
UNIVERSITÀ DEGLI STUDI DI PADOVA

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica Pura ed Applicata

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE MATEMATICHE
INDIRIZZO MATEMATICA COMPUTAZIONALE
CICLO XX

Algorithms for the computation

of the joint spectral radius

Direttore della Scuola: Ch.mo Prof. Bruno Chiarellotto

Supervisore: Ch.mo Prof. Marino Zennaro

Dottoranda: Cristina Vagnoni

DATA CONSEGNA TESI
31 Gennaio 2008

Alla mia famiglia.

Gli algoritmi sono istruzioni
per eseguire un compito:
persino il computer più potente
ha bisogno di buoni algoritmi.

Gian-Carlo Rota

Introduzione

I sistemi dinamici lineari discreti, della forma

x(i+1) = A(i)x(i), i = 0, 1, 2, . . . (1)

dove il vettore iniziale x(0) e le matrici A(i) ∈ Cn×n, i = 0, 1, 2, . . . , sono assegnate, risultano essere
molto importanti in diversi campi della matematica applicata quali, ad esempio, Ingegneria,
Fisica, Biologia e Chimica. Molte volte può risultare più conveniente analizzare processi continui
mediante le corrispondenti versioni discrete che risultano essere, sostanzialmente, della forma
(1). Un aspetto cruciale di un sistema dinamico lineare è costituito dalle sue proprietà di stabilità,
ossia, dall’andamento asintotico delle sue soluzioni che, per un fissato punto iniziale x(0), sono
esprimibili come

x(i+1) = P(i)x(0) , P(i) = A(i) · · ·A(0).

Risulta quindi chiaro come il prodotto delle matrici della famiglia F = {A(i)}i≥0 giochi un ruolo
essenziale nel comportamento del sistema dinamico lineare. Più precisamente, definendo il raggio
spettrale della famiglia F come

ρ(F) = lim sup
k→+∞

ρk(F), ρk(F) = sup
P∈Σk(F)

ρ(P),

dove Σk(F) = {P ∈ Cn×n : P =
∏k

l=1 A(il)}, è noto che la stabilità asintotica è garantita dalla
condizione ρ(F) < 1. Perciò, per quanto appena detto, si è naturalmente condotti al calcolo del
raggio spettrale della famigliaF . Questo compito non è semplice, ma è comunque una importante
strategia che permette di analizzare la stabilità del sistema.

Il raggio spettrale di una famiglia di matrici F , introdotto per la prima volta da Rota e Strang
[RS60] negli anni 60, ha portato ad una serie di risultati teorici reperibili in letteratura. Una
delle questioni teoriche più importanti affrontate negli ultimi anni e relativa a famiglie finite, è
la Congettura di Finitezza, introdotta da Lagarias e Wang [LW95], e successivamente dimostrata
essere falsa nel caso generale, prima da Bousch e Mairesse [BM02] e poi da Blondel, Theys e

Vladimirov [BTV03], ma vera per alcune classi di matrici. È possibile interpretare praticamente
tale congettura nel seguente modo: tra tutti i possibili sistemi dinamici (2) che possono essere
definiti usando le matrici di una famiglia finita F , quelli che generano traiettorie con la massima
crescita sono di tipo periodico (ossia, la successione {A(i)}i≥0 è periodica).

In letteratura si possono trovare anche alcuni risultati per il calcolo e l’approssimazione diρ(F).
Tra questi, un primo tipo di algoritmi si basa sulla definizione di raggio spettrale e fornisce un
intervallo, arbitrariamente piccolo, contenente ρ(F) (vedi, ad esempio, Gripenberg [Gri96]). Un
altro tipo di algoritmi usa invece l’idea di norma estremale ‖ · ‖∗. In particolare, è stato dimostrato
che, sotto opportune condizioni sulla famiglia, si ha che ρ(F) = ‖F ‖∗ per una appropriata norma
‖ · ‖∗ la cui palla unitaria è un politopo complesso bilanciato (vedi Guglielmi, Wirth and Zennaro
[GWZ05]). Per implementare in modo efficiente questo secondo tipo di algoritmi che sfruttano
norme politopiche complesse, è cruciale avere a disposizione algoritmi efficienti per la construzione,
intesa come rappresentazione geometrica, dei politopi complessi bilanciati e per il calcolo delle
relative norme. Per questi motivi, il presente lavoro di tesi è stato indirizzato allo sviluppo di tali
strumenti computazionali.

ii

Questo ha richiesto lo studio teorico dei politopi complessi bilanciati in Cn, che ha portato,
in primo luogo, ad osservare che la complessità della geometria di tali oggetti cresce con la
dimensione n dello spazio. Per questo motivo, nel presente lavoro, ci si è limitati ad esaminare la
loro rappresentazione geometrica in C2. Nel dettaglio, il lavoro di tesi è cosı̀ suddiviso.

Nel primo capitolo abbiamo richiamato la definizione di raggio spettrale di una famiglia di
matrici e riportato i più importanti risultati teorici noti in letteratura.

Nel secondo capitolo abbiamo riportato in modo dettagliato le due tipologie di algoritmi sopra
menzionate per il calcolo numerico di ρ(F).

Nel terzo capitolo abbiamo fornito risultati teorici originali inerenti la geometria di politopi
complessi bilanciati bidimensionali, al fine di presentare due algoritmi, di cui uno fornisce la
loro rappresentazione geometrica in C2 e l’altro permette di calcolare la relativa norma politopica
complessa.

Infine, nel quarto ed ultimo capitolo abbiamo elaborato alcune strategie che, in media, rendono
i precedenti algoritmi più efficienti. Tali strategie si basano sull’idea di cono limite usata nel metodo
Beneath–Beyond per costruire politopi reali. L’incremento delle prestazioni degli algoritmi,
ottenuto utilizzando tali strategie, è confermato da alcuni test numerici riportati alla fine del
presente capitolo.

In definitiva, in questo lavoro di tesi abbiamo esposto i primi risultati teorici originali che for-
niscono una completa descrizione della geometria dei politopi complessi bilanciati in C2. Inoltre,
alla luce di questi risultati, abbiamo presentato due algoritmi efficienti, uno per la costruzione di
tali politopi e l’altro per il calcolo della relativa norma politopica complessa di un vettore z ∈ C2.

Contents

Introduction 1

1 The spectral radius 3
1.1 Motivations . 3
1.2 The joint spectral radius . 4
1.3 Finiteness Conjecture and Normed Finiteness Conjecture 8

2 The computation of the joint spectral radius 13
2.1 Lower and upper bounds for the joint spectral radius 13
2.2 Balanced complex polytopes . 17
2.3 Complex polytope norms . 21
2.4 The computation of the joint spectral radius using complex polytope norms 23

3 The construction of a balanced complex polytope in C2 29
3.1 The construction of symmetric real polytopes . 29
3.2 The construction of balanced complex polytopes (b.c.p.) 32

3.2.1 Two-vertex b.c.p.’s . 33
3.2.2 Three-vertex b.c.p.’s . 36
3.2.3 The general case . 43
3.2.4 An algorithm for the construction of a 2-d b.c.p. 59

3.3 Computation of the complex polytope norm . 62
3.3.1 An algorithm for the computation of the complex polytope norm 66

4 Improving the algorithms 69
4.1 The improved procedure for the construction of a b.c.p. 69
4.2 Expected results for Algorithm 4.1 and numerical experiments 77
4.3 The improved procedure for the computation of the norm 92
4.4 Expected results for Algorithm 4.2 and numerical experiments 94

Bibliography 106

iv CONTENTS

Introduction

The knowledge of discrete linear dynamical systems of the kind

x(i+1) = A(i)x(i), i = 0, 1, 2, . . . (2)

where x(0) is given and A(i) ∈ Cn×n, i = 0, 1, 2, . . . , are given matrices, is of great importance in
many fields of applied mathematics, such as Engineering, Physics, Biology, Chemistry, etc. We
note that sometimes, it may be more convenient to perform the analysis of continuous processes
on the corresponding discretized ones which are, substantially, of the form (2). A crucial aspect
related to a discrete linear dynamical system is its stability properties, that is, the asymptotic
behaviour of its solutions. For a given starting point x(0), they are given by

x(i+1) = P(i)x(0) , P(i) = A(i) · · ·A(0).

Therefore, it is clear that the products of the matrices of the family F = {A(i)}i≥0 play an essential
role in the behaviour of the linear system. Indeed, by defining the spectral radius of the family F
as

ρ(F) = lim sup
k→+∞

ρk(F), ρk(F) = sup
P∈Σk(F)

ρ(P),

where Σk(F) = {P ∈ Cn×n : P =
∏k

l=1 A(il)}, we have that the asymptotic stability is guaranteed if
ρ(F) < 1. So, we are naturally led to the computation of the spectral radius of F . This is not an
easy task at all, but it suggests an important way to approach the stability question.

From a historical point of view, the spectral radius of a family of matricesF was first introduced
by Rota and Strang [RS60] in the 60’s. Since then, in literature many theoretical results have been
given. One of the most important theoretical issues regarding finite families is the Finiteness
Conjecture, introduced by Lagarias and Wang [LW95] and, later proved to be false in general, first
by Bousch and Mairesse [BM02] and then by Blondel, Theys and Vladimirov [BTV03], but true
for some classes of matrices. A practical interpretation of this conjecture is the following: among
all the possible dynamical systems (2) that can be defined by using the matrices of a finite family
F , those which give rise to trajectories with the maximum growth rate are of a periodic type (i.e.
the sequence {A(i)}i≥0 is periodic).

In literature we can also find some results on the computation and the approximation of ρ(F).
Gripenberg [Gri96] has proposed an algorithm which finds both upper and lower bounds for
ρ(F). Another kind of algorithm uses the idea of extremal norm ‖ · ‖∗. In particular, it can be
proved that, under suitable conditions on the family, ρ(F) = ‖F ‖∗ for an appropriate norm ‖ · ‖∗
whose unit ball is a balanced complex polytope (see Guglielmi, Wirth and Zennaro [GWZ05]). For
the efficient implementation of the algorithms that use such complex polytope norms, it is crucial to
have at our disposal efficient algorithms for the construction (i.e. for the geometric representation)
of balanced complex polytopes, and for the computation of the related norms. For these reasons
we have decided to address our thesis work to the development of such computational tools.

In order to succeed in our purpose, we first needed to get a deeper theoretical knowledge of the
balanced complex polytopes. However, due to the extreme increase in complexity of the geometry
of such objects with the dimension n, we have confined ourselves to face the two-dimensional
case.

2 CONTENTS

The plan of the present work is as follows.
In the first chapter, we define the spectral radius of a family of matrices and review the most

important known theoretical results.
In the second chapter, we recall, in detail, the already mentioned algorithms for the numerical

computation of ρ(F).
In the third chapter, we give original theoretical results on the geometry of two-dimensional

balanced complex polytopes in order to present our algorithms for their construction in C2 and
for the computation of the related complex polytope norms.

In the fourth chapter, we elaborate some strategies which, in the average case, give rise to
much more performing versions of the previous algorithms. These strategies are based on the
limit cone idea employed in the well known Beneath -Beyond method used in the real case. The
speed-up obtained by these improvements is confirmed by the numerical tests reported at the
end of the chapter.

To summarise, in this thesis we have presented the first efficient algorithm for the construction
of a balanced complex polytope P in C2 which completely describes the geometry of P. Further-
more, we have also presented the first efficient algorithm to compute the complex polytope norm
of a vector z ∈ C2 starting from the knowledge of the boundary of the corresponding unit ball.

Chapter 1

The spectral radius

In this chapter we give some motivations and introduce some basic definitions that are used
throughout the rest of the work. We start with the concept of family of matrices and the related
definitions of generalised and joint spectral radius. Then we give a characterisation of the spectral
radius of a family and we recall some preliminary results from literature. Finally we show two
important issues arising in the computation of the radius, i.e., the finiteness conjecture and the
normed finiteness conjecture. Both are false in general, but true for some classes of matrices and
norms which are introduced at the end of the chapter.

1.1 Motivations

The work of this thesis is motivated by the study of the stability of linear discrete dynamical
systems

{

x(i+1) = A(i)x(i) , i ≥ 0
x(0) given

, (1.1)

where A(i), i = 0, 1, 2, . . . , are square n × n real matrices, and F = {A(i)}i≥0 denotes its associated
family of matrices. We note that the previous system defines a sequence in Rn, where the given
vector x(0) acts as the starting point. Easily, we can see that x(i+1) = P(i)x(i), where P(i) = A(i) . . .A(0).
Thus, it is not surprising that the properties of the products of the elements of the family F will
play an important role in the behaviour of the discrete linear dynamical system.

Systems of the type (1.1) are used to model many phenomena in Engineering, Physics, Chem-
istry and so on. They may also arise as discretizations of continuous models. Furthermore, they
may be obtained from linear difference equations with variable coefficients of the kind

yi+k = αi,k−1yi+k−1 + αi,k−2yi+k−2 + · · · + αi,0yi , k ∈N, (1.2)

which, in turn, may come from a discretization of ordinary differential equations by means of a
numerical method. Indeed, equation (1.2) can be written in the form

y(i+1) = A(i)y(i), i = 0, 1, . . .

where

y(i+1) =





















yi+k

yi+k−1

...yi+1





















, y(i) =





























yi+k−1

yi+k−1

...
yi





























, A(i) =







































αi,k−1 αi,k−2 . . . αi,1 αi,0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0







































. (1.3)

4 T  

We recall that the matrices A(i), i = 0, 1, . . . in (1.3) form the sequence of the companion matrices
associated with the difference equation (1.2).

One of the most important features of a linear discrete system is its stability properties.
Roughly speaking, the stability describes the behaviour of the solutions of the system (1.1) for
large values of the index i. More precisely, we have the following definition.

Definition 1.1. An n-dimensional linear discrete dynamical system is said to be stable if, for a given
norm ‖ · ‖ in Rn, there exists a positive constant C such that ‖x(i)‖ ≤ C, i ≥ 0, for all initial values x(0).
Furthermore, if

lim
k→∞
‖x(i)‖ = 0,

then the system is said to be asymptotically stable. Finally, if the system is not stable, then it is said to
be unstable.

As is well known, the stability of system (1.1) is equivalent to the uniform boundedness of the
sequence of products A(k) . . .A(0), k = 0, 1, . . . , whereas the asymptotic stability is equivalent to

lim
k→∞

k
∏

i=0

A(i) = O. (1.4)

As we shall see in the next section, sufficient conditions for stability and asymptotic stability are
related to the spectral radius of the family F = {A(i)}i≥0.

Moreover, the spectral radius of a family of matrices is a tool that may be used in other
mathematical fields like, for example, wavelets, system approximation and control theory [BM96,
BT79, Mae98]. All these applications are of great practical relevance.

Unfortunately, the computation of ρ(F) is, in general, a very difficult task. So, it is of high
interest to improve the knowledge of the spectral radius both theoretically and computationally,
and this is the main purpose of this work.

1.2 The joint spectral radius

A family of matrices is nothing but a set of matrices. Nevertheless, since it is a basic tool of this
work, we prefer to define it precisely.

Definition 1.2 (matrix family). LetKn×n be the vector space of the square n×n matrices whose elements
are inK . Then, any subset of Kn×n is called a family of matrices and is denoted by F . That is,

F = {A(i)}i∈I, (1.5)

where I is a possibly infinite set of indexes.

In this work we use the two special cases: K = R, i.e., the matrices are real, or K = C, i.e., the
matrices are complex.

Clearly, to specify a family of matrices we have to give all its elements. This can be done in an
explicit way or by giving a rule to construct each of them. The number of elements of the family
F may be finite or (possibly countable) infinite.

For a family of n × n complex matrices F = {A(i)}i∈I, where I is a, possibly infinite, set of
indexes, the set of all the possible matrix products of length k whose factors are in F is denoted
by Σk(F). That is,

Σk(F) =















P ∈ Cn×n : P =

k
∏

l=1

A(il), il ∈ I














. (1.6)

For k = 0, we assume Σk(F) = {In}, where In is the identity matrix of order n.

1.2 T    5

Example 1.1. Consider the family F = {A(1),A(2),A(3)}. We have

Σ1(F) = F ,

and, recalling that the matrix product is non–commutative,

Σ2(F) =
{

(A(1))2, (A(2))2, (A(3))2,A(1) · A(2),A(1) · A(3),

A(2) · A(3),A(2) · A(1),A(3) · A(2),A(3) · A(1)
}

,

and so on. It is interesting to note that the number of elements of Σk(F) grows exponentially with
k. ^

Remember that for a single square matrix A, as usual, ρ(A) denotes the spectral radius of A,
that is

ρ(A) = max
{

|λ j|, λ j ∈ EA

}

,

where |λ| is the modulus of the (possibly) complex number λ and EA is the set of the eigenvalues
of A. Since ρ(Ak) = [ρ(A)]k for all k ≥ 1, it holds that

ρ(A) = lim
k→∞
ρ(Ak)1/k. (1.7)

Nevertheless, given a vector norm ‖ · ‖ on Cn, if we consider the induced matrix norm, denoted
with the same symbol ‖ · ‖ and defined as

‖A‖ = sup
‖x‖=1

‖Ax‖, (1.8)

the Gelfand Formula

ρ(A) = lim
k→∞
‖Ak‖1/k (1.9)

holds.
In order to generalise the properties (1.7) and (1.9) to a family of matrices F , we give the

following definitions.

Definition 1.3 (Generalized spectral radius). Let F = {A(i)}i∈I be a family of complex n × n matrices.
Setting for each k ≥ 0

ρk(F) = sup
P∈Σk(F)

ρ(P), (1.10)

the generalised spectral radius of the family F is the non-negative real number

ρ(F) = lim sup
k→∞

[

ρk(F)
]1/k

(1.11)

(see Daubechies and Lagarias [DL92]).

Definition 1.4 (Joint spectral radius). Let F = {A(i)}i∈I be a family of complex n × n matrices and let
‖ · ‖ be some matrix norm. Setting for each k ≥ 0

ρ̂k(F) = sup
P∈Σk(F)

‖P‖, (1.12)

the joint spectral radius of the family F is the non-negative real number

ρ̂(F) = lim sup
k→∞

[

ρ̂k(F)
]1/k

(1.13)

(see Rota and Strang [RS60]).

6 T  

Note that the two definitions are quite similar; in the definition of the spectral radius we use the
concept of spectral radius of a matrix whereas for the definition of the joint spectral radius we use
some matrix norm. This is the only difference between the two definitions. Regardless of their
simplicity, the computation of one or both of the generalised or the joint spectral radius is, in the
general case, a very massive task. However, recently it has been shown that the two spectral radii
are equal, as stated by the following theorem, which represents the generalisation of the Gelfand
Formula (see Berger and Wang [BW92], Elsner [Els95], Shih, Wu and Pang [SWP97], and Shih
[Shi99]).

Theorem 1.1. Let F = {A(i)}i∈I be a finite family of complex n × n matrices and let ‖ · ‖ be some matrix
norm. Then

ρ(F) = ρ̂(F).

As a consequence of this theorem, for a finite family of matrices, we can define the spectral
radius of the family ρ(F) as

ρ(F) = ρ(F) = ρ̂(F). (1.14)

Let us give a very simple example.

Example 1.2. Consider the single family F = {A}, where A is the real 2 × 2 diagonal matrix with
eigenvalues λ1 = 2 and λ2 = 3, that is A = diag(2, 3). Then, for any non-negative integer k, we
have

Σk(F) = {Ak} ⇒ ρk(F) = ρ(Ak) = 3k,

since Ak = diag(2k, 3k). Thus,

ρ(F) = lim sup
k→∞

[

ρk(F)
]1/k
= 3.

In the same way, using, for example, the Euclidean norm, we have

‖Ak‖2 =
√

ρ(Ak(Ak)T) = 3k

from which it follows immediately that ρ̂(F) = 3. Note that both the spectral radii are equal to
each other, as stated by the previous Theorem 1.1 and, furthermore, to the spectral radius of A. ^

Now we give a further characterisation of the spectral radius of a bounded familyF = {A(i)}i∈I.

Definition 1.5. Given a norm ‖ · ‖ on the vector space Cn and the corresponding induced n × n-matrix
norm the norm of the family F is

‖F ‖ = ρ̂1(F) = sup
i∈I
‖A(i)‖.

The following result can be found, for example, in [RS60] and in [Els95].

Theorem 1.2. The spectral radius of a bounded family F of complex n × n-matrices is characterised by
the equality

ρ(F) = inf
‖·‖∈N
‖F ‖, (1.15)

whereN denotes the set of all possible induced n × n-matrix norms.

Given a family F , it is important to know whether or not the inf in (1.15) is actually attained
by some induced matrix norm. To this purpose, we recall the following definition.

Definition 1.6. We shall say that a norm ‖ · ‖∗ satisfying the condition

‖F ‖∗ = ρ(F)

is extremal for the family F .

1.2 T    7

It is well known that, for a single family F = {A}, the existence of an extremal norm is
equivalent to the fact that the matrix A is non-defective, that is, all of the blocks relevant to the
eigenvalues of maximum modulus are diagonal in its Jordan canonical form; in other words, all
the eigenvalues of maximum modulus are non-defective, that is, their geometric and algebraic

multiplicities are equal. Whenever ρ(A) > 0, setting Â = ρ(A)−1A, another property equivalent to

the definition of non-defective matrix is that the power set Σ(Â) = {Âk | k ≥ 1} is bounded.
These results generalise to a bounded familyF = {A(i)}i∈I of complex n×n-matrices as follows.

Given a bounded family F with ρ(F) > 0, let us consider the normalised family

F̂ = {ρ(F)−1A(i)}i∈I,

whose spectral radius is ρ(F̂) = 1, and the semigroup of matrices generated by F̂ , i.e.,

Σ(F̂) =
⋃

k≥1

Σk(F̂).

Definition 1.7. A bounded familyF of complex n×n-matrices is said to be defective if the corresponding

normalised family F̂ is such that the semigroup Σ(F̂) is an unbounded set of matrices. Otherwise, if Σ(F̂)
is bounded, then the family F is said to be non-defective.

Remark that the definition of non-defective family does not directly involve the spectral
properties of its elements.

The following result can be found, for example, in [BW92].

Proposition 1.1. A bounded family F of complex n × n-matrices admits an extremal norm ‖ · ‖∗ if and
only if it is non-defective.

Moreover, if F is non-defective, any given norm ‖ · ‖ on Cn determines the extremal norm

‖x‖∗ = sup
k≥0

sup
P∈Σk(F)

‖Px‖
ρ(F)k

. (1.16)

Corollary 1.1. A bounded family F of complex n × n-matrices is non-defective if and only if there exists
an induced norm ‖ · ‖∗ such that

ρ̂k(F) = ρ(F)k ∀ k ≥ 0. (1.17)

From Proposition 1.1 it turns out that, for a non-defective family, each vector norm ‖ · ‖
canonically determines an extremal norm. However, although (1.16) gives a constructive way
of finding an extremal norm, its importance is mainly theoretical since it is often useless from a
practical point of view.

Now, we consider non-defective bounded families F of complex n × n-matrices and recall
some properties of extremal norms. The next result is an easy consequence of Definition 1.6.

Lemma 1.1. LetF be a non-defective bounded family of complex n×n-matrices and let ‖ ·‖∗ be an extremal
norm for F . Then, for each k ≥ 1, it holds that

‖P‖∗ ≤ [ρ(F)]k ∀P ∈ Σk(F).

This Lemma and the submultiplicative property of the induced matrix norms yield immedi-
ately the following result.

Lemma 1.2. LetF be a non-defective bounded family of complex n×n-matrices and let ‖ ·‖∗ be an extremal
norm for F . If P ∈ Σk(F) and Q ∈ Σh(F) are such that ‖PQ‖∗ = ρ(F)k+h, then they satisfy the equalities
‖P‖∗ = ρ(F)k and ‖Q‖∗ = ρ(F)h.

Going back to consider the linear system (1.1), from the foregoing theory it is easy to obtain the
following result, which relates the stability of a linear discrete dynamical system to the spectral
radius of its associated family F .

8 T  

Theorem 1.3. The system (1.1) is asymptotically stable if its associated family F = {A(i)}i≥0 is such that
its spectral radius satisfies the condition

ρ(F) < 1

and is stable if
ρ(F) = 1 and F admits an extremal norm ‖ · ‖∗.

1.3 Finiteness Conjecture and Normed Finiteness Conjecture

For a general family of matrices F , we are not able to compute its spectral radius in an explicit
way. Let us, for example, look at the computation of ρ(F). The main problem is to find an explicit
formula for ρk(F), k ∈ N. Indeed, if we can overcome such a problem, then the limit (1.11) may
be computed both analytically or via some numerical tool. Unfortunately, the determination of
an explicit formula for ρk(F) is, in general, a very difficult task. It seems to be better if we know

the existence of an integer k̂ such that ρ(F) = ρk̂(F). In such a case, from a theoretical point of

view, we may consider all the possible matrices in Σk(F), k ≤ k̂, computing their spectral radius
and finding the corresponding maximum value. Clearly, since the cardinality of Σk(F) grows
exponentially with k, this is not a realistic algorithm at all. However, there are other kinds of
algorithms which may work well in these conditions. We will see some of them later on in this
work. Furthermore, in many important cases the previous situation occurs and so it was firstly
conjectured to be true at least for finite families. This was shown later on not to be the case,
but, in a first moment, the two following statements, known as the Finiteness Conjectures and
the Normed Finiteness Conjecture, were proposed. Note that the name conjecture given to these
two statements is only for historical purpose, since both conjectures have been proved, in recent
years, to be false.

Conjecture 1.1 (Finiteness Conjecture). LetF = {A(i), i ∈ I} be a finite family of complex n×n matrices.
Then, there exists a finite, positive, integer k such that

ρ(F) =
[

ρk(F)
]1/k
.

Conjecture 1.2 (Normed Finiteness Conjecture). Let ‖ · ‖ be some matrix norm. Consider the finite
family of complex n × n matrices F = {A(i), i ∈ I}. Assume ‖A(i)‖ ≤ ρ(F), i ∈ I. Then, there is a finite,
positive, integer k such that

ρ̄(F) =
[

ρ̄k(F)
]1/k .

Note that for a normalised family the non-defectiveness property is equivalent to ‖A(i)‖ ≤ 1,
1 ≤ i ≤ m, for some matrix norm ‖ · ‖.
Both conjectures claim the existence of a finite integer k which may be used to compute the spectral
radius of the family F considering only ρk(F). This is a great advantage since we deal only with
the computation of the spectral radius of the finite number of products belonging to Σk(F). The
two conjectures are equivalent to each other, as stated by the following theorem.

Theorem 1.4. The finiteness Conjecture is true for any finite family of matricesF if and only if the normed
Finiteness Conjecture is true for any norm ‖ · ‖.

A practical interpretation of these conjectures is given by the following remark.

Remark 1.1. The Finiteness Conjecture may be practically interpreted as follows: among all the possible
dynamical systems (1.1) that can be defined by using the matrices of a finite familyF , those which give rise
to trajectories with the maximum growth rate are of periodic type (i.e. the sequence {A(i)}i≥0 is periodic).

As said before, the Finiteness Conjecture was proved to be false first by Bousch and Mairesse
[BM02] and, later, by Blondel, Theys and Vladimirov [BTV03]. Indeed, it was disproved first
using the following counterexample.

1.3 F C N F C 9

Example 1.3 (Finiteness Conjecture Disproving). Consider the family of matrices

Fα =
{[

1 1
0 1

]

, α

[

1 0
1 1

]}

where α ∈ R. Then there are uncountably many real values of the parameter α for which the
Finiteness Conjecture is not satisfied by the corresponding family Fα. ^

The proof of the previous example is not constructive and, at present, no explicit value of the
parameter α for which the Finiteness Conjecture fails is known.

However, we can easily find finite families of matrices for which the previous conjecture is
satisfied, as we can see in the following example.

Example 1.4. Consider the following family of two 2 × 2 matrices F = {A1,A2}, where

A1 =

(

1 0
0 1

)

, A2 =

(

1 1
0 1

)

.

We can easily check that, for all k∗ ≥ 1, P̄ ∈ Σk∗(F) is given by

P̄ = Ak1

1
Ak2

2
= Ak2

2
=

(

1 k2

0 1

)

,

where k1 ≥ 0 and k2 ≥ 0 are, respectively, the numbers of occurrences of A1 and A2 in P̄, and
satisfy k1 + k2 = k∗. Since both the eigenvalues of P are equal to 1, then ρ̄k∗ (F) = 1 = ρ(F), and so
the family F satisfies the Finiteness Conjecture for each k∗ ≥ 1. ^

As a consequence of Theorem 1.4, also the Normed Finiteness Conjecture is false. However,
in the article of Lagarias and Wang [LW95] this Normed Finiteness Conjecture was proved to
be correct for large classes of operator norms. Furthermore, for some of these norms, an upper

bound for the k such that ρ(F) =
[

ρk(F)
]1/k

is also given. However, these bounds are somewhat

unrealistically large and complex to obtain; so, we do not report them here. Instead, we give
some more details on these norms. Before doing so, we note that a given family of matrices F
may satisfy the finiteness conjecture. In this case we say that this family has the finiteness property.

Definition 1.8 (piecewise analytic norm). A norm ‖ · ‖ onRn is a piecewise analytic norm if its unit ball
B = {x ∈ Rn : ‖x‖ = 1} has the boundary ∂B ⊆ Z f , whereZ f = {z ∈ Cn : f (z) = 0} for some holomorphic
function f : Cn → C such that f (0) , 0.

Definition 1.9 (piecewise algebraic norm). A norm ‖ · ‖ on Rn is a piecewise algebraic norm if its unit
ball B = {x ∈ Rn : ‖x‖ = 1} has the boundary ∂B ⊆ Zp, where Zp = {z ∈ Cn : p(z) = 0} for some
polynomial p : Cn → C such that p(0) , 0.

From the previous two definitions it is clear that a piecewise algebraic norm is also a piecewise
analytic norm, since a polynomial function is a holomorphic function, too.

Definition 1.10 (Polyhedron and polytope inRn). Consider a point b ∈ Rn and a real matrix A ∈ Rm×n.
A polyhedron P in Rn is defined by

P = {x ∈ Rn : Ax ≤ b},
where the inequality is understood componentwise.

If the set P is bounded we have a real polytope (see Ziegler [Zie95] and Grünbaum [Grü67]).

It is worthwhile to note that a polyhedron may be an unbounded set of Rn. Furthermore, it is a
convex set since it is the result of the intersection of m semi-spaces, which are convex subsets of
Rn. An example 1 of a classic polytope, an icosahedra, is shown in Figure 1.1.

1This figure is taken from ’http://members.aol.com/Polycell/regs.html’.

10 T  

50 100 150 200 250 300

50

100

150

200

250

Figure 1.1: An icosahedra, a classic, convex, polytope.

Definition 1.11 (polytope norm). A norm ‖ · ‖ on Rn is a polytope norm if its unit ball B is a polytope.

Note that the ‖ · ‖1 and ‖ · ‖∞ are two classic and simple examples of polytope norms. See Figure
1.2 for a sketch of the corresponding unit balls inR2. Furthermore, from the same figure, we may
see that the Euclidean norm ‖ · ‖2 is not a polytope norm, since its boundary is not the union of
a finite set of segments (in the general case of Rn, of pieces of hyperplanes) but is a continuous
curve.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

B
1

B
2

B∞

Figure 1.2: The unit balls in R2 for the the three norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ (blue, black and red
lines, respectively).

We have the following theorem.

Theorem 1.5. Let F = {A(i)}i∈I be a finite family of real n × n matrices. Then, the Normed Finiteness
Conjecture in true for the matrix norm ‖ · ‖ associated with any of the following norms:

1.3 F C N F C 11

• piecewise analytic norms;

• piecewise algebraic norms;

• polytope norms

• Euclidean norms.

In the case of the polytope norms, we can give a simple upper bound for the positive integer k̂ for
which ρ(F) = ρk̂(F).

Theorem 1.6. Let F = {A(i)}1≤i≤m be a finite family of real n × n matrices which satisfies ‖A(i)‖ ≤ ρ(F)
for the polytope norm ‖ · ‖ with a polytope B as the corresponding unit ball. Then

k̂ ≤ 1

2

n−1
∑

i=0

fi(B), (1.18)

where fi(B) is the number of faces of dimension i in the polytope B.

The previous bound is easy to compute if we know the polytope B and is independent of the
cardinality of F .

Example 1.5. Consider a polytope norm ‖ · ‖ which has as unit ball the icosahedra of Figure 1.1.
Then we have n = 3 and the number of faces in eq. (1.18) are



















f0(B) = 12;
f1(B) = 30;
f2(B) = 20.

Thus, k̂ ≤ (f0(B) + f1(B) + f2(B))/2 = 31. Note that, if the family has |F | elements, then we have to
consider, in the worse case, all the products of lengths k = 1, · · · , 31. So, we have to compute the
spectral radius of

k̂
∑

k=1

|F |k = |F | |F |
k̂ − 1

|F | − 1

matrices. For example, if |F | = 2, then the previous number is equal to 4294967294. Thus, to be
able to compute, using the simple algorithm, the spectral radius of the family we have to evaluate
the spectral radius of 4294967294 matrices, accordingly to the previous bound (1.18), to be sure to
find the correct spectral radius of the family. Indeed, this is a massive task. ^

Useless to say, it is unrealistic to use an algorithm of the previous kind. So, it is better to look
for more sophisticated and performance algorithms.

12 T  

Chapter 2

The computation of the joint spectral
radius

This chapter introduces the main ideas underlying the numerical computation of the spectral
radius ρ(F) of a finite family of matrices F . We stress that this task is not an easy one, even for
a family with some matrices. On the other hand, from a numerical and also practical point of
view, it is not so important to get the exact value of ρ(F), but rather to have a sufficiently good
approximation of it. This task may be performed by different kinds of algorithms.

In the first section we present a first kind of algorithm which gives a lower and an upper
bound for ρ(F), based on the inequalities ρ̄k(F) ≤ ρ(F)k ≤ ρ̂k(F) (see [DL92]).

Next, we present a second kind of algorithm which computes ρ(F) using the existence, under
suitable hypotheses on the family F , of an extremal complex polytope norm. To be more clear,
ρ(F) can be computed using the following chain of equalities

ρ(F)
(1)
= inf
‖·‖∈N
‖F ‖ (2)

= inf
‖·‖∈Npol

‖F ‖ (3)
= ‖F ‖∗

for some extremal polytope norm ‖ · ‖∗. The first equality (see [Els95, RS60]) says that the spectral
radius can be found as the infimum over all the induced matrix normsN , whereas, the second one
follows from the density of the set of all polytope norms Npol in the set N (see [GZ07, GWZ05]).
Finally, the last equality, which requires the cited hypotheses on the familyF , needs the existence
of an extremal norm on the set of the polytope norms. Since we have to deal with complex
polytope norms, in the second section we introduce the idea of balanced complex polytope, which
is the extension of the real symmetric polytope [Zie95] to the complex space, and we give some
useful theoretical results and definitions.

In the third section, we extend the concept of polytope norm to the complex case.
In the last section, we recall the density results which fulfil the second equality of the pre-

vious chain and we give a polytope extremality result, which guarantees the third equality (see
[GWZ05]). Finally, we propose an algorithm for the computation of the joint spectral radius
through the construction of a polytope norm (see [GZ05]). This algorithm has been successfully
applied to the study of the asymptotic stability of linear difference equations with variable coef-
ficients coming from the discretization of differential equations (see, e.g., [GZ01]), as well as for
computing the Hölder exponent of wavelets [Mae95, Mae98, Mae05], and seems to have a good
potential in view of a large class of applications.

2.1 Lower and upper bounds for the joint spectral radius

The computation of the spectral radius of a family of matrices F is not an easy task. So, in
literature we can find some algorithms that search for an interval which contains ρ(F) instead of

14 T      

computing its exact value. That is, they find an upper and lower bound for ρ(F). More precisely,
given a non-negative real number δ, they find two positive real numbers, α and βwith β − α ≤ δ,
such that α ≤ ρ(F) ≤ β. In this section, we show one of these algorithms, first presented by
Gripenberg [Gri96].

For this purpose we introduce some useful notations. Let F = {A(i)}i∈I, where I is a finite
set of indexes, be, as usual, a finite family of complex n × n matrices with n ≥ 2. We set
A = (A(i1),A(i2), · · · ,A(im)), where i1, · · · , im ∈ I, as an m−tuple of matrices of the family F ; that is,
in a brief notation, A ∈ F m, where F m is the cartesian product of F m times. Furthermore, we
denote by Π(A) and p(A) the quantities

Π(A) =

m
∏

k=1

A(ik)

and

p(A) = min
1≤ j≤m

∥

∥

∥

∥

∥

∥

∥

j
∏

k=1

A(ik)

∥

∥

∥

∥

∥

∥

∥

1/ j

.

Now, we are able to give the algorithm in a compact form.

ALGORITHM 2.1 (Gripenberg algorithm).

% Input: F , δ′ > 0

% Output: α, β

Initialisation
k← 1
T ← F
α← maxi∈I ρ(A(i))
β← maxi∈I ‖A(i)‖
choose δ s.t. 0 ≤ δ < δ′

while (β − α > δ′)

k← k + 1

T←
{

(A,A(i)) ∈ F k
∣

∣

∣

∣

A ∈ T,A(i) ∈ F , p(A,A(i)) > α + δ
}

α← max

{

α, sup
Y∈T

ρ(Π(Y))1/k

}

β← min

{

β,max

{

α + δ, sup
Y∈T

p(Y)

}}

end

Note that the input parameter δ′ is used to determine an interval [α, β] of width at the most δ′

that includes ρ(F). For this purpose, as stated in the initialisation step, we have to appropriately
choose δ ∈ [0, δ′).

The algorithm surely stops. Indeed, denoting by αk and βk, respectively, the values of α and β
at the end of k−th iteration, in [Gri96] it is shown that, for each k ≥ 1,

αk ≤ ρ(F) ≤ βk (2.1)

2.1 L         15

and

lim
k→∞

(βk − αk) ≤ δ. (2.2)

From (2.2), it follows that, for each ǫ > 0, there exists k∗ such that βk∗ − αk∗ ≤ δ + ǫ. So, assuming
ǫ = δ′−δ, we have that the algorithm stops at the k∗-th iteration. Then, using (2.1), we can estimate
ρ(F) as (αk∗ + βk∗)/2, which differs from the right value for less than δ′/2.

Lastly we remark that the convergence rate of the algorithm depends on the choice of the
norm, which, in turn, should depend on F .

An improvement of the Gripemberg algorithm has been proposed by Vermiglio [Ver99].
In order to show the behaviour of the algorithm, we consider the following examples.

Example 2.1. Consider again the finite family of matrices used to disprove the finiteness conjecture

F =
{

A1 =

(

1 0
0 1

)

, A2 =

(

1 1
0 1

)}

,

and assume δ′ = 10−3 and δ = 10−6 in Algorithm 2.1.
Then, for the 2-norm, the algorithm finds optimal lower and an upper bounds for ρ(F) using

one iteration, as shown in Table 2.1 and on the left of Figure 2.1.

k 1 2
αk 1.00000000000000 1.61803398874989
βk 1.61803398874989 1.61803398874989

Table 2.1: Behaviour of Algorithm 2.1 with δ′ = 10−3, δ = 10−6 and ‖ · ‖2 applied to the family F .

This is a very nice result. However, the algorithm performs quite differently using the ‖ · ‖1.
In fact, for the same values of δ′ and δ, we obtain the result shown on the right of Figure 2.1,
where we can see that k = 256 iterations are needed to obtain lower and upper bounds for ρ(F)
such that αk ≤ ρ(F) ≤ βk with αk = 1.61803398874989 and βk = 1.61903105971955 (which fulfil the
stopping condition βk − αk ≤ δ′ = 10−3).

1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of iterations k

α
k

β
k

0 50 100 150 200 250
1.615

1.62

1.625

1.63

1.635

1.64

1.645

1.65

Number of iterations k

α
k

β
k

Figure 2.1: Behaviour of Algorithm 2.1 applied to the family F with δ′ = 10−3 and δ = 10−6. The
norm used are ‖ · ‖2 on the left and ‖ · ‖1 on the right.

Furthermore, from the same plots, we can see that the lower bound αk remains almost un-
changed during the convergence process, whereas the upper bound βk decreases slowly. Also, it
is interesting to report that the time spent per iteration is very low and constant during the whole
convergence process.

16 T      

From the results just given, we can conclude that the choice of a proper norm seems to be
important. We remark also that, it is no wonder that the algorithm performs better using the
Euclidean norm, since this norm is extremal for the considered family. ^

Example 2.2. The performance of Algorithm 2.1 is tested on the family of matrices considered in
[Gri96], that is,

G =
{

A1 =
1

5

(

3 0
1 3

)

, A2 =
1

5

(

3 −3
0 −1

)}

,

using, as in the previous example, both the 1- and the 2-norm and assuming δ′ = 10−3 and
δ = 10−6. The quite good results related to the 2-norm are shown in Figure 2.2. At the end
of the convergence process, after k = 22 iterations the algorithm returns αk = 0.65967890895528
and βk = 0.66041899785153, which satisfy the stopping criterion. Moreover, the time spent per
iteration is very low and constant during the whole convergence process.

0 5 10 15 20 25
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of iterations k

α
k

β
k

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Number of iterations k

β k −
 α

k

Figure 2.2: Behaviour of Algorithm 2.1 for the familyGwith δ′ = 10−3, δ = 10−6 and ‖·‖2. The lower
and the upper bounds αk and βk are reported on the left as functions of the number of iterations
k. The values of the interval widths βk − αk are plotted on the right using a semilogarithmic scale.

The algorithm runs differently with the 1-norm, as shown in Figure 2.3. The stopping criterion

0 10 20 30 40 50 60 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of iterations k

α
k

β
k

0 10 20 30 40 50 60 70
10

−4

10
−3

10
−2

10
−1

10
0

Number of iterations k

β k −
 α

k

Figure 2.3: Behaviour of Algorithm 2.1 for the family G with δ′ = 10−3, δ = 10−6 and ‖ · ‖1. The
values of the lower and upper bounds αk and βk are plotted on the left whereas, on the right, we
have the values of their difference in a semilogarithmic scale.

βk − αk < δ′ is fulfilled for k = 61 and the corresponding values are αk = 0.65967890895528 and

2.2 B   17

βk = 0.66062050028109. However, the time spent grows exponentially (see Figure 2.4) and so the
algorithm becomes impracticable. As a final note, as for the previous example, we may say that
the choice of a proper norm is a crucial point for a good convergence behaviour of the algorithm.
Moreover, even in this example, the 2-norm is better then the 1-norm. However, we can also find
examples in which the 1-norm yields more favorable results. ^

0 10 20 30 40 50 60
10

−2

10
−1

10
0

10
1

10
2

Number of iterations

T
im

e
pe

r
ite

ra
tio

n

Figure 2.4: Computational time per iteration for a run of Algorithm 2.1 for the family G with
δ′ = 10−3, δ = 10−6 and ‖ · ‖1.

2.2 Balanced complex polytopes

In this section we recall from [GZ07] the notion of balanced complex polytope, which is the
extension of the real symmetric polytope [Zie95] to the complex space.

Let X be a set in Cn. The absolutely convex hull of X, denoted by absco(X), is the set of all
possible absolutely convex linear combinations of vectors ofX, that is, x ∈ absco(X) if and only if
there exist x(1), . . . , x(k) ∈ Xwith k ≥ 1 such that

x =
∑k

i=1 λix
(i) with λi ∈ C and

∑k
i=1 |λi| ≤ 1.

In particular, if X = {x(i)}1≤i≤k is a finite set of vectors, then

absco(X) = {x ∈ Cn : x =
∑k

i=1 λix
(i) , λi ∈ C ,

∑k
i=1 |λi| ≤ 1}.

Definition 2.1. A bounded set P ⊂ Cn is a balanced complex polytope (b.c.p) if there exists a finite
set of vectors X = {x(i)}1≤i≤k such that span(X) = Cn and

P = absco(X). (2.3)

Moreover, if absco(X′) (absco(X) for all X′ (X, then X is called an essential system of vertexes
for P, whereas any vector uxi with u ∈ C, |u| = 1, is called a vertex of P.

Remark that, from a geometrical point of view, a b.c.p. P is not a classical polytope. In fact, if
we identify the complex spaceCn with the real spaceR2n, we can easily see thatP is not bounded
by a finite number of hyperplanes. Moreover, if the vertexes of the b.c.p. are not real, even the
intersectionP⋂

Rn is not a classical polytope. Indeed its boundary is a closed piecewise algebraic
hypersurface (see Theorem 3.1 in Section 3.2).

The following property characterises the essential system of vertexes.

Proposition 2.1. If P is a b.c.p. and X = {x(i)}1≤i≤k is an essential system of vertexes for P, then for each
x(i) ∈ X the equality

18 T      

x(i) =
∑k

j=1, j,i λ jx
(j)

implies

∑k
j=1, j,i |λ j| > 1.

Now we consider the concept of adjoint set that, in literature, is often referred to as polarity or
duality (see Ziegler or Heuser), to define a b.c.p of adjoint type. For this purpose we will use the
notation 〈· , ·〉 to denote the usual Euclidean scalar product in Cn defined by 〈x, y〉 = ∑n

i=1 x(i) ȳ(i).

Definition 2.2. Let X ⊂ Cn. The set

adj(X) = {y ∈ Cn : |〈y, x〉| ≤ 1 , ∀ x ∈ X}

is called the adjoint of X.

Definition 2.3. A bounded set P∗ ⊂ Cn is a balanced complex polytope of adjoint type (a.b.c.p) if
there exists a finite set of vectors X = {x(i)}1≤i≤k such that span(X) = Cn and

P∗ = adj(X) = {y ∈ Cn : |〈y, x(i)〉| ≤ 1 , i = 1, . . . , k} (2.4)

Moreover, if adj(X′)) adj(X) for all X′ (X then X is called an essential system of facets for P∗,
whereas any vector uxi with u ∈ C, |u| = 1, is called a facet of P∗.

The following property characterises the essential system of facets.

Proposition 2.2. If P∗ is an a.b.c.p. and X = {x(i)}1≤i≤k is an essential system of facets for P∗, then for
each x(i) ∈ X there exists y(i) ∈ P∗ such that

|〈y(i), x(i)〉| = 1 and |〈y(i), x(j)〉| < 1 for all j , i.

Now we analyse the mutual relationships between b.c.p.’s and a.b.c.p.’s.

Proposition 2.3. Let X ⊂ Cn. Then

adj(absco(X)) = adj(X).

Corollary 2.1. Let P be a b.c.p. and let X = {x(i)}1≤i≤k be a finite set of vectors such that P = absco(X).
Then adj(P) is an a.b.c.p. and it holds that

adj(P) = adj(X).

Corollary 2.2. Let P∗ be an a.b.c.p. and let X = {x(i)}1≤i≤k be a finite set of vectors such thatP∗ = adj(X).
Then adj(P∗) is a b.c.p. and it holds that

adj(P∗) = absco(X).

Corollaries 2.1 and 2.2 yield the following result, that in literature is often referred to as the
bipolar theorem.

Theorem 2.1. Let P be a b.c.p. and let P∗ = adj(P). Then it holds that

P = adj(P∗). (2.5)

Conversely, let P∗ be an a.b.c.p. and let P = adj(P∗). Then it holds that

P∗ = adj(P). (2.6)

2.2 B   19

As we shall see in Chapter 3, the foregoing theorem is very important to create an algorithm
for the construction of a b.c.p. by adding one point at a time.

Proposition 2.4. Let P∗ be a b.c.p. of adjoint type, X = {x(i)}1≤i≤m be an essential system of facets,
P = adj(P∗) and y ∈ ∂P∗. Then the following condition is satisfied:

(C1) |〈y, x〉| ≤ 1 ∀x ∈ P and ∃x̂ ∈ ∂P, x̂ = ûx(j) for some j with û ∈ C, |û| = 1, such that 〈y, x̂〉 = 1.

Remark that x̂ in (C1) is a facet of P∗, i.e., a vertex of P = adj(P∗).
Proposition 2.5. Let P be a b.c.p., X = {x(i)}1≤i≤m be an essential system of vertexes, P∗ = adj(P) and
x ∈ ∂P. Then the following conditions are satisfied:

(C2) |〈y, x〉| ≤ 1 ∀y ∈ P∗ and ∃ŷ ∈ ∂P∗ such that 〈ŷ, x〉 = 1;

(C3)
∑m

i=1 |µi| ≥ 1 whenever x =
∑m

i=1 µix
(i) and ∃λ1, . . . , λm ∈ C such that x =

∑m
i=1 λix

(i) with
∑m

i=1 |λi| = 1.

Definition 2.4. Let P be a b.c.p., P∗ = adj(P) and y ∈ ∂P∗. Then the convex set

Fy = {x ∈ P
∣

∣

∣

∣

〈y, x〉 = 1} (2.7)

is called a (geometric) face of P, whereas y is called the functional associated with Fy.

Clearly,
Fy ⊆ ∂P (2.8)

and, by property (C1) in Proposition 2.4, the face Fy is never empty.

Definition 2.5. Let P be a b.c.p. and y ∈ ∂P∗, where P∗ = adj(P). Then any vertex of P belonging to Fy

is called a vertex of Fy.

In order to state the next result, we recall that, given a set X ⊂ Cn, co(X) stays for the convex
hull ofX, i.e. the set of all possible convex linear combinations of vectors ofX (with non-negative
real coefficients).

Theorem 2.2. Let P be a b.c.p. and y ∈ ∂P∗, where P∗ = adj(P). Then the set Xy of all the vertexes of Fy

is non-empty and
Xy ⊆ X,

where X = {x(i)}1≤i≤m is a suitable essential system of vertexes for P.
Moreover, it holds that

Fy = co(Xy). (2.9)

Definition 2.6. Let P be a b.c.p. and y a facet of P. Then the set Fy is called a (geometric) facet of P as
well.

Definition 2.7. Let P be a b.c.p. and Fy be a face of P. Then we say that the number

dim(Fy) = dim(span(Fy)) − 1

is the dimension of the face Fy.

Definition 2.8. Let P be a b.c.p. and P∗ = adj(P). Then we say that a vector y ∈ ∂P∗ is a facet of
P if there exist n linearly independent vertexes x(i1), . . . , x(in) belonging to an essential system of vertexes
X = {x(i)}1≤i≤m of P such that

〈y, x(i j)〉 = 1, j = 1, . . . , n,

that is,
x(i j) ∈ Fy, j = 1, . . . , n.

20 T      

The next theorem states the existence of a (geometric) facet including a given point on the
boundary of a b.c.p.

Theorem 2.3. Let P be a b.c.p. and let x ∈ ∂P. Then there exists a (geometric) facet Fy such that x ∈ Fy.

The foregoing Theorem 2.3 and the inclusion (2.8) allow us to conclude that

∂P =
⋃

y∈F∗(P)

Fy, (2.10)

where F∗(P) is the set of all the facets of P. In other words, ∂P is the union of all the (geometric)
facets of P.

Another straightforward consequence of Theorem 2.3 is that

P = adj(F∗(P)). (2.11)

Remark 2.1. The dimension of a face Fy of a b.c.p. P can vary between 0 and n − 1. In particular, a face
Fy is a facet if and only if

dim(Fy) = n − 1,

whereas a face Fy is a vertex if and only if

dim(Fy) = 0.

The next theorem gives an important upper bound for computational purposes.

Theorem 2.4. Let P be a b.c.p. and let Fy be a face of P of dimension d. Then, for each x ∈ Fy, there exist

s vertexes x(i1), . . . , x(is) ∈ Xy with
s ≤ 2d + 1 (2.12)

such that
x ∈ co

({

x(i1), . . . , x(is)
})

.

It is well known that, if the b.c.p. P is real, then (2.12) is replaced by the more stringent
inequality

s ≤ d + 1. (2.13)

On the other hand, in the general complex case (2.13) is not true and the upper bound (2.12) can
be actually attained (see [GZ07]).

Now, following Miani and Savorgnan [MS06], we consider the intersection of a b.c.p. P with
Rn, i.e. P ∩Rn, and its projection on Rn, i.e. Re(P).

As is immediately seen, it holds that

Re(P) = absco
(

P ∪ P
)

∩Rn, (2.14)

where P is the complex conjugate set of P. Therefore, the computation of Re(P) is a particular
case of the computation of P ∩Rn, namely when P is self-conjugated.

It is easy to see that, if (and only if) a b.c.p. P has a real system of vertexes X ⊂ Rn, then
P ∩ Rn is a classic symmetric polytope. In the general case, for self-conjugated b.c.p.’s we have
the following result, the easy proof of which is given in [MS06].

Proposition 2.6. If a b.c.p. P is self-conjugated, i.e. P = P, then P ∩ Rn is the convex hull of a finite
number of vertexes and/or a finite number of two-dimensional ellipses. The vertexes are the real vertexes of
P, if any, whereas the ellipses are the intersections withRn of the boundaries of the absolutely convex hulls
of the pairs of conjugate vertexes of P (not proportional to real vectors), if any.

2.3 C   21

2.3 Complex polytope norms

Now we extend the concept of polytope norm to the complex case in a straightforward way.

Lemma 2.1. Any b.c.p. P is the unit ball of a norm ‖ · ‖P on Cn.

Proof. Since span(X) = Cn, the set P is absorbing. Therefore, since it is absolutely convex and
bounded, the Minkowski functional associated with P, defined for all z ∈ Cn by

‖z‖P = inf{ρ > 0 | z ∈ ρP}, (2.15)

is indeed a norm on Cn (see [Heu82]).

Definition 2.9. We shall call complex polytope norm any norm ‖ · ‖P whose unit ball is a b.c.p. P.

Due to the substantial difference between a b.c.p. P and a b.c.p. of adjoint type P∗, we need
to also introduce the adjoint version of the concept of complex polytope norm.

Lemma 2.2. Any b.c.p. of adjoint type P∗ is the unit ball of a norm ‖ · ‖P∗ on Cn.

Proof. Since also P∗ is absorbing and absolutely convex, as in the proof of Lemma 2.1, we can
conclude that the Minkowski functional defined by

‖z‖P∗ = inf{ρ > 0 | z ∈ ρP∗} (2.16)

is a norm on Cn.

Definition 2.10. We shall call adjoint complex polytope norm any norm ‖ · ‖P∗ whose unit ball is a
b.c.p. of adjoint type P∗.
Definition 2.11. Let P be a b.c.p., z ∈ Cn and

Rz = {ρz | ρ > 0}

be the ray of Cn exiting from the origin 0 and passing through z. Then we say that the (obviously) unique
vector ẑ ∈ ∂P∩Rz is the radial projection of z onto ∂P and that z projects on any face Fy of P such that
ẑ ∈ Fy.

Formula (2.15) allows us to conclude that

z = ‖z‖P · ẑ (2.17)

where ẑ is the radial projection of z onto ∂P.
Remark that the definition of radial projection ẑ of a vector z onto ∂Bmakes sense for any unit

ball B of a norm defined either in Cn or in Rn and that also the equality analogous to (2.17) holds
true.

Now we illustrate an important link between polytope norms and adjoint polytope norms.

Theorem 2.5. Let P be a b.c.p. and let ‖ · ‖P be the corresponding complex polytope norm. Then, for any
z ∈ Cn, it holds that

‖z‖P = min
{

m
∑

i=1

|λi|
∣

∣

∣

∣

z =

m
∑

i=1

λix
(i)
}

= max
y∈∂P∗

|〈y, z〉|, (2.18)

where P∗ = adj(P) and X = {x(i)}1≤i≤m is an essential system of vertexes for P.
Analogously, let P∗ be a b.c.p. of adjoint type and let ‖ · ‖P∗ the corresponding adjoint complex polytope

norm. Then, for any z ∈ Cn, it holds that

‖z‖P∗ = max
1≤i≤m

|〈z, x(i)〉| = max
x∈∂P
|〈z, x〉|, (2.19)

where P = adj(P∗) and X = {x(i)}1≤i≤m is an essential system of facets for P∗.

22 T      

Remark that, in view of Theorem 2.4, formula (2.18) can be rewritten as

‖z‖P = min
{

2n−1
∑

j=1

|λi j
|

∣

∣

∣

∣

z =

2n−1
∑

j=1

λi j
x(i j) and

{i1, . . . , i2n−1} ⊂ {1, . . . ,m}
}

. (2.20)

In view of Definition 2.11, simple geometric arguments allow us to conclude that the minimum
in (2.18) is obtained in correspondence to a subset of vertexes {eiθ1x(i1), . . . , eiθsx(is)} ⊆ Xy, with
s ≤ 2n − 1, where Fy is any face of P which z projects on. More precisely, it holds that

z =

s
∑

j=1

α je
iθj x(i j) with α j > 0 for all j = 1, . . . , s, (2.21)

and that

‖z‖P =
s

∑

j=1

α j. (2.22)

Indeed, the equality (2.21) is characterising in the sense that, if it is satisfied and if {eiθ1 x(i1), . . . , eiθsx(is)} ⊆
Xy for some face Fy of P, then z necessarily projects on Fy and (2.22) holds as well.

Now we consider the so called ∞-norm and 1-norm which, for all z ∈ Cn, are defined by
‖z‖∞ = max1≤i≤n |zi| and ‖z‖1 =

∑n
i=1 |zi|, respectively.

As is well known in the real case, ‖ · ‖∞ and ‖ · ‖1 are adjoint to each other. In fact, they are
associated with the n-dimensional complex hypercube

H ∗ = adj({e(1), . . . , e(n)}) (2.23)

and to its adjoint b.c.p., the n-dimensional complex crosspolytope

H = absco({e(1), . . . , e(n)}), (2.24)

respectively, where the e(i)’s are the vectors of the canonical basis of Cn. Note thatH ∗⋂Rn is the
classic n-dimensional hypercube and thatH⋂

Rn is the classic n-dimensional crosspolytope.
The two special norms above can be used to conveniently express all the other complex and

adjoint complex polytope norms as follows. Given a b.c.p. P and an essential system of vertexes
X = {x(i)}1≤i≤m, define the vertex matrix

V =
[

x(1) . . .x(m)
]

and, for the b.c.p. of adjoint type P∗ = adj(P), the facet matrix, adjoint of V,

F = V∗.

Then, the first equality in (2.19) yields

‖z‖P∗ = ‖Fz‖∞, (2.25)

whereas, with λ = [λ1 . . . λm]T, the first equality in (2.18) leads to

‖z‖P = min
Vλ=z
‖λ‖1. (2.26)

Note that, if m = n, then (2.26) reduces to

‖z‖P = ‖V−1z‖1. (2.27)

2.4 T           23

Now consider the case m > n. In order to compute ‖z‖P, assume, without any restriction, that the
first n columns of the vertex matrix V are linearly independent and define the matrices

V1 =
[

x(1) . . . x(n)
]

and V2 =
[

x(n+1) . . . x(m)
]

.

Then, if λ ∈ Cm, define also the (m − n)-vector

µ = [λn+1 . . . λm]T,

so that any solution of the equation Vλ = z may be written in the form

λ =

[

V−1
1

(z − V2µ)
µ

]

.

In conclusion, we obtain

‖z‖P = min
µ∈Cm−n

∥

∥

∥

∥

∥

∥

[

V−1
1

(z − V2µ)
µ

]

∥

∥

∥

∥

∥

∥

1

, (2.28)

that is, the computation of ‖z‖P requires the solution of a minimisation problem inCm−n . Therefore,
in general, ‖z‖P∗ is clearly much easier to compute. However, even if m ≥ 2n, formula (2.20) reveals
that a minimising λ in (2.26) can be found among those which have at the most 2n − 1 non-zero
entries.

We conclude this section by considering the real norms the unit balls of which areP∩Rn and
Re(P), that we denote by ‖ · ‖P∩Rn and ‖ · ‖Re(P), respectively. They are useful, for example, for the
investigation of certain control problems (see [MS06]).

Since the radial projection û of a real vector u ∈ Rn onto ∂P is still real, it equals the radial
projection of u onto ∂(P ∩Rn) and, consequently, formula (2.17) applied to both the norms ‖ · ‖P
and ‖ · ‖P∩Rn yields

‖u‖P∩Rn = ‖u‖P. (2.29)

Furthermore, the equalities (2.14) and (2.29) lead us to conclude that

‖u‖Re(P) = ‖u‖absco
(

P∪P
). (2.30)

2.4 The computation of the joint spectral radius using complex

polytope norms

In the first section of the present Chapter we have presented an algorithm which gives an upper
and a lower bound for the spectral radius of a complex matrix familyF . Here we develop another
approach to the problem based on complex polytope norms.

We start by recalling some polytope extremality results and definitions.
A first important result, shown in the next Theorem 2.6, states that the set of the complex

polytope norms is dense in the set of all norms defined onCn. As a consequence, the corresponding
set of induced matrix complex polytope norms is dense in the set of all induced n×n-matrix norms
(see [GZ07]).

Theorem 2.6. Given a norm ‖ · ‖ on the vector space Cn, for any ǫ > 0 there exists a b.c.p. Pǫ whose
corresponding complex polytope norm ‖ · ‖ǫ satisfies, for all x ∈ Cn, the inequalities

‖x‖ ≤ ‖x‖ǫ ≤ (1 + ǫ)‖x‖.

Moreover, denoting by ‖ · ‖ and ‖ · ‖ǫ also the corresponding induced matrix norms, for all A ∈ Cn×n it
holds that

(1 + ǫ)−1‖A‖ ≤ ‖A‖ǫ ≤ (1 + ǫ)‖A‖.

24 T      

As a consequence we can give the following refinement of Theorem 1.2, which allows us to restrict
the search of the infimum from the setN to the subsetNpol.

Theorem 2.7. The spectral radius of a bounded family F of complex n × n-matrices is characterised by
the equality

ρ(F) = inf
‖·‖∈Npol

‖F ‖, (2.31)

whereNpol denotes the set of all possible induced n × n-matrix complex polytope norms.

Now, we consider under which conditions the construction of an extremal complex polytope
norm is feasible for a non-defective family. In order to recall some results in this direction, we
start with the following definition.

Definition 2.12. Given a bounded family F of complex n× n-matrices, any matrix P ∈ Σk(F) satisfying

ρ(F) = ρ̄k(F)1/k = ρ(P)1/k (2.32)

for some k ≥ 1 is called a spectrum maximising product (in short an s.m.p.) for F . Moreover an s.m.p.
is said to be minimal if it is not a power of another s.m.p. of F . Any eigenvector x , 0 of the s.m.p. P
related to the eigenvalue of maximum modulus is said to be a leading eigenvector of F .

An important necessary condition for the existence of an extremal complex polytope norm is
given by the next theorem (see [GWZ05]).

Theorem 2.8. Let F = {A(i)}1≤i≤m be a finite non-defective family of complex n × n-matrices and assume
that there exists an extremal complex polytope norm ‖ · ‖P. Then F has at least an s.m.p. P.

At the present it is not known whether or not the Theorem 2.8 can be reversed. That is, we
have the following complex polytope extremality (CPE) conjecture, first presented in [GWZ05].

Conjecture 2.1 (CPE). Let F = {A(i)}1≤i≤m be a finite non-defective family of complex n×n-matrices and
assume that F has at least an s.m.p. P. Then there exists an extremal complex polytope norm for F .

This conjecture is still an open problem. However, Guglielmi, Wirth and Zennaro [GWZ05],
by adding some hypotheses on the familyF , have proved a weaker version of the CPE conjecture
called the Small CPE Theorem. It uses the concept of asymptotically simple family which, in turn,
uses some ideas related to the leading eigenvector of a family, trajectory and F -cyclicity.

Before starting to recall these definitions, we scale the family F = {A(i)}i∈I by the scalar
ρ = ρ(Qk)

1/k, for some Qk ∈ Σk(F), obtaining the scaled family

F ∗ = {ρ−1A(i)}i∈I,

which is such that ρ(F ∗) ≥ 1.

Definition 2.13. Let us consider a (scaled) family F ∗ with ρ(F ∗) ≥ 1. Then, for any vector x ∈ Cn, the
set

T [F ∗, x] = {x} ∪ {Px|P ∈ Σ(F ∗)}
is called the trajectory obtained by applying all the products P of matrices of F ∗ to the vector x.

Definition 2.14. Let F be a family of complex n × n-matrices and F̂ = (1/ρ(F))F the corresponding
normalised family. A set X ⊂ Cn is said to be F -cyclic if for any pair (x, y) ∈ X × X, there exist two

complex numbers α and β with |α| · |β| = 1 and two (finite) normalised products P̂, Q̂ ∈ Σ(F̂) such that

y = α P̂x and x = β Q̂y.

Definition 2.15. A non-defective bounded familyF of complex n×n-matrices is said to be asymptotically
simple if the set E of its leading eigenvectors is finite (modulo scalar non-zero factors) and F -cyclic.

Now, we are able to introduce the following theorem which, under some hypotheses on the
family F , guarantees the existence of an extremal polytope norm.

2.4 T           25

Theorem 2.9 (Small CPE Theorem). Assume that a finite family F of complex n × n-matrices is non-
defective and asymptotically simple. Assume also that for a leading eigenvector x of F the trajectory
T [F ∗, x] satisfies span(T [F ∗, x]) = Cn. Then the set

∂S[F ∗, x]
⋂

T [F ∗, x] (2.33)

is finite modulo scalar factors of unitary modulus, where S[F ∗, x] = absco(T [F ∗, x]). As a consequence,
there exists a finite number of normalised products P̂(1), · · · , P̂(s) ∈ Σ(F ∗) such that

S[F ∗, x] = absco({x, P̂(1)x, · · · , P̂(s)x}), (2.34)

so that S[F ∗, x] is a b.c.p. which is the unit ball of an extremal norm for F .

Using the previous results, it is possible to develop an algorithm for the construction of the
unit ball of an extremal complex polytope norm for a finite non-defective family F = {A(i)}i∈I (see
[GZ05]).

ALGORITHM 2.2. (construction of the unit ball of an extremal complex polytope norm)

% Input: F = {A(i)}i∈I
% Output: S[F ∗, x]

Initialisation

Choose an s.m.p. Q ∈ Σk(F) (for some k).
F ∗ ← {ρ(Q)−1/k A(i)}i∈I
Compute the leading eigenvector v0 of Q
W(0) ← {v(0)},V(0) ← {v(0)}, X(0) ← {v(0)}
P(0) ← absco

(

X(0)
)

.

s← 1
stop← 0
while ∼ stop

V(s) ← F ∗
(

X(s−1)
)

.

ifV(s) ⊂ P(s−1)

S[F ∗, x]← P(s−1)

stop← 1
else
P(s) ← absco

(

W(s−1) ∪V(s)
)

Compute an essential system of vertexesW(s) of P(s)

X(s) ←V(s) ∩W(s)

s← s + 1
end

end

Remark that, if the algorithm halts in a finite number of steps (i.e., for a finite s), then the set
S[F ∗, x] is a polytope. Moreover, if X(s) is such that span(X(s)) = Cn, then S[F ∗, x] generates an
extremal complex polytope norm.

Let us give some comments on how the algorithm works. In the initialization step we choose
a candidate s.m.p. Q for F in order to find a leading eigenvector v(0) forF which we need to fulfil
the assumptions of Theorem 2.9. Then, the algorithm computes a trajectory obtained by applying
recursively the scaled family F ∗ to v(0), that is, in the s-th step, s ≥ 1, the trajectory is

26 T      

T (s)[F ∗, v(0)] = T (s−1)[F ∗, v(0)] ∪ {Psv
(0)|Ps ∈ Σs(F ∗)},

where T (0)[F ∗, v(0)] = {v(0)}. Clearly, the whole trajectory T [F ∗, v(0)] is obtained as a limit for
s→ ∞. Note also that, since we start from one vector v(0) and the family F ∗ is finite, then the set
T (s)[F ∗, v(0)] contains a finite number of points. Such trajectoriesT (s)[F ∗, v(0)] are computed by the
algorithm until it finds a positive integer s such that T (s+1)[F ∗, v(0)] ⊂ P(s) = absco(T (s)[F ∗, v(0)]),
that is, until it finds a minimal set of points of the trajectory whose absolutely convex hull contains
all its remaining points. Clearly, if T (s+1)[F ∗, v(0)] ⊂ P(s), all the subsequent sets T (s+k)[F ∗, v(0)], k ≥
1 are contained in P(s), that is P(s) is an absolutely convex hull for the trajectory T [F ∗, v(0)].
Moreover, since it is generated by a finite number of points, it is a b.c.p..

Now, we apply Algorithm 2.2 to a two-dimensional model problem, using a Matlab imple-
mentation of it.

Example 2.3. Consider again the family used to disprove the finiteness conjecture, that is,

F =
{

A(1) =

(

1 1
0 1

)

,A(2) = b

(

1 0
1 1

)}

,

where, to be consistent with [GZ05], we choose b = 0.9. Computational investigations as well as
theoretical statements lead to choose Q = A(1)A(2) ∈ Σ2(F) as candidate s.m.p. of the family. We
easily find that the corresponding eigenpair, used both for the construction of the scaled family
and as a starting point in the algorithm, is

{

λ = β2b/4
v(0) = [β/2 1]T,

where β = 1+
√

5. So the scaled family isF ∗ = {λ−1/2 F } and v(0) is the starting leading eigenvector
of the algorithm. The results are summarised step by step in Figures 2.5 and 2.6 and in Tables 2.2
and 2.3.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.5: At the end of the the first step we obtain P(0) = absco({v(0)}) (on the left) and at the end
of the second step P(1) = absco({v(0), v(1), v(2)}) (on the right).

Since the vectors generated by the algorithm in the fourth step are inside P(2), then the
algorithm stops. Hence, P(2) is a (real) polytope inducing an extremal norm for F . ^

2.4 T           27

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.6: At the end of the third step we obtain the b.c.p. P(2) = absco({v(0), v(1), v(2), v(3), v(4)}).
The vertexes of P(2) are plotted with blue stars, while the remaining set of vectors, computed by
the algorithm, is plotted with red stars.

step essential system of vertexes

1 v(0)

2 v(0), v(1), v(2)

3 v(0), v(1), v(2), v(3), v(4)

Table 2.2: Essential systems of vertexes of the b.c.p. generated at each iteration.

v(0) v(1) v(2) v(3) v(4)

x 1.5355 1.7056 1.6180 0.9487 0.5562

y 0.4244 0.6515 1.0000 1.5350 1.4562

Table 2.3: The coordinates x and y (truncated to the fifth digit) of the real points v(k), k = 0, · · · , 4,
which form an essential system of vertexes for P(2).

28 T      

Chapter 3

The construction of a balanced
complex polytope in C2

In this chapter we present new results, a part of which has been included in [VZ07], concerning
the construction of balanced complex polytopes following the ideas of the Beneath-Beyond (B–B)
method, which is used to build polytopes in the n-dimensional real space. However, compared
with the real case, the complexity of the geometry of a b.c.p. grows much faster with the dimension
n (see Theorem 3.1). So we limit ourselves to analyse and construct b.c.p.’s in C2.

In the first section, we recall the B–B method in R2, which works in an iterative fashion using
the main idea of limit cone.

In the second section, we present our original work that extends the iterative approach of
the B–B method to the complex case. More precisely, first we describe the boundary of a b.c.p.
by analysing some of its geometric features and then we design an algorithm for the actual
construction of a b.c.p. However, the proposed algorithm does not extend all the features of the
B–B method. In particular, it does not exploit the idea of limit cone. This kind of improvement
will be made in the next chapter.

In the third section, we use the geometric features of the b.c.p. in order to give a new algorithm
for the computation of the corresponding complex polytope norm.

3.1 The construction of symmetric real polytopes

The purpose of this section is to propose an algorithm for the computation of the symmetric real
polytope associated with a set of points in the real plane. As will soon be clear, this algorithm will
be inspired by the well known Beneath–Beyond method (see [Ede87]), which is used to construct
a real polytope P = co(X), which is the convex hull of a set of m real points X = {x(1), . . . , x(m)},
x(k) ∈ R2, k = 1, · · · ,m. In particular, we consider the special case of the construction of a
symmetric real polytope P = absco(X), which is the absolutely convex hull of X (i.e. if x ∈ P, then
also −x ∈ P).

As is well known, the Beneath-Beyond algorithm works in an iterative fashion, starting from
a two vertex polytope and then by adding one of the remaining points at a time. Following this
idea, we assume, without loss of generality, that the first two points x(1), x(2) of X are linearly
independent and, starting from P(2) = absco({x(1), x(2)}), we construct P(k) = absco(P(k−1) ∪ {x(k)}),
for 3 ≤ k ≤ m, by adding x(k) to P(k−1).

Let us give more details on how the algorithm works. We assume that the vertexes of
each absolutely convex hull are ordered counterclockwise. This ordering is made to have a
representation of the facets of P(k), k ≥ 2, and it follows in a natural manner by the construction
procedure of the absolutely convex hull, as will soon be clear.

First of all, we constructP(2) , see Figure 3.1, by ordering the set of all its vertexes {x(1) , x(2),−x(1),−x(2)},

30 T        C2

observing that, for example, x(2) follows x(1) in the counterclockwise direction if and only if the

third component of the outer product x(1)×x(2) is positive, that is det([x(1), x(2)]) = x
(1)
1

x
(2)
2
−x

(1)
2

x
(2)
2
> 0.

Next, the addition of x(k) to P(k−1), 3 ≤ k ≤ m, is made performing the following steps.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.1: P(2) = absco({x(1), x(2)}), where x(1), x(2) ∈ R2 are linearly independent.

First of all, we must determine the facet Fi j : x(i) � x(j) of P(k−1) where x(k) projects, which is

the facet intersected by the line λx(k) for λ > 0. In other words, if we write x(k) = λix
(i)+λ jx

(j), then

x(k) projects on Fi j if and only if both λi and λ j are non-negative real numbers.

In the next step, we check if the point x(k) is inside or outside ofP(k−1). Note that this step is not
performed by the B-B method which, presorting the points X with respect to the first coordinate
direction, guarantees that the added point x(k) surely lies outside of the current convex hullP(k−1).
Therefore, since we do not perform this presorting, assuming that x(k) projects on F, we have that
x(k) is inside P(k−1) if and only if it is inside the triangle Ti j = co(O, x(i), x(j)), where O is the origin.

In other words, if we write x(k) = λix
(i) + λ jx

(j), then x(k) ∈ Ti j if and only if λi + λ j ≤ 1.

So, if x(k) is inside P(k−1), we delete it fromX and we go on to add the next point. Otherwise, in
the case that x(k) < P(k−1), the algorithm checks if some of the vertexes ofP(k−1) have to be removed
following the addition of the new point. This step uses the limit cone which is defined as the cone
of apex x(k) tangent to P(k−1). In Figure 3.2 we show two examples of limit cones and an intuitive
idea of how the limit cone is used in the search of the vertexes to be removed. This cone is tangent
in two vertexes of P(k−1), which are called the clockwise (cw) and the counterclockwise (ccw)
vertex of the limit cone and denoted by x(cw) and x(ccw) respectively; to find these two vertexes we
start from the facet Fi j where the added point projects and we proceed first with a cw search and
then with a ccw search (see Figure 3.2 on the right). Therefore, the facets inside the limit cone are
deleted along with their incidence vertexes (except for x(cw) and x(ccw)). Since we are constructing
the absolutely convex hull, we also have to add −x(k), whose corresponding limit cone is tangent
to P(k−1) in the vertexes −x(cw) and −x(ccw). Also the vertexes inside this last limit cone (except for
−x(cw) and −x(ccw)) are deleted. The remaining vertexes of P(k−1) among with x(k) and −x(k) are the
vertexes of P(k). In order to preserve the counterclockwise ordering, we collect the vertexes of
P(k) as they appear in a counterclockwise walk along the boundary of P(k). More precisely, we
link the following vertexes together: x(k), all the vertexes between x(ccw) and −x(cv), then −x(k) and
finally all the vertexes between −x(ccw) and x(cv).
Lastly, we must add the ccw and cw facets of the limit cones which are the two segments
connecting x(k) with the vertexes x(ccw) and x(cv) along with the corresponding symmetric segments
with respect to the origin (see Figure 3.3).

Remark 3.1. It is important to note that, even if in this section we have explained the main ideas of the

3.1 T      31

Figure 3.2: The addition of x(k) to P(k−1). The point projects on the facet Fi, j : x(i) � x(j). On the
left, none of the existing vertexes have to be removed since the limit cone does not contain any of
them (i.e. x(ccw) = x(i) and x(cw) = x(j)). On the right, the two magenta vertexes x(i) and x(j) have to
be removed since they lie inside the limit cone. These two vertexes no longer belong to the set of
vertexes of P(k).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−x(5)

x(5)

Figure 3.3: Addition of x(5) to P(4).

32 T        C2

Beneath-Beyond method in the real plane, it is feasible to extend this method to higher dimensions. For a
detailed treatment of this topic see [Ede87].

3.2 The construction of balanced complex polytopes (b.c.p.)

Given a set X = {x(1), x(2), . . . , x(m)}, where x(i) ∈ Cn, i = 1, . . . ,m, our aim is to construct the
corresponding absolutely convex hull P = absco(X).

As we anticipated in Section 2.2, the boundary of a b.c.p. is a closed piecewise algebraic
hypersurface. In particular, we have the following theorem.

Theorem 3.1. Consider a b.c.p. Pwith n vertexes inCn, that isP = absco(X), whereX = {x(1), x(2), . . . , x(n)}
and span(X) = Cn. Then the boundary of P is a branch of an algebraic hypersurface of order 2n in R2n

(identified with Cn).

For the proof of this theorem, we need the following Lemma.

Lemma 3.1. Let α1, α2, . . . , αn be positive real variables. Then, the product

P(z;α1, α2, . . . , αn) =
∏

[z − (±√α1 ±
√
α2, . . . ,±

√
αn)]

of all possible terms of the form z − (±√α1 ±
√
α2, . . . ,±

√
αn) is a polynomial in z of degree 2n whose

coefficients are polynomials in the variables α1, α2, . . . , αn of degree at the most 2n−1.

Proof. The proof is done by using mathematical induction. For n = 1, the result holds, since

P(z;α1) = (z − √α1)(z +
√
α1) = z2 − α1.

Now, assume that it holds for n − 1 and prove it for n.
Since P(z;α1, α2, . . . , αn) is the product of 2n factors, it is homogeneous polynomial of degree 2n

in the variables z,
√
α1,
√
α2, . . . ,

√
αn. Therefore, we are just left to prove that it does not contain

any square root. To this aim, observe that

P(z;α1, α2, . . . , αn) =
∏

[z − (±√α1 ±
√
α2, . . . ,±

√
αn)] =

=
∏

[z − √αn − (±√α1 ±
√
α2, . . . ,±

√
αn−1)] ·

∏

[z +
√
αn − (±√α1 ±

√
α2, . . . ,±

√
αn−1)] =

= P(z − √αn;α1, α2, . . . , αn−1) · P(z +
√
αn;α1, α2, . . . , αn−1).

By the inductive hypothesis, we have that P(z−√αn;α1, α2, . . . , αn−1) and P(z+
√
αn;α1, α2, . . . , αn−1)

are polynomials in z − √αn and z +
√
αn, respectively, whose coefficients are polynomials in the

variables α1, α2, . . . , αn−1. Therefore, it turns out that

P(z − √αn;α1, α2, . . . , αn−1) = q − t
√
αn,

P(z +
√
αn;α1, α2, . . . , αn−1) = q + t

√
αn,

where q = q(z;α1, α2, . . . , αn) and t = t(z;α1, α2, . . . , αn) are polynomials in z and in the variables αi,
i = 1, . . . , n. We can conclude that

P(z;α1, α2, . . . , αn) = q2 − t2αn

does not contain any square root, and the proof is complete.

Proof of Theorem 3.1 By (2.27), we have that the boundary of P (in the variable x ∈ Cn) is

‖[x(1) . . .x(n)]−1x‖1 = 1.

3.2 T      (...) 33

Now, we introduce some notations. We distinguish the real and the imaginary part the vector
x = [x1, x2, · · · , xn]T, that is, we set for each one of its components, xk = xkR + ixkI, k = 1, · · · , n.
Furthermore, we denote

[x(1) . . . x(n)]−1 =
1

d





















γ11 · · · γ1n

...
. . .

...
γn1 · · · γnn





















,

where d = det([x(1) . . . x(n)]) and γhk ∈ C, h, k = 1, · · · , n. Thus, we have

‖[x(1) . . . x(n)]−1x‖1 =
1

|d|

∥

∥

∥

∥

∥

∥

∥

∥

∥





















∑n
k=1 γ1kxk

...
∑n

k=1 γnkxk





















∥

∥

∥

∥

∥

∥

∥

∥

∥

1

=
1

|d|

n
∑

h=1

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

γhkxk

∣

∣

∣

∣

∣

∣

∣

=
1

|d|

n
∑

h=1

fh(x)

where, for h = 1, · · · , n,

fh(x) =

√

√

√













n
∑

k=1

(

Re(γhk)xkR − Im(γhk)xkI
)















2

+















n
∑

k=1

(

Re(γhk)xkI + Im(γhk)xkR
)















2

is a second degree polynomial in the 2n real variables x1R, . . . , xnR, x1I, . . . , xnI. So, we can write
the boundary of P as

|d| − (

f1(x) + · · · + fn(x)
)

= 0. (3.1)

We can eliminate the square roots in the above equation, noting that a polynomial which does not
contain any square root may be obtained by multiplying all the possible binomials of the kind

|d| − (± f1(x) ± · · · ± fn(x)
)

,

which is (see Lemma 3.1) a polynomial in |d| of degree 2n whose coefficients are polynomials in the
variables [f1(x)]2, [f2(x)]2, . . . , [fn(x)]2 of degree at the most 2n−1. Since [f1(x)]2, [f2(x)]2, . . . , [fn(x)]2

are polynomials of second degree in the 2n real variables x1R, . . . , xnR, x1I, . . . , xnI, the proof is com-
plete.

Thus, the order of the boundary of an n-vertex b.c.p. in Cn grows exponentially with the
dimension n. This is one of the main reasons for which we limit ourself to the construction of
a b.c.p. in C2. However, we treat the construction of a b.c.p. in C2 with an arbitrary number
of vertexes. More precisely, we analyse some geometric features of the b.c.p.’s, in order to
describe their boundary and analyse their facets. Like in the real case, we begin by constructing
P(2) = absco({x(1), x(2)}) and then we proceed incrementally, adding one of the remaining vertexes
at a time. However, in the incremental construction of the b.c.p. P, we distinguish the construction
of a b.c.p. with two essential vertexes from the case of a b.c.p. with three essential vertexes and the
general case of a b.c.p. with m ≥ 4 essential vertexes, because these three cases are substantially
different from one another. In any case, since we are in C2, Remark 2.1 reveals that we have only
two types of faces: vertexes (of dimension 0) and facets (of dimension 1).

3.2.1 Two-vertex b.c.p.’s

In this section we describe the boundary of a two vertex b.c.p. P = absco({x(1), x(2)}) ⊆ C2, where

x(1) = [x
(1)
1

x
(1)
2

]T and x(2) = [x
(2)
1

x
(2)
2

]T are linearly independent. By Theorem 2.2, the (geometric)
facets of P are all the possible segments of the type

Fy(θ1,θ2) = co
(

{eiθ1x(1), eiθ2x(2)}
)

denoted also by

eiθ1x(1)
� eiθ2x(2),

34 T        C2

for θ1, θ2 ∈ (−π, π], where y(θ1, θ2) is the associated functional (see Definition 2.4) determined by

{

〈y(θ1, θ2), eiθ1x(1)〉 = 1,
〈y(θ1, θ2), eiθ2x(2)〉 = 1,

that is,

y(θ1, θ2) = ([x(1) x(2)]∗)−1

[

eiθ1

eiθ2

]

. (3.2)

Therefore, in view of formula (2.10), we can conclude that the parametric equation of ∂P is
given by

x = λ eiθ1x(1) + (1 − λ) eiθ2x(2), (3.3)

where θ1, θ2 ∈ (−π, π] and λ ∈ [0, 1] .
On the other hand, the boundary of P is the set of vectors x ∈ C2 such that ‖x‖P = 1. Thus, by

(2.27), it is given by the following equation in the variable x = [x1 x2]T ∈ C2:

‖[x(1)x(2)]−1x‖1 = 1.

Thus, Theorem 3.1 and formula (3.1) imply that ∂P is a branch of an algebraic hypersurface of
order 4 in R4 (identified with C2) and its equation is

f1(x) + f2(x) = d, (3.4)

where f1(x) = |x1x(1)
2
− x2x(1)

1
| , f2(x) = |x1x(2)

2
− x2x(2)

1
| , d = |x(2)

2
x(1)

1
− x(1)

2
x(2)

1
|.

Remark that, if x(1), x(2), x ∈ R2, the equation (3.4) represents the boundary of the parallelogram
of vertexes {x(1), x(2),−x(1),−x(2)} . Of course, for θ1 = θ2 = 0, also the parametric equation (3.3)
represents the same parallelogram.

As is made in the proof of Theorem 3.1,we can eliminate the square roots in (3.4) by considering
the equation

(f1(x) + f2(x) − d)(f1(x) − f2(x) − d)(f2(x) − f1(x) − d)(− f1(x) − f2(x) − d) = 0. (3.5)

Then, by developing the left hand side, we find the fourth order algebraic equation

(f1(x)2 − f2(x)2)2 − 2d2(f1(x)2
+ f2(x)2) + d4 = 0. (3.6)

Remark that equation (3.6) may be obtained also by squaring two times equation (3.4), and that
equation (3.4) is equivalent to equation (3.6) with the constraint

f1(x)2
+ f2(x)2 ≤ d2. (3.7)

If we identify C2 with the real space R4, the equation (3.6) and the constraint (3.7) represent a
fourth order and a second order algebraic hypersurface inR4, respectively. The set of the singular
points of the hypersurface (3.6) is given by the vertexes of P.

Clearly, if x1, x2 ∈ R, then the equation (3.6) with the constraint (3.7) represents the intersection
of ∂Pwith R2, which is equal to ∂(P ∩R2).

Example 3.1. Let x(1) =

[

1
i

]

, x(2) =

[

1
1 − i

]

, P = absco({x(1), x(2)}) and ‖·‖P be the corresponding

norm.
We want to compute ∂P∩R2. To this purpose, by the previous results we have that

d2 = |x(2)
2

x
(1)
1
− x

(1)
2

x
(2)
1
|2 = 5,

f1(x)2
= x1

2 + x2
2,

f2(x)2
= 2x1

2 + x2
2 − 2x1x2.

3.2 T      (...) 35

So, by (3.6) and (3.7) we obtain the following fourth order curve in R2 (plotted in black)

(x1
2 − 2x1x2)2 − 10(3x1

2 + 2x2
2 − 2x1x2) + 25 = 0

with the constraint (plotted in red)

3x1
2 + 2x2

2 − 2x1x2 ≤ 5.

Therefore ∂P ∩ R2 is given by the solid closed curve located inside the dashed closed curve in
Figure 3.4. ^

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 3.4: Intersection of ∂Pwith R2 in Example 3.1

Now observe that, if P = P is self-conjugated with Re(x(2)) = Re(x(1)) and Im(x(2)) = −Im(x(1)) ,
0, then

f1(x) = f2(x) for all x ∈ R2.

Consequently, for x ∈ R2 the equation (3.4) is equivalent to the second order algebraic equation

f1(x)2 =
1

4
d2, (3.8)

which represents an ellipsis, whereas the constraint (3.7) becomes

f1(x)2 ≤ 1

2
d2

and is automatically satisfied. Remark that, in this case, we have Re(P) = P ∩ R2 and that the
result is consistent with Proposition 2.6.

Moreover, in this case all the facets are real (modulo scalar factors of unitary modulus). In
fact, denoting for simplicity of notation

v = x(1) and v = x(2) = x(1), (3.9)

the functional y(θ1, θ2) associated with the general facet

Fy(θ1,θ2) = eiθ1v� eiθ2 v

is

y(θ1, θ2) =
([

v v
]∗)−1

[

eiθ1

eiθ2

]

=
ieiθ1

(

v1 − ei(θ2−θ1)v1

)

2Im (v1v2)















2ℜ(v2(v1−ei(θ2−θ1)v1))

|v1−ei(θ2−θ1)v1|2
1















,

36 T        C2

which is proportional to a real vector. Therefore, apart from a scalar factor of unitary modulus,
all the facets are given by the set of vectors

F = {y(θ)}−π<θ≤π ⊂ R2,

where

y(θ) =
1

2Im (v1v2)















2ℜ(v2(v1−eiθv1))
|v1−eiθv1|

∣

∣

∣v1 − eiθv1

∣

∣

∣















. (3.10)

Observe that, for θ = θ̂ such that v1 − eiθ̂v1 = 0, formula (3.10) is not well-defined. However, in
this case, we have to consider the limit as θ→ θ̂.

By (2.11), we can conclude that
P = adj(F)

and that
P ∩R2 = adj

R
(F), (3.11)

where, for a setY ⊂ R2, we define

adj
R

(Y) = {x ∈ R2
∣

∣

∣

∣

|〈y, x〉| ≤ 1 for all y ∈ Y}

as the real adjoint of Y.
Remark that the real straight lines of equations

〈±y(θ), x〉 = 1, y(θ) ∈ F ,

form the family of the straight lines that are tangent to the ellipsis ∂P ∩R2.

3.2.2 Three-vertex b.c.p.’s

In this subsection we examine the addition of the third point x(3) to the already available
two-vertex b.c.p. P(2) = absco({x(1), x(2)}) ⊆ C2 when x(3) < P(2) in order to construct P(3) =

absco({x(1), x(2), x(3)}). A precise description of this addition operation requires us to analyse sev-
eral possibilities, each one related to a different reciprocal position between x(3) and P(2). From
a mathematical point of view, these possibilities are easily related to the two complex numbers
λ1, λ2 ∈ Cwhich are used to express x(3) as a linear combination of x(1) and x(2), i.e.,

x(3) = λ1x(1) + λ2x(2).

First of all, we observe that the added point x(3) may delete one, but not both, of the previously
existing vertexes of P(2). More precisely, we have

• x(1) ∈ absco({x(2), x(3)}) if and only if |λ1| ≥ |λ2| + 1,

• x(2) ∈ absco({x(1), x(3)}) if and only if |λ2| ≥ |λ1| + 1.

In the former case x(3) deletes x(1), whereas in the latter case it deletes x(2). Thus, in both cases we
are left with a b.c.p. with only two vertexes, one of which is x(3) and the other is x(2) in the first
case and x(1) in the second case.

On the other hand, the point x(3) may not delete any of the previously existing vertexes, which
is equivalent to the condition

∣

∣

∣|λ1| − |λ2|
∣

∣

∣ < 1. (3.12)

So, in this case, we actually construct a three-vertex b.c.p. P(3) which has, as an essential system
of vertexes, the three vertexes x(1), x(2), x(3). Now, in order to compute and describe its boundary,
we perform some steps.

3.2 T      (...) 37

The first step is to determine the facets of P(2) that have to be deleted. We recall that all the
facets of P(2) are of the kind Fy12(θ) = x(1) � eiθx(2), where y12(θ) is the associated functional

y12(θ) = [x(1) x(2)]−H

[

1
eiθ

]

.

Then, using Theorem 2.1, the facet Fy12(θ) is deleted if and only if it is seen from the circle generated

by x(3), that is, if and only if |〈y12(θ), x(3)〉| > 1. Therefore, we have to find the values of θ ∈ (−π, π]
such that

∣

∣

∣

∣

∣

∣

([x(1) x(2)]−1x(3))H

[

1
eiθ

]
∣

∣

∣

∣

∣

∣

2

> 1

or, equivalently,

∣

∣

∣|λ1|e−iarg(λ1) + |λ2|ei(θ−arg(λ2))
∣

∣

∣

2
> 1.

This inequality is satisfied if and only if

cos(θ − arg(λ2) + arg(λ1)) >
1 − |λ1|2 − |λ2|2

2|λ1||λ2|
. (3.13)

Now, we note that, since x(3) < P12, by (2.27) we have

‖[x(1) x(2)]−1x(3)‖1 = |λ1| + |λ2| > 1, (3.14)

and therefore, using (3.12), we obtain

−1 <
1 − |λ1|2 − |λ2|2

2|λ1||λ2|
< 1. (3.15)

Thus, the right hand side of (3.13) is a feasible value for the cosine function and we can reverse it

obtaining the deleting intervalD(3)
12

generated by x(3) defined as



























D(3)
12
=

(

−θ̂12 + arg(λ2) − arg(λ1), θ̂12 + arg(λ2) − arg(λ1)
)

shift (−π, π] ,

θ̂12 = arccos
(

1−|λ1 |2−|λ2 |2
2|λ1 ||λ2 |

)

,

(3.16)

where we have chosen the principal determination in [0, π] for the function arccos. Observe also

that, since in (3.15) we have two strict inequalities, 0 < θ̂12 < π holds. The notation ”shift(−π, π]”
used in (3.16) means that the angles are shifted to the reference interval (−π, π] by 2π−periodicity.
This may split the original interval in the union of two intervals. For example, if we consider as
the original interval (π2 ,

3π
2), then we have (π2 ,

3π
2)shift(−π, π] = (−π,−π2) ∪ (π2 , π]. Therefore, the

facets of P(2) of the kind x(1) � eiθx(2) survive for

θ ∈ E(3)
12
= (−π, π] \D(3)

12
,

and these are the facets Fy12(θ) of P(3).

The second step is to find the facets of the kind Fy13(θ) = x(1) � eiθx(3) and Fy23(θ) = x(2) � eiθx(3)

to add. For the first one the associated functional is

y13(θ) = [x(1) x(3)]−H

[

1
eiθ

]

. (3.17)

Using the equality P = (P∗)∗ (see Theorem 2.1), we have that the facets to add are those for which

38 T        C2

∣

∣

∣〈y13(θ), x(2)〉
∣

∣

∣ ≤ 1. (3.18)

Therefore, since (3.12) and (3.14) imply

−1 <
1 + |λ1|2 − |λ2|2

2|λ1|
< 1,

it turns out that the facets of the kind Fy13(θ) are added for



























θ ∈ E(3)
13
=

[

−θ̂13 − arg (λ1), θ̂13 − arg (λ1)
]

shift(−π, π]

θ̂13 = arccos
(

1+|λ1 |2−|λ2 |2
2|λ1 |

)

∈ (0, π)

. (3.19)

In the same way, since (3.12) and (3.14) imply also

−1 <
1 − |λ1|2 + |λ2|2

2|λ2|
< 1,

we find that the facets of the kind Fy23(θ) to add are those such that



























θ ∈ E(3)
23
=

[

−θ̂23 − arg (λ2), θ̂23 − arg (λ2)
]

shift(−π, π]

θ̂23 = arccos
(

1−|λ1 |2+|λ2 |2
2|λ2 |

)

∈ (0, π)

. (3.20)

Remark 3.2. The facets x(i) � eiθx(j) of the b.c.p. P(3) exist for θ which varies in the union of, at the
most, two intervals. This is due to one or both of the following facts: the first is due to the shift of the
original interval into (−π, π] and the second is due to the set difference used to compute the the facets of
P(3) which remain after the removal from P(2) of the facets which are seen from the added point x(3).

For further generalisation to come in Section 3.2.3, we introduce some notations and consid-
erations in the following remark.

Remark 3.3. We denote by E(2)
12
= (−π, π] the existence interval of the facets Fy12(θ) ofP(2) (i.e., the facets

Fy12(θ) exist for θ ∈ E(2)
12

). Therefore, the existence interval of the facets Fy12(θ) of P(3) is given by

E(3)
12
= E(2)

12
\D(3)

12
.

Note that the interval E(3)
12

is of the form [θ−
12
, θ+

12
] or (−π, θ+

12
] ∪ [θ−

12
, π], where

θ−
12
= θ̂12 + arg(λ2) − arg(λ1) shift(−π, π]

θ+
12
= −θ̂12 + arg(λ2) − arg(λ1) shift(−π, π].

(3.21)

Analogously, for i = 1, 2, we call E(3)

i3
the existence intervals of the facets Fyi3(θ) of P(3) and we note that

these intervals are of the form [θ−
i3
, θ+

i3
] or (−π, θ+

i3
] ∪ [θ−

i3
, π], where

θ−
i3
= −θ̂i3 − arg(λi) shift(−π, π]

θ+
i3
= θ̂i3 − arg(λi) shift(−π, π].

(3.22)

The angles θ̂i j , 1 ≤ i ≤ j ≤ 3, and so also the extremal values of the existence intervals θ±
i j

, are

related to one another as stated by the following lemma.

3.2 T      (...) 39

Lemma 3.2. The equality θ̂12 = θ̂13 + θ̂23, that is θ±
12
+ θ±23 = θ

∓
13

mod 2π, is verified.

Proof. By (3.16), (3.19) and (3.20) and related discussions, we have that

cos θ̂12 =
1 − |λ1|2 − |λ2|2

2|λ1||λ2|
,

cos θ̂13 =
1 + |λ1|2 − |λ2|2

2|λ1|
,

cos θ̂23 =
1 − |λ1|2 + |λ2|2

2|λ2|
.

Moreover, since 0 < θ̂13, θ̂23 < π, it holds that sin θ̂13 > 0 and sin θ̂23 > 0. For these reasons we
have

cos θ̂13 cos θ̂23 =
(1 − |λ1|2 − |λ2|2)(1 − |λ1|2 + |λ2|2)

4|λ1||λ2|
and

sin θ̂13 sin θ̂23 =

√

√

√

√

√



















1 −

(

1 + |λ1|2 − |λ2|2
)2

4|λ1|2





































1 −

(

1 − |λ1|2 + |λ2|2
)2

4|λ2|2



















.

Therefore, by simple calculations we can conclude that

cos(θ̂13 + θ̂23) =
1 − |λ1|2 − |λ2|2

2|λ1||λ2|
= cos θ̂12,

which implies

θ̂12 = θ̂13 + θ̂23 (3.23)

if θ̂13 + θ̂23 < π and θ̂13 + θ̂23 = 2π − θ̂12 if θ̂13 + θ̂23 > π. If we suppose that the latter case

holds, then we can move x(3) in x(3)′ in such a way that θ̂
′

13
+ θ̂

′

23 < π. If we write x(3) and x(3)′

as a linear combination with complex coefficients of x(1) and x(2), that is, x(3) = λ1x(1) + λ2x(2) and
x(3)′ = µ1x(1) + µ2x(2), we are allowed to choose x(3)′ in such a way that arg(µi) = arg(λi), i = 1, 2.
Remark that, since x(3), x(3)′ < P12, then

|λ1| + |λ2| > 1 and |µ1| + |µ2| > 1. (3.24)

Moreover, since both x(3) and x(3)′ do not delete either x(1) or x(2), we have

||λ1| − |λ2|| < 1 and ||µ1| − |µ2|| < 1. (3.25)

The points w ∈ C2 which belong to the segment x(3) � x(3)′ are given by

w = αx(3) + (1 − α)x(3)′ , α ∈ [0, 1],

that is,
w = (αλ1 + (1 − α)µ1)x(1) + (αλ2 + (1 − α)µ2)x(2), α ∈ [0, 1].

Since x(3)′ is such that arg(µi) = arg(λi), i = 1, 2, by using (3.24) and (3.25), we obtain both the
inequalities

∣

∣

∣αλ1 + (1 − α)µ1

∣

∣

∣ +
∣

∣

∣αλ2 + (1 − α)µ2

∣

∣

∣ > 1

and
∣

∣

∣

∣

∣

∣(αλ1 + (1 − α)µ1)
∣

∣

∣ −
∣

∣

∣(αλ2 + (1 − α)µ2)
∣

∣

∣

∣

∣

∣ < 1,

that is, ∀α ∈ [0, 1] the b.c.p. P̃ = absco({x(1), x(2),w}) has three essential vertexes. But, since x(3) is

such that θ̂13 + θ̂23 > π and x(3)′ is such that θ̂
′

13
+ θ̂

′
23 < π, there exists a point x(3)′′ that belongs to

40 T        C2

the segment x(3) � x(3)′ such that θ̂
′′

13
+ θ̂

′′
23 = π, that is, x(3)′′ deletes x(1) or x(2), which contradicts

the fact that all the points of the segment x(3) � x(3)′ give rise to a b.c.p. with three essential
vertexes. Therefore, (3.23) necessarily holds.

Now we observe that, since in the general complex case the upper bound (2.12) can be actually
reached (see [GZ07]), there may exist another type of facets, which are different from the already
computed facets of the kind Fyi j(θ), 1 ≤ i < j ≤ 3. For this reason, we introduce the following
definitions.

Definition 3.1. A facet Fy of a three- vertex b.c.p. P = absco{x(1), x(2), x(3)} ⊂ C2 is called regular if it
contains exactly two vertexes.

Definition 3.2. A facet Fy of a three- vertex b.c.p. P = absco{x(1), x(2), x(3)} ⊂ C2 is called special if

it contains three vertexes, that is, if its associated functional y satisfies 〈y, eiθix(i)〉 = 1 for suitable θi,
i = 1, 2, 3.

Observe that the special facet Fy is the triangle

eiθ1 x(1)
Neiθ2 x(2)

Neiθ3x(3) = co
({

eiθ1 x(1), eiθ2 x(2), eiθ3 x(3)
})

and that its dimension on R, thought as a part of an affine subspace of R4, is equal to 2, whereas
the dimension on R of a regular facet is obviously equal to 1.

Definition 3.3. A segment eiθi x(i) � eiθj x(j) containing two vertexes of a three-vertex b.c.p. P =
absco({x(1), x(2), x(3)}) is called a degenerate facet if it is part of a special facet with three vertexes.

Now, we are able to give the following result which, for a three-vertex b.c.p. P, guarantees
that the upper bound (2.12) is always attained and allows us to compute all the special facets of
P.

Theorem 3.2. LetP = absco({x(1), x(2), x(3)}) ⊂ C2 be a three-vertex b.c.p. ThenP has exactly two special
facets with three vertexes (modulo scalar factors of unitary modulus) which are given by

x(1)
Neiθ+

12 x(2)
Neiθ−

13 x(3)

and
x(1)
Neiθ−

12 x(2)
Neiθ+

13 x(3)

where θ±
12

and θ±
13

are given by (3.21) and (3.22) and satisfy

θ+12 + θ
+
23 = θ

−
13 mod 2π (3.26)

and
θ−12 + θ

−
23 = θ

+
13 mod 2π. (3.27)

Proof. The extremal values θ±
12

, θ±
13

, θ±23, given by (3.21) and (3.22), determine all the degenerate
facets of P, that are

x(1) � eiθ±
12 x(2),

x(1) � eiθ±
13 x(3),

x(2) � eiθ±
23 x(3),

and all their multiples by scalar factors of unitary modulus. Such degenerate facets belong to the
boundary of the special facets with three vertexes:

x(1)
N eiθ±

12x(2)
N eiθ±

13x(3) (3.28)

and all their multiples by scalar factors of unitary modulus. Now we are left to find how to choose
the signs. Fixing x(2) in (3.28) yields θ±

13
− θ±

12
= θ±23 mod 2π. By Lemma 3.2 only two of the four

possible sign cases of (3.28) are allowed, and this completes the proof.

3.2 T      (...) 41

As a consequence, we have to perform a third and last step in the procedure for the construction
of a three vertex b.c.p. where we compute the special facets P(3) which are given by the previous
theorem.

Strictly connected to the existence of special facets, it also holds that

P12 ∪ P13 ∪ P23 (P

where Pi j = absco({x(i), x(j)}), for i, j = 1, 2, 3 and i < j, is a subpolytope of P (see Example 3.2 and
also Example 3.1 in [GZ07]).

Now, we examine the intersection of the special facets with R2. Let P = absco({x(1), x(2), x(3)})
and y(1) , y(2) ∈ ∂P∗ be the functionals associated with two not proportional special facets. There-
fore, all the special facets are determined by the vectors eiθy(1) and eiθy(2) with θ ∈ (−π, π], and so
their intersections with R2 are given by the vectors x = [x1, x2]T ∈ P ∩R2 such that

〈eiθy(1), x〉 = 1 or 〈eiθy(2), x〉 = 1.

Then, for each j = 1, 2 , we have 〈y(j), x〉 = e−iθ, that is,



















y
(j)

1R
x1 + y

(j)

2R
x2 = cosθ

y
(j)

1I
x1 + y

(j)

2I
x2 = − sinθ

.

This system is equivalent to

[(y
(j)

1R
)2 + (y

(j)

1I
)2] x1

2 + [(y
(j)

2R
)2 + (y

(j)

2I
)2] x2

2 + 2(y
(j)

1R
y

(j)

2R
+ y

(j)

1I
y

(j)

2I
) x1x2 = 1 , (3.29)

which, for j = 1, 2, represents two ellipses, possibly degenerating in pairs of straight lines.
We can conclude that the intersection of the special facets of P with R2 is given by two pairs

of symmetric arcs of ellipses, where one or even both of them may degenerate into a pair of
symmetric straight segments. Consequently, we can also conclude that ∂P ∩ R2 is the union of
arcs of algebraic curves of fourth order and/or arcs of ellipses and/or straight segments. This fact
is illustrated in Example 3.2.

In particular, if P = P is self-conjugated, i.e., for example, Re(x(2)) = Re(x(1)), Im(x(2)) =
−Im(x(1)) , 0 and x(3) ∈ R2, then the functionals y(1), y(2) ∈ R2 (see (3.10) and (3.9)) and, thus, the
ellipses (3.29) reduce to the pairs of straight lines

(

y
(1)
1

x1 + y
(1)
2

x2 + 1
) (

y
(1)
1

x1 + y
(1)
2

x2 − 1
)

= 0

and
(

y
(2)
1

x1 + y
(2)
2

x2 + 1
) (

y
(2)
1

x1 + y
(2)
2

x2 − 1
)

= 0,

respectively. Two of the above four straight lines contain the vertex x(3) and the other two contain
the vertex−x(3), and all of them are tangent to the ellipsis ∂P12∩R2 (see (3.9)). Therefore, according
to Proposition 2.6, ∂P ∩ R2 is given by two symmetric arcs of the ellipsis ∂P12 ∩ R2 and by the
two pairs of segments coming out of the vertexes ±x(3) and tangent to the ellipsis ∂P12 ∩R2.

Example 3.2. We consider the same b.c.p. introduced in Example 3.1 of [GZ07], that is P =
absco({x(1), x(2), x(3)}), where

x(1) =

[

1
i

]

, x(2) =

[

1
1 − i

]

, x(3) =

[

1
1

]

.

In order to compute ∂P ∩ R2, we determine each of the three curves ∂Pi j ∩ R2 for i, j = 1, 2, 3
with i < j and, then, the intersection of the special facets with R2. By (3.6) and (3.7) we obtain
that ∂P13∩R2 (represented by the solid closed curve with two cusps in Figure 3.5) is given by the
equation

4x1
2x2

2 − 8(x1
2 + x2

2 − x1x2) + 4 = 0

42 T        C2

with the constraint

x1
2 + x2

2 − x1x2 ≤ 1

and that ∂P23∩R2 (represented by the dashed closed curve with two cusps in Figure 3.5) is given
by the equation

x1
4 − 2(3x1

2 + 2x2
2 − 4x1x2) + 1 = 0

with the constraint

3x1
2 + 2x2

2 − 4x1x2 ≤ 1.

Finally, ∂P12 ∩ R2, already computed in Example 3.1, is represented by the dash-dotted closed
curve in Figure 3.5.

Remark that the two cusps in ∂P13 ∩R2 and ∂P23 ∩R2 are the two real vertexes of P.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.5: Intersection of ∂P12, ∂P13 and ∂P23 with R2 in Example 3.2

Two not proportional special facets are determined by the functionals y(1) = [1, 0]T and y(2) =

[2−i
5 ,

3+i
5]T, so that the intersection of all the special facets with R2 is given by the two ellipses

whose equations are

x1
2 = 1 (3.30)

(degenerating in two straight lines) and

x1
2 + 2 x2

2 + 2 x1x2 = 5 (3.31)

(see (3.29)), represented by the dash-dotted and dashed curves in Figure 3.6, respectively.
In conclusion, ∂P ∩R2 is the solid closed curve depicted in Figure 3.6, where A ,B ,A′ and B′

are the points where the ellipses (3.30) and (3.31) intersect (are tangent to) the curve ∂P12 ∩ R2

and where ∂P12 ∩R2, ∂P23 ∩R2 and ∂P23 ∩R2 are all represented by dotted curves. ^

Example 3.3. In order to show what happens when the addition of a third point x(3) to the already
available b.c.p. P(2) = absco({x(1), x(2)}) deletes one of the vertexes of P(2), we consider as an
example

x(1) =

[

1
i

]

, x(2) =

[

1
1 − i

]

, x(3) =

√
2

2

[

(4 + 4i)
(−1 + 3i)

]

.

3.2 T      (...) 43

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A

B

A’

B’

Figure 3.6: ∂P ∩R2 in Example 3.2

Since x(3) < P(2) as ‖x(3)‖P(2) = ‖[x(1), x(2)]−1x(3)‖1 > 1, we add x(3) to P(2) by following the procedure
described before. For this purpose we write x(3) in the form x(3) = λ1 x(1) + λ2 x(2), with λ1, λ2 ∈ C.
It turns out that |λ1| > |λ2| + 1, and so x(1) is deleted.

Now we analyse the intersection of ∂Pwith R2.
Like in Example 3.2 we compute ∂P12 ∩R2, that is given by the equation

(x1
2 − 2x1x2)2 − 10(3x1

2 + 2x2
2 − 2x1x2) + 25 = 0

with the constraint
3x1

2 + 2x2
2 − 2x1x2 ≤ 5.

Therefore, ∂P12 ∩R2 is given by the dashed curve (see Figure 3.7).
In the same way we obtain that ∂P13 ∩ R2, represented by the dotted curve (see Figure 3.7),

is given by the equation

(4x1
2 + 15x2

2 − 8x1x2)2 − 10(6x1
2 + 17x2

2 − 8x1x2) + 25 = 0

with the constraint
6x1

2 + 17x2
2 − 8x1x2 ≤ 5.

Finally, ∂P23 ∩R2, represented by the solid curve (see Figure 3.7), is given by the equation

(3x1
2 + 15x2

2 − 6x1x2)2 − 90(7x1
2 + 17x2

2 − 10x1x2) + 2025 = 0

with the constraint
7x1

2 + 17x2
2 − 10x1x2 ≤ 45.

Since ∂P12∩R2 and ∂P13∩R2 are both inside ∂P23∩R2, we can conclude that ∂P∩R2 is given
by the solid curve which represents ∂P23 ∩ R2. This is consistent to the fact that the addition of
x(3) to P12 deletes the vertex x(1) and that, indeed, P = P23 . ^

3.2.3 The general case

Now, we analyse the construction of a b.c.p. P = absco(X), whereX = {x(k)}1≤k≤m, m ≥ 4, is a set of
vectors in C2 with at least four essential vertexes. Thus, we begin generalising some definitions
introduced in the previous subsection.

Definition 3.4. A facet Fy of a b.c.p. P = absco(X) is called regular if it contains exactly two vertexes.

44 T        C2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3.7: Intersection of ∂Pwith R2

Definition 3.5. Let be P = absco(X) ⊆ C2, where X = {x(k)}1≤k≤r with r ≥ 4 is an essential system
of vertexes. A facet Fy of P is called special if it contains three or more vertexes, that is, if there exist

x(l1), · · · , x(ls) ∈ X, with 3 ≤ s ≤ m, such that the functional y associated with Fy satisfies

〈y, eiθix(li)〉 = 1,

for suitable θi, i = 1, · · · , s.

As a consequence of Theorems 2.3 and 2.4 and Remark 2.1 we have that Fy is the union of all

possible triangles of the type eiθi1 x(li1)
Neiθi2 x(li2)

Neiθi3 x(li3) = co
({

eiθi1 x(li1), eiθi2 x(li2), eiθi3 x(li3)
)}

, i.e.

Fy =
⋃

1≤i1<i2<i3≤s

eiθi1 x(li1)
Neiθi2 x(li2)

Neiθi3 x(li3). (3.32)

Moreover, we have

P =
⋃

1≤i1<i2<i3≤m

Pi1i2i3 , (3.33)

where Pi1i2i3 = absco({x(i1), x(i2), x(i3)}), 1 ≤ i1 < i2 < i3 ≤ m, are all the three-vertex subpolytopes of
P. Therefore, the real intersection P ∩R2, is given by

P ∩R2 =
⋃

1≤i1<i2<i3≤m

Pi1i2i3 ∩R2

and, consequently,

∂P ∩R2 ⊆
⋃

1≤i1<i2<i3≤m

∂Pi1i2i3 ∩R2.

So, ∂P ∩ R2 is still the union of arcs of algebraic curves of fourth order and/or arcs of ellipses
and/or straight segments.

Definition 3.6. A segment eiθix(i) � eiθ jx(j) containing two vertexes of a b.c.p. P is called a degenerate
facet if it is part of a special facet.

Definition 3.7. The existence pluri-interval of the facets of the type Fyi j(θ) = x(i) � eiθx(j) of a b.c.p. P
is the set Ei j ∈ (−π, π] such that θ ∈ Ei j if and only if the segment x(i) � eiθx(j) is a facet (either regular
or degenerate) of P.

3.2 T      (...) 45

By considering an m-vertex b.c.p. P as a structure constructed by adding the remaining m− 2
vertexes one at a time to a two-vertex b.c.p., it is easy to understand that, as the generalisation
of the procedure given in Subsection 3.2.2, the existence pluri-interval Ei j may be obtained by
subtracting at the most m−2 intervals, possibly shifted to our reference interval (−π, π]. Therefore,
as will be more clear later, we can state the following result.

Proposition 3.1. Let P be a b.c.p. with m essential vertexes. Then, the existence pluri-interval Ei j of the
facets Fyi j(θ) is the union of mi j disjoint intervals, 0 ≤ mi j ≤ m − 1, that is

Ei j =

mi j
⋃

l=1

[θ−i j,l, θ
+
i j,l] \ {−π} (3.34)

for appropriate values θ−
i j,l
, θ+

i j,l
∈ [−π, π] which, apart from the case of equality to −π and, possibly, to π,

determine all the degenerate facets of the type Fyi j(θ) = x(i) � eiθx(j).

Note that mi j = 0 if and only if Ei j = ∅, i.e. P has no facets of the type Fyi j(θ) = x(i) � eiθx(j) at all.
Now, we show how to determine all the special facets ofPwith three or more vertexes. Since,

according to (3.32), all the special facets with more then three vertexes can be viewed as a union
of triangles, the next theorem shows how to compute all of them by using the knowledge of the
existence pluri-intervals Ei j, 1 ≤ i < j ≤ m.

Lemma 3.3. LetP = absco(X) ⊂ C2, whereX = {x(i)}1≤i≤m, m ≥ 3, is an essential system of vertexes, and
let eiθi x(i), with i ∈ {I, J,K} and 1 ≤ I < J < K ≤ m, be vertexes such that all the segments eiθi x(i) � eiθj x(j),
for i < j and j ∈ {I, J,K}, are included in facets ofP. Then the triangle eiθI x(I)

N eiθJ x(J)
N eiθK x(K) is contained

in a special facet of P.

Proof. Since the essential vertexes are pairwise linearly independent, there exist αI, αJ ∈ C,
αI, αJ , 0, such that

eiθK x(K) = αIe
iθI x(I) + αJe

iθJ x(J). (3.35)

If yIJ ∈ P∗ is the functional associated with the facet FyIJ
including the segment eiθI x(I) � eiθJ x(J),

then
〈yIJ, e

iθK x(K)〉 = αI + αJ

and, consequently,
|αI + αJ | ≤ 1. (3.36)

Moreover, solving (3.35) first for x(I) and then for x(J) and using the fact that also the segments
eiθJ x(J) � eiθK x(K) and eiθI x(I) � eiθK x(K) are included in facets of P, we obtain also

|1 − αJ | ≤ |αI | and |1 − αI | ≤ |αJ |.

Squaring and summing up these last two inequalities, we find that

Re(αI + αJ) ≥ 1.

Therefore, by virtue of (3.36), we can conclude that

〈yIJ, e
iθK x(K)〉 = αI + αJ = 1,

that is, eiθK x(K) ∈ FyIJ
, concluding the proof.

Theorem 3.3. For all the triplets (I, J,K) with 1 ≤ I < J < K ≤ m, there exist, at the most, two triangles
of the type x(I)

NeiθIJ x(J)
NeiθIK x(K) contained in special facets of P. Such triangles, if any, necessarily have

the form

x(I)
Neiθ+

IJ x(J)
Neiθ−

IK x(K) only if θ+IJ + θ
+
JK = θ

−
IK mod 2π (3.37)

46 T        C2

and/or
x(I)
Neiθ−

IJ x(J)
Neiθ+

IK x(K) only if θ−IJ + θ
−
JK = θ

+
IK mod 2π, (3.38)

where [θ−rs, θ
+
rs], r, s ∈ {I, J,K}, stands for any of the intervals of the pluri-interval Ers.

Conversely, if θ+IJ + θ
+
JK = θ

−
IK mod 2π, then the triangle x(I)

Neiθ+
IJ x(J)
Neiθ−

IK x(K) is contained in a

special facet of P and, if θ−IJ +θ
−
JK = θ

+
IK mod 2π, then the triangle x(I)

Neiθ−
IJx(J)
Neiθ+

IK x(K) is contained in

a special facet of P.

Proof. We start by observing that a triangle x(I)
NeiθIJ x(J)

NeiθIK x(K) is contained in a special facet
of P only if it is a special facet of the subpolytope P(IJK) = absco({x(I), x(J), x(K)}). Now Theorem 3.2
implies that such triangles are at the most two and that they are obtained respectively for

θIJ = θ
+
IJ ∧ θIK = θ

−
IK

and
θIJ = θ

−
IJ ∧ θIK = θ

+
IK ,

where
[

θ−
IJ
, θ+

IJ

]

and
[

θ−
IK
, θ+

IK

]

are suitable intervals of the pluri-intervals EIJ and EIK , respectively,

(see Proposition 3.1) such that
θ+IJ + θ

+
JK = θ

−
IK mod 2π

and
θ−IJ + θ

−
JK = θ

+
IK mod 2π.

Conversely, let the triangle x(I)
Neiθ+

IJ x(J)
Neiθ−

IK x(K) be such that θ+
IJ
+ θ+

JK
= θ−

IK
mod 2π. Since

the segment x(J) � eiθ+
JK x(K) is a degenerate facet of P and since θ+

JK
= θ−

IK
− θ+

IJ
mod 2π, the

segment eiθ+
IJ x(J) � eiθ−

IK x(K) is a degenerate facet of P, too. Therefore, since also x(I) � eiθ+
IJ x(J)

and x(I) � eiθ−
IK x(K) are degenerate facets of P, the vertexes x(I), eiθ+

IJ x(J), eiθ−
IK x(K) determine three

segments that satisfy the hypotheses of Lemma 3.3 with respect to the subpolytopePIJK. Therefore,

the triangle x(I)
Neiθ+

IJ x(J)
Neiθ−

IK x(K) is a special facet of PIJK and, consequently, it must be included in
a special facet of P.

The case of the triangle x(I)
Neiθ−

IJ x(J)
Neiθ+

IK x(K) may be treated in the same way.

An important role in the incoming discussion is played by a new kind of facets, the so called
isolated facets, which characterise a particular situation that, although being a limiting case, may
well occur. These facets are defined as follows.

Definition 3.8. A segment eiθi x(i) � eiθjx(j) containing two vertexes of a b.c.p. P is called an isolated
facet if it is contained in a facet of P and if all the segments eiθi x(i) � eiθ+θjx(j) are not facets of P for all
θ ∈ (−θ0, θ0) \ {0} for some θ0 > 0.

Clearly, a two-vertex b.c.p. has no isolated facets. For a three-vertex b.c.p. we can state the
following proposition which is an obvious consequence of the results presented in the previous
Section 3.2.2.

Proposition 3.2. Let P = absco({x(1), x(2), x(3)}) be a b.c.p. with three essential vertexes. Then P has no
isolated facets.

In general, for b.c.p.’s with four or more essential vertexes, the isolated facets may be related to
the special facets as shown in the next proposition.

Proposition 3.3. Let P = absco(X), where X = {x(i)}1≤i≤m is an essential system of m ≥ 4 vertexes,
and let eiθ1 x(1) � eiθ2 x(2) be an isolated facet. Then there exist at least two vertexes, x(h), x(k) ∈ X, with
h, k ∈ [3,m], h , k, and the correspondingθh, θk ∈ (−π, π], such that the triangles eiθ1x(1)

Neiθ2x(2)
Neiθh x(h)

and eiθ1 x(1)
Neiθ2x(2)

Neiθkx(k) are contained in the same special facet Fy.

3.2 T      (...) 47

Proof. Since the value θ = 0 is extremal for the facets of the kind eiθ1 x(1) � ei(θ+θ2)x(2), the facet
eiθ1x(1) � eiθ2 x(2) is degenerate and is part of a special facet Fy. Thus, by (3.32) it is included in a

triangle eiθ1x(1)
Neiθ2x(2)

Neiθh x(h) ⊆ Fy with h ∈ [3,m] and for a suitable θh.

Now, we assume by contradiction that eiθ1 x(1)
Neiθ2 x(2)

Neiθhx(h) = Fy, that is, |〈y, x(i)〉| < 1 for all
i ∈ [3,m]\{h}. Then, by continuity, we would have that

|〈y(θ), x(i)〉| < 1 for all i ∈ [3,m]\{h} and for all θ ∈ (−θ0, θ0)

for some θ0 > 0, where y(θ) ∈ C2 is such that

〈y(θ), eiθ1x(1)〉 = 〈y(θ), ei(θ+θ2)x(2)〉 = 1.

Therefore, since the facet eiθ1x(1) � eiθ2 x(2) is isolated, the fundamental equalityP = (P∗)∗ (see
Theorem 2.1) would imply that

|〈y(θ), x(h)〉| > 1 for all θ ∈ (−θ0, θ0) \ {0}.

But this would mean that the subpolytope P12h = absco({x(1), x(2), x(h)}) has an isolated facet, and
this result contradicts Proposition 3.2.

In conclusion, there must exist another vertex x(k) ∈ Xwith k ≥ 3, k , h, and a suitable θk such
that

〈y, eiθkx(k)〉 = 1,

that is, x(k) ∈ Fy and the triangle eiθ1x(1)
Neiθ2x(2)

Neiθk x(k) is contained in the special facet Fy, too.

Remark 3.4. If the segment eiθi x(i) � eiθjx(j) is an isolated facet, then it is clearly a degenerate facet
and one of the intervals [θ−

i j,l
, θ+

i j,l
] that constitute the existence pluri-interval Ei j in (3.34) degenerates in a

single point, that is,

θ−i j,l = θ
+
i j,l = θ j − θi.

Another key result relates the isolated facets to the vertexes of a b.c.p., and, indeed, it will turn
out to be very important in our constructive algorithm of a b.c.p.

Theorem 3.4. None of the vertexes of a b.c.p. P = absco(X), where X = {x(i)}1≤i≤m with m ≥ 4, may
belong only to isolated facets.

For the proof we need the following technical lemmas.

Lemma 3.4. Let S =
{

s1, · · · , sp

}

, with p ≥ 4, be a generic finite set that satisfies the following two

properties:

(1) For all pairs (i, j) with i , j the subset Si j = S \
{

si, s j

}

is divided into two subsets Σ+
i j

and Σ−
i j

, one of

which can be possibly empty, such that

Σ+i j ∪ Σ−i j = Si j and Σ+i j ∩ Σ−i j = ∅ .

(2) For all triplets (i, j, k) with distinct i, j, k, it holds that

sk ∈ Σ+i j ⇐⇒ s j ∈ Σ−ik.

48 T        C2

If sh ∈ S is such that
Σ+hj , ∅ and Σ−hj , ∅ ∀ j , h, (3.39)

then there exists a triplet (α, β, γ) such that

sβ ∈ Σ+hα , sγ ∈ Σ+hβ , sα ∈ Σ+hγ. (3.40)

Proof. It is not restrictive to assume that h = 1. Trivially, the Lemma holds for p = 4, with
(α, β, γ) = (2, 3, 4) . Now, by using induction, we suppose that it holds for sets of cardinality p ≥ 4
and prove it for p + 1.

We assume, by contradiction, that the result does not hold for p + 1. Let S =
{

s1, · · · , sp+1

}

.

Then, if we delete the element sp+1 from S , we obtain the subset Sp+1 =
{

s1, · · · , sp

}

. Obviously, the

properties (1) and (2), that hold in S, hold in the subset Sp+1 too. On the countrary, the property
(3.39) is not assured any more for Sp+1, and the property (3.40), which does not hold in S, does
not hold in Sp+1 either. Indeed, the inductive hypothesis implies that the condition (3.39) cannot
hold in Sp+1, so that there exists j ∈ {2, · · ·p} such that

Σ+1 j ∩ Sp+1 = ∅ or Σ−1 j ∩ Sp+1 = ∅.

It is not restrictive to assume that j = p and that

Σ+1p ∩ Sp+1 = ∅.

Since the condition (3.39) holds in S, then it must necessarily be

Σ+1p = {sp+1} , (3.41)

so that property (1) implies
s j ∈ Σ−1p ∀ j ∈ [2, p − 1].

Consequently, by property (2) we obtain

sp ∈ Σ+1 j ∀ j ∈ [2, p − 1]. (3.42)

Analogously, if we eliminate the element sp from S , we obtain the subset Sp =
{

s1, · · · , sp−1, sp+1

}

.

Like before, we have that the property (3.39) cannot hold in Sp and, so, there exists j ∈ {2, · · ·p −
1, p + 1} such that

Σ+1 j ∩ Sp = ∅ or Σ−1 j ∩ Sp = ∅.

If j = p + 1 and Σ+
1p+1
∩ Sp = ∅, then, since the property (3.39) holds in S, it must necessarily be

Σ+
1p+1
= {sp} and this contradicts (3.41) because of properties (1) and (2).

If j = p + 1 and Σ−
1p+1
∩ Sp = ∅, then, since the property (3.39) holds in S, it must necessarily be

Σ−
1p+1
= {sp}, from which, by property (2), it follows that sp+1 ∈ Σ+1p

. Moreover, by property (1) it

also follows that sp−1 ∈ Σ+1p+1
. As a consequence, by (3.42) with j = p−1, we have that the property

(3.40) holds for the triplet (α, β, γ) = (p − 1, p, p + 1), and this is absurd. Therefore, it must be
j ∈ [2, p− 1], and it is not restrictive to assume that j = p− 1. First we suppose that Σ−

1p−1
∩ Sp = ∅.

Since the property (3.39) holds in S, then we have that Σ−
1p−1
= {sp}, which contradicts (3.42) with

j = p − 1 because of property (1). Lastly, if Σ+
1p−1
∩ Sp = ∅, then, since the condition (3.39) holds in

S, we have that Σ+
1p−1
= {sp}, so that properties (1) and (2) imply that sp−1 ∈ Σ+1p+1

. Thus, by (3.41),

the property (3.40) holds for the triplet (α, β, γ) = (p − 1, p, p+ 1), and this is absurd too.
For these reasons, we can conclude that the Lemma is true also for p + 1, and hence for all

p ≥ 4.

3.2 T      (...) 49

Lemma 3.5. Assume the hypotheses (1), (2) and (3.39) of Lemma 3.4 and, moreover, that for all pairs (i, j)
with i , j it holds that

Σ+i j = Σ
−
j i. (3.43)

Then (3.40) is equivalent to
sh ∈ Σ+αβ ∩ Σ+βγ ∩ Σ+γα . (3.44)

Proof. By (3.43) we obtain that sβ ∈ Σ+hα if and only if sβ ∈ Σ−αh
, that is, by using condition (2) of

Lemma 3.4, if and only if sh ∈ Σ+αβ. Analogously, we obtain that

sγ ∈ Σ+hβ ⇐⇒ sh ∈ Σ+βγ

sα ∈ Σ+hγ ⇐⇒ sh ∈ Σ+γα.

Therefore (3.40) is equivalent to (3.44).
The geometric interpretation of Lemma 3.5 is the following. Let S be a set of p ≥ 4 points

in the two-dimensional real plane such that three of them are never lying on the same straight
line. Then, given two points si and s j, it is clear that the straight line passing through them and
positively oriented from si to s j divides the plane into two half-planes, namely the left half-plane
and the right half-plane. Then we say that a third point sk belongs to Σ+

i j
if it lies in the left

half-plane and that it belongs to Σ−
i j

if it lies in the right half-plane. It is immediately seen that

such a set of points S satisfies the hypotheses (1), (2) and (3.43) of Lemma 3.5. Figure 3.8 illustrates
the situation in which the hypothesis (3.39) is satisfied by the point s1.

s1

sα

sβ

sγ

Figure 3.8: Geometric interpretation of Lemma 3.5.

Proof of Theorem 3.4 Assume, by contradiction, that x(1) belongs only to isolated facets. By
Proposition 3.3 we know that x(1) belongs to a special facet Fy with p ≥ 4 vertexes. Let S =

{x(1), x(2), · · · , x(p)} be the set of such vertexes. In order to use Lemmas 3.4 and 3.5, for all pairs (i, j)
with i , j we define the sets Σ+

i j
and Σ−

i j
as follows:

Σ+i j =

{

x(k) ∈ S \
{

x(i), x(j)
}

∣

∣

∣

∣

〈y(θ), x(k)〉| > 1 ∀ θ ∈ (0, θ0)
}

Σ−i j =

{

x(k) ∈ S \
{

x(i), x(j)
}

∣

∣

∣

∣

〈y(θ), x(k)〉| > 1 ∀ θ ∈ (−θ0, 0)
}

50 T        C2

for a suitable θ0 > 0, where y(θ) is the functional associated with the facet x(i) � eiθx(j), that is,

y(θ) =
[

x(i) x(j)
]−H

[

1
eiθ

]

. (3.45)

First of all, we examine the property (1). Let y, given by (3.45) for θ = 0, be the functional
associated with the special facet Fy, so that

〈y, x(k)〉 = 1 ∀x(k) ∈ S. (3.46)

For each x(k) ∈ S we can write

x(k) = λix
(i) + λ jx

(j) with λi, λ j ∈ C and |λi| + |λ j| > 1. (3.47)

Then (3.46) implies
λi + λ j = 1,

so that we can write
λi = α + iβ and λj = 1 − α − iβ,

where α, β ∈ R. We can conclude that

|〈y(θ), x(k)〉| > 1 ∀ θ ∈ (0, θ0) and |〈y(θ), x(k)〉| < 1 ∀ θ ∈ (−θ0, 0)

or vice versa, i.e.

|〈y(θ), x(k)〉| < 1 ∀ θ ∈ (0, θ0) and |〈y(θ), x(k)〉| > 1 ∀ θ ∈ (−θ0, 0).

In fact, if it were not so, the function

f (θ) = |〈y(θ), x(k)〉|2 − 1 = |λ̄i + eiθλ̄ j|2 − 1 = (1 − cosθ)(α2 + β2 − α) − β sinθ (3.48)

(see (3.45)) would have either a maximum or a minimum at θ = 0, and this would imply that
f ′(0) = −β = 0. In this case we would have either α < 0 that implies x(j) = −α

1−αx(i) + 1
1−αx(k),

that is, x(j) ∈ co(x(i), x(k)), or α > 1 that implies that x(i) ∈ co(x(j), x(k)), which are both impossible
occurrences. So the hypothesis (1) is proved.

Also the hypothesis (3.43) is verified. In fact, x(k) ∈ Σ+
i j

if and only if

|〈y(θ), x(k)〉| = |λ̄i + eiθλ̄ j| > 1 ∀ θ ∈ (0, θ0). (3.49)

On the other hand, x(k) ∈ Σ−
j i

if and only if |〈ŷ(θ), x(k)〉| > 1 ∀ θ ∈ (−θ0, 0), where ŷ(θ) =
[

x(j) x(i)
]−H

[

1
eiθ

]

, that is, if and only if

|λ̄ j + eiθλ̄i| > 1 ∀ θ ∈ (−θ0, 0) ⇐⇒

|e−iθλ̄ j + λ̄i| > 1 ∀ θ ∈ (−θ0, 0) ⇐⇒
|eiθλ̄ j + λ̄i| > 1 ∀ θ ∈ (0, θ0),

that is the inequality (3.49). Therefore, Σ+
i j
= Σ−

j i
.

Then we check the hypothesis (2) as follows. As already seen, we have that x(k) ∈ Σ+
i j

if and only

if the inequality (3.49) is satisfied, that is, if and only if f ′(0) = −β > 0 in (3.48). The equality (3.47)

implies that x(j) = − λi

λ j
x(i) + 1

λ j
x(k). Then x(j) ∈ Σ−

ik
if and only if |〈z(θ), x(j)〉| > 1 for all θ ∈ (−θ0, 0),

where z(θ) is the functional associated with the facet x(i) � eiθx(k) , that is, if and only if
∣

∣

∣

∣

∣

∣

− λ̄i

λ̄ j

+ eiθ 1

λ̄ j

∣

∣

∣

∣

∣

∣

> 1 ∀ θ ∈ (−θ0, 0),

3.2 T      (...) 51

that is, if and only if

g(θ) = |eiθ − λ̄i|2 − |λ̄ j|2 = α2(1 − cosθ) + β sinθ > 0

for all θ ∈ (−θ0, 0), that is if and only if β < 0. Therefore, we have shown that

x(k) ∈ Σ+i j ⇐⇒ x(j) ∈ Σ−ik.

Lastly, since x(1) generates only isolated facets, the condition (3.39) must hold. In fact, for any
j , 1 the segment x(1) � x(j) is a degenerate facet and, it being isolated, there must exist x(k) ∈ S
such that x(k) ∈ Σ+

1 j
and x(l) ∈ S such that x(l) ∈ Σ−

1 j
(with l , k because of property (1)). Thus, by

Lemmas 3.4 and 3.5, we have that

x(1) ∈ Σ+αβ ∩ Σ+βγ ∩ Σ+γα (3.50)

for a suitable triplet (α, β, γ).

Now we show that x(1) ∈ co
({

x(α), x(β), x(γ)
})

. We have



















x(1) = λαx(α) + λβx(β) with λα, λβ ∈ C
x(1) = ϕβx(β) + ϕγx(γ) with ϕβ, ϕγ ∈ C
x(1) = ξγx(γ) + ξαx(α) with ξγ, ξα ∈ C

(3.51)

and then, since x(1), x(α), x(β), x(γ) ∈ S are vertexes of the same special facet, we obtain

λα + λβ = ϕβ + ϕγ = ξγ + ξα = 1. (3.52)

Remark that (3.50) is equivalent to



















|〈yαβ(θ), x(1)〉| > 1
|〈yβγ(θ), x(1)〉| > 1 , ∀θ ∈ (0, θ0)
|〈yγα(θ), x(1)〉| > 1

(3.53)

for a suitable θ0, where yαβ(θ), yβγ(θ), yγα(θ) are the functionals associated with the facets x(α) �

eiθx(β) , x(β) � eiθx(γ) , x(γ) � eiθx(α), respectively. In turn, the system (3.53) is equivalent to



















|λ̄α + eiθλ̄β| > 1
|ϕ̄β + eiθϕ̄γ| > 1
|ξ̄γ + eiθξ̄α| > 1

∀θ ∈ (0, θ0),

which implies


















Im(λα) < 0
Im(ϕβ) < 0
Im(ξγ) < 0

. (3.54)

Furthermore, (3.52) implies


















Im(λα) = −Im(λβ)
Im(ϕβ) = −Im(ϕγ)
Im(ξγ) = −Im(ξα)

. (3.55)

Moreover, by the last two equations of (3.51) we obtain that

ϕβx
(β) + (ϕγ − ξγ)x(γ) − ξαx(α) = 0

with ϕγ − ξγ , 0, because x(α), x(β) are linearly independent. Thus,

x(1) =
ξαϕγ

ϕγ − ξγ
x(α) +

ϕβξγ

ϕγ − ξγ
x(β),

52 T        C2

from which it follows that

λα =
ξαϕγ

ϕγ − ξγ
and λβ =

−ϕβξγ
ϕγ − ξγ

. (3.56)

Since we can write

λα =
ξαϕγ(ϕ̄γ − ξ̄γ)
|ϕγ − ξγ|2

,

we have that Im(λα) < 0 (see (3.54)) if and only if Im(ξαϕγ(ϕ̄γ − ξ̄γ)) < 0, that is, if and only if

(

|ϕγ|2 − Re(ϕγ)
)

Im(ξα) +
(

|ξα|2 − Re(ξα)
)

Im(ϕγ) < 0. (3.57)

Therefore, since Im(ξα) > 0 and Im(ϕγ) > 0, at least one between

|ϕγ|2 − Re(ϕγ) < 0 (3.58)

and
|ξα|2 − Re(ξα) < 0 (3.59)

holds. Analogously, if we compute ξγ and ϕβ from (3.56), then we obtain that Im(ξγ) < 0 (see
(3.54)) implies that at least one between (3.58) and

|λβ|2 − Re(λβ) < 0 (3.60)

holds, and Im(ϕβ) < 0 (see (3.54)) implies that at least one between (3.59) and (3.60) holds.
In conclusion, at the most one of the conditions (3.58), (3.59), (3.60) may not hold. So we can
suppose without restriction that (3.58) and (3.59) hold, which in turn imply

0 < Re(ϕγ) < 1 (3.61)

and
0 < Re(ξα) < 1. (3.62)

Now, observe that we can write x(1) as

x(1) = uξ−1
α (ξγx

(γ) + ξαx
(α)) + vϕ−1

β (ϕβx
(β) + ϕγx

(γ))

with u, v ∈ R such that
uξ−1
α + vϕ−1

β = 1, (3.63)

that is,
x(1) = ux(α) + vx(β) + (1 − u − v)x(γ) with u, v ∈ R. (3.64)

It is easy to show that (3.63), (3.54), (3.55), (3.61) and (3.62) imply u > 0 and v > 0. Moreover, since
(3.63) implies

(u + v)
[

Im(ξα)Re(ϕβ) − Re(ξα)Im(ϕβ)
]

= Im(ξα)|ϕβ|2 − Im(ϕβ)|ξα|2,

using (3.58) and (3.59) and the fact that

|ϕγ|2 − Re(ϕγ) = |ϕβ|2 − Re(ϕβ),

we obtain 1 − u − v > 0.
Therefore, we can conclude that x(1) ∈ co

({

x(α), x(β), x(γ)
})

, that is, x(1) is not a vertex ofP, which

makes it absurd.

The constructive procedure of a b.c.p. P = absco(X), where X = {x(k)}1≤k≤r ⊂ C2, r ≥ 4, works
in an iterative fashion. From the already available b.c.p. P(k−1) = absco(V(k−1)), where k ≥ 4 and,

3.2 T      (...) 53

by possibly redefining the indexes, V(k−1) = {x(1), · · · , x(k−1)} contains the first k − 1 vectors of X
which determine an essential system of vertexes, we construct P(k) adding x(k) to P(k−1).

To perform this addition, we consider all the two-vertex subpolytopes Pi j = absco({x(i), x(j)}),
1 ≤ i < j ≤ k − 1, of P(k−1), and write

x(k) = λ(k)
i j

x(i) + µ(k)
i j

x(j), (3.65)

where λ(k)
i j
, µ(k)

i j
∈ C.

If ‖x(k)‖Pi j
= ‖[x(i)x(j)]−1x(k)‖1 ≤ 1 for some j = 2, · · · , k − 1 and i = 1, · · · , j − 1, then necessarily

x(k) ∈ P(k−1). In this case, the point x(k) is deleted, we go on to add x(k+1) to P(k−1) and the set X is
redefined as X\{x(k)}.

Otherwise, we set
V(k) = V(k−1) ∪ {x(k)}

and perform the following steps:

(step 1) deletion from X and from V(k) of all those vectors which are deleted as vertexes of a two-
vertex subpolytope because of the addition of x(k) and the computation of the existence
pluri-intervals of those regular facets of P(k) which were already regular facets of P(k−1);

(step 2) addition of the new facets of P(k) whose second vertex is x(k);

(step 3) deletion from V(k) andX of all the vectors which belong only to isolated facets or to no facets
at all.

Now, we illustrate the procedure in more detail beginning with (step 1). First of all, we remark

that the facets of P(k−1) are represented by the already computed existence pluri-intervals E(k−1)
i j

,

1 ≤ i < j ≤ k − 1. By generalising the deleting procedure of Section 3.2.2, we consider all the
two-vertex subpolytpes Pi j, 1 ≤ i < j ≤ k − 1, as follows.

Observe that the vector x(k) may directly delete some of the previous vertexes. As a matter of

facts, with reference to (3.65), it may happen that |µ(k)
i j
| ≥ |λ(k)

i j
| + 1, in which case x(i) is deleted, or

|λ(k)
i j
| ≥ |µ(k)

i j
| + 1, in which case x(j) is deleted. The deleted vertex, if any, is removed both from X

and V(k) and, of course, also all the existence pluri-intervals that involve it are not considered any
more.

Otherwise, we have
∣

∣

∣

∣

|λ(k)
i j
| − |µ(k)

i j
|
∣

∣

∣

∣

< 1

and, extending the discussion of the previous subsection, we observe that the point x(k) may see
only some regular facets Fyi j(θ) of P(k−1), j = 2, · · · , k − 1 and i = 1, · · · , j − 1. These facets have to

be deleted from E(k−1)
i j

whereas the remaining facets are the new corresponding facets Fyi j(θ) of the

b.c.p. P(k).
The facets of the kind Fyi j(θ) = x(i) � eiθx(j) of Pi j, whose associated functional is given by

yi j(θ) = [x(i) x(j)]−H

[

1
eiθ

]

,

are ”seen” by the ”circle” generated by x(k) and so deleted if and only if

|〈yi j(θ), x(k)〉| > 1,

that is, if and only if

θ ∈ D(k)

i j
=

(

−θ̂(k)

i j
− arg (λ(k)

i j
) + arg (µ(k)

i j
), θ̂(k)

i j
− arg (λ(k)

i j
) + arg (µ(k)

i j
)
)

shift(−π, π], (3.66)

54 T        C2

where

θ̂(k)
i j
= arccos

















1 − |λ(k)
i j
|2 − |µ(k)

i j
|2

2|λ(k)
i j
||µ(k)

i j
|

















∈ (0, π).

The set D(k)
i j

is the deleting interval generated by x(k) and associated with the facets Fyi j(θ). Con-

sequently, the existence pluri-interval E(k)
i j

of the facets Fyi j(θ) of P(k), 1 ≤ i < j ≤ k − 1, is given

by

E(k)
i j
= E(k−1)

i j
\D(k)

i j
. (3.67)

Remark that E(k)
i j

may be empty, in which case all the facets Fyi j(θ) are deleted.

We observe that, after processing all the subpolytopes Pi j, 1 ≤ i < j ≤ k − 1, the vertex set V(k)

may be reduced to just two elements. In this case, we have to go back to the very beginning of the
procedure and go on to add x(k+1) as the third vertex. Moreover, if V(k) is reduced to three elements,
then we complete the iteration from P(k−1) to P(k) by using the procedure of Subsection 3.2.2.

In (step 2), the computation of the new facets Fyik(θ) = x(i) � eiθx(k), i ≤ k − 1, of P(k) whose

second vertex is x(k), is made by using the following system of k − 2 inequalities in the variable θ:

|〈yik(θ), x(q)〉| ≤ 1 , q ≤ k − 1 , q , i, (3.68)

where yik(θ) = [x(i) x(k)]−H

[

1
eiθ

]

is the functional associated with the facets Fyik(θ). The existence

pluri-interval of the facets Fyik(θ) of P(k), which is the solution of the previous system, will be

denoted by E(k)

ik
. Remark that (3.68) is a generalisation of (3.18), since we must add all the facets

Fyik(θ) which are not seen from the circles generated by all the remaining k − 2 vertexes x(q) with
1 ≤ q ≤ k − 1, q , i.

It turns out that the minima of the intervals which constitute E(k)

ik
belong to the set of numbers

{

θ(k)−
ik

(q) = −θ̂(k)

ik
(q) − arg(λ(k)

iq
) shift (−π, π]

}

1≤q≤k−1, q,i
∪ {−π},

where

θ̂(k)

ik
(q) = arccos

















1 + |λ(k)
iq
|2 − |µ(k)

iq
|2

2|λ(k)
iq
|

















∈ (0, π),

whereas the maxima belong to the set

{

θ(k)+

ik
(q) = θ̂(k)

ik
(q) − arg(λ(k)

iq
) shift (−π, π]

}

1≤q≤k−1, q,i
∪ {π}.

In (step 3) we analyse all the existence pluri-intervals E(k)
i j

, 1 ≤ i < j ≤ k − 1, in order to delete

all the vectors that do not belong to any facet of P(k) or which produce only isolated facets from
V(k) and from X. These vectors, although not belonging to any of the subpolytopes generated by
all the pairs of other elements of V(k), are either inside or on the boundary of the b.c.p. generated
by all the other vertexes.

More precisely, we first look for those vectors x(s) ∈ V(k), if any, such that all the pluri-intervals

E(k)
is

, 1 ≤ i < s, and E(k)
s j

, s < j ≤ k, are empty. These vectors do not belong to any facets of P(k) and

hence, by Theorem 2.3, they are not vertexes of P(k) and must be deleted.

Then we look for those vectors x(s) ∈ V(k), if any, such that all the pluri-intervals E(k)
is

, 1 ≤ i < s,

and E(k)
s j

, s < j ≤ k, are constituted exclusively by intervals that degenerate to single points. Since

a single point represents an isolated facet, these vectors only belong to isolated facets and then,
by Theorem 3.4, they are not vertexes of P(k) either and must be deleted as well.

3.2 T      (...) 55

Once we have processed the last vector x(r) ∈ X, we have found the wanted b.c.p. P = absco(X).
At this stage the set X has been possibly reduced in the number of elements and we have

X = V(m) = {x(ip)}1≤p≤m ,

with {i1, · · · , im} ⊆ {1, · · · , r}, which represents an essential system of vertexes of P. In order to
simplify the notation, possibly redefining the indexes, we rename

X = {x(i)}1≤i≤m.

At this point, we determine all the (triangles included in) special facets of P by analysing its
existence pluri-intervals Ei j, 1 ≤ i < j ≤ m, in the light of Theorem 3.3. More precisely, for all the
triplets (i, j, k) with 1 ≤ i < j < k ≤ m, we check the validity of the equalities

θ+i j + θ
+
jk = θ

−
ik mod 2π (3.69)

and
θ−i j + θ

−
jk = θ

+
ik mod 2π, (3.70)

where [θ−rs, θ
+
rs], r, s ∈ {i, j, k}, stands for any of the mrs intervals of the existence pluri-interval

Ers. The triangle x(i)
Ne

iθ+
ij x(j)
Neiθ−

ik x(k) is (included in) a special facet if and only if the equality

(3.69) holds, whereas the triangle x(i)
Ne

iθ−
ij x(j)
Neiθ+

ikx(k) is (included in) a special facet if and only if
the equality (3.70) holds. Note that, for a given triplet (i, j, k), three different cases are possible:
either none or one or both equalities (3.69) and (3.70) may hold. Then, for each triplet (i, j, k) with
1 ≤ i < j < k ≤ m, we define the existence pairs of triangles included in special facets of P as
follows:

Si jk =































∅ if neither (3.69) nor (3.70) holds,
{(θ+

i j
, θ−

ik
)} if only (3.69) holds,

{(θ−
i j
, θ+

ik
)} if only (3.70) holds,

{(θ+
i j
, θ−

ik
), (θ−

i j
, θ+

ik
)} if both (3.69) and (3.70) hold.

(3.71)

Example 3.4. We show how to construct the b.c.p. P = absco(V), where

V = {x(1), x(2), x(3), x(4)}, x(1) =

[

1
i

]

, x(2) =

[

1
1 − i

]

, x(3) =

[

1
2
3

]

, x(4) =

[

1
1

]

.

Since

x(3) =
1

3
x(1) +

1

3
x(2) +

1

3
x(4), (3.72)

we should find the same b.c.p. P = absco({x(1), x(2), x(4)}) we considered in Example 3.2.
Since x(1) and x(2) are linearly independent, we set

X(2) = {x(1), x(2)}

and add x(3) to P(2) using the procedure described in Section 3.2.2. The vector x(3) is such that

‖[x(1)x(2)]−1x(3)‖1 = 1.008888370 ... > 1,

so that x(3) < P(2) and we define
X(3) = X(2) ∪ {x(3)}.

Moreover, neither x(1) nor x(2) is deleted by x(3) and, hence, we compute

E(3)
12
= (−π, 0] ∪ [0.532504098 ..., π],

E(3)
13
= [0, 0.283794109 ...],

E(3)
23
= [−0.248709989 ..., 0].

56 T        C2

Then we go on to add x(4) to P(3). For this purpose, we consider the two-vertex subpolytopes
Pi j = absco({x(i), x(j)}), 1 ≤ i < j ≤ 3, of P(3) and compute

‖[x(1)x(2)]−1x(4)‖1 = 1.079669127 ... > 1,
‖[x(1)x(3)]−1x(4)‖1 = 1.454046908 ... > 1,
‖[x(2)x(3)]−1x(4)‖1 = 1.264911064 ... > 1.

Therefore, we define

X(4) = X(3) ∪ {x(4)}
and proceed with (step 1). It turns out that none among x(1), x(2), x(3) is deleted by x(4) and, hence,
by using formulae (3.66) and (3.67), we compute

E(4)
12
= (−π, 0] ∪ [1.570796326 ..., π],

E(4)
13
= [0, 0],

E(4)
23
= [0, 0].

Then we proceed with (step 2) and compute

E(4)
14
= [0, 0.927295218 ...],

E(4)
24
= [−0.643501108 ..., 0],

E(4)
34
= [0, 0].

The analysis of (step 3) reveals that vector x(3) belongs only to isolated facets, namely the facets
x(1) � x(3), x(2) � x(3) and x(3) � x(4), which is consistent with the fact that it is a convex linear
combination of the remaining vertexes (see (3.72)). Thus, we remove x(3) from X(4) to obtain

X(4) = {x(1), x(2), x(4)},

and we also remove the existence pluri-intervals E(4)
13

, E(4)
23

, E(4)
34

.

Finally, the analysis of the surviving existence pluri-intervals E(4)
12

, E(4)
14

, E(4)
24

leads to the con-
clusion that the special facets of P are represented by the existence pairs

S124 = {(1.570796326 ..., 0.927295218 ...), (0, 0)}.

^

We conclude this subsection by giving a useful result on the width of existence pluri-intervals
of the regular facets of a b.c.p. Pwith an arbitrary number of essential vertexes. For this purpose,
we need the following definition.

Definition 3.9. Let P be a b.c.p. The width of an existence pluri-interval

Ei j =

mi j
⋃

l=1

[θ−i j,l, θ
+
i j,l] \ {−π}

of the facets of the kind Fyi j(θ) is

|Ei j| =
mi j
∑

l=1

(θ+i j,l − θ−i j,l)

which is the sum of the widths of each one of its intervals. In particular, if P has no facets of the type Fyi j(θ)

at all, that is, Ei j = ∅, we set |Ei j| = 0.

3.2 T      (...) 57

Theorem 3.5. Let P be a b.c.p. with m ≥ 2 essential vertexes. Then the sum of the widths of the existence
pluri-intervals of all its regular facets is 2π, that is,

∑

1≤i< j≤m

|Ei j| = 2π.

Proof. Definition 3.9 implies

∑

1≤i< j≤m

|Ei j| =
∑

1≤i< j≤m

mi j
∑

l=1

(θ+i j,l − θ−i j,l).

Moreover, for all pairs (i, j) such that 1 ≤ i < j ≤ m and for all l = 1, . . . ,mi j, each extremal value
θ±

i j,l
of an existence interval, different from −π and, possibly, from π, determines a degenerate

facet. Therefore, in view of (3.37) and (3.38), each extremal value θ+
i j,l

, different from −π and,

possibly from π, necessarily satisfies one of the following conditions:

• θ+
i j,l
− θ−

ih,l′
− θ−

hj,l′′
= 0 mod 2π, for suitable i < h < j and 1 ≤ l

′ ≤ mih, 1 ≤ l
′′ ≤ mhj ;

• θ+
i j,l
+ θ+

jh,l′
− θ−

ih,l′′
= 0 mod 2π, for suitable h > j and 1 ≤ l

′ ≤ m jh, 1 ≤ l
′′ ≤ mih ;

• θ+
hi,l′
+ θ+

i j,l
− θ−

hj,l′′
= 0 mod 2π, for suitable h < i and 1 ≤ l

′ ≤ mhi, 1 ≤ l
′′ ≤ mhj .

Analogously, every value θ−
i j,l

verifies one of the following conditions:

• −θ−
i j,l
+ θ+

ik,l′
+ θ+

kj,l′′
= 0 mod 2π, for suitable i < k < j and 1 ≤ l

′ ≤ mik, 1 ≤ l
′′ ≤ mkj ;

• −θ−
i j,l
− θ−

jk,l′
+ θ+

ik,l′′
= 0 mod 2π, for suitable k > j and 1 ≤ l

′ ≤ m jk, 1 ≤ l
′′ ≤ mik ;

• −θ−
ki,l′
− θ−

i j,l
+ θ+

kj,l′′
= 0 mod 2π, for suitable k < i and 1 ≤ l

′ ≤ mki, 1 ≤ l
′′ ≤ mkj .

Moreover, each value θ±
i j,l

may be involved just once in the above formulae. As a consequence,

we have that
∑

1≤i< j≤m |Ei j| = 0 mod 2π.
Lastly, consider the function f that associates the quantity

∑

1≤i< j≤m |Ei j| with each b.c.p. P.
If we introduce the usual Euclidean distance among bounded subsets of Cn in the set of all the
b.c.p.’s in Cn, the function f turns out to be continuous. This follows from the continuity of the
functions that define the extremal values θ±

i j,l
. Therefore, since for a 2-vertex b.c.p. P(2) we always

have
∑

1≤i< j≤2 |Ei j| = |E12| = |(−π, π]| = 2π, the proof is complete.

We conclude this section by giving a relationship among the number NT of all the possible
triangles of P, the number NEI of the existence intervals of P and the number NIF of its isolated
facets. Using Proposition 3.1, we have that the number of all the intervals which constitute the
existence pluri-intervals of P is given by

NEI =
∑

1≤i< j≤m

m∗i j ,

where

m∗i j =

{

mi j − 1 if Ei j ⊇ (−π, a] ∪ [b, π] for some − π < a < b < π
mi j otherwise.

Note that every triangle of a b.c.p. P has three sides that are degenerate facets, which are the
facets obtained in correspondence of the extremal values of the existence intervals of the regular
facets of P. Clearly, the number of all the degenerate facets of P is 2NEI.

58 T        C2

Now we relate the number NT of all the triangles of P to NIF and NEI.
Clearly, if NIF = 0, i.e. there are no isolated facets, then we have 3NT = 2NEI. In fact, in this

case two different triangles cannot have a common side.
Otherwise, if NIF ≥ 1, Proposition 3.3 states that each isolated facet is a diagonal of a special

facet F with p ≥ 4 vertexes. Thus, the isolated facets included in the special facet F are nothing
but its diagonals and so we can conclude that their number is

NIFp
=

p(p − 3)

2
≥ 2.

Therefore, F must have at least 2 diagonals (isolated facets) and so the case NIF = 1 is not feasible.
Now we consider a b.c.p. P with just one p-vertex special facet, p ≥ 4, and analyse how

the numbers NT, NEI and NIF are related to one another. Remark that each diagonal (isolated
facet) is counted double in 2NEI , since it corresponds to an interval that degenerates to a single
point, whereas each side (degenerate but not isolated facet) is counted single. Indeed, since every
diagonal and every side of a p-vertex special facet is a side of p − 2 distinct triangles, then the
number 3NT of the degenerate facets that we need to obtain NT triangles includes, besides the
2NEI degenerate facets of P, further p − 4 sides for every diagonal (altogether NIFp

(p − 4) sides)
and further p − 3 sides for every side (altogether p(p − 3) sides), that is,

3NT = 2NEI +
p(p − 3)

2
(p − 4) + p(p − 3)

or, equivalently,
3NT = 2NEI + (p − 2)NIFp

.

Now, if we consider the general case of a b.c.p. which, for p = 4, . . . ,M, has αp special facets
with p vertexes, then the number NIF of its isolated facets is

NIF =

M
∑

p=4

αpNIFp
= 2α4 + 5α5 + · · · +

M(M − 3)

2
αM. (3.73)

As a consequence, even the case NIF = 3 is not feasible.
We can conclude that, in general, the relationship among NT, NEI and NIF is

3NT = 2NEI +

M
∑

p=4

αpNIFp
(p − 2). (3.74)

Remark 3.5. As we have seen before, any b.c.p. with more then three vertexes cannot have either NIF = 1
or NIF = 3 isolated facets. Indeed, these are the only two values for NIF which are, a priori, not admissible,
that is, NIF ∈ N\{1, 3}. To see this, we note that every even value of NIF may be obtained as 2α4 for a
proper choice of α4. On the other hand, every odd value of NIF greater than 3, i.e. NIF = 2 j+ 1 with j ≥ 2,
may be obtained considering only the first two terms of (3.73); in fact, we may write

NIF = 2 j + 1 = 2α4 + 5α5 = 2(α4 + 2α5) + α5

which is satisfied, for example, by taking α5 = 1 and α4 = j − 2.

Formulae (3.73) and (3.74) may be used to improve the information about the geometry of P,
finding how many special facets are present in the b.c.p. and how many vertexes each of them
has. We illustrate this in the following example.

Example 3.5. Let us consider a b.c.p. P with NIF = 10 isolated facets, NT = 20 triangles and
NEI = 15 existence intervals. Now, to use equation (3.74), we have to compute the values of αp for
p ≥ 4. Now, from equation (3.73) we have

10 = 2α4 + 5α5 + 9α6 +

Therefore, it must necessarily be αp = 0 for p ≥ 6 and we have two possible cases:

3.2 T      (...) 59

• P has α4 = 5 quadrilaterals and α5 = 0 pentagons;

• P has α4 = 0 quadrilaterals and α5 = 2 pentagons.

The feasible case is the one which fulfils equation (3.74), that is, α4 = 0 and α5 = 2. ^

Note that the numbers NT, NIF and NEI are easily computable looking at the existence pluri-
intervals of the regular facets of the b.c.p. and by using Theorem 3.3.

3.2.4 An algorithm for the construction of a 2-d b.c.p.

Now, we present a detailed algorithm for the construction of the b.c.p. P = absco(X), where
X = {x(1), x(2), · · · , x(r)} , with r ≥ 2 and x(i) ∈ C2 for i = 1, · · · , r, based directly on the theory given
in the previous subsections.

The input of the algorithm is the setX and the outputs are the updated setX = {x(l1), x(l2), · · · , x(lm)},
where {l1, l2, · · · , lm} is a subset of {1, · · · , r}, the two-index array RF and the three-index array SF.

The two-index array RF of dimension (m − 1) × m contains in the position (i, j) the existence
pluri-interval Ei j associated with the facets x(i) � eiθx(j), that is, RF(i, j) = Ei j with j = 1, · · · ,m
and i = 1, · · · , j − 1.

The three-index array SF of dimension (m − 2) × (m − 1) × m contains in the position (i, j, k)
none or one or two pairs (θi j, θik) associated with (triangles included in) the special facets Fi jk :

x(i)
Neiθi jx(j)

Neiθikx(k), k = 1, · · · ,m, j = 1, · · · , k − 1 and i = 1, · · · , j − 1 . Clearly, SF(i, j, k) is empty if

and only if no special facets Fi jk exist. Otherwise, if SF(i, j, k) = {(θ(1)
i j
, θ(1)

ik
)}, then only the special

facet Fi jk : x(i)
Ne

iθ(1)
i j x(j)
Neiθ(1)

ik x(k) exists. Finally, if SF(i, j, k) = {(θ(1)

i j
, θ(1)

ik
), (θ(2)

i j
, θ(2)

ik
)}, then there exist

both the special facets F(1)

i jk
: x(i)
Ne

iθ(1)
i j x(j)
Neiθ(1)

ik x(k) and F(2)

i jk
: x(i)
Ne

iθ(2)
i j x(j)
Neiθ(2)

ik x(k).

Now we give a brief description on how the algorithm works. In the initialisation section the
set of vertexes V takes the first two points of X which are assumed to be linearly independent.
These first two vectors, named x(1) and x(2), represent the vertexes of P(2), and thus RF(1, 2) is set
to (−π, π]. As a consequence the cardinality of V, denoted by NV, is set to 2. If the set X has
more than two vertexes, i.e. its cardinality NX > 2, we begin the while loop which performs in an
iterative way the addition of the remaining points X\V to the already available b.c.p. The basic
steps performed at each iteration of the while loop are summarised as follow:

• if NV = 2 we find in X\V the first vector, named x(3), which is outside of P(2) and
does not delete any of its vertexes and then we construct the regular facets of P(3) =

absco({x(1), x(2), x(3)});

• if NV > 2 and x(k) ∈ P(k−1), k ≥ 4, then x(k) is deleted from X;

• in the case that NV > 2 and x(k) < P(k−1), k ≥ 4, the algorithm builds P(k) by adding x(k) to
P(k−1) through the following basic steps:

– find the vertexes of P(k−1), if any, which are deleted following the addition of x(k) and
then delete them from X and V;

– update the regular facets of P(k−1) by deleting those which are seen by the circle gener-
ated by x(k);

– add the new facets of P(k) whose second vertex is x(k);

– delete from V and X all the vectors which only belong to isolated facets or to no facets
at all.

At the end of each iteration the set V is an essential system of vertexes of P(k). Furthermore,
observe that, whenever a point x(l) is deleted fromX, all the indexes of the subsequent vectors are
shifted backward by one unit, and so at the end of the algorithm, the output X is equal to V.

60 T        C2

At the end of the while loop, if NV > 2, the algorithm computes the special facets of the final
b.c.p. P = absco(X). We remark that the algorithm does not compute the special facets of P(k) at
the end of each iteration (from P(k−1) to P(k)), because the special facets of P(k) are not used for the
constructive procedure of the b.c.p.

Remark 3.6. Due to the necessity of checking several crucial equalities and inequalities between real
numbers, it is necessary to fix a tolerance, suitably greater than the machine precision, under which we
consider two floating point numbers to be equal to each other. In other words, the problems arising from the
finite precision of the machine arithmetic must be handled with a lot of care just to avoid very unpleasant
mistakes.

ALGORITHM 3.1.

% Input: X = {x(1), x(2), · · · , x(r)} , with r ≥ 2 and x(i) ∈ C2 for i = 1, · · · , r
% Output: X, RF, SF

Initializations
V ← {x(1), x(2)}
NX ← r, NV ← 2
RF(1, 2)← (−π, π]
k← 3

while k ≤ NX
stop← 0
ins← 0
if NV = 2

% find the first vertex x(i) of X, i ≥ 3, which does not belong to P(2)

while (x(3) ∈ P(2) & NX ≥ 3)
% delete x(3)

X ← X\{x(3)}, NX ← NX − 1
end
if NX = 2

% the algorithm halts (P = P(2))
break

end
if x(3) sees x(1)

% delete x(1)

V ← {x(2), x(3)}
X ← X\{x(1)}, NX ← NX − 1

if NX = 2
% the algorithm halts (P = P(2))
break

end
stop← 1

elseif x(3) sees x(2)

% delete x(2)

V ← {x(1), x(3)}
X ← X\{x(2)}, NX ← NX − 1

if NX = 2
% the algorithm halts (P = P(2))
break

end

3.2 T      (...) 61

stop← 1
else

% construct the regular facets of P(3)

V ← {x(1), x(2), x(3)}, NV ← 3
RF(1, 2)← E(2)

12
\D(3)

12
, RF(i, 3)← E(3)

i3
, i = 1, 2

end
else

% add x(k) to P(k−1)

nrs ← min1≤r<s≤k−1 ‖x(k)‖Prs

if nrs ≤ 1
% delete x(k) ∈ Prs ⊆ P(k−1)

X ← X\{x(k)}, NX ← NX − 1
ins← 1

else
% x(k) < Prs; add x(k) to P(k−1)

find the possible vertexes {x(d1), · · · , x(ds)} of P(k−1) seen by x(k)

if s ≥ 1
% delete x(d1), · · · , x(ds)

X ← X\{x(d1), · · · , x(ds)}, NX ← NX − s
V← V\{x(d1), · · · , x(ds)}, NV ← NV − s
k← max{k − s, 3}
delete rows and columns of indexes d1, · · · , ds from RF

if k = 3
V ← {x(1), x(2)}, NV ← 2

end
end
if k > 3

% find the regular facets of P(k)

computeD(k)
i j

using (3.66) and E(k)

ik
solving the system (3.68)

RF(i, j)← E(k−1)
i j
\ D(k)

i j
, i = 1, · · · j − 1, j = 1, · · · k − 1

RF(i, k)← E(k)

ik
, i = 1, · · · k − 1

V← V ∪ {x(k)}, NV ← NV + 1
end

end
end
if (NV > 2 & stop = 0 & ins = 0)

by analysing RF, find the subset {x(i1), · · · , x(ir)} of the vectors {x(1), · · · , x(k)} which
belong to none or only to isolated facets of P(k)

if r ≥ 1
% delete {x(i1), · · · , x(ir)}
X ← X\{x(i1), · · · , x(ir)}, NX ← NX − r
V ← V\{x(i1), · · · , x(ir)}, NV ← NV − r
k← max{k − r, 2}
delete the rows and columns of indexes i1, · · · , ir from RF

if k = 2
V← {x(1), x(2)}, NV ← 2

end
end
k← k + 1

end
if NV = 2

RF(1, 2)← (−π, π]

62 T        C2

end
end
if NX > 2

compute SF using RF according to Theorem 3.3
else

RF(1, 2)← (−π, π]
SF← ∅

end

Note that the keyword break terminates the execution of the while loop. That is, the algorithm
jumps to the first instruction, if any, which follows the end of the while loop.

3.3 Computation of the complex polytope norm

Let X = {x(i)}1≤i≤m, with x(i) ∈ C2, be an essential system of vertexes of P = absco(X) and z ∈ C2.
We want to compute ‖z‖P, once we know the existence pluri-intervals Ei j, 1 ≤ i < j ≤ m, of the
facets of P and the existence pairs of values SF(i, j, k), 1 ≤ i < j < k ≤ m, of the triangles included
in special facets of P.

Preliminarily, we check whether z is proportional to a vertex or not. To do this we compute

di = det
([

z x(i)
])

= z1x
(i)
2
− z2x

(i)
1
, i = 1, . . . ,m. (3.75)

Obviously, z is proportional to a vertex x(r) if and only if dr = 0, in which case we have

‖z‖P = ‖z‖/‖x(r)‖

for any norm defined in C2.
Now, we assume that z is not proportional to any vertex, that is,

di , 0 for all i ∈ {1, . . . ,m}. (3.76)

Therefore, we must solve the minimisation problem (2.28) in Cm−2 or, equivalently, find those
facets Fy of P which z projects on (see Definition 2.11) by using the characterising formula (2.18)
and, consequently, the equality (2.20). On the other hand, since we are in C2, two different facets
of P may not have any common intersection other than a vertex. Thus, the facet Fy which z
projects on is unique.

Therefore, first of all, we check whether z projects on a two-vertex facet. For this purpose we
write z as a linear combination of all the pairs of vertexes (x(i), x(j)) of P, with i , j, that is,

z = λi j x(i) + µi j x(j) (3.77)

with λi j, µi j ∈ C \ {0}, and then we compute

min
1≤i< j≤m

‖z‖Pi j
= min

1≤i< j≤m

∣

∣

∣

∣

∣

∣

∣

∣

[

x(i) x(j)
]−1

z
∣

∣

∣

∣

∣

∣

∣

∣

1
(3.78)

along with the pair (x(r), x(s)) which reaches this minimum.
Then we analyse the pair (arg(λrs), arg(µrs)) and we check whether the condition

arg(µrs) − arg(λrs) shift(−π, π] ∈ Ers (3.79)

is satisfied, where Ers, given by (3.34), represents the existence pluri-interval of the facets x(r) �

eiθx(s).

3.3 C      63

If (3.79) is satisfied, then we located the facet which z projects on and, in this case, we have
that

‖z‖P = |λrs| + |µrs| =
∣

∣

∣

∣

∣

∣

∣

∣

[

x(i) x(j)
]−1

z
∣

∣

∣

∣

∣

∣

∣

∣

1
. (3.80)

On the contrary, if condition (3.79) is not satisfied, then

‖z‖P < |λrs| + |µrs|

and z necessarily projects on the internal part of a special facet. More precisely, by virtue of (3.32),
it projects on the internal part of a triangle eiθr x(r)

Neiθsx(s)
Neiθt x(t), r < s < t. Then the vector z

belongs to the three-dimensional linear subspace of R4 spanned by the vertexes eiθr x(r), eiθs x(s),
eiθt x(t) and, more precisely, there exists a unique triplet of real numbers βr > 0, βs > 0, βt > 0 such
that

z = βre
iθrx(r) + βse

iθs x(s) + βte
iθtx(t) (3.81)

and
‖z‖P = βr + βs + βt. (3.82)

Moreover, the pair (θs − θr, θt − θr) necessarily represents the existence values of the triangle
eiθr x(r)

Neiθsx(s)
Neiθt x(t) included in a special facet of P, that is,

(θs − θr, θt − θr) ∈ Srst. (3.83)

On the other hand, (3.81) is characterising in the sense that, if a triangle eiθr x(r)
Neiθs x(s)

Neiθtx(t)

included in a special facet satisfies (3.81) with real numbers βr > 0, βs > 0, βt > 0, then the special
facet Fy that includes this triangle is the unique facet of Pwhich z projects on. However, observe
that, if the facet Fy is given by the union of more than one triangle, then the triangle which z
projects on is not unique.

Therefore, in order to compute ‖z‖P, we proceed as follows. We consider the existence values
(θ±

i j
, θ∓

ik
) ∈ Si jk, 1 ≤ i < j < k ≤ m, and we write the vector z in the form

z = eiθi

(

βix
(i) + β je

iθ±
ij x(j) + βkeiθ∓

ik x(k)
)

, (3.84)

looking for θi ∈ (−π, π] and real coefficients βi > 0, β j > 0, βk > 0, until such an equality holds.
Then the corresponding triplet of indexes, say (r, s, t), is such that

θs = θr + θ
±
rs and θt = θr + θ

∓
rt

in (3.81) and that (3.82) holds.
We are left to show how to analyse equation (3.84). To this aim, we rename the vertexes as

v(i) = x(i), v(j) = e
iθ±

ij x(j), v(k) = eiθ∓
ik x(k),

so that its (equivalent) componentwise form is



















e−iθi z1 = βiv
(i)
1
+ β jv

(j)

1
+ βkv

(k)
1
,

e−iθi z2 = βiv
(i)
2
+ β jv

(j)

2
+ βkv

(k)
2
.

(3.85)

Multiplying the first equation by z2, the second equation by z1 and summing them up, we find
the homogeneous equation

d̂iβi + d̂ jβ j + d̂kβk = 0 (3.86)

in the three real unknowns βi, β j, βk, where

d̂i = di , 0, d̂ j = e
iθ±

ij d j , 0, d̂k = eiθ∓
ik dk , 0

64 T        C2

(see (3.75) and (3.76)).
Now we rewrite (3.86) as the system of two real homogeneous equations

{

Re(di)βi + Re(d j)β j + Re(dk)βk = 0,
Im(di)βi + Im(d j)β j + Im(dk)βk = 0,

(3.87)

and, for p, q ∈ {i, j, k}, p < q, we set

Dpq =

















Re(dp) Re(dq)

Im(dp) Im(dq)

















(3.88)

and observe that

det(Dpq) = 0 if and only if d̂p = ρpqd̂q for some ρpq ∈ R. (3.89)

On the other hand, in this case we would have

d̂p − ρpqd̂q = det
([

z v(p) − ρpqv(q)
])

= 0,

that is,
z = γ(v(p) − ρpqv(q)) for some γ ∈ C.

Since z is not proportional to any vertex, it must be ρpq , 0. Moreover, since ei·arg(γ)v(p) �

ei·arg(γ)v(q) is a degenerate facet of P, it must necessarily be

ρpq > 0, (3.90)

otherwise z would satisfy the equality

z = |γ|ei·arg(γ)v(p) − ρpq|γ|ei arg(γ)v(q),

which is of the type (3.77) with positive coefficients. But this would imply that z projects on the
degenerate facet ei·arg(γ)v(p) � ei·arg(γ)v(q), which has already been excluded.

Now we observe that, if two of the three matrices (3.88) are singular, then (3.89) implies that
all of them are singular and that, by (3.76), the homogeneous equation (3.86) reduces to

ρikβi + ρ jkβ j + βk = 0,

which, since (3.90) holds for all p, q ∈ {i, j, k}, does not admit a triplet of positive solutions.
Therefore, in this case, we stop the analysis with the underlying pair of existence values (θ±

i j
, θ∓

ik
)

and go on to consider the next one.
At some point we necessarily find a pair of existence values (θ±

i j
, θ∓

ik
) for which at least two of

the matrices Dpq in (3.88) are not singular. Without loss of generality, we may assume that Di j is
not singular, so that, for βk , 0, (3.87) yields

















βi

β j

















= βk

















bik

b jk

















, where

















bik

b jk

















= −D−1
i j

















Re(dk)

Im(dk)

















. (3.91)

If
bik > 0 and b jk > 0, (3.92)

then we get the desired solution θi ∈ (−π, π], βi > 0, β j > 0, βk > 0 to (3.85) by setting

βk =
|zl|

|bikv
(i)

l
+ b jkv

(j)

l
+ v

(k)

l
|

(3.93)

3.3 C      65

and
e−iθi =

zl

βk(bikv
(i)

l
+ b jkv

(j)

l
+ v

(k)

l
)

for any index l ∈ {1, 2} such that zl , 0.
Otherwise, if (3.92) is not satisfied, then we go on to consider the next pair of existence values

(θ±
i j
, θ∓

ik
).

In any case, it is clear that, sooner or later, we find the unique pair of existence values (θ±
i j
, θ∓

ik
)

which allows equation (3.85) to have the desired solution.
After the location of the special facet which the point x projects on, we have that

‖x‖P = βi + β j + βk.

Example 3.6. We consider the same b.c.p. introduced in Example 3.2, that is, the b.c.p. P =
absco({x(1), x(2), x(3)}), where

x(1) =

[

1
i

]

, x(2) =

[

1
1 − i

]

, x(3) =

[

1
1

]

,

and we want to compute the norm ‖ · ‖P of two vectors, namely

z(1) =

[

2 + i
1 − i

]

, z(2) =

[

3
2

]

,

which are not proportional to any vertex of P.
To this aim, we recall that the construction carried out in Example 3.4 shows that the existence

pluri-intervals and existence pairs of P are given by

E12 = (−π, 0] ∪ [1.570796326 ..., π],
E13 = [0, 0.927295218 ...],
E23 = [−0.643501108 ..., 0],

and
S123 = {(1.570796326 ..., 0.927295218 ...), (0, 0)},

respectively.
We begin with z(1). To this aim, for 1 ≤ i < j ≤ 3, we write it in the form

z(1) = λ(1)
i j

x(i) + µ(1)
i j

x(j)

and compute the minimum in (3.78). It turns out that

min
1≤i< j≤3

‖[x(i)x(j)]−1z(1)‖1 = ‖[x(1)x(2)]−1z(1)‖1 = 2.506878740 ...

and that
arg(µ(1)

12
) − arg(λ(1)

12
) = −0.982793723 ... ∈ E12.

Therefore, by (3.80) we can conclude that

‖z(1)‖P = 2.506878740 ...

Then we go on to consider z(2) and, for 1 ≤ i < j ≤ 3, we write it in the form

z(2) = λ(2)

i j
x(i) + µ(2)

i j
x(j)

66 T        C2

and compute the minimum in (3.78). It turns out that

min
1≤i< j≤3

‖[x(i)x(j)]−1z(2)‖1 = ‖[x(1)x(2)]−1z(2)‖1 = 3.026665112 ...

and
arg(µ(2)

12
) − arg(λ(2)

12
) = 0.266252049 ... < E12,

so that z(2) necessarily projects on the internal part of a special facet.
Therefore, we consider the first existence pair of S123, that is (1.570796326 ..., 0.927295218 ...),

and, with reference to (3.86), we obtain

d̂1β1 + d̂2β2 + d̂3β3 = 0, (3.94)

where
d̂1 = −2 + 3 i, d̂2 = 3 + i, d̂3 = 0.6 + 0.8 i.

The relevant matrices D12, D13, D23 are all non-singular and, hence, by using (3.91), we compute

b13 = −0.163636363 ..., b23 = −0.309090909 ...

Since this solution is not positive, we have to go on to consider the second existence pair of S123,
that is (0, 0). Indeed, we know that this pair must necessarily be the right one, since there are no
more existence pairs. In fact, this time, the coefficients in (3.94) are given by

d̂1 = −2 + 3 i, d̂2 = 1 − 3 i, d̂3 = 1,

and, again, the relevant matrices D12, D13, D23 are all non-singular. Therefore, by using (3.91), we
compute

b13 = 1, b23 = 1,

which, as was expected, is a positive solution. Finally, by also using (3.93), we get

β1 = 1, β2 = 1, β3 = 1,

so that, by (3.82), we can conclude that

‖z(2)‖P = 3.

^

We remark that, by virtue of (2.29) and (2.30), this procedure can also be used to compute the
norms ‖ · ‖P∩R2 and ‖ · ‖ℜ(P) of real vectors.

3.3.1 An algorithm for the computation of the complex polytope norm

In this section we show an algorithm for the computation of a complex polytope norm. The
inputs of the algorithm are the setX = {x(1), x(2), · · · , x(m)}, the two-index array RF, the three-index
array SF, which are the outputs of the Algorithm 3.1, and the point z ∈ C2. The output of the
algorithm is ‖z‖P.

Recall thatX is an essential system of vertexes ofP = absco(X), RF is a two-index array which
contains the existence pluri-intervals of the regular facets ofP and SF is a three-index array which
contains pairs of numbers associated with the special facets of P (see Section 3.2.4).

Also in this case it is necessary to take care of the problems arising from the finite precision of
the machine arithmetic.

ALGORITHM 3.2.

3.3 C      67

% Input: X = {x(1), x(2), · · · , x(m)}, RF, SF, z

% Output: ‖z‖P, where P = absco(X)

while l ≤ m
if det([z x(l)]) = 0

% z is proportional to the vertex x(l)

‖z‖P ← ‖z‖/‖x(l)‖
return

end
l = l + 1

end
for j = 1 : m

for i = 1 : j − 1
[

λi j

µi j

]

← [x(i) x(j)]−1z

end
end
compute nrs ← min1≤i< j≤m ‖z‖Pi j

= min1≤i< j≤m(|λi j|+ |µi j|), where the indexes r and s reach the minimum
spec← 1
if arg(µrs) − arg(λrs) shift(−π, π] ∈ RF(r, s)

% z projects on the regular facet ei arg (λrs)x(r) � ei arg (µrs)x(s)

spec← 0
‖z‖P ← |λrs| + |µrs|

end
if spec = 1

% z projects on a special facet
locate the special facet on which z projects and determine λI, λJ, λK by using the results of Section 3.3
‖z‖P ← λI + λJ + λK

end

68 T        C2

Chapter 4

Improving the algorithms

Although inspired by the Beneath-Beyond method introduced in Section 3.1, the algorithm pre-
sented in the previous chapter for the construction of the b.c.p. P does not actually exploit all of
its potentialities in terms of efficiency. In fact, at each iteration, in order to add x(k) to the b.c.p.
P(k−1), it involves all the facets of all the two-vertex subpolytopes Pi j = absco({x(i), x(j)}) of P(k−1).
This procedure may uselessly be too time consuming. For this reason, in this chapter, we present
an improvement, where, in general, only a subset of the regular facets of P(k−1) is involved. This
improvement is based on the use in C2 of the main idea of the B–B method in R2, that is, the idea
of limit cone.

Also the algorithm presented in Section 3.3.1 for the computation of the polytope norm
unnecessarily involves all the two-vertex subpolytopes Pi j of P. Therefore, in this chapter we
propose a variant which, on a probabilistic basis, has high chances to give an important speed-up.

4.1 The improved procedure for the construction of a b.c.p.

In this section we recall the main steps performed by the B–B method and by Algorithm 3.1 in the
addition of x(k) to P(k−1), k ≥ 4. Then we define the balanced limit cone in C2 and use it to improve
Algorithm 3.1.

We start recalling the main steps of the B–B method, that are:

(1) determine the facet x(r) � x(c) which x(k) projects on;

(2) if x(k) ∈ Prc = absco({x(r), x(c)}), then delete x(k), or else perform the following steps:

(2.1) delete the facets ofP(k−1) which are seen by x(k), i.e. the facets which are inside the limit
cone of apex x(k);

(2.2) add the facets whose second vertex is x(k), involving only the survived vertexes lying
on the boundary of the limit cone.

The main steps of Algorithm 3.1 are:

(1) determine two vertexes x(r), x(c) that minimise the quantity ‖x(k)‖Pi j
on the set of all pairs (i, j)

with i < j ;

(2) if x(k) ∈ Prc = absco{x(r), x(c)}, then delete x(k), or else perform the following steps:

(2.1) delete the regular facets ofP(k−1) which are seen by x(k), checking all the facets of all the
two-vertex subpolytopes Pi j of P(k−1);

(2.2) add the regular facets whose second vertex is x(k), checking all the facets of all the
two-vertex subpolytopes Pi j of P(k−1) determined by the vertexes not deleted by x(k).

70 I  

Since in the latter algorithm each step is performed in an exhaustive fashion, which is a too
time consuming operation, our aim is to use the limit cone idea also in C2, so as to be allowed to
check only a minimal subset of the regular facets of P(k−1) .

The balanced limit cone in C2 of apex x(k), which is tangent to P(k−1), delimits the set D of
the regular facets of P(k−1) which are seen (and so deleted) by the circle generated by the point
x(k) < P(k−1).

Since P(k−1) is a convex set, D is a connected set and thus, in order to update the regular facets
of P(k−1) due to the addition of x(k), we can start from any seen facet and then find, moving by
connection, all the other regular facets which are seen by the circle generated by x(k). Consequently,
we do not need to check those pairs (i, j) whose corresponding vertexes x(i), x(j) produce facets
which are not seen by x(k) or which are not associated with any regular facet at all. Moreover, we
have to add only the facets x(l) � eiθx(k), where x(l) belongs to the set of the non-deleted vertexes
of seen facets. Recall that the deleting procedure of the regular facets of P(k−1) may delete some
vertexes of P(k−1).

To perform the search of a seen facet, if any, we propose a first criterion in order to guess those
regular facets of P that have the greatest chances to be seen by x(k). This criterion is based on the
reasonable assumption that, in most cases, a facet which is seen by x(k) includes vertexes that are
among the closest to Rx(k) in the Euclidean distance (see Definition 2.11).

We proceed as follows. Denoting by ‖ · ‖2 =
√
〈·, ·〉 the usual Euclidean norm in C2, for all

i = 1, . . . , k − 1, we compute the Euclidean distance

δi = min
−π<θ≤π, ρ>0

‖eiθx(i) − ρx(k)‖2

of Rx(k) from the circle generated by the vertex x(i). Simple calculations lead to

δi =

√

‖x(i)‖2
2
− |〈x(i), x(k)〉|2/‖x(k)‖2

2
.

Then, we reorder the indexes in non-decreasing order with respect to the distances δi and,
subsequently, we define a total order relation “≺” on the set of reordered index pairs (i, j) in
reversed lexicographical way, i.e.,

(i, j) ≺ (h, k) ⇐⇒ j < k or (j = k & i < h).

Then we perform the following steps:

(1) following the total order “≺”, we find the first pair (r, c), if any, such that some facets of the
type Fyrc(θ) = x(r) � eiθx(c) are seen by the circle generated by x(k);

(2) if x(k) ∈ Prc or no pair (r, c) is found at step (1), then delete x(k), or else perform the following
two steps:

(2.1) update the set of the facets Fyrc(θ) and, moving by connection, all the other regular facets

of P(k−1);

(2.2) add the regular facets of the kind Fylk(θ) = x(l) � eiθx(k) with x(l) belonging to the set of
the non-deleted vertexes of seen facets.

Note that, if x(k) < Prc and no pair (r, c) can be found at step (1), we delete x(k) because, although
being outside of all the two-vertex subpolytopes of P(k−1), it is inside a three-vertex subpolytope
of P(k−1).

Now, we give a more detailed description on how the improved algorithm works when
x(k) < Prc and a pair (r, c) is found at step (1).

In this case, in step (1) we create a list of vertexes, called vertexlist, as follows. If x(k) deletes x(r)

or x(c), then vertexlist contains the non-deleted vertex and all the vertexes of P(k−1) which have a
common facet with the deleted vertex. Or else, vertexlist contains the vertexes x(r) and x(c).

4.1 T        ... 71

Next, we perform step (2.1) in an iterative fashion as follows: we consider, until exhaustion
of vertexlist, the first vertex x(v) in vertexlist and append to vertexlist all those vertexes which have
a common facet with x(v), are not deleted by x(k) and are associated with deleted regular facets of
P(k−1). If, during this process, the vertex x(v) is deleted by x(k), then we remove it from vertexlist,
or else we still remove it from vertexlist and insert it into another list, called visitedvertexlist. At
the end of this iterative process vertexlist is empty and visitedvertexlist contains all the vertexes of
vertexlist which have not been deleted by x(k).

Finally, in step (2.2), we perform the addition of the regular facets of the kind Fylk(θ) = x(l) �

eiθx(k), where x(l) belongs to visitedvertexlist.
We conclude this section by presenting the pseudo-code of the improved algorithm for the

construction of the b.c.p. P = absco(X), where X = {x(1), x(2), · · · , x(r)} , with r ≥ 2.
Like in Algorithm 3.1, the input of the algorithm is the set X and the outputs are the updated

set X = {x(l1), x(l2), · · · , x(lm)}, where {l1, l2, · · · , lm} is a subset of {1, · · · , r}, the two-index array RF
and the three-index array SF.

ALGORITHM 4.1. (An improvement of Algorithm 3.1)

% Input: X = {x(1), x(2), · · · , x(r)} , with r ≥ 2 and x(i) ∈ C2, i = 1, · · · , r
% Output: X, RF, SF

Initialisations
V ← {x(1), x(2)}
NX ← r, NV ← 2
RF(1, 2)← (−π, π]
k← 3

while k ≤ NX
if NV = 2

% find the first vertex x(i) of X, i ≥ 3, which does not belong to P(2)

while (x(3) ∈ P(2) & NX ≥ 3)
% delete x(3)

X ← X\{x(3)}, NX ← NX − 1
end
if NX = 2

% the algorithm halts (P = P(2))
break

end
if x(3) sees x(1)

% delete x(1)

V ← {x(2), x(3)}
X ← X\{x(1)}, NX ← NX − 1
if NX = 2

% the algorithm halts (P = P(2))
break

end
elseif x(3) sees x(2)

% delete x(2)

V ← {x(1), x(3)}
X ← X\{x(2)}, NX ← NX − 1
if NX = 2

% the algorithm halts (P = P(2))
break

72 I  

end
else

% construct the regular facets of P(3)

V ← {x(1), x(2), x(3)}, NV ← 3 , k← 4
RF(1, 2)← E(2)

12
\D(3)

12
, RF(i, 3)← E(3)

i3
, i = 1, 2

end
else

% add x(k) to P(k−1)

modified← 0
newpointinside← 0
SizeVis2← 0
StateM← zero-matrix of dimension(k − 2) × (k − 1)
vertexlist← ∅
visitedvertexlist← ∅
% compute the Euclidean distances δi of Rx(k) from the circles generated by the vertexes x(i)

% of P(k−1)

δi =

√

‖x(i)‖2
2
− |〈x(i), x(k)〉|2/‖x(k)‖2

2
, i = 1, . . . , k − 1

ord← vector of the indexes reordered in non-decreasing order with respect to the distances δi

BLOCK 1
if NX = 2

% the algorithm halts (P = P(2))
break

end
% if x(k) does not delete any regular facets, it is inside P(k−1)

if modi f ied = 0
newpointinside← 1

end
if newpointinside = 0

% the procedure starts from the first vertex in vertexlist
while (vertexlist , ∅ & NX ≥ 3 & SizeVis2 = 0)

v← vertexlist(1)
outv← 0
BLOCK 2
if outv = 0

vertexlist(1)← ∅
visitedvertexlist← [visitedvertexlist, v]

end
end
if NX = 2

% the algorithm halts (P = P(2))
break

end
if SizeVis2 = 0

% add the facets of the kind Fylk(θ) = x(l) � eiθx(k), l ∈ visitedvertexlist

compute E(k)

lk
, l ∈ visitedvertexlist, solving the system (3.68)

RF(l, k)← E(k)

lk
, l ∈ visitedvertexlist

V← V ∪ {x(k)}, NV ← NV + 1
by analysing RF, find the subset {x(i1), · · · , x(ir)} of the vectors {x(1), · · · , x(k)} which
belong to none or only to isolated facets of P(k)

if r ≥ 1
% delete {x(i1), · · · , x(ir)}
X ← X\{x(i1), · · · , x(ir)}, NX ← NX − r

4.1 T        ... 73

V ← V\{x(i1), · · · , x(ir)}, NV ← NV − r
if NX = 2

% the algorithm halts (P = P(2))
break

end
if NV = 2

SizeVis2← 1
end
delete the rows and columns of indexes i1, · · · , ir from RF
k← k − r

end
k← k + 1

end
if SizeVis2

RF(1, 2)← (−π, π]
k← 3

end
else

% delete x(k) from X
X ← X \ {x(k)}, NX ← NX − 1
if NX = 2

% the algorithm halts (P = P(2))
break

end
end

end
end
if NX > 2

compute SF using RF according to Theorem 3.3
else

RF(1, 2)← (−π, π]
SF← ∅

end

74 I  

BLOCK 1 : Find, if any, a facet which is deleted by x(k) and create the list of vertexes vertexlist.

ic← 2
while(modi f ied = 0 & newpointinside = 0 & ic ≤ k − 1 & NX ≥ 3 & SizeVis2 = 0)

ir← 1
while (modi f ied = 0 & newpointinside = 0 & ir ≤ ic − 1)

% find the indexes r, c corresponding to ir, ic
r← ord(ir), c← ord(ic)
if ‖x(k)‖Prc

≤ 1
newpointinside← 1

else
if x(k) deletes x(d) with d = r or d = c

modi f ied← 1
% update vertexlist by adding the vertexes of P(k−1) which have a common facet
% with the deleted vertex x(d)

addvertexes← indexes of the vertexes of P(k−1) which have a common facet with x(d)

vertexlist← [vertexlist, addvertexes]
% delete the point x(d) from X and V
X ← X \ {x(d)}, NX ← NX − 1
V← V \ {x(d)}, NV ← NV − 1
if NX = 2

% the algorithm halts (P = P(2))
break

end
if NV = 2

SizeVis2← 1, k← 3
break

end
delete the row and the column of index d from RF and StateM
k← k − 1

else
if RF(r, c) , ∅ % some facets of the type Fyrc(θ) exist

computeD(k)
rc using (3.66)

if RF(r, c) ∩D(k)
rc , ∅

% the pair (r, c) is visited and some facets Fyrc(θ) are deleted
modi f ied← 1
StateM(r, c)← 2

RF(r, c)← E(k−1)
rc \ D(k)

rc

vertexlist← [r, c]
else

% the pair (r, c) is visited but none of the facets Fyrc(θ) is deleted
StateM(r, c)← 1

end
else

% the pair (r, c) has been visited but, since the facets Fyrc(θ) do not exist, none
% of them has been deleted
StateM(r, c)← 1

end
end

end
ir← ir + 1

end
ic← ic + 1

end

4.1 T        ... 75

BLOCK 2 : Starting from the vertexes x(r), x(c) of a seen facet (given by BLOCK 1), if any, and
moving by connection from one seen facet to another, update the regular facets of P(k−1) which
are seen by x(k).

k1← 1
while(outv = 0 & k1 ≤ v − 1 & NX ≥ 3)

% visit the not yet visited pairs (k1, v)
if StateM(k1, v) = 0

if x(k) deletes x(d) with d = k1 or d = v
% update vertexlist by deleting, if any, the deleted vertex x(d) and by adding
% the vertexes of P(k−1) which have a common facet with x(d)

vertexlist← vertexlist \ {x(d)}
addvertexes← indexes of the vertexes of P(k−1) which have a common facet with x(d)

vertexlist← [vertexlist, addvertexes]
if x(k) deletes x(v)

outv← 1
end
% delete the point x(d) from X and V
X ← X \ {x(d)}, NX ← NX − 1
V ← V \ {x(d)}, NV ← NV − 1
if NX = 2

% the algorithm halts (P = P(2))
break

end
if NV = 2

SizeVis2← 1, k← 3
break

end
delete the row and the column of index d from RF and StateM
k← k − 1

else
if RF(k1, v) , ∅ % some facets of the type Fyk1 v(θ) exist

computeD(k)

k1 v
using (3.66)

if RF(k1, v) ∩D(k)

k1 v
, ∅

% the pair (k1, v) is visited and some facets Fyk1 v(θ) are deleted
StateM(k1, v)← 2

RF(k1, v)← E(k−1)

k1 v
\ D(k)

k1 v
if (k1 < vertexlist & k1 < visitedvertexlist)

% add k1 to vertexlist
vertexlist← [vertexlist, k1]

end
else

% the pair (k1, v) is visited but none of the facets Fyk1 v(θ) is deleted
StateM(k1, v)← 1

end
else

% the pair (k1, v) has been visited but, since the facets Fyk1 v(θ) do not exist, none
% of them has been deleted
StateM(k1, v)← 1

end
end

end
k1← k1 + 1

76 I  

end
k2← v + 1
while(outv = 0 & k2 ≤ k − 1 & NX ≥ 3 & SizeVis2 = 0)

% visit the not yet visited pairs (kv, k2)
if StateM(v, k2) = 0

if x(k) deletes x(d) with d = k2 or d = kv
% update vertexlist by deleting, if any, the deleted vertex x(d) and by adding
% the vertexes of P(k−1) which have a common facet with x(d)

vertexlist← vertexlist \ {x(d)}
addvertexes← indexes of the vertexes of P(k−1) which have a common facet with x(d)

vertexlist← [vertexlist, addvertexes]
% update visitedvertexlist by deleting x(d), if any
visitedvertexlist← visitedvertexlist \ {x(d)}
if x(k) deletes x(v)

outv← 1
end
% delete the point x(d) from X and V
X ← X \ {x(d)}, NX ← NX − 1
V ← V \ {x(d)}, NV ← NV − 1
if NX = 2

% the algorithm halts (P = P(2))
break

end
if NV = 2

SizeVis2← 1, k← 3
break

end
delete the row and the column of index d from RF and StateM
k← k − 1

else
if RF(v, k2) , ∅ % some facets of the type Fyv k2(θ) exist

computeD(k)

v k2
using (3.66)

if RF(v, k2) ∩D(k)

v k2
, ∅

% the pair (v, k2) is visited and some facets Fyv k2(θ) are deleted
StateM(v, k2)← 2

RF(v, k2)← E(k−1)

v k2
\ D(k)

v k2
if (k2 < vertexlist & k2 < visitedvertexlist)

% add k2 to vertexlist
vertexlist← [vertexlist, k2]

end
else

% the pair (v, k2) is visited but none of the facets Fyv k2(θ) is deleted
StateM(v, k2)← 1

end
else

% the pair (v, k2) has been visited but, since the facets Fyv k2(θ) do not exist, none
% of them has been deleted
StateM(v, k2)← 1

end
end

end
k2← k2 + 1

end

4.2 E   A 4.1    77

4.2 Expected results for Algorithm 4.1 and numerical experi-

ments

In this section we show the numerical experiments we have made using our MATLAB implemen-
tations of the algorithms proposed in Section 3.2.4 and in Section 4.1 for the construction of the
b.c.p.. The main goal of such experiments is to illustrate the better performance of the improved
Algorithm 4.1 with respect to Algorithm 3.1 in dependence of the specific characteristics of the
b.c.p. to construct.

Given a b.c.p. P = absco(X), whereX = {x(i)}1≤i≤m is an essential system of vertexes, we denote
by NEP the number of the existence pluri-intervals ofP (that is, the total number of the connected
vertex pairs), and define

AC =
2NEP

m
,

which denotes the average connection of each vertex with the others, and

PAC =
2NEP

m(m − 1)
,

which represents the percentage of average connection of each vertex with the others. Furthermore,
we again use the numbers NEI of the existence intervals, NIF of isolated facets and NT of triangles
contained in special facets with three or more vertexes, which we have defined at the end of
Section 3.2.3. The above quantities characterise the geometry of the b.c.p.

As for the performance of the two algorithms to compare, the following numbers play a
primary role. They are the number of all index pairs (i, j) checked during the execution of the

algorithms, denoted by C for Algorithm 3.1 and by Ĉ for Algorithm 4.1, and the number of all the

existence pluri-intervals E(k)
i j

, k ≥ 4, updated during the execution of the algorithms (possibly even

without deletion of any of the corresponding facets Fyi j(θ)), denoted by U for Algorithm 3.1 and

by Û for Algorithm 4.1. Obviously, for both algorithms, it is always the case that

U ≤ C and Û ≤ Ĉ.

Note that the complexity of the work needed to compute all the existence pluri-intervals E(k)

ik
,

k ≥ 4, related to the facets which are added at each iteration, is proportional to U and Û in the
two algorithms, respectively. Therefore, we do not need to use another counter to measure such
computational work.

Of course, we expect Algorithm 4.1 to be characterised by values of Ĉ and Û which, in most
cases, are less than the corresponding values C and U relevant to Algorithm 3.1. Therefore, as
indicators of saved work relevant to the former algorithm, we define the percentage of saved checked
index pairs

PSC =
C − Ĉ

C

and the percentage of saved updated existence pluri-intervals

PSU =
U − Û

U
.

However, the main criterion to judge the performance is the CPU time, denoted by t for Algorithm
3.1 and by t̂ for Algorithm 4.1. In order to reduce, as much as possible, the effects of random noises
and of any other event which is out of our control (such as, for example, the execution of other
processes controlled by the operating system), we shall make the measure of t and t̂ by running
each experiment ten times and taking the average of the corresponding execution times. Since
the final computation of the triangles included in special facets is common to both algorithms,
we do not count it in both t and t̂, which are expressed in seconds. Therefore, as a measure of the

78 I  

improvement yielded by Algorithm 4.1 with respect to Algorithm 3.1, we consider the percentage
of saved CPU time

PST =
t − t̂

t
.

In any case, the two algorithms have a different structure and some different small parts.
Therefore, in the light of the previous discussion, it is reasonable to expect that the relationship
between the percentages PST, PSC and PSU is, in first approximation, of the type

PST = α + βPSC + γPSU (4.1)

for suitable coefficients α, β, γwith β, γ > 0.
Another reasonable expectation we have is that in the improved Algorithm 4.1, at each iteration

when x(k) is added to P(k−1), the numbers of checked index pairs and of updated pluri-intervals
are, more or less, proportional to the average connection of the b.c.p. P(k−1). On the contrary, in
Algorithm 3.1, which works in an exhaustive fashion, in many cases such numbers are both equal
to the total number of pairs of essential vertexes of P(k−1). Therefore, in general, we expect that
PSC and PSU are decreasing functions of PAC and, in particular, often of linear type such as

PSC = αc − βcPAC and PSU = αu − βuPAC (4.2)

for suitable coefficientsαc, βc, αu, βu > 0. Consequently, in this case, putting (4.1) and (4.2) together,
we would also have

PST = αt − βtPAC (4.3)

for suitable coefficients αt, βt > 0. In any case, in general, PST is a decreasing function of PAC.

Example 4.1. We consider the set of m vectors X =
{

x(i)
}

1≤i≤m
, where

x
(i)
1
= cos

(

(i − 1)π

m

)

and x
(i)
2
= sin

(

(i − 1)π

m

)

ei
(

(i−1)π
m

)

.

These points are chosen in such a way that their first components are real and their second
components are complex and uniformly distributed on a circle of the complex plane. For this
particular choice, the set X is an essential system of vertexes for P = absco(X). In Table 4.1 we
report the quantities NEP, NEI, NT, NIF, AC and PAC, which characterise the b.c.p. P. Then we

m 10 20 30 40 50 60 70

NEP 27 62 97 132 167 202 237

NEI 27 62 97 132 167 202 237

NT 22 52 82 112 142 172 202

NIF 6 16 26 36 46 56 66

AC 5.4 6.2 6.5 6.6 6.7 6.7 6.8

PAC 60 % 33% 22% 17% 14% 11% 10%

Table 4.1: The characterising quantities associated with P for some values of m.

begin to analyse and compare the behaviour of the two algorithms.

4.2 E   A 4.1    79

m 10 20 30 40 50 60 70

t 0.11 1.04 3.92 11.62 24.79 42.23 72.03

t̂ 0.07 0.41 1.25 2.94 6.56 11.62 17.83

PST 36 % 60 % 68 % 75 % 74% 72 % 75 %

Table 4.2: CPU times t and t̂ (in seconds) for Algorithms 3.1 and 4.1, respectively, and percentage
PST of the saved CPU time for some values of m.

The values of the CPU times t and t̂ and of the percentage of saved CPU time PST are reported
in Table 4.2. As shown in Figure 4.1, the CPU times t and t̂ obviously increase with m and, more
interestingly, the CPU time saved by the improved Algorithm 4.1 seems to be almost 75% for
m ≥ 40.

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

m

C
P

U
 ti

m
e

[s
]

10 20 30 40 50 60 70
30

35

40

45

50

55

60

65

70

75

80

m

P
S

T
 %

Figure 4.1: CPU time t for Algorithm 3.1, plotted with ∗, and t̂ for Algorithm 4.1, plotted with
◦, (on the left) and percentage PST of saved CPU time (on the right) versus the number m of
essential vertexes of P.

As shown in Table 4.3, we have that

Û < Ĉ < U = C.

Note that U = C since Algorithm 3.1 works in an exhaustive way and all the starting points are

essential vertexes of P. In Figure 4.2 we also give the graphic of C = U, Ĉ and Û versus the
number of vertexes m.

According to (4.1), the percentage of saved time PST is almost a linear function of PSC and
PSU. Thus, we have computed the corresponding regression plane and the related Pearson
coefficient R2 (see Figure 4.3). Remember that R2 varies in [0, 1] and that R2 = 1 means perfect
linearity. Moreover, the better the linear model, the closer R2 is to one.

It is also interesting to note that the percentage of saved checked index pairs PSC and the
percentage of saved updated existence pluri-intervals PSU are both almost linear functions of the
percentage of average connection PAC and, so, we have computed the corresponding regression
lines and the related Pearson coefficients, denoted respectively with R2

C
and R2

U
(see Figure 4.4).

As expected, according to (4.3), also the percentage of saved time PST is almost a linear
function of PAC and, so, we have computed the corresponding regression line and the related
Pearson coefficient R2

T
(see Figure 4.5).

80 I  

m 10 20 30 40 50 60 70

C 119 1139 4059 9879 19599 34219 54739

Ĉ 106 841 2756 6839 12299 21038 33136

U 119 1139 4059 9879 19599 34219 54739

Û 76 370 891 1635 2609 3811 5238

PSC 11 % 26 % 32 % 31 % 37 % 38 % 39 %

PSU 36 % 68 % 78 % 83 % 87 % 89 % 90 %

Table 4.3: The numbers C, Ĉ of the index pairs which are checked and U, Û of the existence
pluri-intervals which are updated by Algorithms 3.1 and 4.1, respectively, and the indicators of
saved work PSC and PSU for some values of m.

10 20 30 40 50 60 70
0

1

2

3

4

5

6
x 10

4

m

Figure 4.2: The numbers C = U (plotted with ◦), Ĉ (plotted with ⋄), Û (plotted with ∗) as a function
of the number of points m.

4.2 E   A 4.1    81

10

20

30

40 30
40

50
60

70
80

90

0

20

40

60

80

100

120

PSU %

PSC %

P
S

T
 %

Figure 4.3: The points (PSC,PSU,PST), for some values of m, and the corresponding regression
plane; the related Pearson coefficient is R2 = 0.99. The points above the regression plane are
plotted with ∗, whereas the ones below with ◦.

10 15 20 25 30 35 40 45 50 55 60
10

15

20

25

30

35

40

PAC %

P
S

C
 %

10 15 20 25 30 35 40 45 50 55 60
30

40

50

60

70

80

90

100

PAC %

P
S

U
 %

Figure 4.4: The percentages PSC (left) and PSU (right) versus the percentage of average connection
PAC and the corresponding regression lines. The related Pearson coefficients are respectively
R2

C
= 0.98 and R2

U = 0.997.

82 I  

10 15 20 25 30 35 40 45 50 55 60
35

40

45

50

55

60

65

70

75

80

PAC %

P
S

T
 %

Figure 4.5: The percentage PST as a function of the percentage PAC and the corresponding
regression line. The related Pearson coefficient is R2

T
= 0.97.

^

4.2 E   A 4.1    83

Example 4.2. We consider the setX =
{

x(i)
}

1≤i≤m
of the m vertexes of a regular real polygon, where

x
(i)
1
= cos

(

(i − 1)π

m

)

and x
(i)
2
= sin

(

(i − 1)π

m

)

.

For this choice, the set X is an essential system of real vertexes for P = absco(X). Note that, for
each m the percentage of average connection PAC is 100% (see Table 4.4). In the same table, we
report, for some values of m, the quantities NEP, NEI, NT, NIF and AC.

m 10 20 30 40 50 60 70

NEP 45 190 435 780 1225 1770 2415

NEI 80 360 840 1520 2400 3480 4760

NT 240 2280 8120 19760 39200 68440 109480

NIF 70 340 810 1480 2350 3420 4690

AC 9 19 29 39 49 59 69

PAC 100% 100% 100% 100% 100% 100% 100%

Table 4.4: The characterising quantities associated with P for some values of m.

In Table 4.5, we report the average values of the CPU times t for Algorithm 3.1 and t̂ for
Algorithm 4.1 and the corresponding percentage of saved CPU time PST, which are plotted in
Figure 4.6 versus the number m of essential vertexes of P.

As shown in Table 4.6, for each m we have that

Û = Ĉ = U = C,

because, since the m vertexes of P have maximum connection, all the index pairs are checked
and all the corresponding existence pluri-intervals are updated by both the algorithms at each
iteration. As a consequence, the percentages PSC and PSU are equal to zero for all m. Therefore,
for this example, we cannot determine any dependence among the quantities PAC, PSC, PSU and
PST.

^

m 10 20 30 40 50 60 70

t 0.14 1.14 4.97 10.97 23.10 49.11 85.56

t̂ 0.13 1.07 4.54 9.78 19.12 40.68 67.15

PST 9 % 6 % 9 % 11 % 17 % 17 % 22 %

Table 4.5: The CPU times t and t̂ (in seconds) for Algorithms 3.1 and 4.1, respectively, and the
value of percentage PST of the saved CPU time, for some values of m.

84 I  

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

m

C
P

U
 ti

m
e

[s
]

10 20 30 40 50 60 70
6

8

10

12

14

16

18

20

22

m
P

S
T

 %

Figure 4.6: The CPU times t (plotted with ∗) and t̂ (plotted with ◦) on the left and, on the right,
the percentage PST of saved CPU time, versus m.

m 10 20 30 40 50 60 70

C 119 1139 4059 9879 19599 34219 54739

Ĉ 119 1139 4059 9879 19599 34219 54739

U 119 1139 4059 9879 19599 34219 54739

Û 119 1139 4059 9879 19599 34219 54739

PSC 0 0 0 0 0 0 0

PSU 0 0 0 0 0 0 0

Table 4.6: The numbers C, Ĉ, U and Û and the indicators of saved work PSC and PSU for some
values of m.

4.2 E   A 4.1    85

Example 4.3. We consider the set of vectors X =
{

x(i)
}

1≤i≤m
so that the corresponding b.c.p. P has

the existence pluri-interval E12 with the maximum possible number of intervals, that is m− 2. We
choose this set as

x(1) =

[

1
0

]

, x(2) =

[

0
1

]

and

x(i)
1
=

R

2
and x(i)

2
=

Reiθ

2
,

with

R = 1.01 , θ = −π + 2π(i − 2)

m − 1
,

for 3 ≤ i ≤ m. For this choice, X is an essential system of vertexes for P = absco(X). In Table 4.7
we report the quantities NEP, NEI, NT, NIF, AC and PAC which characterise P for some values of
m.

m 10 20 30 40 50 60 70

NEP 17 54 84 114 144 174 204

NEI 24 54 84 114 144 174 204

NT 16 36 56 76 96 116 136

NIF 0 0 0 0 0 0 0

AC 3.4 5.4 5.6 5.7 5.8 5.8 5.8

PAC 38% 28% 19% 15% 12% 10% 8%

Table 4.7: The characterising quantities associated with P.

In Table 4.8 we report the CPU times t and t̂ related to the Algorithms 3.1 and 4.1, respectively,
and the corresponding percentage of saved CPU time PST for some values of m. We see that t
and t̂ increase with m and that PST is almost 81% for m ≥ 40 (see Figure 4.7).

m 10 20 30 40 50 60 70

t 0.13 1.12 4.15 10.78 23.53 43.57 75.73

t̂ 0.04 0.30 0.94 2 4.19 7.48 13.32

PST 67 % 73 % 77 % 81 % 82 % 83 % 82 %

Table 4.8: The CPU times t and t̂ (in seconds) and percentage PST of the saved CPU time, for
some values of m.

Like in Example 4.1 and as shown in Table 4.9, we have Û < Ĉ < C = U. A graphic of C = U,

Ĉ and Û as functions of m is reported in Figure 4.8.

86 I  

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

m

C
P

U
 ti

m
e

[s
]

10 20 30 40 50 60 70
66

68

70

72

74

76

78

80

82

84

m

P
S

T
 %

Figure 4.7: The CPU times t and t̂ plotted with ∗ and ◦, respectively, (on the left) and the percentage
PST of saved CPU time (on the right), versus m.

m 10 20 30 40 50 60 70

C 119 1139 4059 9879 19599 34219 54739

Ĉ 119 956 3568 7588 14977 24225 38969

U 119 1139 4059 9879 19599 34219 54739

Û 63 435 1095 1990 3192 4627 6385

PSC 0 % 16 % 12 % 23 % 24 % 29 % 29 %

PSU 47 % 62 % 73 % 80 % 84 % 86 % 88 %

Table 4.9: The numbers C, Ĉ, U, Û and the indicators of saved work PSC and PSU for some values
of m.

10 20 30 40 50 60 70
0

1

2

3

4

5

6
x 10

4

m

Figure 4.8: The numbers C = U (plotted with ◦), Ĉ (plotted with ⋄), Û (plotted with ∗) versus m.

4.2 E   A 4.1    87

According to (4.1), the percentage of saved time PST is almost a linear function of PSC and
PSU. Thus, we have computed the corresponding regression plane and the related Pearson
coefficient R2 (see Figure 4.9).

0
10

20
30

405060708090
66

68

70

72

74

76

78

80

82

84

PSC %PSU %

P
S

T
 %

Figure 4.9: The points (PSC,PSU,PST), for some values of m, and the corresponding regression
plane with Pearson coefficient R2 = 0.99. The points above the regression plane are plotted with
∗, whereas the ones below with ◦.

Moreover, since PSC, PSU and PST are almost linear functions of PAC, we have computed the
corresponding regression lines and the related Pearson coefficients R2

C
, R2

U
and R2

T
(see Figures

4.10 and 4.11).
^

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

PAC %

P
S

C
 %

5 10 15 20 25 30 35 40
45

50

55

60

65

70

75

80

85

90

PAC %

P
S

U
 %

Figure 4.10: PSC (left) and PSU (right) versus PAC and the corresponding regression lines.
Respectively, the Pearson coefficients are R2

C
= 0.87 and R2

U = 0.997.

88 I  

5 10 15 20 25 30 35 40
66

68

70

72

74

76

78

80

82

84

PAC %

P
S

T
 %

Figure 4.11: PST as a function of PAC and the corresponding regression line. The related Pearson
coefficient is R2

T
= 0.98.

Example 4.4. We consider the set of m points X =
{

x(i)
}

1≤i≤m
randomly generated and distributed

on the boundary of a hypersphere centered in the origin. Also for this choice of the points, the
setX is an essential system of vertexes for P = absco(X). In Table 4.10 we report, for some values
of m, the quantities NEP, NEI, NT, NIF, AC and PAC.

m 10 20 30 40 50 60 70

NEP 24 54 84 114 144 174 204

NEI 24 54 84 114 144 174 204

NT 16 36 56 76 96 116 136

NIF 0 0 0 0 0 0 0

AC 4.8 5.4 5.6 5.7 5.8 5.8 5.8

PAC 53% 28% 19% 15% 12% 10% 8%

Table 4.10: The characterising quantities associated with P.

The CPU times t and t̂ and the percentage PST are shown in Table 4.11 and the corresponding
plots as functions of m are presented in Figure 4.12. We can see that the CPU times increase with
m and the PST is almost 90% for m ≥ 40.

Also in this case, due to the improvement procedure, according to Table 4.12 we have that

Û < Ĉ < C = U. A graphic of these quantities versus m is shown in Figure 4.13.
According to (4.1), the percentage of saved time PST is almost a linear function of PSC and

PSU. Thus, we have computed the corresponding regression plane and Pearson coefficient R2

(see Figure 4.14).
Since PSC and PSU are both almost linear functions of PAC then, according to (4.3), PST is also

almost a linear function of PAC. Therefore, we have computed the corresponding regression lines
and the related Pearson coefficients R2

C
, R2

U
and R2

T
(see Figure 4.15 and Figure 4.16, respectively).

^

4.2 E   A 4.1    89

m 10 20 30 40 50 60 70

t 0.13 1.15 4.28 11.04 23.57 44.62 76.91

t̂ 0.07 0.28 0.61 1.18 2.12 3.83 6.41

PST 47 % 76 % 86 % 89 % 91 % 91 % 92 %

Table 4.11: The CPU times t and t̂ (in seconds) and the value of percentage PST of the saved CPU
time, for some values of m.

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

m

C
P

U
 ti

m
e

[s
]

10 20 30 40 50 60 70
45

50

55

60

65

70

75

80

85

90

95

m

P
S

T
 %

Figure 4.12: The average CPU times t and t̂, respectively plotted with ∗ and ◦, (left) and the
percentage PST of saved CPU time (right), versus m.

m 10 20 30 40 50 60 70

C 119 1139 4059 9879 19599 34219 54739

Ĉ 113 686 1825 3315 5973 9427 12493

U 119 1139 4059 9879 19599 34219 54739

Û 79 265 514 689 1000 1379 1551

PSC 5 % 40 % 55 % 66 % 70 % 72 % 77 %

PSU 34 % 77 % 87 % 93 % 95 % 96 % 97 %

Table 4.12: The numbers C, Ĉ, U, Û and the indicators of saved work PSC and PSU for some
values of m.

90 I  

10 20 30 40 50 60 70
0

1

2

3

4

5

6
x 10

4

m

Figure 4.13: The numbers C = U (plotted with ◦), Ĉ (plotted with ⋄), Û (plotted with ∗) versus m.

0 10 20 30 40 50 60 70 80

20

40

60

80

100

45

50

55

60

65

70

75

80

85

90

95

PSU %
PSC %

P
S

T
 %

Figure 4.14: The points (PSC,PSU,PST), for some values of m, and the corresponding regression
plane. The related Pearson coefficient is R2 = 0.997. The points above the regression plane are
plotted with ∗, whereas the ones below with ◦.

4.2 E   A 4.1    91

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

PAC %

P
S

C
 %

5 10 15 20 25 30 35 40 45 50 55
30

40

50

60

70

80

90

100

110

PAC %
P

S
U

 %

Figure 4.15: PSC (left) and PSU (right) versus PAC and the corresponding regression lines.
Respectively, the related Pearson coefficients are R2

C
= 0.99 and R2

U = 0.98.

5 10 15 20 25 30 35 40 45 50 55
45

50

55

60

65

70

75

80

85

90

95

PAC %

P
S

T
 %

Figure 4.16: The PST as a function of PAC and the corresponding regression line with Pearson
coefficient R2

T
= 0.98.

92 I  

Example 4.5. We consider a set X = {x(i)}1≤i≤1000 of 1000 points randomly generated which gives
rise to a b.c.p. P = absco(X) with only m = 129 essential vertexes. The usual characterising
quantities of this b.c.p. P are summarised in Table 4.13.

NEP NEI NT NIF AC PAC
381 381 254 0 5.9 5%

Table 4.13: The characterising quantities associated with P.

As we can see, the b.c.p. has no isolated facets, only 5 % of all the possible index pairs (i, j)
produce regular facets, whose existence pluri-intervals have always only one interval.

The CPU times for both Algorithms are reported on the right of Table 4.14 and given in
seconds. Remarkably, the percentage of saved CPU time PST is 90 %.

C Ĉ U Û PSC PSU
2809492 421203 1562622 41532 85 % 97 %

t t̂ PST
4080 419 90 %

Table 4.14: The numbers of checked pairs and updated existence pluri-intervals for both Algo-
rithm 3.1 and 4.1 (left) and the corresponding CPU times in seconds (right).

It is also interesting to note that the number of checked pairs, shown on the left of Table 4.14,
is less than the number of updated existence pluri-intervals for both algorithms. This is due to
the deletion, during the construction procedure, of many vertexes of the original set of points.
The percentages PSC of saved checked pairs and PSU of saved updated existence pluri-intervals
are, respectively, 85 % and 97 %. Thus, the improved version of the algorithm works extremely
well on this example.

^

4.3 The improved procedure for the computation of the norm

The procedure proposed in Section 3.3 for the computation of ‖z‖P involves in any case the solution
of the minimisation problem (3.78), whose computational complexity is O(m2) with respect to the
number m of essential vertexes of P. Moreover, if (3.79) is not satisfied, then we have to start
processing the existence pairs (θ±

i j
, θ∓

ik
), the number of which may be even O(m3). Therefore, the

minimum complexity is O(m2) and, in the most unfortunate cases, even O(m3). For very large
numbers of essential vertexes, this is not very satisfactory.

In order to reduce the average computational complexity, a possible variant of the procedure
is not to compute the minimising pairs (r, s) to (3.78) a priori and, instead, to process the pairs
(i, j), 1 ≤ i < j ≤ m, one at a time until the relationship

arg(µi j) − arg(λi j) ∈ Ei j (4.4)

is satisfied. In fact, since (3.77) is characterising, such a pair must necessarily be a minimising
pair (r, s) satisfying (3.80).

However, it is not clear a priori whether this variant is more convenient or not. If we are able
(or lucky) to meet a minimising pair (r, s) soon enough and if it satisfies (3.79), then this variant is
better. On the contrary, if we meet it quite late or if it does not satisfy (3.79), then it is the original
procedure that is less expensive, since it does not involve the check (4.4) for each pair (i, j).

Therefore, we need a criterion in order to guess those facets of P, either regular or special,
that have the greatest chances to be the facet which the vector z projects on. This criterion is the
same we have already used in Algorithm 4.1 to determine a facet of P(k−1) which is seen by the
new point x(k) at each iteration.

4.3 T         93

Hence, as in Section 4.1, we compute the Euclidean distance

δi =

√

‖x(i)‖2
2
− |〈x(i), z〉|2/‖z‖2

2

of the ray Rz from the circle generated by the vertex x(i) and, then, we reorder the indexes in
non-decreasing order with respect to the distances δi and, subsequently, we define a total order
relation “≺” on the set of reordered index pairs (i, j) in reversed lexicographical way, i.e.,

(i, j) ≺ (h, k) ⇐⇒ j < k or (j = k & i < h).

Finally, we add the set of the triplets of indexes (i, j, k), 1 ≤ i < j < k ≤ m, and extend the total
order relation “≺” by inserting a triplet (r, s, t) soon after the last of the three pairs (r, s), (r, t), (s, t).
If more than one triplet is completed simultaneously, all of them are inserted in lexicographical
order.

The resulting procedure consists in processing, one after the other, pairs and triplets of indexes
following the total order “≺” defined above until (4.4) is satisfied by a pair (i, j) or (3.92) is satisfied
by an existence pair (θ±

i j
, θ∓

ik
) related to a triplet (i, j, k).

ALGORITHM 4.2. (An improvement of Algorithm 3.2)

% Input: X = {x(1), x(2), · · · , x(m)}, RF, SF, z

% Output: ‖z‖P, where P = absco(X)

f ound f ace← 0
while l ≤ m

if det([z x(l)]) = 0
% z is proportional to the vertex x(l)

‖z‖P ← ‖z‖/‖x(l)‖
f ound f ace← 1

end
l = l + 1

end
if f ound f ace = 0

% compute the distances δi of Rz from the circle generated by all the vertexes x(i) of P with
% respect to the Euclidean distance

δi =

√

‖x(i)‖2
2
− |〈x(i), z〉|2/‖z‖2

2
, i = 1, . . . ,m

ord← vector of the indexes reordered in non-decreasing order with respect to δi

VisitM← zero-matrix of dimension m ×m
ic← 2

while (f ound f ace = 0 & ic ≤ m)
ir← 1

while (f ound f ace = 0 & ir ≤ ic − 1)
% find the indexes r and c of the facet obtained in correspondence of the indexes ir and ic
r← ord(ir), c← ord(ic)
if RF(r, c) , ∅ % some facets Fyrc(θ) exist

VisitM(r, c)← 1, VisitM(c, r)← 1
[

λrc

µrc

]

← [x(r) x(c)]−1z

if arg(µrc) − arg(λrc) shift(−π, π] ∈ RF(r, c)
% z projects on the facet ei arg (λrc)x(r) � ei arg (µrc)x(c)

f ound f ace← 1

94 I  

‖z‖P ← |λrc| + |µrc|
end
if f ound f ace = 0

k← 1
while (f ound f ace = 0 & k ≤ m)

if (VisitM(r,k)=1 & VisitM(c,k)=1)
% find if z projects on a triangle determined by the index triplet (r, c, k),
% by using the results of Section 3.3

if z projects on a triangle determined by the index triplet (r, c, k)
determine λr, λc, λk by using the results of Section 3.3
‖z‖P ← λr + λc + λk

f ound f ace← 1
end

end
k← k + 1

end
end

end
ir← ir + 1

end
ic← ic + 1

end
end

4.4 Expected results for Algorithm 4.2 and numerical experi-

ments

We have seen that the improvement of Algorithm 4.1 with respect to Algorithm 3.1 for the
construction of a b.c.p. P is strictly related to the percentage of average connection PAC: the
smaller PAC is, the greater the percentages PST, PSC and PSU are.

The situation for Algorithm 4.2 with respect to Algorithm 3.2 for the computation of the norm
is slightly different. In fact, the possible improvement is clearly related to the ability of the adopted
criterion to detect, as soon as possible, the facet of P which the vector z projects on. And this, in
turn, seems to be more related to a possible uniform spheric-like distribution of the vertexes ofP,
rather than to a possible low mutual connection, even if in many cases these two characteristics
seem to be quite connected to each other.

In any case, the performance of the two algorithms to compare depends primarily on the
number of checked index pairs (i, j) corresponding to regular facets of P, denoted by R for
Algorithm 3.2 and by R̂ for Algorithm 4.2, and on the number of checked existence pairs (θ±

i j
, θ∓

ik
)

corresponding to triangles included in special facets of P, denoted by S for Algorithm 3.2 and by

Ŝ for Algorithm 4.2. Therefore, as in Section 4.2, if we define the percentage of saved checked index
pairs

PSR =
R − R̂

R

and the percentage of saved checked existence pairs

PSS =
S − Ŝ

S
,

we expect that the percentage of saved CPU time PST follows, in first approximation, a linear
rule of the type

PST = α + βPSR + γPSS (4.5)

4.4 E   A 4.2    95

for suitable coefficients α, β, γwith β, γ > 0. However, in principle, we do not always expect very
strong relationships between the triplet (PST,PSR,PSS) and the percentage of average connection
PAC. In particular, this applies to PSS because, if a point z projects on a regular facet, then
Algorithm 3.2 does not check any special facet, whereas Algorithm 4.2 may also check some
special facets.

We have organised our numerical experiments on the same classes of b.c.p.’s that we con-
sidered in Section 4.2. This time, we think it is reasonable to perform, for each b.c.p. P, the
computation of the norm of a certain number N (say, one hundred) of vectors {z(i)} randomly gen-
erated. In such a way, by taking the average of the various CPU times ti, t̂i and of the quantities

Ri, R̂i, Si, Ŝi, related to each vector z(i), which we keep on denoting by t, t̂, R, R̂, S, Ŝ, and are given
by

t =

∑N
i=1 ti

N
, R =

∑N
i=1 Ri

N
, S =

∑N
i=1 Si

N
(4.6)

and

t̂ =

∑N
i=1 t̂i

N
, R̂ =

∑N
i=1 R̂i

N
, Ŝ =

∑N
i=1 Ŝi

N
, (4.7)

we should still have a linear relationship of type (4.5). Remark that, by taking the averages, we
should get an idea of the average behaviour of the algorithms and we should also considerably
reduce the random noises in measuring the CPU times (see the analogous discussion in Section
4.2).

We shall use the same set of one hundred vectors for all examples.

Example 4.6. In this example we compare the performances of the Algorithms 4.2 and 3.2 for the
computation of the polytope norm of one hundred given points, when the b.c.p. P is generated
by the set of m essential vertexes defined in Example 4.1. In Table 4.15 we report the percentages

PSR, PSS, PST, which are computed using the mean values R, R̂, S, Ŝ defined in (4.6) and (4.7);
furthermore, we report, for convenience, also the percentage PAC which has already been shown
in Example 4.1.

As we can see in Figures 4.17 and 4.18 associated with Table 4.15 , the mean values R, R̂, S,

Ŝ, the percentage of saved time PST, and the percentage of saved index pairs PSR increase with
the number m of essential vertexes of the b.c.p. P. On the other hand, the percentage of saved
existence pairs PSS slowly decreases as m increases.

From figure 4.19, we can see that there is a good linear relation both between PST and PAC
and between PSR and PAC, and so we have computed the corresponding regression lines and
the related Pearson coefficients, denoted respectively with R2

T
and R2

R
; on the other hand, there is

no clear linear relation between PSS and PAC (see Figure 4.20).
Finally, as expected and as shown in Figure 4.21, since there is a global linear relation between

PST, PSR and PSS, we have computed the corresponding regression plane and the Pearson
coefficient R2.

^

96 I  

m 10 20 30 40 50 60 70

R 36 171 406 741 1176 1711 2346

R̂ 8 19 30.08 41.29 52.80 64.05 75.18

S 11.09 26.08 46.44 59.90 64.53 89.90 104.51

Ŝ 3.69 10.86 18.31 26.03 34.04 41.75 49.45

PSR 78 % 89 % 93 % 94 % 96 % 96 % 97 %

PSS 67 % 58 % 61 % 57 % 47 % 54 % 53 %

PST 61 % 80 % 88 % 91 % 92 % 94 % 95 %

PAC 60 % 33% 22% 17% 14% 11% 10%

Table 4.15: The percentages PST, PSR, PSS and PAC for some values of m.

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

m
10 20 30 40 50 60 70

0

20

40

60

80

100

120

m

Figure 4.17: The mean values R and R̂ (left), respectively plotted with ⋄ and ∗, and S, Ŝ (right),
respectively plotted with ⋄ and ∗, versus m.

4.4 E   A 4.2    97

10 20 30 40 50 60 70
60

65

70

75

80

85

90

95

m

P
S

T
 %

10 20 30 40 50 60 70
40

50

60

70

80

90

100

m

P
S

R
 %

 ,
P

S
S

 %

Figure 4.18: PST (left) and PSR, PSS (right) versus m. The percentage PSR is plotted with ∗,
whereas PSS with ◦.

10 15 20 25 30 35 40 45 50 55 60
60

65

70

75

80

85

90

95

100

PAC %

P
S

T
 %

10 15 20 25 30 35 40 45 50 55 60
78

80

82

84

86

88

90

92

94

96

98

PAC %

P
S

R
 %

Figure 4.19: PST (left) and PSR (right) versus PAC and the corresponding regression lines. The
Pearson coefficients are, respectively, R2

T = 0.997 and R2
R = 0.99.

10 15 20 25 30 35 40 45 50 55 60
45

50

55

60

65

70

PAC %

P
S

S
 %

Figure 4.20: PSS versus PAC.

98 I  

75
80

85
90

95
100

45
50

55
60

65
70

55

60

65

70

75

80

85

90

95

100

PSS %PSR %

P
S

T
 %

Figure 4.21: The points (PSR,PSS,PST), for some values of m, and the corresponding regression
plane with Pearson coefficient R2 = 0.997. The points above the regression plane are plotted with
∗, whereas the ones below with ◦.

Example 4.7. In this example we perform the same analysis made in the previous one considering

the same b.c.p. of Example 4.2. In Table 4.16 we report the quantities R, R̂, S, Ŝ, PST, PSR, PSS

and PAC for different values of m. As shown in Figure 4.22, the quantities R, R̂, S, Ŝ increase with
m. On the left of Figure 4.23 we can see the little differences among the values of PST obtained
from different values of m, while on the right are reported the percentages PSR and PSS which
have a slight increase with m. In any case PSR, PSS and PST are almost constant with respect to
m. For this reason, we have not reported the dependence of PST with respect to PSR and PSS.
Note that, we have not reported either the percentages PST, PSR, PSS versus PAC, since in this
case PAC has the constant value 100%.

^

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

m
10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

m

Figure 4.22: The mean values R and R̂ (left), respectively plotted with ⋄ and ∗, and S, Ŝ (right),
respectively plotted with ⋄ and ∗, versus m.

4.4 E   A 4.2    99

m 10 20 30 40 50 60 70

R 36 171 406 741 1176 1711 2346

R̂ 9.1 28.71 59.50 99.84 153.32 216.41 290.8

S 52.39 434.43 1518.80 3688.40 7103.30 12402 19864

Ŝ 15.34 121.23 403.27 923.49 1810.30 3089.40 4879

PSR 75 % 83 % 85 % 87 % 87 % 87 % 88 %

PSS 71 % 72 % 73 % 75 % 75 % 75 % 75 %

PST 59 % 67 % 69 % 66 % 57 % 55 % 60 %

PAC 100% 100% 100% 100% 100% 100% 100%

Table 4.16: The percentages PST, PSR, PSS and PAC for some values of m.

10 20 30 40 50 60 70
55

60

65

70

m

P
S

T
 %

10 20 30 40 50 60 70
70

72

74

76

78

80

82

84

86

88

m

P
S

R
 %

 ,
P

S
S

 %

Figure 4.23: PST (left) and PSR, PSS (right) versus m. The percentage PSR is plotted with ∗,
whereas PSS with ◦.

100 I  

Example 4.8. We again consider the b.c.p. defined in Example 4.3. In Table 4.17 we can see that
Algorithm 4.2 works very well, saving almost 99% of both checked index and existence pairs. As

shown in Figure 4.24, R and S increase, R̂ has a slight increase and Ŝ has a slight decrease with
m. Moreover, the percentages PST, PSR, PSS increase with m (see Figure 4.25). Furthermore,
disregarding the case m = 10, we can see a linear relation between PST and PAC and between
PST and PAC whereas there is no such relation between PSS and PAC. Since plotting the values
of PST as a function of the values of PSR and PSS and computing the corresponding regression
plane we have that the Pearson coefficient is R2 = 0.999, then our expectation (4.5) is confirmed.

^

m 10 20 30 40 50 60 70

R 36 171 406 741 1176 1711 2346

R̂ 12.08 13.73 16.19 21.57 27.03 32.51 37.81

S 10.80 21.74 34.03 45.30 57.90 68.26 86.66

Ŝ 2.78 3.35 0.85 0.83 0.85 0.89 0.81

PSR 66 % 92 % 96 % 97 % 98 % 98 % 98 %

PSS 74 % 85 % 98 % 98 % 99 % 99 % 99 %

PST 52 % 85 % 92 % 94 % 95 % 96 % 96 %

PAC 38% 28% 19% 15% 12% 10% 8%

Table 4.17: The percentages PST, PSR, PSS and PAC for some values of m.

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

m
10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

90

m

Figure 4.24: The mean values R and R̂ (left), respectively plotted with ⋄ and ∗, and S, Ŝ (right),
respectively plotted with ⋄ and ∗, versus m.

4.4 E   A 4.2    101

10 20 30 40 50 60 70
50

55

60

65

70

75

80

85

90

95

100

m

P
S

T
 %

10 20 30 40 50 60 70
65

70

75

80

85

90

95

100

m

P
S

R
 %

 ,
P

S
S

 %

Figure 4.25: PST (left) and PSR, PSS (right) versus m. The percentage PSR is plotted with ∗,
whereas PSS with ◦.

5 10 15 20 25 30 35 40
50

55

60

65

70

75

80

85

90

95

100

PAC %

P
S

T
 %

5 10 15 20 25 30 35 40
65

70

75

80

85

90

95

100

PAC %

P
S

R
 %

Figure 4.26: PST (left) and PSR (right) versus PAC.

5 10 15 20 25 30 35 40
70

75

80

85

90

95

100

PAC %

P
S

S
 %

Figure 4.27: PSS versus PAC.

102 I  

65707580859095100

70

80

90

100

50

55

60

65

70

75

80

85

90

95

100

PSS %

PSR %

P
S

T
 %

Figure 4.28: The points (PSR,PSS,PST), for some values of m, and the corresponding regression
plane with Pearson coefficient R2 = 0.999. The points above the regression plane are plotted with
∗, whereas the ones below with ◦.

Example 4.9. In this example we consider the same b.c.p. of Example 4.4, which is associated with
an essential system of vertexes which are randomly generated and distributed on a hypersphere.
The improvement of Algorithm 4.2 with respect to Algorithm 3.2 is summarised in Table 4.18 and
in the next Figure 4.30, where we can see that the percentages PSR, PSS, PST increase with m.
Furthermore, it is interesting to note that we save almost 99% of the CPU time; thus Algorithm
4.2 works in an exellent way for this kind of b.c.p. In the next Figures 4.31 and 4.32, we can see
that there is a linear relation between PST and PAC, PSR and PAC, PSS and PAC. As expected,
we can also see in Figure 4.33 the linear relation which occurs between PST, PSR and PSS.

^

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

m
10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

m

Figure 4.29: The mean values R and R̂ (left), respectively plotted with ⋄ and ∗, and S, Ŝ (right),
respectively plotted with ⋄ and ∗, versus m.

4.4 E   A 4.2    103

m 10 20 30 40 50 60 70

R 36 171 406 741 1176 1711 2346

R̂ 5.75 13.08 10.29 9.33 11.03 11.44 10.23

S 7.06 23.56 25.37 42.08 62.33 64.13 79.64

Ŝ 2.32 6.83 5.07 4.41 5.1 5.41 4.83

PSR 84 % 92 % 97 % 99 % 99 % 99 % 100 %

PSS 67 % 71 % 80 % 90 % 92 % 92 % 94 %

PST 76 % 89 % 95 % 98 % 99 % 99 % 99 %

PAC 53% 28% 19% 15% 12% 10% 8%

Table 4.18: The percentages PST, PSR, PSS and PAC for some values of m.

10 20 30 40 50 60 70
75

80

85

90

95

100

m

P
S

T
 %

10 20 30 40 50 60 70
65

70

75

80

85

90

95

100

m

P
S

R
 %

 ,
P

S
S

 %

Figure 4.30: PST (left) and PSR, PSS (right) versus m. The percentage PSR is plotted with ∗,
whereas PSS with ◦.

104 I  

5 10 15 20 25 30 35 40 45 50 55
75

80

85

90

95

100

105

PAC %

P
S

T
 %

5 10 15 20 25 30 35 40 45 50 55
82

84

86

88

90

92

94

96

98

100

102

PAC %
P

S
R

 %

Figure 4.31: PST (left) and PSR (right) versus PAC and the corresponding regression lines. The
Pearson coefficients are, respectively, R2

T
= 0.99 and R2

R
= 0.98.

5 10 15 20 25 30 35 40 45 50 55
60

65

70

75

80

85

90

95

PAC %

P
S

S
 %

Figure 4.32: PSS versus PAC and the corresponding regression line with Pearson coefficient
R2

S
= 0.83.

4.4 E   A 4.2    105

84 86 88 90 92 94 96 98 100
65

70

75

80

85

90

95

75

80

85

90

95

100

105

PSS %

PSR %

P
S

T
 %

Figure 4.33: The points (PSR,PSS,PST), for some values of m, and the corresponding regression
plane with Pearson coefficient R2 = 0.99. The points above the regression plane are plotted with
∗, whereas the ones below with ◦.

106 I  

Bibliography

[BM02] T. Bousch and J. Mairesse. Asymptotic height optimization for topical IFS, Tetris heaps
and the finiteness conjecture. J. Amer. Math. Soc., 15:77–111, 2002.

[BTV03] V.D. Blondel, J. Theys, and A.A. Vladimirov. An elementary counterexample to the
finiteness conjecture. SIAM J. Matrix Anal. Appl., 24:963–970, 2003.

[BW92] M.A. Berger and Y. Wang. Bounded semigroups of matrices. Linear Algebra Appl.,
166:21–27, 1992.

[DL92] I. Daubechies and J.C. Lagarias. Sets of matrices all infinite products of which converge.
Linear Algebra Appl., 161:227–263, 1992.

[Ede87] H. Edelsbrunner. Algorithms in combinatorial geometry. EATCS Monographs on Theo-
retical Computer Science. Spring-Verlag, Heidelberg, 1987.

[Els95] L. Elsner. The generalized spectral-radius theorem: an analytic-geometric proof. Linear
Algebra Appl., 220:151–159, 1995.

[Gri96] G. Gripenberg. Computing the joint spectral radius. Linear Algebra Appl., 234:43–60,
1996.

[Grü67] B. Grünbaum. Convex polytopes. John Wiley & Sons, London, 1967.

[GWZ05] N. Guglielmi, F. Wirth, and M. Zennaro. Complex polytope extremality results for
families of matrices. SIAM J. Matrix Anal. Appl., 27:721–743, 2005.

[GZ01] N. Guglielmi and M. Zennaro. On the zero-stability of variable stepsize multistep
methods: the spectral radius approach. Numer. Math., 88:445–458, 2001.

[GZ05] N. Guglielmi and M. Zennaro. Polytope norms and related algorithms for the compu-
tation of the joint spectral radius. In 44th IEEE Conference on Decision and Control and
European Control Conference ECC’05, pages 3007–3012, Seville, Spain, 12–15 December
2005.

[GZ07] N. Guglielmi and M. Zennaro. Balanced complex polytopes and related vector and
matrix norms. J. Convex Anal., 14:729–766, 2007.

[Heu82] H.G. Heuser. Functional analysis. John Wiley & Sons, New York, 1982.

[LW95] J.C. Lagarias and Y. Wang. The finiteness conjecture for the generalized spectral radius
of a set of matrices. Linear Algebra Appl., 214:17–42, 1995.

[Mae95] M. Maesumi. Optimum unit ball for joint spectral radius: an example from four-
coefficient MRA. In “Approximation Theory VIII: Wavelets and Multilevel Approxi-
mation”. C.K. Chui and L.L. Schumaker (eds.). 2:267–274, 1995.

[Mae98] M. Maesumi. Calculating joint spectral radius of matrices and Holder exponent of
wavelets. In “Approximation Theory IX”. C.K. Chui and L.L. Schumaker (eds.). pages
1–8, 1998.

108 BIBLIOGRAPHY

[Mae05] M. Maesumi. Construction of optimal norms for semigroups of matrices. In 44th
IEEE Conference on Decision and Control and European Control Conference ECC’05, pages
3001–3006, Seville, Spain, 12–15 December 2005.

[MS06] S. Miani and C. Savorgnan. Complex polytopic control lyapunov functions. In 45th
IEEE Conference on Decision and Control, pages 3198–3203, San Diego, CA, USA, 13–15
December 2006.

[RS60] G.C. Rota and G. Strang. A note on the joint spectral radius. Indag. Math., 22:379–381,
1960.

[Shi99] M.H. Shih. Simultaneous Schur stability. Linear Algebra Appl., 287:323–336, 1999.

[SWP97] M.H. Shih, J.W. Wu, and C.T. Pang. Asymptotic stability and generalized Gelfand
spectral radius formula. Linear Algebra Appl., 252:61–70, 1997.

[Ver99] R. Vermiglio. On the computation of the joint spectral radius of matrices - Numerical
experiments. Report UDMI/21/99/RR, 1999.

[VZ07] C. Vagnoni and M. Zennaro. The analysis and the construction of balanced complex
polytopes in 2d. preprint, April 2007.

[Zie95] G.M. Ziegler. Lectures on polytopes. Springer-Verlag, New York, 1995.

