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Introduzione

Questo lavoro si occupa di un problema inerente alla teoria algoritmica dei
gruppi algebrici affini. Più precisamente, è possibile associare ad ogni gruppo
algebrico definito sul campo dei numeri razionali una famiglia di sottogruppi,
i cosiddetti sottogruppi aritmetici. Nel 1969, Borel e Harish-Chandra dimo-
strarono che ogni gruppo aritmetico è finitamente generato. Inoltre, negli anni
’80, Grunewald e Segal presentarono un algoritmo che, partendo da un gruppo
algebrico “dato esplicitamente” – dove chiaramente è possibile rendere precisa
la nozione di “dato esplicitamente” – e un suo sottogruppo aritmetico, calcola
un sistema finito di generatori per il gruppo aritmetico. A parte il suo interes-
se intrinseco, Grunewald e Segal mostrarono che un tale algoritmo può essere
impiegato per risolvere un altro importante problema di algebra computaziona-
le, cioè il problema dell’isomorfismo per gruppi nilpotenti finitamente generati.
Sfortunatamente, il loro algoritmo è puramente teorico. Infatti, le tecniche im-
piegate al suo interno lo rendono, da una parte, difficilmente implementabile
– a tutt’ora, non è nota alcuna sua implementazione nei principali sistemi di
algebra computazionale – e, dall’altra parte, non pratico, nel senso che il suo
tempo di esecuzione su un calcolatore come quelli disponibili al giorno d’oggi
sarebbe eccessivamente lungo anche per dati d’ingresso relativamente semplici.

In questo lavoro viene considerato il problema di Grunewald e Segal nei due
casi particolari in cui il gruppo algebrico è rispettivamente un gruppo unipo-
tente e un toro. Queste ipotesi aggiuntive ci consentono di dare una più precisa
descrizione della struttura dei sottogruppi aritmetici, la quale a sua volta con-
duce sia a una prova indipendente del teorema di Borel e Harish-Chandra, sia
a due nuovi algoritmi che risolvono il problema, che ovviamente sono corretti
solo per queste particolari classi di gruppi algebrici. Inoltre, gli algoritmi sono
stati implementati nei sistemi di algebra computazionale GAP e Magma, e sono
stati successivamente testati su alcuni dati d’ingresso. È risultato che essi sono
abbastanza efficienti da gestire esempi non banali.

Sul piano tecnico, è conveniente abbandonare il punto di vista dei gruppi
algebrici come chiusi di Zariski nello spazio delle matrici quadrate a coefficienti
complessi e invertibili – che è stato al contrario adottato nei precedenti lavo-
ri – per considerarli piuttosto come varietà “astratte” o, meglio ancora, come
schemi gruppali affini. In questo modo si ottiene un’esposizione più elegante
ed intrinseca, e in aggiunta è possibile utilizzare la teoria dei quozienti per i
gruppi algebrici, che risulta essere molto utile specialmente nel caso unipotente.
Inoltre, un ruolo chiave è giocato da due “teoremi di classificazione”. Il primo
stabilisce un’equivalenza categoriale tra gruppi algebrici unipotenti e algebre
di Lie nilpotenti di dimensione finita, e fornisce interessanti informazioni sulla
“geometria” di questi gruppi, che possono essere sfruttate anche computazio-
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nalmente. Il secondo riduce in un certo senso la teoria dei tori a quella dei
gruppi abeliani liberi e finitamente generati su cui agisce un gruppo di Galois.
Altre tecniche sono state mutuate dalla teoria dei campi numerici e delle algebre
semisemplici, dei gruppi policiclici, e delle basi di Groebner.

La rimanente parte di questo testo è stata redatta in lingua inglese per
consentirne la fruibilità ad un numero maggiore di lettori.



Introduction

This work deals with a problem concerning the algorithmic theory of affine
algebraic groups. More precisely, it is possible to associate to any algebraic
group defined over the field of the rational numbers a family of subgroups, the
so-called arithmetic subgroups. In 1969, Borel and Harish-Chandra proved that
every arithmetic group is finitely generated. Also, in the ’80, Grunewald and
Segal presented an algorithm that, starting from an “explicitely given” algebraic
group – where of course it is possible to make precise the notion of “explicitely
given” – and an arithmetic subgroup of its, computes a finite set of generators
for the arithmetic group. Apart from its intrinsic interest, Grunewald and Segal
showed that such an algorithm can be employed to solve another important
problem of computational algebra, that is to say, the isomorphism problem for
finitely generated nilpotent groups. Unfortunately, their algorithm works only
in principle. Indeed, the techniques employed in it make the algorithm, on one
hand, hard to implement – until now, no implementation on the main computer
algebra systems is known – and, on the other hand, not practical, in the sense
that its running time on a nowadays available computer would be exceedingly
high even for quite simple inputs.

In this work the problem considered by Grunewald and Segal is studied in
the two particular cases in which the algebraic group is a unipotent group and
a torus, respectively. These supplementary hypothesis enable us to give a more
precise description of the structure of the arithmetic subgroups, which in turn
leads both to an independent proof of the theorem of Borel and Harsh-Chandra
and to two new algorithms solving the problem, which are of course correct only
for these particular classes of algebraic groups. Also, the algorithms have been
implemented in the computer algebra systems GAP and Magma, and they have
been successively tested on some inputs. It turns out that they are efficient
enough to tackle non trivial examples.

Technically speaking, it is convenient to abandon the point of view of al-
gebraic groups as Zariski-closed subgroups in the space of invertible complex
square matrices – which on the contrary was adopted in the previous works –
and to regard algebraic groups as “abstract” varieties, or, even better, as affine
group schemes. In this way we obtain a more elegant and intrinsic treatment,
and in addition it is possible to use the quotient theory for algebraic groups,
which turns out to be useful expecially in the unipotent case. Also, a crucial
role has been played by two “classification theorems”. The first one establishes
a categorical equivalence between unipotent algebraic groups and nilpotent fi-
nite dimensional Lie algebras, and gives useful information on the “geometry”
of these groups, which can also be exploited computationally. The second one
reduces, roughly speaking, the theory of tori to the thery of torsion-free finitely
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generated abelian groups equipped with an action of a Galois group. Other
techniques have been taken from the theory of number fields and semisimple
algebras, of polycyclic groups, and of Groebner basis.

Chapter 1 contains constructions, results and notations that are used in
the following ones. An equivalent formulation of the problem considered by
Grunewald and Segal is described in Chapter 2, and two algorithms solving it
in the special cases of a unipotent group and of a torus are described in Chapters
3 and 4, respectively. Finally, Chapter 5 contains some remarks.

It should be noticed that, throughout this work, all the algebras are un-
derstood to be associative algebras with identity. Also, more information about
the computer algebra systems GAP and Magma can be found on their websites,
which are

http://www.gap-system.org/

and

http://magma.maths.usyd.edu.au/magma/

respectively.



Ackonwledgements
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Chapter 1

Prerequisites

This chapter contains well known constructions and results that are used in the
following ones, without any pretension of completeness. The style of writing is
very economical, and there are no proofs. In fact, it is mainly intended to serve
as a reference for language and notations, and it is not well suited for a sequential
reading. For a better treatment of topics concerning algebraic geometry and
algebraic groups, some good references are the classical books [Bo], [Mi], [Mi2]
and [Wa]. For the other arguments, some references are indicated in the specific
sections.

1.1 Affine algebraic sets and groups

Let k be a field. An affine algebraic set over k is a functor from the category
of commutative k-algebras to the category of sets which is naturally isomorphic
to the functor represented by a finitely generated algebra. If X is an affine
algebraic set over k, for every algebra R it is customary to denote by X(R) the
set that X associates to R, and to refer to is as the set of the R-valued points of
X. If Y is another affine algebraic set over k, then a morphism of affine algebraic
sets over k from X to Y is nothing but a natural transformation. Of course,
affine algebraic sets over k and the morphisms between them are the objects and
the arrows of a category, respectively, which is called the category of the affine
algebraic sets over k. If A is a finitely generated commutative k-algebra, it is
customary to denote by Hom(A, •) the affine algebraic set over k represented by
it, and, for every algebra R, to denote by Hom(A,R) the set of R-valued points
of Hom(A, •). Also, if f is a morphism from A to another finitely generated
commutative k-algebra B, then it is customary to denote by ]◦ f the morphism
from Hom(B, •) to Hom(A, •) that to any algebra R associates

Hom(B,R)→ Hom(A,R) g 7→ g ◦ f .

A very well known fact is that

Proposition 1.1.1 (Yoneda lemma). There exists a contraviariant functor from
the category of finitely generated commutative k-algebras to the category of affine
algebraic sets over k that

• to every algebra A associates Hom(A, •), and that
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• to every morphism f associates ] ◦ f .

It is even an anti-equivalence between the two categories.

An affine algebraic group over k is a functor from the category of commu-
tative k-algebras to the category of groups which is also, once we regard it as
a functor to the category of sets, an affine algebraic set over k. Morphisms of
affine algebraic groups over k are just natural transformations between them.
Of course, affine algebraic groups over k and their morphisms form a category,
which is called the category of affine algebraic groups over k. An affine Hopf
algebra over k is a finitely generated commutative k-algebra A together with

∆ : A→ A⊗A, S : A→ A and ε : A→ k

such that

A
∆ //

∆

��

A⊗A

∆⊗idA

��
A⊗A

idA⊗∆
// A⊗A⊗A

and

A
∆ //

''OOOOOOOOOOOOO A⊗A

ε⊗idA

��
k ⊗A

and, finally,

A
ε //

∆

��

k

��
A⊗A // A

are commutative, where the diagonal arrow in the second diagram is the canon-
ical isomorphism, and, in the third diagram, the bottow row is the composition
of S ⊗ idA with the unique morphism from A ⊗ A to A sending every a ⊗ b to
ab, and the right column is the map sending every α to α · 1A. If this is the
case, ∆ is called the co-multiplication of A, and S and ε are the co-inverse and
the co-identity of A, respectively. Also, if A′ is another Hopf algebra over k, a
morphism f of Hopf algebras from A to A′ is a morphism of k-algebras such
that

∆′ ◦ f = f ⊗ f ◦∆, S′ ◦ f = f ◦ S and ε′ = f ◦ ε ,

where ∆′, S′ and ε′ are the co-multiplication, the co-inverse and the co-identity
of A′, respectively. Of course, affine Hopf algebras over k and their morphisms
form a category, which is called the category of affine Hopf algebras over k. If A
is an affine Hopf algebra over k, there exists a unique affine algebraic group over
k whose underlying affine algebraic set is Hom(A, •) and that to every k-algebra
R associates the group whose multiplication is given by

(x, y) 7→ µ ◦ x⊗ y ◦∆ ,
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where ∆ is the co-multiplication of A and µ is the unique morphism from A⊗A
to A sending a⊗ b to ab, whose inverse is given by

x 7→ x ◦ S ,

where S is the co-inverse of A, and whose identity is the composition of

A
ε−→ k → R ,

where ε is the co-identity of A and the map on the right sends every α to α ·1A.
It is customary to denote it by Hom(A, •). We will refer to it as the affine
algebraic group over k represented by A. It is well known that

Proposition 1.1.2. There exists a contravariant functor from the category of
affine Hopf algebras over k to the category of affine algebraic groups over k that

• to every Hopf algebra A associates Hom(A, •), and that

• to every morphism f associates ] ◦ f .

It is even an anti-equivalence of categories.

We say that a morphism η of affine algebraic groups over k is a monomor-
phism if it is so once we regard it as an arrow in the category of affine algebraic
groups over k. It is well known that this is the case if and only if for every
k-algebra R the map that η associates to R is injective. Also, if G is an affine
algebraic groups over k, an algebraic subgroup of G is an affine algebraic group
H over k such that,

• once we regard both H and G as functors to the category of sets, H is a
subfunctor of G, and that,

• for every k-algebra R, the inclusion of H(R) into G(R) is a group mor-
phism.

If this is the case, the inclusion of H into G is a monomorphism. Similarly, we
say that η is an epimorphism or an isomorphism if it is so as an arrow, and it is
easy to show that η is an isomorphism if and only if for every k-algebra R the
map that η associates to R is bijective. Further, we say that another morphism
ζ of affine algebraic groups over k is a kernel or an image of η if it is so once
we regard both ζ and η as arrows in the category of affine algebraic groups
over k. Also, let us denote by G and by H the domain and the codomain of η,
respectively. It is well known that there exists a unique subfunctor N of G that
to every k-algebra R associates the kernel – in the usual, set-theoretical sense
– of the group morphism which is associated to R by η, and it is the unique
algebraic subgroup of G such that its inclusion in G is a kernel of η. We refer
to N and to its inclusion in G as the kernel of η. Similarly, there exists a unique
algebraic subgroup K of H such that its inclusion in H is an image of η. We
will refer to K and to its inclusion in H as the image of η. Also, if G is an affine
algebraic group over k, A is a finitely generated commutative k-algebra and η is
a natural isomorphism from Hom(A, •) to G, then we say that G is connected if
A is an integral domain. Of course, by Yoneda lemma this is a good definition.
Further, by Noether normalization theorem, A contains a finite set S such that
the sub-k-algebra k[S] of A generated by S is a polynomial algebra on S, and
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that A is a finitely generated k[S]-module. Although S is in general not unique,
its cardinality in an invariant. Thus it makes sense to define the dimension of
G as the cardinality of S. The dimension of an affine algebraic group has many
nice properties. In particular, if ϕ is a morphism with domain G, kernel N and
image Q, then the dimension of G is the sum of the dimensions of N and Q.

1.2 Tensor product and scalars extension

Let k be a field, and R a commutative k-algebra. If V and W are finite dimen-
sional k-vector spaces, and f is a linear transformation from V to W , then there
exists a unique map f̃ from R⊗ V to R⊗W such that

• it is a morphism of R-modules with respect to the canonical structure of
R-module on both R⊗ V and R⊗W , and that

•
V

f //

1⊗idV

��

W

1⊗idW

��
R⊗ V

f̃ // R⊗W

is commutative.

We will refer to it as the morphism obtained from f extending scalars to R. If
U is another finite dimensional k-vector space and f is now a bilinear map from
the catesian product of U and V to W , then there exists a unique map f̃ from
the cartesian product of R⊗ U and R⊗ V to R⊗W such that

• it is a bilinear map of R-modules with respect to the canonical structure
of R-module on R⊗ U , R⊗ V and R⊗W , and that

•
U × V

f //

(1⊗idU )×(1⊗idV )

��

W

1⊗idW

��
R⊗ U ×R⊗ V

f̃ // R⊗W

is commutative.

We will refer to it as the bilinear map obtained from f extending scalars to R. A
standard reference for these and other properties of tensor products is [AMD].

1.3 Vector spaces as algebraic groups

Let k be a field, and V a finite dimensional k-vector space. There exists a
functor • ⊗ V from the category of commutative k-algebras to the category of
groups such that

• to every algebra R associates the additive group of R⊗ V , and

• to every morphism f from R to S associates f ⊗ idV .
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It is called the affine space on V . Also, it is even an affine algebraic group over
k. In fact, let us denote by S(V ∗) the symmetric algebra on the dual space of V .
Of course, it is finitely generated. Also, the family of maps that to any algebra
R associates the map from R ⊗ V to Hom(S(V ∗), R) that in turn sends every
a⊗ x to the unique morphism of algebras f from S(V ∗) to R such that

V ∗ //

��

R

S(V ∗)

f

<<yyyyyyyy

is commutative, where the vertical arrow is the canonical map and the horizontal
arrow is the map sending any λ to λ(x)a, is a natural isomorphism from •⊗V to
Hom(S(V ∗), •). We will often refer to it as the canonical natural isomorphism.
Also, S(V ∗) is endowed with a structure of Hopf algebra over k, whose co-
multiplication is the unique map sending any x ∈ V ∗ to x ⊗ 1 + 1 ⊗ x, whose
co-inverse is the unique map sending any x ∈ V ∗ to −x and whose co-identity
is the unique map sending any x ∈ V ∗ to 0. We will refer to it as the canonical
Hopf algebra structure on S(V ∗). It is well-known that the canonical natural
isomorphism between • ⊗ V and Hom(S(V ∗), •) is a morphism of algebraic
groups with respect to the structure of affine algebraic group on Hom(S(V ∗), •)
corresponding to the canonical structure of Hopf algebra on S(V ∗).

Now let W be another finite dimensional k-vector space, and let f be a linear
transformation from V to W . Then there exists a natural transformation from
• ⊗ V to • ⊗W that to any algebra R associates the morphism of R-modules
from R⊗ V to R⊗W obtained from f extending scalars to R. We will refer to
it as the natural transformation associated to f .

1.4 Endomorphisms, matrices, algebraic groups

Let V be a finite dimensional vector space over k. There exists a functor End(•⊗
V ) from the category of commutative k-algebras to the category of groups such
that

• to every algebra R associates the additive group End(R⊗V ) of the endo-
morphisms of the R-module R⊗ V , and

• to every morphism f from R to S associates the map which in turn sends
any endomorphism ϕ of R ⊗ V to the unique endomorphism ψ of S ⊗ V
such that

R⊗ V
ϕ //

f⊗idV

��

R⊗ V

f⊗idV

��
S ⊗ V

ψ // S ⊗ V
is commutative.

It turns out that it is even an affine algebraic group over k. In fact, let us denote
by • ⊗ End(V ) the affine space on End(V ). Then the family of maps that to
every algebra R associates the map from R⊗End(V ) to End(R⊗ V ), which in
turn sends any a⊗ϕ to the endomorphism of R⊗V sending b⊗x to ab⊗ϕ(x),
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is a natural isomorphism from • ⊗ End(V ) to End(• ⊗ V ). We will often refer
to it as the canonical natural isomorphism. Also, let us denote by S(End(V )∗)
the symmetric algebra on the dual space of End(V ). Composing the canonical
natural isomorphism between Hom(S(End(V )∗), •) and • ⊗ End(V ) with the
canonical natural isomorphism between •⊗End(V ) and End(•⊗V ), we obtain
a natural isomorphism from Hom(S(End(V )∗), •) to End(•⊗V ). Again, we will
refer to it as the canonical natural isomorphism.

Similarly, it makes sense to consider the functor GLV from the category of
commutative k-algebras to the category of groups such that

• to any algebra R associates the group GLV (R) of the automorphisms of
the R-module R⊗ V , and

• to any morphism f from R to S associates the map that in turn sends any
automorphism ϕ of R ⊗ V to the unique automorphism ψ of S ⊗ V such
that

R⊗ V
ϕ //

f⊗idV

��

R⊗ V

f⊗idV

��
S ⊗ V

ψ // S ⊗ V
is commutative.

Of course, it is a subfunctor of End(•⊗V ). Also, it is well-known that it is even
an affine algebraic group over k, which is called the general linear group on V .

Now let m be an integer greater than 1. There exists a functor Mm from
the category of commutative k-algebras to the category of groups such that

• to every algebra R associates the additive group Mm(R) of square matrices
of order m with coefficients in R, and

• to every morphism f from R to S associates the map given by a11 · · · a1m

...
...

am1 · · · amm

 7→
 f(a11) · · · f(a1m)

...
...

f(am1) · · · f(amm)

 .

It turns out that it is even an affine algebraic group over k. In fact, let us
denote by X̂ the set of indeterminates Xij where i and j are integers between
1 and m, and by k[X̂] the polynomial algebra with rational coefficients in the
indeterminates in X̂. Of course, k[X̂] is finitely generated. Also, the family of
maps that to every algebra R associates the map from Hom(k[X̂], R) to Mm(R)
which in turn sends ϕ to ϕ(X11) · · · ϕ(X1m)

...
...

ϕ(Xm1) · · · ϕ(Xmm)

 ,

is a natural isomorphism from Hom(k[X̂], •) to Mm. We will refer to it as the
canonical natural isomorphism.

Similarly, it makes sense to consider the functor GLm from the category of
commutative k-algebras to the category of groups such that
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• to every algebra R associates the group GLm(R) of the invertible square
matrices of order m with coefficients in R, and

• to every morphism f from R to S associates the map that a11 · · · a1m

...
...

am1 · · · amm

 7→
 f(a11) · · · f(a1m)

...
...

f(am1) · · · f(amm)

 .

Of course, it is a subfunctor of Mm. Also, it turns out that it is even an affine
algebraic group over k. More precisely, let us put

det =
∑
σ∈Sm

sgn(σ)X1σ(1) · · ·Xmσ(m),

where Sm is the symmetric group on {1, . . . ,m} and sgn is the sign morphism,
and let us denote by k[X̂]det the localization of k[X̂] at det. Of course, k[X̂]det

is finitely generated. Also, the family of maps that to any algebra R associates
the map from Hom(k[X̂]det, R) to GLm(R) which in turn sends any morphism
ϕ to  ϕ(X11) · · · ϕ(X1m)

...
...

ϕ(Xm1) · · · ϕ(Xmm)

 ,

is a natural isomorphism from Hom(k[X̂]det, •) to GLm. We will often refer to
it as the canonical natural isomorphism. Further,

Hom(k[X̂]det, •)
]◦λ //

��

Hom(k[X̂], •)

��
GLm // Mm

is commutative, where λ is the localization map from k[X̂] to k[X̂]det, the
bottom row is the inclusion and the vertical rows are the canonical natural
isomorphisms.

Now suppose that V has dimension m, and let x1, . . . , xm be a basis of V . For
every i and j between 1 and m, let us denote by eij the unique endomorphism
of V sending xi to xj and all the other elements of the given basis of V to
0. Of course, the set of the eij for i and j between 1 and m is a basis for
End(V ). Let us denote by e∗ij the elements of the basis for End(V )∗ which is
dual to it. Clearly, there exists a unique morphism of k-algebras from k[X̂] to
S(End(V )∗) sending every Xij in X to e∗ij , and it is an isomorphism. We will
refer to it as the algebras isomorphism from k[X̂] to S(End(V )∗) with respect to
x1, . . . , xm. Also, the family of maps that to any algebra R associates the map
from End(R⊗V ) to Mm(R) that in turn sends any endomorphism of R⊗V to its
matrix with respect to the basis 1R⊗x1, . . . , 1R⊗xm, is a natural isomorphism
from End(• ⊗ V ) to Mm. We will refer to it as the natural isomorphism with
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respect to x1, . . . , xm. Further,

Hom(S(End(V )∗), •)
]◦i //

��

Hom(k[X̂], •)

��
End(• ⊗ V ) // Mm

is commutative, where i is the isomorphism from k[X̂] to S(End(V )∗) with
respect to x1, . . . , xm, the bottom row is the natural isomorphism with respect
to x1, . . . , xm and the columns are the canonical natural isomorphisms. Finally,
there exists a unique natural transformation from GLV to GLm such that

GLV //

��

GLm

��
End(• ⊗ V ) // Mm

is commutative, where the columns are the inclusions and the bottom row is the
natural isomorphism with respect to x1, . . . , xm, and it is a natural isomorphism.
Again, we will refer to it as the natural isomorphism with respect to x1, . . . , xm.

Now let G be an affine algebraic group over k. A linear representation, or
an action, of G on V is a natural transformation ρ from the cartesian product
of G and the affine space •⊗ V on V to •⊗ V itself such that for every algebra
R,

ρR : G(R)×R⊗ V → R⊗ V ,

that ρ associates to R, is an action of G(R) on R ⊗ V as automorphisms of
R-modules. A subspace W of V is stable under ρ if for every algebra R, every
g ∈ G(R) and every x ∈ R ⊗W , we have that ρR(g, x) ∈ R ⊗W . If this is the
case, thexe exists a unique action ρ′ of G on W such that for any algebra R,
any g ∈ G(R) and any x ∈ R⊗W , we have that

ρ′(g, x) = ρ(g, x).

Similarly, there exists a unique action ρ′′ of G on V/W such that for any algebra
R, any g ∈ G(R) and any x ∈ R⊗ V , we have that

ρ′′(g, πR(x)) = πR(ρ(g, x)).

where πR is the map obtained from the canonical projection of V onto V/W
extending scalars to R. Therefore, if W is a ρ-stable subspace of V , then G
acts on W and on V/W , too. Also, if V ′ is another finite dimensional k-vector
space, and ρ′ is now an action of G on W , then there exists a unique action ρ′′

of G on V ⊕V ′ such that for every algebra R, every g ∈ G(R), every x ∈ R⊗V
and every x′ ∈ R⊗ V ′,

ρ′′R(g, ιR(x)) = ιR(ρR(g, x)) and ρ′′R(g, ι′R(x′)) = ι′R(ρ′R(g, x′)) ,

where ιR and ι′R are the maps obtained from the canonical injection of V and
of V ′ into V ⊕ V ′ extending scalars to R, respectively. Therefore G acts on the
direct sum of V and of V ′, too. Further, we say that x ∈ V is stable under the
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action of ρ if for every algebra R, 1R ⊗ x is stable under ρR. If ρ is an action
of G on V , then the family of maps that to any algebra R associates the map
from G(R) to GLV (R) which in turn sends any g to the automorphism of R⊗V
sending any x to ρR(g, x), is a morphism of algebraic groups, and in this way
we obtain a bijection between linear representations of G on V and morphisms
of algebraic groups from G to GLV . We say that an action of G on V is faithful
if the corresponding morphism from G to GLV is a monomorphism. Also, the
kernel and the image of an action of G on V are the kernel and the image of the
corresponding morphism from G to GLV . The composition of the morphism
from G to GLV corresponding to ρ with the natural isomorphism from GLV
to GLm with respect to x1, . . . , xm, is a morphism of algebraic groups from G
to GLm, and in this way we obtain a bijection between linear representations
of G on V and morphisms of algebraic groups from G to GLm. We refer to
the morphism from G to GLm obtained from ρ in this way as the morphism
corresponding to ρ with respect to x1, . . . , xm. Of course, an action of G on V
is faithful if and only if the corresponding morphism of algebraic groups from
G to GLm with respect to x1, . . . , xm is a monomorphism. If G is an algebraic
subgroup of GLm, we will refer to the action of G on km corresponding to
the inclusion of G into GLm with respect to the canonical basis of km as the
canonical action.

A basic fact is that

Proposition 1.4.1. For any algebraic group G over k, there exists a monomor-
phism of algebraic groups from G into some GLm.

Two immediate consequences of the proposition above are that every affine
algebraic group over Q is isomorphic to an algebraic subgroup of some GLm,
and that it admits a faithful linear representation on some km.

1.5 Multiplicative group of an algebra

Let A be a finite dimensional associative k-algebra with identity. There exists a
functor (• ⊗ A)× from the category of commutative k-algebras to the category
of groups such that

• to every algebra R, associates the group (R⊗A)× of units of the R-algebra
R⊗A, and

• to any morphism f from R to S, associates the unique map from (R⊗A)×

to (S ⊗A)× such that

(R⊗A)×

��

// (S ⊗A)×

��
R⊗A

f⊗idA // S ⊗A

is commutative, where the columns are the inclusion maps.

Of course, it is a subfunctor of the affine space on A. Also, it turns out that it
is even an affine algebraic group over k, which is called the multiplicative group
of A. If B is another finite dimensional k-algebra and f is a morphism from
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A to B, then there exists a unique natural transformation ϕ from (• ⊗ A)× to
(• ⊗B)×, regarded as functors to the category of sets, such that

(• ⊗A)×
ϕ //

��

(• ⊗B)×

��
• ⊗A // • ⊗B

is commutative, where the columns are the inclusions and the bottom row is the
morphism associated to f , regarded as a linear transformation between k-vector
spaces, and we have that is is even a morphism of affine algebraic groups over
k. We will refer to it as the morphism associated to f .

Now let V be a finite dimensional k-vector space. Also, let us denote by
(• ⊗ End(V ))× the multiplicative group of End(V ). It turns out that there
exists a unique natural transformation from (• ⊗ End(V ))× to GLV such that

(• ⊗ End(V ))× //

��

GLV

��
• ⊗ End(V ) // End(• ⊗ V )

is commutative, where the bottom row is the canonical natural isomorphism and
the columns are the inclusions, and it is an isomorphism of algebraic groups. We
will refer to it as the canonical isomorphism. Therefore, given a morphism of
algebraic groups from G to (• ⊗ End(V ))×, its composition with the canonical
isomorphism from (• ⊗ End(V ))× to GLV is a morphism from G to GLV , and
in this way we obtain a bijection between morphisms from G to (•⊗End(V ))×

and morphisms from G to GLV .

1.6 Changing the field of definition

Let K/k be a field extension. If X is a functor from the category of commutative
k-algebras to the category of sets, then there exists a unique functor from the
category of commutative K-algebras to the category of sets that

• to every K-algebra R, associates the set that X associates to R together
with its structure of k-algebra obtained from its structure of K-algebra
by restriction of scalars through K/k, and that

• to every morphism f of K-algebras, associates the same function as X
does.

It is customary to denote it by XK , and to refer to it as functor obtained from
X extending scalars through K/k. If Y is another functor from the category of
commutative k-algebras to the category of sets, and ζ is a natural transformation
from X to Y, then there exists a unique natural transformation from XK to
YK that to any K-algebra R associates the map that is associated to R with
its structure of k-algebra by ζ. We will refer to it as the natural transformation
obtained from ζ extending scalars through K/k. Of course, if X is a subfunctor
of Y, then XK is a subfunctor of YK and the inclusion of XK into YK is the
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map obtain from the inclusion of X into Y extending scalars through K/k. In
another direction, if X is an affine algebraic set over k, then XK is an affine
algebraic set over K. More precisely, if A is a finitely generated k-algebra and
η is a natural isomorphism from Hom(A, •) to X, then K ⊗A together with its
canonical structure of K-algebra is finitely generated, and there exists a natural
isomorphism from Hom(K ⊗A, •) to XK that to every K-algebra R associates
the map given by composition of

Hom(K ⊗A,R)→ Hom(A,R)→ X(R),

where in the sets in the center and on the right R is meant to be equipped with
its structure of k-algebra described above, the map on the left is the canonical
bijection, and the map on the right is the one that is associated to R – regarded
as a k-algebra – by η. If this is the case, we will refer to XK as the affine algebraic
set over K obtained from X extending scalars through K/k. Of course, if also Y
is an affine algebraic set over k – and therefore ζ is a morphism of affine algebraic
sets over k – then the natural transformation obtained from ζ extending scalars
through K/k is a morphism of affine algebraic sets over K. If this is the case,
we will refer to it as the morphism obtained from ζ extending scalars through
K/k. Similarly, if G is a functor from the category of commutative k-algebras
to the category of groups, then there exists a unique functor from the category
of commutative K-algebras to the category of groups that

• to every K-algebra R, associates the group that G associates to R together
with its structure of k-algebra obtained from its structure of K-algebra
by restriction of scalars through K/k, and that

• to every morphism f of K-algebras, associates the same group morphism
as G does.

It is customary to denote it by GK , and to refer to it as functor obtained from
G extending scalars through K/k. If H is another functor from the category
of commutative k-algebras to the category of groups, and ζ is now a natural
transformation from G to H, then there exists a unique natural transformation
from GK to HK that to any K-algebra R associates the map that is associated
to R with its structure of k-algebra by ζ. We will refer to it as the natural
transformation obtained from ζ extending scalars through K/k. Regarded as a
functor from the category of commutative K-algebras to the category of sets,
GK is the functor obtained from G, regarded as a functor from the category
of commutative k-algebras to the category of sets, extending scalars through
K/k. In the same way, regarded as a natural transformation between functors
from the category of commutative k-algebras to the category of sets, the natural
transformation obtained from ζ, regarded as a natural transformation between
functors from the category of commutative k-algebras to the category of sets,
extending scalars through K/k. It follows that if G is an affine algebraic group
over k, then GK is an affine algebraic group over K. If this is the case, we
will refer to it as the affine algebraic group obtained from G extending scalars
through K/k. In addition, if H is an affine algebraic group over k – hence ζ is
a morphism of affine algebraic groups over k – then the natural transformation
obtained from ζ extending scalars through K/k is a morphism of affine algebraic
groups over K. We will refer to it as the morphism obtained from ζ extending
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scalars through K/k. Also, if G is an algebraic subgroup of H, then GK is an
algebraic subgroup of HK .

Now let V be a finite dimensional k-vector space. Of course, K ⊗V with its
canonical structure of K-vector space is finite dimensional. Also, there exists
an isomorphism of affine algebraic groups over K from • ⊗ (K ⊗ V ) to (• ⊗
V )K that to any K-algebra R associates the canonical isomorphism from R⊗K
K ⊗k V to R ⊗k V , where in the second tensor product R is meant to be
equipped with its structure of k-algebra. Further, there exists an isomorphism
from GLK⊗V to (GLV )K that to every K-algebra R associates the map sending
every automorphism f of R⊗K K ⊗k V to the map given by composition of

R⊗k V → R⊗K K ⊗k V
f−→ R⊗K K ⊗k V → R⊗k V ,

where the maps on the left and on the right are the canonical isomorphism
between R⊗K K ⊗k V and R⊗k V .

1.7 Tangent spaces

Let k be a field, k[ε] a k-algebra generated by an element ε such that ε2 = 0,
and let ϕ denote the morphism from k[ε] to k sending ε to 0. If G is an affine
algebraic group over k, its tangent space is the kernel of the group morphism
that G associates to ϕ. Also, if A is a finitely generated commutative k-algebra,
η is a natural isomorphism from Hom(A, •) to G, and ε is the morphism from
A to k corresponding through η to the identity of G(k), then there exists a
map from the k-vector space Derε(A, k) of ε-derivations of A to k, going to
the tangent space of G and sending any derivation δ to the element of G(k[ε])
corresponding through η to

A→ k[ε] a 7→ ε(a) + δ(a)ε,

and it is a bijection. Therefore there exists a unique structure of k-vector space
on the tangent space of G such that the previous bijection is an isomorphism
of k-vector spaces, and it turns out that it is independent from the choice of
A and η. We will refer to it as the standard structure of k-vector space of G.
With respect to it, the tangent space is finite dimensional. Also, we will refer
to the previous isomorphism as the canonical isomorphism with respect to η. If
H is another affine algebraic group over k and f is a morphism from G to H,
then the map that f associates to k[ε] sends elements in the tangent space of G
to elements in the tangent space of H. In this way, we obtain a map from the
tangent space of G to the tangent space of H. We will refer to it as the map
associated to f . It turns out that it is a linear transformation.

If ψ is a morphism from A to k, a universal ψ-differential of A is a ψ-
derivation δ from A to a k-vector space ΩA such that for any other k-vector
space V and any ψ-derivation δ′ from A to V there exists a unique linear trans-
formation λ from ΩA to V such that

A
δ //

δ′   A
AA

AA
AA

A ΩA

λ

��
V
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is commutative. Universal ψ-differentials always exist, and of course they are
unique up to isomorphisms. In particular, if A is the symmetric algebra on a
finite dimensional k-vector space V , then there exists a unique ψ-derivation from
A to V sending any x ∈ V to itself, and it turns out that it is universal. We refer
to it as the canonical universal ψ-differential of A with codomain V . In another
direction, if δ is a universal ψ-differential of A with codomain ΩA, then there
exists a function from Derψ(A, k) to the dual Ω∗A of ΩA sending any derivation
δ′ to the unique form λ on ΩA such that δ′ = λ ◦ δ, and it is an isomorphism of
k-vector spaces. We will refer to it as the canonical isomorphism. In particular,
if δ is a universal ε-differential of A with codomain ΩA, then composing the
canonical isomorphism from the tangent space of G to Derε(A, k) with respect
to η with the canonical isomorphism from Derε(A, k) to Ω∗A, we obtain another
isomorphism. Again, we will refer to it as the canonical isomorphism.

1.8 Lie algebras and differentials

There are various way to build a functor from the category of affine algebraic
groups over Q to the category of finite dimensional Lie algebras over Q. However,
it turns out that these functors are all naturally isomorphic. Then it makes sense
to refer to the image of an affine algebraic group G through one of these functors
as the Lie algebra of G. It is customary to denote it by g. Also, we will use
to denote the Lie algebra of H by h, and so on. Finally, if ϕ is a morphism of
algebraic groups from G to H, then we will refer to the associated morphism
of Lie algebras from g to h as the differential of ϕ, and we will denote it by
dϕ. If G is connected, then this functorial correspondence has many useful
properties. In fact, it turns out that the Lie algebra of the kernel N of ϕ is
precisely the kernel of dϕ, and that the differential of the inclusion of N into
G is the inclusion of n into g. Similarly, the Lie algebra of the image K of ϕ
is precisely the image of dϕ, and the differential of the inclusion of K into H
is the inclusion of k into h. Also, the Lie algebra of the trivial algebraic group
is the trivial Lie algebra, and for any finite dimensional Q-vector space V , the
Lie algebra of GLV is gl(V ). In particular, if G acts on V , then the differential
of the corresponding morphism from G to GLV is a morphism of Lie algebras
from g to gl(V ), which in turns corresponds to an action of g on V . We will
refer to it as the differential of the action of G on V . We have that a vector x
in V is fixes under the action of G if and only if it is fixed under the action of g.
Similarly, a subspace W of V is stable under the action of G if and only if it is
under the action of g. If this is the case, the differentials of the induced actions
of G on W and on V/W are the induced actions of g on W and on V/W . If G
also acts on V ′, then the differential of the action of G on V ⊕ V ′ is the direct
sum of the action of g on V and on V ′ given by the differentials of the actions
of G on V and on V ′.

Now let G be a connected affine algebraic group over Q, A be a finitely
generated Q-algebra, η a natural isomorphism from Hom(A, •) to G, and ι a
monomorphism from G to some GLV . Also, let us denote by S the symmet-
ric algebra on the dual of End(V ). By Yoneda lemma there exists a unique
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morphism of algebras ϕ from S to A such that

Hom(A, •)
]◦ϕ //

η

��

Hom(S, •)

��
G // End(• ⊗ V )

is commutative, where the bottom row is the composition of ι with the inclusion
of GLV into End(•⊗ V ), and the right column is the canonical natural isomor-
phism. Let f1, . . . , fn be a finite set of generators for the kernel of ϕ, and let
x1, . . . , xm be a basis for V . Also, let us denote by Q[X̂] the polynomial algebra
with rational coefficients in the indeterminates Xij , where i and j are between 1
and m. Then the isomorphism from S to Q[X̂] with respect to x1, . . . , xm sends
f1, . . . , fn to polynomials in Q[X̂]. Let us denote by df1, . . . ,dfn their differ-
entials. Since their are homogeneous polynomials of degree one, their images
through the isomorphism between Q[X̂] and S are in End(V )∗, and it makes
sense to consider their orthogonal space g, which is of course a subspace of
End(V ). It turns out that it is the unique sub-Lie-algebra of gl(V ) such that g
is the Lie algebra of G and that the inclusion of g into gl(V ) is the differential
of ι. In particular, in this setting it is easy to compute the subspace W of V
consisting of the vectors fixed under the action of G on V corresponding to ι.
In fact, if x1, . . . , xm is any set of endomorphisms of V forming a basis of g,
then W is the intersection of the kernels of the xi.

1.9 Unipotent affine algebraic groups over Q
An affine algebraic group G over Q is unipotent if every non-zero linear rep-
resentation admits a non-zero fixed vector. If this is the case, G is connected.
Also, any linear representation of G on a finite dimensional vector space V
admits a flag, that is to say, a chain

0 = V0 ≤ · · · ≤ Vi ≤ · · · ≤ Vm = V

of subspaces of V which are G-stable and such that the vectors in the Vi+1
Vi

are
fixed under the action of G on the V

Vi
. The integer m is called the length of the

flag. Otherwise stated, the image of any morphism of algebraic groups from G
to GLV consists of unipotent automorphisms.

Of course it makes sense to consider the full subcategory of the category of
the affine algebraic groups over Q whose objects are just the unipotent algebraic
groups. We will refer to it as the category of unipotent affine algebraic groups
over Q. It is not hard to see that it is closed under subobjects and quotient
objects. In a similar way, we have at hand the category of the nilpotent finite
dimensional Lie algebras over Q, that is to say, the full subcategory of the
category of the finite dimensional Lie algebras over Q whose objects are the
nilpotent Lie algebras. Again, it is closed under subobjects and quotient objects.
Also, if an affine algebraic group over Q is unipotent, then its Lie algebra is
nilpotent. Therefore we have at hand a functor from the category of unipotent
affine algebraic groups over Q to the category of nilpotent finite dimensional
Lie algebras over Q, sending any algebraic group to its Lie algebras and any
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morphism to its differential. It turns out that it is an equivalence between the
two categories. As a functor from nilpotent finite dimensional Lie algebras over
Q to affine algebraic sets over Q, a quasi-inverse sends any Lie algebra g to the
algebraic set • ⊗ g corresponding to g – regarded as a finite dimensional vector
space over Q – and acts in the obvious way on the morphisms. Also, if G is a
unipotent algebraic subgroup of some GLV and g is the unique sub-Lie-algebra
of gl(V ) such that g is the Lie algebra of G and the inclusion of g into gl(V )
is the differential on the inclusion of G into GLV , then g consists of nilpotent
endomorphisms, and the natural isomorphism from G to •⊗g sends any rational
point g of G to its logarithm, that is to say, to

∞∑
i=1

(−1)i−1 1
i!

(g − idV )i ,

while its inverse sends any element x of g to its exponential, that is to say, to

∞∑
i=0

1
i!
xi.

Of course the functions are well-defined since both sums have only finitely many
non-zero terms. Usually, we will denote the logarithm of g by log(g), and the
exponential of x by exp(x). As a corollary of the previous results, note that if
G and Q are both unipotent affine algebraic groups over Q, then the image of
the rational points of G through any epimorphism of algebraic groups from G
to Q is the whole group of the rational points of Q.

1.10 Groups of multiplicative type

Let k be a perfect field. We say that a linear representation of an affine algebraic
group G over k on a finite dimensional k-vector space V is diagonalizable if V is
the sum of its one dimensional G-stable subspaces, and that G is diagonalizable
if every linear representation of G on the finite dimensional k-vector spaces
is. We will refer to the full subcategory of the category of affine algebraic
groups over k whose objects are the diagonalizable groups as the category of
the diagonalizable affine algebraic groups over k. We have that it is closed under
subobjects and quotient objects. Also, if M is a finitely generated abelian group,
then there exists a unique affine algebraic group Hom(M, •×) over k that

• to every algebra R, associates the group Hom(M,R×) of the group mor-
phisms from M to the group of units R× of R, and that

• to every morphism f from R to S, associates

Hom(M,R×)→ Hom(M,S×) g 7→ f ◦ g.

We have that Hom(M, •×) is a diagonalizable affine algebraic group. Further,
if N is another finitely generated abelian group and ϕ is a morphism from M to
N , then there exists a morphism ]◦ϕ from Hom(N, •×) to Hom(M, •×) sending
any algebra R to

Hom(N,R×)→ Hom(M,R×) ψ 7→ ψ ◦ ϕ.
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Finally, there exists a contravariant functor from the category of finitely gen-
erated abelian groups to the category of diagonalizable affine algebraic groups
over k such that

• sends any abelian group M to Hom(M, •×), and that

• sends any morphism ϕ from M to N to ] ◦ ϕ,

and we have that it is an anti-equivalence of categories.
Now let k be an algebraic closure of k. We say that an affine algebraic group

G over k is of multiplicative type if Gk is diagonalizable. The full subcategory of
the affine algebraic groups over k whose objects are the groups of multiplicative
type is closed under subobjects and quotient objects. Also, let us denote by Γ
the Galois group of k/k. A Γ-module M is affine if it is finitely generated as
an abelian group, and if there exists a finite Galois extension F of k contained
in k such that the kernel of the action of Γ on M is contained in the kernel
of the canonical epimorphism from Γ to the Galois group of F/k. If this is
the case, then F is called a field of definition for M . We will refer to the full
subcategory of the Γ-modules whose objects are the affine Γ-modules as the
category of affine Γ-modules. Again, it is closed under subobjects and quotient
objects. If R is a commutative k-algebra, then there exists a unique action of Γ
on the group (R⊗ k)× of units of R⊗ k such that the product of γ ∈ Γ and of
x ⊗ α ∈ (R ⊗ k)× is x ⊗ γ(α). We will refer to it as the standard structure of
Γ-module on (R ⊗ k)×. If M is an affine Γ-module, then there exists an affine
algebraic group Hom(M, (• ⊗ k)×) over k such that

• sends every algebra R to the group Hom(M, (R ⊗ k)×) of morphisms of
Γ-modules from M to (R ⊗ k)× together with its standard structure of
Γ-module, and that

• sends every morphism f from R to S to

Hom(M, (R⊗ k)×)→ Hom(M, (S ⊗ k)×) g 7→ f ◦ g,

where f is obtained from f extending scalars to k.

If ϕ is a morphism from M to another Γ-module N , then there exists a morphism
]◦ϕ from Hom(N, (•⊗k)×) to Hom(M, (•⊗k)×) that to any algebra R associates

Hom(N, (R⊗ k)×)→ Hom(M, (R⊗ k)×) ψ 7→ ψ ◦ ϕ.

Further, there exists a contravariant functor from the category of affine Γ-
modules to the category of affine algebraic groups over k of multiplicative type
that

• to any module M associates Hom(M, (• ⊗ k)×), and that

• to any morphism f associates ] ◦ f ,

and we have that it is an anti-equivalence of categories. Also, we say that an
affine algebraic group G over k is a torus if it is isomorphic to Hom(M, (•⊗k)×)
for some torsion-free Γ-module M . If k has characteristic 0, then a group of
multiplicative type is a torus if and only if it is connected. In another direction,
let M be an affine Γ-module, F a field of definition for M , R a k-algebra, and
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let us denote by G the Galois group of F/k. Also, let RG denote the cartesian
product of copies of R indexed by elements in G, together with its standard
structure of ring and with the structure of F -algebra given by

α(xg)g = (g(α)xg)g

for every α ∈ F and (xg)g in the cartesian product of |G| copies of R. Then

G× (RG)× → (RG)× (ĝ, (xg)g) 7→ (xgĝ)g

is an action, and in this way

ϕ : (R⊗ F )× → (RG)× x⊗ α 7→ (g(α)x)g

is an isomorphism of G-modules, with respect to the standard structure of G-
module of (R ⊗ F )×. Also, there exists a morphism from Hom(M,R×) to the
group HomG(M, (RG)×) of morphisms of G-modules from M to (RG)×, sending
f to the map which in turn sends any x to (f(gx))g. Composing it with

HomG(M, (RG)×)→ HomG(M, (R⊗ F )×) f 7→ ϕ−1 ◦ f ,

we obtain an isomorphism from Hom(M,R×) to HomG(M, (R⊗F ))×. It turns
out that the set of these maps over the k-algebras is even an isomorphism of
affine algebraic groups over k between Hom(M, (•⊗k)×)k and Hom(M, •×). We
will refer to it as the canonical isomorphism. If N is another affine Γ-module,
and f is a morphism from N to M , then

Hom(M, (• ⊗ k)×)k //

��

Hom(N, (• ⊗ k)×)k

��
Hom(M, •×)

]◦f // Hom(N, •×)

is commutative, where the columns are the canonical isomorphisms and the top
row is the map obtained from ] ◦ f extending scalars to k.

Now let D be a finite dimensional commutative and semisimple k-algebra,
let us denote by X the set of morphisms from D to k, and by Z[X] the free
abelian group with basis X. Then there exists a unique action of Γ on Z[X]
such that the product of γ ∈ Γ and of x ∈ X is the morphism from D to k given
by composition of x and γ. We refer to it as the standard structure of Γ-module
on Z[X]. If F is the splitting field of D into k, then we have that the kernel of
the action of Γ on Z[X] is contained in the kernel of the canonical projection of
Γ onto the Galois group G of F/k. Therefore on one hand we obtain that Z[X]
is a torsion-free affine Γ-module, and on the other hand we have that Z[X] is
endowed with a structure of G-module. We refer to it as the standard structure
of G-module on Z[X]. Also, there exists an isomorphism from (• ⊗ D)× to
Hom(Z[X], (• ⊗ k)×) that to any algebra R associates the map that sends any
unit u of R⊗D to

Z[X]→ (R⊗ k)× x 7→ x(u),

where x is the map obtained from x extending scalars to R. We refer to it as
the canonical isomorphism. In particular, it follows that (• ⊗ D)× is a torus.
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Further, there exists a unique isomorphism of affine algebraic groups ζ over k
from Hom(Z[X], •×) to (• ⊗ k ⊗D)× such that

Hom(Z[X], (• ⊗ k)×)k //

��

(• ⊗D)×
k

��
Hom(Z[X], •×)

ζ // (• ⊗ k ⊗D)×

is commutative, where the top row is the isomorphism obtained from the canon-
ical isomorphism between Hom(Z[X], (•⊗ k)×) and (•⊗D)× extending scalars
to k and the columns are the canonical isomorphisms. Once again, we will refer
to it as the canonical isomorphism.

1.11 Vector spaces and lattices

Let V be a finite dimensional Q-vector space. A lattice L in V is a finitely
generated subgroup of V . Of course L is in particular a torsion-free abelian
group, and its rank is less or equal to the dimension of V . In particular, every
lattice admits a basis. Clearly, any basis of L consists of linearly independent
vectors of V . Also, L is called full-dimensional if the subspace generated by L
is the whole V , or, equivalently, if the rank of L is equal to the dimension of V .
If this is the case, then a basis for L is also a basis for V . If W is a subspace of
V , then L ∩W is a lattice in W , L + W/W is a lattice in V/W , and they are
full-dimensional as soon as L is.

Now let W and W ′ be two subspaces of V , V ′ another finite dimensional
Q-vector space, f a linear transformation from V to V ′, L and N two lattices in
V such that N ≤ L and L/N is torsion-free, and L′ a lattice in V ′. There exist
well known algorithms to perform very basic but extremely useful computations
with these objects. For instance, it is rather straightforward to compute the
intersection W ∩W ′ of W and W ′, the quotient V/W of V on W , the direct
sum V ⊕V ′ of V and V ′, the orthogonal W⊥ of W with respect to the canonical
bilinear form between V and its dual, as well as the kernel and the image of
f , and the anti-images of any element of V ′ through f . Here the main tool is
Gaussian elimination. Also, it is easy to compute L ⊕ L′. Instead, computing
L ∩ W , L + W/W , a complement to N in L and to test membership of an
element of V to L+W are a bit harder problems. Since W ∩L is the kernel of
the group morphism given by composition of

L→ V → V

W
,

where the letf arrow is the inclusion and the right arrow is the canonical pro-
jection, computing W ∩ L reduces to the problem of finding all the solutions
with integer coefficients of Ax = 0, where A is a m × n matrix with rational
coefficients, whose columns are the coordinates with respect to some basis of
V/W of the images of a basis for L through the map above. It is well-known
that there exist S ∈ Mm×n(Q) whose entries outside the main diagonal are 0,
Q ∈ GLn(Z), and P ∈ GLm(Q) such that S = PAQ, and they can be computed
quite easily. This is very useful, since the elements we are searching for are all
and only the Qy, where y ranges over the solutions of Sy = 0, which in turn



1.12 T -groups 19

are very easy to compute. With similar techniques, it is possible to perform all
the other considered task, too. Also, if we are given x ∈ V which is contained
in L+W , it is possible to compute y ∈ L and x′ ∈ L whose sum is x. Finally,
let x1, . . . , xm be elements of V . Then we are even able to compute the kernel
K of

Zm → V

L+W

which sends the i-th element of the canonical basis of Zm to xi for every i
between 1 and m. Indeed, let y1, . . . , yn be a basis of L. Then K is the image
through

Zm+n → Zm , (a1, . . . , am, b1, . . . , bn) 7→ (a1, . . . , am)

of the kernel of

Zm+n → V

W

which for every i between 1 and m sends the i-th element of the canonical basis
of Zm+n to xi, and for any i between 1 and n sends the i + m-th element of
the canonical basis to yi. A treatment of this kind of problems can be found for
example [Si].

1.12 T -groups

A T -group is a finitely generated, torsion-free nilpotent group. Of course exam-
ples of T -groups are the finitely generated torsion-free abelian groups, while any
T -group is in particular a polycyclic group. In particular, the Hirsch length is
an invariant of any T -group. Also, subgroups of T -groups are again T -groups,
and if a group G has a central subgroup N such that both N and G/N are
T -groups, then also G is.

It is well-known that a group G is a T -group if and only if it admits a central
series with infinite cyclic factors. We will call such a series a T -series. Of course,
the length of any T -series is an invariant for G, being equal to its Hirsch length.
Also, if G is not trivial, then we will say that a finite set of generators g1, . . . , gm
for G is a T -sequence if and only if the chain of subgroups

G = G1 ≥ · · · ≥ Gi ≥ · · · ≥ Gm+1 = 1,

where for any i between 1 and m we put

Gi = 〈gi, . . . , gm〉,

is a T -series for G. Of course, any basis of a finitely generated torsion-free
abelian group is also a T -sequence. Also, any T -sequence for a T -group is in
particular a polycyclic sequence for it. It will be convenient to extend this
terminology saying that the empty set is a T -sequence for the trivial group. For
a general discussion about T -groups, and more generally about finitely generated
nilpotent groups, see for example [Ro].
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1.13 Semisimple algebras, fields, and orders

Let k be a perfect field, and D a finite dimensional k-algebra. If V is a finite
dimensional k-vector space and α is a left action of D on V , then there exists a
morphism ρ from D to End(V ) with its standard structure of k-algebra that to
any a associates the endomorphism of V sending any x to α(a, x), and in this
way we obtain a bijection between the set of left actions of D on V and the set of
morphisms from D to End(V ). In the special case in which D is a subalgebra of
End(V ), we will refer to the left action of D on V corresponding to the inclusion
of D into End(V ) as the natural action of D. If E is another finite dimensional
k-algebra and f is a morphism from D to E, then there exists a unique action
of D on the undelying k-vector space of E sending (a, b) to the product of f(a)
and b in E. We will refer to it as the action induced by f . In the special case
in which E is actually D and f is the identity function of D, we will also refer
to it as the regular action of D. Of course, f is a morphism of D-modules with
respect to the regular action of D on itself and the action of D on E induced
by f . Further, we say that an action of D on V is diagonalizable if V is the
sum of its one-dimensional stable subspaces. If this is the case, then the action
of D on End(V ) induced by the morphism from D to End(V ) which in turn
corresponds to the action of D on V , is diagonalizable, too. If in addition W is
another finite dimensional k-vector space on which D acts in such a way that
there exists an injective morphism of D-modules from W to V , then also the
action of D on W is diagonalizable. Further, we say that D is diagonalizable if
the regular action is.

Now let K/k be a field extension. If V is a finite dimensional k-vector space
and α is an action of D on V , then the bilinear map obtained from α extending
scalars to K is an action of K ⊗ D with its standard structure of K-algebra
on K ⊗ V . Let us denote by % the morphism from K ⊗ D to End(K ⊗ V )
corresponding to it. Also, let us denote by ρ the morphism from K ⊗ D to
K ⊗ End(V ) obtained from the morphism from D to End(V ) which in turn
corresponds to α, extending scalars to K. Then

K ⊗D
% //

ρ

))SSSSSSSSSSSSSS End(K ⊗ V )

��
K ⊗ End(V )

is commutative, where the vertical arrow is the canonical isomorphism. In
particular, the canonical isomorphism between End(K ⊗ V ) and K ⊗ End(V )
is a morphism of (K ⊗D)-modules.

Now let D be commutative. We say that D is semisimple if k ⊗D is diag-
onalizable. A typical example are the finite field extensions of k. If this is the
case, there exist simple ideals E1, . . . , Em of D whose internal sum is direct and
is equal to the whole D. Also, they are unique with respect to these properties,
and they are called the decomposition of D is simple ideals. Further,

ϕ : E1 × · · · × Em → D (a1, . . . , am) 7→ a1 + · · ·+ am

is a k-algebra isomorphism with respect to the standard structure of k-algebra on
the cartesian product of the Ei. We will refer to it as the canonical isomorphism.
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For every i between 1 and m, let ei be the unique element of Ei such that
e1+· · ·+em is the identity of D. We will refer to e1, . . . , em as the decomposition
of the identity associated to E1, . . . , Em. It turns out that

e2
i = ei and eiej = 0

for every i and j between 1 and m, and i 6= j. Also, the Ei are fields, whose
identities are the ei. Further, if D acts on a finite dimensional k-vector space
V , then V is the direct sum of the images Vi of V through ei, for i between 1
and m, and there exists a unique function from the cartesian product of Ei and
Vi to Vi such that

Ei × Vi //

��

Vi

��
D × V // V

is commutative, where the bottow row is the action of D on V and the colums
are the inclusions. It is an action of Ei on Vi, which is called the induced action,
and it is faithful as soon as the action of D on V is. Therefore

E1 × · · · × Em × V1 ⊕ · · · ⊕ Vm → V1 ⊕ · · · ⊕ Vm

given by
((a1, . . . , am), (x1, . . . , xm)) 7→ (a1.x1, . . . , am.xm),

where of course ai.xi denotes the image of (ai, xi) through the action of Ei on
Vi, is an action of E1 × · · · × Em on V1 ⊕ · · · ⊕ Vm such that∏m

i=1Ei × ⊕mi=1Vi
//

ϕ×ι
��

⊕mi=1Vi

ι

��
D × V // V

where ι is the canonical isomorphism from V1 ⊕ · · · ⊕ Vm to V . A standard
reference for these facts is [DKD]. Also, there exist algorithms to compute
E1, . . . , Em given D, as well as to compute e1, . . . , em. See for example [EG].

Now let E be a number field, that is to say, a finite dimensional Q-algebra
which is also a field. It is easy to see that the torsion subgroup of the group
of units of the ring of integers OE of E is cyclic. Also, Dirichlet unit theorem
asserts that the torsion-free rank of the group of units of OE is equal to 1

2 (n+
r) − 1, where r is the number of morphisms of E into R and n is the number
of morphisms of E into C. In particular, the group of units of OE is finitely
generated. An order O of E is a subring of the ring of integers of E which
is also a full-dimensional lattice of E, once we regard it as a Q-vector space.
Of course, its group of units is finitely generated, too. In [PZ], Pohst and
Zassenhaus provide an algorithm that, given a number field together with an
order of its, computes a finite set of generators for the group of units of the
order. Finally, let α1, . . . , αm be non-zero algebraic integers of E. Then there
exists a unique group morphism from Zm to E× that for every i between 1 and
m sends the i-th element of the canonical basis of Zm to αi. Of course its kernel
is finitely generated. In [Ge], Ge provided an algorithm to compute a finite set
of generators for it.
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1.14 Orbits and stabilizers

Let G be a group acting on the left on a set Ω. Also, let N be a normal subgroup
of G, and ω an element in Ω. Let us denote by Ω/N the orbit space of Ω under
the action of N on Ω coming from the action of G on Ω by restriction. Since
N is normal in G, there exists a unique left action of G on Ω/N such that
the canonical projection of Ω on Ω/N is a morphism of G-sets, and it is easy
to check that N is contained in the stabilizer GNω of Nω with respect to this
action. Now let T be a transversal for GNω in G, and

S = {gλ λ ∈ Λ} for some set Λ

a subset of G such that GNω is generated by the union of S and N . Then for
every gλ in S there exists n ∈ N such that gλω = nω. For every gλ, let us
choose a nλ in N with such a property, and let us put ĝλ = gλn

−1
λ . Then it can

be shown that
Gω =

⋃
τ∈T

τNω

and that
Gω = HNω,

where H is the subgroup of G generated by the ĝλ for λ ∈ Λ.
Now let us suppose thatG is a finitely generated abelian group, that g1, . . . , gm

form a finite set of generators for it, and that the orbit of ω under G is finite. If
H is any subgroup of G, we will say that a finite subset O of Ω, a finite subset
X of G and a map β from O to H are a solution of the finite orbit and stabilizer
problem for H and ω if O is the orbit of ω under the action of H on Ω given by
restriction of the action of G on it, X is a finite set of generators for Hω, and

ω′ = β(ω′)ω

for every ω′ in O. Also, for every i between 1 and m, put

Gi = 〈gi, . . . , gm〉.

Of course, O(m+1) = {ω}, X(m+1) = ∅ and

β(m+1) : O(m+1) → Gm+1 ω 7→ 1

are a solution of the finite orbit and stabilizer problem for Gm+1 and ω. Now
let i be an integer between 1 and m, and let us suppose that O(i+1), X(i+1) and
βi+1 are a solution of the finite orbit and stabilizer problem for Gi+1 and ω.
Also, let l be the minimum positive integer l such that

gl+1
i O

(i+1) = O(i+1).

Of course it surely exists since the orbit of ω is finite. Also, let us put

O(i) =
l⋃
i=1

gjiO
i+1

and
X(i) = X(i+1) ∪ {ĝi},
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where
ĝi = gl+1

i [β(i+1)(gl+1
i ω)]−1,

and let β(i) be the map from O(i) to G(i) given by

gji ω
′ 7→ gji β

(i+1)(ω′)

for every ω′ in O(i+1) and every j between 0 and l. Also, let us denote by K
the stabilizer of Gi+1ω with respect to the action of Gi on Ω/Gi+1. Then

{1, gi, . . . , gli}

is a transversal for K in Gi, K is generated by Gi+1 and gl+1
i , and

gl+1
i ω = β(i+1)(gl+1

i ω) ω.

Therefore by the previous results we have that O(i), X(i) and β(i) are a solution
of the finite orbit and stabilizer problem for Gi and ω. Since G1 = G, this
discussion gives an algorithm for computing a finite set of generators for Gω,
which is usually called the finite orbit stabilizer algorithm. For information
about it can be found in [Ei].
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Chapter 2

The problem

In this chapter we introduce the main problem we will deal with in the next
chapters. In the first two sections, we give the notions of algebraic matrix
group and of arithmetic group, as well as an historical account of some results
concerning them. Finally, in the last two sections we will give a precise definition
of the problem, and we will justify our interest in it.

2.1 Algebraic matrix groups

Let m be an integer greater than 1. Also, let us denote by X̂ the set of inde-
terminates Xij where i and j are integers between 1 and m, and by C[X̂] the
polynomial algebra with complex coefficients in the indeterminates in X̂. If

A =

 a11 · · · a1m

...
...

am1 · · · amm

 ∈ GLm(C),

then there exists a unique morphism of C-algebras from C[X̂] to C sending any
Xij in X̂ to aij . If f is a polynomial in C[X̂], we denote by f(A) its image
through such a morphism. Also, we denote by V (f) the set of elements A in
GLm(C) such that f(A) = 0. Further, given a finite set f1, . . . , fn of polynomials
in C[X̂], we denote by V (f1, . . . , fn) the intersection of the V (fi) for all the fi
between f1 and fn.

Given a subgroup G of GLm(C), we say that G is an algebraic matrix sub-
group of GLm(C), or, more briefly, an algebraic matrix group, if there exists a
finite set of polynomials f1, . . . , fn such that

G = V (f1, . . . , fn).

If this is the case, we say that f1, . . . , fn define G. Of course, such polynomials
are in general not unique. If they can be taken with rational coefficients, then
we say that G is defined over Q.

Now let us denote by GLm the general linear group of order m over Q.
It turns out that, if G is an algebraic subgroup of GLm, then G(C) is an
algebraic matrix subgroup of GLm(C) defined over Q. More precisely, let us
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denote by Q[X̂] the polynomial algebra with rational coefficients in the set of
indeterminates X̂. Also, let us put

det =
∑
σ∈Sm

sgn(σ)X1σ(1) · · ·Xmσ(m),

where Sm is the symmetric group on {1, . . . ,m} and sgn is the sign morphism,
and let us denote by Q[X̂]det the localization of Q[X̂] at det. By hypothesis
there exist a finitely generated Q-algebra A together with a natural isomorphism
η from Hom(A, •). Further, by Yoneda lemma there exists a unique morphism
π from Q[X̂]det to A such that

Hom(A, •)
]◦π//

η

��

Hom(Q[X̂]det, •)

'
��

G // GLm

is commutative, where the bottom row is the inclusion and the right column is
the canonical isomorphism. Also, let us denote by i the kernel of the map given
by composition of

Q[X̂]→ Q[X̂]det
π−→ A,

where the left arrow is the localization map. Then i is a radical ideal, and G(C)
is defined by any finite set f1, . . . , fn of polynomials in Q[X̂] such that

i =
√

(f1, . . . , fn).

Also, the map that associates to any G its group of complex points is a bijec-
tion from the set of algebraic subgroups of GLm to the set of algebraic matrix
subgroups of GLm(C) defined over Q. These facts are a direct consequence of
Proposition 11.1 and of Theorem 2.31 of [Mi2].

2.2 Some old results

Let G be an algebraic matrix subgroup of some GLm(C) defined over Q, and
put

GQ = G ∩GLm(Q) and GZ = G ∩GLm(Z).

A subgroup Γ of GQ is an arithmetic subgroup of G if Γ ∩ GZ has finite index
in both Γ and GQ. In [BHC], Borel and Harish-Chandra proved that

Theorem 2.2.1 (Borel and Harish-Chandra, original form). Arithmetic sub-
groups of algebraic matrix groups defined over Q are finitely generated.

Later on, Grunewald and Segal proposed in [GS] to say that an algebraic
matrix group G is explicitely given if it is explicitely given a finite set of poly-
nomials with rational coefficients defining it, and, if this is the case, to say that
an arithmetic subgroup Γ of G is explicitely given if

• it is contained in GZ,

• an upper bound for the index of Γ in GZ is given, and
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• an effective procedure is given to decide, for each g ∈ GZ, whether of not
g ∈ Γ.

It should be noticed that the first requirement is not too severe. In fact,

Proposition 2.2.1. Let G be an algebraic matrix subgroup of some GLm(C)
defined over Q, and let Γ be an arithmetic subgroup of G. Then there exists
X ∈ GLm(Q) such that GX is an algebraic matrix subgroup of GLm(C) and
that ΓX is an arithmetic subgroup of GX which is contained in (GX)Z.

In the same article, improving the techniques used in [BHC] to prove Theo-
rem 2.2.1, they described an algorithm that, beginning with an explicitely given
algebraic matrix group G and an explicitely given arithmetic subgroup Γ of G,
computes a finite set of generators for Γ. As the same authors pointed out in
section “Effectiveness” of [GS], their declared aim was to show that such a com-
putation is, at least in principle, feasible, and no attempt was made to make it
as efficient as possible. And unfortunately it appears to be extremely hard to
use their algorithm in practice. Further, again Grunewald and Segal showed in
[GS2] that, apart from its intrinsic interest, an algorithm for computing a finite
set of generators of an explicitely given arithmetic subgroup of an explicitely
given algebraic matrix group defined over Q could be employed as a part of an
algorithm for testing isomorphism of finitely generated nilpotent groups.

As we did in the case of algebraic matrix groups defined over Q, it is possible
to introduce the notion of arithmetic subgroup of an affine algebraic group G
over Q. In fact, suppose that V is a finite dimensional vector space over Q on
which G acts faithfully, and that L is a full dimensional lattice of V . Then
the group G(Q) of the rational points of G acts on V , and it makes sense to
consider the normalizer of L with respect to this action. Let us denote it by GL.
Then any subgroup Γ of G(Q) such that Γ∩GL has finite index in both Γ and
GL will be called an arithmetic subgroup. This notion is both interesting and
well-defined since, on one hand, it is well known that any affine algebraic group
admits a faithful finite dimensional representation, and, on the other hand, we
have that the set of arithmetic subgroups does not depend on the choice of the
linear representation, as long as it is faithful, and of the lattice, as long as it
is full dimensional. For a proof of the latter statement, see [Mi2], expecially
Proposition 28.8. Also, algebraic matrix groups, affine algebraic groups and
their arithmetic subgroups are strictly related. In fact, by results in Section 2.1
we have that if G is an algebraic subgroup of some GLm over Q, then G(C) is
an algebraic matrix subgroup of GLm(C) defined over Q, and that in this way
we obtain a bijection between algebraic subgroups of GLm over Q and algebraic
matrix subgroups of GLm(C) defined over Q. Even more, it is easy to check
that, if we put

G = G(C),

then the group of the rational points of G is GQ, and, with respect to the natural
action of G on Qm, we have that

GZm = GZ.

This shows that the sets of arithmetic subgroups of G and of G coincide. Also, it
is well known that any affine algebraic group over Q is isomorphic to an algebraic
subgroup of some GLm over Q. Altogether, we conclude that Theorem 2.2.1 is
equivalent to
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Theorem 2.2.2 (Borel and Harish-Chandra, alternative form). Arithmetic sub-
groups of affine algebraic groups over Q are finitely generated.

2.3 Explicitely given algebraic actions

Let G be an affine algebraic group over Q acting faithfully on a finite dimensional
Q-vector space V . The action corresponds to a monomorphism of algebraic
groups from G into GLV . Composing it with the isomorphism between GLV and
(•⊗End(V ))×, and then with the inclusion of (•⊗End(V ))× into •⊗End(V ),
we obtain a natural transformation from G to • ⊗ End(V ). Also, let us denote
by S the symmetric algebra on the dual of End(V ). We say that a finitely
generated commutative Q-algebra A together with a natural isomorphism η
from Hom(A, •) to G and a morphism of algebras ϕ from S to A are shadow
data for G and its action on V if

Hom(A, •)
]◦ϕ //

η

��

Hom(S, •)

��
G // • ⊗ End(V )

is commutative, where the right column is the canonical natural isomorphism
and the bottom row is the previously constructed natural transformation. Shadow
data exist and are essentially unique. In fact, the Q-algebra A and the natural
transformation η always exist by definition of affine algebraic group over Q and,
once they have been fixed, by Yoneda lemma there exists a unique morphism
of algebras π such that A, η and π are shadow data for G and its action on V .
Also, if a Q-algebra A′, a natural isomorphism η′ and a morphism of algebras
π′ form another shadow data for G and its action on V , then again by Yoneda
lemma there exists a unique isomorphism ϕ of Q-algebras from A to A′ such
that

Hom(A′, •)
]◦ϕ //

η′
%%JJJJJJJJJJ

Hom(A, •)

η
zzttt

ttt
ttt

t

G

and
S

π

����
��

��
�

π′

  @
@@

@@
@@

@

A
ϕ // A′

are commutative.
Now suppose that the algebra A, the natural transformation η and the mor-

phism of algebras π are shadow data for G and its action on V . Note that,
given a morphism f from S to another Q-algebra R together with the element x
of R ⊗ End(V ) corresponding to f through the canonical natural isomorphism
between • ⊗ End(V ) and Hom(S, •), then x is contained in the image of G(R)
through the natural transformation from G to • ⊗ End(V ) if and only if there
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exists a morphism f ′ from A to R such that

S
ϕ //

f ��?
??

??
??

A

f ′

��
R

is commutative and, if this is the case, then f ′ is unique and η sends it to the
unique element of G(R) whose image in R ⊗ End(V ) is x. We say that the
shadow data A, η and ϕ are given explicitely if they are known to the extent
that enables us to compute

• a finite set of generators for the kernel of ϕ,

• for any algebra R and any x ∈ Hom(A,R), the element of G(R) corre-
sponding to x through η, and,

• for any algebra R and any morphism f from S to R such that there exists
a morphism f ′ from A to R such that f = f ′ ◦ ϕ, the morphism f ′ itself.

As a prototypical example, suppose that G is an algebraic subgroup of some
GLm with its natural action on Qm. Also, let Q[X̂], det and Q[X̂]det be as
in Section 2.1, let j be an ideal of Q[X̂]det and η a natural isomorphism from
Hom(A, •) to G such that

Hom(A, •)
]◦π//

η

��

Hom(Q[X̂]det, •)

��
G // GLm

is commutative, where A = Q[X̂]det/j, π is the projection of Q[X̂]det onto A,
the bottom row is the inclusion, and the right column is the canonical natural
isomorphism. By Yoneda lemma, j and η exist and are unique. Also, let S now
denote the symmetric algebra on the dual of End(Qm), and let us denote by ϕ
the map given by composition of

S → Q[X̂]→ Q[X̂]det
π−→ A,

where the arrow on the left is the isomorphism with respect to the canonical
basis of Qm and the central arrow is the localization map. Then it is easy to
check that A, η and ϕ are shadow data for G and its action on Qm. In addition,
if we have at hand a finite set of generators f1, . . . , fn for the contraction of
j throught the localization map from Q[X̂] to Q[X̂]det, then the shadow data
are explicitely given. Indeed, the images of f1, . . . , fn through the isomorphism
between S and Q[X̂] with respect to the canonical basis of Qm form a finite set of
generators for the kernel of ϕ. Also, for any algebra R and any x ∈ Hom(A,R),
the image of x through η is the image throught the canonical isomorphism
between Hom(Q[X̂])det, •) and GLm of the map given by composition of

Q[X̂]det → A
x−→ R,
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where the left arrow is the canonical projection. Further, let us denote by
e1, . . . , em the canonical basis of Qm, and for every i and j between 1 and m, by
eij the unique endomorphism of Qm sending ei to ej and all the other elements
of the canonical basis of Qm to 0. Of course, the set of the eij for i and j
between 1 and m is a basis for End(Qm). Let us denote by e∗ij the elements of
the basis for End(Qm)∗ which is dual to it. Then it is easy to check that for
every algebra R and every morphism f from S to R such that there exists a
morphism f ′ from A to R with f = f ′ ◦ ϕ, f ′ is the unique morphism sending
Xij + j to f(eij) for any i and j between 1 and m, and the inverse of det + j to
the inverse of ∑

σ∈Sm

sgn(σ)f(e1σ(1)) · · · f(emσ(m)),

where Sm is the symmetric group of {1, . . . ,m} and sgn is the sign morphism.
Finally, suppose that A, η and ϕ are explicitely given. If we are given an

element x in R⊗End(V ) which is known to be contained in the image of G(R)
through the natural transformation from G to • ⊗ End(V ), then it is possible
to compute the element of G(R) whose image in R ⊗ End(V ) is x. In fact, we
already noticed that the morphism f from S to R corresponding to x through
the canonical isomorphism between Hom(S, •) and • ⊗End(V ) factors through
ϕ. In our hypothesis, we can compute the morphism f ′ from A to R such that
f = f ′ ◦ ϕ and, in turn, the element of G(R) corresponding to it through η,
which is of course the element we were searching for.

2.4 The problem we are concerned about

The problem of computing a finite set of generators for an explicitely given
arithmetic subgroup of an explicitely given algebraic matrix group defined over
Q admits as a special case the problem of computing a finite set of generators
for GZ starting from an algebraic matrix group G defined over Q. Therefore
the algorithm by Grunewald and Segal described in Section 2.2 is in particular
a solution to the latter problem. Unfortunately, it turns out that it is not
practical even in this particular case. Also, it should be noticed that the former
problem is actually only slightly more difficult than the latter. In fact, let Γ be
an explicitely given arithmetic subgroup of an algebraic matrix group G defined
over Q, let g1, . . . , gn be a finite set of generators for GZ, d an upper bound for
the index of Γ in GZ, and put

W = {w(g1, . . . , gn) | w is a word in n symbols of length at most d} .

It is well-known that W contains a transversal for Γ in GZ. Also, let us choose
an order on W and for every element, starting from the smallest and proceding
toward the biggest, let us check if it is in the same coset of GZ with respect
to Γ of a smaller element of W and, if this is the case, let us through it away.
Clearly enough, the remaining elements form a transversal T for Γ in GZ. Of
course, in order to check if two elements w and w′ of W are in the same coset,
it is enough to check if w−1w′ is in Γ. Therefore, being Γ explicitely given, we
can compute T effectively. Further, let us consider the set X of elements of the
form

tgiτ
−1,
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where t ∈ T , i is between 1 and n, and τ is the unique element of T lying in the
same coset in which tgi lies. With techniques similar to those used to compute
T , it is possible to compute X effectively. Further, by Schreier lemma, X is a
finite set of generators for Γ. Therefore a practical algorithm solving the latter
problem is likely to lead to a practical algorithm solving the former problem.

In view of Theorem 2.2.2, it makes sense to ask whether there exists an
algorithm that, beginning with an affine algebraic group G over Q together with
a faithful action on a finite dimensional Q-vector space V , a full-dimensional
lattice L of V and with explicitely given shadow data for G and its action on
V , computes a finite set of generators for the normalizer GL of L with respect
to the action of G(Q) on V . It turns out that the answer is affirmative. In fact,
such a problem is equivalent to that of computing a finite set of generators for
GZ starting from an explicitely given algebraic matrix group G defined over Q.
Indeed, suppose we have a solution for the latter problem. Also, let G, V and
L be as before, and suppose that the algebra A, the natural transformation η
and the morphism of algebras ϕ are explicitely given shadow data for G and
its action on V . Let us denote by m the dimension of V . Also, let x1, . . . , xm
be both a basis of V and of L. The faithful action of G on V corresponds to a
monomorphism of algebraic groups from G into GLV . Composing it with the
isomorphism between GLV and GLm with respect to x1, . . . , xm, we obtain a
monomorphism of algebraic groups from G to GLm. Let us denote by G′ its
image, and by ξ the unique isomorphism of algebraic groups from G to G′ such
that

G //

ξ

��

GLm

G′

<<yyyyyyyy

is commutative, where the horizontal arrow is the previously constructed monomor-
phism of algebraic groups, and the diagonal arrow is the inclusion. Also, let
Q[X̂], det and Q[X̂]det be as in Section 2.1. By Yoneda lemma, there exists a
unique morphism of algebras π from Q[X̂]det to A such that

Hom(A, •)
]◦π //

ξ◦η
��

Hom(Q[X̂]det)

��
G′ // GLm

is commutative, where the bottow row is the inclusion and the right column
is the canonical natural isomorphism. Also, let us denote by S the symmetric
algebra on the dual of End(V ), and by i the algebras isomorphism from Q[X̂]
to S with respect to x1, . . . , xm. Then it is easy to see that

Q[X̂] //

i

��

Q[X̂]det

π

��
S

ϕ // A

is commutative, where the top row is the localization map. Let us put

G = G′(C).
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Then by results on Section 2.1, we have thatG is an algebraic matrix subgroup of
GLm(C) defined over Q by the images through the inverse of i of any finite set of
generators for the kernel of ϕ. Therefore in our hypothesis G is given explicitely,
hence we are able to compute a finite set of generators g1, . . . , gn for GZ. Of
course, any of the gi is an element of Mm(Q). Also, it is easy to check that the
endomorphism of V whose matrix with respect to x1, . . . , xm is gi, is contained
in the image of G(Q) through the natural transformation from G to •⊗End(V )
described in Section 2.3. Therefore by our assumptions we are able to compute
its preimage hi. Finally, it follows easily that the image of any hi through ξ is
gi, and therefore that h1, . . . , hn is a finite set of generators for GL. Conversely,
suppose we have at hand an algorithm solving the former problem, and that
f1, . . . , fn are explicitely given polynomials in Q[X̂] defining an algebraic matrix
subgroup G of GLm(C). By results of Section 2.1, there exists a unique algebraic
subgroup G of GLm such that G(C) = G. The canonical action of G on Qm

associates to Q an action of G(Q) on Qm. As already noticed in Section 2.2,
the normalizer of Zm with respect to it is GZ. Therefore it is enough to provide
explicitely given shadow data for G together with its action on Qm. Then,
applying the algorithm we have at hand, we will obtain a finite set of generators
for GZ. To this end, let us denote by i the radical of the ideal of Q[X̂] generated
by f1, . . . , fn, by j the extension of i through the localization map from Q[X̂] to
Q[X̂]det, and let us put A = Q[X̂]det/j. Since the contraction of j through the
localization map from Q[X̂] to Q[X̂]det is again i, by results of Section 2.1 we
have that there exists a unique natural transformation η from Hom(A, •) to G
such that

Hom(A, •)
]◦π//

η

��

Hom(Q[X̂]det, •)

��
G // GLm

is commutative, where π is the projection of Q[X̂]det onto A, the bottom row is
the inclusion, and the right column is the canonical natural isomorphism. Also,
η is a natural isomorphism. Let S now denote the symmetric algebra on the
dual of End(Qm). By results of Section 2.3 we have that A and η together with
the map ϕ given by composition of

S → Q[X̂]→ Q[X̂]det → A,

where the left arrow is the isomorphism with respect to the canonical basis
of Qm, the central arrow is the localization map and the right arrow is the
canonical projection, are shadow data for G and its action on Qm. Also, there
exist well-known algorithms for computing a finite set of generators for i starting
from f1, . . . , fn. For references, see [BW]. Therefore, again by results of Section
2.3, the shadow data are given explicitely.

Altogether, results of this section and of Section 2.2 should convince that
providing a practical algorithm that, beginning with an affine algebraic group
G over Q together with a faithful action on a finite dimensional Q-vector space
V , a full-dimensional lattice L of V and with explicitely given shadow data for
G and its action on V , computes a finite set of generators for the normalizer
GL of L with respect to the action of G(Q) on V , is an interesting problem. In
the next two chapters, we will solve it in two special cases.



Chapter 3

The unipotent case

In this chapter we provide an algorithm solving the problem described in Chap-
ter 2 in the special case in which the given algebraic group is unipotent. The
first five sections are devoted to prove some auxiliary results, which are used
in Section 3.6 to provide, on one hand, an independent proof of the theorem
2.2.2 in the special case of the unipotent groups, and, on the other hand, to
describe the algorithm and to prove its correctness. The last section gives some
evidences about the practicality of the algorithm.

3.1 Lattices and complements

Let V be a finite dimensional vector space over Q and L a full-dimensional
lattice of V .

Lemma 3.1.1. The function from the set of pure subgroups of L to the set
of subspaces of V sending any pure subgroup M to the subspace 〈M〉Q of V
generated by M is bijective, and its inverse sends any subspace W on V to
W ∩ L. Given subgroups M and M ′,

〈M ∩M ′〉Q = 〈M〉Q ∩ 〈M ′〉Q and 〈M +M ′〉Q = 〈M〉Q + 〈M ′〉Q.

Proof. It is immediate to show that for any subspace W of V , W ∩ L is a pure
subgroup of L. Therefore the two functions are well-defined. Now suppose
that M is any subgroup of V . Then an easy argument shows that 〈M〉Q/M is
precisely the torsion subgroup of V/M . This fact has many useful consequences.
As a first thing, let us suppose that M is a subgroup of L. Then 〈M〉Q∩L/M is
the intersection of the torsion subgroup of V/M with L/M , that is to say, it is
the torsion subgroup of L/M . In particular, if M is a pure subgroup of L, then
it is equal to 〈M〉Q ∩ L. Secondly, let us consider a subspace W of V . Then

〈W ∩M〉Q = W ∩ 〈M〉Q.

It is easy to see that the former subspace is included in the latter. To prove the
reverse inclusion, it is enough to show that

W ∩ 〈M〉Q
W ∩M
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is a torsion group. This is easy recalling that 〈M〉Q/M is. In particular, 〈W∩L〉Q
is equal to W . Together, these two facts show that the functions we built are
one the inverse of the other. A proof of the remaining two equalities can be
given with similar arguments.

Now suppose that U and W are subspace of V , and that U ≤ W . Then
there exist a complement U ′ of U and a complement W ′ of W in V such that

W ′ ≤ U ′ , (U ∩ L) + (U ′ ∩ L) = L and (W ∩ L) + (W ′ ∩ L) = L.

In fact, by Lemma 3.1.1 we have that W ∩ L is a pure subgroup of L, hence it
admits a complement M in L. Similarly we have that L∩U is a pure subgroup of
L, thus it is also a pure subgroup of W∩L, and therefore it admits a complement
in W ∩L. Let us denote by M ′ the internal sum of M with such a complement.
Of course, M ≤ M ′ and M ′ + (U ∩ L) = L. Also, it is easy to see that
M ′ ∩ (M + (U ∩ L)) = M . In turn, applying Dedekind modular law, we have
that M ′ ∩ (U ∩ L) ≤ M . Since M ′ ∩ (U ∩ L) is also contained in W ∩ L, it is
the zero submodules. Therefore M ′ is a complement of U ∩ L in L. Exploiting
again Lemma 3.1.1 it is easy to see that we can choose 〈M ′〉Q as U ′ and 〈M〉Q
as W ′.

3.2 A lemma on T -groups

Let n be a strictly positive integer. For any non-zero x = (x1, . . . , xn) in Zn, let
us define its height as the minimum j between 1 and n such that xj 6= 0, and its
leading coefficient as xj , where j is its height. Also, let A be an abelian group,
and let a1, . . . , an ∈ A. Then there exists a unique morphism of groups from Zn
sending the i-th element of the canonical basis of Zn to ai for any i between 1
and n. We will refer to its kernel L as the relation lattice for a1, . . . , an. Further,
given a basis x(1), . . . , x(m) of L, we say that it is in Hermite normal form if

x
(1)
1 · · · x

(1)
n

...
...

x
(m)
1 · · · x

(m)
n

 ∈Mm×n(Z)

is, where
x(i) = (x(i)

1 , . . . , x(i)
n ).

This means that there exist

1 ≤ i1 < · · · < im ≤ n

such that
x

(j)
i = 0

for all j = 1, . . . ,m and all 1 ≤ i < ij , and that

0 ≤ x(k)
ij

< x
(j)
ij

for every 1 ≤ k < j ≤ m. If this is the case, the i1, . . . , im are unique, and they
are the only possible heights of the non-zero elements in L. We will refer to
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them as the heigths of x(1), . . . , x(m). Also, if a non-zero x in L has height ij ,
then its leading coefficient is a non-zero multiple of x(j)

ij
. Finally, note that it

is well-known that L admits a unique basis in Hermite normal form, and that
there exists well-known algorithm to compute it beginning from any finite set
of generators for L. For more details, see for example [Si].

Lemma 3.2.1. Let G be a T -group, A an abelian group, and let ϕ be a group
morphism from G to A. Further, let g1, . . . , gn be a T -sequence for G, and let
x(1), . . . , x(m) be the basis in Hermite normal form for the relation lattice of
ϕ(g1), . . . , ϕ(gn). For any j between 1 and m, set

kj = g
x
(j)
1

1 · · · gx
(j)
n
n .

Then k1, . . . , km is a T -sequence for the kernel of ϕ.

Proof. Let us set

Gi = 〈gi, . . . , gn〉 for i between 1 and n, and Gn+1 = 1.

Also, set

Ki = 〈ki, . . . , km〉 for i between 1 and m, and Km+1 = 1.

Now let us denote by i1, . . . , im the heights of x(1), . . . , x(m). Also, it is conve-
nient to set

i0 = 0 and im+1 = n+ 1.

Then it is enough to prove that for every j between 1 and m + 1, and every l
between ij−1 + 1 and ij ,

kerϕ ∩Gl = Kj .

Indeed, suppose that the previous equalities hold. Recall that

G = G1 ≥ · · · ≥ Gi ≥ · · · ≥ Gm+1 = 1

is a central series for G with infinite cyclic factors. Then

K1 = kerϕ ∩Gi0+1 = kerϕ ∩G1 = kerϕ ∩G = kerϕ.

Also, for every j between 1 and m+ 1, Gij is normal in G, hence

Kj = kerϕ ∩Gij E kerϕ ∩G = kerϕ.

This shows that

K = K1 ≥ · · · ≥ Ki ≥ · · · ≥ Km+1 = 1

is a normal series for kerϕ. Further, for every j between 1 and m, the map given
by composition of

kerϕ→ G→ G

Gij+1

where the left arrow is the inclusion and the right arrow is the projection, has
kernel

kerϕ ∩Gij+1 = Kj+1.
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Hence it factors through a group monomorphism from kerϕ/Kj+1 to G/Gij+1.
The image of Kj/Kj+1 through it is

KjGij+1

Gij+1
=

(kerϕ ∩Gij )Gij+1

Gij+1
=

(kerϕ Gij+1) ∩Gij
Gij+1

≤
Gij
Gij+1

,

and the image of kjKj+1 is g
x
(j)
ij

ij
Gij+1 6= 1. This shows that the series is central

and with infinite cyclic factors.
So we have to prove the previous equalities. It is clear that for every j

between 1 and m+ 1, and every ij−1 + 1 ≤ l < l′ ≤ ij ,

kerϕ ∩Gl ⊇ kerϕ ∩Gl′ ⊇ Kj ,

and it remains to prove the reverse inclusions. We proceed by induction on j.
Let us consider the base case j = m + 1. Then Kj is trivial, and all we have
to show is that for every l between im + 1 and n + 1, kerϕ ∩ Gl is trivial, too.
Again, we proceed by induction on l. In the base case l = n+ 1, it is obviously
true. Now let l be between im+1 and n and suppose that kerϕ∩Gl+1 is trivial.
Let g ∈ kerϕ ∩Gl. Then g = gel h for some e ∈ Z and h ∈ Gl+1, and

ϕ(gl)e + ϕ(h) = 0

Since h ∈ 〈gl+1, . . . , gn〉, then ϕ(h) ∈ 〈ϕ(gl+1), . . . , ϕ(gn)〉. Thus if e 6= 0,
then there would exist an element in the relation lattice with height l, which
is impossible since l is not among the heights of x(1), . . . , x(m). Hence e = 0,
and g is equal to h, which is in kerϕ ∩Gl+1. Therefore g = 1 by the inductive
hypothesis. This concludes the case j = m+ 1. Now let j be between 1 and m,
and suppose that for every l between ij + 1 and ij+1,

kerϕ ∩Gl = Kj .

In this case we have to show that for every l between ij−1 + 1 and ij ,

kerϕ ∩Gl = Kj ,

and again we proceed by induction on l. Let us just consider the base case
l = ij , the inductive step being similar to the one in the case j = m + 1. Let
g ∈ kerϕ ∩ Gij . Then g = geijh for some e ∈ Z and some h ∈ Gij+1. If e = 0
then g ∈ Gij+1 and we conclude by inductive hypothesis that g ∈ Kj+1. Now
let us suppose that e 6= 0. Arguing as before, the relation lattice contains an
element of height ij and leading coefficient e. Thus x(j)

ij
divides e. Let us denote

by f the quotient. Then gGij+1 = kfi Gij+1, hence by inductive hypothesis
gk−fj ∈ kerϕ ∩Gij+1 = Kj+1, hence finally g ∈ Kj .

3.3 Algebraic subgroups of vector spaces

Let V be a finite dimensional vector space over Q, and let us denote it by •⊗V
the affine space on V . Also, let G be an algebraic subgroup of • ⊗ V . Then

Lemma 3.3.1. We have that G is equal to • ⊗ U for some subspace U of V .
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Proof. For any ideal a of S(V ∗) let us denote by Va the algebraic subset of
Hom(S(V ∗), •) that to any algebra R associates

Va(R) = {ϕ ∈ Hom(S(V ∗), R) | a ≤ kerϕ}.

It is easy to check that in this way we obtain a bijection between ideals of S(V ∗)
and algebraic subsets of Hom(S(V ∗), •). Also, Va is an algebraic subgroup of
Hom(S(V ∗), •) if and only if a is an Hopf ideal of S(V ∗) with respect to its
canonical structure of Hopf algebra, that is to say, if

∆(a) ⊆ S(V ∗)⊗ a + a⊗ S(V ∗) ,

where ∆ is the co-multiplication of S(V ∗). Also, if a is an ideal of S(V ∗)
generated by a ∩ V ∗, then the image of Va through the isomorphism between
Hom(S(V ∗), •) and •⊗V is precisely •⊗U , where U is the orthogonal of a∩V ∗
with respect to the standard bilinear form between V and its dual. Therefore
it is enough to show that any Hopf ideal a of S(V ∗) is generated by a ∩ V ∗.

To this end, let us denote by b the ideal generated by a ∩ V ∗. Of course
it is contained in a. Since it is generated by b ∩ V ∗, the discussion in the
previous paragraph shows that it is an Hopf ideal of S(V ∗). Therefore it is
easy to check that there exists a unique structure of Hopf algebra on S(V ∗)/b
making the canonical projection of S(V ∗) onto S(V ∗)/b into a morphism of
Hopf algebras. Also, if we let U now denote the orthogonal of b ∩ V ∗, then
the canonical epimorphism from S(V ∗) to S(U∗) factor through an isomorphism
between S(V ∗)/b and S(U∗). With respect to the standard structure of Hopf
algebra on S(U∗), it is an isomorphism of Hopf algebras. Therefore the image
of the Hopf ideal a/b through it is an Hopf ideal c of S(U∗), and c ∩ U∗ is the
zero subspace. It is enough to show that then c is the zero ideal.

By contradiction, suppose that c is not zero. Then there exists c ∈ c which
is of minimum degree among the non-zero elements in c with respect to the
standard grading on S(U∗). Since c∩U∗ = 0, its degree is at least 2. Now let us
denote by ∆ the co-multiplication on S(U∗), and by π the projection of S(U∗)
onto S(U∗)/c. Since c is an Hopf ideal,

π ⊗ π(∆(a)− a⊗ 1− 1⊗ a) = 0

for any a ∈ a. Now let us denote by u1, . . . , um a basis of U∗. Then the set of
elements of the form

zα =
m∏
i=1

1
αi!

uαi
i

for some α = (α1, . . . , αm) ∈ Nm, is a basis of S(V ∗). In fact, a stronger
statement holds. For any α ∈ Nm, let us put

|α| =
m∑
i=1

αi , where α = (α1, . . . , αm).

Then the set of the zα where |α| = m is a basis for them-th homogeneous compo-
nent of S(U∗). Also, this basis is well-suited for dealing with co-multiplication.
In fact, for any α ∈ Nm,

∆(zα) =
∑

β,γ∈Nm

β+γ=α

zβ ⊗ zγ .
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Now let us denote by δ the degree of c. The previous discussion shows that c is
equal to ∑

α∈Nm

λαzα

for some unique λα ∈ Q, and λα = 0 as soon as |α| > δ. Then a simple
computation shows that

∆(c)− c⊗ 1− 1⊗ c = −λ0 +
∑

β,γ∈Nm

0<|β|,|γ|<δ

λβ+γzβ ⊗ zγ .

Therefore

−λ0 +
∑
γ∈Nm

0<|γ|<δ

 ∑
β∈Nm

0<|β|<δ

λβ+γπ(zβ)

⊗ π(zγ) = 0.

By hypothesis c does not contain any non-zero element of degree strictly less
than δ. Therefore the π(zα) with |α| < δ are linearly independent, and it follows
that both λ0 and the∑

β∈Nm

0<|β|<δ

λβ+γπ(zβ) , where γ ∈ Nm and 0 < |γ| < δ,

are zero. Again exploiting the linear independence of the π(zα) with |α| < δ,
we finally deduce tha the λβ+γ are all zero for β, γ ∈ Nm and 0 < |β|, |γ| <
δ. Altogether, we conclude that the λα are different to zero only if |α| = 1.
Therefore c lies in c ∩ U∗, which is impossible since the former is different to
zero while the latter is the zero subspace.

3.4 A new representation

Let G be a unipotent affine algebraic group over Q acting faithfully on a finite
dimensional Q-vector space V , and let L be a full dimensional lattice of V . Also,
let

0 = V0 ≤ V1 ≤ · · · ≤ Vm−1 ≤ Vm = V

be a flag of V with respect to the action of G, and suppose that its length m
is at least 2. Further, let us denote by GL the normalizer of L with respect to
the action of G(Q) on V . Since Vm−1 is a G-stable subspace of V , G acts on it.
Similarly, V1 is G-stable, hence G acts on V/V1. It follows that G acts on their
direct sum V ?, too. Let us denote by N the kernel of the action of G on V ?.
Of course N acts on V , hence it makes sense to consider the normalizer NL of
L with respect to the action of N(Q) on V . Then

Proposition 3.4.1. NL is a central subgroup of GL.

Proof. It is enough to prove that N(Q) is central in G(Q). Since G(Q) acts
faithfully on V , this amounts to prove that for any g ∈ G(Q), any h ∈ N(Q)
and any v ∈ V , we have gh.v = hg.v. Note that h acts as the identity on V/V1.
Therefore h.v − v ∈ V1. Also, g acts as the identity on V1, hence

g.(h.v − v) = h.v − v.
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Similarly, since g acts as the identity on V/Vm−1 and h acts as the identity on
Vm−1,

h.(g.v − v) = g.v − v.

Now the thesis follows easily.

Now let us denote by Q the image of the action of G on V ? and by π the
epimorphism of algebraic groups from G to Q. Also, let us put

L? = (Vn−1 ∩ L)⊕ V1 + L

V1
,

and, for every i between 0 and m− 1,

V ?i = Vi ⊕
Vi+1

V1
.

Then

Proposition 3.4.2. The action of Q on V ? is faithful and

0 = V ?0 ≤ · · · ≤ V ?i ≤ · · · ≤ V ?m−1 = V ?

is a flag for it, of length m− 1. Also, L? is a full dimensional lattice of V ?.

Proof. It is easy to check that the chain consisting of the subspaces V ?i of V ?

is a flag for the action of G on V ?. Since the map that π associates to any
Q-algebra R is surjective, the first part of the statement follows. Finally, using
results in Section 3.1, it is easy to show that L? is a full-dimensional lattice of
V ?. The other claims are immediate.

Further, let us denote by GL? the normalizer of L? with respect to the action
of the rational points of G on V ?, and, similarly, by QL? the normalizer of L?

with respect to the action of the rational points of Q on V ?.
According to the results in Section 3.1, there exist a complement V ′1 to V1

in V and a complement V ′m−1 to Vm−1 in V such that

V ′m−1 ≤ V ′1 , (V1 ∩ L) + (V ′1 ∩ L) = L and (Vm−1 ∩ L) + (V ′m−1 ∩ L) = L.

Let us denote by E the vector space of the linear transformations from V ′m−1

to V1, and by Λ the subset of E consisting of the linear transformations λ such
that λ(V ′m−1 ∩ L) ≤ V1 ∩ L. Then

Proposition 3.4.3. Λ is a full dimensional lattice of E.

Proof. By results of Section 3.1, V ′m−1 ∩L is a full dimensional lattice of V ′m−1,
and V1 ∩ L is a full-dimensional lattice of V1. Therefore V ′m−1 ∩ L has a basis
b1, . . . , bl as an abelian group which is also a basis for V ′m−1 as a vector space.
Similarly, V1 ∩L has a basis c1, . . . , ck as an abelian group which is also a basis
for V1 as a vector space. Now, for any suitable choice of i and j, let di,j be the
unique element of E sending bi to cj , and any other element of the considered
basis for V ′m−1 to 0. Then the di,j form both a basis for Λ as an abelian group,
and a basis for E as a vector space. The thesis follows.
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The action of G on V corresponds to a morphism of algebraic groups from
G to GLV . In particular, any rational point of G can be regarded as an auto-
morphism of V . Therefore it makes sense to consider the map ε from G(Q) to
E sending any automorphism of V contained in G(Q) to the composition of its
restriction to V ′m−1 with the projection of V onto V1 along the complement V ′1 .

Proposition 3.4.4. Let g be a rational point of G. Then g is in GL if and
only if it is in GL? and its image through ε is in Λ. In particular, a rational
point h of N is in NL if and only if ε(h) ∈ Λ.

Proof. We will only prove the statement concerning the rational points of G,
since the statement about the rational points of N is just a corollary. Of course,
it is enough to prove that for any automorphism ϕ of V such that V1 and Vm−1

are stable under it, we have that L is stable under ϕ if and only if V1 + L and
Vm−1∩L are, and the image of V ′m−1∩L through the composition of ϕ with the
projection p of V onto V1 along V ′1 is contained in V1 ∩ L. Since L is the direct
sum of V1∩L and V ′1 ∩L, the image of L through p is contained in V1∩L. With
this remark at hand, it is easy to see that the three conditions are necessary.
Now let us prove that they are also sufficient. In our hypothesis, ϕ(V ′m−1 ∩ L)
is contained in the preimage of V1∩L through p, that is to say, in V ′1 + (V1∩L).
Also, ϕ(V ′m−1 ∩ L) is contained in V1 + L. Therefore ϕ(V ′m−1 ∩ L) is contained
in

(V ′1 + (V1 ∩ L)) ∩ (V1 + L),

which is equal to L by Dedekind’s modular law and recalling that L ⊆ V ′1 +
(V1 ∩ L). Since Vm−1 ∩ L is stable under ϕ, it follows that ϕ(L) ⊆ L. Thus it
remains to prove the other inclusion. To this end, let y ∈ L. Since V1 + L is
stable under ϕ, there exist x ∈ V1 and y′ ∈ L such that

ϕ(x) + ϕ(y′) = y.

We have just shown that ϕ(y′) is in L. Therefore also ϕ(x) is. Since V1 is stable
under ϕ, we even have that ϕ(x) ∈ V1 ∩ L. In particular, ϕ(x) ∈ Vm−1 ∩ L,
hence x ∈ Vm−1 ∩ L. Now the thesis follows.

The group of the rational points of N acts on the right on the set of the
rational points of G by multiplication. Also,

Proposition 3.4.5. The restriction of ε to the rational points of N is a monomor-
phism of groups with respect to the underlying group structure of the vector space
E. In particular,

E ×N(Q)→ E , (λ, h) 7→ λ+ ε(h)

is a right action of N(Q) on the set E. In this way, ε is a morphism of N(Q)-
sets.

Proof. It is enough to show that the restriction of ε to N(Q) is injective, and
that for every g ∈ G(Q) and every h ∈ N(Q),

ε(gh) = ε(g) + ε(h).

In turn, in order to prove the first part of this statement it is enough to show
that the identity function is the only automorphism of V acting as the identity
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on both Vm−1 and on V/V1, and such that the composition of its restriction
to V ′m−1 with the projection p of V onto V1 along V ′1 is the zero function. Of
course the identity function satisfies all of these properties. Now suppose that
ϕ is another automorphism of V that satisfies them. Also, let x ∈ V ′m−1. Since
ϕ acts as the identity on V/V1, ϕ(x)− x ∈ V1, hence

p(ϕ(x)− x) = ϕ(x)− x.

Since p ◦ ϕ sends V ′m−1 to 0 and x ∈ kerp, it follows that ϕ(x) = x, that is to
say, ϕ acts as the identity on V ′m−1. Then the first part of the statement follows
easily. It remains to prove the second part. To this end, let x ∈ V ′m−1. Since h
is an automorphism of V acting as the identity on V/V1, h(x) − x ∈ V1. Also,
g is an automorphism of V acting as the identity on V1, hence

g(h(x)− x) = h(x)− x.

Since Vm−1 is contained in V1, we have that p(x) = 0. Therefore applying p to
both sides of the previous identity, we obtain that

p ◦ g ◦ h(x) = p ◦ g(x) + p ◦ h(x).

Now the thesis follows easily.

Since G and Q are unipotent, the rational points of Q are the orbit space for
the action of N(Q) on G(Q). Now let us denote by F the image of the rational
points of N through ε. According to the previous proposition, it is a subgroup
of E, E/F is the orbit space for the action of N(Q) on E, and there exists a
unique map ε̂ from Q(Q) to E/F such that

G(Q) ε //

π

��

E

��
Q(Q) ε̂ // E/F

is commutative, where the right column is the canonical projection. In partic-
ular, we have at hand the map Ψ given by composition of

QL? → Q(Q) ε̂−→ E

F
→ E

F + Λ
,

where the left arrow is the inclusion and the right arrow is the canonical pro-
jection. We have that

Proposition 3.4.6. The map Ψ is a morphism of groups.

Proof. Clearly the morphism π sends GL? into QL? , and

GL?
ε //

π

��

E // E/Λ

��
QL?

Ψ // E/(F + Λ)
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is commutative, where both the right column and the right arrow in the top
row are the canonical projections. Now let us denote by Φ the map given by
composition of the top row of the diagram. According to Section 1.9, the image
of the rational points of G through π is the whole group of the rational points of
Q. It follows that the left column of the diagram is an epimorphism of groups.
Thus in order to prove that Ψ is a group morphism it is enough to show that
Φ is. To this end, let f, g ∈ GL? . They are automorphisms of V , acting as the
identity on V1, normalizing Vm−1 and acting as the identity on V/Vm−1. Also,
Vm−1 ∩ L and V1 + L are stable under them. Now let y ∈ L. Clearly, g(y)− y
lies in Vm−1∩(V1 +L), which is equal to V1 +(Vm−1∩L) by Dedekind’s modular
law. Then it follows easily that

h(g(y)− y)− (g(y)− y) ∈ Vm−1 ∩ L,

which in turn shows that

h ◦ g(y)− g(y)− h(y) ∈ L.

Finally, since the projection p of V onto V1 along V ′1 sends L into V1 ∩ L, we
obtain that

p ◦ h ◦ g(y)− p ◦ g(y)− p ◦ h(y) ∈ V1 ∩ L,

and the thesis follows.

Now let us denote by K the kernel of Ψ. Then

Proposition 3.4.7. For any rational point g of G such that π(g) is in K, we
have that g ∈ GL? and that ε(g) ∈ F + Λ.

Proof. Clearly
GL?

ε //

π

��

E

��
QL?

Ψ // E/(F + Λ)

is commutative, where the right column is the canonical projection. The claim
follows immediately from this fact.

Finally, we can state the main result of this section, that is to say,

Theorem 3.4.1. The group morphism given by composition of

GL → G(Q) π−→ Q(Q),

where the left arrow is the inclusion, has kernel NL and image K.

Proof. The only non-trivial part of the statement is the one concerning the
image of the morphism. Using Proposition 3.4.4 and the commutativity of

GL?
ε //

π

��

E

��
QL?

Ψ // E/(F + Λ)
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where the right column is the canonical projection, we have that the image is
contained in K. To prove the other inclusion, let k be an element in K. Since G
and Q are unipotent, we know that there exists g ∈ G(Q) such that π(g) = q.
Then Proposition 3.4.7 assures that g ∈ GL? and that there exists h ∈ N(Q)
such that ε(g) is the sum of ε(h) and of an element in Λ. Of course, gh−1 ∈ GL?

and its image through π is again k. Also, by Proposition 3.4.5 we have that
ε(gh−1) lies in Λ. Finally the thesis follows using Proposition 3.4.4.

We will also need a strengthened version of the first statement of Proposition
3.4.5. Since E is a finite dimensional vector space, it makes sense to consider
the affine algebraic group associated to it, which we denote by • ⊗E. Also, for
any Q-algebra R, we have that R ⊗ V1, R ⊗ V ′1 and R ⊗ V ′m−1 are submodules
of R ⊗ V , and that the sum of R ⊗ V1 and of R ⊗ V ′1 in R ⊗ V is direct and
is equal to the whole R ⊗ V . Also, any element of N(R) can be regarded as
an automorphism of R ⊗ V . Further, R ⊗ E is canonically isomorphic to the
module of the R-linear maps from R ⊗ V ′m−1 to R ⊗ V1. Altogether, it makes
sense to consider the map from N(R) to R⊗E sending any automorphism h of
R⊗ V contained in N(R) to the unique element of R⊗E corresponding to the
composition of the restriction of h to R ⊗ V ′m−1 with the projection of V ⊗ R
onto V1 ⊗ R along the complement R ⊗ V ′1 . Also, it is easy to check that the
family of these maps over the Q-algebras gives a natural transformation from
N to • ⊗ E. Since on the rational points it is precisely ε, we will denote the
whole natural transformation with such a symbol, too. Then

Proposition 3.4.8. We have that ε is a monomorphism of algebraic groups
from N to • ⊗ E. In particular, F is a subspace of E, and the image of N
through ε is • ⊗ F .

Proof. It is enough to prove that ε is a monomorphism of algebraic groups, since
the rest of the statement follows then by Lemma 3.3.1. In turn, to this end it
suffices to show that for any Q-algebra R the map from N(R) to R ⊗ E is a
group monomorphism. This can be done with a straightforward adaptation of
the proof of Proposition 3.4.5.

3.5 The Lie algebra side

Let V be a finite dimensional vector space over Q, g a nilpotent sub-Lie-algebra
of gl(V ) consisting of nilpotent endomorphisms, and L is a full-dimensional
lattice of V . Also, let

0 = V0 ≤ · · · ≤ Vi ≤ · · · ≤ Vm = V

be a flag for V with respect to the action of g corresponding to the inclusion
of g into gl(V ), of length al least 2. There exists a unique unipotent algebraic
subgroup G of GLV such that g is the Lie algebra of G and that the inclusion
of g into gl(V ) is the differential of the inclusion of G into GLV . In particular,
G acts faithfully on V . Also, it is easy to see that the flag for V with respect
to the action of g that we have at hand is also a flag with respect to the action
of G. Therefore we are in the setting of Section 3.4, and all the constructions
and the results contained in it make sense here. In the following, we will make
free use of them. Since Vm−1 is g-stable, g acts on it. Similarly, g acts on V/V1.



44 The unipotent case

It follows that g acts on their direct sum, that is to say, on V ?. Let us denote
by n its kernel. Then, in the notations of Section 3.4,

Proposition 3.5.1. We have that n is the unique sub-Lie-algebra of gl(V ) such
that n is the Lie algebra of N and that the inclusion of n into gl(V ) is the
differential of the inclusion of N into GLV .

Proof. It is easy to see that the action of g on V ? is the differential of the action
of G on V ?. From this, the thesis follows easily.

In particular, the exponential and logarithmic maps are mutually inverse
maps between the rational points of N and n. Also, since any element of n is
an endomorphism of V , it makes sense to consider the linear transformation ξ
from n to E sending any element of n to the composition of its restriction to
V ′m−1 with the projection of V onto V1 along V ′1 . Then

Proposition 3.5.2. We have that

N(Q) ε //

��

E

n

ξ

<<yyyyyyyyy

is commutative, where the vertical arrow is the logarithmic map.

Proof. Of course ξ can be extended to a map from gl(V ) to E, again sending
any endomorphism of V to the composition of its restriction to V ′m−1 with the
projection of V onto V1 along V ′1 . We still denote by ξ such a new function.
Now let us denote by idV the identity function on V . Also, let h ∈ N(Q), and
x ∈ V . Since h acts as the identity on V/V1, we have that (h − idV )(x) ∈ V1.
In turn, since h acts as the identity on V1, we obtain that (h − idV )2(x) = 0.
Altogether, this shows that

log(h) = h− idV .

Also, since V ′m−1 is contained in V ′1 , we have that ξ sends idV to 0. Then the
thesis follows easily comparing the definitions of ε and of ξ.

Let us denote by q the image of the action of g on V ?, and by dπ the
epimorphism of Lie algebras from g to q. Of course we can regard Q as an
algebraic subgroup of GLV ? , and q as a sub-Lie-algebra of gl(V ?). Then

Proposition 3.5.3. We have that q is a nilpotent Lie algebra consisting of
nilpotent endomorphisms, and that

0 = V ?0 ≤ · · · ≤ V ?i ≤ · · · ≤ V ?m−1 = V ?

is a flag for V ? with respect to the action of q corresponding to the inclusion
of q into gl(V ?). Also, q is the Lie algebra of Q, and the inclusion of q into
gl(V ?) is the differential of the inclusion of Q into GLV ? . Further, dπ is the
differential of the epimorphism π of algebraic groups from G onto Q.

Proof. It is immediate to check that the subspaces of the form V ?i for i between
0 and m− 1 form a flag for the action of g on V ?. The proof now is easy.
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3.6 The big picture

Let G be an affine algebraic group over Q acting faithfully on a finite dimensional
vector space V . Also, let L be a full dimensional lattice of V . Then it makes
sense to consider the normalizer GL of L with respect to the action of the
rational points of G on V .

Proposition 3.6.1. If the action of G on V admits a flag of length at most 1,
then G is the trivial algebraic group and GL is the trivial group.

Proof. If this is the case, G acts trivially on V . Since it also acts faithfully on V ,
the first part of the statement follows. The second part is an easy consequence.

Also,

Theorem 3.6.1. We have that GL is a T -group whose Hirsch length is equal
to the dimension of G.

Proof. Any action of a unipotent affine algebraic group over Q on a finite di-
mensional vector space admits a flag. In particular, it admits a flag of shortest
length. Thus we will procede by induction on the length of a shortest flag. In
case this is at most 1, from Proposition 3.6.1 it follows easily that GL? is a
T -group and that both the dimension of G and the Hirsch length of GL? are
zero. Now suppose that the length of a shortest flag is m ≥ 2. Then we are in
the setting of Section 3.4. In the following, we will make free use of the con-
structions and the results in it. In particular, by Proposition 3.4.2 the action of
Q on V ? admits a flag of length at most m− 1. Also, the action is faithful and
L? is a full-dimensional lattice of V ?. Therefore by inductive hypothesis QL? is
a T -group, whose Hirsch length is equal to the dimension of Q. In particular,
it is a finitely generated group. By Proposition 3.4.3, E/(F + Λ) is a periodic
abelian group. Also, by Proposition 3.4.6 we know that Ψ is a group morphism.
All together, we deduce that the image of Ψ is a finite group, and therefore that
the kernel K is a subgroup of finite index in QL? . Hence it is a T -group of
Hirsch length equal to the dimension of Q, too. Also, by Propositions 3.4.4 and
3.4.8, we have that the dimension of N is equal to the dimension of F , and that
NL is isomorphic to F ∩ L. In particular, NL is a torsion free abelian group
of rank equal to the dimension of N. Therefore by Theorem 3.4.1 we conclude
that GL is a T -group with Hirsch length equal to the sum of the dimensions of
N and Q, and the thesis follows.

Now let us denote by S the symmetric algebra on the dual of End(V ). Also,
let A be a finitely generated commutative Q-algebra, η a natural isomorphism
from G to Hom(A, •) and ϕ a morphism of algebras from S to A forming shadow
data for G and its action on V , and let us suppose that A, η and ϕ are explicitely
given. Let us denote by d the dimension of G. In these hypothesis, we are able
to compute a finite set of generators for the kernel of ϕ. Starting from them, it
is well-known how to compute the unique sub-Lie-algebra g of gl(V ) such that
g is the Lie algebra of G and that the inclusion of g into gl(V ) is the differential
of the monomorphism from G to GLV . The action of g on V admits a flag.
Also, with basic linear algebra techniques it is possible to compute it. Now
let us denote by G′ the algebraic subgroup of GLV given by the image of the
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monomorphism of algebraic groups from G to GLV . Of course, it is the unique
algebraic subgroup of GLV such that g is the Lie algebra of G and that the
inclusion of g into gl(V ) is the differential of the inclusion of G into GLV . Also,
the inclusion of G′ into GLV corresponds to a faithful action on V . Therefore
it makes sense to consider the normalizer G′L of L with respect to the action
of the rational points of G′ on V . By Theorem 3.6.1, it is a T -group of Hirsch
length equal to the dimension of G′, which is precisely d. Therefore it admits
a T -sequence of length d, let us say g′1, . . . , g

′
d. Now suppose we were able to

compute it. Since any of the g′i is an endomorphism of V that lies in the image
of G(Q) in End(V ) through the natural transformation from G to •⊗End(V ),
in our hypothesis we are able to compute gi in G(Q) whose image in End(V ) is
g′i. Needless to say, g1, . . . , gd is a T -sequence for GL.

Therefore it remains to show that, given a nilpotent sub-Lie-algebra g of
gl(V ) consisting of nilpotent endomorphisms together with a flag

0 = V0 ≤ · · · ≤ Vi ≤ · · · ≤ Vm = V

for the corresponding action of g on V , we are able to compute a T -sequence
for the normalizer GL of L with respect to the action of G on V , where now G
denotes the unique algebraic subgroup of GLV such that g is the Lie algebra of
G and the inclusion of g into gl(V ) is the differential of the inclusion of G into
GLV , and the action of G on V is the one corresponding to the inclusion of G
into GLV . Recall that the flag we are given is also a flag for the action of G on
V . Then, if the length m of the flag is less or equal to 1, then Proposition 3.6.1
assures that the empty set is a T -sequence for GL. Now suppose that m ≥ 2.
Therefore we are in the setting of Section 3.5, and we will use freely notations
and results in it. Also, since the case for m ≤ 1 has already been settled, we can
assume inductively that we are able to solve the problem whenever the given
flag has length strictly smaller that m. As a first thing, note that it is easy to
compute the vector space V ?, its subspaces V ?i for i between 0 and m− 1, and
its lattice L?. Also, the sub-Lie-algebra q of gl(V ?) which is the image of the
action of g on V ? and the epimorphism dπ of Lie algebras from g onto q are
easily computed. In fact, these computations rely upon just basic linear algebra
techniques. Then Proposition 3.5.3 and the inductive hypothesis guarantee that
we are able to compute a T -sequence for QL? . Let us denote it by q1, . . . , qc.
Further, the discussion at the end of Section 3.1 assures that we are able to
compute the subspaces V ′1 and V ′m−1 of V . Since the discussion shows that we
are even able to compute a basis of the free abelian groups V ′1 ∩L and V ′m−1∩L,
the proof of Proposition 3.4.3 shows that computing E and a basis of Λ inside
it is straightforward, too. Proposition 3.5.2 shows that F is equal to the image
of ξ. Therefore computing a basis for F is just linear algebra. Also, the image
through π of the exponential g′i of any element in g whose image through dπ
is the logarithm of qi, is precisely qi. Of course, such a g′i is easily computed
since dπ is a surjective linear transformation. With these data at hand, it is
not hard to compute the basis in Hermite normal form for the relation lattice of
Ψ(q1), . . . ,Ψ(qc). With these ingredients at hand, the discussion at the end of
Section 3.2 shows how to compute a T -sequence for K. We already know that
it will consist of c elements. Let us denote them by k1, . . . , kc. For any of the ki,
let us denote by g′′i any element of G(Q) whose image through π is ki. Of course
it can be easily computed in the same way we computed g′i beginning from qi.
Also, we know by Proposition 3.4.7 that ε(ki) is the sum of an element in Λ and
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an element fi ∈ F . Of course such an fi is easily computed, as well as it is easy
to find a element ni in N(Q) whose image through ε is precisely fi. In fact, by
virtue of Proposition 3.5.2 it is enough to take the exponential of any element in
n whose image through ξ is precisely fi. Finally, combining Propositions 3.4.5
and 3.4.4, we conclude that gi = g′′i n

−1
i lies in GL and that their images through

π form a T -sequence for K. Finally let h1, . . . , hb be the images through the
exponential map of some y1, . . . , yb in n whose images through ξ form a basis
for F ∩ Λ. Again by Propositions 3.5.2 and 3.4.4, we deduce that h1, . . . , hb is
a T -sequence for NL. Of course, it is easy to compute. Finally, by virtue of
Theorem 3.4.1 we have that g1, . . . , gc, h1, . . . , hb is a T -sequence for GL.

3.7 Numerical experiences

Let us denote by G the subfunctor of GL4 that to any Q-algebra R associates

G(R) =




1 0 a b
0 1 c 1

2c
2

0 0 1 c
0 0 0 1

 ∈ GL4(R) such that a, b, c ∈ R

 .

It is easy to check that it is an affine algebraic subgroup of GL4 over Q. Indeed,
let us denote by Q[X̂] the polynomial algebra with rational coefficients in the
indeterminates Xij for i and j between 1 and 4, by a its ideal generated by
Xii − 1 for i between 1 and 4, Xij for 1 ≤ j < i ≤ 4, X12, X23 − X34 and
2X24 − X23X34, and let us put A = Q[X̂]/a. Then A is finitely generated,
and there exists a natural isomorphism η from Hom(A, •) to G that to every
Q-algebra R associates

Hom(A,R)→ G(R) , f 7→


f(X11) f(X12) f(X13) f(X14)
f(X21) f(X22) f(X23) f(X24)
f(X31) f(X32) f(X33) f(X34)
f(X41) f(X42) f(X43) f(X44)

 .

In particular, we have at hand the canonical action of G on Q4. For short, we
will denote Q4 also by V . Also, Z4 is a full-dimensional lattice of Q4. We will
denote it by L, too. Further, let us denote by S the symmetric algebra on the
dual of End(V ), and by ϕ the map given by composition of

S → Q[X̂]→ A,

where the arrow on the left is the isomorphism with respect to the canonical
basis of V , and the arrow on the right is the canonical projection. Then it is
easy to see that A, η and ϕ are shadow data for G and its action on V . Of
course, they are explicitely given. Therefore we are in the hypothesis of Section
3.6. We will now apply the algorithm described in it. As a first thing, it is
easy to see that g is the sub-Lie-algebra of gl(V ) with basis consisting of the
endomorphisms x1, x2 and x3 whose matrices with respect to the canonical
basis of V are

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 and


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
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Now let us denote by e1, e2, e3, e4 the canonical basis of Q4. Then a flag for the
action of g on Q4 is given by

0 = V0 < V1 < V2 < V3 = V ,

where V1 is the subspace generated by e1 and e2, and V2 is generated by e1,
e2 and e3. Since its length is 3, we have to apply the non-trivial part of the
algorithm. From now on we will use the notations of the last paragraph of
Section 3.6. As a first thing, note that L? has basis given by e?1 = (e1, 0),
e?2 = (e2, 0), e?3 = (e3, 0), e?4 = (0, e3 + V1) and e?5 = (0, e4 + V1), which is
therefore also a basis for V ?. Also, V ?1 is generated by e?1, e?2 and e?4. A basis
for the sub-Lie-algebra q of glV ? is given by the endomorphisms y1 and y2 of
V ? whose matrices with respect to e?1, e

?
2, e

?
3, e

?
4, e

?
5 are

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 and


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 .

Further, dπ sends x1 to y1, x2 to the zero endomorphism of V ?, and x3 to y2.
Applying the algorithm recursively to q, V ? and the previously computed flag
we find that the endomorphisms q1 and q2 of V ?, whose matrices are

1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and


1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 ,

are a T -sequence for QL? . Also, we can take as V ′1 the subspace of V generated
by e3 and e4, and by V ′2 the subspace generated by e4. Of course, e3 and e4 are
also a basis for V ′1 ∩L, and e4 is also a basis for V ′2 ∩L. Now let us denote by f1

the endomorphism in E sending e4 to e1 and by f2 the endomorphism sending
e4 to e2. Then f1 and f2 form a basis for E, as well as a basis for Λ. Also,
it is immediate to see that n is the sub-Lie-algebra of gl(V ) generated by x2.
Therefore F is the subspace of E with basis f1. Also, since both the logarithm
of q1 and the image of x1 through dπ is equal to y1, we can put g′1 = exp(x1).
Similarly, we can take g′2 = exp(x3). It follows that

Ψ(q1) = 0 and Ψ(q2) =
1
2
f2 + F + Λ.

It is easy to see that a basis in Hermite normal form for the relation lattice
of Ψ(q1) and Ψ(q2) in E/F + Λ is given by (1, 0) and (0, 2). Therefore, a T -
sequence for K is given by k1 = q1 and k2 = q2

2 , hence we can put g′′1 = g′1 and
g′′2 = (g′2)2. Note that the matrices of g′′1 and of g′′2 are

ĝ′′1 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 and ĝ′′2 =


1 0 0 0
0 1 2 2
0 0 1 2
0 0 0 1

 ,
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respectively. This shows that both ε(g′′1 ) and ε(g′′2 ) are in Λ. Therefore we can
take g1 = g′′1 and g2 = g′′2 . Also, a basis for F ∩ Λ is given by f1. Hence we can
take as h1 the exponential of x2, that it to say, the endomorphism with matrix

ĥ1 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

Now let us denote by eij for i and j between 1 and 4 the unique endomorphism
of V sending ei to ej and all the other elements of the canonical basis of V to
0. The eij form a basis for End(V ). Let us denote by e∗ij the elements of the
basis of End(V )∗ dual to it. Then through the natural isomorphism between
End(• ⊗ V ) and Hom(S, •) with respect to the canonical basis of V , we have
that g1 corresponds to the morphism f from S to Q sending e∗ii to 1 for every i
between 1 and 4, e∗13 to 0, and all the other elements of the given basis of S o
0. We know that there exists a morphism f ′ from A to Q such that f = f ′ ◦ ϕ.
More precisely, f ′ is the endomorphism sending any Xii + a to 1 for every i
between 1 and 4, X13 + a to 1, and Xij + a to 0 for the remaining suitable
choices of the indexes i and j. In turn, such an endomorphism corresponds
through η to ĝ1. In the very same way, starting from g2 and h1, we find ĝ2 and
ĥ1. Therefore ĝ1, ĝ2 and ĥ1 are a T -sequence for GL, where of course G now
denotes the original algebraic group.

The algorithm described in Section 3.6 has been implement in GAP4, and it
has been tested on some non-trivial examples. From the computational point of
view, the hardest part is the subalgorithm dealing with nilpotent Lie algebras.
Indeed, it turns out that its running time growths roughtly exponentially on the
length of the flag. This is due to the fact that, at each step of the recursion,
the dimension of V and of E become bigger and bigger. In the worst case, V
doubles at each step, while E growth by about a factor of 4. As an example,
let n be a positive integer, and let us denote by e1, . . . , en the canonical basis
of Qn, and by eij the unique endomorphism of Qn sending ei to ej , and all the
other elements of the canonical basis for Qn to 0. Also, let gn be the subspace
of gl(Qn) generated by e1,2, . . . , e1,n and by

n−1∑
j=2

ej,j+1 .

Then gn is nilpotent sub-Lie-algebra of gl(Qn), and a flag of shortest length for
its natural action on Qn is given by

0 = V0 < · · · < Vi < · · · < Vn = Qn ,

where
Vi = 〈e1, . . . , ei〉

for every i between 1 and i. In particular, it has length n. Also, as a full-
dimensional lattice of Qn we take Zn. The running time of the subalgorithm
applied to these data on a 2GHz processor with 1GB of memory for GAP is of
about 0.7 seconds when n is equal to 6, and of about 3, 24 and 204 seconds
when n is equal to 7, 8 and 9, respectively. However, these running times also
show that the whole algorithm is efficient enough to tackle nontrivial examples.
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Chapter 4

The case of a torus

In this chapter we provide an algorithm solving the problem described in Chap-
ter 2 in the special case in which the given algebraic group is a torus. The
structure of the chapter is similar to that of Chapter 3. In fact, the first three
sections are devoted to prove some auxiliary results, which are used in Sec-
tion 4.4 to provide, on one hand, an independent proof of the theorem 2.2.2 in
the special case of the tori, and, on the other hand, to describe the algorithm
and to prove its correctness. The last section gives some evidences about the
practicality of the algorithm.

4.1 From tori to semisimple algebras

Let V be a finite dimensional Q-vector space, and let us denote by • ⊗ V the
affine space on V . It is an easy verification that for any subfunctor S of • ⊗ V
there exists a minimum subspace W of V with the property that S(R) ⊆ R⊗W
for any algebra R. We refer to it as the subspace of V generated by S. When S
is representable, the subspace generated by it admits another characterization.
In fact,

Proposition 4.1.1. Let A be a commutative Q-algebra, η a natural isomor-
phism from Hom(A, •) to S, and ϕ a morphism of Q-algebras from S to B such
that

Hom(A, •) //

η

��

]◦ϕ // Hom(S, •)

��
S

]◦ϕ // • ⊗ V

where S is the symmetric algebra on the dual of V , the bottom row is the inclu-
sion and the right column is the canonical natural isomorphism, is commutative.
Then the subspace of V generated by S is the orthogonal of kerϕ∩V ∗ with respect
to the canonical bilinear form between V and its dual.

Proof. Through the canonical natural isomorphism between •⊗V and Hom(S, •),
S corresponds to the subfunctor of Hom(S, •) that to any algebra R associates{

ψ ∈ Hom(S,R) such that kerϕ ⊆ kerψ
}

.
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Also, if W is a subspace of V , then • ⊗W corresponds to the subfunctor that
to any algebra R associates{

ψ ∈ Hom(S,R) such that (W⊥) ⊆ kerψ
}

.

Hence S is contained in • ⊗W if and only if (W⊥) ⊆ kerϕ, which in turn is
equivalent to the fact that W⊥ ⊆ kerϕ ∩ V ∗, and the thesis follows easily.

Now let G be an algebraic subgroup of the multiplicative group (•⊗End(V ))×

of End(V ). In particular, it is a subfunctor of • ⊗End(V ). Let us denote by D
the subspace of End(V ) generated by G. Then

Theorem 4.1.1. D is a subalgebra of End(V ). If G is commutative, then D
is commutative, too. If G is even of multiplicative type, D is semisimple.

Proof. As a first thing, let us point out an elementary result concerning Galois
connections and closure operators. That is to say,

Lemma 4.1.1. Let X and Y be two partially ordered sets, and f∗ : X → Y and
f∗ : Y → X be the lower and upper adjoint of a Galois connection, respectively.
Also, let clX be a closure operator on X and clY a closure operator on Y .
Further, suppose that, for every y ∈ Y , if y is closed with respect to clY then
f∗(y) is closed with respect to clX . Then for every x ∈ X and y ∈ Y , if f∗(x) ≤ y
then f∗(clX(x)) ≤ clY (y).

Proof. In our hypothesis, f∗(x) ≤ clY (y), which is equivalent to x ≤ f∗(clY (y)).
Since f∗(clY (y)) is closed with respect to clX , it follows that clX(x) ≤ f∗(clY (y)),
which is equivalent to our thesis.

Next, let us introduce some constructions. Let U , W and Z be finite dimen-
sional Q-vector spaces, and β a bilinear function from U ×W to Z. For any
algebra R, let us denote by βR the map obtained from β extending scalars to
R. Also, let Q and R be subfunctors of • ⊗ U and • ⊗W , respectively. Then
there exists a subfunctor of • ⊗ Z that to any algebra R associates{

βR(x, y) such that x ∈ Q(R) and y ∈ R(R)
}

.

We refer to it as the product of Q and R with respect to β. A technical but
useful result is the following.

Lemma 4.1.2. Let T be a subfunctor of • ⊗ Z, and let us denote by U ′ the
subspace of U generated by Q and by Z ′ the subspace of Z generated by T. If the
product of Q and R with respect to β is contained in T and R is representable,
then the product of • ⊗ U ′ and R with respect to β is contained in • ⊗ Z ′.

Proof. Let us denote by f∗ the function from the set of subfunctors of • ⊗ U
to the set of subfunctors of • ⊗ Z that to any Q′ associates the product of
Q′ and R with respect to β. Also, let us denote by f∗ the function from the
set of subfunctors of • ⊗ Z to the set of subfunctors of • ⊗ U that to any T′

associates the subfunctor that in turn to any algebra R associates the set of
elements x ∈ R⊗ U such that

βS
(
ϕ⊗ idU (x), y

)
∈ T′(S)
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for every algebra S, every morphism of algebras ϕ from R to S and every
y ∈ R(S). Recall that both the set of subfunctors of • ⊗ U and the set of
subfunctors of •⊗Z are endowed with a partial order given by inclusion. With
respect to these orders, it turns out that f∗ and f∗ are the lower and the upper
adjoint of a Galois connection, respectively. Also, the function from the set of
subfunctors of • ⊗ U to itself that to any Q′ associates • ⊗ U ′′, where U ′′ is
the subspace of U generated by Q′, is a closure operator. Of course, the same
is true for Z, mutatis mutandis. Therefore the thesis will follow from Lemma
4.1.1 once we will have proven that for any subspace Z ′′ of Z, f∗(• ⊗ Z ′′) is of
the form • ⊗ U ′′ for some subspace U ′′ of U .

In order to prove this last claim, let B be a commutative Q-algebra, η a
natural isomorphism from Hom(B, •) to R, and let us denote by w the image
of the identity function of B through η. Of course, w ∈ B ⊗W . Also, for every
algebra R,

Hom(B,R)→ R⊗W , f 7→ f ⊗ idW (w)

is injective with image R(R). Then we have at hand the map given Ψ given by
composition of

U
1⊗idU−→ B ⊗ U → B ⊗ Z → B ⊗ Z

B ⊗ Z ′′

where the central map sends any u ∈ B ⊗ U to βB(w, u) and the map on the
right is the canonical projection. Of course it is a linear transformation, hence
its kernel is a subspace of U . We will finish the proof showing that it is the
subspace we are searching for.

To this end, let us fix a Q-algebra R. The existence of w gives us a useful
criterion to test membership of an element x of R ⊗ U to the set of R-valued
points of f∗(T′), where T′ is any subfunctor of • ⊗ Z. In fact, if we denote by
i the morphism of algebras from R to R ⊗ B sending r to r ⊗ 1, and by j the
morphism from B to R⊗B sending b to 1⊗ b, then we have that x ∈ f∗(T′)(R)
if and only if

βR⊗B
(
i⊗ idU (x), j ⊗ idW (w)

)
∈ T′(R⊗B).

It is easy to see that the condition is necessary. Roughly speaking, to show
that it is also sufficient we have to exploit the universal property of the tensor
product of algebras. Coming back to our problem, let us consider the map ΨR

given by composition of

R⊗ U i⊗idU−→ R⊗B ⊗ U → R⊗B ⊗ Z → R⊗B ⊗ Z
R⊗B ⊗ Z ′′

where the central map sends any u ∈ R ⊗ B ⊗ U to βR⊗B
(
u, j ⊗ idW (w)

)
and

the map on the right is the canonical projection. The previous criterion shows
that the kernel of ΨR is the set of R-valued points of f∗(• ⊗ Z ′′). Also,

U
Ψ //

1⊗idU

��

B ⊗ Z/B ⊗ Z ′′

��
R⊗ U

ΨR // R⊗B ⊗ Z/R⊗B ⊗ Z ′′
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is commutative, where the right column is the map given by composition of

B ⊗ Z
B ⊗ Z ′′

1⊗id−→ R⊗ B ⊗ Z
B ⊗ Z ′′

→ R⊗B ⊗ Z
R⊗B ⊗ Z ′′

,

where in turn the map on the right is the canonical isomorphism. Since the
tensor product is left exact, we deduce that the kernel of ΨR is R ⊗ kerΨ, and
the thesis follows easily.

The first two claims of the theorem are now easy to prove. Since multiplica-
tion of End(V ) is a bilinear map from End(V ) × End(V ) to End(V ), it makes
sense to consider the product of two copies of G with respect to it. Since G is
an algebraic subgroup of

(
•⊗End(V )

)×, we have that the product is contained
in G. Therefore by Lemma 4.1.2 we obtain that the product of G and • ⊗ D
is contained in • ⊗ A, and again by Lemma 4.1.2 that the product of • ⊗ D
with itself is contained in • ⊗ D. Taking the groups of the rational points, it
follows that D is a subalgebra of End(V ). Now suppose that G is commutative.
Then the product of two copies of G with respect to the bracket of End(V ) is
contained in • ⊗ 0, and arguing as before we obtain that D is commutative.

In order to complete the proof of the theorem, it is convenient to state
another auxiliary result. As before, let U be a finite dimensional vector space,
and Q a subfunctor of • ⊗ U . Also, let us denote by U ′ the subspace of U
generated by Q. It is easy to check that there exists a unique subfunctor Q̂ of
•⊗ (Q⊗U) with the property that there exists a natural transformation η from
QQ to Q̂ such that

QQ
η //

��

Q̂

��
(• ⊗ U)Q // • ⊗ (Q⊗ U)

is commutative, where the columns are the inclusions and the bottow row is
the canonical isomorphism, and we have that η is even a natural isomorphism.
Also,

Lemma 4.1.3. The subspace of Q⊗U generated by Q̂ is contained in Q⊗U ′.
If Q is representable, the other inclusion holds, too.

Proof. The first inclusion is easily proved since for any Q-algebraR the canonical
isomorphism between R⊗ U and R⊗Q Q⊗ U sends R⊗ U ′ to R⊗ (Q⊗ U ′).

Now suppose that Q is representable. As before, there exists a commutative
Q-algebra B together with an element u ∈ B ⊗ U such that

Hom(B,R)→ R⊗ U , f 7→ f ⊗ idU (u)

is an injection with image Q(R) for every Q-algebra R. Also, it is easy to see
that U ′ is the minimum subspace of U such that u ∈ B ⊗ U ′. Let us denote
by u the image of u through the map from B ⊗ U into (Q ⊗ B) ⊗Q (Q ⊗ U)
sending every b⊗x to (1⊗ b)⊗ (1⊗x). Again, it is easy to check that for every
Q-algebra R,

Hom(Q⊗B,R)→ R⊗Q (Q⊗ V ) , f 7→ f ⊗ idQ⊗V (u)
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is injective with image Q̂(R), and that the subspace of Q ⊗ U generated by Q̂
is the minimum subspace Z of Q ⊗ U such that u ∈ (Q ⊗ B) ⊗Q Z. Through
the canonical isomorphism between (Q ⊗ B) ⊗Q (Q ⊗ U) and B ⊗ Q ⊗ U , the
subspace (Q ⊗ B) ⊗Q Z corresponds to B ⊗ Z. Hence the image of u through
the canonical map from B⊗U to B⊗Q⊗U is contained in B⊗Z. Now let us
denote by Z ′ the unique subspace of U such that

Z ∩ (1⊗ U) = 1⊗ Z ′.

Then u ∈ B ⊗ Z ′, and therefore U ′ ≤ Z ′ and Q⊗ U ′ ≤ Q⊗ Z ′. Now the thesis
follows easily.

Now we are ready to prove the third and last claim. Suppose that G is of
multiplicative type. Of course, it is enough to show that the action of Q ⊗ D
on Q ⊗ V obtained from the natural action of D on V extending scalars to Q
is diagonalizable. To this end, note that there exists a unique subfunctor Ĝ of
• ⊗ (Q ⊗ End(V )) – regarded as a functor to the category of sets – with the
propery that there exists a natural transformation η from GQ to Ĝ such that

GQ
η //

��

Ĝ

��
(• ⊗ End(V ))Q // • ⊗ (Q⊗ End(V ))

is commutative, where the columns are the inclusions and the bottom row is the
canonical isomorphism. Also, η is a natural isomorphism. Therefore there exists
a unique way to endow Ĝ with the structure of affine algebraic group over Q in
such a way that η becomes an isomorphism of affine algebraic groups over Q, and
in this way we have that Ĝ is even an algebraic subgroup of (•⊗Q⊗End(V ))×.
Therefore we have at hand the action of Ĝ on Q ⊗ V corresponding to the
morphism given by composition of

Ĝ→ (• ⊗Q⊗ End(V ))× → (• ⊗ End(Q⊗ V ))× → GLQ⊗V ,

where the arrow on the left is the inclusion, the central arrow is the morphism
associated to the canonical isomorphism between Q⊗End(V ) and End(Q⊗V ),
and the arrow on the right is the canonical isomorphism. It is easy to check that
if a subspace L of Q⊗End(V ) is stable under the action of Ĝ, then the product
of Ĝ and • ⊗ L with respect to the bilinear map from the cartesian product of
Q ⊗ End(V ) and Q ⊗ V to Q ⊗ V , which in turn is obtained from the natural
action of End(V ) on V extending scalars to Q, is contained in •⊗L. Therefore,
if this is the case, by Lemmas 4.1.2 and 4.1.3, we have that L is stable under
the action of Q⊗D on Q⊗V . Since Ĝ is diagonalizable, the thesis follows.

Let S now denote the symmetric algebra on the dual of End(V ), and let us
denote by x1, . . . , xm a basis of V , and by Q[X̂] the polynomial algebra with
rational coefficients in the indeterminates Xij for i and j between 1 and m. Also,
let A be a finitely generated commutative Q-algebra, η a natural isomorphism
from Hom(A, •) to G and ϕ a morphism from S to A which are shadows data
for G and its action on V corresponding to

G→ (• ⊗ End(V ))× → GLV ,
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where the left arrow is the inclusion and the right arrow is the canonical natural
isomorphism. Also, let f1, . . . , fn be a finite set of generators for the kernel of
ϕ. Then Proposition 4.1.1 gives us a recipe to compute D. As a first thing,
we have to compute a Grobner basis with respect to a graded ordering for the
ideal generated by the images of f1, . . . , fn through the isomorphism between S
and Q[X̂] with respect to x1, . . . , xm, and to take the homogeneous polynomials
of first degree h1, . . . , hl in it. It is easy to check that the images of h1, . . . , hl
through the isomorphism between S and Q[X̂] are a generating set for kerϕ ∩
End(V )∗. At this point, it just remains to compute its orthogonal.

4.2 A problem about semisimple algebras

Let D be a finite dimensional, commutative and semisimple Q-algebra, act-
ing faithully on a finite dimensional Q-vector space V . Also, let L be a full-
dimensional lattice of V . The group of units D× of D acts on V , hence it makes
sense to consider the normalizer D×L of L with respect to this action. Also,
let us denote by E1, . . . , Em the decomposition of D in simple ideals, and by
e1, . . . , em the decomposition of the identity corresponding to it. Also, let us
denote by Vi the image of V through ei, by Li the image of L through ei, by
Oi the normalizer of Li with respect to the induced action of Ei on Vi, and by
O×i the group of units of Oi. Then

Proposition 4.2.1. We have that

• the Oi are orders of the Ei, and that

• the image of the cartesian product of the O×i through the canonical isomor-
phism from E1×· · ·×Em to D is the normalizer D×L1+···+Lm

of L1+· · ·+Lm
with respect to the action of D× on V .

Proof. Of course Oi acts on L, and the action is faithful since the action of Ei
on Vi is. Therefore for any α ∈ Oi we have that L is a faithful module over the
subring of Oi generated by α. Since it is also a finitely generated Z-module,
we have that α is integral in Ei. Now let α ∈ Ei. Then α.L+L

L is a finitely
generated subgroup of V

L , which is a periodic group. Therefore there exists an
integer n such that n(α.L) ⊆ L. Thus the first part of the statement follows
easily. In order to prove the second part, note that O×i is the normalizer of Li
with respect to the action of Ei on Vi, and that the canonical isomorphism ι
from V1 ⊕ · · · ⊕ Vm to V sends L1 ⊕ · · · ⊕ Lm to L1 + · · ·+ Lm. Therefore the
thesis follows from the commutativity of∏m

i=1Ei × ⊕mi=1Vi
//

ϕ×ι
��

⊕mi=1Vi

ι

��
D × V // V

where ϕ is the canonical isomorphism from E1 × · · · × Em to D.

Of course there exists a unique action of D×L1+···+Lm
on the set of subgroups

of L1 + · · ·+Lm that to any couple (a,H) associates the image a.H of {a}×H
through the action of D on V . Also, L is a subgroup of L1 + · · ·+ Lm, and
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Proposition 4.2.2. With respect to the action of D×L1+···+Lm
on the subgroups

of L1 + · · ·+ Lm, the orbit of L is finite, and the stabilizer of L is D×L .

Proof. Since L and L1 + · · · + Lm are both full-dimensional lattices of V , it
follows that L has finite index in L1 + · · · + Lm. Also, if a is an element of
D×L1+···+Lm

and H is a subgroup of L1 + · · ·+Lm of finite index, then a.H is of
finite index, too, and the two indexes are the same. Since there are only finitely
many subgroups of L1 + · · ·+ Lm of given finite index, it follows that the orbit
of L is finite. Finally, it is easy to see that if a ∈ D is such that a.L = L, then
a.Li = Li. Therefore D×L is contained in D×L1+···+Lm

, and the third statement
holds, too.

In particular,

Corollary 4.2.1. We have that D×L is finitely generated.

Proof. As a consequence of Dirichlet’s unit theorem, we know that the group of
units of an order of number field is finitely generated. Therefore by Proposition
4.2.1 we have that D×L1+···+Lm

is finitely generated, too. Then the thesis follows
by Proposition 4.2.2.

Also, we are able to compute a finite set of generators for D×L . In fact, we
have at hand algorithms for computing E1, . . . , Em and e1, . . . , em. Once this
has been done, it is easy to compute Vi, its lattice Li, the action of Ei on Vi,
and therefore Oi. Further, using the algorithm due to Posht and Zassenhaus,
we obtain finite sets of generators for the O×i . With these data at hand, it is
easy to compute a finite set of generators for D×L1+···+Lm

. Finally, using the
finite orbit stabilizer algorithm, we obtain the finite set of generators we are
seaching for.

4.3 Isolating subgroups through characters

Let D be a finite dimensional commutative and semisimple Q-algebra, and G a
connected algebraic subgroup of (•⊗D)×. Also, let Q be an algebraic closure of
Q, and let us denote by Γ the Galois group of Q/Q, by X the set of morphisms
from D to Q, and by Z[X] the free abelian group on X. With respect to the
standard structure of Γ-module of Z[X], there exists a unique sub-Γ-module K
of Z[X] such that there exists an isomorphism η from Hom(Z[X]/K, (• ⊗Q)×)
to G with the property that

Hom(Z[X]/K, (• ⊗Q)×)
]◦π //

η

��

Hom(Z[X], (• ⊗Q)×)

��
G // (• ⊗D)×

is commutative, where π is the canonical projection of Z[X] onto Z[X]/K, the
bottom row is the inclusion and the right column is the canonical isomorphism.
Of course η is unique, too. Also, let k1, . . . , km be a finite set of generators for
K, regarded as a Γ-module.
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Proposition 4.3.1. For every i between 1 and m, let us denote by Γki
the

stabilizer of ki in Γ, and by Fi the subfield of Q consisting of the elements
fixed by Γki . Then there exist morphisms of groups ϕi from D× to F×i sending
a ∈ D× to ∏

x∈X
x(a)z

(i)
x ,

where ki =
∑
x∈X z

(i)
x x. Further, we have that

G(Q) =
m⋂
i=1

kerϕi.

Proof. For every i between 1 and m, let us denote by Xi the set of morphisms
from Fi to Q, by ιi the inclusion of Fi into Q, and by Z[Xi] the free abelian group
with basis Xi. Using Galois theory we have that, with respect to its standard
structure of Γ-module, Z[Xi] is cyclic with generator ιi, and that the stabilizer
of ιi in Γ is Γki

. Therefore there exists a unique morphism ψi of Γ-modules
from Z[Xi] to Z[X] sending ιi to ki. In turn, there exists a unique morphism
Φi of algebraic groups from (• ⊗D)× to (• ⊗ Fi)× such that

Hom(Z[X], (• ⊗Q)×)
]◦ψi //

��

Hom(Z[Xi], (• ⊗Q)×)

��
(• ⊗D)×

Φi // (• ⊗ Fi)×

is commutative, where the columns are the canonical isomorphisms. It is easy
to check that ϕi is the map that Φi associates to Q. Therefore it is enough
to show that G is the intersection of the kernels of the Φi. Now let us denote
by
∏m
i=1(• ⊗ Fi)× the cartesian product of the (• ⊗ Fi)×, and by

∏m
i=1 Φi the

cartesian product of the Φi. Then we can equivalently show that G is the kernel
of
∏m
i=1 Φi. To this end, let us denote by ⊕mi=1Z[Xi] the direct sum of the Z[Xi]

and by ⊕mi=1ψi the direct sum of the ψi. As a first thing, it is easy to check that

Hom(Z[X], (• ⊗Q)×)
]◦⊕m

i=1ψi //

��

Hom(⊕mi=1Z[Xi], (• ⊗Q)×)

��
(• ⊗D)×

Qm
i=1 Φi // ∏m

i=1(• ⊗ Fi)×

is commutative, where the right column is the isomorphism given by composition
of

Hom(⊕mi=1Z[Xi], (• ⊗Q)×)→
m∏
i=1

Hom(Z[Xi], (• ⊗Q)×)→
m∏
i=1

(• ⊗ Fi)×,

where the arrow on the left is the canonical isomorphism, and the map on the
right is the cartesian product of the canonical isomorphisms from Hom(Z[Xi], (•⊗
Q)×) to (•⊗Fi)×. Secondly we have that, regarded as arrows in the category of
Γ-modules, π is a cokernel of ⊕mi=1ψi, hence ]◦π is a kernel of ]◦⊕mi=1, regarded
as arrows in the category of affine algebraic groups. Finally the thesis follows
easily combining these two facts.
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Now let us denote by F the splitting field of D inside Q, and by G the Galois
group of F/Q. Then the image of every morphism in X is contained in F . Also,
with respect to the standard product of G-module of Z[X], we have that K is a
sub-G-module of Z[X], and that a subset of K is a set of generators of K as a
Γ-module if and only if it is a set of generators for K as a G-module. Further,
for every i between 1 and m, Fi is the subfield of F consisting of the elements
fixed by the stabilizer of ki in G.

In addition, let us denote by S the symmetric algebra on the dual D∗ of D,
and let A be a finitely generated commutative Q-algebra, ϕ a morphism from
S to A and ζ a natural isomorphism from Hom(A, •) to G such that

Hom(A, •)
]◦ϕ //

ζ

��

Hom(S, •)

��
G // • ⊗D

is commutative, where the bottom row is the inclusion and the right column
is the canonical isomorphism. Also, let us denote by ι the morphism from S
to Q corresponding to the identity of D through the canonical isomorphism
between Hom(S, •) and • ⊗ D, by δ the canonical universal ι-differential of S
with codomain D∗, and by L the image of the kernel of ϕ through δ, which is
of course a subspace of D∗. Further, let a1, . . . , an be a basis of D and let us
denote by a∗1, . . . , a

∗
n the basis of D∗ dual to it. Then

Proposition 4.3.2. We have that K is the kernel of the map given by compo-
sition of

Z[X]→ D∗ ⊗ F → D∗

L
⊗ F ,

where the arrow on the left is the unique group morphism sending any x ∈ X
to
∑n
i=1 a

∗
i ⊗ x(ai), and the arrow on the right is the map obtained from the

canonical projection of D∗ onto D∗/L extending scalars to F .

Proof. We need to introduce some technical constructions first. To this end, let
k be a field, k[ε] a k-algebra generated by an element ε such that ε2 = 0, and
let us denote by k[ε]× its group of units. Also, let M be a finitely generated
torsion-free abelian group, and let G and η be for the moment an affine algebraic
group over k and an isomorphism of algebraic groups between Hom(M, •×) and
G, respectively. Further, let V denote the tangent space of G, and Hom(M,k)
the k-vector space of group morphisms from M to the additive group of k. Then
the map from Hom(M,k) to V sending any morphism f to the image of

M → k[ε]× x 7→ 1 + f(x)ε

through η, is an isomorphism of k-vector spaces. Composing the dual of its in-
verse with the unique linear transformation from M⊗k to the dual of Hom(M,k)
sending any x ⊗ a to the linear form sending any λ in Hom(M,k) to aλ(x) we
obtain a morphism from M ⊗ k to the dual V ∗ of V , which is an isomorphism
since the map from M ⊗ k to the dual of Hom(M,k) is. Finally, composing it
with the group morphism from M to M⊗k sending x to x⊗1 we obtain a group
morphism from M to V ∗. Since M is torsion-free, the map from M to M ⊗ k
is injective, hence the whole map from M to V ∗ is. We will refer to it as the
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morphism associated to η. Also, let N be another finitely generated torsion-free
abelian group, H an affine algebraic group over k, η′ an isomorphism between
Hom(N, •×) and H, f be a morphism from G to H and ϕ a morphism from N
to M such that

Hom(M, •×)
]◦ϕ //

η

��

Hom(N, •×)

η′

��
G

f // H

is commutative. Then it is easy to check that

N
ϕ //

��

M

��
W ∗ // V ∗

is commutative, too, where W ∗ is the dual of the tangent space of H, the bottom
row is the dual of the linear transformation from the tangent space of G to the
tangent space of H associated to f , and the left and right columns are the
morphisms associated to η′ and η, respectively. Now let D be for the moment a
finite dimensional k-algebra, and let W denote the tangent space of (• ⊗D)×.
Then it is easy to check that

D →W a 7→ 1 + ε⊗ d

is an isomorphism of k-vector spaces. We will refer to it as the canonical iso-
morphism. In addition, let A be for now be a finitely generated commutative
k-algebra, and let Hom(A, •) be endowed with a structure of affine algebraic
group. Also, let η now be a morphism from Hom(A, •) to (• ⊗D)×, let S de-
note the symmetric algebra on the dual D∗ of D, and let ϕ be a morphism from
S to A such that

Hom(A, •)
]◦ϕ //

η

��

Hom(S, •)

��
(• ⊗D)× // • ⊗D

is commutative, where the bottom row is the inclusion and the right column is
the canonical isomorphism. Further, let ι now denote the identity of Hom(A, k),
let δ be a universal ι-differential of A with codomain ΩA, and let dϕ denote the
unique linear transformation from D∗ to ΩA such that

S
ϕ //

��

A

δ

��
D∗

dϕ // ΩA

is commutative, where the left column is the canonical universal ι◦ϕ-differential
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of S with codomain D∗. Then it is easy to check that

V //

��

W

��
Ω∗A // D

is commutative, where Ω∗A is the dual of ΩA, V is now the tangent space of
Hom(A, •), the top row is the linear transformation associated to η, the columns
are the canonical isomorphisms and the bottom row is the composition of the
dual of dϕ with the canonical isomorphism between D and its bidual.

Now let us come back to our proof. There exists a unique isomorphism η′

from Hom(Z[X]/K, (• ⊗Q)×) to Hom(A, •) such that

Hom(Z[X]/K, (• ⊗Q)×)
η′

//

η

**VVVVVVVVVVVVVVVVVVVVV
Hom(A, •)

ζ

��
G

is commutative, and a unique morphism µ from Hom(A, •) to (• ⊗ D)× such
that

Hom(A, •)
µ //

ζ

��

(• ⊗D)×

G

55kkkkkkkkkkkkkkkk

is commutative, where the diagonal arrow is the inclusion. Similarly, there exists
a unique isomorphism η̂′ of algebraic groups over Q from Hom(Z[X]/K, •×) to
Hom(Q⊗A, •) such that

Hom(Z[X]/K, (• ⊗Q)×)Q
//

��

Hom(A, •)Q

��
Hom(Z[X]/K, •×)

η̂′
// Hom(Q⊗A, •)

is commutative, where the columns are the canonical isomorphisms and the top
row is the map obtained from η′ extending scalars to Q, and a unique morphism
µ̂ from Hom(Q⊗A, •) to (• ⊗Q⊗D)× such that

Hom(A, •)Q //

��

(• ⊗D)×Q

��
Hom(Q⊗A, •)

µ̂ // (• ⊗Q⊗D)×

is commutative, where the columns are the canonical isomorphisms and the top
row is the map obtained from µ extending scalars to Q. It is easy to check that

Hom(Z[X]/K, •×)
]◦π //

η̂′

��

Hom(Z[X], •×)

��
Hom(Q⊗A, •)

µ̂ // (• ⊗Q⊗D)×
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where the right column is the canonical isomorphism, is commutative. Also, let
us denote by Ŝ the symmetric algebra on the dual of Q ⊗D, and let ϕ̂ be the
map given composition of

Ŝ → Q⊗ S → Q⊗A,

where the map on the left is the canonical isomorphism, and the map on the
right is obtained from ϕ extending scalars to Q. Then

Hom(Q⊗A, •)
]◦ϕ̂ //

µ̂

��

Hom(Ŝ, •)

��
(• ⊗Q⊗D)× // • ⊗Q⊗D

is commutative, too, where the right column is the canonical isomorphism and
the bottom row is the inclusion. Also, there exists a unique structure of affine
algebraic group over Q on Hom(A, •) such that ζ is an isomorphism of algebraic
groups. In turn, there exists a unique structure of affine algebraic group over Q
on Hom(Q⊗A, •) such that the canonical natural isomorphism from Hom(A, •)Q
to Hom(Q ⊗ A, •) is an isomorphism of algebraic groups, and we have that
the identity ε̂ of Hom(Q ⊗ A,Q) is the map obtained from the identity ε of
Hom(A, •) extending scalars to Q. Now let δ be a universal ε-differential of A
with codomain ΩA. Then the map δ̂ obtained from δ extending scalars to Q is
a universal ε̂-differential for Q⊗A with codomain Q⊗ΩA. Also, let dϕ denote
the unique linear transformation from D∗ to ΩA such that

S
ϕ //

��

A

δ

��
D∗

dϕ // ΩA

is commutative, where the left column is the canonical universal ε◦ϕ-differential
of S with codomain D∗. Since G is connected, Z[X]/K is torsion free. Then
exploiting results in the previous paragraph it is easy to see that

Z[X] π //

ψ

��

Z[X]/K

��
Q⊗D∗ // Q⊗ ΩA

is commutative, where the bottom row is the map obtained from dϕ extending
scalars to Q, the left column is given by composition of

Z[X]/K →W ∗ → Q⊗ ΩA,

where in turn W ∗ is the dual of the tangent space of Hom(Q ⊗ A, •), the map
on the left is the monomorphism associated to η̂′ and the map on the right is
the canonical isomorphism, and ψ is given by composition of

Z[X]→ V ∗ → (Q⊗D)∗ → Q⊗D∗,
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where the map on the left is the monomorphism associated to the canonical
isomorphism between Hom(Z[X], •×) and (• ⊗ Q ⊗ D)×, and the other maps
are the canonical isomorphisms. Also, it is easy to chech that ψ is the unique
group morphism from Z[X] to Q⊗D∗ sending any x ∈ X to

∑n
i=1 x(ai)⊗ a∗i .

Since the kernel of dϕ is L, the thesis follows easily from these facts.

Now let f1, . . . , fl be a finite set of generators for the kernel of ϕ. It is easy
to compute the images of f1, . . . , fm through δ, and of course they form a set
of generators of L. Also, it is possible to compute F as well as the morphisms
from D to it. For more information, see for example the online help of Magma.
Once this has been done, it is easy to compute the kernel K of the previosly
described morphism of abelian groups from Z[X] to D∗/L⊗ F . As k1, . . . , km,
we can take any finite set of generators for K as an abelian group. Finally,
there exist algorithms for computing the Gki and, in turn, the Fi. Again, more
information can be found in the online help of Magma.

4.4 The big picture

Let G be a torus acting faithfully on a finite dimensional Q-vector space V , and
let L be a full-dimensional lattice of V . Also, let us denote by GL the normalizer
of L with respect to the action of the rational points of G on V . The action of
G on V corresponds to a monomorphism of algebraic groups from G into GLV .
Composing it with the canonical isomorphism from GLV to (•⊗End(V ))×, we
obtain a monomorphism ι from G into (• ⊗ End(V ))×. Let us denote by Ĝ its
image, and by χ the unique morphism of algebraic groups from G to Ĝ such
that

G
χ //

ι

%%LLLLLLLLLLL Ĝ

��
(• ⊗ End(V ))×

is commutative, where the vertical arrow is the inclusion. Of course it is even
an isomorphism. Composing the inclusion of Ĝ into (• ⊗ End(V ))× with the
canonical isomorphism from (•⊗End(V ))× to GLV , we obtain a monomorphism
which in turn corresponds to a faithful action of Ĝ on V . Let us denote by ĜL

the normalizer of L with respect to the action of Ĝ(Q) on V . In another direc-
tion, since Ĝ is in particular a subfunctor of • ⊗ End(V ), by results of Section
4.1 we have that the subspace D of End(V ) generated by Ĝ is a commutative
and semisimple sub-Q-algebra of End(V ). The natural action of D on V gives
by restriction an action of the group of units D× of D on V . Let us denote by
D×L the normalizer of L with respect to it. Then

Proposition 4.4.1. We have that

• through the group isomorphism from G(Q) to Ĝ(Q) that χ associates to
Q, the image of GL is ĜL, and that

• ĜL is the intersection of Ĝ(Q) and of D×L .

Proof. It follows immediately from the definitions of Ĝ, D, and their actions on
V .
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In particular,

Theorem 4.4.1. GL is finitely generated.

Proof. By Proposition 4.2.1, we have that D×L is finitely generated. Therefore
by the second part of Proposition 4.4.1 we have that ĜL is finitely generated,
too. Finally the thesis follows from the first part of Proposition 4.4.1.

Now let us denote by S the symmetric algebra on the dual of End(V ), and
let A be a finitely generated commutative Q-algebra, η a natural isomorphism
from Hom(A, •) to G and ϕ a morphism from S to A such that A, η and ϕ are
shadow data for G together with its action on V . Composing η and χ, we obtain
an isomorphism η′ from Hom(A, •) to Ĝ such that A, η′ and ϕ are shadow data
for Ĝ and its action on V . Also, let us denote by S′ the symmetric algebra on
the dual of D, and by π the unique morphism from S to S′ such that

End(V )∗ //

��

D∗

��
S

π // S′

is commutative, where the columns are the canonical inclusions and the bottom
row is the dual of the inclusion of D into End(V ). Then there exists a unique
morphism ϕ′ from S to A such that

S
π //

ϕ
��@

@@
@@

@@
@ S′

ϕ′

��
A

is commutative, and it is such that

Hom(A, •)
]◦ϕ′

//

η′

��

Hom(S′, •)

��
Ĝ // • ⊗D

is commutative, too, where the bottom row is the inclusion and the right column
is the canonical isomorphism.

In addition, let us suppose that A, η and ϕ are explicitely given. In partic-
ular, we have at hand a finite set of generators f1, . . . , fm for the kernel of ϕ.
Therefore the discussion at the end of Section 4.1 shows how to compute D. In
turn, according to the discussion concluding Section 4.2, we are able to compute
a finite set of generators for D×L . Also, the images of f1, . . . , fm through π form
a finite set of generators for the kernel of ϕ′, and of course computing them is
just a matter of linear algebra. Therefore by results of Section 4.3 we are able to
compute the splitting field F of D, the set X of morphisms from D to F , and,
for every i between 1 and some integer m, subfields Fi of F , and integers z(i)

x ,
where x ranges over the elements of X, such that there exist group morphisms
φi from D× to F×i sending a ∈ D× to∏

x∈X
x(a)z

(i)
x ,
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and with the property that D×L is the intersection of the kerφi. With an ar-
gument similar to the proof of Proposition 4.2.1, we have that elements in D×L
are algebraic integers of D. Therefore it follows immediately that their images
through φi are algebraic integers of Fi. Hence for every i between 1 and m we
can apply Ge’s algorithm to compute integral linear combinations of the pre-
viously computed finite set of generators of D×L for the elements of some finite
set of generators of the kernel Ki of the composition of φi with the inclusion of
D×L into D×. It follows from the second part of Proposition 4.4.1 that ĜL is
the intersection of the Ki. Therefore with the data we have at hand it is easy
to compute a finite set of generators g′1, . . . , g

′
n for it. Since the g′i are elements

of End(V ) contained in the image of G(Q) through ι, in our hypothesis we are
even able to compute elements gi of G(Q) sent in g′i by ι. By the first part of
Proposition 4.4.1, g1, . . . , gm generate GL. Therefore this discussion gives an
algorithm for computing a finite set of generators for GL.

4.5 Numerical experiences

Let u1, u2, u3, u4 be the canonical basis of Q4, and let g be the subspace of
End(Q4) generated by the endomorphism x whose matrix with respect to u1, u2, u3, u4

is 
0 1 0 0
0 0 1 0
0 0 0 1
−16 0 10 0

 .

Of course it is a sub-Lie-algebra of gl(Q4). Therefore there exists a unique
connected algebraic subgroup G of GL4 such that g is the Lie algebra of G and
that the inclusion of g into gl(Q4) is the differential of the monomorphism from
G into GLQ4 corresponding to the natural action of G on Q4. Exploiting the
fact that x is semisimple, it can be shown that G is a torus. Also, we can use the
methods described in [deG] to compute explicitely given defining polynomials
for the unique algebraic matrix subgroup of GL4(C) such that G(C) = G. With
these data at hand, we can procede as explained in Section 2.4 to compute
explicitely given shadow data for G together with its natural action on Q4.
Therefore we can apply the algorithm described in Section 4.4 to compute a
finite set of generators for GZ4 . As a first thing, it turns out that the subalgebra
D of End(Q4) generated by the image of G into • ⊗ End(Q4) has dimension 4,
and it is the direct sum of two simple ideals E1 and E2, whose identities are the
endomorphisms e1 and e2 of Q4 whose matrices with respect to u1, u2, u3, u4

are 
− 1

3 0 1
6 0

0 − 1
3 0 1

6
− 8

3 0 4
3 0

0 − 8
3 0 4

3

 and


4
3 0 − 1

6 0
0 4

3 0 − 1
6

8
3 0 − 1

3 0
0 8

3 0 − 1
3

 .

In the notations of Section 4.2, we have that

x1 =
1
6
u1 +

4
3
u3 and x2 =

1
6
u2 +

4
3
u4,

form a basis for L1, and hence for V1, and that

y1 =
1
6
u1 +

1
3
u3 and y2 =

1
6
u2 +

1
3
u4.
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are a basis for both L2 and V2. Of course, the faithful action of E1 on V1

corresponds to an embedding of E1 into End(V1). The image of O1 through
it has a basis consisting of the endomorphisms whose matrices with respect to
x1, x2 are (

−1 0
0 −1

)
and

(
0 1
8 0

)
.

Applying the algorithm by Pohst and Zassenhaus, we also find out that the
image of O×1 into End(V1) is generated by the automorphisms of V1 whose
matrices with respect to x1, x2 are(

−1 0
0 −1

)
and

(
3 1
8 3

)
.

In a similar way, (
−1 0
0 −1

)
and

(
1 1
2 1

)
are the matrices with respect to y1, y2 of automorphisms of V2 forming a gener-
ating set for the image of O×2 into End(V2). Now with an easy computation we
have that

3e1 + e1x+ e2 , − e1 + e2 , e1 + e2 + e2x and e1 − e2

are a finite set of generators for D×L1+L2
and, applying the finite orbit stabilizer

algorithm, that the automorphisms g1, g2 and g3 of Q4 whose matrices are

ĝ1 =


−7 −2 3 1
−16 −7 8 3
−48 −16 23 8
−128 −48 64 23

 , ĝ2 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and

ĝ3 =


−23 −16 3 2
−32 −23 4 3
−48 −32 7 4
−64 −48 8 7


are a finite set of generators for D×L . Now the algorithm has to search for some
group morphisms from D×Z4 to the group of units of a number field such that the
intersection of their kernels is the image of GZ4 . It turns out that it is enough
to consider just one morphism, namely

χ : D×L → Q[
√

2]

such that

χ(g1) = 12
√

2 + 17 , χ(g2) = −1 and χ(g3) = −408
√

2 + 577.

Finally applying Ge’s algorithm we find that the image of GZ4 is generated by
g2

1g3 and g2
2 . Since g2

2 is the identity, it finally follows that GZ4 is the cyclic
group generated by

ĝ2
1 ĝ3 =


−215 −84 99 36
−576 −215 276 99
−1584 −576 775 276
−4416 −1584 2184 775

 .
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Despite the apparent simplicity of the input, the computation of GL was defi-
nitely not a trivial task.

The algorithm described in Section 4.4 has been implement in Magma, and
it has been tested in some non trivial cases. As an example, it has been executed
on the algebraic subgroup of GLm built as in the previous paragraph from the
companion matrix of Xm − 1, for some integers m bigger than 1. It turns out
that from a computational point of view the hardest part are the execution of the
algorithm by Pohst and Zassenhaus and of the finite orbit stabilizer algorithm.
However, the running times of the algorithm for m equal to 10, 11, 12 and 13 on
a 2GHz processor with 1GB of memory for Magma are of 1862, 17.2, 169 and
1581 seconds, respectively. Therefore the whole algorithm is efficient enough to
tackle non-trivial examples.
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Chapter 5

Final remarks

In Chapter 2 we stated a problem concerning the algorithmic theory of algebraic
groups which turned out to be equivalent to another problem previously con-
sidered by Grunewald and Segal, and for which the same authors had already
provided an algorithm solving it in principle. The main contribution on this
work was to provide, in Chapters 3 and 4, two original and practical algorithms
solving the same problem in the special cases in which the algebraic group given
in input is a unipotent group and a torus, respectively. Although these special
cases have some interest in their own, finding a practical algorithm for solving
the problem in the general case seems to be a much harder task. The next case
to deal with could be the case of a connected solvable algebraic groups. The
class of these groups contains properly both the class of unipotent algebraic
groups and the class of the tori. Also, Lie-Kolchin theorem assures that if G
is a connected solvable algebraic group acting faithfully on a finite dimensional
vector space V , then there exists a flag

0 = V0 < V1 < · · · < Vn−1 < Vm = V

of G-stable subspaces of V with the additional property that the image of the
action of G on the Vi/Vi+1 is a torus for every i between 1 and m− 1, and such
a flag can be easily computed using the Lie algebra of G. Therefore a sharp
refinement of the techniques employed in Chapters 3 and 4 is likely to lead to a
practical algorithm for solving the problem in this more general case.
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