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NOMENCLATURE

Symbols

A Molar or specific Helmholtz free energy (J mol-1 or J kg-1)

Limiting value of the scaling interval for the inputs and outputs of the neural network

Area

0A Parameter of BWR type equation

a Vector of parameters

a Attractive coefficient in cubic equations of state (J m3 mol-2 or J m3 kg-2)

Reduced Helmholtz free energy, ( )RTAa =

Parameter of BWR type equation

Adjustable parameter in DEoSs with optimized functional form

20a Parameter of the Bender equation

B Second virial coefficient (m3 mol-1 or m3 kg-1)

Parameter of the Bender equation

B
~

Second virial coefficient (m3 mol-1 or m3 kg-1)

0B Parameter of BWR type equation

∗
ηB Reduced second viscosity virial coefficient

Bias1 , Bias2 Neural network biases

b Covolume in cubic equations of state (m3 mol-1 or m3 kg-1)

Parameter of BWR type equation

Adjustable parameter in DEoSs with optimized functional form

C Number of species in mixture

Third virial coefficient (m6 mol-2 or m6 kg-2)

Molar or specific heat capacity (J mol-1 K-1 or J kg-1 K-1)

Parameter of the Bender equation

C
~

Third virial coefficient (m6 mol-2 or m6 kg-2)

0C Parameter of BWR type equation

c Peneloux volume translation in cubic equations of state (m3 mol-1 or m3 kg-1)

Reduced isochoric heat capacity, RCc =

Molar concentration

Parameter of BWR type equation
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Adjustable parameter in DEoSs with optimized functional form

ψc Coefficient of the viscosity equation in ECS form

χc Coefficient of the thermal conductivity equation in ECS form

D Fourth virial coefficient (m9 mol-3 or m9 kg-3)

Diffusion coefficient

Parameter of the Bender equation

D
~

Fourth virial coefficient (m9 mol-3 or m9 kg-3)

0D Parameter of BWR type equation

TD Thermal diffusivity (m2 s-1)

d Deviation function

Parameter of BWR type equation

Adjustable parameter in the non-analytical term of DEoSs with optimized functional

form

Reduced density exponent in DEoSs with optimized functional form

d Derivative

∂ Partial derivative

E Energy

Parameter of the Bender equation

0E Parameter of BWR type equation

e Adjustable parameter in DEoSs with optimized functional form

F Derivative of the temperature scale factor f

Degrees of freedom

Force

Parameter of the Bender equation

f Fugacity

Neural network transfer function

Temperature scale factor

Function

Adjustable parameter in DEoSs with optimized functional form

intf Factor accounting for the energy conversion between internal and translational

modes

G Molar or specific Gibbs free energy (J mol-1 or J kg-1)

input to a neuron of the hidden layer of the neural network
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Parameter of the Bender equation

g Reduced Gibbs free energy, ( )RTGg =

Gravitational acceleration (m·s-2)

Mass reducing ratio

H Molar or specific enthalpy (J·mol-1 or J·kg-1)

Output of the hidden layer of the neural network

Derivative of the density scale factor h

Parameter of the Bender equation

vapH∆ Vaporization enthalpy

h Density scale factor

Reduced enthalpy, ( )RTHh =

I Number of neurons in the input layer of the neural network

Number of terms in equations with optimized functional form

J Number of neurons in the hidden layer of the neural network

J Flux vector of the generic transported quantity

Molar flux

j One-dimensional molar flux

K Number of neurons in the output layer of the neural network

Number of independent variables

k Enthalpy scaling parameter

Bk Boltzmann constant, Bk =1.3806503 J K-1 

ijk Binary-interaction parameter

ijTk , Binary-interaction parameter

ijvk , Binary-interaction parameter

L Likelihood function

ijl Binary-interaction parameter

M Molar mass (kg mol-1)

Generic thermophysical property

Number of points

iM Generic partial molar thermodynamic property of species i in mixture

m Mass of one molecule

AN Avogadro constant, AN =6.0221353×10-23 mol-1 
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n Vector of parameters

n Number of moles (mol)

Parameter in DEoSs with optimized functional form

P Pressure (Pa)

p Partial pressure (Pa)

Q Heat

Q& Heat flow

q& Heat flux

q& One-dimensional heat flux

q Relative molecular surface area

R Molar or specific gas constant (J mol-1 K-1 or J kg-1 K-1)

input to a neuron of the output layer of the neural network

mR Molar gas constant, mR =8.314472 J mol-1 K-1 

r Relative molecular volume

Distance between molecular centers

S Molar or specific entropy (J mol-1 K-1 or J kg-1 K-1)

Scaled output of the neural network

s Reduced entropy, RSs =

Scaling value of a dependent physical variable W of the neural network

Experimental uncertainties

T Temperature (K)

*T Reduced temperature, εTkT B=∗

t Time

Inverse reduced temperature exponent in DEoSs with optimized functional form

U Molar or specific internal energy (J mol-1 or J kg-1)

Scaled input of the neural network

u Reduced internal energy, ( )RTUu =

Scaling value of an independent physical variable V of the neural network

Parameter for the UNIQUAC equation

Velocity (m·s-1)

V Physical input of the neural network

Volume (m3)

Velocity
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v Molar or specific volume (m3 mol-1 or m3 kg-1)

W Physical output of the neural network

Work

w Vector of weighting factors for the neural network

w Speed of sound (m s-1)

Weighting factor for the neural network

X Vector of the true values of the independent variables (not affected by experimental

error)

X Generic transport property

x Molar composition vector, generic or in liquid phase

Independent variable vector

x Molar composition of a specie in mixture

Independent variable

Direction

Y Generic quantity (velocity, temperature, mass concentration of species A in solution

of A and B )

True value of the dependent variable (not affected by experimental error)

y Dependent variable

Molar composition in vapor phase

Direction

y Molar composition vector in vapor phase

Z Compressibility factor, ( )RTPvZ =
Rz Residual compressibility factor, 1−= Zz R

Greek Letters

α Multiplying parameter of the neural network transfer function

Parameter of BWR type equation

β Multiplying parameter of the neural network transfer function

Adjustable parameter in DEoSs with optimized functional form

Γ Integration constant

Γ Potential energy between two molecules

γ Activity coefficient

Multiplying parameter of the neural network transfer function
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Parameter of BWR type equation

Adjustable parameter in DEoSs with optimized functional form

∆ Error deviation

Difference

C∆ Critical enhancement term

E∆ Excess term

h∆ Higher-density term

δ Reduced density, cρρδ =

ε Energy scaling parameter (K)

Parameters of the cubic equation of state expressed in general form

Adjustable parameter in DEoSs with optimized functional form

ijε Binary interaction coefficient

ζ Approximated physical dependence between dependent and independent variables

cH Viscosity reducing parameter (Pa s)

η Viscosity (Pa s)

Adjustable parameter in DEoSs with optimized functional form

ijη Binary interaction coefficient

( )1η Initial density dependence

θ Temperature shape function

κ Scaling parameter for thermal conductivity

cΛ Thermal conductivity reducing parameter from dimensional analysis (W·m-1·K-1)

cΛ
~

Thermal conductivity reducing parameter from an experimental point (W·m-1·K-1)

λ Thermal conductivity (W m-1 K-1)

*λ Reducing parameter for thermal conductivity (W m-1 K-1)

µ Joule-Thomson coefficient (K Pa-1)

iµ Chemical potential of a species in mixture (J mol-1)

ijµ Binary interaction parameter

ξ Correlation length (m)

True physical dependence between dependent and independent variables

Weight of each property in the objective function

Scalar parameter for viscosity
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π Ludolph number, π =3.1415926535

Number of phases

ρ Molar or mass density (mol m-3 or kg m-3)

∗ς Reduced effective cross section

σ Length scaling parameter (m)

Standard deviation

Entropy scaling parameter

τ Momentum flux

τ Inverse reduced temperature, TTc=τ

Temperature dependent parameter for the UNIQUAC equation

Shear stress

φ Density shape function

Mole ratio (moles of one phase / moles of the system)

ϕ Fugacity coefficient

2χ Chi-square, weighted sum of squares of residua

ψ Function of a generic property

Ω Collision integral

ω Acentric factor

ω~ Scaling parameter

ijω Binary interaction parameter

Superscripts

bub Bubble

C Combinatorial

E Excess

ev Evaporation

id Ideal mixture

L Liquid

o Ideal-gas

p Reduced density exponent in the exponential function of DEoSs with optimized

functional form

R Residual

s At saturation condition
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sl Saturated liquid

sv Saturated vapor

t Total

V Vapor

´ First derivative of a function

´´ Second derivative of a function

´´´ Third derivative of a function

ˆ In mixture

– Partial molar property

Subscripts

0 Reference

A Species

B Species

bubble At bubble point

C Critical enhancement term

c Critical value

calc Calculated value

ce Critical enhancement

cub Cubic equation of state

dew At dew point

DEoS Calculated through the DEoS

dg Dilute-gas

E Excess term

EoS Calculated through the EoS

exp Experimental value

Pseudo-experimental value

Exponential term

GBS Gaussian bell shaped

EoSG E − Calculated through the GE-EoS model

H At constant enthalpy

EH For excess enthalpy

I thI − neuron of the input layer of the neural network

i Neuron of the input layer of the neural network
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Dummy index

int Internal

J thJ − neuron of the hidden layer of the neural network

j Neuron of the hidden layer of the neural network

Dummy index

Target

K Kinetic

k Neuron of the output layer of the neural network

l Liquid

M Mixture

m Molar value

Dummy index

max Maximum value

min Minimum value

n Dummy index

Partial derivative with respect to number of moles

At constant number of moles

NA Non-analytical

ob Objective

overall Overall

P Potential

p Isobaric

Dummy index

pol Polynomial term

R1,R2 Reference fluids

r Reduced value

rev Reversible transformation

S Shaft

sc Supercritical region

sl Saturated liquid

sv Saturated vapor

S At constant entropy

T Partial derivative with respect to temperature

At constant temperature
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t Triple point

trans Translational

v Vapor

Isochoric

x At constant molar composition

Direction

y Direction

z For volumetric properties

zd Zero-density

α Phase α

β Phase β

δ Partial derivative with respect to reduced density

η For viscosity

λ For thermal conductivity

ρ Partial derivative with respect to density

At constant density

τ Partial derivative with respect to inverse reduced temperature

ϕ For saturation properties

Acronyms

AAD Average absolute deviation

ANN Artificial neural network

CS Corresponding states

DEoS Dedicated equation of state

ECS Extended corresponding states

EoS Equation of state

FPMC Forced Path Mechanical Calibration

LLE Liquid-liquid equilibrium

MAD Maximum absolute deviation

MLFN Multilayer feed-forward neural network

NN Neural network

NPT Number of points

PR Peng-Robinson cubic equation of state

RK Redlich-Kwong cubic equation of state
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SRK Soave-Redlich-Kwong cubic equation of state

STD Standard deviation

vdW van der Waals cubic equation of state

VLE Vapor-liquid equilibrium

VLLE Vapor-liquid-liquid equilibrium

VTD Vibrating tube densimeter





23

Introduction

This thesis work concerns to the development and set up of an innovative modeling technique for

the representation of the thermophysical properties of fluids.

The thermophysical properties are usually subdivided into thermodynamic properties, as for

instance phase equilibrium, density, enthalpy, entropy, heat capacities, speed of sound, etc., and

transport properties, as for instance viscosity, thermal conductivity, diffusivity, etc.

The thermophysical properties of every substance depend directly on the nature of the molecules

of the substance. A complete understanding of molecular behavior leads to a complete knowledge

of the thermophysical properties of fluids. At present such an understanding is not yet available and

the molecular theories developed up to now do not allow to predictively yield thermophysical

property values with an accuracy sufficient to satisfy the requirements of technical applications.

On the other hand the value of some thermophysical properties can be measured through suitably

designed apparatuses, but it is expensive and time consuming to obtain each time the desired

properties taking new experimental measurements for the considered fluid, exactly at the given

conditions of interest.

For scientific and technological applications the thermophysical property values are supplied in

the format of equations correlating values produced by experiments or molecular theories. This

allows to readily obtain the values of the thermophysical properties of interest as a function of the

operative variables, usually temperature, pressure (or density) and composition.

Furthermore, thermodynamics supplies relations among different thermodynamic properties and

then it permits to reduce the experimental efforts, since the knowledge of some properties allows

the calculation of other ones.

The models used for the representation of thermophysical properties differentiate themselves for

the amount of experimental information required as input; with respect to this aspect, two main

groups of models can be roughly identified.

The first group includes predictive and semi-predictive models that move mainly from a

theoretical basis which undergoes approximations or simplifications. The theory can yield a directly

usable equation, or it can allow to transfer the knowledge about one property to other related

properties for which measurements are not available, or to extend the information on pure fluids to

mixtures of the same fluids. Otherwise, the theory may yield equations containing a set of

parameters that have to be fitted on few experimental data for the fluid of interest. Different levels

of prediction capability are encountered in this group of models, i.e. the number of required

experimental data can be more or less large. The theoretical basis provides generality to the model
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and it allows a quite safe extrapolation outside the range of the data given as input. On the other

hand, also depending on the foundation of the assumed simplifications, such models are often not

accurate enough or are reliable only in a limited interval of conditions.

The second group of models is constituted by empirical and semi-empirical methods, mainly

based on correlations of experimental data. Even if they can have a simplified physical theory as a

background, also in this case a relevant number of measurements is required to correct the deviation

of the tentative model from the real behavior through empirical formulations. Other models simply

assume an empirical equation that is fitted on experimental data. The precision of these models is

higher with respect to the first group, but extrapolation has always to be attempted with care. This

second group includes also the heuristic models considered in the present Ph.D. thesis.

The purpose of a heuristic model is to get the functional representation of a physical dependence

directly from a properly organized data base; the most effective heuristic techniques are

fundamentally based on mathematical models with the characteristic of universal function

approximators.

The usual correlative techniques adopt semi-empirical analytical relations that have been

previously established and that undergo subsequent modification steps in order to adapt the

functional form to the physical evidence reported by experimental data, in a sort of trial-and-error

procedure. On the contrary, a heuristic technique allows to infer the analytical relation between

dependent and independent variables directly from a sufficiently detailed experimental

representation of the studied phenomenon. Therefore no approximated physical model or tentative

equation is initially assumed, but the analytical form of the model is set up through the

mathematical optimization procedure strictly related to the universal function approximator itself.

This heuristic approach, though it does not claim to investigate in detail the physical bases of the

studied phenomena, allows to get very precise, even if quite simple, equations for the representation

of the quantities required in many scientific and technical fields.

Precise analytical expressions of the thermophysical properties of fluids are needed to design,

simulate, and analyze operations of the process engineering in general and of the chemical

engineering in particular. In modern technology there is a constant demand for increasing both the

representation accuracy and the thermodynamic consistency, which is necessary to assure stability

during process simulation.

The two described groups of models, predictive and semi-predictive from the one hand,

empirical and semi-empirical from the other hand, find different applications in the study of a

process. The study of the 2-propanol dehydration process, i.e., the extraction of 2-propanol from a

liquid homogeneous mixture 2-propanol + water, is treated in this thesis work as an exemplification
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case. 2-Propanol and water form an azeotropic mixture that cannot be separated by means of a

conventional distillation process. To overcome this problem a third component can be added as

solvent to allow the separation. How to chose a suitable solvent for the extraction process?

Literature provide only fragmentary information about ternary systems. Predictive and semi-

predictive models can be used to carry out a preliminary investigation of some key properties,

especially phase equilibria, useful to find out a suitable solvent for the separation, to investigate the

feasibility of the extraction process and to design it from a qualitative point of view.

Once the preliminary steps have been carried out and both the system (ternary mixture) and the

process are defined, the necessity of a very precise representation of the thermophysical properties

of the system arises in order to investigate the best operative conditions in which to carry out the

process to optimize its energy consumption. These analysis needs a very precise knowledge of the

thermophysical properties of the system, not only the phase equilibria, but also densities, enthalpies

and entropies.

Usually predictive and semi-predictive models are not suitable to provide the aforementioned

properties with the necessary accuracy; therefore the system of interest need to be deeply

investigated from an experimental point of view in order to provide the basis of data to develop a

very precise model of the system. The aim of the present Ph.D. thesis is the development of a

modern modus operandi joining together powerful heuristic techniques and the most advanced

experimental tools to obtain a very precise representation of the thermophysical properties of the

system of interest with a reduced experimental effort.

In Chapter I the definitions of the thermophysical properties are provided; in Chapter II the

regression techniques used in this thesis are presented.

Section One, comprising Chapters III-VIII, is about thermodynamic properties, Section Two,

comprising Chapters IX and X, is about transport properties.

In Chapter III a review of the state-of-the-art thermodynamic modeling is given; in Chapter IV

an original heuristic modeling technique to develop dedicated equations of state for pure fluids and

mixtures is presented; in Chapter V and VI this modeling technique is applied to obtain dedicated

equations of state for sulfur hexafluoride and 2-propanol respectively. For the fluid sulfur

hexafluoride the entire set of experimental data is from the literature, while for 2-propanol the

literature data have been integrated with ad hoc measured values (see Chapter VIII). In order to

apply the EEoS-NN modeling technique to a case of industrial interest, in Chapter VII the system

propylene + 2-propanol + water has been studied with semi-predictive methods, pointing out the

need of new data. In Chapter VIII new measurements have been presented for the phase behavior

and densities of the propylene + 2-propanol + water mixture, and the composing binary mixtures. 
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The thermodynamic properties of such a complex mixture need to be further investigated, in

particular the phase equilibria and the caloric properties. At present this experimental work is still in

progress and the development of a dedicated equation of state for the propylene + 2-propanol +

water mixture will constitute the further development of this thesis work.

In Chapter IX the models for transport properties calculation are described. In Chapter X an

original heuristic modeling technique to develop dedicated thermal conductivity equations of state

for pure fluids is presented and thermal conductivity equations are obtained from experimental data

for the fluids R152a and CO2.

Finally, the equations necessary for the application of the proposed models are collected in

Appendix.

In this thesis work, treating the regression of equations for the representation of thermophysical

properties directly from experimental data, some concepts and definitions recur very often. In the

analysis of the performance of the obtained models with respect to the experimental data, the

deviation of the values calculated through the model with respect to the data used to regress the

model coefficients is defined as residual error, while the capability of the equation to represent the

data not included in the regression process of the coefficients is defined as prediction accuracy. A

dedicated equation of state is defined as a model with a functional form that is substance-specific.

Dealing with thermodynamic properties, an equation of state is defined to be in a fundamental form

when from it all the thermodynamic properties can be calculated only through differentiation with

respect to the independent variables.
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I. Definition and role of thermophysical properties

1.1. Introduction

Accurate thermophysical properties of fluids, that are gases and liquids, are essential to design

and operation in the chemical process industries.

In the following the attention is focused on the thermophysical properties, that determine how

the state of a fluid changes as response to external stimuli while the properties related to changes of

the molecular entities of the fluid through chemical reactions, i.e. the thermochemical properties,

are not considered. In the group of thermophysical properties a further subdivision can be drawn

between thermodynamic properties and transport properties.

A thermodynamic system is said to be in thermodynamic equilibrium when it is in thermal

equilibrium, temperature gradients are absent, in mechanical equilibrium, all the forces are in exact

balance, and in chemical equilibrium, there is not net change upon time in chemical activities or

concentrations of the system components. Therefore, a system in the thermodynamic equilibrium

condition is a uniform system characterized by the absence of any tendency for a change of state on

a macroscopic scale.

The thermodynamic properties are connected to differences between two states of

thermodynamic equilibrium. It is fundamental to stress that these properties are state functions:

these thermodynamic functions depend neither on the past history of the system nor on the means

by which it has reached a given state, but they depend only on the present conditions, however

reached. Moreover, in equilibrium condition the thermodynamic properties are not independent

each other, being all linked through thermodynamic relations; this constitutes a relevant

characteristic, because properties that are difficult or impossible to measure, but nonetheless are

required for technical applications, can be obtained from the experimentally accessible properties

related to them. This aspect will become clearer along the present Ph.D. thesis.

The transport properties are conversely concerned with a system which is in a non-uniform state

and then it is affected by transport phenomena. A gradient in velocity, temperature or concentration

of species inside the fluid causes a flux of momentum, energy or mass, respectively, that is opposite

to the gradient itself and has an intensity proportional to it; the proportionality coefficient is the

corresponding transport properties. Indicating with J the flux vector of the generic transported

quantity, with Y∇ the imposed gradient and with X the transport property, it can be written [1,2]:

YX ∇−=J (1.1)
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The corresponding quantities are reported in Table 1.1. The application of Eq. (1.1) to velocity

gives Newton’s law of viscosity, the application to temperature is Fourier’s law of heat conduction,

the application to molar concentration of species A in the mixture of species A and B represents

Fick’s law of diffusion in the case of constant molar concentration of the mixture [1]. All the

transport properties depend on temperature, pressure and, if the considered system is a mixture of

fluids, molar composition.

The knowledge of the thermophysical properties of pure fluids and mixtures is an absolutely

crucial need for the design and the optimization of any equipment, particularly in the process

industry but not limited only to this. For instance, thermodynamics is involved each time that

quantities as density, heat capacity, enthalpy difference, vapor pressure, phase compositions at

vapor-liquid equilibrium condition are required; examples of application cases are equipment

design, process control, energetic optimization of unit operations, study of technical feasibility of

processes, search for the best operating conditions, safety analysis, and many others.

Table 1.1: Variables and units for transport property equations, Eq. (1.1).

J Y X

x -Momentum flux:

xτ (N m-2)
Velocity in x -direction:

xu (m s-1)
Viscosity:
η (N s m-2)

Heat flux:
q& (W m-2)

Temperature:
T (K)

Thermal conductivity:
λ (W m-1 K-1)

Molar flux of species A
in solution of A and B:

AJ (mol m-2 s-1)

Molar concentration of species A
in solution of A and B:

Ac (mol m-3)

Diffusion coefficient of species A
in solution of A and B:

ABD (m2 s-1)

The transport properties are fundamental as well. As few examples, the heat exchange process

between two fluid streams is conducted in a heat exchanger whose design requires the knowledge of

the values of viscosity and thermal conductivity for the involved fluids; the calculation of pressure

drop of fluids flowing inside pipes, and then the dimensioning of pumps and the selection of the

pipe diameters, is possible only if viscosity is known; the design of separation equipments or of

chemical reactors, especially if making use of porous solid catalysts, depends on diffusion

coefficients, viscosity and thermal conductivity.

Moreover, the thermophysical properties have to be known in dependence on the controlling

variables with a precision as high as possible: errors in the values of the required properties can
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propagate throughout the entire calculation with amplification effects, yielding wrong design and

driving away from the optimal operating conditions.

In the following paragraphs the most commonly used thermophysical properties are briefly

presented.

1.2. Thermodynamic properties

In this paragraph a summary of thermodynamics for pure fluids and mixtures is given with the

purpose to recall to the Reader both the definitions of the thermodynamic properties used in the

present Ph.D. thesis and the fundamentals of the thermodynamic relations among such properties.

For detailed explanations of all these subjects, several specialized texts can be consulted, as for

instance Refs. 3 and 4.

The hypothetical system here considered is always a non-reacting one and then its chemical

composition is not modified by any chemical reaction taking place in it.

1.2.1. The first law of thermodynamics and basic concepts

The general principle of conservation of energy was established at about the half of the 19th

century as a generalization of the law of conservation of mechanical energy; no exception to it has

been observed in ordinary processes and then it is now regarded as a law of nature. One of the

several possible formulations of the first law of thermodynamics is the following [3]:

Although energy assumes many forms, the total quantity of energy is constant, and when energy

disappears in one form it appears simultaneously in other forms.

The application of the first law of thermodynamics to a closed system, i.e. a system that cannot

exchange matter with its surroundings, undergoing a process gives:

WQEEU PK
t +=∆+∆+∆ (1.2)

where tU∆ , KE∆ and PE∆ are the variations of total internal energy, of total kinetic energy and of

total potential energy, respectively, of the system, while Q represents the heat transferred to the

system and W the work done on the system.

If the variations of kinetic and potential energy are negligible, Eq. (1.2) reads:

WQU t +=∆ (1.3)
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or in differential form:

WQU t ddd += (1.4)

It is very important to keep in mind that internal energy, as the other thermodynamic properties,

is a state function and depends only on the system conditions; this is not true for heat and work, that

represent merely amounts exchanged between the system and its surroundings and then they depend

on the process path.

The total internal energy tU is an extensive property, since depends on the quantity of involved

material, while on the contrary properties as temperature T and pressure P are intensive. The ratio

of the extensive quantity tU to the total number of moles (or to the total mass) of the system gives

the corresponding intensive molar (or specific) property U .

The number of degrees of freedom F , i.e. the number of independent variables that is necessary

to arbitrarily fix in order to exactly define the intensive state of a system, is given by the phase rule

of Gibbs:

π−+= CF 2 (1.5)

where C is the number of components in the system and π the number of phases. For example, a

system constituted by a pure fluid has two degrees of freedom in liquid or vapor states, but at vapor-

liquid equilibrium there is only one independent variable and at the triple point none; a mixture of

two components has three independent variables in liquid or vapor states, while it has only two

independent variables in a two-phases equilibrium state.

In the following the reported thermodynamic properties are considered as intensive (molar or

specific), unless the contrary is expressly indicated.

A widely used thermodynamic property related to internal energy is enthalpy, defined as:

PvUH +≡ (1.6)

where P is the pressure and v is the molar (specific) volume. This property is particularly useful

when studying steady-state steady-flow processes, for which the conditions and the flow rates at all

points along the flow path are constant with time; an example of such a process is schematically

represented in Fig. 1.1.
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Figure 1.1: An example of steady-state steady-flow process.

A unit mass of fluid enters section 1 (placed at level 1z ) with velocity 1u , undergoes heat and

work exchanges, and goes out from section 2 (placed at level 2z ) with velocity 2u ; such a unit mass

can be regarded as a closed system, to which Eq. (1.2) is applied:

( ) WQzzg
uu

UU +=−+
−

+− 12

2
1

2
2

12 2
(1.7)

where the kinetic-energy change of the unit mass of fluid between sections 1 and 2 is

( ) 22
1

2
21,2, uuEEE KKK −=−=∆ and the corresponding potential-energy change is

( )121,2, zzgEEE PPP −=−=∆ .

The work W is composed of two parts: the shaft work SW and the work exchanged with the

fluid surrounding the considered system.

The second contribution is made on the system at the entrance in section 1:

11
1

1
111 VP

A

V
APW == (1.8)

and by the system at the exit from section 2:
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22
2

2
222 VP

A

V
APW −=−= (1.9)

In these equations A denotes the cross-sectional area and AV is the length of the considered

system in the pipe, being 1V and 2V the volumes of the system in section 1 and 2 respectively; it has

to be remembered that work is defined as the product of a force by a displacement in the same

direction of force. Substitution into Eq. (1.7) reads:

( ) 221112

2
1

2
2

12 2
vPvPWQzzg

uu
UU S −++=−+−+− (1.10)

and finally, from Eq. (1.6):

( ) SWQzzg
uu

HH +=−+−+− 12

2
1

2
2

12 2
(1.11)

If the variations of kinetic and potential energy are negligible, it comes out the simplified

equation for a steady-state steady-flow process:

SWQH +=∆ (1.12)

The derivatives with respect to temperature of internal energy at constant volume and of

enthalpy at constant pressure are the isochoric and isobaric heat capacity, respectively:

p
p

v
v T

H
C

T

U
C 







∂
∂

≡






∂
∂

≡ (1.13, 1.14)

1.2.2. The second law of thermodynamics

While the first law of thermodynamics states the conservation of energy, putting all the different

forms of energy on a same level, the second law shows that they are not equivalent and imposes a

restriction on the process direction. A common statement of such law is the following:

No apparatus can operate in such a way that its only effect, in system and in surroundings, is to

convert heat absorbed by a system completely into work done by the system.

The concept of reversible transformation is also introduced, but for its precise definition

reference is made to thermodynamics texts, as for instance Ref. 3. 
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From the developments related to the second law of thermodynamics the definition of the state

function entropy comes out:

T

Q
S revd

d = (1.15)

In Eq. (1.15) revQd is the differential quantity of heat given to a unit mass of the system in an

infinitesimal step of a reversible transformation. Being a state function, the entropy change of the

system depends only on starting and final points, independently from the followed transformation

path; in the case of an irreversible transformation between two state conditions A and B, Eq. (1.15)

cannot be applied with the simple substitution of the heat effectively exchanged for revQd , but a

reversible path connecting A and B has to be found out along which the integration of Eq. (1.15) is

performed.

It can be demonstrated that for any process the overall entropy value, comprising both the system

and its surroundings, never decreases:

0≥totalS∆ (1.16)

and equals zero only for reversible processes.

1.2.3. Other property definitions and Maxwell’s relations

The application of the first law of thermodynamics to a unit mass of a closed system gives:

QWU ddd += (1.17)

If the considered process is reversible, remembering also Eq. (1.15) it results that:

STvPU ddd +−= (1.18)

being the work for a mechanically reversible, non-flow process given by vPW dd −= [3]. In Eq.

(1.18) all the primary thermodynamic properties P , v , T , S and U are included. For enthalpy,

differentiating Eq. (1.6) and substituting Ud from Eq. (1.18), it is:

( ) STPvPvUH ddddd +=+= (1.19)

Other properties can be defined for convenience: the Helmholtz free energy A and the Gibbs

free energy G ; also their differentials are easily calculated:

TSvPATSUA ddd −−=−= (1.20, 1.21)
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TSPvGTSHG ddd −=−= (1.22, 1.23)

The equations (1.18), (1.19), (1.21) and (1.23) are the fundamental property relations for a fluid.

For an exact function ( )yxf , the equality of the mixed second derivatives is valid:

xyyx
x

f

yy

f

x 
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(1.24)

When Eq. (1.24) is applied to the fundamental property relations, Maxwell’s equations are

obtained:

PSvS S

v

P

T

S

P

v

T
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−=
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(1.25, 1.26)
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(1.27, 1.28)

From the division of Eq. (1.19) by Td at constant P , remembering also Eq. (1.14), it results

that:

P
PP

C
T

S
T

T

H =






∂
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∂
∂

(1.29)

The division of Eq. (1.19) by Pd at constant T gives:

TT P

S
Tv

P

H







∂
∂+=







∂
∂

(1.30)

Therefore, from the differentiation of H and from Eqs. (1.28-1.30) it follows:

P
T

v
TvTCP

P

H
T

T

H
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ddddd 
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The application of a similar procedure to U gives:

vP
T

P
TTCv

v

U
T

T

U
U

v
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Other interesting relations are obtained from:

T
RT

G
G

RTRT

G
dd

1
d

2
−=






 (1.35)

where R is the gas constant. The substitution of Eqs. (1.22) and (1.23) into Eq. (1.35) gives:

T
RT

H
P

RT

v

RT

G
ddd

2
−=






 (1.36)

It is easy to obtain:

( ) ( )
PT T

RTG
T

RT

H

P

RTG

RT

v
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∂= (1.37, 1.38)

and from Eqs. (1.6) and (1.22):

RT

Pv

RT

H

RT

U

RT

G

RT

H

R

S
−=−= (1.39, 1.40)

An analogous procedure can be conveniently applied also to Helmholtz free energy:

T
RT

U
v

RT

P

RT

A
ddd

2
−−=






 (1.41)

( ) ( )
vT T

RTA
T
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v
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RT
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−= (1.42, 1.43)

RT

Pv

RT

U

RT

H

RT

A

RT

U

R

S +=−= (1.44, 1.45)

It has been demonstrated that, if the state function G or A for the system is known on all the

thermodynamic surface, all the other properties can be calculated simply for differentiation: Gibbs

energy and Helmholtz energy are generating functions for the other thermodynamic properties and

represent complete property information. Therefore, an analytical expression for one of these state

functions is a fundamental equation of state. Unfortunately, these quantities are not experimentally

accessible and then an equation for them cannot be directly regressed on experimental data of Gibbs
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or Helmholtz energy; other methods have been developed to solve this problem and such a subject

constitutes a part of the present Ph.D. thesis.

All the relations up to now presented can be written also using molar (or mass) density ρ

instead of molar (specific) volume, being the two properties related through:

v

1=ρ (1.46)

Other thermodynamic properties interesting from both a scientific and a technical point of view

are the speed of sound:

S

P
w 








∂
∂

≡
ρ

(1.47)

and the Joule-Thomson coefficient:

HP

Tµ 






∂
∂

≡ (1.48)

1.2.4. Ideal-gas properties

The ideal-gas condition represents the behavior of a hypothetical gas in which no intermolecular

forces exist; in such a condition of absence of intermolecular interactions the internal energy

depends only on temperature. The ideal-gas state can also be regarded as a limit condition for a real

gas with pressure approaching zero.

The macroscopic behavior of an ideal gas, in the following denoted by superscript o, is

completely described by:

� the equation of state RTPvo = ; (1.49)

� an equation for internal energy, or alternatively for isochoric heat capacity o
vC , that is a

function of temperature only.

Given an equation for ( )TCC o
v

o
v = , from Eqs. (1.6), (1.13), (1.14) and (1.49) it comes out:

( ) ( ) RTCTC o
v

o
p += (1.50)

The o
vC and o

pC equations are fluid specific and depend on the molecular structure. It is possible

to theoretically derive them with satisfactory results for simple monatomic gases, but for molecules

of higher complexity empirical expressions are often used.
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All the ideal-gas thermodynamic properties are obtained from Eqs. (1.49) and (1.50) using the

basic relations previously presented. Supposing to dispose of a o
pC equation for the system

constituted by a pure fluid and fixing arbitrary values oH 0 and oS0 for enthalpy and entropy at the

condition ( )ovPT 000 ,, , the followings equations are got:

( ) ( ) ( ) ( ) ( ) RTTHTUPTUTCHTHPTH ooo
T

T

o
p

ooo −==+== ∫ ,d,
0

0 (1.51, 1.52)
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1.2.5. Residual properties and fugacity for pure fluids

The deviation of real fluids from the ideal-gas behavior is quantitatively expressed through

residual functions. The residual part of a generic thermodynamic property M is defined as the

difference between the property value of real fluid and the corresponding value for ideal gas at the

same temperature and pressure:

( ) ( ) ( )PTMPTMPTM oR ,,, −≡ (1.56)

where superscript R stands for ‘residual property’. For instance, the residual volume is:

( )1−=−=−≡ Z
P

RT

P

RT
vvvv oR (1.57)

where the compressibility factor Z is defined as:
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RT

Pv
Z ≡ (1.58)

All the preceding equations, Eqs. (1.18-1.45), are still valid when applied to residual properties.

Considering a transformation of a pure ideal gas along an isotherm starting from a pressure 0P ,

from Eqs. (1.23) and (1.49) the final Gibbs energy value is:

( ) ( ) ( )
0

0000 ln,d,,
0

P

P
RTPTGP

P

RT
PTGPTG o

T

P

P

oo +=









+= ∫ (1.59)

If the same process is applied to a real fluid, under the hypothesis that the starting pressure is so

small that the fluid at the starting condition can be considered as an ideal gas, considering Eq. (1.58)

it gives:

( ) ( ) ( )
T

P

P

o

T

P

P

P
P

Z
RTPTGP

P

RT
ZPTGPTG 










+=










+= ∫∫

00

d,d,, 0000 (1.60)

The fugacity of the pure real fluid at PT , conditions is defined as that value f making:
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(1.61)

Subtracting Eq. (1.59) from Eq. (1.60) and considering Eqs. (1.56) and (1.61), it results:

( )
P

f
RTPTG R ln, = (1.62)

from which it is evident that fugacity is a state function. The ratio of fugacity to pressure is the

fugacity coefficient ϕ :

( ) ϕϕ ln, RTPTG
P

f R =≡ (1.63, 1.64)

The fugacity coefficient has a unit value for ideal gas; otherwise it can be calculated from:

( )
∫

−=
P

P
P

Z

0

d
1

lnϕ (1.65)
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1.2.6. Mixtures

The relations up to now developed are referred to a unit quantity of material and they are valid

both for pure fluids and for mixtures. Referring to n moles, the differential of total Gibbs energy

nG for a closed system can be written as:

( ) ( ) ( ) TnSPnvnG ddd −= (1.66)

where:
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In these equations the molar values of the thermodynamic properties are considered. If an open

system, that can exchange matter with its surroundings, is now taken into account, assuming it as

composed of C different chemical species, the same differential is:
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(1.69)

The derivative of nG with respect to the number of moles of component i is the chemical

potential of species i in mixture:

( )
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nGµ
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,,

(1.70)

Given a generic property M , the partial molar property iM of component i in mixture is

defined as:

( )
ijnPTi

i n

nM
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,,

(1.71)

and it represents the rate of variation of the total property nM caused by the addition of differential

amounts of species i to the system. A remarkable aspect of partial molar properties is that:

∑
=

=
C

i
iiMnnM

1

(1.72)
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Other characteristics of partial molar properties are here not reported (see Ref. 3), but it is

interesting to notice that the chemical potential represents the partial molar Gibbs energy.

1.2.7. Ideal-gas mixtures

The thermodynamic properties of a mixture of ideal gases are directly related to the properties of

pure components; in particular, defined the partial pressure of the species i present in mixture with

a molar fraction ix as:

Pxp ii = (1.73)

Gibbs’s theorem states that the partial molar property of a component in an ideal-gas mixture is

equivalent to its corresponding molar property as a pure ideal gas at the same temperature and at

pressure equal to its partial pressure in mixture.

Therefore, Eq. (1.49) is still valid and it is easy to obtain the following equations:
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, x (1.75)
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11

ln,,, x (1.78)

The last term in Eqs. (1.76-1.78) is the property change of mixing of ideal gases; it has a positive

value for entropy, while it is negative for Helmholtz and Gibbs free energies.

The chemical potential for a species i in a mixture of ideal gases, i.e. its partial molar Gibbs

energy, can also be expressed as:

( ) ( ) ( ) ( )PxRTTΓxRTPTGPTµ iii
o
i

o
i lnln,,, +=+=x (1.79)

where ( )TiΓ depends only on temperature and on the chosen reference values, see Eq. (1.55).
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1.2.8. Mixture residual properties and fugacity for species in solution

The residual properties for a real mixture are calculated similarly as for pure fluids:

( ) ( ) ( )xxx ,,,,,, PTMPTMPTM oR −≡ (1.80)

The fugacity of species i in mixture, if̂ , is defined as that value that, in analogy with Eq. (1.79),

satisfies:

( ) ( ) iii fRTTPTµ ˆln,, +Γ=x (1.81)

Applying the residual concept to partial molar Gibbs energy, it comes out:
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from which the fugacity coefficient of species i in mixture, iϕ̂ , is defined as:

i
R

i
i

i
i RTG

Px

f ϕϕ ˆln
ˆ

ˆ =≡ (1.83, 1.84)

1.2.9. The ideal solution

The ideal gas is a useful model of the behavior of gases, and serves as a standard to which real-

gas behavior can be compared. This is formalized by the introduction of the residual properties.

Another useful model is the ideal solution, which serves as a standard to which real-solution

behavior can be compared. This is formalized by introduction of the excess properties.

Eq (1.85) characterizes the behavior of a constituent species in an ideal gas mixture:

( ) ( ) i
o
i

o
i xRTPTGPTG ln,,, +=x (1.85)

Replacing the Gibbs energy of the pure species i in the ideal-gas state, o
iG , by the Gibbs energy

of the pure species i , iG ,as it actually exists at the mixture T and P and in the same physical state

(real gas, liquid or solid) as the mixture, we obtain the definition of an ideal solution, Eq (1.86):

( ) ( ) ii
id

i xRTPTGPTG ln,,, +=x (1.86)

where superscript id denotes an ideal-solution property.
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All the other thermodynamic properties for an ideal solution follow differentiating equation

(1.86) with respect to the independent variables:

( ) ( ) ii
id

i xRPTSPTS ln,,, −=x (1.87)

( ) ( )PTVPTV i
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i ,,, =x (1.88)

( ) ( )PTHPTH i
id
i ,,, =x (1.89)

The generic property idM for an ideal solution is calculated as:
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Application to Eqs. (1.86) through (1.89) yields:
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From Eq. (1.86) the fugacity of a species in the ideal solution follows:

( ) ( ) ( ) id
ii

id
ii fRTTPTGPTµ ˆln,,,, +Γ== xx (1.95) 

Combining Eq. (1.95) with Eq. (1.86) and considering that ( ) ( ) iii fRTTPTG ln, +Γ= it follows:

ii
id

i fxf =ˆ (1.96) 

known as the Lewis/Randall rule.
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ˆ =ϕ (1.97) 



1.2. Thermodynamic properties 43

an alternative form of Eq. (1.96) is:

i
id
i ϕϕ =ˆ (1.98) 

1.2.10. Excess properties

Liquid solutions are often deal with through properties that measure their derivation from ideal-

solution behavior. If M represents the molar (or unit-mass) value of any extensive thermodynamic

property (e.g., V , U , H , S , G , etc.), then an excess property EM is defined as the difference

between the actual property value of a solution and the value it would have as an ideal solution at

the same temperature, pressure and composition. Thus:

idE MMM −≡ (1.99) 

and for the partial-property relation:

id
ii

E
i MMM −≡ (1.100)

where E
iM is a partial excess property.

Eq. (1.81) may be written:

( ) ( ) iii fRTTPTG ˆln,, +Γ=x (1.101)

and, according to Eq. (1.96), this becomes:

( ) ( ) iii
id

i fxRTTPTG ln,, +Γ=x (1.102)

By difference between Eq. (1.101) and Eq. (1.102) is the partial excess Gibbs energy:

( ) ( ) ( )
ii

iE
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ii fx

f
RTPTGPTGPTG

ˆ
ln,,,,,, ==− xxx (1.103) 

where the dimensionless ratio iii fxf̂ appearing on the right is called the activity coefficient of

species i in solution, and is given the symbol iγ . Thus, by definition:

ii

i
i fx

f̂
≡γ (1.104) 

and
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( ) i
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i RTPTG γln,, =x (1.105) 

or
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lnγ (1.106) 

The last relation demonstrates that iγln is a partial property with respect to RTG E .

1.2.11. Phase equilibria

Considering a closed system constituted by two phases in equilibrium, Eq. (1.66) is still valid for

it; each phase represents an open system that can exchange matter with the other phase and then Eq.

(1.69) is applied to both, denoting the two phases with α and β :
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βββββ (1.108) 

Their summation gives the overall system:
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and Eq. (1.109) has to be equal to Eq. (1.66); this condition is verified only if:

0
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and then, being βα
ii nn dd −= as it results from mass conservation of the molecules transferred

between the phases:

( ) 0
1

=−∑
=

C

i
iii ndµµ αβα (1.111)

Since the differential α
ind are independent each other, the fulfillment of this condition requires

that:

βα
ii µµ = for each i ( Ci ≤≤1 ) (1.112)
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Therefore it has been demonstrated that the equality of chemical potential of each component in

the coexisting phases is a necessary condition for equilibrium. The same reasoning can be extended

to a system composed of several coexisting phases, showing that in all of them the chemical

potential of each component must be the same.

In the case of a pure fluid, the chemical potential of the unique component coincides with its

molar Gibbs energy, as it can be easily verified; therefore:

( )[ ] ( )[ ] ( ) ( )[ ] ( ) ( )[ ]βαβα sRsosRsoss PTGPTGPTGPTGPTGPTG ,,,,,, +=+⇒= (1.113) 

and, since the ideal-gas contribution is equal for both the phases, from Eq. (1.113) and Eq. (1.62) it

is:

( )[ ] ( )[ ] βαβαβα ϕϕ =⇒=⇒= ffPTGPTG sRsR ,, (1.114) 

In a pure fluid, the equilibrium condition is equivalent to the iso-fugacity condition, that

corresponds to the equality of the fugacity coefficients.

In the case of a multi-component system, considering Eq. (1.81):

( )( ) ( )( )βαβα
iiiiii fRTTfRTTµµ ˆlnˆln +Γ=+Γ⇒= (1.115) 

and, since ( )TiΓ depends only on temperature, it results that:

ββααβα ϕϕ iiiiii xxff ˆˆˆˆ =⇒= (1.116) 

This condition must be verified for all the components in the mixture.

In the case of a vapor-liquid equilibrium Eq. (1.116) becomes:

( ) ( ) L
ii

V
iii

L
ii

V
i xyxPTfyPTf ϕϕ ˆˆ,,ˆ,,ˆ =⇒= for each i ( Ci ≤≤1 ) (1.117) 

where L
if̂ and L

iϕ̂ are the fugacity and the fugacity coefficient of the component i in the liquid

phase, V
if̂ and V

iϕ̂ are the fugacity and the fugacity coefficient of the component i in the vapor

phase, ix is the mole fraction of component i in the liquid phase and iy is the mole fraction of

component i in the vapor phase.

In the case of a liquid-liquid equilibrium Eq. (1.116) becomes:
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i xxxPTfxPTf ϕϕ =⇒= for each i ( Ci ≤≤1 ) (1.118) 
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where 1ˆ L
if and 1ˆ L

iϕ are the fugacity and the fugacity coefficient of the component i in the first

liquid phase, 2ˆ L
if and 2ˆ L

iϕ are the fugacity and the fugacity coefficient of the component i in the

second liquid phase, 1L
ix is the mole fraction of component i in the first liquid phase and 2L

ix is the

mole fraction of component i in the second liquid phase.

In the case of a vapor-liquid-liquid equilibrium Eq. (1.116) becomes:
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Given an equation of state explicit in the Helmholtz free energy as a function of temperature and

pressure for a pure fluid, or as function of temperature, pressure and composition for a mixture, the

fugacity coefficients for the vapor and liquid phases can be calculated from the exact

thermodynamic relationships:









−












−








∂
∂= ∫

∞

≠
RT

Pv
v

V

RT

n

P

RT

V

v nVTi

V
i

V
ji

lnd
1

ˆln
,,

ϕ for each i ( Ci ≤≤1 ) (1.120)









−












−








∂
∂= ∫

∞

≠
RT

Pv
v

V

RT

n

P

RT

L

v nVTi

L
i

L
ji

lnd
1

ˆln
,,

ϕ for each i ( Ci ≤≤1 ) (1.121)









−












−








∂
∂= ∫

∞

≠
RT

Pv
v

V

RT

n

P

RT

L

v nVTi

L
i

L
ji

1

1

1 lnd
1

ˆln
,,

ϕ for each i ( Ci ≤≤1 ) (1.122)









−












−








∂
∂= ∫

∞

≠
RT

Pv
v

V

RT

n

P

RT

L

v nVTi

L
i

L
ji

2

2

2 lnd
1

ˆln
,,

ϕ for each i ( Ci ≤≤1 ) (1.123) 

where R is the gas constant, Vv is the molar volume of the vapor phase, Lv is the molar volume of

the liquid phase, 1Lv and 2Lv are the molar volumes of the coexisting liquid phases 1 and 2, and in

and jn are the moles of components i and j respectively.

In this thesis work the analytical form ( )
jinVTinP

≠
∂∂ ,, for calculating the fugacity coefficients has

been always determined using a unique equation of state for all the coexisting phases.

Given an equation of state explicit in the Helmholtz free energy as a function of temperature and

density for a pure fluid, or as function of temperature, density and composition for a mixture, the
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fugacity coefficients for the vapor and liquid phases can be calculated by Eqs. (A2.26) and (A2.27)

respectively, see Appendix A.2.

1.3. Transport properties

1.3.1. Viscosity

The definition of viscosity is given with the help of Fig. 1.2. Let us consider two very large

parallel plates of area A and separated by a small distance Y , with a fluid contained between them.

Initially the system is at rest, but at time 0=t the lower plate is set in motion at a constant velocity

V in the direction of x . As time proceeds, the fluid gains progressively momentum: initially it has

an unsteady velocity profile, but after a sufficiently large time the steady-state is achieved.

Final velocity
distribution in
steady flow

Velocity buildup
in unsteady flow

Lower plate
set in motion

Fluid initially
at rest

t<0Y

t=0

V

V

V

u
x
(y,t) Small t

ux(y)

Large t
y

x

Figure 1.2: Buildup to steady laminar velocity profile for a fluid contained between two plates.

In the final condition a constant force F has to be applied to the lower plate to maintain it in

motion; this force can be expressed as:

Y

V

A

F η= (1.124)
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The force per unit of area is proportional to the slope of the fluid velocity profile in the y

direction and the constant of proportionality is the viscosity η of the fluid. This reasoning is valid

under the hypothesis that the flow is laminar: imagining to ‘section’ the fluid into infinitesimal

layers each one at constant y value, there is no mixing between adjacent layers.

The preceding equation can be rewritten in a more convenient form. It is indicated with yxτ the

shear stress exerted in the x -direction on a fluid layer at constant y by the portion of fluid at lower

y , moving with a velocity having an x -component equal to xu . With these definitions, from Eq.

(1.124) it comes:

y

ux
yx d

dητ −= (1.125)

A common interpretation of Eq. (1.125) is given. The layer of fluid adjacent to the lower plate

acquires a certain amount of momentum in the x -direction and it transmits part of its momentum to

the upper layer, causing it to move in the same direction; therefore yxτ represents the viscous flux of

x -momentum in the y -direction.

Eq. (1.125) expresses Newton’s law of viscosity. The fluids for which such a law is valid are

termed as Newtonians fluids; this category includes all the gases and the homogeneous non-

polymeric liquids. For some substances, as slurries and high polymers, the proportionality between

shear stress and velocity gradient is not verified and these are termed as non-Newtonian fluids [1].

It has been experimentally verified that the viscosity of Newtonian fluids depends on

temperature and pressure, and also on composition in the case of mixtures.

1.3.2. Thermal conductivity

As in the previous case of viscosity, two large parallel plates of area A at small distance Y , see

Fig. 1.3, contain a fluid at a uniform temperature 0T . At time 0=t the lower plate is suddenly

brought to a slightly higher temperature 1T and maintained at this temperature, while the upper plate

is maintained at temperature 0T .

The temperature profile in the fluid changes with time, until a steady-state is attained. If the

difference between the two temperatures is sufficiently small and there is neither convection, i.e.

mixing between iso- y layers in the fluid, nor radiation, the final temperature profile is linear and it

can be written as:



1.3. Transport properties 49

Y

TT

A

Q 01 −= λ
&

(1.126)

where Q& is the heat flow required to maintain that temperature difference. The same equation,

expressed in the limit of Y approaching zero, reads:

y

T
qy d

dλ−=& (1.127)

in which yq& represents the local heat flow per unit area in the positive y -direction.
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Figure 1.3: Buildup to steady-state temperature profile for a fluid between two plates.

In an isotropic medium, for which the thermal conductivity value is the same in all the directions

as it is for most of fluids, Fourier’s law of heat conduction is expressed as:

T∇−= λq& (1.128)

The controlling variables of thermal conductivity are temperature and pressure. If the considered

system is a mixture, the dependence on composition is added.
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In addition to thermal conductivity, the thermal diffusivity TD is widely used in the heat transfer

literature; it is related to thermal conductivity by:

p
T C

D
ρ
λ= (1.129)

1.3.3. Diffusion

The driving forces for mass transfer in a fluid, i.e., the transport of one or more components of a

mixture within a phase or over the phase boundary, are concentration, temperature or pressure

gradients. Here only the mass transfer due to a concentration gradient within a phase is discussed.

The macroscopic relative movement of a single substance in a phase is known as diffusion. There

are two different forms of diffusion: molecular diffusion, which occurs in quiescent fluids or in

laminar flow, and turbulent diffusion, which occurs in turbulent flow.

Here only molecular diffusion is treated. In a mixture of two components A and B , the

diffusion flux of component A is proportional to the gradient of the molar concentration

Vnc AA = , where An is the number of moles of component A , while V is the volume of the

considered phase. If the diffusion only takes place along one coordinate axis, for example the

−y axis, the diffusional flux can be described by an empirical statement corresponding to the

aforementioned Fourier’s law of heat conduction:

dy

dc
Dj A

ABA −= (1.30)

which was formulated by A. Fick and is called Fick’s law. The proportionality factor ABD (SI units

sm2 ) is the diffusion coefficient in a mixture of two components A and B . Eq. (1.30) is valid

when it is assumed that the molar concentration of the mixture Vnc = , where n is the total

number of moles in the mixture, is constant. This condition is fulfilled in constant pressure,

isothermal mixtures of ideal gases due to TRPVnc m== . Disregarding the condition of constant

c , the general equation for mixtures of two substances is:

dy

dx
cDj A

ABA −= (1.30)

where Ax is the mole fraction of component A in the mixture. A more detailed discussion about

diffusion can be find in Ref 1 and 5.
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II. Advanced regression methods

2.1. The bases of data reduction

The general background of every fitting procedure is the fact that the true physical relation

describing the studied phenomenon is not known; therefore, an empirical formulation which

approximates the true relation has to be developed starting from the experimental evidence.

In general the experimental procedure gives a set of M points ( )my,x (m=1,2,…,M), where x is

a vector of K independent variables kx (k=1,2,…,K) and y stands for the dependent variable.

Because these data are affected by the inevitable experimental errors, they have to be regarded as

estimates of the true values X and Y of the searched physical dependence ( ) 0, =YXξ .

The goal of the procedure is to determine, on the basis of experimental data, a functional

relationship ( )nx ,, yζ that approximates the unknown physical relation ξ between variables X

and Y:

( ) ( )nxX ,,0, yY ζξ ≈= (2.1)

where n denotes the vector of the I adjustable parameters in (i=1,2,…,I) of the functional form

considered for the representation of the data. The deviation of ( )nx ,, yζ from zero is called

residuum. The goal of the fitting procedure is then to find the numerical values n yielding the best

approximation of ( ) 0,, =nx yζ .

The usual choosing criterion is to select the set of in with the highest statistical probability; this

is the basic idea of the maximum-likelihood method [1] which aims at maximizing the likelihood

function ( )nL .

Under the hypotheses that:

� the data are distributed according to the Gaussian distribution, which means that the

experimental errors are normally distributed with a mean value equal to zero, both for the

independent and the dependent variables;

� the experimental errors are independent from each other;

� the experimental uncertainties are known for all data points and the values for the

corresponding variances can be given;

� the systematic error of the approximation of ( ) 0, =YXξ using the relation ( ) 0,, =nx yζ is

negligible when compared to the uncertainty of the experimental data,

the likelihood function can be written as:
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where 2
mσ is the total variance which considers the uncertainties both of the independent and

dependent variables.

The maximization of the quantity in Eq. (2.2) corresponds to the minimization of the chi-square

function, i.e. the weighted sum of squares of residua:
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The procedure of minimization of the chi-square is known as weighted least squares fit and it

follows the theory first developed by Gauß [2]. Even if the four above-mentioned simplifying

conditions are not always actually verified, the method is extensively applied.

When the implicit relation ( ) 0,, =nx yζ is made explicit in the dependent variable as:

( )nx,yy = (2.4)

then Eq. (2.3) can be rewritten as:

( ) ( ) 2
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n (2.5)

Given the experimental data set, both Eqs. (2.3) and (2.5) can be regarded as continuous

functions of the parameters in , whose optimal values that minimize 2χ are found simultaneously

solving the I equations:

Ii
n

ijni

≤≤=







∂
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≠

10
2χ

(2.6)

The solution of the set of equations constituted by Eq. (2.6) in order to find the coefficients in is

not trivial and its difficulty level depends both on the analytic form of the selected fitting equation

and on the number I of free parameters; as a typical case, the set could be constituted by tens of

non-linear equations, whose solution yields a large number of local minima. To overcome these

difficulties several numerical methods have been developed, see for instance Ref. 3; nevertheless, a

unique ‘optimum’ method does not exist but it has to be chosen according to the characteristics of

the problem under investigation.
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In the works presented in this thesis very powerful and versatile regression tools were assumed

for data modeling: they are mainly the artificial neural networks.

2.2. Neural networks

2.2.1. Introduction

Artificial neural networks (ANN) represent an extremely simplified model of the basic structure

of brain; they are constituted by a certain number of elementary units variously interconnected, that

simulate the essential behavior of biological neurons. Analogously to real neurons, the ANN

neurons receive an input signal from some other neurons, on the base of which they reach a certain

activation level and transmit a new signal to other neurons. The synaptic connections between

different neurons are characterized by different strength, which is mathematically expressed through

multiplicative factors called weights. Although this model neglects many properties of brain and of

real neurons, ANNs have met an increasing success in many fields.

The history of artificial neural networks took its first steps in the ‘40s of the 20th century, when

McCulloch and Pitts [4] proved that simple binary neurons could calculate some logical functions.

In that format the weights were fixed and therefore the ANN could not be trained but it has to be

specifically designed for the problem.

Several improvement attempts were made in the following decades and in the late ‘50s

Rosenblatt [5] presented the first actual model of neural network, the perceptron. For some years

research went on with changing fortunes; a subsequent milestone was the work of Rumelhart and

McClelland [6,7]. They showed how to get over the perceptron shortcomings and above all they

introduced a training method to set the weighting factors between the neurons.

In the last two decades ANNs have had a tumultuous growth, favored by the fast increase of the

computational speed of modern computers, and they have been consequently applied to a wide

range of problems pertaining to several disciplines.

Due to their classification and recognition capabilities, the ANNs are often employed in the

recognition of images, written texts, speeches, sounds and signals in general. Moreover, they are a

powerful tool for the study of processes or phenomena for which the analytical relation binding the

interest variables to the controlling parameters is not known. Therefore ANNs can be applied to a

lot of scientific and technical problems, as for instance the data regression and the process control.

2.2.2. Multilayer feed-forward neural networks

The multilayer feed-forward neural networks (MLFN) are the most used ANNs in scientific and

engineering applications. They play a particularly important role because they are very powerful
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universal function approximators, i.e. they can represent any continuous function in a compact

domain; for this reason MLFNs are used for data modeling.

As any other neural network, MLFNs are formed by a set of artificial neurons linked each other

with weighted interconnections, in a way that will be made clearer in the following. The neural

model is constituted by the assumed network structure and by the weighting factors, whose

numerical values are the result of the training process, see Paragraph 2.2.3 for details.

Among the various ANNs typologies, MLFNs are characterized by their architecture: the

neurons are organized in successive layers (multilayer) and then the single units work differently

according to their position. The neurons are arranged on three or more layers, in such a way that

each unit collects signals from all the units of the preceding level and it transmits its output to each

unit in the following layer.

The first level, input layer, receives the inputs from the outside. The neurons in this layer do not

perform any mathematical operation, but the signals coming in equal those going out. The last level,

output layer, transmits to the outside the answers of the neural network to the input stimulation. The

intermediate levels, hidden layers, are not directly accessible from the outside: the task of their

neurons is the elaboration of information through non-linear transformations.

Another particular feature of MLFNs is that the information goes only in one direction, forward

from the first to the last layer (feed-forward), when calculating the network outputs at given inputs.

It is demonstrated that MLFNs are universal function approximator [8,10] and in particular a

MLFN with a single hidden layer is able to approximate any continuous function in a compact

domain, as shown in the literature [9]. For these reasons only this last architecture will be

considered in the following. The general architecture of a three-layer MLFN is shown in Fig. 2.1.

The input layer is composed by I neurons: the first 1−I ones receive the iU inputs from outside

and therefore their number equals the number of the independent variables of the considered

problem. A constant value, Bias1, is associated to the last neuron I . All these signals are passed

without transformation to the following level.

In the hidden layer 1+J neurons are present: each of the first J ones gets signals from the input

layer neurons, calculates a weighted summation of the received inputs, applies a transfer function

f to the sum and transmits the result jH to the output layer; the last neuron 1+J assumes a

constant value Bias2. The layer functioning is summed up as:
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The neurons number K in the output layer equals the number of the output signals, i.e. the

dependent variables of the problem. In this level the neurons operate similarly to the hidden layer

units, with the only difference that the results kS are passed to the outside and not to a subsequent

layer:
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Figure 2.1: General topology of a three-layer feed-forward neural network.

The functional dependence relating input to output variables is contained into the two weighting

factors matrixes ijw e jkw of dimensions JI × and ( ) KJ ×+1 , respectively. The weighting factors
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are the mathematical equivalent of the strength of the synaptic connections between biological

neurons.

The Bias1 and Bias2 neurons are not strictly necessary but they are useful to make easier the

convergence during the training procedure.

The transfer function f can be regarded as a rough but effective simplification of the

elaboration processes that occur in the single brain cell: it is responsible for the non-linear

transformation that, applied to the input of a neuron, determines its output. The function numerical

output has to be restricted to a range usually set as [ ]1,0 , where 0 corresponds to a turned-off

neuron and 1 to total activation. Different analytical forms for the transfer function have been

proposed in the literature, considering that it should be continuous, differentiable, with positive

derivative and with restricted output.

The original format of the perceptron [5] assumed the step function:

( )
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This form is evidently not continuous and therefore many others are employed, as for instance

the logistic function:
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the normalized scaled hyperbolic tangent:
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the normalized scaled arctangent:

( ) ( )
2

1
arctan

1 += xxf γ
π

(2.12)

The plots of these equations (2.9-2.12) are reported in Fig. 2.2.
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Figure 2.2: Representation of some transfer functions.

Minimum and maximum values of the transfer function should be avoided because they

correspond to the saturation of the signal, for which the output sensitivity to input variations is

annihilated; the reaching of this condition at varying x can be tuned adjusting the multiplying

parameter in the transfer function, as for example α in Eq. (2.10), β in Eq. (2.11), γ in Eq. (2.12).

The choice of the transfer function and of its parameter value depends on the studied problem and it

can influence the effectiveness of the regression algorithm. It should be noticed that in general the

transfer functions for the hidden and the output layers, Eqs. (2.7) and (2.8), could be different each

other; nevertheless, in the present works the same function was always assumed for both the layers.

The inputs of the neural network are the independent variables of the studied problem and then

the ranges of their numerical values could be largely different one from the other; for example if the

input variables would be temperature and density of a fluid, such ranges could be 200-400 K for the

first one and 0-1500 kg/m3 for the second. Since the orders of magnitude of the two inputs are very

different, some difficulties may arise in the training procedure; moreover, the outputs of the neural

network are necessarily limited in the range [ ]1,0 , as resulting from the characteristics of the

transfer function in the output layer, but the dependent variables ranges are probably very different

from this.
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To solve these problems, both the independent and the dependent variables are scaled in a

conventional interval, usually assumed as [ ]95.0,05.0 , giving generality to the neural network and

facilitating the training process. If iV is an independent physical variable, a linear scaling is

performed in this way:

min,max,

minmax

ii
i VV

AA
u

−
−= (2.13)

( ) minmin, AVVuU iiii +−= (2.14)

where minA and maxA are the limits of the scaling interval, conventionally set to 0.05 and 0.95

respectively, while min,iV and max,iV are the prefixed limits of the independent variable. iU is a

general neural network independent input, see Fig. 2.1.

The network outputs kS are converted into the corresponding dependent physical variables kW

in a similar manner:
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where min,kW and max,kW are the allowed limits for the dependent variable kW .

The path followed by information through the different steps of the global neural model is

synthetically shown in Fig. 2.3.

A summary of the mathematical expressions useful for the application of the here exposed

MLFN models is reported in Appendix A.1.

WSUV

Output ScalingInput Scaling Neural Network

Figure 2.3: Path of information in the neural model.
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2.2.3. MLFN application to data reduction

The possibility to use ANNs for data reduction is ensured by some theorems which prove that a

MLFN, even with only one hidden layer, can approximate any continuous function in a compact

domain [8-10]. Given a data set, the neural network model is able to identify the functional

relationship between the dependent and the independent variables. When adopting a heuristic

approach, ANNs recognize patterns in sparse data sets and they generalize these patterns through a

continuous mathematical function.

One of the main advantages of using ANNs is that the mathematical structure is general and not

depending on the specific problem. No assumption about the physics of the system is required: this

is particularly helpful when studying very complex problems.

The matrixes of weighting factors contain all the information about the functional dependence;

therefore the essence of a neural model developing is the training, i.e. the process that searches for

the optimal values of the ijw and jkw coefficients with the aim at reproducing the given data set at

best.

An objective function defined similarly to Eq. (2.5), in which the coefficients n are obviously

represented by the weighting factors, is calculated from the training data set. The training procedure

minimizes this function by applying numerical methods suitable to get satisfactory results with fast

convergence and to avoid the local minima of the 2χ function.

Once a set of weights has been obtained, a validation procedure of the resulting equation should

be developed on a larger data set in order to test the prediction capability and to individuate the

possible presence of incorrect trends. As for every heuristic model, it may happen that the equation

performs very well on the training data, while it gets poor results with respect to the validation data.

This could be due to overfitting problems: instead of inferring the function trends from data, the

model follows the details of the single training points, being misled by both experimental noise and

uneven distribution; as a consequence the model prediction capability on data not belonging to the

training set is very poor. These problems arise particularly when the functional form has too many

free parameters with respect to the number of training data.

As a general rule, the data on which neural network is trained have to be regularly distributed in

the whole interest range of independent variables; additional data are required in regions where the

dependent quantities present strong gradients. Moreover, experimental data have to be as precise as

possible. The lack of fulfillment of these conditions can seriously hinder the training process;

particular attention must be paid to check these aspects during the training process.
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The network architecture has to be specifically set up for each studied case. The number of

neurons in input and output layers is strictly connected with the number of independent and

dependent variables respectively, as resulting from a physical or conceptual model of the problem;

ANNs can be useful in identifying the controlling variables in the case that data are provided in a

sufficiently detailed form, since the analysis of the obtained neural equations allows to establish

how much each independent variable influences the dependent ones.

It is evident that the output variables can be more than one, so the neural network model is able

to represent at once different functions, provided they depend on the same independent variables.

The number of neurons in the hidden layer is not a priori known, but it has to be found with a

trial-and-error procedure, searching at the same time for satisfactory performance on data and lower

neurons number. If too small, the network is not sufficiently flexible to adequately represent the

complexity of the functional dependence; if too large, the number of free parameters to regress is

high and overfitting problems and incorrect trends may arise.

ANNs have been successfully applied in several typologies of problems; as examples limited to

the field of chemical engineering, they have been used for prediction of thermodynamic properties

of fluids [11-13], for prediction of viscosity of fluids [14-16], for studies of heat transfer [17-19]

and mass transfer [20,21].
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III. Models for thermodynamic properties

3.1. Introduction

This chapter deals with the models that are used to calculate the thermodynamic properties of

pure fluids and mixtures. In particular, the attention is focused on the equations of state (EoS), i.e.

relations among the thermodynamic variables that describe the behavior of the considered system as

varying the controlling variables. Examples of EoSs are the relations in the forms ( )ρ,TPP = and

( )ρ,TAA = , that are expressed in terms of pressure or Helmholtz free energy, respectively.

An important classification among the EoSs is evidenced. The equations in terms of Helmholtz

free energy are fundamental equations of state: if an analytical formulation for ( )ρ,TA is known

for a fluid, all its thermodynamic properties can be obtained simply through combination of

derivatives of A with respect to T and ρ , as shown in Paragraph 1.2.3; no integral calculation is

required. The equations in the form of pressure ( )ρ,TPP = or of compressibility factor

( ) ( )RTPTZZ ρρ ≡= , are not fundamental equations of state, because they have to be integrated

to calculate the caloric properties, as for instance enthalpy, entropy, isobaric and isochoric heat

capacities. The relations between the Helmholtz free energy and the main thermodynamic

properties are reported for convenience in Appendix A.2.

In the following sections a brief history of the equations of state and a sufficiently detailed

description of the background of the thermodynamic models used in the present Ph.D. thesis are

given. This chapter does not claim to be exhaustive with respect to all the models published in the

literature, but it is intended to give the Reader the bases for dealing with the next chapters.

3.2. Historical overview

The first and also the most well-known EoS is certainly the equation of ideal gases, inferred

from the experiments of Boyle and Gay-Lussac in the period between the 17th and the first 19th

century:

RTPv = (3.1)

This equation is extensively used still nowadays, favored by its extremely simplicity and by the

representation of the low-pressure gases behavior with an approximation level acceptable for many

applications. The ideal-gas equation constituted the starting point for all the subsequent equations

developments.
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The first equation able to represent the whole PvT surface of a fluid, in vapor, liquid and

supercritical region, appeared only in 1873, when van der Waals published his famous equation [1]

obtained from theoretical analysis:

2v

a

bv

RT
P −

−
= (3.2)

where a and b are positive parameters: a accounts for the intermolecular attraction forces, b is

also known as covolume and it is related to the dimension of the molecules of the considered fluid.

It is worth noticing that when both a and b are set to zero the ideal-gas equation is recovered.

Adopting suitable mixing rules for the parameters, the equation can represent also mixtures of

fluids. Van der Waals won the Nobel Prize in 1910 for his works on equations of state.

The van der Waals equation can be regarded as the ‘founder’ of the cubic equation of state

family, whose name comes from the possibility to rewrite the equations of this family as third-order

volume-implicit relations. In the case of Eq. (3.2), such procedure gives:

( ) 023 =−++− abavvRTbPPv (3.3)

Many cubic equations have been published after the work of van der Waals; in this class, the

Redlich-Kwong [2], the Soave-Redlich-Kwong [3] and the Peng-Robinson [4] equations are the

most significant ones. The various types of cubic equations are still widely used in many fields

where high precisions are not required, since they are simple models valid in a wide range of fluid

conditions and they allow the calculation of all the thermodynamic properties in a predictive mode

often with acceptable performances. The cubic equations are discussed in more details in Paragraph

3.3.

Another family of equations is constituted by the virial equations of state, that are basically

power series expansions of Z , in molar volume or in pressure, along an isotherm:
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where the temperature-depending coefficients B , C , and D are the second, the third, and the

fourth virial coefficient, respectively; the symbols B
~

, C
~

, and D
~

have similar meanings. Between

the two, the preferred virial equation is often Eq. (3.4), that was introduced by Kamerlingh Onnes

[5] in 1901; this is usually truncated after the third virial coefficient and it is employed to describe
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gaseous states, with a greater accuracy with respect to cubic EoSs. Some more details about virial

equations are given in Paragraph 3.5. 

A further step ahead was proposed in 1940 by Benedict et al. [6], that introduced an exponential

function into a truncated virial expansion:

( ) ( )
2

23
632

2
0

00

2

1

T

ec
aabRT

T

C
ARTBRTP

γργρραρρρρ
−+++−+






 −−+= (3.6)

This equation, also known as Benedict-Webb-Rubin (BWR), has eight adjustable parameters

( )000 ,,,,,,, CBAcba γα and it can describe the thermodynamic properties in the whole range of fluid

states in a qualitatively correct way and with an accuracy superior to cubic EoSs.

Nevertheless, the BWR equation suffered of some disadvantages, considering also the computing

powers of that period: the parameters of the equation for each compound had to be determined

separately by reduction of plentiful TPρ data; its analytical complexity resulted in a relatively long

computing time and the large number of adjustable parameters made it difficult to extend to

mixtures.

In the meantime the principle of the corresponding states, see Paragraph 3.6.1, that had been first

enunciated by van der Waals, found a justification on the basis of statistical mechanics for pure

fluids with simple spherically-symmetric molecules [7,8,9]. During the decades the corresponding

states principle underwent various modifications with the purpose to adapt it to the representation of

less simple fluids.

A wide success was met by the three-parameter corresponding states technique. A first version

was given by Pitzer et al. [10] in 1955, but considerable improvements were brought in mainly by

the works of Lee and Kesler [11] and Teja et al. [12,13]. In Paragraph 3.6.2 the basic concepts of

this method are reported.

Another promising modification of the original corresponding states principle was the extended

corresponding states theory [9,14-17], that is applied still nowadays with successively

improvements both for thermodynamics and for transport properties. A presentation of this method

is given in Paragraph 3.6.3.

In the first ‘70s the technological advancement made reasonable computing powers available to

scientists. This allowed the introduction of EoSs with a greater number of coefficients to be

regressed on experimental data, that could be included in the fitting procedure in larger amounts

when available. Also from users’ point of view, the computing times required by more complicated

equations could finally be borne.

In 1973 a modification of the BWR equation, Eq. (3.6), was published by Starling [18]:
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(3.7)

This EoS was mainly proposed for applications in the chemical and petrochemical industry, for

which the possibility of representing many pure fluids and mixtures is fundamental. Therefore

mixing rules and generalized forms were important features of equations of this type. Starling

equation of state is still frequently used in technical applications.

Other more or less sophisticated modifications of Eq. (3.6) were developed by different research

groups; in particular, it is worth remembering that of Bender [19] in 1970:

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]{ }2
20225432 ρρρρρρρρρ aeTHTGTFTETDTCTBRTP −+++++++= (3.8)

and that of Jacobsen and Stewart [20], known as MBWR, in 1973:
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In both these equations the coefficients are polynomial functions of temperature, whose

analytical forms are here not reported. The Bender and the MBWR equations include 19 and 32

parameters, respectively; these huge sets of parameters have obviously to be regressed on

experimental data. During the same period algorithms to fit the coefficients simultaneously on TPρ

and phase equilibrium data were developed, allowing in this way to improve the performances of

the obtained EoS both in the homogeneous regions and at vapor-liquid equilibrium conditions.

The equations in the format of Eqs. (3.8) and (3.9) have been regressed for a large number of

fluids and their functional forms have been used in thermodynamic modeling for at least twenty

years.

The Bender-type equations were applied also to mixtures and today they can be considered as the

most sophisticated technical equations of state. Instead, the MBWR-type equations represent the

first example of reference equations of state: they were able to describe the available data within the

experimental uncertainties achievable at that time. For instance, the EoS for nitrogen, developed by

Angus at al. [21] in the MBWR format, was assumed as a reference for the thermodynamic

properties of that fluid in several scientific and technical applications.

A new abrupt jump ahead was done in 1985, when Schmidt and Wagner published a new EoS

for oxygen [22]. They proposed an equation of state in the form:
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where Ra is the reduced residual Helmholtz energy, TTc=τ is the inverse reduced temperature,

cρρδ = is the reduced density; c stands for a critical value. This equation is formulated in terms

of Helmholtz free energy, contrarily to the preceding equations that are in terms of compressibility

factor ( )ρ,TZ or of pressure ( )ρ,TP . Therefore it is a fundamental EoS, from which all the

thermodynamic properties can be calculated simply by combining its derivatives with respect to T

and ρ . Although this property of fundamental EoSs was well known, only from that time this

format has become a standard for the EoS development.

Anyway, the greatest novelty of the Schmidt-Wagner technique was the regression algorithm. In

fact, up to that point only the coefficients of the EoS could be determined, whereas the functional

form had to be established in a trial-and-error process based also on experience. On the contrary,

Schmidt and Wagner used an original algorithm [23] that allowed also the optimization of the

equation: not all the terms in Eq. (3.10) were included in the proposed oxygen EoS, but only those

more suitable to represent the searched functional dependence, as established by the regression

algorithm on the basis of statistical analyses.

Moreover, both the Helmholtz energy form of the EoS and the intrinsic characteristics of the

regression algorithm made easier to consider experimental data of different thermodynamic

properties in the fitting of the equation, performing a multiproperty fitting.

In the subsequent years the regression algorithm was further on improved by Setzmann and

Wagner [24] and followers [25]; this technique is the present standard for the development of EoSs

for pure fluids. The equation (3.10) itself has undergone successive modifications and other

summations have been added to it in order to improve the capability of optimized multiparameter

EoSs in representing the region in the vicinity of the critical point [25].

For details about the optimization algorithm, reference is made to the cited literature, in

particular to Ref. 25. The optimized multiparameter EoSs are presented in Paragraph 3.7. 

3.3. Cubic equations of state

3.3.1. Pure fluids

The pressure-explicit equation:
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RT
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−
= (3.11)
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synthetically indicated as vdW, was obtained by van der Waals [1] from a modification of the ideal-

gas equation and it was the first EoS that could represent at the same time the thermodynamic

properties in vapor, liquid and supercritical region of both pure fluids and mixtures. The constant

parameters a and b in Eq. (3.11) are related to the attraction intermolecular forces and to the

molecular volume, respectively.

After the publication of the van der Waals work, a lot of other cubic equations were developed,

mainly proposing to substitute various expressions for the attractive term 2va . Among all those

works, the most remarkable and successful ones were probably the Redlich-Kwong (RK) equation

[2]:
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Soave’s modification [3] of the Redlich-Kwong equation (SRK):
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bvv
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= ω (3.14, 3.15)

and the Peng-Robinson (PR) equation [4]:

( )
( ) ( ) ( ) ( )( )[ ]2

, 11 rPRPRcrPR
rPR TkaTa

bvbbvv
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bv

RT
P −+=

−++
−

−
= ω (3.16, 3.17)

The parameters RKa , SRKa , and PRa are functions of reduced temperature cr TTT = , while the k

functions depend on the fluid specific acentric factor, known also as Pitzer’s parameter [10],

defined from the reduced vapor pressure cr PPP = at 7.0=rT as:

( ) 7.010log1 =−−≡
rT

s
rPω (3.18)

Common characteristic of all these equations is that they can be rewritten as a third-order

polynomial form in volume, see Eq. (3.3) the case of vdW equation, from which the attribute

‘cubic’ given to this class of EoSs derives.

The parameters a , RKca , , SRKca , , PRca , and b are traditionally found by solving the equations

system obtained from the imposition of the critical point constraints:
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It comes out that these parameters are fluid specific and they depend only on critical temperature

and on critical pressure, see Table 3.1. Therefore, given the critical constants for the interest fluid

and an experimental value of saturation pressure at 7.0=rT in order to calculate ω , the cubic EoS

works as a predictive model.

The dependence of the a parameter on temperature was introduced by Redlich and Kwong [2]

with the purpose of improving the performances of their equation with respect to the experimental

data; the simple functional dependence in Eq. (3.13) was chosen. About a quarter of century later,

Soave [3] empirically modified their original function searching for a better representation of the

vapor-liquid equilibrium conditions: the equation was forced to represent experimental vapor

pressures for various pure hydrocarbons through the fulfillment of the iso-fugacity condition; the

so-obtained a values were correlated with Eq. (3.15), depending on both the reduced temperature

and the acentric factor ω through the ( )ωk function, for which a simple polynomial form was

assumed:

( ) 2
210 ωωω dddk ++= (3.20)

Some years later Peng and Robinson [4] developed their cubic equation following a similar

procedure: the same expressions for )( rTa and for ( )ωk were maintained, but starting from a

different functional form of the equation of state.

The coefficients of Eq. (3.20) for both the cases are reported in Table 3.1. Since they were

obtained from fitting on hydrocarbons data, these values should be valid only for fluids pertaining

to such a family; notwithstanding this, they have been widely used for any fluid.

Another equation for the a function was proposed by Mathias and Copeman [26]:

( ) ( ) ( ) ( ) 23

3

2

21 1111 



 −+−+−+= rrrcr TdTdTdaTa (3.21)

where the coefficients 1d , 2d and 3d have to be fitted on experimental vapor pressures of the

considered fluid, once selected the cubic EoS to use.

All the equations (3.11), (3.12), (3.14) and (3.16) are particular cases of:
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( )( )bvbv
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bv

RT
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21 εε ++
−

−
= (3.22)

with the individual coefficients 1ε and 2ε reported in Table 3.1.

Table 3.1: Parameters for the four cubic equations of state here considered.

( )ωk , Eq. (3.20)Cubic
EoS 1ε 2ε

c

c

RT

bP

( )2
c

c

RT

aP

0d
1

d
2d

vdW 0 0 0.125 0.421875 - - -

RK 1 0 0.08664 rT42748.0 - - -

SRK 1 0 0.08664 ( )( )[ ]2
1142748.0 rTk −+ ω 0.48 1.574 -0.176

PR 21+ 21− 0.07780 ( )( )[ ]2
1145724.0 rTk −+ ω 0.37464 1.54226 -0.26992

The cubic equations, being expressed in terms of pressure, are not fundamental equations of

state; nevertheless, they can be converted into an ( )vTAR , fundamental form through the

thermodynamic relation:

( ) ( )∫
∞=
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R vvTP
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RT
vTA d,, (3.23)

that when applied to Eq. (3.22) gives:
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for the vdW EoS and:
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for the other three cubic EoSs.

The analytical representation of the ideal part ( )vTAo , of the Helmholtz energy is obtained

through integration of an equation for the ideal-gas isobaric heat capacity ( )TC o
p for the interest

fluid, that has to be given separately:
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where oU 0 and oS0 are the chosen values for internal energy and entropy, respectively, of ideal gas

at a reference condition ( )00 ,vT . From Eqs. (3.24) or (3.25), in conjunction with Eq. (3.26), all the

thermodynamic properties can be easily calculated.

Although cubic EoSs show quite correct trends of the thermodynamic properties, their

quantitative representation is not accurate. In the vapor phase the precision can be rather acceptable,

even if depending on the selected fluid and on the desired property; also the representation of vapor

pressure for halocarbons is quite good thanks to the set up of the a functional form on this

property. However, cubic equations fail in the liquid region representation [27,28], where the errors

on density can be far beyond 10 %, with consequently high errors for the other thermodynamic

properties.

Considering this fact, an attempt to improve the cubic equations performances in the liquid

region was proposed by Peneloux et al. [29] in 1982. They suggested to obtain the molar volume of

the fluid of interest by shifting the value calculated from the cubic EoS of a constant quantity c :

cvv cubic −= (3.27)

The parameter c assumes a fluid specific value that can be calculated either from the critical

constants or from an experimental datum of saturated liquid density, with the second possibility

giving better results. Introducing this modification, Eq. (3.22) becomes:

( )( )bcvbcv

a

bcv

RT
P

21 εε ++++
−

−+
= (3.28)

The transformation of Eq. (3.28) in an ( )vTAR , fundamental form is reported in Appendix A.3,

together with the derivatives required for the main thermodynamic properties calculation.

The presence of the Peneloux parameter improves the cubic EoSs behavior in the liquid region,

but anyway the accuracy of such equations is far from being satisfactory when moving away from

the saturation conditions. The validation of the SRK EoS with the Peneloux translation coefficient

for a number of fluids is given in Paragraph 4.2.3.

3.3.2. Mixtures

The cubic EoSs can be applied to mixtures adopting a one-fluid model (OFM) approach, i.e. the

mixture behavior at a fixed composition is regarded as equivalent to that of a pseudo-pure fluid

whose parameters are obtained from the combination of the pure components parameters through

empirical mixing rules. This also means that the critical properties are replaced by the pseudo-
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critical properties, depending also on composition, of a hypothetical equivalent substance. Van der

Waals mixing rules are usually assumed [28].

Considering a mixture of C components with molar composition vector x , a quadratic mixing

rule is adopted for the parameter Ma :

∑∑
= =

=
C

i

C

j
ijjiM axxa

1 1

 (3.29)

where:

( ) jiijij aaka −= 1 (3.30)

A linear mixing rule is instead used for both Mb and Mc :

∑∑
==

==
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iiM

C

i
iiM cxcbxb

11

(3.31, 3.32)

The parameter ijk in Eq. (3.30) is the binary-interaction parameter between components i and

j ; for ji = it is 0=ijk . The interaction parameters are set to zero when the EoS for the mixture is

used in predictive mode; otherwise, they are usually regressed on the available phase equilibrium

data for the corresponding binary system to improve the equation representation of the saturation

conditions.

The mathematical expressions necessary to apply a cubic EoS to mixtures are summarized in

Appendix A.3.

3.3.3. GE-EoSs for mixtures

Cubic EoS with mixing rules including a single interaction parameter for each binary pair, such

as those given by Eqs. (3.30-3.32), have been very successful in correlating equilibrium properties

of mixtures of non-polar components, in particular hydrocarbons. Their accuracy is much less

satisfactory for mixtures consisting of polar components (e.g. acetone + water) and for mixtures

containing both polar and non-polar components, such as alcohol + hydrocarbon mixtures.

One way to improve the cubic EoSs capability to represent the phase equilibria in the cited cases

is integrating a flexible excess Gibbs energy model in suitable mixing rules. Among these, only

Wong and Sandler [30] (WS) mixing rules have been used in this thesis work; these mixing rules

are defined by the following equations:
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( )DRTba MM −= 1 (3.36)

where ijk is the conventional binary interaction parameter to regress from experimental data, and

ia , ja , ib and jb are the pure component parameters of the cubic EoS. The EG term in Eq. (3.35)

is obtained from a EG model, see paragraph 3.4. In the following of this thesis work we will refer

to equations of state integrating EG models as EoSsG E − .

3.4. Models for the excess Gibbs energy

In general the dimensionless ratio RTG E is a function of T , P , and composition, but for

liquids at low to moderate pressure it is a very weak function of P . Therefore the pressure

dependence of the activity coefficients is usually neglected, and at constant T it is:

( )C

E

xxxg
RT

G
,,, 21 K= ( )constT = (3.37)

For binary systems the EG function is often represented as a truncation of the two power series

in ( )21 xx − :

( ) ( ) K+−+−+= 2
2121

21

xxDxxCB
RTxx

G E

( )constT = (3.38)

and

( ) ( ) K+−′+−′+′= 2
2121

21 xxDxxCB
G

RTxx
E

( )constT = (3.39)

Since 12 1 xx −= for a binary system of species 1 and 2, 1x can be taken as the single

independent variable in Eqs. (3.38) and (3.39).
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Eq. (3.38) is known as Redlich/Kister [31] expansion.

Truncating the Eq. (3.38) after the second term, i.e., 0==KD , and by the substitutions

21ACB =+ and 12ACB =− the Margules model is obtained.

Truncating the Eq. (3.39) after the second term, i.e., 0==′ KD , and by the substitutions

211 ACB ′=′+′ and 121 ACB ′=′−′ the van Laar model is obtained.

12A , 21A , 12A′ and 21A′ are binary interaction parameters which have to be regressed on

experimental data.

The Redlich/Kister expansion, the Margules equations, and the van Laar equations are all special

cases of a general treatment based on rational functions, i.e., on equations for EG given by ratios of

polynomials. They provide great flexibility in the fitting of VLE data for binary systems, but they

have scant theoretical foundation and they cannot be extended to multicomponent systems.

Modern theoretical developments in the molecular thermodynamics of liquid solution behavior

are based on the concept of local composition. Within a liquid solution, local compositions,

different from the overall mixture composition, are presumed to account for the short-range order

and non-random molecular orientations that result from differences in molecular size and

intermolecular forces. The concept was introduced by G. M. Wilson in 1964 with the publication of

a model of solution behavior since known as the Wilson equation [32]. The success of this equation

in correlation of VLE data prompted the development of alternative local composition models. Most

notably the NRTL (Non-Random-Two-Liquid) equation of Renon and Prausnitz [33] and the

UNIQUAC (UNIversal QUAsi-Chemical) equation of Abrams and Prausnitz [34]. A further

significant development, based on the UNIQUAC equation, is the UNIFAC method [35], in which

activity coefficients are calculated from contributions of various groups making up the molecules of

a solution. Among these equations, in this thesis work only the UNIQUAC one has been used, and

its functional form is reported in appendix A.4.

3.5. Virial equations of state

3.5.1. Pure fluids

The virial equations of state are simple equations obtained from the power series expansion of

the compressibility factor in density along an isotherm:

( ) ( ) ( ) ...1 32 ++++=≡ ρρρ
ρ

TDTCTB
RT

P
Z (3.40)

where the functions:
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are the second, third, fourth, ... virial coefficient, respectively.

The same power series expansion can be done also in pressure:

( ) ( ) ( ) ...
~~~

1 32 ++++= PTDPTCPTBZ (3.42)

with similar meanings of the functions B
~

, C
~

, D
~

, that are connected to the other ones through

analytical relations here not reported.

Though virial equations have been initially introduced as purely empirical formulations [5], a

physical meaning has been afterwards attributed to the coefficients: B represents the interactions

between pairs of molecules, C among triplets of molecules and so on. Therefore, the relations

between virial coefficients and intermolecular potential functions can be derived from statistical

mechanics [36,37]; for instance the second virial coefficient for a fluid with spherically symmetric

intermolecular force field is:

( ) ( )[ ]∫
∞

−−=
0

d12 reNB Tkr
A

BΓπ (3.43)

where ( )rΓ is the potential energy between two molecules and r is the distance between molecular

centers. For superior order virial coefficients and for non-spherical molecules the expressions are

much more complicated, so it is practically impossible to calculate the virial coefficients in this

way.

The virial coefficients are functions of temperature only and, obviously, are fluid specific. As a

general rule inferred from practice, B is negative except at high temperatures, while C and higher

coefficients are positive except at very low temperatures [28]. Theoretically, the power series

expansion, Eq. (3.40), could be used to describe the fluid properties in the whole range of fluid

states, but this would require at least eight virial coefficients; for this reason the equation is usually

truncated to the third virial coefficient C and its validity is limited to the vapor phase up to

pressures of few tens of bar. If the expansions are truncated to the term including the second

coefficient, B and B
~

, the two equations (3.40) and (3.42) show an equivalent behavior with respect

to experimental data, but if also the third coefficient C and C
~

are considered the first equation is

much more accurate with respect to the second.

The virial coefficients can be calculated from generalized correlations based on multi-fluid

regression, even if much less is known about third virial coefficient than about second virial
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coefficient. One of the first generalized correlations for ( )TB is given in Ref. 38, where the second

virial coefficient is written in a non-dimensional form and it is expressed as a function of the

reduced temperature rT and of the acentric factor ω :

( ) ( )

c

c

c

c

c

c

RT

PB

RT

PB

RT

BP 10

ω+= (3.44)

Following the common approach, the functions ( )0B and ( )1B in Eq. (3.44) depend only on

reduced temperature and various equations have been published for them in literature, as for

instance by Pitzer and Curl [38] or by Van Ness and Abbott [39]; in the second case the equations

are simpler but valid only for normal fluids:
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More complicated functional forms were also assumed instead of Eq. (3.44); Tsonopoulos

[40,41] proposed an equation with two further parameters a and b , that can be either constants or

functions of the dipole moment of the molecule:

( ) ( ) ( ) ( )3210 bfafff
RT

BP

c

c +++= ω (3.46)

where the ( )if functions depend only on reduced temperature; their analytical relations are given in

the cited works.

Similar generalized approaches are followed also for the representation of the third virial

coefficient C , though less precise experimental data are available for it; as an example, Orbey and

Vera [42] proposed the following equation, valid for non-polar substances:
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Besides these predictive techniques, virial coefficients can be directly fitted on experimental

density data of the fluid of interest, when density measurements in low-density region are available.

It is also possible to assume equations for virial coefficients from simplified models of statistical

mechanics and to fit the coefficients of such functional forms on experimental speed of sound data

for the fluid [43,44]; this procedure is advantageous because the speed of sound can be measured in

vapor phase with very high precision using modern instruments as for instance the spherical

resonator.

As previously shown for cubic equations, also a virial equation can be converted into a

fundamental EoS form through integration according to Eq. (3.23), giving:

( ) ( ) ( ) ( )








+++= ...

32
,

32 ρρρρ TDTC
TBRTTAR (3.49)

from which all the thermodynamic properties can be calculated. Obviously, the validity range of the

obtained fundamental equation is the same of the starting virial equation, i.e. it is limited to vapor

phase at a maximum pressure of few tens of bar.

3.5.2. Mixtures

A one-fluid model approach is adopted for the extension of the virial equations from pure fluids

to mixtures, similarly to what was previously explained for cubic EoSs.

The exact composition dependence of the virial coefficients is given by statistical mechanics

without the need of any arbitrary assumption [36,37]. For the second and the third coefficients it

reads:
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where the coefficient ijB characterizes a bimolecular interaction between molecule i and molecule

j and then jiij BB = , while the coefficient ijkC takes into account interactions among three

molecules i , j and k . The cross coefficients coincide with the respective coefficients for pure

fluids if kji == , otherwise they can be calculated from the same relations valid for pure fluids

using parameters calculated from suitable mixing rules [37]. For the cross second coefficient ijB ,

Eqs. (3.44) or (3.46) can still be used adopting the following mixing rules:
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The cross third virial coefficient ijkC is calculated as:

( ) 31
ikjkijijk CCCC = (3.53)

with each binary cross coefficient ijC obtained for instance from Eq. (3.47) with the same mixing

rules in Eq. (3.52).

In Eq. (3.52) icZ , is the compressibility factor at the critical point for the component i and ijk is

an empirical interaction parameter specific for the i - j molecular pair; ijk equals zero for ji = and

for chemically similar species, otherwise it is regressed from fitting on experimental data, when

available.

3.6. Corresponding states models

3.6.1. Two parameter corresponding states

The principle of two-parameter corresponding states was first stated by van der Waals: after a

rearrangement, his cubic EoS, Eq. (3.11), can be expressed in reduced variables as:
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Therefore, from Eq. (3.54) it comes out that all fluids when compared at the same reduced

temperature and reduced pressure have the same reduced density (or the same compressibility factor

Z ) and all deviate from the ideal-gas behavior to about the same degree. This is the basic concept

of the corresponding states principle: the existence of a unique function relating the reduced

physical variables:

( ) 0,, =rrr vPTΦ (3.56)
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valid for all the substances, i.e. a generalized equation of state. The former equation, Eq. (3.56), can

be made explicit for instance in reduced pressure as:

( )rrr vTP ,Ψ= (3.57)

Operatively, this means that if a precise equation of state is available for a fluid, called reference

fluid and denoted with subscript 0, the thermodynamic properties of any other target fluid j can be

calculated in a predictive way through the application of the corresponding states principle; for

example, the compressibility factor reads:
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0,

,

0,
0 ,, (3.58)

The two parameters are those necessary to calculate the reduced values of the independent

variables. A plot of compressibility factor as a function of reduced pressure, at fixed values of

reduced temperature, is shown in Fig. 3.1 for various fluids. The lines have been generated from the

most precise equations of state at present available for the selected fluids. It is evident that the

corresponding states principle is quite verified in the vapor region at low pressure, but it fails at

higher pressures, in the supercritical region and in all the liquid region.

The corresponding states principle was demonstrated by means of statistical mechanics [7-9]

under the hypothesis of the same reduced intermolecular force law for different fluids; the fluids

that share such a condition are said to be conformal. In practice, only the family of noble gases,

constituted by spherical and non-polar monatomic molecules, rigorously fulfills the conformality

requirement. In the case of fluids pertaining to that family the physical theory states the equality of

the reduced residual Helmholtz free energy for different compounds when evaluated at the same

reduced temperature and density:

( ) ( )rr
R

rr
R
j TaTa ρρ ,, 0= (3.59)

It is worth noticing that all the other thermodynamic properties can be derived from Eq. (3.59) if

an EoS for the reference fluid 0 is available.
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Figure 3.1: Compressibility factor for different fluids in reduced variables.

For all the other fluids, whose molecules are polyatomic and in many cases even polar, the

conformality condition is not verified and the application to them of the two-parameter

corresponding states principle often leads to large deviations. Nevertheless, also if the curves are

not perfectly superimposed, a certain degree of conformality is anyway attained. Therefore,

modifications and extensions of this principle have been proposed, though maintaining a similar

framework.

In any case, even if the representation of all the fluids at once with the van der Waals EoS is not

precise and then Eq. (3.54) has to be regarded as an approximation, the use of variables reduced

through their critical values in order to exploit the similitude in the behaviors of different fluids was

surely not only an interesting intuition, but a real milestone in thermodynamic modeling.

3.6.2. Three parameter corresponding states

A way to extend the applicability of the corresponding states principle beyond the simple

spherical fluids, i.e. noble gases and few other simple substances, was found with the introduction
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of a third parameter that accounts for the deviation of the target fluid from the spherical fluid

behavior. This technique has been successively improved during the last decades.

PITZER MODEL

In Fig. 3.2 the logarithm of the reduced vapor pressure versus the inverse reduced temperature is

plotted for a group of fluids; the curves were produced with the most precise EoSs at present

available for the fluids. It is evident that the plots are almost straight line for each fluid, i.e. they has

a constant slope:

( ) const
T

P

r

s
r ≈

1d

logd 10 (3.60)

Moreover, the lines for argon, krypton, xenon and methane are substantially superimposed, while

the remaining fluids deviate from that lines of an amount that increases with the molecule

complexity.
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Figure 3.2: Vapor pressure in reduced variables for different fluids.
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From the figure it can be inferred that the two-parameter corresponding states principle is valid

for the noble gases and for methane, that has a roughly spherical molecule, whereas it fails for the

other substances.

Pitzer et al. [10] noticed that for noble gases it is:

( ) 0.1log 7.010 −==rT
s

rP (3.61)

and then they proposed to use the reduced vapor pressure at 7.0=rT as an index of the deviation of

the fluid of interest from the simple fluids behavior, so defining the acentric factor:

( ) 0.1log 7.010 −−≡ =rT
s

rPω (3.62)

This quantity, calculated from an experimental vapor pressure, is the third parameter of the

models developed by Pitzer et al. [10]. They considered the compressibility factor for a target fluid j

as a function of reduced temperature, reduced pressure and acentric factor:

( )jrrjj PTZZ ω,,= (3.63)

The expansion as power series in acentric factor gives:
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Pitzer’s assumption was that ω would describe deviations from the monatomic gases in a linear

fashion, implying the corrections would be small. For example, the compressibility factor was given

as:

( ) ( ) ( )rrjrrrrj PTZPTZPTZ ,,, )1()0( ω+= (3.65)

where )0(Z and )1(Z are generalized functions of reduced temperature and pressure with )0(Z

obtained from the monatomic species and )1(Z by averaging ( )( ) ω0ZZ − for different substances.

The same formulation was used for the other thermodynamic properties, for example the vapor

pressure of a target fluid j is calculated as:
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Pitzer et al. [10] reported in their work also tabulations of the )0(Z and )1(Z values as functions

of reduced temperature and pressure, and of the ( )( )0

10log
rT

s
rP and ( )[ ] 0,10log =∂∂ ωω

rT
s

rP values as

functions of reduced temperature.

LEE-KESLER MODEL

Twenty years later, in 1975, Lee and Kesler [11] proposed a modification of the Pitzer et al.

model [10] that avoided the necessity to calculate the derivatives of thermodynamic functions with

respect to acentric factor.

They considered two reference fluids for which quite reliable EoSs were available. The first

reference fluid, denoted with 0, is a simple spherical fluid, while the other one, denoted with R1, is

a heavy compounds; argon and n-octane, respectively, were mainly used.

In the Lee-Kesler model the acentric factor of the target fluid j is the scaling parameter for the

interpolation between the properties of the two reference fluids, that are known from their EoSs. In

the case of compressibility factor the model reads:

( ) ( ) ( ) ( )[ ]rrrrR1
R1

j
rrrrj PTZPTZPTZPTZ ,,,, 00 −+=

ω
ω

(3.67)

The same technique can be applied to the residual part of all the other reduced thermodynamic

properties, always maintaining the acentric factor as scaling parameter. For instance, in the case of

enthalpy it is:
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This model is suitable for non-polar or slightly polar substances; when applied to highly polar

compounds larger errors can be expected.

TEJA MODEL

A further improvement of the original Pitzer model was proposed in 1981 by Teja et al. [12,13].

The new model no longer retains a simple fluid as one of the references, but it assumes two

reference fluids, denoted with R1 and R2, which are chosen among substances similar to the fluid of

interest. Therefore a better conformality of the target fluid to the two references can be pursued

suitably selecting the reference fluids themselves, with consequently better performances of the

model.
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As in the case of the Lee-Kesler technique [11], a precise EoS has to be available for each

reference fluid, allowing to calculate its thermodynamic properties.

The Teja et al. model for compressibility factor is written as:

( ) ( ) ( ) ( )[ ]rrR1rrR2
R1R2

R1j
rrR1rrj PTZPTZPTZPTZ ,,,, −

−

−
+=

ωω
ωω

(3.69)

and the other properties are similarly calculated applying the model only to the reduced residual

part, as in the Lee-Kesler method, and using the acentric factor as scaling parameter in the same

way of Eq. (3.69).

The extension to mixtures is based on the one-fluid model technique; the critical properties used

to make the variables non-dimensional are substituted by pseudo-critical values calculated from the

mixing rules:
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where it is:
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The adjustable binary interaction coefficients ijε and ijη equal zero for ji = , while for ji ≠

they can be regressed on available experimental data or, if this is not possible, set to zero. From the

obtained values of McT , , Mcv , and McZ , it is possible to calculate the pseudo-critical pressure McP ,

required to reduce the pressure variable.

SCALABRIN MODEL

In recent times Scalabrin et al. [45-48] developed a further improvement of the three-parameter

corresponding states model, obtaining very accurate results. The idea from Teja et al. [12,13] of

choosing two reference fluids as conformal as possible with the target fluids was maintained, but

the novelty was constituted by the introduction of a property-specific quantity as scaling parameter

instead of the acentric factor.

The basic concept is that different thermodynamic properties of a chosen group of fluids do not

behave exactly in the same way when operating in reduced variables, but on the contrary the
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relative deviation between fluids can be very different from one property to the other. Therefore the

extension of the acentric factor, that is no more than a scaling parameter for vapor pressure, to

represent all the properties is a rough approximation that often leads to poor results.

Moving from these remarks, Scalabrin et al. proposed to substitute the acentric factor with a new

parameter that is not only fluid-specific but also property-specific; the parameter has to be

calculated from very few experimental data, typically one measurement at saturation condition, then

maintaining the predictive character of the model. The set up of the most suitable scaling parameter

has moved from a conformality analysis specific for the considered property.

As for the Teja et al. model [12,13], the target fluid is denoted with j, while R1 and R2 are the

reference fluids, that have to dispose of reliable EoSs.

The new three-parameter model can be written in a general form, indicated with ψ and ω~

respectively a function of a generic property and the new scaling parameter:

( ) ( ) ( ) ( )[ ]rrR1rrR2
R1R2

R1j
rrR1rrj PTPTPTPT ,,~~

~~
,, ψψ

ωω
ωω

ψψ −
−

−
+= (3.72)

The model has been developed for density [47], with:
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for residual enthalpy [48]:
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and for residual entropy [48]:
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As it can be seen, the scaling parameter is calculated at a fixed reduced temperature, here chosen

as 8.0=rT , from a point of saturated liquid density in Eq. (3.74) and from enthalpy of vaporization

in Eqs. (3.76) and (3.78); both the required input are experimentally accessible measurements. The

corresponding values for the reference fluids are calculated from their necessarily available EoSs.

The representation of mixtures follows a one-fluid model approach applying suitable mixing

rules, that in these cases have been derived from a modification of the Wong et al. [49] ones:
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and transforming Eq. (3.72) into:
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As usual, the adjustable binary interaction coefficients ijε and ijη are null when ji = , while for

ji ≠ they are regressed on available experimental data to improve the model accuracy, otherwise

set to zero.

These models have been applied to halogenated alkanes [47,48] and to hydrofluoroethers [47]

with very satisfying results.

3.6.3. Extended corresponding states

Another formulation moving from the corresponding states principle with the aim at extending

its application also to non-spherical fluids is known as extended corresponding states (ECS) method

[9,14-17]. In this approach the equality between the reduced residual Helmholtz free energies of

reference and target fluids, as from the original two-parameter corresponding states model, is

maintained:

( ) ( )000 ,, ρρ TaTa R
jj

R
j = (3.81)

but the independent variables of reference and target fluids are related each other by the equations:

jj fTT =0 jjhρρ =0 (3.82, 3.83)

where jf and jh are the so-called scale factors. In the case that the condition of the same reduced

intermolecular force law for the two fluids is verified, the scale factors simply coincide with the

ratios of the critical constants:
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and the basic two-parameter corresponding principle, Eq. (3.59), is recovered. If the condition is not

fulfilled, two corrective factors, called shape functions, are introduced in order to account for the

departure from perfect similarity:
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c

jc
j T

T

T
f ρθ ,

0,

,= ( )jjj
jc

c
j Th ρφ

ρ
ρ

,
,
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The shape functions jφ and jθ , and then also the scale factors, are fluid-specific functions in the

independent variables temperature and density of the interest fluid; they allow to represent the

thermodynamic behavior of a target fluid with respect to a reference one, for which an EoS must be

available. Once such functions have been determined for the considered fluid, all the other

thermodynamic properties can be obtained through differentiation of the fundamental equation, Eq.

(3.81). For instance, considering only the first derivatives, it is:

( )
j

RR

j

R
j

Tj

R
j HzFuza

j

ρρρ
ρρ ++

==










∂

∂ 100 ⇒ ( )ρρ HzFuz RRR
j ++= 100 (3.88, 3.89) 

( )
j

T
R

T
R

j

R
j

j

R
j

T

HzFu

T

u

T

a

j

00 1 −−
−=−=











∂

∂

ρ

⇒ ( ) T
R

T
RR

j HzFuu 00 1 −−= (3.90, 3.91) 
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From Eqs. (3.88-3.95) the residual compressibility factor 1−= Zz R and the reduced residual

internal energy ( )RTUu RR = are calculated for the target fluid.

In the case of mixtures, Eqs. (3.81-3.85) are still valid with the substitution of target mixture M

for pure fluid j:

( ) ( )000 ,,, ρρ TaTa R
MM

R
M =x (3.96) 

MM fTT =0 MM hρρ =0 (3.97, 3.98) 
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where the mixture scale factors are usually obtained from van der Waals mixing rules [50]:
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Also in this case the binary interaction parameters ijk and ijl are non-zero when ji ≠ and can be

regressed on experimental data when available.

The pure fluid scale factors in Eqs. (3.101) and (3.102) are calculated in condition of

conformality among the mixture, the pure components and the reference fluid, i.e. the following

equations system has to be verified:
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At this point the heart of the problem is how to get the scale or the shape functions. Different

procedures have been proposed in the literature aiming at such a goal: the two scale functions and

all their derivatives can be determined through an analytical procedure, the local solution, without

the definition of their functional form [50,51], or alternatively through a correlative procedure, the

continuous solution, which requires the assumption of a functional form for them [52,54]. In the

first case the shape functions are locally determined, whereas in the second one they are determined

in a continuum space. Another approach only recently emerged in literature [55-57] is the

optimization procedure, through which the analytical dependences of the scale factors are directly

and simultaneously obtained for regression of the available experimental data. In the following

sections these methods are presented and their effectiveness with respect to the ECS modeling

technique is discussed.

LOCAL SOLUTION

Making available an EoS for both the target and the reference fluid, the mathematical problem

presents two variables, jf and jh , and only one identity which is the ‘mother’ equation of the ECS

method, Eq. (3.81). This gives rise to an undefined system of equations and a further relation is

therefore required to determine the unknowns jf and jh . Once another equation posing a constraint

between the variables would be found, the subsequent problem is to derive any other
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thermodynamic function of the fluid of interest, as for instance Eqs. (3.89) and (3.91); in order to

calculate them, all the local values of the derivatives of the scale factors are also needed, see Eqs.

(3.92-3.95). Further equations are then to be found for determining the required scale factors

derivatives.

Considering the Eqs. (3.81), (3.88), (3.90), in the case of local solution one could try to solve a

system composed of such equations in order to get both the two scale factors and their four first

derivatives values at a given point ( )jjT ρ, [50]. From a check of the equations it appears that the

first, Eq. (3.81), is the ‘mother’ one, the second, Eq. (3.88), is the first derivative of Eq. (3.81) with

respect to density, the third, Eq. (3.90), is the first derivative of Eq. (3.81) with respect to

temperature, while the remaining equations are linear combinations of the former three ones

according to thermodynamic function definitions. The system of the mentioned equations is

evidently undetermined and the same reasoning is furthermore convenient to show that also any

general system involving all the derivatives, the first order ones and those of superior order, would

be undetermined as well.

As always in presence of an undefined system, the chance to overcome the impasse is

represented by the introduction of a number of arbitrary conditions sufficient to cover the gap

between unknown variables and available equations. In this case the required arbitrary condition is

a single analytical relation linking the scale functions one another and then saturating the remaining

degree of freedom.

Limiting the interest to the representation of only those thermodynamic functions not involving

higher order derivatives of the scale factors, another possibility is to choose a derived function m

and to impose its transformation into the most essential relation reading:

( ) ( )jjjj
R

jj
R
j hfTmTm ρρ ,, 0= (3.104) 

This leads to a particular function relating the scale factor derivatives. At this stage the

thermodynamic model is composed of the primary equation (3.81) and the mentioned relation, Eq.

(3.104). Supplying local values of the quantities R
ja and R

jm the system of equations can now be

regularly solved for the local values of the scale factors jf and jh . Anyway, the scale factors first

order derivatives are furthermore required to represent the remaining thermodynamic functions and

these must be obtained from further thermodynamic relations, as for example those reported in Ref.

50.

Applying for instance Eq. (3.104) to Rz , the introduction of the condition from Ref. 50:

000 =+ ρρ FuHz RR (3.105) 
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leads to:

RR
j zz 0= (3.106) 

and to a simplification of the other relations for the thermodynamic functions.

This choice gets the advantage that the target fluid density is directly represented from the

equations system itself, composed of Eqs. (3.81) and (3.106). An equivalent equations system under

the same arbitrary condition, Eq. (3.105), could be composed of Eq. (3.81) and:

RR
j gg 0= (3.107) 

Instead of applying Eq. (3.104) to Rz , it could be for instance applied to Ru , Eq. (3.91), deriving a

new condition for the scale factors derivatives reading:

000 =+ T
R

T
R FuHz (3.108) 

From this new condition another set of equations for the remaining thermodynamic properties is

then obtained and it composes an alternative version of the ECS model.

A subsequent mathematical version of the ECS technique has been proposed [51,58]: the system

of equations (3.81) and (3.106) is still used, the second being evidently derived from the assumption

of the same arbitrary condition, Eq. (3.105), but in these works the functional dependence of the

scale factors on density was omitted and the condition of Eq. (3.105) becomes:

0== ρρ FH (3.109) 

In conclusion this modeling condition, applied in Refs. 51 and 58, represents only a

simplification of the above mentioned model assuming Eq. (3.105). In this version the Authors

modified the original ECS model and they did not generate ‘exact’ scale functions according to the

technique discussed in the preceding, which requires the EoS also for the interest fluid, but two

individual functions, one for vapor pressure and the other for saturated liquid density, were used

instead of an EoS. These two equations together represent, from another point of view, the target

fluid EoS limited to only the saturated liquid line.

The shape functions values were generated forcing the ECS model, Eqs. (3.81) and (3.106), to

represent the thermodynamic surfaces of the fluid from these two individual equations along the

saturated liquid line and consequently they are only temperature dependent. These generated values

were then correlated through empirical fitting equations. The shape functions density dependence in

the regions of the superheated vapor and of the compressed liquid was then omitted and the shape
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functions values calculated at a local temperature were assumed to be valid at any density along that

isotherm, arbitrarily extrapolating them to any other region, i.e. compressed liquid, saturated and

superheated vapor, and the supercritical domain. This position is expected to introduce some

sensible error deviations in those regions where the sensitivity of density to pressure is higher, as is

the case of the superheated vapor region.

Looking at the arbitrary condition effectively applied, Eq. (3.105), it is evident that the scale

functions density derivatives are linked together through the reference fluid functions ( )ρ,0 Tu R and

( )ρ,0 Tz R . Going back to the arbitrary condition proposed in Refs. 51 and 58, Eq. (3.109), this has to

be considered as a rough approximation, because it is contradicted by theory and practice [9,59].

Up to this stage the conversion of the original undefined system of equations into a defined one

can be performed, but once an arbitrary condition is set up the various thermodynamic properties

have furthermore to be analytically calculated as an ‘exact solution’. The shape functions first

derivatives ρF , ρH , TF , TH appearing in the preceding relations, Eqs. (3.88) and (3.90), after the

introduction of the arbitrary condition have also to be locally calculated, as well as second and cross

derivatives for the further thermodynamic functions.

Some considerations can be drawn from the preceding discussion:

� through the analytical local procedure any thermodynamic function of a pure fluid can be

exactly obtained, but at the unavoidable condition that an EoS is available for each interest

fluid, in addition to the necessary EoS for the reference fluid. For an interest fluid no

practical advantage is coming from the application of this analytical local procedure. An

EoS is in fact always required for it and no benefit is derived from its reproduction

according to an ECS format. Consequently, the prospects of this procedure are only

addressed to mixtures modeling for thermodynamics and to pure fluids and mixtures

modeling for transport properties [60-65]. In any case the extension to mixtures requires the

introduction of suitable mixing rules for both the scale factors and the pseudo-critical

parameters as currently reported in the literature;

� being infinite the arbitrary conditions which it is possible to assume to make the equations

system determined, then infinite are the scale factors local values of the resulting ECS EoS

for the same interest fluid in the same condition. This is a misleading aspect, because it

eludes the uniqueness of an analytical thermodynamic model;

� through this procedure the functional forms of the scale factors and their derivatives are not

defined but only their local values are got;

� given the ‘mother’ equation, Eq. (3.81), and an arbitrary condition, the scale factors can be

calculated and any other thermodynamic function can be derived through classical
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thermodynamics. Consequently, the theoretically correct form of the so-obtained

thermodynamic system must be always composed of the ‘mother’ equation, Eq. (3.81), and

of the arbitrary condition.

In the case of assuming the first of the two formerly proposed arbitrary conditions, Eq. (3.105),

the correct form of the system is:

( ) ( )






=+
=

0

,,

00

0

ρρ

ρρ
FuHz

hfTaTa
RR

jjjj
R

jj
R
j (3.110)

but in such a system the scale factors density derivatives ρH and ρF are also present as unknowns

preventing a mathematical solution for the scale factors. It is then more convenient to consider also

Eq. (3.106) turning the system to be read:
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In this form the system takes into account only the scale factors as unknowns and it does not

include any derivative of them, making this system the more essential that it is possible to get for a

plain solution. This form is also currently assumed through all the literature as the true analytical

representation of the conventional ECS model [50-54,58,59].

CONTINUOUS SOLUTION

The preceding study shows that after the assumption of an arbitrary condition linking the two

scale functions the mathematical problem is not completely solved, because the analytical forms of

the scale functions have to be furthermore found.

Aiming at an analytical solution of the scale functions a possibility is given. For the fluid of

interest local values of the scale functions can be generated on a regular grid of the independent

variables jjT ρ, , assuming an arbitrary condition and analytically solving the consequent equations

system; the calculated points are then correlated with fitting equations, one for each scale function.

The individual local values have to be fitted with some empirical correlations to proceed to the

representation of any thermodynamic function; such fitting equations should be suitable for all the

fluids of interest and possibly for different forms of the arbitrary condition, so flexible function

approximators are required [52,53].

An evident advantage comes from the continuous solution mode with respect to the local

solution mode. Once the scale factors have been locally generated all over the target fluid TPρ
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surface and the two ( )jjj Tf ρ, and ( )jjj Th ρ, functions have been regressed on the generated

values, the first, second and cross derivatives of the scale factors can be directly and more easily

obtained from these functions, then avoiding the tiresome local generation procedure at each

( )jjT ρ, point.

Even if the more recent models [52,53] in this framework omitted the original requirement of the

target fluid EoS [50] and proposed to locally generate the individual scale factors from density data

ordered along isotherms covering the range of interest, anyway such a regression procedure does

not allow to fit either on different kind of data or on a multi-property data set, as it is generally

required for an equilibrated and general dedicated EoS; for instance coexistence data of vapor

pressure and saturated liquid and vapor densities should be required for any EoS development.

Moreover, the procedure cannot avoid the imposition of an arbitrary condition [50,52,53], as for

instance Eq. (3.105), to generate local values of the scale factors.

Besides, this second traditional approach presents at least two important drawbacks: the

determination of the local values of the scale factors is very cumbersome and their successive

separate correlation leads to incoherencies, as it is recognized by the Authors themselves [52-54].

Furthermore, the functional forms for the scale factors are arbitrarily chosen, with a trial-and-error

approach and not with an objective optimization procedure.

As a conclusion, in both the former modes (local and continuous solutions) the ECS method

remains undefined: in fact for each of the infinite possible arbitrary conditions, infinite forms of the

ECS model are possible to represent the same fluid.

OPTIMIZATION PROCEDURE

The basic idea of the ECS model consists in the distortion of the independent variables of the

EoS of the reference fluid to transform it into the EoS of the interest fluid. If the simple two-

parameter corresponding states principle should work exactly, no tuning distortion would be

necessary; since this is not the case, two tuning functions θ and φ , indicated as shape functions, are

then individually required to exactly match the ECS model with a known thermodynamic surface of

the interest fluid. Furthermore a general aim of the method would be to match the ECS model with

a thermodynamic surface known through a certain amount of experimental data of the interest fluid.

For the two traditional approaches, the local solution and the continuous solution, the solving of

the equations system, Eq. (3.111), is unavoidable and then either an EoS in the Helmholtz energy

form [50,51,58,59] or properly organized density data [52,53] are always required to get the

( )jj
R
j Ta ρ, local values.
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If a flexible and robust function approximator, suitable to generally represent typical surface

forms of the shape functions, could be introduced into the ECS model, the problem would be

transformed into a general fitting procedure in which a mathematical form of the Ra surface has to

be ‘spread’ on known values of it and of its derivatives. The new problem becomes in this case the

minimization of an objective function composed of suitable forms of error deviations between

predicted and known values of different thermodynamic properties. The result of this typical

multiparameter minimization problem is a fundamental multiparameter ECS EoS through which

any other thermodynamic property can be calculated.

This procedure is quite different from the local solution and from the continuous solution,

because it avoids any local analytical solving of systems of equations and it requires neither an EoS

for the interest fluid nor an arbitrary condition, from which the difficulties discussed in the

preceding sections derive.

Moreover the new procedure yields at once the mathematical formulations of the two individual

shape functions, which allow to move to any other thermodynamic function through the classical

analytical transformations.

The general difficulty of any thermodynamic ECS model, due to its basic mathematical

indeterminacy, is still present in the procedure, because the method is always based on a single

equation, Eq. (3.81), with two unknowns, i.e. the local values of the shape functions, but this

difficulty is overcome by the optimization procedure which allows to get the most effective

solution.

The possibility to directly fit the shape functional forms on the experimental data has been only

recently pointed out in the literature [55-57]; in paragraph 3.6.4. this approach will be exploited

using a neural network to describe the functional dependence of the shape functions, both for pure

fluids and for mixtures.

3.6.4. ECS-NN

The Extended Corresponding States Neural Network (ECS-NN) modeling technique is here

treated in detail because it represents the basis for the development of the Extended Equation of

State Neural Network (EEoS-NN) modeling technique, see Chap. IV, that represents the main

subject of the part of this thesis regarding the thermodynamic properties representation. In the ECS-

NN method the basic framework of the ECS is still maintained, but the novelty is represented by the

application of a powerful heuristic technique to determine the scale factors as continuous functions

of the target fluid thermodynamic variables. Starting from experimental data of the considered fluid,

the regression procedure yields an equation of state in the fundamental Helmholtz energy form for
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the fluid itself able to satisfactorily describe vapor, liquid and supercritical regions. The same

technique can be applied also to mixtures. Therefore such a method pertains to the optimization

procedure; the scale factors functional forms are represented by a multilayer feed-forward neural

network, from which the acronym ‘ECS-NN’ given to this technique.

PURE FLUIDS

The basic equation of the corresponding states theory, Eq. (3.81), expresses the equality of the

reduced residual Helmholtz energy when evaluated in condition of conformality between the target

fluid, denoted with j, and the reference fluid, denoted with 0.

The ECS technique relates the independent variables of target and reference fluids through Eqs.

(3.82, 3.83, 3.86, 3.87). Once analytical equations are available for the shape functions, all the

thermodynamic properties of the target fluid can be calculated from the necessary equation of state

of the reference fluid. An example is given in Eqs. (3.89) and (3.91), which involve the scale factors

derivatives, Eqs. (3.92-3.95).

The problem is how to get the equations for the scale or the shape functions.

The present innovative purpose is to express the shape functions through a multilayer feed-

forward neural network with one hidden layer. With reference to Paragraph 2.2 and in particular to

Figs. 2.1 and 2.3, it is:
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For convenience the chosen independent variables of the shape functions are jrT , and jδ ,
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where terms mk VW ∂∂ ( KkIm ≤≤−≤≤ 1,11 ) are calculated by Eq. A1.14 in Appendix A.1.

The number of neurons in the hidden layer J has to be found by trial-and-error, searching for

the best compromise between computational speed and accuracy of the resulting equation; it must

not be too large, because if there are too many free parameters with respect to the number of

experimental points overfitting problems may arise.

Moreover, the values min,iV and max,iV required for the linear scaling of the input variables are

fluid-specific and they depend on the considered ranges of the independent variables jjT ρ, . The

parameters min,kW and max,kW for the output variables scaling are fluid-specific as well and they are

related to the deviation from conformality between the target and the reference fluid.

The weighting factors have then to be regressed for each fluid. Such values are obtained with a

fitting procedure, the training, which aims at the minimization of an objective function calculated

from the given thermodynamic properties data. Once the training has been completed, the shape

functions and all their derivatives are obtained in continuous form from the equations given in

Appendix A.1. 

The Ra data are not experimentally accessible and then the neural shape functions have to be

determined using other thermodynamic quantities. Density is the most favored one, because it can

be quite easily measured in both vapor and liquid regions with high accuracy and, moreover, it is an

independent variable, together with temperature, of fundamental Helmholtz energy equations of

state. Also the accurate representation of the vapor-liquid saturation condition is a basic requirement

for an EoS, therefore information about this locus has to be supplied during the training procedure.

The ECS-NN EoS can be trained on a derived quantity as density without any substantial loss of

accuracy on the fundamental surface ( )jj
R
j Ta ρ, . 

An inversion of variables is always needed for practical uses, since P,T are the controlling

variables for experimentation and for technical applications, while ρ,T are the independent

variables of the model. Such different choice of variables requires an iterative procedure to find a

solution for ( )PT ,ρ .
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As an example of the shape functions behavior, the ( )jjjj δτθθ ,= and ( )jjjj δτφφ ,= surfaces

for the fluid R152a, using R134a as reference fluid, are shown in Figs. 3.3 and 3.4, respectively,

using the dedicated EoS of Tillner-Roth and Baehr [66] as reference fluid EoS. jτ and jδ represent

the inverse reduced temperature and the reduced density, as from Eqs. (3.113) and (3.114). Both the

shape function surfaces are very smooth, with values centered around 1, corresponding to a null

distortion of the variables, and with very small variations limited in few parts percent. This also

confirms that the two-parameter corresponding states principle alone works well enough for these

fluids and that the ECS technique, with the non-linear distortion of the independent variables, is

very sensitive and effective.

Figure 3.3: Shape function ( )jjjj δτθθ ,= for the interest fluid R152a with the ECS-NN model

trained on density and coexistence data.
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Figure 3.4: Shape function ( )jjjj δτφφ ,= for the interest fluid R152a with the ECS-NN model

trained on density and coexistence data.

A question is now posed about the possibility to extend the proposed model to fluids which are

supposed not to share a condition of conformality with the reference fluid, at least according to the

traditional theory which bases the conformality on the molecular potentials similitude. In order to

verify such a possibility, water and ammonia have been selected as target fluids, since they are

known as strongly polar and deviating fluids; the haloalkane R134a has been maintained as

reference fluid. For both these two target fluids the conformality with the reference fluid is

supposed to be rather poor.

In Fig. 3.5 and 3.6 the ( )jjjj δτθθ ,= and ( )jjjj δτφφ ,= surfaces are respectively shown for

water. Similar plots are obtained also for ammonia.
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Figure 3.5: Shape function ( )jjjj ,δτθθ = for water with the ECS-NN model trained on density

data.

Figure 3.6: Shape function ( )jjjj ,δτφφ = for water with the ECS-NN model trained on density

data.
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The results are very satisfactory for both these strongly polar fluids and they demonstrate that the

heuristic model can quite well correct the behavior discrepancies between reference and target

fluids, allowing to go well beyond the traditional limit of conformality for the application of a

corresponding states modeling technique.

MIXTURES

In Ref. 57 the same heuristic ECS-NN model developed for pure fluids has been applied also to

mixtures using Eq. (3.96) with the relations:

( )x,,0
MMM

M

Tf

T
T

ρ
= ( )x,,0 MMMM Th ρρρ = (3.122, 3.123)

where x is the vector of molar compositions.

For mixtures it is more convenient to represent the scale factors instead of the shape functions,

because in this way the definition of mixture pseudo-critical parameters is skipped.

Once the scale functions have been obtained all the thermodynamic properties can be calculated

applying the same equations used for the pure fluids, substituting the mixture scaling factors to the

pure fluid ones. For instance, in Eqs (3.89) and (3.91), the derivatives of the scale functions in the

case of a mixture are:
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The only novelty is the partial molar fugacity coefficient jM ,ϕ̂ for the mixture component j ,

which includes also the differentiation of the scale factors with respect to the number of moles of

the component j itself:
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The haloalkane R134a is taken as reference fluid, with the corresponding DEoS from Tillner-

Roth and Baehr [66].

Also in this case the analytical form of the scale factors is expressed through a MLFN with a

single hidden layer. The input variables are temperature and density of the mixture plus C-1 molar

compositions, while the output variables are the scale factors. Therefore, it is:

2+= CI MTV =1 MV ρ=2 11213 −−− === CIii xVxVxV KK (3.131)

2=K ( )x,,1 MMM TfW ρ= ( )x,,2 MMM ThW ρ= (3.132)

Considering Eqs. (3.131) and (3.132), the scale function derivatives in Eqs. (3.124-3.127, 3.129,

3.130) are calculated by Eq. A1.14 in Appendix A.1.

The training of the ECS-NN model aims at determining the individual scale functions over the

entire ( )x,,Tρ domain of the mixture of interest through an optimization procedure. As in the case

of pure fluids, the present inputs are density data ( )x,,, ρPT covering the vapor, liquid, and

supercritical regions, together with vapor-liquid equilibrium (VLE) data in the forms ( )sssPT yx ,,, ,

( )sslsPT x,,, ρ and ( )ssvsPT y,,, ρ . These VLE data are indispensable to locate the bubble and dew

surfaces of the mixture.

It is worth noticing that the functional dependence of the mixture model from composition arises

directly from the generation of the scale factors functions, because the reference pure fluid DEoS

has obviously no composition dependence. The mathematical formulation of the composition

dependence of the model is learnt by the MLFN during the training step.

In general the accuracies reached by the proposed modeling method can be regarded as quite

close to those obtained by the corresponding DEoSs developed according to the method of Tillner-

Roth [67-70], see also paragraph 3.7.

From the procedure presented in the preceding, for a mixture M of C components in the

independent variables MT , Mρ and ( )11 ,, −= Cxx Kx the continuous scale factor functions

( )x,, MMM Tf ρ and ( )x,, MMM Th ρ are obtained. Their composition dependence can be studied

generating sections of these surfaces for constant values of some of the variables.

As an example, in Fig. 3.7 sections of Mf and Mh for the binary mixture R32/R125 are shown

as a function of composition R32x for given values of the variables MT , Mρ . It is worth noticing
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that the values of Mf and Mh at the composition bounds represent the scale factors values of the

pure components R32 and R125, with respect to the reference fluid R134a, at the present

temperature and density. Very regular curves result for this mixture, indicating that the surfaces of

both the scale factors are very smooth. A similar behavior was verified for all the other mixtures

studied in Ref. 57.
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Figure 3.7: Plots of the ECS-NN scale factors Mf and Mh for the mixture R32/R125 for

selected values of MT and Mρ .

It has been demonstrated that the shape functions regressed according to this technique on

volumetric and saturation data are able to reproduce the other thermodynamic functions, as for

instance Helmholtz energy and internal energy: this is a proof of the internal consistence of the

proposed ECS-NN model. The uncertainties reached in the representation of the thermodynamic

properties are at a level similar to group-two DEoSs for pure fluids (see Paragraph 3.7) and to the

most advanced correlative techniques for mixtures. Therefore, the incorporation of a MLFN into a

mathematically coherent corresponding states framework makes the ECS method suitable to reach a

level of accuracy comparable to that of the DEoSs with optimized functional forms on multi-

property data sets.
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After these preliminary studies the ECS-NN modeling technique has been applied to a real case

in order to obtain a DEoS using experimental data instead of generated data. In Ref. 71 the binary

mixture composed by the refrigerant R134a and the lubricant Triethylene Glycol Dimethyl Ether

(TriEGDME) has been studied as a representative system of the working fluids encountered in

refrigeration plants.

Two dedicated equations of state in ECS-NN format has been developed, basing them on the

available experimental data for the chosen system. The first one was obtained from data specifically

measured for this modeling work and it covers the composition range that is usual for a refrigeration

plant. The second equation was regressed from a larger data base, including also other available

literature data, and it has a wider validity range. Both the equations reproduce the available

experimental data within their experimental uncertainties.

The obtained results show the potentiality and the accuracy of the proposed modeling technique.

The application of this method can be effectively extended to asymmetric systems, even where one

of the components is practically unknown from the thermodynamic point of view.

3.7. Optimized multiparameter equations of state

The equations of state in optimized functional form were developed starting from 1985, when

Schmidt and Wagner published an EoS for oxygen [22] in this format. In the following years this

approach has been so widely applied and improved that at present it constitutes the standard

procedure to develop high quality equations of state for pure fluids and mixtures valid in a wide

range of fluid conditions. Such technique belongs to the group of the heuristic correlative methods

and then it requires a large amount of experimental data of different thermodynamic properties for

the fluid of interest. The result is a dedicated equation of state (DEoS), i.e. the equation is specific

for the interest fluid.

The performances achievable with this method are excellent; in fact the equations of state

obtained with this technique usually represent the available experimental data in the vapor, liquid

and supercritical regions well within their experimental uncertainties.

The regression procedure is mainly based on the algorithm proposed in 1989 by Setzmann and

Wagner [24]: a general functional form for the reduced residual Helmholtz energy is given and the

procedure is aimed at optimizing this functional form searching for the best representation of the

experimental data with the lower number of terms in the final equation. A multi-property fitting,

including at the same time data of different thermodynamic properties, is performed in order to

obtain a satisfactory description of all the thermodynamic surfaces.
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For a detailed and exhaustive treatment of optimized multiparameter equations of state and of

their regression techniques, reference is made to Ref. 25. In the following sections the mathematical

structure of these thermodynamic models is presented both for pure fluids and for mixtures,

together with the list of the at present available dedicated equations of state developed with the

optimization technique.

PURE FLUIDS

The equations of state belonging to this class are focused on directly representing the reduced

residual Helmholtz free energy Ra of the fluid of interest. The general forms of Ra have been

empirically set up and they are at present well established from experience [25]. The simplest

version of such forms can be written as a sum of polynomial terms and exponential terms depending

on inverse reduced temperature and on reduced density:
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where:

TTc=τ cρρδ = (3.134, 3.135)

The exponents it , id and ip are set to values whose ranges are chosen by experience. It is

common practice to give small positive integer values to the id and ip parameters, while for it

fractional values are also assumed.

All the thermodynamic properties are calculated from Eq. (3.133) and its derivatives with respect

to the independent variables.

The terms to include in the final equation and the values of the coefficients n are obtained

through the optimization algorithm on the basis of the available experimental data of several

thermodynamic properties, that have to be as precise as possible.

The optimized multiparameter equations of state that include only polynomial and exponential

terms are able to describe the whole fluid region with the highest accuracy, except in the critical

region. In order to further improve the representation of thermodynamic properties also in the

critical region, the bank of terms, Eq. (3.133), has been extended with modified Gaussian bell

shaped terms:
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in which the internal parameters iη , iβ , iε and iγ are in general different among the terms, even if

usually it is 1=iε .

Equations with these new terms can well represent the most accurate experimental data for

thermodynamic properties in the critical region, but they fail for heat capacities and speeds of sound

very close to the critical point. A further type of terms, namely non-analytical terms, was

introduced into the bank of terms to correct even these discrepancies, so the most general

expression for Ra reads:
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where:
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(3.138) 

The values of the internal parameters ia , ib , ic , id , ie , if and iβ are term-specific and they are

chosen observing some important requirements [25].

The most complex form of the bank of terms, Eq. (3.137), is used only for reference equations

dedicated to substances for which both the critical region is regarded as very important and very

accurate experimental data in that region are available; otherwise the higher analytical complication

and the numerical expense are not justified.

The reference EoSs are able to represent the experimental data for the thermodynamic properties

of the corresponding fluid within their experimental uncertainties and can be used both as scientific

and technical standards. Considering the regression technique and the available experimental data

from which the equations were obtained, they are divided into two categories:

� group-one reference equations are highly accurate EoSs with excellent representation of also

the critical region and with reasonable extrapolation behavior. Such equations describe the

thermodynamic properties of the fluid with an accuracy corresponding to the accuracy that
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can be reached using state-of-the-art experimental techniques. Their development requires a

huge number of measurements of exceptionally high quality and then they are made

available only for few substances. Group-one EoSs can be used both for technical and for

advanced scientific applications, as for instance calibration of instruments and test of

physical models. In Table 3.2 the group-one optimized multiparameter equations of state

developed up to date are listed.

� group-two reference equations are high quality EoSs, but they do not satisfy the

requirements of group-one equations because of limitations in distribution and/or in quality

of the available experimental data, or due to the adopted regression technique. The equations

in this group do not include terms for the description of the critical region; they are less

accurate of group-one equations, but anyway they are accurate enough for most technical

applications and for various scientific applications. Nevertheless, care is necessary when

very high accuracies are required. A consistent number of group-two equations has been

developed so far. Some of them are in a MBWR format [20] and then they do not belong to

the family of optimized multiparameter EoSs.

Table 3.2: Recent reference equations of state for pure fluids.

Range of validity
Fluid Literature reference T

(K)
maxP

(MPa)

Type of terms a

Group-one reference equations of state

Argon Tegeler et al., 1999 [72] 83–700 1000 pol, exp, GBS

Nitrogen Span et al., 1998 [73] 63–1000 2200 pol, exp, GBS

Carbon dioxide Span and Wagner, 1996 [74] 216–1100 800 pol, exp, GBS, NA

Water Wagner and Pruß, 2002 [75] 273–1273 1000 pol, exp, GBS, NA

Methane Setzmann and Wagner, 1991 [76] 90–625 1000 pol, exp, GBS

Ethylene Smukula et al., 2000 [77] 104–450 300 pol, exp, GBS

a pol=polynomial terms; exp=exponential terms; GBS=Gaussian bell shaped terms; NA=non-analytical terms.

Apart from the reference equations, technical equations of state are available for many fluids.

These are simple multiparameter equations, like BWR [6], Starling [18] or Bender [19] equations,

that are often used in technical applications even if their accuracy is questionable. Moreover, Span

and Wagner have recently developed technical EoSs [78] for both non-polar [79] and polar fluids

[80]; such equations are much more accurate than the other technical ones and their performances

are comparable with group-two EoSs. Recently Lemmon and Span [81] used the same functional
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forms regressed in the aforementioned works for non-polar and polar fluids to develop fundamental

equations for other fluids of industrial interest.

MIXTURES

As for pure fluids, all the thermodynamic properties of a mixture can be calculated from an

analytical expression for the Helmholtz free energy, that in this case depends also on molar

composition. The same equations reported in Appendix A.2 are still valid, with the further addition

of the partial molar fugacity coefficients of the components.

The procedure adopted for developing a mixture equation of state requires the availability of the

equations of state for all the involved pure components. In fact the mixture EoS is obtained

‘mixing’ the equations of the pure fluids and adding a departure function [70], composing a multi-

fluid model.

The mixture reduced molar Helmholtz free energy reads:
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According to classical thermodynamics, the ideal part is obtained as a linear combination of the

ideal parts of the pure components, plus the Helmholtz energy change for mixing of ideal gases:
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The residual part is usually described with the form:
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in which the departure function R
Ma∆ is expressed by:
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The function f usually assumes the simple form [67,82-84]:

( ) jiji xxxxf =, (3.143)

but in other cases [68,69] dealing with binary mixtures an adjustable parameter γ is also introduced

to allow asymmetric influences of the departure function:
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( ) ( ) ( )γxxxfxxf ji −== 1, (3.144)

The binary departure functions can be written in a general form [67] as:
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and the reduced variables τ and δ are obtained from the physical variables T and mρ using

pseudo-critical parameters as reducing factors:
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Different suitable mixing rules [67-70,82-84] have been proposed to calculate the pseudo-critical

parameters. For instance, in Ref. 67 they are:
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where icT , and icm ,,ρ are the critical temperature and the critical molar density of the component i ,

while ijA , ijB , ijTk , and ijvk , are interaction parameters regressed on data; ijA and ijB influence the

equation of state only for non-binary mixtures and they are set to values different from zero when it

is strictly necessary to improve the equation performances.

The development of an equation of state for a mixture requires experimental data of different

thermodynamic properties evenly distributed also in the composition variable. Moreover, the

availability of an equation of state in terms of Helmholtz energy for each pure fluid composing the

mixture is a necessary prerequisite.

The goal of the fitting procedure is to find the suitable functional form for the departure function

and to get the numerical values of the coefficients and of the adjustable parameters. This can be

performed with an optimization procedure of the functional form similar to that applied to pure

fluid EoSs development [67-69,84], even if this case presents some more complications and it is
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less straightforward. A simple equation with a limited number of free parameters can also be

assumed for the departure function, in this way reducing the fitting procedure to the regression of

the coefficients without optimization of the functional form [82,83]. The second procedure is easier,

but at the same time it is less flexible.

In any case, the development of equations of state for mixtures with these techniques is not so

well established as for pure fluids and it was applied to a quite limited number of binary and ternary

systems, also due to the scarcity of experimental data available for mixtures; in fact an extensive

data base covering the interest ranges of the independent variables is required for the target mixture.

A list of the most precise multiparameter equations of state at present available for mixtures is

reported in Table 3.3.

Table 3.3: Recent equations of state for mixtures.

Range of validity
Mixture Literature reference T

(K)
maxP

(MPa)

Water / ammonia Tillner-Roth and Friend, 1998 [69] b 40

Propane / n-butane
Miyamoto and Watanabe, 2003

[84]
228–589 69

Propane / isobutane
Miyamoto and Watanabe, 2003

[84]
203–573 35

N-butane / isobutane
Miyamoto and Watanabe, 2003

[84]
273–573 35

Propane / n-butane / isobutane
Miyamoto and Watanabe, 2003

[84]
273–573 35

R32 / R125 Tillner-Roth et al., 1998 [67] 200–440 35
R32 / R134a Tillner-Roth et al., 1998 [67] 200–440 35
R125 / R134a Tillner-Roth et al., 1998 [67] 200–413 35
R125 / R143a Tillner-Roth et al., 1998 [67] 200–413 35
R143 / R134a Tillner-Roth et al., 1998 [67] 243–413 17

R32 / R125 / R134a Tillner-Roth et al., 1998 [67] 243–440 17
R125 / R143a / R134a Tillner-Roth et al., 1998 [67] 243–413 17

R134a / R152a Tillner-Roth, 1993 [68] 243–433 17

b valid from the freezing line to the critical locus.
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Lemmon and Jacobsen have also proposed a generalized mixture model [82] that has been

applied to several binary mixtures between alkanes, nitrogen, carbon dioxide, argon and air.
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IV. An extended equation of state modeling technique

4.1. Introduction

In the former Paragraph 3.6.4 it has been discussed how to turn the ECS model into a powerful

heuristic technique for the development of high accuracy equations of state. The basic requirements

are anyway the fulfillment of a conformality condition between the reference and the target fluid,

and the availability of an accurate equation of state in terms of Helmholtz energy for the reference

fluid; even if it has been demonstrated that also fluids not pertaining to the same family of the

reference one can be satisfactorily described through the ECS-NN technique, a large lack of

conformality can in principle prevent from obtaining a reliable equation for the target fluid.

In the case that either the conformality condition is not verified among the fluids of a same

family or no component of the family, whose fluids are supposed to share a conformality condition,

disposes of a DEoS, the discussed ECS method cannot in general be effectually applied. Where the

corresponding states conformality fails, the similitude connection among the fluids of the family is

no longer sustainable and the method is supposed to become ineffective. On the other hand the

unavailability of a reference DEoS practically prevents the application of the method, with an

equivalent final result of failure of the modeling technique.

In these conditions one could wonder whether the ‘correction’ through the variables distortion

could be profitably performed on a simple EoS representing, even if roughly, the target fluid itself.

In other words the question is posed whether a simple EoS for the same target fluid could be a

suitable starting point for the development of a DEoS through the variables distortion, avoiding in

this way any problem about the conformality condition fulfillment. It would be then no more

necessary to dispose of a ‘reference fluid’, following the classical interpretation of the ECS theory,

but rather of only a ‘reference equation’, whose precision is enhanced, or ‘extended’, through the

application of the shape functions. Hence the name of extended equation of state (EEoS) chosen to

indicate this new modeling method.

Moreover, a basic requirement for the present technique is to obtain for the fluid of interest a

DEoS in the default fundamental form ( )ρ,Ta which allows to calculate any thermodynamic

quantity through mathematical derivations only.

The simplest, but at the meantime sound, EoS that it is possible to choose for the present purpose

is the cubic EoS in one of its more recurrent versions, see Paragraph 3.3. In this chapter an SRK

cubic EoS with the Peneloux volume translation is assumed, due to its general applicability to

practically any fluid since only the critical parameters and few saturation data are individually
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required. Anyway, the proposed method is not bound to the choice of a cubic EoS, but any

fundamental EoS can be suitably assumed independently from its functional form, provided that the

independent variables are ρ,T to which to apply the shape functions distortion. Furthermore, this

allows to get a fundamental DEoS for the target fluid.

As in the case of ECS-NN model, the shape functions ( )ρθ ,T and ( )ρφ ,T have to be regressed

forcing the model to represent known values of experimentally accessible thermodynamic

quantities; their functional formulation is heuristically obtained applying a multilayer feed-forward

neural network as universal function approximator. In this chapter the purpose is to set up the

method and to test its potentialities; therefore data generated from a DEoS for each target fluid are

used instead of experimental data, so that the model performances are not hindered by error noise

and uneven data distribution. The application to experimental data is treated in Chapters V and VI

for the fluids sulfur hexafluoride and 2-propanol respectively.

The proposed modeling technique comes from the combination of the EEoS method with the

neural networks and then it can be concisely indicated as EEoS-NN model.

4.2. Pure fluids

4.2.1. Mathematical formulation

The mathematical structure of the EEoS-NN model is the same of the ECS-NN format exposed

in Paragraph 3.6.4. The only difference resides in the calculation of the reference fluid properties:

whereas in that case an EoS for the reference fluid was required, in the present one the reference

properties are simply calculated from the SRK cubic EoS for the target fluid itself through the

expressions given in Appendix A.3. 

The set up of the SRK EoS requires only the critical parameters, the acentric factor, i.e. a value

of saturation pressure, and a value of saturated liquid density to determine the Peneloux volume

translation coefficient.

The mathematical structure of the EEoS-NN model for pure fluids is described by Eqs. (3.81-

3.83); since in this framework the target and the reference fluid coincide, their critical parameters

are the same and then the scale factors are identical to the respective shape functions:

( ) ( ) ( )jjjjjj
c

jc
jjj TT

T

T
Tf ρθρθρ ,,,
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, == (4.1)

( ) ( ) ( )jjjjjj
jc
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ρ
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With reference to Paragraph 2.2 and in particular to Figs. 2.1 and 2.3, it is:

3=I jTV =1 jV ρ=2 (4.3, 4.4, 4.5) 

2=K ( )jjj TW ρθ ,1 = ( )jjj TW ρφ ,2 = (4.6, 4.7, 4.8)

In the EEoS-NN case the independent variables of the shape functions are jT and jρ , therefore

the shape function derivatives included in the expressions for the calculation of the other

thermodynamic properties, as for instance Eqs. (3.89) and (3.91), are directly calculated by Eq.

A1.14 in Appendix A.1.

The transfer function assumed for the present case is the normalized scaled arctangent:

( ) ( )
2

1
arctan

1 += xxf γ
π

(4.9) 

with 1.0=γ . In the following Paragraphs 4.2.2 and 4.2.3, the number of neurons in the hidden layer

has been chosen as 9=J .

4.2.2. Training of the EEoS-NN model

Since the main aims of the present paragraph and the following Paragraph 4.2.3 are to test the

proposed modeling technique and to verify its performances for a group of pure fluids, it was

decided to use generated data of thermodynamic properties instead of experimental data. In this way

the results of the analysis are not affected by the drawbacks related to experimental data. In fact

these are in general affected by a significant experimental error noise, with a different accuracy for

each thermodynamic quantity, and they are irregularly distributed in the ( )PT , range of interest.

These aspects hinder the evaluation of the quality of a heuristic model. Thus, it was preferred not

to assume experimental values for the model training and validation, but rather to use pseudo-

experimental values generated on a regular grid of the independent variables from the DEoSs of the

studied fluids. The surfaces represented by these equations are considered as ‘true’, as they are the

best representation of the available experimental data base, and then the proposed method is

evaluated in the most favorable conditions. The use of experimental data for obtaining a dedicated

EoS for pure fluids in the EEoS-NN format will be the matter of Chapters V and VI.

Since the constraint of conformality between the target and the reference fluid affecting the ECS

methods is in this work overcome, the considered fluids can belong to different chemical families.

The chosen fluids, listed in Table 4.1, are divided into a group of non-polar fluids (three alkanes), a
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group of polar fluids (four haloalkanes), and a group of strongly polar fluids (ammonia and water).

The difficulties in accurately describing the properties of the selected fluids increase in this order.

For each of the considered substances, the fluid-specific Peneloux coefficient c , that is required

for the chosen reference equation, has been determined from a saturated liquid density value

generated with the DEoS of the target fluid at 7.0=rT . For the considered fluids the critical

constants, the acentric factor ω , and the parameter c , together with the literature references for the

DEoSs from which the saturated liquid densities have been calculated, are reported in the same

Table 4.1.

Table 4.1: Physical constants for the nine pure fluids here considered.

Fluid cT
(K)

cP
(MPa)

ω c
(l mol-1)

Ref.

C2H6 305.33 4.8718 0.0993 2.86496×10-3 [1]
C3H8 369.85 4.24766 0.15242 5.20115×10-3 [2]

n-C4H10 425.16 3.796 0.19959 7.85903×10-3 [2]
R32 351.255 5.782 0.2768 1.29133×10-2 [3]

R125 339.33 3.629 0.30349 7.79698×10-3 [4]
R134a 374.18 4.05629 0.32689 1.13412×10-2 [5]
R143a 346.04 3.7756 0.26113 1.34996×10-2 [6]
NH3 405.4 11.333 0.25601 7.23145×10-3 [7]
H2O 647.096 22.064 0.344 7.59369×10-3 [8]

The training of the neural network is performed minimizing an objective function, expressed in

terms of mean squared error, which can include properties of different nature as in a multi-property

fitting framework.

In a first step the EEoS-NN model is heuristically developed from density and coexistence

properties assuming an objective function that includes both volumetric and saturation data, being

composed of two parts. The one for volumetric data reads:

∑
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while that for saturation properties reads:
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where zn and ϕn are the number of points composing the volumetric and the saturation properties

training set, respectively.

The two objective functions, Eqs. (4.10) and (4.11), are composed together to form the overall

objective function:

ϕ,,, 2.08.0 obzoboverallob fff += (4.12)

in which the two functions zobf , and ϕ,obf are differently weighted.

In a second step of the study the EEoS-NN model is regressed assuming an objective function

which includes also caloric quantities, together with the unavoidable volumetric and saturation

properties. The considered caloric properties are isochoric heat capacity, isobaric heat capacity and

speed of sound. In the objective function represented by Eq. (4.12) the term zobf , is substituted by:

∑ ∑
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where the p-th property M represents alternatively the compressibility factor Z , the isochoric heat

capacity vC , the isobaric heat capacity pC , and the speed of sound w ; in this case it is 4=P . Each

of the four mentioned properties is composed of the same number of values 1n and its contribution

is weighted in the summation according to the individual factor pξ .

The part ϕ,obf is still represented by the former Eq. (4.11); the two contributions are combined

together according to Eq. (4.12) again.

For each fluid considered in the present study, the DEoSs listed in Tab. 4.1 have been used to

generate sets of values of several thermodynamic properties in the temperature and pressure ranges

indicated in Table 4.2, taking care of having them distributed on a regular grid. The steps of the grid

are fluid-specific, because they depend on the validity ranges of the corresponding DEoS aiming at

obtaining the same number of points for each fluid; they are here not reported for brevity. The

thermodynamic surface was divided into three regions: the liquid phase (denoted by ‘l’) for cTT <

and satPP > , the supercritical condition (denoted by ‘sc’) for cTT > and cPP > , and the vapor

phase (denoted by ‘v’) for the remaining domain.

Besides density and saturation properties, the reduced residual functions of Helmholtz energy

Ra , internal energy Ru , entropy Rs , enthalpy Rh , and Gibbs energy Rg have been considered.
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These last functions are also indicated as ‘first order’ thermodynamic properties because they are

analytically obtained from Ra through first order derivatives.

It has been furthermore considered the group of thermodynamic properties involving higher

order derivatives of Ra , e.g. reduced residual isochoric heat capacity R
vc , reduced residual isobaric

heat capacity R
pc , and speed of sound w ; they are termed as ‘second order’ properties.

For each fluid and each property, both of the first and of the second order group of quantities,

5329 points were generated on the cited grid. Moreover, a certain number of points at saturation in

the form ( )svslsPT ρρ ,,, were generated as well.

For each of the two training steps above described, two data sets have been composed: one for

training itself and the other for validation. For the first training process the distribution of the two

data sets can be seen from Table 4.2. The training subset for this case has been obtained regularly

extracting density values from the generated data on the original grid. For the validation set the

remaining values of the grid have been taken. For the second training step, the training set for each

of the four thermodynamic quantities included in the objective function has been as well regularly

extracted from the same original grid, but with a larger interval. Also in this case the validation set

has been composed of the remaining values of generated data. The distribution of these two data

sets in the different thermodynamic regions is reported in Table 4.3.

Both the steps of the regression procedure have been applied to each considered fluid.

Table 4.2: Characteristics of pseudo-experimental data generated from the DEoSs for the nine

pure fluids here considered. Case of regression on density and coexistence data.

Training
NPT

Validation
NPT

TP ,, ρ
VLE

,, TP ρ Each of nine properties a
VLE

,, TP ρFluid
T range

(K)
P range
(MPa)

sc l v total sc l v total
C2H6 200-400 0.08-10 156 269 200 625 13 1174 2032 1498 4704 24
C3H8 200-400 0.08-10 56 462 107 625 21 406 3553 745 4704 40

n-C4H10 200-450 0.08-10 48 501 76 625 22 320 3856 528 4704 42
R32 200-400 0.08-10 67 396 162 625 18 492 3017 1195 4704 36

R125 200-400 0.08-10 128 380 117 625 17 906 2973 825 4704 33
R134a 200-400 0.08-10 60 476 89 625 21 380 3693 631 4704 41
R143a 200-400 0.08-10 112 401 112 625 18 808 3082 814 4704 34
NH3 200-450 0.08-14 25 411 189 625 20 157 3151 1396 4704 39
H2O 300-700 0.08-25 12 434 179 625 21 78 3335 1291 4704 41

a properties: Z , Ra , Ru , Rs , Rh , Rg , vc , pc , w .
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Table 4.3: Dimensions of training and validation sets for the nine pure fluids. Multi-property

case.

Training
NPT

Validation
NPT

Each of four properties b
VLE

,, TP ρ Each of nine properties c
VLE

,, TP ρFluid

sc l v overall sc l v overall
C2H6 28 52 37 117 13 1302 2249 1661 5212 24
C3H8 14 80 23 117 21 448 3935 829 5212 40

n-C4H10 8 92 17 117 22 360 4265 587 5212 42
R32 13 73 31 117 18 546 3340 1326 5212 36
R125 24 69 24 117 17 1010 3284 918 5212 33
R134a 16 83 18 117 21 424 4086 702 5212 41
R143a 24 70 23 117 18 896 3413 903 5212 34
NH3 6 75 36 117 20 176 3487 1549 5212 39
H2O 4 115 50 169 21 86 3654 1420 5160 41

b properties: Z , vc , pc , w .

c properties: Z , Ra , Ru , Rs , Rh , Rg , vc , pc , w .

4.2.3. Validation

In the present section the validation of the obtained models is reported using the statistical

indexes defined in Appendix A.6.

SRK CUBIC EOS WITH VOLUME TRANSLATION

As a first step, it is interesting to evaluate the prediction capability of the equation assumed as

reference for the EEoS-NN technique, that is the SRK with the Peneloux volume translation.

The validation sets from Table 4.2 are used. The results for the first order properties are

presented in detail for each fluid in Table 4.4. The following conclusions can be drawn from these

results:

� notwithstanding the Peneloux volume translation, the prediction accuracy of the SRK

equation for density is still far from being comparable to that of a DEoS, particularly for

polar fluids. This can be argued looking at the results for Z and Rz in particular for R32,

R143a, ammonia, and water. Even for simple alkanes the prediction accuracy is not

homogeneous for different regions of the TPρ surface;

� increased errors are observed for properties involving the Ra derivatives with respect to

temperature, such as Ru , Rh , and Rs . For them it was verified that the deviations are

sometimes higher than 20% in the vapor region of the TPρ surface;
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� for polar fluids the prediction accuracy is usually worse than that for non-polar ones, see for

instance the alkanes.

Table 4.4: Accuracy of the SRK equation in terms of AAD for first order properties in the three

main thermodynamic regions.

AAD (%)
Rz Ru Rh

Fluid sc l v sc l v sc l v
C2H6 3.79 0.75 1.37 3.44 1.44 5.44 2.59 1.32 4.05
C3H8 4.68 0.73 1.72 3.05 1.18 6.87 3.35 1.10 5.12

n-C4H10 4.83 0.77 2.27 3.59 1.26 9.53 3.77 1.18 6.97
R32 5.99 0.77 7.06 7.87 2.83 19.67 7.44 2.59 16.30

R125 5.76 0.81 2.83 3.81 1.07 11.38 3.04 0.98 7.84
R134a 5.67 0.77 3.28 4.95 1.41 14.38 5.03 1.32 11.34
R143a 6.70 0.91 4.86 3.31 1.99 12.14 3.88 1.84 10.09
NH3 3.51 0.54 5.49 9.60 2.85 21.16 8.13 2.60 16.95
H2O 2.24 0.70 6.76 11.67 4.51 19.16 9.24 4.17 14.22

Mean 5.16 0.75 4.23 4.39 2.06 13.94 4.04 1.90 10.86
Ra Rg Rs

Fluid sc l v sc l v sc l v
C2H6 3.24 1.83 1.73 3.47 1.49 1.49 4.96 2.53 9.31
C3H8 6.23 1.44 1.85 5.66 1.21 1.73 1.78 2.13 12.04

n-C4H10 6.60 1.37 2.45 5.96 1.17 2.29 2.44 2.17 16.87
R32 9.05 2.91 7.58 7.87 2.33 7.33 7.02 5.31 27.07

R125 7.11 1.64 3.42 6.58 1.37 3.14 8.25 2.15 21.25
R134a 8.17 1.79 3.09 7.26 1.49 3.17 3.32 2.46 21.44
R143a 8.80 2.28 5.10 8.03 1.88 4.99 2.70 4.01 17.04
NH3 4.40 2.40 5.32 4.08 1.92 5.39 12.93 5.02 30.78
H2O 5.67 3.12 8.03 3.84 2.59 7.29 18.96 31.19 7.29

Mean 6.50 2.07 4.60 5.99 1.71 4.38 5.34 6.44 18.10

The second order properties are considered in Table 4.5, where the heat capacities are examined

both as residual and as overall quantities. Deviations for these properties are larger than the ones for

properties involving only first derivatives. For some fluids the AADs for the residual heat capacities

are very high and in particular for R
vc they increase to average values above 40%. The error is

obviously reduced when the ideal part is considered as well. Nonetheless it is clear that the SRK

EoS is not at all effective for the residual part of this group of properties. The accuracy of calculated

speeds of sound in the liquid and supercritical regions ranges from 5 to 25% for all the fluids, while

the accuracy in the vapor phase is significantly better. The results are very similar for non-polar and

polar fluids.

Results for the representation of saturation properties are reported in Table 4.5. The saturation

densities are predicted with rather high deviations and with an evident difference between the liquid
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and the vapor phase. For the saturated liquid the deviations for all the fluids are several percent

showing that, notwithstanding the density correction at the temperature of 7.0r =T due to the

volume translation, the basic trend of a cubic EoS for the dense phase is substantially wrong. The

behavior for the saturated vapor density is far better, but this is probably due to the modest

contribution of the residual density function in the vapor region, where the ideal part is prevailing.

The vapor pressure sP is rather well represented without a relevant systematic error. This

behavior is coherent with the specialization of the cubic EoS in representing this property because

of the ad hoc function ( )rTα .

It can be concluded that the representation of thermodynamic properties by the SRK cubic EoS is

not satisfying, in particular when second order properties are considered.

Table 4.5: Accuracy of the SRK equation in terms of AAD for second order properties in the

three main thermodynamic regions and for saturation properties.

AAD (%)
R
vc R

pc w

Fluid sc l v sc l v sc l v
C2H6 34.44 57.36 53.95 7.20 13.99 13.66 5.21 22.13 0.41
C3H8 30.22 63.19 70.30 10.16 8.01 25.82 7.88 23.44 0.36

n-C4H10 26.94 65.74 72.73 11.23 8.12 30.20 9.65 22.83 0.39
R32 52.17 28.11 75.42 16.04 19.28 16.04 12.75 22.36 1.73

R125 34.35 58.55 68.05 10.13 7.56 23.78 7.17 26.34 0.73
R134a 27.30 40.07 74.44 13.00 10.22 36.84 8.87 24.38 0.55
R143a 36.07 50.77 71.26 11.87 11.64 32.01 8.31 25.15 0.91
NH3 70.46 12.07 80.49 18.85 19.22 45.05 16.18 14.43 2.34
H2O 76.14 22.18 81.53 25.64 33.69 48.56 20.18 13.45 2.29

Mean 36.99 44.26 71.78 11.17 14.48 30.18 8.34 21.61 1.24

vC pC Saturation Properties

Fluid sc l v sc l v sP
slρ svρ

C2H6 3.85 9.66 2.81 4.17 6.80 2.42 0.88 5.31 0.55
C3H8 3.16 8.72 3.15 5.54 3.26 3.53 1.01 4.59 0.92

n-C4H10 2.34 7.63 2.48 5.00 2.66 3.18 1.49 4.09 1.41
R32 14.33 9.96 10.32 11.30 11.04 10.28 1.83 6.86 3.41

R125 4.31 9.33 3.66 5.08 3.25 3.27 0.85 5.12 0.80
R134a 4.58 8.16 4.99 7.46 4.49 5.85 1.22 4.91 1.51
R143a 5.32 9.30 4.42 6.31 5.04 4.85 1.38 5.69 1.83
NH3 25.64 5.30 14.74 13.79 11.37 13.62 2.35 6.00 4.33
H2O 36.23 12.58 18.81 20.18 19.81 17.02 5.37 8.67 5.47

Mean 6.44 8.90 8.39 6.48 7.41 8.02 1.90 5.71 2.35
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EEOS-NN MODEL TRAINED ON DENSITY AND COEXISTENCE DATA

In a first step the EEoS-NN model was trained for each of the fluids listed in Table 4.1 solely on

volumetric and saturation data, following the regression procedure presented in Paragraph 4.4.2.

Nine fluid-specific EoSs in this format were obtained.

The training procedure yields the MLFN equations for the shape functions ( )jjj T ρθ , and

( )jjj T ρφ , for the target fluid. In Figs. 4.1 and 4.2 the two functions are plotted for the fluid R32 as

an example, showing a quite regular trend for both of them. The method is very effective in

reproducing the shape of the thermodynamic surface with limited distortions of the independent

variables.
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Figure 4.1: Shape function ( )jjj T ρθθ ,= for the target fluid R32.
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The deviations of the EEoS-NN models with respect to the data of the validation sets are

summarized in Table 4.6 for first order properties, separately for the three main thermodynamic

regions. The representation of these quantities can be considered excellent for all properties and the

deviations are quite similar for all fluids without any noteworthy decrease of accuracy.

The three thermodynamic regions are represented with small differences: while the liquid phase

is always described with an excellent accuracy, for the vapor phase some fluctuations of accuracy

were found but without an apparent regularity in dependence on the fluid. In the supercritical region

the model behaves quite similarly as in the vapor. Properties involving the temperature derivative of

Ra are represented with a lower accuracy. This can be explained by the fact that the model was not

trained on quantities involving temperature derivatives; except for the coexistence curve, only a

volumetric property was given as input and this one solely involves the density derivative of Ra ,

see Eq. (3.89).
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Table 4.6: Accuracy of the EEoS-NN models in terms of AAD for first order properties in the

three main thermodynamic regions.

AAD (%)
Rz

Ru Rh

Fluid sc l v sc l v sc l v
C2H6 0.030 0.001 0.040 0.118 0.078 0.250 0.094 0.067 0.181
C3H8 0.100 0.001 0.089 0.258 0.072 0.265 0.219 0.063 0.199

n-C4H10 0.048 0.001 0.056 0.387 0.052 0.320 0.316 0.046 0.234
R32 0.045 0.001 0.047 0.169 0.063 0.242 0.137 0.055 0.184

R125 0.056 0.002 0.119 0.302 0.051 0.917 0.240 0.045 0.644
R134a 0.047 0.001 0.058 0.222 0.039 0.279 0.187 0.036 0.216
R143a 0.031 0.001 0.031 0.279 0.059 0.277 0.218 0.053 0.204
NH3 0.137 0.002 0.085 0.331 0.069 0.528 0.279 0.061 0.403
H2O 0.271 0.002 0.065 0.392 0.050 0.275 0.347 0.045 0.216

Mean 0.053 0.001 0.064 0.236 0.058 0.368 0.191 0.051 0.273
Ra Rg Rs

Fluid sc l v sc l v sc l v
C2H6 0.030 0.018 0.034 0.030 0.013 0.035 0.191 0.151 0.447
C3H8 0.119 0.016 0.094 0.112 0.012 0.091 0.377 0.132 0.426

n-C4H10 0.083 0.011 0.042 0.068 0.009 0.047 0.605 0.095 0.542
R32 0.058 0.017 0.034 0.053 0.014 0.038 0.261 0.116 0.381

R125 0.080 0.011 0.170 0.065 0.008 0.130 0.484 0.089 1.716
R134a 0.073 0.012 0.036 0.062 0.009 0.044 0.315 0.071 0.435
R143a 0.043 0.018 0.029 0.037 0.014 0.029 0.459 0.106 0.460
NH3 0.186 0.016 0.063 0.167 0.012 0.070 0.448 0.132 0.836
H2O 0.385 0.013 0.056 0.339 0.010 0.057 0.443 0.094 0.405

Mean 0.070 0.014 0.059 0.062 0.011 0.058 0.367 0.107 0.614

The EEoS-NN models were also compared to the accuracy in predicting the second order

properties; the results are presented in Table 4.7. The residual heat capacities are both represented

with an accuracy which is worse by one or two orders of magnitude with respect to those of the first

order properties. Moreover, deviations for the residual isochoric heat capacity are roughly three

times worse than deviations for the residual isobaric heat capacity.

Fortunately these thermodynamic properties are used in practice only as overall quantities. For

the overall heat capacities the deviations are significantly reduced and become comparable with

current experimental uncertainties. This is evidently due to a ‘dilution’ of the residual function error

in the summation of ideal and residual parts. In general deviations increase from the vapor to the

liquid and to the supercritical region. The heat capacity functions in the vapor phase are often

represented very well, whereas for the other regions their precision can be considered acceptable.

The speed of sound is well represented for the vapor phase, but for the other regions the

performance is worse, though it is anyway comparable with that of a multiparameter DEoS.
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The comparison for saturation densities and vapor pressures, reported in Table 4.7, shows a

satisfactory performance in particular for the liquid density and the vapor pressure.

Table 4.7: Accuracy of the EEoS-NN models in terms of AAD for second order properties in the

three main thermodynamic regions and for saturation properties.

AAD (%)
R
vc R

pc w

Fluid sc l v sc l v sc l v
C2H6 5.004 8.860 6.285 0.663 1.888 1.665 0.335 0.410 0.029
C3H8 13.436 5.797 2.392 2.200 1.384 1.090 0.872 0.352 0.061

n-C4H10 16.540 3.921 4.900 2.764 0.959 1.383 0.535 0.189 0.037
R32 7.286 3.453 4.601 1.360 1.236 1.805 0.832 0.305 0.095

R125 10.200 3.827 7.442 1.565 0.800 2.903 0.487 0.383 0.026
R134a 8.568 2.809 4.788 1.875 1.003 2.063 0.728 0.176 0.030
R143a 9.398 6.037 4.637 1.392 1.864 1.432 0.401 0.279 0.030
NH3 7.360 2.851 6.411 3.569 1.375 2.739 0.734 0.566 0.182
H2O 3.208 1.665 1.864 4.558 1.300 1.128 1.123 0.935 0.057

Mean 8.834 4.149 4.883 1.567 1.278 1.831 0.545 0.393 0.069

vC pC Saturation Properties

Fluid sc l v sc l v sP
slρ svρ

C2H6 0.569 1.555 0.297 0.367 0.850 0.304 0.061 0.010 0.073
C3H8 1.199 0.801 0.137 1.333 0.532 0.343 0.066 0.089 0.211

n-C4H10 1.250 0.425 0.233 1.312 0.306 0.259 0.068 0.047 0.165
R32 1.871 1.206 0.612 0.928 0.679 0.499 0.064 0.064 0.172

R125 1.160 0.590 0.346 0.800 0.328 0.347 0.059 0.102 0.206
R134a 1.304 0.651 0.401 1.132 0.439 0.492 0.050 0.009 0.069
R143a 1.298 1.220 0.250 0.741 0.783 0.209 0.066 0.015 0.068
NH3 2.650 1.227 1.173 2.857 0.789 0.964 0.073 0.025 0.137
H2O 1.817 0.962 0.393 4.275 0.746 0.432 0.047 0.048 0.153

Mean 1.192 0.916 0.481 0.929 0.587 0.461 0.061 0.046 0.142

As a conclusion the proposed model can produce quite reliable results also for the prediction of

those thermodynamic quantities involving higher order derivatives of Ra , notwithstanding that no

input was given for them during the training procedure. In fact the EEoS-NN model trained only on

density and coexistence data can satisfactorily predict second order properties.

EEOS-NN MODEL TRAINED ON MULTI-PROPERTY DATA

A similar validation procedure has been performed for the models for the same fluids of Table

4.1 trained on values of the four thermodynamic quantities Z , vC , pC , w plus the coexistence

ones, as discussed in Paragraph 4.2.2.
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Comparing the results for the training on density and coexistence data, which were presented in

Table 4.6, with the results of the multiproperty training reported in Table 4.8, it can be seen that the

prediction of first order properties becomes globally worse more or less for all the properties, but in

general the difference is not significant.

Table 4.8: Accuracy of the EEoS-NN models in multiproperty case in terms of AAD for first

order properties in the three main thermodynamic regions.

AAD (%)
Rz Ru Rh

Fluid sc l v sc l v sc l v
C2H6 0.063 0.003 0.063 0.111 0.016 0.226 0.095 0.014 0.163
C3H8 0.128 0.002 0.164 0.220 0.039 0.384 0.197 0.034 0.312

n-C4H10 0.092 0.002 0.122 0.190 0.010 0.334 0.166 0.009 0.250
R32 0.197 0.002 0.112 0.325 0.041 0.519 0.287 0.036 0.379

R125 0.094 0.002 0.283 0.091 0.031 0.459 0.088 0.027 0.255
R134a 0.102 0.002 0.136 0.242 0.016 0.410 0.196 0.014 0.314
R143a 0.136 0.002 0.232 0.159 0.049 0.889 0.148 0.044 0.637
NH3 0.615 0.009 0.417 0.905 0.036 1.162 0.731 0.033 0.910
H2O 0.744 0.002 0.095 1.267 0.098 0.323 1.142 0.088 0.255

Mean 0.136 0.003 0.183 0.208 0.037 0.541 0.183 0.033 0.402
Ra Rg Rs

Fluid sc l v sc l v sc l v
C2H6 0.076 0.006 0.061 0.069 0.005 0.060 0.154 0.027 0.420
C3H8 0.147 0.024 0.123 0.139 0.019 0.137 0.293 0.060 0.647

n-C4H10 0.150 0.021 0.092 0.124 0.016 0.102 0.227 0.017 0.542
R32 0.199 0.013 0.121 0.201 0.011 0.109 0.459 0.065 0.853

R125 0.095 0.014 0.451 0.080 0.010 0.343 0.121 0.058 1.176
R134a 0.132 0.006 0.110 0.120 0.005 0.119 0.348 0.027 0.632
R143a 0.117 0.027 0.227 0.123 0.022 0.227 0.221 0.066 1.466
NH3 0.719 0.037 0.391 0.673 0.030 0.395 1.193 0.043 1.691
H2O 1.099 0.028 0.077 0.953 0.021 0.082 1.411 0.197 0.477

Mean 0.153 0.020 0.185 0.143 0.016 0.177 0.279 0.063 0.892

For the second order properties, Table 4.9 shows that there is an evident improvement of

performance for isochoric heat capacity in all the regions and for isobaric heat capacity in the liquid

phase, both as residual and as overall values. For some fluids this improvement is larger, especially

for isochoric heat capacity. The performance for the speed of sound remains at the same level as

before with some small variations depending on the specific fluid.

The comparisons for the coexistence locus, reported in Table 4.9, are also very promising. The

obtained accuracy is similar to the accuracy resulting from the training to first order properties, see

Table 4.7. 
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The inclusion of data for second order quantities into the training set improves the EEoS-NN

model for such properties, obtaining a more satisfactory performance also for them. In fact, in this

case information about higher order derivatives of Ra is supplied to the model.

Table 4.9: Accuracy of the EEoS-NN models in multiproperty case in terms of AAD for second

order properties in the three main thermodynamic regions and for saturation properties.

AAD (%)
R
vc R

pc w

Fluid sc l v sc l v sc l v
C2H6 2.695 1.367 3.464 0.832 0.355 1.227 0.288 0.194 0.019
C3H8 1.929 1.292 1.399 2.154 0.318 1.042 0.323 0.408 0.046

n-C4H10 1.989 0.711 1.768 1.760 0.170 0.927 0.581 0.184 0.038
R32 2.778 0.706 2.710 2.250 0.388 1.162 0.931 0.291 0.059

R125 3.493 0.469 2.615 0.626 0.173 1.040 0.262 0.180 0.047
R134a 3.672 0.870 3.045 1.496 0.185 1.692 0.445 0.290 0.100
R143a 1.822 0.948 2.469 0.713 0.123 1.061 0.302 0.256 0.051
NH3 5.725 0.939 3.258 6.613 0.363 1.652 1.713 0.617 0.197
H2O 3.750 1.329 1.862 6.658 1.214 1.289 1.532 0.666 0.076

Mean 2.792 0.946 2.628 1.493 0.363 1.261 0.456 0.348 0.075

vC pC Saturation Properties

Fluid sc l v sc l v sP
slρ svρ

C2H6 0.387 0.224 0.250 0.554 0.182 0.307 0.011 0.038 0.224
C3H8 0.211 0.187 0.082 1.478 0.130 0.320 0.085 0.065 0.192

n-C4H10 0.174 0.077 0.071 1.203 0.059 0.163 0.098 0.061 0.209
R32 0.856 0.243 0.477 1.767 0.229 0.406 0.041 0.075 0.151

R125 0.418 0.073 0.107 0.312 0.078 0.141 0.019 0.053 0.103
R134a 0.635 0.171 0.319 1.045 0.086 0.452 0.061 0.044 0.141
R143a 0.272 0.174 0.195 0.428 0.055 0.227 0.087 0.016 0.158
NH3 2.221 0.399 0.709 5.613 0.213 0.727 0.140 0.136 0.596
H2O 2.055 0.752 0.396 6.092 0.712 0.530 0.191 0.110 0.344

Mean 0.501 0.254 0.335 1.036 0.192 0.398 0.087 0.069 0.240

The validation procedure has demonstrated that the proposed EEoS-NN method is a promising

and innovative modeling technique for the heuristic development of a multiparameter DEoS from

multi-property data, also as an alternative to the at present available most advanced methods.

4.2.4. Choosing the number of points of the training set: the case of ethane

The technique here presented is particularly suited to heuristically draw a pure fluid fundamental

DEoS from few available data. The question is now posed about how much it is possible to reduce

the number of points composing the training set without compromising the final result, i.e. how

limited the required experimental effort for the development of a DEoS in this format can be.
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Using generated data as before, a theoretical test has been performed in order to determine the

minimum number of data points sufficient to guarantee a good performance of the EEoS-NN

model. Ethane has been chosen as test fluid for the analysis.

In this particular study reference is made to the training case in which only density and

coexistence data were used as input for regression; the details of the corresponding training process

have been described in Paragraph 4.2.2. In that occasion 625 TPρ points have been included in the

set together with a limited number of coexistence data. Now six training cases are considered, in

which the number of density points of the training set is each time halved starting from the original

number of 625 data. The obtained models have been validated with respect to the values of the

remaining points of the original grid of generation composed of 5329 points, Table 4.2.

The performances of such models are evaluated in terms of overall deviation overalld , which is a

linear combination of the volumetric deviation:
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reading:

ϕddd zoverall 2.08.0 += (4.16) 

The weights of the two components of the overall deviation, i.e. 0.8 for the volumetric deviation

and 0.2 for the coexistence condition, are the same of those assumed in the definition of the

objective function, Eq. (4.12), that was used for the training of the previously exposed models.

The values reached by the objective function overallobf , and by the error deviation function overalld

for each of the six cases are plotted in Fig. 4.3 for both the training and the validation step as

functions of the number of points in the training set.

It can be noted that the overallobf , and overalld functions for the training set progressively reach

better values as the number of training data gets smaller; correspondingly, there is a deterioration in

the prediction accuracy with respect to the validation set, particularly when the number of points

decreases under 100. The last two cases represent extreme extrapolations, since the number of

conditions given to the model through the input data is lower than the number of the EEoS-NN
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model free parameters to regress: in these circumstances the regression produces an unacceptable

overfitting. Anyway, when disposing of more than 100 TPρ points, the prediction accuracy of the

model is satisfying and the overfitting is avoided.
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Figure 4.3: Objective function overallobf , and deviation function overalld in dependence on the

number of points of the training set. Case of ethane.
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4.3. Mixtures

4.3.1. Mathematical formulation

The proposed EEoS-NN technique has been applied also to the case of mixtures. A framework

similar to that of the ECS-NN model in Paragraph 3.6.4 is maintained, though with a significant

difference: in this case the reference is not a pure fluid, but a simple equation for the target mixture

evaluated at the same mixture composition and at temperature and density corrected through the

shape functions. The model is then written as:

( ) ( )xx ,,,, 000 ρρ TaTa R
MM

R
M = (4.17) 

In order to fulfill Eq. (4.17), the independent variables 0T and 0ρ of the mixture basic EoS have

to be ‘distorted’ through the scale factor functions Mf and Mh , which are individually determined

for the mixture of interest:

( )x,,0
MMM

M

Tf

T
T

ρ
= (4.18)

( )x,,0 MMMM Th ρρρ = (4.19)

The mixture shape functions Mθ and Mφ can be introduced to describe Mf and Mh :

( )x,, MMM
c,0

Mc,
M T

T

T
f ρθ= (4.20)

( )x,, MMM
Mc,

c,0
M Th ρφ

ρ
ρ

= (4.21)

but, as the target and the reference system are the same, the ratios of their pseudo-critical

temperatures and densities are equal to 1 and consequently the scale factors and the shape functions

coincide:

( ) ( )xx ,,,, MMMMMMM TTff ρθρ == (4.22)

( ) ( )xx ,,,, MMMMMMM TThh ρφρ == (4.23)

In Eq. (4.17) Ra0 is obtained from the mixture equation selected as reference. In this work the

SRK cubic EoS with Peneloux volume translation, previously used for pure fluids, has been
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assumed with the van der Waals mixing rules reported in Paragraph 3.3.2; the thermodynamic

relations for this equation are given in Appendix A.3. 

Differently from the ECS model for mixtures, the composition dependence is here already

present in the reference equation and therefore it is simply refined through the shape functions

depending also on composition. It is important to stress again that the reference equation is

evaluated at the same composition x of the real system and no tuning function is applied to the

molar fraction variables. Incidentally, this makes equivalent the scale and the shape functions, since

the pseudo-critical parameters McT , and Mc,ρ for the system and for the reference equation are the

same.

The mathematical relations for the calculation of thermodynamic properties, given in Appendix

A.5, are the same as those for the ECS-NN model, see Paragraph 3.6.4, but in the present case the

equation for the reference fluid is substituted by the basic equation for the mixture itself.

The only significant formal difference with the ECS-NN framework is the partial molar fugacity

coefficient kM ,ϕ̂ for the mixture component k , obtained from:

( ) ( )ρρϕϕ HHzFFu
Z

Z
kk n

R
n

RM
kkM ++++








−= 00

0
,0, lnˆlnˆln (4.24)

where k,0ϕ̂ is the partial molar fugacity coefficient for the mixture component k calculated by the

reference equation; the other thermodynamic properties are obtained similarly to the previous ECS-

NN model.

The shape functions are expressed through the neural network assuming Eq. (4.9) as transfer

function.

4.3.2. Training of the EEoS-NN model on generated density and coexistence values

The training of an EEoS-NN model aims at the determination of the mixture scale factor

functions Mf and Mh over the whole ( )x,,ρT range of interest through an optimization procedure

that uses the available data of the experimentally accessible thermodynamic quantity as input.

The main goal of the Paragraph 4.3 is to verify the effectiveness of the proposed modeling

technique and its capability in representing the thermodynamic surfaces of mixtures. Therefore,

similarly to what was done for pure fluids in Paragraph 4.2, it was chosen to assume generated

values of thermodynamic properties instead of experimental data.

Five binary and two ternary mixtures of haloalkanes were considered and for all of them the

DEoSs used for data generation were taken from Ref. 9. The critical constants and the SRK
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parameters for the pure fluids relevant as components of the selected mixtures are reported in the

previous Table 4.1 together with their literature references.

In a first step, only density data ( )x,,, ρPT covering the vapor, liquid, and supercritical regions,

together with vapor-liquid equilibrium (VLE) data in the forms ( )sssPT yx ,,, , ( )sslsPT x,,, ρ and

( )ssvsPT y,,, ρ , were used as inputs for the regression. These VLE data are indispensable to locate

the bubble and dew surfaces of the mixture. When considering saturation condition, y denotes the

vapor phase composition vector, while x is the liquid one.

A grid in the independent variables x,, MM PT has been generated with a constant step for each

variable inside the respective range. The generated data set is subdivided into a training set and a

validation set, with the first one obtained regularly extracting a subset of values from the original

set and the second composed of the remaining values.

The data of the training set were assumed for the regression of the mixture-specific equations,

while the validation data were used to check the performances of the obtained models. Following

similar criteria, sets of training and validation VLE data were produced for the whole coexistence

locus in the considered temperature range. Moreover, values of several thermodynamic properties

were generated for each point of the validation set, in order to verify the behavior of the equations

also with respect to such quantities.

The number of data and their range for each considered mixture are reported in Table 4.10. The

data are distributed in three main thermodynamic regions, that are the liquid phase (denoted by l),

the vapor phase (denoted by v), and the supercritical region (denoted by sc). In this work the

supercritical region is conventionally identified as the thermodynamic region at temperatures higher

than the pseudocritical temperature and pressures higher than the pseudocritical pressure, calculated

by the mixing rules of Tillner-Roth et al. [9].

For the training step an objective function obf accounting for the deviations between the model

and the data has to be defined for each of the thermodynamic quantities to which the equation is

regressed. The variables of the obf function are the parameters ijw and jkw , whose values are to be

found through a minimization procedure of the obf function.

In the first step it was chosen to train the MLFN only on density values in the vapor, liquid, and

supercritical regions, and on the liquid-vapor coexistence surface.



4.3. Mixtures 139

Table 4.10: Characteristics of the generated data for the considered mixtures.

Mixture
T Range

(K)
P Range
(MPa)

z1 Range z2 Range

R32/R125 250-400 0.3-8.0 0.01-0.98 −
R32/R134a 250-400 0.3-8.0 0.01-0.98 −
R125/R134a 250-400 0.3-8.0 0.01-0.98 −
R125/R143a 250-400 0.3-8.0 0.01-0.98 −
R143a/R134a 250-400 0.3-8.0 0.01-0.98 −

R32/R125/R134a 250-400 0.3-8.0 0.01-0.98 0.01-0.98
R125/R143a/R134a 250-400 0.3-8.0 0.01-0.98 0.01-0.98

Training
NPT

Validation
NPT

ZTP ,,, ρ VLE Each of nine properties a VLE
sc l v overall sc l v overall

R32/R125 137 388 253 778 44 834 2305 1448 4587 115
R32/R134a 80 473 218 771 53 456 2822 1239 4517 140
R125/R134a 126 471 185 782 51 677 2815 1030 4522 133
R125/R143a 168 394 203 765 42 927 2391 1107 4425 113
R143a/R134a 114 489 183 786 53 612 2893 1020 4525 136

R32/R125/R134a 101 311 187 599 64 902 3382 1834 6118 354
R125/R143a/R134a 111 321 170 602 64 1101 3491 1479 6071 344

a properties: RZ , Ra , Ru , Rh , Rg , Rs , R
vc , R

pc , w .

Considering a mixture of C components for which a set of zn density data and a set of ϕn VLE

data are available, the objective function zobf , for the residual compressibility factor is defined as in

Eq. (4.10), while the objective function ϕ,obf for the coexistence is defined as:

( ) ( )[ ]∑∑
= =

+−+=
ϕ

ϕϕ
ϕ

ϕ

n

i i

C

k
j

sv
calck

s
kj

sl
calck

s
kob, yx

n
f

1

2

1
,, ˆlnlnˆlnln

1
(4.25)

In Eq. (4.25) s
kx and s

ky are experimental values, while sl
kϕ̂ and sv

kϕ̂ are calculated through the

EEoS-NN model at the experimental conditions ( )sslT x,, ρ and ( )ssvT y,, ρ . Since in the present

study only generated values were considered instead of real experimental data, the term

‘experimental value’ refers to values generated from the corresponding DEoS in Ref. 9. 

The two objective functions, Eqs. (4.10) and (4.25), are composed together to form the overall

objective function overallobf , , Eq. (4.12), in which the two functions zobf , and ϕ,obf are differently

weighted.

The application of the training procedure to the generated data gave a mixture-specific equation

in EEoS-NN format for each of the target mixtures reported in Table 4.10.
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In a second step of the study the EEoS-NN model was regressed assuming an objective function

which includes, besides the unavoidable density and VLE data, also some caloric quantities such as

the isochoric heat capacity vC , the isobaric heat capacity pC , and the speed of sound w . As in the

case of pure fluids, the overall objective function overallob,f for this multiproperty fitting is again

calculated as the sum of two contributions, but the first one now reads as in Eq. (4.13).

The part ϕ,obf is still represented by the former Eq. (4.25); the two contributions are combined

together according to Eq. (4.12) again.

The main purposes of the present study are the test and the analysis of capability and

performances of the proposed modeling method. Therefore the numerical details, i.e. the parameters

ijw and jkw , of the functional forms obtained for the studied systems are not reported herein. In fact

they have a limited interest for practical applications since DEoSs already exist for all the

considered mixtures [9].

4.3.3. Validation

SRK CUBIC EOS WITH VOLUME TRANSLATION

First of all, the SRK cubic EoS with the van der Waals mixing rules and the Peneloux volume

translation parameters reported in Table 4.1 was validated with respect to the generated data in the

validation sets for properties involving only first order derivatives of R
Ma with respect to

temperature or density. The physical constants and the coefficients reported in Table 4.1 were used

for the components, whereas the binary interaction parameters ijk were set to zero. The SRK

performances represent the ‘starting point’ of the proposed modeling technique; in fact the

discrepancies between the data and the predictions of this equation are corrected through the

application of the scale factors.

Results for the SRK equation with 0=ijk are reported in Table 4.11 for the considered binary

and ternary mixtures. The performances are rather homogeneous for all the systems, but the

prediction errors for the properties depending on first derivatives of the residual Helmholtz energy

range to several per cent. The worse performances are found for properties involving only

temperature derivatives like R
Mu and R

Ms , in particular in vapor region where the AADs can largely

exceed 10%.
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Table 4.11: Accuracy of the SRK equation for thermodynamic quantities depending on first

derivatives of residual Helmholtz energy in the three main thermodynamic regions.

Mixture AAD (%)
sc l v overall sc l v overall

R
Mz R

Ms
R32+R125 3.64 0.86 3.28 2.13 3.89 2.11 17.65 7.34
R32+R134a 4.81 0.82 4.43 2.21 5.00 3.34 22.35 8.72
R125+R134a 5.11 0.78 2.08 1.72 2.66 2.09 13.74 4.83
R125+R143a 6.35 0.90 3.09 2.59 2.99 2.07 12.96 4.99
R143a+R134a 6.29 0.82 4.08 2.29 3.25 3.08 18.07 6.48

Mean 5.26 0.83 3.42 2.19 3.45 2.57 17.14 6.48
R32+R125+R134a 4.12 0.80 3.56 2.12 3.57 2.55 19.24 7.70

R125+R143a+R134a 5.93 0.80 2.83 2.22 2.88 2.12 14.25 5.21
Mean 5.11 0.80 3.23 2.17 3.19 2.33 17.01 6.46

R
Mu R

Ma
R32+R125 3.51 1.43 11.93 5.12 4.00 2.98 3.53 3.34
R32+R134a 5.64 1.82 15.58 5.98 6.66 2.98 4.55 3.78
R125+R134a 3.24 1.19 8.99 3.27 5.67 2.24 2.07 2.71
R125+R143a 3.82 1.28 8.91 3.72 7.15 3.38 3.01 4.08
R143a+R134a 5.16 1.57 12.63 4.55 8.46 2.81 4.09 3.86

Mean 4.10 1.47 11.74 4.53 6.28 2.86 3.49 3.55
R32+R125+R134a 3.72 1.51 13.18 5.33 4.74 2.73 3.70 3.32

R125+R143a+R134a 3.59 1.21 9.66 3.70 6.60 2.72 2.72 3.42
Mean 3.65 1.36 11.61 4.52 5.76 2.72 3.26 3.37

R
Mh R

Mg
R32+R125 3.23 1.32 9.44 4.23 3.83 2.38 3.41 2.97
R32+R134a 5.44 1.66 12.58 5.04 5.94 2.37 4.49 3.31
R125+R134a 3.36 1.10 7.01 2.79 5.49 1.82 2.04 2.42
R125+R143a 4.15 1.20 7.22 3.32 6.87 2.70 3.04 3.65
R143a+R134a 5.38 1.44 10.29 3.97 7.63 2.25 4.08 3.39

Mean 4.16 1.35 9.41 3.87 5.89 2.29 3.44 3.15
R32+R125+R134a 3.62 1.39 10.51 4.45 4.50 2.19 3.63 2.96

R125+R143a+R134a 3.85 1.13 7.70 3.23 6.37 2.18 2.76 3.08
Mean 3.75 1.26 9.26 3.84 5.53 2.18 3.24 3.02

Table 4.12 shows the accuracy of the SRK model for the thermodynamic properties depending

on second and cross derivatives of R
Ma . The results for isochoric and isobaric heat capacities, and

for speed of sound are similar for binary and ternary mixtures, but are worse than those obtained for

first order properties, see Table 4.11. In particular the residual heat capacities shows very high

deviations, that are considerably reduced when also the ideal part of the properties is considered.

The errors are rather homogeneous in all the regions for the heat capacities, but for speed of sound

the good results in the vapor phase are in contrast with the poor performances in the liquid phase,

where a mean deviation of about 25% is obtained. This is due to the ideal-gas contribution for speed

of sound that is by far prevailing in the vapor phase.
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Table 4.12: Accuracy of the SRK equation for thermodynamic quantities depending on second

derivatives of residual Helmholtz energy in the three main thermodynamic regions.

Mixture AAD (%)
sc l v overall sc l v overall

R
Mvc , MvC ,

R32+R125 48.88 30.22 69.97 46.16 8.33 6.26 6.08 6.58
R32+R134a 52.39 31.08 73.71 44.93 11.01 7.16 7.00 7.50

R125+R134a 39.29 41.35 67.51 47.00 5.33 6.74 3.90 5.88
R125+R143a 40.36 41.95 65.45 47.50 4.94 6.54 3.60 5.47
R143a+R134a 40.69 39.21 71.14 46.61 6.11 6.83 4.67 6.25

Mean 43.80 36.86 69.68 46.43 6.82 6.73 5.17 6.34
R32+R125+R134a 49.85 30.82 71.20 45.73 8.84 6.69 5.73 6.72

R125+R143a+R134a 40.21 41.39 66.68 47.34 5.12 6.79 3.32 5.64
Mean 44.55 36.19 69.18 46.53 6.80 6.74 4.65 6.18

R
Mpc , MpC ,

R32+R125 11.01 15.84 31.87 20.02 6.25 8.03 6.15 7.11
R32+R134a 12.54 17.29 36.45 22.07 8.19 8.71 7.31 8.28

R125+R134a 10.23 10.61 28.71 14.67 5.67 4.63 4.26 4.70
R125+R143a 12.14 14.18 27.58 17.11 6.29 6.12 4.02 5.63
R143a+R134a 12.23 14.46 33.21 18.38 7.11 6.29 5.39 6.20

Mean 11.57 14.43 31.71 18.46 6.55 6.73 5.53 6.39
R32+R125+R134a 11.15 14.71 33.80 19.91 6.54 7.34 5.86 6.78

R125+R143a+R134a 11.39 11.66 29.15 15.87 5.95 5.07 3.67 4.89
Mean 11.28 13.16 31.72 17.90 6.22 6.19 4.88 5.84

Mw
R32+R125 7.94 23.18 0.57 13.27 - - - -
R32+R134a 10.64 23.73 0.89 16.15 - - - -

R125+R134a 7.49 24.81 0.41 16.66 - - - -
R125+R143a 7.14 25.17 0.61 15.25 - - - -
R143a+R134a 8.46 24.39 0.76 16.91 - - - -

Mean 8.08 24.27 0.65 15.64 - - - -
R32+R125+R134a 8.77 23.67 0.61 14.56 - - - -

R125+R143a+R134a 7.16 25.02 0.47 15.80 - - - -
Mean 7.89 24.36 0.55 15.18 - - - -

Table 4.13 shows the SRK model performances for the prediction of the properties at

equilibrium conditions for binary and ternary mixtures. The pressure of bubble and dew point and

the phase compositions are predicted with acceptable accuracies, whereas the deviations for the

densities at saturation are higher, with worse values for the saturated liquid density.

Considering the reported results, it can be concluded that from an overall point of view the

accuracy of the SRK cubic EoS, using mixing rules set with 0=ijk , cannot be regarded as

satisfactory.
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Table 4.13: Accuracy of the SRK equation for VLE conditions at bubble and dew point.

AAD (%) AAD
Mixture s

bubbleP s
dewP slρ svρ s

dewx s
bubbley

R32+R125 0.86 0.82 7.79 2.28 0.0023 0.0023
R32+R134a 1.03 0.79 7.37 2.18 0.0034 0.0034

R125+R134a 0.84 0.72 6.26 1.25 0.0020 0.0020
R125+R143a 2.99 3.02 7.53 1.44 0.0048 0.0047
R143a+R134a 1.62 1.40 6.61 1.06 0.0029 0.0029

Mean 1.43 1.31 7.08 1.63 0.0031 0.0030
R32+R125+R134a 0.86 0.61 6.98 2.20 0.0027 0.0021

R125+R143a+R134a 2.16 1.75 6.35 0.99 0.0036 0.0033
Mean 1.50 1.17 6.67 1.60 0.0031 0.0027

EEOS-NN MODEL TRAINED ON DENSITY AND COEXISTENCE DATA

The corresponding results for the EEoS-NN models regressed on density and coexistence data

only are reported in Tables 4.14-4.16. The performance improvement achieved by the correction

through the scale factors is very high; in most cases the deviations are reduced by two orders of

magnitude compared to the SRK EoS.

Table 4.14 shows the performances of the EEoS-NN models with respect to properties

depending on first derivatives of the residual Helmholtz energy; these results have to be compared

with Table 4.11 for the SRK EoS. The values for the residual compressibility factor R
Mz in liquid

phase are particularly impressive, since this property is described with very low deviations. The

deviations for the other residual properties are absolutely satisfactory, also considering that no

information for them was supplied to the regression procedure. Although maintaining an excellent

overall performance, it can be observed that the poor performances of the SRK model on the

properties R
Mu and R

Ms , involving only temperature derivatives of the R
Ma function, have

consequences also on the representation of the same properties obtained by the EEoS-NN model. In

general a limited worsening is found when ternary mixtures are considered.
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Table 4.14: Accuracy of the EEoS-NN models for thermodynamic quantities depending on first

derivatives of residual Helmholtz energy. Training on density and coexistence data.

Mixture AAD (%)
sc l v overall sc l v overall

R
Mz R

Ms
R32+R125 0.122 0.003 0.134 0.066 0.455 0.357 0.839 0.527
R32+R134a 0.143 0.001 0.070 0.033 0.466 0.170 0.356 0.742

R125+R134a 0.057 0.001 0.055 0.022 0.264 0.112 0.356 0.191
R125+R143a 0.036 0.001 0.045 0.019 0.131 0.081 0.377 0.166
R143a+R134a 0.045 0.001 0.055 0.019 0.266 0.177 0.569 0.278

Mean 0.076 0.001 0.076 0.032 0.301 0.176 0.517 0.382
R32+R125+R134a 0.541 0.009 0.467 0.225 1.372 0.612 1.577 1.013

R125+R143a+R134a 0.308 0.006 0.277 0.127 1.260 0.475 1.506 0.868
Mean 0.413 0.007 0.382 0.176 1.310 0.542 1.545 0.941

R
Mu R

Ma
R32+R125 0.308 0.208 0.537 0.330 0.139 0.038 0.117 0.081
R32+R134a 0.313 0.097 0.470 0.221 0.143 0.019 0.058 0.042

R125+R134a 0.178 0.067 0.226 0.120 0.061 0.023 0.042 0.033
R125+R143a 0.090 0.059 0.235 0.109 0.037 0.026 0.032 0.030
R143a+R134a 0.173 0.102 0.354 0.168 0.057 0.022 0.041 0.031

Mean 0.202 0.104 0.379 0.190 0.083 0.025 0.062 0.044
R32+R125+R134a 0.944 0.343 1.010 0.632 0.661 0.096 0.472 0.292

R125+R143a+R134a 0.895 0.266 0.944 0.545 0.351 0.085 0.245 0.172
Mean 0.917 0.304 0.981 0.589 0.491 0.090 0.371 0.232

R
Mh R

Mg
R32+R125 0.252 0.184 0.410 0.268 0.130 0.028 0.121 0.076
R32+R134a 0.258 0.086 0.358 0.178 0.136 0.015 0.060 0.039

R125+R134a 0.144 0.059 0.172 0.097 0.059 0.017 0.044 0.029
R125+R143a 0.075 0.051 0.179 0.088 0.036 0.020 0.035 0.027
R143a+R134a 0.139 0.091 0.268 0.137 0.052 0.017 0.045 0.028

Mean 0.165 0.092 0.288 0.154 0.079 0.019 0.065 0.040
R32+R125+R134a 0.787 0.306 0.804 0.526 0.604 0.072 0.461 0.267

R125+R143a+R134a 0.757 0.237 0.722 0.449 0.331 0.062 0.242 0.155
Mean 0.771 0.271 0.767 0.488 0.454 0.067 0.363 0.211

Table 4.15 shows mean deviations of the proposed models with respect to R
Mvc , , R

Mpc , , MvC , ,

MpC , , and Mw for binary and ternary mixture. The description of these second order properties by

the EEoS-NN models has to be regarded as predictive and consequently the obtained results are

rather satisfactory. The residual caloric properties R
Mvc , and R

Mpc , are homogenously represented

with an acceptable accuracy in the three thermodynamic regions; for MvC , , MpC , , and Mw the best

results are found in the vapor region, where the ideal part of each of these properties gives the

prevailing contribution to the overall value, allowing for a ‘dilution’ of the deviation for the residual
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part. In the liquid phase the heat capacities are predicted worse, but in any case they are comparable

with the experimental uncertainties for these properties.

Table 4.15: Accuracy of the EEoS-NN models for thermodynamic quantities depending on

second derivatives of residual Helmholtz energy. Training on density and coexistence data.

Mixture AAD (%)
sc l v overall sc l v overall

R
Mvc , MvC ,

R32+R125 9.157 7.582 7.213 7.752 1.469 1.568 0.656 1.262
R32+R134a 8.406 4.292 7.153 5.492 1.715 1.050 0.684 1.017

R125+R134a 4.905 2.599 4.029 3.270 0.624 0.422 0.307 0.426
R125+R143a 2.823 1.083 5.074 2.446 0.362 0.170 0.253 0.231
R143a+R134a 5.316 8.548 5.686 7.466 0.735 1.658 0.405 1.250

Mean 5.893 4.856 5.967 5.305 0.917 0.981 0.480 0.841
R32+R125+R134a 7.146 17.563 7.173 12.913 1.254 3.827 0.693 2.508

R125+R143a+R134a 11.503 9.045 9.178 9.523 1.498 1.373 0.567 1.199
Mean 9.541 13.236 8.068 11.225 1.388 2.581 0.637 1.856

R
Mpc , MpC ,

R32+R125 1.806 1.864 2.955 2.198 0.990 0.870 0.674 0.830
R32+R134a 2.063 1.053 2.670 1.598 1.286 0.517 0.600 0.618

R125+R134a 0.881 0.659 1.571 0.900 0.495 0.271 0.337 0.320
R125+R143a 0.629 0.190 2.025 0.741 0.314 0.078 0.272 0.176
R143a+R134a 0.846 2.671 2.094 2.294 0.489 1.086 0.412 0.853

Mean 1.182 1.308 2.324 1.552 0.667 0.571 0.477 0.562
R32+R125+R134a 3.706 4.486 3.533 4.085 2.530 2.027 0.756 1.720

R125+R143a+R134a 2.503 1.510 4.050 2.309 1.402 0.632 0.715 0.792
Mean 3.045 2.974 3.764 3.200 1.910 1.318 0.738 1.258

Mw
R32+R125 0.749 0.885 0.055 0.598 - - - -
R32+R134a 0.808 0.625 0.066 0.490 - - - -

R125+R134a 0.342 0.181 0.024 0.169 - - - -
R125+R143a 0.176 0.139 0.013 0.116 - - - -
R143a+R134a 0.364 0.323 0.027 0.262 - - - -

Mean 0.459 0.422 0.039 0.329 - - - -
R32+R125+R134a 1.038 1.988 0.085 1.277 - - - -

R125+R143a+R134a 1.132 0.950 0.066 0.768 - - - -
Mean 1.090 1.461 0.077 1.023 - - - -

VLE data are reproduced in an excellent way as well, as shown in Table 4.16. The saturated

liquid density is represented with a higher accuracy than the saturated vapor density. This is

coherent with the results for R
Mz in compressed liquid and superheated vapor regions reported in

Table 4.14.
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Table 4.16: Accuracy of the EEoS-NN models for VLE conditions at bubble and dew point.

Training on density and coexistence data.

AAD (%) AAD
Mixture s

bubbleP s
dewP slρ svρ s

dewx s
bubbley

R32+R125 0.120 0.121 0.042 0.224 0.0001 0.0001
R32+R134a 0.064 0.068 0.025 0.107 0.0001 0.0001
R125+R134a 0.077 0.078 0.022 0.110 0.0000 0.0000
R125+R143a 0.088 0.088 0.020 0.051 0.0000 0.0000
R143a+R134a 0.080 0.083 0.021 0.072 0.0000 0.0000

Mean 0.084 0.086 0.026 0.111 0.0000 0.0000
R32+R125+R134a 0.264 0.321 0.181 0.710 0.0006 0.0005

R125+R143a+R134a 0.177 0.189 0.072 0.668 0.0002 0.0003
Mean 0.221 0.256 0.127 0.689 0.0004 0.0004

Summarizing, a large improvement of performances was attained moving from the simple SRK

equation to the EEoS-NN model. Even though the regression of the scale factor functions was based

only on density and VLE data, the obtained equations show good predictions also for

thermodynamic properties not involved in the training process.

VALIDATION OF THE EEOS-NN MODELS TRAINED ON MULTIPROPERTY DATA

The validation procedure was repeated for the model trained on generated values of the four

thermodynamic quantities R
Mz , R

Mvc , , R
Mpc , , Mw plus the VLE data. For sake of brevity the study was

carried out for only one mixture, i.e., for the system R32 + R134a.

Comparing the present results reported in Table 4.17 with those obtained for the model trained

on density and VLE data, Tables 4.14 and 4.15, it can be noted that the performance in the

representation of first order properties is decreased more or less for all properties, but in general not

significantly. On the contrary, for the heat capacities an evident improvement is attained, in

particular for the isochoric heat capacity. The representation of the speed of sound is improved as

well, but to a lower extent than for the other properties. Therefore, the inclusion of second order

quantities in the training set improves the accuracy of the EEoS-NN model for the same quantities,

because information about higher order derivatives of R
Ma is supplied to the model.

The validation results for the vapor-liquid coexistence locus, reported in Table 4.18, are good

and show a level of accuracy rather similar to the one obtained for the model trained on density and

coexistence data only, Table 4.16.
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Table 4.17: Accuracy of the EEoS-NN model for the mixture R32+R134a for thermodynamic

quantities depending on first and second derivatives of residual Helmholtz energy. Multiproperty

training cases.

Training Phase AAD (%)
R
Mz R

Ma R
Mu R

Ms R
Mh R

Mg
sc 0.263 0.300 0.384 0.689 0.301 0.271
l 0.010 0.029 0.112 0.175 0.099 0.025
v 0.342 0.347 1.007 1.566 0.743 0.335

R
Mz , R

Mvc , , R
Mpc , , Mw

+
VLE overall 0.127 0.144 0.385 0.609 0.296 0.135

sc 0.349 0.380 0.526 0.676 0.482 0.368
l 0.005 0.037 0.159 0.288 0.140 0.027
v 0.193 0.167 0.675 1.068 0.512 0.171

R
Mz , Mw + VLE

overall 0.091 0.107 0.338 0.541 0.276 0.101
R

Mvc ,
R

Mpc , Mvc , Mpc , Mw -

sc 1.954 1.295 0.446 0.963 0.404 -
l 0.402 0.258 0.091 0.126 0.393 -
v 1.218 0.805 0.130 0.172 0.115 -

R
Mz , R

Mvc , , R
Mpc , , Mw

+
VLE overall 0.783 0.513 0.138 0.223 0.318 -

sc 5.612 3.095 1.117 2.318 0.511 -
l 8.781 3.060 2.051 1.410 0.138 -
v 6.394 2.440 0.564 0.496 0.069 -

R
Mz , Mw + VLE

overall 7.807 2.893 1.549 1.251 0.157 -

Table 4.18: Accuracy of the EEoS-NN model for the mixture R32+R134a for VLE conditions at

bubble and dew point. Multiproperty training cases.

Training AAD (%) AAD
s

bubbleP s
dewP slρ svρ s

dewx s
bubbley

R
Mz , R

Mvc , , R
Mpc , , Mw + VLE 0.142 0.155 0.124 0.257 0.0004 0.0004

R
Mz , Mw + VLE 0.171 0.186 0.089 0.412 0.0003 0.0003

A further training case, which involves density, VLE, and speed of sound data in the regression

process, was considered. This set of data corresponds to the thermodynamic properties involving

first order derivatives of the residual Helmholtz energy function and the speed of sound, which can

be measured with great accuracy. The validation results reported in Tables 4.17 and 4.18 show an

improvement for the performance on speed of sound compared to the former case, though slightly

sacrificing accuracy on heat capacities. The other properties are reproduced approximately at the

same level as before.
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4.4. Conclusions

The new modeling technique here presented recovers the basic framework of extended

corresponding states theory, but a reference equation is assumed instead of a reference fluid. This

allows to get rid of the conformality requirement and of the necessity of the reference fluid EoS,

because an equation for the target fluid itself is assumed as reference. It has been demonstrated that

a simple equation, as the SRK cubic EoS, is sufficient for such a purpose.

Moving from generated data, the capability of the proposed method has been verified both for

pure fluids and for mixtures. A group of pure alkanes, haloalkanes, and strongly polar substances

has been considered; the results obtained for these fluids are very promising. The same is valid for

the five binary mixtures and two ternary mixtures of haloalkanes here studied.

In the case of pure fluids it has been also verified that slightly more than 100 density points

evenly distributed in the TPρ plane and with low experimental error can be a sufficient input for the

model development, allowing to reduce the experimental efforts.

Having verified such promising performances for the proposed model basing it on generated

data, it is then possible to reliably develop DEoSs in the EEoS-NN format directly from

experimental data. This will be the matter of the following chapters of Part One of this thesis.
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V. A fundamental equation of state for sulfur hexafluoride (SF6) in EEoS-NN

format

5.1. Introduction

The EEoS-NN technique, preliminary studied in Chapter IV, is here applied to draw a DEoS for

the pure fluid sulfur hexafluoride (SF6) directly from the available data sets of the target fluid. In

fact, one of the main purposes of the present chapter is the testing of the EEoS-NN modeling

technique for a fluid in a real case, i.e., using experimental data instead of generated data as in the

preliminary tests treated in Chapter IV.

Sulfur hexafluoride (SF6) is a highly stable, non-toxic, non-polar, symmetrically-shaped

chemical compound which is widely used in several industrial applications. The critical point of

sulfur hexafluoride is at K318.7232c =T and MPa3.754983c =P .

Span and Wagner [1] published the most recent and precise equation for SF6. It is a fundamental

equation with an optimized functional form obtained through the Setzmann and Wagner [2] method,

and then it is expressed as a summation of polynomial and exponential terms depending on

temperature and density. After the publication of the Span and Wagner [1] DEoS several and

valuable data sets have been made available in the literature and this suggests to undertake the

development of a new DEoS for this fluid, adopting the innovative EEoS-NN modeling method.

In particular, the works of Hurly et al. [3], Ihmels and Gmehling [4], and Claus et al. [5], which

were not available when the Span and Wagner [1] DEoS was developed, have provided a large

number of very precise density data in the vapor, liquid, and supercritical regions. Moreover, these

data largely improved the experimental knowledge for the regions at temperatures greater than 375

K, which formerly were not sufficiently documented; in fact, thanks to the data of Ihmels and

Gmehling [4], the upper temperature limit of the equation was heightened of about 100 K with

respect to the Span and Wagner [1] DEoS. In addition, also the speed of sound data in the vapor

phase measured by Hurly et al. [3] were assumed in the present work; in particular, these can be

used to assess the reliability of the adopted ideal-gas isobaric heat capacity function.

Therefore, the DEoS for sulfur hexafluoride proposed in the present chapter should supersede the

Span and Wagner [1] DEoS.



V. A fundamental equation of state for sulfur hexafluoride (SF6) in EEoS-NN format150

5.2. Training of the equation of state in EEoS-NN format

The mathematical formulation for the EEoS-NN model is given in Paragraph 4.2.1.

As it will be discussed in Paragraph 5.5.1, the equation for the ideal-gas isobaric heat capacity of

sulfur hexafluoride used throughout this work was developed by Cole and de Reuck [7].

The main work in the development of an equation of state in EEoS-NN format is due to the

regression of the residual contribution of Helmholtz energy. The free parameters in the regression

procedure are the weighting factors ijw and jkw , which, with the present number of neurons in the

hidden layer 9=J , constitute a set of 47 coefficients. Since the thermodynamic properties in

EEoS-NN format are non-linearly dependent on the weighting factors, the regression method is

necessarily non-linear. The technique here adopted is a combination of a stochastic method with a

deterministic method, i.e., a quasi-Newton one. The so-obtained technique keeps the ability of the

stochastic method in finding the minimum of the objective function when many local minima are

present, but the introduction of the deterministic method allows the limitation of the required time

for the regression and the improvement of the precision of the minimum determination.

The objective function that has to be minimized in the regression procedure is composed by

sums of squares of the deviations between experimental data and calculated values.

For density data, the objective function is calculated as

∑
= 



















∂
∂

−=
ρ

ρ
ρ

ρ σ
ρρ

n

i
i

iT

RR
exp

ob

az

n
f

1

2
,

2

exp
,

1
(5.1) 

where the subscript exp denotes the experimental value, ρn is the number of experimental density

data, 2
,iρσ is the variance of each point estimated from the Gaussian error propagation formula. The

objective function for vapor pressure data is
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in which ϕn is the number of vapor pressure data, 2
,iϕσ is the variance of each point, sP is the

experimental vapor pressure, slρ and svρ are the densities of saturated liquid and vapor,

respectively. The quantities Ra and ( )Ta ρ∂∂ R are calculated at each step from the model using the

current values of the free parameters ijw and jkw . Eq. (5.2) is obtained from Eq. (4.11) and (A2.26)

dividing the thi term by 2
,iϕσ .



5.2. Training of the equation of state in EEoS-NN format 151

During the development process of the equation of state, a first regression run is done

considering only density data and assuming equation (5.1) as objective function; in this preliminary

step 2
,iρσ is set equal to 1 for each experimental point.

The obtained equation is then used for the calculation of slρ and svρ at given ( )sPT , conditions

and for the evaluation of the variances of the data. A new regression is done on density and vapor

pressure data, searching for the minimum of an objective function which is a combination of the

former two:

ϕρ ob,ob,overallob, fff += (5.3) 

Successive regression steps are performed until the reaching of a satisfactory equation with good

performances with respect to different thermodynamic properties; the saturated densities and the

variances are recalculated at each step using the equation obtained in the previous step.

In the case of a multiproperty fitting, other objective functions for further properties are

considered. For a generic property M the objective function can be written as
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where the subscript calc denotes a property value calculated from the model with the current

values of the free parameters; the other symbols have a meaning similar to the previous cases.

In the present work a multiproperty fitting was done considering also data of isobaric heat

capacity pC , speed of sound w , and Joule-Thomson coefficient JTµ . The objective function to be

minimized in such a regression case is

JTp µob,wob,Cob,ob,ob,overallob, ffffff ++++= ϕρ (5.5) 

In general, the available experimental data cannot be considered in the regression as a whole; in

fact some of them are affected by systematic errors or show a lower precision with respect to other

data sets. Therefore, the experimental sources have to be subdivided into two groups: the primary

data, i.e., the most precise ones that are used for the regression, and the secondary data, that are

used only for comparison in order to check the performances of the obtained DEoS.

The choice of primary data can be initially based on the analysis of their stated accuracy and of

the adopted experimental techniques. Anyway, during the regression process some data sources can

be moved from primary to secondary data and vice versa taking into account their deviations from

the obtained equations and the consistency with other experimental sources.
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5.3. Phase equilibria of sulfur hexafluoride

Since in many cases the user of an equation of state is interested only in phase equilibria

representation, auxiliary equations for the calculation of vapor pressure and saturation densities

have been developed and reported in the present section. Using these equations, such properties can

be easily and precisely evaluated avoiding the whole implementation of the equation of state.

The units adopted through this work are K for temperature, MPa for pressure, and mol·m-3 for

density, notwithstanding in the tables and figures the density is reported in kg·m-3 for reader’s

convenience. Since the correlation equations and all temperature values in this work are relative to

the International Temperature Scale 1990 (ITS-90) [7], the temperature values of the available data

were converted to ITS-90 when based on an older temperature scale.

In this section, each experimental data set was subdivided into three subsets depending on

temperature: the ordinary region, with reduced temperature lower than 0.99, the extended critical

region, with 998.099.0 r ≤≤T , and the critical region, with 998.0r ≥T . The number of

experimental points and the validation results are separately given for these regions, which are

respectively indicated by “Ord.”, “Ext. Crit.”, and “Crit.” in the following tables.

In the following, the error deviation ( )∆ , the average absolute deviation (AAD) and the bias

(Bias), are defined as in Appendix A.6.

5.3.1. Triple point and critical point

For sulfur hexafluoride, the triple-point temperature and the corresponding vapor pressure were

recently measured by Funke et al. [8], who reported the values tT =223.555 K and tP =0.23143

MPa. The densities of liquid and vapor phases at the triple point have been calculated by means of

the auxiliary equations developed in the following sections, Eqs. (5.7) and (5.8), yielding

sl
tρ =1844.77 kg·m-3 and sv

tρ =19.5603 kg·m-3.

A high accuracy measurement of the critical temperature of sulfur hexafluoride was done by

Kurzeja et al. [9]. This value and the other critical values assumed in this work are taken from the

same source and are reported in Table 5.1.

5.3.2. Vapor pressure

Several sources of vapor pressure data for sulfur hexafluoride are available in the literature.

These data were obtained through different techniques and consequently they have different

accuracy levels.
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Table 5.1: Substance-specific parameters for SF6.

Ref.
M (kg·mol-1) 146.055×10-3 31

tT (K) 223.555 8

tP (MPa) 0.23143 8

cT (K) 318.7232 9

cP (MPa) 3.754983 9

cρ (mol·m-3) 5.0813×103 9
ω 0.218 –

SRKc (m3·mol-1) 4.2833705×10-6 –

The data sets selected as primary data for the regression of the auxiliary equation for vapor

pressure are those measured by Funke et al.[8] and Gilgen et al. [10]; the first source is the most

recent one among the available data, while the second one is from the same research group. Both

sets were measured through a “Two-Sinker-Method”, i.e., using an apparatus that was specifically

developed for taking accurate measurements of vapor pressure, saturated liquid density, and

saturated vapor density along the whole coexistence curve. These data are very precise and cover

the whole range from the triple-point temperature to the critical temperature.

Other rather accurate data are available, as the sets of Hurly et al. [3], Blanke et al. [11], and

Biswas and Ten Seldam [12], but they were not considered for the regression because the cited data

of Funke et al. [8] and Gilgen et al. [10]. have a higher accuracy level and a population sufficient

for the description of the whole vapor-liquid coexistence curve. Additional vapor pressure data for

the present fluid were found in the literature, but they were considered only for comparison, due to

their lower precision.

The data sources considered in the present work are reported in Table 5.2. The temperature

range, the uncertainty claimed by the experimenters, and the number of points falling inside each of

the identified three regions are reported for each data set. The primary data used for the regression

are denoted by “I” in the column “Class”, while the secondary data for the validation are denoted by

“II”. Moreover, the available data are graphically shown in Fig. 5.1. 

The following auxiliary equation for the calculation of the vapor pressure of sulfur hexafluoride

was obtained by fitting the selected primary data:
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where 123893871 .N −= , 03011922 .N = , 543674513 .N −= , 640345524 .N −= , and

( )c1 TT−=τ . The values of the critical parameters are given in Table 5.1. The equation holds

from the triple-point temperature up to the critical temperature.

The validation results of Eq. (5.6) with respect to the experimental data of vapor pressure are

reported in Table 5.3. The equation excellently reproduces the primary data, showing very low

deviations and a virtually null value for bias. The more recent secondary data sets are satisfactorily

represented, in particular those of Hurly et al. [3], Blanke et al. [11], Biswas and Ten Seldam [12],

and Biswas et al. [13].

Figure 5.2 shows the deviations between the primary and secondary experimental data and the

values generated from Eq. (5.6); a comparison of this equation with the Funke et al. [8] auxiliary

equation is also presented. The bias values in Table 5.3 and the deviations in Fig. 5.2 show that the

majority of the secondary data is under-predicted by the equation, but this can be ascribed to the

experimental quality of the data themselves.

Table 5.2: Summary of the available data sets for the vapor pressure of SF6.

NPT for each region ClassRef. First Author Year T range
(K) Ord. Ext. Crit. Crit. Overall

Uncertainty a

(%)
Primary data

8 Funke 2002 224-319 24 4 5 33 ±0.01 I
10 Gilgen 1992 288-315 9 - - 9 ±0.01 to ±0.015 I

Total primary 33 4 5 42
Secondary data

3 Hurly 2000 278-313 10 - - 10 n.a. II
11 Blanke b 1993 224-319 53 1 2 57 ±0.01 II
32 Berg 1990 293-319 7 4 12 23 n.a. II
12 Biswas 1989 303-319 6 4 4 14 ±0.01 II

29,30 Jany 1986 284-319 19 13 17 49 n.a. II
13 Biswas 1984 313-319 8 19 26 53 ±0.01 II
33 Totskii b 1984 224-318 19 5 - 25 ±0.35 II
14 Watanabe 1977 273-318 16 - 1 17 ±0.03 II
17 Ulybin 1970 233-318 8 - 1 9 n.a. II
15 Mears 1969 230-318 6 - 1 7 ±0.2 II
34 Otto 1960 279-319 10 2 1 13 ±0.1 II
35 Clegg 1955 273-319 8 1 - 9 n.a. II

Overall 205 53 70 328

a n.a. = not available.

b The experimental points with temperature lower than the triple-point temperature assumed in this work are not
considered for the validation.
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Figure 5.1: Available experimental data for the vapor pressure of SF6.

Table 5.3: Comparison between vapor pressure experimental data and values calculated with Eq.

(5.6).

AAD
(%)

Bias
(%)Ref. First Author Year

T range
(K)

Ord. Ext. Crit. Crit. Overall Overall
Class

Primary data
8 Funke 2002 224-319 0.001 0.002 0.001 0.001 -0.001 I

10 Gilgen 1992 288-315 0.003 - - 0.003 0.002 I
Total primary 0.002 0.002 0.001 0.001 0.000

Secondary data
3 Hurly 2000 278-313 0.046 - - 0.046 0.025 II

11 Blanke 1993 224-319 0.058 0.016 0.018 0.056 0.053 II
32 Berg 1990 293-319 0.653 0.897 0.724 0.733 0.732 II
12 Biswas 1989 303-319 0.009 0.010 0.022 0.013 -0.006 II

29,30 Jany 1986 284-319 0.506 0.258 0.355 0.388 0.022 II
13 Biswas 1984 313-319 0.007 0.017 0.011 0.013 -0.011 II
33 Totskii 1984 224-318 0.427 0.080 - 0.357 0.288 II
14 Watanabe 1977 273-318 0.479 - 0.075 0.455 0.455 II
17 Ulybin 1970 233-318 0.909 - 0.088 0.818 0.818 II
15 Mears 1969 230-318 0.360 - 0.188 0.336 0.312 II
34 Otto 1960 279-319 0.259 0.228 0.002 0.235 -0.071 II
35 Clegg 1955 273-319 0.529 0.045 - 0.475 0.475 II

Overall 0.246 0.155 0.221 0.226 0.147
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Figure 5.2: Deviations of the auxiliary equation for vapor pressure, Eq. (5.6), from the

experimental data and from the auxiliary equation of Funke et al. [8].
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5.3.3. Densities at saturation

Some researchers measured the densities of saturated liquid and saturated vapor together with the

vapor pressure. The available data are reported in Table 5.4 and their distribution in the ρ,T plane

is shown in Fig. 5.3, from which it is evident that the data cover the whole range of interest.

Table 5.4: Summary of the available data sets for the saturated liquid density and the saturated

vapor density of SF6.

NPT for each regionRef. First Author Year T range
(K) Ord. Ext. Crit. Crit. Overall

Uncertainty a

(%)
Class

Saturated liquid density
Primary data

8 Funke 2002 224-319 24 4 3 31 ±0.015 I
10 Gilgen 1992 288-315 13 - - 13 ±0.015 I

Total primary 37 4 3 44
Secondary data

12 Biswas 1989 305-319 2 3 3 8 ±0.02 to ±2 II
29,30 Jany 1986 284-319 19 13 12 44 n.a. II

14 Watanabe 1977 271-313 6 - - 6 n.a. II
15 Mears 1969 232-313 9 - - 9 ±0.1 II
34 Otto 1960 273-316 15 1 - 16 ±0.1 II
35 Clegg 1955 294-317 6 1 - 7 n.a. II

Overall 94 22 18 134
Saturated vapor density

Primary data
8 Funke 2002 224-319 24 4 4 32 ±0.016 I
10 Gilgen 1992 288-315 5 - - 5 ±0.015 to ±0.035 I

Total primary 29 4 4 37
Secondary data

12 Biswas 1989 303-318 4 1 1 6 ±0.04 to ±0.36 II
29,30 Jany 1986 284-319 19 13 16 48 n.a.

14 Watanabe 1977 306 1 - - 1 n.a. II
35 Clegg 1955 294-317 6 1 - 7 n.a. II

Overall 59 19 21 99

a n.a.= not available.
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Figure 5.3: Available experimental data for the liquid and vapor saturation densities of SF6.

Following the former discussion for vapor pressure data, also in this case the data of Funke et al.

[8] and Gilgen et al. [10] were selected as primary data, whereas the other sources were included in

the secondary data sets. New auxiliary equations for saturated liquid density and for saturated vapor

density were regressed from the primary data.

The saturated liquid density slρ is represented by the equation

5.003.651.750.277101.00

c

sl

NNNNN
8-

τττττ
ρ
ρ

54321ln ++++=









× (5.7) 

where 70.036794801 −=N , 1.34501652 =N , 0.232015633 −=N , 2.01598624 =N , and

4.82758345 −=N . The equation for the saturated vapor density svρ is

( )5.132.590.6870.1670.140c

c

sv
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ρ
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where 2.55587951 =N , 3.57716092 −=N , 3.91258213 −=N , 1.60695784 −=N , and

4.60894515 −=N . The critical parameters for temperature and density are reported in Table 5.1;

both equations are valid from the triple-point temperature up to the critical temperature.

The validation results are given in Table 5.5. Figure 5.4 shows the deviations of the primary and

secondary experimental data with respect to Eqs. (5.7) and (5.8), together with comparisons with

the corresponding equations of Funke et al. [8]. For the primary data very good precisions are

reached by both Eqs. (5.7) and (5.8); the errors are roughly lower than ±0.01% except approaching

the critical temperature. The deviations from secondary data are greater due to their higher

experimental errors. For the saturated liquid the data of Watanabe et al. [14] and Mears et al. [15]

show a good agreement with Eq. (5.7).

Table 5.5: Comparison between saturated densities experimental data and values calculated with

Eqs. (5.7) and (5.8).

AAD
(%)

Bias
(%)Ref. First Author Year

T range
(K)

Ord Ext. Crit. Crit. Overall Overall
Class

Saturated liquid density
Primary data

8 Funke 2002 224-319 0.004 0.021 0.029 0.009 0.000 I
10 Gilgen 1992 288-315 0.006 - - 0.006 0.003 I

Total primary 0.005 0.021 0.029 0.008 0.001
Secondary data

12 Biswas 1989 305-319 0.184 0.545 6.007 2.503 -1.605 II
29,30 Jany 1986 284-319 0.793 0.736 0.851 0.792 -0.792 II

14 Watanabe 1977 271-313 0.058 - - 0.058 0.048 II
15 Mears 1969 232-313 0.079 - - 0.079 -0.029 II
34 Otto 1960 273-316 0.110 0.418 - 0.130 -0.062 II
35 Clegg 1955 294-317 1.141 0.716 - 1.080 -1.080 II

Overall 0.268 0.564 1.574 0.492 -0.419
Saturated vapor density

Primary data
8 Funke 2002 224-319 0.003 0.006 0.010 0.004 -0.002 I

10 Gilgen 1992 288-315 0.020 - - 0.020 0.013 I
Total primary 0.006 0.006 0.010 0.006 0.000

Secondary data
12 Biswas 1989 303-318 0.186 0.342 0.816 0.317 -0.276 II

29,30 Jany 1986 284-319 1.837 0.472 0.239 0.949 -0.045 II
14 Watanabe 1977 306 0.301 - - 0.301 0.301 II
35 Clegg 1955 294-317 0.218 0.600 - 0.273 0.028 II

Overall 0.646 0.377 0.222 0.504 -0.034
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Figure 5.4: Deviations of the auxiliary equations for saturation densities, Eqs. (5.7) and (5.8),

from the experimental data and from the auxiliary equations of Funke et al. [8].

5.4. Experimental basis of the new equation of state

The choice of primary data for phase equilibria exposed in Paragraph 5.3 was kept also for the

development of the Helmholtz energy equation of state. In addition, the experimental data sources

for other thermodynamic properties in the single phase regions are discussed in this section. The

number of points, the ranges of temperature and pressure, and the uncertainty estimated by the

authors are given for each data set; the classification of the data in primary and secondary sets is

also discussed.

The data were subdivided into five regions of the TP, plane, see Fig. 5.5: the vapor region, for

pressures lower than the vapor pressure or, for supercritical temperatures, for pressures lower than

the critical pressure; the liquid region, for temperatures lower than the critical temperature and

pressures higher than the vapor pressure; the supercritical region, for temperatures and pressures

higher than the respective critical values; the critical region; the extended critical region.
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The critical region is delimited by 01.1998.0 r ≤≤T and 25.175.0 r ≤≤ ρ ; the extended critical

region covers the range 10.199.0 r ≤≤T and 3.17.0 r ≤≤ ρ , with the exclusion of the area pertaining

to the critical region. The critical and the extended critical regions are superimposed to the other

regions defined above, but, due to their particular characteristics, they are separately considered.

Therefore the experimental points falling in the critical or in the extended critical region are

computed as belonging to them and then such points are not included into the number of points of

the vapor, liquid, or supercritical region.
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Figure 5.5: Subdivision of TP, plane in five thermodynamic regions.

5.4.1. Density

Several sources of density data for sulfur hexafluoride were published in the literature and the

most significant ones are listed in Table 5.6, while their distribution in the TP, plane is shown in

Fig. 5.6. Some data sets [3-5,16] are recent and contain a large amount of points with very high



V. A fundamental equation of state for sulfur hexafluoride (SF6) in EEoS-NN format162

precision; even if they were measured through different experimental techniques, they show a good

reciprocal consistency and consequently were selected as primary data for the equation

development.

Claus et al. [5] measured the density with an accurate single-sinker densimeter. These data cover

wide ranges both in temperature and in pressure, mainly investigating the supercritical region, even

if some points in liquid and in vapor phase are also given.

The data of Funke et al. [16] were obtained using a two-sinker densimeter, which assures a very

high experimental precision. This very large data set has narrower temperature and pressure ranges

than Claus et al. [5], but its minimum pressure is the atmospheric one and the minimum temperature

is near the triple-point temperature; therefore, this source gives valuable experimental information

for both the vapor and the liquid region.

Ihmels and Gmehling [4] adopted a vibrating tube densimeter and performed their measurements

in a very wide temperature range, reaching 623 K as maximum temperature. Their density data are

mainly located in the supercritical region, where they are superimposed to both the data sets of

Claus et al. [5] and Funke et al. [16].

A Burnett apparatus was used by Hurly et al. [3] to obtain data mainly in the vapor and in the

supercritical region; also these data are claimed to have a very low experimental uncertainty.

In addition to the data sets discussed above, other sources [10,17,18,19] were considered as

primary in order to improve the data distribution and to extend the validity range of the equation.

Gilgen et al. [10] used the same two-sinker densimeter of Funke et al. [16], even if with an

equipment that was state-of-the-art about 10 years before. These measurements, which have then a

precision level similar to Funke et al. [16], were included into primary data also considering that

they are particularly focused on a narrow temperature range above the critical temperature.

The single isotherm at 298 K measured by Hoinkis [18] was assumed in order to increase the

experimental information about the behavior of the fluid near the room temperature; even if the

uncertainty of the measurements is not given in the reference, these data are consistent with the

other measurements.

The data of Mollerup [19], obtained through a Burnett apparatus, are located in the vapor phase

from 260 to 340 K and at pressures up to 2.5 MPa. Part of these points covers the region where the

data of Funke et al. [16] and Hurly et al. [3] are also available; moreover, some data were measured

at pressures lower than the atmospheric value and then they give additional and valuable

experimental information in that region.

Also the data measured by Ulybin and Zherdev [17] in the liquid and supercritical regions were

considered as primary. Since these measurements span the temperature interval from 233 to 473 K
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and reach a pressure of 55 MPa, they were included to extend the pressure validity range of the

obtained equation of state. In fact the maximum pressure of the other primary data is only 30 MPa

and then the upper pressure limit of the model would be by far limited if the Ulybin and Zherdev

[17] data would have not been considered in the regression. Even if these data were measured

almost forty years ago and have a lower claimed accuracy, they are in rather good agreement with

the other sources.

The final distribution of the primary density data for the regression of the EEoS-NN equation is

shown in Fig. 5.7. The remaining experimental sources were included in the secondary data and

they were used only for the validation of the obtained equation. Some of them, as for instance the

data of Biswas et al. [13] and of Watanabe et al. [14], have a low claimed experimental uncertainty,

but it was chosen not to considered them for the regression because in any case they cannot give

any additional and significant improvement of the quantity and distribution of the primary data.
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Table 5.6: Summary of the available data sets for the density of SF6.

NPT for each regionRef. First Author Year T range
(K)

P range
(MPa) Vap. Liq. Supercrit. Ext. Crit. Crit. Overall

Uncertainty a

(%)
Class

Primary data
5 Claus 2003 240-490 1.1-30.0 24 53 138 5 - 220 ±0.02 to ±0.03 I

16 Funke 2002 225-340 0.1-12.1 197 183 103 55 71 609 ±0.015 to ±0.023 I

4 Ihmels 2002 273-623 3.0-30.0 - 76 364 2 - 442

Liq.: ±0.075 to ±0.02
Supercrit.: ±0.3

Supercrit. near Pc: ±0.5
Supercrit. near Tc,Pc: ±2

I

3 Hurly 2000 283-393 0.3-9.0 64 - 17 2 - 83 ±0.02 I
10 Gilgen 1992 321-333 0.2-8.0 40 - 49 62 19 170 ±0.015 to ±0.025 I
18 Hoinkis 1989 298 0.2-2.0 18 - - - - 18 n.a. I
19 Mollerup 1985 260-340 0.0-2.5 130 - - - - 130 ±0.1 I
17 Ulybin 1970 233-473 0.7-55.0 1 37 37 - - 75 ±0.15 to ±0.25 I

Total primary 474 349 708 126 90 1747
Secondary data

11 Blanke 1993 225-453 2.5-30.2 - 133 90 - - 223 ±0.1 II
36 Kamimura 1989 320-380 3.8-7.0 - - 30 4 1 35 ±0.3 II
37 Blanke 1988 293-340 1.6-6.0 17 - 24 24 10 75 ±0.2 II
38 Freyhof 1986 333-423 0.2-57.0 41 - 32 10 - 83 n.a. II

29,30 Jany 1986 315-322 1.5-11.7 57 34 26 8 46 171 n.a. II
13 Biswas 1984 308-333 0.1-10.5 91 5 49 78 48 271 ±0.02 to ±0.1 II
39 Likhatskii 1982 373 0.2-15.0 8 - 4 - - 12 ±0.2 II
14 Watanabe 1977 273-363 2.0-19.6 7 31 44 3 - 85 ±0.03 II
40 Keramati 1976 273-323 1.3-17.7 1 207 20 3 3 234 ±0.1 II
15 Mears 1969 298-523 1.1-7.9 13 1 14 6 - 34 ±0.1 II
34 Otto 1960 279-343 2.8-18.6 - 19 13 4 - 36 ±0.1 II
35 Clegg 1955 307-404 2.4-11.0 15 - 54 9 - 78 n.a. II

Overall 724 779 1108 275 198 3084

a n.a. = not available.
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Figure 5.6: Available experimental data for the density of SF6.
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Figure 5.7: Primary experimental density data.

5.4.2. Isobaric heat capacity

Apart from density and vapor pressure data, few measurements of other thermodynamic

properties have been published in the literature for sulfur hexafluoride. This is evidently a limiting

aspect, because the performances of the obtained DEoS cannot be extensively verified with respect

to experimental results. Anyway, the available data allow a basic evaluation of the equation

behavior.

Two data sets of isobaric heat capacity of sulfur hexafluoride are present in the literature; they

are reported in Table 5.7 and graphically shown in a TP, plot in Fig. 5.8. 

Bier et al. [20] measured this property in the vapor phase in the temperature range from 298 to

473 K and at pressure up to 1.5 MPa. Their claimed uncertainty is very low, but it seems rather

questionable. The data of Bier et al. [20] are shown in Fig. 5.9 together with the correlations for

ideal-gas isobaric heat capacity o
pC from Cole and de Reuck [6] and Hurly et al. [3]. Even if the two

equations were obtained from different types of data, they agree each other. On the contrary, the

Bier et al. [20] data at zero pressure show a deviation from the equations that becomes larger as the

temperature increases, reaching at higher temperature a value that is far beyond the claimed

uncertainty. In the temperature and pressure ranges of these data the ideal part gives a predominant
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contribution to the isobaric heat capacity value, therefore it is expected that the error level verified

for the data at zero pressure is maintained also at the higher pressures.

The data of Sirota et al. [21] were measured through a flow-type calorimeter and these points

cover the liquid, critical, extended critical, and supercritical regions for pressures up to 20 MPa. The

data in the liquid phase indicated by the authors as “close to the saturation line” are separately

considered in the tables and in the figures of the present work.

Both the data sets were used as primary data in the regression of the EEoS-NN equation in the

multiproperty case, see Paragraph. 5.5.2, while they were considered only for validation in the case

of training on density and vapor pressure data.

Table 5.7: Summary of the available data sets for the isobaric heat capacity of SF6.

NPT for each region
Ref.

First
Author

Year
T range

(K)
P range
(MPa) Vap. Liq. Supercrit.

Ext.
Crit.

Crit. Overall
Uncertainty

(%)

20 Bier 1980 298-473 0.0-1.5 42 - - - - 42 ±0.2
21 Sirota 1979 298-425 3.8-20.0 - 45 184 179 92 500 ±0.3
21 Sirota c 1979 298-316 2.4-4.0 - 44 - - - 44 ±0.3

Overall 42 89 184 179 92 586

c Data close to the saturation line.
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Figure 5.8: Available experimental data for the isobaric heat capacity of SF6.
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Figure 5.9: Isobaric heat capacity data of Bier et al. [20] together with curves generated from

two equations for ideal-gas isobaric heat capacity.

5.4.3. Speed of sound

Speed of sound is a particularly interesting property for thermodynamic modeling. In fact its

analytical expression involves second order derivatives of the Helmholtz energy with respect to

density and temperature and this makes it to be related to other properties depending on second

order derivatives too. Moreover, adopting modern experimental techniques it can be measured with

a high accuracy both in vapor and liquid phase. The availability of precise data for this property

allows a valuable test for the quality of an equation of state. Unfortunately few data sets for sulfur

hexafluoride have been published in the literature, see Table 5.8 and Fig. 5.10. 

Hurly et al. [3] measured vapor-phase speed of sound data using a cylindrical acoustical

resonator. This apparatus achieves a high measurement accuracy, that is estimated to be about

0.01%. The temperature range of the data is rather wide and the points are uniformly distributed

also in pressure.

The speed of sound in liquid phase along isotherms at temperatures from 230 to 333 K and at

pressures from near the saturation up to 60 MPa was measured by Vacek and Zollweg [22]. The
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measurement apparatus was based on a pulse-echo-overlap technique; an uncertainty of 0.15% was

estimated from the deviations given by the authors.

Also for this property the two data sets were included in the regression procedure for the

development of the EEoS-NN equation in the multiproperty case.

Table 5.8: Summary of the available data sets for the speed of sound of SF6.

NPT for each regionRef. First
Author

Year T range
(K)

P range
(MPa) Vap. Liq. Supercrit. Ext.Crit. Crit. Overall

Uncertainty
(%)

3 Hurly 2000 230-460 0.0-1.5 285 - - - - 285 ±0.01
22 Vacek 1993 231-333 2.1-59.0 - 118 20 - - 138 ±0.15

Overall 285 118 20 - - 423
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Figure 5.10: Available experimental data for the speed of sound of SF6.

5.4.4. Joule-Thomson coefficient

Bier et al. [20], besides isobaric heat capacity data, measured also some experimental points of

Joule-Thomson coefficient. The claimed uncertainty of these data is 0.5% and they cover the same

temperature and pressure ranges in the vapor phase as for the heat capacity data. The characteristics

of this data set are given in Table 5.9 and the distribution of the points is shown in Fig. 5.11. The

data were used for the regression in the case of the multiproperty fitting.
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Table 5.9: Summary of the available data sets for the Joule-Thomson coefficient of SF6.

NPT for each regionRef. First
Author

Year T range
(K)

P range
(MPa) Vap. Liq. Supercrit. Ext. Crit. Crit. Overall

Uncertainty
(%)

20 Bier 1980 298-473 0.0-1.5 42 - - - - 42 ±0.5
Overall 42 - - - - 42
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Figure 5.11: Available experimental data for the Joule-Thomson coefficient of SF6.

5.5. The new equation of state for sulfur hexafluoride

As discussed in previous sections, the new equation of state proposed for sulfur hexafluoride is a

fundamental equation explicit in the reduced Helmholtz energy:

( ) ( ) ( ) ( )ρρρρ
,,,

,
TaTaTa

RT

TA Ro +== (5.9) 

The equation of state is split into two terms: the ideal-gas contribution oa and the residual

contribution Ra . The first one is modeled following a classical procedure, if an equation for the

isobaric heat capacity of the ideal gas ( )TC o
p is known; the second one is developed in the EEoS-

NN format as explained in Chap. IV. Both contributions are separately considered in this section.

Since the Helmholtz energy as a function of temperature and density is one of the four fundamental
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forms of an equation of state, all thermodynamic properties of a pure substance can be obtained by

combining derivatives of Eq. (5.9). The mathematical expressions for calculating the most

important thermodynamic properties from Eq. (5.9) are given in Appendix A.2. 

5.5.1. Ideal-gas contribution

The ideal-gas contribution of the Helmholtz energy is given in dimensionless form by Eq. (A2.5)

in Appendix A.2. Since the choice of the ideal values for enthalpy and entropy at the reference state

( )00T ρ, is arbitrary, o
0H and o

0S were selected so that the enthalpy and entropy of the saturated

liquid state at 273.15 K assume the values of 200 kJ·kg-1 and 1 kJ·kg-1·K-1, respectively. The value

assumed for the molar gas constant is R=8.314472 J·mol-1·K-1 and it is taken from the work of Mohr

and Taylor [23].

From Eq. (A2.5) it is evident that only the ideal-gas heat capacity function ( )TC o
p is required for

the calculation of the ideal-gas properties of the fluid. The equation for the ideal-gas isobaric heat

capacity of sulfur hexafluoride used throughout this work was developed by Cole and de Reuck [6] 

by fitting the data of Glushko et al. [24]; such an equation is given by

( ) ( )
( )[ ]2
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2
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1exp

exp

−
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= Tg

TgTg
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i

ii

i
i

o
p (5.10)

The values of if and ig are given in Table 5.10. The ideal-gas Helmholtz energy equation,

derived from Eqs. (A2.5) and (5.10), is
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aTa ρρρ (5.11)

where 8009691417.11 =a and K613447.899072 =a , while the other coefficients are given in

Table 5.10.

Table 5.10: Coefficients of Eqs. (5.10) and (5.11).

i if ig (K)

1 3.9837756784 -
2 2.2181851010 1114.38
3 -10.921337374 925.64
4 3.3102497939 499.26
5 17.5189671483 884.90
6 2.8903523803 1363.93
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5.5.2. Residual part contribution

The residual part Ra of Helmholtz energy accounts for the deviations of the thermodynamic

behavior of the real fluid from its ideal-gas condition. This contribution is then the most significant

one when dealing with liquid states or with vapor conditions at pressures higher than few bars.

The most precise equations of state are obtained by regression of this part on experimental data

for the fluid of interest. In the present work the residual contribution was developed assuming the

EEoS-NN format presented in Chap. IV. The regression procedure explained in Paragraph 5.2 was

applied to the experimental data discussed in Paragraph 5.4. In particular, three training cases were

considered:

� training on density and vapor pressure data, assuming the SRK cubic EoS as basic equation;

� training on a multiproperty data set including data of density, vapor pressure, isobaric heat

capacity, speed of sound, and Joule-Thomson coefficient; also in this case the SRK cubic

EoS was assumed as basic equation;

� training on density and vapor pressure data, assuming the DEoS for sulfur hexafluoride

developed by Span and Wagner [1] as basic equation.

A comparison between the first and the second case allows the quantification of the

improvement of the equation performances attained when caloric data are included in the

regression. The third case was considered in order to verify whether the EEoS-NN model is

significantly affected by the precision of the EoS assumed as basic equation. In fact the SRK EoS

roughly represents the chosen fluid, while the Span and Wagner [1] DEoS is at present the most

precise equation available in the literature for sulfur hexafluoride.

Considering the equation performances, the required experimental effort, and the general

applicability of the development procedure, it can be concluded that the most promising training

case is the first one, i.e., the regression on data of density and vapor pressure with the SRK EoS as

basic equation. Therefore, even if all the developed equations will be considered in the following,

the validation tables and figures reported in Paragraph 5.6 are referred to said equation. The

corresponding coefficients of the neural network for the representation of the shape functions are

given in Table 5.11. The three-dimensional shape of such functions is shown in Figs. 5.12 and 5.13.

The proposed equation of state is valid from the triple point to the temperature of 625 K and for

pressures up to 60 MPa. Anyway, it is not capable of reproducing the correct trends of isochoric

heat capacity, isobaric heat capacity, and speed of sound in the vicinity of the critical point. In fact a

suitable functional form dedicated to this region should be developed and included in the regression

[25]. Consequently, the proposed equation is not recommended for the accurate calculation of such
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properties in the critical region, i.e., within the temperature range 318−322 K and the density range

555−930 kg·m-3.

Table 5.11: Parameters of the neural network for the representation of the shape functions.

51.=β
3=I
9=J
2=K

05.0min =A 95.0max =A

0.1Bias1 = 0.1Bias2 =
65.0min,r1min, == TV 5.2maxr,1max, == TV

0.0min,r2min, == ρV 5.3max,r2max, == ρV

7.0min1min, == θW 3.1max1max, == θW

7.0min2min, == φW 3.1max2max, == φW

i j wij j k wjk

1 1 3.54503 1 1 0.316204
1 2 2.02829 1 2 2.48282
1 3 −0.118765 2 1 0.0202340
1 4 −1.23481 2 2 −3.31399
1 5 −2.17567 3 1 −0.168394
1 6 −3.34951 3 2 6.38428
1 7 0.0203401 4 1 0.550613
1 8 −4.44493 4 2 −0.722307
1 9 −1.50009 5 1 6.26323
2 1 2.77446 5 2 1.18885
2 2 −1.09295 6 1 1.44977
2 3 3.45563 6 2 0.368587
2 4 1.59915 7 1 −0.464054
2 5 −3.32511 7 2 −3.76838
2 6 2.30443 8 1 −1.08736
2 7 −2.05724 8 2 0.370607
2 8 −0.605450 9 1 0.188264
2 9 −3.05939 9 2 13.1372
3 1 −1.72900 10 1 −5.48739
3 2 −0.140518 10 2 −8.54672
3 3 −1.05319
3 4 0.240768
3 5 3.72312
3 6 −2.22128
3 7 1.14563
3 8 0.587702
3 9 1.32096
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5.6. Comparison of the new equation of state with experimental data and other

equations of state

The comparisons of the obtained equations with respect to the available experimental data are

given in this section. Four models were considered: the SRK cubic EoS [26,27] with Peneloux

volume translation [28], the DEoS for sulfur hexafluoride proposed by Span and Wagner [1], the

EEoS-NN equation developed on density and vapor pressure data, and the EEoS-NN equation

developed on the multiproperty data base.

For these equations the validation results are given as overall values for the primary data and for

the overall data base, whereas the details for the single data sets are not given; the validation is

separately done for each of the identified thermodynamic regions. The results for the primary data

are written in italics.

A more detailed validation, reporting also the deviations of each data set, is given only for the

EEoS-NN equation regressed on data of density and vapor pressure and for the Span and Wagner

[1] DEoS.

The performances of the developed EEoS-NN models in the critical region are not fully reliable

for all the thermodynamic properties, because their functional form is not specialized for such a

region. Consequently, the validation results for the considered equations in the critical region were

not included in the calculation of the overall deviation values, even if they are reported in the

following tables for sake of completeness.

5.6.1 Vapor-liquid phase boundary

The validation results for vapor pressure, saturated liquid density, and saturated vapor density are

shown in Table 5.12. In this table the results with respect to both the primary and the overall data

are reported for comparison maintaining the same subdivision of the experimental points into

ordinary, extended critical, and critical region reported in Table 5.3.

The best performance for the EEoS-NN models is obtained from the density and vapor pressure

data regression; this result was to be expected because a multiproperty regression implies a wider

compromise in the representation of a greater number of thermodynamic quantities. Anyway, for

the first of the two EEoS-NN cases the accuracy is very good, even if it is significantly lower than

that reported for the auxiliary equations, Eqs. (5.6-5.8), which present error deviations much lower

than the experimental uncertainties and a practically null shifting. The result of said EEoS-NN

equation is however better than the corresponding one for the Span and Wagner [1] DEoS. The

cubic EoS performance is far worse and it testifies the improvement brought in by the variables

distortion through the EEoS-NN method.
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Table 5.12: Comparison between experimental data at saturation and values calculated with

different EoS models.

EoS type
AAD
(%)

Bias
(%)

Class

Ord. Ext. Crit. Crit. Overall Overall
Vapor pressure

SRK cubic equation [26-28] 0.590 0.255 0.489 0.554 -0.554 I
Span and Wagner [1] 0.109 0.007 0.013 0.098 -0.013 I

Density and vapor
pressure

0.041 0.010 0.026 0.038 -0.004 IEEoS-NN with SRK
base

Multiproperty 0.102 0.019 0.044 0.093 -0.091 I
SRK cubic equation [26-28] 0.633 0.252 0.329 0.554 -0.436 I+II

Span and Wagner [1] 0.295 0.156 0.225 0.266 0.128 I+II
Density and vapor

pressure
0.249 0.157 0.234 0.230 0.127 I+IIEEoS-NN with SRK

base
Multiproperty 0.243 0.159 0.250 0.225 0.052 I+II

Saturated liquid density
SRK cubic equation [26-28] 9.043 19.844 12.321 10.097 9.918 I

Span and Wagner [1] 0.143 0.446 1.230 0.173 -0.116 I
Density and vapor

pressure
0.028 0.283 2.628 0.053 -0.051 IEEoS-NN with SRK

base
Multiproperty 0.068 0.381 8.034 0.098 -0.086 I

SRK cubic equation [26-28] 10.319 19.710 12.472 12.211 12.141 I+II
Span and Wagner [1] 0.401 0.875 1.456 0.491 -0.451 I+II

Density and vapor
pressure

0.292 0.742 3.529 0.377 -0.345 I+IIEEoS-NN with SRK
base

Multiproperty 0.335 0.761 7.186 0.416 -0.387 I+II
Saturated vapor density

SRK cubic equation [26-28] 0.532 9.637 14.310 1.636 -0.667 I
Span and Wagner [1] 0.152 0.632 1.575 0.211 0.029 I

Density and vapor
pressure

0.050 1.412 7.650 0.215 0.214 IEEoS-NN with SRK
base

Multiproperty 0.089 0.970 8.943 0.196 0.064 I
SRK cubic equation [26-28] 1.057 5.766 18.021 2.204 -0.318 I+II

Span and Wagner [1] 0.711 0.557 1.348 0.673 0.082 I+II
Density and vapor

pressure
0.687 1.352 6.051 0.849 0.346 I+IIEEoS-NN with SRK

base
Multiproperty 0.669 0.930 6.535 0.733 0.134 I+II
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In Table 5.13 a detailed validation of the EEoS-NN equation from density and vapor pressure

data is exposed for each data source of the primary and secondary data sets. The percentage

deviations of the present equation from the primary data are shown in Fig. 5.14 and the deviations

from the secondary data are plotted in Fig. 5.15; the lines correspond to values calculated from the

Span and Wagner [1] DEoS.

For the vapor pressure, the accuracy of the present EEoS-NN equation is roughly within ±0.05%

between about 250 K and the critical temperature, while the equation presents higher deviations

below 240 K. The accuracy of the Span and Wagner [1] DEoS for the more precise data sources is

approximately two times the EEoS-NN one. The majority of the secondary vapor pressure data

shows large positive deviations from the values predicted by both the equations.

For the saturated liquid density a better performance is obtained with respect to vapor density by

the EEoS-NN models, as shown in Table 5.12. The Span and Wagner [1] DEoS has a similar

behavior for the two phases, whereas the accuracy of the SRK EoS is always worse and it is

particularly bad for the saturated liquid density, as it is in general expected for a cubic EoS. The

good behavior of the EEoS-NN equation is confirmed also looking at the local performance

reported in Fig. 5.14; the plot for the secondary data in Fig. 5.15 is less significant due to the higher

experimental errors of such data sets. Both the saturation densities are precisely represented with

deviations well within ±0.1% up to about 310 K, whereas the deviations increase approaching the

critical temperature; this is also shown in Table 5.13 for the critical and the extended critical region.

Apart from these regions, the prediction accuracy of the present EEoS-NN equation is comparable

with the respective experimental uncertainties of the two quantities. With respect to this equation

the performance of the Span and Wagner [1] DEoS is worse in the ordinary region, where it also

seems to be less stable with temperature; moreover, as well as for the EEoS-NN equation, it is

possible to notice a worsening when the critical temperature is approached.
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Table 5.13: Comparison of each source of saturation data with the selected EEoS-NN model and the Span and Wagner [1] DEoS.

Average Absolute Deviation AAD (%)
Ordinary region. Ext. critical region Critical region Overall ClassRef.

First
Author

Year
T range

(K)
EEoS-NN

Span and
Wagner [1]

EEoS-NN
Span and

Wagner [1]
EEoS-NN

Span and
Wagner [1]

EEoS-NN
Span and

Wagner [1]
Vapor pressure

8 Funke 2002 224-319 0.044 0.126 0.010 0.007 0.026 0.013 0.039 0.109 I
10 Gilgen 1992 288-315 0.032 0.062 - - - - 0.032 0.062 I

Total primary 0.041 0.109 0.010 0.007 0.026 0.013 0.038 0.098
3 Hurly 2000 278-313 0.065 0.108 - - - - 0.065 0.108 II

11 Blanke 1993 224-319 0.047 0.147 0.013 0.012 0.002 0.009 0.046 0.144 II
32 Berg 1990 293-319 0.678 0.712 0.901 0.902 0.747 0.735 0.759 0.781 II
12 Biswas 1989 303-319 0.028 0.045 0.012 0.005 0.003 0.011 0.022 0.029 II

29,30 Jany 1986 284-319 0.479 0.460 0.260 0.263 0.378 0.366 0.390 0.380 II
13 Biswas 1984 313-319 0.017 0.012 0.015 0.014 0.015 0.006 0.016 0.014 II
33 Totskii 1984 224-318 0.370 0.388 0.084 0.079 - - 0.310 0.324 II
14 Watanabe 1977 273-318 0.512 0.557 - - 0.089 0.082 0.512 0.557 II
17 Ulybin 1970 233-318 0.905 0.908 - - 0.102 0.094 0.905 0.908 II
15 Mears 1969 224-319 0.358 0.342 - - 0.204 0.195 0.358 0.342 II
34 Otto 1960 279-319 0.286 0.305 0.228 0.223 0.034 0.019 0.276 0.292 II
35 Clegg 1955 273-319 0.553 0.595 0.046 0.049 - - 0.496 0.534 II

Overall 0.249 0.295 0.157 0.156 0.234 0.225 0.230 0.266
Saturated liquid density

8 Funke 2002 224-319 0.023 0.132 0.283 0.446 2.628 1.230 0.060 0.177 I
10 Gilgen 1992 288-315 0.039 0.165 - - - - 0.039 0.165 I

Total primary 0.028 0.143 0.283 0.446 2.628 1.230 0.053 0.173
12 Biswas 1989 305-319 0.105 0.097 0.309 0.256 8.556 6.209 0.227 0.193 II

29,30 Jany 1986 284-319 0.847 0.983 1.007 1.186 2.497 0.324 0.912 1.065 II
14 Watanabe 1977 271-313 0.038 0.103 - - - - 0.038 0.103 II
15 Mears 1969 232-313 0.099 0.194 - - - - 0.099 0.194 II
34 Otto 1960 273-316 0.113 0.205 0.248 0.045 - - 0.121 0.195 II
35 Clegg 1955 294-317 1.209 1.352 0.916 1.229 - - 1.167 1.335 II
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Average Absolute Deviation AAD (%)
Ordinary region. Ext. critical region Critical region Overall ClassRef.

First
Author

Year
T range

(K)
EEoS-NN

Span and
Wagner [1]

EEoS-NN
Span and

Wagner [1]
EEoS-NN

Span and
Wagner [1]

EEoS-NN
Span and

Wagner [1]
Saturated liquid density (continuation)

Overall 0.292 0.401 0.742 0.875 3.529 1.456 0.377 0.491
Saturated vapor density

8 Funke 2002 224-319 0.037 0.160 1.412 0.632 7.650 1.575 0.234 0.227 I
10 Gilgen 1992 288-315 0.112 0.118 - - - - 0.112 0.118 I

Total primary 0.050 0.152 1.412 0.632 7.650 1.575 0.215 0.211
12 Biswas 1989 303-318 0.147 0.167 1.150 0.351 2.871 0.248 0.347 0.204 II

29,30 Jany 1986 284-319 1.941 1.884 1.408 0.595 5.849 1.359 1.725 1.361 II
14 Watanabe 1977 306 0.324 0.184 - - - - 0.324 0.184 II
35 Clegg 1955 294-317 0.216 0.146 0.633 0.017 - - 0.275 0.128 II

Overall 0.687 0.711 1.352 0.557 6.051 1.384 0.849 0.673
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Figure 5.14: Comparison of saturation values calculated from the EEoS-NN equation to the

primary experimental data and to the Span and Wagner [1] DEoS.
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secondary experimental data and to the Span and Wagner [1] DEoS.
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5.6.2. Single phase region

DENSITY

The results of the validation of the EEoS-NN models, together with the Span and Wagner [1]

DEoS and the SRK equation, are reported in Table 5.14. The EEoS-NN equation regressed on

density and vapor pressure data presents deviation values of the same order of the experimental

uncertainties in all the regions. The practically null bias value demonstrates that the equation is well

centered on the experimental data. The EEoS-NN equation regressed on multiproperty data is

moderately less accurate, but anyway it has a precision level slightly better than that of the Span and

Wagner [1] DEoS. The SRK cubic equation has a very poor performance leading to AAD values

higher than 3%, except for the vapor region where the accuracy is better.

A detailed analysis of the validation results for the chosen EEoS-NN model and for the Span and

Wagner [1] DEoS are reported for each data set in Table 5.15. Pressure deviations are given instead

of density deviations in the critical and extended critical regions. In fact, where the slopes of the

isotherms on ( )ρ,P coordinates are almost flat, the deviations in pressure are more meaningful

because the uncertainty in this variable becomes the dominant contribution to the overall

experimental uncertainty in density.

The EEoS-NN model presents satisfactory results for all the considered regions and a better

performance for the liquid one. The primary data are represented with similar AAD values for all

the data sets. The deviations of the primary data from the equation are shown in detail in Fig. 5.16,

in which the size of the symbols is related to the magnitude of the deviation of each point. This

figure confirms the validation results given in Table 5.15 and in particular the very good

performance in the liquid phase is evidenced. A slight decrease of the accuracy is verified for the

higher temperatures; a similar trend seems to be found at the higher pressures, but this is probably

due to the lower accuracy of the Ulybin and Zherdev data [17] rather than to a worse behavior of

the equation. In the critical and extended critical regions of Fig. 5.16 density deviations are

presented instead of pressure deviations, leading to an apparent inconsistency with Table 5.15. In

any case density deviations higher than 0.5% are verified only very close to the critical point.
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Table 5.14: Comparison between density experimental data and values calculated with different EoS models.d

EoS type
AAD
(%)

Bias
(%)

Class

Vap. Liq. Supercrit. Ext. Crit.e Crit.e Overall Overall
SRK cubic equation [26-28] 0.332 4.270 3.462 4.929 3.015 2.849 1.132 I

Span and Wagner [1] 0.087 0.077 0.134 0.065 0.042 0.103 -0.001 I
Density and vapor

pressure
0.038 0.013 0.039 0.038 0.035 0.033 -0.001 I

EEoS-NN with SRK base
Multiproperty 0.089 0.016 0.077 0.110 0.054 0.070 0.036 I

SRK cubic equation [26-28] 2.765 4.240 3.702 4.697 2.434 3.706 1.949 I+II
Span and Wagner [1] 0.118 0.107 0.163 0.127 0.050 0.134 -0.016 I+II

Density and vapor
pressure

0.079 0.062 0.087 0.106 0.051 0.080 -0.014 I+II
EEoS-NN with SRK base

Multiproperty 0.121 0.065 0.123 0.178 0.061 0.112 0.022 I+II

d The data set of Jany and Straub [29,30] was excluded from the present validation, due to the much higher deviations of such data.

e In the extended critical region and in the critical region, pressure deviations are given instead of density deviations.
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Table 5.15: Comparison of each source of density data with the selected EEoS-NN model and the Span and Wagner [1] DEoS.d

Average Absolute Deviation AAD (%)
Vap. Liq. Supercrit. Ext. Crit.e Crit.e Overall

Ref.
First

Author
Year

T range
(K)

P range
(MPa) EEoS-

NN

Span
and

Wagner
[1]

EEoS-
NN

Span
and

Wagner
[1]

EEoS-
NN

Span
and

Wagner
[1]

EEoS-
NN

Span
and

Wagner
[1]

EEoS-
NN

Span
and

Wagner
[1]

EEoS-
NN

Span
and

Wagner
[1]

Class

5 Claus 2003 240-490 1.1-30.0 0.014 0.061 0.009 0.077 0.037 0.119 0.067 0.188 - - 0.028 0.104 I
16 Funke 2002 225-340 0.1-12.1 0.042 0.125 0.012 0.062 0.030 0.094 0.042 0.060 0.036 0.034 0.029 0.091 I
4 Ihmels 2002 273-623 3.0-30.0 - - 0.015 0.095 0.034 0.145 0.025 0.049 - - 0.030 0.136 I
3 Hurly 2000 283-393 0.3-9.0 0.068 0.085 - - 0.158 0.297 0.072 0.077 - - 0.087 0.128 I
10 Gilgen 1992 321-333 0.2-8.0 0.032 0.111 - - 0.047 0.105 0.031 0.059 0.033 0.072 0.036 0.088 I
18 Hoinkis 1989 298 0.2-2.0 0.014 0.046 - - - - - - - - 0.014 0.046 I
19 Mollerup 1985 260-340 0.0-2.5 0.025 0.033 - - - - - - - - 0.025 0.033 I
17 Ulybin 1970 233-473 0.7-55.0 0.251 0.395 0.022 0.119- 0.057 0.150 - - - - 0.043 0.138 I

Total primary 0.038 0.087 0.013 0.077 0.039 0.134 0.038 0.065 0.035 0.042 0.033 0.103
11 Blanke 1993 225-453 2.5-30.2 - - 0.039 0.059 0.034 0.067 - - - - 0.037 0.063 II
36 Kamimura 1989 320-380 3.8-7.0 - - - - 0.292 0.475 0.133 0.132 0.153 0.211 0.273 0.434 II
37 Blanke 1988 293-340 1.6-6.0 0.154 0.230 - - 0.082 0.153 0.049 0.077 0.046 0.047 0.089 0.145 II
38 Freyhof 1986 333-423 0.2-57.0 0.062 0.055 - - 0.390 0.388 0.671 0.697 - - 0.262 0.261 II
13 Biswas 1984 308-333 0.1-10.5 0.122 0.103 0.162 0.140 0.142 0.134 0.058 0.068 0.049 0.034 0.105 0.100 II
39 Likhatskii 1982 373 0.2-15.0 0.012 0.018 - - 0.045 0.135 - - - - 0.023 0.057 II
14 Watanabe 1977 273-363 2.0-19.6 0.450 0.639 0.042 0.082 0.044 0.102 0.066 0.087 - - 0.078 0.138 II
40 Keramati 1976 273-323 1.3-17.7 3.266 3.126 0.151 0.183 0.428 0.369 0.223 0.233 0.530 0.493 0.189 0.213 II
15 Mears 1969 298-523 1.1-7.9 0.306 0.283 0.009 0.155 0.140 0.133 0.166 0.176 - - 0.204 0.198 II
34 Otto 1960 279-343 2.8-18.6 - - 0.157 0.183 0.237 0.169 0.463 0.556 - - 0.220 0.219 II
35 Clegg 1955 307-404 2.4-11.0 0.541 0.703 - - 0.337 0.413 0.761 0.755 - - 0.425 0.508 II

Overall 0.079 0.118 0.062 0.107 0.087 0.163 0.106 0.127 0.051 0.050 0.080 0.134

d The data set of Jany and Straub [29,30] was excluded from the present validation table, due to the much higher deviations of such data.

e In the extended critical region and in the critical region, pressure deviations are given instead of density deviations.
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Figure 5.16: Deviations between the density data in the primary sets and the EEoS-NN equation.

Figure 5.17 gives the comparison between the primary density data sets and values calculated

from the present EEoS-NN equation for several intervals of temperature; deviations between the

Span and Wagner [1] equation and the EEoS-NN one are also plotted for the mean temperature of

each interval. The considered pressure and temperature ranges correspond to the validity range of

the proposed equation. An analogous representation for the secondary data is shown in Fig. 5.18. 
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Figure 5.17: Comparison of density values calculated from the EEoS-NN equation to the

primary experimental data and the to Span and Wagner [1] DEoS.
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Figure 5.18: Comparison of density values calculated from the EEoS-NN equation to the

secondary experimental data and to the Span and Wagner [1] DEoS.

For the primary data very low deviations are verified below the critical temperature, whereas a

worsening in the density deviations is evidenced approaching the critical point. For higher

temperatures the performance is satisfactory, even if the deviation values are slightly larger. A

similar trend is roughly verified for the secondary data, but in this case the magnitude of the

deviations is larger due to the lower quality of the data. Pressure deviations for each primary and

secondary data set are presented in Figs. 5.19 and 5.20, respectively, in a wide range of temperature

and density around the extended critical region. The pressure deviations with respect to the primary

data are within ±0.15% and have a rather uniform distribution also in the critical region, where the

high deviations shown in Fig. 5.17 are no more present. Figure 5.20 for secondary data shows a

similar behavior even if the deviation values are generally higher.
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The error deviations of the secondary data of Jany and Straub [29,30], obtained from refractive

index measurements, resulted to be not consistent with those of the other sets of this data group and

it was decided to exclude them from the statistical results of Tables 5.14 and 5.15. In fact the

overall AAD values of these data with respect to both the present EEoS-NN model and the Span

and Wagner [1] DEoS are above 1.8%.

Table 5.15 proves that the Span and Wagner [1] DEoS has a slightly lower performance than the

EEoS-NN equation through the different regions. The curves for the Span and Wagner [1] DEoS in

Figs. 5.17-5.20 present a decrease of the accuracy for pressures higher than roughly 1 MPa and

show oscillating deviations, whose magnitude increases with temperature, between calculated and

experimental values.
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Figure 5.19: Comparison of pressure values calculated from the EEoS-NN equation in the

extended critical region to the primary experimental data and to the Span and Wagner [1] DEoS.
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Figure 5.20: Comparison of pressure values calculated from the EEoS-NN equation in the

extended critical region to the secondary experimental data and to the Span and Wagner [1]

DEoS.
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ISOBARIC HEAT CAPACITY

Table 5.16 reports the results of the validation of the EEoS-NN models, of the Span and Wagner

[1] DEoS, and of the SRK equation for the available experimental data of caloric properties, i.e., the

isobaric heat capacity, the speed of sound, and the Joule-Thomson coefficient. The isobaric heat

capacity is considered in this section, whereas the other two properties are discussed in the

following ones.

Looking at the two versions of the EEoS-NN model, the equation regressed on moltiproperty

data improves the representation accuracy of the isobaric heat capacity data with respect to that

regressed only on density and coexistence data. This result is not surprising because in the

multiproperty case the isobaric heat capacity data were used for the regression, whereas in the other

case such an information was not given during the equation development and the isobaric heat

capacity is then predicted. The improvement is particularly evident in the liquid region and in the

extended critical region; also the balancing of the equation is improved with a better bias value

calculated for the overall data. Anyway, the two equations have a quite similar behavior in the

vapor, liquid, and supercritical region, i.e., in the part of the TP, plane with common engineering

interest. Therefore the equation regressed on density and vapor pressure data is preferred due to the

lower experimental effort required for its development.

The Span and Wagner [1] DEoS has a performance comparable with that of the multiproperty

EEoS-NN model, except in the extended critical region where it is worse with respect to both the

EEoS-NN models. The results for the SRK EoS show a poor accuracy in the representation of the

isobaric heat capacity data for all the regions, in particular for the liquid and extended critical ones.

A detailed analysis of the validation results for the chosen EEoS-NN model and for the Span and

Wagner [1] DEoS is reported for each data set in Table 5.17. Comparable deviation values are

shown in each region and the most evident difference is for the extended critical region, where the

EEoS-NN model seems to perform better results.
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Table 5.16: Comparison between caloric property experimental data and values calculated with

different EoS models.

EoS type
AAD
(%)

Bias
(%)

Vap. Liq. Supercrit. Ext. Crit. Crit. Overall Overall
Isobaric heat capacity

SRK cubic equation [26-28] 1.538 14.207 3.093 22.059 33.807 12.264 6.322
Span and Wagner [1] 0.783 0.888 1.050 3.966 27.333 2.055 1.270

Density and
vapor pressure

0.797 1.014 1.141 2.983 29.156 1.760 0.808EEoS-NN with
SRK base

Multiproperty 0.762 0.894 1.188 1.852 19.667 1.340 0.392
Speed of sound

SRK cubic equation [26-28] 0.106 25.165 18.946 - - 7.987 7.937
Span and Wagner [1] 0.041 1.218 1.594 - - 0.443 0.383

Density and
vapor pressure

0.026 0.388 1.101 - - 0.178 0.098EEoS-NN with
SRK base

Multiproperty 0.047 0.332 1.052 - - 0.174 0.079
Joule-Thomson coefficient

SRK cubic equation [26-28] 7.205 - - - - 7.205 -7.067
Span and Wagner [1] 1.924 - - - - 1.924 -1.924

Density and
vapor pressure

2.303 - - - - 2.303 -2.303EEoS-NN with
SRK base

Multiproperty 0.363 - - - - 0.363 -0.172
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Table 5.17: Comparison of each source of caloric property data with the selected EEoS-NN model and the Span and Wagner [1] DEoS.

Average Absolute Deviation AAD (%)
Vap. Liq. Supercrit. Ext. Crit. Crit. Overall

Ref.
First

Author
Year

T range
(K)

p range
(MPa) EEoS-

NN

Span and
Wagner

[1]

EEoS-
NN

Span and
Wagner

[1]

EEoS-
NN

Span and
Wagner

[1]

EEoS-
NN

Span and
Wagner

[1]

EEoS-
NN

Span and
Wagner

[1]

EEoS-
NN

Span and
Wagner

[1]
Isobaric heat capacity

20 Bier 1980 298-473 0.0-1.5 0.797 0.783 - - - - - - - - 0.797 0.783
21 Sirota 1979 298-425 3.8-20.0 - - 0.416 0.441 1.141 1.050 2.983 3.966 29.256 27.333 1.874 2.262
21 Sirota c 1979 298-316 2.4-4.0 - - 1.626 1.345 - - - - - - 1.626 1.345

Overall 0.797 0.783 1.014 0.888 1.141 1.050 2.983 3.966 29.256 27.333 1.760 2.055
Speed of sound

3 Hurly 2000 230-460 0.0-1.5 0.026 0.041 - - - - - - - - 0.026 0.041
22 Vacek 1993 231-333 2.1-59.0 - - 0.388 1.218 1.101 1.594 - - - - 0.491 1.273

Overall 0.026 0.041 0.388 1.218 1.101 1.594 - - - - 0.178 0.443
Joule-Thomson coefficient

20 Bier 1980 298-473
0.0-
1.5

2.303 1.924 - - - - - - - - 2.303 1.924

Overall 2.303 1.924 - - - - - - - - 2.303 1.924

c Data close to the saturation line.
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Figure 5.21 shows the distribution in ( )TP, coordinates of the prediction accuracy for the

chosen EEoS-NN equation with respect to the available isobaric heat capacity data. The good

performance of the model in the vapor and liquid regions is evident, with a worsening when

approaching the saturation line and at the higher temperatures; this behavior is partly due to the

decrease of the accuracy of the Bier et al. [20] data with increasing temperature, as discussed in

Paragraph 5.4.2.
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Figure 5.21: Deviations between the isobaric heat capacity data and the EEoS-NN equation.

Figure 5.22 gives the comparison between the isobaric heat capacity data sets and values

calculated from the present EEoS-NN equation for several intervals of temperature; deviations

between the Span and Wagner equation [1] and the EEoS-NN one are also plotted for the mean

temperature of each interval. The data of Bier et al. [20] for the vapor region are accurately

represented for low temperature values, while the prediction accuracy of the EEoS-NN equation
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seems to be lower at higher temperatures, but this is probably due to the aforementioned drawbacks

of these experimental data. Larger values of the deviations pertain to the data of Sirota et al. [21] in

the liquid region. In any case, as also discussed in Paragraph 5.4.2, for both the data sets the very

low claimed uncertainty seems rather questionable. In particular, as it is possible to notice in Fig.

5.22, there is a certain shifting between both the considered equations and the data at the higher

temperatures.
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Figure 5.22: Comparison of isobaric heat capacity values calculated from the EEoS-NN

equation to the experimental data and to the Span and Wagner [1] DEoS.
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In order to verify in more detail the EEoS-NN performance for the isobaric heat capacity in the

extended critical and supercritical regions, plots of isobars for temperature and pressure around the

critical point and up to 330 K and 20 MPa are reported in Fig. 5.23 together with the corresponding

data by Sirota et al. [21] The figure shows that the trend of the isobaric heat capacity data is

correctly represented and that there is only a slight shifting in temperature whose magnitude

increases while pressure approaches the critical value. In particular the isobar at 3.8 MPa shows the

largest shifting with also a basically different trend from the data; in fact it should be noted that the

data at this pressure are in the critical region, where the use of the equation is not recommended for

the calculation of the isobaric heat capacity.
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Figure 5.23: Isobaric heat capacity from the EEoS-NN equation and from the experimental data.

SPEED OF SOUND

The accuracy of the representation of the speed of sound data is comparable in all the regions for

the two EEoS-NN equations, see Table 5.16. This seems to show that the inclusion of this quantity

in the regression data set may not lead to an increase of the corresponding accuracy, probably due to
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the required compromise in the simultaneous representation of several properties in the objective

function for the minimization procedure.

The Span and Wagner [1] DEoS gets worse results, in particular in the liquid and supercritical

regions. The SRK equation has a reliable trend only in the vapor region, while very high deviation

values from the experimental data are found elsewhere and particularly in the liquid region, so

confirming the general limits of the model for the dense phase region.

From Table 5.17 it is evident that in the vapor region the speed of sound is represented by the

chosen EEoS-NN equation with an accuracy comparable with the experimental uncertainty,

whereas in the liquid region the deviations are higher. The distribution in ( )TP, coordinates of the

deviations from the available experimental data is also shown in Fig. 5.24, while Fig. 5.25 presents,

for several temperature intervals, the deviations of the single points of each data set with respect to

the EEoS-NN equation. A comparison between this equation and the Span and Wagner [1] DEoS is

also plotted for the average temperature of each interval. Figure 5.25 evidences a scattering of the

experimental points in the liquid region together with relevant deviations from both the considered

equations, suggesting that the claimed uncertainty of the data for the dense phase region could be

questionable.

The performance of the Span and Wagner [1] DEoS is satisfactory for the vapor region, whereas,

just crossing the phase boundary, the equation does not correctly represent the data in the liquid

region particularly at lower temperatures.

Moreover, it should be noted that the very good performance of the EEoS-NN equation with

respect to the speed of sound data of Hurly et al. [3] at the lower pressures, as shown in Table 5.17

and in Figs. 5.24 and 5.25, is a proof of the reliability of the chosen ideal-gas heat capacity function,

see Paragraph 5.5.1, notwithstanding it was regressed on data obtained nearly thirty years ago [24].

In fact, approaching the ideal-gas condition the speed of sound depends only on ideal-gas heat

capacity; therefore, a satisfactory representation of precise speed of sound data near the ideal-gas

condition is an index of the accuracy of the adopted ideal-gas heat capacity function.

The same conclusion could also be drawn looking at Fig. 5.9, where said ideal-gas heat capacity

function, taken from the work of Cole and de Reuck [6], and the ideal-gas heat capacity function

derived from the experimental speed of sound data of Hurly et al. [3] are compared showing a very

good mutual agreement. In the present work it was chosen to adopt the equation from Cole and de

Reuck [6], even if it is older, because it has a wider validity range.
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Figure 5.24: Deviations between the speed of sound data and the EEoS-NN equation.
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the experimental data and to the Span and Wagner [1] DEoS.



5.6. Comparison of the new equation of state with experimental data and other equations of state 199

JOULE-THOMSON COEFFICIENT

As Table 5.16 shows, the few data available for the Joule-Thomson coefficient in the vapor

region are well represented by the EEoS-NN equation regressed on multiproperty data, for which

the attained accuracy is within the claimed experimental uncertainty. The predictive representation

of this quantity by the other version of the EEoS-NN model is less reliable, since the AAD value is

much higher than the claimed uncertainty and all the data are overestimated by the equation, as the

bias value shows. The error distribution for the EEoS-NN equation regressed on density and vapor

pressure data is shown in Fig. 5.26. 

The Span and Wagner [1] DEoS has a comparably poor performance, while the SRK equation is

totally unreliable for this quantity.
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Figure 5.26: Deviations between the Joule-Thomson coefficient data and the EEoS-NN

equation.
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5.6.3. Representation of the thermodynamic surfaces

The selected EEoS-NN equation, i.e., that developed from density and vapor pressure data, was

used to produce the plot of pressure versus density shown in Fig. 5.27. The whole validity range of

the equation is considered and the step of the plotted isotherms is 10 K. A magnification of the

vapor region for pressures lower than 2 MPa and densities below 100 kg·m-3 is also shown.

The shape of the curves is reasonable for all the thermodynamic regions in the range of validity.

This evidences that possible overfitting and inconsistent behaviors, also due to uneven data

distribution, were avoided in the training procedure.

A similar plot is shown in Fig. 5.28, in which the pressure range was extended to 100 MPa and

the temperature up to 800 K. Also in this case the isotherms have a qualitatively correct behavior.

Therefore, the proposed equation of state can be reasonably extrapolated beyond the stated validity

limits, but in any case the use of the equation at temperatures higher than 800 K is not

recommended, because the limits of the independent variables given in Table 5.11 should not be

exceeded.

The representation of the isothermal lines in a HP, plane covering the whole validity range of

the equation is shown in Fig. 5.29. Also in this diagram the correct trend of the curves confirms the

high quality of the equation.
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5.6.4. Uncertainty of the new equation of state

The new equation of state allows the calculation of vapor pressure with an estimated uncertainty

below 0.1%. The calculated saturation densities have an uncertainty of 0.05% for the ordinary

region, while in the extended critical region the uncertainty values can be cautiously estimated at

0.3% for saturated liquid and 1% for saturated vapor.

The estimated uncertainty for density calculation is 0.02% for the liquid phase, 0.04% for the

vapor phase, and 0.05% for the supercritical region; in the extended critical region and in the critical

region the uncertainty in pressure is 0.05%.

The uncertainty of the calculated values of isobaric heat capacity is 0.5% for the vapor phase and

ranges from 1% to 1.5% for the liquid phase and the supercritical region; in the extended critical

region the uncertainty is about 3%, while the equation should not be used for this property in the

critical region.

The estimated uncertainty for speed of sound calculation in the vapor phase is 0.05%; in the

liquid phase it is 0.5%, while a value of 1% can be ascribed to the supercritical region. In the

extended critical region the accuracy can be cautiously estimated to be 2%, even if experimental

data are not available there for comparison. As for isobaric heat capacity, also for speed of sound

the calculation is not reliable in the vicinity of the critical point.

5.6.5. Validation of the EEoS-NN model with a DEoS as basic equation

As exposed in Paragraph 5.5.2, the EEoS-NN training procedure was also applied assuming the

DEoS of Span and Wagner [1] for sulfur hexafluoride as basic equation. In this case the

mathematical formalism given in Chapter IV was maintained, but the cited DEoS was assumed

instead of the SRK cubic EoS for the calculation of the thermodynamic properties to which the

variables distortion through the shape functions is applied.

Since the representation of the sulfur hexafluoride thermodynamic properties by the Span and

Wagner [1] DEoS is good, as shown in Tables 5.12-5.17, the required correction through the neural

shape functions to minimize the objective function Eq. (5.3) is much more limited than in the case

of the SRK EoS assumed as basic equation. The present goal is then to verify whether the accuracy

of the obtained EEoS-NN equation can be improved by basing it on an EoS closer to the

experimental behavior of the chosen fluid. If this would be true, the drawback could be ascribed to a

limited flexibility of the assumed mathematical expression of the shape functions in neural network

form.

The results are presented in Tables 5.18, 5.19, and 5.20 for saturation properties, density, and

caloric properties, respectively. The comparison between two equations, both regressed on the same
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data base, i.e., the primary data of density and vapor pressure, but with different basic equations, is

shown. For sake of brevity, the validation results are reported as overall values for the primary data

and for the whole data base instead of deviations given for each data set. Also in this case, as it was

done in Tables 5.14 and 5.15, the single phase density data of Jany and Straub [29,30] have been

omitted from the statistical evaluation for the same aforementioned reasons.

The performances of the two equations with respect to data are very similar for all the properties

and for all the regions, showing that the choice of the basic equation is not a limiting element for the

equation development procedure. This is a very interesting and promising result for the proposed

modeling technique, because it proves that a quite rough but substantially predictive model can be

assumed as basic equation without affecting the accuracy of the obtained equation. This assures a

wider applicability of the proposed method.

Table 5.18: Comparison between experimental data at saturation and values calculated with two

EEoS-NN models with different basic equations.

EoS type
AAD
(%)

Bias
(%)

Class

Ord. Ext. Crit. Crit. Overall Overall
Vapor pressure

EEoS-NN with SRK base 0.041 0.010 0.026 0.038 -0.004 I
EEoS-NN with DEoS [1] base 0.025 0.038 0.088 0.027 0.025 I

EEoS-NN with SRK base 0.249 0.157 0.234 0.230 0.127 I+II

Training
on density
and vapor
pressure EEoS-NN with DEoS [1] base 0.257 0.178 0.292 0.240 0.150 I+II

Saturated liquid density
EEoS-NN with SRK base 0.028 0.283 2.628 0.053 -0.051 I

EEoS-NN with DEoS [1] base 0.024 0.049 1.844 0.026 -0.025 I
EEoS-NN with SRK base 0.292 0.742 3.529 0.377 -0.345 I+II

Training
on density
and vapor
pressure EEoS-NN with DEoS [1] base 0.289 0.577 2.809 0.343 -0.298 I+II

Saturated vapor density
EEoS-NN with SRK base 0.050 1.412 7.650 0.215 0.214 I

EEoS-NN with DEoS [1] base 0.158 2.689 9.381 0.465 0.463 I
EEoS-NN with SRK base 0.687 1.352 6.051 0.849 0.346 I+II

Training
on density
and vapor
pressure EEoS-NN with DEoS [1] base 0.843 2.652 7.764 1.284 0.779 I+II
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Table 5.19: Comparison between density experimental data and values calculated with two

EEoS-NN models with different basic equations.d

EoS type
AAD
(%)

Bias
(%)

Class

Vap. Liq. Supercrit. Ext. Crit.e Crit.e Overall Overall
EEoS-NN with

SRK base
0.038 0.013 0.038 0.039 0.035 0.033 -0.001 I

EEoS-NN with
DEoS [1] base

0.067 0.016 0.042 0.047 0.044 0.044 0.006 I

EEoS-NN with
SRK base

0.079 0.062 0.087 0.106 0.051 0.080 -0.014 I+II

Training
on density
and vapor
pressure

EEoS-NN with
DEoS [1] base

0.098 0.063 0.094 0.113 0.068 0.088 -0.009 I+II

d The data set of Jany and Straub [29,30] was excluded from the present validation table, due to the much higher
deviations of such data.

e In the extended critical region and in the critical region, pressure deviations are given instead of density deviations.

Table 5.20: Comparison between caloric property experimental data and values calculated with

two EEoS-NN models with different basic equations.

EoS type
AAD
(%)

Bias
(%)

Vap. Liq. Supercrit. Ext. Crit. Crit. Overall Overall
Isobaric heat capacity

EEoS-NN with
SRK base

0.797 1.014 1.141 2.983 29.256 1.760 0.808
Training on
density and

vapor
pressure

EEoS-NN with
DEoS [1] base

0.786 1.063 1.172 3.078 23.878 1.814 0.961

Speed of sound
EEoS-NN with

SRK base
0.026 0.388 1.101 - - 0.178 0.098

Training on
density and

vapor
pressure

EEoS-NN with
DEoS [1] base

0.026 0.295 0.853 - - 0.140 0.064

Joule-Thomson coefficient
EEoS-NN with

SRK base
2.303 - - - - 2.303 -2.303

Training on
density and

vapor
pressure

EEoS-NN with
DEoS [1] base

1.630 - - - - 1.630 -1.630

5.7. Conclusions

A new equation of state in Helmholtz energy form was obtained for sulfur hexafluoride by

applying an innovative regression technique. The format of the equation is called “EEoS-NN” and it

is constituted by a basic equation (in the present case a SRK cubic equation) whose functional form
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is distorted through the application of shape functions, expressed as a neural network, to the

independent variables. The coefficients of the neural network are obtained through regression from

experimental data. The accuracies of the available sources of experimental data were discussed and

only the more precise data sets were adopted for the training procedure of the neural network.

The validity ranges of the equation are from the triple-point temperature at about 223.6 K up to

625 K and for pressures up to 60 MPa, with the exclusion of a region close to the critical point in

case of caloric property calculation; a moderate extrapolation outside these limits is reliably

possible.

It was verified that the equation can be regressed on only density and vapor pressure data, though

maintaining a good prediction accuracy for other thermodynamic properties as for instance isobaric

heat capacity and speed of sound. This characteristic is advantageous when the proposed modeling

technique is applied to a fluid for which a limited data base is available, because the required

experimental effort can be reduced.

The representation of the available experimental data is satisfactory for all the considered

properties; in fact the deviations of the equation from the data are comparable with the ascribed

uncertainties of the experimental sources.

The performances of the basic SRK cubic EoS are by far improved through the application of the

shape functions, as shown in the validation tables. Moreover, the comparison of the proposed

equation with the most advanced EoS previously published in the literature shows that the two

equations have a similar accuracy level, but the present one reaches better prediction results for

many data sets.

In conclusion, the EEoS-NN modeling technique is a valuable and effective tool for the

development of fundamental equations of state dedicated to pure fluids, since it provides an

equation in Helmholtz energy form that is capable to reproduce the thermodynamic properties with

high accuracy. Above all this result was an important goal for the present work and further

enhancements of the EEoS-NN technique can be pursued in the future starting from the present

result.

The obtained equation is at the same level of the “group-two dedicated equations of state” [25]

developed in recent years through the so-called functional form optimization procedure [2]. In

particular it can be applied with satisfactory results also when only density and vapor pressure data

are available.

The present equation of state for sulfur hexafluoride could be enhanced when new density

experimental data would be made available for the regions where they are lacking, in particular for
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temperatures from 350 K to 625 K and pressures up to 1 MPa and for pressures higher than 40 MPa

in the whole temperature range.
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VI. A fundamental equation of state for 2-propanol (i-C3H8O) in extended

equation of state format

6.1. Introduction

The EEoS-NN technique, preliminary studied in Chapter IV and applied to draw a DEoS for the

pure fluid sulfur hexafluoride (SF6) in Chapter V, has been employed in the present chapter to

obtain a DEoS for the pure fluid 2-propanol (i-C3H8O). The available literature data together with

the ad hoc measured density data, presented in Paragraph 8.6 of this thesis, have been used to

regress the coefficient of the DEoS.

One of the advantages of the EEoS-NN method, as it has been shown for the fluid sulfur

hexafluoride (SF6) in Chapter V, is that the data set on which to base the regression procedure can

include only density and coexistence values, getting in the meantime a satisfactory performance

also for the other properties. On the other hand, when a multiproperty data set is assumed as input,

i.e., also “second order” properties as for instance heat capacities and speeds of sound are

considered, together with the necessary density and coexistence data, the model performance is

improved for the prediction of the “second order” properties. The level of the obtained accuracy is

evidently dependent on the choice of the inputs for the regression, but the new method allows to

tune the required experimental effort on the prediction accuracy expected for the thermodynamic

quantities of interest and this can be considered as an innovative “value added”.

The new EEoS-NN method is here applied to draw a DEoS for 2-propanol (C3H8O) directly from

the available data sets of the fluid. The literature is not reporting a DEoS for this fluid and this has

been an important suggestion to undertake the development of a new DEoS for it.

The sulfur hexafluoride is a chemically inert, non-polar, symmetrically-shaped chemical

compound presenting a regular thermodynamic behavior with a quite low deviation from ideality.

For it a large base of good quality experimental data of several properties in homogeneous states

and of properties at phase equilibrium were available with a rather even distribution inside the range

of interest. For this fluid, considering the favorable conditions of the data base, the EEoS-NN

method was applied using only density and coexistence data for the regression with the aim of

verifying its “value added” mentioned in the preceding.

On the contrary, 2-propanol is a polar and associating compound able to create hydrogen bonds,

i.e. strong molecular interactions making it to strongly deviate from ideality. Moreover, a

completely different and less suitable experimental data base is available for the fluid because of a

rather uneven distribution of the data, of some occasional inconsistencies among different
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experimental sources and, in several cases, of the questionable uncertainty of the data. All this

makes the fluid more difficult to represent with a high accuracy DEoS with respect to the former

case of sulfur hexafluoride.

From preliminary tests it was verified that in this case, due in particular to the unfavorable

situation of the data, it was necessary to include all the available type of data into the training set for

the development of the residual contribution of the Helmholtz energy function in order to get the

expected accuracy.

The main goal of the present chapter is then to show the effectiveness of the mentioned EEoS-

NN modeling method3 in a not favorable condition asking for a challenge of increased difficulty.

On the other hand very few DEoSs are available for this kind of fluids and among the remainder

fluids 2-propanol present the wider and more regular data base.

The 2-propanol is widely used in several industrial applications: it is cheaply available, it

dissolves a wide range of non-polar compounds and it is then often used as a solvent and as a

cleaning fluid, in particular for electronic devices. As a cosolvent it is also added to the solvent

carbon dioxide in supercritical extractions. In this case it changes the solvent density and critical

properties producing strong interactions, i.e., hydrogen bonds, with solutes to be selectively

extracted.

6.2. Training of an equation of state in EEoS-NN format

The mathematical formulation for the EEoS-NN model is given in Paragraph 4.2.1.

As previously explained in Chapter IV, in the framework of the EEoS model the reference fluid

and the target fluid coincide and an equation is assumed as basic model to which the variables

distortion through the scale factors is applied. In the present work the Peng-Robinson [1] (PR) cubic

EoS, see also Paragraph 3.3, was chosen.

As it will be discussed in Sec. 6.6.1, the ideal-gas contribution of the Helmholtz energy of a pure

fluid is directly obtained from an equation for the ideal-gas isobaric heat capacity of the fluid itself;

the reference values of ideal enthalpy and entropy for a chosen thermodynamic condition have also

to be arbitrarily selected. Values of ideal isobaric heat capacity can be derived from low-pressure

experimental heat capacity data, from low-pressure experimental speed of sound data, or from

statistical methods using fundamental frequencies. Accurate equations for this property are usually

found in the literature or can be easily derived from the available data, since ideal isobaric heat

capacity depends only on temperature with a rather smooth functional form.

The main work in the development of an equation of state in EEoS-NN format is due to the

regression of the residual contribution of Helmholtz energy. Since Helmholtz energy is not an
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experimentally-accessible property, its functional form has to be regressed on experimental data of

other quantities, exploiting the relations linking Helmholtz energy to any other thermodynamic

property, see Appendix A.2.

The most important properties to be included in the regression are density and vapor pressure.

The first one, apart from its technical interest, is also an independent variable of Helmholtz energy

expressed in fundamental form, Eq. (3.81), and then it must be known with high accuracy; this is

easily reached with modern experimental apparatuses. The second one is often the main property

that is required in technical applications and consequently its precise representation is a basic

requirement for a DEoS.

In Chapter IV it was verified that an equation of state in EEoS-NN format regressed on density

and vapor pressure data is able to satisfactorily represent also other properties as internal energy,

entropy, speed of sound, and heat capacities. Anyway, if the accuracy on these properties should

need to be improved, the available experimental data for them can be included in the regression, so

performing a multiproperty fitting. Both such regression possibilities were exploited in the present

work.

The free parameters in the regression procedure are the weighting factors ijw and jkw , which,

with the present number of neurons in the hidden layer 7=J , constitute a set of 37 coefficients.

Since the thermodynamic properties in EEoS-NN format are non-linearly dependent on the

weighting factors, the regression method is necessarily non-linear. The technique here adopted is a

combination of a stochastic method with a deterministic method, i.e., a quasi-Newton one. The so-

obtained technique keeps the ability of the stochastic method in finding the minimum of the

objective function when many local minima are present, but the introduction of the deterministic

method allows the limitation of the required time for the regression and the improvement of the

precision of the minimum determination.

The objective function that has to be minimized in the regression procedure is composed by

sums of squares of the deviations between experimental data and calculated values.

For density and vapor pressure data, the objective function is the analogous of equations (5.1)

and (5.2), respectively.

During the development process of the equation of state, a first regression run is done

considering only density data and assuming equation (5.1) as objective function; in this preliminary

step the variance 2
,iρσ is set equal to 1 for each experimental point.

The obtained equation is then used for the calculation of slρ and svρ at given ( )sPT , conditions

and for the evaluation of the variances of the data. A new regression is done on density and vapor
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pressure data, searching for the minimum of the objective function given by equation (5.3),

combining equations (5.1) and (5.2).

Successive regression steps are performed until the reaching of a satisfactory equation with good

performances with respect to different thermodynamic properties; the saturated densities and the

variances are recalculated at each step using the equation obtained in the previous step.

In the case of a multiproperty fitting, other objective functions for further properties are

considered. For a generic property M the objective function can be written as equation (5.4).

In the present work a multiproperty fitting was done considering also data of isobaric heat

capacity pC , isochoric heat capacity vC , and speed of sound w . The objective function to be

minimized in such a regression case is

wob,Cob,Cob,ob,ob,overallob, ffffff
vp

++++= ϕρ (6.1)

In general, the available experimental data cannot be considered in the regression as a whole; in

fact some of them are affected by systematic errors or show a lower precision with respect to other

data sets. Therefore, the experimental sources have to be subdivided into two groups: the primary

data, i.e., the most precise ones that are used for the regression, and the secondary data, that are

used only for comparison in order to check the performances of the obtained DEoS.

The choice of primary data can be initially based on the analysis of their stated accuracy and of

the adopted experimental techniques. Anyway, during the regression process some data sources can

be moved from primary to secondary data and vice versa taking into account their deviations from

the obtained equations and the consistency with other experimental sources.

6.3. Basic data of the fluid

In the present work the recommended values given in Gude and Teja [2] for the molar mass M ,

the critical temperature cT , the critical pressure cP , and the critical density cρ have been assumed,

see Table 6.1. The triple point temperature, tT , is taken from Kelley [3]. The value of ω was

calculated from the auxiliary equation for vapor pressure, see Eq. (6.4). All the cited values are

reported in Table 6.1 together with the corresponding literature sources.

The units adopted through this work are K for temperature, MPa for pressure, and mol·l-1 for

density.

Since the correlation equations and all temperature values in this work are relative to the

International Temperature Scale 1990 (ITS-90) [4], the temperature values of the available data

were converted to ITS-90 when based on an older temperature scale.
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In the following, the error deviation ( )∆ , the average absolute deviation (AAD), the bias (Bias)

and the maximum absolute deviation (MAD) are defined as in Appendix A.6.

Table 6.1: Substance-specific parameters for 2-propanol.

Ref.

Formula OHC 83

CAS Registry Number 67-63-0  
M (kg·mol-1) 60.096 2

tT (K) 184.67 3

cT (K) 508.3 2

cP (MPa) 4.764 2

cρ (kg·m-3) 271 2
ω 0.667714 Eq. (6.4)

6.4. Survey of experimental property data

A total of 2586 thermodynamic values for 2-propanol were collected from literature. These

include the following properties: isobaric heat capacities for the ideal gas state, saturation pressures,

saturation densities for liquid and vapor phase, isobaric heat capacities at saturation, speed of sound

at saturation, enthalpies of vaporization, single phase densities, single phase isobaric heat capacities,

single phase isochoric heat capacities, and single phase speed of sound.

The collected data cover a range from 50 to 1500 K for the ideal gas condition, from the triple

point temperature tT to 597 K and up to 174.1 MPa for the real fluid condition.

The available thermodynamic experimental data for the 2-propanol were not formerly

summarized in the literature and a complete overview of them is therefore presented in the

following sections.

The experimental data in the single phase were subdivided into three regions of the TP, surface:

the vapor/gas region, for pressures lower than the vapor pressure or, for supercritical temperatures,

for pressures lower than the critical pressure; the liquid region, for temperatures lower than the

critical temperature and pressures higher than the vapor pressure; the supercritical region, for

temperatures and pressures higher than the respective critical values.

In the present work the temperature values of all experimental data were converted to ITS-90 [4]

if not yet presented in such scale.
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6.4.1. Ideal-gas data

The isobaric heat capacity data for ideal gas conditions o
pC available from the literature are

presented in Tab. 6.2 and shown graphically in Fig. 6.1.

Chao et al. [5] and Chao and Hall [6] reported in total 48 values of o
pC in the range from 50 to

1500 K. These data were chosen as primary data for their low uncertainty value and their wide

temperature range.

Regarding the data sets considered as secondary, Berman et al. [7] reported 5 values of o
pC in the

range from 371 to 451 K, Chermin [8] reported 9 values of o
pC in the range from 298 to 1000 K,

Green [9] reported 6 values of o
pC in the range from 359 to 473 K., Hales et al. [10] reported 6

values of o
pC in the range from 359 to 473 K, Parks and Shomate [11] reported 3 values of o

pC in

the range from 428 to 480 K.

Table 6.2: Summary of the available data sets for the isobaric heat capacity in the ideal gas

condition of 2-propanol.

Ref. Authors Year
T range

(K)
NPT Uncertainty a

Primary data
5 Chao et al. 1986 100.0-1500.0 18 0.15 %
6 Chao and Hall 1986 50.0-1500.0 30 n.a.

Overall 50.0-1500.0 48
Secondary data

7 Berman et al. 1964 371.1-451.1 5 n.a.
8 Chermin 1961 298.1-1000.0 9 n.a.
9 Green 1963 358.7-473.1 6 n.a.
10 Hales et al. 1963 358.7-473.1 6 n.a.
11 Parks and Shomate 1940 427.9-480.3 3 n.a.

Overall 50.0- 1500.0 77

a n.a. = not available.
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Figure 6.1: Literature data for the isobaric heat capacity of 2-propanol in the ideal gas condition.

6.4.2. Properties at saturation

VAPOR PRESSURE DATA

The available vapor pressure sP data for 2-propanol are presented in Tab. 6.3 and shown in Fig.

6.2. The whole experimental data set includes a total amount of 301 points covering a temperature

range from 273 K to close to the critical temperature cT . It is therefore possible to notice a lack of

experimental information from the triple point temperature tT to 273 K.
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Table 6.3: Summary of the available data sets for the vapor pressure of 2-propanol.

Ref. Authors Year
T range

(K)
NPT Uncertainty a

12 Ambrose and Townsend 1963 395.1-508.2 25 n.a.
13 Biddiscombe et al. 1963 329.9-362.4 17 ±0.133 kPa

14 Dejos et al. 1996 300.4-354.9 30
±0.1 K for T; ±0.01 kPa (±0.1 for 20

< P <100 kPa) for P
15 Garriga et al. 1996 278.1-323.1 10 n.a.
16 Gonzalez et al. 1999 339.0-367.5 65 0.02% for T; ±0.02 kPa for P
17 Hong et al. 2002 333.1-373.1 4 0.1%
18 Marzal et al. 1996 327.9-354.9 3 n.a.
19 Moreland et al. 1967 373.1-473.1 5 0.1%
20 Nasirzadeh et al. 2004 298.1-353.1 12 0.003 K for T; 0.01% for P
21 Nikiforova et al. 1985 313.1-355.6 6 n.a.
22 Ortega and Susial 1993 347.6-361.1 3 n.a.
23 Parks and Barton 1928 273.1-363.1 19 0.0263 kPa
24 Pereiro et al. 2005 345.5-385.4 38 0.01 K for T; ±0.001 kPa for P
25 Pokki et al. 2003 333.7-355.4 12 ±0.15 kPa
26 Rao et al. 1998 323.1-355.4 8 0.1 K for T; ±0.133 kPa
27 Segura et al. 2002 321.7-355.4 15 ±0.03 kPa
28 Weclawski 1983 298.1-348.1 7 n.a.
29 Wilson and Simons 1952 311.2-420.8 22 n.a.

Overall 273.1-508.2 301

a n.a. = not available.
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Figure 6.2: Literature data for the vapor pressure of 2-propanol.
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DENSITY DATA

The available saturation density data of 2-propanol for the liquid and the vapor phase are

presented in Tab. 6.4 and shown in Fig. 6.3.

The whole experimental data set for the liquid saturated density slρ includes a total amount of

44 points, covering a temperature range from 275 K to the critical temperature cT . The whole

experimental data set for the vapor saturated density svρ comprises a total amount of 30 points,

covering a temperature range from 275 K to the critical temperature cT .

Looking at the saturated density data it is possible to notice a lack of experimental information

from the triple point temperature tT to 275 K for the liquid phase. Saturated density data in the

vapor phase seem to be not consistent each other, see Paragraph 6.5; therefore reliable

measurements in the whole temperature range from the triple point to the critical point for the

saturated vapor density are needed in the future to improve the knowledge of the thermodynamic

properties for 2-propanol.

Table 6.4: Literature data of saturated liquid density and saturated vapor density for 2-propanol.

Ref. Authors Year
T range

(K)
NPT Uncertainty a

Saturated liquid density
12 Ambrose and Townsend 1963 407.3-506.7 16 n.a.
30 Ambrose et al. 1978 275.0-508.3 11 n.a.
31 Golubev et al. 1979 292.7-503.9 8 n.a.
32 Hales and Ellender 1976 298.1-430.0 9 ±0.0025 (mol·l-1)

Overall 275.0-508.3 44
Saturated vapor density

12 Ambrose and Townsend 1963 407.3-506.7 16 n.a.
30 Ambrose et al. 1978 275.0-508.3 11 n.a.
19 Moreland et al. 1967 423.1-473.1 3 n.a.

Overall 275.0-508.3 30

a n.a.= not available.
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Figure 6.3: Saturated density data for 2-propanol.

VAPORIZATION ENTHALPY DATA

The available vaporization enthalpy vapH∆ data for 2-propanol are presented in Tab. 6.5 and

they are shown in Fig. 6.4.

The whole vapH∆ data available from the literature cover a range from 298 to 477 K, showing a

lack from the triple point temperature tT to 298 K and from 477 K to the critical point cT .

These data were considered for the validation of the present EoS.
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Table 6.5: Literature data for the vaporization enthalpy of 2-propanol.

Ref. Authors Year
T range

(K)
NPT Uncertainty a

33 Bennewitz and Rossner 1938 354.9 1 n.a.

7 Berman et al. 1964 330.2-362.7 4
±8.4 (j·mol-1) for T=330 K; ±40.2
(j·mol-1) for the other temperatures

13 Biddiscombe et al. 1963 355.4 1 n.a.
34 Brown 1903 356.0 1 n.a.
10 Hales et al. 1963 324.6-355.4 3 n.a.
35 Mathews 1926 354.4 1 ±10.1 (j·mol-1)

36
Newsham and Mendez-

Lecanda
1982 354.3 1 n.a.

37 Parks and Nelson 1928 355.4 1 n.a.
38 Polak and Benson 1971 298.1-333.1 4 ±0.05%
39 Radosz and Lydersen 1980 402.1-477.3 10 n.a.
40 Shah and Donnelly 1967 355.3 1 n.a.
41 Vesely et al. 1988 359.6-433.9 5 n.a.
42 Wadso 1966 298.1 1 n.a.
43 Williamson and Harrison 1957 324.3-353.3 3 n.a.

Overall 298.1-477.3 37

a n.a.= not available.
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Figure 6.4: Vaporization enthalpy data for 2-propanol.
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ISOBARIC HEAT CAPACITY AND SPEED OF SOUND DATA

The available data for saturated isobaric heat capacity and saturated speed of sound for 2-

propanol are presented in Tab. 6.6 and they are shown in Fig. 6.5.

For the saturated isobaric heat capacity, experimental data are available only in the liquid phase.

The 12 values of sl
pC measured by Ginnings and Corruccini [44] in the range from 273 to 473 K

were used in the regression of the coefficients of the presented DEoS, whereas the 12 values of sl
pC

measured by Hoffman et al. [45] in the range from 353 to 463 K were used only for the EoS

validation. The two sources of sl
pC are not in a good agreement each other, but the data of Ginnings

and Corruccini [44] seem to be more consistent with the other sources of isobaric heat capacity in

the liquid phase.

The experimental data of isobaric heat capacity at saturation cover a narrow temperature range

for the liquid phase and are totally lacking for the vapor phase.

The 19 experimental data of speed of sound measured by Otpushchennikov et al. [46] are

available in the saturated liquid from 293 to 473 K and they were used in the regression of the

coefficients of the presented EoS. The saturated speed of sound experimental data cover a quite

narrow temperature range for the liquid phase and are totally lacking for the vapor phase.

Table 6.6: Literature data of saturated isobaric heat capacity and saturated speed of sound for 2-

propanol.

Ref. Authors Year
T range

(K)
NPT Uncertainty a

Saturated isobaric heat capacity

44 Ginnings and Corruccini 1948 273.2-473.2 12
±1% for T>55°C; less than ±1%

for T<55°C
45 Hoffman et al. 1977 353.2-463.2 12 n.a.

Overall 273.2-473.2 24
Saturated speed of sound

46 Otpushchennikov et al. 1974 293.2-473.2 19 1-2 m/sec
Overall 293.2-473.2 19

a n.a.= not available.
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6.4.3. Properties in the single phase region

DENSITY DATA

All the available density data in single-phase regions for 2-propanol are presented in Tab. 6.7.

The whole experimental data set comprises a total amount of 1516 points, covering a range from

275 K to 594 K in temperature and up to 174 MPa in pressure.

On the base of the claimed accuracy, temperature range, pressure range and number of points the

whole of the measurements was divided into a primary data set and into a secondary data set.

The following data sets were used as primary to regress the coefficients of the present EoS: 362

values measured by Ambrose et al. [30] in the range from 386 to 573 K and from 0.4 to 13.4 MPa,

covering the vapor region, the liquid region and the supercritical region; 7 values measured by Foz

et al. [47] at 350 K and up to 0.1 MPa, in the vapor region; 167 values measured by Golubev et al.

[31] in the range from 293 to 594 K and from 1.1 to 49.1 MPa, covering the vapor region, the liquid

region and the supercritical region; 98 values measured by Moreland et al. [19] in the range from

373 to 473 K and up to 2.5 MPa, covering the vapor region; 150 values measured by Stringari et al.

[48] in the range from 280 to 393 K and from 0.1 to 9.8 MPa, covering the liquid region. The whole

primary data set includes 784 values covering the range from 280 to 594 K and up to 49.1 MPa. The

data chosen as primary are well-distributed in the vapor, liquid and supercritical region, and they

give a satisfactory description of the fluid behavior also in the region close to the critical point.

The remainder data sets were classified as secondary and they were used to validate the obtained

EoS. These sets are reported in the corresponding section of Tab. 6.7 where the main characteristics

of each one are indicated.

The whole secondary data set includes 732 values covering the liquid region and the supercritical

region in the range from 275 to 573 K and from 0.1 to 174.1 MPa. Some of these data sets show a

good accuracy, but they were included in the secondary data set in order to get reliable points for

the validation of the model, most of all to check and prevent any overfitting by the DEoS surface.

Some points of the primary and secondary sources were excluded and they do not appear in the

number of points of the data sets in Tab. 6.7: the values from Golubev et al. [49] at 570 K were

discarded because were considered not consistent with the data reported by Ambrose et al. [30],

Golubev and Vagina [50] and Tseng and Stiel [51] close to the same temperature, see Fig. 6.6.

In Tseng and Stiel [51] the values at 513.15 K and 52.40 MPa, 513.15 K and 55.16 MPa and

573.15 K and 55.16 MPa were discarded because they show a physically inconsistent behavior due

to density values decreasing with increasing pressure, see Fig. 6.7.
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The whole density data set is shown in ( )TP, coordinates in Fig. 6.8, while the density data

classified as primary are shown in Fig. 6.9. From Fig. 6.9 one can see that the density points used

for the regression present an even distribution in the range of interest.
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Figure 6.6: Comparison of the ( )TP ,,ρ data of Ambrose et al. [30], Golubev and Vagina [50],

Golubev et al. [49] and Tseng and Stiel [51] at about 570 K.
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Figure 6.7: ( )TP ,,ρ data of Tseng and Stiel [51] at 513 and 573 K.



VI.A fundamental equation of state for 2-propanol (i-C3H8O) in extended equation of state format224

Table 6.7: Summary of the available data sets for the density of 2-propanol.

NPT for each regionRef. Authors Year T range
(K)

P range
(MPa) Vap. Liq. Supercr. Overall

Uncertainty a

Primary data
30 Ambrose et al. 1978 386-573 0.4-13.4 172 109 81 362 n.a.
47 Foz et al. 1954 350 0.0-0.1 7 - - 7 n.a.
31 Golubev et al. 1979 293-594 1.1-49.1 3 87 77 167 n.a.
19 Moreland et al. 1967 373-473 0.1-2.5 98 - - 98 n.a.
48 Stringari et al. 2008 280-393 0.1-9.8 - 150 - 150 ±0.05%

Total primary 280-594 0.0-49.1 280 346 158 784
Secondary data

52 Aminabhavi and Aralaguppi 1993 298-318 0.1 - 5 - 5 n.a.
53 Aminabhavi et al. 1993 298-308 0.1 - 3 - 3 n.a.
54 Aminabhavi and Gopalakrishna 1995 298-313 0.1 - 4 - 4 n.a.
55 Boned et al. 2000 303-343 0.1-65.0 - 42 - 42 n.a.
56 Contreras 2001 298-313 0.1 - 4 - 4 n.a.
57 Egorov 2004 275-338 0.1 - 8 - 8 ±0.166·10-3 (mol·l-1)
50 Golubev and Vagina 1963 292-504 0.1-51.0 - 135 - 135 n.a.
49 Golubev et al. 1980 300-560 1.0-50.0 - 52 27 79 n.a.
58 Islam and Quadri 1987 298-323 0.1 - 6 - 6 n.a.
59 Khimenko et al. 1973 288-323 0.1 - 7 - 7 n.a.
60 Khimenko et al. 1982 288-328 0.1 - 9 - 9 n.a.
61 Krestov et al. 1980 288-328 0.1 - 4 - 4 n.a.
62 Ku and Tu 1998 293-323 0.1 - 4 - 4 n.a.
63 Kubota et al. 1987 283-348 0.1-174.1 - 44 - 44 ±0.09%
64 Lee and Lin 1995 303-323 0.1 - 3 - 3 n.a.
65 Mato and Coca 1969 298 0.1 - 1 - 1 n.a.
66 Moha-Ouchane et al. 1998 303-343 0.1-60.0 - 12 - 12 n.a.
67 Nagata et al. 1973 298 0.1 - 1 - 1 n.a.
68 Nikam et al. 1998 298-313 0.1 - 4 - 4 ±0.000832 (mol·l-1)
69 Oswal and Putta 2001 303- 318 0.1 - 3 - 3 n.a.
70 Paez and Contreras 1989 293-323 0.1 - 5 - 5 n.a.
71 Sakurai 1988 278-318 0.1 - 5 - 5 n.a.
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NPT for each regionRef. Authors Year T range
(K)

P range
(MPa) Vap. Liq. Supercr. Overall

Uncertainty a

Secondary data (continuation)
72 Sovilj 1995 278-308 0.1 - 3 - 3 n.a.
73 Tashima and Arai 1981 293-343 0.1 - 7 - 7 n.a.
51 Tseng and Stiel 1971 473-573 6.9-55.2 - 58 104 154 n.a.
74 Tu et al. 2001 293-313 0.1 - 4 - 4 n.a.
75 Wei and Rowley 1984 298 0.1 - 1 - 1 ±0.166·10-2 (mol·l-1)
76 Yaginuma et al. 1997 313 1.0-9.8 - 11 - 11 ±0.0011 (mol·l-1)
77 Zuniga-Moreno and Galicia-Luna 2002 313-363 0.5-25.1 - 156 - 156 ±0.05%

Overall 275-594 0.0-174.1 280 947 289 1516

a n.a.= not available.
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Figure 6.8: Single phase TPρ data.
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Figure 6.9: Single phase TPρ primary data.

CALORIC DATA AND SPEED OF SOUND DATA

The available data of isobaric heat capacity in single-phase regions for 2-propanol are presented

in Tab. 6.8. The whole experimental data set comprises a total amount of 355 points, covering a

range from about the triple point temperature, tT , to 597 K and up to 50 MPa.

On the base of the claimed uncertainty and distribution in the Tp, plane the following values

were selected as primary data: the 60 measurements of Andon et al. [78] covering the liquid region

in the range from 188 to 327 K at atmospheric pressure; the 57 measurements of Dreher [79]

covering the liquid region and the supercritical region in the range from 323 to 573 K and from 4.8

to 30.0 MPa; the 19 measurements of Hales et al. [10] covering the vapor region from 329 to 473 K

and up to 0.1 MPa. The whole primary data set has 136 experimental points in the range from 188

to 573 K and up to 30 MPa.
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The remainder data sets were classified as secondary and were used for the validation of the

present EoS as the Tab. 6.8 indicates for each set.

The whole secondary data set includes 219 values covering the vapor, the liquid and the

supercritical regions in the range from 188 to 597 K and up to 50.0 MPa.

The whole isobaric heat capacity data set is shown in ( )TP, coordinates Fig. 6.10, while the

isobaric heat capacity data classified as primary are shown in Fig. 6.11. A lack in the experimental

information is evidenced for the vapor phase from about the atmospheric pressure up to the critical

one cP .
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Figure 6.10: Single phase pC data.
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Table 6.8: Summary of the available data sets for the isobaric heat capacity of 2-propanol.

NPT for each regionRef. Authors Year T range
(K)

P range
(MPa) Vap. Liq. Supercr. Overall

Uncertainty a,b

Primary data
78 Andon et al. 1963 188-327 0.1 - 60 - 60 n.a.
79 Dreher 1979 323-573 4.8-30.0 - 27 30 57 ±0.4%
10 Hales et al. 1963 329-473 0.0-0.1 19 - - 19 n.a.

Total primary 188-573 0.0-30.0 19 87 30 136
Secondary data

33 Bennewitz and Rossner 1938 410 0.1 1 - - 1 0.6%
7 Berman et al. 1964 371-451 0.1 18 - - 18 n.a.
80 Grigor’ev et al. 1979 311-452 0.1-2.0 - 8 - 8 ±0.9%
45 Hoffman et al. 1977 353-463 1.0-4.0 - 65 - 65 n.a.
81 Katayama 1962 283-343 0.1 - 8 - 8 n.a.
3 Kelley 1929 188-293 0.1 - 12 - 12 n.a.

82 Naziev et al. 1993 302-521 0.1-50 - 57 5 62 n.a.
83 Parks and Kelley 1925 195-293 0.1 - 9 - 9 n.a.
84 Shah and Donnelly 1967 300-349 0.1 - 8 - 8 n.a.

85 Sinke and DeVries 1953 359-437 0.1 9 - - 9

±4.2 (j·mol-1·K-1) for
b.p.<T<(b.p.+20 K); ±0.8

(j·mol-1·K-1) for
T>(b.p.+20) K.

86 Strömsöe et al. 1970 366-597 0.1 14 - - 14 ±0.3%
87 Williams and Daniels 1924 303 0.1 - 1 - 1 n.a.
88 Zhdanov 1945 280-320 0.1 - 4 - 4 n.a.

Overall 188-597 0.0-50.0 61 259 35 355

a n.a.= not available.

b b.p.= bubble point.
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Figure 6.11: Single phase pC data classified as primary.

Amirkhanov et al. [89] measured 159 values of isochoric heat capacity vC in the liquid phase

from 324 to 533 K and from 7.5 to 12.6 mol·l-1. The data are presented in Tab. 6.9 and their

distribution in ( )T,ρ coordinates is shown in Fig. 6.12. These data were used in the regression of

the coefficients of the present EoS.

Table 6.9: Summary of the available data sets for the isochoric heat capacity of 2-propanol.

NPT for each regionRef. Authors Year T range
(K)

ρ range
(mol·l-1) Vap. Liq. Supercr. Overall

Uncertainty a

89 Amirkhanov et al. 1985 324-533 7.5-12.6 - 159 - 159 n.a.
Overall 324-533 7.5-12.6 - 159 - 159

a n.a.= not available.
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Figure 6.12: Single phase vC data.

Speed of sound data w for the 2-propanol are available from the literature in the liquid region at

atmospheric pressure. The data are presented in Tab. 6.10 and their distribution in ( )T,ρ

coordinates is shown in Fig. 6.13.

The 5 values measured by Sakurai et al. [90] in the range from 278 to 318 K were classified as

primary and used to regress the coefficients of the present EoS.

The values in the following data sets were classified as secondary and used to validate the

present EoS: Bruun et al. [91], Krestov et al. [61], Lara and Desnoyers [92] and Marks [93].

Table 6.10: Summary of the available data sets for the speed of sound of 2-propanol.

NPT for each regionRef. Authors Year T range
(K)

P range
(MPa) Vap. Liq. Supercr. Overall

Uncertainty a

Primary data
90 Sakurai et al. 1994 278-318 0.1 - 5 - 5 n.a.

Total primary 278-318 0.1 - 5 - 5
Secondary data

91 Bruun and Hvidt 1977 293-298 0.1 - 2 - 2 n.a.
61 Krestov et al. 1980 283-328 0.1 - 4 - 4 n.a.
92 Lara and Desnoyers 1981 298 0.1 - 1 - 1 ±0.05 m/s
93 Marks 1967 273-293 0.1 - 2 - 2 n.a.

Overall 273-328 0.1 - 14 - 14

a n.a.= not available.
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Figure 6.13: Single phase w data.

6.5. Phase equilibria correlations

The quantity and the quality of data available in the literature for the saturation region of 2-

propanol are not homogeneous for all the properties. In particular, several sources of vapor pressure

data, 301 points, are available in the range from 273.1 to 508.2 K, but only few points are available

for saturated density. For the saturated liquid density 44 points are available in the range from 275.0

to 508.3 K, while for saturated vapor density only 30 points are available and they are not consistent

each other. This hinder the possibility to develop a realistic ancillary equation for the saturated

vapor density. In order to obtain an ancillary equation for the saturated vapor density consistent

with the other properties the 37 vaporization enthalpy data in the range from 298.1 to 477.3 K

available in the literature, see Paragraph 6.4.2, were included in the regression of the coefficients of

the ancillary equations for the saturation properties.

In fact, vapor pressure sP , saturated liquid density slρ , saturated vapor density svρ and

vaporization enthalpy vapH∆ are related each other by the Clapeyron-Clausius equation:
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The parameters of the four ancillary equations (6.4-6.7) have been regressed simultaneously

minimizing an objective function composed of terms for vapor pressure, saturated liquid density,

saturated vapor density, vaporization enthalpy and the Clapeyron-Clausius equation relating these

same properties, Eq (6.3):
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where sP
n , sln

ρ
, svn

ρ
and vapH

n
∆

are the number of experimental points for vapor pressure, saturated

liquid density, saturated vapor density and vaporization enthalpy, while n is the sum of the

experimental points for the four properties. s
calcP , sl

calcρ , sv
calcρ and vap

calcH∆ are the properties

calculated by the following Eqs. (6.4-6.7) respectively.
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9.455.383.620.461vapH τατατατα 4321 +++=∆ (6.7)

with cTT−=1τ .

The parameters for the equations (6.4) to (6.7) are presented in Tab. 6.11, while the values for

the critical parameters involved in the equations were presented in the previous Tab. 6.1.



VI.A fundamental equation of state for 2-propanol (i-C3H8O) in extended equation of state format234

Table 6.11: Parameters for the ancillary equations.

Eq.
1α 2α 3α 4α 5α

(6.4) -1.89913·101 1.28986·101 -1.67499·101 2.04326·101 -1.53832·101

(6.5) -3.5760·10-2 -2.955·10-3 1.44586 -2.54731·10-1 
(6.6) -5.12147·101 8.83036·101 -4.20013·101 -8.17898
(6.7) 6.72317·104 5.81558·105 -4.23393·106 6.73891·107

The Eq (6.4) represents the 301 vapor pressure data with an AAD less than 0.5 %, with a Bias of

about –0.1 %, as shown in Tab. 6.12. The percentage deviations of Eq (6.4) with respect to the

literature data are shown graphically in Fig. 6.14.

Table 6.12: Comparison between vapor pressure data and Eq. (6.4).

Ref. Authors Year
T range

(K)
NPT

AAD
(%)

Bias
(%)

MAD
(%)

12 Ambrose and Townsend 1963 395.1-508.2 25 0.2919 -0.2587 0.7489
13 Biddiscombe et al. 1963 329.9-362.4 17 0.1346 -0.1346 0.1985
14 Dejos et al. 1996 300.4-354.9 30 0.6965 -0.5941 1.0578
15 Garriga et al. 1996 278.1-323.1 10 0.4649 0.2633 1.4957
16 Gonzalez et al. 1999 339.0-367.5 65 0.3238 -0.3238 0.4672
17 Hong et al. 2002 333.1-373.1 4 0.5822 -0.3177 0.8629
18 Marzal et al. 1996 327.9-354.9 3 0.8106 -0.8106 0.9582
19 Moreland et al. 1967 373.1-473.1 5 0.3966 -0.3966 1.2605
20 Nasirzadeh et al. 2004 298.1-353.1 12 0.2161 -0.1239 0.4031
21 Nikiforova et al. 1985 313.1-355.6 6 0.9010 0.9010 1.2477
22 Ortega and Susial 1993 347.6-361.1 3 1.0509 -1.0509 1.4495
23 Parks and Barton 1928 273.1-363.1 19 1.7522 0.0850 8.7190
24 Pereiro et al. 2005 345.5-385.4 38 0.6022 0.5074 1.0314
25 Pokki et al. 2003 333.7-355.4 12 0.1459 0.1338 0.2597
26 Rao et al. 1998 323.1-355.4 8 0.1208 -0.0320 0.2724
27 Segura et al. 2002 321.7-355.4 15 0.1697 -0.1697 0.2767
28 Weclawski 1983 298.1-348.1 7 0.4119 0.2059 1.2059
29 Wilson and Simons 1952 311.2-420.8 22 0.3263 -0.2436 1.4264

Overall 273.1-508.2 301 0.4836 -0.1134 8.7190
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Figure 6.14: Comparison between vapor pressure data and Eq. (6.4).

The Eq (6.5) represents the 44 saturated liquid density data with an AAD less than 0.2 %, with a

Bias of about –0.01 %; the Eq. (6.6) represents the 30 saturated vapor density data with an AAD of

about 2.6 %, with a Bias of about –1.3 %. In Tab. 6.13 the analysis for the single data sets of both

the quantities are reported, while in Fig. 6.15 the corresponding error deviations are plotted for the

points.
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Table 6.13: Comparison between saturated liquid and vapor densities data and Eqs. (6.5) and

(6.6).

Ref. Authors Year
T range

(K)
NPT

AAD
(%)

Bias
(%)

MAD
(%)

Saturated liquid density
12 Ambrose and Townsend 1963 407.3-506.7 16 0.2611 0.1494 1.6739
30 Ambrose et al. 1978 275.0-508.3 11 0.2283 -0.1292 1.0804
31 Golubev et al. 1979 292.7-503.9 8 0.2024 -0.2024 0.4945
32 Hales and Ellender 1976 298.1-430.0 9 0.0198 0.0095 0.0490

Overall 275.0-508.3 44 0.1929 -0.0128 1.6739
Saturated vapor density

12 Ambrose and Townsend 1963 407.3-506.7 16 4.5024 -2.7994 18.1948
30 Ambrose et al. 1978 275.0-508.3 11 0.5666 0.4334 1.6248
19 Moreland et al. 1967 423.1-473.1 3 0.3409 0.1710 0.6224

Overall 275.0-508.3 30 2.6431 -1.3170 18.1948

250 300 350 400 450 500 550
-10

-5

0

5

10

10
0

·(
ρ

s ca
lc

-
ρ

s ex
p)

/ρ
s ex

p

b)

TC

T / K

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Ambrose and Townsend [12] Hales and Ellender [32]
Ambrose et al. [30] Moreland et al. [19]
Golubev et al. [31]

a)

10
0

·(
ρ

s ca
lc

-
ρ

s ex
p)

/ ρ
s ex

p

Figure 6.15: Comparison between saturated density data and Eqs. (6.5) and (6.6): a) saturated

liquid density; b) saturated vapor density.
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The Eq (6.7) represents the 37 vaporization enthalpy data with an AAD less than 1.0 %, with a

Bias of about 0.8 %, as shown in Tab. 6.14. The percentage deviations of Eq (6.7) with respect to

the literature data are shown graphically in Fig. 6.16.

Table 6.14: Comparison between vaporization enthalpy data and Eq. (6.7).

Ref. Authors Year
T range

(K)
NPT

AAD
(%)

Bias
(%)

MAD
(%)

33 Bennewitz and Rossner 1938 354.9 1 0.3332 -0.3332 0.3332
7 Berman et al. 1964 330.2-362.7 4 0.9766 0.9766 1.4500

13 Biddiscombe et al. 1963 355.4 1 0.0752 -0.0752 0.0752
34 Brown 1903 356.0 1 0.5670 -0.5670 0.5670
10 Hales et al. 1963 324.6-355.4 3 0.8205 0.8205 1.3035
35 Mathews 1926 354.4 1 0.9748 0.9748 0.9748

36
Newsham and Mendez-

Lecanda
1982 354.3 1 1.6124 1.6124 1.6124

37 Parks and Nelson 1928 355.4 1 0.7584 -0.7584 0.7584
38 Polak and Benson 1971 298.1-333.1 4 2.1793 2.1793 5.7209
39 Radosz and Lydersen 1980 402.1-477.3 10 0.2179 0.1799 0.6237
40 Shah and Donnelly 1967 355.3 1 1.3218 1.3218 1.3218
41 Vesely et al. 1988 359.6-433.9 5 0.6972 0.5285 0.9066
42 Wadso 1966 298.1 1 5.9803 5.9803 5.9803

43
Williamson and

Harrison
1957 324.3-353.3 3 0.4730 0.4730 0.7449

Overall 298.1-477.3 37 0.9133 0.7865 5.9803
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Figure 6.16: Comparison between vaporization enthalpy data of 2-propanol and Eq. (6.7).
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6.6. The new equation of state for 2-propanol

As discussed in previous sections, the new equation of state proposed for 2-propanol is a

fundamental equation explicit in the reduced Helmholtz energy:

( ) ( ) ( ) ( )ρρρρ
,,,

,
TaTaTa

RT

TA Ro +== (6.8)

The equation of state is split into two terms: the ideal-gas contribution oa and the residual

contribution Ra . The first one is modeled following a classical procedure, if an equation for the

isobaric heat capacity of the ideal gas ( )TC o
p is known; the second one is developed in the EEoS-

NN format as explained in Paragraph 6.2. Both contributions are separately considered in this

section. Since the Helmholtz energy as a function of temperature and density is one of the four

fundamental forms of an equation of state, all thermodynamic properties of a pure substance can be

obtained by combining derivatives of Eq. (6.8). The mathematical expressions for calculating the

most important thermodynamic properties from Eq. (6.8) are given in the Appendix A.2.

6.6.1. Ideal-gas contribution

The ideal-gas contribution of the Helmholtz energy is given in dimensionless form by Eq. (A2.5) in

Appendix A.2. Since the choice of the reference state point is arbitrary, o
0H and o

0S were selected

so that the enthalpy and entropy of the saturated liquid state at 273.15 K assume the values of 200

kJ·kg-1 and 1 kJ·kg-1·K-1, respectively. The value assumed for the molar gas constant is R=8.314472

J·mol-1·K-1 and it is taken from the work of Mohr and Taylor [94].

From Eq. (A2.5) it is evident that only the ideal-gas heat capacity function ( )TC o
p is required for

the calculation of the ideal-gas properties of the fluid.

The equation for the ideal-gas isobaric heat capacity of 2-propanol used throughout this work

was developed by fitting the literature data of ideal gas heat capacity. The experimental sets for o
pC

have been deviled into primary and secondary as reported in Paragraph 6.4.1 and they are presented

in Tab. 6.2.

The data have been fitted through the equation:

( ) ( )
( )[ ]2

25

2
1

1exp

exp

−
+= ∑

= Tg

TgTg
ff

R

C

i

ii

i
i

ig
p (6.9)

in which the values of if and ig are given in Table 6.15.
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Table 6.15: Ancillary equation parameters for the isobaric heat capacity in the ideal gas state, Eq.

(6.9).

i
if ig

1 4.15473 -
2 1.28915·101 1.73544·103

3 4.54092 4.02984·102

4 2.90755 9.26287·102

5 6.54520 4.46676·103

The validity range of the ideal gas equation (6.9) is from 50 to 1500 K. The results of the

validation of the former Eq. (6.9) are reported in Tab. 6.16 and graphically shown in Fig. 6.17. It

can be seen a high accuracy of the representation of the primary data; among the secondary data the

sets of Berman et al. [7], Green [9], and Hales et al. [10] demonstrate to be consistent with the

primary data whereas the remainder sets are of a far lower quality with high scattering and

systematic deviation with respect to the other ones.

From Eqs. (A2.5) and (6.9) the form of the ideal-gas Helmholtz energy equation reads:

( ) ( ) ( ) ( ) ( )[ ]∑∑
==

−+−−−++=
5

2

5

2
1

2
1 1explnln1ln,

i
ii

i

ii
0

o Tgf
T

gf
Tf

T

a
aTa ρρρ (6.10)

where 356.966673691 =a and K945291.477592 =a , while the other coefficients are given in

Table 6.15.

Table 6.16: Comparison between isobaric heat capacity data in the ideal gas state and Eq. (6.9).

Ref. Authors Year
T range

(K)
NPT

AAD
(%)

Bias
(%)

MAD
(%)

Primary data
5 Chao et al. 1986 100.0- 1500.0 18 0.0008 0.0000 0.0022
6 Chao and Hall 1986 50.0- 1500.0 30 0.0015 0.0000 0.0060

Overall 50.0- 1500.0 48 0.0012 0.0000 0.0060
Secondary data

7 Berman et al. 1964 371.1-451.1 5 0.0743 -0.0095 0.1315
8 Chermin 1961 298.1-1000.0 9 1.3350 -1.3350 2.4721
9 Green 1963 358.7-473.1 6 0.0579 -0.0439 0.0966
10 Hales et al. 1963 358.7-473.1 6 0.0244 0.0189 0.0903
11 Parks and Shomate 1940 427.9-480.3 3 2.9425 -2.9425 5.3278

Overall 50.0-1500.0 77 0.2827 -0.2732 5.3278
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Figure 6.17: Comparison between isobaric heat capacity data in the ideal gas state and Eq. (6.9).

6.6.2. Residual part contribution

The residual part Ra of Helmholtz energy accounts for the deviations of the thermodynamic

behavior of the real fluid from its ideal-gas condition. This contribution is then the most significant

one when dealing with liquid states or with vapor conditions at pressures higher than few bars.

The most precise equations of state are obtained by regression of this part on experimental data

for the fluid of interest. In the present work the residual contribution was developed assuming the

EEoS-NN format presented in Chap. IV. The regression procedure explained in Paragraph 6.2 was

applied to the experimental data presented in Paragraph 6.4. The corresponding coefficients of the

neural network for the representation of the shape functions are given in Table 6.17.
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Table 6.17: Parameters of the neural network for the representation of the shape functions.

01.0=β
3=I
7=J
2=K

05.0min =A 95.0max =A

0.1Bias1 = 0.1Bias2 =
67.184min1min, == TV 1000max1max, == TV

0.0min2min, == ρV 0.16max,r2max, == ρV

7.0min1min, == θW 3.1max1max, == θW

7.0min2min, == φW 3.1max2max, == φW

i j
ijw j k

jkw

1 1 -3.8637901·104 1 1 1.1428544
1 2 -2.5020396·102 1 2 2.6297001·104

1 3 -2.4944556·102 2 1 -6.8098574·103

1 4 3.5098474·102 2 2 1.2440510·103

1 5 -1.2492607·103 3 1 5.0337434·103

1 6 -7.4828584·102 3 2 2.0046389·102

1 7 3.1451497·102 4 1 -1.8357513·103

2 1 -1.2974242·104 4 2 -9.2114177·102

2 2 -1.4376269·102 5 1 -2.2821420·103

2 3 -1.6541755·102 5 2 4.1913229·103

2 4 4.4106993·101 6 1 6.7630984·102

2 5 -4.1265840·102 6 2 -1.4279916·104

2 6 -7.3512844·101 7 1 7.0514476·103

2 7 -6.2072798·102 7 2 -7.1034481·103

3 1 8.6907251·103 8 1 -2.5460679·103

3 2 1.1801736·102 8 2 3.8584896·103

3 3 1.2340248·102

3 4 -7.9568092·101

3 5 4.5591762·103

3 6 -5.8022350·101

3 7 9.3381448·102

The proposed equation of state is valid from 280 to 600 K and up to 50 MPa. The few data

available in the near critical region hinder the possibility to develop, through a heuristic method as

the present one, a reliable representation of the correct trends of isochoric heat capacity, isobaric

heat capacity, and speed of sound in the vicinity of the critical point. In fact a suitable functional

form dedicated to this region should be developed and included in the regression [95].

Consequently, the proposed equation is not recommended for the accurate calculation of such

properties in the critical region.
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The critical point calculated through the EoS is at 52508, .TT EoSc == K, 4.746PP EoSc == , MPa

and 8383, .ρρ EoSc == mol·l-1 65.230= kg·m-3.

The EoS coefficients were regressed on the saturated pressure values generated by Eq. (6.4),

saturated liquid density values generated by Eq. (6.5), saturated vapor density values generated by

Eq. (6.6), saturated liquid isobaric heat capacity values classified as primary in Tab. 6.6, saturated

liquid speed of sound values in Tab. 6.6, density values classified as primary in Tab. 6.7, isobaric

heat capacity values classified as primary in Tab. 6.8, isochoric heat capacity in Tab. 6.9 and speed

of sound data classified as primary in Tab. 6.10.

The obtained EoS has been validated for pressures up to 174 MPa.

6.7. Comparison of the new equation of state with experimental data

The comparisons of the obtained equations with respect to the available experimental data are

given in this Paragraph. In the following the validation is separately done for each of the identified

thermodynamic regions.

The performances of the developed EEoS-NN models in the region very close to the critical

point cannot be verified, because very few data are available and the functional form is not

specialized for such a region. Notwithstanding, the validation results for the considered equations in

the critical region were included in the calculation of the overall deviation values.

6.7.1. Vapor-liquid phase boundary

The present section summarize the validation results of the developed EEoS-NN model with

respect to all the available properties in the coexistence region.

The chosen strategy of simultaneously regressing the four ancillary equations (6.4) to (6.7)

representing the saturation properties, vapor pressure, saturated liquid and vapor densities, and

vaporization enthalpy, together with the Clapeyron-Clausius relation, exposed in section 4. gets a

higher consistency for the representation of these properties. This is particularly necessary due to

the lack of experimental values in certain parts of the validity range of the mentioned properties. In

order both to overcome the mentioned lack of data in certain segments of the range, see the

corresponding discussion at Paragraph 6.4.2, and to maintain a same whole consistency with all the

saturation data it was decided to regress the DEoS using only data at saturation generated from the

cited ancillary equations instead of directly using the experimental points.

The validation results for vapor pressure are shown in Tab. 6.18. In the regression procedure the

232 values generated through the Eq. (6.4) are here considered as primary while the overall

validation was performed on a set composed by the 232 points generated from the ancillary Eq.
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(6.4) and 299 experimental points considered as secondary data. The error deviation of the present

EEoS-NN equation with respect to the generated points, represented by the dotted line, and to the

mentioned 299 experimental points is shown in Fig. 6.18. The overall AAD is about 0.35 % and the

value of the Bias quite close to a null value demonstrate the DEoS gets a good representation of the

saturation condition, even if the available data sets are rather incoherent each other as it is evident

from the plot of Fig. 6.18 which shows the points with an evident scattering, particularly for

temperature lower than about 400 K. In particular the DEoS represents very well the sets of

Biddiscombe et al. [13] and of Segura et al. [27] and the set of Ambrose and Townsend [12] are

well represented too, particularly looking at the fact that they are practically the only values for

temperature over about 400 K.

Table 6.18: Comparison between vapor pressure data and the EEoS-NN model.

Ref. Authors Year
T range

(K)
NPT

AAD
(%)

Bias
(%)

MAD
(%)

Primary data
This
work

Values generated by Eq. (6.4) - 275.0-506.0 232 0.2251
-0.1068

0.9784

Secondary data
12 Ambrose and Townsend 1963 395.1-500.2 24 0.2726 -0.1078 0.8211
13 Biddiscombe et al. 1963 329.9-362.4 17 0.0976 0.0776 0.1541
14 Dejos et al. 1996 300.4-354.9 30 0.6067 0.5329 1.0580
15 Garriga et al. 1996 278.1-323.1 10 0.7158 0.1942 1.5555
16 Gonzalez et al. 1999 339.0-367.5 65 0.3300 0.3300 0.4545
17 Hong et al. 2002 333.1-373.1 4 0.5573 0.2851 0.6381
18 Marzal et al. 1996 327.9-354.9 3 0.7141 0.7141 0.9611
19 Moreland et al. 1967 373.1-473.1 5 0.5311 0.0459 1.3761
20 Nasirzadeh et al. 2004 298.1-353.1 12 0.1469 0.0069 0.4571
21 Nikiforova et al. 1985 313.1-355.6 6 0.9692 -0.9692 1.4538
22 Ortega and Susial 1993 347.6-361.1 3 1.0642 1.0642 1.4390
23 Parks and Barton 1928 278.1-363.1 18 1.5029 -0.4344 5.1402
24 Pereiro et al. 2005 345.5-385.4 38 0.5743 -0.4341 0.9598
25 Pokki et al. 2003 333.7-355.4 12 0.2093 -0.2093 0.2680
26 Rao et al. 1998 323.1-355.4 8 0.1474 -0.0637 0.3371
27 Segura et al. 2002 321.7-355.4 15 0.0961 0.0770 0.2519
28 Weclawski J. 1983 298.1-348.1 7 0.2317 -0.1686 0.8190
29 Wilson and Simons 1952 311.2-420.8 22 0.3275 0.2539 1.5707

Overall 275.0-506.0 531 0.3538 -0.0141 5.1402
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Figure 6.18: Comparison of each source of saturation pressure data with the EEoS-NN model.

The validation results for saturated liquid and vapor densities are shown in Tab. 6.19. In the

regression procedure the 232 values generated for each of the two properties through the Eqs. (6.5)

and (6.6) are here considered as primary and the overall validation was performed on a set

composed by the generated and experimental points. The error deviation of the present EEoS-NN

equation with respect to the generated points, represented by the dotted line, and to the experimental

points is shown in Fig. 6.19. The overall AAD is largely different for the two densities being about

0.19 % and 2.77 % for the liquid and vapor, respectively. Taking advantage from the consistency of

the chosen regression method mentioned above one can see from both Tab. 6.19 and Fig. 6.19 that
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the data of both quantities are substantially incoherent among them and that the developed DEoS

looses accuracy approaching the critical point.

Table 6.19: Comparison of each source of saturation density data with the EEoS-NN model.

Ref. Authors Year
T range

(K)
NPT

AAD
(%)

Bias
(%)

MAD
(%)

Saturated liquid density
Primary data

This
work

Values generated by Eq. (6.5) 275.0-506.0 232 0.1766 -0.0735 3.1194

Secondary data
12 Ambrose and Townsend 1963 407.3-504.2 15 0.3929 -0.3178 1.3632
30 Ambrose et al. 1978 275.0-500.0 10 0.2183 -0.0494 0.7734
31 Golubev et al. 1979 292.7-503.9 8 0.2612 0.0921 0.6406
32 Hales and Ellender 1976 298.1-430.0 9 0.0592 0.0193 0.1109

Overall 275.0-506.0 274 0.1886 -0.0781 3.1194
Saturated vapor density

Primary data
This
work

Values generated by Eq. (6.6) 275.0-506.0 232 2.4531 2.2823 14.2310

Secondary data
12 Ambrose and Townsend 1963 407.3-504.2 15 8.0511 8.0511 19.7430
30 Ambrose et al. 1978 275.0-500.0 10 2.4385 1.8614 10.4955
19 Moreland et al. 1967 423.1-473.1 3 2.3406 2.3406 3.0349

Overall 275.0-506.0 260 2.7742 2.5996 19.7430
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Figure 6.19: Comparison between experimental data of saturated liquid and vapor density and

values calculated with the EEoS-NN model.
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The vaporization enthalpy data were not included in the regression procedure of the DEoS and

the validation results of the developed DEoS with respect to the 37 experimental points is presented

in Tab. 6.20 and shown graphically in Fig. 6.20.

The overall AAD is about 0.53 % and the value of the Bias is about –0.19%, demonstrating that

the DEoS gets a good representation of these data despite a certain scattering appearing from the

plot of Fig. 6.20. From the Tab. 6.20 a certain homogeneity of both the quality of the data sets and

of the prediction accuracy by the DEoS can be outlined.

Table 6.20: Comparison between vaporization enthalpy data and the EEoS-NN model.

Ref. Authors Year
T range

(K)
NPT

AAD
(%)

Bias
(%)

MAD
(%)

33 Bennewitz and Rossner 1938 354.9 1 1.0134 1.0134 1.0134
7 Berman et al. 1964 330.2-362.7 4 0.4526 -0.4526 0.5783

13 Biddiscombe et al. 1963 355.4 1 0.7714 0.7714 0.7714
34 Brown 1903 356.0 1 1.2754 1.2754 1.2754
10 Hales et al. 1963 324.6-355.4 3 0.4532 -0.4532 0.5977
35 Mathews 1926 354.4 1 0.2978 -0.2978 0.2978

36
Newsham and Mendez-

Lecanda
1982 354.3 1 0.9330 -0.9330 0.9330

37 Parks and Nelson 1928 355.4 1 1.4487 1.4487 1.4487
38 Polak and Benson 1971 298.1-333.1 4 0.1602 -0.1602 0.2866
39 Radosz and Lydersen 1980 402.1-477.3 10 0.7753 -0.5704 2.5481
40 Shah and Donnelly 1967 355.3 1 0.6185 -0.6185 0.6185
41 Vesely et al. 1988 359.6-433.9 5 0.1697 0.1347 0.3925
42 Wadso 1966 298.1 1 0.5327 -0.5327 0.5327

43
Williamson and

Harrison
1957 324.3-353.3 3 0.1268 -0.0877 0.2230

Overall 298.1-477.3 37 0.5320 -0.1886 2.5481
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Figure 6.20: Comparison between vaporization enthalpy data and values calculated with the

EEoS-NN model.

The validation results for saturated liquid isobaric heat capacity and speed of sound data are

shown in Tab. 6.21 and the error deviations of both the quantities are plotted in Fig. 6.21. For the

development of the DEoS the data sets of Ginnings and Corruccini [44] for the saturated liquid

isobaric heat capacity and those of Otpushchennikov et al. [46] for the saturated liquid speed of

sound were chosen as discussed in Paragraph 6.4.2. The Fig. 6.21 shows also the validation results

for the data from Hoffman et al [45].

Both the Tab. 6.21 and the Fig. 6.21 evidence that the data quality of both quantities is rather

questionable also considering the few sources and the limited number of available points.
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Table 6.21: Comparison between saturated isobaric heat capacity data and saturated speed of

sound data and the EEoS-NN model.

Ref. Authors Year T range
(K)

NPT AAD
(%)

Bias
(%)

MAD
(%)

Saturated isobaric heat capacity
Primary data

44 Ginnings and Corruccini 1948 273-473 12 1.3086 -1.1026 6.4931
Total primary

Secondary data
45 Hoffman et al. 1977 353-463 12 3.9437 3.9437 5.2171

Overall 273-473 24 2.6261 1.4205 6.4931
Saturated speed of sound

Primary data
46 Otpushchennikov et al. 1974 293-473 19 1.8418 1.3261 3.4208

Overall 293-473 19 1.8418 1.3261 3.4208
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Figure 6.21: Comparison between the EEoS-NN model and: a) saturated heat capacity data; b)

saturated speed of sound data.



VI.A fundamental equation of state for 2-propanol (i-C3H8O) in extended equation of state format250

6.7.2. Single phase region

DENSITY

The results of the validation of the EEoS-NN equation are reported in Table 6.22. For the vapor

region the error deviation was evaluated in terms of pressure while for all the other regions the

deviation was evaluated in terms of density.

In the vapor region all the available data sets have been included into the primary data because

the region is substantially lacking of experimental data so that the vapor data subset is composed

mainly by the set from Moreland et al. [19] and the seven points from Foz et al. [47] under the

atmospheric pressure. Many points from Ambrose et al. [30] are also present for pressure

approaching the critical point. Furthermore, the subset does not present superposition of the data

sets ranges. Consequently, in order to conveniently document the vapor region all the sets have

been necessarily included into the regression procedure apart from their quality. Looking at Tab.

6.22 one can see that the accuracy of the equation with respect the mentioned data is not

comparable with the usual experimental uncertainty for TPρ data in the vapor region indicating

that the sets have a modest coherence among them and a relatively high scattering. This situation of

the data suggests the necessity to better study the TPρ behavior in the region through a further

experimental effort. The Fig. 6.22 reports the error deviation of the DEoS in this region and shows

that approaching the coexistence condition a trend of increasing error is evidenced.

In the liquid region the number of available points is much higher as the Fig. 6.8 shows but the

quality of the data for liquid is not better than for vapor. The expected experimental uncertainty in

this region is usually better of at least one order of magnitude, but for this fluid the situation is

unluckily comparable with that of the vapor region. The choice of the sets composing the liquid

data subset also in this case was necessarily the result of a compromise: the set of Ambrose et al.

[30] covers a region around the critical point, while the data of Golubev et al. [31] cover a range

from 1 up to 50 MPa in a wide range of temperature. Recently have been available the data from

Stringari et al. [48] covering a pressure range from atmospheric pressure up to 10 MPa and

temperatures from 280 to 393 K. These three sets were selected to compose the primary data subset

in the liquid region. A fourth set from Zuniga-Moreno and Galicia-Luna [77] is also available in the

lower part of the temperature range and these data are of good quality too, but, due to the scarcity of

reliable data, it was chosen to move them into the secondary data subset to have at least a reliable

set in the liquid region for the validation procedure of the DEoS. The statistical analysis of the

residual error presented in Tab. 6.22 documents a better result for this region with an AAD value

which is about 38 % lower with respect to that of the vapor region, but a strong incoherence is
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evidenced between the set from Ambrose et al. and the other two. Notwithstanding it is necessary to

include the set of Ambrose et al. because its points regularly cover a rather large region extending

toward the critical point. Alternatively, the data from Golubev et al. are not suitable to entirely

describe this same region due to a more sparse distribution of its points. In Fig. 6.23 it is evidenced

a systematic deviation of the points from Ambrose et al. in the temperature range from 360 to 480 K

while approaching the critical temperature all the available data increase their scattering but the

points of this set have a behavior quite similar to that of the points from Golubev et al. The Tab.

6.22 also shows that in this region the data from the more reliable sets of Zuniga-Moreno and

Galicia-Luna and Yaginuma et al. [76] are basically consistent with the primary sets in their same

range. For all the data close to the atmospheric pressure the DEoS presents a good quality as well as

for the set of Golubev et al. [49] covering a rather wide range.

Among the sets reporting the higher number of points the DEoS shows for the sets of Tseng and

Stiel [51] and of Golubev and Vagina [50] a low accuracy with a high AAD value. The data from

Kubota et al. [63] are distributed at pressures up to 174 MPa, which is mostly outside the validity

region of the DEoS but they allow a validation in extrapolation showing a consistent behavior of the

equation also in a high pressure range where it was not regressed.

The validation with respect to the secondary data is plotted in Fig. 6.24; in the liquid region the

prediction accuracy with respect to the secondary data looks to be consistent with that of the

primary data and without significative deviations. The extrapolation behavior of the DEoS at low

temperatures outside the validity range gives satisfactory results as it is documented by the points in

the range from 200 to 280 K.

In the supercritical region the primary sets are of Ambrose et al. [30] and Golubev et al. [31]; the

first covers a range much close to the critical point while the second extends to higher temperatures

and pressures, i.e., up to 594 K and 49.1 MPa. From Tab. 6.22 the performance of the DEoS for

these sets is shown to be very similar with close AAD values, even if of a modest quality. This

modest result can be analyzed looking at the Fig. 6.23 where the points present a high scattering but

well centered around the density surface of the DEoS.

For the secondary data subset the values from Tseng and Stiel [51] and Golubev et al. [49] have

an AAD lower with respect to that of the primary data particularly because they are less close to the

critical point, see Fig. 6.24, where the isotherms are not so affected by the flex at the critical point.
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Table 6.22: Comparison of each source of density data with the EEoS-NN model.

Average Absolute Deviation AAD (%) Bias (%) MAD (%)Ref. Author Year NPT T range
(K)

P range
(MPa) Vap. Liq. Supercr Overall Overall Overall

Primary data
30 Ambrose et al. 1978 362 386-573 0.4-13.4 0.5828 0.7876 0.8705 0.7153 0.0275 7.8563
47 Foz et al. 1954 7 350 0.0-0.1 0.1002 - - 0.1002 -0.0318 0.1687
31 Golubev et al. 1979 167 293-594 1.1-49.1 0.6801 0.2007 0.8763 0.5208 -0.3404 4.7396
19 Moreland et al. 1967 98 373-473 0.1-2.5 0.5176 - - 0.5176 -0.3165 3.0822
48 Stringari et al. 2008 150 280-393 0.1-9.8 - 0.0884 - 0.0884 0.0100 0.2333

Total primary 784 280-594 0.0-49.1 0.5490 0.3369 0.8733 0.5207 -0.0862 7.8563
Secondary data

52 Aminabhavi and Aralaguppi 1993 5 298-318 0.1 - 0.0300 - 0.0300 -0.0209 0.0382
53 Aminabhavi et al. 1993 3 298-308 0.1 - 0.0334 - 0.0334 -0.0334 0.0510
54 Aminabhavi and Gopalakrishna 1995 4 298-313 0.1 - 0.0900 - 0.0900 -0.0900 0.0920
55 Boned et al. 2000 42 303-343 0.1-65.0 - 0.2196 - 0.2196 -0.2187 0.4331
56 Contreras 2001 4 298-313 0.1 - 0.0450 - 0.0450 -0.0436 0.0841
57 Egorov et al. 2004 8 275-338 0.1 - 0.0860 - 0.0860 -0.0700 0.1260
50 Golubev and Vagina 1963 135 292-504 0.1-51.0 - 0.4874 - 0.4874 -0.3767 1.4789
49 Golubev et al. 1980 79 300-560 1.0-50.0 - 0.1103 0.4469 0.2253 -0.0848 1.9890
58 Islam and Quadri 1987 6 298-323 0.1 - 0.1508 - 0.1508 0.1508 0.3478
59 Khimenko et al. 1973 7 288-323 0.1 - 0.0464 - 0.0464 -0.0261 0.0858
60 Khimenko et al. 1982 9 288-328 0.1 - 0.0745 - 0.0745 -0.0745 0.1315
61 Krestov et al. 1980 4 288-328 0.1 - 0.1826 - 0.1826 0.0363 0.3998
62 Ku and Tu 1998 4 293-323 0.1 - 0.0439 - 0.0439 -0.0274 0.0789
63 Kubota et al. 1987 44 283-348 0.1-174.1 - 0.2495 - 0.2495 -0.2325 0.5723
64 Lee and Lin 1995 3 303-323 0.1 - 0.0498 - 0.0498 0.0071 0.0853
65 Mato and Coca 1969 1 298 0.1 - 0.0767 - 0.0767 -0.0767 0.0767
66 Moha-Ouchane et al. 1998 12 303-343 0.1-60.0 - 0.2074 - 0.2074 -0.2047 0.4231
67 Nagata et al. 1973 1 298 0.1 - 0.1026 - 0.1026 -0.1026 0.1026
68 Nikam et al. 1998 4 298-313 0.1 - 0.0311 - 0.0311 -0.0311 0.0472
69 Oswal and Putta 2001 3 303- 318 0.1 - 0.0406 - 0.0406 0.0278 0.0645
70 Paez and Contreras 1989 5 293-323 0.1 - 0.0712 - 0.0712 -0.0476 0.1046
71 Sakurai 1988 5 278-318 0.1 - 0.0909 - 0.0909 -0.0909 0.1395
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Average Absolute Deviation AAD (%) Bias (%) MAD (%)Ref. Author Year NPT T range
(K)

P range
(MPa) Vap. Liq. Supercr Overall Overall Overall

Secondary data (continuation)
72 Sovilj 1995 3 278-308 0.1 - 0.0257 - 0.0257 0.0181 0.0527
73 Tashima and Arai 1981 7 293-343 0.1 - 0.0760 - 0.0760 -0.0404 0.1174
51 Tseng and Stiel 1971 154 473-573 6.9-55.2 - 0.4312 0.3319 0.3675 0.2538 3.5303
74 Tu et al. 2001 4 293-313 0.1 - 0.0679 - 0.0679 -0.0679 0.1046
75 Wei and Rowley 1984 1 298 0.1 - 0.1535 - 0.1535 -0.1535 0.1535
76 Yaginuma et al. 1997 11 313 1.0-9.8 - 0.0641 - 0.0641 -0.0641 0.0806
77 Zuniga-Moreno and Galicia-Luna 2002 156 313-363 0.5-25.1 - 0.1558 - 0.1558 0.1557 0.3637

Overall 1516 275-594 0.0-174.1 0.5490 0.4004 0.6386 0.3996 -0.0561 7.8563
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Figure 6.22: Comparison of each primary source of density data with the EEoS-NN model in the

vapor phase.
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Figure 6.23: Comparison of each primary source of density data with the EEoS-NN model.
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HEAT CAPACITIES

The developed DEoS represents the isobaric heat capacity as shown in Tab. 6.23. The three data

sets of Andon et al. [78], Hales et al. [10], and Dreher [79] have been chosen for the primary data

subset, the first for the liquid region at atmospheric pressure and the second for the vapor region at

low pressure. The third one covers the liquid and supercritical regions at pressure ranging from 4.8

up to 30 MPa, assuring also an enough detailed documentation in a region approaching the critical

point as the Fig. 6.11 shows. The representation of the points of the Hales et al. set is unluckily

modest also due to a systematic deviation as the value of Bias in Tab. 6.23 indicates. From the Fig.

6.25 it can be seen how the error deviation is distributed: at temperatures higher than 380 K the

DEoS surface is close to the points whereas at lower temperatures the equation accumulates

important deviations. The DEoS behavior for the other two sets is similar even if the points of

Andon et al. have a negative shift and those of Dreher a positive shift, as the corresponding Bias

values indicate. The data of Andon et al. range at temperatures much more lower than the validity

of the equation and as much as they decrease in temperature there is an increase of the residual

error. The points from Dreher present a shifting in the liquid region while they are well centered

approaching the critical temperature and exceeding the critical temperature, see Fig. 6.25.

Looking at Tab. 6.23 it can be seen that the residual error of the DEoS with respect to the

primary data subset and its prediction accuracy with respect to the overall data set, inclusive of the

primary data, are rather close in values. Considering each singular region for the vapor the behavior

for the secondary data is modest as it was for the primary data; in the liquid the situation is better

with a more uniform performance, except few worse sets. For the supercritical region the single set

of Naziev et al. [82] is available and for it a low accuracy is obtained as it is more evident looking at

the Fig. 6.26, where the corresponding points present a systematic positive shifting with respect to

the equation surface. Furthermore, the Tab. 6.23 indicates that the available isobaric heat capacity

sets have a poor coherence each other presenting evident systematic shifting with consistent

positive and negative values of the Bias.

This situation, particularly critical for this fluid with a not favorable condition of the

experimental sources, has forced the choice of the primary sources of each property included into

the training set looking primarily to the best overall compromise for the representation of all the

properties; including some data sets of a property into the training subset infers an evident decrease

in the representation capability of other properties.
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Table 6.23: Comparison of each source of isobaric heat capacity data with the EEoS-NN model.

AAD (%) Bias (%) MAD (%)Ref. Authors Year T range
(K)

P range
(MPa)

NPT
Vap. Liq. Supercr. Overall Overall Overall

Primary data
78 Andon et al. 1963 188-327 0.1 60 - 1.4591 - 1.4591 -0.5447 6.0134
10 Hales et al. 1963 329-473 0.0-0.1 19 4.4182 - - 4.4182 4.1902 22.4061
79 Dreher 1979 323-573 4.8-30.0 57 - 1.5681 1.5913 1.5803 0.6447 5.5777

Total primary 188-573 0.0-30.0 136 4.4182 1.5122 1.5913 1.9233 0.6153 22.4061
Secondary data

33 Bennewitz and Rossner 1938 410 0.1 1 6.2231 - - 6.2231 -6.2231 6.2231
7 Berman et al. 1964 371-451 0.0-0.1 18 1.1944 - - 1.1944 0.8034 8.1713
80 Grigor’ev et al. 1979 311-452 0.1-2.0 8 - 0.7550 - 0.7550 -0.3084 1.7513
45 Hoffman et al. 1977 353-463 1.0-4.0 65 - 2.0653 - 2.0653 2.0530 4.2659
81 Katayama 1962 283-343 0.1 8 - 2.9138 - 2.9138 2.9138 5.3209
3 Kelley 1929 188-293 0.1 12 - 2.3299 - 2.3299 -2.1031 7.1963
82 Naziev et al. 1993 302-521 0.1-50 62 - 2.4524 5.4192 2.6917 2.3223 9.0394
83 Parks and Kelley 1925 195-293 0.1 9 - 1.2702 - 1.2702 -0.6785 2.8868
84 Shah and Donnelly 1967 300-349 0.1 8 - 4.1476 - 4.1476 3.7427 5.5763
85 Sinke and DeVries 1953 359-437 0.1 9 5.4619 - - 5.4619 5.3011 23.1517
86 Strömsöe et al. 1970 366-597 0.1 14 2.3309 - - 2.3309 0.7761 12.5491
87 Williams and Daniels 1924 303 0.1 1 - 5.0611 - 5.0611 5.0611 5.0611
88 Zhdanov 1945 280-320 0.1 4 - 1.8807 - 1.8807 1.8807 3.0767

Overall 188-597 0.0-50.0 355 3.1714 1.9499 5.4192 2.2161 1.2956 23.1517
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Figure 6.25: Comparison of each primary source of isobaric heat capacity data with the EEoS-

NN model.



VI.A fundamental equation of state for 2-propanol (i-C3H8O) in extended equation of state format260

-10

-5

0

5

10

Bennewitz and Rossner [33] Parks and Kelley [83]
Berman et al. [7] Shah and Donnelly [84]
Grigor'ev et al. [80] Sinke and DeVries [85]
Hoffman et al. [45] Strömsöe et al. [86]
Katayama [81] Williams and Daniels [87]
Kelley [3] Zhdanov [88]
Naziev et al. [82]

180 - 220 K

-10

-5

0

5

10 220 - 260 K

-10

-5

0

5

10

10
0

·(
C

p,
ex

p
-

C
p,

ca
lc
)

/C
p,

ex
p 260 - 300 K

-10

-5

0

5

10

P s (320 K)

300 - 340 K

0.01 0.1 1 Pc 10 100
-10

-5

0

5

10

P s (360 K)

340 - 380 K

P / MPa

P s (400 K)

380 - 420 K

P s (440 K)

420 - 460 K

P s (480 K)

460 - 500 K

500 - 560 K

0.01 0.1 1 Pc 10 100

560 - 600 K

P / MPa
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The single source of Amirkhanov et al. [89] of 158 points in the liquid region is available for the

isochoric heat capacity and it has been included in the primary set for the regression of the DEoS

coefficients. The residual error of the DEoS with respect to this data set in term of AAD, reported in

Tab. 6.24, is 0.73 % while the Bias is 0.22 %; it can be said that the performance of the equation is

comparable with the usual experimental uncertainty of this property. Also looking at the upper part

of the Fig. 6.27 it can be seen that the points are rather well centered with respect to the equation

surface except in the range 400 to 450 K.
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Figure 6.27: Comparison of each source of isochoric heat capacity data and of speed of sound

data with the EEoS-NN model.
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Table 6.24: Comparison of each source of isochoric heat capacity data with the EEoS-NN

model.

AAD (%)
Bias
(%)

MAD
(%)Ref. Authors Year

T range
(K)

ρ range
(mol/l)

NPT
Vap. Liq. Supercrit. Overall Overall Overall

89
Amirkhanov

et al. 1985 324-533 7.5-12.6 158 -
0.725

6
- 0.7256 0.2194 5.3667

Overall 324-533 7.5-12.6 158 -
0.725

6
- 0.7256 0.2194 5.3667

SPEED OF SOUND

The speed of sound region is scarcely documented because the points are very few and they lay

only in the liquid region at atmospheric pressure in a narrow temperature range. The set of Sakurai

et al. [90] has been taken as primary and the DEoS performance for its five points is modest, see

Tab. 6.25, but its points are sufficiently centered with a low value of Bias. The validation with

respect to the secondary data is consistent with the results for the primary data. For this quantity, for

which 14 points are available, a precise analysis cannot be developed due to reduced number of data

laying in a limited range. The lower part of the Fig. 6.27 presents the error deviation of the DEoS

and shows that the points are substantially centered around the equation surface but that the evident

and ambiguous trend has to be considered questionable. Anyway, the very limited number of

available points is evidently not sufficient to condition the shape of the speed of sound surface as

represented by the DEoS. On the other hand the general representation of the speed of sound

surface by the DEoS, as plotted in Fig. 6.33, can be qualitatively considered regular and coherent

with an expected behavior.
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Table 6.25: Comparison of each source of speed of sound data with the EEoS-NN model.

AAD (%) Bias (%) MAD (%)Ref. Authors Year T range
(K)

P range
(MPa)

NPT
Vap. Liq. Supercr. Overall Overall

Primary data
90 Sakurai et al. 1994 278-318 0.1 5 - 1.0229 - 1.0229 -0.0587 1.7479

Total primary 278-318 0.1 5 - 1.0229 - 1.0229 -0.0587 1.7479
Secondary data

91 Bruun and Hvidt 1977 293-298 0.1 2 - 0.2675 - 0.2675 -0.2675 0.4953
61 Krestov et al. 1980 283-328 0.1 4 - 1.3057 - 1.3057 0.7954 2.5011
92 Lara and Desnoyers 1981 298 0.1 1 - 0.3774 - 0.3774 -0.3774 0.3774
93 Marks 1967 273-293 0.1 2 - 1.1289 - 1.1289 -1.1289 1.9657

Overall 273-328 0.1 14 0.9648 - 0.9648 -0.0201 2.5011
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6.8. Representation of the thermodynamic surfaces

The EEoS-NN equation developed from the whole training data set is valid from 280 to 600 K

and up to 50 MPa. In Fig. 6.28 the pressure versus density behavior of the equation has been

represented for temperatures from 280 to 1000 K and pressures up to 500 MPa.

The isotherms shape is reasonable and coherent with an expected behavior for all the

thermodynamic regions. This evidences that possible overfitting and inconsistent behaviors, also

due to uneven data distribution, were avoided in the training procedure.

The pressure versus enthalpy isothermal lines are plotted in Fig. 6.29, in which the temperature

is inside the validity range of the DEoS and the pressure is extended up to 500 MPa. Also in this

case the isotherms have a qualitatively correct behavior.

The representation of the isobaric lines in a TC p , plane covering the temperature validity range

of the equation and pressure extended to 200 MPa is shown in Fig. 6.30. Also in this diagram the

correct trend of the curves confirms the reliable quality of the equation.

A region of the TC p , plane close to the critical point, within 500 to 550 K and 4.7 to 20 MPa, is

plotted in Fig. 6.31 together with all the available experimental points falling inside this range. An

accurate representation of the data is evidenced in the figure.

In Fig. 6.32 the isobaric lines in a TCv , plane inside a window covering the whole validity range

of the DEoS are plotted; this representation too demonstrates the correct trend of the curves

confirming the good reliability of the equation.

The speed of sound versus temperature isobaric lines are plotted in Fig. 6.33 inside the validity

range of the DEoS. In spite of the fact that the speed of sound data were available only at

atmospheric pressure the behavior of the w surface in the whole validity range, as represented by

the equation, presents a qualitatively correct trend.

At last, the proposed equation of state can be reasonably extrapolated beyond the stated validity

limits, but in any case the use of the equation outside the range from triple point temperature to

1000 K and densities beyond 961.5 kg·m-3 is not recommended, because the limits of the

independent variables given in Table 6.17 should not be exceeded.
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equation.

300 350 400 450 500 550 600

200

400

600

800

1000

1200

50 MPa

100 MPa

10 MPa
6 MPa

5 MPa4 MPa

3 MPa2 MPa

1 MPa
saturated vapor

saturated liquid

w
/(

m
·s

-1
)

T / K

Figure 6.33: Calculated speed of sound values along isobars using the EEoS-NN equation.
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6.9. Conclusions

A new equation of state in Helmholtz energy form was obtained for 2-propanol by applying an

innovative regression technique. The format of the equation is called “EEoS-NN” and it is

constituted by a basic equation (in the present case a PR cubic equation) whose functional form is

distorted through the application of shape functions, expressed as a neural network, to the

independent variables. The coefficients of the neural network are obtained through nonlinear

regression from experimental data. The accuracies of present equation with respect to the available

sources of experimental data have been discussed and the composition of the training data subset

has resulted from a necessary compromise due to the unfavorable conditions for the development of

a DEoS, because in general the distribution of the data were irregular, the data sets were often

inconsistent each other, a pronounced scattering of the experimental points was present, and for the

isochoric heat capacity and the speed of sound the available data were insufficient.

The validity ranges of the developed equation are from 280 up to 600 K and for pressures up to

50 MPa. Due to the substantial lack of data in the near critical region and the non-specialization of

this DEoS in representing such region very close to the critical point the present equation is not

suggested to be used within a region very close to the critical point.

Notwithstanding, the qualitative behavior of several thermodynamic property surfaces is shown

to be quite reasonable; it is then questionable only the quantitative behavior of the equation but not

the qualitative one in the mentioned region. Anyway, a moderate extrapolation outside the equation

limits is considered to be reliably possible.

The representation of the available experimental data is satisfactory for all the considered

properties; in fact the deviations of the equation from the data are comparable with the realistic

uncertainties of the experimental sources for this fluid.

In conclusion, the EEoS-NN modeling technique is a valuable and effective tool for the

development of fundamental equations of state dedicated to pure fluids, since it provides an

equation in Helmholtz energy form that is capable to reproduce the thermodynamic properties with

high accuracy.

In the former application of this modeling technique for the development of the DEoS of sulfur

hexafluoride, see Chapter V, the experimental situation was very favorable from the point of view

of kind, quantity, quality and distribution of the available data and the obtained equation was of

high accuracy, comparable with the “group-two dedicated equations of state” [95] developed in

recent years through the so-called functional form optimization procedure [96].

In the present case the same EEoS-NN modeling technique has been deliberately applied to the

unfavorable situation of the fluid 2-propanol with the express will to verify the effectiveness of the
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method in much more difficult conditions. Beyond the mentioned situation of the base of data the 2-

propanol is well known as a strongly polar and self-associating fluid with a pronounced deviating

behavior.

The obtained results instead demonstrate that the EEoS-NN modeling method is completely

reliable for the purpose and that, compatibly with the experimental data situation for the fluid,

highly effective DEoS can be anyway developed. This aspect is particularly favorable in the case a

DEoS is required for engineering applications where the economy of the experimental effort and the

representation accuracy have to be met through a suitable compromise.

The present equation of state for the fluid 2-propanol could be enhanced when new and coherent

density experimental data would be made available for all the regions and in particular for the near

critical one. Vapor pressure data from about 380 K to the critical point and saturated vapor densities

in all the temperature range are needed. Coexistence data under 273 K are totally lacking. The data

subset for the isobaric heat capacity has to be improved, while for the remainder caloric properties

new experimental campaigns with rather wide ranges are evidently necessary.
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VII. VLLE and excess enthalpy for the propylene + 2-propanol + water

mixture

7.1. Introduction

The EEoS-NN technique has been successfully applied in Chapters V and VI to develop DEoSs

for the pure fluids sulfur hexafluoride and 2-propanol, respectively, starting from their experimental

data. The precise knowledge of the thermophysical properties of a system is a basic requirement to

optimize from an energetic point of view the process in which the system is involved, finding out

the more suitable operative conditions for the unit operations. The EEoS-NN technique allows to

obtain a precise DEoS, either for a pure fluid or a mixtures, drawing it through an heuristic

procedure directly from a set of experimental data of selected properties. As a consequence the

experimental effort is reduced both in the number of properties that have to be investigated and in

the number of measurements that have to be carried out for each property, as it has been shown

from the preliminary studies in Chapter IV. These features make the EEoS-NN technique a useful

tool for the process analysis and optimization.

To investigate the potential of the EEoS-NN technique as a tool to study real processes typical of

the chemical industry a propaedeutical system has to be chosen and studied as an exemplification

case. This thesis work focuses on the study of the system propylene + 2-propanol + water

encountered in the extraction process of 2-propanol from aqueous solutions using propylene as

solvent. 2-Propanol and water form an azeotropic binary mixture that cannot be separated by means

of a conventional distillation process. To overcome this problem a third component, propylene in

this case, is added to allow the separation. This system was selected after a screening of the

literature data which is rather lacking of detailed documentation, because it seems to present

favorable conditions for an extraction operation.

Ranging from the liquid-liquid extraction to the supercritical extraction an accurate knowledge

of the thermodynamics of the mixture in a wide range of temperature, pressure and composition is

necessary to evaluate the conditions at which the process has to be driven for a minimum

consumption of energy.

The propylene + 2-propanol + water system is thermodynamically strongly deviating from ideal

behavior due to several causes as the strong polarity of the components, their association behavior,

etc., which increases a lot the difficulties of a complete and accurate thermodynamic representation.

Moreover, the literature is quite lacking of thermodynamic experimental data so that the study of

the system has necessarily to start from an experimental activity.
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In the present chapter the available literature data for the mixture propylene + 2-propanol + water

are collected, and new measurements, carried out in order to improve the knowledge of the

thermodynamic properties of such mixture, are presented.

The available experimental data are concerning phase equilibria and in particular they refer to

the works of Zabaloy et al. [1] and Rojas et al. [2] for VLE and LLE, respectively. Solubility data

are also available from Wu et al. [3].

In the context of the present research work VLLE and EH data have been measured for the

ternary mixture and for the binary 2-propanol + water system. The new data are presented in the

present chapter, where also a semi-predictive model for the ternary mixture has been regressed to

get a qualitative representation of the thermodynamic behavior of the system. In order to develop a

precise DEoS for the propylene + 2-propanol + water mixture further measurements have to be

carried out, in particular densities, and this will be the matter of the next Chapter VIII.

7.2. Chemicals

Water (H2O, M = 18.0153 kg·kmol-1, CAS-RN 7732-18-5) was distilled twice. The 2-propanol

(CH3CH(OH)CH3, molar mass M = 60.0959 kg·kmol-1, CAS-RN 67-63-0) was obtained from Carl

Roth. Its final purity after drying over molecular sieve, degassing, and distillation was 99.95 mass

% (checked by gas chromatography). The propylene (CH3CH=CH2, M = 42.0806 kg·kmol-1, CAS-

RN 115-07-1) was obtained from Messer Griesheim with a purity of 99.5 mass % (checked by gas

chromatography) and used without further purification. For the EH measurements the 2-propanol

and the water were used without degassing.

7.3. Apparatus and experimental procedure for VLLE measurements

A static VLE apparatus, consisting of an isothermal total pressure cell, has been employed for

measuring the VLLE of the selected ternary mixture. It is schematically shown in Fig. 7.1. This set-

up was developed by the LTP GmbH and can be applied for the experimental determination of

phase equilibrium data as V(L)LE or gas solubility data using the static method at temperatures of

about 270 to 470 K and pressures up to 10 MPa. The cylindrical pressure cell with a capacity of

about 80 cm3 is made of Hastelloy C-276 and fitted with a magnet coupled stirrer.

The thermoregulation of the cell is performed with a metal jacket heated electrically or with an

external liquid thermostat enabling the temperature to be constant within ± 0.05 K. The temperature

of the cell is measured with a nominally PRT-100 (Model 1502 A, Hart Scientific) calibrated on

ITS-90 as indicator an AC resistance bridge ASL model F250 resolving 1 mK in the reading of

temperature and estimating an overall uncertainty of 50 mK. The pressure inside the cell is
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monitored with a Digiquartz pressure sensor (Model PA 25 HTC, Keller) which is calibrated using

dead weight pressure balances.

After equilibration and phase settling samples can be taken from the phases and analyzed by gas

chromatography. Therefore, small amounts of the substances are directly injected into the carrier

gas stream of a gas chromatograph using a pneumatically driven micro sampler (ROLSI: rapid on-

line sampler-injector). The complete cell can be turned so that the cusp of sampling capillary is

immersed in the desired phase. For this purpose, the cell is equipped with borosilicate glass or

sapphire windows which are sealed with PTFE. Because of the very small sample size (about 0.1 to

1 µl) the equilibrium inside the cell is not disturbed. In order to avoid condensation and adsorption

of high boiling components, the micro sampler and the lines for the gas stream of the gas

chromatograph are superheated. In order to enable the sampling, the pressure inside the cell has to

be larger than the pressure of the carrier gas stream of the gas chromatograph. For this purpose, at

low system pressures an inert component (e.g. helium) can be added to the cell. To calculate the

composition the chromatograph is calibrated directly with known amount of gaseous or liquid

substance.

Besides the sampler port, the cell is provided of further three ports connected to the injection

lines by microvalves.

Figure 7.1: Schematic diagram of the equilibrium cell with windows.
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The sample injectors were three 100 cm3 positive displacement pumps (Ruska, mod. 2200-801)

with a resolution of 0.01 cm3 and an estimated total uncertainty of ±0.03 cm3. These allowed the

injection of known volumes of the pure components, previously degassed, into the cell. For each

component, the mass injected was determined accurately from the volumetric differences read

between two stop-points, corresponding to the opening and closing conditions controlling that the

starting and final pressure in the pumps reaches the same value. The volumetric to mass conversion

is obtained knowing the temperature of the injectors and the compound densities.

Specifically dealing with the ternary mixture measurements procedure, after evacuating the cell

and obtaining the thermal equilibrium in the bath at the set temperature of 331,15 K, the cell was

filled with a starting binary propylene-water mixture having the following overall molar fraction

composition: 0.1188 (propylene) - 0.8812 (water). At the selected temperature and composition two

liquid phases, the organic and aqueous, besides the vapor one were observed.

The third component, the 2-propanol, was added to the cell moving then along a dilution line in

the ternary diagram. Stirring the cell was a very important step for helping establishing a rapid

thermodynamic equilibrium between fluid phases. Taking several constant pressure readings after

stopping the stirrer, the micro sampler was positioned in contact with each single phase by turning

the cell and the corresponding composition was measured by a gas chromatograph. A number of 8

dilution runs were done by adding corresponding amount of 2-propanol up to the following overall

composition: 0.0933/0.2142/0.6925 for propylene/2-propanol/water.

7.4. Apparatus and experimental procedure for HE measurements

For the determination of the heat of mixing a commercial isothermal flow calorimeter (Model

7501, Hart Scientific) was used. The principle of measurements is to compensate the heat effects of

mixing of two thermostated liquid flows and to measure the required power. Two calibrated syringe

pumps (ISCO, Model LC-2600, 260 cm3) provide the liquid flows whose temperatures and that of

the thermostat are monitored with a Hart Scientific platinum resistance thermometer (model 1006

Micro-Therm) with an accuracy of 0.005 K. The selection of different flows for each pump allows

to obtain a constant flow mixture of defined composition in the mixing tube section.

The corresponding heat of mixing effects are detected by a pulsed heater and a Peltier cooler.

The Peltier cooler is working at constant power producing a constant heat loss from the calorimeter

cell, which is compensated by the pulsed heater. The required frequency of the heater is influenced

by endothermic or exothermic heat effects so that the heats of mixing can be determined from the

observed frequency change between the base line and the actual measurement. Depending on the
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EH values and the flow rate for the different systems, the power per pulse can be varied between

0.05 and 20 J.

The flow cell, the calibration and the pulsed heater, the Peltier cooler and the mixing tube wound

around a copper cylinder are located in a stainless cylinder immersed in a thermostated calorimeter

cell. Usually silicon oil is used as thermostating liquid so that the apparatus can work in the

temperature range 273-453 K. A back-pressure regulator serves to keep the pressure at a level at

which evaporation and degassing effects can be prevented and can be kept constant at up to 14

MPa. The experimental uncertainties of this device are as follows : ( )Ts = 0.03 K, ( )EHs = 2 J

mol-1 ± 0.01 ( EH , J mol-1), ( )ixs = 0.0001.

One of the two pumps was filled with the water + 2-propanol binary system of known

composition while the other one was filled with propylene. The heat of mixing measurements refer

then to a mixing process of the binary water + 2-propanol mixture considered as the first flow and

the pure propylene considered as the second one. Once the two pumps were filled, a stable base line

was at first obtained for various propylene flow rate by selecting a suitable frequency for the pulsed

heater. The measurements procedure required the selection of different flow rates for each pumps in

order to cover the whole molar fraction range and maintaining a constant value for the total mixed

flow rate that in this case was 80 cm3 hr-1. For each value of the selected flow rates, the frequency

of the pulsed heater was recorded for approximately 2000 s.

The apparatus is completely automated so that the changes of the flow rate of the pumps are

under computer control together with the recording procedure of the frequency changes of the

pulsed heater. Knowing the molar mass of the two fluid flows, their densities at 298.15 K and the

recorded flow rates and frequency of the pulsed heater, the molar heat of mixing were determined

from the calibration constant value of energy evolved per pulse obtained during the calibration

procedure. A detailed description of the flow calorimeter was published previously [4], while for

further details on operating procedure reference is made to [5]. Excess enthalpy measurements

carried out with the same apparatus have been recently published [6,7].

7.5. Experimental results

7.5.1. Equilibrium results

The VLLE measurements have been carried out at 313.15 K for eight pressures from 1.381 to

1.690 MPa and they are presented in Table 7.1. The composition of the vapor phase has been

measured only in four cases, see vapor phase columns in the table, even if the vapor phase presence

was optically detected for all the cases. The compositions are reported as molar fractions.
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Table 7.1: Experimental VLLE data for the propylene (1) + 2-propanol (2) + water (3) mixture.

KT 15.313=
Aqueous phase Organic phase Vapor PhasePressure

(MPa) 1x 2x 1x 2x 1x 2x
1.690 0.00083 0.0 0.99173 0.0 - -
1.590 0.00193 0.05342 0.80471 0.16276 0.98502 0.00689
1.516 0.00344 0.08007 0.38460 0.39898 0.99152 0.00848
1.488 0.00409 0.08937 0.30792 0.40536 0.98380 0.00831
1.473 0.00464 0.09706 0.28360 0.40399 - -
1.424 0.00632 0.10308 0.20483 0.39524 0.98247 0.00887
1.403 0.00803 0.11363 0.17100 0.38760 - -
1.381 0.00971 0.11878 0.14373 0.36780 - -

7.5.2. Excess enthalpy results

Measurements of excess enthalpy for the pseudo-binary mixture propylene + (2-propanol +

water) have been produced for four temperatures in the range from 313.15 to 353.15 K and

pressures from 1.997 to 5.89 MPa. The measurements were done starting from three molar

compositions of the binary mixture 2-propanol + water (pseudo-pure component), i.e., 0.25, 0.50,

0.75 in 2-propanol, adding to them increasing amounts of the solvent propylene, see for instance the

ternary diagram in Fig. 7.7. The measured EH data are presented in Table 7.2 where the

compositions are reported as molar fractions.

Because for the binary mixture 2-propanol + water EH data were only available at atmospheric

pressure, EH values have been measured for it in the temperature range 313.15-353.15 K and

pressures up to 4.19 MPa. The measured data for such mixture are presented in Table 7.3.

7.6. Modeling methods

The experimental data were correlated with the Peng-Robinson [8] (PR) cubic EoS presented in

detail in Paragraph 3.3. The mixture parameters Ma and Mb are calculated using the Wong-Sandler

[9] (WS) mixing rules, Eqs (3.33-3.36), where ijk is the conventional binary interaction parameter

to regress from experimental data and the parameters ia and ja are expressed through the Mathias-

Copeman [10] functional form:

( ) ( ) ( ) ( ) 23

,3

2

,2,1 111145724.0 



 −+−+−+= riririri TdTdTdTa (7.1)

where: cr TTT = is the reduced temperature and id ,1 , id ,2 , id ,3 are pure fluid parameters.
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Table 7.2: Experimental EH data for the pseudo-binary mixture propylene (1) + (2-propanol +

water) (2).

1x
EH

(J·mol-1) 1x
EH

(J·mol-1) 1x
EH

(J·mol-1)

3103.3

169.2,15.313

2 =
==

− propanolwater xx

MPaPKT

0.0503 153.1 0.8011 410.0 0.3015 342.0
0.9503 222.5 0.2011 284.9 0.4017 387.4
0.1006 224.6 0.7015 438.7 0.6017 443.4
0.9006 331.5 0.2513 315.0 0.5018 419.1
0.1509 254.5 0.6516 442.0 - -

0121.1

1.997,15.313

2 =
==

− propanolwater xx

MPaPKT

0.0503 131.7 0.8010 514.7 0.3013 429.8
0.9503 320.1 0.2010 365.1 0.6015 524.8
0.1006 234.7 0.7013 531.6 0.4015 470.7
0.9006 417.3 0.2512 404.3 0.5016 501.8
0.1508 310.4 0.6514 529.8 - -

0121.1

897.3,15.313

2 =
==

− propanolwater xx

MPaPKT

0.0509 129.7 0.8014 512.4 0.3019 443.2
0.9504 304.4 0.2014 369.2 0.6021 546.6
0.1008 232.3 0.7019 548.3 0.4021 480.3
0.9008 410.3 0.2517 411.4 0.5022 513.0
0.1511 310.3 0.6520 550.6 - -

0040.1

980.3,15.323

2 =
==

− propanolwater xx

MPaPKT

0.0509 146.9 0.8029 571.9 0.3038 496.0
0.9509 315.0 0.2029 409.2 0.6044 601.6
0.1016 260.7 0.7038 604.6 0.4044 541.1
0.9016 448.3 0.2534 461.5 0.5065 576.9
0.1523 346.5 0.6541 609.2 - -

0040.1

975.3,15.333

2 =
==

− propanolwater xx

MPaPKT

0.0507 157.7 0.8023 671.3 0.3031 547.2
0.9507 387.4 0.2023 454.8 0.6035 684.2
0.1013 287.9 0.7527 693.7 0.3533 576.6
0.9013 536.6 0.2527 510.8 0.5036 651.4
0.1519 384.0 0.703 698.2 0.4035 603.6

3290.3

980.3,15.333

2 =
==

− propanolwater xx

MPaPKT

0.9010 379.0 0.5528 526.9 0.3526 424.3
0.8018 513.3 0.5029 507.3 0.3024 392.2
0.7024 550.1 0.4528 483.3 0.2018 316.4
0.6526 549.0 0.4027 454.5 0.1010 225.9
0.6027 541.2 0.3526 426.2 - -
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1x
EH

(J·mol-1) 1x
EH

(J·mol-1) 1x
EH

(J·mol-1)

3298.0

980.3,15.333

2 =
==

− propanolwater xx

MPaPKT

0.0506 126.9 0.7026 882.7 0.3026 620.0
0.9011 649.5 0.2020 457.1 0.5031 828.9
0.1011 251.4 0.6030 874.1 0.3528 687.7
0.8020 838.4 0.2523 542.3 0.4531 791.5
0.1516 358.3 0.5531 855.1 0.4030 743.0

3290.3

890.5,15.333

2 =
==

− propanolwater xx

MPaPKT

0.1015 245.7 0.6537 585.4 0.0406 160.7
0.9014 387.2 0.3537 467.5 0.0711 207.9
0.2026 348.4 0.6039 579.8 0.9409 283.6
0.8026 535.1 0.4540 525.8 0.1521 294.7
0.7034 581.6 0.5540 565.9 0.8521 464.3
0.3034 433.0 0.0508 183.7 0.2531 385.0
0.5041 551.0 0.4039 497.0 0.7530 553.7

0040.1

190.4,15.353

2 =
==

− propanolwater xx

MPaPKT

0.0510 170.1 0.8033 725.9 0.3044 607.3
0.9510 433.2 0.2034 503.0 0.6050 743.4
0.1019 311.1 0.7044 762.0 0.4051 656.7
0.9019 591.7 0.2540 565.4 0.5053 703.4
0.1527 420.8 0.6548 756.4 - -

Table 7.3: Experimental EH data for the binary mixture 2-propanol (1) + water (2).

1x
EH

(J·mol-1) 1x
EH

(J·mol-1) 1x
EH

(J·mol-1)
MPaPKT 865.3,15.313 ==

0.0102 -97.3 0.8031 293.0 0.3041 -121.8
0.9509 96.1 0.1018 -448.1 0.6046 290.4
0.0306 -271.9 0.7040 325.9 0.4047 49.0
0.9017 178.1 0.2031 -302.6 0.5548 246.8
0.0611 -423.0 0.6544 315.7 0.5048 191.6

MPaPKT 800.3,15.333 ==
0.0713 -216.0 0.1018 -199.7 0.7040 442.5
0.0102 -62.8 0.9017 228.2 0.4047 272.7
0.0407 -189.9 0.2013 -43.5 0.6046 448.2
0.0611 -216.8 0.8031 374.1 0.5048 387.3
0.9509 100.4 0.3041 124.4 0.5548 425.8

MPaPKT 190.4,15.353 ==
0.0102 -27.0 0.8031 492.4 0.3041 404.8
0.9509 161.4 0.1018 0.9 0.6046 663.9
0.0306 -74.2 0.7040 630.6 0.4047 524.7
0.9017 279.7 0.2031 216.5 0.5548 637.5
0.0611 -76.3 0.6544 666.8 0.5048 598.8
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The EG term in the WS mixing rules is obtained from a modified UNIQUAC EG model

[11,12]. The mathematical formalism is presented in Appendix A.4, with the only exception for the

residual term:

∑ ∑ ′′−=








i j
jijjii

RE

Fxxq
RT

G τln (7.2)
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j
jj

i
i xq

q
F (7.3)

In the modified UNIQUAC EG model ir and iq in the combinatorial term reflect the sizes and

the outer surface areas for the pure fluid molecules, while iq′ in the residual term are empirical

modifications of the UNIQUAC model [13] to improve the representation of mixtures containing

alcohols. A quadratic dependence from the temperature has been assumed for the iju∆ binary

interaction parameters:

2TCTBAu ijijijij ++=∆ (7.4)

with 0== jjii AA ; 0== jjii BB ; 0== jjii CC .

The values of the pure component parameters ir and iq have been assumed as in Ref. 12. On the

other hand, due to the particular difficulty in the representation of the present mixture in a wide

pressure range, the individual iq′ parameters were not assumed from the literature [11] but they

have been regressed on the same data sets used for the binary interaction parameters regression, see

next paragraph. The individual parameters of the present mixture components are listed in Table

7.4.

The binary interaction parameters ijA , ijB , ijC , and ijk of the model have regressed minimizing

the objective function obf of Eq. (7.5), which is composed of the phase equilibria term ϕ,obf and the

excess enthalpy term EHob
f

,
. Because for this case liquid-vapor (LV), liquid-liquid (LL), and liquid-

liquid-vapor (LLV) equilibria can be present in the chosen TP, range, the corresponding ϕ,obf

objective functions in Eq. (7.6) have to consider together all the three cases and they have been

assumed in form analogous to Eq. (7.7), which refers to the LV equilibrium only:
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EHobobob fff
,, += ϕ (7.5)

( ) ( ) ( )
LLVobLLobLVobob ffff ϕϕϕϕ ,,,, ++= (7.6)
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where in Eq. (7.7) the ϕn represent the number of VLE experimental points for each one of the

mixtures. In Eq. (7.8)
EHn is the number of EH experimental points and the excess enthalpy values

EH12 , EH 23 , and EH )23(1 have been obtained through the data reduction procedure exposed in the

following paragraph.

Table 7.4: Pure component parameters for the considered mixture.

Propylene 2-Propanol Water

cT (K) 365.57 508.3 647.13

4.665 4.762 22.055cP (MPa)

cρ (mol·l-1) 5.3079 4.5455 17.889

ω 0.139817 0.667714 0.344861

1d 0.569139 1.11495 0.919263

2d 0.0953845 1.70548 -0.332035

3d 0.0269034 -3.47044 0.317204

ir 2.2465 2.7791 0.92

iq 2.024 2.508 1.4

iq′ 0.6063 1.2012 0.6942
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7.6.1. Reduction of the experimental HE pseudo-binary data

Considering the present ternary mixture as propylene (1) + (2-propanol (2) + water (3)), i.e., as a

pseudo-binary mixture, the aforementioned EH measurements have to be reduced in order to get

the mole ratios jφ of each thj − phase present at equilibrium, their compositions j
ix , with i as the

component, the excess enthalpy EH and the composition of the starting binary mixture (2-propanol

(2) + water (3)) at the same ( )PT , conditions of the pseudo-binary mixture. The pseudo-binary EH

experimental values can be expressed as a function ( ) ( )
exp321231 ,,,, xxxPTH E where ( )321 ,, xxx are

the local overall compositions. At the same time such value can be predicted through the proposed

EoSG E − model reading:

( ) ( ) ( ) ( )

( )
EoSG

E

i
EoSiiEoSG

jjj

j

jj
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E

EE
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and π is the number of equilibrium phases in the mixture at specified ( )PT , . 

In Eq. (7.9) the terms jφ , jH123 , j
ix (with 3,2,1=i ), and EH 23 are predicted from the model while

for consistency ( )
EoSi PTH , has to be calculated through the same EoS assumed in the EoS−EG

model.

Each experimental ( ) ( )
exp321231 ,,,, xxxPTH E value is compared with the corresponding calculated

value ( ) ( )
EoSG

E
E

xxxPTH
−321231 ,,,, in order to regress the binary interaction parameters ijk , ijA , ijB ,

and ijC appearing in the model. The deviations between the two EH values are included in the

third addend of the EHob
f

,
objective function, Eq. (7.8).
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7.6.2. Regression of the model

The values of the binary interaction parameters ijk , ijA , ijB , and ijC of the proposed model have

been regressed on data of both phase equilibrium and EH . For both the thermodynamic quantities

the regression of the former interaction parameters was developed using both the present

experimental data and those from the literature [1,2,14-17]. The whole data base for the phase

equilibrium and the EH used in this case is presented in Tables 7.5 and 7.6, respectively. For the

ternary mixture all the available data have been used for the regression of the model, whereas for

the three binary mixtures the available data have been selected sharing temperature and pressure

ranges close to those of the ternary mixture, excluding the values falling outside such ranges.

Table 7.5: Experimental phase equilibrium data sets used for the regression of the EoS−EG

model.

Experimental phase equilibrium data
Measurements range Model regression range

Mixture Type Ref. T
(K)

P
(MPa)

NPTa T
(K)

P
(MPa)

NPTa

propylene +
2-propanol

VLE 15 333-370 0.5-4.1 18 333-370 0.5-4.1 18

VLE 16 311-411 0.3-33.0 46 311-411 0.3-9.1 33
LLE 16 311-344 3.2-33.0 10 314-344 3.2-7.5 3

propylene +
water

VLLE 16 311-364 1.6-4.6 6 311-364 1.6-4.6 6
2-propanol +

water
VLE 17 423-573 0.5-12.3 77 423-473 0.5-2.8 37

VLE 2 333-353 2.6-3.7 7 333-353 2.6-3.7 7
LLE 3 313-363 1.6-6.0 22 313-363 1.6-6.0 22

Propylene +
2-propanol +

water VLLE
present

data
313 1.4-1.7 8 313 1.4-1.7 8

a NPT = number of points

Table 7.6: Excess enthalpy experimental data sets used for the regression of the EoS−EG

model.

Excess enthalpy

Measurements range Model regression range
Mixture Ref. T

(K)
P

(MPa)
NPT T

(K)
P

(MPa)
NPT

Propylene + 2-propanol 17 333 3.1 21 333 3.1 21
2-propanol + water present data 313-353 3.8-4.2 45 313-353 3.8-4.2 45

Propylene + 2-propanol
+ water

present data 313-353 2.0-5.9 135 313-353 2.0-5.9 135
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Fig. 7.2 represents on the ( )TP, plane the distribution of all the available data, whereas those

used for the model regression are falling inside the hatched region, which also indicates the validity

range of the model. The last one is from 300 to 475 K and up to 10 MPa and is consequently much

more narrow than the maximum range of the existing data.

300 350 400 450 500 550 600 650

0

5

10

15

20

25

30

35

GE-EoS
model range

Coexistence data:
VLE propylene + 2-propanol [14]
VLE propylene + water [15]
VLE 2-propanol + water [16]
VLE propylene + 2-propanol + water [1]
LLE propylene + water [15]
LLE propylene + 2-propanol + water [2]
VLLE propylene + water [15]
VLLE propylene + 2-propanol + water (present data)

HE data:
propylene + 2-propanol [17]
2-propanol + water [this work]
propylene + (2-propanol + water) (present data)

Ps propylene

Ps water

Ps 2-propanol

P
/M

P
a

T / K

Figure 7.2: Distribution of the available data on the ( )TP, plane; the hatched region includes

those used for the regression of the EoS−EG model and also indicates its validity limits.

The results of the regression for the binary interaction parameters of the model of the target

mixture are presented in Table 7.7; these are then used in the present calculations.

Table 7.7: Binary interaction parameters values for the present mixture.

Component 1 Component 2 i j ijA
1−⋅molJ

ijB
11 −− ⋅⋅ KmolJ

ijC
21 −− ⋅⋅ KmolJ

ijk

1 2 -5433.0 20.550 -2.1885×10-3 

propylene 2-propanol
2 1 6762.9 -43.166 6.3507×10-2 

0.3370

1 2 435.55 -4.9572 3.5838×10-3 
propylene water

2 1 39.445 -2.7879 1.7755×10-4 
0.3122

1 2 950.75 -5.4938 4.0634×10-3 
2-propanol water

2 1 715.94 -7.5048 1.5192×10-2 
0.4653
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The validity range of the EoS−EG model for temperature is 300 to 475 K and for pressure is up

to 10 MPa and it is the same of the experimental data used for the regression.

7.7. Discussion

The behavior of the EoS−EG model with respect to the experimental data falling inside the

validity range of the present model has been studied and a statistical analysis of the data

representation is reported in the following. In such context the deviation in the composition of the

coexisting phases is calculated as:

( )
icalcjexpjji zz ,,, −=∆ (7.12)

where jz represents the mole fraction of the -thj component in the liquid or vapor phases (indicated

either as jx or as jy respectively) for the -thi point. The average absolute deviation (AAD) for the

-thj phase is evaluated as:

∑
=

=
NPT

i
i,jz ∆

NPT
AAD

j
1

1
100 (7.13)

When dealing with EH the deviation i∆ for the -thi point is evaluated as:

( ) ( )
( ) exp,

,exp,

i
E

calci
E

i
E

i
H

HH −
=∆ (7.14)

In this case the AAD is evaluated from Eq. (A6.3) with i∆ as in Eq. (7.14), see Appendix A.6.

The statistical results of the validation for the equilibria of the three binary and the ternary

mixture in terms of
jzAAD , Eq. (7.13), are reported in Table 7.8 for each component in each of the

coexisting phases. The considered data sets are the same of those presented in the former Table 7.5.

Some of the validation results are reported in the following figures. In the upper part of Fig. 7.3

the calculated vapor-liquid phase equilibrium of the binary system propylene + 2-propanol is shown

in comparison with the data from Ref. 14. The vapor-liquid equilibrium is rather well represented at

each of the three temperatures.
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Table 7.8: Validation of the EoS−EG model for phase equilibrium.

Vapor phase Organic liquid phase Aqueous liquid phase
Mixture Type Ref.

1yAAD
2yAAD

3yAAD
1xAAD

2xAAD
3xAAD

1xAAD
2xAAD

3xAAD

propylene + 2-
propanol

VLE 15 0.0054 0.0054 - 0.0394 0.0394 - - - -

VLE 16 0.0040 0.0040 - 0.0000 0.0000 - - - -
LLE 16 - - - 0.0000 0.0000 - 0.0000 0.0000 -

propylene +
water

VLLE 16 0.0022a 0.0022a - 0.0004a 0.0004a - 0.0000a 0.0000a -
2-propanol +

water
VLE 17 0.0043b 0.0043b - 0.0115b 0.0115b - - - -

VLE 2 0.0079 0.0093 0.0020 0.0179 0.0183 0.0014 - - -
LLE 3 - - - 0.0117 0.0186 0.0211 0.0019 0.0169 0.0186

propylene + 2-
propanol +

water VLLE present data 0.0059c 0.0024c 0.0008c 0.1903 0.1197 0.1048 0.0023 0.0347 0.0369

a VLLE has been calculated at the pressures of the experimental measurements; the AAD of the calculated equilibrium temperature with respect to the experimental
temperature is 0.51%.

b results obtained considering only the experimental VLE data at pressures below the azeotropic pressure calculated by the EoSG E − model at the given temperature (17
points).

c results obtained considering the four experimental VLLE data for which the composition has been measured.



VII. VLLE and excess enthalpy for the propylene + 2-propanol + water mixture288

0

1

2

3

4

5
Exp. VLE [14]:

T = 333.1 K
T = 353.1 K
T = 370.1 K

GE-EoS model

P
/M

P
a

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000 T = 333.15 K
P = 3.1 MPa

Exp. HE [17]

G
E
-EoS model

H
E

/J
·m

ol
-1

x1

Figure 7.3: Calculated and experimental VLE and EH data for the system propylene (1) + 2-

propanol (2).

Table 7.8 shows some excellent results for the system propylene + water in each of the three

considered equilibrium cases. The validation of the VLE data for the this system is also shown in

Fig. 7.4. Due to the immiscibility of the two components and in order to better show the variation of
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the bubble pressures very close to the pure water, a scale break is applied between 0.003 and 0.8 of

molar fraction of propylene. In this case the bubble pressure is very well represented.
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Figure 7.4: Calculated and experimental VLE data for the system propylene (1) + water (2).

For the binary mixture 2-propanol + water the AAD for VLE data were obtained considering

only the experimental values at pressures below the azeotropic pressure calculated by the EoS−EG

model for the two temperatures (17 points). A discrepancy is here verified between the calculated

and experimental azeotropic pressures as it is shown in particular in the upper part of Fig. 7.5.
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Figure 7.5: Calculated and experimental VLE and EH data for the system 2-propanol (1) +

water (2).

For the ternary mixture the Table 7.8 reports satisfactory results for both the VLE and LLE

predictions. For the VLLE the AAD in the vapor phase has been calculated on only the four

measured values, while in the liquid phases all the eight measured values have been used. For the

organic phase of the ternary mixture VLLE data a high deviation is verified and this has likely to be

attributed particularly to the high error deviation with respect to the two points at the higher

pressure, i.e., 15.9 and 16.9 MPa. The Fig. 7.6 evidences such deviating behavior of the model once

one compares the upper and the lower ternary plots. In the lower plot it is evident the trend of the
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model to group together the calculated compositions for the organic phase independently form the

pressure values.

Evidently in the VLLE representation the pressure sensitivity of the EoS−EG model is too

weak and for this system it is not at all coherent with the experimental evidence.
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Figure 7.6: Calculated and experimental VLLE data for the ternary system propylene + 2-

propanol + water.
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In Table 7.9 the validation results for the excess enthalpy for two binary and the pseudo-binary

mixture are reported for the same systems presented in the former Table 7.6.

Table 7.9: Validation of the EoS−EG model for excess enthalpy.

Mixture Ref. EH
AAD %

propylene + 2-propanol 17 6.78

2-propanol + water present data 10.55

Propylene + 2-propanol + water present data 10.11

The EH
AAD of the three cases are comparably predicted with a better result for the propylene +

2-propanol system. For such system in the lower part of the former Fig 7.3 the calculated EH

values are plotted against the experimental data from Ref. 17. A limited negative deviation in

correspondence of the central part of the composition range is evidenced in this case.

For the system 2-propanol + water the lower part of the former Fig. 7.5 shows the great

sensitivity to the temperature of the experimental data, even if in the presence of a limited variation

of the pressure. To overcome this aspect and considering also the large temperature range required

to the EoS−EG model a quadratic temperature dependence has been applied for the iju∆ binary

interaction parameters, notwithstanding the model clearly shows a difficulty to follow the

temperature dependence of the EH function.

For the pseudo-binary system propylene + (2-propanol + water) in Fig. 7.7 the model behavior is

plotted for one of the three considered compositions of the starting 2-propanol + water mixture, i.e.,

that of 0.75. The upper part of the figure represents the predicted compositions of the two coexisting

liquid phases (LLE) (open squares), for each EH measured point at 333.15 K and 3.98 MPa (solid

circles). The binodal curve is predicted by the model. The calculated compositions have been used

to calculate, through Eqs. (7.9-7.11), the EH curve reported against the EH experimental data in

the lower part of the figure.
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Figure 7.7: Calculated and experimental LLE and EH data for the pseudo-binary system

propylene (1) + (2-propanol + water) (2).

Notwithstanding in this work EH values of the ternary mixture were not directly measured it is

also possible to built the trend of the ternary EH surface applying the basic relation:

( )
exp)23(11231123 1 E

EoSG

EE HxHxH
E

+−=
−

(7.15)
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where
exp)23(1

EH is the present experimental value for the pseudo-binary system propylene + (2-

propanol + water) and
EoSG

E
E

H
−23 is the value for the binary mixture 2-propanol + water calculated

from the former EoS−EG model. In this way the trend is more reliable with respect to a

representation totally based on the model in which also the EH )23(1 term would be calculated from

the model, adding in this way a further approximation. Because the sections are obtained at constant

2-propanol + water ratios it can be noted that for 0=propylenex the EH values read from the plots

correspond to the 2-propanol + water mixture EH values.

The represented sections show a quite regular and smooth behavior of the ternary EH surface

varying propylene composition.
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Figure 7.8: Sections of the ternary EH surface as obtained from the former model including the

pseudo-binary experimental EH data.
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7.8. Conclusions and description of the mixture behavior

VLLE values for the propylene + 2-propanol + water system have been measured at 313.15 K in

the pressure range from 1.381 to 1.690 MPa and EH measurements for the pseudo-binary mixture

propylene + (2-propanol + water) have been obtained in the temperature range from 313.15 to

353.15 K and pressures from 1.997 to 5.89 MPa.

The ternary mixture was studied starting from the 2-propanol + water system at the three molar

compositions of 0.25, 0.50, 0.75 in 2-propanol. Furthermore, for the binary system propylene + 2-

propanol EH values have been obtained in the temperature range from 313.15 to 353.15 K and

pressures up to 4.19 MPa. A total of 180 experimental points has been obtained using an isothermal

flow calorimeter.

Both the VLLE and the EH data, included VLE, LLE and EH literature data sets, have been

correlated for the ternary mixture, including the binary ones, using a EoSG E − model composed of

a PR cubic EoS and a UNIQUAC EG model combined by the WS mixing rules. For the phase

equilibrium representation the deviations of the model from the experimental points are in general

satisfactory with the exception of the VLLE for the ternary mixture, where the limited number of

the available points has hindered the accuracy. On the other hand the EH data, of both the binary

and the ternary mixtures, are satisfactorily represented by the model.

The phase equilibrium behavior of the mixture propylene + 2-propanol + water has been

qualitatively studied with the obtained EoSG E − model. In the ternary system propylene (1) + 2-

propanol (2) + water (3) different kinds of phase equilibria are possible at varying temperatures and

pressures. The ternary mixture phase equilibrium behavior at a given temperature strongly depends

on the closeness between the ternary mixture pressure and the vapor-liquid-liquid equilibrium

pressure of the propylene + water binary mixture. Fig. 7.9 shows the phase equilibria of the

propylene + water mixture at KT 15.313= .
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Figure 7.9: Phase equilibria of the propylene-water mixture at KT 15.313= .

Propylene and water are almost completely immiscible components, so that two different vapor-

liquid regions are present. A VLLE exists for a pressure very close to the pure propylene saturation

pressure and consequently at a fixed temperature the pure propylene saturation pressure and the

VLLE pressure of the propylene + 2-propanol mixture are in practice the same. At higher pressures

there is the liquid-liquid equilibrium (LLE) region.

According to the phase rule the propylene + water mixture has only a single degree of freedom

when the vapor-liquid-liquid equilibrium condition is present. Therefore, for each temperature there

is only a single pressure at which the VLLE exists. Adding the 2-propanol the degrees of freedom

become two and therefore at each temperature there is a range of pressure for which the VLLE

exists. Such a L1L2V range extends from a lower critical endpoint (L1 = L2)V to an upper critical

endpoint L1(L2 = V). This leads to the isothermal pressure dependence of the phase equilibrium

envelope of the ternary mixture shown qualitatively for KT 15.313= in Figs. 7.10-7.14. At

pressures below the saturation pressures of the pure propylene, part a of Fig. 7.10, a vapor-liquid

equilibrium (VLE) exists for both the propylene + 2-propanol and propylene + water binary

mixtures, as it is possible to observe in Fig. 7.10 part b for a pressure of 1.0 MPa.
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Figure 7.10: Phase equilibria of the ternary system at KT 15.313= and MPaP 0.1= .

The VLE tie-line at 1.0 MPa in the propylene + 2-propanol binary mixture graph is reported in

the ternary mixture graph, Fig. 7.10 part c (in red). Adding water at the propylene + 2-propanol

binary mixture, the vapor-liquid tie-lines have a clockwise rotation going toward the vapor-liquid

tie-line of the propylene + water binary mixture.

When the saturation pressure of the propylene is approached, the change in the equilibrium

behavior of the system is shown in Fig. 7.11 at 1.43 MPa.
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Figure 7.11: Phase equilibria of the ternary system at KT 15.313= and MPaP 43.1= .

At these conditions a VLLE appears. Initially the two liquid phases have almost the same

composition, that is a composition approaching the pure water. Rising the pressure the composition

of the light liquid phase moves along the projection of the phase envelope toward the propylene +

2-propanol binary mixture side, as it is possible to see in Fig. 7.12 for 1.60 MPa.
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Figure 7.12: Phase equilibria of the ternary system at KT 15.313= and MPaP 60.1= .

Increasing the pressure above the upper critical endpoint, a LLE exists, see Fig. 7.13 for 2.00

MPa.
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Figure 7.13: Phase equilibria of the ternary system at KT 15.313= and MPaP 0.2= .

The tie-line slopes in the LLE region show a distribution coefficient of the 2-propanol between

the organic phase and the aqueous phase suitable for an extraction operation. This has been in fact

the main problem for the choice of a suitable system to be studied for the extraction operation.

The effect of the pressure on the LLE envelope could be seen comparing Fig. 7.13 at 2.00 MPa

with Fig. 7.14 at 30.00 MPa: increasing the pressure the LLE envelope moves toward the propylene

+ water mixture side of the triangle.
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Figure 7.14: Phase equilibria of the ternary system at KT 15.313= and MPaP 0.30= .

The effect of the temperature on the LLE envelope could be seen comparing Fig 7.13 for a

pressure slightly above the propylene saturation pressure at 313.15 K with Fig. 7.15 for a pressure

slightly above the propylene saturation pressure at 350.00 K: increasing the temperature the LLE

envelope moves toward the propylene + water mixture side of the triangle.
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Figure 7.15: Phase equilibria of the ternary system at KT 0.350= and MPaP 0.4= .

Representations of the phase equilibria prisms in the pressure range from 0.1 to 10 MPa at 300

and 380 K are shown in Figs. 7.16 and 7.17, respectively. These two temperatures represent roughly

the upper and the lower limit of the possible range of interest for the extraction process.

The modeling effort has reconfirmed the difficulty of a conventional EoSG E − model to

correctly represent the thermodynamics of a strongly polar and deviating ternary mixture as the

present one in a wide temperature and pressure range, even if limiting the representation to phase

equilibrium and excess enthalpy. Because this category of models is presently the most advanced

tool to represent the thermodynamics of these kinds of ternary systems, new modeling methods are

expected to allow the study of the unit operations involving strongly deviating multicomponent

systems.
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Figure 7.16: Phase envelopes of the ternary system at KT 0.300= .
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Figure 7.17: Phase envelopes of the ternary system at KT 0.380= .
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VIII. Density and phase equilibrium via a vibrating tube densimeter

8.1. Introduction

The study of the propylene + 2-propanol + water mixture in the previous Chapter VII pointed out

the need for further experimental measurements and new modeling methods to achieve a

satisfactory representation of the thermodynamic properties of the mixture in order to study the 2-

propanol extraction process from an energetic point of view.

In Paragraph 4.3 it is demonstrated that the extended equation of state neural network (EEoS-

NN) modeling method is a suitable tool to obtain a precise representation of the thermodynamic

properties of a mixture in the ( )x,, PT range of interest starting from density and coexistence data

only. The EEoS-NN method requires precise, well-distributed data in the whole range of

temperature T , pressure P and composition x .

It has been chosen to study the 2-propanol extraction from aqueous solution using propylene as

solvent for operative conditions ranging from 300 to 350 K and up to 10 MPa; the composition

range of interest extends up to the pure fluids. While very precise equations of state exist for

propylene [1] and water [2], 2-propanol presents only experimental data, and they are not in good

agreement each other.

In order to create a data base of density data suitable to regress a dedicated equation of state

(DEoS) in the aforementioned range of interest, new density data have been produced using a

vibrating tube densimeter (VTD) for the pure 2-propanol, for the propylene + 2-propanol mixture,

for the 2-propanol + water mixture and for the propylene + 2-propanol + water mixture. Bubble

pressure data were also determined using the VTD for the propylene + 2-propanol mixture and for

the propylene + 2-propanol + water mixture.

8.2. Chemicals

The propylene (molar mass = 42.08 kg/kmol, CAS Number 115-07-1) is from Air Liquide with a

certified purity higher than 99.99 vol %. The 2-propanol (molar mass=60.096 kg/kmol, CAS

Number 67-63-0) is from Sigma-Aldrich with a GC certified purity higher than 99.8%. Ultra pure

water is produced with a Direct-Q model from Millipore. Both 2-propanol and water were carefully

degassed before use.



VIII. Density and phase equilibrium via a vibrating tube densimeter308

8.3. Apparatus

A detailed description of the apparatus is given in Ref. 3 and its schematic layout is presented in

Fig. 8.1. The apparatus employs a vibrating tube made of stainless steel (Anton Paar, model DMA

512). The period of vibration τ is recorded by means of a data acquisition unit (Hewlett Packard,

model 53131A).

T regulator T regulatorT regulator T regulator
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2c 2d
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Figure 8.1: Flow diagram of the equipment: 1, loading cell; 1a-1e, shut-off valves; 2a and 2b,

regulating and shut-off inlet valves; 2c and 2d, regulating and shut-off outlet valves; 3,

densimeter; 4, heat exchanger; 4a, bursting disk; 5a, 5b and 6a, 6b, double valves; 7, inlet and

outlet for the VTD temperature regulation; 8a and 8b, mixers; 9a and 9b, 100Pt probes; 10,

pressure transducers maintained at constant temperature; 11, data acquisition unit; 12, data

acquisition unit; 13, data acquisition supervising; 14, temperature regulator of the pressure

transducers; 15, temperature regulator of the thermostated tube (20); 16, temperature regulator of

the liquid bath (18); 17, temperature regulator of the main liquid bath; 18, liquid bath; 19,

nitrogen bomb; 20, thermostated tube.
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The temperature of the vibrating tube is controlled by a regulated liquid bath (Lauda, model

RE206) with stability within K01.0± . The temperature of the remaining parts of the circuit is

regulated by a liquid bath (Bioblock, model Variosat P1C50P as cooling source, electric resistor

managed by a PID regulator West model 6100 as heating source). Temperatures are measured with

two 100Pt probes connected to a data acquisition unit (Hewlett Packard, model 34970A). The

probes have been calibrated in the K433288 − range against a 25 Ω reference thermometer

(Tinsley Precision Instrument) certified by Laboratoire National d’Essais (Paris, France). Pressure

is measured using two pressure transducers (Druck, model PTX611) of two complementary ranges:

0 - 0.5 MPa and 0.5 - 8.0 MPa. These sensors were calibrated against a dead weight pressure

balance (Desgranges & Huot, model 5202S) in the 0.3 to 10.6 MPa range. Vacuum was achieved by

means of a vacuum pump (AEG, model LN38066008). Real time ( )PT ,,τ data are recorder every 3

seconds by a computer linked to both the HP units. Synthetic mixtures have been prepared

gravimetrically under vacuum according to the procedures presented in Ref. 4. An analytical

balance (Sartorius AG, Göttingen, model CC3000) was used to get accurate mass values. Viton 70

Shore O-rings have been used as seals for the piston in the loading cell.

8.4. Experimental procedure

The description of the experimental procedure refers to the schematic layout of the equipment

presented in Fig. 8.1. The synthetic mixture is gravimetrically prepared in the loading cell (1) under

vacuum, according to the procedure discussed in Ref. 4. The loading cell is connected to the circuit

by means of the valve 1c and to a high-pressure nitrogen bomb by the valves 1a, 1b. Before starting

the measurement the VTD liquid bath (18) is programmed at the measurement temperature, while

the main bath is programmed at a temperature slightly higher ( 15.0 ÷ K) to obtain the first

vaporization inside the VTD instead of in the other parts of the circuit; for details see Ref. 3. The

whole circuit was evacuated connecting the vacuum pump to the valve 5a, while valves from 2a to

2d and 5b are open and valves 1c, 6a and 6b are closed. The period of vibration at the lowest

accessible pressure, obtained with the vacuum pump, and at the measurement temperature is

measured. To carry out density measurements in the liquid phase the pressure in the loading cell is

increased to values higher than the bubble pressure of the mixture to assure the homogenization

inside the cell. After the measurement of the vibration period at vacuum conditions the vacuum

pump is disconnected closing the valve 5a and the fluid is loaded from the loading cell to the

apparatus through the valve 1c. The movement of the piston inside the cell ensures the homogeneity

of the mixture in the apparatus maintaining the mixture pressure constant during the loading of the

circuit. If the loading pressure is higher than 0.5 MPa the valve 1e has to be closed during this
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procedure to avoid a damage of the low-pressure transducer. The circuit is partially purged opening

the valve 6a or 6b, and new mixture is introduced in the circuit from the loading cell. It is assumed

that the liquid inside the VTD is representative of the fluid inside the loading cell when measured

period of vibration remains constant and is not dependent on further purging. The pressure in the

circuit is increased opening the valve 1a up to the highest measurement pressure (about 10 MPa in

this work). A suitable opening of the valve 2d is then selected in order to assure that the pressure

inside the circuit decreases continuously with a controlled rate not higher than 0.005 MPa·s-1. Under

these conditions the fluid inside the apparatus is assumed in mechanical equilibrium. The liquid

phase is studied from the chosen upper pressure down to the bubble point, which is determined

through the drastic change in the τ÷P behavior going from the single phase to the coexistence

region as described in Ref. 3. During this process the pressure, the temperature inside the VTD and

the period of vibration are recorded every 3 seconds. The period of vibration is converted into

density using the Forced Path Mechanical Calibration (FPMC) [5]. The first reference for the

calibration is the period of vibration measured at vacuum conditions while the second reference is

the period of vibration of the refrigerant R134a, for witch measurements have been carried out at

the same temperature and in the same pressure range of the target mixture, see Ref. 5.

8.5. Experimental uncertainties

The experimental uncertainties have been calculated taking into account the expanded

uncertainties and coverage factor as described in Ref. 6. The global uncertainty on density data in

the liquid phase is estimated to be within %05.0 . The uncertainty on vibrating period values is

810−± s. Global temperature uncertainties are estimated to be about 02.0± K with a confidence

level of approximately 68%. Global uncertainties on pressure measurement are 0001.0± MPa (for

6.00 ≤< P MPa) and 0006.0± MPa (for 6.106.0 ≤< P MPa) with a confidence level of

approximately 68%. Uncertainties in mixture composition are within 4102 −⋅ in molar fraction.

8.6. Experimental results for the 2-propanol system

8.6.1. Introduction

2-propanol has important industrial applications as raw material in paint and ink products and as

solvent in electronics and it is also used in medicine.
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Figure 8.2: Liquid density data distribution of 2-propanol in the range from 273 to 400 K and

from atmospheric pressures up to 12 MPa.

The critical point of 2-propanol is at KTc 3.508= , MPaPc 4.764= and 3712 −⋅= mkgcρ . The

literature presents a number of experimental works about the TPρ properties of 2-propanol and the

most extensive sources of TPρ data are listed in the following. Ambrose et al. [7] measured

densities in the vapor, liquid and supercritical regions in the temperature range from 386 to 573 K

and for pressures from 0.4 to 13 MPa. Boned et al. [8] and Moha-Ouchane et al. [9] measured the

liquid density for the liquid phase from 303 to 343 K and from atmospheric pressure up to 65 MPa.

Golubev and Vagina [10], Golubev et al. [11], and Golubev et al. [12] measured the densities in the
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liquid and supercritical regions from 292 to 594 K and from atmospheric pressure up to 50 MPa.

Kubota et al. [13] measured the liquid densities in the liquid region from 283 to 348 K and from the

atmospheric pressure up to 174 MPa. Tseng and Stiel [14] measured the densities in the vapor and

supercritical region from 473 to 573 K and from 7 to 55 MPa. Yaginuma et al. [15] measured the

liquid density for 313 K from atmospheric pressure up to 10 MPa. Zuniga-Moreno and Galicia-

Luna [16] measured the liquid density from 313 to 363 K and from 0.5 to 25 MPa.

A great number of authors reported experimental density data at atmospheric pressure:

Aminabhavi et al. [17], Aminabhavi and Aralaguppi [18], Aminabhavi and Gopalakrishna [19],

Contreras [20], Costello and Bowden [21], Egorov et al. [22], Islam and Quadri [23], Khimenko et

al. [24], Khimenko et al. [25], Krestov et al. [26], Ku and Tu [27], Lee and Lin [28], Mato and Coca

[29], Nagata et al. [30], Nikam et al. [31], Oswal and Putta [32], Paez and Contreras [33], Sakurai

[34], Sovilj [35], Tashima and Arai [36], Tu et al. [37], Wei and Rowley [38].

In this work density measurements in the liquid region from 280 to 393 K and from atmospheric

pressure up to 10 MPa have been carried out using a “synthetic open circuit method” [39] taking

advantage of a vibrating tube densimeter (VTD).

The measured density data together with the available literature data in the range from 273 to 400 K

and up to 12 MPa are shown in Fig. 8.2 in ( )TP, coordinates.

8.6.2. Experimental results

The liquid density measurements for 2-propanol have been carried out at 280, 300, 325, 350, 375

and 393 K from 10 MPa down to near the atmospheric pressure. The measured ( )TP ,,ρ values are

reported in Tab. 8.1.

8.6.3. Modeling methods

A modification of the BWR equation of state, published by Starling [40], has been used to

correlate the measured liquid density values:
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where R is the fluid specific gas constant and P , T , ρ are the temperature, the pressure and the

density, respectively, while the other terms are the equation parameters to individually regress for a

target fluid.
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Table 8.1: Experimental liquid density data for 2-propanol.

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

KT 21.280= KT 09.300= KT 12.325=
0.1179 797.61 0.1867 780.22 0.2027 757.05
0.4396 797.89 0.6105 780.62 0.6094 757.49
0.9387 798.29 0.9534 780.94 0.9600 757.87
1.3284 798.62 1.3395 781.31 1.2539 758.21
1.6566 798.89 1.7221 781.66 1.6388 758.63
1.9449 799.14 2.0448 781.96 2.0210 759.06
2.4406 799.56 2.4464 782.34 2.3288 759.39
2.8506 799.88 2.8346 782.70 2.6558 759.75
3.1980 800.17 3.2249 783.06 3.0149 760.15
3.6791 800.56 3.6711 783.47 3.3214 760.48
4.0711 800.90 4.0741 783.84 3.6594 760.85
4.4377 801.19 4.3625 784.11 4.0041 761.22
4.8326 801.50 4.7718 784.48 4.3992 761.65
5.1821 801.80 5.2265 784.89 4.6912 761.97
5.5591 802.10 5.5792 785.21 5.0107 762.32
5.9100 802.39 6.0016 785.59 5.3834 762.71
6.3349 802.73 6.4272 785.98 5.7305 763.08
6.7509 803.06 6.7803 786.29 6.1436 763.52
7.1665 803.39 7.2147 786.68 6.5256 763.91
7.5920 803.74 7.6299 787.05 6.9032 764.31
7.9990 804.07 8.0203 787.40 7.2938 764.72
8.3290 804.33 8.4175 787.75 7.6619 765.11
8.8170 804.70 8.8057 788.10 7.9186 765.38
9.3506 805.11 9.2129 788.45 8.2544 765.72
9.6585 805.38 9.6215 788.81 8.7555 766.24

KT 14.350= KT 01.375= KT 57.392=
0.2204 731.92 0.3495 702.23 0.4076 679.26
0.6634 732.49 0.7033 702.82 0.8887 680.18
1.0712 733.03 1.0468 703.38 1.1714 680.72
1.4126 733.49 1.4375 704.01 1.5266 681.39
1.8447 734.07 1.7916 704.58 1.8974 682.08
2.2267 734.58 2.1617 705.16 2.2723 682.77
2.6447 735.11 2.5457 705.76 2.6191 683.41
2.8427 735.41 2.9099 706.34 3.0504 684.20
3.2869 735.99 3.3641 707.04 3.4112 684.86
3.6307 736.45 3.6776 707.53 3.8350 685.63
4.0122 736.94 4.0832 708.16 4.0957 686.12
4.3946 737.43 4.5157 708.82 4.5249 686.89
4.7576 737.91 4.8535 709.33 4.9028 687.57
5.1979 738.48 5.2802 709.98 5.2835 688.24
5.5779 738.96 5.6469 710.53 5.7759 689.09
5.9393 739.42 6.1381 711.26 6.0396 689.55
6.3213 739.89 6.4471 711.73 6.4766 690.30
6.7309 740.41 6.8809 712.37 6.8897 691.01
7.1197 740.89 7.2698 712.94 7.3480 691.78
7.5644 741.45 7.7724 713.68 7.7280 692.42
7.9885 741.97 8.1192 714.18 8.1727 693.17
8.4725 742.55 8.5572 714.81 8.5983 693.88
8.9258 743.13 8.9873 715.42 9.0185 694.57
9.2808 743.56 9.4238 716.04 9.4050 695.20
9.6763 744.05 9.8422 716.64 9.8379 695.89
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The following objective function obf has been minimized to regress the parameters of the BWR

equation of state:
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(8.2)

where NPT is the number of experimental density data. The obtained values of the parameters for

the BWR equation of state are presented in Table 8.2.

Table 8.2: BWR EoS parameters for 2-propanol in the liquid region from 273 to 400 K and from

atmospheric pressure up to 12 MPa.

Parameter Value a Parameter Value a

R 1.383532·10-4 a 1.783066·10-8 

0A 1.083884·10-3 b 5.789487·10-6 

0B 9.886964·10-3 c 3.449836·10-2 

0C -1.138183·101 d 2.042090·10-6 

0D -3.464959·103 α 2.679133·10-8 

0E 6.169326·105 γ 5.469844·10-7 

a The units used for the adjustment of parameters are MPa, K, and kg·m-3.

8.6.4. Discussion

The measured values of liquid density for 2-propanol have been represented with the BWR

equation of state described in previous Paragraph 8.6.3 and a statistical analysis of the data

representation is reported in the following.

In such a context the error deviation iρ∆ of the thi − density point, the percentage average

absolute deviation %AAD , the %Bias , and the percentage maximum absolute deviation %MAD

with respect to a data base of NPT values are evaluated as in Appendix A.6.

The parameters of the BWR equation of state were regressed on the measured liquid density

data. The values predicted by the same equation of state were compared with the corresponding

ones of the available literature data in the range from 273 to 400 K and from atmospheric pressures

up to 12 MPa. The residual errors against the measured data and the prediction accuracy with

respect to the literature data are presented in Tab. 8.3 and shown graphically in Fig. 8.3. The AAD

with respect to the 150 measured density data is 0.025 %, and it is well within the experimental

uncertainty of the experimental data. The AAD with respect to the 428 points including the
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measured and the literature data is about 0.1 %. A Bias value lower than 0.02 % shows a good

balance of the present measurements with respect to all the available data for 2-propanol in the

investigated range of temperature and pressure.

Table 8.3: Accuracy of the BWR equation in the representation of the liquid density data for 2-

propanol.

Ref. NPTa T Range
(K)

P Range
(MPa)

AAD
(%)

Bias
(%)

MAD
(%)

Primary data
this work 150 280.2-392.6 0.1-9.8 0.025 0.000 0.058

Secondary data
Ambrose et al. [7] 12 385.7 0.4-10.7 0.611 -0.611 0.680

Aminabhavi et al. [17] 5 298.2-318.2 0.1 0.046 0.046 0.064
Aminabhavi and Aralaguppi [18] 3 298.2-308.2 0.1 0.057 0.057 0.077

Aminabhavi and Gopalakrishna [19] 4 298.2-313.2 0.1 0.114 0.114 0.118
Boned et al. [8] 9 303.2-343.2 0.1-10.0 0.122 0.122 0.204
Contreras [20] 4 298.2-313.2 0.1 0.068 0.068 0.110

Costello and Bowden [21] 7 273.2-393.2 0.1 0.270 -0.234 0.767
Egorov et al. [22] 8 275.2-338.2 0.1 0.143 0.143 0.269

Golubev and Vagina [10] 38 292.2-377.7 0.1-10.5 0.276 0.263 0.497
Golubev et al. [11] 15 292.7-370.7 1.1-9.9 0.142 -0.058 0.315
Golubev et al. [12] 15 300.0-400.0 1.0-10.0 0.221 -0.168 0.481

Islam and Quadri [23] 6 298.2-323.2 0.1 0.128 -0.124 0.311
Khimenko et al. [24] 7 288.2-323.2 0.1 0.062 0.059 0.139
Khimenko et al. [25] 9 288.2-328.2 0.1 0.107 0.107 0.184

Krestov et al. [26] 4 283.2-328.2 0.1 0.192 0.007 0.357
Ku and Tu [27] 4 293.2-323.2 0.1 0.058 0.058 0.114

Kubota et al. [13] 4 283.2-348.2 0.1 0.124 -0.002 0.244
Lee and Lin [28] 3 303.2-323.2 0.1 0.053 0.021 0.072

Mato and Coca [29] 1 298.2 0.1 0.102 0.102 0.102
Moha-Ouchane et al. [9] 3 303.2-343.2 0.1 0.083 0.083 0.123

Nagata et al. [30] 1 298.2 0.1 0.128 0.128 0.128
Nikam et al. [31] 4 298.2-313.2 0.1 0.055 0.055 0.073

Oswal and Putta [32] 3 303.2-318.2 0.1 0.029 -0.002 0.041
Paez and Contreras [33] 5 293.2-323.2 0.1 0.085 0.077 0.140

Sakurai [34] 5 278.2-318.2 0.1 0.141 0.141 0.258
Sovilj [35] 3 298.2-308.2 0.1 0.025 0.005 0.033

Tashima and Arai [36] 7 293.2-343.2 0.1 0.084 0.077 0.153
Tu et al. [37] 4 293.2-313.2 0.1 0.095 0.095 0.140

Wei and Rowley [38] 1 298.2 0.1 0.179 0.179 0.179
Yaginuma et al. [15] 11 313.2 1.0-9.8 0.111 0.111 0.149

Zuniga-Moreno and Galicia-Luna [16] 73 313.2-362.8 0.5-12.0 0.181 -0.180 0.310
428 273.2-400.0 0.1-12.0 0.126 -0.017 0.767

a NPT: number of experimental points.
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Figure 8.3: Percentage error of the BWR equation of state in the representation of the liquid

density data of 2-propanol.
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8.7. Experimental results for the propylene + 2-propanol system

8.7.1. Introduction

The literature presents a number of experimental works about the propylene + 2-propanol

mixture which in particular are: vapor-liquid equilibria at constant temperature in a range from 333

to 373 K in Zabaloy et al. [41]; vapor pressure for diluted 2-propanol mixtures from 293 to 333 K in

Guzechak et al. [42]; bubble pressures at 298 K and excess enthalpies at 333 K and 3.1 MPa in

Horstmann et al. [43].

The VTD was used to get density and bubble pressure measurements; the obtained liquid density

and bubble pressure values have been correlated using two multilayer feedforward neural network

(MLFN) functions.

8.7.2. Experimental results: liquid densities

The liquid density measurements for the propylene (1) + 2-propanol (2) mixture have been

carried out at 300, 325 and 350 K from 10 MPa down to bubble pressures for the 1x = 0.20, 0.52

and 0.65 molar fractions. The measured ( )TP ,,ρ values are reported in Tab. 8.4.

Table 8.4: Experimental liquid density data for the propylene (1) + 2-propanol (2) mixture.

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

2011.01 =x
KT 14.300= KT 09.325= KT 18.350=

0.5294 731.63 0.8109 703.07 1.6395 677.13
1.0513 732.17 1.2189 703.59 2.0700 677.93
1.4836 732.72 1.6087 704.14 2.4462 678.64
1.9544 733.24 2.0018 704.70 2.9243 679.50
2.3840 733.72 2.3837 705.30 3.2714 680.17
2.7986 734.18 2.8276 705.86 3.6753 680.86
3.2731 734.68 3.1592 706.38 4.0584 681.60
3.7402 735.18 3.7079 707.07 4.4468 682.32
4.1863 735.68 4.1236 707.68 4.7913 682.93
4.7286 736.23 4.5285 708.19 5.1719 683.60
5.2356 736.78 4.9253 708.73 5.5574 684.26
5.7673 737.30 5.3707 709.32 6.0020 684.96
6.2747 737.83 5.8835 709.98 6.4302 685.69
6.8325 738.41 6.3362 710.58 7.0712 686.73
7.2915 738.89 6.7884 711.17 7.5705 687.62
7.8118 739.42 7.3466 711.90 7.9441 688.25
8.2966 739.90 7.8793 712.57 8.3868 688.92
8.8103 740.41 8.3925 713.18 8.8268 689.60
9.3377 740.91 8.9852 713.89 9.2790 690.38
9.8864 741.45 9.5877 714.65 9.7796 691.08
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P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

5201.01 =x
KT 11.300= KT 05.325= KT 12.350=

0.9667 644.49 1.6131 613.41 2.3323 576.59
1.3733 645.21 1.9777 614.26 2.7314 577.92
1.8356 645.98 2.3590 615.15 2.9924 578.85
2.3409 646.83 2.7172 615.98 3.2180 579.68
2.8124 647.62 3.1678 616.93 3.5061 580.58
3.3301 648.49 3.5061 617.74 3.7656 581.46
3.8175 649.27 3.8888 618.59 4.2255 582.95
4.3861 650.18 4.3216 619.52 4.5506 583.87
4.8737 650.95 4.6767 620.29 4.8244 584.73
5.3752 651.72 5.0614 621.12 5.1037 585.64
5.8888 652.52 5.4718 621.94 5.3993 586.54
6.4420 653.35 5.8801 622.78 5.7155 587.44
6.9428 654.09 6.2936 623.65 5.9995 588.29
7.4982 654.90 6.7043 624.42 6.3039 589.18
8.1047 655.77 7.1717 625.34 6.6328 590.10
8.6718 656.58 7.5974 626.18 6.9755 591.05
9.2267 657.35 8.0375 627.02 7.2800 591.94
9.7870 658.16 8.5565 628.02 7.6413 592.87

9.0781 628.97 7.9635 593.76
9.6313 629.98 8.3120 594.68

8.7624 595.82
9.2110 596.88
9.6229 597.92

6478.01 =x
KT 12.300= KT 12.325= KT 18.350=

1.0685 608.06 1.7475 573.29 2.6890 531.01
1.4865 608.93 2.1518 574.52 3.1263 533.02
1.7406 609.48 2.6075 575.84 3.6862 535.68
2.1238 610.19 3.0221 577.00 3.9143 536.74
2.6200 611.17 3.4227 578.16 4.2032 537.97
2.9868 611.92 3.8263 579.23 4.4846 539.15
3.4953 612.85 4.2890 580.41 4.7385 540.50
3.8290 613.59 4.6825 581.48 5.0234 541.63
4.1935 614.26 5.0946 582.53 5.3212 542.86
4.5428 614.93 5.5248 583.59 5.6140 543.95
4.9054 615.61 5.9722 584.68 5.9389 545.10
5.2637 616.27 6.4310 585.75 6.2684 546.35
5.6341 616.94 6.9233 586.94 6.6221 547.76
6.0113 617.61 7.4335 588.03 6.9786 548.98
6.3953 618.28 7.9350 589.22 7.3620 550.27
6.7886 618.96 8.4599 590.39 7.7365 551.56
7.1654 619.61 9.0240 591.62 8.1262 552.91
7.5581 620.28 9.5585 592.78 8.5255 554.11
7.9601 620.96 8.9798 555.58
8.3772 621.66 9.4880 557.04
8.7855 622.34 9.9898 558.59
9.2342 623.05
9.6821 623.79
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In Fig. 8.4 the measured data are shown together with liquid density values of the pure propylene

and 2-propanol at the same temperatures of the mixture measurements and for pressures from the

pure fluids bubble points up to 10 MPa. Values for propylene were generated by the DEoS in Ref. 1

and those for 2-propanol were generated by the BWR equation presented in the former Paragraph

8.6.3.

Temperature dependence at constant composition of the propylene (1) + 2-propanol (2) mixture is

shown in Fig. 8.5a, while composition dependence at constant temperature is shown in Fig. 8.5b.
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Figure 8.4: Liquid density measurements for the propylene (1) + 2-propanol (2) mixture.
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Figure 8.5: Propylene (1) + 2-propanol (2) mixture: a) Temperature dependence of the liquid

density at constant composition ( )20.01 =x ; b) Composition dependence of the liquid density at

constant temperature ( )KT 300= .

8.7.3. Experimental results: phase equilibrium

The VTD allows to obtain density measurements and furthermore, through a data reduction of

such values, bubble pressures can be also evaluated as discussed in Ref. 3. In this way bubble

pressures for the propylene (1) + 2-propanol (2) mixture have been obtained at 300, 325 and 350 K

for 1x = 0.20, 0.52 and 0.65 molar fractions. The values are reported in Tab. 8.5 while the Fig. 8.6

shows the obtained values in comparison to the available literature data in the same temperature

range [41-43].
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Table 8.5: Comparison of pressures and densities at bubble point conditions between those

determined by the VTD ( P and ρ ) and those by the intersection of the compressed liquid

density MLFN model and the bubble pressure MLFN model ( P′ and ρ′ ).

T
(K) 1x P

(MPa)
P′

(MPa)
%P∆

ρ
(kg·m-3)

ρ′
(kg·m-3)

%ρ∆

300.14 0.2011 0.5224 0.4956 -5.125 731.63 731.23 -0.055
300.11 0.5201 0.9192 0.9199 0.076 644.42 644.63 0.032
300.12 0.6478 1.0297 1.0021 -2.677 607.97 607.84 -0.022
325.09 0.2011 0.7850 0.8604 9.606 703.01 703.25 0.034
325.05 0.5201 1.5583 1.5658 0.481 613.29 613.39 0.017
325.13 0.6478 1.7095 1.7394 1.748 573.24 573.50 0.045
350.18 0.2011 1.2620 1.2840 1.743 676.38 676.63 0.037
350.12 0.5201 2.1521 2.3275 8.149 575.99 576.57 0.102
350.18 0.6478 2.6200 2.6342 0.542 530.66 530.79 0.025
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Figure 8.6: Bubble pressure data for the propylene (1) + 2-propanol (2) mixture.
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8.7.4. Discussion

Multilayer feedforward neural network (MLFN) functional forms (see Paragraph 2.2.2) have

been used to correlate liquid density and bubble pressure experimental values for the propylene (1)

+ 2-propanol mixture. An arctangent function normalized in the range [ ]1,0 is assumed as the

transfer function. A statistical analysis of the data representation is reported in the following.

The measured liquid density values, together with the liquid density values generated for the

propylene and for the 2-propanol, at the same temperatures of the mixture measurements and for

pressures ranging from the pure fluid bubble points up to 10 MPa, were correlated with a MLFN.

The parameters used for the correlation of the liquid density data are presented in Tab. 8.6.

Table 8.6: Parameters of the feedforward neural network used for the correlation of the liquid

density data for the mixture propylene (1) + 2-propanol (2).

5.0=β 250min1min, == TV 400max1max, == TV

4=I 0PV min2min, == 12max2max, == PV

12=J 0min3min, == xV 1max3max, == xV

1=K 350min1min, == ρW 800max1max, == ρW

i j ijw i j ijw j k jkw

1 1 9.010170·101 3 1 1.119710·102 1 1 -4.617640·101

1 2 -7.888430 3 2 -9.451570 2 1 1.045780·102

1 3 4.093740 3 3 4.741180·101 3 1 2.705210·101

1 4 3.175850·101 3 4 3.745950·101 4 1 -3.218450·101

1 5 5.408060 3 5 4.226020 5 1 4.131650·101

1 6 1.160290·101 3 6 6.257430·101 6 1 1.148660
1 7 -1.719460 3 7 -6.859890·101 7 1 7.869950·101

1 8 2.384800·101 3 8 3.126750·101 8 1 7.177710·101

1 9 -1.635840·102 3 9 -5.275310·101 9 1 -1.563460·102

1 10 7.722330·102 3 10 2.476070·102 10 1 -7.446350·102

1 11 9.913330 3 11 8.709160 11 1 -8.324710·101

1 12 2.627740·10-1 3 12 -9.278200·101 12 1 -7.044190·101

2 1 -3.232040·101 4 1 -1.615050·102 13 1 3.140790·101

2 2 -6.101320·10-2 4 2 2.656600·101

2 3 9.660710·10-4 4 3 1.236170·102

2 4 -4.646080·101 4 4 6.156810·101

2 5 -5.914600·10-1 4 5 -4.362300·10-1 
2 6 -7.413220 4 6 -6.507460·101

2 7 1.424330 4 7 -1.663850
2 8 2.367740·101 4 8 3.043150·101

2 9 9.005100·101 4 9 1.339450·102

2 10 -4.175130·102 4 10 -6.333350·102

2 11 -7.045390·10-1 4 11 -9.259080·10-1 
2 12 1.699010 4 12 -2.553360
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Residual errors are presented in Tab. 8.7 and shown graphically in Fig. 8.7. The simultaneous

representation of mixture and pure fluid data shows a good coherence among the measured liquid

density values for the mixture and independent density values for the pure fluids.

Table 8.7: Accuracy of the feedforward neural network model in the representation of the liquid

density data of the propylene (1) + 2-propanol (2) mixture.

System Ref. NPTa T Range
(K)

P Range
(MPa) 1x Range AAD

(%)
Bias
(%)

MAD
(%)

binary
mixture

this work 186 300.0-350.2 0.0-10.1 0.20-0.65 0.017 0.006 0.063

2-propanol this work b 123 300.0-350.0 0.0-10.0 0.00 0.019 0.008 0.035
propylene Angus et al.

[1]
98 300.0-350.0 1.2-10.1 1.00 0.028 0.014 0.099

407 300.0-350.2 0.0-10.1 0.00-1.00 0.020 0.009 0.099

a NPT: number of experimental points.

b values generated by the BWR equation presented in the former paragraph 8.6.3.
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Figure 8.7: Percentage error of the feedforward neural network model in the representation of

the liquid density data of the propylene (1) + 2-propanol (2) mixture; C3 = propylene, IPA = 2-

propanol.
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Using the obtained MLFN function excess molar volumes have been calculated and their

composition dependence has been shown, varying pressure at constant temperature, in Fig. 8.8a,

and, varying temperature at constant pressure, in Fig. 8.8b. In the same figures also the excess

molar volumes calculated with the Peng-Robinson EoS including the Wong-Sandler mixing rules as

obtained for this system in Paragraph 7.6 have been shown for comparison. A very good agreement

between experimental excess volume values and values predicted by the MLFN can be noted in Fig.

8.8. This result comes from the very low residual error ( )0201.0% =AAD in the representation of

the pure fluids and mixture density values with the MLFN. On the other hand the Peng-Robinson

EoS represents the excess molar volumes only in a qualitative way, confirming that such EoS is not

enough precise in the representation of compressed liquid densities, especially for systems

involving associating fluids.
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Figure 8.8: Excess molar volumes for the propylene (1) + 2-propanol (2) mixture: a) pressure

dependence at constant temperature; b) temperature dependence at constant pressure.
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The coefficients of a second MLFN have been regressed on the literature bubble pressure values

[41,43] and on the saturation pressure of the pure propylene [1] and pure 2-propanol [44]. The

parameters used for the correlation of the bubble pressure data are presented in Tab. 8.8. The

percentage errors of the obtained MLFN with respect to the measured bubble pressures are

presented in Tab. 8.9 together with the errors with respect to the literature data available in the same

range of temperature. The %AAD with respect to the measured values is greater than the %AAD

with respect to the literature data on which the weighting factors of the MLFN have been regressed.

The AAD of the measured bubble pressures is about %35.3 while a value significantly lower is

found for the literature data of Refs. 41 and 43. At the same time it can be noted that literature data

[42] are not consistent with all the other bubble pressure data. A comparison between the MLFN

predictions and the measured bubble pressures is shown in Fig. 8.6. In the same figure the bubble

pressure predicted by the MLFN are compared with the Peng-Robinson EoS using Wong-Sandler

mixing rules, which parameters were presented in Paragraph 7.6. 

 

Table 8.8: Parameters of the feedforward neural network used for the correlation of the bubble

pressure data for the mixture propylene (1) + 2-propanol (2).

5.0=β 250min1min, == TV 400max1max, == TV

3=I 0min3min, == xV 1max3max, == xV

10=J 0min1min, == bubPW 12max1max, == bubPW

1=K

i j ijw i j ijw j k jkw

1 1 -2.984260 2 6 -8.020910 1 1 -4.286830·101

1 2 -2.368580 2 7 -1.477240·101 2 1 1.003870·101

1 3 -5.797060·10-2 2 8 1.219770 3 1 -1.594220·101

1 4 -7.176010 2 9 6.848890·101 4 1 1.780930·101

1 5 8.495830 2 10 2.736060 5 1 -3.840020·101

1 6 5.252270 3 1 2.109340 6 1 6.209550
1 7 -6.099100 3 2 5.568850 7 1 -3.350460·101

1 8 -1.445960 3 3 9.371590·10-1 8 1 5.234110·101

1 9 -3.605730·101 3 4 4.846480 9 1 5.640040·10-1 
1 10 9.521860 3 5 -4.758900 10 1 2.152770·101

2 1 -1.685540·10-1 3 6 -4.523590 11 1 5.090110
2 2 -5.177630 3 7 4.351610
2 3 -3.103680·101 3 8 5.681530·10-2 
2 4 -4.547720 3 9 -5.409480·101

2 5 1.348860·101 3 10 -4.652040
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Table 8.9: Accuracy of the feedforward neural network model in the representation of the bubble

pressure data of the propylene (1) + 2-propanol (2) mixture.

Ref. NPT
T Range

(K)
P Range
(MPa) 1x Range AAD

(%)
Bias
(%)

MAD
(%)

this work 9 300.1-350.2 0.5-2.6 0.20-0.65 3.350 1.616 9.606
Horstmann et al. [43] 17 298.1 0.2-1.1 0.08-1.00 0.506 0.191 2.594

Zabaloy et al. [41] 17 333.1-353.1 0.6-3.4 0.08-0.94 0.794 -0.037 2.223
Guzechak et al. [42] 12 293.2-333.2 0.2-0.7 0.02-0.15 50.999 -50.999 59.794

55 300.1-353.1 0.2-3.4 0.02-1.00 12.077 -10.815 59.794

From the intersection of the MLFN function regressed on single phase liquid densities and the

MLFN function regressed on bubble pressures it is possible to obtain an accurate representation of

the saturated liquid density surface of the mixture as a function of temperature and composition.

The Fig. 8.9 shows several isothermal sections of such surface pointing out the regular trends in the

saturated liquid density representation by the developed model.
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Figure 8.9: Saturated liquid density prediction for the propylene (1) + 2-propanol (2) mixture

obtained as intersection of the feedforward neural network correlations for the liquid densities

and for the bubble pressures.
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Using the same approach the saturated liquid densities at the present experimental temperature

and composition values have been calculated and the results are reported in Tab. 8.5 as ρ′ . In the

same Table the bubble pressures calculated by the MLFN model P′ are also reported for

comparison. The percentage relative deviation among the two evaluation methods of the saturated

liquid density is quite close to the experimental uncertainty of the density measurements. The

percentage deviations among the bubble pressures determined from the experimental data through

the graphical procedure and the corresponding ones generated by the MLFN model are also

reported in the Table. Reference is also made to former Tab. 8.9 and its relative comments.

8.8. Experimental results for the 2-propanol + water system

8.8.1. Introduction

The literature reports a number of experimental works about measurements of the liquid density

and vapor liquid equilibria of the 2-propanol + water mixture with which the original data presented

in the following will be compared. In particular, the sources in the range of interest for the density

are: Grigiante et al. [45], which reports density values from 298 to 308 K at atmospheric pressure

from 25.01 =x to 74.01 =x ; Egorov et al. [22], which reports density values from 275 to 338 K at

atmospheric pressure in the whole composition range; Hynčica et al. [46], which reports density

values from 298 to 573 K and from 0.4 to 30.3 MPa for dilute aqueous solutions; Origlia-Luster and

Woolley [47], which reports density values from 278 to 368 K at 0.4 MPa for dilute aqueous

solutions; Arce et al. [48], which reports density values at 298 K and atmospheric pressure from

07.01 =x to 95.01 =x ; Boned et al. [8], which reports density values from 303 to 343 K and from

0.1 to 65.0 MPa in the whole composition range; Schulte et al. [49], which reports density values

from 301 to 521 K and from 0.1 to 28.0 MPa for dilute aqueous solutions; Rauf et al. [50], which

reports density values from 298 to 308 K at atmospheric pressure from 03.01 =x to 85.01 =x ;

Sakurai [34], which reports density values from 278 to 318 K at atmospheric pressure in the whole

composition range; Kubota et al. [13], which reports density values from 283 to 348 K, from 0.1 to

190.9 MPa from 06.01 =x to 75.01 =x ; Høiland [51], which reports density values from 278 to

298 K at atmospheric pressure for dilute aqueous solutions; Roux et al. [52], which reports density

values at 283 and 298 K at atmospheric pressure from 01.01 =x to 91.01 =x ; Friedman and

Scheraga [53], which reports density values from 274 to 323 K at atmospheric pressure for dilute

aqueous solutions.

For the bubble pressure the sources in the range of interest are: Arce et al. [54], which reports

bubble pressure values from 353 to 372 K; Khalfaoui et al. [55], which reports bubble pressure
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values from 352 to 373 K; Marzal et al. [56], which reports bubble pressure values from 325 to 373

K; Tsuji et al. [57], which reports bubble pressure values at 298 K; Gironi and Lamberti [58], which

reports bubble pressure values from 353 to 373 K; Wu et al. [59], which reports bubble pressure

values at 353 K; Sada and Morisue [60], which reports bubble pressure values from 308 to 359 K;

Kato et al. [61], which reports bubble pressure values from 353 to 370 K; Ramalho and Drolet [62],

which reports bubble pressure values from 335 to 374 K; Wilson and Simons [63], which reports

bubble pressure values from 309 to 418 K; Brunjes and Bogart [64], which reports bubble pressure

values from 353 to 372 K.

The VTD was used to obtain liquid density values. The obtained values have been correlated

using a multilayer feedforward neural network (MLFN) function. The produced model has been

used to study the composition dependence of the excess volumes at constant temperature and

pressure.

A bubble pressure model combining a MLFN and saturated pressure equations for the pure fluids

was obtained correlating the literature bubble pressures for the 2-propanol (1) + water (2) mixture in

the 298 to 374 K temperature range.

The saturated liquid density surface in the whole composition range and for temperatures ranging

from 287 to 350 K has been obtained as intersection of the model regressed on single-phase liquid

densities and the model regressed on bubble pressures.

8.8.2. Experimental results

The liquid density measurements for the 2-propanol (1) + water (2) mixture have been carried

out at 300, 325 and 350 K from 10 MPa down to about atmospheric pressure for the 1x = 0.25, 0.49

and 0.73 molar fractions. The measured (P, ρ ,T, x ) values are reported in Tab. 8.10. In Fig. 8.10

the measured data are shown together with liquid density values of the pure water and 2-propanol at

the same temperatures of the mixture measurements and for pressures from the pure fluids bubble

points up to 10 MPa. Values for water were generated by the DEoS in Ref. 2 and those for 2-

propanol were generated by the BWR equation presented in the former Paragraph 8.6.3.

The temperature dependence at constant composition of the 2-propanol (1) + water (2) mixture is

shown in Fig. 8.11a, while the composition dependence at constant temperature is shown in Fig.

8.11b. In the Figs. 8.10 and 8.11 the dotted lines represent saturated liquid densities slρ obtained

through the models presented in the following Paragraph 8.8.3.
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Table 8.10: Experimental liquid density data for the 2-propanol (1) + water (2) mixture.

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

2483.01 =x
08300.T = K 10325.T = K 18350.T = K

0.1462 895.50 0.0726 874.13 0.2200 850.33
0.3813 895.67 0.4103 874.37 0.5110 850.54
0.7649 895.89 0.9621 874.71 0.9388 850.91
1.1011 896.11 1.3430 875.01 1.3697 851.29
1.5568 896.32 1.8595 875.37 2.0669 851.75
1.9219 896.56 2.3326 875.60 2.3810 852.09
2.1815 896.86 2.8264 875.91 2.7181 852.39
2.6101 897.09 3.3194 876.24 3.1077 852.73
3.0805 897.32 3.7763 876.52 3.4648 853.04
3.5223 897.58 4.2367 876.83 3.9576 853.37
4.0826 897.87 4.5987 877.08 4.3460 853.71
4.6633 898.17 5.0893 877.36 4.7811 854.06
5.1513 898.42 5.5642 877.68 5.2678 854.49
5.5625 898.65 5.9542 877.93 5.7438 854.83
5.9805 898.85 6.3943 878.21 6.1964 855.20
6.4143 899.11 6.8085 878.48 6.7342 855.63
6.7548 899.33 7.2880 878.80 7.3749 856.07
7.2468 899.56 7.7827 879.08 7.9990 856.54
7.6367 899.78 8.0791 879.34 8.6303 857.02
8.1316 900.04 8.4389 879.63 9.2983 857.54
8.6628 900.28 8.8285 879.87
9.0873 900.54 9.3589 880.18
9.5623 900.79

4939.01 =x
10300.T = K 09325.T = K 15350.T = K

0.2334 838.18 0.0654 814.96 0.1617 789.80
0.5030 838.33 0.3030 815.20 0.3878 790.10
0.9466 838.71 0.6453 815.47 0.6952 790.45
1.5453 839.06 1.0048 815.80 1.0208 790.78
1.9022 839.36 1.3919 816.13 1.4001 791.25
2.3035 839.65 1.7881 816.48 1.7958 791.61
2.7246 839.96 2.2420 816.83 2.1471 791.96
3.1365 840.26 2.8811 817.33 2.4979 792.31
3.5679 840.56 3.9046 818.19 2.8927 792.74
3.9958 840.87 4.2421 818.51 3.2779 793.12
4.4362 841.18 4.7844 818.94 3.6115 793.50
4.8355 841.48 5.1168 819.26 4.0873 794.01
5.2620 841.77 5.5073 819.61 4.6067 794.49
5.6998 842.07 5.9122 819.93 4.9552 794.83
6.1610 842.39 6.3221 820.28 5.3760 795.26
6.5884 842.68 6.7730 820.60 5.8376 795.69
7.0530 843.00 7.2145 820.97 6.2964 796.18
7.4379 843.28 7.6133 821.31 6.8866 796.77
7.8620 843.57 8.0805 821.70 7.4008 797.28
8.2485 843.86 8.6031 822.11 7.9356 797.73
8.7044 844.15 9.1973 822.51 8.4003 798.24
9.2606 844.49 9.5614 822.86 9.0006 798.68
9.9664 845.04 9.5212 799.18



VIII. Density and phase equilibrium via a vibrating tube densimeter330

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

7258.01 =x
08300.T = K 13325.T = K 14351.T = K

0.0882 805.57 0.0830 782.69 0.2415 757.15
0.3030 805.78 0.2681 782.93 0.4445 757.34
0.5651 806.00 0.5283 783.18 0.8224 757.80
1.1262 806.42 0.8737 783.50 1.2716 758.33
1.7025 806.92 1.2986 783.92 1.6739 758.75
2.2398 807.33 1.7092 784.33 2.0705 759.26
2.7227 807.73 2.2007 784.79 2.4611 759.66
3.1960 808.11 2.6521 785.22 2.8634 760.12
3.7156 808.53 3.1017 785.67 3.2809 760.61
4.2315 808.93 3.5506 786.11 4.2525 761.65
4.5871 809.31 4.0683 786.61 4.6264 762.11
5.3146 809.85 4.5794 787.07 5.0759 762.61
5.7932 810.24 5.0217 787.49 5.5585 763.09
6.3012 810.63 5.4961 787.93 5.9762 763.59
6.7839 811.02 5.9723 788.38 6.4398 764.08
7.2976 811.43 6.4508 788.82 6.8822 764.57
7.8044 811.81 6.9030 789.24 7.3486 765.10
8.3422 812.23 7.3920 789.70 7.8093 765.60
8.8180 812.60 7.8611 790.11 8.2540 766.09
9.3301 813.00 8.3228 790.52 8.7202 766.63
9.9189 813.45 8.8139 790.98 9.2213 767.15

9.2874 791.41 9.7148 767.73
9.8297 791.93 10.2395 768.31
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Figure 8.10: Liquid density measurements for the 2-propanol (1) + water (2) mixture.
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Figure 8.11: Liquid density measurements for the 2-propanol (1) + water (2) mixture. a)

temperature dependence at constant composition; b) composition dependence at constant

temperature.

8.8.3. Discussion

Multilayer feedforward neural network (MLFN) functional forms have been used to correlate

experimental values for the compressed liquid density and literature values for the bubble pressure.

The general architecture of a MLFN was illustrated in Paragraph 2.2.2.

Compressed liquid density as function of temperature, pressure and composition has been

represented using a simple MLFN model with a logistic function as transfer function:

( ) 11 Wx,P,T =ρ (8.3)

1W represents the density, while iV , for i = 1, 2, 3, are temperature, pressure and 2-propanol

molar fraction 1x , respectively.

Bubble pressure, bubP , as function of temperature and composition has been represented as:
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( ) ( ) ( ) 11121111 11, WxxPxPxxTP ssbub ⋅−+−+= (8.4)

where sP1 and sP2 are the 2-propanol and water saturated pressure as function of temperature

calculated by the saturated pressure equations in Ref. 44 and in Ref. 2, respectively. In Eq. (8.4) 1W

is the denormalized output of a simple MLFN model in which iV , for i = 1, 2, are temperature and

composition 1x , respectively. An arctangent function normalized in the range [ ]1,0 is assumed as

the transfer function.

The measured liquid density values, together with the liquid density values generated for the

pure 2-propanol and for the pure water, at the same temperatures of the mixture measurements and

for pressures ranging from the pure fluid bubble points up to 10 MPa, were used as training data to

regress the parameters of a MLFN density model, Eq. (8.3). These parameters are presented in Tab.

8.11.

The obtained density model has been validated against literature data in the same range of

temperature and pressure.

Tab. 8.12 presents the accuracy of the density model with respect to the training data and the

validation data. The Fig. 8.12 shows graphically the errors presented in Tab. 8.12. A very good

representation is achieved for the 443 points used as training data (AAD % = 0.009; Bias % =

0.004). The density model regressed on the training data represents the whole available density data

(1137 points) in the considered range ( 00.100.01 −=x ; 350288 −=T K; 24.10≤P MPa) with an

error (AAD % < 0.05) inside the experimental uncertainty of the density measurements.

Using the obtained density model, the excess molar volumes have been calculated and their

composition dependence has been shown in Fig. 8.13a, varying pressure at constant temperature,

and in Fig. 8.13b, varying temperature at constant pressure. A very good agreement between

experimental excess volume values and values predicted by the MLFN can be noted in Fig. 8.13.

This result comes from the very low residual error (AAD % = 0.009) in the representation of the

pure fluids and of the measured mixture density values with the MLFN model. The Fig. 8.13 shows

also a comparison with the excess volumes measured by Sakurai [34], Egorov et al. [22], and Boned

et al. [8]; a good agreement between the excess molar volumes predicted by the MLFN density

model and the cited experimental data can be noted.
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Table 8.11: Parameters of the feedforward neural network used in Eq. (8.3) for the correlation of

the liquid density data of the 2-propanol (1) + water (2) mixture.

5.0=β 250min1min, == TV 600max1max, == TV

4=I 02 == minmin, PV 200max2max, == PV

6=J 0min3min, == xV 1max3max, == xV

1=K 650min1min, == ρW 1050max1max, == ρW

i j ijw i j ijw j k jkw

1 1 -9.31363·10-1 3 1 -7.46161·10-1 1 1 1.40240·101

1 2 1.90004 3 2 8.78966 2 1 -1.04466·101

1 3 -2.65487 3 3 5.07904 3 1 -3.93483
1 4 -7.11414 3 4 -1.29070 4 1 8.77578
1 5 4.42480·10-1 3 5 2.27958 5 1 2.06857
1 6 -1.37567·101 3 6 -1.41375·101 6 1 -1.23929·101

2 1 2.02051·10-1 4 1 -3.92838·10-1 7 1 9.84349·10-1 
2 2 -1.45314 4 2 1.95147
2 3 2.17204 4 3 2.13417
2 4 5.91087 4 4 6.00562
2 5 9.04961·10-1 4 5 -2.26466
2 6 -3.85432 4 6 -1.12442
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Table 8.12: Accuracy of the feedforward neural network model, Eq. (8.3), in the representation of the liquid density data of the 2-propanol (1) +

water (2) mixture.

System Ref. NPT a T Range
(K)

P Range
(MPa) 1x Range AAD

(%)
Bias
(%)

MAD
(%)

Training data
binary mixture this work 200 300-350 0.07-10.24 0.25-0.73 0.003 0.000 0.012

2-propanol this work b 123 300-350 0.01-10.00 1.00 0.016 0.004 0.030
water Wagner and Pruß [2] 120 300-350 0.00-9.75 0.00 0.011 0.009 0.035

443 300-350 0.00-10.24 0.00-1.00 0.009 0.004 0.035
Validation data

binary mixture Grigiante et al. [45] 15 288-308 0.10 0.25-0.74 0.011 -0.006 0.026
binary mixture Egorov et al. [22] 70 288-338 0.10 0.00-1.00 0.066 0.010 0.283
binary mixture Hynčica et al. [46] 55 298-338 0.39-0.50 0.00-0.01 0.058 -0.058 0.150
binary mixture Origlia-Luster and Woolley [47] 72 288-358 0.35 0.00-0.02 0.052 -0.048 0.208
binary mixture Arce et al. [48] 19 298 0.10 0.07-0.95 0.035 0.017 0.120
binary mixture Boned et al. [8] 81 303-343 0.10-10.00 0.10-0.90 0.071 -0.060 0.219
binary mixture Schulte et al. [49] 9 302 0.10 0.00-0.02 0.086 -0.086 0.159
binary mixture Rauf et al. [50] 27 298-308 0.10 0.03-0.85 0.279 0.242 0.687
binary mixture Sakurai [34] 292 288-318 0.10 0.00-1.00 0.063 -0.028 0.274
binary mixture Kubota et al. [13] 11 298-348 0.10 0.06-0.75 0.050 0.010 0.173
binary mixture Høiland [51] 14 293-298 0.10 0.00-0.01 0.050 -0.033 0.115
binary mixture Roux et al. [52] 14 298 0.10 0.01-0.76 0.156 0.027 0.691
binary mixture Friedman and Scheraga [53] 15 293-323 0.10 0.00-0.01 0.028 -0.026 0.058

1137 288-350 0.00-10.24 0.00-1.00 0.046 -0.010 0.691

a NPT: number of experimental points.

b values generated by the BWR equation presented in the former paragraph 8.6.3.
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Figure 8.12: Percentage deviation of the feedforward neural network model, Eq. (8.3), in the

representation of the liquid density data of the 2-propanol (1) + water (2) mixture. a) training

data; b) validation data.
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Figure 8.13: Excess molar volumes for the 2-propanol (1) + water (2) mixture. a) pressure

dependence at constant temperature; b) temperature dependence at constant pressure.

The coefficients of the MLFN involved in the bubble pressure model as function of temperature

and composition, Eq. (8.4), have been regressed on the literature bubble pressure values and on the

saturated pressure of the pure 2-propanol [44] and pure water [2]. The parameters used for the

correlation of the bubble pressure data are presented in Tab. 8.13. The percentage errors of the

bubble pressure model, Eq. (8.4), with respect to the bubble pressure data available from the

literature in the temperature range from 298 to 374 K are presented in Tab. 8.14. The bubble

pressure model represents the considered 421 points of the literature with AAD % < 1.3. The AAD

% value is quite homogeneous for all the data sets involved in the regression of the MLFN

coefficients, and the Bias % value of 0.058 shows that the model is well centered with respect to the

whole data set. A comparison between the bubble pressure model and the literature data presented

in Tab. 8.14 is shown in Fig. 8.14. In Fig. 8.14a the model of Eq. (8.4) has been compared with

bubble temperature data. In such a figure lines were obtained inverting Eq. (8.4) to calculate the
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bubble temperature as function of pressure and composition. In Fig. 8.14b the model of Eq. (8.4)

has been compared with bubble pressure data.

Table 8.13: Parameters of the feedforward neural network involved in the bubble pressure

model, Eq. (8.4), for the mixture 2-propanol (1) + water (2).

5.0=β 260min1min, == TV 400max1max, == TV

3=I 0min2min, == xV 1max2max, == xV

8=J 0min1min, == bubPW 10max1max, == bubPW

1=K

i j ijw i j ijw j k jkw

1 1 2.07887 2 5 2.49586 1 1 -2.73155
1 2 -9.89624 2 6 1.82237 2 1 -6.95864
1 3 -9.00570 2 7 7.67651 3 1 -1.10463·101

1 4 7.02491 2 8 4.55245 4 1 3.38399
1 5 6.07017 3 1 -8.25943·10-1 5 1 5.52538
1 6 3.19986 3 2 4.18945 6 1 -3.98819
1 7 -4.60675 3 3 4.13969 7 1 5.93730
1 8 -8.25220·10-1 3 4 -2.98387 8 1 2.53652
2 1 1.67302 3 5 -6.41113 9 1 -4.43300·10-1 
2 2 6.71506 3 6 -2.03992
2 3 1.71764·101 3 7 7.19708·10-1 
2 4 -1.40865 3 8 -2.38406

Table 8.14: Accuracy of the feedforward neural network model, Eq. (8.4), in the representation

of the bubble pressure data of the 2-propanol (1) + water (2) mixture.

Ref. NPT
T Range

(K)
P Range
(MPa) 1x Range AAD

(%)
Bias
(%)

MAD
(%)

Arce et al. [54] 27 353-372 0.10 0.00-0.98 0.914 -0.883 3.735
Khalfaoui et al. [55] 12 352-373 0.10 0.00-1.00 2.476 1.792 7.381

Marzal et al. [56] 78 325-373 0.03-0.10 0.00-1.00 1.494 0.465 6.231
Tsuji et al. [57] 10 298 0.01 0.07-0.90 0.554 0.177 2.571

Gironi and Lamberti [58] 32 353-373 0.10 0.00-1.00 1.229 0.041 6.102
Wu et al. [59] 21 353 0.05-0.10 0.00-1.00 0.844 -0.426 2.640

Sada and Morisue [60] 48 308-359 0.01-0.10 0.05-0.86 1.462 -1.031 3.017
Kato et al. [61] 17 353-370 0.10 0.01-1.00 1.646 -1.630 5.096

Ramalho and Drolet [62] 50 335-374 0.04-0.17 0.02-1.00 1.359 0.971 16.068
Wilson and Simmons

[63]
99 309-373 0.01-0.10 0.00-1.00 0.974 -0.156 5.151

Brunjes and Bogart [64] 27 353-372 0.10 0.00-0.93 1.524 1.498 8.237
421 298-374 0.01-0.17 0.00-1.00 1.276 0.058 16.068
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Figure 8.14: Representation of the bubble point model in comparison with the saturated data for

the 2-propanol (1) + water (2) mixture: a) bubble temperatures; b) bubble pressures.
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Saturated liquid density values can be obtained through the intersection of Eq. (8.3) for the

compressed liquid density and Eq. (8.4) for the bubble pressure. In Tab. 8.15 the saturated liquid

density values obtained with this procedure for the temperatures and compositions corresponding to

the density measurements presented in this work are reported. The Fig. 8.15 shows the saturated

liquid densities obtained with this procedure in the whole composition range and for temperatures

from 287 to 350 K. The figure shows several isothermal sections pointing out the regular trends in

the saturated liquid density representation by the developed model.

Table 8.15: Saturated liquid densities for the 2-propanol (1) + water (2) mixture.

T
(K) 1x P

(MPa)
ρ

(kg·m-3)
300.08 0.2483 0.0070 895.51
325.10 0.2483 0.0273 874.07
350.18 0.2483 0.0844 850.19
300.10 0.4939 0.0072 837.98
325.09 0.4939 0.0286 814.94
350.15 0.4939 0.0880 789.82
300.08 0.7258 0.0073 805.50
325.13 0.7258 0.0292 782.68
351.14 0.7258 0.0932 756.90
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Figure 8.15: Saturated liquid density prediction for the 2-propanol (1) + water (2) mixture

obtained as intersection of the compressed liquid density model, Eq. (8.3), and the bubble

pressure model, Eq. (8.4).
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8.9. Experimental results for the propylene + 2-propanol+ water system

8.9.1. Introduction

The experimental data available in the literature for the propylene + 2-propanol + water mixture

are: VLE data at 333 and 353 K, from 2.6 to 3.7 MPa and high propylene concentration from

Zabaloy et al. [65]; LLE data from 313 to 363 K and from 1.6 to 6.0 MPa from Rojas et al. [66],

solubility data from Wu et al. [67].

8.9.2. Experimental results

The VTD was used to measure liquid density for the propylene (1) + 2-propanol (2) + water (3)

mixture at about 300, 325 and 350 K from 10 MPa down to about atmospheric pressure and for the

following molar fractions: ( )37.0;09.0 21 == xx , ( )38.0;18.0 21 == xx , ( )50.0;30.0 21 == xx ,

( )4236.0;3906.0 21 == xx and ( )30.0;61.0 21 == xx . The measured ( )x,,, TP ρ values are reported

in Tab. 8.16.

Table 8.16: Experimental liquid density data for the propylene (1) + 2-propanol (2) + water (3)

mixture.

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

3697.0;0904.0 21 == xx
KT 05.305= KT 13.325= KT 16.350=

0.4810 805.22 1.0965 787.78 1.9794 760.95
0.7999 805.53 1.3765 788.08 2.2506 761.47
1.1189 805.81 1.7884 788.50 2.6532 762.19
1.5873 806.21 2.2055 788.92 2.7894 762.47
1.9738 806.57 2.5256 789.26 3.1725 763.00
2.3437 806.88 2.9169 789.68 3.4877 763.47
2.8616 807.33 3.3853 790.18 3.8192 763.99
3.0889 807.54 3.7252 790.51 4.1715 764.47
3.6201 807.99 4.1353 790.90 4.5587 764.96
3.9484 808.27 4.5483 791.31 4.9036 765.44
4.3454 808.61 4.9428 791.70 5.2727 765.96
4.7510 808.95 5.3524 792.10 5.6052 766.43
5.1507 809.29 5.8171 792.53 5.9927 766.93
5.5576 809.63 6.1588 792.87 6.3886 767.42
5.9644 809.96 6.5713 793.27 6.7535 767.93
6.3666 810.30 6.9706 793.68 7.1751 768.45
6.7866 810.64 7.3611 794.07 7.5340 768.95
7.2071 810.99 7.7525 794.47 7.8862 769.36
7.6091 811.32 8.1263 794.84 8.2903 769.86
8.0286 811.65 8.5563 795.24 8.7023 770.37
8.4590 812.01 8.9514 795.67 8.9884 770.84
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P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

3697.0;0904.0 21 == xx (continuation)

KT 05.305= KT 13.325= KT 16.350=
8.8724 812.34 9.3597 796.03 9.3719 771.35
9.2723 812.66 9.7832 796.45 9.6929 771.80
9.6791 812.99 10.1933 796.86 10.0187 772.34

10.0684 813.35
3828.0;1828.0 21 == xx

KT 10.300= KT 11.325= KT 10.345=
1.0199 758.54 1.8728 738.13 2.2984 718.81
1.3355 758.91 2.2723 738.62 2.3475 718.97
1.6925 759.33 2.5648 739.03 2.7307 719.58
2.0684 759.75 2.8425 739.43 2.9939 720.06
2.5068 760.25 3.1636 740.00 3.2842 720.53
2.8233 760.61 3.4603 740.41 3.5454 720.93
3.2665 761.10 3.8021 740.80 3.9537 721.63
3.5650 761.44 4.2055 741.30 4.1125 721.93
3.9100 761.82 4.5705 741.79 4.4260 722.46
4.3613 762.31 4.9121 742.16 4.7064 722.89
4.6798 762.67 5.3304 742.65 5.0009 723.31
5.0641 763.09 5.7023 743.08 5.2821 723.84
5.4541 763.51 6.0691 743.56 5.5902 724.30
5.8503 763.93 6.4030 743.98 5.9446 724.83
6.3272 764.42 6.7761 744.45 6.1833 725.19
6.6228 764.75 7.0992 744.86 6.4859 725.68
6.9543 765.10 7.4957 745.33 6.7904 726.18
7.4566 765.62 7.8402 745.77 7.0883 726.63
7.8439 766.01 8.2173 746.22 7.3961 727.11
8.2379 766.41 8.5721 746.68 7.6975 727.55
8.6408 766.82 8.9346 747.14 8.0104 728.03
9.0641 767.26 9.2711 747.56 8.3245 728.51
9.4705 767.67 9.6208 747.98 8.6350 728.98
9.8583 768.09 10.0454 748.47 8.9472 729.42

9.2760 729.90
5024.0;3031.0 21 == xx

KT 10.300= KT 13.325= KT 13.350=
0.9309 707.92 1.1870 678.16 2.4368 653.52
1.1970 708.29 1.4432 678.62 2.6048 653.96
1.5561 708.78 1.7278 679.11 2.9301 654.68
1.9481 709.29 2.1436 679.80 3.2025 655.27
2.4588 709.93 2.4797 680.35 3.7344 656.44
2.7801 710.37 2.8914 681.10 3.8724 656.79
3.1645 710.88 3.1544 681.59 4.1369 657.40
3.5128 711.35 3.5318 682.22 4.4889 658.17
4.0090 711.99 3.8344 682.74 4.8105 658.86
4.3604 712.44 4.1041 683.18 5.1260 659.50
4.7663 712.95 4.5529 683.87 5.4452 660.17
5.1546 713.45 4.9137 684.44 5.7662 660.85
5.5805 713.98 5.2916 685.03 6.0928 661.51
5.9734 714.47 5.6730 685.61 6.4190 662.19
6.4374 715.04 6.0311 686.15 6.7620 662.87
6.8139 715.51 6.4017 686.72 7.0907 663.50
7.2457 716.02 6.7892 687.28 7.4234 664.19
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P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

5024.0;3031.0 21 == xx (continuation)

KT 10.300= KT 13.325= KT 13.350=
7.6762 716.54 7.1736 687.86 7.7731 664.87
8.0953 717.04 7.5690 688.43 8.1258 665.54
8.5271 717.54 7.9652 689.02 8.4760 666.19
9.0259 718.13 8.3550 689.57 8.8295 666.84
9.4290 718.61 8.7637 690.16 9.1905 667.56
9.7855 719.09 9.1707 690.73 9.5447 668.20

10.2138 719.60 9.5748 691.28 9.9024 668.83
9.9694 691.84

4236.0;3906.0 21 == xx
KT 10.300= KT 11.325= KT 11.350=

1.0187 680.98 1.9518 650.66 2.6205 618.74
1.1998 681.27 2.3561 651.45 3.0072 619.87
1.6209 681.88 2.5960 651.95 3.1830 620.39
1.9773 682.39 2.9341 652.61 3.5281 621.38
2.3279 682.91 3.2077 653.19 3.7312 621.97
2.7039 683.48 3.4938 653.75 4.0884 622.82
3.0296 683.95 3.8787 654.46 4.3645 623.63
3.3633 684.43 4.2234 655.08 4.6536 624.39
3.7581 685.00 4.5679 655.73 4.9512 625.19
4.0323 685.37 4.8926 656.32 5.2582 625.98
4.4872 686.01 5.2235 656.91 5.5968 626.78
4.8414 686.51 5.5586 657.52 5.9458 627.64
5.2112 687.02 5.9273 658.17 6.2382 628.34
5.5919 687.54 6.2780 658.79 6.5680 629.17
5.9575 688.05 6.6596 659.45 6.8828 629.92
6.3307 688.56 7.0051 660.05 7.2018 630.66
6.7084 689.06 7.3645 660.65 7.5611 631.49
7.0811 689.56 7.7307 661.26 7.9087 632.29
7.4649 690.07 8.1192 661.90 8.2357 633.07
7.8655 690.59 8.4743 662.48 8.5847 633.86
8.2519 691.10 8.8572 663.10 8.9126 634.62
8.6313 691.60 9.2336 663.72 9.2911 635.35
9.0140 692.09 9.6192 664.33 9.6659 636.22
9.4229 692.60 9.9714 664.93 9.9874 636.95
9.8324 693.12

3039.0;6123.0 21 == xx
KT 10.300= KT 12.325= KT 10.350=

1.0854 614.94 1.8941 580.11 2.8501 540.02
1.5314 615.81 2.2073 580.96 3.0168 540.87
1.8707 616.53 2.5281 581.84 3.2315 541.94
2.3726 617.48 2.8474 582.67 3.5057 543.11
2.5272 617.84 3.2008 583.61 3.7827 544.27
2.9221 618.61 3.4991 584.39 3.9965 545.27
3.2262 619.19 3.7780 585.12 4.3281 546.57
3.5794 619.86 3.8175 586.14 4.6211 547.80
4.0682 620.74 4.2142 587.19 4.8667 548.79
4.2817 621.17 4.5221 587.93 5.1693 550.07
4.7290 622.00 4.8663 588.81 5.4573 551.09
5.1095 622.68 5.2102 589.63 5.7592 552.24
5.4945 623.39 5.5629 590.47 6.0943 553.32
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P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

P
(MPa)

ρ
(kg·m-3)

3039.0;6123.0 21 == xx (continuation)

KT 10.300= KT 12.325= KT 10.350=
5.8751 624.07 5.9303 591.32 6.4191 554.43
6.2521 624.73 6.3212 592.20 6.7321 555.54
6.6365 625.40 6.6863 593.02 7.0480 556.69
7.0329 626.07 7.0575 593.82 7.3729 557.82
7.4534 626.76 7.4688 594.69 7.7030 558.93
7.8662 627.47 7.8762 595.54 8.0598 559.96
8.2557 628.11 8.2536 596.34 8.4385 561.12
8.6619 628.75 8.6532 597.15 8.8208 562.37
9.0796 629.46 9.0784 597.99 9.1877 563.44
9.4742 630.08 9.5001 598.83 9.5755 564.54
9.8967 630.79 9.9155 599.65 9.9391 565.57

For each composition at each measurement temperature also the bubble pressure was determined

and the corresponding values are reported in Tab. 8.17.

Table 8.17: Bubble pressures and saturated liquid densities for the propylene (1) + 2-propanol

(2) + water (3) mixture.

T
(K) 1x 2x P

(MPa)
ρ

(kg·m-3)
305.05 0.0904 0.3697 0.4685 805.23
325.13 0.0904 0.3697 1.0136 787.71
350.16 0.0904 0.3697 1.6943 760.66
300.10 0.1828 0.3828 0.9366 758.45
325.11 0.1828 0.3828 1.5933 737.81
345.10 0.1828 0.3828 2.1873 718.66
300.10 0.3031 0.5024 0.9081 707.89
325.13 0.3031 0.5024 - -
350.13 0.3031 0.5024 2.1351 652.85
300.10 0.3906 0.4236 0.9897 680.94
325.11 0.3906 0.4236 1.6609 650.10
350.11 0.3906 0.4236 2.4621 618.33
300.10 0.6123 0.3039 1.0583 614.87
325.12 0.6123 0.3039 1.7863 581.18
350.10 0.6123 0.3039 2.7101 539.52

8.9.3. Discussion

The measured liquid density values for the propylene + 2-propanol + water mixture, together

with the liquid density values measured in this thesis for the propylene + 2-propanol mixture

(Paragraph 8.7) and for the 2-propanol + water mixture (Paragraph 8.8), and liquid density values
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generated for the pure fluids propylene, 2-propanol and water in the same range of temperature and

pressure were correlated with a MLFN model (see Paragraph 2.2.2):

( ) 121,,, WxxPT =ρ (8.5)

An arctangent function normalized in the range [ ]1,0 is assumed as transfer function. 1W

represents the density, while iV , for i=1, 2, 3, are temperature, pressure and composition

respectively.

The parameters used for the correlation of the liquid density data are presented in Tab. 8.18.

Residual errors are presented in Tab. 8.19 and shown graphically in Fig. 8.16. The simultaneous

representation of the ternary mixture, the binary mixtures and pure fluid data shows a good

coherence among the measured liquid density values for the mixtures and the generated liquid

density values for the pure fluids. The overall AAD % (0.035) is less than the experimental

uncertainty of the presented density measurements. The Bias % value (0.001) shows that the MLFN

model is very well centered with respect to the experimental data.
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Figure 8.16: Percentage error of the feedforward neural network model in the representation of

the liquid density data of the propylene (1) + 2-Propanol (2) + water (3) mixture.
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The MLFN model of Eq. (8.5) was used to generate the liquid density surfaces from 300 to 350

K in the whole composition range, Fig. 8.17. In the same figure, dash dot lines represent LLE

boundaries generated with the EoSG E − model presented in Paragraph 7.6.

Table 8.18: Parameters of the feedforward neural network used for the correlation of the liquid

density data for the mixture propylene (1) + 2-propanol (2) + water (3).

5.0=β 250min1min, == TV 400max1max, == TV

5=I 0min2min, == PV 12max2max, == PV

12=J 0min,13min, == xV 1max,13max, == xV

1=K 0min,24min, == xV 1max,24max, == xV

250min1min, == ρW 1050max1max, == ρW

i j wij i j wij i j wij

1 1 -2.92762·101 3 1 -1.99930·101 1 1 -1.75403·101

1 2 4.21347 3 2 -6.66933 2 1 5.40361·10-3 
1 3 2.47330 3 3 -1.49965 3 1 -1.24796
1 4 -4.47885 3 4 -3.35238 4 1 -1.27458·10-1 
1 5 2.72143 3 5 -6.83433·10-1 5 1 -1.53151
1 6 -5.43393 3 6 1.71319 6 1 1.24410·101

1 7 3.52922 3 7 3.09508·101 7 1 -3.00794
1 8 -2.15646·101 3 8 -1.71309·101 8 1 2.86986·101

1 9 4.42482 3 9 -7.10556 9 1 7.95524·10-2 
1 10 -2.08228·101 3 10 -1.78988·101 10 1 2.93360·101

1 11 -1.61511·102 3 11 -5.20945·101 11 1 1.30889·102

1 12 5.47497 3 12 1.55951·101 12 1 -2.90082
2 1 1.88455 4 1 -1.43946·101 j k wjk

2 2 -1.88623·10-1 4 2 -2.33862 1 1 4.58186·101

2 3 -2.37482·10-1 4 3 -2.14679 2 1 -3.38637·101

2 4 2.08989·10-1 4 4 2.63885 3 1 2.68326·101

2 5 -2.83151·10-1 4 5 -2.55880 4 1 1.27324
2 6 2.97414 4 6 3.26107·101 5 1 -2.25387·101

2 7 -5.42178·10-2 4 7 2.03028·101 6 1 -1.75728·101

2 8 1.10477·101 4 8 -1.37383 7 1 -2.98598·101

2 9 -1.82864·10-1 4 9 -2.46377 8 1 -2.39993·101

2 10 9.85172 4 10 -2.11137 9 1 3.02683·101

2 11 9.06796·101 4 11 4.02489·101 10 1 2.75980·101

2 12 5.21938·10-2 4 12 2.33143·101 11 1 6.70185
12 1 1.95301·101

13 1 1.61961·101
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Table 8.19: Accuracy of the feedforward neural network model, Eq. (8.5), in the representation of the liquid density data of the propylene (1) +

2-propanol (2) + water (3) mixture.

System Ref. NPT a T Range
(K)

P Range
(MPa) 1x Range 2x Range AAD

(%)
Bias
(%)

MAD
(%)

propylene (1) + 2-propanol (2) +
water (3)

this work 378 300-350 0.47-10.21 0.09-0.61 0.30-0.50 0.052 -0.005 0.184

propylene (1) + 2-propanol (2)
this work

(paragraph 8.7)
186 300-350 0.52-9.99 0.20-0.65 0.35-0.80 0.038 0.020 0.122

2-propanol (1) + water (2)
this work

(paragraph 8.8)
200 300-351 0.07-10.24 0.00 0.25-0.73 0.035 -0.004 0.104

propylene Angus et al. [1] 98 300-350 1.21-10.10 1.00 0.00 0.025 0.004 0.173
2-propanol this work b 123 300-350 0.01-10.00 0.00 1.00 0.009 0.004 0.026

water Wagner and Pruß [2] 120 300-350 0.00-9.75 0.00 0.00 0.013 -0.002 0.036
1105 300-351 0.00-10.24 0.00-1.00 0.00-1.00 0.035 0.001 0.184

a NPT: number of experimental points.

b values generated by the BWR equation presented in the former paragraph 8.6.3.
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Figure 8.17: Liquid density surfaces for the propylene (1) + 2-propanol (2) + water (3) mixture

obtained with the regressed feedforward neural network model.
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8.10. Conclusions

Density measurements have been carried out:

� for 2-propanol in the range from 273 to 400 K and up to 12 MPa;

� for the propylene (1) + 2-propanol (2) mixture at 300, 325 and 350 K from 10 MPa down to

bubble pressures for 1x = 0.20, 0.52 and 0.65;

� for the 2-propanol (1) + water (2) mixture at 300, 325 and 350 K from 10 MPa down to

about atmospheric pressure for 1x = 0.25, 0.49 and 0.73;

� for the propylene (1) + 2-propanol (2) + water (3) mixture at about 300, 325 and 350 K from

10 MPa down to about atmospheric pressure and for the following molar fractions:

( )37.0;09.0 21 == xx , ( )38.0;18.0 21 == xx , ( )50.0;30.0 21 == xx , ( )42.0;39.0 21 == xx

and ( )30.0;61.0 21 == xx .

Bubble pressures have been determined:

� for the propylene (1) + 2-propanol (2) mixture at 300, 325 and 350 K for 1x = 0.20, 0.52 and

0.65;

� for the propylene (1) + 2-propanol (2) + water (3) mixture at about 300, 325 and 350 K for

the following molar fractions: ( )37.0;09.0 21 == xx , ( )38.0;18.0 21 == xx ,

( )50.0;30.0 21 == xx , ( )42.0;39.0 21 == xx and ( )30.0;61.0 21 == xx

The measurements have been correlated and compared with the available literature data showing

a good agreement with them.

The obtained density database is suitable for the regression of a DEoS for the system propylene

+ 2-propanol + water in EEoS-NN format in the range of interest. In order to develop a

thermodynamic model of the ternary mixture other experimental properties need to be measured, in

particular VLE, LLE and VLLE data for the ternary mixture in the whole range of interest.

Experimental isobaric heat capacity measurements in the range of interest are also important to

validate the prediction accuracy of the model with respect to the caloric properties. This

experimental work constitute the basis for the regression (density and coexistence data) and for the

validation (isobaric heat capacity data) of a dedicated equation of state in EEoS-NN format for the

propylene + 2-propanol + water system. Once a precise model for the ternary mixture is set up the

2-propanol extraction process can be studied in order to find the better operative conditions to

optimize the process from an energetic point of view. The cited developments represent the

prosecution of the present thesis work.
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IX. Models for transport properties

9.1. General overview

If a complete and rigorous statistical mechanics theory, able to calculate the properties of a

macroscopic ensemble of molecules of a fluid from the knowledge of molecular properties and of

forces between the molecules, would be available, then the transport properties could be evaluated

for each system in a completely predictive way. Unfortunately, at the present stage of scientific

knowledge in these subjects this is far from being possible, except for approximate theoretical

models in the dilute-gas state and asymptotically close to the critical point.

For example the kinetic theory of gases, as for instance the Chapman-Enskog theory [1,2], can

be used for the dilute-gas region of monatomic gases, where the transport properties are almost

independent of the existence of internal degrees of freedom and unaffected by inelastic collisions.

In Ref. 3 the following equations are given for the viscosity η and the thermal conductivity λ of

monatomic gases in dilute-gas region:

( ) ( ) ∗=
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πη
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1
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where superscript o indicates a dilute-gas condition, Bk is Boltzmann’s constant, m the mass of

one molecule, σ a length scaling parameter, ∗
ης and ∗

λς the reduced effective cross section for

viscosity and thermal conductivity, respectively. The two ∗ς functions depend only on the reduced

temperature εTkT B=∗ ; several ‘universal’ correlations for the reduced effective cross sections

are given, mainly obtained from fitting of experimental data although moving from some theoretical

basis [3]. The fluid-specific parameters σ and ε are usually determined from experimental data;

alternatively they can be estimated applying the corresponding states principle [4], but accepting

higher inaccuracies.

For the viscosity of pure fluids constituted by polyatomic molecules the same equation (9.1) is

usually maintained [5-17], also when the fluid of interest is characterized by quite complex

molecules, as for instance halogenated alkanes or isobutane. Often equation (9.1) is written in the

form:
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where M is the molar mass, AN the Avogadro constant and ηΩ the collision integral for which

‘universal’ correlations are given.

Experimental viscosity data for the target fluid are anyway required, because the coefficients of

the ηΩ function, far from being universal, are often regressed directly on viscosity data [5-

7,10,12,13,17]. Moreover, the parameters σ and ε are obtained by fitting on experimental data of

the fluid of interest aiming at getting better performances.

On the contrary, equation (9.2) is no more valid for thermal conductivity of fluids with

polyatomic molecules; in fact in this case the energy transfer mechanism is due both to the

translational motion of the molecules and to internal degrees of freedom, indicated with subscripts

trans and int, respectively [18]:

( ) ( ) ( )TTT o
int

o
trans

o λλλ += (9.4)

The two terms can be expressed as:
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where mR is the molar gas constant, o
mpC , is the molar ideal-gas isobaric heat capacity, and the

factor intf accounts for the energy conversion between internal and translational modes, for which

different interpretations are given [19].

For thermal conductivity in the dilute-gas limit Eq. (9.4) is sometimes assumed [5,6,9,20], but

completely empirical formulations are preferred for most fluids [7,14-16,21-25]. In this second

case, thermal conductivity experimental data are needed in order to fit the equation parameters.

These models for the dilute-gas region are extended to represent also mixtures of fluids adopting

suitable mixing rules [19]. Moreover, they can be used at moderate pressures of few bars with

acceptable results, but they become unreliable at higher pressures.

Both viscosity and thermal conductivity of pure fluids diverge to infinite when approaching the

critical point [26]; this behavior is described by the mode-coupling theory for the dynamics of

critical fluctuations, from which calculation models can be obtained [26-28]. These theoretical
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models can be regarded as semi-predictive because they contain only few fluid-specific parameters

to be regressed on data, but they are very complex and require both suitable equations of state and

the knowledge of the background transport properties, see Paragraph 9.2 for more details.

For liquid phase, only few simple theories have been developed for transport properties, so there

are practically no theoretical models able to calculate them with sufficient accuracy.

As an alternative, semi-theoretical methods are available; among this class, the most effective are

those based on the corresponding states principle for transport properties, briefly outlined in

Paragraph 9.3. In particular the three-parameter corresponding states models seem to be very

promising: they are able to reproduce viscosity [29,30] and thermal conductivity [31,32] both for

pure fluids and for mixtures with satisfactory accuracy, requiring as input only few experimental

data.

Anyway, the most precise models for calculating the transport properties are the correlative ones.

These have a limited or absent theoretical background and they are fluid-specific equations obtained

from correlation of transport properties experimental data using different techniques. In their most

advanced versions these correlative models are able to reproduce the experimental data of pure

fluids in a wide range of conditions and with an accuracy comparable with the claimed

experimental precision of data themselves.

It is common practice that the independent variables in these models are temperature and density,

i.e. they are in the form ( )ρη ,T or ( )ρλ ,T ; this is justified on the basis of theoretical and practical

considerations [33]. Therefore, since the controlling variables in the experimentation and in

technical applications are usually temperature and pressure, a high accuracy equation of state is

necessary to convert the PT , variables into ρ,T . The extension of these models to mixture is not

yet been consolidated. The present standard technique for the development of transport properties

equations is exposed in Paragraph 9.2; an innovative heuristic modeling technique based on the

Setzmann and Wagner optimization algorithm [34] developed for both viscosity and for thermal

conductivity is presented in Paragraph 9.4. Besides these, a new modeling technique that integrates

the extended corresponding states with neural networks has provided satisfactory results for

viscosity [35,36] and it is here applied to thermal conductivity in Chapter X.

More detailed reviews of theoretical, semi-theoretical and empirical models for calculating

transport properties can be found in the literature, as for instance Refs. 19 and 37 for viscosity, and

Ref. 19 for thermal conductivity.
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9.2. Conventional dedicated equations

The present standard procedure for the development of transport property equations specific for

the target fluid, in the following referred to as ‘conventional technique’, found its first applications

in the late ‘80s of the last century [5,9,23]. According to this approach, the general structure of a

transport property equation is written as:

( ) ( ) ( ) ( )ρ∆ρ∆ρ ,,, TXTXTXTX CE
o ++= (9.7)

where X denotes either viscosity or thermal conductivity, ( )TX o is the dilute-gas term,

( )ρ∆ ,TXE is the excess term and ( )ρ∆ ,TXC is the critical enhancement term. The summation:

( ) ( ) ( )ρ∆ρ ,, TXTXTX E
o += (9.8)

is also called background term.

The conventional technique separately determines each term through fitting of theoretical or

empirical functional forms on the available experimental data.

9.2.1. Dilute-gas term

The dilute-gas term ( )TX o represents the behavior of the considered transport property in the

zero-density limit; it could be regarded as the equivalent of the ideal part in thermodynamic

equations of state. It obviously depends only on temperature and it can be used with acceptable

performances in the vapor phase at pressure limited to few bars.

Looking at some of the available transport property conventional equations [3,5-18,20-25], it can

be seen that for the dilute-gas viscosity an equation similar to Eq. (9.3) is normally used, in which

σ and ε are usually regressed from the available experimental data, while the coefficients of the

ηΩ equation are either assumed from a generalized correlation or fitted on data too.

An expression of theoretical derivation can be used also for the dilute-gas thermal conductivity,

Eqs. (9.4-9.6), but an empirical polynomial equation is often preferred, particularly when dealing

with medium-sized polyatomic molecules. In the first case the equations for dilute-gas viscosity and

for ideal-gas isobaric heat capacity are required, in the second case experimental data are needed in

order to determine the equation coefficients.
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9.2.2. Excess term

The contribution to the transport property value at non-zero density of effects like many-body

collisions, molecular-velocity correlations and collisional transfer is taken into account by the

excess term ( )ρ∆ ,TXE . For this term no theoretical guidance exists and then it has to be necessarily

established from fitting of an empirical equation on experimental data. More or less complex

polynomial forms are usually assumed, in some cases depending on both temperature and density,

in other cases depending on density only.

In particular, some Authors [10,12,13,17] have divided the excess term of viscosity into two

contributions:

( ) ( ) ( )ρη∆ρηρη∆ ,, )1( TTT hE += (9.9)

that are the initial density-dependence ( )T)1(η and the higher-density term ( )ρη∆ ,Th .

The first term, that accounts for the portion of excess term linear with density and then it is

particularly relevant in the low-density region, can be calculated from:

( ) ( ) ( )∗∗= TBNTT A
o

ησηη 3)1( (9.10)

where ( )∗∗ TBη is the reduced second viscosity virial coefficient, for which an universal correlation

is given [12].

The term ( )ρη∆ ,Th is described with an empirical equation that is regressed on experimental

data.

9.2.3. Critical enhancement term

As previously stated, the viscosity and the thermal conductivity of pure fluids diverge to infinite

at the critical point [26], where long wave-length fluctuations become predominant inducing

anomalies in the thermodynamic as well as in the transport properties; consequently the transport

properties in the critical region show a marked increase as plotted in Fig. 9.1 for the thermal

conductivity of carbon dioxide, calculated from Ref. 9.

The plot evidences that the effect of critical fluctuations on thermal conductivity is strong and it

is observed in a large range of temperature and density around the critical point. On the contrary,

for viscosity the effect is much weaker and restricted to a very small region around the critical

point: the viscosity plot for carbon dioxide from Ref. 8 is reported in Fig. 9.2 for the same isotherms

considered in Fig. 9.1.
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Figure 9.1: Thermal conductivity of carbon dioxide for some isotherms in the critical region [9].
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Figure 9.2: Viscosity of carbon dioxide for some isotherms in the critical region [8].



9.2. Conventional dedicated equations 361

Some theories describing the behavior of fluids in the critical region have been developed, both

for thermodynamic and for transport properties. For the second ones, the crossover equations from

Olchowy and Sengers [38,39] are usually adopted. These models incorporate the singular behavior

of transport properties asymptotically close to the critical point, but they reduce themselves to

background values far away from the critical point.

According to Olchowy and Sengers, the critical enhancement terms are calculated from:

( )1−= zH
C eηη∆ (9.11)

( )0
0

6
ΩΩ

πηξ
ρλ∆ −= TkR

C B
pC (9.12)

where H , Ω and 0Ω are functions of density and temperature, 0R and z are universal parameters,

ξ is the correlation length of the density fluctuations. The analytical expressions of the three

functions H , Ω and 0Ω are very complex and therefore they are here not reported; for details see

Refs. 27 and 28. The main aspect of the matter is that the calculation of these functions requires the

knowledge of:

� thermodynamic properties like isothermal compressibility, isobaric and isochoric heat

capacity;

� the background values of both viscosity and thermal conductivity;

� the values of some system-dependent parameters.

An equation of state suitable to accurately represent the asymptotic behavior of the

thermodynamic properties in the critical region is needed; therefore, a scaled fundamental equation

of state should be used in that region, see for instance Ref. 40. When this condition is not fulfilled,

the numerical values calculated from Eqs. (9.11) and (9.12) could be unreliable. Moreover,

transport properties experimental data in the critical region are required to obtain the system-

dependent parameters by a fitting procedure; the number of free parameters is quite limited thanks

to the theoretical foundation and this is a sure advantage.

Some simplifications are sometimes introduced for the critical enhancement term during the

transport property equation development: for viscosity the term is often set to zero, because of its

weak and limited influence; for thermal conductivity simpler functional forms with respect to the

original ones can be assumed for Ω and 0Ω , as for instance in Ref. 9.
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9.2.4. General remarks

According to the conventional procedure, the value of each transport property at assigned

temperature and density is calculated as a summation of three terms; for two of them, namely the

dilute-gas and critical enhancement terms, theoretically founded equations are available, whereas

the excess term has a completely empirical formulation. The use of expressions derived from

physical theories is advantageous both for the limited number of free parameters to determine and

for the extrapolation capability of the model, but experimental data are anyway needed in the whole

interest ranges of the independent variables to regress the equation coefficients, particularly for the

empirical excess term. Being substantially correlative models, the conventional equations

representation of experimental data is satisfactory.

The procedure to develop an equation with this technique is not straightforward and it is a bit

cumbersome, because each experimental value has to be decomposed into the three contributions

(dilute-gas, excess and critical part) and each term of the equation has to be separately fitted.

Therefore, data in vapor have to be extrapolated to zero-density limit with some procedure, in order

to get the values on which the dilute-gas term coefficients are regressed. The extrapolation to zero-

density limit can be a difficult task if the data are not suitably distributed in low-pressure region: for

example data are often measured at atmospheric pressure or higher and therefore the extrapolation

could either be impossible or introduce sensible errors. The parameters of the critical enhancement

term have to be initially set up by tentative, so the experimental excess part can be calculated from

the data as:

( ) ( ) ( )expexpCexp
o

expexpexpE TXTXXTX ρ∆ρ∆ ,, −−= (9.13)

and the excess term can be regressed.

At this stage, it is now possible to calculate the background properties and then the critical

enhancement term can be more precisely set up. Therefore Eq. (9.13) is recalculated for each point

and a new excess term fitting has to be performed, and so on in an iterative process.

It should be also noted from Eq. (9.12) that a thermal conductivity equation with a reliable

behavior in the critical region could not be safely developed if a precise viscosity equation is not yet

available.

Moreover, the functional forms of the excess term for viscosity and thermal conductivity seem to

be not well established: in the literature many different equations for this part are assumed and it is

not clear which choice criterion has to be used. This shortcoming increases the difficulties of the

exposed regression process.
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A certain amount of precise and evenly distributed experimental data for the fluid of interest is

always required to develop a transport property equation with this technique, but the results are far

superior to the other types of models for transport properties.

Since quite few substances have been sufficiently investigated from the experimental point of

view, the conventional technique has been so far applied to a limited number of pure fluids; the

equations published in the literature up to this time are listed in Table 9.1.

Table 9.1: Available transport property dedicated equations in conventional format.

Fluid Viscosity Thermal Conductivity
Argon Lemmon and Jacobsen, 2004 [7] Lemmon and Jacobsen, 2004 [7]

Carbon dioxide Fenghour et al., 1998 [8] Vesovic et al., 1990 [9]
Nitrogen Lemmon and Jacobsen, 2004 [7] Lemmon and Jacobsen, 2004 [7]
Oxygen Lemmon and Jacobsen, 2004 [7] Lemmon and Jacobsen, 2004 [7]

Air a Lemmon and Jacobsen, 2004 [7] Lemmon and Jacobsen, 2004 [7]
Ammonia Fenghour et al., 1995 [10] Yata et al., 2001 [21]

Water Nagashima and Dymond, 1996 [22] Nagashima and Dymond, 1996 [22]
Methane − Friend and Roder, 1987 [23]
Ethane Hendl et al., 1994 [11] Vesovic et al., 1994 [20]

Propane Vogel et al., 1998 [12] Ramires et al., 2000 [24]
Isobutane Vogel et al., 2000 [13] Yata et al., 2001 [21]

R23 Shan et al., 2000 [14] Shan et al., 2000 [14]
R123 Tanaka and Sotani, 1996 [25] Tanaka and Sotani, 1996 [25]
R134a Krauss et al., 1993 [15] Krauss et al., 1993 [15]
R152a Krauss et al., 1996 [16] Krauss et al., 1996 [16]

a in the Lemmon and Jacobsen work [7], air is treated as a pseudo-pure fluid; in fact it is considered as a ternary
mixture of nitrogen, oxygen and argon at fixed composition.

9.3. Corresponding states principle

According to the principle of corresponding states, the reduced value of a selected property for a

substance (target fluid) is equal to that for another substance (reference fluid) if both are evaluated

at the same reduced conditions, see Paragraph 3.6.1. In the case of the here considered transport

properties, the critical values cannot be used to calculate the reduced properties, since they diverge

to infinite at the critical point [26]; values calculated either from dimensional analysis or from

kinetic theory are assumed as an alternative.

A basic condition for the principle application is that the fluids are conformal, i.e. they obey the

same intermolecular force laws at the same reduced conditions; for instance, fluids pertaining to a

same family, like alkanes or haloalkanes, are supposed to share a condition of conformality. Besides

this, the chosen reference fluid has to dispose of a precise equation for the considered property valid

over a large range of conditions.
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The application of the corresponding states principle to pure fluid viscosity reads [37]:
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where cr TTT = and cr ρρρ = are the reduced temperature and density respectively, and M is

the molar mass. Moreover, subscript c denotes a critical value, while subscripts j and 0 indicate the

target and the reference fluid, respectively. If a viscosity equation for the reference fluid is

available, the viscosity of the target fluid can be readily calculated on the whole surface.

A similar technique can be applied also to the translational contribution of thermal conductivity

[18], but the results are worse due to the greater complexity of the controlling physical phenomena.

In any case, the model of Eq. (9.14) and the equivalent one for thermal conductivity give

reasonable results only at low density, whereas the performances are poor as density increases.

Therefore, different alternative approaches have been developed, but sharing the corresponding

states basic framework.

9.3.1. Extended corresponding states

PURE FLUIDS

The extended corresponding states (ECS) method previously exposed for thermodynamics in

Paragraph 3.6.3 has been applied also to transport properties since the early ‘80s [18,41]. Different

approaches are found in the literature, so the published models vary from predictive methods to

correlative ones, though maintaining a similar format.

Following Ref. 42, the viscosity of a target pure fluid j is decomposed as:

( ) ( ) ( )ρη∆ηρη ,, TTT jE
o
jj += (9.15)

in which the first term, i.e. the dilute-gas viscosity o
jη , is calculated from Eq. (9.3) or from an

equivalent expression derived from kinetic theory of gases, while the ECS model is applied to the

second term, i.e. the excess viscosity jEη∆ :

( ) ( ) ηρη∆ρη∆ FhfTT jjEjE ,, 0= (9.16)

where:
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In the preceding equations, jf and jh are the equivalent substance reducing ratios or scale

factors, jθ and jφ are the shape factors, the multiplier ηF is derived from a theoretical analysis

based on kinetic theory. From a comparison between Eqs. (9.7) and (9.16) it is evident that the

critical enhancement part is neglected, due to its weak contribution for viscosity.

The case of thermal conductivity is analogous, though more complicated [43,44]. Moving from

the splitting of thermal conductivity into two parts as:

( ) ( ) ( )ρλλρλ ,, ,, TTT transj
o

intjj += (9.20)

the translational contribution transj ,λ can be divided into three further terms:

( ) ( ) ( ) ( )ρλ∆ρλ∆λρλ ,,, ,, TTTT jCjE
o

transjtransj ++= (9.21)

that are the translational dilute-gas contribution o
transj ,λ , the excess part jEλ∆ and the critical

enhancement jCλ∆ . The terms ( )To
transj ,λ and ( )To

intj ,λ can be calculated from Eqs. (9.5) and (9.6)

respectively, while the remaining two terms are obtained from the ECS technique:

( ) ( ) λρλρλ FhfTT jjEjE ,, 0∆=∆ (9.22)

( ) ( ) λρλρλ ,,,0 ,, CjCjCCjC FhfTT ∆=∆ (9.23)

where the reducing ratios have the same meanings of Eqs. (9.17) and (9.18), while the multiplier λF

is calculated by:
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For the critical enhancement term, it is usually assumed λλ FFC =, . Moreover, in some versions

[43] it is:

jjCjjC hhff == ,, (9.25, 9.26)

while in other ones [44]:
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but both the approaches present some drawbacks. Therefore, in the most recent works [17] the term

jCλ∆ is not calculated from the ECS method but from Eq. (9.12) using simplified forms of the

functions Ω and 0Ω .

The basic problem of the ECS modeling technique is how to determine the scale factors, or

equivalently the shape factors. A first possibility is to assume the same scale factors used for

thermodynamic properties; for these, different correlations can be found in the literature, but the

frequently adopted way is to obtain them locally solving the equations system [45]:

( ) ( )
( ) ( )





=
=

ii
RR

j

ii
RR

j

hfTzTz

hfTaTa

ρρ
ρρ

,,

,,

0

0 (9.29)

as explained in Paragraph 3.6.3. The equations of state for both the target and the reference fluid are

required. In this way the method is predictive for transport properties, because it does not require

any viscosity or thermal conductivity data; nevertheless, the postulated equivalence between the

scale factors for thermodynamic properties and those for transport properties is not verified and this

assumption can lead to deviating results depending on the chosen target fluid, as shown in Ref. 42. 

To overcome these shortcomings, the scale factors values have to be found from experimental

data of the considered transport property for the target fluid. For example, it has been proposed

[17,42,44] to introduce a third shape factor, jψ for viscosity and jχ for thermal conductivity, that

modifies the reference density, turning Eqs. (9.16) and (9.22) to be respectively:

( ) ( ) ηψρη∆ρη∆ FhfTT jjjEjE ,, 0= (9.30)

( ) ( ) λχρλ∆ρλ∆ FhfTT jjjEjE ,, 0= (9.31)

where jf and jh are still calculated solving Eq. (9.29). For such new shape factors general

polynomial forms depending only on density are assumed:
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, (9.32, 9.33)

and the coefficients ψc and χc are fitted respectively on viscosity or thermal conductivity

experimental data for the target fluid. The application of the ECS method in this form gets

acceptable results [17], but it is evidently no more predictive, though maintaining a quite complex

formulation. In particular, the solution of the equations system (9.29) is ‘straightforward, in

principle, but somewhat complicated in practice’ [42].
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A completely correlative technique, based mainly on experimental evidence rather than on

theoretical formulations, has been also presented for viscosity [35,36]. This method integrates the

ECS framework with a powerful function approximator in the form of a neural network. It was

shown that a single shape factor is sufficient and its analytical expression is obtained as a

continuous function, depending on both the variables T and ρ , by regression of the available

experimental data.

In this format the reduced viscosity is calculated as:

c
r H

ηη = (9.34)

where the reducing parameter is obtained from an equation derived from the dimensional analysis:

613161

3221

cAm

c
c TNR

PM
H = (9.35)

The ECS technique is applied to the whole reduced viscosity instead of to the excess part only:

( ) 
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0,
0,, ,, (9.36)

For the shape jθ a functional dependence expressed through a neural network is selected and the

application of a regression method on the available viscosity experimental data for the target fluid

allows to determine the coefficients and then to dispose of the function ( )ρθθ ,Tjj = . The achieved

performances are comparable, or even better, with those of the conventional viscosity equations

[36]. A similar approach will be applied to thermal conductivity modeling in Chapter X.

MIXTURES

As for pure fluids, the extension of the ECS model to mixtures provides to apply the technique to

the excess part of the transport property, while the dilute-gas term is separately calculated; the same

Eqs. (9.15), (9.16), (9.20-9.23) are considered. A one-fluid model approach is followed, i.e. the

equations are applied using mixture scaling factors that are calculated for example from the van der

Waals one-fluid mixing rules. For a mixture of C pure components, with x denoting the vector of

the molar compositions, it is:
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with:

( ) ( )ijjiijij
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ij kfffl
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(9.39, 9.40)

The pure fluid scaling factors have to be evaluated in condition of conformality with the

reference fluid [44]. In Eqs. (9.39) and (9.40) ijl and ijk are adjustable parameters that are either set

to zero when the model is used in predictive mode or regressed on experimental data in correlative

mode. As an alternative, if a reliable equation of state for the considered mixture would be available

the mixture scaling factors could be calculated by solving the equations system:

( ) ( )
( ) ( )
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The multipliers ηF and λF in the model equations are substituted by:

21
,

3221
,

21
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3221
, MMMMMMMM ghfFghfF λληη

−− == (9.42, 9.43)

where Mg ,η and Mg ,λ are the mass reducing ratios, for which several expressions are provided, see

for instance Refs. 42 and 44.

Moreover, the mixture viscosity dilute-gas term ( )x,To
Mη is required and it can be calculated

from kinetic theory [1]; an additional term ( )x,ρη∆M is also suggested [46] in order to consider the

effects of size and mass differences in the mixture.

For thermal conductivity, the theoretical expressions of the mixture dilute-gas term are very

complicated, so empirical mixing rules are used. For instance, in Ref. 44 a quite simple equation for

( ) ( )xx ,, ,, TT o
transM

o
intM λλ + , based on the Mason and Saxena mixing rules [47], is given. The critical

enhancement term is treated in the same way as for pure fluids, also if some shortcomings are

introduced [44].
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9.3.2. Three-parameter corresponding states

The models based on a three-parameter corresponding states structure, already developed for

thermodynamic properties, see for instance Paragraph 3.6.2, have been applied to transport

properties too. They work in corresponding states format with a sort of interpolation scheme

between two reference fluids through a suitable scaling parameter. Apart from the critical values of

temperature and pressure, only one additional parameter is needed for a target pure fluid. Moreover,

accurate transport property equations for the reference fluids are required. In the following, the two

reference pure fluids are denoted with subscript R1 and R2, while the target pure fluid is indicated

with j and the target mixture with M.

The model proposed by Teja and Rice [48] for viscosity uses the acentric factor as scaling

parameter and it reads:

( ) ( ) ( ) ( )[ ]
rrrr

TR1R1TR2R2
R1R2

R1j

TR1R1Tjj εηεη
ωω
ωω

εηεη lnlnlnln −
−

−
+= (9.44)

where:

( ) 21

32

MT

v

c

c=ε (9.45)

The viscosities of the reference fluids are evaluated at the same reduced temperature. The model

can be applied also to mixtures using suitable mixing rules for computing the pseudo-critical

parameters and the mixture acentric factor.

For thermal conductivity the application of the model is limited to liquid phase [49,50] and its

structure is similar:

( ) ( ) ( ) ( )[ ]R1TR1R2TR2
R1R2

R1j
R1TR1jTj rrrr

φλφλ
ωω
ωω

φλφλ −
−

−
+= (9.46)

where:

21

2132

c

c

T

Mv=φ (9.47)

A modification of these models has been proposed [29-32], in which the scaling parameter is

calculated from very few experimental data of the considered transport property for the fluid of

interest. Such an approach is similar to that adopted for thermodynamic properties, as explained in

Paragraph 3.6.2 (Section: Scalabrin model).
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In the viscosity model for pure fluids [29] the reduced viscosity is calculated from Eq. (9.34)

with the reducing parameter in Eq. (9.35); the viscosity scaling factor jξ is obtained from an

experimental point for the target fluid j in the condition of saturated liquid at a fixed value of the

reduced temperature:

( )
.,,10,10 loglog

constTslRfrjrj
r =

−= ηηξ (9.48)

in which subscript sl stands for saturated liquid condition and Rfr ,η denotes the reduced viscosity

of the reference fluid Rf, calculated from its viscosity equation; the fluid Rf can coincide with R1 or

R2, but this is not strictly required.

Once the scalar jξ has been set up, the viscosity three-parameter model reads:

( ) ( ) ( ) ( )[ ]
( ) ( )rrjrjcj

rrR1rrrR2r
R1R2

R1j
rrR1rrrjr

PTHPT

PTPTPTPT

,,

,,,,

,,

,,,,

ηη

ηη
ξξ
ξξ

ηη

=

−
−

−
+=

(9.49)

where R1ξ and 2Rξ are calculated from Eq. (9.48) for the two reference fluids with the

corresponding viscosity equations.

It should be noticed that the model independent variables are the reduced temperature and the

reduced pressure; therefore the calculation of the density of the target fluid is avoided when using

this model.

For pure fluid thermal conductivity [31] the reduced quantity is calculated from:

c
r Λ

λλ = (9.50)

with the reducing parameter cΛ derived from the dimensional analysis:
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3265

Ac

cm
c NMT

PR=Λ (9.51)

Differently from viscosity, the thermal conductivity model is applied only to the residual part of

the reduced property, defined as:

( ) ( ) ( )
c

o

rrrR

TPT
PT

Λ
λλλ∆ −= ,

,
(9.52)
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An equation for the dilute-gas thermal conductivity of the target fluid is therefore needed and it

can be regressed from experimental data in low-density vapor or derived from Eqs. (9.4-9.6). Also

in this case the scaling parameter is calculated at saturated liquid condition from an experimental

thermal conductivity value. Adopting the same formalism introduced for viscosity, the parameter

jκ is defined as:

( )
.,,, constTslRfrRjrRj

r =
−= λ∆λ∆κ (9.53)

and the model reads:
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+=
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The thermal conductivity equations for the two reference fluids have to be available, from which

also the dilute-gas contributions can be calculated.

The extension of the three-parameter corresponding states models to a mixture of C components

[30,32] is possible through a rearrangement of the mixing rules of Wong et al. [51], following a

one-fluid model technique:
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The pseudo-critical parameters McT , and McP , , together with the mixture molar mass:

∑
=

=
C

i
iiM MxM

1

(9.56)

enter into Eqs. (9.35) or (9.51) to calculate the reducing parameter of viscosity or thermal

conductivity respectively and, moreover, they are used to calculate rT and rP . The mixture scaling

factors Mξ and Mκ work as those of pure fluids, for viscosity:
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and for thermal conductivity:
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For thermal conductivity it is also necessary to separately calculate the dilute-gas term for

mixture; the model of Mason et Saxena [47], based on a previous work of Wassiljewa [52], is

adopted:
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with:
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In Eqs. (9.55) and (9.60) the adjustable coefficients ijε , ijµ and ijω are set to zero if the method

is used in predictive mode; when experimental data are available for the mixture, the coefficients

can be regressed on data in order to improve the model performance.

These three-parameter corresponding states models have been applied with satisfactory results to

the alkane and haloalkane families.

9.4. Dedicated equations in optimized multiparameter functional form

The Setzmann and Wagner [34] optimization algorithm, that is currently applied for

thermodynamic modeling with excellent performances (see Paragraph 3.7), has been used to obtain

dedicated transport property equations [53-58] through a completely heuristic technique, setting

aside any limiting theoretical formulation and basing the equation functional form directly on the

available experimental data.



9.4. Dedicated equations in optimized multiparameter functional form 373

9.4.1. Bank of terms

The Setzmann and Wagner [34] optimization technique first of all requires a bank of terms from

which the elementary functional forms suitable to describe the searched functional dependence are

taken out.

In the case of viscosity the effectually adopted bank of terms, composed of a total of 267 terms,

can be written as:

2
5

0

5

0

10

0

20

0

rEl
r

k l

k
rkl

j
r

i j

i
rijr eTnTn ρρρη −

= == =
∑∑∑∑ += (9.61)

The value of the exponent E can be set equal to 1 or it can be found with a trial-and-error

procedure searching for a further improvement of the obtained equation. The reduced variables in

Eq. (9.61) are defined as:
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ρρ (9.62, 9.63, 9.64)

Moreover, since viscosity values can span several orders of magnitude from vapor condition to

liquid at low temperature and high pressure, the logarithm function is applied to reduced viscosity

in order to contain its variation and to facilitate the work of the regression algorithm. Once the

functional form has been defined choosing the values of the exponents i , j , k , and l more suitable

to represent the searched functional dependence and discarding the not-suitable ones, the

coefficients ijn and kln must be regressed on the experimental data.

In the case of thermal conductivity the modeling problem is greatly complicated by the strong

influence of the critical enhancement contribution over a large region around the critical point, see

Paragraph 9.2.3; therefore the bank of terms was adapted to the present case with the introduction of

a single term specifically studied for the critical enhancement representation.

For the optimization of the functional form a bank of terms composed of a total of 285 terms is

used. According to this choice, the most general form of the thermal conductivity equation is

written as:
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with 0≠j when 0=i , and 0≠l when 0=k . The term cer ,λ is responsible for the critical

enhancement contribution and it depends on the set of parameters a .
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The reduced variables in Eq. (9.65) are the reduced temperature rT , Eq. (9.62), the reduced

density rρ , Eq. (9.63) and the reduced thermal conductivity rλ defined as:

c
r Λ

λλ = (9.66)

For temperature, Eq. (9.62), and density, Eq. (9.63), the corresponding critical values are used as

reducing parameters, but the same is not possible for viscosity, Eq. (9.64), and thermal conductivity,

Eq. (9.66), since these properties become infinite at the critical point. Therefore, the reducing

parameters cH and cΛ derived from the dimensional analysis, Eqs (9.35) and (9.51), are considered

for viscosity and thermal conductivity respectively.

The representation of the thermal conductivity enhancement in the near-critical region relies on

the critical term cer ,λ , that is expressed as:
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in which it is:

( ) ( )[ ]( )122
1110 11arccosh1

a

rr TaaT −+−==αα (9.68)

The functional form in Eq. (9.67) has been empirically obtained with a trial-and-error procedure

on generated data of the thermal conductivity critical enhancement contribution for different fluids

and it was verified that such a form is sufficiently flexible to follow the data trends. Obviously, the

parameters a and the multiplying coefficient cn in Eq. (9.65) have to be regressed on data for the

target fluid.

From Eqs. (9.67) and (9.68) it is evident that the term diverges to infinite at the critical point, it is

identically null at zero-density conditions and its numerical value decreases with a rate depending

on the parameters a as moving away from the critical point.

The purpose of the function α is to allow the term cer ,λ to assume, for supercritical isotherms,

the maximum value at density different from the critical density, following the trend shown by the

experimental data; it is then a sort of ‘unsymmetrizing’ function with respect to density. The

coefficients 4a and 5a , similarly with the corresponding parameters of the non-analytical terms for
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the EoS development [59], should be fitted to data of saturated densities of both vapor and liquid in

the vicinity of the critical point.

9.4.2. Fitting procedure and screening of experimental data

Once the bank of terms has been defined, the objective function to minimize can be calculated

from the available experimental data of viscosity or thermal conductivity for the target fluid as a

function of the equation parameters, representing the vector of the fluid-specific coefficients that

have to be fitted in the optimization procedure:
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where M represents viscosity η or thermal conductivity λ , NPT is the total number of

experimental points selected for the regression and the subscripts calc and exp stand for calculated

and experimental values, respectively. In the case of viscosity it is ( )ncalccalcM η= and therefore

( )n22 χχ = , in the case of thermal conductivity it is ( )an,calccalcM λ= and therefore ( )an,22 χχ = .

The applied minimization technique is the algorithm developed by Setzmann and Wagner [34]:

given the bank of terms, the algorithm determines the functional form which yields the best

representation of the selected experimental data with the shortest analytical formulation.

Since the data sets have different uncertainty levels and systematic errors could be present, a

screening procedure is required in order to identify the primary data sources from which the final

equation is drawn. The heuristic fitting technique is suitable for this purpose: the screening and the

fitting procedure are performed during the development procedure, considering the statistical

indexes from Appendix A.6 as a guide.

In the case of viscosity the general form of the obtained equations is expressed as:
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In the case of thermal conductivity the general form of the obtained equations can be written as:

( ) ( )rrcerc

II

Ii

d
r

t
ri

E
I

i

d
r

t
rirrr TnTneTnT

exppol

pol

iir

pol

ii ρλρρρλ ρ ,, ,
11

2

++= ∑∑
+

+=

−

=

(9.71)

The variables in Eqs. (9.70) and (9.71) are defined in Eqs. (9.62-9.64) and (9.66). it and id are

the reduced temperature and reduced density exponents, respectively; they correspond to the
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exponents i , j , k , and l chosen during the optimization process of the functional form. polI and

expI represent the number of polynomial and exponential terms, respectively.

Following this approach, dedicated viscosity equations have been developed for R134 [53],

propane [54] and R152a [55]; dedicated thermal conductivity equations have been developed for

carbon dioxide [56], R134a [57] and R152 [58].
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X. Heuristic thermal conductivity equations in extended corresponding states

framework

10.1. Introduction

As discussed in Paragraph 9.3, the simple two-parameter corresponding states principle is not

strictly followed when it is applied to transport properties, leading to unacceptable deviations. In

order to improve its prediction accuracy, the extended corresponding states model has been

introduced also for these properties, distorting the independent variables of a reference fluid

equation by means of fluid-specific scale factors.

According to the traditional approach, the scale factors values are obtained from the dedicated

equations of state of the target and reference fluids through the application of the local solution

procedure in the thermodynamic ECS framework; the same values valid for thermodynamic

properties are then assumed for transport properties as well. However, this assumption leads to

shortcomings and consequently, trying to correct these further discrepancies, it was proposed to

introduce a third shape factor whose functional form has to be regressed on the transport property

experimental data.

Since it is not sufficient just to import the thermodynamic scale factors and then experimental

data of the considered transport property for the target fluid are unavoidable to acceptably represent

the surface, the possibility to apply a completely heuristic modeling technique was also investigated

for viscosity representation [1]. A neural network was adopted to heuristically determine the

functional form of the viscosity shape factors that carry out the distortion of the variables of the

dedicated viscosity equation for the reference fluid. In this way the thermodynamic shape factors

were no more required and the viscosity shape factors were directly obtained from viscosity data.

Such a modeling technique, indicated as ECS-NN, has been successfully applied to the

representation of the viscosity surfaces of a number of fluids [2]. A single shape function,

simultaneously distorting at the same degree the two independent variables, was found to be

sufficient in the case of that transport property.

The high quality of the obtained results for viscosity suggests to attempt the application of a

similar technique to thermal conductivity. Due to the characteristic behavior of the surface of this

property, particularly in the near-critical region, each independent variable has to be distorted with

an individual shape function in order to increase the model flexibility in terms of deformation of the

thermal conductivity dedicated equation of the reference fluid, allowing the spreading of the

equation on the target fluid experimental data.
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10.2. Mathematical formulation

Generally speaking, the ECS model is focused on representing the residual part of the considered

property, whereas the ideal part has to be separately given; this approach has been maintained also

for thermal conductivity:

( ) ( ) ( )ρλλρλ ,, TTT Ro += (10.1)

where oλ is the dilute-gas thermal conductivity and Rλ is the residual part.

The corresponding states principle requires to operate in reduced variables: for temperature and

density the respective critical values are used as reducing parameters, but this is not possible for

thermal conductivity since it diverges to infinite at the critical point, see Paragraph 9.2.3. A suitable

parameter ∗λ , that will be afterwards defined, is assumed for this purpose. Denoting the target fluid

with subscript j and the reference one with subscript 0, the ECS model for thermal conductivity

reads:

( ) ( )
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λ
ρλ TT R
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with the usual ECS relations:
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Given the dedicated thermal conductivity equation for the reference fluid, an expression for the

dilute-gas thermal conductivity of the target fluid and the equations for the shape functions jθ and

jφ , the thermal conductivity of the target fluid can be calculated as a function of the independent

variables jT and jρ .

In the present work the shape functions are expressed through a multilayer feed-forward neural

network, that constitutes a powerful function approximator, see Paragraph 2.2.2. The network

coefficients are regressed on thermal conductivity data for the target fluid analogously to the ECS-

NN and EEoS-NN models presented in Paragraph 3.6.4 and in Chapter IV, respectively.

In order to make easier the work of the adopted mathematical regression method, the output

variables of the neural network do not directly represent the shape functions, but two auxiliary

quantities jθ
~

and jφ
~

related to the shape functions through:

( ) ( )[ ] ( ) ( )[ ]b

jjjjjj

a

jjjjjj TTTT ρφρφρθρθ ,
~

,,
~

, == (10.5, 10.6)
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The exponents a and b have to be found with a trial-and-error procedure; it was verified that

the values 2=a and 3=b are suitable for all the fluids here considered.

Recovering the mathematical formalism of neural networks given in Paragraph 2.2.2 and in

Appendix A.1, the network structure is defined as:

jc

j
jr

jc

j
jr V

T

T
TVI

,
,2

,
,13

ρ
ρ

ρ ===== (10.7, 10.8, 10.9)

jj WWK φθ ~~
2 21 === (10.10, 10.11, 10.12)

0.10.1 == Bias2Bias1 (10.13, 10.14)

The number of neurons in the hidden layer J has been here chosen equal to 8, but this is an

indicative value that can be varied according to the difficulties posed by the specific problem; the

lowest and the highest values of the input and output physical variables, that are required for the

linear scaling of the neural network variables, depend both on the target fluid and on the selected

validity ranges.

A transfer function in the form of normalized scaled arctangent, Eq. (2.12), was assumed for the

present work with 1=γ . The observance of the theoretical behavior at the critical point for the

target fluid equation has been obtained by imposing to the regression algorithm the constraints:

( ) 1, ,, =jcjcj T ρθ (10.15) 

( ) 1, ,, =jcjcj T ρφ (10.16) 

With these constraints the critical points of target and reference fluids correspond each other, see

Eqs. (10.3) and (10.4), and consequently also the obtained target fluid equation correctly represents

the divergence at the critical point, provided that the reference equation supports such a behavior for

the reference fluid.

For the thermal conductivity reducing parameter ∗λ the same value from dimensional analysis

used in the previous chapter, Eq. (9.51), was initially assumed, but it was verified that the residual

thermal conductivity functions of the fluids considered in this work, when reduced by the cΛ

values, are far from satisfying the corresponding states principle, making less favourable the

modeling technique application. Therefore, a new reducing factor cΛ
~

obtained from a single

experimental value at arbitrary conditions is proposed; in this work the parameter was evaluated for

all the fluids at 1.1=rT and 6.1=rρ as:
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( )
6.1
1.120

,~

=
=

∗








=Λ=

r

rT

rr
R

c

T

ρ

ρλλ (10.17) 

Moreover, it was here calculated for each fluid from its previously available dedicated thermal

conductivity equation in order to avoid the experimental error effect, but in principle it can be

obtained from an experimental point of the target fluid even at conditions different from those

suggested; the corresponding value for the reference fluid is evaluated from its thermal conductivity

equation, that is anyway required. The division by 20 of the residual thermal conductivity value in

Eq. (10.17) has the only purpose to give a cΛ
~

parameter with the same magnitude order of the

former cΛ . A certain degree of conformality is in this way attained, as shown in Fig. 10.1 where an

isothermal line is plotted for different fluids at the same reduced temperature; the lines are

calculated from the respective dedicated thermal conductivity equations [3-8].
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Figure 10.1: Deviation from the corresponding states principle for a group of fluids at the same

reduced temperature.
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It is worth noticing that, since an equation representing the thermal conductivity of a pure fluid is

required to simultaneously represent both the vapor and the liquid region and the thermal

conductivity has a low sensitivity to pressure in the liquid phase, so a thermal conductivity equation

is usually written in terms of ρ,T variables. The actual variables of the thermal conductivity

experimental data are PT , , then a DEoS for the target fluid is needed for the conversion to ρ,T

dependence; the following equation system is then set up:

( )
( )




=
=

ρ
λλ

,

,

TPP

PT
(10.18)

from which the ( )ρλλ ,T= format is obtained.

10.3. Application to generated data

In a first step the model capability has been tested assuming data generated from the dedicated

thermal conductivity equations of the studied fluids, with the purpose to evaluate the performance

of the proposed method in an ‘aseptic’ condition. The generated data have been considered as

pseudo-experimental data; in this way the results are independent from any experimental

uncertainty and uneven distribution in the range of interest.

The fluid R134a has been selected as reference, while R152a, carbon dioxide, ammonia, ethane

and oxygen have been considered as target fluids. Conventional dedicated equations from the

literature have been assumed for ammonia [6], ethane [7] and oxygen [8]; dedicated equations in

optimized functional form, see Paragraph 9.4, have been adopted for R134a [9], R152a [10] and

carbon dioxide [11].

Table 10.1 reports the critical values of the selected fluids and the ∗λ coefficients obtained from

Eq. (10.17) using the dedicated equations to calculate the required quantity.

Table 10.1: Reducing parameters for the considered fluids.

Fluid cT

(K)
cρ

(kg m-3)

∗λ , Eq. (10.17) 
(mW m-1 K-1)

R134a 374.274 515.25 1.6305
R152a 386.411 368.0 2.1552
CO2 304.1282 467.6 3.1707
NH3 405.4 225.0 9.1763
C2H6 305.33 206.584 2.5313

O2 154.581 436.1436 2.5110
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A wide set of thermal conductivity points has been generated for each fluid on a regular grid

covering the whole validity range of its dedicated equation; the training data points have been

regularly extracted from this grid.

The regression of the shape functions ( )rrj T ρθ , and ( )rrj T ρφ , is carried out minimizing the

objective function:

( ) ( ) 2
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,, ,,

NPT
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R
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T
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 −
=

λ
λρλ w
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where the subscripts calc and exp stand for values calculated from the ECS-NN model and

generated from the dedicated equation, respectively; w is the set of neural network parameters that

have to be regressed.

The results of the regressions are given in Table 10.2 in terms of the statistical indexes defined in

Appendix A.6. For all the fluids, the AAD of the residual error for the training set is quite similar to

that of the prediction error for the whole data set; these values are very good, being limited to few

parts per thousand, and they are lower than the estimated experimental uncertainty for thermal

conductivity measurements. The Bias values, being close to zero, assure the absence of a systematic

shifting of the obtained surfaces. The highest errors are localized in the near-critical area, where the

sensitivity to the independent variables is by far increased, due to the particular trend of the thermal

conductivity in that region.

Table 10.2: Training and validation results of the thermal conductivity ECS-NN models for

R152a, CO2, NH3, C2H6 and O2.

Training set Whole data set
Fluid NPT AAD

%
Bias
%

MAD
%

NPT AAD
%

Bias
%

MAD
%

R152a 540 0.27 -0.01 2.12 12207 0.32 0.01 9.87
CO2 781 0.26 0.04 2.56 10349 0.30 0.04 14.61
NH3 525 0.29 0.03 2.64 13867 0.32 0.05 18.75
C2H6 538 0.32 -0.01 2.65 13149 0.33 -0.03 13.15

O2 673 0.16 0.01 2.05 15459 0.18 0.00 18.60
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Figure 10.2: Representation of the surface of the shape function θ for the ECS-NN thermal

conductivity model for R152a.
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Figure 10.3: Representation of the surface of the shape function φ for the ECS-NN thermal

conductivity model for R152a.
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The surfaces of the shape functions θ and φ produced through the neural network technique are

very smooth and regular, with limited deviations from 1 as it is shown for R152a in Figs. 10.2 and

10.3. All these features demonstrate the potential of the present modeling technique for dedicated

thermal conductivity equation development.

The question of the possible reduction of the number of points in the training data set has been

also investigated. This aspect is of great importance in order to determine the lowest number of

experimental measurements required for developing a dedicated thermal conductivity equation with

high accuracy. Carbon dioxide has been assumed as test fluid. The number of points in the training

set has been progressively reduced, each time regressing a new equation; the validation has been

done on the whole generated data set, with the results reported in Table 10.3 and Fig. 10.4.

It appears that the prediction accuracy of the equation with respect to the whole data set is not

compromised at about two hundred data points. This test suggests that a similar amount of accurate

and regularly distributed points on the whole ρ,T domain could be a sufficient input for training

the neural shape functions ( )ρθ ,T and ( )ρφ ,T , obtaining in this way a dedicated thermal

conductivity equation. Therefore the present ECS-NN technique allows the limitation of the

experimental effort, while achieving at the same time high accuracies.

Table 10.3: Variation of the accuracy of the thermal conductivity ECS-NN model for carbon

dioxide as varying the number of points in the training set.

Training set Whole data set
NPT AAD

%
Bias
%

MAD
%

NPT AAD
%

Bias
%

MAD
%

781 0.26 0.04 2.56 10349 0.29 0.04 14.61
451 0.20 0.01 2.84 10349 0.24 0.00 15.25
319 0.17 0.01 1.28 10349 0.21 0.03 13.61
253 0.14 0.00 0.87 10349 0.21 0.06 28.77
192 0.12 0.01 1.04 10349 0.23 0.08 33.83
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Figure 10.4: AAD for training and validation set for carbon dioxide as varying the number of

points in the training set.

10.4. Application to experimental data

The very promising results obtained in the previous Paragraph 10.3 suggest to move from

generated to experimental data correlation to develop dedicated thermal conductivity equations. The

present procedure was then applied to R152a and CO2, assuming R134a as the reference fluid. The

dedicated thermal conductivity equation selected for the reference fluid [9] is completely heuristic

and it has an optimized multiparameter functional form as presented in Paragraph 9.4. Dedicated

equations of state (DEoS) for the interest fluids are also needed for the conversion of the

independent variables of the experimental data from PT , into ρ,T . On the other hand an equation

of state is not required for the reference fluid.

The proposed technique is addressed to model the residual thermal conductivity of a target fluid,

whereas the dilute-gas term has to be separately given. Such part was obtained for each considered

fluid from former works dealing with non-conventional thermal conductivity equations [9,10,11]. A

general form for the adopted dilute-gas equations is:
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where termsN is the number of terms of the summation. The individual coefficients are given in

Table 10.4. The residual part for the reference fluid R134a has been calculated in the present work

as the difference between the thermal conductivity equation in Ref. 9 and the dilute-gas part from

Eq. (10.20).

Table 10.4: Parameters of the individual dilute-gas equations, Eq. (10.20), for the considered

fluids.

R134a R152a CO2

cT (K) 374.274 cT (K) 386.411 cT (K) 304.1282

cΛ (mW m-1 K-1) 2.0547 cΛ (mW m-1 K-1) 2.72640 cΛ (mW m-1 K-1) 4.81384

termsN 3 termsN 2 termsN 3

i it in i it in i it in

1 1 6.544680 1 1.5 2.110725 1 1.5 3.715549
2 5.5 13.07277 2 2 6.016495 2 3.5 -0.365989
3 6 -10.06224 3 4 0.131464

Since the ECS-NN model relies on experimental data, the ranges covered by them directly give

the ranges of validity of the individual thermal conductivity equation obtained through the

technique; these ones are reported for both the target fluids in Table 10.5 together with the molar

mass and the reducing parameters for the fluids themselves.

Table 10.5: Parameters and validity ranges of the individual ECS-NN models for thermal

conductivity for the studied fluids.

Validity rangesFluid M cT cP cρ ∗λ , Eq. (10.17)
T P

(kg kmol-1) (K) (MPa) (kg m-3) (mW m-1 K-1) (K) (MPa)
R152a 66.051 386.411 4.5200 368.0 2.155178 220−460 ≤50
CO2 44.098 304.1282 7.3773 467.6 3.170663 186−1300 ≤209.7

All the available data for each fluid were collected from the literature and they were at first

tested against the corresponding conventional thermal conductivity equation, i.e., the equation from

Krauss et al. [4] for R152a and the one from Vesovic et al. [5] for CO2. Only the data sets with
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overall deviations lower than 5 % were retained after this check. The data screened in this way were

considered as primitive and a first version of the shape functions neural network was regressed from

these data. This led to the first ECS-NN model which was tested against the primitive data.

Excluding the data sets with deviations higher than 2÷3 %, especially if falling in a ρ,T region

where more precise data are also available, a finer screening was iteratively done to identify the

primary data subset, on which the final model was fitted. The data sets not adopted for the

regression are considered as secondary sources and they have been used only for validation. Even if

the separation of the single points of each data source into primary and secondary classes would be

also possible using the present correlative technique, it was decided not to screen inside the

individual data sources but to treat each of them as a whole.

Anyway, particularly for CO2 some data sets with few points and in ρ,T regions already

covered by other primary data were put into the secondary group even if they showed a precision

comparable with the primary group of data; this allows to include some precise data for validation.

In the following the validations of the obtained equations with respect to experimental data are

presented with the statistical indexes given in Appendix A.6.

Moreover, it is worth noting that all over the represented T,,ρλ surface of a target fluid,

including also the near-critical region, the present ECS-NN model expresses the thermal

conductivity as an explicit function of the independent variables and this allows a very plain

calculation without any of the cumbersome and misleading iterations characterizing the

conventional critical enhancement models [3-5]. This is furthermore consistent considering that also

for the thermal conductivity dedicated equation of the reference fluid an explicit function all over

the T,,ρλ surface is assumed [9].

10.4.1. R152a

As discussed before, a DEoS is needed for each target fluid for the conversion from PT , to ρ,T

of the variables of the experimental measurements. For this goal in the case of the fluid R152a a

fundamental DEoS [12] is used. That equation is effective all over the T,,P ρ domain but not in the

near-critical region; therefore, a crossover model [13], based on the Sengers and coworkers theory,

is combined with the DEoS to describe the thermodynamic behavior in such region. A similar

model was also applied for the case of the conventional thermal conductivity equation [4]. It is

stressed again that a DEoS is not necessary for the reference fluid R134a.
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The MLFN parameters of the shape functions ( )rr ,T ρθ and ( )rrT ρφ , for R152a are reported in

Table 10.6 and the results obtained from the proposed model are shown in Table 10.7 for data in the

liquid, vapor and supercritical regions.

Table 10.6: Parameters of the ECS–NN thermal conductivity equation for R152a.

R152a

i j ijw j k jkw

1 1 7.7676440 1 1 -1.6295664
2 1 -6.3957480 2 1 1.2090802
3 1 1.6864250 3 1 2.5624223
1 2 1.2921719 4 1 2.4191014
2 2 -1.8568936 5 1 -2.2880217
3 2 1.1571883 6 1 2.8436492
1 3 -4.2683402 7 1 -2.6995633
2 3 16.222314 8 1 -1.1956900
3 3 -6.9110329 9 1 -0.69523445
1 4 -1.9353485 1 2 1.9184381
2 4 -17.295467 2 2 1.9393159
3 4 8.1299694 3 2 -0.096957909
1 5 0.27037786 4 2 -0.57203386
2 5 10.736104 5 2 -5.9905895
3 5 0.89373767 6 2 -3.2926137
1 6 3.4845624 7 2 1.5416576
2 6 5.3064461 8 2 5.1852922
3 6 -0.75659577 9 2 2.3020135
1 7 0.54875912
2 7 2.5866205
3 7 -1.5484573
1 8 -4.0566160
2 8 3.1769069
3 8 -0.02.1280748

min
1min, rTV ≡ 0.5

max
1max, rTV ≡ 5.0

min
2min, rV ρ≡ 0.0

max
2max, rV ρ≡ 3.0

min
min,1W θ≡ 0.7

max
max,1W θ≡ 1.3

min
min,2W φ≡ 0.7

max
max,2W φ≡ 1.3
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The results of the screening procedure, i.e. the final classification of the data sources as primary

or secondary, are also indicated. The last column of the table gives the values of uncertainty of the

primary data sets that were reported by the experimenters and that have been adopted for the

weighting of data in the objective function, Eq. (10.21).
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where %u is the uncertainty of the point in percent.

Table 10.7: Deviations of the thermal conductivity ECS-NN equation for R152a with respect to

primary, secondary and overall data in liquid, vapor and supercritical regions.

Ref. First Author Phase a NPT
T range

(K)
P range
(MPa)

AAD
%

Bias
%

MAD
%

u
%

Liquid region
15 Assael l 37 253−333 0.5−22.4 0.51 0.02 1.05 0.5
16 Geller l 108 306−382 1.1−6.9 1.26 -0.79 7.55 2.0
17 Gross l 44 253−363 0.2−6.2 2.50 -2.50 4.89 1.6
18 Gurova l 31 224−294 0.8−18.0 1.75 1.75 3.11 0.5
19 Kim l 25 223−323 2.1−20.1 0.59 0.03 1.08 2.0
20 Tsvetkov l 8 221−300 7.7−8.6 2.21 -2.21 3.39 2.0
21 Vargaftik l 33 305−380 1.1−4.0 1.35 -1.29 3.70 -
22 Le Neindre l 238 307−378 1.0−50.0 0.68 -0.57 1.93 1.5
15 Assael sl 5 253−333 0.1−1.5 0.63 0.08 1.09 0.5
18 Gurova sl 4 224−294 0.0−0.5 1.52 1.52 2.38 0.5
19 Kim sl 5 223−323 0.0−1.2 0.60 -0.37 1.58 2.0

Primary data 538 1.06 -0.62 − −
23 Grebenkov l 72 294−381 0.8−20.0 4.74 4.74 10.30 −
24 Kruppa l 27 367−386 3.5−11.4 7.70 4.85 18.50 −
25 Yata l 20 266−343 1.4−30.6 3.42 1.59 7.64 −
26 Gross sl 24 253−313 0.1−0.9 4.12 -4.12 6.60 −
24 Kruppa sl 49 293−386 0.5−4.5 12.02 -9.39 58.92 −
27 Kraft sl 16 279−386 0.3−4.5 6.18 -0.86 32.76 −

Total data 746 2.65 -0.54 − −
Vapor region

28 Afshar v 10 280−460 0.1 2.22 -0.66 3.81 3.0
16 Geller v 19 305−433 0.1 0.88 -0.23 4.07 2.0
17 Gross v 40 254−354 0.1−2.3 1.72 -1.40 4.73 2.0
24 Kruppa v 46 367−425 2.2−4.5 3.27 0.25 10.09 5.0
29 Taxis-Reischl v 54 277−400 0.0−2.4 1.45 -0.91 5.20 1.0
21 Vargaftik v 10 280−460 0.2 2.36 2.36 4.82 -
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Ref. First Author Phase a NPT
T range

(K)
P range
(MPa)

AAD
%

Bias
%

MAD
%

u
%

Vapor region (continuation)
22 Le Neindre v 48 298−456 0.1−4.5 1.96 0.07 8.91 1.5

Primary data 227 2.00 -0.34 −
30 Hammerschmidt v 4 303−423 0.1 4.62 -3.72 8.33 −
31 Yin v 14 279−349 0.1 6.98 6.98 8.58 −
24 Kruppa sv 30 348−386 2.1−4.5 11.07 7.99 44.46 −
27 Kraft sv 6 360−386 2.7−4.5 7.24 -7.24 32.41 −

Total data 281 3.37 0.72 − −
Supercritical region

24 Kruppa sc 103 387−426 4.5−10.9 2.40 1.33 9.05 5.0
22 Le Neindre sc 108 391−455 5.0−41.0 1.36 -0.43 6.53 1.5

Primary data 211 1.87 0.43 −
23 Grebenkov sc 6 398−399 10.0−20.0 7.69 7.69 9.03 −

Total data 217 2.03 0.63 − −
Overall

Overall primary 976 1.45 -0.33 − −
Overall 1244 2.70 -0.05 − −

a
Phase: l = liquid, sc = supercritical region, sl = saturated liquid, sv = saturated vapor, v = vapor, zd = vapor at

zero-density limit.

It can be noted that the most precise data sources are classified as primary, whereas the

secondary sets show considerable inconsistencies with the other data sets, as it is shown by their

large AAD and Bias values. The data from Kruppa and Straub [24] for vapor and supercritical

regions have been included into the primary sources in spite of their high uncertainty level. In fact

that source is the only one reporting a certain number of data in the near-critical region and then it

cannot be set aside.

The overall AAD value for primary data is 1.31 %, whereas the corresponding value for the

training set of generated data was 0.27 %, see Tab. 10.2. As a consequence of the procedure

followed in this work, according to which the model was at first applied to generated data for

testing purposes and then to primary experimental data for drawing the thermal conductivity

equation, it is possible to claim that the lower performance in this second case is essentially due to

the intrinsic quality of the experimental data and in particular to their error noise.

The bias values are very close to zero for the vapor and supercritical regions, whereas they are a

little worse for the liquid region showing that here the thermal conductivity surface results in a

slight shifting with respect to the data. This can be due to a certain lack of coherence among those

data sets superimposing in this region as it can be verified looking at the Fig. 10.5.
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Figure 10.5: Representation of the primary data points of R152a on the P,T plane.

A choice has necessarily to be done weighting the data sets for the regression according to the

claimed experimental uncertainty of the sources involved. The Table 10.7 indicates that in

particular the sets of Refs. 15 and 19 are represented with a better accuracy, whereas the data from

Ref. 18, even if claimed with a low value of uncertainty, are represented in a slightly worse way,

see also Fig. 10.6. On the other hand similar trends can be verified for the conventional equation [4]

with respect to the same sets as shown in Table 10.8. The range of validity considered in such table

is that of the conventional model, that is the narrower one between the two models, in order to allow

a rigorous comparison of the results. Because of the smaller base of data, the results for the ECS-

NN model are different from those of Table 10.7.
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Figure 10.6: Deviations of primary experimental data in the liquid region from the thermal

conductivity ECS-NN model for R152a.

In the vapor region the data set from Ref. 29 is composed of points distributed on the most part

of the vapor region and the source claims furthermore a lower uncertainty with respect to the other

sets. These data are then the main guide for the ECS-NN surface in this region, in fact they are well

represented by the present equation; similar results are obtained by the conventional equation. At

the lower pressure four data sets are superimposing and with a rather low level of relative

consistency as it is also shown in Fig. 10.7.
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Table 10.8: Performance comparison among the present ECS-NN model and the conventional

model [4] for the fluid R152a.

ECS-NN model
Conventional eq.
Krauss et al. [4]Ref. First Author NPT

AAD
%

Bias
%

MAD
%

AAD
%

Bias
%

MAD
%

Primary liquid region
15 Assael 33 0.51 0.02 1.05 0.72 -0.71 1.46
16 Geller 108 1.26 -0.79 7.55 3.58 -3.58 11.21
17 Gross 44 2.50 -2.50 4.89 3.37 -3.37 4.86
18 Gurova 23 1.82 1.82 3.11 1.50 1.48 3.05
19 Kim 16 0.50 0.22 1.08 0.57 -0.35 2.03
20 Tsvetkov 6 1.90 -1.90 2.59 2.17 -2.17 2.68
21 Vargaftik 33 1.35 -1.29 3.70 2.62 -2.62 6.84
22 Le Neindre 96 0.88 -0.75 1.93 2.05 -2.05 6.61
15 Assael 5 0.63 0.08 1.09 0.64 -0.64 1.07
18 Gurova 3 1.56 1.56 2.38 1.09 1.09 1.84
19 Kim 4 0.55 -0.26 1.58 1.05 -0.85 2.55

Overall 371 1.25 -0.73 − 2.45 -2.24 −
Primary vapor region

28 Afshar 9 2.04 -1.16 3.03 1.13 0.50 2.39
16 Geller 19 0.88 -0.23 4.07 3.31 2.36 4.23
17 Gross 40 1.72 -1.40 4.73 2.62 -0.90 8.89
24 Kruppa 46 3.27 0.25 10.09 3.66 -0.18 11.83
29 Taxis-Reischl 54 1.45 -0.91 5.20 1.26 -0.10 6.34
21 Vargaftik 9 2.16 2.16 4.82 3.53 3.53 4.95
22 Le Neindre 37 2.28 -0.10 8.91 2.80 0.71 11.64

Overall 214 2.04 -0.43 − 2.57 0.27 −
Primary supercritical region

24 Kruppa 103 2.40 1.33 9.05 2.89 0.65 8.71
22 Le Neindre 31 1.60 -0.56 4.93 3.47 -3.11 6.47

Overall 134 2.22 0.89 − 3.02 -0.22 −
Overall primary

Overall 719 1.66 -0.34 − 2.59 -1.12 −
Total primary and secondary

Liquid 569 3.22 -0.63 − 3.22 -1.32 −
Vapor 268 3.46 0.69 − 4.35 2.15 −

Supercritical 140 2.45 1.18 − 3.12 0.01 −
Total 977 3.18 0.00 − 3.52 -0.18 −
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In Fig. 10.8 the error deviations in the supercritical region are exposed. Here the data sets of Ref.

22 are very well spread on the domain almost without the coexistence of other sources, Fig. 10.5.

Even if these data are claimed with a modest uncertainty the thermal conductivity surface has

necessarily to be based on these points. The near-critical region requires a very accurate

representation due to the strong variation of the thermal conductivity gradients and here the points

from Ref. 24 are the only source available as shown in Fig. 10.9. The present model shows a trend

which is basically in agreement with that of the conventional equation but the ECS-NN equation

shows a better performance for the single points.
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Figure 10.7: Deviations of primary experimental data in the vapor region from the thermal

conductivity ECS-NN model for R152a.
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Figure 10.8: Deviations of primary experimental data in the supercritical region from the

thermal conductivity ECS-NN model for R152a.
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Figure 10.9: Isotherms in the near-critical region of R152a generated from the ECS-NN model

and from the conventional equation [4]; data from Kruppa et al. [24].

10.4.2. Carbon dioxide

For carbon dioxide the variables conversion from PT , to ρ,T for the experimental data was

performed using the multiparameter equation of state from Ref. 14.

The first choice of primary data for this fluid was done considering the same data sets used in the

development of the conventional equation of Vesovic et al. [5]: the data of Michels et al. [33], Le

Neindre et al. [34,35,36], Dickins [48], Johnston and Grilly [49], Lenoir and Comings [50], Snel et

al. [53], Clifford et al. [54], Scott et al. [55], Millat et al. [56], Keyes [57], Johns et al. [58], Franck

[66]. The same values of experimental uncertainty adopted by Vesovic et al. were assumed. Since

no relevant experimental source has been published after the development of the conventional

equation, the analysis of the data sources done by Vesovic et al was exploited here as well.

After the first application of the regression algorithm the deviations of the experimental data

from the obtained equation were calculated. It was evidenced that the data of Franck [66] have a

lower accuracy compared to the other sources and this set was then moved to secondary data.
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Moreover, the data of Le Neindre et al. [34,35,36] in the vapor phase showed inconsistencies and

systematic shifting with respect to the other data sets. It was therefore decided to consider as

primary data for the vapor phase only the points of Le Neindre et al. [35] for temperatures greater

than 450 K, i.e., for the region scarcely cover by other experimental sources.

After a new regression on the modified set of primary data it was found that some secondary data

sets in regions with few primary experimental data show deviations from the equation with an

acceptable level. These are the data in the liquid region from Sellschopp [32] and from Salmanov

and Tarzimanov [37], the vapor phase data from Bakulin et al. [51,52], and the data from

Tarzimanov and Arslanov [38] for the liquid and supercritical regions. These data sets were

included in the set of the primary sources assuming an uncertainty of 5 %.

It was also found that the vapor phase data from Michels et al. [33], indicated as ‘near the

coexistence line’ in the original paper, have a lower quality compared to the others from the same

source and these data have consequently been excluded from the set of primary data.

The distribution of the primary data points is shown in Fig. 10.10 where it can be seen that in the

near-critical region there is a high concentration of values.
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Figure 10.10: Representation of the primary data points of carbon dioxide on the P,T plane.
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The coefficients of the neural functions ( )rr ,T ρθ and ( )rrT ρφ , obtained from regression on the

final selection of primary data are given in Table 10.9, while Table 10.10 reports the results of such

ECS-NN model with respect to data in the liquid, vapor and supercritical regions. The final

classification of the data sources as primary or secondary is also shown and in the last column the

ascribed uncertainties of the primary sets are indicated.

Table 10.9: Parameters of the ECS-NN thermal conductivity equation for CO2.

CO2

i j ijw j k jkw

1 1 0.15500147 1 1 692.36842
2 1 0.32909076 2 1 -3.6838585
3 1 -4.6763011 3 1 -48.693328
1 2 13.321343 4 1 22.364102
2 2 2.4948783 5 1 -3.0464260
3 2 -3.0369459 6 1 2.0145230
1 3 -8.7841547 7 1 -1.9261433
2 3 5.5795451 1 2 11.679066
3 3 4.4938050 2 2 5.9962107
1 4 24.765439 3 2 -13.776280
2 4 5.7162171 4 2 -1.3555306
3 4 -15.653981 5 2 -7.8192196
1 5 2.1303984 6 2 -8.8522691
2 5 -6.0650493 7 2 15.437907
3 5 -0.68672137
1 6 12.378067
2 6 2.3068601
3 6 -2.4562782

min
r1min, TV ≡ 0.5

max
r1max, TV ≡ 5.0

min
r2min,V ρ≡ 0.0

max
r2max,V ρ≡ 3.0

min
min,1W θ≡ 0.7

max
max,1W θ≡ 1.3

min
min,2W φ≡ 0.7

max
max,2W φ≡ 1.3

J 6
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Table 10.10: Deviations of the thermal conductivity ECS-NN equation for CO2 with respect to

primary, secondary and overall data in liquid, vapor and supercritical regions.

Ref. First Author Phasea NPT
T range

(K)
P range
(MPa)

AAD
%

Bias
%

MAD
%

u
%

Liquid region
32 Sellschopp l 22 285−304 5.7−9.0 2.05 -1.67 3.32 5.0
33 Michels l 14 298−303 6.4−134.4 0.52 0.02 1.25 2.0
34 Le Neindre l 13 295−304 10.7−104.1 1.21 1.21 2.11 5.0
35 Le Neindre l 6 296−304 21.1−81.1 0.62 0.21 1.00 5.0
36 Le Neindre l 10 298 10.0−110.0 0.41 -0.10 0.94 5.0
37 Salmanov l 19 222−282 2.0−9.0 0.88 0.33 2.56 5.0
38 Tarzimanov l 11 297−304 29.4−196.0 0.90 0.49 1.52 5.0

Primary data 95 1.08 -0.08 − −
39 Borosvik l 9 283−303 5.1−9.1 3.79 -3.79 7.26 −
40 Keyes l 1 274 5.8 3.05 -3.05 3.05 −
41 Guildner l 4 277−299 4.5−7.7 1.13 1.13 2.21 −
42 Paul l 5 298 6.6−30.7 1.32 1.32 2.27 −
43 Becker l 19 298 6.6−40.1 2.02 0.78 6.24 −
44 Koch l 18 283−303 5.1−9.1 2.17 -2.17 4.32 −
45 Tarzimanov l 4 299−299 10.1−81.0 0.87 -0.87 1.32 −
46 Shingarev l 17 231−303 5.8−20.3 3.78 -2.01 12.95 −
47 Amirkhanov sl 90 293−303 5.7−7.2 8.92 -7.20 42.30 −
44 Koch sl 8 283−303 4.5−7.2 5.82 -5.5 28.71 −

Total data 270 4.24 -2.92 − −
Vapor region

48 Dickins zd 1 285 0.0 0.24 -0.24 0.24 1.0
49 Johnston zd 14 186−379 0.0 0.94 0.94 3.33 1.0
50 Lenoir v 12 314−340 0.1−6.8 1.84 1.84 5.01 1.0
33 Michels v 71 298−348 0.1−7.4 1.34 0.44 5.11 2.0
35 Le Neindre v 70 456−961 0.1−7.1 2.32 -2.11 6.09 5.0
51 Bakulin v 28 225−316 0.1−2.0 1.17 0.29 5.09 5.0
52 Bakulin v 10 400−900 0.1 0.94 -0.03 2.10 5.0
53 Snel v 133 298−323 0.0−5.5 1.06 -0.96 2.33 1.5
54 Clifford v 22 301−304 0.6−5.9 0.60 0.20 1.50 0.5
55 Scott v 42 301−350 0.3−6.8 0.67 -0.46 2.07 0.5
56 Millat v 91 305−426 0.4−6.7 0.79 0.36 3.33 0.5
57 Keyes zd 5 274−631 0.0 1.59 0.96 4.24 5.0
58 Johns v 14 381−474 1.8−7.2 0.51 0.49 2.67 0.5

Primary data 513 1.18 -0.34 − −
59 Trautz zd 1 273 0.0 3.25 -3.25 3.25 −
32 Sellschopp v 18 285−314 0.1−6.7 8.44 -8.44 16.9 −
60 Archer zd 11 285−592 0.0 7.12 -7.12 11.14 −
61 Sherratt zd 10 339−566 0.0 1.75 1.48 4.47 −
62 Eucken zd 6 195−598 0.0 6.54 -4.72 9.38 −
44 Koch v 32 283−313 0.1−7.1 6.71 -6.71 33.59 −
63 Kannuluik v 26 197−375 0.0−0.1 2.83 -0.54 8.67 −
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Ref. First Author Phasea NPT
T range

(K)
P range
(MPa)

AAD
%

Bias
%

MAD
%

u
%

Vapor region (continuation)
64 Stops zd 6 577−1308 0.0 2.90 -2.04 8.49 −
39 Borosvik v 7 293−313 5.1−7.1 10.81 -10.81 40.75 −
40 Keyes v 14 274−298 0.1−6.1 6.47 6.47 17.95 −
65 Stolyarov v 12 280−475 0.1−3.0 4.67 2.54 13.03 −
66 Franck zd 7 197−598 0.0 5.63 -5.12 8.54 −
67 Salceanu zd 1 303 0.0 6.02 -6.02 6.02 −
68 Vines v 4 543−1173 0.1 3.79 3.79 5.64 −
69 Geier v 12 273−1373 0.1 2.39 -1.33 8.57 −
33 Michels v 33 298−303 6.4−7.2 16.20 16.20 59.59 −
43 Becker v 27 298−308 4.1−7.4 7.11 -6.75 16.50 −
38 Tarzimanov v 12 290−654 0.1−6.1 2.93 2.15 7.07 −
70 Chen v 19 304−316 1.4−7.4 20.61 14.76 37.42 −
71 Dohrn v 7 300−420 0.1 4.14 4.14 5.48 −
72 Heinemann v 3 323−420 0.1 4.39 4.39 5.39 −
73 Weber zd 1 273 0.0 1.57 -1.57 1.57 −
74 Kannuluik zd 1 273 0.0 1.60 -1.60 1.60 −
75 Kannuluik v 9 275 0.0−0.1 2.15 -2.15 3.61 −
76 Keyes v 9 274−423 0.1−6.1 1.51 0.80 3.68 −
77 Thomas zd 4 314−337 0.0 1.34 -1.34 1.50 −
78 Rothman v 25 631−1045 0.1 3.69 -2.06 7.49 −
79 Guildner v 4 304−305 0.2−7.3 1.93 -1.31 2.55 −
41 Guildner v 12 277−347 0.2−5.8 1.90 -1.75 3.17 −
80 Westenberg zd 3 300−500 0.0 1.57 -1.57 2.03 −
81 Mukhopadhyay v 7 258−473 0.1 1.86 -0.90 4.81 −
82 Barua zd 5 273−473 0.0 2.62 -2.10 4.96 −
34 Le Neindre v 11 294−309 0.1−5.7 1.43 -1.32 3.54 −
83 Christensen zd 3 308−388 0.0 1.54 -1.54 1.72 −
84 Van Dael v 1 297 0.1 1.15 -1.15 1.15 −
35 Le Neindre v 105 327−802 0.1−7.1 2.32 -1.99 6.09 −
85 Rosenbaum v 8 336−434 3.3−7.1 1.01 -0.11 2.00 −
86 Gupta v 98 373−1348 0.0−0.1 3.19 -2.89 8.70 −
87 Murthy v 2 305−308 0.2 0.59 0.26 0.85 −
45 Tarzimanov v 8 299−581 0.1−6.5 2.53 -2.53 3.92 −
36 Le Neindre v 37 298−951 0.1 2.53 -1.70 5.01 −
88 Haarman zd 8 328−468 0.0 0.48 -0.48 0.63 −
42 Paul v 12 298−313 0.7−6.9 1.85 -0.30 5.94 −
89 Shashkov zd 9 315−403 0.0 1.21 -0.88 3.06 −
46 Shingarev v 2 299−307 1.0 2.62 -2.62 3.25 −
44 Koch sv 9 279−303 4.1−7.2 22.35 -22.35 78.48 −

Total data 1174 3.27 -0.76 − −
Supercritical region

33 Michels sc 94 304−348 7.4−209.7 1.11 -0.65 3.97 2.0
34 Le Neindre sc 7 305−306 13.1−68.8 1.15 1.15 2.06 5.0
35 Le Neindre sc 405 304−961 7.6−127.8 0.98 -0.40 6.20 5.0
36 Le Neindre sc 145 327−951 10.0−120.0 0.94 -0.24 5.47 5.0
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Ref. First Author Phasea NPT
T range

(K)
P range
(MPa)

AAD
%

Bias
%

MAD
%

u
%

Supercritical region (continuation)
38 Tarzimanov sc 70 305−678 9.8−196.0 1.62 0.74 5.21 5.0
55 Scott sc 50 315−348 7.4−24.6 1.66 0.81 8.25 0.5
58 Johns sc 33 381−473 7.4−30.6 1.38 1.17 3.37 5.0

Primary data 804 1.10 -0.14 − −
32 Sellschopp sc 10 304−323 7.5−9.1 14.26 10.06 30.13 −
44 Koch sc 4 308−313 8.1−9.1 39.80 -39.80 100.30 −
39 Borosvik sc 2 313 8.1−9.1 27.06 -27.06 30.41 −
65 Stolyarov sc 23 326−473 10.1−30.4 7.45 2.66 20.55 −
50 Lenoir sc 20 314−340 8.0−20.8 4.77 4.68 9.83 −
79 Guildner sc 18 305−348 7.5−30.4 12.38 11.53 52.84 −
41 Guildner sc 1 304 7.9 3.64 3.64 3.64 −
85 Rosenbaum sc 42 336−434 10.0−69.0 3.34 0.56 13.64 −
90 Murthy sc 53 305−310 7.5−8.3 17.89 15.32 41.27 −
43 Becker sc 170 304−308 7.4−48.8 12.22 -3.98 79.10 −
70 Chen sc 47 304−316 7.4−13.1 27.64 24.36 64.83 −
91 Murthy sc 65 305−310 7.5−8.3 14.85 12.75 41.27 −
87 Murthy sc 1 308 8.3 1.43 1.43 1.43 −
45 Tarzimanov sc 53 379−678 10.1−101.3 2.21 -2.20 4.11 −
42 Paul sc 4 313 9.1−27.6 0.84 0.43 1.51 −
46 Shingarev sc 4 310−326 19.9−20 8.89 -8.89 17.89 −

Total data 1321 5.54 1.61 − −
Overall

Overall primary 1412 1.13 -0.21 − −
Overall 2765 4.45 0.16 − −

a
Phase: l = liquid, sc = supercritical region, sl = saturated liquid, sv = saturated vapor, v = vapor, zd = vapor at

zero-density limit.

Also for this fluid the performance of the obtained thermal conductivity model is obviously

lower with respect to that of the corresponding one developed from generated data. In fact here the

AAD for primary data is 1.13 % whereas in that case the corresponding value for the training set

was about 0.26 %, see Tab. 10.2. Also in the case of carbon dioxide the decrease of performance

has to be ascribed to the quality of the experimental data which primarily limits the attainable

accuracy of the modeling method.

It has been verified that in general the single primary data sets are rather coherent each others

and this is confirmed by the present bias values which are quite close to zero assuring that

systematic shifting of the sets is in practice limited. Rather similar behaviors are shown for the

single regions by the ECS-NN equation.

In Figs. 10.11 to 10.14 the error deviation distributions of the proposed model for carbon dioxide

are shown with respect to the primary experimental points in the liquid, vapor and supercritical
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regions, respectively. The small values of the deviations in all the regions and their balance with

respect to the zero line are evident.

In the vapor region three data sets are prevailing for the number of points and for a low

uncertainty, Refs. 53, 55 and 56, which are then the data sets better represented by the present

equation. A similar behavior is also shown by the conventional equation from Ref. 5, Table 10.11.

The validity range considered for the comparison of Table 10.11 is that of the conventional equation

because it is the narrower one.

In the supercritical region three data sets have the higher number of points, i.e., the Refs. 33, 35

and 36, but they are rather coherent each others as it is also demonstrated by the AAD and Bias

values obtained by the equation.

Table 10.11: Performance comparison among the present ECS-NN model, the conventional

model [5] for the fluid CO2.

ECS-NN model
Conventional eq.
Vesovic et al. [5]Ref. First Author NPT

AAD
%

Bias
%

MAD
%

AAD
%

Bias
%

MAD
%

Primary liquid region
32 Sellschopp 22 2.05 -1.67 3.32 1.55 -0.97 4.74
33 Michels 13 0.47 0.20 1.25 0.94 -0.27 2.24
34 Le Neindre 12 1.24 1.24 2.11 1.03 0.99 2.06
35 Le Neindre 6 0.62 0.21 1.00 0.35 -0.03 0.95
36 Le Neindre 9 0.35 -0.22 0.70 0.70 -0.19 1.30
37 Salmanov 19 0.88 0.33 2.56 1.51 1.51 2.42
38 Tarzimanov 6 0.98 0.98 1.52 0.69 0.69 1.59

Overall 87 1.10 -0.09 − 1.15 0.21 −
Primary vapor region

48 Dickins 1 0.24 -0.24 0.24 0.52 -0.52 0.52
49 Johnston 12 0.64 0.64 1.81 0.26 -0.14 0.47
50 Lenoir 12 1.84 1.84 5.01 0.87 0.66 2.98
57 Keyes 5 1.59 0.96 4.24 1.72 0.08 3.50
33 Michels 71 1.34 0.44 5.11 0.81 -0.31 2.36
51 Bakulin 28 1.17 0.29 5.09 1.24 0.65 5.26
52 Bakulin 7 0.66 -0.13 1.36 2.04 -2.04 3.21
53 Snel 133 1.06 -0.96 2.33 1.15 -1.15 2.43
54 Clifford 22 0.60 0.20 1.50 0.17 0.11 0.77
55 Scott 42 0.67 -0.46 2.07 1.04 -1.04 2.50
56 Millat 91 0.79 0.36 3.33 0.65 -0.54 4.19
35 Le Neindre 70 2.32 -2.12 6.09 2.72 -2.51 5.98
58 Johns 14 0.51 0.49 2.67 0.56 -0.40 4.85

Overall 508 1.17 -0.35 − 1.16 -0.87 −
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ECS-NN model
Conventional eq.
Vesovic et al. [5]Ref. First Author NPT

AAD
%

Bias
%

MAD
%

AAD
%

Bias
%

MAD
%

Primary supercritical region
33 Michels 89 1.14 -0.65 3.97 1.23 0.47 8.81
34 Le Neindre 7 1.15 1.15 2.06 0.74 0.58 2.12
35 Le Neindre 367 0.99 -0.44 6.20 1.46 -1.14 6.84
36 Le Neindre 134 0.96 -0.26 5.47 1.20 -0.77 4.19
38 Tarzimanov 33 1.59 0.94 5.21 1.10 -0.06 3.39
55 Scott 50 1.66 0.81 8.25 2.43 1.73 10.82
58 Johns 33 1.38 1.17 3.37 0.56 -0.40 4.85

Overall 713 1.10 -0.19 − 1.39 -0.57 −
Overall primary

Overall 1308 1.13 -0.25 − 1.28 -0.63 −

Total primary and secondary
Liquid 262 4.34 -3.01 − 4.47 -3.06 −
Vapor 1054 3.38 -0.65 − 3.57 -1.47 −

Supercritical 1225 5.88 1.72 − 5.39 2.50 −
Total 2541 4.69 0.25 − 4.54 0.28 −
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Figure 10.11: Deviations of primary experimental data in the liquid region from the thermal

conductivity ECS-NN model for CO2.



X. Heuristic thermal conductivity equations in extended corresponding states framework406

200 400 600 800 1000

-4

0

4

Zero-density [48,49,57]
Lenoir [50]
Michels [33]
Le Neindre [35]

∆
%

T / K

Figure 10.12: Deviations of primary experimental data in the vapor region from the thermal

conductivity ECS-NN model for CO2 regressed on generated data, Paragraph 10.3. The zero-

density data are from Refs. 48, 49 and 57, Tab. 10.10.
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Figure 10.13: Deviations of primary experimental data in the vapor region from the thermal

conductivity ECS-NN model for CO2 regressed on experimental data, Tab. 10.9.
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Figure 10.14: Deviations of primary experimental data in the supercritical region from the

thermal conductivity ECS-NN model for CO2.

Similarly to what was done for R152a, sections at constant temperature of the thermal

conductivity surface in the near-critical region of carbon dioxide are plotted in Fig. 10.15 for both

the present ECS-NN model and the conventional model [5]. Also for carbon dioxide it is possible to

observe a coherent trend and a significative improvement in the representation of the experimental

data in this very crucial zone using the ECS-NN model.
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Figure 10.15: Isotherms in the near-critical region of CO2 generated from the ECS-NN model

and from the conventional equation [5]; data from Michels et al. [33].

10.5. Conclusions

The potentiality of ECS modeling for thermal conductivity, when a heuristic technique is

adopted, has been shown with application to both data generated from existing models and

experimental data. The shape functions are got in a continuous analytical form expressed by a

universal function approximator, i.e. a neural network, through regression of thermal conductivity

data. The obtained results are very encouraging; in fact the proposed technique yields thermal

conductivity equations that represent the experimental data within their experimental accuracy;

moreover, the method is able to satisfactorily model the strong critical enhancement of thermal

conductivity in the near-critical region.

Assuming R134a as reference fluid, two dedicated thermal conductivity equations have been

regressed for carbon dioxide and R152a with the proposed technique, using the available
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experimental data. The second fluid is supposed to share a conformality condition with the

reference fluid, whereas this is not true for the first one. The performances of the equations are in

both cases comparable with those of the corresponding models obtained with the at present most

advanced heuristic method, i.e., the dedicated equations in optimized multiparameter functional

form, as from Paragraph 9.4. A slight decrease of accuracy is counterbalanced by the lower number

of experimental points required as input for the regression. In fact, it has been shown that about two

hundred data points, regularly distributed on the ρλT surface of the target fluid, are sufficient to

draw a very precise equation, with evident saving of experimental efforts.
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CONCLUSIONS

In this Ph.D. thesis innovative modeling techniques for the representation of the thermophysical

properties have been set up and applied to obtain substance-specific equations. The presented

modeling techniques share a heuristic nature, allowing to infer the analytical relation between

dependent and independent variables directly from a sufficiently detailed experimental

representation of the studied phenomenon. Therefore no approximated physical model or tentative

equation is initially assumed, but the analytical form of the model is set up through the

mathematical optimization procedure strictly related to the universal function approximator itself.

An artificial neural network (NN), in a multilayer feedforward framework (MLFN), has been

involved in the developed model as universal function approximator.

The Part One of the thesis work deals with the thermodynamic properties. An original modeling

technique, concisely named EEoS-NN is presented. The EEoS-NN technique recovers the basic

framework of the extended corresponding states (ECS) method, but it introduces the following

improvement: the reference fluid coincides with the interest fluid itself and it is represented by an

existing EoS for the fluid. Thus, there is actually no more a “reference fluid” with its own EoS, as in

the classical ECS theory, but rather only a “reference equation” for the reference fluid itself. A

powerful heuristic technique, the MLFN, is applied to determine the scale factors as continuous

functions of the target fluid thermodynamic variables. Starting from experimental data of the

considered fluid, the regression procedure yields an equation of state in the fundamental Helmholtz

energy form for the fluid itself able to satisfactorily describe vapor, liquid and supercritical regions.

The format of the EEoS-NN model is constituted by a basic equation whose functional form is

distorted through the application of shape functions, expressed as a neural network, to the

independent variables. In the present thesis work different basic equations has been used, depending

on the specific case. The more used basic EoS is the cubic equation of state, that requires only the

critical parameters, the acentric factor, i.e. a value of saturation pressure, and a value of saturated

liquid density to determine the Peneloux volume translation coefficient; but also a DEoS in

optimized functional form has been used as basic equation from which the EEoS-NN model has

been developed.

The EEoS-NN method allows to develop dedicated equations of state in a fundamental form

from which all the thermodynamic properties can be calculated only through differentiation with

respect to the independent variables temperature, density and composition.

The EEoS-NN model has been preliminary tested on generated data to set up the method and to

test its potentialities; for this purpose data generated from a dedicated equation of state (DEoS) for
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each target fluid are used instead of experimental data, so that the model performances are not

hindered by error noise and uneven data distribution.

Moving from generated data, the capability of the proposed method has been verified both for

pure fluids and for mixtures. A group of pure alkanes, haloalkanes, and strongly polar substances

has been considered; the results obtained for these fluids are very promising. The same is valid for

the five binary mixtures and two ternary mixtures of haloalkanes here studied.

In the case of pure fluids it has been also verified that slightly more than 100 density points

evenly distributed in the TPρ plane and with low experimental error can be a sufficient input for the

model development, allowing to reduce the experimental efforts.

The promising performances for the proposed model based on generated data leads to the

possibility to reliably develop DEoSs in the EEoS-NN format directly from experimental data.

An equation of state in Helmholtz energy form was obtained for sulfur hexafluoride by applying

the EEoS-NN technique using a Soave-Redlich-Kwong (SRK) cubic equation whose functional

form is distorted through the application of shape functions, expressed as a neural network, to the

independent variables. The coefficients of the neural network are obtained through regression from

experimental data. The accuracies of the available sources of experimental data were discussed and

only the more precise data sets were adopted for the training procedure of the neural network.

The validity ranges of the equation are from the triple-point temperature at about 223.6 K up to

625 K and for pressures up to 60 MPa, with the exclusion of a region close to the critical point in

case of caloric property calculation; a moderate extrapolation outside these limits is reliably

possible.

It was verified that the equation can be regressed on only density and vapor pressure data, though

maintaining a good prediction accuracy for other thermodynamic properties as for instance isobaric

heat capacity and speed of sound. This characteristic is advantageous when the proposed modeling

technique is applied to a fluid for which a limited data base is available, because the required

experimental effort can be reduced.

The representation of the available experimental data is satisfactory for all the considered

properties; in fact the deviations of the equation from the data are comparable with the ascribed

uncertainties of the experimental sources.

The performances of the basic SRK cubic EoS are by far improved through the application of the

shape functions. Moreover, the comparison of the proposed equation with the most advanced EoS

previously published in the literature shows that the two equations have a similar accuracy level, but

the present one reaches better prediction results for many data sets.



Conclusions 415

The obtained equation is at the same level of the “group-two dedicated equations of state”

developed in recent years through the so-called functional form optimization procedure. In

particular it can be applied with satisfactory results also when only density and vapor pressure data

are available.

The sulfur hexafluoride is a chemically inert, non-polar, symmetrically-shaped chemical

compound presenting a regular thermodynamic behavior with a quite low deviation from ideality.

For it a large base of good quality experimental data of several properties in homogeneous states

and of properties at phase equilibrium were available with a rather even distribution inside the range

of interest. For this fluid, considering the favorable conditions of the data base, the EEoS-NN

method was applied using only density and coexistence data for the regression with the aim of

verifying its “value added” mentioned in the preceding.

On the contrary, 2-propanol is a polar and associating compound able to create hydrogen bonds,

i.e. strong molecular interactions making it to strongly deviate from ideality. Moreover, a

completely different and less suitable experimental data base is available for the fluid because of a

rather uneven distribution of the data, of some occasional inconsistencies among different

experimental sources and, in several cases, of the questionable uncertainty of the data. All this

makes the fluid more difficult to represent with a high accuracy DEoS with respect to the former

case of sulfur hexafluoride.

The EEoS-NN modeling technique has been deliberately applied to the unfavorable situation of

the fluid 2-propanol with the express will to verify the effectiveness of the method in much more

difficult conditions.

The new fundamental equation of state was obtained for 2-propanol by applying the EEoS-NN

technique using a PR cubic equation as basic EoS. The validity ranges of the developed equation

are from 280 up to 600 K and for pressures up to 50 MPa. Due to the substantial lack of data in the

near critical region and the non-specialization of this DEoS in representing such region very close

to the critical point the present equation is not suggested to be used within a region very close to the

critical point.

The representation of the available experimental data is satisfactory for all the considered

properties; in fact the deviations of the equation from the data are comparable with the realistic

uncertainties of the experimental sources for this fluid.

The results obtained for the fluid 2-propanol demonstrate that the EEoS-NN modeling method is

completely reliable to develop highly effective DEoSs even if the experimental data situation for the

fluid is not completely favorable. This aspect is particularly valuable in the case a DEoS is required
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for engineering applications where the economy of the experimental effort and the representation

accuracy have to be met through a suitable compromise.

In conclusion, the EEoS-NN modeling technique is a valuable and effective tool for the

development of fundamental equations of state dedicated to pure fluids, since it provides an

equation in Helmholtz energy form that is capable to reproduce the thermodynamic properties with

high accuracy. Above all, this result was an important goal for the present work and further

enhancements of the EEoS-NN technique can be pursued in the future starting from the present

result.

In particular, the developed EEoS-NN technique is a promising tool for the representation of the

thermodynamic properties of fluids involved in many unit operations of process engineering; an

accurate knowledge of such properties plays a crucial role in design and optimization.

To show the potential of such technique a propaedeutical system has to be chosen and studied as

an exemplification case. This thesis work focuses on an extraction process to be studied from the

energetic point of view.

The selected process is the dehydration of 2-propanol, i.e., the extraction of 2-propanol from a

liquid homogeneous mixture 2-propanol + water using a light solvent which in this case is

propylene. 2-Propanol and water form an azeotropic binary mixture that cannot be separated by

means of a conventional distillation process. To overcome this problem a third component,

propylene in this case, is added to allow the separation. This system was selected after a screening

of the literature data which is rather lacking of detailed documentation, because it seems to present

favorable conditions for an extraction operation. Equilibrium and excess enthalpy data have been

correlated using a semi-predictive EoSG E − model composed of a Peng-Robinson (PR) cubic EoS

with Wong-Sandler (WS) mixing rules and the EG function represented through a modified

UNIQUAC model. The complex phase equilibrium behavior of the system has been then studied in

this thesis through the developed EoSG E − model, verifying that the system is suitable to study the

extraction operation. Once the preliminary steps have been carried out and the system (ternary

mixture) and the process are defined, the necessity of a very precise representation of the

thermophysical properties of the system arises in order to investigate the best operative conditions

in which to carry out the process to optimize its energy consumption. In order to provide a suitable

data basis on which developing a DEoS for the system in EEoS-NN format new experimental

measurements have been carried out in this thesis work. In particular, a vibrating tube densimeter

has been used to carry out density measurements and to determine bubble pressures for the ternary

mixture and for the composing binaries. The carried out experimental work provided a suitable

basis of density data for the development of the EEoS-NN model, but a campaign of phase
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equilibrium measurements are further necessary at this purpose. As it has been previously

demonstrated the EEoS-NN model regressed on density and coexistence data is able to provide a

reliable representation also for the caloric properties; nevertheless some isobaric heat capacity

measurements in the range of interest for the extraction process are required for the model

validation. At present this experimental work is still in progress and the development of a dedicated

equation of state for the propylene + 2-propanol + water mixture will constitute the further

development of this thesis work. Once a thermodynamic model in EEoS-NN format will be

obtained, it will be possible to link it with a process simulator, studying the better operative

conditions for the 2-propanol extraction process.

The Part Two of the thesis work deals with the transport properties. An original modeling

technique, concisely named ECS-NN is presented. The ECS framework is maintained, but the shape

functions are expressed through a multilayer feed-forward neural network, that constitutes a

powerful function approximator.

The potentiality of the ECS-NN modeling technique for thermal conductivity, when a heuristic

technique is adopted, has been shown with application to both data generated from existing models

and experimental data. The shape functions are got in a continuous analytical form expressed by a

universal function approximator, i.e. a neural network, through regression of thermal conductivity

data. The obtained results are very encouraging; in fact the proposed technique yields thermal

conductivity equations that represent the experimental data within their experimental accuracy;

moreover, the method is able to satisfactorily model the strong critical enhancement of thermal

conductivity in the near-critical region.

Assuming R134a as reference fluid, two dedicated thermal conductivity equations have been

regressed for carbon dioxide and R152a with the proposed technique, using the available

experimental data. The second fluid is supposed to share a conformality condition with the

reference fluid, whereas this is not true for the first one. The performances of the equations are in

both cases comparable with those of the corresponding models obtained with the at present most

advanced heuristic method, i.e., the dedicated equations in optimized multiparameter functional

form. A slight decrease of accuracy is counterbalanced by the lower number of experimental points

required as input for the regression. In fact, it has been shown that about two hundred data points,

regularly distributed on the ρλT surface of the target fluid, are sufficient to draw a very precise

equation, with evident saving of experimental efforts.

Summarizing, the present Ph.D. thesis has shown the effectiveness of the application of heuristic

techniques to both thermodynamic and transport property modeling, as a valid alternative to the
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techniques that are at present adopted. The proposed methods are robust and they yield equations

representing the data well within their experimental uncertainties.

As for any correlative method, a sufficient number of experimental data is absolutely necessary

and then a certain amount of experimental work is unavoidable for the development of a model with

a heuristic technique. Anyway, the availability of accurate experimental facilities, the possibility to

plan measurements covering a regular grid in the independent variables, and the selection of the

most effective properties to measure allow to limit the experimental work to a minimum, keeping at

the meantime the model accuracy as high as possible.
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APPENDIX

A.1. MLFN model equations

The mathematical expressions involved in the use of multilayer feed-forward neural networks

are here collected. The same definitions introduced in Paragraph 2.2.2 are maintained, then

reference is made to that section. In addition, jG and kR , i.e. the input to neuron j of the hidden

layer and the input to neuron k of the output layer respectively, and the derivatives of outputs with

respect to inputs are defined.
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where:
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are the derivatives of the selected transfer function.
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A.2. Thermodynamic properties from equations of state in terms of Helmholtz

free energy

The equations of state in terms of Helmholtz free energy are fundamental equations of state, i.e.

once the equation has been set up all the thermodynamic properties can be calculated as

combinations of derivatives without any integral calculation.

The reduced Helmholtz free energy can be expressed as a summation of ideal part and residual

part (1):
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TA
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The ideal part oa is obtained from an equation for the ideal-gas isobaric heat capacity o
pC as a

function of temperature; the residual part Ra is given as a function of temperature and density.

Moreover, the reference values for enthalpy oH 0 and entropy oS0 of ideal gas in the chosen

reference condition ( )00 ,ρT have to be set.

The equations for the calculation of the main thermodynamic properties are reported in the

following. The quantities can be equivalently expressed either in molar units or in mass units,

provided that consistency is maintained among the units of R , ρ , cρ , A and all the obtained

properties. Particular attention has to be paid for speed of sound.

For mixtures the same equations for pure fluids are still valid, obviously with oa and Ra

depending also on molar compositions; molar units should be used in this case. Moreover, the

partial molar fugacity coefficient of component i in mixture is calculated from Eq. (A2.27). In the

case of a mixture of C components, the ideal-gas Helmholtz energy is obtained from the linear

combination of the ideal-gas Helmholtz energy of pure components plus the term representing the

change of mixing of ideal gases:
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1 The ideal and residual parts in Eq. (A2.1) are different from the corresponding terms in Eq. (1.56); in fact in Eq.
(A2.1) they are calculated at the same temperature and density of the system, whereas in Eq. (1.56) they are at the
same temperature and pressure. The two definitions are both valid, but when evaluated at the same fluid conditions
the ideal and the residual parts according to the two definitions are related by:
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2 Eq. (A2.25) is valid when R is expressed in J kg-1 K-1. If R is in J mol-1 K-1, then the left-hand side of the equation is

substituted by )(2 RTMw , where M is the molar mass in kg mol-1.
3 The total number of moles is denoted with n, while the number of moles of component i is indicated with ni.
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A.3. Cubic equation of state transformed into fundamental Helmholtz free

energy form

Limiting the present study to the cubic equations of state of van der Waals (vdW), Redlich-

Kwong (RK), Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR), and considering also the

Peneloux volume translation, a general form comprising all these equations reads:
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with the parameters reported in Table 3.1. The parameter a of the cubic equation is here denoted by

the subscript cub in order to avoid any misunderstanding with the reduced Helmholtz energy. From
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and substituting v1=ρ :
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The derivatives of Ra with respect to the independent variables are here reported:
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in which the derivatives Tacub ∂∂ , 22 Tacub ∂∂ and 33 Tacub ∂∂ are calculated from the suitable

equation for cuba in Table 3.1.

Moreover, for a mixture of C components, indicating with n the total number of moles in the

system and with in the number of moles of component i , it is:
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Assuming the mixing rules in Eqs. (3.29-3.32), it results:
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all the thermodynamic properties can be calculated for the selected cubic equation (4) from the

relations in Appendix A.2. 

 

4 For the van der Waals cubic EoS the substitution of ε1=0 and ε2=0 into Eqs. (A3.3-A3.14) leads to indeterminate
forms. The right procedure for that cubic equation is to set ε2=0 and to calculate the limits of Eqs. (A3.3-A3.14) for
ε1→0.
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A.4. UNIQUAC equation

The UNIQUAC equation treats RTGg E≡ as comprised of two additive parts, a combinatorial

term Cg to account for molecular size and shape differences, and a residual term Rg to account for

molecular interactions:

RC ggg +≡ (A4.1)

Function Cg contains pure-species parameters only, whereas function Rg incorporates two

binary parameters for each pair of molecules. For a system of C components:
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Subscript i identifies species, and j is a dummy index. It is ijji ττ ≠ , and 1== jjii ττ . In these

equations ir (a relative molecular volume) and iq (a relative molecular surface area) are pure-

species parameters. The influence of temperature on g enters through the interaction parameters

jiτ of Eq. (A4.3), which are temperature dependent:

( )
RT

uu iiji
ji

−−
= expτ (A4.6)

Parameters for the UNIQUAC equation are therefore values of ( ) Ruuu iijiji −=∆ , which have

to be found by regression on binary VLE data.

An expression for iγln is found by application of equation (1.103) to the UNIQUAC equation

for g , Eqs. (A4.1-A4.3).
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A.5. EEoS-NN model equations

Denoted with subscript j the target fluid and with subscript 0 the reference fluid, the basic

equation of the extended corresponding states model is:

( ) ( )000 ,, ρρ TaTa R
jj

R
j = (A5.1)

where:

jjjj hfTT ρρ == 00 (A5.2)

Since in the EEoS-NN framework the target and the reference fluid coincide, the scale factors jf

and jh are identical to the respective shape functions jθ and jφ :

( ) ( )jjjjjjjj ThTf ρφρθ ,, == (A5.3)
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The logarithmical derivatives of the shape functions with respect to temperature and/or density

equal the respective derivatives of the scale factors.
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DERIVATIVES OF THE HELMHOLTZ ENERGY
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Remembering Eqs. (A3.17) all the thermodynamic properties can be calculated for the EEoS-NN

model from the equations in Appendix A.2. Since in the EEoS-NN model the “reference” is a

simple equation of the target fluid itself; if a cubic equation of state is chosen as reference the

expressions for Ra0 and its derivatives included in Eqs. (A5.16-A5.21) are calculated through the

Eqs. (A3.4-A3.13) in Appendix A3. Some properties are reported in the following for convenience.
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EXAMPLES OF THERMODYNAMIC PROPERTIES CALCULATED FROM THE ECS

MODEL:

Residual compressibility factor 1−= Zz R : ( ) RRR
j uFzHz 001 ρρ ++= (A5.22)
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RT

H
h

R
R = : ( ) ( ) R

T
R

T
RR

j zHHuFFhh 000 −+−+= ρρ (A5.24)

Reduced residual Helmholtz energy
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A
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Reduced residual Gibbs energy
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MIXTURES

In the case of mixtures the preceding equations are still valid, substituting the mixture scaling

factors for the pure fluid ones. The only novelty is given by the partial molar fugacity coefficient of

component i in mixture, iϕ̂ln .

If the reference is a pure fluid, it is calculated as:
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If the reference is a mixture with the same number of components and evaluated at the same

molar composition of the system, it is calculated as:

( ) ( ) ( )ρρϕϕ HHzFFuZZ
ii n

R
n

R
MiiM ++++−= 000,0, lnˆlnˆln (A5.31) 
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A.6. Statistical indexes definition

The statistical indexes used in the present thesis to evaluate the performances of the proposed

models are here defined. The generic property is indicated with M , while NPT denotes the number

of points in the considered data set, i is a generic point of the data set, calc and exp stand for

calculated and experimental values, respectively. Sometimes, when indicated, exp can denote also

pseudo-experimental values, generated with a thermodynamic model and assumed as substitutive

for the experimental points.
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SYNTHETIC EXPOSITION

The subject of the present Ph.D. thesis is constituted by the development and application of

innovative modeling techniques for the representation of the thermophysical properties of fluids.

The thermophysical properties are divided into thermodynamic properties, related to states of

thermodynamic equilibrium and to transformation processes between two equilibrium conditions,

and transport properties, concerning systems in a non-uniform state and then affected by transport

phenomena; among these, thermal conductivity has been here considered.

The knowledge of the thermophysical properties of pure fluids and mixtures is an absolutely

crucial need for the design and the optimization of any equipment in the process industry. The

thermophysical properties have to be known in dependence on the controlling variables with a

precision as high as possible: errors in the values of the required properties can propagate

throughout the entire calculation with amplification effects, yielding wrong design and driving

away from the optimal operating conditions.

The purpose of this thesis work is to set up modeling techniques able to represent the

thermophysical properties with a precision comparable with the experimental uncertainty of the

experimental measurements of the properties themselves reducing at the same time the required

experimental effort. The proposed modeling techniques are based on a heuristic approach, that get

the functional representation of a physical dependence directly from a properly organized data base;

the effectiveness of the developed heuristic techniques is fundamentally based on the use of the

artificial neural network, which have the characteristic of universal function approximators.

The development and application of a heuristic modeling technique to produce equations of state

(EoS) in the fundamental form for the representation of thermodynamic properties of pure fluids

and mixture are presented in the first part of this thesis work. The modeling technique here

proposed for the representation of the thermodynamic properties is based on the extended

corresponding states (ECS) principle. The basic idea of the ECS model consists in the distortion of

the independent variables of the EoS of the reference fluid to transform it into the EoS of the

interest fluid. If the simple two-parameter corresponding states principle should work exactly, no

tuning distortion would be necessary; since this is not the case, two tuning functions θ and φ ,

indicated as shape functions, are then individually required to exactly match the ECS model with a

known thermodynamic surface of the interest fluid.

The basic requirements of the ECS technique are the fulfillment of a conformality condition

between the reference and the target fluid, and the availability of an accurate equation of state in

terms of Helmholtz energy for the reference fluid. In the case that either the conformality condition

is not verified among the fluids of a same family or no component of the family, whose fluids are
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supposed to share a conformality condition, disposes of a DEoS, the discussed ECS method cannot

in general be effectually applied.

In the model proposed in this thesis the ‘correction’ through the variables distortion is performed

on a simple EoS representing, even if roughly, the target fluid itself. In other words a simple EoS

for the same target fluid is the starting point for the development of a DEoS through the variables

distortion, avoiding in this way any problem about the conformality condition fulfillment. It would

be then no more necessary to dispose of a ‘reference fluid’, following the classical interpretation of

the ECS theory, but rather of only a ‘reference equation’, whose precision is enhanced, or

‘extended’, through the application of the shape functions. Hence the name of extended equation of

state (EEoS) chosen to indicate this new modeling method.

The shape functions ( )ρθ ,T and ( )ρφ ,T have to be regressed forcing the model to represent

known values of experimentally accessible thermodynamic quantities; in the present model their

functional formulation is heuristically obtained applying a multilayer feed-forward neural network

(MLFN) as universal function approximator. The new approach is constituted by a general fitting

procedure in which a mathematical form of the Ra surface has to be ‘spread’ on known values of it

and of its derivatives, overcoming the problems presented by the two traditional ECS approaches,

i.e., the local solution and the continuous solution.

The proposed modeling technique comes from the combination of the EEoS method with the

neural networks and then it can be concisely indicated as EEoS-NN model.

The EEoS-NN model allows to obtain for the fluid of interest a DEoS in the default fundamental

form ( )ρ,Ta which allows to calculate any thermodynamic quantity through mathematical

derivations only.

In order to set up the method and to test its potentialities, data generated from a DEoS for each

target fluid are used instead of experimental data, so that the model performances are not hindered

by error noise and uneven data distribution. Moving from generated data, the capability of the

proposed method has been verified both for pure fluids and for mixtures. A group of pure alkanes,

haloalkanes, and strongly polar substances has been considered; the results obtained for these fluids

are very promising. The same is valid for the five binary mixtures and two ternary mixtures of

haloalkanes here studied.

In the case of pure fluids it has been also verified that slightly more than 100 density points

evenly distributed in the TPρ plane and with low experimental error can be a sufficient input for the

model development, allowing to reduce the experimental efforts.

The promising performances for the proposed model based on generated data leads to the

possibility to reliably develop DEoSs in the EEoS-NN format directly from experimental data.
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The EEoS-NN technique was then applied to draw DEoSs for the pure fluids sulfur hexafluoride

(SF6) and 2-propanol (iC3H8O) directly from the available data sets of the target fluids. 

The DEoS for SF6 is valid for the liquid, vapor and supercritical region in the ranges from the

triple-point temperature at about 223.6 K up to 625 K and for pressures up to 60 MPa, with the

exclusion of a region close to the critical point in case of caloric property calculation. The

representation of the available experimental data is satisfactory for all the considered properties; in

fact the deviations of the equation from the data are comparable with the ascribed uncertainties of

the experimental sources. One of the advantages of the EEoS-NN method, shown for the fluid

sulfur hexafluoride, is that the data set on which to base the regression procedure can include only

density and coexistence values, getting in the meantime a satisfactory performance also for the

other properties.

The DEoS for iC3H8O is valid for the liquid, vapor and supercritical region for temperatures

from 280 up to 600 K and for pressures up to 50 MPa. Due to the substantial lack of data in the near

critical region and the non-specialization of this DEoS in representing such region very close to the

critical point the present equation is not suggested to be used within a region very close to the

critical point. The representation of the available experimental data is satisfactory for all the

considered properties; in fact the deviations of the equation from the data are comparable with the

realistic uncertainties of the experimental sources for this fluid. The results obtained for the fluid 2-

propanol demonstrate that the EEoS-NN modeling method is completely reliable to develop highly

effective DEoSs even if the experimental data situation for the fluid is not completely favorable.

This aspect is particularly valuable in the case a DEoS is required for engineering applications

where the economy of the experimental effort and the representation accuracy have to be met

through a suitable compromise.

The pointed out features make the EEoS-NN technique a useful tool for the process analysis and

optimization. To prove the potential of the cited technique as a tool to study real processes typical

of the chemical industry the system propylene + 2-propanol + water has been chosen as an

exemplification case. The objective is therefore to investigate the possibility to use the EEoS-NN

technique to study the energetic optimization of the extraction process of 2-propanol from aqueous

solutions using propylene as solvent. This system has been chosen after a screening of the literature

data because it seems to present a favorable phase equilibrium behavior for an extraction operation.

Furthermore, the propylene + 2-propanol + water system is thermodynamically strongly deviating

from ideal behavior due to several causes as the strong polarity of the components, their association

behavior, etc., which increases a lot the difficulties of a complete and accurate thermodynamic

representation. For such a reason the set up of a DEoS for this system is an interesting challenge
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from a scientific point of view, being the first case in which a dedicated equation of state is

developed for a strongly deviating ternary mixture.

The experimental data available from the literature for the ternary mixture are vapor-liquid

equilibrium (VLE) and liquid-liquid equilibrium (LLE). In order to set up a semi-predictive

thermodynamic model of the ternary mixture to study its phase behavior, vapor-liquid-liquid

equilibrium (VLLE) measurements have been performed. Excess enthalpy measurements have also

been carried out for the ternary mixture and for the 2-propanol + water binary mixture in order to

obtain a good temperature dependence in the semi-predictive model, constituted of a Peng-

Robinson cubic EoS with Wong-Sandler mixing rules and a modified UNIQUAC model to

represent the excess Gibbs energy. This model has been used to investigate the phase equilibrium

behavior of the ternary mixture from a qualitative point of view. This is a necessary preliminary

step to efficiently plan an experimental campaign of measurements suitable to set up a DEoS of the

ternary mixture in the EEoS-NN format. The chosen range of interest for the extraction operation is

from about 300 to 350 K in temperature, up to 10 MPa in pressure and it extends up to the pure

fluids in composition. The properties to be measured in the selected range in order to set up the

DEoS are density and phase equilibria. Some isobaric heat capacity measurements are also required

to validate the model capability to correctly predict the caloric properties in the range of interest.

Density data have been produced using a vibrating tube densimeter (VTD) for the pure 2-

propanol, for the propylene + 2-propanol mixture, for the 2-propanol + water mixture and for the

propylene + 2-propanol + water mixture. Bubble pressure data were also determined using the VTD

for the propylene + 2-propanol mixture and for the propylene + 2-propanol + water mixture.

At present the experimental work is still in progress and phase equilibrium and isobaric heat

capacity data have to be carried out. This experimental work, together with the development of a

DEoS for the propylene + 2-propanol + water mixture, will constitute the extension of this thesis

work. Once a thermodynamic model in EEoS-NN format will be obtained, it will be possible to link

it with a process simulator, studying the better operative conditions for the 2-propanol extraction

process.

The development and application of a heuristic modeling technique to produce dedicated

equations for the representation of the thermal conductivity of pure fluids is presented in the second

part of this thesis work.

The proposed model is based on the ECS principle, but the shape functions are got in a

continuous analytical form expressed by a universal function approximator, i.e. a neural network,

through regression of thermal conductivity data. This innovative approach, named ECS-NN, allows

to overcome the problems in obtaining the scale factors presented by the two traditional ECS
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approaches for transport properties, i.e., the local solution and the continuous solution. The

potentiality of the ECS-NN modeling technique for thermal conductivity has been shown with

application to both values generated from existing models and experimental values. Assuming

R134a as reference fluid, two dedicated thermal conductivity equations have been regressed for

carbon dioxide and R152a from the available experimental data. The obtained results are very

encouraging; in fact the proposed technique yields thermal conductivity equations that represent the

experimental values in the liquid, vapor and supercritical regions within their experimental

accuracy; moreover, the method is able to satisfactorily model the strong critical enhancement of

thermal conductivity in the near-critical region.

The performance change of the model has been studied varying the number of experimental data

in the training procedure, showing that about two hundred data points, regularly distributed on the

ρλT surface of the target fluid, are sufficient to draw a very precise equation, with evident saving

of experimental efforts.

Summarizing, the present Ph.D. thesis has shown the effectiveness of the application of heuristic

techniques to both thermodynamic and transport property modeling, as a valid alternative to the

techniques that are at present adopted. The proposed methods, exploiting the prediction capability

of the neural networks, allow to reduce the experimental effort, yielding at the same time equations

representing the data within their experimental uncertainties. This feature makes the developed

methods suitable tools for the design and optimization of unit operations of the industrial processes.
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ESPOSIZIONE RIASSUNTIVA

L’argomento di questa tesi di Dottorato è lo sviluppo e l’applicazione di tecniche modellistiche

innovative per la rappresentazione di proprietà termofisiche di fluidi.

Le proprietà termofisiche sono divise in proprietà termodinamiche, riguardanti stati di equilibrio

termodinamico e processi di trasformazione tra due condizioni di equilibrio, e proprietà di

trasporto, riguardanti sistemi in stato non uniforme e quindi caratterizzate da fenomeni di trasporto;

tra queste è stata qui trattata la conduttività termica.

La conoscenza delle proprietà termofisiche di fluidi puri e miscele è un requisito assolutamente

fondamentale nella progettazione ed ottimizzazione di qualsiasi apparecchiatura nell’industria di

processo. Le proprietà termofisiche devono essere conosciute in dipendenza delle variabili

controllanti con una precisione il più elevata possibile: errori nel valore delle proprietà richieste

possono propagarsi attraverso l’intero calcolo amplificandosi, dando luogo ad una progettazione

scorretta ed allontanando dalle condizioni operative ottimali.

Lo scopo di questa tesi è lo sviluppo di tecniche modellistiche capaci di rappresentare le

proprietà termofisiche con un’accuratezza comparabile con l’incertezza sperimentale delle misure

stesse, riducendo allo stesso tempo il lavoro sperimentale. Le tecniche modellistiche proposte sono

basate su un approccio euristico, che deriva la rappresentazione funzionale di una dipendenza fisica

direttamente da una appropriata base di dati; l’efficacia delle tecniche euristiche sviluppate è basata

sull’utilizzo delle reti neurali artificiali, che hanno la caratteristica di essere approssimatori

universali di funzione.

Lo sviluppo e l’applicazione di tecniche modellistiche di natura euristica atte a produrre

equazioni di stato (EoS) in forma fondamentale per la rappresentazione delle proprietà

termodinamiche di fluidi puri e miscele sono trattati nella prima parte di questa tesi. La tecnica

modellistica qui proposta per la rappresentazione delle proprietà termodinamiche è basata sul

principio degli stati corrispondenti estesi (ECS). L’idea alla base del modello ECS consiste nella

distorsione delle variabili indipendenti della EoS del fluido di riferimento trasformandola nella EoS

del fluido di interesse. Se il principio degli stati corrispondenti a due parametri fosse esatto non

sarebbero necessari aggiustamenti delle variabili indipendenti, ma poiché questo non è verificato

sono richieste due funzioni distorcenti θ e φ , chiamate shape function, per far corrispondere il

modello ECS con una superficie termodinamica nota del fluido d’interesse.

Per l’applicazione della tecnica ECS deve essere verificata la condizione di conformality tra il

fluido di riferimento ed il fluido target, e l’esistenza di un’accurata equazione di stato espressa in

forma di energia libera di Helmholtz per il fluido di riferimento. Nel caso in cui la condizione di

conformality tra i fluidi non sia verificata, o nessun fluido della famiglia che si suppone presenti
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una condizione di conformality con il fluido di interesse disponga di una DEoS, il metodo ECS non

può essere applicato efficacemente.

Nel modello presentato in questa tesi la ‘correzione’ ottenuta attraverso la distorsione delle

variabili è applicata ad un’equazione semplice che rappresenta, anche se approssimativamente, lo

stesso fluido target. In altre parole, una EoS semplice per il fluido target stesso è il punto di partenza

per lo sviluppo di una DEoS per mezzo della distorsione delle variabili, evitando in questo modo il

vincolo costituito dalla necessità di soddisfare la condizione di conformality. Non è più quindi

necessario disporre di un ‘fluido di riferimento’, come nell’interpretazione classica della teoria

ECS, ma piuttosto solo di una ‘equazione di riferimento’, la cui precisione è aumentata, o ‘estesa’,

per mezzo dell’applicazione delle shape function. Di qui deriva il nome di extended equation of

state (EEoS) scelto per indicare questa nuova tecnica modellistica.

Le shape function ( )ρθ ,T e ( )ρφ ,T devono essere regredite forzando il modello a rappresentare

valori noti delle grandezze termodinamiche sperimentalmente accessibili; nel modello proposto la

loro forma funzionale è ottenuta in modo euristico utilizzando una multilayer feed-forward neural

network (MLFN) come approssimatore universale di funzione. La nuova tecnica è costituita da una

procedura di fitting in cui la forma matematica della superficie di Ra deve essere ‘spalmata’ su

valori noti della stessa e delle sue derivate, superando i problemi che derivano dai due approcci

ECS convenzionali, cioè la local solution e la continuous solution.

La tecnica modellistica proposta deriva dalla combinazione del metodo EEoS con le reti neurali

ed è quindi brevemente indicata come EEoS-NN.

Il modello EEoS-NN permette di ottenere per il fluido di interesse una DEoS in forma

fondamentale ( )ρ,Ta che consente di calcolare ogni proprietà termodinamica attraverso il solo

utilizzo di operazioni di derivazione.

Allo scopo di mettere a punto il metodo e di testare le sue potenzialità, sono stati scelti alcuni

fluidi target per i quali sono stati utilizzati valori generati da una DEoS preesistente al posto dei dati

sperimentali, in modo tale che la performance del modello non sia compromessa dall’error noise e

dalla distribuzione irregolare dei dati. Utilizzando dati generati la performance del modello è stata

verificata per fluidi puri e per miscele. E’ stato considerato un gruppo di fluidi puri comprendenti

alcani, aloalcani, e sostanze fortemente polari; in ogni caso i risultati ottenuti sono molto

promettenti. La stessa considerazione può essere fatta per le cinque miscele binarie e le due miscele

ternarie di aloalcani studiate.

Nel caso di fluidi puri è stato anche verificato che un numero poco superiore a 100 punti di

densità regolarmente distribuiti sul piano TPρ e caratterizzati da un basso errore sperimentale
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possono essere un input sufficiente per lo sviluppo del modello, permettendo di ridurre il lavoro

sperimentale usualmente necessario per l’ottenimento di una DEoS.

Le promettenti prestazioni ottenute della tecnica modellistica applicata ai dati generati

conducono alla possibilità di mettere a punto delle DEoS in forma EEoS-NN utilizzando

direttamente dati sperimentali.

La tecnica EEoS-NN è stata quindi utilizzata per produrre la DEoS per i fluidi puri esafluoruro di

zolfo (SF6) e 2-propanolo (iC3H8O) direttamente dai dati sperimentali dei due fluidi.

La DEoS per il fluido SF6 è valida nel liquido, vapore e supercritico dalla temperatura del punto

triplo, a circa 223.6 K, fino a 625 K e per pressioni fino a 60 MPa, con l’esclusione della regione

prossima al punto critico nel caso delle proprietà caloriche. La precisione con cui il modello

rappresenta i dati è da considerarsi soddisfacente per tutte le proprietà termodinamiche, infatti le

deviazioni dell’equazione dai dati sono confrontabili con l’incertezza attribuita alle fonti

sperimentali. Uno dei vantaggi del metodo EEoS-NN, evidenziato nell’applicazione al fluido

esafluoruro di zolfo, è che la procedura di regressione della DEoS può essere basata su una base dati

comprendente solo valori di densità e coesistenza, ottenendo allo stesso tempo una rappresentazione

accurata anche delle altre proprietà.

La DEoS per il fluido iC3H8O è valida nel liquido, vapore e supercritico per temperature da 280

a 600 K e per pressioni fino a 50 MPa. A causa della mancanza di dati nella regione prossima al

punto critico e della non-specializzazione della forma funzionale di questa DEoS nella

rappresentazione delle proprietà termodinamiche nelle immediate vicinanze del punto critico

l’utilizzo della presente equazione è sconsigliato nella suddetta regione. La rappresentazione delle

proprietà termodinamiche è soddisfacente per tutte le proprietà considerate, infatti le deviazioni

dell’equazione dai dati sono confrontabili con i valori realisticamente attribuibili alle fonti

sperimentali. I risultati ottenuti per il fluido 2-propanolo dimostrano che il metodo modellistico

EEoS-NN è completamente affidabile per lo sviluppo di equazioni di stato dedicate anche nella

condizione non favorevole in cui i dati sperimentali presentano una scarsa qualità. Questo aspetto è

particolarmente importante nel caso in cui una DEoS sia necessaria per applicazioni

ingegneristiche, dove deve essere raggiunto un compromesso tra l’economia del lavoro

sperimentale e l’accuratezza della rappresentazione delle proprietà termodinamiche.

Le caratteristiche evidenziate fanno della tecnica EEoS-NN uno strumento utile per la

progettazione e l’ottimizzazione dei processi. Il sistema propilene + 2-propanolo + acqua è stato

scelto come caso esemplificativo per provare le potenzialità della tecnica EEoS-NN per l’analisi di

processi reali tipici dell’industria chimica. L’obiettivo è perciò indagare la possibilità di utilizzare la

tecnica EEoS-NN per studiare l’ottimizzare dal punto di vista energetico del processo di estrazione
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del fluido 2-propanolo da soluzioni acquose utilizzando il propilene come solvente. Questo sistema

è stato scelto dopo uno screening dei dati disponibili in letteratura poiché sembra presentare un

andamento degli equilibri di fase adatto per un’operazione di estrazione. Inoltre il sistema propilene

+ 2-propanolo + acqua presenta un comportamento termodinamico fortemente deviante dall’idealità

a causa della forte polarità dei componenti e del loro comportamento associante, aumentando le

difficoltà per l’ottenimento di un modello che rappresenti accuratamente le proprietà

termodinamiche. Per questo motivo la realizzazione di una DEoS per questo sistema è una sfida

interessante dal punto di vista scientifico, infatti esso è il primo caso in cui viene realizzata

un’equazione di stato dedicata per una miscela ternaria fortemente deviante.

I dati sperimentali disponibili in letteratura per la miscela ternaria sono di equilibrio vapore-

liquido (VLE) e di equilibrio liquido-liquido vapore (LLE). Allo scopo di ottenere un modello

termodinamico semi-predittivo per la miscela ternaria per studiarne l’equilibrio di fase, sono state

effettuate anche misure di equilibrio vapore-liquido-liquido (VLLE). Inoltre, sono state misurate le

entalpie di eccesso per la miscela ternaria e per la miscela binaria 2-propanolo + acqua al fine di

ottenere una buona rappresentazione della dipendenza dalla temperatura nel modello semi-

predittivo, costituito da una EoS cubica di tipo Peng-Robinson, con regole di miscela di tipo Wong-

Sandler e un modello UNIQUAC modificato per la rappresentazione della energia libera di Gibbs.

Questo modello è stato utilizzato per investigare l’equilibrio di fase della miscela ternaria da un

punto di vista qualitativo, step preliminare necessario per pianificare efficientemente una campagna

di misure sperimentali adatte ad ottenere una DEoS nel formato EEoS-NN per la miscela. Il range

di interesse scelto per il processo di estrazione è circa da 300 a 350 K in temperatura, fino a 10 MPa

in pressione e si estende fino ai fluidi puri in composizione. Le proprietà che devono essere

misurate in questo range al fine di regredire una DEoS sono densità ed equilibri di fase. Sono inoltre

richieste alcune misure di calore specifico a pressione costante per valicare la capacità del modello

di rappresentare in modo predittivo le proprietà caloriche nel range di interesse. Il range di interesse

per la composizione si estende fino ai fluidi puri.

Utilizzando un densimetro a tubo vibrante (VTD) sono state effettuate misure di densità per il

fluido puro 2-propanolo, per la miscela propilene + 2-propanolo, per la miscela 2-propanolo +

acqua e per la miscela propilene + 2-propanolo + acqua. Ad oggi l’attività sperimentale è ancora in

corso, e devono essere effettuate misure di equilibrio di fase e di calore specifico a pressione

costante. Questo lavoro sperimentale, insieme alla regressione di una DEoS per la miscela propilene

+ 2-propanolo + acqua, costituirà il proseguimento di questo lavoro di tesi. Una volta che un

modello termodinamico in forma EEoS-NN sarà stato ottenuto, sarà possibile integrarlo in un
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simulatore di processo, permettendo quindi lo studio delle condizioni operative migliori per il

processo di estrazione del fluido 2-propanolo.

Lo sviluppo e l’applicazione di tecniche modellistiche di natura euristica atte a produrre

equazioni dedicate per la rappresentazione della conduttività termica di fluidi puri sono trattati nella

seconda parte di questa tesi.

Il modello proposto è basato sul principio ECS, ma le shape functions sono prodotte in una

forma analitica continua espressa attraverso un approssimatore universale di funzione, anche in

questo caso una rete neurale, attraverso la regressione di dati di conduttività termica. Questo

approccio innovativo, denominato ECS-NN, permette di superare i problemi che derivano dai due

approcci ECS convenzionali, cioè la local solution e la continuous solution. Le potenzialità della

tecnica modellistica ECS-NN per la conduttività termica sono state dimostrate con l’applicazione

sia a dati generati da modelli preesistenti, sia a dati sperimentali. Assumendo R134a come fluido di

riferimento, sono state ottenute equazioni dedicate di conduttività termica per l’anidride carbonica e

per il fluido R152a basate sulle misure sperimentali disponibili in letteratura. I risultati ottenuti sono

incoraggianti, infatti la tecnica proposta permette di ottenere equazioni dedicate di conduttività

termica che rappresentano i valori sperimentali nelle regioni del liquido, vapore e supercritico con

un’accuratezza confrontabile con la loro l’incertezza sperimentale dei dati stessi; inoltre il metodo è

adatto alla rappresentazione dell’elevato critical enhancement della superficie di conduttività

termica nella regione prossima al punto critico.

La variazione della performance del modello è stata studiata variando il numero di dati

sperimentali nella procedura di training, mostrando che circa duecento punti, regolarmente

distribuiti sulla superficie ρλT del fluido target, sono sufficienti a ricavare un’equazione molto

precisa, con notevole riduzione del lavoro sperimentale.

Riassumendo, questa tesi di Dottorato ha mostrato l’efficacia dell’applicazione di tecniche

euristiche come valida alternativa alle tecniche attualmente utilizzate per la rappresentazione sia

delle proprietà termodinamiche sia delle proprietà di trasporto. I metodo proposti, sfruttando la

capacità predittiva delle reti neurali, permettono di ridurre il lavoro sperimentale, producendo allo

stesso tempo equazioni in grado di rappresentare i dati con un’accuratezza all’interno della loro

incertezza sperimentale. Questa caratteristica fa si che le tecniche sviluppate possano essere

considerate strumenti adatti per la progettazione e l’ottimizzazione di operazioni unitarie di processi

industriali.
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