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Abstract

Over the past years, microarray technologies have produced a tremendous amount of

gene expression data. The availability of these data has motivated researchers to assess

genes function and to gain a deeper understanding of the cellular processes, using net-

work theory as tool for the analysis. An elegant framework for modeling and inferring

network structures in biological systems is provided by graphical models. They allow

the stochastic description of network associations and dependence structures in complex

highly structured data. However, typically gene expression data set includes a large

number of variables but only few samples making standard graphical model theories in-

applicable. The issues presented by genetic data have led to further extend the theory of

graphical models to allow their applications in this area. The main aim of this thesis is

the comparison of recent procedures, which estimate sparse concentration matrices and

learn the structure of biological networks, through the use of both simulated and real

data. The compared procedures are: G-Lasso algorithm (Friedman et al., 2008), Shrink-

age estimator with empirical Bayes approach for model selection (Schäfer and Strimmer,

2005a, 2005b), PC-algorithm (Kalisch and Bühlmann, 2007). When n > p, we consider

also the simple frequentist approach based on MLE and t-test for model selection (see

Lauritzen, 1996). Regarding the simulated data, for having a realistic simulation of the

biological structures, the data have the peculiarity to reproduce few gene regulatory net-

work structures of interest and they are generated by exploiting some properties of the

Cholesky decomposition of a matrix. Concerning the real data, we consider the analysis

of one of the best characterized system: Escherichia coli. A large part of its transcrip-

tional regulatory network is known, hence it can be used as a gold-standard to assess the

performance of different procedures in the comparative study.





Riassunto

Negli ultimi anni, le tecnologie dei microarray hanno prodotto una grande quantità di

dati provenienti da processi di espressione genica. La disponibilità di questi dati ha per-

messo ai ricercatori di poter approfondire lo studio della funzione dei diversi geni e poter

acquisire una più profonda conoscenza sui processi cellulari, utilizzando come strumento

di ricerca la teoria dei network. I modelli grafici risultano essere un utile strumento per

la modellazione e l’analisi delle strutture dei networks derivanti da dati biologici. Infatti,

questi modelli consentono di rappresentare in modo stocastico le associazioni e le strut-

ture di dipendenza tra gli elementi di data set con struttura complessa. Tuttavia, i dati

derivanti da profili di espressione genica si presentano con un elevato numero di variabili

ma solo poche osservazioni rendendo, perciò, la teoria classica dei modelli grafici inappli-

cabile. I problemi legati all’utilizzo di dati genetici hanno portato ad estendere la teoria

dei modelli grafici per consentire l’impiego di questi modelli anche in questo campo di ap-

plicazione. Lo scopo principale di questa tesi è quello di confrontare, attraverso l’utilizzo

di dati simulati e reali, recenti procedure sviluppate con lo scopo di stimare matrici di

concentazione sparse e ricostruire i networks biologici. Le procedure considerate per il

confronto sono: l’algoritmo G-Lasso (Friedman et al., 2008), lo stimatore Shrinkage asso-

ciato con l’ approccio Bayes empirico per la selezione del modello (Schäfer and Strimmer,

2005a, 2005b), l’algoritmo PC (Kalisch and Bühlmann, 2007). Quando n > p, consideri-

amo anche un semplice approccio frequentista basato sullo stimatore ML e l’utilizzo del

test t per la selezione del modello (si veda Lauritzen, 1996). Per quanto riguarda i dati

simulati, per avere strutture biologiche simili a quelle reali, i dati hanno la peculiarità di

riprodurre alcune strutture dei network di regolazione genica e sono ottenuti sfruttando

alcune proprietà della decomposizione di Cholesky di una matrice. Per il confronto con

dati reali, sono stati utilizzati dati derivanti da uno dei sistemi maggiormente studiati:

Escherichia coli. Infatti, grand parte del network di regolazione genica di questo bat-

tere è noto, quindi può essere utilizzato come riferimento per valutare il rendimento delle

diverse procedure poste a confronto.
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Chapter 1

Introduction

1.1 Overview

Recent progresses in molecular biology and advances in experimental methodology have

led to an unprecedented growth in molecular data. The availability of these detailed data

gave the impulse to originate a new field in Biology called Systems Biology (Kitano, 2001).

Systems Biology aims to reconstruct the structure and dynamics of biological processes

and systems as a whole; this is done by moving the analysis from molecular level (reduc-

tionist approach) to systems level (wholist approach). Reductionists look at one single

element of the system to find its role in biological processes as well as the connection with

other elements and the mechanisms of action. In contrast, the wholist approach aims to

study the entire system rather than the single elements, taking a snapshot of all elements

at a certain level (e.g. genes, transcripts, proteins, or metabolites).

In this regard, for the analysis of biological data, mathematical and computational tech-

niques are used to handle the complexity of the systems and the wealth of data. In

particular, network analysis allows to understand how the elements of the system in-

teract between each other. An elegant framework for modeling and inferring network

structures in biological system is provided by probabilistic graphical models (Whittaker,

1990). These models allow the stochastic description of network associations and depen-

dences in complex highly structured data and, at the same time, they offer an advanced

statistical framework for inference. The elements of a system are represented as vertices

of a graph and the interactions between them are represented as edges.

Typical biological networks are gene regulatory networks, protein interaction networks,

and metabolic networks. In this thesis we focus on gene regulatory networks (GRN),

where vertices of the graph are genes and edges represent regulatory interactions. The

data for the network analysis are produced by the microarray technologies. They allow to

observe the amount of mRNA simultaneously for a large number of genes under different
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experimental conditions and produce the so-called microarray data. These data can be

seen as a random sample of a multivariate distribution defined by a set of p random vari-

able for the p genes of the system. For each of the p random variables, there is a vector of

values that comes from n different measurements. A typical feature of microarray data is

that the number of observations n, on the order of tens or at most hundreads, is smaller

than the number of variables p, on the order of hundreds or even thousands. This is the

so-called large p-small n issue that leads to new challenges in statistical inference and,

more specifically, proscribes the application of most of the existing methods for structure

learning of graphical models. In addition, there are not standard models for representing

GRN or other biological networks, since every network has different properties and the

graphical model has to be tailored to the specific situation.

In the literature, inference for GRN used both Gaussian graphical models (GGM) and

directed acyclic graph (DAG) models for normal distributions. In this thesis we focus

on GGM. More precisely, we consider the subclass of GGM which are Markov equivalent

to DAG models and, therefore, the results of this thesis can be extended to this case.

A GGM is a statistical model for Gaussian distribution associated with an undirected

graph where missing edges correspond to zero partial correlations and, therefore, to con-

ditional independence statements. Partial correlation is a measure of association between

two variables (i.e. genes) conditioning on all the remaining observed variables and it is

computed from the concentration matrix Ω = Σ−1 (Lauritzen, 1996). Learning a GGM

from data is equivalent to learning the zero pattern of the concentration matrix Ω, but

the large p-small n setting of microarray data makes standard structural learning pro-

cedures for GGM no longer readily applicable. In the specific, the application of these

procedures requires that the sample covariance matrix S has full rank in order to obtain

Ω̂ = S−1, but S has full rank, with probability one, if and only if n > p (Dykstra, 1970).

Moreover, even in the case S has full rank, direct application of traditional structural

learning procedures would be unfeasible due to the large number of variables that lead

to computational problems.

A way to face these challenges is exploiting background information on the network struc-

ture so as to develop tailored procedures. In particular, it is known that GRN are sparse

and this means that the number of edges in the network is much smaller than the number

of interactions of the complete network. In this thesis we consider recent procedures for

learning sparse networks in the large p-small n issue and compare their performance both

on simulated data and real data using the R language.

The outline of the thesis is as follows. Chapter 2 gives a brief introduction to molecu-

lar biology and microarray technology required for this thesis. In Chapter 3, there is a

short introduction to graph terminology, conditional independent graph, and Gaussian

2



graphical models. Chapter 4 regards to the construction of the simulated data that have

the peculiarity to reflect and to reproduce some gene regulatory network structures of

interest. Chapter 5 presents the different methodologies considered for the comparison.

The results of the comparative study for the simulated data and real data are presented

in Chapter 6 and Chapter 7, respectively. Finally, in Chapter 8 there are the conclusion

and discussion with an exposure of possible directions for future research.

1.2 Main contributions of the thesis

An overview of the main contributions of the Ph.D. thesis presented in this work is listed

below.

• The principal contribution of the Ph.D. thesis is itself the comparison study of dif-

ferent methodologies that have been proposed recently in the literature for learning

a GGM for sparse networks in the large p-small n issue. In the literature there

are other comparative studies of procedures for learning GRNs, as for example the

papers by Werhli et al. (2006) and Soranzo et al. (2007). Anyway, the considered

approaches, that are G-Lasso algorithm (Friedman et al., 2008), Shrinkage estima-

tor with empirical Bayes approach for the model selection (Schäfer and Strimmer,

2005a, 2005b), PC-algorithm (Kalisch and Bühlmann, 2007), and , when n > p,

a simple frequentist approach based on MLE and t-test for model selection (see

Lauritzen, 1996) have never been compared to each other.

• The evaluation is firstly carried out on simulated data sets that aim to reflect some

gene regulatory network structures in different scenarios. In order to have simulated

data as close as possible to real data, we specify some network structures of interest

taking in consideration the biological background on gene regulatory networks. This

analysis returns two fundamental characteristics for these types of networks. First,

they have some basic structures that are repeated often in the same network and

are present in many different organism (network motifs); second, the networks are

sparse. Consequently, we derive three structures that are represented singularly in

three scenarios depending only on the number of variables.

• By exploiting some results on the Cholesky decomposition of a matrix, we have

written some functions in the R language to generate data from the derived network

structures.

• In order to investigate a more realistic setting, the different approaches are applied

to an available data set of Escherichia coli. Its complete transcriptional regulatory

3



network is unknown, but the database RegulonDB (Gama-Castro et al., 2008) pro-

vides a curated set of transcription factor and target gene relationships that it is

possible to use as a gold-standard to assess the performance in the comparative

study.

• In order to have a clear and complete comparison between methodologies, we use

several measures to evaluate the accuracy of each approach in the structural learning

of the networks. In particular, there are three main groups of measures used for the

comparison. The first group of measures aims to evaluate generally the precision in

the reconstruction of the networks; the second group of measure gives informations

on the goodness in the estimation of the parameters. Finally, the third group of

measures returns general information on the model selection.
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Chapter 2

Biological networks

What follow is a brief introduction to basic concepts of molecular biology, microarray

technology, and biological networks that provide the requisite concepts relevant to this

thesis. For futher details refer to genetic and molecular biology textbooks (e.g. Alberts

et al., 2008; Gibson and Muse, 2004; Griffiths et al., 2005).

2.1 Biological background

Cells are the fundamental working units of every living system. The nucleus of each cell

contains the chromosomes that carry the instructions needed to direct the cell activities

in the production of proteins via the DNA (deoxyribonucleic acid). DNA is a double-

stranded, linear polymer consisting of a sugar-phosphate backbone attached to subunits

called nucleotides. There are four nucleotide bases: adenine (A), thymine (T), cytosine

(C), and guanine (G). The two strands of the double helix are held together by weak

hydrogen bonds between complementary bases on the strands. Base pairing occurs as

follows: A pairs with T, and G pairs with C. The particular order of the bases arranged

along the sugar-phosphate backbone is called the DNA sequence. The genome is the

complete DNA of an organism and encodes the genetic code required to create a particular

organism with its own unique traits. The nucleotide bases A, T, C and G are the letters

that spell out these genetic instructions by producing a three-letter word code (codons),

where each specific sequence of three DNA bases encodes an amino acid. Amino acids

are the basic units of proteins, which perform most life functions.

With few exceptions, all human cells contain the same DNA, but despite carrying the

same set of instructions, cells are actually different. These differences are due to the

fact that, stimulated by cell regulatory mechanisms or environmental factors, segments

of DNA express the genetic code and provide instructions to the cells on when and in

what quantity to produce specific proteins. These segments of DNA are the genes and the
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process by which they become active is called their expression. The gene expression level

is an integer valued or continuous measure that provides a quantitative description of

the gene expression by measuring the number of intermediary molecules produced during

this process. These molecules are the mRNA (messenger ribonucleic acid) and the tRNA

(transfer ribonucleic acid), and they are produced during the two steps of transcription

and translation that lead to the synthesis of a protein. This two-step representation of the

protein-synthesis process constitutes the central dogma of molecular biology (Fig. 2.1).

• Transcription. The first step of a gene expression is the creation of a complementary

copy of the gene sequence stored in one of the two DNA complementary strands.

The complementary copy of the gene DNA code transcribes U (uracil) for A, A for

T, G for C and C for G into the mRNA.

• Translation. The mRNA transcript is moved from the nucleus to the cellular cyto-

plasm, where it serves as a template on which tRNA molecules, which carry amino

acids, are lined up. The amino acids are then linked together to form a protein

chain.

2.2 Microarray technology

The basic idea behind microarray technology is to simultaneously measure the relative

expression level of thousands of genes within a particular cell population or tissue. Two

key technical concepts behind this measurement process are reverse transcription and

hybridization.

• Reverse transcription. The mRNA transcript of a gene can be experimentally iso-

lated from a cell, and reverse-transcribed into a complementary DNA copy called

cDNA. A collection of cDNAs transcribed from cellular mRNA constitutes the

cDNA library of a cell. Similarly, double-stranded cDNA can be reverse-transcribed

into a complementary copy called cRNA.

• Hybridization. Hybridization is the process of base pairing two single strands of

DNA or RNA. DNA molecules are doublestranded and these two strands melt apart

at a characteristic melting temperature, usually above 65◦C. As the temperature

is reduced and held below the melting temperature, single-stranded molecules bind

back to their counterparts. In the same way, a mRNA molecule can hybridize to a

melted cDNA molecule when the mRNA contains the complementary code of the

cDNA strands.
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Figure 2.1: Gene expression process (figure source: The Internet Encyclopedia of Science).

Microarray technology is used to measure the relative level of expression of genes in a par-

ticular cell or tissue by hybridizing a labeled cDNA representation of the cellular mRNA

to cDNA sequences (cDNA microarrays) or by hybridizing a labeled cRNA representation

of the cellular mRNA to short specific segments known as synthetic oligonucleotides or

oligos (synthetic oligonucleotide microarrays ; Lockhart et al., 1996). The tethered cDNA

sequences or oligos are called probes, while the cDNA or cRNA representation of cellular

mRNA extracted from the cell is called the target. In both cases, the probes represent

either genes of known identity or segments of functional DNA. The target is labeled with

fluorescent dye and hybridized to the probes. The higher the amount of cDNA or cRNA

hybridized to a probe, the more intense the fluorescent dye signal will be on that probe.

The relative mRNA abundance of a gene in a particular cell or tissue is therefore mea-

sured by the emission intensity of the probes.

Synthetic oligonucleotide and cDNA microarrays are the two most popular microarray

technologies and a simple description of both these processes for conducting microarray
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experiments is briefly outlined in the following.

2.2.1 cDNA Microarrays

The production of the microarray starts with the selection of the probes to be placed on

the microarray and amplification of the corresponding cDNA clones by a technique known

as polymerase chain reaction (PCR). The PCR allows multiple rounds of amplification

of a minimal amount of DNA to produce sufficient quantities of a sample. The cDNA

microarrays are produced by spotting PCR samples of cDNA strands in approximately

equal amounts on a glass slide using a high-speed robot. Each strand of cDNA identifies

uniquely with its code, a gene or a segment of functional DNA, so that each spot in the

microarray corresponds to a gene or a segment of functional DNA. To prepare the target,

investigators extract total RNA or mRNA produced from two types of cells, for example

test and reference cells. Then, by using a single round of reverse transcription, the mRNA

from the two samples is fluorescently labeled with Cy3 (green) and Cy5 (red), and the

target mixture is hybridized to the probes on the glass slides. During the hybridization,

if segments of the mRNA representation in the target find their complementary portion

among the samples of cDNA on the glass slide, they will bind together. When the hy-

bridization is complete, the glass slide is washed and laser excitement of the glass slide

is used to yield a luminous emission that is then measured by a scanning microscope.

Fluorescence measurements are made with a microscope that illuminates each spot and

measures fluorescence for each dye separately, thus providing a measure of the relative

mRNA abundance for each gene in the two cells. The intensity of the green spot mea-

sures the relative mRNA abundance of the gene in the cell that had reverse-transcribed

mRNA labeled with Cy3, while the intensity of the red spot measures the relative mRNA

abundance of the gene in the cell that had reverse-transcribed mRNA labeled with Cy5.

Grey spots denote genes that were expressed in neither cell type.

2.2.2 Synthetic Oligonucleotide Microarrays

Synthetic oligonucleotide microarrays, also known by the trademark Affymetrix GeneChip,

are fabricated by placing short cDNA sequences (oligonucleotides) on a small silicon chip

by means of the same photolithographic techniques used in computer microprocessor

fabrication. On the GeneChip platform, each probe is 25 bases long and each gene is

represented by 16-20 pairs of oligonucleotides. A probe pair consists of a perfect match

(PM) probe and a mismatch (MM) probe. Each PM probe is chosen on the basis of

uniqueness criteria and proprietary, empirical rules designed to improve the odds that

probes will hybridize with high specificity. The MM probe is identical to the correspond-
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ing PM probe except for the base in the central position, which is replaced with its

complementary base. To prepare the target, investigators extract total RNA from a cell

or tissue. The mRNA is reverse-transcribed into cDNA, which is made double-stranded

and then converted into cRNA using a transcription reaction that fluorescently labels the

target. Once hybridization has occurred, the microarray is washed and scanned with a

standard laser scanner. The scanner generates an image of the microarray that is gridded

to identify the cells that contain each probe and analyzed to extract the signal intensity

of each probe cell.

2.3 Microarray data

In both cDNA and oligonucleotide microarrays, hybridization of the target to the probes

determines a chemical reaction that is captured into a digital image by a scanning laser

device. The next step is to translate the intensity of each hybridization signal into a table

with numerical measures. The quality of the image analysis process is crucial for accurate

interpretation of the data, and a variety of algorithms and software tools tailored to the

different aspects of cDNA and oligonucleotide microarray images have been developed. A

grid over the microarray is used to associate the signal from each spot with its location

on the microarray, and thereby with its base-paring sequence identification. With good

filtration of the scattered light, the detector will record only the light from the fluores-

cently labeled hybridized pairs, and greater intensity of the fluorecense will be detected

at spots where more cDNA or cRNA have hybridized to the microarray. The ratio of the

fluorescent light emissions between the two different walelengths, corresponding to the

two different dyes used to label the unknown and control target samples, is the indirect

measurement of the relative gene transcript expression levels.

Both microarray technologies provide a panoramic view of the activity of genes under par-

ticular experimental conditions. They let the experimenters observe the molecular profile

of a cell in a particular condition. The simplest experiment is a comparative experiment

to identify the genes differentially expressed in two conditions. More complex experimen-

tal questions involve molecular profiling of several conditions at a time to measure the

gene expression levels in cells grown or observed in a particular condition, and different

samples can be assumed to be stochastically independent. The data generated by mi-

croarray experiments can be viewed as a matrix of expression levels, organized by genes

versus tissue (or cell population) samples. In the case where a tissue sample corresponds

to a single microarray experiments, we can represent the output from n experiments in

the form of a n× p matrix (array). Each row of the matrix contains the expression levels

on the p genes monitored in the microarrays, while each column contains the expression
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levels of a genes as it varies over the n tissue sample.

Before data analysis, the quantitative measurements of gene expression data, produced

by microarray experiments, require a preprocessing stage to reduce their noise. This

noise is caused by gene transcripts that do not contribute information to the experiment

outcome and those that do not change across experiments. A common strategy to reduce

data variability and dimensionality is to perform two preprocessing operations known

as normalization and filtering, on either the raw or transformed data. The goal of the

normalization operation is to remove systematic distortions across microarrays to render

comparable the experiments conducted under different conditions. The aims of the filter-

ing operation are to reduce variability by removing those genes that have measurements

that are not sufficiently accurate and to reduce the dimensionality of the data by remov-

ing genes that are not sufficiently differentiated.

2.4 Biological networks

The behavior of complex cellular and organism systems emerges from the concerted ac-

tivities of many interacting components such as genes and gene products. At a highly

abstract level, the cooperating components can be considered as a set of vertices that are

connected to each other, with links (edges) representing pairwise interactions. Vertices

and edges together form a network and, more formally spoken, a graph (see Chapter 3).

Typical biological networks are: gene regulatory network, protein-protein network, and

metabolic network. In this work, we focus on gene regulatory network and the description

of its network structure is briefly given in Chapter 4.

Gene regulatory network (transcriptional regulatory network). A gene regulatory net-

work is a collection of DNA segments in a cell which interact with each other (indirectly

through their RNA and protein expression products) and with other substances in the cell,

thereby governing the rates at which genes in the network are transcribed into mRNA.

In this network entities as genes represent the vertices set and regulatory interactions

represent the edges set.

Protein-protein network. Protein-protein network identifies and catalogs physical inter-

actions between pairs or groups of proteins. Understanding protein-protein interactions

is important for the investigation of intracellular signaling pathways and for gaining in-

sights into various biochemical processes. In this network entities as proteins represent

the vertices set and protein interactions represent the edges set.

Metabolic network. A metabolic network is the complete set of metabolic and physical

processes that determine the physiological and biochemical properties of a cell. As such,
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these networks comprise the chemical reactions of metabolism as well as the regulatory

interactions that guide these reactions. In this network entities as metabolites represent

the vertices set and reactions represent the edges set.
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Chapter 3

Graphical model theory

3.1 Graph theory

In the following, we present the requisite definitions and notation on graph theory rele-

vant to this thesis; for more details we suggest to consult the book of Whittaker (1990).

A graph G = (V,E) is a mathematical object that consists of a finite set of vertices

V = {1, . . . , p} and a set of edges E ⊆ V × V . We distinguish between undirected and

directed graphs. An undirected graph has only undirected edges. An undirected edge

between i, j ∈ V , that is {i, j} ∈ E, is represented as a line i− j and an example of undi-

rected graph is presented in figure 3.1a. A directed graph has only directed edges between

i, j ∈ V , with (i, j) ∈ E but (j, i) /∈ E. A directed edge of the graph is represented as an

arrow i→ j (Fig. 3.1b). In the case a vertex l appears in a constellation i→ l← j, then

it is called a collider and, in addition, if both (i, j), (j, i) /∈ E, then i, l, j constellation is

called a V-structure.

The adjacency matrix A = {aij} of a directed or an undirected graph G on p vertices is

the p× p matrix where if {i, j} ∈ E then aij = aji = 1 and if (i, j) ∈ E aij = 1, and zero

otherwise.

A sequence of distinct and ordered vertices (j0, . . . , jn) is called a path of length n from

(a) Undirected (b) Directed

Figure 3.1: Example of graphs
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j0 to jn if {ji−1, ji} ∈ E, or (ji−1, ji) ∈ E, or (ji, ji−1) ∈ E for all i = 1, . . . , n. It is an

undirected path between j0 and jn if {ji−1, ji} ∈ E for all i = 1, . . . , n. It is a directed path

between j0 and jn if (ji−1, ji) ∈ E for all i = 1, . . . , n. A cycle is defined as a directed

path with the difference that j0 = jn.

Given A ⊆ V a subset of vertices of the graph, the induced subgraph GA is defined as

GA = (A,EA), where EA = (A× A) ∩ E. A graph, or a subgraph, is complete if there is

an edge, directed or undirected, between any pair of vertices.

So far, we have introduced general graph theory that is common for undirected and

directed graphs; from now on, we are going to present specific graph theory first for undi-

rected graphs and then for directed graphs.

Undirected graphs

For an undirected graph G we have that a subset of vertices A ⊆ V separates two vertices i

and j if every path joining the two vertices contains at least one vertex from the separating

set. The subset A ⊆ V is said to separate two subsets B,C ⊆ V if it separates every

pair of vertices i ∈ B and j ∈ C. A clique is given by a subset of vertices that induce

a complete subgraph but for which the addition of a further vertex renders the induced

subgraph incomplete, that is, a clique is a maximally complete subgraph. The boundary,

or neighbours, of A, bd(A), is the set of all the vertices in V \A that have an edge with

a vertex in A and the closure of A is cl(A) = bd(A) ∪ A. A partition (A,B,C) of V is

called a decomposition of G if the following conditions hold: (i) C separates A and B and

(ii) C is complete. The graph G is decomposable if one of the following conditions holds:

(i) it is complete or (ii) there exists a proper decomposition (A, B, C) such that both

subgraphs GA∪C and GB∪C are decomposable. Let B1, . . . , Bk be a sequence of subsets

of the vertex set V ; the histories of the sequence are defined as Hj = B1 ∪ · · · ∪ Bj

for j = 1, . . . , k, whereas Rj = Bj\Hj−1 and Sj = Hj−1 ∩ Bj, for j = 2, . . . , k, are the

residuals and separators of the sequence, respectively. The sequence is said to be perfect

if the following conditions are fulfilled

(i) for all i > 1 there is a j < i such that Si ⊆ Bj;

(ii) the sets Si are complete for all i.

Let C1, . . . , Ck be a sequence of the cliques of G. If this sequence is perfect, then the

numbering of the vertices V obtaining by taking first the vertices in C1 and then those

in R2, R3 and so on is called perfect (Lauritzen, 1996; Lemma 2.12).

14



Directed graphs

In the family of directed graphs, a graph without cycles is called a directed acyclic graph

(DAG) and it is indicated with D; an example of DAG is presented in figure 3.1b, note

that vertex 2 is a collider but there are no V-structures. For a DAG D, given two vertices

i, j ∈ V if (i, j) ∈ E, i.e. i → j ∈ E, then the vertex i is a parent of j and the vertex

j is a child of i. Hence, we denote by pa(A) the set of parents of A, i.e. the set of all

those vertices in V \A that have a child in A. Similarly, ch(A) is the set of children of A,

i.e. the set of all those vertices in V \A that have a parent in A. Moreover, if there is a

directed path from i to j, then i is called ancestor of j and j is called descendant of i.

Hence, we refer with de(A) the set of descendants of A, i.e. the set of all those vertices in

V \A that have an ancestor in A. Analogously, an(A) is the set of ancestors of A, i.e. the

set of all those vertices in V \A that have a descendant in A. The non-descendants of A

are nd(A) = V \(de(A)∪A) and the ancestral set of A is An(A) = an(A)∪A. Given the

disjoint subsets A, B and C of a DAG D, then A and B are d-separated by C if and only

if A and B are separated by C in
(
DAn(A∪B∪C)

)m
(Lauritzen, 1996; Proposition 3.25).

Ultimately, we give three more useful definitions related to DAGs. First, the skeleton

Du, or undirected version of D, is the graph given by replacing the directed edges with

undirected edges. Second, a moral graph Dm, associated with the directed graph D, is

an undirected graph constructing by (i) adding an undirected edge between every pair of

non-adjacent vertices that have a common child and (ii) turning all directed edges into

undirected edges. Third, a perfect DAG is a graph for which the parents of every node

form a complete set, i.e. there are no V-structures and Dm = Du.

3.2 Conditional independence graph

After a summary of the essential concepts from graph theory, we introduce and define

conditional independence graphs, undirected and directed, of a p-dimensional vector of

random variables.

3.2.1 Conditional independence

Let XV = (X1, . . . , Xp)
T a continuous random vector, indexed by V = {1, . . . , p}, with

joint density function fXV (·). The disjoint subset A,B,C ⊂ V index the subvectors XA,

XB and XC , respectively. Let f(xA, xB, xC) be the density function of XA∪B∪C , then XA

is conditionally independent of XB given XC , written XA ⊥⊥ XB|XC , if and only if the
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density function of XA and XB conditional on XC satisfies

fXAXB |XC (xA, xB|xC) = fXA|XC (xA|xC)fXB |XC (xB|xC)

for all values of xA and xB and for all xC such that fXC (xC) > 0.

An equivalent characterization of XA ⊥⊥ XB|XC is given by the factorization criterion for

conditional independence

Proposition 1 (factorization criterion) The random subvectors XA and XB are con-

ditionally independent given XC if and only if there exist functions g and h such that

f(xA, xB, xC) = g(xA, xC)h(xB, xC) (3.1)

for all xC with fXC (xC) > 0.

See proof in Whittaker (1990, Proposition 2.2.1).

3.2.2 Undirected independence graphs

Let G = (V,E) be an undirected graph. The random vector XV satisfies the pairwise

Markov property with respect to G if for every pair of non-adjacent vertices i, j ∈ V it

holds that Xi ⊥⊥ Xj|XV \{i,j}.

There exists others two Markov properties. With respect to G, XV is said to satisfy

• the Local Markov property if for any i ∈ V it holds that Xi ⊥⊥ XV \cl(i)|Xbd(i);

• the Global Markov property if for any triplet (A,B,C) of disjoint subsets of V such

that C separates A and B in G it holds that XA ⊥⊥ XB|XC .

It is a remarkable fact that, if fX > 0, the three Markov properties are equivalent (see

Whittaker, 1990, pg. 70). In this thesis we only consider random vectors with positive

density and for this reason we shortly say that XV is undirected Markov with respect to

G.

3.2.3 Directed acyclic independence graphs

Let D = (V,E) be a DAG. The random vector XV satisfies the pairwise directed Markov

property with respect to D if for every pair non-adjacent vertices i, j ∈ V such that

j ∈ nd(i) it holds that Xi ⊥⊥ Xj|Xnd(i)\{j}.

Also for the directed acyclic independence graphs there are other two Markov properties.

With respect to D, XV is said to satisfy
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• the Local directed Markov property if for any i ∈ V it holds that Xi ⊥⊥ Xnd(i)|Xpa(i);

• the Global directed Markov property if for any disjoint subsets A,B,C ⊂ V such

that C separates A and B in [DAn(A∪B∪C)]
m it holds that XA ⊥⊥ XB|XC .

Moreover, the density of f(x) admits a recursive factorization with respect to a DAG if

f(x) =

p∏
i=1

f(xi|xpa(i)).

All directed Markov properties are equivalent without any positive requirement for the

density; see proof in Cowell et al. (1999, pg. 74). For this reason in the following we

simply say that XV is directed Markov with respect to D.

3.2.4 Markov equivalence

For an undirected graph G = (V,E), let MU(G) denote the family of probability distri-

butions that are undirected Markov with respect to G. Similarly, we denote by MD(D)

the family of probability distributions that are directed Markov with respect to a DAG

D.

Two DAGs D1 = (V,E1) and D2 = (V,E2) on the same vertex set are said to be Markov

equivalent if MD(D1) = MD(D2). It can be shown that D1 and D2 are Markov equiv-

alent if and only if they have the same skeleton and the same V-structure (see Cowell

et al., 1999, pg. 79).

An undirected graph G = (V,E) and a DAG D = (V,E
′
) are Markov equivalent if

MU(G) =MD(D). It can be shown that for every decomposable graph G = (V,E) there

exists a DAG D = (V,E
′
) Markov equivalent to G, and D can be constructed as a perfect

directed version of G (see Roverato, 2005).

Furthermore, for any perfect DAG D, the skeleton of D is an undirected decomposable

graph Markov equivalent to D. If G is non-decomposable then there does not exist any

DAG D Markov equivalent to G.

3.3 Gaussian Graphical models

3.3.1 Model definition

For data analysis, we assume that the variables of a continuous random vector XV ≡ X,

with V = {1, . . . , p}, have a jointly Normal Np(µ,Σ), with mean vector µ = (µ1, . . . , µp)
T

and a positive definite covariance matrix Σ = {σij}, where 1 ≤ i, j ≤ p. Hence, given an
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undirected graph G = (V,E) and a random vector X v Np(µ,Σ), a Gaussian graphical

model (GGM), also known as covariance selection or concentration graph model, for X

with graph G is the family of normal distributions for X that are undirected Markov with

respect to G.

The first paper that introduced the concept of GGM is the one of Dempster (1972) and

further details can be found in the books by Whittaker (1990) and by Edwards (2000).

In this section we describe the basic theory associated to Gaussian graphical model and

the procedure to fit a GGM.

Under a GGM, the data X are assumed to be distributed as a Np(µ,Σ) with a multivariate

density function of the form

f(x) = (2π)−p/2det(Σ)−1/2exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (3.2)

where µ and Σ are called the moment parameters. Using the exponential family represen-

tation, equation (3.2) can be rewritten in term of canonical parameters: Σ−1 = Ω = {wij},
that is called precision or concentration matrix, and β = Σ−1µ. Then the density function

of X becomes

f(x) = exp
{
α + βTx− xTΩx/2

}
= exp

{
α +

p∑
i=1

βixi −
p∑
i=1

p∑
j=1

ωijxixj/2

}
, (3.3)

where α is the normalizing constant. Using the factorization criterion, presented in equa-

tion (3.1), it results that the relation between Xi and Xj given the remaining p − 2

variables is explained by the element ωij of the concentration matrix Ω and it holds that

Xi ⊥⊥ Xj|XV \{i,j} ⇐⇒ ωij = 0.

Hence, we have that the pattern of zero entries in the concentration matrix corresponds to

conditional independences restrictions between variables and if X is Markov with respect

to G = (V,E) then

{i, j} /∈ E ⇒ ωij = 0.

In GGM framework, the correlation between any two nodes i and j conditional on all the

remainder of the nodes is described by the partial correlation coefficient and denoted by

ρij·V \{i,j}. Standard graphical model theory , e.g. Edwards (2000), shows that the partial

correlation can be expressed in terms of the elements of the concentration matrix Ω. This
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result leads the procedure to compute the partial correlation coefficients via the relation

ρij·V \{i,j} = − ωij√
ωiiωjj

, (3.4)

see Lauritzen (1996, pg. 129-130) for more details.

3.3.2 MLEs of a GGM

The observations in a sample are directly related to the probability model under consid-

eration by the likelihood. The standard results and techniques of maximum likelihood

estimation and likelihood ratio test (Cox and Hinkley, 1974) are applicable to GGM, and

in general to graphical models.

Under a GGM, the elements of interest are the independences between variables and, for

a multivariate normal distribution, they are characterized by the covariance matrix Σ or

its inverse Ω. As the correspondence between Σ and Ω is one to one, either parametriza-

tions can be used. The mean vector µ, on the contrary, in this context is of less interest

and, thus, it is allowed to be entirely arbitrary.

Let us assume that X1, . . . , Xn is an i.i.d sample of the random vector X, where X i =

(X i
1, . . . , X

i
p) and its realization is xi = (xi1, . . . , x

i
p)
T , that has a multivariate normal

distribution with parameter Θ = (µ,Σ), the likelihood function L(θ) is given by

L(θ) ∝
n∏
i=i

det(Σ)−1/2exp

{
−1

2
(xi − µ)TΣ−1(xi − µ)

}

∝ det(Σ)−n/2exp

{
−1

2

n∑
i=i

(xi − µ)TΣ−1(xi − µ)

}
. (3.5)

Rewriting the likelihood function in the log form, we obtain the log-likelihood function

l(θ)

l(θ) = −n
2

log det(Σ)− 1

2

n∑
i=i

(xi − µ)TΣ−1(xi − µ). (3.6)

Define the sample mean vector and the sample covariance matrix, that are sufficient

statistics for µ and Σ, by

x̄ =
1

n

n∑
i=i

xi and S =
1

n

n∑
i=i

(xi − x̄)(xi − x̄)T ,

the log-likelihood function becomes

l(θ) = −n
2

log det(Σ)− n

2
tr(Σ−1S)− n

2
(x̄− µ)TΣ−1(x̄− µ), (3.7)
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where tr(·) indicates the trace of a matrix (see Whittaker, 1990, pg. 171-172).

In the initial part of this section we underline the fact that in a GGM the mean vector µ

is a nuisance parameter and the main interest is for Σ. So, we may set the mean vector

equal to its maximum likelihood estimator, i.e. µ̂ = x̄, and take the profile log-likelihood

function defined by l(Σ) = l(µ̂,Σ). Then, the log-likelihood function of equation (3.7) in

terms of the concentration matrix Ω becomes

l(Ω) =
n

2
log det(Ω)− n

2
tr(ΩS), (3.8)

and the maximum likelihood estimator for Ω is given by Ω̂ = Σ̂−1 = S−1 (Whittaker,

1990, pg. 175), or considering the unbiased version of the maximum likelihood estimator

of Σ, i.e. Su = n
n−1S.

Finally, if we consider to have a GGM with a graph G the maximum likelihood estimator

of Ω is given by the following theorem

Theorem 1 The maximum likelihood estimator of a graphical model with graph G, based

on a random sample from the multivariate Normal distribution, satisfies the likelihood

equations

ω̂ij = 0,

whenever vertices i and j are not adjacent in G, and,

Σ̂aa = Saa

whenever the subset a of vertices in G form a clique. The estimated parameters Ω and Σ

are related by Ω̂ = Σ̂−1, and are unique with probability one.

See proof in Whittaker (1990, Theorem 6.6.1).

3.3.3 Learning the structure of a GGM

There are several procedures for learning a GGM from data, but when the number of

variables is large, most of these methods are computationally unfeasible. In this thesis

we consider methods designed to deal with the large p-small n issue, typical on biological

data, and compare such methods with a simple frequentist method.

Given a random sample of n observations from the vector of variables X, a naive frequen-

tist procedure for learning a GGM goes as follow.

1. Estimate the covariance matrix Σ by the sample covariance matrix S = Σ̂.
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2. Compute its inverse S−1 to obtain an estimate of the concentration matrix Ω̂. It

should be noted that it is possible to use the sample correlation matrix R̂ instead

of S.

3. Compute the sample partial correlation coefficients applying the formula (3.4) to

the elements of Ω̂.

4. Use the procedure described below to remove edges from the complete graph.

A basic operation to perform the structural learning of a GGM (stage 4) is given by the

p(p− 1)/2 statistical tests

H0 : ρij·V \{i,j} = 0 vs H1 : ρij·V \{i,j} 6= 0. (3.9)

Under the null hypothesis that the true partial correlation ρij·V \{i,j} is zero, we consider

the test given by

t =
√
n− p

ρ̂ij·V \{i,j}√
1− (ρ̂ij·V \{i,j})2

, (3.10)

which is distributed as a Student’s t with n−p degrees of freedom (Lauritzen, 1996, Section

5.3.3). This test is equivalen to the t-test for the hypothesis that the partial correlation

regression coefficient β̂ij·V \{i} is equal to zero in the model for linear regression of Xi

on XV \{i}. In the rest of this thesis, we refer to this procedure with the name of t-test

approach.

If in the true graph G there is an edge between vertices i and j, then hypothesis H0 is

false and the alternative H1 is true. Consequently, if we have performed the p(p − 1)/2

tests of the hypotheses in (3.9), then we draw an edge between i and j in the graph if and

only if the hypothesis H0 is rejected. Let α ∈ (0, 1) be the significance level employed,

and let πij be the p-value for H0 in (3.9). Hence, the graph Ĝ(α) that is selected at level

α has the adjacency matrix Â(α) = {âij(α)} with entries

âij(α) = âji(α) =

1 if πij < α,

0 if πij ≥ α.

In this procedure of model selection k = p(p − 1)/2 simultaneous tests are carried out,

so a multiple testing procedure should be apply. Here, we consider to use the method

introduced by Benjamini and Hochberg (1995), the false discovery rate (FDR), which

controls the expected proportion of incorrectly rejected null hypotheses (type I errors)

for independent test statistics. For a review on other multiple testing procedures in

GGM context see the paper by Drton and Perlman (2007). Controlling the FDR at level
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α allows us to select a graph Ĝ∗(α) such that the proportion of incorrect edges among all

the edges of Ĝ∗(α) is smaller than α in expectation

E

[
edges incorrectly included in Ĝ∗(α)

edges included in Ĝ∗(α)

]
≤ α.

Let H1, . . . , Hk be the null hypotheses, π1, . . . , πk their corresponding p-values and η0 the

fraction of true zero partial correlations. The procedure to controls the FDR at level α

is as follows:

1. Construct the set of ordered p−values π(1), π(2), . . . , π(k) with corresponding edges

e(1), e(2), . . . , e(k).

2. Let iα be the largest i for which π(i) ≤ ( i
E

)( α
η0

).

3. Reject the null hypothesis of zero partial correlation for all edges e(1), e(2), . . . , e(iα)

that satisfies the constrain.

Note that the most conservative choice is to set η0 = 1 (Benjamini and Hochberg, 1995);

alternatively, η0 may be estimated adaptively from the data (Benjamini and Hochberg,

2000; Schäfer and Strimmer, 2005a).
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Chapter 4

Construct a synthetic gene

regulatory network

4.1 Synthetic gene regulatory networks

4.1.1 Graph motifs

Recent works presented by Uri Alon and his group (Milo et al., 2002; Alon, 2007) indicate

that transcriptional networks contain a small set of recurring regulation patterns, called

network motifs. Network motifs are defined as patterns of interconnections that recur in

many different parts of a network at frequencies much higher than those found in random

networks. They were first discovered in the gene regulatory network of the bacteria

Escherichia coli (Shen-Orr et al., 2002). The same motifs have since been found in the

transcription networks of other bacteria (Eichenberger et al., 2004), as well as yest (Lee

et al., 2002; Milo et al., 2002), and higher organisms (Odom et al., 2004; Boyer et al.,

2005; Iranfar et al., 2006). Moreover, every network motif is associated with a specific

information-processing functions in gene regulatory networks. A brief overview of some of

the most common network motifs and their associated function is given below; for further

details consult Milo et al. (2002) and Alon (2007).

The first basic transcription interaction is the simple interaction represented by a single

arrow in the network; simple regulation can serve as a reference for understanding the

dynamic functions of network motifs. Simple regulation occurs when a transcription factor

Y , activated by a signal SY , regulates gene X with no additional interaction (Fig. 4.1a).

The second family of network motifs is the feed-forward loop (Fig. 4.1b); it appears in

hundreds of gene systems and organisms. This motif consists of three genes: a regulator,

X, which regulates Y , and a gene Z, which is regulated by both X and Y . Because each

of the three regulatory interactions in the feed-forward loop can be either activation or
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repression, there are different possible structural types of it. The third family of network

motifs is called single-input modules and they have a simple pattern in which a regulator

X regulates a group of target genes and no other regulator regulates any of these genes

(Fig. 4.1c). The main function of this motif is to allow coordinated expression of a group

of genes with shared function. We remark that even though transcriptional networks

are know to be sparse, single input modules may contain a large number of target genes

Z1, . . . , Zm forming in this way a hub structure. The final family of network motifs consist

of a set of regulators that combinatorially controls a set of output genes and they are

called multi-input motifs (Fig. 4.1d). In order to better understand the function of this

motif one has to obtain more information about the way the multiple inputs are integrated

by the genes. Formally, given either a directed or an undirected graph G = (V,E) a motif

Figure 4.1: Common network motifs.

is a proper subgraph GA of G where A ⊂ V is the set of vertices (genes) of the motif. The

size of the motif is |A|, that is the cardinality of A. A match of a motif GA is a subgraph

GB of G which is isomorph to GA. This means that |A| = |B| and there exists a bijective

function h : A → B such that any two vertices i and j of GA are adjacent in GA if and

only if h(i) and h(j) are adjacent in GB. In figure 4.2, there is an illustration of a target

graph G (a), a motif G ′ (b), and a highlighted match G ′′ of the motif G ′ in the target

graph G (c).

4.1.2 The graph structures for the simulation study

For the simulation study, we reproduce networks that have two characteristics: they rep-

resent as close as possible the real scenario of gene regulatory networks, i.e. (i) recurrent

graph motifs and (ii) the sparseness.

24



Figure 4.2: Example of graph motif.

The graph structure under study, based on the network motifs presented in the previous

section, are

1. the hub structure;

2. the cascade structure;

3. the pairwise structure.

The hub frame (Fig. 4.3a) that represents the single-input motif, is a common type of

structure in a gene regulatory network; in addition, it is also one of the most difficult

structure to be discovered in structural learning. Indeed, it is very convenient to induce

graph sparseness by assuming an upper bound to the number of neighbours (or parents)

of every vertex and this excludes the presence of hubs from the graph. Furthermore, hub

structures are difficult to identify when the sample size is small because the conditional

distribution of the transcription factor given the target genes involves a number of vari-

ables that may exceed the sample size. The cascade structure (Fig. 4.3b) is similar to

the feed-forward loop motif, but without the interaction between the first and last gene;

hence, it is represented by a sequence of interaction between genes, in which every gene

has at least one connection but at most two connections. Finally, the pairwise structure

(Fig. 4.3c) refers to the simple interaction in which pair of genes are connected. It is

important to underline a statistical particularity of this last structure: the marginal de-

pendences coincide with the conditional dependences, i.e. zeros in Σ and Ω are the same.

Starting from these three graph motifs, we generate data sets from a specific sparse net-

work that includes only a single graph motif replicated a certain number of times (i.e.,

matches) and with a specific size (i.e., motif size). The network has also a fixed, but

sparse, number of interactions out of all possible interactions (i.e., edges). We simu-

late three groups of network structures that have different number of variables p, that

represent the genes. The relative values for every group are
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GROUP 1 (p = 20)

• HUB (Fig. 4.3a): matches = 1, edges = 10, motif size = 11.

• CASCADE (Fig. 4.3b): matches = 1, edges = 10, motif size = 11.

• PAIRWISE (Fig. 4.3c): matches = 10, edges = 10, motif size = 2.

GROUP 2 (p = 100)

• HUB: matches = 9, edges = 91, motif size = 11.

• CASCADE: matches = 9, edges = 91, motif size = 11.

• PAIRWISE: matches = 50, edges = 50, motif size = 2.

GROUP 3 (p = 200)

• HUB: matches = 18, edges = 182, motif size = 11.

• CASCADE: matches = 18, edges = 182, motif size = 11.

• PAIRWISE: matches = 100, edges = 100, motif size = 2.

Note that for both hub and cascade structure in the first group 9 variables are not part

of the motif and they are totally independent. Moreover, in the second group one graph

motif has “motif size = 12”, and in the third group two graph motifs have “motif size =

12”.

4.1.3 Markov equivalence between graph structures

The three graph structures presented in the previous section have a peculiarity: they are

all decomposable graphs. Hence, there exists for each of the three motifs in the structure

a perfect DAG that is Markov equivalent to this motif. Figure 4.4 shows some Markov

equivalent DAGs for the hub structure (a), the cascade structure (b), and the pairwise

structure (c).

The use of these graph structures, that belong to the class of Markov equivalent models

between undirected graph and DAG, allows us to consider both these types of models to

represent the simulated networks. In practice, we can use both types of models to study

the same data set. Consequently, we can compare the relative merits and shortcomings of

the methods that have been proposed in the literature for both models in a fair manner.
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(a) Hub (b) Cascade

(c) Pairwise

Figure 4.3: Network motifs under study.

4.2 Generating synthetic gene regulatory networks

4.2.1 Gene regulatory network: how to generate a specific struc-

ture

In the previous section we emphasized the idea that in a simulation study the main goal is

to imitate the real scenario of interest as close as possible. This means that in the process

of data set generation it is important to consider the principal biological characteristics

of the network: the presence of recurrent graph motifs and the sparseness in term of

interactions between the elements of the network.

Considering the use of Gaussian graphical models as a tool for studying gene regulatory

networks, for reproducing a graph motif we have to define a graph G with a definite set of

vertices and edges based on the motif of interest. The sparseness, instead, is implemented

by a small number of interactions out of all possible interactions between the elements of

the network, i.e. a large number of zero entries in the concentration matrix. Hence, in
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(a) Hub (b) Cascade

(c) Pairwise

Figure 4.4: Perfect DAGs version of the graph motifs under study.

order to simulate data from a GGM with a specific and sparse structure we have to define

the concentration matrix Σ−1 = {ωij} of the model, where the elements ωij different from

zero indicate the conditional dependency between the variables of the graph. In addition

to these two biological peculiarities of the gene regulatory networks, we have also to take in

consideration the mathematical aspect related to GGM, in particular to the concentration

matrix. Σ−1 has to be a positive definite matrix and the alternative parametrization of

the concentration matrix given by the Cholesky decomposition, for decomposable graphs,

is a suitable solution to create a concentration matrix with a specific and sparse structure,

but at the same time it guarantees the positive definiteness of the matrix.

4.2.2 Cholesky decomposition

Let us consider a decomposable graph G = (V,E) with vertex set V = {1, . . . , p} and the

set of edges E ⊆ V × V . We assume that the vertices in the set V are ordered according

a perfect numbering presented in section (3.1), but taken in reverse order such that 1 is
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the last vertex and p is the first vertex in the ordered set V . In addition, we assume that

X ≡ XV is a random vector with a multivariate normal distribution N(0,Σ) and D is a

perfect DAG associated with G, obtained from the above vertex ordering.

From the results presented in the work of Paulsen et al. (1989), since the rows and columns

of Σ are ordered according to a perfect vertex elimination scheme for G, we can define

the concentration matrix using the Cholesky decomposition Σ−1 = ΦTΦ, where Φ is a

upper triangular matrix. This decomposition is useful because the upper triangular ma-

trix Φ has the same zero pattern as Σ−1 and the elements of Φ are variation independent

(Barndorff-Nielsen, 1976; Lauritzen, 1996, Appendix 5). Moreover, the elements of Φ

are interpretable as parameters of the conditional distribution involved in the recursive

factorization of the density function of X according to D (Wermuth, 1980). In the follow-

ing, it is presented how we can provide a decomposable covariance model, with a given

structure in the concentration matrix, by means of a triangular matrix Φ and Cholesky

decomposition.

For the partition of the vertex set V into the subset A ⊂ V and B = V \A, we have that

XA ∼ N(0,ΣAA) and XA|XB ∼ N(ΓA|BxB,ΣA|B) where

ΓA|B = ΣABΣ−1BB , ΣA|B = ΣAA − ΣABΣ−1BBΣBA.

So, the concentration matrix Σ−1, associated to G, using the Cholesky decomposition can

be written as

Σ−1 =

(
ΦT
AA 0

ΦBA ΦT
BB

)(
ΦAA ΦAB

0 ΦBB

)
.

The upper row-block (ΦAA,ΦAB) of Φ gives an alternative parametrization of the condi-

tional distribution XA|XB, whereas the lower row-block ΦBB derives from the Cholesky

decomposition of (ΣBB)−1 and it indicates the marginal distribution of XB. For obtaining

the one-to-one transformation between the elements of the upper triangular matrix Φ and

the parameters of the distribution of the variables associated to partitioned vertex set V ,

we apply the rules for the inverse of a partitioned matrix to the Cholesky decomposition

Σ−1 = ΦTΦ. Then, we have

ΦT
AAΦAA = (ΣA|B)−1 , − Φ−1AAΦAB = (ΓA|B) , ΦT

BBΦBB = Σ−1BB

(Roverato, 2000).

In the specific, given the matrix product of the Cholesky decomposition

Σ−1 =

(
ΦT
AA 0

ΦBA ΦT
BB

)(
ΦAA ΦAB

0 ΦBB

)
=

(
ΦT
AAΦAA ΦT

AAΦAB

ΦBAΦAA ΦBAΦAB + ΦT
BBΦBB

)
,
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the above results are obtaining as follow

1. (Σ−1)AA =
[
ΣAA − ΣABΣ−1BBΣBA

]−1
= (ΣA|B)−1,

(Σ−1)AA = ΦT
AAΦAA

=⇒ ΦT
AAΦAA = (ΣA|B)−1.

2. (Σ−1)AB = −
(
ΣA|B

)−1
ΣABΣ−1BB = −ΦT

AAΦAAΓA|B,

(Σ−1)AB = ΦT
AAΦAB,

ΦT
AAΦAB = −ΦT

AAΦAAΓA|B

=⇒ −Φ−1AAΦAB = ΓA|B.

3. ΣBB =
[
(Σ−1)BB − (Σ−1)BA (Σ−1)

−1
AA (Σ−1)AB

]−1
,

(Σ−1)BB = ΦBAΦAB + ΦT
BBΦBB,

(Σ−1)BA = ΦBAΦAA,

(Σ−1)
−1
AA = Φ−1AAΦ−TAA,

(Σ−1)AB = ΦT
AAΦAB,

ΣBB = ΦBAΦAB + ΦT
BBΦBB − ΦBAΦAAΦ−1AAΦ−TAAΦT

AAΦAB,

= ΦBAΦAB + ΦT
BBΦBB − ΦBAΦAB

=⇒ (ΣBB)−1 = Σ−1BB = ΦT
BBΦBB.

The Cholesky decomposition ΦTΦ generates a concentration matrix, with a given zero

pattern, for a decomposable covariance model for two reasons: the Markov equivalence

between a decomposable graph and its associated perfect DAG, and the relation between a

perfect DAG and the upper triangular matrix Φ. In the specific, for decomposable covari-

ance models the factorization on G and the recursive factorization on D of the distribution

of X are equivalent (see Section 3.2.4). Consequently, we can base the parametrization

of the decomposable covariance model on Φ, that is strictly related to the recursive fac-

torization on D. Indeed, given the perfect elimination scheme of V , in the upper triangle

of Φ the ith row with respect to D,
(
Φ{i}{i},Φ{i}pa(i)

)
, has vi + 1 non-zero elements, with

vi = |pa(i)|. Applying recursively this procedure one vertex at time, we obtain that the

ith row of Φ provides an alternative parametrization of the conditional distribution of

Xi|Xpa(i). These conditional statements are described by a linear recursive system where

the zero pattern for the regression coefficients is the same as in the concentration matrix

(Wermuth, 1980).
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4.2.3 An example of the use of Cholesky decomposition to de-

sign a specific Σ−1

In order to describe the use of the Cholesky decomposition to obtain Σ−1 for a specific

network, we use a simple graph with only 4 vertices and 4 edges.

Let us consider the decomposable graph G presented in figure 4.5a, since its vertices

are enumerated according to a perfect vertex elimination scheme, there exists a perfect

directed acyclic version D associated with it (Fig. 4.5b). The joint density function

(a) Decomposable graph (b) Perfect DAG

Figure 4.5: General example of graph.

related to this graph, for the factorizations property, is given by

f(x1, x2, x3, x4) = f(x1|x2)f(x2|x3, x4)f(x3|x4)f(x4).

Following Wermuth (1980) we have that the variables, indexed by the vertices of the

graph, imply a system of recursive equations as follows

X1 = β1,2X2 + ε1 with ε1 ∼ N(0, σ2
1|2);

X2 = β2,3X3 + β2,4X4 + ε2 with ε2 ∼ N(0, σ2
2|3,4);

X3 = β3,4X4 + ε3 with ε3 ∼ N(0, σ2
3|4);

X4 ∼ N(0, σ2
4).

The above equations suggest the upper triangular matrix Φ of the Cholesky decomposition

of Σ−1 with the following form

Φ =


φ1,1 φ1,2 0 0

φ2,2 φ2,3 φ2,4

φ3,3 φ3,4

φ4,4

 ,
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where the elements of Φ are equal to

φ1,1 =
1√
σ2
1|2

, φ1,2 = − β1,2√
σ2
1|2

;

φ2,2 =
1√
σ2
2|3,4

, φ2,3 = − β2,3√
σ2
2|3,4

, φ2,4 = − β2,4√
σ2
1|3,4

;

φ3,3 =
1√
σ2
3|4

, φ3,4 = − β3,4√
σ2
3|4

;

φ4,4 =
1√
σ2
4

;

(Cox and Wermuth, 1996, Chapter 3).

Finally, we can obtain the concentration matrix, with the desired zero pattern, as Σ−1 =

ΦTΦ

Σ−1 = ΦTΦ =


φ1,1

φ2,1 φ2,2

0 φ3,2 φ3,3

0 φ4,2 φ4,3 φ4,4



φ1,1 φ1,2 0 0

φ2,2 φ2,3 φ2,4

φ3,3 φ3,4

φ4,4



=


φ2
1,1 φ1,1 φ1,2 0 0

φ2
1,2 + φ2

2,2 φ2,2 φ2,3 φ2,2 φ2,4

φ2
2,3 + φ2

3,3 φ3,2 φ2,4 + φ3,3 φ3,4

symm. φ2
2,4 + φ2

3,4 + φ2
4,4

 .

4.3 Data generation

4.3.1 Procedure for data set generation

To simulate a data set according to a gene regulatory network, with a specific structure

and using a Gaussian graphical model, the principal steps are

1. Translate the identified graph structure into a zero pattern of Σ−1.

2. Construct the concentration matrix Σ−1, with the given zero pattern, using the

Cholesky decomposition Σ−1 = ΦTΦ. In Σ−1 the elements equal to zero indicate

conditional independences.

3. Simulate data from a multivariate Normal distribution with mean vector µ equal
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to zero and covariance matrix Σ that derives from the concentration matrix Σ−1 =

ΦTΦ.

4.3.2 Construction of the concentration matrix

According to the above procedure for the simulation of data, the first two stages concern

the generation of Σ−1 with the given zero pattern. In the following, we present the

generation of the three concentration matrices only for the first group with p = 20. The

concentration matrices of the other two groups of network structures, with p = 100 and

p = 200, differ from the first group only for the number of replications of the basic graph

motifs (see Section 4.1.2 for the frequencies of basic graph motifs in the groups).

HUB structure

Starting from the decomposable undirected graph (Fig. 4.3a), we obtain the associated

perfect DAG (Fig. 4.4a), with the following joint density function

f(x1, x2, . . . , x20) = f(x1|x11)f(x2|x11) . . . f(x10|x11)f(x11)f(x12) . . . f(x20).

The system of recursive equations is

X1 = β1,11X11 + ε1 with ε1 ∼ N(0, σ2
1|11);

X2 = β2,11X11 + ε2 with ε2 ∼ N(0, σ2
2|11);

...

X10 = β10,11X11 + ε10 with ε10 ∼ N(0, σ2
10|11);

X11 ∼ N(0, σ2
11);

X12 ∼ N(0, σ2
12);

...

X20 ∼ N(0, σ2
20).
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Hence, we can construct the upper triangular matrix Φ that has the form

Φ =



φ1,1 0 · · · 0 φ1,11 0 · · · 0

φ2,2 0 · · · 0 φ2,11 0 · · · 0
. . .

...
...

... · · · ...
. . .

...
...

... · · · ...

φ10,10 φ10,11 0 · · · 0

φ11,11 0 · · · 0

φ12,12 · · · 0
. . .

...
. . .

...

φ20,20



,

where

φi,i =
1√
σ2
i|11

, for i = 1, . . . , 10;

φi,i =
1√
σ2
i

, for i = 11, . . . , 20;

φi,11 = − βi,11√
σ2
i|11

, for i = 1, . . . , 10.

Then, using the Cholesky decomposition, the concentration matrix Σ−1 is

Σ−1 =



φ2
1,1 0 · · · 0 φ1,1 φ1,11 0 · · · 0

φ2
2,2 0 · · · 0 φ2,2 φ2,11 0 · · · 0

. . .
...

...
... · · · ...

. . .
...

...
... · · · ...

φ2
10,10 φ10,10 φ10,11 0 · · · 0∑11

i=1 φ
2
i,11 0 · · · 0

φ2
12,12 · · · 0

symm.
. . .

...
. . .

...

φ2
20,20



.
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CASCADE structure

Starting from the decomposable undirected graph (Fig. 4.3b), we obtain the associated

perfect DAG (Fig. 4.4b) and its joint density function has the form

f(x1, x2, . . . , x20) =

[
10∏
i=1

f(xi|xi+1)

]
f(x11)f(x12) . . . f(x20).

The system of recursive equations is

Xi = βi,i+1Xi+1 + εi with εi ∼ N(0, σ2
i|i+1) for i = 1, . . . , 10;

X11 ∼ N(0, σ2
11);

X12 ∼ N(0, σ2
12);

...

X20 ∼ N(0, σ2
20).

Hence, we can construct the upper triangular matrix Φ which elements different from

zero are

φi,i =
1√
σ2
i|i+1

, for i = 1, . . . , 10;

φi,i =
1√
σ2
i

, for i = 11, . . . , 20;

φi,i+1 = − βi,i+1√
σ2
i|i+1

, for i = 1, . . . , 10.

Then, using the Cholesky decomposition, we obtain the concentration matrix Σ−1 with

elements different from zero given by

ωi,i = φ2
i,i, for i = 1, 11 . . . , 20;

ωi,i = φ2
i,i + φ2

i−1,i, for i = 2, . . . , 10;

ωi,i+1 = φ2
i,i + φ2

i,i+1, for i = 1, . . . , 10.
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PAIRWISE structure

Starting from the decomposable undirected graph (Fig. 4.3c), we obtain the associated

perfect DAG (Fig. 4.4c). Its joint density function has the form

f(x1, x2, . . . , x20) =
∏
i∈T

f(xi|xi+1)f(xi+1),

where T = {2j − 1, with j = 1, . . . , 10}.
The system of recursive equations is

Xi = βi,i+1Xi+1 + εi with εi ∼ N(0, σ2
i|i+1) for i ∈ T ;

Xi+1 ∼ N(0, σ2
i+1) for i ∈ T.

Hence, we can construct the upper triangular matrix Φ which elements different from

zero are

φi,i =
1√
σ2
i|i+1

for i ∈ T ;

φi,i =
1√
σ2
i+1

for i /∈ T ;

φi,i+1 = − βi,i+1√
σ2
i|i+1

for i ∈ T.

Then, using the Cholesky decomposition, we obtain the concentration matrix Σ−1 with

elements different from zero given by

ωi,i = φ2
i,i + φ2

i,i+1, for i ∈ T ;

ωi,i = φ2
i+1,i+1, for i /∈ T ;

ωi,i+1 = φi,i+1φ
2
i+1,i+1, for i ∈ T.

4.3.3 Simulation of data

The final stage in the generation of data from the given network structures is the simu-

lation of the data sets from multivariate normal distributions Np(0,Σ).

The covariance matrix Σ for every structure, in the three groups, derives from the inverse

of the associated concentration matrix Σ−1 = ΦTΦ. The parameter values for obtaining

the elements of Φ, i.e. β and σ2, are considered to be equal among the same structure

in all the three groups. Moreover, the choice of their values does not have any reference

in literature, but it has the only aim to delineate the network structure in the simulated
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data. The values of the parameters, that form the elements of Φ, and the consequent

values of the partial correlation coefficients are

HUB

- σ2
i|11 = 0.0025, for i = 1, . . . 10;

- σ2
11 = 1;

- σ2
i = 4, for i = 12, . . . , 20;

- βi,11 = 1, for i = 1, . . . 10;

=⇒ ρi·11|rest = 0.316, for i = 1, . . . 10.

CASCADE

- σ2
i|i+1 = 0.0025, for i = 1, . . . 10;

- σ2
11 = 1;

- σ2
i = 4, for i = 12, . . . 20;

- βi,i+1 = 1, for i = 1, . . . 10;

=⇒ ρi·i+1|rest = 0.5 and ρi·i+1|rest = 0.7, for i = 1, . . . 10.

PAIRWISE

- σ2
i|i+1 = 0.49, for i ∈ T ;

- σ2
i = 1, for i /∈ T ;

- βi,i+1 = 0.5, for i ∈ T ;

=⇒ ρi·i+1|rest = 0.581, for i ∈ T .

In order to have different setting with respect to the number of variables p, we considered

fixed the sample size in all the three groups with value equals to n = 150. Then, we

have simulated several times the data with the ad hoc covariance matrix Σ = (ΦTΦ)−1

as follow

• Group 1: 2000 replications.

• Group 2: 100 replications.

• Group 3: 100 replications.
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Chapter 5

Procedures for learning GRN

The aim of this chapter is to present the recently developed methodologies that we consid-

ered in the comparative study for learning GRNs. In the specific, they are: the G-Lasso

algorithm (Friedman et al., 2008), the Shrinkage estimator with the empirical Bayes ap-

proach for the model selection (Schäfer and Strimmer, 2005a; Schäfer and Strimmer,

2005b), and the PC-algorithm (Kalisch and Bühlmann, 2007).

5.1 G-Lasso

The Graphical Lasso algorithm, called G-Lasso, proposed by Friedman et al. (2008) is a

recent and promising approach to estimate sparse undirected graphical models using the

idea behind the lasso method proposed by Tibshirani (1996). Tibshirani’s lasso method

imposes an L1 penalty for the estimation of the regression coefficients in linear models

that consequently sets many coefficients exactly equal to zero. Recently, many authors

have proposed the estimation of sparse undirected graphical models through the use of

lasso penalized regression approach of Tibshirani. An interesting method is the one pre-

sented by Meinshausen and Bühlmann (2006). This approach uses the lasso penalization

for model selection in GGM to find the set of neighbors, of each node in the graph, by

regressing the corresponding variable of the node against the remaining variables, but it

only achieves an approximation to the estimation of Σ−1. Other authors have proposed

algorithms for the exact maximization of the L1-penalized log-likelihood in GGMs con-

text (Yuan and Lin, 2007; Banerjee et al., 2008).

The G-Lasso algorithm (Friedman et al., 2008) is based on the Meinshausen and Bühlmann’s

lasso and the blockwise coordinate descent algorithm introduced by Banerjee et al. (2008).

It fits a lasso model to each variable for the estimation of the concentration matrix, as

in Meinshausen and Bühlmann’s lasso, but it uses the procedure of Banerjee et al. for

solving the lasso problem. Hence, it achieves a sparse estimator of the concentration
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matrix Σ−1 which performs simultaneously parameter estimation and model selection.

We suggest also to consult the recent work of Fan et al. (2009) for a vision on G-Lasso

properties.

Given a sample with n observations of the random vector X = (X1, . . . , Xp)
T with a

multivariate normal distribution Np(µ,Σ), the penalized log-likelihood that has to be

maximized over the concentration matrix Ω = Σ−1 is

l1(Ω, λ; X) = l(Ω)− λ(Ω)

= log det Ω− tr(SΩ)− λ || Ω ||1, (5.1)

where || Ω ||1 is the L1 norm, i.e. the sum of the absolute values of the elements of Σ−1,

and λ ≥ 0 is the penalty parameter.

Using the equation (5.1), Banerjee et al. (2008) consider the estimation of Σ, rather than

Σ−1, by optimizing each row and corresponding column of T , estimator of Σ, using a

blockwise interior point procedure. Partitioning T and S as follows

T =

(
T11 t12

tT12 t22

)
,S =

(
S11 s12

sT12 s22

)
,

they show that the solution for t12 satisfies

t12 = argminy
{
yTT−111 y : ||y − s12||∞ ≤ λ

}
. (5.2)

Then, they poin out that to solve (5.2) is equivalent to solve the following problem

minβ

{
1

2
|| T 1/2

11 β − b ||2 +λ || β ||1
}
, (5.3)

where b = T
−1/2
11 s12 (see Banerjee et al. (2008) for more details). Friedman et al. (2008)

show that problem (5.3) is equivalent to a lasso problem where β is the coefficient for the

pth variable on the others.

Banerjee et al. (2008) do not pursue effectively estimation of the concentration matrix

and this is the part presented in Friedman et al. (2008) as G-Lasso algorithm. In details,

from the relation TΩ = I in matrix terms

(
T11 t12

tT12 t22

)(
Ω11 ω12

ωT12 ω22

)
=

(
I 0

0T 1

)
,
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they derive the two expressions to compute Ω̂

ω12 = −T−111 t12ω22;

ω22 = 1/(t22 − tT12T−111 t12).

Since, the solution of lasso problem in (5.3) returns that β̂ = T−111 t12, hence

ω̂22 = 1/(t22 − tT12β̂); (5.4)

ω̂12 = −β̂ω̂22. (5.5)

So, the G-lasso algorithm is constructed as follows

1. Start with T = S + λI. The diagonal of T remains unchanged in what follows.

2. For each j = 1, 2, . . . p, 1, 2, . . . p, . . ., solve the lasso problem (5.3), which takes as

input the inner products T11 and s12. This gives a p − 1 vector solution β̂. Fill in

the corresponding row and column of T using t12 = T11β̂.

3. Continue until convergence.

4. Compute Ω̂ using equations (5.4) and (5.5).

In the G-Lasso, the main point is the choice of the penalty parameter. The authors do

not give any suggestion for the selection of the optimal λ, but they make two important

remarks. First, setting λ = 0 then T = S and the algorithm computes the maximum

likelihood estimator S−1 using a linear regression at each stage. Second, the penalty

term could be a scalar or a matrix. The first situation imposes the same amount of

regularization for every variable; while, a penalty matrix allows to penalize differently

each inverse covariance elements.

The use of G-Lasso to estimate the concentration matrix, and then to derive the partial

correlation matrix of a Gaussian graphical model is justified by two important aspect

related to this algorithm. First, when the number of samples n is smaller than the

number of variables p, the empirical covariance matrix S is not invertible. In this cases,

for λ > 0, the G-Lasso estimator performs some regularization so that the estimator Σ̂

is always invertible regardless of the sample size (Banerjee et al., 2008). Second, even in

cases where n > p and S is invertible, the concentration matrix S−1 may not be sparse,

even if there are conditional independences among the variables in the distribution. G-

Lasso algorithm finds a very sparse solution that still explains the data. A larger value

of λ corresponds to a sparser solution that fits the data less well; while, a smaller λ

corresponds to a solution that fits the data well but is less sparse.
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In our comparative study with regard to the penalty term, we evaluate the performance

of the method considering four different scalar values that are λ ∈ {0.05, 0.1, 0.5, 0.8}.

5.2 Shrinkage estimator and empirical Bayes approach

for model selection

A new covariance estimator and model selection procedure, that are suitable for data set

with a large number of variables but only few observations, has been presented by Schäfer

and Strimmer (2005a,b). The basic idea of the covariance estimator is to improve the

empirical covariance matrix estimator S by a shrinkage regularization of it. The model

selection procedure is based on the empirical Bayes approach suggested by Efron et al.

(2001) and it presents a small-sample edge inclusion test. In the following, we first present

the shrinkage estimator for the covariance matrix and then the empirical Bayes model

selection procedure.

The general problem behind the use of the shrinkage regularization for large-dimensional

estimation could be summarized as following. Let Ψ = (ψ1, . . . , ψ2) denote the param-

eters of the unrestricted high-dimensional model of interest and Θ = (θi) the matching

parameters of a lower dimensional restricted submodel. By fitting each of the two models

to the observed data the estimators for the parameters are: U = Ψ̂ and T = Θ̂. The two

estimators will show different characteristics, in particular U will exhibit a high variance,

whereas T could be a biased estimator of the true Ψ. Hence, instead of choosing be-

tween one of the two estimators, the linear shrinkage approach suggests to combine both

estimators in a weighted average

U? = λT + (1− λ)U, (5.6)

where λ ∈ [0, 1] indicates the shrinkage intensity. Expression (5.6) suggests that the

crucial point in this procedure is the selection of the optimal value for the shrinkage

parameter and Schäfer and Strimmer consider the theorem develops by Ledoit and Wolf

(2003) to obtain a suitable λ. The theorem allows to choose λ that guarantees the

minimization of a risk function and, in the specific, Schäfer and Strimmer consider to

minimize the MSE of the shrinkage estimator. Hence, we have

R(λ) = E [L(λ)] = E

[
p∑
i=1

(u?i − ψi)2
]
. (5.7)
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Assuming that the first two moments of the distribution of U and T exist and that U is

an unbiased estimator of Ψ, equation (5.7) may be expended as follows

R(λ) = E [L(λ)]

=

p∑
i=1

Var(u?i ) + [E(u?i )− ψi]
2

=

p∑
i=1

λ2Var(ti) + (1− λ)2Var(ui) + 2λ(1− λ)Cov(ui, ti) + [λE(ti − ui) + Bias(ui)]
2 .

(5.8)

Analytically minimizing the function (5.8), with respect to λ, gives the following expres-

sion for the optimal value

λ? =

∑p
i=1 V ar(ui)− Cov(ti, ui)∑p

i=1E [(ti − ui)2]
. (5.9)

The estimation of the unrestricted covariance matrix constitutes a special case of the

general high-dimensional problem presented above. Schäfer and Strimmer (2005b) trans-

late the application of shrinkage regularization to this specific problem and the weighted

shrinkage estimator for the covariance matrix is given by

S? = λT + (1− λ)S, (5.10)

where the unconstrained unbiased empirical covariance matrix S replaces the uncon-

strained estimate U of equation (5.6). In this case, the optimal shrinkage parameter is

obtained by minimizing the expected value of

L(λ) = ‖S? − Σ‖2F

=

p∑
i=1

p∑
j=1

(λtij + (1− λ)sij − σij)2, (5.11)

where ‖ · ‖2F is the squared Frobenius norm. The minimization of this function with

respect to λ depends on the covariance target T . In their paper the authors present

different covariance targets T = (tij), but for genomic problems they recommend the one

called “diagonal-unequal variance” where

tij =

sii if i = j;

0 if i 6= j.
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With this choice, the optimal shrinkage intensity becomes

λ̂? =

∑
i 6=j V̂ ar(sij)∑

i 6=j s
2
ij

;

(see Schäfer and Strimmer, 2005b, Table 2).

Unlike the G-Lasso, the above shrinkage estimation of Σ does not lead to zero elements in

Σ−1, therefore it needs to be supplemented by tests for zero partial correlation coefficients.

Schäfer and Strimmer (2005a) suggested a statistical test procedure based on large-scale

multiple testing of edges using the assumption that genetic networks are typically sparse

(Yeung et al., 2002). Indeed, it is reasonable that in a network only a small fraction of

all possible edges will correspond to true edges, whereas for the remaining majority the

corresponding true partial correlation coefficients will vanish. Therefore, in the approach

of Schäfer and Strimmer (2005a) the distribution of the partial correlations ρij·V \{i,j} ≡ ρ

across edges is taken as the mixture

f(ρ) = η0f0(ρ; k) + (1− η0)fA(ρ).

Here, f0 is the null distribution and is given in Hotelling (1953), fA ∼ U(−1, 1) is assumed

to be the distribution of observed partial correlations, k is the degree of freedom, and η0

is the (unknown) proportion of missing edges. Fitting this mixture distribution to the

observed partial correlation coefficients allows to infer the parameters η̂0 and k̂. It is then

straightforward to compute two-sided p-values for each possible edge in the corresponding

network, using the exact null distribution f0 with k̂ as plug-in estimate.

In our comparative study, we use the shrinkage estimator for obtaining the concentration

matrix and then we apply the empirical Bayes approach for model selection with the FDR

correction.

5.3 PC-algorithm

Differently from the previous methods, the PC-algorithm is an approach for estimating

the structure of DAGs rather that undirected graphs. In this thesis, we deal with the

version of PC-algorithm proposed by Kalisch and Bühlmann (2007) that is a modification

of the previous algorithm presented in Spirtes and Glymour (1991) and Spirtes et al.

(2000) and it aims to estimate the skeleton and the equivalence class of a very high-

dimensional and sparse DAG. The PC-algorithm starts from a complete undirected graph

and deletes successively edges based on conditional independence decisions. This yields an

undirected graph which can then be partially directed and further extended to represent
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the underlying DAG.

Let us consider a DAG D = (V,E), with nodes corresponding to the component of a

random vector X ∈ Rp, and P as the probability distribution generated from D. Hence,

there exists a whole equivalent class of DAGs that corresponds to the distribution P ,

based on the characterization of equivalent class given in Section 3.2.4. A common tool

for visualizing equivalence classes of DAGs are completed partially directed acyclic graphs

(CPDAG). A partially directed acyclic graph (PDAG) is a graph where some edges are

directed and some are undirected. In addition, one cannot trace a cycle by following the

direction of directed edges and any direction for undirected edges. A PDAG is complete

if (i) every directed edge exists also in every DAG belonging to the equivalence class of

the DAG and (ii) for every undirected edge i − j there exists a DAG with i → j and a

DAG with i← j in the equivalence class.

The main goal of the PC-algorithm is the estimation of CPDAG that consists of two main

parts

1. Estimation of the skeleton (Algorithm 1).

2. Partial orientation of edges (Algorithm 2).

The authors point out that all statistical inference is done in the first part, while the

second part is only an application of deterministic rules. Hence, if the first part is done

correctly, the second will never fail. In a high-dimensional setting, the CPDAG is harder

to recover than the skeleton. Moreover, the interpretation of the CPDAG depends much

more on the global correctness of the graph; while, the interpretation of the skeleton

depends only on a local region and is thus more reliable. Kalisch and Bühlmann (2007)

conclude that if the true underlying probability mechanisms are generated from a DAG,

the main goal of PC-algorithm is to find the CPDAG. But if in a high-dimensional setting

an approximation of the CPDAG seems hopeless, the use of undirected skeleton could be

an interesting alternative to the CPDAG.

First part: finding the skeleton

In the population version of the PC-algorithm (Spirtes et al., 2000), presented in Algo-

rithm 1, it is assumed that perfect knowledge about all true conditional independence

relations is available. The Algorithm 1 constructs the true skeleton of the DAG and the

maximum reached value of ` in Algorithm 1 is given by mreach ∈ {q − 1, q}, where q

indicates the maximum number of neighbors. The proof of these results are presented in

Spirtes et al. (2000, Theorem 5.1) and Kalisch and Bühlmann (2007, Appendix A.1).

In their work, Kalisch and Bühlmann (2007) modified the population version of PC-

algorithm (Algorithm 1) for obtaining the PC-algorithm for finite samples. Furthermore,
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Algorithm 1
1: INPUT: Vertex set V , Conditional Independence Information
2: OUTPUT: Estimated skeleton Du, separation sets S (only needed when directing the skeleton afterwards)

3: Form the complete undirected graph D̃u on the vertex set V .

4: ` = −1; Du = D̃u
5: repeat
6: ` = `+ 1
7: repeat
8: Select a (new) ordered pair of nodes i,j that are adjacent in Du such that |adj(Du, i)\ {j} | ≥ `
9: repeat
10: Choose (new) k ⊆ adj(Du, i)\ {j} with |k| = `.
11: if i and j are conditionally independent given k then
12: Delete edge i, j
13: Denote this new graph by Du
14: Save k in S(i, j) and S(j, i)
15: end if
16: until edge i, j is deleted or all k ⊆ adj(Du, i)\ {j} with |k| = ` have been chosen
17: until all ordered pairs of adjacent variables i and j such that |adj(Du, i)\ {j} | ≥ ` and

k ⊆ adj(Du, i)\ {j} with |k| = ` have been tested for conditional independence
18: until for each ordered pair of adjacent nodes i, j : |adj(Du, i)\ {j} | ≥ `.

they limit to the case of random variables with a multivariate normal distribution and

assume faithful models, i.e. the conditional independence relations correspond to d-

separations and vice versa.

For finite samples, it is necessary to estimate conditional independences and, in the

Gaussian case, these conditional independences can be inferred from partial correlations

(see Section 3.3). For estimating the sample partial correlations, Kalisch and Bühlmann

(2007) consider to use recursively the following identity

ρi,j|k =
ρi,j|k\h − ρi,h|k\h ρj,h|k\h√
(1− ρ2i,h|k\h)(1− ρ2j,h|k\h)

, (5.12)

for some h ∈ k, with k ⊆ V \ {i, j}.
For testing whether a partial correlation is zero or not, they apply Fisher’s z-transform

(Pace and Salvan, 1997, pg. 326)

Z(i, j|k) =
1

2
log

(
1 + ρ̂i,j|k
1− ρ̂i,j|k

)
. (5.13)

Using the significance level α, the null hypothesis H0(i, j|k) : ρi,j|k = 0 against the two-

sided alternative H1(i, j|k) : ρi,j|k 6= 0 is rejected if
√
n− |k| − 3|Z(i, j|k)| > Φ−1(1 −

α/2), where Φ(·) denotes the cdf of a N(0, 1).

The PC-algorithm presented by Kalisch and Bühlmann (2007) is almost identical to the

population version shown in Algorithm 1 with the only difference in the if-statement of
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line 11 that should be replace by

if
√
n− |k| − 3|Z(i, j|k)| ≤ Φ−1(1− α/2) then.

In the new PC-algorithm there are two important aspects. First, the algorithm yields a

data-dependent value m̂reach,n, which is the sample version of mreach. Second, the only

tuning parameter is the significance level α.

Second part: extending the skeleton to the equivalence class

The second part of the algorithm turns the skeleton into a CPDAG. It applies simple rules

to the results of the first part and the output of Algorithm 2 is a CPDAG. Finally, it is

Algorithm 2
INPUT: Skeleton Du, separation sets S
OUTPUT: CPDAG D
for all pairs of nonadjacent variables i, j with common neighbor k do

if k /∈ S(i, j) then
Replace i−k−j in Du by i→k←j

end if
end for
In the resulting PDAG, try to orient as many undirected edges as possible by repeated application of the following
three rules:
R1 Orient j−k into j→k whenever there is an arrow i→j such that i and k are nonadjacent.
R2 Orient i−j into i→j whenever there is a chain i→k→j.
R3 Orient i−j into i→j whenever there are two chains i−k→j and i−l→j such that k and l are nonadjacent.
R4 Orient i−j into i→j whenever there are two chains i−k→ l and k→ l→j such that k and l are nonadjacent.

important to underline one of the main question related to PC-algorithm: the problem of

consistency. This problem has been treated in Spirtes et al. (2000) and Robins et al. (2003)

in the context of causal inference for a class of methods containing the PC-algorithm.

They show that assuming only faithfulness achieves pointwise consistency, but not the

uniform consistency. For this reason, Kalisch and Bühlmann (2007, Section 3) provide

additional assumptions under which the PC-algorithm is uniformly consistent; moreover,

they show that the consistency holds even in the case of a high dimensional setting, but

with a sparse structure.

In our comparative study, we decide to use α = 0.05. To ensure a fair comparison

between this method and the others under study (i.e. G-Lasso, Shrinkage, and MLE)

we construct the moral graph Du of every DAG D learned by PC-algorithm. Hence, all

the performance measures are generated using moral graphs and the partial correlation

matrix of the sparse selected model are calculated using the ipf-algorithm (Whittaker,

1990, p. 182).
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5.4 Procedures under comparison

For the comparative study with both simulated and real data, finally, we consider the

following methodologies:

• G-Lasso with different penalty values.

• Shrinkage estimator and statistical test based on both:

- empirical Bayes approach;

- t-test approach (if n > p).

• MLE (if n > p) and statistical test based on both:

- empirical Bayes approach;

- t-test approach.

• PC-algorithm with moralized graphs.

In the two procedures combine with statistical tests, i.e. Shrinkage estimator and MLE,

we use the FDR correction at level α = 0.05 to correct the multiple testing problem (see

Section 3.3.3). The FDR decision rule requires also the specification of η0, the fraction of

true null hypotheses, that in this context is the fraction of true zero partial correlations.

In the comparative study with simulated data, we set η0 equals to the known value of

zero partial correlation coefficients with respect to each structure and group. While for

the comparative study with real data, we consider η0 equals to the value of zero partial

correlations derived from the data that we use as benchmark transcriptional network of

E.coli.
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Chapter 6

Comparative study with simulated

data

6.1 Performance measures for the simulated data

For the simulated data of each structure, obtained using the procedure presented in

Chapter 4, we have the “true adjacency matrix” and the “true partial correlation matrix”

that we can use as a benchmark. For every method considered for the comparative

study, after its application on the simulated data, we obtain the “estimated adjacency

matrix” and the “estimated partial correlation matrix”. Comparing the true matrices

with estimated ones, we constructed the different measures to compare each others the

procedures under study.

Measures based on the adjacency matrix

Comparing the true adjacency matrix and the estimated adjacency matrix, we have a

table as (6.1). In the specific, the elements of the this table are

True edges True no-edges
Identified edges Tp Fp
Missing edges Fn Tn

P N

Table 6.1: Matrix for performance measures.

• True positive (Tp): true edge correctly identified as edge.

• True negative (Tn): true no-edge correctly identified as missing edge.

• False positive (Fp): true no-edge incorrectly identified as edge.
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• False negative (Fn): true edge incorrectly identified as missing edge.

• Total number of true edges (P).

• Total number of true no-edges (N).

Related to the above classification of edges, there are several statistical measures to

evaluate the performance of different approaches for structural learning of GRNs. For

our comparative study, we considered the performance measures listed in the following

• Precision rate Prec = Tp
Tp+Fp

.

• True Positive rate (sensitivity/recall) Tpr = Tp
P

.

• Accuracy Acc = Tp+Tn
P+N

.

• Error rate Err = Fp+Fn
P+N

.

• False Positive rate Fpr = Fp
N

.

• False Negative rate Fnr = Fn
P

.

• True Negative rate (specificity) Tnr = Tn
N

.

During the implementation of the procedures, we obtain a table as (6.1) at every repli-

cation of the simulated data; then, for the analysis we compute an average with respect

to all replications of every measure.

Moreover, we compare the true adjacency matrix and the estimated adjacency matrix for

every structure using a graphical representation of these matrices. The benchmark plots,

i.e. plots of the true adjacent matrices, are presented in figure 6.1, where black points

indicate true edges or, equivalently, an entry of the adjacency matrix equal to one. For

all the methods, we plot the summary adjacency matrix, i.e. the sum of the adjacency

matrices computed at every replication. The graphical representation of the summary

adjacency matrices gives a general image of the overall classification of edges by each

method. In the matrix, each entry is the proportion of times the procedure has found an

edge over all the replications. Thus, every entry of the matrix is a number between 0 and

1; this number is represented as a grey intensity with black associated with the value 1

and white with the value 0.
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Measures based on the partial correlation matrix

For every structure, we compare the true partial correlation matrix with the estimated

partial correlation matrix using the box-plot of the mean square error (MSE). This mea-

sure evaluates the biasness in the covariance selection and it is defined as

MSE =
1

p× (p− 1)/2

p−1∑
i=1

p∑
j=i+1

(ρij·V \{ij} − ρ̂ij·V \{ij})2.

In order to have a criterion of reference to interpret the results, we consider the G-Lasso

with λ = 0.1 as the reference method. Hence, box-plots around the value 1 indicate that

the two approaches estimate similar values of partial correlation coefficients; box-plots

over/under the values 1 indicate a best performance of G-Lasso with λ = 0.1/other con-

sidered method in the estimation of partial correlation coefficients.

Moreover, we compare the true partial correlation matrix and the estimated partial corre-

lation matrix for every structure using a graphical representation of these matrices. The

benchmark plots, i.e. plots of the true partial correlation matrices, are presented in figure

6.2. For all the methods, we plot the average of partial correlation matrices with respect

to all replications. In the plots the meaning of the colors are

• black color indicates value of partial correlation equals to 1;

• white color indicates value of partial correlation equals to 0;

• colors in the scale of grey indicate value of partial correlation between 0 and 1.

Precision-Recall curves

An interesting method to have a cross-comparison among the considered procedures (ex-

cept for PC-algorithm) is given by the Precision-Recall curve (PR). This curve illustrates

the quality in the reconstruction of a network based only on comparing true edges and

inferred edges, that are obtained from the estimated partial correlation coefficients.

Every considered method, a part from the PC-algorithm, returns an estimation of the

partial correlation matrix. From this matrix we can derive the adjacency matrix by or-

dering the estimated partial correlation coefficients, in absolute value, from the highest

value to the lowest one, and then applying a threshold. All the estimated partial correla-

tion coefficients, in absolute value, greater of the threshold correspond to identified edges.

Since every estimated partial correlation coefficient is associated to a precision rate and a

recall value, varying the threshold from 1 to 0 allows one to compute the Precision-Recall

curve.
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We have used the PR curves instead of the well known ROC curves since the latter curves

are based on sensitivity and 1- specificity, i.e. false negative, and with sparse data the

value of false negatives is irrelevant. Hence, the ROC curves would not been suitable mea-

sure for the comparison among the procedures in the structural learning of the networks.

Moreover, with the PR curves, we obtain an assessment of procedures which does not

depend on the threshold, but only on the estimated partial correlation matrices. This is

particularly useful for the different approaches that we use for the comparative study. In

the case of the G-Lasso, the values of precision and recall are obtained from the elements

exactly equal to zero in the estimated partial correlation matrix, that is computed using

the concentration matrix estimated by this algorithm. These measures, however, could

return bad results because of the large number of partial correlation coefficients that are

very close to zero but not exactly equal to zero. So, the PR-curve overcomes the problem

associated to the values close to zero and gives a clearer image of the performance of

G-Lasso. Concerning MLE and Shrinkage estimator, the computation of the PR curves

solves the problem related to the choice of a threshold, in the model selection part, for

inferring the partial correlation matrix of the final graph.

For the analysis with simulated data, we remark some aspects related to the use of PR

curves.

• We compute the PR curves using the “ROCR” package of R and we consider a

vertical average of the PR curves. This means that the curves show an average,

respect all the replications, of the precision rate with respect to every recall value.

• The results presented in the precision-recall curves are not comparable with the

single values of precision rate and recall that are shown in the tables of all the

performance measures. The average values of these performance measures in the

tables are marginal, whereas the average values in the curves show the precision

rate conditioned to the recall values.

• PR curves are not computed for the PC-algorithm because it does not estimate the

partial correlation matrix.

• For the G-Lasso, during the cross-comparison among the procedures we insert only

the PR curves associated to λ = 0.1. The PR curves for all the values of λ are

presented in Appendix A.
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Figure 6.1: Plot of the true adjacency matrices. In the first row, there are the structures
with p = 20; in the second row, there are the structures with p = 100; in the third row,
there are the structures with p = 200.
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Figure 6.2: Plot of the true partial correlations matrices. In the first row, there are the
structures with p = 20; in the second row, there are the structures with p = 100; in the
third row, there are the structures with p = 200.
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6.2 Results of the analysis with simulated data

6.2.1 G-Lasso

Table 6.2 presents the results of the performance measures. We notice that in general

there is not a best penalty term, in particular the different penalty terms influence changes

in term of Tpr and Fpr. In the specific, the main findings are

• For the pairwise structure, in all the groups, there is a difference in the results

based on the value of λ. Among the penalty term λ = {0.1, 0.5, 0.8}, there are

remarkable differences between Tpr and Tnr, and consequently in all the others

measures. The trend of these differences is similar for all the values of p. Never-

theless, preferring a high value of Tpr respect to low value of Fpr, λ = 0.1 seems

best.

• The hub structure and cascade structure have a similar behavior in the three

groups. With an increment of the penalty term, there is a slight improvement in

the performance measures, in particular for the Fpr. Anyway, a too high penalty,

i.e. λ = 0.8, produces a decrement of the value of Tpr, but among the others three

values there is not a better λ.

From the above results, we decide to restrict all the remaining analysis to the penalty

term λ = 0.1.

Figure 6.3 represents the summary adjacency matrices estimated by G-Lasso with λ = 0.1.

It is visible that these graphical representations return the same results show in the

previous tables. Comparing these plots with the ones that reproduce the adjacency

matrices of the true graphs (Fig.6.1), we observe that

• For the pairwise structure, the false positives do not show any pattern through

replications.

• For the hub structure and cascade structure, there are systematically the same

false positives, that means a pattern through replications.

The figure 6.4 shows the average of estimated partial correlations by G-Lasso with λ = 0.1.

The comparison of these plots with the plots of adjacency matrices underlines the problem

anticipated during the description of PR curve. Some values of the estimated partial

correlation matrices are close to zero but not set exactly to zero, so they are considered

as identified edges in the adjacency matrices and they produce a huge number of false

positives. From this figure, in particular we observe that
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• For the pairwise structure, in all the three groups, the white area means that

the values of partial correlations, associated with the uncorrectly identified edges,

are almost zero.

• For the hub structure and cascade structure, with p = 20, the white area in

the lower right block indicates that the partial correlations of these uncorrectly

identified edges are close to zero. In contrast, the grey areas of the upper left

block and around the main diagonal, in the groups with p = 100, 200, indicate

values of partial correlation coefficients similar between correctly identified edges

and uncorrectly identified edges. This means that there is not a distinction between

true edge and true no-edge.
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Figure 6.3: Plot of adjacency matrices estimated with G-Lasso (λ = 0.1). In the first
row, there are the structures with p = 20 and n = 150; in the second row, there are the
structures with p = 100 and n = 150; in the third row, there are the structures with
p = 200 and n = 150.
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Figure 6.4: Plot of partial correlation matrices estimated with G-Lasso (λ = 0.1). In the
first row, there are the structures with p = 20 and n = 150; in the second row, there are
the structures with p = 100 and n = 150; in the third row, there are the structures with
p = 200 and n = 150.
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6.2.2 Shrinkage estimator with empirical Bayes approach and

t-test approach

Tables 6.3 gives the performance measures computed considering the Shrinkage estimator

with either the empirical Bayes approach and the t-test approach for the model selection

part. The main and unexpected result is related to the use of the Shrinkage estimator

matched with the t-test approach for the model selection that returns almost all measures

equal to zero. A plausible explanation could be related to use of false discovery rate

as correction method for the multiple hypothesis tests. The FDR imposes a too low

theoretical significance level respect to the estimated p-values produced by the t-test

approach and, consequently, there is not the identification of the networks. In contrast,

the main results for the Shrinkage estimator associated with the empirical Bayes approach

are

• For the pairwise structure, the results in table 6.3a-c-e show almost a perfect

learning of the true structure without any relevant problem of false positives.

• For the hub structure and cascade structure, with p = 20, there is a high value

for Fnr and low value of Tpr, in particular for the hub structure. Then, with the

increment of p, there is a noticeable improvement of both measures.

In the figure 6.5 are presented the summary adjacency matrices estimated by the Shrink-

age estimator and both model selection procedures. Also in this case, it is visible the bad

result of the combination between Shrinkage estimator and t-test approach for inferring

the edges of the final graph. Hence, we decide to focus only on the analysis of the com-

bination of Shrinkage estimator and empirical Bayes approach. Comparing these plots

with the ones that reproduce the adjacency matrices of the true graphs (Fig.6.1), we have

that

• For the pairwise structure, in all the three groups, there is a perfect learning of

the structure.

• For the hub structure, with p = 20, there are two main concentration of false

positives edges. One, that shows a pattern through replications, in the lower right

block and one, that does not follow any pattern, in the upper left block. Both

cases produce high values of false positives. In addition, in the upper left block

the frequency of identified edges, that correspond to true edges, is higher than the

remaining part of the block, but this produces the high value of Fnr.

• For the cascade structure, with p = 20, there is a slight lower right block of false

positives. In addition, there is not any pattern in the identification of the true edges
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that implies a high value of false negatives.

• For the hub structure and cascade structure, with p = 100, 200, there is a

concentration of false positives only in the area close to the true structure.

Figure 6.7 shows the graphical representations of the average of estimated partial cor-

relation matrices by the Shrinkage estimator. From these plots, we notice that there is

not a distinction of partial correlation coefficients between true and no-true edges and in

particular we observe that

• For the hub structure and cascade structure, with p = 20, the grey area in

the lower right block and in the upper left block indicate values of partial correla-

tion coefficients similar between correctly identified edges and uncorrectly identified

edges. This means that there is not a distinction between true edge and true no-

edge. There is the same problem also with p = 100, 200 only in the blocks around

the main diagonal.

• For the pairwise structure, in contrast, in all the three groups there is a perfect

learning of true partial correlation coefficients.
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PAIRWISE HUB CASCADE
Tpr 0.990900 0.046700 0.434500

Precision 0.987252 0.013590 0.659329
Accuracy 0.999053 0.926358 0.955618

Error Rate 0.000947 0.073642 0.044382
Fpr 0.000494 0.024772 0.015431
Fnr 0.009100 0.953300 0.565500
Tnr 0.999506 0.975228 0.984569

(a) Empirical Bayes approach

PAIRWISE HUB CASCADE
Tpr 0.982150 0.000000 0.000000

Precision 1.000000 0.000000 0.000000
Accuracy 0.999061 0.947345 0.947355

Error Rate 0.000939 0.052655 0.052645
Fpr 0.000000 0.000025 0.000014
Fnr 0.017850 1.000000 1.000000
Tnr 1.000000 0.999975 0.999986

(b) t-test approach

PAIRWISE HUB CASCADE
Tpr 0.999800 1.000000 1.000000

Precision 0.999412 0.179831 0.196204
Accuracy 0.999992 0.916156 0.924028

Error Rate 0.000008 0.083844 0.075972
Fpr 0.000006 0.085415 0.077395
Fnr 0.000200 0.000000 0.000000
Tnr 0.999994 0.914585 0.922605

(c) Empirical Bayes approach

PAIRWISE HUB CASCADE
Tpr 0.000000 0.000000 0.000000

Precision 0.000000 0.000000 0.000000
Accuracy 0.989899 0.981616 0.981616

Error Rate 0.010101 0.018384 0.018384
Fpr 0.000000 0.000000 0.000000
Fnr 1.000000 1.000000 1.000000
Tnr 1.000000 1.000000 1.000000

(d) t-test approach

PAIRWISE HUB CASCADE
Tpr 0.999600 1.000000 1.000000

Precision 0.999703 0.179530 0.179527
Accuracy 0.999996 0.958203 0.958202

Error Rate 0.000004 0.041797 0.041798
Fpr 0.000002 0.042183 0.042184
Fnr 0.000400 0.000000 0.000000
Tnr 0.999998 0.957817 0.957816

(e) Empirical Bayes approach

Table 6.3: Shrinkage estimator. In the first row, there are the structures with p = 20 and
n = 150; in the second row, there are the structures with p = 100 and n = 150; in the
third row, there are the structures with p = 200 and n = 150.
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Figure 6.5: Plot of adjacency matrices estimated with Shrinkage and empirical Bayes
approach. In the first row, there are the structures with p = 20 and n = 150; in the
second row, there are the structures with p = 100 and n = 150; in the third row, there
are the structures with p = 200 and n = 150.
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Figure 6.6: Plot of adjacency matrices estimated with Shrinkage and t-test approach. In
the first row, there are the structures with p = 20 and n = 150; in the second row, there
are the structures with p = 100 and n = 150.
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Figure 6.7: Plot of partial correlation matrices estimated with Shrinkage. In the first
row, there are the structures with p = 20 and n = 150; in the second row, there are the
structures with p = 100 and n = 150; in the third row, there are the structures with
p = 200 and n = 150.
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6.2.3 Maximum likelihood estimator with the empirical Bayes

approach and the t-test approach

Table 6.4 presents the performance measures for the combination of the ML estimator

and model selection with either the empirical Bayes approach and the t-test approach.

The results do not underline noticeable differences between the two combinations and in

both case the results are very similar. In the specific, we observe that

• In the group with p < n, the learning process for the networks with the pairwise

structure and cascade structure is almost perfect. In contrast, for the hub

structure, there is the discovery of only about half of the true edges that suggests

an under-estimation of the edges of the true structure.

• When the difference between p and n decreases, in all the structures there is a

remarkable decrement of the Tpr, but the Fpr is still almost equal to zero.

Figures 6.8 and figure 6.9 represent the summary adjacency matrices estimated by the

MLE and model selection with either the empirical Bayes approach and the t-test ap-

proach. The figures show that the two combinations of ML estimator with both model

selection approaches have very similar and good results. Indeed, comparing these plots

with the ones that reproduce the true adjacency matrices (Fig.6.1) the main results are

• For pairwise structure and cascade structure, there is a perfect match between

the true and estimated plots.

• For the hub structure, with p = 100, even if there is a good match between the

plots, the estimation of true edges does not show any pattern.

Figure 6.10 shows the average of estimated partial correlations by the ML estimator.

These plots underline that there is a perfect learning of true partial correlation coefficients

for all the structures.
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PAIRWISE HUB CASCADE
Tpr 0.981750 0.503900 0.955300

Precision 0.985890 0.965431 0.988153
Accuracy 0.998495 0.973358 0.997171

Error Rate 0.001505 0.026642 0.002829
Fpr 0.000575 0.000561 0.000503
Fnr 0.018250 0.496100 0.044700
Tnr 0.999425 0.999439 0.999497

(a) Empirical Bayes approach

PAIRWISE HUB CASCADE
Tpr 0.999950 0.527750 0.996450

Precision 0.995680 0.991746 0.995931
Accuracy 0.999745 0.974913 0.999576

Error Rate 0.000255 0.025087 0.000424
Fpr 0.000267 0.000244 0.000250
Fnr 0.000050 0.472250 0.003550
Tnr 0.999733 0.999756 0.999750

(b) t-test approach

PAIRWISE HUB CASCADE
Tpr 0.585000 0.013297 0.387582

Precision 0.999012 0.586250 1.000000
Accuracy 0.995802 0.981853 0.988741

Error Rate 0.004198 0.018147 0.011259
Fpr 0.000006 0.000008 0.000000
Fnr 0.415000 0.986703 0.612418
Tnr 0.999994 0.999992 1.000000

(c) Empirical Bayes approach

PAIRWISE HUB CASCADE
Tpr 0.584400 0.011868 0.385934

Precision 0.998634 0.650000 0.998679
Accuracy 0.995794 0.981822 0.988701

Error Rate 0.004206 0.018178 0.011299
Fpr 0.000008 0.000012 0.000010
Fnr 0.415600 0.988132 0.614066
Tnr 0.999992 0.999988 0.999990

(d) t-test approach

Table 6.4: ML estimator. In the first row, there are the structures with p = 20 and
n = 150; in the second row, there are the structures with p = 100 and n = 150.
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Figure 6.8: Plot of adjacency estimated with ML and empirical Bayes approach. In the
first row, there are the structures with p = 20 and n = 150; in the second row, there are
the structures with p = 100 and n = 150.
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Figure 6.9: Plot of adjacency estimated with ML and t-test approach. In the first row,
there are the structures with p = 20 and n = 150; in the second row, there are the
structures with p = 100 and n = 150.
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Figure 6.10: Plot of partial correlation matrices estimated with ML. In the first row, there
are the structures with p = 20 and n = 150; in the second row, there are the structures
with p = 100 and n = 150.
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6.2.4 Pc-algorithm

Table 6.5 refers to the performance measures associated with the PC-algorithm. For all

the structures, the algorithm looks quite good in learning the true edges. In the specific,

we notice that

• Among the structure, the hub structure with p = 20 has the higher value of Fpr,

but this value decreases with the increment of p with respect to n.

• For the pairwise structure, there is a substantive decrement of the precision rate

that with p = 200 results to be the lowest one.

Figure 6.11 shows the summary adjacency matrices obtained by means of PC-algorithm.

Except for the hub structure, the results of the other two structures are very similar to

the benchmark plots (Fig.6.1). The main findings are

• For the pairwise structure, there is a slight presence of random false positives.

• For the hub structure, with p = 20, there are two block of false positives. A light

block in the lower right part of the plot, and a noticeable block in the upper left part.

Anyway, in the latter block there is a distinction between the correctly identified

edges, always identified, and the incorrectly identified edges that are learned no in

all the replications.

• For the cascade structure, with only p = 20, there is a concentration of false

positives in the lower right block.

Figure 6.12 presents the average of estimated partial correlations for moralized graphs

of PC-algorithm. Every matrices have been estimated by means of ipf-algorithm on the

adjacency matrix of the moral graph. The results are quite satisfactory, but they should

be read with a special care because they are not obtained under the saturated model, as

for the other procedures, but under the sparse model selected by the learning procedure.

Hence, we consider these plot only to have a complete representation of PC-algorithm

with respect to the other procedures.
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PAIRWISE HUB CASCADE
Tpr 1.000000 0.968350 1.000000

Precision 0.745960 0.223642 0.485368
Accuracy 0.979753 0.798637 0.943287

Error Rate 0.020247 0.201363 0.056713
Fpr 0.021372 0.210792 0.059864
Fnr 0.000000 0.031650 0.000000
Tnr 0.978628 0.789208 0.940136

(a) Three structures with p = 20 and n = 150

PAIRWISE HUB CASCADE
Tpr 1.000000 0.962418 1.000000

Precision 0.392280 0.246132 0.537069
Accuracy 0.984152 0.938998 0.984024

Error Rate 0.015848 0.061002 0.015976
Fpr 0.016010 0.061441 0.016275
Fnr 0.000000 0.037582 0.000000
Tnr 0.983990 0.938559 0.983725

(b) Three structures with p = 100 and n = 150

PAIRWISE HUB CASCADE
Tpr 1.000000 0.961538 1.000000

Precision 0.272318 0.309960 0.544648
Accuracy 0.986514 0.976279 0.992233

Error Rate 0.013486 0.023721 0.007767
Fpr 0.013555 0.023585 0.007839
Fnr 0.000000 0.038462 0.000000
Tnr 0.986445 0.976415 0.992161

(c) Three structures with p = 200 and n = 150

Table 6.5: PC-algorithm.
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Figure 6.11: Plot of adjacency matrices estimated with PC-algorithm. In the first row,
there are the structures with p = 20 and n = 150; in the second row, there are the
structures with p = 100 and n = 150; in the third row, there are the structures with
p = 200 and n = 150.
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Figure 6.12: Plot of partial correlation matrices estimated by ipf-algorithm for PC-
algorithm. In the first row, there are the structures with p = 20 and n = 150; in
the second row, there are the structures with p = 100 and n = 150; in the third row,
there are the structures with p = 200 and n = 150.
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6.2.5 PR curves and box-plots of MSE

So far, we have studied individually each method for collecting information on their

strengths and on their drawbacks for every structure among the three groups. In order to

compare the performance of each procedure with the others, we use the PR curves and

the box-plots of the MSE.

Regarding the PR curves for each structure, the main results are listed below.

• For the pairwise structure, the PR curves are illustrated in figure 6.13. With p =

20, we note that the curves of MLE and Shrinkage coincide, and with p = 100, 200,

the curves of G-Lasso and Shrinkage estimator coincide. In general, all the methods

seem good in discovering at least 90% of the edges.

• For the hub structure, the PR curves are presented in figure 6.14. With p = 20,

the plot shows a good performance of MLE compare to the others methods, and

between G-Lasso and Shrinkage estimator the latter is slightly better. With p = 100,

the curve of MLE indicates a decreasing inadequacy of this estimator for the hub

structure. Anyway, until the value of recall equals to 0.5, the MLE still out-performs

the others methods that show a similar and weak performance in term of precision.

In the group with p = 200, G-Lasso and Shrinkage estimator still have a similar

and quite bad trend.

• For the cascade structure, the PR curves are shown in figure 6.15. They indicate

MLE, when applicable, as the more suitable method for this structure. The PR

curves of G-Lasso and Shrinkage estimator have a similar and constant trend within

the three groups. They give a reasonable high value of precision, around 0.6, until

the discovery of 90% of edges.

Figures 6.16, 6.17, and 6.18 present the box-plots of MSE of the three structures within

the groups with p = 20, p = 100, and p = 200, respectively, where G-Lasso with λ = 0.1

is the reference method. We notice that the PC-algorithm seems to have a much better

behavior than the other methods. However, a direct comparison of the PC-algorithm

with other procedures makes no sense because every partial correlation matrix of PC-

algorithm has been fitted under the sparse selected model. The good performance of the

MSE is therefore a consequence of sparsity. For completeness sake, we decided to include

also this case in the box-plots but we are aware that this is of little usefulness. From

these box-plots, we see that

• For the pairwise structure, there are remarkable differences among the procedures

since the ranges of y-axes are quite large (in particular for p = 20, 100). The
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reference method is the more suitable estimator of partial correlation coefficients

with respect to the others approaches, in particular with the increment of p. In

contrast, with the increment of p, the box-plots of MLE indicate a biasness of this

estimator.

• For the hub structure, the MLE still shows its biasness in the estimation of partial

correlation coefficients with respect to the G-Lasso with λ = 0.1. With p = 20, the

Shrinkage estimator performs slightly worse than the other procedures, but with the

increment of p its values of MSE are similar to the values of the reference method.

In contrast, for the G-Lasso an higher value of penalty seems more suitable in term

of parameter estimation.

• For the cascade structure, with p = 20 Shrinkage estimator, MLE, and G-Lasso,

with λ = 0.05, result to be slightly better estimators compare to the reference

method. With the increment of p the methods show similar values of MSE, except

for MLE that becomes the worst estimator.
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Chapter 7

Comparative study with real data

7.1 Escherichia coli data set

For a comparative study with real data, we consider the gene regulatory network of

Escherichia coli (E. coli): a bacterium that commonly lives in the lower intestine of

warm-blooded organisms. We use the E. coli transcriptional network since it is the most

complete experimentally characterized network of a single cell. The RegulonDB (Gama-

Castro et al., 2008) is a specialized database that collects the available experimental data

on regulatory interactions between transcription factor (TF) and their target genes (TG)

in E. coli. However, the information in this database is still far from complete and, as

reported in the latest release of RegulonDB (Gama-Castro et al., 2008), there is currently

knowledge on transcriptional regulation for only about one third of the genes.

We consider the microarray data contained in EcoliOxygen data file available in the

R package “qpgraph”, that refers to the paper of Castelo and Roverato (2009). The

microarray data are based on n = 43 experiments of various mutants under oxygen

deprivation presented by Covert et al. (2004). The mutants were designed to monitor the

response from E. coli during an oxygen shift in order to target the a priori most relevant

part of the transcriptional network. The measurement has been done by using six strains

with knockouts of the following key transcriptional regulators in the oxygen response:

∆arcA, ∆appY , ∆fnr, ∆oxyR, ∆soxS, and the double knockout ∆arcA∆fnr. The

EcoliOxygen data file is formed by two object: one contains the E. coli transcriptional

network from RegulonDB and one contains the expression profiles of p = 4205 genes under

the n = 43 experiments of Covert et al. (2004), downloaded from the Gene Expression

Omnibus (Barrett et al., 2007) with accession GDS680. These two data sets contain a

subset of the original data and they are obtained through the filtering steps described in

Castelo and Roverato (2009) to the original data set.

In order to have a gold-standard network to assess the performance of different methods in
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the comparative study, we filtered the expression profile data in EcoliOxygen considering

only those genes forming part in RegulonDB of the regulatory modules of the five knocked-

out transcription factors (Castelo and Roverato, 2009). In this way, the network of the

expression profile data is restricted to p = 378 genes. From RegulonDB, we learn that the

these 378 genes are involved only in 681 interactions out of 71253 interactions (complete

network); hence, for simplicity, we have decided to restrict the comparative study to the

100 genes that have the largest variability measured by the interquartile range. Therefore,

the final E. coli data set used for the comparative study has p = 100 and n = 43.

7.2 Performance measure for the E. coli data

For the E. coli data, using the functions implemented in the reference manual of the R

package “qp-graph”, we derive from RegulonDB the “true adjacency matrix” that we can

use as the benchmark. For every method considered for the comparative study, after its

implementation using the E. coli data, we obtain the “estimated adjacency matrix” and

the “estimated partial correlation matrix”. Comparing the true matrices to the estimated

ones, we constructed the different measures to compare procedures under study.

It is important to remark two aspects related to the benchmark network. As anticipated in

Section 7.1, the data obtained from RegulonDB for the transcriptional network of E. coli

are not complete. Moreover, this database collects information on regulatory interactions

under several experimental conditions and, sometimes, different experimental conditions

are measured at the same time. Consequently, either of these aspects can influence

negatively the performance measurements.

Measures based on adjacency matrix

Comparing the true adjacency matrix and the estimated adjacency matrix, we obtain a

table as the one presented in Section 6.1 from which we can derive the same statistic

measures presented in that section.

Moreover, we compare the true adjacency matrix and the estimated adjacency matrix of

real data using a graphical representation of these matrices. The benchmark plot, i.e.

plot of the true adjacent matrix, is presented in figure 7.1, where black points indicate

true edges, i.e. an entry equals to one in the adjacency matrix. For all the methods, we

plot the adjacency matrices, to give a general image of the identified/missing edges by

each method, where black points indicate identified edges.
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Precision-Recall curves

Also for the analysis with real data, we use the PR curves (Section 6.2) in order to have

a cross-comparison among the considered procedures (except for PC-algorithm). With

this data set, we remark that

• The PR curves are computed using the “ROCR” package of R.

• The PR curve is not compute for the PC-algorithm because it does not estimate

the partial correlation matrix.

• Figure 7.2 shows PR curves of the G-Lasso for all the values of λ. Plots 7.2b-c are

two zoom in on the part that returns more information on the behavior of G-Lasso

with different values of λ. For the cross-comparison among the procedures, we have

decided to insert only the PR curves of the G-Lasso associated with λ = 0.1.

Figure 7.1: Plot of the benchmark adjacency matrix for E. coli data.
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(a)

(b) (c)

Figure 7.2: Precision-recall curves for G-Lasso with E. coli data: dashed for λ = 0.05,
dotted for λ = 0.1, dotdash for λ = 0.5, and longdash for λ = 0.8. (a) Complete
representation of PR curves. (b)-(c) Zoom in on PR curves.
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7.3 Results of the analysis with E. coli data

Table 7.1 presents the performance measures for the compared methods with the E. coli

data; the methods are: G-Lasso (Tab. 7.1a), Shrinkage estimator with empirical Bayes

approach for model selection (Tab. 7.1b), and PC-algorithm (Tab. 7.1c). From this

table, we notice that all approaches perform poorly and the slightly better one, in term

of both Tpr and Tnr, is the G-Lasso. In details the main findings are

• For the G-Lasso, with increasing value of λ there is visible decrease of the Tpr

and, in contrast, an increment of Tnr; consequently, there is an improvement or

a worsening of the other performance measures. However, regarding the penalty

term, a compromise seems be achieved with λ = 0.1

• For the Shrinkage estimator with empirical Bayes approach, we see a very

good value of Tnr. This high value influences precision rate which is weak but

higher than for the other methods. In contrast, the Tpr is quite bad.

• For the PC-algorithm, the performance is are very similar to the Shrinkage with

empirical Bayesian approach, with only a noticeable worsening in the result of

precision rate.

Figure 7.3 shows the plots of the adjacency matrices computed by the G-Lasso with λ =

0.1 (a), the Shrinkage estimator with empirical Bayes approach (b), and PC-algorithm

(c). The comparison of these graphical representations of the adjacency matrices with

the true adjacency matrix (Fig. 7.1) suggests that all the methods do not at all learn

the real structure of the network. From the plot of the true adjacency matrix we see

that the network is essentially formed by two hub structures, with a high motif size, and

few pairwise structures. This particular network structure could be the explanation of

the poor performance of the three methods. Indeed, from the simulation study we have

noticed that the hub structure was the more complicated structure to be learned.

Figure 7.4 presents PR curves for G-Lasso with λ = 0.1 and Shrinkage estimator. Plots

7.4b-c are two zoom in on the part of these curves that returns more information on their

behavior. From the curves, we see that at the very beginning the curves of both methods

are similar, with only a weak better performance of G-Lasso; then the curve of Shrinkage

indicates a better performance of this estimator. Both approaches have very low value of

precision and its maximum value is around 0.4 with a recall of about 0.03.
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λ=0.05 λ=0.1 λ=0.5 λ=0.8
Tpr 0.328125 0.257812 0.125000 0.046875

Precision 0.041217 0.035408 0.023495 0.012448
Accuracy 0.785253 0.799192 0.843030 0.879192

Error Rate 0.214747 0.200808 0.156970 0.120808
Fpr 0.202613 0.186437 0.137910 0.098714
Fnr 0.671875 0.742188 0.875000 0.953125
Tnr 0.797387 0.813563 0.862090 0.901286

(a)

Tpr 0.062500
Precision 0.114286
Accuracy 0.963232

Error Rate 0.036768
Fpr 0.012858
Fnr 0.937500
Tnr 0.987142

(b)

Tpr 0.046875
Precision 0.048780
Accuracy 0.951717

Error Rate 0.048283
Fpr 0.024264
Fnr 0.953125
Tnr 0.975736

(c)

Table 7.1: Performance measures for E. coli data. (a) G-Lasso algorithm, (b) Shrinkage
estimator with empirical Bayes approach, and (c) PC-algorithm.
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(a) (b)

(c)

Figure 7.3: Plot of adjacency matrices for E. coli data. (a) G-Lasso (λ = 0.1), (b)
Shrinkage estimator with empirical Bayes approach, and (c) PC-algorithm.
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(a)

(b) (c)

Figure 7.4: Comparison of precision-recall curves for E. coli data: dotted for G-Lasso
(λ = 0.1) and twodash for Shrinkage estimator. (a) Complete representation of PR
curves. (b)-(c) Zoom in on PR curves.
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Chapter 8

Conclusion

8.1 Summing-up

Gaussian graphical models have become a common tool for structural learning of gene

regulatory networks by means of microarray data. However, their application to genetic

data is quite challenging, as the number of genes p is usually much larger than the number

of available samples n, so that classical GGM theory is not applicable. Several solutions

have been proposed in the literature to extend the theory of GGM and to enable their

use in this area. In particular, there are two main ingredients that should be take in con-

sideration for structure learning of gene regulatory networks using GGM: the estimation

of partial correlation matrix and the identification of the set of edges that form the final

graphical model.

In this thesis, we compared some recent procedures that aim to learn sparse networks in

the large p-small n setting, through the use of both simulated and real data. We used

different measures to evaluate the performance of these procedures. We considered dif-

ferent statistical performance measures and a graphical representation of the estimated

adjacency matrices to evaluate the overall performance of each methodology in learning

the network structures. We used the box-plots of MSE and a graphical representation of

the estimated partial correlation coefficients for evaluating the accuracy in the estimation

of partial correlation matrix. Finally, we computed the Precision-Recall curves to have

general information on the model selection part of the structural learning process.

Overall performance. Concerning the analysis with simulated data, we noticed that the G-

Lasso showed a high rate of false positives. In particular this problem was mainly present

with the setting n > p and, for the hub structure and cascade structure, it seemed to

follow a pattern through replications. The results for the Shrinkage estimator have been

considered only with the empirical Bayes approach, since the use of the Shrinkage esti-

mator and the t-test for model selection did not identify any structure. We observed that
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this procedure had good performance for the pairwise structure. In contrast, it showed a

worse performance for the hub structure and cascade structure, especially in term of false

positives. In contrast, the MLE presented very similar results with either the empirical

Bayes approach and the t-test approach. With the setting n > p, it was a very good

structural learning procedure, also for hub structure, but with n→ p its performance de-

creased, in particular for the high value of false negatives. The PC-algorithm presented a

satisfactory performance for pairwise structure and cascade structure, but a fairly good

performance for the hub structure because of the presence of false positives. With E.

coli data, for the G-Lasso the results were very similar to the ones described above, ex-

cept for a higher rate of false negative. In contrast, for the Shrinkage estimator with

the empirical Bayes approach and the PC-algorithm, their performance have remarkably

decreased. They had high values of false negatives that indicated an inability to learn

the real network.

Partial correlation estimation. From this study, available only for the study with sim-

ulated data, we observed that the G-Lasso and the Shrinkage estimator had a similar

behavior. They both did not distinguish between the values of partial correlation coef-

ficients, but their estimation did not seem as biased as the ones of MLE. Indeed, the

MLE performed poorly in term of covariance selection, in particular with n → p. The

PC-algorithm had a much better behavior than the other methods, but a direct com-

parison of the PC-algorithm with other procedures did not make sense because partial

correlation matrices of PC-algorithm have been fitted under the sparse selected models.

The good performance in terms of estimated partial correlation coefficients was therefore

a consequence of sparsity and, only for completeness sake, we decided to include this case.

Precision-Recall curves. Regarding the comparison with simulated data, we noticed that

the MLE, when applicable, was the more suitable method for all the structures, even

if it worsened with n → p. In contrast, the G-Lasso and the Shrinkage estimator were

constant with the increment of p among the structures, and they showed a pretty bad

performance only for the hub structure. The behavior of these latter methods were simi-

lar and quite bad with E. coli data.

Therefore, our main findings observed in this comparative study can be summarized as

follow.

• For the G-Lasso the crucial point is the choice of the penalty parameter. A scalar

penalty term, that is equal for every elements of Ω, does not learn in a accurate

way the network structures.

• The Shrinkage estimator in the realistic setting p > n does not out-perform the

other procedures.
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• The use of the empirical Bayes approach seems an interesting alternative to the

t-test, in particular when the data set has p > n.

• The MLE, when it can be computed, out-performs other procedures as far as model

selection is considered.

• The PC-algorithm performs well in the structural learning of the network, but

it cannot be evaluate in terms of parameter estimation since it does not return

information on the partial correlation coefficients.

• The choice of a suitable threshold for evaluating which partial correlation coefficients

should be set to zero is a difficult point in the structural learning process.

• With simulated data, all the current methods seem able to extract a certain amount

of structural information from the networks, although the precision is very low and

the number of false positives very high. In addition, they all exhibit considerable

difficulties if the network is formed by hub structures, which is the more interesting

structure.

• With E. coli data, the methods perform very bad over all. They all show limitations

in handling a network structure with a high sparsity rate that is based on hub

structure with big motif size.

8.2 Discussion

There are many directions that can be considered for further research. Against the

background of the present work three points appear particularly important.

• From background information on the structures of the gene regulatory network, it

is known that these networks are typically sparse. This means that the number

of edges in the network is much smaller than the number of possible edges in the

complete network. In the structural learning procedures, the sparsity assumption is

typically implemented by assuming that vertices have a small number of neighbors.

Consequently, a structure as the hub one, where one vertex has a huge number

of neighbors, is omitted from the analysis even if it is one of the most common

structures in biological networks of many organisms. Hence, it is important that

procedures and algorithms allow to identify structures that are biologically more

realistic.

• More research needs to be done in the field of model selection for gene regulatory

networks, and in general for biological networks. In particular, it is essential to
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avoid the threshold problem for identifying the set of edges in the final model. The

use of Precision-Recall curves seems a suitable solution because it overcomes the

problem of choosing a threshold and, in addition, provides a simple way for cross-

comparison among several procedures. However, in order to compute these curves

a benchmark network structure is necessary and this is not alway available. For

the identification of edge sets, a new launching point could be developed by using

the idea of “empirical posterior probabilities” of edges being present in the network

(Schäfer and Strimmer, 2005a).

• The G-Lasso procedure is a very attractive algorithm since it performs simulta-

neously parameter and model selection. The latter part is strictly related to the

penalization imposes on the elements of the concentration matrix, so an appropriate

choice of the penalty parameter is a very important stage in the use of this pro-

cedure. However, it is reasonable to conclude that a scalar penalty term is useless

because it does not emphasize the small number of no missing edges in a sparse

network. So, the unique term could be substituted with a penalty matrix in which

there are different penalizations for each variable. The choice of these different

penalty terms could arrive from a priori knowledge of the biological system under

study, or even from a pre-analysis of the data. For instance, the qp-graphs proce-

dure (Castelo and Roverato, 2006) can be used as an explorative tool to assess the

submodels of the complete graph. In this way, we could have an idea of the missing

edges and then define the penalty terms.
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Appendix A

Precision-Recall curves
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