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Riassunto

Nella presente tesi è stata sviluppata una teoria asintotica non lineare per
l’idrodinamica e per la topografia di alvei meandriformi, in grado di descri-
vere perturbazioni del fondo di ampiezza finita e tenere in conto variazioni
arbitrarie, seppur lente, della curvatura dell’asse del canale. Tale approccio
ha permesso di formulare una teoria non lineare di stabilità planimetrica in
grado di predire molti aspetti caratteristici dei processi di meandrizzazione
e di estendere i risultati ottenuti dalle classiche teorie lineari. In partico-
lare, in accordo con i precedenti risultati forniti dalla teoria debolmente
non lineare ed in accordo con le evidenze di campo, il coefficiente di am-
plificazione del meandro mostra un picco per un particolare numero d’onda
prossimo al valore risonante fornito dalla teoria lineare. Inoltre emerge
un’altra caratteristica tipica delle onde non lineari: il numero d’onda se-
lezionato dipende dall’ampiezza della perturbazione iniziale (per dati valori
dei rilevanti parametri adimensionali) ed, in particolare, lunghezze d’onda
maggiori sono associate ad ampiezze più grandi. I meandri risultano migrare
prevalentemente verso valle, sebbene una migrazione verso monte risulti pos-
sibile per valori relativamente grandi del rapporto tra semilarghezza e pro-
fondità del canale, un risultato in accordo con il quadro fornito dalla teoria
lineare. La celerità di migrazione diminuisce all’incrementare dell’ampiezza
della perturbazione, nuovamente una caratteristica tipica delle onde non lin-
eari, governata nel caso in questione dall’idrodinamica piuttosto che dalle
non linearità geometriche. Il modello è infine validato confrontandone le pre-
visioni con misure di campo rilevate sul fiume Cecina, recentemente soggetto
ad un monitoraggio dettagliato dell’evoluzione planimetrica.





Abstract

We develop a non linear asymptotic theory of flow and bed topography
in meandering channels able to describe finite amplitude perturbations of
bottom topography and account for arbitrary, yet slow, variations of chan-
nel curvature. This approach then allows us to formulate a non linear bend
instability theory, which predicts several characteristic features of the actual
meandering process and extends results obtained by classical linear bend the-
ories. In particular, in agreement with previous weakly non linear findings
and consistently with field observations, the bend growth rate is found to
peak at some value of the meander wavenumber, reminiscent of the resonant
value of linear stability theory. Moreover, a feature typical of non linear
waves arises: the selected wavenumber depends on the amplitude of the ini-
tial perturbation (for given values of the relevant dimensionless parameters)
and, in particular, larger wavelengths are associated with larger amplitudes.
Meanders are found to migrate preferentially downstream, though upstream
migration is found possible for relatively large values of the aspect ratio of
the channel, a finding in agreement with the picture provided by linear the-
ory. Meanders are found to slow down as their amplitude increases, again a
feature typical of non linear waves, driven in the present case by flow rather
than geometric nonlinearities. The model is substantiated by comparing pre-
dictions with field observations obtained for a test case, a reach of a river
recently subjected to detailed monitoring of its plan form evolution.
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Introduction

River meandering is a major topic in the field of morphodynamics. It has
been the subject of extensive investigations in the recent past. The review
paper of Seminara (2006), to which the reader is referred to for a broad
overview of the subject, has outlined the main steps whereby progress has
been made in this field.

Let us briefly recall them. The attention was initially focused on un-
derstanding the mechanism of meander formation starting from a straight
channel configuration. Linear stability analyses (so called ’bend’ theories)
were employed, hence linear models were developed to determine flow and
bed topography in weakly curved channels. The physical implications of the
linearity assumption can be appreciated recalling the main ingredients of the
process whereby the pattern of bed topography develops in a sinuous chan-
nel. The first feature is the establishment of a centrifugal secondary flow
directed outwards close to the free surface and inward close to the bed: it
arises because the lateral pressure gradient driven by the lateral slope of the
free surface established in a bend is unable to provide the centripetal force
required for fluid particles to move along purely longitudinal trajectories. If
the bed is non erodible, a ’free vortex’ effect prevails initially, longitudinal
trajectories in the inner part of the bend being shorter than in the outer
part. As a result, flow at the inner bend accelerates relative to the outer
bend. This is a purely metric effect which is accounted for also in linear
models. Proceeding downstream, a net transfer of momentum towards the
outer bend is driven by the secondary flow (the outward transfer occurring
in the upper layer prevailing on the inward transfer occurring in the lower
layer), hence the thread of high velocity progressively moves from the inner
to the outer bend. In the context of theories of stability where the basic flow
is laterally uniform, this is a second order effect. The picture changes consid-
erably when the bed is erodible. Under the latter conditions, secondary flow
also affects the motion of grain particles: they deviate from the longitudinal
direction, hence sediments are transported towards the inner bends where a
sequence of so called point bars are built up while pools develop at the outer
bends. The bar-pool pattern then drives a topographical component of the
secondary flow and an additional contribution to sediment transport which
further modifies the bed topography.
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Linear theories are indeed able to generate this topographical effect,
though the important role of the lateral transfer of momentum driven by
the topographical secondary flow is again neglected, formally appearing still
at second order.

The need to relax the linear constraint was recognized in the engineer-
ing literature, where a large effort was made to construct a rational frame-
work, amenable to numerical treatment, in order to predict flow and bed
topography in meandering channels with finite curvature and arbitrary width
variations. These models serve the interests of river engineering, being fairly
successful when applied to relatively short reaches of alluvial rivers and fairly
short events.

However, a more general interest towards the construction of sound an-
alytical non linear models arises in the context of the fundamental research
on the subject.

In fact, linear theories display the occurrence of a resonance mechanism
which controls the selection of the preferred wavelength for bend instability
(Blondeaux & Seminara (1985)). Resonance is obviously damped by non
linear effects, as shown by the weakly non linear theory of Seminara & Tubino
(1992). No fully non linear theory has been proposed so far, though the
role of non linearity is known to affect the flow field, hence the selection
mechanism, considerably. In the present work, it is our principal objective
to develop a non linear theory of bend instability, based on a non linear
asymptotic solution of flow and bed topography in meandering rivers.

The availability of such a model is also potentially suitable to investigate
a number of important processes observed in meander evolution, which still
await to be understood. Though we will not discuss these processes in the
present paper, however it may be of interest to outline the issues raised by
field observations.

An inspection of the patterns of meandering rivers (e.g. figure 1) reveals
that the river width, defined as the width of the stream free surface, under-
goes typically spatial oscillations which display a distinct correlation with
channel curvature. The river width may peak at bend apexes, reaching a
minimum at inflection points (figure 1a) or vice versa (figure 1b). Note that
this issue bears both a conceptual and a practical relevance. In fact, we know
from the seminal contributions of Parker (1978a), Parker (1978b), that the
average width of straight channels in equilibrium is ultimately controlled by
requirements of bank stability. We also know that meandering does not alter
such equilibrium in the mean.
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Figure 1: Meander bends showing the dependence of river width on curvature
and stage. (a) Maximum widths experienced at bend apexes (Eel River,
California) (from Google Earth); (b) minimum widths at bend apexes, and
local widening in straight reach (tributary of the Amazon River, Brazil) (from
Google Earth).

Figure 2: A meander showing the formation of an island close to the bend
apex (Finke River, Australia, courtesy of Aberdeen University, Geoff Pickup)

However, provided the river is free to erode and deposit, i.e. it is able
to choose its own width, then curvature makes the stream unable to keep a
constant width. Why? And to what extent channel widening at the bend
apexes modifies the scour pattern typically observed at the outer banks, thus
affecting the lateral migration of meanders?

A further reason of interest is related to a second observation: it is not
uncommon to detect the formation of an island at bends of meandering chan-
nels (figure 2). The presence of the island then forces the stream to bifurcate
into an outer and an inner branch.
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In natural settings this is not a stable configuration: sooner or later, the
stream will cut through and abandon the outer branch. The latter well known
process is described as chute cut-off and occurs typically in wide bends with
fairly large curvatures, high discharges, poorly cohesive unvegetated banks
and high slope (Howard & Knutson (1984)). Though some recent numeri-
cal investigations (Jager (2003), and references therein) have attempted to
model the latter process, it is not unfair to state that the occurrence of chute
cutoff is a problem yet awaiting to be understood. The availability of an ana-
lytical non linear model of river meanders would allow to approach the latter
problem. In fact, the process of widening is known (Repetto et al. (2002))
to promote the formation of steady central bars in straight channels: it is
then natural to wonder whether the formation of bend islands is similarly
related to a bottom instability driven by widening of a curved channel. The
next step would then consist of modeling the tendency of the central bar to
force the stream to bifurcate into an outer and an inner branch leading to
the occurrence of chute cutoff.

A third motivation to develop an analytical approach to non linear me-
anders involving a sufficiently modest computational effort, is related to in-
vestigations of long term meander evolution, a topic which has attracted the
attention of both geomorphologists (Sun et al. (1996)) and engineers (Cam-
poreale & Ridolfi (2006)). For such applications numerical models are not ap-
propriate tools as the computational effort they require would be prohibitive.
Researchers have then been forced to employ analytical linear models for flow
and bed topography, allowing only for geometric nonlinearities arising from
plan form evolution. The present model removes the latter restriction.

This idea is pursued by resorting to the use of perturbation methods.
We set up an appropriate perturbation expansion for the solution of the
problem of morphodynamics, valid in the general case of rivers with arbitrary
distributions of channel curvature, the only constraint being that flow and
bottom topography must be ’slowly varying’ in both longitudinal and lateral
directions and channel curvature must be ’sufficiently small’. The former
assumption requires the channel to be ‘wide’ with channel alignment varying
on a longitudinal scale much larger than channel width, while the latter
assumption is satisfied provided the radius of curvature of channel axis is large
compared with channel width. Both conditions are typically met in actual
rivers but, in spite of the popularity enjoyed by linear models, neither of
them implies that perturbations of bottom topography are necessarily ’small’.
Taking advantage of the slowly varying assumption, a suitable extension
of the approach developed by Seminara & Solari (1998) to investigate bed
deformations in constant curvature channels with constant width can be
developed.
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The latter approach allows for slow, yet finite, perturbations of flow and
bed topography relative to a basic state consisting of a locally and instan-
taneously uniform flow, slowly varying in both the lateral and longitudinal
directions. The only unknowns left for numerical computation are then flow
depth, a slow function of longitudinal and lateral coordinates, and variation
of the longitudinal free surface slope satisfying a strongly non linear differ-
ential equation subject to continuity constraints.

The present work is then organized as follows. In chapter 1 we formulate
the 3D problem of flow in sinuous alluvial channels with a non cohesive bed.
In the analysis, the direct effect of secondary flow on the transverse distribu-
tion of the main flow, leading to lateral transfer of longitudinal momentum is
accounted for. This effect, which has been argued to be important by many
authors (e.g. Nelson & Smith (1989), Imran & Parker (1999)), appears at
the first order of approximation in the present scheme. Chapter 3 is then de-
voted to ascertaining the role of flow nonlinearity on ’bend instability theory’
by coupling the morphodynamic model with a bank erosion law, expressing
the dependence of erosion intensity on the flow field. We are then able to
predict the wavelength selected by bend instability as well as the meander
wave speed in a non linear context. In chapter 4 the model predictions are
then tested by a direct application to a test case (a reach of the Cecina
River, Italy) for which accurate data obtained by recent detailed monitoring
are available. Predictions of both the equilibrium configuration and of the
wavenumber selected in the meandering process do support the soundness of
the present nonlinear approach.





Chapter 1

Non linear theory of slowly
varying meanders:
mathematical formulation

River morphodynamics deals with the turbulent free surface flow of a low con-
centration two phase mixture of water and sediment particles bounded by a
granular medium consisting of still sediment particles packed at their highest
concentration: in river morphodynamics one ultimately wishes to determine
the configuration of the bed interface. In other words, the mathematical
problem of river morphodynamics is essentially a free boundary problem. Let
us formulate it.
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Figure 1.1: Sketch illustrating the meandering channel and notations

1.1 Formulation of the problem

Let us consider a sinuous alluvial channel with a non cohesive bed and refer
it to the intrinsic coordinates sketched in figure 1.1 (s∗, n∗ and z∗). Notice
that s∗ denotes a longitudinal coordinate defined along the channel axis, n∗

is a transverse coordinate spanning the entire cross section and z∗ is a nearly
vertical coordinate orthogonal to the plane (s∗, n∗) and pointing upwards.
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Furthermore let us assume:

cos θs ' 1 (1.1)

where θs is the angle the tangent to the axis forms with a horizontal plane.
Let us then consider the flow of a constant discharge Q∗ in the meandering
reach. In the case of channels with constant width, say 2B∗

u, the appropriate
scaling for the intrinsic coordinates, the local mean velocity averaged over
turbulence u∗=(u∗, v∗, w∗)T , the flow depth D∗, the free surface elevation h∗,
the eddy viscosity ν∗T and the sediment flux per unit width (q∗s , q

∗
n)T reads:

(s∗, n∗) = B∗
u(s, n) (1.2a)

(z∗, D∗, h∗) = D∗
u(z, D, F 2

uh) (1.2b)

u = (u∗, v∗, w∗) = U∗
u(u, v,

w

βu

) (1.2c)

ν∗T = (
√

CfuU
∗
uD∗

u)νT (1.2d)

q = (q∗s , q
∗
n) =

√
(sp − 1)gd∗3(qs, qn) (1.2e)

where a star denotes dimensional quantities. Moreover, sp is the relative
particle density (= ρs/ρ) with ρ and ρs water and particle density respec-
tively, d∗ is the particle diameter taken to be uniform. The index u refers to
reference quantities consisting of the properties of uniform flow in a straight
channel with the same flow discharge Q∗ and the average channel slope Su. In
particular Cfu is the friction coefficient, βu is the aspect ratio of the channel,
Fu is the Froude number.
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These parameters read:

βu =
B∗

u

D∗
u

(1.3a)

F 2
u =

U∗2
u

gD∗
u

(1.3b)

Cfu = 6 + 2.5 ln
D∗

u

2.5 d∗
(1.4)

having estimated the absolute bottom roughness as 2.5d∗.
We then take advantage of the hydrostatic approximation which applies when
the spatial scale of the relevant hydrodynamic processes largely exceeds the
flow depth. The steady turbulent flow of water in a channel characterized
by a slowly varying spatial distribution of channel curvature C∗(s), is then
governed by the longitudinal and lateral components of Reynolds equations,
along with the continuity equations for the fluid and solid phases. In dimen-
sionless form, they read:

Nu,s +

[
Nν0C +

∂

∂n

]
v + w,z = 0 (1.5)

N
(
u2

)
,s + (uv) ,n + (uw) ,z +2ν0NCuv =

−Nh,s +NβuCfu + βu

√
Cfu (νT u,z ) ,z (1.6)
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N (uv) ,s +
(
v2

)
,n + (vw) ,z +Nν0C

(
v2 − u2

)
=

−h,n +βu

√
Cfu (νT v,z ) ,z (1.7)

P,z = − 1

F 2
u

(1.8)

Nqs,s + qn,n = −Nν0C(s)qn , (1.9)

Moreover ν0 is a curvature parameter, C(s) is dimensionless curvature and
N is a metric coefficient of the orthogonal curvilinear coordinates:

ν0 =
B∗

u

r∗0
(1.10a)

C(s) = r∗0C∗(s) (1.10b)

N =
1

1 + ν0nC(s)
(1.10c)

where r∗0 is some typical radius of curvature of the channel axis.
In the following we will assume the channel to be wide and weakly curved.
Hence we write:

βu À 1 (1.11a)

ν0 ¿ 1 (1.11b)



18 Non linear theory of slowly varying meanders

Note that the assumption (1.11a) allows one to ignore the role of the side
walls, concentrating the attention on the central region of the flow. The
latter does not interact with the side wall boundary layers at least under
natural conditions due to the relatively low slope of natural banks. The as-
sumption (1.11b) implies that the flow field is slightly perturbed with respect
to that in a straight channel. The equations (1.5-1.9) must be solved subject
to boundary conditions which may be written in the dimensionless form:

u = v = w = 0 (z = z0) (1.12)

P = u,z = v,z = w − h−1
s uF 2

uh,s−vF 2
uh,n = 0 (z = F 2

uh) (1.13)

∫ F 2
uh

z0

v dz = qn = 0 (n = ±1) (1.14)

The equations (1.12) impose no slip at the conventional reference level z0;
the equations (1.13) impose the conditions of no stress at the free surface
and the requirement that the latter must be a material surface; finally, the
condition (1.14) imposes the constraint that both the water and the sediment
flux must vanish at the banks.

Closure relationships are then needed for the sediment flux per unit width
q and for the eddy viscosity νT . We now take advantage of the slowly vary-
ing character of flow field and bed topography to assume that the turbulent
structure is in quasi equilibrium with the local conditions, i.e. it is only
slightly perturbed by weak curvature effects. Hence we write:

νT =

( |τ ∗|
ρCfuU∗2

u

)1/2

D(n, s)N (ξ) (1.15)

where τ ∗ is the local value of the bottom stress, D(n, s) is the local di-
mensionless value of the flow depth and N (ξ) is the vertical distribution of
the eddy viscosity in a plane uniform free surface flow. Note that ξ is a
normalized vertical coordinate which reads:
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ξ =
z − [F 2

uh(n, s)−D(n, s)]

D(n, s)
(1.16)

Hence, ξ maps the actual cross section into the rectangle:

ξ0 ≤ ξ ≤ 1 − 1 ≤ n ≤ 1 (1.17)

with ξ0 normalized reference level, a weakly dependent function of the lon-
gitudinal and lateral coordinates, here assumed to be constant and equal to:

ξ0 ' exp(− k√
Cfu

− 0.777) (1.18)

with k = 0.41 the von Karman’s constant. The distribution N (ξ) is taken
to coincide with the classical parabolic distribution characteristic of uniform
flows corrected by Dean’s wake function (1974):

N (ξ) =
kξ(1− ξ)

1 + 2Aξ2 + 3Bξ3
, A = 1.84 B = −1.56 (1.19)
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The closure for the sediment flux per unit width q derives from a well es-
tablished approach of semi empirical nature. In uniform open channel flow
over a homogeneous non cohesive plane bed no significant sediment transport
occurs below some critical value θc of a dimensionless form θ of the average
shear stress τ ∗ acting on the bed, depending on the particle Reynolds num-
ber Rp. With νf kinematic viscosity of the fluid, the Shields stress (Shields
(1936)) and Rp read:

θ =
|τ ∗|

(%s − %)gd∗
(1.20a)

Rp =

√
(sp − 1)gd∗3

νf

(1.20b)

For values of θ exceeding θc but lower than a second threshold value θs,
particles are transported as bedload with a distinct dynamics driven by, but
different from, the dynamics of fluid particles. In the following, sediment
transport will be assumed to occur dominantly as bedload and its direction
deviates from the direction of bottom stress because of the effect of gravity.
Under these conditions, on pure dimensional ground, the average bedload
flux per unit width on a weakly sloping bottom may be given the general
form:

q = Φ(θ − θc; Rp)

(
τ ∗

|τ ∗| + G · ∇hη

)
(1.21)

where η (= F 2
uh−D) is the dimensionless bed elevation.

Furthermore ∇h is (h−1
s ∂/∂s, ∂/∂n), Φ is a monotonically increasing function

of the excess Shields stress (θ − θc) for given particle Reynolds number Rp,
while G is a (2 x 2) matrix dependent on θ, θc and the angle of repose of the
sediment. The function Φ can be estimated through well known empirical of
semi empirical relationships: in the following we use the relation proposed
by Parker (1990).
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Moreover we only account for the prevailing lateral effect of gravity on the
particle motion and write (Parker (1984)):

Gss = Gsn = Gns = 0 (1.22a)

Gnn = −R (1.22b)

with R a typically small parameter which reads:

R =
rc

βu

√
θ

(1.23)

rc being an empirical constant ranging about 0.56 (Talmon et al. (1995)).
The reader should note that (1.21) fails close to sharp fronts (for the case
of arbitrarily sloping beds, see Kovacs & Parker (1994) and Seminara et al.
(2003)).

At last, the problem formulated above is subject to two integral con-
straints stipulating that flow and sediment supply must be constant at any
cross section, hence:

∫ +1

−1

D

∫ +1

ξ0

u(ξ, n, s) dξ dn = constant (1.24)

∫ +1

−1

Φ [θ(n, s)] dn = constant (1.25)
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1.2 Solution for channels with slowly varying

distribution of curvature

Let us consider a sinuous channel characterized by a slowly varying distribu-
tion of curvature of the channel axis. Flow and bottom topography are then
assumed to be slowly varying in both longitudinal and lateral directions. It’s
important to note that the above assumptions do not imply that perturba-
tions of flow and bottom topography are necessarily small. It is then appro-
priate to rescale the longitudinal coordinate s introducing a slowly varying
coordinate σ as follows:

σ =
s∗

r∗0
= ν0s (1.26)

It is now useful to employ the new system of coordinates (σ, n, ξ). Using
the relations (1.26) and (1.16) the chain rule gives:

(s, n, z) → (σ, n, ξ)





∂
∂s

→ ν0
∂
∂σ

+ ν0

[
(1−ξ)D,σ−F 2

uh,σ
D

]
∂
∂ξ

∂
∂n

→ ∂
∂n

+
[

(1−ξ)D,n−F 2
uh,n

D

]
∂
∂ξ

∂
∂z

→ 1
D

∂
∂ξ

(1.27)

and the system (1.5 - 1.9) can be rewritten in the form:
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Nν0u,σ +Nν0

[
(1− ξ)D,σ −F 2

uh,σ
D

]
u,ξ +v,n

+

[
(1− ξ)D,n−F 2

uh,n
D

]
v,ξ

+ν0NCv
= −w,ξ

D
(1.28)

Nν0(u
2),σ +Nν0

[
(1− ξ)D,σ −F 2

uh,σ
D

]
(u2),ξ +(uv),n

+

[
(1− ξ)D,n−F 2

uh,n
D

]
(uv),ξ +

(uw),ξ
D

+2ν0NCuv

=

−Nν0h,σ +NβuCfu +
βu

√
Cfu

D2
(νT u,ξ ),ξ (1.29)

Nν0(uv),σ +Nν0

[
(1− ξ)D,σ −F 2

uh,σ
D

]
(uv),ξ +(v2),n

+

[
(1− ξ)D,n−F 2

uh,n
D

]
(v2),ξ +

(vw),ξ
D

+ν0NC(v2 − u2)

=

−h,n +
βu

√
Cfu

D2
(νT v,ξ ),ξ (1.30)

P,ξ
D

= − 1

F 2
u

(1.31)

Nν0qσ,σ +qn,n +NCν0qn = 0 (1.32)
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To simplify further the system (1.28-1.32) we can use the continuity equation
for the liquid phase (1.28) and perform simple algebra, to obtain:

Nν0uu,σ +Nν0

[
(1− ξ)D,σ −F 2

uh,σ
D

]
uu,ξ +vu,n

+

[
(1− ξ)D,n−F 2

uh,n
D

]
vu,ξ +

wu,ξ
D

+Nν0Cuv

=

−Nνoh,σ +NβuCfu +
βu

√
Cfu

D2
(νT u,ξ ),ξ (1.33)

Nν0uv,σ +Nν0

[
(1− ξ)D,σ −F 2

uh,σ
D

]
uv,ξ +vv,n

+

[
(1− ξ)D,n−F 2

uh,n
D

]
vv,ξ +

wv,ξ
D

−Nν0Cu2

=

−h,n +
βu

√
Cfu

D2
(νT v,ξ ),ξ (1.34)
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The differential problem (1.33-1.34) will be solved with the following bound-
ary conditions:

u = v = w = 0 (ξ = ξ0) (1.35)

P = u,ξ = v,ξ = 0 (ξ = 1) (1.36)

w − ν0NuF 2
uh,σ −vF 2

uh,n = 0 (ξ = 1) (1.37)

∫ 1

ξ0

v dξ = qn = 0 (n = ±1) (1.38)

Integrating the continuity equation of the liquid phase (1.28) in the verti-
cal direction we get a relation for the vertical component of velocity in the
form:

w = −Nν0
∂

∂σ

[
D

∫ ξ

ξ0

u dξ

]
− ∂

∂n

[
D

∫ ξ

ξ0

v dξ

]

−ν0NCD
[∫ ξ

ξ0

v dξ

]
−Nν0U

[
(1− ξ)D,σ −F 2

uh,σ
]

−V
[
(1− ξ)D,n−F 2

uh,n
]

(1.39)

Evaluating (1.39) at the free surface (ξ = 1) and using the kinematic bound-
ary condition (1.37) we obtain the depth-averaged form of the continuity
equation for the liquid phase:

Nν0
∂

∂σ

[
D

∫ 1

ξ0

u dξ

]
+

∂

∂n

[
D

∫ 1

ξ0

v dξ

]
+ ν0NC

[
D

∫ 1

ξ0

v dξ

]
= 0 (1.40)
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Substituting from (1.39) and (1.28) into (1.29-1.30), dividing by βu

√
Cfu we

finally derive an integro-differential system, which reads:

δNuu,σ +
1

βu

√
Cfu

vu,n−δ
Nu,ξ
D

∂

∂σ

[
D

∫ ξ

ξ0

u dξ

]

− 1

βu

√
Cfu

u,ξ
D

∂

∂n

[
D

∫ ξ

ξ0

v dξ

]
− δCNu,ξ

∫ ξ

ξ0

v dξ

+δCNuv

=

−δNh,σ +N
√

Cfu +
1

D2
(νT u,ξ ) ,ξ (1.42)

δNuv,σ +
1

βu

√
Cfu

vv,n−δ
Nv,ξ
D

∂

∂σ

[
D

∫ ξ

ξ0

u dξ

]

− 1

βu

√
Cfu

v,ξ
D

∂

∂n

[
D

∫ ξ

ξ0

v dξ

]
− δCNv,ξ

∫ ξ

ξ0

v dξ

−δCNu2

=

− h,n

βu

√
Cfu

+
1

D2
(νT v,ξ ) ,ξ (1.43)

δN
∂

∂σ

[
D

∫ 1

ξ0

u dξ

]
+

1

βu

√
Cfu

∂

∂n

[
D

∫ 1

ξ0

v dξ

]
+ δNC

[
D

∫ 1

ξ0

v dξ

]
= 0

(1.44)

Nδqσ,σ +
1

βu

√
Cfu

qn,n +δNCqn = 0 (1.45)

where δ is the small parameter:

δ =
ν0

βu

√
Cfu
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We may then expand the unknown functions in a neighborhood of the so-
lution for uniform flow in a straight channel with an unknown shape of the
cross section and an unknown slope of the free surface, the latters described
by a slowly varying function D0(n, σ) of both the longitudinal and lateral
coordinates and a slowly varying function h00,σ(σ) of the longitudinal coor-
dinate only. Hence:

(u, v, w,D) = [u0(ξ, n, σ), 0, 0, D0(n, σ)] +

+
∞∑

m=1

(um, vm, wm, Dm) (δ)m (1.46)

Note that, in order to account for the small variations of the longitudinal
free surface slope associated with channel curvature, the free surface eleva-
tion must have distinct contributions, according to the following expansion:

h(σ, n) =
h00(σ)

δ
+ δh1(σ, n) +

∞∑
m=1

[(
h0m

δ
+ δhm+1(σ, n)

)
δm

]
(1.47)

We may now substitute from (1.46, 1.47) into (1.42 - 1.45) and equate like-
wise powers of δ, to obtain a sequence of differential problems, to be solved
in terms of the unknown functions D and h,σ.
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1.3 Leading order solution: uniform flow in

a straight channel with unknown cross-

sectional shape and unknown free surface

slope

At the leading order of approximation O(δ0), the longitudinal component of
the Reynolds equations (1.42) reduces to a uniform balance between gravity
and friction in a channel with unknown distribution of flow depth D0(n, σ)
and free surface slope -h00,σ (σ) with relative boundary condition (1.35 -
1.36):





1
D2

0
[νT0u0,ξ ] ,ξ = h00,σ −

√
Cfu

u0,ξ |1= 0
u0 |ξ0= 0

(1.48)

After setting:

u0 = D
1/2
0 (n, σ)R

1/2
0 (σ)F0(ξ, n, σ) (1.49)

νT0 = D
3/2
0 (n, σ)R

1/2
0 (σ)N (ξ) (1.50)

with R0 = 1− h00,σ/
√

Cfu, one finds:





[N (ξ)F0,ξ] ,ξ = −√
Cfu

F0,ξ |1= 0
F0 |ξ0= 0

(1.51)
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The solution for F0 is the classical logarithmic distribution corrected by a
wake function:

F0(ξ) =

√
Cfu

k

[
ln

ξ

ξ0

+ A(ξ2 − ξ2
0) + B(ξ3 − ξ3

0)

]
(1.52)

where ξ0 is the normalized conventional reference level, here assumed to
be constant. Also note that the function F0 satisfies the following integral
constraint:

∫ 1

ξ0

F0 dξ = 1− ξ0 (1.53)
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1.4 First order: secondary flow induced by

curvature and longitudinal variations

At first order O(δ1), the transverse component of the Reynolds equations
(1.43) reduces to a balance between lateral component of gravity, centripetal
inertia and lateral friction in a channel with unknown, yet slowly varying,
distributions of flow depth D0(n, σ) and free surface slope (-h00,σ) as well as
given slowly varying distribution of channel curvature c(σ). We find:





1
D2

0
[νT0v1,ξ] ,ξ = h1,n

βu

√
Cfu

− u2
0C

v1|ξ0 = 0
v1,ξ|1 = 0

(1.54)

We then set:

v1 = D
3/2
0 (n, σ)R

1/2
0 (σ)G1(ξ, n, σ)C(σ) (1.55)

∂h1

∂n
= βu

√
CfuD0(n, σ)R0(σ)C(σ)a1(n, σ) (1.56)

where G1 is the solution of the following ordinary differential problem:





[N (ξ)G1,ξ] ,ξ = a1(n, σ)− F 2
0 (ξ)

G1|ξ0 = 0
G1,ξ|1 = 0

(1.57)
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Let us write the solution for G1 in the form:

G1 = a1(n, σ)G11(ξ) + G12(ξ) (1.58)

where:

G1j = gj(ξ)−
g′j|ξ=1

g′0|ξ=1

g0(ξ) (j = 1, 2) (1.59)

and gj (j = 0, 1, 2) are solutions of ordinary differential systems:





[N (ξ)gj, ξ] ,ξ = δi

gj|ξ0 = 0
gj, ξ|ξ0 = 1

(1.60)

where:

δ0 = 0 δ1 = 1 δ2 = −F 2
0 (ξ, σ, n) (1.61)

The solutions for the functions gj are obtained in an analytical form, as
shown in Appendix E and depend only on the normalized conventional refer-
ence level ξ0. Also note that a relation between the functions F0 (1.51) and
G1 (1.57) can be easily found in the form:

F0 = −
√

CfuG11 (1.62)
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We may then proceed to determine the function a1(n, σ) firstly expressing
the depth-averaged form of the continuity equation for the liquid phase (1.40)
at O(δ):

∂

∂σ

[
D0

∫ 1

ξ0

u0 dξ

]
+

1

βu

√
Cfu

∂

∂n

[
D0

∫ 1

ξ0

v1 dξ

]
= 0 (1.63)

and secondly integrating the latter over the cross section, with the use of
the boundary condition (1.38) written at O(δ):

∫ 1

ξ0

v1 dξ = 0 (n = ±1) (1.64)

to obtain:

∂

∂σ

∫ n

1

[
D0

∫ 1

ξ0

u0 dξ

]
dn +

1

βu

√
Cfu

[
D0

∫ 1

ξ0

v1 dξ

]
= 0 (1.65)

Substituting (1.49) and (1.55) into the latter equation we find:

a1(n, σ) = a10 − a11

CD5/2
0 R

1/2
0

∂

∂σ

(∫ n

−1

D
3/2
0 R

1/2
0 IF0dn

)
(1.66)

where:

a10 = −IG12

IG11

a11 =
βu

√
Cfu

IG11

(1.67)

and If is the integral (
∫ 1

ξ0
fdξ).

It’s important to note that the coefficients (1.67) are analytical and depend
on the normalized conventional reference level ξ0 only.
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Furthermore we observe that the secondary flow expressed in (1.55) can
be split in two different contributions: the former v10 is correlated to the
curvature of the channel axis and has a vanishing depth average, the latter
v11 is due to the longitudinal variations of the flow field. This can be easily
shown rearranging the equation (1.55) using the relation (1.66):

v1 = v10 + v11 (1.68)

v10 = D
3/2
0 R

1/2
0 C (a10G11 + G12) (1.69)

v11 = −βu

√
Cfu

D0

F0
∂

∂σ

(∫ n

−1

D0U0dn

)
(1.70)

where:

U0 =
1

1− ξ0

∫ 1

ξ0

u0 dξ =
1

1− ξ0

Iu0 (1.71)

is the depth average of the longitudinal velocity.
Let us then calculate the depth average of the transversal velocity:

V1 =
1

1− ξ0

∫ 1

ξ0

v1dξ = v10 + v11 (1.72)
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Using the equations (1.53), (1.67) and (1.72) we can readily show that:

v10 = 0 (1.73)

v11 = −βu

√
Cfu

D0

∂

∂σ

(∫ n

−1

D0U0dn

)
= V1 (1.74)

Hence, comparing (1.74) with (1.70) and using (1.68) we can write:

v1(σ, n, ξ) = v10(σ, n, ξ) + F0(ξ)V1(σ, n) (1.75)

Let us finally come to the sediment continuity equation. Firstly, the clo-
sure relationships (1.21 - 1.23) for the bedload flux q, rewritten in terms of
the rescaled coordinates, allow us to write:

qσ = Φ (1.76)

qn = qσ

[
τn

|τ | −
R
√

θu√
θ

(F 2
uh−D),n

]
(1.77)

The lateral component of the bedload flux qn can also be written in the form:

qn = qσ

[
v,ξ
u,ξ
|ξ0 − δ

R′√θu√
θ

(F 2
uh−D),n

]
(1.78)

Here, we have introduced the O(1) parameter R′ = R
δ
: in fact, the slowly

varying character of the lateral distribution of flow depth is due to the quan-
tity R being O(δ).
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Expanding the equation (1.78) with the use of (1.76) at O(δ) we find:

qn1 = qσ0

[
v1,ξ

u0,ξ

|ξ0 +
R′D0,n√
D0R0

]
(1.79)

having set θ0 = θuDoR0.
Let us finally come to the sediment continuity equation (1.45) integrated over
the cross section with the use of the boundary condition (1.38). At O(δ) we
find:

∂

∂σ

∫ n

1

qσ0 dn +
1

βu

√
Cfu

qn1 = 0 (1.80)

Finally, substituting from (1.79) into (1.80), the latter equation can be re-
duced to the following non linear partial integro-differential equation for the
unknown functions D0(n, σ) and h00,σ (σ):

D0,n = −
√

D0R0

R′

[
v1,ξ
u0,ξ

|ξ0 +
βu

√
Cfu

qσ0

∂

∂σ

∫ n

−1

qσ0 dn

]
(1.81)
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This equation has to be solved subject to the integral constraints (1.24) and
(1.25) evaluated at the order O(δ0):

∫ +1

−1

D
3/2
0 IF0 dn = 2(1− ξu) (1.82)

∫ +1

−1

qσ0 dn = 2Φu (1.83)

These constraints can be reinforced by choosing appropriately the quantity
h00,σ and the boundary condition for D0(n, σ) at one of the banks. For a
complete description of the numerical procedure employed to solve the latter
equation the reader is referred to Appendix C.
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1.5 First order: correction of longitudinal mo-

tion due to convective effects

Our leading-order solution for the longitudinal velocity was simply a uniform
flow slowly varying in the longitudinal and lateral directions and character-
ized by a free surface slope corrected with respect to the average intrinsic
slope. However, because of the effects of curvature and flow variations, lon-
gitudinal momentum is transported outward close to the free surface and
inward close to the bed. As a result, a perturbation of longitudinal velocity
is then produced. In fact, by perturbing (1.15) we obtain:

νT = νT0

[
1 + δ

(
D1

D0

+
u1,ξ
u0,ξ

|ξ0
)

+ O(δ2)

]
(1.84)

We refer to Appendix A.1 for a complete derivation of (1.84).
At first order O(δ1), in the Reynolds equation (1.42) contributions due to
lateral, vertical and longitudinal transport of momentum appear. Further
effects are due to metric transverse variation of curvature, topographic ef-
fects, perturbation of flow depth and longitudinal free surface slope. After
setting:

νT1

νT0

=
D1

D0

+
u1,ξ
u0,ξ

|ξ0 (1.85)

and using the longitudinal differential problem at previous order (1.48) we
find:
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



1
D2

0
[νT0u1,ξ] ,ξ = −√

CfuR0

(
D1

D0
− u1,ξ

u0,ξ
|ξ0

)
+ nCR0βuCfu + h01,σ

+u0u0,σ

1

βu

√
Cfu

v1u0,n

−u0,ξ
D0

∂
∂σ

[
D0

∫ n

−1
u0 dn

]

− 1

βu

√
Cfu

u0,ξ
D0

∂
∂n

[
D0

∫ n

−1
v1 dn

]

u1|ξ0 = 0
u1,ξ|1 = 0

(1.86)

Hence, defining:

u1 = D
1/2
0 (n, σ)R

1/2
0 (σ)F1(ξ, n, σ) (1.87)

and using equations (1.49), (1.50), (1.55), some algebra allows us to derive
the problem for F1, which reads:





[N (ξ)F1,ξ] ,ξ = R1

+1
2
R2 [F 2

0 ]
+1

2
R3 [F0CG1]

−3
2
R2b

[
F0,ξ

∫ ξ

ξ0
F0 dξ

]

−5
2
R3

[
F0,ξ

∫ ξ

ξ0
CG1 dξ

]

F1|ξ0 = 0
F1,ξ|1 = 0

(1.88)
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where:

R1 = −√
CfuR0

(
D1

D0
− u1,ξ

u0,ξ
|ξ0

)
+ nCR0βuCfu + h01,σ

R0

R2 = D0,σ +D0

R0
R0,σ

R2b = D0,σ + D0

3R0
R0,σ

R3 = 1

βu

√
Cfu

D0D0,n

(1.89)

The solution for F1 can be given the form:

F1 = R1F11 − 1

2
R2F12 − 1

2
R3F13 − 3

2
R2bF14 − 5

2
R3F15 (1.90)

where:

F1j = fj(ξ)−
f ′j|ξ=1

f ′0|ξ=1

f0(ξ) (j = 1, 5) (1.91)

and fj (j = 0, 1, 2, 3, 4, 5) are solutions of the following ordinary differen-
tial systems:





[N (ξ)fj, ξ] ,ξ = δi

fj|ξ0 = 0
fj, ξ|ξ0 = 1

(1.92)
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where:

δ0 = 0
δ1 = 1
δ2 = −F 2

0

δ3 = −F0CG1

δ4 = F0,ξ
∫ ξ

ξ0
F0 dξ

δ5 = F0,ξ
∫ ξ

ξ0
CG1 dξ

(1.93)

We note from (1.60) that f0 = g0, f1 = g1, f2 = g2.
It can be easily shown that previous forcing terms come from the following
contributions due to convective effects and coordinate transformation (refer
to 1.42 and 1.43). In particular:

−F 2
0 → Nuu,σ

−F0CG1 → vu,n

F0,ξ
∫ ξ

ξ0
F0 dξ → Nu,ξ

D
∂
∂σ

[
D

∫ ξ

ξ0
u dξ

]

F0,ξ
∫ ξ

ξ0
CG1 dξ → u,ξ

D
∂
∂n

[
D

∫ ξ

ξ0
v dξ

]
(1.94)

In the Appendix E it is shown that all the functions F1j can be expressed
as combinations of simpler contributions depending only on the normalized
conventional reference level ξ0.
To evaluate the coefficient R1 a closure relationship for

u1,ξ
u0,ξ
|ξ0 is needed. The

latter can be readily obtained starting from (1.49) and (1.87):

u1,ξ
u0,ξ

|ξ0 =
F1,ξ
F0,ξ

|ξ0 (1.95)



1.5 First order: correction of longitudinal motion 41

Then, using the relation (1.90) and solving (1.95) for
u1,ξ
u0,ξ
|ξ0 we find:

u1,ξ
u0,ξ

|ξ0 =
1

1−√
Cfu

F11,ξ
F0,ξ

|ξ0

[(
−

√
Cfu

D1

D0

+ nCβuCfu +
h01,σ
R0

)
F11,ξ
F0,ξ

|ξ0

−1

2
R2

F12,ξ
F0,ξ

|ξ0 −
1

2
R3

F13,ξ
F0,ξ

|ξ0

−3

2
R2b

F14,ξ
F0,ξ

|ξ0 −
5

2
R3

F15,ξ
F0,ξ

|ξ0
]

(1.96)
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1.6 Second order: correction of secondary flow

due to convective effects

Many second-order effects arise in the equation governing the secondary flow.
Indeed the O(δ1) correction of longitudinal velocity affects the centrifugal
term and further contributions are due to the lateral variations of the lat-
eral component of momentum, to topographic effects and perturbations of
the eddy viscosity forced by perturbations of flow depth and longitudinal
velocity. The lateral component of Reynolds’ equation at order O(δ2), using
the differential problem at previous order (1.54) and the perturbation of the
eddy viscosity (1.85), is readily written in the form:





1
D2

0
[νT0v2,ξ] ,ξ =

(
h1,n

βu

√
Cfu

− Cu2
0

) (
D1

D0
− u1,ξ

u0,ξ
|ξ0

)

+βu

√
CfunC2u2

0 + h2,n

βu

√
Cfu

+u0v1,σ

1

βu

√
Cfu

v1v1,n

−v1,ξ
D0

∂
∂σ

[
D0

∫ n

−1
u0 dn

]

− 1

βu

√
Cfu

v1,ξ
D0

∂
∂n

[
D0

∫ n

−1
v1 dn

]

−2cu0u1

v2|ξ0 = 0
v2,ξ|1 = 0

(1.97)

Hence, defining:

v2 = D
3/2
0 (n, σ)R

1/2
0 (σ)G2(ξ, n, σ)C(σ) (1.98)

∂h2

∂n
= βu

√
CfuD0(n, σ)R0(σ)C(σ)a2(n, σ) (1.99)
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and using equations (1.49), (1.50), (1.55), (1.56), (1.85), (1.87), some algebra
allows us to derive the differential system for G2:





[N (ξ)G2,ξ] ,ξ = a2 + R5 a1

+R4b [F 2
0 ]

R6b

C [F0CG1]
+3

2
R3

C [(CG1)
2]

−2 [F0F1]

−3
2

R2b

C

[
CG1,ξ

∫ ξ

ξ0
F0 dξ

]

−5
2

R3

C

[
CG1,ξ

∫ ξ

ξ0
CG1 dξ

]

+R7

C
[
F0

∂
∂σ

(CG1)
]

G2|ξ0 = 0
G2,ξ|1 = 0

(1.100)

where:

R4b = −
(

D1

D0
− u1,ξ

u0,ξ
|ξ0

)
+ nCβu

√
Cfu

R5 =
(

D1

D0
− u1,ξ

u0,ξ
|ξ0

)

R6b = 3
2
R2b

R7 = D0

(1.101)

and the other coefficients are the same as shown in equations (1.89). In the
previous analysis terms deriving from G1,n were neglected taking advantage
of the slowly varying assumption.
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The solution for G2 can be given the form:

G2 = a2 G21 + G̃22 (1.102)

with:

G̃2 = a1R5G21 −R4bG22 − 2G23 − R6b

C G24 − 3

2

R3

C G25

−3

2

R2b

C G26 − 5

2

R3

C G27 − R7

C G28 (1.103)

where:

G2j = gj(ξ)−
g′j|ξ=1

g′0|ξ=1

g0(ξ) (j = 1, 8) (1.104)

and gj (j = 0..8) are solutions of the following ordinary differential sys-
tems:





[N (ξ)gj, ξ] ,ξ = δi

gj|ξ0 = 0
gj, ξ|ξ0 = 1

(1.105)
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where:

δ0 = 0
δ1 = 1
δ2 = −F 2

0

δ3 = F0F1

δ4 = −F0CG1

δ5 = −(CG1)
2

δ6 = CG1,ξ
∫ ξ

ξ0
F0 dξ

δ7 = CG1,ξ
∫ ξ

ξ0
CG1 dξ

δ8 = −F0
∂
∂σ

(CG1)

(1.106)

Obviously g0, g1 and g2 are the same solutions found in (1.60), hence:

G21 = G11 G22 = G12 (1.107)

Furthermore, we note that g3 is the solution forced by perturbations of the
centrifugal term driven by the longitudinal flow; the remaining terms repre-
sent the contributions of vertical and longitudinal variations of the secondary
flow at order O(δ). Similarly to (1.94) it can be easily shown that terms come
from following contributions:

−F 2
0 → CNu2

F0F1 → CNu2

−F0CG1 → Nuv,σ
−(CG1)

2 → vv,n

CG1,ξ
∫ ξ

ξ0
F0 dξ → Nv,ξ

D
∂
∂σ

[
D

∫ ξ

ξ0
u dξ

]

CG1,ξ
∫ ξ

ξ0
CG1 → v,ξ

D
∂
∂n

[
D

∫ ξ

ξ0
v dξ

]

−F0
∂
∂σ

(CG1) → Nuv,σ

(1.108)

We refer to Appendix E for a complete derivation of functions G2j.
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We proceed to determine the function a2(n, σ) in a quite similar way as done
for (1.65). The depth-averaged form of the continuity equation for the liquid
phase (1.40) at O(δ2), after some algebra, takes the form:

∂

∂σ

[
D1

∫ 1

ξ0

u0 dξ

]
+

∂

∂σ

[
D0

∫ 1

ξ0

u1 dξ

]
+

1

βu

√
Cfu

∂

∂n

[
D1

∫ 1

ξ0

v1 dξ

]

1

βu

√
Cfu

∂

∂n

[
D0

∫ 1

ξ0

v2 dξ

]
+ CD0

∫ 1

ξ0

v1 dξ

−nCβu

√
Cfu

∂

∂σ

[
D0

∫ 1

ξ0

u0 dξ

]
= 0

(1.109)

We then integrate the latter equation over the cross section. With the use of
the boundary condition (1.38) written at O(δ) (1.64) and at O(δ2), namely:

∫ 1

ξ0

v2 dξ = 0 (n = ±1) (1.110)

we find:

+
1

βu

√
Cfu

D1

∫ 1

ξ0

v1 dξ + C
∫ n

−1

[
D0

∫ 1

ξ0

v1 dξ

]
dn

+
∂

∂σ

[∫ n

−1

(
D1

∫ 1

ξ0

u0 dξ + D0

∫ 1

ξ0

u1 dξ

)
dn

]

−Cβu

√
Cfu

∫ n

−1

n
∂

∂σ

[
D0

∫ 1

ξ0

u0 dξ

]
dn

+
1

βu

√
Cfu

D0

∫ 1

ξ0

v2 dξ = 0 (1.111)
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Now a useful relationship is obtained multiplying by nCβu

√
Cfu the depth-

averaged continuity equation (1.65) at O(δ) and integrating the latter in the
lateral direction using (1.64):

−Cβu

√
Cfu

∫ n

−1

n
∂

∂σ

[
D0

∫ 1

ξ0

u0 dξ

]
dn =

C
{

nD0

∫ 1

ξ0

v1 dξ −
∫ n

−1

(
D0

∫ 1

ξ0

v1 dξ

)
dn

}
(1.112)

Substituting from (1.112) into (1.111) we find:

+
1

βu

√
Cfu

[
D1

∫ 1

ξ0

v1 dξ + D0

∫ 1

ξ0

v2 dξ

]

+
∂

∂σ

[∫ n

−1

(
D1

∫ 1

ξ0

u0 dξ + D0

∫ 1

ξ0

u1 dξ

)
dn

]

+CnD0

∫ 1

ξ0

v1dξ = 0 (1.113)

Finally, using (1.98) and (1.102), we end up with an expression for a2:

a2(n, σ) = a20 − a21

CD5/2
0 R

1/2
0

{
+

1

βu

√
Cfu

D1

∫ 1

ξ0

v1 dξ

+
∂

∂σ

[∫ n

−1

(
D1

∫ 1

ξ0

u0 dξ + D0

∫ 1

ξ0

u1 dξ

)
dn

]

+CnD0

∫ 1

ξ0

v1dξ

}
(1.114)
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where:

a20 = −IG̃22

IG21

a21 =
βu

√
Cfu

IG21

(1.115)

The second order correction of secondary flow can be split in a way sim-
ilar to (1.75), with a first contribution characterized by vanishing vertical
average and a second contribution providing the non zero part of the verti-
cal average of the lateral velocity. This can be easily shown rearranging the
equation (1.98) using the relations (1.53) and (1.107):

v2 = v20 + v21 (1.116)

v20 = D
3/2
0 R

1/2
0 C

(
a20G11 + G̃22

)
(1.117)

v21 = − βu

√
Cfu

D0(1− ξ0)
F0

{
1

βu

√
Cfu

D1

∫ 1

ξ0

v1 dξ

+
∂

∂σ

[∫ n

−1

(
D1

∫ 1

ξ0

u0 dξ + D0

∫ 1

ξ0

u1 dξ

)
dn

]

+CnD0

∫ 1

ξ0

v1dξ

}
(1.118)

Let us then calculate the vertical average of the lateral velocity:

V2 =
1

1− ξ0

∫ 1

ξ0

v2dξ = v20 + v21 (1.119)
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Using the equations (1.53), (1.107), (1.115) and (1.119) we can readily show
that:

v20 = 0 (1.120)

v21 = V2 (1.121)

Hence, comparing (1.121) with (1.118) and using (1.116), we can finally ex-
press v2 in the form:

v2(σ, n, ξ) = v20(σ, n, ξ) + F0(ξ)V2(σ, n) (1.122)

Expanding the quantity qn (see the equation 1.78) and using (1.76) and
(1.79), at O(δ2) we obtain:

qn2 = qσ0

[
v2,ξ

u0,ξ

|ξ0 −
u1,ξ

u0,ξ

|ξ0
qbn1

qσ0

− R′(D1,n − F 2
uh1,n)√

D0R0

− Φ1qbn1

q2
σ0

]
(1.123)

having set θ1

θ0
= 2

u1,ξ

u0,ξ
|ξ0 .

We may finally come to the sediment continuity equation (1.45). Integrat-
ing the latter over the cross section, with the use of the boundary condition
(1.38) at O(δ2), it takes the form:

∂

∂σ

∫ n

1

qσ1 dn +
1

βu

√
Cfu

qn2 + C
∫ n

1

qn1 dn− Cβu

√
Cfu

∫ n

1

nqσ0,σ dn = 0

(1.124)

Similarly to (1.112), multiplying by nCβu

√
Cfu the sediment continuity equa-

tion (1.45) at O(δ) and integrating it in the lateral direction, we obtain the
following useful relation:
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−Cβu

√
Cfu

∫ n

−1

nqσ0,σ dn =

C
{

nqn1 −
∫ n

−1

qn1 dn

}
(1.125)

Finally, substituting from (1.123) into (1.124) the latter equation can be
reduced to a non linear partial integro-differential equation for the unknown
functions D1(n, σ) and h01,σ (σ). We find:

D1,n = −
√

D0R0

R′

{
+

v2,ξ
u0,ξ

|ξ0

+
βu

√
Cfu

qσ0

∂

∂σ

∫ n

−1

qσ1 dn

+
βu

√
Cfu

qσ0

Cnqn1

+
Φ1qn1

q2
σ0

+
u1,ξ
u0,ξ

|ξ0qn1

}
+ F 2

uh1,n (1.126)

Clearly this equation has to be solved subject to the integral constraints
(1.24) and (1.25) evaluated at the order O(δ1):

∫ +1

−1

(
D

3/2
0 IF1 + D

1/2
0 D1IF0

)
dn = 0 (1.127)

∫ +1

−1

qσ1 dn = 0 (1.128)

Again we refer to Appendix C for a complete description of the numerical
procedure employed to solve (1.126).



Chapter 2

Non linear theory of slowly
varying meanders: results

In this chapter we briefly report the main results of the present non linear
theory. In figure 2.1 we show two periodic sequences of sine generated me-
anders such that c(s) = cos(λs) (Langbein & Leopold (1966)), characterized
by different dimensionless wavenumbers λ (quite small in figure 2.1a, fairly
large in figure 2.1b). As expected, the phase lag of bed topography relative
to channel curvature is fairly small when convective effects play a negligible
role, i.e. for small wavenumbers. As the latter increases, the location of
maximum scour moves from downstream to upstream of the bend apex and
the pattern of scour and deposits displays oscillations larger than those found
for larger wavelengths.

The corresponding values of the vertically averaged longitudinal velocity
predicted in the previous meander configurations are reported in figure 2.1c
and 2.1d. In both cases, the thread of high velocity (greater for smaller
wavelengths), which shifts from one side to the other side of the channel
with distance through the meander, displays a peak just downstream the
bend apex.
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Figure 2.1: Dimensionless bed elevation (a, b) and dimensionless value of
vertically averaged longitudinal velocity (c, d) predicted by the present the-
ory for two periodic sequences of sine generated meanders, characterized
by different dimensionless wavenumbers. ((a) λ=0.07; (b) λ=0.185; (c)
λ=0.07; (d) λ=0.185). The values of the relevant dimensionless parame-
ters are ds = 5 · 10−3, ν0 = 0.04, ϑu = 0.1, βu=7. Flow is from left to
right.
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Figure 2.2: The dimensionless value of the vertically averaged longitudinal
velocity at leading (a) and first (b) order predicted by the present theory for a
periodic sequence of sine generated meanders, characterized by dimensionless
wavenumber λ=0.185. The values of the relevant dimensionless parameters
are ds = 5 · 10−3, ν0 = 0.04, ϑu = 0.1, βu=7. Flow is from left to right.

In figure 2.2 we show a comparison between the leading and first order
solution of the vertically averaged longitudinal velocity. Note that the first
order contribution has the twofold effect of increasing the velocity magnitude
and shifting the velocity peak downstream . This is due to the main role of
convective effects. The complete flow field calculated in four cross sections
located at different positions along the shorter meander (λ=0.185) are also
reported in figure 2.3. Here the line contours represent the values of the
dimensionless downstream velocity and are plotted together with the vectors
showing the secondary flow and the projection of some streamlines on the
cross section. At the inflection point (figure 2.3a) the secondary flow is nearly
uniform in the cross section and is directed from the left to the right bank
except for regions close to the sidewalls where a secondary flow cell is found.
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Figure 2.3: Isocontours of dimensionless downstream velocity at different
cross sections of the sine generated meander of figure 2.1b (λ=0.185). Vec-
tors showing the secondary motion and the projection of some streamlines
on the cross section are also represented. ((a) sλ/π=0.5; (b) sλ/π=0.75; (c)
sλ/π=1; (d)) sλ/π=1.25). The values of the relevant dimensionless param-
eters are ds = 5 · 10−3, ν0 = 0.04, ϑu = 0.1, βu=7.

In the shallower portion of the cross section, flow is towards the left bank
except for the region close to the sidewall where the secondary flow with
vanishing depth average does again prevail. Downstream of the bend apex
(figure 2.3d) the bed elevation is nearly uniform in the transverse direction
and the secondary flow is driven by convective effects. Also note that the
values of the secondary flow velocity are typically one order of magnitude
smaller than those of the longitudinal motion. However note that, at the
banks, the transverse flow rate has vanishing depth average as required by
the boundary conditions. Moving downstream, the secondary flow driven by
streamline curvature and topographic effects is initially enhanced near the
bottom and close to the outer bank (figure 2.3b). Further downstream it
occupies the outer part of the cross section (figure 2.3c).
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Figure 2.4: (a) Peak value and (b) relative phase lag (λs/π) of the minimum
bed level elevation with respect to the undisturbed bed for different values of
βu. (c) Peak values and (d) relative phase lag of vertically averaged velocity
for different value of βu (ds = 5 · 10−3, ν0 = 0.04, ϑu = 0.1).

The figure 2.4 reports the peak value (a) and relative phase lag (b) of
the minimum bed elevation relative to the undisturbed bed calculated in a
sine generated meander characterized by a given amplitude parameter ν0 for
different values of βu. Note that, for increasing values of βu, the curvature
parameter ν0 being kept constant, the perturbation parameter δ decreases,
hence smaller values of the maximum scour (-ηMIN) are experienced.

Moreover, for small values of βu, the location of the cross section where
the maximum scour is experienced moves from downstream to upstream of
the bend apex as the wavenumber increases. For larger values of βu the trend
is similar but the maximum scour is located upstream of the bend apex even
for small wavenumbers.

The same tendency is shown by the phase lag of the peak value of velocity
calculated along the meander (figure 2.4d).
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Also note that, for given value of βu, the curves representing the maximum
value of velocity (figure 2.4c) are characterized by a peak. In the case of βu=5,
the curve is interrupted because the value of the Shields stress falls below
the threshold of motion anywhere along the entire meander.

A comparison with the leading order solution is also reported in figure 2.5
where it is clear that the convective terms, appearing at first order, generally
contribute to increasing the values of maximum scour and maximum velocity
and to shifting the latter peaks downstream. These corrections are dominant
as βu decreases.
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Figure 2.5: Same as figure 2.4 but at leading order.
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Figure 2.6: Ratio between the mean free surface slope if and the reference
uniform flow slope ifu at leading order (a) and at first order of approximation
(b).

Furthermore, in figure 2.6 we report the ratio between the free surface
slope if , averaged along the entire meander, and the reference uniform flow
slope ifu, at leading order (a) and at the first order of approximation (b).
Note that, at leading order δ0, the mean free surface slope is slightly different
and invariably smaller than the reference uniform slope ifu. In the Appendix
D we show that the latter effect is strictly related to the perturbation of the
shear stresses due to depth variations. On the contrary, at the first order of
approximation δ1, convective terms appear and, for small values of βu, they
lead to an increase of the mean free surface slope. The value of the correction
diminishes as the aspect ratio βu increases. In the Appendix D we show that
the latter effect is strictly related to the perturbation of the shear stresses
due to velocity variations induced by convective effects.





Chapter 3

Non linear bend instability
theory for river meanders

The model presented in the previous chapters is suitable for the formulation
of a non linear bend instability theory. In order to pursue the latter goal
one needs to associate a bank erosion equation to the governing equation for
flow and bed topography. As pointed out in Seminara (2006), the detailed
mechanics of bank erosion, both the continuous process of particle removal
of small particles from the bank surface and the intermittent process of bank
collapse occurring typically during the decaying stage of flood events, depends
on several factors, namely scour at the bank toe, bank cohesion, wetting and
drying of banks, its rate being ultimately controlled by the ability of the
stream to remove sediments accumulated at the bank foot. However, for
long term investigations, rather than attempting to investigate in detail the
mechanics of single events, it is more appropriate to resort to some integrated
formulation: in other words, one simply locates the region of the outer bank
where erosion is expected to occur on the basis of the knowledge of the
hydrodynamic field and simply models the actual intermittent mechanism
as effectively continuous and such to reproduce the averaged effects of the
actual process.
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3.1 Amplification and migration rate: the in-

tegral criterion for bank erosion

It appears to be physically more sensible to compare the evolution of mean-
ders with given amplitudes as their wavelengths and curvatures vary. Thus
we assume that the channel axis follows a sinusoidal curve in the (x∗, y∗)
plane and denote by k∗ its cartesian wavenumber and by ε∗ its amplitude:

y∗a = ε∗ cos(k∗x∗) (3.1)

Normalizing both k∗ and ε∗ by the half-width of the channel B∗
u we read-

ily obtain, as sketched in figure 3.1:

ya = ε cos(kx) (3.2)

Consequently, as shown in the Appendix B, the following relation can be
found:

ν0 = εk2 (3.3)

Figure 3.1: Sketch illustrating channel axis
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We then follow the approach of Ikeda et al. (1981) and assume that bank
erosion is linearly proportional to an excess flow speed at the outer bank
while bank deposition is conversely linearly related to a defect of flow speed
at the inner bank.
Hence we write:

~ζ(s) = ~n E (U |n=1 − U |n=−1) (3.4)

where both the lateral migration speed ~ζ(s) and the depth averaged longitudi-
nal velocity U are scaled by some reference speed U∗

u and E is a dimensionless
long term erosion coefficient. Note that ~n represents the direction orthogonal
to the banks. The suitability of the above linear rule has received some sup-
port (Pizzuto & Meckelnburg (1989)) from field observations on rivers with
fairly uniform cohesive banks. Note that the rule (3.4) is such that channel
width is preserved throughout the process of meander development.

We then define an average measure of the migration vector (ζ̄x, ζ̄y) inte-

grating the local values of ~ζ(s) given by the equation (3.4) along the intrinsic
coordinate s, between two consecutive inflection points:

ζ̄x =

∫ s2

s1

ζx ds (3.5)

ζ̄y =

∫ s2

s1

ζy ds (3.6)

It can be shown (see the Appendix B) that the x and y cartesian components
of the above vector provide measures of the meander wave speed and mean-
der growth rate, respectively. In particular a positive (negative) value of ζ̄x

corresponding to downstream (upstream) meander migration while positive
(negative) values of ζ̄y correspond to meander amplification (attenuation).
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The relation between the average migration vector (ζ̄x, ζ̄y) and meander
amplification ε,t

ε
and migration c can be easily found to have the form:

c = ζ̄x
2

ε2kλ

ε,t

ε
= ζ̄y

π

2ε

k

λ
(3.7)
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3.2 Comparison with linear theory

The figures 3.2a and 3.2b respectively show the meander growth rate and
wave speed as functions of the wavenumber λ for different values of the am-
plitude ε. The values corresponding to the linear theory are also reported
and it is evident that for small wavenumbers, i.e. for meanders characterized
by very slow longitudinal variations, non linear terms are negligible, hence all
the curves tend to collapse. On the contrary, as the wavenumber increases,
the solution strongly depends on the amplitude of the perturbation ε due to
the increasing importance of convective terms. The curves obtained by the
present model are interrupted when the value of the Shields stress falls below
the threshold of motion somewhere along the meander. Clearly, within the
linear context, both amplification and migration rates are not affected by the
value of the amplitude of the initial perturbation ε.
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Figure 3.2: (a) Meander amplification ε,t/ε and (b) wave speed c divided by
the erosion coefficient E versus the wavenumber are reported in the case of
a meander following a sinusoidal planimetric pattern with different values of
amplitude ε. Values corresponding to the linear theory are also reported.
(ds = 5 · 10−3, ϑu = 0.1, βu = 10)
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However, note that the linear solution for flow field and bed topography
depends on the value attained by the small parameter ν0, related to both ε
and λ through the equation 3.3. Hence, for example, in the case of ε = 15
the bed emerges in the linear case for a value of λ = 0.079, the latter value
increasing as ε decreases.

In figure 3.3 we compare the non linear (3.3a) and linear (3.3b) values of
the meander amplification rate ε,t/ε (scaled by the erosion coefficient E) as a
function of the meander wavenumber λ for a given value of the amplitude ε.
Note that, for different values of βu, the non linear solution is characterized
by a peak which corresponds to the value of the critical wavenumber selected
in the meandering process. The location of the peak, i.e. the wavenumber
selected, increases monotonically as βu increases. On the other hand, the lin-
ear solution is highly influenced by the fact that the amplification rate tends
to infinite for values of βu and λ close to the resonant values (βR = 18.25,
λR = 0.123). Close to resonance the linear solution is plotted with dotted
lines when the bed emerges (figure 3.3b, βu = 20).
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planimetric pattern with amplitude ε =10. (ds = 5 · 10−3, ϑu = 0.1)
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In figure 3.4 the wavenumbers corresponding to the maximum bend am-
plification are plotted versus βu for different values of the amplitude ε. Note
that the selected wavenumber depends on the amplitude of the initial per-
turbation and in particular larger wavelengths (smaller wavenumbers) are
associated with larger amplitudes ε. Increasing the reference Shields stress
(compare figure 3.4a and figure 3.4b) and decreasing the relative roughness
(compare figure 3.4c and figure 3.4a) also have a minor influence which leads
to a decrease of the wavenumber selected. The values corresponding to the
linear theory of Blondeaux & Seminara (1985) are also reported in the fig-
ures and show a peak close to the resonant values (βR, λR). It turns out
that, for small values of βu, the non linear model typically selects a larger
wavenumber, i.e. shorter wavelengths. The situation is reversed increasing
bed friction (figure 3.4c), independently of the value attained by the aspect
ratio βu.

In figure 3.5 the values of the meander wave speed c, scaled by the ero-
sion coefficient E, are plotted versus the aspect ratio βu, for the values of
meander wavenumbers selected by bend instability and different values of
the amplitude ε. The wave speed corresponding to the linear theory are also
reported and show the well-known feature of linear resonator (Kevorkian &
Cole (1981)), i.e. that the phase of the response changes quadrant on crossing
the resonant conditions.

Note that the wave speed is strongly affected by resonance for a wide
range of βu leading to results markedly different from the non linear case.
However a common feature is still preserved in the present context: the res-
onant value still distinguishes between upstream and downstream migration
(figure 3.5 a,b,c). Note also that the meander wave speed grows as the me-
ander amplitude decreases (a well known feature, observed in the field, e.g.
Nanson & Hickin (1983)), as Shield stress increases (compare figure 3.5a and
3.5b) and as friction decreases (compare figure 3.5c and 3.5a). Moreover,
for each given meander amplitude ε, a threshold value of the aspect ratio βu

exists above which the model predicts upstream migration, a finding which
confirms the picture obtained in the context of the linear model of Zolezzi &
Seminara (2001). Meander amplification rates are finally reported in figure
3.6 for the values of meander wavenumbers selected by bend instability and
different values of the amplitude ε. Unlike the linear model, amplification
rates are only sligtly affected by the aspect ratio βu for a given amplitude
ε. Similarly to wave speed, the meander amplification rates grows as the
meander amplitude decreases, as Shield stress increases (compare figure 3.6a
and 3.6b) and as friction decreases (compare figure 3.6c and 3.6a).
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Figure 3.5: The values of meander wave speed c divided by the erosion
coefficient E corresponding to the selected wavenumbers for bend instability
are reported versus the aspect ratio βu for different values of the amplitude
ε and compared with the values obtained in the context of the linear theory.
(a) ds = 5 · 10−3, ϑu = 0.1, (b) ds = 5 · 10−3, ϑu = 0.2, (c) ds = 0.1, ϑu = 0.1
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ds = 0.1, ϑu = 0.1



Chapter 4

Application to a case study

We now attempt to substantiate the soundness of the present non linear
model by applying it to a short reach of the Cecina River (Tuscany, Italy),
a gravel bed reach with actively migrating and growing outer banks (Ro-
manelli et al. (2004)). We have compared the results with the linear model,
simulating both the flow field and the bend stability. Furthermore we have
performed a sensibility analysis varying the formative parameters.
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Figure 4.1: The reach of the Cecina River showing the formation of a meander
from a nearly straight configuration. Flow is from right to left.

4.1 The Cecina River

The Cecina river basin is located in central Italy and comprises a basin surface
area of approximately 900 km2 with a total length of about 79 km. The study
site is located a few kilometers upstream from the confluence between the
tributary Sterza and the main course. The criteria guiding the selection of
this site were the availability of aerial photographs taken at different years
(1954, 1978, 1993, 2004) showing the formation of a meander from a nearly
straight reach (Fig.4.1). The river evolution is described in the figures 4.2,
4.3, 4.4, 4.5. Data for the flow discharge were also available from a gauging
station, located just downstream of the study site, at Ponte di Monterufoli.
Grain size distributions were measured at the site and made available to the
Authors (M. Rinaldi, personal communication). The study reach is about
1000 m long and is characterized by an average slope of about ifu = 0.002.
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Figure 4.2: Cecina river in 1954

Figure 4.3: Cecina river in 1978
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Figure 4.4: Cecina river in 1993

Figure 4.5: Cecina river in 2004
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Figure 4.6: Cartesian and intrinsic wavelengths extrapolated from an aerial
picture - 1978

The first group of numerical simulations was performed for a set of data
obtained by extrapolating the plan form shape of the channel axis from a 1978
aerial picture. In that period Cecina channel left its straight set and began
meandering, perhaps because of an antropogenic intervention. The shape
turned out to follow closely a sine generated curve (Langbein & Leopold
(1966)), characterized by a minimum radius of curvature r∗0 ' 263 m, a
cartesian wavelength L∗x ' 910 m, an intrinsic wavelength L∗s ' 970 m
and a channel width 2B∗

u ' 40 m, taken to keep constant throughout the
reach, as plotted in the figure 4.6. Sediments are modeled as uniform and
characterized by d∗ = 7.4 mm, characteristic value for the solid discharge
and obtained by a volumetric sampling, and by d∗ = 19.5 mm characteristic
value for the bottom friction and obtained by a superficial bar sampling. The
value of the effective water discharge Q∗

u ' 110 m3/s (M. Rinaldi, personal
communication) was used in the simulations, corresponding to a uniform flow
depth of D∗

u ' 1.3 m.
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4.2 Prediction of selected wave number: com-

parison between model and field observa-

tion

The values of the relevant parameters could then be calculated to give:

βu ' 15.2 ϑu ' 0.216 ds ' 0.0056
ν0 ' 0.076 λ ' 0.129 k ' 0.138
ifu ' 0.002

(4.1)

D∗
u ' 1.3 m B∗

u ' 20 m U∗
u ' 2.11 m (4.2)

From the 1954 aerial photo (figure 4.7) it is also possible to try and evaluate
the magnitude of the initial perturbation of the channel axis. It can be
easily noted that two parallel straight reaches, probably rectified by human
intervention, are joined together by an oblique stretch. The distance between
the two parallel straight reaches is roughly equal to two channel widths and
finally let us estimate a value of ε = 4. With the latter values, the model
was then run to predict the equilibrium bed topography and the associated
flow field.

Figure 4.7: Initial perturbation of meandering process
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Figure 4.8: The equilibrium configuration of bed topography simulated in
the Cecina river. Bed elevations (scaled by D∗

u) represent deviations from
the averaged bottom associated with the mean longitudinal slope. Flow is
from right to left.
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Figure 4.9: The pattern of longitudinal velocity (scaled by U∗
u) corresponding

to the equilibrium configuration simulated in the Cecina river. Flow is from
right to left.

The former is plotted in the figure 4.8 and shows that the value of the
maximum scour depth relative to the mean bed elevation is slightly larger
than the uniform flow depth and is roughly located at the bend apex. On
the contrary, the position of the forced bars is upstream the bend apex and
shows a value of bed elevation which does not lead to bar emergence. The
corresponding values of the depth averaged longitudinal velocity predicted
for this configuration are reported in the figure 4.9.
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Figure 4.10: Effects of convective terms on the longitudinal and lateral ve-
locity fields (values of speed scaled by U∗

u). Flow is from right to left.
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Note that the thread of high velocity shifts from one side to the other
side of the channel with distance along the meander, displaying a peak just
downstream the bend apex. The value of the maximum velocity is slightly
smaller than 3.1 m/s. It is also interesting to observe that the effect of
convective terms increases the intensity of the flow fields and shifts the peak
of maximum velocity from upstream to downstream of the bend apex (figures
4.10).

In figure 4.11 we have compared the non linear bottom topography with
results obtained by the linear model. It is clear that the two configurations
are significantly different: the linear topography has a pattern of scours and
deposits symmetrical with respect to the channel axis, quite different from
what observed in the field. Furthermore it is important to note that the
linear model predicts a value for the dimensionless deposit of the forced bar
greater than one: this implies that the bottom of the channel emerges. In
figure 4.11 we have also compared the non linear longitudinal depth averaged
velocity with respect to the linear model. We again observe that the flow
field is symmetrical with respect to the channel axis. Although the intensity
of the velocity is quite similar in the two models, the linear theory predicts
a location of the velocity peak in the second quadrant, i.e. downstream of
the bend apex, nearly at the inner bank. Finally, the comparison between
the depth averaged lateral velocities reported in the figure 4.12, shows that
the threads of high velocities in the linear and non linear solutions are sig-
nificantly different in position along the meander, although not in absolute
intensity.
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Figure 4.11: Comparison between non linear and linear model: perturbations
of bed elevation (scaled by D∗

u) relative to the averaged bed elevation and
pattern of depth averaged longitudinal velocity (scaled by U∗

u). Flow is from
right to left.
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Figure 4.12: Comparison between non linear and linear model: pattern of
depth averaged transversal velocity (scaled by U∗

u). Flow is from right to left.

A second simulation was performed in order to ascertain whether the
model is able to predict the wavelength selected in the meandering process.
The aerial picture of 1978 (figure 4.3) already shows evidence of a meandering
process taking place downstream to the connection between the oblique and
straight reaches. The intrinsic wavelength L∗s of the incipient meander can be
estimated at 970 m (corresponding to an intrinsic dimensionless wavenumber
λ = 0.129) and the cartesian wavelength L∗x can be estimated at 910 m (cor-
responding to a cartesian dimensionless wavenumber k = 0.138). The most
recent pictures then clearly reveal the processes of meander amplification and
downstream migration occurred from 1978 to 2004. In the figure 4.13 the
meander amplification rate ε,t

ε
(scaled by the erosion coefficient E) is plotted

versus the meander wavenumber for the values of the dimensionless param-
eters corresponding to the reach of the Cecina river considered as test case.
The predicted value of the wavenumber selected by the non linear bend sta-
bility turns out to be λ ' 0.134 and corresponds to an intrinsic wavelength
L∗s ' 938 m, very close to the value estimated from the aerial pictures.
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Figure 4.13: The meander amplification ε,t
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scaled by the erosion coefficient E

is plotted versus the intrinsic meander wavenumber for the Cecina River reach
investigated. The wavenumber selected by the non linear bend instability
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Figure 4.14: Comparison between results obtained by the non linear model
and the linear model for the amplification coefficient. The intrinsic wavenum-
ber selected by linear theory turns out to be λ ' 0.084, significantly smaller
than the measured value.
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Figure 4.15: Comparison between results obtained by the non linear model
and the linear model for the migration rate.

Furthermore in figure 4.14 and figure 4.15 we have compared results for
the amplification rate ε,t

ε
and for the migration speed c (both scaled by the

erosion coefficient E) with results obtained by the linear theory. It turns
out how the linear model tends to select meanders with a wavelength much
longer than that estimated by aerial pictures. Furthermore in a a linear
contest the observed wavelength λ = 0.129 would be dumped because the
relative amplification rate is negative.

In order to verify the soundness of previous results we have performed a
sensitivity analysis varying some of the formative parameters. In particular
we have changed the most sensitive between the latters: the formative liquid
discharge QE. In figure 4.16 we have reported the non linear amplification
coefficient for different values of QE (in the range 50% QE - 150% QE).
Comparison with the linear theory is reported in figure 4.17. We observe
that results of the non linear model show that the selected wavenumber falls
in the range 0.118 ≤ λ ≤ 0.165, including the wavelength observed in the
1978 aerial picture. On the contrary, the linear theory underestimates the
selected wavenumber which falls in the range between 0.062 ≤ λ ≤ 0.105.
Furthermore, the wavelength nearest to that observed corresponds to a bed
topography such that part of cross section would emerge.
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Figure 4.16: Variation of the amplification coefficient obtained by the non
linear model in the range 50%QE - 150%QE.
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the linear theory: sensitivity analysis for the effect of the formative discarge
QE. The linear model invariably underestimates the selected wavenumber;
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responds to a bed topography such that part of cross section would emerge.
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Figure 4.18: Planimetric evolution of the Cecina river from 1978 to 2004:
observations.

The values of the amplification coefficient and of the migration rate pro-
vided by the non linear model appear to be consistent with field observations.
In fact, referring to figure 4.18, it is possible to note the amplification and
the downstream migration of both the upstream and downstream bends of
the Cecina meander. One easily notes that the free amplifications of both
apex point A and B are quite similar and attain values of Y ∗ = 110 m and
Y ∗ = 120 m, respectively. On the contrary, the migration of the downstream
bend is much smaller than that of the upstream one: this is clearly due to the
presence of a road and of some groups of tall trees, present since 1954 and
quite distinct from shrubs and riparial vegetation which have slowed down
the downstream evolution of the apex B and of the inflection point F .
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We can then assume the value of X∗ = 250 m as characteristic of the free
downstream migration. Finally, as reported in table 4.3, it turns out that
the non linear model predicts a ratio between migration and amplification
rates equal to (+2.8), a value much closer to that observed in the field (X∗

Y ∗ =
+2.17) than the value (+18.50) predicted by linear theory. Note that the
value of the ratio obtained within the context of the present model is not
dependent on the choice of the dimensionless long term erosion coefficient
E, here just assumed to be constant along the entire meander.

Non linear Linear Observed
(2004− 1978)

Amplification rate +0.175 +0.072 −

Migration rate +0.496 +1.330 −
Migration

Amplification
+2.800 +18.50 +2.17

(4.3)
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4.3 Present configuration: equilibrium flow

field and bed topography

In July 2007, in collaboration with a team led by Prof. Massimo Rinaldi,
we have undertaken a topographic survey in order to determine the actual
equilibrium bottom topography (figure 4.19) for the site of interest. From a
glance at figure 4.19 it is possible to highlight immediately the presence of a
deep scour located at the outer bank of the second bend, just upstream of
the apex. To better analyze the results it is convenient to plot the variations
of bottom elevation relative to an inclined plane characterized by the average
channel slope.
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Figure 4.19: Bottom elevation (expressed in meters above m.s.l.) measured
in the Cecina river reach in the survey of July 2007. Flow is from right to
left.
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We have firstly found the correct slope of the latter plane by best fitting
the acquired data in the direction of the maximum slope. As we expected,
the local longitudinal cartesian slope of the river is ix = 0.0023, very close
to the average slope used in the 1978 bend stability simulation and equal to
the slope of the floodplain. As a first attempt we tried to perform a very
rough and preliminary simulation of the bottom topography and flow field
for the actual reach of the Cecina river. In fact, at this stage of development
the non linear numerical code is not yet equipped to deal with non periodic
planimetric configurations and with river width variations. Although in 1978
the Cecina river width was roughly constant and its planimetric configura-
tion could be assumed to follow a sine generated curve, the latter features
are not met in the present configuration (figure 4.20). With the only aim
to substantiate the validity of the theoretical approach we then tried to de-
fine an average free surface width characterizing the Cecina river based on
both the topographical survey and the aerial picture of 2007. In the straight
reach just upstream the site of interest we estimated an average width of
20 m, slightly smaller than the value we best estimated in the curved reach,
being roughly equal to 2B∗

u = 25 m. We then used the latter value for the
following simulation. It was possible, at this point, to determine the correct
elevation of the inclined plane making sure that the intersection of the latter
with measured data generated an average free surface width equal to 2B∗

u

and, consequently, a point bar nearly emerged. We then plotted the differ-
ences between the reference inclined plane and the measured data of bottom
elevation (figure 4.21). To perform a simulation of flow and bed topography
in the surveyed bend, we also need to estimate the formative parameters.
In order to obtain the latters we evaluated the intrinsic wavenumber λ and
the curvature parameter ν0 of the meander from the aerial picture of 2007
(figure 4.20). The formative water discharge Q∗

u was finally estimated such
as to generate in the model a nearly emerged point bar. The values of the
relevant parameters thus obtained and used in the simulation were:

βu ' 12.6 ϑu ' 0.128 ds ' 0.0077
ν0 ' 0.12 λ ' 0.1085
ifu ' 0.00164

(4.4)

D∗
u ' 0.95 m B∗

u ' 25 m U∗
u ' 1.96 m

Q∗
u ' 45 m3

s

(4.5)
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Figure 4.20: Comparison between the simulated wavelength and the actual
planimetric configuration (from Google Earth). Flow is from right to left.

In figure 4.21 we show the comparison between the observed flow depth
and the results obtained by the non linear and the linear models, respectively.
We find that, consistently with measured data, the non linear theory predicts
a maximum (minimum) flow depth at the outer bank (inner bank) located
just downstream (upstream) the bend apex. Note that the bar is almost
emerged. On the contrary, although the intensity is quite similar, the linear
model predicts a phase lag of the maximum depth relative to the bend apex
much larger than the non linear one, while the extension of the scour region
is much larger than the measured one.
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We note that, as shown in figure 4.22, the non linear model predicts a
maximum depth averaged velocity located downstream of the bend apex. On
the contrary, the maximum velocity predicted by the linear model is located
close to the inflection point and the thread of high velocity is very elongated,
reaching the next bend apex at the inner bank. Consequently, the amplifica-
tion coefficient in this case is very close to zero, hence preventing the meander
amplification detected in recent years. In figure 4.23 we plot the average lat-
eral velocity. The non linear model predicts that, just upstream the bend
apex, the average transversal velocity is positive (directed from the inner
to the outer bank). This leads to a shift of the thread of high longitudinal
velocity which is consistently located at the outer bank just downstream the
bend apex. In the following table the main quantitative results are reported.

Non linear Linear Data

Dmax [m] +2.73 +2.80 +2.62

Dmin +0.06 −0.85 ' 0.00

Umax [m
s
] +2.96 +3.68 −

Umin +0.64 +0.35 −

Vmax [m
s
] +0.20 +0.31 −

Vmin −0.20 −0.31 −

(4.6)
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Figure 4.21: Comparison between measured values of flow depth (in meters)
in the Cecina river and the values obtained using the present non linear and
linear models for the 2007 planimetric configuration. Flow is from right to
left.
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Figure 4.22: Comparison between the values of longitudinal average velocity
(in meters/second) obtained using the present non linear and linear models
for the 2007 planimetric configuration. Flow is from right to left.
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Figure 4.23: Comparison between the values of transversal average velocity
(in meters/second) obtained using the present non linear and linear models
for the 2007 planimetric configuration. Flow is from right to left.





Conclusions

A non linear asymptotic theory of flow and bed topography in mean-
dering channels able to describe finite amplitude perturbations of bottom
topography and account for arbitrary, yet slow, variations of channel curva-
ture has been developed. This model appears to be a potentially useful and
powerful tool for many purposes. Firstly, as shown in the present work, one
can formulate a non linear bend instability theory, which predicts several
characteristic features of the actual meandering process and extends results
obtained by classical linear bend theories. In particular, we have found that:

• for given values of the relevant physical parameters, the bend growth
rate peaks at some value of the meander wavenumber, reminiscent of
(but typically larger than) the resonant value of linear stability theory:
a result confirming the weakly non linear results of Seminara & Tubino
(1992), consistently with field observations which show that the wave-
length selected by traditional linear theories is typically larger than
observed values;

• the selected wavenumber depends on the amplitude of the initial per-
turbation (for given value of the relevant dimensionless parameters)
and, in particular, larger wavelengths (smaller wavenumbers) are asso-
ciated with larger amplitudes ε: a feature typical of non linear waves;

• the infinite peak in the linear response at resonance is damped by non
linearity: a result again confirming its weakly non linear counterpart;

• meanders are found to migrate preferentially downstream, though up-
stream migration is also possible, at least in principle, for relatively
large values of the aspect ratio of the channel, a finding in agreement
with the picture provided by the linear theory of Zolezzi & Seminara
(2001);
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• meanders slow down as their amplitude increases (for given value of
the relevant dimensionless parameters), again a feature typical of non
linear waves, driven in the present case by flow rather than geometric
nonlinearities.

In conclusion, the picture offered by results obtained through the present
theory seems fully satisfactory and consistent with field observations as well
as previous theoretical findings. Further substantiation of the model has
been achieved by comparing predictions obtained for a test case (a reach of
the Cecina River, Italy) with field observations.

The availability of this model suggests a number of interesting future
developments.

Firstly, the present model can be readily extended to allow also for slowly
varying variations of channel width: such an extension may allow insight on
the mechanism controlling the development of width oscillations correlated
with channel curvature observed in nature. Moreover, the stability of the
solution for flow and bed topography thus obtained may shed some light on
the observed occurrence of island formation in river bends, along with the
tendency of the stream to bifurcate eventually leading to chute cutoff.

A second extension of the present model can be obtained by coupling the
flow field with a bank erosion law, leading to prediction of the plan form
evolution of the meandering pattern accounting not only for geometric non
linearity but also for flow nonlinearity, the present approach requiring a com-
putational effort much smaller than that needed by numerical solutions of the
full 3-D governing equations or their shallow water version (e.g. Mosselman
(1991), Shimizu (2002) among others).

Finally, a third line of development can be readily obtained by allowing
for slow temporal variations of flow and sediment supply: the morphological
response of the channel to a sequence of flood events can then be investigated.
Such an investigation would possibly provide a rational interpretation of the
as yet loosely defined notion of ’formative discharge of an alluvial river’.
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A.1 Linearization of eddy viscosity νt

In the present section we report the expansion procedure employed for the
eddy viscosity. Starting from the definition of shear velocity in dimensionless
form:

u2
∗ =

νT

√
Cfu

D
u,ξ |ξ0 + O(δ2) (A.1)

we expand νT , D, u and u∗ in powers of δ:

u2
∗0

(
1 + 2δ

u∗1
u∗0

)
=

νT0

√
Cfu

D0

u0,ξ |ξ0
[
1 + δ

(
u1,ξ
u0,ξ

|ξ0 − D1

D0

+
νT1

νT0

)]
(A.2)

Hence, we find:

u2
∗0 =

νT0

√
Cfu

D0

u0,ξ |ξ0 (A.3)

2
u∗1
u∗0

=
u1,ξ
u0,ξ

|ξ0 − D1

D0

+
νT1

νT0

(A.4)

Expanding (1.15) we also find that:

νT0

(
1 + δ

νT1

νT0

)
=
N (ξ)√

Cfu

u∗0D0

(
1 + δ

[
D1

D0

+
u∗1
u∗0

])
(A.5)
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from which we obtain:

νT0 =
N (ξ)√

Cfu

u∗0D0 (A.6)

νT1

νT0

=

[
D1

D0

+
u∗1
u∗0

]
(A.7)

An expression for u∗1
u∗0

is readily obtained substituting from (A.7) into (A.4):

u∗1
u∗0

=
u1,ξ
u0,ξ

|ξ0 (A.8)

Finally, an expression for u2
∗0 can be obtained from (A.3) integrating (1.48)

once. We find:

(νT0u0,ξ ) |ξ0 = D2
0

√
CfuR0 (A.9)

hence, from (A.3), (A.9), (A.6) and (A.7) we obtain an expression for the
eddy viscosity at different orders:

νT0 = D
3/2
0 N (ξ)

√
R0 (A.10)

νT1

νT0

=
D1

D0

+
u1,ξ
u0,ξ

|ξ0 (A.11)

It’s important to note that equation (A.11) is not a function of ξ but de-
pends only on the normalized conventional reference level ξ0.
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A.2 Linearization of dimensionless solid dis-

charge φ

In the following section we briefly report the procedure employed to expand
the dimensionless solid discharge φ.

Firstly, we observe that the dimensionless shear stress can be obtained
by (1.20), in the form:

θ =

√
Cfu (νT u,ξ) |ξ0

D(s− 1)gd∗50

U∗
u + O(δ2) =

θu√
Cfu

1

D
(νT u,ξ) |ξ0 + O(δ2) (A.12)

where θu =
U∗2u Cfu

(s−1)gd∗50
.

Hence, expanding the left side of equation (A.12) we obtain:

θ = θ0 + δ θ1 (A.13)

Expanding the right side of (A.12) at order O(δ0) we find:

θ0 =
θu√
Cfu

1

D0

(νT0u0,ξ) |ξ0 (A.14)

Using (1.48) the latter relationship may be written in the form:

θ0 = θuD0R0 (A.15)
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Furthermore, at order O(δ1), the expansion of the right side of equation
(A.12), after some algebra, gives:

θ1 =
θu√
Cfu

[
1

D0

u1,ξ

u0,ξ

|ξ0 (νT0u0,ξ) |ξ0

+
1

D0

νT1

νT0

(νT0u0,ξ) |ξ0

−D1

D2
0

(νT0u0,ξ) |ξ0
]

(A.16)

Using (1.48) and (A.11) we eventually find:

θ1

θ0

= 2
u1,ξ

u0,ξ

|ξ0 (A.17)

At this stage it is possible to expand the generic relation for the dimension-
less solid discharge φ in powers of the small parameter δ using a particular
bed load transport relationship. In the following we report the treatment for
the classical Meyer-Peter and Müller and Parker equations.
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Meyer-Peter and Müller

φ = 8 (θ − θc)
3/2 θ > θc (A.18)

At order O(δ0) we find:

φ0 = 8 (θ0 − θc)
3/2 θ0 > θc (A.19)

At order O(δ1) we obtain:

φ1

φ0

=
3

2

θ1

θ0

(
θ0

θ0 − θc

)
θ0 > θc (A.20)



102 Linearizations

Parker

φ = 0.00218 θ3/2 G(ζ) ζ =
θ

θr

θr = 0.0386 (A.21)

G(ζ)





5474
(
1− 0.853

ζ

)4.5

ζ ≥ 1.59

e14.2(ζ−1)−9.28(ζ−1)2 1 ≤ ζ < 1.59
ζ14.2 ζ < 1

At order O(δ0) we find:

φ0 = 0.00218 θ0 G0(ζ) ζ0 =
θ0

θr

(A.23)

G0(ζ)





5474
(
1− 0.853

ζ0

)4.5

ζ0 ≥ 1.59

e14.2(ζ0−1)−9.28(ζ0−1)2 1 ≤ ζ0 < 1.59
ζ14.2
0 ζ0 < 1

At order O(δ1) we obtain:

φ1

φ0

=
G1

G0

(ζ) +
3

2

θ1

θ0

(A.24)

G1

G0
(ζ)





4.5
1− 0.853

ζ0

0.853
ζ0

θ1

θ0
ζ0 ≥ 1.59

[14.2− 18.56(ζ0 − 1)] ζ0
θ1

θ0
1 ≤ ζ0 < 1.59

14.2 θ1

θ0
ζ0 < 1



Appendix B

The integral criterion for bank
erosion

In this section we prove the consistency of the proposed integral criterion
applied in the present non linear bend theory and compare it with the local
criterion employed in classical linear analyses.
Following Blondeaux & Seminara (1985), we denote by (x∗a, y

∗
a) the Cartesian

coordinates of the channel axis written in the form:

y∗a = ε∗(t) cos(k∗x∗ − w∗t∗) (B.1)

Normalizing equation (B.1) we obtain:

ya = ε(t) cos(kx− wt) (B.2)

Figure B.1: Sketch illustrating channel axis and notations
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Furthermore we write the dimensional curvature in the form:

C∗ = − y∗
′′

[√
1 + y∗′2

]3 (B.3)

Assuming (B.1), recalling (1.10) and substituting into (B.3) the dimension-
less curvature C can be easily expressed as follows:

C(x) =
εk2

ν0
sin(kx)

[√
1 + (εk)2 cos2(kx)

]3 (B.4)

Since we have scaled the radius of curvature of the channel axis by its mini-
mum value, the maximum value of the dimensionless curvature has to attain
the value C = 1. Hence, it can be readily shown that the following relation
must hold:

ν0 = εk2 (B.5)

At this point, it is important to note that the bank erosion vector ~ζ is related
to the temporal derivative of the channel axis, as sketched in figure B.2:

~ζ = ~n

(
∂ya

∂t
cos α

)
= ~n|~ζ| (B.6)

Furthermore, using (B.2), we also read:

n = (nx, ny) =
(εk sin(kx− wt) , 1)√
1 + ε2k2 sin2(kx− wt)

= (sin α, cos α) (B.7)
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Figure B.2: Sketch illustrating the relation between ~ζ and ya,t

Hence using (B.2), (B.6) and (B.7) we readily obtain the cartesian com-
ponents of the bank erosion rate:

ζx =
εk sin(kx− wt) [ε,tk cos(kx− wt) + εw sin(kx− wt)][√

1 + ε2k2 sin2(kx− wt)
]2 (B.8)

ζy =
[ε,tk cos(kx− wt) + εw sin(kx− wt)][√

1 + ε2k2 sin2(kx− wt)
]2 (B.9)

Following a procedure similar to that developed by Ikeda et al. (1981), defin-
ing an erosion coefficient E, we can also write:

~ζ = ~n (E [δU ] |n=1) (B.10)
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where δU |n=1 is the perturbation of the longitudinal depth averaged velocity
due to secondary flow evaluated at the outer bank. Thus, if we assume a
linear model for the flow field we obtain:

U |n=1 = 1 + U1ν0 cos(kx− wt− θ1) (B.11)

where θ1 is the phase lag of velocity with respect to curvature. Substituting
from (B.11) into (B.10), using (B.5) and (B.7) we find:

ζx =
εk sin(kx− wt) [Eεk2U1 cos(kx− wt) cos θ1 + sin(kx− wt) sin θ1]√

1 + ε2k2 sin2(kx− wt)
(B.12)

ζy =
[Eεk2U1 cos(kx− wt) cos θ1 + sin(kx− wt) sin θ1]√

1 + ε2k2 sin2(kx− wt)
(B.13)

Taking advantage of the assumptions that ν0 and ε be small, noting that
c = w

k
and comparing (B.8 - B.9) with (B.12 - B.13) we readily find the

following relations:

ε,t
εE

= k2U1 cos θ1 (B.14)

c

E
= kU1 sin θ1 (B.15)

which represent the growth rate and the wave speed scaled by the erosion
coefficient E found within a linear context.
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Figure B.3: Sketch illustrating the integral criterion proposed

Next we show the consistency of the integral criterion proposed. Let
us evaluate the average migration vector

(
ζ̄x, ζ̄y

)
integrating the local value

of ζ(s) along the intrinsic coordinate s, between two consecutive inflection
points. Taking advantage of the relation existing between cartesian and in-
trinsic coordinates x and s:

ds =

√
1 +

(
∂y

∂x

)2

dx (B.16)

and using (B.8), (B.9) according with the small amplitude ε of perturba-
tion we obtain:
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ζ̄x

E
=

λ

π

∫ s2

s1

ζx(s) ds =
λ

π

∫ x2

x1

ζx(x) dx =

λ

π

∫ x2

x1

(
ε,tεk sin(kx− wt) cos(kx− wt) + ε2wk sin2(kx− wt)

)
dx

(B.17)

ζ̄y

E
=

λ

π

∫ s2

s1

ζy(s) ds =
λ

π

∫ x2

x1

ζy(x) dx =

λ

π

∫ x2

x1

(ε,t cos(kx− wt) + εw sin(kx− wt)) dx

(B.18)

Finally, due to the fact that x1 and x2 represent cartesian coordinates of two
consecutive inflection points, we find:

c

E
=

ζ̄x

E

2

kλε2
(B.19)

ε,t

εE
=

ζ̄y

E

kπ

2ελ
(B.20)

The equations (B.19) and (B.20) clearly show that evaluating the normalized
wave celerity ( c

E
) and the normalized growth rate( ε,t

εE
), in a non linear con-

text, by integrating numerically the local value of the migration vector along
the intrinsic coordinate s is a consistent procedure. It is worth noticing that

O( ζ̄x

E
) ∼ (ν2

0 = ε2λ4) and O( ζ̄y

E
) ∼ (ν0 = ελ2) hence, the equations (B.19) and

(B.20) are bounded even in the limits ε → 0 or λ → 0.
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Numerical procedure

In this section we describe the numerical resolution procedure we have fol-
lowed in order to solve equation (1.81).
Let us discretize the meander into a number of N cross sections each of
them characterized by P points in the transversal direction. To integrate
the relation (D0,n)j,k along the cross section j, from the inner (k = 0) to the
outer (k = P ) bank, we need a boundary condition for the partial differential
equation and a starting value for the unknown function h00,σ, representing
the correction of free surface slope with respect to the basic uniform flow.
Note that longitudinal derivatives appear in the integro-differential equation
(1.81), hence it follows that there is the need to solve simultaneously all the
N integro-differential equations (1.81) at every cross section. When the in-
tegration process is terminated on the outer bank (k = P ) we have obtained
the numerical values attained by the integral constraints (1.82) and (1.83).
Hence at each cross section j we can evaluate the differences between the
liquid and the solid discharges computed and the assigned values which have
to be satisfied. Denoting by ϕj and φj the latter residual errors, we have to
find the values of the boundary conditions in all meander sections such that
the functions ϕj(j = 1..N) and φj(j = 1..N) vanish:

ϕj =
∫ +1

−1
D

3/2
0 IF0dn− 2(1− ξu) = ϕj (D0|m,0 , h00,σ|m , m = 1..N)

φj =
∫ +1

−1
qσ0dn− 2Φu = φj (D0|m,0 , h00,σ|m , m = 1..N)

[j = 1..N ]

(C.1)
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In other words, the mathematical problem is reduced to a system of
2N non linear algebraic equations (ϕj , φj − j = 1..N) in 2N unknowns
(D0|j,0 , h00,σ|j − j = 1..N). Therefore, the problem is well posed and can
be resolved by a trial and error algorithm. Below we shortly describe the
resolution procedure:

1. Firstly we start with a set of trial values of D0|j,0 and h00,σ|j at each
cross section j at the inner bank (k = 0);

A

2. We then evaluate all the local quantities and calculate the longitudinal
derivatives. With this purpose we have employed a centred scheme
accurate at second order;
A

3. Next we integrate simultaneously all the N integro-differential equa-
tions (1.81) along the transversal direction to the next point k = 1.
This is done employing an Euler-Cauchy implicit method;
A

4. We repeat steps 2-3 until we reach the outer bank (k = P );

B

5. It is then possible to calculate the values of the functions ϕj and φj in
all the N cross sections and verify if they attain a vanishing value;
C

6. Finally we return to step 1, change, by a trial and error procedure,
the values of the initial conditions and repeat the procedure until at
step 5 the constraints are satisfied in every cross section;
A
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To evaluate the longitudinal derivatives at the end sections j = 1 and
j = N we impose periodicity conditions.
It is important to note that this resolution method, coupled with the ana-
lytical solution of the equations along the vertical axis, allows us to solve for
both the flow field and bed topography in a very fast way. For example, if
the initial conditions are ”well posed”, a meander discretized into N = 108
longitudinal cross sections and P = 50 points along the transversal direction,
can be computed in a few seconds on a standard PC. Furthermore, vertical
motion is analitycal and can be represented by any number of points with-
out affecting computational speed, resulting into an approach many orders
of magnitude faster than the fully numerical 3D solution.
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Figure C.1: Sketch illustrating the numerical procedure we have employed
to obtain the bottom and the flow field along the meander



Appendix D

The mechanism responsible for
the correction of free surface
slope

In this section we discuss the mechanism responsible for the increase expe-
rienced by the average free surface slope relative to the equivalent straight
case. At leading order assume that the uniform flat bed configuration is
slightly perturbed by the effects of curvature C of the channel axis and by
the consequent secondary flow which is proportional, say, to some curvature
parameter δ. Hence, we write:

D0 = 1 + δnC (D.1)

Figure D.1: Sketch illustrating bed deformation near the apex C = 1
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We then evaluate the solid discharge φ. The latter obviously depends on
the value of the dimensionless shear stress at the bottom, which reads:

θ = θ0 + δθ1 (D.2)

where, referring to equations (A.15) and (A.17), θ0 and θ1 represent contribu-
tions due to the depth variations (which we have assumed to be proportional
to the curvature parameter) and longitudinal variations of bottom velocity
(which appear at first order due to convective effects).

Hence, if we assume the flow as fully developed or, in other words, if
we neglect longitudinal derivatives (A.17) with (1.89), (1.95), (E.31), (E.33),
(E.35) and (D.1) gives:

θ1

θ0

= −nCβu

√
Cfu − 3C2γ

βuCfu

δ + O(δ2) (D.3)

with the coefficient γ =
∫ 1

ξ0
F0G1 dξ representing the depth averaged con-

tribution of the convective term uv,n. It is important to note that, if we
neglect the role of longitudinal derivatives, the latter integral only depends
on the normalized conventional reference level ξ0. As sketched in figure D.2
the latter term

∫ 1

ξ0
uv,n dξ is positive. At A and B we note that, close to

the free surface, the transversal velocity v is directed from the inner to the
outer bank (positive) and is associated with a positive longitudinal velocity
u greater than the one experienced near the bottom, where v is directed in-
wards (negative): this implies that a net transport of longitudinal momentum∫ 1

ξ0
uv dξ occurs towards the outer bank of the cross section. Furthermore the

vertical distribution of both longitudinal and transversal velocity is greater
near the outer bank with respect to the inner one and this implies, following
the same line of reasoning, that also the terms

∫ 1

ξ0
uv,n dξ is positive. We will

then show that the contribution γ has a crucial influence on the longitudinal
slope of the free surface averaged over one meander wavelength.
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Figure D.2: Lateral transfer of longitudinal momentum

Hence, we write:

θ = θuR0

[
1 + δ

(
nC − nCβ

√
Cfu

)
+ δ2

(
− 3C2γ

βuCfu

− n2C2β
√

Cfu

)]

R0 = 1− h00,σ√
Cfu

(D.4)

The expansion in powers of δ of the dimensionless total solid discharge Φ
evaluated by means of Meyer-Peter and Müller relationship (A.18) integrated
along the transversal section, after some algebra, takes the form:
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Φ =

∫ 1

−1

φ dn = Φ0

{
1 + δ2χ

}
(D.5)

Φ0 = 16 (θuR0 − θc)
3/2

χ = χD + χu

χD =
C2

8

(
θuR0

θuR0 − θc

)2

χu = χum + χuγ

χum =
C2βu

√
Cfu

8

(
θuR0

θuR0 − θc

)2 (
βu

√
Cfu − 2

)
− C2βu

√
Cfu

2

(
θuR0

θuR0 − θc

)

χuγ = −C
2βu

√
Cfu

2

(
θuR0

θuR0 − θc

)
9γ

βuC
3/2
fu

(D.6)

where Φ0 represents the leading order total dimensionless solid discharge,
χD is the perturbation of the latter due to depth variations and χu is the
contribution due to convective effects. The latter can be splitted into a met-
ric term χum and into a contribution generated by the transversal transport
of momentum χuγ .

At this point, neglecting changes in the free surface slope (R0 = 1), the
function Φ0 collapses into the uniform flow total dimensionless solid discharge
Φu and it turns out that the entire function χ is invariably negative within
a large part of the parameter space, as reported in figure D.4.
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Hence, the total solid discharge integrated in the cross section Φ is reduced
with respect to Φu and consequently the flow has to locally increase its free
surface slope (R0 > 1) to compensate for the corresponding decrease of the
total solid discharge. Furthermore, also note that the two contrasting effects
χD (which increases the solid discharge) and χu (which decreases the solid
discharge) appear at the same order of magnitude O(δ2), hence the fact that
their sum χ is negative is independent of δ.



118 The mechanism responsible for the correction of free surface slope

d50

γ

10-2 10-1
0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

γ

Figure D.3: Function γ =
∫ 1

ξ0
F0G1 dξ.
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Figure D.4: Function χ.
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In figure D.5 the dominant contribution for the function χu turns out to
be given by the term χuγ implying that the increment of the free surface
slope is generated mainly by the transversal transport of momentum.

Solving in terms of the unknown R0 the equation D.5 we obtain the local
value of the free surface slope −h00,σ which would generate a solid discharge
equal to the prescribed uniform flow one Φu. Hence, integrating the latter
slopes along the entire meander we find:

if = − λ

2πν0

∫

L=
2πν0

λ

h00,σdσ (D.7)

where if represents the averaged free surface slope, obviously not dependent
on λ.
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Xum

C = 1.00 d50 = 0.1 β = 10

Figure D.5: Dominant effects of the transversal transport of momentum.
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Figure D.6: Averaged meander slope if normalized by the uniform reference
slope ifu

In the figure D.6 the averaged free surface slope equation D.7, scaled
by uniform flow slope, is reported and compared with the results obtained
by the non linear model for different values of the shear stress parameter.
The former equation does not show any appreciable changes by varying the
Shields parameter, hence just one line is reported. On the contrary, the non
linear plots tend to the function D.5 diminishing the value of θu. In fact
the bed deformation, for fixed values of the parameter β, diminishes as θu

decreases (because the mobility of the particles is reduced) getting closer to
the assumption of small deformations (D.1) at the base of this simplified
linear model.
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Analytic integrals

Below we rewrite the functions fj (j = 0..5) and gj (j = 0..8), solutions of the
ordinary differential problems (1.60, 1.92, 1.105), in a reordered and simpli-
fied way to make their numerical evaluation simpler and faster. In particular,
we decompose the functions isolating terms which depend only on the nor-
malized conventional reference level ξ0. It’s also important to note that the
functions Gj [j = 1, 2] will be ever evaluated in the form CGj [j = 1, 2]: in
fact Gj appear ever coupled with curvature C in the secondary flow (1.55) and
(1.98). The latter is a very important aspect from numerical point of view,
avoiding numerical instability eventually due to the presence of C (which be-
comes zero at the inflection points) at denominator of equation (1.58) and
(1.102).

Firstly we have to redefine the Dean’s wake function N (ξ):

N (ξ) =
kξ(1− ξ)

1 + 2Aξ2 + 3Bξ3
=

kξ

1 + ξ − 3Bξ2
= kN̂ (ξ) (E.1)

where

N̂ (ξ) =
ξ

1 + ξ − 3Bξ2
(E.2)
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In a similar way we redefine function F0:

F0(ξ) =

√
Cfu

k
F̂0 (E.3)

where

F̂0(ξ) =

[
ln

ξ

ξ0

+ A(ξ2 − ξ2
0) + B(ξ3 − ξ3

0)

]
(E.4)

Hence, integrating once the system (1.60) for the forcing function δ0 and
using (E.1), we obtain:

g0,ξ =
N̂0

N̂
= ĝ0,ξ (E.5)

where N̂0 = N̂ (ξ)|ξ0 and N̂ = N̂ (ξ). Furthermore integrating again (E.5)
we obtain:

g0 =

∫ ξ

ξ0

N̂0

N̂
dξ = ĝ0 (E.6)

Proceeding in a similar way with the other forcing functions δj (j = 1, 2)
of the system (1.60), after some algebra and using (E.1), (E.3), (E.5) we find:

g1

g1,ξ = 1
k
ĝ1,ξ + g0,ξ

g1 = 1
k
ĝ1 + g0

ĝ1,ξ = ξ−ξ0
N̂

ĝ1 =
∫

ξ−ξ0
N̂

(E.7)
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g2

g2,ξ =
Cfu

k3 ĝ2,ξ + g0,ξ

g2 =
Cfu

k3 ĝ2 + g0

ĝ2,ξ = − 1

N̂

∫
F̂ 2

0

ĝ2 = − ∫ (
1

N̂

∫
F̂ 2

0

)

(E.8)

For the sake of clarity we will abbreviate the quantity
∫ ξ

ξ0
f dξ through the

notation
∫

f .
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Similarly we can deal with solutions of the system (1.92):

f3,ξ

f3,ξ = − 1

kN̂

∫
(F0CG1) + g0,ξ

∫
(F0CG1) = Ca1

∫
(F0g1)− Ca1

g1,ξ

g0,ξ
|1

∫
(F0g0)

+C ∫
(F0g2)− C g2,ξ

g0,ξ
|1

∫
(F0g0)

∫
(F0g0) =

√
Cfu

k
PA0

∫
(F0g1) =

√
Cfu

k2 PA1 +

√
Cfu

k
PA0

∫
(F0g2) =

Cfu

√
Cfu

k4 PA2 +

√
Cfu

k
PA0

(E.9)

f3

f3 = g0 + 1

kN̂0

∫
(F0CG1g0)− g0

kN̂0

∫
(F0CG1)

∫
(F0CG1g0) = Ca1

∫
(F0g1g0)− Ca1

g1,ξ

g0,ξ
|1

∫
(F0g0g0)

+C ∫
(F0g2g0)− C g2,ξ

g0,ξ
|1

∫
(F0g0g0)

∫
(F0g0g0) =

√
Cfu

k
PG0

∫
(F0g0g1) =

√
Cfu

k2 PG1 +

√
Cfu

k
PG0

∫
(F0g0g2) =

Cfu

√
Cfu

k4 PG2 +

√
Cfu

k
PG0

(E.9)
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∫
f3

∫
f3 =

∫
g0 + 1

kN̂0

∫ ∫
(F0CG1g0)− 1

kN̂0

∫
(g0

∫
(F0CG1))

∫ ∫
(F0CG1g0) = Ca1

√
Cfu

k2 IPG1 + C Cfu

√
Cfu

k4 IPG2

+IPG0 d1

∫
(g0

∫
(F0CG1)) = Ca1

√
Cfu

k2 BPA1 + C Cfu

√
Cfu

k4 BPA2

+BPA0 d1

d1 = Ca1

√
Cfu

k
(1− g1,ξ

g0,ξ
|1) + C

√
Cfu

k
(1− g2,ξ

g0,ξ
|1)

(E.9)
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f4,ξ

f4,ξ = 1

kN̂
F0

∫
F0 + g2,ξ

F0

∫
F0 =

Cfu

k2 PH0

PH0 = F̂0

∫
F̂0

(E.10)

f4

f4 = g2 +
∫

(F0

N

∫
F0)

∫
(F0

N

∫
F0) =

Cfu

k3 PF0
(E.11)

∫
f4

∫
f4 =

∫
g2 +

Cfu

k3 IPF0 (E.12)
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f5,ξ

f5,ξ = f3,ξ + 1

kN̂
F0

∫
(CG1)

F0

∫
(CG1) = Ca1F0

∫
g1 − Ca1

g1,ξ

g0,ξ
|1F0

∫
g0

+CF0

∫
g2 − C g2,ξ

g0,ξ
|1F0

∫
g0

F0

∫
g0 =

√
Cfu

k
PI0

F0

∫
g1 =

√
Cfu

k2 PI1 +

√
Cfu

k
PI0

F0

∫
g2 =

Cfu

√
Cfu

k4 PI2 +

√
Cfu

k
PI0

(E.13)

f5

f5 = f3 +
∫

(F0

N

∫
(CG1))

∫
(F0

N

∫
(CG1)) = Ca1

∫
(F0

N

∫
g1)− Ca1

g1,ξ

g0,ξ
|1

∫
(F0

N

∫
g0)

+C ∫
(F0

N

∫
g2)− C g2,ξ

g0,ξ
|1

∫
(F0

N

∫
g0)

∫
(F0

N

∫
g0) =

√
Cfu

k2 PN0

∫
(F0

N

∫
g1) =

√
Cfu

k3 PN1 +

√
Cfu

k2 PN0

∫
(F0

N

∫
g2) =

Cfu

√
Cfu

k5 PN2 +

√
Cfu

k2 PN0

(E.14)
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∫
f5

∫
f5 =

∫
f3 +

∫ ∫
(F0

N

∫
(CG1))

∫ ∫
(F0

N

∫
(CG1)) = Ca1

√
Cfu

k3 IPN1 + C Cfu

√
Cfu

k5 IPN2

+IPN0 d2

d2 = Ca1

√
Cfu

k2 (1− g1,ξ

g0,ξ
|1) + C

√
Cfu

k2 (1− g2,ξ

g0,ξ
|1)

(E.15)
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Hence we can deal with solutions of the system (1.105):

g3,ξ

g3,ξ = g0,ξ + 1

kN̂

∫
(F0F1)

∫
(F0F1) = R1

∫
(F0f1)− 1

2
R2

∫
(F0f2)− 1

2
R3

∫
(F0f3)

−3
2
R2

∫
(F0f4)− 5

2
R3

∫
(F0f5)− k1

∫
(F0f0)

k1 = R1
f1,ξ

f0,ξ
|1 − 1

2
R2

f2,ξ

f0,ξ
|1 − 1

2
R3

f3,ξ

f0,ξ
|1

−3
2
R2

f4,ξ

f0,ξ
|1 − 5

2
R3

f5,ξ

f0,ξ
|1

∫
(F0f3) =

√
Cfu

k
PA0 + 1

kN0

∫
(F0

∫
(F0CG1g0))

− 1
kN0

∫
(F0g0

∫
(F0CG1))

∫
(F0

∫
(F0CG1g0)) = Ca1

Cfu

k3 APG1 + C C2
fu

k5 APG2

+APG0 d3

d3 = Ca1
Cfu

k2 (1− g1,ξ

g0,ξ
|1) + C Cfu

k2 (1− g2,ξ

g0,ξ
|1)

∫
(F0g0

∫
(F0CG1)) = Ca1

Cfu

k3 APA1 + C C2
fu

k5 APA2

+APA0 d3
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g3,ξ

∫
(F0f4) =

√
Cfu

k
PA0 +

Cfu

√
Cfu

k4 (PA2 + APF0)

∫
(F0f5) =

∫
(F0f3) +

∫
(F0

∫
(F0

N

∫
(CG1)))

∫
(F0

∫
(F0

N

∫
(CG1))) = Ca1

Cfu

k4 APN1 + C C2
fu

k6 APN2

+APN0 d4

d4 = Ca1
Cfu

k3 (1− g1,ξ

g0,ξ
|1) + C Cfu

k3 (1− g2,ξ

g0,ξ
|1)

(E.16)
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g3

g3 = g0 + g0

kN̂0

∫
(F0F1)− 1

kN̂0

∫
(F0F1g0)

∫
(F0F1g0) = R1

∫
(F0f1g0)− 1

2
R2

∫
(F0f2g0)− 1

2
R3

∫
(F0f3g0)

−3
2
R2

∫
(F0f4g0)− 5

2
R3

∫
(F0f5g0)− k1

∫
(F0f0g0)

∫
(F0f3g0) =

√
Cfu

k
PG0 + 1

kN̂0

∫
(F0g0

∫
(F0CG1g0))

− 1

kN̂0

∫
(F0g0g0

∫
(F0CG1))

∫
(F0g0

∫
(F0CG1g0)) = Ca1

Cfu

k3 BPG1 + C C2
fu

k5 BPG2

+BPG0 d3

∫
(F0g0g0

∫
(F0CG1)) = Ca1

Cfu

k3 CPA1 + C C2
fu

k5 CPA2

+CPA0 d3

∫
(F0f4g0) =

√
Cfu

k
PG0 +

Cfu

√
Cfu

k4 (PG2 + KF0)

∫
(F0f5g0) =

∫
(F0f3g0) +

∫
(F0g0

∫
(F0

N

∫
(CG1)))

∫
(F0g0

∫
(F0

N

∫
(CG1))) = Ca1

Cfu

k4 BPN1 + C C2
fu

k6 BPN2

+BPN0 d4

(E.17)
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∫
g3

∫
g3 =

∫
g0 + 1

kN̂0

∫
(g0

∫
(F0F1))− 1

kN̂0

∫ ∫
(F0F1g0)

∫
(g0

∫
(F0F1)) = R1

∫
(g0

∫
(F0f1))− 1

2
R2

∫
(g0

∫
(F0f2))

−1
2
R3

∫
(g0

∫
(F0f3))

−3
2
R2

∫
(g0

∫
(F0f4))− 5

2
R3

∫
(g0

∫
(F0f5))

−k1

∫
(g0

∫
(F0f0))

∫
(g0

∫
(F0f0)) =

√
Cfu

k
BPA0

∫
(g0

∫
(F0f1)) =

√
Cfu

k2 BPA1 +

√
Cfu

k
BPA0

∫
(g0

∫
(F0f2)) =

Cfu

√
Cfu

k4 BPA2 +

√
Cfu

k
BPA0

∫
(g0

∫
(F0f3)) =

√
Cfu

k
BPA0 +

Ca1Cfu

k4N0
(AAPG1 − AAPA1)

+
CC2

fu

k6N0
(AAPG2 − AAPA2)

+ d3

kN0
(AAPG0 − AAPA0)

∫
(g0

∫
(F0f4)) =

√
Cfu

k
BPA0 +

Cfu

√
Cfu

k4 (BPA2 − AAPF0)
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∫
g3

∫
(g0

∫
(F0f5)) =

∫
(g0

∫
(F0f4)) +

Ca1Cfu

k4 AAPN1 +
CC2

fu

k6 AAPN2

+d4AAPN0

∫ ∫
(F0F1g0) = R1

∫ ∫
(F0f1g0)− 1

2
R2

∫ ∫
(F0f2g0)− 1

2
R3

∫ ∫
(F0f3g0)

−3
2
R2

∫ ∫
(F0f4g0)− 5

2
R3

∫ ∫
(F0f5g0)− k1

∫ ∫
(F0f0g0)

∫ ∫
(F0f0g0) =

√
Cfu

k
IPG0

∫ ∫
(F0f1g0) =

√
Cfu

k2 IPG1 +

√
Cfu

k
IPG0

∫ ∫
(F0f2g0) =

Cfu

√
Cfu

k4 IPG2 +

√
Cfu

k
IPG0

∫ ∫
(F0f3g0) =

√
Cfu

k
IPG0 + 1

kN̂0

∫ ∫
(F0g0

∫
(F0CG1g0))

− 1

kN̂0

∫ ∫
(F0g0g0

∫
(F0CG1))
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∫
g3

∫ ∫
(F0g0

∫
(F0CG1g0)) = Ca1

Cfu

k3 IBPG1 + C C2
fu

k5 IBPG2

+IBPG0d3

∫ ∫
(F0g0g0

∫
(F0CG1)) = Ca1

Cfu

k3 ICPA1 + C C2
fu

k5 ICPA2

+ICPA0d3

∫ ∫
(F0f4g0) =

√
Cfu

k
IPG0 +

Cfu

√
Cfu

k4 (IPG2 + IBPF0)

∫ ∫
(F0f5g0) =

∫ ∫
(F0f3g0) + Ca1

Cfu

k4 IPN1 + C C2
fu

k6 IPN2

+IBPN0d4

(E.18)
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g5,ξ

g5,ξ = g0,ξ − 1

kN̂

∫
(CG1)

2

∫
(CG1)

2 = C2a2
1

∫
g2
1 + C2

∫
g2
2 + m2

∫
g2
0 − 2Ca1m

∫
(g0g1)

−2Cm
∫

(g0g2) + 2C2a1

∫
(g1g2)

m = Ca1
g1,ξ

g0,ξ
|1 + C g2,ξ

g0,ξ
|1

∫
g1 = 1

k

∫
ĝ1 +

∫
g0

∫
g2 =

Cfu

k3

∫
ĝ2 +

∫
g0

∫
g2
1 = 1

k2 PJ11 + PJ00 + 2
k
PJ10

∫
g2
2 =

C2
fu

k6 PJ22 + PJ00 + 2
Cfu

k3 PJ20

∫
(g0g1) = 1

k
PJ10 + PJ00

∫
(g0g2) =

Cfu

k3 PJ20 + PJ00

∫
(g1g2) =

Cfu

k4 PJ12 + 1
k
PJ10 +

Cfu

k3 PJ20 + PJ00

(E.19)
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g5

g5 = g0 − g0

kN̂0

∫
(CG1)

2 + 1

kN̂0

∫
(C2G2

1g0)

∫
(C2G2

1g0) = C2a2
1

∫
(g2

1g0) + C2
∫

(g2
2g0) + m2

∫
g3
0 − 2Ca1m

∫
(g2

0g1)

−2Cm
∫

(g2
0g2) + 2C2a1

∫
(g0g1g2)

∫
(g2

1g0) = 1
k2 PB11 + PB00 + 2

k
PB10

∫
(g2

2g0) =
C2

fu

k6 PB22 + PB00 + 2
Cfu

k3 PB20

∫
(g3

0) = PB00

∫
(g2

0g1) = 1
k
PB10 + PB00

∫
(g2

0g2) =
Cfu

k3 PB20 + PB00

∫
(g0g1g2) =

Cfu

k4 PB12 + 1
k
PB10 +

Cfu

k3 PB20 + PB00

(E.20)
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∫
g5

∫
g5 =

∫
g0 − 1

kN̂0

∫
(g0

∫
(CG1)

2) + 1

kN̂0

∫ ∫
(C2G2

1g0)

∫
(g0

∫
(CG1)

2) = C2a2
1

∫
(g0

∫
g2
1) + C2

∫
(g0

∫
g2
2) + m2

∫
(g0

∫
g2
0)

−2Ca1m
∫

(g0

∫
(g0g1))− 2Cm

∫
(g0

∫
(g0g2))

+2C2a1

∫
(g0

∫
(g1g2))

∫
(g0

∫
g2
1) = 1

k2 APJ11 + APJ00 + 2
k
APJ10

∫
(g0

∫
g2
2) =

C2
fu

k6 APJ22 + APJ00 + 2
Cfu

k3 APJ20

∫
(g0

∫
(g0g1)) = 1

k
APJ10 + APJ00

∫
(g0

∫
(g0g2)) =

Cfu

k3 APJ20 + APJ00

∫
(g0

∫
(g1g2)) =

Cfu

k4 APJ12 + 1
k
APJ10 +

Cfu

k3 APJ20 + APJ00
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∫
g5

∫ ∫
(C2G2

1g0) = C2a2
1

∫ ∫
(g2

1g0) + C2
∫ ∫

(g2
2g0) + m2

∫ ∫
g3
0

−2Ca1m
∫ ∫

(g2
0g1)− 2Cm

∫ ∫
(g2

0g2)

+2C2a1

∫ ∫
(g0g1g2)

∫ ∫
(g2

1g0) = 1
k2 IPB11 + IPB00 + 2

k
IPB10

∫ ∫
(g2

2g0) =
C2

fu

k6 IPB22 + IPB00 + 2
Cfu

k3 IPB20

∫ ∫
(g3

0) = IPB00

∫ ∫
(g2

0g1) = 1
k
IPB10 + IPB00

∫ ∫
(g2

0g2) =
Cfu

k3 IPB20 + IPB00

∫ ∫
(g0g1g2) =

Cfu

k4 IPB12 + 1
k
IPB10 +

Cfu

k3 IPB20 + IPB00

(E.21)
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g6,ξ

g6,ξ = g0,ξ + 1

kN̂
CG1

∫
F0 − 1

kN̂

∫
(F0CG1)

(E.22)

g6

g6 = g4 +
∫

(CG1

N

∫
F0)

∫
(CG1

N

∫
F0) = +Ca1

√
Cfu

k3 PD1 + C Cfu

√
Cfu

k5 PD2

+PD0 d2

(E.23)

∫
g6

∫
g6 =

∫
g4 +

∫ ∫
(CG1

N

∫
F0)

∫
(CG1

N

∫
F0) = +Ca1

√
Cfu

k3 IPD1 + C Cfu

√
Cfu

k5 IPD2

+IPD0 d2

(E.24)
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g7,ξ

g7,ξ = g0,ξ + 1

kN̂
CG1

∫
(CG1)− 1

kN̂

∫
(CG1)

2

(E.25)
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g7

g7 = g5 +
∫

(CG1

N

∫
(CG1))

∫
(CG1

N

∫
(CG1)) = +α1[

1
k
PZ00]

+α2[
1
k2 (PZ01 + PZ10) + 2

k
PZ00]

+α3[
Cfu

k4 (PZ02 + PZ20) + 2
k
PZ00]

+α4[
1
k3 PZ11 + 1

k2 (PZ01 + PZ10) + 1
k
PZ00]

+α5[
Cfu

k5 (PZ21 + PZ12) +
Cfu

k4 (PZ02 + PZ20)

+ 1
k2 (PZ01 + PZ10) + 2

k
PZ00]

+α6[
C2

fu

k7 PZ22 +
Cfu

k4 (PZ02 + PZ20) + 1
k
PZ00

α1 = m2

α2 = −Ca1m

α3 = −Cm

α4 = (Ca1)
2

α5 = C2a1

α6 = C2

(E.26)
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∫
g7

∫
g7 =

∫
g5 +

∫ ∫
(CG1

N

∫
(CG1))

∫ ∫
(CG1

N

∫
(CG1)) = +α1[

1
k
IPZ00]

+α2[
1
k2 (IPZ01 + IPZ10) + 2

k
IPZ00]

+α3[
Cfu

k4 (IPZ02 + IPZ20) + 2
k
IPZ00]

+α4[
1
k3 IPZ11 + 1

k2 (IPZ01 + IPZ10) + 1
k
IPZ00]

+α5[
Cfu

k5 (IPZ21 + IPZ12) +
Cfu

k4 (IPZ02 + IPZ20)

+ 1
k2 (IPZ01 + IPZ10) + 2

k
IPZ00]

+α6[
C2

fu

k7 IPZ22 +
Cfu

k4 (IPZ02 + IPZ20) + 1
k
IPZ00

(E.27)
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Finally all the functions fj, gj, their derivatives and integrals are decom-
posed into simpler parts which depend only on ξ0 and which are simple to
evaluate in an analytical form:

PAj =
∫

(F̂0ĝj) [j = 0..2]

PF0 =
∫

( F̂0

N̂

∫
F̂0)

PGj =
∫

(F̂0ĝ0ĝj) [j = 0..2]

PH0 = F̂0

∫
F̂0

PIj = F̂0

∫
ĝj [j = 0..2]

PJij =
∫

(ĝiĝj) [i, j = 0..2]

PNj =
∫

( F̂0

N̂

∫
ĝj) [j = 0..2]

APAj =
∫

(F̂0g0PAj) [j = 0..2]

APF0 =
∫

(F̂0PF0)

APGj =
∫

(F̂0PGj) [j = 0..2]

APNj =
∫

(F̂0PNj) [j = 0..2]

BPAj =
∫

(g0PAj) [j = 0..2]

BPGj =
∫

(F̂0g0PGj) [j = 0..2]
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CPAj =
∫

(F̂0g
2
0PAj) [j = 0..2]

BPF0 =
∫

(F̂0g0PF0)

BPNj =
∫

(F̂0g0PNj) [j = 0..2]

IPGj =
∫

PGj [j = 0..2]

IPF0 =
∫

PF0

IPNj =
∫

PNj [j = 0..2]

IBPGj =
∫

BPGj [j = 0..2]

ICPAj =
∫

CPAj [j = 0..2]

IBPF0 =
∫

BPF0

IBPNj =
∫

BPNj [j = 0..2]

AAPGj =
∫

(g0APGj) [j = 0..2]

AAPAj =
∫

(g0APAj) [j = 0..2]

AAPNj =
∫

(g0APNj) [j = 0..2]

AAPF0 =
∫

(g0APF0)

APJij =
∫

(g0PJij) [i, j = 0..2]

PBij =
∫

(g0ĝiĝj) [i, j = 0..2]

IPBij =
∫

PBij [i, j = 0..2]
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PDj =
∫

(
ĝj

N̂

∫
F̂0) [j = 0..2]

IPDj =
∫

PDj [j = 0..2]

PZij =
∫

( ĝi

N̂

∫
ĝj) [i, j = 0..2]

IPZij =
∫

PZij [i, j = 0..2]
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Taking advantage of previous relations we proceed to simplify further the
terms

F1j ,ξ
F0,ξ

|ξ0 (j = 1..5) in the evaluation of function
u1,ξ
u0,ξ
|ξ0 (1.95).

Firstly, integrating once the system (1.51), we obtain an useful relation-
ship for F0,ξ:

F0,ξ =

√
Cfu (1− ξ)

N
(E.29)

Hence using (1.91), (1.92), (E.29) and (E.7) we find:

F11,ξ|ξ0 = 1− f1,ξ
f0,ξ

|1 =
ξ0 − 1

N0

(E.30)

F11,ξ

F0,ξ

|ξ0 = − 1√
Cfu

(E.31)

Similarly we obtain:

F12,ξ

F0,ξ

|ξ0 =

∫ 1

ξ0
F 2

0 dξ√
Cfu (1− ξ0)

(E.32)

F13,ξ

F0,ξ

|ξ0 =

∫ 1

ξ0
F0CG1 dξ√

Cfu (1− ξ0)
(E.33)
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F14,ξ

F0,ξ

|ξ0 = − F0|1√
Cfu

+
F12,ξ|ξ0
F0,ξ|ξ0

(E.34)

F15,ξ

F0,ξ

|ξ0 = −
F0|1

∫ 1

ξ0
CG1 dξ√

Cfu (1− ξ0)
+

F13,ξ|ξ0
F0,ξ|ξ0

(E.35)
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