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1. Introduction

In the standard cosmological model, at very early times the Universe undergoes a quasi

de Sitter exponential expansion driven by a scalar field, the inflaton, with an almost

flat potential. The quantum fluctuations of this field are thought to be at the origin of

both the Large Scale Structures and the Cosmic Microwave Background (CMB) fluc-

tuations that we are able to observe at the present epoch [1]. CMB measurements

indicate that the primordial density fluctuations are of order 10−5, have an almost

scale-invariant power spectrum and are fairly consistent with Gaussianity and statistical

isotropy [2, 3, 4, 5, 6, 7, 8, 9]. All of these features find a convincing explanation within

the inflationary paradigm. Nevertheless, deviations from the basic single-(scalar)field

slow-roll model of inflation are allowed by experimental data. On one hand, it is then

important to search for observational signatures that can help discriminate among all

the possible scenarios; on the other hand, it is important to understand what the theo-

retical predictions are in this respect for the different models.

Non-Gaussianity and statistical anisotropy are two powerful signatures. A random

field is defined “Gaussian” if it is entirely described by its two-point function, higher

order connected correlators being equal to zero. Primordial non-Gaussianity [10, 11]

is theoretically predicted by inflation: it arises from the interactions of the inflaton

with gravity and from self-interactions. However, it is observably too small in the

single-field slow-roll scenario [12, 13, 152]. Alternatives to the latter have been

proposed that predict higher levels of non-Gaussianity such as multifield scenarios

[15, 16, 17, 18, 19, 20, 21], curvaton models [22, 23, 24, 25, 26, 27] and models with

non-canonical Lagrangians [28, 29, 30, 31, 32]. Many efforts have been directed to the

study of higher order (three and four-point) cosmological correlators in these models

[33, 34, 35, 36, 37, 31, 152, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] and towards

improving the prediction for the two-point function, through quantum loop calculations

[49, 50, 51, 13, 52, 53, 54, 55, 56]. From WMAP, the bounds on the bispectrum amplitude

are given by −4 < f loc
NL < 80 [8] and by −125 < f equil

NL < 435 [9] at 95% CL, respectively

in the local and in the equilateral configurations. For the trispectrum, WMAP provides

−5.6× 105 < gNL < 6.4× 105 [57] (gNL is the “local” trispectrum amplitude from cubic

contributions), whereas from Large-Scale-Structures data −3.5× 105 < gNL < 8.2× 105

[58], at 95% CL. Planck [59] is expected to set further bounds on primordial non-

Gaussianity.

Statistical isotropy has always been considered one of the key features of the CMB

fluctuations. The appearance of some “anomalies” [60, 61, 62] in the observations

though, after numerous and careful data analysis, suggests a possible a breaking of

this symmetry that might have occurred at some point of the Universe history, possibly

at very early times. This encouraged a series of attempts to model this event, preferably

by incorporating it in theories of inflation. Let us shortly describe the above mentioned

“anomalies”. First of all, the large scale CMB quadrupole appears to be “too low” and
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the octupole “too planar”; in addition to that, there seems to exist a preferred direction

along which quadrupole and octupole are aligned [63, 64, 60, 65, 66]. Also, a “cold spot”,

i.e. a region of suppressed power, has been observed in the southern Galactic sky [61, 67].

Finally, an indication of asymmetry in the large-scale power spectrum and in higher-

order correlation functions between the northern and the southern ecliptic hemispheres

was found [68, 62, 69]. Possible explanations for these anomalies have been suggested

such as improper foreground subtraction, WMAP systematics, statistical flukes; the

possibilities of topological or cosmological origins for them have been proposed as well.

Moreover, considering a power spectrum anisotropy due to the existence of a preferred

spatial direction n̂ and parametrized by a function g(k) as

P (~k) = P (k)
(
1 + g(k)(k̂ · n̂)2

)
, (1.1)

the five-year WMAP temperature data have been analyzed in order to find out what

the magnitude and orientation of such an anisotropy could be. The magnitude has been

found to be g = 0.29± 0.031 and the orientation aligned nearly along the ecliptic poles

[70]. Similar results have been found in [71], where it is pointed out that the origin of

such a signal is compatible with beam asymmetries (uncorrected in the maps) which

should therefore be investigated before we can find out what the actual limits on the

primordial g are.

Several fairly recent works have taken the direction of analysing the consequences, in

terms of dynamics of the Universe and of cosmological fluctuations, of an anisotropic

pre-inflationary or inflationary era. A cosmic no-hair conjecture exists according to

which the presence of a cosmological constant at early times is expected to dilute any

form of initial anisotropy [72]. This conjecture has been proven to be true for many (all

Bianchi type cosmologies except for the the Bianchi type-IX, for which some restric-

tions are needed to ensure the applicability of the theorem), but not all kinds of metrics

and counterexamples exist in the literature [73, 74, 75]. Moreover, even in the event

isotropization should occur, there is a chance that signatures from anisotropic inflation

or from an anisotropic pre-inflationary era might still be visible today [76, 77, 78, 79].

In the same context of searching for models of the early Universe that might produce

some anisotropy signatures at late time, new theories have been proposed such as spinor

models [80, 81, 82, 83], higher p-forms [84, 85, 86, 87, 88, 89] and primordial vector field

models.

Within vector field models, higher order correlators had been computed in [90, 91, 92,

93, 94] and, more recently, in [95, 96] for U(1) vector fields. We considered SU(2) vector

field models in [97, 98]. Non-Abelian theories offer a richer amount of predictions com-

pared to the Abelian case. Indeed, self interactions provide extra contributions to the

bispectrum and trispectrum of curvature fluctuations that are naturally absent in the

Abelian case. We verified that these extra contributions can be equally important in a

large subset of the parameter space of the theory and, in some case, can even become

the dominant ones.
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The promising perspective of achieving more and more precise measurements for the

cosmological observables thanks to Planck and future experiments and the search for

signatures that may help identify the correct inflationary model, have also motivated

studies of higher order corrections to cosmological correlation functions and to the power

spectrum in particular. Indeed, loop corrections to the correlators arise from the interac-

tions involving the fields during inflation and therefore carry some important information

about the physics of the very early Universe.

Loop corrections may lead to interesting effects which scale like the power of the

number of e-folds between horizon exit of a given mode k and the end of infla-

tion [99, 100, 101, 102, 103]. The interest in loop corrections to the correlators of

cosmological perturbations generated during an early epoch of inflation has been re-

cently stimulated by two papers of Weinberg [104, 105]. The reason is that one-loop

corrections to the power spectrum of the curvature perturbation ζ seem to show some

infra-red divergences which scale like ln(kL), where L−1 is some infra-red comoving mo-

mentum cut-off [106, 107, 108, 109]. However, it has been discussed in [110, 111] (see

also [112]) that such potentially large corrections do not appear in quantities that are

directly observable.

As to the power spectrum of curvature perturbations, one-loop corrections have been

computed in single-field slow-roll inflation by D. Seery [54, 55] and by N. Bartolo and

myself [56], in single-field slow-roll inflation. In [56] we completed the analysis carried

out in [54, 55], where the metric tensor fluctuations had been neglected for simplicity, by

including them in the calculations and proving that their contribution is as important

as the one from the scalar perturbations. In the context of loop-calculations, we have

also been working on corrections to the power spectrum in theories with non-canonical

Lagrangians, which allow for higher and possibly observable corrections [113].

It can be safely stated that in standard single-field slow-roll inflation, the perturbative

expansion is well-behaved, in the sense that the agreement with observations found at

tree-level for the power-spectrum is not spoiled by the radiative corrections and, on a

more general basis, higher order loop corrections introduce smaller and smaller correc-

tions as the perturbation series expansion progresses. This is not generically true in

more general theories, such as for instance models with non-canonical Lagrangians, for

which bounds need to be requested on the parameters of the theory in order to preserve

the validity of the perturbative approach [114, 115].

This thesis collects the main results of our work on loop corrections to the power

spectrum in theories of scalar inflation [56, 113] and on primordial non-Gaussianity

and anisotropy predictions from theories of inflation where vector fields can play a role

in the production of the late time cosmological fluctuations [97, 98]. The δN and the

Schwinger-Keldysh formalisms are the main tools of our computation and will be briefly

reviewed.
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2. Schwinger-Keldysh formalism

The temperature fluctuations in the CMB are rather small, of order 10−5. Theoretical

predictions for the power-spectrum of curvature perturbations during inflation provide a

very good match at tree level: this suggests that it is correct to use perturbation theory

to evaluate cosmological correlators. A formalism conveniently employed to implement

the perturbative approach is the Schwinger-Keldysh, also dubbed as “in-in”, formalism.

It was first formulated in [49, 50, 51], later applied by J. Maldacena in [13] to the

calculation of the bispectrum of curvature fluctuations and revived by S. Weinberg in

[52, 53]. In this formalism the expectation value of a field operator Θ(t) is given by

〈Ω|Θ(t)|Ω〉 =
〈
0

∣∣∣∣
[
T̄
(
ei
∫ t

0
HI (t′)dt′

)]
ΘI(t)

[
T
(
e−i
∫ t

0
HI(t′)dt′

)]∣∣∣∣ 0
〉
, (2.1)

where |Ω〉 represents the vacuum of the interacting theory, T and T̄ are time-ordering

and anti-ordering operators, the subscript I indicates the fields in interaction picture

and HI is the interaction Hamiltonian. The interaction picture has the advantage of

allowing to deal with free fields only; the fields can be thus Fourier expanded in terms

of quantum creation and annihilation operators

δφ(~x, t) =
∫
d3kei~k~x

[
a~kδφk(t) + a+

−~k
δφ∗

k(t)
]
,

with commutation rules
[
a~k, a

+
~k′

]
= (2π)2δ(3)(~k − ~k′).

The in-in formula has many similarities with the S-matrix in quantum field theory

in terms of mathematical structure and perturbative approach, but they also have

fundamental differences: the S-matrix corresponds to a transition amplitude between

an initial and a final state; a cosmological correlation function is instead the expectation

value of a given observable at a given time; moreover, asymptotic states in cosmology

are only defined at very early times, when the same initial conditions as in Minkowsky

spacetime apply for the free fields.

Using the positive and negative path technique of the in-in formalism [52, 53], the

expectation value above can be recast in the form

〈Ω|Θ(t)|Ω〉 =
〈
0

∣∣∣∣T
(
ΘI(t)e

−i
∫ t

0
dt′(H+

I (t′)−H−
I (t′))

)∣∣∣∣ 0
〉
, (2.2)

where the plus and minus signs indicate modified Feynman propagators, i.e. modified

rules of contraction between interacting fields; schematically we have

〈T (φ1φ2...φn)〉 =
∑

ij,lm,...

[φ̂iφj , φ̂lφm, ...], (2.3)

where the sum is taken over all of the possible sets of field contractions and

̂φ+(η′)φ+(η′′) = G>(η
′
, η

′′
)Θ(η

′ − η
′′
) +G<(η

′
, η

′′
)Θ(η

′′ − η
′
),

̂φ+(η′)φ−(η′′) = G<(η
′
, η

′′
),

̂φ−(η′)φ+(η′′) = G>(η
′
, η

′′
),

̂φ−(η′)φ−(η′′) = G<(η
′
, η

′′
)Θ(η

′ − η
′′
) +G>(η

′
, η

′′
)Θ(η

′′ − η
′
).
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In momentum space we have

G>
k (η

′
, η

′′
) ≡ δφk(η

′
)δφ∗

k(η
′′
),

G<
k (η

′
, η

′′
) ≡ δφ∗

k(η
′
)δφk(η

′′
).

It is important to remember that, when we apply this formalism, the external fields are

always supposed to be treated like +fields.
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3. Scalar loop corrections to Pζ

The power spectrum for the comoving curvature perturbation ζ is defined by

〈ζ ~k1
(t)ζ ~k2

(t)〉 = (2π)3Pζ(k)δ
(3)(~k1 + ~k2) , (3.1)

This and all other correlation functions presented in this thesis are computed using

the δN formula. ζ(~x) at a given time t can be interpreted as a geometrical quantity

indicating the fluctuations in the local expansion of the universe; in fact, if N(~x, t∗, t)

is the number of e-foldings of expansion evaluated between times t∗ and t, where the

initial hypersurface is chosen to be flat and the final one is uniform density, we have

ζ(~x, t) = N(~x, t∗, t) −N(t∗, t) ≡ δN(~x, t). (3.2)

The number of e-foldings N(~x, t∗, t) depends on all the fields and their perturbations

on the initial slice. In principle, since the fields are governed by second order differen-

tial equations, it should also depend on their first time derivatives, but if we assume

that slow-roll conditions apply, then the time derivatives will not count as independent

quantities.

Let us apply Eq. (3.2) to the computation of Pζ in single-field slow-roll inflation (the

Lagrangian for the scalar field is given by Lφ = (1/2)gµν∂µφ∂νφ− V (φ))

〈ζ ~k1
(t)ζ ~k2

(t)〉 =
∫

d3x1

(2π)3

d3x2

(2π)3
e−i( ~k1 ~x1+ ~k2 ~x2)

〈(∑

n

N (n)(t∗, t)

n!
(δφ( ~x1, t

∗))n

)
,

(∑

m

N (m)(t∗, t)

m!
(δφ( ~x2, t

∗))m

)〉
. (3.3)

The sums can be expanded to the desired order. Up to one loop we have

〈ζ ~k1
(t)ζ ~k2

(t)〉 = N (1)2〈δφ ~k1
δφ ~k2

〉∗

+
1

2!
N (1)N (2)

∫
d3q〈δφ ~k1

δφ~qδφ ~k2−~q〉∗ + (~k1 ↔ ~k2)

+
1

3!
N (1)N (3)

∫
d3qd3p〈δφ ~k1

δφ~qδφ~pδφ~q+~p− ~k2
〉∗ + (~k1 ↔ ~k2)

+
1

(2!)2

(
N (2)

)2
∫
d3qd3p〈δφ~qδφ ~k1−~qδφ~pδφ ~k2−~p〉∗. (3.4)

where a star indicates evaluation around the time of horizon crossing. Eq. (3.4) can

finally be rewritten as [116, 109]

〈ζ ~k1
(t)ζ ~k2

(t)〉 = (2π)3δ(3)(~k1 + ~k2)
[ (
N (1)

)2 (
Ptree(k1) + Pone−loop(k1)

)

+ N (1)N (2)
∫

d3q

(2π)3
Bφ(k1, q, |~k1 − ~q|)

+
1

2

(
N (2)

)2
∫ d3q

(2π)3
Ptree(q)Ptree(|~k1 − ~q|)

+ N (1)N (3)Ptree(k)
∫ d3q

(2π)3
Ptree(q)

]
, (3.5)
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Figure 1. Diagrammatic representation of the one loop corrections to the power

spectrum of δφ from scalar modes to leading (∼ ǫ0) order in slow-roll.

Figure 2. Next-to-leading (∼ √
ǫ) order one loop corrections from scalar modes to

the power spectrum of δφ.

Ptree(k) is the tree level power spectrum (3.6)

〈δφ ~k1
δφ ~k2

〉∗ = (2π)3P (k)δ(3)(~k1 + ~k2) = (2π)3 H
2
∗

2k3
δ(3)(~k1 + ~k2) , (3.6)

where H∗ is the Hubble parameter evaluated at horizon exit (when k = aH). The

variance per logarithmic interval in k is given by P(k) = (k3/2π2)P (k). The one loop

contribution to the power spectrum is given by

Pone−loop(k) = Pscalar(k) + Ptensor(k) , (3.7)

where the first term on the right-hand side, Pscalar, accounts for the contributions coming

from the inflaton self-interactions and were computed by D. Seery in [108, 109]

Pscalar =
H4

∗
k3

[g1ln(k) + g2] , (3.8)

where g1 and g2 are numerical factors. Their diagrammatic representation is given in

Fig.1 for the leading order and in Fig.2 for the next-to-leading order corrections. The

loop corrections Ptensor, arising from interactions between the tensor (graviton) modes

and the scalar field, were ignored for simplicity in [108, 106], however they should be in-

cluded since they are not slow-roll suppressed compared to loops of scalar modes. Their

computation was presented for the first time in our paper [56] and will be reviewed in

the first part of this thesis.

Both Pscalar and Ptensor are evaluated at around the time of horizon crossing and as such

they are due to genuine quantum effects.

The contributions in the third and fourth lines of Eq. (3.5), also dubbed as “classical

one-loop”, can be considered as classical loop contributions arising after the perturba-

tion modes leave the horizon. The distinction between classical and quantum loops is
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understood as for example in [109]: quantum loops find their origin in the Lagrangian in-

teraction terms between the inflaton perturbations and the gravitational modes or from

self-interaction of δφ; classical loops are corrections merely coming from the expansion of

ζ using the δN formula and originate from zeroth order terms in the Schwinger-Keldysh

formula.

Finally, the second line of (3.5) includes the integral of Bφ(k1, k2, k3), the bispectrum of

the scalar field defined by

〈δφ ~k1
δφ ~k2

δφ ~k3
〉 ≡ (2π)3δ(3)(~k1 + ~k2 + ~k3)Bφ(k1, k2, k3) (3.9)

and from [13] we have

Bφ ≃
√
ǫH4

∗F (ki)

mP

, (3.10)

where mP is the Planck mass, ǫ is the slow-roll parameter (ǫ ≡ −Ḣ/H2) and F is a

function of the momenta moduli ki of dimension (mass)−6.
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4. Perturbative expansion of the Lagrangian in P (X, φ) theories

We will now review the computation of the tensor loop corrections to Pζ. For our

purposes, the exponentials in Eq. (2.2) need to be expanded up to second order in the

interaction Hamiltonian HI

〈Ω|Θ(η)|Ω〉1L = i
〈
0
∣∣∣T
[
Θ
∫ η

−∞
dη

′
(
H+

I (η
′
) −H−

I (η
′
)
)]

0〉 (4.1)

+
(−i)2

2
〈0|T

[
Θ
∫ η

−∞
dη

′
(
H+

I (η
′
) −H−

I (η
′
)
) ∫ η

−∞
dη

′′
(
H+

I (η
′′
) −H−

I (η
′′
)
) ]∣∣∣0

〉
,

where Θ(t) ≡ δφ ~k1
(η)δφ ~k2

(η). One-loop power-spectrum diagrams require an expansion

of the interaction Hamiltonian to third and fourth order in the field fluctuations, i.e.

HI ≡ H
(3)
I + H

(4)
I . We provide in Figs. (3) and (4) the diagrammatic representation

of the leading order corrections that we will find for the diagrams with tensor loops in

single-field slow-roll inflation. The continuos lines represent scalar propagators, whereas

the dotted lines indicate tensor propagators. In order to derive this result and the an-

alytic expressions for these diagrams, we need to first calculate and expand HI up to

fourth order in the field perturbations δφ and δγ. The starting point is the Lagrangian

of the system.

We will begin with a more general Lagrangian for the scalar field than the usual

Lφ = (1/2)gµν∂µφ∂νφ− V (φ), by introducing a non-conventional kinetic term, i.e.

S =
1

2

∫
d3xdt

√
−g

[
M2

PR+ 2P (X, φ)
]
, (4.2)

where P = P (X, φ) is a generic function of the scalar field and of X ≡ 1
2
gµν∂

µφ∂νφ and

R is the Ricci scalar in four dimensions. Notice that the action (4.2) reduces to the

standard case if P = X − V , where V is the potential for the scalar field.

Theories of inflation where the Lagrangian kinetic term is a generic function of the

scalar field and its first derivatives, like in Eq. (4.2), are string theory-inspired. They

represent interesting alternatives to the basic inflationary scenario because of their non-

Gaussianity predictions. The crucial quantity in this sense is represented by the speed

of sound c2s ≡ (∂XP )/(∂XP + 2X∂XXP ), which is allowed to vary between 0 and 1.

The perturbative expansion of the interaction Hamiltonian in this kind of models has

coefficients proportional to inverse powers of the sound speed and therefore, for small

values of cs, allows both for non-negligible loop corrections to the power spectrum of

the curvature fluctuations [113] and for large values for the amplitudes of three [31] and

four [41, 42, 43, 44, 45, 46] point functions. In this thesis, we will carry out the calcu-

lations of the interaction Hamiltonian for these general theories up to a certain point

and then, for simplicity in the presentation, focus on the canonical case (the remaining

computations for more general Lagrangians will be found in [113]).

Let us list the background equations for the system

2Ḣ + 3H2 = −P, (4.3)
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3H2 = 2XPX − P, (4.4)

Ẋ (PX + 2XPXX) + 2
√

3(2XPX − P )1/2XPX

=
√

2X (Pφ − 2XPXφ) , (4.5)

where a dot indicates a derivative w.r.t. cosmic time and, to zeroth order, we have

X ≡ φ̇2

2
.

The so called flow-parameters are defined as

ε ≡ − Ḣ

H2
, (4.6)

η ≡ ε̇

εH
. (4.7)

These quantities reduce to the slow-roll parameters in the standard case, so it is natural

to assume |ε| ≪ 1 and |η|. It is not correct to talk about slow-roll if P is left as a generic

function of X and φ, since the smallness of ε and η does not necessarily indicate that

φ̇2 ≪ H2 and |φ̈| ≪ |3Hφ̇|. It can be convenient to decompose ε as the sum ε = εφ +εX ,

where

εφ ≡ − φ̇

H2

∂H

∂φ
, (4.8)

εX ≡ − Ẋ

H2

∂H

∂X
. (4.9)

The parameters that are expected to appear in the perturbative expansion of the

Lagrangian are

c2s =
PX

PX + 2XPXX

, (4.10)

s ≡ ċs
csH

, (4.11)

u ≡ 1 − 1

c2s
, (4.12)

Σ ≡ XPX + 2X2PXX , (4.13)

λ ≡ X2PXX +
2

3
X3PXXX , (4.14)

Π ≡ X3PXXX +
2

5
X4PXXXX , (4.15)

where cs is the sound speed. cs is allowed to vary between 0 and 1, so the quantity |u|
can freely range between 0 and ∞. The only assumption we make is s ≪ 1, from cs
being constant in the standard case.

4.1. Arnowitt-Deser-Misner (ADM) decomposition for P (X, φ) theories

The Lagrangian in Eq. (4.2) will now undergo a perturbative expansion in terms of the

field fluctuations δφ(~x, t) ≡ φ(~x, t)−φ0(t) (φ0 is the homogeneous background value for

the field) and of the metric fluctuations.
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Figure 3. Diagrammatic representation of the leading order (tensor mode) corrections

from H
(4)
I to the power spectrum of δφ.

Figure 4. Diagrammatic representation of the leading order (tensor mode) corrections

from H
(3)
I to the power spectrum of δφ. Notice that this diagram is not slow-roll

suppressed compared to the one in Fig. 3, whereas this is not the case for the scalar

modes (see Figs. 1 and 2).

It is convenient to adopt the 3+1 Arnowitt-Deser-Misner (ADM) splitting for the metric.

In the spatially flat gauge the perturbed metric is

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (4.16)

hij = a2(t)(eγ)ij, (4.17)

where a(t) is the scale factor, γij is a tensor perturbation with ∂iγij = γii = 0 (traceless

and divergenceless) and det(eγ)ij = 1. Notice that repeated lower indices are summed

up with a Kronecker delta, so ∂iγij stands for δik∂iγkj and γij = δijγij .

In the ADM formalism, the action (4.2) becomes [13]

S =
1

2

∫
dtd3x

√
h
[
NR(3) + 2NP +N−1

(
EijE

ij −E2
)]
, (4.18)

where R(3) is the curvature scalar associated with the three dimensional metric hij and

Eij =
1

2

(
ḣij −▽iNj −▽jNi

)
,

E = hijEij.

A dot indicates derivatives w.r.t. time t, all the spatial indices are raised and lowered

with hij and units of M−2
P l ≡ 8πG = 1 will be from now on employed. To 4th order we

have

R(3) = −1

4
∂iγal∂iγal. (4.19)

The lapse and shift functions, N and N i can be written as

N = 1 + α ,

Nj = ∂jθ + βj ,
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where α, θ and β are functions of time and space (βj is divergenceless). We have

exploited the gauge freedom to set two scalar and two vector modes to zero, thus

leaving one scalar mode from N , one scalar and two vector modes from Nj and two

tensor modes (the two independent polarizations of the graviton) from hij , together

with the inflaton field perturbation δφ. N and Ni are non-dynamical degrees of freedom

and can be expressed in terms of the other modes (δφ and γij), once the Hamiltonian

and the momentum constraints (we derive them in the next section) are solved.

4.1.1. Solving Hamiltonian and momentum constraint equations

Momentum and Hamiltonian constraints are derived from varying the action w.r.t. the

shift and lapse functions respectively. It turns out that, in order to expand the action

to a given order n, it is only necessary to perturb N and Ni up to order n− 2 [13, 31].

Therefore we will solve the constraints to second order in the metric and scalar field

fluctuations.

Let us begin with the expansions

α = α1 + α2,

βi = β1i + β2i,

θ = θ1 + θ2.

where α1 and α2 are respectively first and second order in the fields fluctuations

(similarly for β1i and β2i, and for θ1 and θ2). Let us then expand P to second order. P

is a generic function of X and φ. We first need the expansion of X

X = − gµν∂µφ∂νφ = −1

2

[
g00φ̇2 + 2g0i∂iφφ̇+ gij∂iφ∂jφ

]

= − 1

2

[
−N−2

(
φ̇+ ˙δφ

)2
+ 2N−2N i∂iδφ

(
φ̇+ ˙δφ

)
+

(
hij − N iN j

N2

)
∂iδφ∂jδφ

]

= X0 + ∆X (4.20)

where N i ≡ hijNj, X0 is the zeroth order part, i.e. X0 = φ̇2

2
and ∆X is the

perturbation to the desired order (∆X = ∆X1 + ∆X2 + ∆X3 + ...). Notice that

φ(t, ~x) = φ0(t) + δφ(t, ~x), but for simplicity we will suppress the subscript ’0’ in the

background value of the field.

The expressions for the perturbations ∆Xi become

∆X1 = 2X0

[
˙δφ

φ̇
− α1

]
(4.21)

∆X2 = X0

[(δφ̇
φ̇

)2

− 4α1
δφ̇

φ̇
− 2α2 + 3α1

2 − 2N i
1∂j

δφ̇

φ̇

]
− 1

a2φ̇2
∂iδφ∂iδφ (4.22)

and so on for ∆X3 and higher order terms. The expansion of P (X, φ) up to second

order becomes

P (X, φ) = P0 + PX |0∆X + Pφ|0∆φ +
1

2!
PXX |0(∆X)2 +

1

2!
Pφφ|0∆φ2 + PXφ|0∆X∆φ

(4.23)
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where as usual the subscript ’0’ indicated the zeroth order, PX = ∂XP , Pφ = ∂φP and

similarly for the second order derivatives, ∆φ = δφ and ∆X needs to be expanded up

to the needed order.

We are now ready to write the momentum and Hamiltonian contraints

▽i

[
N−1

(
Ei

j − δi
jE
)]

= N−1PX

[
φ̇−N l∂lφ

]
∂jφ (4.24)

R(3) + 2P − 4PXX −N−2
(
EijE

ij − E2
)
− 2PXh

ij∂iφ∂jφ = 0 (4.25)

The momentum constraint to first order reads

2H∂jα1 −
1

2a2
∂2β1j = PX φ̇∂jδφ , (4.26)

where H = ȧ/a is the Hubble parameter. Eq. (4.26) can be solved to derive α1. Taking

the derivative ∂j of both sides of (4.26) and using the divergenceless condition for β, we

have

α1 =
PX φ̇δφ

2H
. (4.27)

Using the solution found for α1, we find ∂2β1j = 0, from which we can set β1j = 0. Here

∂2 ≡ δij∂i∂j , which we will indicate in the rest of the thesis also as ∂i∂i, and from now

on we define βi ≡ β2i for simplicity.

The momentum constraint to second order is

2H∂jα2 − 4Hα1∂jα1 −
1

a2
∂jα1∂

2θ1 +
1

a2
∂iα1∂i∂jθ1 −

1

2
∂iα1γ̇ij

− 1

2a2
∂2βj +

1

4
˙γik∂iγkj −

1

4
γik∂i ˙γkj −

1

4
˙γik∂jγik +

1

2a2
∂iθ1∂

2γij

= PX∂jδφδφ̇+ 2XPXX∂jδφδφ̇− 2XPXX φ̇α1∂jδφ− PX φ̇α1∂jδφ

+PXφφ̇δφ∂jδφ . (4.28)

The solutions are

α2 =
α2

1

2
+

1

2Ha2
∂−2

[
∂2α1∂

2θ1 − ∂i∂jα1∂i∂jθ1
]
+
PX

2H
∂−2Σ

+
1

4H
∂−2 [γ̇ij∂i∂jα1] −

1

4a2H
∂−2

[
∂i∂jθ1∂

2γij

]

+
1

8H
∂−2 [∂j ˙γik∂jγik] +

PXφφ̇

2H
∂−2

[
(∂jδφ)2 + δφ∂2δφ

]

+
XPXX

H
∂−2

[
∂2δφδφ̇+ ∂jδφ∂jδφ̇− φ̇

(
∂jα1∂jδφ+ α1∂

2δφ
)]
, (4.29)

where Σ ≡ ∂2δφδφ̇+ ∂jδφ∂jδφ̇, and

1

2a2
∂2βj = 2H∂jα2 − 4Hα1∂jα1 −

1

a2
∂jα1∂

2θ1 +
1

a2
∂iα1∂i∂jθ1

− 1

2
∂iα1γ̇ij +

1

4
˙γik∂iγkj −

1

4
γik∂i ˙γkj −

1

4
˙γik∂jγik

+
1

2a2
∂iθ1∂

2γij − PX∂jδφδφ̇− 2XPXX∂jδφδφ̇

+ 2XPXX φ̇α1∂jδφ+ PX φ̇α1∂jδφ− PXφφ̇δφ∂jδφ . (4.30)
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Let us now move to the Hamiltonian constraint which provides

4H

a2
∂2θ1 = −4XPX

(
δφ̇

φ̇
− α1

)
+ 2Pφδφ− 8PXXX

2

(
δφ̇

φ̇
− α1

)
− 4XPXφδφ− 12H2α1,

(4.31)

to first order and

−4H

a2
∂2θ2 = (−2α1)

[
4XPX

δφ̇

φ̇
+ 20PXXX

2 δφ̇

φ̇
+ 2XPXφδφ+ 8PXXXX

3 δφ̇

φ̇

+4PXXφX
2δφ+

4H

a2
∂2θ1

]
− 4X (PX + 2XPXX)

a2φ̇
∂iθ1∂iδφ− 1

a4

(
∂2θ1

)2

+
1

a2

[
− γ̇iq∂q∂iθ1 +

1

a2
(∂i∂jθ1)

2
]
+
(
−6H2 + 2XPX + 4X2PXX

) [
3α2

1 − 2α2

]

+4α2
1

(
3X2PXX + 2X3PXXX

)
+
δφ̇2

φ̇2

[
2XPX + 16X2PXX + 8X3PXXX

]

+
δφ̇δφ

φ̇

[
4XPXφ + 8X2PXXφ

]
− (∂iδφ)2

a2φ̇2

[
4X2PXX − 2XPX

]
+ δφ2

[
− Pφφ

+2XPXφφ

]
+

1

4

[
γ̇ljγ̇lj +

1

a2
∂aγiq∂aγiq

]
− 4H

a2
γij∂i∂jθ1, (4.32)

to second order.

4.1.2. Reduction to the canonical case

In the canonical case, to zeroth order in perturbation theory P = (φ̇2/2) − V (φ), so

PX = 1 and Pφn = −∂nV/∂φn with all other derivatives of P being zero. The solutions

above therefore reduce to [56]

α1 =
1

2H
φ̇δφ, (4.33)

4H

a2
∂2θ1 = −2Vφδφ− 2φ̇δφ̇+ 2α1

(
−6H2 + (φ̇)2

)
, (4.34)

α2 =
α1

2

2
+

1

2H
∂−2Σ +

1

2Ha2
∂−2

[
∂2α1∂

2θ1 − ∂i∂jα1∂i∂jθ1
]

(4.35)

+
1

4H
∂−2 [γ̇ij∂i∂jα1] −

1

4Ha2
∂−2

[
∂i∂jθ1∂

2γij

]
+

1

8H
∂−2

[
∂j ˙γik∂jγik

]
,

4H

a2
∂2θ2 = 2α1

[
2φ̇δφ̇+

4H

a2
∂2θ1

]
+

2

a2
φ̇∂iθ1∂iδφ− 1

a4
∂i∂jθ1∂i∂jθ1 (4.36)

+
1

a4

(
∂2θ1

)2 −
(
3α2

1 − 2α2

) (
φ̇2 − 6H2

)
− δφ̇2 − 1

a2
∂iδφ∂iδφ

− Vφφδφ
2 − 1

4a2
∂aγiq∂aγiq −

1

4
γ̇ljγ̇lj +

1

a2
γ̇iq∂i∂qθ1 ,

1

2a2
∂4βj =

1

a2
∂2α1∂j∂

2θ1 −
1

a2
∂m∂jα1∂m∂

2θ1 +
1

a2
∂mα1∂m∂j∂

2θ1
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− 1

a2
∂jα1∂

4θ1 −
1

a2
∂m∂j∂iα1∂i∂mθ1 +

1

a2
∂2∂iα1∂i∂jθ1

− 1

a2
∂i∂jα1∂i∂

2θ1 +
1

a2
∂m∂iα1∂m∂i∂jθ1 + ∂m∂jδφ̇∂mδφ

− ∂2δφ̇∂jδφ+ ∂jδφ̇∂
2δφ− ∂mδφ̇∂m∂jδφ− 1

2
∂2 (γ̇ij∂iα1)

− 1

2a2
∂2 (∂jγbq∂q∂bθ1) +

1

2a2
∂2
(
∂2γjk∂kθ1

)
− 1

4
∂2 (γil∂iγ̇jl)

+
1

4
∂2 ( ˙γik∂iγkj) . (4.37)

where Vφφ ≡ ∂2V/∂φ2 and ∂−2 is the inverse of the laplacian operator. Notice that the

equations (4.33) through (4.37) agree with the results obtained in [152], if we set γij to

zero.

4.2. Fourth-order expansion of the Lagrangian in the canonical case

The expansion of the action up to 4th order can be now derived by plugging the solutions

(4.27) through (4.32) in (4.18). The final expression is quite lengthy and can be found

in [113]. We will here only report the 4th order expansion of the action in the canonical

case

S4 = a3
∫
dtd3x

[
− 1

24
Vφφφφδφ

4 +
1

2a2
∂(iβj)∂iβj +

1

2a4
∂jθ1∂jδφ∂mθ1∂mδφ

− 1

a2
δφ̇ (∂jθ2 + βj) ∂jδφ+

(
α2

1α2 −
1

2
α2

2

)(
−6H2 + ϕ̇2

)

+
α1

2

[
− 1

3
Vφφφδφ

3 − 2Vφα
2
1δφ+ α1

(
− 1

a2
∂iδφ∂iδφ− Vφφδφ

2
)

− 2

a4

(
∂i∂jθ2∂i∂jθ1 − ∂2θ1∂

2θ2 + ∂iβj∂i∂jθ1
)

+
2

a2

(
φ̇
(
∂jθ2 + βj

)
∂jδφ

+ δφ̇∂jθ1∂jδφ
)]

+ α2
1

[ 1

2a2

(
γqi∂a∂iγaq −

1

2
∂aγiq∂aγiq

)
− 1

4
γ̇ljγ̇lj + ˙γiq∂i∂qθ1

]

− 1

a2

[1
2
γikγkj∂jδφ∂iδφ− α1γij∂jδφ∂iδφ+ α2∂iδφ∂iδφ

− φ̇∂jδφ (γij∂iθ2 + γijβi + γij∂iθ1) − ∂kθ2 ˙γab∂bγak − βk ˙γab∂bγak

− 1

2
˙γabβk∂kγab − α1

(
Hγab∂a∂bθ2 + ˙γab∂a∂bθ2 + ˙γab∂aβb

)
+

1

2
˙γab∂kγab∂kθ2

]

+
1

2a4

(
− 8γip∂i∂jθ1∂p∂jθ2 − 4γip∂i∂jθ1∂pβj − 4γip∂p∂jθ1∂jβi

− ∂qθ1∂iγjq∂i∂jθ2 − ∂qθ2∂iγjq∂i∂jθ1 − βq∂iγjq∂i∂jθ1

− ∂qθ1∂iγjq∂iβj − ∂qθ1∂iγjq∂jβi + ∂qθ1∂qγij∂i∂jθ2

+ 2∂qθ2∂qγij∂i∂jθ1 + 2∂qθ1∂qγij∂iβj + 2βq∂qγij∂i∂jθ1
)]
. (4.38)

Similarly, the loop computation will be from now on performed considering this simpler

case.
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5. Tensor loop corrections to Pζ

Let us then consider the terms in the interaction Hamiltonian HI that involve the tensor

modes. The third order action in single-field slow-roll inflation with non-zero graviton

fluctuations was calculated in [13]; we will focus on the leading order term in the slow-roll

parameters, so we have

H
(3)
I (η) ≡ a2(η)

2

∫
d3xγij∂iδφ∂jδφ. (5.1)

The fourth order action is given by Eq. (15.2.1). Notice that some of the interaction

terms involving the tensor modes in (15.2.1) appear with time derivatives, therefore the

construction of the path integral formula requires additional care compared to the case

where time derivatives only appear in the kinetic term of the Lagrangian. This issue will

be discussed in Appendix 15.1. Also, it is possible to show that in Eq. (15.2.1), of all the

leading terms in the slow-roll expansion, only one will provide a non-zero contribution

to the loop correction (see Appendix 15.2 for a detailed analysis) and contribute to the

interaction Hamiltonian to fourth order which becomes

H
(4)
I (η) ≡ a2(η)

4

∫
d3xγikγkj∂iδφ∂jδφ (5.2)

where the tensor fluctuations are

γij(~x, t) =
∫
d3kei~k~x

∑

λ

[
εij(k̂, λ)b~k,λγk(t) + ε∗ij(−k̂, λ)b+−~k,λ

γ∗k(t)
]
, (5.3)

with
[
b~k,λ, b

+
~k′,λ′

]
= (2π)2δ(3)(~k − ~k′)δλ,λ′ . (5.4)

The equation of motion for the eigenfunctions δφk(t) can be derived in the approximation

of de-Sitter space from the second-order action

S2 =
∫
dη

′ 1

(Hη)2

[(
δφ

′
)2 − (∂iδφ)2

]
, (5.5)

(where dη = dt/a(t) is the conformal time) and they are given by the well-known

expression

uk(η) =
H√
2k3

(1 + ikη) e−ikη. (5.6)

In the same approximation, the eigenfunctions for the tensor modes γk(η) are given by

uT
k ≡ 2uk.

Let us now begin with the one-loop one-vertex part of the diagram (given in Fig. 3)

which we label with the subscript (1L, 1v); this can be written as [104], [105]

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,1v) = i
∫
dη

′
〈[
H

(4)
I (η

′
), δφ ~k1

(η∗)δφ ~k2
(η∗)

]〉
. (5.7)
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We will study this in detail

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,1v) = 2i
∫ η∗

−∞
dη

′
a2(η

′
)
∫

d3x

(2π)3

∫
d3q1d

3q2d
3q3d

3q4

× e−i
∑

n
~qn·~xPij(iq

i
3)(iq

j
4)uk1(η

∗)u∗q3
(η

′
)uk2(η

∗)u∗q4
(η

′
)uq1(η

′
)u∗q2

(η
′
)

× δ(3)(~k1 + ~q3)δ
(3)(~k2 + ~q4)δ

(3)(~q1 + ~q2) + c.c., (5.8)

where the extra factor of 2 accounts for the number of equivalent diagrams obtained by

permuting the field contractions, uk(η) is given by Eq. (5.6) and

Pij =
∑

λ,λ′

ǫλik(q̂)ǫ
∗λ′

kj (q̂) = 2 sin2 θ. (5.9)

Integration and the use of the delta function lead to a simpler form

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,1v) = − iδ(3)(~k1 + ~k2)
H4

∗
2k4

∫
d3q

q3
sin2θ

∫ η∗

−∞

dη
′

η′2 e
2ik(η

′−η∗)(1 + ikη∗)2

× (1 − ikη
′
)
2
(1 + iqη

′
)(1 − iqη

′
) + c.c., (5.10)

This equation is exact except for the approximation of using the de Sitter space for-

mula for the scale factor, a(η) = −(Hη)−1, and evaluating the Hubble radius H(η
′
) at

the time η∗. The reason why this is allowed is the following: the contribution to the

integral w.r.t. time from regions well before horizon crossing is negligible compared to

the contribution due to the region around horizon crossing [13, 104, 105]; in addition to

that, we are choosing η to be just a few e-folds after horizon crossing, so we can assume

that the Hubble radius (as well as any of the slow-roll parameters of the theory) will

not undergo a big variation during this interval of time. The same approximation will

be applied to the two-vertex diagrams.

We first solve the time integral. It is convenient to perform a change of variale like

in [106], i.e. we set x
′
= −kη′

and x∗ = −kη∗ so that

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,1v) = δ(3)(~k1 + ~k2)
H4

∗
2k4

∫
d3q

q3
sin2θ Im

[ ∫ ∞

x∗

dx
′

k

k2

x′2
e2i(x

′−x∗)

× (1 + ix∗)2(1 − ix
′
)
2
(1 + i

q

k
x

′
)(1 − i

q

k
x

′
)
]
. (5.11)

After integrating the imaginary part, we end up with the following result

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,1v) = δ(3)(~k1 + ~k2)
H4

∗
2k4

∫ d3q

q3
sin2θ

2k2(3 + x∗2) + q2(5 + 5x∗2 + 2x∗4)

4k

= δ(3)(~k1 + ~k2)
H4

∗
2k4

2π
4

3

[k
2
(3 + x∗2)

∫
dq

q
+

1

4k
(5 + 5x∗2 + 2x∗4)

∫
dqq

]
,

where the factor 4/3 comes from integrating with respect to the azimuthal angle θ (notice

that that the reference frame in momentum space has been chosen in such a way that

the external wave vector ~k lies along the positive z axis). We now solve the momentum

integrals. Both the logarithmic and the quadratic one exhibit ultraviolet divergences

and the logarithmic part diverges also at very low momenta. Ultraviolet divergences
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can be treated as in flat space; the infrared logarithmic divergence is fixed introducing

a momentum lower cutoff ℓ−1 to be interpreted as a ‘box size’ [110, 111, 117, 118, 119]

which can be fixed to be not much larger than the present horizon [110, 111]. As an

example, consider the first integral of Eq. (5.12) which is convenient to split as follows
∫ Λ

ℓ−1

dq

q
=
∫ k

ℓ−1

dq

q
+
∫ Λ

k

dq

q
, (5.12)

where we have introduced an upper cutoff Λ. The first integral gives ln(kℓ); the

second integral can be renormalized introducing a counterterm − ln(Λ/k0), where k0

is a renormalization constant. The final result for Eq.(5.12) reads

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,1v) = πδ(3)(~k1 + ~k2)
2H4

∗
3k3

(3 + x∗2)
[
ln(kℓ) − ln(k) + α

]
,

where α is a left over constant from renormalization.

Let us now focus on the one-loop contribution from the 3rd order action with the

gravitons (see Fig. 4 for its diagrammatic representation)

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,2v) =
(−i)2

2

〈
T
[
δφ ~k1

(η∗)δφ ~k2
(η∗)

∫ η∗

−∞
dη

′
(
H+

I (η
′
) −H−

I (η
′
)
)

×
∫ η∗

−∞
dη

′′
(
H+

I (η
′′
) −H−

I (η
′′
)
) ]〉

=
(−i)2

2

〈
T
[
δφ ~k1

(η∗)δφ ~k2
(η∗)

(
A+B + C +D

)]〉
, (5.13)

where

A ≡
∫ η∗

−∞
dη

′
H+

I

∫ η∗

−∞
dη

′′
H+

I , (5.14)

B ≡
∫ η∗

−∞
dη

′
H−

I

∫ η∗

−∞
dη

′′
H−

I , (5.15)

C ≡ −
∫ η∗

−∞
dη

′
H+

I

∫ η∗

−∞
dη

′′
H−

I , (5.16)

D ≡ −
∫ η∗

−∞
dη

′
H−

I

∫ η∗

−∞
dη

′′
H+

I . (5.17)

It is easy to check that B = A∗ and C = C∗ = D. We can write Eq. (5.13) as

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,2v) = 4(−i)2δ(3)(~k1 + ~k2)k
4
∫
d3qsin4θ (5.18)

×
∫ η∗

−∞

dη
′

(Hη′)2

∫ η∗

−∞

dη
′′

(Hη′′)2

(
wA

f + wB
f + wC

f + wD
f

)
,

where the factor sin4 θ comes from contractions of the polarization tensors with external

momenta [120]

ǫij(~q)k
ikj =

k2

√
2


1 −


~q · ~k
qk




2

 =

k2

√
2

sin2 θ, (5.19)
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and the wave fuctions wf are

wA
f (η

′
, η

′′
) = uk(η

∗)u∗k(η
′
)uk(η

∗)u∗k(η
′′
)[u|~k−~q|(η

′
)u∗|~k−~q|(η

′′
)uq(η

′
)u∗q(η

′′
)

× Θ(η
′ − η

′′
) + u∗|~k−~q|(η

′
)u|~k−~q|(η

′′
)u∗q(η

′
)uq(η

′′
)Θ(η

′′ − η
′
)] ,

wB
f (η

′
, η

′′
) = u∗k(η

∗)uk(η
′
)u∗k(η

∗)uk(η
′′
)[u|~k−~q|(η

′
)u∗|~k−~q|(η

′′
)uq(η

′
)u∗q(η

′′
)

× Θ(η
′′ − η

′
) + u∗|~k−~q|(η

′
)u|~k−~q|(η

′′
)u∗q(η

′
)uq(η

′′
)Θ(η

′ − η
′′
)] ,

wC
f (η

′
, η

′′
) = − uk(η

∗)u∗k(η
′
)u∗k(η

∗)uk(η
′′
)u∗|~k−~q|(η

′
)u|~k−~q|(η

′′
)u∗q(η

′
)uq(η

′′
) ,

wD
f (η

′
, η

′′
) = −u∗k(η∗)uk(η

′
)uk(η

∗)u∗k(η
′′
)u|~k−~q|(η

′
)u∗|~k−~q|(η

′′
)uq(η

′
)u∗q(η

′′
) ,

so wC
f (η

′
, η

′′
) = wD

f (η
′′
, η

′
) and is a real number and wB

f (η
′
, η

′′
) = wA∗

f (η
′′
, η

′
). We will

label the two contributions by A and C, so that the one-loop contribution with two

vertices to the two point function will be broken into two parts

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉(1L,2v) = 〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉A(1L,2v) + 〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉C(1L,2v). (5.20)

Let’s look in details at the two parts.

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉A(1L,2v) = − δ(3)(~k1 + ~k2)
H4

∗
2k2

∫
d3q

q3

sin4θ

|~k − ~q|3
e−2ikη∗

(1 + ikη∗)2 (5.21)

×
∫ η∗

−∞

dη
′

η′2 e
iη

′
(k−q−|~k−~q|)(1 − ikη

′
)(1 + iqη

′
)(1 + i|~k − ~q|η′

)

×
∫ η

′

−∞

dη
′′

η′′2 e
i(k+q+|~k−~q|)η′′

(1 − ikη
′′
)(1 − iqη

′′
)(1 + i|~k − ~q|η′′

) + c.c.

The second time integral has eigη
′′ [

− 1
η
′′ + c

g
η

′′ − i
(

gb−c
g2

)]
as its primitive function, where

g ≡ k+ q+ |~k−~q|, b ≡ −qk− (q+k)|~k−~q| and c ≡ qk|~k−~q|. This should be evaluated

between −∞ and η
′
. It is soon evident that the lower bound represents a problem for

this evaluation. We need to remind ourself, though, that the choice of the integration

time contour needs to be deformed and to cross the complex plane to account for the

right choice of the vacuum [13]. This is done by integrating in a slightly imaginary

direction, i.e. taking η
′′ → η

′′
+ iǫ|η′′ |, where ǫ is a fixed small real number; so for

example
∫ η

−∞
dη

′
eikη

′

=
eikη

ik
. (5.22)

With this contour prescription, our integral in η
′′

vanishes at −∞. Performing the same

change of variables as in (8.14)

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉A(1L,2v) = − δ(3)(~k1 + ~k2)
H4

∗
k2

∫
d3q

q3

sin4θ

|~k − ~q|3
Re
[ ∫ ∞

x∗

dx
′

k

k

x′ 2e
2i(x

′−x∗)(1 + ix∗)2

×
(
k

x′ −
c

kg
x

′ − i

(
gb− c

g2

))(
1 − i

d

k
x

′
+

s

k2
x

′2 − i
c

k3
x

′3
) ]

,

(5.23)
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where d ≡ q−k+|~k−~q| and s ≡ kq+(k−q)|~k−~q|. The result of the integration w.r.t.time

is a polynomial function of sin 2x∗, cos 2x∗, Si(2x∗), Ci(2x∗) and their products with

coefficients which depend on g, b, c, d, s, k. Notice that in the large scale limit x∗ → 0

a singularity similar to the one found in [106] shows up in our result (see also [121] for

a recent discussion on these kind of singularities). However, by evaluating the power

spectrum of δφ just a few e-folds after horizon crossing, we are safe from these kind of

singular behaviour [109].

The next step consist in performing the momentum integral. The integrals we need to

evaluate are of the following kind
∫ d3q

q3

sin4θ

|~q − ~k|3
f(~q), (5.24)

where f(~q) is a sum of functions of momentum. Let us begin for simplicity by considering

the constant term of the sum, i.e. let us study
∫
d3q

q3

sin4θ

|~q − ~k|3
. (5.25)

For the specific case of equation (5.25) the integrand function has singularities at ~q = 0

and at ~q = ~k and shows no ultraviolet singularities. Based on an approximate evaluation

performed considering a sphere of radius ℓ−1 around ~q = 0, where ℓ−1 ≪ k, the integral

is proportional to a function ln(kℓ). The same result can be obtained working in a small

sphere around ~q = ~k after a change of variables ~q0 = ~q−~k. The contribution from large

values of q is negligible w.r.t. the ones from the singular points, so the integral over the

whole momentum space is expected to be proportional to ln(kℓ). The exact value of

the integral can been found after a change of variable from the (q, θ) to the (q, p) space,

where p ≡ |~q − ~k| and is equal to (16π/225k3) (1 + 30 ln(kℓ)) ∼ k−3 (10−1 + 10 ln(kℓ)).

Integrating Eq. (5.23), we find ultaviolet power law and logaritmic singularities in

addition to infrared logaritmic contributions. The final result of the integration is a

function of x∗ = e−N∗ , where N∗ = ln(a∗/ak) is the number of e-foldings from horizon

crossing

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉A(1L,2v) = πδ(3)(~k1 + ~k2)
H4

∗
k3

(
a1 ln(k) + a2 ln(kℓ) + a3

)
, (5.26)

where a1, a2 and a3 are functions of x∗ (see Appendix 15.3). We are calculating the

two point function for the scalar field a few e-foldings after horizon crossing, so x∗ may

be chosen to range between 10−1 and 10−2. In this range a1 ∼ O(1) and negative,

a2 = −16/(15x∗2) + (8/15)(5 − 8Ci(2x∗)) and a3 = −8/(225x2
∗) + O(1) + ρ, where ρ is

a left-over scheme-dependent renormalization constant of the kind present in equation

(5.13).

23



Let us now move to part C of Eq. (5.13) which we give below

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉C(1L,2v) = δ(3)(~k1 + ~k2)
H4

∗
2k2

∫
d3q

q3

sin4 θ

|~k − ~q|3
(
1 + (kη∗)2

)

×
∫ η∗

−∞

dη
′

η′2 e
igη

′

Q(η
′
)
∫ η∗

−∞

dη
′′

η′′2 e
−igη

′′

Q∗(η
′′
)

= δ(3)(~k1 + ~k2)
H4

∗
2k2

∫
d3q

q3

sin4θ

|~k − ~q|3
(
1 + (kη∗)2

)

×
[(
Re

∫
dη

′
eigη

′ Q(η
′
)

η′2

)2

+

(
Im

∫
dη

′
eigη

′ Q(η
′
)

η′2

)2]
, (5.27)

where Q(η
′
) ≡ 1 + igη

′
+ bη

′2 − icη
′3

. Let us integrate over conformal time
∫ ∞

x∗

dx
′

k

k2

x′2 e
−i g

k
x
′
[
1 + i

g

k
x

′
+

b

k2
x

′2 − i
c

k3
x

′3
]

=
e−i g

kx∗

k2

(
−k

3

x
+
ck

g
x∗ + i

(gb− c)k2

g2

)
,

(5.28)

where again the integration has been performed by continuing η
′
to the complex plane,

i.e. (η
′ → η

′
+ iǫ|η′|), and then taking the limit ǫ→ 0.

We are now ready to integrate over momentum

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉C(1L,2v) = δ(3)(~k1 + ~k2)
H4

∗
2k2

∫ d3q

q3

sin4θ

|~k − ~q|3
(
1 + x∗2

)

×
(
k4

x∗2
− 2k2c

g
− 2k2bc

g3
+
k2c2

g4
+
k2b2

g2
+
x∗2c2

g2

)
. (5.29)

Similarly to what we have done in part A, one can check that there are no ultraviolet

singularities in the remaining five integrals although some infrared logarithmic

contributions are still present and the final result is

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉C(1L,2v) = πδ(3)(~k1 + ~k2)
H4

∗
k3

(c1 + c2 ln(kℓ)) , (5.30)

where c1 = (1/225) (8/x∗2 + 107 + 50x∗2) and c2 = (16/15x∗2) + (4/15). Notice that

the (x∗)−2 coefficients in c1 and c2 exactly cancels the (x∗)−2 coefficients in a2 and a3.

This is not surprising: based on [106, 109], we expect we might observe a logarithmic

singularity if we push x∗ → 0 in our results (which is indeed present in the Ci(2x∗) term

of a2), but no power-law singularities are actually expected.
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6. Complete expression for Pζ at one loop

Let us now collect our results in the final formula for the power spectrum of the curvature

perturbation ζ computed up to one-loop level. This can be derived from Eq. (3.4), which

follows from the δN formula. Summing the main results of the previous section, Eqs.

(5.13), (5.26) and (5.30), we obtain the one-loop graviton correction to the inflaton

power spectrum

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉1L = πδ(3)(~k1 + ~k2)
H4

∗
k3

[f1 ln(k) + f2 ln(kℓ) + f3] , (6.1)

where

f1 = − 2

15

(
25 + 15x∗2 + 4x∗4

)
, (6.2)

f2 = 2 + (2/3)x∗2 + a2 + c2 , (6.3)

and f3 is given by a left-over scheme-dependent renormalization constant plus

contributions of order O(1) (see Appendix 15.3 for the complete expressions of a2,

c2 and f3). If we calculate the two point funtion of δφ a few e-foldings after horizon

crossing, i.e. x∗ ranges for example between 10−1 and 10−2, f1 reduces to a negative

constant of order O(1) and f2 ∼ 4 (1 − Ci(2x∗)) ∼ O(10). In the limit where x∗ → 1

both f1 and f2 turn out to be of order unity.

In order to understand which is the dominant contribution in Eq. (3.5) and how big

it is, one needs to (i) know the slow-roll order of the coefficients N (i): N (1) ∼ ǫ−1/2,

N (2) ∼ ǫ0, N (3) ∼ ǫ1/2; (ii) compute the integrals involving the power spetrum P (q).

This is discussed in details in Ref. [109] (for the case of scalar perturbations only), see

in particular Sec IV of [109]. It turns out that the crucial quantity is represented by

the number of e-foldings of inflation between the times of horizon exit of the mode ℓ−1,

which corresponds to the infrared cutoff, and the time of horizon exit of the mode k we

want to observe. However, to deal with observable quantitites one has to choose ℓ not

much bigger than the present cosmological horizon H−1
0 [110, 111].

The relevant point about Eq. (6.1) is that it gives in Eq. (3.5) a contribution which is

of the same order of magnitude as those coming from loops which accounts for scalar

perturbations only. Since in terms of the slow-roll parameters
(
N (1)

)2 ∼ ǫ∗
−1 the

magnitude of the one-loop graviton correction turns out to be

∆P 1loop
ζ (k) ∼ 2π2

k3
α(k)

1

ǫ∗
P2

∗ (k) , (6.4)

where we have used Eq. (3.6) for the power spectrum of the inflaton field. In Eq. (6.4)

α(k) includes the various coefficients of Eq. (6.1), and it is O(1). Eq. (6.4) allows a

more direct comparison with the results of Ref. [109], showing that the graviton con-

tributions to the one-loop corrections are comparable to the ones computed only from

scalar interactions. Notice that also for the tensor contributions we find terms of the

form ln(k).
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Summarizing our work: beyond linear order, the tensor perturbation modes produced

during inflation unavoidably mix with scalar modes; this fact alone would require to

include the tensor modes for a self-consistent computation. Most importantly, despite a

naive expectation suggested by the fact that the power spectrum of the tensor modes is

suppressed on large scales with respect to that of the curvature (scalar) perturbations,

our results show explicitly that their inclusion is necessary since their contribution is not

at all negligible with respect to the loop corrections arising from interactions involving

the inflaton field only.
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7. Study of perturbations in anisotropic cosmologies

The Bianchi models represent a classification of all homogeneous and anisotropic

cosmologies. In the cosmic no-hair conjecture, any initial background, in the presence

of a positive cosmological constant, eventually evolves in a de Sitter universe, where all

the initial existing anisotropies are rapidly washed out. This conjecture was proven to

be true for all of the Bianchi models except for the Bianchi-IX by Wald in [72]. For the

Bianchi-IX this result is also true under the assumption that the cosmological constant

overcomes the spatial curvature terms. More recently, there has been a revived interest

in homogeneous but anisotropic models of the early Universe and several attempts to

understand what kind of observational signatures these models might produce. A close

look has in fact been given to the fluctuations in the metric and in the energy tensor

developing during a hypotetical anisotropic stage either in a pre-inflationary epoch

[78, 79] or during inflation itself [76, 77, 144]. The Bianchi-I model is the simplest

of all anisotropic and homogenous models and has often been the choice for such kind

of studies. In the Bianchi-I model, the metric has a form

ds2 = dt2 − e2α
(
e2β
)

ij
dxidxj (7.1)

where α is a function of time as well as βij . The latter is a 3 × 3 diagonal traceless

matrix that anisotropizes the volume expansion

(
e2β
)

ij
= δije

2βi ,
3∑

i=1

βi = 0. (7.2)

A metric described by Eq. (7.1) but with constant functions α and β is often presented

in the form

ds2 = dt2 − t2p1dx2
1 + t2p2dx2

2 + t2p3dx2
3, (7.3)

where the coefficients p1, p2, p3 are numerical constants satisfying the relation

p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1. (7.4)

The three parameters can be equal in pairs in the cases (−1
3
, 2

3
, 2

3
, ) and (0, 0, 1). In all

other cases they are distinct, one being negative and the other two being positive. The

universe described by (7.3) is spatially flat and, for any possible value of the coefficients

pi, its volume element is equal to
√
−g3d3x = td3x, where g3 is the determinant of the

three-metric.

In [78], we consider a pre-inflationary epoch characterized by an initially expanding

type-I Bianchi universe that evolves with an energy density not yet dominated by a

cosmological constant. If by the time the cosmological constant has become the domi-

nant form of energy the metric is still homogeneous, the Universe will eventually enter

a de Sitter epoch; the fluctuations of this metric and their growth, however, can play

an important role in determining the evolution of the Universe at this early stage. The

question we ask concerns the kind of initial conditions are needed for the Universe to

remain homogeneous by the time the cosmological constant eventually dominates the

total energy density. We employ a metric as in Eq. (7.1) for the background and solve

27



the first order Einstein equations for the perturbations considering a pressureless fluid.

As expected, the anisotropy in the background is responsible for a coupling at the linear

order of one of the tensor modes with the density contrast, so there is a correlation

between the scalar and the gravitational perturbations. Moreover, the evolutions of the

two tensor modes, the “free” one and the one that is coupled to the scalar, are very

different from each other and very much depend on the scale of interest. It turns out

that, for a reasonably large set of initial conditions, the growth of these perturbations

could be fast enough so as to lead the Universe into an inhomogeneous state before the

cosmological constant becomes the dominant form of energy.

A similar scenario was investigated in [79], where both expanding and contracting

Bianchi-I Universes are studied during a pre-inflationary era. A scalar field dominates

the matter content. In particular, the evolution of the gravitational perturbations of

the metric (not to be confused with the gravitational waves generated from the vacuum

fluctuation during inflation) is analysed, to point out that they may grow to significantly

alter the geometry of spacetime before inflation begins and, in any case, they may leave

an imprint on the observed CMB power spectrum.

Also in [76, 77] a perturbative analysis was performed for Bianchi-I cosmologies lead-

ing to anisotropic inflation; in addition to that, predictions for the power spectrum of

curvature fluctuations and gravity waves produced during inflation are provided for this

models. Finally, a “vector hair” model and its observational consequences in terms of

anisotropic signatures in the cosmological correlation functions and primordial gravita-

tional waves, were recently discussed in [144].
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8. Inflation and primordial vector fields

The attempt to explain some of the CMB “anomalous” features as the indication of a

break of statistical isotropy is the main reason behind ours and many of the existing

inflationary models populated by vector fields, but not the only one. The first one of

these models [122] was formulated with the goal of producing inflation by the action of

vector fields, without having to invoke the existence of a scalar field. The same motiva-

tions inspired the works that followed [123, 124, 125]. Lately, models where primordial

vector fields can leave an imprint on the CMB have been formulated as an alternative to

the basic inflationary scenario, in the search for interesting non-Gaussianity predictions

[90, 91, 92, 93, 94, 95, 96, 97, 98]. Finally, vector fields models of dark energy have

been proposed [126, 127, 128, 129, 130, 131]. All this appears to us as a rich bag of

motivations for investigating these scenarios.

Before we quickly sketch some of them and list the results so far achieved in this di-

rection, it is important to briefly indicate and explain the main issues and difficulties

that these models have been facing. We will also shortly discuss the mechanisms of

production of the curvature fluctuations in these models.

Building a model where primordial vector fields can drive inflation and/or produce the

observed spectrum of large scale fluctuations requires a more complex Lagrangian than

the basic gauge invariant Lvector = −(
√−g/4)F µνFµν . In fact, for a conformally in-

variant theory as the one described by Lvector, vector fields fluctuations are not excited

on superhorizon scales. It is then necessary to modify the Lagrangian. For some of

the existing models, these modifications have been done to the expense of destabilizing

the theory, by “switching on” unphysical degrees of freedom. This was pointed out in

[132, 133, 134], where a large variety of vector field models was analyzed in which lon-

gitudinal polarization modes exist that are endowed with negative squared masses (the

“wrong” signs of the masses are imposed for the theory to satisfy the constraints that

allow a suitable background evolution). It turnes out that, in a range of interest of the

theory, these fields acquire negative total energy, i.e. behave like “ghosts”, the presence

of which is known to be responsible for an unstable vacuum. A related problem for some

of these theories is represented by the existence of instabilities affecting the equations

of motion of the ghost fields [132, 133, 134].

In the remaing part of this section, we are going to present some of these models to-

gether with some recent attempts to overcome their limits.

In all of the models we will consider, primordial vector fields fluctuations end up either

being entirely responsible for or only partially contributing to the curvature fluctuations

at late times. This can happen through different mechanisms. If the vector fields affects

the universe expansion during inflation, its contribution ζA to the total ζ can be derived

from combining the definition of the number of e-foldings (N =
∫
Hdt) with the Einstein

equation (H2 = (8πG/3)(ρφ + ρA), ρA being the energy density of the vector field and
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ρφ the inflaton energy density) and using the δN expansion of the curvature fluctuation

in terms of both the inflaton and the vector fields fluctuations (see Sec. 9). To lowest

order we have [92]

ζA =
Ai

2m2
P

δAi, (8.1)

where a single vector field has been taken into account for simplicity (mP is the reduced

Planck mass, A is the background value of the field and δA its perturbation). When

calculating the amplitude of non-Gaussianity in Sec. 10, we will refer to this case as

“vector inflation” for simplicity.

A different fluctuation production process is the curvaton mechanism which was initially

formulated for scalar theories but it is also applicable to vectors [135, 136]. Specifically,

inflation is driven by a scalar field, whereas the curvaton field(s) (now played by the

vectors), has a very small (compared to the Hubble rate) mass during inflation. Towards

the end of the inflationary epoch, the Hubble rate value starts decreasing until it equates

the vector mass; when this eventually happens, the curvaton begins to oscillate and it

will then dissipate its energy into radiation. The curvaton becomes responsible for a

fraction of the total curvature fluctuation that is proportional to a parameter, r, related

to the ratio between the curvaton energy density and the total energy density of the

universe at the epoch of the curvaton decay [92]

ζA =
r

3

δρA

ρA

, (8.2)

where r ≡ 3ρA/(3ρA + 4ρφ). Anisotropy bounds on the power spectrum favour small

values of r.

From Eqs. (8.1) and (8.2) we can see that, dependending on which one of these two

mechanisms of production of the curvature fluctuations is considered, different coeffi-

cients will result in the δN expansion (see Eq. (9.4)).

In this section we will describe both models where inflation is intended to be vector-field

driven and those models in which, instead, the role of the inflaton is played by a scalar

field, whereas the energy of the vector is a subdominant contribution to the total energy

density of the universe during the entire inflationary phase.

8.1. Self-coupled vector field models

A pioneer work on vector field driven inflation was formulated by L. H. Ford [122], who

considered a single self-coupled field Aµ with a Lagrangian

Lvector = −1

4
FµνF

µν + V (ψ) (8.3)

where Fµν ≡ ∂µBν −∂νBµ and the potential V is a function of ψ ≡ BαB
α. Different sce-

narios of expansion are analyzed by the author for different functions V . The universe

expands anisotropically at the end of the inflationary era and this anisotropy either

survives until late times or is damped out depending on the shape and the location of
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the minima of the potential.

The study of perturbations in a similar model was proposed by Dimopoulos in [135]

where he showed that for a Lagrangian

Lvector = −1

4
FµνF

µν +
1

2
m2BµB

µ (8.4)

and for m2 ≃ −2H2, the transverse mode of the vector field is governed by the same

equation of motion as a light scalar field in a de Sitter stage. A suitable superhorizon

power spectrum of fluctuations could therefore arise. In order to prevent production of

large scale anisotropy, in this model the vector field plays the role of the curvaton while

inflation is driven by a scalar field.

8.2. Vector-field coupled to gravity

The Lagrangian in Eq. (8.4) may be also intended, at least during inflation, as including

a non-minimal coupling of the vector field to gravity; indeed the mass term can be

rewritten as

Lvector ⊃
1

2

(
m2

0 + ξR
)
BµB

µ (8.5)

where, for the whole duration of the inflationary era, the bare mass m0 is assumed to

be much smaller than the Hubble rate and the Ricci scalar R = −6
[

ä
a

+
(

ȧ
a

)2
]

can be

approximated as R ≃ −12H2. For the specific value ξ = 1/6, Eq. (8.4) is retrieved.

For the Lagrangian just presented, Golovnev et al [123] proved that the problem of

excessive anisotropy production in the case where inflation is driven by vector fields can

be avoided if either a triplet of mutually orthogonal or a large number N of randomly

oriented vector fields is considered.

The Lagrangian (8.5) with ξ = 1/6 was also employed in [136], where inflation is scalar-

field-driven and a primordial vector field affects large-scale curvature fluctuations and,

similarly, in [137], which includes a study of the backreaction of the vector field on the

dynamics of expansion, by introducing a Bianchi type-I metric.

8.3. Ackerman-Carroll-Wise (ACW) model

A model was proposed in [138] where Lagrange multipliers (λ) are employed to determine

a fixed norm primordial vector field BµB
µ = m2

Lvector ⊃ λ
(
BµBµ −m2

)
− ρΛ (8.6)

where ρΛ is a vacuum energy. The expansion rate in this scenario is anisotropic: if we

orient the x-axis of the spatial frame along the direction determined by the vector field,

we find two different Hubble rates: along the x-direction it is equal to

H2
b =

ρΛ

m2
P

1

P (µ)
, (8.7)
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and it is given by Ha = (1 + cµ2)Hb along the orthogonal directions; µ ≡ m/mP , P is

a polynomial function of µ and c is a parameter appearing in the kinetic part of the

Lagrangian that we omitted in (8.6) (see [138] for its complete expression). As expected,

an isotropic expansion is recovered if the vev of the vector field is set to zero.

8.4. Models with varying gauge coupling

Most of the models mentioned so far successfully solve the problem of attaining a slow-

roll regime for the vector-fields without imposing too many restrictions on the param-

eters of the theory and of avoiding excessive production of anisotropy at late times.

None of them though escapes those instabilities related to the negative energy of the

longitudinal modes (although a study of the instabilities for fixed-norm field models was

done in [139] where some stable cases with non-canonical kinetic terms were found). As

discussed in [132, 133, 134], in the self-coupled model a ghost appears at small (com-

pared to the horizon) wavelengths; in the non-minimally coupled and in the fixed-norm

cases instead the instability concerns the region around horizon crossing.

Models with varying gauge coupling can overcome the problem of instabilities and have

recently attracted quite some attention. In [90], the authors consider a model of hybrid

inflation [140, 141, 142, 143] with the introduction of a massless vector field

L ⊃ 1

2
(∂µφ∂

µφ+ ∂µχ∂
µχ) − 1

4
f 2(φ)FµνFµν + V (φ, χ,Bµ) (8.8)

where φ is the inflaton and χ is the so-called “waterfall” field. The potential V is chosen

in such a way as to preserve gauge invariance; this way the longitudinal mode disappears

and instabilities are avoided.

Similarly, Kanno et al [144] consider a vector field Lagrangian of the type

Lvector = −1

4
f 2(φ)F µνFµν , (8.9)

but in a basic scalar field driven inflation model. Very recently, in [145, 146] the linear

perturbations in these kind of models have been investigated.

Finally, in [92, 96] varying mass vector field models have been introduced

Lvector = −1

4
f 2(φ)F µνFµν +

1

2
m2BµB

µ, (8.10)

where f ≃ aα and m ≃ a (a is the scale factor and α is a numerical coefficient). The

special cases α = 1 and α = −2 are of special interest. In fact, introducing the fields

Ãµ and Aµ, related to one another by Ãµ ≡ fBµ = aAµ (Ãµ and Aµ are respectively

the comoving and the physical vectors), it is possible to verify that the physical gauge

fields are governed by the same equations of motion as a light scalar field in a de Sitter

background. Vector fields in this theory can then generate the observed (almost) scale

invariant primordial power spectrum.
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8.5. SU(2) vector model

Let us consider some models where inflation is driven by a scalar field in the presence

of an SU(2) vector multiplet [97, 98]. A fairly general Lagrangian can be the following

S =
∫
d4x

√−g

m

2
PR

2
− f 2(φ)

4
gµαgνβ

∑

a=1,2,3

F a
µνF

a
αβ − M2

2
gµν

∑

a=1,2,3

Ba
µB

a
ν + Lφ


 ,(8.11)

where Lφ is the Lagrangian of the scalar field and F a
µν ≡ ∂µB

a
ν − ∂νB

a
µ + gcε

abcBb
µB

c
ν

(gc is the SU(2) gauge coupling). Both f and the effective mass M can be viewed as

generic functions of time. The fields Ba
µ are comoving and related to the physical fields

by Aa
µ = (Ba

0 , B
a
i /a). The free field operators can be Fourier expanded in their creation

and annihilation operators

δAa
i (~x, η) =

∫
d3q

(2π)3
ei~q·~x ∑

λ=L,R,long

[
eλ

i (q̂)a
a,λ
~q δAa

λ(q, η) + e∗λi (−q̂)
(
aa,λ
−~q

)†
δA∗a

λ (q, η)
]
,(8.12)

where the polarization index λ runs over left (L), right (R) and longitudinal (long)

modes and [
aa,λ

~k
, (aa

′
,λ

′

~k′ )†
]

= (2π)3δa,a
′δλ,λ

′δ(3)(~k − ~k
′
). (8.13)

Here η the conformal time (dη = dt/a(t)). Once the functional forms of f and M have

been specified, the equations of motion for the vector bosons can be written. We compute

cosmological correlation functions up to fourth order considering an action as in (8.11).

The expression of the correlators that we derive, prior to explicitating the wavefunction

for the gauge bosons, apply to any SU(2) theory with an action as in (8.11), both for

what we will call the “Abelian” and for the “non-Abelian” contributions. In particular,

the structure of the interaction Hamiltonian is independent of the functional dependence

of f and M and determines the general form of and the anisotropy coefficients appearing

in the final “non-Abelian” expressions (see Sec. 9). When it comes to explicitate the

wavefunctions, a choice that can help keeping the result as easy to generalize as possible

is the following

δBT = −
√
πx

2
√
k

[
J3/2(x) + iJ−3/2(x)

]
, (8.14)

for the transverse mode and

δB|| = n(x)δBT , (8.15)

for the longitudinal mode (n is a unknown function of x ≡ −kη) [97, 98]. Let us see

why. As previously stated, for f ≃ aα and with α = 0, 1,−2, it is possible to verify that

the (physical) transverse mode behaves exactly like a light scalar field in a de Sitter

background (see also Appendix 15.4). Considering the solution (8.14) then takes into

account at least these special cases. As to the longitudinal mode, a parametrization was

adopted as in (8.15) in order to keep the analysis more general and given that, because of

the instability issues, introducing this degree of freedom into the theory requires special

attention. We are going to keep the longitudinal mode “alive” in the calculations we
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present, by considering a nonzero function n(x), and focus on the simplest case of

f = 1. This case is known to be affected by quantum instabilities in the longitudinal

mode, anyway we choose f = 1 for the sake of simplicity in our presentation. The

results can be easily generalized to gauge invariant models (please refer to Sec. 12 for a

sample generalization of some of the calculations to massless f ≃ a(1,−2) models).
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9. Correlation functions of ζ in the SU(2) model

We are now ready to compute the power spectrum, bispectrum and trispectrum for the

curvature fluctuations ζ generated during inflation

〈ζ~k1
ζ~k2

〉 = (2π)3δ(3)(~k1 + ~k2)Pζ(~k), (9.1)

〈ζ~k1
ζ~k2
ζ~k3

〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)Bζ(~k1, ~k2, ~k3) (9.2)

〈ζ~k1
ζ~k2
ζ~k3
ζ~k4

〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3 + ~k4)Tζ(~k1, ~k2, ~k3, ~k4). (9.3)

Notice that, on the right-hand side of (9.1) through (9.3), we indicated a dependence

from the direction of the wavevectors; in models of inflation where isotropy is preserved,

the power spectrum and the bispectrum only depend on the moduli of the wave vectors.

This will not be the case for the SU(2) model.

The δN formula (3.2) will be applied to our inflaton+SU(2)vector model

ζ(~x, t) = Nφδφ+Nµ
a δA

a
µ +

1

2
Nφφ (δφ)2 +

1

2
Nµν

ab δA
a
µδA

b
ν +Nµ

φaδφδA
a
µ

+
1

3!
Nφφφ(δφ)3 +

1

3!
Nµνλ

abc δA
a
µδA

b
νδA

c
λ +

1

2
Nµ

φφa(δφ)2δAa
µ +

1

2
Nµν

φabδφδA
a
µδA

b
ν

+
1

3!
Nφφφφ(δφ)4 +

1

3!
Nµνλη

abcd δA
a
µδA

b
νδA

c
λδA

d
η + ..., (9.4)

where now

Nφ ≡
(
∂N

∂φ

)

t∗

, Nµ
a ≡

(
∂N

∂Aa
µ

)

t∗

, Nµ
φa ≡

(
∂2N

∂φ∂Aa
µ

)

t∗

(9.5)

and so on for higher order derivatives.

Our plan is to show the derivation the correlation functions of ζ from the ones of δφ

and δAa
i , after a replacement of the δN expansion (9.4) in Eqs. (9.1) through (9.3).

The correlation functions can be evaluated using the Schwinger-Keldysh formula (2.1),

that we recall here for convenience

〈Ω|Θ(t)|Ω〉 =
〈
0

∣∣∣∣
[
T̄
(
ei
∫ t

0
HI (t′)dt′

)]
ΘI(t)

[
T
(
e−i
∫ t

0
HI(t′)dt′

)]∣∣∣∣ 0
〉
. (9.6)

When calculating the spectra of ζ , the perturbative expansions in Eq. (9.4) and (9.6) will

be carried out to only include tree-level contributions, neglecting higher order “loop”

terms, either classical, i.e. from the δN series, or of quantum origin, i.e. from the

Schwinger-Keldysh series. Assuming that the SU(2) coupling gc is “small” and that we

are dealing with “small” fluctuations in the fields and given the fact that a slow-roll

regime is being assumed, it turns out that it is indeed safe for the two expansions to be

truncated at tree-level.

The correlation functions of ζ will then result as the sum of scalar, vector and (scalar

and vector) mixed contributions. As to the vector part, this will be made up of terms

that are merely generated by the δN expansion, i.e. they only include the zeroth order

of the in-in formula (we call these terms “Abelian”, being them retrievable in the U(1)
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case), and by (“non-Abelian”) terms arising from the Schwinger-Keldysh operator ex-

pansion beyond zeroth order, i.e. from the gauge fields self-interactions.

Let us now discuss the level of generality of the results we will present in the next

sections, w.r.t. the choice of a specific Lagrangian.

The expression for the Abelian contributions provided in Secs. 9.1 and 9.2 apply to any

SU(2) model of gauge interactions with no direct coupling between scalar and vector

fields (extra terms would be otherwise needed in Eqs. (9.18) and (9.19)). The next

stage in the Abelian contributions computation would be to explicitate the derivatives

of the e-foldings number and the wavefunctions of the fields: they both depend on the

equations of motion of the system, therefore the fixing of a specific model is required at

this point.

As to the non-Abelian contributions, the results in Eqs. (9.33) and (9.34) are completely

general except for assuming, again, that no direct vector-scalar field coupling exists. The

structure of Eqs. (9.49) and (9.52) is instead due to the choice of a non-Abelian gauge

group. The expressions of the anisotropy coefficients In and Ln in Eqs. (9.49) and (9.52)

depend on the specific non-Abelian gauge group (for SU(2) one of the In is given in

Eq. (9.51)). Finally, the specific expressions of the isotropic functions Fn (a sample of

which is shown in Eq. (9.50)) and Gn were derived considering the Lagrangian (8.11)

with f = 1 and the eigenfunctions for the vector bosons provided in Eqs. (8.14) and

(8.15).

9.1. The power spectrum

The power spectrum of ζ can be straightforwardly derived at tree-level, using the δN

expansion (9.4), from the inflaton and the vector fields power spectra

Pζ(~k) = P iso(k)
[
1 + gab

(
k̂ · N̂a

) (
k̂ · N̂b

)
+ isabk̂ ·

(
N̂a × N̂b

)]
. (9.7)

The isotropic part of the previous expression has been factorized in

P iso(k) ≡ N2
φPφ(k) +

(
~Nc · ~Nd

)
P cd

+ , (9.8)

where we have defined the following combinations

P ab
± ≡ (1/2)(P ab

R ± P ab
L ), (9.9)

from the power spectra for the right, left and longitudinal polarization modes

P ab
R ≡ δabδA

a
R(k, t∗)δAb∗

R (k, t∗), (9.10)

P ab
L ≡ δabδA

a
L(k, t∗)δAb∗

L (k, t∗), (9.11)

P ab
long ≡ δabδA

a
long(k, t

∗)δAb∗
long(k, t

∗). (9.12)

The anisotropic parts are weighted by the coefficients

gab ≡
NaN b

(
P ab

long − P ab
+

)

N2
φPφ +

(
~Nc · ~Nd

)
P cd

+

, (9.13)

sab ≡ NaN bP ab
−

N2
φPφ +

(
~Nc · ~Nd

)
P cd

+

, (9.14)
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(where a sum is intended over indices c and d but not over a and b). Eq. (9.8) can also

be written as

P iso(k) = N2
φPφ

[
1 + βcd

P cd
+

Pφ

]
, (9.15)

after introducing the parameter

βcd ≡
~Nc · ~Nd

N2
φ

. (9.16)

Notice that what when we say “isotropic”, as far as the expression for the power spec-

trum is concerned, we simply mean “independent” of the direction of the wave vector.

In this case instead, the vector bosons introduce three preferred spatial directions: the

r.h.s. of Eq. (9.7) depends on their orientation w.r.t. the wave vector.

As expected, the coefficients gab and sab that weight the anisotropic part of the power

spectrum are related to βcd, i.e. to the parameters that quantify how much the expansion

of the universe is affected by the vector bosons compared to the scalar field.

Assuming no parity violation in the model, we have sab = 0; the parameters gab and βab

are instead unconstrained. In the U(1) case and for parity conserving theories, Eq. (9.7)

reduces to [92]

Pζ(~k) = P iso
ζ (k)

[
1 + g

(
k̂ · n̂

)]
(9.17)

where n̂ indicates the preferred spatial direction; also one can check that in this simple

case, if P+ ≃ Pφ and Plong = kP+ (k 6≡ 1), the relation g = (k − 1)β/(1 + β) holds,

where β ≡ (NA/Nφ)
2 (the anisotropy coefficient g is not to be confused with the SU(2)

coupling constant gc). If it is safe to assume |g| ≪ 1 (see discussion following Eq. (1.1)

and references [70, 71]), a similar upper bound can also be placed on β.

In the case where more than one special directions exists, as in the SU(2) model, no

such analysis on the anisotropy data has been so far carried out, the ga parameters

cannot then be constrained, unless assuming that the three directions converge into a

single one; in that case a constraint could be placed on the sum |g| ≡ |∑a g
a|, where

a = 1, 2, 3 and Pζ(~k) = P iso
ζ (k)

[
1 + ga

(
k̂ · n̂a

)]
.

In the next sections we will present the results for the tree-level contributions to the

bispectrum and to the trispectrum of ζ .

These can be classified in two cathegories, that we indicate as “Abelian” and “non-

Abelian”. The former are intended as terms that merely arise from the δN expansion

and are thus retrievable in the Abelian case; the latter are derived from the linear and

quadratic expansions (in terms of the gauge bosons interaction Hamiltonian) of the

Schwinger-Keldysh formula and are therefore peculiar to the non-Abelian case.
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9.2. Bispectrum and trispectrum: Abelian contributions

By plugging the δN expansion (9.4) in Eqs. (9.2) and (9.3), we have

Bζ(~k1, ~k2, ~k3) ⊃
1

2
N2

φNφφ [Pφ(k1)Pφ(k2) + perms.]

+
1

2
Nµ

aN
ν
b N

ρσ
cd

[
Πac

µρ(
~k1)Π

bd
νσ(~k2) + perms.

]

+
1

2
NφN

µ
aN

ν
φb

[
Pφ(k1)Π

ab
µν(
~k2) + perms.

]

+ NφN
2
φBφ(k1, k2, k3), (9.18)

for the bispectrum and

Tζ(~k1, ~k2, ~k3, ~k4) ⊃ N4
φTφ(~k1, ~k2, ~k3, ~k4)

+ N3
φNφφ

[
Pφ(k1)Bφ(|~k1 + ~k2|, k3, k4) + perms.

]

+ N2
φN

µ
aN

ν
φb

[
P ab

µν(
~k3)Bφ(k1, k2, |~k3 + ~k4|) + perms.

]

+ N2
φN

2
φφ

[
Pφ(k1)Pφ(k2)Pφ(|~k1 + ~k3|) + perms.

]

+ N3
φNφφφ [Pφ(k1)Pφ(k2)Pφ(k3) + perms.]

+ N2
φN

µ
φaN

ν
φb

[
P ab

µν(
~k1 + ~k3)Pφ(k1)Pφ(k2) + perms.

]

+ Nµ
aN

ν
b N

ρ
φcN

σ
φd

[
P ac

µρ(
~k1)P

bd
νσ(~k2)Pφ(|~k1 + ~k3|) + perms.

]

+ N2
φN

µ
aN

ν
φφb

[
Pφ(k1)Pφ(k2)P

ab
µν(
~k3) + perms.

]

+ NφN
µ
aN

ν
b N

ρσ
φcd

[
P ac

µρ(
~k1)P

bd
νσ(~k2)Pφ(k3) + perms.

]

+ NφφNφN
µ
φaN

ν
b

[
Pφ(k2)Pφ(|~k1 + ~k2|)P ab

µν(
~k4) + perms.

]

+ Nµν
ab N

ρ
cN

σ
φdNφ

[
P µρ

ac (~k2)P
νσ
bd (~k1 + ~k2)Pφ(k4) + perms.

]

+ Nµ
aN

ν
b N

ρσ
cd N

δη
ef

[
P ac

µρ(
~k1)P

be
νδ(
~k2)P

df
ση(
~k1 + ~k3) + perms.

]

+ Nµ
aN

ν
b N

ρ
cN

σδη
def

[
P ad

µσ(~k1)P
be
νδ(
~k2)P

cf
ρη (~k3) + perms.

]
, (9.19)

for the trispectrum.

Before we proceed with explicitating these quantities and for the rest of the thesis, the

Na
0 coefficients will be set to zero. It is in fact possible to verify that the temporal mode

Ba
0 = 0 is a solution to the equations of motion for the vector bosons, after slightly

restricting the parameter space of the theory (see Appendix 15.4). The adoption of this

kind of solutions, which is related to the assumption of a slow-roll regime for the vector

fields, implies that the derivatives of N w.r.t. the temporal mode can be set to zero.

Let us now provide some definition for the quantities introduced in (9.18)-(9.19): we

are going to switch from the greek indices µ, ν, ... to the latin ones, generally used for

labelling the three spatial directions, in order to stress that all of the vector quantities

will be from now on three-dimensional

Πab
ij (~k) ≡ T even

ij (~k)P ab
+ + iT odd

ij (~k)P ab
− + T long

ij (~k)P ab
long, (9.20)

where

T even
ij (~k) ≡ eL

i (k̂)e∗Lj (k̂) + eR
i (k̂)e∗Rj (k̂), (9.21)
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T odd
ij (~k) ≡ i

[
eL

i (k̂)e∗Lj (k̂) − eR
i (k̂)e∗Rj (k̂)

]
, (9.22)

T long
ij (~k) ≡ el

i(k̂)e
∗l
j (k̂). (9.23)

The polarization vectors are eL(k̂) ≡ 1√
2
(cos θ cosφ− i sin φ, cos θ sin φ+ i cosφ,− sin θ),

eR(k̂) = e∗L(k̂) and el(k̂) = k̂ = (sin θ cosφ, sin θ sin φ, cos θ), from which we have

T even
ij (~k) = δij − k̂ik̂j , (9.24)

T odd
ij (~k) = ǫijkk̂k, (9.25)

T long
ij (~k) = k̂ik̂j. (9.26)

The purely scalar terms in Eqs. (9.18)-(9.19) are already known from the literature ‡.

As to the mixed (scalar-vector) terms, they can be ignored if one considers a Lagrangian

where there is no direct coupling between the inflaton and the gauge bosons but the

latter condition is not sufficient for concluding that the mixed derivatives are null. As

an example, it is useful to refer to [148] which, among other things, includes an analytic

study for the case of a set of slowly rolling fields with a separable quadratic potential.

The number of e-folding is written as a sum of integrals over the different fields, to be

evaluated between their values at an initial (generally set at around horizon crossing)

and a final times. For each field, the value at the final time depends on the total field

configuration at the initial time, so the mixed derivative of N can in principle be non-

zero. Anyway, if the final time approaches the end of inflation, it is reasonable to assume

that, by then, the fields have stabilized to their equilibrium value and no longer carry

the memory of their evolution. If this happens, the sum of integrals which defines N be-

comes independent of the final field configuration and its mixed derivatives can therefore

be shown to be zero. It turns out that we are allowed the same kind of analytic study,

if we work with the Lagrangian in Eq. (8.11) and introduce some slow-roll assumptions

for the vector fields (see Appendix 15.4 for a discussion about these assumptions and

Appendix 15.5 for the actual calculation of N and its derivatives).

Let us then look at the (purely) vector part. Its anisotropy features can be stressed by

rewriting them as follows

Bζ(~k1, ~k2, ~k3) ⊃ 1

2
N i

aN
j
bN

kl
cdΠ

ac
ik(~k1)Π

bd
jl (
~k2) = M c

kN
kl
cdM

d
l (9.27)

Tζ(~k1, ~k2, ~k3, ~k4) ⊃ Nµ
aN

ν
b N

ρσ
cd N

δη
ef P

ac
µρ(
~k1)P

be
νδ(
~k2)P

df
ση(
~k1 + ~k3)

+ Nµ
aN

ν
b N

ρ
cN

σδη
def P

ad
µσ(~k1)P

be
νδ(
~k2)P

cf
ρη (~k3)

= M c
i L

ij
ceM

e
j +Mf

i M
e
jM

d
kN

ijk
fed, (9.28)

where

M c
k(
~k) ≡ N i

aP
ac
ik (~k) = P ac

+ (k)
[
δikN

i
a + pac(k)k̂k

(
k̂ · ~Na

)
+ iqac(k)

(
k̂ × ~Na

)
k

]
(9.29)

‡ In single-field slow-roll inflation Pφ = H2
∗
/2k3, where H∗ is the Hubble rate evaluated at horizon exit;

the bispectrum and the trispectrum of the scalar field (Bφ and Tφ) can be found in [12, 13, 147, 152, 39].

For the bispectrum see also Eq. (3.10)
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Ljl
ce(
~k) ≡ N ji

cdP
df
ik (~k)Nkl

fe

= P df
+ (~k)[ ~N j

cd · ~N l
ef + pdf (k)

(
k̂ · ~N j

cd

) (
k̂ · ~N l

ef

)
+ iqdf (k)k̂ · ~N j

cd × ~N l
ef ]. (9.30)

In the previous equations, we defined

pac(k) ≡ P ac
long − P ac

+

P ac
+

, (9.31)

qac(k) ≡ P ac
−
P ac

+

, (9.32)

with ~Na ≡ (N1
a , N

2
a , N

3
a ) and ~N j

cd ≡ (N j1
cd , N

j2
cd , N

j3
cd ).

Notice that, as for the power spectrum (9.7), also in Eqs. (9.27)-(9.28) the anisotropic

parts of the expressions are weighted by coefficients that are proportional either to

P− or to (Plong − P+). When these two quantities are equal to zero, the (Abelian)

bispectrum and trispectrum are therefore isotropized. P− = 0 in parity conserving

theories, like the ones we have been describing. According to the parametrization (8.15)

of the longitudinal mode, we have Plong − P+ = (|n(x)|2 − 1)P+.

9.3. Bispectrum and trispectrum: Non-Abelian contributions

We list the non-Abelian terms for the bispectrum

Bζ(~k1, ~k2, ~k3) ⊃ N i
aN

j
bN

k
c B

abc
ijk (~k1, ~k2, ~k3) (9.33)

and for the trispectrum

Tζ(~k1, ~k2, ~k3, ~k4) ⊃ N i
aN

j
bN

k
c N

l
dT

abcd
ijkl (~k1, ~k2, ~k3, ~k4)

+ N i
aN

j
bNφN

k
φc

[
Pφ(k3)B

abc
ijk (~k1, ~k2, ~k3 + ~k4) + perms.

]

+ N i
aN

j
bN

k
c N

lm
de

[
P ad

il (~k1)B
bce
jkm(~k1 + ~k2, ~k3, ~k4) + perms.

]
. (9.34)

The computation of the vector bosons spectra

〈δAa
i δA

b
jδA

c
k〉 = δ(3)(~k1 + ~k2 + ~k3)B

abc
ijk , (9.35)

〈δAa
i δA

b
jδA

c
kδA

d
l 〉 = δ(3)(~k1 + ~k2 + ~k3 + ~k4)T

abcd
ijkl , (9.36)

will be reviewed in this section. This requires the expansion of the in-in formula up to

second order in the interaction Hamiltonian

〈Θ(η∗)〉 ⊃ i〈T
[
Θ
∫ η∗

−∞
dη

′
(
H+

int(η
′
) −H−

int(η
′
)
) ]

〉 (9.37)

+
(−i)2

2
〈T
[
Θ
∫ η∗

−∞
dη

′
(
H+

int(η
′
) −H−

int(η
′
)
) ∫ η∗

−∞
dη

′′
(
H+

int(η
′′
) −H−

int(η
′′
)
) ]

〉.

The interaction Hamiltonian needs to be expanded up to fourth order in the fields

fluctuations, i.e. Hint = H
(3)
int +H

(4)
int , where

H
(3)
int = gcε

abcgikgjl
(
∂iδB

a
j

)
δBb

kδB
c
l + g2

cε
eabεecdgikgjlBa

i δB
b
jδB

c
kδB

d
l (9.38)

H
(4)
int = g2

cε
eabεecdgijgklδBa

i δB
b
kδB

c
jδB

d
l . (9.39)

To tree-level, the relevant diagrams are pictured in Figs. 5 and 6. By looking at

Eqs. (9.38) and (9.39), we can see that there is a bispectrum diagram that is lower
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Figure 5. Diagrammatic representations of the tree-level contributions to the vector

fields bispectrum.

Figure 6. Diagrammatic representations of the tree-level contributions to the vector

fields trispectrum: vector-exchange (on the left) and contact-interaction (on the right)

diagrams.

in terms of power of the SU(2) coupling (∼ gc) compared to the trispectrum (∼ g2
c ); as

a matter of fact, for symmetry reasons that we are going to discuss later in this section,

g2
c interaction terms are needed to provide a non-zero contributions to the bispectrum.

The propagators for “plus” and “minus” fields are

̂
δBa,+

i (η′)δBb,+
j (η′′) = Π̃ab

ij (η
′
, η

′′
)Θ(η

′ − η
′′
) + Π̄ab

ij (η
′
, η

′′
)Θ(η

′′ − η
′
), (9.40)

̂
δBa,+

i (η′)δBb,−
j (η′′) = Π̄ab

ij (η
′
, η

′′
), (9.41)

̂
δBa,−

i (η′)δBb,+
j (η′′) = Π̃ab

ij (η
′
, η

′′
), (9.42)

̂
δBa,−

i (η′)δBb,−
j (η′′) = Π̄ab

ij (η
′
, η

′′
)Θ(η

′ − η
′′
) + Π̃ab

ij (η
′
, η

′′
)Θ(η

′′ − η
′
), (9.43)

or

Π̃ab
ij (~k) ≡ T even

ij (k̂)P̃ ab
+ + iT odd

ij (k̂)P̃ ab
ij + T long

ij (k̂)P̃ ab
ij (9.44)

Π̄ab
ij (~k) ≡ T even

ij (k̂)P̄ ab
+ + iT odd

ij (k̂)P̄ ab
ij + T long

ij (k̂)P̄ ab
ij (9.45)

in Fourier space. In the previous equations we set P̃ ab
± ≡ (1/2)(P̃ ab

R ± P̃ ab
L ), P̃ ab

R =

δabδB
ab
R (k, η∗)δB∗ab

R (k, η) and P̄ ab
± =

(
P̃ ab
±
)∗

(similar definitions apply for P̃ ab
L and P̃ ab

long).

We are now ready to show the computation of the following contributions to the

bispectrum and trispectrum of ζ

〈ζ ~k1
ζ ~k2
ζ ~k3

〉 ⊃ N i
aN

j
bN

k
c 〈δAa

i (
~k1)δA

b
j(
~k2)δA

c
k(
~k3)〉, (9.46)

〈ζ~k1
ζ~k2
ζ~k3
ζ~k4

〉 ⊃ N i
aN

j
bN

k
c N

l
d〈δAa

i (
~k1)δA

b
j(
~k2)δA

c
k(
~k3)δA

d
l (
~k4)〉. (9.47)
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Eq. (9.46) becomes

〈ζ ~k1
ζ ~k2
ζ ~k3

〉 ⊃ N i
aN

j
bN

k
c

δ(3)(~k1 + ~k2 + ~k3)

a3(η∗)

[ ∫
dηa4(η)Π̃im(~k1)Π̃

l
j(
~k2)Π̃

m
k (~k3)

×
(
gcε

abck1l + g2
cε

edaεebcBd
l

)]
+ perms.+ c.c. (9.48)

Even before performing the time integration, one realizes that, because of the

antisymmetric properties of the Levi-Civita tensor, the ∼ gc contribution on the r.h.s.

of Eq. (9.48) is equal to zero once the sum over all the possible permutations has been

performed. The vector bosons bispectrum is therefore proportional to g2
c . The final

result from (9.48) has the following form

〈ζ ~k1
ζ ~k2
ζ ~k3

〉 ⊃ (2π)3δ(3)(~k1 + ~k2 + ~k3)g
2
cH

2
∗
∑

n

Fn(ki, η
∗)In(k̂i · k̂j, ~Ai · ~Aj , k̂i · ~Aj) (9.49)

where the Fn’s are isotropic functions of time and of the moduli of the wave vectors

(i = 1, 2, 3) and the In’s are anisotropic coefficients. The sum in the previous equation

is taken over all possible combinations of products of three polarization indices, i.e.

n ∈ (EEE,EEl, ElE, ..., lll), where E stands for “even”, l for “longitudinal”. The

complete expressions for the terms appearing in the sum are quite lengthy and we list

them in Appendix 15.6. As an example, we report here one of these terms

Flll = − n6(x∗)
1

24k6k2
1k

2
2k

2
3x

∗2 [AEEE + (BEEE cosx∗ + CEEE sin x∗)Eix
∗] (9.50)

Illl = εaa′b′εac′e
[( (

k̂1 · ~Na′
) (
k̂3 · ~N b′

) (
k̂2 · ~N c′

) (
k̂1 · k̂2

) (
k̂3 · Âe

)

−
(
k̂3 · ~Na′

) (
k̂2 · ~N b′

) (
k̂1 · ~N c′

) (
k̂1 · k̂2

) (
k̂3 · Âe

) )
+ (1 ↔ 3) + (2 ↔ 3)

]
(9.51)

where AEEE, BEEE and CEEE are functions of x∗ and of the momenta ki ≡ |~ki| (they

are all reported in Appendix 15.6), Ei is the exponential-integral function. As we will

discuss in more details in Sec. 11.2, one of the more interesting features of these models

is that the bispectrum and the trispectrum turn out to have an amplitude that is mod-

ulated by the preferred directions that break statistical isotropy.

Let us now move to the trispectrum. Again, we count two different kinds of

contributions, the first from ∼ gc and the second from ∼ g2
c interaction terms,

respectively in H
(3)
int and H

(4)
int . The former produce vector-exchange diagrams, the latter

are represented by contact-interaction diagrams (see Fig. 6). Their analytic expressions

are different, but they both have a structure similar to (9.49)

〈ζ ~k1
ζ ~k2
ζ ~k3
ζ ~k4

〉 ⊃ (2π)3δ(3)(~k1 + ~k2 + ~k3 + ~k4)g
2
cH

2
∗ (9.52)

×
∑

n

Gn(ki, k1̂2, k1̂4, η
∗)Ln(k̂i · k̂j, ~Ai · ~Aj , k̂i · ~Aj)

where we define k1̂2 ≡ |~k1 + ~k2| and k1̂4 ≡ |~k1 + ~k4|. We will present the details of the

computation of the gauge fields trispectrum and the explicit expression of the functions

appearing in (9.52) in the next section.
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9.3.1. Trispectrum from vector bosons: exchange diagram

Let us begin with the two vertex diagram. Using the language of Eq. (9.37), it can be

put in the form

〈Θ(η∗)〉 ⊃ (−i)2

2
〈T
[
Θ
∫ η∗

−∞
dη

′
(
H+(η

′
) −H−(η

′
)
) ∫ η∗

−∞
dη

′′
(
H+(η

′′
) −H−(η

′′
)
) ]

〉 (9.53)

where now H ≡ H
(3)
int , Θ ≡ δAa

µδA
b
νδA

c
ρδA

d
σ and the inclusion symbol as usual points out

that what stands on the right-hand side is only one of the contributions to 〈Θ(η∗)〉.
Eq. (9.53) can be rewritten as follows

〈Θ(η∗)〉 ⊃ (−i)2

2
〈T [Θ (A + B + C + D)]〉 (9.54)

where

A ≡
∫ η∗

−∞
dη

′
H+(η

′
)
∫ η∗

−∞
dη

′′
H+(η

′′
)

B ≡
∫ η∗

−∞
dη

′
H−(η

′
)
∫ η∗

−∞
dη

′′
H−(η

′′
)

C ≡ −
∫ η∗

−∞
dη

′
H+(η

′
)
∫ η∗

−∞
dη

′′
H−(η

′′
)

D ≡ −
∫ η∗

−∞
dη

′
H−(η

′
)
∫ η∗

−∞
dη

′′
H+(η

′′
)

For each one of the integrals listed above, due to the presence of both the fields and their

spatial derivatives in H
(3)
int , there are three different sets of contractions of the external

with the vertex field-operators: for the first set, the field-operators with derivatives in

the vertices are both contracted with external fields; for the second one, only one of the

two field-operators with derivatives contracts with an external field (the other contracts

with another internal field); for the third set, the field-operators with derivatives contract

with each other.

A sample set of contractions of the first type is provided in the following equation

T abcd
ijkl ⊃ g2

c

2a4(η∗)
εa

′
b
′
c
′

εa
′′

b
′′

c
′′

kmkm′

×
∫
dη

′
a4(η

′
)
∫
dη

′′
a4(η

′′
)gmpgm

′
p
′

gnqgn
′
q
′

Π̃aa
′

in Π̃bb
′

jp Π̃ca
′′

kn′ Π̃db
′′

lp′ Π̃c
′
c
′′

qq′ (9.55)

where the first four Π̃s correspond to contractions between external and internal fields

whereas the last one indicates the contraction between the two remaining internal

fields. The a−4 factor comes from expressing the external (physical) fields in terms

of the comoving ones. As a reminder, we define (2π)3δ(3)(~k1 + ~k2 + ~k3 + ~k4)T
abcd
ijkl ≡

〈δAa
i δA

b
jδA

c
kδA

d
l 〉. The expression in (9.55) can be rewritten as follows

T abcd
ijkl ⊃ g2

c

2a4(η∗)
εa

′
b
′
c
′

εa
′′

b
′′

c
′′

kmkm
′δaa

′

δbb
′

δca
′′

δdb
′′

δc
′
c
′′

×
∑

α,β,γ,δ,σ

(∫
dη

′
∫
dη

′′
)

αβγδσ
T α

inT
β
jmT

γ

kn′T δ
lm′T σ

nn′ (9.56)
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where the greek indices of the sum indicate either the transverse (E) or longitudinal (l)

modes, the
(∫
dη

′ ∫
dη

′′
)

stand for the integrals over the wave functions, the chosen time

variable being x ≡ −kη (k ≡ ∑
i=1,...,4 ki, ki ≡ |~ki|).

Let us define the coefficients T αβγδσ
ijkl ≡ kmkm′T α

inT
β
jmT

γ

kn′T δ
lm

′T σ
nn

′ . They should be

calculated for each one of the three different sets of contractions and for each permutation

within the specific set. This is a straghtforward but rather lengthy and not particularly

interesting calculation. A convenient way to proceed could be the following: we first

compute the time integrals in order to find out which one among the combinations

of longitudinal and transverse mode functions in the string [α, β, γ, δ, σ] provides the

highest amplitude for the trispectrum (in order to be able to perform this comparison we

work, as it is usually done when trying to quantify the amplitude of a three or of a four-

point function, in the so called “equilateral configuration”, which for the trispectrum

means taking k1 = k2 = k3 = k4); for the combination with the highest amplitude, we

then calculate the coefficients T αβγδσ
ijkl for all the different sets of contractions and sum

over all the permutations.

Let us now perform our calculations. The wavefunctions we are going to adopt were

introduced in Sec. 8.5 (see Eqs. (8.14) and (8.15)). It is possible to verify that B = A∗

and D = C∗ and that integrals of type A are consistently smaller in amplitude than

integrals of type C. We therefore report the combined contribution C + D = 2Re[C] for

one of the permutations

(∫
dη

′
∫
dη

′′
)

EEEEE
=

1

8k3
1k

3
2k

3
3k

3
4k

3
1̂2

(k1̂2 + k1 + k2)(k1̂2 + k3 + k4)x∗8
(9.57)

× [(M − 2E)[(N − 2F )(AB + CD) + (2H + L)(CB − AD)]

+ (2G+ P )[(N − 2F )(AD − CB) + (2H + L)(AB + CD)]](∫
dη

′
∫
dη

′′
)

EEEEl
= n2(x∗)

(∫
dη

′
∫
dη

′′
)

EEEEE
(9.58)

(∫
dη

′
∫
dη

′′
)

EEEll
= n4(x∗)

(∫
dη

′
∫
dη

′′
)

EEEEE
(9.59)

(∫
dη

′
∫
dη

′′
)

EElll
= n6(x∗)

(∫
dη

′
∫
dη

′′
)

EEEEE
(9.60)

(∫
dη

′
∫
dη

′′
)

Ellll
= n8(x∗)

(∫
dη

′
∫
dη

′′
)

EEEEE
(9.61)

(∫
dη

′
∫
dη

′′
)

lllll
= n10(x∗)

(∫
dη

′
∫
dη

′′
)

EEEEE
(9.62)

where A, B, C, D, E, F , G, H , L, M , N and P are functions of x∗ and of the momenta

moduli to be provided in Appendix 15.7 (see Eqs. (15.7.1) through (15.7.9)). Obviously,

the value of the integrals does not change when permuting its labels αβγδσ, apart from

a different power of the coefficient n(x∗). We need now to find out if there is one,

among the integrals in Eqs. (9.57) through (9.62), that has the largest amplitude, i.e.

understand if something can be said about the order of magnitude of n(x∗). We could

try to extrapolate some information about n(x∗) from what happens at very late times.
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In the models discussed in Ref. [135, 92] it turns out that the longitudinal mode is

δB|| =
√

2δBT .§ If this is the correct asymptotic behaviour and we find it reasonable

to extrapolate back until the horizon crossing epoch, it is then correct to conclude

that in this case the amplitude is the largest for the integral among the ones listed in

Eqs. (9.57) through (9.62) containing the highest powers of n, i.e. for
(∫
dη

′ ∫
dη

′′
)

lllll
.

The coefficients we intend to calculate are then of the kind T lllll
ijkl only. We list them below

for the three different sets of contractions we introduced above and for one particular

permutation (see again Appendix 15.7 for more details)

T
lllll(1)
ijkl = k1k3k1234

(
k̂1 · k̂1̂2

) (
k̂1 · k̂2

) (
k̂3 · k̂4

) (
k̂3 · k̂1̂2

)
, (9.63)

T
lllll(2)
ijkl = k3k1̂2k1234

(
k̂1 · k̂1̂2

) (
k̂2 · k̂1̂2

) (
k̂3 · k̂4

) (
k̂3 · k̂1̂2

)
, (9.64)

T
lllll(3)
ijkl = k1̂2k1̂2k1234

(
k̂1 · k̂1̂2

) (
k̂2 · k̂1̂2

) (
k̂3 · k̂1̂2

) (
k̂4 · k̂1̂2

)
. (9.65)

We adopted the following notation: ks ≡ |~ks|, k̂s ≡ ~ks/ks, the index s running over

the four external momenta; kss′s′′s′′′ ≡ k̂sik̂s′j k̂s′′kk̂s′′′l, with s, s′, s′′, s′′′ = 1, 2, 3, 4 and

with the indices i, j, k, l indicating the spatial components of the vectors; ~kŝs′ ≡ ~ks +~ks′,

kŝs′ ≡ |~ks + ~ks′| and so k̂ŝs′ ≡ ~kŝs′/kŝs′.

It is possible to prove that, once the Levi-Civita coefficients and the sum over the

permutations are taken into account, only the first set of contractions is left. The final

result after these cancellations can be written in the following form

〈δAa
i δA

b
jδA

c
kδA

d
l 〉∗ ⊃ (2π)3δ(3)(~k1 + ~k2 + ~k3 + ~k4)g

2
c

(
H∗x

∗

k

)4

εabc
′′

εcdc
′′ [
I × k1234 ×

(
4∑

i=1

ti

)

+ II × k1324 ×
(

8∑

i=5

ti

)
+ III × k1432 ×

(
12∑

i=9

ti

) ]
. (9.66)

All the possible permutations have been included in the previous equation and, as a

reminder, the indices i, j, k, l are hidden in kss′s′′s′′′ on the right-hand side. We define

I ≡ n10 ×
(

1

8k3
1k

3
2k

3
3k

3
4k

3
1̂2

(k1̂2 + k1 + k2)(k1̂2 + k3 + k4)x∗8

)

× [(M − 2E)[(N − 2F )(AB + CD) + (2H + L)(CB −AD)]

+ (2G+ P )[(N − 2F )(AD − CB) + (2H + L)(AB + CD)]] (9.67)

(from Eqs. (9.57)-(9.62)). The function II is defined from I by exchanging k2 with k3

and k1̂2 with k1̂3; similarly, III is defined from I by exchanging k2 with k4 and k1̂2 with

k1̂4, so they are all functions of the horizon crossing time x∗ ≡ −kη∗ and of the moduli of

the external momenta and of their sums. This amounts to seven independent variables,

x∗, k1, k2, k3, k4, k1̂2 and k1̂4. The coefficients ti (i = 1, ..., 12) come from T αβγδσ
ijkl and

§ As another example, in models with varying kinetic function and mass [95, 96], we have verified that

n(x) ≫ 1 at late times and for a vector field that is light until the end of inflation.
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so they are also functions of the momenta moduli (see Eqs. (15.7.10) through (15.7.21)

for their expressions). Finally, the anisotropic part of Eq. (9.66) is represented by the

kss′s′′s′′′ terms, which, in the final expression for the curvature perturbation trispectrum,

have their spatial indices contracted with the derivatives Na
i of the number of e-foldings

w.r.t. the vector fields as follows

〈ζ~k1
ζ~k2
ζ~k3
ζ~k4

〉 ⊃ Na
i N

b
jN

c
kN

d
l 〈δAa

i δA
b
jδA

c
kδA

d
l 〉∗ ⊃ (2π)3δ(3)(~k1 + ~k2 + ~k3 + ~k4)g

2
c

(
H∗x

∗

k

)4

× I ×
(

4∑

i=1

ti

)
× ∆I + perms. (9.68)

where the anisotropic term in the first permutation is

∆I ≡ εabc
′′

εcdc
′′

Na
i N

b
jN

c
kN

d
l k1234. (9.69)

It can be interesting to rewrite ∆I in terms of all its variables

∆I =
3∑

(a<b)a,b=1


(Na)2

(
N b
)2 ×

∏

[i,j]=[1,2],[3,4]

det
(
M i,j,a,b

I

)

 (9.70)

The MI ’s are 2 × 2 matrices whose entries are represented by the cosines of the angles

between the wavevectors and the ~Na

M i,j,a,b
I ≡

∣∣∣∣∣
cos θia cos θja

cos θib cos θjb

∣∣∣∣∣ .

i.e. cos θia ≡ k̂i · N̂a and so on.

The two permutations in Eq. (9.68) can be written in a similar fashion with anisotropic

coefficients

∆II ≡ εabc
′′

εcdc
′′

Na
i N

b
jN

c
kN

d
l k1324 =

3∑

(a<b)a,b=1


(Na)2

(
N b
)2 ×

∏

[i,j]=[1,3],[2,4]

det
(
M i,j,a,b

II

)

,

∆III ≡ εabc
′′

εcdc
′′

Na
i N

b
jN

c
kN

d
l k1432 =

3∑

(a<b)a,b=1


(Na)2

(
N b
)2 ×

∏

[i,j]=[1,4],[3,2]

det
(
M i,j,a,b

III

)

.

The number of angular variables is equal to 12. These are to be added to the six

scalar variables from the isotropic part of (9.68) (k1, k2, k3, k4, k1̂2 and k1̂4) and to

three parameters represented by the lengths of the vectors ~Na in ∆. The anisotropy

coefficients here become equal to zero in the event of an alignment of the gauge vectors

along a unique direction.

9.3.2. Trispectrum from vector bosons: point-interaction diagram

Let us now move to the one-vertex diagrams

〈Θ(η∗)〉 ⊃ i〈T
[
Θ
∫ η∗

−∞
dη

′
(
H+(η

′
) −H−(η

′
)
) ]

〉, (9.71)
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where now H ≡ H
(4)
int and again Θ ≡ δAa

µδA
b
νδA

c
ρδA

d
σ. After working out the Wick

contractions, this becomes

Nµ
aN

ν
b N

ρ
cN

σ
d T

abcd
µνρσ(~k1, ~k2, ~k3, ~k4) ⊃ g2

c

(
H∗x

∗

k

)4

ǫa
′bcǫa

′daNm
a N

n
b N

o
cN

p
d

×
∑

αβγδ

(∫
dx
)

αβγδ
T α

miT
β
njT

γ
oiT

δ
pj + permutations. (9.72)

Let us list the coefficients T αβγδ
mnop ≡ T α

miT
β
njT

γ
oiT

δ
pj for one of the permutations

TEEEE
mnop = δmoδnp − δmok̂p4k̂n4 − δmok̂n2k̂p2 + δmok̂n2k̂p4k̂2 · k̂4 − δnpk̂o3k̂m3

+ k3434 + k3232 − k̂2 · k̂4 (k3234 + k1214) − δnpk̂m1k̂o1 + k1414 + k1212

+ δnpk̂m1k̂o3k̂1 · k̂3 − k̂1 · k̂3 (k1232 + k1434) + k̂1 · k̂3k̂2 · k̂4, (9.73)

TEEEl
mnop = δmok̂p4k̂n4 − δmok̂n2k̂p4k̂2 · k̂4 − k3434 + k̂2 · k̂4 (k3234 + k1214) − k1414

+ k1434k̂1 · k̂3 − k1234k̂1 · k̂3k̂2 · k̂4, (9.74)

TEElE
mnop = δnpk̂o3k̂m3 − δnpk̂m1k̂o3k̂1 · k̂3 − k3434 + k̂1 · k̂3 (k1434 + k1232) − k3232

+ k3234k̂2 · k̂4 − k1234k̂1 · k̂3k̂2 · k̂4, (9.75)

TElEE
mnop = δmok̂n2k̂p2 − δmok̂n2k̂p4k̂2 · k̂4 − k3232 + k̂2 · k̂4 (k3234 + k1214) − k1212

+ k1232k̂1 · k̂3 − k1234k̂1 · k̂3k̂2 · k̂4, (9.76)

T lEEE
mnop = k̂m1k̂o1δnp − k̂m1k̂o3k13δnp − k1414 + k̂1 · k̂3 (k1434 + k1232) − k1212

+ k1214k̂2 · k̂4 − k1234k̂1 · k̂3k̂2 · k̂4, (9.77)

TEEll
mnop = k3434 − k3234k̂2 · k̂4 − k1434k̂1 · k̂3 + k1234k̂1 · k̂3k̂2 · k̂4, (9.78)

TElEl
mnop = δmok̂n2k̂p4k̂2 · k̂4 − k̂2 · k̂4 (k3234 + k1214) + k1234k̂1 · k̂3k̂2 · k̂4, (9.79)

TEllE
mnop = k3232 − k3234k̂2 · k̂4 − k1232k̂1 · k̂3 + k1234k̂1 · k̂3k̂2 · k̂4, (9.80)

T llEE
mnop = k1212 − k1214k̂2 · k̂4 − k1232k̂1 · k̂3 + k1234k̂1 · k̂3k̂2 · k̂4, (9.81)

T lEEl
mnop = k1414 − k1214k̂2 · k̂4 − k1434k̂1 · k̂3 + k1234k̂1 · k̂3k̂2 · k̂4, (9.82)

T lElE
mnop = δnpk̂m1k̂o3k̂1 · k̂3 − k̂1 · k̂3 (k1434 + k1232) + k1234k̂1 · k̂3k̂2 · k̂4, (9.83)

T lllE
mnop = k1232k̂1 · k̂3 − k1234k̂1 · k̂3k̂2 · k̂4, (9.84)

T llEl
mnop = k1214k̂2 · k̂4 − k1234k̂1 · k̂3k̂2 · k̂4, (9.85)

T lEll
mnop = k1434k̂1 · k̂3 − k1234k̂1 · k̂3k̂2 · k̂4, (9.86)

TElll
mnop = k3234k̂2 · k̂4 − k1234k̂1 · k̂3k̂2 · k̂4, (9.87)

T llll
mnop = k1234k̂1 · k̂3k̂2 · k̂4. (9.88)

When evaluating the integrals (
∫
dx)αβγδ, we use again the wavefunctions previously

introduced in Eqs. (8.14) and (8.15). The final result is

(∫
dx
)

EEEE
=

1

24k5k2
1k

2
2k

2
3k

2
4x

∗7 [QEEEE + AEEEE cix∗ (BEEEE cos x∗ + CEEEE sin x∗)

+DEEEE six∗ (EEEEE cosx∗ + FEEEE sin x∗) ], (9.89)
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(∫
dx
)

EEEl
= n2(x∗)

(∫
dx
)

EEEE
, (9.90)

(∫
dx
)

EEll
= n4(x∗)

(∫
dx
)

EEEE
, (9.91)

(∫
dx
)

lllE
= n6(x∗)

(∫
dx
)

EEEE
, (9.92)

(∫
dx
)

llll
= n8(x∗)

(∫
dx
)

EEEE
, (9.93)

where QEEEE, AEEEE, BEEEE, CEEEE, DEEEE, EEEEE and FEEEE are functions of x∗

and of the momenta ki ≡ |~ki|, ci and si stand respectively for the CosIntegral and the

SinIntegral functions. The expressions of these functions can be found in Appendix 15.8.

It is again important noticing that the anisotropy coefficients become zero if the gauge

fields are all aligned.

Finally, summing up the coefficients in Eqs. (9.73) through (9.88), one realizes that if

the longitudinal and the transverse mode evolve in the same way, the total contribution

from the point-interaction diagram is isotropic

〈ζ~k1
ζ~k2
ζ~k3
ζ~k4

〉 ⊃ (2π)3δ3
(
~k1 + ~k2 + ~k3 + ~k4+

)
g2

c

(
H∗x

∗

k

)4

ǫa
′bcǫa

′da
(
~N c · ~Na

) (
~N b · ~Nd

)

× 1

24k5k2
1k

2
2k

2
3k

2
4x

∗7 [QEEEE + AEEEEcix
∗ (BEEEE cosx∗ + CEEEE sin x∗)

+DEEEEsix
∗ (EEEEE cosx∗ + FEEEE sin x∗) ] + permutations. (9.94)
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10. Amplitude of non-Gaussianity: fNL and τNL

Our definitions for the non-Gaussianity amplitudes are

6

5
fNL =

Bζ(~k1, ~k2, ~k3)

P iso(k1)P iso(k2) + perms.
(10.1)

τNL =
2Tζ(~k1, ~k2, ~k3, ~k4)

P iso(k1)P iso(k2)P iso(k1̂4) + 23 perms.
(10.2)

The choice of normalizing the bispectrum and the trispectrum by the isotropic part of

the power spectrum, instead of using its complete expression Pζ , is motivated by the fact

that the latter would only introduce a correction to the previous equations proportional

to the anisotropy parameter g, which is a small quantity.

The parameters fNL and τNL receive contributions both from scalar (“s”) and from

vector (“v”) fields

fNL = f
(s)
NL + f

(v)
NL, (10.3)

τNL = τ
(s)
NL + τ

(v)
NL. (10.4)

The latter can again be distinguished into Abelian (A) and non-Abelian (NA)

f
(v)
NL = f

(A)
NL + f

(NA)
NL , (10.5)

τ
(v)
NL = τ

(A1)
NL + τ

(A2)
NL + τ

(NA1)
NL + τ

(NA2)
NL . (10.6)

The contribution f
(A)
NL comes from Eq. (9.27), f

(NA)
NL from (9.49), τ

(A1)
NL and τ

(A2)
NL from

(9.28), finally τ
(NA1)
NL from (9.52) and τ

(NA2)
NL from the last line of (9.34).

In order to keep the vector contributions manageable and simple in their structure, all

gauge and vector indices will be purposely neglected in this section and so the angular

functions appearing in the anisotropy coefficients will be left out of the final amplitude

results. This is acceptable considering that these functions will in general introduce

numerical corrections of order one. Nevertheless, it is important to keep in mind that

the amplitudes also depend on the angular parameters of the theory.

We will now focus on the dependence of fNL and τNL from the non-angular parameters

of the theory and quickly draw a comparison among the different contributions listed in

Eqs. (10.3) through (10.6).

The expression of the number of e-foldings depends on the specific model and, in

particular, on the mechanism of production of the fluctuations. Two possibilities have

been described in Sec. 8. For “vector inflation” we have

N i
a =

Aa
i

2m2
P

, N ij
ab =

δabδ
ij

2m2
P

(10.7)
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Table 1. Order of magnitude of fNL in different scenarios.

f s
NL fA

NL fNA
NL

general case 1
(1+β)2

Nφφ

N2

φ

β
(1+β)2

NAA

N2

φ

β2

(1+β)2
g2

c

(
m
H

)2

v.inflation ǫ(
1+
(

A
mP

√
ǫ
)
2

)
2

ǫ2(
1+
(

A
mP

√
ǫ
)
2

)
2

(
A

mP

)2 ǫ2g2

c(
1+
(

A
mP

√
ǫ
)
2

)
2

(
A2

mP H

)2

v.curvaton
ǫ(

1+

(
AmP
A2

tot

)2

ǫr2

)2
ǫ2r3(

1+

(
AmP
A2

tot

)2

ǫr2

)2

(
Am2

P

A3
tot

)2
ǫ2r3g2

c(
1+

(
AmP
A2

tot

)2

ǫr2

)2

(
A2m2

P

A3
totH

)2

Table 2. Order of magnitude of the vector contributions to τNL

in different scenarios.

τNA1

NL τNA2

NL τA1

NL τA2

NL

general case 103 β2ǫg2

c

(1+β)3

(
mP
H

)2
10−5 β3/2ǫ3/2g2

c

(1+β)3

(
A
H

) (
mP
H

)
m2

P NAA
βǫ2

(1+β)3
m4

P N2
AA

β3/2ǫ3/2

(1+β)3
m3

P NAAA

v.inflation same as above 10−5 β3/2ǫ3/2g2

c

(1+β)3

(
A
H

) (
mP
H

)
βǫ2

(1+β)3
0

v.curvaton same as above 10−5 rβ3/2ǫ3/2g2

c

(1+β)3

(
A
H

) (
mP
H

) (
mP
A

)2 r2βǫ2

(1+β)3

(
mP
A

)4 rβ3/2ǫ3/2

(1+β)3

(
mP
A

)3

Table 3. Order of magnitude of the ratios fv
NL/fs

NL in different scenarios.

fA
NL/fs

NL fNA
NL /fs

NL

general case β NAA
Nφφ

β2g2
c

(
m
H

)2 N2

φ

Nφφ

v.inflation β
β2g2

c
ǫ

(
mP
H

)2

v.curvaton βr
(

mP
A

)2 β2g2

c
ǫr

(
A
H

)2

(see Appendix 15.5 for their derivation). In the vector curvaton model the same

quantities become [92, 97]

N i
a =

2

3
r

Aa
i∑

b | ~Ab|2
, N ij

ab =
1

3
r
δabδ

ij

∑
c | ~Ac|2

. (10.8)

Neglecting tensor and gauge indices, the expressions above can be simplified as NA ≃
A/m2

P and NAA ≃ 1/m2
P in vector inflation, NA ≃ r/A and NAA ≃ r/A2 in the vector

curvaton model. Also we have NAAA = 0 in vector inflation and NAAA ≃ r/A3 in vector

curvaton.

We are now ready to provide the final expressions for the amplitudes: in Table 1 we list

all the contributions to fNL, Table 2 includes the vector contributions to τNL, the scalar

contributions being given by

τ
(s)
NL =

ǫ

(1 + β)3 +
ǫ2

(1 + β)3 . (10.9)

In the expressions appearing in the tables, numerical coefficients of order one have not

been reported. Also, m is by definition equal to mP in vector inflation and to A/
√
r
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Table 4. Order of magnitude of the ratios τv
NL/τs

NL in different scenarios.

τNA1

NL /τs
NL τNA2

NL /τs
NL τA1

NL/τs
NL τA2

NL/τs
NL

general case 103β2g2
c

(
mP
H

)2
10−5β3/2ǫ1/2g2

c

(
A
H

) (
mP
H

)
m2

P NAA βǫm4
P N2

AA β3/2ǫ1/2m3
P NAAA

v.inflation same as above 10−5β3/2ǫ1/2g2
c

(
A
H

) (
mP
H

)
βǫ 0

v.curvaton same as above 10−5rβ3/2ǫ1/2g2
c

(
A
H

)(
mP
H

) (
mP
A

)2
r2βǫ

(
mP
A

)4
rβ3/2ǫ1/2

(
mP
A

)3

in the vector curvaton model; Nφ ≃ (mP

√
ǫ)−1 andNφφ ≃ m−2

P , with ǫ ≡ (φ̇2)/(2m2
PH

2).

The quantities involved in the amplitude expressions are g, β, r, ǫ, gc, mP/H , A/mP

and A/H . We already know that g and β are to be considered smaller than one (see

discussion after Eq. (9.17)). Similarly, as mentioned after Eq. (8.2), r has to remain

small at least until inflation ends so as to attain an “almost isotropic” expansion. The

slow-roll parameter ǫ and the SU(2) coupling gc are small respectively to allow the infla-

ton to slowly roll down its potential and for perturbation theory to be valid. The ratio

mP/H is of order 105 (assuming ǫ ∼ 10−1). Finally, A/mP and A/H have no stringent

bounds. A reasonable choice could be to assume that the expectation value of the gauge

fields is no larger than the Planck mass, i.e. A/mP ≤ 1. As to the A/H ratio, different

possibilities are allowed, including the one where it is of order one (see Sec. 6 of [97] for

a discussion on this).

Let us now compare the different amplitude contributions. The ratios between scalar

and vector contributions are shown in Table 3 for the bispectrum and Table 4 for the

trispectrum. We can observe that the dominance of a given contribution w.r.t. another

one very much depends on the selected region of parameter space. It turns out that it

is allowed for the vector contributions to be larger than the scalar ones and also for the

non-Abelian contributions to be larger than the Abelian ones. This is discussed more

in details in Sec. 6 of [97]. An interesting point is, for instance, the following: ignoring

tensor and gauge indices, the ratio gcA/H , that appears in many of the Tables entries,

is a quantity smaller than one; if we consider the different configurations identified by

gauge and vector indices, we realize that this is not always true, in fact the value of

this ratio can be ≫ 1 in some configurations (see also Appendix 15.4 and Eqs. (15.4.9)

through (15.4.11) in particular).

Finally, it is interesting to compare bispectrum and trispectrum amplitudes (see

Table 5). Again, it is allowed for the ratios appearing in Table 5 to be either large or

small, depending on the specific location within the parameter space of the theory. For

instance, the combination of a small bispectrum with a large trispectrum is permitted.

The latter is an interesting possibility: if the bispectrum was observably small, we

could still hope the information about non-Gaussianity to be accessible thanks to the

trispectrum.

Another interesting feature of this model is that the bispectrum and the trispectrum
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Table 5. Order of magnitude of the ratios τv
NL/

(
fNA

NL

)2
in different scenarios.

τNA1

NL /
(
fNA

NL

)2
τNA2

NL /
(
fNA

NL

)2
τA1

NL/
(
fNA

NL

)2
τA2

NL/
(
fNA

NL

)2

v.i. 109 ǫ(1+β)

g2
cβ2

(
H

mP

)2
10

ǫ3/2(1+β)

β5/2g2
c

(
A
H

) (
H

mP

)3
106 ǫ2(1+β)

β3g4
c

(
H

mP

)4 0

v.c. 109 r2ǫ(1+β)

g2
cβ2

m2

P
A2

H2

A2
10

r5ǫ3/2(1+β)

β5/2g2
c

H3

A3

mP
H

m2

P
A2

106 r6ǫ2(1+β)

β3g4
c

(
mP
A

)4 (H
A

)4
106 r3ǫ3/2(1+β)

g2
cβ5/2

m3

P
A3

H4

A4

depend on the same set of quantities. If these correlation functions were independently

known, that information could then be used to test the theory and place some bounds

on its parameters.
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11. Shape of non-Gaussianity and statistical anisotropy features

Studying the shape of non-Gaussianity means understanding the features of momentum

dependence of the bispectrum and higher order correlators (see e.g. [150]). If they also

depend on variables other than momenta, it is important to determine how these other

variables affect the profiles for any given momentum set-up. This is the case as far as

the bispectrum and the trispectrum of the gauge fields are concerned, given the fact

that they are functions, besides of momenta, also of a large set of angular variables (see

Eqs. (9.49) and (9.52)).

11.1. Momentum dependence of the bispectrum and trispectrum

We show the study of the momentum dependence of the Fn and Gn functions in

Eqs. (9.49) and (9.52) first and then analyze the angular variables dependence of the

spectra, once the momenta have been fixed in a given configuration. A natural choice

would be to consider the configuration where the correlators are maximized.

The maxima can be easily determined for the bispectrum by plotting the isotropic

functions Fn and Gn in terms of two of their momenta. These plots are provided in

Fig. 7, where the variables are x2 ≡ k2/k1 and x3 ≡ k3/k1. Each one of the plots

corresponds to a single isotropic functions of the sum in Eq. (9.49). It is apparent that

the maxima are mostly located in the in the so-called local region, i.e. for k1 ∼ k2 ≫ k3;

three out of the eight graphs do not have their peaks in this configuration but, at the

same time, they show negligible amplitudes compared to the “local” peaked graphs.

The situation is much more complex for the trispectrum, being the number of momentum

variables larger than three (k1, k2, k3, k4, k1̂2 and k1̂4). The momentum dependence

of the isotropic functions can be studied by selecting different configurations for the

tetrahedron made up by the four momentum vectors, in such a way as to narrow

the number of independent momentum variables down to two. A list of possible

configurations was presented in [44]. We consider two of them, the “equilateral” and

the “specialized planar”.

In the equilateral configuration the four sides of the tetrahedron have the same length

(k1 = k2 = k3 = k4), therefore x ≡ k1̂2/k1 and y ≡ k1̂4/k1 can be chosen as variables for

the plots. The plots of the isotropic functions of contact interaction and vector exchange

contributions are provided in Fig. 8. The former (c.i.) shows a constant behaviour in

this configuration, being independent of k1̂2 and k1̂4. The latter (v.e.(I), v.e.(II) and

v.e.(III)) diverge as k−3
1̂i

(i = 1, 2, 3 respectively for the three plots) in the limit of a

flat tetrahedron, i.e. (k1̂i/k1) → 0.

In the specialized planar configuration, the tetrahedron is flattened and, in addition to

that, three of the six momentum variables are set equal to one another (k1 = k3 = k1̂4);

this leaves two independent variables, which can be x ≡ k2/k1 and y ≡ k3/k1. There is

a double degeneracy in this configuration, due to the fact that the quadrangle can have

internal angles larger than or smaller/equal to π, as we can see from the plus and minus
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Figure 7. Plot of rn ≡ Θ(x2 − x3)Θ(x3 − 1 + x2)x
2
2x

2
3Rn(x2, x3), where

we define Rn = k6
1Fn. The Heaviside step functions Θ help restricting

the plot domain to the region (x2, x3) that is allowed for the triangle
~k1 + ~k2 + ~k3 = 0 (in particular, we set x3 < x2). We also set x∗ = 1.
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Figure 8. Plots of the isotropic functions appearing in the vector fields trispectrum

(from Eq. (9.52)): c.i. is the contribution from contact-interaction diagrams, v.e.(I),

v.e.(II) and v.e.(III) are the contributions from the vector-exchange diagrams. The

equilateral configuration has been considered in this figure.

signs in the expressions for k1̂2 and k1̂3 [44]

k1̂2

k1
=

√

1 +
x2y2

2
± xy

2

√
(4 − x2)(4 − y2), (11.1)

k1̂3

k1
=

√

x2 + y2 − x2y2

2
∓ xy

2

√
(4 − x2)(4 − y2). (11.2)

The two cases are plotted in Figs. 9 and 10. Notice that divergences generally occur as

x, y → 0, as x → y and (x, y) → (2, 2).

11.2. Features and level of anisotropy

Statistical homogeneity and isotropy are considered characterizing features of the CMB

fluctuations distribution, if one ignores the issues raised by the “anomalous” detections

we presented in the introduction.

Homogeneity of the correlation functions equates translational invariance and hence

total momentum conservation, as enforced by the delta functions appearing on the left-

hand sides of Eqs. (9.1) through (9.3). This invariance property can then be pictured as

the three momentum vectors forming a closed triangle for the bispectrum and the four

momenta arranged in a tetrahedron for the trispectrum (see Fig. 11).
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Figure 9. Plots of the contact interaction and of the vector-exchange contributions

in the specialized planar configuration (plus sign).

Statistical isotropy corresponds to invariance w.r.t. rotations in space of the momentum

(for the power spectrum) and of the triangle or tetrahedron made up by the momenta,

respectively for the bispectrum and the trispectrum. This symmetry can be broken,

as it for example happens in the SU(2) case, by assuming the existence of preferred

spatial directions in the early universe that might be revealed in the CMB observations.

When this happens, the correlation functions are expected to be sensitive to the spatial

orientation of the wave number or of the momenta triangles and tetrahedrons w.r.t.

these special directions. Analitically, the bispectrum and the trispectrum will depend on

the angles among the vector bosons and the wave vectors (besides the angles among the

gauge bosons themselves), as shown in the coefficients In and Ln appearing in Eqs. (9.49)

and (9.52). This implies that both the amplitude and the shape of bispectrum and

trispectrum will be affected by these mutual spatial orientations. The modulation of

the shapes by the directions that break statistical anisotropy was discussed with some

examples both for the bispectrum and the trispectrum in our papers [97, 98]. These

examples are here reported in Figs. 12 and 13.

In Fig. 12 we show the plot of the vector contribution to the bispectrum of ζ , properly

normalized in the configuration

~N3 = NA(0, 0, 1) (11.3)

~N1 = ~N2 = NA(sin θ cosφ, sin θ sin φ, cos θ), (11.4)

56



Figure 10. Plots of the contact interaction and of the vector-exchange contributions

in the specialized planar configuration (minus sign).

where, the (x, y, z) coordinate frame is chosen to be k̂3 = x̂ and k̂1 = k̂2 = ẑ and δ is

the angle between ~N1,2 and k̂3. The coefficients In in this configuration become

IEEE = m2N4
A

[
− 20 − 24 cos δ + 2 cos θ − 12 cos2 δ + 12 cos2 θ − 2 cos3 θ + 6 cos θ cos2 δ

− 2 cos2 θ cos δ + 2 cos δ cos3 θ
]
, (11.5)

Illl = m2N4
A

[
4 cos2 δ

]
, (11.6)

IllE = m2N4
A

[
4 − 2 cos θ − 6 cos2 θ − 4 cos2 δ

]
, (11.7)

IlEl = m2N4
A

[
− 4 cos2 δ

]
, (11.8)

IEll = m2N4
A

[
− 4 cos2 δ

]
, (11.9)

IEEl = m2N4
A

[
− 2 cos2 δ

]
, (11.10)

IElE = m2N4
A

[
4 − 4 cos2 θ − 8 cos2 δ

]
, (11.11)

IlEE = m2N4
A

[
2 + cos θ − 3 cos2 θ − 4 cos2 δ

]
. (11.12)

where m2 ≡ (A)/(NA), A being the background value of the ~Aa’s evaluated at horizon

crossing. The analytic expression of the ’non-Abelian’ bispectrum normalized to the

ratio (g2
cH

2m2N4
A)/(k6

1x
2
2x

2
3), as a function of the angles θ and δ and for fixed values of
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Figure 11. Representation of momentum conservation for the bispectrum (the

three momenta form a closed triangle) and for the trispectrum (the momenta form

a tetrahedron).

x∗, x2 and x3 is

Bζ(θ, δ) ≃ g2
c

H2

k6
1

m2N4
A

10−1

[
cos2 δ(8 cos θ − 1.4 × 103) + 3 cos δ(cos3 θ − cos2 θ − 11)

− 11 cos 2δ − 40 − 6 cos 2θ − cos θ(3 cos2 θ − 30 cos θ − 10)
]
, (11.13)

where we set x∗ = 1, while x2 and x3 were chosen in the ’squeezed’ region, x2 = 0.9 and

x3 = 0.1.

In Fig. 13 we provide a similar plot, but for the trispectrum from vector-exchange

contributions and in a different configuration

N̂2 · k̂i = 0 (i = 1, ...4)

N̂1 · k̂1 = cos δ, N̂1 · k̂2 = 0

N̂3 · k̂2 = cos θ, N̂3 · k̂1 = 0. (11.14)

In addition to that, let us assume that all the ~Na have the same magnitude NA. In this

configuration, we have

∆I = ∆III = NA
4 cos2 θ cos2 δ, ∆II = 0, (11.15)

therefore the the expression in Eq. (9.68) becomes

Tζ ⊃ g2
cH

4
∗N

4
A [ISO] cos2 θ cos2 δ (11.16)

where the expression in brackets includes an isotropic term (which is rotationally

invariant)

ISO ≡
(
x∗

k

)4
(
I

4∑

i=1

ti + III
12∑

i=9

ti

)
. (11.17)

Fig. 13 plots the trispectrum contribution in Eq. (11.16) normalized to its isotropic part.

Another comment should be added concerning statistical anisotropy in the model.

Notice that both the bispectrum and the trispectrum can be written as the sum of

a purely isotropic and an anisotropic parts. The orders of magnitude of these two parts

can, for instance, be read from Table 2 for the trispectrum: each one among τNA2
NL ,

τA1
NL and τA2

NL provide the order of magnitude of the level of both their isotropic and
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Figure 12. Plot of f(θ, δ) ≡ [(Bζ(θ, δ, x
∗, x2, x3)x

2
2x

2
3k

6
1)/(g2

cH2m2N4
A)] evaluated at

(x∗ = 1, x2 = 0.9, x3 = 0.1) in a sample angular configuration (see Eqs. (11.3) through

(11.13)).

Figure 13. Plot of the anisotropic part of the trispectrum from the contribution

due to vector-exchange diagrams in a sample angular configuration (see Eqs. (11.14)

through (11.17)).

anisotropic contributions, which are therefore comparable; τNA1
NL instead quantifies a

purely anisotropic contribution which, as discussed in Sec. 10, can be comparable to

the other three parts, if not the dominant one. A similar discussion applies to the

bispectrum (see fA
NL and fNA

NL in Table 1). We can then conclude that, for the three and

for the four point function, there is room in the parameter space of the theory for the

anisotropic contributions to be as large as, or even larger than, the isotropic ones.
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12. Trispectrum for f(τ) models of gauge interactions

We will now show that it is quite straightforward to extend the calculations we performed

for f = 1 to cases where f is not a constant. One interesting model is the one

studied in [149] and also recently discussed in [90], where the field is effectively massless

(m0 = ξ = 0) so the action (8.11) for the gauge field becomes

S =
∫
d4x

√−g
[
−1

4
f 2(φ)gµνgρσF a

µνF
a
ρσ + ...

]
, (12.1)

where again F a
µν ≡ ∂µB

a
ν − ∂νB

a
µ + gcε

abcBb
µB

c
ν .

Let us introduce the fields Ãa
i and Aa

i , related by the equations Ãa
i ≡ fBa

i = aAa
i . The

Aa
i are the physical fields.

We can expand the perturbations of Ãa
i in terms of creation and annihilation operators

in the usual way

δÃa
i (η, ~x) =

∫
d3q

(2π)3

∑

λ=R,L

[
eλ

i (q̂)a
aλ
~q δÃ

a
λ(η, q) + h.c.

]
. (12.2)

If f = f0a
α, with α equal either to 1 or −2 (f0 is a constant), it is possible to prove

[90] that the equation of motion for δÃa
λ is the same as the one for δBT , where by δBT

we mean the transverse mode function in Eq. (8.14). This is equivalent to saying that,

under the assumption α = 1,−2, the physical gauge fields are governed by the same

equation of motion as a light scalar field in a de Sitter space and so they generate a scale

invariant power spectrum. Let us sketch the calculation of the trispectrum in this theory.

The general expressions of the Abelian terms still hold, except that the power spectrum

in Eq. (9.1) reduces to

P ab
ij = T ab

ij P+, (12.3)

having gauged the longitudinal modes away.

Let us now have a look at the non-Abelian part. First of all, we need to set n(x∗) = 0.

The interaction Hamiltonian to third and fourth order are the same as in Eqs. (9.38)

and (9.39), but with extra f 2(τ) factors. The anisotropy coefficients such as In and Ln

that survive after setting the longitudinal mode to zero do not change. On the other

hand, the wavefunctions for the gauge fields are now given by δB = δÃ/f = δBT/f0a
α.

The new trispectrum therefore differs because of extra scale factors inside and outside

the time integrals, which in general imply a different power of H∗ in the final results

and a different momentum dependence in the isotropic part of the expressions.

Let us take into account the trispectrum. The three non-Abelian vector contributions

from Eq. (9.34) in the f = 1 case can be schematically written as follows

〈δB4〉line3 ≃
(
δB3

) ∫
dη (δB)3 =

(
δBT

)3
∫
dη
(
δBT

)3
, (12.4)

〈δB4〉v.e. ≃ (δB)4
∫
dη

′
(δB)3

∫
dη

′′
(δB)3

=
(
δBT

)4
∫
dη

′
(
δBT

)3
∫
dη

′′
(
δBT

)3
, (12.5)

60



Figure 14. Plots of the isotropic functions of some of the vector-exchange

contributions in the equilateral configuration, for the f ≃ a−2 model. In this and

in the next figures, “v.e.(I,II,III)” represent the isotropic functions associated with the

very last term in square brackets in Eq. (12.13); “v.e.(new)” represents the isotropic

function associated with the k1144, k2244, k1133 and k2233 terms in the second line of

Eq. (12.13).

〈δB4〉c.i. ≃ (δB)4
∫
dη (δB)4 =

(
δBT

)4
∫
dη
(
δBT

)4
, (12.6)

where we indicate with the subscript line3 the contribution from the third

line of Eq. (9.34) and with v.e. and c.e. respectively the vector exchange and

the contact interaction contributions to the first line of (9.34). 〈δB4〉 ≡
〈δBa

i (
~k1)δB

b
j(
~k2)δB

c
k(
~k3)δB

d
l (
~k4)〉 and we have omitted all the gauge and vector indices,

as well as complex conjugate symbols, for simplicity. Let us see now how Eqs. (12.4)-

(12.6) change if f = f0a
α (α = 1,−2)

〈δB4〉line3 ≃ (δB)3
∫
dηf 2 (δB)3 ≃

(
δBT

aα

)3 ∫
dηa2α

(
δBT

aα

)3

, (12.7)

〈δB4〉v.e. ≃ (δB)4
∫
dη

′
f 2 (δB)3

∫
dη

′′
f 2 (δB)3

≃
(
δBT

aα

)4 ∫
dη

′
a2α

(
δBT

aα

)3 ∫
dη

′′
a2α

(
δBT

aα

)3

, (12.8)

〈δB4〉c.i. ≃ (δB)4
∫
dηf 2 (δB)4 ≃

(
δBT

aα

)4 ∫
dηa2α

(
δBT

aα

)4

. (12.9)

Using a = (−Hη)−1 in the previous equations, we get
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Figure 15. Plots of the isotropic functions of some of the vector-exchange

contributions in the specialized planar configuration (plus sign), for the f ≃ a−2 model.

〈δB4〉line3 ≃ H4α
∗
(
δBT (−η∗)α

)3
∫
dη
(
δBT

)3
(−η)α, (12.10)

〈δB4〉v.e. ≃ H6α
∗
(
δBT (−η∗)α

)4
∫
dη

′
(
δBT

)3
(−η′

)α

×
∫
dη

′′
(
δBT

)3
(−η′′

)α, (12.11)

〈δB4〉c.i. ≃ H6α
∗
(
δBT (−η∗)α

)4
∫
dη
(
δBT

)4
(−η)2α. (12.12)

Let us now consider more in details the α = −2 case for contact-interaction and vector-

exchange contributions. The expressions for the anisotropy coefficients are respectively

given by

TEEEEE
ijkl = k1k3(k̂1 · k̂3 − k̂1 · k̂1̂2k̂3 · k̂1̂2)[δijδkl − δij k̂k4k̂l4 − δij k̂k3k̂l3 − δklk̂i2k̂j2 − δklk̂i1k̂j1

+ δij k̂k3k̂l4k̂3 · k̂4 + δklk̂i1k̂j2k̂1 · k̂2 + k1144 + k2244 + k1133 + k2233 − k2234k̂3 · k̂4

− k1134k̂3 · k̂4 − k1244k̂1 · k̂2 + k1233k̂1 · k̂2 + k1234k̂1 · k̂2k̂3 · k̂4] (12.13)

and by Eq. (9.73), for one of the possible permutations. These expressions are more

complicated w.r.t T lllll
ijkl in Eq. (9.63) and T llll

mnop in Eq. (9.88) for the longitudinal modes.

As a result, when studying the shape of the trispectrum, for the isotropic functions

appearing in it, several diagrams need to be taken into account, one for each term in
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Figure 16. Plots of the isotropic functions of some of the vector-exchange

contributions in the specialized planar configuration (minus sign), for the f ≃ a−2

model.

TEEEE
ijkl and TEEEEE

ijkl . For comparison with the f = 1 case, we plotted the isotropic

functions associated with the very last term in square brackets in Eq. (12.13) (see

“−v.e(I)”, “−v.e(II)” and “−v.e(III)” in Figs. 14, 15 and 16). By comparing these

plots with the ones in Figs. 8, 9 and 10, it is evident that they have very similar shapes.

On the other hand, when we consider the isotropic functions associated with terms that

are not present in the f = 1 case, several differences arise in the plots; we provide

a sample in Figs. 14, 15 and 16 with the “v.e.(new)” plots, which represent isotropic

functions associated with the k1144, k2244, k1133 and k2233 terms in the second line of

Eq. (12.13). We verified that similar observations can be made concerning the shapes

of the contact-interaction contributions.
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13. Conclusions

Cosmology has entered what it is called its “precision era”: over the past few years,

observations of the CMB and of other cosmological probes have been performed which

have greatly improved the previous bounds on some of the fundamental parameters

characterizing the early Universe cosmology. These bounds are expected to become a

lot stricter with the advent of new experiments, such as the ongoing Planck satellite

mission. The theoretical search for models of the early Universe has consequently been

concentrated on, among other things, trying to produce more and more accurate pre-

dictions.

In this optics, alternative models to the basic single-field slow-roll inflationary scenario

have been and are being investigated, with a strong focus on the computation of higher

order (three and four-point) correlation functions and on higher order (beyond tree-level)

corrections. All of these “higher order” predictions are expected to be particularly re-

vealing of the early Universe physics, given that they are an indication of the type of

fields and interactions populating the specific inflationary scenarios.

In this thesis I have presented an overview of the existing results concerning some of

these “higher order” predictions; in particular, I focused on our works on loop corrections

in inflationary scalar field models and on the primordial non-Gaussianity and statistical

anisotropy predictions in some inflationary models populated with non-Abelian vector

fields.

Loop corrections to the power spectrum of the comoving curvature fluctuation ζ in

single-field inflation arise both from the inflaton self-interactions and from the coupling

of the scalar field with gravitons. We have calculated the corrections from tensor loops,

previously neglected in the literature for simplicity reasons. It turnes out that one-

loop corrections from tensor-scalar interactions are of the same order of magnitude as

those arising from scalar self-interactions, therefore they cannot be neglected in a self-

consistent calculation.

One loop corrections have been found to be suppressed by an (H/mP )2 factor compared

to the tree-level result; they exhibit a slightly different dependence from the external

momentum, because of the presence of a logarithmic factor (which does not spoil scale

invariance) and they turn out vary with time at most as fast as the logarithm of the

scale factor. One-loop diagrams generally present both infrared logarithmic and ultravi-

olet power-law (in addition to logarithmic) divergences. The ultraviolet divergences can

be treated using ordinary regularization and renormalization techniques as in flat-space

quantum field theory. The infrared divergences are “cured” by introducing an infrared

cutoff represented by the smallest observable physical mode, i.e. by considering a finite

space, a sort of “box” of observation, with a size equal to the current horizon length.

As expected, tensor modes provide, as well as the scalar modes, observably small cor-

rections at one loop level, as long as the basic inflationary scenario is concerned. Their

64



computation is nevertheless instructive and provides a path that can be followed in the

investigation of “non-standard” models of inflation. More appealing results are for in-

stance expected in inflationary scenarios described by non-canonical Lagrangians, some

of which, P (X, φ) models, have been described and analysed in this thesis.

Motivated by an interest in models that combine non-Gaussianity and statistical

anisotropy predictions for the CMB fluctuations, we have worked on theories of in-

flation where primordial vector fields effectively participate in the production of the ζ

perturbations, eventually focusing on some SU(2) vector fields models. The two, three

and four point correlation functions in these models result as the sum of scalar and vec-

tor contributions. The latter are of two kinds, “Abelian” (i.e. arising from the zeroth

order terms in the Schwinger-Keldysh expansion) and “non-Abelian” (i.e. originating

from the self-interactions of the vector fields). The bispectrum and the trispectrum

final results are presented as a sum of products of isotropic functions of the momenta

(Fn and Gn in the text) multiplied by anisotropy coefficients (which we indicated by

In and Ln) that depend on the angles among all gauge and wave vectors. The ampli-

tude of non-Gaussianity has been evaluated through the parameters fNL and τNL; in

particular we have discussed the dependence of these functions from the non-angular

parameters of the theory. We have provided the comparisons among the different (scalar

versus vector, Abelian versus non-Abelian) contributions to fNL and τNL, noticing that

any one of them can be the dominant contribution depending on the selected region of

parameter space. In particular, we have stressed how the anisotropic contributions to

the bispectrum and the trispectrum can overcome the isotropic parts. An interesting

feature of these models is that the bispectrum and the trispectrum depend on the same

set of parameters and their amplitudes are therefore strictly related to one another. We

have presented the shapes of both the bispectrum and the trispectrum. The isotropic

functions appearing in their final expressions have been analyzed separately from their

anisotropy coefficients. The bispectrum isotropic functions have been found to prefer-

ably show a local shape. The trispectrum ones have been plotted selecting equilateral

and specialized planar configurations. Finally, the full expressions (i.e. completed by

the anisotropy coefficients) of bispectrum and trispectrum have been presented in spe-

cific momenta configuration, in order to provide a hint of the modulation of shapes and

amplitudes operated by anisotropy.

In our view, the most promising features of these models consists in the possibility

of providing non-Gaussianity and statistical anisotropy predictions that are related to

one another because of the fact that they share the same underlying theory. Models

that combine both types of predictions could be more easily testable and, from non-

Gaussianity measurement, more stringent statistical anisotropy predictions could be

produced or viceversa.

Inflationary models that do not spoil the current agreement with experimental data

constitute a huge variety but many of them have very distinctive features that might
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be confirmed or ruled out by observations. Both the the non-Gaussianity and statisti-

cal anisotropy predictions and the nature and the amount of higher corrections to the

cosmological correlation functions can be ranked among these distinctive features and

certainly deserve further investigations, looking forward for a confront with new and

promising experimental data.

While completing this thesis, the Wilkinson Microwave Anisotropy Probe (WMAP)

team published its seven-year data analyses [153, 154]. The new bounds on non-

Gaussianity from this study are given by −10 < f equil
NL < 74 and −214 < f loc

NL < 266, at

95% CL.
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15. Appendices

15.1. Computation of the interaction Hamiltonian

The propagator of two fields φ1 and φ2 is defined by (see for example [151])

〈φ1φ2〉 =
∫
DφDΠei

∫
d4x(Πφ̇−H), (15.1.1)

where Π is the momentum conjugate to φ and H is the Hamiltonian density. If H is

quadratic in Π, as it happens for example in flat space-time for a field governed by a

Lagrangian L =
∫
d4x

(
1
2
∂µ∂

µφ− V (φ)
)

the square in the exponent can be completed

and the integral in Π evaluated and all is left is

〈φ1φ2〉 =
∫
DφeiL. (15.1.2)

So, if an interaction term with time derivatives appears in the Lagrangian, Π and φ are

independent fields in the path integral. This will provide some extra vertices that need

to be accounted for in the Feynman diagrams. We sketch a derivation of these extra

vertices. It will turn out to be similar to what is done in [108], although complicated

by the presence of gravitons. To keep the calculations easier we will at first ignore all

spatial derivative and tensor indices, this will also make the notation simpler. Also, we

will momentarily ignore all numerical real coefficients; it is instead very important to

keep track of imaginary coefficients, time derivatives and powers of the scale factor a,

so we will make sure they are all accounted for in our analysis.

The total action is S =
∫
dη (Lγ + Lφ), where

Lγ = a2γ
′2

+ Γγγ
′
δφ

′2
+ Γγγ

′3
+ Γφδφ

′
γ

′2
+ Γγφδφ

′
γ

′
+ Γγγγ

′2

+ λφγγδφ
′
+ λφφγγ

′
+ λγγγγ

′
,

Lφ = a2δφ
′2

+ Γ1δφ
′2

+ Γ2δφ
′2

+ ωδφ
′3

+ λδφ
′
, (15.1.3)

where f
′ ≡ df/dη and where we define

Γγ ∼ aγ, (15.1.4)

Γφ ∼ aδφ, (15.1.5)

Γ1 ∼ φ̇a2δφ, (15.1.6)

Γ2 ∼ a2δφ2, (15.1.7)

Γγφ ∼ a2δφγ, (15.1.8)

Γγγ ∼ a2γ2, (15.1.9)

ω ∼ aδφ, (15.1.10)

λφφφ ∼ aδφ3, (15.1.11)

λφγγ ∼ aδφγ2, (15.1.12)

λφφγ ∼ aγδφ2, (15.1.13)

λγγγ ∼ aγ3. (15.1.14)
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Notice that in equations (15.1.4) through (15.1.14) we use the equivalence symbol

meaning that we skeep details about integrations in momenta and real coefficients.

The conjugate momenta are

Πγ ≡ δL

δγ′ = a2γ
′
+ λγγγ + λφφγ + Γγφδφ

′
+ Γγδφ

′2
+ Γφγ

′
δφ

′
+ Γγγγ

′3
+ Γγγ

′2
, (15.1.15)

Πφ ≡ δL

δ
(
δφ

′
) = Γγγ

′
δφ

′
+ Γγφγ

′
+ λφφγ + a2δφ

′
+ Γ1δφ

′
+ Γ2δφ

′
+ λφφφ + ωδφ

′2
.(15.1.16)

We solve perturbatively the equations (15.1.15) and (15.1.16) in order to derive γ
′
and

δφ
′
to fourth order

γ
′

= a−2
[
Πγ + λγγγ + λφφγ + a−2ΓγφΠ

φ + a−4ΓγΠ
φΠφ + a−4ΓφΠ

γΠφ

+ a−2ΓγγΠ
γ + a−4ΓγΠ

γΠγ + a−4ΓγφΓ1Π
φ + a−4ΓφΠ

γΠφ

+ a−6ΓφΓ1Π
γΠφ + a−2ΓγγΠ

φ
]
, (15.1.17)

δφ
′
= a−2

[
Πφ + a−4ΓγΠ

γΠφ + a−6ΓγΓ1Π
γΠφ + a−2ΓγφΠ

γ + λφγγ

+ a−2Γ1Π
φ + a−4Γ1Γ1Π

φ + a−2Γ2Π
φ + λφφφ + a−4ωΠφΠφ

+ a−4ΓγφΓ1Π
γ + a−2Γ1λφγγ + a−6Γ1Γ1Γ1Π

φ + a−4Γ1Γ2Π
φ

+ a−2Γ1λφφφ + a−6Γ1ωΠφΠφ
]
. (15.1.18)

The next steps are: derive the hamiltonian H = Πγγ
′
+Πφδφ

′ −L
(
γ, δφ, γ

′
, δφ

′
)
, where

we need to plug in the solution (15.1.17) and (15.1.18) for γ
′

and δφ
′
; construct the

action as S = S0 + SΠ, where S0 =
∫
dη (Lγ + Lφ) and SΠ includes the terms that

depend on the conjugate momenta of the fields (a change of variables similar to the one

that Seery performs in [108] over the conjugate momenta will also be necessary).

Let’s consider the vertices in SΠ that are involved in the corrections to the one loop

point function for the scalar field

SΠ ⊃
∫
dη

′
[
a−4Γ1δφ

′
Πφ + a−4Γ1Π

φΠφ + a−2Γ1γ
′
Πφ + a−4Γ2Π

φΠφ

+ a−4Γφδφ
′
ΠγΠγ + a−4ωδφ

′
ΠφΠφ

]
. (15.1.19)

The first three vertices belong to the third order part of the action; a−4Γ1δφ
′
Πφ and

a−2Γ1γ
′
Πφ, provide a correction to the two point function at one loop with two vertices.

Because of the presence of Γ1 which involves a factor of φ̇, it is subleading in slow roll

order w.r.t. the corrections coming from fourth order vertices. We will therefore neglect

these diagrams. The same applies to the second vertex, a−4Γ1Π
φΠφ, although this may

contribute to correcting the one point function

〈δφ~k(η
∗)〉 ⊃ C1

H2
∗

k3

√
ǫ
∫
d3qf1(~q)

∫ η∗

−∞
dη

′
δ(0)

(
1 − ikη

′
)
eikη

′

+c.c.,(15.1.20)

where C1 is a numerical real coefficient and δ(0) is the Dirac delta function deriving

from the propagator of the Πφ’s and f1 is a scalar function of the internal momentum.

The main contribution to the integral is due to times around horizon crossing since at

early times the rotation to imaginary plane of the contour integral makes the exponent
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decrease rapidly to zero and moreover η∗ was chosen to be just a few e-folding after

horizon crossing. Also, since the integrand function goes to zero as η
′
approaches zero,

we get a good approximation of this integral taking the upper limit η∗ → 0. The result

is purely imaginary and it cancels out with its complex conjugate.

Let us now move to the fourth order vertices. From a−4Γ2Π
φΠφ we have

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉 ⊃ H4
∗

k6
C2

∫
d3qf2(~q)

∫ η∗

−∞
dη

′
δ(0)

(
1 − ikη

′
)2
e2ikη

′

+ c.c. (15.1.21)

The same consideration as in (15.1.20) apply to the integral above, which gives a zero

contribution, as well as the following diagrams (corresponding to the last two vertices

in (15.1.19))

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉 ⊃ H4
∗

k6
C3

∫
d3qf3(~q)

∫ η∗

−∞
dη

′
δ(0)η

′2 (
1 − ikη

′
)
e2ikη

′

+
H4

k6
C4

∫
d3qf4(~q)

∫ η∗

−∞
dη

′
δ(0)η

′2 (
1 − ikη

′
)
e2ikη

′

+ c.c. (15.1.22)

15.2. Study of leading slow roll order vertices in the fourth order action

We are interested in computing the correlators just a few e-foldings after the scales we

consider cross the horizon, so we can assume that the slow roll parameters remain small

and can be treated as constants during this length of time. It is then correct to limit

our interest to the leading order slow-roll contribution to the action .

Let us start from the study of the slow-roll order of the fluctuations derived as solution

to the constraint equations:

α1 =
√
εQα1

[δφ],

θ1 =
√
εQθ1

[δφ],

α2 = εRα2 [δφ
2] +

√
εSα2 [δφ, γ] + Tα2 [δφ

2],

θ2 = εRθ2 [δφ
2] +

√
εSθ2[δφ, γ] + Tθ2 [δφ

2] + ε2Uθ2[δφ
2] + Vθ2 [γ

2]

+ ε3/2Wθ2 [δφ, γ],

βj = εRj [δφ
2] +

√
εSj[δφ, γ] + Tj[δφ

2] + Vj [γ
2],

where S[δφ, γ] is a linear function of δφ and/or its derivatives and a linear function of

γ and/or its derivatives, R[δφ2] is a quadratic function of δφ and/or its derivatives and

so on. Notice that the first order fluctuations are subleading (∼ √
ε) w.r.t. the second

order ones (∼ ε0). This criterium allows a suppression of a large number of terms in

the 4th order action based on keeping the leading order (i.e. ∼ ε0) terms only

S4 = a3
∫
dtd3x

[ 1

4a2

(
∂iβj + ∂jβi

)
∂iβj −

1

a2
δφ̇ (∂jθ2 + βj) ∂jδφ+ 3H2α2

2

− 1

a2

(
1

4
γikγkj∂jδφ∂iδφ+ α2∂iδφ∂iδφ− ∂kθ2 ˙γab∂bγak +

1

2
˙γab∂kγab∂kθ2

)

+
1

a2

(
βk ˙γab∂bγak −

1

2
˙γabβk∂kγab

) ]
.
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It can be easily shown that the terms in the action that do not contain the gravitons

reproduce the ones in equation (37) of [152]. The contribution to the power spectrum

due to these vertices has been calculated by these authors, but only for the scalar part.

We will then focus on all the tensor contributions from these and from the remaining

terms. Interaction vertices with both two and four tensor fluctuations will be obtained

once the expressions for α2, θ2 and βj are plugged in the action. The terms in the action

that we need for constructing Feynman diagrams with one loop of gravitons are

Sγ2 = a3
∫
d3xdt

[
− 1

4a2
βj∂

2βj −
1

a2
δφ̇∂jδφ∂jθ2 −

1

4a2
∂jδφ∂iδφγikγkj (15.2.1)

− 1

a2
δφ̇∂jδφβj +

1

2a2

(
2 ˙γab∂aγak (∂kθ2 + βk) − ˙γab∂kγab

(
βk + ∂kθ2

)]
.

Let’s plug the expressions for βj and θ2 into (15.2.1) considering the terms with two

gravitons. The result is an ensemble of vertices which can in principle contribute

to the one loop corrections to the power spectrum of the scalar field. Apart from

∂jδφ∂iδφγikγkj, all of the other terms contain time derivatives of one, two or three of

the four fields

βj∂
2βj ⊃ a4

[
∂−4

(
∂m∂jδφ̇∂mδφ− ∂2δφ̇∂jδφ+ ∂jδφ̇∂

2δφ

− ∂mδφ̇∂m∂jδφ
)

( ˙γik∂iγkj − γil∂i ˙γkj)

+ ∂−2
(
∂m∂jδφ̇∂mδφ− ∂2δφ̇∂jδφ+ ∂jδφ̇∂

2δφ

− ∂mδφ̇∂m∂jδφ
)
∂−2 ( ˙γik∂iγkj − γil∂i ˙γkj)

]
, (15.2.2)

δφ̇∂jδφ∂jθ2 ⊃ δφ̇∂jδφ
1

16H
∂−2∂j

[ 1

2a2
∂aγiq∂aγiq + γ̇ljγ̇lj

]
(15.2.3)

δφ̇∂jδφβj ⊃ δφ̇∂jδφ
a2

2
∂−2∂j

[
˙γik∂iγkj − γik∂i ˙γkj

]
, (15.2.4)

˙γab∂aγbk∂kθ2 ⊃ ˙γab∂aγbk
a2

4H
∂−2∂k

[
− 6H∂−2Σ − δφ̇

2 − 1

a2
∂iδφ∂iδφ

]
,(15.2.5)

˙γab∂aγbkβk ⊃ ˙γab∂aγbk2a
2∂−4

[
∂m∂kδφ̇∂mδφ− ∂2δφ̇∂kδφ

+ ∂kδφ̇∂
2δφ− ∂mδφ̇∂m∂kδφ

]
, (15.2.6)

˙γab∂kγabβk ⊃ ˙γab∂kγab∂
−4
[
∂m∂kδφ̇∂mδφ− ∂2δφ̇∂kδφ+ ∂kδφ̇∂

2δφ

− ∂mδφ̇∂m∂kδφ
]

(15.2.7)

˙γab∂kγab∂kθ2 ⊃ ˙γab∂kγab

[
− 6H∂−2

(
∂2δφδφ̇+ ∂jδφ∂jδφ̇

)

− δφ̇
2 − 1

a2
∂iδφ∂iδφ

]
. (15.2.8)

We will now prove that the vertices that include time derivatives do not actually

contribute to the two point function. First of all notice that the tensor fields carry

polarization tensors ǫij with the property qiǫij = 0 and are always contracted with
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other tensor fields in the calculations; this implies that, if a partial derivative index is

contracted with a tensor index, that diagram will be zero. Based on this observation,

we can ignore several of the vertices with time derivatives. We are eventually left with

only two of them, that we will call V1, V2 and V3

V1 ∼ ∂j

(
δφ̇∂jδφ

)
∂−2 (∂aγbc∂aγbc) , (15.2.9)

V2 ∼ ∂j

(
δφ̇∂jδφ

)
∂−2 ( ˙γab ˙γab) , (15.2.10)

V3 ∼ ˙γab∂kγab

(
βk + ∂kθ2

)
. (15.2.11)

where (15.2.11) is given by the sum of (15.2.7) and (15.2.8). Notice that the γij fields

need to be contracted between each other and that
∑

λ,λ
′ ǫλ∗iq ǫ

λ
′

iq =constant [120]; the

derivatives of δφ contract with derivatives of γ, so this produces ~k · ~q factors. Therefore

we have

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉V1+V2 ∼ iδ(3)(~k1 + ~k2)H
4
∗

∫
d3q

q3
f1(q

2)~k · ~q
∫ η∗

−∞
dη

′
f2(η

′
) + c.c.,(15.2.12)

where f1(q
2) and f2(η

′
) are some functions of q2 and η

′
. This contribution is evidently

zero for symmetry reasons.

15.3. Complete expressions of one-loop two-vertex diagrams to leading order

In the following we provide the explicit expression for Eqs. (5.26) and (5.30). Eq. (5.26)

reads as

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉A(1L,2v) = πδ(3)(~k1 + ~k2)
H4

∗
k3

(
a1 ln(k) + a2 ln(kℓ) + a3

)
, (15.3.1)

where

a1 = − 4

15

(
5 + 5x∗2 + 2x∗4

)
, (15.3.2)

a2 =
8

15x∗2

[
− 2 +

(
5 − 8σcσ̃c + 4πσs − 8σsσ̃s

)
x∗2 − 8(πσc + 2σ̃cσs

− 2σcσ̃c)x
∗3 + (1 + 8σcσ̃c − 4πσs + 8σsσ̃s)x

∗4
]
, (15.3.3)

a3 =
1

1800x∗2

[
− 64 −

(
− 3120 + 15136σcσ̃c − 450π2σcσ̃c − 7568πσs

+ 225π3σs + 15136σsσ̃s

)
x∗2 −

(
15136πσc − 450π3σc + 30272σ̃cσs

− 900π2σ̃cσs − 30272σcσ̃s + 900π2σcσ̃s

)
x∗3 −

(
− 672 − 15136σcσ̃c

+ 450π2σcσ̃c + 7568πσs − 225π3σs − 15136σsσ̃c + 450π2σsσ̃s

)
x∗4

− 208x∗6
]
+ ρ, (15.3.4)

and ρ is a constant left over from renormalization of ultraviolet divergences. We have

defined

σs ≡ sin 2x∗,

72



σc ≡ cos 2x∗,

σ̃s ≡ Si(2x∗),

σ̃c ≡ Ci(2x∗),

where Si and Ci stand for the sine-integral and the cosine-integral functions, i.e.

Si(x) =
∫ x

0

sin(t)

t
dt,

Ci(x) =
∫ x

0

cos(t) − 1

t
dt+ ln(x) + γ,

with γ indicating the Euler Gamma function.

The expression for Eq. (5.30) is

〈δφ ~k1
(η∗)δφ ~k2

(η∗)〉C(1L,2v) = πδ(3)(~k1 + ~k2)
H4

∗
k3

(c1 + c2 ln(kℓ)) , (15.3.5)

where

c1 =
1

225

(
8

x∗2
+ 107 + 50x∗2

)
, (15.3.6)

c2 =
4

15

(
4

x∗2
+ 1

)
. (15.3.7)

Finally the quantity f3 appearing in Eq. (6.1) is given by

f3 = a3 + c1 + α
′
, (15.3.8)

where α
′ ≡ 2 (1 + x∗2/3)α from Eq. (5.13).

15.4. Background and first order perturbation equations for the gauge fields

The equations of motion for the gauge fields and for a Lagrangian as in Eq. (8.11) with

f = 1 have been completely derived for the U(1) case in [135]. We are going to carry

out a similar calculation for the SU(2) case

1√−g∂µ

[√−ggµαgνβ
(
F

(AB)a
αβ + gcε

abcBb
αB

c
β

)]
+M2gµνBa

µ

+gcε
abcgγνgδβF

(AB)b
γδ Bc

β + g2
cε

abcεbb′c′gναgδβBc
δB

b′

αB
c′

β = 0 (15.4.1)

where F (AB)a
µν ≡ ∂µB

a
ν − ∂νB

a
µ.

The ν = 0 component of the equations of motion is

∂jḂ
a
j − ∂j∂jB

a
0 + a2M2Ba

0 + gcε
abc
[
−
(
∂jB

b
j

)
Bc

0 − 2Bb
j∂jB

c
0 − Ḃb

jB
c
j

+gcε
cb′c′Bb

jB
b′

0 B
c′

j

]
= 0 (15.4.2)

where Ba
µ = Ba

µ(~x, t).

Let us now move to the spatial (ν = i) part of (15.4.1)

B̈a
i +HḂa

i − 1

a2
∂j∂jB

a
i +M2Ba

i − ∂iḂ
a
0 −H∂iB

a
0 +

1

a2
∂i∂jB

a
j

+gcε
abc
[
HBb

0B
c
i + Ḃb

0B
c
i +Bb

0Ḃ
c
i

]
− gc

εabc

a2

[(
∂jB

b
j )B

c
i +Bb

j∂jB
c
i

]
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+gcε
abc
[(
∂iB

b
0

)
Bc

0 − Ḃb
iB

c
0

]
− gc

εabc

a2

[(
∂iB

b
j )B

c
j −

(
∂jB

b
i

)
Bc

j

]

+g2
cε

abcεbb′c′
[
Bc

0B
b′

i B
c′

0

]
− g2

c

a2
εabcεbb′c′

[
Bc

jB
b′

i B
c′

j

]
= 0 (15.4.3)

If we contract Eq.(15.4.1) with ∂ν , we get the integrability condition

(aM)2Ḃa
0 −M2∂iB

a
i + 3H

(
∂i∂iB

a
0 − ∂iḂa

i

)
+ gcǫ

abc
[
2H

(
∂iB

b
iB

c
0 +Bb

i∂iB
c
0 + Ḃb

jB
c
j

)
− ∂jB

b
0Ḃ

c
j

−B̈b
jB

c
j + ∂jḂb

0B
c
j − ∂2Bb

0B
c
0 − ∂iḂb

iB
c
0 +

1

a2

(
Bb

i∂
2Bc

i + ∂iB
b
j∂jB

c
i +Bb

j∂j∂iB
c
i + ∂2Bb

jB
c
j

−∂i∂jB
b
iB

c
j

)]
+ g2

c ǫ
abcǫbb

′
c
′ [
a2
(
Ḃc

0B
b
′

0 B
c
′

0 +Bc
0Ḃ

b
′

0 B
c
′

0 +Bc
0B

b
′

0 Ḃ
c
′

0

)
+ 2HBc

iB
b
′

0 B
c
′

i

−Ḃc
iB

b
′

0 B
c
′

i −Bc
i Ḃ

b
′

0 B
c
′

i −Bc
iB

b
′

0 Ḃ
c
′

i − ∂iB
c
0B

b
′

i B
c
′

0 − Bc
0∂iB

b
′

i B
c
′

0 − Bc
0B

b
′

i ∂iB
c
′

0

+
1

a2

(
∂iB

c
jB

b
′

i B
c
′

j +Bc
j∂iB

b
′

i B
c
′

j +Bc
jB

b
′

i ∂iB
c
′

j

)]
= 0 (15.4.4)

which reduces to Eq.(7) of [135] in the Abelian case.

Combining Eq.(15.4.4) with Eq.(15.4.2) we get

(aM)2Ḃa
0 −M2∂iB

a
i + 3H

(
a2M2Ba

0 + gcε
abc
[
−
(
∂jB

b
j

)
Bc

0 − 2Bb
j∂jB

c
0 − Ḃb

jB
c
j + gcε

cb′c′Bb
jB

b′

0 B
c′

j

])

+gcǫ
abc
[
2H

(
∂iB

b
iB

c
0 +Bb

i ∂iB
c
0 + Ḃb

jB
c
j

)
− ∂jB

b
0Ḃ

c
j

−B̈b
jB

c
j + ∂jḂ

b
0B

c
j − ∂2Bb

0B
c
0 − ∂iḂ

b
iB

c
0 +

1

a2

(
Bb

i∂
2Bc

i + ∂iB
b
j∂jB

c
i +Bb

j∂j∂iB
c
i + ∂2Bb

jB
c
j

−∂i∂jB
b
iB

c
j

)]
+ g2

c ǫ
abcǫbb

′
c
′ [
a2
(
Ḃc

0B
b
′

0 B
c
′

0 +Bc
0Ḃ

b
′

0 B
c
′

0 +Bc
0B

b
′

0 Ḃ
c
′

0

)
+ 2HBc

iB
b
′

0 B
c
′

i

−Ḃc
iB

b
′

0 B
c
′

i −Bc
i

˙
Bb′

0 B
c
′

i −Bc
iB

b
′

0 Ḃ
c
′

i − ∂iB
c
0B

b
′

i B
c
′

0 − Bc
0∂iB

b
′

i B
c
′

0 − Bc
0B

b
′

i ∂iB
c
′

0

+
1

a2

(
∂iB

c
jB

b
′

i B
c
′

j +Bc
j∂iB

b
′

i B
c
′

j +Bc
jB

b
′

i ∂iB
c
′

j

)]
= 0 (15.4.5)

Plugging this into Eq.(15.4.3) we get

B̈a
n +HḂa

n − 1

a2
∂j∂jB

a
n +M2Ba

n + 2H∂nB
a
0

− 1
(
aM

)2∂n

[
− 3H

(
gcε

abc
[
−
(
∂jB

b
j

)
Bc

0 − 2Bb
j∂jB

c
0 − Ḃb

jB
c
j + gcε

cb′c′Bb
jB

b′

0 B
c′

j

])

+gcǫ
abc
[
2H

(
∂iB

b
iB

c
0 +Bb

i ∂iB
c
0 + Ḃb

jB
c
j

)
− ∂jB

b
0Ḃ

c
j

−B̈b
jB

c
j + ∂jḂb

0B
c
j − ∂2Bb

0B
c
0 − ∂iḂb

iB
c
0 +

1

a2

(
Bb

i∂
2Bc

i + ∂iB
b
j∂jB

c
i +Bb

j∂j∂iB
c
i + ∂2Bb

jB
c
j

−∂i∂jB
b
iB

c
j

)]
+ g2

c ǫ
abcǫbb

′
c
′ [
a2
(
Ḃc

0B
b
′

0 B
c
′

0 +Bc
0Ḃ

b
′

0 B
c
′

0 +Bc
0B

b
′

0 Ḃ
c
′

0

)
+ 2HBc

iB
b
′

0 B
c
′

i

−Ḃc
iB

b
′

0 B
c
′

i −Bc
i

˙
Bb′

0 B
c
′

i −Bc
iB

b
′

0
˙
Bc′

i − ∂iB
c
0B

b
′

i B
c
′

0 − Bc
0∂iB

b
′

i B
c
′

0 − Bc
0B

b
′

i ∂iB
c
′

0

+
1

a2

(
∂iB

c
jB

b
′

i B
c
′

j +Bc
j∂iB

b
′

i B
c
′

j +Bc
jB

b
′

i ∂iB
c
′

j

)]]

+gcε
abc
[
HBb

0B
c
n + Ḃb

0B
c
n +Bb

0Ḃ
c
n

]
− gc

εabc

a2

[(
∂jB

b
j )B

c
n +Bb

j∂jB
c
n

]

+gcε
abc
[(
∂nB

b
0

)
Bc

0 − Ḃb
nB

c
0

]
− gc

εabc

a2

[(
∂nB

b
j)B

c
j −

(
∂jB

b
n

)
Bc

j

]

+g2
cε

abcεbb′c′
[
Bc

0B
b′

nB
c′

0

]
− g2

c

a2
εabcεbb′c′

[
Bc

jB
b′

nB
c′

j

]
= 0. (15.4.6)
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Let us consider the background part of the vector fields, i.e. ∂iB
a
µ = 0. Then from

Eq.(15.4.2)

a2M2Ba
0 + gcε

abc
[
− Ḃb

jB
c
j + gcε

cb′c′Bb
jB

b′

0 B
c′

j

]
= 0. (15.4.7)

Before proceeding with the derivation of the equations of motion for the background

and the field perturbations, it is necessary to make some comments about Eqs. (15.4.6)

and (15.4.7). One approximation that we have been using in the computation of the

cosmological correlators is allowing the Aa
i fields to undergo slow-roll during inflation.

One possible way to achieve this is by restricting the parameter space of the background

gauge fields through the request that their temporal components should be much smaller

than the spatial ones, Bb
0 ≪ |Bb

i |/a(t), b = 1, 2, 3, and, in addition to that, assuming

Bb
0 ≃ Bc

0, b, c = 1, 2, 3. With these assumptions, the temporal component can be

factored out in Eq. (15.4.7), using the approximation Ḃa
i ≃ HBa

i (valid in a slow-roll

regime). A solution to (15.4.7) is then given by B0 = 0. Adopting this solution and

plugging it in Eq (15.4.6), it is easy to show that a slow-roll equation of motion for the

physical fields

Äa
i + 3HȦa

i +m2
0A

a
i = 0 (15.4.8)

follows from (15.4.6) if we set M2 = m2
0 − 2H2 with Ḣ ≪ m2

0 and if
(
gcA

1

m0

)2

≪
∣∣∣∣∣

(A1)
2

(A2)2 + (A3)2 − (A3)2 cos2 θ13 − (A2)2 cos2 θ12

∣∣∣∣∣ , (15.4.9)

(
gcA

2

m0

)2

≪
∣∣∣∣∣

(A2)
2

(A1)2 + (A3)2 − (A3)2 cos2 θ23 − (A1)2 cos2 θ12

∣∣∣∣∣ , (15.4.10)

(
gcA

3

m0

)2

≪
∣∣∣∣∣

(A3)
2

(A1)2 + (A2)2 − (A2)2 cos2 θ23 − (A1)2 cos2 θ13

∣∣∣∣∣ , (15.4.11)

are satisfied. In the equations above, we defined Aa ≡ | ~Aa| and cos θab ≡ Âa · Âb, a and

b running over the gauge indices. The quantities appearing on the right-hand sides of

Eqs.(15.4.9) through (15.4.11) can be either large or small w.r.t. one, depending on the

specific background configuration, i.e. on the moduli of the gauge fields and the angles

θab.

Suppose now the conditions described above are all met, then from Eq (15.4.6), in terms

of the comoving fields, we have

B̈a
i +HḂa

i +M2Ba
i = 0. (15.4.12)

Let us now derive the equations for the perturbations. Eq.(15.4.2) becomes

∂jδḂ
a
j − ∂2δBa

0 + a2M2δBa
0 + gcε

abc
[
− ∂jδB

b
jB

c
0 − 2Bb

j∂jδB
c
0 − δḂb

jB
c
j − Ḃb

jδB
c
j

+gcε
cb

′
c
′(
δBb

jB
b
′

0 B
c
′

j +Bb
jδB

b
′

0 B
c
′

j +Bb
jB

b
′

0 δB
c
′

j

)]
= 0 (15.4.13)

Eq.(15.4.1) for the field perturbations gives

δB̈a
i +HδḂa

i − 1

a2
∂j∂jδB

a
i +M2δBa

i +
1

a2
∂i∂jδB

a
j −H∂iδB

a
0 −H∂iδB

a
0
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− gc

a2
εabc

[(
∂jδB

b
j)B

c
i +Bb

j∂jδB
c
i

]
− gc

a2
εabc

[(
∂iδB

b
j)B

c
j −

(
∂jδB

b
i

)
Bc

j

]

−g
2
c

a2
εabcεbb′c′

[
δBc

jB
b′

i B
c′

j +Bc
jδB

b′

i B
c′

j +Bc
jB

b′

i δB
c′

j

]

+gcε
abc
[
H
(
Bb

0δB
c
i + δBb

0B
c
i

)
+ ˙δBb

0B
c
i + Ḃb

0δB
c
i + δBb

0Ḃ
c
i +Bb

0
˙δBc

i

]

+gcε
abc
[
∂iδB

b
0δB

c
0 − ˙δBb

iB
c
0 − Ḃb

i δB
c
0

]

+g2
cε

abcεbb
′
c
′ [
δBc

0B
b
′

i B
c
′

0 +Bc
0δB

b
′

i B
c
′

0 +Bc
0B

b
′

i δB
c
′

0

]
= 0 (15.4.14)

Finally from Eq.(15.4.6) we get

¨δBa
i +H ˙δBa

i − 1

a2
∂2δBa

i +M2δBa
i + 2H∂iδB

a
0 + (∼ gcterms) = 0. (15.4.15)

When calculating n-point functions for the gauge bosons, the eigenfunctions we need

are provided by free-field solutions, i.e. by solutions of Eq.(15.4.15) with gc being set to

zero. This is exactly the Abelian limit, in fact in this case Eq.(15.4.15) corresponds to

(18) of [135] and can be decomposed into a transverse and a longitudinal part

∂2

0 +H∂0 +M2 +

(
k

a

)2

 δ ~BT = 0 (15.4.16)


∂2

0 +

(
1 +

2k2

k2 + (aM)2

)
H∂0 +M2 +

(
k

a

)2

 δ ~B|| = 0 (15.4.17)

where the time derivatives are intended w.r.t. cosmic time.

15.5. Calculation of the number of e-foldings of single-(scalar)field driven inflation in

the presence of a vector multiplet

Let us consider the Lagrangian in Eq.(8.11) with f = 1 and M2 = m2
0 − 2H2. Let us

assume that the SU(2) gauge multiplet undergoes slow-roll as well as the scalar field

but the latter provides the dominant part of the energy density of the universe. This

last hypothesis is necessary in order to produce isotropic inflation (i.e. in order for the

anisotropy in the expansion that the vector fields introduce to be negligible w.r.t. the

isotropic contribution from the scalar field). The expression of the number of e-foldings

is

N = Nscalar +Nvector = Nscalar +
1

4m2
P

∑

a=1,2,3

~Aa · ~Aa. (15.5.1)

The previous expression can be easily derived from the equations of motion of the system

neglecting terms that are proportional to the SU(2) coupling constant gc and assuming

slow-roll conditions for both the scalar the gauge fields.

The starting point is represented by Einstein equations

H2 =
8πG

3
(ρscalar + ρvector) . (15.5.2)

where we split the energy density into a scalar and a vector contribution. In slow-roll

approximation, ρscalar ∼ V (φ). Let us calculate ρvector. The energy momentum tensor
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for the gauge bosons

T vector
µν = 2

δL

δgµν
− gµνL (15.5.3)

where, as a remainder, L = −(1/4)gµαgνβF a
µνF

a
αβ + (M2/2)gµνBa

µB
a
ν . So we get

T vector
00 =

Ḃa
i Ḃ

a
i

2a2
+
m2

0

2a2
Ba

i B
a
i +

m2
0

2
Ba

0B
a
0 − H

a2
Ḃa

i B
a
i +

H2

2a2
Ba

i B
a
i

+
gc

a2
εabcḂa

i B
b
0B

c
i +

g2
c

2a2
εabcεab

′
c
′

Bb
0B

c
iB

b
′

0 B
c
′

i

+
g2

c

4a4
εabcεab

′
c
′

Bb
iB

c
jB

b
′

i B
c
′

j (15.5.4)

where sums are taken over all repeated indices. Let us write this in terms of the physical

fields

T vector
00 =

Ȧa
i Ȧ

a
i

2
+
m2

0

2
(Aa

iA
a
i + Aa

0A
a
0) + gcε

abc
(
HAa

i + Ȧa
i

)
Ab

0A
c
i +

g2
c

2
εabcεab

′
c
′

Ab
0A

c
iA

b
′

0 A
c
′

i

+
g2

c

4
εabcεab

′
c
′

Ab
iA

c
jA

b
′

i A
c
′

j (15.5.5)

If we neglect the non-Abelian contribution and we set Aa
0 = 0, we are left with the

Abelian result [123]

T vector
00 =

Ȧa
i Ȧ

a
i

2
+
m2

0

2
Aa

iA
a
i (15.5.6)

The equation of motion for the background vector multiplet ~Aa can be derived from

Eq.(15.4.12)

Äa
i + 3HȦa

i +m2
0A

a
i = 0. (15.5.7)

which is equal to the equation of a light scalar field of mass m0, if m0 ≪ H . If the

conditions for accelerated expansions are met, Eq.(15.5.7) reduces to

3HȦa
i +m2

0A
a
i ∼ 0. (15.5.8)

We are now ready to derive Eq.(15.5.1). Let us start from the definition of N and keep

in mind Eq.(15.5.2), where we are assuming the existence of a scalar fields φ in de-Sitter

with a separable potential governed by the usual (background) equation

φ̈+ 3Hφ̇+ V
′
= 0 (15.5.9)

and slowly rolling down their potential. Then we have

N =
∫ t

t∗
Hdt

′
=
∫ t

t∗
H2dt

′

H
= 8πG

∫ t

t∗

V (φ)

3H
dt

′
+ 8πG

∫ t

t∗

V (A)

3H
dt

′

= 8πG
∫ t

t∗

V (φ)

3H

dt

dφ
dφ+ 8πG

∑

a

∫ t

t∗

(
m2

0

2

)
Aa

iA
a
i

3H

dAadt
′

dAa
(15.5.10)

where Aa ≡ ~Aa · ~Aa. So

N = 8πG
∫ φ(t)

φ(t∗)

V (φ)

3Hφ̇
dφ+ 8πG

∑

a

∫ Aa(t)

Aa(t∗)

(
m2

0

4

)
Aa

iA
a
i

3HȦa
jA

a
j

dAa
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= − 1

m2
P

∫ φ(t)

φ(t∗)

V

V ′ dφ+
1

m2
P

∑

a

∫ Aa(t)

Aa(t∗)

(
m2

0

4

)
Aa

iA
a
i

(−m2
0)A

a
jA

a
j

dAa

= − 1

m2
P

∫ φ(t)

φ(t∗)

V

V ′ dφ−
(

1

4m2
P

)∑

a

∫ Aa(t)

Aa(t∗)
dAa (15.5.11)

after using the slow-roll conditions. Eq.(15.5.1) is thus recovered.

In the final expression for the bispectrum then we can substitute

N i
a ≡ dN

dAa
i

=

(
1

2m2
P

)
Aa

i (15.5.12)

where the derivatives are as usual calculated at the initial time η∗.

The upper limits in integrals such as the ones in Eq.(15.5.11) depend on the chosen

path in field space and so they also depend on the initial field configuration. It is

important to notice though, as also stated in [148], that if the final time is chosen to be

approaching (or later than) the end of inflation, the fields are supposed to have reached

their equilibrium values and so N becomes independent of the field values at the final

time t. Eq.(15.5.12) is thus recovered.

15.6. Complete expressions for the functions appearing in the bispectrum from quartic

interactions

The anisotropy coefficients In in Eq. (9.49) are listed below

IEEE ≡ εaa′b′εac′e
[
6
(
~Na′ · ~N c′

) (
~N b′ · ~Ae

)

+
(
~N b′ · ~Ae

) [(
− 2

(
k̂3 · ~Na′

) (
k̂3 · ~N c′

)
− 2

(
k̂1 · ~Na′

) (
k̂1 · ~N c′

)

+
(
k̂1 · ~Na′

) (
k̂3 · ~N c′

)
k̂1 · k̂3 +

(
k̂3 · ~Na′

) (
k̂1 · ~N c′

)
k̂1 · k̂3

)
+ (1 → 2) + (3 → 2)

]

−
[(

2
(
~Na′ · ~N c′

) (
k̂2 · ~N b′

) (
k̂2 · ~Ae

))
+ (2 → 1) + (2 → 3)

]

+
[(
k̂2 · ~Ae

[
2
(
k̂3 · ~Na′

) (
k̂2 · ~N b′

) (
k̂3 · ~N c′

)
+ 2

(
k̂1 · ~Na′

) (
k̂2 · ~N b′

) (
k̂1 · ~N c′

)

−
(
k̂1 · ~Na′

) (
k̂2 · ~N b′

) (
k̂3 · ~N c′

)
k̂1 · k̂3 −

(
k̂1 · ~Na′

) (
k̂2 · ~N b′

) (
k̂3 · ~N c′

)
k̂1 · k̂3

])

+ (2 ↔ 1) + (3 ↔ 2)
]]

(15.6.1)

Illl ≡ εaa′b′εac′e
[( (

k̂1 · ~Na′
) (
k̂3 · ~N b′

) (
k̂2 · ~N c′

) (
k̂1 · k̂2

) (
k̂3 · ~Ae

)

−
(
k̂3 · ~Na′

) (
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) (
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) (
k̂1 · k̂2

) (
k̂3 · ~Ae

) )
+ (1 ↔ 3) + (2 ↔ 3)

]
(15.6.2)

IllE ≡ εaa′b′εac′e
[ (
~N b′ · ~Ae

) ( (
k̂1 · ~Na′

) (
k̂2 · ~N c′

)
+
(
k̂2 · ~Na′

) (
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) )
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+
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2
(
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) (
k̂1 · ~Na′

) (
k̂2 · ~N b′

) (
k̂1 · ~N c′

) )
+ (1 ↔ 2)

]

−
[( ((

k̂1 · ~Na′
) (
k̂2 · ~N c′

)
+
(
k̂2 · ~Na′

) (
k̂1 · ~N c′

)) (
k̂3 · ~N b′

) (
k̂3 · ~Ae

)
k̂1 · k̂2

)

+ (1 ↔ 3) + (2 ↔ 3)
]]

(15.6.3)

IEEl ≡ εaa′b′εac′e
[
4
(
~N b′ · ~Ae

) (
k̂3 · ~Na′

) (
k̂3 · ~N c′

)

+
[( (

k̂2 · ~N b′
) (
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) (
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)
+
(
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) (
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))
k̂1 · k̂3

)
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+ (2 ↔ 1) + (2 ↔ 3)
]

−
[(

2
(
k̂2 · ~Ae

) (
k̂2 · ~Na′

) (
k̂3 · ~N b′

) (
k̂2 · ~N c′

))
+ (1 ↔ 2) + (2 ↔ 3) + (1 ↔ 3)

]

−
[((

~N b′ · ~Ae
)
k̂1 · k̂3

((
k̂1 · ~Na′

) (
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)
+
(
k̂3 · ~Na′

) (
k̂1 · ~N c′
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+ (1 ↔ 2)

]

+
[(
~Na′ · ~N b′

) (
k̂3 · ~N c′

) (
k̂3 · ~Ae

)
+
(
~N c′ · ~N b′

) (
k̂3 · ~Na′

) (
k̂3 · ~Ae

)] ]
(15.6.4)

where i→ j means ‘replace k̂i with k̂j ’, whereas i↔ j means ‘exchange k̂i with k̂j’.

The isotropic functions Fn in (9.49) are given by

FEEE = − 1

24k6k2
1k

2
2k

2
3x

∗2 [AEEE + (BEEE cosx∗ + CEEE sin x∗)Eix
∗] , (15.6.5)

Flll = n6(x∗)FEEE, (15.6.6)

FllE = n4(x∗)FEEE, (15.6.7)

FEEl = n2(x∗)FEEE, (15.6.8)

where

AEEE ≡ kx∗2
(
− k2(k3

1 + k3
2 + k3

3 − 4k1k2k3) − k3(k2k3 + k1k2 + k1k3)

+ k1k2k3(k
2
1 + k2

2 + k2
3 − k2k3 − k1k2 − k1k3)x

∗2
)

(15.6.9)

BEEE ≡
(
k3

1 + k3
2 + k3

3

)
x∗3
(
− k3 + k1k2k3x

∗2
)

(15.6.10)

CEEE ≡ − k
(
k3

1 + k3
2 + k3

3

)
x∗2
(
− k2 + (k2k3 + k1k2 + k1k3)x

∗2
)

(15.6.11)

In the previous equations we set k ≡ k1 + k2 + k3.

15.7. More details on computing the analytic expressions of vector-exchange diagrams

We report the expressions of the functions A, B...P introduced in Eq. (9.57)

A ≡
(
−16k2 + k1k2x

∗2
)

cos

[
(k1 + k2) x

∗

4k

]
− 4k (k1 + k2)x

∗ sin

[
(k1 + k2)x

∗

4k

]
, (15.7.1)

B ≡ A [k1 → k3, k2 → k4] , (15.7.2)

C ≡ 4k (k1 + k2)x
∗ cos

[
(k1 + k2)x

∗

4k

]
+
(
−16k2 + k1k2x

∗2
)

sin

[
(k1 + k2)x

∗

4k

]
, (15.7.3)

D ≡ C [k1 → k3, k2 → k4] , (15.7.4)

E ≡
(
8k2 (k1̂2 + k3 + k4) − k1̂2k3k4x

∗2
)

cos

[
(k1̂2 + k3 + k4) x

∗

4k

]

+ 2k (k1̂2 + k3 + k4)
2 x∗ sin

[
(k1̂2 + k3 + k4) x

∗

4k

]
, (15.7.5)

F ≡ E [k3 → k1, k4 → k2] , (15.7.6)

G ≡ 2k (k1̂2 + k1 + k2)
2 x∗ cos

[
(k1̂2 + k1 + k2) x

∗

4k

]

+
(
−8k2 (k1̂2 + k1 + k2) − k1̂2k1k2x

∗2
)

sin

[
(k1̂2 + k1 + k2)x

∗

4k

]
, (15.7.7)
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L ≡
(
k3

1 + k3
1̂2 + k2

1̂2k2 + k1̂2k
2
2 + k3

2(k1̂2 + k2) + k1(k
2
1̂2 + k2

2)
)
x∗2si

[
(k1̂2 + k1 + k2) x

∗

4k

]
,

M ≡
(
k3

1 + k3
1̂2 + k2

1̂2k2 + k1̂2k
2
2 + k3

2(k1̂2 + k2) + k1(k
2
1̂2 + k2

2)
)
x∗2ci

[
(k1̂2 + k1 + k2) x

∗

4k

]
,

N ≡ M [k3 → k1, k4 → k2] , (15.7.8)

P ≡ L [k1 → k3, k2 → k4] . (15.7.9)

The anisotropy coefficients introduced in Eq. (9.66) have the following expressions

t1 ≡ k1k3

(
k̂1 · k̂1̂2

) (
k̂1 · k̂2

) (
k̂3 · k̂4

) (
k̂3 · k̂1̂2

)
(15.7.10)

t2 ≡ k1k4

(
k̂1 · k̂1̂2

) (
k̂1 · k̂2

) (
k̂3 · k̂4

) (
k̂4 · k̂1̂2

)
, (15.7.11)

t3 ≡ k2k3

(
k̂2 · k̂1̂2

) (
k̂1 · k̂2

) (
k̂3 · k̂4

) (
k̂3 · k̂1̂2

)
, (15.7.12)

t4 ≡ k2k4

(
k̂2 · k̂1̂2

) (
k̂1 · k̂2

) (
k̂3 · k̂4

) (
k̂4 · k̂1̂2

)
, (15.7.13)

t5 ≡ k1k2

(
k̂1 · k̂1̂3

) (
k̂1 · k̂3

) (
k̂2 · k̂4

) (
k̂2 · k̂1̂3

)
, (15.7.14)

t6 ≡ k1k4

(
k̂1 · k̂1̂3

) (
k̂1 · k̂3

) (
k̂2 · k̂4

) (
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)
, (15.7.15)

t7 ≡ k2k3
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k̂3 · k̂1̂3

) (
k̂1 · k̂3

) (
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) (
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)
, (15.7.16)

t8 ≡ k3k4

(
k̂3 · k̂1̂3

) (
k̂1 · k̂3

) (
k̂2 · k̂4

) (
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)
, (15.7.17)

t9 ≡ k1k2

(
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) (
k̂1 · k̂4

) (
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) (
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)
, (15.7.18)

t10 ≡ k1k3

(
k̂1 · k̂1̂4

) (
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) (
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) (
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)
, (15.7.19)

t11 ≡ k1k3

(
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) (
k̂1 · k̂2

) (
k̂3 · k̂4

) (
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)
, (15.7.20)

t12 ≡ k1k3

(
k̂1 · k̂1̂2

) (
k̂1 · k̂2

) (
k̂3 · k̂4

) (
k̂3 · k̂1̂2

)
. (15.7.21)

Let us now list all the scalar products appearing in the equations above
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1−2k2
2−k2

3

2k1k3
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2k2k4
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+k2
1̂2
−k2

1−k2
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2k4k1̂3
k̂4 · k̂1̂3 =

k2
1̂4

+k2
1̂2
−k2
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3−2k2

4

2k4k1̂3
k̂2 · k̂1̂4 =

k2
3−k2

1̂4
−k2

2

2k2k1̂4

k̂1 · k̂2 =
k2
1+k2

2−k2
1̂2

2k1k2
k̂1 · k̂3 =

k2
4+k2

2−k2
1̂2
−k2

1̂4

2k1k3
k̂1 · k̂4 =

k2
1̂4
−k2

1−k2
4

2k1k4

k̂3 · k̂4 =
k2
1̂2
−k2

4−k2
3
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3−k2
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where ki ≡ |~ki|, k̂i ≡ ~ki/ki, ~kîj ≡ ~ki + ~kj, kij ≡ |~ki + ~kj|, i and j running over the four

external wave vectors.

15.8. Complete expressions for functions appearing in point-interation diagrams

We provide here the expressions for the coefficients appearing in Eq. (9.89)

QEEEE ≡ x∗3[ − k(k3k4
1 + k3k4

2 − k3
3 + k3k4

3 + k5k3k4 − 3k3k2
2k3k4 + k3k3

3k4
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− k3
4 + k3k3k

3
4 + k3k4

4 + k3k2(k
3
3 − kk3k4 − 3k2

3k4 − 3k3k
2
4 + k3

4

+ k2(k3 + k4)) + k3
2( − 1 + k3(k3 + k4)) − 3k3k2

1(k3k4 + k2(k3 + k4))

+ k3
1( − 1 + k3(k2 + k3 + k4)) + k3k1(k

3
2 + k3

3 − 3k2
3k4 − 3k3k

2
4 + k3

4

− 3k2
2(k3 + k4) + k2(k2 + k3 + k4) − 3k2(k

2
3 + 3k3k4 + k2

4) − k(k3k4

+ k2(k3 + k4))))] + x∗5[k2(k3
1k2k3k4 + k2k3k4(k

3
2 + k3

3 − 3k2k3k4 + k3
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+ k4
1(k3k4 + k2(k3 + k4)) − 3k2

1(k
2
3k

2
4 + k2k3k4(k3 + k4) + k2

2(k
2
3 + k3k4

+ k2
4)) + k1(k

3
2k3k4 + k4

2(k3 + k4) − 3k2
2k3k4(k3 + k4) + k3k4(k

3
3 + k3

4)

+ k2(k
4
3 + k3

3k4 − 3k2
3k

2
4 + k4

4 + k3k4(k
2 + k2

4))))] − 3x∗7k2
1k

2
2k

2
3k

2
4, (15.8.1)

AEEEE ≡ k
(
k3

1 + k3
2 + k3

3 + k3
4

)
x∗3, (15.8.2)

BEEEE ≡ k4 − k2
(
k3k4 + k2

(
k3 + k4 + k1 (k2 + k3 + k4)x

∗2 + k1k2k3k4x
∗4
))
, (15.8.3)

CEEEE ≡ kx∗
(
k3 − (k2k3k4 + k1 (k3k4 + k2 (k3 + k4))) x

∗2
)
, (15.8.4)

DEEEE ≡ − kx∗
(
k3 − (k2k3k4 + k1 (k3k4 + k2 (k3k4)))x

∗2
)
, (15.8.5)

EEEEE ≡ k4 − k2 (k3k4 + k2 (k3 + k4) + k1 (k2 + k3 + k4)) x
∗2 + k1k2k3k4x

∗4, (15.8.6)

FEEEE ≡ k
(
k3

1 + k3
2 + k3

3 + k3
4

)
x∗3. (15.8.7)

81



16. References

[1] For a review, see D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999).

[2] G. F. Smoot et al., Astrophys. J. 396, L1 (1992)

[3] C. L. Bennett et al., Astrophys. J. 464, L1 (1996).

[4] K. M. Gorski, A. J. Banday, C. L. Bennett, G. Hinshaw, A. Kogut, G. F. Smoot and E. L. Wright,

Astrophys. J. 464 (1996) L11.

[5] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 170, 377 (2007) [arXiv:astro-

ph/0603449].

[6] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, JCAP 0605, 004 (2006)

[arXiv:astro-ph/0509029].

[7] E. Komatsu et al. [WMAP Collaboration], arXiv:0803.0547 [astro-ph].

[8] K. M. Smith, L. Senatore and M. Zaldarriaga, JCAP 0909, 006 (2009) [arXiv:0901.2572 [astro-ph]].

[9] L. Senatore, K. M. Smith and M. Zaldarriaga, arXiv:0905.3746 [astro-ph.CO].

[10] N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto, Phys. Rept. 402, 103 (2004).

[11] E. Komatsu et al., arXiv:0902.4759 [astro-ph.CO].

[12] V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Nucl. Phys. B 667, 119 (2003) [arXiv:astro-

ph/0209156].

[13] J. M. Maldacena, JHEP 0305, 013 (2003) [arXiv:astro-ph/0210603].

[14] D. Seery, J. E. Lidsey and M. S. Sloth, JCAP 0701, 027 (2007) [arXiv:astro-ph/0610210].

[15] A. D. Linde, Phys. Lett. B 158, 375 (1985).

[16] L. A. Kofman, Phys. Lett. B 173, 400 (1986).

[17] D. Polarski and A. A. Starobinsky, Phys. Rev. D 50, 6123 (1994) [arXiv:astro-ph/9404061].

[18] J. Garcia-Bellido and D. Wands, Phys. Rev. D 53, 5437 (1996) [arXiv:astro-ph/9511029].

[19] V. F. Mukhanov and P. J. Steinhardt, Phys. Lett. B 422, 52 (1998) [arXiv:astro-ph/9710038].

[20] D. Langlois, Phys. Rev. D 59, 123512 (1999) [arXiv:astro-ph/9906080].

[21] C. Gordon, D. Wands, B. A. Bassett and R. Maartens, Phys. Rev. D 63, 023506 (2001) [arXiv:astro-

ph/0009131].

[22] S. Mollerach, Phys. Rev. D 42, 313 (1990).

[23] K. Enqvist and M. S. Sloth, Nucl. Phys. B 626, 395 (2002) [arXiv:hep-ph/0109214].

[24] D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002) [arXiv:hep-ph/0110002].

[25] D. H. Lyth, C. Ungarelli and D. Wands, Phys. Rev. D 67, 023503 (2003) [arXiv:astro-ph/0208055].

[26] T. Moroi and T. Takahashi, Phys. Lett. B 522, 215 (2001) [Erratum-ibid. B 539, 303 (2002)]

[arXiv:hep-ph/0110096].

[27] N. Bartolo, S. Matarrese and A. Riotto, Phys. Rev. D 69, 043503 (2004) [arXiv:hep-ph/0309033].

[28] J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219 (1999) [arXiv:hep-th/9904176].

[29] C. Armendariz-Picon, T. Damour and V. F. Mukhanov, Phys. Lett. B 458, 209 (1999) [arXiv:hep-

th/9904075].

[30] M. Alishahiha, E. Silverstein and D. Tong, Phys. Rev. D 70 (2004) 123505 [arXiv:hep-th/0404084].

[31] X. Chen, M. x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007) [arXiv:hep-th/0605045].

[32] N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, JCAP 0404, 001 (2004)

[arXiv:hep-th/0312100].

[33] N. Bartolo, S. Matarrese and A. Riotto, Phys. Rev. D 65, 103505 (2002) [arXiv:hep-ph/0112261].

[34] N. Bartolo, S. Matarrese and A. Riotto, JCAP 0508, 010 (2005) [arXiv:astro-ph/0506410].

[35] D. Seery and J. E. Lidsey, JCAP 0701, 008 (2007) [arXiv:astro-ph/0611034].

[36] F. Vernizzi and D. Wands, JCAP 0605, 019 (2006) [arXiv:astro-ph/0603799].

[37] X. Chen and Y. Wang, arXiv:0911.3380 [hep-th].

[38] C. T. Byrnes, M. Sasaki and D. Wands, Phys. Rev. D 74, 123519 (2006) [arXiv:astro-ph/0611075].

[39] D. Seery, M. S. Sloth and F. Vernizzi, JCAP 0903, 018 (2009) [arXiv:0811.3934 [astro-ph]].

[40] M. Sasaki, J. Valiviita and D. Wands, Phys. Rev. D 74, 103003 (2006) [arXiv:astro-ph/0607627].

[41] X. Chen, M. x. Huang and G. Shiu, Phys. Rev. D 74, 121301 (2006) [arXiv:hep-th/0610235].

82



[42] F. Arroja and K. Koyama, Phys. Rev. D 77, 083517 (2008) [arXiv:0802.1167 [hep-th]].

[43] F. Arroja, S. Mizuno, K. Koyama and T. Tanaka, Phys. Rev. D 80, 043527 (2009) [arXiv:0905.3641

[hep-th]].

[44] X. Chen, B. Hu, M. x. Huang, G. Shiu and Y. Wang, JCAP 0908, 008 (2009) [arXiv:0905.3494

[astro-ph.CO]].

[45] X. Gao and B. Hu, JCAP 0908, 012 (2009) [arXiv:0903.1920 [astro-ph.CO]].

[46] S. Mizuno, F. Arroja and K. Koyama, arXiv:0907.2439 [hep-th].

[47] T. Okamoto and W. Hu, Phys. Rev. D 66, 063008 (2002) [arXiv:astro-ph/0206155].

[48] N. Kogo and E. Komatsu, Phys. Rev. D 73, 083007 (2006) [arXiv:astro-ph/0602099].

[49] J. S. Schwinger, J. Math. Phys. 2, 407 (1961).

[50] E. Calzetta and B. L. Hu, Phys. Rev. D 35, 495 (1987).

[51] R. D. Jordan, Phys. Rev. D 33, 444 (1986).

[52] S. Weinberg, Phys. Rev. D 72, 043514 (2005) [arXiv:hep-th/0506236].

[53] S. Weinberg, Phys. Rev. D 74, 023508 (2006) [arXiv:hep-th/0605244].

[54] D. Seery, JCAP 0711, 025 (2007) [arXiv:0707.3377 [astro-ph]].

[55] D. Seery, JCAP 0802, 006 (2008) [arXiv:0707.3378 [astro-ph]].

[56] E. Dimastrogiovanni and N. Bartolo, JCAP 0811, 016 (2008) [arXiv:0807.2790 [astro-ph]].

[57] P. Vielva and J. L. Sanz, arXiv:0910.3196 [astro-ph.CO].

[58] V. Desjacques and U. Seljak, arXiv:0907.2257 [astro-ph.CO].

[59] See http://planck.esa.int/.

[60] A. de Oliveira-Costa, M. Tegmark, M. Zaldarriaga and A. Hamilton, Phys. Rev. D 69, 063516

(2004) [arXiv:astro-ph/0307282].

[61] P. Vielva, E. Martinez-Gonzalez, R. B. Barreiro, J. L. Sanz and L. Cayon, Astrophys. J. 609, 22

(2004) [arXiv:astro-ph/0310273].

[62] H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Gorski and P. B. Lilje, Astrophys. J. 605, 14

(2004) [Erratum-ibid. 609, 1198 (2004)] [arXiv:astro-ph/0307507].

[63] C. L. Bennett et al., Astrophys. J. 464, L1 (1996) [arXiv:astro-ph/9601067].

[64] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003) [arXiv:astro-

ph/0302209].

[65] G. Efstathiou, Mon. Not. Roy. Astron. Soc. 348, 885 (2004) [arXiv:astro-ph/0310207].

[66] K. Land and J. Magueijo, Phys. Rev. Lett. 95, 071301 (2005) [arXiv:astro-ph/0502237].

[67] M. Cruz, L. Cayon, E. Martinez-Gonzalez, P. Vielva and J. Jin, Astrophys. J. 655, 11 (2007)

[arXiv:astro-ph/0603859].

[68] F. K. Hansen, P. Cabella, D. Marinucci and N. Vittorio, Astrophys. J. 607, L67 (2004) [arXiv:astro-

ph/0402396].

[69] F. K. Hansen, A. J. Banday and K. M. Gorski, Mon. Not. Roy. Astron. Soc. 354, 641 (2004)

[arXiv:astro-ph/0404206].

[70] N. E. Groeneboom, L. Ackerman, I. K. Wehus and H. K. Eriksen, arXiv:0911.0150 [astro-ph.CO].

[71] D. Hanson and A. Lewis, Phys. Rev. D 80, 063004 (2009) [arXiv:0908.0963 [astro-ph.CO]].

[72] R. M. Wald, Phys. Rev. D 28, 2118 (1983).

[73] J. D. Barrow and S. Hervik, Phys. Rev. D 73, 023007 (2006) [arXiv:gr-qc/0511127].

[74] J. D. Barrow and S. Hervik, Phys. Rev. D 74, 124017 (2006) [arXiv:gr-qc/0610013].

[75] E. Di Grezia, G. Esposito, A. Funel, G. Mangano and G. Miele, Phys. Rev. D 68, 105012 (2003)

[arXiv:gr-qc/0305050].

[76] T. S. Pereira, C. Pitrou and J. P. Uzan, JCAP 0709, 006 (2007) [arXiv:0707.0736 [astro-ph]].

[77] C. Pitrou, T. S. Pereira and J. P. Uzan, JCAP 0804, 004 (2008) [arXiv:0801.3596 [astro-ph]].

[78] E. Dimastrogiovanni, W. Fischler and S. Paban, JHEP 0807, 045 (2008) [arXiv:0803.2490 [hep-

th]].

[79] A. E. Gumrukcuoglu, L. Kofman and M. Peloso, Phys. Rev. D 78, 103525 (2008) [arXiv:0807.1335

[astro-ph]].

[80] C. Armendariz-Picon and P. B. Greene, Gen. Rel. Grav. 35, 1637 (2003) [arXiv:hep-th/0301129].

83



[81] C. G. Boehmer and D. F. Mota, Phys. Lett. B 663, 168 (2008) [arXiv:0710.2003 [astro-ph]].

[82] T. Watanabe, arXiv:0902.1392 [astro-ph.CO].

[83] G. de Berredo-Peixoto and E. A. de Freitas, Class. Quant. Grav. 26, 175015 (2009)

[arXiv:0902.4025 [gr-qc]].

[84] C. Germani and A. Kehagias, JCAP 0903, 028 (2009) [arXiv:0902.3667 [astro-ph.CO]].

[85] T. Kobayashi and S. Yokoyama, JCAP 0905, 004 (2009) [arXiv:0903.2769 [astro-ph.CO]].

[86] T. S. Koivisto and N. J. Nunes, arXiv:0907.3883 [astro-ph.CO].

[87] C. Germani and A. Kehagias, JCAP 0911, 005 (2009) [arXiv:0908.0001 [astro-ph.CO]].

[88] T. S. Koivisto and N. J. Nunes, Phys. Rev. D 80, 103509 (2009) [arXiv:0908.0920 [astro-ph.CO]].

[89] T. S. Koivisto, D. F. Mota and C. Pitrou, JHEP 0909, 092 (2009) [arXiv:0903.4158 [astro-ph.CO]].

[90] S. Yokoyama and J. Soda, JCAP 0808, 005 (2008) [arXiv:0805.4265 [astro-ph]].

[91] C. A. Valenzuela-Toledo, Y. Rodriguez and D. H. Lyth, Phys. Rev. D 80, 103519 (2009)

[arXiv:0909.4064 [astro-ph.CO]].

[92] K. Dimopoulos, M. Karciauskas, D. H. Lyth and Y. Rodriguez, JCAP 0905, 013 (2009)

[arXiv:0809.1055 [astro-ph]].

[93] C. A. Valenzuela-Toledo and Y. Rodriguez, arXiv:0910.4208 [astro-ph.CO].

[94] M. Karciauskas, K. Dimopoulos and D. H. Lyth, Phys. Rev. D 80, 023509 (2009) [arXiv:0812.0264

[astro-ph]].

[95] K. Dimopoulos, M. Karciauskas and J. M. Wagstaff, arXiv:0907.1838 [hep-ph].

[96] K. Dimopoulos, M. Karciauskas and J. M. Wagstaff, arXiv:0909.0475 [hep-ph].

[97] N. Bartolo, E. Dimastrogiovanni, S. Matarrese and A. Riotto, JCAP 0910, 015 (2009)

[arXiv:0906.4944 [astro-ph.CO]].

[98] N. Bartolo, E. Dimastrogiovanni, S. Matarrese and A. Riotto, JCAP 0911, 028 (2009)

[arXiv:0909.5621 [astro-ph.CO]].

[99] V. F. Mukhanov, L. R. W. Abramo, and R. H. Brandenberger, Phys. Rev. Lett. 78, 1624 (1997).

[100] L. R. W. Abramo, R. H. Brandenberger, and V. F. Mukhanov, Phys. Rev. D56, 3248 (1997).

[101] D. Boyanovsky, H. J. de Vega and N. G. Sanchez, Phys. Rev. D 71, 023509 (2005).

[102] D. Boyanovsky, H. J. de Vega and N. G. Sanchez, Nucl. Phys. B 747, 25 (2006).

[103] M. van der Meulen and J. Smit, JCAP 0711, 023 (2007) [arXiv:0707.0842 [hep-th]].

[104] S. Weinberg, Phys. Rev. D 72, 043514 (2005) [arXiv:hep-th/0506236].

[105] S. Weinberg, Phys. Rev. D 74, 023508 (2006) [arXiv:hep-th/0605244].

[106] M. S. Sloth, Nucl. Phys. B 748, 149 (2006).

[107] M. S. Sloth, Nucl. Phys. B 775, 78 (2007).

[108] D. Seery, JCAP 0711 (2007) 025 [arXiv:0707.3377 [astro-ph]].

[109] D. Seery, JCAP 0802 (2008) 006 [arXiv:0707.3378 [astro-ph]].

[110] D. H. Lyth, JCAP 0712, 016 (2007) [arXiv:0707.0361 [astro-ph]].

[111] N. Bartolo, S. Matarrese, M. Pietroni, A. Riotto and D. Seery, JCAP 0801 (2008) 015

[arXiv:0711.4263 [astro-ph]].

[112] K. Enqvist, S. Nurmi, D. Podolsky and G. I. Rigopoulos, JCAP 0804, 025 (2008) [arXiv:0802.0395

[astro-ph]].

[113] N. Bartolo, E. Dimastrogiovanni and A. Vallinotto, (to appear).

[114] L. Leblond and S. Shandera, JCAP 0808, 007 (2008) [arXiv:0802.2290 [hep-th]].

[115] S. Shandera, Phys. Rev. D 79, 123518 (2009) [arXiv:0812.0818 [astro-ph]].

[116] C. T. Byrnes, K. Koyama, M. Sasaki and D. Wands, JCAP 0711, 027 (2007) [arXiv:0705.4096

[hep-th]].

[117] D. H. Lyth and Y. Rodriguez, Phys. Rev. Lett. 95, 121302 (2005) [arXiv:astro-ph/0504045].

[118] L. Boubekeur and D. H. Lyth, Phys. Rev. D 73, 021301 (2006) [arXiv:astro-ph/0504046].

[119] I. Zaballa, Y. Rodriguez and D. H. Lyth, JCAP 0606 (2006) 013 [arXiv:astro-ph/0603534].

[120] S. Weinberg, “Cosmology” (Oxford University Press, 2008): Sec. 5.2

[121] C. P. Burgess, L. Leblond, R. Holman and S. Shandera, arXiv:0912.1608 [hep-th].

[122] L. H. Ford, Phys. Rev. D 40, 967 (1989).

84



[123] A. Golovnev, V. Mukhanov and V. Vanchurin, JCAP 0806, 009 (2008) [arXiv:0802.2068 [astro-

ph]].

[124] A. Golovnev, V. Mukhanov and V. Vanchurin, JCAP 0811, 018 (2008) [arXiv:0810.4304 [astro-

ph]].

[125] A. Golovnev and V. Vanchurin, Phys. Rev. D 79, 103524 (2009) [arXiv:0903.2977 [astro-ph.CO]].

[126] C. Armendariz-Picon, JCAP 0407, 007 (2004) [arXiv:astro-ph/0405267].

[127] C. G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007) [arXiv:gr-qc/0701029].

[128] T. Koivisto and D. F. Mota, Astrophys. J. 679, 1 (2008) [arXiv:0707.0279 [astro-ph]].

[129] T. S. Koivisto and D. F. Mota, JCAP 0808, 021 (2008) [arXiv:0805.4229 [astro-ph]].

[130] J. B. Jimenez, R. Lazkoz and A. L. Maroto, arXiv:0904.0433 [astro-ph.CO].

[131] J. B. Jimenez, R. Lazkoz and A. L. Maroto, Phys. Rev. D 80, 023004 (2009).

[132] B. Himmetoglu, C. R. Contaldi and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009)

[arXiv:0809.2779 [astro-ph]].

[133] B. Himmetoglu, C. R. Contaldi and M. Peloso, Phys. Rev. D 79, 063517 (2009) [arXiv:0812.1231

[astro-ph]].

[134] B. Himmetoglu, C. R. Contaldi and M. Peloso, Phys. Rev. D 80, 123530 (2009) [arXiv:0909.3524

[astro-ph.CO]].

[135] K. Dimopoulos, Phys. Rev. D 74, 083502 (2006) [arXiv:hep-ph/0607229].

[136] K. Dimopoulos and M. Karciauskas, JHEP 0807, 119 (2008) [arXiv:0803.3041 [hep-th]].

[137] S. Kanno, M. Kimura, J. Soda and S. Yokoyama, JCAP 0808, 034 (2008) [arXiv:0806.2422

[hep-ph]].

[138] L. Ackerman, S. M. Carroll and M. B. Wise, Phys. Rev. D 75, 083502 (2007) [Erratum-ibid. D

80, 069901 (2009)] [arXiv:astro-ph/0701357].

[139] S. M. Carroll, T. R. Dulaney, M. I. Gresham and H. Tam, Phys. Rev. D 79, 065011 (2009)

[arXiv:0812.1049 [hep-th]].

[140] D. H. Lyth, JCAP 0511, 006 (2005) [arXiv:astro-ph/0510443].

[141] L. Alabidi and D. Lyth, JCAP 0608, 006 (2006) [arXiv:astro-ph/0604569].

[142] M. P. Salem, Phys. Rev. D 72, 123516 (2005) [arXiv:astro-ph/0511146].

[143] F. Bernardeau, L. Kofman and J. P. Uzan, Phys. Rev. D 70, 083004 (2004) [arXiv:astro-

ph/0403315].

[144] M. a. Watanabe, S. Kanno and J. Soda, Phys. Rev. Lett. 102, 191302 (2009) [arXiv:0902.2833

[hep-th]].

[145] B. Himmetoglu, arXiv:0910.3235 [astro-ph.CO].

[146] T. R. Dulaney and M. I. Gresham, arXiv:1001.2301 [astro-ph.CO].

[147] D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005) [arXiv:astro-ph/0503692].

[148] F. Vernizzi and D. Wands, JCAP 0605, 019 (2006) [arXiv:astro-ph/0603799].

[149] J. Martin and J. Yokoyama, JCAP 0801, 025 (2008) [arXiv:0711.4307 [astro-ph]].

[150] D. Babich, P. Creminelli and M. Zaldarriaga, JCAP 0408, 009 (2004) [arXiv:astro-ph/0405356].

[151] M.E. Peskin and D.V. Schroeder, “An introduction to quantum field theory” (1995): Sec. 9.2

[152] D. Seery, J. E. Lidsey and M. S. Sloth, JCAP 0701, 027 (2007) [arXiv:astro-ph/0610210].

[153] E. Komatsu et al., arXiv:1001.4538 [astro-ph.CO].

[154] C. L. Bennett et al., arXiv:1001.4758 [astro-ph.CO].

85


