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Sommario 
 
Questa tesi riguarda l’analisi automatica di immagini del fundus oculare e le 

sue applicazioni alla diagnotica oftalmologica. 

Il diabete è una malattia che si sta diffondendo sempre di più nel mondo, a 

causa dell’aumento demografico, dell’età, dell’urbanizzazione e per 

l’inattività fisica che porta all’obesità, per cui la retinopatia diabetica è fra le 

cause principali di cecità.  

Anche l’ipertensione colpisce la microcircolazione e la retinopatia 

ipertensiva è una conseguenza di questo danno. 

In questa tesi saranno presentati dei nuovi algoritmi di elaborazione ed 

analisi automatica di immagini della retina che possono aiutare la diagnosi e 

che possono essere utilizzati in sistemi automatici di screening della 

retinopatia diabetica.  

E’ stato sviluppato un algoritmo veloce e robusto per la registrazione di 

immagini, per ottenere una immagine completa da una squenza di viste 

parziali, con una percentuale di fallimento di solo il 2% su immagini 

acquisite con una fundus camera Nidek Orion. 

Successivamente saranno presentati dei metodi per discriminare i falsi 

positivi dai veri positivi in algoritmi per la segmentazione dei vasi sanguigni 

basati su tecniche di tracking. 

L’individuazione della posizione del disco ottico è un prerequisito per il 

calcolo di un importante indice di retinopatia, il rapporto dei diametri 

arteria\vena, per cui viene proposto un nuovo metodo per raffinare la 

localizzazione del disco ottico e individuare il bordo usando un active 

contour model, ottenendo un errore medio di 3.4 pixel nell’individuazione 

del bordo ( su immagini di dimensione 1392x1038). 

L’identificazione della fovea è un compito fondamentale in ogni studio di 

malattie oculari, poiché è la zona di maggiore acutezza visiva dela retina, 

quindi le lesioni vicine alla fovea sono più gravi. 
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E’ stato quindi sviluppato un nuovo algoritmo per l’identificazione della 

fovea, con una distanza media di 35 pixels ( su immagini 1700x1700) dalla 

posizione della fovea segnata a mano da un oftalmologo. 
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Summary 
 
 
This thesis deals with the automatic analysis of color fundus images and 

with its application to diagnostic ophthalmology. 

Diabetes is a growing epidemia in the world, due to population growth, 

aging, urbanization and increasing prevalence of obesity and physical 

inactivity, so diabetic retinopathy has an ever increasing importance as a 

cause of blindness. Also  hypertension affects the microcirculation and 

hypertensive retinopathy is one of the consequences of such damage. 

In this thesis new algorithms to help  ophthalmologist’s diagnosis and to be 

used in  automated systems for retinopathy screening will be presented . 

We have developed a fast and robust algorithm for retinal image 

registration, to build a mosaic image from a sequence of partial views, with 

a failure rate of only 2% on images acquired with an automatic fundus 

camera Nidek Orion.   Then methods  to discriminate false detections from 

true positives in algorithms for blood vessels extraction based on tracking 

techniques will be presented, with a sensitivity of 63% and accuracy of 

95%. 

The detection of optic disc position is also a prerequisite for the 

computation of an important diagnostic index for hypertensive/sclerotic 

retinopathy based on vasculature, the arteriolar-to venular diameter ratio, so 

a new method to refine the localization of the optic disc and to detect its 

border using an active contour model is proposed, with an average error of 

3.4 pixels on border detection( on 45° images with size 1392x1038 pixels) . 

Fovea identification is a fundamental  task in any study of ocular diseases, 

because it’s the most accuracy vision zone of the retina, so the nearer the 

fovea are the graver the ocular lesions are. Therefore we have developed a 

new algorithm for the automatic identification of the fovea, with an average 

distance from the manual labelled fovea position of 35 pixels (on 45° 

mosaic images with size 1700x1700 pixels)  
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Chapter 1 
 
Introduction 
 

Hypertensive retinopathy is associated with systemic arterial hypertension; 

retinal vascular changes that may occur are seen in both chronic and acute 

stages. It is likely that increasingly more patients will present hypertension, 

which is ranked as one of the top 10 risk factors for burden of diseases in 

developed countries by the World Health Organization. Ophthalmologists 

are in a unique position to detect the disease, as well as prevent visual loss 

from it; a patient with undiagnosed malignant hypertension will probably 

consult first an ophthalmologist with a complaint of visual loss, that is 

ultimately related to hypertension. 

An even more dramatic situation characterizes diabetes related retinopathy. 

Diabetes is a growing epidemia in the world, due to population growth, 

aging, urbanization and increasing prevalence of obesity and physical 

inactivity: population with diabetes is estimated to grow by the 37 percent 

by 2030, and today it is already around 200 millions people worldwide. 

Following the trend of diabetes, diabetic retinopathy has an ever increasing 

importance as a cause of blindness: in the United States it is the first cause 

of blindness in people in working age, with all the consequent economic and 

social burdens. The timely diagnosis and referral for menagement of 

diabetic retinopathy can prevent 98% of visual loss. It is estimated that the 

underlying cause of blindness in the majority of diabetic patients is not 

diabetic retinopathy per se but the misdiagnosis of diabetic retinopathy. 

Currently, a periodic dilated direct ophthalmoscopic examination seems the 

best approach for a screening with near universal coverage of the 

populationat risk, despite the proved low sensitivity of direct 

ophthalmoscopy. However, the number of ophthalmologist available is the 

limiting factor in initiating an ophthalmologist based screening. With the 
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increasing availability of digital fundus camera, the automatic analysis of 

such digital images might allow to develop an inexpensive screening device 

that could be used  without the need for medical assistance. 

Moreover  computer vision techniques applied  to retinal image analysis 

proved of great help to ophthalmologists, allowing the rapid and reliable 

extraction of important diagnostic indexes. 

 
 
 

1.1 – Aim and Objectives 
 
The aim of the work presented in this thesis is to develop a set of new 

algorithms to help  ophthalmologist’s diagnosis and to be used in  

automated systems for retinopathy screening. 

At first, we have faced the task of  building a mosaic image from a sequence 

of partial views acquired with an automatic fundus camera Orion Nidek , 

which takes five  images representing different fields of the retina. 

An image registration technique is proposed to solve this problem. This 

algorithm is fast and robust (2% of failure rate) and can be used in order to 

obtain a complete, non-redundant view of the retina combining several 

different fields of view, and also to  quantitatively compare  images taken at 

different examinations for  monitoring the progression of the disease. 

Then we will present new methods for  the detection of the main anatomical  

structures of the retina( retinal vessel network, optic disc, fovea). This is an 

essential task for any system of analysis of fundus images because it allows  

the classification of  lesions and the extraction of  important diagnostic  

parameters.  

Automatic extraction of the retinal vessel network is important because 

retinal vessels are very sensitive to changes in the microvascular circulation, 

so an early warning about serious cardiovascular diseases can be provided 

by the analysis of microvasculature health status. A previously developed 

algorithm for vessel extraction based on a tracking technique has been 

improved adding a module that discriminate false detections from true 

positives. 
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On retinal images, a sign that have been shown to be related to 

cardiovascular diseases is the generalized arteriolar narrowing, usually 

expressed by the arteriolar-to venular diameter ratio (AVR) [34-35]. In this 

thesis a system for AVR estimation that is completely automatic, avoiding 

long and cumbersome manual measurements,  will be  proposed. 

The extraction of the retinal vessel network is a prerequisite  also for the 

recognition of the optic disc, and for the elimination of the vascular 

structures from the search of possible non-vascular lesions. Locating the OD 

position is important to exclude it from the set of possible lesions, to 

compute AVR and to establish a frame of reference within the retinal image. 

Disc boundary detection is also important  to assess the progression of 

glaucoma, which is due to an increase in intra-ocular pressure and produces 

additional pathological cupping of the optic disc. 

Fovea identification is a fundamental  task in any study of ocular diseases, 

because it’s the most accuracy vision zone of the retina, so the nearer the 

fovea are the graver the ocular lesions are.  

 

1.2 – Outline of the Thesis 
 
Chap. 2-4 are introductory chapters describing retinal imaging, image 

acquisition protocols and the experimental setting of this thesis. The fundus 

camera examination, the appearance of the retina in a fundus image and the 

main findings of hypertensive and diabetic retinopathy will be described in 

Chap. 2. 

In Chap. 3 the available imaging protocols for retinopathy evaluation will be 

reviewed. 

In Chap. 4 will be presented protocols and instruments used to acquire the 

images on which we have tested the algorithms. 

The image registration and mosaicing algorithm will be  described in Chap. 

5. 

The procedure to discriminate false detections from true positives in 

tracking-based blood vessel automatic extraction is the object of Chap. 6, 

and the identification of the optic disc of Chap.7 
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The algorithm for the automatic identification of the fovea is described in 

Chap.8, and in Chap. 9 is presented a new method for automatic estimation 

of the arteriolar-to venular diameter ratio. 
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Chapter 2 
 
Fundus Images and its Diagnostic 
Signs 
 
In this chapter a brief review will be presented about what is seen in an 

image from a fundus camera examination and all the most relevant lesions 

to be found in the hypertensive and diabetic retinopathy. 

2.1 – Fundus Oculi Examination 
 
The first instrument that made available to ophthalmologists the direct 

examination of the retina was the direct ophthalmoscope, which is still used 

today. It was first described by Helmholtz at the end of the XIX century, 

and since then it has not changed much. In its basic form is composed by a 

light source and a set of lenses. The light is projected through the dilated 

pupil onto the retina, and the lenses focus on so that the observer can look at 

the retina. Its use is widespread in the clinical practice, but it has been 

proved to provide poor sensitivity and results highly dependent on the 

observer experience. 

In the middle of the XX century the first instrument able to acquire 

photographs of the retina appeared. This is a photographic 35mm back 

connected to an optic system that focuses on the fundus oculi, illuminated 

by a coaxial flash. This fundus camera enables the photography of different 

portions of the retina with different magnification, which ranges from 10
0
 

to 60
0
. 
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Around 1990, the first digital fundus camera appeared. The optic system is 

not connected anymore to a traditional camera, but to a CCD, and the image 

is sent to a computer for visualization and storage. 

 

 
Fig. 2.1: An image of a normal fundus oculi. Papill a (a), fovea (b) and 
vessel networks are clearly visible 
 
2.1.1 Fundus Oculi Appearance 
 
Using a fundus camera, an image of the fundus oculi is acquired. The visible 

part of it is composed by the retina with its vascular network and the optic 

nerve head. The choroid is the structure below the retina and its usually 

obscured by it. 

The retina is a multilayer structure, which is transparent except for the 

deepest layer, the pigmented epithelium. This gives to the retina its reddish 

colour. More superficially than the pigmented epithelium there is the 

sensorial retina, composed by the photoreceptor cells and by the gangliar 

cells. 

The axons of the gangliar cells runs to the papilla, or optic disc, or optic 

nerve head, which is the place where the bundle of nervous fibers forms the 

optic nerve, and leaves the optic bulb. From the center of the optic disc the 

ophthalmic artery enters into the optic bulb, and subsequently branches to 

provide vascularization to most of the retina. From the capillary network 
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originates the venous vessels, which flow into the central retinal vein that 

exit the ocular bulb through the optic disc. Topologically, the temporal 

vessel arcades delimit the posterior pole. At the center of the posterior pole 

there is the macula: its center is occupied by a small depression, the fovea, 

that is the region most densely packed with photoreceptor of the retina and 

is normally the center of vision. The macula is not fed by retinal vessels, but 

takes its nutrients from the choroid vessels below the retina. 

Choroidal vessels are not usually visible in an image taken with a fundus 

camera, but if the the pigmented epithelium is very lightly pigmented or in 

case of pathological depigmentation, the retina becomes almost transparent 

and the choroid becomes visible. 

 

2.2 – Main Vascular Abnormalities 

2.2.1  Tortuosity 

 

Figure 2.2: Normal and tortuous vessels 

 
In presence of high blood pressure, vessels may increase in length and 

vessel walls thicken, and as a result they become increasingly tortuous. This 
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is at first seen in arteries, and only in more severe stages of retinopathy, also 

in veins. 

 

2.2.2 Generalized Arterioral Narrowing 

The earliest fundus change due to hypertension is the thinning of the retinal 

arterioles. Narrowing of the arterioles is usually proportional to the degree 

of elevation of blood pressure. However, retinal arteriolar narrowing is 

imprecisely quantified from a clinical ophthalmoscopic examination, since 

the examiner should estimate the normal vessel width prior to the narrowing 

to evaluate severity of the latter. 

 
 

2.2.3 Focal Arterioral Narrowing 

 

 Figure 2.3: A definite focal narrowing 

 

In severe hypertension states, irregularities in the caliber of blood vessels 

may appear. In arterioles, they are due to localized spasm and contraction of 
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the wall. They appear as a focal thinning of the blood column: the 

narrowing may increase until the vessels become thread-like. 

2.2.4 Bifurcations Abnormalities 

Arterial diameters and topography at branch points are believed to conform 

to design principles that optimize circulatory efficiency and maintain 

constant shear stress across the network [46]. It has been suggested that 

arterial diameters at a bifurcation should conform to a power relationship, 

and arterial branches in various circulation have been shown to obey to this 

design. 

It has been shown that bifurcation angles are reduced with increasing 

hypertension, probably because the atheroma fibrosis of the central artery 

displace by contraction the arteries toward the disk. Although the 

mechanisms of bifurcation changes are not clear, both branching angles and 

also the value ofthe junction exponent seems to deviate from its optimal 

values with age [47]. 

 

2.2.5 Crossing Abnormalities 

The abnormal changes in arteriovenous crossings result from the thickening 

of the wall of the arterioles due to hypertension and sclerosis, and associated 

changes in the veins at the crossings. The first appearance of crossing 

abnormalities 

is the compression of the vein by the artery, which may vary in severity 

from a slight indentation to complete interruption of the vein where the 

artery crosses. When the sclerotic process in the artery extends to the 

adventitia of the vein, the blood column in the vein will be partially 

obscured and appear tapered on each side of the crossing. 

 



 10 

 
Figure 2.4: Gunn’s and Salus’s sign 
 
Constriction and compression of the veins may impede the blood return, so 

that the veins become distended for some distance peripheral to the 

crossing: this is the so called Gunns sign. 

The arterial sclerosis may cause deflection of the vein from its normal 

course at the point where the artery crosses. The vein may deflect both 

vertically (dipping under the artery or humping over it), or laterally. In this 

last case, instead of crossing the artery obliquely, the vein does so at right 

angles and appears as S-shaped at the bend, which has been referred as the 

Salus sign. 
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2.3 – Main Non Vascular Findings 
 

2.3.1 Microaneurysms and Red Dots 

Retinal microaneurysms are the most characteristic lesion of diabetic 

retinopathy, but are present also in other pathologies that affect the 

microvessels. Micoraneurysms are a small dilation of a capillary wall. It is 

not clear if retinal microaneurysms are due to a vessel wall damage or to the 

beginning of a neovascolarization. However, the result is the appearance of 

small saccular structures, of approximate dimension between 10mµ  and 

100 mµ  , that in the retinal fluorescein angiography appear as bright 

hyperfluorescen spots, whereas in colour fundus images appears as round, 

red spots. They are indistinguishable from small hemorrhages of the same 

dimension, since they both are small round regions, with a dark red colour. 

Therefore, both microaneurysms and hemorrhages smaller than the major 

vein caliber at the optic disc margin (usually 125 ¹m), are considered red 

dots, and evaluated as microaneurysms [48]. On the contrary, any red spot 

greater than that is considered an hemorrhage, unless features as round 

shape, smooth margins and a central light reflex suggest that it is probably a 

microaneurysm. 

 
    Figure 2.5: Microaneurysms 
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2.3.2 Hemorrhages 

Retinal hemorrhages are blood deposits on the retina. Hemorrhages 

disappear as the blood is reabsorbed with time. 

They are due to the breaking of a vessel wall or of a microaneurysm, and the 

increase in their presence is a clear sign of diffuse retinal damage. 

They have very different shapes, going from the round red spot with sharp 

margins, to the blot hemorrhage, to the flame-shaped hemorrhage. As the 

blood is reabsorbed, hemorrhage margins fade and the characteristic red 

colour turns to a faint greyish-red before disappearing completely. 

 

2.3.3 Hard Exudates 

Hard exudates are small lipidic and proteinic deposits, which appear as 

white or yellowish-white areas with sharp margins. They may be arranged 

as individual dots, confluent patches or in partial or complete rings 

surrounding microanaeurysms or zones of retinal edema. In the more severe 

cases of hypertensive retinopathy, they appear as a confluent ring around the 

macula (the macular star). 
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         Figure 2.6: Hemorrhages 
 

2.3.4 Cotton Wool Spots 

Cotton wool spots are the consequence of retinal ischemic events, due to 

precapillary arterioles stenosis. This causes a swelling of the nerve fiber 

layer, with local deposit of cytoplasmatic material. They are round or oval 

in shape, white, pale yellow-white or greyish-white, with soft and feathery 

edges, that give their characteristic aspect and their name. They usually 

appear along the major vessel arcades, parallel to the nerve fibers, and are 

sometimes accompanied by the presence of microaneurysms. 
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Figure 2.7: Different hard exudates 
 

 
Figure 2.8: Cotton wool spots 
 

2.3.5 Drusen 

Drusen are deposits associated with thinning or hypopigmentation of the 

retinal pigment epithelium. They appear as deep, yellowish-white dots. To 

distinguish drusen from hard exudates, good stereoscopic view would be 

necessary, since drusen appear very deep while hard exudates are slightly 

more superficial. In the protocol used in this thesis the photographs are 

mono, therefore it is not easy to identify hard exudates from drusen. Several 

other features are used in distinguishing drusen from hard exudates. Drusen 

are usually scattered diffusely or scattered near the center of the macula. 

They are usually round in shape, while hard exudates are usually irregular in 

shape. Finally, drusen have often a faint border of pigment. 

 

2.4 – Hypertensive Retinopathy  
 
The classification of hypertensive changes in the retina in a severity scale 

was first proposed by Keith [49], in what is now currently known as the 
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Keith- Wegener-Barker grading system. It was subsequently modified by 

Scheie [50] to better separate hypertensive from atherosclerotic 

abnormalities. In Tab. 2.1 the two classifications for hypertensive 

retinopathy are shown. It is worth noting that recent literature challenges the 

prognostic significance of these classifications. The poor correlation with 

the severity of hypertension variation in the onset and progression of the 

clinical signs, has suggested the use of a classification of retinopathy into 

two grades: non-malignant and malignant [51]. This is further confirmed by 

the fact that density of perifoveal capillaries and capillary blood flow 

velocity analysed with an angiographic examination, correlate more with a 

two grade rather than with the classical four grade classification system. 

Nevertheless, the Keith-Wegener-Barker is 

still the standard de facto in the evaluation of hypertensive retinopathy. 

 
 
Table 2.1: Classification of hypertensive retinopat hy as proposed in [49] and 
[50] 
 

2.5 – Diabetic Retinopathy 
 
Two landmark clinical trials set the standard in grading diabetic retinopathy. 

They are the Diabetic Retinopathy Study (DRS) [52] and the Early 

Treatment Diabetic Retinopathy Study (ETDRS) [53]. The ETDRS severity 
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scale was based on the Airlie House classification of diabetic retinopathy 

and is used to grade fundus photographs. It has been widely applied in 

research settings, publications and it has shown satisfactory reproducibility 

and validity. 

Although it is recognized as the gold standard for grading the severity of 

diabetic retinopathy in clinical trials, its use in everyday clinical practice has 

not proven easy or practical. The first reason for this is that the photographic 

grading system has 90 levels, many more more than what is necessary for 

clinical care. Given the number of levels to consider and the detailed 

specific definitions of the levels, and the requirement of comparison with 

standard photographs, it is not surprising that ETDRS grading procedure is 

diffcult to remember and apply in a clinical setting. Recently, simplified 

severity scales have been developed in an effort to improve both the 

screening of patient with diabetes and communication among caregivers. 

Yet, to overcome this proliferation of ad hoc grading scales, it has been 

proposed in [54] a Diabetic Retinopathy Disease Severity Scale, in which 

separate scales were proposed to grade diabetic retinopathy (4 levels) and 

macular oedema (5 levels). The two scales are summarized in in Tab. 2.2 

and Tab. 2.3. 
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Disease 
Severity Level 
proposed in 

[54]  

Findings Observable on Dilated 
Ophthalmoscopy  

No Apparent       

Retinopathy 

No abnormalities 

Mild 
nonproliferative 
diabetic 

retinopathy 

Microaneurysms only 

Moderate 
nonproliferative 
diabetic 

retinopathy 

More than just microaneurysms 
but less than severe nonproliferative 
diabetic retinopathy 

Severe 
nonproliferative 
Diabetic 
retinopathy 

Any of the following: more than 20 intraretinal 
hemorrhages in each of 4 quadrants; definite 
venous beading in 2 or more quadrants; prominent 
intraretinal microvascular abnormalities in one or 
more quadrant and no signs of proliferative diabetic 
retinopathy 

Proliferative 
diabetic 
retinopathy 

One or more of the following: neovascularization, 
vitreous or preretinal hemorrhage 

 

Table 2.2: Classification of diabetic retinopathy a s proposed in [54] 
 
Disease Severity 
Level 
proposed in [54] 

Findings Observable on 
DilatedOphthalmoscopy 

Diabetic macular 
oedema apparently 
absent 

 
No apparent retinal thickening orhard 
exudates in posterior pole 

Mild diabetic macular 
oedema 

Some retinal thickening or hardexudates in 
the posterior pole but distant from the center 
of the macula 

Moderate diabetic 
macular oedema 

Retinal thickening or hard exudates 
approaching the center of 
the macula but not involving the 
center 

Severe diabetic 
macular 
oedema 

Retinal thickening or hard exudates 
involving the center of the 
macula 
 

Table 2.3: Classification of diabetic macular oedem a proposed in [54] 
Hard exudates are a sign of current or previous macular oedema. Diabetic macular 
oedema is defined as retinal thickening and requires a three-dimensional assessment. 
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Chapter 3 
 
Image Acquisition Protocols and 
Clinical Evaluation 
 
Since the development of the fundus camera, the ophthalmoscopic 

examination was the standard procedure for evaluating the state of the 

retina. In the last 15 years, as the fundus camera took ground in the 

ophthalmologic practice, issues were raised about the sensitivity and 

specificity of fundus photographs, and about which acquisition protocols 

may assure the highest sensitivity and specificity for the early identification 

of sight-threatening diseases. 

The gold standard for fundus imaging is the ETDRS protocol. Its practical 

usefulness is reduced by the complexity of acquisition procedure for the 

camera technician, by the complexity of images evaluation for the 

ophthalmologist, and by the discomfort for the patient involved in the 

procedure. 

It is therefore not commonly used in the clinical practice, but mainly limited 

to large research studies. As fundus camera quality increases, a number of 

protocols simpler than ETDRS have been proposed and validated against 

that gold standard. Even if none has taken solid ground in the clinical 

practice, the future for the widespread utilization of fundus imaging will be 

wide angle, few fields photographs protocols. In this chapter a number of 

protocols proposed in the literature will be presented.  

 

 3.1 – Diabetic Retinopathy 
 
The grading of Early Treatment Diabetic Retinopathy Study (ETDRS) seven 

standard field 35-mm stereoscopic color fundus photographs (ETDRS 

photos) using the modified Airlie House classification is the current gold 

standard for determining severity of diabetic retinopathy. The Airlie House 

Classification of  Diabetic Retinopathy provides the photographic basis for 



 19 

demonstrating the clinical characteristics and extent of clinically pertinent 

lesions of diabetic retinopathy. Early Treatment Diabetic Retinopathy Study 

35-mm retinal photography and grading protocols provide an established 

and documented sensitivity for detecting and assessing severity of diabetic 

retinopathy. Compared with other retinal imaging methods, such as Polaroid 

photography or digital-video imaging, 35-mm slide retinal color 

photographs have advantages of a large existing database, lower equipment 

cost, better resolution, and higher color fidelity. Disadvantages associated 

with 35-mm photography include the requirements for skilled 

photographers, the need for pupil dilation, uncomfortable examination 

sessions for the patients, higher costs for film and film handling, delays in 

film processing, and inefficient archiving with potential for loss or damage 

of slides. These disadvantages can impact the efficiency, convenience, and 

cost effectiveness of the procedure and can reduce compliance of patients 

with annual eye examinations for retinopathy assessment. A number of 

investigators have evaluated alternatives to ETDRS photos for retinal 

imaging and assessment of diabetic retinopathy severity. 

 

3.1.1 ETDRS Protocol 

The Early Treatment Diabetic Retinopathy Study is built over the Diabetic 

Retinopathy Study and uses the same protocol of image acquisition. Seven 

fields, mydriatic, stereoscopic photographs are taken on 35-mm film and 

subsequently evaluated on light-box. Both for image acquisition and 

retinopathy grading certified personnel is required. The seven fields are 

sketched in Fig. 3.1, and described in details in Tab. 3.1. The grading 

procedure is based on a large set of reference photographs (the standard 

photographs) for each lesion or abnormality considered. In [53, 48] the 

complex procedure for classifying the features identified in the set of 7 

stereo photographs is reported, together with the gradings to provide the 

level of retinopathy of the eye under examination. 
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3.1.2 EURODIAB Protocol 

A wide angle retinal photography protocol was developed within the 

framework of the EURODIAB IDDM Complications Study [55], part of a 

European Community funded Concerted Action Programme into the 

epidemiology and prevention of diabetes (EURODIAB). Two 45° colour 

photographs of each eye are taken. One is centered on the macula, so that 

the exact centre of the optic disc lay at the nasal end of the horizontal 

meridian of the field of 

 
 

 
 
Figure 3.1: Standard ETDRS 7 fields 
 
 
 
view. The second is the nasal field, such that the optic disc was positioned 

one disc diameter from the temporal edge of the field, on the horizontal 

meridian of the field of view. Considering the partial overlap of the two 

fields, they provide a retinal view of approximately 80° horizontally by 45° 

vertically, that the authors judge as suffcient for detecting clinically 

significant or sight-threatening lesions of diabetic retinopathy. In order to 

test this, they compared the protocol with the recognised gold standard 7-

field 30 degrees stereo photography (assessed using a modified Airlie House 

classification scheme). It was found that occasionally lesions occurred 

outside the field of view of either one or the other of the protocol [55]. 



 21 

Simple presence of retinal lesions was correctly detected by both systems in 

43 of the 48 eyes, giving 100% agreement on detection. Both systems 

correctly identified the two known cases of confounding vein occlusion. In 

eyes with diabetic retinopathy (n = 41), when severity was expressed in 

three groups: mild background, moderate/severe background and 

proliferative/ photocoagulated, at least one grader (out of five) using the 

new system matched the verified results in 38 out of 31 (93%) eyes and 

three or more graders matched in 31 (76%) eyes. In the view of the authors, 

the simplicity of application of the system compared to the ETDRS 7-field 

should prove useful especially in large clinical trials when consistently high 

quality ETDRS 7-field stereo images would be difficult to achieve. 

 
Figure 3.2: Joslin Vision Network Non Mydriatic Fie lds (black 
circles), and standard ETDRS 7 fields (dotted blue)  
 
 
3.1.3 Joslin Clinic Protocol 
 
The Joslin Vision Network (JVN) is telemedicine platform designed to 

facilitate access of patients with diabetes into the chronic disease 

management program of diabetes within the Joslin Diabetes Eye Health 

Care Model.  

This system incorporates a commercially available nonmydriatic retinal 

fundus camera optimized for low-light level imaging of the retina. The 

protocol [56], developed with the aim of reducing patient discomfort and of 
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providing an easy picture taking by non-certified photographers, is a three 

field nonmydriatic 45° photographs. These field are described in Tab. 3.2, 

and they are represented in Fig. 3.2 superimposed to the ETDRS protocol. 

This protocol was validated against the ETDRS 30° 7-field stereo. It was 

demonstrated that the determination of clinical level of diabetic retinopathy 

using the JVN stereoscopic nonmydriatic digital-video color retinal images 

from three distinct retinal regions obtained using a 45° nonmydriatic camera 

optimized for low-lightlevel imaging (JVN images) is in substantial 

agreement (k =0.65) with dilated ETDRS seven standard field 35-mm 

stereoscopic 30° retinal photography (ETDRS photos). 

 
 
 
 

 
 
 
Figure 3.3: Non Mydriatic Monochromatic Field propo sed in [57] 
(black 
circle), and standard ETDRS 7 fields (dotted blue) 
 
3.1.4 Single Field Monochromatic 
 
In [57], a single wide angle field, monochromatic was tested against 

ophtalmoscopy conducted by an experienced ophthalmologist and against 

the ETDRS 7-field stereo. The single field of the 45° photograph was 

centered on a point halfway between the temporal edge of the optic disk and 

the fovea, and included areas of the retina on either side of both structures 
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(Fig. 3.3). Taking the ETDRS retinopathy level 35 as threshold for referral, 

digital imaging had a sensitivity of 78% and specificity of 86% when 

compared with standard seven-field color photography. 

 
3.1.5 5-Fields Protocol 
 
In [58] a non-mydriatic digital fundus photography without pupillary 

dilation, using a non-mydriatic 45 Topcon TRCNW6 fundus camera 

(Topcon Europe, Rotterdam, The Netherlands), was tested for sensitivity 

and specificity against the seven ETDRS mydriatic stereo standard fields. in 

the Early Treatment Diabetic Retinopathy Study (ETDRS) for DR 

screening. 

Five 45° non-stereoscopic images of five overlapping fields were taken for 

each eye: one image was centered on the macula, including the optic disc, 

and one each on the nasal, temporal, superior and inferior fields. The 

sensitivity of detection for moderately severe to severe forms of DR ranged 

from 92% to 100% and the specificity from 85% to 88%. 

 

 
3.1.6 Single-Field Colour Protocol 
 
In [59] four screening methods (an exam by an ophthalmologist through 

dilated pupils using direct and indirect ophthalmoscopy, an exam by a 

physicians assistant through dilated pupils using direct ophthalmoscopy, a 

single 45 degrees retinal photograph without pharmacological dilation, and 

a set of three dilated 45 degrees retinal photographs) were compared with a 

reference standard of stereoscopic 30 degrees retinal photographs of seven 

standard fields read by a central reading center. Sensitivity, specificity, and 

positive and negative likelihood ratios were calculated after dichotomizing 

the retinopathy levels into none and mild nonproliferative versus moderate 

to severe nonproliferative and proliferative. The sensitivities, specificities, 

and positive and negative likelihood ratios are summarized in Tab. 3.3. 

In [60], diabetic patients referred for screening were studied in a prospective 

fashion. A single 45 degrees fundus image was obtained using the 

nonmydriatic digital camera, and the validation was performed using as 

ground truth the diabetic retinopathy grading by a consultant 
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ophthalmologist. The sensitivity for detection of any diabetic retinopathy 

was 38% and the specificity 95%. 

 

3.2 – Hypertensive Retinopathy 
 
3.2.1 ARIC Protocol 
 
The Atherosclerosis Risk in Communities (ARIC) Study is an 

epidemiological research study of the major factors contributing to the 

occurrence and trend of cardiovascular disease in middle-aged adults in the 

United States. It has two main objectives. Firstly, to investigate factors 

associated with both atherosclerosis and incidence of clinical cardiovascular 

disease, and then to measure coronary heart disease occurrence and trends 

and relate them to community levels of risk factors, medical care and 

atherosclerosis. Fundus photographs were used to evaluate changes in the 

retinal vasculature (presumed to be related to hypertension and/or arteriolar 

sclerosis) that may be prognostic for various cardiovascular outcomes, but 

other significant retinal conditions will be noted, such as diabetic 

retinopathy or vascular occlusions. 

Within the ARIC study, the protocol consists of one non-mydriatic 45° 

retinal photograph. The photographs are subsequently sent to the ARIC 

Retinal Reading Center for assessment of retinal status [61, 62]. To obtain 

consistent field specification even when non experienced technician take the 

photographs, the camera used in the ARIC study is provided with a mask on 

which to align the optic disc. These aligning masks are provided by the 

Retinal Reading Center and, when, properly attached to the monitor, they 

position the optic nerve centered from top to bottom and the nasal edge of 

the optic nerve falls between 1.5-2 optic disc diameters from the nasal edge 

of the photograph. 

 

3.2.2 Used Protocol for Hypertensive Retinopathy 
 
Several studies (see also [63]) showed that, as a tool to detect vision-

threatening retinopathy, single-field fundus photography interpreted by 

trained readers has sensitivity ranging from 61% to 90% and specificity 

ranging from 85% to 97% when compared with the gold standard reference 
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of stereo-photographs of 7 standard fields. When compared with dilated 

ophthalmoscopy by an ophthalmologist, single-field fundus photography 

has sensitivity ranging from 38% to 100% and specificity ranging from 75% 

to 100%. Therefore, although single-field fundus photography is not a 

substitute for a comprehensive ophthalmic examination, it can serve as a 

screening tool to identify patients for referral for ophthalmic evaluation and 

management. 

The advantages of single-field fundus photography interpreted by trained 

readers are ease of use (only one photograph is required), convenience, and 

ability to detect retinopathy. 

 
 

ETDRS Field  Field Definition  

F-1 Optic Disc: 30o field focused centrally on the optic disc 

F-2 Macula: 30o field focused on the center of the macula 

F-3 F-3 Temporal to Macula: 30o field focused so the nasal edge of the field 
crosses the center of the macula 

F-4 F-4 Superior temporal: 30o field focused so the lower edge of the field is 
tangent to a horizontal line passing through the upper edge of the optic disc 
and the nasal edge of the field is tangent to a vertical line passing through 
the center of the disc 

F-5  
F-5 Inferior temporal: 30o field focused so the upper edge of the field is 
tangent to a horizontal line passing through the lower edge of the optic and 
the nasal edge of the field is tangent to a vertical line passing through 
the center of the disc 

F-6 F-6 Superior nasal: 30o field focused so the ower edge of the field is tangent 
to a horizontal line passing through the upper edge of the optic disc, and the 
temporal edge of the field is tangent to a vertical line passing through the 
center of the disc 

F-7 F-7 Inferior nasal: 30o field focused so the upper edge of the field is tangent 
to a horizontal line passing through the lower edge of the optic disc, and the 
temporal edge of the field is tangent to a vertical line passing through the 
center of the disc 

F-8 30° field focused outside the seven standard fields 

Table 3.1: Early Treatment Diabetic Retinopathy Stu dy Seven Standard 
Field Definitions, from [56, 53, 48] 

 

 

 

JVN Field  Field Definition  

NM-1 45° field focused cent€rally between the temporal margin of 
optic disc and the center of the macula: Center the camera 
on the papillomacular bundle midway between the temporal 
margin of the optic disc and the center of the macula. The 
horizontal centerline of the image should pass directly 
through the center of the disc. A stereoscopic image is 
obtained by capturing one image through the left aspect of 
the pupil opening, shifting the camera laterally, and then 
capturing a second image through the right aspect of the 
pupil. A slight delay between the first and second image may 
be necessary to allow for adequate pupil mydriasis 
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NM-2 45° field focused superior temporal to the optic disc: Center 
the camera laterally approximately one-half disc diameter 
temporal to the center of the macula. The lower edge of 
the field is tangent to a horizontal line passing through the 
upper edge of the optic disc. This image is taken temporal to 
the macula but includes more retina nasal and superior 
to the macula than standard Field 2 

NM-3 45° field focused nasal to the optic disc: This field is nasal to 
the optic disc and may include part of the optic disc. The 
horizontal centerline of the image should pass Tangent 
to the lower edge of the optic disc. 

NM-4 45°field focused temporal to the macula (obtained 
through dilated pupils only) 

NM-5 45°any optional field focused beyond the definition s 
of NM fields 1-4 

Table 3.2: Joslin Vision Network Non-mydriatic Reti nal Fields 

 

 

 

 

 

 

Ophthalmologist Physician 

Assistant 

Single 
nonmydriatic 
photograph 

Three 
mydriatic 
photographs 

Sensitivity 0.33 0.14 0.61 0.81 

Specificity 0.99 0.99 0.85 0.97 

Positive 

Ratio 

72 12 4.1 54 

Negative 0.67 0.87 0.46 0.19 

Table 3.3: Results obtained in [59] for four screen ing protocols  
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Chapter 4 
 
Image Collection 
 
The algorithms developed in this thesis have been tested on images acquired 

with different protocols and instruments. 

4.1 – Single Field Photographs 
 
 
In the clinical routine, when checking the retina for retinopathies, it is 

common to find wide angle photographs, digital for the newest systems or 

film for the older, with a varying number of fields, depending on the whim 

of the taker, and if he/she judges that significant lesions are present in non-

standard fields. Nevertheless, the most usual field used as starting point is 

the one centered on the macula: this is the most important area to check for 

sight threatening lesions. Combining a macular field with wide angle 

photograph, it allows to evaluate most of the vascular arcades for 

abnormalities, and to have available for examination both the macula and 

the optic disc. Even if photographs are non-stereo, optic disc and macula 

appearances can suggest and sometimes clearly point out the presence of 

swellings and oedema.  

Images used in this thesis with a single field protocol  were acquired with a 

Topcon TRC 50 fundus camera (Topcon Medical Systems, Japan) with a 

50° field of  view, non stereo, centred on the macula. Images were saved in 

digital format with a resolution of 1360 dpi, resulting in 1500x1700 pixel 

images, with 24 bits per pixel. (Fig. 4.1). 
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Fig. 4.1: 50° single field photograph 

 

 

In this thesis some algorithms have been tested with 45° non-mydriatic 

digital images acquired with   Nidek MP1 (Fig. 6.2),resulting in 1392x1038 

with 24 bits per pixel. 

 

 

 
Fig. 4.2: 45° digital image recorded with Nidek MP1 
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4.2 – 5 Fields Photographs 
 

The algorithms for image mosaicing and fovea identification described in 

chapter 5 and 8  have been validated on a set of images acquired with the 

automatic non-mydriatic fundus camera  ORION Nidek. 

 This  instrument works without the assistance of an operator taking 5-

different fields of the retina with 45° field of view (fig 6.3). 

Resolution of each field is 1024x1024 pixels. 

 

 
Fig. 4.3: 5 fields recorded with Nidek Orion 
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Chapter 5 
 
Registration and Mosaicing of Retinal 
Images 

 
Registration is an essential task in medical imaging, but this is particularly 

true in retinal analysis, because building a mosaic image from a sequence of 

partial views is a powerful means of obtaining a complete, non redundant 

view of a scene. 

This is commonly carried out in diabetic retinopathy screening where five or 

seven fields of view are combined to form a single map of the retina. 

This registration generally involves relatively large translation, while there 

is little rotation  due to tilting of the head and through ocular torsion, and 

little scaling  caused by changes in the distance between the camera and the 

head, due to equipment changes or differing head positions. 

 

5.1 – Review of Available Methods 
 
 
A broad range of image registration methods have been proposed for 

different medical imaging applications, including retinal image registration. 

Various criteria have been proposed to categorize registration methods [1]–

[4]. 

Typically, retinal image registration techniques are classified as feature-

based and area-based methods. 

Area-based techniques are generally based on pixel intensities and certain 

optimized objective functions. 
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In [6], mutual information is used as a similarity measure and simulated 

annealing is employed as a searching technique. In [5], the measure of 

match (MOM) is proposed as an objective function and the genetic 

algorithm is chosen to be the optimization technique. Nevertheless, the 

searching space of transformation models (affine, bilinear, and projective) is 

huge. The greater the geometric distortion between the image pair, the more 

complicated the searching space. 

Feature-based methods are somewhat similar to manual registration. The 

approach assumes that point correspondences are available in both images, 

and the registration process is performed by maximizing a similarity 

measure computed from the correspondences. 

The performance of feature-based methods largely depends on sufficient 

and/or reliable correspondences, especially, when the overlapping part of an 

image pair is very limited or when there are mismatched  correspondences. 

A group of papers extract the bifurcations points of the vessels by means of 

mathematical morphology [8] or Forster detector [9] and then they match 

corresponding points. 

In this chapter will be described a new algorithm that combines the two 

approaches.  

The entire procedure involves two major steps. Translation and rotation 

between two images are first estimated using Fourier Transforms as in [7] 

.Then  the affine transformation is  estimated  with a feature-based method 

that uses the information on rotation and translation obtained with the 

previous step. 

 

5.2 – Rotation and Translation Estimation using 
Fourier Transforms 
 

A well-known method for image registration is based on   correlation 

between phase-only versions of the two images to be realigned. This 

method, covering rigid translational movements, is characterized by an 

outstanding robustness against noise and disturbances, such as those 

encountered with non-uniform illumination. 
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An extension of this method has been proposed in [7]  to cover both 

translational and rotational movements. 

5.2.1  Translation Estimation 

 Let ),(0 yxs   and   ),( yxst    represent the two images to be registered and   

),(0 ηξS  and   ),( ηξtS    be their Fourier transforms. 

Since in the case of pure translation by ),( 00 yx   

),( yxst = ),( 000 yyxxs −− ,it follows that  

),( ηξtS = ( ) ),(0
2 00 ηξηξ Se yxj +∏− .                (5.1) 

     

Therefore, by inverse transforming the ratio of the cross-power spectrum of 

ts  and 0s  to its magnitudo, ))(2exp(/ 00
*
0

*
0 yxjSSSS tt ηξπ +−= , a Dirac 

delta distribution centred on ),( 00 yx is obtained, so that the translation is 

immediately determined. 

5.2.2 Rotation Estimation 

If  ),( yxst  is a replica of ),(0 yxs , translated by ),( 00 yx  and rotated by 0θ , 

according to the Fourier Shift Theorem and the Fourier Rotation Theorem 

their transforms are related by 

)cossin,sincos(),( 00000
)(2 00 θηθξθηθξηξ ηξπ +−+= +− SeS yxj

t . 

Let us then consider the ratio 

)cossin,sincos(

),(
);,(

0 θηθξθηθξ
ηξθηξ

+−+
=

S

S
G t ,              (5.2) 

with θ taken as a variable. Obviously , for 0θθ =  

)(2 00);,( yxjeG ηξπθηξ +−=                 (5.3) 

While, as the difference between θ and 0θ  increases,  );,( θηξG  will 

increasingly differ from this exponential form. 

The procedure consists therefore of determining first the angle θ = 0θ for 

which );,( θηξG  reduces to the form (5.3), then in evaluating 0x and 0y as in 

the case of pure translation. 



 33 

0θ  can be determined by varying θ until the shape of );,( θyxg , the inverse 

transform of );,( θηξG , gives the closet approximation of a unity pulse (in 

practice the maximum peak). This can be done rotating the image 

),(0 yxs for each tentative values of θ , before transforming. 

In practice, for a number of reasons outlined in [10], it is always convenient 

to use the ration of the cross-power spectrum divided by its magnitude 

instead of the ratio 0/ SSt . 

 

 

5.3 –  Affine Model Estimation 
 
The registration is refined estimating the affine transformation model with a 

feature-based scheme.  

This transformation maps straight lines into straight lines, whereas it 

preserves parallelism between lines. In the 2-D case, it can be 

mathematically expressed as 
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The affine transformation is completely defined by six independent 
parameters. 

5.3.1 Control Points Selection  

After rotation and translation estimation, the inverse geometrical 

transformation is performed on ),( yxst obtaining ),('0 yxs . 

Then the points in the overlapping area between the two images ),(0 yxs and 

),('0 yxs  are  sampled in a rectangular grid with step w, and sorted 

according their contrast in a neighbourhood of size wxw defined as 
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Then the first 20 points  with the highest contrast are chosen as control 

points. 
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5.3.2 Control Points Matching 

For each control point ( )ii yx ,  a region of interest ( )yxT
ii yx , centred in 

( )ii yx ,  is extracted from the image ( )yxs ,0  and used as a template to 

search the correspondent control point ( )',' ii yx  in the image ( )yxs ,'0 , 

searching the point with the highest correlation between the template and 
the image ( )yxs ,'0  

( )',' ii yx  = ( ) ),(', 0

),(

maxarg ycyxcxsyxT
x y

yx

ycxc
ii

−−⋅∑∑           (5.8) 

To speed up the algorithm the search is performed only in a little 
neighbourhood of the point ( )ii yx , . This is possible because we have yet 

estimated the translation and rotation transformation between the two 
images. 

5.3.3 Model Estimation 

The affine transformation  
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points can be written as follows 
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Let βε −Α= p ,  the general least square problem  is to find a vector p that 
minimizes the quantity  
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so the least square solution is given by βTT AAAp 1)( −=  

 

5.4 –  Image Warping and Blending 
 
When the geometrical relationship between the two images to be registered 

),(0 yxs   and   ),( yxst   is known, the image  ),( yxst  is warped into the 

spatial domain of the anchor image ),(0 yxs  (bilinear interpolation is used to 

calculate all pixels). 

The intensity at each pixel location is the weighted average of all the 

intensities in the anchor image and in the warped image, falling within a 

pixel radius. 

With the two images  mapped into the same coordinate system, the images 

are combined to form a single visually appealing mosaic with invisible 

image boundaries. 

Ideally, corresponding image pixels should have the same intensity and 

colour on every image. In practice, however, this is not the case. Possible 

causes are inhomogeneous illumination, changes in aperture and exposure 

time. 

Therefore we used a blending mask determined by assigning a weight to 

each pixel in an image that varies from 1 in the center of the image to 0 at 

the edge. 

The choice of this weighting function was inspired by the observation that 

retina images tend to be more focused in the middle and the illumination 

gets inferior with increasing distance from the image center. 
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5.5 –  Performance Evaluation 
 
The algorithm described in this chapter has been tested on  images acquired 

with an automatic non-mydriatic fundus camera Orion Nidek. 

This camera takes five images representing different fields of the retina, 

with field of view 45°, and then the acquired images are transferred to a 

laptop computer for image  analysis in order to provide automated detection 

of diabetic retinopathy. 

The first processing step is building a mosaic image from this  sequence of 

partial views to obtain a complete, non redundant view. 

 

 

 

Figura 5.1: five different fields of the retina and the image mosaic 

 

These images can suffer from different problems: 

- Out of Focus: cause of the curved retina surface only the central part 

of the photo is in focus, the rest, especially the boarder regions are 

out of focus. 

- Saturation of some regions, as we can see in figure 5.1. This happen 

when the the light is reflected by the cornea resulting in those 

artefacts. 
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This algorithm has been tested on 110 exams, working on 4 pairs of images 

to be registered  for each exam: central field-superior field, central field-

inferior field, central-nasal, central-temporal, with the central field always 

as anchor image. 

 The registration failed in 2% of the exams, and in 32% there are slight 

overlapping errors  producing some artefacts  on the resulting image, as in 

figure 5.2. 

 

 

Figure 5.2: slight overlapping errors 

We have also compared this method with several other  image registration 

techniques proposed  in literature, among which the best results have been 

obtained with the method described in [11], with 4% of failure rate. 
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Chapter 6 
 
Automatic Vessel Tracing: detecting 
false Vessels Recognitions 

 
Automatic tracking of blood vessels in images of retinal fundus is an 

important and non-invasive procedure for the diagnosis of many diseases. 

Tracking techniques [41],[42],[21] often present a high rate of false 

positives. 

False trackings can be generated by choroidal vessels running below the 

retina producing ghost paths through the partially opaque retinal tissue, or 

by vessel-like structures caused by hemorrhages or exhudates, or by random 

paths on the fundus pigmentation. Figure 6.1 shows a tracking example and 

a detail showing an high number of false positives. This problem is more 

severe when image contrast is poor. In this case it is necessary to reduce the 

tracking threshold (i.e. the minimum contrast to allow detection) and this 

may result in an unacceptable amount of false detections. Worse yet, these 

artifacts are often comparable in caliber and length to true vessels. This 

chapter presents six methods to discriminate false detections from true 

positives[45]. 

 

 

 

 

 

 

 

 

 

Fig. 6.1: Vessel tracing in a retinal fundus image (left). Cluster of false positive(right) 
 



 40 

False positives are very similar to true vessels when observed locally. 

However, their non-vessel nature appears evident when the whole vessel is 

considered. Tracking algorithms follow vessel trajectories typically using 

small observation windows (figure 6.2) in order to neglect curvature. 

This results in a large number of false positives. Grayscale and geometric 

features can be used to define a classification problem that can be solved 

using a discriminant analysis. 

 

 
Fig. 6.2: Tracking algorithm observation window. Limited 
 depth is necessary to model vessel borders as straight lines 
 

 

6.1 – Features Selection 
 
 
 

 
Fig. 6.3: The simplest model divides the vessel  in an  
internal and  external area. 
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The most obvious features are those related to the luminosity (mean) and 

contrast (variance) of the vessel and of its local background. We define 
intA  

the area of image delimited by two vessel borders, and 
extA  as the 

background area close to the vessel (figure 6. 3). Internal and external 

average luminosity and contrast are defined as 
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where p(x,y) is the grayscale value of the pixel at x, y. For an ideal vessel 

intLLext > . 

The cross-section of a vessel however follows a Gaussian-like profile. The 

2-level model poorly accounts for vessel borders.  

Silverwire effect (i.e. light reflexion along vessel trajectory due to high 

reflectance of the vessel walls) also requires more complex models in order 

to be accounted for. The model is therefore extended by adding a third area, 

the transition (crossing) area 
crossA , and the corresponding luminosity and 

contrast features 

∑
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Intuitively, 
extcross LLL <<int

, as 
crossA  has pixels from both vessel and non-

vessel. For the same reason one expects higher contrast crossC  compared to 

intC , extC . 
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This model can be further extended to 4 levels by dividing the cross-section 

in its internal and external parts with respect to the vessel border, 

respectively cross
iA  and cross

eA . Furthermore, symmetry can be removed by 

splitting the upper and lower areas with respects to the vessel axis and 

having corresponding independent features. Upper and lower features are 

indicated by subscripts u  and l . Figure 6.4 shows a schematic diagram of 

the 2-,3- and 4-level asymmetric models. 

Care must be taken in preserving useful information when extending the 

model. Symmetric external/cross features may provide useful information 

about texture and structure when combined with their asymmetric 

counterparts. Symmetric contrast features cannot be computed from the 

asymmetric ones, therefore they must be included in the feature vectorwhen 

the model is changed. Accordingly, 3-level cross contrast must be included 

in the 4-level model feature vector, and four cross-contrast features must be 

added in the 4-level asymmetric model. 

Some relationship can be inferred between vessel contrast and caliber 

[43,44] and therefore it is reasonable to consider the average vessel calibre 

∆µ  as a parameter. Caliber variance ∆Σ detects any excess variability in 

caliber that may point out an artifact. Finally, vessel length may improve 

artifact rejection since many false vessels are shortlengthened. 

Table 6.1 shows the gray scale features vector φ  for the 6 models 

considered. 

Caliber mean and variance and vessel length are included in all models and 

not shown in table 6.1 for simplicity. 
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Fig. 6.4: Left to right: 2-, 3-,4-area asymmetric vessel models. Full lines  
correspond to vessel borders. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 44 

 

 

Table 6.1: Vessel models and gray scale features vector φ  
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6.2 – Vessel Classification 
 

Once the vector φ  of features is determined, manually classified data are 

used to train the linear discriminant w 
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where thw  is the threshold parameter. Linear discriminant is trained 

according to the Fisher discriminant method, which ensures optimal linear 

separation between the two sets of features by seeking the direction that 

minimizes interclass cross-variance (i.e. the amount of overlap between two 

classes). 

6.3 – Results 
 

28 retinal images are considered for the experiments. Field of view is 50° 

and resolution is 1370x1145 pixel. Images include healthy cases as well as 

pathological ones with exhudates, cotton spots and emorrhages. Luminance 

and contrast drifts are removed using a normalization method developed in 

[26]. This pre-processing step also ensures uniform inter-images contrast 

and luminosity. We have then applied a classification-based sparse tracking 

algorithm [21] in order to obtain the desired detection of the retinal network. 

Table 6.2 shows the false vessel ratio expressed as 

)()(

)(

vesselstruelengthvesselsfalselength
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+
=ρ

   (6.6) 

 

One can see that on average 50% of each tracking is made of false vessels. 

The proposed methods aim to reduce this figure. 

Two parameters are proposed to measure the performance of the false vessel 

detection algorithm. Sensibility σ  measures the ratio between the total 

length of the true positives TP (false vessels correctly detected) and the total 

length of the corresponding ground truth GT (total number of false vessels, 

both detected and undetected). Accuracy α measures the ratio between the 

total length of true positives and the total length of positives, including false 

positives FP (i.e. true vessels detected as false). 
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The six Fisher discriminants are trained using 14 images (training set), 

whereas the other ones are used as the validation set. Table 6.3 shows 

average σ and α after the 

application of the six methods proposed. 

 

 

 

 

 

 

 

 

Tab. 6.2:  Tracking false vessel ratio 

 

 

 

Table 6.3: Sensitivity and accuracy 



 47 

 

                                                                                                                                                            

Chapter 7 
 
Optic Disc Identification 
 

The Optic Disc (OD) is the entrance of the vessels and the optic nerve into 

the retina (Fig. 7.1) . It appears in color fundus images as a bright yellowish 

or white region. Its shape is more or less circular, interrupted by the 

outgoing vessels. Sometimes the optic disc has the form of an ellipse 

because of a non-negligible angle between image plane and object plane, 

and its size varies from patient to patient. 

From it, the central retinal artery and vein emerge, to cover, with further 

branching, most of the retinal region. Locating the OD position in fundus 

images is quite important for many reasons. Many important retinal 

pathologies may affect the optic nerve. Since the OD may be easily 

confounded with large exudative lesions by image analysis techniques, its 

detection is also important to exclude it from the set of possible lesions. 

Moreover, OD detection is fundamental for establishing a frame of 

reference within the retinal image and is, thus, important for any image 

analysis application. 

The detection of OD position is also a prerequisite for the computation of 

some important diagnostic indexes for hypertensive/sclerotic retinopathy 

based on vasculature, such as central retinal artery equivalent (CRAE) and 

central retinal vein equivalent (CRVE) [12]. 

Disc boundary detection is also important  to assess the progression of 

glaucoma, which is due to an increase in intra-ocular pressure and produces 

additional pathological cupping of the optic disc. The cup-to-disc ratio 

compares the diameter of the "cup" portion of the optic disc with the total 

diameter of the optic disc. A cup-to-disc ratio greater than 0.5 is a sign of 

glaucoma (Fig. 7.2) 
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In [13] a method based on a model of the geometrical directional pattern of 

the retinal vascular system is described , which implicitly embeds the 

information on the OD position as the point of convergence of all vessels. 

In this chapter a method to refine the optic disc position estimated with the 

method in [13] and to estimate the disc diameter will be described .  

The estimated position and diameter will be used to initialize  an algorithm 

for the disc boundary detection based on  a deformable model based 

approach.  

 

 

 

Fig. 7.1: Retinal fundus image with OD ( bright round-shape on the 

left) 

 

 

Fig. 7.2: Optic nerve in glaucoma 
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7.1 – Review of Available Methods 
 

The methods of optic disk boundary detection can be separated into two 

steps: optic disk localization and disk boundary detection. Correct 

localization of the optic disk may improve the accuracy of disk boundary 

extraction. 

 

In [14] the optic disc is localized exploiting its grey level variation. This 

approach ha been shown to work well, if there are no or only few 

pathologies like exudates that also appear very bright and are also well 

contrasted. No method is proposed for the detection of the contours. 

A principal component analysis (PCA) model based approach was used in 

[17], and template matching was used in  [18–20]. 

Foracchia et al. [13] utilized the geometric relationship between the optic 

disc and main blood vessels to identify the disk location. This method is 

based on an a geometrical parametric model to describe the general 

direction of retinal vessels at any given position, where two of the model 

parameters are the coordinates of the OD center. 

In [15] an area threshold is used to localize the optic disc. The contours are 

detected by means of the Hough transform, i.e. the gradient of the image is 

calculated, and the best fitting circle is determined. This approach is quite 

time consuming and it relies on conditions about the shape of the optic disc 

that are not always met.  

In [16] an area threshold is used to localize the optic disc and the watershed 

transformation to find its contours. 

 

7.2 – Optic Disc Localization 
 
The method of optic disc localization is divided into two steps.  

The first step is the algorithm described in [13], which is robust in presence 

of bright pathologies like exudates. This method requires the preliminary 

detection of the main retinal vessels using the algorithm proposed in [21], 

based on a sparse tracking technique. 
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The second step refines the localization and estimates the optic disc 
diameter.  

7.2.1 Geometrical Model of Vessel Structure 

The main vessels originate from the OD and follow a specific course that 

can be geometrically modelled as two parabolas, with a common vertex 

inside the OD. 

These parabolas can be described as the geometrical locus 

{ }xayyx ==Γ 2:),(              (7.1) 

 
On the parabolas the preferential vessel direction is tangent to the parabolas 

themselves. 

In order to completely define the model, it is necessary to express the vessel 

direction also outside of the parabolic geometrical locus. 

Anatomical knowledge indicates that vessels bifurcate when moving away 

from the OD, and branch vessels tend to diverge from the main vessel. In 

particular, vessels inside the parabolas quickly bend toward the macula in 

the temporal region whereas in the nasal region this inward deflection 

happens at a much slower rate. 

Therefore the complete model for vessel direction at any point (x,y) in the 

image is given by the following equation: 
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Fig. 7.3:Model of vessel directions 

 

By using suitable model parameter identification techniques, the optimal 

value for parameters  can be identified for any image, given a set of data. 

The data are the vessel directions measured at points belonging to the 

vascular structure. 

The choice for the identification of model parameters has been the 

minimization of the weighted residual sum of squares(RSS). 

Minimization of RSS with classical gradient-based techniques is rather 

critical, since this function exhibits many local minima. To overcome this 

problem, a simulated annealing (SA) optimization algorithm has been 

adopted. 

7.2.2 Position Refinement and Diameter Estimation 

The method described above has proved to be very effective, but has the 

problem to provide as a result a position with a  slight offset with respect to 

the real center of the optic disk. 

Furthermore, it is important to have an approximate estimation  of the disk 

diameter to initialize  the active contour model . 

The gray level profile  along the disc radius  has a trapezoid shape (fig 7.4), 

except  for the “valleys”  created by blood vessels. 
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Fig 7.4: Profile along the radius 

 

If the profile )(xp along the radius were a perfect trapezium, the  longest of 

the two parallel side length could be estimated minimizing the  function 

(7.3), as can be observed in fig 7.5. 
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Fig. 7.5: Trapezium side length estimation minimizing the function J(r) 

 

This estimation is robust to noise in the profile because of the integration. 
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 Similarly, a profile )(xp  along the OD diameter  can be modelled as an 

isosceles trapezium, and the longest horizontal side length is estimated 

minimizing the function 
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with xc the trapezium center coordinate , assumed to be known.  

If the trapezium center is unknown, both center and side length can be 

estimated at the same time minimizing 
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In fig. 7.6 an example of the estimation of the two parameters xc and r is 
shown. 

 
 

 
Fig. 7.6a: Center and border estimation  
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Fig.7.7b: Min J(xc,r) as function of center position xc. xc  estimated is 
90  
 

 

Fig 7.7c: r),xcJ(
__

  with  xc= 90 ,  r  estimated is 40 
 
 
 
 
Therefore center and diameter  of the optic disc can be estimated 
minimizing 
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In fig. 7.8 an example of diameter estimation, minimizing J(r), with center’s 

coordinates assumed to be known.  

In practice J(r,xc,yc) is calculated only for (xc,yc) near the position 

estimated with the parabolic vessel model and for  maxmin rrr << . 

 

 

7.3 –  Disc Boundary Detection with Active Contour 
Models 

7.3.1- Active Contour Models ( “Snakes” ) 

The active contour model (ACM) algorithm, first introduced by Kass  in 

[22], deforms a contour to lock onto features of interest within in an image. 

Usually the features are lines, edges, and object boundaries. Kass et al. 
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named their algorithm “snakes” because the deformable contours resemble 

snakes as they move. 

Given an approximation of the boundary of an object in an image, an active 

contour model can be used to find the “actual” boundary. 

The snake is a contour represented parametrically as ))(),(()( sysxsc =  

where )(sx and )(sy  are the Cartesian coordinates along the contour and s 

∈ [0,1] is the normalized curvilinear coordinate. 

The energy functional to minimize is the sum of two terms: 

( )∫ += dssEsEE ext )()(int βα  

where   intE  is an energy function dependent on the shape of the contour and 

extE  is an energy function dependent on the image properties. α and β  are 

constants providing the relative weighting of the energy terms. 

In the discrete case, an ACM is an ordered collection of n points in the 

image plane: 

{ }
{ }niyxv

vvV

iii

n

,,1),,(

,,1

K

K

==
=

 

In [22] the energy functional is minimized using techniques of variational 

calculus. Amini et al. in [23] have pointed out some of the problems with 

this approach, including numerical instability and a tendency for points to 

bunch up on strong portions of an edge contour. They proposed an 

algorithm for the active contour model using dynamic programming. This 

approach is more stable and allows the inclusion of hard constraints: 

however, it is slow, having complexity )( 3nmO , where n is the number of 

points in the contour and m is the size of the neighbourhood in which a 

point can move during a single iteration.  

In [24] a greedy algorithm is proposed , which has performance comparable 

to the dynamic programming and variational calculus approaches. It retains 

the improvements of stability, flexibility, and inclusion of hard constraints 

introduced by dynamic programming but is more than an order of 

magnitude faster than that approach, being )(nmO . 

In this chapter this greedy approach will be used. 

As proposed in [25], a dynamic θρ −  polar coordinate system of the optic 

disk is set up for contour deformation. The starting disc center is  estimated  
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as explained in the previous chapter. The initial contour points are selected 

at ri =ρ +20 , with r  the radius estimated at the previous step, for every 

o10  of θ  resulting in N=36 points. 

The contour deformation is made possible only along ρ± directions. 

For each point ikv  in the neighbourhood of iv  along ρ± directions, an 

energy term is computed: 

 

 

Then the points iteratively approach the boundary of the OD making locally 

optimal choices at each iteration, moving towards the final solution which 

will be hopefully globally optimum. 

 

7.3.2- Internal Energy 

The internal energy function is intended to enforce a shape on the 

deformable contour. 

The internal energy function used in this work is defined as follows: 

)()()(int ikbalikconik vbEvcEvE +=α  

Where )( ikcon vE  is the continuity energy that enforces the shape of the 

contour ; )( ikbal vE is a balloon force that causes the contour to grow or 

shrink; c and b  provide the relative weighting of the energy terms. 
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Where 1c  and 2c  are constants specifying the elasticity and stiffness of the 

snake. 

)( ikbal vE = vikvi ρρ −  

7.3.3- External Energy 

The magnitude of gradient can efficiently provide the boundary location. 

Gradient orientation is also considered in the energy function. 

 

)()(int ikextikik vEvEE βα +=

)()()( 21 ikoriikgradientikext vEvEvE ββ +=
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Let Ori( ikv ) denote the gradient orientation at point ikv . Considering that the 

optic disk is close to a circular shape , the gradient orientation at point ikv  

should be close to the angle of this point viθ . 

viikiknorientatio vOrivE θ−= )()(  

 7.3.4- Recognition of contour points near blood ve ssels 

It is important to recognize a contour point near blood vessels to avoid  the 

disturbance of the vessel edge. 

For each contour point iv  two lines are extracted from the image, one along 

the direction viθ   and one perpendicular to it.  

Then vessel points in these profiles are found by means of a Fuzzy C-Means 

Classifier (FCM). 

 

 

Fig 7.9: Recognition of a blood vessel near a contour point 

A contour point near a blood vessel is moved using only the internal energy, 

to make the algorithm robust against disturbance of the vessel edge. 

 

( )ikikgradient vIvE ∇−=)(
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7.3.5 - Classification of contour points into uncer tain-point and 
edge-point 

In each iteration the contour points are classified into uncertain-point and 

edge-point. 

A line along the direction viθ  is extracted and classified with FCM (fig. 

7.10). 

 

  Fig. 7.10: A profile across the optic disc border classified with FCM 

 

The OD center is updated at the end of each iteration according to this 

classification: 
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7.3.6- Stop Criterion 

The average deforming distance in each iteration is used to set the stopping 

criterion. At iteration k, the average absolute distance between the old 

contour and deformed contour is defined as 
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The operation is repeated until the AAD is less than 1 pixel, or until k is less 

than the maximum number of iterations allowed. 

  

7.3.7- Final classification of reliable contour poi nts. 

When the stop criterion is met, the contour points are classified with the 

method described in 7.3.4 ( fig. 7.11). 

Then the reliable contour points are interpolated with a spline curve. 

 

 

Fig. 7.11: Reliable contour points (in blue)   

 

 

7.4 –  Results 
 
 

Fourteen 45° color fundus images acquired with Nidek MP1 were tested by 

the proposed method. 

The disk boundary manually marked by a retinal specialist  was assumed as 

the ground truth, and the average distance from the detected boundary point 

to the ground truth is measured for evaluation. 

Tab. 7.4.a shows the results obtained using the green channel( processed to 

normalize luminosity and contrast [26] ) for the vessel recognition step, and 

using the  red channel for the internal energy calculation and contour points 

classification. This choice was suggested by the fact that  the blood vessels 

are more contrasted in the green channel, while the OD is more contrasted 

in the red channel. 
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Table 7.4.a:  Results 

 

  

 

 

 

 

 

 

 

 

IMG  Iterations  Final reliable 
points 

Average 
distance(AD) 

 (Pixels) 
AD/(mean OD diameter) %  

1 20 23 1,49 1,07% 
2 11 22 2,68 1,91% 
3 11 25 3,60 1,96% 
4 14 26 2,88 1,94% 
5 13 28 3,29 2,35% 
6 20 22 2,69 2,04% 
7 20 24 1,70 1,19% 
8 20 15 2,84 2,17% 
9 20 15 6,70 4,45% 
10 12 12 5,45 3,67% 
11 20 24 4,07 2,59% 
12 17 13 3,47 2,32% 
16 15 22 5,57 3,47% 
17 14 28 1,79 1,12% 

MEDIA  16,2 21,4 3,44 2,30% 
MAX 20 28 6,70 4,45% 

MIN 11 12 1,49 1,07% 
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Fig. 7.12: Examples of final snake(red) compared with ground truth (white) 
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Chapter 8 
 
Fovea Identification 
 

Fovea identification is a fundamental  task in any study of ocular diseases, 

because it is the most accuracy vision zone of the retina, so the nearer the 

fovea are the more serious the ocular lesions are. 

Foveal zone is a small depression at the center of the macula, not fed by 

retinal vessels, and is indicated by a deep-red or red-brown color. It is 

temporal to the optic disk (fig. 8.1), and in some images its localization is 

not obvious due to high illumination or presence of confounding or 

overlapping   lesions. 

 

 

Fig. 8.1: Foveal zone 
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8.1 – Review of Available Methods 
 
In [27] Ibanez and Simo have proposed a method to detect the fovea  

exploiting the avascularity and different grey levels at its border. 

In [28] the location of the fovea was chosen at the position of maximum 

correlation between a model template and the intensity image, obtained 

from the intensity-hue-saturation transformation. 

Goldbaum [29] fixed the position of the fovea relative to the optic disc. Li 

and Chutatape [30] have proposed a method to detect the position of the 

fovea by extracting the points on the main blood vessels by a modified 

active model, and fitting a parabola curve with the optic disc as the centre. 

The fovea is then  located at 2 disc diameters from the optic disc on the 

main axis of the parabola. 

8.2 – Geometric Relation between Fovea, Optic 
Disk and Blood Vessels 
 

The geometrical relation between fovea, optic disk and blood vessels can be 

exploited  to locate the fovea robustly. 

Observing the main courses of the blood vessels, their shape is roughly a 

parabolic curve, with  vertex inside the OD and the fovea is situated about at 

2 disc diameters from the optic disc along the main axis (fig. 8.2). 

 

 

 

 

 

 

 

 

 

 
  

Fig 8.2: Parabolic model of main vessels course 
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In [30] the main courses of blood vessels are represented by 30 landmark 

points extracted using an Active Shape Model. Then the four parameters of 

the parabola  (xc,yc,p,θ ) , where (xc,yc) is the vertex ,p is the focal length 

and θ  is the rotation of the main axis, are estimated using Hough transform 

and least square fitting. 

This method relies on the correct identification of the landmark points on 

the main courses of  blood vessels, condition  not always easily met. 

Therefore we have used the more robust method described in 7.2.1 [13] to 

estimate (xc,yc,p) , fitting  a complete model for vessel direction at any 

point of the image, assuming θ =0. 

The data on which the model is fitted  are extracted with an algorithm based  

on a sparse tracking technique [21], which provides  vessel’s center points 

and directions. 

 

 

 

Fig 8.3: Complete model of vessels direction. Model’s direction(gray 

segments) are shown on a grid of points. 

8.2.1 Rotation of the Main Axis 

We have used a method based on image moments to estimate  the rotation 

of the main axis. 
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For a greyscale  image with pixel intensities I(x,y), moments  ijM  are 

defined by 
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considering  the normalized image f(x,y) as a probability function. 

Image orientation can be derived by using the second order central moments 

to derive the covariance matrix: 
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with  pqµ  central moments defined as 
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where (xc,yc) is the  OD center. 

The eigenvectors of this matrix correspond to the major and minor axes of 

the image, so the orientation can be extracted from the angle of the 

eigenvector associated with the largest eigenvalue. 

 

8.3 – Macula Segmentation using Watershed 
Transform  
 
The fovea is located at the center of the macula, which is an area  not fed by 

retinal vessels and  with a deep-red or red-brown colour , therefore macula 

segmentation is important to localize the fovea. 

There exist two basic ways of approaching image segmentation. The first 

one is boundary-based and detects local changes. The second is region-

based and searches for pixel and region similarities. The watershed 

transformation belongs to the latter class and is well suited for the 

segmentation of macula. 
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8.3.1 Watershed Transform 

Considering an image f(x,y) as a topographic surface, catchment basins and 

the watershed lines can be defined by means of a flooding process. 

Imagine that we pierce each minimum of the topographic surface S, and that 

we plunge this surface into a lake with a constant vertical speed. The water 

entering through the holes floods the surface S. During the flooding, two or 

more floods coming from different minima may merge. We want to avoid 

this event and we build a dam on the points of the surface S where the flood 

would merge. At the end of the process, only the dams emerge. These dams 

define the watershed of the function f.  

They separate the various catchment basins, each one containing one and 

only one local minimum of the function (fig. 8.4). 

 

 

 

 

Fig 8.4: Watershed 

 

The watershed algorithms can be divided in two groups. The first group 

contains algorithms which simulate the flooding process. The second group 

is made of procedures aiming at the direct detection of the watershed points. 

These algorithms are detailed in [31]-[33]. 
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8.3.2 Application to Macula Segmentation 

In a first step a low-pass filter is applied on the image to remove white 

noise, that would cause over-segmentation. Then the watershed transform is 

performed only in a region of interest with sizeODr⋅4   centred in ),( ii yfxf ,  

)cos(4 θ⋅+= ODi rxcxf                 (8.5) 

)sin(4 θ⋅+= ODi rycyf  

where (xc,yc) is the OD center, ODr  is the OD radius and θ  the orientation 

of the main axis. 

 

 

Fig. 8.5: Watershed transform with basins’s colour depending on their 

minimum gray level 

 

 

The catchment basin with the greatest area is selected as the macula region 

and its minimum ),( ww yfxf  is the estimated fovea position (fig.8.6).  

 

 

 

 

 

 

 

 

 

Fig. 8.6: Macula segmentation and fovea detection 
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8.4 – Fovea Identification with Vascular Analysis 

  

In some images  where the foveal zone is covered by lesions or  too bright 

because of high illumination, the method based on watershed transform is 

proved not to be reliable. 

In these cases,  a method based only on vascular information and geometric 

relation with optic disc is more robust. 

The method described in [21], based on a sparse tracking technique, is used 

to extract blood vessels and create the binary image B(x, y) ,where vessel 

center lines are set to  

1 (fig. 8.7). 

 
 
 

 

 

     

 

 

  

 

 

 

Fig 8.7: Blood vessels segmentation 

Then the binary image B(x, y) is convolved with the filter C(x, y) with size 

Sh x Sk to produce the vascular density VD(x, y) 

∑ ∑
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where odr  is the optic disc radius. 

Therefore VD(x,y) is the number of blood vessel points inside a circle with 

radius odr⋅2  centred in (x,y). 

In Fig. 8.8 VD(x,y) is visualized as an image with a colormap ranging from 

blue (low vascular density ) to red (high vascular density). 

Fovea (plotted as a circle in fig. 8.8) is then located at  the point 

),( vv yfxf with the lowest vascular density, inside the search area defined in 

(8.5). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.8: Vascular density and fovea localization 

 

8.5 – Automatic Selection of the Algorithm to be us ed 
 
The method based on the Watershed transform is robust only if the macula 

zone is actually a depression in the fundus image (considering the image as 

a topographic surface). This condition is not always met, for example 

because may be covered by lesions. 

 In these cases, it would be better to use the method based on vascular 

analysis, which however has some drawbacks itself, as it relies on the vessel 

segmentation and on the vascular tree morphology. 

Therefore we have developed a linear classifier to assess whether of the 

algorithms are  reliable by analyzing the outputs in each image . 
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If both of the methods are classified as reliable, the watershed based output 

is preferred. 

If both of the methods are classified as unreliable, fovea position (xf, yf) is 

geometrically estimated with an anatomy based algorithm , as follows: 

 
)cos(4 θ⋅+= ODg rxcxf                          (8.7)  

)sin(4 θ⋅+= ODg rycyf  

where (xc,yc) is the OD center, ODr  is the OD radium and θ  the orientation 

of the main axis. 

8.5.1 Reliability of Watershed based Algorithm 

A region of interest(ROI) , centred in ),( ww yfxf , the fovea position 

provided by the method based on watershed transform, is extracted from the 

fundus image. Then specific features are calculated and used by a linear 

classifier to discriminate between two classes: watershed’s output reliable or 

unreliable. 

The first step to build a classifier is the feature selection. Given the large 

number of features that can be computed, there is the need to select the most 

significant ones, in order to maintain the number of features used by the 

classifier small, and at the same time keep the discriminating power 

elevated. 

It is important to keep as low as possible the number of features because  an 

increase in computational complexity is not always matched by an increase 

in discriminatory power or in  generalization power. 

In order to perform this feature selection, it is necessary to have a measure 

of the discrimination ability of a set of features. The measure we have used 

involves the evaluation of intra-class scatter matrix wS  and the inter-class 

scatter matrix bS . 

Given K classes and a set of features vectors x  with dimension N , each one 

belonging to one and only one class, the intra-class scatter matrix is: 

∑
=

Σ=
K

i
iiw wPS

1

)(                                                                                       (8.8) 
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)( iwP is the a priori probability of the class iw , and iΣ  is its covariance 

matrix: 

]))([( T
iii xxE µµ −−=Σ                                                                          (8.9) 

The inter-class scatter matrix is: 

∑
=

−−=
K

i

T
iiib wPS

1
00 ))()(( µµµµ                                                          (8.10) 

with 0µ  being the global mean:  

∑
=

=
K

i
iiwP

1
0 )( µµ                                                                                      (8.11) 

The function considered as an indicator of the class separation is : 

)( 1
bw SStraceJ −=                                                                                     (8.12) 

with wS  and bS  defined by (8.8), (8.10). 

The NxN matrix bw SS 1−  has rank K-1. The linear transformation mapping 

the original N-dimensional features space into a new K-1 dimensional space  

with the same value for J is in fact the matrix having on its columns the K-1 

eigenvectors of   bw SS 1− . 

Using this measure J, we have selected 12 features. 

  

 

One of the feature is the  value of vascular density VD ),( ww yfxf , as defined 

in (8.6). 

The other features are the first 11  moments pqM  of the ROI, as defined in 

(8.2), { }23,3213,31,2212,21,11,0110,00 ,,, MMMMMMMMMMM  

The classifier has been trained with 30 images, 15 belonging to the reliable 

class and 15 to the unreliable class. 

wS  and bS  are estimated  using the training set, and  the eigenvector w of 

bw SS 1−  is calculated. 

The output of the linear discriminant analysis  is the  linear combination of 

the features with the coefficients of the weighting vector w. 
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8.5.2 Reliability of Vascular Analysis Algorithm 

We have also developed a classifier  to discriminate between two classes for 

the vascular analysis ’s output , as reliable or unreliable. 

The features selected are the first 11 moments of a ROI extracted from the 

vascular density image VD(x, y) defined in (8.6). The ROI is centred in 

),( vv yfxf , the fovea position estimated with the method based on vascular 

analysis. 

The classifier has been trained with 20 images, 10 belonging to the reliable 

class and 10 to the unreliable class. 

 

8.6 – Results 
 
 
 
 Watershed 

algorithm 

Vascular density 
algorithm 

Geometric 
algorithm  

Best method 
chosen by 
classifiers 

Mean 
error(pixel) 

47.7 60.3 61.5 35.3 

Std. Dev. error 55.5 45 33.6 29  
Min error 2.9 1.4 9.2 2.9  
Max error 296.3 257.9 159.6 139 
Table 8.1: Performance evaluation on 80 images. Error is the distance 
from the manually labelled fovea position ( in pixel) 
 

The proposed algorithm has been tested on 80 images acquired with an 

automatic non-mydriatic fundus camera Nidek Orion and processed with the 

algorithm described in chapter 5 to combine five different fields of  view 

forming a single map of the retina. 

Fovea localization in these images have been manually labelled so that 

ground truth is available for  evaluation. In table 8.1 results of the three 

methods described above are compared with the result achieved using the 

classifier to select the best algorithm to use for each image.  
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Fig. 8.9: Examples of fovea identification  
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Chapter 9 
Estimation of Generalized Arterioral 

Narrowing 
 

An early warning about serious cardiovascular diseases can be provided by 

the analysis of microvasculature health status.  

On retinal images, a sign that have been shown to be related to 

cardiovascular diseases is the generalized arteriolar narrowing, usually 

expressed by the arteriolar-to venular diameter ratio (AVR) [34]. It is 

computed from the values of individual arteriolar and venular calibres [35], 

measured in a specific area of the eye fundus (circular sector around the 

optic disc).  

9.1 – Review of Available Methods  

 
The current procedure requires the long and cumbersome manual 

measurements of the required vessel calibers. To overcome this problem, 

computer assisted procedures have been proposed [36], which however still 

require considerable user assistance. Recently, an automatic system has 

been reported[37], but it still requires user input for some of the steps, e.g. 

for artery vs. vein discrimination. In this chapter will be  proposed a system 

for AVR estimation that is completely automatic [40]. 

9.2 – Preliminary Steps 
 
The fully automatic procedure to derive the AVR index requires several 

steps to be performed. After an initial image enhancement to improve and 

normalize image quality, the network of retinal vessel is traced and the optic 

disc position and diameter are identified. With this information, the specific 

area in which caliber measurements are to be done is identified. Inside this 

area, vessels are labeled as either arteries or veins and their caliber is 

measured. Finally, caliber measurements are used to compute AVR, 

according to both the standard formula [35] and a more recent revised 

formula [38]. 
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9.2.1 Image Preprocessing 

Very often retinal images are unevenly or non-uniformly illuminated and 

thus exhibit local luminosity and contrast variability. This problem may 

seriously affect any diagnostic process and its outcome, especially if an 

automatic computer-based procedure is used to derive the diagnostic 

parameters. 

To overcome this problem, is used a method to normalize luminosity and 

contrast in retinal images, both intra and inter image[26]. The method is 

based on the estimation of the luminosity and contrast variability in he 

background part of the image and the subsequent compensation of this 

variability in the whole image. 

9.2.2 Vessel Tracing 

The identification and quantitative description of the vascular structure is a 

necessary prerequisite to compute AVR. 

To this end, a system for the automatic extraction of the vascular structure 

in retinal images proposed in [21] is employed , which works on the green 

channel of the retinal image and is based on a sparse tracking technique. 

Starting from a set of seed points, the tracking procedure moves along the 

vessel (Fig. 9.1) by analyzing subsequent vessel cross sections (blue 

segments in Fig. 1) and extracting the vessel center, caliber and direction. 

The pixels belonging to the vessel in a cross-section (red segments in Fig. 1) 

are found by means of a fuzzy C-means classifier applied to all cross-

section pixels.  
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Fig. 9.1: Vessel tracking technique.  

 
 

9.3 – Roi Detection 
 
The AVR value is computed from the values of individual arteriolar and 

venular calibers measured in the vessels present in a specific ROI of the eye 

fundus: a circular sector centered on the optic disc (OD) and from half-disc 

to one disc diameter from the OD margin (area between dashed lines in Fig 

9.2). The OD position needs thus to be detected. The method we used [13] 

exploits the detection of the main retinal vessels by means of the vessel 

tracking procedure just summarized. All retinal vessels originate from the 

OD and then follow a parabolic course towards retinal edges (see Fig. 9.2). 

A geometrical parametric model was proposed to describe the direction of 

these vessels and two of the model parameters are just the coordinates of the 

OD center. Using samples of vessels directions (extracted from fundus 

images by the tracking procedure) as experimental data, model parameters 

were identified by means of a simulated annealing optimization technique. 

These estimated values provide the coordinates of the center of OD. The OD 

diameter was assumed to be the standard value of 1850 µm [38], and this 

value was also used to determine the pixel/µm calibration, as established by 

the Early Treatment Diabetic Retinopathy Study. From the knowledge of 

OD center and diameter, the circular area for AVR computation can thus be 

identified on the retinal images. 
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Fig. 9.2.  Retinal  image with vessel traced by  the automatic  algorithm. 
The optic disc contour is shown with solid line and AVR is computed 
from vessels inside in the circular area contained within the dashed 
lines. 

 

9.4 – Artery-Vein Discrimination 
 
Individual arteriolar and venular calibers in the ROI are necessary to derive 

AVR, and thus each traced vessel inside the ROI must be correctly labeled 

as either artery or vein. 

The problem is complicated by the similarity in the descriptive features of 

these two structures and by the contrast and luminosity variability within 

and between retinal images. 

We have used an algorithm for classifying vessels proposed in [39], which 

exploits some peculiarities of retinal images, such as the symmetry of the 

vessel network and the similarity in the number of veins and of arteries. 
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Fig. 9.3:  Retinal image with  quadrants  for  A/V   
 discrimination 
 

As only vessels close to each other can be reliably recognized as arteries or 

veins by direct comparison, without any further semantic knowledge, the 

classification procedure should have a local nature. A concentric zone 

around the OD is partitioned into four quadrants and the A/V discrimination 

is separately performed for the vessel sets in each quadrant (Fig. 3). 

The A/V discrimination is based on the local comparison of vessel color 

features. More specifically, for each vessel sample point a circular 

neighbourhood of radius dependent on the vessel caliber is considered. The 

mean of the hue values of the pixels belonging to this neighborhood, and the 

variance of their red values are the features considered for vessel 

classification. 

In every quadrant, a fuzzy C-mean classifier labels the sample points as 

either artery points or vein points. From these assignments, an empirical 

probability P for each vessel segment to be an artery (or vein) can be 

determined and the highest probability determines the vessel labeling. 

 
 

9.5 – AVR Estimation 
From the arteriolar and venular calibers estimated as described above, the 

Central Retinal Artery Equivalent (CRAE) and Central Retinal Vein 

Equivalent (CRVE) parameters can be computed and finally their ratio: 

CRVE

CRAE
AVR =
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provides an indication of a possible generalized arteriolar narrowing 

[35,38]. An AVR value smaller than 1 indicates an arteriolar diameter on 

average narrower than the venular one. 

 

9.6 – Results 
 
Fourteen color retinal images were acquired in normal and hypertensive 

subjects with a Topcon TRC 50 fundus camera (Topcon Medical Systems, 

Japan) with a 50° field of view. Images were saved in digital format with a 

resolution of 1360 dpi, resulting in 1500x1700 pixel images, with 24 bits 

per pixel. 

The reference values, against which the  automatic results were to be 

compared, are the results of a manual AVR estimation. This latter was 

carried out by manually performing all steps on the retinal image displayed 

on a PC monitor: identification of OD and its diameter (and thus of the ROI 

for caliber estimation), vessel labelling as arteries or veins, vessel diameters 

measurement by drawing segments with the mouse and computing their 

pixel length. Both the standard [35] and the revised [38] formulas were used 

to derive AVR values from the arteriolar and venular diameters. 

Table 9.1 presents the manual and automatic AVR results obtained in the 

data set of 14 retinal images, using both the standard and the revised AVR 

formula, with scatter-plots showing their correlation reported in Fig. 9.4, top 

and bottom panel respectively. The automatic procedure appears to behave 

better with the standard formula than for the revised one as regards 

correlation, 0.83 vs 0.73, whereas automatic/manual ratios have identical 

average and standard deviations but different range. 

A good correlation was found between automatic and manual AVR values 

when using the standard formula. 

Two outliers significantly affect the overall performance (see Fig.9.4). A 

semi-automatic procedure was then carried out, where selected steps were 

manually performed in order to identify the reason for the unsatisfactory 

performance in these images. From this investigation, it appears that vessels 

missed by the tracing procedure and faulty A/V discrimination are the main 

reasons for these unsatisfactory performances. The revised formula provides 
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a slightly worse correlation, but with a much more homogeneous behaviour 

, as no outliers are evident in the scatter-plot and automatic/manual ratios 

exhibit a narrower range. 

 

 
Table 9.1: AVR values from the standard and the revised formula. Values obtained 
with the manual and the automatic procedures and their ratio are reported. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.4: Scatter-plots of AVR values estimated with the standard (top panel) and 
revised(bottom panel) formula. Regression line(solid) and equation, with correlation 
coefficient, and identity line (dashed) are shown. 
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Chapter 10 
 
Conclusions 
 

10.1 – Achieving the Objectives  

 
The aim of this thesis was to develop a set of new algorithms to help 

ophthalmologist’s diagnosis and to be used in automated systems for 

retinopathy screening. The achievements will be summarized in the 

following sections. 

10.1.1 Mosaicing of Retinal Imaging 

Building a mosaic image from a sequence of partial view is a powerful 

mean of obtaining a complete, non redundant view of a scene. In this thesis 

a new algorithm was proposed to solve the problem of combining five fields 

of view to form a single map of the retina. 

This registration generally involves large translations, while there is little 

rotation and scaling. The algorithm proposed involves two steps. Translation 

and rotation between two images are first estimated using Fourier 

Transform. Then the affine transformation is estimated with a feature-based 

method that uses the information on rotation and translation obtained with 

the previous step. 

This algorithm has been tested on 110 exams, working on 4 pairs of images 

to be registered for each exam: central field-superior field, central field-

inferior field, central-nasal, central-temporal, with the central field always 

as anchor image. Translation and rotation estimation is proved to be robust 

to noise and blur, with only 2% of failure rate, outperforming other methods 

described in literature. 

In 32% of the exams there are slight overlapping errors producing some 

artefacts  on the resulting image.  
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10.1.2 Detecting false vessel recognition 

Tracking techniques for blood vessels segmentation often present a high rate 

of false positives.  In this thesis a linear classifier was employed as a 

postprocessing step to remove false positive vessels and improve the 

specificity of the whole segmentation algorithm. 

Six different vessel’s models are compared in terms of sensibility and 

specifity. 

Results show an overall good detection of false positives at a marginal cost 

in terms of discarded true vessels. Increasing model complexity generally 

increases both sensibility and accuracy. In particular, the 4-level asymmetric 

model provides the best performance in terms of sensibility, whereas the 3-

level asymmetric model shows more uniform performance 

10.1.3 Optic Disc Identification 

Locating the optic disc position in fundus images is quite important to 

exclude it from the set of possible lesions, to establish a frame of reference 

within the retinal image important and possibly to assess the progression of 

glaucoma, which is due to an increase in intra-ocular pressure and produces 

additional pathological cupping of the optic disc. 

In this thesis a method to refine the optic disc position estimated with a 

previously developed method  and to estimate the disc diameter was 

described. This algorithm is based on an active contour model, modified to 

be robust to disturbance of vessel edges. 

Fourteen 45° 1392x1038 color fundus   images acquired with Nidek MP1 

were tested by the proposed method. 

The disk boundary manually marked by a retinal specialist was assumed as 

the ground truth, and the average distance from the detected boundary point 

to the ground truth is measured for evaluation. 

Results show a good detection of the border, with an average distance of 

3.44 pixels.  The highest error is caused by wrong classification of the 

reliable contour points, so better results could be obtained mainly by  

improving this step. 
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10.1.4 Fovea Detection 

Fovea identification is a fundamental task in any study of ocular diseases, 

because it is the highest accuracy vision zone of the retina, so the nearer the 

fovea are the more serious the ocular lesions are. The geometrical relation 

between fovea, optic disc and blood vessels is exploited to locate the fovea. 

The shape of the main courses of the blood vessels is roughly a parabolic 

curve, with vertex inside the OD and the fovea is approximately situated 

about at 2 disc diameters from the optic disc along the direction of the main 

axis, estimated using a method based on image moments. Then two different 

methods are used to localize the fovea more accurately, one based on 

watershed transform and one based on vascular density analysis (fovea is an 

avascular zone). At last a linear classifier decides the more reliable method 

to be used for each image. 

The algorithm proposed for fovea localization was tested on 80 mosaic 

images acquired with Orion Nidek, with a mean distance from ground truth 

of 260 microns (37 pixels). 

Results show the importance of the classifier that chooses the most reliable 

method, so further developments should focus on improving the 

performance of this classifier. 

10.1.5 Estimation of Generalized Arterioral Narrowi ng 

A sign that have been shown to be related to cardiovascular diseases is the 

generalized arteriolar narrowing, usually expressed by the arteriolar to 

venular diameter ratio (AVR). 

To overcome the long and cumbersome manual measurements we proposed 

a computer assisted procedure, which requires several steps: vessel tracing, 

ROI detection, artery-vein classification and AVR estimation with both the 

standard and the revised formulas 

We have used as reference values, against which the automatic results were 

to be compared, the results of a manual AVR estimation. This latter was 

carried out by manually performing all steps on the retinal image displayed 

on a PC monitor: identification of OD and its diameter (and thus of the ROI 

for caliber estimation), vessel labeling as arteries or veins, vessel diameters 
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measurement by drawing segments with the mouse and computing their 

pixel length. 

The automatic procedure appears to behave better with the standard formula 

than for the revised one as regards correlation, 0.83 vs 0.73, whereas 

automatic/manual ratios have identical average and standard deviations but 

different range. 

A good correlation was found between automatic and manual AVR values 

when using the standard formula. 

Two outliers significantly affect the overall performance. A semi-automatic 

procedure was then carried out, where selected steps were manually 

performed in order to identify the reason for the unsatisfactory performance 

in these images. From this investigation, it appears that vessels missed by 

the tracing procedure and faulty A/V discrimination are the main reasons for 

these unsatisfactory performances. 

The revised formula provides a slightly worse correlation,  but with a much 

more homogeneous behavior, as no outliers are evident in the scatter-plot 

and automatic/manual ratios exhibit a narrower range. 

10.2 – Diabetic Retinopathy Screening and 
Grading 
 

Some of the  methods presented in this thesis have been used in an artificial 

intelligence camera system that screens for diabetic retinopathy (DR). The 

results have been presented at the AAO 2007 meeting. In this study 240 

subjects were selected from the patient population of a diabetic retinopathy 

screening clinic at the University of Padova. Subjects included normals or 

diabetic subjects with no diagnosed retinal pathology and diabetic subjects 

with DR pathology. 

After several steps of image processing, including image mosaicing, vessel 

segmentation and optic disc localization,  10% of the images were used to 

train two neural networks, one sensitive to bright pathology and another 

sensitive to dark pathology. 

The remaining images were used to independently score the results of the 

trained neural networks, obtaining 96.2% of sensitivity and 98.7% in 
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detecting DR . In future works also fovea identification will be included in 

this system in order to be able to grade the severity of  retinopathy. 
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