < n, the above inequality reads

S+ Yim + Y (F/(0i) = F'(bigi)) (zi = [031) = (F'(b3,) = F' (Vi1 [0 1. (5.110)
t#m

. Now suppose v9 = 0. In this case the two alternatives m < r and m = r need to be

considered separately.

If m < r then p/(h) < Ap, as otherwise Lemma (iv) would be violated by index
i = i,. The nonzero entries of v are (see Figure [.10)

P/ (it41)—1
Uiy = Z (ffo B ffo"‘l) - flg’(it) N fI?'(itﬂ) for ¢ ¢ {m,r},

L=p’ (i)

k—1 p'(i1)—1
vp= ) (B —th)+ X (=) =Ty + (0= fay):
L=p’ (ir) =0

while 4} =1 — The corresponding inequality (5.I07]) is then

P (Z )

stunt Y (R~ Ftiven) G 1B D+ (1= F) (i =103, 140) = (fy =13, 40) 001,
t#m

which can be equivalently be written as

s+yn+ Z (f/(blt) - f/(biz+1)) (Zit - [blt])
t#m

+ (1= f1(bi)) (23, = [b3, 1+ 1) = (f'(bi) = f'(bin) [bi, 1. (5.111)
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Figure 5.9: The case #° > 0. Here r = 3 and m = 2.
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Figure 5.10: The case ©° = 0 and m < r. Here r = 4 and m = 2.
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Figure 5.11: The case ?° = 0 and m = r. Here m = r = 3.

Now assume m = r. We claim that in this case @) = 0. This follows immediately from
Lemma 5.12] (v) if A, = k — 1, so assume A, < k — 1. Then, since m = r, we necessarily
have p/(h) > Aj,. Lemma B2 (v) then implies 4 = 0.

The nonzero entries of v are (see Figure [5.11))
P (it41)—1
- 0_ (0 0 0
Vi, = Z (fﬁ - ff-{—l) = fp/(it) — Jp/(is) for ¢ 7& m.

L=p’(it)

The corresponding inequality (5.I07]) is then

stun+ Y (Fhay = foen) e = T0i1) 2 fgy 1]+ (1= f2,41) (T = 1),
t#m

which can be equivalently be written as

s+ yp+ Z (f/(blt) - f,(bitJrl))(zit - (b'lt—‘) >
t#r

f' (i) [03, 1+ (1= f'(bi,yy)) ([05,] = 1), (5.112)

This concludes the analysis of the case J(w) # @.
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The case J(w) = @

We now consider the case J(w) = @, that is w’ = 0 for all 1 <4 < n. Since w # 0 and @w® > 0,
we can assume @’ = 1 without loss of generality.

Note that in this case ¥ = 0 for 1 < i < n, as otherwise the support of (ﬂ,f,@,@) would
contain the heavy cycle v*,uj,...,u;_,,9". The same argument also shows that v* = £ for
1 < i < n. Inequality (5.87) can then be rewritten as

n

s+ Y 0 (z — [bi]) + 1) > 0. (5.113)

The above considerations shows that the only arcs that can carry a positive flow (in a
circulation that generates a non-redundant inequality) are the arcs of sector S° and arcs v, fg
for 1 < ¢ < n. Furthermore, for each 1 < i < n we can identify arcs vi,ﬁé into a single arc.
The network then reduces to that considered in Section (Figure B.1]), where no arc enters
the dummy node.

The acyclic circulations in such a network were shown in Section (here we are clearly in-
terested in the case w > 0). It can be easily checked that the corresponding inequalities (G.113))
are precisely s > 0 and the mixing inequalities listed in Section (L.2.3):

s+ Z (fl(blt) - f/(bit+1))(ziz - (b”-‘) > O, (5114)
t=1

s+ Z (f,(biz) - f,(bitﬂ))(ziz - (biz—l) + (1 - f,(bil)) (Zir - (bir—‘ - 1) >0 (5-115)

for all sequences of indices i1,...,4, in {1,...,n} such that f'(b;;) > --- > f'(b;,).
We have therefore proven the following result:

Proposition 5.13 A linear inequality description of the convex hull of the mixing set with
flows [(B53)-([@50) in its original space is obtaining by adding to the original inequalities the
following constraints:

o (BII0) for all sequences of indices iy, ..., i, in{1,...,n} such that f'(biy) > -+ > f'(b;,)
and all indices 1 <h<nand1<m<r;

o (BITT)) for all sequences of indices iy, ..., i, in{1,...,n} such that f'(biy) > -+ > f'(bs,)
and all indices 1 <h<nand1<m<r;

o (BI12) for all sequences of indices iy, ..., i, in{1,...,n} such that f'(biy) > -+ > f'(b;,)
and all indices 1 < h <n;

o (BITA)-(BEII5) for all sequences of indices iy,...,i in {1,...,n} such that f'(b;) >
> f(bi,).

Conforti, Di Summa and Wolsey [I3] obtained the linear inequality description of the
mixing set with flows in a different form (see also Section B.2)).



Chapter 6

Dual network sets with a single integer
variable

Recall that we denote by MIX?'V any mixed-integer set of the form {zr € R" : Az >
b, x; integer for i € I}, where A is a totally unimodular matrix with at most two nonzero
entries per row and [ is a nonempty subset of N := {1,...,n}. In this chapter we consider
problems of this type with |I| = 1, i.e. with a single integer variable. We give a linear inequality
description of the convex hull of such sets in the original space. In contrast to Chapter [ the
convex hull is obtained here without constructing or projecting any extended formulation of
the set.

In Section we state the main result of the chapter, which provides a linear inequality
formulation (in the original space) of the convex hull of an arbitrary dual network set with
a single integer variable. By a result of Section this also yields a formulation of a set
MIX?"U with a single integer variable.

The theorem stated in Section is proven in Sections B2HE.3l More specifically, in
Section we prove the validity of the inequalities by showing that each of them is a simple
MIR-inequality. In Section [6.3]lwe prove that the inequalities of the theorem are also sufficient
to describe the convex hull of the set. This is done by following an idea that was applied in
the study of sets defined by circular-ones matrices [24].

We conclude in Section by discussing the Chvétal rank of a pure integer set that

X?TU with a single integer variable. In

constitutes an equivalent formulation of a set M1
particular, we show that there are very small and simple instances having Chvatal rank greater

than one.

6.1 The convex hull in the original space

Let X = {x € R" : Az > b, x; integer for i € I'} be a mixed-integer set of the type MIX?TV
with |I| = 1. We assume without loss of generality that the integer variable corresponds to
the last column of A.

By Corollary 4] by multiplying by —1 a subset R of columns of A we can transform X
into a set with dual network constraint matrix. Note that given a linear inequality description

103
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of the convex hull of the transformed set, a description of the original set is immediately
obtained by changing again the sign of the variables with indices in R. Therefore we can
assume without loss of generality that our set X is defined by a dual network matrix A4, i.e X
is a set of the type MIXPN,

The linear system Az > b has then the form

Ti — T zlija (Z,]) ENe, (61)
T > lia i€ Nl)
v <wug, i€ NY,

where N® C N x N and N', N* C N. The set N¢ does not contain any pair of the type (4,1)
for i € N. If the set of inequalities ([6.2]) does not include an explicit lower bound I, on z,,
we set [, := —oo (but we do not include the bound in the formulation). Similarly if no upper
bound on x, is included in the above system, we set u, := +o0o. We also assume that the
system Ax > b is feasible.

Define P := conv(X) = conv{zx € R" : Az > b, z,, integer}. In order to give a linear
inequality description of P in the x-space, we need to assume that [, and u, are tight bounds
for x,: that is, we assume that

l, = min{z, : x € P}, wu, =max{z,:z € P}. (6.4)
If this is not the case, we can use the following easy result:

Lemma 6.1 Define the values m = min{x,, : Az > b} and M = max{x, : Ax > b}. If
[m] < LMJE' then min{z,, : © € P} = [m] and max{x, : x € P} = | M]|.

Proof. We assume that both m and M are finite (the other cases are similar). Let x!, 22 be
two points satisfying system Az > b, with 2} = m and 22 = M. All points in the segment
(2!, 2] satisfy Az > b. Since [m] < | M] by assumption, the segment [z', 22] contains points

7!, 2% such that 2. = [m] and 22 = | M |. This proves the result. O

If conditions (G4]) are not satisfied, we can compute the values m and M defined in the
above lemma (this amounts to solving two linear programs). If [m| = |[M]| + 1 then P = &
(and we have found the convex hull of X). Otherwise [m] < |M]| and we can redefine
l, == [m] and w,, := |M]. By the above lemma, conditions (6.4]) are now satisfied.

We now prepare to present our result. Let G = (V| E) be the directed graph with vertex
set V:={0,...,n — 1} and arc set E defined as follows:

(a) for each pair (i,7) € N€ where i,j # n, E contains an arc from node i to node j;

(b) for each pair (i,n) € N€, E contains an arc from node i to node 0; symmetrically, for each
pair (n,j) € N¢, E contains an arc from node 0 to node j;

(c) for each index i € N! with i # n, E contains an arc from node i to node 0;

'Here |+o0] := +oc and [—oc] 1= —c0.
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(d) for each index ¢ € N* with i # n, E contains an arc from node 0 to node i.

Note that G may contain several pairs of parallel or opposite arcs.

Thus every inequality of the system Ax > b (i.e. system (G.I)—(G.3])) gives rise to an arc
of G, except for the inequalities 1, < z, < u, (if appearing in the system). We give weights
to the arcs of G in the following very natural way: arcs arising from a pair (i,j) € N receive
weight /;;, arcs of type (@) receive weight [; and arcs of type (d) weight —u;. The weight of an
arc e € E is denoted b.. In other words b, is the right-hand side of the inequality of (G.1])—(6.3))
(written in the “>” form) corresponding to arc e.

Let C denote a sequence of arcs forming an undirected cycle in G. Assume that the sequence
of nodes and arcs in the cycle is (ig, €g, i1, - - , ik, €k, ix+1), Where ig = ix1. Let ET(C) be
the set of arcs of C that are traversed accordingly to their orientation, i.e. ET(C) := {e; :
i; is the tail of e;}. Symmetrically, let £ (C) := {e; : i; is the head of e;} be the set of arcs
of C that are traversed in the wrong direction. Let T (C) (resp. T~ (C)) be the set of indices
t such that e; is in ET(C) (resp. E~(C)). We define

bHC) = > be, bT(C) = > be

ecE+(C) ecE—(C)

We also define d(C) := b"(C) — b~ (C). Note that if one reverses the sequence of nodes and
arcs forming C, the values b*(C), b~ (C) and d(C) change sign. Thus, rather than just a cycle,
C indicates in which order the arcs of that cycle are traversed.

We now present the main result of this chapter. As in the previous chapters, for a real

number o we write f(«) to denote the fractional part of o, i.e. f(a) := a — |a].

Theorem 6.2 A linear inequality description of P in its original space is given by the original
system ([6.1)-(G3) plus all linear inequalities of the form

Y (@i = @iy) + (2(C) + £(C)))wn = b7(C) + f(d(C)) Ld(C) + 1, (6.5)

teT+(C)
with the following meaning of notation:

o C = (ip,€0,01,y--.ik, €k, igtr1) 48 an undirected cycle in G, with k > 2 and ig = ix+1 = 0.
Arc eq is an arc of type (D)) defined above, while ey, is not of type ().

o Any occurrence of xg stands for a zero.

0 ifeg € ET(C),
o The value £(C) is defined by £(C) := feo ©)
—1 otherwise.
In Section [6.2] we prove that inequalities ([6.5]) are valid for P, while in Section [6.3] we show
that they suffice to describe P. We conclude in Section by discussing the Chvatal rank of
an equivalent pure integer formulation of P.
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6.2 Validity of the inequalities

We show here that each of inequalities (6.3 can be obtained as a simple MIR-inequality (see
Theorem [LTI)) from an inequality that is implied by the original linear system (6.1I)—(6.3]).
This proves that all inequalities (6.5 are valid for P.

Let C be an undirected cycle satisfying the conditions described in Theorem [6.21 Note that
ex, is an arc of either type (@) or type (d). We now distinguish four possibilities. In all cases
below, the following easy identity will be used:

Z (:Cit - xiz+1) + Z (mit - xiz+1) = 0. (66)
teT+(C) teT—(C)

Case 1: ¢y € ET(C) and ¢y is an arc of type (@).
First of all note that e, € E*(C), as e is an arc of type ([@. We claim that the following
inequalities are all included in the original system (6.1])—(6.3]):

(i) inequalities (6.1 for (4,7) = (i¢,i¢+1) with ¢ € TT(C) \ {0, k};

(ii) inequality @y, — @i, > Iy ;s

(iii) inequality z; > 1l;, .
The inequalities of group (i) belong to the original system because for each t € T+ (C) \ {0, k},
arc e; is necessarily of type (a). The inequality in (ii) is part of the original system as it
corresponds to arc eg, which is of type (b) by assumption. As to the last inequality, recall

that we are assuming that ey is an arc of type (@).
Summing up all the above inequalities gives (recall that g = 0 and 0,k € T"(C))

Z (xit - xit+1) + TIn Z b+(C), (67)
teT+(C)
which we rewrite as
> (@i —miyy) = b (C) +2a > d(C). (6.8)
teT+(C)

Similarly, all inequalities (6.1)) for (i, j) = (i¢,9¢+1) with t € T~ (C) belong to the original
system. Summing them up gives
Y @iy — @) 267(C). (6.9)
teT—(C)
Then if we set s := 3 .- ¢)(®i, — @iyy) — b (C), we have s > 0. Using equation (6.0),
inequality (6.8) can now be written as s + x,, > d(C). Since s is a nonnegative variable and
Zy is an integer variable, the corresponding simple MIR~inequality is valid:

s+ f(d(C))zn = f(d(C)) [d(C) +1].
Substituting back for s, we obtain inequality (6.3)).

Case 2: ¢y € ET(C) and ¢y is an arc of type (d).
In this case e € E~(C), as e is an arc of type (d). Similarly to the previous case, one can
check that the following inequalities are all included in the original system (6.1)—(63):
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(i) inequalities (6.1) for (i,7) = (i¢,4¢41) with t € TH(C) \ {0, k};
(ii) inequality x, — xj; > lni;-
Summing up the above inequalities gives (recall that o = 0 and 0 € T+ (C))
> (@i, = mip,) e 2070,
teT+(C)

which we rewrite as

> (@i, = miy,) = b (C) + a, > d(C). (6.10)
teT+(C)

The following inequalities are also part of the original system:
(i) inequalities (G.I)) for (i,7) = (it,it41) with t € T—(C) \ {k};
(ii) inequality —z;, > —u,,.
If we sum them up and recall that xo = 0 and k € T (C), we find
> @iy, — i) 2 b7 (C).
teT—(C)
We can now set s := 3, ¢y (i, — @i,,) — b (C) and proceed as in the previous case.

Case 3: ¢p € E7(C) and ey, is an arc of type ().
As in Case 1, e, € ET(C). Summing up all the inequalities corresponding to arcs e; with
t € TT(C) and subtracting b~ (C) from both sides gives

ST (@ 2iy,) — b7(C) > d(C). (6.11)
teT+(C)

The following inequalities are included in the original system:
(i) inequalities (G.I)) for (i,7) = (it,it41) with t € T—(C) \ {k};

(ii) inequality z;, — xpn > lij -

Adding up all these inequalities and subtracting b~ (C) from both sides gives

S (@i, — Tiyy) — 0 —b7(C) 2 0.

teT—(C)

If we define s to be the left-hand side of the above inequality, by equation (G.6]) inequality (E.11))
becomes s + z,, > d(C). Applying the MIR-inequality and substituting back for s gives

inequality (6.3]).

Case 4: eg € E~(C) and ey, is an arc of type (d).
This case is very similar to the previous one.

This concludes the proof of the validity of inequalities (6.3]).
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6.3 Sufficiency of the inequalities

We prove here that the original constraints (G.I)—(6.3]) and all inequalities (G.35]) are sufficient
to describe P = conv(X). We use an idea appearing in a paper by Eisenbrand, Oriolo, Stauffer
and Ventura [24]. We find useful to present here the approach used by the authors cited above,
as we need to extend it to the case of a polyhedron that is not full-dimensional (the polyhedron
studied in [24] is full-dimensional, and this property was implicitly used there).

6.3.1 Extending a slicing approach

The results presented in this subsection extend those appearing in [24] to the case of a poly-
hedron which is not full-dimensional. We remark that in this subsection we do not need any
particular assumptions on X, except that X is a mixed-integer set in R™ with a single integer
variable z,,, and that conditions (6.4]) hold.
For each integer number « such that [, < a < u,, we define the polyhedra P := {z €
X :z, =0} ={z € P:z, =a} and P***! := conv(P*U P*™!). Clearly
P = conv (s, P*) = conv (Utn tpevatt),

a=ln

Moreover, the following simple result holds.
Lemma 6.3 Given T € R", T € P if and only if T € Pt for a = |Z,].

Proof. The ‘if’ part is obvious. To prove the ‘only if’ part, let T be a point in P. If Z,, is an
integer then z € P* for a« = Z,,. So assume Z,, ¢ Z and define o = |Z,,]. By definition of P, =
can be written as convex combination of two points z!, 2% € P, where x} < a and 22 > a + 1.
Then the segment [:cl,:c2], which is contained in P, intersects P® and P**!  thus showing
that Z is the convex combination of a point in P* and a point in P*T! ie. z € P@*+l. [0

Note that for each integer « satistying [,, < o < uy,, the polyhedron P® is nonempty (this
follows from conditions (6.4]) and basic convexity). Then for I, < a < u,, the polyhedra
P% and P®*! are nonempty faces of P***! (induced by inequalities z,, > o and z,, < a + 1
respectively). Define F***! a5 a family of equations and inequalities that constitute a minimal
description of P*®*! except that we do not include in F*®*! any inequality defining face
P® or P®T!. We assume without loss of generality that all inequalities in F%*! are of the
“>" kind. We write cx ~ J to denote a linear constraint that can be either inequality cz > §

or equation cx = 4.

Lemma 6.4 P is the set of points in R™ satisfying inequalities l,, < x,, < u, and all equations
and inequalities in UZ’;}; Foatl

Proof. Let @ be the set of points in R" satisfying inequalities [,, < x,, < u, and all equations
and inequalities in UZ’gnl Fuotl  We prove that Q = P.

If Z € Q then [,, < %, < u, and 7 satisfies all equations and inequalities in F***! where
a = |Z,]. Since a < 7, < a + 1 also holds, we have z € P*%"! hence z € P. This shows
that Q C P.
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To prove the reverse inclusion, we show that for [, < a < u,, every equation or inequality
in Footl is valid for P. Assume that the contrary holds, i.e. there exist an integer a such
that [, < o < uy,, an equation or inequality cx ~ § in F***! and a point # € P such that
cx 6. fa<Zp < a+ 1, Lemma implies that z € P*®*! thus Z satisfies cx ~ 6, a
contradiction.

So we assume Z,, < « (the case Z,, > o+ 1 is similar). We now claim that there is a point
Tt € P*1 such that ca®t! = §. To prove this, we distinguish two cases.

1. Assume first that cx ~ § is an inequality. Then inequality cx > ¢ defines a facet F' of
P>oFl and we let k be the dimension of F. Since P“**! = conv(P*U P**1), there
exist k£ + 1 affinely independent points in F'N (PO‘ U Pa“) that satisfy equation cx = 9.
If all these k + 1 points belonged to P¢, then inequality cx > ¢ would induce facdq P,
contradicting the fact that inequality cx > § belongs to F*®*!. Thus there is a point
x2t1 € P! such that cx®t! = 6.

2. The other possibility is that cz ~ § is an equation and thus P®°T! C {x € R" : cx = §}.
Since P! £ & there is a point 2T € P¥*1 C {z € R" : cx = §}.

Thus in both cases there is a point ! € Pt such that cx®t! = §. Since ¢z £ §, the
segment [CE,CCOH_l], which is contained in P, intersects P® in a point z® such that cz® £ §.
This is a contradiction, as the equation or inequality cx ~ ¢ is valid for P%. O

Therefore, in order to find a linear inequality description of P, we have to find all equations
and inequalities in the family F®°*! for [, < a < uy,.

In the following we write A = [M | a,], where M is the column submatrix constituted by
the first n — 1 columns of A and a,, is the n-th column of A. Similarly we decompose a point
x € R"as x = (v, Tn).

Lemma 6.5 Fiz a point T € R"™ with (z) := f(Z,) > 0 and an integer l,, < o < uy,,. Define
b =b—aa,, b i=b—(a+1a,. (6.12)

Then T € P4t if and only if the optimum value of the following linear program is zero:

max —v*MZy + (1 — p(z))v*b® + p(z)vetipett (6.13)
subject to VM —v*TIM =0, (6.14)
v, vt > 0. (6.15)

Proof. The point Z belongs to P**T! if and only if there exist 2@ € P%, 21 ¢ P+l and
0 < X <1 such that
T=Ax® + (1 — N> (6.16)

By writing equation (G.I8]) for the n-th component, one finds y(Z) = 1 — A\. Then 7 € P*+!
if and only if there exist 2@ € P* and %! € P**! such that

2ar = (1 — (@) + p@)afy .

% Actually facet in this case.
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If we define b* and b°T! as in (GI2), the polyhedron P% (resp. P**1) is described by the
conditions x, = «, Mxzy > b* (resp. x, = a + 1, Mxy > b, Thus £ € Pt if and
only if there exist 2%, 2%*! € R” such that

Ty = (1— (@) + p@)ast, Mo >b6%,  Ma§Ht > et

After defining y® := (1 — pu(z))z%, and y*tt = u(f)x%jl, we obtain that z € P%2*! if and
only if the following linear system admits a feasible solution (y®,y®*!) € R~ x R~ 1

y* +y* Tt =3,
My* > (1 — p(z))b",
Mya—I—l > u(:ﬁ)ba-i_l.

By Farkas’ lemma (Theorem [[7), this happens if and only if all feasible solutions of the

following linear program have non-positive cost:

max  uZy + (1 — p(Z))v*b® + p(z)vTtpet?
subject to u+v*M =0,
w4 v M =0,

v, 0t > 0.

After eliminating variable v and observing that the all-zero solution is feasible, the proof is
complete. 0

Note that the feasible region ([6.I4])—(6I5]) does not depend on Z.

Now fix I, < a < up, let cx ~ § be an equation or inequality in F***! and call F the
facet (or improper face) of P®®*! that is induced by cx ~ §. Let Z be a point in the relative
interior of F' (note that then 0 < u(Z) < 1, as assumed in Lemma [B.5)). Since # € P***! the
optimum value of the linear program (6I3)—(615) is zero. We call Z(z) the set of optimal
(i.e. zero-cost) solutions of the linear program (G.I3])—(6.15).

Lemma 6.6 For each feasible vector (vo‘,vo‘H) in (0I4)-([©I15), the inequality
v* Mz + (02 — 0T 2, > 0% + (09 — 0Tt (6.17)

is valid for P®TL. Furthermore, the equation or inequality cx ~ & is implied by the family of

inequalities @IT) for (v™,v*t!) € Z(z).

Proof. For a point x € P%*, x,, = « holds and thus inequality (G.IT) reduces to v* Mz > v*b®,
which is valid for P® (as it is a nonnegative combination of the inequalities of the system
Mz > b%). Similarly, for a point z € P*t!, 2, = a + 1 holds and thus, recalling that
v*M = v*H M by ([6I4), inequality EIT) reduces to v® T Mz > v 16+ which is valid
for Pt

Therefore inequality ([@I7) is valid for P! Also, since (v®,v*™!) is a zero-cost so-
lution of ([EI3)—-(GI5) and recalling that z,, = a + p(z), it is straightforward to verify that
inequality (G.I7) is tight for .
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To prove the second part of the lemma, let & € R™ be any point violating cx ~ §. We
show that there exists a vector (170‘,170‘“) € Z(x) such that & violates the corresponding
inequality (617).

Define v := & —  and #(¢) := & + ¢y (thus the mapping ¢ — z(e) for ¢ € [0,1] is a
parameterization of the segment [Z,2]). Since all inequalities (EIT) for (v*,v*™!) € Z(z) are
tight for z, it is sufficient to prove the above claim for the points of the type &(e) with e > 0
small enough.

Since u(z) = f(Z,) > 0, for £ > 0 sufficiently small we have u(z + ey) = f(Z,, + evn) =
f(Zn) + evn = w(Z) + eyp, thus the objective function (6I3) corresponding to the point
(e) =T +eyis

pe (v, ) 1= ="M (Zar + evmr) + (1 — p(Z) — £9,)0°b* + (W(T) + ey ) 0> T H

Note that for ¢ = 0 we find exactly objective function (G.13)).

Let R be the set of extreme rays of cone (G.I4)-(6.I5) with unit Euclidean norm. We
partition R into two subsets R := {(v*,v*™!) € R: ¢ (v*,v**!) > 0} and R; := R\ Rf.
Since ¢z ~ § whereas cZ ¢ 0, the point Z(e) violates constraint cz ~ ¢ for all € > 0. Then
#(e) ¢ P for all € > 0. By Lemma [6.3] this implies that R} # & for all € > 0.

Note that for a fixed vector (vo‘,va“), the mapping ¢ — ¢, (va,vaH) is linear. Also
¢o (v*,v*TL) <0 for all (v*,v*T!) € R. These two observations imply that if 0 < e < ¢’ then
RY C RY, and R; D R_,. Since R # @ for all £ > 0 and since R is a finite set, this shows
that there is a vector (2%, 9*"!) such that ¢o (2%,9*™) = 0 and ¢. (v*,0*T') > 0 for € > 0.
It is readily checked that the inequality (GIT) corresponding to this vector is violated by &(e)
for £ > 0 sufficiently small.

Thus we have found a vector (0%,9%"!) € Z(z) such that the corresponding inequal-
ity (€I7) is violated by z(e) for € > 0 sufficiently small. This concludes the proof of the
lemma. O

Therefore in order to find the inequalities and equations in F*°*! we have to find the
zero-cost solutions of problem (6I3])-(6.15]). Note that we have not used any assumptions on
the structure of the original system. Thus the above considerations yield a polynomial time
separation algorithm for any mixed-integer set with a single integer variable: given Z, solve
the linear program (G.I3)—-([EI5) with o = [Z,,]; if there is a positive cost solution, then the
corresponding inequality (6.I7)) separates Z from P, otherwise z € P (see also [24]).

6.3.2 Finding the inequalities

We now consider our mixed-integer set X with dual network constraint matrix and a single

integer variable x,. In the following we investigate the zero-cost solutions of (G.I3)—([G.I5]).
First of all, if the linear program (@I3)—([€I5) has a zero-cost solution, then it has a

zero-cost extreme ray. So we look for the extreme rays of the cone defined by (6.14)—(GI3).
Since M is a dual network matrix, the constraint matrix corresponding to system (G.14]),

M
i.e. matrix [ M]’ is totally unimodular. Then the extreme rays of (G.I4)-([G.I%) are 0-1

vectors.
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Note that M may have some all-zero rows (corresponding to inequalities x,, > [, and/or
xn < uy). Let us suppose that the ¢-th row is the all-zero vector. Then the vectors (e, 0)
and (0, e;) are extreme rays of ([6I4)—(GI5). However, the corresponding inequalities (G-17))
are scalar multiples of z,, > o and z, < o+ 1. So in the following we only consider rays of

EId)-BI5) with v = 02t = 0.
M
Let ‘H be the directed graph having M as arc-node incidence matrix. Since some rows

of M may contain a single nonzero entry, we include a dummy node 0 in the vertex set of
H as explained in Section B.Il Thus the vertex set of H is {0,...,n — 1}. Note that H and
the graph G defined in Section are define on the same vertex set. Furthermore there is a
one-to-one correspondence between arcs in G and pairs of opposite arcs in H. If an arc e of
G corresponds to the pair of opposite arcs e™, e in H, we say that e is the arc underlying e
and e~ . Given any subset of arcs of H, the underlying subset of arcs of G is defined similarly.

By Theorem B.1], the 0-1 extreme rays (v®,v*™) of (@I4)-(6I5) correspond to directed
cycles in H. Note however that not all directed cycles of H generate valid inequalities for
X, as not all extreme rays of (G.I4)—([6.15)) are zero-cost solutions of ([G.I3)—([6.I5) for some &
belonging to the relative interior of a face defined by an inequality or an equation in F®+!,
In the following, we detect which cycles need to be really considered. The simple lemma below
will be useful.

Lemma 6.7 For [, < a < uy, let (v*,v**!) be a feasible solution of (EId)-[BIH) (not
necessarily a zero-cost solution). If the corresponding inequality 1T) belongs to F*°T! and
is valid for {x € R" : Ax > b, a <z, < o+ 1}, then it is implied by the system Ax > b.

Proof. Let cz > § denote inequality (G17). Assume that cx > § is in F***! and is valid for
{r e R": Az > b, o < x,, < av+ 1} but not for {z € R™ : Az > b}. Then there exists a
point & such that Az > b, ¢ < ¢ and either z,, < a or &, > a + 1. Since inequality cx > §
is in F*tl there exist two points 2% € P and z®t! € P**! such that cz® = cx®t! = 6.
If #, < « (the case &,, > a + 1 is similar), the segment [:E,:CO‘H] intersects P® in a point y
such that cy < 0. However this is not possible, as all points in the segment [33,350‘“] satisfy
Az > b. O

Remark 6.8 By Lemma [6.7, whenever we find an inequality cx > § of the form ([GIT) that
is valid for {x € R" : Az > b, a < z,, < a+ 1}, we can ignore it, as one of the following two
possibilities holds: either cx > 0 is implied by the original constraints Ax > b, or it does not
belong to fa’aﬂﬁ

For fixed [, < a < uy, let (v*,v*!) be an extreme ray of ([EI4)-(6.I5). Recall that the
polyhedron P that we want to characterize is defined by inequalities of the form (6.17), which
we rewrite here for convenience:

VM 4 prn > 040 + pa, (6.18)

3This second alternative is possible because Lemma does not require (va,va+1) to be a zero-cost
solution.
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where we use notation p := v*b* — v®T1p**+ . Since v*M = v®*+1 M, the above inequality can
also be written this way:

v My 4 prn > v 4 p(a + 1), (6.19)

We will use both versions of the inequality.

Let D be the directed cycle in ‘H defined by ray (vo‘,vo‘“). If D consists of a pair of
opposite arcs that correspond to the same arc of C, then v* = v, Using (EI2) and
equation v® = v®*! one immediately obtains p = a,. Then inequality (IR is equivalent to
v [M | ap)r > v + aay, i.e. v* Az > v®b. This shows that inequality (6.I8) is implied by

the original system Ax > b.

Therefore from now on we assume that D is a directed cycle in H consisting of at least
three arcs. Let C be the underlying undirected cycle in G. We denote the sequence of nodes
and arcs of C as follows: (ig, €g,i1,...,0k, €k, ig+1) Where k > 2 and ig = igy1.

The support of v® corresponds to the arcs of D for which the underlying arcs of C are

a+1

in E7(C). Symmetrically, the support of v corresponds to the arcs of D for which the

underlying arcs of C are in £~ (C). This implies
v*b=0b"7(C),  v*Tb=1b"(C). (6.20)

Note that the support of column a,, corresponds to arcs of type (b)) of G. Then the value
v¥a,, is the difference between the number of arcs of type ([0)) in E7(C) entering node 0 and

atly is the

the number of arcs of type (0 in E(C) leaving node 0. Similarly, the value v
difference between the number of arcs of type (b)) in £~ (C) entering node 0 and the number
of arcs of type (B) in £~ (C) leaving node 0. It then follows that v®a, and v®*'a, can only
take values in {0,%+1}. Furthermore, using the above interpretation one can check that the

_,Ua+1

case v%a, =1 = a, cannot hold. For convenience of notation we define § := v“a,, and

a+1

€ := v ay,.

Using ([6.12]), one finds
v*b* = v — o, VT = 0 — g(a + 1), (6.21)

vYA = (v*M,d) and v¥T1A = (v¥"1 M, ). This implies that inequalities v*Ax > v®b and
vt Ax > vt are equivalent respectively to

VM + 0z, > v + S, 0T Mgy + exn > 0T 4 ela+1), (6.22)

thus the above two inequalities are implied by the original system Ax > b.

We now distinguish three cases.

1. Assume p > 4. If z, > a holds, summing the first inequality in ([6.22) and (p — )z, >
(p—9d)a gives inequality (G.I8]). This means that such an inequality is valid for all points
in {z: Az > b, x, > a} and by Remark [6.8 we can ignore this case.
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2. Now assume p < e. If z,, < a + 1 holds, summing the second inequality in ([622) and
(p—¢e)xy, > (p—e)(a+ 1) gives inequality ([GI9). This means that such an inequality
is valid for all points in {z : Az > b, x,, < a+ 1} and this case can also be ignored.

3. Finally assume ¢ < p < §. This case is possible only if § > ¢ + 1. Since, as observed
above, the case 6 = 1,& = —1 cannot hold, we necessarily have § = ¢ + 1. Then, also

using ([6.21I)) and ([620), we have
p = v — o Tpt = 4% — 2T — a4+ e=bT(C) — b (C) —a+e=d(C) —a+te,

which implies p = f(d(C)) + € and o = |[d(C)|. We now show that C satisfies the
conditions of Theorem and inequality (6.I8]) is precisely inequality (G.5]).

Since d,¢ € {0,£1} and § = e+ 1, we have either § =1 and e =0, or § =0 and ¢ = —1.
Recalling the definition of § and ¢, one can verify that in both cases arc eq is of type ()
while e, is not of type (bl). Furthermore if § = 1 and & = 0 then eg € E*(C), while if
d =0and e = —1 then eg € E~(C). Thus C satisfies the conditions of Theorem [6.2] and
e =¢(C).

Since v*b* = v — (e + 1)a = b (C) — (¢ + 1) [d(C)] = b~ (C) +d(C) — (¢ + 1) [d(C)],
one can check that the right-hand side of inequality (G.I8) is

VB 4 pa= b7 (C) +d(C) — (e + 1) [d(C)] + (F(d(C)) + ) |d(C)]
— b7(C) + F(d(0)) |d(©) + 1],

which is exactly the right-hand side of inequality (6.3]).

One can also verify that v*Maar = 3 yepr o) (@i, — @iy, ), With the convention that o =
0. Finally the coefficient of z,, in inequality ([GI8]) is p = ¢+ f(d(C)) = (C) + f(d(C)).
Thus inequalities (6.I8]) and (6.3 coincide.

This concludes the proof of Theorem

6.4 Chvatal rank

We proved in Section that all inequalities ([6.5]) are simple MIR-inequalities (thus the split
rank of the system (G.I)-(G.3) is one). We investigate here whether inequalities (G.3) can
be obtained through Chvatal-Gomory rounding, when considering an equivalent pure integer
formulation of P. That is, we discuss the Chvatal rank of such a formulation (see Section [[3.T]).

From now on we assume that all right-hand sides of the inequalities of the system Ax > b
(i.e. inequalities (GI)—([6.3])) are rational number. Let K be the smallest positive integer such
that Kb;; € Z for all ij € E. Since the constraint matrix A of the system (EI)-(63) is totally
unimodular, Lemma 2.TT] shows that for every vertex z of P, KZ is an integral vector. This
proves that the change of variables

yi = Ka; for i #n, yp =z, (6.23)
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maps P into ), where () is the convex hull of the following pure integer set:

yi —y; > Klij,  (i,§) € N i,j #n, (6.24)
yi — Ky, > Klp,, (i,n) € N¢, ( )
Kyn, —yi > Klpj, (n,j) € N°¢, ( )

yi > Kl;, i€ N\ {n}, (6.27)

i < Ku;, i€ N"\ {n}, ( )

ln < Yn < Un, (6.29)
y; integer, i€ N, (6.30)

where the lower (resp. upper) bound in ([B:29) appears if and only if n € N! (resp. n € N%).
We prove here that if K < 3 then the Chvatal rank of the polyhedron (E24)—-(629)) is
one, while for every K > 4 it is possible to construct very simple instances with Chvatal rank
greater than one.
For the case K = 2, a similar result was proven by Conforti, Gerards and Zambelli [15]
for the set considered in Section (with an arbitrary number of integer variables).

Lemma 6.9 If K € {2,3}, the polyhedron defined by ([6.24)-([©29]) has Chuvdtal rank one.

Proof. We prove that every inequality of the type (G.3) can be obtained by applying the
Chvatal-Gomory procedure (Theorem [[LI0]) to the inequalities (6.24)—([6.29]).

Let C be as in Theorem 6.2l We only consider the case £(C) = 0, the other case being
analogous.

Recall from Section that inequality (6.7) is valid for the original system Az > b
whenever ¢(C) = 0. In the y-variables, this inequality reads

> Wi — Yirn) + Kyn > KbT(C). (6.31)
teT+(C)

Also recall that inequality (69) is valid for the original system whenever ¢(C) = 0. Using
relation (6.6]), this inequality in the y-variables reads

Z (yit - yit+1) > Kb_(C) (632)
teT+(C)

We now combine inequalities (631)) and ([6.32]) with coefficients f(d(C)) and 1 — f(d(C))
respectively. The resulting inequality is

D Wi = Yir) + EF(AC)yn > K f(AC)HT(C) + K (1= f(d(C)))b™(C).

teT+(C)

Using d(C) = b*(C) — b~ (C), we can rewrite the above inequality as follows:

Y Wie = Yiy) + K F(AC)yn = Kb (C) + K f(d(C))d(C). (6.33)
teT+(C)
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Clearly K f(d(C)) € {0,...,K — 1}. If Kf(d(C)) = 0, the right-hand side of inequal-
ity ([633]) is Kb~ (C). Then in this case inequality ([6.33]) coincides with (G.35]) under the change

of variables (G.23)).

If Kf(d(C)) =1, the right-hand side of inequality (6.33)) is Kb~ (C) + d(C). Since the left-
hand side of the inequality is an integer while d(C) is fractional, we can round the right-hand
side to Kb~ (C) + |d(C) 4+ 1|. The resulting inequality coincides with (6.3]) under the change

of variables ([G.23)).

If Kf(d(C)) =2 (and K = 3), the right-hand side of inequality (6.33)) is 30~ (C) + 2d(C).
Note that the fractional part of this number is 1/3. Since the left-hand side of the inequality
is an integer, we can round the right-hand side to

3b7(C)+2d(C) +2/3=3b"(C)+2(d(C) +1/3) =3b"(C) + 2 [d(C) +1].
The resulting inequality coincides with (€3] under the change of variables (G.23)). O

We remark that if K = 4, case K f(d(C)) = 2 of the above proof fails, as in this case the
right-hand side of inequality ([@.33]) is 46~ (C) + 2d(C). Since this number is now an integer,
the rounding is not possible and we obtain an inequality which is weaker than (6.5]).

In fact the result of the above lemma is best possible, as shown below.

Lemma 6.10 For any K > 4 there exists a polyhedron of the type ([6.24)—([629) with n = 3
having Chuvdtal rank greater than one.

Proof. Consider the following dual network set:

—x1+ 22 > 1/K, (6.34)
—z1 + a3 > 3/K, (6.35)
29 >0, (6.36)

x3 integer. (6.37)

Applying the change of variables ([6.23]), the pure integer reformulation of the type (6.24)—(€.30)
is the following:

1 t+y2 21, (6.38)
—y1 + Kyz > 3, (6.39)
Y2 > 0, (6.40)

Y1, Yo integer. (6.41)

Define the graph G as explained in Section and let C be the undirected cycle in G
formed by the sequence of arcs (0,1),(2,1),(2,0). The corresponding valid inequality (€.3]) for
©32)-[637) is —z1 + 2 + 23 > -, which in the y variables reads

— Y1 +y2 +2y3 2 3. (6.42)

We prove that this inequality is not a Chvatal-Gomory cutting plane for the polyhedron

6.33) - @.40).
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Any Chvatal-Gomory inequality for (6.38])-(6.40) is obtained by combining (6.38])—(6.40)
with nonnegative coefficients and then rounding up the right hand side:

u(=y1 + y2) + v(—y1 + Kys) + wyz > [u+ 3v],

where u,v,w > 0. Then ([6.42]) is a Chvatal-Gomory inequality if and only if the optimum
value of the following linear program is greater than 2:

max u+ 3v (6.43)
subject to —u—v=—1, (6.44)
u+w =1, (6.45)

Kv=2, (6.46)

u,v,w > 0. (6.47)

However conditions (6.46) and K > 4 imply v < 1/2. By (644]) the objective function is
then u + 3v = 2v + 1 < 2 and thus inequality (6.42]) cannot be obtained via Chvatal-Gomory
rounding. O

We can summarize the results of this section as follows:

Theorem 6.11 The Chudtal rank of the polyhedron ([6.24)-([G.30) is one if K € {2,3}, while
it is (in general) greater than one for K > 4.

If K =1, the Chvatal rank of ([©.24)-(6.30) is clearly equal to zero (i.e. the polyhedron is
integral), as the constraint matrix is totally unimodular and the right-hand side is an integral

vector.



118 CHAPTER 6. DUAL NETWORK SETS WITH A SINGLE INTEGER VARIABLE



Chapter 7

Extension to simple non dual network
sets

In Chapters BHol we presented, discussed and demonstrated a technique to construct extended
formulations for mixed-integer sets with dual network constraint matrix. Such a technique is
based on the explicit enumeration of all the fractional parts taken by the continuous variables
in the vertices of the convex hull of the set. It is natural to wonder whether this approach can
be extended to other kinds of mixed-integer sets.

In this chapter we consider two examples of a mixed-integer set whose constraint matrix
has a simple structure but is not totally unimodular (in fact, it is not even a 0, +1-matrix).
Both sets are special cases of the following quite natural generalization of the mixing set (see

Section E.2]):

s+Cizi > b;, 1<i<n, (71)
s >0, (7.2)
z; integer, 1 <1i<mn, (7.3)

where b;,C; € R for 1 < i < n. Clearly the mixing set is the above set with C; = 1 for all
indices 1 <7 < n.

The motivation for the study of the above set is the same as that described for the mixing
set in Section In particular, the presence of more general coefficients C; allows one
to model lot-sizing problems with non-constant capacities (for this reason these coefficients
are also called capacities). However, the above set is also interesting in its own right, as
constraints (ZJ)) have a very simple form and thus a deep understanding of such a set would
probably be useful to tackle more complicated mixed-integer sets. Unfortunately, it is still
unknown whether linear optimization over a general set of the type (ZI)-(Z3]) can be carried
out in polynomial time.

In the next sections we show how the approach described in the previous chapters can be
extended and how this yields extended formulations for the two sets that are analyzed here.
However, we will point out that the success in finding such formulations relies upon the fact
that each integer variable z; appear in a single constraint (Z.1]).

119
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In Section [Tl we consider the set (TI)-([73)) where the capacities C; satisfy a divisibil-
ity assumption, while in Section we study the case of only two distinct capacities. For
the former set the size of the extended formulation is polynomial in the size of the original
description of the set, while for the latter we can only obtain a pseudo-polynomial description.

The results of Section [l are joint work with Michele Conforti and Laurence A. Wolsey
and are also summarized in [I4].

7.1 The mixing set with divisible capacities

The mizing set with divisible capacities is a set of the type (LI)—(Z3)) where the coefficients
(capacities) C; for 1 < i < n can be ordered in such a way that they form a sequence of
divisible numbers. Here we also allow arbitrary lower and upper bounds on the continuous
variable. If we group together constraints of type (Z.I)) associated with the same value of Cj,
the mixing set with divisible capacities can be described as follows:

s+Crz; >b;, 1€,0<k<m, (7.4)
blSSSbu,

z; integer, 1€ IpU--- Uy,

where C},/Cj_1 is an integer greater than one for 1 <i < m and I; NI, = @ for j # k. We
assume that [,u ¢ Iy U--- U I, and all numbers C}, b; are rational. We denote by DIV the
above mixed-integer set.

The assumption of divisibility of the coefficients was exploited by several authors to tackle
integer sets that are otherwise untractable, such as integer knapsack problems. Under the
divisibility assumption, Marcotte [42] gave a simple formulation of the integer knapsack set
without upper bounds on the variables. Pochet and Wolsey [54] studied the same set where
the knapsack inequality is of the “>” type. They gave both a formulation of the set in its
original space (consisting of an exponential number of inequalities) and a compact formulation
in an extended space. Pochet and Weismantel [51] provided a linear inequality description
of the knapsack set where all variables are bounded. Other hard problems studied under
the assumption of divisibility of the coefficients include network design [52] and lot-sizing
problems [16].

The set ([L4)—(T8) with just two distinct capacities (i.e. m = 2) and without upper bound
on s was studied by Van Vyve in [63], where both a compact extended formulation and a
linear inequality description of the set in its original space were given. The set DIV with
general m and without upper bound on s was treated recently by Zhao and de Farias [72],
who characterized the extreme points and extreme rays of the set and provided an (’)(n4)
algorithm for optimizing a rational linear function (such a running time can be improved to
(’)(n3) [20]). However, they did not give a linear inequality formulation of the set either in
the original space or in an extended space.

We give here an extended formulation of the polyhedron conv(DIV') whose size is poly-
nomial in the size of the original description (ZA4)-(Z6). In Section [LI.1] we introduce an
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expansion of a real number x:

m+1
z=ap(e) + Y a;(2)Cj1,
j=1

where 0 < oj(z) < % for 1 <j <m,and 0 < ag(x) < Cy. Furthermore «;(z) is an integer
for 1 < j <m+4 1. We show in Section that for fixed j, the number of possible values
that a;(s) can take over the set of vertices of conv(DIV') is bounded by a linear function of
the number of constraints (T4]). This property allows us to associate a binary variable with
each of these possible values. These binary variables are the important additional variables
of our compact extended formulation, which is construct in Sections In contrast
to Van Vyve’s result [63] for the case m = 2, our formulation defines an integral polyhedron
in the extended space. In Section [[I.7] we briefly discuss how to formulate the polyhedron
conv(DIV') when there are lower bounds on the integer variables. Finally, in Section [[.T.8 we
point out some unsatisfactory aspects of our result.

7.1.1 Expansion of a number

The technique that we use here generalizes that adopted in Chapter ] for mixed-integer sets
with dual network constraint matrix. In that chapter, the continuous variables were decom-
posed into an integer part plus a fractional part. Here the presence of several distinct coeffi-
cients in constraints (74 leads us to iterate a decomposition of that type. This requires the
introduction of some notation.
Our arguments are based on the following expansion of a real number z:
m~+1

r = ap(x) + Z a;(x)Cj-1, (7.7)
j=1

where 0 < «oj(z) < qul for 1 <j <m,and 0 < ag(x) < Cy. Furthermore «;(z) is an integer
.

for 1 < j < m+ 1 (this is not required for ap(z)). Note that the above expansion is unique.
If we define

k
folz) = ao(x), fu(z) = folx) + > a;(z)Cjq for 1 <k <m, (7.8)
j=1
we have that
m—+1
r = fr(x)+ Z aj(z)Cj—q for 0 <k <m. (7.9)
j=k+1

Therefore fi(z) is the remainder of the division of x by Cj and it can be checked that

fe@) | _ fe(@) — fra(2) x T — fm(z)
= = for1<k< == =——.
ag(x) \\Ckl o or 1 <k<m, anpii(x) c .
We also define Ag(z) as the quotient of the division of x by Cj. That is,
m+1
£ z — fi(z) Cj—
Ag(z) = \‘C_kJ == = Z ]k aj(z) for 0 <k <m. (7.10)

j=k+1
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We remark that the above expression yields the following expansion of x:
r = CrAk + fr(x) for 0 <k <m. (7.11)

Note that if C} = 1 then ([LTT) is precisely the decomposition of a real number into an integer
part plus a fractional part.

It is also useful to introduce the following notation: for 0 < k < m, we define Ji :=
IkUIk+1U---UImU{l,u}.
7.1.2 Assumptions on the upper bound

In this section we make some convenient assumptions on the value of b,. As we now explain,
this can be done without loss of generality.
If for any v € R we apply the mixed-integer linear mapping (see Section [£.))

s'::s—i—’y, zé =z fori e IpU---U I,

the mixed-integer set (T.4)-(T.6) becomes

s+ Crzi >V, i€y, 0<k<m, (7.12)
b < s <, (7.13)
z; integer, i€ IopU---U I, (7.14)

where b} := b;+~ for all i € Jy. Since the above set is of the same type as (Z4)-(Z8]), without
loss of generality we can study the set (12)-(ZI4) for a specific value of v. We now choose a
value of v which will allow us to construct an extended formulation of the convex hull of the
above set.

Lemma 7.1 Define the set of indices T := {i € Jy \ {u} : ag(b;) > ap(by)} and the value

N min;er ao(bi) if T #+ @,
o =
Co if T = 9.

If one sets v* := Cy — o, then ag(b, +7*) = max;e s, ao(b; + 7).

Proof. First of all note that since a® > ag(by,), then ag(b,) +v* < Cy. Thus ag(by, +7*) =
ap(by) +7*. Let i be any index in Jy. If ag(b;) +v* > Cp then

ag(b; +77) = ag(b;) + 7" — Co < v* < ap(by) +7" = ag(bu +77).

We then assume ag(b;) +v* < Cp, which is equivalent to ag(b;) < a*. Then by definition of
o* we have ag(b;) < ap(by), thus

ag(b; +77) = ap(by) + 7" < ap(bu) + 7" = ao(by +77).

This concludes the proof of the lemma. ]
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We choose 7 to be any number such that ag(b, +v) = 7" and ag(b, + ) = C(;il -1
for 1 < k < m — 1. Note that condition ag(b, + v) = 7* and Lemma [Z1] together imply
Oé()(b;) = maX;e Jj, Oé()(b;).

Without loss of generality, we assume directly that the above properties hold for our

original set ([C4)—-(Z4):

C
ao(bu) = maxao(bi), an(ba) = -

—1lfor1<k<m-1 (7.15)

The above assumption, which will be useful in modeling the upper bound s < b, will be
discussed in Section [LT.8l

7.1.3 Properties of the vertices

The technique described in Chapter [2]is based on the explicit enumeration of all the possible
fractional parts taken by the continuous variables at a vertex of the convex hull of the set
under consideration. More information is now needed to find an extended formulation of
conv(DIV): in particular, for all 0 < k£ < m we need to list all the possible values ay(s) for
the vertices (s, z) of conv(DIV).

This section described properties of the vertices of conv(DIV') that will be used to con-
struct the extended formulation. The assumption described in Section is not needed
here.

Given a real number s and an index 0 < k < m, for i € J,,, \ {u} we define

bi+ Cx if fr(bi) > fi(s),
bi’k(S) = .
bi if fir(b:) < fr(s),
while we set
bu if fi(bu) = fi(s),
bwk(s) = .
by — Cy if fr(by) < fr(s).
We will see that the discrepancy in the above definitions reflects the fact that all constraints
([C4)-([73]) are of the type “>”, except s < by,.
Lemma 7.2 Consider two indices 0 < k < £. Then for i € I, the inequality
C
Ar(s) + C—éz > Ap(bir(s)) (7.16)
k
is valid for ([TA)-([T6) and implies inequality s + Cpz; > b;.

Proof. Expanding s and b; as in (ZI1), inequality s + Cyz; > b; can be rewritten as
C bi) — fr(s
Ao + Ly > Ay(ty) + OIS,
Ck Ck
Since ¢ > k, the left-hand side of the above inequality is an integer. Therefore the following
inequality is valid for (Z4)—(Z6):

Cy

Do)+ bz > Al + [%‘kﬂ“] = Au(bi(s)).

This also shows that inequality ((Z.I6) implies the original inequality s + Cyz; > b;. O
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A similar argument can be used to prove the following lemma:
Lemma 7.3 Consider an index k > 0. Then the inequalities
Ag(bik(s)) < Ag(s) < Ap(bui(s)) (7.17)
are valid for (CA)-(CQ) and imply inequalities by < s < by,.

Proof. For the lower bound, the proof is essentially identical to that of Lemma As to the
upper bound, it is sufficient to make obvious changes to the above proof. O

Note that inequalities (LI6) and (ZI7) involve the term b;(s) and thus are not linear
inequalities. We will show in Section [[L.T.4] how to linearize these constraints, using the fact
that for fixed k, there are only two possible values for b; x(s).

Lemma 7.4 Let (5,z) be a point in conv(DIV').
(i) Given indices 1 <k <l and i € Iy, if ox(5) # ag(bir—1(5)) then 5+ Cpz; > b + Cp_;.

(ii) Given an index k > 1, if ap(5) # ox(byx—1(5)) then § > by + Cr—1, and if ap(s) #
Oék(bukal(g)) then 5 <b, — Cj_1.

Proof. We prove (i). By Lemma [[2] (8, z) satisfies inequality (ZI0) for the pair of indices
k— 1,4, that is,

C
Ap_1(s) + c L o> Ap_1(big—1(9))-
1

By (ZI0) the above inequality can be rewritten as

m+1

ch1 ik

bik-1(5));

or equivalently as

m—+1 C Cg m+1 C
i1 i—1
E J aj(s) + =—=z — E J a;j(bik—1(s)) > ar(b;r—1(s)) — ax(s). (7.18)
 Ce Cr—1 A~ O
j=k+1 j=k+1

Since {% k+1<j5<m+ 1} is a sequence of divisible integers and since ¢ > k, the left-
hand side of the above inequality is an integer multiple of C}/Cj_1. Since the right-hand
side is an integer satisfying Cj/Cr—1 < ap(bir—1(s)) — ar(s) < Cy/Ck—_1, this shows that if
a(5) # ag(bik—1(5)), then inequality ([ZI8) cannot be tight for (5, 2), thus

C
Ap-1(5) + & Lz > Apoi(big-1(3)) + 1.

k—1
Since bi,k—l( 3) =b; + Cr—1 if fr_1(b;) > fr—1(5) and bi,k—l( 5) =b; if fr_1(b;) < fr_1(5), this

shows that in both cases

Jr-1(5) _ Cy Sr—1(bi)
P A 1(3) + zZ > A +1.
Cr—1 k-1(5) Cr—1 k-1 (bi) + Cr—1

Multiplying the above inequality by Ci_1 gives s+ CyZ; > b; + Cr_1.

The proof of (ii) is similar. O
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The following result gives us the list of all possible values ay(s) taken at the vertices of
conv(DIV).

Lemma 7.5 If (5,2) is a vertex of conv(DIV), then the following properties hold:
(1) aop(5) = ap(b;) for some i € Jy.
(ii) For 1 <k <m, ax(5) = ag(bjr—1(5)) for some i € Jj.

Proof. Let (5, Z) be a vertex of conv(DIV'). Since Z is an integral vector, if (i) is violated then
there exists a number ¢ # 0 such that (s +¢,z) € DIV, a contradiction.

Assume that (ii) is violated, that is, there exists an index 1 < k < m such that ay(s) #
ag(bix—1(5)) for all i € J,. By Lemma [[4] we have that b, + C4,—1 < 5§ < b, — Cj_; and
5+ Cyz; > b + Cy_q for all ¢ € I, with £ > k. Consider the vector v whose components are
defined as follows:

Cr—
s=—Ci_1; z = gl forie Iy with ¢ <k—1; 2z, =0 for i € I, with £ > k.
l
Since both points (5, Z) & v belong to DIV, (s, Z) is not a vertex of conv(DIV). O

We now introduce extra variables to model the possible values taken by s at a vertex of
conv(DIV). The new variables are the following:

e Ay, wo,; for i € Jy;
o Ay, w,ﬁi,wllifor 1<k<mandie Jg.
The role of the above variables is as follows:

e Variables Ag for 1 < k < m represent the quotients of the division of s by C%. That is,
Ay = Ag(s) as defined in (ZI0]).

e Variables wq ; for i € Jy are binary variables. Exactly one of them is equal to 1: condition
wp; = 1 indicates that ag(s) = ao(b;).

e For fixed 1 < k < m, variables w}c 0 wl ; for i € Ji are binary variables. Exactly one of
them is equal to one:

(a) for i € Jy \ {u}, condition wlﬁi = 1 indicates that ay(s) = ay(b;), while condition
w;i = 1 indicates that ag(s) = ag(b; + Cr-1);
b) for i = u, condition w! =1 indicates that ak(s) = ag(b, — Cr_1), while condition
k,u

w,ﬁ , = 1 indicates that oy (s) = ag(by)

In order to write the upcoming constraints in a compact form, we introduce the following
simple notation: for 1 < k < m and i € Ji, we define

bi if 4 7& u,
bik =
b, —Cy, ifi=u.

This definition allows us to unify (a) and (b) (see above) into the following:
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(a)-(b) for all ¢ € Ji, condition wlﬁi = 1 indicates that ay(s) = ag(b; x—1), while condition
w,ﬁi = 1 indicates that ay(s) = o (b; -1 + Cr—1).

Now consider the following conditions:

s = CoAg + Z o (b )wo,t, (7.19)
teJo
Ck
Apor = 5=+ > (onbi—1)wi, + on(bup—r + Crr)wy,), 1<k <m, (7.20)
k=1 teJy
wo ¢ >0,te Jy; Z wo,t = 1, (7.21)
teJo
wit,wltzo,tEJk; Z(wlﬁt—kw;t):l, 1<k<m, (7.22)
teJy
S wor > wiy, i€ Ji, (7.23)
teJo:
ao(be)>ao(b;)
Z w,ﬁi =+ Z w;t > w,ﬁﬂﬂ., 1€ Jgp1, 1 <k <m,
teJy: teJg:
Fre (0, k—1)>fre (b k) ag(by p—1+Cr_1)>p (b x)+1
(7.24)
Ak,wo,t,wit,wlz_t integer, teJg, 0<k<m.
(7.25)
Lemma 7.6 Every vertez (5,z) of conv(DIV') can be completed to a vector (§, zZ, A\, w, w, U_JT)

satisfying conditions (19])-(T.23).

Proof. Given a vertex (8, z) of conv(DIV), let ¢y be any index in Jy such that ag(by,) = ap(S)
(to exists by Lemma (i)). Take wq 4, := 1 and w4 := 0 for t # to.
Now fix k& > 1 and define

T3:(8) = {t € Jp : o (5) = an(bep—1), fr—1(5) = fre—1(be—1)}-
If T},(5) # @ then define ¢, as any element in T}(5) such that fi_q(bs k—1) is maximum and
take u’),ﬁ’tk := 1. Otherwise (7;(5) = o) define ¢}, as any index in Jj such that ax(s) =
ag (b, k-1 + Cr—1) (ty exists by Lemma [[3] (ii)) and take u_);tk = 1.
Finally take Ay := Ag(S) for 0 < k < m.
We prove that the point thus constructed satisfies conditions (ZI9)—([T25). To see that
(CI9) is satisfied, note that

Colo+ > an(br)os = CoAo(5) + ag(by) = Coo(5) + folbs,) = 5.
teJo
To prove the validity of (Z20]), note that the following chain of equations holds:

O
Ckkl A+ Z (Oék(btkal)w,t’t + ak(bm,l + Ckfl)U_J,Tm)

teJy,

C )
== P A(3) + ak(3) = Ap_1(5) = Aj_1.
k—1
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To see that ([7.23)) is verified, suppose that w1 i = 1 for the index ¢ € Ji. Then necessarily
i = t1 € T1(5) and thus fo(s) > fo(bio) = fo(bi), that is, ap(s) > ag(b;). Then ap(by,) =

ap(5) > ap(b;) and ([C23)) is satisfied.

We now consider (Z.24)) for k¥ > 1. Suppose that wltﬂﬂ. =1 for the index i € Jgy1. Then
necessarily i = tg11 € Ty41(5). Therefore oyy1(5) = ogy1(big) and fr(5) > fu(big). This
implies o (5) > ag(b; ). We distinguish two cases.

1. Assume oy(5) > ag(bix) + 1. If Ty(5) # @ then u_)ltt = 1 for an index ¢t € Jj such
that o (b r—1) = a(5) > ag(br) + 1 and thus fr(bex—1) > fr(big). If T}(5) = & then
u_);t = 1 for an index ¢ € Jj, such that ag (b r—1 + Cr—1) = ax(5) > ag (i) + 1. In both

cases ((C24)) is satisfied.

2. Now assume a(5) = ag(bix). Then inequality f(5) > fi(bix) implies fr_1(5) >
fr—1(bi k), thus ¢ € T(5) # @. Then the choice of ¢, shows that ay(bs, r—1) = ax(5) =
ak(bi,k) and fr_1(by, k—1) > fr—1(bik), thus fr(by, x—1) > fr(bi) and ([L24) is satisfied.

Constraints (Z21I)-(C22) and (L25]) are clearly satisfied. O

We say that (§, zZ, A\, w, 0, wT) is a standard completion of the vertex (s, z) of conv(DIV)
if A, w,w!, w! are chosen as in the above proof. Then the above proof shows that every vertex
of conv(DIV') has a standard completion satisfying (Z19)-(Z25]).

Note that the final part of the proof of Lemma also shows the following:

Lemma 7.7 Fiz 0 < k <m andi € Ij,. If (5 z, A,w,wi,wT) 18 a standard completion of the
vertez (5, Z2) of conv(DIV'), where fi.(5) > fr(bi), then

> wy=1 ifk=0, (7.26)
tedo:
ap(bt)>ao (bi)
> Wy, + > @, =1 ifk>1 (7.27)
teJg: teJg:
Tt k—1)>Fr(bi k) ag(by p—1+Cr_1)>0p (i r)+1

7.1.4 Linearizing the constraints

As already observed, constraints ([.I6) and (ZI7) are not linear inequalities. We show here
how they can be linearized. For this purpose we need to prove a result which is stronger than
the inverse of Lemma [[7], as it holds not only for standard completions, but for all other
vectors too.

Lemma 7.8 Fiz 0 < k < m and i € I. If a point (5, z, A\,

w
(CI9)-([T25) along with equation (T26) if k =0 or (T21) if k >

LW, U_JT) satisfies conditions
1,

then fi(5) > fi(bi).

Proof. Assume that k = 0 and equation (7.26)) is satisfied. If ¢ € Jy is the index such that
wo =1 then, by (ZI9) and [L.26), fo(5) = ao(be) = ao(bi) = fo(bi).
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By induction, we now assume that the result holds for an index 0 < k < m. We have to
prove that if

—l —1 _
Z Wy T Z Wpy1e =1, (7.28)
t€Jk41: teJpq1:
Frg1(be,1)> froq1(bit1) apy1 (b, +Ck) > 1(bs ky1)+1

then fi41(5) 2 fit1(bs).-
If u’),EHt = 1 for some t € Jii1, then (L20) and the above equation give ay11(5) =

apy1(beg + Cr) = apy1(bipr1) + 1, thus fry1(5) > frr1(bigr1) = ferr(bi).
If u’)ltﬂt = 1 for some ¢t € Jyy1, equation (L28) implies that fr1(ber) > frr1(big+1),
thus a1 (be k) > g1 (big+1). Assume first g1 (beg) > pr1(bigr1) +1. Then agyy(5) =

k1(be k) > ap1(bigt1) + 1, thus fry1(8) > frr1(bigs1) = frer1(bi)-
Finally assume that ) = 1 for some t € Jiy1 such that apy1(ber) = apr1(bigr1)-
k+1,t + + ) )

Since (Z28) implies fr41(be k) > fe+1(biks1), we then have fr(br) > fr(bik+1). Inequal-
ity (CZ4) for the index ¢ implies that

—l o —
> Wy ; + > W5 = 1.
j€Jk: JE€J:
Tre(®jk—1)>fr(be k) ag(bjr—1+Cr_1)>ar(bsk)+1

Then, by induction, fx(5) > fi(bt), which can also be written as fi(5) > fi(bex). This, to-
gether with inequality fi(bsr) > fi(bi x41) proven above, shows that fi(5) > fi(b; x41). Using
ap4+1(5) = apr1(be k) = agy1(big+1), we conclude that fri1(5) > frr1(bi k1) = fogp1(bs). O

The following result gives a linear version of inequality ([Z.10]).

Lemma 7.9 For 0 <k <m and i € I, the following properties hold:

(i) Ewvery verter (s,2z) of conv(DIV') can be completed to a point (5, Z,A,w,wl,u_ﬂ) that
satisfies conditions ([[LI19)-(C25)) along with the linear inequality

b; .
Ap + Z wor + 2; > \‘FoJ +1 ifk=0, (7.29)
tedo:
ao(bt)>ao(bs)
b
1 i .
A+ Z wt7t+ Z wm—i—ziz {@J +1 fk>1.
teJy: teJg:
Tt k—1)>Fr(bi k) ag(by p—1+Cr_1)>p (b x)+1

(7.30)

(ii) If a point (5,2, A, w,wt, w") satisfies conditions ([TI9)(C25) and inequality [T29) if
k=0 or (T30) if k > 1, then §+ Crz; > b;.

Proof. (i) Let (5, zZ, A, w,wt, u_)T) be a standard completion of the vertex (s, z) of conv(DIV).
By Lemma [[2] (with ¢ = k), (8, z) satisfies inequality

Ak(bl) +1 if fk(g) < fk(bl),

(7.31)
Ay (b;) if frx(5) > fr(bi).

Ap(s)+ 2z > {
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After recalling that Ay = Ag(5) and Ag(b;) = [b;/Cy ], the result follows form Lemma [7.7]
(ii) Note that for every point (8,2, A, w, w!, w!) satisfying (TI9)-(Z2H), equation A =

A(S) holds. Then, by Lemma (with £ = k), it is sufficient to prove that (3])) is satisfied.

This follows from Lemma O

In the above proof we used Lemma [[.2] with ¢ = k. In fact, the same lemma could be used
to find different (but similar) linear versions of inequality (Z.I6]). However, the choice £ = k is
preferable as it leads to inequalities (T.29)-(7.30), which have a coefficient of 1 in variable z;.
This property will be crucial in the proof of Theorem —the main result of this section.

We now show how to model the lower bound on s. As before, we present a linear inequality
whose form will allow us to prove the main result of the section. Such a linear inequality

1

involves variables A,,,w; m,wg m for i € Jp,. However, for each k£ the same technique allows

one to write a similar inequality that uses variables Ay, wil o wiT i fori € Jg.

Lemma 7.10 The following properties hold:

(i) Every wvertex (8,z) of conv(DIV') can be completed to a point (5, Z,A,w,wl,uﬁ) that
satisfies conditions ([[I9)—(C20) along with the linear inequality

Z Z by
te€Jm: teJm:
fm(bt,m—l)zfm(bi,m) am(bt,m—1+cm—1)zam(bi,m)‘f’l

(ii) If a point (5,2, A, w,w', w") satisfies conditions (TI9)-([T25) and inequality (L32), then
s>

Proof. The proof is similar to that of Lemma (Lemma [[3] with k& = m is needed). O

We now turn to the upper bound constraint s < b,,. We would like to model this inequality
in a way that is similar to what we did above. Without any specific assumptions on the value
of by, the only simple way to do this seems to be the following (the proof is similar to that of
the above lemma):

by
i€Jo:
o (bi)>a0(bu)

However, such an inequality would not allow us to prove the main result of the section. We
will reconsider this aspect in Section [[LT.8]

The non-restrictive assumption on the upper bound b, made in Section allows us to
model the upper bound on s in a more convenient way.

Lemma 7.11 The following properties hold:

(i) Ewvery wvertex (8,z) of conv(DIV') can be completed to a point (5, Z,A,w,wl,ﬂ)T) that
satisfies conditions ([[I9)—(C20) along with the linear inequality
bu

| 2] -
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(ii) If a point (5,2, A, w,w', w'") satisfies conditions (TI9)-([T25) and inequality (L34), then

5 < by,.

Proof. (i) Consider any completion (_ z, A, w,w!,w) of (5,%) satisfying conditions (ZI9)-
[CZ5). Inequality s < b, implies A, = A (3) < Apu(by) = [by/Cin .

(ii) Assume that (5,2, A, w,w!, w") satisfies conditions (ZI9)-(ZZ5) along with inequal-
ity (Z34)). By Lemma [[3] it is sufficient to show that

&

A (bu) if fim(3) < fin(bu),

An(5) < {
Am(bu) -1 if fm(g) > fm(bu)

By assumption (TI5H), ar(5) < ag(by,) for all 0 < k < m — 1, thus f,(5) < fi(by) by
equation (.8) (with & = m). The result now follows by (7.34)). O

The same result holds if inequality (Z34) is replaced by Ay < |bg/Cy | for any k, but the
above is the most convenient form.

Let X be the mixed-integer set in the space of the variables (s, z, A, w, wl,wT) defined by
the following conditions:

o [LID-([C23),
e ((C29) for i € Jy,

e ([L30) for i € Jy with k > 1,
e (L32) and (T34).

Proposition 7.12 The polyhedron conv(DIV') is the projection of the polyhedron conv(X)
onto the space of the variables (s, z).

Proof. Parts (i) of Lemmas [[LIHZ.TTshow that proj(, .)(X) € DIV, thus proj, .)(conv(X)) C
conv(DIV). Furthermore, parts (i) of the same lemmas show that every vertex of conv(DIV)
belongs to proj, . (X). To conclude, we only need to prove that every extreme ray of
conv(DIV) is a ray of conv(X).

Recall that since the values Cj and b; are all rational numbers, by Theorem [L.8 the rays of
conv(X) are precisely the rays of the linear relaxation of X (that is, the polyhedron defined
by inequalities (ZI9)-(T24), (C29)—-(C30), (Z32) and ([T34])). It is easily checked that the
extreme rays of conv(DIV') are the vectors defined by setting z; := 1 for some i € Jy \ {l,u}
and all other variables to zero. Each of these vectors can be completed to a feasible ray of
conv(X) by setting all other variables to zero. O

By the above proposition, in order to give an extended formulation of conv(DIV') we have
to find a linear inequality description of conv(X).
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7.1.5 Strengthening the constraints

Lemma 7.13 The following inequalities are valid for X and dominate (T23))-(T.24):

Yo woe= > wiy i€ gy, (7.35)

teJp: tedy:
ap(br)>ao (bi) fo(be)>fo(bs)
Z w,ﬁ’t + Z w,E’t > Z wtﬂ’t, 1€ Jpr1, 1 <k <m.
teJy: teJy: teJpta:
Tr(bek—1)> fr(bi k) ap (b g—1+Cr—1) > (bix)+1 Fre (0, k—1)>Fr (b k)

(7.36)

Proof. Fix i € Jyyq for k > 1 and define L := {t € Jy1 ¢ fru(biz—1) > fu(bir)}. Inequal-
ity (C36) can be derived by applying the Chvatal-Gomory procedure (Theorem [LI0) to the
following |L| + 1 inequalities, which are all valid for X:

> wi, + 3 wh, > wh . LEL (7.37)
teJy: teJy:
T (bt k—1)>fr(be,r) ag (b, k—1+Cr—1)>ag (ber)+1
1> wi, (7.38)
leL

with multipliers 1/|L| for each of inequalities (C37) and 1 — 1/|L| for inequality (38)).
The derivation of inequalities ([.35]) is similar. O

7.1.6 The extended formulation

Let P be the polyhedron in the space of the variables (s,z,A,w,wl,wT) defined by the
following linear equations and inequalities:

e ((L29) for i € Jy,

(30) for i € Jy with k> 1,
([L.32) and (Z34),
[Z.35)—(Z.36).-

We denote by Az ~ b the linear system comprising the above equations and inequalities.

Lemma 7.14 Let M be the submatriz of A indexed by the columns corresponding to vari-

ables A, w, wt, w! and the rows corresponding to constraints (T21) (722, (T32) and ([T33) -
(T36)). The matriz M is totally unimodular.

Proof. We use the characterization of Ghouila-Houri [26] described in Section [L321 We
partition the rows of M into the submatrices My, ..., M,, defined as follows:
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e My consists of the rows corresponding to equation (Z2I]) and inequalities (7.35]) for
i€ Ji;

e for 1 < k < m — 1, My consists of the rows corresponding to equation ([.22]) and
inequalities (T30]) for i € Jiiq;

e M, consists of the rows corresponding to equation (Z22) for & = m and inequal-
ity (Z32).

For each odd k, we multiply by —1 the rows of M that belongs to M} and the columns of
M corresponding to variables w,ﬁvi, w;i for all i € J,.. Then M becomes a 0-1 matrix.

For 1 < k < m — 1, we order the rows of My as follows: first equation (Z22)), then
inequalities (Z36]) according to a non-decreasing order of the values fi(b; ). The order of the
rows of My is analogous. The two rows of M, are order as follows: first equation (.22]) and
then inequality (C32]). Note that in every matrix M}, the support of any row, say the j-th row,
contains that of the (j + 1)-th row (in other words, the rows of M}, form a laminar family).

We can now give an equitable bicoloring of the rows of M: for k even (resp. odd), we give
alternating colors to the rows of M starting with red (resp. blue). Since every submatrix
of M has the same structure as M itself, this proves that every submatrix of M admits an

equitable bicoloring of its rows and thus, by Theorem [[LT4], M is totally unimodular. O

Theorem 7.15 Ifz = (5,2, A, w,w", w") is a vertex of P, then (2, A, w,w',w") is an integral
vector.

Proof. Note that the columns of A corresponding to variables s and z; for ¢ € I, 0 < k < m,
are unit columns (as s only appears in equation (ZI9]) and each variable z; only appears in

one of (C29)—([7.30)).
Also note that in the subsystem of Az ~ b comprising inequalities (C20)-(C.22), (T32),

([C34)) and (C35)-(C30) (i.e. with (ZI9) and ([Z29)-(C30) removed) variables Ag, ..., Ap—1
appear with nonzero coefficient only in equations (Z20)). Furthermore the submatrix of A
indexed by the rows corresponding to (Z.20) and the columns corresponding to variables
Ao, ..., A1 is an upper triangular matrix with 1 on the diagonal.

Let Cx = d be a nonsingular subsystem of tight inequalities taken in Ax ~ b that defines
a vertex Z = (5,2, A, w,w',w') of P. The above observations show that (ZI9)-(Z20) and
(C29)—([730) must be present in this subsystem. Furthermore let C” be the submatrix of C
indexed by the columns corresponding to variables A,,, w,w!,w' and the rows that do not
correspond to (ZI9)-(T20) or (Z29)-(C30). Then the computation of a determinant with
Laplace expansion shows that |det(C)| = | det(C")| # 0.

Since C’ is a submatrix of the matrix M defined in Lemma [[.T4] and C’ is nonsingular,
then |det(C)| = |det(C")| = 1. Since all entries of A (except those corresponding to equa-
tion (ZI9)) are integer and the right-hand side vector b is integral, by Cramer’s rule we have
that (2, A, w,w!, w') is an integral vector. O

Note that the proof of the above theorem strongly depends on the fact that each variable
z; appears in a single inequality of the system Az ~ b. Even adding nonnegativity constraints
on the integer variables would create serious problems (see Sections [LIT.7THZ.T.8] below).
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Corollary 7.16 The linear inequalities of the system Ax ~ b defining P constitute an ex-
tended formulation of conv(DIV') with O(mn) variables and constraints, where n := |Iy| +
o Ul

Proof. Consider the set X defined in Section [[.T4] and let R(X) be its linear relaxation.
By comparing the inequalities of the system Ax ~ b (defining P) with those appearing in
the definition of X, and using Lemma [[I3] one sees that X C P C R(X). The above
theorem then implies that P = conv(X). By Proposition [[.12] a linear inequality description
of conv(X) is an extended formulation of conv(DIV'), so the result follows. O

Observation 7.17 If we drop the lower (resp. upper) bound from constraint (L4)—([T8), an
extended formulation is given by the same inequalities as above, except that constraint (T.32))

(resp. [(L34)) must be removed.

7.1.7 Lower bounds on the integer variables

We now consider the set DIV ™, the mixing set with divisible capacities and lower bounds on
the integer variables. Without loss of generality such bounds can be assumed to be all equal
to zero. The set DIV ™ is described by the following conditions:

s+ Crzi > by, 1€,0<k<m, (7.39)
bl <s< bua (740)
z; > 0 integer, i€ IpU---UlIp,. (7.41)

Di Summa [20] gave a polynomial time algorithm to optimize a linear function over
DIV*. We discuss the problem of finding a compact extended formulation of the polyhe-
dron conv(DIVT).

We do not know how to incorporate the bounds z; > 0 in a formulation of the type given
in Section [.I.6] as the standard approach requires that the system Az ~ b, purged of the
equations defining s and Ay, be defined by a totally unimodular matrix (see for instance
11l 450 B3] 63, 65], as well as Chapter 2] of this thesis). However this is not the case, as
discussed in Section [[LI.8 So we use an approach based on union of polyhedra, following an
idea appearing in [2] [16].

Let {1,..., 0y} be the set of distinct values in the set {b; : i € Jy, b < b; < b, }. Assume
/1 < -+ < By and define §y := b; and G441 := b,. For each 0 < ¢ < g, let DIV () be the
following set:

s—i—C’kzZ-Zbi, iEIk:bi>ﬂg,O§k§m, (7.42)
Be <5 < Beya, (7.43)
z; >0, 1€, :0; < B, 0<k<m, (7.44)
(7.45)

z; integer, 1€ lgU---UlIp,,. 7.45

Lemma 7.18 conv(DIV*) = conv(UJi_, DIV (0)).
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Proof. Fix 0 < ¢ < g and assume that (5, 2) is a feasible point in DIV (¢). If i € I} is such
that b; < [y, then s+ Cxz; > [y > b;. Thus (8, 2) satisfies all inequalities ([Z39). If ¢ € I} is
such that b; > fy (thus b; > (y4+1), then Crz; > b; — 5 > [y — 5 > 0. Thus (8, 2) satisfies
all nonnegativity bounds on z. This shows that conv(|J{_, DIV (¢)) C conv(DIV™). The
reverse inclusion is obvious. O

Proposition 7.19 The set conv(DIV™) admits an extended formulation with (’)(m2n) vari-
ables and constraints, where n = |Io| +--- + |Ip|.

Proof. Fix an index 1 < ¢ < q. Note that the variables z; appearing in inequalities ([Z.44]) are
not used by any other inequality of the system. This means that the above set is the cartesian
product X; x X5 of the following two sets: X7, which is defined by the conditions

s+ Crzi > by, 1€l :b;, >0, 0< k<m,

6@ <s< /BZJrla
z; integer, 1 €10 > B, 0 <k <m,

and X, which is described by the conditions
z; > 0integer, 1€ I :b; < 0, 0 <k <m. (7.46)

Relation DIV (¢) = X1 x X3 easily implies conv(DIV (¢)) = conv(X;) x conv(Xs). The set
X1 is a mixing set with divisible capacities (without lower bounds on the integer variables),
thus it admits an extended formulation with O(mn) variables and constraints, where n := |Io|+
«+++|Ly,| (Corollary [[I6]). The convex hull of X is clearly obtained by removing the integrality
requirements from (C46). Therefore there is an extended formulation of conv(DIV ({)) that
uses O(mn) variables and constraints.

The result now follows from Lemma and Theorem [[3] O

7.1.8 A different approach?

We conclude our study of the mixing set with divisible capacities by discussing two unsatis-
factory aspects of the formulation that we constructed.

Upper bound

The first aspect concerns the assumption on the upper bound b, made in Section Even
though such an assumption can be made without loss of generality, it would be interesting to
understand whether our formulation really needs it.

As already pointed out in Section [ZI.4, the upper bound s < b, could be model by
inequality (Z33) independently of the value of b,. It is now clear that such a choice would
have prevented us from proving Theorem [CI5], as in the proof of that result we used the
fact that in the matrix obtained from A by removing the rows corresponding to ([L.I9]) and
(C29)—([C30), the column corresponding to variable Ag is a unit vector.
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In fact, examples can be constructed which show that if one uses inequality (Z.33]) to model
constraints s < b, the resulting formulation is not tight, in the sense that it contains points
(s, z, A,w,wl,wT) such that (s, z) ¢ conv(DIV). An example of this type is now sketched.

Consider the following instance of DIV
s+ 29> 0.5,
s+ 10z; > 7.8,
1.4 < s <15.6,

20, 21 integer.

Our formulation in the extended space, with inequality (Z33)) instead of ([Z34]), is:

s = Ao + 0.5wq,0 + 0.8wg 1 + 0.4wg; + 0.6wo,4, (7.47)
wo,0, Wo,1,Wo,1, Wo,u > 0, wo,0 + wo,1 + woy + wou =1, (7.48)
Ao = 10A; + Twi y + 8wl | + 1wy, + 2w] | + 4wi , + 5w] ,, (7.49)
w%,l’wI,l’w%,l’wI,l’w%,u’wI,u >0, (7.50)
wil + wlyl + wil + le + wiu + w;u =1, (7.51)
wo,1 > wil, wo,1 + Wy > wil + wiu, (7.52)
wo,0 + Wo,1 + Wo, + Wy > wil + wil + wiu, (7.53)
Ao + wo,0 + w1 + wou + 20 > 1, (7.54)
A+ wil + le +2>1, (7.55)
Ag + wo,0 + wo,1 + wo + wou > 2, (7.56)
Ao+ wos < 15. (7.57)
The following point is a vertex of the above polyhedron:
s =156, z0 = —15, 21 = —0.7, Ag = 15, wo, = 1, Ay = 0.7, w} , = 1. (7.58)

(Apart form nonnegativity constraints, inequalities (C.53)), (Z54]) and (Z56]) are the only non-
tight inequalities.) The corresponding point in the original (s, z)-space does not belong to
conv(DIV), as all points in DIV such that s = 15.6 satisfy z; > 0.

In order to make the proof of Theorem work, constraint s < b, should be modeled
without using any of the variables Ag,...,A,,_1, thus one should use A,,. Without any
assumptions on the value of b,, this seems to be hard. The main reason for this is that the
bound s < b, is the only constraint of the type “<”, whereas our formulation (in particular
conditions (C23)—-(T.24))) essentially fits the inequalities of the type “>".

For the above example, we could think of two (wrong) ways to model the upper bound
using Aq. The first way is

Ay + wil + w{l <1. (7.59)

However, this is too weak, as the point

s=158, 21 =15, 20 =0, Ag =15, wo1 =1, Ay = 1, w] , =1



136 CHAPTER 7. EXTENSION TO SIMPLE NON DUAL NETWORK SETS

would be feasible even though it violates inequality s < 15.6. The other way is
A+ wil + le + wLu <1,
but this cut off the feasible point (Z.58]).

Total unimodularity

We now turn to the second unsatisfactory aspect. One might wonder whether it is possible to
generalize the technique used for the set DIV to construct an extended formulation for DIV *
without using Balas’ result on the union of polyhedra. In other word, one could try to adapt
the results of Lemma to the set DIV™T.

However, for each i € Jy \ {l,u}, such an extended formulation would contain at least
two inequalities with z; in their support: inequality (Z30) (or (Z29)) and inequality z; > 0.
It follows that the technique used to prove Theorem cannot be used in this case, thus
to prove a result similar to that of Theorem we should first show that the constraint
matrix of the extended formulation is totally unimodular (ignoring equations ([C.I9)—(Z.20)).
However, in general this is false even for the set DIV, as the example below shows.

Consider the following instance of DIV (without upper bound on s):
s+ z1 > 0.1,
s+ 10z > 6.3,
s+ 100z3 > 81.4,
s+ 100z4 > 48.6,
s >0,
Z1,...,24 integer.
Note that Ip = {1}, I) = {2}, I3 = {3,4}.
Among the constraints defining the extended formulation of the convex hull of the above
set, we consider the following four inequalities:
w%,z + wI,Q + wi3 + wl,g + w%,4 + wh > w%,g + w%A,
wo,3 + Wo,4 > wfg + wi4a
wi4 + w1,4 > w%A,
Ap+wiy+wy+why+wly +2 >,
which correspond respectively to inequality (Z36]) for £ = 1 and i = 3, inequality (Z.35]) for
i = 3, inequality (7Z36) for £ = 1 and ¢ = 4, and inequality (Z30) for ¥ = 1 and i = 2.

The submatrix of the constraint matrix of the above four inequalities, restricted to variables
| ! ! T
Wy 4, Wy 3, W 4, W 2, 18

1 1 -1 1
-1 -1 0 0
1 0 -1 0|’
1 0 0 1

which is not totally unimodular as its determinant is —2.
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7.2 The mixing set with two capacities

The success in finding an extended formulation of the mixing set with divisible capacities
(Section [[T)) strongly depends on the divisibility assumption. The study of a general set of
the type (ZI)—(Z3]) seems to be a much more difficult problem: it is not known whether linear
optimization over a general set of this type can be carried out in polynomial time.

In this section we consider an instance of the mixed-integer set ([TI)—(73)) where there are
only two distinct capacities C1,Cy. We denote such a set by 2C' AP:

s+ Ciz; > b;, i€y,
s+ Chz; > by, 1 € Iy,
s >0,
z; integer, i€ I} U I,

where 0 < Cy < Cs, [T N Is = @. We assume without loss of generality that C; and Cs are
coprime integer numbers. We set b; := 0, where [ ¢ I; U I3, and define Cj := 1.

We give an extended formulation of conv(2C AP) with O(nC}) variables and constraints,
where n := |I;| + |I2|. Note that the formulation in non-compact, as its size depends on the
value of C'1. However the size is independent of Cy, thus the formulation is compact whenever
the value of the smallest coefficient ' is not “too large”.

The formulation is obtained by adapting the technique used in the divisible case (in fact,
if C1 =1 the two formulations coincide). However, complications will soon arise.

7.2.1 Notation

We first introduce some notation.

Given a real number z and an index 0 < k < 2, we denote by Ag(x) and fi(z) respectively
the quotient and the remainder of the division of x by Cy. Thus x = CrAk(x) + fx(z).
Similarly we define Ajo(z) and fi2(x) respectively as the quotient and the remainder of the
division of xz by C1C5.

Finally we set Jy := I U Iy U{l} and Jo := Io U {l}.

7.2.2 Properties of the vertices
Lemma 7.20 If (5, 2) is a vertex of conv(2CAP) then the following conditions hold:
(i) fo(5) = fo(b;) for some i € Jy.
(ii) f2(C1A1(5)) = fa(|bi] + £) for some i € Jo and some integer £ such that:
(a) either 1 < ¢ < (4,
(b) or =C1 +1<€<0 and f1(5) > =L+ fo(bi).

Proof. If (i) is violated then, since Zz is an integral vector, there exists & # 0 such that
(§+e,z) € 2CAP, a contradiction.
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To prove (ii) we first observe that there exists an index i € Jo such that b; < s+ Csz; <
b; + C1: if not, after defining a vector v by setting

s:=—C4, zi:=1foriely, z:=0fori € I,

we would have that (5, 2) +v € 2C AP, a contradiction.
So we let i € Jy be such that b; < s+ Cyz; < b; + C;. Then

fa([5]) € {fa([bi]), fo([bi] + 1), fa([bi] + C1)}- (7.60)

Since C1A1(5) =5— f1(5) = |5] — f1([5])) and 0 < fi1([|5]) < C1 — 1, it follows by (Z60) that
f2(C1A1(8)) = fa(|bi] + £) for some integer ¢ such that —C; + 1 < ¢ < (4.

If £ > 1 then (a) holds, so we assume —C7 + 1 < ¢ < 0. Suppose first that £ < C; — C5
and define ¢’ := Cy + £. Then fo(|b;] +¢) = fa(|bi] +¢') and 1 < ¢/ < Cy, thus (a) holds with
¢ in place of £. So from now on we assume C7 — Cy +1 < ¢ < 0.

We now distinguish some cases.

L If f2(5) = fo(bi) and fa([bs]) 4+ £ = 0, then fo(C1A1(5)) = fo([bi] +£) = fo([bi]) + £

and
f1(8) = f2(f1(8)) = f2(8 = C1A1(3)) = f2(5) — f2(C1A1(8))
> fa(bi) = f2([bi]) = € = fo(bi) —
thus (a) holds.

2. Now assume f3(5) > fa(b;) and fo([b;]) +€ < 0. Then fo(|b;| +£) = fo(lbi]) + £+ Co
and

J2(8) < fa(by) + C1 < fo(bi) + £+ Co — 1 < fo([bi] +4),

where the first inequality follows from (Z60) and the second one holds because C7 —
Cy + 1 < ¢. This implies that fo(5 — ([bi] +¢)) = f2(5) — f2(|bi] + ¢) + C2, thus

f1(8) = f2(f1(8)) = fa(5 — C1A41(3)) = f2(5 — ([bi] + )
= f2(8) — fa(|bs] +£) + Co2 > fa(bs) — fa(|b:i]) — € = fo(b;) —
and (a) holds.

3. We now consider the case f3(5) < fa(b;). In this case inequalities b; < 5+ Cyz; < b; +Cy
imply fa(b;) > Ca — Cy. Then fo(|bi]) + ¢ > fa(bi]) + C1 — C2 > 0. This implies
fQ(LbZJ + f) = f2(Lle) + ¢. Furthermore,

f2(8) < fa(bi) + C1 — Ca < fo(bi) + € =1 < fo([bi] +0),
where the first inequality follows from f2(3) < f2(b;) and ([Z60). This implies
f1(8) = f2(f1(8)) = fa(5 — C1A1(3)) = f2(5 — ([bi] + )
= f2(8) — fo(|bi] +0) + Coa >0 — fo([bi]) =€+ Cy > —L+1
and (a) holds.
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This concludes the proof of the lemma. ]
For i € Jy and —C7 + 1 </ < (1, we define cf to be the unique integer number such that
0<¢f <CiCy, folch) = follbi] +0), fi(cf) =0.

Existence and uniqueness of such a number follow from the Chinese remainder theorem (see
e.g. [56] or any basic algebra book).

Remark 7.21 Let i,{ be two indices as in part (i) of Lemma[Z20. Then fi12(C1A41(5)) = cf,
as the integer number fi12(C1A1(3)) satisfies the three conditions that define ci.

We now introduce extra variables to model the possible values taken by s at a vertex of
conv(2C AP). The new variables are the following:

° A,wfforieJl and 0 </ <(Cp—1;
° F,Wfforiejg and —C] +1 </ < (.
The role of the above variables is as follows:

e Variable A represents the quotient of the division of s by Cj. That is, A = A(s) as
defined in Section [[2.T1

e Variable I" represents the quotient of the division of s by C1C5. That is, I' = Aja(s) as
defined in Section [[2.11

e Variables wf for i € Jp and 0 < ¢ < C7 — 1 are binary variables. FExactly one of
them is equal to 1: condition w! = 1 indicates that fo(s) = fo(b;) and f1(|s]) = ¢, i.e.
Ji(s) =L+ fo(bs).

e Variables Wf fori € Js and —Cy +1 < £ < ( are binary variables. Exactly one of them
is equal to one: condition ¥ = 1 indicates that fi2(C1A;(5)) = cf.

Consider the following conditions:

Ci—1
s=CiA+ ) > (+ folb))wy, (7.61)
(=0 teJy
C1
CiA = C1CoT + Z Z Cfﬂ'f, (762)
(=—C141teda
C1—1
wf>0,teJ;,0<0<Cr—1; Y > wi=1, (7.63)
(=0 teJy
Cq
T >0,te Dy, —Cr+1<L<Cy > Y w=1, (7.64)
(=—C1+1ted>
Ci—1 ‘
S Y w4 D> witzaliedy, —C1+1<L<0, (7.65)
j=—Ll+1tedq teJr:
Jo(be)> fo(bi)

A, wf, T, 7l integer. (7.66)
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Lemma 7.22 Every vertex (3, 2) of conv(2C AP) can be completed to a vector (5,2, A, w,T,T)
satisfying (L.61])—(7.60]).

Proof. Lemma and Remark [[2T] show that f12(C1A1(8)) = cf for some i € Jy and
—C1+1<¢<C;. The vertex (8, z) can be completed as follows.

If there exist an index ¢ € Jy and an integer —C7 41 < £ < 0, such that f12(C1A(8)) = cf
and f1(8) > — + fo(b;), then we set ¢ = 1. For convenience, if such a choice of ¢ is not
unique, we choose ¢ as small as possible. If, after this, the choice of i is not unique, we choose
i so that fo(b;) is as large as possible. (Further ties can be broken arbitrarily.)

Otherwise there exist an index ¢ € Jy and an integer 1 < ¢ < C] such that f12(C1A1(5)) =
cf , and we set ﬁf = 1 for any such choice of i and £.

By Lemma [[220] there exist ¢ € J; and 0 < h < C — 1 such that fi(5) = h + fo(b). We
then set w}' = 1 for any such choice of ¢ and h.

Finally we set A = A1(5) and T' = A5(3).

It is easily checked that the vertex thus constructed satisfies (C.61)-(C.64) and (Z66]). To
see that (T.63)) is satisfied, suppose 7/ = 1 for some i € Jy and —Cy+1 < £ < 0. Lemma [720] (ii)
then implies that h + fo(b:) = f1(5) > —€ + fo(b;), that is, either h > —¢+ 1, or h = —¢ and
fo(by) > fo(b;). In both cases the left-hand side of (Z63) is equal to 1 and the inequality is
satisfied. O

We say that (5,2, A, w,T,7) is a standard completion of the vertex (5, %) of conv(2C AP) if
A,w,T, 7 are chosen as described in the above proof. Then the above proof shows that every
vertex of conv(2C' AP) has a standard completion satisfying (Z.61])—(Z.66l).

7.2.3 Modeling the constraints

Proposition 7.23 For i € Iy, a point (8,z) satisfies inequality s + C1z; > b; if and only
if every completion (5,2, A, w,T,7) of (5,2) fulfilling conditions (LB1)-(T60) also satisfies

imequality
Ci—1

A+ Z wa—}— Z wh 4 z; > {E—ZJ +1, (7.67)

(=k+1teJy tedy:
Jo(bt)> fo(bs)

where k= f1([b;]).

Proof. Using (L&), inequality s + C1z; > b; can be rewritten as

Ci—-1

E + f() bt g b
At D> )+ oz >Cl' (7.68)
(=0 teJy
Observe that %‘)I(bt) > fo(g,—il) if and only if £+ fo(bt) > f1(b;), that is, if and only if either
0> f1(|bi]) + 1, or £ = f1([b;]) and fo(be) > fo(b;). Inequality (C67) can then be obtained
by summing inequalities (Z.68]) and

Ci—1

~(folbi/Ch) =) Y > wi = —(fo(bi/Ch) )

(=0 teJy
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for £ > 0 small enough and then applying Chvétal-Gomory rounding (see Theorem [[I0). O

Proposition 7.24 For i € Iy, the following properties hold:

(i) BEvery vertex (5,%z) of conv(2CAP) can be completed to a point (5,%2,A,w,[,7) that
satisfies conditions (L6I)—([C66l) along with the linear inequality

Cy
bi
CiT+ > > Bimi+z> {@J +1, (7.69)

I=—C1+1tedy

where 3¢ is defined as follows:

if f2(cf) = f2([b:]) < minf0, £ — 13},

t
)
As(cf) if €= fa(ct) — f2([bi]) < 0 and fo(be) < fo(b),
Ao(cf) +1 if €= fa(cf) — fa(]bi]) <0 and fo(br) > fo(bi),
Ao(cf) +1 if €< folcf) = fallbi)) <0
B = qDa(cf) +1 if 0< focf) — fo([bi]) < €
Ag(cf)—i-l szg—Cl<f2(cf) fa(lb:] <€+CQ,
Ao(cf) +1 if Co— C1 < falct) = falbi]) = £+ Cy and fo(be) < fo(bi),
Ag(cf) +2 if Co— C1 < facf) = fallbi]) = £+ C2 and fo(br) > fo(bi),
Ao(cf) +2 if f2(c}) — f2([bi]) > max{Cy — C1, ¢+ Ca}.

(i) If a point (8,z, A, w, T, 7) satisfies conditions ([L6I)-(C60) along with inequality (L.69),
then 5+ Csz; > b;.

Proof. (i) We show that every standard completion of a vertex of conv(2CAP) satisfies

inequality (Z.69)).

Let (5,%,A,w,[,7) be a standard completion of the vertex (,2) of conv(2CAP) and

assume 7¢ = 1. By (Z61)-(Z.62),
S = Cngf + Cf + fl(g) = 01C2f + CyAq (Cf) + fo (Cf) + fl(g). (770)

Assume first 8f = As(cf) + 2. Then, using (TZ0),

5 _— 0N p(= A
CJ‘+ Z Zﬁtﬂt‘f‘% le‘+A2(cf)+2+zi:5+CQZl fa(cf) f1(5)+2C2>ﬁ

C Cy’
—Ci1+1teds 2 2

where the last inequality holds because § + Coz; > b; and fo (cf) + f1(8) < Co + Cy < 2C%.
Thus inequality (Z.69)) is satisfied in this case.

Now assume 3f = A(cf) + 1 and fo(cf) — fo(|b;]) < Cy — Cy. Using (Z10),

.- 3 _— N or = A
ar+ >, Zﬁfﬁerii=01F+A2(cf)+1+zi:5+C2Z@ foet) = h(E) +Co _ i

C Cy’
=—C1+1teds 2 2
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where the last inequality holds because §+C5z; > b; and — fo (cf) —f1(8)+Coy > Cr1— fa(|bi])—
f1(8) > — fa(b;). Thus inequality (.69)) is satisfied in this case.

If Bf = A(cf) +1 and fa(cf) — f2(|bi]) > C2—Ch, the proof is by contradiction: we assume
that (Z.69) is violated, that is (after multiplying by Cb),

C1C2f + CyAg (Cf) + Cy + Cyz; < CQAQ(bl) (771)

Define k := fg (Cg) — fg(l_blj) — Cz. Since fz(cf) - fg(l_bZJ) > Cz - Cl, we have k Z —Cl + 1.
Furthermore, k < 0. Since fa(cf) = fao([bi]) +k + Co = fo(cF), we see that ¢f = cF. In the
following we show that (3,2, A,w,[,7) is not a standard completion of the vertex (3, z), as
setting Wf = 1 would be a preferable choice.

By (m, s = Cngf—ingAz (Cf) —i—fg({bd)—i—k—i—Cz—i—fl(g). Then inequality s+ CsZ; > b;
reads

C1CoT + CoAg(cf) + fo([bi)) + k + Co + f1(5) + Cazi = Calg(b;) + fa(by).

By combining the above inequality with (Z71]), we derive f1(5) > —k + fo(b;).

On the other hand, conditions 8 = A(cf) +1 and fo (cf) — fa(|bi]) > Cy — C1, together
with the definition of 3¢, show that necessarily k < ¢, and if k = £ then fo(b;) > fo(bs). This,
along with inequality f1(5) > —k + fo(b;) derived above and the fact that ¢f = cF, shows that
setting 7% = 1 would be a preferable choice for representing the vertex (3, 2).

The above shows that inequalities (Z6) holds whenever 8f > A (cf). We now assume
Bf = As(cf) and fo(cf) — fa(|bi]) > —Ci1. The proof is again by contradiction: we assume
that (Z83) is violated, that is, C1Col' + CoAy (cf) + Coz; < CoAg(b;). In this case we define
k:= fa(cf) — f2(|bi]) and proceed as in the previous case (note that —Cy +1 < k < 0).

Finally, assume 3f = As(cf) and fo(c}) — fo([bi]) < —Ci. Using (T70),
5+ 0oz — fo(ch) — f1(3) _ b

Cy ~ Cy’

Cy
CiT+ D Y Biai+z=CT + Ag(cf) + 2 =
I(=—C14+1te2

where the last inequality holds because 5+ Ca%; > b; and fa(cf)+ f1(3) < (f2([b:])—C1)+Ch <
f2(b;). Thus inequality ([C.69) is satisfied in this case.

(ii) We now show that if (3,2, A, w, T, 7) satisfies (Z.61)-(7.66) and ([Z.69), then 5+ Coz; >

bi.

Let (5,2, A,w,T,7) be a point satisfying (Z61)—(Z66) and (Z69), and assume 7y = 1 and
H_J? = 1. Note that (ZZ70) holds and f1(5) = h + fo(b;).

If Bf = As(c}) then, using (T70) and (Z69),
5§+ Coz; = C1CT + Cola(cf) + f2(cf) + f1(5) + CoZi > Cola(bi + Co) + f2(cf) + f1(5) > bs.
Now assume 3f = Ao (cf) + 1 and fo(cf) — fo(|b;]) > 0. Using (ZT0) and (Z69),

5+ Coz; = C1CoT + CQAz(Cf) + fo (Cf) + f1(8) + CoZ; > Colg(b;) + fo (Cf) + f1(5) > b;,
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where the last inequality holds because fa(c}) > fo(|b;]) + 1.
If Bf = A(cf) + 1 and fa(cf) — fo([b:]) <0, the proof is by contradiction: we assume that
5+ Caz; < b;, that is (again using ([Z10)),
C1CoT + Colo(cf) + fo(c}) + f1(5) + CoZi < by (7.72)
Summing the above inequality with inequality (Z69)), which can be written as

—C1CoT — C2As(c}) — Co — Oz < —Caa(b; + Ca),

gives fo(ct) + fi(5) < fo(b;). If we define k := fo(cf) — fo([bi]) < 0, the latter inequality
reads f1(5) < —k+ fo(b;). Since f1(5) = h + fo(b;), this implies

h+ fo(bj) < =k + fo(bi). (7.73)

On the other hand, conditions f = A(cf) + 1 and fo(cf) — f2([bi]) < 0, together with
the definition of 8/, show that necessarily £ < k < 0, and if £ = k then fo(bs) > fo(b;). Then
(C73) implies h + fo(bj) < —€ + fo(b;). This implies that either h < —¢, or h = —¢ and
fo(bj) < fo(b;). In the former case, inequality (6] is clearly violated for the indices ¢t € Jo
and £ < 0. So we assume h = —¢ and fy(b;) < fo(bi).

By (T13), h < —k. This, together with h = —¢ > —k, shows that £ = k. As seen above,
this implies that fo(bs) > fo(bs), thus fo(bj) < fo(b:). This shows that inequality (Z63) is
again violated for the indices ¢ € Jy and ¢ < 0.

The above shows that s + CyZz; > b; whenever ﬁf < Ay (cf) + 1. We now assume ﬁf =
As(cf) + 2. The proof is again by contradiction: we assume that (TZ2) holds. In this case

inequality (Z.69]) reads
—C1C05T — CaAo(c)) — 205 — C9%; < —Calo(b; + Co),

which together with (Z72) gives fa(cf) + f1(5) < fa(b;) + Co. We then define k := fo(cf) —
f2(1b;]) — C2 < 0 and continue as in the previous case. O

Proposition 7.25 A point (8, z) satisfies inequality s+C1z; > b; if and only if every extension
(5,2, A,w,T,7) of (5,2) fulfilling conditions (T6I)-(T606) also satisfies inequality

r>o. (7.74)
Proof. The result is obvious. O

Let X be the mixed-integer set in the space of the variables (s, z, A,w,I',7) defined by
conditions

o (Z5I)-(T58),
o (TB7) fori € I,
o (TB9) for i € I,
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o (73,

Proposition 7.26 The polyhedron conv(2C AP) is the projection of conv(X) onto the space
of the variables (s, z).

Proof. The proof is similar to that given in Section [Z] for the mixing set with divisible
capacities (see Proposition [[12)). The only difference is that now there is one more extreme
ray, namely the vector defined by setting s := 1, z; :== 1/C; for i € I} and z; := 1/C5 for
1 € Is. O

By the above proposition, in order to give an extended formulation of conv(2CAP) we
have to find a linear inequality description of conv(X).

7.2.4 Strengthening the constraints
Lemma 7.27 The following inequalities are valid for (T61)—-(T68) and dominate (T.65):

C1—-1 /-1
o> wl+ > wt= > oA+ Y wf i€, —Ci+1<<0.
j=—l+1teJy teJy: J=—C1+1teds teJa:

fo(be)>fo(bi) fo(be)>fo(bi)
(7.75)

Proof. Fix —C1 4+ 1< {¢<0 and i € Jy. Define
L:={(\71)e{-Ci1—1,...,0} x Jy:either A< ¢ —1,or A\=/¢—1and fo(b;) > fo(bi)}.

Inequality (73] can be derived by applying the Chvatal-Gomory procedure to the following
|L| 4+ 1 inequalities, which are all valid for (Z.61])—(Z.60):

Ci—1

Z Z w] + Z w;r >, (A7) el (7.76)
j=—X+1teJy teJr:
Jo(bt)>fo(br)
-1 '
1> > >+ > ow, (7.77)
j=—C1+1tes teJa:

Jo(be)=fo(bi)
with multipliers 1/|L| for each of inequalities (C.70) and 1 — 1/|L| for inequality (C77). O

7.2.5 The extended formulation

We show here the main result of the section. The proofs are similar to those of Section [(.1.GI
Let P be the polyhedron in the space of the variables (s,z, A,w,I",7) defined by the

following linear equations and inequalities:
o [LEI)-[Z6d),
o (LG7) for i € I4,
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o (LI for i € I,
o (LT and (TT5).

Note that if we divide equation (Z.62]) by C, all coefficients remain integer and the coefficient
of A becomes 1. We denote by Az ~ b the linear system comprising the above equations and
inequalities, where equation (T.62) has been divided by Cf.

Lemma 7.28 Let M be the submatriz of A indexed by the columns corresponding to variables
w, 7 and the rows corresponding to constraints (L63)-(C64) and (T10). The matriz M is
totally unimodular.

Proof. We use the characterization of Ghouila-Houri [26] described in Section We order
the rows corresponding to inequalities (Z.75]) according firstly to a decreasing order of index ¢
and secondly to a non-decreasing order of fy(b;). Note that with such an ordering, the support
of any row, say the j-th row, contains that of the (j 4+ 1)-th row (in other words, the rows
form a laminar family).

We now give an equitable bicoloring to the rows of M: we assign color red to the rows cor-
responding to equations (Z.63])-(7.64]) and then alternate the colors starting with blue. Since
every submatrix of M has the same structure as M itself, this proves that every submatrix
of M admits an equitable bicoloring of its rows and thus, by Theorem [[LT4] M is totally
unimodular. O

Theorem 7.29 If & = (5,%2,A,w,[,7) is a verter of P then (2,A,w,T,%) is an integral
vector.

Proof. Note that the columns of A corresponding to variables s and z; for ¢ € I; U Iy are
unit columns (as s only appears in equation (Z6I]) and each variable z; only appears in one

of ([LET), [L6T))-

In the subsystem of Az ~ b comprising inequalities (Z62)-(C64), (C74) and ([T75) (i.e.
with (Z61), (Z67) and (Z69) removed) variables A, T" appear with nonzero coefficient only in

equations ([Z.62)) and (C74). Furthermore the submatrix of A indexed by the rows correspond-
ing to (Z62)), (C74) and the columns corresponding to variables A,T" is an upper triangular
matrix with 1 on the diagonal.

Let Cx = d be a nonsingular subsystem of tight inequalities taken in Ax ~ b that defines
a vertex T = (3,2, A,w,I',7) of P. The above observations show that (Z61)-(762), (Z67),
(C63) or (T74) must be present in this subsystem. Furthermore let C’ be the submatrix of C'
indexed by the columns corresponding to variables w, m and the rows that do not correspond to
(Ce1)—([C62), (Co7), (C69) and (Z74). Then the computation of a determinant with Laplace
expansion shows that |det(C)| = |det(C")| # 0.

Since C’ is a submatrix of the matrix M defined in Lemma and C’ is nonsingular,
then |det(C)| = |det(C’)| = 1. Since all entries of A (except those corresponding to equa-
tion (Z.61))) are integer and the right-hand side vector b is integral, by Cramer’s rule we have
that (2, A,w,T,7) is an integral vector. O
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Corollary 7.30 The linear inequalities of the system Ax ~ b defining P constitute an ex-
tended formulation of conv(2C AP) with O(nC1) variables and constraints, where n := |I1| +
| I2|.

Proof. The proof is identical to that of Corollary [Z.16l 0

The extended formulation constructed here is only pseudo-polynomial, as it depends on
the value C;. Note however that the size of the formulation is independent of the value Cs.
It was recently proven by Zhao and de Farias [73] that linear optimization over the set 2C' AP
can be carried out in polynomial time, but it is not known whether there exists a compact
extended formulation of conv(2C AP). Also, it seems hard to extend the above construction

to the case of three capacities.

We finally remark that the proofs of both Theorem [[.29 above and Theorem [.I5] in
Section [L.1.6] exploit the fact that each integer variable appears in a single constraint. We do
not know how to deal with a more general mixed-integer set of the form

5j+Crzi 2 bj, 1<j<q,i€l,0<k<m,
b, <sj<by, 1<j<g,
z; integer, 1€ lgU---Ul,,
where either the capacities are divisible or take few values. In the case Cy = --- = C),, = 1 the

above is a set of the type MIX?TV for which an extended formulation was given by Miller
and Wolsey [45] (when there are no upper bounds by ).



Chapter 8

A different technique

The approach to construct extended formulations introduced in Chapter [2] is based on the
explicit enumeration of all the fractional parts that the variables take over the vertices of
the convex hull of the set. The extension discussed in Chapter [0 is based on a refinement of
the same technique, due to the presence of several distinct coefficients in the constraints that
define the set.

We explore here another way of constructing a formulation of a mixed-integer set either
in the original space or in an extended space. No explicit enumeration of fractional parts or
other numbers is required (except possibly in the final phase of the process). We adopted this
technique to formulate two specific sets, but we could not determine a class of mixed-integer
sets for which this approach can be used.

Both mixed-integer sets considered here have been already discussed in this thesis: one is
the mixing set with flows (Sections and [0.3]), the other is the continuous mixing set with
flows (Section L2.1)). We observed in Chapter [ that each of these sets is equivalent to a dual
network set and therefore admits an extended formulation of the type presented in Chapter
We also computed the projection of the extended formulation of the mixing set with flows,
thus obtaining a linear inequality description in the original space (Chapter [Hl).

We reconsider here the above two sets and we give formulations for them by using a
common approach, which is summarized below.

We first recall a well-known fact. Let X be a mixed-integer set. Suppose that there exist
a mixed-integer set Z and a polyhedron P such that X = Z N P. It is easy to see that then

conv(X) C conv(Z) N P, (8.1)

but equality does not hold in general.
To describe the common approach used for the two sets, we let X denote any of the two
sets.

Step 1. The first step of our process is writing X = Z N P for some mixed-integer set Z and
some polyhedron P that is described by a simple linear system.

Step 2. Next we prove that for this particular choice of Z and P, equality holds in (8.

147
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Step 3. We introduce another mixed-integer set Y and prove that the polyhedra conv(Z) and
conv(Y’) are in a one-to-one correspondence via an affine transformation.

Step 4. The final step is to give a formulation of conv(Y) either in the original space or in an
extended space. In the former case we immediately derive a formulation of conv(Z7),
and thus of conv(X) = conv(Z)NP, in its original space; in the latter case an extended
formulation is obtained.

The crucial point is proving that equality holds in (8I]). This will be done by using a
polyhedral result that we introduce in Section Bl

The final step is different for the two sets. In the case of the mixing set with flows
(Section R.2) we give a formulation of Y both in the original space and in an extended space,
thus both kinds of description are also obtained for X —the mixing set with flows itself. For
the continuous mixing set with flows (Section B3] only extended formulations are given.

The results of this chapter are joint work with Michele Conforti and Laurence A. Wolsey,
and also appear in [13] [12].

8.1 Some equivalences of polyhedra

Step 2 of the process described above will be possible thanks to a result on the equivalence of
polyhedra that we introduce here.

For a nonempty polyhedron P in R™ and a vector @ € R", define pp(a) := min{az :
x € P} and let Mp(a) be the face {x € P : ax = pup(a)}, where Mp(a) = & whenever

pp(a) = —oo.

Lemma 8.1 Let P C Q be two nonempty polyhedra in R™ and let o be a nonzero vector in

R™. Then the following conditions are equivalent:
(i) pp(a) = pola);

(ii) Mp(a) € Mg(a).

Proof. Suppose pp(co) = pg(cr). Since P C @, every point in Mp(«) belongs to Mg(a). So
if (i) holds, then (ii) holds as well. The converse is obvious. O

Lemma 8.2 Let P C Q be two nonempty polyhedra in R™, where P is not an affine variety.
Suppose that for every inequality cx > [ that is facet-inducing for P, at least one of the
following holds:

(i) up(a) = pola);
(i) Mp(a) C Mo(a).

Then P = Q.
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Proof. We prove that if Mp(a) C Mg(c) for every inequality ax > 3 that is facet-inducing for
P, then every facet-inducing inequality for P is a valid inequality for ) and every hyperplane
containing P also contains (). This shows that Q C P and therefore P = (). By Lemma BT
the conditions pp(a) = pg(a) and Mp(a) C Mg(a) are equivalent and we are done.

Let ax > ( be a facet-inducing inequality for P. Since Mp(a) C Mg(a), then § =
pp(a) = po(a) and ax > § is an inequality which is valid for Q.

Now let v = ¢ be a hyperplane containing P. If Q € {x : yx = J}, then there exists
Z € @ such that vT # 0. We assume without loss of generality ¢ = v — § > 0. Since P is
not an affine variety, there exists an inequality ax > (3 which is facet-inducing for P (and so
it is valid for @). Then, for A > 0 the inequality (Aa — )z > A3 — § is also facet-inducing
for P, so it is valid for Q. Choosing A > 0 such that A\(az — ) < o gives a contradiction, as
A —7)Z=Xax —yZ < A\G+o—~vx =3 —9. O

If P is not full-dimensional, for each facet I’ of P there are infinitely many distinct inequal-
ities that define F' (two inequalities are distinct if their associated half-spaces are distinct: that
is, if one is not a positive multiple of the other). Observe that the hypotheses of the lemma
must be verified for all distinct facet-defining inequalities (not just one facet-defining inequal-
ity for each facet), otherwise the result is false. For instance, consider the polyhedra

P={(z,9):0<2<1,y=0 CQ={(2,9): 0<2<1,0<y <1}

The hypotheses of Lemma are satisfied for the inequalities x > 0 and z < 1, which define
all the facets of P.
Also note that the assumption that P is not an affine variety cannot be removed: indeed,

in such a case P does not have proper faces, so the hypotheses of the lemma are trivially
satisfied, even if P # Q.

Corollary 8.3 Let P C @ be two pointed polyhedra in R™, with the property that every vertex
of Q belongs to P. Let Cx > d be a system of inequalities that are valid for P such that
for every inequality yx > & of the system, P € {x € R™ : vz = 6}. If for every a € R"
such that pp(a) is finite but pg(a) = —oo, Cx > d contains an inequality yr > & such that
Mp(a) C{zx € R" : yz =0}, then P=QN{z € R": Cz > d}.

Proof. We first show that dim(P) = dim(Q). If not, there exists a hyperplane ax = [
containing P but not Q. Without loss of generality we can assume that pg(a) < = pp(a).
So pg(e) = —o0, otherwise there would exist an a-optimal vertex Z of ) such that az < £,
contradicting the fact that £ € P. Now the system C'z > d must contain an inequality yx > §
such that P = Mp(a) C {x € R" : vz = 4}, a contradiction to the hypotheses of the corollary.

Let @ = QnN{z € R": Cx > d}. Note that P C Q' C @, thus dim(P) = dim(Q’) =
dim(Q). Let ax > 3 be a facet-inducing inequality for P. If 1 («) is finite, then @) contains an
a-optimal vertex which is in P and therefore 8 = pp(a) = pg/(a) = po(a). If po(a) = —oo,
the system Cz > d contains an inequality vz > § such that Mp(a) C {x € R" : yx = §} and
P g {x € R": vz = §}. It follows that yz > § is a facet-inducing inequality for P and that
it defines the same facet of P as ax > [ (that is, Mp(«) = Mp(y)). This means that there
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exist ¥ > 0, a vector A and a system Az = b which is valid for P such that v = va+ AA and
d = vfB+ Ab. Since dim(P) = dim(Q’) and P C @', the system Az = b is valid for @', as well.
As yx > ¢ is also valid for @', it follows that ax > (3 is valid for @’ (because o = %’y — %A
and 8= 15 — 2p). Therefore 8 = pp(a) = g (a).

Thus in all cases pp(a) = pg (o). Now assume that P consists of a single point and P # Q.
Then @ is a cone having P as apex. Given a ray « of @), pp(a) is finite while pg(a) = —oo0,
so the system Cz > d contains an inequality vz > § such that P C {z € R" : vz = {§},
a contradiction. So we can assume that P is not a single point and thus P is not an affine
variety, as it is pointed. Now we can conclude by applying Lemma to the polyhedra P
and Q. O

We remark that in the statement of Corollary B3] the condition that the two polyhedra
are pointed is not necessary: if we replace the property “every vertex of @) belongs to P” with
“every minimal face of ) belongs to P”, the proof needs a very slight modification to remain
valid. (However, in this case we should assume that P is not an affine variety, so that we can
apply Lemma in the proof.)

We also observe that the condition “for every inequality vz > 6 of the system, P  {x €
R™ : vz = 0}” is indeed necessary. For instance, consider the polyhedra

P={(z,y):0<z<1,y=0} CcQ={(z,y) : 2 >0, y=0}

and the system consisting of the single inequality y > 0.

8.2 The mixing set with flows

In this section we reconsider the mixing set with flows introduced in Section [4.2.2]

s+y; =>b;, 1<i<n, (8.2)

$s>0,y;, >0, 1<i<n, (8.4)

z; integer, 1 <1i<m, (8.5)

where we assume without loss of generality 0 < b; < --- < b,. We denote the above set by

XMF,

The original motivation for studying X was to generalize the mixing set XMX

s+z>0b, 1<i<n,
s >0,

z; integer, 1 <1 <n,

by introducing the continuous (flow) variables z (see also Section .2)). However the mixing set
with flows is also closely related to two lot-sizing models, as explained in Sections L2 THA2.2]

A linear inequality description of the convex hull of X™¥ in its original space was computed
in Section B3] by projecting an extended formulation of the set. In this section we obtain a
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linear inequality description of conv (X MFE ) both in the original space and in an extended
space by using the approach summarized in Steps 1-4 above.

Steps 1-2 are performed in Section B2T], while Steps 3-4 are the subject of Section
We conclude in Section by studying a mixed-integer set that is closely related to XMF.

8.2.1 A relaxation

We introduce a mixed-integer set Z which is the following relaxation of the set XM¥":

s+ z; > b;, 1<i<mn, (8.6)
s+y;i+2zi>b, 1<j<i<n, (8.7)
s+ y; > b;, 1<i<n, (8.8)
$>0,2>0 1<i<n, (8.9)
z; integer, 1<i<n. (8.10)

Note that variables y; are not required to take a nonnegative value in 7.
The following easy lemma constitutes Step 1 of the process.

Lemma 8.4 Let XMF and Z be defined on the same vector b. Then XMF = Z N {(s,y,z) :
0<y<z}

Proof. Observe that for (s,y,z) € XME s 4 2 > s4y; > b; holds, so s + 2 > b; is a valid
inequality for XM¥ . Also, inequalities s + 2z; > b; and y; = 0 imply that s +y; + 2; > b; is
valid for XM¥ . Inequalities z; > 0 follow from y; > 0 and y; < z;. This proves that Z is a
relaxation of XMF'

The only inequalities that define XM but do not appear in the definition of Z are the

inequalities 0 <y < z, thus XMF = Zn{(s,y,2): 0 <y < z}. O

We prove here that conv(XMF) = conv(Z) N {(s,y,2) : 0 <y <z} (Step 2). To do this,
we need to establish some properties of the polyhedra conv (X MFE ) and conv(Z). We start by
characterizing their extreme rays. In the following e; denotes the n-dimensional vector with 1
in the first component and 0 elsewhere, while 1 is the n-dimensional all-one vector.

Lemma 8.5 The extreme rays (s,y,z) of conv(XMF) are the following 2n + 1 wvectors:
(1,0,0), (0,0,¢;) for1 <j<mn, (0,e5,€e;) for1<j<n.

The extreme rays (s,y, z) of conv(Z) are the following 2n + 1 vectors:
(1,-1,0), (0,0,e;) for1 <j<mn, (0,e;,0) for1 <j<n.

Proof. Since the left-hand sides of inequalities (82)-(83) and (806)-(&I0) have integer coef-
ficients, the recession cones of XM and Z coincide with the recession cones of their linear
relaxations (Theorem [[§]). One can check that the extreme rays of such relaxations are those
listed above. O
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Corollary 8.6 The polyhedra conv (XMF) and conv(Z) are full-dimensional.

Proof. One can check that the extreme rays of conv(X*¥) (resp. conv(Z)) listed above are
linearly independent. This shows that the recession cone of conv(XMF) (resp. conv(Z2)) is
full-dimensional and the conclusion follows. 0

The following observation is easy.

Lemma 8.7 Let (5,7,z) be a vertex of conv(Z) and let 1 < j <n. Then

0,

_ b; — z;, 1< <n, _ bj—g,

S = max _ . ) Yj = max o . .
b; — Yi, 1<i<n, bi—5—2z;, j<i<n
bi—z—g, 1<j<i<n

Proof. If 5 is not as above then there exists € # 0 such that both points (s + €, y, z) satisfy
conditions (&6)-(&I0), which contradict the fact that (5,7, Z) is a vertex of conv(Z). For y;
the proof is similar. O

The following result is crucial for proving that conv(XM¥) = conv(Z) N {(s,y,2) : 0 <
y <z}

Lemma 8.8 Let (5,7,z) be a vertex of conv(Z). Then 0 <y < Zz.

Proof. Assume g, < 0 for some index k. Then 5 > 0, otherwise, if § = 0, the constraints
s+ yr > by and by > 0 would imply g, > 0.

We now claim that there is an index 1 < i < n such that s = b; — z;. If not, s > b; — Z;
for 1 < i < n and there exists € # 0 such that (5,7,z) £ ¢(1,—1,0) belong to conv(Z), a
contradiction.

So there is an index 1 < ¢ < n such that 5 = b; —z; > 0. Since b; — z; > b; — z; — y; for
1 < j < 4, this implies g; > 0 for 1 < j < i. Lemma 87 also implies b; — z; > b; — y; for
1 < j < n. Together with z; > 0 and b; < b; for j > 4, this implies y; > z; > 0 for j > . This
completes the proof that y > 0.

Now assume §; > z; for some index j. Then Zz; > 0 implies ; > 0. Assume j; = b; — 5.
Then inequality 5+ 2z; > b; implies that y; < Z;, a contradiction. Therefore by Lemma 8],
y; = b; —5—Z; for some 7 > j. Since ; > 0, then b; —5—z; > 0, a contradiction to 5+ 2; > b;.
This shows that y < z. O

We can now prove the main theorem of this subsection:

Theorem 8.9 Let XM¥ and Z be defined on the same vector b. Then Conv(XMF) =
conv(Z) N{(s,y,2) : 0 <y <z}
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Proof. We prove the result by applying Corollary to the polyhedra COHV(XMF ) and
conv(Z) and the system 0 < y < z. To do this, we show that the hypotheses of that corollary
are satisfied.

By Lemma [R4] conv(XMF) C conv(Z). By Lemmas and 8], every vertex of conv(Z)
belongs to conv(XMF).

Let a = (h,p,q), with h € R, p € R", ¢ € R", be such that g,y xmr(@) is finite and
feonv(z) (@) = —oc. Since by Lemma B3 the extreme rays of conv(Z) that are not rays of
conv(XMF) are (0,¢e;,0) for 1 <j <nand (1,-1,0), then either p; < 0 for some index j or
h <377y pi- Also note that h > 0, as otherwise fionyxmr)(a) = —00 because of ray (1,0,0).

If p; < 0 for some index j, then Mg, xmry(a) C{(s,y,2) 1 yj = 25}

If h <30 pi,let NT:={i:p; >0}. We can assume that N* # & if not, either there
is an index j such that p; < 0 (and we are in the previous case) or p; = 0 for all 1 < j < n,
in which case we have h < 0, contradicting our assumption 4 > 0. Thus N* # & and we
can safely define j := min{i : i € N*}. We show that M, xury(a) € {(s,y,2) : y; = 0}.
Suppose that y; > 0 in some optimal solution. As the solution is optimal and p; > 0, we
cannot just decrease the variable y; and remain feasible. Thus s + y; = b;, hence s < b;.
However this implies that for all i € N*, we have y; > b; —s > b; —b; > 0 as i > j. Now as
y; > 0 for all i € N*, we can increase s by € > 0 and decrease y; by ¢ for all i € N*. The

new point is feasible in XM¥

and has lower objective value, a contradiction.

Therefore we have shown that for every vector a such that figonyxary(a) is finite and
Peonv( zy(a) = —o0, the system 0 < y < z contains an inequality which is tight for the points
in Meonyxmry(a). To complete the proof, note that since conv (XME) is full-dimensional
(Corollary [B), the system 0 < y < z does not contain an inequality defining an improper
face of conv(XMF). So we can now apply Corollary B3] to the polyhedra conv(XMF) and

conv(Z) and the system 0 <y < z. O

8.2.2 The intersection set

We now come to Step 3 of the process described at the beginning of the chapter. In this step
a new mixed-integer set Y is introduced, which in our case is the intersection set

oj+z >b;—0bj, 0<7<i<mn, (8.11)
0;>20,22>0, 0<j<n,1<i<n, (8.12)
z; integer, 1<i<n, (8.13)

where 0 := by < b; < ... <b,.

Note that Y is the intersection of the following n+1 mixing sets X JM IX(with nonnegativity
bounds on the integer variables), each one associated with a distinct variable o; (in the
constraints below j is a fixed index in {0,...,n}):

UjZOaZz‘ZOa ]<’L§n7

z; integer, j<i<n.

"Note that this is not the same set as the intersection set defined in Section 3]
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The theorem below shows that the polyhedra conv(Z) and conv(Y') are equivalent via an
affine transformation (Step 3).

Theorem 8.10 Let Z and Y be defined on the same vector b. The affine transformation
0p:=8; 0;:=8+y;—by, zi:=2z for1 <i<n (8.14)
maps conv(Z) into conv(Y).

Proof. 1t is straightforward to check that (8I4]) transforms the inequalities in (8.6)—(8I0) into
the inequalities in ([B8II)-(8I3]). Since this transformation is a mixed-integer linear mapping
(see Section L)) plus a translation, the result follows. O

An immediate consequence is the following:

Corollary 8.11 Let XM¥ and Y be defined on the same vector b. The affine transforma-
tion BI4) maps conv (XM into

conv(Y)N{(0,2): 0<0; —00+b; < z for 1 <i<n}.
Proof. The result follows from Theorems and B.101 O

The above corollary shows that an external description of conv (X MFE ) can be obtained
from an external description of conv(Y).

Recall that Y is the intersection of n+1 mixing sets defined on distinct continuous variables
but sharing some of the integer variables. For the mixing set, both a compact extended
formulation and a linear inequality description in the original space are known: the former
was first obtained by Miller and Wolsey [45], the latter by Giinliikk and Pochet [31I]. Both
formulations were illustrated in Chapter [l

The following result of Miller and Wolsey [45] shows that the convex hull of the intersection
set Y is given by the intersection of the convex hulls of the single mixing sets.

Proposition 8.12 (Miller and Wolsey [45]) For 1 < j < m, let X]MIX be a mizing set.

XMIX
J

Assume that each set is defined on a distinct continuous variable o, while some or all

integer variables are in common. Define X* := ﬂgnzl X]MIX. Then

m
conv(X™) = ﬂ conv(XJMIX) .
j=1
It follows from Corollary and Proposition that an external description of the
polyhedron conv (X MFE ) in its original space can be obtained by writing the external descrip-
tions of all the polyhedra conv (X JM X ) together with the inequalities 0 < o; — g9 + b; < 2;
for 1 < ¢ < n and then applying the inverse of transformation (8I4]). Similarly, a compact
extended formulation of conv (X MFE ) can be obtained by writing the extended formulations
of all the polyhedra conv (X ]M X ) together with the inequalities 0 < 0; — 09 + b; < z; for
1 < i < n and then applying the inverse of transformation ([8I4]). The resulting extended
formulation uses (’)(nz) variables and constraints.
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8.2.3 A variant

Here for the purpose of comparison we examine the convex hull of a set closely related to
XMFE “Such a set is the relaxation obtained by dropping the nonnegativity constraints on the
flow variables y. The unrestricted mizing set with flows XYMF is the set:

z; integer, 1 <1< n.

Its convex hull turns out to be much simpler and in fact the unrestricted mixing set with flows
and the mixing set are closely related.

Proposition 8.13 For an unrestricted mizing set with flows XUMFE and the mizing set XMIX

defined on the same vector b,
Conv(XUMF) = {(s,y,z) (s,2) € conv(XMIX) s bi—s <y <z for1 <i< n} )

Proof. Let P := {(s,y,2) : (s,2) € conv(XMIX) b — s <y; < 2 for 1 <i<n}. The inclu-
sion conv(XUMF) C P is obvious. In order to show that P C conv(XYM) we prove that
the extreme rays (resp. vertices) of P are rays (resp. feasible points) of conv (XVMI).

The cone {(s,y,2) € Ry x R" xR} : —s < y; < 2, 1 <i < n} is the recession cone of
both P and conv (XUMF), thus P and conv (XUMF) have the same rays.

We now prove that if (5,7, z) is a vertex of P, then (5,7, Z) belongs to conv(XYMF). It is
sufficient to show that z is integer. We do so by proving that (5, 2) is a vertex of conv (XX,
If not, there exists a nonzero vector (u,w) € R x R such that (5,z) & (u, w) € conv(XMX)
and w; = —u whenever zZ; = b; — §. Define a vector v € R™ as follows: If y; = b; — 8, set
v; = —u and if §; = Z;, set v; = w;. (Since y; satisfies at least one of these two equations,
this assignment is indeed possible). It is now easy to check that, for e > 0 sufficiently small,
(8,9,2)xe(u,v,w) € P, a contradiction. Therefore (8, z) is a vertex of conv (XMIX) and thus
(5,2) € XMIX Then (5,7,2) € XYM and the result is proven. O

8.3 The continuous mixing set with flows

In this section we reconsider the continuous mixing set with flows introduced in Section 2.1}

s+ri+y = b, 1<i<mn,
vi < zi, 1<i<mn,
s>0,r, 20,y 20, 1<i<mn,
z; integer, 1<i<n,

where we assume without loss of generality 0 < b; < --- < b, (as all variables are nonnegative).
We write X“MF to denote this mixed-integer set.
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XCMF

The practical usefulness of in lot-sizing problems was discussed in Section £2.T],

where we showed that the convex hull of this set can be transformed into a dual network set
and thus admits a compact extended formulation (Proposition EL4). We propose here some

XCOMFE ) that are derived by

different compact extended formulations of the polyhedron conv(
using the approach sketched in Steps 1-4 at the beginning of this chapter.

For the set X¢MF studied here, the set Y of Steps 3-4 is an instance of the difference
set defined in Section 311 We propose three compact extended formulations for the convex
hull of this set and therefore we obtain three different compact extended formulations of the

XOMFE ) All formulations derived here are less compact than that given

XCMF)

polyhedron conv(
in Section .21l However the existence of a compact extended formulation of conv(
was first proven by using the approach presented here, when the generality of the results of
Chapter 2 was not clear.

Steps 1-2 of the process described at the beginning of the chapter are performed in Sec-
tion B2.T] while Steps 3—4 are the subject of Section 221

8.3.1 A relaxation

We introduce a mixed-integer set Z which is the following relaxation of the set XM

s+ i+ 2i > by, 1<i<mn, (8.15)
s+rjtyjtritz>b, 1<j<i<n, (8.16)
s+ri+y > b, 1<i<n, (8.17)
§20,7r,20,%z >0, 1<i<n, (8.18)
z; integer, 1<i<n (8.19)

Note that variables y; are not required to take a nonnegative value in Z.
The following lemma constitutes Step 1 of the process:

Lemma 8.14 Let X“MF and Z be defined on the same vector b. Then XCMF = 7
{(sarayaz) 1 0<y< 2}

Proof. Observe that for (s,y,r, z) € XME s 4pri4+2 > s+r;+y; > b; holds, so s+1;+2; > b;
is a valid inequality for X“M¥  Also, inequalities s + r; 4+ z; > b; and y;,7; = 0 imply that
s4+1j+y; +r;+ 2 > b is valid for X CMF Tnequalities z; > 0 follow from y; > 0 and y; < ;.
This proves that Z is a relaxation of XM

The only inequalities that define X¢M¥ but do not appear in the definition of Z are the

inequalities 0 < y < z, thus XMF = Z N {(s,r,y,2) : 0 <y < z}. O

Similarly to what we did in Section B.2.1], we prove here that conv (X CME ) = conv(Z)N
{(s,r,y,2) : 0 <y <z} (Step 2). To do this, we need to establish some properties of the
polyhedra conv (X CME ) and conv(Z). We start by characterizing their extreme rays.

XCMF)

Lemma 8.15 The extreme rays (s,r,y,z) of conv( are the following 3n + 1 wvectors:

(1,0,0,0); (0,e4,0,0), (0,0,0,¢;), (0,0,ej,e;) for1 <j<mn.
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The extreme rays (s,r,y,z) of conv(Z) are the following 3n + 1 vectors:
(1’0’ _15 O)a (0’0’ €i, O)’ (0’0’0) 6]'), (Oa €j, —€y4, 0) f01" 1< ] < n.

Proof. The first part is easy. We characterize the extreme rays of conv(Z). The recession
cone C' of conv(Z) is defined by

s+rj+yj+ri+zi20, 1<7<i1<n,
s+ri+y; >0, 1<e<n,
520,7%'20,2@'20, 1§Z§n

One can verify that the vectors p := (1,0,—1,0), u; := (0,e;,—¢;,0), v; := (0,0,¢;,0),
wj = (0,0,0,¢;) for 1 < j < n are extreme rays of conv(Z) by checking that each of them
satisfies at equality 3n linearly independent inequalities defining C'.

Thus we only have to show that every vector in C' can be expressed as conic combination
of the above rays. Let (8,7,7,Z) be in C. Note that

n n n
(5,7,9,2) = 8p+ Y _Tjuj+ Y (5475 +;)vj + Y Zjw;.
j=1 j=1 j=1
Since (5,7,9,2) € C, all the coefficients appearing in the above combination are nonnegative.
O

XCMF)

Corollary 8.16 The polyhedra conv( and conv(Z) are full-dimensional.

Proof. One can check that the extreme rays of conv(X“MF) (resp. conv(Z)) listed above are
linearly independent. This shows that the recession cone of conv(X“MF) (resp. conv(Z)) is
full-dimensional and the conclusion follows. 0

Lemma 8.17 Let (8,7,7,z) be a vertex of conv(Z) and let 1 < j <n. Then

§:max{0; bi—ﬁ—zitlgign},

gj:max{bj—g—fj; bi—g—fj—fi—§i21§j<i§n}.
Proof. Assume § > 0 and 5§+ 7, + Z; > b; for 1 < i < n. Then there exists € # 0 such that
(s,7,9,2) £e(1,0,—1,0) belong to conv(Z), a contradiction. This proves the first statement.

The second one is obvious. OJ

The following result is crucial for proving that conv(X“MF) = conv(Z)N{(s,r,y,2) : 0 <
y <z}

Lemma 8.18 Let (5,7,9,2) be a vertex of conv(Z). Then 0 <y < Z.
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Proof. Assume that {i : y; < 0} # & and let h = min{i : y; < 0}. Then §+ 7, > b, > 0 and
together with z, > 0, this implies s + 7, + Z5, > bp,-

CLAIM: 75, > 0.

PROOF. Assume 7, = 0. Then 5 > b, > 0. By Lemma BI7, 5+ 7; + z; = b; for some index
i. It follows that s < b;, thus i > h (as by, < 5 < b;). Equation s+ 7; + z; = b;, together with
S+ 7n+yn+ 7+ 2z > b;, gives T + yp > 0, thus 7, > 0, as g, < 0, and this concludes the
proof of the claim.

Inequalities 5+ 7y, + 2, > by, and 75 +y; > 0 for 1 < j < h imply §+7; +4; + 74 + 2, > by,
for 1 < j < h.

All these observations show the existence of an € # 0 such that both points (3,7, ¥
(0, ey, —ep, 0) belong to conv(Z), a contradiction to the fact that the point (s,7,7, 2z
vertex of conv(Z). Thus y > 0.

Suppose now that there exists A such that g, > z,. Then constraint s + r, + 2, > by
gives § + T + yp > bp. Lemma then implies that s + 7, + y, + 7 + 2z; = b; for some
¢ > h. This is not possible, as inequalities y, > 2z, > 0, 7, > 0 and 5+ 7; + 2z; > b; imply
S+ 7,4+ Tp+ 7 + 2 >b;. Thus § < z. O

We can now prove the main theorem of this subsection:

Theorem 8.19 Let XM and Z be defined on the same vector b. Then conv(XCMF) =
conv(Z) N {(5,7,,2) - 0<y < 2}.

XCMF) and

Proof. We prove the result by applying Corollary to the polyhedra conv(
conv(Z) and the system 0 < y < z. To do this, we show that the hypotheses of that corollary
are satisfied.

By Lemma RBI4] conv(X“MF) C conv(Z). By Lemmas and B4l every vertex of
conv(Z) belongs to conv (X M),

Let a = (h,d,p,q), with h € R, d € R", p € R", ¢ € R", be such that ponyxomry(a) is
finite and fieony(z) (@) = —o0. Since by Lemma [B.T3] the extreme rays of conv(Z) that are not
rays of conv(XCMF) are the vectors (0,0,¢e;,0) for 1 < j <n, (0,e;,—e€;,0) for 1 < j <nand
(1,0,—1,0), then either p; < 0 for some index j, or d; < p; for some index j, or b < 31" | p;.
Also note that h > 0, as otherwise fiyony(x1r) () = —00 because of ray (1,0,0,0).

If p; < 0 for some index j, then M, xomry(a) C{(s,7,y,2) : y; = z;}.

If dj < p; for some index j, then MCOHV(XCMF)((X) C {(s,r,y,2) : yj = 0}, otherwise, given
an optimal solution with y; > 0, we could increase r; by a small € > 0 and decrease y; by e,
thus obtaining a feasible point with lower objective value.

Ifh <> pi,let NT:={i:p; >0} We can assume that N* # &: if not, either there
is an index j such that p; < 0 (and we are in the first case above) or p; =0 for all 1 < j < n,
in which case we have h < 0, contradicting our assumption h > 0. Thus N # & and we can
safely define j := min{i : i € N*}. We show that M, ycury(a) C {(s,7,y,2) : y; = 0}.
Suppose that y; > 0 in some optimal solution. As the solution is optimal and p; > 0, we
cannot just decrease y; and remain feasible. Thus s +7; +y; = b;, which implies that s < b;.
Then for all ¢ € N* we have r; +y; > b, —s > b —b; > 0, as i > j. Since we can assume
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d; > p; for every i (otherwise we are in the previous case), r; = 0 for every i: if not, chosen
an index ¢ such that r; > 0, one can decrease r; by a small € > 0 and increase y; by ¢, thus
obtaining a feasible point with lower objective value, a contradiction. So r; = 0 for every i
and thus, since r; +; > 0 for all i € NT, we have y; > 0 for all i € N*. Then we can increase
s by a small e > 0 and decrease y; by € for all i € N*. The new point is feasible in X¢MF
and has lower objective value, a contradiction.

Therefore we have shown that for every vector a such that fieon,xcomr)(a) is finite and
feonv(z) (@) = —oo, the system 0 < y < z contains an inequality which is tight for the

XCMF)

points in Mgy xomry(a). To complete the proof, since conv ( is full-dimensional

(Corollary BI6]), the system 0 < y < z does not contain an inequality defining an improper
face of conv (X CMFE ) So we can now apply Corollary to the polyhedra conv (X CMFE ) and

conv(Z) and the system 0 <y < z. O

8.3.2 The difference set

We now arrive to Step 3 of the process, where a new mixed-integer set Y is introduced. In
our case Y is the difference set, which was also discussed in Section A3k

z; integer, 1<i<n. (8.22)

where 0 = bp < by < ... < b,. Note that this definition is equivalent to that given in
Section B3] because for j > ¢ the constraint oj 4 r; + 2; > b; — b; is redundant (as b; > b; and
all variables are nonnegative).

The theorem below shows that the polyhedra conv(Z) and conv(Y’) are equivalent via an
affine transformation (Step 3).

Theorem 8.20 Let Z and Y be defined on the same vector b. The affine transformation
00:=8; 0;,:=8+r;+y; —bj, zi: =z for1 <i<n (8.23)
maps conv(Z) into conv(Y').

Proof. 1t is straightforward to check that (823)) transforms the inequalities in ([8I5)—(8I9) into
the inequalities in (820)-(822]). Since this transformation is a mixed-integer linear mapping
(see Section L)) plus a translation, the result follows. O

An immediate consequence is the following:

Corollary 8.21 Let X“MF qnd Y be defined on the same vector b. The affine transforma-
tion (823) maps conv(X“ME) into

conv(Y)N{(o,7m,2):0<0; —og —1; +b; < zj for 1 <i<mn}.

Proof. The result follows from Theorems B.19] and 8.20 O
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XCOMF ) can be obtained

The above corollary shows that an external description of conv(
from an external description of conv(Y). Unfortunately, the convex hull of a set of the type
Y in its space of definition is not known. However there are several ways of giving a compact

extended formulation of conv(Y') (Step 4).

First approach: transforming Y into a dual network set

Recall that in Section 3] we showed that conv(Y’) admits a compact extended formulation, as
it can be transformed into a dual network set having a short complete list of fractional parts.

Thus that extended formulation yields a compact extended formulation for conv(X CMFE )

XOMF jtself can be transformed into a dual

This approach might appear quite odd, as the set
network set, thus it seems more convenient to write the corresponding extended formulation
directly for such set. Nonetheless this approach was adopted by Conforti, Di Summa and
Wolsey [12] to provide the first compact extended formulation for conv (X CMFE ), when the

generality of the results of Chapter 2] was not completely clear.

Second approach: formulating conv(Y) as a union of polyhedra

A second possible way of constructing a compact extended formulation of conv(Y') consists
in using the approach sketched in Section [L54], which exploits Balas’ result on the union of
polyhedra (Theorem [[3)). Such a technique was used by Atamtiirk [2] to model a simple set
and was discussed and demonstrated in a paper by Conforti and Wolsey [16].

Enumeration of fractional parts is still present in this formulation. However, the fractional
parts are listed in a way that is different from that considered in Chapter 2l To explain this,
let us consider the o-variables. Instead of giving a list of values containing all the fractional
parts taken by the o-variables over the set of vertices of conv(Y'), we provide a list of (n + 1)-
dimensional vectors F = {f!,..., f*} such that each vertex (&,7,z) of conv(Y) satisfies
(f(50),-.., f(Gn)) € F.

Such a list is given by the following result:

Proposition 8.22 Let (7,7,2) be a vertex of conv(Y). Then there exist two indices 0 < h <
¢ < n such that f(;) =0 for h < j <n and f(5;) = f(be — bj) for 0 < j < h.

Proof. Let (o,7,%) be a vertex of conv(Y), define a := maxj<j<,{bi — 7 — z;} and let
T, CA{1,...,n} be the subset of indices for which this maximum is achieved.

CrAaM 1: For each 1 < j <n, 6; = max{0,a — b; }.

PRrROOF. The inequalities that define Y show that 6; > max{0,a—b;}. If 5; > max{0,—b,},
then there is an € > 0 such that (7,7, %) £&(e;,0,0) are both in conv(Y’), a contradiction to
the fact that (g,7, z) is a vertex of conv(Y’). This concludes the proof of the claim.

Define h := min{j : « — b; < 0}. (This minimum is well defined: since the only inequality
involving o, is 0,, > 0, certainly &, = 0; then, by Claim 1, o — b, < 0.) Since 0 = by < by <
-+ < by, Claim 1 shows that ; > 0 for j < h and 6; = 0 for j > h and this proves part of
the proposition. Furthermore &; 4 7; 4+ 2z; = b; — b; for all j < h and i € Tj,.
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CLAIM 2: Either 7; = 0 for some i € T, or f(r;) = f(b; — by) for every i € T,.
PrOOF. We use the fact that (,7) is a vertex of the polyhedron:

Q::{(0,7“)ER?_—HXRTJLF:Uj—i-?“iZbi—bj—fif0r0§j<i§n}.

We now consider the following two cases:

CASE 1: o — b, < 0.

For j > h, the only inequality that is tight for (7,7) and contains o; in its support is o; > 0.
For j < h, the only inequalities that are tight for (¢,7) and contain o; in their support are
aj+ri2bi—bj—2¢ for i € Ty,.

Let ey be the (n + 1)-vector having the first A components equal to 1 and the others to 0,
let er,, be the incidence vector of T, and assume that 7; > 0 for all i € T,,. Then the vectors
(6,7) £e(em, —er,) for some e > 0 are both in @), contradicting the fact that (&,7) is a vertex
of Q). So 7; = 0 for some ¢ € T,.

CASE 2: o — by, = 0.

Then (o, 7, z) satisfies o), +7; + z; = b; — by, for all i € T,,. Since 7, = 0 and z; is integer, then
f(7) = f(b; — by) for all i € T}, and this completes the proof of Claim 2.

Assume 7; = 0 for some i € T,,. Since 6; +7; + 2 = b; — b; for all j < h and Zz; is an
integer, then f(G;) = f(b;i — b;) for all j < h. Note that if ¢ < h then o — by, > 0 and thus
(recalling that ¢ € T,) b; — 7; — Z; — by, > 0, which is not possible as b; < b, and 7, z; > 0.
Thus ¢ > h and the result holds with ¢ = 1.

If f(7;) = f(b; — bp) for all @ € T,,, since 6; + 7; + Z; = b; — b; for all i € T;, and for all
j < h and since Z is an integral vector, then f(d;) = f(by — b;) for all j < h. Then the result
holds with ¢ = h. O

A similar result can be proven for the variables ry:

Proposition 8.23 Let (7,7, %) be a vertex of conv(Y). Then there exist two indices 0 < ¢/ <
R <n such that f(7;) =0 for 1 <i <h' and f(7;) = f(bi — bp) for b’ <i<n.

Proof. We omit the proof, which is symmetric to that of Proposition 822, We only remark
that throughout the proof, the role of a variable o; is now played by the sum r; + z;: for
instance, one defines o/ := maxo<j<n{—b; — 7;} and then proves that for each 0 < i < n,
T+ 2z = max{O,a’—i—bZ-}. O

Let T be the set of quadruples of indices 7 = (h,¢,h',¢') with 0 < h < ¢ < n and
0<?¢ <h <n. Foreach 7 € T, let Y7 be the set of points (o,7,2) € Y for which the
values f(o;), f(r;) satisfy the properties of Propositions Note that every vertex of
conv(Y) belongs to Y7 for some 7 € T. Furthermore, it can be checked that the recession
cone of each polyhedron conv(Y") coincides with that of conv(Y). This is sufficient to see
that conv(Y) = conv (U, Y™). Then, if we give a formulation of conv(Y™) for each 7 € T,
Balas’ result (Theorem [[3]) will provide an extended formulation for conv(Y").
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Fix 7 = (h,¢,h/,¢') € T. Since the fractional part of each continuous variable is fixed in
Y™, we can model the continuous variables as shown below:

oj = pj+ fbe—bj), 0<j<h, (8.24)
oj = Uj, h<j<n, (8.25)
T = U, 1<i<h, (8.26)
ri=v;+ f(b; —by), h <i<n, (8.27)
W, v; integer, 0<j<n,1<i<n. (8.28)

Under the above conditions, inequalities (820)-([822) can be rewritten as follows:

pi v >bi—bj— f(bg—b;)— f(bi—bp), 0<j<h W <i<n,j<i,

pj+ v > by — by — f(by —bj), 0<j<h 1<i<HK, j<i,
pi+vi > by —bj — f(bi —by), h<j<n,h <i<n,j<i,
wi +vi > b —bj, h<j<n,1<i<Ph, j<i,
i >0, >0, 2 >0, 0<j<n,1<i<n,

z; integer, 1< <n.

Since the constraint matrix of the above system is totally unimodular and all variables are
integer, the convex hull is obtained by rounding up the right-hand sides and removing the
integrality restrictions. The resulting linear system, together with equations (824)(827)
(which define the original variables) is an extended formulation of conv(Y ™). By applying
Balas’result (Theorem [[3]) we obtain an extended formulation of conv(Y').

Third approach: a mixture of the above methods

When discussing the first approach to formulate conv(Y’), we pointed out that Conforti, Di

Summa and Wolsey used that technique in [I2], where the first compact extended formulation
XCOMF)

XCMF)

of conv( was given. In fact that paper describes two compact extended formulations

of conv( . The other formulation was given by using in a sense a mixture of the two

approaches illustrated above, as we now explain.

The first part of the process is as in the second approach above, except that only Propo-
sition is used. More specifically, let T be the set of pairs of indices 7 = (h,¢) with
0<h</{¢<n. Foreach e T,let Y be the set of points (o,r,z) € Y for which the values
f(oj) for 0 < j < n satisfy the properties of Proposition B22. As above, one can prove that
conv(Y) = conv({J,cp Y7). Then, if we give a formulation of conv(Y7") for each 7 € T, Balas’
result (Theorem [[3]) will provide an extended formulation for conv(Y).

Fix 7 = (h,f) € T'. Since the fractional parts of variables o; are fixed in Y7, we can model
these variables as shown below:

oj=pj+ fbe—1b;), 0<j<h, (8.29)
o5 = L), h <j<n, (8.30)
(i integer, 0<j<n. (8.31)
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Under the above conditions, inequalities (820)-([®22]) can be rewritten as follows:

pj+ i+ 2 >b—bj— f(by—0b;), 0<j<h 0<j<i<n, (8.32)
pi+ri+ 2z > by — by, h<j<n,0<j<i<n, (8.33)
p; >0, 1 >0, 2z >0, 0<j<n,1<i<n (8.34)
Wj, z; integer, 0<j<n,1<i<n. (8.35)

In [I2] the above system is strengthened in a way that is similar to that discussed in
ChapterlZlE for each 1 <7 < n, alist F; is given that contains all the fractional parts taken by
variable r; over the vertices of the convex hull of (832)—([&35). In other words, F; is complete
for the above mixed-integer set with respect to variable r;.

Lemma 8.24 The list of fractional parts F; := {0, f(b; — be)} U {f(b; —b;) : 0 < j < i} is
complete for (B32)—-(&3D) with respect to variable r;.

Proof. First of all note that the fractional part of the right-hand side of inequality (B.32)) is
f(b; —bg). Let (i,7,2) be a vertex of the convex hull of (832)-(835]). Since i and z are
integral vectors, if f(7;) were not in the list F; defined above then both points (i, 7 £ ce;, Z)
would satisfy (832)-(8350]) for some ¢ # 0. This contradicts the assumption that (z,7, 2) is a
vertex. U

For each index 1 < i < n, define fZJ i= f(bi —bj) for 0 < j <iand fi*h = f(b; — by), so
that F; = {fio, e ,ff“}. We model the r-variables as follows:

ri = v+ Yo fioE, 1< <, (8.36)
SOt =1,60>0, 1<i<n, 0<t<i+], (8.37)
vi, 0! integer, 1<i<n, 0<t<i+1. (8.38)

Under the above conditions and using Chvatal-Gomory rounding similarly to what we did in
the proof of Lemma 23] inequalities (832)—(833]) become

pitvi+t > Otz |bi—bi— flbe—b)|+1, 0<j<h 0<j<i<n, (839)
:£1> F(bi—by)

pitvit Y Oz > b —bi] 41, h<j<n, 0<j<i<n. (840)
1> (bi—b;)

Therefore the set Y7 is described by conditions (8:29)—([R.31), (36)-(B38) and (839)([R.40).

Proposition 8.25 The constraint matriz of the system comprising inequalities 83T) and

®39)-(B4Q) s totally unimodular.

?In fact the set defined by ([832)-(835) could be mapped into a dual network set. However we present the
result as in [12].
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Proof. Let A be the constraint matrix of the system comprising inequalities ([837]) and (8.39)—
[®A40Q). Order the columns of A according to the following ordering of the variables:

i+1, . 1 n+1
20T Zns Uny Oy a5 0

. 1 2. g2 3 sl
MOy - -5 M 213”17517517 Z21V27527527527 ey Z27V275i7"'

For each row of A, the 1’s that appear in a block [zi,yi,él ,5;“] are consecutive and

F
start from the first position. Furthermore, for each row of A only one of these blocks contains
nonzero elements.

Consider an arbitrary column submatrix of A. We give color red to all the p; (if any) and
then, for each of the blocks [zi, Vi, 0L, ..., 5Z:+1] , we give alternating colors, always starting with
blue, to the columns of this block that appear in the submatrix. Since this is an equitable
bicoloring, the result of Ghouila-Houri (Theorem [[T4]) shows that A is totally unimodular.

O

Since each variable o, r; is defined by the corresponding equation in (829)-(830) or (B34),
and does not appear in any other constraint, the above proposition implies that the integrality
requirements can be dropped. Thus inequalities ([829)—(&30), [B36)-B37) and (B39)—(&.40)
form an extended formulation of conv(Y ™). By applying Balas’result we obtain an extended
formulation of conv(Y).

To conclude, we point out that each of the three extended formulations of conv (X CME )

discussed here is less compact than that given in Section L2l In particular the formulation
obtained here by using the second approach is very large, as it uses (’)(nﬁ) variables and

constraints.



Chapter 9

Open problems

We conclude this dissertation by addressing some questions that remain unanswered.

In Chapter [2] we introduced a technique to construct extended formulations for mixed-
integer sets MI1X?TV whose constraint matrix is totally unimodular and contains at most two
nonzero entries per row. The technique is based on the explicit enumeration of all possible
fractional parts that the variables take at the vertices of conv (M 11X ZTU). As shown in Chap-
ter [ since there exist sets of the type MIX?TV that do not admit a complete list of fractional
parts whose size is compact, a formulation of this type might have exponential size.

A first natural question is then the following: Is it possible to modify our approach so that
a compact extended formulation is obtained even if no complete list for the set is compact? A
first failed attempt was briefly discussed in Section 242 but the answer to the above question
is not known.

We remark that even if no complete list for the set is compact, still we do have an extended
formulation for the set, as Lemma 2.IT] provides us with a list which is always complete.
Thus we can weaken the above question to the following: Is it possible to use our extended
formulation to optimize in polynomial time even if no complete list for the set is compact?

The inequalities constituting our formulation are explicitly given. The fact that the number
of these inequalities might be exponential is probably a minor issue, thanks to the equivalence
between separation and optimization (Theorem [[8). The major problem is the fact that the
number of variables can be exponentially large with respect to the original description of the
set. Nonetheless there is much structure in our extended formulation, so there may be a hope
to handle this problem.

This thesis contains no computational experiment. However this is also an aspect that
should be explored. As pointed out for instance in [7()], complicated mixed-integer sets can
be effectively tackled by constructing relaxations that have a simpler structure and then
tightening or reformulating such relaxations. As shown for instance in Chapter @], there are
several well studied simple-structured mixed-integer sets that are of the type MIX?TV  and
many others can probably arise in other contexts. It would be interesting to understand how
effective an extended formulation of our type can be when used to tighten a substructure of
a more complicated mixed-integer set. Also, it is not obvious how such a formulation should
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be used: one could for instance add all or only some of the inequalities of the formulation to
the original set, or use the extended formulation to separate.

Another interesting aspect is the following. Note that even if all complete list of frac-
tional parts for a set are non-compact, one can consider a short sublist and constructing the
corresponding extended formulation. By doing so, one obtains the description of a subset
(not a relaxation) of the convex hull of the original set. Can this idea be used to effectively
approximate a mixed-integer set of our family?

A question that arises naturally is about projections. It is probably hard to compute the
projection of our extended formulation onto the original space of variables in the general case.
Still, since such formulations have a common structure, there is a hope that the extended
formulations can be used to find some general properties of the facet-defining inequalities in
the original space. (However information about the convex hull in the original space can also
be found without using extended formulations or projections, as demonstrated in Chapters

and Bl)

Another question that we address concerns the possible generalizations of the approach
presented in Chapter Bl In Chapter [1 we considered two variants of a specific set M1X?TV
(namely the mixing set) obtained by multiplying the columns of the constraint matrix by some
constants. Under the assumption of divisibility, we could (non-trivially) extend the approach
presented in the previous chapters. It would be nice to understand whether a generalization
of this type is only possible for those specific sets, or the idea underlying our extension can
be pushed further.

Recall that we pointed out in Section [[.T.8 that for the formulations of Chapter [1 the
constraint matrix is not (in general) totally unimodular. In fact, the construction of integral
extended formulations was possible because of the presence of a single constraint for each
integer variable. It would be useful to remove this strong limitation.

Finally, we observe that the approach illustrated in Chapter [§] is somehow mysterious.
First, it is not clear to which class of sets it can be applied. Second, even restricting ourselves
to the cases studied in that chapter (i.e. the mixing set with flow and the continuous mixing
set with flows), it is difficult to see a rational criterion for choosing that relaxation Z rather
than another one (except for the a posteriori consideration that such a choice works!).
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