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Abstract
In every living organism, the entirety of its hereditary information is encoded, in

the form of DNA, through the so-called genome. The genome consists in both genes

and non-coding sequences and contains the whole information needed to determine all

the properties and functions of each single cell. Cells can access and translate specific

instructions of this code through gene expression, namely by selectively switching on and

off a particular set of genes. Thanks to gene expression, the information encoded into the

active genes is transcribed into RNAs. This set of RNAs reflects the current state of a cell

and can reveal pathological mechanisms underlying diseases.

In recent years, a novel methodology for RNA sequencing, called RNA-seq, is replacing

microarrays for the study of gene expression. The sequencing framework of RNA-seq

methodology enables to investigate at high resolution all the RNA species present in a

sample, characterizing their sequences and quantifying their abundances at the same

time. In practice, millions of short sequences, called reads, are sequenced from random

positions of the input RNAs. These reads can then be computationally mapped on a

reference genome to reveal a transcriptional map, where the number of reads aligned on

each gene, called counts, gives a measure of its level of expression. At first glance, this

scheme may seem very simple, but the implementation of the whole analysis workflow is

in fact complex and not well defined. So far, many computational methods have been

proposed to perform the different steps of RNA-seq data analysis, but a unified processing

pipeline is still lacking.

The aim of my Ph.D. research project was the implementation of a robust compu-

tational pipeline for RNA-seq data analysis, from data pre-processing to differential

expression detection. The definition of the different analysis modules was carried out

through several steps. First, we drafted a basic analysis framework through the study of

RNA-seq data features and the dissection of data models and state-of-the-art algorithmic

strategies. Then, we focused on count bias, which is one of the most challenging aspects

of RNA-seq data analysis. We demonstrated that some biases affecting counts can be

effectively corrected with current normalization methods, while others, like length bias,

cannot be completely removed without introducing additional systematic errors. Thus,

we defined a novel approach to compute RNA-seq counts, which strongly reduces length

bias prior to normalization and is robust to the upstream processing steps. Finally, we

defined the complete analysis pipeline considering the best preforming methods and

optimized some specific processing steps to enable correct expression estimates even in

the presence of high-similarity genomic sequences.

The implemented analysis pipeline was applied to a real case study to identify the
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genes involved in the pathogenesis of spinal muscular atrophy (SMA) from RNA-seq data

of patients and healthy controls. SMA is a degenerative neuromuscular disease that has

no cure and represents one of the major genetic causes of infant mortality. We identified

a set of genes related to skeletal muscle and connective tissue disorders whose patterns of

differential expression correlate with phenotype and may underlie protective mechanisms

against SMA progression. Some putative positive targets identified by this analysis are

currently under biological validation since they might improve diagnostic screening and

therapy.

To pose the basis for future research, which will focus on the optimization of the

processing pipeline and to its extension to the analysis of dynamic expression data,

we designed two time-series RNA-seq data sets: a real one and a simulated one. The

experimental and sequencing design of the real data set, as well as the modelling of the

synthetic data, have been an integral part of the Ph.D. activity.

Overall, this thesis considers each step of the RNA-seq data processing and provides

some valuable guidelines in a fast-evolving research field that, up to now, has prevented

the establishment of a stable and standardized analysis scheme.



Sommario
Il patrimonio genetico di ogni organismo vivente è codificato, sotto forma di DNA, nel

genoma. Il genoma è costituito da geni e da sequenze non codificanti e racchiude in sé

tutte le informazioni necessarie al corretto funzionamento delle cellule dell’organismo.

Le cellule possono accedere a specifiche istruzioni di questo codice tramite un processo

chiamato espressione genica, ovvero attivando o disattivando un particolare set di geni e

trascrivendo l’informazione necessaria in RNA. L’insieme degli RNA trascritti caratterizza

quindi un preciso stato cellulare e può fornire importanti informazioni sui meccanismi

coinvolti nella patogenesi di una malattia.

Recentemente, una metodologia per il sequenziamento dell’RNA, chiamata RNA-seq,

sta rapidamente sostituendo i microarray nello studio dell’espressione genica. Grazie

alle proprietà delle tecnologie di sequenziamento su cui è basato, l’RNA-seq permette di

misurare il numero di RNA presenti in un campione e al contempo di “leggerne” l’esatta

sequenza. In realtà, il sequenziamento produce milioni di sequenze, chiamate “read”, che

rappresentano piccole stringhe lette da posizioni random degli RNA in input. Le read

devono quindi essere mappate con un algoritmo su un genoma di riferimento, in modo

da ricostruire una mappa trascrizionale, in cui il numero di read allineate su ciascun gene

dà una misura digitale (chiamata “count”) del suo livello di espressione. Sebbene a prima

vista questa procedura possa sembrare molto semplice, lo schema di analisi integrale è

in realtà molto complesso e non ben definito. In questi anni sono stati sviluppati diversi

metodi per ciascuna delle fasi di elaborazione, ma non è stata tuttora definita una pipeline

di analisi dei dati RNA-seq standardizzata.

L’obiettivo principale del mio progetto di dottorato è stato lo sviluppo di una pipeline

computazionale per l’analisi di dati RNA-seq, dal pre-processing alla misura dell’espressio-

ne genica differenziale. I diversi moduli di elaborazione sono stati definiti e implementati

tramite una serie di passi successivi. Inizialmente, abbiamo considerato e ridefinito

metodi e modelli per la descrizione e l’elaborazione dei dati, in modo da stabilire uno

schema di analisi preliminare. In seguito, abbiamo considerato più attentamente uno

degli aspetti più problematici dell’analisi dei dati RNA-seq: la correzione dei bias presenti

nei count. Abbiamo dimostrato che alcuni di questi bias possono essere corretti in modo

efficace tramite le tecniche di normalizzazione correnti, mentre altri, ad esempio il length
bias, non possono essere completamente rimossi senza introdurre ulteriori errori sistema-

tici. Abbiamo quindi definito e testato un nuovo approccio per il calcolo dei count che

minimizza i bias ancora prima di procedere con un’eventuale normalizzazione. Infine,

abbiamo implementato la pipeline di analisi completa considerando gli algoritmi più

robusti e accurati, selezionati nelle fasi precedenti, e ottimizzato alcun step in modo
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da garantire stime dell’espressione genica accurate anche in presenza di geni ad alta

similarità.

La pipeline implementata è stata in seguito applicata ad un caso di studio reale, per

identificare i geni coinvolti nella patogenesi dell’atrofia muscolare spinale (SMA). La

SMA è una malattia neuromuscolare degenerativa che costituisce una delle principali

cause genetiche di morte infantile e per la quale non sono ad oggi disponibili né una

cura né un trattamento efficace. Con la nostra analisi abbiamo identificato un insieme di

geni legati ad altre malattie del tessuto connettivo e muscoloscheletrico i cui pattern di

espressione differenziale correlano con il fenotipo, e che quindi potrebbero rappresentare

dei meccanismi protettivi in grado di combattere i sintomi della SMA. Alcuni di questi

target putativi sono in via di validazione poiché potrebbero portare allo sviluppo di

strumenti efficaci per lo screening diagnostico e il trattamento di questa malattia.

Gli obiettivi futuri riguardano l’ottimizzazione della pipeline definita in questa tesi

e la sua estensione all’analisi di dati dinamici da time-series RNA-seq. A questo scopo,

abbiamo definito il design di due data set time-series, uno reale e uno simulato. La

progettazione del design sperimentale e del sequenziamento del data set reale, nonché la

modellazione dei dati simulati, sono stati parte integrante dell’attività di ricerca svolta

durante il dottorato.

L’evoluzione rapida e costante che ha caratterizzato i metodi per l’analisi di dati

RNA-seq ha impedito fino ad ora la definizione di uno schema di analisi standardizzato

e la risoluzione di problematiche legate a diversi aspetti dell’elaborazione, quali ad

esempio la normalizzazione. In questo contesto, la pipeline definita in questa tesi e,

più in ampiamente, i temi discussi in ciascun capitolo, toccano tutti i diversi aspetti

dell’analisi dei dati RNA-seq e forniscono delle linee guida utili a definire un approccio

computazionale efficace e robusto.
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1
Introduction

In every organism, DNA encodes all the instruction required to build the RNAs and

proteins that are needed to make functioning its cells. Nevertheless, the complexity

of an organism and its ability to evolve through diverse developmental stages or to

respond to environmental stimuli is not explained by this static set of instructions, but

by how and when these instructions are accessed. As pointed out by Alberts et al.
[1], “a complete description of the DNA sequence of an organism does not enable us to
reconstruct the organism any more than a list of all the english words in a dictionary
enables us to reconstruct a play by Shakespeare”. Great part of organisms’ complexity

and dynamicity is indeed explained by gene expression: each cell can selectively activate

the set of genes required for executing specific functions or responses to stimuli. Gene

expression allows selecting specific instructions from the whole genetic information

encoded in DNA and is initiated with their transcription into temporary RNA copies.

Although RNA transcription is just the activation of a cascade of processes and control

mechanisms that made up the complex gene expression machinery, substantial insights

can be drawn from the study of organisms’ transcriptional maps. In 2008, the advent of a

new methodology called RNA-seq, has revolutionized transcriptomics research enabling

the simultaneous characterization of the sequences of the transcripts present in a cell and

the quantification of their expression levels. The possibility of sequencing transcriptomes

at single-base resolution is borrowed from Next-Generation Sequencing platforms, which
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are the technological framework of the RNA-seq methodology. Indeed, Next-Generation

Sequencing technologies produce enormous amount of data, enabling to sequence entire

genomes and transcriptomes in a single instrument run at dramatically reduced time and

costs. Despite being already widely used, RNA-seq is a very recent methodology that is

experiencing a fast and continuous development of both experimental and computational

procedures. In particular, the number of available methods for performing each step of

RNA-seq data analysis has grown at such a fast pace so to prevent the definition of a

unified and standardized computational pipeline.

In this scenario, the research described in this thesis was originally motivated by

the need of a definition of a robust computational pipeline for the processing of gene

expression in RNA-seq studies, focusing on the least characterized or most critical aspects

of data modelling and analysis. In particular, we outlined a comprehensive mathematical

description of data generation starting from initial transcript levels and reviewed currently

available methods for RNA-seq data analysis. In addition, we assessed and compared

state-of-the-art methods for data normalization to identify the best strategy to correct for

different systematic biases affecting data. Due to the limits that we found in most of the

assessed methods, we defined and implemented a new strategy to compute RNA-seq data,

so to directly reduce bias before normalization. Finally, we optimized the quantification

strategy by applying this approach and defining a robust scheme for data pre-processing.

Overall, this thesis encompassess the definition of a computational framework to detect

differential gene expression in human RNA-seq experiments and its application to a real

case study of spinal muscular atrophy.

All the contributions described in this thesis, and related to the definition, implementa-

tion and application of the analysis pipeline, are the results of the research activity carried

out within my Ph.D. program supported by Fondazione CARIPARO: “RNA sequencing

for quantitative transcriptomics”. My full Ph.D. research activity has more widely dealt

with the implementation of computational methods for the analysis of Next-generation

Sequencing data, with application to human health. I was involved in collateral studies

regarding: the assembly and characterization of human pathogens from whole-genome

shotgun pyrosequencing; the study of the human microbiome in chronic obstructive

pulmonary disease and colon cancer through 16s sequencing; the characterization of

causative genes in complex diseases through RNA-seq and exome sequencing. These

research activities are not described in this thesis, but can be partially outlined by the full

list of publications shown in Appendix C (updated to January 28th, 2014).

This chapter provides a short introduction to three prerequisite topics that outline the

research context of this thesis: gene expression, Next-Generation Sequencing technologies
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and RNA-seq methodology. In addition, the aim and the structure of the thesis are

presented.

1.1 Gene expression

In every organism, from bacteria to humans, the whole information needed to build and

make functioning the cells is stored into DNA, in the so-called genome. The DNA contains

all “instructions” required to generate the proteins supporting every cell process. DNA,

acronym for deoxyribonucleic acid, is a macromolecule made up of four basic “blocks”

called nucleotides. Each nucleotide consists of a nitrogenous bases (or simply “base”), a

deoxyribose sugar and a phosphate. Nucleotides can be of four different kinds, depending

on the base that they comprise: adenine (A), guanine (G), cytosine (C) or thymine (T).

These four nucleotides are concatenated one to the other forming a strand (Figure 1.1).

In particular, a phosphodiester bond joins the 5’ end on one nucleotide to the 3’ end of

the previous one, creating a sort of “backbone” of sugars and phosphates. However, DNA

is not single-stranded: the nitrogenous bases, which are hanging out of this strand, are

connected to the nitrogenous bases of an antiparallel DNA strand (i.e. it is built in 5’-to-3’

direction). The matching bases are joined through hydrogen bonds following a strict rule

of complementarity: adenine only matches thymine, while cytosine only binds to guanine.

Due to this property of complementarity, one DNA strand univocally determines the

sequence of its antiparallel strand. The sequence in which the nucleotides succeed one

another in the DNA double-stranded chain encodes the organism’s hereditary information.

In particular, DNA comprises genes, which are sequences encoding specific proteins. Thus,

to accomplish all the necessary processes and functions of the organism that give rise to its

physical characteristics (phenotypes), the information encoded in the genomic sequence

(i.e. the genotype) has to be translated into proteins. Proteins are macromolecules

consisting of one or more chains of amino acid residues that accomplish several functions

within living organisms, such as catalyzing metabolic reactions, responding to stimuli

and transporting molecules. Different amino acid sequences fold into different three-

dimensional structure, resulting in specific properties and activities. Basically, proteins

determine the phenotypes of every living thing. Although several molecules, such as

water, minerals and fats, give shape to organisms’ cells, proteins supply the framework

for their correct organization and functioning.

But how the genetic information encoded into DNA (genotype) is translated into

phenotype? This conversion is accomplished through an intermediary step of transcription

in which the genetic information required to generate the final protein is transcribed
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Figure 1.1: Comparison of DNA and RNA structure. Image taken from [2] and originally
proposed in [3].
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into a temporary template: an RNA molecule. Ribonucleic acid (RNA), likely DNA, is a

nucleic acid made up of a chain of nucleotides (Figure 1.1). Nevertheless, it has some

peculiarities with respect to DNA:

• It is single-stranded and folds into characteristic secondary structures;

• It contains ribose sugar instead of deoxyribose, which makes it less stable than

DNA;

• It contains uracil in place of thymine.

Once the piece of information needed is transcribed into an RNA molecule by an

enzyme called RNA polymerase, RNA is transported from cell nucleus to cytoplasm to be

used as blueprint for protein synthesis. Transcription keeps safe the whole hereditary

information encoded into DNA, while a temporary copy of the message in the form of

messenger RNA (mRNA) leaves the nucleus and reaches the cytoplasm. Following the

instructions written in the mRNA template, the cell can translate DNA nucleotidic code

into an amino acid sequence (a more detailed description of DNA transcription and

translation can be found in [1]).

In eukaryotic organisms like humans, RNA is not directly exported to cytoplasm

but it undergoes some post-transcriptional modifications that transform a pre-mRNA

to a mature mRNA. The first modification involves the 5’ end of RNA and consists in

the addition of a methylated guanine nucleotide, through a process call “capping”; the

5’-methyl cap helps the cell to recognize mRNA from other molecules and protects it from

degradation. Also the 3’ end of mRNA is modified adding a long tail of adenine bases,

called poly-A tail. This addition prevents mRNA to be quickly degraded: the longer the

poly-A tail is, the longer the mRNA lasts and the more it is translated into proteins. The

final step of this modification process is called splicing and prepares mRNA for translation:

non-coding regions, called introns are removed and coding sequences, called exons, are

concatenated together. Although the order of exons is always preserved, some exons

can be removed along with introns, giving rise to different RNAs. This process, called

alternative splicing, enables to produce different proteins (isoforms) starting from the

same gene. In humans, alternative splicing allows to produce 90 000 different proteins

starting from about 22 000 genes, dramatically increasing the coding potential of the

human genome. This mature mRNAs are then transported out of the cell nucleus to

ribosomes. Here mRNA, produced by DNA transcription, is decoded and translated by

a ribosome complex to produce a specific amino acid chain that will later fold into an

active protein.
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The terms transcription and translation specifically identify two different processes, in

which the DNA code is transcribed using the same nucleotidic “language” or translated in

the different amino acid code of proteins. The propagation of the genetic information in

cells from DNA to RNA to proteins is a fundamental process termed the central dogma of
molecular biology. Despite the recognized universality of the central dogma, the existence

of important variations in the genetic information flow, such as the above-mentioned RNA

splicing, have been discovered. For instance, not all genes are translated into proteins,

but some of them see their final product in RNAs that have structural and catalytic roles

in the cell.

Besides the punctual description of the biological activities carried during gene

expression, the power of this process can be better realized when we think that all the

cells of an organism (with few exceptions) have the same genome. This means that

in humans all cells carry the entire set of genes and that, for instance, nervous cells

contain also the genetic information required for growing hair. This finding has been

experimentally proved just in modern age, while ancient biologists originally thought

that genes were selectively lost during cell differentiation specialized. But how is then

cell differentiation achieved? How can cells result in so many and various shapes and

functions despite having the same genetic blueprint? All these differences are achieved by

changes in gene expression, namely by switching on and off different set of genes, thus

expressing different proteins. In this way, each different cell type produces specialized

proteins that are responsible for its distinctive properties. Besides the basic functions

exploited by expressing these housekeeping genes, organisms can change gene expression

in response to external signals. A nice example of this resilience is represented by the Lac
operon in E. coli. The Lac operon comprehends a set of genes required for the transport

and metabolism of lactose. The activation of the genes of the Lac operon depends

substrate available and provides an insightful example of gene expression regulation.

Indeed, when lactose is absent, a protein called Lac repressor binds the Lac operon

blocking the access of RNA polymerase and thus preventing transcription. To be fully

functioning, Lac operon have to interact with an activator protein called CAP. To be able

to bind Lac operon, CAP has to ligate cyclic AMP (cAMP), a molecule that regulates several

cellular responses. In absence of glucose, which is the preferred bacteria carbon source,

intracellular cAMP concentration arises and CAP can bind to Lac operon and activate it,

enabling the assimilation of lactose. This logic, depicted in Figure 1.2, integrates two

distinct signals so to prevent wasteful activation of the Lac operon when lactose is not

present or when glucose is available.

The Lac operon also provides an elegant example of how expression can be tightly
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Figure 1.2: The expression of the Lac operon, needed for lactose digestion in E. coli, is activated
by two signals: absence (-) of glucose and presence (+) of lactose.
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Figure 1.3: Gene expression can be regulated at several steps of the process: (1) gene transcrip-
tion, (2) alternative splicing, (3) transport from nucleus to cytosol, (4) mRNA degradation, (5)

translation into proteins and (6) protein activation and deactivation.
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regulated at the transcriptional level by activators and repressor proteins. In eukaryotic

organisms, gene expression can be tightly regulated at several levels of the flow from

DNA to RNA to protein (Figure 1.3):

(1) Controlling when and how much a certain gene is transcribed;

(2) Controlling how an RNA transcript is (alternatively) spliced;

(3) Selecting which mRNAs are exported from the nucleus to the cytosol;

(4) Degrading specific mRNA molecules;

(5) Selecting which mRNAs are translated by ribosomes into proteins;

(6) Activating or inactivating proteins.

Nevertheless, for most genes, transcription is the primary control because it ensures

that no unnecessary intermediates are synthesized (step 1 in Figure 1.3). Thus, the study

of transcribed RNAs enables the reconstruction of a “gene transcription map” that reflects

which genes are active within the cell in a specific condition and time. Moreover, this

map can comprehend also RNA that are not later translated into proteins, thus allowing

to investigate their role in other processes, such as regulation of gene expression.

1.2 Next-Generation Sequencing

DNA sequencing consists in the determination of the precise order of nucleotides that

constitute a DNA molecule. Frederick Sanger, a British biochemist awarded twice with

the Nobel Prize for chemistry, was one the first scientists working on the development of

sequencing techniques. In 1975, together with Alan Coulson, he published a sequencing

procedure, called “Plus and Minus” technique, in which the E. coli DNA polymerase was

used to copy single-stranded DNA molecules [4]. Although the low automation of this

method allowed the determination of just few hundreds of nucleotides at a time, Sanger’s

group was able to exploit it to sequence the first genome: a single-stranded bacteriophage

ϕX174 [5].

The first breakthrough followed shortly after, when Sanger’s group developed the

“dideoxy chain-termination” method for sequencing DNA molecules, also known as the

“Sanger method” [6]. Thanks to this new methodology, Sanger performed a more rapid

and accurate sequencing of bacteriophage ϕX174 and earned his second Nobel prize

in chemistry. A first revolution happened in early 90’s, with the advent of capillary
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electrophoresis, which eventually led to the development of the first “high-throughput”

sequencers in 1998: the MegaBACE 1000 (GE Healthcare Life Sciences) and the ABI

Prism 3700 (Applied Biosystems) [7]. These 96-capillary instruments allowed sequencing

up to 96 DNA sequences in parallel. Despite several technological improvements, modern

capillary-based platforms, such as the ABI Prism 3730 (Applied Biosystems), are still

based on the same general scheme adopted to sequence the ϕX174 genome.

A second revolution took place in the last decade with the development of the so-called

“Next-Generation Sequencing” (NGS) technologies, which increased the throughput by

a factor of 100-1000 and greatly reduced sequencing costs at the same time [8, 9].

The massive parallelization of the sequencing process that characterizes these new

technologies allows sequencing millions of sequences at the same time, reducing the

costs due to the reagents needed and drastically increasing the throughput per run.

Figure 1.4 shows the costs associated with DNA sequencing projects performed since

2001 for the Genome Sequencing Program of the National Human Genome Research

Institute (NHGRI), and compares them to a curve representing the Moore’s Law (orange).

Moore’s law describes a long-term trend in the computer hardware industry that makes

the “compute power” doubling every two years. The out-pacing of Moore’s Law has an

evident start in January 2008, with the advent of NGS technologies.
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Figure 1.4: Comparison of costs associated with DNA sequencing (in megabase of DNA sequence,
log-scale) and Moore’s law. Data published by the NHGRI Genome Sequencing Program [10].

The 454 Sequencer (Roche Life Science), the Solexa technology (Illumina) or the

SOLiD platform (Life Technologies), were the first NGS platforms developed as a com-

mercial product, and their latest versions are still widely used for most of NGS appli-



10 Introduction

cations. Despite the recent and rapid spread of NGS technologies, a new generation

of single-molecule sequencing technologies is now emerging. Unlike NGS sequencers,

single-molecule sequencing technologies directly interrogate single molecules of DNA

or RNA, resulting in longer sequences, faster sequencing process and reduced bias due

to PCR amplification, which is not needed anymore [11]. Moreover, other technologies,

which exploit innovative techniques with respect to NGS approaches, are emerging and

complementing single-molecule sequencers. Despite their different features, all togethers

these new methodologies promise such an advance with respect to NGS technologies, to

be called “Third-Generation Sequencers”, while the above mentioned NGS platforms are

now seen as representatives of the “Second-Generation”. However, further developments

are needed to fully affirm these new technologies in genomic and transcriptomics studies,

while conventional Sanger sequencing together with Second-Generation platforms are de
facto the standard for most applications of DNA sequencing. In the following, a review of

the main technologies for each type of sequencers is presented.

Sanger sequencing

Sanger sequencing, also called “chain termination method” [6], was the first sequencing

approach developed and, as the majority of sequencing protocols, consists in two steps:

amplification, to obtain more copies of the DNA of interest, and sequencing. Since it

is not possible to directly and continuously read a whole genome from its first base

to the last one, the input DNA is randomly shredded into smaller pieces to ensure a

uniform representation of all genomic regions. These fragments are then inserted and

cloned into a bacterial plasmid to perform amplification, namely to generate multiple

identical copies. The modified plasmid, called “recombinant DNA” because it carries

genetic material from multiple sources, is then inserted into a host organism, such as

E. coli. The replication of E. coli generates a colony, in which each element carries one

ore more copies of the recombinant DNA molecule. Finally, all the clonal copies of the

modified plasmid can be picked and the initial DNA fragment, present in multiple copies

(also called “amplicons”), can be extracted from plasmids using restriction enzymes.

Multiple spatially isolated bacterial colonies have to be created in order to amplify every

DNA sequence separately. This in vivo technique guarantees a low amplification error,

but is slow and barely automated. Once the amplicons are ready, they are sequenced

with a technique that employs the DNA polymerase enzyme. In the presence of deoxy-

nucleotides (dNTPs), i.e. the basic “blocks” that constitute DNA, DNA polymerase can

synthesize the complementary strand of a single-stranded DNA molecule used as a

template. The complementary strand is synthetized in 5’-to-3’ direction, by concatenating
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a new dNTP to the 3’-hydroxyl group of the previous one (Figure 1.5). Indeed, two

additional steps are needed to allow the DNA polymerase to initiate DNA synthesis:

• DNA denaturation: DNA polymerase cannot start the synthesis unless DNA is

denatured, namely the two strands are separated.

• Primer annealing: DNA polymerases cannot initiate synthesis of a completely new

strand, but can only extend an existing DNA strand. To begin synthesis, a short

fragment of DNA, called primer, must be created and paired with the template DNA

strand.

Thus, in the chain-termination method, the original amplicons are first thermally

denatured and primer annealed. Then, they are mixed with DNA polymerases and

dNTPs. In addition, dideoxy-nucleotides (ddNTP) are also added, despite in quite lower

concentrations. ddNTPs (Figure 1.5) are chain-terminating inhibitors of DNA polymerase,

because they do not have the 3’-hydroxyl group, so once they are added by a DNA

polymerase to a newly synthetized DNA strain, no further nucleotides can be added by

creating a bond between the 5’ end of this new nucleotide and the 3’ of the previous

ddNTP.

Figure 1.5: Chemical structure of deoxy-nucleotides (dNTP) and dideoxy-nucleotides (ddNTP).
ddNTPs do not have the 3’-hydroxyl group.

After DNA denaturation and primer annealing, DNA polymerase can start the elon-

gation of the complementary strand and continue as long as it concatenates dNTPs.

Instead, when a ddNTP is incorporated, the elongation terminates. The ddNTPs are also

fluorescently labeled, so that the label on the ddNTP terminating the last synthetized

fragment univocally determines the nucleotide of the last position read (i.e. A, C, G or T).

The dNTP/ddNTP mixture causes random, non-reversible termination of strand extension,

creating several molecules complementary to the original template, but having different

lengths. These fragments are then denatured and sorted by molecular weight, which

corresponds to sequence length and consequently to the position of the last position read.

The labels attached to the terminating ddNTPs are identified sequentially, considering

fragments of increasing length, and the complemented bases identify the sequence of the
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template DNA. A schematic representation of this process is given in Figure 1.6. Originally,

sorting by molecular weight was performed using gel electrophoresis, but nowadays it

is performed through capillary electrophoresis. In both techniques, an electric field is

applied so that the DNA fragments, which are negatively charged, migrate from one

end to the other. The longer a fragment is, the more it is slowed down by the gel and

the later it reaches the opposite end of the electrophoresis apparatus. As fragments

of increasing lengths exit the capillary, a laser excites the fluorescent labels, and the

four-colors emission spectra are identified by a detector and represented in a sequencing

“trace” of fluorescent emissions. Finally, an algorithm translates these traces into DNA

sequences, called “reads”. During this process of “base-calling”, a quality score is also

assigned to each read base, to reflect the probability for that base of being called correctly.

In particular, the quality Qp of a read base p is measured using the Phred score:

Qp = −10 log10Ep, (1.1)

where, Ep represents the probability for that base of being wrong. In modern 96-

capillary sequencers, up to 96 sequences can be sequenced in parallel in independent

capillaries. This system is still used in current research and, due to its high accuracy in

base calling, it is considered the gold-standard for genome sequencing. However, the

high costs and time related to Sanger sequencing prevent its use for some applications

in which a higher throughput is necessary (e.g. whole-genome or whole-exome variant

calling).

Next-Generation sequencing

Although Next-Generation sequencers (NGS) implement quite different solutions, all

of them share a common scheme: first, DNA fragments are amplified with different

versions of the Polymerase Chain Reaction (PCR) technique, so to create localized clusters

of amplicons bound to a substrate or array; then, these millions of clonally clustered

amplicons are sequenced in parallel, alternating cycles of DNA synthesis with imaging-

based data acquisition of the whole array. This framework ensures several advantages

over Sanger sequencing [12]:

• In vitro PCR amplification overcomes several bottlenecks that limit the parallelism

of Sanger sequencing, such as transformation of E. coli and colony picking;

• Array-based sequencing enables a much higher degree of parallelism than conven-

tional 96-capillary sequencing: tens to hundreds of millions reads can be sequenced

for each instrument run;
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Figure 1.6: Determination of read sequence in Sanger sequencing through electrophoresis:
fragment sorting and label identification.

• Since all fragments are immobilized on the same array, a single reagent volume can

be used for the whole volume so to drastically reduce costs.

On the other hand, NGS data are characterized by some drawbacks with respect

to Sanger sequencing, which include shorter read length and lower base-call accuracy

(Table 1.1). However, NGS technologies are experiencing fast technical advances which

are leading to more and more apparent reduction of costs and simultaneous rise of read

quality and length (compare for example [12] and [9]).

Table 1.1: Comparison of the features of the main NGS technologies and Sanger sequencing
(data and description taken from [9]). “Mb” indicates megabases.

Technology Throughput [Mb/day] Length [nt] Quality Costs [USD/Mb]

Sanger 6 800 10-4-10-5 500
454 750 400 10-3-10-4 20
Illumina 5000 100 10-2-10-3 0.5
SOLiD 5000 50 10-2-10-3 0.5

As it can be noticed from Table 1.1, read length is a limitation factor of current NGS

technology with respect to Sanger sequencing. Indeed, sequenced reads have to be later

assembled like the pieces of a jigsaw puzzle in order to reconstruct the input genome (or
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mapped on a reference genome, if available). A reduced read length creates non-trivial

issues, especially in the presence of repeated regions (see section 2.2), which cannot be

distinguished one from the other if reads do not span their whole sequence. Nevertheless,

all NGS platform are experiencing a fast improvement leading to longer and longer reads,

with the 454 sequenced promising “Sanger’s-like” read length [13].

A technical advance to ease the challenge of genome assembly was represented by

the introduction of the so-called “paired-end sequencing”, now available for all the three

NGS technologies above described. Paired-end sequencing allows sequencing both ends

of DNA fragments. The information about the expected distance of the reads sequenced

from these two ends, estimated from the distribution of DNA fragment lengths, can be

exploited to increase mapping or assembly accuracy. They are particularly useful to solve

repeats, since they cover a longer genome region, possibly extending into univocally

determined regions flanking the repeated ones. Read pairs can be obtained through two

different techniques: paired-end or mate-pair sequencing. Although the two approaches

have been often confounded in the literature, they refer to different protocols aimed at

obtaining read pairs having different distances [7]. In paired-end sequencing, adapter

sequences with different priming sites are attached to the ends of a DNA fragment shorter

than 1 kb (the exact length depends on the specific protocol). The sequencing process,

performed accordingly to the technology adopted (described in the following), is run

twice, exploiting the two different adapters, giving rise to one read for each fragment end.

In mate-pair sequencing, the fragments are longer than 1 kb (up to 20 kb), and instead

of ligating one adapters at each end, the fragment is circularized around a single adapter,

with both fragment ends ligated to the adapter ends [14] (Figure 1.7). These circular

molecules are then shredded to produce shorter fragments. The sequences containing the

two ends of the original fragment and the adapter, which is biotinylated, can be captured

using streptavidin magnetic beads. The remaining fragments are instead washed away.

The two mates can then be sequenced together in a single run and recognized thanks

to the known sequence of the adapter between them. When the aim of a sequencing

study is de novo genome assembly, mate-pair and paired-end reads can be used together

to leverage on their different features to reconstruct the most problematic regions [15].

Moreover, owing the ultra-high throughput characterizing NGS technologies, different

samples can be sequenced through multiplexing. DNA fragments to be sequenced are

attached to short nucleotidic molecules, called “barcodes”, with known sequences. Then,

barcoded samples are pooled in a single library and sequenced together. The sequenced

barcodes will then allow to computationally separate reads coming from different samples.
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DNA fragment ligated to adapters (length > 1 kb)

Circularization and fragmentation

Selection of mate-pair fragments

Figure 1.7: Mate-pair sequencing: ligation of adapters to DNA fragments, circularization,
fragmentation and selection of fragments containing adapters. The final fragments, consisting of

two “mate” sequences ligated by an adapter, are subjected to a single sequencing run.
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Although sequencing prices base have fallen dramatically with the advent of NGS,

high-throughput sequencing still has high acquisition, running and maintenance costs,

which are not considered in Table 1.1 [9]. Moreover, once the sequencing is performed,

consistent investments in data management and analysis are needed. Thus, smaller

research groups may still find prohibitive the costs of the infrastructure needed for

storing, handling and analyzing gigabytes or terabytes of data. Even for larger centers,

these issues require constant investment in computational infrastructures to keep pace

with all the data generated by these technologies and to transform them into biologically

meaningful results. However, the impact of NGS technology, with thousand of platforms

sold worldwide, has marked a real revolution in the field of genomics and incentivated

the understanding of myriads of organisms and microorganisms [16, 17, 18].

454 sequencing

The 454 Sequencer was the first NGS platform released on the market [19] by 454 Life

Sciences and later acquired by Roche Diagnostic [20]. In the 454 system, amplification

is performed through emulsion PCR [21] and followed by pyrosequencing [22]. To carry

out emulsion PCR, single-stranded DNA fragments are ligated to adapters and bound to

28 µm beads, one fragment per bead. Beads are included in a water-in-oil emulsion so

to enclose individual beads in amplification microreactors (Figure 1.8a). Amplification

through emulsion PCR creates millions of clonally copies of each library fragment. Once

the emulsion is broken, the amplicons remain bound to the same bead of their original

template (from which they originated). The beads are then loaded onto a PicoTiterPlate,

a flat solid support, containing millions of wells (Figure 1.8b). Each well contains only

one amplicon bead and several smaller beads carrying immobilized enzymes required

for pyrosequencing (i.e. ATP sulfurylase and luciferase). Pyrosequencing [22] is a

sequencing-by-synthesis process, in which one class of dNTP (i.e. dATP, dCTP, dGTP or

dTTP) at a time is washed over the PicoTiterPlate and incorporated by DNA polymerases

in correspondence of complementary bases of the templates (Figure 1.8). When a dNTP

is incorporated, one phosphate per nucleotide is released and converted to ATP by ATP

sulfurylase. The ATP, in turn, drives a light reaction catalyzed by luciferase, so that each

incorporation event is accompanied by a burst of light. At each cycle, several dNTPs of the

same species can be incorporated and the light intensity measured during incorporation

is proportional to the current homopolymer length (i.e. the number of equal bases read)

(Figure 1.8f). One side of the PicoTiterPlate is mounted on a flow cell that wash one

type of dNTP per cycle, while on the other side a CCD camera detects light bursts across

all the array positions where one or more dNTPs have been incorporated (Figure 1.8).



1.2 Next-Generation Sequencing 17

Since they are not labeled, dNTPs are added in a pre-determined key sequence (e.g. A,

G, C, T, A, G, C, T, . . . ) and the pattern of detected incorporations (with their relative

intensity and array coordinates) determines the sequence of the template represented by

each bead. At each cycle, dNTPs are added through the flow cell, an image of the whole

array is taken, and the dNTPs left are washed away to start a new cycle. The average

substitution rate in 454 sequencing is higher than that of Sanger sequencing, but it is

the lowest among all NGS platforms (Table 1.1). Most of the errors observed for this

technology are small insertions or deletions (also called indels), arising from inaccurate

estimate of homopolimers length. Similarly to Sanger sequencing, the error rate increases

with the position within the read, namely with the number of cycles performed, due to

a reduction of enzymes efficiency [9]. Moreover, when not all molecules are correctly

extended in every cycle, the process loses its synchrony (phasing) and results in an “echo”

of the preceding cycles over the following. With respect to the other NGS technologies,

the 454 platform is characterized by a lower throughput, but produces longer reads

(Table 1.1).

a	
  

b	
  
d	
  

c	
  

e	
  

f	
  

Figure 1.8: The 454 sequencing system: emulsion PCR (a) and deposition of amplicons-carrying
beads into PicoTiterPlate’s wells (b,c); flow cell (d) and CCD camera (e) mounted on the two
sides of the PicoTiterPlate (c); pyrogram of light intensities due to the base incorporated at each

cycle for a single well (e). Images taken from [20, 19, 23].

Illumina’s technology

From the first “Solexa” to the latest “HiSeq” platform, Illumina technology [24, 25, 26]

has always been among the most used solutions for NGS sequencing [27, 28].

Similarly to the 454, adapters are attached to single-strand DNA fragments, so to

bound them to a solid substrate and start amplification. In this approach though, a

flat array is used. The surface of the array is covered by flexible adapters, which are
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Figure 1.9: Illumina sequencing: cluster generation through bridge PCR (a) and sequencing
with reversible terminators (b) (images taken from [24]).

(a)

(b)
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complementary to the ones linked to DNA fragments. Fragments are thus immobilized

on this solid surface and amplification through bridge PCR is initiated. At each cycle,

fragments are bent to form a “bridge” in which both adapters are tethered to the surface.

Fragments are amplified, and both copies of DNA fragment are then separated, letting

one adapter detaching from the array. In the next cycles, fragments are again bent and

amplified; all fragments remain tethered to the surface, such that all amplicons arising

from any original template molecule (all having the same sequence) remain immobilized

and clustered to a single physical location onto the array (Figure 1.9a). Several millions

of clusters, with about 1000 clonal amplicons each, can be amplified in different locations

of the array. Each cluster represents a single template fragment.

The array is further separated into eight “lanes”, so that eight different libraries can

be constructed, and later sequenced independently and in parallel, during the same run.

After cluster generation, amplicons are single-stranded (linearization) and hybridized

to a primer to start sequencing-by-synthesis with DNA polymerase. Differently from

pyrosequencing, at each sequencing cycle, all dNTPs are washed together on the array.

For this reason, dNTP are modified in two ways:

• They have a chemically cleavable moiety (reversible terminator) at their 3’ end that

prevents the concatenation of multiple nucleotides, so that only one dNTP per cycle

is incorporated;

• They are marked with four different fluorescent labels, also chemically cleavable,

which correspond to the identity of each nucleotide.

At each cycle, after single-base extension (i.e. single-dNTP incorporation), images

of the whole array in four channels are acquired in order to identify the base added in

each cluster (Figure 1.9b). After image acquisition, the 3’ ends of the newly synthetized

strands are made available again by chemical cleavage of reversible terminators and

labels. Unlikely 454 sequencing, the process is synchronous, because the same position

within the fragment is interrogated at the same time for all clusters. The final read

sequences all have the same length, which corresponds to the number of sequencing

cycles performed. Before bridge PCR, the Illumina library preparation includes several

in vitro amplification steps, cause an error rate increment with respect to 454 error

model (Table 1.1). As in the case of the other platforms, the error rate increases with

read position. In particular, the problem of phasing affecting this technology can be

worsened by errors due to reversible terminators. Indeed, if some dNTPs fail to be

correctly terminated, incorporation of multiple nucleotides in the same cycle occurs,

resulting in wrong estimates of homopolimers length [9].
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SOLiD technology

The SOLiD technology, first described in [29, 30], was developed by Applied Biosystems

and later bought by Life Technologies [31]. It also performs amplification trough emulsion

PCR but exploits a complete different sequencing technique. In this approach, called

sequencing-by-ligation, the DNA ligase enzyme is used in place of DNA polymerase for

sequence extension. Unlikely 454 technology, the beads used for amplification are

paramagnetic. Once the amplification step is finished, each paramagnetic bead carrying

millions of amplicons is immobilized to a solid flat substrate to generate a dense and

disordered array. After primer annealing, a mixture of octamers (i.e. sequences 8nt long)

are washed on the array, and the different octamers compete for binding the template. If

an octamer is complementary to the template sequence, it is ligated by the ligase enzyme

to the primer end, starting elongation. In the first two bases, the octamers have exactly

all the 16 different combinations of the four nucleotides, while the remaining sequence

is degenerated (i.e. can have diverse nucleotidic sequences allowing pairing with all

possible template sequences). In each octamer, the identity of the first two nucleotides is

encoded by a fluorescent label attached to its 5’ end. Once the octamer is ligated, the

fluorescent label is read and then cleaved out, together with the last three bases of the

octamer. Then, a new cycle is initiated: a new complementary octamer is ligated to the

previous one, continuing elongation of the complementary strain, the fluorescent label

is read and the last three bases are removed. After several cycles carried out with this

scheme (about ten [9]), the read bases are in positions 1, 2, 6, 7 and so on (i.e. two

bases are read and three are skipped). In order to read the remaining bases, the newly

synthetized strand, together with the primer, is washed away and a new primer, shifted

one base backward, is annealed. At this point, the sequencing cycles are started again and

the bases in positions 2, 3, 7, 8, etc., are read. The whole process is carried out several

times, using shifted primers, such that the the whole template is read. However, the color

code employed does not allow the univocal identification of each base, because each of

the four labels encodes four of the possible dinucleotides (e.g. the red label encodes AT,

CG, GC and TA dinucleotides, Figure 1.10).

Even though each base is read twice, this does not suffice to decode the original

sequence. For instance, the T at the 6th position in Figure 1.10, is read together with

the 5th (step E) and 7th (step D) base, resulting in a green and blue label, respectively.

However, this labels can be given by several combinations (e.g. CA-AA, GT-TT, etc.) and

cannot be uniquely identified. In order to decipher the encoding, a primer shifted one

base back is used, so to read also the last adapter base, which is known. For instance,

in Figure 1.10, the last position of the primer, which is a T, is read and associated to
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Figure 1.10: SOLiD color-space coding and sequencing by ligation (image taken from [32]);
description in the main text.
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a blue label (step E), univocally identifying the following base as a T. Then, the label

obtained for the following dinucleotide, necessarily indicates its identity: a T, read at the

previous step, and an A, because there are no other possible combinations for the red

label. In summary, the SOLiD two-base encoding (also called “color-space coding”) can

be decoded in the presence of a known base, which is obtained by sequencing the last

base of the adapter sequence.

Similarly to Illumina’s technology, SOLiD sequencing enables very-high throughput,

but results in shorter reads (Table 1.1). Phasing is not a major issue, but errors can occur

if incomplete cleavage is performed [9]. Indels are not as frequent as in 454 reads, but

higher substitution rates are present.

Third-Generation sequencing and single-molecule sequencing

Despite the lacking of a consensus definition of what constitute a Third-Generation

Sequencing technology, single-molecule sequencing probably represents the most note-

worthy breakthrough, leading this second revolution [11]. However, a series of other

interesting solutions are complementing single-molecule sequencing technologies.

Among these, Ion Torrent, now property of Life Technologies [31], still employs DNA

polymerase, but eliminates the image acquisition step by directly measuring pH changes

due to nucleotide incorporation using the proprietary Ion Chip technology [33]. The Ion

Chip is a silicon chip designed to detect pH changes within single wells, as nucleotides

are incorporated during the sequencing process (similarly to 454 sequencing), since

each incorporation is accompanied by the release of a hydrogen ion H+. The upper

side of the Ion Chip functions as a microfluidic cell, delivering reagents needed for the

sequencing reaction, while the lower side directly interfaces with a H+ ion sensor. The

sensor measures voltage changes proportional to pH changes; the number of released

hydrogen ions is then in turn translated into a measure of the number of nucleotides

incorporated. As for 454 sequencer, nucleotides are not labeled, and have to be added in

a pre-defined order, one class per cycle. The elimination of the image acquisition step

allows reducing time and costs, but read length and throughput remain comparable to

that of NGS [11].

Heliscope (Helicos) is another promising technology and the first commercially avail-

able instrument for single-molecule sequencing [34, 35]. This technique allows directly

scanning DNA fragments without performing PCR amplification. DNA fragments are

bound to a solid surface and sequenced using a modified DNA polymerase and special

fluorescently labeled nucleotides, called “virtual terminators”, which allow step-wise

sequencing. However, since halting is still required in this process, the time needed to
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sequence a single template base is still high and the final read length limited [11]. Despite

the single-molecule nature of this approach, the limited improvements and the high costs

of the instrument have narrowed the market of this platform to only four machines sold

in the first year [9].

The most promising class of single-molecule sequencing technologies is represented by

the solutions that, unlikely NGS “scan-and wash” approaches, do not halt the sequencing

reaction after each base incorporation, allowing greater sequencing rates, throughput

and read lengths [11]. These techniques can be divided into three subclasses, considering

the main principle or technology employed:

• Single-molecule real-time (SMRT) monitoring of long DNA or RNA molecules

synthetized by polymerase or reverse transcriptase enzymes.

• Nanopore sequencing. A nanopore is immersed in a conducting fluid and subjected

to a potential, such that it is crossed by an electric current, which is very sensitive

to the size and shape of the nanopore. Single nucleotides from a DNA or RNA

molecule can be directly identified as they pass through the nanopore, thanks to

the changes in the current intensity they induce.

• Direct imaging of single DNA molecules using advanced microscopy technologies.

Reviewing the whole panel of the emerging technologies is out of the scope of

the present thesis, which is focused on the first NGS platforms, but can be found in

specific studies (e.g [11]). However, since SMRT sequencing is one the most appealing

and mature representative of the Third-Generation sequencing technologies, with an

interesting application to gene expression studies, it is briefly described in the following.

Single-molecule real-time (SMRT) sequencing, developed by Pacific Biosciences [36],

was the first approach enabling the direct observation of a DNA polymerase synthesizing

a strand of DNA [37, 38]. This technique can thus exploit the speed of this enzyme,

without halting the process as happens instead in the “scan-and wash” techniques [11].

Given that a single DNA polymerase molecule has a diameter in the order of 10 nm, one

of the greatest issues for SMRT is the definition of an observation volume small enough

to achieve a sufficient signal-to-noise ratio to perform base calling as nucleotides are

incorporated. This problem is solved using the zero-mode waveguide (ZMW) technology

(Figure 1.11) [38]. A ZMW is a hole with tens of nanometers in diameter, through

a 100 nm metal film deposited on a glass substrate. Visible laser light, which has a

wavelength of about 600 nm, cannot traverse the ZMW but exponentially decays along

the ZMW. Therefore, by shining laser illumination up through the glass into the ZMW,
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Figure 1.11: Single-molecule real-time sequencing in the ZMW chamber of the Pacific Biosciences
system (image taken from [36]).

only the bottom 30 nm of the ZMW are illuminated. A single DNA polymerase molecule

is anchored to the glass surface at the bottom of the ZMW through biotin/streptavidin

interaction. Labeled nucleotides are flooded above the ZMW array diffuse down into

the ZMW and then back through the exit of the hole. As laser light cannot traverse the

holes to excite the fluorescent labels, the labeled nucleotides above the ZMW array do not

contribute to the measured signals. Only when nucleotides diffuse through the bottom

30 nm of the ZMW, they are excited by the laser. Among these nucleotides, the one

complementary to the template being sequenced is detected by the polymerase and it is

incorporated into the growing DNA strand. This process takes milliseconds, a time three

orders of magnitude longer than simple diffusion, enabling the detection of higher signal

intensity for incorporated versus unincorporated nucleotides (i.e. high signal-to-noise

ratio). While held by the polymerase, the fluorescent label emits a colored light that

corresponds to base identity and is thus detected by the instrument. After incorporation,

the signal immediately returns to the baseline and the process repeats, with the DNA

polymerase continuing to incorporate multiple nucleotides per second.

The first commercial SMRT platform consisted of an array of about 75 000 ZMWs,

thus enabling the detection of about 75 000 single-molecule sequencing reactions in

parallel. However, since DNA polymerases and DNA templates are delivered to ZMWs

via a random diffusion process, only about a third of the ZMWs of the array are active

for a given run [11]. The SMRT sequencing platform requires reduced amounts of

reagents and, most of all, the “scan-and-wash” step is avoided, resulting in a dramatic

reduction of run time (minutes as opposed to days) [37]. Moreover, PCR amplification

is not needed, eliminating systematic amplification biases affecting NGS. Leveraging on
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the speed and processivity of the DNA polymerase, SMRT sequencing strongly reduces

time and increases read lengths, producing read with an average length of 1000 bp

and a maximum length of about 10000 bp. Moreover, the possibility to observe the

activity of the polymerase enzyme in real time allows the investigation of changes in

the dynamics and timing of enzymatic incorporation (i.e. kinetics), which are in turn

related to chemical modifications, such as methylation [11]. Beyond DNA sequencing,

the flexibility of SMRT sequencing is expected to enable new applications that are still

not achievable with current sequencers. For example, using RNA-dependent polymerases

and reverse transcriptase, direct RNA-sequencing can be performed.

Despite the many potential advantages of SMRT sequencing, the reduced read through-

put and quality still hamper large scale sequencing projects [27, 11]. Moreover, since

SMRT sequencing data are different from NGS data, further research is needed to inves-

tigate new error models and develop algorithms capable of exploiting the strengths of

SMRT reads while minimizing bias. Despite the great expectation about Third-Generation

sequencing technologies, further efforts are needed to demonstrate that these sophisti-

cated solutions can be translated into a true advance over NGS, with evident impact on

genomics and transcriptomics studies [11].

1.3 RNA-seq: measuring gene expression through

Next-Generation Sequencing

The transcriptome is the whole set of mRNAs transcribed from the genes of a cell (see

section 1.1). Their relative abundances reflect the level of expression of these genes for a

specific developmental stage or physiological condition. Although mRNAs are not the

final products of the transcription-translation process, the estimation of transcript levels

through gene expression profiling unveils important aspects about the cell state under

investigation. More interestingly, differential analysis of gene expression enables the

comparison of gene expression profiles of different tissues and conditions, such as treated

versus untreated cells or cancer versus normal tissues, to identify the genes that may play

a role in the determination of the phenotypic differences.

Hybridization-based approaches such as microarrays, have been the most used solu-

tions for gene expression profiling and differential expression (DE) analysis, thanks to

their high throughput and relatively low costs [39]. This type of consists in a set of probes,

whose sequences represent particular regions of the genes to be monitored. The probes

are bound to a solid array in specific and known coordinates and are present in multiple

copies. The sample under investigation is washed over the array, and the transcripts
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are free to hybridize to the probes with a complementary sequence. A fluorescent is

used to label the transcripts, so that image acquisition of the whole array enables the

identification of the expressed genes (identified by array coordinates) and their level of

expression (given by the signal intensity derived from the labeled transcripts hybridized

to the probes). Although widely used in quantitative transcriptomics, these techniques

have several limitations [39]:

• Reliance upon prior knowledge about genome sequence to enable probe design;

• High background levels due to cross-hybridization (i.e. imperfect hybridization

between quasi-complementary sequences);

• Limited dynamic range of detection, due to both background noise, which hampers

low-expressed genes detection, and saturation of signals that happen when the

transcripts to be assayed are numerically greater than the complementary probes

available;

• Need for sophisticated normalizations to compare data from different arrays.

The advent of sequencing (see section 1.2) brought new sequence-based techniques

for gene expression profiling, such as expressed sequence tags (EST) [40, 41], serial

analysis of gene expression (SAGE) [42, 43] and massively parallel signature sequencing

(MPSS) [44], providing the first digital measures of gene expression levels, as opposed

to the analog signals of microarrays. However, most of these techniques were based

on expensive Sanger sequencing, and allowed to sequence only short portions of gene

sequences, resulting in the impossibility to assign most of the produced data to a unique

gene [39, 45].

A major breakthrough followed the employment of Next-Generation sequencing tech-

nologies in transcriptomics, through a methodology called “RNA-Seq” [46], which allows

to determine transcript sequences and quantify their abundance at the same time. The

standard workflow of an RNA-seq experiment is described in the following. The popula-

tion of RNAs in the sample of interest are initially fragmented and reverse-transcribed

into complementary DNAs (cDNAs), to be suited for deep DNA-sequencing through NGS.

In the first protocols, reverse-transcription was performed before fragmentation, but it

has been later noted that RNA fragmentation (as opposed to of cDNA fragmentation)

ensures less biased estimates of gene expression levels [39]. The obtained cDNAs are then

amplified and subjected to NGS. In principle, all NGS technologies can be used for RNA

sequencing, even though their features make them more suited for certain applications

(e.g. longer 454 reads may facilitate de novo transcriptome assembly). The Illumina
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technology is now the most commonly used NGS platform for RNA-seq [47]. The millions

of short reads generated can be then mapped on a reference genome and the number of

reads aligned to each gene give a digital measure of gene expression levels in the sample

under investigation.

Although RNA-Seq is still a methodology under active development, is now widely

used in place of microarrays for measuring and comparing gene transcription levels

because it offers several key advantages over the previous technologies [48, 39]:

• It is not limited to the detection of transcripts corresponding to well-annotated

genomic sequences, but can be used to sequence non-model organisms or to perform

novel transcripts discovery;

• It does not have an upper limit for quantification (i.e. the saturation problem of

microarrays signals), thus ensuring a large dynamic range of expression levels over

which transcripts can be detected;

• It is characterized by high levels of reproducibility for technical replicates [49, 45,

50];

• The sequencing technology ensures high resolution, such that transcript sequences

can be read at single-base level.

The latter property is undoubtedly the most promising one: while microarrays can

only assay transcripts corresponding to probes, RNA-seq can, in principle, investigate at a

finer level of detail all the transcripts present in a sample, characterizing their sequences

and quantifying their abundances at the same time. The possibility of sequencing

transcriptomes at single-base resolution has rapidly opened a wide frontier of applications

in transcriptomics research, such as: transcriptome profiling of non-model organisms [51,

52], novel transcripts discovery [53], investigation of gene transcriptional structure [54],

splicing [55] and RNA editing [56, 57], quantification of allele-specific gene expression

[58], and “dual RNA-seq” of pathogen and host [59].

Despite all these newsworthy features and apparently easy scheme of data analy-

sis, RNA-seq studies produce large and complex data sets, whose interpretation is not

straightforward [60, 61]. In a recent article published on Nature Methods [61], I. Korf

compares de novo transcriptome reconstruction to the challenging act of reassembling

magazine articles after they have been shredded (Figure 1.12).

Nevertheless, in a presence of a well-annotated reference genome or transcriptome,

the analysis scheme can be slightly simplified. For instance, if the aim of an RNA-seq

study is detecting gene differential expression (DE), a basic data processing pipeline can
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Figure 1.12: According to I. Korf, transcriptome reconstruction is as challenging as reassembling
magazine articles after they have been through a paper shredder (story board design by A. Yu)

[61].



1.3 RNA-seq: measuring gene expression through Next-Generation Sequencing 29

be outlined as in [60]: read mapping, counts computation, counts normalization and

differential expression analysis.

The first analysis step is read mapping: reads are aligned to a reference genome

(or transcriptome), identifying gene regions whose sequences match read sequences. In

reality, the reads are never a perfect representation of the reference, but can contain

polymorphisms, structural variants and sequencing errors. In addition, the presence

of repeated regions in the reference and the short length of NGS reads complicate the

identification of a single (and possibly correct) mapping position. Thus, RNA-seq reads

mapping is not a trivial task, and the wide panel of algorithms available still produces

suboptimal solutions [61], making it harder to select a specific tool to be integrated in

the analysis pipeline.

Once the reads have be assigned to a genomic location, the next task is to summarize

them over some coding units, such as exons, transcripts or genes, to estimate their

relative expression levels. The simplest approach is that of counting the number of

reads overlapping the exonic bases of a gene, but more sophisticated strategies can be

employed. The number of reads aligned to a gene gives a digital measure of its expression

level and is called counts.

Before comparing counts between different groups or conditions to detect differential

gene expression, within- and between-sample normalization methods can be used

to eliminate possible bias. Within-sample normalization allows a fair comparison of

expression levels of each gene relative to other genes in the sample, such that the genes

that are more likely to be sequenced do not give rise to inflated counts. Differently,

between-sample normalization corrects for differences in the library sizes, i.e. the number

of sequenced reads. Unlike some within-sample biases, which may cancel out when

comparing samples, between-sample differences have to be corrected before DE analysis

to allow a correct comparison, so that only changes due to true varitions in genes

expression are detected and not differences due to other confounding factors, such as

sequencing depth.

Finally, differential expression analysis is performed adopting a test statistics that

selects the genes for which counts, and consequently underlying expression levels, are

significantly different between the compared conditions. For instance, when comparing

healthy versus diseased tissues, the identification of DE genes may provide new insights

over the genetic variables involved in the pathology.
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1.4 Aim and structure of the thesis

Despite being already widely used, RNA-seq methodology is still under active develop-

ment, and both its experimental and computational methods are changing at a fast pace.

In particular, there is not a standard and unified computational pipeline for detecting

differential expression analysis from RNA-seq data and several methods for performing

each analysis phase are available. This thesis is aimed at defining a robust computational

pipeline for RNA-seq data analysis, from data pre-processing to differential expression

analysis, which can enable stable and reproducible results. In Chapter 2 and Appendix A,

we present a literature review of state-of-the-art methods, for every step of data analysis,

and a discussion of data models. To integrate and complement the information gathered

by the literature, we carried out three assessments to select the best performers among

the available methods, and to develop and test novel strategies to be implemented in

the computational pipeline. With this purpose, we considered several data sets, real and

simulated, which are described in Chapter 3. The assessment presented in Chapter 4 is

focused on the investigation of the bias present in count data and on the comparison

of state-of-the-art normalization methods. In Chapter 5 we define and present a novel

strategy, called maxcounts, to compute counts and directly reduce data bias prior to

normalization. A comparison with the standard approaches for count computation and

normalization is also presented. In Chapter 6, we optimize the mapping strategy to enable

correct expression estimation even in the presence of reads mapping in multiple positions.

This approach, along with the methods selected and developed in analyses presented

in the previous chapters, is integrated in the final processing pipeline, also presented in

Chapter 6. This computational framework is applied to a real case study, described in

Chapter 7 and Appendix B, aimed at identifying the genes involved in the pathogenesis of

spinal muscular atrophy. Since our future work will be directed at optimizing the current

pipeline and extending it to the analysis of time-series RNA-seq data, we designed two

data sets, one real and one simulated. These data sets, as well as the data analysis plan,

are reported in Chapter 8, while a short introduction about methods for time-series data

analysis is integrated in the review presented in Chapter 2. Strengths, limitations and

future developments of the present study are discussed in Chapter 9.



2
A review of computational methods for

RNA-seq data analysis

The enthusiasm for NGS has paved the way to a fast and wide application of RNA-seq

to the study of gene expression. The powerful features of RNA-seq, such as single-base

resolution, along with the elimination of many limitations of the previous technologies,

have boosted an unprecedented progress of transcriptomics research, producing an

impressive amount of data worldwide. To support this exponential growth, several

computational tools have been developed and updated at a fast pace to deal with the

different steps of data analysis. Nevertheless, the research carried out so far does not

enable a complete and up-to-date characterization of their features and the selection

of the best performer method for each analysis phase, preventing the definition of a

unified analysis pipeline. In this chapter, we review and critique the currently available

methodologies, for each step of RNA-seq data analysis. We also describe and discuss a

possible probabilistic model of RNA-seq data considering both biological and technical

sources of variation. Rather than providing a list of all the available tools, we focus on

the underlying mathematical and statistical strategies and present few examples of the

most used software.
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2.1 Algorithms for read mapping

The advent of the Next-Generation sequencing has led to a significant drop of sequencing

costs and boosted an exponential growth of the sequencing capacity worldwide (sec-

tion 1.2). Less than fifteen years ago, on 23rd November 1999, the Human Genome

Project held an impressive celebration to mark the completion of the sequencing of one

third of the human genome, about 1 billion bp (http://www.genome.gov/10002105/).

Nowadays, sequencing 1 billion bp requires few hours of work in any lab equipped

with an Illumina or SOLiD sequencer [62]. Despite the revolution that has involved

sequencing technologies, making sequencing more accessible, the interpretation of the

massive amount of sequence data produced is not straightforward. Indeed, reads gen-

erated with NGS technologies are much shorter than conventional Sanger’s data, with

an error content depending on the specific platform adopted. Thus, new algorithms

have to be developed to reconstructthe sequenced genome or transcriptome from short

reads. Moreover, NGS sequencers generate hundreds millions of sequences in a single run

[63], thus requiring algorithms to be optimized for speed and memory usage. Sequence

capacity is growing at such a fast pace that algorithmic speed might become soon a major

bottleneck in NGS data analysis [62].

After sequencing, two different approaches can be exploited to reconstruct the original

sequence starting from short reads: alignment on a reference sequence or de novo
assembly. As the latter option does not track the location of each single read, thus

requiring a further alignment step, sequence alignment (or mapping) can be considered

of fundamental importance for all NGS applications. This is especially true for RNA-

seq, in which the identification of the correct source position of each read within the

transcriptome is essential for expression quantification.

So far, many alignment tools have been proposed [64]. In all cases, the mapping

process starts by building an index of the reference genome or the reads, which is then

used to quickly retrieve the set of positions in the reference sequence where the reads are

more likely to align. Once this subset of possible mapping locations has been identified,

alignment with slower and more sensitive algorithms (such as the Smith-Waterman

algorithm [65]) is performed in these candidate regions [62, 63]. The available mapping

tools can be divided into two main categories, by considering the technique used to build

the index: algorithms based on hash tables or on the Burrows-Wheeler transform (BWT).

The hash table is a common data structure for indexing complex and non-sequential

data so to facilitate rapid searching. This feature is particularly suited for DNA sequences,

since they are extremely unlikely to contain every possible combination of nucleotides

and very likely to contain repeats [62]. Mapping tools can build hash tables either on the

http://www.genome.gov/10002105/
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set of input reads or on the reference, considering all subsequences of a certain length k

(k-mers) contained in the reads or in the reference sequence. For instance, when using

the reference to build the hash table, the key of each entry is a k-mer, while the value is

the list of all positions in the reference where the k-mer was found. Then, the set of input

reads is used to scan the hash table and to find k-mer occurrences. The two solutions have

different advantages and disadvantages [62, 63]. For instance, building hash tables of the

reference requires constant memory (for a given reference and parameter set), regardless

of the size of the input read data set. Conversely, building hash tables based on the set

of input reads typically requires variable but smaller memory footprint, depending on

the number and complexity (i.e. sequence diversity) of the input reads. However, it may

require longer processing time to scan the entire reference sequence when searching for

hits, even if the input read set is small. Moreover, algorithms based on genome indexing

can exploit a possible parallelization resulting in a reduced computational time, while

parallelization is not effective when read indexing is used [63]. Examples of hash-based

algorithms are: GSNAP [66], Novoalign [67], mrFAST [68], mrsFAST [69], FANGS [70],

MAQ [71] and RMAP [72].

Methods based on the Burrows-Wheeler transform create an efficient index of the

reference sequence assembly in a way that facilitates rapid searching in a low-memory

footprint. They first employ BWT, a reversible process (i.e. the input sequence can be

easily be reconstructed starting from its BWT) that reorders the reference, such that

subsequences present multiple times appear together in the data structure. Then, an

index of the BTW, called FM-index (“FM” stands for “Full-text index in a Minute space”),

is built and later exploited to perform fast k-mer searching. An introduction to BWT and

FM-index, along with some “didactic examples” illustrating their application to sequence

matching, are presented in Appendix A.

The combination of BWT and FM-index ensures both limited memory and disk space

requirement. For instance, for mammalian organisms, the FM-index has often the same

size, or even less, of the input genome [62]. However, with respect to hash-based

algorithms, the employment of BWT significantly increases the computational time

needed for index construction [63]. However, the index has to be constructed only

once for a given reference, so the required operations only have a minimum impact on

computational time. BWT- and hash-based tools perform differently in the mapping step:

BWT implementations are much faster than their hash-based approaches, despite with

slightly reduced sensitivity [73, 63]. The trend of NGS technologies, with more and more

reads produced at increasingly higher quality, is favoring BWT solutions over hash-based

algorithms. The most used BWT-based tools include: Bowtie [74], Bowtie2 [75], BWA
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[76] and SOAP2 [77].

Besides the underlying algorithm implemented for read mapping, and the possibility

to handle either sequence-base reads, color-space reads (i.e. SOLiD) or both, the greatest

differences between short-read mapping tools are due to the heuristics adopted to make

the mapping problem treatable. Indeed, each tool provides different trade-offs between

speed and mapping accuracy, adopting different algorithmic strategies regarding:

• Base quality scores;

• Gapped alignments;

• Mismatches due to sequencing errors or single-nucleotide polymorphisms;

• Paired-end reads mapping;

• Spliced alignment of RNA-seq data ;

• Genome and transcriptome annotations.

As explained in section 1.2, base quality scores provide a measure of the correctness

of each base in the read. Most of the mapping tools use this information to improve

mapping accuracy, trusting more the read bases having higher quality score.

Moreover, due to the presence of sequencing errors in NGS data, mapping algorithms

must allow imperfect alignments, by tolerating a certain numbers of mismatches. By

increasing the number of allowed mismatches, algorithms are able to increase the per-

centage of mapped reads [63]. However, just a limited number of mismatches should be

tolerated, in order not to augment the uncertainty in read mapping. Mapping tools have

different default settings for the number of tolerated mismatches, and algorithms with

more stringent thresholds (e.g., SOAP and mrsFAST that allow only two mismatches)

results in lower percentages of mapped reads [63]. Since the error content increases

along read sequences (see section 1.2), most of the algorithms limit the number of toler-

ated mismatches in the first part of the read, called seed. This strategy allows performing

fast, near-perfect alignment of seeds to identify candidate alignment regions, which are

then possibly extended considering the rest of the read with a slower and more sensitive

algorithmic approach. The available tools have very different default settings regarding

seed length and number of allowed mismatches (in the whole read and in the seed), but

they can be usually modified by the user. Changing these parameters greatly impacts both

mapping accuracy and computational performance [63, 78]. The seed strategy, along

with the information provided by quality scores, make mapping algorithms suited for

capturing sequencing error profiles, with an increasing frequency of mismatches along



2.1 Algorithms for read mapping 35

the read. However, some algorithms report an excess of mismatches in correspondence of

read end, whereas other methods avoid this bias by truncating reads [78].

Besides systematic errors, the sequenced organism can present true single-nucleotide
polymorphisms (SNPs), that result in nucleotidic differences between the reads and the

reference. The flexibility/stringency given by the mismatch threshold and the information

provided by quality scores are thus important to correctly map these reads, since reads

having one or more SNPs have a lower probability of being mapped [73]. Higher

sensisitivity can be obtained by mapping these reads with algorithms that implement a

SNP-aware policy (e.g.[66, 79]).

Reads obtained from a target genome or transcriptome may differ substantially

from the reference sequence and, in addition to SNPs, it can contain small insertions

or deletions (indels). Algorithms that do not perform gapped alignment sometimes

fail to align reads containing indels [80]). The first NGS mapping strategies avoided

or limited gaps in the alignment due to the computational complexity of choosing a

gap location (which increases with the read length), but more recent sofware versions

accommodate gapped alignment (e.g. [74, 75]). If NGS data analysis is aimed at

variant discovery, gapped alignment can play a fundamental role. Indeed, when gapped

alignment is not implemented, a read containing an indel may still be mapped to the

correct genomic location, but with consecutive (false) mismatches near the indel position

that might be identified as SNPs [81]. In addition, algorithms that do not perform gapped

alignment have been shown to have lower accuracy in mapping RNA-seq data, with

a significant reduction of the number of correctly mapped reads in correspondence of

regions surrounding indels [82].

Another difference comes from the ability of mapping paired-end reads (section 1.2).

Most of the available tools have adapted their original single-end algorithm to accom-

modate paired-end reads and to leverage on the confidence provided by the expected

distance between read pairs. However, it has been demonstrated that, for many tools, the

percentage of mapped reads decreases when using the paired-end algorithm instead of

their original single-end version; only BWA, when switched to paired-end mode, is able

to maintain almost the same throughput while increasing mapping accuracy [81, 80].

Further research is needed to clarify the algorithmic motivations underlying these results.

In contrast to DNA-sequence alignment, algorithms developed for RNA-seq have to

cope with splicing when aligning reads to a reference genome. Indeed, as explained in

section 1.1, genes in eukaryotic genomes contain introns, which are instead removed

from mature mRNA transcripts. Thus, mRNA transcripts consisting in concatenated exons,

can generate reads that span exon-exon junctions. In order to map these junction reads
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back to the genome, algorithms for RNA-seq data analysis must handle spliced alignment.

Generally, simple gapped alignment is not sufficient to account for introns because they

can span a very wide range of lengths; for instance, in mammalian genomes, they can

be form 50 to 100,000 bases long [80]. To accommodate junction reads, many tools

implement a two-steps procedure: first, reads are mapped to the genome and used to

identify putative exons; then, candidate exons are used to build all possible exon-exon

junctions, which are considered for mapping junction reads, which failed to map in the

first step (this approache is implemented for example in Tophat [55] and RSEM [79],

both based on BWT-based alignment with Bowtie [74]).

In order to increase accuracy in transcript reconstruction, several programs can also

use available gene and transcript annotations to guide spliced-reads alignment and

improve overall mapping accuracy [80, 78]. For instance, an interesting solution is

implemented in the RNASeq Unified Mapper (RUM) [82]. It aligns RNA-seq reads on

both the genome and the transcriptome, leveraging on the speed of BWT-mapping. Then,

it re-aligns unmapped reads, which may contain insertions, deletions or sequence re-

arrangements, using BLAT [83], a tool developed for expressed sequence tags, which can

perform spliced alignment with high sensitivity. Nevertheless, these annotation-based

algorithms can result in high false-positive rates, due to reads wrongly aligned to exon-

exon junctions that are not expressed in the sample but are reported in the annotation

[78].

Despite attempted in several works, the assessment and comparison of mapping

algorithms, especially for RNA-seq reads, is not a trivial task [84, 78, 61]. Ideally, the

perfect algorithm would find, for each read, its true genomic source. However, the

presence of sequencing errors, repeats, SNPs and other genetic variants, greatly increase

uncertainty in read mapping and even challenges the definition of what a correct mapping

is [63]. In addition, the need for limited time and memory requirement necessarily force

algorithms towards heuristics and suboptimal solutions. Finally, the different features of

the input data and the possibility to greatly change the parameter settings, add further

variability to the results [63]. In this scenario, it is impossible identifying the best tool,

but the top performers have to be selected with respect to the specific application and

input data, depending on the biological question under consideration [63, 60].

2.2 Counts: the digital measure of gene expression

Once the reads are assigned to some genomic locations, the number of reads aligned to

each coding unit, such as exon, transcript or gene, are used as measure of its expression
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level. This digital measure is called “counts”. The most used approach for computing

counts considers the total number of reads overlapping the exons of a gene. However, even

in well-annotated organisms, a fraction of reads map outside known coding sequences,

i.e. outside the boundaries of annotated exons [85]. Thus, an alternative strategy would

consider the whole length of a gene, also counting reads from introns. Moreover, if

correctly handled in the mapping step (see previous section), junction reads can be used

to model the abundance of the different splicing isoforms of a gene [86]. Although the

choice of the reads to be considered has the potential to change the gene counts estimates,

limited research has been carried out to assess the available approaches [60].

As explained above, quantification of gene expression from RNA-seq data is typically

implemented in the analysis pipeline through two computational steps: alignment of reads

to a reference genome or transcriptome, and subsequent estimation of gene and isoform

abundances based on aligned reads. Unfortunately, the reads generated by the main RNA-

Seq technologies (see section 1.2) are generally much shorter than the transcripts from

which they are sampled. As a consequence, if the transcripts from which they are derived

are characterized by similar sequences, it is not possible to uniquely assign short reads

to one specific gene. Indeed, the human genome contains duplicated and paralogous

genes, with high sequence similarity (even 100%), and interspersed or tandem repeats

that are likely to produce similar or identical short reads [79, 87, 88]. Due to the limited

length of NGS reads, repeats challenge the reconstruction of the original input sequence

in multiple NGS applications that depend on either read mapping or assembly. Thus,

data arising from repeated regions have to be handled properly in order not to bias the

results [88, 89]. RNA splicing (see section 1.1) makes transcriptome reconstruction even

more challenging, generating alternatively spliced isoforms of the same gene that share

a large part of their sequence and can be hardly assigned to one specific isoform. As a

consequence, a non-negligible fraction of RNA-seq reads are multireads: reads that map

with comparable fidelity to multiple positions of the reference genome or transcriptome.

The fraction of multireads over the total mapped reads depends on the transcriptome

and on read length, varying from 10% to more than 50% [87, 79]. When considering

isoform multireads, i.e. reads mapping on multiple isoforms of the same gene, this

percentage increases dramatically and exceeds 70% [87]. In addition, sequencing errors

and true sequence polymorphisms in the sequenced transcriptome cause mismatches in

the alignment between the reads and the reference sequence [90, 91, 92]. To handle this

variability, mapping algorithms allow mismatches and small indels in reads alignment,

resulting in an increased fraction of multireads.

One of the first strategies proposed for handling gene multireads was that of simply
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discard them, so to estimate gene expression considering only uniquely mapping reads

[93, 46]. Due to the uncertainty of multireads mapping, that can introduce further biases

in the interpretation of the results, this approach is quite used in the analysis of RNA-seq

or NGS data in general [88]. Considering uniquely mappable reads and discarding

multireads is a quite common approach but, in some cases, it can produce misleading

results (e.g. in regions containing copy number variation). This issue is exacerbated

in RNA-seq studies, where the aim is both the reconstruction of transcripts sequences

and the quantification of their relative abundances. Discarding multireads necessarily

leads to a loss of information and a systematic underestimation of expression levels in

correspondence of repetitive regions.

A slightly different scheme uses only uniquely mapping reads to adjust exon coverage

by a mappability index (i.e. the fraction of exon positions that can generate uniquely

mapping reads) [94]. Another strategy “rescues” multireads by proportionally assigning

them to genes considering the coverage given by the uniquely mapping reads [45]. With

respect to the approaches that use only the uniquely mapping reads, the rescue strategy

obtains expression estimates that are in better agreement with microarrays [45]. A

more sophisticated approach also takes into account the mismatch profiles between the

unique reads and the sequence of the genomic locations they are aligned to [95]. Ji et al.
propose a method that implements a Bayesian mapping of multireads, called BM-Map,

to calculate the posterior probability of mapping each multiread to a genomic location.

The algorithm estimates multireads mapping probability considering three sources of

information: the sequencing error profiles, the likelihood of true polymorphisms and the

expression levels of competing genomic locations. Conversely, the proportional method

described before only considers the latter information. The mismatch profile is also taken

into consideration by MMSEQ [87], which estimates both isoform expression and allelic

imbalance (i.e. expression differences between two alleles of the same gene or isoform).

It uses a a two-steps alignment procedure to reduce the uncertainty in read mapping.

In the first run, mismatch profiles are used to build a sample-specific transcriptome

whose genotype can be different from that of the reference sequence. Once the reference

transcriptome is updated considering the genotype, reads are re-aligned to estimate

isoform expressions and allelic imbalance. More recent methods, such RSEM, define

a probabilistic model of RNA-Seq data and calculate maximum likelihood estimates of

isoform expression levels using the Expectation-Maximization algorithm [79, 96, 97].

True mappings are identified leveraging on the information provided by the distribution

of fragment lengths, read across transcripts and sequencing errors, estimated from the

data and modeled as ramdom variables.
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2.3 Count bias and normalization

After the first enthusiastic expectations due to RNA-seq advantages over microarrays

[39] many works have risen the need for a careful normalization of count data before

assessing differential gene expression (DE or DGE) [50, 98, 99, 100, 101, 102], so to

correct for different sources of bias.

The first bias to be taken into account is the sequencing depth of a sample, defined

as the total number of sequenced or mapped reads. Let A and B being two RNA-seq

experiments with no differentially expressed genes. If experiment A generates twice

as much reads as experiment B, it is likely that the counts for experiment A will be

doubled too. Hence, a common practice is that of scaling counts in each experiment j

by the sequencing depth dj estimated for that sample. In early works dj was computed

by counting the total number of reads sequenced or mapped in sample j (global scaling)

[93, 45]. More recent approaches consider count data depending on the state of the whole

RNA population of the sequenced sample [103, 104, 105]. For instance, as previously

reported in [104], if there is a set of highly expressed genes in a sample, it will inevitably

“consume” the available reads so that the remaining genes will be underestimated. A

similar issue derives from the presence of contaminants. According to Bullard et al., global

scaling normalization techniques reflect the behavior of a restricted set of high-counts

genes [50]. They verified that, in all analyzed samples, about 5% of genes account

for 50% of total counts and proposed a quantile normalization similar to that used for

microarray pre-processing [106]. They also proposed an altenative global scaling, to

adjust counts distributions with respect to their third quartile, so to reduce the effect of

high-counts genes. Smyth et al. [104] proposed the Trimmed Mean of M-values (TMM)

normalization to account for differences in library composition between samples. In

order to reduce bias due to high-count genes, TMM is computed removing the lowest

and highest 30% of the data, so to exclude those genes that are characterized by extreme

M-values (namely, log-fold-changes). This normalization factor is then used to correct for

differences in library sizes. Tibshirani et al.[105] proposed a novel normalization method

that assumes a Poisson model of counts and estimates sequencing depth on a set of genes

that are not differentially expressed. A Poisson goodness-of-fit statistic is employed to

determine which genes belong to this restricted set. The method reduces to total-count

normalization when all genes are considered. Finally, in the R package DESeq [107], the

ratios between gene-wise counts in each sample s and the geometric mean of gene-wise

counts across all samples are calculated, and the library size is computed as the median

of these ratios across genes.

Furthermore, RNA-seq data show a gene length bias: the expected number of reads
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mapped on a gene is proportional to both the abundance and length of the isoforms

transcribed from that gene. Indeed, longer transcripts produce more reads than shorter

ones, resulting in higher power for DE detection [50, 60, 108] and biased gene set

analyses (GSA) [109]. Thus, the number of reads should be normalized by transcript

length to obtain the true gene expression levels. Mortazavi et al. [45] proposed to

summarize mapped reads as “Reads Per Kilobase of exon model per Million mapped

reads” (RPKM), computed dividing the number of reads aligned to gene exons by the

total number of mappable reads in the experiment and by the sum of exonic bases, so to

correct length bias. Oshlack et al. [60] demonstrated that the power of tests statistics for

detecting DE genes from RNA-seq data is strongly associated with gene length (calculated

as the median length of all transcripts arising from that gene). The authors also showed

that scaling counts by gene length does not completely remove this bias. Other studies

demonstrated that scaling test statistics by the inverse of the square root of length,

without transforming gene counts, improves DE analysis [50, 108].

Recent works reported other evident sequence-dependent sources of bias in NGS data

[99, 100, 26, 110]. In particular, many authors documented the presence of a GC-content
effect in RNA-seq data [111, 112, 98]. The results presented by Zengh et al. [111] show

a strong relationship between different measures of gene expression for RNA-seq data

(raw counts, RPKM and FPKM [86]) and sequence specific covariates, such as GC-content,

gene length and dinucleotide composition. They used a generalized additive model of log-

counts, together with gene length, GC-content and di-nucleotide composition, to remove

the effect of these covariates on digital expression estimates. Since GC-content and

di-nucleotide composition can be correlated, they selected a lower number of covariates

using principal component analysis (PCA). Hansen et al. [112] proposed a conditional

quantile normalization (CQN) method, which assumes a Poisson model of read counts

and assesses the bias due to GC-content and gene length. These covariates are modeled as

smooth functions and estimated from data using robust quantile regression on log-counts.

CQN does not directly normalize data, but rather provides a normalization offset that can

be incorporated in existing methods for DE detection. Risso et al. [98] also demonstrated

a clear relationship between log-counts and GC-content. They proposed a within-lane

normalization method based on loess regression of log-counts on GC-content; regression

on the log-scale of counts was used in order to be more robust to the presence of very-high

count genes that might bias the fit.

Despite the availability of such a rich panel of methods for data normalization,

all of them are based on an initial count of the total number of reads mapping on

each transcript [50, 98, 112, 111]. This procedure, in principle robust to random
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noise, might be error-prone if reads are not uniformly distributed along sequences, as

happens indeed due to both sequencing errors and ambiguity in read mapping. Non-
uniformity of read coverage is mainly due to biases associated to the different steps of

RNA-seq protocols. For instance, fragmentation methods based on restriction enzymes

have recently been reported to be sequence-specific and not random [113]. Reverse-

transcription performed with poly-dT oligomers, which bind to poly(A) tails, is strongly

biased towards 3’ end of transcripts [46, 39]. Conversely, reverse-transcription with

random hexamers results in an under-representation of 3’ ends [39, 113]. This bias is

due to the reduced number of priming positions from which the reverse transcriptase

enzyme can start cDNA synthesis. Furthermore, depending on their sequence, RNAs

and cDNAs can form secondary structures that alternatively obstruct or facilitate the

binding of reverse-transcription primers and sequencing adapters, resulting in different

efficiency of the sequencing process [101]. Since the first RNA-seq experiment [46],

several changes in library preparations and sequencing protocols have been proposed

pursuing the aim of having an unbiased representation of transcript abundances (e.g.

postponing reverse transcription after fragmentation), but the non-uniformity of read

coverage along transcripts remains an issue of state-of- the-art technologies [114].

2.4 Differential expression analysis and models of RNA-seq

data

A fundamental research problem in which RNA-seq has soon found application is the

identification of differentially expressed (DE) genes between different conditions or

groups, such as healthy and diseased tissues. In recent years, a fervent research has

characterized the RNA-seq field and many different tools for DE detection have been

developed [115]. Most of them have been implemented in user-friendly R packages [116].

At its simplest, methods for DE detection rely on a test statistic, used to identify which

genes are characterized by a statistical significant change in gene expression (namely

counts in RNA-seq data) in the compared conditions. In principle, non-parametric

methods can be used (e.g. [117]). However, due to small number of replicates typically

available in RNA-Seq experiments, non-parametric methods do not offer enough detection

power and parametric methods are preferred [118, 119]. Each parametric method

assumes a particular model to describe the underlying distribution of count data, and

seeks to identify those genes whose differences between the tested conditions exceed

the variability predicted by the model. The main models considered and implemented in

the major analysis tools are the Poisson and the Negative Binomial distribution. In the
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following, we present a statistical description of the parameterization of RNA-seq count

data and a more general summary of state-of-art approaches for DE analysis in RNA-seq

studies. However, due to the high number of tools available, here we specifically focus on

few interesting data modelling approaches implemented in recently developed methods,

but additional details about other approaches and method implementations can be found

in the original papers or in comparative studies, such as [120, 118, 121].

Models of RNA-seq count data

Let f = 1, ..., F be the set of transcripts in the sample of interest j. For each transcript f

in sample j, let lf be its length and θfj the number of copies of f present in the sample.

The total number of bases from all the transcripts in sample j can be computed as

F∑
f=1

θfjlf . (2.1)

Therefore, the probability that a read comes from some transcript f in sample j, is

given by

πfj =
θfjlf
F∑
f=1

θfjlf

. (2.2)

The formula at the numerator counts all the positions within a transcript that can give

rise to a read (i.e. all possible read starts). Thus, the numerator could be more precisely

modeled as θfj · (lf − L+ 1), where L is read length.

According to [122], we model the sequencing process as a simple random sampling,

in which every read is sampled independently and uniformly in sample j. Under this

hypothesis, the number of reads arising from transcript f , i.e. the so-called counts, can

be modeled as a random variable Nfj following a binomial distribution. Indeed, read

sampling can be viewed as a Bernoulli’s process, a random experiment with only two

possible outcomes: success, when the read is sequenced from transcript f , and failure,

when the read is sequenced from another transcript. If Rj is the total number of reads

sequenced in sample j, the random variable giving the number of successful events

in Rj independent trails is given by the binomial distribution B(Rj , πfj), where the

success event has probability πfj and the failure event has probability 1− πfj . Thus, the

probability of having Nfj = r reads from transcript f is described as follows:

Pr(Nfj = r) = B(Rj , πfj) =

(
Rj
r

)
· (πfj)r · (1− πfj)Rj−r (2.3)



2.4 Differential expression analysis and models of RNA-seq data 43

Since Rj ' 107 ÷ 108 and πfj << 1, this distribution can be approximated by a

Poisson distribution P(λfj), with parameter λfj = Rj · πfj:

Pr(Nfj = r) = P(λfj) =
(Rj · πfj)r

r!
· e−(Rj ·πfj) (2.4)

The parameter λ of the Poisson model corresponds to both the mean µ and the

variance of the distribution. The Poisson distribution is commonly used to model RNA-seq

count data:

Nfj ∼ P(λfj). (2.5)

It has been demonstrated that the Poisson distribution captures the variability between

RNA-Seq technical replicates sequenced in different lanes or flow-cells [93, 50, 123, 124].

However, in the presence of biological replicates, there are two sources of variation that

affect RNA-seq counts:

Technical variation representing the measurement error due to the technology.

Biological variation representing the eterogeneity among samples belonging to the

same treatment group or condition.

In the presence of biological replicates, the variance is larger than the mean and count

data are said to be over-disperded [123, 124, 121]. In this case, the Poisson distribution

cannot handle this additional variability, and models based on the Negative Binomial

(NB) distribution of count data are preferred [123, 124, 107, 121]. Indeed, the number

of copies of transcript f is not the same across different biological replicates and the

resulting λ is a a random variable, with mean µ and a certain variance V ar(λfj). If λ is

modeled with a Gamma distribution, the marginal probability distribution of counts is

Negative Binomial, with mean µ and variance that depends on the chosen parametrization

of V ar(λfj) variance. Indeed, there are different ways to parametrize the Gamma

distribution, that lead to different Negative Binomial models [121]. Identifying with ε(j)

all the replicates that belong to the same condition or phenotype, if Nfj |πfj ∼Poisson

with mean λfj and λfj ∼Gamma with mean µfε(j), the marginal distribution of Nfj is

NB with mean µfε(j) and variance that depends on the parametrization of λfj variance.

In particular:

• If V ar(λfj) = φµfε(j), then

V ar(Nfj) = µfε(j)(1 + φ). (2.6)
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• If V ar(λfj) = φµ2fε(j), then

V ar(Nfj) = µfε(j)(1 + φµfε(j)). (2.7)

• If V ar(λfj) = φµαfε(j), then

V ar(Nfj) = µfε(j)(1 + φµα−1fε(j)). (2.8)

RNA-seq counts can be modeled as a NB variable with parameters φ and µfε(j):

Nfj ∼ NB(µfε(j), φ). (2.9)

The overdispersion parameter φ accounts for the variance that is not explained by the

Poisson model. In the case of φ = 0, the NB model reduces to the Poisson distribution.

In summary, the NB distribution can be motivated as a Gamma mixture of Poisson

distributions: the technical variability is Poisson, but the Poisson means differ between

biological replicates according to a Gamma distribution.

Tools for differential expression analysis of RNA-seq data

Given a specific statistical model of RNA-seq count data, all parametric tools for DE

analysis consist in two main steps: estimation of model parameters from the data and

detection of differential expression with a test statistics. Library normalization (discussed

in section 2.3) can also be considered part of the DE analysis [120] since it is required and

thus implemented in all DE methods (despite with different approaches). So far, several

studies have been focused on DE methods comparison [125, 126, 127, 119, 120, 118,

128, 121], but not all of them can be considered complete (e.g. they use only simulated

data) nor present fully concordant results. Cross-comparison of the different insights

provided by the studies here considered is further challenged by the fast improvements

and updates that are characterizing these tools, with several versions released each

year [119, 118]. However, some findings are widely confirmed across several studies,

such as the superior performance of NB-based methods over Poisson-based models

[125, 126, 123, 127, 120, 121].

The better performance of the NB-based tools is mainly due to their ability of capturing

the biological variability. This varibility is due to the stochastic nature of gene expression,

which can be gene-specific, causing some genes to have more variable levels of expression

than others, and is independent from the specific technology adopted [129]. Thus, it

cannot be reduced by increasing the sequencing depth of an RNA-seq experiment, but
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only by sequencing more biological replicates [119, 130]. In particular, Robles et al.
demonstrated that increasing the number of biological replicates improves the quality

and reliability of DE detection, while higher sequencing depths do not add significant

benefits [119]. Given these results and the costs related to RNA-seq, they suggest to

sequence more biological replicates deriving from a multiplexing experiment design (see

section 1.2) and demonstrated that the gain of multiplexing n biological replicates in the

same library is greater than the loss of available reads per sample by 1/n.

In NB-based models, biological variance is captured by the dispersion parameter φ.

However, for the reasons discussed above, dispersion is not constant across all genes,

but varies depending on the specific gene g. The different φgj parameters are too many

to be estimated from data sets with few replicates, as in the case of RNA-seq. edgeR

[131] and DESeq [130], which are among the best performers in most of the comparative

studies cited above, are both based on the NB model of equation 2.7, but implement

different strategies for dispersion estimation. The default strategy implemented in edgeR

shrinks gene-wise dispersion estimates towards a common value. Alternatively, the user

can select a “trend” approach, requiring edgeR to compute a trend estimate across genes

in place of a single value. DESeq considers the variance being a smooth function of the

mean µ and uses non-parametric regression to fit the variance as a function of the mean.

Another approach, implemented in NBPseq [121], considers instead the model with three

parameters described in equation 2.8; φ and α parameters are considered constant across

genes and estimated jointly. Nevertheless, this approach does not outperform DESeq and

edgeR [119]. Apart from being top-ranking methods in several comparisons available in

the literature, edgeR and DESeq are widely adopted also thanks to frequently updated

sofware, supported by constant research, and well-documented manuals and tutorials

that ease their application to different studies.

More recently, Law et al. proposed to apply limma [132], a method developed for

microarrays and based on normal distribution, to analyze RNA-seq data summarized

as log-cpm [126]. The underlying idea is that correctly modelling data mean-variance

relationship is far more important that exactly specifying the probabilistic distribution

of counts. In their approach, called “Voom” (acronym for “variance modelling at the

observational level”), the mean-variance trend is estimated from the data through lowess

fit and used to estimate single-gene variances. For each gene, the inverse of the variance

is then used as weight in the limma framework. Applied to RNA-seq data, Voom results

are comparable to top-ranking NB-based approaches [126, 118]. Even though further

assessments are needed to finally select the best approach for differential expression

analysis from RNA-seq data, the promising results obtained with this strategy open the
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possibility to exploit a wide panel of methods developed for microarrays.

2.5 RNA-seq time-series

The analysis of differential gene expression can help investigating which genes are

activated in certain conditions or developmental stages. However, since gene expression

is a dynamic process that changes over time, the analysis framework presented in the

previous chapters may fail in capturing a complete view of gene functions and interactions,

as well as the biological implications of different expression dynamics. Conversely, in

time-series experiments the process under investigation is assayed several times, so to

monitor transient or evolving gene expression changes. This approach is particularly

suited for studying developmental stages, cycling processes and response to stimuli. In

particular, the latter approach allow investigating if different set of genes respond to

the stimulus with different expression dynamics, in terms of both the magnitude and

quickness of the induced change. For instance, some genes can be characterized by a long

sustained response, with a change in expression that persists for a long time. Differently,

other genes may show fast-changing expression patterns more similar to short impulse,

in which a new expression level is kept for a limited time and then the original steady

state is reached again. In both cases, the changes can represent over-expression or under-

expression with respect to the basal expression levels. Gene expression patterns can be

generally be described by combinations of these basic expression patterns [133]. All these

different kinetic profiles can be captured only by sampling the process at multiple time

points (see Figure 2.1a and 2.1b). Nevertheless, the definition of the sampling design is

not straightforward and detection of gene expression changes at the time of occurrence

may require some prior knowledge about the process under investigation. Moreover, the

number of sampled time points is necessarily limited by the experimental costs inherent

to the specific technology adopted.

Once the expression time-series data are generated, a possible computational workflow

can be defined following [133], independently of the chosen technology.

The first step is normalization, needed for making expression levels comparable

between different time points and, if possible, between different genes. Expression data

normalization is not a trivial task and has prompted years of research in the microarray

field and recent discussions about how to deal with data RNA-seq biases (see section 2.3).

Before real analysis, a second step regards data visualization: expressions levels

over time, or their log-fold-changes with respect to the basal level, are graphically

plotted to have a first overview of data. One of the most used techniques are heat-maps
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In the following subsections we focus on methods 
that are specifically designed for time-series experiments 
and we highlight how the temporal nature of the experi-
ment can lead to improved downstream analysis and 
results. FIGURE 1 summarizes the computational work-
flow and TABLE 1 lists several software packages for each 
step in this workflow.

Normalization and data processing. Because normaliza-
tion is primarily focused on recalibrating the data values 
of individual microarrays, normalization methods are 
usually the same for time-series and static experiments. 
However, in some cases researchers should be more care-
ful when dealing with time-series data. One such exam-
ple are experiments that measure RNA decay rates over 
time, which often involve blocking the transcription of 
new mRNAs (transcription shutdown)28. Such experi-
ments violate one of the primary assumptions on which 
most normalization methods are based: that the total 
quantity of mRNA is the same at different time points29. 
The optimal normalization strategy for such cases is to 
rely on spike controls, if such controls are available. If not, 
some normalization methods, such as dChip30, that do 
not rely on total RNA quantities should be preferred. 
Such methods rely on rank-invariant genes, which  
probably exist even after transcription shutdown31.

Another issue related to data processing is synchroni-
zation. In several time-series experiments (for example, 
those studying cyclic processes) cells need to be syn-
chronized over the entire time series. Achieving such 
synchronization relies on specific treatments and often 
requires both experimental and computational follow-
up to correct for synchronization loss, as we discuss  
in BOX 2.

Representation. The next step is to plot graphically the 
expression levels over time, so that an overall view of  
the results can be obtained. This step is sometimes cou-
pled with clustering (see below). The most popular rep-
resentation for time-series data is still a heat map (FIG. 1c). 
However, heat maps are plotted with equal width for 
each time point, and cannot show whether the samples 
were taken at uneven time intervals. An alternative and 
very popular approach is to use piecewise linear curves, 
in which every two consecutive time points are con-
nected by a line32. Extensions of these display methods 
include the representation of genes using other types 
of continuous curves (usually approximating splines) 
which can reduce noise through the use of temporal 
correlations33. FIGURE 1d provides a sketch of the use of 
cubic splines, which can be applied to time-series data 
sets that have more than four time points. Splines can 
also be assigned using a mixed effects model that uses 
expression data from co-expressed genes when recon-
structing the curve representation for a single gene. This 
approach was shown to improve the accuracy of the con-
tinuous representation of expression data from multiple 
species33,34. Various recent methods attempt to further 
highlight the dynamics of expression changes. For exam-
ple, Calvano et al.35 presented the progression of gene 
expression during inflammation as a set of projections 

Nature Reviews | Genetics

0

1

–1

0

1

–1

0

1

–1

0

1

–1

t1

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

t1 t2 t3 t4 t5

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

Gene 12

…

…

t5
Gene 1
c

0

1

–1

e

a

d

f

b

Figure 1 | Computational workflow for time-series gene expression data.  
a | The actual trajectories of gene expression levels over time are complex and 
noisy. The x-axis represents time (arbitrary units) and the y-axis represents log

2
 fold 

change of gene expression. Vertical lines show the time points at which samples 
were collected, which may be non-uniform. b | Actual values measured in a 
time-series experiment. The sampling rate defines the resolution of the resulting set 
of data points. c | Heat maps are a common way to display gene expression levels, 
but they do not provide information about duration. d | Before further downstream 
analysis, computational methods can be used to provide a more accurate 
representation of the expression profile of each gene. For example, splines provide 
a smooth, continuous representation of gene expression32. e | One ad-hoc approach 
for identifying differentially expressed genes requires that a gene exceeds a 
predetermined fold change threshold (shown as horizontal lines at 1 and -1) at two 
or more consecutive time points. This can help to discriminate truly differentially 
expressed genes (blue dashed curve) from genes with noisy expression (red dotted 
curve) that exceed the threshold at a single time point. Specialized computational 
techniques (for example, Significance Analysis of Microarrays (SAM)) can examine 
the area under the curve (red shaded area under the red dashed curve) or use 
temporal information along the entire curve (for example, Extraction of Differential 
Gene Expression (EDGE) and Bayesian Estimation of Temporal Regulation (BETR))  
to call significant genes. f | Clustering assigns genes with similar expression 
trajectories to the same group. Curves that summarize the expression of all group 
members can reveal the common patterns of a response.
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Figure 2.1: Image adapted from [133] showing true gene expression patterns (log-fold-changes)
over time (a), values sampled in a time-series experiment (b) graphical data representation

through heat-map (c) and spline interpolation (d).
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(Figure 2.1c), which encode the expression values measured for each gene and time

points, in a 2D matrix of “pixels”. The main limitation is due to the lost of information

about duration: the same importance is given to each value, independently from the

actual experimental sampling design. More sophisticated methods employ 2D curves

of expressions (or fold-changes) referred to correctly spaced time points. Patterns can

be then revealed by connecting points through straight lines or fitting data with cubic

splines (Figure 2.1d) [134].

Important questions over the investigated process can be then answered identifying

differentially expressed genes. One heuristic approach defines a gene as differentially

expressed if its log-fold-change, with respect to the basal value, exceeds a chosen thresh-

old in at least two time points. However, the selection of a proper threshold is not

straightforward since a certain log-fold-change may be appropriate for some expression

levels but not for others. More sophisticated methods consider the whole time-series and

may require replicates to estimate an error model so to be robust to stochastic oscillations

[135, 132, 135, 136, 137, 138].

Clustering analysis provides the second important contribution to the understanding

of gene interaction and co-regulation by grouping expression patterns that share sim-

ilar kinetics profiles. This step is often coupled with visualization. Although methods

developed for static data, such as k-means or hierarchical clustering, have been widely

applied also to time series-data, more sophisticated approaches have been specifically

developed for dynamic data [139, 140, 141, 142]. Clustered profiles can be then used to

infer causality between genes, i.e. how expression changes are propagated through the

network of gene interactions.

In the near future, RNA-seq is expected to replace microarrays for time-series expres-

sion studies [133]. The analysis framework here described will be probably mantained

because the purpose of the analysis remain the same, but the specific methods to be

used still have to be defined. Further research is needed to investigate if the available

methods, developed for microarray data, can be adopted and adapted for the analysis of

RNA-seq time-series data. Moreover, we expect that additional tools will be specifically

developed to leverage on RNA-seq single-base resolution, to investigate more deeply all

the processes related to gene expression, such as isoforms switching across time.
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Selection of benchmark data sets

For benchmarking the methods for RNA-seq data analysis and defining the computational

pipeline we consider three real RNA-seq data sets with different characteristics and rela-

tive gold-standard measures of RNA abundances, such as spike-in RNAs or quantitative

Real-Time PCR (qPCR). All RNA-seq data sets were sequenced with the Illumina technol-

ogy (see section 1.2), which is now the most commonly used NGS platform for RNA-seq

[47]. We also considered six simulated data sets of synthetic RNA-seq reads to assess

the correctness of read mapping, with particular attention to multireads. Finally, we

simulated several synthetic count data sets with different extent of differential expression,

percentage and distribution of DE genes across samples, so to investigate the effect of

these factors on data normalization and differential expression analysis.

3.1 Real data

We consider three real RNA-seq data sets [143, 50, 144] that are publicly available from

the NCBI Sequence Read Archive [145].

The MAQC2 data set [50], generated by the MicroArray quality control (MAQC)

project, contains expression data from multiple platforms. Here we consider a data set of

36bp single-end reads [SRA: SRA010153], obtained by sequencing with the Solexa 1G
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Genome Analyzer two different biological samples: (i) Ambion’s Human Brain Reference

RNA (“Brain”), a standard pooled from multiple donors and several brain regions; (ii)

Stratagene’s Universal Human Reference RNA (“UHR”), a mixture of total RNA extracted

from ten different human cell lines. “Brain” and “UHR” samples were subjected to

the same library preparation protocol and sequenced in seven lanes of two flow-cells

(technical replicates).

In Griffith et al. [143], two fluorouracil (5-FU)-resistant (“MIP5FU”) and (5-FU)-

sensitive (“MIP101”) human colorectal cancer cell lines were sequenced on 16 and 23

lanes of a Illumina Genome Analyzer platform, respectively. Here we consider eight

“MIP101” and eight “MIP5FU” libraries of 36bp paired-end reads. FASTQ files of RNA-seq

reads were kindly provided by Dr. Malachi Griffith. A subset of exons were also assayed

with qPCR and made available by the authors [143].

A series of replicates from Jiang’s study [144] is also considered, in which paired-

end RNA-seq libraries were sequenced after mixing endogenous RNA from a K-562 cell

line with spike-in RNA developed by the External RNA Control Consortium (ERCC).

ERCC spike-in RNAs are in vitro synthesized transcripts whose nucleotidic sequences and

concentrations are known. They can be used to assess whether the final quantification

of an RNA-seq experiment correctly represents the composition of the original input. In

Jiang et al. different Human ENCODE libraries were mixed with the Phase IV test set

of ERCC spike-in RNAs. The human samples mixed with ERCC RNAs were sequenced

on the Illumina GAIIx platform to generate 2x76bp paired-end reads. Here we consider

K-562 RNA-seq data, obtained from RNA extracted from nucleus, cytosol or whole-cell.

3.2 Synthetic data

Simulated reads

Synthetic RNA-seq reads were kindly provided by A. Gatto [146] and were simulated

using Flux Simulator [114] (version 1.2). Simulations were based on the GRCh37.p8

assembly of the human genome. Flux Simulator was used to generate 2x76 bp paired-end

reads, using a custom error model at 50 bp read length estimated from real RNA-Seq data

and adopting default parameters for all the other options. A total of six libraries were

produced: three with 8 millions (8M) reads and three with 20 millions (20M) reads.

Simulated counts

Synthetic RNA-seq counts were also simulated following the approach described in [127].
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Simulated counts for 10,000 genes were sampled from a Negative Binomial distri-

bution. Experiments with two conditions and five replicates for each condition were

generated. Differential expression was simulated multiplying or dividing by
√
b the mean

of the distributions from which they were sampled. The simulation was run varying the

extent of differential expression, using b=2, 4, 6, 8, and the percentage of DE genes, set to

be 10% and 20% of total genes (DE=0.1, 0.2). Moreover, to investigate the effect of the

distribution of over-expressed genes between the two conditions, we set the percentage

of over-expressed genes in condition A to be A=0.5 (i.e., equally distributed between

the two conditions), 0.75 or 0.9 (i.e., predominantly present in condition A with respect

to B).
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4
Quantitative assessment of RNA-seq data bias

and normalization

In this chapter we assess the biases of RNA-seq data (see a review in section 2.3) before

and after normalization. We compare some of the most used methods for library size

normalization, transcript length and sequence-specific biases reduction: RPKM [45], the

library scaling approaches implemented in the R packages PoissonSeq [105] and DESeq

[107], the TMM normalization implemented in edgeR [131], between-lane full-quantile

normalization and within-lane full-quantile normalization on GC-content and sequence

length, all implemented in EDASeq [98]. CQN normalization is not tested since Risso

et al. [98] already demonstrated that it is less accurate than within-lane full-quantile

normalization. To test and benchmark these methods, we consider real data sets and

simulated counts (see Chapter 3). In particular, we employ diagnostic plots to investigate

the presence of the above mentioned biases in real data. Moreover, we use the real data

sets to identify which methods provide an accurate measure of RNA abundances and

differential gene expression, and we simulate synthetic count data to better characterize

the data features that represent the greatest challenges to data normalization.

We recognize that a bias may represent an issue for one application but may be harm-

less for another. For instance, some gene-specific biases might cancel out in differental

expression analysis, but can prevent a correct interpretation of time-series data. For
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this reason, we decided to explore bias at three levels (i.e. counts, RNA quantification

and differential expression estimates) to investigate how it propagates and impacts on

downstream analyses.

4.1 Materials and methods

Read mapping and data pre-processing

For data downloaded from the SRA [145], FASTQ files were obtained using the function

fastq-dump 2.1.12 of the SRA Toolkit [147]. From Jiang’s data set (see Chapter 3), we

selected five libraries from the “cytosol” group [SRA: SRR317052, SRR317053] and

seven libraries from the “nucleus” group [SRA: SRR317042, SRR317043]. Raw reads

were aligned to the human genome using TopHat v1.2.0 [55]. Multimappers (i.e. reads

that align to multiple positions) were discarded from our computation (TopHat’s -g 1

option). Counts were computed for all Ensembl exons using the function coverageBed

-counts of bedtools 2.15.0 [148]. To compute transcript counts for spike-in RNAs, reads

were directly aligned on ERCC RNAs sequences. Exons and spike-in transcripts with

an average counts across replicates lower than 0.5 were discarded from subsequent

analyses. Data processed with within-lane full-quantile normalization were further

filtered using a more stringent threshold of 10 counts, as suggested by authors [149].

We adopt this strategy because we experienced in previous assessments that reducing

the stringency of this filtering phase reduces the effectiveness of within-lane full-quantile

normalization, especially the length normalization of high-count sequences (results not

shown). Annotations on exon length and GC-content were retrieved using the R package

biomart [150] (“ensembl” database, “hsapiens gene ensembl” dataset).

Count normalization

RPKMs for each exon i in library j were calculated as follows:

RPKMij =
Nij

li/103 · N·j/106
(4.1)

where,Nij are counts for exon i in library j , li is the length of exon i andN·j =
∑

iNij

is the sum of all counts in library j.

Within-lane full-quantile normalizations on exon length or GC-content were per-

formed using the default parameter settings, except for data sets with more than 1000

exons (after the most stringent filtering phase), for which full-quantile normalization on

length was performed using 200 bins. For data to be shown in the “diagnostic plots”, the
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normalization factors provided by TMM were multiplied by library sizes N·j and then

used to scale counts in each library.

Spike-in RNA quantification

We considered all the technical replicates from “cytosol” and “nucleus” samples. Counts

were summarized at exon level for human genes, while for ERCC spike-in RNAs, which

are single-isoform, per-transcript counts were computed. Exons or spike-in RNAs with

low counts were discarded from subsequent analyses as described above, eventually

considering 74 ERCC sequences over the total 96. Before within-lane full-quantile

normalization over exon length or GC-content, we applied a more stringent filter as

described above. This further filtering phase reduces the number ERCC RNAs normalized

via within-lane full-quantile normalization from 74 to 58. Finally, for all ERCC spike-in

RNAs, the mean of counts (raw or normalized) across all technical replicates of the two

samples was taken as measure of their abundance. These values were then compared

with the true spike-in RNA concentrations reported in [144].

Differential expression analysis

DE analysis was performed with the GLM-based version of edgeR [151] as it can consider

a vector or a matrix of normalization factors. In particular, edgeR was provided with raw

(i.e. not normalized) counts, along with a vector of normalization factors (normfactors

parameter in the DGEList function), in the case of DEseq or PoissonSeq normalization,

or a matrix of “offsets” (offset parameter in the estimateGLMCommonDisp and glmFit

functions), in the case of full-quantile or RPKM normalization. TMM normalization factors

were directly computed with edgeR, using the calcNormFactors function. For Griffith’s

data, only those exons whose log-fold-changes, estimated by edgeR, were not greater

than 20 in absolute value were considered for comparison to qRT-PCR gold standard.

Log-fold-changes computed by edgeR from RNA-seq data, raw or normalized, were then

compared with those provided by qPCR [143], here considered as gold standard. To

assign each PCR amplicon to the corresponding exon, PCR primers were aligned to human

exon sequences using the ssearch function of the fasta-36 package [152]. Human exon

sequences were extracted from the whole chromosomes (GRCh37) using BEDTools [148],

considering Ensembl annotation.
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Sensitivity vs. precision curves

For each method, we imposed an iteratively increasing threshold on un-adjusted p-values

estimated by edgeR, to select DE genes; the number of true positives (TPs), true negatives

(TNs), false positives (FPs) and false negatives (FNs) was computed, accounting for the

direction of differential expression, as explained in Table 4.1.

Table 4.1: Scheme of the rules for determining true/false positives and negatives.

RNA-seq
DE+ DE- nonDE

Gold standard
DE+ TP FP FN
DE- FP TP FN
nonDE FP FP TN

Finally, precision and sensitivity indexes were calculated as follows:

Precision =
TP

TP + FP
(4.2)

Sensitivity =
TP

DE
(4.3)

where DE is the total number of differentially expressed genes detected by the

gold-standard.

Precision (Equation 4.2) is computed as usual, while sensitivity (Equation 4.3) is here

defined using at the denominator the number of “true” DE genes, in order to account for

DE genes that are correctly detected as DE, but with a wrong direction of differential

expression (FPs).

4.2 Length bias and GC-content effect

In Figure 4.1, smoothed scatter-plots of log-counts versus exon log-length and GC-content

are reported for two replicates from MAQC2 and Griffith’s data, to highlight whether

counts calculated at exon level are affected by sequence-specific biases. As expected,

there is an increasing pattern of log-counts in dependence on exon log-length: longer

exons tend to have higher counts than shorter ones. The same patterns are confirmed

across all replicates of the considered data sets (results not shown). We investigated

sequence specific biases after count normalization considering exon length or GC-content

as covariates (Table 4.2 and Figure 4.1). Table 4.2 reports the mean, across all replicates,

of correlations between counts and covariates, before and after normalization. Counts

normalized only for library size are not inspected here since would present the same
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features, in terms of dependence on exon length and GC-content, of the raw data.

Raw counts show a low, significant, positive correlation of counts with exon lengths

(correlation ranges between 0.28 and 0.41, with p-values < 2.2e-16), which is removed

by full-quantile normalization over exon length. RPKMs are characterized by negative

correlations with exon length, meaning that dividing by exon length over-corrects for

length bias (Figure 4.1). GC-content effect varies on different data sets, as previously

reported in [31], but the bias it introduces is weaker than length bias. Within-lane

full-quantile normalization on exon length reduces GC-content bias, although this pattern

is completely removed only by full-quantile normalization on GC-content.

Table 4.2: Mean, across replicates, of correlations between counts and covariates, before (raw)
and after normalization: with RPKM (rpkm), within -lane full-quantile normalization on exon

length (fq length) or GC-content (fq gc).

Normalization MAQC2 Griffith Jiang
length GC% length GC% length GC%

raw 0.38 0.17 0.41 -0.04 0.28 0.07
rpkm -0.28 0.25 -0.29 0.00 -0.51 0.12
fq length 0.00 0.13 0.00 0.02 0.00 0.04
fq gc 0.34 0.00 0.43 0.00 0.22 0.00
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Figure 4.1: Smoothed scatter-plots showing dependence of counts over exon length and
GC-content for two libraries of MAQC2 (“Brain R1L8” and “UHR R2L1”) and Griffith’s
(“MIP101 20836AAXX Lane6” and “MIP101 20836AAXX Lane7”) data. Results are shown for
counts before (raw) and after normalization with RPKM (rpkm), full-quantile on exon length

(fq length) and full-quantile on GC-content (fq gc).
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4.3 Library size normalization

The MA-plot is a diagnostic plot that can display, for each genomic feature such as an exon

or gene, the difference of expression levels measured in two different samples (log-fold

changes, or M-values) plotted by the average expression (A-values). M and A values for

each pair of samples or libraries a, b are computed as follows:

Mi = log(Nia)− log(Nib) (4.4)

Ai =
log(Nia) + log(Nib)

2
(4.5)

where Nij are the counts for exon i in library j = a, b.

Assuming that most of the exons are not DE, MA-plots should be centered at M =

0 and should show a relatively low dispersion, representing technical and biological

variability, with the (few) points placed far from M = 0 representing truly DE exons. In

fact, MA-plots of raw counts are more widely dispersed at low expression levels (i.e. low

A-values), corresponding to low-abundance exons, which are more easily corrupted by

technical noise (Figure 4.2). By inspecting the MA-plot for Griffith’s data, it is easy to see

the deviance of the median of M-values from zero, revealing the differences in terms of

sequencing depths of the considered libraries (see the two technical replicates belonging

to “MIP5FU” condition shown in Figure 4.2a). More interestingly, the bias in the MA-plot

for MAQC2 data are due to the different composition of the sequenced libraries and

depends on the transcriptional profile of the considered samples (see Figure 4.2b). In

particular, a subset of exons characterized by higher expressions in “Brain” with respect to

“UHR”, that can be noticed on the upper part of MA-plot in Figure 4.2a, consumes a part

of the available sequencing depth, resulting in a reduction of counts in Brain replicates

(MA-plot in Figure 4.2b shifted towards negative values).

Figure 4.3 reports a synthetic representation of the M-values obtained by comparing

the two groups considered in MAQC2, Griffith’s and Jiang’s data. Box-plots show the

distributions of the medians of M-values, calculated for all the pairwise comparisons of

technical replicates from the two different conditions assessed (replicates belonging to the

same condition are not compared in this analysis). The medians of M-values calculated

from raw data, which represent the differences between libraries due both to differentially

expressed genes and to the sequencing depth, are shifted away from M = 0 in all the

considered data sets. In particular, for MAQC2 and Jiang’s data (Figure 4.3b and 4.3c)

they strongly deviate from zero towards negative values. In Griffith’s data (Figure 4.3a)

M-values show a smaller deviation from zero but a larger variance, meaning that the
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Figure 4.2: MA-plots for two libraries of Griffith’s (a) and MAQC2 (b) data sets. The median of
M-values is represented by the orange line.
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differences are not due to a between-condition comparison, as in MAQC2 and Jiang’s

data, but to a technical bias, i.e. the difference in sequencing depth. These differences are

corrected by all methods on Griffith’s data: M-values are shifted towards zero and their

variance is reduced. The difference in library sizes characterizing the other two data sets

are more challenging and the normalizations perform differently. RPKM normalization

shifts M-values towards zero, but without reaching M = 0. DESeq performs better than

RPKM, shifting M-values very close to zero and reducing variance. On two data-sets,

PoissonSeq over-corrects for library size, reversing M-values bias. TMM correctly sets

M-values approximately to zero and strongly reduces variance. Between-lane full-quantile

normalization, always minimizes variance as a result of data quantile normalization and

shifts M-values towards zero. They are correctly set to M = 0 in all data sets except for

MAQC2 data set. For all methods, library normalization is more challenging on MAQC2,

probably for the high number of DE exons that can be detected when comparing two

different tissues.
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Figure 4.3: Box-plots of medians of M-values calculated for raw (raw) and normalized data of
Griffith’s (a), MAQC2 (b) and Jiang’s data sets. RPKMs (rpkm), DESeq (deseq), PoissonSeq (pseq),

TMM (tmm), and between-lane full-quantile (fq bl) normalizations are considered.
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4.4 Effects of normalization on quantification and

differential expression analysis

Besides the importance of identifying normalization methods that are able to reduce

biases in count data, one of the most desired features of methods for RNA-seq data

analysis is to provide a robust measure of RNA abundances and an unbiased estimation

of differential gene expression between two or more conditions or groups.

We used Jiang’s data set to assess how different normalization methods affect the

quantification of spike-in RNAs. For all ERCC spike-in RNAs, the mean of counts (raw or

normalized) across all technical replicates of the two samples was taken as measure of

their abundance. These values were then compared with the true spike-in RNA concen-

trations reported in [144] (Figure 4.4A). Both within-lane full-quantile normalization

on exon length or GC-content were used along with between-lane full-quantile normal-

ization, to account for differences in sequencing depth. On “nucleus” samples, DESeq,

PoissonSeq, TMM and between-lane full-quantile normalization lead to estimates similar

to those obtained from raw data. RPKM normalization provides slightly better estimates,

demonstrating the importance of accounting for sequence length when assessing tran-

scripts relative abundances. However, the spike-in RNAs data set here considered does

not allow to test the methods on very short transcripts, in which this bias is more difficult

to correct (Figure 4.1). Within-lane full-quantile normalization over GC-content and

sequence length obtains the lowest R2 and correlation. Similar results are obtained on

“cytosol” samples (results not shown).

With the aim of assessing the effect of normalization on DE analysis, we applied
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Figure 4.4: Benchmarking on spike-in RNAs quantification and log-fold-changes of exon ex-
pression, computed for raw data (raw) and counts normalized with different methods: RPKMs
(rpkm), DESeq (deseq), PoissonSeq (pseq), TMM (tmm), between-lane full-quantile normalization
(fq bl), within-lane full-quantile normalization on exon length (fq length bl) and on GC-content
(fq gc bl). Both within-lane full-quantile normalizations were coupled with between-lane full-
quantile normalization. (A) Comparison of spike-in RNA true concentrations (“K562 nucleus”
samples from Jiang’s data set) and RNA-seq counts on log-log scale. Coefficient of determination
R2, Pearson’s correlation r and total number of assayed spike-in RNAs n are also reported. (B)
Comparison of log-fold-changes (logFC) estimated on Griffith’s data with qRT-PCR and RNA-seq.
logFC obtained from raw data are represented in grey. Root-mean-square deviation (RMSD) of

log-fold-changes and total number of assayed exons n are also reported.



4.4 Effects of normalization on quantification and differential expression analysis63

edgeR to Griffith’s data, normalized with the above mentioned approaches; The log-fold-

changes estimated by edgeR from the two-groups comparison were then compared to

those estimated by the authors in [143] through quantitative Real-Time PCR (qRT-PCR)

(Figure 4.4B).

We used root-mean-square deviation (RMSD) of log-fold-changes as a measure of

the differences between the values predicted from raw or normalized RNA-seq data and

the values actually observed with qRT-PCR, to have an indication of the accuracy of the

methods:

RSMD =

√√√√√ n∑
i=1

(logFCtrue(i)− logFCest.(i))2

n
(4.6)

where i = 1, ..., n represent all the assayed exons.

RPKM results are equivalent to that obtained with raw data, with the same RMSD.

TMM and between-lane full-quantile normalization show a good agreement with qRT-PCR

data, obtaining the lowest RMSD. Full-quantile normalizations lead to higher RMSD, but

they cannot be directly compared to the previous ones, since they are computed on a

smaller set of exons. DESeq, PoissonSeq and TMM obtain slightly better results than raw

data, with TMM showing the lowest RSMD. However, when considering the full set of

exons tested for DE with edgeR, it is worth nothing that, in almost all cases, p-values are

strongly biased by exon length: longer exons tend to have lower p-values than shorter

ones and are more likely to be selected as DE (Figure 4.5). This bias is corrected only by

quantile normalizations, but it is not clear if it is due to the normalization itself or to the

removal of low-counts genes. On the contrary, p-values do not depend on GC-content

(results not shown).

To better identify the data features that challenge library size normalization and to

assess the impact of normalization on DE analysis with a known benchmark, we simulated

synthetic RNA-seq data sets as in section 3.2. In addition, we investigated whether the

distribution of over-expressed genes between pairs of samples affects data normalization,

by setting the percentage of over-expressed genes simulated in condition A, rather than in

condition B, to be A=0.5 (i.e. equally distributed between the two conditions), 0.75 and

0.9 (i.e. predominantly present condition A). We tested DE expression with edgeR [131],

measuring methods performance with sensitivity vs. precision curves and their area under

curve (AUC). Since gene lengths were not simulated, RPMs (Reads per Million Mapped

Reads, i.e. counts normalized by the total counts of each library) were used in place

of RPKMs. The inspection of AUC plots (Figures 4.6 and 4.7) reveals an improvement
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Figure 4.5: Relationship (log-log scale) between p-values obtained by edgeR, on Griffith’s data,
and exon length. Both raw and normalized data are considered: RPKMs (rpkm), DESeq (deseq),
PoissonSeq (pseq), TMM (tmm), between-lane full-quantile normalization (fq bl), within-lane
full-quantile normalization on exon length (fq length bl) and on GC-content (fq gc bl). Exons
were divided in equally-sized bins (2000 exons each) considering their log-length, and average

p-values (log-scale) were computed for each bin.
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of methods performance (i.e. higher AUC) when the percentage of DE genes increase

from 10% to 20%, with few exceptions for A=0.75 and A=0.9. When considering raw

data or RPMs, having a more balanced distribution of over-expressed genes (i.e. A closer

to 0.5) leads to higher performance. On the contrary, the other normalizations obtain

comparable or slightly better results as A approaches 0.9. TMM, DEseq and PoissonSeq

normalizations are robust to changes in the assignment of over-expressed genes to the

two conditions, with AUC values of TMM varying less than 11% in response to variations

of A value. On average, TMM, DEseq and PoissonSeq show the best results, while AUC

values of RPMs and full-quantile normalization are lower than those of raw data. For

all normalization methods, the smallest the difference in DE expression is (lower b), the

lower the AUC values are. However, TMM, PoissonSeq and DESeq performance, are less

sensitive to this variation and in almost all simulations show better results than those

obtained from raw data.
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Figure 4.6: Bar-plots of Area Under Curve (AUC) calculated from sensitivity vs. precision curves
on simulated count data, before (raw) and after normalization with RPM (rpm), DESeq (deseq),
PoissonSeq (pseq), TMM (tmm) or between-lane full-quantile (fq bl). Results are reported in
dependence of the features of the simulated data: extent of differential expression (b=2, 4, 6, 8),
percentage of DE genes (DE=0.1, 0.2) and percentage of DE genes that are over-expressed in

condition A (A=0.5, 0.75, 0.9).
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Figure 4.7: Visualization of Area Under Curve (AUC) calculated from sensitivity vs. precision
curves on simulated count data, before (raw) and after normalization with RPM (rpm), DESeq
(deseq), PoissonSeq (pseq), TMM (tmm) or between-lane full-quantile (fq bl). For each methods,
results are reported in dependence of the features of the simulated data: extent of differential
expression (b=2, 4, 6, 8), percentage of DE genes (DE=0.1, 0.2) and percentage of DE genes
that are over-expressed in condition A (A=0.5, 0.75, 0.9). AUC value are also visualized as

coloured cells, from 0 (black) to 1 (white).
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4.5 Remarks on RNA-seq counts normalization

We performed an assessment of the main biases of RNA-seq counts, considering both

differences in library sizes and biases due to sequence-specific covariates, such as exon

length and GC-content variability. We investigated these biases before and after normal-

ization, considering some of the most used methods for RNA-seq data normalization.

In addition, we assessed the impact of data normalization on downstream analyses,

such as RNA quantification and differential expression detection. In our comparative

analysis, library size normalization with DESeq and TMM leads to the best results in all

the assessments. In particular, we found that TMM shows stable results in different real

data sets and simulation settings, confirming previous results [153]. In our assessment,

GC-content seems to have weak relationship with exon counts. On the contrary, counts

show a marked exon length bias, which is also propagated downstream to RNA quantifi-

cation and DE analysis, where longer exons are more likely to be detected as DE. None

of the tested methods effectively removes this bias from counts although they ensure

correct estimates of expression or differential expression at the same time. RPKM, which

is currently one of the most used normalization approaches, provides accurate estimates

of transcript abundances, as reported in recent studies [154]. However, as previously

noted in [153, 102, 50], it is ineffective for DE analysis, i.e. when multiple conditions are

compared. In particular, Dillie et. al suggest to abandon RPKM normalization in the con-

text of differential analysis. This debate could be probably settled by assessing methods

in dependence of a single and specific RNA-seq application, such as RNA quantification or

differential expression ananlysis. However, the definition of an accurate measure of gene

expression from RNA-seq data is essential to ensure a correct interpretation of results,

independently from the downstream application. In addition, it represents a fundamental

prerequisite for analyzing RNA-seq time-series data, in which expression levels should be

correctly compared within- and between-samples.



5
A novel approach to compute counts:

maxcounts

Our assessment of RNA-seq normalization methods (Chapter 4) confirmed the presence

of a length bias in count data, which is not efficiently corrected by any of the considered

methods and propagates to downstream analysis of gene expression and differential

expression. Moreover, other biases due to highly expressed genes and uneven read

coverage characterize RNA-seq counts (see a review in section 2.3).

In this chapter, we propose a novel method for computing counts, called maxcounts,
with the aim of reducing these biases. Once the reads have been aligned to a feature of

interest (exon or single-isoform transcript), we exploit read coverage to obtain counts

for every position in its sequence and we quantify its expression as the maximum of its

“positional” counts. We assess maxcounts performance in comparison with the standard

approach, which considers the total number of reads mapped on an exon (called totcounts
from here on). With this purpose, we consider the three real human data sets described

in Chapter 3. Data were sequenced with single- and paired-end protocols, and have

different characteristics, which allow us to test our approach with respect to different

features. In particular, the assessment is performed considering some desirable features

that a measure of gene expression should have: (i) being independent of gene-specific

covariates such as transcript length and GC-content; (ii) being unbiased towards highly
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expressed genes; (iii) being an accurate estimate of the true gene expression levels; (iv)
showing low technical variance; (v) being robust to possible variations in the quality of

alignments. In the following, we present the results of a study that we recently published

[155], in which we assessed the properites cited above for both maxcounts and totcounts.

5.1 Definition of the analysis pipeline

FASTQ files of raw reads were obtained as in Chapter 4. From Jiang et al. study, we

considered a subset of samples from the K-562 cell line, extracted from nucleus or whole-

cell. In particular, we considered two libraries from the “cell” group [SRA: SRR307930,

SRR307931] and six libraries from the “nucleus” group [SRA: SRR317042, SRR317043].

We defined and implemented a pipeline to pre-process and map reads, and to discard

low-similarity alignments and multireads (i.e. reads mapping to multiple positions of the

reference). The analysis pipeline implemented in this study is depicted by the flowchart

of Figure 5.1 (a simplified version of the same pipeline was applied to single-end data).

In the first phase, reads were pre-processed to remove adapter sequences and read

ends whose Phred quality was lower than 20, and to discard reads whose length after

trimming was less than 33bp. Output FASTQ files were re-formatted to recover the

correspondence of paired-end reads, and to store in a separate file the singleton reads,

whose mate was discarded during pre-processing.

The pre-processing and re-mating steps were implemented using the FASTX Toolkit

[156], version 0.0.13.2, and custom made scripts written in bash and Perl. The effective-

ness of the pre-processing phase was assessed using FastQC [157], version v0.10.1.

Pre-processed paired-end and singletons reads were mapped with TopHat v2.0.6

[55], with default parameters settings, in a two-steps procedure. First, paired-end reads

were mapped on the reference sequence to generate a BAM file of alignments and a

file of junctions. Then, singletons were mapped with TopHat exploiting the information

provided by junctions (-j option). The expected distance between paired-end reads

was estimated by using PASS [158] as in [110]. Alignment files from paired- end and

singleton reads were finally merged in a single BAM file using the merge utility of samtools

[159]. In the last phase of post-processing, a filtered set of alignments was obtained

after discarding multireads and reads whose similarity with the reference was lower than

97%. This analysis was performed using SAMsieve, a java alignment-filtering program

developed in house based on SAMtools API. It can filter alignments stored in SAM or

BAM files based on several criteria, such as number of alignments reported, alignment

quality, chromosome, number of mismatches, read coverage, percentage of identity,
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Figure 5.1: Analysis pipeline. 1) Read pre-processing (trimming and filtering) and re-mating
of paired-end reads. 2) Separate mapping of paired-end and singleton reads, and merging of

alignments. 3) Removal of low similarity alignments and multireads.
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etc. In this work, to discard multireads and reads whose similarity with the reference

was lower than 97%, the following options were used: reportedAligns4read<=,1 and

identity>=0.97.

Computation of counts and normalization

Totcounts were computed using the coverageBed utility of bedtools [148], option

-counts.

For each exon i in library j, maxcounts Mij were computed as

Mij = max(Nijsp) (5.1)

where, Nijp is the number of reads covering position p along exon i.

We implemented a new functionality for bedtools’ routine coverageBed that allows

the computation of maxcounts through two new options: -max and -maxm (the latter

allows the user to select the number of exon positions, among those with the highest read

coverages, to be used in the computation of maxcounts). This functionality is available

as a patch for bedtools that can be downloaded from [160]. The code is distributed

along with formatCounts.sh, a bash script for creating a matrix of counts starting from

multiple files, from different libraries, generated with coverageBed (options: -counts,

-max, -maxm). Positional counts along spike-in RNAs were computed using coverageBed,

option -d.

We considered the GRCh37.p10 human reference genome and the Gencode human

exon annotation (version 12), for mapping, computing counts and gathering information

about GC-content.

Exons (or spike-in transcripts of Jiang’s data set) with average totcounts or maxcounts

across replicates lower than 0.5, were discarded from our analysis. For both maxcounts

and totcounts, differences in library sizes between replicates were corrected through

Trimmed Mean of M-values (TMM) normalization [104] using edgeR [131]. In the

following, we will refer to TMM-normalized totcounts and maxcounts simply as “totcounts”

and “maxcounts”, respectively.

Although providing an assessment of normalization methods is beyond the scope of the

present work, we acknowledge that length bias can be corrected through normalization.

Thus, to guarantee a fair comparison with current standards, we applied, when necessary,

two normalization approaches: RPKM [45], which is widely used in RNA-seq studies, and

within-lane full-quantile normalization, using exon length as covariate, since it has been

proposed as preferred method in a recent work by Risso et al. [98]. RPKMs for each exon
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e in library z were calculated as in Chapter 4.

Within-lane full-quantile normalization of counts on exon length was performed

using EDASeq [98]. In order to correct for differences in library sizes, this normalization

was used together with between-lane full-quantile normalization, also implemented in

EDASeq. In this work we consider exons instead of genes or transcripts as we intend to

evaluate the different summarization methods described above without biases, possibly

introduced by the choice of a transcription model (e.g. how overlapping genes or

alternative spliced exons are considered).

5.2 Investigation of count bias

Length bias and GC-content effect

To investigate exon length bias, we used smoothed scatter-plots of counts (averaged

across replicates) versus exon length (Figures 5.2-5.7, panel A).

Figure 5.2: Smoothed scatter-plots showing the relationship between log-counts/RPKMs and
exon length (log scale, A) or GC-content (B), in Jiang’s data (“nucleus” libraries). The orange
curve represents a cubic-spline fit computed on log-counts, averaged in bins of 5000 exons each
(black crosses between vertical lines, indicating bin bounds). Counts or RPKMs are computed
using totcounts, maxcounts, RPKM-corrected totcounts (RPKM) and totcounts corrected with
within-lane full-quantile normalization over exon length (FullQ), and averaged across libraries.

In all data sets, plots show an increasing trend of totcounts as exon length increases

(see the cubic-spline fit represented by the orange line), revealing that longer exons tend

to have higher counts than shorter ones. This bias is reduced, but not completely removed,
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Figure 5.3: Smoothed scatter-plots showing the relationship between log-counts/RPKMs and
exon length (log scale, A) or GC-content (B), in Jiang’s data (“cell” libraries). The orange
curve represents a cubic-spline fit computed on log-counts, averaged in bins of 5000 exons each
(black crosses between vertical lines, indicating bin bounds). Counts or RPKMs are computed
using totcounts, maxcounts, RPKM-corrected totcounts (RPKM) and totcounts corrected with
within-lane full-quantile normalization over exon length (FullQ), and averaged across libraries.

Figure 5.4: Smoothed scatter-plots showing the relationship between log-counts/RPKMs and
exon length (log scale, A) or GC-content (B), in Griffith’s data (“MIP5FU” libraries). The orange
curve represents a cubic-spline fit computed on log-counts, averaged in bins of 5000 exons each
(black crosses between vertical lines, indicating bin bounds). Counts or RPKMs are computed
using totcounts, maxcounts, RPKM-corrected totcounts (RPKM) and totcounts corrected with
within-lane full-quantile normalization over exon length (FullQ), and averaged across libraries.



5.2 Investigation of count bias 75

Figure 5.5: Smoothed scatter-plots showing the relationship between log-counts/RPKMs and
exon length (log scale, A) or GC-content (B), in Griffith’s data (“MIP101” libraries). The orange
curve represents a cubic-spline fit computed on log-counts, averaged in bins of 5000 exons each
(black crosses between vertical lines, indicating bin bounds). Counts or RPKMs are computed
using totcounts, maxcounts, RPKM-corrected totcounts (RPKM) and totcounts corrected with
within-lane full-quantile normalization over exon length (FullQ), and averaged across libraries.

Figure 5.6: Smoothed scatter-plots showing the relationship between log-counts/RPKMs and
exon length (log scale, A) or GC-content (B), in MAQC data (“UHR” libraries). The orange
curve represents a cubic-spline fit computed on log-counts, averaged in bins of 5000 exons each
(black crosses between vertical lines, indicating bin bounds). Counts or RPKMs are computed
using totcounts, maxcounts, RPKM-corrected totcounts (RPKM) and totcounts corrected with
within-lane full-quantile normalization over exon length (FullQ), and averaged across libraries.



76 A novel approach to compute counts: maxcounts

Figure 5.7: Smoothed scatter-plots showing the relationship between log-counts/RPKMs and
exon length (log scale, A) or GC-content (B), in MAQC data (“Brain” libraries). The orange
curve represents a cubic-spline fit computed on log-counts, averaged in bins of 5000 exons each
(black crosses between vertical lines, indicating bin bounds). Counts or RPKMs are computed
using totcounts, maxcounts, RPKM-corrected totcounts (RPKM) and totcounts corrected with
within-lane full-quantile normalization over exon length (FullQ), and averaged across libraries.

in maxcounts. Plots for Jiang’s data (“nucleus” libraries), depicted in Figure 5.2A, show

no dependency of maxcounts on exon length. Conversely, for maxcounts in Griffith’s and

MAQC2 data sets a slight under-representation of exons shorter than 50bp is still visible.

We believe this behavior is explained by the difference in read length among the three

data sets and the ability of TopHat to map them on splice junctions. Indeed, we observed

that in MAQC2 and Griffith’s data sets (36bp reads) only 0.25-0.50% of aligned reads are

mapped on splice junctions, as opposed to 2.5-11.5% of reads in Jiang’s data set (75bp

reads). As a consequence, there is a reduction of counts over exons boundaries, which

mainly affects short exons. In all the considered data sets, RPKM-normalized totcounts

show a negative relationship with exon length due to an over-correction for length bias

on short exons. On the opposite, full-quantile normalization completely removes exon

length bias. Similarly, if applied to maxcounts, full-quantile normalization completely

removes exon length bias even on short exons (plots not shown).

We used the same approach to investigate GC-content effect, revealing a moderate

bias due to GC-composition on almost all data sets (Figures 5.2-5.7, B). As noted in

previous studies, GC-content effect is not consistent across data sets [99, 98, 112, 85].

Interestingly, the correction for exon length bias via full-quantile normalization also

corrects for GC-content bias all the considered data sets. In the following assessments, we



5.2 Investigation of count bias 77

always show raw totcounts and their RPKM- and full-quantile-normalized versions. Given

the low length bias characterizing maxcounts, we consider their raw, not-normalized

version.

Effect of highly expressed genes

We assessed the distribution of raw counts to detect possible biases due to highly

transcribed genes, which may affect detection power of differentially expressed exons

[60, 117].

As evident from Table 5.1 and Figure 5.8, we confirm that most of the reads are

generated by a small subset of highly expressed genes.

maxcounts	
   totcounts	
   RPKMs	
  

Jia
ng
	
  

Gr
iffi

th
	
  

M
AQ

C2
	
  

Figure 5.8: Distribution of maxcounts, totcounts and RPKM-corrected totcounts (RPKM) across
exons, in Jiang’s, Griffith’s and MAQC2 data sets. Plots represent cumulative counts/RPKMs (y-
axis, percentage referred to total counts/RPKMs in a library) assigned to exons (x-axis, percentage
referred to the number of exons with more than zero counts/RPKMs). Each curve represents a
different library and different colours identify different groups. Dashed lines represent 50% and

90% of total counts/RPKMs and are summarized in Table 5.1.
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In particular, Table 5.1 reports the percentage of exons accounting for 50% and 90%

of total counts or RPKMs in a sample, highlighting that less than 40% of exons contains

more than 90% of all totcounts in a library. RPKM-normalized totcounts are more evenly

distributed across exons, but the least biased distribution is that of maxcounts, with a

marked improvement on the more biased data sets (see, for example, how this bias is

reduced on Griffith’s data).

Table 5.1: Summary of the distributions of maxcounts, totcounts and RPKM-corrected totcounts
(RPKM) across exons in Jiang’s, Griffith’s and MAQC2 data sets. Table reports the percentage
of exons accounting for 50% and 90% of total counts/RPKMs (average values across libraries

belonging to the same condition).

Data set Group Counts [%] Exons [%]
maxcounts totcounts RPKM

Jiang
cell 50 6 5 5

90 34 31 31

nucl 50 7 5 7
90 42 37 39

Griffith
MIP101 50 9 4 8

90 44 33 40

MIP5FU 50 9 4 8
90 45 33 40

MAQC2
Brain 50 6 3 5

90 38 26 33

UHR 50 5 3 4
90 37 27 33

5.3 Quantification of spike-in RNAs

We estimated the abundances of spike-in RNAs on Jiang’s data averaging totcounts and

maxcounts across all technical replicates within each group (Figure 5.9).

For all measures, plots show higher agreement with the gold-standard on Jiang’s “nu-

cleus” data, probably because of the higher number of replicates (six libraries) compared

to “cell” data (two libraries). All measures, with the exception of full-quantile-normalized

totcounts, obtain high correlation with true concentrations, with RPKM-normalized

totcounts and maxcounts having slightly better results than totcounts. Full-quantile

normalization performed on totcounts, although eliminates length bias, possibly over-

corrects data. Correlations with true concentrations of maxcounts, totcounts and RPKM-

normalized totcounts, computed on all libraries of Jiang’s data set, do not significantly

differ (two-sided t-test, p-value > 0.05). On the contrary, full-quantile-normalized tot-

counts present the lowest correlation with spike-in RNAs concentrations (two-sided t-test,
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Figure 5.9: Counts/RPKMs obtained for spike-in RNAs from Jiang’s data set, “cell” and “nucleus”
groups, plotted against true concentrations (log-log scale). Counts/RPKMs are computed using
totcounts, maxcounts, RPKM-corrected totcounts (RPKM) and totcounts corrected with within-
lane full-quantile normalization over exon length (FullQ).“r” indicates Pearson’s correlation

(p-values always <1e-11).

p-value < 1e-10). All methods do not depend on transcript abundances, except for

full-quantile-normalized totcounts, which are less robust in estimating low-abundance

transcripts (results not shown).

Jiang’s data set is particularly interesting because it allows the investigation of the non-

uniformity of read coverage along spike-in RNAs (Figure 5.10), which was also reported

in previous studies [101, 144]. Changes in read coverage are not justified by alternative

splicing since spike-in RNAs are single-isoform, and show reproducible patterns on the

same transcript sequenced in different libraries and conditions. As previously noted by

Li et al. [101] reads are not randomly sequenced from transcripts, but some positions

present a larger “sequencing preference” and result in higher (positional) counts.

Figure 5.10 highlights differences in read coverage along two transcripts having

very similar concentrations, ERCC-00033 (7.06e-07 nmol/µl) and ERCC-00046 (7.08e-

07 nmol/µl), with the latter having a more uniform coverage. To have a measure of

how much those patterns affect maxcounts and totcounts quantification (for which an

overall comparison is given in the previous paragraph), we can compute the variation of

maxcounts/totcounts estimates on these two transcripts as:
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Figure 5.10: Read coverage (or “positional counts”) along two spike-in RNAs, ERCC-00033 and
ERCC-00046, in Jiang’s libraries. “Cell” and “nucleus” replicates are indicated with blue and grey

curves, respectively. Read coverage for each library is normalized to its sequencing depths.

∆ =
N33 −N46

N33 +N46
· 100 (5.2)

where Ni are totcounts or maxcounts, averaged across libraries, for each transcript

here considered. Ideally, ∆ should be very small, to reflect the closeness of the true

concentrations. Whereas totcounts produce a variation of 39%, maxcounts have a much

smaller variation of 2%, overcoming read-coverage bias and providing very similar

estimates for the transcripts here used as example. It is interesting to note that both

transcripts show a reduced read coverage in correspondence to 3’ end (Figure 5.10),

a bias that is introduced during the reverse-transcription step performed with random

hexamers (see Chapter 2). This bias is present in all transcripts of Jiang’s data set (results

not shown). Maxcounts approach is robust to 3’ bias since it considers the bases with the

highest read coverage along transcripts.

5.4 Count variance across technical replicates

To compare variance of totcounts (and its normalized versions) versus maxcounts we

quantized the estimated average expression intensities in intervals of equal size and, for

each interval, we calculated the average intensity and the average variance as explained
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in [135]. Finally we fitted data using a cubic spline (Figures 5.11, 5.12 and 5.13).

Maxcounts show the lowest variance at low and mean expressions, while totcounts

present slightly lower variance at high expressions. In order to account for differences

in the range of values, we also considered the coefficient of variation (CV), i.e. the

ratio between the standard deviation and the mean. Totcounts and maxcounts obtain

comparable CV curves. Totcounts normalized with full-quantile are characterized by

larger variance and CV with respect to both maxcounts and totcounts, while totcounts

normalized with RPKM-normalized totcounts have the highest variance and CV.

Figure 5.11: Variance and coefficient of variation (CV) of Jiang’s data: variance vs. mean of
log-counts/RPKMs (left plots) and CV vs. log-mean of counts/RPKMs (right plots). Curves
represent cubic-spline fits computed on variance/CV, averaged in bins of 5000 exons each. Since
maxcounts, totcounts, and totcounts normalized with RPKM (RPKM) and within-lane full-quantile
normalization over exon length (FullQ) approaches are compared, x-values are scaled to cover

the range [0, 1] in order to make them comparable.
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Figure 5.12: Variance and coefficient of variation (CV) of Griffith’s data: variance vs. mean
of log-counts/RPKMs (left plots) and CV vs. log-mean of counts/RPKMs (right plots). Curves
represent cubic-spline fits computed on variance/CV, averaged in bins of 5000 exons each. Since
maxcounts, totcounts, and totcounts normalized with RPKM (RPKM) and within-lane full-quantile
normalization over exon length (FullQ) approaches are compared, x-values are scaled to cover

the range [0, 1] in order to make them comparable.
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Figure 5.13: Variance and coefficient of variation (CV) of MAQC2 data: variance vs. mean
of log-counts/RPKMs (left plots) and CV vs. log-mean of counts/RPKMs (right plots). Curves
represent cubic-spline fits computed on variance/CV, averaged in bins of 5000 exons each. Since
maxcounts, totcounts, and totcounts normalized with RPKM (RPKM) and within-lane full-quantile
normalization over exon length (FullQ) approaches are compared, x-values are scaled to cover

the range [0, 1] in order to make them comparable.
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5.5 Robustness of count measures to alignment quality

An important criterion for the evaluation of reproducibility is the robustness of totcounts

and maxcounts to variations in the quality of alignments. Results presented so far refer

to a filtered set of alignments obtained using the analysis pipeline defined for this study,

in which multireads and low-similarity alignments were discarded. To investigate how

this choice impacts on quantification, for each exon i in each library j, we measured

the relative variation RV (i, j) between counts N(ij) obtained from the original set of

alignments and from the filtered set, as follows:

RV (i, j) =
Norig(i, j)−Nfilt(i, j)

Norig(i, j) + 1
· 100 (5.3)

where the expression at the denominator is used to avoid possible divisions by zero.

Ideally, if a measure is robust to alignment filtering (that depends on the specific analysis

pipeline defined by users), relative variation should be 0%. Here we consider raw

maxcounts and totcounts, not subjected to any normalization, since we want to assess

the direct impact that changes in alignment filtering have on count summarization.

On all data sets, the fraction of exons for which maxcounts have 0% variation is always

higher than that of totcounts (one-tailed t-test, p-value = 0.02). In particular, on Griffith’s

data, more than 80% of exons are not affected by alignment filtering (Figure 5.14A). In

addition, histograms of relative variations in Jiang’s data show that only a small fraction

of exons are affected by medium-high variation (Figure 5.14B). For visualization purpose,

exons with null variations are not represented by histograms, since they would result in a

very high bar in correspondence of 0%, making it harder to assess variations greater than

0%. Similar results are found on Griffith’s and MAQC2 data sets (plots not shown).
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Figure 5.14: Relative variation of non-normalized totcounts (blue) and maxcounts (red) when
low-similarity alignments and multireads are discarded: percentage of exons with null variation
(A) and superimposed histograms of non-null variations affecting exons in Jiang’s data set (B).
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5.6 Summary of maxcounts performance

In a standard RNA-seq assay, the expression of a coding unit, such as a gene, transcript or

exon, is estimated by considering the total number of reads that can be aligned on its

sequence (totcounts). Despite being widely adopted, this digital measure of expression is

not free from biases, and efforts are underway by the scientific community to develop

novel methods for data normalization and bias correction. Here we propose an alternative

approach for computing RNA-seq counts, called maxcounts. Read coverage along an exon

is exploited to compute maxcounts as the maximum of its positional counts, i.e. the

number of reads covering each base along its sequence.

We characterized and compared totcounts and maxcounts considering the desired

features of a measure of expression, irrespectively of downstream applications: no

dependence on covariates, such as exon length and GC-content, no over-representation

of highly transcribed exons, accurate and precise estimation of true expression levels, low

variance and high reproducibility.

Overall, totcounts always need normalization for exon length since they present a

strong bias. On the contrary, exon length bias in maxcounts is strongly reduced, so they

do not necessarily require normalization. If exon length bias is corrected through within-

lane full-quantile normalization, further correction for GC-content is not needed neither

for totcounts nor for maxcounts. Moreover, with maxcounts the over-representation

of highly expressed exons is reduced with respect to totcounts. When focusing on

accuracy and precision of measurements, maxcounts together with RPKM-corrected

totcounts reproduce real data in the most accurate way, whereas maxcounts together with

totcounts normalized with the full-quantile approach show the lowest variance. Finally,

although the quality of alignments has a great impact on both methods, maxcounts

approach outperforms totcounts in terms of robustness to variations in alignment filtering.

Consequently, we believe that maxcounts approach represents a valuable alternative to

totcounts for measuring exon expression from RNA-seq data, since it has comparable or

higher performance on all the evaluation criteria.

Although several improvements have been made to understand and correct for pos-

sible biases in the RNA-seq experimental protocol, read coverage along transcripts still

shows sequence-specific variability and under-representation of specific regions. Max-

counts approach can overcome biases due to the non-uniformity of read coverage, select-

ing the best represented transcript regions. Nevertheless, RNA-seq is a methodology still

under active development, which will experience a fast improvement of experimental

protocols and evolution of data characteristics. We made available the code for calculating

maxcounts, thus enabling its benchmarking on different data sets.
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pipeline for measuring gene expression in
human RNA-seq data

The analysis pipeline defined in the previous chapter (see Figure 5.1), despite being

appropriate for fair comparison of methods for counts computation (i.e. after read

mapping), might present some limitations when applied to complex transcriptomes.

Indeed, considering only uniquely mapping reads and discarding multireads can produce

misleading results (e.g. in regions containing copy number variation or homologous

genes). As seen in section 2.2, discarding multireads necessarily leads to a loss of

information and a systematic underestimation of expression levels in correspondence of

repetitive regions.

In order to define a pipeline that is robust to the structure of the human transcriptome,

we decided to exploit a strategy for performing multiread mapping. Herein we do not

intend to employ a method for quantification of gene or isoform expression levels, but

to integrate a strategy for handling multireads in our pipeline, between pre-processing

and count computation performed with totcounts or maxcounts approach. So far, several

strategies for handling multireads have been proposed, as described in the literature

review of section 2.2. However, most of the available methods comparisons focus on the
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expression levels quantification and do not assess accuracy and precision of multireads

alignment, making it harder to identify the best performer on latter task. Among the

available methods (reviewed in Chapter 2), we decided to use RSEM [161, 79] since it

is one of the most accurate methods, handles also paired-end reads and has a limited

memory requirement [79, 97]. Nevertheless, similarly to most of mapping algorithms,

RSEM cannot consider paired-end and single end reads in the same run. Thus, we tested

it in different algorithmic settings to identify the best configuration to integrate in the

final analysis pipeline.

In the following, we present the definition and implementation of RSEM assessment,

along with the obtained results. In addition, the integration of the final read mapping

strategy into the analysis pipeline is presented and discussed.

6.1 Analysis framework and methods to assess RSEM

mapping strategies

The procedure for read pre-processing defined in Chapter 5 (Figure 5.1) generates two

sets of high-quality reads: singletons (i.e. single-end reads), whose mate was discarded

in the filtering step, and paired-end reads (Figure 6.1).

P1 P2 

S 

Data


Figure 6.1: Representation of RNA-seq data after pre-processing: some paired-end reads are kept
(P1 and P2 mates, in green), some are discarded (in grey) and others can be kept as singletons,

i.e. without their mate (S, in orange).

At the time of the assessment, RSEM mapping was implemented in a script called

rsem-calculate-expression that did not allow aligning both paired-end and single-end

reads in the same run. By default, RSEM aligned reads in single-end mode (SE), while

paired-end mode (PE) could be selected by specifying the --paired-end parameter. In

the latter case, the algorithm discarded singletons or reads having an unmapped mate.

Thus, we decided to explore and compare several strategies to align together singletons

and paired-end data with RSEM:
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PE map only paired-end reads using the PE mode;

SE map all reads in SE mode;

HPS consider reads mapped in PE mode and add reads mapped only in SE mode;

HPS consider reads mapped in SE mode and add reads mapped only in PE mode.

The HPS and HSP approaches do not necessarily provide the same solutions, since

the same read can be mapped on different locations.

Another possible solution is that of avoiding read pre-processing to directly map the

original paired-end reads. However, read trimming is important for removing adapters

and low-quality sequences that can reduce the number of mapped reads and bias ex-

pression results [113, 162]. Thus, we decided to mantain the pre-processing module

before mapping in our computational pipeline. Nevertheless, the framework described

above does not completely allow a fairly comparison of PE and SE strategies because

both consider paired-end reads (P1 and P2 in Figure 6.1), but only the SE approach also

uses singletons (S reads in Figure 6.1). So, in order to separate the effects due to the

algorithm or to the data, we tested a further approach, here referred as SEp: mapping

only paired-end reads (i.e. discarding the singletons) with the SE strategy.

In order to benchmark these different strategies we considered six simulated human

data sets of RNA-seq reads generated with FluxSimulator [114] and described in section 3.

Reads were pre-processed as described in Figure 5.1 and mapped with RSEM v1.1.20 on

the human reference genome (GRCh37.p10). We used RSEM only to align reads to the

genome, without considering the downstream estimates of gene and isoform expression

levels. To this end, RSEM was used together with BamTools v1.0.2 [163] to assign each

read to a unique location. In particular, the rsem-calculate-expression function was

used with the --sampling-for-bam parameter to handle multireads. The BAM file out-

put by RSEM (*.genome.sorted.bam) was parsed with the bamtools filter function,

specifying the -mapQuality 100 parameter, to extract only the best hit for each read.

The following RSEM parameters were also specified: --bowtie-e 60, --bowtie-m 30,

--bowtie-chunkmbs 512, --fragment-length-mean 180 and --fragment-length-sd

50. Custom Perl and bash scripts were used to merge the alignments output by the SE

and PE mode, to obtain the final set of HPS and HSP alignments.

Read counts were computed over human exon regions defined as in [130]. Exon

regions were obtained from the Gencode human annotation (version 12) using the

dexseq prepare annotation.py script. Both totcounts (i.e. the total number of mapped

reads) and maxcounts (i.e. the maximum read coverage) were computed for each exon

region as in Chapter 5, using Bedtools v2.17.0 [148].
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totcounts

maxcounts 

exon

region


isoforms


Figure 6.2: Computation of totcounts and maxcounts over exon regions. Exon regions were
defined as in [130], splitting in two or more bins the exons having different boundaries in the

different gene isoforms.

Considering the true genomic positions from which simulated reads were sampled,

we also computed true maxcounts and totcounts. Thus, we were able to compare the

estimated counts to the true ones to see if they were correct (“hit”), overestimated

or underestimated. In particular, five classes were defined considering if true counts

were in the lower half-range or in the higher half-range of expression (see Table 6.1 for

clarification).

Table 6.1: Classification of estimated counts, considering the level of expression of the true counts.
True counts can be in the high-expression range (if greater than (max(counts)−min(counts))/2)
or in the low-expression range. Estimated counts can be equal to the true counts (“hits”), over-
estimated, if greater than the true ones, or under-estimated, otherwise. The combination of this
four situation define four classes, while “hits” are defined independently from the range of true

counts.

estimated = true estimated > true estimated < true

Low true hit low-overest. low-underest.
High true high-overest. high-underest.

6.2 Performance of RSEM mapping strategies

Figure 6.3 shows the results obtained for 8M and 20M reads (average values across

libraries). In all cases, for more than 75% of exon regions maxcounts and totcounts
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estimates are exactly equal to the true ones, indicating that this analysis pipeline provides

stable results.

70% 75% 80% 85% 90% 95% 100% 

HSP-max 

HSP-tot 

HPS-max 
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PE-max 
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SE-max 
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Figure 6.3: Hits and errors in maxcounts and totcounts estimates, in 8M and 20M reads data
sets (average across three replicates). For all methods (PE, SE, HPS and HSP), bar-plots start

from 70% because hits (in yellow) are never lower than 75%.

Maxcounts approach compared to totcounts, obtains a higher percentage of exact hits.

Since we do not know the true measure of gene expression levels, we cannot conclude

from these results that maxcounts gives more precise estimates, but only that they are

robust to read pre-processing and mapping, confirming the results reported in Chapter 5.

Unexpectedly, the SE strategy leads to a higher fraction of exact hits compared to the PE

strategy. The performance of the “hybrid” approaches, HSP and HPS, are comparable to

those of the SE mode, with a variation smaller than 0.2%. The 20M reads libraries obtain

slightly less hits than the 8M reads libraries and are characterized by a higher average

error (Figures 6.3 and 6.4).
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Figure 6.4: Average error (i.e. differences between estimated and true counts) across exon
regions. Bar-plots for totcounts and maxcounts estimates in 8M (orange) and 20M (blue) reads

libraries.
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For all methods, very few exons are over-estimated, with slightly higher percentages

in the hybrid strategies. Over-estimation mostly affects low-counts exonic regions while a

large fraction of medium expressed exon regions is under-estimated (Figure 6.3 and 6.5).

Figure 6.5, representing errors in totcounts and maxcounts estimation after SE mapping,

highlights that the largest errors occur at very low and very high expressions; PE, HSP and

HPS strategies lead to similar patterns (results not shown). As expected, most of errors

are due to under-estimated counts, which might be partly due to reads discarded during

pre-processing and mapping. Again, the hybrid modes show similar results compared to

the SE strategy, with about -1% under-estimated and +1% over-estimated exon regions

Figure 6.3.

Figure 6.5: Errors in totcounts (a) and maxcounts (b) estimated after SE mapping of 20M
reads libraries. Scatter-plots of the differences between estimated and true counts versus true
counts (log-scale). log(counts+ 1) is used to avoid invalid values for null totcounts and each dot

corresponds to an exon region estimate for one library.
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(b) maxcounts

Defining a stringent threshold for hits might be a drawback for libraries with higher

sequencing depths. Thus, we also assessed the percentage of hits obtained by each

approach tolerating from 0 to 104 counts of difference between estimated and true counts

(Figure 6.6). Nevertheless, the hits percentage for 8M reads libraries is always higher

than that of 20M reads libraries, for all tolerated errors.

We also tested the SEp approach, by mapping only paired-end reads with the SE

strategy, to investigate whether the differences between the PE and SE approaches were

due to the algorithm or to the data (Figure 6.7). Compared to SE mapping, the SEp

approach (same algorithm, less data) obtains fewer hits, as direct consequence of data

loss (i.e. singletons reads). Notably, this does not only mean that the SE strategy maps

more read, as expected, but that it is capable of assigning them to their exact location,
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maxcounts
 totcounts
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Figure 6.6: Percentage of hits, tolerating from 0 to 104 counts of difference between estimated
and true totcounts (upper panels) or maxcounts (bottom panels) in 8M (red) and 20M (blue)

reads libraries.
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resulting in a correct count estimate. On the other hand, the SEp approach obtains more

hits than the PE approach, demonstrating that, if the same set of data is considered,

RSEM can better assign reads to their correct position when used in single-end mode.
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Figure 6.7: Hits and errors in maxcounts and totcounts estimates, in 8M and 20M reads data
sets (average across three replicates). For all methods (PE, SEp and SE), bar-plots start from 70%

because hits (in yellow) are never lower than 75%.

6.3 Discussion and definition of the final computational

pipeline

Our benchmarking of RSEM on two simulated RNA-seq data sets reveals that SE mapping

of reads leads to a higher proportion of perfect hits with respect to PE mapping. The

better performance of the SE scheme is partly due to the algorithmic strategy and partly

to the data considered. Indeed, while the SE approach allows mapping all the reads

output by the filtering step, the PE algorithm considers just the paired-end reads subset.

This finding is in agreement with the work of Li et al. [79], where the best gene-level

abundance estimates was obtained mapping single-end reads with RSEM. From the

present results, it is not clear if the slightly worse results on the 20M reads libraries are

due to the simulated data or to the settings of the algorithm. A systematic assessment

of different data sets, with different features and sequencing depth, is needed to further

clarify this aspect. Using SE and PE alignments to build a “hybrid” mode leads to results

that are comparable to those of SE mode. However, these approaches are much more

computationally intensive, since they require SE mapping, PE mapping and alignments

post-processing and merging.

Given these results and considerations, we decided to integrate the single-end mode

of RSEM in our analysis pipeline to align all pre-processed reads (see the final pipeline
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in Figure 6.8). As described above, RSEM is used along with custom made scripts to

assign each read to a unique genomic position. Downstream expression quantification is

performed at exon-region level, considering the aligned reads and exploiting totcounts

and maxcounts strategies. Finally, count normalization (through TMM) and DE analysis

and is performed with edgeR, selected for its superior performance over other methods

(see sections 2.4 and Chapter 4).

It is worth notice that the pipeline here defined has been tested on human data

sets and that its application to other organisms should be preceded by further specific

assessments. For instance, a transcriptome that is denser in repeats or not well annotated

might challenge more the methods here used and results in less accurate estimates [63].
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Figure 6.8: Final RNA-seq analysis pipeline. 1) Read pre-processing: trimming of low-quality
ends and adapters and filtering of short reads. 2) Read mapping and allocation of multireads with
RSEM in single-end mode. 3) Computation of maxcounts and totcounts. 4) Counts normalization

and differential-expression analysis.
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Application of the pipeline to a case study:

RNA-seq analysis of patients affected by
spinal muscular atrophy and healthy controls

The pipeline described in Chapter 6 was applied to a real case study, to identify the genes

involved in the pathogenesis of spinal muscular atrophy (SMA) from RNA-seq data of

patients and healthy controls. SMA is a degenerative and mortal neuromuscular disease

that has no cure and represents one of the major genetic causes of infant mortality. The

aim of the study was to investigate the variables involved in the pathogenesis of SMA,

posing particular attention on the genetic factors contributing to phenotypic differences

among SMA patients. To this end, a RNA-seq study of patients with mild or severe

SMA phenotype, along with their healthy relatives used as controls, was conducted

in collaboration with the Centro Nacional de Investigaciones Cardiovasculares (CNIC,

Madrid, Spain). RNA-seq technology was chosen because it allows to quantify gene

expression and to investigate single-nucleotide polymorphisms at the same time, so it

makes possible a deep characterization of the genes involved in SMA pathogenesis. The

definition of a pipeline robust to multireads (Chapter 6) is particularly important in this

analysis, since the main genes involved in SMA, SMN1 and SMN2, present very high

homology and are located in a repetitive region of the human genome. In this chapter,
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we present the unpublished results of the RNA-seq assay on SMA patients and controls,

analyzed with the pipeline defined through the assessments presented in the previous

chapters.

7.1 Spinal muscular atrophy

Spinal muscular atrophy (SMA) is an autosomal recessive disorder (Figure 7.1) that

causes degeneration of motor neurons in the anterior horn region of the spinal cord

(Figure 7.2), which results in progressive muscle weakness and paralysis. SMA is one of

the main genetic causes of infant mortality [164, 165] with an estimated prevalence of 1

in 10 000 births [166] and a carrier frequency of 1 in 40 individuals [167].

Carrier
mother

Carrier
father

Carrier
child

Carrier
child

Unaffected
child

Affected
child

Unaffected

Carrier

Affected

Genotype

Normal gene

Abnormal gene

Trait transmission

Figure 7.1: In autosomal recessive transmission two copies, that is one copy per chromosome, of
the abnormal gene must be present in order for the disease or trait to develop. Heterozygous
individuals, which are called “carriers” because they carry one copy of the abnormal (e.g.
mutated) gene, do not manifest symptoms of this disorder. In spinal muscular atrophy, patients

are characterized by absent or mutated SMN1 gene on both copies of chromosome 5.

SMA severity is highly variable and the International SMA Consortium has defined

four clinical groups depending on the age of onset and the achieved/conserved motor

functions [169, 165]:
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Anterior horn of spinal cord

Skeletal muscle

Figure 7.2: Histopathology of spinal muscular atrophy (figure and caption adapted from [168]).
In healthy individuals, motor signals generated in the cerebral cortex are transmitted by motor
neurons of the spinal cord to the skeletal muscle. The spinal cord anterior horn region in SMA
patients (B) shows absence of motor neurons compared to healthy controls (A, green arrow).
Compared with the uniform morphology of fibers in healthy muscle (C), skeletal muscle of a SMA
patients (D) presents hypertrophic fibers (white arrowhead) surrounded by group atrophy (green
arrowhead). Despite muscle fibers atrophy caused by SMA, muscle spindles (black asterisk) are

not affected (D).
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• Type-I SMA, also called “Werdnig-Hoffmann disease” [170], is the most severe form,

usually diagnosed within the first 6 months of life, often at birth. Children are never

able to sit or walk and usually die from respiratory failure within the first two years.

• Type-II SMA, also called “Dubowitz disease” [171], manifests is within the first 6

months. Patients are able to sit but cannot walk unaided. Life expectancy is reduced

but most of patients live well into adulthood.

• Type-III SMA, also called “Kugelberg-Welander disease”, [172] is a milder form,

with onset during infancy or youth. Patients are able to sit and walk and have

a nearly normal life span. Disease onset before the age of 3 years is classified

as type-IIIa, whereas age of onset beyond 3 years is classified as type-IIIb SMA.

Type-IIIa patients experience a faster weakness progression and an earlier loss of

ambulatory capacity compared to type-IIIb patients.

• Type-IV SMA [173] is the least severe form of SMA, which is diagnosed in adult age

(i.e. after 30 years). Patients are mildly affected and have a normal life expectancy.

SMA is caused by the loss or mutation of the survival motor neuron 1 gene (SMN1),

which leads to reduced SMN protein levels and a to a selective dysfunction of motor

neurons. In particular, 95% of SMA patients are characterized by a homozygous loss of

SMN1 gene while in the remaining cases the disease has been linked to small deletions

or mutations in SMN1 [174]. In humans, there are two nearly identical SMN genes,

both located in 5q13 region of chromosome 5 and encoding the same open reading

frame: the SMN1 gene (telomeric) and the SMN2 gene (centromeric) (Figure 7.3). SMA

patients have deleted or mutated SMN1, but retain one or more copies of SMN2. However,

the sequence of SMN2 is characterized by a single-base change in exon 7, from C to

T, with respect to SMN1. This C/T mutation does not change the amino acid coding

but significantly alters the splicing pattern of the SMN2 pre-mRNA, causing frequent

skipping of exon 7 [175]. As a result, SMN2 predominantly produces a SMN isoform

lacking exon 7, SMN∆7, which results in a protein lacking the last 16 amino acids. This

protein is inactive and unstable, and is quickly degraded. Thus, SMA arises because SMN2
generates a small fraction of full-length transcripts (about 10-15% of total produced

RNAs) which cannot fully compensate for the lack of functional SMN due to SMN1 gene

deletion [176]. Loss of SMN2 but not SMN1 occurs in the human population without

consequences [177]. On the contrary, the homozygous loss of both genes has not been

reported in literature, probably because it is lethal [177]. Indeed, mice carry a single Smn
gene and its deletion leads to very early death of embryos [178]. It is not clear yet how a
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single base substitution can induce exon 7 skipping in SMN2, but two hypotheses have

been proposed [179, 180, 181]. Cartegni and Krainer suggest that the C/T substitution

disrupts an exonic splicing enhancer (ESE), which constitute a binding site for alternative
splicing factor 1 (ASF1). Differently, Kashima and colleagues suggest that it creates a

novel exonic splicing suppressor (ESS) site, which the splicing suppressor hnRNP A1 binds.

As Burghes and colleagues point out, these models are indeed compatible and highlight a

weak point of the splicing machinery, in that a single nucleotide change can convert an

ESE into an ESS, dramatically altering splicing patterns [174].

Chromosome 5

p15.3 p15.2 p14 p13.3 q11.1 q11.2 q12 q13.1 q13.2 q14 q32 q33.1 q34 q35.1 q35.3p12p13.2 q22 q31.2 q31.3q15 q23.1 q23.2q21 q23.3 q31.1

q11.2

 1  2a  2b  3  4  5  6  7  8

100 nt

C

T

SMN1

SMN2

SMN1/SMN2 exons

SMN2 SMN1

Figure 7.3: Location of SMN2 and SMN1 genes on chromosome 5 and splicing pattern due to
the C/T mutation in exon 7.

Despite the progresses made during the last decade in the understanding of SMA,

many questions about its exact genetic mechanism still have to be answered [182]. First

of all, it is not clear how reduced SMN levels cause SMA. Two different hypotheses

consider either its importance for the transport of mRNA in neurons or its role in the

pre-mRNA splicing machinery [174]. Moreover, it is not clear why reduced levels of

SMN, which is a ubiquitously expressed protein, only affect motor neurons. This issue

is of particular interest, because other neurogenic disorders are linked to mutations

in ubiquitously expressed genes, such as Super Oxide Dismutase (SOD) in amyotrophic

lateral sclerosis and Huntingtin (HTT) in Huntington’s disease [174]. Many of the studies

carried out in recent years investigate which other variables, apart from SMN1 gene,

play a role in SMA so to determine such a wide range of clinical severity. The number

of copies of SMN2 gene explains most of the differences in SMA patients’ phenotypes:

SMA severity inversely correlates with the number of copies of SMN2 gene [167] and

patients with the milder type-II or type-III SMA have more copies of SMN2 than type-I

patients. The link between the number of copies of SMN2 and SMA severity was also

confirmed in mouse models [183, 184]. However, SMA phenotype cannot always be
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deduced solely from SMN2 copy number [167] and the heterogeneity in SMA patients

phenotypes has in some cases even challenged their prognosis and classification [182].

These limitations have led to the investigation and discovery of new variables playing

a role in the disease. Prior and colleagues [176] studied three cases of SMA patients

characterized by mild type-IIIb phenotype and having only two copies of SMN2. They

found a G/C single base substitution in exon 7 of SMN2 gene and discovered that this

change constitutes an EES resulting in increased levels of full-length transcripts, and

consequently less severe phenotype. In addition, plastin 3 (PLS3), a gene located on the X

chromosome that produces a protein involved in axonogenesis, was suggested as positive

modifier by Opera et al. They found that, for some rare families, PLS3 expression was

higher in unaffected SMN1-deleted females than in SMA-affected males [185].

So far, neither a cure nor an effective treatment for SMA has been developed, but

some efforts are underway to develop novel therapies, leveraging on: small molecules

targeting SMN2 that are capable of increasing SMN levels, viruses that carry SMN1 gene

and oligonucleotides that can prevent exon 7 skipping in SMN2 [167]. In this scenario,

the identification of protective modifiers is not only important to shred light on the

pathogenesis of SMA, but might also led to the discovery of new potential targets for

therapy.

7.2 Study design and computational analysis of RNA-seq

data

Study design and samples collection

The study was designed by Dr. C. Hernández Chico (Molecular Genetics Unit of Hospital

Ramón y Cajal, Madrid, Spain). In total, 201 patients fulfilling the SMA Consortium’s

diagnostic criteria for proximal muscular atrophy [169, 165] were included in the study

(Table 7.1).

Table 7.1: Clinical features of the full cohort of SMA patients recruited for the study.

SMA type Total Gender Family related Age

men women yes no <16 ≥16

I 97 49 48 1 96 97 0
II 68 40 28 1 67 32 36
III 36 17 19 4 32 4 32

Total 97 106 95 6 195 133 68

From the full cohort of patients, a subset of 5 type-II SMA patients, 5 type-II SMA

patients and 20 healthy relatives was selected for transcriptome profiling through RNA-
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seq. SMA patients were selected considering the following criteria: homozygous deletion

of SMN1 and three copies of SMN2. Although the primary target of SMA are motor

neurons, transcriptome profiling with RNA-seq was performed in peripheral blood. RNA

assay in this accessible surrogate tissue allows an easier investigation of markers that

can be later employed for diagnosis and therapy. Dr. Hernández Chico’s research group

recruited subjects and collected blood samples and medical data. Blood samples were

collected using PAXgene Blood RNA tubes (PreAnalytiX [186]) in order to reduce in vitro

RNA degradation and minimizing gene induction.

Library preparation, sequencing and raw data pre-processing

All the experimental steps form RNA extraction to sequencing were performed by the

CNIC Genomics Unit, under the supervision of Dr. A. Dopazo González. Total RNA was

quantified by absorbance at 260 nm in a NanoDrop spectrophotometer and its integrity

was checked using Agilent Bioanalyzer [187]. 500 ng of total RNA were used with the

TruSeq RNA Sample Preparation v2 Kit (Illumina [24]) to construct barcoded cDNA

libraries. Libraries were quantified with Nanodrop Spectrophotometer (Nanodrop [188]).

Quality and fragment size distribution of the Illumina libraries were determined using

the DNA-1000 Kit (Agilent Bioanalyzer). The prepared cDNA libraries were applied to

an Illumina flow cell for cluster generation (True Seq SR Cluster Kit V2 cBot) followed

by sequence-by-synthesis with the Illumina Genome Analyzer IIx, to generate 2x75bp

paired-end reads. The 20 healthy controls were subjected to a single sequencing run. For

each of the 10 SMA patients multiple sequencing replicates were performed in order to

increase sequencing depth. In total, 59 RNA-seq libraries were sequenced (Table 7.2).

Conversion of raw Illumina BCL files to FASTQ format and demultiplexing where

performed by the CNIC Genomics Unit using the Illumina2bam function [189] and Picard

[190].

Application of the computational pipeline for data analysis

Raw read data consist in 59 FASTQ files from 30 subjects (Table 7.2). From here on,

type-II patients, type-III patients and healthy controls will be referred as “SMA2”, “SMA3”

and “CTRL”, respectively. All FASTQ files from to the same subject were concatenated in

a single file, obtaining 30 FASTQ files in total. Read pre-processing and mapping were

performed following the computational pipeline defined in Chapter 6 (Figure 6.8). The

number of original, filtered and mapped reads for each individual is shown in Figure 7.4:

10-17% of original reads were eliminated during the filtering steps and 2-19% resulted
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Table 7.2: Samples subjected to RNA sequencing, one per line: subject’s ID, sex, SMA type, SMN2
copy number, family, sequencing lane and run. Multiple sequencing replicates for each SMA
patient were performed and are grouped by grey areas. SMA type: ‘2’ and ‘3’ indicate type-II and

type-III SMA, ‘C’ indicates carriers and ‘N’ indicate unaffected individuals.

Subject Sex SMA SMN2 Family Run Lane

CTRL 01 01 M C 2 father R1 L1
CTRL 01 02 F C 2 mother R1 L1
SMA3 01 03 M 3 3 R1 L7

R2 L3
R2 L2
R2 L3
R2 L4

CTRL 01 04 M N 1 brother R3 L1

CTRL 02 02 F mother R3 L4
SMA2 03 03 M 2 3 R1 L6

R2 L5
R2 L6
R2 L7

CTRL 03 04 M C brother R3 L4

CTRL 04 01 M father R3 L3
SMA3 04 03 F 3 3 R2 L5

R2 L6
R2 L7
R4 L3

CTRL 04 08 F R3 L3

CTRL 05 01 M C R3 L5
SMA2 05 03 M 2 3 R2 L7

R2 L6
R2 L5
R1 L7

CTRL 05 04 M C brother R3 L5

CTRL 05 01 M C 2 father R1 L2
CTRL 05 02 F C 4 mother R1 L2
SMA3 05 03 F 3 3 R2 L4

R4 L2
R2 L2

CTRL 06 10 F C grandmother R3 L2
CTRL 06 01 M C father R1 L4
CTRL 06 02 F C mother R1 L4
SMA2 06 03 M 2 3 R4 L1

R2 L2
R2 L3
R2 L4

CTRL 07 02 F C 2 R1 L3
SMA2 07 03 F 2 3 R4 L2

R2 L2
R2 L3

CTRL 07 04 M C 1 brother R3 L2

CTRL 08 01 M C 2 father R1 L3
SMA2 08 03 F 2 3 R2 L2

R2 L3
R2 L4
R4 L1

CTRL 08 07 M N 1 R3 L1

CTRL 09 01 M father R1 L5
CTRL 09 02 F mother R1 L5
SMA3 09 03 F 3 3 R4 L3

R2 L7
R2 L5
R2 L6

SMA3 10 3 F 3 3 R1 L6
R2 L5
R2 L6
R2 L7
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Figure 7.4: Number of reads sequenced for each sample and fraction of mapped (grey), not
mapped (orange) and filtered (blue) reads.

Counts were computed as in Chapter 6: both totcounts and maxcounts (see definitions

in Chapter 5.) were calculated for each exon region. Totcounts were also computed at

gene level using Bedtools v2.17.0 [148]; from here on, we will refer to this approach

as totcounts-genes. When not differently stated, counts-per-million or cpm is used in the

following paragraphs to indicate totcounts-genes normalized to library size, using the

cpm function of edgeR package [131].
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Analysis of differential expression and genotyping

The count tables were imported in R [191] and exon regions shorter than 30 nt or having

less than 5 counts in more than 20% of subjects were eliminated. Finally, totcounts and

maxcounts were summarized at gene level considering the median across all exon regions

belonging to a gene. Gene counts were finally tested for differential expression after

correcting differences in sequencing depth between replicates via TMM normalization

[104]; both steps were performed using edgeR package [131]. The “glm” version of edgeR

[151] was used to compare gene totcounts/maxcounts between SMA and CTRL, SMA2

and CTRL, and SMA3 versus, correcting for family information. In addition, a reduced

matrix consisting only in SMA patients’ data was considered, and differences between

SMA2 and SMA3 gene maxcounts/totcounts were tested using edgeR and correcting for

sex information. p-values were corrected to control false-discovery rate (FDR) in multiple

tests (q-values; [192]). DE genes were selected imposing a FDR threshold of 5%.

The set of DE genes selected for “SMA versus CTRL” and “SMA2 versus SMA3”

comparisons were also subjected to Ingenuity Pathway Analysis (IPA, Ingenuity Systems

[193]) to investigate gene networks and molecular functions associated with SMA and

with disease severity. IPA system transforms a list of genes into networks, leveraging

on the information gathered from the Ingenuity Pathways Knowledge Base (IPKB), an

extensive and curated database with annotations about genes, gene products, processes,

diseases and drugs. Networks give a graphical representation of molecular relationships

between genes. Genes, molecules and complexes are represented by nodes, and biological

relationships between nodes are represented by edges and are supported by references

stored in the IPKB. IPA also assigns a p-value to each network indicating the likelihood

that connections between nodes are due to chance. The list of selected genes, together

with q-values and log-ratios estimated by edgeR for maxcounts, were submitted to IPA.

Aligned reads were also processed with mpileup function of Samtools [159] to detect

SNPs and indels. For each detected variant, the distribution of genotypes of the patients

with type-II patients and type-III patients was compared using a Fisher’s test.

7.3 Investigation of genes involved in SMA pathogenesis

Selection of differentially expressed genes

Results of the DE analysis performed with edgeR are summarized in Figure 7.5. The

intersection between the lists provided by totcounts and maxcounts approach was taken

as final lists of DE genes. The overlap with the lists provided by totcounts-genes approach
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was also checked (Figure 7.5); in all comparisons except “SMA3 versus CTRL”, 77-83%

of DE genes are confirmed also by this third method. DE genes confirmed by two or more

methods also have the same direction of differential expression (i.e. are over-expressed

or under-expressed).

576 446714 44 1441 105 6569
595 28

551

176443

854

270133

163

57

1874

235

4731

12

49

93

28

192

10

SMA vs CTRL SMA3 vs CTRL SMA2 vs CTRL SMA2 vs SMA3

maxcounts totcounts totcounts-genes

totcounts
maxcounts
tot. genes

1290
1160
1808

totcounts
maxcounts
tot. genes

85
55
17

totcounts
maxcounts
tot. genes

174
134
367

totcounts
maxcounts
tot. genes

64
87
78

44
30 1

11

13

6

Figure 7.5: Differentially expressed genes: Venn’s diagrams on top show the number of differen-
tially expressed (DE) genes selected with maxcounts (blue) and tocounts (orange) approaches;
the final list of DE is given by the intersection. The number of total DE genes detected by
maxcounts, totcounts and totcounts-genes approaches (grey) is reported in the tables and their

intersection is shown in the Venn’s diagrams below.

Some of the DE genes selected (Tables B.1-B.4) are overlapping-genes, because their

locations onto the human genome overlap, preventing to discriminate completely which

genes contribute to the detected changes in gene expression. In summary, 714 DE genes

(83 of which overlapping) were detected in the “SMA versus CTRL” comparison, 41

genes (2 overlapping) in “SMA3 versus CTRL”, 69 genes (9 overlapping) in “SMA2 versus

CTRL” and 59 in “SMA2 versus SMA3” (6 overlapping). As expected, SMN1 is among

the top-10 ranked DE genes for the all the comparisons of SMA, SMA2 and SMA3 versus

CTRL. However, SMN1 expression in SMA patients is not null (Figure 7.6a), probably

due to the impossibility for RSEM to correctly determine the original genome position of
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reads arising from SMN∆7 isoform, transcribed from SMN2 but having 100% similarity

with SMN1. SMA patients show a slightly higher expression of SMN2 gene compared

to controls (Figure 7.6b) but this gene is not found significantly over-expressed in our

analysis. However, DE analysis from maxcounts and totcounts detects an over-expression

of SMN2 gene in SMA2 patients compared to CTRL at FDR of 5.3% and 7.1%, respectively

(i.e. slightly over the imposed threshold).

Figure 7.6: Expression of SMN1 (a) and SMN2 (b) genes in CTRL, SMA2 and SMA3 individuals:
box-plots of counts-per-millions (cpm).
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Ingenuity pathway analysis

For “SMA versus CTRL” comparison, IPA found annotation for 511 over 714 DE genes

(Tables 7.3 and B.5) and revealed association with diseases related to inflammatory and

antimicrobial response, with developmental disorders and with nervous system devel-

opment and function (Table 7.3). The main network reconstructed by IPA (Figure 7.7)

is associated with cell signaling, cell-to-cell signaling and interaction, and antimicrobial

response. It involves 35 molecules, of which 32 in are selected DE genes. Additional

IPA networks associate some of the selected DE genes with SMN genes or with pathways

related to post-transcriptional modifications (Figures 7.8 and 7.9).

For “SMA2 versus SMA3” comparison, IPA found annotation for 35 over 59 DE genes

(Tables 7.4 and B.6) and revealed a strong association with infectious, inflammatory and

immunological diseases, but also with skeletal, muscular and connective tissue disorders

(Table 7.4). DE genes were also related to functions that are fundamental for the mainte-

nance of the neural system, such as cell death and survival or free radical scavenging.

The main gene network identified by IPA comprises 35 molecules or complexes, involving
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Table 7.3: Summary of IPA results for “SMA vs CTRL” comparison: association of differentially
expressed genes with known diseases, molecular functions, physiological systems and functions

(top-five ranking). IPA p-values and number of moleclues involved are also reported.

Diseases and biological functions p-values molecules

Diseases and disorders
Antimicrobial response 1.18E-06-1.11E-02 8
Inflammatory response 1.18E-06-2.22E-02 41
Developmental disorder 2.07E-04-2.22E-02 36
Endocrine system disorders 2.07E-04-2.22E-02 10
Gastrointestinal disease 2.07E-04-2.22E-02 14

Molecular and cellular function
Cell-to-cell signaling and interaction 1.18E-06-2.22E-02 45
Cell death and survival 2.49E-06-2.22E-02 123
Cell morphology 7.41E-05-2.22E-02 41
Cellular compromise 7.41E-05-2.22E-02 17
Cellular movement 7.73E-04-2.22E-02 42

Physiological system development and function
Embryonic development 1.18E-06-2.22E-02 22
Hair and skin development and function 1.18E-06-2.22E-02 13
Renal and urological system development and function 1.18E-06-2.22E-02 7
Nervous system development and function 2.07E-04-2.22E-02 28
Tissue development 2.07E-04-2.22E-02 31

Figure 7.7: Main gene network reconstructed by IPA for “SMA versus CTRL” comparison. Colors
identify over-expressed (red) and under-expressed (green) genes in SMA patients.



110
Application of the pipeline to a case study: RNA-seq analysis of patients affected

by spinal muscular atrophy and healthy controls

Figure 7.8: Gene network reconstructed by IPA for “SMA versus CTRL”’ comparison and asso-
ciated with post-transcriptional modification. Colors identify over-expressed (red) and under-

expressed (green) genes in SMA patients.
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Figure 7.9: Gene network reconstructed by IPA for “SMA versus CTRL” comparison and associated
with SMN genes. Colors identify over-expressed (red) and under-expressed (green) genes in SMA

patients.
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21 DE genes (Figure 7.10), and is associated with infectious and immunological diseases,

and with connective tissue disorders.

Table 7.4: Summary of IPA results for “SMA2 vs SMA3” comparison: association of differentially
expressed genes with known diseases, molecular functions, physiological systems (top-five
ranking). IPA p-values and number of genes, molecules or complexes involved are also reported.

Diseases and biological functions p-values molecules

Diseases and disorders
Infectious disease 5.16E-26-4.25E-02 18
Connective tissue disorders 6.96E-18-1.16E-02 17
Immunological disease 6.96E-18-4.73E-02 18
Inflammatory disease 6.96E-18-4.73E-02 16
Skeletal and muscular disorders 6.96E-18-1.16E-02 16

Molecular and cellular function
Cell death and survival 2.78E-12-4.41E-02 16
Cellular movement 4.50E-12-4.73E-02 14
Cell-to-cell signaling and interaction 3.10E-10-4.73E-02 16
Free radical scavenging 1.89E-06-2.64E-02 8
Cellular growth and proliferation 3.27E-06-4.57E-02 11

Physiological system development and function
Hematological system development and function 4.50E-12-4.73E-02 18
Immune cell trafficking 4.50E-12-4.73E-02 18
Tissue development 4.18E-09-4.73E-02 11
Tissue morphology 4.18E-09-4.25E-02 12
Organismal development 3.27E-06-4.41E-02 10

Interestingly, most of these genes are associated with connective tissue disorders such

as: systemic lupus erythematous, rheumatic disease and rheumatoid arthritis. While

“rheumatic disease” is a non-specific term indicating medical problems affecting the joints

and the connective tissue, “rheumatoid arthritis” precisely identifies an autoimmune

disease that results in a chronic, systemic inflammatory disorder. It affects many tissues

and organs, but principally attacks synovial joints, causing substantial loss of functioning

and mobility if not adequately treated. Systemic lupus erythematous (SLE or lupus) is an

autoimmune connective tissue disease that can affect any part of the body: the immune

system attacks the body’s cells and tissue, resulting in inflammation and tissue damage.

The expression of these genes, plus three additional DE genes also associated with these

disorders, ARG1, CRISP3 and BPI, are depicted in Figure 7.11. Eight of these genes are

also reported to be free radical scavengers or deactivators: ARG1, CAMP, CTSG, ELANE,

LTF, OLR1, PRTN3, RETN.

Investigation of protective modifiers

Gene expression patterns shown in Figure 7.11 highlight some peculiarities of the SMA2

phenotype: most of the genes have comparable or higher expression in SMA3 patients

versus healthy controls, but are down-regulated in SMA2 patients (KLRC2, KLRC1 and

CCL3L3 present inverse patterns). Thus, it is conceivable to hypothesize that this set of

genes might underlie protective mechanisms that act against the damaging effect induced
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Figure 7.10: Main gene network reconstructed by IPA for “SMA2 versus SMA3” comparison.
Colors identify over-expressed (red) and under-expressed (green) genes in SMA2 patients.
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Figure 7.11: Expression patterns, for all individuals, of genes associated with differences in SMA
phenotypes, connective tissue disorders and free radical scavenging ( log(cpm+ 1) was used as
expression measure). For each gene is indicated up-regulation (+) or down-regulation (−) in
SMA2 compared to SMA3 patients, and association with: the main IPA network of Figure 7.10,
(1), systemic lupus erythematous (2), rheumatic disease (3), rheumatoid arthritis(4) and free

radical scavenging (5).
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by SMA. Among these genes, Lactotransferrin (LTF) presents two interesting features

in the present data (Figure 7.12 and 7.13): (i) significantly decreased expression in

SMA2 patients with respect to both healthy controls and SMA3 patients (Table B.6); (ii)
presence of two SNPs, rs9110 and rs2073495, located on exon 15 of LTF gene. Both SNPs

detected in our RNA-seq data through genotyping have been previously validated and

annotated in the dbSNP database [194]: the rs2073495 G/C mutation induces a change

in the aminoacid coding from glutammine to aparagine (missense mutation); the rs9110
T/C mutation is silent, i.e. it does not affect protein coding.
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Figure 7.12: Genomic location and structure of the lactotransferrin (LTF) gene and localization
of rs9110 and rs2073495 SNPs on exon 15.

In SMA patients, rs9110 genotypes (Figure 7.13) show a weak association with LTF
expression, measured as “cpm” (Anova test, p-value=0.08), and no association with

phenotype (two-sided Fisher’s test, p-value=0.5238). On the contrary, rs2073495 is

strongly associated with LTF expression (Anova test, p-value=5.402e-05) and with

phenotype (Fisher’s test, p-value=7.9e-3). In particular, all SMA2 patients have a

decreased expression of LTF (confirmed by edgeR DE analysis, Tables B.3 and B.4) and

are homozygous for the rs2073495 reference allele (Figure 7.14). On the contrary, SMA3
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Figure 7.13: Summary of LTF expressions and genotypes. Bar-plots of LTF expression levels for
CTRL (grey), SMA3 (blue) and SMA2 (orange), measured in cpm. Tables report the number of

individuals per group having one of the three possible genotypes for rs9110 and rs2073495.

patients have higher expression and carry also the alternative allele: four over five SMA3

patients are heterozygous and one is homozygous for the alternative allele; the latter

patient is also the one having the highest expression among all patients (Figure 7.14).
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7.4 Hypotheses on SMA pathogenesis

Our analysis of differential expression between SMA patients and healthy controls led

to the selection of genes associated with developmental disorders, diseases related to

inflammatory and antimicrobial response and with nervous system development and

functions. The main gene network reconstructed is associated with NF-κB (nuclear factor
kappa-light-chain-enhancer of activated B cells) protein complex and ubiquitin, which

have already been linked to muscle atrophy [195, 196]. IPA analysis also confirms the

association of the selected DE genes with SMN genes and pathways related to post-

transcriptional modifications [175], but further investigation is needful to unveil the

biological mechanisms underling these relationships.

The analysis of differential gene expression between SMA2 and SMA3 patients reveals

association with pathways affected by skeletal muscle and connective tissue disorders.

Interestingly, expression patterns of the genes involved in these networks change between

SMA2 and SMA3 patients, and might underlie protective mechanisms against the pro-

gression of SMA symptoms. Among these genes, we identified Lactotransferrin (LTF) as

a promising target, due to its power to explain the phenotypic differences in the SMA

patients considered in the present study. We found that LTF expression is significantly

decreased in SMA2 patients, compared to both SMA3 patients and CTRL. Moreover,

genotyping for rs2073495, a SNP located in LTF gene, provides a sharp separation of

the two SMA phenotypes (homozigousity for the reference allele is only found in SMA2

patients) and have a marked relationship with LTF expression. Zhou et al. [197] tested

the association of LTF expression with rs9110 and rs2073495, plus two additional SNPs

also located on the LTF gene: rs1126477 and rs116478. They considered two groups of

subjects, with 800 individuals each: patients with nasopharyngeal carcinoma (NPC) and

healthy controls. In their study, only rs9110 and rs2073495 correlate with the phenotype,

with frequencies of alternative alleles higher in NPC patients compared to controls. They

also found higher expression of LTF gene in NPC patients, assayed at transcript and

protein level using qPCR and western blot. Our results are in agreement with this study,

confirming a positive relationship between the presence of the rs2073495 alternative

allele and an increase in LTF expression.

The potential of LTF as protective target is also supported by its central role in health

and disease [198, 199, 200, 201]. Lactotransferrin (LTF), also called lactoferrin (LF),

is an iron-binding glycoprotein that belongs to the transferrin family. LTF is produced

by secretory epitheliums and by neutrophils, and has an important role in the host

defense, functioning as antimicrobial agent and mediator of inflammatory responses.

Moreover, the ability of LTF to bind large quantities of iron confers to it bacteriostatic
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and bactericidal properties [202, 203, 204, 205]. Besides its antimicrobial activity, LTF
iron-dependent activity may also provide protection against pathogens by enhancing

phagocytosis and inducing the release of pro-inflammatory cytokines [198]. LTF has an

important modulatory action on the immune system (reviewed in [198]), by promoting

maturation of T cell precursors and differentiation of immature B cells cells [206]. LTF
also plays an important role in the cytokine cascade, modulating host defense against

environmental insults in mammals [207, 208, 209]. Recent studies in vitro and in
vivo propose LTF as a potential therapeutic agent for wound healing, since it enhances

collagen gel contractile activity in human fibroblasts [210]. The role of LTF in host

defense responses in infants has also been extensively studied [211, 212]: LTF is present

at high concentration in human colostrum and is supposed to protect newborns against

pathogens and to reduce the risk to be affected by microbe-induced gastroenteritis.

Despite its central role in host defense in human, LTF level in blood is generally low

(0.2-0.6 µg/ml) and increases only transiently in response to environmental insults

[213]. Indeed, a high level of LTF in plasma has been proposed as predictive indicator of

sepsis and has been related to autoimmune and chronic inflammatory disorders, such as

Parkinson’s and Alzheimer’s diseases [214, 215, 216].

Studies also showed the accumulation of LTF in the lesions from different neurode-

generative diseases such as Down syndrome, Pick’s disease and Alzheimer’s disease

[217, 218]. However, it is not clear if the increased production of LTF in these disorders is

not sufficient to stop their progression or does not even activate the pathways defending

the host from the harmful effects of the disorders. It is hypothesized that the initial

up-regulation of LTF during acute inflammation is directed at capturing free iron, which

would be a protective response against the damaging function of free radicals [198]. In

neurodegenerative diseases, the accumulation of LTF around lesions reduces the neuro-

toxic effects of such lesions or deposits but is not sufficient to completely compensate the

growing immunologic dissonance so to stop symptoms worsening. Several studies have

reported evidences that LTF might modulate the progression of Parkinson’s disease (PD),

a neurodegenerative disorder characterized by a progressive loss of dopamine neurons. In

particular, the analysis of postmortem sections of brain tissue from PD patients revealed

that LTF was augmented in dopamine neurons resistant to the disease process [219, 220].

Rousseau and colleagues [221] used midbrain cultures and different experimental set-

tings to model the loss of dopamine neurons characterizing PD, in order to study the

effects of LTF on the progression of the degenerative process. They found that LTF has the

potential to affect PD-mediated mechanisms of neurodegeneration and suggested that

the accumulation of LTF in PD patients might be the sign of an attempt by the brain to
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combat ongoing neuronal insults. These studies report some evidences of the importance

of LTF as protective agent against neuronal degeneration. The decreased expression in

SMA2 patients compared to SMA3 patients detected in our assay might be a causal factor

of SMA severity. Previous studies on Parkinson’s disease have already found an inverse

correlation between LTF in plasma and disease severity [215] and proposed to explore

new therapies to elevate LTF levels in plasma [221].

7.5 Plans for biological validation and future research

With this analysis, we identified a set of genes related to skeletal muscle and connective

tissue disorders, whose patterns of differential expression correlate with phenotype and

may underlie protective mechanisms against SMA progression. Among these genes,

lactotransferrin, which is significantly down-regulated in type-II SMA patients compared

to both type-III SMA patients and healthy controls, represents a potential protective

modifier. We also found a putative protective SNP located in lactotransferrin gene that

correlates with its expression level. We hypothesize that this SNP is harmless in unaffected

individuals, but plays an important role in SMA patients, inducing an increased expression

of lactotransferrin and a milder phenotype. The protective mechanism which relates

lactotransferrin to SMA progression still has to be characterized, but we suppose it to

be based on its ability to bind iron and protect neurons from oxidative stress. The

investigation of lactotransferrin expression and genotype as protective modifiers might

help understanding the pathogenesis of SMA but might also led to the discovery of

novel targets for diagnostic screening and therapy. Indeed, studies for the production

and delivery of human lactotransferrin for the treatment of neuronal insults are already

underway [222, 223, 224].

We plan to assay lactotransferrin expression and rs2073495 genotype with qPCR in

type-I, type-II and type-III SMA patients, considering at least ten subjects per phenotype,

to assess their potentiality as phenotype predictors. Samples collection is currently in

process at the Molecular Genetics Unit at Hospital Ramón y Cajal and qPCR will be

performed by the CNIC Genomics Unit. We also intend to assay healthy mothers of

SMA patients because we suppose that lactotransferrin level in the mother might be a

protective factor for the embryos, activating a mechanism similar to the one described by

Burghes and colleagues [174]. They studied the effects of the levels of maternal SMN
protein over mice embryos lacking Smn gene, and found that death occurs early when

the maternal SMN is reduced. In the same way, decreased lactotransferrin levels in the

mother’s blood might disrupt this protective mechanism and lead to manifestation of
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the most severe SMA phenotypes, which can indeed manifest even before birth [182].

Besides the relevance that reliable markers have in early screening, the investigation of

these putative protective modifiers may enable to the development of effective treatments

at the natal and pre-natal stage, that are most critical stages of denervation in the severe

forms of SMA [225].



8
Extension of the computational pipeline to the

analysis of RNA-seq time-series data

The analysis of gene expression and differential gene expression can give novel insights

about the genes that are activated in some specific conditions of cells, providing a snapshot
of the current transcriptional states of the organism under investigation. Anyway, we

must remember that most of biological processes, including gene expression, are dynamic.

With respect to static assays, time-series experiments (see section 2.5) allow investigat-

ing transient expression changes, but also characterizing gene expression regulation,

coordination and interaction. Although most of time-series gene expression data sets

have been generated using microarrays, the appealing features of NGS make RNA-seq a

valuable alternative, with increasing number of RNA-seq time-series studies published in

recent years [226]. However, further research is needed to clarify if the analysis methods

developed for microarray data are suited for RNA-seq time-series experiments [226, 227].

Moreover, normalization issues in within-sample and between-sample comparison must

be solved to ensure a correct data interpretation.

Since we intend to extend our computational pipeline to analyze dynamics RNA-seq

data from time-series experiments, our research in the near future will be oriented both to

the optimization of the current computational pipeline described in Chapter 6 and to its

application to dynamic data. The latter objective will require the evaluation, development
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and integration of methods specifically designed for time-series data analysis. To this

end, we designed two RNA-seq time-series data sets, one real and one simulated. We

present in the following sections the description of the two data sets and the plan for

computational data analysis.

8.1 Real data set: RNA-seq time-series from sigE-mutant and

wild-type Mycobacterium tuberculosis

Background

Mycobacterium tuberculosis (MTB) is a pathogenic bacterial species and the major

causative agent of tuberculosis, a common and often lethal infectious disease. De-

spite an encouraging reduction of new cases in the last decade, tuberculosis remains a

major global health problem, with about 8.6 million people infected worldwide in 2012

and 1.3 million related deaths [228]. Lungs are the main target of tuberculosis, but other

parts of the body can be also attacked. Tuberculosis can spread in the air, for example

through cough or sneeze of infected people. Most infections are asymptomatic and latent,

but about one in ten infections eventually progresses to active disease.

When MTB reaches human lungs, it is usually engulfed by the alveolar macrophage

cells of the immune system (Figure 8.1). However, MTB has developed mechanisms to

survive antimicrobial defense of macrophages, persisting for decades despite the host

immune response. As a consequence, infected individuals develop latent tuberculosis:

they remain healthy but carry dormant MTB bacteria. When the attack of the immune

system diminishes, the pathogens can revive, leading to tuberculosis pulmonary infection.

MTB can further infiltrate the bloodstream and spread to other organs.

Several studies have revealed that MTB persistence derives from the activation of a

set of genes and metabolic pathways that allow surviving despite oxidative stress and

starvation of nutrients in the intraphagosomal environment [229, 230, 231, 232, 233].

Investigation of the genes involved in the MTB response to these stress conditions may

give new insights about tuberculosis pathogenesis and treatment. In particular, the

intraphagosomal environment is characterized by reduced levels of inorganic phosphate,

which is required for many essential cell-related processes, also in the MTB [230]. It

is hypothesized that the σE factor is involved in the survival of MTB in conditions of

phosphate starvation [230, 233]. Bacterial sigma factors are proteins that can interact

with the RNA polymerase enzyme determining its binding to specific gene promoters.

Bacteria generally have one principal sigma factor, which is required for the transcription
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of housekeeping genes, and several alternative sigma factors, which are not needed under

normal physiologic conditions, but are activated under specific environmental stimuli

[226]. The MTB genome encodes 13 sigma factors, 10 of which are involved in virulence

and response to stress conditions [234, 235] and are called extracytoplasmic function

(ECF) sigma factors [236]. One of the best-characterized ECF sigma factors in the MTB

genome is σE , which is essential for growth in macrophages. It is induced (i.e. over-

expressed) in conditions of phosphate starvation and transcribed in two isoforms [230,

233, 237]. However, the exact mechanism underlying MTB resistance under phosphate

starvation has not been characterized yet and several questions remain unanswered (e.g.

it is not clear if the two σE isoforms play different roles in MTB physiology) [230, 233].

Figure 8.1: A macrophage (green) binds cells of M. tuberculosis (orange) through the TLR-2
receptor, to start engulfing. Image Courtesy of Volker Brinkmann, Core Facility Microscopy, Max

Planck Institute for Infection Biology, Berlin, taken from [238].

Aim of the study and experimental design

The aim of the study is the characterization of the transcriptional response of MTB

in conditions of phosphate (P) starvation, focusing on the identification of the genes

regulated by σE factor. Particular attention will be directed to the identification of the

main patterns of the MTB response and to the investigation of the underlying biological

processes. With this purpose, we consider two strains of MTB: the wild-type H37RV and

a sigE-mutant in which the functional sigE gene was deleted as in [237]. MTB cultures

have been grown in P-rich substrate. At time t = 0, MTB cultures were washed three

times in P-free broth and re-suspended in low-P substrate. RNA extraction was performed

a time t = 0, in P-high conditions, and then in P-low conditions after 3, 6, 12 and 24

hours (Figure 8.2A). Triplicate cultures, for both wild-type and sigE-mutant underwent
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the whole experimental process, to obtain three biological replicates each. The changes

of RNAs transcribed at times t = 3, 6, 12, 24, with respect to t = 0, represent the response

of MTB bacteria to phosphate starvation. In particular, the genes that are differentially

expressed with respect to t = 0 only in the wild-type strain, may underlie pathways

controlled by σE factor. RNAs changes over time, for each biological replicate of the

wild-type and mutant cultures (30 samples in total), have been be assayed through

RNA-seq using the Illumina HiSeq sequencer. The experiment has been be conducted in

multiplexing, by sequencing five samples per lane and six lanes in total, to obtain 2x100

bp paired-end reads.
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Figure 8.2: Experimental and sequencing design. RNA extraction (A) from high-phosphate
(high-P) cultures at time t = 0, and from low-phosphate (low-P) cultures, after 3, 6, 12 and 24

hours. Differentially-expressed spike-in RNA mixtures (B) and sequencing design (C).

Before sequencing, two mixtures of differentially expressed spike-in RNAs have been

added to each sample, according to the scheme depicted in Figure 8.2C. As explained

in Chapter 3, spike-in RNAs are standard transcripts with known sequences and concen-

trations. In particular, here we consider the Ambion ERCC Spike-In Control Mixes (Life

technologies [31]), two mixtures of spike-in RNAs, present at defined “Mix1:Mix2” molar

concentration ratios described by four subgroups (Figure 8.2B). Each subgroup contains
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23 transcripts spanning a 106-fold concentration range. Transcripts have different lengths

and GC-contents, with similar distributions within each subgroup.

The experiment and the sequencing design, such as the selection of the optimal

trade-off between cost and number of samples, the use of spike-in standards and of

paired-end protocol, has been an integral part of the Ph.D. activity. The sequencing of the

30 samples with MTB and spike-in transcripts has just been completed (January 2014) at

BMR Genomics (BMR Genomics, Padova, Italy).

8.2 Simulated data set

To simulate time-dependent expression profiles, we used an approach similar to that

adopted in [239]. Each profile Pρε represents the log-fold-changes of expression levels

over time, with respect to the basal level at t = 0, induced by the treatment ε. For a given

transcript f , assayed in condition ε (i.e. “treated” or “control”), the time-series reflecting

the number of copies present at time t can be modeled, on log-scale, as follows:

log2 (θfε(t)) = kf · Pρε(t) + qf (8.1)

Pρε(t) is the temporal pattern reflecting the changes in transcript levels in response

to treatment, while kf and qf are transcript-specific parameters. Pρε(t) is non-null only

for differentially expressed (DE) transcripts in the “treated” samples. Thus, for non-DE

transcripts and transcripts assayed in the “control” condition, equation 8.1 reduces to:

log2 (θfε(t)) = qf . (8.2)

Thus, for most of the transcripts, qf represents the level of expression on the log-scale.

Expressions in the natural scale θfε(t) can be computed from equation 8.1.

Assuming the same length for all simulated transcripts, the probability that a read

comes from some transcript f can be computed, for each time point t, as in equation 2.2:

πfε =
θfε
F∑
f=1

θfε

(8.3)

πfε can be in turn used to obtain the final transcripts counts, using a NB distribution

NB(R · πfε, φ), where R is the sequencing depth and φ is the dispersion parameter.

We performed 100 simulations, generating 100 independent time-series data sets,

using the scheme described above. In particular, we simulated six different profiles Pρε,

with ρ = 1, . . . , 6, considering 13 time points, t = 0, . . . , 12. qf was sampled from a
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normal distribution N
(
−2.70, (1.44)2

)
according to [124]. kf was instead sampled from

a uniform distribution in the interval ±(0.5, 2). Counts were simulated for F = 1000

transcripts, with 880 non-DE transcripts and 120 DE transcripts. In particular, each single

pattern was used to simulate time-series profiles for 20 DE transcripts. The sequencing

depth was set to R = 5 · 104 reads for all replicates and the dispersion parameter

was selected to be common to all transcripts and fixed to φ = 0.1, to simulate the

biological variability due to different cell cultures (Figure 8.4). Further simulations will

be performed considering different values of the dispersion parameter.
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Figure 8.3: Simulated profiles representing log-fold-changes (logFC) of expression levels over
time with respect to the steady state at t = 0.
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Figure 8.4: Example of mean-variance relationship (on log-scale) of transcript counts in one
synthetic data set, for “treated” and “control” conditions. The blue line represents the Poisson
condition of mean-variance equality. NB distributed data are over-dispersed, i.e. their variance

exceeds Poisson variance.

(a) Treated (b) Control

8.3 Data analysis plan

Reads from the real data set will be pre-processed as in Chapter 6, and expression

measures will be computed at exon and gene level using totcounts and maxcounts

(Chapter 5). The subsequent analyses will be tailored on the specific data features:

the normalization strategy will be optimized leveraging on the information provided

by spike-in RNAs, while several methods will be compared to define the time-series

analysis approach. The latter assessment will be carried out considering both the M.
tuberculosis data set, the synthetic counts and additional real data sets available in the

literature, such as [86, 240]. We are currently optimizing and testing a strategy based

on the algorithms defined in [135, 239] for integrating gene selection, clustering and

functional annotation of RNA-seq time-series data. In addition, the true concentrations

of spike-in RNAs sequenced in the M. tuberculosis study will be used as gold-standard

to deepen the benchmarking and comparison of maxcounts and totcounts approaches

in the presence of biological replicates. Finally, the defined pipeline will be applied to

answer the biological questions motivating the M. tuberculosis study, to reveal which gene

pathways are activated, together with sigE, in phosphate starvation conditions and which

genes are regulated by σE factor. The single-base resolution of RNA-seq will also enable

to investigate expression at exon level, and possibly to characterize the function of the

two σE isoforms.
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9
Concluding remarks

Thanks to the advent and progress of NGS technologies, RNA-seq has rapidly become

the method of choice for measuring and comparing gene transcription levels. NGS

platforms produce millions of short sequences, which are read from the input DNA or

RNA and are indeed called reads. By mapping reads on a reference genome, the complete

“transcriptional map” of the genome under investigation can be revealed. In practice, the

expression of a coding unit, such as a gene, transcript or exon, is estimated by counts, that

is the number of reads that can be aligned on its sequence. Counts can also be compared

between different conditions to identify differentially expressed genes. At first glance,

this analysis scheme may seem very simple, but its implementation is in fact complex

and not well defined. So far, many computational methods have been proposed, but a

standard analysis pipeline has not been defined yet.

The main aim of this thesis was the definition of a robust analysis pipeline for

measuring and comparing gene expression levels in human studies based on RNA-seq.

The definition of a probabilistic model of counts, plus the study of state-of-the art

literature allowed us to select, among the top-ranking methods, robust computational

solutions for read mapping and differential expression analysis. Given these selected

methods, which allowed us to outline a first processing framework, we implemented

additional assessments to define a robust strategy to cope with the most challenging

aspects of RNA-seq analysis: count bias and multireads. Our results highlight that counts
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are characterized by a strong length-bias, which cannot be completely removed with

current normalization methods without introducing further systematic errors. Thus, we

defined a new measure of counts, called maxcounts, computed as the maximum read

coverage along an exon. We compared our strategy with the standard approach, revealing

that it reduces length bias, counts non-uniformity due to highly expressed genes and

technical variance, and that it is robust to the upstream pre-processing and mapping

steps. This analysis also allowed us to define and implement a pre-processing module

in the computational pipeline, in order to both provide the mapping algorithms with

high-quality reads, so to reduce data loss (i.e. unmapped reads) and maximize the

fraction of correctly mapped reads. This aspect was further refined with our comparative

analysis of strategies for multireads handling. Multireads are reads that align to multiple

locations of the reference genome, resulting in biased gene expression estimates. Using

different strategies based on RSEM algorithm [79], we found that single-end mapping of

pre-processed reads leads to accurate alignments while limiting computational load.

Finally, the implemented analysis pipeline was applied to a real case study: thirty

samples, from patients with spinal muscular atrophy (SMA) and healthy controls, were

analyzed to identify the causative genes involved in SMA pathogenesis. SMA is a degen-

erative neuromuscular disease that has no cure and represents one of the major genetic

causes of infant mortality. To define a list of differentially expressed genes, we used

jointly the standard approach for count computation and the maxcounts strategy, so to

control false-positive rate. The comparison of the most severe phenotype (type-II SMA)

with the milder one (type-III SMA), led to the detection of differentially expressed genes

associated to disorders of skeletal muscle and connective tissue. Moreover, the differences

in the expression levels shown for healthy controls, type-II and type-III patients reveal

common expression patterns across the three phenotypes that may underlie protective

mechanisms against SMA progression. Some putative positive targets identified by this

analysis, are currently under biological validation since they might improve diagnostic

screening and therapy.

The different analyses carried out confirm that the implemented pipeline is stable to

RNA-seq bias and variability. In particular, maxcounts approach can overcome the bias due

to the non-uniformity of read coverage, selecting the best-represented transcript regions

for estimating expression levels. A possible limitation of the current implementation is

represented by the use of exons, since the final user might be interested in a having gene

or transcript counts. Moreover, the lacking of RNA-seq studies with sufficient sample-size

and reliable gold-standard measures prevented a deeper characterization of maxcounts

approach and the evaluation of its application to differential expression analysis. For the
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SMA study, we adopted a practical strategy to exploit both approaches and to transform

exon counts into gene-wise expression estimates. However, our future work will focus on

the definition of transcription models that can be used to combine exon maxcounts into

an accurate measure of gene or transcript expression. Moreover, the RNA-seq data set

with differentially expressed spike-in RNAs that we designed will allow us to deepen the

comparison of the maxcounts strategy with the standard approach. Nevertheless, RNA-seq

is a methodology still under active development, which will experience fast improvement

of experimental protocols and data features. Thus, we made available the codes for

calculating maxcounts, implemented in Perl and C++, enabling its benchmarking on

different data sets.

Other interesting computational questions have risen from the comparison of single-

end and paired-end mapping strategies. The limited extent of our assessment, which

was implemented to optimize the mapping module of our analysis framework, does not

allow drawing definitive insights. One of the issues emerged from the current assessment

that would be worth investigating in the future, is the capability of mapping algorithms

to exploit the whole information contained in paired-end data. Developed for de novo
genome assembly, paired-end reads are appreciated for their power in solving repeats

and assembly low-complexity regions, but it is not clear if they are beneficial also for

RNA-seq data analysis. In our assessment, we noted a reduced number of reads mapped

by the paired-end algorithm with respect to the single-end version, which is confirmed

by the literature studies reviewed. This data loss, which could be due to the stringency

of the constraints for paired-end mapping, may be harmful in RNA-seq studies since it

could result in biased expression estimates. To further investigate this aspect, we intend

to perform a systematic comparison of different mapping algorithms, run on paired-end

data and tested in single-end and paired end mode and with different parameter settings.

More sophisticated hybrid strategies, that blend the precision of the paired-end approach

in isoform reconstruction with the sensitivity of the single-end strategy in expression

estimate, may also be exploited.

Finally, we intend to extend our computational pipeline to analyze dynamic RNA-seq

data from time-series experiments. RNA-seq methodology is expected to be extensively

applied to the analysis of time-series analysis in the near future. However, limited research

has been carried out to assess which methods can be used to analyze count-based time-

series and the challenges posed by normalization must be definitively solved to ensure a

correct data interpretation. With this purpose, we designed one real time-series data set,

from transcripts extracted from M. tuberculosis and mixed with differentially expressed

spike-in RNAs (at known concentrations), and a simulated count data set. We defined this
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specific experimental design also to allow a deeper characterization and benchmarking,

thanks to spike-in RNAs, of all the methods considered in this thesis, with particular

attention to maxcounts. In the same way, the real experimental data set and the synthetic

counts (possibly simulated with different dispersion values) will be used to test different

methods for time-series data analysis, in the presence of biological variance. We are

currently optimizing and testing a strategy for integrating gene selection, clustering and

functional annotation of RNA-seq time-series data based on previous works of Di Camillo

et al. [135, 239], but other approaches based on models of the count mean-variance

relationship will be also considered. The final pipeline will be applied to answer the

biological questions motivating the M. tuberculosis study, to reveal which pathways are

activated to ensure bacterial persistence in condition of phosphate starvation.
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A.1 The Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) is a reversible permutation of the characters

in a text string, proposed in 1994 by M. Burrows and D. J. Wheeler [241]. It has

been originally developed to address the problem of data compression: the permutation

makes the original string easy to compress with move-to-front coding algorithms. In the

following, the algorithm used to calculate the BWT of a text string (forward BWT) and the

one used to retrieve the original string starting from its BWT (reverse BWT) are described.

Given a string S of N characters S[1], ..., S[N ], the BWT algorithm first considers

the N rotations of S, sorted lexicographically. Conceptually, all N cyclic shifts of S can

be represented by the rows of a matrix M . As an example, consider the string S =

‘mississippi’, N = 11, whose characters are taken from the alphabet α = {‘i’, ‘m’, ‘p’, ‘s’}.
The matrix M is:

row M

1 imississipp
2 ippimississ
3 issippimiss
4 ississippim
5 mississippi
6 pimississip
7 ppimississi
8 sippimissis
9 sissippimis

10 ssippimissi
11 ssissippimi

At least one of the rows, numbered from zero, contains the original string S. Let I

be the first row containing S. In our example, I = 5. Let L be the string formed by the

characters of the last column of M : L[1], ..., L[N ]. The final output of the transformation

is the pair of (L, I), even though it is often indicated simply as L. In our example, L =

‘pssmipissii’ and I = 5. The transformation described above can be easily reversed by

means of an algorithm that uses (L, I) to reconstruct the original string S. The algorithm

begins calculating the first column F of the matrix M . As M rows are lexicographically

sorted, F is obtained by sorting the characters in L. In our example, F = ‘iiiimppssss’. It

is worth noting that all columns of M , among which L and F , are permutation of the

original string S. To better understand the structure of M , we can consider a matrix M ′

formed by shifting M rows one char to the right. The L string is now the first column of

M ′ and precedes F . In our example, M and M ′ are:
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row M M’

1 imississipp pimississip
2 ippimississ sippimissis
3 issippimiss sissippimis
4 ississippim mississippi
5 mississippi imississipp
6 pimississip ppimississi
7 ppimississi ippimississ
8 sippimissis ssippimissi
9 sissippimis ssissippimi

10 ssippimissi issippimiss
11 ssissippimi ississippim

As rows in M ′ are sorted starting from their second character, if we consider the

rows that start with some character c, then they must appear in lexicographical order.

Consequently, for any given character c, the rows of M that begin with c appear in

the same order as the rows in M ′ beginning with c. Consider for instance the strings

beginning with ‘i’: the rows 1, 2, 3, 4 in M correspond to the rows 5, 7, 10 and 11 in

M ′. From the previous example it is possible to notice an interesting property of M ,

called ‘last first (LF) mapping’: the kth occurrence of a character c in the last column L

corresponds to the same character as the kth occurrence in the first column F . Exploiting

this property, we can calculate the vector T that indicates the correspondence between

the rows of the two matrices (and consequently between F and L), so that row j of M ′

corresponds to row T [j] of M , for each j = 1, ..., N . If L[j] is the kth instance of c in L,

then T [j] = i where F [i] is the kth instance of c in F . Thus, the correspondence between

elements of F and elements of L is given by:

F [T [j]] = L[j] (A.1)

In our example, using F and L, T is calculated as follows:

j 1 2 3 4 5 6 7 8 9 10 11

F i i i i m p p s s s s
L p s s m i p i s s i i

T 6 8 9 5 1 7 2 10 11 3 4

For each i = 1, ..., N , the characters L[i] and F [i] are the last and the first characters

of the row i of M . Since the rows of M are rotations of the original string S, the character

L[i] cyclically precedes the character F [i] in S. Consequently, L[T [j]] cyclically precedes

L[j] (L[j] = F [T [j]] from Equation A.1) in S. Finally, using L, T and I, the original string

S is generated back-to-front. Indeed, given that row I of M is the original string S, L[I]

is exactly the last character of S. The predecessors of each character are then calculated

for each i = 1, ..., N using T as follows:
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S[N − i] = L[T i[I]], (A.2)

where T 1[x] = x and T i+1[x] = T [T i[x]] for i > 1.

In our example, we can define y = T i[x] (y = x for i = 1) at each iteration and

calculate S back-to-front as follow:

i y T [y] L[T [y]]

1 I=5 5 i
2 5 1 p
3 1 6 p
4 6 7 i
5 7 2 s
6 2 8 s
7 8 10 i
8 10 3 s
9 3 9 s

10 9 11 i
11 11 4 m

Thus, S = ‘mississippi’.

Both the forward and and the reverse BWT can each be performed in linear time and

linear space in the worst case [242].

A.2 The FM-index

In 2000 Ferragina and Manzini proposed a novel data structure called FM-index (“FM”

stands for “Full-text index in a Minute space”) [243] to address the issue of compressing

and indexing data. Their method combines the BWT compression algorithm with the

structural properties of the suffix array. The suffix array A built on the string S, is

an array containing all the suffixes of S, lexicographically ordered and represented

through pointers to their starting positions. In our example, S = ‘mississippi’ and

A = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]. Ferragina and Manzini proposed to apply the BW-

transform on S after appending at its end a special character ‘$’, lexicographically smaller

than all characters of the alphabet α. They discovered a strong relation between the

matrix M , whose rows are the all lexicographically sorted cyclic shifts of S$, and the

suffix array A of S$. The sorted rows of M correspond to the sorted suffixes of A and,

consequently, the entry A[i] points to the suffix of S$ occupying a prefix of the ith row of

M .
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suffix A M row

$ 12 $mississippi 1
i$ 11 i$mississipp 2
ippi$ 8 ippi$mississ 3
issippi$ 5 issippi$miss 4
ississippi$ 2 ississippi$m 5
mississippi$ 1 mississippi$ 6
pi$ 10 pi$mississip 7
ppi$ 9 ppi$mississi 8
sippi$ 7 sippi$missis 9
sissippi$ 4 sissippi$mis 10
ssippi$ 6 ssippi$missi 11
ssissippi$ 3 ssissippi$mi 12

The string obtained by applying the BTW to S$, Sbw, is then compressed in three

steps:

1. Move-to-front encoding of each character c by counting distinct characters seen

since its previous occurrence.

2. Run-length encoding of each run of zeroes: the sequence 0m is replaced by the

integer (m+ 1), written in binary, least significant bit first and discarding the most

significant bit.

3. Compression of the resulting string by means of variable-length prefix code, to

obtain the final string Srlx.

Ferragina and Manzini also developed a new algorithm, called Backward Search,

to support fast pattern retrieval on Sbw. Although the original version of the algorithm

exploits the compressed string Srlx, the applications of FM-index for short-sequence

mapping just consider Sbw without performing the compression steps. Therefore, in

the following section we will discuss the Backward Search algorithm performed on Sbw
while referring to [244] for a detailed description of the compression algorithm.

The Backward Search algorithm

The suffix array A has two interesting structural properties:

i. All the suffixes of the string S prefixed by a pattern P of length p, P [1, p], occupy a

contiguous portion (subarray) of A;

ii. That subarray has starting position sp and ending position ep, where sp is the

lexicographic position of the string P among the ordered sequence of text suffixes.
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The Backward Search algorithm (see algorithm 1) identifies the positions sp and ep

by accessing only Sbw (Srlx in the original version of the algorithm) and some auxiliary

array-based data structures: C(·) and O(·, ·). The array C(1, ..., |α|) stores in C(c) the

number of occurrences in S$ of characters that are lexicographically smaller than c. In

our example, S$ =‘mississippi$’ and C(′i′,′m′, p′,′ s′) = [1, 5, 6, 8]. The matrix O(c, k)

reports the number of occurrences of c in Sbw[1,k]. For example, with Sbw = ‘ipssm$pissii’,

O(′s′, 5) = 2, O(′s′, 12) = 4 and O(′p′, 12) = 2. O(·, ·) and C(·) can be easily precomputed

and, together with Sbw, form the FM-index of S.

Algorithm 1 Backward Search(P (1, p))

c = P (p);
i = p;
sp = C(c) + 1;
ep = C(c+ 1);
while ((sp < ep) and (i ≥ 2)) do
c = P (i− 1);
sp = C(c) +O(c, sp− 1) + 1;
ep = C(c) +O(c, ep);
i = i− 1;

end while
if (ep < sp) then

return “not found”
else

return “found (ep− sp+ 1) occurrences”
end if

The Backward Search algorithm counts the number of occurrences of P (1, p) in S

and consists of p steps; at the ith step sp and ep point to the first and the last row of M

prefixed by P (i, p), respectively. When the algorithm completes, rows beginning with

P (1, p), the entire query, correspond to the occurrences of the query in S. If the range is

empty, S does not contain the query. In Figures A.1 and A.2 are shown two examples of

pattern search performed with the Backward Search algorithm.

The running time of the Backward Search algorithm depends on the cost of the

procedure used to calculate O(·, ·); the authors described in [243] an algorithm for

computing O(c, k) in O(1) time.
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Figure A.1: Example of pattern search with the Backward Search algorithm. Searching for P =
‘ssi’ (p = 3) in S = ‘mississippi’. After two iterations, the algorithm finds (ep − sp + 1) = 1

occurrence of ‘ssi’ in ‘mississippi’.

Initialization Iteration No. 1 Iteration No. 2

c ‘i’ ‘s’ ‘s’
query ‘i’ ‘si’ ‘ssi’
sp 2 9 11
ep 5 10 12
i 3 2 1

Initialization Iteration No. 1 Iteration No. 2

row M row M row M
1 $mississippi 1 $mississippi 1 $mississippi

sp→ 2 i$mississipp 2 i$mississipp 2 i$mississipp
3 ippi$mississ 3 ippi$mississ 3 ippi$mississ
4 issippi$miss 4 issippi$miss 4 issippi$miss

ep→ 5 ississippi$m 5 ississippi$m 5 ississippi$m
6 mississippi$ 6 mississippi$ 6 mississippi$
7 pi$mississip 7 pi$mississip 7 pi$mississip
8 ppi$mississi 8 ppi$mississi 8 ppi$mississi
9 sippi$missis sp→ 9 sippi$missis 9 sippi$missis
10 sissippi$mis ep→ 10 sissippi$mis 10 sissippi$mis
11 ssippi$missi 11 ssippi$missi sp→ 11 ssippi$missi
12 ssissippi$mi 12 ssissippi$mi ep→ 12 ssissippi$mi

Figure A.2: Example of pattern search with the Backward Search algorithm. Searching for P =
‘psi’ (p = 3) in S = ‘mississippi’. After two iterations, the algorithm finds no occurrences of ‘psi’

in ‘mssissippi’(ep < sp).

Initialization Iteration No. 1 Iteration No. 2

c ‘i’ ‘s’ ‘p’
query ‘i’ ‘si’ ‘psi’
sp 2 9 9
ep 5 10 8
i 3 2 1

Initialization Iteration No. 1 Iteration No. 2

row M row M row M
1 $mississippi 1 $mississippi 1 $mississippi

sp→ 2 i$mississipp 2 i$mississipp 2 i$mississipp
3 ippi$mississ 3 ippi$mississ 3 ippi$mississ
4 issippi$miss 4 issippi$miss 4 issippi$miss

ep→ 5 ississippi$m 5 ississippi$m 5 ississippi$m
6 mississippi$ 6 mississippi$ 6 mississippi$
7 pi$mississip 7 pi$mississip 7 pi$mississip
8 ppi$mississi 8 ppi$mississi ep→ 8 ppi$mississi
9 sippi$missis sp→ 9 sippi$missis sp→ 9 sippi$missis
10 sissippi$mis ep→ 10 sissippi$mis 10 sissippi$mis
11 ssippi$missi 11 ssippi$missi 11 ssippi$missi
12 ssissippi$mi 12 ssissippi$mi 12 ssissippi$mi
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B.1 Differentially expressed genes

SMA vs. CTRL
Table B.1: Differential expressed genes selected for the “SMA versus CTRL” comparison: Ensembl
gene IDs, log-ratios and q-values, groups of overlapping-genes, labelled with the same group

number, and genes confirmed by the totcounts-genes approach.

Gene
Log-ratio q-value

Overlap. group ID Confirmed

maxcounts totcounts maxcounts totcounts

ENSG00000172062 -1.85 -2.08 1.90E-15 1.62E-14 yes
ENSG00000198566 -7.73 -10.05 9.03E-10 7.07E-19 yes
ENSG00000171116 -5.26 -4.69 2.60E-08 1.72E-05 yes
ENSG00000198618 -2.23 -2.2 3.40E-08 2.15E-06 yes
ENSG00000228224 -1.34 -1.44 4.05E-07 6.47E-07 yes
ENSG00000212769 -2.34 -2.44 1.34E-05 1.43E-05 yes
ENSG00000162368 0.88 0.74 1.34E-05 1.19E-03 yes
ENSG00000240869 -1.49 -1.58 2.23E-05 2.15E-06 yes
ENSG00000252488 1.3 1.21 2.54E-05 3.03E-04 yes
ENSG00000253676 1.57 1.41 4.22E-05 1.57E-03 yes
ENSG00000251948 -1.06 -1.16 4.39E-05 2.15E-06 yes
ENSG00000232162 1.68 1.57 4.39E-05 8.49E-03 yes
ENSG00000243742 -1 -1 5.10E-05 2.05E-04 no
ENSG00000210144 0.96 0.87 5.38E-05 1.45E-03 1 yes
ENSG00000210140 0.96 0.87 5.38E-05 1.45E-03 1 yes
ENSG00000168685 0.96 0.9 6.11E-05 7.09E-04 yes
ENSG00000221970 1.2 1.14 6.92E-05 2.00E-03 yes
ENSG00000205571 0.87 0.72 1.31E-04 1.07E-02 yes
ENSG00000233251 0.8 0.75 2.55E-04 1.57E-03 yes
ENSG00000231006 1.11 1.04 4.98E-04 1.96E-03 yes
ENSG00000123091 0.68 0.65 5.28E-04 4.81E-04 yes
ENSG00000258988 -2.49 -2.58 5.28E-04 1.46E-03 2 yes
ENSG00000172717 -2.49 -2.58 5.28E-04 1.46E-03 2 yes
ENSG00000259499 1.09 1 5.28E-04 2.76E-03 yes
ENSG00000240223 0.71 0.61 5.28E-04 2.86E-03 yes
ENSG00000158525 1.79 1.86 5.28E-04 4.53E-03 yes
ENSG00000152558 0.88 0.72 5.28E-04 6.38E-03 yes
ENSG00000123179 0.73 0.59 5.28E-04 1.33E-02 no
ENSG00000238179 -0.87 -1.05 5.40E-04 8.40E-05 yes
ENSG00000151135 1.08 1.16 5.40E-04 7.31E-04 yes
ENSG00000230408 0.67 0.57 5.94E-04 7.32E-03 yes
ENSG00000012660 0.73 0.62 6.02E-04 3.65E-03 yes
ENSG00000258511 1.02 1.15 6.51E-04 3.17E-04 yes
ENSG00000201592 0.9 0.81 6.51E-04 4.93E-03 yes
ENSG00000201882 0.9 0.81 6.51E-04 4.93E-03 yes
ENSG00000163519 1.22 1.13 6.51E-04 5.85E-03 yes
ENSG00000202434 0.82 0.73 6.51E-04 5.97E-03 yes
ENSG00000201121 1.16 1.1 6.51E-04 6.67E-03 yes
ENSG00000230272 0.78 0.69 6.51E-04 7.19E-03 yes
ENSG00000135535 0.66 0.5 6.51E-04 1.11E-02 no
ENSG00000035115 0.89 0.65 6.51E-04 2.44E-02 yes
ENSG00000236953 1.1 1.03 6.55E-04 5.54E-03 yes
ENSG00000211619 -7.1 -8.08 6.72E-04 2.57E-03 yes

Continued on next page



B.1 Differentially expressed genes 143

Table B.1 – Continued from previous page

Gene
Log-ratio q-value

Overlap. group ID Confirmed

maxcounts totcounts maxcounts totcounts

ENSG00000232686 1.06 0.94 8.08E-04 5.51E-03 yes
ENSG00000227907 1.33 1.24 8.08E-04 6.74E-03 no
ENSG00000143742 0.8 0.66 8.08E-04 7.40E-03 yes
ENSG00000238982 0.96 0.88 8.08E-04 7.85E-03 yes
ENSG00000236434 0.77 0.68 8.08E-04 8.49E-03 yes
ENSG00000234374 1.07 0.97 8.08E-04 1.27E-02 yes
ENSG00000142875 1.26 1.38 8.40E-04 2.52E-04 yes
ENSG00000201820 1.01 0.91 8.40E-04 5.66E-03 yes
ENSG00000225300 1.12 1.01 8.40E-04 1.74E-02 no
ENSG00000100528 0.64 0.5 8.40E-04 2.07E-02 yes
ENSG00000206650 0.75 0.65 9.56E-04 6.36E-03 yes
ENSG00000132204 -1.17 -1.23 9.68E-04 1.81E-03 yes
ENSG00000171811 1.78 1.61 9.98E-04 3.06E-02 no
ENSG00000239087 1.32 1.25 1.02E-03 6.40E-03 yes
ENSG00000148700 0.76 0.66 1.02E-03 1.87E-02 yes
ENSG00000234040 0.75 0.65 1.07E-03 6.86E-03 yes
ENSG00000251805 1.06 0.99 1.14E-03 8.49E-03 yes
ENSG00000252620 0.61 0.51 1.15E-03 1.42E-02 yes
ENSG00000151414 1.02 1.05 1.18E-03 2.23E-03 yes
ENSG00000130600 -2.12 -2.52 1.18E-03 5.54E-03 3 yes
ENSG00000211502 -2.12 -2.52 1.18E-03 5.54E-03 3 yes
ENSG00000235945 0.94 0.85 1.18E-03 6.47E-03 yes
ENSG00000233406 0.74 0.64 1.18E-03 1.28E-02 yes
ENSG00000222494 0.9 0.82 1.19E-03 1.20E-02 yes
ENSG00000110675 1.04 0.74 1.19E-03 3.26E-02 yes
ENSG00000160307 1.33 1.43 1.21E-03 1.45E-03 yes
ENSG00000196937 0.83 0.8 1.21E-03 2.00E-03 yes
ENSG00000234925 0.74 0.64 1.21E-03 7.72E-03 yes
ENSG00000198160 0.92 1.01 1.24E-03 2.12E-03 yes
ENSG00000150681 0.88 0.8 1.24E-03 7.91E-03 yes
ENSG00000175147 -1.17 -1.12 1.27E-03 2.19E-05 yes
ENSG00000261655 -0.9 -1.02 1.28E-03 4.74E-04 yes
ENSG00000134294 0.93 0.88 1.29E-03 3.86E-03 yes
ENSG00000015479 0.78 0.69 1.36E-03 7.09E-03 yes
ENSG00000156738 1.02 0.88 1.36E-03 8.21E-03 yes
ENSG00000122026 1.22 1.16 1.44E-03 2.23E-03 4 yes
ENSG00000207500 1.22 1.16 1.44E-03 2.23E-03 4 yes
ENSG00000207051 1.22 1.16 1.44E-03 2.23E-03 4 yes
ENSG00000212829 -1.37 -1.11 1.52E-03 1.35E-02 yes
ENSG00000211589 0.84 0.77 1.67E-03 1.49E-02 yes
ENSG00000252904 1.45 1.41 1.71E-03 1.11E-02 yes
ENSG00000080546 0.78 0.68 1.73E-03 1.39E-02 yes
ENSG00000243005 0.64 0.56 1.76E-03 1.58E-02 yes
ENSG00000134884 0.91 1.05 1.79E-03 1.48E-03 yes
ENSG00000252700 0.87 0.78 1.79E-03 1.20E-02 yes
ENSG00000238924 0.9 0.81 1.82E-03 8.92E-03 yes
ENSG00000153130 1.21 1.37 1.88E-03 1.13E-03 yes
ENSG00000164823 0.71 0.83 1.88E-03 2.00E-03 yes
ENSG00000199545 0.89 0.79 1.88E-03 9.13E-03 yes
ENSG00000160789 -1.05 -1.07 2.01E-03 5.92E-03 yes
ENSG00000179979 -0.72 -0.9 2.16E-03 1.92E-03 yes
ENSG00000224827 -1.1 -1.05 2.16E-03 3.84E-03 yes
ENSG00000161381 0.77 0.76 2.16E-03 7.54E-03 yes
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ENSG00000133962 0.93 1.02 2.18E-03 1.03E-03 5 yes
ENSG00000165929 0.93 1.02 2.18E-03 1.03E-03 5 yes
ENSG00000205268 0.68 0.6 2.18E-03 1.65E-02 yes
ENSG00000110696 0.66 0.55 2.19E-03 8.49E-03 yes
ENSG00000252197 1.09 1 2.22E-03 8.49E-03 yes
ENSG00000112655 1.04 1.2 2.23E-03 1.27E-03 yes
ENSG00000200397 0.7 0.6 2.23E-03 1.45E-02 yes
ENSG00000251783 0.87 0.8 2.23E-03 1.58E-02 yes
ENSG00000257802 0.8 0.67 2.25E-03 1.58E-02 yes
ENSG00000223551 -1.05 -1.09 2.31E-03 1.30E-03 yes
ENSG00000213639 0.73 0.63 2.31E-03 1.24E-02 6 no
ENSG00000163806 0.73 0.63 2.31E-03 1.24E-02 6 no
ENSG00000199866 1.31 1.29 2.31E-03 1.69E-02 yes
ENSG00000123728 0.69 0.61 2.34E-03 1.20E-02 no
ENSG00000253092 1.6 1.53 2.43E-03 4.56E-02 yes
ENSG00000226937 0.81 0.96 2.44E-03 4.81E-04 yes
ENSG00000135185 0.67 0.57 2.44E-03 9.44E-03 yes
ENSG00000173598 0.6 0.44 2.44E-03 4.56E-02 no
ENSG00000116489 0.72 0.65 2.45E-03 1.00E-02 yes
ENSG00000100575 0.51 0.5 2.45E-03 1.02E-02 yes
ENSG00000207513 1.15 1.08 2.45E-03 1.42E-02 yes
ENSG00000259657 0.75 0.66 2.45E-03 1.58E-02 yes
ENSG00000117335 0.72 0.54 2.45E-03 2.95E-02 no
ENSG00000258486 -1.18 -1.28 2.47E-03 9.36E-04 yes
ENSG00000111269 0.7 0.64 2.49E-03 7.19E-03 yes
ENSG00000226084 1.06 0.97 2.49E-03 1.11E-02 yes
ENSG00000253626 -1.44 -1.48 2.53E-03 2.12E-03 yes
ENSG00000238450 0.69 0.6 2.55E-03 1.75E-02 yes
ENSG00000254208 1.23 1.21 2.64E-03 1.63E-02 yes
ENSG00000240490 -0.74 -0.83 2.75E-03 9.21E-04 yes
ENSG00000201784 0.77 0.68 2.84E-03 8.49E-03 yes
ENSG00000238975 0.74 0.64 2.84E-03 8.79E-03 yes
ENSG00000197329 0.71 0.74 2.85E-03 7.30E-03 yes
ENSG00000241438 0.99 0.91 2.85E-03 1.27E-02 yes
ENSG00000205581 0.55 0.49 2.88E-03 1.19E-02 7 yes
ENSG00000238556 0.55 0.49 2.88E-03 1.19E-02 7 yes
ENSG00000259950 1.14 1.04 2.88E-03 1.25E-02 yes
ENSG00000248785 0.56 0.47 2.88E-03 1.69E-02 yes
ENSG00000223505 0.71 0.61 2.88E-03 1.91E-02 yes
ENSG00000227417 0.8 0.65 2.88E-03 2.38E-02 yes
ENSG00000226976 -1.04 -1.04 2.96E-03 3.84E-03 yes
ENSG00000159714 -0.73 -0.76 2.97E-03 5.92E-03 yes
ENSG00000162594 1.22 1.16 2.98E-03 2.26E-02 yes
ENSG00000223697 1.17 1.09 3.03E-03 1.35E-02 yes
ENSG00000123219 1.81 2.01 3.16E-03 2.13E-03 yes
ENSG00000251892 0.99 0.92 3.17E-03 1.65E-02 yes
ENSG00000259595 0.78 0.76 3.18E-03 8.49E-03 no
ENSG00000225627 0.76 0.67 3.18E-03 1.78E-02 yes
ENSG00000127920 0.7 0.62 3.18E-03 1.88E-02 yes
ENSG00000228366 1.06 0.96 3.18E-03 2.67E-02 yes
ENSG00000164305 0.86 0.95 3.36E-03 2.00E-03 yes
ENSG00000113369 0.8 0.75 3.40E-03 8.49E-03 yes
ENSG00000173338 -0.83 -0.74 3.50E-03 1.55E-02 yes
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ENSG00000198756 -0.99 -1.07 3.58E-03 3.00E-03 yes
ENSG00000170571 0.68 0.7 3.58E-03 3.73E-03 no
ENSG00000133019 1.21 1.23 3.58E-03 4.93E-03 yes
ENSG00000145779 0.73 0.7 3.58E-03 1.24E-02 yes
ENSG00000223003 1.03 0.95 3.58E-03 2.75E-02 yes
ENSG00000113328 0.61 0.65 3.59E-03 5.07E-03 yes
ENSG00000242732 -1.01 -0.8 3.59E-03 1.77E-02 yes
ENSG00000023445 0.66 0.6 3.87E-03 2.40E-02 yes
ENSG00000111897 0.71 0.7 4.05E-03 9.07E-03 yes
ENSG00000206596 1.28 1.23 4.05E-03 1.57E-02 yes
ENSG00000228187 1.02 0.94 4.05E-03 1.97E-02 yes
ENSG00000105176 0.55 0.46 4.05E-03 2.62E-02 yes
ENSG00000126860 1.03 0.93 4.19E-03 9.48E-03 yes
ENSG00000222086 0.72 0.63 4.66E-03 2.06E-02 yes
ENSG00000197841 1.42 1.65 4.73E-03 4.93E-03 yes
ENSG00000005249 0.94 1.05 5.17E-03 4.55E-03 yes
ENSG00000133740 0.76 0.67 5.17E-03 2.33E-02 yes
ENSG00000147894 0.81 0.86 5.30E-03 1.08E-02 yes
ENSG00000047634 1.37 1.6 5.31E-03 6.78E-03 yes
ENSG00000203386 0.84 0.74 5.50E-03 2.19E-02 yes
ENSG00000183691 0.84 1.13 5.59E-03 4.60E-04 yes
ENSG00000243302 -0.55 -0.64 5.59E-03 1.27E-03 yes
ENSG00000252464 0.92 0.96 5.59E-03 6.75E-03 8 yes
ENSG00000113240 0.92 0.96 5.59E-03 6.75E-03 8 yes
ENSG00000112237 0.77 0.79 5.59E-03 7.51E-03 yes
ENSG00000205147 -0.98 -0.69 5.59E-03 1.19E-02 yes
ENSG00000183160 -1.17 -1.15 5.59E-03 1.55E-02 yes
ENSG00000212259 1.11 1.05 5.59E-03 1.88E-02 yes
ENSG00000231845 0.8 0.71 5.59E-03 1.93E-02 yes
ENSG00000182853 -1.4 -1.61 5.61E-03 3.74E-03 yes
ENSG00000249055 0.66 0.62 5.61E-03 1.64E-02 9 no
ENSG00000151247 0.66 0.62 5.61E-03 1.64E-02 9 no
ENSG00000238449 0.66 0.62 5.61E-03 1.64E-02 9 no
ENSG00000170215 -1.5 -1.42 5.61E-03 1.66E-02 yes
ENSG00000252750 0.7 0.6 5.61E-03 1.67E-02 yes
ENSG00000250473 1.52 1.47 5.61E-03 2.07E-02 yes
ENSG00000232486 0.91 0.83 5.61E-03 3.10E-02 yes
ENSG00000256039 0.84 1.04 5.80E-03 7.09E-04 yes
ENSG00000137492 0.78 0.92 5.80E-03 2.00E-03 yes
ENSG00000228956 0.9 1.12 5.88E-03 1.65E-03 yes
ENSG00000238959 0.89 0.81 5.97E-03 2.41E-02 yes
ENSG00000214548 -1.77 -1.81 6.27E-03 2.59E-02 yes
ENSG00000240342 1.04 1.04 6.30E-03 1.24E-02 yes
ENSG00000235299 0.69 0.6 6.30E-03 1.70E-02 yes
ENSG00000134765 1.75 1.82 6.35E-03 2.28E-02 yes
ENSG00000189266 0.6 0.62 6.44E-03 7.09E-03 yes
ENSG00000125245 0.48 0.41 6.47E-03 3.49E-02 yes
ENSG00000152219 0.71 0.62 6.60E-03 2.15E-02 yes
ENSG00000158555 -0.71 -0.77 6.64E-03 8.49E-03 yes
ENSG00000166770 0.9 0.87 6.64E-03 1.93E-02 yes
ENSG00000207567 -0.8 -0.89 6.67E-03 5.85E-03 yes
ENSG00000102760 0.54 0.54 6.67E-03 9.48E-03 yes
ENSG00000147162 0.75 0.68 6.67E-03 1.69E-02 yes
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ENSG00000198791 0.52 0.43 6.67E-03 3.33E-02 yes
ENSG00000126261 0.51 0.51 6.92E-03 9.30E-03 yes
ENSG00000258645 1.79 1.76 7.05E-03 1.95E-02 yes
ENSG00000201013 0.76 0.66 7.05E-03 4.78E-02 no
ENSG00000253754 0.82 0.72 7.16E-03 1.49E-02 yes
ENSG00000138795 0.65 0.59 7.16E-03 1.74E-02 yes
ENSG00000127314 0.59 0.48 7.22E-03 1.79E-02 yes
ENSG00000115524 0.62 0.54 7.26E-03 2.54E-02 yes
ENSG00000119616 0.61 0.56 7.29E-03 1.99E-02 yes
ENSG00000202490 1.78 1.75 7.29E-03 2.03E-02 yes
ENSG00000206822 1.78 1.75 7.29E-03 2.03E-02 yes
ENSG00000221214 0.69 0.61 7.29E-03 3.39E-02 no
ENSG00000231128 0.66 0.53 7.29E-03 4.87E-02 no
ENSG00000116918 0.81 0.91 7.34E-03 2.12E-03 yes
ENSG00000260128 -3.85 -4.25 7.34E-03 8.22E-03 no
ENSG00000234219 0.72 0.61 7.34E-03 3.05E-02 yes
ENSG00000254671 0.68 0.59 7.34E-03 4.19E-02 no
ENSG00000104408 0.81 0.76 7.38E-03 1.30E-02 yes
ENSG00000151239 0.92 1.01 7.43E-03 7.28E-03 yes
ENSG00000197045 1.1 1.23 7.46E-03 7.09E-03 yes
ENSG00000215973 1.04 0.94 7.58E-03 3.46E-02 yes
ENSG00000239917 0.6 0.51 7.58E-03 3.90E-02 no
ENSG00000260977 -0.87 -0.61 7.61E-03 1.84E-02 no
ENSG00000177889 0.52 0.41 7.76E-03 4.58E-02 yes
ENSG00000233984 1.41 1.25 7.77E-03 3.03E-02 yes
ENSG00000140299 0.52 0.45 7.79E-03 3.50E-02 no
ENSG00000166317 -0.79 -0.82 8.06E-03 6.47E-03 yes
ENSG00000180776 0.92 0.88 8.14E-03 1.84E-02 yes
ENSG00000101972 0.67 0.83 8.18E-03 2.12E-03 yes
ENSG00000228323 -0.67 -0.76 8.18E-03 4.99E-03 yes
ENSG00000202054 -0.99 -1.09 8.18E-03 1.35E-02 yes
ENSG00000136536 0.56 0.5 8.23E-03 2.71E-02 no
ENSG00000124767 0.5 0.43 8.23E-03 3.26E-02 no
ENSG00000196498 -0.59 -0.63 8.40E-03 1.08E-02 yes
ENSG00000258663 -1.86 -2.14 8.40E-03 1.49E-02 yes
ENSG00000122042 0.63 0.61 8.52E-03 1.63E-02 no
ENSG00000173597 0.69 0.85 8.54E-03 2.12E-03 yes
ENSG00000136111 0.89 0.98 8.54E-03 6.16E-03 yes
ENSG00000170356 0.85 0.87 8.54E-03 1.84E-02 10 no
ENSG00000244479 0.85 0.87 8.54E-03 1.84E-02 10 no
ENSG00000248839 0.81 0.73 8.54E-03 2.37E-02 yes
ENSG00000241300 1.39 1.32 8.54E-03 2.51E-02 yes
ENSG00000154814 0.65 0.63 8.74E-03 1.33E-02 no
ENSG00000123685 -0.85 -1.06 8.84E-03 4.01E-03 yes
ENSG00000169131 0.71 0.74 9.14E-03 1.58E-02 yes
ENSG00000221420 0.58 0.58 9.15E-03 7.45E-03 11 yes
ENSG00000200418 0.58 0.58 9.15E-03 7.45E-03 11 yes
ENSG00000238942 0.58 0.58 9.15E-03 7.45E-03 11 yes
ENSG00000156976 0.58 0.58 9.15E-03 7.45E-03 11 yes
ENSG00000200320 0.58 0.58 9.15E-03 7.45E-03 11 yes
ENSG00000171928 0.94 0.98 9.15E-03 1.25E-02 yes
ENSG00000198796 -1.61 -1.66 9.15E-03 1.64E-02 yes
ENSG00000173542 0.7 0.53 9.15E-03 4.58E-02 12 yes

Continued on next page



B.1 Differentially expressed genes 147

Table B.1 – Continued from previous page

Gene
Log-ratio q-value

Overlap. group ID Confirmed

maxcounts totcounts maxcounts totcounts

ENSG00000156136 0.7 0.53 9.15E-03 4.58E-02 12 yes
ENSG00000241376 -1.03 -1.1 9.17E-03 1.67E-02 yes
ENSG00000132485 0.77 0.84 9.38E-03 9.07E-03 yes
ENSG00000138138 0.8 0.99 9.47E-03 4.33E-03 yes
ENSG00000243305 0.92 0.88 9.51E-03 1.93E-02 yes
ENSG00000207034 0.63 0.53 9.51E-03 3.13E-02 yes
ENSG00000262211 1.14 1.19 9.53E-03 8.22E-03 yes
ENSG00000170855 0.73 0.81 9.53E-03 1.01E-02 yes
ENSG00000248265 -1.09 -1.3 9.66E-03 6.74E-03 no
ENSG00000197462 -1.02 -1.11 9.66E-03 1.25E-02 yes
ENSG00000233728 -0.87 -0.79 9.66E-03 1.98E-02 no
ENSG00000254274 0.83 0.74 9.78E-03 3.23E-02 yes
ENSG00000134758 0.67 0.74 9.93E-03 7.91E-03 yes
ENSG00000124193 0.48 0.45 9.93E-03 2.00E-02 yes
ENSG00000186063 0.55 0.64 9.99E-03 3.86E-03 yes
ENSG00000253636 -1.04 -0.72 9.99E-03 4.24E-02 no
ENSG00000221869 0.61 0.76 1.00E-02 2.77E-03 no
ENSG00000214659 -1.61 -1.78 1.00E-02 7.45E-03 yes
ENSG00000106537 0.82 0.74 1.03E-02 3.12E-02 yes
ENSG00000228554 0.58 0.5 1.04E-02 4.38E-02 no
ENSG00000070367 0.77 0.73 1.05E-02 4.87E-02 yes
ENSG00000230625 0.77 0.68 1.06E-02 3.46E-02 no
ENSG00000163412 0.55 0.46 1.06E-02 4.24E-02 no
ENSG00000202237 0.61 0.53 1.07E-02 4.47E-02 no
ENSG00000174579 0.6 0.7 1.08E-02 8.58E-03 yes
ENSG00000227146 0.59 0.55 1.08E-02 1.49E-02 yes
ENSG00000121749 0.71 0.62 1.08E-02 2.51E-02 yes
ENSG00000164830 0.81 0.73 1.08E-02 3.10E-02 13 yes
ENSG00000254615 0.81 0.73 1.08E-02 3.10E-02 13 yes
ENSG00000244275 0.54 0.45 1.08E-02 3.17E-02 14 yes
ENSG00000240369 0.54 0.45 1.08E-02 3.17E-02 14 yes
ENSG00000238916 0.54 0.45 1.08E-02 3.17E-02 14 yes
ENSG00000154330 -1.46 -1.73 1.09E-02 1.93E-02 yes
ENSG00000242681 0.99 0.9 1.09E-02 3.50E-02 yes
ENSG00000237672 0.79 0.7 1.09E-02 3.67E-02 no
ENSG00000144895 0.58 0.6 1.10E-02 1.27E-02 yes
ENSG00000157800 0.66 0.69 1.10E-02 1.64E-02 yes
ENSG00000148154 0.77 0.87 1.11E-02 9.20E-03 yes
ENSG00000200120 1.34 1.25 1.13E-02 2.38E-02 yes
ENSG00000225037 0.81 0.72 1.13E-02 3.65E-02 yes
ENSG00000217527 0.63 0.53 1.15E-02 4.72E-02 no
ENSG00000138032 0.64 0.6 1.16E-02 2.71E-02 yes
ENSG00000164985 0.53 0.47 1.16E-02 3.18E-02 yes
ENSG00000206737 0.94 0.86 1.16E-02 3.94E-02 yes
ENSG00000222383 0.59 0.5 1.16E-02 4.66E-02 no
ENSG00000174123 0.92 0.98 1.17E-02 7.69E-03 yes
ENSG00000185634 1.2 1.12 1.17E-02 4.58E-02 no
ENSG00000115866 0.5 0.47 1.18E-02 2.03E-02 yes
ENSG00000229750 0.97 0.96 1.18E-02 3.00E-02 no
ENSG00000227239 0.62 0.52 1.18E-02 3.06E-02 yes
ENSG00000238268 -1.23 -1.12 1.18E-02 3.77E-02 yes
ENSG00000187109 0.54 0.46 1.18E-02 3.94E-02 no
ENSG00000074201 0.53 0.48 1.18E-02 4.19E-02 yes
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ENSG00000164109 0.8 1.04 1.19E-02 2.00E-03 yes
ENSG00000198898 0.69 0.7 1.22E-02 1.09E-02 no
ENSG00000262777 0.81 0.72 1.22E-02 4.79E-02 no
ENSG00000233355 0.85 0.99 1.23E-02 5.31E-03 yes
ENSG00000110330 0.71 0.7 1.23E-02 1.79E-02 yes
ENSG00000142892 0.76 0.74 1.23E-02 2.03E-02 yes
ENSG00000120992 0.62 0.56 1.25E-02 2.96E-02 no
ENSG00000124333 0.61 0.57 1.25E-02 2.99E-02 yes
ENSG00000227161 0.7 0.61 1.25E-02 3.84E-02 no
ENSG00000201778 0.57 0.52 1.25E-02 3.95E-02 no
ENSG00000221065 1.03 0.93 1.26E-02 2.97E-02 yes
ENSG00000149656 0.77 0.66 1.26E-02 3.84E-02 15 yes
ENSG00000203880 0.77 0.66 1.26E-02 3.84E-02 15 yes
ENSG00000106560 0.71 0.56 1.26E-02 4.06E-02 yes
ENSG00000139372 0.68 0.75 1.27E-02 1.82E-02 yes
ENSG00000222276 0.94 0.84 1.27E-02 3.87E-02 no
ENSG00000135776 0.69 0.78 1.28E-02 8.49E-03 yes
ENSG00000036054 0.65 0.72 1.28E-02 1.21E-02 yes
ENSG00000116754 0.61 0.64 1.28E-02 1.73E-02 yes
ENSG00000160654 0.7 0.69 1.28E-02 1.88E-02 no
ENSG00000250850 0.62 0.67 1.28E-02 2.32E-02 yes
ENSG00000071994 0.44 0.4 1.28E-02 4.58E-02 yes
ENSG00000238197 0.78 0.92 1.29E-02 7.51E-03 yes
ENSG00000180964 0.58 0.63 1.29E-02 8.22E-03 no
ENSG00000244389 1.16 1.1 1.29E-02 3.95E-02 yes
ENSG00000120742 0.61 0.55 1.29E-02 4.67E-02 no
ENSG00000168913 -0.75 -0.7 1.29E-02 4.84E-02 no
ENSG00000167766 0.87 0.86 1.30E-02 1.87E-02 yes
ENSG00000164209 0.72 0.74 1.30E-02 2.09E-02 yes
ENSG00000232022 -0.82 -0.92 1.30E-02 2.28E-02 yes
ENSG00000200814 0.66 0.56 1.30E-02 4.82E-02 no
ENSG00000185947 0.84 1 1.31E-02 3.88E-03 16 yes
ENSG00000262657 0.84 1 1.31E-02 3.88E-03 16 yes
ENSG00000225792 0.6 0.59 1.31E-02 3.33E-02 no
ENSG00000043093 0.55 0.6 1.32E-02 9.54E-03 no
ENSG00000207491 -0.82 -0.91 1.32E-02 1.64E-02 yes
ENSG00000259781 2.48 2.54 1.32E-02 3.00E-02 yes
ENSG00000091409 0.7 0.66 1.32E-02 3.06E-02 yes
ENSG00000130119 -0.77 -0.87 1.33E-02 1.07E-02 yes
ENSG00000134352 1.05 1.19 1.33E-02 1.29E-02 yes
ENSG00000204882 -0.95 -0.72 1.35E-02 3.77E-02 no
ENSG00000178863 -0.73 -0.69 1.36E-02 2.27E-02 yes
ENSG00000135318 0.76 1.16 1.37E-02 9.28E-05 yes
ENSG00000240163 -0.74 -0.83 1.37E-02 6.35E-03 yes
ENSG00000091129 1.5 1.56 1.37E-02 1.08E-02 yes
ENSG00000155903 0.84 0.85 1.37E-02 1.33E-02 yes
ENSG00000223573 -1.02 -0.78 1.37E-02 1.56E-02 yes
ENSG00000252759 1.16 1.06 1.37E-02 2.94E-02 yes
ENSG00000177144 1.08 1.26 1.39E-02 2.16E-02 yes
ENSG00000067064 0.71 0.73 1.40E-02 1.66E-02 yes
ENSG00000101856 0.49 0.51 1.45E-02 1.42E-02 yes
ENSG00000008323 -1.12 -1.52 1.46E-02 4.74E-04 yes
ENSG00000123358 -0.94 -0.92 1.46E-02 3.39E-02 yes
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ENSG00000115419 0.63 0.59 1.47E-02 3.10E-02 no
ENSG00000177683 0.67 0.59 1.48E-02 4.42E-02 17 yes
ENSG00000135241 0.67 0.59 1.48E-02 4.42E-02 17 yes
ENSG00000211591 0.57 0.84 1.49E-02 7.31E-04 yes
ENSG00000136535 1.35 1.68 1.49E-02 1.35E-02 18 yes
ENSG00000251621 1.35 1.68 1.49E-02 1.35E-02 18 yes
ENSG00000144290 1.35 1.68 1.49E-02 1.35E-02 18 yes
ENSG00000206713 -0.62 -0.71 1.49E-02 1.66E-02 yes
ENSG00000135723 -0.47 -0.48 1.49E-02 1.82E-02 yes
ENSG00000073849 0.54 0.52 1.49E-02 2.82E-02 no
ENSG00000198856 0.54 0.48 1.49E-02 3.85E-02 yes
ENSG00000207721 0.8 0.7 1.49E-02 4.02E-02 no
ENSG00000091972 0.8 1 1.50E-02 5.31E-03 yes
ENSG00000173372 -1.03 -1.13 1.50E-02 1.33E-02 yes
ENSG00000138078 0.68 0.65 1.50E-02 3.95E-02 yes
ENSG00000175895 0.64 0.77 1.51E-02 2.75E-03 yes
ENSG00000235117 -0.51 -0.49 1.51E-02 2.35E-02 yes
ENSG00000198586 0.6 0.54 1.51E-02 4.24E-02 yes
ENSG00000168497 0.64 0.63 1.52E-02 9.20E-03 yes
ENSG00000172986 0.69 0.74 1.52E-02 1.26E-02 19 yes
ENSG00000163605 0.69 0.74 1.52E-02 1.26E-02 19 yes
ENSG00000178913 0.61 0.57 1.52E-02 3.51E-02 20 yes
ENSG00000255729 0.61 0.57 1.52E-02 3.51E-02 20 yes
ENSG00000162607 0.66 0.66 1.53E-02 2.13E-02 yes
ENSG00000134548 1.09 1 1.53E-02 2.51E-02 yes
ENSG00000089335 1.04 0.97 1.53E-02 2.85E-02 yes
ENSG00000129757 -0.88 -0.82 1.53E-02 3.07E-02 yes
ENSG00000122565 0.6 0.55 1.53E-02 3.48E-02 yes
ENSG00000260808 0.61 0.75 1.54E-02 1.57E-03 no
ENSG00000163600 0.81 0.94 1.54E-02 6.47E-03 yes
ENSG00000149782 -0.64 -0.71 1.54E-02 1.20E-02 yes
ENSG00000138764 0.64 0.69 1.54E-02 1.58E-02 yes
ENSG00000254193 3.59 3.6 1.54E-02 2.33E-02 yes
ENSG00000231995 -4.01 -4.56 1.54E-02 4.02E-02 yes
ENSG00000250267 1.26 1.2 1.54E-02 4.29E-02 yes
ENSG00000134954 0.45 0.42 1.57E-02 3.74E-02 yes
ENSG00000165359 0.65 0.62 1.59E-02 2.55E-02 yes
ENSG00000139921 0.72 0.81 1.61E-02 8.49E-03 no
ENSG00000174106 0.76 0.85 1.61E-02 9.28E-03 yes
ENSG00000177990 1.78 1.89 1.61E-02 1.35E-02 yes
ENSG00000172469 1.18 1.22 1.61E-02 2.01E-02 no
ENSG00000180389 -0.92 -0.89 1.61E-02 2.94E-02 yes
ENSG00000164331 0.66 0.6 1.61E-02 3.89E-02 yes
ENSG00000248977 1.72 1.73 1.61E-02 4.84E-02 yes
ENSG00000213147 -5.49 -6.33 1.62E-02 1.71E-02 yes
ENSG00000253102 -0.53 -0.6 1.64E-02 1.29E-02 yes
ENSG00000108960 0.69 0.69 1.64E-02 2.31E-02 yes
ENSG00000261573 0.56 0.47 1.64E-02 4.67E-02 no
ENSG00000099917 -0.45 -0.53 1.68E-02 1.26E-02 yes
ENSG00000233392 -0.85 -1 1.68E-02 1.45E-02 yes
ENSG00000236287 0.69 0.7 1.72E-02 1.64E-02 yes
ENSG00000085365 0.66 0.77 1.72E-02 1.74E-02 no
ENSG00000253772 -1.71 -2.03 1.72E-02 2.97E-02 yes
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ENSG00000145623 0.9 0.83 1.73E-02 2.40E-02 yes
ENSG00000199415 1.36 1.27 1.73E-02 3.67E-02 yes
ENSG00000177839 -0.72 -0.74 1.74E-02 2.36E-02 no
ENSG00000108061 0.55 0.69 1.77E-02 5.06E-03 no
ENSG00000132024 -0.54 -0.58 1.77E-02 1.79E-02 yes
ENSG00000163322 0.72 0.76 1.77E-02 2.07E-02 yes
ENSG00000105609 -0.57 -0.65 1.80E-02 1.64E-02 yes
ENSG00000169251 0.76 0.9 1.81E-02 9.07E-03 yes
ENSG00000213881 0.94 0.95 1.81E-02 4.22E-02 no
ENSG00000081320 0.52 0.56 1.84E-02 1.33E-02 no
ENSG00000258800 0.75 1.05 1.85E-02 1.45E-03 yes
ENSG00000132514 -0.61 -0.66 1.85E-02 1.67E-02 yes
ENSG00000171469 0.6 0.57 1.88E-02 4.13E-02 no
ENSG00000260978 3.78 4.38 1.89E-02 8.50E-03 no
ENSG00000149591 -0.58 -0.69 1.89E-02 1.11E-02 yes
ENSG00000164346 0.65 0.67 1.89E-02 1.33E-02 yes
ENSG00000109113 -0.53 -0.61 1.89E-02 1.49E-02 yes
ENSG00000262429 -0.46 -0.51 1.89E-02 1.74E-02 yes
ENSG00000128699 0.56 0.52 1.89E-02 3.77E-02 yes
ENSG00000140030 0.6 0.61 1.89E-02 4.07E-02 yes
ENSG00000125844 -0.53 -0.51 1.91E-02 3.98E-02 yes
ENSG00000113263 0.51 0.48 1.92E-02 4.13E-02 yes
ENSG00000100342 -0.64 -0.65 1.93E-02 3.03E-02 no
ENSG00000160326 -0.54 -0.58 1.95E-02 2.37E-02 yes
ENSG00000125772 0.66 0.66 1.95E-02 2.72E-02 no
ENSG00000166165 -0.77 -0.94 2.00E-02 1.00E-02 yes
ENSG00000230567 -5.58 -6.2 2.01E-02 7.96E-03 yes
ENSG00000066056 -0.8 -0.9 2.01E-02 1.73E-02 no
ENSG00000176390 0.45 0.45 2.01E-02 3.13E-02 no
ENSG00000184613 0.53 0.54 2.01E-02 3.67E-02 yes
ENSG00000155100 0.93 1.13 2.05E-02 1.73E-02 yes
ENSG00000259421 -0.61 -0.65 2.05E-02 1.84E-02 no
ENSG00000163534 0.79 0.93 2.10E-02 5.54E-03 yes
ENSG00000152270 0.63 0.62 2.11E-02 3.39E-02 yes
ENSG00000228265 -0.49 -0.55 2.12E-02 1.27E-02 yes
ENSG00000162711 -0.61 -0.62 2.12E-02 2.54E-02 yes
ENSG00000135002 0.67 0.63 2.12E-02 4.09E-02 no
ENSG00000182141 1.03 1.25 2.13E-02 9.28E-03 yes
ENSG00000102158 0.56 0.53 2.17E-02 2.47E-02 yes
ENSG00000255671 -0.92 -0.99 2.17E-02 4.52E-02 yes
ENSG00000236552 0.76 0.84 2.18E-02 1.51E-02 yes
ENSG00000087338 0.59 0.68 2.18E-02 1.58E-02 no
ENSG00000156564 -1.43 -1.26 2.18E-02 4.06E-02 no
ENSG00000227484 -0.95 -0.94 2.20E-02 3.92E-02 no
ENSG00000146757 1.13 1.32 2.22E-02 1.23E-02 yes
ENSG00000172845 0.67 0.79 2.25E-02 1.58E-02 yes
ENSG00000164938 0.95 1.18 2.26E-02 4.99E-03 yes
ENSG00000253574 -0.69 -0.78 2.26E-02 1.88E-02 yes
ENSG00000163660 0.51 0.52 2.26E-02 4.74E-02 no
ENSG00000152256 0.62 0.77 2.28E-02 5.92E-03 yes
ENSG00000251806 -0.53 -0.62 2.28E-02 6.78E-03 yes
ENSG00000239935 -0.7 -0.8 2.28E-02 7.32E-03 yes
ENSG00000154153 0.77 0.83 2.28E-02 2.44E-02 yes
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ENSG00000214194 0.96 0.96 2.28E-02 2.62E-02 no
ENSG00000233493 0.57 0.78 2.30E-02 2.05E-03 yes
ENSG00000159713 -0.82 -0.89 2.30E-02 2.53E-02 21 yes
ENSG00000239194 -0.82 -0.89 2.30E-02 2.53E-02 21 yes
ENSG00000215458 -0.61 -0.61 2.31E-02 3.78E-02 yes
ENSG00000176720 -1.54 -1.44 2.31E-02 4.96E-02 no
ENSG00000114062 0.64 0.71 2.32E-02 1.29E-02 yes
ENSG00000124786 0.55 0.57 2.40E-02 3.05E-02 yes
ENSG00000135655 0.6 0.58 2.40E-02 3.17E-02 no
ENSG00000165195 0.96 1.16 2.41E-02 1.00E-02 yes
ENSG00000126254 -0.53 -0.55 2.41E-02 1.88E-02 yes
ENSG00000013441 0.83 0.85 2.42E-02 1.49E-02 yes
ENSG00000152495 0.59 0.57 2.44E-02 3.90E-02 yes
ENSG00000200788 -0.59 -0.68 2.45E-02 1.67E-02 yes
ENSG00000179820 -0.55 -0.69 2.47E-02 8.49E-03 yes
ENSG00000066422 0.61 0.69 2.47E-02 1.28E-02 yes
ENSG00000188725 0.56 0.63 2.47E-02 1.65E-02 no
ENSG00000184730 -0.62 -0.66 2.47E-02 2.09E-02 yes
ENSG00000261744 -0.78 -0.86 2.47E-02 2.47E-02 yes
ENSG00000130479 -0.57 -0.62 2.47E-02 2.75E-02 yes
ENSG00000220842 4.8 4.85 2.47E-02 2.85E-02 yes
ENSG00000133641 0.81 0.89 2.48E-02 2.11E-02 yes
ENSGR0000124333 0.58 0.59 2.51E-02 2.79E-02 yes
ENSG00000125637 -0.45 -0.54 2.54E-02 9.07E-03 yes
ENSG00000250733 -0.69 -0.77 2.54E-02 2.38E-02 no
ENSG00000185761 -0.93 -1.19 2.54E-02 2.46E-02 yes
ENSG00000095002 0.57 0.6 2.54E-02 2.94E-02 yes
ENSG00000256403 -1.08 -1.19 2.54E-02 3.39E-02 yes
ENSG00000100100 0.46 0.42 2.55E-02 4.84E-02 yes
ENSG00000100028 -0.46 -0.5 2.58E-02 1.88E-02 22 no
ENSG00000100031 -0.46 -0.5 2.58E-02 1.88E-02 22 no
ENSG00000130766 -0.5 -0.6 2.61E-02 7.91E-03 yes
ENSG00000261327 -0.76 -0.62 2.61E-02 3.99E-02 23 no
ENSG00000259811 -0.76 -0.62 2.61E-02 3.99E-02 23 no
ENSG00000237336 -0.62 -0.71 2.62E-02 1.95E-02 no
ENSG00000231245 1.27 1.7 2.64E-02 1.58E-02 yes
ENSG00000255423 0.66 0.82 2.66E-02 2.02E-02 yes
ENSG00000104231 0.73 0.72 2.66E-02 3.05E-02 yes
ENSG00000142733 -0.73 -0.68 2.66E-02 4.83E-02 yes
ENSG00000021574 0.6 0.71 2.67E-02 1.58E-02 no
ENSG00000104936 -0.52 -0.58 2.67E-02 1.77E-02 yes
ENSG00000091039 0.77 0.82 2.67E-02 2.72E-02 yes
ENSG00000207523 0.71 0.61 2.67E-02 4.82E-02 yes
ENSG00000235872 0.69 1.03 2.68E-02 2.24E-03 yes
ENSG00000126458 -0.53 -0.6 2.68E-02 2.10E-02 yes
ENSG00000176076 0.57 0.58 2.68E-02 3.00E-02 24 no
ENSG00000068366 0.57 0.58 2.68E-02 3.00E-02 24 no
ENSG00000243736 0.57 0.58 2.68E-02 3.00E-02 24 no
ENSG00000105371 -0.65 -0.7 2.73E-02 1.49E-02 yes
ENSG00000085274 0.67 0.83 2.74E-02 1.20E-02 yes
ENSG00000077458 0.79 0.84 2.77E-02 3.33E-02 no
ENSG00000168300 0.59 0.58 2.77E-02 4.47E-02 yes
ENSG00000177764 0.56 0.83 2.78E-02 1.03E-03 25 no
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ENSG00000247315 0.56 0.83 2.78E-02 1.03E-03 25 no
ENSG00000149516 0.69 0.74 2.78E-02 2.10E-02 no
ENSG00000106991 -0.62 -0.65 2.78E-02 3.39E-02 yes
ENSG00000224895 -0.81 -0.9 2.80E-02 3.01E-02 no
ENSG00000234106 -0.62 -0.72 2.81E-02 1.73E-02 yes
ENSG00000185246 0.72 0.86 2.81E-02 1.75E-02 yes
ENSG00000008283 -0.57 -0.55 2.84E-02 3.67E-02 yes
ENSG00000107796 -0.74 -0.69 2.85E-02 3.19E-02 no
ENSG00000214688 -0.49 -0.49 2.85E-02 3.38E-02 yes
ENSG00000099204 0.72 0.79 2.87E-02 1.64E-02 yes
ENSG00000168876 0.77 0.81 2.87E-02 1.71E-02 yes
ENSG00000165322 0.77 0.95 2.87E-02 1.79E-02 yes
ENSG00000143382 -0.56 -0.58 2.87E-02 4.29E-02 26 yes
ENSG00000225996 -0.56 -0.58 2.87E-02 4.29E-02 26 yes
ENSG00000090006 -0.59 -0.72 2.90E-02 1.33E-02 yes
ENSG00000103426 -0.39 -0.44 2.90E-02 2.19E-02 27 yes
ENSG00000262246 -0.39 -0.44 2.90E-02 2.19E-02 27 yes
ENSG00000217930 -0.39 -0.44 2.90E-02 2.19E-02 27 yes
ENSG00000110429 0.57 0.61 2.90E-02 3.36E-02 no
ENSG00000228386 -0.5 -0.59 2.92E-02 8.49E-03 yes
ENSG00000182809 -0.63 -0.71 2.92E-02 1.57E-02 yes
ENSG00000067167 0.45 0.47 2.92E-02 2.43E-02 no
ENSG00000248636 -0.55 -0.5 2.92E-02 4.75E-02 no
ENSG00000008311 -0.68 -0.76 2.94E-02 2.63E-02 no
ENSG00000126804 0.66 0.84 2.95E-02 2.92E-03 yes
ENSG00000089723 -0.85 -0.67 2.99E-02 1.84E-02 no
ENSG00000102409 0.5 0.53 2.99E-02 3.37E-02 yes
ENSG00000174780 0.44 0.43 2.99E-02 3.76E-02 yes
ENSG00000213204 0.66 0.66 2.99E-02 4.64E-02 28 no
ENSG00000164414 0.66 0.66 2.99E-02 4.64E-02 28 no
ENSG00000196576 -0.62 -0.72 3.03E-02 1.67E-02 yes
ENSG00000126461 -0.5 -0.55 3.03E-02 2.74E-02 yes
ENSG00000196924 -0.63 -0.69 3.05E-02 1.80E-02 yes
ENSG00000131931 0.53 0.57 3.06E-02 1.75E-02 no
ENSG00000112697 0.6 0.61 3.06E-02 3.07E-02 no
ENSG00000137076 -0.62 -0.63 3.07E-02 3.85E-02 yes
ENSG00000199591 -0.79 -0.88 3.09E-02 3.33E-02 no
ENSG00000228981 1.16 1.42 3.11E-02 7.19E-03 yes
ENSG00000110848 0.86 1.12 3.21E-02 8.22E-03 yes
ENSG00000211456 0.57 0.67 3.25E-02 1.49E-02 yes
ENSG00000100292 -0.58 -0.63 3.25E-02 2.67E-02 yes
ENSG00000129910 -0.94 -1.03 3.28E-02 4.07E-02 no
ENSG00000239975 1.66 1.71 3.28E-02 4.09E-02 yes
ENSG00000214787 -0.57 -0.84 3.29E-02 1.10E-03 yes
ENSG00000132718 -0.53 -0.6 3.29E-02 7.45E-03 yes
ENSG00000162852 0.65 0.77 3.29E-02 1.19E-02 yes
ENSG00000124406 0.87 1.12 3.29E-02 1.49E-02 yes
ENSG00000188229 -0.44 -0.5 3.29E-02 2.16E-02 no
ENSG00000181222 -0.49 -0.54 3.29E-02 2.85E-02 yes
ENSG00000164163 0.55 0.55 3.29E-02 3.28E-02 yes
ENSG00000186265 0.71 0.68 3.29E-02 3.62E-02 yes
ENSG00000005812 0.48 0.68 3.30E-02 2.37E-03 yes
ENSG00000259099 -0.63 -0.73 3.30E-02 2.17E-02 no
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ENSG00000112851 0.64 0.84 3.31E-02 6.74E-03 yes
ENSG00000154174 0.44 0.51 3.31E-02 1.22E-02 yes
ENSG00000213744 -0.59 -0.7 3.31E-02 2.18E-02 no
ENSG00000196154 -0.58 -0.67 3.32E-02 9.64E-03 no
ENSG00000107317 -1.03 -1.08 3.32E-02 3.06E-02 29 yes
ENSG00000214402 -1.03 -1.08 3.32E-02 3.06E-02 29 yes
ENSG00000229413 -0.61 -0.66 3.32E-02 4.51E-02 yes
ENSG00000124145 -0.87 -0.78 3.33E-02 6.20E-03 yes
ENSG00000078589 0.52 0.6 3.33E-02 3.93E-02 yes
ENSG00000130402 -0.59 -0.65 3.34E-02 2.97E-02 yes
ENSG00000152133 0.73 0.91 3.36E-02 1.99E-02 yes
ENSG00000198087 0.82 0.97 3.36E-02 2.37E-02 yes
ENSG00000109736 -0.47 -0.54 3.37E-02 1.42E-02 yes
ENSG00000141429 0.49 0.55 3.37E-02 1.74E-02 yes
ENSG00000134255 0.49 0.55 3.37E-02 1.81E-02 yes
ENSG00000109943 0.65 0.75 3.38E-02 1.87E-02 yes
ENSG00000155545 1.22 1.55 3.38E-02 2.08E-02 yes
ENSG00000170190 -0.4 -0.46 3.38E-02 2.30E-02 yes
ENSG00000222869 -0.57 -0.67 3.40E-02 2.94E-02 no
ENSG00000160570 -0.42 -0.52 3.41E-02 1.67E-02 no
ENSG00000126821 0.73 1.12 3.44E-02 9.21E-04 yes
ENSG00000255302 0.47 0.45 3.44E-02 4.75E-02 30 no
ENSG00000235883 0.47 0.45 3.44E-02 4.75E-02 30 no
ENSG00000153989 0.5 0.55 3.46E-02 1.58E-02 yes
ENSG00000138468 0.78 0.89 3.46E-02 1.88E-02 yes
ENSG00000185736 -3.74 -4.03 3.46E-02 3.47E-02 yes
ENSG00000071575 0.53 0.53 3.46E-02 4.42E-02 yes
ENSG00000259884 -0.67 -0.69 3.46E-02 4.84E-02 yes
ENSG00000256515 -3.92 -4.05 3.48E-02 3.84E-02 no
ENSG00000166323 0.82 0.79 3.48E-02 4.10E-02 yes
ENSG00000206418 0.55 0.72 3.50E-02 8.83E-03 yes
ENSG00000182578 -0.67 -0.79 3.50E-02 1.33E-02 yes
ENSG00000059758 0.64 0.72 3.50E-02 2.32E-02 yes
ENSG00000101888 0.83 0.96 3.50E-02 3.02E-02 yes
ENSG00000207972 -0.47 -0.56 3.51E-02 2.10E-02 no
ENSG00000241247 0.57 0.55 3.51E-02 4.87E-02 31 yes
ENSG00000105829 0.57 0.55 3.51E-02 4.87E-02 31 yes
ENSG00000211642 0.97 1.08 3.52E-02 2.38E-02 yes
ENSG00000141096 -0.48 -0.55 3.52E-02 2.53E-02 yes
ENSG00000079950 0.56 0.59 3.52E-02 4.29E-02 yes
ENSG00000224032 0.48 0.51 3.53E-02 1.69E-02 no
ENSG00000119714 -0.5 -0.57 3.54E-02 1.29E-02 no
ENSG00000100599 -0.52 -0.65 3.54E-02 1.45E-02 no
ENSG00000201071 -0.43 -0.52 3.55E-02 2.26E-02 no
ENSG00000121753 -0.93 -0.94 3.57E-02 2.43E-02 yes
ENSG00000143554 -0.49 -0.55 3.57E-02 3.03E-02 yes
ENSG00000239932 -0.72 -0.79 3.57E-02 4.72E-02 no
ENSG00000251920 0.63 0.83 3.58E-02 1.88E-02 yes
ENSG00000218980 -0.59 -0.68 3.59E-02 2.59E-02 no
ENSG00000058063 0.54 0.58 3.60E-02 3.91E-02 yes
ENSG00000116095 0.5 0.55 3.63E-02 2.62E-02 no
ENSG00000188223 -0.43 -0.47 3.63E-02 3.36E-02 yes
ENSG00000170759 0.59 0.64 3.64E-02 2.43E-02 no
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ENSG00000133246 -0.59 -0.66 3.66E-02 1.69E-02 yes
ENSG00000155307 0.49 0.55 3.66E-02 2.46E-02 32 yes
ENSG00000243440 0.49 0.55 3.66E-02 2.46E-02 32 yes
ENSG00000257702 -0.66 -0.59 3.66E-02 4.72E-02 no
ENSG00000232021 0.8 0.95 3.68E-02 2.97E-02 yes
ENSG00000136051 0.65 0.81 3.70E-02 1.33E-02 yes
ENSG00000111358 0.65 0.72 3.70E-02 3.67E-02 yes
ENSG00000140367 0.53 0.53 3.70E-02 3.88E-02 no
ENSG00000100284 -0.45 -0.47 3.70E-02 4.09E-02 yes
ENSG00000230715 -0.42 -0.53 3.75E-02 1.02E-02 yes
ENSG00000228770 -0.59 -0.67 3.75E-02 3.06E-02 no
ENSG00000111790 0.52 0.55 3.76E-02 3.60E-02 yes
ENSG00000147853 0.5 0.68 3.77E-02 4.97E-03 yes
ENSG00000125434 -0.54 -0.51 3.79E-02 2.94E-02 no
ENSG00000106351 -0.43 -0.45 3.79E-02 4.06E-02 yes
ENSG00000134717 0.51 0.51 3.79E-02 4.73E-02 yes
ENSG00000217416 1.06 1.28 3.80E-02 3.47E-02 yes
ENSG00000229679 -0.58 -0.67 3.83E-02 3.10E-02 no
ENSG00000106733 0.46 0.49 3.83E-02 4.62E-02 no
ENSG00000110697 -0.36 -0.43 3.84E-02 2.32E-02 yes
ENSG00000111676 -0.53 -0.6 3.85E-02 3.33E-02 yes
ENSG00000168071 -0.47 -0.64 3.89E-02 9.47E-03 yes
ENSG00000226752 0.67 0.76 3.93E-02 2.46E-02 yes
ENSG00000261691 -0.5 -0.56 3.93E-02 2.78E-02 yes
ENSG00000110881 1.14 1.39 3.95E-02 3.30E-02 yes
ENSG00000125629 0.56 0.7 3.98E-02 1.35E-02 yes
ENSG00000183918 0.74 0.85 3.98E-02 3.13E-02 yes
ENSG00000006025 -0.49 -0.5 3.98E-02 3.95E-02 no
ENSG00000152601 0.63 0.78 4.03E-02 1.65E-02 yes
ENSG00000204469 -0.44 -0.5 4.03E-02 2.50E-02 no
ENSG00000013275 -0.44 -0.49 4.03E-02 2.64E-02 yes
ENSG00000200113 -0.59 -0.69 4.03E-02 3.39E-02 no
ENSG00000162383 -1.04 -1.15 4.03E-02 4.96E-02 no
ENSG00000172766 0.68 0.75 4.05E-02 3.60E-02 yes
ENSG00000090339 -0.49 -0.53 4.08E-02 3.33E-02 no
ENSG00000123700 0.62 0.96 4.11E-02 1.27E-03 no
ENSG00000176406 -0.76 -0.84 4.16E-02 3.05E-02 33 no
ENSG00000239344 -0.76 -0.84 4.16E-02 3.05E-02 33 no
ENSG00000143368 -0.49 -0.54 4.16E-02 4.42E-02 no
ENSG00000255959 -0.47 -0.48 4.17E-02 3.10E-02 no
ENSG00000241360 -0.46 -0.5 4.19E-02 2.63E-02 34 yes
ENSG00000100092 -0.46 -0.5 4.19E-02 2.63E-02 34 yes
ENSG00000207733 -0.55 -0.63 4.20E-02 2.75E-02 no
ENSG00000238766 -0.53 -0.62 4.23E-02 2.99E-02 no
ENSG00000242926 -0.53 -0.62 4.23E-02 2.99E-02 no
ENSG00000205423 0.58 0.66 4.23E-02 4.02E-02 no
ENSG00000205609 -1.47 -1.64 4.23E-02 4.47E-02 no
ENSG00000155158 0.75 1 4.30E-02 1.11E-02 yes
ENSG00000136830 -0.56 -0.65 4.30E-02 3.26E-02 yes
ENSG00000065548 0.58 0.59 4.30E-02 3.68E-02 no
ENSG00000106993 0.65 0.77 4.32E-02 2.40E-02 yes
ENSG00000122545 0.38 0.37 4.35E-02 4.82E-02 no
ENSG00000205413 0.56 0.79 4.37E-02 6.74E-03 yes
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ENSG00000185275 0.54 0.6 4.44E-02 2.76E-02 yes
ENSG00000168476 -0.42 -0.46 4.49E-02 3.49E-02 yes
ENSG00000164509 -0.6 -0.68 4.49E-02 4.35E-02 no
ENSG00000172673 0.59 0.71 4.50E-02 2.43E-02 no
ENSG00000110455 -0.62 -0.72 4.50E-02 2.97E-02 no
ENSG00000155367 -0.56 -0.64 4.51E-02 3.39E-02 35 no
ENSG00000155366 -0.56 -0.64 4.51E-02 3.39E-02 35 no
ENSG00000134242 0.53 0.54 4.51E-02 4.66E-02 no
ENSG00000023191 -0.5 -0.56 4.54E-02 1.87E-02 yes
ENSG00000166145 -0.5 -0.55 4.55E-02 4.29E-02 no
ENSG00000066557 0.66 0.79 4.57E-02 2.42E-02 yes
ENSG00000025156 0.52 0.6 4.57E-02 2.75E-02 yes
ENSG00000165512 0.54 0.72 4.60E-02 9.05E-03 yes
ENSG00000234617 0.39 0.47 4.61E-02 1.69E-02 yes
ENSG00000148180 -0.6 -0.75 4.64E-02 1.75E-02 36 yes
ENSG00000244498 -0.6 -0.75 4.64E-02 1.75E-02 36 yes
ENSG00000166200 0.74 0.88 4.64E-02 2.51E-02 yes
ENSG00000255165 -0.75 -0.84 4.64E-02 3.95E-02 no
ENSG00000136286 -0.48 -0.53 4.65E-02 3.12E-02 yes
ENSG00000108064 0.46 0.51 4.66E-02 2.84E-02 yes
ENSG00000104973 -0.45 -0.58 4.67E-02 1.62E-02 yes
ENSG00000196381 1.22 1.57 4.70E-02 1.20E-02 yes
ENSG00000255301 -1.41 -1.92 4.72E-02 1.78E-02 yes
ENSG00000169855 1.21 2.15 4.73E-02 7.31E-04 yes
ENSG00000235865 -0.65 -0.73 4.73E-02 2.29E-02 37 yes
ENSG00000239593 -0.65 -0.73 4.73E-02 2.29E-02 37 yes
ENSG00000151292 0.71 0.85 4.76E-02 2.26E-02 yes
ENSG00000108798 -0.57 -0.63 4.80E-02 3.85E-02 yes
ENSG00000165169 0.66 0.77 4.82E-02 1.68E-02 yes
ENSG00000095370 -0.43 -0.53 4.86E-02 1.88E-02 yes
ENSG00000105953 -0.46 -0.54 4.88E-02 3.48E-02 yes
ENSG00000240925 -0.45 -0.54 4.90E-02 2.85E-02 no
ENSG00000162398 -1.04 -1.33 4.96E-02 2.38E-02 yes
ENSG00000182010 1.05 1.35 4.97E-02 3.28E-02 yes
ENSG00000128654 0.66 0.66 4.97E-02 3.84E-02 yes
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SMA3 vs. CTRL
Table B.2: Differential expressed genes selected for the “SMA3 versus CTRL” comparison:
Ensembl gene IDs, log-ratios and q-values, groups of overlapping-genes, labelled with the same

group number, and genes confirmed by the totcounts-genes approach.

Gene
Log-ratio q-value

Overlap. group ID Confirmed

maxcounts totcounts maxcounts totcounts

ENSG00000212769 -4.51 -4.65 1.37E-07 2.00E-07 yes
ENSG00000228224 -2.29 -2.38 1.37E-07 2.00E-07 yes
ENSG00000198618 -3.61 -3.6 1.81E-07 5.05E-06 yes
ENSG00000253676 2.67 2.47 1.47E-06 1.80E-04 yes
ENSG00000171116 -8.36 -6.52 5.13E-06 4.75E-04 yes
ENSG00000172062 -1.95 -2.12 1.14E-05 4.69E-05 yes
ENSG00000243742 -1.68 -1.62 1.56E-05 1.80E-04 no
ENSG00000252197 2.01 1.93 3.68E-05 2.28E-04 yes
ENSG00000251948 -1.57 -1.65 1.37E-04 2.10E-05 yes
ENSG00000198566 -8.19 -10.44 2.32E-04 9.97E-08 yes
ENSG00000258988 -4.46 -4.51 2.80E-04 2.40E-03 1 no
ENSG00000172717 -4.46 -4.51 2.80E-04 2.40E-03 1 no
ENSG00000230408 1.06 0.94 3.94E-04 1.05E-02 no
ENSG00000223551 -1.8 -1.8 1.13E-03 6.14E-04 yes
ENSG00000132204 -1.92 -1.93 1.58E-03 6.92E-03 no
ENSG00000201121 1.87 1.85 2.09E-03 2.23E-02 no
ENSG00000233251 1.12 1.07 2.65E-03 1.71E-02 no
ENSG00000149516 1.4 1.41 2.92E-03 5.67E-03 no
ENSG00000169397 1.66 1.65 2.92E-03 2.23E-02 no
ENSG00000260128 -7.78 -9.08 4.20E-03 4.75E-04 no
ENSG00000169131 1.31 1.32 4.20E-03 1.83E-02 no
ENSG00000224827 -1.83 -1.62 5.20E-03 2.23E-02 no
ENSG00000203386 1.3 1.23 6.02E-03 3.20E-02 no
ENSG00000231896 2.13 2.04 8.99E-03 3.45E-02 no
ENSG00000158525 2.53 2.8 9.48E-03 3.45E-02 yes
ENSG00000206650 1 0.92 1.44E-02 4.30E-02 no
ENSG00000168913 -1.37 -1.4 1.51E-02 4.40E-02 no
ENSG00000234040 0.99 0.91 1.61E-02 4.79E-02 no
ENSG00000226944 -1.44 -1.53 1.66E-02 1.71E-02 no
ENSG00000160307 1.83 1.96 1.66E-02 2.27E-02 no
ENSG00000174236 -7.24 -8.72 1.66E-02 2.76E-02 no
ENSG00000166317 -1.31 -1.35 1.67E-02 1.71E-02 no
ENSG00000253518 -1.72 -1.86 1.80E-02 2.97E-02 no
ENSG00000221869 0.96 1.21 1.99E-02 3.24E-03 no
ENSG00000185736 -8.1 -9.01 2.10E-02 2.23E-02 no
ENSG00000253626 -2.07 -2.01 2.53E-02 3.51E-02 no
ENSG00000256515 -8.7 -9.35 2.71E-02 2.88E-02 no
ENSG00000226976 -1.53 -1.64 3.03E-02 1.38E-02 no
ENSG00000197329 0.98 1.17 3.03E-02 2.23E-02 no
ENSG00000240490 -0.98 -1.06 3.92E-02 2.23E-02 no
ENSG00000123091 0.78 0.8 4.54E-02 2.40E-02 no
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SMA2 vs. CTRL
Table B.3: Differential expressed genes selected for the “SMA2 versus CTRL” comparison:
Ensembl gene IDs, log-ratios and q-values, groups of overlapping-genes, labelled with the same

group number, and genes confirmed by the totcounts-genes approach.

Gene
Log-ratio q-value

Overlap. group ID Confirmed

maxcounts totcounts maxcounts totcounts

ENSG00000172062 -1.75 -2.05 9.61E-09 3.36E-08 yes
ENSG00000240869 -1.93 -2.03 3.47E-04 3.81E-05 yes
ENSG00000254208 1.83 1.82 3.47E-04 8.04E-03 yes
ENSG00000232162 2.06 1.91 3.63E-04 3.72E-02 yes
ENSG00000242580 1.74 1.51 4.27E-04 1.42E-02 yes
ENSG00000198566 -7.27 -9.66 5.76E-04 2.45E-08 yes
ENSG00000211654 2.13 2.06 1.34E-03 6.34E-03 yes
ENSG00000228956 1.39 1.65 1.44E-03 5.77E-04 yes
ENSG00000168685 1.16 1.13 1.44E-03 6.34E-03 yes
ENSG00000175147 -1.72 -1.39 2.58E-03 5.77E-04 yes
ENSG00000258486 -1.84 -1.92 2.58E-03 7.19E-04 yes
ENSG00000162368 0.96 0.83 2.58E-03 3.01E-02 yes
ENSG00000222494 1.19 1.11 2.77E-03 3.01E-02 yes
ENSG00000180662 1.28 1.23 3.29E-03 4.04E-02 no
ENSG00000156738 1.41 1.28 3.67E-03 1.40E-02 yes
ENSG00000252488 1.4 1.3 3.88E-03 1.61E-02 yes
ENSG00000228495 1.62 2.06 4.56E-03 5.52E-03 no
ENSG00000173372 -1.69 -1.83 6.71E-03 7.71E-03 yes
ENSG00000091972 1.17 1.37 8.27E-03 6.83E-03 yes
ENSG00000196937 0.97 1.02 9.24E-03 5.52E-03 yes
ENSG00000166770 1.25 1.33 9.24E-03 1.63E-02 no
ENSG00000101460 -0.85 -0.88 9.24E-03 3.01E-02 yes
ENSG00000152219 0.99 0.92 9.24E-03 3.01E-02 yes
ENSG00000133740 0.96 0.92 9.24E-03 4.04E-02 yes
ENSG00000023445 0.88 0.87 1.07E-02 4.28E-02 yes
ENSG00000100342 -1.06 -0.98 1.11E-02 4.76E-02 no
ENSG00000261655 -1.07 -1.21 1.37E-02 8.04E-03 yes
ENSG00000159958 1.09 1.11 1.55E-02 2.31E-02 yes
ENSG00000100721 1.03 0.97 1.78E-02 2.61E-02 yes
ENSG00000259781 3.76 3.94 1.78E-02 4.04E-02 yes
ENSG00000161381 0.9 0.96 1.89E-02 3.01E-02 yes
ENSG00000211623 1.42 1.93 2.20E-02 1.83E-03 yes
ENSG00000159714 -0.84 -0.89 2.51E-02 3.91E-02 no
ENSG00000153064 0.77 0.72 2.59E-02 4.90E-02 yes
ENSG00000183691 1.05 1.41 2.79E-02 5.52E-03 yes
ENSG00000250850 0.85 1 2.79E-02 3.01E-02 yes
ENSG00000258663 -2.67 -3.11 2.79E-02 4.04E-02 yes
ENSG00000253754 1.08 0.97 2.79E-02 4.65E-02 yes
ENSG00000102760 0.68 0.7 3.04E-02 3.92E-02 yes
ENSG00000089335 1.43 1.37 3.04E-02 4.65E-02 yes
ENSG00000104408 1.07 1.01 3.04E-02 4.65E-02 yes
ENSG00000126860 1.32 1.23 3.04E-02 4.65E-02 no
ENSG00000214184 0.85 0.82 3.04E-02 4.65E-02 no
ENSG00000163534 1.13 1.33 3.06E-02 6.83E-03 yes
ENSG00000145779 0.85 0.88 3.24E-02 4.66E-02 no
ENSG00000168081 0.66 0.73 3.35E-02 3.01E-02 yes
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ENSG00000237683 -0.96 -1.16 3.76E-02 1.42E-02 yes
ENSG00000211978 0.95 1.13 3.94E-02 3.01E-02 yes
ENSG00000221420 0.73 0.73 3.94E-02 3.92E-02 1 yes
ENSG00000200418 0.73 0.73 3.94E-02 3.92E-02 1 yes
ENSG00000238942 0.73 0.73 3.94E-02 3.92E-02 1 yes
ENSG00000156976 0.73 0.73 3.94E-02 3.92E-02 1 yes
ENSG00000200320 0.73 0.73 3.94E-02 3.92E-02 1 yes
ENSG00000182853 -1.56 -1.73 3.94E-02 4.91E-02 yes
ENSG00000012223 -2.09 -2.3 3.96E-02 3.55E-02 yes
ENSG00000120088 0.76 0.99 3.97E-02 8.04E-03 2 no
ENSG00000204650 0.76 0.99 3.97E-02 8.04E-03 2 no
ENSG00000251920 0.92 1.37 4.03E-02 6.83E-03 yes
ENSG00000135185 0.75 0.71 4.03E-02 4.65E-02 no
ENSG00000258511 0.92 1.07 4.04E-02 3.76E-02 yes
ENSG00000142875 1.26 1.46 4.12E-02 1.93E-02 yes
ENSG00000238179 -0.84 -1.03 4.12E-02 2.25E-02 yes
ENSG00000228323 -0.85 -0.95 4.12E-02 3.56E-02 no
ENSG00000226937 0.88 1.02 4.42E-02 3.25E-02 yes
ENSG00000153130 1.26 1.58 4.58E-02 1.93E-02 yes
ENSG00000163520 1.13 1.27 4.90E-02 4.04E-02 yes
ENSG00000249310 -2.28 -2.1 4.90E-02 4.65E-02 yes
ENSG00000133962 0.99 1.12 4.99E-02 3.01E-02 3 yes
ENSG00000165929 0.99 1.12 4.99E-02 3.01E-02 3 yes
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SMA2 vs. SMA3
Table B.4: Differential expressed genes selected for the “SMA2 versus SMA3” comparison:
Ensembl gene IDs, log-ratios and q-values, groups of overlapping-genes, labelled with the same

group number, and genes confirmed by the totcounts-genes approach.

Gene
Log-ratio q-value

Overlap. group ID Confirmed

maxcounts totcounts maxcounts totcounts

ENSG00000164821 -2.95 -2.99 3.19E-12 3.17E-12 yes
ENSG00000249310 -4.17 -3.73 8.66E-12 4.70E-10 yes
ENSG00000148346 -3.11 -2.98 2.14E-10 5.03E-10 yes
ENSG00000235508 8.89 8.22 7.50E-10 5.59E-09 yes
ENSG00000211637 2.11 2.11 1.01E-08 1.09E-09 yes
ENSG00000096006 -3 -3.3 2.90E-08 5.59E-09 yes
ENSG00000124469 -2.74 -3.37 2.85E-07 5.03E-10 yes
ENSG00000164047 -2.21 -2.29 2.85E-07 8.36E-08 yes
ENSG00000118113 -3.33 -3.36 2.87E-07 3.35E-06 yes
ENSG00000012223 -3.33 -3.53 3.09E-07 3.10E-08 yes
ENSG00000197149 4.96 4.47 3.60E-07 3.52E-07 yes
ENSG00000256515 9.27 9.94 4.44E-07 2.30E-07 yes
ENSG00000228695 -8.26 -8.32 1.46E-06 1.19E-05 yes
ENSG00000133063 -2.74 -2.94 2.93E-06 8.96E-06 yes
ENSG00000240342 2.72 2.73 4.37E-06 1.29E-05 yes
ENSG00000134827 -1.96 -1.83 6.81E-06 2.83E-04 yes
ENSG00000169397 -2.23 -2.42 8.87E-06 1.29E-05 yes
ENSG00000223350 1.97 2.2 9.55E-05 3.33E-06 yes
ENSG00000101425 -1.88 -1.99 1.04E-04 1.33E-04 yes
ENSG00000197561 -1.97 -2.29 1.15E-04 6.87E-05 yes
ENSG00000211650 2.61 2.45 1.15E-04 1.27E-04 yes
ENSG00000188056 3.96 4.56 1.15E-04 3.34E-04 yes
ENSG00000181126 -4.75 -4.29 1.17E-04 1.07E-03 no
ENSG00000102837 -2.58 -3.07 2.81E-04 6.87E-05 yes
ENSG00000149516 -1.68 -1.7 3.04E-04 3.19E-04 yes
ENSG00000086548 -2.27 -2.89 3.50E-04 2.25E-06 yes
ENSG00000172232 -1.78 -1.92 4.62E-04 4.15E-04 yes
ENSG00000118520 -1.79 -1.99 5.46E-04 1.67E-04 yes
ENSG00000231896 -1.91 -1.9 7.97E-04 9.55E-03 no
ENSG00000250765 -2.67 -2.7 8.04E-04 2.36E-03 yes
ENSG00000216083 -2.68 -2.85 8.04E-04 5.08E-03 1 yes
ENSG00000065618 -2.68 -2.85 8.04E-04 5.08E-03 1 yes
ENSG00000173391 -2.51 -2.6 9.69E-04 6.67E-03 yes
ENSG00000236650 -4.2 -4.64 1.32E-03 1.58E-03 yes
ENSG00000206249 -1.73 -1.72 2.18E-03 1.07E-03 yes
ENSG00000100448 -1.85 -2.08 2.84E-03 4.36E-04 yes
ENSG00000242580 2.49 2.1 2.84E-03 1.13E-03 yes
ENSG00000211598 2.08 2.1 3.03E-03 1.13E-03 yes
ENSG00000211938 2.11 1.99 3.03E-03 4.25E-03 yes
ENSG00000211665 2.07 1.82 3.87E-03 2.62E-02 no
ENSG00000211654 2.41 2.25 5.78E-03 2.30E-02 no
ENSG00000213147 7.53 9.04 7.00E-03 2.62E-04 yes
ENSG00000211663 1.54 1.48 7.33E-03 1.29E-02 yes
ENSG00000170801 -2.82 -3.3 8.49E-03 3.99E-03 yes
ENSG00000253497 3.68 3.54 1.18E-02 3.32E-02 no
ENSG00000218749 -1.18 -1.22 1.21E-02 1.55E-02 no
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ENSG00000104918 -1.46 -1.4 1.36E-02 3.29E-02 yes
ENSG00000243166 -1.16 -1.2 1.69E-02 2.18E-02 no
ENSG00000196415 -1.82 -1.87 1.84E-02 2.30E-02 yes
ENSG00000239862 1.68 1.85 2.42E-02 4.65E-03 yes
ENSG00000231475 1.37 1.51 2.79E-02 1.11E-02 no
ENSG00000255641 1.58 1.57 2.94E-02 3.49E-02 2 yes
ENSG00000205810 1.58 1.57 2.94E-02 3.49E-02 2 yes
ENSG00000205809 1.58 1.57 2.94E-02 3.49E-02 2 yes
ENSG00000134545 1.58 1.57 2.94E-02 3.49E-02 2 yes
ENSG00000212579 -1.36 -1.39 3.33E-02 4.25E-02 no
ENSG00000079393 -2.73 -3.13 3.40E-02 3.50E-02 yes
ENSG00000253239 1.8 1.96 3.65E-02 1.16E-02 yes
ENSG00000244575 1.12 1.13 4.30E-02 3.97E-02 no
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B.2 Ingenuity Pathway Analysis of differentially expressed

genes

SMA vs. CTRL
Table B.5: Features of the genes differentially expressed in “SMA vs CTRL” comparison considered
for network analysis: Ensemble gene ID, log-ratio and q-value. For genes annotated in the IPA

database, gene symbol and Entrez name are also reported.

Gene
log-
ratio

q-value Symbol Entrez Name

ENSG00000008311 -0.676 2.94E-02 AASS aminoadipate-semialdehyde synthase
ENSG00000135776 0.691 1.28E-02 ABCB10 ATP-binding cassette, sub-family B (MDRTAP), member 10
ENSG00000164163 0.55 3.29E-02 ABCE1 ATP-binding cassette, sub-family E (OABP), member 1
ENSG00000108798 -0.573 4.80E-02 ABI3 ABI family, member 3
ENSG00000099204 0.723 2.87E-02 ABLIM1 actin binding LIM protein 1
ENSG00000110455 -0.615 4.50E-02 ACCS 1-aminocyclopropane-1-carboxylate synthase homolog (Arabidopsis)
ENSG00000068366 0.569 2.68E-02 ACSL4 acyl-CoA synthetase long-chain family member 4
ENSG00000107796 -0.738 2.85E-02 ACTA2 actin, alpha 2, smooth muscle, aorta
ENSG00000130402 -0.586 3.34E-02 ACTN4 actinin, alpha 4
ENSG00000143382 -0.559 2.87E-02 ADAMTSL4 ADAMTS-like 4
ENSG00000185761 -0.926 2.54E-02 ADAMTSL5 ADAMTS-like 5
ENSG00000185736 -3.738 3.46E-02 ADARB2 adenosine deaminase, RNA-specific, B2 (non-functional)
ENSG00000148700 0.762 1.02E-03 ADD3 adducin 3 (gamma)
ENSG00000106351 -0.433 3.79E-02 AGFG2 ArfGAP with FG repeats 2
ENSG00000186063 0.552 9.99E-03 AIDA axin interactor, dorsalization associated
ENSG00000147853 0.497 3.77E-02 AK3 adenylate kinase 3
ENSG00000198796 -1.61 9.15E-03 ALPK2 alpha-kinase 2
ENSG00000164331 0.664 1.61E-02 ANKRA2 ankyrin repeat, family A (RFXANK-like), 2
ENSG00000168876 0.773 2.87E-02 ANKRD49 ankyrin repeat domain 49
ENSG00000184730 -0.616 2.47E-02 APOBR apolipoprotein B receptor
ENSG00000100342 -0.644 1.93E-02 APOL1 apolipoprotein L, 1
ENSG00000134884 0.91 1.79E-03 ARGLU1 arginine and glutamate rich 1
ENSG00000165322 0.774 2.87E-02 ARHGAP12 Rho GTPase activating protein 12
ENSG00000232686 1.057 8.08E-04 ARID4B-IT1 ARID4B intronic transcript 1
ENSG00000152219 0.706 6.60E-03 ARL14EP ADP-ribosylation factor-like 14 effector protein
ENSG00000113369 0.803 3.40E-03 ARRDC3 arrestin domain containing 3
ENSG00000110881 1.138 3.95E-02 ASIC1 acid-sensing (proton-gated) ion channel 1
ENSG00000138138 0.801 9.47E-03 ATAD1 ATPase family, AAA domain containing 1
ENSG00000111676 -0.528 3.85E-02 ATN1 atrophin 1
ENSG00000058063 0.539 3.60E-02 ATP11B ATPase, class VI, type 11B

ENSG00000180389 -0.924 1.61E-02 ATP5EP2
ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit pseu-
dogene 2

ENSG00000124406 0.871 3.29E-02 ATP8A1 ATPase, aminophospholipid transporter (APLT), class I, type 8A, member 1
ENSG00000121753 -0.929 3.57E-02 BAI2 brain-specific angiogenesis inhibitor 2
ENSG00000123685 -0.845 8.84E-03 BATF3 basic leucine zipper transcription factor, ATF-like 3
ENSG00000105829 0.572 3.51E-02 BET1 Bet1 golgi vesicular membrane trafficking protein
ENSG00000102409 0.504 2.99E-02 BEX4 brain expressed, X-linked 4
ENSG00000110330 0.707 1.23E-02 BIRC2 baculoviral IAP repeat containing 2
ENSG00000023445 0.659 3.87E-03 BIRC3 baculoviral IAP repeat containing 3
ENSG00000140299 0.519 7.79E-03 BNIP2 BCL2adenovirus E1B 19kDa interacting protein 2
ENSG00000176720 -1.539 2.31E-02 BOK BCL2-related ovarian killer
ENSG00000134717 0.506 3.79E-02 BTF3L4 basic transcription factor 3-like 4
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ENSG00000186265 0.706 3.29E-02 BTLA B and T lymphocyte associated
ENSG00000214688 -0.489 2.85E-02 C10orf105 chromosome 10 open reading frame 105
ENSG00000110696 0.657 2.19E-03 C11orf58 chromosome 11 open reading frame 58
ENSG00000166323 0.815 3.48E-02 C11orf65 chromosome 11 open reading frame 65
ENSG00000151135 1.082 5.40E-04 C12orf23 chromosome 12 open reading frame 23
ENSG00000133641 0.808 2.48E-02 C12orf29 chromosome 12 open reading frame 29
ENSG00000134548 1.091 1.53E-02 C12orf39 chromosome 12 open reading frame 39
ENSG00000162398 -1.04 4.96E-02 C1orf177 chromosome 1 open reading frame 177
ENSG00000173372 -1.028 1.50E-02 C1QA complement component 1, q subcomponent, A chain
ENSG00000213204 0.663 2.99E-02 C6orf165 chromosome 6 open reading frame 165
ENSG00000147894 0.808 5.30E-03 C9orf72 chromosome 9 open reading frame 72
ENSG00000152495 0.592 2.44E-02 CAMK4 calciumcalmodulin-dependent protein kinase IV
ENSG00000116489 0.722 2.45E-03 CAPZA1 capping protein (actin filament) muscle Z-line, alpha 1
ENSG00000198898 0.694 1.22E-02 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2
ENSG00000164305 0.864 3.36E-03 CASP3 caspase 3, apoptosis-related cysteine peptidase
ENSG00000133962 0.931 2.18E-03 CATSPERB catsper channel auxiliary subunit beta
ENSG00000122565 0.602 1.53E-02 CBX3 chromobox homolog 3
ENSG00000132024 -0.539 1.77E-02 CC2D1A coiled-coil and C2 domain containing 1A
ENSG00000168071 -0.468 3.89E-02 CCDC88B coiled-coil domain containing 88B
ENSG00000256515 -3.916 3.48E-02 CCL3L1/CCL3L3 chemokine (C-C motif) ligand 3-like 1
ENSG00000112237 0.767 5.59E-03 CCNC cyclin C
ENSG00000113328 0.613 3.59E-03 CCNG1 cyclin G1
ENSG00000138764 0.636 1.54E-02 CCNG2 cyclin G2
ENSG00000163660 0.509 2.26E-02 CCNL1 cyclin L1
ENSG00000135535 0.665 6.51E-04 CD164 CD164 molecule, sialomucin
ENSG00000091972 0.799 1.50E-02 CD200 CD200 molecule
ENSG00000198087 0.824 3.36E-02 CD2AP CD2-associated protein
ENSG00000160654 0.7 1.28E-02 CD3G CD3g molecule, gamma (CD3-TCR complex)
ENSG00000117335 0.716 2.45E-03 CD46 CD46 molecule, complement regulatory protein
ENSG00000110848 0.855 3.21E-02 CD69 CD69 molecule
ENSG00000106993 0.652 4.32E-02 CDC37L1 cell division cycle 37-like 1
ENSG00000129910 -0.938 3.28E-02 CDH15 cadherin 15, type 1, M-cadherin (myotubule)
ENSG00000059758 0.639 3.50E-02 CDK17 cyclin-dependent kinase 17
ENSG00000129757 -0.877 1.53E-02 CDKN1C cyclin-dependent kinase inhibitor 1C (p57, Kip2)
ENSG00000178863 -0.73 1.36E-02 CEBPA-AS1 CEBPA antisense RNA 1 (head to head)
ENSG00000221869 0.61 1.00E-02 CEBPD CCAATenhancer binding protein (CEBP), delta
ENSG00000123219 1.815 3.16E-03 CENPK centromere protein K
ENSG00000134255 0.492 3.37E-02 CEPT1 cholineethanolamine phosphotransferase 1
ENSG00000133019 1.211 3.58E-03 CHRM3 cholinergic receptor, muscarinic 3
ENSG00000233355 0.847 1.23E-02 CHRM3-AS2 CHRM3 antisense RNA 2
ENSG00000166165 -0.767 2.00E-02 CKB creatine kinase, brain
ENSG00000132514 -0.607 1.85E-02 CLEC10A C-type lectin domain family 10, member A
ENSG00000013441 0.833 2.42E-02 CLK1 CDC-like kinase 1
ENSG00000113240 0.925 5.59E-03 CLK4 CDC-like kinase 4
ENSG00000074201 0.529 1.18E-02 CLNS1A chloride channel, nucleotide-sensitive, 1A
ENSG00000162368 0.884 1.34E-05 CMPK1 cytidine monophosphate (UMP-CMP) kinase 1, cytosolic
ENSG00000205423 0.58 4.23E-02 CNEP1R1 CTD nuclear envelope phosphatase 1 regulatory subunit 1
ENSG00000100528 0.636 8.40E-04 CNIH cornichon homolog (Drosophila)
ENSG00000198791 0.516 6.67E-03 CNOT7 CCR4-NOT transcription complex, subunit 7
ENSG00000162852 0.65 3.29E-02 CNST consortin, connexin sorting protein
ENSG00000198756 -0.991 3.58E-03 COLGALT2 collagen beta(1-O)galactosyltransferase 2
ENSG00000166200 0.743 4.64E-02 COPS2 COP9 signalosome subunit 2

ENSG00000103426 -0.389 2.90E-02
CORO7/CORO7-
PAM16

coronin 7

Continued on next page



B.2 Ingenuity Pathway Analysis of differentially expressed genes 163

Table B.5 – Continued from previous page

Gene
Log-
ratio

q-value Symbol Entrez Name

ENSG00000262246 -0.389 2.90E-02
CORO7/CORO7-
PAM16

coronin 7

ENSG00000158525 1.788 5.28E-04 CPA5 carboxypeptidase A5
ENSG00000111269 0.704 2.49E-03 CREBL2 cAMP responsive element binding protein-like 2
ENSG00000182809 -0.629 2.92E-02 CRIP2 cysteine-rich protein 2
ENSG00000179979 -0.725 2.16E-03 CRIPAK cysteine-rich PAK1 inhibitor
ENSG00000176390 0.446 2.01E-02 CRLF3 cytokine receptor-like factor 3
ENSG00000109943 0.649 3.38E-02 CRTAM cytotoxic and regulatory T cell molecule
ENSG00000182578 -0.666 3.50E-02 CSF1R colony stimulating factor 1 receptor
ENSG00000151292 0.709 4.76E-02 CSNK1G3 casein kinase 1, gamma 3
ENSG00000008283 -0.566 2.84E-02 CYB561 cytochrome b561
ENSG00000115866 0.497 1.18E-02 DARS aspartyl-tRNA synthetase
ENSG00000156136 0.699 9.15E-03 DCK deoxycytidine kinase
ENSG00000043093 0.546 1.32E-02 DCUN1D1 DCN1, defective in cullin neddylation 1, domain containing 1
ENSG00000165359 0.653 1.59E-02 DDX26B DEADH (Asp-Glu-Ala-AspHis) box polypeptide 26B
ENSG00000160570 -0.423 3.41E-02 DEDD2 death effector domain containing 2
ENSG00000104936 -0.517 2.67E-02 DMPK dystrophia myotonica-protein kinase
ENSG00000141096 -0.482 3.52E-02 DPEP3 dipeptidase 3
ENSG00000177990 1.776 1.61E-02 DPY19L2 dpy-19-like 2 (C. elegans)
ENSG00000134765 1.75 6.35E-03 DSC1 desmocollin 1
ENSG00000165169 0.66 4.82E-02 DYNLT3 dynein, light chain, Tctex-type 3
ENSG00000133740 0.76 5.17E-03 E2F5 E2F transcription factor 5, p130-binding
ENSG00000255423 0.665 2.66E-02 EBLN2 endogenous Bornavirus-like nucleoprotein 2
ENSG00000123179 0.734 5.28E-04 EBPL emopamil binding protein-like
ENSG00000255302 0.471 3.44E-02 EID1 EP300 interacting inhibitor of differentiation 1
ENSG00000225037 0.813 1.13E-02 EIF1AX-AS1 EIF1AX antisense RNA 1
ENSG00000144895 0.578 1.10E-02 EIF2A eukaryotic translation initiation factor 2A, 65kDa
ENSG00000205609 -1.475 4.23E-02 EIF3C/EIF3CL eukaryotic translation initiation factor 3, subunit C
ENSG00000104408 0.812 7.38E-03 EIF3E eukaryotic translation initiation factor 3, subunit E
ENSG00000156976 0.575 9.15E-03 EIF4A2 eukaryotic translation initiation factor 4A2
ENSG00000151247 0.657 5.61E-03 EIF4E eukaryotic translation initiation factor 4E
ENSG00000163412 0.546 1.06E-02 EIF4E3 eukaryotic translation initiation factor 4E family member 3
ENSG00000253626 -1.44 2.53E-03 EIF5AL1 eukaryotic translation initiation factor 5A-like 1
ENSG00000110675 1.039 1.19E-03 ELMOD1 ELMOCED-12 domain containing 1
ENSG00000012660 0.728 6.02E-04 ELOVL5 ELOVL fatty acid elongase 5
ENSG00000170571 0.679 3.58E-03 EMB embigin
ENSG00000106991 -0.622 2.78E-02 ENG endoglin
ENSG00000168913 -0.751 1.29E-02 ENHO energy homeostasis associated
ENSG00000224032 0.484 3.53E-02 EPB41L4A-AS1 EPB41L4A antisense RNA 1
ENSG00000112851 0.639 3.31E-02 ERBB2IP erbb2 interacting protein
ENSG00000134954 0.448 1.57E-02 ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)
ENSG00000126860 1.028 4.19E-03 EVI2A ecotropic viral integration site 2A
ENSG00000070367 0.77 1.05E-02 EXOC5 exocyst complex component 5
ENSG00000136830 -0.557 4.30E-02 FAM129B family with sequence similarity 12,9 member B
ENSG00000154153 0.771 2.28E-02 FAM134B family with sequence similarity 134, member B
ENSG00000163322 0.716 1.77E-02 FAM175A family with sequence similarity 175, member A
ENSG00000230567 -5.581 2.01E-02 FAM203A/FAM203B family with sequence similarity 203, member A
ENSG00000170215 -1.505 5.61E-03 FAM27B family with sequence similarity 27, member B
ENSG00000196937 0.833 1.21E-03 FAM3C family with sequence similarity 3, member C
ENSG00000172717 -2.49 5.28E-04 FAM71D family with sequence similarity 71, member D
ENSG00000077458 0.788 2.77E-02 FAM76B family with sequence similarity 76, member B
ENSG00000005812 0.481 3.30E-02 FBXL3 F-box and leucine-rich repeat protein 3
ENSG00000110429 0.569 2.90E-02 FBXO3 F-box protein 3
ENSG00000119616 0.607 7.29E-03 FCF1 FCF1 rRNA-processing protein
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ENSG00000163534 0.791 2.10E-02 FCRL1 Fc receptor-like 1
ENSG00000111790 0.523 3.76E-02 FGFR1OP2 FGFR1 oncogene partner 2
ENSG00000135723 -0.468 1.49E-02 FHOD1 formin homology 2 domain containing 1
ENSG00000248265 -1.092 9.66E-03 FLJ12825 uncharacterized LOC440101
ENSG00000196924 -0.626 3.05E-02 FLNA filamin A, alpha

ENSG00000141429 0.492 3.37E-02 GALNT1
UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-
acetylgalactosaminyltransferase 1 (GalNAc-T1)

ENSG00000158555 -0.714 6.64E-03 GDPD5 glycerophosphodiester phosphodiesterase domain containing 5
ENSG00000100031 -0.457 2.58E-02 GGT1 gamma-glutamyltransferase 1
ENSG00000106560 0.708 1.26E-02 GIMAP2 GTPase, IMAP family member 2
ENSG00000124767 0.497 8.23E-03 GLO1 glyoxalase I
ENSG00000115419 0.626 1.47E-02 GLS glutaminase
ENSG00000087338 0.59 2.18E-02 GMCL1 germ cell-less, spermatogenesis associated 1
ENSG00000197045 1.096 7.46E-03 GMFB glia maturation factor, beta
ENSG00000127920 0.695 3.18E-03 GNG11 guanine nucleotide binding protein (G protein), gamma 11
ENSG00000130119 -0.766 1.33E-02 GNL3L guanine nucleotide binding protein-like 3 (nucleolar)-like
ENSG00000152133 0.734 3.36E-02 GPATCH11 G patch domain containing 11
ENSG00000125772 0.658 1.95E-02 GPCPD1 glycerophosphocholine phosphodiesterase GDE1 homolog (S. cerevisiae)
ENSG00000125245 0.483 6.47E-03 GPR18 G protein-coupled receptor 18
ENSG00000204882 -0.952 1.35E-02 GPR20 G protein-coupled receptor 20
ENSG00000140030 0.596 1.89E-02 GPR65 G protein-coupled receptor 65
ENSG00000119714 -0.501 3.54E-02 GPR68 G protein-coupled receptor 68
ENSG00000148180 -0.599 4.64E-02 GSN gelsolin
ENSG00000235865 -0.648 4.73E-02 GSN-AS1 GSN antisense RNA 1
ENSG00000111358 0.646 3.70E-02 GTF2H3 general transcription factor IIH, polypeptide 3, 34kDa
ENSG00000172986 0.689 1.52E-02 GXYLT2 glucoside xylosyltransferase 2
ENSG00000130600 -2.116 1.18E-03 H19 H1,9 imprinted maternally expressed transcript
ENSG00000205581 0.553 2.88E-03 HMGN1 high mobility group nucleosome binding domain 1
ENSG00000100292 -0.581 3.25E-02 HMOX1 heme oxygenase (decycling) 1
ENSG00000025156 0.523 4.57E-02 HSF2 heat shock transcription factor 2
ENSG00000171116 -5.263 2.60E-08 HSFX1/HSFX2 heat shock transcription factor family, X linked 1
ENSG00000090339 -0.494 4.08E-02 ICAM1 intercellular adhesion molecule 1
ENSG00000105371 -0.647 2.73E-02 ICAM4 intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)
ENSG00000163600 0.814 1.54E-02 ICOS inducible T-cell co-stimulator
ENSG00000067064 0.711 1.40E-02 IDI1 isopentenyl-diphosphate delta isomerase 1
ENSG00000162594 1.224 2.98E-03 IL23R interleukin 23 receptor
ENSG00000164509 -0.599 4.49E-02 IL31RA interleukin 31 receptor A
ENSG00000134352 1.054 1.33E-02 IL6ST interleukin 6 signal transducer (gp130, oncostatin M receptor)
ENSG00000168685 0.958 6.11E-05 IL7R interleukin 7 receptor
ENSG00000125629 0.559 3.98E-02 INSIG2 insulin induced gene 2
ENSG00000091409 0.698 1.32E-02 ITGA6 integrin, alpha 6
ENSG00000113263 0.515 1.92E-02 ITK IL2-inducible T-cell kinase
ENSG00000176076 0.569 2.68E-02 KCNE1L KCNE1-like
ENSG00000123700 0.617 4.11E-02 KCNJ2 potassium inwardly-rectifying channel, subfamily J, member 2
ENSG00000173338 -0.825 3.50E-03 KCNK7 potassium channel, subfamily K, member 7
ENSG00000136051 0.653 3.70E-02 KIAA1033 KIAA1033
ENSG00000170759 0.595 3.64E-02 KIF5B kinesin family member 5B
ENSG00000257702 -0.66 3.66E-02 LBX2-AS1 LBX2 antisense RNA 1
ENSG00000214402 -1.026 3.32E-02 LCNL1 lipocalin-like 1
ENSG00000138795 0.653 7.16E-03 LEF1 lymphoid enhancer-binding factor 1
ENSG00000232021 0.803 3.68E-02 LEF1-AS1 LEF1 antisense RNA 1
ENSG00000174106 0.763 1.61E-02 LEMD3 LEM domain containing 3

ENSG00000105609 -0.57 1.80E-02 LILRB5
leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM do-
mains), member 5
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ENSG00000149656 0.766 1.26E-02 LINC00266-1 long intergenic non-protein coding RNA 266-1
ENSG00000132204 -1.172 9.68E-04 LINC00470 long intergenic non-protein coding RNA 470
ENSG00000160789 -1.053 2.01E-03 LMNA lamin AC
ENSG00000233251 0.799 2.55E-04 LOC100129434 uncharacterized LOC100129434
ENSG00000258511 1.019 6.51E-04 LOC100996339 uncharacterized LOC100996339
ENSG00000225996 -0.559 2.87E-02 LOC100996516 uncharacterized LOC100996516
ENSG00000256039 0.844 5.80E-03 LOC101060038 uncharacterized LOC101060038
ENSG00000233392 -0.855 1.68E-02 LOC200772 uncharacterized LOC200772
ENSG00000215458 -0.608 2.31E-02 LOC284837 uncharacterized LOC284837
ENSG00000243440 0.492 3.66E-02 LOC388813 uncharacterized protein ENSP00000383407-like
ENSG00000214194 0.958 2.28E-02 LOC401397 uncharacterized LOC401397
ENSG00000232022 -0.817 1.30E-02 LOC729041 fatty acid amide hydrolase pseudogene
ENSG00000156564 -1.426 2.18E-02 LRFN2 leucine rich repeat and fibronectin type III domain containing 2
ENSG00000066557 0.663 4.57E-02 LRRC40 leucine rich repeat containing 40
ENSG00000253102 -0.533 1.64E-02 LRRC59 leucine rich repeat containing 59
ENSG00000090006 -0.587 2.90E-02 LTBP4 latent transforming growth factor beta binding protein 4
ENSG00000120992 0.618 1.25E-02 LYPLA1 lysophospholipase I
ENSG00000164109 0.803 1.19E-02 MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast)
ENSG00000102158 0.555 2.17E-02 MAGT1 magnesium transporter 1
ENSG00000172469 1.177 1.61E-02 MANEA mannosidase, endo-alpha
ENSG00000130479 -0.57 2.47E-02 MAP1S microtubule-associated protein 1S
ENSG00000142733 -0.727 2.66E-02 MAP3K6 mitogen-activated protein kinase kinase kinase 6
ENSG00000136536 0.564 8.23E-03 7-Mar membrane-associated ring finger (C3HC4) 7, E3 ubiquitin protein ligase
ENSG00000015479 0.778 1.36E-03 MATR3 matrin 3
ENSG00000152601 0.627 4.03E-02 MBNL1 muscleblind-like splicing regulator 1
ENSG00000099917 -0.45 1.68E-02 MED15 mediator complex subunit 15
ENSG00000104973 -0.453 4.67E-02 MED25 mediator complex subunit 25
ENSG00000214548 -1.767 6.27E-03 MEG3 maternally expressed 3 (non-protein coding)
ENSG00000109736 -0.468 3.37E-02 MFSD10 major facilitator superfamily domain containing 10
ENSG00000198160 0.916 1.24E-03 MIER1 mesoderm induction early response 1 homolog (Xenopus laevis)
ENSG00000155545 1.222 3.38E-02 MIER3 mesoderm induction early response 1, family member 3
ENSG00000221065 1.028 1.26E-02 mir-1233 microRNA 1233-1
ENSG00000207567 -0.797 6.67E-03 mir-142 microRNA 142
ENSG00000207721 0.798 1.49E-02 mir-186 microRNA 186
ENSG00000221214 0.69 7.29E-03 mir-548 microRNA 548c
ENSG00000207733 -0.548 4.20E-02 mir-637 microRNA 637
ENSG00000207972 -0.473 3.51E-02 mir-638 microRNA 638
ENSG00000211502 -2.116 1.18E-03 mir-675 microRNA 675
ENSG00000211589 0.842 1.67E-03 mir-744 microRNA 744
ENSG00000211591 0.575 1.49E-02 mir-762 microRNA 762
ENSG00000215973 1.037 7.58E-03 mir-933 microRNA 933
ENSG00000260978 3.78 1.89E-02 MKRN3-AS1 MKRN3 antisense RNA 1
ENSG00000108960 0.692 1.64E-02 MMD monocyte to macrophage differentiation-associated
ENSG00000173542 0.699 9.15E-03 MOB1B MOB kinase activator 1B
ENSG00000257802 0.797 2.25E-03 MRS2P2 MRS2 pseudogene 2
ENSG00000156738 1.017 1.36E-03 MS4A1 membrane-spanning 4-domains, subfamily A, member 1

ENSG00000149516 0.685 2.78E-02 MS4A3
membrane-spanning 4-domains, subfamily A, member 3 (hematopoietic cell-
specific)

ENSG00000214787 -0.569 3.29E-02 MS4A4E membrane-spanning 4-domains, subfamily A, member 4E
ENSG00000095002 0.571 2.54E-02 MSH2 mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
ENSG00000174579 0.603 1.08E-02 MSL2 male-specific lethal 2 homolog (Drosophila)
ENSG00000210140 0.957 5.38E-05 MT-TC tRNA
ENSG00000210144 0.957 5.38E-05 MT-TY tRNA
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ENSG00000128654 0.656 4.97E-02 MTX2 metaxin 2
ENSG00000179820 -0.55 2.47E-02 MYADM myeloid-associated differentiation marker
ENSG00000085274 0.674 2.74E-02 MYNN myoneurin
ENSG00000136286 -0.485 4.65E-02 MYO1G myosin IG
ENSG00000172766 0.677 4.05E-02 NAA16 N(alpha)-acetyltransferase 16, NatA auxiliary subunit
ENSG00000228224 -1.339 4.05E-07 NACAP1 nascent-polypeptide-associated complex alpha polypeptide pseudogene 1
ENSG00000187109 0.544 1.18E-02 NAP1L1 nucleosome assembly protein 1-like 1
ENSG00000196498 -0.592 8.40E-03 NCOR2 nuclear receptor corepressor 2
ENSG00000151414 1.022 1.18E-03 NEK7 NIMA-related kinase 7
ENSG00000184613 0.531 2.01E-02 NELL2 NEL-like 2 (chicken)
ENSG00000162711 -0.612 2.12E-02 NLRP3 NLR family, pyrin domain containing 3
ENSG00000169251 0.764 1.81E-02 NMD3 NMD3 homolog (S. cerevisiae)
ENSG00000106733 0.464 3.83E-02 NMRK1 nicotinamide riboside kinase 1
ENSG00000183691 0.842 5.59E-03 NOG noggin
ENSG00000123358 -0.937 1.46E-02 NR4A1 nuclear receptor subfamily 4, group A, member 1
ENSG00000091129 1.503 1.37E-02 NRCAM neuronal cell adhesion molecule
ENSG00000164346 0.652 1.89E-02 NSA2 NSA2 ribosome biogenesis homolog (S. cerevisiae)
ENSG00000135318 0.761 1.37E-02 NT5E 5’-nucleotidase, ecto (CD73)
ENSG00000173598 0.601 2.44E-03 NUDT4 nudix (nucleoside diphosphate linked moiety X)-type motif 4
ENSG00000177144 1.081 1.39E-02 NUDT4P1 nudix (nucleoside diphosphate linked moiety X)-type motif 4 pseudogene 1
ENSG00000153989 0.5 3.46E-02 NUS1 nuclear undecaprenyl pyrophosphate synthase 1 homolog (S. cerevisiae)
ENSG00000101888 0.827 3.50E-02 NXT2 nuclear transport factor 2-like export factor 2
ENSG00000105953 -0.463 4.88E-02 OGDH oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide)
ENSG00000147162 0.751 6.67E-03 OGT O-linked N-acetylglucosamine (GlcNAc) transferase
ENSG00000221970 1.2 6.92E-05 OR2A1/OR2A42 olfactory receptor, family 2, subfamily A, member 1
ENSG00000170356 0.853 8.54E-03 OR2A20P olfactory receptor, family 2, subfamily A, member 20 pseudogene
ENSG00000128699 0.556 1.89E-02 ORMDL1 ORM1-like 1 (S. cerevisiae)
ENSG00000006025 -0.486 3.98E-02 OSBPL7 oxysterol binding protein-like 7
ENSG00000091039 0.767 2.67E-02 OSBPL8 oxysterol binding protein-like 8
ENSG00000164823 0.71 1.88E-03 OSGIN2 oxidative stress induced growth inhibitor family member 2
ENSG00000145623 0.899 1.73E-02 OSMR oncostatin M receptor
ENSG00000198856 0.538 1.49E-02 OSTC oligosaccharyltransferase complex subunit (non-catalytic)
ENSG00000089723 -0.854 2.99E-02 OTUB2 OTU domain, ubiquitin aldehyde binding 2
ENSG00000155100 0.927 2.05E-02 OTUD6B OTU domain containing 6B
ENSG00000154814 0.647 8.74E-03 OXNAD1 oxidoreductase NAD-binding domain containing 1
ENSG00000164830 0.807 1.08E-02 OXR1 oxidation resistance 1
ENSG00000254615 0.807 1.08E-02 OXR1 oxidation resistance 1
ENSG00000078589 0.525 3.33E-02 P2RY10 purinergic receptor P2Y, G-protein coupled, 10
ENSG00000217930 -0.389 2.90E-02 PAM16 presequence translocase-associated motor 16 homolog (S. cerevisiae)
ENSG00000238197 0.782 1.29E-02 PAXBP1-AS1 PAXBP1 antisense RNA 1
ENSG00000177839 -0.723 1.74E-02 PCDHB9 protocadherin beta 9
ENSG00000168300 0.586 2.77E-02 PCMTD1 protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 1
ENSG00000203880 0.766 1.26E-02 PCMTD2 protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2
ENSG00000071994 0.436 1.28E-02 PDCD2 programmed cell death 2
ENSG00000152270 0.626 2.11E-02 PDE3B phosphodiesterase 3B, cGMP-inhibited
ENSG00000205268 0.683 2.18E-03 PDE7A phosphodiesterase 7A
ENSG00000152256 0.619 2.28E-02 PDK1 pyruvate dehydrogenase kinase, isozyme 1
ENSG00000241360 -0.463 4.19E-02 PDXP pyridoxal (pyridoxine, vitamin B6) phosphatase
ENSG00000197329 0.707 2.85E-03 PELI1 pellino E3 ubiquitin protein ligase 1
ENSG00000154330 -1.455 1.09E-02 PGM5 phosphoglucomutase 5
ENSG00000101856 0.487 1.45E-02 PGRMC1 progesterone receptor membrane component 1
ENSG00000165195 0.964 2.41E-02 PIGA phosphatidylinositol glycan anchor biosynthesis, class A
ENSG00000142892 0.758 1.23E-02 PIGK phosphatidylinositol glycan anchor biosynthesis, class K
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ENSG00000100100 0.456 2.55E-02 PIK3IP1 phosphoinositide-3-kinase interacting protein 1
ENSG00000110697 -0.359 3.84E-02 PITPNM1 phosphatidylinositol transfer protein, membrane-associated 1
ENSG00000149782 -0.638 1.54E-02 PLCB3 phospholipase C, beta 3 (phosphatidylinositol-specific)

ENSG00000116095 0.497 3.63E-02 PLEKHA3
pleckstrin homology domain containing, family A (phosphoinositide binding spe-
cific) member 3

ENSG00000175895 0.636 1.51E-02 PLEKHF2
pleckstrin homology domain containing, family F (with FYVE domain) member
2

ENSG00000008323 -1.118 1.46E-02 PLEKHG6
pleckstrin homology domain containing, family G (with RhoGef domain) mem-
ber 6

ENSG00000161381 0.774 2.16E-03 PLXDC1 plexin domain containing 1
ENSG00000196576 -0.624 3.03E-02 PLXNB2 plexin B2
ENSG00000135241 0.673 1.48E-02 PNPLA8 patatin-like phospholipase domain containing 8
ENSG00000189266 0.597 6.44E-03 PNRC2 proline-rich nuclear receptor coactivator 2
ENSG00000181222 -0.49 3.29E-02 POLR2A polymerase (RNA) II (DNA directed) polypeptide A, 220kDa
ENSG00000138032 0.64 1.16E-02 PPM1B protein phosphatase, Mg2+Mn2+ dependent, 1B
ENSG00000155367 -0.56 4.51E-02 PPM1J protein phosphatase, Mg2+Mn2+ dependent, 1J
ENSG00000213639 0.733 2.31E-03 PPP1CB protein phosphatase 1, catalytic subunit, beta isozyme
ENSG00000163605 0.689 1.52E-02 PPP4R2 protein phosphatase 4, regulatory subunit 2
ENSG00000133246 -0.593 3.66E-02 PRAM1 PML-RARA regulated adaptor molecule 1
ENSG00000138078 0.68 1.50E-02 PREPL prolyl endopeptidase-like
ENSG00000142875 1.257 8.40E-04 PRKACB protein kinase, cAMP-dependent, catalytic, beta
ENSG00000005249 0.937 5.17E-03 PRKAR2B protein kinase, cAMP-dependent, regulatory, type II, beta

ENSG00000137492 0.778 5.80E-03 PRKRIR
protein-kinase, interferon-inducible double stranded RNA dependent inhibitor,
repressor of (P58 repressor)

ENSG00000185246 0.725 2.81E-02 PRPF39 PRP39 pre-mRNA processing factor 39 homolog (S. cerevisiae)
ENSG00000204469 -0.444 4.03E-02 PRRC2A proline-rich coiled-coil 2A
ENSG00000125637 -0.45 2.54E-02 PSD4 pleckstrin and Sec7 domain containing 4
ENSG00000164985 0.53 1.16E-02 PSIP1 PC4 and SFRS1 interacting protein 1
ENSG00000013275 -0.436 4.03E-02 PSMC4 proteasome (prosome, macropain) 26S subunit, ATPase, 4
ENSG00000226752 0.669 3.93E-02 PSMD5-AS1 PSMD5 antisense RNA 1 (head to head)
ENSG00000107317 -1.026 3.32E-02 PTGDS prostaglandin D2 synthase 21kDa (brain)
ENSG00000112655 1.041 2.23E-03 PTK7 protein tyrosine kinase 7
ENSG00000134242 0.53 4.51E-02 PTPN22 protein tyrosine phosphatase, non-receptor type 22 (lymphoid)
ENSG00000206418 0.554 3.50E-02 RAB12 RAB12, member RAS oncogene family
ENSG00000109113 -0.529 1.89E-02 RAB34 RAB34, member RAS oncogene family
ENSG00000127314 0.59 7.22E-03 RAP1B RAP1B, member of RAS oncogene family
ENSG00000123728 0.692 2.34E-03 RAP2C RAP2C, member of RAS oncogene family
ENSG00000155903 0.838 1.37E-02 RASA2 RAS p21 protein activator 2
ENSG00000126254 -0.531 2.41E-02 RBM42 RNA binding motif protein 42
ENSG00000168476 -0.417 4.49E-02 REEP4 receptor accessory protein 4
ENSG00000135002 0.669 2.12E-02 RFK riboflavin kinase
ENSG00000242732 -1.013 3.59E-03 RGAG4 retrotransposon gag domain containing 4
ENSG00000102760 0.536 6.67E-03 RGCC regulator of cell cycle
ENSG00000150681 0.879 1.24E-03 RGS18 regulator of G-protein signaling 18
ENSG00000155366 -0.56 4.51E-02 RHOC ras homolog family member C
ENSG00000176406 -0.759 4.16E-02 RIMS2 regulating synaptic membrane exocytosis 2
ENSG00000100599 -0.523 3.54E-02 RIN3 Ras and Rab interactor 3
ENSG00000258486 -1.184 2.47E-03 RN7SL1 RNA, 7SL, cytoplasmic 1
ENSG00000202054 -0.994 8.18E-03 RNA5SP152 RNA, 5S ribosomal pseudogene 152
ENSG00000223003 1.032 3.58E-03 RNA5SP184 RNA, 5S ribosomal pseudogene 184
ENSG00000199545 0.885 1.88E-03 RNA5SP195 RNA, 5S ribosomal pseudogene 195
ENSG00000222383 0.591 1.16E-02 RNA5SP203 RNA, 5S ribosomal pseudogene 203
ENSG00000251920 0.633 3.58E-02 RNA5SP216 RNA, 5S ribosomal pseudogene 216
ENSG00000123091 0.679 5.28E-04 RNF11 ring finger protein 11
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ENSG00000134758 0.674 9.93E-03 RNF138 ring finger protein 138, E3 ubiquitin protein ligase
ENSG00000023191 -0.501 4.54E-02 RNH1 ribonucleaseangiogenin inhibitor 1
ENSG00000206596 1.283 4.05E-03 RNU1-27P RNA, U1 small nuclear 27, pseudogene
ENSG00000207513 1.146 2.45E-03 RNU1-3 RNA, U1 small nuclear 3
ENSG00000202237 0.609 1.07E-02 RNU6-53P RNA, U6 small nuclear 53, pseudogene
ENSG00000206737 0.939 1.16E-02 RNVU1-18 RNA, variant U1 small nuclear 18
ENSG00000169855 1.209 4.73E-02 ROBO1 roundabout, axon guidance receptor, homolog 1 (Drosophila)
ENSG00000236552 0.756 2.18E-02 RPL13AP5 ribosomal protein L13a pseudogene 5
ENSG00000122026 1.224 1.44E-03 RPL21 ribosomal protein L21
ENSG00000243742 -0.998 5.10E-05 RPLP0P2 ribosomal protein, large, P0 pseudogene 2
ENSG00000217527 0.632 1.15E-02 RPS16P5 ribosomal protein S16 pseudogene 5
ENSG00000126458 -0.532 2.68E-02 RRAS related RAS viral (r-ras) oncogene homolog
ENSG00000125844 -0.533 1.91E-02 RRBP1 ribosome binding protein 1
ENSG00000182010 1.047 4.97E-02 RTKN2 rhotekin 2
ENSG00000196154 -0.585 3.32E-02 S100A4 S100 calcium binding protein A4
ENSG00000160307 1.33 1.21E-03 S100B S100 calcium binding protein B
ENSG00000211456 0.572 3.25E-02 SACM1L SAC1 suppressor of actin mutations 1-like (yeast)
ENSG00000205413 0.563 4.37E-02 SAMD9 sterile alpha motif domain containing 9
ENSG00000155307 0.492 3.66E-02 SAMSN1 SAM domain, SH3 domain and nuclear localization signals 1
ENSG00000126461 -0.495 3.03E-02 SCAF1 SR-related CTD-associated factor 1
ENSG00000085365 0.664 1.72E-02 SCAMP1 secretory carrier membrane protein 1
ENSG00000047634 1.367 5.31E-03 SCML1 sex comb on midleg-like 1 (Drosophila)
ENSG00000153130 1.214 1.88E-03 SCOC short coiled-coil protein
ENSG00000124145 -0.87 3.33E-02 SDC4 syndecan 4
ENSG00000168497 0.645 1.52E-02 SDPR serum deprivation response
ENSG00000138468 0.785 3.46E-02 SENP7 SUMO1sentrin specific peptidase 7
ENSG00000122545 0.378 4.35E-02 40062 septin 7
ENSG00000111897 0.715 4.05E-03 SERINC1 serine incorporator 1
ENSG00000120742 0.614 1.29E-02 SERP1 stress-associated endoplasmic reticulum protein 1
ENSG00000080546 0.779 1.73E-03 SESN1 sestrin 1
ENSG00000130766 -0.498 2.61E-02 SESN2 sestrin 2
ENSG00000115524 0.618 7.26E-03 SF3B1 splicing factor 3b, subunit 1, 155kDa
ENSG00000143368 -0.492 4.16E-02 SF3B4 splicing factor 3b, subunit 4, 49kDa
ENSG00000126821 0.732 3.44E-02 SGPP1 sphingosine-1-phosphate phosphatase 1
ENSG00000183918 0.742 3.98E-02 SH2D1A SH2 domain containing 1A
ENSG00000095370 -0.433 4.86E-02 SH2D3C SH2 domain containing 3C
ENSG00000100092 -0.463 4.19E-02 SH3BP1 SH3-domain binding protein 1
ENSG00000035115 0.886 6.51E-04 SH3YL1 SH3 domain containing, Ysc84-like 1 (S. cerevisiae)
ENSG00000185634 1.203 1.17E-02 SHC4 SHC (Src homology 2 domain containing) family, member 4
ENSG00000108061 0.555 1.77E-02 SHOC2 soc-2 suppressor of clear homolog (C. elegans)
ENSG00000170190 -0.4 3.38E-02 SLC16A5 solute carrier family 16, member 5 (monocarboxylic acid transporter 6)
ENSG00000162383 -1.042 4.03E-02 SLC1A7 solute carrier family 1 (glutamate transporter), member 7
ENSG00000125434 -0.541 3.79E-02 SLC25A35 solute carrier family 25, member 35
ENSG00000164209 0.723 1.30E-02 SLC25A46 solute carrier family 25, member 46
ENSG00000143554 -0.486 3.57E-02 SLC27A3 solute carrier family 27 (fatty acid transporter), member 3
ENSG00000160326 -0.536 1.95E-02 SLC2A6 solute carrier family 2 (facilitated glucose transporter), member 6
ENSG00000164414 0.663 2.99E-02 SLC35A1 solute carrier family 35 (CMP-sialic acid transporter), member A1
ENSG00000124786 0.552 2.40E-02 SLC35B3 solute carrier family 35, member B3
ENSG00000157800 0.66 1.10E-02 SLC37A3 solute carrier family 37 (glycerol-3-phosphate transporter), member 3
ENSG00000134294 0.932 1.29E-03 SLC38A2 solute carrier family 38, member 2
ENSG00000144290 1.348 1.49E-02 SLC4A10 solute carrier family 4, sodium bicarbonate transporter, member 10
ENSG00000188725 0.556 2.47E-02 SMIM15 small integral membrane protein 15
ENSG00000172062 -1.85 1.90E-15 SMN1/SMN2 survival of motor neuron 1, telomeric
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ENSG00000205571 0.874 1.31E-04 SMN1/SMN2 survival of motor neuron 1, telomeric
ENSG00000207051 1.224 1.44E-03 SNORA27 small nucleolar RNA, HACA box 27
ENSG00000200320 0.575 9.15E-03 SNORA63 small nucleolar RNA, HACA box 63
ENSG00000207523 0.707 2.67E-02 SNORA66 small nucleolar RNA, HACA box 66
ENSG00000206650 0.749 9.56E-04 SNORA70G small nucleolar RNA, HACA box 70G
ENSG00000221420 0.575 9.15E-03 SNORA81 small nucleolar RNA, HACA box 81
ENSG00000207500 1.224 1.44E-03 SNORD102 small nucleolar RNA, CD box 102
ENSG00000251806 -0.525 2.28E-02 SNORD119 small nucleolar RNA, CD box 119
ENSG00000201784 0.77 2.84E-03 SNORD14A small nucleolar RNA, CD box 14A
ENSG00000238942 0.575 9.15E-03 SNORD2 small nucleolar RNA, CD box 2
ENSG00000234617 0.395 4.61E-02 SNRK-AS1 SNRK antisense RNA 1
ENSG00000100028 -0.457 2.58E-02 SNRPD3 small nuclear ribonucleoprotein D3 polypeptide 18kDa
ENSG00000172845 0.667 2.25E-02 SP3 Sp3 transcription factor
ENSG00000021574 0.602 2.67E-02 SPAST spastin
ENSG00000163806 0.733 2.31E-03 SPDYA speedyRINGO cell cycle regulator family member A
ENSG00000166145 -0.502 4.55E-02 SPINT1 serine peptidase inhibitor, Kunitz type 1
ENSG00000174780 0.437 2.99E-02 SRP72 signal recognition particle 72kDa
ENSG00000143742 0.8 8.08E-04 SRP9 signal recognition particle 9kDa
ENSG00000116754 0.612 1.28E-02 SRSF11 serinearginine-rich splicing factor 11
ENSG00000124193 0.484 9.93E-03 SRSF6 serinearginine-rich splicing factor 6
ENSG00000073849 0.536 1.49E-02 ST6GAL1 ST6 beta-galactosamide alpha-2,6-sialyltranferase 1
ENSG00000101972 0.668 8.18E-03 STAG2 stromal antigen 2
ENSG00000081320 0.524 1.84E-02 STK17B serinethreonine kinase 17b
ENSG00000079950 0.559 3.52E-02 STX7 syntaxin 7
ENSG00000173597 0.691 8.54E-03 SULT1B1 sulfotransferase family, cytosolic, 1B, member 1
ENSG00000166317 -0.785 8.06E-03 SYNPO2L synaptopodin 2-like
ENSG00000132718 -0.529 3.29E-02 SYT11 synaptotagmin XI

ENSG00000178913 0.607 1.52E-02 TAF7
TAF7 RNA polymerase II, TATA box binding protein (TBP)-associated factor,
55kDa

ENSG00000149591 -0.581 1.89E-02 TAGLN transgelin
ENSG00000121749 0.709 1.08E-02 TBC1D15 TBC1 domain family, member 15
ENSG00000036054 0.649 1.28E-02 TBC1D23 TBC1 domain family, member 23
ENSG00000136111 0.887 8.54E-03 TBC1D4 TBC1 domain family, member 4
ENSG00000136535 1.348 1.49E-02 TBR1 T-box, brain, 1
ENSG00000165929 0.931 2.18E-03 TC2N tandem C2 domains, nuclear
ENSG00000180964 0.581 1.29E-02 TCEAL8 transcription elongation factor A (SII)-like 8
ENSG00000139372 0.678 1.27E-02 TDG thymine-DNA glycosylase
ENSG00000108064 0.459 4.66E-02 TFAM transcription factor A, mitochondrial
ENSG00000131931 0.526 3.06E-02 THAP1 THAP domain containing, apoptosis associated protein 1
ENSG00000177683 0.673 1.48E-02 THAP5 THAP domain containing 5
ENSG00000172673 0.588 4.50E-02 THEMIS thymocyte selection associated
ENSG00000066056 -0.796 2.01E-02 TIE1 tyrosine kinase with immunoglobulin-like and EGF-like domains 1
ENSG00000100575 0.515 2.45E-03 TIMM9 translocase of inner mitochondrial membrane 9 homolog (yeast)
ENSG00000223573 -1.022 1.37E-02 TINCR tissue differentiation-inducing non-protein coding RNA
ENSG00000198586 0.599 1.51E-02 TLK1 tousled-like kinase 1
ENSG00000137076 -0.619 3.07E-02 TLN1 talin 1
ENSG00000174123 0.924 1.17E-02 TLR10 toll-like receptor 10
ENSG00000183160 -1.169 5.59E-03 TMEM119 transmembrane protein 119
ENSG00000152558 0.882 5.28E-04 TMEM123 transmembrane protein 123
ENSG00000233493 0.569 2.30E-02 TMEM238 transmembrane protein 238
ENSG00000135185 0.665 2.44E-03 TMEM243 transmembrane protein 243, mitochondrial
ENSG00000112697 0.604 3.06E-02 TMEM30A transmembrane protein 30A
ENSG00000175147 -1.165 1.27E-03 TMEM51-AS1 TMEM51 antisense RNA 1
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ENSG00000139921 0.719 1.61E-02 TMX1 thioredoxin-related transmembrane protein 1
ENSG00000145779 0.728 3.58E-03 TNFAIP8 tumor necrosis factor, alpha-induced protein 8
ENSG00000100284 -0.449 3.70E-02 TOM1 target of myb1 (chicken)
ENSG00000154174 0.441 3.31E-02 TOMM70A translocase of outer mitochondrial membrane 70 homolog A (S. cerevisiae)
ENSG00000164938 0.952 2.26E-02 TP53INP1 tumor protein p53 inducible nuclear protein 1
ENSG00000159713 -0.821 2.30E-02 TPPP3 tubulin polymerization-promoting protein family member 3
ENSG00000067167 0.454 2.92E-02 TRAM1 translocation associated membrane protein 1
ENSG00000163519 1.219 6.51E-04 TRAT1 T cell receptor associated transmembrane adaptor 1
ENSG00000170855 0.729 9.53E-03 TRIAP1 TP53 regulated inhibitor of apoptosis 1
ENSG00000071575 0.531 3.46E-02 TRIB2 tribbles homolog 2 (Drosophila)
ENSG00000116918 0.813 7.34E-03 TSNAX translin-associated factor X
ENSG00000106537 0.816 1.03E-02 TSPAN13 tetraspanin 13
ENSG00000155158 0.745 4.30E-02 TTC39B tetratricopeptide repeat domain 39B
ENSG00000171811 1.777 9.98E-04 TTC40 tetratricopeptide repeat domain 40
ENSG00000188229 -0.438 3.29E-02 TUBB4B tubulin, beta 4B class IVb
ENSG00000171928 0.937 9.15E-03 TVP23B trans-golgi network vesicle protein 23 homolog B (S. cerevisiae)
ENSG00000151239 0.925 7.43E-03 TWF1 twinfilin actin-binding protein 1
ENSG00000126261 0.509 6.92E-03 UBA2 ubiquitin-like modifier activating enzyme 2
ENSG00000177889 0.519 7.76E-03 UBE2N ubiquitin-conjugating enzyme E2N
ENSG00000140367 0.53 3.70E-02 UBE2Q2 ubiquitin-conjugating enzyme E2Q family member 2
ENSG00000114062 0.642 2.32E-02 UBE3A ubiquitin protein ligase E3A
ENSG00000122042 0.627 8.52E-03 UBL3 ubiquitin-like 3
ENSG00000148154 0.774 1.11E-02 UGCG UDP-glucose ceramide glucosyltransferase
ENSG00000260128 -3.845 7.34E-03 ULK4P2 unc-51-like kinase 4 (C. elegans) pseudogene 2
ENSG00000105176 0.548 4.05E-03 URI1 URI1, prefoldin-like chaperone
ENSG00000162607 0.655 1.53E-02 USP1 ubiquitin specific peptidase 1
ENSG00000232162 1.68 4.39E-05 USP12-AS1 USP12 antisense RNA 1
ENSG00000135655 0.599 2.40E-02 USP15 ubiquitin specific peptidase 15
ENSG00000124333 0.606 1.25E-02 VAMP7 vesicle-associated membrane protein 7
ENSG00000182853 -1.401 5.61E-03 VMO1 vitelline membrane outer layer 1 homolog (chicken)
ENSG00000236287 0.694 1.72E-02 ZBED5 zinc finger, BED-type containing 5
ENSG00000126804 0.661 2.95E-02 ZBTB1 zinc finger and BTB domain containing 1
ENSG00000066422 0.614 2.47E-02 ZBTB11 zinc finger and BTB domain containing 11
ENSG00000065548 0.585 4.30E-02 ZC3H15 zinc finger CCCH-type containing 15
ENSG00000177764 0.555 2.78E-02 ZCCHC3 zinc finger, CCHC domain containing 3
ENSG00000159714 -0.735 2.97E-03 ZDHHC1 zinc finger, DHHC-type containing 1
ENSG00000180776 0.921 8.14E-03 ZDHHC20 zinc finger, DHHC-type containing 20
ENSG00000236953 1.098 6.55E-04 ZDHHC20-IT1 ZDHHC20 intronic transcript 1
ENSG00000104231 0.729 2.66E-02 ZFAND1 zinc finger, AN1-type domain 1
ENSG00000197841 1.425 4.73E-03 ZNF181 zinc finger protein 181
ENSG00000165512 0.54 4.60E-02 ZNF22 zinc finger protein 22
ENSG00000185947 0.84 1.31E-02 ZNF267 zinc finger protein 267
ENSG00000089335 1.044 1.53E-02 ZNF302 zinc finger protein 302
ENSG00000169131 0.708 9.14E-03 ZNF354A zinc finger protein 354A
ENSG00000171469 0.597 1.88E-02 ZNF561 zinc finger protein 561
ENSG00000198566 -7.734 9.03E-10 ZNF658B zinc finger protein 658B, pseudogene
ENSG00000166770 0.903 6.64E-03 ZNF667-AS1 ZNF667 antisense RNA 1 (head to head)
ENSG00000182141 1.034 2.13E-02 ZNF708 zinc finger protein 708
ENSG00000196381 1.217 4.70E-02 ZNF781 zinc finger protein 781
ENSG00000167766 0.87 1.30E-02 ZNF83 zinc finger protein 83
ENSG00000146757 1.129 2.22E-02 ZNF92 zinc finger protein 92
ENSG00000132485 0.774 9.38E-03 ZRANB2 zinc finger, RAN-binding domain containing 2
ENSG00000198618 -2.235 3.40E-08
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ENSG00000240869 -1.494 2.23E-05
ENSG00000251948 -1.065 4.39E-05
ENSG00000212769 -2.34 1.34E-05
ENSG00000238179 -0.872 5.40E-04
ENSG00000252488 1.302 2.54E-05
ENSG00000261655 -0.897 1.28E-03
ENSG00000226937 0.814 2.44E-03
ENSG00000240490 -0.74 2.75E-03
ENSG00000247315 0.555 2.78E-02
ENSG00000243302 -0.555 5.59E-03
ENSG00000223551 -1.045 2.31E-03
ENSG00000258800 0.754 1.85E-02
ENSG00000258988 -2.49 5.28E-04
ENSG00000253676 1.57 4.22E-05
ENSG00000260808 0.612 1.54E-02
ENSG00000228956 0.904 5.88E-03
ENSG00000231006 1.108 4.98E-04
ENSG00000235872 0.688 2.68E-02
ENSG00000211619 -7.103 6.72E-04
ENSG00000259499 1.092 5.28E-04
ENSG00000240223 0.71 5.28E-04
ENSG00000224827 -1.101 2.16E-03
ENSG00000226976 -1.039 2.96E-03
ENSG00000262657 0.84 1.31E-02
ENSG00000201592 0.901 6.51E-04
ENSG00000201882 0.901 6.51E-04
ENSG00000228323 -0.674 8.18E-03
ENSG00000201820 1.012 8.40E-04
ENSG00000202434 0.821 6.51E-04
ENSG00000240163 -0.738 1.37E-02
ENSG00000239087 1.322 1.02E-03
ENSG00000235945 0.939 1.18E-03
ENSG00000201121 1.156 6.51E-04
ENSG00000227907 1.329 8.08E-04
ENSG00000252464 0.925 5.59E-03
ENSG00000234040 0.747 1.07E-03
ENSG00000228981 1.156 3.11E-02
ENSG00000230272 0.781 6.51E-04
ENSG00000230408 0.671 5.94E-04
ENSG00000239935 -0.703 2.28E-02
ENSG00000214659 -1.615 1.00E-02
ENSG00000200418 0.575 9.15E-03
ENSG00000234925 0.738 1.21E-03
ENSG00000238982 0.959 8.08E-04
ENSG00000262211 1.143 9.53E-03
ENSG00000228386 -0.498 2.92E-02
ENSG00000236434 0.773 8.08E-04
ENSG00000251805 1.064 1.14E-03
ENSG00000252197 1.088 2.22E-03
ENSG00000259595 0.778 3.18E-03
ENSG00000238975 0.742 2.84E-03
ENSG00000238924 0.9 1.82E-03
ENSG00000230715 -0.417 3.75E-02

Continued on next page
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ENSG00000252904 1.447 1.71E-03
ENSG00000226084 1.06 2.49E-03
ENSG00000205147 -0.985 5.59E-03
ENSG00000238556 0.553 2.88E-03
ENSG00000222494 0.902 1.19E-03
ENSG00000252700 0.87 1.79E-03
ENSG00000240342 1.039 6.30E-03
ENSG00000197462 -1.019 9.66E-03
ENSG00000259950 1.141 2.88E-03
ENSG00000234374 1.07 8.08E-04
ENSG00000241438 0.994 2.85E-03
ENSG00000228265 -0.489 2.12E-02
ENSG00000233406 0.741 1.18E-03
ENSG00000251621 1.348 1.49E-02
ENSG00000223697 1.173 3.03E-03
ENSG00000212829 -1.368 1.52E-03
ENSG00000252620 0.606 1.15E-03
ENSG00000200397 0.695 2.23E-03
ENSG00000227146 0.587 1.08E-02
ENSG00000253754 0.817 7.16E-03
ENSG00000258663 -1.863 8.40E-03
ENSG00000231245 1.27 2.64E-02
ENSG00000259657 0.75 2.45E-03
ENSG00000243005 0.643 1.76E-03
ENSG00000251783 0.875 2.23E-03
ENSG00000254208 1.231 2.64E-03
ENSG00000249055 0.657 5.61E-03
ENSG00000238449 0.657 5.61E-03
ENSG00000207491 -0.82 1.32E-02
ENSG00000251892 0.993 3.17E-03
ENSG00000206713 -0.617 1.49E-02
ENSG00000200788 -0.589 2.45E-02
ENSG00000241376 -1.03 9.17E-03
ENSG00000252750 0.7 5.61E-03
ENSG00000199866 1.307 2.31E-03
ENSG00000248785 0.557 2.88E-03
ENSG00000235299 0.691 6.30E-03
ENSG00000213147 -5.489 1.62E-02
ENSG00000234106 -0.617 2.81E-02
ENSG00000225300 1.12 8.40E-04
ENSG00000262429 -0.461 1.89E-02
ENSG00000244498 -0.599 4.64E-02
ENSG00000238450 0.694 2.55E-03
ENSG00000225627 0.755 3.18E-03
ENSG00000255301 -1.408 4.72E-02
ENSG00000259421 -0.61 2.05E-02
ENSG00000260977 -0.869 7.61E-03
ENSG00000244479 0.853 8.54E-03
ENSG00000212259 1.108 5.59E-03
ENSG00000253574 -0.693 2.26E-02
ENSG00000223505 0.71 2.88E-03
ENSG00000231845 0.802 5.59E-03
ENSG00000243305 0.924 9.51E-03
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ENSG00000237336 -0.619 2.62E-02
ENSG00000258645 1.789 7.05E-03
ENSG00000228187 1.024 4.05E-03
ENSG00000233728 -0.867 9.66E-03
ENSG00000202490 1.777 7.29E-03
ENSG00000206822 1.777 7.29E-03
ENSG00000222086 0.717 4.66E-03
ENSG00000250473 1.518 5.61E-03
ENSG00000259099 -0.628 3.30E-02
ENSG00000213744 -0.588 3.31E-02
ENSG00000203386 0.836 5.50E-03
ENSG00000201071 -0.433 3.55E-02
ENSG00000239593 -0.648 4.73E-02
ENSG00000250850 0.618 1.28E-02
ENSG00000254193 3.59 1.54E-02
ENSG00000235117 -0.508 1.51E-02
ENSG00000248839 0.813 8.54E-03
ENSG00000200120 1.342 1.13E-02
ENSG00000211642 0.966 3.52E-02
ENSG00000227417 0.796 2.88E-03
ENSG00000250733 -0.687 2.54E-02
ENSG00000238959 0.886 5.97E-03
ENSG00000261744 -0.777 2.47E-02
ENSG00000241300 1.387 8.54E-03
ENSG00000239194 -0.821 2.30E-02
ENSG00000218980 -0.591 3.59E-02
ENSG00000228366 1.065 3.18E-03
ENSG00000185275 0.539 4.44E-02
ENSG00000261691 -0.497 3.93E-02
ENSGR0000124333 0.575 2.51E-02
ENSG00000240925 -0.452 4.90E-02
ENSG00000220842 4.8 2.47E-02
ENSG00000222869 -0.575 3.40E-02
ENSG00000252759 1.164 1.37E-02
ENSG00000253772 -1.709 1.72E-02
ENSG00000238766 -0.534 4.23E-02
ENSG00000242926 -0.534 4.23E-02
ENSG00000243736 0.569 2.68E-02
ENSG00000229750 0.974 1.18E-02
ENSG00000259781 2.481 1.32E-02
ENSG00000224895 -0.807 2.80E-02
ENSG00000233984 1.405 7.77E-03
ENSG00000234219 0.719 7.34E-03
ENSG00000239344 -0.759 4.16E-02
ENSG00000227239 0.618 1.18E-02
ENSG00000228770 -0.587 3.75E-02
ENSG00000229679 -0.584 3.83E-02
ENSG00000232486 0.912 5.61E-03
ENSG00000255959 -0.471 4.17E-02
ENSG00000207034 0.628 9.51E-03
ENSG00000244275 0.538 1.08E-02
ENSG00000240369 0.538 1.08E-02
ENSG00000238916 0.538 1.08E-02
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ENSG00000254274 0.832 9.78E-03
ENSG00000225792 0.602 1.31E-02
ENSG00000199591 -0.792 3.09E-02
ENSG00000188223 -0.433 3.63E-02
ENSG00000200113 -0.591 4.03E-02
ENSG00000256403 -1.084 2.54E-02
ENSG00000230625 0.767 1.06E-02
ENSG00000217416 1.058 3.80E-02
ENSG00000242681 0.985 1.09E-02
ENSG00000255729 0.607 1.52E-02
ENSG00000199415 1.358 1.73E-02
ENSG00000237672 0.788 1.09E-02
ENSG00000238268 -1.231 1.18E-02
ENSG00000227161 0.699 1.25E-02
ENSG00000222276 0.935 1.27E-02
ENSG00000239917 0.605 7.58E-03
ENSG00000227484 -0.952 2.20E-02
ENSG00000201778 0.575 1.25E-02
ENSG00000244389 1.155 1.29E-02
ENSG00000255165 -0.751 4.64E-02
ENSG00000261327 -0.755 2.61E-02
ENSG00000259811 -0.755 2.61E-02
ENSG00000231995 -4.009 1.54E-02
ENSG00000239975 1.661 3.28E-02
ENSG00000254671 0.678 7.34E-03
ENSG00000213881 0.941 1.81E-02
ENSG00000253636 -1.039 9.99E-03
ENSG00000250267 1.262 1.54E-02
ENSG00000228554 0.58 1.04E-02
ENSG00000229413 -0.611 3.32E-02
ENSG00000255671 -0.923 2.17E-02
ENSG00000253092 1.603 2.43E-03
ENSG00000261573 0.565 1.64E-02
ENSG00000239932 -0.719 3.57E-02
ENSG00000248636 -0.546 2.92E-02
ENSG00000235883 0.471 3.44E-02
ENSG00000201013 0.756 7.05E-03
ENSG00000262777 0.808 1.22E-02
ENSG00000200814 0.656 1.30E-02
ENSG00000248977 1.716 1.61E-02
ENSG00000259884 -0.671 3.46E-02
ENSG00000231128 0.657 7.29E-03
ENSG00000241247 0.572 3.51E-02
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SMA2 vs. SMA3
Table B.6: Features of the genes differentially expressed in “SMA2 vs SMA3” comparison consid-
ered for network analysis: Ensemble gene ID, log-ratio and q-value. For genes annotated in the

IPA database, gene symbol and Entrez name are also reported.

Gene
log-
ratio

q-value Symbol Entrez Name

ENSG00000249310 -4.171 8.66E-12 APOBEC3B-AS1 APOBEC3B antisense RNA 1
ENSG00000118520 -1.789 5.46E-04 ARG1 arginase, liver
ENSG00000172232 -1.784 4.62E-04 AZU1 azurocidin 1
ENSG00000101425 -1.882 1.04E-04 BPI bactericidal/permeability-increasing protein
ENSG00000164047 -2.206 2.85E-07 CAMP cathelicidin antimicrobial peptide
ENSG00000256515 9.267 4.44E-07 CCL3L1/CCL3L3 chemokine (C-C motif) ligand 3-like 1

ENSG00000086548 -2.273 3.50E-04 CEACAM6
carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross
reacting antigen)

ENSG00000124469 -2.736 2.85E-07 CEACAM8 carcinoembryonic antigen-related cell adhesion molecule 8
ENSG00000228695 -8.261 1.46E-06 CES1P1 carboxylesterase 1 pseudogene 1
ENSG00000133063 -2.739 2.93E-06 CHIT1 chitinase 1 (chitotriosidase)
ENSG00000065618 -2.682 8.04E-04 COL17A1 collagen, type XVII, alpha 1
ENSG00000096006 -3.004 2.90E-08 CRISP3 cysteine-rich secretory protein 3
ENSG00000100448 -1.85 2.84E-03 CTSG cathepsin G
ENSG00000164821 -2.95 3.19E-12 DEFA4 defensin, alpha 4, corticostatin
ENSG00000079393 -2.727 3.40E-02 DUSP13 dual specificity phosphatase 13
ENSG00000197561 -1.969 1.15E-04 ELANE elastase, neutrophil expressed
ENSG00000170801 -2.819 8.49E-03 HTRA3 HtrA serine peptidase 3
ENSG00000231475 1.366 2.79E-02 IGHV4-31 immunoglobulin heavy variable 4-31
ENSG00000211598 2.076 3.03E-03 IGKV4-1 immunoglobulin kappa variable 4-1
ENSG00000134545 1.575 2.94E-02 KLRC1 killer cell lectin-like receptor subfamily C, member 1
ENSG00000205809 1.575 2.94E-02 KLRC2 killer cell lectin-like receptor subfamily C, member 2
ENSG00000255641 1.575 2.94E-02 KLRC3 killer cell lectin-like receptor subfamily C, member 3
ENSG00000205810 1.575 2.94E-02 KLRC3 killer cell lectin-like receptor subfamily C, member 3
ENSG00000148346 -3.108 2.14E-10 LCN2 lipocalin 2
ENSG00000012223 -3.332 3.09E-07 LTF lactotransferrin
ENSG00000216083 -2.682 8.04E-04 mir-936 microRNA 936
ENSG00000118113 -3.327 2.87E-07 MMP8 matrix metallopeptidase 8 (neutrophil collagenase)

ENSG00000149516 -1.675 3.04E-04 MS4A3
membrane-spanning 4-domains, subfamily A, member 3 (hematopoietic cell-
specific)

ENSG00000102837 -2.583 2.81E-04 OLFM4 olfactomedin 4
ENSG00000173391 -2.515 9.69E-04 OLR1 oxidized low density lipoprotein (lectin-like) receptor 1
ENSG00000196415 -1.815 1.84E-02 PRTN3 proteinase 3
ENSG00000104918 -1.462 1.36E-02 RETN resistin
ENSG00000169397 -2.231 8.87E-06 RNASE3 ribonuclease, RNase A family, 3
ENSG00000134827 -1.963 6.81E-06 TCN1 transcobalamin I (vitamin B12 binding protein, R binder family)
ENSG00000188056 3.96 1.15E-04 TREML4 triggering receptor expressed on myeloid cells-like 4
ENSG00000211637 2.106 1.01E-08
ENSG00000235508 8.885 7.50E-10
ENSG00000197149 4.96 3.60E-07
ENSG00000223350 1.971 9.55E-05
ENSG00000240342 2.718 4.37E-06
ENSG00000211650 2.609 1.15E-04
ENSG00000213147 7.532 7.00E-03
ENSG00000181126 -4.747 1.17E-04
ENSG00000206249 -1.733 2.18E-03
ENSG00000242580 2.485 2.84E-03
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Gene
Log-
ratio

q-value Symbol Entrez Name

ENSG00000236650 -4.198 1.32E-03
ENSG00000250765 -2.67 8.04E-04
ENSG00000211938 2.11 3.03E-03
ENSG00000239862 1.681 2.42E-02
ENSG00000231896 -1.914 7.97E-04
ENSG00000253239 1.804 3.65E-02
ENSG00000211663 1.541 7.33E-03
ENSG00000218749 -1.176 1.21E-02
ENSG00000243166 -1.16 1.69E-02
ENSG00000211654 2.407 5.78E-03
ENSG00000211665 2.069 3.87E-03
ENSG00000253497 3.676 1.18E-02
ENSG00000244575 1.116 4.30E-02
ENSG00000212579 -1.357 3.33E-02
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