
UNIVERSITÁ DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’I NFORMAZIONE

SCUOLA DI DOTTORATO DI RICERCA IN INGEGNERIA DELL’I NFORMAZIONE

INDIRIZZO: INGEGNERIA INFORMATICA ED ELETTRONICA INDUSTRIALI

CICLO XX

CONTEXT-DEPENDENT

REPUTATION MANAGEMENT IN

MULTI -AGENT SYSTEMS

Direttore della Scuola:Ch.mo Prof. Matteo Bertocco
Supervisore:Ch.mo Prof. Carlo Ferrari

Dottorando:Cristian Bertocco

Sommario

Il paradigma di programmazione orientato agli agenti e gli agenti software stanno ot-
tenendo l’attenzione della comunitá dell’Information Technology in quanto sembrano
essere una soluzione promettente per lo sviluppo di sistemi che si possano applicare
alle discipline emergenti delmobile computing, ubiquitous computingepervasive com-

puting.
Gli agenti software consistono in processi autonomi che vengono eseguiti in piattaforme
host, ed hanno l’obiettivo di raggiungere gli scopi per i quali i proprietari li hanno pro-
grammati. Gli agenti hanno la capacitá di migrare da un host ad un altro sfruttando le
risorse e i servizi che sono disponibili nel sistema distribuito.

Negli anni novanta, agli inizi della definizione del modello ad agenti, i sistemi
ad agenti erano utilizzati per applicazioni che avevano prospettive strettamente locali:
tutto il sistema era contenuto all’interno di frontiere ben definite ed era composto di un
definito insieme di agenti e risorse di calcolo tra di loro reciprocamente noti. I siste-
mi ad agenti stanno ora ampliando il loro utilizzo in applicazioni con prospettive piú
ampie: le piattaforme ad agenti vengono utilizzate in sistemi distribuiti caratterizzati
da ampie dimensioni e da un’alta dinamicitá senza confini ben definiti.

I problemi di sicurezza che sorgono nei sistemi aperti ad agenti richiedono nuovi
meccanismi di protezione che combinino la protezione da agenti maliziosi con le fron-
tiere dei sistemi locali aperte alla vasta comunitá di potenziali utilizzatori. I sistemi di
sicurezza definitisoft sono basati sull’impiego dei concetti di fiducia e reputazione, i
quali sono derivati dalle stesse definizioni usate comunemente nelle relazioni sociali.
La sicurezzasofté utilizzata nelle decisioni basate sul grado di fiducia: essa é impie-
gata nella valutazione dei rischi che possono derivare da interazioni con agenti non
conosciuti. Le reputazione rendono danno informazione agli agenti sul tipo di com-
portamento e il grado di onestá di altri agenti nella comunitá, in base alle opinioni che
derivano da interazioni avvenute precedentemente.

Viene proposto un modello per la gestione della reputazione che sia coerente con
le caratteristiche di un sitema ad agenti (per esempio la dinamicitá degli agenti) e che
rispetti anche i requisiti che sorgono in questi sistemi in particolari situazioni critiche,
quali per esempio capacitá computazionali ridotte dei dispositivi portatili sui quali ven-
gono eseguiti gli agenti e comunicazione instabile in dispositivi mobili.

Il modello si basa sulla valutazione di opinioni che vengono raccolte all’interno di
gruppi di contesto. Un gruppo di contesto é una coalizione di agenti i quali forniscono
opinioni riguardanti il comportamento degli agenti. In un gruppo di contesto le o-
pinioni sono legate allo specifico contesto. Il modello proposto quindi introduce la
caratteristica di contesto nelle informazioni di reputazione.
Il modello di reputazione fornisce agli agenti informazioni che riguardano sia l’onestá
generale di un agente, sia il suo comportamento rispetto il contesto dove esso viene
valutato.

Il modello si compone anche di una rete di punti di informazione distribuiti che
hanno lo scopo di supportare lo distribuzione delle informazioni fra gruppi di contesto.

Il modello é consistente sia dal punto di vista del modello agente sia da quello della
sua dimensione sociale, in quanto é stato disegnato attorno al concetto di agente ma
allo stesso tempo sono state adottate soluzioni che permettano il suo utilizzo in ampie
societá di agenti.

Abstract

Agent-oriented programming paradigm and mobile software agents are getting the at-
tention of IT community because they look a promising solution for the development of
systems that fit the computational requirements of emerging mobile computing, ubiq-
uitous computing and pervasive computing.
Software agents consist of autonomous processes that run on a hosting platform and
that are aimed at achieving specific owners’ goals they were programmed for. Agents
can migrate from host to host in order to exploit resources and services that are avail-
able in the distributed system.

In the 90’s, at the beginning of the agent model definition and development, agent
systems addressed applications with strictly local perspectives: the whole system was
contained within a defined boundary and was composed of a defined set of known
agents and hosts.
Agent systems are now moving towards open perspective applications: agent platforms
are involving in wide size and higly dynamic distributed systems without well-defined
boundaries.

Security issues that arise in open agent systems require new protection mechanisms
that combine the protection from malicious agents with local boundaries that are open
to the community of users.
Soft security mechanisms are based on the employment of trust and reputation concepts
that are derived from the same definitions used in social relationships. Soft security is
employed in trust-based decision making: it support the evaluation of risks that are
involved in interactions with unknown agents; reputation information informs agents
about the behavior and honesty of agents in the community according to the opinions
coming from experienced interactions.

We propose a model for reputation management that is compliant with the char-
acteristics of the agent systems (e.g. dynamicity of agents), and that meets also re-
quirements that arise in these systems in critical situations, e.g. low computational
power in small portable devices that host agents and low and unstable communication
bandwidth in mobile devices.

The model is based on the evaluation of opinions that are collected within context
groups. A context group is a coalition of agents that provide opinions related to the

behaviors of agents. In a context group opinions are related to a specific context. Hence
the proposed model introduces a context feature to reputation information.
The reputation model provides agents with information that regards both the general
fairness of an agent and its behavior related to the context where it is rated.

The model is also composed of a network of distributed informative points that are
aimed at supporting trust information sharing among context groups.

The model is consistent for what concerns both the agent model and the agent social
perspective because its design adopted an agent-centric approach but at the same time
it adopted solutions in order to employ the model in large society of agents.

Acknowledgments

First and foremost I would like to thank my supervisor Prof. Carlo Ferrari who guided
me during these years. I am very grateful to him for every minute he spent to teach me
how to improve my results and for any precious suggestion he gave me.

I want to thank also Matteo, Alberto, Marco, Rudi, Mauro, Cinzia, Natalí, Yuri,
Cucciolo, Paolo, Versacif, Fabio, Giovanni, Claudio, Sandra. I really enjoyed the time
spent with you at the DEI.

Many thanks to my family and the Montaño family and to all other friends of mine
that I did not mention above: my friends from Saccolongo, those I met in Davis, those
from Agordo, and from Monselice. Life is much better with you.

Thanks.

Contents

1 Agent Paradigm and Multi-Agent Systems 1
1.1 Introduction . 1

1.2 Mobile agents . 5

1.3 Agent-oriented and Object-oriented programming6

1.4 Application and research domains for agent systems8

1.5 Agent-oriented software engineering10

1.6 FIPA . 12

1.6.1 Agent communication .13

1.6.2 Agent management .15

1.7 JADE . 16

1.8 Security issues in agent systems .19

1.9 The challenge of MAS .22

1.10 Contribution and organization of this thesis23

2 Computational trust: concepts and state of the art 25
2.1 Introduction .25

2.2 Open systems and security issues .26

2.3 Trust and reputation features .26

2.4 Trust measures .28

2.5 Trust models .29

2.6 Reputation management systems .32

3 Context-dependent Reputation Model for Agent Systems 37
3.1 MAS and open systems .37

3.2 Ontologies and conceptualizations38

3.2.1 General features of ontologies38

3.2.2 FIPA ontologies for agents40

3.2.3 Ontologies and content management in JADE40

3.3 Centralized reputation model for MAS42

3.3.1 Weakness of actual reputation systems42

3.3.2 Overview of the proposed model44

3.3.3 Centralized architecture approach46
3.3.4 Reputation ontologies .49
3.3.5 Reputation and trustworthiness computation51
3.3.6 Other features of the model55
3.3.7 Scalability . 57
3.3.8 Unfair rating . 58
3.3.9 Time . 61

4 Social infrastructure based on the reputation system 63
4.1 Agent society and organizational paradigms63
4.2 Reputation-based social infrastructure65

5 Conclusions 71

Bibliography 75

“Dov’é Jones il suonatore
che fu sorpreso dai suoi novant’anni
e con la vita avrebbe ancora giocato.

Lui che offrì la faccia al vento
la gola al vino e mai un pensiero

non al denaro, non all’amore né al cielo.

Sembra di sentirlo ancora
dire al mercante di liquore

"Tu che lo vendi, cosa ti compri di migliore?"”

(F.d.A.)

Chapter 1

Agent Paradigm and Multi-Agent
Systems

1.1 Introduction

Rosenschein in the MIT Encyclopedia of Cognitive Science [80] proposes a definition
of software agent:

“An intelligent agent is a device that interacts with its environment in flexible, goal-

directed ways, recognizing important states of the environment and acting to achieve

desired results. Clearly, when designing a particular agent, many domain-specific fea-

tures of the environment must be reflected in the detailed design of the agent. Still,

the general form of the subsystems underlying intelligent interaction with the environ-

ment may carry over from domain to domain. Intelligent agent architectures attempt to

capture these general forms and to enforce basic system properties such as soundness

of reasoning, efficiency of response, or interruptibility. Many architectures have been

proposed that emphasize one or another of these properties, and these architectures

can be usefully grouped into three broad categories: the deliberative, the reactive, or

the distributed.”

Agent-based systems are an important area of research and development emerged
in information technology in the 1990s. Agents are considered one of the most im-
portant new paradigm for software development since object-orientation [57]. Agent
software paradigm brings concepts from the theories of artificial intelligence into the
mainstream field of distributed systems. Agents are a way to manage interactions be-
tween large-scale distributed computational systems. The concept of agent is a repos-
itory where both AI and software engineering can merge their efforts, thus providing
new tools for future IT development. An application that is developed according to
the agent paradigm, is modeled as a collection of components called agents that are
essentially characterized by autonomy, proactivity and ability to communicate. These

2 Chapter 1. Agent Paradigm and Multi-Agent Systems

features are described in more details in this section. A system composed of agents is
called Multi-Agent System (MAS).

A software agent is an autonomous process with expertise that is entrusted to go
out and act on the owner’s behalf, helping him to achieve computing goals.
Autonomy means that it is capable of modifying the way in which they act to achieve
their goals, they can make decisions according to their beliefs and their perceived envi-
ronment. They can decide for themselves what they need to do, hence they are capable
of operating in dynamic and open environments interacting with other agents.

Agent-based computing has been implemented in processes such as automated fi-
nancial markets trading, logistics, and industrial robotics. Now it is moving into com-
mercial sectors as more complex systems with many different components are used by
a wider range of organisations. Among those that have successfully implemented agent
technologies there are DaimlerChrysler, IBM and the U.S. Ministry of Defence. Many
companies sell agent conceptualization allied to agent-related technologies (Eurobios,
Agentis Software, Agent Oriented Software Group, Lost Wax, Magenta Technologies,
Whitestein Technologies, Living Systems).

An agent is expected to be [32]:

• social and communicative: an agent is able to collaboratively interact with other
entities in the system,

• capable of making decisions: an agents is able to take options according to the
owner’s goals and preferences rather than simply provide advice;

• autonomous: an agent has autonomous execution capabilities, hence it can sense
and act without the user’s control the whole time and to perform domain oriented
reasonong;

• adaptive: an agent is able to learn from experiences in the environment it lives;

• goal-oriented: an agent is a persistent software entity dedicated to a special pur-
pose;

• reactive and proactive: an agent reacts to the events that happen in its environ-
ment, for instance an agent could perceive its environments through sensors of
devices distributed over the environment and can react upon that environment
through the effectors of the devices; being proactive means that the agent can
anticipatory behave, it is able to act according to its own initiative; this term is
derived from organizational behavior psychology. Proactivity behavior involves
acting in advance of a future situation, rather than just reacting, taking control
and making things happen rather than just adjusting to a situation or waiting for
something to happen;

1.1. Introduction 3

• mobile: an agent can migrate from an host to another to if the latter is more
suitable for its purpose;

• BDI-style modelled: belief-desire-intention software model is closely associ-
ated with intelligent goal-oriented agents; the internal state and decision process
of agents are modelled following the notion of mental attitudes; goal-oriented
agents do not directly receive requests to perform certain actions, but the devel-
oper defines more abstract goals providing a certain degree of flexibility on how
to achieve the goals. Agents have beliefs stored in a belief base; they have im-
plicit or explicit goal descriptions (states) to be achieved through the execution
of plans stored in a plan library;

• flexible: an agents implements late-binding service invocation methods.

Agents can respond to events that happen in their environment with a set of if-then
rules to achieve the goal and desire of the designer, but they are also supposed to react
to unexpected circumstances. For instance they can incorporate disciplines such as
game theory to plan strategies that lead their behaviors.
For instance software agents were employed in NASA government agency’s projects:
they were used for the capability of reconfiguring themselves in response to changing
conditions. The US defense is employing agents because it is interested in surviv-
able systems able to regenerate lost network communication capabilities. The most
compelling agent application is the business-to-business (B2B) one. New York Stock
Exchange uses program-trading, software agents, for a relevant proportion of stock
transactions [61].

Modern business and transformational military systems need dynamic, flexible,
adaptive, fully distributed, agile IT to support highly dynamic processes and coordina-
tion models with not known parameters a priori. Software is moving away from indi-
vidual vertically integrated applications to adopt new paradigm for building custom-
tuned networks of applications on a peer-to-peer model [38]. Agent systems employ
semantically sophisticated interaction protocols as a flexible control layer that binds
themselves in an organized structure.

Rather than being the solution to several computing problems, the agent paradigm
provides a conceptualization and an architectural model that can be applied in appli-
cation domains or software engineering models that are characterized by interactions
among self-interested and autonomous entities (e.g. ubiquitous and pervasive comput-
ing disciplines [57]).

Several efforts are being spent for research and deployment of agent systems. For
instance European commission has funded the AgentLink project since 1998 to support
agent research and development. AgentLink’s aim is to foster research activity in agent
technology:

4 Chapter 1. Agent Paradigm and Multi-Agent Systems

• promoting and raising awareness of agent systems technology in European in-
dustrial societies;

• supporting standardization effort for the sake of interoperability;

• facilitating adoption of agent technology in industrial applications;

• promoting excellence in teaching in this area;

• providing discussion groups in order to share experiences and solutions to agent
issues.

Improvements on the traditional computing models and paradigms are required
to cope with needs for dynamic and open systems, which require interaction among
heterogeneous and rapidly changing systems and organizations. Agent paradigm suits
these requirements software agents provide a design metaphor and abstraction tools,
for structuring application around autonomous and communicative entities. Complex
systems can be considered as distinct and independent components, that interact, in a
way that the system appear aggregated and organized in a conceptual whole.

Interactions among entities in heterogeneous systems is a prerogative for the agent
paradigm. An agent system can be composed of agents that act without interacting with
other peers, for instance agents that operate on behalf of human principals and assist
them to carry out some tasks that do not require other agents to be involved. However
the agent paradigm models a system as a compound of agents, each embedding spe-
cific roles, that collaborate to achieve their own goals, or just one common goal (for
instance a joint decision-making process where agents collaborate to evaluate differ-
ent constraints optimizing results of taken decisions, or a simulation systems where
agents model components of a real-world domain such as physics, biology, economy,
and social science).

Communication plays an important key rule in agent technology. Agents commu-
nicate with users, resources, and with each other to cooperate or negotiate. A common
language is required to support full agent functionalities. The most famous common
languages are KQML and FIPA ACL. The former was developed by US Government’s
Agency ARPA, the latter from the Foundation for Intelligent Physical Agents. Both
only deal with agent-to-agent communication. Much work has to be done for human-
computer interface issues if agents are supposed to act on behalf of a human.

The agent model employs two different architectures:

• purely reactive agents that operate in a simple stimulus-response fashion and that
do not embed concepts of plans or beliefs; the Jade platform [1] uses this kind
of agents;

1.2. Mobile agents 5

• deliberate agents that implement the BDI model (beliefs, desires, intentions)
and that embed the concept of intelligent agent; for instance the JACK [76] and
JADEX [77] platforms implement those kind of agents.

Industrial and commercial applications where agents have been deployed are re-
lated to manufacturing (scheduling and controlling operations, controlling robots),
process control (monitoring the system, diagnosing faults, power management), telecom-
munication, air traffic control, traffic and transportation management (for instance
planning supply chain distribution), information filtering and gathering, electronic
commerce (full automation is still far but increasing amount of trade is being under-
taken by agents, for instance on-line store searching for price and availability), business
process management, defence, entertainment, health care. Major companies investing
in agent system research and development are IBM, Microsoft, Siemens, HP Labs,
BTexact, and some start-ups such as Tryllian (Netherlands), Agent Oriented Software
LostWax and Magenta (UK), IKV++ and Living Systems(Germany), Whitestein Tech-
nology (Switzerland).

1.2 Mobile agents

Mobile agents is the most promising branch of development for agent systems. Mobile
agents are programs that roam networked hosts to achieve owners’ goals. For instance
their aims can be the collection of data from distributed containers, the execution of
computation in better performing hosts, the execution of control operation in remote
devices). These agents require standards in order to migrate code from one host to
another.

An important reason why mobile agents have not yet been taken up by the main-
stream, is security threat involved with roaming software. On the one hand agents need
to be protected from malicious hosts, on the other hand hosts need to be protected from
agents that could threaten the systems. Mobile agents improve end users’ connection
to network service providers when they experience low bandwidth (mobile phones and
portable devices) by offloading application processing to a node with high bandwidth
connectivity. They allow a divide-and-conquer approach to complexity of large-scale
distributed and decentralized systems. For instance in information retrieving, the agent
can migrate towards the data container in order to directly analyze the data in the place
where they are contained.

Computation in mobile agents becomes local to the host, avoiding transaction re-
quirements among applications. This results in improved robustness of the system.
Deploying agents to remote hosts results in higher flexibility and adaptability for com-
putation. Hence mobile agents are a natural tool for system integration issues. For
instance mobile agents provide an easy solution to monitoring and updating operations

6 Chapter 1. Agent Paradigm and Multi-Agent Systems

in remote systems, being capable of simultaneously and independently visiting several
locations, without any requirement of continuous connectivity among the systems.
Agents can transfer drivers and adapters to source systems to dynamically change the
configuration of the environment.
Agents are used for telecommunication network management. For instance mobile
networks are composed of several units that perform different tasks (mobile devices,
base stations, base station controllers, mobile switch centers). An agent’s behavior
can be easily changed, hence the user can differentiate the agent’s functionalities ac-
cording to the host it is visiting. Agents are spread to configure the above mentioned
components of the network depending on the traffic distribution.

Some of the most famous cornerstones of mobile agent platforms are:Telescript

from General Magic,Aglets IBM [48], Mole [79], TACOMA from the Universities
of Tromso and Cornell [78],D’Agentsfrom the Dartmouth College [24],Jadefrom
Telecom Italia Labs [1].

Heterogeneity is a typical issue in distributed systems. The agent model requires
a layer that hides heterogeneity of the system in order for the agents to run on hetero-
geneous platforms. An agent platform is themiddlewaresoftware layer that provides
common services and supports agent management functionalities to the agents run-
ning on an host. It provides agents with an interfaces to interact with the underlying
operating system.

1.3 Agent-oriented and Object-oriented programming

A programming paradigm is a way of thinking to the components of systems that
brings useful perspective for their development. The agent-oriented programming par-
adigm (AO) can be considered the effect of the evolution of the object-oriented pro-
gramming paradigm. Agents are different from objects, but they share many things
in common. For instance, agents are build upon objects, but they introduce different
features. Agent-based way of thinking is similar to the object-based: for the former
everything could be seen as a compound of agents, for the latter everything is made up
of objects.

In the OO perspective, objects are the unit components that compose a system. An
object can be anything ranging from a concrete entity from the real world to a concep-
tual entity that only exists in the model. Each object within the system is associated
with a particular class that determines the objects basic properties. Classes can be
linked with each other in several ways:

• with inheritance: a class can be a conceptual extension of a common base spec-
ification class;

• objects communicate by sending messages to each other; these messages can

1.3. Agent-oriented and Object-oriented programming 7

be used to request services from the receiving object such as to provide internal
information or to change the current state;

• an instance of a class can contain an instance of another class.

These concepts correspond to the AO perspective by replacing class with role, state
variable with belief/knowledge and method with message. Thus a role definition de-
scribes the agent’s capabilities, the data that is needed to produce the desired results
and the requests that trigger a particular service.

In the agent-oriented universe there is no single agreed definition of agent. The
existing agent theories are based upon the agent concepts coming from sociology, ar-
tificial intelligence and robotics. An agent is modeled in terms of mental notions such
as beliefs, desires and intentions. An agent is also anything that exhibits autonomy,
reactivity, pro-activity, social ability.

High-level interaction among agents is compared with interaction between ob-
jects that is expression of simple functional dependencies. Furthermore agents are
autonomous and proactive; objects are reactive and are not supposed to take decisions,
to plan their actions in order to achieve a goal.

Aspect-oriented programming, active objects, context-dependencies in component-
based applications are somehow the proof that object-oriented programming is moving
towards new concepts and abstractions very close to the characteristics incorporated by
agents.

Table Table 1.1 describes the historic development from machine language to agent-
oriented programming [88]:

• a program was a monolithic block without any inherent structure;

• a program is made up from several smaller structural units, the subroutines; lack
of program control flow and data organization aspects;

• data and computation grouped together in a single structural unit called an ob-
ject;

• moving from merely passive objects towards active structural units called agents.

Autonomous agents lead to a new way of software system development. Software
systems are no longer a compound of passive objects, but they are modeled using
active entities. With this approach the designer sets out the initial state and goals of the
autonomous agent and the ongoing interactions among agents determine the overall
system behavior.

Some examples where the agent-oriented approach could better fit rather than
object-oriented approach:

• control systems for physical domains that require autonomous proactive processes,

8 Chapter 1. Agent Paradigm and Multi-Agent Systems

MACHINE STRUCTURED OBJECT AGENT
LANG. PROGR. ORIENTED ORIENTED

STRUCTURAL program subroutine object agent

UNIT

RELATION TO bound subroutine + object +

PREVIOUS unit persistent independent

LEVEL of program local state thread of

control

+ autonomy

Table 1.1: History of programming evolution.

• integration of distributed applications in mobile devices,

• internet-based distributed computing that requires autonomous and cooperative
software with decentralized management,

• mobile and pervasive computing that require to explicitly take into account en-
vironmental features and their unpredictable dynamism.

1.4 Application and research domains for agent sys-

tems

The following list describes major application areas for the agent model:

Task planning: agents can be applied in the decomposition of complex tasks and
in the distribution to other computational resources of the split executions; agents can
schedule distinct plans and strategies in order to get results in a more efficient way.

Knowledge management: acquisition, maintenance, and evaluation of knowledge
is a promising field of research for both academic and business applications. Agents
can access distributed, heterogeneous information sources and search for relevant in-
formation on behalf of users. Agents are a means to automate knowledge management
for retrieving, analyzing, manipulating, integrating distributed information sources.
Knowledge management requires high degree of automation in order to deal with huge
amount of information. Common ontologies play a central role in the description of
the semantic infrastructure of information and knowledge. Ontologies require publish-
ing and sharing services in order to provide large community of agents with common

1.4. Application and research domains for agent systems 9

vocabulary.
For instance the DARPA Agent Markup Language latest release (DAML+OIL) pro-
vides a rich set of constructs with which to create ontologies and to markup informa-
tion so that information can be handled by software agents. These topics are being
studied for the Semantic Web too.

Ambient intelligenceandubiquitous computing [59]: ubiquitous computing refers
to information processing that is integrated into everyday objects that embed compu-
tational devices. Ambient intelligence refers to electronic environments: consumer
electronics, telecommunications and computing technologies join together to develop
devices that work in concert to support people that inhabit those environments in car-
rying out their activities (human-centric computer interaction). Intelligence is hidden
in the networked devices. Agents can connect the large number of components of
these real world applications to work together. Ambient intelligence is a very promis-
ing application where humans and agents could enter in a strictly coupled interaction
[56]. Integration of everyday environment with computer and network technologies,
requires easy-to-use interfaces between human being and accessible services that can
be provided by agent technologies.

Automated auctions: internet auctions, business-to-business (B2B) applications
and automated trading for stock markets are promising application fields for agent-
mediated e-commerce.

Some example of research topics related to the agent paradigm are:

Automated learning: a complex task that an agent is supposed to perform is en-
vironmental adaptation, that implies learning capabilities. Learning is a key quality
of agents, and research efforts are being now spent. Learning agents can be deployed
in information retrieval, robotics, telecommunication and commercial areas. Trust in
learning agents is still a major hurdle because they still have not achieved a consistent
degree of reliability.

Interaction languages: open agent systems will require the ability to collectively
evolve languages and protocols specific to the application domain. Agents with no
prior experience should be able to evolve a collectively intended communication lan-
guage.

Automated reasoning: one of the most challenging domain of research in multi-
agent systems is the development of domain-specific reasoning models. Developing
reasoning abilities for agents requires automatic inferencing procedures, hypotheses
and evidence analysis and conclusion generation.

10 Chapter 1. Agent Paradigm and Multi-Agent Systems

1.5 Agent-oriented software engineering

MASs have emerged as a powerful technology to face the complexity of modern appli-
cation areas. They can be employed in manufacturing processes, Web services, Web-
based computational markets, distributed network management. Future plans want
agents to be implemented in pervasive computing, Semantic web, Grid computing.
The autonomy of software agents, their high-level interaction protocols and languages,
meet the modularity and autonomy requirements of decentralized applications in mod-
ern distributed systems and in dynamic scenarios.

Agent-oriented software engineering (AOSE) is aimed at proposing a variety of
new metaphors, formal modelling approaches, development methodologies, modelling
techniques to support the development of complex systems in an agent-oriented per-
spective [87].

Agents are an abstraction tool that provides a way of structuring an application
around autonomous and communicative elements. When complexity arises from the
interactions between the components of the system, the agent paradigm provides a
natural way to model such interactions.

AOSE is mainly based on:

• modelling the environment: identification of its basic features, of the resources
that it provides, and the way to interact with it

• modelling the agent society: identification of the overall rules that will drive the
evolution of the system and the roles played by the agents

Several agent-oriented methodologies have been proposed over the years for the
development of multi-agent systems. Actually we still are far from an unification of
methods and notations. In object-oriented approach there is a universally accepted
concept of object and related meta-model of the object-oriented system. In the agent-
oriented approach there is not a commonly accepted definition of the concept of agent
and related meta-model of the multi-agent system that represents agents, roles, behav-
iors, ontologies,etc. with their composing relationships.

In the following of this section we describe the most relevant meta-models of exist-
ing design methodologies. Each has its own purposes, concepts and system structures.

TheADELFE methodology is devoted to software engineering of adaptive multi-
agent systems [8], where environment is unpredictable or systems are open. Agents are
characterized by a cooperation-driven attitude, meaning that they always try to keep
cooperative relations. An agent has beliefs concerning the physical environment and
the other agents; this representation that may evolve, determines its behavior. Agents
own some skills that are specific knowledge that enable them to realize their own partial
function.

1.5. Agent-oriented software engineering 11

TheGaiamethodology [81] was designed to handle small-scale closed agent-based
systems. It models agents, roles, interactions, services, protocols, but misses the social
aspects of a multi-agent system. Hence an an agent system is considered as a collection
of roles and agents. The extension of Gaia introduced also social goals, social tasks,
organizational rules. This methodology is focused on the organizational structure of
the system, and on the relationships among different entities in the context of a spe-
cific organization. The central role of organizational concepts are represented by the
abstractions of organizational rules and structures.

ThePASSImethodology [21] refers to three different domains:

• the problem domain: it deals with the user problem in term of scenarios, re-
quirements, ontology and resources. Scenarios describe a sequence of interac-
tions among actors and the system. Requirements are represented with conven-
tional use case diagrams. Ontological description of the domain is composed
of concepts (categories of the domain), actions (performed in the domain and
effecting the status of concepts) and predicates (asserting something about a
portion of the domain elements). This represents the domain in a way that is
substantially richer than the classic structural representations. Resources can be
accessed/shared/manipulated by agents.

• the agency domain: it contains the elements of the agent-based solution. None of
these elements is directly implemented. Each agent in PASSI is responsible for
realizing some functionalities (roles) descending from one or more requirements.

• the implementation domain: it describes the structure of the code solution in
the chosen FIPA-compliant implementation platforms. FIPA is described later
in this chapter.

TheAgents & Artifacts meta-model[65] represents the agent society analogous to
human society. Agents are the autonomous proactive entities that encapsulate control
and are in charge of the goals/tasks achievement. They determine the whole MAS
behavior. Artifacts are the passive reactive entities in charge of providing services that
make individual agents work together. Agents represent the autonomous component
of the system, artifacts represents the passive components. The workspace concept
represents the container for agents and artifacts useful for defining the topology of the
system. Agents use artifacts to perform actions. The workspace is a dynamic set of
artifacts.

Agent-oriented software engineering is supported by sets of tools for development
of MASs. Among these it is worthy to mention specific MAS methodologies that lead
system analysis, design and development [86, 26, 55], and the Agent UML (AUML) as
specific notation technique that extends standard UML used for object-oriented design.

12 Chapter 1. Agent Paradigm and Multi-Agent Systems

1.6 FIPA

The major agent standardization bodies are The Foundation for Intelligent Physical
Agents (FIPA) [29] and Object Management Group (OMG) [39]. The core mission
of FIPA software agent standards consortium is to facilitate the interaction and inter-
operation between agents across multiple, heterogeneous systems. FIPA developed
specifications that defines:

• the general architecture that an agent platform should implement

• models for representing, modeling and discovering services that are available in
the platform

• semantic of the communication and content languages

• interaction protocols that support transactions among agents

FIPA was established in 1996 as an international non-profit association to develop
a collection of standards relating to software agent technology. It is composed of
academic and industrial organizations. Their aim was to form the bedrock of a new
industry by using agent technology across a wide number of applications.

At the core of FIPA are the following set of principles:

• agent technology provide a new paradigm to solve problems,

• agent technologies require standardization,

• the standardization of the infrastructure and language required for interoperation;
the internal mechanisms of agents are not the primary concern

The most relevant standard produced by FIPA, dated 2002, is the FIPA Abstract
Architecture that abstracts the implementation principles expressed in the FIPA2000
specification set. It specifies and defines all core architectural elements and their rela-
tionships, guidelines for the definition of agent systems in term of particular software
and communication technologies and the specifications that govern the interoperability
and conformance of agents and agent systems.

Abstracting the key aspect of the most critical mechanisms, it permit the creation
of systems that seamlessly integrate within their specific computing environment while
interoperating with agent systems of different environments. The most important com-
ponents of the Abstract Architecture are contained in the gray rectangle of Figure 1.1:
they provide a common point of reference for FIPA-compliant implementations, that
can be developed using different technologies. The components are:

• agent messageswritten in the agent communication language (ACL), are the
fundamental form of communication between agents

1.6. FIPA 13

• amessage transport serviceis the means to exchange messages among agents

• anagent directory serviceis a shared information repository where agents pub-
lish their agent directory entries

• a service directory serviceis a shared repository where agents can discover ser-
vice information

Figure 1.1: Example of concrete realization of the Abstract Architecture

Key achievements of FIPA are:

• a set of standard specifications supporting inter-agent communication and key
middleware services,

• a well-specified agent communication language (FIPA ACL), accompanied by
a selection of content languages (e.g. FIPA SL) and a set of key interaction
protocols ranging from single message exchange to complex transactions,

• several projects outside FIPA (e.g. Agentcities) for the creation of a global net-
work of FIPA-compliant platforms and agent application services,

• an agent-specific extension of UML, known as AUML.

1.6.1 Agent communication

Agents are fundamentally a form of distributed code processes compliant to the dis-
tributed computing model. Hence they comply with the notions of components and

14 Chapter 1. Agent Paradigm and Multi-Agent Systems

connectors. Components are actors in the communication messages exchanged; con-
nectors are means to exchange messages.

FIPA Agent Communication Language (ACL) is used to form up messages. ACL
is grounded inspeech acttheory. Speech act is a technical term in linguistics and the
philosophy of language: it states that by saying something, we express the intention to
do something. According to speech act theory, messages in an agent system represent
actions. Speech acts or communicative acts are also known asperformatives.
An ontology(the term ontology has its origin in philosophy) is defined as a formal
representation of a set of concepts within a domain and the relationships between those
concepts.
The combination of speech act and ontologies results in a precise intended meaning of
complex interactions.

FIPA defines a communication stack that is composed of the following sub-layers:

• transport : message transport protocols defined by FIPA are IIOP, WAP, HTTP

• encoding: messages are encoded in XML, Bit-Efficient, or String

• messaging: FIPA defined parameters that a message has to contain in addition
to the payload (the content of the message)

• ontology: FIPA messages can be compliant to a specific ontology that has been
fixed a priori by the interacting parties

• content expression: this layer highlights the content languages used

• communicative act: this layer classify the message according to the action or
performative it implies

• interaction protocol: it defines the specific interaction protocol used in the com-
munication

Common acts used within the communication capture the essence of most forms
of basic communication and are for instance:

• inform: the sender informs the receiver that a given proposition is true

• request: the sender requests the receiver to perform some action

• agree: the action of agreeing to perform some action

• not understood: the sender informs the receiver that it did not understand the
action that was performed

• refuse: the action of refusing to perform a given action

1.6. FIPA 15

Based on these communicative acts, FIPA defined a set of interaction protocols that
consist of a sequence of communicative acts for multi-message action coordination.
For instance the Contract Net protocol starts with an agent’s call for proposal with
specific conditions issued to one or more agents that are potential contractors. Each of
them can refuse or propose an action. The initiator of the contract can accept or reject
the propose, and if accepted the participant informs the initiator when it performs the
action.

FIPA ACL does nor mandate any content language for expressing the message.
FIPA SL, XML are example of content languages.

1.6.2 Agent management

The second fundamental aspect of agent systems addressed by FIPA specifications
regards agent management. It establishes the logical reference model for the creation,
registration, location, communication, migration and operation of agents.

Figure 1.2: Agent management reference model

The specification defines a normative framework within which FIPA-compliant
agents can exist and operate. The agent management reference model consists of the
components depicted in Figure 1.2. In details, the framework is composed of:

• Agent Platform: the AP provides the physical infrastructure that host agents
and their deployment. It consists of the machines, the operating systems, the

16 Chapter 1. Agent Paradigm and Multi-Agent Systems

FIPA agent management components, the agents themselves. A platform may
be spread across multiple computers. The specific internal design of a platform
is left to the developers.

• Agent: an agent is the computational process that run on a platform; it can offer
services (capabilities) that are published in the directory facilitator; it must have
at least one owner and support the notion of identity that can be described using
the FIPA agent identifier (AID); an agent may be registered with more than one
transport address. FIPA defines just the structure and the encoding of agent
messages.

• Directory Facilitator : the DF is an optional component of the platform that pro-
vides yellow pages services to agents. To publish its service an agent is supposed
to register with a DF. A platform can support any number of DF, organized in a
federation of DF.

• Agent Management System: the AMS is a mandatory component of the plat-
form; it manages the operations of a platform, for instance the creation and dele-
tion of agents, the migration of agents from host to host within the same platform
or migration from a platform to another. Each agent must register with the AMS
it is running on in order to obtain its AID. Only one AMS can exists in each
platform; if the platform spans multiple machines the AMS is resident just on
one machine but serves all of them.

• Message Transport Service: the MTS is a service provided by the platform; it
manages all the messages sent or received by agents in the platform.

In Figure 1.2 the light gray rectangle represents an agent platform with the compo-
nents described above. The platform communicates with another platform (the bottom
one) and can interact with other external software that is not necessarily part of the
agent system (e.g. software that allows a device to an agent).

1.7 JADE

JADE [1, 6] is a software platform that provides basic middleware-layer functionali-
ties which are independent of the specific application. It provides software tools for
the realization of distributed applications that embed the agent abstraction. It is imple-
mented in Java language and has full compliance with the FIPA specifications. It was
distributed in 2000. Its key features are:

• efficient transport mechanism for asynchronous messages,

1.7. JADE 17

• implementation of both Directory Facilitator (DF) service (yellow pages) and
Agent Management System (AMS) service (white pages),

• support for agent mobility: an agent can migrate between machines in the sense
that its code is transfered to another AMS for execution,

• an effective agent life-cycle management,

• a set of graphical tools to support debugging and monitoring,

• support for ontology development,

• a complete library of interaction protocols,

• integration with web-based technologies.

A JADE platform is composed of several agent containers (Figure 1.3) that can
be distributed over the network. Containers are the java processes that provide the
JADE run-time and all the services needed for hosting and executing agents. There is a
special container, called the main-container, that is the first container to be launched in
the platform and all other containers are joined to the main by registering with it. The
main container manages the registry of all agents present in the platform, it hosts the
agent management system AMS, the directory facilitator DF. A platform is composed
of at least the main container; other containers can join it.

Figure 1.3: JADE architecture: platforms, containers and services

JADE implements all the standard Message Transport Protocols defined by FIPA.
For message to be dispatched among agents living internally to the same platform,

18 Chapter 1. Agent Paradigm and Multi-Agent Systems

JADE uses a proprietary transport protocol called Internal Message Transport Protocol
(IMTP), that is based on Java RMI, and is not compatible with FIPA standards. For
messages exchanged between agents living in the same container, JADE uses Java
events.

Agents’ tasks are represented with "behaviors". An agent can have multiple behav-
iors. Scheduling of behaviors in an agent is cooperative and not pre-emptive, i.e. when
a behavior is scheduled for execution, it runs until it returns.
When a behavior returns, it is pushed in the queue of agent’s behaviors, and the next
in the queue is picked for execution.
The programmer is responsible for the correct switching from one behavior execution
to another, not the AMS.
Figure 1.4 shows the scheduling of the behaviors: in thesetup() method all the be-
haviors are added to the agent; a behaviorb is started calling itsaction() method,
and it is removed from the queue calling itsdone() method.

Figure 1.4: JADE thread execution

The advantages are:

1.8. Security issues in agent systems 19

• an agent requires just one Java thread because only one behavior at a time is
executed (light computational load),

• behavior switching is faster than thread switching

• no synchronization is required for concurrent behaviors of the same agent that
access the same resources because all behaviors are executed by the same thread:
it results in improved performance,

• at behavior switching the status of an agent does not include any stack infor-
mation, and this allows to save the status of an agent hence the implementation
of advanced features, such as agent mobility (the agent is transfered to another
container) and agent persistence (the agent is stored for later resumption).

JADE can also be installed in mobile resource-constrained devices such as Per-
sonal Digital Assistants (PDA) and and mobile phones, with reduced processing power.
JADE-LEAP (Lightweight Extensible Agent Platform) is the project that developed a
light version of JADE that can be used in small devices, supporting the interaction with
JADE platforms embedded in larger devices.

1.8 Security issues in agent systems

Any IT system is affected by security issues that regard communication. MAS are
strongly based on communication among agents. Communication security is protected
with mechanisms that provide:

• confidentiality: information can not be accessed by unauthorized entities

• data integrity : information can not be manipulated by unauthorized parties
without being detected

• authentication: information origin can be assessed

Security is traditionally protected with cryptographic mechanisms, such as encryp-
tion, decryption, public key, private key, secret key, digital signature. However these
mechanisms are expensive from the computational perspective and they do not fit with
highly dynamic agent systems (entities enter and leave the system in an unpredictable
fashion).

Mobile agents can also migrate during their execution among hosts, in order to
move computation in a more suitable environment, due to the presence of required
resources or services. Mobility introduces significant security issues that require to be
properly addressed before agent paradigm may be applied in future technology.

20 Chapter 1. Agent Paradigm and Multi-Agent Systems

Agents running on a platform are potential threats because they are owned by dif-
ferent users with different aims. Before allowing an agent to run on an host, the plat-
form should check if the agent’s intentions are either fair or malicious, but platforms
do not have such a mechanism able to verify the content of an agent and analyzing its
code. Intrusion detection systems use specific technology to perform code analysis,
but it is not applicable to agent systems because of the high number of agents that a
system could manage.

Actual implemented agent systems perform access control through agent identity
checks. Other information that regards the incoming agent can be checked too: origin
host, previously visited hosts, owner identity, etc. Agent systems employ authorization
policies that associate agent identities with permissions: once an agent has been au-
thenticated, it is given authorization to perform a limited number of operations in the
platform according to the policy.

Access control mechanisms are not trivial because there is not a central authority
in agent systems that can be queried for identity or other information verification.

Security issues are more relevant in open systems. Open system are composed of
resources from several systems distributed over the network in order to serve a wide
range of users. Open systems do not have a complete knowledge of all their compo-
nents and participants. Bound closed system security can be easily solved by autho-
rizing only internal known users. Agents and open system are analyzed in Chapter
3.

Actual implemented agent platforms target communication security and authenti-
cation (e.g.: Aglets [66], JADE [45], D’Agents [37], SeMoA [10]). This kind of secu-
rity does not fit open systems because secure communication between parties without
pre-established relationships becomes cumbersome.

From a more general perspective, security issues in mobile agent systems affect
both agents and hosts. Malicious hosts threat agents that are running on them because
the host has the complete control of agent execution. The host can modify the code
and data contained in the agent for its advantage. For instance it could steal electronic
money from the agent; it could modify the code in order to force the agent to behave
in a specific way and to operate incorrectly. Actual solutions for protection from mali-
cious hosts are aimed at detecting rather than preventing [13]:

• contractual agreements among agents and hosts for a fair treating; but it is not a
trivial task to prove broken agreements;

• hardware provided by a trusted third party can ensure a safe execution environ-
ment for agents; the trusted hardware could be used just for sensitive tasks, such
as handling of the private key in decryption operations, and not for the entire
execution of the agent;

1.8. Security issues in agent systems 21

• setting up trusted nodes, where agent can migrate to safely perform sensitive op-
erations; for instance when the agent decides to purchase one of the offered items
it can migrate to a trusted node and request to perform the purchase, avoiding to
pass sensitive information to the seller that could be malicious;

• tracing execution for detection of unauthorized manipulation of the agent’s tasks:
each platform is required to create a log of the agent’s performed operation; a
drawback is that the agent could be required to manage big size logs;

• partial result authentication codes: the agent status is encrypted during its exe-
cution in a remote host; each stored status is encrypted and can be later checked
in order to know its modification history and to detect malicious modifications
applied by a visited malicious host;

• partial results can be encrypted with an asymmetric algorithm and sent back
to the agent owner that collects partial information along the agent’s route; the
agent is required to carry just the public key for encryption;

• the agent can carry encrypted data that could be decrypted only when specific
conditions are met, hence only certain hosts can know agent’s sensitive informa-
tion;

• it is possible to encrypt some functions that the agent will perform; the host is
able to execute the encrypted function, but can not understand the meaning of
it; the outcome of the encrypted function is the encryption of the original out-
come; agent execution code can be kept secret from the executing host; research
is focusing on encrypted functions because not all function can actually be en-
crypted.

Protection of the agent platform from malicious agents can be achieved with the
following mechanisms:

• sandboxing: it separates processes into distinct domains: untrusted processes are
executed in virtual address space and can not interfere with other applications;
access to system resources can also be controlled in such a way. Java utilizes
sandboxing, so it is a suitable programming language for MAS implementation;

• proof carrying code: the author of the agent is required to prove that the agent
code is not malicious; it is difficult to generate such a formal proof, so this
solution has limited applications;

• code can be signed, so the platform can check if the code has been manipulated
from previously visited platforms;

22 Chapter 1. Agent Paradigm and Multi-Agent Systems

• the agent can provide its path history to the hosting platform in order to let it
know if the agent visited an untrusted platform that could have manipulated its
content;

• the agent can ensure the hosting platform that its state and code were not tam-
pered by previous visited hosts. This is done including an appraisal function
created by the agent owner that becomes part of the agent code. The hosting
platform uses the appraisal function to check if the agent state and code have
been manipulated. It is not of easy implementation because it requires to capture
the state of the agent.

1.9 The challenge of MAS

Research on intelligent agents is related with a wide range of sub-disciplines of in-
formation technology, including computer networks, software engineering, artificial
intelligence, human-computer interaction, semantic web, distributed and concurrent
systems, mobile computing, control systems, electronic commerce.

Among these disciplines agents can play a key role in those that require flexi-
ble, autonomous mobile components that compose the system, for instance in mobile
computing (computing performed with mobile computers such as wearable comput-
ers, personal digital assistants and enterprise digital assistants, smartphones, carputer
(computer platforms installed in vehicles), ultra-mobile personal computers).

The basic idea of software agents and their potential applications are quite ap-
pealing. Agent technology has not still move into mainstream computing technology
because of the lack of theories that are necessary to base the development on: common
methodologies for agent-oriented analysis and design, agent design patterns, validation
and testing techniques, tools for agent systems development process [57].

Actual agent applications are developed in an ad hoc fashion without any rigor-
ous design methodology that supports the definition of the agent system specification
details, and that addresses functional properties (behavior of the system) and non-
functional properties (scalability, robustness, reliability of the system) of the developed
system.

Developers require libraries for the implementation of organizational models (e.g.
hierarchical or flat), agent models (reactive, deliberative), task models (monitoring, in-
formation filtering, carrying out transactions), communication patterns, ontology pat-
terns, interaction protocol patterns.

Agent Unified Modeling Language (AUML), an extension of UML, is an example
of tool that supports developers of agent-based application.

Furthermore, different agent system developers emphasize different aspects, so ac-
tual agent platforms and languages differ in several aspects turning out in integration

1.10. Contribution and organization of this thesis 23

problems.

Mobile agents represent a new approach in the interaction among users and online
services. Mobile agents can move and roam in heterogeneous networked hosts. On
the one side agent technology is very useful and powerful, from the other one they
represent a security issue: system administrators will be unlikely to adopt the mobile
agent paradigm unless security concerns are fully addressed (protect host from mali-
cious agents, and agents from each other). Actually agent systems do not provide tools
that can ensure security for agents and hosts.

Collaboration among agents in open environment requires high trustworthiness
among agent owners. Actual platforms do not implement any mechanism for the defi-
nition and the creation of trust relationships among agents and this represents a recent
topic in which research is focusing its attentions.

Agents are a solution for integrating agents into the existing Web infrastructure
[58]. Agent standards does not completely link to existing industry software stan-
dards, but there are efforts to integrate agents and W3C Web services communication
standards.

Agent technology will probably become part of the ordinary computing. Com-
paring agent oriented technologies (AO) with object oriented technologies (OO), we
realize that after two decades of OO (1982), Java was still 13 years away from public
release. Probably agents will not have the same impact as OO, but it is not too late to
see an effective employment of AO technologies.

Once dynamic and open systems spread and become ordinary computing solu-
tions, agents will integrate with IT mainstream. Agent paradigm will be adopted as
fundamental and ordinary, not just a conceptualized domain of research [61]. Agent
technology is not spreading in a big-bang fashion, but slowly agents are turning up in
IT systems.

1.10 Contribution and organization of this thesis

This thesis describes the design of a reputation management model for agent systems.
Reputation allows a society of agents that are part of a community of platforms to col-
lect trust opinions about competence and honesty of interacting agents. Opinions are
then combined in order to form agents’ reputation evaluations.
These evaluations can be used by agents that are searching for information about un-
known potential interaction partners.

We adopted an unusual centralized approach for agent systems that is aimed at
creating context groups where agents are bound by a common context that is related to
the trust evaluations provided by participating agents.

The model is also composed of a layer of informative points that is aimed at sup-

24 Chapter 1. Agent Paradigm and Multi-Agent Systems

porting an efficient information distribution. This layer constitutes a social infrastruc-
ture that binds the context groups and that supports reputation information collection.

The reputation system is decoupled from the agents, in fact agents are not required
to implement specific functionalities to join the system: they just need to share the
same communication ontology.

The thesis is structured as follows. Chapter 2 introduces the characteristics of
trust and reputation from both social science and computational perspective, survey-
ing actual implemented major trust and reputation management systems. Chapter 3
describes the reputation system model design for open multi-agent systems and its fea-
tures. Chapter 4 gives details of the social infrastructure based on the components of
the reputation systems and defined over the society of agents.

Chapter 2

Computational trust: concepts and
state of the art

2.1 Introduction

E-commerce, virtual marketplace, consumer-to-consumer applications (C2C), web auc-
tions are increasingly used by people that offer goods and services for sale. They offer
temporal and geographic advantages respect to traditional marketplaces. Electronic
transactions are still based on the human notions of trust and risk in decision-making.
In a virtual marketplace people usually do not physically meet to complete transac-
tions, they remain anonymous, so new risks potentially raise up.

Transaction actors have to trust each others. In order to determine trustworthy
actors, virtual marketplaces embed mechanisms that provide reputation information.
This information is based on feedbacks (e.g. opinions) provided by people who partic-
ipated in transactions that regard other participants.
Transaction actors evaluate the expectation or the belief that the partner will honestly
and cooperatively behave before getting involved in interactions, attempting to limit
threat exposure.

Reputation systems were firstly introduced and employed in electronic commerce
transactions, e.g. eBay, Amazon. Computational concept of trust is usually applied
between partners in business transactions [23]. Trust is the belief regarding honesty,
reliability, willingness of another entity. Reputation is an overall summary of a col-
lection of thousands of individual opinions. The mean average of these opinions are
aimed at detecting relevant patterns of users’ behavior.

26 Chapter 2. Computational trust: concepts and state of the art

2.2 Open systems and security issues

Distributed computing system are aimed at connecting users and resources in a trans-
parent, open, and scalable way.Opennessimplies that each subsystem is continually
available to interact with other systems. In general, IT moved from the development of
closed and self-contained systems to the definition of new models for the development
open systems. To figure out what an open system should be, we can represent it with
the society of human beings, that is strongly based on communication, interaction and
cooperation.

Open systems are characterized by dynamically changing sets of users that au-
tonomously join and leave the system in an unpredictable fashion. These systems are
referred as open because they do not have clearly defined boundaries that limit the
interaction among entities. Hence open systems require a new approach for what is
concerned with interaction among entities because the resources and the participants
that compose the system continuously enter and leave the system.

Modern open distributed systems are required to support dynamic interactions with
previously unknown entities and to provide some kind of social rules that govern high-
level interactions. Open systems should be able to reorganize themselves to deal with
critical situations such as unstable connection (e.g. for mobile computing), node fail-
ures (e.g. P2P systems), security threats both for entities providing services to un-
known requesters and for users who access services of unknown providers. Security
threats require new solutions because resource control policies in local contexts do not
fit any more with open systems.

Distributed and pervasive computation applications, networked computation de-
ployment and web applications ask for new design methods and new programming
paradigms that support effective interactions among participating entities in order to
exploit the potentials of open systems.

The agent-oriented(AO) programming paradigm looks a promising tool for the
design of emerging requirements in IT even if it is not widely employed in the design of
computing systems. Multi-agent systems are characterized by autonomy and migration
capability that fit very well with open system features.

2.3 Trust and reputation features

The formal and general definition of trust in any dictionary says that it is a confidence
in or a reliance on some quality of a person or thing.
Several areas contribute at the definition of trust concept, e.g. sociology, psychology
and philosophy. The model for computational trust is derived from human trust forma-
tion process. Some key features of human trust concept are risk assessing, trustworthi-
ness determination, decision-making process, reputation formation, evidence detection

2.3. Trust and reputation features 27

[36].

Gambetta’s definition [33] contains a complete description of the aspects of trust:
"when we say we trust someone or that someone is trustworthy, we implicitly mean that

the probability that he will perform an action that is beneficial or at least not detri-

mental to us is high enough for us to consider engaging in some form of cooperation

with him. Correspondingly, when we say that someone is untrustworthy, we imply that

the probability is low enough for us to refrain from doing so.".

The concept of trust is involved when in an ambiguous situation, an entity is re-
quired to evaluate if the outcome of the interaction with another entity is perceived to
be beneficial or to be harmful. The uncertain evolution of the interaction implies that
the entity is supposed to make decisions based on trust information. Trust is not taken
into account when the entity clearly knows how the interaction is evolving. Uncer-
tainty is caused by the unavailability of complete information regarding the outcomes
of the interaction.

Trust is subjectivebecause the way an individual forms belief is based on his
own disposition. Trusting decisions require also a cost-benefit analysis: the entity
weighs the cost and benefit involved in the situation. Risk evaluation is fundamental
for decision-making, hence information related to the involved risks is necessary in
trusting decision process. This requires observation and evidence gathering.

From the social perspective, trust is strictly related to the context in which the deci-
sion is being made, hence trust iscontext-specific. Context assumptions are necessary
to describe the environment where the situation is evolving, and the roles of the entities
that are involved in it. Environmental features affect trust and risks assessments. Roles
and context information are useful for a better analysis: for instance if a taxi driver is
trusted as an excellent car driver, we probably do not trust him to fly an aircraft.

From the computational perspective, we refer to Grandison definition of trust [34]:
"trust is the belief in the competence on an entity to act dependably, securely, and

reliably within a specified context".

Taking into account all the above listed characteristics of trust, it can be described
as a mean to reduce complexity in decision-making regarding uncertainty in interaction
with unknown entities. In trusting decisions entities fix a threshold level of trust to
distinguish trust values that lead to a positive decision from those that lead to a negative
decision. In this process, entities employ optimist or pessimist strategies.

Trust has anasymmetricnature, i.e. for each trust relationship there is an origin
and a target (the trustor and the trustee) who are distinct.

Trust is based either ondirect experiencewith the entity, or onindirect experience,
that is based on the knowledge related to interactions that third-parties experienced
with the entity.

Recommendationsare used to give a transitive property to trust: recommenda-
tions are indirect evidence of trustworthiness. Trust is formed upon combination of

28 Chapter 2. Computational trust: concepts and state of the art

direct observation and third parties’ recommendations. Recommendations suffer of
the integrity problem, meaning that also recommendations should be subject to trust-
ing process because they are affected by honesty, reliability, competence of its sender.

2.4 Trust measures

People has an intuitive concept of trust, meaning that usually human beings do not
assign to trust a numerical value. In a computational environment, it is necessary to
evaluate trust in a numerical value.

A trust origin evaluates his trust degree on a trusttarget for a given trust purpose
analyzing available evidence and information. Several factors can contribute to this
evaluation: the context, environmental factors, time, roles of the two entities, integrity
of eventually received recommendation, subjectivity, target’s disposition to risk.

We now describe some models that are used to quantify trust from the computa-
tional perspective.
Trust as aprobability measures the probability that the target will behave in a reli-
able way for a specific purpose. This approach does not allow an easy combination of
measures with ordinary mathematical tool, e.g. multiplication for transitive trust. This
model can not capture uncertainty too.

Trust measurements withBayesianmethods use the beta probability density func-
tion [54]. The method considers the numbers of positive observed behaviorsα and
the negative onesβ. The trust measure is calculated based on a priori measure(α, β).
The beta probability density function represents the probability that an event has a cer-
tain probability value to occur givenα andβ. It captures uncertainty, even if the trust
measure is not easily comprehensible.

Trust can be measured with thebelief functionsof Dempster-Shafer theory [73].
A belief function assigns probability values to sets of possible outcomes. This ap-
proach is related to probability theory, but outcomes do not necessarily add up to 1.
Belief calculus and subjective logic [50] are used when information is incomplete.

An “opinion” is a metric to express belief, and it captures the entity’s belief in
the truth of a proposition regarding a trust target for a trust purpose. An opinion is
expressed as belief, disbelief and uncertainty:(b, d, u) whereb + d + u = 1.
For instance if agentA interacted with agentB, andB behaved positively 8 times,
negatively 1 times, and 1 time the outcome is not certain, the opinion ofA aboutB
regarding trust purposex is expressedωAB

x = (0.8, 0.1, 0.1).

Recommendations are opinions passed to other agents. These are appropriately
discounted, according to distance semantic and trustworthiness of the recommenders.
Discounts and combination of opinions are made using subjective logic: for instance
if ωAB

x is A’s trust opinion aboutB, andωBC
x is B’s trust opinion aboutC, we have

2.5. Trust models 29

that ωABC
x = ωAB

x ⊗ ωBC
x is A’s trust opinion aboutC obtained by discountingB’s

recommendation aboutC and considering the opinion thatA has aboutB.

For simplicity some models express trust usingdiscrete values, e.g. “completely
trusted”, “trusted”, “not at all trusted” and “very untrusted”.
The main issue with this approach is to perform mathematical operations on these val-
ues, weighting, discounting, combining values. A solution is to map from the discrete
domain to numerical domain, perform the computation and then convert it back to dis-
crete domain:

conv : {comp.trusted, trusted, nottrusted, v.untrusted} → Z
conv(discreteOpinion) = numericalOpinion

f(numericalOpinion) = numericalResult (f performs the required computa-
tion)

conv−1(numericalResult) = discreteResult

2.5 Trust models

The trust management approach for security issues in large open distributed systems
was introduced because of the inadequacy of traditional authorization mechanisms (au-
thentication and authorization for access control).
Rigid cryptography mechanisms for precise authentication of entities are frequently
used in systems that employ access policy specifications in order to protect integrity
and security from malicious entities.
Trust approach takes into account relationships that bound agents in their interactions.
In [68] the two different approaches are definedhard securityfor traditional mecha-
nisms like authentication and access control,soft securityfor social control mecha-
nisms based on trust concept.

A trust management system is required to support users in assessing trustworthiness
of remote entities afterward evidences about unknown transaction partners have been
collected. Trust is evaluated and it evolves based on collected evidence of past behavior
that has been directly observed or recommended by other entities. Trust threshold is
subjectively defined by each trust origin and it depends on the level of risk it takes.

Trust-based decision-making depends on the predictability of entity’s behavior; if
it dynamically changes, trust is not a reliable measure to be used in decision-making.
Now we describe some trust model and management systems.

PolicyMaker [12] takes as input a set of local policy statements, a collection of
credentials and a set of proposed trusted actions; the query engine evaluates whether

30 Chapter 2. Computational trust: concepts and state of the art

the credentials prove that the a requested action complies with local policy. The en-
gine uses a general purpose, application-independent algorithm for checking proof of
compliance.

KeyNote[11], the successor of PolicyMaker, implements more features, such as
signature verification, the use of a specific policy assertion language. Its responses
to the queries are application-defined string, that provide advices to the requesting
application.

The Rule-controlled Environment For Evaluation of Rules and Everything Else
(REFEREE) query-engine [22] is based on PolicyMaker. It interprets trust policies
and returns a statement list that provides the context for the decision and justifications
for the answer.

Simple Universal Logic-oriented Trust Analysis Notation (SULTAN) [35] is a com-
putational framework for trust management that collects, analyzes, provides evidences
related to competence, honesty, dependability in order to make assessments regard-
ing trusting relationships. It is composed of a specification editor used to describe
trust relationships using the SULTAN policy language; an analysis tool to check the
consistency of the trust and recommendation statements; a risk service that retrieves
risk information and provides risk probabilities; the monitoring service that updates
information when agents get involved in new interactions, hence the system adopts a
dynamic concept of trust.

Josang uses belief theory and subjective logic in his trust model [49]. Belief ex-
presses an expectation of how an entity will behave based on direct experiences, rec-
ommendations from other sources.
The opinion of an entityA that captures information about an entityB regarding a
specific trust purposex, is ωAB

x (b, d, u). b represents the belief inB trustworthiness,d
is the disbelief,u is the uncertainty, whereb + d + u = 1 and{b, d, u} ∈ [0, 1].
A trust measure is the expected probability ofωAB

x . The model provides a formal
process for decision-making, that includes the notion of risk by assessing utilities to
the possible outcomes of a transaction.

Trust model of Marsh [60] is based on trust concepts from psychology, philosophy,
sociology. The model is based on the definitions of:

• knowledgeKx(y) that agentx has about agenty,

• the basic trustTx ∈ [−1, 1) that represents the agent’s overall beliefs of the
world,

• the general trustTx(y) ∈ [−1, 1) that an agentx has in agenty irrespective to a
specific situation,

2.5. Trust models 31

• the situational trustTx(y, α) ∈ [−1, 1) respective to the specific contextα,

• the utility of a situationUx(α) ∈ [−1, 1] and the importanceIx(α) ∈ [0, 1] of a
situation.

These values are used in a complex calculation of thecooperation thresholdthat
represents the minimum trust to engage interactions with a trust target.
This model does not take into consideration recommendations.

Trust model of Abdul-Rahman and Hailes [3] considers interpersonal trust among
a source and a target for a specific context. It aims at assisting users in the identifi-
cation of trustworthy entities within a virtual community and at giving autonomous
agents the ability to reason about trust. Trust measures are based on prior direct ex-
periences with the target agent and on third parties’ recommendations. Evidences for
trust evaluation are stored in four different sets: the set of direct trust experiences, the
set of recommended trust experiences, the set of known contexts, and the set of agents
with which previous interactions have occurred. The model does not include any trust-
based decision-making process. This is left to the user’s own disposition to determine
interaction policies and risk evaluation.

Secure Environments for Collaboration among Ubiquitous Roaming Entities (SE-
CURE) [15] takes into account concepts related to human trust: relation among trust
and risk, subjectivity, transitivity of trust through recommendations or reputation, in-
tegrity of entities in recommendations, context and situation dependence of trust, evi-
dences for trust assessing). Its trust model is general and can be applied to a variety of
applications.

The model is based on a trust module that processes trust evaluations. It is com-
posed of four modules: the trust module that computes trust values; the evidence man-
ager that manages and stores observations, recommendations and other information;
the risk module that evaluates risks based on trust values, context information and
transaction utilities; the decision-making module that handles interaction requests. The
model can be integrated with user defined policies too.

Evidence of occurred interactions are classified in one of the following rates:

• supporting,

• inconclusive,

• or contradicting

The trust model provides a way to model evidence that may be observed about a
given interaction. Trust values are derived from this evidence, hence a trust value is a
triple (s, i, c) ∈ N3. Trust values are a function of evidence values and range in[0, 1].

32 Chapter 2. Computational trust: concepts and state of the art

The interpretation is that out ofs + i + c interactions,s interactions support the oc-
currence of a configurationx of a particular event structure (e.g. a given outcome of
the interaction),i interactions are inconclusive about the occurrence ofx, andc inter-
actions contradictx.

Triples can be modified by third parties’ recommendations, considering their re-
spective trust values: a trust value is a combination of direct and indirect experiences.
Integrity checking process is not implemented in the model.

Reputation concept is not considered in this model, indeed trust is evaluated with
direct experiences and recommendation.

2.6 Reputation management systems

Reputation is a collection of recommendations which are aggregated to form a measure
of an entity’s character with regard to ability or reliability in interaction. Areputation

systemis built up to accumulate and distribute recommendations in order to allow
agents to use the information to make decisions about whether to trust another or not.
A reputation system requires the existence of a social network of agents that provide
opinions, recommendations.

Reputation systems can be centralized or distributed.

• centralized: a central service collects recommendations, aggregates them and
derives reputation measures, that are provided to members of the social network,
using a specific communication protocol. Centralized systems are actually used
for e-commerce (auctions and online stores);

• distributed : the communication protocol is distributed, and each entity has his
own method to derive reputation from collected recommendation from peers.

As described in [53], there are different types of recommendation aggregation
methods and evaluation mechanisms for reputation measures computation:

• simple average: for instance eBay [27] uses simple summation of positive and
negative feedbacks (a unique feedback considered for each user): the method
is very simple but obviously very inaccurate because it does not take into con-
sideration integrity of recommendations and subjectivity of feedbacks; another
example is Amazon [4] that measures reputation as an average of all recommen-
dation scores;

• Bayesian method: these systems compute reputation scores by statistical updat-
ing of beta probability density functions: the updated reputation score is obtained
by combining the previous reputation score with the new rating; the reputation
score can be represented in the form of the beta density function or its expecta-
tion value [5];

2.6. Reputation management systems 33

• discrete methods: for instance in [19] possible trust values and their ordering are
determined at the setup of the application according to the possible outcomes of
the interactions; for instance trust value can be represented by a pair(p, n) of
integers that represent the positive and negative interactions experienced with an
entity; each interaction increments the pair; a trust policy determines if an entity
is trustworthy or not according to the value of the pair;

• belief functions [73]: they are used to obtain a degree of trust that regards an
entity from subjective opinions based on independent evidences; they use the
subjective independence to determine joint probabilities for various possibilities
of opinions reliability; they have been implemented in [49];

• fuzzy models: fuzzy concepts are used to represent trust and fuzzy logic is used
for trust reasoning [69].

The decentralized reputation system of Abdul-Rahman and Hailes [3] is based on
the propagation of information as recommendation around the system. A recommenda-
tion contains the identity, the related trust context and the discrete trust value. Entities
provide recommendations when queried. Recommendation are weighted according to
semantic distance. Combination of collected discrete trust values are done with heuris-
tic methods.

Mui’s distributed reputation system [64] considers recommendations as boolean
ratings, hence an agent recommends another one with approval (1) or disapproval (0).
Context is defined as a set of boolean values that describe the presence (1) or not (0)
of specific attributes. Recommendations are propagated with queries from an agent
to another agent. Recommendation integrity is considered by weighting the ratings in
reputation formation according to a list of most reliable and preferred recommenders.
Recommendations are combined through a Bayesian calculation. Trust is represented
too simplistically as a combination of binary values that are the outcomes of interac-
tions (cooperation or defection). The model focuses more on recommendation propa-
gation than on reputation formation.

In Jøsang’s reputation engine called Beta Reputation System [54] evidence of oc-
curred interactions are represented as a couple of satisfaction and dissatisfaction rat-
ings(rB

A , sB
A) by entityA aboutB. Ratings are stored in the central engine, summing

all the r values and all thes too. Reputation is expressed as an expected probability
measure about entity’s likely future behavior. Reputation is modified with Bayesian
techniques when new evidences are received. Belief metrics weight the reliability of
recommenders and their integrity. Time is taken into account with a forgetting factor
applied by an algorithm that perform the discounting. This model lacks parameters for
trustworthiness formation and for context specification.

34 Chapter 2. Computational trust: concepts and state of the art

Buchegger’s distributed reputation system [17] was developed for P2P networks.
The model is based on opinionsRi,j formed by an entityi aboutj regarding its behav-
ior in file-sharing activities.Ti,j is the integrity opinion byi aboutj. For each couple
of entities a summary recordFi,j of occurred interactions is stored.Ti,j is updated
every new opinion with a Bayesian process. A fading algorithm degrades reputation
after a period of inactivity. This model does not capture trustworthiness aspects for
trust formation. The contexts that are related to the interactions are not considered in
this model.

Yu and Singh’s reputation model for e-commerce agents [84] is a decentralized
system with distribution of recommendation through query-response.
Reputation is formed upon trust assessments byi aboutj at time t: Ti(j)

t. Trust is
based on direct past experiences and recommendations. Recommendation collected
from a referral chain, that is the path that a recommendation follows from an agent to
another before getting to the requester of the recommendation, is weighted depending
on the integrity of the agents in the path.
Evidence for trust formation are combined using Dempster-Shafer belief theory [73].
Context factors are not taken into account, whereas time is considered.

Xiong and Liu proposed PeerTrust [82] distributed reputation management. Rec-
ommendation are weighted taking into account the source reliability, the transaction
and community context, temporal factor. Feedback of a transaction is requested by the
system from the two involved actors. Two methods are employed to calculate credibil-
ity of source recommendation: one is based on the trustworthiness of the source within
the community, and the other is based on personalized similarity or semantic distance
between two peers. The trust information is mono-dimensional, hence very simplistic.

ReGreT [70] reputation model focuses on social relations. It is implemented for
a simulated supply chain. It distinguishes three types of relationships among agents:
cooperation, competition and trade, that is compatible both with cooperation and com-
petition.
Reputation ratings have three dimensions: individual (direct interaction evidence), so-
cial (composed of recommendations from witnesses which interacted with the target
agent, from target’s neighborhood reputation and system reputation) and ontological
(that combines reputations on different aspects to calculate complex reputations).
Recommendations are combined using fuzzy rules. ReGreT adds a social structure to
the typical reputation concepts, and introduces a multi-faceted concept of reputation.
This model cannot be easily applied to a real-world system when it is characterized by
complex dynamics.

FIRE [47] trust and reputation model was developed for open MAS. It introduces
four different types of information.
Interaction trust is derived from past experience of direct interactions.

2.6. Reputation management systems 35

Witness reputation is based on collected evaluations of other agents’ previous experi-
ences with the target agent.
Role-based trust is based on predetermined trustworthiness between evaluator and tar-
get derived from rules of the specific domain, or roles of the two agents.
Certified reputation is based on third-party references provided by the target agent.
The overall trust value is calculated as a weighted average of the four values; the weight
is an evaluated reliability value of each information. The model produces a reliability
value that expresses the confidence of the trust model in producing each trust value.
Ratings are expressed as tuples:r = (a, b, c, i, v) wherea is the evaluator agent,b is
the target agent,c is the term of trust,i identifies the interaction,v is the rating value.
The model assume that agents are willing to share their experiences with others, and
that agents are honest in the information they provide.

Chapter 3

Context-dependent Reputation Model
for Agent Systems

3.1 MAS and open systems

Implemented MAS platforms employhard security mechanisms that assure confiden-
tiality for communication and authentication for incoming agents. This is effective for
closed systems, where only known agents are allowed to enter.
In open computer networks, interactions among entities create virtual ad hoc coopera-
tive networks where pre-established trust between actors is not required.

Thanks to the high availability of communication mechanisms, computational sys-
tems can easily increase and improve their interaction with remote systems (see Sec-
tion 2.1 and Section 2.2). Hence the boundaries of single systems are reducing in
order to get advantage of new potential interactions with remote services or resources.
Agents in open multi-agent systems are owned by a variety of stakeholders, with dif-
ferent aims. The environment changes dynamically and it is not possible to know a
priori how it will change because agents act in an autonomous and flexible manner to
achieve their goals, and they continuously and in an unpredictable manner join and
leave the available platforms.

An open agent system cannot have a central authority that performs supervising
tasks over the agent society, having a global perspective and a wide knowledge of the
system. Furthermore each agent has a weak knowledge about the environment and
about its peers. Complex networks of interacting autonomous agents without central
control can be managed taking inspiration from social mechanisms to provide them
with robustness and security.

Organizations and protocols cannot prevent agent systems from interaction risks
that could threat security and reliability. Hence to reduce risks, trust concept is adopted
from human society to agent society as a way to get information for facing the uncer-
tainty related to agents’ behavior. If we suppose that a typical distributed system based

38 Chapter 3. Context-dependent Reputation Model for Agent Systems

on open multi-agent systems is composed of thousands of agents, security mechanisms
that provide reliability in communication, confidentiality, integrity, authentication and
non-repudiation cannot cover all emerging requirements.

The concept of trust that was described in Section 2.3 could play a central rule in
the interactions among agents [47]. In closed systems a known agent can be a trust-
worthy agent, an unknown agent is always untrusted. In open systems the concept of
trust measure gives more flexibility to interactions among agents. System security and
openness can be balanced by adding trust information among actors that get involved
in transactions. Trust plays a very important role as a mechanism of social control.

It is necessary for an agent to estimate the trustworthiness of each potential partner
in order to decide whether the partner is reliable to interact with. The combination of
trust opinions collected from entities that experienced interactions with the same target
agent, produce trust from the social perspective, referred as reputation. Reputation is
used for upsetting trust relationships among the underlying infrastructure of the agent
platforms and the agents themselves. This structure, composed of trust relationships
among entities, is callednetwork of trustor web of trust.

3.2 Ontologies and conceptualizations

3.2.1 General features of ontologies

The termontologycomes from philosophy (Aristotele’s ontology), as a theory of the
nature of existence: an ontology models a domain of knowledge. Philosophically we
refer to an ontology as a particular system of categories accounting for a certain vi-
sion of the world. From the engineering perspective, an ontology is defined as a set of
representational primitives with which to model a domain of knowledge or discourse
[41]. It is an engineering artifact constituted by a specific vocabulary used to describe
a certain reality, and by a set of explicit assumptions regarding the intended meaning
of the words [43]. Classes or sets, attributes or properties, and relations among class
members are typical representational primitives. Specific logical constraints are de-
fined for consistency of their application. In the simplest case an ontology describes a
hierarchy of concepts with specific relationships; in more sophisticated cases, suitable
axioms are added in order to constrain the intended interpretation of the concepts.

Languages to define ontologies are semantic level languages with high abstraction
and expressive power; ontologies are independent from the languages used to describe
them (low level data models).

To better understand the meaning of ontology, it is necessary to introduce thecon-

ceptualizationterm: a conceptualization is a set of informal rules that constrain the
structure of a piece of reality, which an entity uses in order to isolate and organize
relevant objects and relevant relations [30].

3.2. Ontologies and conceptualizations 39

A conceptualization accounts for the intended meanings of the terms used to denote
the relevant relations. These meanings are supposed to remain the same if the actual
extension of the relations change due to different states of affairs [42].

According to [44] an ontology is an explicit, partial account of a conceptualization.
Referring to [40], ontologies are agreements about shared conceptualizations. Shared
conceptualizations include conceptual frameworks for modelling domain knowledge,
context-specific protocols for communication, and agreements about the representation
of particular domain theories.

Hence a conceptualization is composed of the objects, concepts, and other entities
that are presumed to exist in some area of interest and the relationships that hold among
them.
An ontology is defined as an explicit specification of a conceptualization. The ontology
takes the form of the definitions in a representational vocabulary (classes, relations,
and so forth) that provide meanings for the vocabulary and formal constraints on its
coherent use. An ontology is a specification of an abstract data model (the domain
conceptualization) that is independent of its particular form.

Ontologies can be distinguished on the granularity of details. An high detailed
ontology requires the use of a rich language. A low detailed one, that uses shared
inferences in mind for interpretation of part of the concepts of the underlying concep-
tualization, are easier to be used.

Another distinction can be made among anontology library and anapplication

ontology: the former contains more or less reusable knowledge across different appli-
cations, whereas the latter contains the definitions specific to the application [42].

Ontologies are used for interaction and for building knowledge base for problem-
solving and decision-making. A typical problem in ontologies is theinteractionprob-
lem, that consists in introducing a new concept in the application ontology, specific of
a certain domain and a certain method, without any attempts to generalize it in order
to reuse it in a more general task or domain.
Reusability should be systematically pursued: a model for a specific knowledge should
be built using the most intrinsic and task-independent aspects of each piece of reality.
Domain analysis is essential before the design of an ontology in knowledge-based sys-
tems: to organize a domain knowledge in a reusable and transparent way, it is necessary
to find out the intrinsic structure of the domain knowledge.

W3C also defines ontology standards (the Resource Description Framework RDF
and the Web Ontology Language OWL) for Semantic Web for data exchanging among
systems providing standard conceptual vocabularies.

40 Chapter 3. Context-dependent Reputation Model for Agent Systems

3.2.2 FIPA ontologies for agents

FIPA emphasizes the use of ontologies for communication among agents because com-
municative act theory, adopted by the agent model, requires the use of common ontolo-
gies to guarantee the consistency (common meanings of the expressions) and compat-
ibility (common concept) of the exchanged information.

Agents do not use remote procedure calls (RPC) to get services from each oth-
ers, they just exchange messages. The contents of the messages specify the requests.
Furthermore agents do not need to know each other before starting a communication:
they need a common language to understand each other. Hence agent communication
requires a mechanism that support efficient and reliable expressiveness for message
contents. For the above reasons, common ontologies are used by agents in their do-
main of discourse. The ontology ensures that the agents ascribe the same meaning to
the content of the messages.

FIPA provides anOntology Service(experimental) specification [30] that defines
the role of theontology agent(OA) in a platform which should discover public ontolo-
gies in order to access them, maintain a set of public ontologies, translate expressions
between different ontologies and/or different content languages, respond to query for
relationships between terms or between ontologies, and facilitate the identification of
a shared ontology for communication between two agents.
The OA provides an agent community with ontologies that are stored in repositories.
The OA supports agents who wish to start communication but that do not share a com-
mon ontology: for instance it could compare the ontologies that the two parties know
in order to provide a common one.

FIPA also defines some ontologies to be used for basic service, e.g. the agent
management ontology [31] employed for the description of the agent’s identity by the
directory facilitator (DF) and by the agent management system (AMS) services.

3.2.3 Ontologies and content management in JADE

The support for content languages and ontologies provided by the JADE platform [7],
is designed to convert, at the sender side, the internal representation of a complex infor-
mation contained in a message, into the corresponding ACL (Agent Communication
Language) content expression representation, and to perform the opposite conversion
at the receiver side. The receiver has to perform semantic checks to verify that the
received information complies with the rules of the shared ontology.
Inside an agent, the information is represented as Java objects; the JADE support for
content languages and ontologies (thecontent manager) converts this information in a
string (or sequence of bytes) that is easy to transfer.

The content reference model, used to perform semantic checks, classifies the ele-
ments in the domain of discourse according to the ACL language defined by FIPA. At

3.2. Ontologies and conceptualizations 41

the highest level it distinguishespredicatesandterms:

• predicatesare expressions that claim something that can be true or false.

• terms are expressions identifying abstract or concrete entities that exist. These
are further classified into:

– primitivesare atomic entities (e.g. strings and integers)

– conceptsare entities with complex structure that can be defined as collec-
tion of slots

– agent actionsare special concepts that describe actions performed by agents

– aggregatesare entities formed by groups of other entities

– identifying referential expressionsare expressions that identify the entities
for which a predicate is true

– variablesare expressions that identify unknown entities

An ontology for a given domain is a set of schemas defining the names and the
structure of the predicates, the agent actions and the concepts. An ontology is an
extension of the Ontology class to which schemas are added to define the types of
predicates, agent actions and concepts relevant to the domain. Each schema included
in an ontology is associated with a Java class that implements the Concept, or Agen-
tAction, or Predicate interface. For each slot in the schemas, there must be a set and a
get method.

The JADE package includes codecs for the SL, LEAP and XML content languages
for content management. SL is a human-readable string-encoded content language.
The LEAP content language is non-human-readable byte-encoded content language.
The XML content language uses an XML syntax.

An agent has to register the defined ontology and the selected language to its con-
tent manager, which creates and manipulates content expressions as Java objects. The
user works only with Java objects, but JADE uses abstract descriptor classes when
translating content expressions. The conversion pipeline starts when the content man-
ager fills or extracts the content of the message (Figure 3.1):

• the codec object associated to the selected language, converts s string or se-
quence of bytes into/from an abstract content element;

• the abstract content element is validated against its schema;

• the ontology object associated to the defined ontology, converts the abstract con-
tent element into/from a Java object of a class implementing the ContentElement
interface.

42 Chapter 3. Context-dependent Reputation Model for Agent Systems

Figure 3.1: Conversion pipeline

The user is given the possibility of setting additional constraints called facets to the
predicates, agent actions and concepts he/she defines in the ontology (e.g. checking if
the integer that describes the cost of an item is positive).

An ontology allows a machine to handle the contents of messages. The user under-
stands the meaning of the content, whereas the computer does not, in any deep sense,
but it can manage the content through the defined ontology. Hence software agents can
deal with the semantic of the user information.

3.3 Centralized reputation model for MAS

3.3.1 Weakness of actual reputation systems

Among primary challenges in MAS is the identification of suitable models and tech-
nologies going beyond the traditional concept of security, known ashard security that
is based on identity authentication and authorization.
The notion of trust in artificial systems introduces new path for the development of
alternative security mechanisms, calledsoftsecurity, that are based ontrust evaluation

andreputation management. Suitable infrastructure are required to embed the notion
of trust in order to effectively support expressiveness for this new abstraction.

The challenge is to model trust concepts coming from sociology, psychology, econ-
omy, law, in order to import it in MAS technology. The reputation model for agent
systems that we propose is aimed at improving trust measures and the information it is
required to provide, considering the specific features that characterize an agent systems

3.3. Centralized reputation model for MAS 43

in open environment.

Actual reputation systems usually represent a trust network as a directed graph
where edges represent weighted trust relationships (sociogram[71]). The direction of
the edge defines the trust origin and the trust target; the weight expresses the degree
of trust among two entities. Reputation systems uses the graph to discover paths of
trust relationships: a path from the origin node to the target node describes a trust
relationship among the two entities [51].

A sociogram uses the transitivity of the trust concept: if Alice trusts Bob and Bob
trusts Claire, then Alice (indirectly) trusts Claire:

(
Alice

trust→ Bob
)
∧

(
Bob

trust→ Claire
)
⇒ Alice

trust→ Claire

Trust is not implicitly transitive. Once Bob has informed Alice with a recommen-
dation that he trusts Claire, now Alice may or may not trust Claire (Figure 3.2). This
depends on different factors, for instance what the degree of trust is from Alice to Bob,
if she completely trusts Bob or not.
While trust is not inherently transitive, a form of transitivity can be achieved. For in-
stance Alice may wish to combine all collected evidence, both her own observations
and recommendations from other parties regarding the same subject, to form an overall
trust in a trust target. Hence transitivity is in general subject of some conditions.
Trust could be a function of the length of the path (chain of trust) among origin and
target in the sociogram, and a function of each single trust value encountered along the
path.

Figure 3.2: Trust transitivity

The management of a sociogram graph in dynamic environment could get challeng-
ing due to its increasing size: new entities imply new nodes; new trust relationships
among entities produce new edges. Updating the graph of each entity is not trivial. In
our opinion a reputation management system should reduce complexity in the process
of information gathering related to entities, hence we think that the sociogram approach
is not suitable for agent systems.

44 Chapter 3. Context-dependent Reputation Model for Agent Systems

Several reputation models are based on a probabilistic perspective of trust informa-
tion [52, 60, 17], for instance using Bayesian approaches for trust measurement and
beta probabilistic density functions. Those models do not consider trust components
that are relevant in trust opinion formation or reputation evaluations, e.g. beliefs, con-
text characteristics and interaction risks.
Those models mainly focus on the computation of an overall trust value from numeri-
cal opinions collected by the community of participants; they do not give relevance to
the opinion formation process.
The way an entity converts his beliefs in a numerical value that expresses the degree
of trust is important for a reputation system, because it implies some issues related for
instance to subjectivity of personal evaluations, that affect reliability of information.
Trust opinions are affected by subjectivity if users do not have more specific parame-
ters to base their opinions upon.

Actual reputation systems are affected by lack of personalization of trust values (as
pointed out in [72]) resulting in coarse-grained trust and reputation value. Trust is a
compound of beliefs, hence the simpler is the method used to express it, the higher is
the risk for it to be not accurate and reliable. For instance a single numerical value that
summarizes a degree of trust is far to be an accurate trust evaluation in a scenario of
trust-based decision making.

Most of reputation systems collect trust information using general schemas for
opinion formation. Such a general approach is suitable for all generic concepts of trust
(e.g. commercial trust, delegation trust, social trust) but it does not consider relevant
specifics that characterize the different contexts of trust. Information about the context
where transactions take place should not be disregarded in the reputation model in
order to improve the accuracy of the model. Opinions should also contain deeper and
more detailed information about transaction dynamics in order to provide a more robust
and reliable reputation model.

A reputation system that can provide users with accurate information is a consistent
support for decision-making process related to the participation in transactions with
not-well-known entities that are potentially risky.

3.3.2 Overview of the proposed model

The model we propose strongly couples the specific meaning of trust with the context
it is related to, rather than using generic definitions of trust and reputation that are
supposed to fit every context. From our perspective trust and reputation concepts are a
compound of detailed and deeper features that improve the significance of the values
that quantify them.

The proposed reputation model emphasizes the distinction among different con-
texts. Within each context trust and reputation information is independently managed,

3.3. Centralized reputation model for MAS 45

allowing the system to deal more effectively with different subjective and specific fea-
tures.
Our aim is to model trust and reputation concepts according to the specific context
where they are employed in.

Ontologies are employed to collect relevant multi-dimensional information specific
to each context. As ontologies provide a common language for agents of different
systems [20], information generated can be shared among different contexts.

The architecture of a reputation system determines how opinions and reputation
ratings are communicated among participants. There are two main types of architec-
ture:

• centralized,

• distributed.

In a centralizedapproach, individual evaluations about agents’ behaviors or capa-
bilities are collected by a central service, which purpose is to provide an overall repu-
tation measure for each participating agent. Reputation scores can be used by agents to
decide whether or not to transact with a particular agents. The communication protocol
is centralized: agents communicate with the central service. The reputation computa-
tion is performed by the central service using the received opinions.

In a distributedreputation system, there is no central location for submitting rat-
ings or obtaining reputation scores. Information is spread among distributed stores or
each participant simply records the opinion about each experience with other parties,
and provides this information on request from other parties. Entities are required to
gather reputation information searching different peers. Those peers form the trust in-
formation system. The communication protocol is distributed: agents communicate
with each others. The reputation computation is performed by each agents using its
own information and ratings received from the others.

Most of the reputation frameworks in the literature are based on a distributed man-
agement approach. Among these we can mention Abdul-Rahman and Hailes [3], SE-
CURE [19], Yu and Singh model [84], PeerTrust [83], Buchegger’s system [16], and
ReGreT system [70].
In the next section we will describe the centralized approach that we adopted.

As we described in Section 2.3, trust is based either on direct or on indirect expe-
riences. In the proposed model, reputation is calculated using only opinions of direct
experiences.

The model we developed separately considers two concepts:

• reputation,

• andtrustworthiness.

46 Chapter 3. Context-dependent Reputation Model for Agent Systems

The concept of reputation is strictly coupled with the context: it expresses the
degree of reliability of an agent regarding the subject of the context group, its depend-
ability related to the content and performance of the transactions which are evaluated
by the context group.
We call reputationcontext reputation.

The concept of trustworthiness expresses the general honesty of an agent and is not
related only to the specific context, but it has a wider meaning.
For instance an agent could have a good reputation related to the way it performs a
service, but from the social perspective its trustworthiness can be weak due to unfair
or illegal behavior. We call itsocial trustworthiness.

Agents can provide two kinds of opinions regarding the experienced behavior of
another agent:

• thecontext opinionthat rates the reliability of the performed service or actions,

• the trust opinionthat expresses the general honesty and trustworthiness of an
agent.

3.3.3 Centralized architecture approach

The reputation framework we developed, uses a centralized architecture approach (Fig-
ure 3.3). The framework is composed by independent groups (thecontext groups) of
agents, characterized by a common domain or context of interest that binds all the
participants, as also described in [9]. Trust evaluations and reputation scores are all
related to the specific context the set was formed upon. A context group manages all
the information relevant to reputation formation.

Agents join a context group because they are interested in getting trust scores col-
lected by other members, relative to a common domain of interest. Members of the
context group are remote or local agents. For instance, in an online auction service,
seller and buyer agents rank their reciprocal reliability: grouping together in a context
group they can collect and retrieve reputation information useful to decide if accepting
or not transaction requests with not well-known entities.

A context group represents a coalition of entities interested on a specific topic
hence collected information comes from entities that are likely specialized in that topic.
Hence agents that are retrieving information can collect likely reliable information eas-
ier than requesting it to several other agents with an uncertain successful probability.
Furthermore, a context group allows agents that did not know each other previously to
get in touch and to share information that can be helpful to both of them.

The principal of each group is thecontext manager, an agent (services in MAS are
provided by agents) permanently hosted in a platform, whose task is to collect opinions
produced by members and specifically related to the context. The manager forms

3.3. Centralized reputation model for MAS 47

reputation scores using those gathered evaluations (opinions). It distributes reputation
rates to members of the its group, providing information about reliability of agents.
Information are exchanged more efficiently in a group that is structured as a federation
rather than in an unstructured set of agents: information is retrieved through the central
manager rather than through a single replicated requests.

Figure 3.3: Centralized context-dependent reputation framework

Our model uses a centralized architecture, because we can benefit of the following
advantages:

• information is completely stored in the central context service; agents are not
required to spread requests of information to their peers; information location is
not uncertain

• members do not need to get involved in reputation maintenance (as described in
[20]) requiring them to inform other members with updates of their own opin-
ions; information they get from the manager is the updated if we assume that
agents are willing to share their experiences;

• no risk of late incoming replies to queries (due to network or request handling
latency, caused for instance by a long path of entities that the query has been
forwarded to), because queries are directly handled by the manager;

• user applications are decoupled from the reputation system, in fact agents do
not need to embed mechanisms for trust information management; for instance
members do not have to combine opinions to obtain a reputation value.

The centralized approach fits better the nature of MAS: communication is often a
weak point in agent systems because software agents are applied in mobile devices,

48 Chapter 3. Context-dependent Reputation Model for Agent Systems

for instance in pervasive and ubiquitous computing, where resources are limited, espe-
cially bandwidth is weak and network connection is unstable. This approach allows the
system to provide information whether members are offline, because queries are not
sent to agents, as for the distributed approach, but agents send requests to the group
manager.

Agents can join more than one group, according to the available context groups
and to its interest. This does not imply an increase in its computational load but it just
allows it to exchange trust and reputation information more contexts. In Figure 3.4 we
show an example of agents running on different platforms that joined several context
groups: for instance agent1 joins group B, C and D.

Figure 3.4: An example of agents that join several context groups.

A centralized architecture is affected by reliability issues: the reputation service
strictly depends on the effectiveness of the manager agent. This issue in MAS is typ-
ically faced with service replication in order to enhance reputation system reliability:
agents that provide services can be cloned in the same host or in another one in order
to guarantee the service in a seamless manner in the case that an agent crashed.

Within this approach reputation becomes a group concept. When the manager
evaluates that userA has a’good’ reputation rate, it means that the group trustsA as a
good partner, but it does not mean that each single member trustsA as a good partner.
Although the concept of trustworthiness is extended to the group, this approach reduces
subjectivity in trust evaluation.

Grouping agents in contexts of interests is also useful because agents joining a
specific group are supposed to be familiar with the context, hence opinions are likely
to be reliable because they come from experienced users. A context group is supposed
to be a coalition of agents that have deep knowledge of the matter that is related to the
context.

3.3. Centralized reputation model for MAS 49

3.3.4 Reputation ontologies

Opinions from agents should be a compound of detailed and specific evaluations of
different aspects of the behavior of agents that participated in interactions.

We apply ontologies for trust evaluation as a promising approach to solve the lack
of expressiveness of reputation measures, and highlight contextually relevant informa-
tion in the reputation measures [36].

According to ACL language (Agent Communication Language) specifications of
FIPA (the Foundation for Intelligent Physical Agents), an ontology defines the proper
semantic of the message content and its performative (Section 1.6).

The ontology provides the schema for opinion formation: agents are required to
provide an evaluation for each parameters contained in the schema. The parameters
emphasize specific characteristics of the context that are relevant for an accurate eval-
uation of the agents’ behaviors.
Once an opinion is sent to the central manager, the parameters that it contains are used
for the computation of the context opinion, that is an overall rating of the reliability of
the agent.

Reputation systems usually handle opinions that are single numerical values that
evaluate the overall quality of the interactions. An agent could take into more con-
sideration an aspect of the interaction and another agent could focus more on another
aspect. Hence the opinions can be very different even if the quality is the same. Split-
ting the parameters of evaluation that an agent is required to rate helps the formation of
a more objective opinion. Subjectivity in opinion formation is reduced when specific
aspects of an agent’s reliability are evaluated. Hence the collected information, that is
related to experienced interactions among agents, is more objective.

Two ontologies are employed. The first is a generic ontology, thecoarse-grained

ontology(Table 3.1), that is used by all context groups for basic communication among
members and their manager. This ontology contains concepts that are common to all
the groups:

• <Entity> contains the description that identify an agent of the group

• <Context> contains the description of the context group

• <ContextReputation> is the quantification of an agent’s reputation com-
puted by the group manager

• <SocialTrustworthiness> is the quantification of an agent’s trustwor-
thiness computed by the group manager

TheTrust predicate is used by an agent member to send a trustworthiness opin-
ion about another agent to the manager.
An agent in the group sends a query performative message (a query according to the

50 Chapter 3. Context-dependent Reputation Model for Agent Systems

TYPE NAME

1 concept Entity
2 concept Context
3 concept SocialTrustworthiness
4 concept ContextReputation
5 predicate 〈EntityX〉 ParticipateTo 〈this group〉
6 predicate 〈EntityX〉 IsReputated〈ContextReputation〉
7 predicate 〈EntityX〉 IsTrusted 〈SocialTrustworthiness〉
8 predicate I Trust 〈EntityX〉 as〈SocialTrustworthiness〉
9 action Insert 〈EntityX〉

Table 3.1: Generic reputation ontology

FIPA ACL specifications described in Section 1.6) to the manager to know if the men-
tioned entity is a member of the context group, hence it is reputated:"<EntityX>

ParticipateTo" . If the manager finds information about the entity, it sends an in-
formative message to the requester"<EntityX> IsReputated <Reputation>" .
The IsTrusted predicate is used by the manager to give information about an
agent’s social trustworthiness rating.
The Insert is used by an agent in a request performative message for the manager:
it requests to add a trusted agent as a new member of the group.

Figure 3.5 sketches out some example of requests and replies that occur between
the manager and a member. A request has the respective reply on the same level;
different requests stand on different levels, represented by dotted lines.

The second ontology is specific to the context group. We call it thefine-grained

ontology. It is developed and provided by the group activator: he is required to define
the parameters that it contains.
Hence, this ontology schema is used by the agents in the group for communication of
context opinions to the manager. The context opinions contain specific information
related to the ability and dependability of agents regarding the specific context. The
manager uses the context opinion to calculate a single numerical value that is added to
the other context opinions that evaluate a given entity.

An example is provided in Table 3.2: it regards a context group where members
are investors that evaluate stockbrokers. Investors communicate opinions related to
the reliability of the broker, the quality of traded shares, the confidence in the broker
and the broker’s readiness to market changes. Values range from 0 to 1 for positive
opinions, from 0 to -1 for negative ones.

3.3. Centralized reputation model for MAS 51

Figure 3.5: Examples of requests and replies between a member and the manager

Type Evaluated Parameter

1 concept BrokerReliability
2 concept ShareQuality
3 concept Confidence
4 concept Readiness

Table 3.2: Example of context-related ontology

3.3.5 Reputation and trustworthiness computation

The manager computes context reputation and social trustworthiness values of the par-
ticipants of the context group.
The manager stores context and trustworthiness opinions in two matrixesR andT .
The columns of the matrixes are the rated agents, the rows are the rating agents.

In the matrixT , ti,j is the last trustworthiness opinion that agenti gave about agent
j. A trustworthiness opinion is intended to rate the honesty and reliability of an agent
in a general perspective.ti,j ∈ [−10, 10]: if t > 0 it means that the agent is trusty, if
t < 0 it is not trusty.

In the matrixR, ri,j is the last context opinion that agenti gave about agentj.
A context opinion rates the dependability of the agent related to the specific context.
ri,j ∈ [−10, 10]: if r > 0 it means that the agent is reliable regarding the topic of the
context, ifr < 0 it is not reliable.

52 Chapter 3. Context-dependent Reputation Model for Agent Systems

The proposed reputation model store just the last context opinionri,j and the last
trustworthiness opinionti,j from agenti regarding agentj. The manager computes an
agent’s context reputation from theR matrix, and its social trustworthiness from theT

matrix.
The model does not store past opinions from agent because the last opinion is the

most relevant for the sake of reputation and trustworthiness evaluation. This provide
a more flexible rating that can dynamically and quickly face changing situations: for
instance when an agent changes its behavior from honest to dishonest it is necessary to
consider actual behavior and new opinions, disregarding past positive opinions. Past
opinions produce a kind of inertia for reputation and trustworthiness values to change
according to the most actual opinions. Our model is not aimed to predict the future
behavior of an agent considering its past behavior. It is supposed to evaluate the actual
agent’s behavior according to the last experienced interactions that other agents had
with it.

The social trustworthinessTwj of the agenti represents the honesty of the agent,
hence it used as a degree of the reliability of the opinions it provides.Twj is the
weighted average of all the trustworthiness opinions, both positive and negative, pro-
vided by agents whose social trustworthiness is greater than a thresholdTw ≥ 0 that
was fixed at the creation of the group:

Twj =

∑
i twi,jTwi∑

i Twi

, Twi > Tw

This is thesocial trustworthinessvalue of the memberj in the specific context
group.

Two distinct overall rates are computed, both for the context reputation and for the
social trustworthiness:

• the positive ratesRep+
j andTw+

j for agentj, computed with the positive opin-
ions

• the negative ratesRep−j andTw−j , computed with the negative opinions.

Rates are computed with the weighted average of the opinions. The weight is the
social trustworthinessTw+

i of the agent that provided the opinion. Only opinions that
belong to positively trusted (Twi > 0) members are used for context reputation and
social trustworthiness formation.

The two social trustworthiness rates of agentj are:

Tw+
j =

∑
i ti,jTwi∑

i Twi

, ti,j > 0

3.3. Centralized reputation model for MAS 53

Tw−j =

∑
i twi,jTwi∑

i Twi

, ti,j < 0

The two context reputation rates are:

Rep+
j =

∑
i ri,jTwi∑

i Twi

, ri,j > 0

Rep−j =

∑
i ri,jTwi∑

i Twi

, ri,j < 0

The context reputation and the social trustworthiness values provided by the man-
ager contain compound information (Table 3.3 and Table 3.4) that is useful to better
understand how the group rated an agent. This information is aimed at giving a com-
plete and clear view of the evaluation that the agents in the group provided. The better
is the information provided the better is the support for decision making.

The context reputation contains: the positive and the negative context reputations
(Rep+

j andRep−j), the number of the positive opinions and the negative opinions that
contributed to both the reputations, and the average of the social trustworthiness values
of the agents that provided the positive and the negative opinions.

The social trustworthiness contains: the positive and the negative social truwtwor-
thiness values (Tw+

j andTw−j), the number of the positive opinions and the negative
opinions that contributed to both the values, and the average of the social trustworthi-
ness values of the agents that provided the opinions.

CONTEXT REPUTATION
+ –

+ reputation – reputation

of + opinions # of – opinions

avg trustworthinessavg trustworthiness
of + raters of – raters

Table 3.3: Context reputation value provided by the manager

54 Chapter 3. Context-dependent Reputation Model for Agent Systems

SOCIAL TRUSTWORTHINESS
+ –

+ trustworthiness – trustworthiness

of + opinions # of – opinions

avg trustworthinessavg trustworthiness
of + raters of – raters

Table 3.4: Social trustworthiness value provided by the manager

The following example shows how the social trustworthiness is updated when the
manager receives a trustworthiness opinion. It shows also an example of the format
used for the social trustworthiness and context reputation information.
Let us suppose that the context group is composed of six agents, and that the trustwor-
thiness opinions in matrixT for agent 4 are:

T =

· · · 8 · ·
· · · 5 · ·
· · · −2 · ·
· · · ε · ·
· · · ε · ·
· · · 7 · ·

An ε entry in the matrix means that no opinions are available.

Let us assume that:

• the actual social trustworthiness values of the agents areTw = (7, 4,−3, 6, 8,−2),

• Tw = 2,

• agent 5 sends a new trustworthiness opinion:t5,4 = 7,

The manager computes the weighted average for the new social trustworthiness
value for agent 4 according to the new opinion:Tw4 = 6.5.
t3,4 andt6,4 are not considered in the computation becauseTw3 < Tw andTw6 < Tw.
The new social trustworthiness values areTw = (7, 4,−3, 6.5, 8,−2).

The social trustworthiness information regarding agent 4 that the manager provides
is showed in Table 3.5.

3.3. Centralized reputation model for MAS 55

SOCIAL TRUSTWORTHINESS
+ –
6.5 ε
3 0

6.3 ε

Table 3.5: Social trustworthiness information example.

t3,4 andt6,4 are not considered becauseTw3 < 0 andTw6 < 0.

Let us suppose that the context reputation matrix column for agent 4 is:

R =

· · · 6 · ·
· · · −3 · ·
· · · 4 · ·
· · · ε · ·
· · · −2 · ·
· · · 5 · ·

Hence the context reputation information regarding agent 4 that the manager pro-

vides is showed in Table 3.6.

CONTEXT REPUTATION
+ –
6 -2.3
1 2
7 6

Table 3.6: Context reputation information example.

r3,4 andr6,4 are not considered becauseTw3 < 0 andTw6 < 0.

3.3.6 Other features of the model

In the following we describe details and features of the reputation management model.

Startup: a context group is created by a request of a user to the agent platform in
order to activate a reputation manager with the description of the context that it is go-
ing to manage. The manager supports services in its context group (e.g. membership
management, opinions collection, reputation and trustworthiness computation, infor-
mation request handling). The user must provide both the context specific ontology

56 Chapter 3. Context-dependent Reputation Model for Agent Systems

for opinion formation, and the weights that are used for computing a single numerical
value (that is stored as a context opinion) from the evaluated parameters contained in
the opinion messages sent by agents, according to the specific ontology schema.

Memberships: an entity enters a group when it is interested in getting reputations
about the behaviors of other entities belonging to the group. Groups are open to ex-
ternal agents who are trusted by a member and that can get a positive membership
recommendation.
Agent platforms provide users with the Directory Facilitator service (DF) to retrieve
the list of active context reputation groups in the platform.
The recommended entity joins the group with an initial social trustworthinessTw value
that is a third of the recommender’s value. This proportion is heuristically chosen. The
assignment of low trustworthiness value to newcomers is an effective mechanism for
discouraging participants to misbehave and subsequently change their identity.
Only members with positive reputations can recommend for membership. The group
activator fixes a minimum positive reputation value (Twrec) as threshold for requesting
recommendations to the manager. This mechanism avoids untrusted entities joining
the group, and reduces the capabilities of weakly trusted agents to recommend new
participants. An external entity that cannot get at least one positive recommendation
is supposed to be potentially malicious, hence it could provide unfair opinions in the
group, corrupting entities’ reputations.

Member’s proxy: if the creator of the group requires authenticated communication
among agents and manager, once an entity joins the group, a proxy is created in the
entity’s host (or, if not allowed, in the manager’s one): the proxy receives messages
(requests and opinion) from the agent, authenticates and forward them to the manager
(Figure 3.6). Hence communication from the proxy to the manager is secure. The
authentication process does not involve the agent because it is performed by the proxy.

Opinion formation : a member sends a context opinion about another entity to
the manager using the specific ontology schema (fine-grained ontology) of the context
group. Opinions provide evaluations of the agent’s beliefs regarding aspects of a typ-
ical interaction related to the context that occurred with another agent. Each aspect
is evaluated in the range[−10, 10]. The manager computes a weighted average of the
values contained in the opinion, producing an overall context opinion value.
Agents provide trustworthiness opinions using the generic ontology. Those opinions
range between−10 and10.

Once the manager receives an opinion, it updates the context reputation or the
social trustworthiness of the related agent (Figure 3.7).

3.3. Centralized reputation model for MAS 57

Figure 3.6: Proxy for communication between member and manager

Figure 3.7: Opinion evaluation

3.3.7 Scalability

In open agent systems scalability is a major issue. Our model was aimed to be fully
scalable to meet low-computational load requirements. A reputation management sys-
tem should not affect the overall performance of the system because its purpose is just
informative.

In decentralized reputation systems scalability is not a trivial issue because the
bigger is the size of the web of trust, the harder is to know where to retrieve reputation
information. This results in high bandwidth consumption for query spreading: an
agent sends an entity’s reputation query to the agents it trusts, and if those agents
do not have the requested information, they should forward the query. For unknown
agents this implies that the forward process can indefinitely continue, unless some
limiting mechanisms have been defined (for instance the maximum number of hops).
The number of spread queries can be proportional to the size of the agent community.

58 Chapter 3. Context-dependent Reputation Model for Agent Systems

Information queries could also affect the performance of an agent that could get too
busy with query management.

Our positive contributions to scalability of the reputation system come from split-
ting the overall community of agents in reduced size context groups to be managed.

The proposed model provides context managers with the ability to start new man-
agers of the same context but in different hosts. The new peer manager will take care of
future new members of the group.Peermanagers can cooperate to serve information
requests (Figure 3.8). If a manager does not have information about a requested entity,
it can forward the information request to peer managers of the same context.

Figure 3.8: Peer managers of the same context group

3.3.8 Unfair rating

The quality of a reputation system depends on the integrity of the opinions it receives
from the participants. Agents can rate more positively or more negatively than the
real experience would dictate. For instance buyers could intentionally provide unfair
positive opinions or unfair negative opinions for sellers. In large scale, open, dynamic
distributed environments agents may possibly be self-interested, giving unfair rating
for their own benefit, at the cost of others. Unfair rating can consist of a number of
colluding agents which cause flooding of unfair rates. It can be used to manipulate the
reputation system to an agent’s advantage.

A fundamental issue in reputation systems is to avoid or reduce the influence of

3.3. Centralized reputation model for MAS 59

unfair opinions. Effective protection against unfair ratings is a basic requirement in
order for a reputation system to be robust. Usually unfair rating problem is faced
with statistical filtering techniques ([85, 25, 5]), assuming that unfair ratings can be
recognised by their statistical properties.

The development of a mechanism that checks the honesty of group members and
their opinion integrity requires a very deep analysis, and it is out of the scope of this
thesis. Only a trusted authority would be entitled to claim that a members is unfair
in order to take advantage of their ratings. In an open agent system where all entities
are peers it is not possible to entitle an entity to be an authority trusted by everyone.
Furthermore agents should be closely controled by that authority.

To perform such a supervisory control we believe that it should be necessary to
introduce an infrastructure based on sociological organization theory and social science
concepts [63].

In [85] they introduce a context-based approach to filter out unfair recommenda-
tions using incremental learning algorithm. The context is used to analyze the user’s
activity, state and intention. The learning of context is incrementally increased by a
neural network.

In [25] they try to reduce the effects of unfair positive rating using collaborative fil-
tering techniques: ifx provides an opinion abouty, they determine ax’s neighborhood
set of raters whose ratings over many subjects are similar. In that group of raters they
apply a cluster filtering algorithm in order to separate the set of raters into two clusters,
that of fair and that of unfair raters. The finaly’s reputation estimate is then calculated
with the ratings coming from the set of fair raters. They assume that fair and unfair
ratings follow the same distribution type but with different parameters.

In [5] they propose a filtering technique that applies to both unfairly positive and
unfairly negative ratings in Bayesian reputation systems. They assume that ratings
provided by different raters on a given agent will follow more or less the same proba-
bility distribution. Hence when an agent changes its behavior all honest raters should
change their ratings accordingly. The Bayesian system computes reputation scores by
statistical updating of a beta probability density function (PDF). The reputation score
can be represented in the form of the beta PDF parameters that represent the amount of
positive and negative ratings. Their filtering algorithm is based on the beta distribution:
a rater is considered unfair and its ratings are excluded when its score about an agent
falls out of the lowerq quantile and the upper(1− q) quantile of the beta distribution.

The above mentioned techniques exclude rates that are different from those of the
majority of the raters.
We think that this can be effective if the number of raters is high enough that the
majority of them can be considered honestly behaving, fairly rating. If there are few
raters, most of them could be unfair, hence the above techniques can not face the effects

60 Chapter 3. Context-dependent Reputation Model for Agent Systems

of unfair ratings.
We also think that those techniques slow down how quickly the reputation system
can face changing agents’ behaviors: if a well reputated seller becomes dishonest,
the former agents that realize this change and that provide negative scores for that
seller, are excluded from the computation of its reputation, hence the seller’s reputation
remains positive.

From a general perspective, opinions are subjective, and transaction experiences
among agents differ each others: two opposite ratings regarding the same agent are not
required to be necessarily one fair and the other unfair.

Our model detects potential unfair members relying on the trustworthiness opinions
provided by the group. We assume that the majority of the agent in a group are fair and
honest. Our approach is based on:

• reducing the possibility that a dishonest agent has to be included in the reputation
computations

• providing detailed and complete reputation and trustworthiness information in
order to support agent’s decision making process with evident information.

Agents can join context groups only through recommendations of agents that are
members of the group whose social trustworthiness is greater than a threshold, hence
if we suppose that members with positive trustworthiness are honest, chances for ma-
licious entities to join a group are very low.

An agent’s opinion is included in the computation of reputations only if its trust-
worthiness is positive (Twi > 0), and it is weighted according to that trust degree.
The assumption is that raters with low trustworthiness are likely to give unfair ratings
and vice versa. This reduces the effects of ratings from agents that are not completely
trusted from the group.

The context reputation and social trustworthiness values, that are provided by the
manager, separate positive and negative contributions (Table 3.3 and Table 3.4). This
format highlights if the opinions that form the reputation either clash because opposite,
or are homogeneous. This allows the agent to more accurately decide to start a new
transaction with the rated party. Decisions depend on the involved risk that is felt by
the user too.

In [52] the reputation score of the multinomial system can be represented on dif-
ferent forms (evidence representation, density representation, multinomial probability
representation, point estimate representation). While informative, the former three of
them require not trivial computation to be displayed.

The reputation score representation of the proposed model, that consists in a vector
of six numerical values, is both informative and easy to handle. Figure 3.9 shows an
example of a context reputation value composed of both positive and negative opinions:

3.3. Centralized reputation model for MAS 61

the heights of the two bold lines represent the positive and negative reputation values,
and their position in thexy plane represents the number of raters and their average
social trustworthiness.
The positive reputation value is 8 over 10, calculated over 60 opinions with an average
trustworthiness of 7 over 10. The negative reputation value is 3 over 10, calculated
over 20 opinions with an average trustworthiness of 3 over 10.

raters

reputation value

avg trustworthiness

20 40 60 80 100
0

2

4

6

8

2

4

6

8 negative reputation
positive reputation

Figure 3.9: Graphical representation of a reputation value

This format provides a light but clear representation of how the community rated an
entity. For instance this representation highlights how rated the majority of the group,
and how rated the most trusted agents in the group.

3.3.9 Time

Reputation systems use time element to reduce the weight of the opinions as they get
old (aging rates). The proposed model does not apply time decay to opinions because:

• once an agent provides an opinion, its value for the reputation computation
should remain unchanged, otherwise it should periodically refresh opinions, and

62 Chapter 3. Context-dependent Reputation Model for Agent Systems

there is no reason for it to do that;

• if opinions decay with time, malicious raters could frequently refresh their unfair
rates in order to temporarily affect reputations.

Our model maintains the value of each opinion. The opinion of agentx abouty
is considered stable untilx provides a new opinion and the previous one is removed.
Nevertheless, the creator of a group is required to set up the duration of an opinion
before it is definitively removed. This avoids opinions to be included for ever in the
reputation calculation. The duration depends on the dynamism of the context, for
instance the opinion duration of a car selling context is supposed to be longer than that
of a context related to wineries, because purchase of wine is more frequent than that of
cars.

Chapter 4

Social infrastructure based on the
reputation system

4.1 Agent society and organizational paradigms

An agent system cannot be reduced to a compound of autonomous interacting entities.
A system of agents gives rise to a society of agents, hence design of multi agent systems
involves sociological organization theory.

A society is a collection of different entities grouped together with enduring and
relatively stable patterns of relationships. A social structure may be seen as a set of
organizational services, patterns, rules that underlies a social system and that partially
guides actions of agents. From the social perspective, agent systems in open envi-
ronment are collections of independent components that generally do not know each
other. An effective multi-agent system should provide agents with means to efficiently
cooperate and collaborate. The environment where they act should implement rules
that drive the evolution of the system, and agents should incorporate different roles in
that environment.

Sociality and autonomy key features of software agents would be suitably applied
to open systems once we provide structures to improve integration among service
provider and requester agents. The concept of social intelligence introduced in [87],
highlight the intelligence ascribed to agents as a society, not individuals. This requires
the definition of suitable social abstractions that incorporate organizational structures
that govern and support agent interactions.

Mobile agents paradigm is well suited for the development of open systems, where
agents from diverse remote locations, with different objectives, unknown to each other
at design time, may interact to achieve their goals. Open systems can be conceived
as a system as a whole that requires the involvement of sociological structures and
mechanisms for the organization and management of the composing entities [63].

The distributed nature of MAS turns out in a not trivial complexity for the design

64 Chapter 4. Social infrastructure based on the reputation system

of these systems. Open systems increases even more that complexity because:

• it implies a dynamic environment;

• components are not known in advance and change dynamically;

• resources change their availability very frequently;

Openness imposes to consider the expected behaviors of agents and requires an overall
system protection from misbehavior of agents. As a social abstraction, dealing with
cooperation and coordination requires normative structures supported by organizations
and institutions [74]. Social order is the multi-agent system equivalent of robustness
in classical social engineering.

Agent-centered perspectives used for the development of MAS, have to be replaced
with methodologies that employ organizational approaches (Gaia [86], Tropos [14],
SADDE [75]) with an extensive use of the concept of agent’s role, role dependencies,
interaction protocols.

The absence of a hierarchy in open environments implies that the relationships in
agent systems are close to relationships among peers. To provide a structure to the
system, some researchers propose a form of democracy to be implemented [62] in the
agent society. Democracy models such as the wise elite democracy, the rational choice
model or the deliberative one, are taken into consideration at design time of a possible
organization of an agent society.

Many researches have demonstrated that the organizational design employed by an
agent system can significantly effects its performance [46]. Organizational paradigms
that are used in multi-agent systems are:

• hierarchies

• holarchies

• coalitions

• congregations

• teams

• societies

• federations

• markets

• matrix organizations

4.2. Reputation-based social infrastructure 65

Those approaches have different features which may be more suitable for some prob-
lems and less for others. The organization of an agent system consists of collections of
roles, relationships and structures. The organizational structure supports agents in their
interactions, hence the better is organized the community of agents, the more complex
are the behaviors they can perform.

The context groups that are applied in the proposed reputation management model,
can be described as coalitions of agents. The inner structure of a coalition is typically
flat (peer agents), although we defined the manager agent that acts as intermediary and
representative of the group as a whole. As described in [46], the general motivation
behind the coalition formation is that some utilities can be gained by working in group.

4.2 Reputation-based social infrastructure

Multi-agent programing paradigm can be extensively employed in the development of
distributed computing systems where independent components are structured accord-
ing to social related concepts implemented in an infrastructure that provide an overall
organization. Mobile agent system designers usually recognize the utility of a social
structure to be applied to the community of agents.

Patterns of actions can emerge from interactions among agents. This turns out in
the identification and definition of roles and rules that can simplify the interactions.
In a complex agent-oriented system, those roles and rules are a partial solution. If
agents are considered as individually acting entities in wide distributed systems, they
have limited chances to know all the resources that the system could provide to support
their tasks. If agents are collections of units that are parts of a structured system, the
complexity and the size of the system are hidden by the structure that leads the agents
in resource discovery.

A social structure benefits a community of agents because a component of the
system can find out another one to interact with through a path of knowledge that
is provided by the organized structure, hence the agent system gets a more efficient
resource management.
Organizational concepts become key features for building large scale and complex
systems [28].

We propose a social infrastructure based on our reputation model that is aimed at
supporting reputation information flow in the society of agents. The main component
of the proposed infrastructure is theinformative point: it is a platform resident service
that collects and spreads information of existing context groups and their belonging
members.

The informative points are aimed at spreading knowledge about competence and
integrity of individuals and service providers in the system. Each agent platform is
supposed to have an informative point, but this is not mandatory because it is possible

66 Chapter 4. Social infrastructure based on the reputation system

to interact with informative points that are located in remote platforms.
Agent platforms implement directory facilitator (DF) services (yellow pages) that can
provide information regarding the available informative points located in the platform.
Informative points are required to subscribe to the DF service.

A network of informative points that is distributed over the system (Figure 4.1)
connects parts of the agent society providing channels for reputation information flow.
The wider is the network, the easier is to get information regarding agents. This bene-
fits the chances that an agent has to interact with unknown agents.

Figure 4.1: Social structure of networked informative points

Requests to an informative point could come from (Figure 4.2):

• agents that require information about other agents or information regarding ex-
isting context groups that are linked to this point;

• context managers that request trustworthiness information related to specific
agents.

At creation stage, the context manager of a context group is required to register
with the list of an informative point in order to create a bridge among the group and
the society of agents. During its life, the context manager informs the informative
point about the agents’ identities that are registered with its group.

Each informative point manages the list of the context managers that are registered
with it: it is used to give information to requesting agents about the known context
groups.
It also manages a list of agents’ identities that are registered with the above mentioned
context groups: when the informative point receives an agent information request, it

4.2. Reputation-based social infrastructure 67

Figure 4.2: Links among informative points and other entities of the agent system

AGENT LIST

Agent Context Group

CONTEXT GROUP LIST

Context Group Manager

Table 4.1: Lists managed by an informative point

gets trustworthiness information from the context manager the agent belongs to (Ta-
ble 4.1).

An informative point has a list of known points too. When a request is related to an
unknown agent, the informative point provides the requester with the list of the other
points it is linked to. Hence the requester can query the provided set of informative
points.

In (Figure 4.3) it is summarized the query protocol for an information request com-
ing from an agent that is member of a context group:

1. the agent queries the context manager of the group it belongs to in order to get
reputation information about another agent;

2. if the query regards an unknown agent, the manager replies with the identity
of the informative point to be queried, otherwise it provides requested agent
information;

68 Chapter 4. Social infrastructure based on the reputation system

3. the agent can query the informative point

4. if the requested agent identity is in the list of known agents, the informative point
ask for the related trustworthiness information to specific the context manager,
otherwise if unknown it replies with a list of informative points it is linked to;

5. the agent can query the informative points in the received list.

Figure 4.3: Query protocol

Hence an agent in a context group can get context reputation and social trustwor-
thiness information from the manager. When an agent queries an informative point,
it can get just social trustworthiness information regarding other agents. Social trust-
worthiness is a general evaluation, whereas context reputation is strictly related to a
group.

The social structure that we devised with the informative points is depicted in Fig-
ure 4.4: the base layer represents the community of agents without any kind of social
structure. Introducing the context groups, we lay a first level of social infrastructure on
the system, i.e. the community participants are organized into context of interests. The
second layer composed of informative points organizes the groups in order to collect
information contained in the below layer.

Figure 4.4 points out the path followed by reputation and trustworthiness informa-
tion: it is produced by agents with opinions, and through context groups and informa-
tive points it can get to other agents at the same bottom social level.

4.2. Reputation-based social infrastructure 69

Figure 4.4: Schema of the social structure

Agents have been said to be autonomous entities; this key characteristic can be
efficiently exploited when the system provides services that support the spread of in-
formation related to potential interaction partners and resources that are present in the
society of agents. Autonomy remains an abstract concept if an agent is not supported
by mechanisms that open its range of interaction out of the origin platform. Research
on methodologies for agent-oriented software engineering focuses on the development
of embedded infrastructure in order to model the environment where agents are sup-
posed to interact [18].

Our social infrastructure reduces the lack of services that support sociality in the
agent technology and reduces anonymity too.

Chapter 5

Conclusions

This thesis presented a model of a reputation management system that supports agents
of multi-agent systems in trust-based decision making that are involved in their inter-
actions.
The work in this thesis addresses issues that arise in open multi-agent system where
agents could interact with unknown agents belonging to unknown agent systems. This
implies security threats that could affect both agents and platforms.

In Chapter 1 we described the design architecture of an agent system and its key
features. The agent programming paradigm is the evolution of the object-oriented pro-
gramming paradigm. Agents are autonomous software processes which are aimed at
achieving the goal of their owners. Agents can migrate from host to host to exploit
available resources, and can communicate through messages with other agents to re-
quest services, information, etc. We described how heterogeneity issues among differ-
ent implemented platforms are addressed with standard specifications that have been
developed by FIPA as architectural guidelines for agent systems. We also introduced
security threats that affect agent systems and actual implemented solutions.

In Chapter 2 we described emerging IT open systems’ features and requirements.
The agent paradigm suits open systems but agents require new security mechanisms
because the actual mechanisms do not fit the features of open systems. Trust and repu-
tation concepts that are employed in virtual marketplaces are a promising solution for
security issues. The computational trust concept is derived from the trust concept used
in sociology, psychology, philosophy, that is the same concept that people use in their
everyday life. Trust is a belief about the willingness of another entity to honestly and
fairly behave. It is based on previous interaction evidence or on recommendation from
third parties.
For computational purposes, trust needs to be quantified. We described some trust
models to show how trust is measured in actual systems. Reputation of an entity is the
a value that expresses what is the degree of trust regarding this entity that is computed

72 Chapter 5. Conclusions

from trust opinions of a community. A reputation system collects trust rates and com-
putes reputation values for the evaluated entities.
A reputation system supports entities in trust-based decision-making when they inter-
act with other entities in order to better evaluate risks coming from interactions. We
described the features of actual implemented reputation systems.

In Chapter 3 we described in deep details the definition of ontology, and how they
can be used as a common language in the communication among agents. We then
explained the centralized architecture of the proposed reputation management model
for soft security in multi-agent systems. The model is based on coalitions of agents in
context groups. A context group is managed by a central manager that collects opin-
ions in relation to its specific context regarding the behaviors of agents. A group is
composed of agents that are interested in its specific context. Agents are not required
to share trust information among them, because they just refer to the manager. This
reduces message exchanging among agents.
The model defines two kinds of trustworthiness: the social trustworthiness is related to
the general behavior of an agent, its general honesty and fairness; the context reputa-
tion is specifically related to the agent’s behavior within the context, its dependability
and reliability. To express opinions on the behaviors related to the context, the man-
ager provides the members of the group with a context specific ontology that is aimed
at enhancing the details of the opinions in order to improve its reliability and to reduce
the generality. This in turn improves reliability of reputation values too.
The context reputation and the social trustworthiness values of an agent are calculated
with a weighted average of the received opinions. The model is based on a simple
algorithm to evaluate reputation from opinions, nonetheless it provides the agents with
detailed information about the opinions that contributed to the computation.
Unfair ratings provided by malicious entities are not easy to detect. It is still an open
issue in reputation systems. Our model allows agents to join a group only if they get
a recommendation from a member, hence agents that are not trusted by anyone in the
group cannot participate. The constrained access reduces potential malicious agents to
bias reputation values. Ratings are also weighted according to the social trustworthi-
ness of each agent, hence if we assume that malicious agents have low trustworthiness
rates, their opinions lightly affect reputation values.

In Chapter 4 we analyzed the proposed reputation model from the social perspec-
tive. We described how a network of informative points in the community of agents
can connect context groups in order to support agents searching for information that
regards the honesty and reliability of other agents. The social structure composed of
context groups and informative points allows agents to easily gather information that
is useful when they decide to interact with others.

73

In conclusion, this thesis proposes a model for a reputation system to be employed
in open multi-agent systems in order to provide agents with a soft security mechanism.
Our context-based approach removes the generality of trust values that typically affects
reputation systems. It was developed taking into account the general characteristics of
the agent model. Its centralized approach suits the agent model since reputation com-
munication involves each agent and the manager: agents are not required to gather in-
formation from other agents, hence even in highly dynamic agent systems, where they
rapidly enter and leave hosts, the reputation system is not affected. The model fits also
agent low communication bandwidth conditions because it does not require message
exchanging among agents. The central management in each group prevents the agent to
embed reputation computation functions and to manage other agents’ opinions, hence
the model fits low computational power agents. Agents can also join several context
groups without affecting their computational load because a group can be considered
as a repository for context opinions and a source of reputation information.

The reputation system model that was described in this thesis supports agents in
trust-based decision making. It provides agents with information related to evaluations
of both their honesty and their specific context group reputation. Agents can request
information about agents involved in their interactions in order to reduce risks that
could come from malicious behaviors. It can be effectively employed in every agent
system because the model was designed in an agent-centric fashion in order to comply
with the key features of those systems, and considering social requirements in order to
efficiently share information among all the agents in the society regardless of its size.

Bibliography

[1] Jade: Java agent development framework.jade.tilab.com .

[2] The First International Joint Conference on Autonomous Agents & Multiagent

Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy, Proceedings. ACM,
2002.

[3] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual commu-
nities. InHICSS ’00: Proceedings of the 33rd Hawaii International Conference

on System Sciences-Volume 6, page 6007, Washington, DC, USA, 2000. IEEE
Computer Society.

[4] Amazon. www.amazon.com .

[5] Whitby Andrew, Jøsang Audun, and Indulska Jadwiga. Filtering out unfair rat-
ings in bayesian reputation systems. InThe Third International Joint Conference

on Autonomous Agents & Multi Agent Systems (AAMAS2004), New York, USA.
ACM, July 2004.

[6] Fabio Bellifemine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. Jade:
A software framework for developing multi-agent applications. lessons learned.
Inf. Softw. Technol., 50(1-2):10–21, 2008.

[7] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood.Developing

Multi-Agent Systems with JADE (Wiley Series in Agent Technology). John Wiley
& Sons, 2007.

[8] Carole Bernon, Marie Pierre Gleizes, Sylvain Peyruqueou, and Gauthier Picard.
Adelfe: A methodology for adaptive multi-agent systems engineering. In Petta
et al. [67], pages 156–169.

[9] Cristian Bertocco and Carlo Ferrari. Context-dependent reputation management
for soft security in multi agent systems. InWI-IAT 2008: Proceedings of the

International Joint Conference on Web Intelligence and Intelligent Agent Tech-

nology, December 9–12, 2008.

76 Bibliography

[10] Walter Binder and Volker Roth. Secure mobile agent systems using java: where
are we heading? InSAC, pages 115–119. ACM, 2002.

[11] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. Keynote: Trust man-
agement for public-key infrastructures (position paper). In Bruce Christianson,
Bruno Crispo, William S. Harbison, and Michael Roe, editors,Security Protocols

Workshop, volume 1550 ofLecture Notes in Computer Science, pages 59–63.
Springer, 1998.

[12] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In IEEE Symposium on Security and Privacy, pages 164–173. IEEE Computer
Society, 1996.

[13] Niklas Borselius. Security in multi-agent systems. In Y. Mun and H. R. Arabnia,
editors,SAM 2002, pages 31–36. CSREA Press, 2002.

[14] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Tropos: An agent-oriented software development methodology.Au-

tonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[15] Ciarán Bryce, Paul Couderc, Jean-Marc Seigneur, and Vinny Cahill. Implemen-
tation of the secure trust engine. In Peter Herrmann, Valérie Issarny, and Simon
Shiu, editors,iTrust, volume 3477 ofLecture Notes in Computer Science, pages
397–401. Springer, 2005.

[16] S. Buchegger and J. Le Boudec. A robust reputation system for mobile ad hoc
networks, 2003.

[17] Sonja Buchegger, Cédric Tissières, and Jean-Yves Le Boudec. A test-bed for
misbehavior detection in mobile ad-hoc networks – how much can watchdogs
really do? InWMCSA, pages 102–111. IEEE Computer Society, 2004.

[18] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Engineering mobile
agent applications via context-dependent coordination.IEEE Trans. Software

Eng., 28(11):1039–1055, 2002.

[19] V. Cahill, B. Shand, E. Gray, C. Bryce, N. Dimmock, A. Twigg, J. Bacon, C. Eng-
lish, W. Wagealla, S. Terzis, P. Nicon, G. di Marzo Serugendo, J.-M. Seigneur,
M. Carbone, K. Krukow, C. Jensen, Y. Chen, and M. Nielsen. Using trust for
secure collaboration in uncertain environments, 2003.

[20] Sara Casare and Jaime Sichman. Towards a functional ontology of reputation.
In AAMAS ’05: Proceedings of the fourth international joint conference on Au-

tonomous agents and multiagent systems, pages 505–511, New York, NY, USA,
2005. ACM.

Bibliography 77

[21] Antonio Chella, Massimo Cossentino, Luca Sabatucci, and Valeria Seidita. Agile
passi: An agile process for designing agents.Comput. Syst. Sci. Eng., 21(2),
2006.

[22] Yang-Hua Chu, Joan Feigenbaum, Brian A. LaMacchia, Paul Resnick, and Mar-
tin Strauss. Referee: Trust management for web applications.Computer Net-

works, 29(8-13):953–964, 1997.

[23] Elizabeth Churchill, Les Nelson, and Diana K. Smetters. Useful computer secu-
rity. IEEE Internet Computing, 11(3):10–12, 2008.

[24] D’Agents. agent.cs.dartmouth.edu .

[25] Chrysanthos Dellarocas. Immunizing online reputation reporting systems against
unfair ratings and discriminatory behavior. InACM Conference on Electronic

Commerce, pages 150–157, 2000.

[26] Scott A. DeLoach, Mark F. Wood, and Clint H. Sparkman. Multiagent systems
engineering.International Journal of Software Engineering and Knowledge En-

gineering, 11(3):231–258, 2001.

[27] eBay. www.ebay.com .

[28] Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and de-
sign of organizations in multi-agent systems. In Yves Demazeau, editor,ICMAS,
pages 128–135. IEEE Computer Society, 1998.

[29] FIPA: Foundation for Intelligent Physical Agents. www.fipa.org .

[30] Foundation for Intelligent Physical Agents.FIPA Ontology Service Specification,
2001.

[31] Foundation for Intelligent Physical Agents.FIPA Agent Management Specifica-

tion, 2004.

[32] Stan Franklin and Arthur C. Graesser. Is it an agent, or just a program?: A
taxonomy for autonomous agents. In Jörg P. Müller, Michael Wooldridge, and
Nicholas R. Jennings, editors,ATAL, volume 1193 ofLecture Notes in Computer

Science, pages 21–35. Springer, 1996.

[33] Diego Gambetta. Can we trust trust. InTrust: Making and Breaking Cooperative

Relations, pages 213–237. Basil Blackwell, 1988.

[34] Tyrone Grandison and Morris Sloman. A survey of trust in internet applications.
IEEE Communications Surveys and Tutorials, 3(4), 2000.

78 Bibliography

[35] Tyrone Grandison and Morris Sloman. Trust management tools for internet ap-
plications. In Paddy Nixon and Sotirios Terzis, editors,iTrust, volume 2692 of
Lecture Notes in Computer Science, pages 91–107. Springer, 2003.

[36] Elizabeth Gray. A Trust-Based Reputation Management System. PhD thesis,
Dept. of Computer Science, Trinity College Dublin, apr 2006.

[37] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus. D’agents: Se-
curity in a multiple-language, mobile-agent system. In Giovanni Vigna, editor,
Mobile Agents and Security, volume 1419 ofLecture Notes in Computer Science,
pages 154–187. Springer, 1998.

[38] Mark Greaves, Victoria Stavridou-Coleman, and Robert Laddaga. Guest editors’
introduction: Dependable agent systems.IEEE Intelligent Systems, 19(5):20–23,
2004.

[39] The OMG Object Management Group. www.omg.org .

[40] Thomas R. Gruber and Thomas R. Gruber. A translation approach to portable
ontology specifications.Knowledge Acquisition, 5:199–220, 1993.

[41] Tom Gruber. Ontology. InEntry in the Encyclopedia of Database Systems, Ling

Liu and M. Tamer Ozsu (Eds.). Springer-Verlag, 2008.

[42] Nicola Guarino. Understanding, building and using ontologies.Int. J. Hum.-

Comput. Stud., 46(2-3):293–310, 1997.

[43] Nicola Guarino. Formal ontology and information systems. InInternational

Conference on Formal Ontology in Information Systems (FOIS98), pages 3–15,
Trento, Italy, June 1998. IOS Press.

[44] Nicola Guarino and Pierdaniele Giaretta. Ontologies and knowledge base: To-
wards a terminological clarification.N.J.I. Mars (ed.) Towards Very Large Knowl-

edge Bases, pages 25–32, 1995.

[45] Vandana Gunupudi and Stephen R. Tate. Sagent: a security framework for jade.
In Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone,
editors,AAMAS, pages 1116–1118. ACM, 2006.

[46] Bryan Horling and Victor Lesser. A survey of multi-agent organizational para-
digms.The Knowledge Engineering Review, 19(4):281–316, 2004.

[47] Trung Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. An integrated
trust and reputation model for open multi-agent systems.Autonomous Agents and

Multi-Agent Systems, 13(2):119–154, 2006.

Bibliography 79

[48] Aglets IBM. www.trl.ibm.com/aglets .

[49] Audun Jøsang. An algebra for assessing trust in certification chains. InNDSS.
The Internet Society, 1999.

[50] Audun Jøsang. A logic for uncertain probabilities.International Journal of Un-

certainty, Fuzziness and Knowledge-Based Systems, 9(3):279–212, 2001.

[51] Audun Jøsang, Elizabeth Gray, and Michael Kinateder. Simplification and analy-
sis of transitive trust networks.Web Intelligence and Agent Systems, 4(2):139–
161, 2006.

[52] Audun Jøsang and Jochen Haller. Dirichlet reputation systems. InARES, pages
112–119. IEEE Computer Society, 2007.

[53] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision.Decision Support Systems, 43(2):618–644,
2007.

[54] Audun Jøsang and Roslan Ismail. The beta reputation system. InIn Proceedings

of the 15th Bled Electronic Commerce Conference, 2002.

[55] Thomas Juan, Adrian R. Pearce, and Leon Sterling. Roadmap: extending the gaia
methodology for complex open systems. InAAMAS[2], pages 3–10.

[56] Michael Luck. Guest editorial: Challenges for agent-based computing.Au-

tonomous Agents and Multi-Agent Systems, 9(3):199–201, 2004.

[57] Michael Luck, Peter McBurney, and Chris Preist. A manifesto for agent technol-
ogy: Towards next generation computing.Autonomous Agents and Multi-Agent

Systems, 9(3):203–252, 2004.

[58] Qusay H. Mahmoud and Leslie Yu. Making software agents user-friendly.IEEE

Computer, 39(7):94–96, 2006.

[59] Antonio Maña, Antonio Muñoz, and Daniel Serrano. Towards secure agent com-
puting for ubiquitous computing and ambient intelligence. In Jadwiga Indulska,
Jianhua Ma, Laurence Tianruo Yang, Theo Ungerer, and Jiannong Cao, editors,
UIC, volume 4611 ofLecture Notes in Computer Science, pages 1201–1212.
Springer, 2007.

[60] Steve Marsh.Formalizing trust as a Computational Concept. PhD thesis, Dept.
of Mathematics and Computer Science, University of Stirling, 1994.

[61] Peter McBurney and Michael Luck. The agents are all busy doing stuff!IEEE

Intelligent Systems, 22(4):6–7, 2007.

80 Bibliography

[62] Peter McBurney and Simon Parsons. Engineering democracy in open agent sys-
tems. In Andrea Omicini, Paolo Petta, and Jeremy Pitt, editors,ESAW, volume
3071 ofLecture Notes in Computer Science, pages 66–80. Springer, 2003.

[63] Peter Mcburney and Simon Parsons. Engineering democracy in open agent sys-
tems. InEngineering Societies in the Agents World, LNAI. Springer, 2004.

[64] Lik Mui, Ari Halberstadt, and Mojdeh Mohtashemi. Evaluating reputation in
multi-agents systems. In Rino Falcone, K. Suzanne Barber, Larry Korba, and
Munindar P. Singh, editors,Trust, Reputation, and Security, volume 2631 ofLec-

ture Notes in Computer Science, pages 123–137. Springer, 2002.

[65] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the a&a meta-
model for multi-agent systems.Autonomous Agents and Multi-Agent Systems,
17(3):432–456, 2008.

[66] Kouichi Ono and Hideki Tai. A security scheme for aglets.Softw., Pract. Exper.,
32(6):497–514, 2002.

[67] Paolo Petta, Robert Tolksdorf, and Franco Zambonelli, editors.Engineering Soci-

eties in the Agents World III, Third International Workshop, ESAW 2002, Madrid,

Spain, September 16-17, 2002, Revised Papers, volume 2577 ofLecture Notes in

Computer Science. Springer, 2003.

[68] Lars Rasmusson, Andreas Rasmusson, and Sverker Janson. Reactive security and
social control. InIn Proceedings, 19 th National Information Systems Security

Conference, 1996.

[69] Jordi Sabater. Evaluating the regret system.Applied Artificial Intelligence, 18(9-
10):797–813, 2004.

[70] Jordi Sabater and Carles Sierra. Regret: reputation in gregarious societies. In
AGENTS ’01: Proceedings of the fifth international conference on Autonomous

agents, pages 194–195, New York, NY, USA, 2001. ACM.

[71] Jordi Sabater and Carles Sierra. Reputation and social network analysis in multi-
agent systems. InAAMAS[2], pages 475–482.

[72] Jordi Sabater and Carles Sierra. Review on computational trust and reputation
models.Artif. Intell. Rev., 24(1):33–60, 2005.

[73] Glenn Shafer. Perspectives on the theory and practice of belief functions.Int. J.

Approx. Reasoning, 4(5-6):323–362, 1990.

Bibliography 81

[74] Carles Sierra. Agent-mediated electronic commerce.Autonomous Agents and

Multi-Agent Systems, 9(3):285–301, 2004.

[75] Carles Sierra, Jordi Sabater, Jaume Agustí-Cullell, and Pere Garcia. Integrating
evolutionary computing and the sadde methodology. InAAMAS, pages 1116–
1117. ACM, 2003.

[76] JACK Autonomous Software. www.aosgrp.com .

[77] Jadex Agent System. vsis-www.informatik.uni-hamburg.de/

projects/jadex .

[78] Tacoma. www.tacoma.cs.uit.no .

[79] Himanshu Tagra and Saroj Kaushik. Mole agents - a new phenomenon in auc-
tions. InCIMCA ’05: Proceedings of the International Conference on Compu-

tational Intelligence for Modelling, Control and Automation and International

Conference on Intelligent Agents, Web Technologies and Internet Commerce Vol-

1 (CIMCA-IAWTIC’06), pages 439–443, Washington, DC, USA, 2005. IEEE
Computer Society.

[80] Robert A. Wilson and Frank C. Keil, editors.The MIT Encyclopedia of the Cog-

nitive Sciences (MITECS). Bradford Books. MIT Press, September 2001.

[81] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia method-
ology for agent-oriented analysis and design.Autonomous Agents and Multi-

Agent Systems, 3(3):285–312, 2000.

[82] Li Xiong and Ling Liu. A reputation-based trust model for peer-to-peer ecom-
merce communities. InCEC, pages 275–284. IEEE Computer Society, 2003.

[83] Li Xiong and Ling Liu. A reputation-based trust model for peer-to-peer ecom-
merce communities. InACM Conference on Electronic Commerce, pages 228–
229. ACM, 2003.

[84] Bin Yu and Munindar P. Singh. An evidential model of distributed reputation
management. InAAMAS[2], pages 294–301.

[85] Weiwei Yuan, Donghai Guan, Sungyoung Lee, Young-Koo Lee, and Heejo Lee.
Filtering out unfair recommendations for trust model in ubiquitous environments.
In Aditya Bagchi and Vijayalakshmi Atluri, editors,ICISS, volume 4332 ofLec-

ture Notes in Computer Science, pages 357–360. Springer, 2006.

[86] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing
multiagent systems: The gaia methodology.ACM Trans. Softw. Eng. Methodol.,
12(3):317–370, 2003.

82 Bibliography

[87] Franco Zambonelli and Andrea Omicini. Challenges and research directions in
agent-oriented software engineering.Autonomous Agents and Multi-Agent Sys-

tems, 9(3):253–283, 2004.

[88] Franco Zambonelli and H. Van Dyke Parunak. Signs of a revolution in computer
science and software engineering. In Petta et al. [67], pages 13–28.

