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Abstract

Data available in commonly employed consumer surveys, like the Consumer
Expenditure Survey in the US, is widely known to be affected by measure-
ment errors. Ignoring the effect of such errors in the estimation of con-
sumption models may result in severely biased estimates of the quantities
of interest. In this thesis I consider identification of three different models
of consumption behavior allowing for the presence of measurement errors.

Identification is particularly difficult to achieve due to the high non-
linearity of the specifications involved and to peculiarities of consumptions
models. In fact in many instances, allowing for mismeasured covariates also
implies correlated measurement errors also in the dependent variable. This
further complicates the identification of the model, invalidating most of the
non-linear errors in variables results in the literature.

The core of the thesis is made of three Chapters. In the first Chapter
I consider identification of a particular specification of Engel curves when
unobserved expenditure is endogenous and measured with error. In the
second Chapter I study identification of a general non-linear errors in vari-
ables model allowing for correlated measurement errors on both sides of
the equation. In the third Chapter I derive identification and estimation
of the distribution of consumption when only expenditure and the number
purchases are observed.





Sommario

I dati disponibili nelle piú comuni indagini sui consumatori, come la Con-
sumer Expenditure Survey negli Stati Uniti, sono noti per essere affetti da
errori di misura. Ignorare l’effetto di questi errori nella stima di modelli di
consumo puó portare a stime distorte delle quantitá di interesse. Questa
tesi discute l’identificazione di tre differenti modelli di comportamento dei
consumatori in presenza di errori di misura.

L’identificazione risulta particolarmente difficile a causa della elevata
non-linearitá delle specificazioni utilizzate e di alcune peculiaritá proprie
dei modelli con dati di consumo. In molti casi infatti, la presenza di co-
variate misurate con errore implica errori di misura correlati nella variabile
dipendente. Questo complica ulteriormente ĺıdentificazione del modello, in-
validando la maggior parte dei risultati presenti nella letteratura su errori
di misura in modelli non-lineari.

Il contenuto della tesi é discusso in tre Capitoli. Il primo Capitolo discu-
te l’identificazione di una particolare specificazione di curve di Engel quando
la spesa totale non osservata é endogena e misurata con errore. Il secondo
Capitolo studia l’identificazione di un modello non-lineare molto generale
con errori di misura correlati su entrambi i lati dell’equazione. Il terzo Ca-
pitolo ottiene identificazione e stima della distribuzione di consumo quando
solo la spesa e il numero di acquisti sono osservati.
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Chapter 1

Introduction

1.1 Overview

Consumption data are an important source of information for investigating
consumer behavior. They allow the estimation of a variety of models useful
for testing the restrictions imposed by the economic theory, making welfare
comparisons or constructing counterfactual scenarios which are relevant to
answer policy relevant questions.

An important branch of the analysis of consumer behavior is the specifi-
cation and estimation of demand functions. They are defined as the relation-
ship between consumption on a single good and total consumption, prices,
and demographics. Examples of interest in this relationship date back at
least to Stone (1954) who first fit this kind of models. Since his pioneering
work a lot of specifications have been proposed for demand functions, ei-
ther based on empirical findings or derived from restrictions imposed by the
assumption of utility maximizing consumers. A worth mentioning example
notable example of a popular parametric specification is the Almost Ideal
Demand System (AIDS) of Deaton and Muellbauer (1980), though recently
a growing part of the literature is focusing on more flexible semi-parametric
estimation procedures to tackle more general specifications (see for instance
Blundell, Chen, and Kristensen 2007).

The relevant information for the estimation of demand functions is usu-
ally collected by means of either recall data or diaries. In the former case,
households are asked to report what was their level of expenditure for some
commodities over a relatively long time span, while in the latter case respon-
dents are given a diary to fill in with their purchases that tipically covers a
very limited period of time (a one or two week period).

Both these sources of information are widely known to be affected by
measurement errors (see Bound, Brown, and Mathiowetz 2001). When asked
about their level of expenditure over a long period of time, household may
be unable to remember the exact amount or they may willfully misreport
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CHAPTER 1. INTRODUCTION

for a variety of reasons. On the other hand in diary data some commodities,
like durables, are infrequently recorded, due to the limited time-span of the
survey.

The first part of the thesis deals with the identification and estimation
of Engel curves, which are defined as demand functions when prices are
held constant. It is common practice to ignore the presence of measurement
errors when estimating Engel curves. However, it is well understood that
failing to account for their presence, even in a simple linear setting, would
in general result in biased estimates of the parameters of interest.

A variety of methods have been proposed to identify and consistently
estimate parameters of general non-linear errors in variables models, though
they may not always be readily applied in practice. The proposed models
are estimated by either making assumptions about the distribution of mea-
surement error, using validation data to estimate features of its distribution
or exploiting the availability of repeated measurements or instrumental vari-
ables (IVs). In this thesis I will follow this last stream of the literature, and
will provide identification results using additional information provided by
IVs. This is motivated by the general availability in econometrics of IVs
as opposed to repeated measurements and by the purpose of avoiding any
assumption regarding the distribution of measurement errors.

The estimation of Engel curves presents challenges which are not usually
encountered in the measurement error literature. In particular they exhibit
non-linearities and, more importantly, present correlated measurement er-
rors on both the dependent and independent variables, hence invalidating
the usual approaches. The only estimator proposed in the literature which
explicitly takes into account these difficulties is the one proposed by Lewbel
(1996). However he restricts his attention to one particular framework in
which budget shares are polynomials in the logarithms of total expenditure
and unobserved total expenditure may be assumed exogenous.

While this framework is one that has received a lot of attention in empir-
ical work, recent advancements in demand analysis (see for instance Banks,
Blundell, and Lewbel 1997, Lewbel and Pendakur 2009, Blundell, Chen,
and Kristensen 2007) suggest that the estimation of more realistic models
would require extensions of the available identification results to more flexi-
ble specifications of Engel curves and to the endogeneity of unobserved total
expenditure. The main objective of chapters 3 and 4 is to derive identifica-
tion and estimation results in these settings.

It is widely accepted that household consumption is a far better indica-
tor of households well-being than income. This is because, while income is
highly affected, at least in the short term, by exogenous shocks, consump-
tion, being chosen by individuals, is thought of as a long term households’
own assessment of their economic position, and hence is a much more reli-
able indicator of households well-being. However, as reported above, data
usually record informations about household expenditures. Consumption

2



1.2. MAIN CONTRIBUTIONS OF THE THESIS

is in fact an unobserved variable and for this reason expenditure is widely
accepted to be a good approximation for consumption and is then treated
accordingly. Nonetheless there may be situations in which expenditure does
not capture all the features of consumption we are interested in.

The discrepancies between consumption and expenditure are mainly due
to the presence of storage costs and indivisibility of commodities. Consump-
tion is, in principle, a continuous process while expenditure is a discrete
process which occurs on a certain number of purchase occasions. If com-
modities were infinitely divisible and storage costs were particularly high,
households would consume immediately after purchasing and expenditure
would be equal to consumption. In reality storage costs are not very high
and most of the commodities are indivisible by nature, hence the difference
between expenditure and consumption may be substantial.

While it would be interesting to analyze household inequality in terms
of consumption inequality measures are routinely computed from expendi-
ture data. This problem is particularly severe when using data from diary
surveys since, for infrequently purchased goods, recorded expenditure may
either overstate or understate the underlying consumption. The objective
of Chapter 5 is then that of providing an estimator of consumption from
knowledge of expenditure data.

The remainder of this thesis is organized as follows. Chapter 2 serves as a
review, while Chapters 3, 4 and 5 offer the main contributions. In particular,
Chapter 3 proposes a method for parametrically identifying Engel curves
when unobserved total expenditure is allowed to be endogenous. This applies
to Engel curves in which budget shares are polynomials in the logarithms of
total expenditure. Chapter 4 provides non-parametric identification for non-
linear specifications of more general forms. I also provide conditions for the
identification of the conditional distribution of expenditure for single goods
on total expenditure. Chapter 5 derives an estimator for features of the
unobserved distribution of consumption when only expenditure is observed.
This is done by specifically modeling the purchase pattern of households,
hence providing a way to estimate consumption of infrequently purchased
goods from diary data. Simulation studies to compare the performance of
the proposed estimators are also provided.

1.2 Main Contributions of the Thesis

The core of the thesis is represented by Chapters 3, 4 and 5.
In Chapter 3 I derive an estimator for a particular specification of Engel

curves in the presence of measurement errors in total expenditures. I con-
sider Engel curves where budget shares are polynomials in the logarithm of
total expenditure. I first derive the expression for the asymptotic bias of
the simple IV estimator, which has already been shown to be inconsistent
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CHAPTER 1. INTRODUCTION

in this specification. The result shows that, when unobserved total expen-
diture is allowed to be jointly determined with expenditure on single goods,
and so is endogenous in the model, the parameters of interest are identified
and easily estimated by employing a control function approach. The estima-
tor takes the form of a Generalized Method of Moments (GMM) estimator
with linear in the parameters moment conditions and is therefore readily
computed by standard statistical softwares. In order to evaluate the perfor-
mances of the proposed estimator a simulation study has been conducted.
The results show improvements over alternative estimators especially when
the extent of both measurement error and endogeneity of the unobserved
total expenditure is particularly severe.

A second identification result I provide is reported in Chapter 4. Here
unobserved total expenditure is treated as exogenous, and the focus is in-
stead on the specification of Engel curves. I provide identification for a very
general error-in-variables model in which the conditional mean is very flex-
ibly specified and correlated measurement errors are present on both the
dependent and the independent variable. This result extends the previous
result by Schennach (2007) to allow for correlated measurement error in the
dependent variable. In the special case of Engel curves an additional result
is obtained, namely the identification of the conditional distribution of un-
observed expenditure on one good and unobserved total expenditure. This
is done by exploiting the particular dependence structure between measure-
ment errors entailed by the very nature of the variables. This result is of par-
ticular interest since it allows to separate the variability on the expenditure
on a single good due to measurement error from that due to heterogeneity in
preferences. This is an issue of major concern in the empirical literature on
the topic. The identification result is applied to the estimation of generally
non-linear Engel curves in a parametric setting. The estimator I propose is
based on the method of Simulated Moments (SM), already adopted in the
literature by Newey (2001).

A third contribution is presented in Chapter 5 which deals with the es-
timation of the distribution of consumption from expenditure data. The
estimator I propose is based on a generalization of the models developed by
Kay, Keen, and Morris (1984) and Meghir and Robin (1992). This is done
by modeling the purchasing process of households, which in turn depends
on the unobserved frequency of purchase of each indivudual. The estimator
builds on the assumption of utility functions which are separable in alloca-
tion of expenditure and frequency of purchase. Under this assumption the
distribution of consumption, including the proportion of non-consumers, is
identified and readily estimated. The above argument is then applied to
estimate the distribution of consumption for commodities using diary data
from the Consumer’s Expenditure Survey.

4



Chapter 2

Literature Review

The objective of this Chapter is that of providing the relevant background
literature on the topics that will be covered in the remainder of the thesis.
In the following Sections I will discuss previous findings about specification
of Engel curves, non-linear errors in variables models and frequency of pur-
chases issues. I will not provide an exhaustive list of works on these topics,
but I will only selectively review the literature that is useful to have a better
understanding of what will be discussed later in the thesis.

2.1 Engel Curves Estimation

Very few topics in economics do not involve knowledge of consumer behavior.
An important branch of this is the so called demand analysis, which is
mainly concerned with the specification and estimation of demand functions
or, more generally, demand systems. These are defined as the structural
relationship between consumption on single goods, on the one hand, and
total consumption, prices and demographics on the other hand. Knowledge
of these functions is of central interest in economics since they allow the
evaluation of the impact of different tax policies, welfare analyses or the
construction of equivalence scales (see Blundell 1988 and Lewbel 2010 for a
review).

Engel curves are defined as demand functions in which prices are held
constant. These functions have received particular attention in the literature
since they may be seen as building blocks in the construction of more general
demand systems, and because they are easier to estimate since they do not
require variability in prices. Engel curves are also of interest in their own
for welfare analysis and the characterization of goods as inferior, necessities
or luxuries.

The estimation of Engel curves dates back at least to Engel (1895),
who first studied the relationship between household food expenditure and
income. The interest there was merely that of comparing different specifica-
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CHAPTER 2. LITERATURE REVIEW

tions on the basis of the goodness of fit. Since then, several works followed
along the same lines, see for example Ogburn (1919), Working (1943), Leser
(1963) and Prais and Houthakker (1971). Among these, special attention has
received the so called Working-Leser specification, in which budget shares,
which is the proportion of total expenditure allocated to each good, are lin-
ear in the logarithm of total expenditure. This is still one of the most used
Engel curves specifications, since it seems to fit reasonably well for a wide
variety of goods.

However, when the objective of the analysis is that of performing welfare
analyses a theory consistent demand system needs to be specified. This leads
to a more structural approach, in which demand functions, and hence Engel
curves, are specified on the basis of the restrictions imposed on consumer
preferences and of the assumption of utility maximizing individuals. Such
approach gave rise to several “theory consistent” specifications in which the
model estimated has a structural, as opposed to statistical interpretation
(see the discussion in Lewbel 2001).

To clarify this point, suppose individuals possess an indirect utility func-
tion V (x,p), where x is logarithm of total expenditure and p is a vector of
prices. Standard consumer theory states that the budget share for the i-th
good (wi) of a utility maximizing individual is defined by the Roy’s identity
as:

wi(x,P) = −∂V (x,p)/∂ log pi
∂V (x,p)/∂x

.

Thus different models arise depending on the specification of consumer pref-
erences which are summarized by the indirect utility function V (x,p). On
the other hand there is no guarantee that for any functional form specifi-
cation there exists a function V (x,p) which satisfies the usual properties of
an indirect utility function.

A very general class of indirect utility functions which have received
great attention in the literature is the translog family. Several routinely
employed demand system specifications, like the linear expenditure system
or the quadratic expenditure system, where expenditure on one good is either
a linear or a quadratic function of income, may be derived from preferences
which belong to this general class (see Gorman 1961 and Howe, Pollack,
and Wales 1979). A notable example in this class is the log translog indirect
utility function, which is given by the very flexible functional form:

V (x,p) = −
I∑
i=1

αi(log(pi/ex)− x)− 1
2

I∑
j=1

I∑
i=1

βij log(pj/ex) log(pi/ex),

(2.1)
where βij = βji,

∑I
i=1

∑I
j=1 βij = 0 and

∑I
i=1 αi = 1. This form of indirect

utility function yields demand functions in which budget shares are linear
in x, hence belonging to the Price Independent Generalized Logarithmic
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2.1. ENGEL CURVES ESTIMATION

(PIGLOG) class of demand functions. This is not the only function V (x,p)
which exhibits these properties. Arguably the most cited example of demand
system which is both a member of the translog family and of the PIGLOG
class is the Almost Ideal Demand System (AIDS) of Deaton and Muellbauer
(1980). It follows from the specification of a very general functional form
for V (x,p) and it implies Engel curves in which budget shares are linear in
the logarithm of total expenditure.

In general, however, there are no theoretical restrictions which impose
budget shares to be linear in x. While for some goods this specification
provides a good approximation (see Banks, Blundell, and Lewbel 1997) em-
pirical findings show that a linear specification is not enough to characterize
Engel curves for some categories of goods (see Atkinson, Gomulka, and Stern
1990, Bierens and Pott-Buter 1990, Blundell, Pashardes, and Weber 1993,
Hausman, Newey, and Powell 1995, and Lewbel 1991 ). In this spirit Banks,
Blundell, and Lewbel (1997) propose a generalization of the AIDS model
and show that, if additional terms were to be included in the specification
of Engel curves, then theory would restrict this term to be a quadratic
term in the logarithm of income. Their Quasi Almost Ideal Demand System
(QAIDS) demand system then implies Engel curves in which budget shares
are quadratic in the logarithm of income. These theoretical results only ap-
ply to exactly aggregable demand systems and are very popular in empirical
works since they are quite general and easy to estimate. Nonetheless, in the
most recent years, a growing stream of research has focused on semi and
non-parametric estimation of Engel curves to encompass a wider range of
alternatives: see Hardle and Marron (1990), Pinkse and Robinson (1995)
and Blundell, Browning, and Crawford (2003).

All models discussed so far imply that households deterministically set
their level of consumption on each good given their level of income and
prices. In practice, however, data exhibit great variability among households
with the same observed characteristics. This is usually considered to be the
result of, both observable and unobservable, heterogeneity in preferences and
measurement errors. While measurement errors only affect the estimation
of the models and do not pose theoretical issues, heterogeneous preferences
raise the question of how (un)observed demographics should enter the utility
function and which kind of restrictions these imply on consumers’ behavior.

In theory one would need to specify an indirect utility function of the
form V (x,p, ε), where ε is a vector of (un)observed characteristics of the
household, and solve the maximization problem. In order to keep the model
as parsimonious as possible, it would be tempting to include heterogeneity
as an additive component to the reference Engel curve gi(x), the latter being
defined as the Engel curve associated with the household for whom there is
ε = 0. This would define the following relationship:

wi = gi(x) + ε, (2.2)

7
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which implies that heterogeneity acts as a vertical shifter for the Engel
curve of the reference household. This, as showed by Blundell, Duncan,
and Pendakur (1998), is in general inconsistent with utility maximization,
meaning that there exists no sufficiently general indirect utility function
which generates Engel curves of the form (2.2).

A more attractive solution to the problem of allowing for heterogeneity
are shape invariant Engel curves. As discussed by Blundell, Duncan, and
Pendakur (1998) a class of Engel curves which is consistent with utility
maximization is:

wi = hi(ε) + gi(x−m(ε)),

for some functions hi(·) and m(·). These functions are shape invariant in the
sense that, up to location and scale transformations, they look identical as
ε varies. Shape invariant Engel curves are generated from demand systems
which are derived from indirect utility functions associated with independent
of base equivalence scales1, that is:

V (x,p, ε) = T (x−m(ε),p),

for some functions T (·) and m(·). Heterogeneity is then allowed to enter
the utility function only by suitably scaling total income. These results are
of particular importance if one is willing to coherently specify unobserved
heterogeneity, see Brown and Walker (1989), and I will consider this issue
in Chapter 4.

2.2 Non-linear Errors in Variables Models

Identification and estimation of models when variables are observed with
error has been a long-standing problem in both economics and statistics.
Since the very pioneering work of Adcock (1878) a variety of approaches
have been proposed to deal with this difficult task. The proposed approaches
may be broadly divided into three main categories:

1. The parametric approach: it generally relies on assumptions on the
measurement error distribution, allowing the estimation of a fully para-
metric model. In this framework the nature of the distribution con-
sidered is known to play a major role: in linear models, for instance,
the parameters are not in general identified if the distribution of mea-
surement error is normal. However, if one is willing to assume para-
metric distributions for the (unobserved) random variables involved,
this is the classical approach to identification. See, for instance, Hsiao
(1989), Hsiao and Wang (2000) and Carroll, Ruppert, Stefanski, and
Crainiceanu (2006).

1This is not a characterization result, but it may be shown that ”all shape invariant
Engel curves are either derived from independent of base indirect utility function or from
a restrictive class of alternative models” (Lewbel 2010).

8



2.2. NON-LINEAR ERRORS IN VARIABLES MODELS

2. Repeated measurements: this approach makes use of additional mis-
measured observations of the variable of interest. This may be enough
to provide identification under the assumption that measurement er-
rors in the two repeated measurements are somewhat unrelated. This
may be seen as a particular case of the IV approach below. Sev-
eral works have been developed on the topic, see Hausman, Newey,
Ichimura, and Powell (1991), Hausman, Newey, and Powell (1995), Li
(2002) and Schennach (2004). The limitations here are given by the
fact that data on repeated measurements of the quantities of interest
are not always readily available.

3. Instrumental variables: this approach exploits additional information
provided by an instrumental variable which is assumed to be corre-
lated with the (unobserved) variable of interest but independent of the
measurement error. This is arguably the most traditional approach in
economics and the one which has received the most attention in recent
years, see for instance Hausman, Newey, and Powell (1995), Lewbel
(1996), Newey (2001) and Schennach (2007).

In Chapters 3 and 4 I will consider the instrumental variables approach.
This is motivated by the fact that, while repeated measurements are not
always available, the application of instrumental variables techniques is now
common practice in econometrics.

The well known traditional framework in which the availability of IVs
allows identification and consistent estimation of the parameters of interest
is the classical linear model. Suppose:

Y ∗i = θ0 + θ1X
∗
i + ξi, E[ξi|X∗i ] = 0,

where only the couple (Y ∗i , Xi) is observed, while Xi = X∗i + Wi with
E[Wi|X∗i ] = 0. The feasible regression of Y ∗i on the observed Xi may then
be written as:

Y ∗i = θ0 + θ1Xi + ξi − θ1Wi,

which shows that Ordinary Least Squares (OLS) does not provide consistent
estimates of θ = (θ0, θ1), since by construction E[Wi|Xi] 6= 0. A general
result is that, let θ̂1 be the OLS estimator for θ1, then

plim
n→∞

θ̂1 =
σ2
X∗

σ2
X∗ + σ2

W

θ1,

showing that θ̂1 is downward biased in magnitude.
In this case standard results show that the availability of a valid instru-

mental variable which is correlated with X∗i but uncorrelated with Wi, allows
the consistent estimation of the parameters by straightforwardly applying
Two Stage Least Squares (2SLS) estimator.
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However, as first pointed out by Amemiya (1985), this argument breaks
down when the regression function is non-linear. If the dependent variable
is a general function of X∗i , i.e. g(X∗i ; θ), then the feasible regression of Y ∗i
on Xi is no longer separable in the measurement error Wi and Xi:

Y ∗i = g(Xi +Wi; θ) + ξi,

hence, even if an instrument with the above properties were available, θ
could not be consistently estimated by 2SLS.

This lack of identifiability prompted a long search for identification in the
so called non-linear errors in variables models when an instrument is avail-
able. Hausman, Newey, Ichimura, and Powell (1991) and Hausman, Newey,
and Powell (1995) in a series of papers proved identification of polynomials
specifications through instrumental variables and derived a root n consistent
Generalized Method of Moments (GMM) estimator2. More general specifi-
cations have been discussed by Wang and Hsiao (1995), who unfortunately
restrict their attention to functions which are absolutely integrable3, hence
ruling out most of the empirically relevant specifications, including poly-
nomials for instance. An interesting result, for our purposes, is the one
proposed by Lewbel (1996) who considers identification of a specific func-
tional form, which is particularly attractive in the context of Engel curves
estimation. The estimator he proposes is also based on a GMM procedure.
A more general non-parametric identification result for a broad class of non-
linear functions has been recently developed by Schennach (2007), who also
provides a consistent, root n and asymptotically normal estimator based on
the properties of the Fourier transform of g(·).

In Chapters 3 and 4 we will deal with the estimation of Engel curves
when expenditures are measured with error. As we have seen in Section 2.1,
Engel curves exhibit non-linear behaviors, thus allowing for measurement
errors greatly complicates the identification of the model. Futhermore Engel
curves possess a peculiar feature: allowing for measurement errors in the
independent variable, that is total expenditure, implies that the dependent
variable, that is expenditures on a single good (or possibly budget shares),
is also measured with error, since by definition total expenditure is the
sum of expenditures over all goods. Also note that these measurement
errors are correlated by construction, a feature which invalidates most of
the identification results for non-linear errors in variables models. The only
identification results, I am aware of, which explicitly account for the presence
of correlated measurement errors on both sides of the equation are those
derived in Hausman, Newey, and Powell (1995) and Lewbel (1996).

2They also showed that a general non-linear specification g(·) is identified from addi-
tional information provided by repeated measurements.

3They assume that g(·) is such that
R
|g(x)|dx <∞.

10



2.3. FREQUENCY OF PURCHASE

2.3 Frequency of Purchase

Data on purchase have been largely used in the literature as a proxy for con-
sumption. However it is well known that in large surveys, such as the Family
Expenditure Survey in the UK, a non-negligible fraction of respondents re-
port zero-expenditure on some commodities like drink or clothing. It is hard
to interpret these data as zero-consumption, instead it seems quite natural
to interpret expenditures as an error ridden measure of true consumption.
This interpretation was first discussed in a series of papers related to the
permanent income hypothesis (Summers 1959; Prais 1959; Liviatan 1961)
and subsequently rather neglected until the 80s.

One of the main explanations for the presence of so many zeros in expen-
diture surveys is the so called frequency of purchase problem, which arises
when the short time window over which the survey takes place prevents the
observation of the complete pattern of purchases for each household. Such
a problem is particularly severe in diary surveys, where the time window is
of one or two weeks. On the other hand diary data are an important source
of information on the consumption for a variety of commodities.

When dealing with this kind of data two main issues arise. Firstly dis-
tributional measures of consumption based on observed expenditure may
give a misleading picture of the real distribution of consumption. Secondly,
estimates of Engel curves based on expenditure data are in general incon-
sistent. To consider these issues a number of models have been developed
(Kay, Keen, and Morris 1984; Deaton and Irish 1984; Keen 1986; Blundell
and Meghir 1987; Meghir and Robin 1992; Robin 1993). In particular Kay,
Keen, and Morris (1984) develop a general framework to link observed ex-
penditure with underlying consumption showing that mean expenditure is
an unbiased estimate of the mean of consumption under fairly general con-
ditions, but estimates of the variances may be severely biased. Thus they
introduce a consistent estimator for the variance of consumption under quite
restrictive assumptions, such as linearity of the Engel curves and knowledge
of its parameters.

Deaton and Irish (1984) make use of a special case of the above frame-
work to test the hypotesis that zero-expenditures arise from other sources
than that implyed by no-consumption. Their findings are controversial, the
results being that the observed zeros are less than those explained by the
model.

Keen (1986) shows that OLS estimation of Engel curves with observed
expediture as a proxy for consumption is inconsistent under the presence of
infrequency of purchase problems and develop a simple IV estimator which
is consistent under the condition of linear Engel curves.

Meghir and Robin (1992) consider for the first time an explicit frequency
of purchase model also including the potential effect of multiple purchases.
Their goal is to construct an identification strategy to recover estimates for

11
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the parameters of the Engel curves.
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Chapter 3

Endogenous Total
Expenditure

The objective of this Chapter is that of providing identification and esti-
mation of Engel curves when total expediture is endogenous and measured
with error. I consider Engel curves in which budget shares are polynomials
in the logarithm of total expenditure. Identification is obtained exploiting
additional information provided by an instrumental variable through con-
trol functions building on previous results by Lewbel (1996), which account
for the presence of classical measurement error on the logarithms of total
expenditure.

3.1 Introduction

Consider the following Engel curve:

W ∗ih = bi0 + bi1 logX∗h + εih, (3.1)

where W ∗ih ≡ Y ∗ih/X
∗
h is the budget share on the i-th good for household

h, Y ∗ih being expenditure on the i-th good, while X∗h ≡
∑I

i Y
∗
ih is total

expenditure and I is the number of goods considered.
In empirical applications one would tipically estimate (3.1) using instru-

mental variables (IV) (see for instance Blundell, Chen, and Kristensen 2007
and Attanasio, Battistin, and Mesnard 2009 among others). This follows
from the fact that there is no reason to assume that logX∗h and εih are
uncorrelated, as in general X∗h and Y ∗ih may be simultaneously chosen by
individuals thus leading to endogeneity of X∗h. In some cases restrictions on
household’s behaviour, such as two-stage budgeting, are introduced in order
to avoid this source of endogeneity (Pollack and Wales, 1995), but in general
there is no clear economic justification to assume that X∗h is exogenous.

Another source of endogeneity in the estimation of (3.1) arises when
X∗h is measured with error. Then using Xh as a proxy for X∗h would in

13
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general introduce endogeneity. As Amemiya (1985) first pointed out, in
this context IV would no longer be consistent, due to non-linearities in the
specification. The result follows as measurement error is no longer additively
separable, thus invalidating the use of IV. Moreover equation (3.1) exhibits
highly correlated (by construction) measurement errors on both sides of
the equation, a feature not usually encountered in the errors-in-variables
literature (Lewbel, 1996).

The literature has addressed separately these two sources of endogeneity,
with few exceptions (see for instance Blundell, Chen, and Kristensen 2007).
A solution to the bias induced by measurement error in the same setup that I
consider in this Chapter has been proposed by Lewbel (1996). He shows that
the model in (3.1) is identified from knowledge of the conditional moments
E[X l

hWih|Zh], E[X l
h|Zh] and E[X l

h logXh|Zh] for l = 1, 2, where Zh is a
valid instrument for total expenditure. His main identifying assumptions
are classical measurement error on logX∗h and exogenous total expenditure
(E[εih|X∗h] = 0). In what follows I provide a more general result which also
allows for endogenous X∗h.

I first characterize the asymptotic bias of the simple two-stage-least-
squares (2SLS) estimator. I show that the IV estimator for bi in equation
(3.1) is upward biased in magnitude, a result which contrasts with the usual
attenuation bias found in the literature in the case of linear specifications.
I then propose an estimator which makes use of control functions to cor-
rect for the endogeneity of X∗h. I rely throughout on standard assumptions
from the control function literature and estimate Engel curve parameters
via a generalized method of moments procedure. The result I provide may
be extended to allow for exogenous error-free regressors, thus providing a
practical way to estimate more general demand functions. The finite sam-
ple properties of the proposed estimator are evaluated with a Monte Carlo
simulation study and compared to those of alternative estimators. Finally,
I provide an empirical application to show how the method we propose can
be applied to real data.

3.2 Identification

3.2.1 Exogenous Total Expenditure

I will consider identification of the Engel curve for the i-th good, since
the whole system of I equations is recovered by treating each good sepa-
rately and discarding the I-th equation which is uniquely identified by the
summing-up properties of demand functions. Assume that:

W ∗ih =
K∑
j=0

bij(logX∗h)j + εih, (3.2)

14
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where K is a positive integer. To ease notation, in the remainder of the
Chapter I will omit the subscript h from all variables. Identification and
estimation of (3.2) is of particular interest in economics since it defines
the shape of the Engel curves for the subset of goods under study. This
specification is quite general and underpins many empirical specifications
found in the literature. In particular, most budget shares models entail Engel
curves which are polynomials in logX∗. Notable examples are the AIDS
(Deaton and Muellbauer, 1980) for K = 1, or the Quadratic AIDS (Banks,
Blundell, and Lewbel, 1997) which corresponds to (3.2) with K = 2. I derive
my result for a general K-th order polynomial for the sake of completeness,
though most of the application would deal with K ≤ 2. This follows from the
fact that, if I restrict the attention to exactly aggregable demand systems,
Gorman (1981) proved that the rank is at most three.

Identification of (3.2) is trivial when Y ∗i is observed since, when E[εi|X∗] 6=
0, a standard 2SLS estimator would provide consistent estimates of b =
(b0, . . . , bK). Here I consider the case in which Y ∗i , and thus X∗, is unob-
served. Instead its mismeasured counterpart Yi is observed, such that:

Yi = Y ∗i +X∗νi. (3.3)

This is consistent with (possibly correlated) measurement errors on all goods.
The rationale behind such a specification for the measurement error follows
from the fact that summing up over goods I obtain a classical measurement
error on logX∗, as:

X =
I∑
i=1

Yi = X∗

(
1 +

I∑
i=1

νi

)
= X∗V, (3.4)

with V = 1 +
∑I

i=1 νi, and then:

logX = logX∗ + log V. (3.5)

This also allows for the variance of measurement error on expenditure levels
to increase with total expenditure, a feature usually encountered in the data.
Note that (3.3) together with (3.2) implies:

Wi =
W ∗i + νi

V
, (3.6)

which shows how the measurement error enters non-linearly on the left hand
side of equation (3.2). The following set of assumptions will provide the basis
for the identification of the Engel curve parameters when total expenditure
is exogenous.

Assumption 3.1. Let (X∗, X, Yi, Z, εi, νi) be a vector of i.i.d. random vari-
ables such that:
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(i) E[X|Z] 6= 0,

(ii) E[εi|Z] = 0,

(iii) E[νi] = 0 with νi⊥(X∗, Z, εi).

Assumptions (i) and (ii) are standard and ensure the validity of the in-
strument, while (iii) implies that the measurement errors are independent of
total expenditure.1 Full independence is required due to the non-linearities
in the relationships considered. Note that (iii) also implies E[V ] = 1.

Under Assumption 3.1 by multiplying either side of (3.6) by X = X∗V
and taking conditional expectations with respect to Z it is (see Lewbel 1996):

E[XWi|Z] = E

[
X∗VW ∗i

V
|Z
]

+ E

[
X∗V νi
V

]
,

=
K∑
j=0

bijE[X∗(logX∗)j |Z] + E[X∗εi|Z]. (3.7)

Lewbel (1996) shows that, under Assumption 3.1, unobservable moments on
the right hand side of the above equation may be expressed in terms of mo-
ments that involve observable variables. To see this consider identification
for the K = 1 case, which I will maintain throughout as running example
(a general identification result will be given in Theorem 3.1). There is:

E[X∗|Z] = E[X|Z], (3.8)
E[X∗ logX∗|Z] = E[X logX|Z]− E[X|Z]E[V log V ], (3.9)

and by using X = X∗V :

E[X∗εi|Z] = E[Xεi|Z]. (3.10)

Substitution of (3.8), (3.9) and (3.10) into (3.7) yields:

E[Yi|Z] = (bi0 − bi1E[V log V ])E[X|Z] + bi1E[X logX|Z] + E[Xεi|Z].

When X∗ is exogenous (that is when E[εi|X∗] = 0) the last term in the
above equation is zero. Thus bi1 is identified and consistent estimates may
be obtained through a 2SLS regression of Yi on X and X logX with no
constant terms using Z as an instrument. Identification of bi0 follows along
the same lines exploiting similar expressions for E[X lWi|Z], with l ≥ 1.

Example 1
In order to fix ideas suppose the data are generated from model (3.1) where:

εi ∼ N(0, σ2
ε),

1In general Z may represent a vector of valid instruments, as it will be considered in
the empirical example below.
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X∗ is log-normally distributed and an instrument is available such that:

logZ ∼ N(µZ , σ2
Z),

with E[εi|Z] = 0. If X∗ is exogenous, under Assumption 3.1 the random
variable log ξ is independent of εi in the following first stage regression:

logX∗ = γ0 + γ1 logZ + log ξ, (3.11)

with log ξ ∼ N(0, σ2
ξ ). Measurement error V is defined as in equation (3.5)

and independent of X∗, such that:

log V ∼ N(−σ2
V /2, σ

2
V ). (3.12)

Note that E[log V ] < 0 to ensure that E[V ] = 1, which is an assump-
tion I maintain in what follows. This setting is of particular interest since
there is widespread evidence that consumption is log-normally distributed
(as documented by Battistin, Blundell, and Lewbel 2009). This, under the
assumption that the measurement error is independent of total expenditure,
implies that both X∗ and V are log-normally distributed. Here X∗ is inde-
pendent of εi, hence E[X∗εi|Z] = 0 and Lewbel’s (1996) Theorem is readily
applied to provide identification of the parameters of interest bi0 and bi1.

3.2.2 Endogenous Total Expenditure

In what follows I will relax the exogeneity assumption E[εi|X∗] = 0, and
will consider conditions which allows us to express E[Xεi|Z] in terms of
observable moments.

To this end I use a control function approach following Imbens and
Newey (2009). As shown by Hahn and Ridder (2010), it is always possible
to write X as a function of the instrument Z and an independent error term
η such that X = g(Z, η). In particular let FX|Z(x|z) ≡ Pr(X ≤ x|Z = z) be
the conditional distribution of X given Z, and define the following random
variable:

η ≡ FX|Z(X|Z), (3.13)

so that η is uniformly distributed and independent of Z. By defining
g(z, e) ≡ F−1(e|z), where the inverse is computed with respect to the first
argument, it is:

X = g(Z, η), Z⊥η.

Identification under endogeneity and possible mismeasurement of total ex-
penditure will build upon the following assumption:

Assumption 3.2. Let (εi, Z, η) be a vector of iid random variables such
that:

E[εi|Z, η] = E[εi|η] ≡ λi(η).
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This is a standard assumption in the control function literature. This
for instance would hold if Z was independent of εi, but it is slightly weaker
than that, allowing εi to be heterosckedastic.2

Using the law of iterated expectations, it follows from Assumption 3.2
that:

E[Xεi|Z] = E[g(Z, η)εi|Z],

= E
{
g(Z, η)E[εi|Z, η]|Z

}
,

= E[g(Z, η)λi(η)|Z],

where E[λi(η)] = 0. Note that, since η is uniformly distributed in [0,1], it
is:

E[g(Z, η)λi(η)|Z] =
∫ 1

0
g(z, η)λi(η)dη. (3.14)

Now consider three possible specifications for the functional g(z, η):

(i) g(z, η) is additively separable in its arguments, that is g(z, η) = h1(z)+
h2(η). It follows from (3.14) and the fact that E[λi(η)] = 0 that:

E[Xεi|Z] = f(Z)
∫ 1

0
λi(η)dη +

∫ 1

0
h(η)λi(η)dη,

= Cov(h(η), εi), (3.15)

which is a constant with respect to Z.

(ii) g(z, η) is multiplicatively separable in its arguments, that is g(z, η) =
f(z)h(η). Then there is:

E[Xεi|Z] = f(Z)
∫ 1

0
h(η)λi(η)dη,

= f(Z)Cov(h(η), εi).

(iii) g(z, η) is non-separable. In this case a close form is no longer available
since:

E[Xεi|Z] =
∫ 1

0
g(Z, η)λi(η)dη,

= τ(Z),

where τ(·) is an unknown function of Z which depends on the form of
λi(·).3

2Note that this is not exactly the same of assuming that δ⊥Z in the error-free first
stage X∗ = Z + δ, though in practice these two assumptions are very close.

3Since λi(·) is unknown, formal identification when g(z, η) is non-separable in its ar-
guments would require regularity conditions on the form of λi(η), in order for this to
be suitably approximated by some basis functions. However this is beyond the scope
of the present thesis and left for future research, since in most of the applications the
multiplicative separability will be a reasonable assumption to make.
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Example 1 (continued)
Suppose:

Cov(εi, log ξ) = σεξ 6= 0,

then it immediately follows that:

E[X∗εi|Z] 6= 0,

and the the usual results in Lewbel (1996) may not be applied. However, in
this fully parameterized model, using (3.5) and (3.11) we may write:

logX = γ0 + γ1 logZ + log ξ + log V,

or alternatively:
X = exp{γ0 + γ1 logZ}V ξ,

with log(V ξ) ∼ N(−σ2
V /2, σ

2
V +σ2

ξ ). Now according to equation (3.13) there
is:

η ≡ FX|Z(X|Z) = Φ
(

X

exp{γ0 + γ1 logZ}

)
,

where Φ(·) is the conditional distribution function of a lognormal distribu-
tion with parameters −σ2

V /2 and σ2
V + σ2

ξ . It thus follows that X can be
rewritten in terms of η as:

X = exp{γ0 + γ1 logZ}Φ−1(η),

implying that g(z, η) is multiplicatively separable and f(z) = exp{γ0 +
γ1 log z}, which in turn yields:

E[Xεi|Z] = exp{γ0 + γ1 logZ}Cov
(
Φ−1(η), εi

)
.

I can now state the main identification result for the generic K-th order
polynomial case.

Theorem 3.1. Let equations (3.2) and (3.5) and Assumptions 3.1 and 3.2
hold. For any integer l ≥ 1 for which E[V l log V ] and E[νiV l−1] are finite,
it is:

E[X lWi|Z] =
K∑
t=0

βiltE[X l(logX)t|Z] + τi(Z),

where:

βilt =
E[V l−1νi]
E[V l]

1(t = 0) +
K∑
j=0

bijE[V l−1]γj−t1(j − t ≥ 0), (3.16)
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and γt = (−1)t E[V l log V ]t

E[V l]t+1 , while:

τil(Z) ≡ E[V l−1]
E[V l]

∫ 1

0
g(Z, η)lλi(η)dη,

and λi(η) = E[εi|η] is a generic function such that
∫ 1
0 λi(η)dη = 0.

The proof, which is given in the Appendix, is a generalization of Theorem
1 in Lewbel (1996) using Assumption 3.2 to characterize E[Xεi|Z]. When
total expenditure is exogenous it is E[εi|X∗] = E[εi|η] = 0, which is a
special case of Theorem 3.1 with λi(η) ≡ 0. It is straightforward to see that
the coefficients of interest are identified as in Lewbel (1996), who exploits
the fact that bi is uniquely determined from knowledge of βlt for l ≥ 1. In
order to see this suppose K = 1 and l = 1. It then follows from equation
(3.16) that bi1 = β11, while under the assumption that V is log-normally
distributed it may be shown that bi0 = β10 + β11 log(β11/β21)/2; see Lewbel
(1996) for more details.

Theorem 3.1 implies that when E(εi|X∗) 6= 0 and X∗ is mismeasured,
standard OLS and 2SLS estimation would not yield consistent estimates of
the parameters of interest. The following theorem, whose proof is derived
in the Appendix, gives the expression for the asimptotic bias of the 2SLS
estimator.

Theorem 3.2. Let equation (3.2), (3.5) and Assumption 3.1 hold, then

E[Wi|Z] =
K∑
t=0

β2SLS
it E[(logX)t|Z],

where

β2SLS
it = E[νihV −1

h ]1(t = 0) +
K∑
j=0

E[V −1
h ]bijγj−t1(j − t ≥ 0) (3.17)

and γt = (−1)tE[log V ]t.

The coefficients β2SLS
it in Theorem 3.2 may be interpreted as the proba-

bility limit of the 2SLS regression of Wi on a K-th order polynomial in logX
using Z as instrument. An interesting implication of the Theorem 3.2 is the
following:

Corollary 3.3. Equation (3.17) implies

β2SLS
iK = E[V −1]biK .
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Corollary 3.3 shows that the 2SLS bias for the highest order coefficient of
the polynomial specification (3.2) is proportional to E[V −1]. It follows from
Jensen’s inequality that E[V −1] > E[V ]−1 = 1, hence the 2SLS estimator
provides upward biased estimates in magnitude of the coefficient biK . It is
also worth noting that by taking a second order Taylor series expansion of
E[V −1] around 1 it is:

E[V −1] ≈ E[V ] + V ar[V ] = 1 + V ar[V ]. (3.18)

Equation (3.18) shows that the magnitude of the bias is approximately pro-
portional to the variance of the measurement error, with the approximation
being exact if V is log-normally distributed. This suggests an alternative
identification strategy since β2SLS

iK /βiK = E[V −1]. Under the assumption
of log-normality of the measurement error, for instance, this is enough to
identify the distribution of V and then bi is also identified.

3.3 Estimation

The estimator I propose follows directly from Theorems 3.1 and 3.2. It
is based on a GMM procedure with the addition of a control variable to
correct for the endogeneity of the unobserved true regressor. The nature of
the control variable will depend crucially on the assumption made on the
form of g(Z, η). If g(·) is additively separable in its arguments, then bi may
be estimated from the following regression functions:

X lWi = αi +
K∑
j=0

βijX
l(logX)j for l = 1, 2, . . .

using Z as instrument.
Similarly if g(·) is multiplicatively separable, that is g(z, η) = f(z)h(η),

then the estimation is performed in two stages:

1. Recover an estimate for the conditional mean of X given Z: f̂(z).

2. Run the following regressions:

X lWi = αif̂(Z) +
K∑
j=0

βijX
l(logX)j for l = 1, 2, . . . (3.19)

using Z as an instrument.

Once the βij coefficients are estimated, the parameters of interest are
obtained from equation (3.16) in a way completely similar to Lewbel (1996),
using the identification result in Theorem 3.1.
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The estimation of the parameters is computationally more demanding
if we don’t make any assumption regarding the form of g(·). In this case
it is worth noting that g(·) is identified from the knowledge of the couple
(X,Z) upon inversion of (3.13). In particular let F̂X|Z(x|z) be an estimator
for the conditional distribution function of X given Z. An example of a
consistent estimator for the conditional distribution function F (·|·) may be
found in Imbens and Newey (2009). Consequently an estimator for g(z, η)
is F̂−1

X|Z(x|z). Note that this could also be used to test previous assumptions
regarding the functional form of the first stage equation. Now using the
fact that η is by construction uniformly distributed and by approximating
λi(η) with a polynomial, that is λi(η) =

∑J
j=0 δjη

j for some constant J 4,
we obtain the desired control function by numerically integrating

τ̂il(Z) =
∫ 1

0
F̂−1
X|Z(X|Z)lλi(η)dη

It follows from Theorem 3.1 that applying 2SLS to the following regression
functions

X lWi = τ̂il(Z) +
K∑
j=0

βijX
l(logX)j for l = 1, 2, . . . (3.20)

would consistently estimate the parameters as above.
Theorem 3.2 provides an alternative, more efficient, way of estimating

E[V −1]. Under the assumption that V is lognormally distributed, for in-
stence, this would allow the estimation of both the distribution of V and
the parameter of interest b0, without relying on equations (3.3), (3.19) and
(3.20) with l ≥ 2. This result follows from Corollary 3.3, which shows that
E[V −1] is identified by the ratio of estimates of b1 obtained by applying
simple 2SLS regression of Wi on a polynomial in logX, and by equation
(3.19) or (3.20) with l = 1. The parameter b0 is then obtained as a function
of the estimated coefficients in the usual way. The efficiency gain with this
procedure comes from the fact that the simple 2SLS estimator, though being
biased, has a smaller variance than the proposed estimator for b1, since the
latter are obtained by multiplying each side of the equation by X, hence
greatly increasing the variance of the error term. Correcting the bias of IV
is then more efficient than using the consistent estimator proposed above.
It is finally worth noting that if measurement error is present in only one
good, then bi0 may be recovered starting from the simple 2SLS estimate of
the constant term, which further improves the performance of the estimator.

4Note that the fact that E[εi] = 0 puts restrictions on the coefficients δj , namely

E

"
JX

j=0

δjη
j |η

#
= 0

.
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Example 1 (continued)
It follows from Theorems 3.1 and 3.2 that

βi1 = bi1 β2SLS
i1 = bi1E[V −1].

Then by equation (3.12) it is E[V −1] = exp(σ2
V ) which implies

σ̂2
V = log

(
β̂2SLS
i1

β̂i1

)
. (3.21)

Equations (3.17) and (3.21), under the assumption that νi is the only source
of measurement error, allows us to estimate the constant term bi0 as

b̂i0 =
β̂2SLS
i0 − 1
eσ̂2 + 1− σ̂2β̂i1

2
.

3.4 Monte Carlo Simulation

In order to asses the finite sample properties of the proposed estimator a
Monte Carlo simulation study is performed. The goal of this exercise is to
compare the endogeneity-corrected estimator to the simple IV estimator,
for which an expression for the bias is given in Section 3.2, and to the
one proposed by Lewbel (1996). A simple model with only two goods is
considered, hence the whole set of Engel curves reduces to one equation.
Parameters are calibrated on 1995 SHIW food data for married couples
without children. The instrument enters the first stage equation in the
following way

logX∗ = γ0 + γ1 logZ + log ξ (3.22)

with

log ξ ∼ N(0, 0.07) logZ ∼ N(10.5, 0.34)
γ0 = 3.65 γ1 = 0.62.

I consider specifications for the true budget shares model up to a quadratic
term in logX∗, that is

W ∗i = bi0 + bi1 logX∗ + bi2(logX∗)2 + εi (3.23)

where
εi = θ1ξ + ψi

with ψi ∼ N(0, σ2
ψ). The parameters θ1 and σ2

ψ are suitably chosen such that
Corr(εi, ξ) = 0, 0.3, 0.5 and 0.7 to simulate different extents of endogeneity,
while we set V ar(εi) = 0.0025. Two specifications are considered:
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(i) linear - that is bi0 = 1.6, bi1 = −0.11, bi2 = 0.

(ii) quadratic - with bi0 = −1, bi1 = 0.42, bi2 = −0.04.

Measurement error of the form outlined in Section 3.2 is introduced. In
particular only Y ∗1 is affected by error and logX is such that:

logX = logX∗ + log V (3.24)

where log V ∼ N(−σ2
V /2, σ

2
V ). Different amounts of meaurement errors are

considered by setting the noise to signal ratio, that is V ar(log V )
V ar(logX∗) , to 0, 0.1,

0.3 and 0.5, which corresponds to values of σV of 0, 0.13, 0.26 and 0.4 re-
spectively. I compare the performances of the proposed estimator with the
inconsistent alternatives given by OLS, 2SLS and Lewbel’s estimator over
10000 replications. Lewbel’s estimator is computed as in Lewbel (1996),
assuming log-normality of the measurement error and using the same func-
tions of Z as instruments. The proposed estimator is computed under the
assumption of multiplicative separability; the first stage is parametrically
estimated through a linear regression of logX on logZ.

The results of the simulation for the linear and quadratic specifications
are given in the tables below, showing that the proposed estimator outper-
forms the other methods especially when the extent of both endogeneity and
measurement error is severe.
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3.5. APPLICATION

3.5 Application

Section 3.3 proposes an estimator for the coefficients of an Engel curve.
Here I apply such an estimator to data from the 2006 Survey on House-
hold’s Income and Wealth (SHIW). In order to select a demographically
homogeneous sample, so that bij may be treated as constants, only married
couples living in the north of Italy with no children are included, leaving us
with an actual sample of 757 households.

In the following Xh is household’s total expenditure, while Wih is the
proportion ofXh spent on food by household h. The specification we adopt is
the usual Working-Leser (Working 1943, Leser 1963) functional form, which
corresponds to (3.2) with K = 1. This specification is chosen based on the
widespread evidence that it is particularly suited for modeling food Engel
curves (Banks, Blundell, and Lewbel 1997, Blundell, Duncan, and Pendakur
1998).

Following the existing literature, real-income (Z) is used as an instru-
ment, being highly correlated with total expenditure and unlikely correlated
with the measurement error in expenditures. The functions of the instru-
ment Z used are: Z, Z logZ, Z2 and Z2 logZ, which are the same functions
of the instrument proposed by Lewbel (1996). The first stage regression
equation is assumed to be multiplicatively separable, which is equivalent
to assume that logX depends linearly on logZ. Figure 3.1 reports the
scatter-plot of logX on logZ, showing that the conditional mean of logX
is reasonably approximated by a linear function in the logarithm of income.

Table 3.5 reports the estimates for the intercept and the linear coeffi-
cient obtained by applying OLS and IV. As expected they are inconsistent,
suggesting that measurement error may be an issue here, along with the
presence of endogeneity of total expenditure X∗. In order to asses to what
extent these sources of bias affect the results I report the estimates of the
parameters of interest obtained using Lewbel’s (1996) estimator and the
estimating procedure proposed in Section 3.3.

OLS IV

bi0 bi1 bi0 bi1

1.5043 -.1509 1.2676 -.1175
(.0743) (.0105) (.1229) (.0174)

Table 3.5: Standard OLS and IV estimates. Standard errors in parentheses.

The results are given in Table 3.6 along with an estimate of the variance
of the measurement error V . The estimates for the linear coefficient seem
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Figure 3.1: Scatterplot of logarithms of total expenditure vs. logarithms of
real-income.

to be very close to one another, suggesting that the extent of measurement
error is in this case very limited, as reported by the estimated variance of
V , which appears to be not significantly different from zero.

Exogenous Endogenous

bi0 bi1 bi0 bi1 Var[V]

1.1696 -.1066 1.2544 -.1101 .067
(.1202) (.0164) (.114) (.0202) (.1627)

Table 3.6: Estimates obtained allowing for exogenous or endogenous total
expenditure. Standard errors in parentheses.

3.6 Chapter Summary

In this Chapter I proposed an estimator for Engel curves in which budget
shares are polynomials in the logarithms of total expenditure which accounts
for the presence of two sources of endogeneity: measurement error on total
expenditure and endogeneity of unobserved total expenditure. The estima-
tor makes use of a standard control function assumption to derive consistent
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3.6. CHAPTER SUMMARY

estimates of the parameters of interest and follows a GMM procedure, so
that it is readily implementable on available statistical softwares. The pro-
posed method also depends crucially on the assumption we are willing to
make on the form of the first stage equation.

The small sample properties of such an estimator have been analized
and the results show a significant improvement in terms of reduced bias with
respect to alternative (asymptotically biased) available estimators, especially
when the extent of both endogeneity and measurement error is severe.
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Chapter 4

Errors in Variables Models
with Errors on Both Sides of
the Equation

In this Chapter I study identification and estimation of general nonparamet-
ric regression models where both the dependent variable Y and a regressor
X are mismeasured, and the measurement errors in Y and X are correlated.
The resulting model is applied to demand estimation, where Y is quantity or
expenditures demanded of some good or service, and X is total consumption
expenditures on all goods.

4.1 Introduction

In most consumption data sets (e.g., the US Consumer Expenditure Survey
or the UK Family Expenditure Survey), total consumption X is constructed
as the sum of expenditures on individual goods, so by construction any mea-
surement error in Y will also appear as a component of the measurement
error in X. This peculiarity of consumption data invalidates the use of most
of the non-linear errors in variables models in the literature. The identifica-
tion result I provide is then of particular interest in the estimation of Engel
curves. This result, however, is not confined to Engel curves. Similar prob-
lems may arise in profit, cost, or factor demand equations in production,
and in autoregressive or other dynamic models where sources of measure-
ment error are not independent over time.

The identification procedure employed will also allow me to distinguish
and separately measure sources of error that are due to preference (or other
structural or behavioral) heterogeneity from measurement error. This is
important in applications because many policies may depend on the dis-
tribution of structural unobserved heterogeneity, but not on measurement
error. For example, the effects of an income tax on aggregate demand or
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CHAPTER 4. ERRORS IN VARIABLE MODELS WITH ERRORS ON BOTH SIDES

savings depends in general on the complete distribution of income elasticities
in the population. Most empirical analyses implicitly or explicitly attribute
either none or all of estimated model errors to heterogeneity.

I assume that the measurement errors in X and Y are correlated with
each other but are otherwise classical, and so are independent of the un-
derlying true values of these variables, and hence are also independent of
unobserved heterogeneity. The identification strategy is an extension of
Schennach (2007), who provides identification of nonparametric regression
models with a classically mismeasured continuous regressor using informa-
tion on the conditional expectations of Y and X given an instrument Q. My
extension adds a measurement error term to the Y equation, and the fact
that it is classical imposes constraints on the second moment of Y given X
that provide the additional identifying information required.

4.1.1 The Setup

I consider the following non-linear and non-separable model:

Y ∗i = H(X∗i , Ui), (4.1)

where i indexes observations, Y ∗i is a scalar random dependent variable,
which is an unknown function H(·, ·) of a scalar random regressor X∗i , and
a random scalar or vector of unobservables Ui, which can be interpreted
as a regression error or unobserved heterogeneity in the population. The
extension to inclusion of other (observed) covariates is straightforward, so
they are dropped for now. The primary goal will be identification (and
later estimation) of E[Y ∗ki | X∗i ] and, by extension, identification of the
conditional distribution of Y ∗i given X∗i .

The difficulty will be that both Y ∗i and X∗i are measured with error. In
particular only Yi and Xi are observed according to one of the following
measurement error specifications:{

Yi = Y ∗i +X∗lSi,
Xi = X∗i +Wi,

{
Yi = Y ∗i +X∗lSi,
Xi = X∗iWi,

(4.2)

with Si and Wi being unobserved measurement errors that may be correlated
with each other.

Identification of these models is required in order to account for the
specific nature of Engle curves. Equation (4.1) may be interpreted as an
Engel curve when Y ∗i is expenditure on one good, X∗i is total expenditure and
Ui is (un)observed preference heterogeneity. In this spirit the measurement
error specifications employed encompass most of the specifications used in
the literature. In particular l = 1 in the second specification corresponds
to the classical measurement errors on the logarithm of total expenditure
introduced in Chapter 3.
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4.1. INTRODUCTION

Similar models have been considered by Hausman, Newey, Ichimura,
and Powell (1991) and Hausman, Newey, and Powell (1995) and Lewbel
(1996), who provide identification for polynomials in levels or logarithms
respectively, under the assumption of classical measurement errors in the
logarithms of total expenditure. Another closely related work is that of
Schennach (2007) who provide identification for general non-linear specifi-
cations while assuming additive measurement errors. Moreover her result
does not allow for the presence of measurement errors on the dependent vari-
able which are correlated with measurement errors on the covariate. The
purpose of this Chapter is that of unifying these results and providing an
identification result for general non-linear models under different specifica-
tions of the measurement error and explicitly allowing for the presence of
correlated measurement errors on both sides of the equation. This is rel-
evant in the spirit of my thesis since consistent estimates for very general
specifications of Engel curves with measurement errors can not be obtained
by applying Schennach (2007).

The interest in more general specifications of the function H(·, ·) follows
from the nature of Engel curves. There is no clear economic reason to assume
additive separability between total expenditure and the error term. In fact
this poses severe restrictions on households behavior and the specification of
Engel curves which are consistent with utility maximization often involves
error terms which enters non-additively in the specification (see Blundell,
Duncan, and Pendakur 1998). Furthermore recently a growing stream of
research has focused on the specification of very flexible Engel curves speci-
fications (Blundell, Chen, and Kristensen 2007, Lewbel and Pendakur 2009).

Identification is obtained by assuming the existence of a set of instru-
ments Qi such that:

X∗i = m(Qi) + Vi,

where the function m is unknown but is defined by m(Qi) = E (X∗i | Qi)
and Vi is independent of Qi. As discussed in the previous Chapter the
independence assumption is common in the control function literature when
dealing with non-linear models and is crucial to the results below, hence
it will be mantained throughout the Chapter. As it is also common in
the non-linear models literature I assume mean zero measurement errors
which have the classical properties that they are mean zero with Si,Wi ⊥
Y ∗i , X

∗
i , Qi. However these strong independence assumptions are required

only if the object of interest is the entire conditional distribution of Y ∗i given
X∗i . In particular, if one is only interested in the conditional mean, then the
assumption of mean independence between Si,Wi and X∗i is enough.

4.1.2 Methods

The result I provide is an extension of the identification result in Schennach
(2007). In particular she obtains identification of the conditional mean of Y ∗i
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CHAPTER 4. ERRORS IN VARIABLE MODELS WITH ERRORS ON BOTH SIDES

given X∗i , by exploiting properties of the Fourier transform of the observed
conditional expectations of Yi and XiYi given Qi, under the assumption that
the measurement error in Y ∗i is uncorrelated with Wi. Such transforms are
not proper functions, in general, but more complicated objects called gen-
eralized functions, being the Fourier Transform of not absolutely integrable
functions. A popular example of a generalized function is the Dirac’s delta
function (δ(ζ)), which is formally defined as the function such that:∫

φ(ζ)δ(ζ)dζ = φ(0),

for any sufficiently smooth function φ(ζ). It is easy to see that there exists no
ordinary piecewise continuous function which satisfies the integral equation
above1, and the introduction of generalized function is required in order to
deal with these objects.

However, for the purpose of the present Chapter it is important to note
that a generalized function may always be decomposed into the sum of an
ordinary component, that is a well behaved function, and a purely singular
one, which may be seen as a linear combination of generalized derivatives of
the Dirac’s delta function (see Lighthill 1962 and the supplementary material
in Schennach 2007 for details). Schennach (2007) studies identification of
the conditional mean of Y ∗i given X∗i and proves that its identification by
knowledge of just the ordinary component of the Fourier transforms of the
observed conditional moments.

The extension I provide builds on the fact that allowing for correlated
measurement error on Y ∗i does not affect the conditional mean of Yi given
Qi, but shifts the conditional expectaton of XiYi given Qi by the term
E[SiWi|Qi]. Under the crucial identifying assumption that the covariance
between Si and Wi is uncorrelated with the instruments it is E[SiWi|Qi] =
E[SiWi], meaning that the observed conditional cross-moment is shifted by
a constant with respect to the instruments Qi. This is important since the
Fourier transform of a constant is a purely singular generalized function, im-
plying that the ordinary component of the Fourier transform of E[XiYi|Qi]
remains unchanged. Since identification relies on the ordinary components
of the Fourier transform of the observed conditional moments considered,
the conditional mean of interest is still identified. This argument may be
further generalized to identify higher order conditional moments, that is
E[Y k

i |X∗i ].
However, in most applications the objects of interest are conditional mo-

ments of the form E[Y ∗i
k|X∗i ]. When dealing with Engel curves we are able

to separately identify the effect on the observed Yi of preferences (Ui) and
measurement errors (Si) and hence obtain identification of the conditional

1The Dirac’s delta function may also be seen as the limit of a gaussian density as the
variance approaches zero.

36



4.2. IDENTIFICATION OF THE CONDITIONAL DISTRIBUTION OF THE
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moments of interest. By extension the conditional conditional distribution of
Y ∗i given X∗i is then identified. This is accomplished by employing two differ-
ent identification strategies that depend on the measurement error structure
considered. The first strategy is based on the insight that any theory con-
sistent Engel curve has the property that H(0, Ui) ≡ 0, while the second
strategy makes use of the specific dependence structure between Wi and Si
implied by the definition of Xi and Yi in the Engel curve framework.

Knowledge of the conditional distribution of Y ∗i given X∗i , and hence of
the distribution of the preference heterogeneity in the population is of par-
ticular interest in policy analysis. Think for instance at the effect on demand
of the introduction of a tax cut which shifts households’ consumption level
from x̄∗ to x̄∗0. This would not only affect households’ conditional mean but
it would in general alter the entire distribution of demand. While traditional
estimation techniques would only allow the estimation of the policy effect on
the mean of the distribution, knowledge of the distribution of Ui allows us
to focus on the distributional effects of such policies. This information is of
particular interest to the construction of important policy indicators, such
as the proportion of households below some specified level of consumption
under different policy regimes.

The identification results contained in this Chapter will be discussed ac-
cording to the following plan. First, I will discuss identification of E[Y k

i |X∗i ]
assuming the availability of a set of instruments Qi. I will then consider iden-
tification of E[Y ∗i

k|X∗i ], which for the problem at hand can be interpreted
as the object of interest if one were to work on Engel curves estimation.
The proofs of these results will be given in Theorems 4.2 and 4.3 respec-
tively. Section 4.4 finally proposes a consistent estimator for a particular
specification of Engel curves.

4.2 Identification of the Conditional Distribution
of the Observed Outcome

In the following I discuss identification of the model:

Y ∗i = H(X∗i , Ui), (4.3)
X∗i = m(Qi) + Vi, (4.4)

where Qi is a vector of instruments, Vi is a scalar random variable inde-
pendent of Qi and Ui is a vector of disturbances. The function H(·, ·) is a
general, possibly nonlinear, function of X∗i and Ui. The scalar random vari-
able Y ∗i is unobserved, but we observe its mismeasured counterpart given
by:

Yi = Y ∗i +X∗i
lSi, (4.5)

for some non-negative integer l. The empirically most relevant frameworks
would entail l = 0 or l = 1, but we consider identification for a general l for
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sake of completeness. The generalization to l > 0 is required to deal with
measurement errors whose variance increases with X∗i . Empirical findings
suggest that such a situation actually arises in the Engel curves framework
as discussed in Section 4.3, but this could also hold in more general contexts.

The random variable X∗i is also measured with error, with Xi satisfying
either:

Xi = X∗i +Wi, with E[Wi] = 0, (4.6)

or
Xi = X∗iWi, with E[Wi] = 1. (4.7)

Equations (4.6) and (4.7) specifically allow measurement error on the co-
variate X∗i to enter additively or multiplicative, while retaining the property
E[Xi] = E[X∗i ]. Let µk(x∗i ) = E[Y k

i |X∗i ] be the k-th conditional moment
of the observed random variable Yi given X∗i . The goal of this Section is
to provide identification of µk(x∗i ) for k = 1, . . . ,K, by only knowledge of
(Yi, Xi, Qi) where Xi is defined by either (4.6) or (4.7).

The setup here is similar to the one in Schennach (2007), the main
difference being the presence of measurement error on the dependent variable
which is explicitly allowed to be correlated with Wi. Moreover the focus here
is not only on the first conditional moment but also on higher order moments.
This is in contrast with the traditional literature on non-linear errors in
variables models, which is tipically concerned with the identification of the
conditional mean. Knowledge of higher order moments is required to provide
identification for the entire conditional distibution of Yi given X∗i . The above
model may be easily generalized to include correctly measured regressors in
the specification of Y ∗i and the identification result below would still apply
after a straightforward generalization of the identifying assumptions.

Let us assume the following:

Assumption 4.1. The random variables Qi, Ui, Vi, Wi and Si are jointly
i.i.d. and

(i) E[W k
i |Qi, Vi, Ui] = E[W k

i ] for k = 1, . . . ,K,

(ii) E[Ski |Qi, Vi, Ui] = E[Ski ] for k = 1, . . . ,K,

(iii) Vi is independent of Qi,

(iv) E[WiSi|Qi] = E[WiSi].

Assumption 4.1 is fairly standard in the literature on non-linear errors in
variables models, the main difference being that, since I want to estimate the
first K conditional moments, mean independence is in general not enough
and (i) and (ii) need to hold for k = 1, . . . ,K. Moreover (iv) requires that
the correlation between the measurement errors does not depend on the in-
struments Qi, this is a crucial assumption for the identification result below.
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Independence of the instruments Qi from the errors (Wi, Si) would satisfy
this assumption, but (iv) is a considerably weaker requirement. Assumption
4.1 (iii) is also standard in the measurement error literature and is mainly
required to deal with the non-linearities in the specification of H(X∗i , Ui).

Note that by Assumption 4.12:

E[Xi|Qi] = m(Qi),

hence m(Qi) is non-parametrically identified and we may rewrite without
loss of generality equation (4.4) as:

X∗i = Zi − Ṽi (4.8)

in which we set Zi ≡ m(Qi) and Ṽi ≡ −Vi. Following Newey (2001) and
Schennach (2007) we will show that knowledge of the conditional moments
E[Y k

i |Zi], for k = 1, . . . ,K, and E[XiYi|Zi] is enough to identify µk(x∗i ) for
k = 1, . . . ,K. In the remainder of the paper, for ease of notation, we will
drop the subscript i when not needed.

It follows from Assumption 4.1 that:

E[Y k|Z] = E

[[
H(X∗, U) +X∗lS

]k
|Z
]
,

= E

[
E

[[
H(X∗, U) +X∗lS

]k
|X∗, Z

]
|Z
]
,

= E[µk(x∗)|Z], (4.9)

and, if (4.6) holds, we have:

E[XY |Z] = E
[
(X∗ +W )

[
H(X∗, U) +X∗lS

]
|Z
]
,

= E[X∗H(X∗, U)|Z] + E[X∗l|Z]E[WS|Z],
= E[x∗µ1(x∗)|Z] + E[X∗l|Z]E[WS]. (4.10)

With a similar argument it may be shown that, if (4.7) holds instead, we
have:

E[XY |Z] = E[x∗µ1(x∗)|Z] + E[X∗l+1|Z]E[WS]. (4.11)

The proof of identification of µk(x∗) is obtained by exploiting properties
of the Fourier trasform of the conditional expectations above. In order to
guarantee that well defined objects to deal with, the following assumption
is needed:

Assumption 4.2. |µk(x∗)|, |E[Y k|Z]| and |E[XY |Z]| are defined and bounded
by polynomials for x∗ and z ∈ R and for any k = 1, . . . ,K.

2Note that Assumption 4.1 does not assume E[Vi] = 0, but equation (4.8) may always
be rewritten so that m(Qi) includes a constant and hence E[Vi] = 0.
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Assumption 4.2 essentially excludes specifications for µk(x∗) which rapidly
approach infinity like the exponential function and is crucial for the following
Lemma to hold:

Lemma 4.1. Under Assumption 4.2, equations (4.9), (4.10) and (4.11) are
equivalent to

εyk(ζ) = γk(ζ)φ(ζ), (4.12)
iεxy(ζ) = γ̇1(ζ)φ(ζ) + λiψ(ζ)φ(ζ), (4.13)

with i =
√
−1, overdots denote derivatives with respect to z and:

εyk(ζ) ≡
∫
E[Y k|Z = z]eiζzdz, γk(ζ) ≡

∫
µk(x∗)eiζx

∗
dx∗,

εxy(ζ) ≡
∫
E[XY |Z = z]eiζzdz, φ(ζ) ≡

∫
eiζvdF (v),

where F (v) is the cdf of Ṽ , λ = E[WS] and ψ(ζ) =
∫
x∗leiζx

∗
dx∗ if (4.6)

holds or ψ(ζ) =
∫
x∗l+1eiζx

∗
dx∗ if (4.7) holds.

Lemma 4.1, whose proof is given in the Appendix, is a generalization of
Lemma 1 in Schennach (2007). The objects of interest in equations (4.12)
(4.13) are the functions γk(ζ) for k = 1, . . ., while φ(ζ) is an unknown func-
tion that acts as a nuisance parameter for a fixed ζ. It is also important to
note that while φ(ζ), being the characteristic function of Ṽi, is a proper func-
tion, εxy(ζ), εyk(ζ), γk(ζ) and ψ(ζ) are more abstract generalized functions.
In this sense it is important to recall that the product of two generalized
functions is not defined, so that (4.12) and (4.13) cannot manipulated as
usual functions to get rid of the nuisance parameter φ(ζ). Also note that
the unknown quantities here are γk(ζ) and φ(ζ), while ψ(ζ) is the Fourier
transform of a power function, hence known to be equal to the generalized
derivative of the Dirac’s delta function. For a more detailed treatment of
generalized functions see Lighthill (1962) or the supplementary material in
Schennach (2007).

Assumption 4.3. It is E[|Ṽ |] <∞ and φ(ζ) 6= 0 for all ζ ∈ R.

Assumption 4.4. For each k = 1, . . . ,K there exists a finite or infinite
constant ζ̄k such that γk(ζ) 6= 0 almost everywhere in [−ζ̄k, ζ̄k] and γk(ζ) = 0
for all |ζ| > ζ̄k.

Assumptions 4.3 and 4.4 are the equivalent of Assumptions 2 and 3 in
Schennach (2007) and are quite standard in the deconvolution literature.
Since we are seeking non-parametric identification of γk(ζ) the character-
istic function of Ṽi needs to be non-vanishing, thus excluding uniform or
triangular like distributions, while γk(ζ) needs to be either non-vanishing or
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to vanish on an infinite interval. This is required in order for γk(ζ) to be
fully non-parametrically identified. However, when H(X∗, U) is paramet-
rically specified this assumption may be relaxed and the information on a
finite number of points of γk(ζ) is generally enough for identification. Fur-
thermore Assumption 4.4 essentially only rules out specifications for γk(ζ)
which exhibit sinusoidal behaviors, a situation which is not usually encoun-
tered in practice.

The following theorem states the main identification result:

Theorem 4.2. Under Assumptions 4.1-4.4, the functions µk(x∗) for k =
1, . . . ,K are non-parametrically identified. Also, if ζ̄1 > 0 in Assumption
4.4 then:

µk(x∗) = (2π)−1

∫
γk(ζ)e−iζx∗dζ,

where

γk(ζ) =
{

0 if εyk(ζ) = 0,
εyk(ζ)/φ(ζ) otherwise,

(4.14)

φ(ζ) is the characteristic function of Ṽ ≡ −V given, for |ζ| < ζ̄1, by:

φ(ζ) = exp
(∫ ζ

0

iε(z−x)y,o(ζ)
εy,o(ζ)

dζ

)
, (4.15)

and where εy,o(ζ) and ε(z−x)y,o(ζ) denote the ordinary function components
of εy(ζ) =

∫
E[Y |Z = z]eiζzdz and ε(z−x)y(ζ) =

∫
E[(Z−X)Y |Z = z]eiζzdz

respectively.

Theorem 4.2 generalizes Theorem 1 in Schennach (2007). Proof is given
in the Appendix and it follows by noting that every generalized function can
be written as the sum of an ordinary function and a linear combination of
generalized derivatives of the Dirac’s delta function, which correspond to the
purely singular component (see Schennach 2007). The last term in (4.13) is
a purely singular generalized function and then it only affects the singular
component of εxy(ζ). Since Schennach (2007) proved that φ(ζ) is identified
by knowledge of the ordinary components of εy(ζ) and εxy(ζ), allowing for
W and S to be correlated does not alter the identification of φ(ζ). The
function of interest γk(ζ) is then obtained from equation (4.12) as in (4.14),
and its inverse Fourier transform gives µk(x∗).

Theorem 4.2 provides non-parametric identification for any conditional
moment of Y given X∗. This, under the assumption that Y given X∗ has a
well-defined moment generating function, ensures the non-parametric iden-
tification of the entire distribution. Note that, if ζ̄1 = ∞, equation (4.15)
gives the expression for the characteristic function of Ṽi over its whole do-
main. The characteristic function of the unobserved X∗ (φX∗(ζ)), may then
be obtained from equation (4.8) as:

φX∗(ζ) =
φZ(ζ)
φ(ζ)

,
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where φZ(ζ) is the characteristic function of Z. The assumption of ζ̄1 =∞
encompasses most of the empirically relevant specifications for the condi-
tional mean, and then it is not very restrictive. Also note that in the proof
of Theorem 4.2 we only considered ζ̄k > 0 since the case ζ̄k = 0 only oc-
cours if µk(x∗) is a polynomial in X∗, a specification which has already been
shown to be identified by Hausman, Newey, Ichimura, and Powell (1991).

4.3 Identification of Engel curves

The previous Section established a set of assumptions under which µk(x∗)
is identified for every k. However, in applications, the objects of interest
are usually the conditional moments of the unobserved Y ∗, that is ωk(x∗) =
E[Y ∗k|X∗]. The difference between ωk(x∗) and µk(x∗) is due to the presence
of measurement error in Y ∗. While variability in µk(x∗) may be driven by
both U and S, ωk(x∗) is solely determined by the distribution of U , hence,
providing a way to disentangle the effects on Y ∗ of the structural error U
from those of measurement error S would allow the identification of ωk(x∗).
In this Section we derive a set of assumptions under which ωk(X∗), for
k = 1, . . . ,K, is identified.

To this end, exploiting the additive nature of measurement error in Y ∗,
we may rewrite the k-th conditional moment of the observed Y as:

µk(x∗) =
k∑
j=0

(
k

j

)
E[Hj(X∗, U)X∗l(k−j)Sk−j |X∗i ]

=
k∑
j=0

(
k

j

)
ωj(x∗)x∗l(k−j)E[Sk−j ],

where the second equality holds because of (ii) in Assumption 4.1. After
noting that µ0(x∗) = ω0(x∗) = 1 and by solving for ωk(x∗) we obtain:

ωk(x∗) = µk(x∗)−
k−1∑
j=0

(
k

j

)
ωj(x∗)x∗l(k−j)E[Sk−j ]. (4.16)

Equation (4.16) shows that ωk(x∗) is identified from knowledge of µk(x∗),
ωj(x∗) for j = 1, . . . , k − 1 and E[Sj ] for j = 1, . . . , k. Since µk(x∗) has
already been shown to be identified from Theorem 4.2, we need to consider
moments of the distribution of S. These are in general not identified without
additional assumptions on the dependence structure betweenW and S which
needs to be treated on a case by case basis.

When dealing with Engel curves, however, the nature of the variables
involved implies a specific dependence structure between measurement errors
which may be exploited to obtain identification of moments of S. Here we
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consider two different measurement error specifications for these kind of
models which imply classical measurement errors either in the levels or in
the logarithms of total expenditure.

Let Y ∗ and X∗ be unobserved expenditure on a single good and total
expenditure respectively. Suppose the observed expenditure on one good
is defined as Y = Y ∗ + S, then by the definition of total expenditure it is
X = X∗+W and W is a classical measurement error on levels of expenditure
with

W = S + S̃.

An alternative more used specification (see Lewbel 1996) implies Y = Y ∗ +
X∗S, which meansX = X∗W , so that logW is a classical measurement error
on the logarithms of total expenditures and by the summing up property it
is

W = S + (1 + S̃). (4.17)

Theorem 4.2 states that, under suitable conditions, µk(x∗) is identified for
every k in both of the above measurement error specifications. In particular
the former case correspond to the model in (4.3), (4.4), (4.5) and (4.6) with
l = 0, while the latter may be seen as (4.3), (4.4), (4.5) and (4.7) with
l = 1. This last setup is the one that has received most of the attention in
the literature, see for instance Hausman, Newey, and Powell (1995), Lewbel
(1996) and Newey (2001).

Let us start by considering classical measurement errors on levels of to-
tal expenditure. Identification of moments of S in this framework follows
from the restrictions imposed by utility maximization. Every theory con-
sistent Engel curve, derived from any random utility function, must satisfy
H(0, U) ≡ 0. This is because when households are given a null amount of
income, disregarding of how heterogeneous in preferences they are, the dis-
tribution of expenditures on one single good will be degenerate in zero. An
example is the very popular AIDS of Deaton and Muellbauer (1980), which
implies Engel curves in which budget shares are a linear function of the log-
arithm of total expenditure. This translates into the fact that ωk(0) = 0 for
any k ≥ 1 and we may rewrite equation (4.16) to get:

E[Sk] = µk(0)−
k∑
j=1

ωj(0)E[Sk−j ],

= µk(0). (4.18)

Hence substitution of (4.18) in (4.16) yields:

ωk(x∗) = µk(x∗)−
k−1∑
j=0

(
k

j

)
ωj(x∗)µk−j(0). (4.19)
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Equation (4.19) may then be used to iteratively compute ωk(x∗) for k =
1, . . . ,K. By extension, under the assumption of the existence of a well-
defined moment generating function for fY ∗|X∗(y∗|x∗), the conditional dis-
tribution of Y ∗ given X∗ is identified.

Now consider classical measurement errors in the logarithms of total
expenditure. The above argument does not provide identification of the
distribution of S anymore, since measurement errors in Y ∗ depend on X∗.
Here, however, we may exploit the particular dependence structure between
W and S and note that, under the assumption that S̃ is mean independent
of S in equation (4.17), E[WS] = E[S2]. More generally, using (4.17), it is:

E[W kS] = E[[S + (1 + S̃)]kS],

= E

S k∑
j=0

(
k

j

)
Sj(1 + S̃)k−j

 ,
=

k∑
j=0

(
k

j

)
E[Sj+1]E[(1 + S̃)k−j ],

which means:

E[Sk+1] = E[W kS]−
k−1∑
j=0

(
k

j

)
E[Sj+1]E[(1 + S̃)k−j ]. (4.20)

The moments E[(1 + S̃)k] are obtained with a similar argument:

E[(1 + S̃)k] = E[W k]−
k∑
j=1

(
k

j

)
E[Sj ]E[(1 + S̃)k−j ]. (4.21)

Equations (4.20) and (4.21) show that the k-th moment of the random
variable S is identified by knowledge of moments E[W jS] and E[W j ] for
j = 1, . . . , k−1. The following Theorem establishes formal identification for
these quantities.

Theorem 4.3. Let Assumptions (4.1)-(4.4) and equations (4.3), (4.4) and
(4.6) hold. Let the first K moments of X exist finite with E[X∗k] 6= 0 and
E[X∗k|Z] 6= 0 for every k = 1, . . . ,K, then the first K moments of W are
identified and:

E[W k] =
E[Xk]∑k

j=0

(
k
j

)
(−i)k−jE[Zj ]φ(k−j)(0)

. (4.22)

Furthermore if ζ̄1 = ∞ in Assumption 4.4 then the moments E[W kS] for
k = 1, . . . ,K − l are also identified and:

E[W kS] =
E[XkY |Z]− (2π)−1E[W k]

∫
(−i)kγ(k)

1 (ζ)φ(ζ)e−iζzdζ∑k+l
j=0

(
k+l
j

)
zj(−i)k+l−jφ(k+l−j)(0)

. (4.23)
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where γ
(k)
1 (ζ) is the k-th derivative of γ1(ζ) as defined in equation (4.14),

while φ(ζ) is as in (4.15).

The requirement for the first K marginal and conditional moments of
X∗ to be non-zero may seem quite restrictive. However in our setting, being
both Y ∗ and X∗ positive random variables, this is always satisfied if X∗ is
non-degenerate. This is because we are considering raw moments and not
central ones, hence we are not for instance ruling out symmetric distribu-
tions, for which the third central moment would be zero. Futhermore, the
assumption of ζ̄1 =∞, though not always satisfied, covers all the empirically
relevant frameworks, as discussed in Section 4.2.

Theorem 4.3 proves the identification of E[W kS] and E[W k], for k =
1, . . . ,K, from knowledge of γ1(ζ) and φ(ζ), which areknown to be identi-
fied under the assumptions of Theorem 4.2, E[XkY |Z], for k = 1, . . . ,K,
and observable moments of X and Z. This together with equations (4.20)
and (4.21) shows identification of the moments of S, and hence of the condi-
tional moments on interest ωk(x∗). Under the additional assumption of the
existence of a moment generating function for the conditional distribution
function fY ∗|X∗(y∗|x∗), this implies identification of the whole conditional
distribution of interest.

4.4 Estimation

I now turn to the estimation of the Engel curve defined by:

Y ∗ = β0(X∗U) + β1(X∗U) log(X∗U)

where as usual Y ∗ is unobserved expenditure on one good, X∗ is unob-
served total expenditure while U represents unobserved preferences which
enter household’s utility function. This specification is known to be consis-
tent with utility maximization and yields shape invariant Engel curves, see
Blundell, Duncan, and Pendakur (1998). Functional forms in which the error
term enters additively is indeed shown to generate unplausible restrictions
on the behavior of the system of demand from which the Engel curves are
generated, see Brown and Walker (1989) and Lewbel (2001) for a discussion
on the topic.

The measurement error structure imposed is the one implied by equa-
tions (4.5) and (4.7) with l = 1. This is the usual classical measurement
error on the logarithms of total expenditure employed in the literature. This
is done in order to allow measurement error to be correlated with the level of
expenditures and the variance of measurement errors to increase with total
expenditure, a feature usually encountered in the data.

When an instrument is available Theorems 4.2 and 4.3 ensure identi-
fiability of the conditional distribution of Y ∗ given X∗. In particular any
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conditional moment may be written as:

ωk(x∗) =
k∑
j=0

αjkx
∗k logj x∗, (4.24)

where αjk =
(
k
j

)
E[(β0U + β1U logU)k−j(β1U)j ] for k = 1, . . . ,K and j =

0, . . . , k. The coefficients αjk are then all identified from the data. An
interesting implication of equation (4.24) is that αkk = βk1E[Uk], hence, since
the mean of U is normalized to the unity, it is β1 = α11. Futhermore all the
moments of U are obtained from consistent estimates of the highest order
coefficient of the conditional moment ωk(x∗) for k ≥ 1, and in particular an
estimate of the K-th moment of U , γK , is

γ̂K =
α̂KK

α̂K11

, (4.25)

where α̂kk is a consitent estimate of αkk. Also note that, since α01 = β0 +
β1E[U logU ], a consistent estimator for β0 is:

β̂0 = α̂01 − α̂11

∫
u log udF̂U (u),

where F̂U (u) is a consistent estimate of the distribution function of U , which
is obtained from (4.25) for k = 1, . . ., under the assumption of a well-defined
moment generating function for FU (u). Summing up the above results we
have that consistent estimates for the parameters of interest β0 and β1 are
obtained from estimates of the coefficients αjk for k = 1, . . . and j = 0, . . . , k.

The estimation of the distribution function FU (u) involves dealing with
high order moments, which are widely known for providing not very accurate
estimates, due to the increased variability in the estimation. It may then be
preferable to approximate the density function fU (u) to an arbitrary degree
of precision, as discussed in Gallant and Nychka (1987), by:

fU (u) ≈ Φ(u)

 P∑
j=0

γjHj(u)

2

, (4.26)

where Hj(·) are Hermite polynomials and Φ(·) is the standard normal den-
sity. Note that considering moments up to the K-th order implies the esti-
mation of (K+1)(K+2)/2−1 parameters αjk which may be directly related
to the P + 1 parameters of interest, that is3 β0, β1 and γ2, . . . , γP . Hence
all the parameters of interest are identified if P ≤ (K + 1)(K + 2)/2 − 2.
Thus if we consider, for instance, the first 2 observed conditional moments,
P needs not to be larger than 4.

3Note that normalization of fU (u) implies γ0 = 1 and γ1 = 0.
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A consistent estimator for the coefficients αjk, for k = 1, 2 follows from
the moment conditions implied by equations (4.9), (4.11) and (4.4):

E[q(z)(Y k −Hk(m(z)− v, v; θ))] = 0 for k = 1, 2 (4.27)
E[q(z)(XY − H̃(m(z)− v, v; θ))] = 0 (4.28)
E[q(z)(X −m(z; γ))] = 0. (4.29)

where q(z) is a vector of instruments and

H1(x∗, v; θ) =
∫
α01x

∗ + α11x
∗ log x∗dF (v)

H2(x∗, v; θ) =
∫

(α02 + ρ)x∗2 + α12x
∗2 log x∗ + α22x

∗2 log2 x∗dF (v)

H̃(x∗, v; θ) =
∫
x∗(α11x

∗ + α21x
∗ log x∗)dF (v) + ρ

∫
x∗2dF (v)

with ρ = E[S2] and dF (v) as defined by (4.26). The parameters of inter-
est are γ and θ = (α, ρ) and dF (v). Note that γ could also be infinite
dimensional. Since the function dF (v) is unknown and has to be estimated
a consistent estimator is the sieve minimum distance estimator of Ai and
Chen (2003).

The estimation is carried out in two steps:

1. First estimate γ by any parametric or non-parametric regression of X
on the instruments Z to obtain m̂(z) = m(z; γ̂).

2. Estimate θ and dF (v) by applying a sieve minimum distance estimator
after plugging-in m̂(z) in the moment conditions (4.27) and (4.28).

The sieve minimum distance estimator is adopted since it allows to con-
sistently estimate both θ and dF (v) by approximating the unknown function
by means of a sequence of known basis functions which gets larger with sam-
ple size. The basis function adopted is then a T-th order polynomial defined
as in equation (4.26), where T increases with sample size.

The main drawback in the applicability of this procedure is that the
integrals involved in the specification of the moment conditions are difficult
to evaluate and hence need to be computed numerically. This is analogous
to a simulated moments estimator as described by McFadden (1989) and
Newey (2001), in which a consistent estimate of the residuals is computed
by averaging the integrals over several random draws from a standard normal
density, exploiting the nature of the basis function employed.

Under mild regularity conditions Ai and Chen (2003) show that the
resulting estimator for dF (v) converges at a rate faster than n−1/4, while θ̂
is both

√
n consistent and asymptotically normal. Note that if γ̂ is a non-

parametric estimator then the rate of convergence of θ̂ is slower than
√
n,

while it is unchanged if γ is parametrically estimated.
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Once that consistent estimates for αjk are obtained it is straightforward
to derive a consistent estimator for β0, β1 and γ = (γ2, . . . , γP ) from equa-
tions (4.24) and (4.26)

4.5 Chapter Summary

In this Chapter I studied identification of a general non-linear errors in
variables with correlated measurement errors on both sides of the equation.
Identification of the conditional moments of the observed dependent variable
was obtained in the spirit of Schennach (2007). I achieved identification of
the entire conditional distribution of interest of the unobserved Y ∗i given
X∗i exploiting the particular dependence structure implied by dealing with
Engel curves.

A sieve minimum distance estimator was proposed to consistently esti-
mate moments of the conditional distribution of interest, and by extension
the whole distribution. The properties of the estimation procedure, and in
particular the asymptotic theory for the estimator proposed, are not con-
sidered in this thesis, and their discussion is left to future research.
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Chapter 5

Estimating Features of the
Distribution of Consumption
from Expenditure Data

The objective of this Chapter is that of providing a framework which al-
lows identification and estimation of the distribution of consumption from
knowledge of expenditure and the number of purchases. This is achieved by
explicitly modeling the household purchase process.

5.1 Introduction

One of the main objectives when collecting data about households’ consump-
tion is the analysis of individuals well-being. Traditionally this analysis is
carried out by looking at statistics based on individual’s consumption or
expenditure. In most of the econometric literature these two terms are used
interchangeably, but consumption and expenditure represent two concep-
tually different quantities. The former is essentially a continuous process
which takes place at each moment in time, since a commodity is gener-
ally consumed by individuals over a period of time, while expenditure is a
discrete process which occurs on a finite number of occasions.

Think for instance at an individual buying a car. Then she is going to
consume a fraction of the car’s value each day for several years, while the
expenditure occasion only took place when she actually purchased the car
and is zero in every other moment in time. Therefore consumption and
expenditure differ because of the general indivisibility of commodities and
the presence of storage costs. If storage costs were zero and commodities
infinitely divisible, then households would purchase only what they would
immediately consume, thus expenditure would be equal to consumption, but
in pratice this is often not the case.

Consumer surveys, such as the US Consumer Expenditure Survey or the
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UK Family Expenditure Survey collect records of households’ expenditures
over a relatively short time span, such as a month or weeks. Due to the
short time span the difference between consumption and expenditure may
be substantial. In the above example for instance we could either record the
purchase occasion or no purchase occasions. It is easy to see that interpreting
the observed expenditure as consumption may be misleading. Furthermore
the discrepancy between these two quantities is likely to increase as the
frequency of purchase decreases.

While it is clear that the mean level of expenditure, averaging over house-
holds, is an unbiased estimator of the mean level of consumption, the effect
of considering expenditure instead of consumption when dealing with higher
order moments depends on the data generating process. For example, look-
ing at higher order moments is required when assessing inequality and well-
being.

In the following I will develop a framework which allows us to estimate
the distribution of consumption from expenditure data by modeling purchase
occasions. This is done exploiting additional information given by the num-
ber of observed purchases. Such information is available when considering
data collected through diary surveys, in which households are given a diary
on which to record every single purchase over a one week time span. Due to
this short time window the difference between expenditure and consumption
may be severe, and a procedure which corrects for this discrepances may be
required.

5.2 The Model

Suppose we observe expenditure data over a one-week time span (I). Let Sh
be the observed total expenditure over this period, while Nh is the number
of purchases. The subscript h will refer to the generic household throughout.
Denote by Ch the unobserved level of consumption over I. The goal is that
of recovering the distribution of consumption Ch from knowledge of Sh and
Nh.

The random variables defined in what follows will refer to micro-units,
in most empirical applications representing households. Whenever possible,
subscripts will be omitted from all expressions to simplify notation. Suppose
there exists a time interval T = [t1, t2], where I is a randomly chosen subset
of T , such that expenditure over T equals consumption over T . Let V be
the number of purchases that would be observed over T , while ∆T = t2− t1
is the length of the time interval. In what follows the length of I will be
normalized to one. For ease of exposition it is assumed that every individual
is a consumer, that is V > 0. This assumption will be relaxed later on by
allowing for individuals whose consumption level is zero.
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5.2. THE MODEL

Assumption 5.1. Times to the next purchase are independent and expo-
nentially distributed with mean λ−1.

The independence assumption is essentially requiring that the time needed
to consume some commodities is independent from the time spent consum-
ing the previous ones. The fact that the distribution of times to the next
purchase are identically distributed is also not of major concern since we
are considering relatively short time span, so that household preferences
may be assumed sufficiently stable over time. Note that λ is allowed to be
household specific, hence allowing for heterogeneity across households. Un-
der Assumption 5.1 the observed number of purchases is a Poisson Process
with intensity λ, for which there is:

Pr[N = n] = e−λ
λn

n!
. (5.1)

The expected number of purchases over any unit time interval is E[N ] = λ.
Also, since I is randomly chosen over the interval T , the expected number
of purchases over I must be equal to V/∆T , so that:

λ =
V

∆T
.

Now let ST be the unobserved level of expenditure over T and let the fol-
lowing Assumption hold:

Assumption 5.2. Expenditure is uniformly distributed across all purchase
occurences.

Assumption 5.2 allows us to express the unobserved expenditure over
the hypothetical time interval T in terms of the observed expenditure over
I, and in particular:

ST =
V

N
S. (5.2)

Similarly, since consumption is assumed to be uniformly distributed over T ,
the level of consumption over the interval T , denoted by CT , may be related
to the level of consumption over the observed time span I. It follows that,
by the definition of T , we have:

CT = ∆TC. (5.3)

Also from the definition of T we have CT = ST and substituting equations
(5.2) and (5.3) into this equation yields:

S =
N

λ
C. (5.4)

Equation (5.4) gives an expression for the unobserved C in terms of the
observed S, N and the unknown λ. If λ was known, we could easily solve
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CHAPTER 5. ESTIMATING CONSUMPTION DISTRIBUTION

equation (5.4) for C to back up the value of consumption from the observed
pair (N,S). However neither V or ∆T are observable and thus λ is not
observed.

Now suppose that λ is distributed according to some probability density
function f(λ).

Assumption 5.3. Let C be independent of λ.

Assumption 5.3, which could be straightforwardly generalized to a con-
ditional indipendence assumption by rewriting any expectation below as
conditional on a set of covariates, is satisfied if households’ utility func-
tions were separable in consumption and frequency of purchase. This would
be the case if the consumer decision is carried out in two steps: first she
chooses the desired level of consumption and then, based on variables such
as the distance to the stores, the frequency of purchases is chosen. Under
Assumption 5.3 the observable moments of S may be written as:

E[Sk] = E

[
E

[(
N

λ

)k
Ck|λ

]]

= E

[
1
λk
E
[
Nk|λ

]
E[Ck|λ]

]
= E

[
φk(λ)
λk

]
E[Ck],

where φk(x) is the k-th moment of a Poisson random variable with mean x,
which is known, and the last expectation is comupted with respect to the
distribution of λ. Therefore the moments of the distribution of consumption
are identified up to knowledge of the distribution of λ and are given by:

E[Ck] =
E[Sk]

E
[
φk(λ)
λk

] for k = 1, . . . (5.5)

By extension the entire distribution of consumption is then identified if the
unknown distribution of consumption has a well defined moment generating
function. An interesting thing to note about equation (5.5), by setting k = 1,
is that the mean of S is equal to:

E[C] =
E[S]

E
[
φ1(λ)
λ

] ,
= E[S],

hence showing that the mean of expenditure equals the mean of consumption
in this framework.

Now let us relax the assumption of the support of λ being the positive
real line and suppose there exist a non-empty set of non-consumers, that is
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5.3. ESTIMATION

households whose consumption is zero. Let these households be the elements
of the set defined by Υ = {h : Ch = 0}. Equation (5.4) shows that observing
zero expenditure for a particular household may be the result of Nh = 0,
which may happen even if h /∈ Υ, or if h ∈ Υ. In other words the distribution
of λ is not in general continuous on the positive real line, but it is a mixed
distribution with a positive probability mass in zero. The above results do
still apply conditional on λ being positive but, in order to identify the entire
distribution of λ the probability of λ being zero, that is Pr(h ∈ Υ), needs
to be identified. This is done by noting that

Pr(Nn > 0) = Pr(Nh > 0|h ∈ Υ)Pr(h ∈ Υ) +
+ Pr(Nh > 0|h /∈ Υ)Pr(h /∈ Υ),
= Pr(Nh > 0|h /∈ Υ)Pr(h /∈ Υ),

where the second equality follows from the fact that Pr(Nh > 0|h ∈ Υ) = 0.
Therefore the proportion of non-consumers is identified by:

Pr(h /∈ Υ) =
Pr(Nh > 0)

Pr(Nh > 0|h /∈ Υ)
. (5.6)

5.3 Estimation

I now turn to the estimation of the model discussed in Section 5.2. Equation
(5.5) states that every moment of the unobserved distribution of consump-
tion can be expressed as the ratio of observed moments of expenditure and
the expected value of a known function of λ. Any moment of S is then
known up to knowledge of the distribution of λ. In what follows I derive a
maximum likelihood estimator for such a distribution.

Suppose λ has a probability density function which belongs to the some
parametric familiy of distributions: f(λ; θ), with support on the positive
real line. Then equation (5.1) implies that:

Pr[N = n] =
∫
e−λ

λn

n!
f(λ; θ)dλ. (5.7)

A maximum likelihood estimator for θ is then obtained from equation (5.7)
and is given by:

θ̂ = arg max
θ

H∏
h=1

∫
e−λ

λnh

nh!
f(λ; θ)dλ,

where H is the number of households. If λ is Gamma distributed then a
closed form expression for the integral is available, though in general the
integral involved in the estimation can be computed numerically. Note that
the discrete nature of N , hence the fact that it contains information only
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CHAPTER 5. ESTIMATING CONSUMPTION DISTRIBUTION

on a finite number of mass points, does not allow the estimation of f(λ; θ)
non-parametrically. If the dimension of the parameter vector θ is less than
the number of non-zero mass points in the support of N , it is possible to
test for the parametric family of distribution adopted.

If the distribution of λ is allowed to have a non-zero probability mass
in zero then the above estimator is inconsistent due to the presence of non-
consumers. The distribution function of λ may then be written as

f̃(λ) =
{

0 if h ∈ Υ,
f(λ; θ) if h /∈ Υ.

Therefore, since households for which Nh > 0 are consumers by definition,
using a similar argument and considering only positive values of Nh a max-
imum likelihood estimator for θ is:

θ̂ = arg max
θ

H∏
h=1

Pr[Nh = nh]
Pr[Nh > 0]

.

This, if f(λ; θ) is Gamma distributed, is equivalent to1:

θ̂ = arg max
θ

H∏
h=1

βα

(β + 1)α − βα
Γ(α+ nh)
nh!Γ(α)

1
(β + 1)nh

, (5.8)

where θ = (α, β). Once the distribution of λ is known, the proportion of
non-consumers is obtained from equation (5.6) and, in the case of λ Gamma
distributed is:

P̂ r(h /∈ Υ) =
P̂ r(Nh > 0)

1−
(

β̂

β̂+1

)α̂ . (5.9)

Knowledge of the distribution of λ is enough to obtain consistent esti-
mates of moments of the unobserved distribution of consumption. In par-
ticular the denominator in equation (5.5) is consistently estimated by:

Ê

[
φk(λ)
λk

]
=
∫
φk(λ)
λk

f(λ; θ̂)dλ.

In the Gamma case for k = 2, for instance, using the fact that φ2(λ) = λ(λ+
1), the above integral reduces to 1 + β/(α− 1). This implies, together with
equation (5.5), that an estimator for the second moment of consumption
(Ê[C]2) is:

Ê[C]2 =
Ê[S]2

1 + β̂
α̂−1

, (5.10)

1Here I am using results on the characterization of conjugate distributions, which imply
that the integral in equation (5.7) when λ is Gamma distributed is again a Gamma density
with different parameters.
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5.3. ESTIMATION

hence providing a closed form expression for the variance of expenditure.
Note that, since λ is non-negative, the correction term for the variance of
expenditure, i.e. E[1 + 1/λ], is greater than one, implying that variance of
expenditure is an upward biased estimate of the variance of consumption.

The above procedure allows the estimation of all the moments of the
distribution of consumption. As discussed in Section 5.2, under the assump-
tion of the existence of a well-defined moment generating function for such a
distribution, this means that the entire distribution of consumption can be
estimated. Its knowledge is of practical interest since many economic indica-
tors of interest, such as the Gini coefficient or the proportion of households
whose consumption level is lower than a certain threshold, are based on the
entire distribution of consumption. However, without any additional restric-
tion on its behavior, estimating the entire distribution entails the estimation
of an infinite number of moments.

To overcome this difficulty one could assume that consumption is lognor-
mally distributed. Such an assumption is not particularly unrealistic, since
severeal empirical findings show that at least the aggregate distribution of
non-durable consumption is close to the lognormal (see Battistin, Blundell,
and Lewbel 2009). In this case the distribution of consumption is entirely
characterized by the first two moments, that is C ∼ logN(µ, σ2) with

µ = log(E[C])− 1
2

log
(

1 +
V ar[C]
E[C]2

)
,

σ2 = log
(

1 +
V ar[C]
E[C]2

)
.

More generally, let us assume C to be randomly drawn from a distribu-
tion which is a member of a sufficiently general class of parametric distri-
butions fC(c; η). Then one could jointly estimate the parameters of both
the unobserved distribution of λ and of C via maximum likelihood. Ex-
ploiting equations (5.1) and (5.4) and Assumption 5.3 we could express the
distribution of the observed couple (C,N) as:

fS,N (s, n) =
∫
fC

(
sλ

n
; η
)
fN |λ(n|λ)fλ(λ; θ)dλ. (5.11)

The maximum likelihood estimator for the parameters of interest η and θ
is then obtained by maximizing, with respect to the parameters, the above
integral.

An alternative and more flexible procedure to estimate the distribution
of C makes use of deconvolution techniques. To this end we could rewrite
equation (5.4) as:

logS = logN/λ+ logC.

Note that the distribution of λ is known once consistent estimates of θ are
available. Therefore, under Assumption 5.3, the distribution of T = logN/λ
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CHAPTER 5. ESTIMATING CONSUMPTION DISTRIBUTION

is knonwn and independent of C. Standard deconvolution estimators then
allow the estimation of the whole unknown distribution of C2.

Knowledge of the entire distribution of consumption is of interest when
estimating inequality measures that do not depend on a finite number of
moments. Examples of these measures are the Gini coefficient or the pro-
portion of poors, defined as the share of households whose consumption
level is below a certain threshold. Indeed, once the entire distribution of
C is known, the proportion of poors is straightforwardly computed from its
cumulative density function, while the Gini coefficient is obtained as:

G(fC(c)) = 1− 2
∫ 1

0

∫ qC(x)
−∞ cfC(c)dc∫∞
−∞ cfC(c)dc

dx,

where qC(x) is the quantile of order x of consumption and fC(c) is the
distribution of consumption. Note that for a lognormal distribution the
Gini coefficient is easily computed as G(fC(c)) = 2Φ(

√
σ2/2) − 1, where

Φ(·) is the cumulative density function of a standard normal distribution.

5.4 Application to CEX Data

In this Section I apply the estimation procedure described above to recover
the unobserved distribution of consumption. I use data from the Diary sur-
vey of the US Consumer Expenditure Survey for the years 1982 to 2003.
I consider Diary data since they are known to be particularly affected by
frequency issues due to the short two-week time span they cover. The goods
under study are either relatively frequently purchased, such as food, or unfre-
quently purchased, such as alchool and tobacco. For each category of goods
I estimate the latent distribution of the expected frequency of purchase (λ)
under the assumption that this is Gamma distributed, hence applying the
maximum likelihood estimator described in (5.8) separately for each year.
While it may be assumed that every household is a food consumer, there is a
non-negligible proportion of households whose consumption level of alcohol
or tobacco is zero. In order to account for that I estimated the proportion of
non-consumers for alcohol and tobacco consumption by applying equation
(5.9). Results, stratified by level of education, are reported in Figure 5.1.
The mean of the estimated latent distribution of expected frequency is de-
creasing over time for all of the goods considered, meaning that households
have been changing their purchasing habits during the sample period and,
for instance, in 2003 they are buying goods less frequently than in 1982.

2Note that if C is lognormally distributed then logC is normal. It is well known that
the the rate of convergence of non-parametric deconvolution estimators is particularly
slow when the distribution is normal and, more generally, when the distribution is “super-
smooth” (see Fan 1991).
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5.4. APPLICATION TO CEX DATA

There is also substantial evidence of heterogeneity across groups with differ-
ent levels of education, though the pattern overtime seems to be the same.
The estimated proportion of tobacco non-consumers is around 50 percent,
while for alcohol it is roughly around 20 percent. Since estimates of these
proportion are obtained through equation (5.9) there is no guarantee that
the point estimate is inside the parameter space, that is the interval (0, 1),
as is the case in Figure 5.1.
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Figure 5.1: Estimates of the distribution of expected frequency by levels of
education.

Estimates of the distribution of λ allows the estimation of the variance
of the unobserved consumption according to equation (5.10). I assume food
consumption is lognormally distributed and estimate its whole distribution
via maximum likelihood. The likelihood function is derived from equation
(5.11). Estimates of the parameters of the distributon of unobserved food
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consumption are then used to obtain consistent estimates of several inequal-
ity measures.

Figure 5.2 reports the pattern of the squared coefficient of variation, de-
fined as V ar[C]/E[C]2, obtained from observed food expenditure and the
estimated moments of unobserved food consumption for the years 1982-2003
stratified by level of education. Results show a severe underestimation of
the level of dispersion in food consumption when considering raw expendi-
ture data. The between groups variation seems also to be reduced when
considering food consumption.
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Figure 5.2: Estimates of the squared coefficient of variation of observed
expenditure (solid lines) and unobserved consumption (dashed lines) by level
of education.

Knowledge of the entire distribution of consumption, and not just the
first few moments, is important since it allows the computation of inequal-
ity measures such as the Gini coefficient which depend on the whole density
function. In order to assess the discrepancies between estimates of these in-
dices obtained from observed expenditure or consumption, Figure 5.3 shows
the estimated values of the Gini coefficient for the period under study, while
Figure 5.4 reports the computed proportion of poors, being defined as the
proportion of households below 0.6 times the median of the marginal distri-
bution considered.

As expected both these graphs show a significant difference in the levels
of the measures considered, even though the pattern across years remains
essentially unchanged.
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Figure 5.3: Estimates of the Gini coefficient of the observed expenditure
(solid lines) and unobserved consumption (dashed lines) by level of educa-
tion.
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Figure 5.4: Estimates of the proportion of poors according to the observed
distribution of expenditure (solid lines) and the estimated distribution of
consumption (dashed lines) by level of education.
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5.5 Chapter Summary

In this Chapter I discussed a model which accounts for the presence of
frequency of purchase issues. I obtained identification of the distribution
of consumption from knowledge of expenditure data and the number of
observed purchases. The proposed estimator allows for the estimation of all
the moments of the unobserved distribution of consumption. By extension
the entire distribution of consumption is identified and can be estimated
allowing several features of the distribution to be investigated. The results
of the application to the CEX data show a substantial overestimation of all of
the inequality measures considered when using expenditure data as opposed
to the proposed estimator of features of the consumption distribution.

60



Conclusions

Consumption data are known to be heavily affected by measurement er-
rors. Estimation of most consumption models without accounting for their
presence may thus produce severely biased estimates of the parameters of in-
terest. In this thesis I considered three different consumption models which
account for the presence of measurement errors of various nature.

Chapter 3 discussed identification of a particular specification of Engel
curves when total expenditure is both unobserved and endogenous. Iden-
tification was achieved by means of a control function assumption. The
resulting estimator is consistent and easily computed with standard statisti-
cal software. A Monte Carlo study revealed that the estimator is particularly
successfull in reducing the bias of alternative estimators already available
in the literature when the extent of endogeneity and measurement error is
severe.

Chapter 4 studied identification of general non-linear errors in variables
models when correlated measurement errors appear on both sides of the
equation. The identification strategy otulined extends the past results by
Schennach (2007). In the Engel curves framework I also obtained identifi-
cation of the conditional distribution of the unobserved Y ∗i given X∗i . This
way I can disentangle variation in expenditures due to measurement errors
from variation due to heterogeneity in preferences. The identification re-
sult is illustrated by proposing an estimator to consistently estimate shape
invariant Engel curves in which the error term, representing heterogeneous
preferences, enters non-additively the equation.

Chapter 5 discussed the relationship between expenditure and consump-
tion. Indeed, commonly recorded expenditure data may fail to provide a
satisfactory approximation to the desired consumption level because of in-
frequency of purchasing in some goods. I discussed identification and es-
timation of features of the distribution of consumption from knowledge of
expenditure data and the number of purchases. These results were applied to
estimate the unobserved distribution of consumption from CEX expenditure
data using the Diary survey. The analysis showed that ignoring infrequency
of purchasing may result in non-negligible overestimation of routinely used
measures of inequality in food.
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Appendix

Proof of Theorem 3.1

From equations (3.2) and (3.6) we have:

Wih =

∑K
j=0 bij(logX∗h)j + εih + νih

Vh
.

Multiplying by X l
h either side of the equation, using (3.4) and taking the

conditional expectation with respect to Zh yields:

E[X l
hWih|Zh] = E

[
(X∗hVh)l

∑K
j=0 bij(logX∗h)j + εih + νih

Vh
|Zh

]
,

=
K∑
j=0

bijE[V l−1
h X∗h

l(logX∗h)j |Zh] + E[V l−1
h X∗h

lεih|Zh] +

+E[V l−1
h X∗h

lνih|Zh],

=
K∑
j=0

bijE[V l−1
h ]E[X∗h

l(logX∗h)j |Zh] + E[V l−1
h ]E[X∗h

lεih|Zh]

+ E[V l−1
h νih]E[X∗h

l|Zh], (5.12)

where the last equality follows from Assumption 3.1 (iii). Hence we may
write:

E[X l
h(logXh)j ] = E[X∗h

lV l
h(logX∗h + log Vh)j |Zh],

= E[X∗h
lV l
h

j∑
s=0

(
j

s

)
(logX∗h)j−s(log Vh)s|Zh],

=
j∑
s=0

(
j

s

)
E[V l

h(log Vh)s]E[X∗h
l(logX∗h)j−s|Zh],

= E[X∗h
l(logX∗h)j |Zh]E[V l

h] +

+
j∑
s=1

(
j

s

)
E[V l

h(log Vh)s]E[X∗h
l(logX∗h)j−s|Zh],
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which yields:

E[X∗h
l(logX∗h)j |Zh] =

E[X l
h(logXh)j |Zh]
E[V l

h]
+

−
∑j

s=1

(
j
s

)
E[V l

h(log Vh)s]E[X∗h
l(logX∗h)j−s|Zh]

E[V l
h]

.

The above equation could be solved recursively to obtain:

E[X∗h
l(logX∗h)j |Zh] =

j∑
t=0

γj−tE[X l
h(logXh)t|Zh] (5.13)

where

γt ≡ (−1)t
E[V l

h log Vh]t

E[V l
h]t+1

.

Substitution of (5.13) into (5.12) yields:

E[X l
hWih|Zh] =

K∑
j=0

bijE[V l−1
h ]

j∑
t=0

γj−tE[X l
h(logXh)t|Zh] +

+ E[V l−1
h ]E[X∗h

lεih|Zh] +
E[V l−1

h νih]
E[V l

h]
E[X l

h|Zh],

=
K∑
j=0

K∑
t=0

bijE[V l−1
h ]γj−tE[X l

h(logXh)t|Zh]1(j − t ≥ 0) +

+ E[V l−1
h ]E[X∗h

lεih|Zh] +
E[V l−1

h νih]
E[V l

h]
E[X l

h|Zh],

=
K∑
t=0

βtE[X l
h(logXh)t|Zh] + E[V l−1

h ]E[X∗h
lεih|Zh], (5.14)

where:

βilt ≡
E[V l−1

h νih]
E[V l

h]
1(t = 0) +

K∑
j=0

bijE[V l−1
h ]γj−t1(j − t ≥ 0).

As there is

E[X l
hεih|Zh] = E[X∗h

lV l
hεih|Zh],

= E[V l
h]E[X∗h

lεih|Zh], (5.15)
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and:

E[X l
hεih|Zh] = E[g(Zh, ηh)lεih|Zh],

= E
{
g(Zh, ηh)lE[εih|Zh, ηh]|Zh

}
,

= E
{
g(Zh, ηh)lE[εih|ηh]|Zh

}
,

= E[g(Zh, ηh)lλi(ηh)|Zh],

=
∫ 1

0
g(Zh, ηh)lλi(ηh)dηh, (5.16)

Substituting (5.15) and (5.16) into (5.14) yields:

E[X l
hWih|Zh] =

K∑
t=0

βiltE[X l
h(logXh)t|Zh] + τil(Zh),

where

τil(Zh) ≡
E[V l−1

h ]
E[V l

h]

∫ 1

0
g(Zh, ηh)lλi(ηh)dηh.

Q.E.D.

Proof of Theorem 3.2

Consider the conditional mean of Wih given Zh, by equation (3.6) it is:

E[Wih|Zh] = E[W ∗ihV
−1
h |Zh] + E[νihV −1

h |Zh]

= E[νihV −1
h ] + E[V −1

h ]
K∑
j=0

bijE
[
(logX∗h)j |Zh

]
. (5.17)

Now using (5.13) with l = 0 and substituting in (5.17) we obtain:

E[Wih|Zh] = E[νihV −1
h ] + E[V −1

h ]
K∑
j=0

bij

j∑
t=0

γj−tE[(logXh)t|Zh]

= E[νihV −1
h ] + E[V −1

h ]
K∑
j=0

K∑
t=0

bijγj−tE[(logXh)t|Zh]1(j − t ≥ 0)

=
K∑
t=0

β2SLS
it E[(logXh)t|Zh],

with

β2SLS
it = E[νihV −1

h ]1(t = 0) +
K∑
j=0

E[V −1
h ]bijγj−t1(j − t ≥ 0).

Q.E.D.
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Assessing what OLS identifies

If K = 1 the probability limit of the OLS linear coefficient is:

βOLSi1 =
Cov(Wih, logXh)
V ar(logXh)

=
Cov

(
bi0
Vh

+ bi1
logXh
Vh

+ νih+εih−bi1 log Vh
Vh

, logX∗h + log Vh
)

V ar[logX∗h] + λ

=
(bi0 − 1)

V ar[logX∗h] + λ
Cov

( 1
Vh
, log Vh

)
+

+
bi1

V ar[logX∗h] + λ

{
Cov

( logX∗h
Vh

, logX∗h
)

+

+Cov
( logX∗h

Vh
, log Vh

)}
+

1
V ar[logX∗h] + λ

Cov
(εih
Vh
, log Vh

)
,

where λ = V ar(Vh). Now using the fact that if Vh ∼ logN(µ, σ2) it is:

E
[ log Vh

Vh

]
= 3µe−2µ.

Substituting and rearranging terms we obtain

βOLSi1 = e−2µ

{
bi1 +

2µ[(bi0 − 1) + bi1(1 + E[logX∗])]
σ2

logX∗
h
− 2µ

}
,

or alternatively

βOLSi1 = β2SLS
i1 − (λ+ 1)

log(λ+ 1)[(bi0 − 1) + bi1(1 + E[logX∗h])]
V ar[logX∗h] + log(λ+ 1)

. (5.18)

Proof of Lemma 4.1

Under Assumption 4.1 we may write:

E[Y k|Z] =
∫
µk(z − v)dF (v)

E[XY |Z] =
∫

(z − v)µ1(z − v)dF (v) + λ,
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where λ = E[WS]. Now taking the Fourier transform on both sides of the
equation we obtain:

εyk(ζ) =
∫ ∫

µk(z − v)dF (v)eiζzdz

=
∫ ∫

µk(x∗)eiζ(x
∗+v)dx∗dF (v)

=
∫ ∫

µk(x∗)eiζx
∗
dx∗eiζvdF (v)

=
∫
µk(x∗)eiζx

∗
dx∗

∫
eiζvdF (v)

= γk(ζ)φ(ζ),

and

εxy(ζ) =
∫ ∫

(z − v)µ1(z − v)dF (v)eiζzdz +
∫
λeiζzdz

=
∫ ∫

x∗µ1(x∗)eiζ(x
∗+v)dx∗dF (v) + λ

∫
eiζzdz

=
∫
x∗µ1(x∗)eiζx

∗
dx∗

∫
eiζvdF (v) + λ

∫
eiζzdz

=
(
−i

∂

∂ζ

∫
µ1(x∗)eiζx

∗
dx∗
)
φ(ζ) + λψ(ζ)

= −iγ̇1(ζ)φ(ζ) + λψ(ζ),

hence iεxy(ζ) = γ̇1(ζ)φ(ζ) + iλψ(ζ).

Q.E.D.

Proof of Theorem 4.2

By manipulating (4.12) and (4.13) we obtain

εyk(ζ) = γk(ζ)φ(ζ) (5.19)

iε(z−x)y(ζ) = γ1(ζ)φ̇(ζ)− λiψ(ζ).

where iε(z−x)y(ζ) = iεzy(ζ) − iεxy(ζ) and iεzy(ζ) ≡ ε̇y(ζ) = γ̇1(ζ)φ(ζ) +
γ1(ζ)φ̇(ζ). The main point to keep in mind is that εy(ζ), ε(z−x)y(ζ), γk(ζ)
and ψ(ζ) are generalized functions (Lighthill, 1962), so that the product
operation between two of them is not defined. However any generalized
function may be decomposed into the sum of an ordinary function (denoted
with subscript o) and a purely singular function (denoted with subscript s),
so that

εy,o(ζ) + εy,s(ζ) = [γ1;o(ζ) + γ1;s(ζ)]φ(ζ)
iε(z−x)y,o(ζ) + iε(z−x)y,s(ζ) = [γ1;o(ζ) + γ1;s(ζ)] φ̇(ζ)− λiψ(ζ).

67



Note that we do not put subscripts on φ(ζ) or ψ(ζ), since the former is an
ordinary function, being the Fourier transform of an absolutely integrable
function, and the latter is a purely singular function as ψ(ζ) = 2πδ(ζ).
Now applying Lemma 2 in Schennach (2007), which states that the product
of an ordinary function with an ordinary function is an ordinary function,
whereas the product of a purely singular component with an ordinary func-
tion is purely singular, and equating the ordinary components in the above
equations we obtain equations (50) and (51) in Schennach (2007), namely

εy,o(ζ) = γ1;o(ζ)φ(ζ)
iε(z−x)y,o(ζ) = γ1;o(ζ)φ̇(ζ).

These are now all ordinary functions and they may be manipulated as in
Schennach (2007) to obtain identification of φ(ζ) for ζ ∈ [−ζ̄1, ζ̄1] with

φ(ζ) = exp
(∫ ζ

0

iε(z−x)y,o(ζ)
εy,o(ζ)

dζ

)
. (5.20)

We restrict our attention to the case in which ζ̄1 > 0, however ζ̄1 = 0 only
when the conditional mean E[Y ∗|X∗] is a polynomial in X∗, a case which
has already been shown to be identified by Hausman, Newey, Ichimura, and
Powell (1991). Substitution of (5.20) in (5.19) leads to

γk(ζ) =
{

0 if εy(ζ) = 0
εyk(ζ)/φ(ζ) otherwise,

and hence by taking the inverse Fourier transform of γk(ζ):

µk(X∗) = (2π)−1

∫
γk(ζ)e−iζX∗

dζ

proving the identification of µk(X∗).

Q.E.D.

Proof of Theorem 4.3

Since the first K moments of X exist by assumption then E[Zk] also exists.
Under Assumptions (4.1) to (4.4), by Theorem 4.2, φ(ζ) is shown to be
identified in a neighborhood of the origin, hence φ(k)(0) is also identified for
k = 1, . . . ,K and, exploiting equation (4.8), we may write:

E[X∗k] =
k∑
j=0

(
k

j

)
E[Zj ]E[(−Ṽ )k−j ]

=
k∑
j=0

(
k

j

)
E[Zj ](−1)k−j(−ik−j)φ(k−j)(0)

=
k∑
j=0

(
k

j

)
(−i)k−jE[Zj ]φ(k−j)(0). (5.21)
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The observed k-th moment of X, because of equation (4.7), may be written
as E[Xk] = E[X∗k]E[W k], which implies:

E[W k] =
E[Xk]
E[X∗k]

(5.22)

which is well defined since by assumption E[X∗k] 6= 0. Substitution of
equation (5.21) into (5.22) yields equation (4.22).

Equation (4.23) follows by noting that from equation (4.7) and by As-
sumptions 4.1 we have that:

E[XkY |Z] = E[X∗kW kH(X∗, U)|Z] + E[X∗kW kX∗lS|Z]
= E[X∗kµ1(X∗)|Z]E[W k] + E[X∗k+l|Z]E[W kS],

which gives

E[W kS] =
E[XkY |Z]− E[X∗kµ1(X∗)|Z]E[W k]

E[X∗k+l|Z]
. (5.23)

The right hand side of equation (5.23) involves functions that are either
observable, like E[XkY |Z], or already shown to be identified. In particular
E[X∗k+l|Z] is obtained from knowledge of φ(ζ) as

E[X∗k+l|Z] =
∫

(z − v)k+ldF (v) =
∫ k+l∑

j=0

(
k + l

j

)
zjvk+l−jdF (v)

=
k+l∑
j=0

(
k + l

j

)
zj
∫
vk+l−jdF (v)

=
k+l∑
j=0

(
k + l

j

)
zj(−i)k+l−jφ(k+l−j)(0). (5.24)

On the other hand, if ζ̄1 =∞ in Assumption 4.4, it is:∫
E[X∗kµ1(X∗)|Z]eiζzdz =

∫ ∫
(z − v)kµ1(z − v)dF (v)eiζzdz

= (−i)kγ(k)
1 (ζ)φ(ζ),

where γ1(ζ) is defined as in equation (4.14) and by taking the inverse Fourier
transform we get:

E[X∗kµ1(X∗)|Z] = (2π)−1

∫
(−i)kγ(k)

1 (ζ)φ(ζ)e−iζzdζ. (5.25)

Substitution of equations (5.24) and (5.25) into (5.23) gives:

E[W kS] =
E[XkY |Z]− (2π)−1E[W k]

∫
(−i)kγ(k)

1 (ζ)φ(ζ)e−iζzdζ∑k+l
j=0

(
k+l
j

)
zj(−i)k+l−jφ(k+l−j)(0)

Q.E.D.
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