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Abstract

This Dissertation consists of seven chapters.

Chapter 1 is an introduction, where, in particular, the importance of study-

ing the second order degenerate systems is discussed and motivated. In this

chapter we present some well-known auxiliary facts and necessary notation.

In Chapter 2, we obtain the conditions of the unique solvability of the

semiperiodical Dirichlet problems in the rectangle for second order degenerate

systems with the right hand side in L2.

In Chapter 3, we establish a coercive estimate for the solutions of the se-

miperiodical Dirichlet problem for a second order degenerate system in the

rectangle.

In Chapter 4, we prove the existence, uniqueness and regularity in the

Sobolev space W 2
2 (G,R2) of the solutions of second order singular degenerate

systems with variable principal coefficients.

Chapter 5 is devoted to the questions of coercive estimates for the solutions

of second order singular degenerate systems.

Chapter 6 is devoted to the questions of compactness and approximation

properties of the solutions of second order singular degenerate systems. We

also obtain double-sided estimates for the distribution function of the approxi-

mation numbers of the corresponding operator. We extend the main results of

K.Ospanov on approximation properties of the solutions of an elliptic operator

[42] for Bitsadze-type systems with variable lower order coefficients to the case

of degenerate systems.

The unique solvability of the semiperiodical nonlinear problems for second

order singular elliptic systems is proved in Chapter 7.
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Riassunto

Questa Tesi consiste di sette capitoli.

Il Capitolo 1 è una introduzione, dove, in particolare, viene discussa e

motivata l’importanza dello studio di sistemi degeneri del secondo ordine. In

questo capitolo presentiamo alcuni risultati ausiliari noti e notazioni necessarie.

Nel Capitolo 2, otteniamo condizioni di risolubilità con unicità dei problemi

di Dirichlet semiperiodici nel rettangolo per sistemi del secondo ordine degeneri

con il dato in L2.

Nel Capitolo 3, stabiliamo una stima coerciva per le soluzioni del pro-

blema di Dirichlet semiperiodico per sistemi del secondo ordine degeneri nel

rettangolo.

Nel Capitolo 4, dimostriamo l’esistenza, l’unicità e la regolarità nello spazio

di Sobolev W 2
2 (G,R2) delle soluzioni di sistemi degeneri del secondo ordine

singolari con i coefficienti principali variabili.

Il Capitolo 5 è dedicato a questioni di stime coercive per le soluzioni di

sistemi degeneri del secondo ordine singolari.

Il Capitolo 6 è dedicato a questioni di compattezza e a proprietà di approssi-

mazione delle soluzioni di sistemi degeneri del secondo ordine singolari. Otte-

niamo anche stime sia dal basso che dall’alto per la funzione di distribuzione dei

numeri di approssimazione dell’operatore corrispondente. Estendiamo i risul-

tati principali di K. Ospanov sulle proprietà di approssimazione delle soluzioni

di un operatore ellittico [42] per sistemi di tipo Bitsadze con coefficienti di

ordine inferiore variabili al caso di sistemi ellittici degeneri.

La risolubilità con unicità dei problemi nonlineari semiperiodici per sistemi

ellittici del secondo ordine singolari è dimostrata nel Capitolo 7.
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Chapter 1

Introduction

This work is devoted to study the questions of regularity and approximation

properties of the solutions of second order degenerate singular systems. The

analysis of singular differential equations had began with the work of H.Weil

(1910). The Schrödinger equations and the Dirac system are the basic math-

ematical models of quantum mechanics. The problem of the selfadjointness

of the differential operators is important in the theory of partial differential

equations and it leads to the problem of existence and uniqueness of square

summable generalized solutions. The effective conditions for unique solvabil-

ity of the equations of quantum mechanics were obtained in the works of P.

Hartman (1948), B.M. Levitan (1953), R.S. Ismagilov (1962) and others.

For the treatment of elliptic equations on bounded domains and with reg-

ular coefficients, we refer to the papers of J. L. Lions and E. Magenes [27],

L. Bers, S. Bochner and F. John [4], A. V. Bitsadze [5], [7], F.E. Browder

[10], L. Garding [17], V.P. Glushko and Yu.B. Savchenko [18], O. A. Lady-

zhenskaya [24], O.A. Ladyzhenskaya and N.N. Uraltseva [25], S.G. Mikhlin

[33], O.A. Olĕinik and E.V. Radkevič [37] and others. M.I. Vishik [64], and O.

A. Ladyzhenskaya [24], and L. Nirenberg [35], and K.O. Friedrichs [16] used

the Hilbert space method to study boundary value problems for second order

elliptic equations.

We consider the linear equation

n∑
i,j=1

Ai,j(x1, . . . , xn)
∂2u

∂xi∂xj

+
n∑
i

Bi(x1, . . . , xn)
∂u

∂xi

+ C(x1, . . . , xn)u

3



4 INTRODUCTION

= F (x1, . . . , xn), (1.1)

with the unknown function u(x1, . . . , xn). The functions Ai,j, Bi, C, F are

real and defined in some region G of the Euclidean space Rn. We assume

Ai,j = Aj,i.

The equation (1.1) is said to be elliptic in a region G ⊂ Rn if∣∣∣∣∣
n∑

i,j=1

Ai,jtitj

∣∣∣∣∣ ≥ µ(x)
n∑

i=1

t2i ,

where µ(x) is a positive function of the point x ∈ G and for arbitrary real

numbers t1, . . . , tn such that
n∑

i=1

t2i 6= 0. If, in addition, there exists a constant

µ0, such that µ(x) ≥ µ0 for all x ∈ G, the elliptic equation (1.1) is said to be

uniformly elliptic.

Obviously, inf µ(x) > 0 for an uniformly elliptic equation and we may set

µ0 = inf
x∈G

µ(x).

If inf
x∈G

µ(x) = 0, the elliptic equation is said to be degenerate.

The equation (1.1) is said to be strongly elliptic at a given point x ∈ G, if

for arbitrary real numbers t1, . . . , tn such that
n∑

i=1

t2i 6= 0,

n∑
i,j=1

Ai,jtitj ≥ µ0

n∑
i=1

t2i .

Every strongly elliptic equation is elliptic.

The strongly elliptic systems and degenerate systems are well studied in

the works of M.I. Vishik [64], M.I. Vishik and V.V. Grushin [65], N.E. Tov-

masyan [59] -[62], L. Nirenberg [35], Ya.B. Lopatinskiy [29], F.E. Browder [10],

A.P.Soldatov [58]. Among the last works devoted to study the strongly elliptic

systems, we mention the works of N.E. Tovmasyan [61], [62], A.P. Soldatov [57]

and K.N. Ospanov [39]. Among elliptic systems only some classes, which were

considered in the works of M.I. Vishik [64] and of Ya.B. Lopatinskiy [29] have

a theory which is anolog to the theory of the second order single equations.

The well-known Bitsadze system [7] ∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

= 0,

2 ∂2u
∂x∂y

+ ∂2v
∂x2 − ∂2v

∂y2 = 0
(1.2)

is an example of elliptic system which does not satisfy the conditions of [64],

[29]. The first boundary value problem with homogeneous boundary conditions
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for an elliptic system (1.2) is not well posed (i.e. it may have an infinite number

of linearly independent solutions in an arbitrarily small circle [5]). Under the

theoretical point of view, it is important to know what is the nature of the

well posed problems for system of Bitsadze-type in an unbounded region. In

particular, for the problem considered in this work, which is analog to the

Dirichlet problem. The functional methods are used successfully to study linear

boundary problems for strongly elliptic systems. Such methods do not apply

in the case of degenerate systems, and in particular, in the case of unbounded

domains.

One of the basic methods of research of the boundary value problems and

of the Cauchy problem for partial differential equations is the integral equation

method. Beside the existence and uniqueness theorems, the integral equation

method gives a manner of finding the approximate solutions of the problems

considered. However this method does not carry over for singular differential

equations because the corresponding integrals do not converge in the domain,

or the corresponding operators are not compact. At the same time, in the sin-

gular case one can sometimes establish properties of the resolvent, which allow

to obtain good properties of approximation of the solutions for the problem.

Such approaches are based on the general theory of the operators [20], and are

connected with spectral and approximation properties of the resolvent.

One of the effective methods to study a singular differential equation with

unbounded coefficients is the method of coercive estimates of the solutions,

which is the analog of the famous ‘second basic inequality’ for boundary value

problems [24]. There are two approaches to establish the coercive estimates of

the solutions. Namely, the variational and the Tichmarsh methods. In order

to apply the variational method, it is necessary to prove the well posedness

of certain classes of boundary value problems for the equations we consider.

The resolvent of the singular problems is constructed via resolvent of the cor-

responding boundary value problems. The method of coercive estimates of

the solutions for different classes of singular elliptic equations was found and

developed in the works of W.N. Everitt and M. Giertz [13]-[15], M. Otelbaev

[48], K.Kh. Boimatov [9]. Later, it was extended to elliptic systems of equa-

tions with higher order derivatives (M. Otelbaev [44]-[47], R. Oinarov [36],
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K.N. Ospanov [38]-[43] and others). In such a case coercive estimates of the

solutions of singular differential operators enable

a) to obtain the differential properties of the solutions;

b) to establish weighted estimates of the norm of the solutions and their

derivatives;

c) to obtain the estimates of the approximation numbers of the solutions;

d) to find the effective conditions of solvability of the quasilinear general-

ization of the given systems.

The questions of the spectrum and of the approximation properties have the

importance in the spectral theory of differential operators. A.M. Molchanov

[31], Don B. Hinton [21], M. Otelbayev [48]-[51], J.V. Baxley [3], D.E. Edmunds

and W.D. Evans [12], O.D. Apyshev and M. Otelbayev [2] have studied these

problems for second and higher order singular elliptic operators. M. Otelbayev

[44], [45] and K.N. Ospanov have studied this problem for first order multi-

dimensional systems, and for generalized Cauchy-Riemann type systems [40],

and for Beltrami-type systems.

The interest is growing up to the problem connected with studding non-

linear system given in unbounded domains. The questions of existence and

uniqueness of the solutions of the boundary value problem of hydrodynamics

are studied O. A. Ladyzhenskaya, V.A. Solonnikov, K.I.Piletskas and V. Kalan-

tarov. The conditions of the coercive solvability of the singular Sturm-Liouville

equation with nonlinear potential have been obtained in the work of M. Otel-

baev and M.B.Muratbekov (1981). The analogous results for multidimensional

equations of Schrödinger-type and higher order equations have been established

in the works of M. Otelbaev, and M.B.Muratbekov, and E.Z.Grinshpun, and

R. Oinarov.

The so far developed methods do not apply in the case of degenerate sys-

tems especially if defined on unbounded domains and if with variable coeffici-

ents. We consider the system k(y)∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

+ ϕ(y)∂u
∂x

+ a(y)u+ b(y)v = f(x, y),

2 ∂2u
∂x∂y

+ k(y) ∂2v
∂x2 − ∂2v

∂y2 + ψ(y) ∂v
∂x

+ c(y)u+ d(y)v = g(x, y)
(1.3)

which is a nonstrongly degenerate system.
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System of equations of the form given by (1.3) may be classified at a point

as follows. Let us consider a particular point (x0, y0) in the domain G ⊂ R

(see Notation, p.8) and construct the quadratic form

F = A0
11dx

2 + 2A0
12dxdy + A0

22dy
2,

where

A0
11 =

 k(y0) 0

0 k(y0)

 , A0
12 =

 0 −1

1 0

 , A0
22 =

 −1 0

0 1

 .

This quadratic form can be rewritten in the following form

Q(λ) = A0
11λ

2 + 2A0
12λ+ A0

22, (1.4)

where λ = dx
dy

,

or

Q(λ) =

 k(y0)λ
2 − 1 −2λ

2λ k(y0)λ
2 − 1

 .

If A12 = A21, we can use the Sylvester theorem in order to determinant

type of the system (1.3) in the domain G without reducing the quadratic form

(1.4) to its canonical form. System of equations (1.3) is of the elliptic type at

the point (x0, y0) if at this point the quadratic form (1.4) is non-singular and

positive definite [6, p.17], [8, p.14], [19, p.6], [63]. That means that determinant

of of the quadratic form (1.4) is positive. Namely detQ(λ) > 0 and A11 > 0

at the point (x0, y0). So, if k(y) > 0 and detQ(λ) = (k(y)λ2 − 1)2 + 4λ2 > 0

the system (1.3) is elliptic at the point (x0, y0). In this case the characteristic

equation (k(y)λ2 − 1)2 + 4λ2 = 0 has four solutions. That means that elliptic

system has four characteristic curves.

If k(y) = 0 and the quadratic form (1.4) is singular at the point (x0, y0) ∈ G

is called the system (1.3) of parabolic degeneracy. Thus, the determinant of

the quadratic form (1.4) is equal to zero:

4λ2 + 1 = 0.

This characteristic equation has two solutions. That means that corresponding

parabolic system has two characteristic curves.



8 INTRODUCTION

We note that the corresponding traditional questions such as the existence,

uniqueness, regularity and approximation properties of the solutions , the con-

ditions of solvability of the nonlinear generalization of the given systems have

not been studied completely. The importance of studying such problems have

been explained in the monographs [24], [5], [52].

In the applications, there is an interest in the question of extending the

coercive estimate method to more general systems of partial differential equa-

tions, and in particular, to second order singular degenerate systems. Such

systems are important in problems of hydrodynamics, quantum mechanics,

membrane theory of shells and geometry.
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1.1 Notation

Below we introduce some notation and terminology with the corresponding

definitions.

We denote by G a domain in Euclidean space Rn and by X = (x1, . . . , xn)

a point in Rn.

We denote by G a subset of R2.

We denote by Ḡ the closure of the set G.

We denote by C the set of complex numbers.

We denote by C(G) the class of continuous real valued functions in G.

We denote by C(k)(G) the class of real valued functions which are contin-

uous in G together with their derivatives up to order k.

We denote by C∞(G) the class of infinitely differentiable functions in G.

We denote by Pk the set of polynomials of degree up to k.

We denote by C∞0 (G) the class of infinitely differentiable functions, which

may differ from zero only a compact subset of the domain G.

We denote by ν a Borel measure in G.

A set M in the metric space R is said to be precompact if every sequence of

elements in M contains a subsequence which converges to some x ∈ R. If from

every sequence of elements in M it is possible to select a subsequence which

converges to some x belonging to M , then the set M is said to be compact.

We denote by Lp(G,R2) the space of measurable functions defined on G

such that the following norm is finite

‖f‖Lp(G,R2) =

∫
G

|f(X)|pdX

1/p

, 1 ≤ p <∞.

For brevity, we set Lp = Lp(R2) and ‖f‖p = ‖f‖Lp(R2).

We denote by Lloc
p (G,R2) the class of locally p-summable functions in G

with respect to Lebesgue measure dX = dxdy in R2, i.e., the class of measur-

able functions f in G which are p-summable
∫
K

|f(X)|pdX <∞, (1 ≤ p <∞)

for every compact set K ⊂ G.

We denote by C l(Ḡ) the subset of C l(G) of those functions f such that

Dαf admits a continuous extension to Ḡ for all α ∈ Nn, with |α| ≤ l. We
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introduce the following norm

‖f‖W l
p(G) =

∫
G

l∑
k=0

∑
(k)

∣∣∣∣ ∂kf

∂xk1
1 . . . ∂xkn

n

∣∣∣∣p dx
1/p

,

where p ≥ 1 and where
∑
(k)

is the sum on all of possible derivatives of order

k. We define the Sobolev space W l
p(G) to be the closure of C l(Ḡ) under norm

‖ · ‖W l
p(G).

Let f(x) be a complex-valued function defined in an open set Ω of Rn. By

the support of f , denoted by suppf , we mean the smallest closed set containing

the set {x ∈ Ω; f(x) 6= 0}. It may be equivalently defined as the smallest closed

set of Ω outside which f vanishes identically.

We denote by D(A) and by R(A) the domain of definition and range of the

operator A, respectively.

We denote by E the identity operator or matrix. For example,

E =

 1 0

0 1

 in the space R2.

We denote by KerA = {x ∈ D(A) : A(x) = 0} the kernel of the operator

A.

The following inequality

|ab| ≤ ε

2
|a|2 +

1

2ε
|b|2

is said to be ‘the Cauchy inequality with weight ε’and holds for all ε > 0 and

for arbitrary a, b.

Let x(t) and y(t) be functions measurable on the set X. The following

inequality holds:

∫
X

|x(t)y(t)|dt ≤

∫
X

|x(t)|pdt

 1
p
∫

X

|y(t)|qdt

 1
q

.

It is said to be the Hölder’s inequality, where p and q be real positive numbers

such that 1
p

+ 1
q

= 1.

A subset M of a metric space X is said to be dense in the set X0 ⊂ X if

there exists, for every x ∈ X0 and ε > 0, a point z ∈M such that ρ(x, z) < ε.

M is dense in X0 if and only if the closure M̄ of the set M contains X0, i.e.

M̄ ⊃ X0.



INTRODUCTION 11

A set X is called a linear space over a field K if the following conditions

are satisfies

I. A sum is defined: for every x, y ∈ X there is an element of X, denoted

by x+ y, such that

1)(x+ y) + z = x+ (y + z) (x, y, z ∈ X);

2)x+ y = y + x (x, y ∈ X);

3) an element 0 exists in X such that 0 + x = x for any x ∈ X;

II. A scalar multiplication is defined: for every x, y ∈ X and each α ∈ K

there is an element of X, denoted by αx, such that

4) α(x+ y) = αx+ αy (x, y ∈ X, α ∈ K);

5) (α+ β)x = αx+ βx (x ∈ X, α, β ∈ K);

6) (αβ)x = αx(βx) (x ∈ X, α, β ∈ K);

7) 1 · x = x (1 is the unit element of the field K).

A linear space will be said real or complex according as the field K is the

real number field R or the complex number field C.

A linear space X is called a Banach space if it is complete, i.e., if every

Cauchy sequence {xn} of X converges strongly to a point x of X:

lim
n→∞

‖xn − x‖ = 0.

Let A be an operator acting from Ω ⊂ X to Y , where X, Y are metric

spaces. The operator A is said to be continuous at the point x0 ∈ Ω if A(xn) →

A(x0) as xn → x0 (xn ∈ Ω). If the operator A is continuous at every point of

a set E ⊂ Ω, we simply say that A is continuous on E.

IfX, Y are normed spaces and Ω is a linear set contained inX. An operator

A acting from Ω ⊂ X to Y is said to be homogeneous if

A(λx) = λA(x) (∀ λ ∈ R, x ∈ Ω).

The operator A is described as additive if

A(x1 + x2) = A(x1) + A(x2) (∀ x1, x2 ∈ Ω).

The operator A is called linear if it is additive and homogeneous on Ω. An

operator A whose range is a set of numbers is called a functional.
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Let A1 and A2 be linear operators with domain of definition D(A1) and

D(A2) both contained in a linear space X, and with ranges R(A1) and R(A2)

both contained in a linear space Y , respectively. If D(A1) ⊆ D(A2) and

A1x = A2x for all x ∈ D(A1), then A2 is called an extension of A1, and A1 a

restriction of A2.

The set of all bounded linear functionals acting from a normed space X

into a (generally speaking complex) Banach space Y is called the conjugate

space of X and denoted by X∗.

Let A be a linear operator acting from X to Y , where X,Y are Banach

spaces. Let the operator A have a domain D(A) which is dense in X. Let f be

a bounded linear functional on Y . We consider the functional f(Ax) defined

for all x ∈ D(A). Since f is bounded on D(A) and D(A) is dense in X by

assumption, the functional f can be extended uniquely to a bounded linear

functional g on X by the Hahn-Banach theorem. In this case we can say that

the adjoint operator A∗ is defined on the functional f , and denote by g = A∗f .

The following formula defines the functional A∗f

(A∗f)(x) = f(Ax)

for all x ∈ D(A).

An operator A that coincides with its adjoint is said to be self-adjoint. A

self-adjoint operator is characterized by the equation

(Ax, y) = (x,Ay),

for x, y ∈ D(A).

Let A be a linear operator acting from X to Y , where X, Y are Banach

spaces. The linear operator A is said to be completely continuous if it is

defined on the whole of the space X and maps every bounded subset of X into

precompact subsets of Y .

Consider the equations

Ax = y, (1.5)

where x ∈ D(A), y ∈ R(A) and

A∗g = f, (1.6)
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where g ∈ D(A∗) ⊂ Y ∗, f ∈ R(A∗) ⊂ X∗.

If a linear operator A gives a one-to-one map of D(A) onto R(A), the

inverse map A−1 gives a linear operator on R(A) onto D(A):

A−1Ax = x for x ∈ D(A)

and

AA−1y = y for y ∈ R(A).

A−1 is said to be the inverse operator of A.

The operator A−1
l is called the left-hand inverse of the operator A if

A−1
l A = E.

Similarly, the operator A−1
r is called the right-hand inverse of the operator A

if

AA−1
r = E.

If the left-hand inverse operator A−1
l exists, the solution of the equation

(1.5) is unique, if it exists. Similarly, the existence of the right-hand inverse

operator can be shown to involve the (generally not unique) solvability of the

equation (1.5) for any y ∈ R(A).

Equation (1.5) is uniquely solvable on R(A) provided that the homogeneous

equation Ax = 0 has only the null solution, i.e., if KerA∗ = 0.

Equation (1.5) is said to be well posed on R(A) if there exists k(λ) > 0 such

that the inequality ‖x‖X ≤ k ‖Ax‖Y holds for all x ∈ D(A). Well posedness

implies unique solvability.

If equation (1.5) is well posed, then the operator A has a bounded inverse

on R(A).

Equation (1.5) is said to be densely solvable if R(A) is dense in Y :

R(A) = Y .

Theorem 1.1. [23] Equation (1.5) is densely solvable if and only if equation

(1.6) is uniquely solvable (KerA∗ = 0).

A linear operator A is called closed if whenever {xn} is a sequence in D(A)

such that xn → x and Axn → y, we have x ∈ D(A) and Ax = y. A nonclosed



14 INTRODUCTION

operator is said to be closable (or to admit a closure) if it can be extended

to a closed operator. A linear operator A is closable if and only if given a

sequence xn → 0 with xn ∈ D(A) and Axn → y we always have y = 0. The

least closed extension of the operator A is said to be the closure of A. The

closure of the operator A is denoted by Ā. If an operator A admits a closure

then xn → x, xn ∈ D(A) and Axn → y imply that x ∈ D(Ā) and Āx = y.

Also, if both lim
n→∞

xn and lim
n→∞

Axn exist, we can write Ā lim
n→∞

xn = lim
n→∞

Axn.

It is not difficult to show the truth of the following assertion: if the operator

A is closed, then each operator A − λE is closed, and if the inverse operator

A−1 exists then it is closed.

Each bounded linear operator, defined on the whole space is closed.

Next we assume that H is a Hilbert space.

Let A be a linear operator whose domain DA and range R(A) both lie in

the linear space X. We consider the operator equation

Ax− λx = y, (1.7)

where λ is a complex number.

We denote by ∆A(λ) the range of the operator A − λE. The operator

A − λE = Aλ defines a(not necessarily one-to-one) correspondence between

DA and ∆A(λ). If this correspondence is one-to-one, then the operator A−λE

has an inverse operator (A− λE)−1 with domain ∆A(λ) and range DA.

If λ is such that the range ∆A(λ) is dense in X and Aλ has a continuous

inverse (A−λE)−1, we say that λ is in the resolvent set ρ(A) of A. We denote

the inverse (A − λE)−1 by Rλ(A) and call it the resolvent of A. All complex

numbers λ not in ρ(A) form a set σ(A) called the spectrum of A. The resolvent

set is open.

Let X be a complex Banach space and A a closed linear operator with

domain DA and range R(A) both in X. Then the resolvent (A− λE)−1 is an

everywhere defined continuous operator for any λ ∈ ρ(A).

If a (real or complex) number λ is in the resolvent set ρ(A) of the operator

A, then there exists a constant k = k(λ) > 0 such that

‖(A− λE)f‖ ≥ k ‖f‖ ,
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for all f ∈ D(A).

If A is a symmetric operator and z = x+ iy (y 6= 0), then

‖(A− zE)f‖2 = ‖(A− xE)f‖2 + y2‖f‖2 ≥ y2‖f‖2

for all f ∈ D(A). Hence, the upper and lower z-half-planes are connected

subsets of the resolvent set of an arbitrary symmetric operator.

Theorem 1.2. [1, p. 92] If Γ is a connected subset of the resolvent set of a

linear operator A, then the dimension of the subspace H 	∆A(λ) is the same

for each λ ∈ Γ.

[We note that in [1, p. 92] a resolvent set is called ‘field of regularity’.]

Equation (1.7) above can be rewritten in the form

(A− λE)x = y.

For example, if H = R2, then λE =

 λ 0

0 λ

 for x ∈ D(A) ⊂ R2.

Lemma 1.3. [30] Let M be a subspace of a Hilbert space H. Then M is dense

in H if and only if the null element of H is the only element of H which is

orthogonal to M .

Proposition 1.4. [23] The kernel of the adjoint operator is the orthogonal

complement of the range of the initial operator.

Theorem 1.5. Let X be a Banach space. Let E be the identity operator in

X, and A be a bounded linear operator, of X to itself such that ‖A‖ ≤ q < 1.

Then the operator (E − A)−1 exists, is bounded and∥∥(E − A)−1
∥∥ ≤ 1

1− q
.

Theorem 1.6. [34] Let 1 ≤ q <∞. Let K ⊂ Lp(Rn). Then K is precompact

in Lp(Rn) if and only if all the following three conditions are satisfied

1) sup
f∈K

‖f‖Lp(Rn) <∞

(boundness of K);

2) sup
f∈K

sup
|h|≤δ

‖f(·+ h)− f(·)‖Lp(Rn) → 0, δ → 0
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(uniform continuity by displacement of the translations);

3) lim
N→∞

sup
f∈K

‖f(x)‖Lp(Rn/B(0,N)) = 0

(uniform decay at infinity).

Theorem 1.7. [22, p.645] A continuous operator A mapping a closed convex

set Ω in a Banach space X into a compact set ∆ ⊂ Ω has a fixed point.



Chapter 2

The unique solvability of the

semiperiodical Dirichlet

problem for second order

degenerate systems

We consider the following semi-periodical problem k(y)∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

+ ϕ(y)∂u
∂x

+ a(y)u+ b(y)v = f(x, y),

2 ∂2u
∂x∂y

+ k(y) ∂2v
∂x2 − ∂2v

∂y2 + ψ(y) ∂v
∂x

+ c(y)u+ d(y)v = g(x, y),
(2.1)

w(−π, y) = w(π, y), wx(−π, y) = wx(π, y), w(x, α) = w(x, β) = 0, (2.2)

in the rectangle G0 = {(x, y) ∈ R2 : −π < x < π, α < y < β}, where

w(x, y) ≡ u(x, y), v(x, y). Here k(y) is a continuous and bounded real val-

ued function such that inf
y∈[α,β]

k(y) ≥ 0, f, g ∈ L2(G0). Let the functions

ϕ, ψ, a, b, c, d be continuous from [α, β] to R.

Now we introduce the following notation

Bxy =

 k(y) ∂2

∂x2 − ∂2

∂y2 −2 ∂2

∂x∂y

2 ∂2

∂x∂y
k(y) ∂2

∂x2 − ∂2

∂y2

 ,

P (y) =

 ϕ(y) 0

0 ψ(y)

 ,

Q(y) =

 a(y) b(y)

c(y) d(y)

 ,

17
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w = (u, v) , F = (f, g) , X = (x, y).

System (2.1) can be written in the following form

L0w = Bxyw + P (y)wx +Q(y)w = F (X). (2.3)

Assumption 1. We assume that the real valued functions ϕ, ψ, a, b, c, d of

[α, β] to R satisfy the following conditions

inf
y∈[α,β]

{−ϕ(y), a(y), d(y)} = δ > 0; (2.4)

1

2
(|b(y)|+ |c(y)|)2r ≤ a(y)

3
, (2.5)

1

2
(|b(y)|+ |c(y)|)2q ≤ d(y)

3
,

ϑψ(y) > d(y),

where r, q and ϑ are constants such that r > 0, q > 0, r + q = 1, 0 < ϑ < 3.

We denote by C2
π,0(G0,R2) the set of twice continuously differentiable func-

tions in G̃0 = {(x, y) ∈ R2 : −π ≤ x ≤ π, α < y < β} with values in R2 which

are periodic in the variable x with period 2π and which have compact support

in (α, β) in the variable y for each fixed value of x in [−π, π]. We denote by L

the closure of the operator L0 defined in the domain D(L0) = C2
π,0(G0,R2) in

the space L2(G0,R2).

Definition 2.1. A function w = (u, v) ∈ L2(G0,R2) is said to be a solution

of the problem (2.1),(2.2), if there exists a sequence {wn}∞n=1 in C2
π,0(G0,R2)

such that ‖wn − w‖L2(G0,R2) → 0 and ‖Lwn − F‖L2(G0,R2) → 0 as n→∞.

Lemma 2.2. Let Assumption 1 hold. Then there exists a constant C0 such

that

‖w‖2
W 1

2 (G0,R2) = ‖wx‖2
2,G0

+ ‖wy‖2
2,G0

+ ‖w‖2
2,G0

≤ C0 ‖Lw‖2
2,G0

, (2.6)

for all functions w = (u, v) ∈ D(L).

Proof. Let w = (u, v) ∈ C2
π,0(G0,R2). Integrating by parts and using the

boundary conditions for the function w, we have

((L0 + λE)w,w) =
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G0

(k(y)uxx − uyy − 2vxy + ϕ(y)ux+

a(y)u+ λu+ b(y)v) ūdxdy +∫
G0

(2uxy + k(y)vxx − vyy + ψ(y)vx+

c(y)u+ d(y)v + λv) v̄dxdy =
β∫

α

k(y)

 π∫
−π

uxxūdx

 dy −
π∫

−π

 β∫
α

uyyūdy

 dx−

2

∫
G0

vxyūdxdy +

β∫
α

ϕ(y)

 π∫
−π

uxūdx

 dy +

∫
G0

a(y)|u|2dxdy +

∫
G0

b(y)|u||v|dxdy + 2

∫
G0

uxyv̄dxdy +

β∫
α

k(y)

 π∫
−π

vxxv̄dx

 dy −
π∫

−π

 β∫
α

vyyv̄dy

 dx+

β∫
α

ψ(y)

 π∫
−π

vxv̄dx

 dy +

∫
G0

c(y)|u||v|dxdy +

∫
G0

d(y)|v|2dxdy +

∫
G0

λ(|u|2 + |v|2)dxdy =

β∫
α

k(y)

uxū|π−π −
π∫

−π

|ux|2dx

 dy −

π∫
−π

uyū|βα −
β∫

α

|uy|2dy

 dx−

2

π∫
−π

vxū|βα −
β∫

α

vxuydy

 dx+

β∫
α

ϕ(y)

 π∫
−π

uxūdx

 dy +

∫
G0

a(y)|u|2dxdy +

∫
G0

b(y)|u||v|dxdy +

2

π∫
−π

uxv̄|βα −
β∫

α

uxvydy

 dx−
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β∫
α

k(y)

vxv̄|π−π −
π∫

−π

|vx|2dx

 dy −

π∫
−π

vyv̄|βα −
β∫

α

|vy|2dy

 dx+

β∫
α

ψ(y)

 π∫
−π

vxv̄dx

 dy +

∫
G0

c(y)|u||v|dxdy +

∫
G0

d(y)|v|2dxdy +

∫
G0

λ(|u|2 + |v|2)dxdy = −
∫
G0

k(y)|ux|2dxdy +

∫
G0

|uy|2dxdy +

2

∫
G0

uyvxdxdy +

β∫
α

ϕ(y)

(
u2

2

∣∣∣∣π
−π

)
dy +

∫
G0

a(y)u2dxdy +

∫
G0

λu2dxdy +

∫
G0

b(y)uvdxdy − 2

∫
G0

uyvxdxdy −

∫
G0

k(y)|vx|2dxdy +

∫
G0

|vy|2dxdy +

β∫
α

ψ(y)

(
v2

2

∣∣∣∣π
−π

)
dy +

∫
G0

c(y)uvdxdy +

∫
G0

d(y)v2dxdy +

∫
G0

λv2dxdy =

-

∫
G0

k(y)|wx|2dxdy +

∫
G0

|wy|2dxdy +

∫
G0

a(y)|u|2dxdy +

∫
G0

d(y)v2dxdy +

∫
G0

λ(u2 + v2)dxdy +

∫
G0

(b(y) + c(y))uvdxdy.

((L0 + λE)w,w) = −
∫
G0

k(y)|wx|2dxdy+ (2.7)

∫
G0

|wy|2dxdy +

∫
G0

(a(y)u2 + d(y)v2)dxdy +

∫
G0

λ|w|2dxdy +

∫
G0

(b(y) + c(y))uvdxdy.

By applying the Hölder and Cauchy-Bunyakovsky inequalities to the last

term of (2.7), we obtain∣∣∣∣∣∣
∫
G0

(b(y) + c(y))uvdxdy

∣∣∣∣∣∣ (2.8)



PROBLEM FOR SECOND ORDER DEGENERATE SYSTEMS 21

≤

∫
G0

(|b(y)|+ |c(y)|)2ru2dxdy

 1
2

·

∫
G0

(|b(y)|+ |c(y)|)2qv2dxdy

 1
2

≤ 1

2

∫
G0

(|b(y)|+ |c(y)|)2ru2dxdy +
1

2

∫
G0

(|b(y)|+ |c(y)|)2qv2dxdy.

By (2.8), we can transform equality (2.7) in the following way

((L0 + λE)w,w) ≥ − max
y∈[α,β]

|k(y)|
∫
G0

|wx|2dxdy+ (2.9)

∫
G0

|wy|2dxdy +

∫
G0

λ|w|2dxdy +

∫
G0

(a(y)u2 + d(y)v2)dxdy −

1

2

∫
G0

(|b(y)|+ |c(y)|)2ru2dxdy − 1

2

∫
G0

(|b(y)|+ |c(y)|)2qv2dxdy.

We now apply to the left hand side of the last inequality ‘the Cauchy inequality

with weight ε’ for some ε = γ0 > 0. Then by condition (2.5), we obtain

1

2γ0

‖(L0 + λE)w‖2
2,G0

+
γ0

2
‖w‖2

2,G0
(2.10)

≥ − max
y∈[α,β]

|k(y)|
∫
G0

|wx|2dxdy +

∫
G0

|wy|2dxdy +

∫
G0

λ|w|2dxdy +

∫
G0

2a(y)

3
u2dxdy +

∫
G0

2d(y)

3
v2dxdy.

Below, we consider the functional ((L0 + λE)w, w̃x), where w̃ = (−u, v),

((L0 + λE)w, w̃x) =∫
G0

(k(y)uxx − uyy − 2vxy + ϕ(y)ux+

a(y)u+ λu+ b(y)v) (−ūx)dxdy +∫
G0

(2uxy + k(y)vxx − vyy + ψ(y)vx+

c(y)u+ d(y)v + λv) v̄xdxdy =

-

β∫
α

k(y)

 π∫
−π

uxxūxdx

 dy +

π∫
−π

 β∫
α

uyyūxdy

 dx+

2

∫
G0

vxyūxdxdy −
β∫

α

ϕ(y)

 π∫
−π

|ux|2dx

 dy −

∫
G0

a(y)uūxdxdy −
∫
G0

b(y)vūxdxdy +
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2

∫
G0

uxyv̄xdxdy +

β∫
α

k(y)

 π∫
−π

vxxv̄xdx

 dy −

π∫
−π

 β∫
α

vyyv̄xdy

 dx+

β∫
α

ψ(y)

 π∫
−π

vxv̄xdx

 dy +

∫
G0

c(y)uv̄xdxdy +

∫
G0

d(y)vv̄xdxdy +

∫
G0

(−λuūx + λvv̄x)dxdy =

-

β∫
α

k(y)

(
u2

x

2

∣∣∣∣π
−π

)
dy +

∫
G0

uyyuxdxdy +

2

∫
G0

vxyuxdxdy −
∫
G0

ϕ(y)u2
xdxdy −

∫
G0

a(y)uuxdxdy −∫
G0

λuuxdxdy −
∫
G0

b(y)vuxdxdy + 2

∫
G0

uxyvxdxdy +

β∫
α

k(y)

(
v2

x

2

∣∣∣∣π
−π

)
dy −

∫
G0

vyyvxdxdy +

∫
G0

ψ(y)v2
xdxdy +

∫
G0

c(y)uvxdxdy +

∫
G0

d(y)vvxdxdy +

∫
G0

λvvxdxdy =

-

∫
G0

uy (uy)x dxdy − 2

∫
G0

vxuxydxdy −
∫
G0

ϕ(y)u2
xdxdy −∫

G0

b(y)vuxdxdy + 2

∫
G0

vxuxydxdy +

∫
G0

vy (vx)y dxdy +

∫
G0

ψ(y)v2
xdxdy +

∫
G0

c(y)uvxdxdy.

((L0 + λE)w, w̃x) = −
∫
G0

ϕ(y)u2
xdxdy+∫

G0

ψ(y)v2
xdxdy +

∫
G0

(b(y) + c(y))uvxdxdy.

Hence, inequality (2.8) implies that

((L0 + λE)w, w̃x) ≥ −
∫
G0

ϕ(y)u2
xdxdy +

∫
G0

ψ(y)v2
xdxdy−

1

2

∫
G0

(|b(y)|+ |c(y)|)2ru2dxdy − 1

2

∫
G0

(|b(y)|+ |c(y)|)2qv2
xdxdy.
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By condition (2.5) and by applying ‘the Cauchy inequality with weight ε > 0’

to the left hand side of the last equation, we obtain

1

2ε
‖(L0 + λE)w‖2

2,G0
+
ε

2
‖wx‖2

2,G0
≥ (2.11)

-

∫
G0

ϕ(y)u2
xdxdy +

∫
G0

ψ(y)v2
xdxdy −∫

G0

a(y)

3
u2dxdy − ϑ

∫
G0

ψ(y)

3
v2

xdxdy.

By combining inequalities (2.10), (2.11) and by condition (2.4), we obtain(
1

2γ0

+
1

2ε

)
‖(L0 + λE)w‖2

2,G0
≥(

δ

(
1− ϑ

3

)
− ε

2
− max

y∈[α,β]
|k(y)|

)
‖wx‖2

2,G0
+

‖wy‖2
2,G0

+

[
δ

3
+ λ− γ0

2

]
‖w‖2

2,G0
.

Thus

C̃ ‖(L0 + λE)w‖2
2,G0

≥ µ‖wx‖2
2,G0

+ ‖wy‖2
2,G0

+ γ‖w‖2
2,G0

,

where C̃ = 1
2γ0

+ 1
2ε

, µ = δ
(
1− ϑ

3

)
− ε

2
− max

y∈[α,β]
|k(y)|, γ = δ

3
+ λ− γ0

2
. Hence,

inequality (2.6) follows and the proof is complete.

Remark 2.3. Lemma 2.2 holds, if condition (2.5) is replaced by the following

inequalities

1

2
(|b(y)|+ |c(y)|)2r ≤ d(y)

3
,

1

2
(|b(y)|+ |c(y)|)2q ≤ a(y)

3
,

−ϑϕ(y) > a(y),

where r, q and ϑ are constants such that r > 0, q > 0, r + q = 1, 0 < ϑ < 3.

Remark 2.4. If b(y) = −c(y), then one can prove Lemma 2.2 with condition

(2.5) replaced by the following

inf
y∈[α,β]

ψ(y) = δ > 0.
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We now write the functions f and g in the right hand side of (2.1) in the

following form

f =
∞∑

n=−∞

fn(y)einx, g =
∞∑

n=−∞

gn(y)einx. (2.12)

We will search for a solution w = (u, v) of the problem (2.1), (2.2) as a limit

in the norm L2(G0,R2) of the sequence {(ũN , ṽN)}∞N=−∞, where

ũN =
N∑

n=−N

un(y)einx, ṽN =
N∑

n=−N

vn(y)einx. (2.13)

By replacing u, v, f, g by the corresponding expression of (2.12) and (2.13), we

obtain that

−
N∑

n=−N

u
′′
ne

inx − 2in
N∑

n=−N

v
′
ne

inx − n2k(y)
N∑

n=−N

un(y)einx+

inϕ(y)
N∑

n=−N

un(y)einx + a(y)
N∑

n=−N

un(y)einx+

b(y)
N∑

n=−N

vn(y)einx =
N∑

n=−N

fn(y)einx,

−
N∑

n=−N

v
′′
n(y)einx + 2in

N∑
n=−N

u
′
n(y)einx + c(y)

N∑
n=−N

un(y)einx−

n2k(y)
N∑

n=−N

un(y)einx + inψ(y)
N∑

n=−N

vn(y)einx+

d(y)
∑N

n=−N vn(y)einx =
N∑

n=−N

gn(y)einx,

wn(α) = 0, wn(β) = 0,

and by equating the coefficients of einx, we obtain the following problem for

wn = (un(y), vn(y)) (n = 0,±1,±2, . . .) −u′′
n − 2inv

′
n + (−n2k(y) + inϕ(y) + a(y))un + b(y)vn = fn(y),

−v′′n + 2inu
′
n + c(y)un + (−n2k(y) + inψ(y) + d(y))vn = gn(y),

(2.14)

wn(α) = 0, wn(β) = 0, (2.15)

where fn, gn ∈ L2(α, β).

Next we set

T =

 0 −1

1 0

 ,

Q(y) =

 −n2k(y) + inϕ(y) + a(y) b(y)

c(y) −n2k(y) + inψ(y) + d(y)

 .
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Then we consider the differentiation operator ln + λE defined by

(ln + λE)w = −w′′
+ 2inTw

′
+Qn(y)w + λw,

for all functions w(y) in the space C2
0 ((α, β),C2) of twice continuously differen-

tiable of [α, β] to C2 which satisfy the boundary conditions (2.15). We denote

also by ln + λE the closure of ln + λE in the norm of L2 ≡ L2 ((α, β),C2).

Lemma 2.5. Let λ ≥ 0. Let Assumption 1 hold. Then there exists a constant

C0 such that

‖(ln + λE)w‖2
2 ≥ C0

 β∫
α

∣∣∣w′

n

∣∣∣2 dy +

β∫
α

(
δ

3
+ λ+ n2

)
|wn|2 dy

 , (2.16)

for all wn = (un(y), vn(y)) ∈ D(ln + λE), where we have denoted by ‖·‖2 the

norm of L2 ≡ L2 ((α, β),C2).

Proof. Let w = (u, v) ∈ C2
0((α, β),C2). By the conditions (2.4), (2.5) and

(2.15), we obtain

Re ((ln + λE)wn, wn) =

Re

 β∫
α

{
−u′′

n − 2inv
′

n+

(−n2k(y) + inϕ(y) + a(y) + λ)un + b(y)vn

}
ūndy +

β∫
α

{
−v′′n + 2inu

′

n + c(y)un+

(−n2k(y) + inψ(y) + d(y) + λ)vn

}
v̄ndy

]
.

Further

Re ((ln + λE)wn, wn) ≥
β∫

α

∣∣∣u′

n

∣∣∣2 dy +

β∫
α

(
λ− n2 max

y∈[α,β]
|k(y)|

)
|un|2 dy +

β∫
α

∣∣∣v′n∣∣∣2 dy +

β∫
α

(
λ− n2 max

y∈[α,β]
|k(y)|

)
|vn|2 dy +

β∫
α

(
a(y)u2

n + (b(y) + c(y))unvn + d(y)v2
n

)
dy.
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Hence,

Re ((ln + λE)wn, wn) ≥ (2.17)
β∫

α

∣∣∣w′
∣∣∣2 dy +

β∫
α

(
2δ

3
+ λ− n2 max

y∈[α,β]
|k(y)|

)
|w|2 dy,

by conditions (2.4) and (2.5).

Furthermore, the following holds

Im [(−fn, nun) + (gn, nvn)] =

Im

 β∫
α

{
u
′′

n + 2inv
′

n−

(−n2k(y) + inϕ(y) + a(y))un − b(y)vn

}
nūndy +

β∫
α

{
−v′′n + 2inu

′

n + c(y)un+

(−n2k(y) + inψ(y) + d(y))vn

}
nv̄ndy

]
≥

2n2

β∫
α

v
′

nundy − n2

β∫
α

ϕ(y)|u|2ndy +

2n2

β∫
α

u
′

nvndy + n2

β∫
α

ψ(y)|v|2ndy =

2n2

unvn|βα −
β∫

α

u
′

nvndy

+ 2n2

β∫
α

u
′

nvndy +

δn2

β∫
α

(u2
n + v2

n)dy = δn2‖w‖2
2,G0

,

or

Im [(−fn, nun) + (g,nvn)] ≥ δn2‖w‖2
2,G0

(2.18)

By multiplying both hand sides of (2.18) by ρ > 0 and by invoking (2.17), we

obtain

Re ((ln + λE)wn, wn) + ρIm [(−fn, nun) + (gn, nvn)] ≥
β∫

α

∣∣∣w′

n

∣∣∣2 dy +

β∫
α

(
ρδn2 +

2δ

3
+ λ− n2 max

y∈[α,β]
|k(y)|

)
|wn|2 dy.

Hence, the ‘Cauchy’s inequality with weight ε’ implies that

3

4δ

β∫
α

|(ln + λE)wn|2 dy +
δ

3

β∫
α

|wn|2 dy+
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ρ

2ε

β∫
α

[
|fn(y)|2 + |gn(y)|2

]
dy +

ρε

2
n2

β∫
α

|wn|2 dy ≥

β∫
α

∣∣∣w′

n

∣∣∣2 dy +

β∫
α

(
ρδn2 +

2δ

3
+ λ− n2 max

y∈[α,β]
|k(y)|

)
|wn|2 dy.

Finally,

(
3

4δ
+
ρ

2ε

)
‖(ln + λE)wn‖2

2 ≥
β∫

α

∣∣∣w′

n

∣∣∣2 dy
+

β∫
α

(
ρδn2 +

δ

3
+ λ− n2 max

y∈[α,β]
|k(y)| − ρε

2
n2

)
|wn|2 dy.

We now choose ρ and ε so that ρδ − max
y∈[α,β]

|k(y)| − ρε
2
≥ 1 and assume that

C0 =
(

3
4δ

+ ρ
2ε

)−1
. Then the last inequality implies (2.16) and the proof of the

lemma is complete.

Lemma 2.6. Let λ ≥ 0. Let Assumption 1 hold. Then the operator ln + λE

has an inverse defined on the whole of L2 ((α, β),C2). Namely, the operator

(ln + λE)−1.

Proof. The existence of the inverse operator (ln + λE)−1 is ensured by

inequality (2.16).

We assume by contradiction that the range R (ln + λE) of the operator

ln + λE is not dense in L2 ((α, β),C2). Then in accordance with Lemma

1.3, there exists a nonzero element U = (p, s) in L2 ((α, β),C2) such that

((ln + λE)w,U) = 0 for all w ∈ D (ln + λE). Then the density of D (ln + λE)

in L2 ((α, β),C2), and Proposition 1.4 of Chapter 1 imply that

U ∈ D ((ln + λE)∗) and (ln + λE)∗U = 0, where (ln + λE)∗ is the adjoint

operator to ln + λE, i.e. −p′′ + 2ins
′
+ (−n2k(y)− inϕ(y) + a(y) + λ)p+ c(y)s = 0,

−s′′ − 2inp
′
+ b(y)p+ (−n2k(y)− inψ(y) + d(y) + λ)s = 0, y ∈ (α, β).

Hence, the following inclusions hold

−p′′ + 2ins
′
,−s′′ − 2inp

′ ∈ L2(α, β), (2.19)
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and thus

−p′(y) + 2ins(y) + p
′
(y0)− 2ins(y0) ∈ C(α, β)

and

−s′(y)− 2inp(y) + s
′
(y0) + 2inp(y0) ∈ C(α, β).

It follows, that p
′ ∈ L2(α, β) and s

′ ∈ L2(α, β), respectively. Hence, by (2.19)

we obtain p
′′
, s

′′ ∈ L2(α, β) . Thus, the function U = (p, s) belongs to the

Sobolev space W 2
2 ((α, β),C2). We now show that U = (p, s) satisfies the

boundary conditions (2.15). Clearly

0 = (w, (ln + λE)∗U) = u
′
(β)p̄(β)− u

′
(α)p̄(α)+

v
′
(β)s̄(β)− v

′
(α)s̄(α) + ((ln + λE)w,U) ,

for all w = (u, v) fromD (ln + λE). Hence by definition of the adjoint operator,

we obtain the following equality

u
′
(β)p̄(β)− u

′
(α)p̄(α) + v

′
(β)s̄(β)− v

′
(α)s̄(α) = 0. (2.20)

The last relation holds if and only if p(α) = p(β) = 0, s(α) = s(β) = 0. In

order to show such an equality, we now make a different choice of the ‘test’

function. We take the following functions

w1(y) = ((y − α)2(y − β), sink(y − α)(y − β)),

w2(y) = ((y − α)(y − β)2, sink(y − α)(y − β)),

w3(y) = ((y − α)2(y − β)2, (y − β) sink(y − α)),

w4(y) = ((y − α)2(y − β)2, (y − α) sink(y − β))

(where k ≥ 2, k ∈ N), each of which belongs to D (ln + λE) and we substitute

them into equality (2.20). Thus, the function U = (p, s) belongs to the Sobolev

space W 2
2 ((α, β),C2) and satisfies conditions (2.15). Hence, by arguing as in

the proof of Lemma 2.5, we obtain the inequality

‖(ln + λE)∗U‖L2((α,β),C2) ≥ C2 ‖U‖L2((α,β),C2) ,

for all U = (p, s) ∈ D ((ln + λE)∗). Consequently U = 0, a contradiction.

Thus the proof of the lemma is complete.

We now have the main statement of this Chapter.
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Theorem 2.7. Let the coefficients of the system (2.1) satisfy Assumption 1.

Then the problem (2.1), (2.2) has an unique solution w = (u, v) in the Sobolev

space W 1
2 (G0,R2) for every right hand side F = (f, g) ∈ L2 (G0,R2).

Proof. Let (un, vn)(n ∈ Z) be a solution of problem (2.14), (2.15). Then

the function wN =
(∑N

k=−N uk(y)e
ikx ,

∑N
k=−N vk(y)e

ikx
)

is the solution of

problem (2.1), (2.2), where F (x, y) is replaced on

FN =
(∑N

k=−N fk(y)e
ikx,
∑N

k=−N gk(y)e
ikx
)
. Since the sequence {FN} con-

verges to the right hand side F (x, y) of system (2.1), it is a Cauchy se-

quence. Then by inequality (2.6), {wN}∞N=−∞ is a Cauchy sequence also in

W 1
2 (G0,R2). Since W 1

2 (G0,R2) is complete, then the sequence {wN}∞N=−∞

has a limit w = (u, v) in W 1
2 (G0,R2). By definition w = (u, v) is a solution

of problem (2.1), (2.2). The uniqueness of the solution follows by inequality

(2.6). Thus the proof is complete.
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Chapter 3

On the regularity of the solution

of the semiperiodical Dirichlet

problem for system (2.1)

Let λ, λ̂ be constants such that λ̂ ≥ λ ≥ 0. Let

Ĕ =

 −1 0

0 1

 .

We consider the operator ln + inλ̂Ĕ + λE defined by

(ln + inλ̂Ĕ + λE)w = −w′′
+ 2inTw

′
+Qn(y)w + inλ̂w̃ + λw,

for all functions w = (u, v) in the space C2
0 ((α, β),C2) of twice continuously

differentiable of [α, β] to C which satisfy the boundary conditions (2.15), where

w̃ = (−u, v), T and Qn(y) are the matrices associated to system (2.14). We

denote by ln + inλ̂Ĕ + λE the closure of the operator ln + inλ̂Ĕ + λE in the

norm of L2 ≡ L2 ((α, β),C2) .

Lemma 3.1. Let λ̂ ≥ λ ≥ 0. Let Assumption 1 hold. Let

inf
y,η∈[α,β],|y−η|≤µ

ϕ2(y)

a(η)
≥ c1 > 0, inf

y,η∈[α,β],|y−η|≤µ

ψ2(y)

d(η)
≥ c2 > 0, (3.1)

sup
y,η∈[α,β],|y−η|≤µ

{
ϕ(y)

ϕ(η)
,
ψ(y)

ψ(η)
,
a(y)

a(η)
,
d(y)

d(η)
,
a(y)

d(η)

}
≤ c3 <∞. (3.2)

31
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Then ∥∥∥∥|n|(P (·) + λ̂Ĕ
)(

ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2→L2

+ (3.3)∥∥∥∥(Q(·) + λE)
(
ln + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2→L2

<∞.

Here P (y) and Q(y) are matrices of (2.1) and µ = β−α
2

.

Proof. By arguing as in the proof of Lemma 2.6, one can show that if

Assumption 1 holds, then the operator ln + inλ̂Ĕ+λE has a bounded inverse.

Also, by the argument of the proof of Lemma 2.5, we obtain∥∥∥w′
∥∥∥2

L2

+

(
2

3
inf

y∈[α,β]
[a(y), d(y)] + λ− n2 max

y∈[α,β]
|k(y)|

)
‖w‖2

L2
− (3.4)

2
3

inf
y∈[α,β]

[a(y), d(y)] + λ

4C0

‖w‖2
L2
≤

C0

2
3

inf
y∈[α,β]

[a(y), d(y)] + λ

∥∥∥(ln + inλ̂Ĕ + λE
)
w
∥∥∥2

L2

,

|n|
inf

y∈[α,β]
[−ϕ(y), ψ(y)] + λ̂√

2
3

inf
y∈[α,β]

[a(y), d(y)] + λ
‖w‖L2

≤ (3.5)

1√
2
3

inf
y∈[α,β]

[a(y), d(y)] + λ

∥∥∥(ln + inλ̂Ĕ + λE
)
w
∥∥∥

L2

,

for all w ∈ D(ln + inλ̂Ĕ + λE) . Hence, we have∥∥∥w′
∥∥∥2

L2

+

(
inf

y∈[α,β]
[a(y), d(y)] + λ

)(
1− 1

4C0

)
‖w‖2

L2
+

n2


C1

(
inf

y∈[α,β]
[−ϕ(y), ψ(y)] + λ̂

)2

inf
y∈[α,β]

[a(y), d(y)] + λ
− max

y∈[α,β]
|k(y)|

 ‖w‖2
L2
≤

C0 + C1

inf
y∈[α,β]

[a(y), d(y)] + λ

∥∥∥(ln + inλ̂Ĕ + λE
)
w
∥∥∥2

L2

,

which we can rewrite as∥∥∥∥(ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2→L2

≤ C3

inf
y∈[α,β]

[a(y), d(y)] + λ
.
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Hence, condition (3.2) implies that∥∥∥∥(Q(·) + λE)
(
ln + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2→L2

≤

C1 max
y∈[α,β]

{a(y) + λ, d(y) + λ}
∥∥∥∥(ln + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2→L2

<∞.

Next we note that inequality (3.5) implies that∥∥∥∥(ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2→L2

≤ 1

|n|
(

inf
y∈[α,β]

[−ϕ(y), ψ(y)] + λ̂

) .
Hence, by condition (3.2), we obtain∥∥∥∥|n|(P (·) + λ̂Ĕ

)(
ln + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2→L2

≤

|n| sup
y∈[α,β]

(
|ϕ(y) + λ̂|, |ψ(y) + λ̂|

)∥∥∥∥(ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2→L2

≤

|n| sup
y∈[α,β]

(
|ϕ(y)|+ λ̂, ψ(y) + λ̂

) 1

|n| inf
y∈[α,β]

[|ϕ(y)|+ λ̂, ψ(y) + λ̂]
<∞,

and the proof is complete.

We now consider the operator Lλ,λ̂ defined by

Lλ,λ̂w = Bxyw +
(
P (y) + λ̂Ĕ

)
wx + (Q(y) + λE)w,

for all functions w = (u, v) in the space C2
π,0(G0,R2). We denote by Lλ,λ̂ the

closure of Lλ,λ̂ in the norm of L2(G0,R2).

Definition 3.2. The operator Lλ,λ̂ is said to be separable, if the following

inequality holds

‖wxx‖2,G0
+ ‖wyy‖2,G0

+ ‖wxy‖2,G0
+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥
2,G0

+

‖(Q(y) + λE)w‖2,G0
≤ C

(∥∥∥Lλ,λ̂w
∥∥∥

2,G0

+ ‖w‖2,G0

)
,

for all w ∈ D(Lλ,λ̂).

We now prove the following intermediate statement.

Lemma 3.3. Let the folowing conditions hold.

a) The coefficients ϕ, ψ, a, b, c, d of system (2.1) satisfy Assumption 1.



34 ON THE REGULARITY OF THE SOLUTION

b) The function k(y) of [α, β] to [0; +∞) is twice continuously differentiable

and satisfies one and only one of the following three conditions

i)
√

2 < k(y) < 2, min
y∈[α,β]

{ϕ2(y), ψ2(y)}+ k
′′
(y) > 2

[
k
′
(y)
]2

;

ii) k(y) < 2,
√

2k
′
(y)

k(y)
≤ 1, min

y∈[α,β]
{ϕ2(y), ψ2(y)}+ k

′′
(y) > 2;

iii) k(y) < 2, k2(y) > 2k
′
(y), min

y∈[α,β]
{ϕ2(y), ψ2(y)}+ k

′′
(y) > 2k

′
(y).

c) There exist non-negative constants λ and λ̂ such that the following in-

equality holds

‖Bxyw‖2,G0
+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥
2,G0

+ (3.6)

‖(Q(y) + λE)w‖2,G0
≤ C

(∥∥∥∥(L+ λ̂Ĕ
∂

∂x
+ λE)w

∥∥∥∥
2,G0

+ ‖w‖2,G0

)
,

for all w = (u, v) ∈ D(Lλ,λ̂).

Then the operator Lλ,λ̂ is separable.

Proof. Let w = (u, v) ∈ C2
π,0(G0,R2). By simple computations, we obtain

‖Bxyw‖2
2,G0

= (3.7)∫
G0

k2(y)[u2
xx + v2

xx]dxdy +

∫
G0

[u2
yy + v2

yy]dxdy +

4

∫
G0

v2
xydxdy + 4

∫
G0

u2
xydxdy − 2

∫
G0

k(y)uxxuyydxdy −

4

∫
G0

k(y)uxxvxydxdy + 4

∫
G0

uyyvxydxdy + 4

∫
G0

k(y)uxyvxxdxdy −

4

∫
G0

uxyvyydxdy − 2

∫
G0

k(y)vxxvyydxdy.

We now introduce some notation. Let

I1 = −2
∫
G0

k(y)uxxuyydxdy,

I2 = −4
∫
G0

k(y)uxxvxydxdy,

I3 = 4
∫
G0

uyyvxydxdy,

I4 = 4
∫
G0

k(y)uxyvxxdxdy,

I5 = −4
∫
G0

uxyvyydxdy,

I6 = −2
∫
G0

k(y)vxxvyydxdy.



OF THE SEMIPERIODICAL DIRICHLET PROBLEM FOR SYSTEM (2.1) 35

Integrating by parts, we obtain I3 = 4
∫
G0

uxyvyydxdy, and thus I3 + I5 = 0.

By similar computations, we obtain

I2 = −4

∫
G0

k(y)uxyvxxdxdy − 4

∫
G0

k
′
(y)uxvxxdxdy,

then I2 + I4 = −4
∫
G0

k
′
(y)uxvxxdxdy.

I1 = −2

β∫
α

(
k(y)uxuyy|π−π

)
dy + 2

∫
G0

k(y)uxuyyxdxdy

-

∫
G0

k
′
(y)
(
u2

x

)
y
dxdy − 2

∫
G0

k(y)u2
xydxdy =

-

π∫
−π

(
k
′
(y)u2

x

∣∣∣β
α

)
dx+

∫
G0

k
′′
(y)u2

xdxdy − 2

∫
G0

k(y)u2
xydxdy =

∫
G0

k
′′
(y)u2

xdxdy − 2

∫
G0

k(y)u2
xydxdy.

I6 = −2

β∫
α

(
k(y)vyyvx|π−π

)
dy + 2

∫
G0

k(y)vxvyyxdxdy =

-

∫
G0

k
′
(y)
(
v2

x

)
y
dxdy − 2

∫
G0

k(y)v2
xydxdy =

-

π∫
−π

(
k
′
(y)v2

x

∣∣∣β
α

)
dx+

∫
G0

k
′′
(y)v2

xdxdy − 2

∫
G0

k(y)v2
xydxdy.

Hence, I1 + I6 =
∫
G0

k
′′
(y)|wx|2dxdy − 2

∫
G0

k(y)|wxy|2dxdy.

Then by (3.7), we obtain

‖Bxyw‖2
2,G0

=

∫
G0

k2(y)|wxx|2dxdy +

∫
G0

|wyy|2dxdy+

4

∫
G0

|wxy|2dxdy +

∫
G0

k
′′
(y)|wx|2dxdy −

2

∫
G0

k(y)|wxy|2dxdy − 4

∫
G0

k
′
(y)uxvxxdxdy,

and thus

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥2

2,G0

≥
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G0

k2(y)|wxx|2dxdy +

∫
G0

|wyy|2dxdy +

4

∫
G0

|wxy|2dxdy +

∫
G0

k
′′
(y)|wx|2dxdy − 2

∫
G0

k(y)|wxy|2dxdy −

4

∫
G0

k
′
(y)uxvxxdxdy +

∫
G0

ϕ2(y)u2
xdxdy +

∫
G0

ψ2(y)v2
xdxdy.

Hence,

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥2

2,G0

≥ (3.8)∫
G0

k2(y)|wxx|2dxdy +

∫
G0

|wyy|2dxdy +

4

∫
G0

|wxy|2dxdy +

∫
G0

k
′′
(y)|wx|2dxdy − 2

∫
G0

k(y)|wxy|2dxdy −

4

∫
G0

k
′
(y)uxvxxdxdy + min

y∈[α,β]

{
ϕ2(y), ψ2(y)

}∫
G0

|wx|2dxdy.

We now consider the following three cases, which we label as 1), 2), 3).

1) Let k(y) satisfy conditions i) of the statement. In accordance with ‘the

Cauchy inequality’, we have∣∣∣∣∣∣
∫
G0

k
′
(y)uxvxxdxdy

∣∣∣∣∣∣ ≤ 1

2

∫
G0

[
k
′
(y)
]2
u2

xdxdy +
1

2

∫
G0

v2
xxdxdy.

Therefore inequality (3.8) implies that

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wxx

∥∥∥2

2,G0

≥∫
G0

k2(y)|wxx|2dxdy +

∫
G0

|wyy|2dxdy + 4

∫
G0

|wxy|2dxdy +

∫
G0

k
′′
(y)|wx|2dxdy − 2

∫
G0

k(y)|wxy|2dxdy +

min
y∈[α,β]

{
ϕ2(y), ψ2(y)

}∫
G0

|wx|2dxdy −

2

∫
G0

[
k
′
(y)
]2
u2

xdxdy − 2

∫
G0

v2
xxdxdy

and

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥2

2,G0

≥ (3.9)
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G0

[k2(y)− 2]|wxx|2dxdy +

∫
G0

|wyy|2dxdy + 2

∫
G0

[2− k(y)]|wxy|2dxdy +

∫
G0

(
min

y∈[α,β]

{
ϕ2(y), ψ2(y)

}
+ k

′′
(y)− 2

[
k
′
(y)
]2)

|wx|2dxdy.

Hence, condition i) of the statement implies the validity of the following in-

equality

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥2

2,G0

≥ (3.10)

C1 ‖wxx‖2
2,G0

+ ‖wyy‖2
2,G0

+ C2 ‖wxy‖2
2,G0

+

C3

(
C4 + λ̂

)
‖wx‖2

2,G0
.

2) Let condition ii) of the statement hold. We estimate the last term in the

right hand side of (3.8) by applying ‘the Cauchy inequality’ in the following

form ∣∣∣∣∣∣
∫
G0

k
′
(y)uxvxxdxdy

∣∣∣∣∣∣ ≤ 1

2

∫
G0

u2
xdxdy +

1

2

∫
G0

[
k
′
(y)
]2
v2

xxdxdy.

Then we have

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥2

2,G0

≥∫
G0

k2(y)|wxx|2dxdy +

∫
G0

|wyy|2dxdy +

4

∫
G0

|wxy|2dxdy +

∫
G0

k
′′
(y)|wx|2dxdy −

2

∫
G0

k(y)|wxy|2dxdy + min
y∈[α,β]

{
ϕ2(y), ψ2(y)

}∫
G0

|wx|2dxdy −

2

∫
G0

u2
xdxdy − 2

∫
G0

[
k
′
(y)
]2
v2

xxdxdy

and

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥2

2,G0

≥ (3.11)∫
G0

[
k2(y)− 2(k

′
(y))2

]
|wxx|2dxdy +

∫
G0

|wyy|2dxdy + 2

∫
G0

[2− k(y)] |wxy|2dxdy +
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G0

(
min

y∈[α,β]

{
ϕ2(y), ψ2(y)

}
+ k

′′
(y)− 2

)
|wx|2dxdy.

Hence, by condition ii) of this lemma, we obtain inequality (3.10).

3) Let condition iii) of the statement hold. By using ‘the Cauchy inequality’∣∣∣∣∣∣
∫
G0

k
′
(y)uxvxxdxdy

∣∣∣∣∣∣ ≤ 1

2

∫
G0

k
′
(y)u2

xdxdy +
1

2

∫
G0

k
′
(y)v2

xxdxdy,

we transform inequality (3.8) in the following form

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥2

2,G0

≥∫
G0

k2(y)|wxx|2dxdy +

∫
G0

|wyy|2dxdy +

4

∫
G0

|wxy|2dxdy +

∫
G0

k
′′
(y)|wx|2dxdy −

2

∫
G0

k(y)|wxy|2dxdy + min
y∈[α,β]

{
ϕ2(y), ψ2(y)

}∫
G0

|wx|2dxdy −

2

∫
G0

k
′
(y)u2

xdxdy − 2

∫
G0

k
′
(y)v2

xxdxdy

and thus

‖Bxyw‖2
2,G0

+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥2

2,G0

≥ (3.12)∫
G0

[
k2(y)− 2k

′
(y)
]
|wxx|2dxdy +

∫
G0

|wyy|2dxdy +

2

∫
G0

[2− k(y)] |wxy|2dxdy +

∫
G0

(
min

y∈[α,β]

{
ϕ2(y), ψ2(y)

}
+ k

′′
(y)− 2k

′
(y)

)
|wx|2dxdy.

Hence, by condition iii) of the statement, we obtain the inequality (3.10).

Consequently, from inequalities (3.6) and (3.10) we obtain

‖wxx‖2,G0
+ ‖wyy‖2,G0

+ ‖wxy‖2,G0
+∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥
2,G0

+ ‖(Q(y) + λE)w‖2,G0
≤

‖Bxyw‖2,G0
+
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥
2,G0

+ ‖(Q(y) + λE)w‖2,G0
≤

C2(λ, λ̂)

(∥∥∥Lλ,λ̂w
∥∥∥

2,G0

+ ‖w‖2,G0

)
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and the proof of the lemma is complete.

We now introduce the main result of this chapter.

Theorem 3.4. Let λ̂ ≥ λ ≥ 0. Let the coefficients of system (2.1) satisfy

Assumption 1, conditions (3.1), (3.2). Let k(y) be twice continuously differ-

entiable on [α, β] and satisfy one and only one of conditions i), ii), iii). Then

the operator Lλ,λ̂ is separable.

Proof. By Lemma 3.3 it is enough to show the correctness of (3.6). The

operator L is bounded and invertible by the assumptions of the theorem. The

operator L+ λ̂Ĕ ∂
∂x

satisfies all the conditions of Theorem 3.4. Hence,

L + λ̂Ĕ ∂
∂x

is bounded and invertible. Furthermore, the following inequality

holds ∥∥∥∥(L+ λ̂Ĕ
∂

∂x
+ λE)w

∥∥∥∥
2,G0

≥ C ‖w‖2,G0
,

for all w ∈ D(L + λ̂Ĕ ∂
∂x

+ λE). Then by the well-known Theorem 1.2, the

operator L+λ̂Ĕ ∂
∂x

+λE is bounded and invertible in L2(G0,R2). Furthermore,

we have

(L+ λ̂Ĕ
∂

∂x
+ λE)−1F =

∞∑
n=−∞

(ln + inλ̂Ĕ + λE)−1Fne
inx,

by construction. Here F =
∑∞

n=−∞ Fne
inx, F = (f, g), Fn = (fn, gn).

Hence, by the orthonormality of the system {einx}∞n=−∞ in L2[−π, π], we

obtain∥∥∥∥∥ρ(y)Dτ
x

(
L+ λ̂Ĕ

∂

∂x
+ λE

)−1
∥∥∥∥∥

L2(G0,R2)→L2(G0,R2)

=

sup
n

∥∥∥∥|n|τρ(y)(ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2((α,β),C2)→L2((α,β),C2)

.

Here Dτ
x = ∂τ

∂xτ , τ = 0, 1 and ρ(y) is a 2× 2-matrix with continuous elements.

Since (3.3) holds, we have∥∥∥∥∥(P (·) + λ̂Ĕ
) ∂

∂x

(
L+ λ̂Ĕ

∂

∂x
+ λE

)−1
∥∥∥∥∥

L2(G0,R2)→L2(G0,R2)

+∥∥∥∥∥(Q(·) + λE)
∂

∂x

(
L+ λ̂Ĕ

∂

∂x
+ λE

)−1
∥∥∥∥∥

L2(G0,R2)→L2(G0,R2)

=
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sup
n

∥∥∥∥|n| (P (·) + λE)
(
ln + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2((α,β),C2)→L2((α,β),C2)

+

sup
n

∥∥∥∥(Q(·) + λE)
(
ln + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2((α,β),C2)→L2((α,β),C2)

<∞.

Then we obtain∥∥∥∥∥Bxy

(
L+ λ̂Ĕ

∂

∂x
+ λE

)−1
∥∥∥∥∥

L2(G0,R2)→L2(G0,R2)

<∞

from system (2.1). Hence, inequality (3.6) follows and the proof is complete.

Corollary 3.5. Let the coefficients ϕ, ψ, a, b, c, d, k of system (2.1) satisfy the

conditions of Theorem 3.4. Then the following inequality holds

‖uxx‖2
2,G0

+ ‖uyy‖2
2,G0

+ ‖uxy‖2
2,G0

+ ‖vxx‖2
2,G0

+ (3.13)

‖vyy‖2
2,G0

+ ‖vxy‖2
2,G0

+ ‖ϕ(y)ux‖2
2,G0

+ ‖uy‖2
2,G0

+

‖ψ(y)vx‖2
2,G0

+ ‖vy‖2
2,G0

+ ‖a(y)u‖2
2,G0

+ ‖b(y)v‖2
2,G0

+

‖c(y)u‖2
2,G0

+ ‖d(y)v‖2
2,G0

≤ C ‖F‖2
2,G0

,

for the solution w = (u, v) of problem (2.1), (2.2).

Remark 3.6. The definition of separability ensures the validity of the following

inequality

‖uxx‖2
2,G0

+ ‖uyy‖2
2,G0

+ ‖uxy‖2
2,G0

+ ‖vxx‖2
2,G0

+ (3.14)

‖vyy‖2
2,G0

+ ‖vxy‖2
2,G0

+ ‖ϕ(y)ux‖2
2,G0

+ ‖uy‖2
2,G0

+

‖ψ(y)vx‖2
2,G0

+ ‖vy‖2
2,G0

+ ‖a(y)u‖2
2,G0

+ ‖b(y)v‖2
2,G0

+

‖c(y)u‖2
2,G0

+ ‖d(y)v‖2
2,G0

≤ C
(
‖Lw‖2

2,G0
+ ‖w‖2

2,G0

)
.

If ineqality (2.6) is holds, then (3.14) is equivalent to (3.13).

By the well-known norm of the Sobolev space W 2
2 (G0,R2), one can rewrite

(3.13) in the following compact form

‖w‖2
W 2

2 (G0,R2) + ‖ϕ(y)ux‖2
2,G0

+ ‖ψ(y)vx‖2
2,G0

+

‖(|a|+ |c|)u‖2
2,G0

+ ‖(|b|+ |d|) v‖2
2,G0

≤ C1 ‖F‖2
2,G0

.
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Example 3.7. We consider the following problem

y3 ∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

− ey2+21 ∂u
∂x

+

(arctgy + 2y)u+ yv = f(x, y),

2 ∂2u
∂x∂y

+ y3 ∂2v
∂x2 − ∂2v

∂y2 + χ(y)2y2+15 ∂v
∂x

+

y−3

5
√

4+y2
u+ (y + siny)v = g(x, y),

w(−π, y) = w(π, y), wx(−π, y) = wx(π, y), w(x,
6
√

2) = w(x,
3
√

1.9) = 0

in the rectangle G1 =
{
(x, y) ∈ R2 : −π < x < π, 6

√
2 < y < 3

√
1.9
}
. Here

χ(y) is an arbitrary function such that 2 ≤ χ(y) ≤ 3 for all y ∈ [ 6
√

2, 3
√

1.9] and

f, g ∈ L2(G1).

By Theorem 2.7 this problem has an unique solution w = (u, v) ∈ L2 for

any data f, g ∈ L2(G1). Moreover, the solutions of the above system satisfy

the coercive inequality with the norm of space L2(G1) in the form (3.13).

We now show that the following functions

a(y) = arctgy + 2y,

b(y) = y,

c(y) =
y − 3

5
√

4 + y2
,

d(y) = y + siny,

ϕ(y) = −ey2+21,

ψ(y) = χ(y)2y2+15

satisfy Assumption 1.

Indeed

1)there exists a constant δ > 0 such that

inf
y∈[ 6√2, 3√1.9]

{−ϕ(y), a(y), d(y)} =

inf
y∈[ 6√2, 3√1.9]

{
ey2+21, arctgy + 2y, y + siny

}
= δ > 0;

2) there exist constants r, q, (r > 0, q > 0, r + q = 1) and ϑ(0 < ϑ < 3)

such that

1
2

(
|y|+ | y−3

5
√

4+y2
|
)2r

≤ arctgy+2y

3
,

1
2

(
|y|+ | y−3

5
√

4+y2
|
)2q

≤ y+siny
3

,

ϑχ(y)2y2+15 > y + siny
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for all y ∈ [ 6
√

2, 3
√

1.9].

Further, we can see that the functions a(y), d(y), ϕ(y), ψ(y) of R satisfy the

conditions (3.1) and (3.2) of Lemma 3.1. There exist constants c0, c1 and C

such that

inf
y,η∈[ 6√2, 3√2],|y−η|≤µ

e2(y
2+21)

(arctgη + 2η)
≥ c0 > 0,

inf
y,η∈[ 6√2, 3√2],|y−η|≤µ

χ2(y)22(y2+15)

(η + sinη)
≥ c1 > 0

and

sup
y,η∈[ 6√2, 3√2],|y−η|≤µ

{
ey2+21

eη2+21
,
χ(y)2y2+15

χ(η)2η2+15
,
arctgy + 2y

arctgη + 2η
,

y + siny

η + sinη
,
arctgy + 2y

η + sinη

}
≤ C <∞,

where µ =
3√1.9− 6√2

2
.

The function k(y) = y3 on [ 6
√

2, 3
√

1.9] is twice continuously differentiable

and satisfies the condition (i) of Lemma 3.3.

First of all we show that

min
y∈[ 6√2, 3√1.9]

{
ϕ2(y), ψ2(y)

}
> 2[k

′
(y)]2 − k

′′
(y).

Indeed,

2[k
′
(y)]2 = 18y4 and k

′′
(y) = 6y.

Then

max
y∈[ 6√2, 3√1.9]

{
2[k

′
(y)]2 − k

′′
(y)
}

= max
y∈[ 6√2, 3√1.9]

{
18y4 − 6y

}
< 84.

Thus

min
y∈[ 6√2, 3√1.9]

{
e2(y

2+21), χ2(y)22(y2+15)
}
> 84

holds for any y ∈ [ 6
√

2, 3
√

1.9].

Example 3.8. We consider the following problem −y3lny ∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

+ (2
1

3tgy − 23)∂u
∂x

+ e|y|+1u+
√

y

5
v = f(x, y),

2 ∂2u
∂x∂y

− y3lny ∂2v
∂x2 − ∂2v

∂y2 + (2
1

arcsiny + 15) ∂v
∂x

+
√

y+1
5
u+ χ(y)2|y|v = g(x, y),
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w(−π, y) = w(π, y), wx(−π, y) = wx(π, y), w(x, e−
1
3 ) = w(x, 1) = 0

in the rectangle G2 = {(x, y) ∈ R2 : −π < x < π, e−
1
3 ≤ y ≤ 1}. Here

inf
y∈[e−

1
3 ,1]

k(y) = inf
y∈[e−

1
3 ,1]

(−y3lny) = 0 and χ(y) is an arbitrary function such

that 1 ≤ χ(y) ≤ 2 for all y ∈ [e−
1
3 , 1], and f, g ∈ L2(G2).

By Theorem 2.7 this problem has an unique solution w = (u, v) ∈ L2 for

any data f, g ∈ L2(G2). Moreover, the solutions of the above system satisfy

the coercive inequality with the norm of space L2(G2) in the form (3.13).

We now show that the following functions

a(y) = e|y|+1,

b(y) =

√
y

5
,

c(y) =

√
y + 1

5
,

d(y) = χ(y)2|y|,

ϕ(y) = 2
1

3tgy − 23,

ψ(y) = 2
1

arcsiny + 15

satisfy Assumption 1.

Indeed

1)there exists a constant δ > 0 such that

inf
y∈[e−

1
3 ,1]

{−ϕ(y), a(y), d(y)} =

inf
y∈[e−

1
3 ,1]

{
−2

1
3tgy + 23, e|y|+1, χ(y)2|y|

}
= δ > 0;

2) there exist constants r, q, (r > 0, q > 0, r + q = 1) and ϑ(0 < ϑ < 3)

such that
1
2

(
|
√

y

5
|+ |

√
y+1
5
|
)2r

≤ e|y|+1

3
,

1
2

(
|
√

y

5
|+ |

√
y+1
5
|
)2q

≤ χ(y)2|y|

3
,

ϑ(2
1

arcsiny + 15) > χ(y)2|y|

for all y ∈ [e−
1
3 , 1].

Also we can see that the functions a(y), d(y), ϕ(y), ψ(y) of [e−
1
3 , 1] satisfy

the conditions (3.1) and (3.2) of Lemma 3.1. There exist constants c0, c1 and
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C such that

inf

y,η∈[e−
1
3 ,1],|y−η|≤ 1−e

− 1
3

2

(2
1

3tgy − 23)2

e|η|+1
≥ c0 > 0,

inf

y,η∈[e−
1
3 ,1],|y−η|≤ 1−e

− 1
3

2

(2
1

arcsiny + 15)2

χ(η)2|η|
≥ c1 > 0

and

sup

y,η∈[e−
1
3 ,1],|y−η|≤ 1−e

− 1
3

2

{
2

1
3tgy − 23

2
1

3tgη − 23
,
2

1
arcsiny + 15

2
1

arcsinη + 15
,

e|y|+1

e|η|+1
,
χ(y)2|y|

χ(η)2|η|
,
e|y|+1

χ(η)2|η|

}
≤ C <∞.

The function k(y) = −y3lny is twice continuously differentiable and satis-

fies the condition (ii) of Lemma 3.3.

Really

1)k(y) = −y3lny < 1;

2)
√

2k
′
(y)

k(y)
= −

√
2(3lny+1)

ylny
< 0 for all y ∈ [e−

1
3 , 1);

3) And k
′′
(y) = −6ylny − 5y.

Then we show that

min
y∈[e−

1
3 ,1]

{
ϕ2(y), ψ2(y)

}
> 2− k

′′
(y),

namely

min
y∈[e−

1
3 ,1]

{(
2

1
3tgy − 23

)2

,
(
2

1
arcsiny + 15

)2
}
> 2 + y6lny + 5y.

We can see that

max
y∈[e−

1
3 ,1]

{2 + y6lny + 5y} ≤ max
y∈[e−

1
3 ,1]

{2 + 5y} ≤ 7,

since y > 0 and lny < 0 on [e−
1
3 , 1].

Then

min
y∈[e−

1
3 ,1]

{(
2

1
3tgy − 23

)2

,
(
2

1
arcsiny + 15

)2
}
> 7

holds for any y ∈ [e−
1
3 , 1].

Example 3.9. We consider the following problem

−y ∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

+ (2y3 − 17) ∂u
∂x

+

2cosyu+ 1
10
sinyv = f(x, y),

2 ∂2u
∂x∂y

− y ∂2v
∂x2 − ∂2v

∂y2 + χ(y)(y3 + 10) ∂v
∂x

+

1
10
cosy

5
u+ (1

2
sin2y + cosy)v = g(x, y),
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w(−π, y) = w(π, y), wx(−π, y) = wx(π, y), w(x,−1) = w(x, 0) = 0

on the rectangle G3 = {(x, y) ∈ R2 : −π < x < π, −1 ≤ y ≤ 0}. Here

inf
y∈[−1,0]

k(y) = inf
y∈[−1,0]

(−y) = 0 and χ(y) is an arbitrary function such that

1 ≤ χ(y) ≤ 2 for all y ∈ [−1, 0], and f, g ∈ L2(G3).

By Theorem 2.7 this problem has an unique solution w = (u, v) ∈ L2 for

any data f, g ∈ L2(G3). Moreover, the solutions of the above system satisfy

the coercive inequality with the norm of space L2(G3) in the form (3.13).

We now show that the following functions

a(y) = 2cosy,

b(y) =
1

10
siny,

c(y) =
1

10
cos

y

5
,

d(y) =
1

2
sin2y + cosy,

ϕ(y) = 2y3 − 17,

ψ(y) = χ(y)(y3 + 10)

satisfy Assumption 1.

Indeed

1)there exists a constant δ > 0 such that

inf
y∈[−1,0]

{−ϕ(y), a(y), d(y)} =

inf
y∈[−1,0]

{
−2y3 + 17, 2cosy,

1

2
sin2y + cosy

}
= δ > 0;

2) there exist constants r, q, (r > 0, q > 0, r + q = 1) and ϑ(0 < ϑ < 3)

such that
1
2

(
| 1
10
siny|+ | 1

10
cosy

5
|
)2r ≤ 2cosy

3
,

1
2

(
| 1
10
siny|+ | 1

10
cosy

5
|
)2q ≤

1
2
sin2y+cosy

3
,

ϑχ(y)(y3 + 10) > 1
2
sin2y + cosy

for all y ∈ [−1, 0].

Also we can see that the functions a(y), d(y), ϕ(y), ψ(y) of [−1, 0] satisfy

the conditions (3.1) and (3.2) of Lemma 3.1. There exist constants c0, c1 and
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C such that

inf
y,η∈[−1,0],|y−η|≤ 1

2

(2y3 − 17)
2

2cosη
≥ c0 > 0,

inf
y,η∈[−1,0],|y−η|≤ 1

2

χ2(y)(y3 + 10)2

1
2
sin2η + cosη

≥ c1 > 0

and

sup
y,η∈[−1,0],|y−η|≤ 1

2

{
2y3 − 17

2η3 − 17
,
χ(y)(y3 + 10)

χ(η)(η3 + 10)
,
2cosy

2cosη
,

1
2
sin2y + cosy

1
2
sin2η + cosη

,
2cosy

1
2
sin2η + cosη

}
≤ C <∞.

The function k(y) = −y is twice continuously differentiable and satisfies

the condition (iii) of Lemma 3.3.

Really

1)k(y) = −y < 2;

2) k
′
(y) = −1 < 0, then k2(y) > 2k

′
(y) holds, i.e. y2 > −2 for all

y ∈ [−1, 0];

3) And k
′′
(y) = 0.

Then we verify that

min
y∈[−1,0]

{
ϕ2(y), ψ2(y)

}
> 2k

′
(y)− k

′′
(y).

We can see that

max
y∈[−1,0]

{
2k

′
(y)− k

′′
(y)
}
≤ max

y∈[−1,0]

{
−2− y2

}
< 0.

Then

min
y∈[−1,0]

{(
2y3 − 17

)2
,
(
χ(y)(y3 + 10)

)2}
> 0

holds for any y ∈ [−1, 0].



Chapter 4

The solvability of the

semiperiodical problem for

second order degenerate system

on the strip

We consider the following problem k(y)∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

+ ϕ(y)∂u
∂x

+ a(y)u+ b(y)v = f(x, y),

2 ∂2u
∂x∂y

+ k(y) ∂2v
∂x2 − ∂2v

∂y2 + ψ(y) ∂v
∂x

+ c(y)u+ d(y)v = g(x, y),
(4.1)

w(−π, y) = w(π, y), wx(−π, y) = wx(π, y) (4.2)

on the strip G = {(x, y) ∈ R2 : −π < x < π, −∞ < y < +∞}. Here

k(y) is a continuous and bounded real valued function such that inf
y∈R

k(y) ≥ 0,

f, g ∈ L2(G). Let functions ϕ, ψ, a, b, c, d be continuous on R.

The system (4.1) can be written in the following form

L0w = Bxyw + P (y)wx +Q(y)w = F (X), (4.3)

here

Bxy =

 k(y) ∂2

∂x2 − ∂2

∂y2 −2 ∂2

∂x∂y

2 ∂2

∂x∂y
k(y) ∂2

∂x2 − ∂2

∂y2

 ,

P (y) =

 ϕ(y) 0

0 ψ(y)

 ,

47
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Q(y) =

 a(y) b(y)

c(y) d(y)

 ,

U = (u, v) , F = (f, g) , X = (x, y).

Assumption 2. We assume that the real valued functions ϕ, ψ, a, b, c, d

on R satisfy the following conditions

inf
y∈R

{−ϕ(y), a(y), d(y)} = δ > 0; (4.4)

1

2
(|b(y)|+ |c(y)|)2α ≤ a(y)

3
, (4.5)

1

2
(|b(y)|+ |c(y)|)2β ≤ d(y)

3
,

ϑψ(y) > d(y),

where α, β and ϑ are constants such that α > 0, β > 0, α + β = 1, ϑ < 3.

We denote by C2
π,0(G,R2) the set of twice continuously differentiable real-

valued vector-functions w = (u, v) from

G̃ = {(x, y) ∈ R2 : −π ≤ x ≤ π, ∞ < y < ∞} to R2 satisfy (4.2) which are

periodic in the variable x and which have compact support in the variable y,

for each fixed value of x in [−π, π]. We denote by L the closure under the norm

of L2(G,R2) of the differential operator L0 with domain D(L0) = C2
π,0(G,R2).

Definition 4.1. A function w = (u, v) ∈ L2(G,R2) is said to be a solution

of the problem (4.1), (4.2), if there exists a sequence {wn}∞n=1 in C2
π,0(G,R2)

such that ‖wn − w‖L2(G,R2) → 0 and ‖Lwn − F‖L2(G,R2) → 0 as n→∞.

Lemma 4.2. Let Assumption 2 hold. Then there exists a constant C0 such

that the following inequality holds

‖w‖2
W 1

2 (G,R2) = ‖wx‖2
2,G + ‖wy‖2

2,G + ‖w‖2
2,G ≤ C0 ‖Lw‖2

2,G , (4.6)

for all functions w = (u, v) ∈ D(L).

Proof. Let w = (u, v) ∈ C2
π,0(G,R2) and w̃ = (−u, v). Integrating by

parts and exploiting the boundary conditions for the function w, we obtain

((L0 + λE)w,w) =

∫
G

(k(y)uxx − uyy − 2vxy + ϕ(y)ux+

a(y)u+ λu+ b(y)v) ūdxdy +
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G

(2uxy + k(y)vxx − vyy + ψ(y)vx+

c(y)u+ d(y)v + λv) v̄dxdy =
+∞∫
−∞

k(y)

 π∫
−π

uxxūdx

 dy −
π∫

−π

 +∞∫
−∞

uyyūdy

 dx−

2

∫
G

vxyūdxdy +

+∞∫
−∞

ϕ(y)

 π∫
−π

uxūdx

 dy +

∫
G

a(y)|u|2dxdy +

∫
G

b(y)|u||v|dxdy +

2

∫
G

uxyv̄dxdy +

+∞∫
−∞

k(y)

 π∫
−π

vxxv̄dx

 dy −

π∫
−π

 +∞∫
−∞

vyyv̄dy

 dx+

+∞∫
−∞

ψ(y)

 π∫
−π

vxv̄dx

 dy +

∫
G

c(y)|u||v|dxdy +

∫
G

d(y)|v|2dxdy +

∫
G

λ(|u|2 + |v|2)dxdy =

+∞∫
−∞

k(y)

uxū|π−π −
π∫

−π

|ux|2dx

 dy −

π∫
−π

uyū|+∞−∞ −
+∞∫
−∞

|uy|2dy

 dx−

2

π∫
−π

vxū|+∞−∞ −
+∞∫
−∞

vxuydy

 dx−

+∞∫
−∞

ϕ(y)

 π∫
−π

uxūdx

 dy +

∫
G

a(y)|u|2dxdy +

∫
G

b(y)|u||v|dxdy + 2

π∫
−π

uxv̄|+∞−∞ −
+∞∫
−∞

uxvydy

 dx−

+∞∫
−∞

k(y)

vxv̄|π−π −
π∫

−π

|vx|2dx

 dy −

π∫
−π

vyv̄|+∞−∞ −
+∞∫
−∞

|vy|2dy

 dx+
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+∞∫
−∞

ψ(y)

 π∫
−π

vxv̄dx

 dy +

∫
G

c(y)|u||v|dxdy +

∫
G

d(y)|v|2dxdy +

∫
G

λ(|u|2 + |v|2)dxdy =

-

∫
G

k(y)|ux|2dxdy +

∫
G

|uy|2dxdy +

2

∫
G

uyvxdxdy +

+∞∫
−∞

ϕ(y)

(
u2

2

∣∣∣∣π
−π

)
dy +

∫
G

a(y)u2dxdy +

∫
G

λu2dxdy +

∫
G

b(y)uvdxdy − 2

∫
G

uyvxdxdy −

∫
G

k(y)|vx|2dxdy +

∫
G

|vy|2dxdy +

+∞∫
−∞

ψ(y)

(
v2

2

∣∣∣∣π
−π

)
dy +

∫
G

c(y)uvdxdy +

∫
G

d(y)v2dxdy +

∫
G

λv2dxdy

and

((L0 + λE)w, w̃x) = −
∫
G

uy(uy)xdxdy − 2

∫
G

uxyvxdxdy−∫
G

ϕ(y)u2
xdxdy +

∫
G

b(y)uvxdxdy +

2

∫
G

vxuxydxdy +

∫
G

vx (vx)y dxdy +

∫
G

ψ(y)v2
xdxdy +

∫
G

c(y)uvxdxdy.

Since the functions u, v, ux, vx have compact support in the variable y, the

integrals in the previous equalities are actually integrals are bounded thus

converge. Then we obtain

((L0 + λE)w,w) = −
∫
G

k(y)|wx|2dxdy+ (4.7)

∫
G

|wy|2dxdy +

∫
G

λ|w|2dxdy +

∫
G

(a(y)u2 + d(y)v2)dxdy +

∫
G

(b(y) + c(y))uvdxdy,

((L0 + λE)w, w̃x) = −
∫
G

ϕ(y)u2
xdxdy+ (4.8)
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G

ψ(y)v2
xdxdy +

∫
G

(b(y) + c(y))uvxdxdy.

By applying the Hölder and Cauchy-Bunyakovski inequalities to the last term

of (4.7), we have∣∣∣∣∣∣
∫
G

(b(y) + c(y))uvdxdy

∣∣∣∣∣∣ ≤ (4.9)

∫
G

|(b(y) + c(y))uv| dxdy =

∫
G

|b(y) + c(y)|α|u||b(y) + c(y)|β|v|dxdy ≤

∫
G

(|b(y)|+ |c(y)|)2αu2dxdy

 1
2

·

∫
G

(|b(y)|+ |c(y)|)2βv2dxdy

 1
2

≤

1

2

∫
G

(|b(y)|+ |c(y)|)2αu2dxdy +
1

2

∫
G

(|b(y)|+ |c(y)|)2βv2dxdy.

Then by arguing on (4.8) so as to obtain (4.9) from (4.7), we have the following

inequality∣∣∣∣∣∣
∫
G

(b(y) + c(y))uvxdxdy

∣∣∣∣∣∣ ≤ (4.10)

1

2

∫
G

(|b(y)|+ |c(y)|)2αu2dxdy +
1

2

∫
G

(|b(y)|+ |c(y)|)2βv2
xdxdy.

By conditions (4.4) and (4.5), and by applying inequalities (4.9) and (4.10),

and by applying ‘the Cauchy inequality with weight ε’ for some γ0 > 0 and

ε > 0 to the left hand side of equalities (4.7) and (4.8), respectively, we have

1

2γ0

‖(L0 + λE)w‖2
2,G ≥ (4.11)

-
γ0

2
‖w‖2

2,G − sup
y∈R

|k(y)|
∫
G

|wx|2dxdy +

∫
G

|wy|2dxdy +

∫
G

λ|w|2dxdy +

∫
G

2a(y)

3
u2dxdy +

∫
G

2d(y)

3
v2dxdy

and

1

2ε
‖(L0 + λE)w‖2

2,G +
ε

2
‖wx‖2

2,G ≥ (4.12)
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δ

∫
G

u2
xdxdy +

∫
G

ψ(y)v2
xdxdy −∫

G

a(y)

3
u2dxdy −

∫
G

ϑψ(y)

3
v2

xdxdy.

By combining inequalities (4.11) and (4.12), we obtain(
1

2γ0

+
1

2ε

)
‖(L0 + λE)w‖2

2,G ≥[
δ

3
+ λ− γ0

2

]
‖w‖2

2,G + ‖wy‖2
2,G +(

δ

(
1− ϑ

3

)
− ε

2
− sup

y∈R
|k(y)|

)
‖wx‖2

2,G .

Hence, for C1 = 1
2γ0

+ 1
2ε

, C2 = δ
3

+ λ − γ0

2
, C3 = δ

(
1− ϑ

3

)
− ε

2
− sup

y∈R
|k(y)|

inequality (4.6) follows. Thus the proof of the lemma is complete.

Remark 4.3. Lemma 4.2 holds, if the condition (4.5) is replaced by the fol-

lowing inequalities
1

2
(|b(y)|+ |c(y)|)2α ≤ d(y)

3
,

1

2
(|b(y)|+ |c(y)|)2β ≤ a(y)

3
,

−ϑϕ(y) > a(y),

where α, β and ϑ are constants such that α > 0, β > 0, α+ β = 1, ϑ < 3.

Remark 4.4. If b(y) = −c(y), then one can prove Lemma 4.2 with condition

(4.5) replaced by the following

inf
y∈R

ψ(y) = δ > 0.

We now write the functions f and g in the right hand side of (4.1) in the

following form

f =
∞∑

n=−∞

fn(y)einx, g =
∞∑

n=−∞

gn(y)einx. (4.13)

We will search for a solution w = (u, v) of the problem (4.1), (4.2) as a

limit in the norm of L2(G,R2) the sequence {(ũN , ṽN)}∞N=−∞, where

ũN =
N∑

n=−N

un(y)einx, ṽN =
N∑

n=−N

vn(y)einx, (4.14)
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∂2

∂x2

(
N∑

n=−N

uk(y)e
ikx

)
= −

N∑
n=−N

k2uk(y)e
ikx,

∂2

∂x2

(
N∑

n=−N

vk(y)e
ikx

)
= −

N∑
n=−N

k2vk(y)e
ikx,

∂

∂x

(
N∑

n=−N

uk(y)e
ikx

)
= i

N∑
n=−N

uk(y)e
ikx,

∂

∂x

(
N∑

n=−N

vk(y)e
ikx

)
= i

N∑
n=−N

vk(y)e
ikx,

∂

∂y

(
N∑

n=−N

uk(y)e
ikx

)
=

N∑
n=−N

u
′

k(y)e
ikx,

∂2

∂y2

(
N∑

n=−N

uk(y)e
ikx

)
=

N∑
n=−N

u
′′

k(y)e
ikx,

∂2ũN

∂y∂x
= i

N∑
n=−N

ku
′

k(y)e
ikx,

∂2ṽN

∂y∂x
= i

N∑
n=−N

kv
′

k(y)e
ikx.

By replacing u, v, f, g by the corresponding expression of (4.13) and (4.14), we

obtain that

−
N∑

n=−N

u
′′
ne

inx − 2in
N∑

n=−N

v
′
ne

inx − n2k(y)
N∑

n=−N

un(y)einx+

inϕ(y)
N∑

n=−N

un(y)einx + a(y)
N∑

n=−N

un(y)einx+

b(y)
N∑

n=−N

vn(y)einx =
N∑

n=−N

fn(y)einx,

−
N∑

n=−N

v
′′
n(y)einx + 2in

N∑
n=−N

u
′
n(y)einx + c(y)

N∑
n=−N

un(y)einx−

n2k(y)
N∑

n=−N

un(y)einx + inψ(y)
N∑

n=−N

vn(y)einx+

d(y)
N∑

n=−N

vn(y)einx =
N∑

n=−N

gn(y)einx,

and by equating the coefficients of einx, we obtain the following problem for

wn = (un(y), vn(y)) (n = 0,±1,±2, . . .) −u′′
n − 2inv

′
n + (−n2k(y) + inϕ(y) + a(y))un + b(y)vn = fn(y),

−v′′n + 2inu
′
n + c(y)un + (−n2k(y) + inψ(y) + d(y))vn = gn(y).

(4.15)
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Next we consider the operator ln + λE defined by

(ln + λE)w = −w′′
+ 2inTw

′
+Qn(y)w + λw,

for all functions w(y) in the space C2
0 (R,C2) of twice continuously differen-

tiable functions w(y) of R to C2 with compact support in R. Here

T =

 0 −1

1 0

 ,

Qn(y) =

 −n2k(y) + inϕ(y) + a(y) b(y)

c(y) −n2k(y) + inψ(y) + d(y)

 .

We denote also by ln+λE the closure of ln+λE in the norm of L2 ≡ L2 (R,C2).

Lemma 4.5. Let λ ≥ 0. Let Assumption 2 hold. Then there exists a constant

C0 such that

‖(ln + λE)w‖2
2 ≥ C0

∫
R

∣∣∣w′
∣∣∣2 dy +

∫
R

(
δ

3
+ λ+ n2

)
|w|2 dy

 , (4.16)

for all wn = (un(y), vn(y)) ∈ D(ln + λE), where we denote by ‖·‖2 the norm

of L2 ≡ L2 (R,C2).

Proof. Let w = (u, v) ∈ C2
0 (R,C2). By Assumption 2, we obtain

Im [(−fn, nun) + (gn, nvn)] =

Im

∫
R

{
u
′′

n + 2inv
′

n−

(−n2k(y) + inϕ(y) + a(y))un − b(y)vn

}
nūndy

]
+

Im

∫
R

{
−v′′n + 2inu

′

n + c(y)un+

(−n2k(y) + inψ(y) + d(y))vn

}
nv̄ndy

]
=

2n2

∫
R

v
′

nundy − n2

∫
R

ϕ(y)u2
ndy +

2n2

∫
R

u
′

nvndy + n2

∫
R

ψ(y)v2
ndy ≥

2n2

unvn|+∞−∞ −
∫
R

u
′

nvndy

+ 2n2

∫
R

u
′

nvndy +

δn2

∫
R

(u2
n + v2

n)dy = δn2 ‖w‖2
2,G ,
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or

Im [(−fn, nun) + (gn, nvn)] ≥ δn2 ‖w‖2
2,G . (4.17)

And accordingly

Re ((ln + λE)w,w) ≥

Re

∫
R

{
−u′′

n − 2inv
′

n+

(−n2k(y) + inϕ(y) + a(y) + λ)un + b(y)vn

}
ūndy +∫

R

{
−v′′n + 2inu

′

n + c(y)un+

(−n2k(y) + inψ(y) + d(y) + λ)vn

}
v̄ndy

]
=∫

R

∣∣∣u′

n

∣∣∣2 dy +

∫
R

(
−n2 sup

y∈R
|k(y)|+ λ

)
|un|2 dy +

∫
R

∣∣∣v′n∣∣∣2 dy +

∫
R

(
−n2 sup

y∈R
|k(y)|+ λ

)
|vn|2dy +

∫
R

(
a(y)u2

n + (b(y) + c(y))unvn + d(y)v2
n

)
dy ≥

∫
R

∣∣∣w′
∣∣∣2 dy +

∫
R

(
−n2 sup

y∈R
|k(y)|+ 2δ

3
+ λ

)
|w|2 dy

or

Re ((ln + λE)w,w) ≥ (4.18)∫
R

∣∣∣w′
∣∣∣2 dy +

∫
R

(
−n2 sup

y∈R
|k(y)|+ 2δ

3
+ λ

)
|w|2 dy.

By multiplying both hand sides of (4.17) by ρ > 0 and by invoking inequality

(4.18), we obtain that

Re ((ln + λE)w,w) + ρIm [(−fn, nun) + (gn, nvn)] ≥∫
R

∣∣∣w′

n

∣∣∣2 dy +

∫
R

(
ρδn2 +

2δ

3
+ λ− n2 sup

y∈R
|k(y)|

) ∣∣∣w′

n

∣∣∣2 dy.
Hence, ‘the Cauchy inequality with weight ε’ implies that(

3

4δ
+
ρ

2ε

)
‖(ln + λE)w‖2

2 ≥
∫
R

∣∣∣w′
∣∣∣2 dy+

∫
R

(
ρδn2 +

δ

3
+ λ− n2 sup

y∈R
|k(y)| − ρε

2
n2

)
|w|2 dy.
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We now choose ρ and ε so that ρδ − sup
y∈R

|k(y)| − ρε
2
≥ 1. Hence, the last

inequality implies (4.16) for all w = (u(y), v(y)) ∈ D(ln + λE) and the proof

of lemma is complete.

Let ∆j = (j − 1, j + 1), j ∈ Z. We consider the operator l
(0)
n,j + λE defined

by

(l
(0)
n,j + λE)w = −w′′

+ 2inTw
′
+Qn(y)w + λw,

for all functions w(y) in the space C2
(
∆̄j,C2

)
of twice continuously differen-

tiable functions of ∆̄j = [j − 1, j + 1], j ∈ Z to C2 which satisfy the following

conditions

w(j − 1) = 0, w(j + 1) = 0. (4.19)

We denote by ln,j + λE the closure of l
(0)
n,j + λE in the norm of L2 (∆j,C2)

. By arguing as in the proof of Lemma 4.5, we obtain

‖(ln,j + λE)w‖2
L2(∆j ,C2) ≥ (4.20)

C1

∫
∆j

∣∣∣w′
∣∣∣2 dy +

∫
∆j

(
δ

3
+ λ+ n2

)
|w|2 dy

 ,
for all functions w ∈ D(ln,j + λE), where C1 is a constant which does not

depend on j, w, λ.

Lemma 4.6. Let λ ≥ 0. Let Assumption 2 hold. Then the operator ln,j + λE

has an inverse, defined on the whole of L2 (∆j,C2). Namely, the operator

(ln,j + λE)−1.

Proof. The existence of the inverse operator (ln,j + λE)−1 is ensured by

the inequality (4.20).

We assume by contradiction, that the range

D ((ln,j + λE)−1) = R(ln,j + λE) is not dense in L2 (∆j,C2). Then under

Lemma 1.3 there exists a nonzero element U = (p, s) in L2 (∆j,C2) such

that ((ln,j + λE)w,U) = 0 for all w ∈ D(ln,j + λE). Then the density of

D(ln,j + λE) in L2 (∆j,C2), and Proposition 1.4 of Chapter 1 implies that

U ∈ D ((ln,j + λE)∗) and (ln,j + λE)∗U = 0, where (ln,j + λE)∗ is the adjoint
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operator to ln,j + λE, i.e. −p′′ + 2ins
′
+ (−n2k(y)− inϕ(y) + a(y) + λ)p+ c(y)s = 0,

−s′′ − 2inp
′
+ b(y)p+ (−n2k(y) + inψ(y) + d(y) + λ)s = 0, y ∈ ∆j.

The function U = (p, s) belongs to the Sobolev space W 2
2 (∆j,C2) and satisfies

the boundary conditions (4.19), as one can show by arguing as in the proof of

Lemma 2.6. In order to show that U = (p, s) satisfies the boundary conditions

(4.19), we now make a different choice of the ‘test’ function. We take the

following functions

w1(y) = ((y − (j − 1))2(y − (j + 1)), sink(y − (j − 1))(y − (j + 1))),

j = 0,±1,±2, . . . (k ≥ 2, k ∈ N),

w2(y) = ((y − (j − 1))(y − (j + 1))2, sink(y − (j − 1))(y − (j + 1))),

w3(y) = ((y − (j − 1))2(y − (j + 1))2, (y − (j + 1)) sink(y − (j − 1))),

w4(y) = ((y − (j − 1))2(y − (j + 1))2, (y − (j − 1)) sink(y − (j + 1))),

each of which belongs toD (ln,j + λE) and we substitute them into the equality

which correspond to equality (2.20) in our argument.

Since U = (p, s) ∈ W 2
2 (∆j,C2), we can argue as in the proof of Lemma

4.5 and obtain the inequality ‖(ln,j + λE)∗U‖L2(∆j ,C2) ≥ C3 ‖U‖L2(∆j ,C2) for all

U = (p, s) ∈ D ((ln,j + λE)∗). Consequently U = 0, a contradiction. Thus the

proof of the lemma is complete.

Lemma 4.7. Let Assumption 2 hold. Then there exists a number λ0 > 0 such

that ∥∥(ln,j + λE)−1
∥∥

L2(∆j ,C2)→L2(∆j ,C2)
≤ C̃0√

λ
, (4.21)∥∥∥∥ ddy (ln,j + λE)−1

∥∥∥∥
L2(∆j ,C2)→L2(∆j ,C2)

≤ C̃1

λ1/4
, (4.22)

for all λ ≥ λ0.

Proof. We note that inequality (4.20) implies that

‖(ln,j + λE)w‖2
L2(∆j ,C2) ≥ C1λ ‖w‖2

L2(∆j ,C2) .
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Hence,

C
′

1

√
λ ‖w‖L2(∆j ,C2) ≤ ‖(ln,j + λE)w‖L2(∆j ,C2) , w ∈ D(ln,j + λE).

If we set (ln,j + λE)w = v, then w = (ln,j + λE)−1v , for all

v ∈ R(ln,j + λE) = D((ln,j + λE)−1).

Hence,
‖(ln,j + λE)−1v‖L2(∆j ,C2)

‖v‖L2(∆j ,C2)

≤ C̃0√
λ
,

and thus

sup
v 6=0,v∈D((ln,j+λE)−1)

‖(ln,j + λE)−1v‖L2(∆j ,C2)

‖v‖L2(∆j ,C2)

≤ C̃0√
λ
,

and accordingly (4.21).

Furthermore, (4.18) implies that

|((ln,j + λE)w,w)| ≥

(
λ+

2δ

3
− n2 sup

y∈∆j

|k(y)|

)
‖w‖L2(∆j ,C2) .

We now multiply both hand sides of the last inequality by 1√
λ+ 2δ

3

> 0. Then

by applying ‘the Cauchy inequality with weight ε’ for ε = γ > 0, we obtain

that

γ

2
√
λ+ 2δ

3

‖(ln,j + λE)w‖2
L2(∆j ,C2) +

1

2γ
√
λ+ 2δ

3

‖w‖2
L2(∆j ,C2) ≥√λ+

2δ

3
−
n2 sup

y∈∆j

|k(y)|√
λ+ 2δ

3

 ‖w‖2
L2(∆j ,C2) .

Hence,

γ

2
√
λ+ 2δ

3

‖(ln,j + λE)w‖2
L2(∆j ,C2) ≥ (4.23)

√λ+
2δ

3
− 1

2γ
√
λ+ 2δ

3

−
n2 sup

y∈∆j

|k(y)|√
λ+ 2δ

3

 ‖w‖2
L2(∆j ,C2) .

Inequality (4.17) extends to all the functions w in D(ln,j + λE). We now

multiply both hand sides of inequality (4.23) by 1√
λ+ 2δ

3

> 0 and apply ‘the

Cauchy inequality with weight ε’ for ε = µ̃ > 0, and we obtain that

µ̃

2
√
λ+ 2δ

3

∫
∆j

[
|fn|2 + |gn|2

]
dy+

n2

2µ̃
√
λ+ 2δ

3

‖w‖2
L2(∆j ,C2) ≥

n2δ√
λ+ 2δ

3

‖w‖2
L2(∆j ,C2) .
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Hence,

µ̃

2
√
λ+ 2δ

3

‖(ln,j + λE)w‖2
L2(∆j ,C2) ≥ (4.24)

n2

− 1

2µ̃
√
λ+ 2δ

3

+
δ√
λ+ 2δ

3

 ‖w‖2
L2(∆j ,C2).

Next we note that inequality (4.18) implies that

|((ln,j + λE)w,w)| ≥

C1

∫
∆j

|w′|2dy +

∫
∆j

(
2δ

3
+ λ− n2 sup

y∈∆j

|k(y)|

)
|w|2dy

 ,
for all w ∈ D(ln,j + λE).

By applying ‘the Cauchy inequality with weight ε’ for some ε = ρ√
λ+ 2δ

3

> 0,

we obtain

ρ

2
√
λ+ 2δ

3

‖(ln,j + λE)w‖2
L2(∆j ,C2) +

√
λ+ 2δ

3

2ρ
‖w‖2

L2(∆j ,C2) ≥ (4.25)

C1‖w
′‖2

L2(∆j ,C2) + C1

(
2δ

3
+ λ− n2 sup

y∈∆j

|k(y)|

)
‖w‖2

L2(∆j ,C2).

Now by combining (4.23), (4.24) and (4.25), we have

µ̃+ γ + ρ

2
√
λ+ 2δ

3

‖(ln,j + λE)w‖2
L2(∆j ,C2) ≥

C1‖w
′‖2

L2(∆j ,C2) +

(
C1(

2δ

3
+ λ) +

√
λ+

2δ

3
−√

λ+ 2δ
3

2ρ
− 1

2γ
√
λ+ 2δ

3

 ‖w‖2
L2(∆j ,C2) +

n2

 δ√
λ+ 2δ

3

− C1 sup
y∈∆j

|k(y)|−

1

2µ̃
√
λ+ 2δ

3

−
n2 sup

y∈∆j

|k(y)|√
λ+ 2δ

3

 ‖w‖2
L2(∆j ,C2).

Hence, there exists a number λ0 > 0 such that

C
′
2√

λ+ 2δ
3

‖(ln,j + λE)w‖2
L2(∆j ,C2) ≥ C1‖w

′‖2
L2(∆j ,C2),
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for all λ ≥ λ0, where C
′
2 = µ̃+γ+ρ

2
and thus

‖w′‖L2(∆j ,C2)

‖(ln,j + λE)w‖L2(∆j ,C2)

≤ C̃2

4

√
λ+ 2δ

3

,

for all w ∈ D(ln,j +λE). If we set (ln,j +λE)w = v, then w
′
= d

dy
(ln,j +λE)−1v,

for all v ∈ R(ln,j +λE) = D((ln,j +λE)−1) and the last inequality implies that

‖ d
dy

(ln,j + λE)−1v‖L2(∆j ,C2)

‖v‖L2(∆j ,C2)

≤ C̃2

4

√
λ+ 2δ

3

,

that is equivalent to (4.22). The proof of the lemma is complete.

Let θ1, θ2, . . . be non-negative functions in C2
π,0(G,R2) such that

0 ≤ θj(y) < 1, supp θj ∈ ∆j, j ∈ Z,
∞∑

j=−∞

θ2
j (y) = 1.

We assume that the conditions of Lemma 4.6 hold. We now introduce the

operators K, Ms,n(λ)(s = 1, 2, 3) defined by

KF =
∞∑

j=−∞

θj(y)(ln,j + λE)−1θjF, F ∈ L2(G,R2),

M1,n(λ)F = −
∞∑

j=−∞

θ
′′

j (y)(ln,j + λE)−1θjF,

M2,n(λ)F = −2
∞∑

j=−∞

θ
′

j

d

dy
(ln,j + λE)−1θjF,

M3,n(λ)F = 2in
∞∑

j=−∞

θ
′

jT (ln,j + λE)−1θjF.

By virtue of properties of the functions θ1, θ2, . . . at each point y ∈ R the right

hand side of these expressions consists of finite numbers terms (no more then

three). Since ln,j is the restriction of the operator ln to ∆j, then

KF ∈ D(ln + λE) and

(ln + λE)KF =
∞∑

j=−∞

(ln,j + λE)[θj(y)(ln,j + λE)−1θjF ] =

∞∑
j=−∞

{
−[θj(y)(ln,j + λE)−1θjF ]

′′
+
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2inT
(
θj(ln,j + λE)−1θjF

)′
+

Qn(y)[θj(y)(ln,j + λE)−1θjF ] +

λE[θj(y)(ln,j + λE)−1θjF ]
}

=
∞∑

j=−∞

{
−θ′′j (y)(ln,j + λE)−1θjF−

2θ
′

j

d

dy
(ln,j + λE)−1θjF −

θj
d2

dy2
(ln,j + λE)−1θjF +

2inTθ
′

j(y)(ln,j + λE)−1θjF +

2inTθj(y)
d

dy
(ln,j + λE)−1θjF +

θj(y)Qn(y)(ln,j + λE)−1θjF +

θj[λE(ln,j + λE)−1θjF ]
}

=
∞∑

j=−∞

{
−θj

d2

dy2
(ln,j + λE)−1θjF+

2inTθj(y)
d

dy
(ln,j + λE)−1θjF +

θj(y)Qn(y)(ln,j + λE)−1θjF +

θj[λE(ln,j + λE)−1θjF ]
}
−

∞∑
j=−∞

θ
′′

j (y)(ln,j + λE)−1θjF −

2
∞∑

j=−∞

θ
′

j

d

dy
(ln,j + λE)−1θjF +

2in
∞∑

j=−∞

Tθ
′

j(y)(ln,j + λE)−1θjF =

∞∑
j=−∞

θj(y)(ln,j + λE)(ln,j + λE)−1θjF −

∞∑
j=−∞

θ
′′

j (y)(ln,j + λE)−1θjF −

2
∞∑

j=−∞

θ
′

j

d

dy
(ln,j + λE)−1θjF +

2in
∞∑

j=−∞

Tθ
′

j(y)(ln,j + λE)−1θjF =

F +M1,n(λ)F +M2,n(λ)F +M3,n(λ)F.

By our assumptions on the functions θk(k = 1, 2, . . .) and by Lemmas 4.5, 4.6,
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we can estimate the norms of operators Ms,n(λ)(s = 1, 2, 3) as follows

‖M1,n(λ)F‖2
L2

=∫
R

∣∣∣∣∣
∞∑

k=−∞

θ
′′

k(y)(ln,k + λE)−1θkF

∣∣∣∣∣
2

dy =

∞∑
k=−∞

∫
∆k

∣∣∣. . .+ θ
′′

−3(y)(ln,−3 + λE)−1θ−3F (y)+

θ
′′

−2(y)(ln,−2 + λE)−1θ−2F (y) +

θ
′′

−1(y)(ln,−1 + λE)−1θ−1F (y) +

θ
′′

0 (y)(ln,0 + λE)−1θ0F (y) +

θ
′′

1 (y)(ln,1 + λE)−1θ1F (y) +

θ
′′

2 (y)(ln,2 + λE)−1θ2F (y) + . . .
∣∣∣2 dy.

Hence, by inequality (A + B + C)2 ≤ 3(A2 + B2 + C2), which holds for any

numbers A,B,C, we obtain the following inequality

‖M1,n(λ)F‖2
L2

=∑
k

k+1∫
k−1

∣∣∣θ′′k−1(y)(ln,k−1 + λE)−1θk−1F (y)+

θ
′′

k(y)(ln,k + λE)−1θkF (y) +

θ
′′

k+1(y)(ln,k+1 + λE)−1θk+1F (y)
∣∣∣2 dy ≤

3
∑

k

k+1∫
k−1

∣∣∣[θ′′k−1(y)(ln,k−1 + λE)−1θk−1F (y)]2+

[θ
′′

k(y)(ln,k + λE)−1θkF (y)]2 +

[θ
′′

k+1(y)(ln,k+1 + λE)−1θk+1F (y)]2
∣∣∣ dy ≤

3
∞∑

k+1=−∞

k+1∫
k−1

[θ
′′

k(y)(ln,k + λE)−1θkF (y)]2dy +

3
∞∑

k=−∞

k+1∫
k−1

[θ
′′

k(y)(ln,k + λE)−1θkF (y)]2dy +

3
∞∑

k−1=−∞

k+1∫
k−1

[θ
′′

k(y)(ln,k + λE)−1θkF (y)]2dy ≤
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9
∑

k

k+1∫
k−1

[θ
′′

k(y)(ln,k + λE)−1θkF (y)]2dy.

We now set C7 = 9 max
k

max
y∈δk

(
|θ′′k(y)|2

)
, and thus we obtain

‖M1,n(λ)F‖2
L2
≤

C7

∞∑
k=−∞

∫
∆k

|(ln,k + λE)−1θkF (y)|2dy ≤

C7

∞∑
k=−∞

‖(ln,k + λE)−1θkF (y)‖2
L2(∆k,C2).

Hence, by inequality (4.21), we have

‖M1,n(λ)F‖2
L2
≤ C

′
7

λ

∞∑
k=−∞

‖θkF (y)‖2
L2(∆k,C2) ≤

C
′
7

λ

∞∑
k=−∞

‖θkF (y)‖2
L2(R,C2).

Thus

‖M1,n(λ)F‖2
L2
≤ C̃

′
7

λ
‖F (y)‖2

L2
, C̃

′
7 = 6C

′

7.

Moreover

‖M3,n(λ)F‖2
L2

=∫
R

∣∣∣∣∣2in
∞∑

k=−∞

θ
′

kT (ln,k + λE)−1θkF (y)

∣∣∣∣∣
2

dy =

4n2

∞∑
k=−∞

∫
∆k

∣∣∣∣∣
∞∑

k=−∞

θ
′

kT (ln,k + λE)−1θkF (y)

∣∣∣∣∣
2

dy =

4n2

∞∑
k=−∞

∫
∆k

∣∣∣θ′k−1T (ln,k−1 + λE)−1θk−1F (y)+

θ
′

kT (ln,k + λE)−1θkF (y) +

θ
′

k+1T (ln,k+1 + λE)−1θk+1F (y)
∣∣∣2 dy ≤

12n2

∞∑
k=−∞

∫
∆k

[
θ
′

k−1T (ln,k−1 + λE)−1θk−1F (y)
]2
dy +

12n2

∞∑
k=−∞

∫
∆k

[
θ
′

kT (ln,k + λE)−1θkF (y)
]2
dy +

12n2

∞∑
k=−∞

∫
∆k

[
θ
′

k+1T (ln,k+1 + λE)−1θk+1F (y)
]2
dy ≤
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12n2

∞∑
k+1=−∞

k+1∫
k−1

[
θ
′

kT (ln,k + λE)−1θkF (y)
]2
dy +

12n2

∞∑
k=−∞

k+1∫
k−1

[
θ
′

kT (ln,k + λE)−1θkF (y)
]2
dy +

12n2

∞∑
k−1=−∞

k+1∫
k−1

[
θ
′

kT (ln,k + λE)−1θkF (y)
]2
dy ≤

36n2

∞∑
k=−∞

k+1∫
k−1

[
θ
′

kT (ln,k + λE)−1θkF (y)
]2
dy ≤

36n2 max
k

max
y∈δk

|θ′k(y)|2
∞∑

k=−∞

∫
∆k

∣∣T (ln,k + λE)−1θkF (y)
∣∣2 dy ≤

C8

∞∑
k=−∞

‖T (ln,k + λE)−1θkF (y)‖2
L2(∆k,C2).

Consequently

‖M3,n(λ)F‖2
L2
≤

C8

∞∑
k=−∞

‖T‖2
L2(∆k,C2)‖(ln,k + λE)−1‖2

L2(∆k,C2)‖θkF (y)‖2
L2(∆k,C2).

Then by inequality (4.21), we obtain

‖M3,n(λ)F‖2
L2
≤
C̃8

λ

∞∑
k=−∞

‖θkF (y)‖2
L2(∆k,C2) ≤

C̃8

λ

∞∑
k=−∞

‖θkF (y)‖2
L2(R,C2).

Hence,

‖M3,n(λ)F‖2
L2
≤ C̃

′
8

λ
‖F (y)‖2

L2
, C̃

′
8 = 6C

′

8.

We now consider M2,n(λ)F .

‖M2,n(λ)F‖2
L2

=∫
R

∣∣∣∣∣2
∞∑

k=−∞

θ
′

k

d

dy
(ln,k + λE)−1θkF (y)

∣∣∣∣∣
2

dy ≤

4
∞∑

k=−∞

∫
∆k

∣∣∣∣∣
∞∑

k=−∞

θ
′

k

d

dy
(ln,k + λE)−1θkF (y)

∣∣∣∣∣
2

dy ≤
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4
∞∑

k=−∞

k+1∫
k−1

∣∣∣∣θ′k−1

d

dy
(ln,k−1 + λE)−1θk−1F (y)+

θ
′

k

d

dy
(ln,k + λE)−1θkF (y) +

θ
′

k+1

d

dy
(ln,k+1 + λE)−1θk+1F (y)

∣∣∣∣2 dy ≤
12

∞∑
k=−∞

k+1∫
k−1

∣∣∣∣∣
(
θ
′

k−1

d

dy
(ln,k−1 + λE)−1θk−1F (y)

)2

+

(
θ
′

k

d

dy
(ln,k + λE)−1θkF (y)

)2

+(
θ
′

k+1

d

dy
(ln,k+1 + λE)−1θk+1F (y)

)2
∣∣∣∣∣ dy ≤

12
∞∑

k+1=−∞

k+1∫
k−1

(
θ
′

k

d

dy
(ln,k + λE)−1θkF (y)

)2

+

12
∞∑

k=−∞

k+1∫
k−1

(
θ
′

k

d

dy
(ln,k + λE)−1θkF (y)

)2

dy +

12
∞∑

k−1=−∞

k+1∫
k−1

(
θ
′

k

d

dy
(ln,k + λE)−1θkF (y)

)2

dy ≤

36
∞∑

k=−∞

k+1∫
k−1

(
θ
′

k

d

dy
(ln,k + λE)−1θkF (y)

)2

dy ≤

36 max
k

max
y∈δk

|θ′k|2
∞∑

k=−∞

k+1∫
k−1

∣∣∣∣ ddy (ln,k + λE)−1θkF (y)

∣∣∣∣2 dy ≤
C9

∞∑
k=−∞

‖ d
dy

(ln,k + λE)−1θkF (y)‖2
L2(∆k,C2).

Hence, by inequality (4.22), we obtain

‖M2,n(λ)F‖2
L2
≤
C

′
9√
λ

∞∑
k=−∞

‖θkF (y)‖2
L2(∆k,C2) ≤

C
′
9√
λ

∞∑
k=−∞

‖θkF (y)‖2
L2(R,C2) ≤

C̃
′
9√
λ
‖F (y)‖2

L2
,

where C̃
′
9 = 6C

′
9. Consequently

‖M1,n(λ) +M2,n(λ) +M3,n(λ)‖L2→L2 = ‖Sn(λ)‖L2→L2 ≤
C10√
λ
,
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for λ > 1. Therefore, there exists a number λ0 > 1 such that

‖Sn(λ)‖L2→L2 ≤
1

2
,

1

2
≤ ‖E + Sn(λ)‖L2→L2 ≤

3

2

and

‖(E + Sn(λ))−1‖L2→L2 ≤ 2,

for all λ ≥ λ0. Hence, it follows that E + Sn(λ) : L2(R,C2) → L2(R,C2) is an

one-to-one map. We set (E + Sn(λ))F = h. Clearly,

(ln + λE)K(E + Sn(λ))−1h = h,

for all h ∈ L2(R,C2), λ ≥ λ0. Thus, the operator ln + λE has an inverse for

all λ ≥ λ0, and the inverse operator K(E + Sn(λ))−1 is defined on the whole

of L2(R,C2). Hence, and inequality (4.20), and the well-known Theorem 1.2

[1, p. 92], implies that

Lemma 4.8. Let Assumption 2 hold. Then the operator ln has an inverse,

defined on the whole of L2(R,C2). Namely, the operator l−1
n .

We now have the main statement of this chapter.

Theorem 4.9. Let the coefficients of system (4.1) satisfy Assumption 2. Then

the problem (4.1),(4.2) has an unique solution w = (u, v) in the Sobolev space

W 1
2 (G,R2) for every right hand side F = (f, g) ∈ L2(G,R2).

Proof. Let (un, vn) (n ∈ Z) be a solution of system (4.15). Then the func-

tion wN =

(
N∑

k=−N

uk(y)e
ikx,

N∑
k=−N

vk(y)e
ikx

)
is the solution of problem (4.1),

(4.2), where F (x, y) is replaced on FN =

(
N∑

k=−N

fk(y)e
ikx,

N∑
k=−N

gk(y)e
ikx

)
.

Since the sequence {FN} converges to the right hand side of system (4.1), it

is a Cauchy sequence. Then by inequality (4.6), {wN}∞N=−∞ is a Cauchy se-

quence also in W 1
2 (G,R2). Since W 1

2 (G,R2) is complete, then the sequence

{wN}∞N=−∞ has a limit w = (u, v) ∈ W 1
2 (G,R2). By definition w = (u, v) is

a solution of problem (4.1), (4.2). The uniqueness of the solution follows by

inequality (4.6). Hence, the proof is complete.



Chapter 5

A coercive estimate for the

solutions of a singular

degenerate system

Let ∆j = (j− 1, j + 1), j ∈ Z. Let λ, λ̂ be constants such that λ̂ ≥ λ ≥ 0. Let

Ĕ =

 −1 0

0 1

 .

For each j ∈ Z we consider the operator l
(0)
n,j + inλ̂Ĕ + λE defined by

(l
(0)
n,j + inλ̂Ĕ + λE)w = −w′′

+ 2inTw
′
+Qn(y)w + inλ̂w̃ + λw,

for all functions w = (u, v) in the space C2
(
∆̄j,C2

)
of twice continuously

differentiable functions of ∆̄j = [j − 1, j + 1], j ∈ Z to C2 which satisfy the

boundary conditions (4.19), where w̃ = (−u, v), T and Qn(y) are the matrices

associated to system (4.15).

We denote by ln,j + inλ̂Ĕ+λE the closure of the operator l
(0)
n,j + inλ̂Ĕ+λE

in the norm of L2 ≡ L2(∆j,C2) . We denote by ϕj(y), ψj(y), aj(y), bj(y),

cj(y), dj(y) the extensions to R of the restrictions of functions ϕ(y), ψ(y),

a(y), b(y), c(y), d(y) to ∆j with period 2.

Lemma 5.1. Let λ̂ ≥ λ ≥ 0. Let Assumption 2 hold. Let

inf
y,η∈R,|y−η|≤2

ϕ2(y)

a(η)
≥ c0 > 0, (5.1)

67
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inf
y,η∈R,|y−η|≤2

ψ2(y)

d(η)
≥ c1 > 0.

Then there exist constants C1, C2 such that∥∥∥∥(ln,j + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)

≤ C1

|n|λ
, (5.2)∥∥∥∥ ddy (ln,j + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)

≤ C2√
λ
. (5.3)

Proof. Let Assumption 2 hold. By arguing as in the proof of Lemma 4.6

one can prove that the operator ln,j + inλ̂Ĕ + λE is bounded and invertible.

Let w = (u, v) ∈ C2
(
∆̄j,C2

)
. We denote by

γj =

(
inf

y∈∆j

(−ϕj(y)), inf
y∈∆j

ψj(y), inf
y∈∆j

aj(y), inf
y∈∆j

dj(y)

)
. Then

Re
(
(ln,j + inλ̂Ĕ + λE)w,w

)
≥ (5.4)∫

∆j

∣∣∣u′

n

∣∣∣2 dy +

∫
∆j

(
λ− n2 sup

y∈∆j

|k(y)|

)
|un|2 dy +

∫
∆j

∣∣∣v′n∣∣∣2 dy +

∫
∆j

(
λ− n2 sup

y∈∆j

|k(y)|

)
|vn|2dy +

∫
∆j

(
aj(y))u

2
n + (bj(y) + cj(y))unvn + dj(y))v

2
n

)
dy ≥

∫
∆j

∣∣∣w′
∣∣∣2 dy +

∫
∆j

(
2γj

3
+ λ− n2 sup

y∈∆j

|k(y)|

)
|w|2 dy,

and accordingly∣∣∣((ln,j + inλ̂Ĕ + λE)w,w
)∣∣∣ ≥ (5.5)∣∣∣((ln,j + inλ̂Ĕ + λE)w, w̃

)∣∣∣ ≥ |n|(γj + λ̂)‖w‖2
L2(∆j ,C2).

Hence, we obtain the following inequalities

‖w′‖2
L2(∆j ,C2)+ (5.6)

C1

(
2γj

3
+ λ− n2 sup

y∈∆j

|k(y)|

)
‖w‖2

L2(∆j ,C2) −

2γj

3
+ λ

4C0

‖w‖2
L2(∆j ,C2) ≤

C0

2γj

3
+ λ

∥∥∥(ln,j + inλ̂Ĕ + λE)w
∥∥∥2

L2(∆j ,C2)
,

|n| γj + λ̂√
2γj

3
+ λ

‖w‖L2(∆j ,C2) ≤ (5.7)

1√
2γj

3
+ λ

∥∥∥(ln,j + inλ̂Ĕ + λE)w
∥∥∥

L2(∆j ,C2)
.
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Hence, inequality (5.2) follows. By taking the square of both hand sides of

inequality (5.7) and by inequality (5.6), we obtain

‖w′‖2
L2(∆j ,C2) +

(
2γj

3
+ λ

)(
1− 1

4C0

)
‖w‖2

L2(∆j ,C2)+ (5.8)

n2

(
C1(γj + λ̂)2

2γj

3
+ λ

− sup
y∈∆j

|k(y)|

)
‖w‖2

L2(∆j ,C2) ≤

C0 + C1

2γj

3
+ λ

∥∥∥(ln,j + inλ̂Ĕ + λE)w
∥∥∥2

L2(∆j ,C2)
.

We now choose C0 so that C0 >
1
4
. Hence, by condition (5.1) inequality (5.3)

holds for all λ̂ ≥ λ ≥ 0 and the proof is complete.

We now consider the operator ln + inλ̂Ĕ + λE defined by

(ln + inλ̂Ĕ + λE)w = −w′′
+ 2inTw

′
+Qn(y)w + inλ̂w̃ + λw,

for all functions w = (u, v) in the space C2 (R,C2) of twice continuously dif-

ferentiable of R to C2 which have compact support.

We denote by ln + inλ̂Ĕ + λE the closure of the operator ln + inλ̂Ĕ + λE

in the norm of L2 ≡ L2(R,C2) .

Lemma 5.2. Let λ̂ ≥ λ ≥ 0. Let Assumption 2 and condition (5.1) hold.

Then the following equality holds

(ln + inλ̂Ĕ + λE)Pn(λ̂, λ)F = (5.9)

F + P1,n(λ̂, λ)F + P2,n(λ̂, λ)F + P3,n(λ̂, λ)F,

for all F ∈ L2(R,C2), where

Pn(λ̂, λ)F =
∑
j

θj(y)(ln,j + inλ̂Ĕ + λE)−1θjF,

P1,n(λ̂, λ)F = −
∑
j

θ
′′
j (y)(ln,j + inλ̂Ĕ + λE)−1θjF,

P2,n(λ̂, λ)F =
∑
j

2inTθ
′
j(y)(ln,j + inλ̂Ĕ + λE)−1θjF,

T =

 0 −1

1 0

 ,

P3,n(λ̂, λ)F = −2
∑
j

d
dy
θ
′
j(y)(ln,j + inλ̂Ĕ + λE)−1θjF.
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Proof. By simple computations, we obtain that

(ln + inλ̂Ĕ + λE)Pn(λ̂, λ)F =
∞∑

j=−∞

(ln + inλ̂Ĕ + λE)[θj(y)(ln + inλ̂Ĕ + λE)−1θjF ] =

∞∑
j=−∞

{
−[θj(y)(ln + inλ̂Ĕ + λE)−1θjF ]

′′
+

2inT

(
θj
d

dy
(ln + inλ̂Ĕ + λE)−1θjF

)′}
+

∞∑
j=−∞

{
Qn(y)[θj(y)(ln + inλ̂Ĕ + λE)−1θjF ] +

inλ̂Ĕ[θj(y)(ln + inλ̂Ĕ + λE)−1θjF ] +

λE[θj(y)(ln + inλ̂Ĕ + λE)−1θjF ]
}

=

∞∑
j=−∞

θj(ln + inλ̂Ĕ + λE)(ln + inλ̂Ĕ + λE)−1θjF −∑
j

θ
′′

j (y)(ln,j + inλ̂Ĕ + λE)−1θjF +∑
j

2inTθ
′

j(y)(ln,j + inλ̂Ĕ + λE)−1θjF −

2
∑

j

d

dy
θ
′

j(y)(ln,j + inλ̂Ĕ + λE)−1θjF =

F + P1,n(λ̂, λ)F + P2,n(λ̂, λ)F + P3,n(λ̂, λ)F.

and thus the proof of the lemma is complete.

Lemma 5.3. Let Assumption 2 and condition (5.1) hold. Then there exists a

number λ0 > 0 such that

(ln + inλ̂Ĕ + λE)−1 = Pn(λ̂, λ)

[
E +

3∑
k=1

Pk,n(λ̂, λ)

]−1

, (5.10)

for all λ ∈ [λ, λ̂].

Proof. By definition of P1,n(λ̂, λ) in (5.9) and by the properties of the

functions θj (j ∈ Z) , we obtain∥∥∥P1,n(λ̂, λ)F
∥∥∥2

L2

≤∫
R

∑
j

∣∣∣θ′′j (y)(ln,j + inλ̂Ĕ + λE)−1θjF
∣∣∣2 dy ≤
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sup
j∈Z

∥∥∥θ′′j (y)(ln,j + inλ̂Ĕ + λE)−1
∥∥∥2

L2→L2

∑
j

∫
∆j

|θjF |2 dy ≤

2 max
j∈Z

|θ′′j (y)| sup
j∈Z

∥∥∥(ln,j + inλ̂Ĕ + λE)−1
∥∥∥2

L2→L2

‖F‖2
L2
.

Hence, by applying inequality (5.2), we have∥∥∥P1,n(λ̂, λ)
∥∥∥

L2→L2

≤ C̃1

λ|n|
. (5.11)

Now by definitions P2,n(λ̂, λ) and P3,n(λ̂, λ), and by the properies of the

matrix T and of functions θj (j ∈ Z) , we obtain∥∥∥P2,n(λ̂, λ)F
∥∥∥2

L2

≤∫
R

∑
j

∣∣∣2inTθ′j(y)(ln,j + inλ̂Ĕ + λE)−1θjF
∣∣∣2 dy ≤

4n2 sup
j∈Z

∥∥∥Tθ′j(y)(ln,j + inλ̂Ĕ + λE)−1
∥∥∥2

L2→L2

∑
j

∫
∆j

|θjF |2 dy ≤

8n2 max
j∈Z

|θ′j(y)| sup
j∈Z

∥∥∥(ln,j + inλ̂Ĕ + λE)−1
∥∥∥2

L2→L2

‖F‖2
L2

and∥∥∥P3,n(λ̂, λ)F
∥∥∥2

L2

≤∫
R

∑
j

∣∣∣∣2 ddyθ′j(y)(ln,j + inλ̂Ĕ + λE)−1θjF

∣∣∣∣2 dy ≤
4 sup

j∈Z

∥∥∥∥ ddyθ′j(y)(ln,j + inλ̂Ĕ + λE)−1

∥∥∥∥2

L2→L2

∑
j

∫
∆j

|θjF |2 dy ≤

8 max
j∈Z

|θ′j(y)| sup
j∈Z

∥∥∥∥ ddy (ln,j + inλ̂Ĕ + λE)−1

∥∥∥∥2

L2→L2

‖F‖2
L2
.

Hence, by inequalities (5.2), (5.3), we have∥∥∥P2,n(λ̂, λ)
∥∥∥

L2→L2

≤ C̃2

λ
(5.12)

and ∥∥∥P3,n(λ̂, λ)
∥∥∥

L2→L2

≤ C̃3√
λ
. (5.13)

If Assumption 2 and condition (5.1) hold, then

lim
λ̂,λ→∞

∥∥∥Pk,n(λ̂, λ)
∥∥∥

L2→L2

= 0 (k = 1, 2, 3). By inequalities (5.11)-(5.13), it

follows that there exists a number λ0 > 0 such that∥∥∥P1,n(λ̂, λ)
∥∥∥

L2→L2

+
∥∥∥P2,n(λ̂, λ)

∥∥∥
L2→L2

+
∥∥∥P3,n(λ̂, λ)

∥∥∥
L2→L2

≤ 1

2
,
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for all λ ∈ [λ, λ̂].

Then the operator Sλ̂,λ = E+P1,n(λ̂, λ)+P2,n(λ̂, λ)+P3,n(λ̂, λ) is bounded

and invertible for λ̂ ≥ λ ≥ λ0 by Theorem 1.5. Moreover,
∥∥∥Sλ̂,λ

∥∥∥
L2→L2

≤ 2,∥∥∥S−1

λ̂,λ

∥∥∥
L2→L2

≤ 2. This means that the operator Sλ̂,λ is a bijection of the whole

of L2(R,C2) onto itself. We now set Gλ̂,λ(T ) = (Sλ̂,λF )(T ) (λ̂ ≥ λ ≥ λ0). By

the equality of Lemma 5.3, we obtain that

(ln + inλ̂Ĕ + λE)(Pn(λ̂, λ)S−1

λ̂,λ
Gλ̂,λ)(T ) = Gλ̂,λ(T ),

for all Gλ̂,λ(T ) ∈ L2(R,C2).

Thus, the operator Pn(λ̂, λ)

[
E +

3∑
k=1

Pk,n(λ̂, λ)

]−1

coincides with operator

(ln + inλ̂Ĕ + λE)−1 for λ̂ ≥ λ ≥ λ0.

Lemma 5.4. Let Assumption 2 and condition (5.1) hold. Then there exists a

number λ0 > 0 such that∥∥∥(ln + inλ̂Ĕ + λE)−1
∥∥∥

L2→L2

≤ (5.14)

√
8 sup

j∈Z

∥∥∥(ln,j + inλ̂Ĕ + λE)−1
∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)
,

for all λ ∈ [λ, λ̂].

Proof. By virtue of the properties of the functions θ1, θ2, . . . at each point

y ∈ R the sum Pn(λ̂, λ)h(y) consists of a finite numbers of terms for all h ∈ L2

(no more then three). Therefore, (5.10) implies that∥∥∥(ln + inλ̂Ĕ + λE)−1h
∥∥∥2

L2

≤∥∥∥∥∥∥
[
E +

3∑
k=1

Pk,n(λ̂, λ)

]−1
∥∥∥∥∥∥

2

L2→L2

×

∫
R

∑
j

∣∣∣θj(y)(ln,j + inλ̂Ĕ + λE)−1θjh
∣∣∣2 dy ≤

4

∫
R

∑
j

∣∣∣θj(y)(ln,j + inλ̂Ĕ + λE)−1θjh
∣∣∣2 dy ≤

4
∑

j

∥∥∥θj(y)(ln,j + inλ̂Ĕ + λE)−1
∥∥∥2

L2→L2

‖θjh‖2
L2(∆j ,C2) ≤

4 sup
j∈Z

∥∥∥θj(y)(ln,j + inλ̂Ĕ + λE)−1
∥∥∥2

L2(∆j ,C2)→L2(∆j ,C2)
×
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∑
j

∫
∆j

|θj(y)h(y)|2 dy ≤

8 sup
j∈Z

∥∥∥θj(y)(ln,j + inλ̂Ĕ + λE)−1
∥∥∥2

L2(∆j ,C2)→L2(∆j ,C2)
‖h‖2

L2
,

(see definition (5.10)). Thus the proof of the lemma is complete.

Lemma 5.5. Let Assumption 2 and conditions (5.1) hold. Let

sup
y,η∈R,|y−η|≤2

{
ϕ(y)

ϕ(η)
,
ψ(y)

ψ(η)
,
a(y)

a(η)
,
d(y)

d(η)
,
a(y)

d(η)

}
≤ C <∞. (5.15)

Then ∥∥∥∥|n|(P (·) + λ̂Ĕ
)(

ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2→L2

+ (5.16)∥∥∥∥(Q(·) + λE)
(
ln + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2→L2

<∞.

Here P (y) and Q(y) are matrices of (4.1).

Proof. Without loss of generality, we can assume that λ̂ ≥ λ ≥ λ0, where

λ0 is a constant of Lemma 5.4. By Lemma 5.4 and by the properties of the

functions θj (j ∈ Z) , we obtain∥∥∥∥(Q(·) + λE)
(
ln + inλ̂Ĕ + λE

)−1

h

∥∥∥∥
L2

≤

max

{
sup
y∈∆j

(aj(y) + λ), sup
y∈∆j

(dj(y) + λ)

}
×∥∥∥∥∥∥

[
E +

3∑
k=1

Pk,n(λ̂, λ)

]−1
∥∥∥∥∥∥

L2→L2

×

∫
R

∑
j

∣∣∣θj(y)(ln,j + inλ̂Ĕ + λE)−1θjh
∣∣∣2 dy

 1
2

≤

C1 max

{
sup
y∈∆j

(aj(y) + λ), sup
y∈∆j

(dj(y) + λ)

}
×

sup
j∈Z

∥∥∥θj(y)(ln,j + inλ̂Ĕ + λE)−1
∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)
×∑

j

∫
∆j

|θj(y)h(y)|2 dy


1
2

≤
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C2 max

{
sup
y∈∆j

(aj(y) + λ), sup
y∈∆j

(dj(y) + λ)

}
×

sup
j∈Z

∥∥∥(ln,j + inλ̂Ĕ + λE)−1
∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)
‖h‖L2

,

or ∥∥∥∥(Q(·) + λE)
(
ln + inλ̂Ĕ + λE

)−1

h

∥∥∥∥
L2

≤ (5.17)

C2 max

{
sup
y∈∆j

(aj(y) + λ), sup
y∈∆j

(dj(y) + λ)

}
×

sup
j∈Z

∥∥∥(ln,j + inλ̂Ĕ + λE)−1
∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)
‖h‖L2

,

Accordingly∥∥∥∥|n|(P (·) + λ̂Ĕ
)(

ln + inλ̂Ĕ + λE
)−1

h

∥∥∥∥
L2

≤

|n|max

{
sup
y∈∆j

(|ϕj(y)|+ λ), sup
y∈∆j

(ψj(y) + λ)

}
×∥∥∥∥∥∥

[
E +

3∑
k=1

Pk,n(λ̂, λ)

]−1
∥∥∥∥∥∥

L2→L2

×

∫
R

∑
j

∣∣∣θj(y)(ln,j + inλ̂Ĕ + λE)−1θjh
∣∣∣2 dy

 1
2

≤

C3|n|max

{
sup
y∈∆j

(|ϕj(y)|+ λ), sup
y∈∆j

(ψj(y) + λ)

}
×

sup
j∈Z

∥∥∥(ln,j + inλ̂Ĕ + λE)−1
∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)
‖h‖L2

,

or ∥∥∥∥|n|(P (·) + λ̂Ĕ
)(

ln + inλ̂Ĕ + λE
)−1

h

∥∥∥∥
L2

≤ (5.18)

C3|n|max

{
sup
y∈∆j

(|ϕj(y)|+ λ), sup
y∈∆j

(ψj(y) + λ)

}
×

sup
j∈Z

∥∥∥(ln,j + inλ̂Ĕ + λE)−1
∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)
‖h‖L2

.

Inequality (5.8) implies that

C̃0

(
2γj

3
+ λ

)
‖w‖2

L2(∆j ,C2) ≤
C̃1

2γj

3
+ λ

∥∥∥(ln,j + inλ̂Ĕ + λE)w
∥∥∥2

L2(∆j ,C2)
,

for all w ∈ D(ln,j + inλ̂Ĕ + λE). Hence, if we set (ln,j + inλ̂Ĕ + λE)w = v,

then w = (ln,j + inλ̂Ĕ + λE)−1v, for all v ∈ R(ln,j + inλ̂Ĕ + λE) =

D((ln,j + inλ̂Ĕ + λE)−1).
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So we obtain that

∥∥∥(ln,j + inλ̂Ĕ + λE)−1
∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)
≤ C3

2γj

3
+ λ

.

Hence, conditions (5.15) and inequality (5.17) imply that∥∥∥∥(Q(·) + λE)
(
ln + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2→L2

≤

C2 max

{
sup
y∈∆j

(aj(y) + λ), sup
y∈∆j

(dj(y) + λ)

}
C3

2γj

3
+ λ

<∞.

Inequality (5.7) implies that∥∥∥∥(ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)

≤ 1

|n|(γj + λ)
.

Hence, conditions (5.15) and inequality (5.18) imply that∥∥∥∥|n|(P (·) + λ̂Ĕ
)(

ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2→L2

≤

C4|n|max

{
sup
y∈∆j

(|ϕj(y)|+ λ), sup
y∈∆j

(ψj(y) + λ)

}
×

sup
y,η∈R,|y−η|≤2

 |ϕj(y)|+ λ

min

(
inf

y∈∆j

|ϕj(η)|+ λ, inf
y∈∆j

|ϕj(η)|+ λ

) ,

ψj(y) + λ

min

(
inf

y∈∆j

|ϕj(η)|+ λ, inf
y∈∆j

|ϕj(η)|+ λ

)
×

1

|n|(γj + λ)
<∞,

and the proof of the lemma is complete.

Let G = {(x, y) ∈ R2 : −π < x < π, −∞ < y < +∞}. We now consider

the operator Lλ,λ̂ defined by

Lλ,λ̂w = Bxyw +
(
P (y) + λ̂Ĕ

)
wx + (Q(y) + λE)w,

for all functions w = (u, v) in the space C2
π,0(G,R2). We denote by Lλ,λ̂ the

closure of Lλ,λ̂ in the norm of L2(G,R2).
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Definition 5.6. The operator Lλ,λ̂ is said to be separable, if the following

inequality holds

‖wxx‖2,G + ‖wyy‖2,G + ‖wxy‖2,G +
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥
2,G

+

‖(Q(y) + λE)w‖2,G ≤ C

(∥∥∥Lλ,λ̂w
∥∥∥

2,G
+ ‖w‖2,G

)
,

for all w ∈ D(Lλ,λ̂).

We now prove the following intermediate statement.

Lemma 5.7. Let the following conditions hold.

a) The coefficients ϕ, ψ, a, b, c, d of the system (4.1) satisfy Assumption 2.

b) The function k(y) of R is twice continuously differentiable and satisfies

one and only one of the following three conditions

i)
√

2 < k(y) < 2, min
y∈R

{ϕ2(y), ψ2(y)}+ k
′′
(y) > 2

[
k
′
(y)
]2

;

ii) k(y) < 2,
√

2k
′
(y)

k(y)
≤ 1, min

y∈R
{ϕ2(y), ψ2(y)}+ k

′′
(y) > 2;

iii) k(y) < 2, k2(y) > 2k
′
(y), min

y∈R
{ϕ2(y), ψ2(y)}+ k

′′
(y) > 2k

′
(y).

c) There exist non-negative constants λ and λ̂ such that the following in-

equality holds

‖Bxyw‖2,G +
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥
2,G

+ (5.19)

‖(Q(y) + λE)w‖2,G ≤ C

(∥∥∥∥(L+ λ̂Ĕ
∂

∂x
+ λE)w

∥∥∥∥
2,G

+ ‖w‖2,G

)
,

for all w = (u, v) ∈ D(Lλ,λ̂).

Then the operator Lλ,λ̂ is separable.

Proof. Let w = (u, v) ∈ C2
π,0(G,R2). By simple computations, we obtain

that

‖Bxyw‖2
2,G =

∫
G

[k(y)uxx − uyy − 2vxy]
2dxdy+

∫
G

[2uxy − k(y)vxx − vyy]
2dxdy =

∫
G

[k2(y)u2
xx + u2

yy − 2k(y)uxxuyy +
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4v2
xy − 4(k(y)uxx − uyy)vxy]dxdy +∫

G

[4u2
xy + 4(k(y)vxx − vyy)uxy +

k2(y)v2
xx − 2k(y)vxxvyy + v2

yy]dxdy =∫
G

k2(y)[u2
xx + v2

xx]dxdy +

∫
G

[u2
yy + v2

yy]dxdy +

4

∫
G

v2
xydxdy + 4

∫
G

u2
xydxdy − 2

∫
G

k(y)uxxuyydxdy −

4

∫
G

k(y)uxxvxydxdy + 4

∫
G

uyyvxydxdy +

4

∫
G

k(y)uxyvxxdxdy − 4

∫
G

uxyvyydxdy −

2

∫
G

k(y)vxxvyydxdy.

Hence, by arguing as the derivation of (3.3) from (3.2), and by exploiting

the fact that the function w has compact support in R in the variable y, we

obtain

‖Bxyw‖2
2,G +

∥∥∥(P (y) + λ̂Ĕ
)
wx

∥∥∥2

2,G
≥ (5.20)∫

G

k2(y)|wxx|2dxdy +

∫
G

|wyy|2dxdy +

4

∫
G

|wxy|2dxdy +

∫
G

k
′′
(y)|wx|2dxdy − 2

∫
G

k(y)|wxy|2dxdy −

4

∫
G

k
′
(y)uxvxxdxdy + inf

y∈R

{
ϕ2(y), ψ2(y)

}∫
G

|wx|2dxdy.

The last term of (5.20) satisfies the following inequalities∣∣∣∣∣∣
∫
G

k
′
(y)uxvxxdxdy

∣∣∣∣∣∣ ≤ 1

2

∫
G

[
k
′
(y)
]2
u2

xdxdy +
1

2

∫
G

v2
xxdxdy,

∣∣∣∣∣∣
∫
G

k
′
(y)uxvxxdxdy

∣∣∣∣∣∣ ≤ 1

2

∫
G

u2
xdxdy +

1

2

∫
G

[
k
′
(y)
]2
v2

xxdxdy,∣∣∣∣∣∣
∫
G

k
′
(y)uxvxxdxdy

∣∣∣∣∣∣ ≤ 1

2

∫
G

k
′
(y)u2

xdxdy +
1

2

∫
G

k
′
(y)v2

xxdxdy.

Hence, we obtain

‖Bxyw‖2
2,G +

∥∥∥(P (y) + λ̂Ĕ
)
wx

∥∥∥2

2,G
≥ (5.21)
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G

[k2(y)− 2]|wxx|2dxdy +

∫
G

|wyy|2dxdy + 2

∫
G0

[2− k(y)]|wxy|2dxdy +

∫
G

(
inf
y∈R

{
ϕ2(y), ψ2(y)

}
+ k

′′
(y)− 2

[
k
′
(y)
]2)

|wx|2dxdy,

‖Bxyw‖2
2,G +

∥∥∥(P (y) + λ̂Ĕ
)
wx

∥∥∥2

2,G
≥ (5.22)∫

G

[
k2(y)− 2(k

′
(y))2

]
|wxx|2dxdy +

∫
G

|wyy|2dxdy + 2

∫
G

[2− k(y)] |wxy|2dxdy +

∫
G

(
inf
y∈R

{
ϕ2(y), ψ2(y)

}
+ k

′′
(y)− 2

)
|wx|2dxdy.

‖Bxyw‖2
2,G +

∥∥∥(P (y) + λ̂Ĕ
)
wx

∥∥∥2

2,G
≥ (5.23)∫

G

[
k2(y)− 2k

′
(y)
]
|wxx|2dxdy +

∫
G

|wyy|2dxdy + 2

∫
G

[2− k(y)] |wxy|2dxdy +

∫
G

(
inf
y∈R

{
ϕ2(y), ψ2(y)

}
+ k

′′
(y)− 2k

′
(y)

)
|wx|2dxdy.

By conditions i), ii) and iii) and the inequalities (5.21), and (5.22) and (5.23)

by arguing as to prove Lemma 3.3, we obtain that

‖Bxyw‖2
2,G +

∥∥∥(P (y) + λ̂Ĕ
)
wx

∥∥∥2

2,G
≥ (5.24)

C1 ‖wxx‖2
2,G + C2 ‖wyy‖2

2,G + C3 ‖wxy‖2
2,G + (C4 + λ̂) ‖wx‖2

2,G .

and inequality
∥∥∥Lλ,λ̂w

∥∥∥
2,G

≥ C0(λ, λ̂)

(∥∥∥λ̂wx

∥∥∥
2,G

+ ‖λw‖2,G

)
holds. Hence,

inequalities (5.19) and (5.24) imply that

‖wxx‖2,G + ‖wyy‖2,G + ‖wxy‖2,G +∥∥∥(P (y) + λ̂Ĕ
)
wx

∥∥∥
2,G

+ ‖(Q(y) + λE)w‖2,G ≤

‖Bxyw‖2,G +
∥∥∥(P (y) + λ̂Ĕ

)
wx

∥∥∥
2,G

+ ‖(Q(y) + λE)w‖2,G ≤

C2(λ, λ̂)

(∥∥∥Lλ,λ̂w
∥∥∥

2,G
+ ‖w‖2,G

)
,
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and the proof of the lemma is complete.

We now introduce the main result of this Chapter.

Theorem 5.8. Let λ̂ ≥ λ ≥ 0. Let the coefficients of system (4.1) satisfy

Assumption 2, conditions (5.1), (5.15). Let k(y) be twice continuously differ-

entiable on R and satisfy one and only one of conditions i), ii), iii). Then the

operator Lλ,λ̂ is separable.

Proof. By Lemma 5.7 it is enough to show that (5.19) holds. By the

assumptions of this theorem the operator L is bounded and invertible. The

operator L+λ̂Ĕ ∂
∂x

satisfies all the conditions of Theorem 5.8. Hence, L+λ̂Ĕ ∂
∂x

is bounded and invertible. Furthermore, the following inequality holds∥∥∥∥(L+ λ̂Ĕ
∂

∂x
+ λE)w

∥∥∥∥
2,G

≥ C ‖w‖2,G ,

for all w ∈ D(L + λ̂Ĕ ∂
∂x

+ λE). Then by the well-known Theorem 1.2, the

operator L+ λ̂Ĕ ∂
∂x

+λE is bounded and invertible in L2(G,R2) for λ̂ ≥ λ ≥ 0.

Furthermore, we have

(L+ λ̂Ĕ
∂

∂x
+ λE)−1F =

+∞∑
n=−∞

(ln + inλ̂Ĕ + λE)−1Fne
inx,

by construction. Here F =
∞∑

n=−∞
Fne

inx, F = (f, g), Fn = (fn, gn).

Hence, by the orthonormality of the system {einx}+∞
n=−∞ in L2(−π, π), we

obtain∥∥∥∥∥ρ(y)Dτ
x

(
L+ λ̂Ĕ

∂

∂x
+ λE

)−1
∥∥∥∥∥

L2(G,R2)→L2(G,R2)

=

sup
n

∥∥∥∥|n|τρ(y)(ln + inλ̂Ĕ + λE
)−1
∥∥∥∥

L2((α,β),C2)→L2((α,β),C2)

.

Here Dτ
x = ∂τ

∂xτ , and τ = 0, 1, and ρ(y) is a 2 × 2-matrix with continuous

elements. Since (5.16) holds, we have∥∥∥∥∥(P (·) + λ̂Ĕ
) ∂

∂x

(
L+ λ̂Ĕ

∂

∂x
+ λE

)−1
∥∥∥∥∥

L2(G,R2)→L2(G,R2)

+∥∥∥∥∥(Q(·) + λE)
∂

∂x

(
L+ λ̂Ĕ

∂

∂x
+ λE

)−1
∥∥∥∥∥

L2(G,R2)→L2(G,R2)

=
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sup
n

sup
j

∥∥∥∥|n| (P (·) + λE)
(
ln,j + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)

+

sup
n

sup
j

∥∥∥∥(Q(·) + λE)
(
ln,j + inλ̂Ĕ + λE

)−1
∥∥∥∥

L2(∆j ,C2)→L2(∆j ,C2)

<∞.

Then we obtain∥∥∥∥∥Bxy

(
L+ λ̂Ĕ

∂

∂x
+ λE

)−1
∥∥∥∥∥

L2(G,R2)→L2(G,R2)

<∞,

by system (4.3). Hence, inequality (5.19) follows and the proof is complete.

Corollary 5.9. Let the coefficients ϕ, ψ, a, b, c, d, k of system (4.1) satisfy the

conditions of Theorem 5.8. Then the following inequality holds

‖uxx‖2
2,G + ‖uyy‖2

2,G + ‖uxy‖2
2,G + (5.25)

‖vxx‖2
2,G + ‖vyy‖2

2,G + ‖vxy‖2
2,G + ‖ϕ(y)ux‖2

2,G +

‖uy‖2
2,G + ‖ψ(y)vx‖2

2,G + ‖vy‖2
2,G + ‖a(y)u‖2

2,G +

‖b(y)v‖2
2,G + ‖c(y)u‖2

2,G + ‖d(y)v‖2
2,G ≤ C ‖F‖2

2,G ,

for the solution w = (u, v) of problem (4.1), (4.2).

Remark 5.10. The definition of separability ensures the validity of the fol-

lowing inequality

‖uxx‖2
2,G + ‖uyy‖2

2,G + ‖uxy‖2
2,G + (5.26)

‖vxx‖2
2,G + ‖vyy‖2

2,G + ‖vxy‖2
2,G + ‖ϕ(y)ux‖2

2,G +

‖uy‖2
2,G + ‖ψ(y)vx‖2

2,G + ‖vy‖2
2,G + ‖a(y)u‖2

2,G +

‖b(y)v‖2
2,G + ‖c(y)u‖2

2,G + ‖d(y)v‖2
2,G ≤

C
(
‖Lw‖2

2,G + ‖w‖2
2,G

)
.

If ineqality (4.6) is holds, then (5.26) is equivalent to (5.25).

By the well-known norm of the Sobolev space W 2
2 (G,R2), one can rewrite

(5.25) in the following compact form

‖w‖2
W 2

2 (G,R2) + ‖ϕ(y)ux‖2
2,G + ‖ψ(y)vx‖2

2,G +

‖(|a|+ |c|)u‖2
2,G + ‖(|b|+ |d|) v‖2

2,G ≤ C1 ‖F‖2
2,G .
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Example 5.11. The following system satisfies the conditions of Theorem 5.8.
√

2− e−y2 ∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

−
√

2 + ey(y4+3)
2y2+1

∂u
∂x

+ (y2 + 1)u+ 1
3
v = f(x, y),

2 ∂2u
∂x∂y

+
√

2− e−y2 ∂2v
∂x2 − ∂2v

∂y2 +
√

2 + ey(y4+3)
2y2+1

∂v
∂x

+ 1
3
u+ (y2 + 1)v = g(x, y),

where f, g ∈ L2(G).

Example 5.12. We consider the following problem

k(y)∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

− [(1 + 8y2)e7y2−2y+1 − 2]∂u
∂x

+

(11y4 − y + 8)u+ 1
4
sinyv = f(x, y),

2 ∂2u
∂x∂y

+ k(y) ∂2v
∂x2 − ∂2v

∂y2 + [χ(y)e5y4+1 + 7] ∂v
∂x

+

1
3
cosyu+ (5y4 − 2y + 1)v = g(x, y),

w(−π, y) = w(π, y), wx(−π, y) = wx(π, y)

on the strip G = {(x, y) ∈ R2 : −π < x < π, −∞ < y < +∞}. Here

k(y) =

 1
2
e−y2

for y ≥ 0

1− 1
2
e−y2

for y < 0

such that inf
y∈R

k(y) = 0, and χ(y) is an arbitrary function such that 1 ≤ χ(y) ≤

2 for all y ∈ R and f, g ∈ L2(G).

By Theorem 4.9 this problem has an unique solution w = (u, v) ∈ L2 for

any data f, g ∈ L2(G). Moreover, the solutions of the above system satisfy the

coercive inequality with the norm of space L2(G) in the form (5.25).

We now show that the following functions

a(y) = 11y4 − y + 8,

b(y) =
1

4
siny,

c(y) =
1

3
cosy,

d(y) = 5y4 − 2y + 1,

ϕ(y) = −(1 + 8y2)e7y2−2y+1 + 2,

ψ(y) = χ(y)e5y4+1 + 7

satisfy Assumption 2.

Indeed
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1)there exists a constant δ > 0 such that

inf
y∈R

{−ϕ(y), a(y), d(y)} =

inf
y∈R

{
(1 + 8y2)e7y2−2y+1 − 2, 11y4 − y + 8, 5y4 − 2y + 1

}
= δ > 0;

2) there exist constants r, q, (r > 0, q > 0, r + q = 1) and ϑ(0 < ϑ < 3)

such that
1
2

(
|1
4
siny|+ |1

3
cosy|

)2r ≤ 11y4−y+8
3

,

1
2

(
|1
4
siny|+ |1

3
cosy|

)2q ≤ 5y4−2y+1
3

,

ϑ[χ(y)e5y4+1 + 7] > 5y4 − 2y + 1

for all y ∈ R.

Further, we can see that the functions a(y), d(y), ϕ(y), ψ(y) of R satisfy the

condition (5.1) of Lemma 5.1 and the condition (5.15) of Lemma 5.5. There

exist constants c0, c1 and C such that

inf
y,η∈R,|y−η|≤2

[(1 + 8y2)e7y2−2y+1 − 2]2

11η4 − η + 8
≥ c0 > 0,

inf
y,η∈R,|y−η|≤2

[χ2(y)e5y4+1 + 7]2

5η4 − 2η + 1
≥ c1 > 0

and

sup
y,η∈R,|y−η|≤2

{
(1 + 8y2)e7y2−2y+1 − 2

(1 + 8η2)e7η2−2η+1 − 2
,
χ(y)e5y4+1 + 7

χ(η)e5η4+1 + 7
,
11y4 − y + 8

11η4 − η + 8
,

5y4 − 2y + 1

5η4 − 2η + 1
,
11y4 − y + 8

5η4 − 2η + 1

}
≤ C <∞.

The function k(y) is twice continuously differentiable and satisfies the con-

dition (ii) of Lemma 5.7.

Really

1)k(y) < 2;

2) If y ≥ 0 then
√

2k
′
(y)

k(y)
= −2

√
2y ≤ 0,

if y < 0 then
√

2k
′
(y)

k(y)
= 2

√
2y

2ey2−1
< 0.

Thus
√

2k
′
(y)

k(y)
< 1 for all y ∈ R.

And we show that

min
y∈R

{
ϕ2(y), ψ2(y)

}
> 2− k

′′
(y).

Indeed,
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if y ≥ 0 then k
′′
(y) = −2

√
2 ≤ 0,

if y < 0 then k
′′
(y) = 1−2y

ey2 < 1.

So k
′′
(y) < 1 for all y ∈ R.

Then

min
y∈R

{
ϕ2(y), ψ2(y)

}
> 3,

namely

min
y∈R

{
[(1 + 8y2)e7y2−2y+1 − 2]2, [χ(y)e5y4+1 + 7]2

}
> 3,

holds for any y ∈ R.

Example 5.13. We consider the following problem

(
π
2
− arctgy

)
∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

−
∣∣∣√(1 + 2y4)e6y2 + 11

∣∣∣ ∂u
∂x

+

e|y|+1u+ χ(y)
9
sinycos3yv = f(x, y),

2 ∂2u
∂x∂y

+
(

π
2
− arctgy

)
∂2v
∂x2 − ∂2v

∂y2 +
∣∣∣√(3 + y4)e6y2+2y−3 + 7

∣∣∣ ∂v
∂x

+

1
9
cosysin3yu+ e8|y|+0.5v = g(x, y),

w(−π, y) = w(π, y), wx(−π, y) = wx(π, y)

on the strip G = {(x, y) ∈ R2 : −π < x < π, −∞ < y < +∞}. Here

inf
y∈R

k(y) = inf
y∈R

(
π
2
− arctgy

)
= 0 and χ(y) is an arbitrary function such that

1 ≤ χ(y) ≤ 2 for all y ∈ R, and f, g ∈ L2(G).

By Theorem 4.9 this problem has an unique solution w = (u, v) ∈ L2 for

any data f, g ∈ L2(G). Moreover, the solutions of the above system satisfy the

coercive inequality with the norm of space L2(G) in the form (5.25).

We now show that the following functions

a(y) = e|y|+1,

b(y) =
χ(y)

9
sinycos3y,

c(y) =
1

9
cosysin3y,

d(y) = e8|y|+0.5,

ϕ(y) = −
∣∣∣∣√(1 + 2y4)e6y2 + 11

∣∣∣∣ ,
ψ(y) =

∣∣∣∣√(3 + y4)e6y2+2y−3 + 7

∣∣∣∣
satisfy Assumption 2.
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Indeed

1)there exists a constant δ > 0 such that

inf
y∈R

{−ϕ(y), a(y), d(y)} =

inf
y∈R

{∣∣∣∣√(1 + 2y4)e6y2 + 11

∣∣∣∣ , e|y|+1, e8|y|+0.5

}
= δ > 0;

2) there exist constants r, q, (r > 0, q > 0, r + q = 1) and ϑ(0 < ϑ < 3)

such that
1
2

(
|χ(y)

9
sinycos3y|+ |1

9
cosysin3y|

)2r

≤ e|y|+1

3
,

1
2

(
|χ(y)

9
sinycos3y|+ |1

9
cosysin3y|

)2q

≤ e8|y|+0.5

3
,

ϑ
∣∣∣√(3 + y4)e6y2+2y−3 + 7

∣∣∣ > e8|y|+0.5

for all y ∈ R.

Also we can see that the functions a(y), d(y), ϕ(y), ψ(y) of R satisfy the

condition (5.1) of Lemma 5.1 and the condition (5.15) of Lemma 5.5. There

exist constants c0, c1 and C such that

inf
y,η∈R,|y−η|≤2

(1 + 2y4)e6y2
+ 11

e|η|+1
≥ c0 > 0,

inf
y,η∈R,|y−η|≤2

(3 + y4)e6y2+2y−3 + 7

e8|η|+0.5
≥ c1 > 0

and

sup
y,η∈R,|y−η|≤2


∣∣∣√(1 + 2y4)e6y2 + 11

∣∣∣∣∣∣√(1 + 2η4)e6η2 + 11
∣∣∣ ,
∣∣∣√(3 + y4)e6y2+2y−3 + 7

∣∣∣∣∣∣√(3 + y4)e6η2+2η−3 + 7
∣∣∣ , e

|y|+1

e|η|+1
,

e8|y|+0.5

e8|η|+0.5
,
e|y|+1

e8|η|+0.5

}
≤ C <∞.

The function k(y) = π
2
− arctgy is twice continuously differentiable and

satisfies the condition (ii) of Lemma 5.7.

Really

1)k(y) < 2;

2)
√

2k
′
(y)

k(y)
= − 2

(1+y2)(π
2
−arctgy)

< 1 for all y ∈ R.

3) If y < 0 then k
′′
(y) = 2y

(1+y2)2
< 0,

if y ≥ 0 then k
′′
(y) = 2y

(1+y2)2
≤ 1.

So k
′′
(y) = 2y

(1+y2)2
≤ 1 for all y ∈ R

Then we see that

min
y∈R

{
ϕ2(y), ψ2(y)

}
> 3,
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namely

min
y∈R

{
(1 + 2y4)e6y2

+ 11, (3 + y4)e6y2+2y−3 + 7
}
> 3,

holds for any y ∈ R.
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Chapter 6

Compactness of the resolvent

and properties

of the Kolmogorov

diameters of the set M ={
w ∈ D(L) : ‖Lw‖2,G + ‖w‖2,G ≤ 1

}
Theorem 6.1. Let the conditions of Theorem 5.1 hold. Let

lim
|y|→+∞

a(y) = +∞ and lim
|y|→+∞

d(y) = +∞. (6.1)

Then the inverse L−1 of the operator L is completely continuously in the space

L2(G,R2).

Proof. We denote by W 2
2,P,Q(G,R2) the weighted space of functions w =

(u, v) with the norm

‖w‖2,P,Q =[
‖uxx‖2

2,G + ‖uyy‖2
2,G + ‖uxy‖2

2,G +

‖vxx‖2
2,G + ‖vyy‖2

2,G + ‖vxy‖2
2,G +

‖ϕ(y)ux‖2
2,G + ‖ψ(y)vx‖2

2,G + ‖a(y)u‖2
2,G +

‖b(y)v‖2
2,G + ‖c(y)u‖2

2,G + ‖d(y)v‖2
2,G

] 1
2
.
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By Corollary 5.9 inequality (5.25) holds for all w in D(L), which is contained

in W 2
2,P,Q(G,R2). Since the elements of the matrices P (y) and Q(y) are con-

tinuous and condition (6.1) holds then Theorem 1.6 implies that the space

W 2
2,P,Q(G,R2) is compactly imbedded into L2(G,R2). We now prove the com-

pactness of the unit ball M of W 2
2,P,Q(G,R2) in L2(G,R2) by exploiting of the

Fréchet-Kolmogorov theorem, see Theorem 1.6 of Chapter 1. We first verify

conditions 2) and 3) of such statement. Let w = (u, v) ∈ W 2
2,P,Q(G,R2). Let

h1, h2 6= 0 and N > 0. Clearly

∫
G

|w(t+ h1, τ + h2)− w(t, τ)|2 dtdτ ≤

∫
G

∣∣∣∣∣∣
t+h1∫
t

w
′

ξ(ξ, τ + h2)dξ +

τ+h2∫
τ

w
′

η(t, η)dη

∣∣∣∣∣∣
2

dtdτ ≤

2

∫
G

∣∣∣∣∣∣
t+h1∫
t

w
′

ξ(ξ, τ + h2)dξ

∣∣∣∣∣∣
2

dtdτ + 2

∫
G

∣∣∣∣∣∣
τ+2∫
τ

w
′

η(t, η)dη

∣∣∣∣∣∣
2

dtdτ ≤

2

∫
G

t+h1∫
t

dξ

t+h1∫
t

∣∣∣w′

ξ(ξ, τ + 2
∣∣∣2 dξdtdτ +

2

∫
G

τ+h2∫
τ

12dη

τ+h2∫
τ

∣∣∣w′

η(t, η)
∣∣∣2 dηdtdτ ≤

2|h1|
t+h1∫
t

dt

∫
G

∣∣∣w′

ξ(ξ, τ + 2h2)
∣∣∣2 dξdτ +

2|h2|
τ+h2∫
τ

dτ

∫
G

∣∣∣w′

η(t, η)
∣∣∣2 dηdt =

2|h1|2 ‖wx‖2
2,G + 2|h2|2 ‖wy‖2

2,G → 0 as h1 → 0, h2 → 0.

Now

∫
√

ξ2+η2≥N

|u|2dξdη ≤

(
inf
|t|≥N

[a(t) + |c(t)|]
)−1 ∫

G

[a(t) + |c(t)|]|u|2dξdη ≤

(
inf
|t|≥N

a(t)

)−1 ∥∥∥(a(t) + c(t))
1
2u
∥∥∥2

2,G
→ 0 as N → +∞
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and ∫
√

ξ2+η2≥N

|v|2dξdη ≤

(
inf
|t|≥N

[b(t) + |d(t)|]
)−1 ∫

G

[b(t) + |d(t)|]|v|2dξdη ≤

(
inf
|t|≥N

d(t)

)−1 ∥∥∥(b(t) + d(t))
1
2u
∥∥∥2

2,G
→ 0 as N → +∞.

This means, that operator L−1 maps the whole of L2(G,R2) into the weighted

space W 2
2,P,Q, i.e. the operator L−1 is completely continuously. Thus the proof

is complete.

Theorems 5.8 and 6.1 allow us to consider the problem of estimating the

diameters of the set M = {w ∈ D(L) : ‖Lw‖2,G + ‖w‖2,G ≤ 1}, which is a part

of the domain of definition of the operator L. By definition, the k-diameter of

Kolmogorov of a set M in L2 is a number, which is equal to

dk(M) = inf
Gk

sup
w∈M

inf
ω∈Pk

‖w − ω‖L2 , k = 1, 2, . . . ,

where Gk is the set of the all subsets of L2 with dimension no more than k. The

estimate of the diameters can be used to understand the rate of convergence

of the approximate solutions of equation Lω = F to the exact solution.

We denote by N(λ) the number of diameters dk(M) greater than λ > 0.

Theorem 6.2. Let the functions ϕ, ψ, a, b, c, d, k satisfy Assumption 2 and

conditions (5.1) and (5.15) and (6.1) and one and only one of conditions i),

ii), iii). Then there exist constants c0, c such that

c0λ
−1meas

(
X : ‖Q(X)‖ ≤ c−1

1 λ−
1
2

)
≤

N(λ) ≤ cλ−1meas
(
X : ‖Q(X)‖ ≤ c2λ

− 1
2

)
,

for the function N(λ), where meas is the Lebesgue measure on R2.

We introduce the following sets

M̃s = {w ∈ L2(G,R2) : ‖w‖W 2
2,P,Q

≤ s},

Ṁp = {w ∈ L2(G,R2) : ‖w‖W 2
2,P,Q

≤ p}.

In order to prove Theorem 6.2, we need some lemmas.
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Lemma 6.3. Let the assumptions of Theorem 6.2 hold. There exists a constant

C1 > 1 such that

ṀC−1
1
⊆M ⊆ M̃C1 .

Proof. Let w = (u, v) ∈ ṀC−1
1

. Since the conditions of Theorem 6.2 hold,

the operator Lw = Bxyw+P (y)wx+Q(y)w is separable in the space L2(G,R2).

Hence, we obtain that

‖Lw‖2,G + ‖w‖2,P,Q ≤

‖Lw‖2,G + ‖Bxyw‖2,G + ‖P (y)wx‖2,G ≤

C2

[
‖uxx‖2

2,G + ‖uyy‖2
2,G + ‖uxy‖2

2,G +

‖vxx‖2
2,G + ‖vyy‖2

2,G + ‖vxy‖2
2,G + ‖ϕ(y)ux‖2

2,G +

‖uy‖2
2,G + ‖ψ(y)vx‖2

2,G + ‖vy‖2
2,G + ‖a(y)u‖2

2,G

+ ‖b(y)v‖2
2,G + ‖c(y)u‖2

2,G + ‖d(y)v‖2
2,G

] 1
2 ≤ C2C

−1
0 ,

for all w = (u, v) ∈ ṀC−1
1

. We set C2 = C0, then ṀC−1
0
⊆M .

Let w = (u, v) ∈M . By inequality (5.25), we have

C ≥ C
(
‖Lw‖2,G + ‖w‖2,P,Q

)
≥

C3

(
‖Bxyw‖2,G + ‖P (y)wx‖2,G + ‖Q(y)w‖2,G

) 1
2 ≥

C4

[
‖uxx‖2

2,G + ‖uyy‖2
2,G + ‖uxy‖2

2,G +

‖vxx‖2
2,G + ‖vyy‖2

2,G + ‖vxy‖2
2,G +

‖ϕ(y)ux‖2
2,G + ‖ψ(y)vx‖2

2,G + ‖a(y)u‖2
2,G +

‖b(y)v‖2
2,G + ‖c(y)u‖2

2,G + ‖d(y)v‖2
2,G

] 1
2
,

for all w = (u, v) ∈ D(L). Thus M ⊆ M̃c. We now choose a constant C1 so

that C1 ≥ C and C−1
1 ≤ C−1

0 , and the proof is complete.

Lemma 6.4. Let the assumptions of Theorem 6.2 hold. The diameters dk(M)

satisfy the following properties:

a) d0 ≥ d1 ≥ d2 ≥ . . . ;

b) dkM̃ ≤ dk(M), if M̃ ⊆M ;

c) dk(nM) = ndk(M), n > 0, here nM = {z : z = nθ, θ ∈M}.
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The proof of Lemma 6.4 is an immediate consequence of the definition of

the diameters.

Lemma 6.5. Let ḋk, d̃k be k-diameters of the sets ṀC−1
1
, M̃C1, respectively.

Then the following inequalities hold

C−1ḋk ≤ dk(M) ≤ Cd̃k, k = 1, 2, .... (6.2)

The inequalities (6.2) follow by Lemma 6.3 and by condition b) of Lemma

6.4.

We now introduce the functions N(λ) =
∑

dk>λ

1, Ñ(λ) =
∑

d̃k>λ

1,

Ṅ(λ) =
∑

ḋk>λ

1, which equal the number of diameters dk(M), d̃k(M), ḋk(M)

greater than λ > 0, respectively. From estimates (6.2), we easily deduce the

validity of the following

Lemma 6.6. Let N(λ) be a number of diameters dk(M) greater than λ > 0.

Let N(λ) =
∑

dk>λ

1. Then there exists a constant C > 1 such that

Ṅ(Cλ) ≤ N(λ) ≤ Ñ(C−1λ).

We now recall the following well known result of M.Otelbayev [51].

Theorem 6.7. Let N(λ) be the number of diameters dk(M) greater than λ > 0

of imbedding Ll
p(Rn, q) → Lp(Rn), for 1 < p < +∞, pl > n, l > 0. Here

Ll
p(Rn, q) the completion of C∞0 (Rn) in the following norm

‖u‖Ll
p(Rn,q) =

‖(−∆)
l
2u‖p

p +

∫
Rn

q(t)|u(t)|pdt

 1
p

.

Then the following estimates hold

C−1N(Cλ) ≤ λ−
n
l mes

(
x ∈ Rn : q∗(x) ≤ λ−

1
l

)
≤ CN(C−1λ).

Here

q∗(x) = inf
Qd(x)⊆Rn

d−1 : d−pl+n ≥
∫

Q̄d(x)

q(t)dt

 ,

Qd(x) is a cube in Rn with center at x and sides equal to d.
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Proof of Theorem 6.2. By Theorem 6.7 and by Lemma 6.6 the number

N(λ) of diameters dk(M) of the unit ball greater than λ > 0 satisfies the

following inequalities

C−1Ṅ(Cλ) ≤ λ−1meas
(
x ∈ R2 : ‖Q(X)‖ ≤ λ−

1
2

)
≤ CÑ(C−1λ).

Hence, by inequalities (6.2), the proof of the theorem is complete.

By taking the inverse functions, and by Theorem 6.2 we can prove an

asymptotic formula for the eigenvalues. If we denote by

F (λ) = λ−1meas
(
x ∈ R2 : ‖Q(X)‖ ≤ λ−

1
2

)
,

then by Theorem 6.2 implies that the functions N(λn) satisfy the following

estimates

F (c2λn) ≤ N(λn) ≤ F (c0λn).

Corollary 6.8. Let the conditions of Theorem 6.2 hold. Then

c−1
2 F−1(n) ≤ λn ≤ c−1

0 F−1(n),

where F−1 is the inverse function of the strongly momotone non-negative func-

tion F .



Chapter 7

The solvability of the

semiperiodical nonlinear

problem for second order

elliptic systems

We consider the folowing problem k(y)∂2u
∂x2 − ∂2u

∂y2 − 2 ∂2v
∂x∂y

+ ϕ(y)∂u
∂x

+ a(y, u, v)u+ b(y, u, v)v = f(x, y),

2 ∂2u
∂x∂y

+ k(y) ∂2v
∂x2 − ∂2v

∂y2 + ψ(y) ∂v
∂x

+ c(y, u, v)u+ d(y, u, v)v = g(x, y),

(7.1)

w(−π, y) = w(π, y), wx(−π, y) = wx(π, y), (7.2)

in the strip G = {(x, y) ∈ R2 : −π < x < π, −∞ < y < +∞}. Here

k(y) is a continuous and bounded real value function such that inf
y∈R

k(y) > 0,

f, g ∈ L2(G). Let the functions ϕ, ψ, a, b, c, d be continuous on R.

The system (7.1) can be written in the following form

L0w = Bxyw + P (y)wx +Q(y, w)w = F (X), (7.3)

here

Bxy =

 k(y) ∂2

∂x2 − ∂2

∂y2 −2 ∂2

∂x∂y

2 ∂2

∂x∂y
k(y) ∂2

∂x2 − ∂2

∂y2

 ,

P (y) =

 ϕ(y) 0

0 ψ(y)

 ,
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Q(y, w) =

 a(y, u, v) b(y, u, v)

c(y, u, v) d(y, u, v)

 ,

U = (u, v) , F = (f, g) , X = (x, y).

Assumption 3. We assume that the real valued functions ϕ, ψ, a, b, c, d

on R satisfy the following conditions

inf
y∈R

{−ϕ(y), a(y, ξ, ζ), d(y, ξ, ζ)} = δ > 0, ξ, ζ ∈ R; (7.4)

1

2
(|b(y, ξ, ζ)|+ |c(y, ξ, ζ)|)2α ≤ a(y, ξ, ζ)

3
, (7.5)

1

2
(|b(y, ξ, ζ)|+ |c(y, ξ, ζ)|)2β ≤ d(y, ξ, ζ)

3
,

ϑψ(y) > d(y, ξ, ζ),

where α, β and ϑ are constants such that α > 0, β > 0, α + β = 1, ϑ < 3.

We denote by L the operator with domain D(L) = {w(X) ∈ L2 : Lw ∈ L2}

defined by the formula

Lw = Bxyw + P (y)wx +Q(y, w)w = F (X). (7.6)

Let W 2
2 (G,R2) be the space of functions belonging to L2(G,R2) together

their generalized derivatives up to second order. The norm of the space

W 2
2 (G,R2) is defined as follows

‖w‖W 2
2 (G,R2) =

∫
G

‖wxx‖2 + ‖wyy‖2+

‖wxy‖2 + ‖wx‖2 + ‖wy‖w2 + ‖w‖2
)
dxdy

] 1
2 .

We denote by W 2
2,loc(G,R2) the class of vector valued functions

Φ = (ϕ(x, y), ψ(x, y)), such that Φ · θ(x, y) ∈ W 2
2 (G,R2) for all functions

θ(x, y) ∈ C∞0 (G,R2).

We denote by W 2
2,P,Q(G,R2) the space of functions w = (u, v) with the

norm

‖w‖2,P,Q =
[
‖uxx‖2

2,G + ‖uyy‖2
2,G + ‖uxy‖2

2,G +

‖vxx‖2
2,G + ‖vyy‖2

2,G + ‖vxy‖2
2,G +

‖ϕ(y)ux‖2
2,G + ‖ψ(y)vx‖2

2,G + ‖a(y)u‖2
2,G +

‖b(y)v‖2
2,G + ‖c(y)u‖2

2,G + ‖d(y)v‖2
2,G

] 1
2
.
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Definition 7.1. A function w = (u, v) ∈ L2(G,R2) is said to be a solution

of the problem (7.1), (7.2), if there exists a sequence {wn}∞n=1 of functions in

the class W 1
2 (G,R2) ∩ W 2

2,loc(G,R2) such that ‖θ(wn − w)‖L2(G,R2) → 0 and

‖θ(Lwn − F )‖L2(G,R2) → 0 as n→∞ for all θ ∈ C∞0 (G,R2).

Theorem 7.2. Let the following conditions hold.

a) The coefficients ϕ, ψ, a, b, c, d of system (7.1) satisfy Assumption 3.

b) Let there exist constants K1(σ), K2(σ), K3(σ) such that (U = (p, s) , U1 =

(p1, s1), U2 = (p2, s2))

inf
y,η∈R,|y−η|≤2,U∈R2

ϕ2(y)

a(η, p, s)
≥ K1(σ) > 0, (7.7)

inf
y,η∈R,|y−η|≤2,U∈R2

ψ2(y)

d(η, p, s)
≥ K2(σ) > 0;

sup
y,η,U1,U2∈R,|y−η|≤2

{
ϕ(y)

ϕ(η)
,
ψ(y)

ψ(η)
,
a(y, p1, s1)

a(η, p2, s2)
,
d(y, p1, s1)

d(η, p2, s2)
,
a(y, p1, s1)

d(η, p2, s2)

}
≤ K3(σ) <∞,

(7.8)

for all σ > 0;

c)

lim
|y|→+∞

a(y, p, s) = +∞ and lim
|y|→+∞

d(y, p, s) = +∞, (7.9)

for all U = (p, s) ∈ R2.

d) The function k(y) of R is twice continuously differentiable and satisfies

one and only one of the following three conditions

(i)
√

2 < k(y) < 2, min
y∈R

{ϕ2(y), ψ2(y)}+ k
′′
(y) > 2

[
k
′
(y)
]2

;

(ii) k(y) < 2,
√

2k
′
(y)

k(y)
≤ 1, min

y∈R
{ϕ2(y), ψ2(y)}+ k

′′
(y) > 2;

(iii) k(y) < 2, k2(y) > 2k
′
(y), min

y∈R
{ϕ2(y), ψ2(y)}+ k

′′
(y) > 2k

′
(y).

Then problem (7.1), (7.2) has a solution w = (u, v) in the Sobolev space

W 2
2,P,Q(G,R2) for every right hand side F (X) ∈ L2(G,R2) of system (7.1).

Moreover, there exists a constant C̃ > 0 independent of F such that

‖uxx‖2
2,G + ‖uyy‖2

2,G + ‖uxy‖2
2,G + ‖vxx‖2

2,G + (7.10)

‖vyy‖2
2,G + ‖vxy‖2

2,G + ‖ϕ(y)ux‖2
2,G + ‖uy‖2

2,G +

‖ψ(y)vx‖2
2,G + ‖vy‖2

2,G + ‖a(y, u, v)u‖2
2,G + ‖b(y, u, v)v‖2

2,G +

‖c(y, u, v)u‖2
2,G + ‖d(y, u, v)v‖2

2,G ≤ C̃ ‖F‖2
2,G .
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In order to prove Theorem 7.2, we need the following lemmas.

We consider the following ‘system with weight ’

Lεwε = Bxywε + P (y)(wε)x +Q(y, wε) + ε(1 + |X|2)wε = F (X), (7.11)

where F (X) ∈ L2(G,R2).

We now choose the following ball

SH(σ) = {ω(u, v) : ‖ω(u, v)‖C(R2,R2) < H(σ)}

in the space C(R2,R2). Here H(σ) = 2C‖F‖ + 1 ≡ T (C is a constant in

Corollory 5.9). In this ball we define the operator Φε(ω) (ε > 0), by following

formula

Φε(ω) = (Lε(ω))−1 F (X),

where Lε(ω) is the operator generated as system (7.3) and with the following

coefficients

ãε(y) = a(y, ω(y)) + ε(1 + |y|2),

b̃(y) = b(y, ω(y)),

c̃(y) = c(y, ω(y)),

d̃ε(y) = d(y, ω(y)) + ε(1 + |y|2),

for all ω(y) ∈ SH(σ) and for fixed F (X) ∈ L2(G,R2).

Lemma 7.3. Let condition (7.9) of Theorem 7.2 hold. Then there exist con-

stants C0, C1 > 0 such that

sup
y,η∈R,|y−η|≤2

{
ãε(y)

ãε(η)

}
≤ C0 <∞,

sup
y,η∈R,|y−η|≤2

{
d̃ε(y)

d̃ε(η)

}
≤ C1 <∞.

Proof. If |y − η| ≤ 2 we have

|ω(y)− ω(η)| ≤ 2|ω(y)| ≤ 2T,

for all ω ∈ SH(σ).

Then by condition b) of Theorem 7.2 we obtain

sup
y,η∈R,|y−η|≤2

{
ãε(y)

ãε(η)

}
≤
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sup
y,η∈R,|y−η|≤2

sup
|U1−U2|≤σ

{
a(y, p1, s1) + ε(1 + |y|2)
a(η, p2, s2) + ε(1 + |η|2)

}
≤

sup
y,η∈R,|y−η|≤2

sup
|U1−U2|≤σ

{
a(y, p1, s1)

a(η, p2, s2) + ε(1 + |η|2)

}
+

sup
y,η∈R,|y−η|≤2

sup
|U1−U2|≤σ

{
ε(1 + |y|2)

a(η, p2, s2) + ε(1 + |η|2)

}
≤

sup
y,η∈R,|y−η|≤2

sup
|U1−U2|≤σ

{
a(y, p1, s1)

a(η, p2, s2)

}
+

sup
y,η∈R,|y−η|≤2

sup
|U1−U2|≤σ

{
ε(1 + |y|2)
ε(1 + |η|2)

}
≤ K(2T ) + 4 <∞,

where U1 = (p1, s1), U2 = (p2, s2) ∈ G. The second inequality of this lemma

can be proved analogously.

Lemma 7.4. Let the assumptions of Theorem 7.2 hold. Let F (X) ∈ L2(G,R)

be fixed. Then the operator Φε(ω) maps the ball SH(σ) into itself and is com-

pletely continuous for all ε > 0.

Proof. By the assumptions of Theorem 7.2, which hold for the functions

ãε(y), b̃(y), c̃(y), d̃ε(y) and by Lemma 7.3 the operator Lε(ω) is bounded and

invertible in the space L2(G,R) for every function ω ∈ SH(σ). So, the existence

of the operator Φε(ω) has been proved.

By Lemma 7.3 and by Theorem 6.1, we have that

‖Φε(ω)‖C(R2,R2) ≤ c‖F (X)‖W 2
2,P,Q

≤ H(σ)− 1.

Hence it follows that the operator Φε(ω) maps the ball SH(σ) into itself.

Corollary 5.9 also implies that the operator Φε(ω) maps the ball SH(σ) into

some of part of the Sobolev space W 2
2,P,Q with the norm

‖w‖2,P,Q = [
‖uxx‖2

2,G + ‖uyy‖2
2,G + ‖uxy‖2

2,G +

‖vxx‖2
2,G + ‖vyy‖2

2,G + ‖vxy‖2
2,G + ‖ϕ(y)ux‖2

2,G +

‖uy‖2
2,G + ‖ψ(y)vx‖2

2,G + ‖vy‖2
2,G + ‖ãε(y)u‖2

2,G +∥∥∥b̃(y)v∥∥∥2

2,G
+ ‖c̃(y)u‖2

2,G +
∥∥∥d̃ε(y)v

∥∥∥2

2,G

] 1
2

.

Since lim
|y|→+∞

ãε(y) = +∞, lim
|y|→+∞

d̃ε(y) = +∞, Theorem 6.1 implies that the

operator (Lε(ω))−1 is compact. Hence it follows that the operator Φε(ω) is
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compact in C(R2,R2). Finally, the operator Φε(ω) is continuous. Indeed, the

functions ãε(y), b̃(y), c̃(y) and d̃ε(y) depend continuously on ω.

Proof of Theorem 7.1 By Lemma 7.4 the operator Φε(ω) is completely

continuous and maps the ball SH(σ) into itself. Thus, all the conditions of the

well-known Schauder Fixed Point Theorem hold for the operator Φε(ω) (cf.

e.eg., Theorem 1.7 of Chapter 1). Hence, Φε(ω) has fixed point wε,0 = wε,0(u, v)

in the ball SH(σ), i.e,

Φε(wε,0) = (Lε(wε,0))
−1 F = wε,0.

Now we set

ãε,0(y) = a(y, wε,0) + ε(1 + |y|2),

b̃ε,0(y) = b(y, wε,0),

c̃ε,0(y) = c(y, wε,0),

d̃ε,0(y) = d(y, wε,0) + ε(1 + |y|2).

We now show that wε,0 = wε,0(uε,0, vε,0) is a solution of (7.11) and that it

satisfies the following inequality

‖(uε,0)xx‖2
2,G + ‖(uε,0)yy‖2

2,G + ‖(uε,0)xy‖2
2,G +

‖(vε,0)xx‖2
2,G + ‖(vε,0)yy‖2

2,G + ‖(vε,0)xy‖2
2,G +

‖ϕ(y)(uε,0)x‖2
2,G + ‖(uε,0)y‖2

2,G + ‖ψ(y)(vε,0)x‖2
2,G +

‖(vε,0)y‖2
2,G + ‖ãε,0(y)uε,0‖2

2,G +
∥∥∥b̃ε,0(y)vε,0

∥∥∥2

2,G
+

‖c̃ε,0(y)uε,0‖2
2,G +

∥∥∥d̃ε,0(y)vε,0

∥∥∥2

2,G
≤ C̃ ‖F‖2

2,G .

We show that if ε→ 0, then wε,0 converges to the solution of system (7.1).

Let εk → 0 as k →∞. For every εk > 0 we have wεk
∈ W 2

2P,Qε
(G,R2). The

spaceW 2
2,P,Qε

(G,R2) is compactly imbeddes in L2(Ω,R2), where Ω is a bounded

subset of G. Hence, there exists a subsequence of {wεk
} which converges in

L2(Ω,R2). We denote it by {wεk
}. Let w be a limit of the sequence {wεk

}.

Then ‖θ(wεk
− w)‖L2(G,R2) → 0 as k → ∞. By choosing the operator Φε(w),

it follows that

Φε(wεk
) = (Lε(wεk

))−1 F = wεk

or

Lεwεk
= Bxywεk

+ P (y)(wε)x +Q(y, wεk
) + ε(1 + |X|2)wεk

= F (X).
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This means that ‖θ(Lεwεk
− F )‖L2(G,R2) → 0 as k →∞ for all

θ ∈ C∞0 (G,R2). Thus, by definition w is the solution of the system (7.1).

Since w belongs to the set {wεk
}, then w satisfies the inequality (7.10). The

proof of the theorem is complete.
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