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1. Introduction

In the standard cosmological model, at very early times the Universe undergoes a quasi
de Sitter exponential expansion driven by a scalar field, the inflaton, with an almost
flat potential. The quantum fluctuations of this field are thought to be at the origin of
both the Large Scale Structures and the Cosmic Microwave Background (CMB) fluc-
tuations that we are able to observe at the present epoch [1]. CMB measurements
indicate that the primordial density fluctuations are of order 107°, have an almost
scale-invariant power spectrum and are fairly consistent with Gaussianity and statistical
isotropy [2, 3, 4, 5, 6, 7, 8, 9]. All of these features find a convincing explanation within
the inflationary paradigm. Nevertheless, deviations from the basic single-(scalar)field
slow-roll model of inflation are allowed by experimental data. On one hand, it is then
important to search for observational signatures that can help discriminate among all
the possible scenarios; on the other hand, it is important to understand what the theo-
retical predictions are in this respect for the different models.

Non-Gaussianity and statistical anisotropy are two powerful signatures. A random
field is defined “Gaussian” if it is entirely described by its two-point function, higher
order connected correlators being equal to zero. Primordial non-Gaussianity [10, 11]
is theoretically predicted by inflation: it arises from the interactions of the inflaton
with gravity and from self-interactions. However, it is observably too small in the
single-field slow-roll scenario [12, 13, 152]. Alternatives to the latter have been
proposed that predict higher levels of non-Gaussianity such as multifield scenarios
(15, 16, 17, 18, 19, 20, 21], curvaton models [22, 23, 24, 25, 26, 27] and models with
non-canonical Lagrangians [28, 29, 30, 31, 32]. Many efforts have been directed to the
study of higher order (three and four-point) cosmological correlators in these models
(33, 34, 35, 36, 37, 31, 152, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] and towards
improving the prediction for the two-point function, through quantum loop calculations
[49, 50, 51, 13, 52, 53, 54, 55, 56]. From WMAP, the bounds on the bispectrum amplitude
are given by —4 < fi < 80 [8] and by —125 < fﬁ?ﬁﬂ < 435 [9] at 95% CL, respectively
in the local and in the equilateral configurations. For the trispectrum, WMAP provides
—5.6 x 10° < gy < 6.4 x 10° [57] (gnr is the “local” trispectrum amplitude from cubic
contributions), whereas from Large-Scale-Structures data —3.5 x 10° < gnz < 8.2 x 10°
[58], at 95% CL. Planck [59] is expected to set further bounds on primordial non-
Gaussianity.

Statistical isotropy has always been considered one of the key features of the CMB
fluctuations. The appearance of some “anomalies” [60, 61, 62] in the observations
though, after numerous and careful data analysis, suggests a possible a breaking of
this symmetry that might have occurred at some point of the Universe history, possibly
at very early times. This encouraged a series of attempts to model this event, preferably
by incorporating it in theories of inflation. Let us shortly describe the above mentioned
“anomalies”. First of all, the large scale CMB quadrupole appears to be “too low” and



the octupole “too planar”; in addition to that, there seems to exist a preferred direction
along which quadrupole and octupole are aligned [63, 64, 60, 65, 66]. Also, a “cold spot”,
i.e. aregion of suppressed power, has been observed in the southern Galactic sky [61, 67].
Finally, an indication of asymmetry in the large-scale power spectrum and in higher-
order correlation functions between the northern and the southern ecliptic hemispheres
was found [68, 62, 69]. Possible explanations for these anomalies have been suggested
such as improper foreground subtraction, WMAP systematics, statistical flukes; the
possibilities of topological or cosmological origins for them have been proposed as well.
Moreover, considering a power spectrum anisotropy due to the existence of a preferred
spatial direction n and parametrized by a function g(k) as

P(k) = P(k) (1+ g(k)(k - 7)?) | (1.1)

the five-year WMAP temperature data have been analyzed in order to find out what
the magnitude and orientation of such an anisotropy could be. The magnitude has been
found to be g = 0.29 4+ 0.031 and the orientation aligned nearly along the ecliptic poles
[70]. Similar results have been found in [71], where it is pointed out that the origin of
such a signal is compatible with beam asymmetries (uncorrected in the maps) which
should therefore be investigated before we can find out what the actual limits on the
primordial g are.

Several fairly recent works have taken the direction of analysing the consequences, in
terms of dynamics of the Universe and of cosmological fluctuations, of an anisotropic
pre-inflationary or inflationary era. A cosmic no-hair conjecture exists according to
which the presence of a cosmological constant at early times is expected to dilute any
form of initial anisotropy [72]. This conjecture has been proven to be true for many (all
Bianchi type cosmologies except for the the Bianchi type-IX, for which some restric-
tions are needed to ensure the applicability of the theorem), but not all kinds of metrics
and counterexamples exist in the literature [73, 74, 75]. Moreover, even in the event
isotropization should occur, there is a chance that signatures from anisotropic inflation
or from an anisotropic pre-inflationary era might still be visible today [76, 77, 78, 79].
In the same context of searching for models of the early Universe that might produce
some anisotropy signatures at late time, new theories have been proposed such as spinor
models [80, 81, 82, 83], higher p-forms [84, 85, 86, 87, 88, 89] and primordial vector field
models.

Within vector field models, higher order correlators had been computed in [90, 91, 92,
93, 94] and, more recently, in [95, 96] for U(1) vector fields. We considered SU(2) vector
field models in [97, 98]. Non-Abelian theories offer a richer amount of predictions com-
pared to the Abelian case. Indeed, self interactions provide extra contributions to the
bispectrum and trispectrum of curvature fluctuations that are naturally absent in the
Abelian case. We verified that these extra contributions can be equally important in a
large subset of the parameter space of the theory and, in some case, can even become
the dominant ones.



The promising perspective of achieving more and more precise measurements for the
cosmological observables thanks to Planck and future experiments and the search for
signatures that may help identify the correct inflationary model, have also motivated
studies of higher order corrections to cosmological correlation functions and to the power
spectrum in particular. Indeed, loop corrections to the correlators arise from the interac-
tions involving the fields during inflation and therefore carry some important information
about the physics of the very early Universe.

Loop corrections may lead to interesting effects which scale like the power of the
number of e-folds between horizon exit of a given mode k and the end of infla-
tion [99, 100, 101, 102, 103]. The interest in loop corrections to the correlators of
cosmological perturbations generated during an early epoch of inflation has been re-
cently stimulated by two papers of Weinberg [104, 105]. The reason is that one-loop
corrections to the power spectrum of the curvature perturbation ¢ seem to show some
infra-red divergences which scale like In(kL), where L™! is some infra-red comoving mo-
mentum cut-off [106, 107, 108, 109]. However, it has been discussed in [110, 111] (see
also [112]) that such potentially large corrections do not appear in quantities that are
directly observable.

As to the power spectrum of curvature perturbations, one-loop corrections have been
computed in single-field slow-roll inflation by D. Seery [54, 55| and by N. Bartolo and
myself [56], in single-field slow-roll inflation. In [56] we completed the analysis carried
out in [54, 55], where the metric tensor fluctuations had been neglected for simplicity, by
including them in the calculations and proving that their contribution is as important
as the one from the scalar perturbations. In the context of loop-calculations, we have
also been working on corrections to the power spectrum in theories with non-canonical
Lagrangians, which allow for higher and possibly observable corrections [113].

It can be safely stated that in standard single-field slow-roll inflation, the perturbative
expansion is well-behaved, in the sense that the agreement with observations found at
tree-level for the power-spectrum is not spoiled by the radiative corrections and, on a
more general basis, higher order loop corrections introduce smaller and smaller correc-
tions as the perturbation series expansion progresses. This is not generically true in
more general theories, such as for instance models with non-canonical Lagrangians, for
which bounds need to be requested on the parameters of the theory in order to preserve
the validity of the perturbative approach [114, 115].

This thesis collects the main results of our work on loop corrections to the power
spectrum in theories of scalar inflation [56, 113] and on primordial non-Gaussianity
and anisotropy predictions from theories of inflation where vector fields can play a role
in the production of the late time cosmological fluctuations [97, 98]. The 0N and the
Schwinger-Keldysh formalisms are the main tools of our computation and will be briefly
reviewed.



2. Schwinger-Keldysh formalism

The temperature fluctuations in the CMB are rather small, of order 107°. Theoretical
predictions for the power-spectrum of curvature perturbations during inflation provide a
very good match at tree level: this suggests that it is correct to use perturbation theory
to evaluate cosmological correlators. A formalism conveniently employed to implement
the perturbative approach is the Schwinger-Keldysh, also dubbed as “in-in”, formalism.
It was first formulated in [49, 50, 51|, later applied by J. Maldacena in [13] to the
calculation of the bispectrum of curvature fluctuations and revived by S. Weinberg in
[52, 53]. In this formalism the expectation value of a field operator ©(t) is given by

©QO(1)|Q) = <0 { [T (eif ZHMdt’)] (1) [T (aif 8H1<f’>dt’>] ‘ 0> L@

where |Q) represents the vacuum of the interacting theory, T and T are time-ordering
and anti-ordering operators, the subscript I indicates the fields in interaction picture
and Hj is the interaction Hamiltonian. The interaction picture has the advantage of
allowing to deal with free fields only; the fields can be thus Fourier expanded in terms
of quantum creation and annihilation operators

56(T,t) = / k™ [adon(t) +at 607(1)]
with commutation rules

a7, ak] = (2m)%6@ (k — k).
The in-in formula has many similarities with the S-matrix in quantum field theory
in terms of mathematical structure and perturbative approach, but they also have
fundamental differences: the S-matrix corresponds to a transition amplitude between
an initial and a final state; a cosmological correlation function is instead the expectation
value of a given observable at a given time; moreover, asymptotic states in cosmology
are only defined at very early times, when the same initial conditions as in Minkowsky
spacetime apply for the free fields.
Using the positive and negative path technique of the in-in formalism [52, 53|, the
expectation value above can be recast in the form

©QO(1)|Q) = <0 T (@I(t)eifotdt’(fff (v)-11; <t’>>) 0>, (2.2)

where the plus and minus signs indicate modified Feynman propagators, i.e. modified

rules of contraction between interacting fields; schematically we have
(T (0102-00)) = D 0105, 616 -1, (2.3)
ij,lm,...

where the sum is taken over all of the possible sets of field contractions and

ot )ot(n") =G (n',n)OM —n" )+ G<(n.,n 0N —n),
¢ (1o~ (n") = G<(n,n"),
¢~ () (n") = G (0, 0"),
o~ ()~ (n") = G<(',n" )M —n") + G (' ;0" )em" —n).
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In momentum space we have

Gy (n',n") = 6x(n)or(n’),

Gr(n,n") = 6¢4(n)ogw(n’).
It is important to remember that, when we apply this formalism, the external fields are
always supposed to be treated like +fields.



3. Scalar loop corrections to F;

The power spectrum for the comoving curvature perturbation ( is defined by

(G (DG (1) = 2m)*Pe(k)6® (ky + Fa) (3.1)

This and all other correlation functions presented in this thesis are computed using
the 0N formula. ((Z) at a given time ¢ can be interpreted as a geometrical quantity
indicating the fluctuations in the local expansion of the universe; in fact, if N(Z,t*, )
is the number of e-foldings of expansion evaluated between times t* and ¢, where the
initial hypersurface is chosen to be flat and the final one is uniform density, we have

C(F,t) = N(Z,1",t) — N(t*,1) = ON(Z, 1). (3.2)

The number of e-foldings N (%, t*,t) depends on all the fields and their perturbations
on the initial slice. In principle, since the fields are governed by second order differen-
tial equations, it should also depend on their first time derivatives, but if we assume
that slow-roll conditions apply, then the time derivatives will not count as independent
quantities.

Let us apply Eq. (3.2) to the computation of P in single-field slow-roll inflation (the
Lagrangian for the scalar field is given by Ly = (1/2)¢"0,¢0,¢ — V(¢))

dg.fEl d3.fE2

(G ()65 (1)) = / (27)3 (2%)3€_i(k;$i+k;$3)
<<Z N (s, m)”) , (z N o 7t*))m>> o

- n! o m!

The sums can be expanded to the desired order. Up to one loop we have

(G (DG 1) = NV (06,:08,).
1 L
+ S NON® / P00 5680, )e + (k1 > k)

1 N o
+ =NON® /d3qd3p<5¢k~1(5¢q~5¢ﬁ5¢q~+ﬁ,kg>* + (k1 < ko)

3!
1
(NOY? [ Pad*ploogdog, Sombg ). (3.0

(21)?
where a star indicates evaluation around the time of horizon crossing. Eq. (3.4) can
finally be rewritten as [116, 109]

(GG (1) = @000 + k) [ (VD) (Pace(k1) + Pone-toon (k1))

d? -
+ N<1>N<2>/(2—7:]):,)B¢(k1,q, By — 1)
1 2 d3q -
+ 5 (N(Z)) /Wptree(Q)Ptree(‘kl - (ﬂ)
d3q

F NONOP(h) [ 555 Poela)] (3.5)

+




Figure 1. Diagrammatic representation of the one loop corrections to the power
spectrum of §¢ from scalar modes to leading (~ €”) order in slow-roll.

Figure 2. Next-to-leading (~ /€) order one loop corrections from scalar modes to
the power spectrum of §¢.

Piree(k) is the tree level power spectrum (3.6)
2

(565,005) = QP PRI + F5) = 2n)° =09 +8),  (36)

where H, is the Hubble parameter evaluated at horizon exit (when k = aH). The
variance per logarithmic interval in & is given by P(k) = (k*/27%)P(k). The one loop
contribution to the power spectrum is given by

Pone—loop(k) - Pscalar(k> + Ptensor(k> ) (37)

where the first term on the right-hand side, Picalar, accounts for the contributions coming
from the inflaton self-interactions and were computed by D. Seery in [108, 109]
4

k—;f [g1in(k) + ga] , (3.8)

where g; and g, are numerical factors. Their diagrammatic representation is given in

P, scalar —

Fig.1 for the leading order and in Fig.2 for the next-to-leading order corrections. The
loop corrections Pieysor, arising from interactions between the tensor (graviton) modes
and the scalar field, were ignored for simplicity in [108, 106], however they should be in-
cluded since they are not slow-roll suppressed compared to loops of scalar modes. Their
computation was presented for the first time in our paper [56] and will be reviewed in
the first part of this thesis.

Both Py aar and Piensor are evaluated at around the time of horizon crossing and as such
they are due to genuine quantum effects.

The contributions in the third and fourth lines of Eq. (3.5), also dubbed as “classical

one-loop”, can be considered as classical loop contributions arising after the perturba-
tion modes leave the horizon. The distinction between classical and quantum loops is

10



understood as for example in [109]: quantum loops find their origin in the Lagrangian in-
teraction terms between the inflaton perturbations and the gravitational modes or from
self-interaction of d¢; classical loops are corrections merely coming from the expansion of
¢ using the 0 N formula and originate from zeroth order terms in the Schwinger-Keldysh
formula.

Finally, the second line of (3.5) includes the integral of By(ky, ka2, k3), the bispectrum of
the scalar field defined by

(00 00,00.) = (2m)°6®) (ky + ks + k) By (ky, ka, ks) (3.9)
and from [13] we have
4 .
By~ M’ (3.10)
mp
where mp is the Planck mass, € is the slow-roll parameter (e = —H/H?) and F is a

function of the momenta moduli k; of dimension (mass)~.

11



4. Perturbative expansion of the Lagrangian in P(X, ¢) theories

We will now review the computation of the tensor loop corrections to F:. For our
purposes, the exponentials in Eq. (2.2) need to be expanded up to second order in the
interaction Hamiltonian H;

@emien. =iofr|e [ ay (o) - Hr )] o) (4.1)

+ #w[@ / "Oo an (H; 6) = Hi (n) [ "OO dn' (Hf (") = Hy (n"))]]0),

where O(t) = 0¢;- (7)d¢; (). One-loop power-spectrum diagrams require an expansion
of the interaction Hamiltonian to third and fourth order in the field fluctuations, i.e.
H; = H}g) + H§4). We provide in Figs. (3) and (4) the diagrammatic representation
of the leading order corrections that we will find for the diagrams with tensor loops in

1"

single-field slow-roll inflation. The continuos lines represent scalar propagators, whereas
the dotted lines indicate tensor propagators. In order to derive this result and the an-
alytic expressions for these diagrams, we need to first calculate and expand H; up to
fourth order in the field perturbations d¢ and 6. The starting point is the Lagrangian
of the system.

We will begin with a more general Lagrangian for the scalar field than the usual
Ly =(1/2)g"0,¢0,¢ — V(¢), by introducing a non-conventional kinetic term, i.e.

1
S=3 / d*xdt/~g [MER +2P(X,0)] . (4.2)
where P = P(X, ¢) is a generic function of the scalar field and of X = 1¢,,0"$0" ¢ and

R is the Ricci scalar in four dimensions. Notice that the action (4.2)2 reduces to the
standard case if P = X — V', where V is the potential for the scalar field.

Theories of inflation where the Lagrangian kinetic term is a generic function of the
scalar field and its first derivatives, like in Eq. (4.2), are string theory-inspired. They
represent interesting alternatives to the basic inflationary scenario because of their non-
Gaussianity predictions. The crucial quantity in this sense is represented by the speed
of sound ¢ = (OxP)/(0xP + 2X0xx P), which is allowed to vary between 0 and 1.
The perturbative expansion of the interaction Hamiltonian in this kind of models has
coefficients proportional to inverse powers of the sound speed and therefore, for small
values of ¢y, allows both for non-negligible loop corrections to the power spectrum of
the curvature fluctuations [113] and for large values for the amplitudes of three [31] and
four [41, 42, 43, 44, 45, 46] point functions. In this thesis, we will carry out the calcu-
lations of the interaction Hamiltonian for these general theories up to a certain point
and then, for simplicity in the presentation, focus on the canonical case (the remaining
computations for more general Lagrangians will be found in [113]).

Let us list the background equations for the system
2H +3H* = —P, (4.3)
12



3H? =2XPx — P, (4.4)
X (Px +2XPxx) + 2V3(2XPx — P)*X Py
— V2X (P, — 2X Px,) (4.5)

where a dot indicates a derivative w.r.t. cosmic time and, to zeroth order, we have

— ¢?
X:?.

The so called flow-parameters are defined as

H
€

These quantities reduce to the slow-roll parameters in the standard case, so it is natural
to assume |¢| < 1 and |n|. It is not correct to talk about slow-roll if P is left as a generic
function of X and ¢, since the smallness of € and 7 does not necessarily indicate that
¢* < H? and |¢| < [3H|. Tt can be convenient to decompose € as the sum e = &, + ¢y,

where
¢ 0H
X OH

The parameters that are expected to appear in the perturbative expansion of the
Lagrangian are

Px
. S— 4.10
T Py 12X Pyy (4.10)
Cs
= 4.11
5= (4.11)
1
u=1- = (4.12)
¥ = X Py +2X*Pyy, (4.13)
2
)\EX2pxx+§Xgpxxx, (414)
2
I = X*Pxxx + 5X4PXXXX> (4.15)

where ¢, is the sound speed. ¢, is allowed to vary between 0 and 1, so the quantity |ul
can freely range between 0 and oo. The only assumption we make is s < 1, from ¢,
being constant in the standard case.

4.1. Arnowitt-Deser-Misner (ADM) decomposition for P(X, ¢) theories

The Lagrangian in Eq. (4.2) will now undergo a perturbative expansion in terms of the
field fluctuations 0¢(Z,t) = ¢(Z, t) — ¢o(t) (¢ is the homogeneous background value for
the field) and of the metric fluctuations.

13



Figure 3. Diagrammatic representation of the leading order (tensor mode) corrections
(4)
from H; " to the power spectrum of d¢.

/ \
) \
| \
T

Figure 4. Diagrammatic representation of the leading order (tensor mode) corrections
from H}B) to the power spectrum of d¢. Notice that this diagram is not slow-roll
suppressed compared to the one in Fig. 3, whereas this is not the case for the scalar
modes (see Figs. 1 and 2).

It is convenient to adopt the 341 Arnowitt-Deser-Misner (ADM) splitting for the metric.
In the spatially flat gauge the perturbed metric is

ds® = —N2dt* + hy;(da' + N'dt)(da? + NIdt), (4.16)
hij = a*(t)(e7)ij, (4.17)

where a(t) is the scale factor, v;; is a tensor perturbation with 0;7;; = 7;; = 0 (traceless
and divergenceless) and det(e?);; = 1. Notice that repeated lower indices are summed
up with a Kronecker delta, so 0;y;; stands for §%9;y; and ~;; = 6%,

In the ADM formalism, the action (4.2) becomes [13]

1 g
5= / dtdxV/h [NR® 1 2NP + N~ (E,EY - E?)], (4.18)
where R®) is the curvature scalar associated with the three dimensional metric hi; and
1,
Ei; = 5 (hij — VilV; — Vsz‘) )

A dot indicates derivatives w.r.t. time ¢, all the spatial indices are raised and lowered
with h;; and units of My = 87G = 1 will be from now on employed. To 4th order we

have

R® = —%aﬁalaﬂal- (4.19)
The lapse and shift functions, N and N’ can be written as

N=1+a«a,

Nj = 0;0 + 0;,

14



where «, 6 and [ are functions of time and space (f; is divergenceless). We have
exploited the gauge freedom to set two scalar and two vector modes to zero, thus
leaving one scalar mode from N, one scalar and two vector modes from N; and two
tensor modes (the two independent polarizations of the graviton) from h;;, together
with the inflaton field perturbation d¢. N and /N; are non-dynamical degrees of freedom
and can be expressed in terms of the other modes (d¢ and ~;;), once the Hamiltonian
and the momentum constraints (we derive them in the next section) are solved.

4.1.1. Solving Hamziltonian and momentum constraint equations

Momentum and Hamiltonian constraints are derived from varying the action w.r.t. the
shift and lapse functions respectively. It turns out that, in order to expand the action
to a given order n, it is only necessary to perturb N and N; up to order n — 2 [13, 31].
Therefore we will solve the constraints to second order in the metric and scalar field
fluctuations.

Let us begin with the expansions

a = a1 + Qg,
Bi = Bui + B,
0 =0, + 0,.
where a; and «s are respectively first and second order in the fields fluctuations

(similarly for f;; and fy;, and for 6; and 6,). Let us then expand P to second order. P
is a generic function of X and ¢. We first need the expansion of X

1 . , . iy
X = = g"0,00,0 = — 96" + 29" 0i60 + g7 0:00;0)

S %[ ~ N3+ 69)" + 2N ND66 (6 + 69) + (h“ - N;VQ j) 0i300;60)
~ X+ AX (4.20)

where N = hYN;, X, is the zeroth order part, ie. X, = %2 and AX is the
perturbation to the desired order (AX = AX; + AX; + AX;3 + ...). Notice that
o(t, ) = ¢o(t) + 0¢(t, Z), but for simplicity we will suppress the subscript ’0’ in the
background value of the field.

The expressions for the perturbations AX; become

AXl = 2X0 [% — Oél‘| (421)
5o\ 5¢ Y 1
AX, = Xﬂ(f) - 4a1§ — 205 + 302 — QN;ajg] - a2—¢2@5¢@5¢ (4.22)

and so on for AX3 and higher order terms. The expansion of P(X,¢) up to second
order becomes

1 1
P(X,¢) = Py + Px|oAX + PyloA¢ + EPXX‘O(AX)Q + §P¢¢’0A¢2 + PxyloAXA¢
(4.23)

15



where as usual the subscript '0” indicated the zeroth order, Py = 0xP, Py = 0,P and
similarly for the second order derivatives, A¢ = d¢ and AX needs to be expanded up
to the needed order.

We are now ready to write the momentum and Hamiltonian contraints
Vi [N (E) - 01E)| = N"'Px [¢ — N'Og| ;0 (4.24)
R® 2P — 4Py X — N7 (EyEV — E) — 2Pxh70,¢0;6 =0 (4.25)
The momentum constraint to first order reads
2H00, — Q—;azﬁlj = Px¢0;0¢, (4.26)

where H = a/a is the Hubble parameter. Eq. (4.26) can be solved to derive ;. Taking

the derivative & of both sides of (4.26) and using the divergenceless condition for 3, we

have

L _ Pxdio
2H

Using the solution found for ay, we find 9*6;; = 0, from which we can set 51; = 0. Here

0* = 6"9;0;, which we will indicate in the rest of the thesis also as 9;0;, and from now

(4.27)

on we define §3; = (3y; for simplicity.

The momentum constraint to second order is
1 1 1 .
2H8ja2 - 4H0é1(9j041 - ﬁajoq@%’l + ﬁ&-al@i{?j@l - 5(91‘0{1’}/2'3'

1 1 . 1 . 1. 1 2
—@3 ﬂj + Z%’kaf)/kj - Z%kaﬂkj - Z%’kaj%k + ﬁaiela Yij

— Px0;000¢ + 2X Pxx0;000¢ — 2X Px x¢10;0¢ — Px$pa19;6¢

+ Px 304,00 . (4.28)
The solutions are
_ L L a0 %0, - 00,000,060, + Do
Q2_7+2Ha2 [ aq 1_ij041ij1}+ﬁ
1 9. 1
-+ E@ 2 [%jﬁiajoq] — ma 2 [8i3j0182%j}
]- ) . PX¢¢ -2 2 2
+ 570" Orvadal + 0 [(9,00) + 660736
XP . o
+ ;X 072 (070066 + 0;000;00 — & (9;010;0¢ + 1 0*3¢)] ,  (4.29)

where 3 = 9%0¢0¢ + 0,060,004, and
1 1 1
ﬁéﬂﬂj = 2H8ja2 — 4Ha18ja1 — ?8]»04182«91 + ?@al&-@j@l

1 . 1 . 1 . 1.
- 5@'041%3' + Z%kaf)/kj - Z%’kaﬂkj - Z%kaj%k

1 . .
-+ —820182’71‘]' — anjégbéqb — 2XPXX835¢6¢
2a?
+ 2X Pxx¢a10;0¢ + Px¢a,0;0¢ — Pxy$00d;0¢ . (4.30)
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Let us now move to the Hamiltonian constraint which provides

i—fa% = —4XPx (%‘b — a1> +2Ps0¢ — 8Pxx X (%b — a1> — 4X Pxy4d¢ — 12H?ay,

(4.31)

to first order and

AH o o ¢
—?8202 = (—2a1) [4XPX£ + 20PXXX2£ +2X Pxy0¢ + 8PXXXX3§

4X (Px +2X Pxx)

AH 1
+4Pxxs X200 + —5-0%0;] — 00,066 — — (%0,
a a

a’¢

1 ) 1 2 2 2 2

3| = 7001 + = (0:0,61)° | + (—6H? +2X Px +4X*Pxx) [3af — 205
50>

+40é% (3X2P)(X + 2X3PxXX) + % PXPX + 16X Prx + 8X3PXXX}

506 0,09)°
009 [4X Pxy + 8X*Pyxg| — (000 44X Pix = 2X Py| +00% = Puy

5 a2¢?
1p. . 1 4H

—|—2pr¢¢:| + Z |:"}/l]ﬁ)/l] + ?aaﬁyiqaaﬁyiq} - ?72]8283017 (432)

to second order.

4.1.2. Reduction to the canonical case

In the canonical case, to zeroth order in perturbation theory P = (¢2 /2) =V (o), so
Py =1 and Py = —0"V/0¢™ with all other derivatives of P being zero. The solutions
above therefore reduce to [56]

1 .
ay = ﬁ¢5¢’ (4.33)
4AH . )
—5 0% = —2V,80 — 200 + 2 (—6H+(9)?), (4.34)
ot Laoe b garpl 20 00 010,00 435
Q2_7+ﬁ +m [ 1 1_ij041ij1} ( )

02 [@83-8182%‘4 + 8%9_2 {@'%kaj%k} ;

+ &3_2 [Yij9i0;01] — ﬁ
%18292 = 20 [zd)(ws + %0291] -+ %éaﬂl@a(p -~ %aiajelaiajel (4.36)
b1 (0)7 — (307~ 200) (67— 6H?) — 08" ~ 000,50
— Vypdo® — ﬁaa'yiqaa’%q - %%ﬂkg’ + %%qaiaqgl ;

1 1 1 1
2—&2846]' = ?82041@8201 — ﬁﬁmﬁjalﬁmﬁ%l -+ ?3ma18m8j8201
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- a—tajala‘*el - %amajaialaiamel + %aQaialaiajel

- %aiajalaia%)l + %amaialamaiajel + 000060, 0

— 9%000;0¢ + 0;000*6¢ — Dy, 0¢0,,0;0h — %aZ (70501)

- %32 (0,954, 0401) + %zﬁ (0*7jx0k61) — iaﬂ (Yadiv)

1 .
+ 132 (Vit0iVks) - (4.37)

where Vs = 0°V/9¢* and 072 is the inverse of the laplacian operator. Notice that the
equations (4.33) through (4.37) agree with the results obtained in [152], if we set ;; to
zero.

4.2. Fourth-order expansion of the Lagrangian in the canonical case

The expansion of the action up to 4th order can be now derived by plugging the solutions
(4.27) through (4.32) in (4.18). The final expression is quite lengthy and can be found
in [113]. We will here only report the 4th order expansion of the action in the canonical

case

Sy

1 1
= /0“053 [ V¢¢¢¢5¢ + 529890 + 5,70i010;000610m0¢

. 1
_ ?(kb (ajgg + 6]) 33591) -+ (O{%O{Q — 50[%) (—6H2 + 902)
aq

4 O Mibg? — 2V,0306 + a1 (— 5080006 — Vi)

2 2 .
— —1(0:0,620.0,61 — 0,0%0 + 0,3,0.0,6:) + —(9(0,62 + ;) 9,00

1. . )
~ ViV + %qaﬁq%}

+ (5¢a]‘91835¢)} + (11[21 (’}/qza aeraq ;aa'Yiqaa’yiQ) - 4

11
- b%k%jaj5¢ai5¢ — 17;;0;000;00 + 20;000;0¢0
— $0;0¢ (73002 + Vii Bi + 7i0:01) — 002V Oy Yak — B VabOsVar:

1. . . 1.
- §7abﬁkak7ab — oy (H VabOaOp02 4 Yap0uOpta + %baaﬁb) + §7abak7abak‘92

1 .
+ ﬁ( - 8”yip8i8j91@p8j92 - 4”)/Zpalaj618pﬂ] — 4'yip@p8j91@j@
— 8 Qlaﬁjqﬁi{?j@g — 3q928ivjq8i8j6’1 — ﬁq{?ﬁjqaﬁj@l

— 0401017jq0:85 — 0q010:7;40; Bi + 0g010,750;0;0
+ 23q6’23q7ij8i3j01 + 28(]918(]%]»32-@ + 2@18(]%]&-33-91)1 . (438)

Similarly, the loop computation will be from now on performed considering this simpler

case.
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5. Tensor loop corrections to F;

Let us then consider the terms in the interaction Hamiltonian H; that involve the tensor
modes. The third order action in single-field slow-roll inflation with non-zero graviton
fluctuations was calculated in [13]; we will focus on the leading order term in the slow-roll
parameters, so we have

The fourth order action is given by Eq. (15.2.1). Notice that some of the interaction
terms involving the tensor modes in (15.2.1) appear with time derivatives, therefore the
construction of the path integral formula requires additional care compared to the case
where time derivatives only appear in the kinetic term of the Lagrangian. This issue will
be discussed in Appendix 15.1. Also, it is possible to show that in Eq. (15.2.1), of all the
leading terms in the slow-roll expansion, only one will provide a non-zero contribution
to the loop correction (see Appendix 15.2 for a detailed analysis) and contribute to the
interaction Hamiltonian to fourth order which becomes

HY () = M By 0: 56058
I (77) — 4 TYik Vi Ui d) j d) (52)
where the tensor fluctuations are

Vi (T, 1) = /d?’ke““fz [%(/%a M)bi k() + 5;’3(—]%7 /\)bf,;,ﬂ;(t)}a (5.3)
)

with
(i bf | = @m)?69 (k= k)3, (5.4)

The equation of motion for the eigenfunctions d¢y(t) can be derived in the approximation
of de-Sitter space from the second-order action

= | dn’(H—ln)2 {(591{)2 _ (@-5@2] , (5.5)

(where dn = dt/a(t) is the conformal time) and they are given by the well-known
expression
H

ug(n) = o (1 + ikn) e, (5.6)

In the same approximation, the eigenfunctions for the tensor modes v(n) are given by

ul = 2uy,.

Let us now begin with the one-loop one-vertex part of the diagram (given in Fig. 3)
which we label with the subscript (1L, 1v); this can be written as [104], [105]

{005 ()00, (") L.10) = i/dﬁ, ([H (), 66 (7085, (1)]) (5.7)
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We will study this in detail
* S . 77* / ! d?)x
(005, (175930 Nawan =21 [ dn'a’0n) [ 555

X e 2 T P (igh) (i) g, (0 s, () Vg (Yl (0 Vg, (i, (1))
x 0@ (ky + @3)0% (ks + G1)0P (G + @) + c.c., (5.8)

/dg%d?’%dg%dg%

where the extra factor of 2 accounts for the number of equivalent diagrams obtained by
permuting the field contractions, uk(n) is given by Eq. (5.6) and

Zelk ek] = 2sin’ 6. (5.9)

Integration and the use of the delta function lead to a simpler form

2k4/ = 29/77 U1 i)

X (1—zkn) (1+7,q17)(1—zq77)+c.c., (5.10)

This equation is exact except for the approximation of using the de Sitter space for-

<5¢151 (77*)5¢k; (77*)>(1L,1u) = —i6® ]{1 + k2

mula for the scale factor, a(n) = —(Hn)~!, and evaluating the Hubble radius H(n') at
the time n*. The reason why this is allowed is the following: the contribution to the
integral w.r.t. time from regions well before horizon crossing is negligible compared to
the contribution due to the region around horizon crossing [13, 104, 105]; in addition to
that, we are choosing 7 to be just a few e-folds after horizon crossing, so we can assume
that the Hubble radius (as well as any of the slow-roll parameters of the theory) will
not undergo a big variation during this interval of time. The same approximation will
be applied to the two-vertex diagrams.

We first solve the time integral. It is convenient to perform a change of variale like
n [106], i.e. we set ' = —kn' and z* = —kn* so that

HY &8 cody k2 .0 .
<5¢];1 (U*)5¢k} (TN L) = 56 (k;1 + kg) 57 _qsm20 ]m[/x* 7 i@ —a*)

x (14 i2*)%(1 — iz') (1+7;Ex/)(1 —z%x’)]. (5.11)

After integrating the imaginary part, we end up with the following result

: - HY [ dq 2k%(3 + 2*?) + ¢*(5 + ba*? + 2™
(006 ()00 () L1y = 37 (k1+k2)2k4/ LA in%g ( ) q4](€ )

A sk
_s®)
= 00k + k) g2ms (5

where the factor 4/3 comes from integrating with respect to the azimuthal angle 6 (notice

d 1
(342" )/ 74 4k(5+5x*2+2x*4 /dqq,

that that the reference frame in momentum space has been chosen in such a way that
the external wave vector k lies along the positive z axis). We now solve the momentum
integrals. Both the logarithmic and the quadratic one exhibit ultraviolet divergences
and the logarithmic part diverges also at very low momenta. Ultraviolet divergences
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can be treated as in flat space; the infrared logarithmic divergence is fixed introducing
a momentum lower cutoff /~! to be interpreted as a ‘box size’ [110, 111, 117, 118, 119]
which can be fixed to be not much larger than the present horizon [110, 111]. As an
example, consider the first integral of Eq. (5.12) which is convenient to split as follows

Ndg  qkdg (Ad
/—q:/ —q+/ =y (5.12)
g Jerg e g

where we have introduced an upper cutoff A. The first integral gives In(kf); the
second integral can be renormalized introducing a counterterm —In(A/kg), where kg
is a renormalization constant. The final result for Eq.(5.12) reads

* * (3) — - QH:L
(00 ()00 (1") 111wy = 76 (k1 + k2) e

where « is a left over constant from renormalization.

(3 +2") | In(k() — In(k) + o]

Let us now focus on the one-loop contribution from the 3rd order action with the
gravitons (see Fig. 4 for its diagrammatic representation)

(005 (1)805, (1)) (11,00 = %@[5% (1), (") [ n; dn (Hf () = Hr (n))

< [ an (70~ H7 ) ])

1\ 2
—1 * *
_ ! 2) (T[66: ()00 (") (A+ B+ C + D)), (5.13)
where
Az/j dn Hf /j dn’ Hi, (5.14)
n* ’ _ n* 7 _
BE/_ dn H; /_ ' Hy | (5.15)
"o "
- _/ dn H;L/ dn Hy (5.16)
oy "y
= —/ dn H;/ dn' . (5.17)
It is easy to check that B = A* and C' = C* = D. We can write Eq. (5.13) as
(06 (1100, (1N az.20) = 4(=i)280 (k1 + )k* [ dgsin'o (5.18)

o dny " dy’ A B c D
X / - / ~ wy +wy +wy +wy ),
—0o0 (HT])Z —00 (H?] )2( / / ! f)

where the factor sin® # comes from contractions of the polarization tensors with external
momenta [120]

=\ 2
R 7k k?
(k'R = —= |1 — | —— = —sin’ 0 1
GZJ(q_) \/5 (qk) \/§Sln ) (5 9)
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and the wave fuctions wy are

wi(n',n') = uk(n*)UZ(n/)uk(n*)UZ(n”)[u‘,;_(ﬂ (0 Yuf_a(n g () (0"

1

x O —n") +ule_ (1w (0" Vuz () Yug (YOG — )]

/ " ’ " ’ 1

R ) () [ (w7 g (7 )ug(n”)

wi(n',n') = UZ(n Ju(n u
) e (0w (s (g ()00 —n")],

X @( 77/

wi (n'n') = = w0 )up (Vg (0 g (" e (0 ey (" (i Y (')

’ 1 ’ " ’ 1

wi(n'n") = —uip (" g (n Y (0 )i (" Y (0 Ve (g (0 (')

so wf(n',n") = wP(n",n’) and is a real number and wf(n',n") = wi* (", 7). We will
label the two contributions by A and C, so that the one-loop contribution with two
vertices to the two point function will be broken into two parts

(005 ()00 (1) L2y = (00 (1)86,, () (i1.20) + (005 ()00, (1)) (ip.20y- (5:20)
Let’s look in details at the two parts.

. . HY rd®q sin*0 ., . o,
<5¢151(77 )5@52(77 ))(1L 20) — o (kl + k2)2k2 /Tﬂe 2ok (1 +ikn )2 (5.21)
—q
77 d ’ / - /
[ a1 )1+ i1+ — )

oo '
x / d %e“’fﬂﬂﬁ—fﬂm"u —ikn" )1 — g Y1 + ik — @n’) + c.c.

The second time integral has el {—— + 07] —1 (gz C)} as its primitive function, where

=k+q+|k—q], b= —qk— (¢+k)|k —q and ¢ = gk|k — q]. This should be evaluated
between —oo and 7. It is soon evident that the lower bound represents a problem for
this evaluation. We need to remind ourself, though, that the choice of the integration
time contour needs to be deformed and to cross the complex plane to account for the
right choice of the vacuum [13]. This is done by integrating in a slightly imaginary
direction, i.e. taking n° — n" + ie|n’|, where € is a fixed small real number; so for
example

Ui P ikn
/700 dn e = i—k (5.22)

With this contour prescription, our integral in 1" vanishes at —oo. Performing the same
change of variables as in (8.14)

HY [ d3q sin*f de’ k
0 ) 6(3]{; k /_7 / 22zac—;r)1 - x\2
< ¢k1( ) d)kg( )>(1L 2v) ( 1t 2) L2 qg ‘E— TBRe{ - k z € ( +x )

X E—ix’—i gb—c 1—zdx +—x2—z£a:,3 }
¥ kg g2 k k2 k3 ’
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where d = q—k+|k—q] and s = kq+(k—q)|k—q]. The result of the integration w.r.t.time
is a polynomial function of sin2z*, cos2z*, Si(2z*), Ci(2z*) and their products with
coefficients which depend on ¢, b,c,d, s, k. Notice that in the large scale limit z* — 0
a singularity similar to the one found in [106] shows up in our result (see also [121] for
a recent discussion on these kind of singularities). However, by evaluating the power
spectrum of d¢ just a few e-folds after horizon crossing, we are safe from these kind of
singular behaviour [109].

The next step consist in performing the momentum integral. The integrals we need to
evaluate are of the following kind

d*q sin'0
| s @. (5.24)
T |q— k|

where f(§) is a sum of functions of momentum. Let us begin for simplicity by considering

the constant term of the sum, i.e. let us study
3 aind
/ d—f% (5.25)
T |q— k|
For the specific case of equation (5.25) the integrand function has singularities at ¢ = 0
and at ¢ = k and shows no ultraviolet singularities. Based on an approximate evaluation
performed considering a sphere of radius £~! around ¢ = 0, where /! < k, the integral
is proportional to a function In(kf¢). The same result can be obtained working in a small
sphere around ¢ = k after a change of variables ¢p = ¢— k. The contribution from large
values of ¢ is negligible w.r.t. the ones from the singular points, so the integral over the
whole momentum space is expected to be proportional to In(kf). The exact value of
the integral can been found after a change of variable from the (g, 6) to the (¢, p) space,
where p = |§— k| and is equal to (167/225k%) (1 + 30In(k()) ~ k=3 (1071 + 10 In(k()).

Integrating Eq. (5.23), we find ultaviolet power law and logaritmic singularities in
addition to infrared logaritmic contributions. The final result of the integration is a
function of 2* = e~ where N, = In(a,/a;) is the number of e-foldings from horizon

crossing
4

. H
(0 (n")o0y;, (7]*))‘(41];721,) = 76 (ky + kg)ﬁ(al In(k) + as In(kf) + ag) , (5.26)

where a1, as and as are functions of z* (see Appendix 15.3). We are calculating the
two point function for the scalar field a few e-foldings after horizon crossing, so x* may
be chosen to range between 10~! and 1072. In this range a; ~ O(1) and negative,
as = —16/(152*?) + (8/15)(5 — 8Ci(2z*)) and az = —8/(225z2%) + O(1) + p, where p is
a left-over scheme-dependent renormalization constant of the kind present in equation
(5.13).
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Let us now move to part C of Eq. (5.13) which we give below

(00 ("), (77*)>(01L,2u) =50 (k?l + k2) B W (1 + (k;n*)Q)

77* d M) d . " "
< [ n’,éem Q) [ n??gem Q'(n)

H? /@ sing
2 3,7
W k-

<Re/d i ) < /d i )} (5.27)

where Q(n') = 1 +ign + b77 — icn . Let us integrate over conformal time

o dz’ k? —ital |48 b e 3| et k3+ck . (gb—c)k?
[B* TP@ Zk.flf +ﬁx —Zﬁx —7 —; ?x +/LT s

H4/d3q sin* @
2k2

= 0O (ky + k) 5 (1+ (k;n*)Q)

(5.28)
where again the integration has been performed by continuing " to the complex plane,
i.e. (n" —n +ieln’|), and then taking the limit ¢ — 0.

We are now ready to integrate over momentum

* * H4 d3q sin49 "
<6¢k_i(77 )5%”2(77 ))(ClL,%) =40 (/ﬁ + k2)2k2 /? - 3 (1 +x 2)

|k —ql
E* 2k%c 2Kk%be K22 K2 e
— — . 5.29
x (x*Q p 7 + P + 9 + 9 ) (5.29)

Similarly to what we have done in part A, one can check that there are no ultraviolet
singularities in the remaining five integrals although some infrared logarithmic
contributions are still present and the final result is

H,
<6¢k_i (77*)5%”2 (77*)>(01L,2u) = 76¢ (kl + k2) 13

: (er 4 e (kD)) (5.30)

where ¢; = (1/225) (8/2*? + 107 + 502*?) and ¢y = (16/152*?) + (4/15). Notice that
the (z*)2 coefficients in ¢; and ¢, exactly cancels the (z*)~2 coefficients in ay and as.
This is not surprising: based on [106, 109], we expect we might observe a logarithmic
singularity if we push 2* — 0 in our results (which is indeed present in the Ci(2z*) term

of as), but no power-law singularities are actually expected.
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6. Complete expression for F: at one loop

Let us now collect our results in the final formula for the power spectrum of the curvature
perturbation ¢ computed up to one-loop level. This can be derived from Eq. (3.4), which
follows from the 6N formula. Summing the main results of the previous section, Egs.
(5.13), (5.26) and (5.30), we obtain the one-loop graviton correction to the inflaton
power spectrum

=L
<5¢151 (77*)5@52 ()i = 7T5(3)(k1 + kz)% [fiIn(k) + foln(kl) + fs] , (6.1)
where
fi= —1—25 (25 + 152" + 421 | (6.2)
fo=2+(2/3)2** +ay +co, (6.3)

and f3 is given by a left-over scheme-dependent renormalization constant plus
contributions of order O(1) (see Appendix 15.3 for the complete expressions of as,
¢y and f3). If we calculate the two point funtion of d¢ a few e-foldings after horizon
crossing, i.e. z* ranges for example between 107! and 1072, f; reduces to a negative
constant of order O(1) and fo ~ 4 (1 — Ci(22*)) ~ O(10). In the limit where 2* — 1
both fi and f5 turn out to be of order unity.
In order to understand which is the dominant contribution in Eq. (3.5) and how big
it is, one needs to (i) know the slow-roll order of the coefficients N@: N ~ ¢=1/2]
N® ~ 0 NG ~ €/2; (ii) compute the integrals involving the power spetrum P(q).
This is discussed in details in Ref. [109] (for the case of scalar perturbations only), see
in particular Sec IV of [109]. It turns out that the crucial quantity is represented by
the number of e-foldings of inflation between the times of horizon exit of the mode ¢7!,
which corresponds to the infrared cutoff, and the time of horizon exit of the mode k we
want to observe. However, to deal with observable quantitites one has to choose ¢ not
much bigger than the present cosmological horizon H;*' [110, 111].
The relevant point about Eq. (6.1) is that it gives in Eq. (3.5) a contribution which is
of the same order of magnitude as those coming from loops which accounts for scalar
perturbations only. Since in terms of the slow-roll parameters (N (1))2 ~ €, ! the
magnitude of the one-loop graviton correction turns out to be

272
TR
where we have used Eq. (3.6) for the power spectrum of the inflaton field. In Eq. (6.4)
a(k) includes the various coefficients of Eq. (6.1), and it is O(1). Eq. (6.4) allows a
more direct comparison with the results of Ref. [109], showing that the graviton con-

AP (1) a(k)épf(k) , (6.4)

tributions to the one-loop corrections are comparable to the ones computed only from
scalar interactions. Notice that also for the tensor contributions we find terms of the
form In(k).
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Summarizing our work: beyond linear order, the tensor perturbation modes produced
during inflation unavoidably mix with scalar modes; this fact alone would require to
include the tensor modes for a self-consistent computation. Most importantly, despite a
naive expectation suggested by the fact that the power spectrum of the tensor modes is
suppressed on large scales with respect to that of the curvature (scalar) perturbations,
our results show explicitly that their inclusion is necessary since their contribution is not
at all negligible with respect to the loop corrections arising from interactions involving
the inflaton field only.
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7. Study of perturbations in anisotropic cosmologies

The Bianchi models represent a classification of all homogeneous and anisotropic
cosmologies. In the cosmic no-hair conjecture, any initial background, in the presence
of a positive cosmological constant, eventually evolves in a de Sitter universe, where all
the initial existing anisotropies are rapidly washed out. This conjecture was proven to
be true for all of the Bianchi models except for the Bianchi-IX by Wald in [72]. For the
Bianchi-IX this result is also true under the assumption that the cosmological constant
overcomes the spatial curvature terms. More recently, there has been a revived interest
in homogeneous but anisotropic models of the early Universe and several attempts to
understand what kind of observational signatures these models might produce. A close
look has in fact been given to the fluctuations in the metric and in the energy tensor
developing during a hypotetical anisotropic stage either in a pre-inflationary epoch
(78, 79] or during inflation itself [76, 77, 144]. The Bianchi-I model is the simplest
of all anisotropic and homogenous models and has often been the choice for such kind
of studies. In the Bianchi-I model, the metric has a form

ds* = dt* — e (eQﬁ)ij dz'da’ (7.1)

where « is a function of time as well as 3;;. The latter is a 3 x 3 diagonal traceless
matrix that anisotropizes the volume expansion

3
(6218)1']' = 5ij€2’6i, Zﬂz =0. (72)
1=1

A metric described by Eq. (7.1) but with constant functions « and (3 is often presented
in the form

ds® = dt* — t*" da} + t*P>dxs + t*Pdas, (7.3)
where the coefficients py, po, p3 are numerical constants satisfying the relation

p1+p2+ps=pi+ps+p;=1 (7.4)
The three parameters can be equal in pairs in the cases (—%, %, %,) and (0,0,1). In all

other cases they are distinct, one being negative and the other two being positive. The
universe described by (7.3) is spatially flat and, for any possible value of the coefficients
pi, its volume element is equal to \/—g3d3x = td>z, where ¢° is the determinant of the
three-metric.

In [78], we consider a pre-inflationary epoch characterized by an initially expanding
type-I Bianchi universe that evolves with an energy density not yet dominated by a
cosmological constant. If by the time the cosmological constant has become the domi-
nant form of energy the metric is still homogeneous, the Universe will eventually enter
a de Sitter epoch; the fluctuations of this metric and their growth, however, can play
an important role in determining the evolution of the Universe at this early stage. The
question we ask concerns the kind of initial conditions are needed for the Universe to
remain homogeneous by the time the cosmological constant eventually dominates the
total energy density. We employ a metric as in Eq. (7.1) for the background and solve

27



the first order Einstein equations for the perturbations considering a pressureless fluid.
As expected, the anisotropy in the background is responsible for a coupling at the linear
order of one of the tensor modes with the density contrast, so there is a correlation
between the scalar and the gravitational perturbations. Moreover, the evolutions of the
two tensor modes, the “free” one and the one that is coupled to the scalar, are very
different from each other and very much depend on the scale of interest. It turns out
that, for a reasonably large set of initial conditions, the growth of these perturbations
could be fast enough so as to lead the Universe into an inhomogeneous state before the
cosmological constant becomes the dominant form of energy.

A similar scenario was investigated in [79], where both expanding and contracting
Bianchi-I Universes are studied during a pre-inflationary era. A scalar field dominates
the matter content. In particular, the evolution of the gravitational perturbations of
the metric (not to be confused with the gravitational waves generated from the vacuum
fluctuation during inflation) is analysed, to point out that they may grow to significantly
alter the geometry of spacetime before inflation begins and, in any case, they may leave
an imprint on the observed CMB power spectrum.

Also in [76, 77] a perturbative analysis was performed for Bianchi-I cosmologies lead-
ing to anisotropic inflation; in addition to that, predictions for the power spectrum of
curvature fluctuations and gravity waves produced during inflation are provided for this
models. Finally, a “vector hair” model and its observational consequences in terms of
anisotropic signatures in the cosmological correlation functions and primordial gravita-
tional waves, were recently discussed in [144].
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8. Inflation and primordial vector fields

The attempt to explain some of the CMB “anomalous” features as the indication of a
break of statistical isotropy is the main reason behind ours and many of the existing
inflationary models populated by vector fields, but not the only one. The first one of
these models [122] was formulated with the goal of producing inflation by the action of
vector fields, without having to invoke the existence of a scalar field. The same motiva-
tions inspired the works that followed [123, 124, 125]. Lately, models where primordial
vector fields can leave an imprint on the CMB have been formulated as an alternative to
the basic inflationary scenario, in the search for interesting non-Gaussianity predictions
(90, 91, 92, 93, 94, 95, 96, 97, 98]. Finally, vector fields models of dark energy have
been proposed [126, 127, 128, 129, 130, 131]. All this appears to us as a rich bag of
motivations for investigating these scenarios.

Before we quickly sketch some of them and list the results so far achieved in this di-
rection, it is important to briefly indicate and explain the main issues and difficulties
that these models have been facing. We will also shortly discuss the mechanisms of
production of the curvature fluctuations in these models.

Building a model where primordial vector fields can drive inflation and/or produce the
observed spectrum of large scale fluctuations requires a more complex Lagrangian than
the basic gauge invariant Lyecior = —(y/—9g/4)F" F,,. In fact, for a conformally in-
variant theory as the one described by L,ccior, vector fields fluctuations are not excited
on superhorizon scales. It is then necessary to modify the Lagrangian. For some of
the existing models, these modifications have been done to the expense of destabilizing
the theory, by “switching on” unphysical degrees of freedom. This was pointed out in
[132, 133, 134], where a large variety of vector field models was analyzed in which lon-
gitudinal polarization modes exist that are endowed with negative squared masses (the
“wrong” signs of the masses are imposed for the theory to satisfy the constraints that
allow a suitable background evolution). It turnes out that, in a range of interest of the
theory, these fields acquire negative total energy, i.e. behave like “ghosts”, the presence
of which is known to be responsible for an unstable vacuum. A related problem for some
of these theories is represented by the existence of instabilities affecting the equations
of motion of the ghost fields [132, 133, 134].

In the remaing part of this section, we are going to present some of these models to-
gether with some recent attempts to overcome their limits.

In all of the models we will consider, primordial vector fields fluctuations end up either
being entirely responsible for or only partially contributing to the curvature fluctuations
at late times. This can happen through different mechanisms. If the vector fields affects
the universe expansion during inflation, its contribution (4 to the total ( can be derived
from combining the definition of the number of e-foldings (N = [ Hdt) with the Einstein
equation (H? = (87G/3)(py + pa), pa being the energy density of the vector field and
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pe the inflaton energy density) and using the JN expansion of the curvature fluctuation
in terms of both the inflaton and the vector fields fluctuations (see Sec. 9). To lowest
order we have [92]

A;
Ca

= %6142-, (8.1)
where a single vector field has been taken into account for simplicity (mp is the reduced
Planck mass, A is the background value of the field and §A its perturbation). When
calculating the amplitude of non-Gaussianity in Sec. 10, we will refer to this case as
“vector inflation” for simplicity.

A different fluctuation production process is the curvaton mechanism which was initially
formulated for scalar theories but it is also applicable to vectors [135, 136]. Specifically,
inflation is driven by a scalar field, whereas the curvaton field(s) (now played by the
vectors), has a very small (compared to the Hubble rate) mass during inflation. Towards
the end of the inflationary epoch, the Hubble rate value starts decreasing until it equates
the vector mass; when this eventually happens, the curvaton begins to oscillate and it
will then dissipate its energy into radiation. The curvaton becomes responsible for a
fraction of the total curvature fluctuation that is proportional to a parameter, r, related
to the ratio between the curvaton energy density and the total energy density of the
universe at the epoch of the curvaton decay [92]

rd
Cq= o PA

— BP—A’
where r = 3pa/(3pa + 4ps). Anisotropy bounds on the power spectrum favour small

(8.2)

values of 7.

From Eqgs. (8.1) and (8.2) we can see that, dependending on which one of these two
mechanisms of production of the curvature fluctuations is considered, different coeffi-
cients will result in the N expansion (see Eq. (9.4)).

In this section we will describe both models where inflation is intended to be vector-field
driven and those models in which, instead, the role of the inflaton is played by a scalar
field, whereas the energy of the vector is a subdominant contribution to the total energy
density of the universe during the entire inflationary phase.

8.1. Self-coupled vector field models

A pioneer work on vector field driven inflation was formulated by L. H. Ford [122], who
considered a single self-coupled field A, with a Lagrangian

1
Lvector - _ZF;WFW/ + V(w) (83)

where F),, = 0,B, —0,B,, and the potential V' is a function of ¢ = B,B*. Different sce-
narios of expansion are analyzed by the author for different functions V. The universe
expands anisotropically at the end of the inflationary era and this anisotropy either
survives until late times or is damped out depending on the shape and the location of
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the minima of the potential.

The study of perturbations in a similar model was proposed by Dimopoulos in [135]

where he showed that for a Lagrangian
1 1

Lyector = _ZFMVFMV + 577@23“3“ (84)
and for m? ~ —2H?, the transverse mode of the vector field is governed by the same
equation of motion as a light scalar field in a de Sitter stage. A suitable superhorizon
power spectrum of fluctuations could therefore arise. In order to prevent production of
large scale anisotropy, in this model the vector field plays the role of the curvaton while
inflation is driven by a scalar field.

8.2. Vector-field coupled to gravity

The Lagrangian in Eq. (8.4) may be also intended, at least during inflation, as including
a non-minimal coupling of the vector field to gravity; indeed the mass term can be
rewritten as

Lyector O % (m§ +¢R) B, B" (8.5)
where, for the whole duration of the inflationary era, the bare mass myq is assumed to
be much smaller than the Hubble rate and the Ricci scalar R = —6 {g + (%)2] can be
approximated as R ~ —12H?. For the specific value £ = 1/6, Eq. (8.4) is retrieved.

For the Lagrangian just presented, Golovnev et al [123] proved that the problem of
excessive anisotropy production in the case where inflation is driven by vector fields can
be avoided if either a triplet of mutually orthogonal or a large number N of randomly
oriented vector fields is considered.

The Lagrangian (8.5) with £ = 1/6 was also employed in [136], where inflation is scalar-
field-driven and a primordial vector field affects large-scale curvature fluctuations and,
similarly, in [137], which includes a study of the backreaction of the vector field on the
dynamics of expansion, by introducing a Bianchi type-I metric.

8.3. Ackerman-Carroll-Wise (ACW) model

A model was proposed in [138] where Lagrange multipliers (A) are employed to determine

a fixed norm primordial vector field B,B" = m?

Lvector DA (BHB/L - m2) — PA (86)

where p, is a vacuum energy. The expansion rate in this scenario is anisotropic: if we
orient the x-axis of the spatial frame along the direction determined by the vector field,
we find two different Hubble rates: along the x-direction it is equal to

1
H2=PA 8.7
b Ple)’ (87)
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and it is given by H, = (1 + cu?)H, along the orthogonal directions; y = m/mp, P is
a polynomial function of 1 and ¢ is a parameter appearing in the kinetic part of the
Lagrangian that we omitted in (8.6) (see [138] for its complete expression). As expected,
an isotropic expansion is recovered if the vev of the vector field is set to zero.

8.4. Models with varying gauge coupling

Most of the models mentioned so far successfully solve the problem of attaining a slow-
roll regime for the vector-fields without imposing too many restrictions on the param-
eters of the theory and of avoiding excessive production of anisotropy at late times.
None of them though escapes those instabilities related to the negative energy of the
longitudinal modes (although a study of the instabilities for fixed-norm field models was
done in [139] where some stable cases with non-canonical kinetic terms were found). As
discussed in [132, 133, 134], in the self-coupled model a ghost appears at small (com-
pared to the horizon) wavelengths; in the non-minimally coupled and in the fixed-norm
cases instead the instability concerns the region around horizon crossing.

Models with varying gauge coupling can overcome the problem of instabilities and have
recently attracted quite some attention. In [90], the authors consider a model of hybrid
inflation [140, 141, 142, 143] with the introduction of a massless vector field

LS 3 (8,000 + 0xx) — 1 1(6)Fuu B + V(6. X. B,) 89

where ¢ is the inflaton and y is the so-called “waterfall” field. The potential V' is chosen
in such a way as to preserve gauge invariance; this way the longitudinal mode disappears
and instabilities are avoided.

Similarly, Kanno et al [144] consider a vector field Lagrangian of the type

1
L'uector - _ZfQ(d))F“VF,uV? (89)

but in a basic scalar field driven inflation model. Very recently, in [145, 146] the linear
perturbations in these kind of models have been investigated.
Finally, in [92, 96] varying mass vector field models have been introduced

1 1
Loector = — fAHP)F*™ Fyy, + émQBHB“, (8.10)

where f ~ a® and m ~ a (a is the scale factor and « is a numerical coefficient). The
special cases & = 1 and @ = —2 are of special interest. In fact, introducing the fields
A” and A,, related to one another by AM = [B, = dA, (AM and A, are respectively
the comoving and the physical vectors), it is possible to verify that the physical gauge
fields are governed by the same equations of motion as a light scalar field in a de Sitter
background. Vector fields in this theory can then generate the observed (almost) scale
invariant primordial power spectrum.
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8.5. SU(2) wector model

Let us consider some models where inflation is driven by a scalar field in the presence
of an SU(2) vector multiplet [97, 98]. A fairly general Lagrangian can be the following
—g" > BiBj+ Lg| ,(8.11)

4 mPR f2(¢ « 1/,6’ a M2
s= [dzy=g a R, —
a=123 a=12,3
where Ly is the Lagrangian of the scalar field and Fy, = 0,BS — 0,B% + g.£" B}, B

(g. is the SU(2) gauge coupling). Both f and the effectlve mass M can be viewed as
generic functions of time. The fields B} are comoving and related to the physical fields

by A = (Bg, Bf/a). The free field operators can be Fourier expanded in their creation
and annihilation operators

a(= d3 iq-T ~\ oa a * ~ a T *a
SAN(Z,n) = /;qge q Z [e;\(q)ai”\éA/\(q,n) + eM—q) (a_’;l) 0AY (q,n)} (8.12)
(27) A=L,R,long
where the polarization index A runs over left (L), right (R) and longitudinal (long)
modes and
o ] = 148,89 ), 513

Here 7 the conformal time (dn = dt/a(t)). Once the functional forms of f and M have
been specified, the equations of motion for the vector bosons can be written. We compute
cosmological correlation functions up to fourth order considering an action as in (8.11).
The expression of the correlators that we derive, prior to explicitating the wavefunction
for the gauge bosons, apply to any SU(2) theory with an action as in (8.11), both for
what we will call the “Abelian” and for the “non-Abelian” contributions. In particular,
the structure of the interaction Hamiltonian is independent of the functional dependence
of f and M and determines the general form of and the anisotropy coefficients appearing
in the final “non-Abelian” expressions (see Sec. 9). When it comes to explicitate the
wavefunctions, a choice that can help keeping the result as easy to generalize as possible
is the following

T \/ T .
0B" = 2\/_ |:J3/2( )+ZJ_3/2(.CE)} s (814)
for the transverse mode and
6Bl = n(z)d BT, (8.15)
for the longitudinal mode (n is a unknown function of = —kn) [97, 98]. Let us see

why. As previously stated, for f ~ a® and with o« = 0, 1, —2, it is possible to verify that
the (physical) transverse mode behaves exactly like a light scalar field in a de Sitter
background (see also Appendix 15.4). Considering the solution (8.14) then takes into
account at least these special cases. As to the longitudinal mode, a parametrization was
adopted as in (8.15) in order to keep the analysis more general and given that, because of
the instability issues, introducing this degree of freedom into the theory requires special
attention. We are going to keep the longitudinal mode “alive” in the calculations we
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present, by considering a nonzero function n(x), and focus on the simplest case of
f = 1. This case is known to be affected by quantum instabilities in the longitudinal
mode, anyway we choose f = 1 for the sake of simplicity in our presentation. The
results can be easily generalized to gauge invariant models (please refer to Sec. 12 for a
sample generalization of some of the calculations to massless f ~ a2 models).
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9. Correlation functions of ¢ in the SU(2) model

We are now ready to compute the power spectrum, bispectrum and trispectrum for the
curvature fluctuations ¢ generated during inflation

(G, Ge) = 2m)*6®) (y + ko) P (), (9.1)
(Gt Ce,Ca) = (2m)2 6D (ky + ks + k3) Be (y, ko, Ks) (9.2)
(G, G GrnCr) = m)38® (k) + ko + ks + ko) Te (K, o, Ky, Kia). (9.3)

Notice that, on the right-hand side of (9.1) through (9.3), we indicated a dependence
from the direction of the wavevectors; in models of inflation where isotropy is preserved,
the power spectrum and the bispectrum only depend on the moduli of the wave vectors.
This will not be the case for the SU(2) model.

The 6N formula (3.2) will be applied to our inflaton+SU(2)vector model

o a ]' 1 v a a
C(F,1) = No0o + NESA, + 5 Ny (69)° + NG SAUSAL + Nb 5pO A
1 1 e ra .1 o1 .
+ §N¢¢¢(6¢)3 - 3,N5b35A SALSAS + Ng¢a(5¢)25A + NgabégchA SAP
1 1 sn e e .
+ 3'N¢¢¢,¢,(5¢) S!Nfbcfi”éAM(SAﬁéAAéAﬁJr (9.4)
where now
ON ON PN
N, = |— NH = Nt = :
¢ <a¢>t*7 a <8Az>t*? Pa — <a¢aAlu>t* (9 5)

and so on for higher order derivatives.

Our plan is to show the derivation the correlation functions of ( from the ones of d¢
and 0A?, after a replacement of the N expansion (9.4) in Egs. (9.1) through (9.3).
The correlation functions can be evaluated using the Schwinger-Keldysh formula (2.1),
that we recall here for convenience

o2y = (0| [7 (@) oy [ (2l |0} (9.0)

When calculating the spectra of (, the perturbative expansions in Eq. (9.4) and (9.6) will
be carried out to only include tree-level contributions, neglecting higher order “loop”

terms, either classical, i.e. from the 0N series, or of quantum origin, i.e. from the
Schwinger-Keldysh series. Assuming that the SU(2) coupling g. is “small” and that we
are dealing with “small” fluctuations in the fields and given the fact that a slow-roll
regime is being assumed, it turns out that it is indeed safe for the two expansions to be
truncated at tree-level.

The correlation functions of ¢ will then result as the sum of scalar, vector and (scalar
and vector) mixed contributions. As to the vector part, this will be made up of terms
that are merely generated by the 6N expansion, i.e. they only include the zeroth order
of the in-in formula (we call these terms “Abelian”, being them retrievable in the U(1)
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case), and by (“non-Abelian”) terms arising from the Schwinger-Keldysh operator ex-
pansion beyond zeroth order, i.e. from the gauge fields self-interactions.

Let us now discuss the level of generality of the results we will present in the next
sections, w.r.t. the choice of a specific Lagrangian.

The expression for the Abelian contributions provided in Secs. 9.1 and 9.2 apply to any
SU(2) model of gauge interactions with no direct coupling between scalar and vector
fields (extra terms would be otherwise needed in Egs. (9.18) and (9.19)). The next
stage in the Abelian contributions computation would be to explicitate the derivatives
of the e-foldings number and the wavefunctions of the fields: they both depend on the
equations of motion of the system, therefore the fixing of a specific model is required at
this point.

As to the non-Abelian contributions, the results in Egs. (9.33) and (9.34) are completely
general except for assuming, again, that no direct vector-scalar field coupling exists. The
structure of Eqgs. (9.49) and (9.52) is instead due to the choice of a non-Abelian gauge
group. The expressions of the anisotropy coefficients I,, and L,, in Eqs. (9.49) and (9.52)
depend on the specific non-Abelian gauge group (for SU(2) one of the I, is given in
Eq. (9.51)). Finally, the specific expressions of the isotropic functions F,, (a sample of
which is shown in Eq. (9.50)) and G,, were derived considering the Lagrangian (8.11)
with f = 1 and the eigenfunctions for the vector bosons provided in Egs. (8.14) and
(8.15).

9.1. The power spectrum

The power spectrum of { can be straightforwardly derived at tree-level, using the 6N
expansion (9.4), from the inflaton and the vector fields power spectra

Pe(k) = Po(k) [1+ g™ (k- No) (k- Ny) + sk - (No x N )] - (9.7)
The isotropic part of the previous expression has been factorized in

P*(k) = N3 Py(k) + (N, - Nyg) P, (9.8)
where we have defined the following combinations

Pt = (1/2)(Pg + "), (9.9)
from the power spectra for the right, left and longitudinal polarization modes

P = 6,40 A% (k, t*)6 A% (k, %), (9.10)

P = 540 A% (k, ) AY (k, %), (9.11)

P = Sund Al (b ) AL (R, ). (9.12)
The anisotropic parts are weighted by the coefficients

o NN (P, = P (9.13)
TNy (Ne- Na) Pt ‘
s = N NP (9.14)

" N2Py+ (N, Ny) P
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(where a sum is intended over indices ¢ and d but not over a and b). Eq. (9.8) can also
be written as

] Pcd
P™°(k) = N3P, [1 + Bea— ] : (9.15)
Py
after introducing the parameter
N.-N,
Bea = 7 ‘. (9.16)

Notice that what when we say “isotropic”, as far as the expression for the power spec-
trum is concerned, we simply mean “independent” of the direction of the wave vector.
In this case instead, the vector bosons introduce three preferred spatial directions: the
r.h.s. of Eq. (9.7) depends on their orientation w.r.t. the wave vector.

As expected, the coefficients ¢* and s that weight the anisotropic part of the power
spectrum are related to 3.4, i.e. to the parameters that quantify how much the expansion
of the universe is affected by the vector bosons compared to the scalar field.

Assuming no parity violation in the model, we have s = 0; the parameters ¢*° and (3,
are instead unconstrained. In the U(1) case and for parity conserving theories, Eq. (9.7)
reduces to [92]

Pe(k) = PEo(k) [1+ g (k- 7)] (9.17)
where 7 indicates the preferred spatial direction; also one can check that in this simple
case, if P, ~ Py and P,y = kP (k # 1), the relation ¢ = (k — 1)3/(1 + ) holds,
where = (Ny4 /N¢>)2 (the anisotropy coefficient g is not to be confused with the SU(2)
coupling constant g.). If it is safe to assume |g| < 1 (see discussion following Eq. (1.1)
and references [70, 71]), a similar upper bound can also be placed on f.

In the case where more than one special directions exists, as in the SU(2) model, no
such analysis on the anisotropy data has been so far carried out, the ¢* parameters
cannot then be constrained, unless assuming that the three directions converge into a
single one; in that case a constraint could be placed on the sum |g| = | >, g%|, where

—

a=1,2,3 and Pe(k) = PE(k) [1+ g% (k- 1a) |-

In the next sections we will present the results for the tree-level contributions to the
bispectrum and to the trispectrum of (.

These can be classified in two cathegories, that we indicate as “Abelian” and “non-
Abelian”. The former are intended as terms that merely arise from the 0N expansion
and are thus retrievable in the Abelian case; the latter are derived from the linear and
quadratic expansions (in terms of the gauge bosons interaction Hamiltonian) of the
Schwinger-Keldysh formula and are therefore peculiar to the non-Abelian case.
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9.2. Bispectrum and trispectrum: Abelian contributions

By plugging the dN expansion (9.4) in Egs. (9.2) and (9.3), we have

L1
BC(kD kg, kg) D §N¢2)N¢¢ [Pzi)(kl)Pd)(kZ) +p67“m8.]

+ % LNy NPT [HZZ(EQH%(EQ) —i—perms.}
+ %N¢N5N;b [Py (ke )TLE () + perms |
+ NyN2By(ki, ko, k3), (9.18)
for the bispectrum and
Te (kv oz, Ky ka) D NATs(Ky, ko, ks, k)
+ NNy [P¢(k1)B¢(\IZ1 + Kol ks, ky) + perms.}
+ NZNUNG, [Pib(ks)By(ky, ks, | s + Fal) + perms |
+ NZNZ, [ Po(k1) Po(ka) Py + ks]) + perms |
+ N§N¢¢>¢> [Py(k1)Py(k2)Py(ks) + perms.]
+ NZNG, N, [Pt (Ey + ks) Py (k1) Py(k2) + perms.|
+ NUNY NSNS, [ Pos(ky) Pia (ko) Py(|Ky + Ksl) + perms.|
+ NINENY,, [Py(k1) Py (ko) Pib(ks) + perms.]
+ N, NNy NG, [Pos(ky) Pha(ke) Py (ks) + perms. |
+ NpgNg N Ny :P¢(k2)P¢(‘E1 + k| ) Pt () +p€7“m8'}
+ NI NENG N, [Pt (ko) Py (ky + ko) Py(ka) + perms.|
+ NENy NN [ Pre(iy) Pl (ko) P2 (Ry + Es) + perms. |
+ NENYNENG] | Pad(ky) Pl (F2) Pl (s) + perms.| (9.19)

for the trispectrum.

Before we proceed with explicitating these quantities and for the rest of the thesis, the
N§ coeflicients will be set to zero. It is in fact possible to verify that the temporal mode
B§ = 0 is a solution to the equations of motion for the vector bosons, after slightly
restricting the parameter space of the theory (see Appendix 15.4). The adoption of this
kind of solutions, which is related to the assumption of a slow-roll regime for the vector
fields, implies that the derivatives of N w.r.t. the temporal mode can be set to zero.
Let us now provide some definition for the quantities introduced in (9.18)-(9.19): we
are going to switch from the greek indices pu, v, ... to the latin ones, generally used for
labelling the three spatial directions, in order to stress that all of the vector quantities
will be from now on three-dimensional

IE2(F) = T () P + T (k) P + T (R) Py

long

(9.20)

where

~

Teren (k) = el (k)ert (k) + eli(k)exf (k) (9.21)

? J

38



i

T (k) = el(k)el! (k). (9.23)

i

TS (k) = ilel(k)es" (k) — ef (k)e;™ ()], (9.22)

*
j
The polarization vectors are £ (k) = % (cos  cos ¢ —isin ¢, cos b sin ¢ + i cos ¢, — sin 0),

ef(k) = el (k) and el(k) = k = (sin 0 cos ¢, sin 0 sin ¢, cos §), from which we have

E?Uen(k) = 6ij — ]{Zikj, (924)
T (k) = egrke, (9.25)
T/ (k) = kik;. (9.26)

The purely scalar terms in Egs. (9.18)-(9.19) are already known from the literature 1.

As to the mixed (scalar-vector) terms, they can be ignored if one considers a Lagrangian
where there is no direct coupling between the inflaton and the gauge bosons but the
latter condition is not sufficient for concluding that the mixed derivatives are null. As
an example, it is useful to refer to [148] which, among other things, includes an analytic
study for the case of a set of slowly rolling fields with a separable quadratic potential.
The number of e-folding is written as a sum of integrals over the different fields, to be
evaluated between their values at an initial (generally set at around horizon crossing)
and a final times. For each field, the value at the final time depends on the total field
configuration at the initial time, so the mixed derivative of N can in principle be non-
zero. Anyway, if the final time approaches the end of inflation, it is reasonable to assume
that, by then, the fields have stabilized to their equilibrium value and no longer carry
the memory of their evolution. If this happens, the sum of integrals which defines N be-
comes independent of the final field configuration and its mixed derivatives can therefore
be shown to be zero. It turns out that we are allowed the same kind of analytic study,
if we work with the Lagrangian in Eq. (8.11) and introduce some slow-roll assumptions
for the vector fields (see Appendix 15.4 for a discussion about these assumptions and
Appendix 15.5 for the actual calculation of N and its derivatives).

Let us then look at the (purely) vector part. Its anisotropy features can be stressed by
rewriting them as follows
L. 1 . . .
Be(ki, ko k3) D §N§N5Nfé i (k)] (ky) = MENE MY (9.27)
T (ky, ko, ks, k) D NENY NG NP (k) Pog (ko) P2 (ky + k)
v odn pad (7. e, cf (1.
+ NclLLNb Ncdee]?P,ug(kl)Pz%(kQ)Pm{(kB)

= M{LYMS + M M MEN, (9.28)
where
M(k) = NoPic (k) = Pye(k) [Ny +p*(k)k (k- No) +iq(k) (k< Na) ] (9.29)

1 In single-field slow-roll inflation P, = H2/2k3, where H, is the Hubble rate evaluated at horizon exit;
the bispectrum and the trispectrum of the scalar field (B and T}) can be found in [12, 13, 147, 152, 39].
For the bispectrum see also Eq. (3.10)
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Lt (k) = NPy (k)N

= PY(R)IND, - N+ p¥ (k) (k- N3,) (k- NLj) +iq¥ (k)k - N2, x NLTo o (9.30)
In the previous equations, we defined

pac  _ pac

pr(k) = e+ (9.31)
pge
PCLC

“k)=— 9.32
q ( ) Pf:C, ( )

with N, = (N}, N2, N3) and N7, = (N7}, N72 N73),

Notice that, as for the power spectrum (9.7), also in Eqs. (9.27)-(9.28) the anisotropic
parts of the expressions are weighted by coefficients that are proportional either to
P_ or to (Pong — P+). When these two quantities are equal to zero, the (Abelian)
bispectrum and trispectrum are therefore isotropized. P_ = 0 in parity conserving
theories, like the ones we have been describing. According to the parametrization (8.15)
of the longitudinal mode, we have P, — Py = (|n(z)]* — 1) P,.

9.3. Bispectrum and trispectrum: Non-Abelian contributions

We list the non-Abelian terms for the bispectrum
Be(ky, ko, ks) D NN NEBSe(ky, ko, kes) (9.33)
and for the trispectrum
Te (ki ko, ks, ka) D NINJNENYTS Ky, ko, ks, K
+ NIN]NgNE, [Py (ks) Besi (v, bz, ks + ka) + perms. |

ijk
+ NN/ NFNLm {R‘;d(lgl)B;’zfn(/gl + ko, ks, Ky) —i—perms.} : (9.34)
The computation of the vector bosons spectra
(OAZSASAS) = 6O (ky + ky + k) BY, (9.35)
(OAIGALSALSAT) = 0 (k1 + ko + ks + ka) TS5, (9.36)

will be reviewed in this section. This requires the expansion of the in-in formula up to
second order in the interaction Hamiltonian

) 2 irle [ an (Hi) ~ o)) ) (9.37)

+ (_;)2 (T(® /_noo dn (H}(n') = Hy(n) /_noo dn’ (Hi (") = How(n") |-

The interaction Hamiltonian needs to be expanded up to fourth order in the fields

fluctuations, i.e. Hy = 1(32 + Hz-(fz, where

HE) = geeegg’ (0:0B)) 0BLOBf + gle*=g’* g/ BIG B Bfo B (9.38)

7

Hi) = gleceecedyii Ml Bag BYS B By, (9.39)

int

To tree-level, the relevant diagrams are pictured in Figs. 5 and 6. By looking at
Egs. (9.38) and (9.39), we can see that there is a bispectrum diagram that is lower
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Figure 5. Diagrammatic representations of the tree-level contributions to the vector
fields bispectrum.

Figure 6. Diagrammatic representations of the tree-level contributions to the vector
fields trispectrum: vector-exchange (on the left) and contact-interaction (on the right)
diagrams.

in terms of power of the SU(2) coupling (~ g.) compared to the trispectrum (~ g?); as
a matter of fact, for symmetry reasons that we are going to discuss later in this section,
g% interaction terms are needed to provide a non-zero contributions to the bispectrum.
The propagators for “plus” and “minus” fields are

OB ()6 By (") = T (', n )0 — ") + T (' ,n )00 — 1), (9.40)
5B ()SBY (") = T2 ), (9.41)
5B ()SBY* (") = T2 '), (9.42)
5B (n)5BY (") = T2 YO0 — ') + T2 )0 =), (9.43)
or

57 (k) = Ter (k) PYY + 4T3 (k) P + T (k) P (9.44)
I (k) = T (k) Py + T (k) P + Ty (k) P (9.45)

in Fourier space. In the previous equations we set P = (1/2)(Pg + Pgb), Pg =

S0 B (k,n*)d B3t (k,n) and P = (ﬁib)* (similar definitions apply for P and 151‘31;9)

We are now ready to show the computation of the following contributions to the
bispectrum and trispectrum of ¢

(CiCinin) D NaVINE(SAT (k)5 AG () S A5 (K) ), (9.46)
(o, G GG D NENG NENG(SAL (k)5 AL (k) S AT (eg) S AT (R ) (9.47)
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Eq. (9.46) becomes

—

- 5k+k+k L
(Gt > NN ORI i 5 5 6 i

X (gceabcku + ggeedaeeb‘;Bl )} + perms. + c.c. (9.48)

Even before performing the time integration, one realizes that, because of the
antisymmetric properties of the Levi-Civita tensor, the ~ g. contribution on the r.h.s.
of Eq. (9.48) is equal to zero once the sum over all the possible permutations has been
performed. The vector bosons bispectrum is therefore proportional to g?. The final
result from (9.48) has the following form

~ ~ — — A

where the F),’s are isotropic functions of time and of the moduli of the wave vectors
(1 =1,2,3) and the I,,’s are anisotropic coefficients. The sum in the previous equation
is taken over all possible combinations of products of three polarization indices, i.e.
€ (EEE,EEL FEIE, ... lll), where E stands for “even”, [ for “longitudinal”. The
complete expressions for the terms appearing in the sum are quite lengthy and we list
them in Appendix 15.6. As an example, we report here one of these terms
1
24k k3 k3 k3 2+2
T = e [((y - B) (k- 57) (b 59 (k- o) (B - A°)
— (ks - N) (by - NY) (ky - N (b - ko) (ks A°) )+ (1 3) + (2 3)]  (9.51)

where Agpgpr, Beepr and Cggpg are functions of x* and of the momenta k; = \EZ\ (they

-Flll = — nﬁ(x*) [AEEE -+ (BEEE cosx* -+ OEEE sin ZE*) EZZE*] (950)

are all reported in Appendix 15.6), E; is the exponential-integral function. As we will
discuss in more details in Sec. 11.2, one of the more interesting features of these models
is that the bispectrum and the trispectrum turn out to have an amplitude that is mod-
ulated by the preferred directions that break statistical isotropy.

Let us now move to the trispectrum. Again, we count two different kinds of
contributions, the first from ~ g. and the second from ~ g¢? interaction terms,
respectively in Hl(mz and Hmz The former produce vector-exchange diagrams, the latter

are represented by contact-interaction diagrams (see Fig. 6). Their analytic expressions
are different, but they both have a structure similar to (9.49)

X ZGn Koy gy kg ) L (K - kj,Ai-/Yj,/%i-/Y)
where we define ky, = |ky + ks| and ky, = |ky + ky|. We will present the details of the
computation of the gauge fields trispectrum and the explicit expression of the functions

.

appearing in (9.52) in the next section.
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9.3.1. Trispectrum from vector bosons: exchange diagram
Let us begin with the two vertex diagram. Using the language of Eq. (9.37), it can be
put in the form

©) > e [ an (i) - 16 [ an (o) - B 6) ) 059

where now H = H®), @ = 5AZ§A35A;5A§ and the inclusion symbol as usual points out

int»
that what stands on the right-hand side is only one of the contributions to (©(n*)).
Eq. (9.53) can be rewritten as follows

©0) > L

(T'©(A+ B+ C+ D)) (9.54)

where
. 77* ! + ! 77* " + "
A:/ dn H (n)/ dn H™(n")
— o0 — o
n* / _ ’ n* 1" _ 1"
Bz/mdnH (n)[mdn H™(n)
oo, Y oo
—/ dn H (77)/ dn H™(n)
— o0 —00
n* ’ _ / n* " + "
—[wdnH (n)[wdnH (n)
For each one of the integrals listed above, due to the presence of both the fields and their
spatial derivatives in Hl(nz, there are three different sets of contractions of the external
with the vertex field-operators: for the first set, the field-operators with derivatives in
the vertices are both contracted with external fields; for the second one, only one of the
two field-operators with derivatives contracts with an external field (the other contracts
with another internal field); for the third set, the field-operators with derivatives contract

with each other.
A sample set of contractions of the first type is provided in the following equation

abed gc av'e _d'v' "
0 knk,,
T 200 (1 ) )
X / dn a’ / dn’a*( g7 grgn e T T T TIY TS (9.55)

where the first four IIs correspond to contractions between external and internal fields
whereas the last one indicates the contraction between the two remaining internal
fields. The a~* factor comes from expressing the external (physical) fields in terms
of the comoving ones. As a reminder, we define (27)30®)(ky + ky + ks + k@ﬂ‘;%d =
(0A36 A% AGd Af). The expression in (9.55) can be rewritten as follows

2
g 1.1 n_rnon ! ! 1" 1" !
Tzal];cld c 6a bc 6a b c ]{ka ;538 5bb §ea 5db gee
J 2a4(n*) m

( [an [ay ) TR T T (9.56)
afByéo

a,B,7,0,0
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where the greek indices of the sum indicate either the transverse (E) or longitudinal (1)
modes, the ( [dn [ dn”) stand for the integrals over the wave functions, the chosen time
variable being © = —kn (k= Y1 4 ki, ki = |E ).

Let us define the coefficients Tg‘fﬂéa = knk /Tﬁlilﬁng /T° T7 .. They should be
calculated for each one of the three different sets of contractlons and for each permutation
within the specific set. This is a straghtforward but rather lengthy and not particularly
interesting calculation. A convenient way to proceed could be the following: we first
compute the time integrals in order to find out which one among the combinations
of longitudinal and transverse mode functions in the string [«, 3,7, d, o] provides the
highest amplitude for the trispectrum (in order to be able to perform this comparison we
work, as it is usually done when trying to quantify the amplitude of a three or of a four-
point function, in the so called “equilateral configuration”, which for the trispectrum
means taking k; = ky = k3 = ky); for the combination with the highest amplitude, we
then calculate the coefficients Tgfﬂ‘s” for all the different sets of contractions and sum
over all the permutations.

Let us now perform our calculations. The wavefunctions we are going to adopt were
introduced in Sec. 8.5 (see Eqgs. (8.14) and (8.15)). It is possible to verify that B = A*
and D = (" and that integrals of type A are consistently smaller in amplitude than
integrals of type C. We therefore report the combined contribution C'+ D = 2Re[(] for
one of the permutations

1
(/ o / g )EEEEE BETSKIKIRS, (Kyy + K + ko) (kyy + ks + ka)z*
x [(M — 2E)[(N —2F)(AB + CD) + (2H + L)(C’B — AD)]

(2G + P)[(N — 2F)(AD — CB) + (2H + L)(AB + CD)]|

Jti ),y = (f 00 d")EEEEE (959
n'(z ( [an [an )EEEEE (9.59)

g = (J for), (9.60)
([ o) oo

/dn//dnn)”m =) (/dnl/dn )EEEEE (9.62)

where A, B, C, D, E, F, G, H, L, M, N and P are functions of x* and of the momenta
moduli to be provided in Appendix 15.7 (see Egs. (15.7.1) through (15.7.9)). Obviously,
the value of the integrals does not change when permuting its labels afvdo, apart from

(9.57)

a different power of the coefficient n(z*). We need now to find out if there is one,
among the integrals in Eqs. (9.57) through (9.62), that has the largest amplitude, i.e.
understand if something can be said about the order of magnitude of n(z*). We could
try to extrapolate some information about n(x*) from what happens at very late times.
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In the models discussed in Ref. [135, 92] it turns out that the longitudinal mode is
§BlIl = /26 BT .§ If this is the correct asymptotic behaviour and we find it reasonable
to extrapolate back until the horizon crossing epoch, it is then correct to conclude
that in this case the amplitude is the largest for the integral among the ones listed in
Egs. (9.57) through (9.62) containing the highest powers of n, i.e. for (f dn’ fdn”)”m.
The coefficients we intend to calculate are then of the kind 7}[}/} only. We list them below
for the three different sets of contractions we introduced above and for one particular
permutation (see again Appendix 15.7 for more details)

Tzlglgclll = kykszki234 (/f fffg) (iﬁ . 1%2) (1%3 . 1%4) (1%3 . l%ﬁ) , (9.63)
) (ks + )

T;l]l;lll = k3k12]€1234 (]Cl ]C ) (]%2 ]%12 (]%3 . 1%4 (]%3 . ]%12) 5 (964)
T = kpykokuosa (ky -y ) (Ko - /%m) (s - byy) (ka - b)) (9.65)
We adopted the following notation: k, = |k, | = ky/k,, the index $ running over
the four external momenta; kyygrgn = kszksjk //kk my, with s, s, 8", 8" =1,2,3,4 and

with the indices 1, 7, k, [ mdlcatmg the spatial components of the vectors; k = k; + ks/
ss’ - ‘ks + kS ‘ and so kss’ - kss /kss :

It is possible to prove that, once the Levi-Civita coefficients and the sum over the
permutations are taken into account, only the first set of contractions is left. The final
result after these cancellations can be written in the following form

_ _ _ _ H* *\ 4 " " 4
(SATSALSALSAD), o (21)26®) (By + Ko + ks + Fa)g? ( kx ) e U T x kg (Z ti>

i=1

8 12
+ I x ]{31324 X <Z tz> + 111 % k1432 X <Z t2> :| (966)

i=5 =9
All the possible permutations have been included in the previous equation and, as a
reminder, the indices 7, j, k, [ are hidden in kyy g g» on the right-hand side. We define

I=n'x < L )
8kPhSk3RGKD, (Fpy + k1 + ko) (b + ks 4 kg2

X [(M —2E)[(N —-2F)(AB+CD)+ (2H + L)(CB — AD))]

+ (2G+ P)[(N —2F)(AD — CB) + (2H + L)(AB + CD)]] (9.67)
(from Egs. (9.57)-(9.62)). The function I7 is defined from I by exchanging ko with k3
and kp, with kys; similarly, 777 is defined from I by exchanging ks with k4 and kp, with
k1, so they are all functions of the horizon crossing time x* = —kn™ and of the moduli of

the external momenta and of their sums. This amounts to seven independent variables,
x*, ki, ko, ks, ka4, kp, and kyy. The coefficients ¢; (i = 1,...,12) come from Cll’;f;’é” and

§ As another example, in models with varying kinetic function and mass [95, 96], we have verified that
n(xz) > 1 at late times and for a vector field that is light until the end of inflation.
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so they are also functions of the momenta moduli (see Egs. (15.7.10) through (15.7.21)
for their expressions). Finally, the anisotropic part of Eq. (9.66) is represented by the
kssrsn g terms, which, in the final expression for the curvature perturbation trispectrum,
have their spatial indices contracted with the derivatives N{* of the number of e-foldings
w.r.t. the vector fields as follows

. . . . H* *\ 4
(GGG, Ge) D NENINENGAZS AR A AT} > (20 (s + iy + Ko+ Fa)g? (- )
4
x I x <Z ti> X A1 + perms. (9.68)
i=1
where the anisotropic term in the first permutation is
Ay = e e NONYNE Ny (9.69)
It can be interesting to rewrite A; in terms of all its variables
3 2 .
A= % [(Naf (N*) < JI  det (M}’J’a’b)] (9.70)
(a<b)a,b=1 [i,5]1=[1,2],[3,4]

The M;’s are 2 x 2 matrices whose entries are represented by the cosines of the angles
between the wavevectors and the N¢

Afidab — cos 0, coslj,
I p—

costy, cosby

ie. cosb;, = l%l . N% and so on.
The two permutations in Eq. (9.68) can be written in a similar fashion with anisotropic

coeflicients
7 " 3 2 ..
App=e e NENINENhisoa = Y. [(NP(N") T det (M),
(a<b)a,b=1 [4,5]=(1,3],[2,4]
7 " 3 2 ..
Appp =™ e NONPNENhge = Y {(NQ)Q (N*) > JI  det (M}}’f’b)}.
(a<b)a,b=1 [4,5]=(1,4],[3,2]

The number of angular variables is equal to 12. These are to be added to the six
scalar variables from the isotropic part of (9.68) (ki, ko2, ks, k4, kyp and kpy) and to
three parameters represented by the lengths of the vectors N in A. The anisotropy
coefficients here become equal to zero in the event of an alignment of the gauge vectors
along a unique direction.

9.3.2. Trispectrum from vector bosons: point-interaction diagram
Let us now move to the one-vertex diagrams

@) 2 irfe [ a (1)~ B () (9.71)
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where now H = H and again © = 6AZ(5A£6A;6A§. After working out the Wick

int
contractions, this becomes
wATY ATP NTOabed (1. T T L ZH*x*4a’bca’damnop
NEN, NCNdTWpU(kl,kg,kg,k4) Dg. ’ €€ MN,"Ny NI N,
X > (/ dx) T;’,‘LiT,ijJing + permutations. (9.72)

Let us list the coefficients 79970 = T2 TP T8 for one of the permutations

mmnop mitnjtoit pj

TnEFL'ngE - 6m05np - 5mo]%p4]%n4 - 5moi€n2f€p2 + 5mol%n2]%p4]%2 : ]%4 - 5np]%o3]%m3
+ K434 + k3230 — 1%2 : /%4 (ksasa + k1214) — 5npf€m1i€ol + k1414 + k1212

+ 5npf€m1f€03f€1 ks — k- ks (K232 + K1a34) + oy - sk - ka, (9.73)
Tfifl = 5moifp4i€n4 - 5moffn2i€p4i€2  koy — kaaga + ko - oy (k3234 + K1214) — K414

+ kagaky - ks — kiosakn - Fsks - Ea, (9.74)
ngf = 5npif03ifm3 - 5npf€m1ffo3i€1 k3 — kaaza + k1 - ks (Fraza + Ki2s2) — k3o

+ kaogaks - ky — Kgsakr - kak - oy, (9.75)
Tnbmjrlgf = 5moifn2i€p2 - 5moffn2i€p4i€2 ko — kaogo + ko - oy (K334 + Ki214) — Kr212

+ kiogaky - ks — Kasakr - kaks - o, (9.76)

Tffggf - I%mllgolénp - I%mllgo3k136np - k1414 + I%I : ]%3 (k1434 + k1232) - k1212

+ Kok - ka — kuosaky - ksks - ka, (9.77)
TEPU = kyusa — kaosahs - iy — kuasaky - ks + kuosaky - ksks - Fa, (9.78)
Tn]frlz]g;; = 5mo]%n2]%p4l%2 kg — Ky - ky (Ksgas + k1214) + krosaks - sk - ka, (9.79)
Tﬂi = kyosz — ksozaks - by — Kyosoker - s + kuogaky - sk - ke, (9.80)
Tﬁfoi = kot — kioraks - by — Kyosoker - s + kuogaky - ksks - ke, (9.81)
TTlnEnggla = kyata — kioraks - by — Kygsaker - ks + kuogaky - ksks - ke, (9.82)
Tﬂi = 5npifm1ifo3if1 : 7;’3 —ky - 7;’3 (k1434 + K1232) + /f1234/%1 : /%3/%2 : /%4, (9.83)
THE = kuasoky - ks — kiosak - ks - ki, (9.84)
Tﬁﬂp = kisvaky - by — kosaky - ko - ko, (9.85)
Tif;zl(l)p = kugaky - ks — Kiasaky - ksky - ko, (9.86)
Ty = ksasaks - by — kiosaky - ksks - ka, (9.87)
T?i”lb{riop = kogaky - kks - k. (9.88)

When evaluating the integrals ([ dz),s 5, we use again the wavefunctions previously
introduced in Egs. (8.14) and (8.15). The final result is

1 ok " . s
(/ dx) - = 24]{;%%/{;%/{:%/@%%*7 [QEEEE + Apgpp ciz (BEEEE cosz” + Cgpppsinx )
+DEEEE six* (EEEEECOS.T* +FEEEESiIlZE*)], (989)
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dw (9.90)

dw)
EEEL EEEE

@) ([ )
/ dx)EEll < x)EEEE (9-91)
/dx)qu </ dx)EEEE (9.92)

/dx)mz =) </ dx) EEEE’ (9.93)

where Qrere, Aeeer, Beeee, Ceeee, Depee, Fepprp and Fgpggp are functions of *
and of the momenta k; = \EZ], ci and si stand respectively for the Coslntegral and the
SinIntegral functions. The expressions of these functions can be found in Appendix 15.8.
It is again important noticing that the anisotropy coefficients become zero if the gauge

/‘\/‘\/‘\/‘\

fields are all aligned.

Finally, summing up the coefficients in Eqgs. (9.73) through (9.88), one realizes that if
the longitudinal and the transverse mode evolve in the same way, the total contribution
from the point-interaction diagram is isotropic

- = = = H*.Z'* 4 ’ ’ — — — —
(GGG Gi) 2 (2m)°0° (Ky + b + K + Kt ) g2 (T) ebee’d (N°- N*) (N NY)
1
24]€5/{52]€2/€2/{52 *7
+ Dpgppsic”™ (Egppgpcosx™ + Fppppsinx™) | + permutations.  (9.94)

[QEEEE + AEEEECW (BEEEE cosz* + Cppppsinx )
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10. Amplitude of non-Gaussianity: fy; and 7y

Our definitions for the non-Gaussianity amplitudes are

BC(ED l;:27 ];:3)
Piso(ky) Piso(ky) + perms.
— QTC(Eb EQ? E37 Eﬁl)
Piso(ky)Piso(ky) Pio(kyy) + 23 perms.

© f = (10.1)

TNL (102)

The choice of normalizing the bispectrum and the trispectrum by the isotropic part of
the power spectrum, instead of using its complete expression F, is motivated by the fact
that the latter would only introduce a correction to the previous equations proportional
to the anisotropy parameter g, which is a small quantity.

The parameters fyr and 7y receive contributions both from scalar (“s”) and from
vector (“v”) fields

fe = fSL+ N0, (10.3)
T™NL = T + T\ (10.4)

The latter can again be distinguished into Abelian (A) and non-Abelian (N A)

v NA
=150+ 19, (10.5)
7'](\/%— ](\7A1)+ (A2)+ (NA1)+ ](V]\[[/A2)' (106)

The contribution fNL comes from Eq. (9 27) f(NA) from (9.49), T](VI% and T](VAL2) from

(9.28), finally 704 from (9.52) and 704 from the last line of (9.34).

In order to keep the vector contributions manageable and simple in their structure, all
gauge and vector indices will be purposely neglected in this section and so the angular
functions appearing in the anisotropy coefficients will be left out of the final amplitude
results. This is acceptable considering that these functions will in general introduce
numerical corrections of order one. Nevertheless, it is important to keep in mind that
the amplitudes also depend on the angular parameters of the theory.

We will now focus on the dependence of fxn; and 7y from the non-angular parameters
of the theory and quickly draw a comparison among the different contributions listed in
Egs. (10.3) through (10.6).

The expression of the number of e-foldings depends on the specific model and, in
particular, on the mechanism of production of the fluctuations. Two possibilities have
been described in Sec. 8. For “vector inflation” we have

 pe 581
Ni= i Nij =2 (10.7)
2m% b 2m3

49



Table 1. Order of magnitude of fx in different scenarios.

fs fA NA
NL NL NL
1 Neg B __Naa 8% 2 (m)?
general case ETE Ni EE Nq25 a+p)29e (H)
. . 2 2 2,2 2 2
v.inflation +22 6—22 (%) € gc ~ (m«;}jH)
(1+(%\/€) ) (1+(%\/E) ) (1+(%\/E) )
€ €2p3 Am% 2 621“392 AQm?D 2
v.curvaton > 5 i c - Y
Am 2 Am 2 tot Am 2 tot
1+( QP) er? 1+( QP) er? 1+(—2P) er?
Atot Atot Atot

Table 2. Order of magnitude of the vector contributions to 7x
in different scenarios.

NA, NAs Aq As
TNL TNL NL NL
3 B2cg? (mp )2 _50%/283/292 1A\ (m 2 Be? 4 A2 B3/23/2 3
general case 10 (1+/8)3 (T) 1 W (ﬁ) (T) mPNAA WmPNAA WMPNAAA
- - _5 822322 4 mp Be2
v.inflation same as above 10 3/273(/1;_@3 (H) ( i ) (o 0
RS mp mp )2 232 mp 4 r33/23/2 mp\3
v.curvaton same as above 10 17 (H) ( 0 ) ( A ) 1250 ( A ) “ai8r ( A )

Table 3. Order of magnitude of the ratios fx/f% in different scenarios.

A S NA /rs
TN/ TN Nn /L
general case I@M 3242 (ﬂ)Q N;
Noo ; . H) Nyo
i i B2gZ (mp\2
v.inflation e Bl (T)
2 3 3 3
v.curvaton Br (%) ﬁjc (%)

(see Appendix 15.5 for their derivation). In the vector curvaton model the same
quantities become [92, 97]

;2 AY 1 507

SEERSAY ) 3Ty A
Neglecting tensor and gauge indices, the expressions above can be simplified as Ny =~
A/m3 and Ny ~ 1/m% in vector inflation, Ny ~ r/A and Ny =~ r/A? in the vector

o
ab

(10.8)

curvaton model. Also we have Nga4 = 0 in vector inflation and N4 ~ /A3 in vector
curvaton.

We are now ready to provide the final expressions for the amplitudes: in Table 1 we list
all the contributions to fyr, Table 2 includes the vector contributions to 7y, the scalar

contributions being given by

s) € 62

(
TN T

In the expressions appearing in the tables, numerical coefficients of order one have not

(10.9)

been reported. Also, m is by definition equal to mp in vector inflation and to A/+/r
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Table 4. Order of magnitude of the ratios 73, /7% in different scenarios.

NAl s NA2 s A1 s A2 s
™ /TN ™ /TN N/ TNE ™WL/TNL

2
general case || 10332%g2 (%) 107533/2¢1/242 (%) (m—}f) mLNaa | BembuNZ%, | B2/ 2m3 Naaa

v.inflation same as above 107533/2¢1/242 (%) (%) Be 0
(mp m

v.curvaton same as above 1075733/261/242 (%) T) (Tp)2 r2f3e (%)4 r33/2¢1/2 (%)3

in the vector curvaton model; Ny ~ (mpy/€)~" and Nyy ~ mp?, with € = (¢2)/(2m%H?).

The quantities involved in the amplitude expressions are g, 3, 7, €, g., mp/H, A/mp
and A/H. We already know that g and 3 are to be considered smaller than one (see
discussion after Eq. (9.17)). Similarly, as mentioned after Eq. (8.2), r has to remain
small at least until inflation ends so as to attain an “almost isotropic” expansion. The
slow-roll parameter € and the SU(2) coupling g, are small respectively to allow the infla-
ton to slowly roll down its potential and for perturbation theory to be valid. The ratio
mp/H is of order 10° (assuming € ~ 107!). Finally, A/mp and A/H have no stringent
bounds. A reasonable choice could be to assume that the expectation value of the gauge
fields is no larger than the Planck mass, i.e. A/mp < 1. As to the A/H ratio, different
possibilities are allowed, including the one where it is of order one (see Sec. 6 of [97] for
a discussion on this).

Let us now compare the different amplitude contributions. The ratios between scalar
and vector contributions are shown in Table 3 for the bispectrum and Table 4 for the
trispectrum. We can observe that the dominance of a given contribution w.r.t. another
one very much depends on the selected region of parameter space. It turns out that it
is allowed for the vector contributions to be larger than the scalar ones and also for the
non-Abelian contributions to be larger than the Abelian ones. This is discussed more
in details in Sec. 6 of [97]. An interesting point is, for instance, the following: ignoring
tensor and gauge indices, the ratio g.A/H, that appears in many of the Tables entries,
is a quantity smaller than one; if we consider the different configurations identified by
gauge and vector indices, we realize that this is not always true, in fact the value of
this ratio can be > 1 in some configurations (see also Appendix 15.4 and Egs. (15.4.9)
through (15.4.11) in particular).

Finally, it is interesting to compare bispectrum and trispectrum amplitudes (see
Table 5). Again, it is allowed for the ratios appearing in Table 5 to be either large or
small, depending on the specific location within the parameter space of the theory. For
instance, the combination of a small bispectrum with a large trispectrum is permitted.
The latter is an interesting possibility: if the bispectrum was observably small, we
could still hope the information about non-Gaussianity to be accessible thanks to the
trispectrum.

Another interesting feature of this model is that the bispectrum and the trispectrum
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Table 5. Order of magnitude of the ratios 75, / ( N f)Q in different scenarios.

NA NA)2 NA NA)2 A NA)2 A NA2
TNLI/( NL) 7'NL2/<fNL) NI ( NL) NT, ( NL)
. (+8) (_H )2 3/2148) (AN (_H \3 2(148) (_H \4
vl 107 6g%62 (mp) 106[35/292 (ﬁ) ( p) 106€B3g§ (’mP) 0
2 2 5 _3/2 3 2 6_2 4 4 3.3/2 3 4
9rie(14+p) mp H? e’/ 2(148) H3 mp Mp 670 (1+8) (mp H 6r°e?/2(1+8) mp H
v || 100 TR Iy | 0GP I ik | 100 () (B) | 10 R

depend on the same set of quantities. If these correlation functions were independently
known, that information could then be used to test the theory and place some bounds
on its parameters.
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11. Shape of non-Gaussianity and statistical anisotropy features

Studying the shape of non-Gaussianity means understanding the features of momentum
dependence of the bispectrum and higher order correlators (see e.g. [150]). If they also
depend on variables other than momenta, it is important to determine how these other
variables affect the profiles for any given momentum set-up. This is the case as far as
the bispectrum and the trispectrum of the gauge fields are concerned, given the fact
that they are functions, besides of momenta, also of a large set of angular variables (see
Egs. (9.49) and (9.52)).

11.1. Momentum dependence of the bispectrum and trispectrum

We show the study of the momentum dependence of the F, and G, functions in
Eqgs. (9.49) and (9.52) first and then analyze the angular variables dependence of the
spectra, once the momenta have been fixed in a given configuration. A natural choice
would be to consider the configuration where the correlators are maximized.

The maxima can be easily determined for the bispectrum by plotting the isotropic
functions F,, and G, in terms of two of their momenta. These plots are provided in
Fig. 7, where the variables are x5 = ko/k; and x3 = k3/k;. Each one of the plots
corresponds to a single isotropic functions of the sum in Eq. (9.49). It is apparent that
the maxima are mostly located in the in the so-called local region, i.e. for ki ~ ko > ks;
three out of the eight graphs do not have their peaks in this configuration but, at the
same time, they show negligible amplitudes compared to the “local” peaked graphs.
The situation is much more complex for the trispectrum, being the number of momentum
variables larger than three (ki, ko, k3, k4, kp, and kyy). The momentum dependence
of the isotropic functions can be studied by selecting different configurations for the
tetrahedron made up by the four momentum vectors, in such a way as to narrow
the number of independent momentum variables down to two. A list of possible
configurations was presented in [44]. We consider two of them, the “equilateral” and
the “specialized planar”.

In the equilateral configuration the four sides of the tetrahedron have the same length
(k1 = ko = ks = ky), therefore x = kyy/ky and y = kyy/k1 can be chosen as variables for
the plots. The plots of the isotropic functions of contact interaction and vector exchange
contributions are provided in Fig. 8. The former (c.i.) shows a constant behaviour in
this configuration, being independent of ky, and k. The latter (v.e.(I), v.e.(I]) and
v.e.(I11)) diverge as /{:fl.3 (1 = 1,2, 3 respectively for the three plots) in the limit of a
flat tetrahedron, i.e. (kj;/ki1) — 0.

In the specialized planar configuration, the tetrahedron is flattened and, in addition to
that, three of the six momentum variables are set equal to one another (ky = ks = kyy);
this leaves two independent variables, which can be x = ko/ky and y = k3/ki. There is
a double degeneracy in this configuration, due to the fact that the quadrangle can have
internal angles larger than or smaller/equal to 7, as we can see from the plus and minus
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Figure 7. Plot of r,, = O(z2 — 23)0 (25 — 1 + 22)2325 R,y (22, 23), where
we define R,, = kY F,,. The Heaviside step functions © help restricting
the plot domain to the region (x2,z3) that is allowed for the triangle

k1 + Ky 4 k3 = 0 (in particular, we set x5 < x5). We also set 2% = 1.
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Figure 8. Plots of the isotropic functions appearing in the vector fields trispectrum
(from Eq. (9.52)): c.i. is the contribution from contact-interaction diagrams, v.e.(I),
v.e.(IT) and v.e.(IIT) are the contributions from the vector-exchange diagrams. The
equilateral configuration has been considered in this figure.

signs in the expressions for kp, and kyy [44]

ki \/ ?y* | wy

—= =14/1 +—=\/(4—2%)(4—9y? 11.1
I E U ), (11.1)
k1A3 — 2 2 _ I2y2 ry 4 — 12)(4 — 92 11.2
=y - F o/ ad - ) (112)

The two cases are plotted in Figs. 9 and 10. Notice that divergences generally occur as
z,y —0,as x — y and (z,y) — (2,2).

11.2. Features and level of anisotropy

Statistical homogeneity and isotropy are considered characterizing features of the CMB
fluctuations distribution, if one ignores the issues raised by the “anomalous” detections
we presented in the introduction.

Homogeneity of the correlation functions equates translational invariance and hence
total momentum conservation, as enforced by the delta functions appearing on the left-
hand sides of Eqs. (9.1) through (9.3). This invariance property can then be pictured as
the three momentum vectors forming a closed triangle for the bispectrum and the four
momenta arranged in a tetrahedron for the trispectrum (see Fig. 11).
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Figure 9. Plots of the contact interaction and of the vector-exchange contributions
in the specialized planar configuration (plus sign).

Statistical isotropy corresponds to invariance w.r.t. rotations in space of the momentum
(for the power spectrum) and of the triangle or tetrahedron made up by the momenta,
respectively for the bispectrum and the trispectrum. This symmetry can be broken,
as it for example happens in the SU(2) case, by assuming the existence of preferred
spatial directions in the early universe that might be revealed in the CMB observations.
When this happens, the correlation functions are expected to be sensitive to the spatial
orientation of the wave number or of the momenta triangles and tetrahedrons w.r.t.
these special directions. Analitically, the bispectrum and the trispectrum will depend on
the angles among the vector bosons and the wave vectors (besides the angles among the
gauge bosons themselves), as shown in the coefficients I,, and L,, appearing in Eqs. (9.49)
and (9.52). This implies that both the amplitude and the shape of bispectrum and
trispectrum will be affected by these mutual spatial orientations. The modulation of
the shapes by the directions that break statistical anisotropy was discussed with some
examples both for the bispectrum and the trispectrum in our papers [97, 98]. These
examples are here reported in Figs. 12 and 13.

In Fig. 12 we show the plot of the vector contribution to the bispectrum of (, properly
normalized in the configuration

N3 = N4(0,0,1) (11.3)
Ny = N, = N (sin 0 cos ¢, sin 0 sin ¢, cos 0), (11.4)
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Figure 10. Plots of the contact interaction and of the vector-exchange contributions

i

n the specialized planar configuration (minus sign).

where, the (z,y, z) coordinate frame is chosen to be 1%3 = 7 and 1%1 = lAcg = Zand 0 is
the angle between N, 5 and k3. The coefficients I,, in this configuration become

IEEE -

Iy =
Iy =
L =
Igy =
Ipp =
Ipp =

IlEE =

m2N}
—2co
m*N}
m2N3
m* N}
m?Nj
m2N}
m*N}

m?Nj

20— 24cosd + 2cos B — 12cos? 8 + 12 cos®  — 2 cos® 6 + 6 cos 0 cos®
s? 6 cos § + 2 cos d cos® 9}, (11.5)
4 cos® 5}, (11.6)
_4—2008«9—6cos2«9—4cos26}, (11.7)
| — 4cos? (5}, (11.8)
| — 4cos? (5}, (11.9)
|~ 2co0s” 4], (11.10)
_4—4C0829—8C082(5}, (11.11)
-2+COSQ—3C0829—4C0825] (11.12)

where m? = (A)/(Ny4), A being the background value of the A,’s evaluated at horizon
crossing. The analytic expression of the non-Abelian’ bispectrum normalized to the
ratio (g>H?*m?N?%)/(kSx322), as a function of the angles 6 and ¢ and for fixed values of
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Figure 11. Representation of momentum conservation for the bispectrum (the
three momenta form a closed triangle) and for the trispectrum (the momenta form
a tetrahedron).

r*, x9 and x3 is
~ 9% 10
— 11 cos20 — 40 — 6 cos 20 — cos B(3 cos* @ — 30 cos O — 10)}, (11.13)

B:(8,9)

{cos2 §(8cosf — 1.4 x 10%) + 3 cosd(cos® § — cos* § — 11)

where we set 2 = 1, while x5 and x3 were chosen in the 'squeezed’ region, x5 = 0.9 and
x3 = 0.1.

In Fig. 13 we provide a similar plot, but for the trispectrum from vector-exchange
contributions and in a different configuration

Ny ki =0(i=1,..4)

Nl'];j:COS(;, Nl'l%gzo
Ny - ks = cosf, N -k = 0. (11.14)

In addition to that, let us assume that all the N, have the same magnitude N4. In this
configuration, we have

A[:A[[]:NfCOSQHCOSQ(S, A[[:O, (1115)
therefore the the expression in Eq. (9.68) becomes
T: D g>HINY [ISO] cos® § cos® § (11.16)

where the expression in brackets includes an isotropic term (which is rotationally
invariant)

*

T 4 4 12
IS0 = <?> <IZti+IIIZti>. (11.17)
i=1 1=9

Fig. 13 plots the trispectrum contribution in Eq. (11.16) normalized to its isotropic part.

Another comment should be added concerning statistical anisotropy in the model.
Notice that both the bispectrum and the trispectrum can be written as the sum of
a purely isotropic and an anisotropic parts. The orders of magnitude of these two parts
can, for instance, be read from Table 2 for the trispectrum: each one among TJJVVfQ,

mat and 742 provide the order of magnitude of the level of both their isotropic and
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Figure 12. Plot of f(0,8) = [(B¢(0,8, 2%, x2, x3)x323kS) /(92 H?*m? N})| evaluated at
(z* =1,29 = 0.9,23 = 0.1) in a sample angular configuration (see Egs. (11.3) through
(11.13)).

Figure 13. Plot of the anisotropic part of the trispectrum from the contribution
due to vector-exchange diagrams in a sample angular configuration (see Eqs. (11.14)
through (11.17)).

! instead quantifies a

anisotropic contributions, which are therefore comparable; vavf
purely anisotropic contribution which, as discussed in Sec. 10, can be comparable to
the other three parts, if not the dominant one. A similar discussion applies to the
bispectrum (see fii; and f§; in Table 1). We can then conclude that, for the three and
for the four point function, there is room in the parameter space of the theory for the

anisotropic contributions to be as large as, or even larger than, the isotropic ones.
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12. Trispectrum for f(7) models of gauge interactions

We will now show that it is quite straightforward to extend the calculations we performed
for f = 1 to cases where f is not a constant. Omne interesting model is the one
studied in [149] and also recently discussed in [90], where the field is effectively massless
(mo = & = 0) so the action (8.11) for the gauge field becomes

1
§= [d'ay=g |-, @ g FLE + | (12.1)

where again F¢, = 8,Bg — 0,B% + g.c"*B},B;.

Let us introduce the fields A? and A¢, related by the equations A = fB? = aA¢. The
A¢ are the physical fields.

We can expand the perturbations of Ag in terms of creation and annihilation operators
in the usual way

3
SR %) = [ Y [@)aPsAs ) + hel. (12.2)
(2m) A=R,L
If f = foa®, with a equal either to 1 or —2 (f, is a constant), it is possible to prove
[90] that the equation of motion for §A¢ is the same as the one for § BT, where by 6 BT
we mean the transverse mode function in Eq. (8.14). This is equivalent to saying that,
under the assumption o = 1, —2, the physical gauge fields are governed by the same
equation of motion as a light scalar field in a de Sitter space and so they generate a scale
invariant power spectrum. Let us sketch the calculation of the trispectrum in this theory.

The general expressions of the Abelian terms still hold, except that the power spectrum
in Eq. (9.1) reduces to

p;;.b — :/;(;.prr, (12.3)

having gauged the longitudinal modes away.

Let us now have a look at the non-Abelian part. First of all, we need to set n(z*) = 0.
The interaction Hamiltonian to third and fourth order are the same as in Eqgs. (9.38)
and (9.39), but with extra f?(7) factors. The anisotropy coefficients such as I,, and L,
that survive after setting the longitudinal mode to zero do not change. On the other
hand, the wavefunctions for the gauge fields are now given by 6B = § A /f = 0BT/ foa”.
The new trispectrum therefore differs because of extra scale factors inside and outside
the time integrals, which in general imply a different power of H, in the final results
and a different momentum dependence in the isotropic part of the expressions.

Let us take into account the trispectrum. The three non-Abelian vector contributions
from Eq. (9.34) in the f =1 case can be schematically written as follows

(6B")1ines =~ (3B°) / dn(6B)* = (sB")’ / dn (6B")", (12.4)

0B, = (0B)" [dn 0B)® [y (3B)"

(sB7)' / dn (58"’ / an' (68", (12.5)
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Figure 14. Plots of the isotropic functions of some of the vector-exchange
contributions in the equilateral configuration, for the f ~ =2 model. In this and
in the next figures, “v.e.(LILIII)” represent the isotropic functions associated with the
very last term in square brackets in Eq. (12.13); “v.e.(new)” represents the isotropic
function associated with the k1144, ko244, k1133 and kossz terms in the second line of
Eq. (12.13).

(6BY... ~ (6B)* / dn(6B)" = (5B7)' / dn (5B7)", (12.6)
where we indicate with the subscript [line3 the contribution from the third
line of Eq. (9.34) and with v.e. and c.e. respectively the vector exchange and
the contact interaction contributions to the first line of (9.34). (6BYy =
<(5qu(];1)63?(%2)632(%3)63?(%4)) and we have omitted all the gauge and vector indices,
as well as complex conjugate symbols, for simplicity. Let us see now how Eqs. (12.4)-
(12.6) change if f = foa® (o =1, —2)

(0B iimes = (0B)° / dnf? (6B)® ~ (%) / dna’® (ii T) : (12.7)
(0BY)ue. = (3B)* [ dn £ 3B)* [ an' * (0B

<6CLB;T>4/CZ7]/@2O‘ <5:%T>3/d7]”a20‘ <651T>3, (12.8)
(6BY.i ~ (53)4/d7]f2 (53)4 ~ (%) /dna%‘ <5£T> . (12.9)

Using a = (—Hn) ™! in the previous equations, we get

12
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Figure 15. Plots of the isotropic functions of some of the vector-exchange
contributions in the specialized planar configuration (plus sign), for the f ~ a~2 model.

(OB Yines = HI (687 (=)*)" [ dn (6B7)" (=n)", (12.10)
(6BY)ye. ~ H® (5BT(—77*)°‘)4/d77' (5B7)" ()"

x /dn" (6B7)" (=), (12.11)
OBY)ei = HE (BT (=) [ dn (6B7)" (=n)* (12.12)
Let us now consider more in details the @ = —2 case for contact-interaction and vector-

exchange contributions. The expressions for the anisotropy coefficients are respectively

given by

Z;ESEEE — kyks(ky - ks — ky - kpyks - I%fQ)[éijékl - 51‘9'/%1@4/%14 — 51‘9'/%1@3/2%3 — 5kzi€i2i€j2 — 5kl]%ill%j1
+ Oijkiskiaks - ka4 Opikirkjoky - ko + k144 + Kooaa + K113 + koogs — Koosaks - ky

- k1134i€3 : ]%4 - k1244]%1 : 1%2 + k12331%1 : 1%2 + k12341%1 ' ]%2]%3 ' ]%4] (1213)

and by Eq. (9.73), for one of the possible permutations. These expressions are more
complicated w.r.t T/} in Eq. (9.63) and T} in Eq. (9.88) for the longitudinal modes.
As a result, when studying the shape of the trispectrum, for the isotropic functions

appearing in it, several diagrams need to be taken into account, one for each term in
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Figure 16. Plots of the isotropic functions of some of the vector-exchange
contributions in the specialized planar configuration (minus sign), for the f ~ a2

model.
PP and THIPPP. For comparison with the f = 1 case, we plotted the isotropic

functions associated with the very last term in square brackets in Eq. (12.13) (see
“—v.e(l)”, “—v.e(ll)” and “—v.e(III)” in Figs. 14, 15 and 16). By comparing these
plots with the ones in Figs. 8, 9 and 10, it is evident that they have very similar shapes.
On the other hand, when we consider the isotropic functions associated with terms that
are not present in the f = 1 case, several differences arise in the plots; we provide
a sample in Figs. 14, 15 and 16 with the “v.e.(new)” plots, which represent isotropic
functions associated with the ki144, ko944, k1133 and koozz terms in the second line of
Eq. (12.13). We verified that similar observations can be made concerning the shapes
of the contact-interaction contributions.
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13. Conclusions

Cosmology has entered what it is called its “precision era”: over the past few years,
observations of the CMB and of other cosmological probes have been performed which
have greatly improved the previous bounds on some of the fundamental parameters
characterizing the early Universe cosmology. These bounds are expected to become a
lot stricter with the advent of new experiments, such as the ongoing Planck satellite
mission. The theoretical search for models of the early Universe has consequently been
concentrated on, among other things, trying to produce more and more accurate pre-
dictions.

In this optics, alternative models to the basic single-field slow-roll inflationary scenario
have been and are being investigated, with a strong focus on the computation of higher
order (three and four-point) correlation functions and on higher order (beyond tree-level)
corrections. All of these “higher order” predictions are expected to be particularly re-
vealing of the early Universe physics, given that they are an indication of the type of
fields and interactions populating the specific inflationary scenarios.

In this thesis I have presented an overview of the existing results concerning some of
these “higher order” predictions; in particular, I focused on our works on loop corrections
in inflationary scalar field models and on the primordial non-Gaussianity and statistical
anisotropy predictions in some inflationary models populated with non-Abelian vector
fields.

Loop corrections to the power spectrum of the comoving curvature fluctuation ¢ in
single-field inflation arise both from the inflaton self-interactions and from the coupling
of the scalar field with gravitons. We have calculated the corrections from tensor loops,
previously neglected in the literature for simplicity reasons. It turnes out that one-
loop corrections from tensor-scalar interactions are of the same order of magnitude as
those arising from scalar self-interactions, therefore they cannot be neglected in a self-
consistent calculation.

One loop corrections have been found to be suppressed by an (H/mp)? factor compared
to the tree-level result; they exhibit a slightly different dependence from the external
momentum, because of the presence of a logarithmic factor (which does not spoil scale
invariance) and they turn out vary with time at most as fast as the logarithm of the
scale factor. One-loop diagrams generally present both infrared logarithmic and ultravi-
olet power-law (in addition to logarithmic) divergences. The ultraviolet divergences can
be treated using ordinary regularization and renormalization techniques as in flat-space
quantum field theory. The infrared divergences are “cured” by introducing an infrared
cutoff represented by the smallest observable physical mode, i.e. by considering a finite
space, a sort of “box” of observation, with a size equal to the current horizon length.
As expected, tensor modes provide, as well as the scalar modes, observably small cor-
rections at one loop level, as long as the basic inflationary scenario is concerned. Their
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computation is nevertheless instructive and provides a path that can be followed in the
investigation of “non-standard” models of inflation. More appealing results are for in-
stance expected in inflationary scenarios described by non-canonical Lagrangians, some
of which, P(X, ¢) models, have been described and analysed in this thesis.

Motivated by an interest in models that combine non-Gaussianity and statistical
anisotropy predictions for the CMB fluctuations, we have worked on theories of in-
flation where primordial vector fields effectively participate in the production of the ¢
perturbations, eventually focusing on some SU(2) vector fields models. The two, three
and four point correlation functions in these models result as the sum of scalar and vec-
tor contributions. The latter are of two kinds, “Abelian” (i.e. arising from the zeroth
order terms in the Schwinger-Keldysh expansion) and “non-Abelian” (i.e. originating
from the self-interactions of the vector fields). The bispectrum and the trispectrum
final results are presented as a sum of products of isotropic functions of the momenta
(F, and G, in the text) multiplied by anisotropy coefficients (which we indicated by
I, and L,) that depend on the angles among all gauge and wave vectors. The ampli-
tude of non-Gaussianity has been evaluated through the parameters fy; and 7n; in
particular we have discussed the dependence of these functions from the non-angular
parameters of the theory. We have provided the comparisons among the different (scalar
versus vector, Abelian versus non-Abelian) contributions to fyz and 7y, noticing that
any one of them can be the dominant contribution depending on the selected region of
parameter space. In particular, we have stressed how the anisotropic contributions to
the bispectrum and the trispectrum can overcome the isotropic parts. An interesting
feature of these models is that the bispectrum and the trispectrum depend on the same
set of parameters and their amplitudes are therefore strictly related to one another. We
have presented the shapes of both the bispectrum and the trispectrum. The isotropic
functions appearing in their final expressions have been analyzed separately from their
anisotropy coefficients. The bispectrum isotropic functions have been found to prefer-
ably show a local shape. The trispectrum ones have been plotted selecting equilateral
and specialized planar configurations. Finally, the full expressions (i.e. completed by
the anisotropy coefficients) of bispectrum and trispectrum have been presented in spe-
cific momenta configuration, in order to provide a hint of the modulation of shapes and
amplitudes operated by anisotropy.

In our view, the most promising features of these models consists in the possibility
of providing non-Gaussianity and statistical anisotropy predictions that are related to
one another because of the fact that they share the same underlying theory. Models
that combine both types of predictions could be more easily testable and, from non-
Gaussianity measurement, more stringent statistical anisotropy predictions could be
produced or viceversa.

Inflationary models that do not spoil the current agreement with experimental data
constitute a huge variety but many of them have very distinctive features that might
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be confirmed or ruled out by observations. Both the the non-Gaussianity and statisti-
cal anisotropy predictions and the nature and the amount of higher corrections to the
cosmological correlation functions can be ranked among these distinctive features and
certainly deserve further investigations, looking forward for a confront with new and
promising experimental data.

While completing this thesis, the Wilkinson Microwave Anisotropy Probe (WMAP)
team published its seven-year data analyses [153, 154]. The new bounds on non-
Gaussianity from this study are given by —10 < f#" < 74 and —214 < fl < 266, at
95% CL.
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15. Appendices

15.1. Computation of the interaction Hamiltonian
The propagator of two fields ¢; and ¢ is defined by (see for example [151])
(6162) = [ Dop1IES M- H), (15.1.1)

where II is the momentum conjugate to ¢ and H is the Hamiltonian density. If H is
quadratic in II, as it happens for example in flat space-time for a field governed by a
Lagrangian L = [ d*z (%Qﬁ’% — V(¢)) the square in the exponent can be completed
and the integral in II evaluated and all is left is

(p1¢2) = /que“' (15.1.2)

So, if an interaction term with time derivatives appears in the Lagrangian, I and ¢ are
independent fields in the path integral. This will provide some extra vertices that need
to be accounted for in the Feynman diagrams. We sketch a derivation of these extra
vertices. It will turn out to be similar to what is done in [108], although complicated
by the presence of gravitons. To keep the calculations easier we will at first ignore all
spatial derivative and tensor indices, this will also make the notation simpler. Also, we
will momentarily ignore all numerical real coefficients; it is instead very important to
keep track of imaginary coefficients, time derivatives and powers of the scale factor a,
so we will make sure they are all accounted for in our analysis.

The total action is S = [dn (L, + L), where

Ly =a*y + 1.7 06" + T4 +Tp00' 7 +T.506% +Tor”
+ )\<zm5¢, + )‘¢>¢77, + )‘wv’/’
Ly = a%6¢” + 1100 + 200" +wis” + \o¢, (15.1.3)
where f* = df /dn and where we define

Iy, ~ay, (15.1.4)
Ty~ adg, (15.1.5)
Iy ~ ¢a’do, (15.1.6)
Iy ~ a?0¢?, (15.1.7)
L.~ a*5¢ry, (15.1.8)
L, ~a*y?, (15.1.9)
w~ adp, (15.1.10)
Aogg ~ a6’ (15.1.11)
Agy ~ a0, (15.1.12)
Apry ~ a6, (15.1.13)
Ay ~ ay®. (15.1.14)
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Notice that in equations (15.1.4) through (15.1.14) we use the equivalence symbol
meaning that we skeep details about integrations in momenta and real coefficients.
The conjugate momenta are

5_[/ / / / / / ’ ’
1" = 57, = (12")/ + )"Y’Y’Y + )\¢¢>’Y + F7¢5¢ + F7(5¢ ? + F¢")/ (5¢ + F»y»y'}/ ’ + F»y'}/ 2, (15115)

5 (5¢")

We solve perturbatively the equations (15.1.15) and (15.1.16) in order to derive 4" and
8¢ to fourth order

Y= a0 4 My o Aggy a7 Tl + a7 T IO + o T TTY

+ a T 1 + o T IV + a T[4 117 + a T, I IT?

+ a STy I TI? + a 2T, 117 (15.1.17)
0¢" = a [T + a ' T, IV + a T, Y IT Y + 07T 117 + Mgy

+ a 2T 1% + a1 T T2 + @ 2Toll? + Agge + a *wIT?TT?

+ a Ty + a Ty Ay + a T DTG IT? + a7 T T 117

+ a7 T Aggs + 0 ThwII’TI?). (15.1.18)

¢ =

=17 06 + Ty + Mgy + 0200+ T166 + T208 + Mgy + wde (15.1.16)

The next steps are: derive the hamiltonian H = II7v' +11°6¢ — L ('y, 50,7, (5¢/), where
we need to plug in the solution (15.1.17) and (15.1.18) for 4 and d¢ ; construct the
action as S = Sy + S, where Sy = [dn (L, + Ls) and Sy includes the terms that
depend on the conjugate momenta of the fields (a change of variables similar to the one
that Seery performs in [108] over the conjugate momenta will also be necessary).

Let’s consider the vertices in Sy that are involved in the corrections to the one loop
point function for the scalar field

Si D / dn [a D166 T + @ 'TH T + a Ty T + a 'L TITIY
+ a0 T + a’4w5¢lH¢H¢}. (15.1.19)

The first three vertices belong to the third order part of the action; a *I';6¢ II? and
a—?T17/TI?, provide a correction to the two point function at one loop with two vertices.
Because of the presence of I'y which involves a factor of gﬁ, it is subleading in slow roll
order w.r.t. the corrections coming from fourth order vertices. We will therefore neglect
these diagrams. The same applies to the second vertex, a=*I';II?TI?, although this may
contribute to correcting the one point function

2 ® ,
(6¢r(n*)) D a%ﬁ / d*qf1(9) /_ noo dn'6(0) (1 — z’kn’) e 1 e, (15.1.20)

where (' is a numerical real coefficient and §(0) is the Dirac delta function deriving
from the propagator of the I1?’s and f; is a scalar function of the internal momentum.
The main contribution to the integral is due to times around horizon crossing since at
early times the rotation to imaginary plane of the contour integral makes the exponent
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decrease rapidly to zero and moreover n* was chosen to be just a few e-folding after
horizon crossing. Also, since the integrand function goes to zero as 1 approaches zero,
we get a good approximation of this integral taking the upper limit n* — 0. The result
is purely imaginary and it cancels out with its complex conjugate.

Let us now move to the fourth order vertices. From a *T'5I1¢I1? we have

(00 (17)00, (n") *Cg/d qf> cj’)/ dn 6(0 1—zkn) 2k 4 . (15.1.21)

The same consideration as in (15.1.20) apply to the integral above, which gives a zero

contribution, as well as the following diagrams (corresponding to the last two vertices
n (15.1.19))

<5¢E1(77*)5¢,;2( A, O3/d qf3 (j)/ d77 5(0 (1 _ ikn/) 62z‘k7/

+ —04/d qfs q)/ dn (0 (1 - ikn/) 2k 4 e (15.1.22)

15.2. Study of leading slow roll order vertices in the fourth order action

We are interested in computing the correlators just a few e-foldings after the scales we
consider cross the horizon, so we can assume that the slow roll parameters remain small
and can be treated as constants during this length of time. It is then correct to limit
our interest to the leading order slow-roll contribution to the action .

Let us start from the study of the slow-roll order of the fluctuations derived as solution
to the constraint equations:

ay = \/gQal [0¢],

01 = /eQy,[6¢],

2 = €Ray [00%] + VESw[00,7] + Tas[067],

O = Ry, [00°] + V/ES9,[00, 7] + To,[69%] + €° Up, [09%] + Vi, [77]

+ &2 Wy, [66,7],

Bj = eR;[00°] + VeS;[00,7] + Tyl69%] + Vj[77),
where S[0¢, ] is a linear function of d¢ and/or its derivatives and a linear function of
v and/or its derivatives, R[§¢?] is a quadratic function of §¢ and/or its derivatives and
so on. Notice that the first order fluctuations are subleading (~ /¢) w.r.t. the second

order ones (~ &"). This criterium allows a suppression of a large number of terms in
the 4th order action based on keeping the leading order (i.e. ~ %) terms only

1 .
Sy —a / dtd ( i35+ 0500,) 0185 — 00 (0,62 + B,) 0166 + 3H?a

1 /1 . 1 .
T2 (ZVikajaj5¢ai5¢ + @20;000;00 — Ok02Yap O Yar + §7abawabak92)

1 . 1.
+ ) (ﬂk%b@b%k — §’Yabﬂk3k%b) }
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It can be easily shown that the terms in the action that do not contain the gravitons
reproduce the ones in equation (37) of [152]. The contribution to the power spectrum
due to these vertices has been calculated by these authors, but only for the scalar part.
We will then focus on all the tensor contributions from these and from the remaining
terms. Interaction vertices with both two and four tensor fluctuations will be obtained
once the expressions for ay, 0, and ; are plugged in the action. The terms in the action
that we need for constructing Feynman diagrams with one loop of gravitons are

1 1. 1
S,YQ = a3/d3$dt[ - 4—&2ﬂja2ﬂj - E(SQS@(SQS@J@Q - 4—a263(5¢81(5¢’}/lk")/k] (1521)
1. 1 ) .
— —5000;000; + 5 5 (Q%baa%k (Okb2 + Br) — YarOrYab (5k + 3&2)}-

Let’s plug the expressions for (; and 6, into (15.2.1) considering the terms with two
gravitons. The result is an ensemble of vertices which can in principle contribute
to the one loop corrections to the power spectrum of the scalar field. Apart from
0;000;0¢VikVk;, all of the other terms contain time derivatives of one, two or three of
the four fields

3,0°3; O a* [8*4 (amaj(sq'sama(p — %6000 + 0;000%0¢
- 3m5¢amaj5¢) (VikOiVkj — Yir0iVkj)
+ 072 (0n0;060m06 — 0?000;06 + ;66000

- 3m5$5maj5¢) 7 (VinOivkj — Y0ivig) }, (15.2.2)
. . 1 1 .
000;0¢90;05 D 5¢aj5¢16—H3_28j [2—a28a’7iqaa7iq + Wﬂla} (15.2.3)
2
. . a/ . .
690;56; D 660;56-5-0"20; YD — 1axDivis (15.2.4)

2 .
YD D2 D VDo 020 — 6HO S — 66 — iaiad)aia(ppaz@
A4H a?

YarDa ok Bk D Var0a k200" [ OOk GO — 076600
+ 0406070 — OnddOn ke, (15.2.6)

YabOx Va3 D VabOVabD " [ Om kGOm0 — P3Gk + 04005
— OO 0k00)| (15.2.7)

YabOkVabOrb2 D ’Y;zbak%b[ —6HO ™ (325@% + 0j5¢3j5¢3)

— 54 — %aiaqﬁaiaqﬁ] (15.2.8)

We will now prove that the vertices that include time derivatives do not actually
contribute to the two point function. First of all notice that the tensor fields carry
polarization tensors €;; with the property ¢‘e;; = 0 and are always contracted with

71



other tensor fields in the calculations; this implies that, if a partial derivative index is
contracted with a tensor index, that diagram will be zero. Based on this observation,
we can ignore several of the vertices with time derivatives. We are eventually left with
only two of them, that we will call Vi, V5 and V;

‘/1 ~ aj (6¢aj5¢) 8_2 (aarchaarch) ’ (1529)
Vo ~ 0; (660;66) 072 (Yavan) (15.2.10)
Vs ~ YauOkYab (B + Ok02) (15.2.11)

where (15.2.11) is given by the sum of (15.2.7) and (15.2.8). Notice that the ~;; fields

need to be contracted between each other and that 3, eg\q*eg\; —=constant [120]; the

derivatives of ¢ contract with derivatives of v, so this produces k- ¢ factors. Therefore
we have

* * . - - d3 = n* ’ ’
<5¢151(77 )5¢k5(77 DVitvy ~ Zé(g)(h + /f2)Hf/q—3qf1(q2)k : Q/ioo dn f2(n) + c.c(15.2.12)

where fi(¢?) and f,(n') are some functions of ¢° and n'. This contribution is evidently
zero for symmetry reasons.

15.8. Complete expressions of one-loop two-vertex diagrams to leading order

In the following we provide the explicit expression for Egs. (5.26) and (5.30). Eq. (5.26)

reads as
A 3) /1. -
(63 ()56, (1)) 1.0y = 0@ (R + ko) 75 (o In(k) + az In(ke) + az), (15:3.1)
where
4 *2 *4
a; = — 1—5(5 + 5272 + 227), (15.3.2)
1= —— [~ 24 (5= 80,5, + dro, — 80.,5,)2" — 80, + 25,0,
15*2
— 20,5.)2" + (14 80,6, — 470, + 80,5.)7™], (15.3.3)
1 ~ 2 _ -
a3 = s [ — 64— ( — 3120 + 151360.6, — 4507206, — 756870,

+ 225m%0, + 1513605, )22 — (1513670, — 4507°0, + 3027260,

— 900750, — 3027205, + 90006, )™ — (— 672 — 151360,

+ 4507206, + 7568m0, — 22570, — 1513605, + 4507r208&8)x*4

— 2082*°| + p, (15.3.4)

and p is a constant left over from renormalization of ultraviolet divergences. We have
defined

s = sin 227,
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0. = €08 21",
g5 = Si(227),
&. = Ci(2z%),

where Si and Ci stand for the sine-integral and the cosine-integral functions, i.e.

Si(x) = /O @dt,

CI(ZB) = /OI %dt + ln(:ic) + 7,

with v indicating the Euler Gamma function.
The expression for Eq. (5.30) is

(605 ()00, (1)) (1z.20) = 70 (R + ko) o5 (et exIn(ke)),  (15.3.5)
where
c —i< 5 +107—|—5Ox*2) (15.3.6)
P 295 \ g2 ’ o
4 /4
= 1). 15.3.
“ 15(:¢*2+) (15.3.7)
Finally the quantity f; appearing in Eq. (6.1) is given by
fa=az+e+a, (15.3.8)

where o' = 2 (1 + 2*2/3) a from Eq. (5.13).

15.4. Background and first order perturbation equations for the gauge fields

The equations of motion for the gauge fields and for a Lagrangian as in Eq. (8.11) with
f = 1 have been completely derived for the U(1) case in [135]. We are going to carry
out a similar calculation for the SU(2) case

! vB (A v
=50 V=99 " (FS5"" + 9. BLBS )| + M*g" B,
_i_gcgabcg'yugdﬁF’g?B)ng + gzgabcgbb’c’guachﬁBngBE’ -0 (15'4'1)

where F(%)* = §,Bs — 9, Bs.
The v = 0 component of the equations of motion is

0; B} — 0;0;Bf + > M B§ + g.e*| — (0;BY) B§ — 2B}0; B — B!B;
+gcgcb/clB?Bng;/:| _ 0 (1542)
where B}, = Bf(7,1).
Let us now move to the spatial (v = 4) part of (15.4.1)
nDa Ha 1 a a Ha a 1 a
B! + HB} — ﬁajajBi + M?B¢ — 0;By — HO; B + ?aﬁij

abc

+gee™[HBYBS + ByBS + BYBe] — gfa—2 [(9,B2)B; + B, B
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g (0,55 By — BLBS) — .5y (0.0 B — (0,8 B

2
+g2ebeett [BSBS/BS'} - %5““5%"3/ [BjBf/Bﬂ =0 (15.4.3)

If we contract Eq.(15.4.1) with 0,, we get the integrability condition
(aM)2Bg — M0 B¢ + 3H (0,0:B; — 0:B?) + gee”™*|2H (0,B! B + Bl B§ + BYBS) — 0, BB

c c 2 b e c ba2 e b c b c 2 b e
~0.0;BYBS)| + gietee” e [a?(BgBY BS + ByBY B + BBy By ) + 2HB{BY BY
~B{By Bf — BiBl BY — BiBY B; — 0iBiB! By — BioiB! By — BiB! 0.5;

1 cpb nc c v e cpb ¢

+—5 (OB B By + Bjo.BY By + BiB! OB; )] =0 (15.4.4)

which reduces to Eq.(7) of [135] in the Abelian case.
Combining Eq.(15.4.4) with Eq.(15.4.2) we get

(aM)*Bg — M0, B + 3H (a® M*Bf + goe®| — (0;BY) B; — 2B}0; B — BB + g« BB BY |
+g0€" [2H (0, B! BS + B0, BS + BUBS) — 0; B} B

5 C - C C ; C 1 C C C C
—BYBS + 9;ByBS — 0°ByB§ — 0; B! B§ + — (Bf@QBi + 0;B}0; B + B9;0;Bf + 0° BYB;
~0.0;BYBS)| + g2ettee e (a2 (BGBY B + ByBY By + ByBY By ) + 2HBIBY BY
_BeBYBY — BSBY B — BEBY BY — 0,BSBY BS — BSo,BY B — BEBY 0,B¢

1 c b/ cl c b/ cl c b/ cl
+—(0B;B! B; + Bj0.B! Bj + BjB! 0,B; )| =0 (15.4.5)
Plugging this into Eq.(15.4.3) we get
. ) 1
By + HBj, — —0;0;B; + M? By, + 2H0, B

a

1 abc b c b c S5b pe cb’'c’ pb pb R

————0u| — 3H (goe*"[ — (0;BY) B§ — 2B0; B — BB + = BIBY BY |)

(an)
+gc€[2H (0, B! BS + BYO,BS + BYBS) — 0; By Bs

c c 2 b pc c ba2 nc b c b c 2 b e

~BYB¢ + 9, BYBS — 0* BYBS — 0,BYBS + ?(Bia B¢ + 9,B%0; B¢ + B0,0,Bf + 0° BY B
~0,0;B!B)| + g2e e < [o?(B§BY B + BBl B + B$BY BS ) + 2HB{ B} B
_BeBYBY — BSBY BY — BBY BY — 0,BSBY BS — BSo,BY B — BSBY 0,B¢

1 c b/ cl c b/ cl c b/ cl
+—(0B;B! B; + Bj0.B! Bj + BB 0,5; )|

+g0e°" | H ByB, + BB, + BBy — ga—: (0;BY)B; + B0; B
+g.2°[ (0, BY) B§ — BLBS| - gc%zc (0,BY)Bs — (9;B%) B
g2 [ BSBY BS | — Z—ggabcgbb%’ [B¢BYBY| =0, (15.4.6)
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Let us consider the background part of the vector fields, i.e. 9;B;; = 0. Then from
Eq.(15.4.2)

a’M?B§ + g.c*| — BYBS + g.c”“ BUBy BY | = 0. (15.4.7)

Before proceeding with the derivation of the equations of motion for the background
and the field perturbations, it is necessary to make some comments about Eqs. (15.4.6)
and (15.4.7). One approximation that we have been using in the computation of the
cosmological correlators is allowing the A¢ fields to undergo slow-roll during inflation.
One possible way to achieve this is by restricting the parameter space of the background
gauge fields through the request that their temporal components should be much smaller
than the spatial ones, BY < |B?|/a(t), b = 1,2,3, and, in addition to that, assuming
BY ~ B§, b,c = 1,2,3. With these assumptions, the temporal component can be
factored out in Eq. (15.4.7), using the approximation B¢ ~ HB?® (valid in a slow-roll
regime). A solution to (15.4.7) is then given by By = 0. Adopting this solution and
plugging it in Eq (15.4.6), it is easy to show that a slow-roll equation of motion for the
physical fields

A% 4 3HA? +m2A =0 (15.4.8)
follows from (15.4.6) if we set M? = m? — 2H? with H < m2 and if

2 2
g A! (A1)
< , 15.4.9
< mo ) (A2)% 4 (A3)° — (A43)% cos? O3 — (A2)? cos? Oy, ( )
2 2
geA? (4%)
<m><<A12 — ] (15.4.10)
0 (A1) + (A3)7 — (A3)7 cos? Oa3 — (A1)” cos? b1
3\ 2 312
ge (4%)
Kl ] (15.4.11)
my (AN)” 4+ (A2)” — (A%)” cos? Oa3 — (A1) cos? b3

are satisfied. In the equations above, we defined A* = |/Y“| and cosfy, = A2+ A®,  and
b running over the gauge indices. The quantities appearing on the right-hand sides of
Eqgs.(15.4.9) through (15.4.11) can be either large or small w.r.t. one, depending on the
specific background configuration, i.e. on the moduli of the gauge fields and the angles
Oup-

Suppose now the conditions described above are all met, then from Eq (15.4.6), in terms
of the comoving fields, we have

B¢ + HB® + M*B® = 0. (15.4.12)
Let us now derive the equations for the perturbations. Eq.(15.4.2) becomes
0;0B — 0°Bf + o> M3 By + g.e"| — 0;6 B} By — 2BL0;0BS — 6B} B; — Bl5 B
e (SBUBY BS + BYSBY BS + BYBY 8BS )| =0 (15.4.13)
Eq.(15.4.1) for the field perturbations gives

. ) 1 1
0BY + HSB! — —8,0;6 B + M?0B{ + —0,0,6 B¢ — HO,6 B — HO,0BS
a a
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9e abc[(@ 5Bb)Bc+Bba 5Bc:| _Ye abc|:(a 5Bb) (8]-(535)3;}

a2 a2

gc abc bb' ¢’ c pb pc c b nc cpb’ c

— et 6B BY B + BioB! B + BB 0By |

+gce™ [H (BYOBE + 0BYBY ) + 0BYBE + BYOBE + 0 BYB; + BhoBe|

9.2 (0,6 By BY — 0 B! B§ — B

+g2ee e [SBSBY By + BioBY By + BgBY 655 | =0 (15.4.14)
Finally from Eq.(15.4.6) we get

oB¢ + HSBY — %32533 + M?0B¢ + 2H0;0 B§ + (~ gterms) = 0. (15.4.15)

When calculating n-point functions for the gauge bosons, the eigenfunctions we need
are provided by free-field solutions, i.e. by solutions of Eq.(15.4.15) with g, being set to
zero. This is exactly the Abelian limit, in fact in this case Eq.(15.4.15) corresponds to
(18) of [135] and can be decomposed into a transverse and a longitudinal part

B\ =
5+ Hoy + M? + (5) §BT =0 (15.4.16)

2%? k\?
5 + <1+72>H80+M2+<_>
I k% + (aM) a

where the time derivatives are intended w.r.t. cosmic time.

§B =0 (15.4.17)

15.5. Calculation of the number of e-foldings of single-(scalar)field driven inflation in
the presence of a vector multiplet

Let us consider the Lagrangian in Eq.(8.11) with f = 1 and M? = m — 2H?. Let us
assume that the SU(2) gauge multiplet undergoes slow-roll as well as the scalar field
but the latter provides the dominant part of the energy density of the universe. This
last hypothesis is necessary in order to produce isotropic inflation (i.e. in order for the
anisotropy in the expansion that the vector fields introduce to be negligible w.r.t. the
isotropic contribution from the scalar field). The expression of the number of e-foldings
is

N = Nucatar + Nocetor = Nocatar + —5 3. A+ A (15.5.1)

mp 2,3
The previous expression can be easily derived from the equations of motion of the system
neglecting terms that are proportional to the SU(2) coupling constant g. and assuming
slow-roll conditions for both the scalar the gauge fields.
The starting point is represented by Einstein equations
8rG

H2 == T (pscalar + pvector) . (1552)

where we split the energy density into a scalar and a vector contribution. In slow-roll
approximation, pscaar ~ V(¢). Let us calculate pyector. The energy momentum tensor
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for the gauge bosons

oL
Tvector _ L (1553)
ogrv
where, as a remainder, L = —(1/4)g"*g" F, F%5 + (M?/2)g" B4B2. So we get
BB m3 m3 H . H?
vector __ 7 0 pa pa a pa a pa a pa
Ty = 5t + S S BIB) + =VBiB) — BB + - BB,
4z gC achaBbBc 9e 8abc abc BbBcBb Bc
a? 2a?
gc abc ab/c/ b pe b/ cl

where sums are taken over all repeated indices. Let us write this in terms of the physical
fields

A‘?‘Aa 2 i ’ /

Tézoector — 22 mO (AaAa + AaAa) + gcgabc (HAa + Aa) AbAc gzcgabcgab c ASA;:AS Af
2

1 %6abc<€ab c A?A;A? A; (15.5.5)

If we neglect the non-Abelian contribution and we set Aj = 0, we are left with the
Abelian result [123]

A“A“
Tvector — 2 + %AaAa (1556)

The equation of motion for the background vector multiplet A% can be derived from
Eq.(15.4.12)
A% + 3HA? + m2A¢ = 0. (15.5.7)

which is equal to the equation of a light scalar field of mass myg, if mg < H. If the
conditions for accelerated expansions are met, Eq.(15.5.7) reduces to

3HA® + m2A% ~ 0. (15.5.8)

We are now ready to derive Eq.(15.5.1). Let us start from the definition of N and keep
in mind Eq.(15.5.2), where we are assuming the existence of a scalar fields ¢ in de-Sitter
with a separable potential governed by the usual (background) equation

¢+3Hp+V =0 (15.5.9)
and slowly rolling down their potential. Then we have
bt Ldt LV ()
N= [ Hat = [ B2 —sre [ 2 ar 8G/ dt
t* £ H g = 3H + *
tV(p) mg\ ATAY dAadt
— AN / 0 15.5.1
87rGt* 31 d ¢¢> SGZ ( >3H T (15.5.10)
where A% = Ao . Aa. So
m2 A¢AY
— 87G / d +87G / 0 a
t*) ¢ Z a(t*) ( 3HA“A“
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1 o0V 1 AY(t) (m? Ag Ae
- — —d _ / Z0) Tt gpe
m3 /¢(t*) \% ¢ + Z < ) mg)A;-lA‘;
1

o) 1V a0
— Z_dé / Ad 15.5.11
m2 Jou) V' <4mp> 2 ( )

after using the slow-roll conditions. Eq.(15.5.1) is thus recovered.
In the final expression for the bispectrum then we can substitute

dN 1
N! = = Af 15.5.12
“ o dAY <2mp> ( )

where the derivatives are as usual calculated at the initial time n*.

The upper limits in integrals such as the ones in Eq.(15.5.11) depend on the chosen
path in field space and so they also depend on the initial field configuration. It is
important to notice though, as also stated in [148], that if the final time is chosen to be
approaching (or later than) the end of inflation, the fields are supposed to have reached
their equilibrium values and so N becomes independent of the field values at the final
time t. Eq.(15.5.12) is thus recovered.

15.6. Complete expressions for the functions appearing in the bispectrum from quartic
nteractions

The anisotropy coefficients I,, in Eq. (9.49) are listed below
Lo = Ve (N 59 (8 &Y)
(V) [(=2(k Na') (ks *') (A N) (k- N7)
ky - N9 (ks - k )k1 kg) (1—2) 3—>2)}
H1) (2—>3)}
V) +2 (ks N) (ka- M) (s - N¥)

— (k- N (k- N )(k;3 N° )kl ks — (ka - N) (ho - NY) (ks - N) oy - s )

+ 2o 1)+ 3o 2)] (15.6.1)
Iy = ((ky - N) (ks - NY) (ko N) (hy - o) (s - A%)

— (k- N) (ko - NY) (b - N¢) (by - ko) (B - A°) ) + (1 3) + (2 3)(15.6.2)
Iip = e"Ver [ (N A°) (k- N) (ko N¥) + (ko - N) (b - N) Yy - ey

+ (2 (ky - &%) (k- N) (ko NY) (ky - N¥) ) + (1 2)]

L9 Gl ) G ) i) G ) G ) -

+ (1o 3)+ (2o 3)] (15.6.3)
Ipg = et co [4 (N” A)(l%g N )(k3 J\7)

[ (oo W) (R A%) (B V) (- N) 4 (s - N) (- N¥) ) o )
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+ 2«1+ (2«

— (2 (ke &%) (ko - )(k NY) (ky- N¥Y)) + (1 2) + (2 3) + (1 3)]
= (- A bk (- N )(’ﬂs-ﬁd) (ks - N) (k- N¥))) + (1 = 2)|
IOV () (- 7)o (7)) (- )] 1360

where ¢ — j means ‘replace k; with kj’, whereas ¢ < j means ‘exchange k; with k;’.

3)}

The isotropic functions F), in (9.49) are given by
1

Frpp = REIVTETEE [Appe + (Bpgg cosz® + Cppgsinz®) Ejz*], (15.6.5)
Fu = n°(¢")Fppe, (15.6.6)
Fug = n*(2")Fepp, (15.6.7)
Fpp = n*(2") Fepp, (15.6.8)
where
Appr = ko' (= K2(k) + k3 + k3 — 4kykoks) — B (koks + kaka + kyks)

t hakoks(kF + K + k3 — koks — ks — kiks)2™?) (15.6.9)
Bppr = (K + k3 + k)2 (= k* + kikoksz™) (15.6.10)
Cegpp = — k(]f:f + k3 + kg’)x*2( — k* + (koks + kiks + ]ﬁkS)x*Q) (15.6.11)

In the previous equations we set k = k1 + ko + k3.

15.7. More details on computing the analytic expressions of vector-exchange diagrams

We report the expressions of the functions A, B...P introduced in Eq. (9.57)

_ 2 %2 (k1 + ko) 2 o o | (k14 Fg) a*
A = (—16]€ + k’lkgx ) COS [T — 4k (kl + ]{32) I sln T s (1571)
B =A [1{31 — ]{53, kg — ]{34] s (1572)
— x (k1 + ko) 2 2 N R
C' =4k (k1 + ko) " cos [T + (—16/€ + k1kox )sm | (15.7.3)
D =C [kl — ]Cg, kg — k’4] s (1574)
E = (8/€2 (kg + ks + ky) — kf2k3k4x*2) cos [(km i kj}j k) 2 1
ko + ks + ky) x*
+ 2 (kpy + ks + k)2 sin [( nt i’]: e ] , (15.7.5)
F =F []{33 — ]{31, ]{34 — I{ZQ] s (1576)
ko + ki + ko) x*
G =2k (kg + ki + ko)* " cos [( 2 T ik—i_ 2) 1
ke + ki + ko) x*
+ (—8/{?2 (kpy + k1 + kg) — kf2/€1k2x*2) sin [( Ela i]j— 2) 1 ; (15.7.7)
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L= (K 4K + Kk + kpkd + Kk + ko) + Ry (k2 + k) o*2si l(kﬁ thk) ] ,
kg + ki + ky) o
M= (K + kS + Kk + kpkd + Kk, + ko) + k(2 + 13)) 2% [( ot ) ] ,
N =M [k?3 — ]{31, ]{34 — I{ZQ] s (1578)
P =1L [k?l — ]{33, ]{32 — k?4] . (1579)

The anisotropy coefficients introduced in Eq. (9.66) have the following expressions

tr = kiks (i -
ty = kyky (K
ts = koks (ko
ty = koky (Ko
ts = kky (Ky -
te = kiky

tr = koks (ks

T T
H> H)
o o

T R[> T[T

o) (- o) (B - ) (s
ki) (k- ko) (Ra - o) (Ra-
EOICRDICRAIC
o) (i o) (s ) (ks
i) (- ) (- ) (o
bis) (- ka) (k- Fa) (ka
i) (i) (B ) (ks
) (i ) (b ) (ks
ki) (k- k) (ke - ko) (ke

T [
H) H>
o o

>

H>

w
N N N

>
=

Let us now list all the scalar products appearing in the equations above

]% ]% kT RIS ]% ]% _ 2k{+kI—kT K2 ]% ]% R
L7hM2 ™ T okikpy 1 Mg — 21k L M4 ™ T okiky
]% ) ]%A . kaQJrk%fk% ];. ) ]%A . 2k§+kifkfﬁ27kfﬁ4+k% ]% ) ]%A . k%ﬁlfkarki
2 M2 T T oksky, 3 M3 2kzk 47 M4 T T okgky,
N N 2 2 _ 2_1.2_1.2 ~ ~ 2 2 _1.2_ 2_ 1.2 ~ ~ 2 2_ 1.2 _1.2
b K2 k% —2k3—kT—kZ o h K2 +kZ —k7 -2k K3 o h Kk —kZ —KZ,
3 M2 2kok 1y 27 M3 2k1 k3 2" M 2kaka
b b — kT k2 —ki—k3—2k] b B — kZ +k7 —ki—k3—2k] o o — k3—kZ, k3
4" M2 T 2kik 4" M3 T 2kak 2" M4 T T okokyy
T o — ki+ks—k7 T — ki +k3—k? k7, o — k2 —ki—k]
! - 2 2k1]2€2 2 i 22]{:12’% 2 ! 1 2 2k1]2€4 2
]% ]% N k12—k4—k3 P ]%A lc2—lc3—lcf4 ]% ]% o k14—k2—k3
3 M T T Okaks 37 MY 2kskyy 27 T 7 Okoks

)

where k; = ‘EZ|7 /Afz = Ez/kza /g] = Ez + EP kij =

external wave vectors.

|k + k;|, i and j running over the four

15.8. Complete expressions for functions appearing in point-interation diagrams

We provide here the expressions for the coefficients appearing in Eq. (9.89)
Qerpr = v — k(K] + K°ky — ki + K°k3 + KPksky — 3K°k3kska + kK3 ks

80




— k3 k3kskd + PRS- K3ko (K3 — kksky — 3k2ky — 3ksk? 4 K

+ k2 (ks + ky)) + k3 (— 1+ k3 (ks + ky)) — 3K3K3 (kaky + ko(ks + ky))
+ k(= 14+ K (kg + ks + kq)) + K3 ky (k3 + k3 — 3k3ky — 3kski + ki

— 3k3 (ks + ky) + E*(ky + ks + ky) — 3ko(k3 + 3ksky + k3) — K(ksky

+ ko(ks + ka))))] + 2*°[K* (ki koksky + kokska (K5 + k3 — 3koksky + k)
+ ki (ksky + ko(ks + ky)) — 3kT(k3k] + koksky(ks + ky) + k3 (k3 + ksky
+ k) + ki (kSksky + ki (ks + ka) — 3k3kska(ks + ka) + kska(k3 + k)

+ ko(k3 + kiky — 3k3K3 + ki + kska(K* + kD)) — 32 kT k3k3k], (15.8.1)
Apgre =k (K + K + K + k) 2%, (15.8.2)
Brrpp = k' — k (kska + ka (ks + ka + ky (ko + ks + ka) 2 + kakokskaz™)) - (15.8.3)
Crppr = ka* (K — (kaksk + by (kska + bz (ks + k1)) 2°2) (15.8.4)
Dippp = — ka™ (K — (kakska + ky (kska + ks (kska))) 272) (15.8.5)
Erppr = k* — k? (ksky + ky (ks + kg) + Ky (ko + ks + ky)) 2*2 + kikokskyr™,  (15.8.6)
Fpppp =k (K + K} + k3 + k) 2%, (15.8.7)
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