
UNIVERSITÀ DEGLI STUDI DI PADOVA

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Astronomia

SCUOLA DI DOTTORATO DI RICERCA IN ASTRONOMIA

CICLO XXI

ASTRONOMICAL APPLICATIONS OF
OPTICAL VORTICES

Direttore della Scuola: Prof. Giampaolo Piotto

Supervisori: Prof. Antonio Bianchini

Dr. Fabrizio Tamburini

Dottorando: Gabriele Anzolin

DATA CONSEGNA TESI

31 gennaio 2009



ii



Acknowledgments

There are many people who helped me during this research experience. Firstly,

I would like to thank my supervisors Prof. Antonio Bianchini and Dr. Fabrizio

Tamburini for giving me the possibility to carry out an investigation in a non-

conventional field of astronomy and for hosting me in their office during these

three years. I will never forget the innumerable discussions we had about physics,

politics and many other (less serious) things.

I am also grateful to the external advisor Prof. Bo Thidé (IRFU, Uppsala,

Sweeden) for his invaluable contribution in promoting and improving this work,

in particular during his visit in Padova.

I would like to thank also Prof. Cesare Barbieri (University of Padova), Gabriele

Umbriaco (University of Padova), Elettra Mari (University of Padova), Prof. Ser-

gio Ortolani (University of Padova), Dr. Enrico Giro (Astronomical Observatory

of Padova), Dr. Claudio Pernechele (Astronomical Observatory of Padova), Prof.

Filippo Romanato (University of Padova) and the director of the Department of

Astronomy Prof. Piero Rafanelli (University of Padova) for their help and support.

Part of the experiments presented in this Thesis were carried out using fork

holograms kindly provided by the Zeilinger-Gruppe at the Institut für Experimen-

talphysik (University of Vienna, Austria). For this reason, I am grateful to all the

members of the group and, especially, to Dr. Thomas Jennewein.

Special thanks go to Dr. Domitilla de Martino (Astronomical Observatory

of Capodimonte, Napoli) and Dr. Marina Orio (Astronomical Observatory of

Padova) for giving me the possibility to start a parallel research in the field of

high-energy astrophysics. I am very grateful also for the financial support that

they provided to me during the last two years.

iii



My grateful acknowledgments go also to Dr. Gabriel Molina-Terriza, Prof.

Juan P. Torres and Prof. Morgan Mitchell for hosting me at ICFO (Barcelona,

Spain).

I am grateful to all the guys (Gabriele, Cesare, Federico, Antonino, Yuri, Clau-

dio, Rodolfo and many others) with whom I shared unforgettable moments in

Padova starting from the very beginning of my undergraduate studies.

I would like to thank my family, in particular my father who had a decisive

role in convincing me to accept the PhD position at the Department of Astronomy

in spite of my initial perplexity.

Finally, I am very grateful to Marta, whose presence by my side throughout

these last years has been of fundamental importance.

The research work presented in this thesis has been partially supported by the University of

Padova, by the Ministry of University and Research and by the CARIPARO Foundation inside the

2006 Program of Excellence.

iv



Abstract

Optical vortices represent a particular class of wavefront dislocations charac-

terized by a topological charge ℓ. The surface of constant phase of an electro-

magnetic wave carrying an optical vortex has a helical structure and presents a

singularity along the axis of the helicoid, where the phase is undefined. As a

consequence, the intensity distribution of a vortex light beam contains a central

dark region, where the intensity is zero due to destructive interference. Optical

vortices can be produced by using phase modifying devices, i.e. particular optical

elements possessing an optical singularity generally located at their center. The

most efficient of them are fork holograms and spiral phase plates.

In the last decade, the properties of optical vortices have found interesting

applications in optical physics. Among these, the most promising are those in op-

tical communications, nanotechnologies and biology. Optical vortices are attract-

ing increasing attention also in astronomy, where the properties of such features

of the electromagnetic radiation could provide a new approach to the study of

astrophysical phenomena.

The purpose of this Thesis is to present some possible applications of opti-

cal vortices to instrumental astronomy. In particular, this work is focused on the

development and testing of new techniques to improve the performances of op-

tical systems. Firstly, a method is proposed to improve the resolving power of a

diffraction-limited telescope by means of an ℓ = 1 fork hologram. Both the ex-

periments and numerical simulations reveal that the superposition of the optical

vortices produced by two light beams characterized by equal Airy intensity distri-

butions present a detectable asymmetry even for separations that are one order

of magnitude below the limit of the Rayleigh criterion. It is shown that this result
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can be achieved both with monochromatic and white light beams.

We then present the first astronomical experiment in which we produced op-

tical vortices in starlight beams with an ℓ = 1 FH placed at the focal plane of

the Galileo 122 cm telescope in Asiago. By using the Lucky Imaging approach to

reduce the effects of mediocre seeing conditions, we were able to observe the im-

ages of the optical vortices produced by the two main components of the multiple

system α Her, in non-monochromatic light, and by the single star α Boo, using

a narrow bandpass. In both cases, the intensity profiles of the observed optical

vortices are in agreement with numerical simulations.

Detailed analytical models and numerical simulations confirm that the spatial

structure of an optical vortex produced by a phase modifying device is extremely

sensitive to off-axis displacements of the input beam, especially when high values

of the topological charge ℓ are used. This property could be used to perform

ground-based astrometric measurements with a precision competitive to standard

PSF-fitting astrometry. The sensitivity to small off-axis displacements might also

help to improve the tip/tilt correction of the wavefront for a small field of view.

We discuss also the possible application of the nulling property of even-charged

optical vortices to perform high-contrast coronagraphy. In this case, the nulling

of the light of an on-axis star is achieved by using a spiral phase plate and a

circular diaphragm as Lyot stop. In principle, this coronagraphic design is one

of the very few that might allow direct imaging of extrasolar terrestrial planets.

However, such remarkable performance is still strongly limited by the current

techniques used to manufacture spiral phase plates. In the framework of project-

ing an ℓ = 2 optical vortex coronagraph for visible wavelengths, we present the

results of numerical simulations obtained considering a spiral phase plate with

a surface subdivided in N discrete levels. A description of the experimental pro-

cedures used to test spiral phase plates manufactured with PMMA (polymethyl

methacrylate) material is also given.
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Sommario

I vortici ottici rappresentano una particolare classe di dislocazioni dei fronti

d’onda caratterizzate da una carica topologica ℓ. La superficie di fase costante

di un’onda elettromagnetica che trasporta un vortice ottico ha una struttura eli-

coidale. Lungo l’asse di questa elica è presente una singolarità in cui la fase

non può essere definita. Di conseguenza, la distribuzione d’intensità di un fascio

di luce contenente un vortice ottico presenta una zona centrale dove l’intensità

è nulla per effetto dell’interferenza distruttiva. I vortici ottici possono essere

prodotti utilizzando particolari elementi ottici detti phase modifying devices che

modificano la fase di un’onda incidente. I più efficienti tra questi sono i fork

holograms (ologrammi) e le spiral phase plates (maschere di fase).

Negli ultimi anni, le proprietà dei vortici ottici hanno trovato interessanti

applicazioni nei campi della fisica e dell’ottica. Tra queste, le più promettenti

sono quelle in comunicazioni ottiche, nelle nanotecnologie ed in biologia. Re-

centemente, i vortici ottici stanno suscitando un crescente interesse anche nella

cumunità astronomica. Infatti, queste particolari proprietà della radiazione elet-

tromagnetica potrebbero permettere di studiare diversi fenomeni astrofisici da un

punto di vista completamente nuovo.

In questa Tesi vengono presentate alcune possibili applicazioni dei vortici ot-

tici in strumentazione astronomica. In particolare, lo scopo principale di questo

lavoro è lo sviluppo di nuove tecniche che permetteranno di migliorare le prestazio-

ni di sistemi ottici. In primo luogo, viene proposto un metodo per aumentare il

potere risolutivo di un telescopio limitato dalla diffrazione che prevede l’utilizzo

di un fork hologram con una singola dislocazione. I risultati di esperimenti e sim-

ulazioni numeriche rivelano che la sovrapposizione dei vortici ottici prodotti da
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due fasci di luce con una distribuzione d’intensità di Airy mostra già un’evidente

asimmetria quando la separazione è di un ordine di grandezza inferiore rispetto

al limite posto dal criterio di Rayleigh. Questo risultato è stato ottenuto sia in

luce monocromatica, sia in luce bianca.

Viene poi presentato il primo esperimento astronomico in cui sono stati prodot-

ti vortici ottici con un fork hologram avente una singola dislocazione posto al pi-

ano focale del telescopio Galileo da 122 cm di Asiago. Utilizzando i principi del

Lucky Imaging per ridurre gli effetti provocati da condizioni di seeing mediocre,

sono state osservate le immagini dei vortici ottici prodotti dalle due componenti

principali del sistema multiplo α Her, in luce non monocromatica, e dalla stella

singola α Boo, utilizzando un filtro spaziale a banda stretta. In entrambi i casi,

i profili d’intensità dei vortici ottici osservati sono riproducibili con simulazioni

numeriche.

La sensibilità dell’immagine di un vortice ottico prodotto con un phase modi-

fying device rispetto a spostamenti fuori asse del fascio entrante è confermata da

modelli analitici dettagliati e anche da simulazioni numeriche, specialmente nel

caso in cui vengano utilizzati elevati valori della cariche topologica ℓ. Questa pro-

prietà potrebbe essere utilizzata per fare misure astrometriche da terra con una

precisione che potrebbe competere con quella fornita dalle tecniche standard di

astrometria di PSF. La sensibilità rispetto a piccoli spostamenti fuori asse potrebbe

anche essere sfruttata per migliorare la correzione dell’aberrazione di tip/tilt del

fronte d’onda in un piccolo campo di vista.

Viene poi discussa la possibile applicazione di vortici ottici con carica topo-

logica pari nella coronografia ad alto contrasto. In questo caso, l’azione combi-

nata di una spiral phase plate e di un diaframma circolare utilizzato come stop di

Lyot permette di annullare totalmente la luce di una stella in asse. Studi teorici

indicano che il coronografo a vortici ottici è uno dei pochi che potrebbe real-

mente permettere l’osservazione diretta di pianeti extrasolari di tipo terrestre.

Purtroppo, questa notevole proprietà è fortemente limitata dalle attuali tecniche

usate per produrre le spiral phase plate. Nell’ambito di un progetto di costruzione

di un coronografo a vortici ottici con ℓ= 2 ottimizzato per lunghezze d’onda visi-

bili, vengono presentati i risultati di simulazioni numeriche ottenuti considerando

viii



una spiral phase plate la cui superficie è suddivisa in N livelli discreti. Infine, ven-

gono discusse le procedure sperimentali utilizzate per testare spiral phase plates

in PMMA (polimetil-metacrilato).
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Chapter 1

Introduction to optical vortices

1.1 Wavefront dislocations

In the early Seventies, attempts made in order to better understand the echoes

of radio pulses sent towards the ice cap in Antarctica led to the discovery of

peculiar features present in the phase fronts of those radio signals. Nye and Berry

[1] called these phase defects wavefront dislocations, thanks to the similarity to

those found within a crystal structure (see e.g. [2]). The concept of a wavefront

dislocation was then readily recognized as a general property of a wave field.

Wavefront dislocations are mathematical singularities that appear in the phase

term Φ(~r, t) of any physical field represented by a wave function of the kind

ψ(~r, t) = A(~r, t)exp [iΦ(~r, t)] . (1.1)

The amplitude term A(~r, t) has to be zero in correspondence of the position of

a wavefront dislocation, where the phase is not defined [3]. This condition is

required in order to avoid physical inconsistencies related to the presence of the

singularities and can be interpreted as the result of destructive interference oc-

curring at any singular point. According to the terminology used to describe dis-

locations in crystal lattices, wavefront dislocations are subdivided in three main

classes:

1. edge dislocation;

2. screw dislocations;

1



CHAPTER 1. INTRODUCTION TO OPTICAL VORTICES

3. mixed screw-edge dislocation.

An edge dislocation produces a constant shift of a section of the wavefront, so that

the phase is undefined along a line lying on a plane perpendicular to the direction

of propagation. For example, the dark rings of an Airy pattern produced by the

diffraction of a plane wave beyond a circular aperture are produced by closed

edge dislocations [4]. Screw dislocations, instead, are point phase defects, while

the latter type of dislocations are, as the name suggests, mixtures of screw and

edge dislocations.

In this Thesis, I will discuss the properties and applications of screw dislo-

cations, which are now better known with the name optical vortices (OVs). This

terminology was firstly introduced by Coullet et al. [5] to classify laser modes

represented by spiral waves rotating around the points where the amplitude of

the electric field is zero. More generally, electromagnetic (EM) waves harboring

OVs can be obtained as particular solutions of the scalar wave equation in vacuum

�ψ= 0 , (1.2)

where the D’Alambert operator acting on the wave function ψ is defined as � =

∇2 − (1/c2)(∂ 2/∂ t2). In the following, we will neglect the dependence on time

of ψ as we are interested only in its spatial dependence 1. It is also convenient

to use a cylindrical coordinate system (r,θ , z), where z is the propagation axis

of the wave field. In this way, the simplest expressions of the complex field of a

steady singular wave containing an OV along the z axis are [6]:

ψ(r,θ , z) ∝





r |ℓ| exp [i(ℓθ + k z)]

r−|ℓ| exp [i(ℓθ + k z)]

, (1.3)

where k = 2π/λ is the wave vector and λ is wavelength. One can readily rec-

ognize the presence of a peculiar phase term exp(iℓθ) which depends on the

azimuthal angle θ multiplied by a signed integer number ℓ called topological

charge. This term is present in the phase of any optical wave containing an OV.

1This is equivalent to solve the wave equation using the method of separation of variables.
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1.1. WAVEFRONT DISLOCATIONS

A screw wavefront dislocation is characterized by its own topological charge

ℓ ∈ Z defined as the path integral of the scalar product between the phase gradi-

ent ∇Φ and the length element vector d~l:

ℓ =
1

2π

∮
∇Φ · d~l . (1.4)

The integration is performed along a circuit enclosing the singular point. The

topological charge, which is rather a geometrical than a physical characteristic of

an OV, indicates the number of 2π phase changes encountered along any closed

circuit around the dislocation center.

The surfaces of constant phase of both the wave functions expressed in Eqs. 1.3

are defined by

ℓθ + k z = const . (1.5)

This equation describes a planar surface if ℓ= 0, or a helical surface with a pitch

angle ℓλ if ℓ 6= 0. In the case |ℓ| > 1, the wavefront is composed by a number

|ℓ| of coaxial helicoids separated by a distance equal to the wavelength λ along

the z axis. Fig. 1.1 shows some examples of wavefronts of waves containing OVs

with different topological charges. As a convention, the helical wavefront is right-

handed if the sign of the topological charge is positive, while it is left-handed in

the opposite case. The helicity of the vortex is independent of the choice of the

coordinate systems [4], as well as of the path used to evaluate the integral in

Eq. 1.4.

As a matter of fact, the first of Eqs. 1.3 diverges for r →∞, while the other one

diverges close to the z axis. Therefore, these solutions of the scalar wave equation

cannot describe physical wave fields. The unwanted behavior must be then fixed

by introducing an additional amplitude term which balances the divergences. For

this reason, the general form of an EM carrying an ℓ-charged OV along the z axis

takes the form:

ψ(r,θ , z) = Aℓ(r, z)exp
�

iΦℓ(r, z)
�

exp (iℓθ) . (1.6)

Here, the amplitude Aℓ is a real function, possibly depending on ℓ which vanishes

both at r = 0, where the phase singularity is located, and large radii (r → ∞).

The phase term in Eq. 1.6 has been purposely subdivided in two parts, in order to

3



CHAPTER 1. INTRODUCTION TO OPTICAL VORTICES

Figure 1.1 – Surfaces of constant phase (wavefronts) of waves con-

taining screw dislocations with ℓ = 0,1,2,3. Figure adapted from

http://www.physics.gla.ac.uk/Optics/play/photonOAM/.

separate the vortex term which depends on the azimuthal angle θ from the term

Φℓ which depends only on the r and z coordinates. Both the amplitude Aℓ and

the phase term Φℓ may vary while the wave propagates, since they are dependent

on the z coordinate. However, the OV remains embedded in the wave field and its

position can be always found by solving simultaneously the equations ℜ(ψ) = 0

and ℑ(ψ) = 0.

It was also shown theoretically and experimentally, that OVs behaves simi-

larly to charged particles. Optical screw dislocations having topological charges

with the same sign may repel each other, whereas those with opposite charges

may attract themselves and annihilate in consequence of a collision. OVs having

charge ±1 are find to be robust with respect to external perturbations. For ex-

ample, a single-charged OV can self-reconstructs itself beyond an opaque screen

which obstructs part of the host wave [7]. Instead, OVs with topological charges

different from unity tend to split into single-charged ones, with conservation of

the total net charge [8]. The reflection of a wave carrying a screw dislocation

implies the inversion of the sign of the topological charge [9].

1.2 The orbital angular momentum of light

In 1992 Allen et al. [10] showed that light beams containing screw disloca-

tions carry also a quantity of orbital angular momentum (OAM). This property is

related to the helicoidal shape of the wavefront, which causes the Poynting vec-

tor to precess around the direction of propagation [11]. As a result, the Poynt-
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1.2. THE ORBITAL ANGULAR MOMENTUM OF LIGHT

ing vector associated to this kind of beams possesses an azimuthal component.

Laguerre-Gaussian (L-G) modes, a particular class of cylindrically symmetric laser

cavity modes, represent the prototype of light beams carrying OAM. For this rea-

son, they have been extensively used in singular optics. A generic L-G mode is

characterized by two integer indices: the azimuthal index ℓ, that coincides with

the topological charge of the hosted OV, and the radial index p, that defines the

number of radial nodes of the mode. The mathematical expression of the field of

a generic L-G mode propagating along the z axis is

upℓ(r,θ , z) =

r
2p!

π(p+ |ℓ|)!
1

w(z)

�
r
p

2

w(z)

�|ℓ|
L|ℓ|p

�
2r2

w2(z)

�
exp

�
−

r2

w2(z)

�

× exp

�
−

ikr2

2R(z)

�
exp[−i(2p+ |ℓ|+ 1)φ(z)] exp(iℓθ) , (1.7)

where w2(z) = (z2
R + z2)/(k zR) is the beam width (the radius at which the am-

plitude decreases by a factor e−1), zR is the Rayleigh range, R(z) = (z2
R + z2)/z is

the curvature radius, φ(z) = arctan(z/zR) is the Gouy phase and L|ℓ|p is a gener-

alized Laguerre polynomial [12]. The fact that an L-G beam carries a quantity of

OAM has been firstly proved within the paraxial approximation 2. However, this

property was subsequently generalized also in the non-paraxial regime [13].

The EM field of a generic vortex beam can be obtained from a vector potential

of the kind

~A(~r, t) = ~σu(~r)ei(kz−ωt) , (1.8)

where ~σ is a complex vector describing the polarization of the field, ω is the

frequency and u(~r) is a complex function that contains the vortex phase term:

u(r,θ) = u(r)exp(iℓθ) . (1.9)

For beams of this kind, the time-averaged linear momentum density [14] is given

by [10]

〈 ~P 〉= iω
ǫ0

2

�
u∗∇u− u∇u∗

�
+ωkǫ0|u|2ẑ +ωσ

ǫ0

2

∂ |u|2

∂ r
θ̂ . (1.10)

2For an EM field u, the paraxial approximation is achieved by neglecting ∂ 2u/∂ z2 compared

with k(∂ u/∂ z) and ignoring |∂ u/∂ z| compared with u in the scalar wave equation 1.2. In other

words, it is assumed that the wave vector k subtends a small angle with respect to the optical axis.
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CHAPTER 1. INTRODUCTION TO OPTICAL VORTICES

Here, a cylindrical coordinates system with unit vectors r̂, ẑ and θ̂ is used. By

inserting the expression of u(~r) (Eq. 1.9) into Eq. 1.10, one can obtain the com-

ponents of the linear momentum density [15]:

Pr = ǫ0
ωkr

R(z)
|u|2 , (1.11)

Pz = ǫ0ωk|u|2 , (1.12)

Pθ = ǫ0

�
ωℓ

r
|u|2 −

1

2
ωσ

∂ |u|2

∂ r

�
. (1.13)

The transverse component Pθ is constituted by two separate terms: one depend-

ing only on σ and one depending only on ℓ. The latter is responsible for the

transport of OAM. In fact, the total angular momentum density ~J can be ob-

tained from the evaluation of the cross product between the radius vector ~r and

~P =
�
Pr ,Pz ,Pθ

�
[14]:

~J = ~r × ~P . (1.14)

The z component of the total angular momentum density is thus:

Jz = ǫ0

�
ωℓ|u|2 +

1

2
ωσr

∂ |u|2

∂ r

�
. (1.15)

The integration of Jz over the whole cross-section of the beam gives the quantity

of total angular momentum per unit length carried by the beam. If the EM field

carries an energy W , then the total angular momentum per energy unit is

Jz

W
=
ℓ

ω
+
σ

ω
. (1.16)

We see that Jz can be decomposed in two separated terms: the OAM, which

depends on ℓ, and the spin, which depends on σ. Therefore, a vortex beam with

an energy W = ħhω carries a quantity ℓħh of OAM per photon [10, 16].

The question of whether OAM is an intrinsic property of photons 3 was de-

bated for a long time [17, 18, 19]. However, the covariant formulation of the

photon wave function has been shown to be formally equivalent to quantum

electrodynamics. This implies that OAM is not an intrinsic property of single

photons, otherwise the correspondent Dirac-like equation would admit an infi-

nite spectrum of intrinsic angular momentum (spin) states [20, 21].

3The intrinsic properties of a particle are those that do not depend on the choice of the reference

frame, like the rest mass, the electric charge and the spin.
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1.3 Optical vortices in nature

The spontaneous appearance of OVs was firstly postulated and, then, demon-

strated in beams propagating through irregular refracting media or reflected from

rough surfaces [1, 22]. OVs were also recognized in the phase fronts of light

beams propagating through nonlinear media like high-density vapors [23] or

Kerr refractive media [24], as well as in nonlinear optical system [25, 26]. As

a consequence, optical speckle fields have been shown to contain a large num-

ber of randomly distributed OVs [27, 28]. The appearance of screw wavefront

dislocations has been demonstrated also in the simple case of three (or more)

interfering plane waves [29].

OVs are known to appear spontaneously in EM waves generated in resonator

cavities [30, 31, 32], Fabry-Perot resonator [33] and photorefractive oscillator

[34]. In fact, EM fields containing screw dislocations occur as particular modal

solutions of the paraxial wave equation expressed in cylindrical coordinates. The

paraxial wave equation is a particular form of the scalar Helmholtz equation [35]:

∇2
tψ− 2ik

∂ ψ

∂ z
= 0 , (1.17)

where ∇2
t = ∂

2/∂ x2 + ∂ 2/∂ y2 is the transverse Laplacian operator. By using a

cylindrical coordinates system, Eq. 1.17 becomes

1

r

∂

∂ r

�
r
∂ ψ

∂ r

�
+

1

r

∂ 2ψ

∂φ2 − 2ik
∂ ψ

∂ z
= 0 . (1.18)

It can be demonstrated that vortex solutions of Eq. 1.18 are also cylindrically sym-

metric around the z axis and possess an amplitude term with a finite transversal

extension [36]. For this reason, solutions of this kind formally represent beams.

Moreover, it turns out that these beams are hollow, since the EM field has to be

zero along the z axis, where the OV is located and the phase can take any value

between 0 and a multiple of 2π. Laser cavity modes are examples of solutions

of this kind. For instance, the fundamental TEM01 mode harbors an OV along its

symmetry axis [37]. Other possible singular solutions can be obtained by acting

with differential operators on the plane wave representation of the fundamental

Gaussian mode used as a seed function [38] and are represented by Bessel beams
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CHAPTER 1. INTRODUCTION TO OPTICAL VORTICES

[39], Bessel-Gauss beams [40] and L-G beams. All these solutions are very useful

in applied physics because they are orthonormal.

1.4 Production of optical vortices

OVs produced with the spontaneous mechanisms described in Sect. 1.3 usu-

ally appear at random locations in the cross-section of the host wave field, un-

less we are dealing with hollow modes possessing peculiar symmetry properties.

However, for practical purposes, the generation of OVs with predefined topolog-

ical charges and located in particular positions is often required. For this reason,

several methods to artificially produce OVs in light beams have been developed

and are now widely used in laboratory experiments.

One of these methods consists in the astigmatic conversion of an HGmn Hermite-

Gaussian laser cavity mode into an ℓ-charged L-Gpℓ vortex mode [41]. The mode

conversion is achieved by using two cylindrical lenses placed consecutively along

the propagation axis z of the HGmn mode. The first cylindrical lens focuses the

light along a transverse axis. In the focal plane, the beam undergoes a rotation by

45◦ around the z axis. This is equivalent of having a superposition of the original

HGmn mode with a HGnm mode. The position of the second lens can then be cho-

sen in order to produce a π/2 difference between the phases of the two modes.

The final result is an LGpℓ mode, with ℓ= |m− n| and p =min(m, n).

OVs can be produced also by using phase modifying devices (PMDs), which

are optical devices designed to imprint a certain vorticity to the phase front of

an incident beam. Among them, the most efficient [42] are computer-generated

holograms and spiral phase plates (SPPs).

1.4.1 Computer-generated fork holograms

A hologram represents the synthetic image of an object. Holograms are pro-

duced by using particular plates in which the information on the EM field of the

objects that one wants to reproduce is recorded. Essentially, a holographic plate

records the interference pattern obtained from the superposition of the EM field

diffused by the object and a coherent reference beam. For this reason, when the

8



1.4. PRODUCTION OF OPTICAL VORTICES

plate is illuminated by a beam having the same characteristics of the reference

beam, an image of the object will appear. Holographic plates can be used either

in transmission or in reflection. In the following, I will refer only to the former.

Holography was invented in 1948 by Gabor [43]. At that time, however, the

production of holographic plates was limited by the absence of coherent sources

that are strongly required to obtain stable interferograms. A great improvement

of the holographic techniques was made possible only after the development of

laser sources in the Sixties. Until now, two distinct types of transmission holo-

graphic plates have been developed: the on-axis Gabor holograms [43] and the

off-axis Leith-Upatnieks holograms [44]. A Gabor hologram produces both vir-

tual and real images of the object along the same axis. Therefore, an observer will

always see a superposition of the two images. Instead, with the Leith-Upatnieks

holograms it is possible to separate the two images, since the holographic plate is

produced by imposing an offset angle between the reference wave and the light

scattered by the object.

In the mid Sixties, the synthesis of holographic plates was further improved

with the aid of computers [45]. In fact, computers allow to easily calculate the

complex amplitude of the EM field propagated from the object to the hologram

plane, which is then encoded as a real non-negative function (a matrix of points

with real values). There are many advantages offered by the computer synthe-

sis of an holographic pattern, as it is not affected by problems related to the

coherence of the source of the reference beam or to the environmental condi-

tions (vibrations, turbulence, etc.). However, the most important property of

computer-generated holograms is the possibility of reproducing optical fields of

any kind, also light beams. For this reason, computer-generated holograms have

been readily used to produce and study light beams containing screw wavefront

dislocations [46, 47, 48, 49].

The holographic pattern obtained by computing the interference of the ref-

erence wave with a vortex beam is different if the former is a plane wave or a

spherical wave. In the first case, the pattern of the interferogram is similar to that

of a grating with a central fork-shaped dislocation [46]. This is the reason why

they are usually called fork holograms (FHs). Fig. 1.2a shows an example of a

9
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(a) Fork hologram (b) Spiral hologram

Figure 1.2 – Examples of computer-generated hologram designed to produce OVs

with ℓ = 1.

FH with just one central dislocation. When a monochromatic beam with a wave-

length λ intersects perpendicularly a FH, the grating structure ideally produces

an infinite number of diffraction orders. The angleφm subtended by the direction

of an order m with respect the propagation axis of the input beam is given by the

usual grating equation [50]

Λ sinφm = mλ , (1.19)

where Λ is the spatial separation of the grooves of the grating far away from the

center. Instead, if the reference beam is a spherical wave, then the interferogram

pattern will assume a spiral-like shape similar to that of a Fresnel zone plate [47]

(see Fig. 1.2b). Such a spiral hologram diffracts an incident beam too, but the

diffraction orders are found at different positions along the propagation axis. For

the purposes of the experiments that will be discussed in Sect. 2 and 3, FHs are

more useful than spiral holograms because it is always possible to simultaneously

inspect different diffraction orders without changing the position of the obser-

vation plane. Therefore, in the following I will present only the properties of

FHs.

The object that we want to reproduce is a ℓ-charged vortex beam having a
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field

uobj = Aobj exp(iℓθ) , (1.20)

where Aobj is a real amplitude factor and θ = arctan(y/x) is the azimuthal angle

in the (x , y) plane perpendicular to the z axis. The reference beam is represented

by a plane wave with a constant amplitude A0 and a wave vector k lying in the

(x , z) plane that subtends an angle ψ with the z axis. The corresponding field

distribution is

uref = Aref exp
�
−i k x sinψ

�
= Aref exp

�
−i

2πx

Λ

�
, (1.21)

where Λ = λ/ sinψ. Assuming for simplicity Aobj = Aref = A, the interferogram

produced by the two fields is:

I(x ,θ) = |uobj + uref|2 = 2A2
�

1+ cos
�

2πx

Λ
+ ℓθ

��
. (1.22)

This represents the interference pattern that has to be imprinted in the holo-

graphic plate to obtain a FH. Eq. 1.22 may be used also to describe the transmis-

sion function of a FH. In this case, Λ has to be identified with the spatial period of

the grooves away from the central dislocation. An alternative expression, useful

for computational purposes, is obtained by using the Fourier transform [51, 52]:

T (r,θ) =
+∞∑

k=−∞
Tk exp

�
−ik

�
ℓθ −

2π

Λ
r cosθ

��
, (1.23)

where r cosθ = x . The beam containing the OV having the wanted topological

charge ℓ is produced at the first diffraction order (m = +1). More generally, a

beam formed at the m-th diffraction order harbors an OV with topological charge

equal to mℓ.

The holographic plate in which a FH is recorded can modify either the ampli-

tude and the phase of an incident light beam. The latter (phase holograms) are

preferable for experimental reasons because they have a lower energy absorption

and a higher diffraction efficiency. To obtain a phase hologram, the transmission

function has to be translated into a variation of the thickness of the hologram

material. Furthermore, the spatial resolution must be sufficiently high to resolve

the interference fringes of Eq. 1.22. This problem was extensively addressed by

Sacks et al. [53].
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To improve the diffraction efficiency toward the first diffraction order, a FH

can be also blazed. In this case, the transmission function can be written, in

circular coordinates, as

T (r,θ) = exp
�

i
δ

2π
mod

�
ℓθ −

2π

Λ
r cosθ , 2π

��
, (1.24)

where δ is the amplitude of the phase modulation 4 and mod(a, b) = a−b int (a/b).

1.4.2 Spiral phase plates

OVs can be produced in light beams also by using spiral phase plates (SPPs)

[54]. These are helicoidal transmission optical devices that impose an azimuthally

dependent phase retard on an incident optical field. An SPP is thus a transparent

plate in which the thickness at a given position (r,θ) of its surface is proportional

to the azimuthal angle [55]:

h(r,θ) = hs

θ

2π
, (1.25)

where hs is the total thickness variation. This makes an SPP to resemble a smooth

spiral ramp (see Fig. 1.3). In the central region the thickness varies suddenly

from 0 to hs. This represents the optical singularity that produces an OV into an

incident optical field. SPPs have been successfully used not only in the visible

region of the EM spectrum, but also at millimeter wavelength [56] and in the

X-rays [57].

Consider a monochromatic light beam with wavelength λ propagating along

an axis perpendicular to the (r,θ) plane. When this intersects an SPP exactly

on its center, it will obtain an azimuthal phase variation which results in the

appearance of a screw wavefront dislocation having a topological charge

ℓ =
∆n(λ)hs

λ
, (1.26)

where ∆n is the difference between the refraction indices of the SPP material

and the surrounding medium. As a consequence, OVs with different topological

charges will be produced at different wavelength, thus making the performances

4δ = 2π for a fork-hologram blazed at the first diffraction order.
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Figure 1.3 – An SPP used for millimeter wavelengths (from

http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/MMWave/).

of SPPs strongly dependent on the bandwidth of the incident beam. The trans-

mission function of an SPP is a simple function of the azimuthal angle:

T (r,θ) = exp(iℓθ) . (1.27)

Here, ℓ is determined by the structural properties of the SPP and by the operating

wavelength (Eq. 1.26). Differently from a FH, which imprints a vorticity with a

topological charge depending on the diffraction order, an SPP has only the zero

diffraction order. For this reason, the output beam propagates along the same

axis of the incident beam.

1.4.3 Vortex beams produced with phase modifying devices

The action of a PMD on a incident optical field can be described using the

scalar diffraction theory [58]. Consider a monochromatic wave field u(x , y, z)

propagating along the z axis and a PMD placed in the (x , y) plane. The PMD

has a transmission function T (x , y) and the optical singularity coincides with the

origin of the coordinate system. Here, we consider PMDs that modulate only the

phase of an incident wave. The diffracted field is calculated in another plane,

(x ′, y ′), parallel to the (x , y) plane and placed at a distance z ≫ λ from it. In

any point P ′ in the (x ′, y ′) plane close to the z axis the resulting field can be
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determined by using the Fresnel-Kirchhoff formula [58]:

u(P ′) =
1

iλ

∫∫

Σ

u(x , y, z) T (x , y)
exp(ikPP ′)

PP ′

1+ cosα

2
dx dy , (1.28)

where PP ′ is the distance between P ′ and a point P in the (x , y) plane and α is

the angle between the z axis and the vector
→

PP ′. Formally, the integral should be

evaluated over the cross-section Σ of the PMD, however the integration is usually

extended to infinite distances, for simplicity.

In many experimental situations, like those presented in this Thesis, the wave

field u(x , y, z) is represented by a cylindrically symmetric light beam, like a

Gaussian beam. However, also in the simplest case in which the symmetry axis

coincide with the z axis, the analytical evaluation of the integral in Eq. 1.28

presents many technical difficulties. For this reason, the problem of the diffrac-

tion of a light beam passing through a PMD was often tackled by using numerical

simulations [59, 60, 55]. The mathematical formulation of the output vortex

beam can be also expressed in terms of a superposition of orthogonal L-G modes

[48, 56, 61].

Recently, an useful simplification of Eq. 1.28 has been found by Bekshaev &

Karamoch [52] in the case of a FH. They showed also that the action of a FH on

an incident light beam is similar to that of an SPP. In particular, the actions of

these two PMDs are formally equivalent when the angle subtended by the first

diffraction order of the FH, where the OV with the wanted ℓ is formed, is small 5,

thus making the mathematical description of vortex beams produced with SPPs or

FHs exactly the same. The only difference is that the output beam will propagate

along the same axis of the input beam in the case of an SPP, or along a different

axis, z′, in the case of a FH.

Consider a PMD designed to produce an OV with topological charge ℓ (at

the desired wavelength, if it is an SPP). To simplify the calculations (and take

advantage of the symmetry of the geometry of the problem), it is more convenient

to make use of the circular coordinates r =
p
(x2+ y2) and θ = arctan(y/x). An

incident beam u(r,θ , z) propagating along the z axis intersects the PMD exactly in

5This condition is usually satisfied, for visible wavelengths, by FHs having Λ in the range ∼
10−2− 10−1 mm.
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the center (r = 0). The double integral in Eq. 1.28 can be analytically calculated

only if the input beam and, thus, the output beam are paraxial. Within this

approximation, the field of the vortex beam in the observation plane is given by:

u(ρ,β , z) =
k

2πiz

∫∫
u(r,θ , z) exp(iℓθ)

× exp
�

i
k

2z

�
r2 +ρ2 − 2rρ cos(θ −β)

��
r dr dθ , (1.29)

where ρ =
p

x ′+ y ′ and β = arctan(y ′/x ′) are the circular coordinates in the

(x ′, y ′) plane. We remind that the z axis appearing in this equation has to be

replaced with the z′ axis in the case of a FH.

The field amplitude of the output beam u(ρ,β , z) can be calculated by sub-

stituting the appropriate mathematical expression of the input beam u(r,θ , z).

Eq. 1.29 is very useful to study the propagation of the vortex beam from the PMD

position to the observation plane. In particular, it allows to predict the amplitude

and the phase distributions of the vortex beam at any distance z from the PMD.

1.5 Applications of optical vortices

The OAM associated to light beams carrying OVs represents a new degree of

freedom associated to the EM field. The potential applications of OVs in applied

physics have only begun to be explored. Molina-Terriza et al. [62] reviewed some

of the landmark advances in the study and use of the OAM of light. Among these,

the most promising seems to be those in optical communications, nanotechnolo-

gies and biology.

It has been shown that the OAM carried by a focused vortex beam can be

mechanically transferred to small absorbing particles [63], causing them to rotate

around the core of the OV nested in the wavefront [64]. This result allowed to

readily apply OVs in optical trapping experiments [65]. Optical tweezers and

spanners have been then developed to trap and move particles with dimensions

ranging from tens of nanometers to tens of micrometers [66].

OAM states can be used to define a discrete Hilbert space with infinite dimen-

sions. For this reason, light beams endowed with OAM carry a larger amount
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of information. This might be of considerable importance for free-space optical

communications [67]. For the same reason, the technique of digital spiral imag-

ing [68, 69] could be used to remotely acquire information about a particular

medium.

The fact that individual photons can carry their own OAM has deep implica-

tions in quantum applications [62]. For example, photon OAM states could be

used as practical realizations of quantum bits having arbitrary dimensions, the

so-called quNits. Courtial et al. [70] argued that, using the current techniques

of production of PMDs, OAM states as high as ∼ 1000ħh can be actually obtained.

Such a high number of states encoded in a single photon is also of fundamental

importance in the fields of quantum communications and quantum cryptography,

as well as in optical data storage. Moreover, couples of photons generated by

using the effect of spontaneous parametric down conversion have been demon-

strated to be entangled in their OAM states [17]. Therefore, the use of photon

OAM in quantum communication channels might help to enhance both the effi-

ciency and the security of the transmission of data.

The presence and stability of wavefront dislocations were also investigated

in the case of partially coherent light. By using the coherent-mode representa-

tion [71], in which a partially coherent beam is considered as a superposition

of coherent modes, several authors showed the possibility of having a partially

coherent beam containing OVs [72, 73, 74]. In particular, it has been demon-

strated that a stable ring dislocation remains embedded in the cross-correlation

function of a partially coherent beam while it propagates, regardless of the size of

the transverse coherence length [75]. This property could be used in an optical

filter which discriminates a coherent field from an incoherent background [60].

Quite recently, OVs and the related OAM of light attracted also the attention

of the astronomical community. In fact, the exploitation of these properties of

light could allow, in the future, to study astronomical phenomena in a differ-

ent way, especially in view of the next generation of extremely large telescopes

[76, 77]. For example, the fact that OVs appears in the wavefront of an EM

wave passing through irregular media led to the argument that OVs could be

naturally generated by some astrophysical environments, possibly related to tur-
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bulent interstellar media with density discontinuities on wide scale ranges, or to

the distorted geometry around Kerr black holes [78].

The current applications of OVs in optical astronomy mainly concern instru-

mentations and are focused on developing methods of production and/or mea-

sure of optical vorticity in starlight beams. Berkhout & Beijersbergen [79] pre-

sented an efficient method based on a multipoint interferometer for probing the

vorticity present in light beams coming from astronomical sources. The possi-

bility of making ground- and space-based instruments to measure also the OAM

present in the light emitted by astrophysical sources was also explored by Elias

[80]. In this work, a generic systems-based calculation of the propagation of

photon OAM from the celestial sphere to a detector was presented. In partic-

ular, it was demonstrated that the propagation of a vortex light beam through

an aberrated telescope modifies the quantity of OAM originally carried. This in-

strumental OAM must then be calibrated, also including optical aberrations and

atmospheric turbulence [81]. A further application proposed by Swartzlander

[60] consists in peering into the darkness of OVs generated by a PMD inserted in

the optical path of a Lyot coronagraph to improve the capability of direct imaging

of extrasolar planets.

Optical vorticity was also proposed for application in radio astronomy at low

frequencies (® 1 GHz), like those used in multi-array radio telescopes (e.g LO-

FAR and SKA). In fact, modern digital radio techniques can be used to model

coherently the full EM field vectors in a beam. This might open the possibility to

observe the solar corona [82] or to perform space plasma diagnostics [83]. It has

been shown that plasma vorticity can be also transfered to an electron-neutrino

beam [84]. This effect could be of relevant importance in the field of neutrino

astrophysics.

In summary, the properties of light beams carrying OVs are attracting an in-

creasing attention in astronomy, especially at visible wavelength. In this Thesis

I will present and discuss some new promising instrumental applications of OVs,

that could allow to open a novel window of information on the Universe.
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Chapter 2

Overcoming the Rayleigh

separability limit

2.1 Introduction

In 1879, Lord Rayleigh investigated the resolving power of some diffraction-

limited optical instruments, with particular interest in telescopes and spectro-

scopes. He then formulated a criterion to assess the separability of two equally-

luminous point sources observed with those optical instruments. The Rayleigh

separability criterion, based on the analysis of the superposed diffraction patterns

produced by the two sources, is rather arbitrary. However, it has the merit of

being extremely simple. Lord Rayleigh himself said that this rule is convenient

on account of its simplicity and it is sufficiently accurate in view of the necessary

uncertainty as to what exactly is meant by resolution [85].

In the following, I will only consider the case of a telescope. As well known

[58, 50], the diffraction image produced by a diffraction-limited telescope with a

circular aperture of radius a can be mathematically expressed by the Airy distri-

bution

I(θ) = I(0)
�

2J1(ka sinθ)

ka sinθ

�2

, (2.1)

where k = 2π/λ (λ is the wavelength), θ is the angle between the optical axis of

the telescope and a point in the observation plane and Jm is a Bessel function of

the first kind [12]. The image of a distant point source appears thus as a bright
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spot, also called Airy disk, surrounded by an infinite series of concentric rings

having decreasing intensities.

The Rayleigh criterion states that the images of two point sources are said to

be just resolved when the intensity maximum of one source (the center of the Airy

disk) falls on the first intensity minimum of the other source [50]. As a result,

the Rayleigh (angular) separability limit is defined by

θR = 1.22
λ

D
, (2.2)

where D = 2a is the aperture diameter of the telescope. Fig. 2.1 shows how

the two superposed Airy diffraction patterns appear for different separations of

the sources. Generally, the intensity profile extracted along the direction of sep-

aration shows two peaks and a central dip, the intensity of which grows as the

separation decreases. For this reason, the Rayleigh limit can be similarly defined

by imposing that the first derivative of the intensity distribution at the position

of the dip is zero 1. We also remind that the historical definition of the resolving

power of an optical instrument refers to a symmetric double-peaked profile with

a central dip 5% lower than the intensity maxima [86].

The separability limit defined by the Rayleigh criterion is, thus, a fundamental

physical limit of any optical system. However, techniques to overcome the limit

imposed by the phenomenon of diffraction have been developed in certain special

cases, especially in the fields of astronomical imaging [87] and microscopy [88].

For example, resolutions below the diffraction limit can be achieved with the use

of superlenses made with artificially engineered metamaterials [89, 90] or super-

resolving pupils [91], as well as by exploiting evanescent waves produced by very

narrow apertures [92].

Swartzlander [60] proposed an alternative method to overcome the diffrac-

tion limit based on the analysis of the far-field intensity distributions produced by

two vortex beams. Consider two infinitely-distant and incoherent point sources

observed with a telescope having an aperture diameter D and a focal length f .

1A more stringent condition may require that also the second derivative of the intensity distri-

bution is zero at the position of the dip. In this case, one obtain the so-called Sparrow separability

criterion.
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Figure 2.1 – Airy images of the intensity distributions of two point sources as

observed with a diffraction-limited telescope, together with the corresponding ra-

dial profiles. The three cases corresponds to: (a) well resolved sources, (b)

separation at the Rayleigh limit, (c) unresolved sources. Figure adapted from

http://hyperphysics.phy-astr.gsu.edu/Hbase/phyopt/Raylei.html.

Figure 2.2 – Radial profiles of the superposed far-field intensity distributions pro-

duced by two plane waves passing through a finite SPP. In this examples we consider

two different values of the topological charge of the produced OV: ℓ = 0 (Airy pat-

terns, left panel) and ℓ = 1 (right panel). Figures adapted from Ref. [93].
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The angular separation of the two sources is assumed to be small, i.e. α ≪ 1,

therefore the EM waves entering the telescope aperture are nearly collinear. An

SPP is placed just before the aperture, therefore the images formed at the focal

plane of the telescope can be obtained from the Fourier transform of the product

between the fields of two plane waves and the transmission function of the SPP

(see Sect. 1.4.3). If ℓ = 0, two Airy patterns will be observed. In this case, the

two sources are considered to be separated when α = θR, that implies a spatial

separation δR = 1.22λ f /D at the focal plane of the telescope. Instead, if the

SPP imposes a topological charge different from 0, the original Rayleigh criterion

cannot be applied because the images produced at the focal plane will not be Airy

patterns. Instead, both the observed images will have a symmetric annular shape

with a central dark spot in correspondence of the OV position. As a result, their

radial profiles appears double peaked, as in the example shown in Fig. 2.2. The

Rayleigh criterion can be similarly satisfied when one of the two intensity peaks

of one source overlaps with the dark core of the other source. By applying this

modified version of the Rayleigh criterion, it can be shown that the angular sep-

aration of the two sources corresponds to 0.64θR for ℓ = 1. By using SPPs with

larger values of the topological charge, instead, the separation angles are larger

than θR, namely 1.03θR for ℓ= 2, 1.37θR for ℓ= 3, 1.71θR for ℓ= 4 and so on.

If this method were used to improve the resolving power of telescopes, large

SPPs would be required as they must be placed just before the aperture 2. How-

ever, the production of such SPPs currently poses quite a number of technical

problems, making extremely difficult the application of the method. We have

however found a different optical solution which still allows to achieve sub-

Rayleigh separabilities using OVs. In the following Sections, I will show how

the Rayleigh limit may be better overcome by using a combination of integer and

non-integer values of the OV topological charge.

2A similar situation is found in telescopes equipped with objective prisms.
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2.2 Decomposition of a light beam in Laguerre-Gaussian

modes

The generation of light beams containing OVs proceeds thanks to the insertion

in the optical path of a PMD, as described in Sect. 1.4. L-G modes, that are

mathematically expressed by Eq. 1.7, can be used to describe the field of the

output beam since they represent a set of orthonormal basis [56, 61]. Using a

circular coordinate system (r,θ), the intensity distribution of an L-G mode with

p = 0 is given by

I(r,θ) =
2

πw2ℓ!

�
r
p

2

w

�2ℓ

exp

�
−

2r2

w2

�
, (2.3)

where ℓ is the topological charge of the nested OV and w is the width of the

Gaussian envelope. This intensity distribution has a ring-shaped structure, with

a central dark region. The maximum of intensity is found at a radial distance

rmax =

p
2

2
w
p
ℓ (2.4)

from the symmetry axis of an L-G mode and depends on ℓ as

I(rmax) =
2

πw2ℓ!
ℓℓ e−ℓ . (2.5)

For large values of the topological charge, I(rmax) decreases as the inverse of the

square root of ℓ [11].

Consider a monochromatic pencil of light propagating along the z direction

of a reference frame S and a PMD placed on the (x , y) plane. The PMD has

a finite spatial extension and its optical singularity is centered with the origin

O. We assume that the transverse intensity distribution produced by the input

beam on the PMD plane is described by Eq. 2.1 and, thus, is axially symmetric.

This is the situation that is expected to occur when a PMD is placed at the focal

plane of an unobstructed telescope. Note that this optical configuration is exactly

the opposite of that used in Ref. [60]. When a beam of this kind intersects the

active region of the PMD, the resulting diffraction image produced in the far-

field is represented by a series of concentric rings produced by a superposition of

an infinite number of coaxial L-G modes having different ℓ and p indices. This
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Figure 2.3 – Optical setup: LPs are neutral polarizing filters, BE1 and BE2 are beam

expanders, M is a fixed mirror, MBS is a moving beam splitter, MM is a moving plane

mirror, L1 is a biconvex lens, H is the FH, CCD1 and CCD2 are two CCD cameras.

The inset represents the spatial filter used in the experiment with white light: L2 is

a camera lens and S is a narrow slit. The two sources were obtained by using two

distinct He-Ne lasers, in the monochromatic case, or a halogen lamp and two optical

fibers in white light (not represented here).

occurs also in the case of strongly focused, tilted and off-axis input beams. The

wavefront resulting from of such a weighted superposition may possesses an OV

with a non-integer value of the topological charge [94, 95, 61, 96, 97].

2.3 Sub-Rayleigh separability with optical vortices

To study the properties of the far-field diffraction pattern previously intro-

duced, we performed some experiments at the Laboratory of Optics of the Depart-

ment of Astronomy (University of Padova). These experiments were carried out

both with monochromatic and white light sources. We used the optical scheme

shown in Fig. 2.3, in which the PMD was an ℓ = 1 FH with 20 grooves mm−1,

an active area of 2.6× 2.6 mm2 and a 50µm-sized optical singularity. The FH

was blazed at the first diffraction order, where its efficiency was measured as
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∼ 70% at 630 nm. Two independent 632.8 nm He-Ne lasers were used to sim-

ulate the monochromatic sources, while white light sources were provided by a

halogen lamp and two optical fibers having different lengths. In the experiment

with white light we also corrected the chromatic dispersion of the FH by spatially

filtering the first diffraction order with a ∼ 1 mm slit placed on the Fourier plane

of the achromatic lens L1 (see the inset in Fig. 2.3).

The Airy diffraction patterns were produced by using two pinholes with equal

diameters of 400 µm. These were illuminated by the two independent beams

previously collimated with a beam expander. The FH was placed perpendicularly

to the optical axis, at a distance d = 430 mm from the two pinholes. The derived

Fresnel number, F ≃ 0.15, was sufficient to satisfy the Fraunhofer diffraction

conditions and, thus, obtain Airy diffraction patterns on the FH plane [50]. This

was further verified by analyzing the spot images with the CCD1 camera, after

the insertion of a moving mirror inclined by 45◦ in the optical path (see Fig. 2.4,

bottom row). The measured ratio between the distances of the first two maxima

of the diffraction pattern with respect to the center of the Airy disk was 1.59,

close to the value 1.64 predicted for a perfect Airy pattern.

While carrying out the experiments, the axis of one beam was always centered

with the optical singularity of the FH. In this way, it produced a vortex beam

containing an OV with an integer topological charge ℓ = 1. The other beam,

instead, could be shifted using a moving beam splitter in different positions of

the FH, starting from the center. As a result, the output beam hosted an OV

with a non-integer ℓ. The central dark regions of the far-field intensity patterns

produced by the two diffracted beams beyond the FH were always superposed,

because they were generated by the same optical singularity of the FH. In any

case, to prevent modifications of the topological charges of the OVs due to tilts,

the two beams were kept parallel with a tolerance of 0.17µrad.

The experimental diffraction images obtained in monochromatic light are

shown in the central row of Fig. 2.4. The Rayleigh criterion limit calculated for

the 400µm aperture of the pinholes is θR = 1.93 mrad, corresponding to a linear

separation δR = 834µm on the FH plane. As a comparison, numerical simula-

tions of the expected far-field diffraction patterns are reported in the upper row
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Figure 2.4 – Images of the separation of two close monochromatic sources having

the same intensity. Upper row: numerical simulations of the far-field diffraction pat-

terns generated with an ℓ = 1 FH. Central row: the corresponding experimental im-

ages observed with the CCD2 camera. Bottom row: Airy patterns of the two sources

as observed with the CCD1 camera. Left column: superposed sources. Central col-

umn: sources separated by 0.42 times the Rayleigh criterion limit. Right column:

sources separated by 0.84 times the Rayleigh criterion limit.
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Figure 2.5 – Main panel: experimental intensity profiles of the superposed diffrac-

tion patterns produced by the two monochromatic sources. The intensity scale is

normalized to the value of the peaks produced with unresolved sources. The three

cases shown here refer to the same separations of Fig. 2.4. When one of the two

sources is shifted to an off-axis position on the FH plane, the combined profile be-

comes clearly asymmetric. Inset: zoom of the position of the first minimum of the

diffraction pattern produced by the Airy disk. The dotted curve represents the result

of numerical simulations.
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of the same Figure. The details of these numerical simulations are explained in

Appendix A.1. All the images presented in the first column of Fig. 2.4 correspond

to perfectly superposed sources. In the second column the two sources are sep-

arated by 0.42δR, while in the third column they are separated by 0.84δR. In

all cases, the separation of the two sources is below the diffraction limit, as also

shown by the corresponding Airy pattern presented in the bottom row.

The intensity profiles extracted along the direction of separation of the super-

posed OV diffraction patterns shown in Fig. 2.4 are plotted in Fig. 2.5. As we

can see, these profiles always show two peaks. However, they become more and

more distorted as the linear separation δ increases. When δ = 0, the profile is

symmetric and the two peaks have the same intensity given by the exact super-

position of two identical diffraction patterns. When δ 6= 0, the intensity of one

of the two peaks decreases much faster than the other one, the latter tending to

reach the intensity level of the single source. As the separation increases, the

intensity measured at the position of the first external minimum of the combined

profile (indicated in Fig. 2.5) monotonically increases, as shown in Fig. 2.7. This

behavior can be interpreted as the effect of the contribution of the asymmetric

transverse profile produced by the off-axis source [61, 98] containing an OV with

a non-integer topological charge. In fact, the OV nested in the on-axis beam has

always ℓ = 1. Instead, the topological charge of the off-axis OV tends progres-

sively to 0 as δ→∞.

We tested the separability of the two monochromatic sources in the range

0 ≤ δ ≤ 700µm, with steps of 35µm. For each step, we measured the intensity

ratio between the two peaks of the observed profile along the direction of sepa-

ration. The experimental data, shown in Fig. 2.6, are in good agreement with the

theoretical curve obtained with our numerical simulations. We find that the inten-

sity ratio reaches a minimum value of 0.48 when the separation is ∼ 0.42δR. By

approximating the Airy disk with a Gaussian, we estimate a topological charge

ℓ ≃ 0.4 for the OV produced by the off-axis source at that position. The main

panel of Fig. 2.6 reports also the data obtained in white light that, at small sep-

arations, seem to decrease more smoothly than the monochromatic data. The

lower inset of Fig. 2.6 reports the positions of the main peaks of the simulated
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Figure 2.6 – Main panel: ratio between the intensities of the peaks of the superposed

OV profiles vs. the separation of the sources. The solid line represents the theoret-

ical expectation for monochromatic light, while the superposed dots and errorbars

are the experimental data. The dashed line is an interpolation of the experimental

data obtained in white light. Lower inset: positions of the maxima of the diffraction

patterns (in units of the Rayleigh radius) vs. the topological charge ℓ (here indi-

cated with OAM). Triangles show the angular separations between two sources with

equally-charged OVs, as calculated in Ref. [60]. Upper inset: white light diffraction

pattern produced by two equally luminous simulated stars as seen with a diffraction

limited telescope (diamond in the main panel).
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Figure 2.7 – The intensity of the first external minimum (see Fig. 2.5) of the com-

bined profile produced by two equally intense sources plotted in function of the

off-axis shift. The solid curve is derived from numerical simulations. Dots and error

bars refer to our experimental results. The intensity scale is normalized with respect

to that obtained for the two superposed sources.

diffraction patterns (in units of the separation δR) as a function of the estimated

ℓ values. If we consider only the positions of the intensity peaks with respect to

the dark core, sub-Rayleigh separations are achieved only for 0.45 < ℓ < 2, with

a minimum at ∼ 0.7δR. The separations obtainable with the method discussed

in Ref. [60] by using two OVs with identically charges ℓ= 1,2,3 are also shown.

Our experimental results suggest that sub-Rayleigh separabilities can be achie-

ved by analyzing the relative intensities of the asymmetric peaks produced by the

superposed diffraction patterns. We might then mimic the historical definition of

the resolution limit [86] and assume that two identical sources are just resolved

when the intensities of the asymmetric peaks differ by at least 5%. Obviously, the

actual separability depends on the signal-to-noise ratio (SNR) associated to the

experimental data. However, with our optical setup, we could reach a theoretical

separability 50 times better than the Rayleigh limit in the monochromatic case.

Analogously, the results obtained in white light suggest a separability about 10

times better then the Rayleigh limit. This lower resolution is mainly due to the

non-perfect spatial filtering and lower degree of coherence of the sources. In the

upper inset of Fig. 2.6 we show a successful application of this separability crite-
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rion in white light. We experimentally simulated the OV images produced by a

double star with an angular separation ∼ 10 times below the Rayleigh limit, as

observed with an F/16 diffraction-limited telescope having an aperture of 122 cm

(like the Galileo telescope in Asiago). The result of this simulation is consistent,

within the errors, with the experimental data obtained in white light.
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Chapter 3

Optical vortices with starlight

3.1 Introduction

Among the potential applications of OVs in astronomy, the most promising

seems to be those in super-resolution and in coronagraphy. The former is better

achievable with ℓ = 1 OVs, as it is shown in Chapter 2, while in the second case

only evenly-charged OVs generated by a perfect Airy diffraction pattern ensure

the total rejection of the light of the on-axis source [99]. In both cases, OVs are

produced by using a PMD placed at the focal plane of a telescope. Indeed, these

astronomical applications would give their best performances with instruments

placed outside the atmosphere. Ground-based telescopes, instead, will always

feel the detrimental effects of the atmospheric turbulence, even with adaptive

optics. Therefore, it is important to know how the seeing can affect the pattern of

OVs generated by stellar sources. A first investigation in this field has been done

by Jenkins [100] in a paper concerning coronagraphy. However, the actual struc-

ture of OVs produced in starlight beams observed with ground-based telescopes

has never been studied in detail. For this reason, we performed some experiments

of production of OVs at the 122 cm Galileo telescope in Asiago.
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Figure 3.1 – Numerical simulations of the OV images produced in the far-field by

ℓ = 1 monochromatic by beams with an Airy (left) and a Gaussian (center) ampli-

tude distributions. The transverse sizes of the input beams were chosen in order to

produce annular patterns with the same maximum intensity radius rmax. Right panel:

the corresponding radial profiles. The solid line refers to a Gaussian OV, while the

dashed line refers to an Airy OV. The intensity scale of the two profiles has been

normalized to the corresponding maximum value.

3.2 Optical vortices with ground-based telescopes

The pattern of an OV generated with a PMD placed near the focal plane of a

telescope strongly depends on the transverse intensity distribution produced by

the stellar beam, i.e. the point spread function (PSF). We remind that, if an axially

symmetric and monochromatic beam intersects on-axis a PMD, the observed far-

field image presents a circular symmetry with a central dark region (an annular

shape). Instead, if the beam is shifted off-axis, the dark region appears displaced

off center and the observed pattern loses its circular symmetry.

The PSF generated by a point-like stellar source at the focal plane of a diffraction-

limited telescope is described by the an Airy intensity distribution IA ∝
�

J1(r)/r
�2,

where r = ka sinθ (k = 2π/λ and a is the aperture radius of the telescope). In-

stead, for an uncompensated ground-based telescope, the PSF of a stellar source

is degraded by the atmospheric turbulence and consists in a central nearly-Gaussian

core with a radius determined by the seeing and an exponentially decreasing

outer halo [101]. When the centroids of the stellar PSFs produced in these two
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limiting conditions coincide with the optical singularity of the PMD, OVs with

same integer topological charge ℓ are generated. A vortex beam produced by a

monochromatic Gaussian beam (Gaussian OV), like those produced by the see-

ing, can be well described in terms of Kummer functions [52]. This is quite

different from the OV produced by a diffraction-limited beam (Airy OV). In this

case, the analytical expression of the resulting beam can be obtained by inserting

in Eq. 1.29 an Airy amplitude distribution for u(r,θ , z) [99]:

u(ρ,β)∝
4π

iℓ
eiℓβ

×





�ρ
a

�ℓ Γ(1+ ℓ/2)

Γ(1+ ℓ)Γ(1− ℓ/2) 2F1

�
1+

ℓ

2
,
ℓ

2
; 1+ ℓ;

�ρ
a

�2�
if 0< ρ < a

�
a

ρ

�2 Γ(1+ ℓ/2)

Γ(2)Γ(ℓ/2) 2F1

�
1+

ℓ

2
,1−

ℓ

2
; 2;
�

a

ρ

�2
�

if ρ > a

,

(3.1)

where Γ is the Euler gamma function and 2F1 is a hypergeometric function [12].

As an useful example, Fig. 3.1 shows the numerical simulations of the far-field in-

tensity distributions produced by the two types of monochromatic vortex beams,

together with their radial profiles (see Appendix A.2 for details). Here, both the

beams contain a single-charged OV in their axis and have the same maximum

intensity radius rmax. As we can see, the phase singularity produces a null in-

tensity at the center. However, a major difference resides in the shape of the

intensity maxima of their radial profile: an Airy OV possesses sharp and narrow

peaks, whereas those of a Gaussian OV are smooth and broad. This characteris-

tics can be generalized also for OVs with higher values of the topological charge,

with the additional condition that even-valued Airy OVs have zero intensity for

any r < rmax = a. We recall that the structures of the observed far-field diffrac-

tion patterns are not significantly changed even in the case of slightly converging

stellar beams like those produced by telescopes with high focal ratios [52].

3.3 Experimental setup

An important task in the cited astronomical applications of OVs consists in

keeping a stellar PSF exactly on-axis of the PMD for all the duration of the ob-
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Figure 3.2 – Optical setups, without (top) and with (bottom) spatial filter. T is the

telescope; L1, L2, L3 are lenses; H is the ℓ = 1 FH (its pattern is depicted in the

middle of the figure); S is the slit. Stellar speckle patterns are sketched on the left of

the optical setups, while the output images at the zeroth and first diffraction orders

are on the right. All angles and displacements are exaggerated for clarity.

servation. In fact, the atmospheric turbulence causes the stellar beam to wander

around the line of sight (see Ref. [102] for a comprehensive review of atmo-

spheric optical effects). Therefore, we need to know the actual position of the

stellar image in the focal plane of the telescope where the PMD is placed. In our

observations, we tried to solve this problem by using the Lucky Imaging approach

[103, 104]. The Lucky Imaging is one of the speckle imaging techniques used as

alternative to adaptive optics. It basically consists in collecting a large number of

images with exposure times shorter than the turbulence timescale (∼ 10− 100

ms in the optical/near-infrared). A single nearly diffraction-limited image can

occasionally be produced when most of the stellar light falls in a single bright

speckle. Such lucky exposures [105] can be selected and, then, properly combined

to produce a high-quality image. Here, we have adopted the obvious additional

criterion of selecting only those exposures where the target was centered with

the optical singularity of the PMD.

In our observations we used the two different optical setups sketched in Fig.
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3.2. Images were collected with a fast CCD camera with 660× 494 pixels (7.4×

7.4µm2), 16 bit dynamical range and spectral response ranging from 4000 to

6700 Å peaked at 5200 Å. This CCD camera allowed us to partially correct the

stellar PSF for the seeing effects (see Sect. 3.5).

An ℓ= 1 FH blazed at the first diffraction order was used to modify the phase

structure of the incoming starlight beam and thus produce an OV. The FH was

obtained from a quartz plate by means of electron beam lithography. It has 38.5

grooves mm−1 (spatial period Λ = 26 µm) and an active area of 2.6× 2.6 mm2.

Due to technical limitations, the depth of the grooves was subdivided in 8 dis-

crete levels. The FH was blazed at the first diffraction order with a diffraction

efficiency of ∼ 80% at 702 nm. With this device, we were able to simultaneously

observe both the stellar speckle image, at the zero-th diffraction order, and the

OV pattern at the first diffraction order. The choice of ℓ = 1 avoided some pos-

sible experimental complications, as OVs with higher topological charges might

become unstable within the instrumental optical path and split in single-charged

ones [1].

In Sect. 1.4, I mentioned that the action of a FH is different if the input beam

is monochromatic or if it is polychromatic. At a given diffraction order m 6= 0, the

intensity distribution produced by a monochromatic and axially symmetric beam

intersecting the FH exactly on-axis has an annular shape. Instead, if we are not

using monochromatic light, which is usually preferable while observing faint stel-

lar objects, the ring-shaped structure will be modified [106]. Each single spectral

component will be dispersed at a different angle according to the usual grating

equation. However, OVs with the same topological charge will be produced at all

wavelengths. Therefore, the intensity pattern produced by a non-monochromatic

vortex beam will appear as a ring stretched along the direction of the dispersion

with a central dark strip. To correct the effect of spectral dispersion, we could

also use a the spatial filter made with a 0.1 mm slit, S, placed in the Fourier plane

of the collimating lens L2 (see the optical setup sketched in the lower part of

Fig. 3.2). The slit essentially acts as a tunable bandpass filter with a flat spectral

response. Therefore, by limiting the spectral range to ∼ 300 Å in the visible, we

could somehow restore the annular shape of a monochromatic OV [107].
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3.4 Observations and data reduction

Our observations were carried out in May 2005 with the Galileo 122 cm tele-

scope in Asiago. This is a Cassegrain telescope with a parabolic primary mirror

having an effective diameter of 120 cm and a hyperbolic secondary mirror hav-

ing an effective diameter of 32.7 cm. The total focal length is ∼ 19 m, thus the

telescope has an F/16 focal ratio, with a focal plane scale of 10.9′′ mm−1. The

telescope is equipped with a Boller & Chivens spectrograph that does not allow

to directly access the Cassegrain focal plane 1. For this reason, an additional 45◦

mirror had to be placed on the optical path.

The targets of our observations were the multiple system Rasalgethi (α Her)

and the single star Arcturus (α Boo). α Her is a visual binary composed by two

spectroscopic binary systems which are presently separated by 4.7′′: α Her A,

formed by an M5 Ib-II semiregular variable (V = 2.7−4.0) plus a fainter compan-

ion separated by 0.19′′ [108], and α Her B, containing a G0 II-III giant (V = 5.4)

and a secondary which separation was spectroscopically estimated as 0.0035′′

[109]. Instead, α Boo is a single star with visual magnitude V = 0.04 and spec-

tral type K1.5 III. For both objects, we collected a large number of frames with a

short exposure time. To select the best frames we proceeded as follows:

1. when the zero-th diffraction order was visible, we determined the full width

at half maximum (FWHM) of the target PSF, after the subtraction of the

mean sky level, and then selected the best 10% frames;

2. we further selected the frames in which the target was also on-axis by an-

alyzing the intensity profiles of the observed OVs at the first diffraction

order;

The mechanical design of the lower setup of Fig. 3.2 prevented the observation

of the zero-th diffraction order. In this case, we could only select those frames

in which the observed images did present a symmetrical structure indicating that

the target beam crossed the center of the FH.

1See http://www.astro.unipd.it/osservatorio/telescopio.html for details.
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Figure 3.3 – Image (right) and dispersed OVs (left) of α Her A and B obtained

by adding the selected best 10% frames. Intensities are displayed in a squared

greyscale. The OV profiles were taken along the y axis, perpendicular to the di-

rection of dispersion x .

3.4.1 First experiment: non-monochromatic optical vortices

We observed α Her in non-monochromatic light using the optical setup shown

in the upper part of Fig. 3.2 that allowed us to simultaneously see the zero-th and

the first diffraction order. The FH was placed 30 mm before the Cassegrain focal

plane of the telescope, as we wished to achieve two conditions:

• to obtain well separated OV patterns on the focal plane of lens L1 (this was

however granted by the angular separation of the stars);

• to have both light beams large enough to cross a significant area of the FH

and, in particular, the central singularity.

We set α Her A at the center of the optical system and, then, recorded a sequence

of 860 frames at a time step of 70 ms. To select the best exposures, we used the

PSF of the unsaturated α Her B component and found that 10% of the frames

presented a FWHM below ∼ 1.6′′. The on-axis condition for α Her A was further

recognized when the peaks of the corresponding dispersed OV profile had the

same intensity within the experimental errors. The images and the chromatically

dispersed OVs resulting from the summation of all the selected best frames are
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Figure 3.4 – Radially-averaged profile of the PSF of α Her B obtained by adding the

selected best 17% frames (open squares). The solid line represents the best-fit model

constituted by two superposed coaxial Gaussians. The two Gaussians components

are also shown separately (dotted lines), for clarity.

shown in Fig. 3.3. The average radial profile of the PSF of α Her B (see Fig.

3.4) is constituted by a Gaussian core superposed to a halo that we fitted with

another coaxial Gaussian, for simplicity. The FWHM of the two Gaussians are 1′′

and 4.2′′ respectively, the latter being roughly consistent with the seeing. Fig. 3.6

shows the mean profiles of the OVs obtained by averaging 10 pixels wide strips

extracted perpendicularly to the dispersion.

3.4.2 Second experiment: narrow-band optical vortices

The observations of the single star α Boo were performed using the optical

setup shown in the lower part of Fig. 3.2. The FH was placed at the focus of lens

L1, where the scale of the telescope was magnified by a factor ∼ 1.5. Thus, the

FWHM of the PSF of the ∼ 3′′ seeing image was 0.5 mm. We introduced the also

spatial filter to reduce the bandwidth, still ensuring a reasonable SNR ratio. We

obtained a sequence of 890 frames with exposure times of 70 ms. Due to the non

observability of the zero-th order, we could only look for the on-axis condition of
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Figure 3.5 – Left: the narrow-band OV of α Boo obtained by summing the selected

frames. The intensity is displayed in a squared greyscale. Right: profile of the OV

across the direction perpendicular to the dispersion (solid line). The dotted line

represents the numerical simulation of an ℓ = 1 OV produced by a PSF modeled as

described in the text, with a spectral range of 300 Å. The thin solid line indicates the

observed intensity in the central dark region.

α Boo by analyzing the intensity profiles of the OV. We then choose those frames

in which the ratios of the intensity peaks measured along two perpendicular axis

across the OV were close to unity within 1% errors. In this way, we can reveal

off-axis displacements along any radial direction. The mean OV pattern obtained

by adding all the selected frames is shown in the left part of Fig. 3.5.

3.5 Results and discussion

3.5.1 Non-monochromatic optical vortices

The results of the first experiment were checked with numerical simulations

of non-monochromatic OVs produced with an ℓ = 1 FH (see Appendix A.2 for

details). Since we set our FH in an intrafocal position, the image produced by the

stellar beam did approximately coincide with that of the pupil. In our simulation

we used a simplified image model made of an uniformly illuminated disk with ra-

dius a plus a central circular 7% obstruction, like that produced by the secondary
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Figure 3.6 – Profiles of the OVs generated by α Her A (A′, left panel) and α Her B

(B′, right panel) extracted along the y axis of Fig. 3.3. Dotted lines represent the

numerical simulations of ℓ = 1 chromatically dispersed OVs generated by a pupil

image with a circular 7% obstruction. Thin solid lines are drawn at the intensity

level of the central dips of the observed OV patterns.

mirror of the 122 cm Asiago telescope. To simulate the observed A′ profile of

Fig. 3.6 we assumed a perfectly on-axis pupil image, while the B′ profile was

reproduced by imposing an off-axis relative displacement ρ/a = 0.31, ρ being

the linear separation of the two stars on the FH plane. For the off-axis OV we had

also to consider that the displacement vector (the line joining α Her A and B) was

rotated by an angle of 30◦ with respect to the dispersion. The intensity profiles

of the simulated OV patterns are shown in Fig. 3.6. Both the observed A′ and

B′ profiles show extended smooth wings not properly reproduced by our simpli-

fied simulations. This is probably due to the insufficiently short exposures which

did not allow a proper compensation of the seeing effects. However, the most

remarkable result concerns the ratio R of the two intensity maxima. By fitting

with Gaussians the two peaks of the observed A′ and B′ profiles, we measured

RA′ = 0.995±0.005 and RB′ = 0.83±0.01, respectively. These values are in good

agreement with the values 1.0 and 0.82 predicted by our numerical simulations.

We notice that the central dip in A′ is 0.81 times the maximum intensity, still in
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agreement with the predicted value of 0.82. For B′, instead, the dip is 0.76, while

the numerical simulation predicts 0.70.

3.5.2 Narrow-band optical vortices

In the second experiment we observed the OV pattern produced by a single

star focused at the center of the FH. Since in this case the zero-th diffraction order

was not visible, we could not perform Lucky Imaging and the best 17% images

were selected only on the basis of the circular symmetry of the OV. Using a spatial

filter to limit the wavelength range, we were able to obtain a ring-shaped pattern

similar to that of the Gaussian OV shown in Fig. 3.1.

Also in this case we simulated the OV pattern by assuming a PSF modeled

with two Gaussians. Here we modeled also the effects of the dispersion over a

spectral range of 300 Å. We find that the OV which best-fits the observed profile

is produced by a stellar PSF composed by a dominant core with a FWHM of

3.6′′ and a fainter halo with ∼ 7′′ FWHM, its peak value being only 2% that

of the narrower Gaussian. The simulated OV quite remarkably reproduces the

wings of the observed one, but not so well the central dip which should be 13%

the intensity of the two maxima, while it is observed at the 52% level (see the

right panel of Fig. 3.5). This effect is very likely due to the loss of the starlight

coherence produced by the bad seeing conditions plus our exposure times that

were not short enough. Additional intensity inhomogeneities barely visible in the

observed annular pattern can be ascribed to the presence of dust grains in the

optical path and/or construction imperfections of the FH.

3.5.3 The relation between the maxima intensity ratio and the off-

axis position

The results of our experiments represent a first test bench to relate the ratio R

between the two intensity peaks of the far-field intensity profile to of the off-axis

displacement ρ of the input beam on the FH plane. In the case of a monochro-

matic Gaussian beam, an approximate relation can be analytically derived, as

detailed in Appendix A.4. For other types of beams, e.g. non-Gaussian and/or
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Figure 3.7 – Ratios of the intensity peaks plotted as a function of the off-axis relative

position ρ/a for ℓ = 1 OVs generated by: (A) a monochromatic Gaussian beam; (A’)

a non-monochromatic Gaussian beam; (B) two monochromatic coaxial Gaussians;

(B’) two non-monochromatic coaxial Gaussians; (C) a pupil image in monochro-

matic light; (C’) a pupil image in non-monochromatic light; (C”) a pupil image in

non-monochromatic light where the off-axis displacement is inclined by 30◦ with

respect to the dispersion. The experimental result obtained from the analysis of the

OV generated by α Her B is indicated by the black dot (error bars are at the 1σ

confidence level).
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non-monochromatic, R has to be numerically evaluated.

We have performed numerical simulations of OVs produced by beams having

various intensity distributions on the FH plane, namely a Gaussian, two Gaussians

(like in our second experiment) and a uniform pupil with a 7% central obstruction

(like in our first experiment). We have then calculated R for different values of the

off-axis relative position ρ/a, where 2 a is the FWHM of the intensity distribution

in case of Gaussian beams or the outer diameter in case of the pupil image. The

results of our simulations are shown in Fig. 3.7, for both monochromatic and

non-monochromatic light. For a non-monochromatic Gaussian beam, R cannot be

evaluated above ρ/a = 0.3 because the fainter peak becomes indistinguishable.

As we can see, R decreases as the off-axis displacement increases for all the beams

considered. This is the result of the off-axis migration of the central dark region.

Furthermore, R decreases more rapidly for Gaussian OVs and, in general, for

monochromatic light. The experimental result obtained from the analysis of the

OV generated by α Her B is also reported in Fig. 3.7. Our measure fits quite well

the theoretical curve C” obtained for an obstructed pupil displaced off-axis along

a direction inclined by 30◦ with respect to the dispersion of the FH.

The capability of detecting small off-axis displacements depends on the pre-

cision of the measure of R. However, the calibration of the relation between ρ/a

and R requires the knowledge of the beam structure, i.e. the profile of its inten-

sity distribution. When the star is focused on the FH, a roughly corresponds to

the FWHM of the PSF. This means that the maximum sensitivity can be achieved

with nearly diffraction limited stellar images. For this reason, Lucky Imaging or

adaptive optics would provide the best results. In our experiments with relatively

bright stars we typically had SNR ¦ 100 and an error of ∼ 1% associated to the

measure of R. Assuming a PSF composed by two coaxial Gaussians, like that

adopted to fit the OV pattern observed in our second experiment, the smallest

off-axis relative displacement inferable from Fig. 3.7 is ρ/a ∼ 0.01. Since the as-

sumed PSF corresponded to a = 1.8′′, the minimum angular displacement would

be 0.02′′. We notice that this value is comparable to the astrometric precision

of 0.01′′ obtained by fitting a single Gaussian to the core of the PSF of α Her B.

Fig. 3.7 confirms that a higher precision is achievable when the PSF is modeled
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with a single Gaussian. In that case, still assuming a 1% error on R, the minimum

off-axis relative displacement would be ρ/a = 0.004, for monochromatic beams,

or ρ/a = 0.006, for non-monochromatic light.
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Chapter 4

A new method to measure

off-axis displacements of light

beams

4.1 Introduction

Many applications of OVs require the knowledge of the exact amplitude distri-

bution of a vortex beam generated with a PMD. As I have mentioned in Sect. 1.4.3,

one of the first approach to this problem consisted in expressing the field of the

output beam as a superposition of L-G modes with different radial indices p [48].

However, it was later found that a more precise description of the diffracted

beams is provided by hypergeometric (Kummer) functions, for both SPPs [110]

and FHs [53, 52]. We remind that these two type of PMDs behave similarly, pro-

vided that the angle subtended by the first diffraction order is small. As useful

examples, I report the analytical solutions obtained for two particular cases of the

input wave field: a plane wave and a Gaussian beam.

4.1.1 Plane waves

Consider a plane wave with unit amplitude propagating along the z axis:

u(r,θ , z) = exp(i k z) . (4.1)
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The detailed analysis of the action of an infinitely extended SPP on an incident

plane wave was carried out by Berry [110]. In this study, the mathematical form

of the output field was obtained, under paraxial conditions, in terms of a super-

position of plane waves, also including evanescent waves produced by the optical

singularity. For an integer ℓ, the field of the vortex wave in the observation plane

(x ′, y ′) is:

u(ρ,β , z) =

Ç
π

8
(−i)|ℓ|/2 exp[i(ℓβ + z)]

×
ρ
p

z
exp

�
i
ρ2

4z

��
J |ℓ|−1

2

�
ρ2

4z

�
− i J |ℓ|+1

2

�
ρ2

4z

��
, (4.2)

where Jm is a Bessel function of the first kind [12]. The phase factor exp(iℓβ)

implies the presence of an OV with topological charge ℓ located all along the z

axis, where the field amplitude is zero. If the topological charge induced by the

SPP is not integer, the output wave possesses not only the singularity at ρ = 0,

but also a step phase discontinuity along the positive x ′ axis (β = 0).

4.1.2 Gaussian beams

A Gaussian beam centered at r = 0, with the waist plane coinciding with the

(x , y) plane, represents another useful expression for u(r,θ , z). In this case, the

field amplitude in the (x , y) plane of the PMD is

u(r,θ) = exp

�
−

r2

2b2

�
, (4.3)

where the parameter b is related to the beam width. The mathematical descrip-

tion of the output beam obtained by calculating the integrals in Eq. 1.29 was

found by Bekshaev & Karamoch [52]:

u(ρ,β , z) =

Ç
π

2
exp
�
iℓβ

�
(−i)|ℓ|+1 exp

�
i
kρ2

2z

�
zR

z − izR

×
p

A exp(−A)

�
I |ℓ|−1

2
(A)− I

(
|ℓ|+1

2
(A)

�
, (4.4)

where Im is a modified Bessel function of the first kind [12], zR = kb2 is the

Rayleigh range, k = 2π/λ is the wave vector (λ is wavelength) and

A=

�
kρ2

z

�2
b2

4(1− i zR/z)
. (4.5)
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(a) ζ= 0.01, b = 5 (b) ζ = 0.1, b = 5 (c) ζ= 1, b = 2

Figure 4.1 – Intensity distribution of a vortex beam obtained at different distances

from an ℓ = 2 SPP. The value of parameter b (the width of the input Gaussian beam)

has been reduced in the right panel for graphical reasons.

This expression is valid also in the case of an incident beam with a spherical

wavefront, although zR loses the physical meaning of Rayleigh range. Eq. 4.4

contains the familiar phase factor exp(iℓβ), which indicates that an ℓ-charged

OV is located all along the z axis. In addiction, we see that the output beam

retains the axial symmetry of the incident Gaussian beam. This property can be

extended more generally to any input beam that is axially symmetric around the

z axis.

Fig. 4.1 shows the intensity distribution |u(ρ,β , z)|2 of the vortex beam de-

scribed by Eq. 4.4 calculated at three different distances ζ = z/zR from an ℓ = 2

SPP. When ζ is small, the intensity pattern shows multiple rings produced by the

interference between the wave regularly diffracted by the PMD and the diverg-

ing wave generated by the optical singularity of the PMD. The diffraction pattern

assumes a single smooth annular shape as ζ→∞.

4.2 Off-axis optical vortices

Consider an input beam with an amplitude distribution symmetric about the

propagation axis. When such a beam intersects an SPP or a FH perpendicularly

and exactly on-axis, it produces a circularly symmetric beam with a central dark

region, where the field amplitude is zero. Any misalignment with respect to the

central discontinuity would then produce an asymmetry of the observed intensity
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distribution [61] and the topological charge of the correspondent off-axis OV may

have a non-integer value [98]. This changes also the OAM originally carried by

the beam [17], thus producing an OAM spectrum [111, 96].

The experimental methods presented in Chapters 2 and 3 are based on the

analysis of the asymmetry degree of the far-field intensity patterns produced by

off-axis vortex beams. However, the problem of the diffraction of the light beams

beyond the FHs has been tackled by using numerical simulations. Fortunately, the

description vortex beam in terms of Kummer functions is valid also in the case

of an input beam which axis does not intersects the optical singularity of a PMD

[112]. I will use this approach in the following calculations.

4.3 Diffraction of a Gaussian beam intersecting on-axis

a spiral phase plate

In this Section the problem of the Fraunhofer diffraction of a monochromatic

Gaussian beam intersecting an SPP exactly on-axis is revisited. The geometrical

configuration adopted here is sketched in Fig. 4.2. The SPP is placed in the

(x , y) plane and the central optical singularity coincides with the origin of the

(x , y) coordinate system. To take advantage of the geometrical symmetry of the

problem, it is convenient to use a circular coordinates (r,θ), where x = r cosθ

and y = r sinθ . Thus, the transmission function of the SPP (Eq. 1.27) is just a

complex function of the azimuthal angle θ :

Tℓ(θ) = eiℓθ , (4.6)

where ℓ represents the strength of the optical singularity. In the following, we

assume ℓ > 0, as we will always operate with its absolute value. Consider, then,

a paraxial Gaussian beam propagating along the z axis (that is also its symmetry

axis) perpendicular to the SPP plane. This choice is important for practical appli-

cations, i.e. laser beams or starlight beams affected by atmospheric turbulence,

as briefly discussed in Sect. 3.2. We assume that the field amplitude distribution

of such a beam in the SPP plane is

AG(r) = c e−r2/w2
, (4.7)
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where c is a complex factor, possibly depending on the z coordinate, and w is

related to the beam width. The observation plane (x ′, y ′) is located at a distance

f →∞ beyond the SPP or, better, at the focal plane of a lens placed just behind

the SPP (in this case, f would coincide with the focal length of the lens). The

scalar field of the output beam in the observation plane is the Fourier transform of

the product between the amplitude of the input beam and the SPP transmission

function:

uℓ(ρ,β) = const

∫∫
AG(r) Tℓ(θ)e

−ikrρ cos(θ−β)/ f r dr dθ , (4.8)

where k = 2π/λ is the wave vector, λ is the wavelength and (ρ,β) are the

circular coordinates in the observation plane. To simplify the calculations, the

SPP is considered as infinitely extended in the (x , y) plane. In addition, we use

the scaled radial coordinate r ′ = kr/ f and introduce the quantities w0 = f /(kw)

and c0, the latter containing all the multiplicative constants. In this way, Eq. 4.8

becomes

uℓ(ρ,β) = c0

∫ 2π

0

∫ ∞

0

e−w2
0 r′2 ei[ℓθ−r′ρ cos(θ−β)] r ′ dr ′ dθ . (4.9)

The integral involving the angular coordinate θ can be evaluated by using the

definition of the Bessel function of the first kind [12]:

∫ 2π

0

exp [i (ν θ − z cosθ)] dθ = 2πi|ν | J|ν |(z) . (4.10)

Thus, the integral involving the spatial coordinate becomes a particular case of

the Weber-Sonine formula [12]:

∫ ∞

0

e−a2 t2
tµ−1Jν(bt)dt =

Γ
�
ν+µ

2

��
b

2a

�ν

2 aµΓ(ν + 1) 1F1

�
ν +µ

2
;ν + 1;−

b2

4a2

�
, (4.11)

where 1F1 is a confluent hypergeometric function of the first kind. The final result

is:

uℓ(ρ,β) = c0 i−ℓ
π

w2
0

eiℓβ Γ(1+ ℓ/2)

Γ(ℓ+ 1)
ηℓ 1F1

�
1+

ℓ

2
; 1+ ℓ;−η2

�
, (4.12)

where η = ρ/(2w0). The presence of the phase factor eiℓβ implies that the output

beam has an ℓ-charged OV nested on its wavefront.
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Figure 4.2 – The geometrical configuration adopted to study the Fraunhofer diffrac-

tion of a Gaussian beam beyond a spiral phase plate (see text for details).
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We notice that the confluent hypergeometric function of the first kind in

Eq. 4.12 can be reduced to elementary functions because of the special values

assumed by its arguments:

1F1(a; 2a− 1; z) =

22a−3Γ

�
a−

1

2

�
ez/2(−z)3/2−a

�
Ia− 3

2

�
−

z

2

�
− Ia− 1

2

�
−

z

2

��
. (4.13)

Thus, a more useful expression of the amplitude distribution of the output beam

is obtained by using the modified Bessel function of the first kind Iν [53]:

uℓ(ρ,β) = c0 i−ℓ
π3/2

2w2
0

eiℓβe−η
2/2η

�
I ℓ−1

2

�
η2

2

�
− I ℓ+1

2

�
η2

2

��
. (4.14)

Beams of this kind, also known as Kummer beams [52], are formally different

from the commonly used L-G beams. If ℓ= 0, the Bessel functions of half-integer

index in Eq. 4.14 can be expressed in terms of the hyperbolic functions, according

to

I− 1
2
(z) =

r
2

π

cosh z
p

z
(4.15)

I 1
2
(z) =

r
2

π

sinh z
p

z
, (4.16)

and combined together to give an exponential. In this case, the amplitude distri-

bution of the output beam is still Gaussian, i.e. u0 ∼ e−η
2
. If ℓ 6= 0, we can derive

an useful approximation for η→ 0 by using the series expansion of Iν [12]:

Iν(z) =
�

z

2

�ν ∞∑
m=0

(z/2)2m

m!Γ(ν +m+ 1)
. (4.17)

We recognize that, near the z axis, the amplitude of an on-axis Kummer beam

carrying an OV with topological charge ℓ could be represented by a superposition

of amplitudes of L-G modes with p = 0 (see Eq. 1.7):

uℓ ∼ e−η
2/2ηℓ

×

 1

Γ
�
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2
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22Γ
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 . (4.18)

The dominant term is proportional to the amplitude of an L-G mode with index

ℓ, while higher order terms are proportional to L-G modes with indices ℓ+ 2m,

where m ∈ N.
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4.3.1 Properties of the intensity distribution

The intensity distribution of an on-axis Kummer beam is axially symmetric

around the z axis and is described by:

Iℓ(ρ,β)≈
��uℓ(ρ,β)

��2 = c2
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4w4
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As for L-G modes, the intensity pattern of a Kummer beam has an annular shape,

with a central dark region where the intensity is zero. However, there are some

fundamental differences between the two analytical descriptions.

For a Kummer beam the behavior of the intensity at large distances from the

z axis is ∼ η−4. This can be calculated by using the asymptotic expansion of the

modified Bessel function [12]

Iν (z)∼
ez

p
2πz

�
1−

4ν2 − 1

8z
+
(4ν2 − 1)(4ν2− 9)

2! (8z)2
+ · · ·

�
(4.20)

for z → ∞. The intensity distribution produced by an L-G mode, instead, de-

creases exponentially. Moreover, the radius of maximum intensity of an L-G mode

is ρmax ∼
p
ℓ/2 (Eq. 2.4), where the intensity attains the value

I(ρmax)∼
ℓℓ e−ℓ

ℓ!
, (4.21)

while for a Kummer beam ρmax is found by numerically solving the transcenden-

tal equation
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2
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+
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I ℓ−1

2

�
η2

2

�
= 0 . (4.22)

The calculation of the radii of maximum intensity obtained for a set of values

of the topological charge ℓ = 0,1, . . . , 10 (see Fig. 4.3a) suggests that ρmax is

linearly dependent on ℓ:

ρmax

2w0
= (0.37± 0.01)+ (0.470± 0.002)ℓ , (4.23)

where 1σ errors have been obtained from a linear fit to the calculated values.

A similar result was found also for OVs produced by a plane wave intersecting a

circular phase mask with finite dimensions [113]. Fig. 4.3b shows the intensity

calculated at ρmax for the same set of topological charges.
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Figure 4.3 – Properties of the intensity distributions of on-axis Kummer beams hav-

ing ℓ = 0,1, . . . , 10. (a) Plot of the radius of maximum intensity ρmax (in units of

w0) vs. ℓ. (b) Plot of the intensity calculated at ρmax for different values of ℓ. The

maximum intensity for ℓ = 0 has been set to unity.

4.3.2 The effects of off-axis displacements

When the input Gaussian beam is displaced off-axis, so that its symmetry axis

does not coincide with the z axis of Fig. 4.2, the intensity pattern produced in

the observation plane is modified. The misalignment of the input beam can be

decomposed into a translation in the (x , y) plane and an inclination angle ω

with respect to the z axis. However, if ω is small, the modifications induced in

the intensity pattern of the output beam are negligible [112]. For this reason, in

our calculations we will consider only lateral displacements of the incident beam.

Let us assume that the Gaussian beam intersects the SPP in the position
�

roff,θoff
�
, as in the example shown in Fig. 4.2. In this case, the field of this

input beam in the SPP plane is

AG(r) = c exp

�
−

r2+ r2
off − 2 r roff cos(θ − θoff)

w2

�
. (4.24)
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By inserting this expression in Eq. 4.8, we obtain:

uℓ(ρ,β) = c0 e−w2
0 r′off

2

×
∫ 2π

0

∫ ∞

0

e−w2
0 r′2 ei

�
ℓθ−r′ρ cos(θ−β)−i w2

0 r′r′off cos(θ−θoff)
�

r ′ dr ′ dθ . (4.25)

Here, r ′off is the scaled radial coordinate obtained from roff. Eq. 4.25 can be

formally expressed as Eq. 4.9 by making the substitution [112]

γ cos(θ −ψ) = ρ cos(θ − β)+ i w2
0 r ′off

2 cos(θ − θoff) , (4.26)

where the quantities γ and ψ are defined as

γ2 = ρ2+ 4iw2
0 r ′offρ cos(β − θoff)− 4w4

0 r ′off
2 (4.27)

tanψ =
ρ sinβ + 2iw2

0 r ′off sinθoff

ρ cosβ + 2iw2
0 r ′off cosθoff

. (4.28)

Therefore, we can follow the same calculation procedure explained in Sect. 4.3.

The resulting field of the output beam resembles that of Eq. 4.14 obtained under

on-axis conditions:

uℓ(ρ,β) = c0 i−ℓ
π3/2

2w2
0

eiℓψ e−w2
0 r′off

2

× e−γ
2/8w2

0
γ

2w0

�
I ℓ−1

2

�
γ2

8w2
0

�
− I ℓ+1

2

�
γ2

8w2
0

��
. (4.29)

In this case, a new exponential factor exp(−w2
0 r ′off

2
) appears, while the imaginary

part of γ2 represents an additional phase factor. As a result, the phase singularity

is located neither on the beam axis, nor in the origin of the (x ′, y ′) plane, but is

shifted in a position
�
ρ,β

�
=
�

2w2
0 r ′off,θoff +π/2

�
. This is the reason why the

intensity distribution of the output beam becomes asymmetric [114] and shows

two different peaks along the direction of the vortex core in the (x ′, y ′) plane.

Fig. 4.4a shows an example of an off-axis OV produced with an ℓ = 2 SPP. The

lower and the higher peaks are labeled with A and B, respectively.

Now, since it is difficult to analytically study the properties of Eqs. 4.29 for

different values of ℓ, we decided to perform numerical simulations (see Appendix

A.2). The width w of the input Gaussian beam was parametrized in function of

the full width at half of the intensity maximum, 2a, such that a = w
p

ln2/2.
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Figure 4.4 – Example of the far-field intensity pattern of a numerically-simulated

off-axis vortex beam produced by an ℓ = 2 SPP. The two diamonds indicate the posi-

tions of the two different intensity peaks A and B. (a) Contour plot of the intensity

distribution obtained in the observation plane. (b) Intensity profile of the off-axis

beam extracted along the x ′ direction. ∆ is the difference between the intensities

calculated in B and A. Examples of error bars are reported for both the intensity

peaks.

We used values of the topological charge induced by the SPP in the range ℓ =

0,1, . . . , 10, since with higher values we get misleading results using the two-

dimensional Fast Fourier Transform algorithm. For each ℓ, we considered a num-

ber of off-axis displacements roff/a of the input beam ranging from 0 to 1 with

steps of 0.05 and computed the resulting intensity patterns.

We checked the consistency of our numerical simulations by comparing them

to the analytical models (Eq. 4.29) for a number of values of ℓ and off-axis posi-

tions. To this aim, we previously normalized the intensities of both the simulated

and the analytical patterns to the corresponding maximum values. Therefore,

the B peak always has a normalized intensity equal to one (obviously, both the

peaks A and B will have the same unity intensity if roff/a = 0). The residuals of

the subtraction of the theoretical intensity patterns from the simulated ones are

typically within 10−4 for positions close to peaks A and B. We will then assume

this quantity as the intrinsic error of our numerical simulations.

For all the numerically simulated OVs we obtained the intensity values at the
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Figure 4.5 – Plot of the peaks intensity ratio R vs. the off-axis displacement of the

input Gaussian beam obtained for different values of the topological charge induced

by the SPP. Horizontal lines are drawn at the maximum values of R detectable at the

1σ confidence level for 3 values of the SNR ratio of the B peak.
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ℓ k1 k2

1 1.002± 0.001 2.808± 0.006

2 1.0012± 0.0007 3.534± 0.004

3 1.0004± 0.0005 3.928± 0.003

4 0.9995± 0.0008 4.259± 0.005

5 0.9990± 0.0009 4.338± 0.006

6 0.999± 0.001 4.432± 0.008

7 0.998± 0.001 4.456± 0.008

8 0.998± 0.001 4.509± 0.009

9 0.998± 0.001 4.573± 0.01

10 0.998± 0.002 4.756± 0.02

Table 4.1 – Best-fit values of parameters k1 and k2 of Eq. 4.30 obtained from least-

square fits of the simulated curves of Fig. 4.5. The associated errors are given at the

1σ confidence level.

two peaks and calculated the quantity R defined as the ratio between the intensity

IA of the lower peak and the intensity IB of the higher peak. We find that R rapidly

decreases as the off-axis displacement increases for all the topological charges

considered. The graphs showing the dependence of R on roff/a for ℓ= 1,2,3,4,5

are plotted in Fig. 4.5. All the curves are well represented by a simple exponential

function:

R= k1e−k2 roff/a , (4.30)

where parameters k1 and k2, obtained by best fitting the simulated curves, are

listed in Table 4.1. From these results, it appears that k2 depends on the topolog-

ical charge ℓ as

k2 = (4.64± 0.05)− (2.9± 0.2)e−(0.47±0.05)ℓ , (4.31)

while k1 tends to remain close to unity.
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4.4 The sensitivity of the method to reveal off-axis dis-

placements

The off-axis displacement of the input Gaussian beam with respect to the

central singularity of an SPP results in an asymmetry of the far-field intensity

pattern. Eq. 4.30 reveals that the parameter R represents an extremely sensitive

tool to detect such very small displacements, as also pointed out in Sect. 3.5.3.

Actually, the sensitivity of a vortex beam to off-axis displacements has been used

in a different way as an indicator of nanometric shifts in a speckle pattern [115]

or as a non-interferometric method for the correction of small surface deviations

on spatial light modulators [116]. Similar results could be obtained from the

analysis of the mean square value of the resulting OAM spectrum [117].

Let us suppose to have an input Gaussian beam which symmetry axis is per-

pendicular to the surface of an SPP and observe the correspondent far-field image

with a photoelectric detector like a CCD. In this way, if the beam is displaced off-

axis, we can measure the intensity ratio R of the two different peaks, as defined

in Sect. 4.3.2. The precision of this measurement is mainly limited by the SNR

achieved in the observation, while additional errors might be introduced by con-

struction imperfections of the SPP. The latter issue results in inhomogeneities of

the observed intensity distribution. For this reason, efforts are currently made to

improve the production quality of SPPs [55, 118, 119]. However, here we assume

an ideal SPP so that the only limitations are due to the SNR. The noise of a CCD

detector is mainly represented by the photon shot noise [120]. Assuming a pure

Poissonian distribution of the collected photons, the uncertainties associated to

the intensities IA and IB of the two peaks can be approximated by the square root

of the signals, i.e. σA =
p

IA and σB =
p

IB. We may then recognize IA 6= IB

at the nσ confidence level when ∆ = IB − IA ≥ nσA+ nσB (see Fig. 4.4b), that

means

∆ ≥ n
�p

IA+
p

IB

�
. (4.32)

If we introduce parameter R, this equation can be rewritten as a function of the

only SNR associated to the intensity of the highest peak (SNR(B)). We find that
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the maximum peaks intensity ratio measurable at the nσ confidence level is

R≤
�

1−
n

SNR(B)

�2

. (4.33)

As useful examples, in Fig. 4.5 we draw three horizontal lines corresponding to

the maximum R values 0.44, 0.81 and 0.98 detectable at the 1σ level for SNR(B)

= 3, 10 and 100, respectively. By combining Eq. 4.30 with Eq. 4.33, we finally

obtain the expression for the minimum off-axis displacement detectable at the nσ

confidence level:

roff

a
≥ −

1

k2
ln

�
1

k1

�
1−

n

SNR(B)

�2
�

. (4.34)

One general outcome is that, for a fixed SNR(B), OVs with higher ℓ values

allow the detection of smaller off-axis displacements. This effect is more signif-

icant at low SNR regimes, when the maximum measurable R is small and the

curves in Fig. 4.5 are more spatially separated. As SNR(B) increases, the advan-

tage obtained by using high values of the topological charge becomes negligible.

In fact, if we assume SNR(B) above 10, we might reveal off-axis displacements

lesser that 0.1a for all ℓ values. Instead, considering the lowest acceptable value

SNR(B) = 3 for signal detection, we can detect off-axis displacements of ∼ 0.3a

for ℓ= 1 at the 1σ confidence level.
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Chapter 5

Optical vortex coronagraphy

5.1 Introduction

The invention of coronagraphy dates back to 1939, when the first corona-

graph was conceived by Lyot [121] with the specific purpose to suppress the light

emitted by the disk of the Sun and observe the Solar corona. Nowadays, with

the term coronagraph we intend a generic optical device which allows to achieve

high contrast with a single aperture telescope, regardless of the connection with

the original problem of observing the Solar corona. A practical definition that

encompasses the current usage of coronagraphs refers to an optical system that

rejects the stellar light from a predefined area of the focal plane of a telescope in

order to reduce spurious effects produced by the associated speckle and photon

shot noises [122].

Coronagraphic devices are currently being used to directly detect faint sources

around bright astrophysical objects like stars or active galactic nuclei. However,

one of the primary goals of the future generation of coronagraphs is to obtain

for the first time images of terrestrial extrasolar planets. The direct imaging of

planets around a bright star is, generally, a challenging task because of the very

high contrast ratio and the very small angular separation of the sources. In the

case of giant extrasolar planets, a typical contrast ratio of ∼ 10−7 is expected

in the near infrared, while Earth-like planets are about 3–4 orders magnitudes

fainter, depending on the wavelength range (6×10−9 the visible and 7×10−6 in
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the infrared [99]).

The first direct detection of a faint sub-stellar companion around the star GQ

Lup was successfully achieved in 2005 with K-band coronagraphic observations

carried out using the NACO instrument [123] mounted at the VLT-UT4 telescope

[124]. Subsequently, coronagraphic techniques have allowed the direct imaging

of a handful of sub-stellar companions, mainly brown dwarfs, around other stars

[125, 126, 127, 128]. However, the most striking result is the recent detection of

a system of three planets orbiting the star HR 8799 achieved with high-contrast

Keck and Gemini observations [129].

5.2 Coronagraphic concepts

The recent years have seen the development of several coronagraphic con-

cepts characterized by different methods of rejection of the stellar light. This can

be achieved essentially in two ways:

• by inserting a stop in the image plane;

• by inserting a stop in the exit pupil plane.

The image stop solutions, like the original Lyot coronagraph, are generally one-

stage Fourier spatial filters, while those including the pupil stop shares the prop-

erty of having two (or in some cases more) stages of Fourier spatial filtering, one

in the first image plane and one in the exit pupil plane.

The performance of a coronagraphic design can be quantitatively described in

terms of the useful throughput, that is the maximum fraction of the companion

light collected by the telescope that can be separated from starlight, and the

inner working angle (IWA), commonly scaled to λ/D, defined as the minimal

angular distance at which the throughput of the faint object is half of the maximal

throughput [130].

The optical setups of all the current coronagraphic concepts can be repre-

sented using a general model that describes the propagation of the wavefront be-

tween four consecutive planes [131]. This general model is sketched in Fig. 5.1,

where the four planes are denoted by A, B, C and D. A represents the entrance
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Figure 5.1 – General model of a coronagraph.

pupil, usually identified with the aperture of the telescope, B is the focal plane of

the telescope where the coronagraphic mask is inserted, C is the exit pupil where

the Lyot stop is located and D is the final focal plane where we observe the coron-

agraphic image. In each plane we define a complex transfer function of the posi-

tion vector ~r = (r,θ) with respect to the optical axis: the aperture function of the

telescope A(~r), the coronagraphic mask transmission function T (~r) = 1− M(~r)

and the the Lyot stop transmission function LS(~r). The exact mathematical ex-

pressions of A(~r), T (~r) and LS(~r) depends on the specific task required for the

corresponding optical element.

Consider an optical wave with a complex amplitude Ψ(~r) just before the

aperture plane of the telescope. We assume, for simplicity, that the wavefront

is sufficiently close to perfect (unaberrated), as it can be obtained in space in-

struments or by using a separate wavefront correction system in ground-based

telescopes. We make also the usual approximation of paraxial optics and neglect

the quadratic phase terms associated with the propagation of the waves. This al-

lows to easily explain the propagation of the wavefront between two consecutive

planes in terms of classical Fourier optics [50]. Thus, the wavefront in the planes
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A, B, C and D can be calculated as [131]:

ΨA(~r) = Ψ(~r)A(~r) (5.1)

ΨB(~r) = Ψ̂A(~r) T (~r) = Ψ̂A(~r)−M(~r) Ψ̂A(~r) (5.2)

ΨC(~r) = Ψ̂B(~r) LS(~r) = ΨA(~r)−
�
ΨA(~r) ∗ M̂(~r)

�
LS(~r) (5.3)

ΨD(~r) = Ψ̂C(~r) = Ψ̂A(~r)−
�
Ψ̂A(~r)M(~r)

�
∗ L̂S(~r) , (5.4)

where f̂ is the Fourier transform of a function f and ∗ is the convolution operator

defined by

( f ∗ g)(x) =

∫
f (y) g(x − y)dy =

∫
f (x − y) g(y)dy . (5.5)

The action of a coronagraph appears in Eq. 5.3: the first term coincides with

the wave entering the telescope pupil, while the second term corresponds to the

wave diffracted by the phase mask. To obtain an efficient nulling effect, the

second term must be canceled in the C plane by properly choosing the aperture,

mask and Lyot stop functions.

A coronagraph correctly designed for imaging faint components around a host

star can operate one of these two techniques:

1. concentrate the light of the on-axis star, thus reducing the diffracted light

of off-axis sources;

2. reject the light of the on-axis star without altering that of off-axis sources.

The first case corresponds to the apodization technique, that can be achieved by

using particular models of the aperture function A(~r) (see e.g. [132]). In the sec-

ond case, instead, the two terms in Eq. 5.3 must balance each other (destructive

interference) for the on-axis star, while only the second term must vanish for the

off-axis source. This result can be obtained by using coronagraphic masks having

specific transmission functions that allow to modulate either the amplitude or

the phase of the wavefront. Generally, phase masks are preferable with respect

to amplitude masks. In fact, an amplitude mask produces an opaque zone that

occults a significant fraction of the central field of view and, thus, all the sources

located very close to the on-axis bright object. At the present time, the following

coronagraphic solutions containing phase mask have been developed:
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• the (original) phase mask coronagraph of Roddier & Roddier [133] based

on a circular π-shifting focal plane mask;

• the four quadrant phase mask coronagraph [134] based on a focal plane

mask that shifts two out of four quadrants of the image by π;

• the phase knife coronagraph [135] based on a π-shifting screen;

• the annular groove phase mask coronagraph [99] based on a circular sub-

wavelength grating.

• the optical vortex coronagraph (OVC) [136] based on an SPP.

The last two solutions share the property of exploiting the nulling effect provided

by the dark core of an OV.

The OVC is one of the two valuable applications of OVs in astronomy men-

tioned in Sect. 1.5. In the next Sections I will review the high-contrast properties

of the OVC and present additional results obtained from our numerical and ex-

perimental studies.

5.3 The optical vortex coronagraph

The OVC is one of the very few coronagraphic solutions that might yield per-

formances reasonably close to the limit imposed by fundamental physics on the

direct imaging of extrasolar terrestrial planets [130]. The optical setup of an OVC

(see Fig. 5.2) includes an SPP designed to produce an ℓ-charged OV at a specific

wavelength λ. The light coming from an object (either on-axis, O1, or off-axis,

O2), is imaged by the telescope, L1, having an aperture diameter D and a focal

length f . The SPP is placed at the focal plane of L1, corresponding to the B plane

of Fig. 5.1. A collimating lens, L2, re-images the entrance pupil of the telescope

beyond the SPP on the Lyot stop plane plane (the exit pupil plane), where a cir-

cular diaphragm acts as a Lyot stop. The propagated wavefront is then focused

by a camera lens, L3, on the final image plane. In the framework of the general

model described in Sect. 5.2, the aperture function A(~r) is, generally, that of an
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Figure 5.2 – Optical scheme of an OVC. Figure adapted from Ref. [136].

unobstructed telescope. The mask function T (~r) is expressed by Eq. 1.27, while

the function LS(~r) is that of an aperture.

Essentially, the focused light beam coming from a star is directed towards the

center of an SPP, thus producing a symmetric annular-shaped diffraction pattern

in the Lyot stop plane. Instead, the light beam of a very close source will be fo-

cused in a position different form that of the optical singularity of the SPP and,

thus, produce an asymmetric diffraction pattern, with a partial filling of the cen-

tral dark region. As reminded in Sect. 3.2, only OVs produced with Airy patterns

possess large central dark regions with null intensity. Therefore, high-contrast

OV coronagraphy can be achieved only with a diffraction-limited telescope. An

additional requirement is that the topological charge ℓ imposed by the SPP to the

on-axis OV must have an even value (ℓ = 2k, with k ∈ N). In fact, only in this

case the light of the on-axis stellar source will be totally spread outside the exit

pupil [99], thus being blocked by the Lyot stop. Fig. 5.3 shows numerically simu-

lated radial profiles of the diffraction images produced at the exit pupil plane by

a monochromatic on-axis point source passing through an SPP with ℓ= 1,2,3,4.

In these examples, the radius of the exit pupil has been set to 50 pixels. We

can see that only the profiles obtained with even topological charges have zero

intensity inside the exit pupil, while the other profiles extends well within it.

The theoretical performances of an OVC were investigated by Palacios &

Swartzlander [137]. In this work, they numerically simulated the coronagraphic

images produced with a diffraction-limited telescope. The major result is that a
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Figure 5.3 – Simulated profiles of the intensity distributions produced at the Lyot

stop plane of an OVC for different values of the topological charge.
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contrast ratio of 10−10 may be generally obtained at an IWA of 4λ/D using an

OVC with an even-valued ℓ and reducing the Lyot stop diameter to 0.8 times the

diameter of the exit pupil. The same contrast level can be achieved also at an

IWA of 2λ/D only in the case ℓ ≥ 4 and assuming the same Lyot stop aperture.

A further result is that the throughput of off-axis objects, defined as the quantity

of light transmitted through the Lyot stop, decreases as ℓ increases.

The high-contrast performances provided by an OVC exhibit also a very small

sensitivity to low-order aberrations. This has been demonstrated assuming a

transmission function of the telescope pupil A(~r) = P(r)eiΦ(~r) [138], where the

amplitude factor depends only on the radial coordinate and |Φ(~r)| ≪ 1. The

propagated wavefront just before the exit pupil plane is thus:

ψEP(~r)∝
�
−

1

2π

�ℓ ∂ ℓ
∂ rℓ


P(r)

 
1+

∞∑
m=0

im

m!
Φm(~r)

!
 . (5.6)

The coronagraphic leakage due to the first term (m = 1) of this series expansion

is proportional to the m-th order derivative of the phase aberration and, thus,

vanishes for any phase aberration showing a power-law radial dependence with

an exponent lesser than m. Therefore, an OVC presents an m-th order aberration

sensitivity in amplitude and a 2m-th sensitivity in intensity.

The performances expected from an ideal OVC are remarkable. However, a

real OVC suffers of some technical limitations. Firstly, the usable spectral band

is severely reduced by the intrinsic monochromaticity of SPPs (see Sect. 1.4). In

fact, the output beam produced by an non-monochromatic on-axis source con-

tains a superposition of coaxial monochromatic OVs. According to Eq. 1.26, the

topological charges of these OVs will have non-integer values, with the exception

of that produced at the operating wavelength of the SPP. Therefore, the inten-

sity distribution produced by the output beam will be the superposition of many

asymmetric monochromatic patterns, with the result of a partial filling of the cen-

tral dark region. To obtain a reasonably high contrast, ℓ has not to vary more than

∼ 10−3 for an ℓ = 2 SPP. This means that the available spectral band is ∼ 1 nm

for visible wavelengths. A solution to this problem was found by Swartzlander

[139], who designed an achromatic SPP composed by two adjacent optical ele-

ments made with different materials. However, achromaticity was predicted only
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Figure 5.4 – Left: simulated 3D image of an stepped SPP with 8 levels. Right: the

corresponding phase retard.

for a limited bandwidth (∼ 100 nm) in the visible.

Another limitation concerns the techniques used to produce SPPs. With cur-

rent nanotechnologies, it is very difficult to produce SPPs with smoothly-varying

helical surfaces. Therefore, the ideal SPP surface is usually approximated by a

spiral staircase pattern composed of N discrete steps. As an example, Fig. 5.4

shows a stepped SPP with 8 levels. The transmission function of a stepped SPP

having a central optical singularity with strength ℓ is

T (r,θ) = exp
�

i
�

Nθ

2π

�
∆φ

�
, (5.7)

where ∆φ = 2πℓ/(N − 1) is the constant phase jump between two consecutive

steps and ⌊z⌋ is floor function that maps a real number z to the largest integer

not greater than z. A light beam intersecting a stepped SPP exactly on-axis still

produces a vortex beam with a screw wavefront. However, additional phase rips

will be produced by each step of the SPP. These rips results in visible radial dis-

tortions of the far-field diffraction pattern, depending on the number N of steps

used to approximate the ideal SPP spiral surface.

To better understand the effect of the discretization, we have numerically

simulated the far-field patterns produced by a Gaussian beam intersecting on-

axis ℓ = 2 stepped SPPs with a different number of levels. For small values of N ,

we find that the SPP causes the expected ℓ= 2 OV to split into two single-charged

OVs. This effect results in the appearance of two dark regions, like those clearly
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Figure 5.5 – OV patterns produced by a Gaussian beam intersecting on-axis ℓ = 2

SPPs with N = 8,16,32,∞ levels.
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visible in the simulated image obtained with an 8-level SPP reported in Fig. 5.5.

However, our simulations indicate the intensity distributions of the observed OVs

can be reasonably approximated to those obtained with a continuous SPP when

N ≥ 64, at least for Gaussian input beams. Guo et al. [140] demonstrated that,

in the case of stepped SPPs, the output beam contains also additional vortex

components having topological charges ℓ′ = ℓ+ kN , where k ∈ Z. The vortex

beam can be expanded in Fourier series:

u(r,θ) =
+∞∑
ℓ′=−∞

cℓ′ e
iℓ′ θ , (5.8)

where the relative weight of each component is

|cℓ′ |2 =
sin2(ℓ′/N)

(ℓ′/N)2
. (5.9)

This result can be intuitively interpreted as the angular version of the conven-

tional diffraction from multiple slits. In this case, the angular discretization of

the SPP produces a so-called angular diffraction [141].

Despite all these technical limitations, Lee et al. [142] succeeded in demon-

strating the low-contrast application of an OVC with a laboratory experiment. In-

deed, OV coronagraphy would give its best performances with instruments placed

outside the atmosphere. However, Jenkins [100] analytically demonstrated that

an OVC can give good performances also in ground-based telescopes operating

with a partial correction of the atmospheric turbulence. The feasibility of ground-

based ℓ = 2 OV coronagraphy has been subsequently demonstrated by Swartzlan-

der et al. [143] using a small telescope equipped with a simple adaptive optics

module. In this experiment, the aperture of the telescope was reduced with a

diaphragm to 25 mm in order to have only the tip/tilp aberration.

5.4 Studies of the optical vortex coronagraph

On the basis of the results of previous work, we are currently projecting an

OVC based on a stepped SPP designed to produce ℓ = 2 OVs at visible wave-

lengths. In the next Sections I will show the results of our numerical simulations

and present the experimental procedure used to test stepped SPPs.
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5.4.1 Numerical simulations

To better define the expected performances of our OVC, we performed numer-

ical simulations following the procedure explained in Appendix A.3. Firstly, we

simulated a diffraction-limited observation of two close point-like sources using

an ℓ= 2 OVC. The SPP surface was considered as perfectly helicoidal, i.e. with no

discretization, and the Lyot stop diameter was set at 0.8 times the exit pupil diam-

eter. The on-axis sources, A, had unity intensity, while that of the of-axis source,

B, was set to 10−8. Such a contrast ratio is essentially that expected in the visible

region from a Jovian planet (B source) and its host star (A source). Fig. 5.6 shows

the coronagraphic images obtained for different separations of the two sources,

namely 0.5λ/D, 1λ/D and 2λ/D. These plots confirm the high-contrast capa-

bility of an OVC assessed by Palacios & Swartzlander [137]. Furthermore, we

can see that the intensity of the A source is always fainted by ∼ 10 orders of

magnitude, thus allowing the clear detection of B source at a separation of just

0.5λ/D.

We then investigated how the use of stepped SPPs, like those currently ob-

tainable with conventional nanolithographic techniques (see Sect. 5.3), affects

the performances of an OVC. To do this, we numerically evaluated the quantity

of light of an on-axis source that is transmitted through the Lyot stop having a

diameter equal to 0.8 times the exit pupil diameter. The SPPs, designed to pro-

duce ℓ = 2 at 550 nm, had N = 8,16,32,64,128 discrete levels. The fraction of

light transmitted through the Lyot stop has been calculated in the 450–700 nm

wavelength range, for all the stepped SPPs considered. The results obtained using

SPPs with 8, 16 and 32 levels are shown in Fig. 5.7, together with those obtained

with a continuous SPP (N =∞). In all cases, the transmitted fraction of light is

lesser than ∼ 10−2 in the whole wavelength range. However, we find that the

minima of the curves shown in Fig. 5.7 increases as N decreases, being zero only

in the case of a continuous SPP. Moreover, these minima are not always located

at 550 nm. Instead, we see that the optimal wavelength λN , i.e. the wavelength

at which the transmitted fraction of light is minimum, changes with the number
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Figure 5.6 – Numerical simulations of coronagraphic images of two close point

source obtained with an OVC (left), together with the corresponding surface plots

(right). The contrast ratio between the two sources, indicated by A and B, is 10−8.

The A source is always on-axis (origin of the coordinate system), while the fainter B

source is shifted off-axis by 0.5λ/D (top), 1λ/D (middle) and 2λ/D (bottom).
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Figure 5.7 – Fraction of the light of an on-axis star transmitted through the Lyot

stop of an OVC plotted as a function of the wavelength. The OVC contains an SPP

designed to produce an ℓ= 2 OV at 550 nm. The four curves represent the numerical

results obtained with a continuous SPP (solid line), as well as with a stepped SPP

having 8 (dotted line), 16 (dashed line) and 32 (dash-dotted line) levels.

76



5.4. STUDIES OF THE OPTICAL VORTEX CORONAGRAPH

Figure 5.8 – The optimal wavelength of an OVC containing a stepped SPP vs. the

number of discrete levels of the SPP. Open squares mark the results of numerical

simulations, while the solid line represents the best-fit curve to these data (Eq. 5.10).

of discrete levels of the SPP approximately following a power-law relation:

λN = λ∞

�
1+

1

Nα

�
, (5.10)

where λ∞ = 550 nm is the optimal wavelength for the continuous (N =∞) SPP

used in our numerical simulations (see Fig. 5.8). A non-linear least square fit

to the obtained data gives α = 0.98± 0.01, where the uncertainty is at the 1σ

confidence level.

These results demonstrate that, using a stepped SPPs, it is always impossible

to totally reject the light of an on-axis star outside the exit pupil. Unless the

number of steps is high (N ¦ 200), this implies that part of that light passes

through the Lyot stop, with a drastic reduction of the achievable contrast. We can

interpret these drawback as the result of the appearance of additional OVs having

topological charges different from ℓ [140].
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N h (nm)

8 320

16 149

32 72

64 36
...

...

512 4.4

Table 5.1 – Calculated heights of the levels of a stepped SPP in PMMA designed to

produce an ℓ = 2 OV at 550 nm. N is the number of discrete levels.

5.4.2 Laboratory tests

The current status of our OVC project concerns the experimental characteri-

zation of stepped SPPs nanofabricated at the TASC–LILIT laboratories in Trieste 1.

We decided to use PMMA (polymethyl methacrylate) as the material on which

etch our SPPs. PMMA is a versatile polymer that is often used as an alternative

to glass because of the similar optical properties, easy handling and processing

and low cost. Furthermore, PMMA is most commonly used as a high resolution

positive resist for electron beam etching. PMMA is, thus, very suitable for optical

applications in the visible region, where it has a transmittivity as high as ∼ 90%.

The actual transmittivity of our PMMA plates was measured in the range 450–950

nm by using the monochromator of the Laboratory of Optics of the Astronomi-

cal Observatory of Padova. The results of our test, shown in Fig. 5.9, confirm

the expected high transmittivity in the 450–600 nm wavelength range, with the

exception of the 700–900 nm region where it is slightly smaller (∼ 85%).

The manufacturer of our PMMA plates reports an index of refraction n =

1.491 at 550 nm. Therefore, according to Eq. 1.27, an SPP in PMMA designed

to produce an ℓ = 2 OV at 550 nm must have a central thickness jump hs =

2.245µm. In the case of a stepped SPP, this implies that the height h of each step

1The laboratory for interdisciplinary lithography (LILIT) is devoted to the fabrica-

tion of structures with spatial resolution ranging from µm to few nanometers (see

http://www.tasc-infm.it/ for further information).
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Figure 5.9 – Measured transmittivity of a PMMA plate in the 450–950 nm wave-

length range.

must be in the range 10–100 nm (see Table 5.1). In order to obtain SPPs useful for

OV coronagraphy, the etching process must also ensure the planarity of the levels

with an extremely high precision. In particular, the uncertainty associated to the

total thickness must not exceed ∼ 10−3 hs. This is the reason why we decided to

use electron beam nanolithographic techniques to manufacture our SPPs.

We were provided with a number of stepped SPPs having N ranging from 8

to 512. These optical components were etched on PMMA plates with a thickness

of 1 mm inside a circular region having a diameter of 1 mm. As an example,

Fig. 5.10 shows the SEM image of one of the SPPs with 64 discrete levels. Some

of the 512–levels SPPs were also manufactured on a PMMA layer deposited on

a BK7 glass substrate, in order to prevent mechanical bending. With the goal of

selecting the best SPPs for OV coronagraphy, their quality was tested at the Lab-

oratory of Optics of the Department of Astronomy (University of Padova) using

two methods:

1. by analyzing the interferogram produced with a Mach-Zehnder interferom-

eter;
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Figure 5.10 – SEM images of one of the stepped SPPs with 64 level. The lower

figure is a magnification of the central region of the SPP.
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Figure 5.11 – Mach-Zehnder interferogram produced with a PMMA plate containing

8 SPPs with different total thickness variations hs.

2. by comparing the experimental far-field diffraction pattern with numerical

simulations.

In both cases, we used a He-Ne laser at 632.8 nm as the source of coherent light.

In the first case, the PMMA plates containing the SPPs were placed in one

arm of a Mach-Zehnder interferometer. The interference pattern produced by

a plane wave intersecting the SPP and a reference plane wave is described by

Eq. 1.22. Fig. 5.11 shows the interferogram obtained by using 8 SPPs with 512

levels etched in the same PMMA plate. These SPPs have slightly different central

thickness jumps hs, ranging from 1.4 to 3.0 µm. As a result, OVs with ℓ in the

range 1.1–2.3 are expected to be produced at the operating wavelength of the

laser. We can see that all the 8 SPPs produced their own OV in the incident wave,

as revealed by the corresponding fork-like interferograms. Note that the number

of central dislocations of each fork-like interferogram is exactly equal to ⌊ℓ⌋, as

expected. The spiral structures visible in Fig. 5.11 are additional interference

pattern produced by the non perfectly planar reference wave.

The second more qualitative test consisted in the observation of the far-field

diffraction patterns produced by the He-Ne laser intersecting on-axis the SPPs.

The laser was spatially filtered to obtain a beam close to a fundamental Gaussian

transverse TEM00 mode [36]. The OV patterns imaged by using a CCD cam-

era were subsequently compared with those obtained with numerical simulations
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(see Appendix A.2), assuming a laser beam with a perfect Gaussian profile. Ex-

amples of the experimental and simulated patterns are reported in Fig. 5.12 for

three different stepped SPPs. All the observed patterns contain spots with zero

intensity in correspondence of the position of phase singularities. In general, the

experimental images are in quite good agreement with numerical simulations.

These tests indicate that the manufacturing precision achievable by using

electron beam lithography is very good. However, at the current stage, the quality

of our SPPs would not be enough high for coronagraphy. A development of the

nanolithographic techniques is strongly required, in particular to obtain a much

more better planarity of the discrete levels.
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Figure 5.12 – Experimental far-field OV pattern produced by a Gaussian laser beam

at λ = 632.8 nm intersecting different SPPs (left), together with the corresponding

numerical simulations (right). Top row: 8 level SPP, ℓ = 2 at 632.8 nm; central row:

8 level SPP, ℓ = 2 at 550 nm; bottom row: 512 level SPP (BK7 substrate), ℓ = 2 at

550 nm.
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Chapter 6

Conclusions

In this Thesis I have presented the results of experimental and theoretical

investigations on some properties of OVs that could find promising applications

in observational astronomy. In particular, this work is mainly aimed at developing

and testing new methods to improve the performances of optical systems by using

FHs or SPPs that introduce a phase vorticity in incident light beams.

The possibility of overcoming the Rayleigh separability limit by using an ℓ= 1

FH was discussed in Chapter 2. The superposed OVs patterns produced beyond

a FH by two equally-luminous light beams having an Airy intensity distribution

were studied in a laboratory experiment. One of the two beams was kept centered

with the optical singularity of the FH, while the second beam could be displaced

in off-axis positions. As the second beam was shifted away from the central posi-

tion, an OV with a non-integer value of the topological charge was produced, with

an asymmetric intensity profile. As a result, some asymmetry was observed also

in the intensity distribution of the two superposed far-field diffraction patterns.

Both our numerical simulations and experiments revealed that the asymmetry of

the superposed images becomes significantly detectable also for separations of

the two sources well below the classical Rayleigh limit. This result was achieved

both with monochromatic and white light beams. For this reason, we proposed a

new separability criterion based on the analysis of the profile of the superposed

OV patterns to resolve two point sources at angular distances one order of magni-

tude below the diffraction limit. Our method might have interesting applications
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in several techniques of applied optics, as well as in observational astronomy

where it could be used to improve the resolving power of a diffraction-limited

telescope.

In addition to our laboratory tests, we performed the first astronomical exper-

iment in which OVs were generated in starlight beams, as described in Chapter 3.

To this aim, we have placed an ℓ= 1 FH near the F/16 Cassegrain focus of the Asi-

ago 122 cm telescope. We observed the multiple system α Her and the single star

α Boo. Since the observations were carried out under mediocre seeing conditions

(3′′− 3.8′′), we used the Lucky Imaging approach which is a low-cost method al-

ternative to adaptive optics. We were able to detect the non-monochromatic OV

images produced by the two main components of α Her, as well as the annular-

shaped narrow-band OV image produced by α Boo. In the first case, the intensity

profile of the non-monochromatic OV produced by the off-axis component α Her

B presented two different peaks. Their intensity ratio was consistent, within the

errors, with numerical simulations. In the second case, the intensity profile of

the narrow-band OV pattern was much better reproduced by numerical simula-

tions, with the exception of a partial filling of the central dark region that was

most likely due to some residual chromaticity and the lack of light coherence

produced by the atmospheric turbulence. These results provided useful indica-

tions on the effects of the atmospheric turbulence in ground-based applications

of the OV techniques. Furthermore, our numerical simulations revealed that the

far-field OV pattern produced with an ℓ = 1 PMD is extremely sensitive to off-axis

displacements of the input beam, in particular when it has a Gaussian amplitude

distribution.

The sensitivity of OVs to misalignments of the input beam is discussed in

detail in Chapter 4. As a first step, I have obtained the exact mathematical ex-

pression of the intensity distribution of the diffraction pattern produced, under

Fraunhofer conditions, by a Gaussian light beam crossing an SPP. The transverse

field amplitude of the output beam was analytically expressed in terms of Kum-

mer functions. As a result, an input beam perfectly aligned with the central sin-

gularity of the SPP is shown to produce a perfectly symmetric annular intensity

distribution. Instead, any off-axis displacement results in an asymmetry of the
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diffraction pattern. Our numerical simulations revealed that the ratio R between

the intensities of the peaks along the direction of maximum asymmetry changes

exponentially with the off-axis displacement of the input beam, for any integer

value of the topological charge in the range 0, . . . , 10. The effects of the SNR

associated to the highest peak on the sensitivity of the ratio R to very small mis-

alignments of the input beam were also analyzed. It is demonstrated that higher

values of the topological charge ℓ generally provide better resolutions, especially

for low SNRs. This result suggests that OVs can be used to perform astrometry of

single stars with ground-based telescopes. With good seeing conditions or adap-

tive optics devices, the astrometric precision achievable with OVs could be com-

petitive to standard PSF astrometry. Moreover, a PMD placed within an adaptive

optics system could be used to improve the tip/tilt correction of the wavefront

for a small field of view. In fact, it might be possible to correct the isokinetic

patch which size, like the isoplanatic field, strongly depends on the seeing and

the wavelength.

Finally, Chapter 5 was dedicated to the application of OVs in astronomical

coronagraphy, emphasizing the OVC project that we are currently developing.

Our numerical simulations confirmed that the nulling property of the dark core of

an OV produced with a perfect SPP offers the possibility to perform high-contrast

coronagraphy when even-valued topological charges are used. Actually, we pre-

dict contrast ratios as high as ∼ 10−10 also at IWAs below 1λ/D. However, we

have found that the use of SPPs with a discretized surface prevents the total

nulling of the light of the on-axis star within the exit pupil, unless the number

of steps of the SPP is larger than about 200. In addition, we demonstrated that

the use of these kind of SPPs changes the wavelength at which to the rejection of

stellar light is maximum. We conclude that the structural characteristics of these

PMDs unavoidably reduce the coronagraphic performances achievable with OVs.

The quality of SPPs is then of crucial importance to fully exploit the theoretical

properties of OVCs. However, the fabrication of these components requires an

extremely precise manufacturing technology that is difficult to be achieved. For

this reason, the current status of our OVC project is still restricted to the experi-

mental characterization of stepped SPPs produced at the TASC–LILIT laboratories
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in Trieste by means of electron beam lithography.

In summary, even if the utilization of the properties of OVs in astronomy have

just begun to be explored, especially at visible wavelengths, the instrumental

techniques discussed in this Thesis present remarkable applications. Of partic-

ular interest could be their use with the next generation of ground- and space-

based telescopes. We should also remind that any successful development of the

proposed OV techniques will require a parallel development of the nanotechnolo-

gies used to produce high-quality PMDs. Nevertheless, the modern technology

gives solid hopes to make practical use of new degree of information previously

unknown to the astronomical community.
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Appendices

A.1 Numerical simulations of vortex beams using Laguerre-

Gaussian modes

Consider a beam with a field uin(r,θ) that is axially symmetric about its prop-

agation axis z. The field amplitude of the beam transmitted through a FH can be

decomposed by using a basis of orthogonal L-G modes, following the procedure

explained in Ref. [144]. This implies the projection of the field of the input beam

just beyond the FH having a transmission function T (r,θ),

uout(r,θ) = T (r,θ)uin(r,θ) , (A.1)

onto a basis of L-G modes uP L (Eq. 1.7) as:

uout(r,θ) =
+∞∑

L=−∞

+∞∑
P=0

aP L uP L(r,θ) , (A.2)

where P and L are the azimuthal and radial indices of each L-G mode, respec-

tively.

The decomposition into L-G modes can be done also in the case of an off-

axis input beam. Assuming a pure lateral displacement, we can make use of the

invariance property of geometrical translations and consider, instead, a displace-

ment of the FH along the opposite direction. This is necessary to simplify the

following calculations. By indicating with (r0,θ0) the relative position of the op-

tical singularity of the FH with respect to the symmetry axis of input beam, the
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complex weights aP L in Eq. A.2 are given by the overlap integral

aP L(r0,θ0) =

∫ 2π

0

∫ rFH

0

�
u0L(r,θ)exp

�
−iℓ

2π

Λ
r cosθ

��∗

× T (r − r0,θ − θ0)uin(r,θ) r dr dθ , (A.3)

where rFH is the radius of the active area of the FH and ∗ represents the complex

conjugate operator.

In the experiment presented in Chapter 2 the PMD is an ℓ = 1 FH blazed at

the first diffraction order. Therefore, the transmission function T (r,θ) appearing

in Eq. A.3 is that expressed by Eq. 1.24, where δ = 2π. Instead, the field of the

input beam has an Airy amplitude distribution:

uin(r)∝
J1(kar/d)

kar/d
, (A.4)

where k = 2π/λ (λ is the wavelength), a is the aperture radius of the pinholes

and d is the distance between the pinholes and the FH.

The calculation of the overlap integral (Eq. A.3) was performed by using a

numerical code written in MATLAB. Without loss of generality, we assumed θ0 =

0. For each off-axis displacement r0 expressed in unit of the Rayleigh limit δR (see

Sect. 2.3), we obtained a set of aP L with L ∈ [−5,5] and P ∈ [0,5]. These limits

were essentially imposed by the huge amount of time required by the numerical

integration process. However, we have found that L-G modes having indices

larger than this values contribute negligibly to the superposition in the range of

off-axis displacement considered here. Fig. A.1 shows some of the coefficients

|aP L|2 obtained for an on-axis beam (r0 = 0), for a beam displaced off-axis at

half the Rayleigh limit (r0 = 0.5δR) and for a beam displaced off-axis at the

Rayleigh limit (r0 = δR). The final step consisted in the numerical calculation

of the weighted superposition of the L-G mode amplitudes at the position of the

observation plane, as expressed in Eq. A.2. The simulated diffraction pattern is

then given by
��uout

��2.
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Figure A.1 – Coefficients |aP L |2 of the L-G modes decomposition of an beam with

an Airy amplitude distribution intersecting an ℓ = 1 FH. Upper panel: on-axis input

beam (r0 = 0). Central panel: input beam displaced off-axis by r0 = 0.5δR. Lower

panel: input beam displaced off-axis by r0 = δR.
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A.2 Numerical simulations of vortex beams using Fourier

optics

The propagation of a beam beyond a PMD can be computed, under parax-

ial conditions, by using the principle of Fourier optics which well describes the

formation of images [50]. In this framework, a PMD is a linear system charac-

terized by a specific transmission function T (x , y) that can modulate both the

amplitude and the phase of an incident beam u(x , y). Under Fraunhofer (far-

field) diffraction conditions, the field of the output beam u(x ′, y ′) is represented

by the Fourier transform of the product between the field of the incident beam

and T (x , y):

u(x ′, y ′) = Ûu(x , y) T (x , y) . (A.5)

Here, (x , y) are the coordinates of the PMD plane, while (x ′, y ′) are the coordi-

nates of the observation plane placed at a distance R ≫ k(x2 + y2)/2 from the

PMD.

The principles of Fourier optics can be easily implemented in a numerical

algorithm. In fact, the far-field diffraction pattern can be numerically calculated

using the 2D Fast Fourier Transform (FFT). The FFT is an efficient algorithm to

compute the Discrete Fourier Transform (DFT) of a 1D complex function f (x)

which domain is discretized in N elements:

DFT[ f (x)] =
1

N

N−1∑
x=0

f (x)exp
�
−i

2πux

N

�
. (A.6)

The 2D FFT is obtained by applying the 1D FFT first to one dimension and then

to other.

In our numerical simulations, the field of the input beam u(x , y) is translated

into a discrete N × N complex matrix U(u, v), as well as the transmission func-

tion T(u, v). The far-field amplitude of the produced vortex beam is obtained by

evaluating the FFT of the matrix product:

U′(p,q) = FFT [U(u, v)T(u, v)] . (A.7)

Therefore, the far-field intensity distribution is simply

I(p,q) =
��U′(p,q)

��2 . (A.8)
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The PMD, either a FH or an SPP, is always considered to be fixed in the (u, v)

space, with the corresponding optical singularity placed at the origin of the coor-

dinate system. In the case of an off-axis input beam, the complex matrix U(u, v)

in Eq. A.7 has to be substituted with U(u + u0, v + v0), where (u0, v0) are the

components of the discrete displacement vector.

All the numerical simulations presented in this Thesis were performed using

IDL codes. To avoid artifacts introduced by aliasing, the dimension of the matrices

was generally set to 1024× 1024 pixels, while the FWHM of the input beams

(Gaussian or Airy) was always in the range 10–50 pixels. This choice ensured

also a sufficiently high sampling of the final image. In fact, larger beam widths

with respect to the FFT window size would produce smaller images in the Fourier

space.

A.3 Numerical simulations of an optical vortex corona-

graph

The general model of coronagraphs presented in Sect. 5.2 can be efficiently

translated into a numerical code. The wave entering the telescope ψ(x , y), the

telescope aperture A(x , y), the transmission function of the coronagraphic mask

T (x , y) and the Lyot stop aperture LS(x , y) must be replaced by complex N × N

matrices. In the case of an OVC, the coronagraphic mask is an SPP with transmis-

sion function described by Eq. 1.27.

Since the time required to numerically calculate a convolution between two

matrices (Eq. 5.3) is substantially larger than that required to calculate an FFT,

we decided to calculate the propagation of the wavefront between the planes of

the OVC step by step. In order to obtain an high sampling of the coronagraphic

images, we used 4096×4096 pixel matrices. In our simulations, performed using

IDL codes, we considered a perfectly planar wavefront entering an unobstructed

telescope with a circular aperture of diameter D = 100 pixels. Therefore, the field

of the optical wave just before the SPP is the Fourier transform of the telescope

aperture function, i.e. an Airy pattern. Since this amplitude distribution can be
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evaluated analytically, we decided to perform the numerical simulation of the

OVC starting from the SPP plane, to avoid additional aliasing effects introduced

by the FFT algorithm. In the framework of the general coronagraphic model, we

have thus

ψB(x , y) = Airy(x , y)T(x , y) , (A.9)

where

Airy(x , y) = 2A0
J1(t)

t
. (A.10)

Here, A0 is a normalization factor and t = 2πD
p

x2+ y2/N . In the case of an

off-axis star, a lateral translation (x0, y0) has to be applied to the complex matrix

describing the Airy amplitude distribution.

At the Lyot stop plane, the wavefront is given by

ψC(u, v) = FFT
�
ψB(x , y)

�
LS(u, v) , (A.11)

where the stop function is that of an aperture of diameter DL. The corresponding

matrix is defined by

LS(u, v) =





1 if 0<
p

u2 + v2 < DL/2

0 if
p

u2 + v2 > DL/2
. (A.12)

The Lyot stop diameter DL was set to 0.8 times that of the exit pupil. Since the

FFT algorithm applies a unitary scaling factor between the (x , y) coordinates of

the input matrix and the (u, v) coordinates of the output matrix, the diameter of

the exit pupil is equal to that of the telescope aperture. For this reason, we used

DL = 80 pixels.

The field at the image plane of the OVC is

ψD(x
′, y ′) = FFT−1 �ψC(u, v)

�
, (A.13)

where FFT−1 denotes the inverse FFT algorithm. Thus, the image produced at

the last plane of the coronagraph can be calculated as

I(x ′, y ′) =
��ψD(x

′, y ′)
��2 . (A.14)

To obtain the coronagraphic images shown in Fig. 5.6, we simply summed the

image matrices of the star with unity intensity and the companion with a 10−8

intensity peak. This beacause the two sources are assumed to be incoherent.

94



A.4. APPROXIMATE RELATIONS FOR GAUSSIAN OPTICAL VORTICES

A.4 Approximate relations for Gaussian optical vortices

Consider a monochromatic Gaussian beam which an intensity distribution

IG(r)∝ exp

�
−

r2

w2
0

�
. (A.15)

Here, the parameter w0 roughly represents the width of the beam, as the FWHM

of the Gaussian is 2
p

ln2 w0.

The amplitude distribution of an vortex beam generated at the first diffraction

order of an ℓ = 1 FH can be expressed, in paraxial conditions, as a coherent

superposition of L-G modes with topological charges ℓ = 1 and ℓ = 0 [61]. In

a plane
�
ρ,β

�
perpendicular to the direction z′ of the first diffraction order the

amplitude distribution is then

uout(ρ,β) =
1p

1+ γ2

�
u00(ρ,β)+ γu10(ρ,β)

�
, (A.16)

where γ is a weighting parameter. The topological charge of the output vortex

beam is

ℓout =
∑
ℓ

∑
p

ℓ
��Cℓp

��2 , (A.17)

where

Cℓp =

∫ 2π

0

∫ ∞

0

uout u∗ℓp ρ dρ dβ , (A.18)

and can assume any value in the interval 0 ≤ ℓout ≤ 1. We see that γ is strictly

related to ℓout by the relation

γ=

È
ℓout

(1− ℓout)
. (A.19)

The value of ℓout, in turn, depends on the off-axis displacement r of the input

beam on the FH plane [98]:

ℓout = ℓ0 e−r2/w2
0 , (A.20)

were, in this example, ℓ0 = 1.

By substituting in Eq. A.16 the expressions of the L-G modes defined in Eq. 1.7

we can analytically derive an approximate expression of the intensity distribution

of the first order OV:

Iout(ρ,β)∝ exp

�
−

2ρ2

w2

��
1+

2
p

2γ

w
ρ cosβ +

2γ2

w2 ρ
2

�
, (A.21)
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where w = w0

Æ
2
�

1+ z′2/k2w4
0

�
. The angular coordinate of the phase singular-

ity (the light minimum) must be β0 = π and its radial coordinate ρ0 is found by

imposing the condition Iout(ρ,π) = 0. The condition is fulfilled when

ρ = ρ0 =
w
p

2γ
, (A.22)

which means that the radial position of the phase singularity increases as γ de-

creases. In other words, the central dark region migrates progressively away from

the diffraction axis z′, causing the pattern of the OV to lose the axial symmetry.

As a result, the two opposite intensity peaks located along the direction β = π

present different values. The ratio between them can be evaluated as:

R= exp


−

p
1+ 4γ2

4γ2





p

1+ 4γ2− 1p
1+ 4γ2+ 1




2

. (A.23)
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