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Little by little the night turns around  
Counting the leaves which tremble at dawn  

Lotuses lean on each other in yearning  
Over the hills a swallow is resting  

Set the controls for the heart of the sun  
 

Over the mountain  
Watching the watcher  
Breaking the darkness  
Waking the grapevine  

Knowledge of love is knowledge of shadow  
Love is the shadow that ripens the wine  
Set the controls for the heart of the sun  

The heart of the sun  
The heart of the sun  

 
Witness the man who waves at the wall  

Making the shape of his questions to Heaven  
Whether the sun will fall in the evening  
Will he remember the lesson of giving?  
Set the controls for the heart of the sun  

The heart of the sun  
The heart of the sun  

 
(from the album “A saucerful of secrets” by Pink Floyd) 
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Abstract 

Model-based design of experiments (MBDoE) techniques are a very useful tool for the rapid 

assessment and development of dynamic deterministic models, providing a significant support 

to the model identification task on a broad range of process engineering applications. These 

techniques allow to maximise the information content of an experimental trial by acting on 

the settings of an experiment in terms of initial conditions, profiles of the manipulated inputs 

and number and time location of the output measurements. 

Despite their popularity, standard MBDoE techniques are still affected by some limitations. In 

fact, when a set of constraints is imposed on the system inputs or outputs, factors like 

uncertainty on prior parameter estimation and structural system/model mismatch may lead the 

design procedure to plan experiments that turn out, in practice, to be suboptimal (i.e. scarcely 

informative) and/or unfeasible (i.e. violating the constraints imposed on the system). 

Additionally, standard MBDoE techniques have been originally developed considering a 

discrete acquisition of the information. Therefore, they do not consider the possibility that the 

information on the system itself could be acquired very frequently if there was the possibility 

to record the system responses in a continuous manner.  

In this Dissertation three novel MBDoE methodologies are proposed to address the above 

issues. First, a strategy for the online model-based redesign of experiments is developed, 

where the manipulated inputs are updated while an experiment is still running. Thanks to 

intermediate parameter estimations, the information is exploited as soon as it is generated 

from an experiment, with great benefit in terms of precision and accuracy of the final 

parameter estimate and of experimental time. 

Secondly, a general methodology is proposed to formulate and solve the experiment design 

problem by explicitly taking into account the presence of parametric uncertainty, so as to 

ensure by design both feasibility and optimality of an experiment. A prediction of the system 

responses for the given parameter distribution is used to evaluate and update suitable backoffs 

from the nominal constraints, which are used in the design session in order to keep the system 

within a feasible region with specified probability.  

Finally, a design criterion particularly suitable for systems where continuous measurements 

are available is proposed in order to optimise the information dynamics of the experiments 

since the very beginning of the trial. This approach allows tailoring the design procedure to 

the specificity of the measurement system.  

 

A further contribution of this Dissertation is aimed at assessing the general applicability of 

both standard and advanced MBDoE techniques to the biomedical area, where unconventional 



experiment design applications are faced. In particular, two identification problems are 

considered: one related to the optimal drug administration in cancer chemotherapy, and one 

related to glucose homeostasis models for subjects affected by type 1 diabetes mellitus 

(T1DM). Particular attention is drawn to the optimal design of clinical tests for the parametric 

identification of detailed physiological models of T1DM. In this latter case, advanced 

MBDoE techniques are used to ensure a safe and optimally informative clinical test for model 

identification. The practicability and effectiveness of a complex approach taking 

simultaneously into account the redesign-based and the backoff-based MBDoE strategies are 

also shown. The proposed experiment design procedure provides alternative test protocols 

that are sufficiently short and easy to carry out, and allow for a precise, accurate and safe 

estimation of the model parameters defining the metabolic portrait of a diabetic subject. 



Riassunto 

Le moderne tecniche di progettazione ottimale degli esperimenti basata su modello (MBDoE, 

model-based design of experiments) si sono dimostrate utili ed efficaci per sviluppare e 

affinare modelli matematici dinamici di tipo deterministico. Queste tecniche consentono di 

massimizzare il contenuto informativo di un esperimento di identificazione, determinando le 

condizioni sperimentali più opportune da adottare nella sperimentazione allo scopo di stimare 

i parametri di un modello nel modo più rapido ed efficiente possibile. Le tecniche MBDoE 

sono state applicate con successo in svariate applicazioni industriali. Tuttavia, nella loro 

formulazione standard, esse soffrono di alcune limitazioni. Infatti, quando sussistono vincoli 

sugli ingressi manipolabili dallo sperimentatore oppure sulle risposte del sistema, l’incertezza 

nell’informazione preliminare che lo sperimentatore possiede sul sistema fisico (in termini di 

struttura del modello e precisione nella stima dei parametri) può profondamente influenzare 

l’efficacia della procedura di progettazione dell’esperimento. Come conseguenza, è possibile 

che venga progettato un esperimento poco informativo e dunque inadeguato per stimare i 

parametri del modello in maniera statisticamente precisa ed accurata, o addirittura un 

esperimento che porta a violare i vincoli imposti sul sistema in esame. Inoltre, le tecniche 

MBDoE standard non considerano nella formulazione stessa del problema di progettazione la 

specificità e le caratteristiche del sistema di misura in termini di frequenza, precisione e 

accuratezza con cui le misure sono disponibili. 

 

Nella ricerca descritta in questa Dissertazione sono sviluppate metodologie avanzate di 

progettazione degli esperimenti con lo scopo di superare tali limitazioni. In particolare, sono 

proposte tre nuove tecniche per la progettazione ottimale di esperimenti dinamici basata su 

modello: 

1. una tecnica di progettazione in linea degli esperimenti (OMBRE, online model-based 

redesign of experiments), che consente di riprogettare un esperimento mentre questo è 

ancora in esecuzione; 

2. una tecnica basata sul concetto di “backoff” (arretramento) dai vincoli, per gestire 

l’incertezza parametrica e strutturale del modello; 

3. una tecnica di progettazione che consente di ottimizzare l’informazione dinamica di un 

esperimento (DMBDoE, dynamic model-based design of experiments) allo scopo di 

considerare la specificità del sistema di misura disponibile. 

 

La procedura standard MBDoE per la progettazione di un esperimento è sequenziale e si 

articola in tre stadi successivi. Nel primo stadio l’esperimento viene progettato considerando 



l’informazione preliminare disponibile in termini di struttura del modello e stima preliminare 

dei parametri. Il risultato della progettazione è una serie di profili ottimali delle variabili 

manipolabili (ingressi) e l’allocazione ottimale dei tempi di campionamento delle misure 

(uscite). Nel secondo stadio l’esperimento viene effettivamente condotto, impiegando le 

condizioni sperimentali progettate e raccogliendo le misure come da progetto. Nel terzo 

stadio, le misure vengono utilizzate per stimare i parametri del modello. Seguendo questa 

procedura, l’informazione ottenuta dall’esperimento viene sfruttata solo a conclusione 

dell’esperimento stesso. La tecnica OMBRE proposta consente invece di riprogettare 

l’esperimento, e quindi di aggiornare i profili manipolabili nel tempo, mentre l’esperimento è 

ancora in esecuzione, attuando stime intermedie dei parametri. In questo modo l’informazione 

viene sfruttata progressivamente mano a mano che l’esperimento procede. I vantaggi di questa 

tecnica sono molteplici. Prima di tutto, la procedura di progettazione diventa meno sensibile, 

rispetto alla procedura standard, alla qualità della stima preliminare dei parametri. In secondo 

luogo, essa consente una stima dei parametri statisticamente più soddisfacente, grazie alla 

possibilità di sfruttare in modo progressivo l’informazione generata dall’esperimento. Inoltre, 

la tecnica OMBRE consente di ridurre le dimensioni del problema di ottimizzazione, con 

grande beneficio in termini di robustezza computazionale. 

 

In alcune applicazioni, risulta di importanza critica garantire la fattibilità dell’esperimento, 

ossia l’osservanza dei vincoli imposti sul sistema. Nella Dissertazione è proposta e illustrata 

una nuova procedura di progettazione degli esperimenti basata sul concetto di “backoff” 

(arretramento) dai vincoli, nella quale l’effetto dell’incertezza sulla stima dei parametri e/o 

l’inadeguatezza strutturale del modello vengono inclusi nella formulazione delle equazioni di 

vincolo grazie ad una simulazione stocastica. Questo approccio porta a ridurre lo spazio utile 

per la progettazione dell’esperimento in modo tale da assicurare che le condizioni di 

progettazione siano in grado di garantire non solo l’identificazione dei parametri del modello, 

ma anche la fattibilità dell’esperimento in presenza di incertezza strutturale e/o parametrica 

del modello. 

 

Nelle tecniche standard di progettazione la formulazione del problema di ottimo prevede che 

le misure vengano acquisite in maniera discreta, considerando una certa distanza temporale tra 

misure successive. Di conseguenza, l’informazione attesa dall’esperimento viene calcolata e 

massimizzata durante la progettazione mediante una misura discreta dell’informazione di 

Fisher. Tuttavia, nella pratica, sistemi di misura di tipo continuo permetterebbero di seguire la 

dinamica del processo mediante misurazioni molto frequenti. Per questo motivo viene 

proposto un nuovo criterio di progettazione (DMBDoE), nel quale l’informazione attesa 

dall’esperimento viene ottimizzata in maniera continua. Il nuovo approccio consente di 

generalizzare l’approccio della progettazione includendo le caratteristiche del sistema di 



misura (in termini di frequenza di campionamento, accuratezza e precisione delle misure) 

nella formulazione stessa del problema di ottimo.  

 

Un ulteriore contributo della ricerca presentata in questa Dissertazione è l’estensione al 

settore biomedico di tecniche MBDoE standard ed avanzate. I sistemi fisiologici sono 

caratterizzati da elevata complessità, e spesso da scarsa controllabilità e scarsa osservabilità. 

Questi elementi rendono particolarmente lunghe e complesse le procedure di identificazione 

parametrica di modelli fisiologici dettagliati. L’attività di ricerca ha considerato due problemi 

principali inerenti l’identificazione parametrica di modelli fisiologici: il primo legato a un 

modello per la somministrazione ottimale di agenti chemioterapici per la cura del cancro, il 

secondo relativo ai modelli complessi dell’omeostasi glucidica per soggetti affetti da diabete 

mellito di tipo 1. In quest’ultimo caso, al quale è rivolta attenzione particolare, l’obiettivo 

principale è identificare il set di parametri individuali del soggetto diabetico. Ciò consente di 

tracciarne un ritratto metabolico, fornendo così un prezioso supporto qualora si intenda 

utilizzare il modello per sviluppare e verificare algoritmi avanzati per il controllo del diabete 

di tipo 1. Nella letteratura e nella pratica medica esistono test clinici standard, quali il test 

orale di tolleranza al glucosio e il test post-prandiale da carico di glucosio, per la diagnostica 

del diabete e l’identificazione di modelli dell’omeostasi glucidica. Tali test sono 

sufficientemente brevi e sicuri per il soggetto diabetico, ma si possono rivelare poco 

informativi quando l’obiettivo è quello di identificare i parametri di modelli complessi del 

diabete. L’eccitazione fornita durante questi test al sistema-soggetto, in termini di infusione di 

insulina e somministrazione di glucosio, può infatti essere insufficiente per stimare in maniera 

statisticamente soddisfacente i parametri del modello. 

In questa Dissertazione è proposto l’impiego di tecniche MBDoE standard e avanzate per 

progettare test clinici che permettano di identificare nel modo più rapido ed efficiente 

possibile il set di parametri che caratterizzano un soggetto affetto da diabete, rispettando 

durante il test i vincoli imposti sul livello glicemico del soggetto. Partendo dai test standard 

per l’identificazione di modelli fisiologici del diabete, è così possibile determinare dei 

protocolli clinici modificati in grado di garantire test clinici altamente informativi, sicuri, 

poco invasivi e sufficientemente brevi. In particolare, si mostra come un test orale 

opportunamente modificato risulta altamente informativo per l’identificazione, sicuro per il 

paziente e di facile implementazione per il clinico. Inoltre, viene evidenziato come 

l’integrazione di tecniche avanzate di progettazione (quali OMBRE e tecniche basate sul 

concetto di backoff) è in grado di garantire elevata significatività e sicurezza dei test clinici 

anche in presenza di incertezza strutturale, oltre che parametrica, del modello. Infine, si 

mostra come, qualora siano disponibili misure molto frequenti della glicemia, ottimizzare 

mediante tecniche DMBDoE l’informazione dinamica progressivamente acquisita dal sistema 



di misura durante il test consente di sviluppare protocolli clinici altamente informativi, ma di 

durata inferiore, minimizzando così lo stress sul soggetto diabetico. 

 

La struttura della Dissertazione è la seguente. Il primo Capitolo illustra lo stato dell’arte delle 

attuali tecniche di progettazione ottimale degli esperimenti, analizzandone le limitazioni e 

identificando gli obiettivi della ricerca. 

Il secondo Capitolo contiene la trattazione matematica necessaria per comprendere la 

procedure standard di progettazione degli esperimenti. 

Il terzo Capitolo presenta la nuova tecnica OMBRE per la riprogettazione in linea di 

esperimenti dinamici. La tecnica viene applicata a due casi di studio, riguardanti un processo 

di fermentazione di biomassa in un reattore semicontinuo e un processo per la produzione di 

uretano. 

Il quarto Capitolo propone e illustra il metodo basato sul concetto di “backoff” per gestire 

l’effetto dell’incertezza parametrica e strutturale nella formulazione stessa del problema di 

progettazione. L’efficacia del metodo è verificata su due casi di studio in ambito biomedico. Il 

primo riguarda l’ottimizzazione dell’infusione di insulina per l’identificazione di un modello 

dettagliato del diabete mellito di tipo 1; il secondo la somministrazione ottimale di agenti 

chemioterapici per la cura del cancro. 

Il quinto Capitolo riguarda interamente il problema della progettazione ottimale di test clinici 

per l’identificazione di un modello fisiologico complesso del diabete mellito di tipo 1. La 

progettazione di protocolli clinici modificati avviene adottando tecniche MBDoE in presenza 

di elevata incertezza parametrica tra modello e soggetto diabetico. 

Il sesto Capitolo affronta il problema della progettazione dei test clinici assumendo sia 

incertezza di modello parametrica che strutturale. 

Il settimo Capitolo propone un nuovo criterio di progettazione (DMBDoE) che ottimizza 

l’informazione dinamica acquisibile da un esperimento. La tecnica viene applicata a un 

modello complesso del diabete mellito di tipo 1 e ad un processo per la fermentazione di 

biomassa in un reattore semicontinuo. 

Conclusioni e possibili sviluppi futuri vengono descritti nella sezione conclusiva della 

Dissertazione. 
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Chapter 1 

Introduction and literature survey 

The statement of physical laws, correlations and prior knowledge on a system can be 

exhaustively condensed in a compact form by using a mathematical model, where cause-

effect relationships are represented and emphasised through analytical expressions. Intuitions 

and hypothesis on the ongoing phenomena must be proved in a controlled environment (i.e. 

the laboratory) where experiments are carried out to investigate and validate the adequacy of 

one or more candidate mathematical models. Data collection and model building activities 

can become very highly expensive tasks if the experimental settings are chosen without 

considering any scientific rationale. Model-based design of experiments (MBDoE) is a 

powerful tool to maximise the information content of the experimental trials, allowing to 

detect the best experimental settings to adopt in order to facilitate the model identification 

task. This Thesis is concerned with the development of advanced MBDoE techniques for 

parameter estimation. These techniques are particularly useful and effective to preserve the 

optimality and feasibility of the planned experiments even in the presence of model 

uncertainty. 

1.1 Motivation and main achievements of the research project 

Any scientific conclusion related to process understanding has to be proved by experimental 

evidence, and experimental data are usually required to get relevant information for building 

and developing a reliable mathematical model. Building mathematical models to represent 

physical phenomena from observations is, and has long been, a basic principle of the 

scientific research method. A mathematical model is a surrogate of information, built in an 

iterative fashion during the course of an experimental investigation, where a priori knowledge 

in form of physical/chemical/biological laws defines the model structure and adjustable 

parameters (which may have physical meaning or not) have to be estimated in the most 

precise and accurate way. The model identification is the process of both assessing the model 

structure and estimating the model parameters within the range of expected utilisation. It is 

natural to ask whether it is possible to plan the experiments in order to facilitate the task of 

estimating the parameters or to discriminate between rival model structures. Even the more 

sophisticated numerical techniques may fail on extracting useful information from a series of 

poorly designed experiments, and the result of the identification procedure can merely 
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become a waste of time and resources. A possible solution to overcome this issue is given by 

the design of experiments (DoE) techniques. These are valuable tools for the rapid assessment 

and development of mathematical models, allowing to increase the information content of the 

trials while diminishing the impact of the model identification task on the economy of the 

whole experimentation. When designing an experiment, decisions need to be made before 

data collection, and usually data collection is restricted by the available resources. Standard 

DoE techniques ignore that a candidate model is a preliminary information on the process 

itself: a number of experiments has to be performed in order to reach a preliminary statistical 

representation of a response surface linking the (measured) output variables with the (design) 

input variables. This procedure can be costly and very time consuming. As an evolution, 

model-based design of experiments techniques take the advantage of the knowledge of the 

structure of the underlying system, detecting a set of optimally informative experiments and 

minimising at the same time the required experimental effort. The MBDoE identification 

procedure, thanks to the model exploitation, is quick and particularly flexible and allows to 

manage active constraints on the system under investigation. However, conventional MBDoE 

techniques are still affected by some evident limitations. A structural mismatch between the 

system’s response and the identification model combined to the initial uncertainty in the 

actual parameters value may lead to plan unfeasible (i.e., violating the active constraints) or 

sub-optimal (i.e. scarcely informative) experiments for model identification.     

This Thesis shows how the above issues can be tackled through the adoption of advanced 

MBDoE techniques. The main contributions of this Thesis to MBDoE development are: 

1. an MBDoE strategy explicitly taking into account uncertainty on both model structure and 

parameters; 

2. an online MBDoE strategy exploiting the information as soon as it is generated from the 

system; 

3. a MBDoE technique suitable for systems where continuous measurements are available; 

4. the apply of MBDoE techniques to unconventional applications.   

These newly proposed MBDoE strategies are tested and applied to different case studies, from 

biological to reaction systems described by deterministic dynamic models where a crucial 

aspect to address is the precise identification of the model parameters. In particular, in the 

biomedical engineering area, where complex models have been developed to simulate and 

analyse the behaviour of organs and metabolic systems, the identification procedure may 

become a critical problem and an almost impossible task if the identification tests are not 

properly planned. A particularly innovative contribution of this Thesis is the application of 

these newly developed MBDoE strategies to complex physiological models of type 1 diabetes 

mellitus. Advanced MBDoE techniques are exploited to design a set of clinical tests that 

allow estimating the model parameters in a statistically sound way, fulfilling the imposed 

constraints on safeness for the subject and easiness of conduction. Simulated results 
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demonstrate how a MBDoE approach can improve the effectiveness of clinical tests and serve 

as a tool to devise safer and more efficient clinical protocols.  

1.2 Introduction to design of the experiments  

The purpose of an experiment is to gain significant information from a system, to get useful 

insights on a physical phenomenon and understand its specific behaviour. The basic idea 

underneath DoE is that it is possible to plan a set of experimental trials in order to improve the 

information that can be acquired from a system by simply acting on the experimental settings. 

The theory about design of experiments was first proposed by Ronald A. Fisher in his 

celebrated book The design of experiments in 1935, where he put the fundamental basis of the 

so called factorial design. The goal of factorial design was to analyse the effect of each factor 

(i.e. design variable) in terms of variance, as well as the interactions between factors, on the 

system response. A full factorial design contains all the possible realisations of the factors 

within a design region defined by high/low levels of variability for the design variables. 

Fisher explained the principles of experimentation design by mean of a psycho-physical 

experiment, where a lady declares that by tasting a cup of tea made with milk she can 

discriminate whether the milk or the tea infusion was first added to the cup. He considered the 

problem of designing an experiment by means of which this assertion could be tested. Fisher 

arguely noticed that often the conclusions that can be drawn from an experiment are criticised 

because of incorrect treatment of the data, the purview of the statistician, the existence of 

faulty experimental protocols or the role of the experiment designer. All these aspects, 

concerning the logical structure of the experimental activity, have to be carefully considered 

by the designer when planning an experiment. In the text book, fundamental design concepts 

as randomisation, replication, orthogonality and balance of experiments are coupled with a 

rigorous statistical variance analysis. Other classical DoE methods were devised by Davies 

and coworkers (1954) that, together with Fisher (1935), applied and developed these basic 

design techniques in situations, such as in agriculture and industry, where no a priori 

mathematical models were available. A further refinement of the factorial design 

methodology was provided by Frank Yates aiming at choosing a specific subset of input 

factors realisations. This was called fractional factorial design and is discussed in details in 

the book by Box et al. (1978). Box and Wilson (1951) suggested the use of response surface 

methods (RSM) to explore the relationships between input factors and one or more responses. 

In RSM methods the data coming from a sequence of experimental trials are used to detect an 

optimal response. This is found by regressing the data collected from the experimental trials 

through a statistical function of the most relevant input factors (usually a polynomial) 

representing a response surface (Figure 1.1). An evolution of RSM is provided by stochastic 

response surface methods (SRMS; Isukapalli et al., 1998). These methods are more efficient 
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to represent the variability of the system response in the presence of parametric uncertainty. 

According to these methods both inputs and outputs are approximated by series of random 

variables and the parameters of the power series of the outputs have to be estimated. The 

design methodology, involving a Monte Carlo simulation, is computationally less expensive 

for building a trustworthy response surface than RSM or factorial methods.   

 

 

  

 

  

 

 

 

 

 

 
 

(a) (b) 
 

Figure 1.1 Response surface methods (RSM) for DoE: (a) factorial design table and (b) 
construction of response surface .   

The above mentioned DoE methodologies are known as “black box experiment design” 

methods because the analysis is carried out on the set of independent variables (experimental 

conditions) and dependent variables (measurements) without postulating any formal 

relationship between them (as could be dictated by physical laws or statements), and simply 

by analysing the outcomes of the sequence of observations on statistical basis. Factorial 

methods are widely used in the DoE practice in many areas of application, including biology 

(Valdramidis et al., 2006; Geuten et al., 2007), medicine (Linusson et al., 2000; Altekar et al., 

2007), chemistry (Liang et al., 2001; Llamas-Galilea, 2009) and in mixture design (Solvason 

et al., 2009), economics (Davis and Holt, 1993) and even political sciences (King et al., 

2007). A practical approach to DoE with a number of applications on different scientific areas 

can be found in the exhaustive text books by Anderson and McLean (1974) and Hinkelmann 

and Kempthorne (1994) where the goals and subtleties of experiment design are underlined 

and discussed. Other authoritative books on the subject are given by Box and Draper (1987), 

Atkinson and Donev (1992) and the more recent book by Lazic (2004). DoE methodologies 

represent a first bridge between the experimental world and the modeling world (Figure 1.2), 

and became rapidly very popular for their easiness of implementation and interpretation. The 

experimental activity provides the required information, in the form of collected data, in order 

to define candidate models, select/validate a model and, finally, to perform the parameter 
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identification task on the chosen model. If a model is a reliable representation of reality, it can 

be usefully exploited in the choice of the proper experimental settings, and thus giving a 

valuable support to the experiment design activity in order to increase or optimise the 

information content of each single trial.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODELS
DEFINITION

MODEL SELECTION
AND VALIDATION

MODEL
IDENTIFICATION

MODELLING
ACTIVITY

EXPERIMENTAL
ACTIVITY

EXPERIMENT
DESIGN

EXPERIMENT
EXECUTION

DATA
COLLECTION

DESIGN
VARIABLES

 

Figure 1.2 Relationships between modelling and experimental activity. 

 

Black box DoE techniques are a useful tool for model development and validation, but suffers 

from some drawbacks. In fact, the technique allows to improve the information content of a 

trial, but information is built from a sequence of observations in an iterative fashion. It is 

literally a “data driven” design and preliminary unsuccessful experiments could result in a 

totally ineffective experimental campaign. Furthermore, when a high number of factors is 

present, the experimental effort required by these methods in order to build a first (roughly 

approximated) response surface is very high. Usually the statistical models provided by DOE 

methodologies such RSM are only a rough approximation of the reality, and an estimated 

optimal design point can turn, in practice, to be suboptimal because of the inadequacy of the 

regression model.  
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1.3 Representation of the information content of an experiment 

Response surface methodologies, surrogate modeling (Queipo et al., 2005), as well as kriging 

(Stein et al., 1999) or meta-modeling (Simpson et al., 2001), are basically regression or 

approximation methods where information is extracted from experimental data and condensed 

into a statistical or stochastic model. Unfortunately, this preliminary information is essentially 

a local information, that cannot be exploited outside the range of experimental conditions 

defined by the performed experiments. In stochastic models the ranges of variability for each 

variable are provided in the form of probability distributions. On the contrary, deterministic 

models are particular mathematical models in which the outcomes are precisely determined 

through known relationships among states and events, without any room for random variation. 

In such models a given input will always provide the same output. A wide class of 

deterministic models describes the phenomena being investigated through the statement of 

physical laws and correlations in the form of a system of differential and algebraic equations 

(DAEs). The model capability of representing the underlying phenomena in a reliable and 

accurate way depends on the model structure (i.e., the correlations and laws being used) and 

on the values of parameters that can be calibrated to match the model to a specific real 

system.       

Experimental data are typically required both to assess the model validity and to estimate the 

model parameters in the range of expected utilisation. The approach of perturbing a process 

for system identification is a widespread and mature technique for parameter identification 

(Ljung, 1987), in particular for systems represented by linear models. However, in particular 

for nonlinear systems, the choice of the experiments to be carried out is critical to establish 

the most appropriate model structure and the best values of the parameters as well as to save 

time and effort in experimental trials. Deciding which experiment to carry out is not obvious, 

and there is usually a trade-off between experimental effort (in time and money) and amount 

and quality of data. The best experiment is the one that is most informative but, as discussed 

by Bard (1977), information is a crucial point and it is intrinsically related to the goal of 

investigation. The meaningful question to ask is not “What is the best experiment?”, but 

“What is the best experiment for the attainment of our goal?”. Each experiment performed can 

be seen as a gain of information, but only an optimally designed experiment can be deemed 

“the best” in the sense of being optimally informative for the attainment of the following 

goals: 

 to discriminate among possible rival models, so that the information collected can be used 

to change, improve or reject a model structure (design of experiments for model 

discrimination); 

 to estimate the unknown parameters of the model with a desired level of precision (design 

of experiments for parameter estimation). 
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The model identification procedure aims at both detecting the model structure and estimating 

the set of model parameters. Systematic procedures for model identification have been 

recently proposed in literature by Asprey and Macchietto (2000), Blau et al. (2008) and 

Kreutz and Timmer (2009) and are briefly illustrated in §1.7. 

Fisher (1935) was the first to think about information in analytical terms, measuring the 

quantity of information supplied by an experiment with respect to the particular values to 

which the variance refers. It is possible to gain information only by decreasing uncertainty, 

but the relationship between these two dual intuitive notions cannot be explained in 

frequentist1 terms but only in a Bayesian fashion (Chaloner and Verdinelli, 1995) introducing 

probabilistic assumptions. Shannon (1948) showed that, if θ is a Nθ-dimensional random 

vector of model parameters with associated probability density function p(θ), the unique 

suitable measure of uncertainty V associated with p(θ) is given by  

 

       log logV p E p p p d    θ θ θ                                                                             (1.1)                         

 

where E denote the expectation operator. The more disperse the distribution of θ, the more 

uncertain is the value any specific realisation of θ will assume. According to Lindley (1956), 

if p0(θ) and p*(θ) are, respectively, the prior density and the posterior density of θ, the amount 

of information I that is gained by an experiment is  

 

   *
0 I V p V p                                                                                                                 (1.2) 

 

and it equals the reduction in uncertainty from the prior to the posterior distributions. The goal 

of an optimal design technique is to find the experiment that maximises I. Since  0V p  is 

unaffected by the experiment, the design procedure look for the experiment that minimises 

 *V p . The design methodologies differ basically by the way in which this measure of 

uncertainty is evaluated and by the particular form of the information metric function. This 

quantity can be evaluated recursively from data adopting a regression model (DoE) or be 

calculated directly by using a deterministic model (MBDoE). The differences between the 

two experiment design approaches in terms of information fluxes are highlighted in Figure 

1.3.  

As can be seen in Figure 1.3a, in the black box DoE the information flux coming from 

experimental data is progressively used to build a regression model (i.e. a statistical model 

providing a response surface) representing the variability of the system as the number of 

performed experiments is sufficiently large to cover the overall design space. A significant 

                                                 
1 Bayesian and frequentist are the two major currents in statistics. In the frequentist school, the probability of an event is 
related to its relative frequency over time. In the Bayesian school a prior probability of an event is assigned and updated in 
the light of the new relevant data.   
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experimental effort may be required in this first step of the design procedure to build a 

reliable regression model, and the optimal design settings can be gathered only when a 

consistent response surface is represented.  

In the MBDoE strategy (Figure 1.3b) the procedure starts designing a first experiment based 

on the prior knowledge on the model. After that, information is extracted from the data 

collected after an experiment is performed, thanks to an intermediate parameter estimation 

session. The model thus updated is ready to be used in the subsequent optimisation where the 

expected information is maximised and where the contribution of performed experiments to 

the overall information is taken into account. The information is maximised from the very 

beginning of the design procedure, thanks to the information coming from the model. While a 

large number of experiments is needed by DoE to perform a statistically satisfactory 

representation of the behaviour of the system, MBDoE techniques aim at minimising the 

number of experiments while maximising the information content of each single trial. 
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Figure 1.3 (a) Black box design of experiment (DoE) and (b) model based design of 
experiments (MBDoE): differences in terms of information fluxes.   

As discussed by Kreutz and Timmer (2009) the two design approaches can be usefully 

integrated in a model building procedure. In particular, when no preliminary information on 

the undergoing phenomenon is available, a regression model built using DoE techniques can 

provide a significant support for the development of a deterministic model, eventually 

suitable for MBDoE. In both DoE and MBDoE procedures the goal determining the stopping 

rule can be: i) the attainment of a desired level of precision on parameter estimation;  ii) the 
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attainment of a desired model accuracy; iii) the exploitation of the maximum experimental 

budget (i.e. the experimental effort in terms of time, work and analytical resources that can be 

invested to carry on the identification procedure).  

1.4 Model-based design of experiments: a review 

A mathematical model of a process reflects the actual knowledge of the experimenter on the 

underlying system and can be used to predict the information content of an experiment. In the 

model based design of experiments approach the systems of differential and algebraic 

equations, including expressions related to constraints on the system, can be embedded into a 

deterministic optimisation framework where the objective function being minimised is a 

particular metric of the overall uncertainty, usually expressed by a variance-covariance 

matrix. These particular design techniques have been initially applied to steady state models 

both in the linear and nonlinear forms with respect to model parameters and the applications 

reported in the literature cover a large number of applications from science to social 

disciplines. Box and Lucas (1959) were the first to apply MBDoE strategies to reacting 

systems in order to estimate the kinetic parameters of simple models. In this study the 

determinant of a function of the sensitivity matrices was chosen as a suitable design criterion. 

Kiefer (1959) was one of the first to introduce the so called “alphabetic criteria” (A-, D-, E- 

optimal among others) as design metrics of the variance-covariance matrix. Other pioneristic 

studies on MBDoE for parameter estimation are the ones by Draper and Hunter (1966) and by 

Kittrell et al. (1966). Hunter and Reiner (1965) and Atkinson and Fedorov (1975) were the 

first to develop model-based experimental design criteria for model discrimination based on 

the distinct predictions between candidate models. While these first studies adopted a 

frequentist approach, Box and Hill (1967) and Hsiang and Reilly (1971) used a bayesian 

description, where the concept of entropy was exploited as a measure of the uncertainty on 

discriminating between candidate models. Buzzi-Ferraris and Forzatti (1983) formulated an 

MBDoE criterion for model discrimination taking into account the relative variability on the 

predicted responses of the models. The same authors also extended the design criteria to 

multiresponse systems (Buzzi-Ferraris and Forzatti, 1984).      

The works by White (1975) showed how results from linear design could usefully be 

extended to design experiments for parameter estimation adopting nonlinear models, while 

Fedorov (1972) discussed the optimal design of regression experiments basing on a measure 

of the expected information. Pritchard and Bacon (1975) developed new design criteria based 

on several metrics of the variance-covariance matrix of model parameters in order to decrease 

the degree of correlation among parameters. Bard (1977) applied optimal design criteria based 

on the maximisation of a metric of the Fisher information matrix (FIM) to nonlinear 

parameter estimation problems. The detailed review of Mehra (1974) covers the most relevant 
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contributions to the subject of optimal input design for parameter identification of dynamic 

systems. Optimal input studies have been also discussed by Goodwin and Payne (1973; 1977) 

by applying optimal model-based design criteria in the frequency domain to single-input-

single-output systems, while Kevitzky (1975) applied an MBDoE strategy to linear discrete-

time dynamic models. These preliminary studies are mainly related to the field of signal 

theory where stochastic models are used in the identification procedure. In the automation 

science, when the model itself is adopted for control purposes or embedded in a control 

algorithm, the recursive identification of model parameters may play a crucial role. This 

particular topic about model identification is known as identification for control (Gevers, 

2005). Ljung and Gevers (1986) discovered that the adoption of model based design 

techniques can lead to substantial benefits when a closed loop identification procedure is 

carried out. More recently Hjalmarsson et al. (1996) found that for model-based control 

design a closed-loop identification gives a better performance. Furthermore, Jansson (2004) 

compared standard techniques for model identification in open and closed loop with MBDoE 

techniques, and the results underlined significant benefits of adopting appropriate input 

designs. Micchi and Pannocchia (2008) stressed out the importance of designing appropriate 

input signals for model identification in multivariable ill-conditioned systems. The authors 

compared the performance of random open-loop and closed-loop generated signals suitable 

for model predictive control.  

As discussed by Shirt et al. (1994) in a survey article, the extension of the MBDoE 

methodology to deterministic dynamic models has been a slow process, mainly because of the 

computational effort required by the optimisation steps when a differential system is involved 

in the calculation and the manipulated input variables being optimised are defined by dynamic 

profiles. Cobelli and Tomaseth (1986) studied the problem of optimal input design for the 

identification of simple models of glucose homeostasis; for the first time on this specific topic 

the input design was based on a FIM metric. Espie and Macchietto (1989) were the first to 

formulate the model-based design problem as an optimal control problem and proposed a 

robust algorithm for both model discrimination and improvement of parameter precision. The 

deterministic dynamic optimisation framework for the solution of resulting numerical 

optimisation problem was solved by the Reduced-Space Successive Quadratic Programming 

(SRQPD) optimisation technique developed by Chen et al. (1988). Munack and Posten (1989) 

demonstrated and confirmed that the same MBDoE approach could be useful to address the 

identifiability issues related to the parameter estimation of a simple Monod model. These 

latter studies were the first ones dealing with the problem of optimal design of dynamic 

experiments in nonlinear dynamic models described by DAEs.  

Throughout the years different contributions to MBDoE techniques for the identification of 

dynamic systems have covered different scientific areas, but the studies mainly focused on 

three fundamental aspects: 
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1. the application of MBDoE to specific and/or novel case studies; 

2. the formulation of advanced MBDoE techniques and tools to overcome some major 

limitations of the standard design methodology;  

3. the development of novel robust optimisation algorithms and numerical tools to improve 

the computational efficiency of MBDoE.               

The three different aspects on MBDoE investigation are detailed in the following paragraphs.    

A recent survey article on MBDoE can be found in Franceschini and Macchietto (2008) and 

thus only the major contributions are recalled in this Thesis. An exhaustive text book on the 

subject is the one by Pukelsheim (1993).   

1.4.1 Applications of model-based experiment design 

Applications of MBDoE techniques cover a large variety of fields, starting from industrial 

engineering to chemistry, biology and bioengineering. A partial list of references is presented 

in Table 1.1 and the major contributions are briefly discussed in the following lines.  

The design of dynamic experiments is particularly appropriate in the biological field where 

experimental data generation is generally very expensive and time-consuming. On the wake 

of the first MBDoE applications, Baltes et al. (1994) and Versyck et al. (1998) extended the 

studies on fermentation processes by Munack and Posten (1989) to models of unstructured 

microbial growth, demonstrating the benefits of adopting an MBDoE approach if compared 

with the standard “black box” design procedures. The study by Bernaerts and Van Impe 

(2004) concerns with the optimal design of dynamic experiments for the estimation of 

parameters of microbial growth kinetics models at sub-optimal temperature. The authors also 

investigated the effect of temperature constraints on the information that can be gathered from 

the experiments. Donckels et al. (2009) adopted MBDoE strategies to find the optimal 

sampling scheduling (OSS) both for estimating the model parameters and for discriminating 

among rival models with reference to enzymatic reactions, while Gadkar et al. (2004) 

discussed an iterative approach to model identification of biological networks. Martinez et al. 

(2009) used a MBDoE strategy to design dynamic experiments for identifying the set of 

parameters of a bioprocess for penicillin production. The authors applied global sensitivity 

analysis (GSA) to screen out potential identifiability issues and discussed the effect of model 

imperfection on the effectiveness of the design. Balsa-Canto et al. (2007; 2008) considered 

the problem of designing  optimal dynamic experiments for the identification of a set of 

kinetic parameters of models of thermal degradation for the food industry in predictive 

microbiology. A recent review on the issues and fundamental concepts for designing 

experiments in system biology is provided by Kreutz and Timmer (2009).     

A different and interesting MBDoE application is the one investigated by Emery et al. (1998). 

The authors discussed several model-based design strategies to improve the estimation of 

thermal properties in heating systems. In subsequent papers, Emery et al. (2000; 2001) 
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designed a set of experiments for estimating conductivity and contact resistance when surface 

convective coefficients are uncertain and discussed the important relationships between 

information, sampling rates and models for parameter estimation (Emery et al., 2002).  

 

Table 1.1 Some applications of model-based design of experiments. 
 

Area Contribution Reference 
Models for microbial growth Baltes et al. (1994) 
Haldane growth model Versick et al. (1998) 
Baranyi bacterial growth model Grijspeerdt and Valrolleghem (1999) 
Cellular growth model Gadkar et al. (2004) 
Model for biodiesel process Franceschini and Macchietto (2007) 
Model of thermal degradation Balsa-Canto and Rodriguez-Fernandez (2007) 
Model for penicillin production Martinez et al. (2009) 

Biological 
processes 

Enzymatic fermentation model Donckels et al. (2009) 
Conductivity parameter estimation Emery (1998) Thermal 

systems Conductivity under uncertainty Emery et al. (2000, 2002) 
Energy 
systems 

Polymer-electrolyte-membrane fuel cells Meiler et al. (2009) 

Kinetic model of coal pyrolysis Lohmann et al. (1992) 
Nitrification model Ossenbruggen et al. (1996) 
Diffusion in benzene-toluene system Bardow et al. (2003) 
Alkaline hydrolysis of n-amylacetate Issanchou et al. (2005) 
Catalytic decomposition of NH3 on Ru Prasad and Vlachos (2008) 
Catalytic SO2 oxydation Schöneberger et al. (2009) 
Kinetics of solid thermal decomposition Dirion et al. (2008) 
Protein ion-exchange equilibrium Barz et al. (2009) 

Chemical 
systems 

Mass transfer through porous membranes Zhang et al. (2009) 
Materials 
science 

Elastic constants estimation from plate 
vibration measurements 

Frederiksen (1998) 

Crystal growth parameters estimation Chung et al. (2000) Cristallisation 
processes Industrial cristallisator Chen et al. (2004) 

Optimal blood sampling scheduling DiStefano et al. (1981,1982) 
 Fedorov and Leonov (1997) 

Dragalin et al. (2006) Identification of statistical models for 
optimal dose-finding  Dette et al. (2008) 

Sidoli et al. (2005) Identifiability of models for mammalian 
cell cultures Kontoravdi et al. (2005) 
OSS for pharmacokinetic experiments Kalicka and Bochen (2006) 
Pharmacokinetic population analysis Foracchia et al. (2004) 
Transdermal diffusion model Schittkowski (2008) 
Pharmacokinetic and pharmacodynamic Nyberg et al. (2009) 

Physiological 
systems 

Identification of models for type 2 diabetes Silber et al. (2009) 

 

In chemical technology, MBDoE techniques received a particular attention, quickly becoming 

a well consolidated tool to investigate and elucidate different reaction patterns and to improve 

the estimation of kinetic constants. Starting from the earlier works by Bock (1983), Lohmann 

et al. (1992) developed an MBDoE strategy suitable for the identification of reacting systems. 

The authors in particular analysed a decomposition model of coal pyrolysis. Bardow et al. 

(2003) focused their attention on the optimal design of diffusion experiments for the binary 

mixture benzene-toluene using Raman spectroscopy. Ossenbruggen et al. (1996) applied a D-
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optimal design to a two-step nitrification model, while Issanchou et al. (2005) investigated the 

alkaline hydrolysis of n-amylacetate. Franceschini and Macchietto (2007) focused on the 

application of MBDoE techniques for the identification of parameters in a biodiesel 

production process. The authors in a following study also proposed novel design techniques to 

decrease the level of correlation among parameters (Franceschini and Macchietto, 2008). 

Prasad and Vlachos (2008) adopted MBDoE strategies to estimate the parameters of 

microkinetic models. The authors analysed the catalytic decomposition of ammonia on 

ruthenium. Schöneberger et al. (2009) performed a model-based experimental analysis of a 

fixed-bed reactor for catalytic SO2 oxydation. A sequential A-optimal design was used to 

estimate the kinetic constants of the model, adopting a stochastic search algorithm within the 

constrained optimal design framework.   

Reverte et al. (2007) and Dirion et al. (2008) focused their research on determining the 

parameters and structure of kinetic models of solid thermal decomposition with 

thermogravimetric analysis (TGA) instruments. In this latter study the authors computed the 

optimal programmed temperature profile (as applied to the thermobalance) to use during the 

thermogravimetric experiment in order to identify the set of parameters in a statistically 

reliable way. Barz et al. (2009) recently applied MBDoE techniques for the determination of 

protein ion-exchange equilibrium parameters. The authors investigated different design 

configurations considering uncertainties on the manipulated inputs and practical restrictions 

on the experiments to be carried out. With reference to materials science, Frederiksen (1998) 

made use of model-based design methodologies to estimate the elastic constants from plate 

vibration measurements. The author also investigated the effect of the measurements error on 

the quality of the final estimate. Chung et al. (2000) applied MBDoE techniques for the 

estimation of nucleation and growth parameters in a batch crystallisation process. An 

industrial process of crystallisation of ammonium sulphate was also investigated by Chen et 

al. (2004), where an MBDoE approach was exploited within a model building strategy.  

Recently a larger number of MBDoE applications have been directed to the identification of 

physiological models. These models are usually structurally complex and their dynamics are 

usually difficult to identify with standard techniques. Furthermore, as a result of ethical and 

practical restrictions imposed on medical measurements, the optimal design, sample 

scheduling and planning of biomedical experiments have become important issues for the 

development of novel experimental protocols. The study by Sidoli et al. (2005) underlined the 

problem of global estimability of the kinetic parameters of a large scale kinetic model for 

mammalian cell cultures. Kontoravdi et al. (2005) made the use of global sensitivity analysis 

(GSA) techniques to determine the relevant subsets of model parameters for which a MBDoE 

identification task can be carried out. In this preliminary study the authors studied a complex 

dynamic model of monoclonal antibody-producing mammalian cell cultures. Following the 

pioneeristic works by DiStefano (1981; 1982) on blood sampling scheduling for the 
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identification of physiological models, Kalicka and Bochen (2006) focused their research on 

the optimal sampling scheduling in pharmacokinetic and physiologic experiments. Dragalin et 

al. (2006) proposed an adaptive sequential design for dose-finding where the parameters of a 

probabilistic model are estimated based on efficacy-toxicity response observations. Dette et 

al. (2008) developed robust optimal designs that take into account a set of potential dose-

response profiles within classes of models commonly used in drug development practice. 

Schittkowski (2008) considered a model of transdermal diffusion for developing new drugs 

and application devices, developing specific numerical tools and software for the optimal 

design of experiments for parameter estimation. Foracchia et al. (2004) developed a software 

(POPED) for optimal design of experiments with reference to large scale population kinetics. 

Nyberg et al. (2009) used optimal design techniques to improve or optimise population 

pharmacokinetic and pharmacodynamic studies. Silber et al. (2009) adopted a similar 

approach to improve the effectiveness of intravenous glucose tolerance tests (IVGTT) for 

studies on type 2 diabetes. The authors utilised the POPED software to increase the 

information content of population tests, basing on the computation of the FIM for the entire 

population. The benefits of adopting such an approach come from the fact that the 

information matrix is directly evaluated from a large set of data.    

1.4.2 Development of advanced MBDoE techniques 

MBDoE techniques are flexible tools for the identification of deterministic dynamic models, 

particularly useful to detect the optimally informative experimental conditions to carry out 

during the experimental activity. A powerful feature of these techniques is that they allow to 

take into account a set of active constraints on the physical system being studied. These 

constraints can be enforced on both state and design variables, and their existence is 

intrinsically related to the system under investigation. An ideal experiment, if properly 

designed with MBDoE methodologies, should be: 

1. optimally informative (i.e. providing the maximum information); 

2. feasible (i.e. the constraints on the system must be satisfied). 

Unfortunately, at least in their standard formulations, MBDoE techniques cannot ensure that 

these requirements are always met simultaneously. As discussed by Ford et al. (1989), since 

the design methodology is model-based, both model mismatch (i.e., the behaviour of the 

system can be structurally different from the model representation) and parametric mismatch 

(the actual values of model parameters can be very different from the proper set of parameters  

describing the system) may affect the effectiveness of the whole design procedure. In 

particular, the scarce preliminary information on the system (in terms of model structure and 

values of model parameters) can lead the procedure to predict inconsistent values of the 

expected information. The expected information (usually evaluated by a particular metric of 

the Fisher information matrix, expressing the chosen design criteria) may be significantly 
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different from the actual information acquired by the experiment. The final result can be a 

sub-optimal designed experiment (scarcely informative) or, in the worst case, an unfeasible 

experiment, where the constraints imposed on the system turn, in practice, to be violated. A 

further limitation of the technique is given by the fact that often the classical design criteria 

could be insufficient to decrease the uncertainty of the inference region in a satisfactory way. 

The criteria should be tailored on the specificity of the given parametric model, in order to 

investigate different directions and sources of variability.     

When a standard MBDoE approach is attempted, assuming that no model discrimination is 

required beforehand, three consecutive steps are needed to determine the model parameters:  

1. the design of a new set of experiments, based on current knowledge (model structure and 

parameters, statistics from prior experiments) and on the maximization of some scalar 

value associated to the dynamic FIM;  

2. the execution of the designed experiment and collection of new data;  

3. the estimation of new model parameters and statistical assessment.  

A scheme of a standard MBDoE procedure is shown in Figure 1.4.  
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Figure 1.4 Standard procedure for model-based design of experiments. 

The sequential iteration of steps 1, 2, and 3 leads to a progressive reduction in the uncertainty 

region of model parameters, thanks to the new information obtained from experimental data. 

The way in which these design activities are managed and linked together define the so called 

“topology” of  the design procedure and is usually fixed, in the sense that the three operations 

are generally carried out in a strictly sequential way. However, note that, if multiple 

equipments are available, there is no reason to think that the experiments should be planned 

and performed in a sequential way. Other topologies could be more efficient in terms of 

design effectiveness and resource utilisation. On this perspective, additional degrees of 

freedom are available to the experimenter, regarding the management of elapsed time and 

allocation decisions (which equipment can be used to perform a specific experiment). These 

aspects, defining the overall experimental structure, can be investigated by design and  

eventually embodied within a dynamic optimisation framework.   
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In a similar fashion, there is no apparent reason to perform a parameter estimation and an 

experiment design session only when a single trial has already concluded. Information could 

be acquired and exploited as soon as it is generated by the experiment.  

Advanced MBDoE techniques have been developed throughout the years to overcome the 

above mentioned limitations of the original methodology and to extend MBDoE applicability 

to large and complex systems. The contributions include: 

1. the development of novel design criteria; 

2. model transformation for MBDoE;  

3. the modification of MBDoE topology. 

A list of the major contributions to the development of advanced MBDoE strategies is shown 

in Table 1.2, and briefly detailed in the following lines.  

 

Table 1.2 Several contributions to the development of advanced MBDoE strategies. 

 
Topic Contribution Reference 

Integration of alphabetic design criteria Versyck and Van Impe (1998) 
Curvature-based MBDoE criteria Benabbas et al. (2005) 

Asprey and Macchietto (2002) 
Körkel et al. (2004) 
Bruwer and MacGregor (2006) 
Rojas et al. (2007) 

Robust MBDoE criteria 

Chu and Hahn (2008) 
METER design criterion Bardow (2008) 
AC-optimal design criteria Franceschini and Macchietto (2008) 
A-optimal oriented MBDoE Schittkowski (2007) 
SV-optimal design criterion Galvanin et al. (2007) 
P-optimal design criterion Zhang and Edgar (2009) 
Criterion including posterior covariance matrix 
of differences between model predictions 

Schwaab et al. (2008b) 

Development of 
novel design 
criteria  

Derivative-free MAP derived MBDoE Heine et al. (2008) 

Incremental identification techniques 
Bardow and Marquardt (2004) 
Bardow et al. (2005) 
 Brendel et al. (2006) 

Design using hybrid function approximations Chen and Wang (2004) 
BOM identification technique Rollins and Larson (2006) 

Model 
transformation for 
MBDoE 

Multiple reparameterisations Schwaab et al. (2007, 2008a) 
Adaptive input design Lindquist and Hjalmarsson (2001) Modification of 

MBDoE topology Optimal adaptive input design Stigter et al. (2008) 

 

Versyck and Van Impe (1998) proposed an innovative MBDoE design criterion incorporating 

the classic alphabetic design criteria (Kiefer, 1954) within a single objective function, where 

the designer, thanks to proper weighting factors, could choose to favour one design metric 

instead of another. Robust techniques for optimal experimental design have been proposed in 

literature (Asprey and Macchietto, 2002) to preserve the optimality of the design in the 

presence of parametric uncertainty, solving a max-min optimisation problem (“worst case 

approach”) or performing a dynamic optimisation over all the predicted uncertainty region of 

model parameters (“expected value approach”). Both criteria were applied to a semi-
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continuous bioreactor model. A robust design approach was also followed by Körkel et al. 

(2004) studying the reaction of urethane. Benabbas et al. (2005) proposed an original design 

method based on the evaluation of the second order sensitivities and taking into account the 

curvature of the inference regions. The authors demonstrated the benefits of adopting a 

curvature-based MBDoE with reference to the bioreactor model previously discussed by 

Asprey and Macchietto (2002). Bruwer and MacGregor (2006) proposed a robust design 

technique for model identification based on the D-optimal criterion, investigating the impact 

on design effectiveness of highly correlated sequences of manipulated inputs. Rojas et al. 

(2007) proposed a min-max approach on the frequency domain to solve the robust optimal 

design problems with simple constraints on the manipulated inputs. Interestingly, the authors 

also compare different design criteria linking robust control techniques (Hjalmarsson, 2005) 

and standard experimental design procedure. Chu and Hahn (2008) proposed a technique to 

integrate optimal parameters selection with experimental design under parametric uncertainty 

for nonlinear dynamic systems. The robust design was performed by adopting a hybrid 

method combining a genetic algorithm and a stochastic approximation technique. A different 

design metric (METER) suitable for ill-posed problems was proposed by Bardow (2008) 

where the optimal design settings are obtained by minimising the expected total error on 

model responses.  

Complementary numerical tools have been developed for preliminary model investigation and 

analysis. Local sensitivity analysis (Saltelli and Tarantola, 2002), global sensitivity analysis 

(Sobol, 2001; Kucherenko et al., 2009; Kiparissides, 2009) and bootstrapping methods (Joshi 

et al., 2006) can be useful for both investigating particular sources of variability of the system 

in terms of design variables and to tackle potential identifiability issues of candidate models 

(see §1.5). Recently Schuurman (2007) adopted a design approach based on local sensitivity 

analysis to detect the best operating conditions for transient experiments, with the purpose of 

estimating a set of kinetic parameters for temporal analysis of products (TAP). Sin et al. 

(2009) used both input propagation analysis and sensitivity analysis to screen out the effect of 

parameters and experimental conditions on the uncertainty of the outputs. The study focused 

on a mechanistic model describing a batch cultivation for antibiotic production. 

Principal component analysis (PCA) techniques (Vajda et al., 1985) are valuable tools for 

investigating the correlation between parameters and the joint effect of the parameters on the 

expected information. Franceschini and Macchietto (2008) developed several anti correlation 

(AC) criteria with the purpose of decreasing the level of correlation among parameters in a 

biodiesel model. These criteria are based on PCA of the correlation matrix of model 

parameters. Zhang and Edgar (2009) proposed a generalised MBDoE criterion (termed “P-

optimal”) introducing PCA into the analysis of the sensitivity matrix and of the information 

matrix. Interestingly, the authors found that the new criterion is more efficient for complex 

systems and less sensitive to initial parameters values.  
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Schittkowski (2007) proposed a promising algorithm where an A-optimal design criteria is 

used to evaluate the performance of the sequential identification procedure, i.e. assessing the 

identifiability of model parameters. In the algorithm a parameter elimination step, based on 

the singular values of the posterior covariance matrix of model parameters, is used to decrease 

the size of the information matrix in the design optimisation.  Schwaab et al. (2008) adopted a 

sequential design of experiments to discriminate among rival models taking into account the 

posterior covariance matrix of differences between model responses in the formulation of the 

design criteria. The model discrimination power is enhanced in comparison to the standard 

criteria for model discrimination initially proposed by Hunter and Reiner (1965) and Buzzi-

Ferraris et al. (1984), where posterior covariance contribution was neglected. The new 

strategy allows increasing the capability of model discrimination, simultaneously leading to 

improved parameter estimates. Heine et al. (2008) proposed a novel derivative-free MBDoE 

approach for the calculation of the planned experiment’s information content. The authors 

found that the new approach yields the same result as the calculation with the FIM if the 

mathematical model is linear in the model parameters.    

Advanced MBDoE techniques have been recently formulated to modify, reduce or transform 

the candidate model in order to facilitate the MBDoE identification procedure. Incremental 

identification techniques (Bardow and Marquardt, 2004; Bardow et al., 2005; Brendel et al., 

2006) are particularly suitable for kinetic model identification and allow decomposing the 

whole identification problem into a set of minor sub-problems. Each sub-problem is focused 

on the evaluation of a specific set of variables (including reaction fluxes, reaction 

stochiometry, reaction rates and kinetic laws). One drawback of the methodology is that it 

requires an adequate amount of data to overcome the bias predictions between distinct 

submodels. A problem decomposition approach to model identification was also followed by 

Rollins and Larson (2006). The authors adopted a block oriented modeling (BOM) approach 

to build a “gray-box” model from data coming from a highly nonlinear complex model of the 

human thermoregulatory (HT) system. The BOM identification method is able to predict HT 

response and is suitable for managing physically interpretable model structures and 

coefficients, and thus providing a precious support for both model discrimination and 

parameter identification. Chen and Wang (2004) proposed a sequential MBDoE strategy 

based on hybrid function approximations where the simulated profiles of a batch reactors are 

converted into a set of function coefficients covering the whole design space. Here an optimal 

search strategy is carried out and coupled with an uncertainty analysis. The authors call their 

approach “non model based experimental design” because the deterministic model is basically 

approximated by a class of stochastic functions. Sjöblom and Creaser (2008) proposed a PCA 

model, built from a sensitivity analysis of a first principle model, for experimental screening 

and microkinetic modeling. The new technique is particularly suitable when the number of 

model parameters is very large, allowing for the reduction of the size of the uncertainty space 



Introduction and literature survey 

 

29

investigated by design. The authors stressed out the computational benefits of adopting a 

Jacobian based design instead of the usual design, based on the maximisation of the 

information matrix. Schwaab et al. (2008a, 2008b) discussed the problem of eliminating the 

degree of correlation among parameters by considering different parameterisations of the 

initial dynamic model. The authors propose a two-step parameter estimation procedure in 

order to minimize both parameter correlations and relative errors through a proper 

manipulation of the reference temperatures in reaction kinetics problems. 

Several works investigated the possibility to change or modify the topology of the design 

procedure. When multiple equipments are available Galvanin et al. (2007) noticed that 

designing and performing the experiments in a parallel way may be beneficial in terms of 

time, resources utilisation and amount of acquired information. To this purpose, several 

design topologies (parallel, sequential-parallel) are compared with the standard sequential 

approach and critically discussed. The authors proposed a modified design criteria (SV-

optimal), particularly suitable for parallel experiment design, based on the singular values 

decomposition of the variance-covariance matrix of model parameters. Adaptive input design 

studies have been proposed (Lindquist and Hjalmarsson, 2001), where the information is 

exploited as soon as it is generated from the experiment to update the manipulated input 

variables. Stigter et al. (2006) proposed a first example of  optimal adaptive input design, 

where the optimisation of dynamic inputs  is carried out “online”, and the information is 

exploited to improve the model as soon as it is generated by the experiment. In the study only 

the manipulated inputs are taken into account, ignoring the possibility to determine by design 

the optimal allocation of sampling points and the optimal values of time invariant inputs.       

1.4.3 Development of robust optimisation algorithms for MBDoE  

From the algorithmic point of view, a MBDoE evaluation requires two basic computational 

elements to be carried out: 

 a DAEs integrator for the solution of the system of differential and algebraic equations; 

 an optimiser for the solution of the optimal nonlinear programming problem.  

These two elements are entirely involved in the numerical solution of the MBDoE problem. 

For this reason the computational effort required by MBDoE techniques can be significant, 

expecially when complex models (defined by a large number of states and parameters) are 

involved in the optimisation framework. Throughout the years, research efforts were 

dedicated to improve the efficiency of the algorithms and tools for the numerical solution of 

the design optimisation problem. The key issues regarding the development of a stable and 

robust algorithm for MBDoE are basically:  

1. the numerical treatment of discontinuities affecting both the design objective function and 

the manipulated dynamic profiles; 

2. improvements on the optimisation strategy (local optima are always present); 
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3. increment of the computational speed.  

Throughout the years process modelling environments and numerical software have been 

proposed and developed to solve optimal design problems. While black box DOE can be 

easily implemented by anyone using commercial packages with an user friendly interface 

(Minitab, 2000), MBDoE can be carried out only by using some specific software. To the 

writer’s best knowledge, MBDoE calculations involving dynamic nonlinear differential 

systems can be carried out by using the gPROMS® modelling environment (PSE, 2004), 

suitable for multi-purpose optimisations, VPLAN® (Körkel et al., 2002), or the more recent 

EFCOSS (Bischof et al., 2003). A key feature of software for MBDoE is the interface to 

different optimisation and DAEs integration algorithms.   

The development of the gPROMS® software followed some recent advancements on both the 

hardware technology and the formulation of dynamic optimisation algorithms suitable for the 

implementation. Several contributions have been essential for the development of a dedicated 

MBDoE solver within the gPROMS® modelling environment. First of all, the study by 

Vassiliadis et al. (1994), who analysed a class of constrained dynamic optimisation problems 

involving DAE systems. Here a control vector parametrization (CVP) approach was used to 

convert the above problem to a finite dimensional NLP problem. In the study a dedicated 

DAEs solver (DASOLV; Jarvis and Pantelides, 1992), particularly suitable for treating 

discontinuities, was coupled with the SRQPD code developed by Chen et al. (1989). The 

same optimisation approach, adopting multistage sensitivity evaluation, was successfully 

adopted in a widespread number of MBDoE applications. Keeping and Pantelides (1995) 

showed a significant speed-up over the single processor-based calculations using 

parallelisation of the sensitivity evaluations for mixed systems of DAEs. Further 

improvements on the stability of algorithms for sensitivities evaluation were carried out by 

Vassiliadis et al. (1999), who demonstrated its effectiveness by analysing standard optimal 

control problems of chemical engineering.  

A new software capable of solving large-scale optimisation problems (EFCOSS) has been 

recently developed by Bischof et al. (2003). The modular structure of EFCOSS allows easy 

extension to user-defined objective functions (hence addressing advanced MBDoE problems) 

and has been succesfully tested by Rasch et al. (2009) to solve the problem of optimal design 

of diffusion experiments in liquids as previously studied by Bardow et al. (2005).    

As underlined by Banga and Seider (1996) the NLPs arising from CVP application for solving 

MBDoE optimisation are usually multimodal. Therefore, deterministic gradient-based local 

optimisation techniques may converge to local minima. Global optimality cannot be 

guaranteed, but in many practical cases a stochastic optimisation approach (Banga et al., 

2005) can provide an efficient solution in a reasonable time. The studies of Bauer et al. (1999) 

presented a specific sequential procedure for optimal model-based experimental design for 

chemical processes discussing the optimization problem and the sequential quadratic 
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programming (SQP) method used for the numerical solution. The benefits of adopting such an 

approach are demonstrated by an example represented by a stiff set of equations describing 

the reaction of urethane. Multiple shooting optimisation techniques (Bock et al., 2003) can 

provide substantial benefit to the robustness of a constrained optimal control problem. With 

those techniques the infinite dimensional optimisation problem is reduced to a finite 

dimensional problem where the control vector is approximated on every subinterval of a 

suitably chosen mesh. In a following study, Leineweber et al. (2003) developed an improved 

optimisation procedure through a simultaneous solution strategy based on multiple shooting 

and reduced SQP. Rustem et al. (2003) proposed a semi-infinite programming algorithm to 

solve the global optimisation design and the feasibility problem (i.e. constraints satisfaction) 

in parallel, with great benefits in terms of computational time saving; in this case the robust 

constrained MBDoE problem was solved with only constraints on the design variables. 

Schwaab et al. (2008) proposed a hybrid optimisation framework exploiting a stochastic 

search algorithm (particle swarm optimisation) for solving nonlinear optimisation problems 

arising from parameter estimation and MBDoE. Recently, theoretical and algorithmic 

advances on the field of deterministic global optimisation (Floudas and Pardalos, 2003) for 

several classes of mathematical problems demonstrates a clear evolution and new possibilities 

to solve previously intractable problems arising from diverse scientific areas.  

1.5 Observability and identifiability of nonlinear parametric models 

When analysing a MIMO system, some questions arise about  

1. the possibility to move the state of the system from an initial state to a final state 

manipulating the inputs in a finite time interval; 

2. the possibility to identify the current state of the system (once u(t) and w are fixed and 

known) by using only the outputs. 

These dual aspects deal with the properties of controllability and observability of the system, 

respectively. The first aspect is crucial to ensure the applicability and the feasibility of design, 

and is the expected answer to the question of whether is possible to excite the system in order 

to obtain a desired trajectory or not. The second aspect is crucial for model identification. If a 

system is observable, and its states can be uniquely defined by a finite set of meaningful 

parameters, the problem is to achieve a statistically meaningful estimate of these parameters. 

Once a candidate model is considered, a critical aspect to address is the one of parametric 

identifiability. The goal of every model building strategy is to tailor the model to the 

specificity of the phenomena being studied, and a fundamental problem is to investigate 

whether unknown parameters in a given model structure can be uniquely recovered from 

experimental data. The concept of identifiability can be introduced in several ways and 

several identifiability definitions have been proposed in literature. First of all, as devised by 
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Davidescu and Jørgensen (2009), a fundamental distinction has to be done between a priori 

identifiability (or structural identifiability testing) and a posteriori identifiability (based on 

collected experimental information).  

A priori identifiability (Bellman and Ästrom, 1970; Lecourtier and Walter, 1981) aims at 

verifying if, under ideal conditions of noise-free observations and absence of external 

disturbances, the unknown parameters of a postulated model can be estimated from a 

designed MIMO experiment. Let us consider a generic multiple-input-multiple-output 

(MIMO) system that can be described by a nonlinear parametric model with a given structure 

M(θ):   

 

 

                                                                                                                                              (1.3) 

                 

 

where N  is the set of unknown parameters to be estimated, is the vector of 

time-dependent state variables,  and are, respectively, the time-dependent 

and time-invariant control variables (manipulated inputs),

sNt )(x
uNt )(u wNw

ˆ My is the vector of output 

responses predicted by the model and t is the time. A definition for a priori structural 

identifiability is given in the following lines.   

 

Definition (Structural Identifiability): if the equality of the model inputs (u(t) and w) and 

outputs ( ŷ ) for two distinct set of parameters θ and θ* is denoted by , the 

parameter 
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i   is a priori structurally globally identifiable (SGI) if for almost any θ*  
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and it is structurally locally identifiable (SLI) if, for almost any θ*, there exists a 

neighbourhood v(θ*) such that (4) is still verified (Lecourtier and Walter, 1981).  

 

Local identifiability is a necessary condition for global identifiability, and a model is said to 

be SGI if (4) is verified for the entire parametric set. A parameter that is not SLI is 

structurally nonidentifiable (SNI) and a model is said to be SNI if any of its parameters is 

SNI. To test the identifiability of non linear parametric models, a local study may be 

misleading while a global identifiability test should be carried out. A method testing the 

global identifiability is the one proposed by Pohnjanpalo (1978), basing on the analysis of the 

series expansion of the output function, evaluated at time t = 0. A infinite set of equation is 

built called “exhaustive summary” 
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where the k  are observational parameters given by the coefficients of the powers series of the 

output function. Identifiability is assessed by determining the number of solutions for the 

given parametric set (Walter and Pronzato, 1996). An interesting feature of this identifiability 

test is given by the fact that the exhaustive summary allows devising alternative 

parameterisations in order to preserve the model identifiability.  

When the model is nonidentifiable, the identifiability analysis can be a very difficult task 

because the infinite set of equations of the exhaustive summary should be solved. The only 

way to tackle the problem is to find a finite set of equations containing all the information of 

the exhaustive summary. Ljung and Glad (1994) proposed a method and an explicit algorithm 

based on differential algebra, demonstrating how the testing of global structural identifiability 

can be reduced to the question of whether the given model structure can be rearranged as a 

linear regression. The authors also analysed the condition of “persistent excitation” for the 

input, that can be tested explicitly in a similar fashion, basically showing how identifiability 

and experiment design are highly correlated tasks. A new improved differential algebra 

algorithm based on the Buchberger algorithm (Buchberger, 1988) was proposed by 

Saccomani et al. (1997) where the differential ring   ˆ, , ,R  x y u w  is chosen instead of the 

 ˆ, , , ,R x y u w  differential ring chosen by Ljung and Glad (1994). In this way, once the 

characteristic set is obtained, their coefficients are polynomials in θ, allowing for a significant 

reduction in the number of variables needed for the evaluation of the exhaustive summary of 

the model, thus making the whole algorithm more robust and computationally efficient. Bellu 

et al. (2005) also developed a specific software tool (named DAISY) to test global 

identifiability of biological and physiological systems. As discussed by Saccomani et al. 

(1997) a-priori identifiability is a necessary condition (not sufficient) to guarantee successful 

parameter estimation from real data (a-posteriori identifiability) and, for structurally complex 

and large non linear dynamic models, the a-priori identifiability testing could become an 

almost impossible task because of the computational complexity.  

Global and local sensitivity analysis are widely used tools to assess the a-posteriori 

identifiability of large non linear dynamic models (Brun et al., 2002; Kontoravdi et al., 2005). 

Asprey and Macchietto (2000) proposed an optimisation-based approach to test identifiability 

where the distance between two parameter vectors θ and θI * providing the same model 

output  is maximised: 

 

  
*

* *

,
max

N

TI


   W

 
                (1.6) 

 



Chapter 1 

 

34

where W is a Nθ ×Nθ weighting matrix. If this distance is arbitrarily small the model can be 

deemed globally identifiable. The optimisation algorithm can be constrained defining a 

validity domain for model parameters. Sidoli et al. (2005) developed a “perturbation 

algorithm” coupling the previously mentioned optimisation-based approach to test 

identifiability with a multi-local sensitivity analysis. The algorithm was successfully tested on 

a large-scale, dynamic, and highly non linear biological process model consisting of 27 

inputs, 32 outputs, and more than 350 parameters.  

Söderström and Stoica (1979) observed that the concept of model identifiability does not refer 

only to an intrinsic property of the model structure, but also to the identification procedure 

and the experimental conditions. The quality of the chosen parameter estimator (least squares, 

maximum likelihood, Bayesian estimator) may play a crucial role on estimating the model 

parameters from the data with acceptable statistical precision. Moreover, the information 

content of the experimental runs can by enriched by adding more measured variables to 

increase the observability of the system, and the input design can be carried out by adopting 

black box DoE or MBDoE techniques.  

As discussed by Hochwald and Nehorai (1997), there is an important relationship between 

regularity of the FIM, usually adopted to evaluate the expected information, and the 

identifiability of parametric models. For linear models  this relationship is explicitly defined 

by the Rothenberg theorem, stating that, under some preliminary assumptions, a parameter θ 

is locally identifiable if (and only if) the Fisher information matrix calculated at θ is not 

singular. This significant result can be extended to non linear dynamic models once a local 

approximation of the dynamic behaviour is provided. This aspect will be discussed in detail in 

Chapter 2.    

To briefly summarise, the main advantage of assessing a-priori structural identifiability 

adopting differential algebra or series expansion methods is that they provide a global 

identifiability test. The main drawback is that these methods are computationally expensive. 

On the other hand, a-posteriory identifiability can be assessed by methods based on 

sensitivity analysis and perturbation study that tend to be more applicable, even if they require 

a considerable computational effort if large systems are considered.      

1.6 Identifying physiological models: the need for MBDoE 

What characterises physiology is complexity (Carson and Cobelli, 2001). Complexity usually 

refers to the fact that the elements of the physiological system (at the level of molecule, cell, 

organ and organism) are firmly interlinked following hierarchic schemes and are affected by 

nonlinear, stochastic and time-varying effects. Complexity also arises when observing within 

an organism several control mechanisms (for example feedback loops) that are carried out 

without an (apparent) direct response of a change in physiological variables.  
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Other peculiar features of a physiological system are: 

1. poor observability: it is often very difficult to measure directly (in vivo) the quantities of 

interest and only indirect measures are available (implying the need to infer the value of 

the quantity of interest by using a specific model); 

2. poor controllability: it is notoriously difficult for the clinician to reach a tight control of a 

physiological system, where severe constraints are imposed to keep the safety and the 

functional behaviour of the system itself. 

Physiological models have been proposed in physiology and medicine studies to analyse and 

represent the behaviour of organs and metabolic systems. Being a representation of a complex 

reality, these mathematical models involve some degree of approximation. As a result, these 

models exhibit a structural complexity in the form of mathematical expressions, and usually 

contain a large number of parameters. The risk of over-parameterisation (i.e. the model is 

built by using too many unknown parameters) is always present, and usually leads to the 

unidentifiability of the candidate model (as described in the previous paragraph). A crucial 

issue for the use of a physiological model is the identification of model parameters for 

individual subjects. This may be a very challenging task, particularly for detailed 

physiological models, where identifying individual subject parameters from limited data may 

be extremely difficult. Advanced MBDoE techniques can provide a solution to tackle the 

identifiability issue of detailed physiological models. From a modelling point of view, this 

issue is very similar to the one that is faced by process engineers when they need to estimate 

the parameters of complex dynamic models by carrying out dynamic experiments in a 

chemical or biochemical process system. The problem of properly designing an identification 

test can be formulated as an optimal control problem, where the experiment decision variables 

are (for example) time varying and time invariant inputs, sampling times of response 

variables, experiment initial conditions and duration. This leads to an optimal MBDoE 

problem for parameter identification in a dynamic system where constraints are present both 

in the inputs (manipulated quantities) and in the outputs (measured responses). The existence 

of constraints on the system is related to the fact that the test must be safe for the subject but 

sufficiently short and easy to carry out.  

Let us take a physiological model of  type 1 diabetes mellitus as an example. MBDoE 

techniques can be adopted to optimally design an “experiment” (or a series of experiments) on 

a diabetic subject in order to develop an improved set of clinical tests from which the 

parameters of a dynamic model can be estimated with a higher degree of precision than it has 

been possible so far. Modified test protocols can be specifically designed to tailor a model to 

each individual patient, maximising the amount of information acquired from the tests and 

thus providing a valid alternative to the commonly adopted identification tests.  

It must be stressed out the importance of the availability of a physiological model tailored to 

an individual subject. The model, thus identified, can provide substantial benefits both to the 
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clinician (who could devise customised care solutions for the subject) and to the engineer 

(who could design and test specifically tailored conventional and/or advanced control 

techniques).  

1.7 Thesis overview  

If the goal of every experimental activity is to learn and understand the underlying 

phenomena in a controlled environment, the goal of every model building activity is to 

achieve a substantially adequate model to be used for process design, analysis, control and 

optimisation. A systematic model based procedure for model building has been proposed by 

Asprey and Macchietto (2000) to support the development and statistical verification of 

dynamic process models for both linear and nonlinear dynamic systems described by DAEs 

(Figure 1.5). 
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Figure 1.5 Model building strategy (based on the scheme reported in Asprey and Macchietto (2000)). 

 

The procedure is articulated into three phases: 

1. preliminary analysis, including identifiability testing on candidate models; 

2. model-based design of experiments to discriminate among rival models; 

3. model-based design of experiments for improving parameter estimation. 

In the preliminary analysis candidate models are proposed and analysed. In particular, an 

identifiability test is carried out to check whether is possible to uniquely estimate the set of 
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model parameters from experimental data. In the second phase experiments are designed and 

performed to discriminate among possible rival models. Inadequate models are rejected 

(usually basing on lack-of-fit tests) and the best model is chosen as the ultimate model to 

complete the identification procedure in the final phase, where experiments are designed to 

improve the parameter estimation until a statistically sound parameter estimation is achieved. 

This Thesis is focused on the first and third phases of the model building procedure, where  

identifiability analysis is carried out and advanced MBDoE techniques are specifically 

developed for improving the parameter estimation and the identifiability of the model. In this 

study it is assumed that no design for model discrimination is required and that the selected 

model is an appropriate representation of the phenomenon. However, the impact of both  

structural model mismatch and parametric mismatch on the effectiveness of design will be 

investigated and discussed. Note from the general model building flowchart of Figure 4 that 

the identifiability attribute is a necessary condition for any MBDoE strategy in order to carry 

out both model discrimination and parameter estimation. The importance of the preliminary 

model analysis must not be underestimated, since both identifiability issues and structural 

inadequacy of the model may affect the effectiveness of the whole MBDoE procedure.   

 

A basic roadmap to this Thesis is shown in Figure 1.6. Chapter 2 overviews the mathematical 

background of MBDoE methodologies and the principal techniques for parameter estimation. 

In particular the mathematical modeling of the key activities involved in the design procedure 

(experiment design, experiment execution with data acquisition, parameter estimation) will be 

illustrated in a comprehensive manner. Particular attention will be drawn on the mathematical 

description of the following novel MBDoE techniques: 

1. online model-based redesign of experiments (OMBRE); 

2. backoff strategy for MBDoE under parametric uncertainty; 

3. MBDoE strategy for systems where continuous measurements are available.     

Chapter 3 illustrates the applications of the novel OMBRE technique. This advanced MBDoE 

technique is capable of exploiting the information as soon as it is generated from the 

experiments, performing one or more redesign while the experiment is still running. The 

effectiveness of this design technique on estimating the parameters of nonlinear dynamic 

models will be discussed and assessed by means of two examples: a biological process 

(biomass fermentation in a fed-batch reactor) and a chemical process (synthesis of urethane). 

Chapter 4 presents a novel backoff strategy for MBDoE under parametric uncertainty. This 

advanced MBDoE technique allows to take into account parametric uncertainty, as well as 

external disturbances, in the design procedure. The purpose is dual: i) preserving the 

optimality of design (i.e., the maximisation of information); ii) ensuring the feasibility of the 

planned experiment (i.e., the satisfaction of the superimposed constraints). The novel design 

strategy is applied to two distinct case studies related to physiological models identification: a 
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basic model for studying the optimal insulin infusion rate for subjects affected by type 1 

diabetes mellitus and a model for finding the optimal chemotherapeutic drugs administration 

for cancer treatment.  

 

 
 

Figure 1.6 Thesis roadmap. 

 

Chapter 5 faces the problem of designing optimally informative clinical tests for the 

identification of physiological models of type 1 diabetes mellitus. The effectiveness of 

adopting MBDoE strategies for designing modified test protocols is demonstrated by 

analysing a complex model of glucose homeostasis. Chapter 6 shows how the problem of 

parameter identification of complex models of type 1 diabetes can be succesfully tackled, by 

using advanced MBDoE techniques, even when a structural mismatch between the 

identification model and the subject is present. In particular, the benefits coming from the 

integration of OMBRE and backoff based design techniques will be discussed. Chapter 7 

focuses on the possibility to optimise the dynamic information adopting MBDoE techniques. 

In particular, it is shown how it can be possible to tailor the design strategy to the specificity 

of the measurement system. Here a new MBDoE methodology, suitable when continuous 

measurements are available, will be proposed. In the chapter, similarities between OMBRE 

and model-based predictive control strategies will be underlined and novel directions for 

future research on MBDoE will be outlined. Some final remarks will conclude the Thesis. 



Chapter 2 

MBDoE for parameter estimation: 
mathematical background 

In a standard MBDoE procedure a sequence of three key activities (design of the experiment, 

experiment execution, parameter estimation) must be carried out to estimate the set of 

parameters of a dynamic model. The scope of this Chapter is to overview the mathematical 

and statistical background required to understand in a comprehensive way the basic features 

of the MBDoE procedure for parameter estimation, where each key activity is characterised 

by a precise mathematical formulation.  

2.1 Model-based experimental design framework 

As briefly anticipated in §1.4.2, three key activities are required by a standard MBDoE 

procedure to design an experiment for parameter identification (Figure 2.1):  

1. the design of the experiment, based on the preliminary knowledge about the system; 

2. the execution of the experiment (at the experimental conditions planned by design); 

3. the estimation of the model parameters. 

 

 
 

 Figure 2.1 MBDoE for parameter estimation: standard procedure. 

 

In the design of experiment activity, a representation of information as predicted by the model 

is required to perform an optimisation by acting on the experimental settings. Preliminary 

information on the set of model parameters, or information coming from already performed 

experiments, can be included in the design activity. Some preliminary hypothesis on the 

distribution and entity of measurement errors must be made, at least at the very beginning of 

the procedure, if no information on the measurement system is available. It is possible to 
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decrease the expected uncertainty region of model parameters only by maximising a measure 

of the information predicted by the model, usually known as the “expected information”. The 

result of the optimisation run will be a set of dynamic profiles on manipulated inputs and 

sampling scheduling that will be adopted in the successive key activity, the experiment 

execution. Together with the optimal settings, a set of a-priori statistics will be evaluated 

from the estimation of the expected information (i.e. the prediction of the model of the 

information that will be gathered from the experimental data).   

The experiment is the core of the entire design procedure, and represents the fundamental 

source of information coming from the physical system for model identification and 

validation. Information comes from experimental data collected during the experiment 

performed at the planned conditions1. The measured responses represent a local behaviour of 

the physical system (i.e., the behaviour of the system for the given set of experimental 

conditions), which is suitable for estimating precisely the set of parameters of the dynamic 

model. A particular attention should be made during the experimental activity to reduce 

and/or cancel any form of disturbance that cannot be directly controlled by the experimenter, 

because this would lead to a loss of information during the experiment.             

The parameter estimation activity may be erroneously seen as a mere mechanical subroutine 

where the input is the data collected by the experiment and the output is a number 

representing the estimate, but that would be misleading. Parameter estimation is a 

mathematical procedure where useful information is extracted from experimental data, and 

the choice of a different estimation technique (i.e., of the mathematical form of the estimator 

mapping from the space of the observations to the space of the model parameters) may have a 

dramatic impact on both the precision of the final estimate and the model prediction of the 

physical system behaviour. An effective estimator should be able to discriminate between the 

intrinsic information contained within the experimental data and all the disturbances and 

measurements error that could mask some relevant dynamics of the experiment. The intrinsic 

information of the data as extracted by the parameter estimation activity represents the “actual 

information”, i.e. the true information provided by the experiment which is directly used for 

improving parameter estimation.  

If the experiments are sufficiently informative, the iterative execution of the three key 

activities in sequence will lead to a progressive reduction of the uncertainty region of model 

parameters. In the MBDoE procedure the goal providing the “stopping rule” for the iterative 

procedure can be: i) the attainment of a desired level of precision on parameter estimation;  ii) 

the attainment of a desired model accuracy; iii) the attainment of the maximum experimental 

                                                 
1 It must be pointed out that information, in the form of collected samples, is not an intrinsic feature of the series of collected 
data itself, but is strictly related to the goal of investigation. Experiments should be planned by MBDoE techniques for 
improving parameter estimation, to accept/reject a given model structure or to discriminate among rival models, and the 
mathematical formulation of the design of the experiment needs to be managed accordingly. 
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budget. Note that a critical factor is the assessment of MBDoE effectiveness, usually based on 

the statistical evaluation of the following factors:  

1. the ability of the model to fit the measures responses; 

2. the parameter estimation in terms of accuracy (i.e. asymptotic convergence to a constant 

value, representing the “true” vector of model parameters which is obviously unknown);   

3. the parameter estimation in terms of precision (i.e. confidence of the estimate, related to 

the variance-covariance of model parameters). 

The availability of a model is crucial for both predicting the information content of the trials 

and extracting useful information from collected data. A key-feature of the MBDoE design 

methodology is the fact that the experiment design key activity is model-based. In the 

following, we will refer to the model, whose parameters need to be estimated with the 

maximum degree of precision as the “identification model”. As anticipated in §1.5, a large 

class of dynamic deterministic models can be represented by systems of differential and 

algebraic equations (DAEs): 
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where Nθ is the set of unknown parameters to be estimated, ( ) xNt x

yN

is the vector of 

time-dependent state variables,  and are, respectively, the time-dependent 

and time-invariant control variables (manipulated inputs),

uNt )(u wNw

ˆ y is the vector of output 

responses predicted by the model and t is the time. A set of initial conditions (i.e. conditions 

of the state variables at t =t0) is required to solve the system: 
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The simulation of the physical system along a given experimental horizon requires the 

solution of the (2.1) system in terms of trajectories x(t) and ŷ (t) given the initial conditions 

(2.2), the time-invariant inputs w, the profiles of manipulated inputs u(t) and the values of 

model parameters in θ.  

Some preliminary hypothese have to be made on the model and the physical system. In fact, 

the whole identification procedure can be carried out if and only if:  

 the identification model is an adequate representation of the system (i.e. no model 

discrimination step is required beforehand); 

 the parameters of the identification model can uniquely be estimated from experimental 

data (i.e., the model is SGI, see §1.5).  
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Furthermore, here it is assumed that the physical system can be controlled in a perfect way 

(i.e. that during the experiment execution it is possible to manipulate the input variables 

exactly as predicted during the experiment design key activity).  

2.2 Key activity 1: experiment design 

A fundamental point in the design of experiment theory is the evaluation of expected 

information, i.e. the information foreseen by the identification model. The importance of the 

mathematical formulation of the expected information cannot be overestimated, because the 

result of the experimental design optimisation is a set of experimental settings aiming at 

maximising a particular measure of it. 

2.2.1 Evaluation of the expected information: Fisher information  

Information can be usefully evaluated from the Fisher information matrix (FIM). It is well 

known in literature (Soderstrom and Stoica, 1977) that the FIM I(θ) is a way of measuring the 

amount of information that an observable random variable y carries about an unknown 

parameter vector θ 
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where the likelihood function of θ, L(θ) = p(y,θ), has to be defined. The likelihood function 

describes the joint probability of the samples conditional to the value of θ. In this equation E 

denotes the expectation operator and I, which is always a semi-positive definite matrix, is 

evaluated at a fixed value θ of model parameters. It is possible to define the Nθ-dimensional 

vector of sensitivities for p(y,θ): 
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and it results . The FIM represents the variance of the sensitivities zθ, which 

is the relevant information that can be obtained from the model by exciting the system at 

some specific experimental conditions. Note that (2.3) is a general expression where the 

information evaluation is not explicitly related to a specific probability density function used 

to define the likelihood. For a single-input-single-output (SISO) system, if p(y,θ) comes from 

a multivariate normal distribution, the FIM can be written as  

  0TE  I θ z z 

 

http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Likelihood_function
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where 2
y is the variance of y. For multi-input-multi-output (MIMO) dynamic systems the 

FIM expression can be written as 
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where is the Ny × Nθ dynamic sensitivity matrix, whose elements are expressed by Q
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            i = 1…Ny,  j = 1…Nθ                                                                              (2.7) 

 

and Σ is the Ny × Ny dimensional matrix of measurements errors. Note that equations (2.3-2.7) 

are evaluated at given values of the manipulated inputs, and that a norm (for instance 

Euclidean or Frobenius norm) or a measurement function ψ of I(θ, t) represents a dynamic 

form of the FIM, and thus can be useful to define a time-dependent profile of the expected 

information (see §2.5).  

2.2.2 Design vector and dynamic information matrix   

It is useful to group all the experiment design variables defining the experimental settings (as 

represented in the identification model) in a single vector known as the design vector 

 n : 
 

 0 , ( ), , , τspt y u w t     . (2.8) 

 

In the expression (2.8) of the design vector:  

 y0 is the set of initial conditions of the measured variables2; 

 u(t) is the set of time-dependent manipulated inputs; 

 w is the set of time-invariant inputs; 

 tsp =  T  is the vector of nsp sampling times, defining the set of time instants at 

which the output variables are sampled; 
1 ...

spntt

 τ is the duration of an experiment. 

                                                 
2 The initial conditions that can be designed are all and only those on the measurable set of variables; in principle, this may 
not be necessarily true (measurable initial conditions could refer to states that are not measurable during the experiment or, 
vice-versa, some measurable outputs might not be measured at the beginning). However, as this does not affect the generality 
of the approach, it was decided not to complicate the notation further. 
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Note that, interestingly, the optimal allocation of samples expressed by tsp is a design 

variables itself, because the information contained within each single samples is entirely 

related to the dynamics of the system. The set of time-dependent manipulated inputs u(t) is 

usually approximated adopting control vector parameterisation techniques (Vassiliadis et al., 

1994). These profiles can be approximated by piecewise constant, piecewise linear, or 

polynomial functions over a predefined number of intervals. As an example, adopting a 

piecewise constant function for a time-dependent manipulated input, the variables that need to 

be optimised are    

1. the (nsw – 1) times at which a given manipulated input changes in value (usually known as 

“switching times”); these time instants are collected in the tsw vector of switching times, 

characteristic of each control variable; 

2. the nsw time invariant values (usually known as “switching levels”) that the manipulated 

input assumes before and after each switching time; these values are collected in the zsw 

vector of switching levels, characteristic for each control variable.    

The variables to be optimised are grouped in the following design vector  

  

 1 10 , , , ,, ,..., , ,..., , , ,
N Nu u

sp
sw u sw u sw u sw u φ y z z t t w t   .                                                                 (2.9) 

 

As can be recognised, a large-scale optimisation problem is obtained as the number of 

switching intervals grows. 

In the hypothesis of validity of (2.6), Zullo (1991) proposed a discrete dynamic form for the 

FIM, particularly suitable for solving optimal design problems in dynamic systems where a 

discrete sampling of the measured variables is carried out. This dynamic information matrix 

H for a sequence of N experiments takes the form: 
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where Qi|k is the nsp×Nθ dynamic sensitivity matrix of the i-th measured response in the k-th 

experiment, whose elements (for the k-th experiment) are represented by   
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Q                                                                      (2.11) 

 

sij|k is the ij-th element of the Ny×Ny inverse matrix of measurements error in the k-th 

experiment, and  is the prior dynamic information matrix, taking into account the 

statistical information about the parametric system before each trial is carried out. For 

instance, when the prior information can be expressed by simple bounds of variability for 

0
H
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model parameters, a Nθ-dimensional hyper-rectangular region of variability can be built 

assuming a uniform distribution for the model parameters. In that case, being 

 

                                                                                                                        (2.12) 
10

 


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the preliminary dynamic information matrix, together with Σ , the preliminary variance-

covariance matrix of model parameters, assumes a diagonal form. If no preliminary 

information is available at all, the  term of (2.10) can be neglected.  0
H

The variance-covariance matrix of model parameters Vθ is the inverse matrix of H , and, for 

a single experiment, is expressed as: 
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The scope of the design procedure is to minimise some metric ψ of Vθ by acting on the 

elements of the design vector (2.8). The different mathematical formulations of ψ define the 

design criteria and are discussed in the following Section. 

2.2.3 Design criteria 

The maximisation of the expected information predicted by the identification model is carried 

out by minimising a metric ψ of the variance-covariance matrix of model parameters by 

acting on the elements of the design vector: 

 

  OPT
ˆarg min ψ ,

 V θ 
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During the optimisation, the set of model parameters is kept fixed at the current estimated 

value . The most commonly used design criteria are the so called “alphabetic criteria” 

(Kiefer, 1959): 

θ̂

 
1. A-optimal: minimising the trace of V ,  tr   V ; 

2. E-optimal: minimising the largest eigenvalue of V ,  
1...

max k
k N




  V ; 

3. D-optimal: minimising the determinant of V ,  det   V ; 

 

The geometrical interpretation of the alphabetic design criteria, with reference to a two 

parameters problem, is illustrated in Figure 2.2.  
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Figure 2.2 Geometric interpretation of the alphabetic design criteria. 

Considering linear confidence regions, an A-optimal design aims at decreasing the hyper-

rectangular enclosing the confidence ellipsoid, while a D-optimal design aims at decreasing 

the volume of the confidence ellipsoid. The maximum eigenvalue of the variance-covariance 

matrix of model parameters defines the major axis of the ellipsoid (related to the principal 

direction of variability of the ellipsoid) being minimised by the E-optimal design criterion. 

Note that, since V  is a positive definite symmetrical matrix, these criteria are highly 

correlated (the determinant of V is the product of all its eigenvalues and the trace is the sum 

of the eigenvalues of V ). Whilst the E-optimal criterion acts on a single principal component 

of V , the other two criteria aims at minimising a global measure of uncertainty. A 

modification of the E-optimal criterion was proposed by Mehra (1974) 
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where the ratio between the largest and the smallest eigenvalue of V (condition number) is 

minimised. This criterion acts on the shape of the uncertainty region (for a two parameters 

system  ψ = 1 and the uncertainty region has a perfectly circular shape).    

Alternative design criteria have been proposed in literature exploiting a singular value 

decomposition (SVD) of V . Investigating different directions of variability through SVD it 

is possible to deliver a vector of experimental conditions producing information that is as 

different as possible (orthogonal) from the other ones. In mathematical terms, that means that 

the information content of matrix H is split into its singular values identified by its N 

eigenvalues i. The  SV-optimal criterion (Galvanin et al., 2007), particularly suitable for 

planning parallel experiments to be carried out, aims at maximising the information linked to 
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the Nλ largest singular values of V. Thus, the overall optimisation problem is split into Nλ 

separate optimisation problems, where the k-th measure k  is defined as: 

 

( ) 1,..., ...k k Nk N N              V   .                                               (2.16) 

 

In other words, it is possible to optimise the information within the largest Nλ eigenvalues, 

each requiring the solution of a distinct optimal design problem. 

As illustrated in Figure 2.3, here SV-optimal design allows compressing the confidence 

ellipsoid of the parameters to be estimated by minimising its axes in a selective way. 

Although the relative size of the axes (i.e. the relative magnitude of the eigenvalues) does 

depend on the model being analysed, it is quite significantly affected by the variance-

covariance matrix of the measurements . Large values of the matrix elements (i.e. 

measurement uncertainty) amplify the difference between the eigenvalues. 
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Figure 2.3 Geometrical interpretation of SV-optimality. 

 

Zhang and Edgar (2008) introduced a design criterion (termed P-optimal) where a principal 

component analysis (PCA) of the dynamic information matrix allows to automatically choose 

the most informative directions of information to exploit during the design optimisation. As 

interestingly underlined by the authors, the P-optimal criterion can be usefully adopted both to 

decrease the dimension of the optimisation problem (a subset of the overall principal 

components can be used to describe the information) and to avoid ill-conditioning on H . The 

singularity of the dynamic information matrix may arise: 

1. from an over-parameterisation of the model (the model is described by a large number of 

parameters and some of them have a limited impact on the predictions of the measured 

responses, i.e. a low sensitivity); 
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2. from a high correlation between model parameters;  

3. from an erroneous scaling of the sensitivities (2.13); usually the parameters of a model 

should be normalised in order to get a significant expression for H;  

4. when the design variables are not sufficient to excite the system and gain relevant 

information; 

5. from structural unidentifiability of the model in the region investigated by the design 

procedure (in the design space the model is not SGI). 

It is possible to evaluate the expected correlation among model parameters from Vθ through 

the correlation matrix Cθ, whose elements (correlation coefficients) have the form:   
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c     , (2.17) 

 

where the ij’s are the elements of the variance-covariance matrix Vθ of model parameters. 

When the elements outside the principal diagonal are close to unity the model parameters are 

expected to be highly correlated, and the design could turn in practice to be unsuccessful, 

because correlation tends to decrease the expected information as provided by H , and to 

restrict the capability of MBDoE on reducing the expected uncertainty region of model 

parameters. This may cause instability on the overall optimisation procedure and sub-optimal 

(scarcely informative) experiments to be planned.   

Several design criteria have been proposed in the literature, following the pioneristic work by 

Pritchard and Bacon (1978), to decrease the level of correlation among the model parameters 

directly acting on some metric of Cθ. The authors proposed the following design criterion 
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where the square root of the correlation coefficients between pair of parameters is minimised.  

Walter and Pronzato (1997) analysed parameter estimation problems using linear confidence 

regions and underlined that a high correlation results in a rotation of the principal axes of the 

confidence ellipsoid (Figure 2.4). However, as argued by Franceschini (2007) a confidence 

ellipsoid which is parallel to the axes is not a sufficient condition to ensure the absence of 

correlations. Franceschini and Macchietto (2008) recently proposed some anti-correlation 

design criteria (PAC, ACE and E-AC design criteria). While the PAC criterion aims at 

minimising specific metric of C, the ACE criterion minimises some metric of Cθ taking into 

account additional constraints on the eigenvalues of the information matrix and thus ensuring 

a minimum information level for the experiment. The E-AC criterion does exactly the 
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opposite: it minimises some metric of Vθ by superimposing a constraint on the minimum 

reduction of the elements of Cθ. In this way the experimenter can choose an acceptable degree 

of correlation between the model parameters and additional constraints can be set on the 

elements of Vθ. 

 

 
 
 

Figure 2.4 Relationship between uncertainty and correlation during a standard MBDoE 
procedure (v1 and v2 are the principal axes of the confidence ellipsoid). 

It must be pointed out that, as discussed by Rooney and Biegler (2001), a non-linear analysis 

of the confidence region should be carried out to describe the uncertainty region in a detailed 

and reliable way. In fact, if the model parameters have a physical meaning, once the 

experiment is performed the system would provide the real correlation between physical 

factors affecting the system responses. However, the actual correlation of the system can only 

be evaluated a-posteriori, i.e. after a parameter estimation session is carried out. The 

mismatch between expected and actual information, which is always present in an MBDoE 

procedure and deeply affects the design efficiency (see §2.6), turns out to be a mismatch 

between the expected and the actual correlation foreseen by the identification model.    

For some systems it may be very difficult (perhaps impossible) to provide sufficient 

excitation patterns to gain significant information from an experimental trial in such a way as 

to estimate the model parameters in a statistically satisfactory way. A typical example can be 

provided by closed batch reactive systems, where the goal is to estimate a set of kinetic 
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parameters. The possibility to manipulate the temperature during the trials can be severely 

limited by the experimental budget, and the management of the other design variables (initial 

conditions, the set of sampling times and duration of the experiment) could be not sufficent to 

estimate the kinetic parameters in a statistically sound way. In such a case, the experiment 

needs to be enriched (for example by adding extra measured variables, or adding a tracer), 

otherwise a standard MBDoE strategy could be totally ineffective to improve the information 

content of the experiment.  

The calculation of dynamic sensitivities is a fundamental step for evaluating the dynamic 

information matrix, and their representation (see §2.5.2) may be crucial to avoid singularity 

issues affecting H  during the design procedure.    

2.3 Key activity 2: experiment execution 

The information level of an experiment is firmly related to the measurements nature (what to 

measure), to the measurements quality (how to measure), and to the measurements frequency 

(when to measure). In principle, each measurement contains some “information” that can be 

extracted during the parameter estimation session. For parameter estimation purposes, an 

“ideal” set of measured responses from a single experiment should be: 

 accessible to the set (or to a subset) of model parameters (i.e., the experiment eventually 

helps decreasing the overall parameter variability, or the variability of a subset of 

parameters; Krishnan et al., 1992); 

 as free as possible from the effect of undesired disturbances (it is particularly important to 

avoid disturbances not enclosed in the model representation); 

 as clean as possible from measurements errors that are random and/or systematic (these 

are related both to the experimental apparatus and experimenter’s skills and experience); 

 free from cross-correlation between measurement errors (i.e., covariance matrix of 

measurement errors nearly diagonal). 

A set of variables are chosen as measured variables according to: 

 the availability (i.e. the experimental budget) and the features of the measurement system; 

 the observability of the system, which is an intrinsic characteristic of the system itself.  

In the experimental practice it is possible to measure the control variables (u(t) e w) and the 

set of system responses (y) in each performed experiment. The MBDoE procedure is built in 

order to improve the parameter estimation by exploiting the information within the y set of 

measured responses. According to that, in the parameter estimation task only the set of 

responses of the experimental system will be exploited and compared with the ones predicted 

by the model.     

If the experimenter is able to minimise all the disturbance in the system that cannot be 

represented by the model, and under the assumption that only measurement errors affects the 
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system responses, the set of measurements y for a single experiment can be expressed in 

vectorial form by:  

 
ˆ( ) ( ) ( )i it t y y ε it         i = 1…nsp                                                                                        (2.19) 

 

where ε is the Ny-dimensional vector of measurements errors, whose probability distribution 

p(ς) is usually defined by a set of distribution parameters ς. For instance, assuming a 

multivariate normal distribution for ε, it is generally assumed that  

 

  0iE ε             i = 1…Ny                                                                   (2.20) 

 

and the variance-covariance of measurements errors is given by the Ny ×Ny matrix: 
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   .                                      (2.21) 

 

Thus,  0,ς Σ  and the measurements errors have zero mean and variance-covariance given 

by Σ (i.e. only white noise corrupts the measurements), which is not necessarily constant 

between consecutive experiments. The values outside the diagonal of Σ represents the 

correlation between the measurement errors of the Ny measured responses in the given 

experiment. The features of the measurement system define ε, and in the experimental 

practice the elements of ς can be estimated by repeated trials at fixed experimental conditions. 

A variance model can be useful in some circumstances to define or identify the distribution of 

the measurements errors. The model should describe and condensate all the features of the 

measurements system for the given experimental protocol. In the hypothesis of uncorrelated 

measurements errors it is assumed that, for a single experiment, the estimated variance of the 

measurements errors can be represented by a functional relationship of the form  

 

 2 2 2 2ˆ
j

jy j jy


                                      (2.22) 

 

where ˆ jy  is the j-th system response as predicted by the model, j is the standard deviation of 

the j-th measured response while j is the eteroschedastic factor. The parameters j  e j  

define the chosen variance model (Table 2.1). A series of experiments can be planned and 

performed to estimate the parameters of the variance model or these parameters can be pre-set 

by the experimenter basing on the actual knowledge of the measurement system.  
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Table 2.1 Variance model parameters. 

Expected variance model γ ω 

Constant variance 0 Fixed a-priori or estimated 

Constant relative variance 1 Fixed a-priori or estimated 

Heteroschedastic Fixed a-priori or estimated Fixed a-priori or estimated 

 

2.4 Key activity 3: parameter estimation 

The goals of the parameter estimation task are: 

1. to achieve a statistically sound parameter estimation (i.e., providing a precise and accurate 

estimation of model parameters) 

2. to maximise the capability of the model to predict the measured responses (i.e., providing 

a satisfactory fitting of the measured responses).  

An estimator can be defined as a statistic (i.e. a function of the observable data y) in the form: 

 

  ˆ : yN NPE    θ y                                                                                                     (2.23) 

      

where is the parameters estimate (i.e. the result of the application of the estimator). An 

efficient estimator should provide: 

θ̂

1. an estimate that is as close as possible to the “true” value of the model parameters 

describing the system in a reliable way; 

2. an estimate with the minimum dispersion around the estimated value (i.e., minimum 

variance). 

The first feature is concerned with the accuracy of the estimate, while the second is related to 

the precision of the estimate. The first feature is quite difficult to get, since the true value of 

model parameters is obviously unknown, and a weaker assumption should be made on the 

estimator concerning the asymptotic convergence to a possible value of the parameters 
Nθ as the number of samples tends to infinity: 

 

 lim
sp

PE

n
E


  y θ  .                                                                                                         (2.24) 

 

An estimator such that (2.24) is satisfied is said to be unbiased. Unbiased estimators are 

particularly important in the parameter estimation theory for their properties and their 

efficiency deeply influencse the whole MBDoE procedure. For unbiased estimators a lower 

bound on the variance-covariance of model parameters is defined by the Cramer-Rao 

Theorem: 
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    1
0

V θ I θ    ,                                                                                                           (2.25) 

 

where I is the Fisher information matrix defined by (2.3). The (2.25) expression provides an 

upper limit (known as Cramer-Rao Limit) on the precision provided by the estimator which  

is independent by the particular form of the estimation criterion.  

The ideal result of the estimation run should be a vector having the minimum variance (i.e. a 

precise parameter estimate) but providing at the same time the minimum deviation of the 

predicted responses ŷ  from the measured ones y. This can be obtained by minimising the 

elements of the Ny×nsp matrix of absolute residuals r, whose elements take the form 

 

      ˆ( )ij i j i jr y t y t                         i = 1…Ny,  j = 1…nsp.                                              (2.26)           

 

Several estimators can be used to estimate the set of model parameters of a dynamic model, 

but the most frequently used are: 

1. least squares (LS); 

2. weighted least squares (WLS); 

3. maximum likelihood (ML); 

4. Bayesian.  

The simplest estimators are the LS estimator 

 

    
1

ˆ ˆ
N

TLS
i i i i

i

    y y y y y         ,                                                                             (2.27) 

 

or the WLS estimator, where the variance-covariance matrix of measurements errors has to be 

provided for each experimental trial: 

 

    1
1

1

ˆ, ,...,
N

TWLS
N i i i i

i





  y Σ Σ ˆ i
 y y Σ y y .                                                             (2.28) 

 

LS or WLS only provide an estimate  of model parameters but no a-posteriori statistics  

concerning the precision of the estimate are provided by the estimators. A maximum 

likelihood approach is much more suitable in an MBDoE procedure, and provides a 

conditioned probability distribution of the final estimate. It then becomes possible to extract 

the useful information from the data evaluating the a-posteriori variance-covariance matrix of 

model parameters. When the measurements errors can be considered normally distributed, a 

maximum likelihood estimator can be expressed as (Bard, 1974): 

θ̂

 

 



Chapter 2 

 

54

                

   

   

1 1

1

2
12

11

, ,..., , ,...,

1
ˆ ˆ2 exp

2

y

ML
N N

N N N
T

i i i i i
ii

L








  

       


y Σ Σ θ Σ Σ

Σ y y Σ y yi

     ,            (2.29) 

 

where Σi is the variance-covariance matrix of measurements errors in the i-th experiment.  

It is possible to estimate simultaneously  and Σi adopting two different strategies: θ̂

 starting from an initial guess for the Σi the maximisation of the (2.29) is carried out by 

acting on the elements of θ̂ ; the variance-covariance of residuals allows for the re-

estimate of the elements of Σi;                                                                                                                        

 a variance model in the form (2.22) is adopted and the maximisation of the (2.29) is 

carried out estimating both parameters ,ω γ  of the variance model and θ̂ . 

A much more efficient estimation can be provided by Bayesian estimators, where a-priori 

information on the parametric system can be enclosed and exploited in the optimisation. The 

most commonly used Bayesian estimators are the minimum variance and the maximum-a-

posteriori (MAP) estimators, here briefly presented. The maximum-a-posteriori (MAP) 

estimator, in the hypothesis of gaussian measurements errors and gaussian distribution of 

model parameters can be expressed as 
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  ,              (2.30) 

 

and the estimator aims at minimising both the vector of residuals and the variance-covariance 

of model parameters. Note that a prior parameter estimation (θ0) with related statistics (given 

by Σθ, the prior variance-covariance matrix of model parameters), together with the Σi are 

required by the estimator to estimate the model parameters. It is well known in the literature 

(Sorenson, 1980) that a MAP estimator, if compared with a ML estimator, usually improves 

the precision of the final parameter estimate, at the cost of a slightly worse fitting of 

experimental data. Moreover, in some specific problems (Pillonetto et al., 2003) it is known 

to prevent numerical identifiability issues arising from the usage of ML estimators. The main 

drawback of the MAP estimator is that its performance is greatly influenced by the prior 

information on model parameters and by the chosen reparameterisation (§2.5.2).  

When an ML or MAP estimators is used, the following elements are required to solve the 

parameter estimation problem:  

 a model in the (2.1) form with the initial conditions (2.2); 
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 an initial guess on the parameter ˆ
0θ , eventually described by a-priori statistics (given by 

Σθ) describing the preliminary uncertainty region of model parameters; 

 a set of design vectors defining the experimental settings of the N experiments performed; 

 a y set of collected data for each performed experiment; 

 information on the measurement system (expressed through Σ); if no information on the 

measurement system is available, the use of a variance model in the (2.22) form, whose 

variance parameters need to be estimated, is greatly suggested; 

The results from the parameter estimation session are: 

 the parameters estimate θ̂ ; 

 some a-posteriori statistics defining the confidence of the estimate;  

 (if required) the estimated parameters for the variance model. 

From the computational point of view, a parameter estimation session is a nonlinear problem 

requiring a DAEs solver to integrate the (2.1) model equations and a robust optimiser able to 

avoid local minima during the minimisation procedure (this being a critical point that may 

compromise the effectiveness of the entire MBDoE procedure). It is very important to 

perform statistical tests for assessing the quality of the estimates in terms of: i) fitting of the 

observed data; ii) precision of parameter estimation (defined by the actual information on the 

parametric system). Moreover, preliminary assumptions on the behaviour of the 

measurements errors have been made during the experimental design and parameter 

estimation key activities. These assumptions should be confirmed by the experimental trials 

and validated through statistical assessment.   

In this dissertation, the ML estimator (exploiting different variance models) has been used to 

perform all the parameter estimation sessions, and providing a final estimate and related 

statistics in the assumption of normally distributed measurements errors.    

2.4.1 Quality assessment of the estimates   

A satisfactory parameter estimate should have two main features (Emery, 2001): 

1. accuracy, i.e. closeness to true value (which is unknown): the values of the parameter set 

should capture the information embedded in the measurements rejecting the effect of 

noise and disturbances; 

2. precision, i.e. minimal uncertainty: the parameter set should be confined into a restricted 

confidence region. 

The precision of the estimate is strictly related to the uncertainty region described by the 

variance-covariance matrix V . The confidence intervals of the estimates provide a significant 

support to understand whether the parameters are well estimated or not. Confidence intervals 

are usually evaluated by the following expression: 
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1
,

2i spt n NM N
  

 
iiv


                 i = 1…Nθ         ,                                                 (2.31) 

 

where t is the upper (1 – α)/2 critical value for a t-distribution with  spn MN N  degrees of 

freedom. Approximately, for a (1 – α) = 95% confidence level it is 

 
95% 2i v  ii             i = 1…Nθ                                         ,                                                   (2.32) 

 

and the confidence intervals are directly estimated from the diagonal elements of V . If the 

parameters are assumed to be normally distributed, it is possible to carry on a t-test, once the 

variance-covariance matrix of model parameters V  is known. The t-values are evaluated as    

  

î
i

ii

t
v


                 i = 1…Nθ                                             ,                                                (2.33) 

 

where vii is the i-th diagonal element of V . The t-values are a common choice to measure the 

confidence of the model parameters with respect to the estimate, and during the test they 

should be  compared to a reference t-value, usually given by a Student t-distribution with 

 spn MN N   degrees of freedom. If the t-value of a given parameter is higher than the 

reference t-value, the estimate is satisfactory. Very high t-values usually mean that the 

parameters are estimated with a high confidence. Note that using (2.31-2.33) no information 

about the covariance of the parametric system is exploited. For such systems where a high 

correlation between model parameters is present, a multivariate normal analysis is 

recommended, and a Hotelling t2-test should be performed to assess the quality of the 

estimates.  

To verify that a proper minimisation of the residuals is realised through the parameter 

estimation procedure (lack-of-fit test) a χ2-test can be performed considering the sum of 

weighted residuals 

 

  1
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ˆ
N

i i i i i
i

SWR 



   y y Σ ˆ y y      .                                                                                (2.34) 

 

In this test the SWR is compared with a reference χ2 distribution with   spn MN N  degrees 

of freedom and, if  

 

RIFSWR     ,                                                                                                                     (2.35) 
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then the fitting of the experimental data is efficient and the model can be considered as a 

reliable representation of the physical system. However, a particular attention should be made 

on the distribution of the residuals (2.27) in time. For the assumptions made in §2.3, it must 

be verified that all the hyphothese done on the variance of the measurements errors are 

satisfied. The assumption of gaussian distribution of measurements errors in both the design 

procedure and the experiment should be confirmed by the distribution of the residuals by what 

is known as a “whiteness test”.  
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Figure 2.5 Distribution of residuals in the case of (a) whiteness test passed and (b) whiteness test failed. 

 

In the whiteness test the normality assumption is assessed by verifying that the residuals are 

randomly distributed and follow a normal distribution with zero mean and variance-

covariance given by Σ. Let us consider a series of biomass concentration measurements in a 

single response bioreactor where the measurements errors have been considered normally 

distributed with zero mean and standard deviation σy = 2 g/L. After the experiment execution 

a parameter estimation session is carried out and the residuals are analysed. As illustrated in 

Figure 2.5a the residuals are randomly distributed around the mean of 0.005 g/L and with 

standard deviation of 2 g/L (the entire set of data points is within the ±4 g/L range, usually 

describing the 95% of variability of the samples), and the normality assumption on the 

measurements errors is well approximated by the distribution of residuals. Figure 2.5b shows 

a case where the residuals are not randomly distributed and the normality assumption is not 

satisfied (the mean of the residuals is 1 g/L and the standard deviation is 1.3 g/L). In this case, 

either the chosen identification model could be an inadequate representation of the physical 

system, or the parameters could be poorly estimated, or a structural model mismatch may be 

present (i.e. the physical system should be described by a model whose mathematical 

structure is different from the one of the identification model).     
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2.5 Preliminary analysis of the model    

In §1.5 the concept of parametric identifiability was introduced and the problem of a-priori 

testing of the structural global identifiability of a model was discussed. The a-priori 

identifiability testing is usually performed within a subset of the possible experimental 

conditions investigated by design and is computationally expensive to perform in complex 

nonlinear dynamic models. Alternative methods can be used to assess the a-posteriori 

identifiability of dynamic models: 

1. a-posteriori identifiability testing; 

2. sensitivity analysis; 

3. information and correlation analysis.  

These methods can be used to verify if it is possible to estimate the set of model parameters 

from experimental data starting from prior (limited) knowledge on the parametric system.    

2.5.1 A-posteriori identifiability 

An optimisation-based procedure for assessing a-posteriori identifiability during the design 

procedure is here presented following the original definition provided by Asprey and 

Macchietto (2000).   

 

Definition (a-posteriori identifiability): a model with predicted response given by  ŷ(,φ,t) 

is globally identifiable if, for every design vector nφ  and for each parametric set 

 and , in a time horizon θ Θ *θ Θ  0,t   the following condition is met: 

 
* *

,
max ( ) ( )I T

I
 

    
* *θ Θ θ Θ

θ θ W θ θ                                                         (2.36) 

  

under the condition  

 

     
0

ˆ ˆ ˆ ˆ, ( , ) , ( , )
t

T

Idt    * *y φ θ y φ θ W y φ θ y φ θ        (2.37) 

 

( I  and I  are small positive numbers and W and W  are proper weighting matrices). 

Basically the model is identifiable if each distinct parametric set will provide a distinct 

model response. If distinct sets of model parameters define exactly the same dynamic 

response, it will be impossible to discriminate between the two set by using only the 

system measurements and the model is not uniquely identifiable.   

 

Note that the assessment of a-posteriori identifiability requires the evaluation of (2.36) and 

(2.37) for each possible realisation of nφ . In practice, in order to reduce the 
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computational burden, this identifiability testing is carried out only locally (i.e. around a fixed 

set of experimental conditions) once a preliminary design vector has been identified by 

maximising a measure of the expected information.       

2.5.2 Sensitivity analysis 

Sensitivity analysis is the study of how the variation in the output of the model can be 

apportioned, qualitatively or quantitatively, to different sources of variation, and of how the 

information depends upon the information fed in it (Saltelli et al., 2000). Local and global 

sensitivity analysis techniques have been proposed in the literature for the attainment of the 

following goals: 

1. to screen out the most influential parameters affecting the system responses; 

2. to analyse the information behaviour for a given set of experimental conditions. 

This second point is of particular interest and it is intrinsically related to the formulation of 

the dynamic information matrix in (2.13) for the optimal design of the experiment. Thus, it is 

very important to verify the impact of a change in the estimated values of model parameters 

 on the system responses θ̂ ŷ . The Ny×Nθ matrix of local sensitivities (i.e. sensitivities 

evaluated at )  is θ̂
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In the design of experiment activity the sensitivity matrix in the (2.38) form is evaluated for 

the r-th measured response at each sampling time through the nsp×Nθ dimensional matrix Qr 
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The analysis of the time profiles of the (2.38) sensitivities highlights the dynamic behaviour 

of the parametric system and may provide useful insights on the optimal allocation of 

sampling points for a given measured response. As an example, Figure 2.5 shows the 

sensitivity profiles of a four-parameter model with a single measured output. A peak is 

present around t = 10 hours for q11 and q14. In that point the measurements can provide useful 

information for estimating θ1 and θ4. On the contrary, poor information can be gathered by the 

experimental measurements (at the current experimental settings) on θ2 (the sensitivity q12 is 

close to zero).       
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Figure 2.5 Profiles of dynamic sensitivities as elements of (2.39) for a single response model. 

 

Based on the evaluation of local sensitivities, it is possibile to define the  y spN n N  matrix 

of parameters estimability (Shaw, 1999), whose rank needs to be evaluated: 
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If rank (PE ) < Nθ, the sensitivity coefficients are not independent, and it is not possibile to 

estimate the entire parametric set from the measured responses.  

The mathematical formulation of the elements of the sensitivity matrices is a central point to 

evaluate the expected information. As the sensitivities tend to zero, the information matrix 

may become singular and numerical problems affect the consistency of the whole design 

procedure. There are several ways to modify the evaluation of the expected information by 

acting on the sensitivity elements of (2.38) in order to increase the design effectiveness: 

1. reparameterisation; 

2. scaling of parameters; 

3. scaling of sensitivities.   

When a reparameterisation is carried out a set of functions combining two ore more 

parameters is defined in order to create a modified set of parameters being estimated. For the 

i-th model parameter, it will be 

 

 1,...,ii f
 N                                                                                                                   (2.41) 

 

and the new sensitivity coefficients will be related to the elements in (2.38) through the 

following relationship:   
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The benefits from adopting such an approach come in the design step, where a new dynamic 

information matrix in the form (2.10) can be formulated by using the sensitivities of the 

reparameterised system.  

The scaling of model parameters is required to facilitate the numerical solution of the 

parameter estimation and design step. The scaling is carried out by dividing each element of 

 by a scaling factor μ θ̂
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                 i = 1…Nθ                                                                                                  (2.43) 

 

and considering the new “scaled” parametric set 1 ... N
    Θ . When the parameters 

are divided by their nominal value (i.e. the value adopted in the current design activity) a 

normalisation procedure is carried out and the sensitivities measure how a relative variation 

on the current values of model parameters may affect the predicted response. In this way each 

element of the entire set of sensitivities can be compared to each other.     
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Finally, the sensitivity elements can be directly divided by a factor to reduce the difference in 

magnitude of the sensitivities in time. For instance, it may be useful to divide each element of 

the sensitivity matrix for the maximum value that the elements will assume during the 

experimental time. This would keep the design step less sensitive to the difference on the 

dynamics of the single elements of the sensitivity matrix.     

These different definition of local sensitivities will produce a different formulation of the 

dynamic information matrix, whose metric is maximised during the design step.   

2.5.3 Information and correlation analysis 

A dynamic sensitivity matrix in the (2.38) form usually contains Ny×Nθ elements whose 

profiles should be analysed to assess the amount of information that can be gathered by the 

measured responses. However, for complex multi-response systems with a large number of 

model parameters, the experimenter is left with a large amount of data to analyse. As 

presented in literature, a multivariate statistical analysis of the entire set of sensitivities can be 

carried out by adopting PCA methods (Sjöblom and Creaser; 2008)  to extract useful 

information about the local variability of the parametric system.   

A more direct way to measure the information in time of the dynamic system is to evaluate a 

metric of the FIM in the dynamic form (2.6); the metric function can be the one used in 

alphabetic (A-, D-, E-optimal) or modified (P-, SV-, AC-optimal) design criteria. As an 

example it is considered a single response model with Nθ = 5. The information coming from 

the sensitivity profiles can be usefully summarised by considering the trace of the FIM 

(Figure 2.6).   
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Figure 2.6  Trace of the Fisher information matrix as given by (2.6). 

 

Figure 2.7a shows the high correlation between the sensitivities q11 and q12. For 10 < t < 12 

hours the profiles are nearly coincident. Figure 2.7b shows the relative difference between the 
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two profiles. As the curve approaches unity the profiles overlap and, adopting the current 

experimental settings, if samples are acquired in that specific time frame, it is not possible to 

discriminate between θ1 and θ2 during the parameter estimation session.        
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Figure 2.7 (a) Profiles of dynamic sensitivities as elements of (2.39) and (b) relative gap between 
dynamic sensitivities q11 and q12 (upper correlation limit is represented by the broken line). 

 

Both correlation and anticorrelation between dynamic sensitivities deeply affect the 

effectiveness of the design procedure, and a design is much more efficient if it maximises the 

gap between sensitivities minimising at the same time their correlation. Numerical issues arise 

in the evaluation of the variance-covariance matrix (2.13): as the minors of information 

matrix becomes nearly singular no matrix inversion can be possible. As a result, no design 

based on anti-correlation criteria (acting on Cθ) must be carried out.  

Singularity of the FIM in proximity of the “true” parametric set defining the physical system 

is strictly related to the identifiability of the model. Rothenberg (1971) was the first to 

approach the problem of identifiability of parametric models by considering the non-

singularity of the FIM evaluated at the true value of the parametric set. A more generalised 

identifiability criterion was proposed by Bowden (1973). The interesting feature of these 

identifiability strategies is that it is always possible to evaluate the FIM before the experiment 

is executed, and thus they will provide a valuable support to experiment design. In particular, 

they are very useful to detect alternative parameterisations and a suitable range of 

experimental conditions to be used as “initial guess” in the design optimisation. The drawback 

is that their validity is local, i.e. it is restricted to the true value of model parameters, which is 

obviously unknown at the very beginning of the MBDoE procedure. However, it is possible to 

estimate the FIM within a prescribed region of variability of model parameters, and detect the 

experimental settings that would produce the singularity of the FIM. Afterwards, these 

experimental settings will be excluded by the design optimisation.                
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2.6 Experiment design efficiency 

In the experiment design key activity a measure of expected information is maximised and, 

after each experiment is performed, a parameter estimation is carried out to exploit the 

information content of the available data. If a ML or MAP estimator is attempted, the 

parameter estimation will provide the actual information on the parametric system, in terms of 

a-posteriori statistics, as evaluated by the variance-covariance matrix of model parameters. A 

MBDoE procedure is efficient if  exp
 V  (the metric of the variance-covariance of model 

parameters which is optimised by design) is exactly  act
 V  (i.e. the metric of the variance-

covariance of model parameters provided by the parameter estimation). In that case no 

information mismatch between the expected and the actual information is present, and the 

experiment would provide exactly the amount of information foreseen by experiment design. 

For a single iteration of the MBDoE procedure (involving the parameter estimation with the 

data coming from a single planned experiment) it is possible to define an experiment design 

efficiency: 
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by comparing the measure of the actual uncertainty (represented by act
V ) as provided by the 

parameter estimation session, with the measure of the expected information predicted by 

design (represented by exp
V ). A similar relationship can be defined for the efficiency of 

experiment design on decreasing the degree of correlation between parameters: 
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where exp
C is the correlation matrix predicted by design and exp

C  is the correlation matrix as 

evaluated by parameter estimation. The assessment of (2.45) is particularly useful when anti-

correlation design criteria are adopted. Note that these efficiency indices can be evaluated 

only a-posteriori, i.e. after each experiment is executed. However, they can be useful for 

monitoring the effectiveness of a MBDoE procedure when several experiments are planned 

and performed in sequence. As the number of experiments increases, the improvement on 

parameter estimation should provide a significant enhancement on the representation of the 

expected information. As a result, during a standard MBDoE procedure the (2.45) design 

efficiency should increase with the number of performed experiments.        
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Online model-based redesign of 
experiments for parameter estimation in 

dynamic systems 

In this Chapter, a novel and general strategy for the online model-based redesign of 

experiments (OMBRE) is proposed to exploit the information as soon as it is generated from 

the execution of an experiment. Intermediate parameter estimations are carried out while the 

experiment is running, and, by exploiting the information obtained, the experiment is partially 

redesigned before its termination, with the purpose of updating the experimental settings in 

order to generate more valuable information for subsequent analysis. This enables to reduce 

the number of experimental trials that are needed to reach a statistically sound estimation of 

the model parameters, and results in a reduction of experimental time, raw materials needs, 

number of samples to be analysed, control effort, and labour. Two simulated case studies of 

increasing level of complexity are used to demonstrate the benefits of the proposed approach 

with respect to a state-of-the-art sequential model-based experiment design approach. 

3.1 Background and motivation 

In the standard experiment design methodology (cfr. §2.1), an experiment is designed on the 

basis of the parameter estimates available before the experiment is started, i.e. when the 

information coming from that experiment (in the form of measured outputs) is null. The 

information collected from the execution of the experiment is analysed only at the end of the 

experiment itself, and can be used to design the next experiment. This means that, to design 

an experiment, the designer completely disregards the progressive increase in the information 

content resulting from the progress of that experiment. This may be very costly in terms of 

time and resources (labour, raw materials, energy, equipment availability), as several 

experiments may be needed to reach a sound estimation of the model parameters. In principle, 

it may be convenient to exploit the information as soon as it is generated from the execution 

of an experiment. As discussed by Mehra (1974) and Keviczky (1975), the idea of an online 

input design is not new, although the applicability of such techniques was initially developed 

                                                 
 Portions of this Chapter have been published in Galvanin et al. (2008) and Galvanin et al. (2009a).  
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for simple non-physical models only. Adaptive input design techniques have been discussed 

and applied to linear stochastic control systems (Lindquist and Hjalmarsson, 2001; 

Hjalmarsson, 2001). More recently, Stigter et al. (2006) extended to ODE systems an 

adaptive technique for the optimal design of inputs. According to this technique, the optimal 

input design problem is solved over a preset time horizon after which a new measurement is 

obtained and, accordingly, new parameters are estimated, and the procedure is repeated until 

the end of the experiment. The authors showed that this technique was able to improve the 

results with respect to an input design that used a random binary sequence to excite the 

system. However, only the optimal design of inputs was considered in that paper; 

furthermore, no discussion on the improvement (if any) over a standard optimal experiment 

design technique was reported. Thus, a more general technique taking into account the whole 

experiment design variables as expressed by the design vector (§2.2.2) is required. A new 

advanced design strategy for Online Model-Based Redesign of Experiments (OMBRE) is 

here presented to exploit the information as soon as it is generated from the execution of an 

experiment. Instead of an input redesign, a whole experiment redesign is proposed. The net 

result of this strategy is that much more information can be collected from a single 

experiment, significantly reducing the costs associated with the parameter estimation job. The 

advantages of this approach over state-of-the-art model-based experiment design techniques 

are discussed using two simulated case studies of increasing complexity.  

3.2 Problem definition 

According to most of the optimal experiment design procedures, the experiment design phase, 

the complete experiment execution phase and the parameter estimation phase are carried out 

in a strictly sequential way. Figure 3.1 shows the relationship between the key activities 

involved during a classical sequential experiment design session for parameter estimation 

purposes. Using available prior information on the parameter set, an experiment design is 

carried out making use of the process model. As a result, experimental settings are defined in 

terms of optimal initial conditions, control variable profiles, and measurement sample 

scheduling. These settings are passed to the control system, and the experiment is carried out 

with the prescribed manipulated input profiles, providing a set of actual (i.e., experimental) 

measurements at the assigned sampling times. These measurements represent a data set that, 

at the end of the experiment, can be used for parameter estimation. The newly estimated 

model parameters can be exploited for a subsequent experiment design, so that the cycle can 

be iterated. Note that both the experiment design task and the parameter estimation task can 

be formulated as constrained optimisation problems (Pistikopoulous, 1995), and in a typical 

session of experimental design/parameter estimation the optimisation routines are invoked 

off-line. The experiment design task can be carried out adopting classical alphabetic criteria 
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(A-, D-, E-optimal design; Pukelsheim, 1993), or modified criteria (SV-optimal or P-optimal 

designs; Galvanin et al., 2007; Zhang and Edgar, 2008), or methods to decrease the degree of 

correlation among parameters (Pritchard and Bacon, 1978; Franceschini and Macchietto, 

2008).  
 

 
 

Figure 3.1 Schematic representation of the tasks involved in a standard session of 
sequential experiment design for parameter estimation (the key activities are printed in 
boldface). 

It has been mentioned in the previous Chapter that a key issue in the design of an experiment 

is the information content of the experiment. The information path involved in a classical 

experiment design/parameter estimation session is subject to sources and sinks of information, 

as illustrated in Figure 3.2.  

Prior information on the parametric set describes the level of confidence of the experimenter 

on the initial guess of the model parameters before an experiment is designed, and allows for 

the definition of the preliminary uncertainty region of model parameters. As the experimental 

sessions are repeated, prior information will be updated thanks to the contribution of each 

new experiment. The experiment design step and the following experimental evidence serve 

as the major sources of information. Designing an experiment provides an expected gain on 

information, while executing the experiment makes the actual information gain available. The 

expected information gain is affected by such factors as the optimisation criterion used for 
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experimental design, the preliminary guess on model parameters and related statistics (defined 

by the prior information), and the efficiency of the optimiser invoked by the experiment 

design routine. With reference to the latter issue, it should be remembered that Fisher-based 

experiment design techniques involve a highly nonlinear optimisation problem, where 

numerical issues as well as severe computational effort are experienced in complex systems 

with a large number of design variables.  
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Figure 3.2 Sankey diagram for the information fluxes in one standard experiment 
design/parameter estimation cycle. 

Parameter estimation usually results in a highly nonlinear optimisation problem for process 

engineering systems. The approach here proposed aims at modifying the experiment design 

and parameter estimation tasks in order to exploit the experimental information more 

efficiently, i.e. as soon as it becomes available (Stigter et al., 2006). Analysing the 

information flux of the running experiment as soon as it is generated makes it possible to 

exploit the benefits of a fast update of the information gain and to impact on the economy of 

the experimentation itself. In fact, the online analysis of information would allow to carry out 

intermediate parameter estimation steps, which in turn would permit to re-design the 

remaining part of the same experiment and to gain further information. An increase in the 

information collected from a single experiment may significantly reduce the experimental 

effort in terms of number of trials, consumption of raw materials, number and/or kind of 

inputs to be manipulated, measurement sampling schedule, and duration of the experimental 

session. Note that, in principle, this approach is not different from what is done in online 

parameter estimation through state estimation approaches (e.g., classical extended Kalman 

filtering), where the state estimates at a given time can be improved using process 

measurements (i.e., information) available up to that time (Panjarnpornporn and Saroush, 
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2007; Ray, 1980). A similarity can also be traced with model-predictive control (Camacho 

and Bordons, 2001), where the scheduled control action is updated at each step following a 

comparison between the expected output profiles and the actual ones.  

The OMBRE approach requires to update the manipulated input profiles and the sampling 

schedule of the running experiment by performing one or more intermediate experiment 

design/parameter estimation steps before the end of the experiment. Each experiment redesign 

is performed on the basis of the current value of the parameter set, which is the value of the 

estimated model parameters until that moment. The update of the parameter set gives the 

possibility to decrease the information loss due to parametric mismatch, with great benefit for 

the global efficiency of design. Furthermore, this methodology can be usefully embedded in a 

wider definition of optimal experiment design involving the proper choice of experiment 

structure and design criteria, where the design of experiments, the parameter estimation 

session and the management of experimental tests are dynamically interlinked. 

3.3 Sequential design vs online redesign of dynamic experiments 

It is assumed that the process model is described by the generic set of DAEs previously 

introduced in §2.1:   

 
         0,,,,,  tttt θwuxxf                                                     (2.1) 

                                            tt xgy ˆ

 

with the initial conditions (2.2). If we consider the design of the N-th experiment in a standard 

sequential approach, matrix V  is the inverse of the )(  NN  information matrix H  

defined as: 
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where K is the constant matrix comprising the information obtained from the previous nexp1 

experiments and from the  prior variance-covariance matrix of model parameters 
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Therefore, to design an experiment in a standard sequential experiment design/parameter 

estimation session, the variables that need to be optimised are: 

i) the initial conditions y0 (where dim(y0) ≤ Ny); 

ii) the (nsw – 1) times at which each control variable changes in value; these time instants are 

collected in the tsw vector of switching times, characteristic of each control variable; 

iii) the nsw time invariant values for each of the control variables; 

iv) the nsp sampling times for each of the measured outputs;  

v) the duration of the experiment. 

It can be easily recognised that a large-scale non linear optimisation problem is obtained as 

the number of switching intervals and sampling times grow. To reduce the computational 

load, in this study we assume that the control variables are all switched at the same instants, 

and the outputs are all sampled at the same instants. Furthermore, it is assumed that the length 

of an experiment is assigned a priori: although one typical objective of experiment design is 

to reduce the experiment duration, the latter assumption allows for an easier comparison of 

different configurations without any loss of generality. 

Equation (3.1) is sufficiently general to be extended for use within a strategy for online re-

design of experiments. Through this strategy one seeks to update the information available at 

a given updating time  by executing online, at the same time (either assigned or to be 

optimised), a parameter estimation session followed by a redesign of the remaining part of the 

experiment. In this way, the original trajectories of the control variables and the sampling 

schedule are adjusted for this remaining part. One or more updates can be attained in the 

redesign, each one adding a new component (in the form of (2.8)) to the experiment design 

vector φ, so that this vector can be rewritten as 

upt

 

 T121 ,...,,...,, 
upnj      , (3.3) 

where  is the number of control updates, and φj is the ED vector before the j-th update. 

Note that φj contains the (sub-)lengths of the single updating intervals, whose actual duration 

may depend on the re-design strategy (this will be discussed later on); however, the overall 

duration of the experiment is set, and is not affected by the design procedure. In a general 

fashion, each component φj of φ could have a different dimension in terms of number of 

discretised control variables and/or sampling points. Furthermore, φ1 will be the only 

component enclosing initial values for the outputs.  

upn

The amount of information that need maximising in the j-th re-design can be expressed in 

terms of the dynamic information matrix: 
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where the sum between the prior information on model parameters ( ) and the information 

acquired before the j-th re-design can be expressed as a constant term L. The symbol ( ) 

indicates that the information matrix refers to a single updating interval, and 

1

θΣ 

0H


is the zero 

matrix. Note the similarity between information matrices (3.1) and (3.4): the main difference 

is that in (3.1) the vector to be optimised is φ, whereas in (3.4) the ED vector is φj.  

It should be noted that if an OMBRE strategy is adopted, more degrees of freedom are 

available to the experiment designer for optimisation. However, as will be clarified later, each 

of the optimisation problems can be made less complex than the optimisation required in 

standard sequential ED. Also note that an “extended” design vector can be defined by 

including in the optimisation scheme also the nup-dimensional vector of updating times tup 

(not discussed in this work): 

 

 T121 ,,...,,...,, up
ni up

t      . (3.5) 

 

A single experiment can be seen as a sequence of ( 1upn

,,2,1

) sub-experiments designed 

independently, each one of length  (with up
i

up
ii tt 1 1 upi n , ), where 00 upt i  is 

the length of the i-th “updating interval”. The designer can set the level of excitation during 

each updating interval, i.e. the number of switching times per updating interval (for example, 

if this number is the same for all the updating intervals, we say that the sub-experiments are 

homogeneously excited). A further design parameter is the number (and the time placement) 

of measurement samples taken per updating interval; this is a critical difference with respect 

to other adaptive methods proposed in the literature (Stigter et al., 2006), where the sampling 

time is defined a-priori. 

Note that, hypothetically, after one sample measurement is taken, one could redesign the 

remaining part of the experiment (with the restriction that the first parameter estimate be 

obtained after  samples at least). However, an excessively small number of 

experimental data could prove counterproductive (particularly in the early parameter 

estimations), as it could lead to an imprecise estimation and drive the following redesign to 

sub-optimal solutions. 

yθ NN /
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Figure 1.3 Flow chart illustrating the main steps of the OMBRE approach. 

To conclude, OMBRE is carried out according to the following steps (Figure 3.3): 

1. acquire prior knowledge on the parametric set 

2. choose an updating rationale (two possible rationales will be discussed later) and design 

the first sub-experiment 

3. start the experiment 

4. when a parameter update is scheduled, estimate the model parameters: 

a. if the desired estimation quality is reached, then stop the re-design procedure (and 

possibly the experiment itself); otherwise 

b. re-design the remaining part of the experiment, implement the design in the 

running experiment, and go to step 4 
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5. if the desired estimation quality is not reached at the end of the experiment, design a new 

experiment. 

In this study we assume that the time lengths needed to perform the experiment (or sub-

experiment) design, or to update the control variable profile, or to take a measurement, or to 

perform the estimation of parameters are all negligible. However, delays can be taken into 

account. 

Figure 3.4 illustrates the effect of OMBRE on a generic control variable u for a process with a 

single response ( 1yN ), a single manipulated input ( 1uN ), overall duration τ = 45 h 

(assigned), one update (nup = 1) at t = tup, and an overall number of sampling points nsp = 5. 

Only one parameter  needs estimating. During the first updating interval there are three 

switching levels and two sampling points to collect (i.e., nsw,1 = 3; nsp,1 = 2), while during the 

second updating interval there are five switching levels and three sampling points (nsw,2 = 5; 

nsp,2 = 3).  
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Figure 3.4 Online experiment redesign: change from the original control trajectory (solid 
line) to the updated control trajectory (dashed line). At the original control 
variable profile (solid thin line) and the original sampling schedule (black squares) are 
discarded; a new sampling schedule (hollow circles) is designed for the second sampling 
interval.  

uptt 1

The original control trajectory is based on the information on the parameter available at time 

zero, i.e. before the experiment is started ( ). At the control trajectory is updated 

thanks to a new design (based on the new estimated value ), therefore providing the 

new updated control trajectory.  

0
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The experimental budget may have a strong influence on the formulation of the ED problem, 

and may define lower and upper bounds for the control variables and for the number and/or 

frequency of the measurement samples. The experimental budget represents the maximum 

experimental effort that the experimenter can sustain: it depends on the cost of each 
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experiment (e.g., materials, energy, labour, time), on the characteristics of the control system 

(e.g., bounds on the number or frequency of samplings and/or control switches), and on 

organising factors (e.g., equipment availability, operators’ shifts). In this paper, the 

experimental budget is defined in terms of the number of samples (nsp) and control switches 

(nsw) allowed, and of the overall experiment duration (τ). 

3.4 Case study 1: biomass fermentation process 

The OMBRE technique presented in the previous sections is applied to a biomass 

fermentation process for baker’s yeast that appeared in some papers on the subject (e.g., Espie 

and Macchietto, 1989; Asprey and Macchietto, 2000). Assuming Monod-type kinetics for 

biomass growth and substrate consumption, the system is described by the following set of 

DAEs: 

 

 

 

1
1 4 1

2 1
1 2 2

3

1 2

2 2

d

d
d

d

x
r u x

t
x rx

u u x
t

x
r

x







   

    




 (3.6) 

                 ,   i = 1,2 ii xy ˆ

 

where x1 is the biomass concentration (g/L), x2 is the substrate concentration (g/L),  is 

the dilution factor (h-1), and  is the substrate concentration in the feed (g/L). The model 

was demonstrated to be structurally identifiable with respect to the parametric set θ  (the 

vector of parameter units for θ is [h-1, g/L, , h-1]T), and therefore the parameter estimation 

problem is well posed. The experimental conditions that characterise an experiment are the 

initial biomass concentration  (range 1-10 g/L), the dilution factor u1 (range 0.05-0.20 h-1), 

and the substrate concentration in the feed u2 (range 5-35 g/L). The initial substrate 

concentration  is set to 0 and cannot be manipulated for experiment design purposes. It is 

assumed that a single experiment only can be carried out to properly estimate the parameter 

set θ. Additionally, it is assumed that the global experimental budget is represented by a 

number of nsp = 24 sampling points and nsw = 12 switching levels to be distributed on a 

maximum experimental horizon of τmax = 72 h. The input profiles are represented as 

piecewise-constant profiles; the measurement sampling times and the control variable 

switching times can be different. The time elapsed between any two sampling points is 

allowed to be between 0.01 h and τi, and the duration of each control interval between 0.1 and 

40 h. The model parameters are normalised before performing any experiment design step. 

)(1 tu

4
)(2 tu

0
1x

0
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The integration of the DAE system was performed adopting the DASOLV routine of the 

process modelling tool gPROMS® (by Process Systems Enterprise, Ltd.), while the nonlinear 

programming problem is solved for  by using the Sequential Reduced Quadratic 

Programming (SRQP) optimisation routine, with lower and upper bounds on control 

variables. The same routine of gPROMS® was also used in the parameter estimation step, with 

upper and lower bounds on parameters values. 

In all the case studies discussed in the Thesis, a two-step multiple shooting technique (Bock et 

al., 2003) was used in order to reduce the possibility of incurring into local minima in the 

design step. However, as will clarified later, for a proper choice of the OMBRE configuration, 

the re-design strategy may allow to split the large-scale nφ-dimensional optimisation problem 

into (nup+1) smaller-scale optimisations, with great benefit for both robustness and efficiency 

of computation.  

Synthetic “experimental” data were obtained by simulation of model (3.6) with 

 as the “true” parameters set. The measurements 

were corrupted by normally distributed noise with a mean of zero and 

 T0500.05500.01800.03100.0θ 



 











8.0.0

.05.0
Σ    . (3.7) 

 

Approximately, this amounts to about 14 % error on the average value of x1 during a run, and 

18 % on the average value of x2. This matrix describes a measurement system providing large 

measurement noise. The initial guesses for the parameters are represented by the set 

, corresponding to a starting estimation point that is 

quite far from the true value (relative error   70%). Therefore, we are considering a case in 

which the experimenter has a poor knowledge on the parametric system, and the 

measurements are imprecise. The initial guess of model parameters strongly affects the 

performance of the design, but, in general, the designer does not know whether the initial 

guess is good or not: the initial guess is simply the best available knowledge before setting up 

the new experiment. 

 T0 0150.09350.00540.05270.0ˆ θ

Preliminary information on model parameters depends on the form of the prior distribution. A 

uniform distribution reflecting on a diagonal form of  is assumed; i may vary within the 

interval [0.001;1.000] with i  1, …, Nθ. 
θΣ

3.4.1 Analysis of different configurations for online re-design of 
experiments 

Several configurations for re-design were analyzed in order to assess the effectiveness of the 

OMBRE technique. To allow for an easier illustration of the features of OMBRE, only two 

such configurations will be reported. Note that an E-optimal design criterion was used in all 
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cases (both standard experiment design and OMBRE) because it was found to be particularly 

suitable for the model being analysed (Galvanin et al., 2007). However, the discussion that 

follows remains to a large extent unchanged if other design criteria are considered. 

A standard experiment design (Figure 3.1) performed on all 60n  design variables is 

compared with two re-design configurations. In both OMBRE configurations, the number of 

updates to be performed during an experiment is assigned a priori, and the number of 

measurement samples is assigned to be the same within each updating interval. Therefore, the 

two OMBRE configurations differ for how the switches and the measurement samples are 

distributed within the updating intervals and for the length of each updating interval. 

1. OMBRE-A: In this configuration a parameter estimation is performed after the last 

measurement sample available in the current (i.e., j-th, with upnj 0 ) updating interval 

has been taken, regardless of the time elapsed so far. Then a standard ED follows which, 

over the remaining length of the experiment, optimises a number of variables equal to 
( )

0

j i

i
nn 

 , where )(in  is the number of decision variables actually saturated in 

updating interval i. At the beginning of the session, j is set equal to 0 and 0)0( n . 

Therefore, in general the updating intervals result to have different lengths, and the 

number of control switches within each interval is different. 

2. OMBRE-B: In this configuration all updating intervals are assigned a priori to have the 

same length and number of control switches (i.e., the sub-experiments are homogeneously 

excited). Parameter estimation and sub-experiment re-design are accomplished when the 

scheduled length of the updating interval has expired, regardless of when the last sample 

measurement in that interval has been taken. 

Table 3.1 summarizes the settings of the OMBRE configurations. The last column of this 

table clarifies that the two OMBRE configurations result in a sequence of design optimisation 

problems of different complexity. In OMBRE-A, the dimension of the optimisation problem 

is the same as in standard experiment design at the beginning of the session, and (for a given 

number of updates) it gradually decreases with the execution of the experiment. On the other 

hand, in OMBRE-B the complexity of the optimisation problem is smaller than in standard 

experiment design from the very beginning; the dimension of the problem depends only on 

the number of updates considered, and does not change with the progress of the experiment. 
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Table 3.1 Case Study 1: summary of OMBRE configuration settings for 
different numbers of updating intervals. 

Configuration 
Number of 
updates nup 

Number of samples 
per updating interval 

Number of switching 
levels in j-th updating 

interval 

Number of design 
variables in j-th 

updating interval 

OMBRE-A 1; 2; 3 12; 8; 6 



j

i

i
swsw nn

0

)(  


 
j

i

inn
0

)(  

OMBRE-B 1; 2; 3 12; 8; 6 6; 4; 3 
1



upn

n
 

 

3.4.2 Standard experiment design: results 

The estimation results related to a standard session of experiment design/parameter estimation 

are reported in Table 3.2. An estimation result is taken as “good” if the t-value for that 

parameter is larger than a reference t-value based on a Student distribution. Note that it is 

impossible to guarantee a satisfactory estimation of all the model parameters with a single 

experimental run of 72 hours. The t-values of  and  are definitely unsatisfactory, and the 

95% confidence intervals (c.i.) of those parameters are excessively large. The estimate is 

neither precise nor accurate. 

2̂ 4̂

Table 3.2 Case Study 1: parameter estimation from a 
standard session of ED/PE (reference t-value:1.680,* asterisk 
denotes t-values failing the test). 

Parameters Estimate True Values 95 % c.i. t-values 
θ1 0.2573 0.3100 0.0890  2.968 
θ2 0.0797 0.1800 0.2963 0.453* 
θ3 0.4535 0.5500 0.0774  2.020 
θ4 0.0224 0.0500 0.0882 0.412* 

3.4.3 OMBRE-A: results 

The OMBRE-A configuration is assessed by performing one or two or three updates of 

control variables (sub-cases 1, 2 and 3, respectively). See Table 3.3 for a summary of the re-

design settings. Experiment redesign is shown to be always beneficial (Tables 3.4, 3.5 and 

3.6). 

Table 3.3 Case Study 1: a summary of re-design settings in OMBRE-A 
configuration. 

 OMBRE-A.1 OMBRE-A.2 OMBRE-A.3 
nup 1 2 3 
i [h] 15.5 56.5 4.3 14 53.7 3.8 7.9 11.3 49 
nsw 5 7 2 6 4 2 3 4 3 
nsp 12 12 8 8 8 6 6 6 6 
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Table 3.4 Case Study 1: final parameters estimation from 
OMBRE-A.1 configuration (reference t-value:1.680, asterisk 
denotes t-values failing the test). 

Parameters Estimate True Values 95 % c.i. t-values 
θ1 0.3142 0.3100 0.0286 11.010 
θ2 0.3301 0.1800 0.2187   1.510* 
θ3 0.5417 0.5500 0.0773   7.012 
θ4 0.0470 0.0500 0.0246   1.911 

Table 3.5 Case Study 1: final parameter estimation from 
OMBRE-A.2 configuration (reference t-value:1.680, asterisk 
denotes t-values failing the test).  

Parameters Estimate True Values 95 % c.i. t-values 
θ1 0.3088 0.3100 0.0165 18.730 
θ2 0.2942 0.1800 0.4380   0.671* 
θ3 0.5175 0.5500 0.0573 9.033 
θ4 0.0472 0.0500 0.0087   5.428 

Table 3.6 Case Study 1: final parameter estimation from 
OMBRE-A.3 configuration (reference t-value:1.680, asterisk 
denotes t-values failing the test). 

Parameters Estimate True Values 95 % c.i. t-values 
θ1 0.3197 0.3100 0.0245 13.030 
θ2 0.1024 0.1800 0.0728   1.408* 
θ3 0.5643 0.5500 0.0500 11.290 
θ4 0.0588 0.0500 0.0158   3.715 

 

A single update of the control profile has a significant impact on the precision of the estimates 

(t-values). However, note that the improvement on the confidence intervals of parameters  

and  is not so marked. When two and three updates were considered, it was observed that 

the reduction of the uncertainty region is not gradual with nup, and the parameters estimates 

(particularly, parameter ) exhibit an oscillatory behaviour during the experiment. That 

could depend on the design configuration itself. The system is not homogeneously excited 

(see Table 3.3): for instance, note that in cases A.2 and A.3 only two switches have been 

performed when the first set of samples is collected. As a limited number of state levels is 

known, that means that an erroneous/incomplete information can be delivered and used for 

estimation purposes. 

2̂

3̂

2̂

Figure 3.5 helps clarifying these issues and shows that in an OMBRE-A configuration the 

uncertainty concerning a subset of parameters (e.g., 2̂ ) does not necessarily decrease 

smoothly. As the level of excitation changes during the experiment, the initial uncertainty 

may determine an ineffective design in the first updating interval and, as a result, a poor 

parameter estimation. From Figure 3.5b it can be observed that the uncertainty about 

parameter  actually increases after the first update.  2̂
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One possible reason is that the most informative measurements might have been designed to 

occur at a later time, i.e. they would occur after the first updating interval, and therefore when 

the first update is carried out all that expected information is yet to be exploited. Furthermore, 

the actual sensitivity of the parameters to variations in the measurements still could be poorly 

represented when the first re-design is accomplished: sampling points and switches may be 

misplaced and when more information is gathered the remaining experimental budget is not 

sufficient for an effective design.  
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(a)                                                                                   (b) 
 

Figure 3.5 Case Study 1: estimation profiles of 2   for a standard experiment design (a) 
and for OMBRE-A.3 re-design (b). The shaded uncertainty area is represented by the 
square root of the 95 % confidence intervals. 

̂

From this perspective, it makes sense to go for a more “conservative” approach and divide the 

overall experiment duration into intervals of even lengths, as in the OMBRE-B configuration. 

Although such a configuration may fail to intensify the manipulation of controls where the 

system is more sensitive, each sub-experiment is indeed designed to obtain the maximum 

information gain within that updating interval. Results will be discussed in the following 

subsection.  

3.4.4 OMBRE-B: results 

The OMBRE-B configuration “freezes” the re-design settings, in the sense that both the 

number of measurement samples and the number of control switches are fixed for each 

interval (see Table 3.7). As in the previous configuration, a number of one or two or three 

updates are considered (sub-cases 1, 2 and 3 respectively).  
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Table 3.7 Case Study 1: re-design settings in OMBRE-B configuration. 

Sub-Case OMBRE-B.1 OMBRE-B.2 OMBRE-B.3 
nup 1 2 3 
i [h] 36 36 24 24 24 18 18 18 18 
nsw 6 6 4 4 4 3 3 3 3 
nsp 12 12 8 8 8 6 6 6 6 

 

Results are quite interesting (Table 3.8-10): by adopting an OMBRE-B re-design, the 

precision appears to increase with the number of updates, and a single experiment is enough 

to estimate all the parameters in a satisfactory way (actually, only two updates can be 

sufficient, see Table 3.9). In OMBRE-B.3 parameters θ1, θ3 and θ4 are particularly well 

estimated (around 1 % the relative error from the true value); the quality of the θ2 estimation 

is also well within the acceptability range. 

Table 3.8 Case Study 1: final parameters estimate from case 
study OMBRE-B.1 configuration (reference t-value:1.680, 
asterisk denotes t-values failing the test). 

Parameters Estimate True Values 95 % c.i. t-values 
θ1 0.3104 0.3100 0.0209 14.840 
θ2 0.1130 0.1800 0.1135 0.996* 
θ3 0.5645 0.5500 0.0564 10.010 
θ4 0.0533 0.0500 0.0194 2.742 

Table 3.9 Case Study 1: final parameters estimate from case 
study OMBRE-B.2 configuration (reference t-value:1.680, 
asterisk denotes t-values failing the test). 

Parameters Estimate True Values 95 % c.i. t-values 
θ1 0.3124 0.3100 0.0193 16.170 
θ2 0.2445 0.1800 0.0886 2.760 
θ3 0.5431 0.5500 0.0479 11.330 
θ4 0.0475 0.0500 0.0185 2.562 

Table 3.10 Case Study 1: final parameters estimate from case 
study OMBRE-B.3 configuration (reference t-value:1.680, 
asterisk denotes t-values failing the test). 

Parameters Estimate True Values 95 % c.i. t-values 
θ1 0.31161 0.3100 0.0130 23.960 
θ2 0.1614 0.1800 0.0875 1.844 
θ3 0.5606 0.5500 0.0290 19.330 
θ4 0.0499 0.0500 0.0095 5.250 

 

It clearly appears that by using the OMBRE-B configuration it is possible to reach a 

satisfactory parameter estimation with a minimal experimental effort by properly choosing the 

re-design settings. The experiment itself could even terminate before the maximum allowed 

length as soon as a target precision of model parameters has been reached. As previously 
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discussed, OMBRE-B is built in such a way that each updating interval is designed as to 

obtain the maximum amount of interval contained in that interval: that allows for a more 

homogeneous excitation so that a significant information content can always be exploited.  

The final parameter estimation obtained by the OMBRE-B.3 configuration can even be 

improved if a different design criterion is exploited within the OMBRE framework. In 

particular, an OMBRE-SV additional configuration can be considered where the on-line re-

design is carried out performing three updates including an SV design criterion (based on the 

minimisation of the second maximum eigenvalue of V, see §2.2.3) in the second updating 

interval.  
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                                             (a)                                                                                          (b)  
          

Figure 3.6 Dilution factor (u1), substrate concentration in the feed (u2) and distribution of 
samples (tsp) as planned by OMBRE-B.3 (a) and OMBRE-SV (b). Black squares show the 
updating times.  

Table 3.11 Case Study 1: final parameters estimate from case 
study OMBRE-SV configuration (reference t-value:1.680, 
asterisk denotes t-values failing the test). 

Parameters Estimate True Values 95 % c.i. t-values 
θ1 0.3102 0.3100 0.0086 36.011 
θ2 0.1105 0.1800 0.0623 1.774 
θ3 0.5598 0.5500 0.0238 23.485 
θ4 0.0545 0.0500 0.0072 7.622 

 

Results are very  interesting: the maximisation of a different direction of information provided 

by the SV criterion provides a change in the excitation policy of the manipulated inputs 

(Figure 3.6) and in the optimal allocation of sampling points, resulting in a sensible 

improvement on the final parameter estimation (Table 3.11). The analysis of the 95% 

confidence intervals shows the benefits from adopting such an approach in terms of reduction 

of the overall uncertainty region of model parameters.   
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3.5 Case study 1: additional discussion 

In this section, the effect of the OMBRE approach in terms of both accuracy and efficiency of 

the design will be analyzed. Two heuristic indexes can be introduced to assess the quality of 

the estimate of different re-design configurations: 

 A global accuracy index Iπ considering the global contribution of relative errors )(θ
i  of the 

estimates 
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 A global precision index Iα that considers the global relative variability of the parametric 

system in terms of standard deviation 
i

  of the estimates 
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     . (3.9) 

 

The global accuracy and precision indexes are plotted in Figure 3.7, where the best estimates 

are localised close to the origin. From Figure 3.7 it is possible to observe that the OMBRE-B 

with three updates gives the finest results in terms of overall precision and accuracy of 

estimation. The OMBRE-A configuration is definitely more erratic in its performance and 

demonstrates that the benefits of the re-design depends on the distribution of samples and 

control switches along the experiment. 
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Figure 3.7 Case Study 1: accuracy Vs. precision plots for all analysed 
configurations (the numbers inside squares are the numbers of OMBRE updates). 
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This kind of global analysis cannot be performed in practice, because the true vector of model 

parameters is obviously not known. Therefore, new heuristic indicators are introduced to 

provide a measure of precision in a more general fashion. The term 
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is a measure of the parameters precision in a global sense (the variances are the diagonal 

elements of Vθ, describing a global uncertainty region): the larger Ωθ, the higher the precision. 

On the other hand, the statistical t-test can be exploited to define a “global t-factor” (GTF) 

precision index: 
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iθ
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    . (3.11) 

 

High t-values indicate that parameters are well determined in the model. Therefore, the GTF 

index emphasizes the effect of the worst parameter estimation in each specific configuration 

set: the lower GTF, the better the estimate.  

The GTF values and the global precision of the estimates for a variable number of updates are 

shown in Figure 3.8 (connectors between points have been reported only for clarity).  
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Figure 3.8 Case Study 1: global t-factor GTF (a) and global precision  (b) for selected 
configurations of re-design at a variable number of updates.  

The GTF plot shows that, as the number of updates increases, the OMBRE-B configuration 

gives the best performance in term of parameters’ precision. Note from Figure 3.8b that the 

OMBRE-B re-design exhibits a gradual increment of precision, while OMBRE-A shows an 

oscillating behaviour. The same plot shows that the level of global precision reached by 
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OMBRE-A with nup = 3 is comparable with that of OMBRE-B, although the comparison 

based on the true values (Figure 3.7) has already shown that the two configurations differ 

significantly in terms of accuracy of the estimates.  

One could think that by increasing the number of updates it might be possible to further 

improve the precision of the estimate. Figure 3.9 shows the GTF and Ωθ indexes of the 

estimates for an OMBRE-B configuration when nup is increased from one to five.  
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Figure 3.9 Case Study 1: Global t-factor GTF (a) and global precision  (b) for OMBRE-
B re-design with nup from one to five. 

As shown in Figure 3.9b, the precision slightly increases passing from 3 to 4 updates, and 

then drastically decreases for nup = 5. The GTF analysis (Figure 3.9a) shows no improvement 

in global precision passing from 3 to 4 or 5 updates. Although not reported here, we observed 

that after three updates the estimation of the parameter θ2 worsens significantly. Results are 

not so surprising: if the number of updates is increased at a fixed number of design variables, 

a point is encountered at which the optimiser has no leverage to boost the overall information 

through the re-design (for instance, note that for OMBRE-B.5, the switches available for 

design optimization are only two for each updating interval).  

3.6 Case study 2: synthesis of urethane 

In this section a second more complex model will be taken into account as a second instance 

to demonstrate the effectiveness of the OMBRE methodology. We will consider the industrial 

kinetic model proposed by Körkel et al. (1999) and Bauer et al. (2000) to describe the 

reaction of urethane in a simultaneous and consecutive reaction with chemical equilibrium: 

 
A + B  C  

          A + C  D (3.12) 
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3A  E  

 

where A is phenylisocyanate, B is butanol, C is urethane, D is allophanate and E is 

isocyanurate; dimethylsulfoxide (S) is used as solvent. The experiments for these reactions 

are carried out in a semi-batch reactor with two feed vessels v1 and v2, one for 

phenylisocyanate (and the solvent) and one for butanol (and the solvent). At the beginning, 

the reactor contains solvent, phenylisocyanate and butanol. It is assumed that the reactor 

temperature T can be manipulated directly. 

The model is represented by the following set of DAEs: 

 

           321 rrrV
dt

dnC    ;  

                       32 rrV
dt

dnD    ;  

         4Vr
dt

dnE    ; (3.13) 
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with initial conditions for the three differential variables:                                                              
 

      0000  EDC nnn   . (3.14) 

 

where the molar numbers ni for species i are the state variables of the nonlinear DAE system. 

The following correlations need also considering: 
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In this model eight parameters are unknown: the steric factors krefi (i = 1, 2, 4), the activation 

energies Eai (i = 1, 2, 4), the equilibrium constant kc2 and the reaction enthalpy Δh of the 

reversible reaction. The reaction rates ri are expressed in [mol/(hL)]. Molar masses Mi 

[kg/mol], densities ρi [kg/m3], reference temperatures Tref1, Tref2, Tref4, Tg2 [K] and the gas 

constant R [J/(molK)] are set as constants.   

As in Körkel et al. (1999), Bauer et al. (2000) two “accumulated” feeds f 
v1 and f v2 from the 

two feed vessels are considered: they can vary from zero up to the initial molar hold-ups of 

the vessels, described by , ,  and , i.e. the initial molar numbers of 

phenylisocyanate, butanol and solvent within the two feed vessels.  Feeds f 
v1 and f v2 and 

temperature T are the experiment design variables. However, for ease of implementation the 

actual vector of time dependent design variables is 

1v
An 2v

Bn 1v
Sn 2v

Sn

 

 TTzz 21u                                                                                                                   (3.19) 

 

where z1 and z2 are non negative  piecewise constant functions defined as: 
 

dt

df
z

v1

1     ;   
dt

df
z

v2

2    . (3.20) 

 

The temperature profile T is discretised as a piecewise linear function within the range [300 

K; 473 K]. The vector of time-invariant control variables w takes into account the initial 

molar numbers of the species within the feed vessels and inside the reactor:    

 

 Tv
S

v
B

v
S

v
ASBA nnnnnnn 2211000w  .                                                                           (3.21) 

 

The measured variables are the molar concentrations [mol/L] of urethane ( ), of allophanate 

( ) and isocyanurate ( ). It is assumed that the measurement errors are uncorrelated and 

with 

Cc

Dc Ec

1.0σσσ 
EDC ccc  mol/L. During each experiment performed nsp = 18 samples are 

collected. Thus, the design of a single experiments implies the optimisation of the following 

variables (nφ = 69): 

1. the optimal sampling scheduling of the 18 samples; 

2. eight switching times for T, z1 and z2; 

3. eighteen switching levels for T, nine for z1 and nine for z2; 

4. the seven initial conditions collected in w.  

It is assumed that each experiment lasts 90 hours. 

Note that the results cannot be compared to the ones presented in Körkel et al. (1999) and 

Bauer et al. (2000), since in the original papers i) there are more design variables (90 instead 

of 69), ii) phenylisocyanate, too, can be measured by titration (although less frequently than 

the other species), and iii) more precise measurements are assumed. In any case, the objective 
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here is not to compare the proposed methodology to the one presented in the cited papers, but 

to provide a realistic case study to assess the performance of the OMBRE approach with 

respect to a standard experiment design. 

The initial guesses and the “true” values of the parameters set are summarised in Table 3.12. 

The final estimates obtained in (Körkel et al., 1999) were taken as the true values.  

Table 3.12 Case Study 2: vector of initial guesses and vector of "true" values 
of model parameters as adopted in the case study. 

 Δh 
[J/mol] 

Ea1 

[J/mol] 
Ea2 

[J/mol] 
Ea4 

[J/mol] 
kc2 

[L/mol] 
kref1 

[L/molh] 
kref2 

[L/molh] 
kref4 

[L/molh] 
0θ̂  -17031 35240 85000 35000 0.170 5.00E-4 8.0E-8 1.00E-8 

θ  -18300 29440 71014 23020 0.217 1.25E-3 7.29E-6 8.80E-7 

 

Apart from being a more complex system than the one considered in Case study I, the model 

is quite a good benchmark to assess the OMBRE approach. In fact, the experiments are 

supposed to last for a long time, i.e. there might be a great benefit in terms of time and labour 

in increasing the design efficiency by exploiting the collected information while an 

experiment is running. Furthermore, such a long duration makes the computational time 

required for online parameters’ estimations and experiment re-designs a minor issue.  

The D-optimal criterion (Pukelsheim, 1993) was adopted to design the experiments. Although 

our experience suggests that it is often outperformed by the E-optimal criterion, it is 

nonetheless the most widely used approach to experiment design. 

Two design configurations are compared and discussed: 

 an OMBRE with OMBRE-B approach (number of samples and of control switches 

equally distributed);  

 a standard sequential experiment design. 

As in Case Study 1, each parameter estimation session adopts a maximum likelihood criterion 

acting on the overall parametric pool. The results obtained through each experimental session 

are collected in Tables 3.13 and 3.14 for the OMBRE approach and the standard sequential 

ED, respectively.  

The OMBRE design allows to reach a satisfactory parameter estimation after 210 hours, with 

two experiments performed and a third experiment that stops after the first estimation of the 

parameters (i.e. right before starting the first re-design). On the contrary, when a standard 

experiment is used, it is clearly shown that after three experiments (and a global duration of 

the experimental time of 270 hours) it is still impossible to estimate all the parameters in a 

statistically sound way (the final statistics show that parameters kc2 and kref1 are still estimated 

unsatisfactory). Although not reported here, it was verified that one additional experiment (for 

a total elapsed time of 360 h) is needed in order to have a reliable estimation of all parameters 

using a standard ED. 
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Table 3.13 Case Study 2: parameter estimation obtained  through an 
OMBRE-B approach with nup = 2. Time ttot stands for the total elapsed time. 
Asterisks denote estimates failing the t-test. 

  Exp1 Exp2 Exp3 
ttot 30 h 60 h 90 h 120 h 150 h 180 h 210 h 
Δh -16000* -17996* -18240* -18056* -18999* -17226 -17214 
Ea1 28253* 30362* 30928* 30989* 32267 32842 33127 
Ea2 65903 65120* 64660* 64021 71424 72298 72207 
Ea4 22000* 22050* 22019* 22306* 23898* 24365 24492 
kc2 0.2846* 0.2847* 0.2847* 0.2840* 0.2846* 0.3000* 0.2951 
kref1 8.96E-4* 8.96E-4* 9.53E-4* 1.04E-3* 1.00E-3* 1.10E-3* 1.26E-3 
kref2 5.12E-7* 8.04E-6* 7.71E-6* 8.84E-6* 8.09E-6 8.66E-6 8.95E-6 
kref4 4.09E-7* 4.10E-7* 4.09E-7* 6.41E-7* 5.14E-7* 5.87E-7 6.33E-7 

GTF 7.831 5.521 4.430 2.567 2.856 1.663 0.235 
Ωθ (106) 6.7 13.2 14.7 22.5 12.4 81.0 109.0 

Table 3.14 Case Study 2: parameter estimations obtained through a 
sequential experiment design of three experiments. Time ttot stands for the 
total elapsed time. Asterisks denote estimates failing the t-test. 

 Exp1 Exp2 Exp3 
ttot 90 h 180 h 270 h 
Δh -16775* -17393* -15986 
Ea1 28968* 35387* 28828 
Ea2 66844 69222 74117 
Ea4 16037* 22561 26710 
kc2 0.2847* 0.2311* 0.2082* 
kref1 1.27E-3* 1.58E-3* 1.29E-3* 
kref2 8.92E-6* 8.22E-6 9.40E-6 
kref4 7.57E-7* 7.57E-7* 7.79E-7 

GTF 5.960 2.694 0.423 
Ωθ (106) 9.3 16.5 109.0 

 

In terms of global indexes, it can be observed that the GTF generally decreases in both the 

OMBRE and the standard designs. However, note that at the end of each experiment the value 

is smaller in the case of the OMBRE approach, which therefore demonstrates a higher 

precision. Similar considerations can be drawn for the second precision index, Ωθ: after each 

one of the first two experiments, the OMBRE design always outperforms the standard design. 

At the end of experiment 3 the precision index is the same, but less time and measurements 

were needed in the OMBRE design. To conclude, it can be stated that also for Case study 2 

the OMBRE technique is a more efficient approach to the design of experiments for 

parameter estimation: on the one side, the overall experimental time as well as the number of 

measurement samples can be significantly reduced; on the other side, the optimisation 

problem is split into three smaller optimisation problems with great benefits for the robustness 

of computation.  
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3.7 Final remarks 

A novel online model based re-design of experiment (OMBRE) approach for optimal ED was 

presented and discussed in this Chapter. This procedure demonstrates the possibility and the 

benefits of adopting a whole online re-design while the experiment is being performed. In a 

standard sequential design perspective, the experiment design, experiment execution and 

parameter estimation phases are carried out in a strictly sequential manner, and therefore each 

experiment is fully planned on the basis of the initial parameter estimate only. The OMBRE 

technique allows for the progressive update of the experimental settings through intermediate 

design of experiments, in order to maximise the informative level of the experiment while it is 

still running. The methodology proved to have more advantages over standard optimal 

experiment design techniques in terms of computational robustness and efficiency and, most 

importantly, of experimental efficiency.  

 



 



Chapter 4 

A backoff strategy for MBDoE under 
parametric uncertainty* 

Model-based experiment design techniques are flexible techniques for the estimation of the 

process model parameters, allowing for the definition, within the optimisation scheme, of a 

set of active constraints possibly acting on the physical system. However, uncertainty in the 

model parameters can lead the constrained design procedure to predict experiments that turn 

out to be, in practice, suboptimal, thus decreasing the effectiveness of the experiment design 

session. Additionally, in the presence of parametric mismatch, the feasibility constraints may 

well turn out to be violated when that optimally designed experiment is performed, leading in 

the best case to less informative data sets or, in the worst case, to an infeasible or unsafe 

experiment. In this Chapter, a novel and general methodology is proposed to formulate and 

solve the experiment design problem by explicitly taking into account the presence of 

parametric uncertainty, so as to ensure both feasibility and optimality of the planned 

experiment. A prediction of the system responses for the given parameter distribution is used 

to evaluate and update suitable backoffs from the nominal constraints, which are used in the 

design session in order to keep the system within a feasible region with specified probability. 

This approach is particularly useful when designing optimal experiments starting from limited 

preliminary knowledge of the parameter set, with great improvement in terms of design 

efficiency and flexibility of the overall iterative model development scheme. The 

effectiveness of the proposed methodology is demonstrated and discussed by simulation 

through two illustrative case studies concerning the parameter identification of physiological 

models related to diabetes and cancer care. 

4.1 Introduction 

The goal of a constrained MBDoE is to achieve both optimality (maximisation of the 

expected information) and feasibility (no constraint violations) during the experimental trials. 

Since the methodology is model-based, both model mismatch (i.e. a model structure 

inadequate to represent the physical systems) and parametric mismatch (i.e. incorrect values 

of the parameters) may affect the consistency of the whole design procedure (Ford et al., 

                                                 
*  Portions of this Chapter have been published in Galvanin et al. (2009c) and Galvanin et al. (2010a).   
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1989). Despite the importance of ensuring optimally informative as well as feasible 

experiments, there has been relatively little work to develop a model-based experiment design 

technique capable of overcoming both of the above issues.  

In the topic of process systems design the problem of constrained optimisation under 

uncertainty, seen as a trade-off between feasibility and optimality, has long been recognised 

as a key issue (Grossmann and Sargent, 1978) because the presence of both variations in the 

operating conditions and uncertainty in the process model (in terms of process model 

parameters and mathematical structure) deeply affects the optimality of process and 

equipment design (Raspanti et al., 2000). Several approaches have been proposed to solve the 

process design problem in the presence of parametric uncertainty, where uncertain parameters 

are described by probability distribution functions and the design problem is formulated using 

probabilistic decision criteria.  

Several work have appeared where the issue has been tackled through a robust 

implementation based on the solution of a max-min optimisation problem (worst case 

approach; Halemane and Grossmann, 1983; Swaney and Grossmann, 1985). In this way the 

design solution (formally an “overdesign”) represents the best decision based on the actual 

knowledge on the process. Different methodologies have been proposed to relax the worst 

case assumption, where an expected value approach is used to increase the design feasibility 

(Pistikopoulos, 1995; Mohideen et al., 1996; Ierapetritou and Pistikopoulos, 1994; Li et al., 

2008). A somehow similar route was considered by Monningmann and Marquardt (2003), 

who proposed a robust optimisation approach to guarantee feasibility and stability over the 

expected range of variation introducing conservatism to handle parametric uncertainty.  

In fact, as discussed by Chachuat et al. (2008), in the presence of model uncertainty feasibility 

is often of greater importance than optimality. In order to tackle this issue, a more tailored 

strategy is to enforce feasibility by the presence of backoffs from active constraints. In the 

backoff approach, which also may be implemented according to a worst-case approach (Bahri 

et al., 1995) or to an expected value approach (Loeblein et al., 1999), or defining the 

magnitude of the output variation (Lear et al., 1995), the actual operating point is moved 

away from the nominal operating point in order to ensure feasibility of the process to 

compensate for the effect of disturbances. 

Other formulations have been proposed to solve specific operational issues like flexibility (i.e. 

the ability of the process to preserve feasibility in the presence of uncertainties; Grossmann et 

al., 1984; Bansal et al., 2000), robustness (i.e. the ability to preserve optimality conditions for 

disturbances in the inputs; Bernardo and Saraiva, 1998), controllability (i.e. the ability of the 

system to recover from process disturbances or dynamic plant behaviour; Bahri et al., 1996), 

economic performance (i.e. the choice of the compromise between feasibility and optimality 

in terms of the economy of the process itself; Loeblein and Perkins, 1998) and the integration 

of some of the aforementioned issues (Bahri et al., 1997; Bernardo et al., 2000).  
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From an MBDoE perspective, robust techniques for optimal experimental design have been 

proposed in literature (Körkel et al., 2004; Asprey and Macchietto, 2002) to preserve the 

optimality of the design in the presence of parametric uncertainty, either through a worst case 

approach or performing a dynamic optimisation over all the predicted uncertainty region of 

model parameters (expected value approach). Rustem and Zakovic (2003) proposed a semi-

infinite programming algorithm to solve the global optimisation design and the feasibility 

problems in parallel, with great benefit in terms of computational time saving; in this case the 

robust constrained MBDoE problem was solved with constraints on the design variables only. 

Rojas et al. (2007) proposed a min-max approach to solve the robust optimal design problems 

with simple constraints on the manipulated inputs. Interestingly, the authors also compare 

different design criteria linking robust control techniques (Hjalmarsson, 2005) and nominal 

experimental design procedure. Chu and Hahn (2008) proposed a technique to integrate 

optimal parameters selection with experimental design under parametric uncertainty for 

nonlinear dynamic systems. The robust design was performed by adopting a hybrid method 

combining a genetic algorithm and a stochastic approximation technique. 

However, a framework for explicitly taking into account the feasibility issue within an 

MBDoE approach has not been presented so far. In this Chapter, a new methodology is 

illustrated and discussed to address the problem of the constrained optimal experimental 

design under parametric uncertainty. Similarly to what was successfully proposed in other 

fields (and discussed in the above), a backoff policy is adopted that allows guaranteeing the 

feasibility of the optimally designed experiment in the presence of parametric uncertainty. 

The technique is particularly suitable for planning experiments in such systems (for example, 

physiological systems or reactive systems) where the operability is strictly reduced by the 

presence of active constraints on state variables that are inherently related to the physical 

system. The proposed technique is illustrated and discussed through two simulated case 

studies concerning parameter identification in physiological models related to the care of 

diabetes mellitus and of cancer. 

4.2 Problem definition 

A general dynamic deterministic model of the form (2.1) can be subject to a set of constraints 

in the form 

 

    0t t  C x G                                                                                                                (4.1) 

 

where C is an Nc-dimensional set of constraint functions expressed throug t 

  cNt G  of (possibly time-varying) active constraints on the state variables ( )tx , reflecting 

h the se
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the (possible) constraints acting on the physical system. The optimal design under constraints 

problem can be formulated as finding: 

 

  OPT
ˆarg min ψ ,

 V θ 
                                                                                             (2.14) 

 

subject to C. In addition to (4.1), a nφ-dimensional set of constraints on the design variables 

may be present, too, usually expressed as 

 
u
ii

l
i                i = 1 …nφ                                                                                             (4.2) 

 

with lower (superscript l) and upper (superscript u) bounds on the elements of , constraining 

the design to a hyper-rectangular sub-space of the overall design space .  n

The solution to the constrained MBDoE optimisation problem is the optimal design vector   

that through model (2.1) simultaneously satisfies the design optimality condition (2.14), the 

feasibility constraints on the state variables (4.1) and the constraints on the design variables 

(4.2). Note that both the optimality and the feasibility conditions are evaluated at the current 

estimated value of model parameters , which is different from the true (and unknown) value 

of model parameters θ. The parametric mismatch affects both the optimality condition (2.14) 

and the feasibility condition (4.1) as well as the constraints in (4.2). Prior knowledge on the 

physical system (in particular of the sources of uncertainty) and a preliminary analysis of the 

model around a set of nominal experimental conditions may help to define the boundaries of 

an “expected” uncertainty region of model parameters. Hyper-rectangular uncertainty regions 

are frequently used

̂

 (Mohideen et al., 1996; Bahri et al., 1997) but, as suggested by Rooney 

and Biegler (2001), the adoption of non linear confidence regions derived from the likelihood 

ratio test leads to a more accurate representation of the uncertainty. 

In order to predict the effect of parametric uncertainty on the optimality and feasibility 

conditions, a stochastic approach may be adopted, taking into account all the possible 

realisations of the parameter vector elements over all the (expected) uncertainty. In the 

stochastic approach the entire set of possible realisations of θ has to be defined through some 

probabilistic assumptions, concerning the type of distribution and the deviation metrics from 

the current estimate of the model parameters, . In this perspective the set of model 

parameters can be regarded as a stochastic variable (symbol 

̂
~), i.e. a func θ  

considering all the possible realisations from the N

tion θθ NN T:
~

θ-dimensional expected uncertainty of 

model parameters T  to the Nθ-dimensional field of real numbers. 

In the presence of parametric uncertainty, the solution of the constrained MBDoE problem is 

not deterministic and the solution of the optimal design under constraints problem is a 

stochastic design vector ~  (i.e. a set of possible realisations of the optimal design vector) 

satisfying at the same time the model equations, the design optimality condition and the 
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feasibility constraints on both state and design variables. The stochastic design vector 

represents the field of optimal and feasible solutions of the design problem in the presence of 

parametric uncertainty where the optimal design problem under constraints is solved over T. 

Considering that, unless a large number of identical experimental facilities is available, only 

one experiment can be performed at a time, the above general formulation needs simplifying 

so that a unique feasible optimal solution for the experiment design problem is found. The 

design objective function (2.14) can be evaluated, adopting a conservative approach, 

considering an expected value or worst case metric for Vθ (emphasizing robustness, as is done 

in Asprey and Macchietto, 2002), or, as is done in this work, at the actual information point 

(emphasizing optimality). Thus, the following set of equations has to be solved  

 

  OPT
ˆarg min ψ ,

 V θ 
                                                                                             (2.14) 

 

subject to 

 

       0,
~

,,,~,
~

tttt θwuxxf                                                                                                      (4.3) 

 
    tt xgy ~ˆ                                                                                                                           (4.4) 

 

          , , , , ,t t t t t t   C x G β x x u w θ   0                                                                   (4.5) 

 
u
ii

l
i               i = 1 …nφ                                                                                             (4.2) 

 

where β is a Nc-dimensional set of time-dependent backoff functions taking into account the 

effect of parametric uncertainty on the state variables at the designed experimental conditions. 

Note that β is a function of a subset of the design vector φ (i.e., of u and w only). The 

adoption of a backoff strategy allows satisfying the stochastic feasibility condition 

 

    0t t  C x G                                                                                                                 (4.6) 

 

where the effect of parametric uncertainty is taken into account exclusively through the 

backoff vector β. Since the backoff vector is a function of stochastic variables, a stochastic 

simulation approach has been adopted here. The stochastic simulation procedure for backoff 

vector evaluation consists of three key steps: 

1. characterisation of the parametric uncertainty: some assumptions have to be made on the 

multidimensional uncertainty domain T of model parameters and a reliable sampling of T 

has to be carried out; 
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2. mapping the uncertainty region of the state variables: in our approach several simulations 

are carried out adopting random values for model parameters and a subsequent statistical 

analysis of the profiles of state variables is used to provide a probabilistic description of 

the uncertainty region of the state variables; 

3. backoff formulation and policy: starting from the description of the uncertainty region of 

the state variables, the user can build the set of backoff functions in (4.5). Note that the 

experimenter’s decisions may deeply affect the fulfilment of (4.6) since some constraints 

could be enforced or relaxed through a backoff policy.     

The steps involved in the stochastic simulation approach for the backoff building are analysed 

in detail in the following subsections.  

4.2.1 Characterisation of the parameter uncertainty 

If a probability function is associated with the expected parameter uncertainty domain, then it 

is possible to define T as 

 

  NjNipθθ θθθijij ...1,...1,,ˆ~ ~
 θT                                                                        (4.7) 

 

where  is a -dimensional vector of parameters defining the specific probability 

distribution , 
θξ θ

nξ

ijθθp
~

is the realisation of the i-th element of the parameters vector in the j-th 

event and N is the population abundance. Note that the elements of 
~

could be either 

independently distributed or correlated random variables, coming either from a joint 

probability distribution or from a set of univariate probability distributions. A sampling of the 

expected uncertainty domain T needs to be carried out in order to assess the effect of the 

possible realisations of the unknown parametric set on the state variables of the model. 

Different sampling methods can be used at the purpose (Cochran, 1977).  

A critical aspect of the sampling procedure is the choice of the number  of samples of the 

parameters probability distribution. For one random variable

N 
 (Bartlett et al., 2001) the 

following formula can be used, according to the central limit theorem  

 
2

2

σ̂

ε

t
N


 


                                                                                                                              (4.8) 

 

with  the t-value for the selected confidence level α (set by the experimenter),  the error 

that the experimenter is willing to expect and  the expected variance value. No general 

formulas for  to define an appropriate sampling in multivariate distributions are available, 

and a multivariate statistical analysis of the sampled region is highly recommended

t 
2σ̂

N 
 (Bilodeau 

and Brenner, 1999). Chao (2007) proposed a principal component analysis (PCA) method for 

sampling from multivariate distributions to summarize most of the variability using the 
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principal components with highest variance. Global sensitivity analysis (GSA) methods 

involving FAST, Sobol (Saltelli et al., 1999) or the more computationally efficient DGSM 

techniques (Kucherenko et al., 2009) could be useful to detect the most relevant subsets of 

model parameters, allowing to decrease the sampling size of the analysis. The main drawback 

is that GSA is usually evaluated at some specified experimental conditions and, because of 

the computational effort, it is difficult to integrate it in a MBDoE optimisation framework.  

4.2.2 Mapping the uncertainty region of the state variables 

After sampling the space of uncertain model parameters T, a stochastic simulation is carried 

out where model (2.1) is solved repeatedly for the entire sub-set of possible realisations of the 

parametric uncertainty. The goal of the stochastic simulation is to evaluate a set of time 

dependent statistical parameters  describing  tx   ttp xx ,|  , i.e. the probability distribution 

of the state variables in the presence of parametric mismatch at the given experimental 

settings defined by  . Since the state variables are usually correlated,  generally 

defines a time-dependent joint confidence region of the state variables. A set of 

  ttp xx ,|  
N   

simulations based on the  sampled values of the model parameters around the nominal 

point  at the experimental conditions 

N 

θ̂   is carried out, generating the -dimensional set of 

dynamic responses, which are collected in a 

N 

N ×Ny time dependent matrix X. The problem of 

mapping the uncertainty region of the state variables can be interpreted as finding the -

dimensional set of time-dependent parameters 
x

n

 tx  that are specific for describing the given 

distribution (e.g., for a normal distribution, = 2 and the distribution parameters are the 

vector of average values and the variance matrix of model parameters).  
x

n

It must be pointed out that: 

 the number of simulations might be sufficient for a complete description of θp , but not of  

  tt  since the model is nonlinear and the two distributions are usually different; p xx ,| 

 the evaluation of X is computationally expensive, involving the repeated numerical 

integration of a non linear differential system. 

We define the Nx-dimensional vector of average responses x  as 

 

 
 

N

t
t

N

i
i







1

X
x                                                                                                                        (4.9) 

 

and the Nx-dimensional variance vector is  

 

 
  
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1
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x

xX
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In the hypothesis of i) independence and identical distribution of the responses for each xi 

trajectory after random sampling on  during the whole experimental horizon (i.e., each xi 

trajectory belongs to the same kind of distribution at a given experimental time and can be 

treated as a purely random variable), ii) finite variance of the model responses, iii) being a 

sufficiently large number of simulations, and iv) linear correlation between  and x

N 

i, then it is 

possible to apply the central limit theorem. Under those assumptions any xi can be considered 

normally distributed with mean ix  and standard deviation ,x i . The basic idea idea is to 

capture the overall uncertainty of state variables through a mean-variance regression model 

whose responses can be represented by mean profiles and deviations from the mean profiles. 

This approach resembles the one used in nonlinear optimisation under uncertainty (e.g., 

Darlington et al., 1999) and robust design through metamodeling (e.g., Apley et al., 2006).  

For a normal distribution the confidence intervals κ for a (1 – α) = 95% and (1 – α) = 99.7% 

confidence levels can be easily approximated by the following expressions 

 

 

1
22~ 1

2

%95




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
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

N

N

i
i

x

xX
                                                                                               (4.11) 
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The normal distribution usually provides a starting point for the evaluation of the shape of the 

actual  distribution that, in practice because of a non-linear correlation between x  ttp xx ,|  



i 

and , might present some peculiarities: 

1. different dispersion around the vector of mean values; 

2. asymmetric dispersion around a critic value (skewed distribution) with consequent 

inconsistency of the standard normality assumption. 

To overcome these issues more complex distributions may be considered (skew normal, 

Weibull, multivariate normal, Rosin-Rammler, bimodal etc.).  

4.2.3 Backoff formulation and policy 

Once a predicted uncertainty region of the state variables is defined, the backoff vector β of 

(4.5) can be approximated by  

 

       | , , , 0x xt t p t t t    C x G β α                                                                         (4.13) 
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where the Nc-dimensional time-varying backoff vector is a function of the probability 

distribution of the state variables at the experimental settings  , and of a confidence vector α. 

The confidence vector can be set by the experimenter to tune the backoff from the active 

constraints G. Prior information on the system and convenience factors (e.g., the constraints 

on some state variables might be relaxed or enforced according to their relative importance) 

can guide the choice of the proper confidence vector. One possible backoff formulation is: 

 
      tttp xx ,,,|                                                                                                        (4.14) 

 

where the backoff takes into account the overall (1 – α)% uncertainty region of state variables 

at the nominal conditions. In order to increase the flexibility of the backoff strategy it is also 

possible to adopt the expression 

 
      Λ tttp xx ,,,,|                                                                                                 (4.15) 

 

where  is a NΛ c-dimensional vector of coefficients larger than 1, used to increase 

conservatism. Through (4.15) the experimenter can always favour one direction of the 

variability instead of another, thus guiding the backoff policy. It must be pointed out that both 

backoff formulations (4.14) and (4.15) do not depend on the closeness to the active 

constraints, but on the predicted uncertainty region of the state variables only. More complex 

formulations may include the backoff action in the region of possible constraints violation 

only (i.e. for all the possible realisations of T at given ̂  ). 

4.3 Integration of the stochastic information: MBDoE with backoff 
algorithm  

The stochastic approach for backoff building described in the previous section needs to be 

integrated into a constrained MBDoE scheme. The final goal of the whole procedure is to 

estimate the set of model parameters in the most precise and reliable way by performing a 

sequence of highly informative experiments within the feasible design region. For a sequence 

of experiments to be designed, the general scheme is shown in Figure 4.1.  
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Figure 4.1 Constrained MBDoE with backoff: iterative scheme. The sequence of operations enclosed in the 
dashed box is detailed in Figure 4.2. 

 

The methodology involves an iterative scheme requiring as initial inputs i) the definition of 

the active constraints C, ii) some knowledge on the parameter system (initial value of the 

model parameters and related statistics), and iii) some information about the backoff policy 

and sampling technique.  

The key activities are as follows: 

1. the design with backoff step including the simultaneous execution of the following tasks:  

i) the constrained design of the experiment, with the optimality condition (2.14) 

and feasibility condition (4.5) adjusted for the backoff from the active 

constraints; 

ii) the stochastic simulation providing the backoff vector β, given the nominal value 

of model parameters; 

2. the experiment execution, performed at the designed experimental conditions; 

3. the parameter estimation (different estimation techniques can be used: least-squares, 

maximum likelihood, Bayesian estimation) from the collected experimental data; 

4. the assessment of the statistical precision of the parameters. 

The sequence of activities can be iterated until a sufficiently precise estimation is achieved. 

Figure 4.2 shows the flux of information and tasks occurring in the stochastic simulation (step 

1.i) defining the back-offs  (depending on ), and in the MBDoE (step 1.ii) defining the 

design vector (depending on). 

The critical steps are the description of the predicted uncertainty region of model parameters 

and the mapping of the predicted uncertainty region of the state variables. As for the first 

issue, the focus is on how to exploit the prior information and available knowledge in order to 

define the domain T of parametric uncertainty in a reliable way. In particular, it is not trivial 

to define a probability density function representing the variability of the parametric set. As 
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for the second issue, the problem of mapping the predicted uncertainty region of state 

variables is an approximation problem solved through a probabilistic approach driven by the 

experimenter. In fact, the problem can be seen as choosing an optimal trade-off between the 

accurate mapping of the uncertainty region of the state variables and the computational effort 

for the stochastic simulation.  

 





  ˆarg min ,θψ  V θ

    0t t   C x G β

  | ,x xp t t ξ

   | , , ,x xp t t t  

 

 

Figure 4.2 Flux of information in the constrained MBDoE and stochastic simulation coupling. 
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Two case studies are examined in this Chapter; they differ in terms of the number of model 

parameters to be estimated, and of the type of active constraints on the state variables. Both 

examples consider physiological models; however, the methodology can be applied without 

any further extension to generic process models.  

The gPROMS® modelling environment (PSE Ltd., 2008) is used for modelling, simulation 

and optimisation purposes, as well as to design the experiments. The SRQPD optimisation 

solver of gPROMS has been coupled with the SIMLAB® software (Joint Research Centre, 

2009) to generate the perturbed set of model parameters for the stochastic simulations. An 

SQP (sequential quadratic programming) routine was adopted in a two-step multiple shooting 

technique (Bock et al., 2003) to solve the nonlinear optimisation problem.  

4.4 Case study 1: optimal insulin infusion rate in a subject affected 
by diabetes 

Optimal MBDoE techniques can be applied to a detailed model of glucose homeostasis to 

design a set of clinical tests that allow estimating the model parameters in a statistically sound 

way for a subject affected by type-1 diabetes mellitus (more details about physiological 

models for type-1 diabetes mellitus, and related identification issues, will be discussed later 

on in the Thesis). However, because of the parametric mismatch between the subject and the 

model (both are represented by the same DAE model, but with different sets of parameters), a 

design strategy may provide an infeasible solution due to a violation of the existing 

constraints on the output (blood glucose concentration). Here, the goal is to assess the 

effectiveness of a backoff-based experiment design strategy aimed at ensuring, in the presence 

of parametric mismatch, a feasible and optimally informative clinical test for parameter 

estimation purposes. A simplified model of glucose homeostasis (Lynch and Bequette, 2002) 

is adopted to describe blood glucose and insulin concentrations dynamics. The model is 

represented by the following set of differential equations: 
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where Cg is the blood glucose concentration (mg/dL), X the insulin concentration (mU/L) in 

the non accessible compartment, I the insulin concentration (mU/L) and u(t) the rate of 
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infusion of exogenous insulin (mU/min). The meal disturbances model adopted in the study is 

the one proposed by Hovorka et al. (2002):  

 
   tAttD 05.0exp5.2                                                                                                      (4.19) 

 

with A the amount of glucose of the meal (gCHO). The basal parameters (considered as 

constants) are given in Table 4.1. 

 

Table 4.1 Case study 1: value of model constants and description of basal parameters. 
 

Basal parameters Description Value 
Cg,b Basal glucose concentration in the blood [mg/dL] 81 

Ib Basal insulin concentration [mU/L] 15 

VI Insulin distribution volume [L] 12 

n Disappearance rate of insulin [min-1] 5/54 

ub Basal insulin infusion rate [mU/min] 10.0 

 

The constraints on the system are the upper (G1 = 150 mg/dL) and lower (G2 = 60 mg/dL) 

thresholds on blood glucose concentration, which is the only state variable being constrained 

(i.e. y = Cg = x1). In reality, the lower bound only is a hard constraint not to be violated. 

However, for the sake of example, both constraints will be treated as hard ones. Additional 

equality constraints are set on the final glucose concentration (which must be equal to the 

basal value of  Cg,b = 81 mg/dL) and on the final insulin infusion rate (which must be equal to 

ub). 

The test has to be optimally informative and safe for the subject. Accordingly, a MBDoE with 

backoff is realised, where the design vector is 

 

  sptu t,   .                                                                                                                      (4.20) 

 

The design variables are the insulin infusion rate and the vector of sampling times. The 

experiment design sessions are carried out by approximating the insulin infusion rate u(t) as a 

piecewise constant function, with nsw = 7 switching times and nz = 8 switching levels. The 

optimal scheduling of a preset number nsp = 10 of samples is also to be optimised, considering 

a minimum time of 10 min between two consecutive glucose concentration measurements. 

The glucose amount in the meal A is kept constant and equal to 60 g of carbohydrates. The 

measured variable is the blood glucose concentration Cg, with an expected relative error on 

the measurements of 3% of the reading. The chosen design criterion is the E-optimal 

experiment design for all the design configurations. The two constraints equations including 

backoff in the  form (4.13) are: 
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0111  GβyC                                                                                                            (4.21) 

 
0222  GβyC                                                                                                         (4.22) 

 

with   depending on the probability distribution of the system response at the 

nominal conditions 

 T
21 ββ 

  ttp xx ,
11

ξ . The nominal values for the model parameters, valid for a 

healthy subject, are  .   TE 530.102834.002873.0ˆ θ
As discussed by Furler et al. (1985), a subject affected by diabetes should have a lower value 

of the first parameter. Here it is assumed that: 

1. the subject is diabetic and his/her condition is defined by the parameter set 

T5  (the relative deviations from the healthy subject set are 

therefore of 13%,  47% and 3% respectively); 

 26.10150.00250.0  Eθ

2. the experimental design procedure is based on the θ̂  set describing a healthy subject. 

To take into account the uncertainty of model parameters in mapping 1xp  a stochastic 

approach is followed by running  = 500 simulations; therefore, the expected uncertainty  of 

the model parameters adopted in the study is the following: 

N 

 

  ~ ~
500...1,3...1,,ˆ

θ   jiθpθθ iijijT                                                                         (4.23) 

 

defining an hypher-rectangular region of uncertainty where  

 

   
111

,ˆˆ,ˆ~
11111   θpθθRθ  

 

   
222

,ˆˆ,ˆ~
22222   θpθθRθ                                                                               (4.24) 

 

   
333

,ˆˆ,ˆ~
33333   θpθθRθ  

 

 T
321 RRRR 


is a family of independent uniform distributions defined by a set of 

upper and lower variability bounds set by . 

These settings for the perturbed values of parameters include a wider uncertainty on the 

second parameter representing a subject with an altered insulin sensitivity.  

 
1 2 3

T T
0.006 0.015 0.1 5θ θ θ θξ ξ ξ E    

Before the MBDoE procedure is started, the two systems (the model and the subject) have 

very different responses. If the uncertainty region of the state variables is built assuming a 

normal distribution and a 99.7 % confidence region, it was observed that the distribution of 

the system responses is skewed. Therefore the hyphothesis of a normal distribution provides a 

poorly accurate representation of the distribution of the system responses for this case study. 

As a consequence, in order to increase conservatism, the backoff  is defined as the maximum 

variation from the nominal profile, i.e. the uncertainty region of the state variables is 
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described through the maximum and minimum blood glucose concentration profiles over the 

parameter uncertainty domain.  

To verify the effectiveness of a backoff-based experimental design, two different 

configurations were compared: 

1. standard MBDoE with simple constraints and no backoff; 

2. MBDoE with backoff from constraints. 

Results are illustrated in the following lines.   

4.4.1 Standard design 

The results from the simple design (Figure 4.3) can be seen as a motivating example for the 

adoption of a backoff-based strategy. The optimal design conditions do not comply with the 

lower constraint on the glucose concentration when applied to a diabetic subject. The test is 

unsafe for the subject because hyphoglycaemia is achieved at 90~t  min.  
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(a)                                                                       (b) 
 

Figure 4.3 Case study 1, standard MBDoE. (a) Glucose concentration profiles predicted by the model 
during the experiment design (broken line) and after parameter identification (solid line); the subject 
actual response to the designed experiment is indicated by diamonds with measurement error bars. 
(b) Profiles of the designed insulin infusion rate. 

 
Table 4.2  Case study 1, standard MBDoE. Parameter estimation, initial guess, 
true values, and statistics as 95% confidence intervals, t-values (reference t 
value = 1.898) and standard deviations. 

 
model 

parameter 
final 
value 

initial 
guess 

true 
value 

confidence 
interval 95% 

95% 
t value 

standard 
deviation 

θ1 0.028204 0.028735 0.0250 0.01396 2.021 0.00590 

θ2 0.014063 0.028344 0.0150 0.00241 5.843 0.00102 

θ3 1.241E-5 1.300E-5 1.26E-5 1.189E-6 10.44 5.028E-7 
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It can be noted that the parameter set is estimated well (Table 4.2) using the data from the 

test: as expected, the designed experiment, although infeasible, is optimally informative for 

parameter estimation purposes. 

4.4.2 MBDoE with backoff 

To avoid constraint violations in the presence of parametric uncertainty, the experiment 

design procedure is coupled to a stochastic simulation to estimate the necessary backoff 

solving the optimisation problem given by (2.14) and (4.2-4.5) . In this way 

 

    1 1 1
ˆˆ, , , , , , , ,MIN MAX

θ θx R x x t t u p t     β β β                                                         (4.25) 

 

and the backoff is a function of  
1 1 1, ,MIN MAX

xR x x t , a uniform distribution defined by the 

highest value and the lowest value of x1 at the t time. This distribution is function of the 

parametric uncertainty distribution (4.24) and the estimated value of the actual manipulated 

input. The simulation is carried out with N   = 500 and is computationally expensive, 

although the calculations burden could be reduced if an appropriate initial guess profile of the 

manipulated input is chosen (e.g., by using by the solution of a standard design or, more 

efficiently, by evaluating the profile of the manipulated inputs that satisfy the constraints of 

the problem with backoff  through a preliminary dynamic optimisation).  

Figure 4.4 shows the resulting profiles for the experimental design with backoff, and Table 

4.3 shows the parameter estimation after the designed experiment with backoff.  The 

parameter estimation is again statistically satisfactory (as can be seen from the 95% 

confidence t-test values and from the narrow confidence intervals) and the parameter values 

close to those of the diabetic subject. It is interesting to note that the design with backoff 

defines a test that is now both feasible and optimally informative. As can be seen from Figure 

4a, the dynamics of glucose concentration are constrained within a narrow range of 

operability to take into account the stochastic contribution to the response of the parametric 

uncertainty. Also note that according to Table 4.3, the design with backoff allows obtaining a 

more precise estimation of the model parameters. This may sound counter-intuitive as the 

design space is restricted by the effect of the backoffs, it can be verified that the design with 

backoff optimisation does predict a less informative experiment (the final value for the design 

objective function is 0.00547 against 0.00310 for the standard design). Thus, the 

“unexpected” better estimation of the parameter values can be explained by the fact the design 

(and the design objective function) depends on the current value of the model parameters, 

whereas the actual design and subsequent estimation of the parameter values are based on the 

actual (unknown) values of the parameters. 
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Figure 4.4 Case study 1, MBDoE with backoff. (a) Glucose concentration profiles predicted by the 
model during the experiment design (broken line), after parameter identification (solid line), and 
effect of backoff on active constraints (dash-dot lines); the subject actual response to the designed 
experiment is indicated by diamonds with measurement error bars. (b) Profiles of the designed insulin 
infusion rate. 

 
Table 4.3 Case study 1, MBDoE with backoff. Parameter estimation, initial 
guess, true values, and statistics as 95% confidence intervals, t-values 
(reference t value = 1.898) and standard deviations. 

 
model 

parameter 
final 
value 

initial 
guess 

true 
value 

confidence 
interval 95%

95% 
t value 

standard 
deviation 

θ1 0.02517 0.028735 0.0250 0.00336 7.480 0.00142 

θ2 0.01513 0.028344 0.0150 0.00193 7.848 0.00081 

θ3 1.287E-5 1.300E-5 1.26E-5 1.244E-6 10.350 5.260E-7 

4.5 Case study 2: optimal chemotherapeutic drug administration  

A second case study considers the model originally proposed by Martin (1992) for the optimal 

chemotherapeutic drugs administration to people affected by cancer. This model was further 

analysed by Banga et al. (2005) in the topic of robust dynamic optimisation, in order to 

determine the optimal cancer drug scheduling to decrease the size of a malignant tumour as 

measured at some particular time in the future. Note that more complex models can be found 

in the literature, e.g. in the optimisation study by Dua et al. (2008). Here, the goal is to assess 

the effectiveness of a backoff-based experiment design strategy on ensuring, in the presence 

of parametric mismatch, a feasible and optimally informative clinical test for parameter 

estimation purposes, with the additional constraint of maintaining an effective therapy in 

terms of a reduction of the number of cancer cells to be observed during the test. 

The cell-cycle non specific model comprises the following set of equations: 
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where x1 represents the reduction of tumour cells (dimensionless), x2 is the drug 

concentration in the body in drug units (D), x3 is the cumulative (toxic) effect of the drug 

(Ddays); θ1, θ2, θ3 and θ4 are the model parameters to be estimated, ud is the drug 

administration rate (D/days) and t is the time (days). The tumour mass in terms of the number 

f cancer cells is given by 

 
  .                                                                                                        (4.29) 

 kept below the ultimate tolerance level. Function H 

epends on x2 and θ3 as in the following: 
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The drug concentration must be kept below an assigned level during the treatment period and 

the cumulative effect of the drug must be
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fact that the drug is effective only if its concentration in the body 

 optimisation problem consists of finding the optimal ud(t) over 

 

This takes into account the 

is above a threshold level.  

The dynamic 0, ft t     by 

aximising  

 

m

ftxJ 1                                                                                                                               (4.31) 

ubject to (4.27-4.29) and to the following path constraints 

 

D                                                                                                                (4.32) 

 

Ddays 

nd to the following interior point constraints 

 

s

  5012  Gtx  

  210023  Gtx  
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 800ln5631 


Gx

t
 

 

stating that there must be at least 50% reduction in the size of the tumour every three weeks. 

In this case study, we see that Ny = 1 and Nc = 5 (i.e., this is a problem w asured 

response with multiple constraints); in addition, the control is bounded (  0 100du t  ). The 

upper threshold for the cancer biomass is N

ith a single me

ent time acc
cells = 1.5E+10, which can be seen as a terminal 

state for the subject. The maximum experim eptable for the optimisation is tf = 84 

days (12 weeks). The measured variable is  1exp xy  , and the measurements are available 

with a relative error of 3%. The initial state is taken at  T0 ln(100) 0 0x  and the nominal 

values of model parameters are shown in Table 4, with a short explanation of their physical 

ancer cells (Figure 4.5a) and on the 

ffectiveness of the drug therapy (Figure 4.5b).         

 

8

meaning.  

The model is rather sensitive to the parameter values. Figure 4.5 shows the effect of a change 

in one parameter value on the proliferation of c
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ver a 12 
weeks period. (a) No drug administration. (b) Step administration of drug at the third week.  

              

Figure 4.5  Case study 2: effect of the value of  θ1 and θ2 on the number of cancer cells o

 

A constrained dynamic optimisation adopting (4.31) as the objective function would provide 

an efficient test, but a low information level for parameter estimation purposes. More 

importantly, the parametric uncertainty might lead the test to be infeasible and to return sub-

optimal solutions. On the other hand, a simple MBDoE procedure based on (2.14) would 

provide an optimally informative but less effective test protocol, with the same problems of 
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feasibility and robustness of the solution in the presence of parametric uncertainty. A backoff 

strategy can guarantee the feasibility of both an optimally informative (i.e. MBDoE-based) 

m

reported in Table 4.4 (sy

and an optimally efficient (i.e. dynamically optimised) test.  

To solve the optimisation proble s, the model parameters are scaled to unity using the values 

mbol Θ̂  is used for the estimated normalised set). A model with 

 T1.2 0.8 1.2 0.8Θ  (i.e. 20% deviation from the nominal) is considered in order to 

represent a subject with a greater proliferation of cancer cells and a less effective response to 

rug delivery.  
 

4 Case stud : nominal values and descri  parameters. 
 

Parameter Value 

d

Table 4. y 2 ption of model

Description 
θ1 9.9E-4  Cancer cells proliferation [days] 

θ 2 8.    Drug actio [days-1D-1] 4E-3 n in cancer cells elimination 

θ 3 10  Drug threshold effect [D-1] 

θ 4 0.27  Drug elimination from the body [days-1] 

 

The manipulated input is approximated with a piecewise constant function with nsw = 10 and 

nz = 11. The sampling points (nsp=13) are collected to identify the model parameters with a 

minimum time between two consecutive measurements of 1 day. An E-optimal criterion is 

he expected uncertainty domain T of model parameters is defined by  

 

chosen for MBDoE.   

T

  Njip
ii iijij   ...1,3...1,ξ,ˆ~~

ΘT                                                                 (4.34) 

ponents are assumed to be independent and 

ormally distributed stochastic variables        

 

 

where the normalised parameter vector com

n

   iiiii ,Np
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σμξ,ˆΘ
~

                                                                            (4.35) θNi ...1Θ  

 

with mean Θ̂  and standard deviation σ = 0.15. N   = 100 simulations were carried out to 

build the (1 – α) = 99.7 % confidence region of system responses. Note that the selected 

vector of standard deviations define a wide uncertainty region for the model parameters. The 

choice of the number of simulations is related to the definition of the predicted uncertainty: 

the wider the uncertain region the smaller the number of simulations required to represent it 

(i.e., there is a trade-off between calculation/experimental effort and confidence on the 

parameters value).  

Although results are not reported here for the sake of conciseness, both a standard dynamic 

optimisation (DOPT) as in Banga et al. (2005) and a standard MBDoE were carried out. In 

both cases the fundamental issue is that the interior point constraints on the number of cancer 
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cells and the upper bound on the cumulative drug concentration in the body were violated. 

Also a dynamic optimisation with backoff (DOPT-B) was carried out: in this case no violation 

of the constraint occurred, but yet an evenly spaced (not optimised) sampling policy was not 

eter estimation, feasibility 

and effectiveness of the care are analysed in the following section. 

4.14) form can be evaluated from the (1 – α)% 

onfidence intervals for the state variables 

 
                                                                                                          (4.36) 

effective for a sound estimation of the model parameters.  

To verify the effectiveness of a backoff approach for optimal drug scheduling, and to 

overcome the limitations of standard optimisation and experiment design optimisation, a 

constrained design of experiment with backoff (MBDoE-B) is used to determine the optimal 

drug administration rate. The results in terms of statistics on param

4.5.1 MBDoE with backoff 

In order to formulate the necessary backoff from the active constraints, the distribution of the 

entire set of state variables (y, x2, x3) was approximated by a set of independent normal 

distributions. The backoff vector in the (

c

     tttx ,,,N

 

where the set of independent normal distributions N is defined by  tx  parameters, defining 

nstraints on state variables including backoff 

an be expressed for the state variables x2 and x3 as 

 

a vector of average profiles and standard deviations from the average profiles. 

The vector C = [C1 C2 C3 C4 C5] of active co

c

    01121  GtβtxC                                                                                                    (4.37) 

 
    02232  GtβtxC                                                                                                  (4.38) 

oncerning the path constraints, and  

 

 

c

C 03213213   Gβy tt                                                                                               (4.39) 

 
C 04424424   Gβy tt                                                                                               (4.40) 

 

C 05635635   Gβy tt                                                                                               (4.41) 

ints. The Nc-dimensional vector of backoff functions coming 

om the normality assumption is  

 

 

for the interior point constra
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for a confidence level of (1 – α) = 95%. In this case the assumption of indipendence and 

identically distribution for the states allows describing the uncertainty region of system 

responses in a satisfactory and adequate way.    

A further constraint is added to ensure the effectiveness of the therapy in the worst case 

(minimum reduction of the size of the tumour over the considered uncertainty domain of 

model parameters T), stating that 

 

13.8J  T                                                                                                                       (4.43) 

 

where ι is a small non-zero number taking into account the deviation of MBDoE-B objective 

function from the optimal conditions derived from DOPT-B. The idea underneath this 

approach is to perform an optimal experiment design ensuring (at least) the effectiveness of a 

dynamic optimisation with backoff. The MBDoE-B optimisation problem consists on finding 

the optimal ud(t) profile satisfying through the model (4.26-4.30) the design optimality 

condition and the feasibility constraints (4.37-4.41) and (4.43).   

Results are shown in Figure 4.6. The backoff strategy guarantees the feasibility of the 

designed experiment with the specified level of uncertainty. We verified that the final 

reduction of the mass of the tumour is indeed very similar to the one obtained through a 

DOPT-B. The optimal settings provided by the optimisation lead the x2 and x3 profiles close 

to the upper path constraints, without crossing them.  
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                                                (c)                                                                                          (d) 
 

Figure 4.6 Case study 2, MBDoE-B. (a) Profile of the number of cancer cells Ncells (solid line) with 
95% confidence region (short dash-dotted lines), point constraints (open triangles) and effect of the 
backoff on point constraints (closed triangles). (b) Optimal profile for drug administration rate. (c) 
Drug concentration in the body. (d) Cumulative effect of the drug profiles; path constraints (dot lines) 
and effect of the backoff on constraints (dash-dotted lines) during the optimisation. 

 

The measurements from the designed experiment (MBDoE-B) and the estimated profile are 

shown in Figure 4.7 (also showing how the interior point constraints on the measured variable 

y are largely fulfilled). Note that the design optimisation chooses a very uneven sampling 

profile (i.e., sample are taken where the information content is higher). The parameter 

estimation is statistically satisfactory (even if the informative content of the test is lower than 

the one obtained in the standard MBDoE) as summarised in Table 4.5. Table 4.6 summarises 

all the simulation results considered in Case study 2 in terms of proposed technique, 

feasibility and design optimality.   
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Figure 4.7 Case study 2, MBDoE-B. Profile of the number of cancer cells Ncells 
predicted by the model after parameter identification (solid line), sample measurements 
(diamonds) and interior point constraints (open triangles) . 

 
Table 4.5 Case study 2, MBDoE-B. Parameter estimation, initial guess, true 
values and statistics as 95% confidence intervals, t-values (reference t value = 
1.833) and standard deviations. 

 
model 

parameter
final 
value 

initial
guess 

true
value

confidence 
interval 95%

95% 
t value

standard 
deviation 

Θ1 1.2389 1.0 1.2 0.3693 3.355 0.1633 
Θ  2 0.7773 1.0 0.8 0.1211 6.417 0.0535 
Θ  3 1.1844 1.0 1.2 0.1473 8.038 0.0651 
Θ  4 0.7841 1.0 0.8 0.0996 7.871 0.0440 

 

Table 4.6 Case study 2. Summary of the results achieved with different proposed techniques. 
 

Experiment Technique Feasibility 
Design 

optimality
DOPT Dynamic optimisation NO NO 

DOPT-B Dynamic optimisation with backoff YES NO 
MBDoE Constrained experiment design NO YES 

MBDoE-B Constrained experiment design with backoff YES YES 

 

One drawback of the proposed methodology is the high computational effort for the stochastic 

simulation required to build the necessary backoff. As mentioned before, parallel computing 

and SA-based sampling methods can drastically reduce the computational burden. In any 

case, the computational burden is not a critical issue in this case study as the calculation time 

(< 5 hours in a Pentium D 3Ghz CPU) is small when compared to the duration of the therapy 

and is to be done before the therapy has commenced. 
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4.6 Final remarks 

In this Chapter a novel methodology for the constrained MBDoE in the presence of 

parametric uncertainty was proposed and discussed. The optimal design of an experiment for 

improving parameter estimation is a particular form of dynamic optimisation problem that can 

be very effective where both optimality and feasibility of the designed experiment are 

important issues to consider. Since parameter uncertainty affects both design optimality and 

experiment feasibility, a modified methodology exploiting stochastic information about the 

parametric system was adopted in order to design the necessary backoffs from the active 

constraints. The backoff strategy allows moving the optimal point in order to keep the 

experiment in the feasible region of the state variables. Two simulated case studies have been 

proposed to assess the effectiveness of the new technique.  

In the first case study the methodology was applied to a model of the glucose homeostasis to 

detect the best insulin infusion rate profile to infuse in order to estimate the parameters of a 

subject with type-1 diabetes mellitus when no preliminary information about the subject is 

available. The backoff strategy allows estimating the parametric set describing the diabetic 

subject in a safe manner, while a standard design (even if optimal) leads the subject to 

hypoglicaemia.  

In the second case study, dealing with the optimal delivery of chemotherapeutic agents in 

cancer treatment, the problem of estimating the model parameters was faced by considering 

the effectiveness of the care (i.e. its capability of decreasing the tumour size in a given 

amount of time) as well as the optimality and feasibility of the optimised test. Since a 

standard model-based experiment design leads to an infeasible test when parametric 

uncertainty is present, an MBDoE with backoff was analysed and discussed. This 

methodology proved to ensure both optimality and feasibility of the planned experiment, 

overcoming the limitations of the other two.  

 



 



Chapter 5 

Optimal design of clinical tests for the 
identification of  physiological models of 

type 1 diabetes mellitus* 

Type 1 diabetes mellitus is a disease affecting millions of people worldwide and causing the 

expenditure of millions of euros every year for health care. One of the most promising 

therapies derives from the use of an artificial pancreas, based on a control system able to 

maintain the subject’s normoglycaemia. A dynamic simulation model of the glucose-insulin 

system can be useful in several circumstance for diabetes care, including testing of glucose 

sensors, insulin infusion algorithms and decision support systems for diabetes. 

This Chapter considers the problem of the identification of single individual parameters in 

detailed dynamic models of glucose homeostasis. Optimal model-based design of experiments 

techniques are used to design a set of clinical tests that allow estimating the model parameters 

in a statistically sound way, fulfilling the constraints of safeness for the subject and easiness 

of conduction. The model with the estimated set of parameters represents a specific subject 

and can thus be used for customised diabetes care solutions. Simulated results demonstrate 

how such an approach can improve the effectiveness of clinical tests and serve as a tool to 

devise safer and more efficient clinical protocols, thus providing a contribution to the 

development of an artificial pancreas. 

5.1 Introduction 

Diabetes mellitus is a metabolic disease characterised by insufficient production of insulin by 

the pancreas and elevated concentrations of blood glucose for prolonged periods of time (i.e., 

hyperglycaemia). Chronic, untreated hyperglycaemia can lead to serious complications that 

include cardiovascular diseases, blindness, kidney failure, and stroke. Furthermore, very low 

values of blood glucose (hypoglycaemia) for even a few hours can result in loss of 

consciousness and coma. According to the World Health Organization (2006), there were 171 

million people in the world suffering diabetes in the year 2000, and this number is projected 

                                                 
*  Portions of this Chapter have been published in Galvanin et al. (2009b), Galvanin et al. (2009d) and Galvanin et al. 
(2010b).   
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to increase to 366 million by 2030. The national costs of diabetes in the USA for 2002 were 

$US 132 billion, and are projected to increase to $US 192 billion in 2020. 

Type 1 diabetes mellitus (T1DM, also called insulin-dependent diabetes) usually begins 

before the age of 40, and is characterised by a progressive destruction of the pancreatic islets 

and by an absolute deficiency of secreted insulin in the body. This determines the incapability 

to maintain the blood glucose concentration within a narrow range (normoglycaemic levels). 

People with T1DM must therefore rely on exogenous insulin for survival. The most 

widespread treatment of T1DM is based on multiple daily self-injections (boluses) of insulin. 

However, the individual requirement of insulin can be affected by many factors, such as the 

carbohydrate content (CHO) of a meal, illness, degree of stress, and exercise. Thus, people 

affected by T1DM have to be instructed on how to regularly check their glycaemia (usually 

several times a day, using fingersticks) and how frequently (and to which extent) perform 

insulin self-administration. 

A much more convenient approach would be to deliver insulin continuously by inserting a 

closed-loop controller in the glucose/insulin system (e.g., an artificial pancreas). An artificial 

pancreas is a portable (or implantable) insulin delivery system that consists of three 

components: a glucose sensor which provides frequent measurements, an insulin infusion 

pump, and a control algorithm that calculates the appropriate insulin dosage for the current 

conditions. A critical assessment of the challenges related to the development of an artificial 

pancreas has been provided by Bequette (2005). 

For the development of an artificial pancreas, the importance of physiological models of the 

glucose homeostasis cannot be overestimated. A model is an essential requirement for 

controller design and tuning, particularly if model-based control (e.g., model predictive 

control) is employed. Furthermore, the model itself can be used as a “virtual subject” to 

mimic the response to a certain insulin treatment or, more generally, to a decision support 

system for diabetes care. A wide variety of physiological models have been developed in the 

last four decades to describe the dynamics of glucose/insulin system. The literature on this 

topic has been reviewed in recent survey articles (Makroglou et al., 2006; Parker et al., 2001; 

Bequette, 2005), and therefore we will not present a detailed review here. Probably, the most 

widely known and used model is the so-called “minimal model” by Bergman et al. (1981), 

where the plasma glucose dynamics and plasma insulin dynamics are described using only 

three differential equations and few parameters. Despite its simplicity, and despite the fact 

that (strictly speaking) it was not derived to optimise insulin treatment in individuals with 

T1DM, this model is able to account for most of the physiological insulin-glucose 

relationships revealed by clinical evidence both in type 1 and in type 2 diabetes mellitus 

(Bergman, 2007). Several modifications to the original minimal model have been reported 

(Sorensen, 2007; Fisher, 1991; Parker et al., 2000) to overcome its main limitations, i.e. that it 

does not include the dynamics of subcutaneous insulin infusion, and that it does not provide a 
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description of the rate of glucose appearance following a meal. Recently, very detailed 

physiological models have been proposed (Hovorka et al., 2002, Dalla Man et al., 2007) that 

are able to represent the overall glucoregulatory system, including the absorption of 

subcutaneously-administered short-acting insulin (Wilinska et al., 2005), and glucose 

ingestion and absorption (Fabietti et al., 2006).  

One critical issue for the use of a physiological model is the identification of individual 

subject parameters. Basically, the identification of the minimal model has been achieved with 

frequently sampled intravenous glucose tolerance tests (IVGTTs), where a bolus of glucose is 

intravenously injected, and several samples of the glucose and insulin plasma concentrations 

are taken following the glucose injection. This kind of test does not upset the subject 

excessively, but it is not guaranteed that the excitation pattern is the most appropriate to 

estimate the model parameters with good precision. In fact, the identifiability of a parametric 

model is strictly related to the structure of the model and to the level of excitation that the 

experimenter can realise during the experiments (Söderström and Stoica, 1989). Interestingly, 

as early as 1981, Bergman and coworkers recognised that, in order to estimate the metabolic 

parameters, the optimal input perturbation might well be different from that of an IVGTT, and 

different temporal patterns of glucose and/or insulin administration could lead to easier and 

more accurate parameter identification. In fact, several modifications of the standard IVGTT 

have been proposed to improve parameter identification. For example, it has been shown that 

the infusion of insulin some time after the glucose injection in an IVGTT considerably 

improves parameter estimation (Yang et al., 1987; Boston et al., 2003). Some studies were 

also performed in order to define the best input profile for the minimum model relying on the 

computation of a measure of Fisher information matrix for a single test (Cobelli and 

Thomaseth, 1986). 

The availability of a model tailored for a single individual can provide substantial benefits 

both to the clinician, who would be able to devise a customised diabetes care solution for the 

subject, and to the engineer, who would have the possibility to design and test conventional 

and advanced glucose control techniques. However, parameter and measured response cross-

correlation, as well as uncertainty in measurements, can make the parameter estimation 

procedure challenging, and reduce (if not annul) the level of significance of a test performed 

on a single subject. This is particularly true for detailed physiological models, which 

particularly suffer from the difficulty of identifying the parameters for a specific subject. 

Therefore, while clinicians are interested in knowing the parameter values for individual 

subjects, researchers are likely to analyse response data from multiple subjects altogether: a 

‘nominal’ subject model is thus developed, based on mean values of the literature data (Parker 

and Doyle, 2001). A further complication on designing ad hoc a clinical test for individual 

parameter identification is that the test must be safe for the subject (i.e., the glycaemic and 

insulinemic levels must be within the physiological bounds at all times), sufficiently short, 
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and easy to carry out. In fact, as a result of ethical and practical restrictions imposed on 

medical measurements, the optimal design, sample scheduling and planning of biomedical 

experiments has become an important issue for the development of novel experimental 

protocols (Kalicka and Bochen, 2006). On a process systems engineering perspective, these 

requirements are typical of an MBDoE problem for parameter identification in a dynamic 

system where constraints are present both in the inputs and in the outputs. An optimal 

MBDoE approach is suitable for parameter identification of detailed physiological models. 

Optimum temporal patterns for the glucose and/or insulin administration, and optimal 

sampling schedules for the glucose concentration measurements, are determined to identify 

the model parameters for an individual subject, with the constraint that the designed clinical 

test (i.e., the “experiment”) must be safe for the subject.  

5.2 Glucose concentration control issues 

In the few last decades, much research activity in the field of T1DM management has been 

dedicated to understanding how the pancreas β-cells respond to control the glucose 

concentration in a healthy subject, and to subsequently use this information to determine how 

an artificial closed-loop algorithm for insulin delivery should behave (Doyle et al., 2007). The 

first attempts to develop a control algorithm to mimic the pancreatic activity came from the 

studies by Albisser et al. (1974), and the improved proportional plus derivative (PD) 

algorithm by Clemens (1979) adopted in the Biostator, the first automated insulin delivery 

system. Nomura and coworkers (1984) proposed a PD-based secretion model to reproduce the 

pancreatic islets activity. These first developed algorithms were subject-specific and they 

needed to be reprogrammed as the metabolic conditions of the subject changed in time.  

More recently, hyperglycemic clamp tests have shown that the beta-cells respond with a bi-

phasic insulin pattern to glucose challenges, while in the fasting state the response is 

characterized by a basal (steady) insulin level (Bellazzi et al., 2001). This response closely 

resembles the response of a standard proportional-integral-derivative (PID) controller, which 

is ubiquitously used in the chemical process industry (e.g. see Seborg et al. (2004)), and 

therefore the PID control approach to glucose control received some attention in the literature 

(e.g. see Steil and Saad (2006)). It has been recently argued by Bequette (2005) that a bi-

phasic beta-cell response does not necessarily mean that the pancreas itself uses a PID 

algorithm to deliver the insulin in a healthy subject, and that the integral term in PID 

controllers can cause the overadministration of insulin, resulting in postprandial 

hypoglycaemia. PD control is therefore also employed for glucose concentration control 

(Doran et al., 2005). 

The major limitation of most of the published studies on PID control of diabetes is that 

simplified models are often used to represent the insulin/glucose system, and that in most 
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cases neither noise, uncertainty in insulin sensitivity, unmeasured disturbances are not taken 

into account. As discussed by Farmer et al. (2009) these issues may have a dramatic impact 

on the control performance and the results available so far in the field of standard PID control 

of glycemia may be questionable.  

Recently, a PID switching control algorithm was successfully applied by Marchetti et al. 

(2008) according to the idea that a time-varying glucose concentration setpoint is a more 

appropriate reference profile to be tracked. They also showed that a very mild integral action 

is useful to compensate for individual’s changes in insulin sensitivity without leading to 

postprandial hypoglycaemia. In a similar fashion, Percival et al. (2009) proposed a practical 

approach to design and implementation of a PID control algorithm focusing on controller 

robustness when changes on insulin sensitivity, meal times and meal sizes occur. 

Advanced control strategies have also been recently proposed in literature where the model 

itself is embedded in the control algorithm, as in model predictive control (MPC) (Hovorka et 

al., 2004; Parker et al., 1999), adaptive control, optimal control (Fisher, 1991; Ollerton, 

1989), neural networks and H-infinity control (Parker et al., 2000). As recognised by Parker 

and Doyle (2001) the key issue is that the performance of model-based control systems  is 

directly linked to model accuracy.  

Some advanced control algorithm tested in silico have been also applied in vivo. El-Khatib 

and coworkers have performed real-life trials in pigs using adaptive control with dual insulin 

and glucagon infusion (El-Khatib et al., 2007), while Hovorka et al. (2004) performed trials 

on subjects affected by T1DM adopting model predictive control strategies (Schaller et al., 

2006). 

5.3 Standard clinical tests 

Standard clinical tests are used both to help diagnose diabetes and to identify simple models 

of glucose homeostasis. Basically, an input pattern is used to excite the subject’s 

glucoregulatory system in such a way as to subsequently extract some kind of information 

from the measured time-profiles of the plasma glucose and insulin concentrations. In most 

cases, the input excitation pattern reduces to the infusion or intake of glucose only, although 

the infusion of insulin is also possible. To provide a general overview of how these tests are 

carried out, the most widespread tests (2006) are shortly recalled in the following. 

1. Oral glucose tolerance test (OGTT): this is the diagnostic test recommended by the World 

Health Organization (2006). The test is carried in the morning after about three days of 

unrestricted diet (greater than 150 g of CHO daily) with the usual physical activity of the 

subject. A meal of 30-50 g of carbohydrates should be consumed the evening preceding 

the test. After collection the fasting blood sample, the subject drinks a solution of 75 g of 

glucose in water over the course of 5 min. Blood is drawn at intervals for measurements 
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of glucose, and sometimes insulin levels. The sampling frequency can vary according to 

the purpose of the test. For simple screening, one can take the samples at 0 and 2 h (only 

two samples collected), but in a research activity the sampling can be very frequent (for 

example a sample every 2 min). 

2. Intravenous glucose tolerance test (IVGTT): it is useful to evaluate the pancreatic activity 

in vivo, but it is mainly used in research activities, because it is much more invasive than 

the OGTT. Usually it consists in injecting 300 mg/kg of glucose over 60 s in an 

antecubital vein, and then measuring the plasma insulin and glucose concentrations. The 

sampling schedule of the standard IVGTT consists of taking three pre-test samples and 23 

additional 2-mL samples (the sampling frequency at the beginning of the test is of one 

sample every 2 min, and one sample every 20 min at the end of the experiment, lasting at 

least 3 h). In modified IVGTTs, insulin (30 mU/kg) is infused 20 min after the glucose 

ingestion (Boston et al., 2003). 

3. Postprandial glucose test: it is useful to screen for diabetes and to evaluate the 

effectiveness of treatment or dietary therapy for diabetic subjects. It is performed after the 

subject has eaten a balanced meal containing 100 g (or more) of glucose and then is fasted 

for 2 h before beginning the test (the sample policy can be variable).  

4. Euglycemic hyperinsulinemic clamp: it is important to quantify the insulin resistance of a 

subject by measuring the amount of glucose necessary to compensate for an increased 

insulin level without causing hypoglycaemia. Through a peripheral vein, insulin is infused 

at 10-120 mU/(m2min) (De Fronzo et al., 1979). At the same time, glucose is infused to 

maintain blood sugar levels between 91 and 100 mg/dL. The blood sugar levels are 

controlled every 5-10 min to adjust the rate of glucose infusion. Different insulin doses 

can be managed to discriminate between the different responses of peripheral tissues and 

the liver ones. The test takes about 2 h, and the rate of glucose infusion during the last 30 

min of the test determines insulin sensitivity. 

Tests 1 and 3 are oral tests, and have the advantage of being physiological, i.e. not invasive 

for the subject. In general, given for granted that the test should be safe (i.e., it should not 

drive the subject to either hyperglycaemia or hypoglycaemia), an “ideal” test should be the 

best compromise between the level of stress for the subject, the clinical effort, and the amount 

of information obtainable. 

“Normal” glucose levels are not easy to define (World Health Organisation, 2006) and not 

universally agreed upon. In this study, unless, otherwise specified, the upper and lower 

glucose concentration thresholds are set to 170 and 60 mg/dL, respectively. When an 

identification experiment is being carried out, temporary conditions of high glucose 

concentration can be easily tolerated by a subject (they are indeed obtained in clinical practice 

during an IVGTT or OGTT). On the other hand, hypoglycaemic conditions represent a hard 
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constraint that must never be violated, not even for a short time period. However, in the 

following study, both the limits on glucose concentration are considered as hard constraints.      

5.4 The glucose homeostasis model 

As was mentioned in §5.1, recently some detailed models have been proposed that are able to 

represent the complex dynamic behaviour of the glucose/insulin system, and allow for the 

simulation of the dynamics of subcutaneous insulin infusion of the rate of glucose appearance 

following a meal (Hovorka et al., 2002; Wilinska et al., 2005, Fabietti et al., 2006, Dalla Man 

et al., 2007).  
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Figure 5.1 Schematic representation of the Hovorka-Wilinska model (HWM). S1a, S2 and S1b 
compartments represent the insulin absorption subsystem. The insulin compartment (I) affects the 
accessible (Q1) and non accessible (Q2) compartments of glucose mass through a three-
compartmental subsystem controlling glucose distribution/transport, disposal (glucose hold-up) and 
endogenous glucose production (EGP). Glucose can also be consumed through an insulin 
independent stand-alone channel. The system inputs are the bolus/infusion of insulin (insulin 
administration), and the measured variable is the blood glucose concentration (G). Please refer to 
Appendix A for more detailed comments on the model and for the explanations of the symbols used in 
the figure. 

In this first study we refer to the model developed by Hovorka et al. (2004), with the 

modifications of Wilinska et al. (2005); this model will be denoted as the Hovorka-Wilinska 
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model (HWM). We are not claiming that this model is the best one available. In effect, it 

predicts an excessively slow response to some values of basal insulin infusion rates, 

producing an excessively prolonged postprandial phase, and also meaningless negative 

glucose concentration values in some conditions (Finan et al., 2006). Nevertheless, as testified 

by recent closed-loop control studies (Marchetti et al., 2008; Hovorka, 2005; Hovorka et al., 

2004; Percival et al., 2009), this model is sufficiently detailed to provide a sound 

representation of the glucose homeostasis. Furthermore, it is highly flexible for the 

management of manipulated inputs like insulin subcutaneous infusion, insulin bolus 

administration, and glucose oral intake, and can be used to manipulate IVGTT-like inputs.  

The system of differential and algebraic equations defining the HWM is reported and 

commented on in Appendix A. Figure 5.1 shows a schematic representation of the model. 

Simulated data only are considered in this research. Therefore, not only the “virtual subject”, 

but also the “real subject” are represented by a detailed physiological model. Additionally, 

only parametric mismatch was considered, i.e. the real subject model and the virtual subject 

model have the same structure (HWM), but they differ exclusively by the value of the 

parameters. For the sake of conciseness, in the following the real subject model will be 

addressed to as the “subject”, while the virtual subject model will be addressed to as the 

“model”. Therefore, the objective is to design a set of experiments (i.e., clinical tests on the 

subject) where the glucose (and possibly insulin) administration profiles (inputs), as long as 

the blood sampling schedule, are optimised in order to identify the model parameters in a 

statistically sound way, fulfilling all the constraints related to subject safety and to easiness of 

conduction of the experiment. 

5.5 Design of experiments under constraints for physiological 
models 

The HWM, and a large number of physiological models, belong to the class of nonlinear 

dynamic models described by a system of differential and algebraic equations in the (2.1) 

form. For the model of glucose homeostasis, the time-dependent manipulated inputs u(t) may 

comprise the insulin infusion and the insulin bolus administration, whereas the glucose intake 

can be represented as a time-invariant control variable w. Usually there is only one 

measurable output y(t) and is constituted by the blood glucose concentration1 G. For such 

physiological models the formulation of the design vector (2.8) usually comprises, together 

with the manipulated inputs u(t) (approximated with a discrete function, i.e. piecewise 

constant, piecewise linear or polynomial) and the time-invariant inputs w, the test duration 

and the set tsp of time instants at which the output variables are sampled (blood sampling 

                                                 
1 Interstitial insulin or plasma insulin can be measured, but glucose clamp studies (see Sjöstrand et al. (1999)) highlighted a 
significant variability in the measurements.  
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schedule). Even if  the glucose concentration at t = 0 could be approximately managed and 

stabilised by acting on the insulin infusion during a preliminary phase before the test is 

carried out, the initial concentration of glucose is not considered as design variable in the 

following study: when the test begins, the subject it is supposed to be at his own “basal” level 

of glucose concentration, which is specific for each subject. As a result the design vector 

becomes: 

 

 ( ), , , τspt u w t .                                                                                                                (5.1) 

 

Discrete sampling and off-line analysis allow for the most precise analytical laboratory 

technique to be used, albeit with a time delay. Recent sampling techniques such as CGM 

(continuous glucose monitoring) could enrich the information content of the glucose test, 

allowing for the continuous recording of glucose level over a 24-h period. On the other hand, 

clinical issues that must still be addressed when a CGM system is used are some accuracy 

issues mainly related to the lag time between blood glucose and interstitial glucose readings, 

the need of a calibration with traditional blood measurements, and the fact that, at least in the 

U.S.A., continuous sensors have been approved for adjunctive use only (Hirsh et al., 2008). In 

view of the above, although CGM represents a very promising technology, a traditional 

discrete sampling approach was adopted in this work. 

The experiment design needs to take into account the existence of a Nc-dimensional set of 

equality and inequality constraints  in the form (4.1). In physiological systems, the set of 

active constraints is entirely related to the maintenance of the complex dynamics involved in 

the metabolic functions. For the system under investigation there are physical/physiological 

constraints that are strictly related to the physiology of the glucoregulatory system and cannot 

be manipulated for design purposes. 

C

The design under constraints problem concerns the identification of the optimal experimental 

conditions of the design vector (2.14) subject to constraints (4.1) that here simplify to 

 

 1 , , 0C y t y θ  max                                                                                                          (5.3) 

 

and 

 

 2 min , , 0C y y t  θ                                                                                                         (5.4) 

 

where ymax and ymin are the time-invariant upper (hyperglycaemia) and lower (hypoglycaemia) 

bounds on y. Additional constraints in the form (4.1) concerning the glucose and insulin 

dynamics (e.g. related to the attainment of basal or reference values at the end of the test) can 

be introduced.  
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5.5.1 The experiment design procedure 

As usual, the model-based design of the clinical test involves a sequential interaction between 

three key entities: 

1. the design of experiment; 

2. the execution of the in silico test; 

3. the parameter estimation. 

In this work the selected design criterion is the D-optimal one (minimising the determinant of 

the variance-covariance matrix of model parameters). The experiment is carried out on the 

subject (nominal values of the HWM parameters), assuming that the disturbance factors are 

stochastic and ergodic (i.e., they do not change their probability distribution in time). It is 

assumed that they can be represented as normally distributed noise with zero mean and a 

constant relative variance of 0.033 (Clarke et al., 2005). 

The choice of the proper parameter estimation technique is crucial for MBDoE. Bayesian 

estimation techniques have been proved to be very efficient for physiological model 

identification (Pillonetto et al., 2003), but the severe computational effort required and the 

lack of reliable a priori statistics often make them too challenging an approach. Thus, a 

maximum likelihood estimator is chosen in this work, where the evaluation of the quality of 

the final estimates is evaluated according to the following factors (with the assumption of 

Gaussian distribution of measurement errors): 

1. a posteriori statistics of the estimates (in terms of t-test and confidence intervals); 

2. goodness of fit (in terms of whiteness test and χ2 test). 

The gPROMS® modelling environment (Process Systems Enterprise Ltd., 2006) is used for 

modelling, simulation and optimisation purposes, as well as to design the experiments.  

5.6 Preliminary dynamic analysis 

Some simulations without constraints were carried out to evaluate the response of the 

glucose/insulin system on the subject and on the model. The model parameters were affected 

by 30 % error with respect to the subject ones. The sets of subject (θ) and model (θ0) 

parameters are collected in Table 5.1. Set θ0 summarises the information about the subject 

glucoregulatory system that is available before the MBDoE procedure is started. Experiments 

are therefore designed in order to “move” from θ0 to as close as possible to θ (which in 

practice is unknown).The input u(t) (mU/min) is an insulin infusion rate and can be written as 

the sum of three terms: 

 
      bolsbas uttuutu     , (5.5) 
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where ubas is the time-invariant basal insulin infusion rate, us(t) is a time-dependent insulin 

infusion rate, and the last term represents the insulin bolus ubol (mU) expressed as a Dirac 

impulse  (t). The last two terms on the right-hand side characterise the exogenous insulin 

management. 

Table 5.1 Parameters values for the HWM nominal (θ) and perturbed (θ0) 
sets.  

Parameter θ (subject) θ0 (model) 
f

ITS   51.2E-4 66.6E-4 (+30%) 

f
IDS  8.2E-4 5.7E-4 (-30%) 

f
IES  520.0E-4 676.0 E-4 (+30%) 

0EGP  mmol/(kg min) 0.0161 0.0209 (+30%) 

01F  mmol/(kg min) 0.0097  0.0126 (+30%) 

 

Simulations were carried out to analyse the glucose concentration (G) profiles after a meal of 

60 gCHO, with ubas = 9.94 mU/min. Figure 5.2a shows the G profiles for the subject and for the 

model to be identified when no hexogen insulin is administered (i.e. us(t) = 0, ubol = 0).  
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 (a)                                                                            (b) 
 

Figure 5.2 Glucose concentration profiles with ubas = 9.94 mU/min, after a meal of 60 
gCHO, for: (a) the subject and the model, without exogenous insulin administration; (b) the 
subject, with an insulin bolus administration, according to different values of the 
insulin/CHO ratio. 

The glucose concentration dynamics shows some important features: 

 for both the subject and the model, a long time interval is needed to restore the basal 

values (in fact, as previously stated, this is a structural limitation of the HWM); the length 

of this interval is significantly affected by the parameters values. Note that, due to this 

structural limitation of the HWM, it is expected that the designed experiments will appear 

to last longer than they would probably be in practice; 
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 at steady state, the subject and the model show different values of G; 

 after about 1 h, and without insulin intake (either bolus or infusion), the subject and the 

model overshoot the hyperglycaemic threshold, and the condition persists for a long time 

(~10 h); the parameter values weakly affect the initial dynamics (i.e. the time needed to 

reach the peak value of G), but they affect the duration of the hyperglycaemic condition. 

Figure 5.2b shows the effect on the subject of a bolus intake immediately after the meal 

ingestion. The bolus amount is adjusted according to three different insulin/CHO ratios.It is 

clearly appears that the use of exogenous insulin strongly reduces the time needed to restore 

the basal value of G. Therefore, it is expected that, to shorten the length of a designed 

experiment without sacrificing the information it can provide, exogenous insulin should be 

administered to the subject. Note however that care must be taken in insulin administration, 

because the hyperglycaemic and hypoglycaemic thresholds can be easily hit if the exogenous 

insulin administration is too low or too high, respectively.  

5.6.1 Sensitivity and information analysis 

To assess the effect of the HWM parameters on the glucose concentration response for the 

subject and for the model, a sensitivity analysis was carried out considering the dynamic 

sensitivities in the form: 

 

1,  2,  i
i

q i N


 


    , (5.6) 

 

where  or are the glucose concentration response of the subject and of 

the model respectively. Figure 5.3 shows that the glucose concentration response is highly 

affected by the parametric set; which reflects the intrinsic variability of the parametric 

systems in terms of Fisher information (equation (2.6)). Therefore, the MBDoE results can be 

strongly affected by the mismatch between the actual information content (provided by the 

subject) and the initial information content (provided by the model). To further clarify this 

issue, two post-prandial simulations following a meal either with or without insulin infusion 

policy are run. A dynamic measure of the Fisher information matrix allows quantifying the 

variance of the overall sensitivities system, and is useful to anticipate the expected 

information content of an experiment. Thus, the matrix trace was computed at θ and at θ0 

values for a meal with Dg = 60 gCHO; results are illustrated in Figure 5.4. Figure 5.4a clearly 

shows that a 30% parametric mismatch implies a large misevaluation of the information 

content expected from an experiment. In particular, at  it is expected that the maximum 

information content can be gained during the 600 – 750 min time period, while the actual 

information content for this test has a maximum in the time period 900 – 1700 min. As was 

),( G ),(ˆ G

0ˆ θθ 
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suggested by Figure 5.3, too, a parametric mismatch may cause a scarcely effective 

scheduling of the blood sampling times.  
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Figure 5.3 Dynamic sensitivities calculated with ubas = 9.94 mU/min and without insulin 
infusion policy for (a) the subject and (b) the model. 
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Figure 5.4 Dynamic measure of the Fisher information matrix after a postprandial test 
(meal of 60 gCHO) with ubas = 9.94 mU/min: (a) without exogenous insulin administration 
policy, for both θ and θ0 sets; (b) with different insulin boluses for the θ set. 

Also note (Figure 5.4a) that a standard post-prandial test of about 8 h gives a very limited 

amount of information in terms of Fisher information matrix; however, the infusion of insulin 

in the form of a bolus (Figure 5.4b) allows increasing the information content and reducing 

the experiment length maintaining a maximum in the information level. Thus, as was 

anticipated by the analysis of Figure 5.2b, administrating an insulin bolus gives the possibility 

to shorten the optimal duration of the experiment without upsetting the subject excessively. 

This is consistent with the modified IVGTT procedures adopted in the clinical practice, where 
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insulin is infused after the glucose injection to improve parameter estimation (Boston et al., 

2003). It may be noted that, as the trace of the Fisher information matrix quickly decreases 

after the maximum peak, for MBDoE purposes it is very important to exploit the initial 

glucose dynamics. 

If an unbiased estimator (for example the maximum likelihood estimator) is adopted, the 

parameter estimate tends to the nominal set when the number of samples tends to infinite, i.e.: 

 
ˆlim

spn 
θ θ  (5.7) 

 

and therefore, for a given set of experimental input settings φ, it is possible to write: 

 

  ˆˆlim , ,
spn 

H θ H θ     . (5.8) 

 

The right member of (5.8) is the true information content of the experiment.  

5.6.2 Correlation analysis 

The sensitivity analysis can also serve as a rather simple tool to assess the correlation between 

different parameters. For instance, Figure 5.3 suggests that the dynamics of the glucose 

sensitivities to 4 0EGP   and 5 F01  ) are very similar. In fact, the two curves exhibit the 

same symmetrical behaviour, independently of the parameter values. This usually indicates a 

structural unidentifiability (at least within constraints and assumptions considered in this 

work). We indeed verified that a conventional experiment design approach produce 

unsatisfactory results when facing the identification of the HWM, even if several experiments 

are repeated in sequence. In particular,  and  are indeed resilient to the identification 

procedure, and this occurs because of their large correlation (see equation (A.1)). To quantify 

the correlation between θ4 and θ5 one can analyse the correlation matrix Cθ, whose elements 

(correlation coefficients) have the form  

0EGP 01F

 

jjii

ij
ij

vv

v
c     . (2.17) 

 

Table 2 shows the correlation coefficients after a number (three) of sequential experiments: 

the quality of the information that can be derived from the designed set of experiments is not 

sufficient to “separate” the two parameters (θ4 an θ5) that are structurally correlated. Thus, a 

new parameterisation has been introduced and used in this study: instead of  and , a 

new parameter θ′4 is considered and is defined as the ratio between the two original 

parameters. Therefore it results: 

0EGP 01F

4E2.51/' 0104  FEGP  and . 1577.2'04  EGP / 010 F
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With a small notation abuse, the set of model parameters initially available, after 

reparameterisation, will be still indicated with 0 in the remainder of the paper. 

Table 2. Elements of the correlation matrix after three sequential designed 
experiments. 

 1 2 3 4 5 
1 1.0     
2 0.572 1.0    
3 0.135 -0.113 1.0   
4 -0.596 -0.457 -0.806 1.0  
5 -0.532 -0.377 -0.861 0.995 1.0 

 

5.7 Definition of a reference test 

When an MBDoE effort is undertaken, the first design is based on an initial guess of the 

model parameters. This initial guess might be just a rough approximation for them. From the 

point of view of the effectiveness of design, the sensitivity analysis has shown that a large 

parametric mismatch can result in misevaluation of the information content expected from an 

experiment, which can render the experiment itself uninformative. On a different perspective, 

the mismatch may lead to an erroneous evaluation of the insulin to be administered to the 

subject during the designed experiment, which might drive her/him to hypoglycaemic 

conditions. Therefore, unless reliable experimental data are already available, it may be 

convenient to carry out a preliminary “reference” test, aimed at obtaining a reasonable 

estimation of the actual parameter values to be subsequently used to design the first 

experiment (Forcolin, 2007). 

An ideal reference test should be: i) safe for the subject, independently of her/his pre-test 

condition; and ii) informative as well as quick and easy to perform. From this perspective, the 

OGTT and the postprandial tests seem the most suitable reference tests. In view of above, a 

reference test was set up as follows2: 

1. glucose administration of 15 gCHO (a snack); 

2. no insulin infusion or bolus; 

3. duration: τ = 12 h;  

4. number of blood samples: nsp = 10 (evenly spaced).  

It must be pointed out that this reference test has not been optimized and, here, the only 

objective is to have a subject’s tailored initial guess for the model parameters, so as to reduce 

                                                 
2 We would like to point out that this reference test has not been optimised and we admit that some assumptions may appear 
questionable (e.g., a rather long test duration after just a snack intake); however, here the “message” is simply that a safe 
preliminary test should be carried out in order to have a subject’s tailored initial guess for the model parameters so as to 
reduce the risk of an ineffective (and unsafe) design. 
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the risk of an ineffective (and unsafe) design. The availability of some preliminary clinical 

information could alternatively be exploited and used to find sensible initial values for the set 

of parameters.  

The parameter estimates and statistics after the reference test are presented in Table 5.3: for 

numerical reasons, all parameters have been normalised by dividing them by their true values; 

from now on, we will always refer to the parameters normalised values (indicated by symbol 

 therefore, note that the true value for each normalised parameter is 1. For the same 

reasons, the insulin subcutaneous administration is normalised, too: in the case of an insulin 

bolus the manipulated amount is divided by 4000 mU; in the case of an insulin infusion the 

manipulated variable is divided by 20 mU/min.  

Table 5.3 Parameter estimation after the reference test (the reference t-value 
is equal to 1.708; asterisks denote t-values failing the t-test).  

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 1.5924 1.3 4.324 0.368* 1.767 
2 0.8187 0.7 10.52 0.078* 4.298 
3 1.3755 1.3 20.72 0.066* 8.466 
′4 1.2677 1.3 16.86 0.075* 6.891 

 

Table 5.3 shows that the estimation is not statistically satisfactory, because, as discussed 

before, the reference test is poorly informative; however, it allows for a first “raw” parameter 

estimation with related statistics (parameter variance-covariance of model parameters, prior 

uncertainty region, correlation coefficients).  

5.8 Design of experimental protocols for parameter estimation 

The design of an experimental protocol after a reference test is based on the following 

requirements: 

1. exclusion of non-physiological tests (IVGTT, glucose clamp or similar); 

2. possibility to manage a day test; 

3. possibility to manage a multiple meal intakes and multiple insulin bolus administrations, 

or to modify the glucose intake policy of a standard OGTT; 

4. constraints on the glycaemic curve: interior constraints to assure normoglycaemia (60-170 

mg/dL); end point constraint on the glucose concentration (80 mg/dL); end point 

constraint on the derivative of the glucose concentration (steady glycaemia at the end of 

the test). It is important to note that the test formally ends with the last sampling point 

(which defines the duration of the experiment); however the end point constraints are 

imposed to guarantee safe conditions for the subject after the clinical test; the end point 

constraints must be fulfilled within a specified time interval; 
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5. constraints on the insulin infusion rate: u(t) = ubas at the end of the test. 

It must be also guaranteed that the subject returns to the basal settings after performing the 

day test. 

The goal of the suggested protocol is to obtain sufficiently informative data so as to enable the 

estimation of the set of model parameters in a satisfactory manner with only one designed 

experiment after the reference test. Two distinct protocols meeting the above requirements are 

proposed and assessed: a modified postprandial glucose test and a modified OGTT. 

5.8.1 Protocol A: modified postprandial glucose test (MPGT) 

The purpose is to identify the model set of parameters with a D-optimal designed experiment 

after two meals (breakfast and lunch, scheduled at 8:00 AM and 1:00 PM). The variables to 

be optimised are: 

 the glucose content of the meals, Dg,1 and Dg,2 (bounds on breakfast: 5 – 40 gCHO, bounds 

on lunch: 30 – 70 gCHO); 

 the glucose-dependent insulin infusion rate us(t) (parameterised as a piecewise constant 

function, with nz = 12 levels and nsw = 11 switching times to optimise), and the amount of 

insulin of the boluses ubol,1 and ubol,2; 

 the sampling times (however, the total number of samples nsp is assigned a priori and the 

elapsed time between two consecutive samples cannot be shorter than 5 minutes); the last 

sampling point can be taken not later than 600 min (10 h) from the beginning of the 

experiment (6:00 PM). 

The time distance between consecutive meals is not optimised, and the insulin bolus amount 

is not constrained to an insulin/CHO ratio. It is imposed that the end point constraint on the 

glucose concentration and on the derivative of the glucose concentration must be fulfilled 

within 600 min. 

5.8.2 Protocol B: modified OGTT (MOGTT) 

The identification is carried out through a D-optimal designed experiment with multiple 

ingestions of a glucose solution, and insulin bolus intakes. The optimisation variables are: 

 the glucose content of the meals (glucose solution drink); 

 the time interval between consecutive meals (allowed to vary between 15 and 800 min); 

 the amount of each insulin bolus; 

 the sampling times (the number of samples nsp is assigned a priori and the elapsed time 

between two consecutive samples cannot be shorter than 5 minutes); the last sampling 

point can be taken not later than 840 min (14 h) from the beginning of the experiment 

(10:00 PM). 

A rather long maximum duration of the experiment was selected because, as was mentioned 

in §5.4, the HWM is known to show slower glucose concentration dynamics than in reality. 
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The timing of insulin infusion was not optimised. The amount of bolus per meal was 

modelled according to the following empirical relationship: 

 

    ig

N

i
iibas Dktutu

meals

,
1

δα


  (5.9) 

 

where ' = 52.63 mU/gCHO represents the optimal insulin/CHO ratio. Since parameter 

uncertainty could lead the design to constraint violation even if the optimal value of the 

insulin/CHO ratio is used, the “relaxing factors” ki have been introduced to evaluate the 

possible discrepancy between the actual bolus release and the optimal ratio during a standard 

postprandial glucose test. The relaxing factors are optimised in the design, too (i.e., k  ).  

An additional constraint was superimposed on the total amount of ingested glucose 

(acceptable range: 75 – 156 gCHO). This range is equivalent to the total amount of glucose 

ingested through standard breakfast (18 – 36 gCHO), lunch (27 – 60 gCHO) and dinner (30 – 60 

gCHO). It is also imposed that the end point constraint on the glucose concentration and on the 

derivative of the glucose concentration must be fulfilled within 720 min (12 h) from the last 

meal. 

A longer duration must be allowed for when designing an MOGTT test as it was verified that 

for the experiment to be informative the three meals should be spaced over a sufficiently long 

period of time. Furthermore, as the designed ingestion of the last meal may occur toward the 

end of the experiment, a sufficiently long period should elapse before the interior point 

constraints can be fulfilled. 

5.9 MPGT: results and discussion 

The first modified postprandial test (MPGT1) optimises the bolus amount, the glucose-

dependent insulin infusion us(t) and the glucose amount of the meal. The glucose 

concentration profiles predicted by the model before and after parameter estimation are shown 

as curves in Figure 5.5a, while the G values for the subject are not known continuously, but 

only through few sampled data shown as diamonds in the same figure. The actual profiles of 

the manipulated inputs, as dictated by the MBDoE procedure, are shown in Figure 5.5b. 

In MPGT1 only 5 blood samples are allowed (nsp = 5). The values of the other optimised 

variables (and constraints) are summarised in Table 5.4. The test lasts slightly less than 10 

hours (from 8:00 AM to 6:00 PM), i.e. nearly all the possible experiment duration is 

exploited. Note how the design moves the glucose profile upwards, adopting relatively low 

values for the exogenous insulin inputs, particularly in the first four hours from the beginning 

of the test. 
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Figure 5.5 Experiment MPGT1. (a) Glucose concentration profiles predicted by the model 
during the experiment design (broken line) and after the parameter identification (solid 
line); the subject actual response to the designed experiment is indicated by diamonds. (b) 
Profiles of the insulin infusion rate (solid line) and of the bolus amount (boxes). In the time 
scale, 0 represents 8 AM. 

Table 5.4 Experiment MPGT1: optimal sample scheduling, bolus amount 
and glucose content of the meal and constraint settings. 

Optimised Design Variable Values 
tsp [min] [0, 359, 454, 582, 600] 
ubol [mU] [0.04, 1600] 
Dg,i [gCHO] [18, 30] 

 

Table 5.5 shows that the parameter estimation is not statistically satisfactory for 2 and 3 

(the insulin sensitivities of disposal and endogenous glucose production  and ). f
IDS f

IES

Table 5.5 Parameter estimation after experiment MPGT1 (the reference t-
value is equal to 1.795; asterisks denote t-values failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 1.0099 1.5924 0.3021 3.343 0.1372 
2 0.7444 0.8187 2.6110 0.285* 1.186 
3 1.2118 1.3755 2.6300 0.461* 1.195 
4 1.0397 1.2677 0.5720 1.818 0.2599 

 

An effective strategy for improving the estimation is to augment the experiment information 

content, e.g. by increasing the number of blood samples. Experiment MPGT2 is designed 

assuming nsp = 10. The glucose concentration and exogenous insulin profiles are shown in 

Figure 5.6, and the optimised variables and constraints are summarised in Table 5.6. Table 5.7 

collects the results of the parameter estimation.  
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Figure 5.6 Experiment MPGT2. (a) Glucose concentration profiles predicted by the model 
during the experiment design (broken line) and after the parameter identification (solid 
line); the subject actual response to the designed experiment is indicated by diamonds. (b) 
Profiles of the insulin infusion rate (solid line) and of the bolus amount (boxes). 

Table 5.6 Experiment MPGT2: optimal sample scheduling, bolus amount 
and glucose content of the meal and constraint settings. 

Optimised Design Variable Values 
tsp [min] [167, 200, 312, 317, 327, 338, 514, 519, 524, 600] 
ubol [mU] [1746, 1619] 
Dg,i [gCHO] [22, 53] 

Table 5.7 Parameter estimation after experiment MPGT2 (the reference t-
value is equal to 1.746; asterisks denote t-values failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.9271 1.5924 0.2317 4.001 0.1093 
2 1.1742 0.8187 0.2384 4.925 0.1125 
3 0.9805 1.3755 0.2798 3.505 0.1320 
4 0.9999 1.2677 0.0599 16.700 0.0282 

 

It may be observed that increasing the number of sampling points significantly affects the 

shape and results of the overall design. The glucose concentration profile presents two peaks 

following MPGT2: that is, more frequent sampling allows for the repetition of two 

informative events during the same experiment. On the contrary, in MPGT1 the limited 

number of available measurements forces the design to concentrate the information content in 

the final descending branch of the G curve, where most samples are taken.  

In both cases the test is safe for the subject, but only MPGT2 is sufficiently informative to 

make it possible to estimate the wholeset of the HWM model parameters in a statistically 

sound manner. A possible drawback of MPGT2 (and an opportunity for further refinement) is 

that the two exogenous insulin contributions (i.e., the insulin boluses and the glucose 
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dependent infusion rate) need optimizing. In particular, the latter may require particular care 

and be somewhat uncomfortable for the subject as the glucose concentration is pushed toward 

the lower bound. From this perspective, MOGTT is simpler to carry out, and the only 

exogenous input of insulin is obtained through a bolus intake.  

5.10 MOGTT: results and discussion  

In the MOGTT design it is assumed that no exogenous infusion of insulin is optimised, and 

that the insulin bolus amount is adjusted according to an insulin/CHO ratio. A first 

experiment (MOGTT1) is designed assuming an optimised insulin/CHO ratio. Four CHO 

ingestions (meals) are assumed. As in the MPGT2 configuration, we found that five sampling 

points are insufficient for a sound estimation of the model parameters. Therefore, only the 

results for nsp = 10 will be discussed here. 

The glucose concentration profiles are illustrated in Figure 5.7. The four meals are taken in 

the first half of the test. The initial parameter mismatch leads the glucose concentration 

profile in the designed experiment to be above the upper threshold during the actual execution 

of the test. However, as discussed before, this can be tolerated for diagnostic or identification 

purpose.  
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Figure 5.7 Experiment MOGTT1: glucose concentration profiles predicted by the model 
during the experiment design (broken line) and after the parameter identification (solid 
line); the subject actual response to the designed experiment is indicated by diamonds. 

 

The optimal design settings are shown in Table 5.8. The test returns a satisfactory parameter 

estimation in statistical terms (Table 5.9). 
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Table 5.8 Experiment MOGTT1: optimal settings. 

Optimised Design Variables Values 

tsp [min] [25, 193, 214, 231, 412, 541, 557, 574, 663, 800 
tmeals [min] [0, 120, 240, 360] 
Dg [g] [18.0, 36.0, 26.8, 10.0] 
k [0.45, 0.4, 0.5, 0.5] 

Table 5.9 Parameter estimation after experiment MOGTT1 (the reference t-
value is equal to 1.746; asterisks denote t-values failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.98241 1.5924 0.1726 5.692 0.08141 
2 0.82972 0.81871 0.315 2.634 0.1486 
3 1.2115 1.3755 0.3655 3.315 0.1724 
4 1.0689 1.2677 0.1386 7.715 0.06535 

 

The subject’s glycaemic stress can be reduced by increasing the number of meals. Experiment  

MOGTT2 allows for 6 meals, so that the total CHO amount can be taken more gradually. 

However, we verified that in this case a higher number of sampling points is required to 

obtain a statistically sound estimation of the model parameters (nsp = 15). Figure 5.8 shows 

the glucose concentration profiles. Table 5.10 shows the optimal settings, whereas Table 5.11 

summarises the (satisfactory) estimation results.   
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Figure 5.8 Experiment MOGTT2: glucose concentration profiles predicted by the model 
during the experiment design (broken line) and after the parameter identification (solid 
line); the subject actual response to the designed experiment is indicated by diamonds. 
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Table 5.10 Experiment MOGTT2: optimal settings. 

Optimised Design Variables Values 

tsp [min] [75, 80, 219, 226, 231, 337, 374, 429, 501, 556, 561, 566, 571, 793, 798] 
tmeals [min] [1, 120, 238, 350, 486, 598] 
Dg [g] [45.0, 1.0 ,20.0, 1.0, 27.0, 9.0] 
k [0.7, 0.6, 0.5, 0.64, 0.5, 0.65] 

Table 5.11 Parameter estimation after experiment MOGTT2 (the reference t-
value is equal to 1.721; asterisks denote t-values failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 1.0047 1.5924 0.3042 3.303 0.1463 
2 0.85 0.81871 0.4423 1.922 0.2127 
3 1.1288 1.3755 0.602 1.875 0.2895 
4 1.0372 1.2677 0.2043 5.078 0.09822 

 

The new designed test provides a sound estimation of the entire parameter set and it is 

definitely safe for the subject (and also, it is very easy to carry out). The drawback is that it 

results in a rather long experiment duration (798 min). We verified that it is possible to reduce 

the duration of the test (to about 600 min) by assigning a set of values for the relaxing factors 

k. However, in such a case the subject/model mismatch may cause the actual glucose 

concentration level to enter the unsafe zone below 60 mg/dL, notwithstanding the design 

constraints on the model being met. Note that this problem could be tackled by implementing 

an active control on the glucose concentration as soon as it gets close to the lower threshold 

(e.g., by incorporating a feedback controller), through an on-line redesign of the experiment 

as soon as new measurements becomes available (see Chapter 3) or exploiting a backoff-

based MBDoE (see Chapter 4) where the uncertainty on model parameters (and even the 

structural model mismatch, as will be presented in Chapter 6) is taken into account within the 

formulation of the design problem itself.    

5.11 Summary of results and final remarks 

Table 5.12 summarises the results obtained in the current study through the design of different 

clinical tests for the identification of the Hovorka-Wilinska model. 

Table 5.12 Summary of the results obtained by different protocols for HWM 
identification.  

Test Name 
Information 

level 
Risk for the 

subject 
Performing 

easiness 
Length 

[h] 
MPGT1 Low Absent Moderate 10.0 

Modified postprandial 
MPGT2 High Absent Moderate 10.0 

MOGTT1 High Moderate High 13.3 
Modified OGTT 

MOGTT2 High Absent High 11.0 
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The best compromises between opponent factors can be identified in the modified 

postprandial protocol MPGT2 if subcutaneous insulin infusion is possible, or in the modified 

oral glucose tolerance test MOGTT2. MPGT provides a better parameter estimation and it 

takes a shorter time to perform than MOGTT; however, it is more complex to be carried out. 

The results also suggest that insulin administration is greatly helpful for the estimation of the 

model parameters. This is a particularly useful feature because the set of parameters should 

represent a “metabolic portrait” of the subject affected by diabetes. The identification problem 

is a trade-off between acquisition of a large information content (capability to reduce the 

uncertainty region of model parameters), compliance to a number of constraints (most 

importantly, safety for the subject) and practical applicability of the test. The results show that 

is possible to reach a statistically satisfactory parameter estimation for an individual subject 

using a single modified oral test by managing a proper meal intake and the insulin bolus 

administration. 



Chapter 6 

Optimal design of clinical tests for the 
identification of physiological models of 

type 1 diabetes mellitus in the presence of 
model mismatch* 

Conventional MBDoE techniques are affected by some limitations. A structural mismatch 

between the plant’s response and the model to be identified, combined to the initial 

uncertainty in the actual parameter values may lead to plan  sub-optimal or even hazardous 

experiments. This issue is particularly important when the identification of physiological 

models is considered. In fact, if MBDoE is used to identify a physiological model of diabetes 

as proposed in Chapter 5, an unsafe test may be carried out, potentially leading the subject to 

hypoglycaemic or hyperglycaemic conditions. This Chapter deals with the identification of 

physiological models of diabetes and shows how the above limitations of conventional 

MBDoE can be tackled through the integrated use of two advanced MBDoE techniques. First, 

an online model-based redesign technique is utilised to exploit the information embedded in 

the experimental data as soon they become available and to adjust the experiment while it is 

still running. Then, a backoff-based MBDoE strategy is implemented to take care of the effect 

of uncertainty and to define by design an optimally informative and safe clinical test. The 

effectiveness and features of the proposed approaches are assessed and critically commented 

on via a simulated case study based on state-of-the art models of glucose homeostasis. 

6.1 Introduction 

As previously seen in Chapter 5, MBDoE techniques can be successfully applied to the design 

of clinical tests for the identification of complex models of type 1 diabetes mellitus in the 

presence of parametric mismatch (i.e. incorrect values of the parameters), demonstrating the 

possibility to tune up a detailed model to the specific physiological behaviour of a subject. 

However, although constraints can be handled in the standard design formulation, the 

presence of a model mismatch (i.e., the subject’s physiological behaviour is structurally 

different from the model representation) may severely affect the quality of the experiment. In 

                                                 
*  Portions of this charter have been published in Galvanin et al. (2010b) and Galvanin et al. (2010c).  
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general, as discussed by Ford et al. (1989), since the design methodology is model-based, 

both model mismatch and parametric mismatch may affect the consistency of the whole 

design procedure. The result could be a sub-optimal design (scarcely informative) or, in the 

worst case, a dangerous or unfeasible test burdening on the subject’s health (e.g., the actual 

subject’s response may lead towards hyperglycaemia or, even worse, hypoglycaemia). 

Recently, some approaches have been proposed to improve the effectiveness and applicability 

of MBDoE techniques. Adaptive optimal input design (Stigter et al., 2006) and online model-

based redesign of experiments (OMBRE, see Chapter 3) allow exploiting the information 

acquired during a trial thanks to intermediate parameter estimation sessions, performing an 

update of the optimally designed experimental conditions while an experiment is still running. 

This is a highly desirable feature, in view of the fact that modern sampling techniques such as 

CGM (continuous glucose monitoring systems) allow increasing the available information 

through a frequent measure of glycaemia (Hirsh et al., 2008). Most importantly, the 

possibility to exploit the available information content during the experiment may help 

increasing the safety and feasibility of the clinical test since an online tuning of the model to 

the actual subject’s response is made possible. 

On a different perspective, as discussed in Chapter 4, backoff-based MBDoE techniques 

proved to be very efficient on ensuring feasible and optimally informative tests under 

parametric uncertainty and were successfully applied to a simple model of glucose 

homeostasis. The possibility to incorporate a backoff strategy ensuring feasibility in the 

presence of uncertainty is particularly important when, as usually is the case, the model is not 

a perfect representation of the real system. According to this approach, model mismatch and 

parametric uncertainty can be tackled by design in order to guarantee a safe and optimal 

clinical test. 

The goal of the current simulation study is to design a clinical test adopting advanced 

MBDoE techniques with the purpose of identifying the individual set of parameters of a 

complex model of glucose homeostasis in the most precise and accurate way, without 

affecting the subject’s safety in terms of hyper- or hypoglicaemia. A model mismatch is 

introduced considering two distinct  state-of-the-art models of glucose homeostasis: a detailed 

model (Dalla Man et al., 2006) for simulating the real subject (which will be referred to as the 

“subject”) and a different detailed model (proposed by Hovorka et al., 2002, which will be 

referred to as the “model”) for MBDoE identification. First, the identification test will be 

designed on the “model” by means of MBDoE techniques, and then the design test will be 

carried out on the “subject” to obtain the “experimental” data to be used for parameter 

identification. The designed test must be safe (i.e. meeting the assigned constraints on 

glycaemia), fast, and optimally informative for parameter estimation purposes.  
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6.2 Glucose homeostasis models 

As discussed in Chapter 5, a generic model of glucose homeostasis can be seen as a multiple-

input single-output system usually described by a system of differential and algebraic 

equations (DAEs) where the measured output variable is the plasma glucose concentration G 

and the manipulative input variables are the amount of carbohydrates of the meal(s) and the 

subcutaneous insulin infusion rate.  

 

 
 

Figure 6.1 Relationships between functional blocks for a generic model of glucose 
homeostasis. The insulin infusion submodel and the glucose absorption submodel are 
evidenced with dashed boxes. 

 

The meal ingestion and the insulin infusion are modelled by a glucose absorption submodel 

(providing the rate of appearance of glucose in plasma, Ra) and an insulin infusion submodel 

(providing the rate of appearance of insulin in plasma, Ri). The connections between 

functional blocks for a generic model of glucose homeostasis are shown in Figure 6.1. The 

relationships between the glucose/insulin systems, the endogenous glucose production (EGP), 

the glucose utilisation and elimination define the metabolic portrait of the individual and are 

inherently related to the mathematical structure of a specific model and the set of parameters. 

Several submodels have been proposed in literature to define the rate of appearance of 

glucose in plasma (e.g., Dalla Man et al., 2006) and the kinetics of subcutaneous insulin 

absorption (e.g., Nucci and Cobelli, 2000).  

In order to mimic a subject affected by type 1 diabetes mellitus the model developed by 

Cobelli and coworkers and here denoted as Cobelli model (CM) is adopted as the subject, 

where the secretion model is substituted by a variation of the insulin infusion submodel 

described in Nucci and Cobelli (2000) as presented in a recent simulation study (Dalla Man et 

al., 2007). The model developed by Hovorka et al. (2002), here denoted as Hovorka model 
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(HM1), with the same insulin infusion submodel, is used as the model during the MBDoE 

identification procedure.  

It has been shown in Chapter 5 that HM identifiable when a proper reparameterisation is 

realised. Accordingly, it is has been chosen as a suitable candidate to assess the performance 

of MBDoE techniques. The models of glucose homeostasis and their parameters, together 

with the details on the insulin infusion model, are presented in Appendix A. The glucose 

response of the subject (simulated with CM) refers to a 56 years male subject affected by type 

1 diabetes with a body weight of 78 kg. The goal of the study is to identify in a statistically 

sound way the parameters defining the virtual subject (described by HM), by planning an 

identification test on the real subject (described by CM) through advanced MBDoE 

techniques.  

6.3 MBDoE techniques for the identification of physiological models  

Standard and advanced MBDoE techniques are here adopted to estimate the set of parameters 

of HM. Among the advanced MBDoE techniques an online redesign of the clinical test (see 

Chapter 3) and an optimal design including backoff (see Chapter 4) are attempted. 

6.3.1 Online model-based redesign of the clinical test  

Standard MBDoE techniques aim at solving the optimisation problem described by (2.14), 

(2.1-2.2) and (4.1)  starting from a prior estimate of model parameters. Nevertheless, the prior 

parameter estimate might be considerably different from the parameter set describing the 

metabolic specificity of the subject. As a consequence a clinical test may turn up to be 

dangerous for the patient (either the hyperglycaemic or the hypoglycaemic thresholds might 

be crossed) and scarcely effective. The risk is further increased if there is a structural 

discrepancy between the model and the subject’s physiological behaviour.  

However, if an OMBRE approach is adopted (see §3.3), the information gradually acquired 

from the test by collecting samples can be used thanks to intermediate parameter estimations 

so that it is possible to redesign the clinical test while it is still running. In this case, assuming 

that a reliable (albeit not perfect) model is available, the acquired information can be used to 

tune the model on the subject’s behaviour, and to re-design the experiment to increase safety 

and optimality, accordingly.  

As discussed in Chapter 3, different OMBRE configurations can be exploited depending on 

the updating policy, but in this work we chose the following updating rationale: the test is 

divided into a number of equally lasting sub-experiments and within each sub-experiment the 

                                                 
1 In this Chapter, the Hovorka model is used with the Nucci and Cobelli (2000) infusion model, which is different from the 
infusion model adopted in Chapter 5 (the infusion model proposed by Wilinska et al. (2005)). For this reason, in the 
following the Hovorka model will be referred to as ‘HM’ rather than ‘HWM’. 



Optimal design of clinical tests in the presence of model mismatch  

 

145

manipulated input is discretised with the same number of switching times and levels. An 

update of the design variables is scheduled at the end of each sub-experiment, where a 

parameter estimation session and a sub-experiment re-design are carried out in sequence. 

Each sub-experiment re-design is carried out solving the optimisation problem given by 

(2.14), (2.1-2.2) and (4.1). One additional advantage is that the complexity of the design 

optimisation problem is greatly reduced (the predicted information is maximised within the 

single sub-experiment, which is a fraction of the complete test) with great benefit on the 

computational burden.  

6.3.2 MBDoE with backoff  

An OMBRE approach may reduce the risk for unsafe or unfeasible clinical tests by adjusting 

the test as soon as experimental evidence becomes available. However, the model and/or 

parametric uncertainty is not explicitly dealt with. Thus, to avoid unfeasible solutions “by 

design”, a backoff from active constraints is introduced within the MBDoE framework, taking 

into account the parametric uncertainty in the design feasibility condition given by (4.1): 

 

          , , , , ,t t t t t t   C x G β x x u w θ   0

ax

.                                                                 (4.5) 

 

In this specific problem, the only variable being constrained is the glucose concentration, and 

the MBDoE optimisation problem with backoff is the solution of (2.14) and (2.1-2.2) with the 

feasibility conditions 

 

   1 m, , + 0C y t t y   θ     and      2 min , , + 0C y y t t   θ .                              (6.1) 

 

Thus, the backoff strategy allows the designer to enforce or relax the active constraints to 

meet the safety requirements when the test is performed on the subject.   

The backoff strategy will be applied within an OMBRE framework. Accordingly, after each 

sub-experiment is performed, a parameter estimation and a redesign are carried out in 

sequence, updating both the uncertainty domain of model parameters (necessary to describe a 

new backoff) and the optimal experimental conditions to maximise the information content 

within the new sub-experiment.     

6.3.4 Some comments on the effect of model mismatch on design 

Model mismatch has a marked impact on the information predicted by design and on the 

feasibility conditions as predicted by the identification model. Let us assume the subject’s 

(CM) measured response on a designed experiment and the model (HM) response be 

described by the following equations: 
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Subject:       ˆˆ , ,CM CM CM
yy t y t t                                                                                 (6.2) 

 

Model:        ˆˆ , ,HM HM HM
yy t y t t                                                                                 (6.3) 

 

where  is the measurement error (same for both subject and model), ( )y t  ˆˆ , ,CM CMy t 
ˆ CM

 is the 

response predicted by CM with the (formally unknown) set of parameters and 

 ˆ HM ˆ , ,HMy t  is the response predicted by HM with the (known but approximately 

estimated) set of parameters ˆ HM . The subject measured response at the  experimental 

conditions defined by φ can thus be described by    

 

       ˆ ˆˆ, , , ,CM CM HM HM MM
yy t y t t t                                                                        (6.4) 

 

with  representing the effect of model mismatch (formally a time-

varying “bias”) on predicted responses. εMM is a function of 

     ˆ ˆMM CM HMt y t y t  
ˆ CM , ˆ HM and the structural 

model mismatch. Model and parametric uncertainty may affect both the design optimality and 

the design feasibility.  

When a model mismatch is present, to preserve feasibility during the planned test the 

conditions given by (5.3) and (5.4) on constrained variables should be modified including the 

bias term εMM  

 

   1 m
ˆˆ , , 0HM HM MMC y t t y    θ ax    and     2 min

ˆˆ , , 0HM HM MMC y y t t   θ 



      (6.5) 

 

Unfortunately,  cannot be explicitly evaluated (the subject model is obviously 

unknown). However, it can be enclosed within a backoff formulation of active constraints: 

 MM t

 

   1 m
ˆˆ , , 0HM HMC y t t y    θ ax   and     2 min

ˆˆ , , + 0HM HMC y y t t   θ 

t

             (6.6) 

 

where  is a generalised backoff term taking into account both model 

mismatch (through εMM) and parameter mismatch (through β). The bias term εMM can be 

evaluated following deterministic assumptions (i.e., by assigning a relative or absolute 

expected deviation from the model predicted response), while β is a function of the expected 

uncertainty domain of model parameters.   

     εMMt t   

The representation of the bias term εMM may turn up as a difficult task. In principle, the 

subject behaviour is unknown and the knowledge available to the experimenter has already 

been embedded in the model and the present value of its parameters. A conservative approach 

(adopted in this work) is to assume a fixed value for εMM, representing the maximum expected 
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difference between the model and the subject’s responses due to a structural mismatch. In 

case prior knowledge and/or preliminary data are available about a subject’s behaviour, then a 

more sophisticated approach can be used by adopting methods proposed in the scientific 

control literature (Stanfelj et al., 1993).   However, note that the backoffs may still be defined 

according to a more complex (time-variant) formulation, reflecting the actual knowledge on 

the subject’s response (see Chapter 4). 

6.4 Design of the clinical test in the presence of model mismatch 

Three different MBDoE strategies have been compared to design a clinical test in order to 

estimate the set of individual parameters of a subject affected by type 1 diabetes mellitus: a 

standard MBDoE and two tests based on the OMBRE strategy (with or without a backoff 

policy).  The design of the identification test is based on the following requirements:  

1. possibility to manage the amount of carbohydrates ingested during breakfast, lunch and 

dinner;  

2. possibility to manage a day-long test; 

3. possibility to manage the multiple insulin boluses and insulin infusion; 

4. interior constraints on the glycaemic curve (upper and lower bounds are ymax = 180 mg/dL 

and ymin = 60 mg/dL and); 

5. end point constraints on the glycaemic curve – i.e., at the end of the test the glucose 

concentration has to be within a narrower range (100 – 140 mg/dL);  

6. insulin infusion rate u(t) (mU/min) expressed as  

 
           bas bolSu t u u t t u                                                                                              (5.5) 

 

where  ubas is the basal insulin infusion rate (ubas = 12.9 mU/min), uS(t) is the time-

dependent rate of subcutaneous infusion of insulin (approximated with a piecewise 

constant discrete function), while the last term is the subcutaneous bolus administration 

with the time-invariant bolus amount ubol [mU] released at meal time and modelled 

through a Dirac impulse δ(t);  

7. blood glucose concentration measurements available with a constant relative variance of 

0.03 from the reading and a minimum time distance between two consecutive samples of 

2 min.  

The amount of each subcutaneous bolus is adjusted basing on the following empirical rule: 

 
                       bol gu kD                                                                                                      (6.7) 
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where α = 52.63 mU/gCHO is an approximated value for the optimal insulin/CHO ratio and Dg 

is the amount of carbohydrates of a meal [gCHO]. The amount of the bolus is optimised by 

optimising the relaxing factor k during the MBDoE procedure (see §5.8.2).  

The goal of the designed test is to to enable a satisfactory (i.e., statistically sound) estimate of 

the model parameters when a single daily test is performed on the subject. A type 1 diabetic 

subject should have a higher (vs. normal) basal glucose concentrations. As a consequence, at 

the beginning of the test the glucose concentration in the blood of the subject is close to the 

upper hyperglycaemic threshold (G = 175 mg/dL) and an immediate insulin infusion 

treatment is required to keep the subject in the feasible glycaemic range.     

The daily test is articulated into three phases: i) a first phase during the night in which the 

glycaemia is normalised at around 140 mg/dL at 8 AM (during this phase a sample is 

collected every hour); ii) a second phase lasting 10 hours and comprising two meals at 8:00 

AM (breakfast) and 1:00 PM (lunch); iii) a third phase lasting 6 hours with one meal at 6:00 

PM (dinner). A parameter estimation session is carried out at the end of each phase in every 

design configuration. During the first phase of the test the insulin infusion rate is kept 

constant, and after 8 hours a parameter estimation is carried out to achieve a first 

(approximated) estimation of model parameters. In the second and in the third phase of the 

experiment the profile of the insulin infusion rate is optimised by design. The details are 

summarised in Table 6.1.  
 

Table 6.1 Clinical test scheduling and design variables distribution for parameter identification. 
 

Design 
phase 

Time interval Duration 
Number of 

samples 
Number of  switching 

levels for u 
Description 

First 0:00 – 8:00 8 h 8 1 Overnight fast 
8:00 – 13:00 Breakfast at 8:00 AM 

Second 
13:00 – 18:00 

10 h 25 16 
Lunch at 1:00 PM 

Third 18:00 – 0:00 6 h 15 8 Dinner at 6:00 PM 

 

The MBDoE optimisation is carried out with simple bounds on design variables using the 

gPROMS® (Process Systems Enterprise, 2004) modelling environment and an SRQPD 

optimisation solver to solve the nonlinear optimisation problem, adopting a two-step multiple 

shooting technique to mitigate the risk of incurring into local minima. In every design strategy 

the selected design criterion is the D-optimal one.  

6.4.1 Estimation procedure and quality of the estimates 

Both the design step and the estimation step are deeply influenced by the choice of the model 

parameterisation. The Hovorka model is identifiable when a specific parameterisation is 

adopted  (Table 6.2) to ensure a positive definite information matrix in the design space (note 

that for numerical robustness, a normalisation procedure is always carried out dividing the 

estimated values by the normalising factors given by the literature values). This can be 
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achieved by estimating the ratio between the highly correlated fourth and the fifth parameters 

of the model (see §5.6.2) and thus considering during the design procedure the 

 1 4 1 2 3 4 5
T Θ Θ Θ Θ Θ Θ  parametric subset instead of  1 2 3 4 5

T Θ Θ Θ Θ ΘΘ

1 4
T
Θ

. In 

this work, in order to increase the HM flexibility and to explicitly include the effect of the 

renal clearance (related to 5) on the glucose response, a slightly different approach is carried 

out adopting a two-step maximum likelihood parameter estimation procedure. First, a 

maximum likelihood estimation is performed on the parametric set , while 5 is kept 

fixed. Then, only 5 is estimated keeping 1-4 fixed. The procedure is iterated until the 

maximum likelihood condition is satisfied.  

Table 6.2 Parameterisation of HM, initial guess of model parameters and normalising 
factors.  

Parameter Expression Initial guess Normalising factors 

1 
f

ITS / f
ITS   0.38 f

ITS  = 51.2E-4 

2 
f

IDS / f
IDS   0.83 f

IDS  = 8.2E-4 

3 
f

IES / f
IES   0.88 f

IES   = 520.0E-4 

4 ( / )/(0EGP 01F 0EGP  / 01F  ) 0.95 ( 0EGP  / ) = 1.6598  01F 

5 01F  /  01F  1.00 01F   = 0.0097 mmol/kg min 

 

Given the assumptions on the distribution of measurements error (assumed to be Gaussian), 

the maximum likelihood approach provides a set of a-posteriori statistics, calculated from the 

variance-covariance matrix of model parameters (Vθ), which may be used to evaluate the 

quality of the estimates. Thus, the effectiveness of a MBDoE strategy can be assessed in 

terms of  

1. confidence intervals analysis and t-test: the t-values can be calculated from the formula 

 

i

i
it 


             i = 1…Nθ                                                         (6.8) 

 

where the κi are the 95% confidence intervals and compared with a tabulated reference t-

value from the Student’s t distribution with nsp-Nθ degrees of freedom; 

2. goodness of fit: the sum of squared weighted residuals (SSWR) can be evaluated from  

 

       

2 2

1 1

ˆsp spn nCM HM
i i i

i iy y

y y
SSWR

  

  
     

  
  r 




                                                                          (6.9) 

 

where CM
iy is the i-th sample collected from the test on the subject, ˆ HM

iy  is the model 

predicted response of the i-th sample collected, ri is the i-th residual (the difference 
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between the predicted and the measured response) and σy is the expected standard 

deviation of the measurements.   

The χ2-test is here used to assess the model adequacy and the randomness of the residuals, and 

the SSWR index allows quantifying the goodness of fit when coupled with the analysis of the 

distribution of the residuals along the test horizon. However, it must be pointed out that a 

standard χ2-test (see §2.4.1) is much more effective if the bias εMM(t) becomes negligible and 

the measurement errors can be considered random and normally distributed. As a 

consequence, if there is a relevant model mismatch, the SSWR index cannot be compared to a 

reference χ2 unless an exact functional approximation of εMM is available. 

6.4.2 Preliminary estimation after an overnight fast 

During an overnight fast the subject is kept under a continuous insulin infusion of 6.4 mU/min 

to normalise the glycaemia. Glycaemic levels are checked every hour and a parameter 

estimation is performed in order to reach a preliminary parameter estimation (Table 6.3).  

Table 6.3 Parameter estimation after the overnight fast (the reference t-value 
is equal to 2.354; asterisks denote t-values failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.3769 0.38 168.5 0.002* 52.93 
2 0.8554 0.83 296.1 0.003* 93.03 
3 0.8282 0.88 69.9 0.012* 21.98 
4 0.9636 0.95 73.1 0.013* 22.97 
5 0.8549 1.00 358.6 0.002* 112.70 
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(a)                                                                                        (b) 
 

Figure 6.2 Dynamics of the blood glucose concentration during an overnight fast. (a) Glucose 
response of the subject (diamonds) and as predicted by the model after preliminary identification 
(solid line). The bars on the collected samples represent the maximum error on the blood glucose 
measurements. (b) Distribution of the residuals where the ±10 mg/dL range is identified by dotted 
lines.     
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After the first phase of the identification test only a rough parameter estimation is achieved, as 

can be noticed from the a-posteriori statistics. However, it can be observed from Figure 6.2a 

that the fitting of the data coming from the subject response is very accurate, the residuals are 

randomly distributed (Figure 6.2b), and the χ2-test is satisfied (SSWR = 1.83 <  7.81).   2χ ref

6.5 Standard MBDoE 

The remaining phases of the identification test are planned through a sequence of two 

standard designed experiments (STD1 and STD2 respectively). The optimised glucose 

content of the three meals is  17.9 30.5 5.0T
g D  [gCHO] and the bolus amount is defined 

by the vector  10.4T
bol u 11.3 359.5  [mU]. The profile of insulin infusion rate and the 

glucose profiles as dictated by a standard MBDoE and as predicted by the model at the end of 

the test are shown in Figure 6.3. The great uncertainty on preliminary parameter estimation 

pushes the designed test above the upper threshold of hyperglycaemia during the post prandial 

periods. Note that the upper constraint on glycaemia is here treated as a hard constraint but, in 

reality, only hypoglycaemic conditions represent a hard constraint that must never be violated, 

not even for a short time period. Also note that the proposed design would make G hit the 

lower threshold: although the actual experiment remains well clear of the lower threshold, the 

discrepancy between the model response and the actual subject’s response makes one wonder 

whether it would be sensible to drive the subject’s glycaemic level towards hypoglycaemia 

region in an actual test. Furthermore, after STD1 the parameter estimation is not statistically 

satisfactory (Table 6.4) and a supplementary experiment (STD2) is required to improve the 

information content of the overall test.  
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                                              (a)                                                                                        (b) 

 
Figure 6.3 Standard MBDoE. (a) Optimised profile of insulin infusion rate. (b) Profiles predicted by 
a standard design (broken line) and after identification (solid line); the subject actual response is 
indicated by diamonds. The bars on the collected samples represent the maximum error on the blood 
glucose measurements. 
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Table 6.4 Parameter estimation after the standard designed experiment 
STD1 (the reference t-value is equal to 1.701; asterisks denote t-values 
failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.3275 0.3769 0.167 1.965 0.081 
2 0.7585 0.8554 0.520 1.458 * 0.254 
3 0.7233 0.8282 2.022 0.358 * 0.987 
4 0.9713 0.9636 1.819 0.534 * 0.888 
5 0.2552 0.8549 1.336 0.191 * 0.652 

 

The remaining part of the identification test (STD2) starts after 18 hours since the beginning 

of the test and it is designed with the subject in hyperglycaemic conditions. Now the model is 

able to reproduce the behaviour of the subject with good approximation, but fails on 

predicting the dynamics during the dinner (as clearly shown by the distribution of residuals of 

Figure 6.4), where the hyperglycaemic condition pulls the optimiser to release a higher bolus 

amount.  Note that, when the insulin infusion profile is managed, the absolute residuals are 

neither independent (i.e. they are highly correlated) nor randomly distributed (they are 

following a deterministic behaviour driven by εMM) because of model mismatch. In particular 

when a bolus is released after 18 hours the glycaemic response of the subject is 10% 

overestimated by the model.  
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Figure 6.4 Standard MBDoE: distribution of residuals (black squares) 
along the experimental horizon. 

 

The final part of the test allows for a better estimation of the parameters (Table 6.5); however, 

two parameters are still poorly estimated. A normalisation procedure was attempted because 

of the great difference between parameters values, to avoid preferential pathways during 

estimation and design procedures. 
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Table 6.5 Parameter estimation after the standard designed experiment 
STD2 (the reference t-value is equal to 1.691; asterisks denote t-values 
failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.6472 0.3275 0.133 4.857 0.081 
2 0.4944 0.7585 0.160 3.099 0.254 
3 0.001 0.7233 1.412 0.001 * 0.987 
4 0.9703 0.9713 0.022 44.610 0.011 
5 0.1561 0.2552 0.107 1.461* 0.652 

 

6.6 On-line model-based redesign of the clinical test (OMBRE)  

An OMBRE approach can be exploited to extract the information of the test by updating the 

optimally designed conditions as the test is running and performing seven intermediate 

parameter estimations between the second and the third phase of the test. Therefore, the 

second and the third phases of the daily test can be seen as a sequence of eight separately 

planned sub-experiments lasting 2 hours each. During each sub-experiment five samples are 

taken and the insulin infusion profile, approximated by a piecewise constant function, is 

optimised by acting on two switching times and three switching levels. Two different on line 

redesign strategies are considered for planning the identification test: 

1. OMBRE-based design of the clinical test (OMBRE); 

2. OMBRE-based design of the clinical test including backoff (OMBRE-B). 

The time scheduling for the design updates in both redesign strategies is shown in Figure 6.5.  

 

 
 

Figure 6.5 Time scheduling for design updates and parameter estimations in the redesign strategies. 
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Both tests consider four redesign updates during the second phase and three additional 

updates during the third phase. The results are compared and discussed in terms of quality of  

parameter estimation and distribution of residuals.  

6.6.1 OMBRE-based design of the clinical test  

The profile of insulin infusion rate and the glucose profiles as dictated by OMBRE and as 

predicted by the model at the end of the test are shown in Figure 6.6. As can be noticed, the 

fitting of test samples is greatly improved (even if the model is not capable of predicting 

precisely the second postprandial glucose peak). Also note that the experiment is definitely 

safer than in standard MBDoE. In fact, the possibility to update the parameters value and to 

adjust the experimental plan allows for an online tuning of the model according to the actual 

subject’s response. As a result, the profile predicted by the design gets closer to the 

experimental data as the test approaches the end. Also note that the insulin infusion profile is 

managed in a very different way from the one obtained in the standard MBDoE. Here, the 

optimised glucose content of the three meals is given by  12.6 30.5 12.3T
g D  [gCHO] and 

the amount of the boluses is given by  66.3 1T
b u .4 0.2  [mU]. The design strategy 

handles a lower bolus amount and a higher glucose content for the dinner.  

The parameter estimations after 18 hours and at the end of the test are shown in Table 6.6 and 

6.7 respectively. The parameter estimation is fully satisfactory for three parameters after the 

first phase of the test. The addition of a six-hour period allows handling three extra sub-

experiments and the result is an improvement on 5  estimation.  
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    (a)                                                                                         (b) 

 
Figure 6.6 OMBRE. (a) Optimised profile of insulin infusion rate and (b) profiles predicted by a 
redesign (broken line) and after identification (solid line); the subject actual response is indicated by 
diamonds. The bars on the collected samples represent the maximum error on the blood glucose 
measurements. 
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Table 6.6 Parameter estimation after an OMBRE designed test with 4 
updates (the reference t-value is equal to 1.701; asterisks denote t-values 
failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.3107 0.2848 0.062 4.969 0.031 
2 1.7472 2.0855 0.666 2.625 0.333 
3 0.0010 0.0015 0.01 0.051 * 0.009 
4 1.0122 0.9830 0.0126 80.55 0.063 
5 0.3242 0.4081 1.2080 0.268 * 0.604 

 

The third parameter is still poorly estimated, but that has a limited impact on the variability of 

the predicted glucose response as shown in Figure 6.7 where the effect of the uncertainty on 

3  is displayed (the variability of the predicted glucose concentration in the postprandial 

glucose peaks is around 5 mg/dL). 

Table 6.7 Parameter estimation after an OMBRE designed test with 7 
updates (the reference t-value is equal to 1.691; asterisks denote t-values 
failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.3149 0.3107 0.1258 2.503 0.062 
2 1.7487 1.7472 0.6333 2.761 0.312 
3 0.0009 0.0010 0.0188 0.052 * 0.009 
4 1.0083 1.0122 0.0121 82.990 0.006 
5 0.3353 0.3242 0.1093 3.068 0.054 
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Figure 6.7 OMBRE: uncertainty on glucose concentration as 
predicted by the model for the estimated 95% confidence on Θ3. 
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The incapability of estimating 3  in a sound way is related to the effect of the model 

mismatch, which determines the impossibility of a full matching between the subject and the 

model responses; in fact, if only a parametric mismatch is considered, then the identification 

of all the model parameters is feasible (see Chapter 5). As a matter of clarification, Figure 6.8 

shows that, even if the (statistically sound) parameterisation of Table 6.7 is adopted, the 

responses of model and subject after a meal of 10 g of carbohydrates taken in conjunction 

with an insulin bolus of 523 mU are sensibly different, thus demonstrating that CM and HM 

are indeed characterised by a diverse model structure. 
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Figure 6.8 Profile of the subject (simulated with CM) and the 
model (simulated with HM) after a meal of 10 g of carbohydrates 
taken in conjunction with a 523 mU insulin bolus. 

 

However, the results clearly show that a redesign approach may offer several advantages. 

First of all, the test is safer for the subject in presence of both model and parametric 

mismatch. Secondly, the parameter estimation is more precise than the one provided by a 

standard MBDoE. The initial uncertainty and the fact that the design pushes the glycaemic 

level towards both the upper and the lower bounds, may still lead the clinical experimenter 

towards a more conservative approach where uncertainty is explicitly taken into account 

within the design procedure. The results are illustrated and discussed in the next section.    

6.6.2 OMBRE-based design of the clinical test including backoff 
(OMBRE-B) 

A backoff strategy is introduced within the redesign procedure, where the generalised backoff 

vector  of (6.6) is evaluated according to the following assumptions:      εMMt t    t

1. the bias  εMM(t) is set assuming a deviation from the model predicted response of 5%; 
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2. the backoff β(t) is evaluated from a 95% confidence uncertainty region of model 

responses provided by a stochastic simulation procedure involving N' = 200 simulations at 

perturbed values of model parameters (sampled from an expected uncertainty region T of 

model parameters).  

The expected uncertainty region of model parameters T is defined by a family of uniform 

distributions 
i

R centred on the actual values of model parameters 

 

    ˆ ˆ ˆ ˆ0.3 , 0.3 , 1... , 1...
iij ij i i i iR i N j N

              
T                                 (6.10) 

 

considering a 30% deviation on the estimated values of model parameters. After the second 

phase of the experiment, the uniform distributions are adjusted according to the a-posteriori 

variance covariance matrix of model parameters Vθ as evaluated by the maximum likelihood 

estimator. The profile of insulin infusion rate, the subject response, the glucose profiles as 

dictated by OMBRE-B and as predicted by the model at the end of the test are shown in 

Figure 6.9. Note that the backoff is also updated after each new estimation of the parametric 

uncertainty. After 8 hours the backoff takes into account the uncertainty on predicted 

responses constraining the designed test within the 80-170 mg/dL  range, thus ensuring the 

feasibility of the test. The excitation pattern, and so the distribution of information along the 

test duration, is very different from that obtained by a simple redesign approach. The amount 

of the boluses is given by  4.6 1300.0 78.9T
bol u


 [mU] while the glucose amount of the 

three meals is given by 6.6 32.9 15.0T
g D  [gCHO]. The design is constrained within the 

80-160 mg/dL range of glycaemia to keep the subject in a safe region in presence of 

uncertainty. During the lunch period a high amount of insulin bolus is released and the model, 

even if able to capture the qualitative dynamic behaviour of the subject, fails to predict the 

subject response. As expected, the parameter estimation after the second phase of the test is 

definitely not as good as the one provided by OMBRE (Table 6.8), with the last three 

parameters that are estimated with a large uncertainty.   

Table 6.8 Parameter estimation after an OMBRE-B  designed test with 4 
updates (the reference t-value is equal to 1.701; asterisks denote t-values 
failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.2955 0.2853 0.111 2.649 0.054 
2 2.4121 2.3644 0.943 2.558 0.460 
3 0.0001 0.0010 0.884 0.001 * 0.432 
4 1.6580 1.6400 10.900 0.152 * 5.319 
5 0.1783 0.1771 1.824 0.098 * 0.890 
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Figure 6.9 OMBRE-B. (a) Optimised profile of insulin infusion rate and (b) profiles predicted by a redesign 
(broken line) including the backoff effect on constraints. (c) Profile predicted by the model after identification 
(solid line); the subject actual response is indicated by diamonds.The bars on the collected samples represent 
the maximum error on the blood glucose measurements. 

Table 6.9 Parameter estimation after an OMBRE-B designed test with 7 
updates (the reference t-value is equal to 1.691; asterisks denote t-values 
failing the t-test). 

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.3289 0.3284 0.071 4.643 0.035 
2 1.8980 1.9055 0.471 4.028 0.234 
3 9.91E-5 0.0001 0.668 1.0E-4* 0.331 
4 1.5851 1.5849 0.020 79.170 0.010 
5 0.1562 0.1567 0.020 7.693 0.011 

 

However, by adding three more updates in the last phase of the test, the parameter estimation 

is greatly improved (Table 6.9) and is statistically comparable to the one obtained by 

OMBRE. Results indicate that, even if in general the backoffs shrink the available 
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experimental space, the possibility to update the design and the parameters estimation allows 

to decrease the uncertainty region, and to deliver the information content required for a good 

estimation of the model parameters in a safe manner. The drawback is that a significantly 

higher computational effort is needed (although mainly at the beginning of the test in order to 

map the uncertainty region). 

6.6.3 Residuals analysis  

The residuals distributions from the different redesign configurations OMBRE and OMBRE-

B are compared in Figure 6.10 and Table 6.10. Both distributions show a high correlation 

between residuals, but OMBRE is globally more efficient to fit the test data, with all the 

absolute residuals contained within the ±14 mg/dL interval. The insulin administration policy 

has a significant impact on the capability of the model to fit the data as the model shows a 

limited capability of predicting the subject’s response when the insulin bolus is managed. 

Note that OMBRE provides a better prediction of the glucose concentration also because the 

insulin infusion profile is managed in a less intrusive way, avoiding significant releases of 

insulin in the short period (thus keeping the test in a region where the model response is not 

so different from the subject’s). On the contrary, it can be observed that the model identified 

through the OMBRE-B is not able to fit the data precisely when a high bolus amount is 

administered (where the deviation is close to 30 mg/dL).  
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Figure 6.10 Distribution of  residuals (black squares). (a) OMBRE designed test and (b) OMBRE-B 
designed test. 

 

Table 6.10 Statistics on distributions of absolute residuals for the OMBRE and OMBRE-B configurations. 
 

Redesign 
configuration 

Mean value 
[mg/dL] 

Standard deviation 
[mg/dL] 

Maximum value 
[mg/dL] 

Minimum value 
[mg/dL] 

OMBRE 0.29 5.90 13.9 -7.5 
OMBRE-B 1.21 8.00 28.5 -12.3 
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The residuals are neither independent nor normally distributed, but the OMBRE-B 

distribution shows a higher mean (i.e, the subject response is underestimated) and a higher 

dispersion around the mean value, when compared to the distribution obtained in the OMBRE 

approach with no backoff.     

6.7 Summary of results and final remarks 

Table 6.11 summarises the results obtained in the current study through the adoption of 

different strategies of model-based design of experiments for the identification of a complex 

model of glucose homeostasis (HM) when a structural subject-model mismatch is present.  

When a day-long identification test can be designed through a model-based strategy, a 

standard MBDoE approach cannot ensure a feasible test, leading the subject to a state of 

prolonged hyperglycaemia. In addition to that, after 18 hours the test is still scarcely 

informative and the parameter estimation is not statistically satisfactory. Conversely, a 

redesign approach (OMBRE) is capable of planning a test that is both informative and 

feasible even in the presence of model mismatch so that a statistically sound estimation of all 

but one (3) parameters is eventually obtained. When a backoff from active constraints is 

realised and embedded within an OMBRE framework (OMBRE-B), the information is 

extracted in a slower way from the test as the subject’s glycaemic response is constrained 

within a narrow range of variability. However, the test turns out to be safe by design for the 

patient and still sufficiently informative.  

Table 6.11 Summary of the results obtained by different protocols for HM 
identification.  

Design strategy 
Parameters failing t-test 

after 18 hours 
Parameters failing t-test 

after 24 hours 
Feasibility 

Standard MBDoE 2 3  4 5 3 5 NO 

OMBRE 3 5 3 YES 

OMBRE-B 3  4 5 3 YES 

 

To summarise, it has been shown that integrating the use of advanced MBDoE techniques can 

be a very effective way to tackle the issue of structural system/model mismatch in the 

parameter identification of a complex physiological model of type 1 diabetes mellitus. The 

adoption of an online redesign strategy allows exploiting the collected information while a 

clinical test is still running and makes it possible to reduce the initial uncertainty and to tune 

the model parameters according to the actual subject’s response, thus improving both test 

safety and test feasibility. Safety for the subject can be further guaranteed by taking into 

account the system uncertainty through some backoffs from the hyperglycaemic and 
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hypoglycaemic bounds. It has been shown that in this way a still effective online re-design 

procedure can be set up so that the clinical test is safe by design.    

 



 



Chapter 7 

Towards the optimisation of             
dynamic information* 

Following a conventional MBDoE procedure, the maximisation of the information content of 

an experiment is performed under the assumption that the samples are collected in a discrete 

way during the trial. Each collected sample usually adds a novel (and different) contribution 

to the overall expected information that is maximised by design before the experiment is 

carried out, while a time dependent profile of the actual information is obtained only 

afterwards. As discussed in the previous Chapters, the formulation of the optimal design 

problem is generally based on the maximisation of a global measurement function of the 

expected information, evaluated from discrete forms of the Fisher information matrix. This 

Chapter illustrates the possibility to manage the dynamic profile of information of the 

experiment adopting advanced MBDoE techniques. A novel MBDoE approach termed 

dynamic model-based design of experiment (DMBDoE), particularly suitable if a continuous 

measurement system is available, is here presented. The novel design strategy aims at 

optimising a continuous measurement of the Fisher information matrix, and allows taking into 

account the specificity of the measurement system withinin the design framework. The effect 

of sampling frequency and experimental duration on the rate of information acquisition is 

discussed in this preliminary study, where the benefits of the proposed strategy are assessed 

by means of two distinct case studies by comparison to a standard MBDoE approach.   

7.1 Introduction 

A significant result obtained in Chapter 5, when planning a MPGT or a MOGTT test for the 

identification of a model of T1DM (§5.9-5.10), was that, even adopting an optimised 

experimental protocol, a minimum number of samples was required to estimate the set of 

model parameters with a sufficient degree of precision.  

On the one side, such a result is quite expected as the number of samples collected in a single 

test may be insufficient to estimate the set of parameters, in spite of the optimal experimental 

conditions determined by design. The effect of sampling rate and measurement precision on 

information evaluation and design effectiveness has been extensively studied in the literature 

                                                 
* Portions of this Chapter have been published in Galvanin et al. (2009b) and Galvanin et al. (2010d).   
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(Emery et al., 2002). Usually the sampling rate, and thus the rate of information acquisition, is 

strictly limited by the experimental budget (e.g., number and duration of experiments, number 

and type of measurements) and/or by the specific choices and possibilities set by the 

experimenter. Accordingly, the experimental design activity usually takes into account the 

limitations on laboratory facilities and is managed accordingly.  

However, there is an additional and subtler cause for the design inefficiency when the number 

of samples is limited. If the duration of the test is assigned, the design procedure manages the 

experimental settings in such a way that the expected information is distributed along the 

entire experiment duration so that an overall metric for the Fisher information matrix is 

maximised (Zullo, 1991). In fact, although each sample eventually acquired will add a novel 

(and different) component to the overall expected information, the design does not consider 

the way in which the information evolves continuously in time.   

Standard MBDoE techniques have been originally developed considering a discrete 

acquisition of information. In their original formulation (i.e. §2.2) they do not consider the 

possibility that the information on the system itself could, in principle, be acquired in a very 

frequent way if there was the possibility to record the system responses in a continuous way. 

Usually when monitoring a process several responses, typically concentration measurements, 

can only be acquired by discrete sampling at a significantly reduced sampling frequency. 

However, a number of system outputs (e.g. temperatures and pressures) can be measured (in 

practice) in a continuous way. Moreover, recent advances in sensors technology allow for the 

development of continuous monitoring systems that are suitable even for concentration 

measurements. For example, continuous measurement systems have been developed for 

monitoring concentrations in biological processes adopting near-infrared spectroscopy (Tosi 

et al., 2008) or online respirometry techniques (Dias et al., 2009). Additionally, as anticipated 

in Chapter 5, continuous glucose monitoring systems (CGMS) have been recently proposed 

for diabetes care: these devices can record  the glycaemic levels over a continuous 24 hour 

period in a very frequent way (i.e. 5-10 minutes the frequency of blood glucose display), 

although they measure the glucose level of the interstitial fluid and a lag time between blood 

and interstitial reading is therefore always present (Cengiz and Tarborlane, 2009). The 

glucose concentration measurements usually exhibit accuracy and precision that are 

significantly lower than the ones provided by the standard (discrete) off-line sampling 

techniques (Mazze et al., 2009); nonetheless, they are expected to provide a substantial 

support to diabetes management and care in order to tailor the therapy to patients needs (Garg, 

2009).  

In such a perspective, it may be convenient to tailor the experiment design formulation to the 

specificity of the sampling system. Features like sampling frequency, measurements accuracy 

and precision should be embodied in the mathematical formulation of the design problem.  
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For instance, in the optimal design of a clinical test, it may be convenient to maximise the 

information since the very beginning of the trial, even if the information content at the 

beginning of the experiment is very low, with the purpose to shorten the experiment duration. 

To maintain the optimality of a test, and thus to guarantee a certain level of information with 

the minimum experiment duration, the rate by which information can be acquired needs to be 

increased and, in the experimental practice, the frequency and/or the precision of the 

measurements must be managed accordingly. The need for a different approach to experiment 

design allowing for the optimisation of the information dynamics of the test is explained by 

mean of an example in the following section.    

7.2 A motivating example: optimal design of clinical tests for the 
identification of HWM  

As previously seen in Chapter 5, the MBDoE approach is applied to a diabetic subject 

modelled using HWM both for simulating the subject and as identification model. The 

purpose is to modify the usual protocol of standard tests such as PGT (postprandial glucose 

test) and OGTT (oral glucose tolerance test) so as to increase the overall information content 

of the test after a preliminary reference test. The goal is to estimate precisely, with only one 

properly designed experiment, the set of metabolic parameters Θ describing the insulin 

sensitivity of a specific subject (Θ1, Θ2, Θ3) and his/her endogenous glucose production (Θ4). 

Here the focus is to assess the effect of the sampling frequency and test duration on the 

dynamics of the actual information evaluating: i) the impact of the design variables on the 

final parameter estimation; ii) the ability to meet critical safety constraints on the subject 

response within a specified degree of confidence, and iii) the minimal experimental budget 

required to get a satisfactory parameter estimation from the planned test without upsetting the 

subject excessively.  

The design vector is expresses in the form (5.1), where the time-dependent inputs u(t) that can 

be manipulated for design purpose comprise the insulin subcutaneous infusion and the insulin 

subcutaneous bolus, whereas the glucose intake is represented as a time-invariant control 

variable w. There is only one measurable output y(t) given by the blood glucose concentration 

G. The optimal test settings are chosen to minimise a measurement function ψ of Vθ 

following (2.14) under  the following constraints in the form (4.1):  

 interior constraints on the glycaemic curve to ensure normoglycaemia at all times (60-170 

mg/dL);  

 end point constraint (i.e. constraint at t = τ) on the glucose concentration (80 mg/dL); 

 constraint on the final derivative of the glucose concentration to ensure steady glycaemia 

at the end of the test;  

 constraint on the test duration. 
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Safe conditions must be guaranteed at all times during the clinical test; furthermore, the test 

should be completed within a specified time interval. It must be also guaranteed that after the 

test the subject returns to and remains at the basal settings. The designed test formally ends 

with the last sampling point (which defines the duration of the experiment). The (simulated) 

glucose measurements are available with a constant relative variance of 0.033 and the elapsed 

time between two consecutive measurements cannot be shorter than 5 minutes. To improve 

numerical robustness, parameters are normalised with respect to the true values describing the 

subject. Thus, the diabetic subject is identified by the parametric set Θ = [1.000 1.000 1.000 

1.000], while the initial guess on model parameters is given by the set Θ0 = [1.592 0.819 

1.375 1.268].   

The following protocols are proposed and assessed:  

1. MPGT-nsp: modified postprandial glucose test with nsp = 5, 10, 20 (τ = 600 min); 

2. MOGTT-nsp: modified OGTT with nsp = 5, 10, 20  (τ = 840 min); 

3. MPGT-opt: modified postprandial glucose test with nsp = 20 and τ optimised; 

4. MOGTT-opt: modified OGTT with nsp = 20 and τ optimised. 

A variable number of samples is chosen in protocols 1. and 2. to evaluate the impact of the 

sampling frequency on the quality of the final estimate, while in 3. and 4. the goal is to assess 

whether a test duration could be shortened by increasing the sampling frequency.  

 

The optimal settings determined by design maximise the expected information content of the 

test, expressed by the dynamic information matrix 

 

  0

1

,
spn

θ k θ
k

 H θ M H .                                                                                                       (7.1)   

 

The Mk matrix represents the contribution of the k-th sample to the overall predicted 

information content Hθ. This information is deeply affected by the frequency of sampling (in 

terms of nsp/τ ratio) and by the excitation pattern of the manipulated inputs; thus, the choice of 

the sampling protocol has a significant impact on the effectiveness of test in terms of 

information availability. The expected information dynamics can be evidenced by considering 

the trace of the information matrix (7.1) where each sample (whose collecting time is 

optimised) will provide a different (expected) amount of information (given by each step in 

Figure 7.1). After the experiment is performed, information will be updated, thanks to the 

parameter estimation, and the profile of the actual information can be obtained (solid line in 

Figure 7.1).  
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Figure 7.1 Dynamics of the expected information and of the actual 
information for a standard MBDoE. The optimal allocation of sampling 
points is indicated by black squares. 

 

Note that the actual information is available only a-posteriori, after an experiment is 

executed. In the presence of parametric and/or structural model mismatch, a mismatch 

between the actual and the expected information is realised such that the two profiles of 

information do not overlap. This information mismatch is always present during the 

experiment design procedure, unless the design efficiency (see §2.6) is close to unity. 

7.2.1 Modified Postprandial Glucose Test (MPGT) 

The purpose is to identify the model set of parameters with a single experiment comprising 

two meals (breakfast and lunch, scheduled at 8:00 AM and 1:00 PM). The variables being 

optimised are: the CHO content of the meals, Dg,1 and Dg,2 (bounds on breakfast: 5 – 40 g 

CHO; bounds on lunch: 30 – 70 g CHO); the glucose-dependent insulin infusion rate us(t) 

(parameterised as a piecewise constant function, with nz = 9 levels and nsw = 8 switching 

times to optimise), the amount of insulin of the boluses ubol,1 and ubol,2 and the sampling 

times. The last sampling point can be taken not later than 600 min (10 h) from the beginning 

of the experiment (the end of the experiment is scheduled at 6:00 PM). The time interval 

between consecutive meals is not optimised, and the insulin bolus amount is not constrained 

to an insulin/CHO ratio. The end point constraints on the glucose concentration and on the 

derivative of the glucose concentration must be reached within 600 min. As can be seen from 

Table 7.1 at least 10 samples are necessary to perform a statistically sound parameter 

estimation.  

Figure 7.2a shows the contribution of each sample to the overall information (7.2) given by 

the trace of Hθ. The information threshold refers to a mean standard deviation of 10% on the 
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final estimate. When the test duration is also optimised (MPGT-opt), the samples are 

concentrated at the very beginning of the test, where the test is scarcely informative. 

However, the optimal settings determined by MPGT-opt allow for a significant increment on 

the information level of the samples acquired during the time interval 150 < t < 300 min. As 

illustrated in Figure 7.2b, this test is safe (even if the profile of glycaemia approaches the 

lower constraint on hypoglycaemia at t = 270 min) and sufficiently short to be carried out (τ = 

480 min = 8 h) but the estimation is not statistically satisfactory (although just marginally). 

Table 7.1 Comparison of different MPGT protocols. Superscript * indicates t-values failing 
the t-test (tref  is the reference t-value and Θ = [1.000 1.000 1.000 1.000]T ).For protocol 
MPGT-opt τ = 8 h. 

Design Parameter Estimate ̂  
Conf. Interval 

(95%) 
t-values tref 

MPGT-5 [1.045  0.729  1.222 1.043]T [±0.3665  ±1.2940  
±1.1300  ±0.2341] 

[2.85  0.56*  1.08* 4.45] 1.795 

MPGT-10 [0.997  0.915  1.059 1.007]T [±0.2955  ±0.5136,  
±0.3217  ±0.0514] 

[3.37  1.78  3.29  19.58] 1.745 

MPGT-20 [1.008  0.808  1.114 1.015]T [±0.1878  ±0.4276,  
±0.2603  ±0.0430] 

[5.37  1.89  4.28  23.60] 1.705 

MPGT-opt [0.944  0.826  1.147 1.020]T [±0.2235  ±0.7305,  
±0.4295  ±0.0713] 

[4.23  1.12*  2.67  14.3] 1.705 

 

It is interesting to notice how the MPGT-opt protocol is able to shift the information 

dynamics by managing the administration of a higher CHO content on breakfast (Dg,i = [30.8, 

21.4] gCHO) than in the MPGT-20 test protocol (Dg,i = [21.2, 23.8] gCHO). Moreover, the two 

tests are characterised by a similar amount of insulin released with the boluses but a 

completely different policy in the insulin infusion rate (Figure 7.3).  
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Figure 7.2  (a) Contribution to the actual information as evaluated by (7.1) for different MPGT 
protocols and (b) glucose response modeled by design (broken line), after identification (solid line) 
and subject response (indicated by diamonds) for protocol MPGT-opt. In the time scale, 0 
represents 8 AM. 
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Figure 7.3  Optimal insulin infusion profile (solid line) and bolus administration (boxes) 
for protocols (a) MPGT-20 and (b) MPGT-opt.  

7.2.2 Modified Oral Glucose Tolerance Test (MOGTT) 

The MOGTT identification test involves multiple glucose solution and insulin bolus intakes. 

The optimisation variables are: the glucose content of the four meals (glucose solution drink); 

the time interval between consecutive meals (acceptable range 15-840 min); the sampling 

times, the amount of each insulin bolus and duration not greater than 840 min (14 h). An 

additional constraint was imposed on the total amount of CHO ingested (acceptable range: 

75-156 g CHO). The end point constraints on blood glucose concentration and its derivative 

must be fulfilled within 840 min from the last meal. The amount of bolus per meal was 

modelled adopting equation (5.9). As underlined in Chapter 5, this test is more informative 

(compare the y-axis scale of Figure 7.2a and 7.4a), but a longer experiment duration has to be 

adopted since the four meals need to be spaced over a sufficiently long period of time. When τ 

= 840 h (14 h) the estimate is statistically satisfactory only with more than 5 samples (Table 

7.2), but, interestingly, the MOGTT approach allows shortening the test duration from 14 to 

10.8 h without much affecting the quality of the final estimate, while ensuring a safe and 

informative test (Figure 7.4b).  

Table 7.2 Comparison of different MOGTT protocols. Superscript * indicates t-values failing the t-test (tref  
is the reference t-value and Θ = [1.000 1.000 1.000 1.000]T ). For protocol MOGTT-opt τ = 10.8 h. 

Design Parameter Estimate ̂  Conf. Interval (95%) t-values tref 

MOGTT-5 [1.096  0.800  1.231 1.024]T [±0.2437  ±0.4978  
±0.3028  ±0.1088] 

[4.49  1.61*  4.06 9.41] 1.795 

MOGTT-10 [0.902  1.007  1.089 1.022]T [±0.2139  ±0.1593,  
±0.3054  ±0.1018] 

[4.22  6.32  3.57  10.04] 1.745 

MOGTT-20 [0.957  0.975  1.077 1.021]T [±0.1634  ±0.1176,  
±0.2447  ±0.0817] 

[5.86  8.29  4.40  12.49] 1.705 

MOGTT-opt [0.906  0.953  1.131 1.035]T [±0.1813  ±0.2277,  
±0.3138  ±0.1014] 

[5.00  4.19  3.61  10.22] 1.705 
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Figure 7.4  (a) Contribution to the actual information as evaluated by (7.2) for different MOGTT 
protocols and (b) glucose response modeled by design (broken line), after identification (solid line) 
and subject response (indicated by diamonds) for protocol MOGTT-opt. In the time scale, 0 
represents 8 AM. 

To achieve the information profile illustrated in Figure 7.4a, the MOGTT-opt test protocol 

manages the assumption of a lower CHO amount in the first two meals (Table 7.3) and a 

lower bolus administration than in the MOGTT-20 test, in order to keep the feasibility 

conditions imposed on glycaemia at the end of the test. 

Table 7.3 Comparison of the optimal settings as given by MOGTT-20 and 
MOGTT-opt test protocols. 

Optimised Design Variables MOGTT-20 MOGTT-OPT 

tmeals [min] [0, 118, 134, 148] [0, 120, 138, 154] 
Dg [g] [59.3, 60, 1.0, 0.9] [48.7, 24.3, 1.0, 1.0] 

k [0.97, 0.00, 0.06, 0.01] [0.80, 0.01, 0.06, 0.01]  

7.2.3 Additional discussion: the optimisation of dynamic information 

Results from the previous Sections show how it is possible to characterize the time dependent 

profile of the actual information during MPGT and MOGTT clinical tests. In particular, it  

clearly appears that there exists a close relationship between the dynamics of the actual 

information, the number of samples acquired and the duration of the test. A standard MBDoE 

approach can be successfully adopted to shift the dynamic of the actual information, by 

modifying the number of samples being collected and/or by optimising the duration of the 

clinical test. However, MBDoE does not allow to optimise the entire time-dependent profile 

of the actual information, but only the concentration of the information within a prescribed 

time window. As an attractive alternative, it may be worth maximising the profile of the 
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actual information from the very beginning of the test by optimising the entire set of design 

variables.  

Following this premise, a novel design criterion involving a dynamic MBDoE approach 

(DMBDoE) has been formulated and is presented in the next Section. The proposed design 

technique is suitable for systems in which continuous (or highly frequent) measurements are 

available. In fact, if the samples are collected very frequently, the measure of the actual 

information gained from the experiment can be approximated by a continuous profile over the 

experimental horizon. The optimal design problem is formulated by optimising a continuous 

dynamic measurement function of the Fisher information matrix with the purpose of reaching 

a statistically satisfactory estimation of model parameters in the easiest and quickest way. 

7.3 The optimisation of dynamic information: DMBDoE 

Standard model-based experiment design procedures aim at decreasing the model parameter 

uncertainty region predicted by a deterministic model as the solution to the optimisation 

problem (2.14) subject to a set of constraints on the state variables (4.1) and on the design 

variables (4.2). The experimental settings are chosen to minimise a measurement function ψ 

of Vθ which maximises the global expected information content of the experiment, expressed 

by the dynamic information matrix (7.1). Formally, the design criteria (§2.2.3) act on the sum 

of the Mk contributions to the overall Hθ, without focusing on the rate at which the 

information is increased. When the experiment is performed, assuming that no sampling 

scheduling needs to be optimised, the rate of acquisition of the actual information is evidently 

defined by the features of the measurement system. In particular it is important to know 

exactly: 

1. the sampling frequency (i.e. number of samples per unit time); 

2. the measurements precision (i.e. repeatability) and accuracy (dispersion around the “true 

value” characterising the system response). 

From the experiment design perspective, the first factor affects the number of contributions to 

the overall information, while the second one, under the assumption of randomly distributed 

measurements errors, deeply affects the formulation (2.10) of the dynamic information matrix 

(through the definition of the variance-covariance matrix of measurement errors Σ). 

 Considering an A-optimal design criterion (i.e. focusing on the trace tr of the dynamic 

information matrix), an upper limit curve on the expected information (Figure 7.5) can be 

characterized as the number of samples tends to infinity: 

 

     0
θ

1 1 0

lim lim d
sp sp

sp sp

n n

k kn n
k k

tr tr K tr t t K


 
 

 
         

 
  M H M M .                                     (7.2) 

 



Chapter 7 

 

172

In (7.2) K is a constant term quantifying the prior information, while the trace of M(t) allows 

for the dynamic evaluation of the expected information (note that the trace is a linear map and 

for this reason has been considered as a suitable measurement function). This new metric of 

the expected information is suitable for systems where the measurements can be deemed 

continuous (i.e., where information can be gathered at a frequency that is much higher than 

the dominant frequency of the process).  

 

0 5 10 15 20 25 30 35 40
100

101

102

103

104

105

106

107

108

E
xp

ec
te

d 
in

fo
rm

at
io

n

Time [hours]

 n
sp

 = 10 

 n
sp

 = 50

 n
sp

 = 500

 n
sp

 8

 
 

Figure 7.5  Effect of the number of samples on the evaluation of the 
expected information. 

A novel design criterion for the dynamic model based design of experiments (DMBDoE) can 

thus be introduced: 

 

 arg max dtr t t


 
    

 
 M    .                                                                                               (7.3) 

 

Basically, the DMBDoE criterion aims at maximising the area underneath the curve of the 

dynamic expected information, while a standard A-optimal MBDoE criterion aims at 

maximising the sum of the information content of each single sampling point (Figure 7.6).  
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Figure 7.6 Dynamic evaluation of expected information. 

The benefit of adopting (7.3) as a design objective function comes from the fact that the 

information is maximised starting from the very beginning of the experiment. This design 

criterion can be usefully exploited in both a sequential MBDoE framework or by adopting a 

redesign strategy (see Chapter 3) within a proper time window. After maximising the 

expected information with (7.1) or (7.3) by acting on the components of the design vector φ, 

the experiment is performed and the actual information is evaluated by carrying out a 

parameter estimation on the collected data. A new information profile will be generated (the 

“actual information” profile), usually different from the expected profile maximised by 

design. If the model is a reliable representation of the process, the gap between expected and 

actual information can be exclusively attributed to the parametric mismatch between the 

model and the real system. 

Note that (7.1) and (7.3) allow to tune the MBDoE activity to the specificity of the 

measurement system. Moreover, these equations could be used, in perspective, to guide the 

experimenter on the choice of a proper measurement system. In fact, as previously introduced, 

the possibility of a quick gain of information has a dramatic impact on the global amount of 

information, and thus on the effectiveness of the whole identification procedure.  

The effectiveness the proposed DMBDoE technique is illustrated and discussed through two 

simulated case studies. The first one is concerned with the optimal design of a MOGTT for 

the identification of HWM. The second one is related to the biomass fermentation process for 

baker’s yeast previously presented in §3.4.  
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7.4 Case study 1: comparing DMBDoE and MBDoE for a modified 
oral glucose tolerance test  

Previous results show that a modified OGTT protocol is more effective than a modified PGT 

protocol when higher sampling frequencies are adopted. The results also demonstrate the 

flexibility of this protocol, which is simpler to be carried out and allows achieving a 

statistically sound parameter estimation in a shorter time. Moreover, the test is not invasive or 

harmful to the subject. A standard MBDoE approach with the optimisation of the time 

duration (protocol MOGTT-opt) allows shortening the experimental duration to 10.8 h. We 

will show that the duration of the MOGTT test can be further be reduced by adopting a 

DMBDoE approach where the test is optimised by design adopting (7.4) as objective 

function. It is assumed that a continuous measurements system is available and thus a very 

frequent sampling (1 sample every 10 minutes) which is quite a standard frequency for CGM 

systems) can be realised, where the measurements can be obtained with a constant relative 

variance of 0.03. The maximum experimental duration is set to τ = 10 h.  

The management of dynamic information with DMBDoE allows concentrating the actual 

information at the beginning of the test (Figure 7.8a), ensuring an optimally informative test 

(Table 7.4). Thanks to the exploitation of the information dynamics, the test can be shortened 

to τ = 480 min = 8 h without much affecting the quality of the final estimate (Table 7.5).   

Table 7.4 Case study 1: parameter estimation after the experiment designed 
by DMBDoE where the test duration is set to τ = 600 min. The measurements 
relative variance is 0.03 and the reference t-value is equal to 1.795 (asterisks 
denote t-values failing the t-test).  

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.9180 1.5924 0.1217 7.541 0.0610 
2 0.8042 0.8187 0.2692 2.987 0.1349 
3 1.2581 1.3755 0.2778 4.530 0.1392 
4 1.0779 1.2677 0.0948 11.370 0.0475 

Table 7.5 Case study 1: parameter estimation after the experiment designed 
by DMBDoE where the test duration is set to τ = 480 min. The measurements 
relative variance is 0.03 and the reference t-value is equal to 1.795 (asterisks 
denote t-values failing the t-test).  

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.9255 1.5924 0.1286 7.196 0.0642 
2 0.7949 0.8187 0.3309 2.403 0.1652 
3 1.2593 1.3755 0.3087 4.079 0.1541 
4 1.0787 1.2677 0.1063 10.140 0.0531 

 

Table 7.6 compares the optimal design settings provided by MBDoE (protocol MOGTT-opt) 

with the ones provided by a DMBDoE optimisation. In order to exploit the information during 
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the initial dynamics of the test, the DMBDoE tends to concentrates the CHO administration 

on the first meal while a standard MBDoE approach would distribute the CHO administration 

on the first two meals and thus along the first hours of the test.  

Table 7.6 Case study 1: comparison of the optimal settings of the MOGTT 
test as given by MBDoE and DMBDoE.  

Optimised Design Variables MBDoE DMBDoE 

tmeals [min] [0, 120, 138, 154] [0, 231, 251, 294] 
Dg [g] [48.8, 24.3, 1.0, 0.9] [58.4, 7.7, 1.0, 0.9] 

k [0.80, 0.01, 0.06, 0.01] [0.64, 0.12, 0.00, 0.01] 

 

The slight hyperglycaemic condition achieved (as an effect of the parametric mismatch 

between the subject and the model, Figure 7.8b) can be tolerated in the clinical practice (only 

the lower bound on glycaemia is a hard constraint). If measurements are available with a 

significantly higher measurements error (0.07 the relative variance) as it happens by adopting 

the actual CGMS devices, the parameter estimation is not statistically satisfactory adopting a 

8 hours test (Table 7.7). Even if not shown it has been verified that under these measurement 

settings a statistically satisfactory parameter estimation can be ensured only if the test is at 

least 9 hours long. This preliminary result shows the interesting impact of the measurements 

quality (i.e. not only the frequency) on the design effectiveness, and opens new possibility for 

designing a clinical test adopting continuous measurement systems.       
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                                               (a)                                                                                         (b)       
 

Figure 7.8 Case study 1. (a) Actual information as evaluated by (7.2) for MBDoE and 
DMBDoE planned MOGTT and (b) glucose response modeled by design (broken line), after 
identification (solid line) and subject response (indicated by circles) for protocol MOGTT-D.  
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Table 7.7 Case study 1: parameter estimation after the experiment designed 
by DMBDoE where the test duration is set to τ = 480 min and the 
measurements are available with relative variance 0.07. The reference t-
value is equal to 1.795 (asterisks denote t-values failing the t-test).  

Model 
Parameter 

Final 
Value 

Initial
Guess 

Confidence Interval
95% 

95% 
t-value 

Standard 
Deviation 

1 0.9917 1.5924 0.2519 3.936 0.1257 
2 0.7658 0.8187 0.4837 1.583* 0.2414 
3 1.2358 1.3755 0.3879 3.186 0.1936 
4 1.0727 1.2677 0.1349 7.954 0.0673 

7.5 Case study 2: biomass fermentation process 

The novel DMBDoE methodology discussed in the previous section is applied to the biomass 

fermentation process described by the set of differential and algebraic equations (3.6) and 

detailed in §3.4. The experimental conditions that characterise an experiment are the dilution 

factor u1 (range 0.05-0.20 h-1) and the substrate concentration in the feed u2 (range 5-35 g/L), 

mathematically approximated through piecewise constant profiles over 8 switching intervals 

(the duration of each interval is allowed to be between 1 and 20 h). The initial biomass and 

substrate concentration x1(0) and x2(0) are set to 1.4 g/L and 0 g/L, respectively. In the system 

both x1 and x2 can be measured during the experiment. The final objective is to design a 

single experiment (lasting τ = 40 h) to yield the best possible information for the estimation of 

the four parameters i.  

Two experiment design configurations are considered and compared in the study:                                             

1. MBDoE: a standard E-optimal designed experiment with (7.1) as the objective function; 

the design also optimises the collocation in time of nsp = 10 samples (the elapsed time 

between any two sampling points is allowed to be between 1 and 20 h); 

2. DMBDoE: a dynamic experiment design is performed by adopting (7.4) as the objective 

function; it is supposed that the measurements are available very frequently (every 10 

min). 

The E-criterion was used in the standard MBDoE approach because it was proven as the most 

effective design approach for this case study (Asprey and Macchietto, 2000). Even if not 

shown here for sake of brevity, it has nonetheless been verified that an A-optimal design 

criterion would provide very similar optimal excitation patterns. Synthetic experimental data 

are obtained by simulation with  = [0.310, 0.180, 0.550, 0.050]T as the “true” parameters and 

are available with a constant relative variance of 0.03 (case A, “noise-free measurements”) 

and 0.20 (case B, “noisy measurements”). These two distinct cases have been chosen to assess 

the impact of the measurements accuracy on DMBDoE effectiveness.   

The initial guess for the model parameters’ values is set to 0 = [1.000, 1.000, 1.000, 1.000]T. 

Since θ is obviously unknown in practice, results of the parameter estimation are given in 

terms of the a-posteriori statistics obtained after performing a maximum likelihood parameter 
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estimation. The quality of the final estimates is assessed by observing for each parameter the 

interval of estimation confidence and the t-value statistics obtained after the optimally 

designed experiments have been executed and model parameters re-estimated with the new 

data.  

7.5.1 Case A: noise-free measurements 

When (almost) noise-free measurements are available, both MBDoE approaches allow 

reaching a statistically satisfactory parameter estimation (Table 7.8), but DMBDoE ensures a 

dramatically better confidence on the final estimate, thanks to the higher rate of information 

acquisition.  

Table 7.8 Case study 2.A: comparison of parameter estimations for different design 
configurations (the reference t-value is 1.74 for MBDoE and 1.65 for DMBDoE estimation). 

 MBDoE DMBDoE 

Estimate [0.3064 0.2015 0.4955 0.0448]T [0.3154 0.1762 0.5792 0.0520]T 

Conf. Interval (95%) [±0.0118  ±0.0540 ±0.1250 ±0.0134] [±0.0010 ±0.0014 ±0.0048 ±0.0005] 

t-values [26.04  3.73 3.96 3.350] [297.20  125.10 119.80 103.50] 

 

Interestingly (Figure 7.9), in a DMBDoE approach the design is such that the system is 

excited at the very beginning of the experiment in order to increase the information content of 

the samples being acquired as soon as the experiment starts. On the contrary, the excitation 

pattern provided by MBDoE is mainly concentrated in the second half of the trial.  
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        (a)                                                                                        (b) 
 

Figure 7.9 Case study 2.A. Profiles of the manipulated inputs as optimised by the two different 
design strategies: (a) dilution factor and (b) substrate concentration in the feed for DMBDoE (solid 
line) and MBDoE (broken line). 
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This clear difference on the excitation policy has a significant effect on the distribution of 

information along the experimental horizon. In fact, the dynamics of the actual information 

are completely different for the two design configurations (Figure 7.10). A minimum required 

information limit based on the A-optimal design criterion can be defined by considering a 

mean standard deviation of 10% on the final estimate of model parameters. It can be noticed 

that the second half of the experiment as planned by DMBDoE does not deliver an 

appreciable contribution to the overall information, which is fully exploited at the very 

beginning of the trial. A maximum on the actual information is reached around t = 11 h, and 

subsequently the increment on information is negligible. As a result, the experiment planned 

by DMBDoE could be stopped before the end as a statistically satisfactory parameter 

estimation would be reached already. On the contrary, the experiment planned by a standard 

MBDoE technique requires approximately the full length of the experiment for a statistically 

sound parameter estimation. 
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Figure 7.10 Case study 2.A. (a) Profiles of actual information for a standard MBDoE and for 
DMBDoE as given by the summation term of (7.2); the dotted line represents the A-optimal 
information limit for a 10% deviation on the final estimate. (b) Biomass and substrate concentration 
profiles as predicted by the model after the parameter identification of the DMBDoE planned 
experiment; biomass and substrate concentration measurements are indicated by diamonds.  

7.5.2 Case B: noisy measurements 

When quite noisy measurements are available, a standard MBDoE approach is not sufficient 

to provide a statistically sound parameter estimation (Table 7.9) with a single experiment. On 

the contrary, the DMBDoE strategy appears to be less sensitive to the entity of the 

measurement noise and provides a statistically satisfactory estimation for all parameters.  

The level of excitation provided by MBDoE is significantly higher than the one provided by 

DMBDoE (Figure 7.11), but it is still concentrated (as in case A) in the second part of the 

experiment (after 10 h). Analysing the actual information profiles (Figure 7.12a) it can be 
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noticed how the information acquired through discrete samples is not sufficient to guarantee a 

statistically sound parameter estimation. Conversely, when a dynamic design is carried out, 

the information exploited at the very beginning of the experiment is sufficient to reach a 

statistically sound parameter estimation in the first half of the experiment. 

Table 7.9 Case study 2.B: comparison of parameter estimations for different design 
configurations. Superscript * indicates t-values failing the test (reference t-value is 1.74 for 
MBDoE and 1.65 for DMBDoE estimation). 

 MBDoE DMBDoE 

Estimate [0.3047 0.1970 0.5099 0.0436]T [0.3040 0.1757 0.5327 0.0491]T 

Conf. Interval (95%) [±0.2000 ±0.3369 ±0.8502 ±0.1903] [±0.0292 ±0.0137 ±0.0745 ±0.0087] 

t-values [1.52*  0.58* 0.59* 0.23*] [10.40  12.85 7.15 5.62] 
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Figure 7.11 Case study 2.B. Profiles of the manipulated inputs as optimised by the two different 
design strategies: (a) dilution factor and (a) substrate concentration in the feed for DMBDoE (solid 
line) and MBDoE (broken line). 

It can be noticed the relevant effect of the measurements error on the information dynamics: 

the profile still exhibits a peak at the beginning of the experiment at t = 3 hours (and this 

guarantees a substantial benefit on the parameter estimation), but after that point the 

increment on information is even lower than the one provided by MBDoE. However, it can be 

observed that even if measurements are very noisy, the new approach (Table 7.9) can provide 

a sounder parameter estimation of θ2, θ3 and θ4 than the one provided by a standard MBDoE 

with noise-free measurements (Table 7.8). Thus, particular attention should be made by the 

experimenter on choosing the proper measurement system. A continuous measurement 

system, even if providing noisy data, could be more suitable for model development and 

validation than a more precise but discrete approach.    
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Figure 7.12 Case study 2.B. (a) Profiles of actual information for a standard MBDoE and for 
DMBDoE as given by the summation term of (7.2); the dotted line represents the A-optimal 
information limit for a 10% deviation on the final estimate. (b) Biomass and substrate concentration 
profiles as predicted by the model after the parameter identification of the DMBDoE planned 
experiment; biomass and substrate concentration measurements are indicated by diamonds.  

7.5.3 Additional discussion 

As already mentioned, from the analysis of the dynamics of the actual information when a 

DMBDoE approach is pursued (Figure 7.10 and Figure 7.12) it seems that the experiment can 

be stopped well before its planned duration, while maintaining at the same time a satisfactory 

parameter estimation. 

Table 7.10 Case study 2: comparison of parameter estimations for DMBDoE 
planned minimal-length experiments for different scenarios: noise-free 
measurements (the reference t-value is 1.74) and noisy measurements (the 
reference t-value is 1.66). 

 Noise free measurements Noisy measurements 

Estimate [0.3022 0.1809 0.5359 0.0423]T [0.2872 0.1762 0.4999 0.0457]T 

Conf. Interval (95%) [±0.0208 ±0.0050 ±0.0410 ±0.0200] [±0.0643 ±0.0217 ±0.1381 ±0.0192] 

t-values [14.48  35.59 13.33 2.115] [4.464  8.118 3.619 2.381] 

Duration (h) 12.75 14.50  

 

This behaviour is confirmed by performing an additional parameter estimation on two 

DMBDoE experiments (Table 7.12) where the trial is stopped as soon as the t-test is satisfied 

for the entire parametric set. The results show significant benefits in terms of time saving. For 

both experiments the precise estimation of θ4 is critical. When noise-free measurements are 

available, the approach allows to reduce the experiment duration from 40 to 12.75 hours. 
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When only noisy measurements are available a slightly longer experiment is required (14.5 

h), but still the experiment length can be significantly reduced. 

7.6 Final remarks 

Each experiment performed exhibits a time dependent profile of the actual information that 

can be easily handled by standard or advanced MBDoE techniques. On the other hand, these 

techniques are based on the optimisation of a global measurement of the expected 

information, where the dynamics of the information itself (i.e. the evolution of the expected 

information in time) are not considered in the formulation of the optimal design problem. The 

information dynamics are influenced not only by the excitation pattern, but also by the 

features of the measurement system. Sampling frequency and measurements quality (in terms 

of precision and accuracy) deeply affects the availability of information and the way in which 

information can be increased thanks to the design procedure. As a result, the mathematical 

formulation of the design problem should take into account the specificity of the measurement 

system. A novel design criterion (DMBDoE), particularly suitable for systems where 

continuous measurements are available, has been proposed and analysed in order to optimise 

the information dynamics of the experiments. DMBDoE allows exploiting different 

information patterns where the information is always maximised, since the very beginning of 

the trial.  

An MBDOE approach has been applied to a complex model of glucose homeostasis with the 

purpose of evaluating the impact of sampling frequency and test duration on the information 

dynamics of a modified post prandial glucose test (MPGT) and a modified oral glucose 

tolerance test (MOGTT). The information dynamics can be managed by MBDoE in such a 

way to ensure shorter and easier tests to perform. MOGTT test protocol proved to be a more 

informative and shorter test than a MPGT, and can be further reduced adopting a DMBDoE 

strategy. The novel approach allows to drastically reduce the duration of the test without 

affecting the quality of the final estimates. 

Results from the analysis of a bioreactor model show that the parametric identification is 

significantly improved when DMBDoE is used. A clear benefit of adopting the novel 

technique is given by the fact that it is possible to reduce the overall duration of the 

experiment in a substantial way. A significant result was that a continuous measurement 

system, even if providing noisy data, could be more suitable for model development and 

validation than a more precise but discrete approach.    

 
 
 



 



Conclusions and perspectives 

Model-based design of experiments (MBDoE) techniques represent a valuable tool for the 

rapid assessment and development of dynamic deterministic models, allowing for the 

maximisation of the information content of an experimental trial in order to assist the model 

parameter identification task. Also due to the fact that they can handle constraints both in the 

system inputs and in the system outputs, MBDoE techniques have become an established tool 

within the process engineering community, where dynamic first-principles models of complex 

nonlinear chemical processes often need to be identified.  

Although MBDoE turns out to be a standard approach to parametric identification of dynamic 

systems, conventional MBDoE techniques still suffer from some limitations. In fact, their 

effectiveness is deeply affected by such factors as parameter uncertainty on prior estimates 

coupled to hard constraints on design and/or state variables, structural system/model 

mismatch, and frequency at which the measurements are made available. The first objective 

of the Thesis was the development of new advanced MBDoE techniques to address the 

aforementioned issues of standard MBDoE approaches. 

A second goal was to demonstrate the usefulness and effectiveness of MBDoE techniques 

within scientific domains other than the process engineering one. In particular, within the 

biomedical area there are a number of important applications and critical issues, which could 

benefit from an MBDoE methodology. Two identification problems have been considered: 

one related to the optimal drug administration in cancer chemotherapy, and one related to 

glucose homeostasis models for subjects affected by type 1 diabetes mellitus (T1DM). 

 

With reference to the first topic, the main scientific contributions of this research have been 

related to the development of: 

1. an online strategy for the optimal redesign of experiments (OMBRE); 

2. a backoff-based strategy for MBDoE; 

3. a dynamic model-based design of experiments (DMBDoE) technique, particularly suitable 

when continuous measurement systems are available; 

These achievements are briefly recollected and discussed in the following. 

 

Standard MBDoE involves a sequential procedure (experiment design; experiment execution; 

parameter estimation) where the information within the collected samples can be exploited 

only after the experiment is concluded. Conversely, the proposed OMBRE approach allows 

maximising and exploiting the information as soon as it is generated by the experiment thanks 

to intermediate parameter estimations, with great benefit in terms of precision and accuracy of 

the final estimation. Accordingly, the experimental settings (comprising the time-dependent 
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profiles of the manipulated inputs and the allocation of sampling points in time) are updated 

(formally a “redesign”) as the experiment is running. The results have clearly shown the 

powerful feature of OMBRE of being less sensitive to the quality of the initial parameter 

estimation. Additionally, the proposed approach allows splitting the whole optimisation 

problem into a number of smaller problems with great benefit in terms of computational time. 

Furthermore, this is an important feature to consider when large optimisation problems are 

carried out, in order to reduce the risk of incurring in suboptimal solutions. 

 

In a large of variety of problems, experiment feasibility can be even more important than 

optimality. Following this motivation, a novel backoff-based MBDoE strategy has been 

proposed where the effect of model mismatch and parametric uncertainty is accounted for by 

means of a constrained formulation. Formally, a backoff from active constraints is evaluated 

by performing a stochastic simulation over the entire domain of variability of the model 

parameters. That allows for the definition of a (reduced) feasible design space within which 

the MBDoE optimisation may be safely carried out. The results have clearly shown that the 

proposed backoff-based strategy outperforms a standard one whenever hard constraints are 

present in the system outputs and the parametric uncertainty in the model is significant. 

 

The mathematical formulation of a standard optimal experiment design problem is usually 

carried out under the assumption that the measurements are acquired in a discrete way. 

However, the current evolution of measurement systems makes the continuous acquisition of 

measurements a reality. If measurements are available in a continuous way, so is information 

as well, and the formulation of the MBDoE problem should be modified accordingly. A novel 

“dynamic” MBDoE strategy (DMBDoE) has been developed that takes into account the 

specificity of continuous measurement systems. The proposed approach allows optimising 

and exploiting the whole dynamic evolution of the actual information. Although still at a 

preliminary stage, the results have shown how an DMBDoE approach is capable of shortening 

the length of an identification experiment, considerably. 

 

As for the extension of MBDoE to biomedical systems, this research has demonstrated the 

potential of conventional and advanced MBDoE strategies for the parametric identification of 

complex physiological models. The most advanced physiological models are characterised by 

structural complexity and by the existence of hard constraints on the system, which are 

inherently related to the metabolic activity of the subject whose physiology is represented by 

the model. In addition, poor system observability and controllability usually make the 

parametric identifiability procedure a very complicated and challenging task. 

Particular attention has been drawn to the problem of identifying complex physiological 

models of T1DM, where system/model structural mismatch can exacerbate the adverse effect 
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of hitting the constraints on the blood glucose concentration. The research has shown that, by 

adopting conventional and advanced MBDoE techniques, the model parameters can be 

identified for a single individual in a statistically sound way through safe and moderately 

invasive clinical tests of prescribed length. In this perspective, this research also represents a 

process systems engineering contribution to the development of an artificial pancreas for 

people affected by T1DM. 

 

Some considerations about future research directions are in order at this point. Following the 

structure of this Thesis, two broad research areas can be identified: the improvement of 

conventional and advanced MBDoE techniques for process engineering systems, and the 

extension of these techniques to address the model identification challenges of the biomedical 

community. 

 

As for the improvement of MBDoE techniques, it should be noted that a general methodology 

for selecting the most appropriate experiment design technique (including a design criterion) 

to be used for planning a series of experiments given a model structure is missing at present. 

A systematic selection procedure should therefore be developed, and possibly implemented in 

a comprehensive and user-friendly software environment, to assist the industrial practitioner 

when he/she needs to face the issue of selecting which technique is more appropriate for the 

model he/she needs to identify. 

Traditionally, the optimal design of experiments has been carried out with the control loops 

open (unless for the lower-level loops ensuring the system stability). However, in order to 

minimise the plant upsets, it would be desirable that the control loops remain closed, so as to 

guarantee that the product quality is kept within the desired standards even during the 

experimentation, an issue that may be particularly significant if the (parametric or structural) 

uncertainty of the model is high. Therefore, a research effort should be directed to addressing 

the problem of optimal experiment design in a closed-loop system environment. Additionally, 

the control system could be possibly exploited to “steer” the information profile generated by 

an experiment in such a way as to track a user-defined information profile. 

This research has shown that there are close relationships between a redesign of experiments 

approach like OMBRE and a model-based control approach like model-predictive control 

(MPC). These similarities should be identified in a formal way, possibly recognizing whether 

an OMBRE task can be actually cast as an MPC problem. 

 

The study on the identification of physiological models of T1DM should be extended to more 

complex models where other factors affecting the glycaemic response of the subject are taken 

into account (i.e. stress, physical exercise, diet). Emerging sampling techniques such as 

continuous glucose measuring systems should be considered in the clinical test design 
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scheme, also accounting for the technical limitations of the currently available devices. 

Particularly, the impact of blood sampling frequency and measurement error (both systematic 

and random) on the test safety should be carefully investigated. At a more mature stage of the 

research, in vivo experimentation will be definitely needed to further assess the potential of 

conventional and novel MBDoE strategies. In this perspective, close interaction with 

clinicians is definitely a must for any subsequent step of the research in this area. 

Finally, the development of a new general methodology for MBDoE may prove useful for the 

parametric identification of other physiological models, for example in the care of diseases 

like cancer or H.I.V. Complex models have been proposed in the literature for these systems 

that are difficult (or perhaps impossible) to identify through unplanned experiments.  
 

 



Appendix A 

Models of glucose homeostasis 

The Appendix contains the details on the models of glucose homeostasis adopted in the 

Thesis. The Hovorka model (§A.2) with the insulin infusion submodel by Wilinska (§A.3.2) 

is used in Chapter 5 and Chapter 7 and in the Thesis it is denoted as HWM. The Hovorka 

model (§A.2) and the Cobelli model (§A.1) with the Nucci infusion submodel (§A.3.1) are 

used in Chapter 6 and are denoted in the text as HM and CM respectively.  

A.1 Cobelli model of glucose homeostasis 

The system of equations of the Cobelli model as presented in Dalla Man et al. (2007) are here 

summarised. Fig. A.1 shows a schematic representation of the model.  

 

 
 

Figure A.1 Schematic representation of the Cobelli model (CM). Renal excretion, utilisation, endogenous 
glucose production (EGP), glucose absorption units as well as glucose and insulin systems are described by 
systems of differential and algebraic equations. In order to simulate a patient affected by type 1 diabetes 
mellitus, the secretion model has been removed and an insulin infusion model has been added to the system.  

 

Note that insulin concentration is always expressed in the previous sections as mU/L, while in 

the present section and in the original paper it is expressed in pmol/L (the conversion is 1 

mU/L = 7.175 pmol/L). The entire set of model parameters defining a healthy subject is 

reported in Table A.1. 
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Table A.1 Parameters of Cobelli model for a healthy subject. 
 

Subsystem Parameter Value Unit 
VG 1.88 dl/kg 
k1 0.065 min-1 Glucose 
k2 0.079 min-1 
VI 0.05 l/kg 
m1 0.19 min-1 
m2 0.484 min-1 
m4 0.194 min-1 
m5 0.0304 min . kg/pmol 
m6 0.6471 dimensionless 

Insulin 

HEb 0.6 dimensionless 
kmax 0.0558 min-1 
kmin 0.0080 min-1 
kabs 0.057 min-1 
kgri 0.0558 min-1 
f 0.9 dimensionless 
a 0.00013 mg-1 
b 0.82 dimensionless 
c 0.00236 mg-1 

Rate of appearance 

d 0.010 dimensionless 
kp1 2.7 mg/kg/min 
kp2 0.0021 min-1 
kp3 0.009 mg/kg/min per pmol/L 
kp4 0.0618 mg/kg/min per pmol/kg 

Endogenous production 

ki 0.0079 min-1 
Fcns 1 mg/kg/min 
Vm0 2.5 mg/kg/min 
Vmx 0.047 mg/kg/min per pmol/L 
Km0 225.59 mg/kg 

Utilisation 

p2U 0.0331 min-1 
ke1 0.0005 min-1 

Renal excretion 
ke2 339 mg/kg 

 

The glucose masses in plasma (Gp) and tissues (Gt) are represented by the following set of 

equations:  

 
         tGktGktEtUtRtEGP

dt

tdG
tpiia

p
21)()(                                                    (A.1) 

 
     tGktGkU

dt

tdG
tpid

t
21                                                                                           (A.2) 

 

and are expressed in [mg/kg], while Ra [mg/kg/min] is the rate of appearance of glucose in 

plasma, E is the renal excretion [mg/kg/min], EGP is the endogenous glucose production 

[mg/kg/min], Uii and Uid are the insulin dependent and independent glucose utilizations 

[mg/kg/min], Vg is the glucose distribution volume [dL/kg], k1 and k2 are rate parameters 

[min-1]. The measured plasma glucose concentration is  
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 
G

p

V

G
tG  .                                                                                                                            (A.3) 

 

The insulin subsystem is described by the following equations: 

 
        tImtItmm

dt

tdI
pl

l
231                                                                                       (A.4) 

 
         tRtImtImm

dt

tdI
ilp

p  142                                                                              (A.5) 

 

where Il and Ip are the insulin masses in the liver and in plasma respectively [pmol/kg], and 

Ri is the rate of appearance of insulin in plasma [pmol/kg/min] as defined by the insulin 

infusion subsystem (see §A.3). The rate parameters are m1, m2, m4 and m3, which is related to 

hepatic extraction HE (i.e. the relative time-varying fraction of insulin leaving the liver) 

 

  65 mSmtHE                                                                                                                 (A.6) 

 

with  and    bHEHE 0

 

   
 tHE

mtHE
tm




1
1

3 .                                                                                                                 (A.7) 

 

The secretion S is absent for a subject affected by type 1 diabetes (S = 0) and insulin can enter 

the insulin subsystem only through Ri. The insulin concentration in plasma is  

 

 
I

p

V

I
tI                                                                                                                                 (A.8) 

 

where VI is the insulin distribution volume [L/kg]. The rate of appearance of glucose in 

plasma Ra is described by the complex sub-model presented by Dalla Man et al. (2006): 

 

     tQtQtQ stostosto 21                                                                                                        (A.9) 

 
     tDtQk

dt

tdQ
stogri

sto  1
1                                                                                            (A.10) 

 
      tQktQQk

dt

tdQ
stogristostoempt
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12

2                                                                            (A.11) 
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     tQQktQk
dt

dQ
stostoemptgutabs

gut
2                                                                               (A.12) 

 

   abs gut
a

fk Q t
R t

BW
                                                                                                            (A.13) 

 

where Qsto and Qgut are the amount of glucose in the stomach (solid phase Qsto1 , and liquid 

phase Qsto2) and in the intestine respectively [mg], kgri [min-1] is the rate constant of grinding, 

kempt is the rate constant of gastric emptying (which is a non linear function of Qsto) and kabs 

[min-1] is the rate constant of intestinal absorption; f is the fraction of intestinal absorption 

which actually appears in plasma, D is the amount of ingested glucose [mg] and BW is the 

body weight [kg].  

Glucose utilisation is made up of two components:  

 
     tUtUtU idii                                                                                                             (A.14) 

 

the insulin-independent utilisation   cnsii FtU   taking into account the glucose uptake by the 

brain and erytrocytes, and the insulin-dependent utilisation Uid  

 

      
    tGtXK

tGtXV
tU

tm

tm
id 

                                                                                                    (A.15) 

 

depending nonlinearly from glucose in the tissues. Vm and Km are assumed to be linearly 

dependent from the insulin in the interstitial fluid [pmol/L] X 

 

    tXVVtXV mxmm  0                                                                                                     (A.16) 

 

   tXKKtXK mxmm  0                                                                                                   (A.17) 

 

    btUU ItIptXp
dt

dX
 22                                                                                         (A.18) 

 

with p2u, Km0, Vm0 parameters of the utilisation subsystem. Endogenous glucose production is 

defined by the equation 

 
     tIktGkktEGP dpppp 321                                                                                        (A.19) 

 

where Id is a delayed insulin signal [pmol/L], obtained by a chain of two compartments 
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      tItIk
dt

tdI
i  1

1                                                                                                        (A.20) 

 
      tItIk

dt

tdI
di

d
1                                                                                                     (A.21) 

 

and ki, kp1, kp2, kp3 are parameters of the EGP subsystem.  

The renal excretion E occurs when plasma glucose exceeds a threshold and it is defined by the 

following equations: 

 

    


 


0

21 epe ktGk
tE               

 
  2

2

ep

ep

ktGif

ktGif




                                                            (A.22) 

 

where ke1 is the glomerular filtration rate [min-1] and ke2 is the renal threshold of glucose in 

[mg/kg]).  

A.2 Hovorka model of glucose homeostasis 

The system of equations defining the Hovorka model as presented in Hovorka et al. (2002) 

are here summarised. Fig. A.2 shows a schematic representation of the model.  

 

 

Figure A.2 Schematic representation of the Hovorka model. The insulin compartment (I) 
affects the accessible (Q1) and non accessible (Q2) compartments of glucose mass through 
a three-compartmental subsystem controlling glucose distribution/transport, disposal 
(glucose hold-up) and endogenous glucose production (EGP). Glucose can also be 
consumed through an insulin independent stand-alone channel. The system inputs are the 
bolus/infusion of insulin (insulin administration) through the insulin infusion model, and 
the measured variable is the blood glucose concentration (G).  
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Please note that while in the previous section of this work the glucose concentration is always 

expressed as mg/dL, here, as in the original paper (Hovorka et al., 2002), it is expressed in 

mmol/L. The insulin concentration is expressed in mU/L. The glucose accessible and non-

accessible compartments are represented by the following set of equations:  

 

 
            txEGPtUFtQktQtx
tGV

F

dt

tdQ
GR

G

c

3021211
011 1








               (A.23) 

 
          tQtxktQtx

dt

tdQ
221211

2                (A.24) 

 
    GVtQtG /1               (A.25) 

 

where EGP0 is the endogenous glucose production extrapolated to 0 insulin concentration, 

while  is the total non-insulin dependent glucose flux (corrected for the ambient 

concentration): 

cF01

 






5.4/01

01
01 GF

F
F c                     (A.26) 

otherwise

if LmmolG /5.4

 

and FR is the renal clearance rate above the glucose threshold of 9 mmol/L, given by:  

 
 



 


0
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F               (A.27) 

otherwise

if LmmolG /9

 

The insulin action subsystem is modelled through a three-compartment structure  
 

   tIktxk
dt

dx
ba 111

1                (A.28) 
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dx
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2                (A.29) 

  

   tIktxk
dt

dx
ba 333

3                (A.30) 

 

while the gut absorption rate is described by an exponential function of the following form: 
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where tmax,G  is the time of maximum appearance rate of glucose (so that the UG(t) is modelled 

as a two-compartment chain with identical transfer rate 1/tmax,G). The AG parameter takes into 

account the fact that only a fraction of the whole CHO content of the meal (DG) appears in 

plasma while the remaining part is extracted by the liver. In the current study the digesting 

dynamics were not modelled, and the focus is on the representation of insulin-dependent 

glucose flux. The insulin absorption sub-model is characterised by the following equations:    

 

3 . i

dS
BW R

dt
                (A.32) 

 

IV

S
I 3                     (A.33) 

  

where Ri is the rate of appearance of insulin in plasma provided by the subcutaneous insulin 

infusion submodel (see §A.3) and here expressed in [mU/kg/min] and BW is the body weight 

of the subject [kg]. The insulin and glucose distribution volumes, the insulin elimination rate 

constant and the transfer rate contributions are also kept constants (Table A.2).  

Table A.2 Parameters of model that are kept constants as reported in 
Hovorka et al.(2002) and following amendments (Hovorka, 2007). 

Constants Description Value 

k12 Transfer rate 0.066 min-1 

ka1 Deactivation Rate 0.006 min-1 

ka2 Deactivation Rate 0.06 min-1 

ka3 Deactivation Rate 0.03 min-1 

ke Insulin elimination from plasma 0.138 min-1 

VI Insulin Distribution Volume 0.12 L/Kg 

VG Glucose Distribution Volume 0.16 L/Kg 

AG Carbohydrate (CHO) bioavailability 0.8 (unitless) 

Tmax,G Time-to-maximum of CHO absorption 40 min 

 

 

 

 

 

 

 

 

 

 

 

As suggested by the authors themselves (Hovorka et al., 2002), a new parameterisation is 

considered allowing to split the insulin sensitivity into three terms (insulin sensitivity of 

distribution/transport, disposal and endogenous glucose production respectively): 
 

1

1

a

bf
IT k

k
S   (A.34) 

2

2

a
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ID k

k
S   (A.35) 
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3

3

a

bf
IE k

k
S      . (A.36) 

 

In this way the kai parameters are also treated as constants. The values of the parameters are 

valid for a healthy male subject. With the alternative parameterisation given by Eqs. (A.34)-

(A.36) the vector of model parameters is the set  010 FEGPSSS e
IT

d
IT

f
ITθ , whose 

nominal values are shown in Table A.3.  

Table A.3 Nominal values of the Hovorka model parameters for a healthy 
male subject, as reported in (Hovorka et al., 2002). 

Model 
Parameters 

Description True Values 

f
ITS  Insulin sensitivity of distribution/transport 51.2E-4 
f

IDS  Insulin sensitivity of disposal 8.2E-4 
f

IES  Insulin sensitivity of EGP 520E-4 

0EGP  EGP extrapolated to zero insulin 
concentration 

0.0161 mmol/kg min 

01F  Non-Insulin dependent flux 0.0097 mmol/kg min 

A.3 Insulin infusion submodels 

Two distinct insulin infusion submodels have been analysed throughout the Thesis, whose 

details are exhaustively presented in the following sections. 

A.3.1 Nucci and Cobelli submodel of insulin infusion 

The insulin infusion model adopted in this study is a modification of a model described in 

Nucci and Cobelli (2000) and recently applied to the original Cobelli model  in a simulation 

study (Dalla Man et al., 2007). The subcutaneous insulin infusion is modeled through a 

double compartmental channel described by the following equations:  

 

       1
1 1

sc
d a sc

dI t
k k I t u t

dt
                                                                                        (A.37) 

 

     2
1 2 2

sc
d sc a sc

dI t
k I t k I t

dt
                                                                                            (A.38) 

 

where Isc1 is the amount of nonmonomeric insulin in the subcutaneous space, Isc2 is the 

amount of monomeric insulin in the subcutaneous space and u(t) is the exogenous insulin 

infusion rate (here expressed in [pmol/min/kg]). The values of model parameters kd, ka1, ka2 

are kept fixed at the values reported in Table A.4.  
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Table A.4 Parameters of the subcutaneous insulin infusion model. 
Parameter Value Unit 
kd 0.0164 min-1 
ka1 0.0018 min-1 
ka2 0.0182 min-1 

 

The rate of appearance of insulin in plasma Ri(t) is 

 

     1 1 2 2i a sc a scR t k I t k I t                                                                                                (A.39) 

 

and is expressed in [pmol/kg/min].  

A.3.2 Wilinska submodel of insulin infusion 

The Wilinska insulin infusion submodel (Wilinska et al., 2005) aims at modeling the 

dynamics of absorption of the subcutanous short-acting insulin and is characterised by the 

following equations:    
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where LDA is the local degradation at the injection site for continuous infusion, while LDB is 

the local degradation at the injection site for insulin bolus. For our purposes, the parameters of 

Wilinska  sub-model are not estimated and are kept constants at the value reported in Table 

A.1 ( where a brief description of their physical meaning is included, too). The insulin and 
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glucose distribution volumes, the insulin elimination rate constant and the transfer rate 

contributions are also kept constants (Table A.2).  

Table A.1. Parameters of Wilinska submodel for insulin absorption as 
reported in Wilinska et al. (2005). 

Constants Description Value 

VI insulin distribution volume 42.01 x 10-2 L/Kg 

ka11 slow channel transfer rate 0.011 1/min 

ka22 fast channel transfer rate 0.021 1/min 

ke Insulin elimination transfer rate 3.68 x 10-2 1/min 

k proportion in slow channel 0.67 (unitless) 

VMAX,LD saturation level 1.93 mU/min 

Km,LD half-concentration constant 62.6 mU 

 

 

 

 

 

 

 

 

 

In this model the rate of appearance of insulin in plasma [mmol/min] is  

 

     11 2 22 1i a a bR t k S t k S t                                                                                                (A.47) 

 

and is modeled through a three compartments chain represented by equations (A.40)-(A.42).    
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