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Abstract

Neurological degenerative diseases like stroke, Alzheimer, Amyothrophic Lateral Sclerosis
(ALS), Parkinson and many others are constantly increasing their incidence in the world
health statistics as far as the mean age of the global population is getting higher and
higher.

This leads to a general need for effective, at-home and low-cost rehabilitative and
health-daily-care tools. The latter should consist either of technological devices imple-
mented for operating in a remote way, i.e. tele-medicine is quickly spreading around
the world, or very-advanced computer-based and robotic systems to realize intense and
repetitive trainings. This is the challenge in which Information and Communications
Technology (ICT) is asked to play a major role in order to bring medicine to reach
further advancements.

Indeed, no way to cope with these issues is possible outside a strong and vivid
cooperation among multi-disciplinary teams of clinicians, physicians, biologists, neuro-
psychologists and engineers and without a resolute pushing towards a widespread inter-
operability between Institutes, Hospitals and Universities all over the world, as recently
highlighted during the main International conferences on ICT in healthcare. The estab-
lishment of well-defined standards for gathering and sharing data will then represent a
key element to enhance the efficacy of the aforementioned collaborations.

Among the others, stroke is one of the most common neurological pathologies being
the second or third cause of mortality in the world; moreover, it causes more than sixty
percent survivors remain with severe cognitive and motor impairments that impede them
in living normal lives and require a twenty-four-hours daily care. As a consequent, on one
side stroke survivors experience a frustrating condition of being completely dependent
on other people even to perform simple daily actions like reach and grasp an object,
hold a glass of water to drink it and so on. States, by their side, have to take into
account additional costs to provide stroke patients and their families with appropriate
cares and supports to cope with their needs. For this reason, more and more fundings
are recently made available by means of grants, European and International projects,
programs to exchange different expertise among various countries with the aim to study
how to accelerate and make more effective the recovery process of chronic stroke patients.

The global research about this topic is conducted on several parallel aspects: as regard
as the basic knowledge of brain processes, neurophysiologists, biologists and engineers are
particularly interested in an in-depth understanding of the so-called neuroplastic changes
that brain daily operates in order to adapt individuals to life changes, experiences and
to realize more extensively their own potentialities.

Neuroplasticity is indeed the corner stone for most of the trainings nowadays adopted
by the standard as well as the more innovative methods in the rehabilitative programs
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for post-stroke recovery. Specifically speaking, motor rehabilitation usually includes long-
term, repetitive and intense goal-directed exercises that promote neuroplastic mechanisms
such as neural sprouting, synapto-genesis and dendritic branching. These processes are
strictly related with motor improvements and their study could - one day - serve as
prognostic measures of the recovery.

Another aspect of this field of neuroscience research is the number of applications that
it makes feasible. One of the most exciting is to connect an injured brain to a computer or
a robotic device in a Brain-Computer or Brain-Machine Interface (BCI or BMI) scheme
aiming at bypassing the impairments of the patient and make him/her autonomously
move again or train his/her motor abilities in a more effective way. This kind of research
can already count an amount of literature that provides several proofs of concept that
these heterogeneous systems constituted by humans and robots can work at the purpose.

A particular application of BCI for restoring or enhancing, at least, the reaching abil-
ities of chronic stroke survivors was implemented and is still currently being improved
at I.R.C.C.S. San Camillo Hospital Foundation, an Institute for the rehabilitation from
neurological diseases located in Lido of Venice and partially technically supported by the
Department of Information Engineering of Padua in range of an agreement signed in 2009.
This specific BCI platform allows patients to train and improve their reaching movements
by means of a robotic arm that provides a force that helps patients in completing the
training exercise, i.e. to hit a predetermined target. This force feedback is however sub-
ject to a strict condition: during the movement, the person has to produce the expected
pattern of cerebral activity. Whenever this is accomplished, a force is delivered propor-
tionally to the entity of the latter activity, otherwise the patient is obliged to operate
without any help. In this way, this platform implements the so-called operant-learning,
that is one of the most effective conditioning techniques to make a subject learn or re-
learn a task. If, on one hand, the primary and explicit task is to improve a movement, on
the other side the secondary but most important task is to deploy the perilesional part of
the brain - still healthy - in becoming responsible for the control of the movement. It is a
popular and widely-accepted opinion within the neuroscience community, indeed, that a
healthy region of the sensorimotor area nearby the damaged one - which was previously
in charge of performing the (reaching) movement - can optimally accomplish the impaired
motor function substituting the original control area.

Technically speaking, the main crucial feature that can ensure the effectiveness of
the whole system is the precise and in real-time identification and quantification of the
cerebral pattern associated with the movement, the worldwide named movement-related
desynchronization (MRD). Starting from its original definition, passing through the most
used techniques for its recognition, the thesis work presents a series of criticisms of the
current signal processing method to detect the MRD and a complete analysis of the
possible features that can better represent the movement condition and that can be more
easily extracted during the on-line operations.

Brain - it is well-known - learns by trials and errors and it needs a slightly-delayed (in
the range of fraction of seconds) feedback of its performance to learn a task in the best
way. This BCI application was born with the purpose to provide the above-mentioned
feedback: however, this is only feasible if a computationally easy and contingent signal
processing technique is available. This thesis work would like to cope with the lack of a
well-planned real-time signal analysis in the current experimental protocol.
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Introduction

Detection and quantification of the cerebral activity patterns related to the movement
is one of the most crucial aspects to be addressed in the context of Brain Computer
Interface (BCI) [1] applications of rehabilitative medicine in favour of chronic stroke
patients.

Recovery from stroke and particularly rehabilitation of impaired motor functions [2],
basically aims at restoring the so-called sensorimotor system [3], that complex of cortical
areas and sub-cortical structures that allow an individual to receive somatosensory feed-
back from the external environment and react by means of a suitable motor behaviour
accomplished through the final actuators of the movement, the muscles.

In pursuit of this goal, the most rehabilitative techniques and BCI as well put a great
effort in exploiting and promoting the spontaneous processes brain constantly performs
to improve its functionalities, adapt to new environmental conditions and even try to
recover impaired capabilities after an injury. These phenomena are generally referred
as neuroplasticity [4] and they have been extensively exploited for years in the clinical
practise, but only recently studied from a more rigorous and scientific point of view by
the contributions of many neuroscientists with different backgrounds, i.e.neurophysiology,
biology, physical therapy, engineering and so on.

In the particular context of the rehabilitation of motor functions [5] [6] that basically
points at restarting learning mechanisms of motor behaviours in the brain of a stroke
survivor, recent literature about neuroplasticity highlighted the significant effectiveness
of the so-called operant-conditioning [7].

Through a repetitive reinforcement by means of specific kinds of rewards of the contin-
gency between a correct cerebral pattern and a good motor output, brain is conditioned to
exploit the redundant cerebral pathways from the Central Nervous System (CNS) to the
muscles still healthy after the traumatic injury, leading to a generally observed functional
motor improvement.

This specifically means that with a suitable operant-conditioning paradigm, one can
voluntarily - although almost unconsciously - modify or modulate the amplitude and the
frequency of his/her cerebral activity.

As a consequence then, the Information and Communication Technology (ICT) and
the signal processing community strongly have a part in the completion of this kind of
rehabilitative strategy: accurate and customized algorithms and software implementa-
tions are needed to detect and quantify in real-time the aforementioned correct cerebral
patterns, indeed, along with the whole technical expertise about kinematics and control
theory for human motor output evaluations and robot-aided rehabilitative technologies.

In this Ph.D. thesis work, after the introductory Chapter 1 about the neurophysio-
logical basis of the sensorimotor system and the essential background on stroke disease,
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the following Chapter 2 will include a description of the fundamentals of the Electroen-
cephalography (EEG) and a brief overview about the BCIs.

Then, a specific EEG-based BCI system for the recovery of the reaching function of
mildly impaired stroke patients implemented at Istituto di Ricovero e Cura a Carattere
Scientifico (Scientific Institute for Research, Hospitalisation and Health Care) (IRCCS)
San Camillo Hospital Foundation at Lido of Venice, Italy, will be presented in Chapter
3. In that Chapter the typical BCI structure made by the basic units for acquiring and
processing the EEG signals, extracting its most relevant features and transforming them
into commands for a robotic output will be explained by means of the specific platform
implemented at the clinical Institute. In particular, the output is represented by an
haptic device that helps subjects in completing a movement of reaching on a plane. Its
operation is controlled by the cerebral activity of the subject performing the reaching
task closing, in this way, the loop between the human brain and the machine.

To establish this mutual dependence in which the machine is driven by the voluntarily
modulation of the cerebral pattern accomplished by the subject and the human has to
learn how to control in a self-paced mode the machine in order to receive the help, an
underlying robust and user-friendly signal processing module has to capture the relevant
EEG features related to the intention to move, including a certain level of adaptation that
could take into account the physiological variations of the cerebral activity, and finally
continuously control the machine’s response to the human behaviour.

One of the most crucial issues to cope with towards such a successful identification
mentioned so far is to detect and remove, in real-time as well, both the non-physiological
and the non task-related components of the signals acquired by the EEG. For this reason,
part of the Ph.D. work was dedicated to such a study and the initial section of Chapter
4 will deal with this topic.

In the rest of that Chapter a comprehensive analysis of the energy of the EEG signals
in every different phase of the experiment, e.g. rest, planning of the movement and actual
task performance, will provide a detailed description of the cerebral changes at the scalp
level during the experiment. Afterwards, a new quantitative method for the computation
of the cerebral pattern associated with the reaching movement and its timing along all
the trials of the experiment could be defined.

Chapter 5 will finally provide the promising results of the previously presented new
algorithm of movement-related cerebral pattern computation. In particular, it will be
highlighted how its capacity to early identify such patterns leads to save longer time
for operating further signal processing to transform the cerebral activity in an optimal
output command for the robotic actuator before the beginning of the actual movement
performed by the subject. In the same Chapter further considerations around this new
algorithm will be presented in the discussion section.

As already mentioned, it has to be strongly pointed out that providing in real-time the
optimal feedback to the subject perfectly matches the neurophysiological requirements to
achieve an effective operant-learning mechanism of conditioning and, as a consequence,
a larger, faster and longer lasting functional recovery.

Thesis will conclude sketching open issues still remained to be addressed and future
perspective that are most likely going to be reached in a near future.
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Chapter 1

Sensorimotor System and Stroke

As mentioned in the introduction, this Chapter is devoted to the description of the
sensorimotor system starting from the general notions about the Nervous System (NS),
its components and functionalities with a final insight on the elementary module of the
NS, the neuron.

In the second section of the Chapter, then, a brief overview about the stroke pathology,
its aetiology and the most common rehabilitative approaches is provided.

1.1 Sensorimotor System

In order to discuss about the central topic of this thesis work, some concepts regarding
the neuroanatomy and the neurophysiology of the human body and some basic principles
of motor control have to be outlined.

NS is in charge of all the sensory information gathering, thoughts formation, and
processing and control of the functions of the whole body [8]. Specifically, it accomplishes
to three main functions:

• the sensory one;

• the integration one (including memory and thoughts);

• and the motor one.

To implement them the two main subsystems of the NS, the CNS and the Peripheral
Nervous System (PNS) have to cooperate, as sketched in Fig.1.1.

Specifically, the CNS is made by the brain and the spinal cord. While the brain is the
main area in charge of the integration activity of the NS including emotion, thoughts and
control of organs, the spinal cord acts as a transmission line for signals from and towards
brain and participates to the control of coordination.

On the other side, the PNS is constituted by a nerves network where afferent fibers and
efferent ones can be distinguished. Precisely speaking, afferent fibres conduct sensorial
information from the peripheral areas to the spinal cord and the brain; efferent fibres,
instead, represent the vias to send motor commands from the CNS to the distant areas
of the body, e.g. the muscular-skeletal apparatus. For the sake of completeness, cranial
nerves - nervous fibres that origin from the brain - and spinal nerves - arising from the
spinal cord - belong to the PNS.
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Figure 1.1: The nervous system.

Within the NS, brain performs a major role as control centre for the most functionali-
ties that allow the individual to perform all the activities of his/her life as well as the body
to survive thanks to all the feeding mechanisms the brain also coordinates. As captured
by Fig.1.2, two main hemispheres can be distinguished in the brain; they are separated
by the central sulcus but they can communicate each others by the corpus callosum and
the anterior commissure, two sets of nervous fibres connecting the two hemispheres.

Then, going further into details, four lobes can be recognized in both the hemispheres:
the frontal, the parietal, the temporal and the occipital one.

During the first World War, many persons were injured by several kinds of brain
damages and, contextually, a series of systematic studies were carried on by many neu-
rologists and neurosurgeons on the modifications due to the lesions in different parts of
the brain. From this extensive analysis the functional mapping of the cerebral cortex
could be suggested. Those studies brought a further contribution and confirmation to
what Korbinian Brodmann published in 1909 ([9],[10]) and was known as the 52 Brod-
mann’s areas distinguishing the different brain areas by their functions [11]. The result
of all these works is shown in Fig.1.3.

However, the most significant areas from a motor rehabilitation point of view are
illustrated by Fig.1.4 [8].

Indeed, the principal areas involved in the auditory, visual and somatosensory stimuli
acquisition and integration are highlighted. In particular, it can be noted:
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Figure 1.2: Brain hemispheres and lobes.

Figure 1.3: The Brodmann areas.

• the motor area further subdivided in:

– the primary motor cortex which receives external stimuli through the periph-
eral afferent vias and is responsible for giving commands for muscles activation
via the efferent pathways;

– the premotor area that also receives sensory input but it is mainly in charge
of the planning of the motor commands;

– the supplemental area that is significantly involved in the coordination of dif-
ferent groups of muscles for programming complex sequences of movement.

• the somatosensory cortex that accounts for tactile sensations, pain and temperature
stimuli. This area, located in the parietal lobe, could be also subdivided in a
primary and in a secondary area. While the first one receives signals directly from
the mechanoreceptors and sensory receptors placed all over the body, the second
one is given by pre-processed signals coming from the primary area and it further
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Figure 1.4: The main functional areas.

transforms these inputs into convenient outputs mainly sent to the motor areas to
integrate somatosensory information to accomplish motor functions.

• the visual cortex. Mainly occupying the occipital lobe, it performs basic image
processing like the distinction of bright and dark points or the definition of image
boundaries (primary visual cortex) as well as more sophisticated image processing
that allows to recognize objects and faces, for example (secondary visual cortex).

• the auditory area located in the temporal lobes accomplishes to sound, speech and
music processing by means of a double layers structure made by a primary and a
secondary auditory area.

• the Wernicke’s area that is involved in the somatosensory integration thanks to
convergence of projection from the parietal, the occipital and the temporal lobes.

• the short-term memory area that was mapped in the lower part of the temporal
lobe and is involved in the storing of information from few minutes up to few weeks.

• the prefrontal area which seems to be correlated with the highest faculty of the
brain, as the thought processing and the concentration ability.

Functional areas aforementioned are only the cortical representations of complex cir-
cuits or systems involving several areas of the whole NS. Among others i.e. the dorso-
lateral-prefrontal and the visual circuit for example, the most important system for the
scopes of this thesis work is the sensorimotor circuit [3], illustrated by Fig.1.5.

As already hint at in the introduction, the sensorimotor system accomplishes to the
generally referred as motor control. This includes the integration of somatosensory, visual
and vestibular inputs for performing two kinds of motor activities: the feedback control
and the feedforward control [12]. If, on one hand, the stimulation of corrective responses
after a sensory detection is defined as feedback control, on the other hand feedforward
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Figure 1.5: The sensorimotor system.

control describes actions occurring upon the identification of their beginning, in an an-
ticipatory way. Sometimes the combination of these two types of control is needed, as in
the maintenance of the postural control.

It has also to be observed that the sensorimotor system is hierarchical organized: a
central axis constituted by three levels that are the spinal cord, the brain stem and the
cortex reaches the motor control with a functional segregation scheme, where at each
hierarchical level different units simultaneously perform a variety of functions. Further-
more, two associate areas, cerebellum and basal ganglia, are responsible for modulating
and regulating the motor commands.

Spinal cord gives rise to direct responses to peripheral sensory information and to
elementary patterns of motor coordination.

Brain stem represents, instead, the main storage element for automatic and stereo-
typed movements. Moreover, at this level the integration of sensory information from
vestibular, visual and somatosensory sources is performed.

The third and last level is the cerebral cortex that is responsible for initiating and
controlling more complex and discrete voluntary movements. Three main areas, already
described before, act a major role in this hierarchical control of movement: the primary
motor cortex, the secondary one and the supplemental motor area.

Moreover, the corticospinal tract i.e. the tract of the NS that conducts impulses from
the brain to the spinal cord, contains the most important descending (i.e. efferent) direct
pathways from the motor cortex to the motor neurons, the elementary units of the neural
motor system.

Along with the three main levels, cerebellum and basal ganglia play a fundamental role
in the motor control, especially for the execution of coordinated movements. Cerebellum,
specifically, is responsible for the continuous comparison of the intended movement with
the outcome one. Furthermore, it is also implicated in the motor learning. On their side,
basal ganglia consist of five subcortical nuclei (groups of cells) that include the caudate
nucleus, the putamen, the globus pallidus, the claustrum and the amygdala, and they are
directly connected only with the cerebral cortex at the higher level of the hierarchical
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organization. Particularly, input and output connections passing through the thalamus.
As regards as basal ganglia implication in motor control, they are believed to be involved
in cognitive aspects of motor control.

In the final part the this section, it has to be described the primary component of the
whole NS: the nervous tissue [8] which is, in turn, constituted by neurons and glia cells.
The latter are the elementary units of the NS and they act as control center for every
kind of activity performed by the individual, from cognitive to motor ones.

Specifically, neurons conduct signals from nervous sources to the various parts of the
body.

Figure 1.6: The neuron.

As provided by Fig.1.6, the main components of a neuron are:

• the cellular body where functions for ensuring the cellular life are accomplished;

• the dendrites, projections of the cellular body to other neurons for communications
purposes;

• the axon or nervous fibre. It can be few millimetres up to 1 metre long. Axons
transport the nervous signals to the next neuron of the CNS or the PNS.

• the synaptic terminals that are represented by the final parts of an axon and are
used by the neuron to establish a communication with other nervous cells. Indeed,
when two neurons are in contact with each others - forming a synapse- the presy-
naptic neuron releases into the synaptic space between its termination and either
the dendrite or the cellular body of another neuron a neurotransmitter, a protein
that has special properties and it is able to activate, i.e. transmit the electrical
information in form of chemical signal, (to) the post-synaptic neuron.

If, on one side, neurons represent the elementary and fundamental units for the neuro-
transmission of information, glia cells play the major and complementary role to maintain
the nervous system compact.
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By now, the complete description of the sensorimotor system can be recalled in further
detail. As shown in Fig.1.7, the whole motor pathway from the central nervous system,
i.e. the primary motor area, to the muscle through all the components of the of an efferent
via of the NS is shown.

Figure 1.7: Pathway from the CNS to the muscles.

Concluding, it can be observed that in case of neuro-degenerative disorders (above
all, the Amyotrophic Lateral Sclerosis (ALS)) neural loss or dysfunction occur in the
sensorimotor system in a long time even before the clinical diagnosis. On the opposite, an
abrupt loss of the neural functions could be caused by severe traumatic or cerebrovascular
disease, stroke among others. In both cases, neurons death causes severe impairments
that in most cases could only partially be recovered.

As anticipated at the beginning of this Chapter, in the following an overview about
stroke will be presented along with a brief excursus of the most common rehabilitative
techniques to restore a particular class of functions, the motor ones.

1.2 Stroke

World health reports [13] usually show severe traumatic neural injures, particularly stroke,
as the second or third most common cause of mortality in the majority of the Countries
of the world. This clue is constantly increasing with the ageing of the global population
and with the worsening of food habits and environmental conditions of life.

By now the sixty percentage survivors remains with permanent disabilities that cause
them long-term impairments and psychological consequences for themselves and also
their families. Among others, motor functions of the extremities are the most commonly
damaged ones and this kind of impairment represents an important element of disability:
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patients with gait, reaching, grasping and holding difficulties are severely compromised
in the Activities of Daily Life (ADL) and lose their independence needing a twenty-four-
hours care assistance.

Clinically speaking, stroke can be caused by an ischemia or an hemorrhage. In the
first case, the most common one with an occurrence of the 87%, an interruption of
blood feeding to a part of the brain occurs, while in the hemorrhagic stroke a blood loss
injures the surrounding cerebral tissues. As a result, in both cases, this cerebrovascular
disease causes - if not death - mild to severe impairments affecting the functions normally
performed by the damaged areas of the brain.

However, fortunately, it is well-known that after stroke spontaneous processes of re-
covery take place [14] [15] [16] [17]: synapto-genesis increase, dendritic branching along
with neural sprouting have already been observed and are currently under deep investi-
gation all over the world. These changes inside the brain are generally referred with the
previous mentioned name of neuroplasticity [4] and, as already said in the introduction
they can be addressed as promising prognostic clues of the best recovery towards health.

Despite this kind of phenomena and although notable advancements recently reached
in the clinical management of stroke, a good practise of rehabilitation after the injury
plays a crucial role in the recovery of a high quality of life.

To this purpose, literature [2] [18] highlights the effectiveness of high-intensity, repeti-
tive and goal-directed training: the latter indeed have been correlated with advantageous
changes in the neural architecture. Thus, these activities were found to be beneficial in
promoting the above mentioned neuroplastic brain changes and, as a consequence, a more
effective recovery.

In line with literature, international guidelines for a good rehabilitation practice [19]
establish the importance of such task-specific and intense activities to promote neural
plasticity and spontaneous recovery of lost functions. In this context, occupational ther-
apy is highly recommended as an effective trade off between the pure physiotherapic
exercise at the rehabilitation Institutes and the normal daily life which patients aim to
return as soon as possible.

Moreover, manipulations by the physical therapists, pharmacological treatments and
physical therapies with lasers or magnetic fields are also typically included in every re-
habilitative programs for post-stroke patients [2] [18].

Besides this kind of standard therapies, many other alternative and more innovative
methods have already been used and have shown their effectiveness in promoting benefi-
cial anatomical and physiological changes in the brain [2] [18]. Among others, bilateral
training was introduced to induce patients to regain lost functions of their affected limb
taking advantage of the comparison with the healthy one. On the contrary, constraint-
induced therapy forces patients to use the only affected limb, since the healthy one is
immobilized.

Another major class of rehabilitative methods includes the use of some kind of feed-
back in the protocol: for instance, while a patient is performing an exercise of isotonic
contraction of his/her hand, a feedback of his/her muscles activity is measured by an
Electromyogram (EMG) and shown to the patient. On its turn, the latter has to adjust
the effort of the contraction following the information provided by its own EMG along
with some guidelines from the physical therapist that conducts the exercise. During Vir-
tual Reality (VR) training, instead, correct motor behaviours are fedback by real-world
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scenes in a virtual environment such as a kitchen, a bar or a supermarket. All these
kinds of feedback-supported trainings have been shown to be effective to make patients
improve their motor abilities and to cope with the annoying repetitiveness of the standard
training exercises.

A final particular class of recovery strategies has to be mentioned: the Motor Imagery
(MI) one [20]. During motor imagery tasks the patients have to imagine the movement
of a limb or a hand, a foot or even the tongue. In some cases, his/her cerebral activity
could be also acquired and used to provide him/her information about the quality of
his/her performance or, as it happens in a BCI platform, this activity is used to control
an external device.

BCIs are indeed the youngest motor rehabilitative methods but they have already
shown their effectiveness and potentialities [1] [21].

Moreover, BCIs along with training environments enriched by VRs, biofeedbacks (like
the EMG-feedback), Functional Electrical Stimulation (FES)-based feedbacks [22] and
any kind of robotics [23] are in general almost-autonomously operating system that can
provide that intense and repetitive training assistance that have already been proved to
be highly beneficial to stroke survivors. Furthermore, technology can add quantification
and a very detailed customization of the rehabilitation program based on the specific
characteristics of each patient.

This makes health-care in neuroscience one of the most technology pervaded field of
medicine nowadays.
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Chapter 2

Electroencephalography based Brain
Computer Interface

In this Chapter the particular class of BCI based on EEG is presented. Before that,
an introductory section reports information about EEG, its original implementation, its
operative acquisition and, more importantly, the physiological components that it can
record.

2.1 Electroencephalography (EEG)

The EEG has a relatively old history and nowadays all Hospitals, clinical Institutes and
even Universities have an EEG system to perform either daily clinical assessments of
several kinds of patients or to study the cerebral activity of healthy and impaired people
in a relaxation status and during any task execution.

Although its widespread availability, no gold standards for the analysis of the EEG
traces are recognized all over the world. Instead most clinicians still analyse by-eye, only,
the cerebral activity of their patients being satisfied to observe macroscopic phenomena
like epileptic seizures or alternating phases of higher and lower levels of awareness repre-
sented by larger or smaller oscillations (reactivity) in the frequency band around 10 Hz,
the so-called α band [24].

However research has already shown, in many years of study, that an amount of
information is hidden in that complex combination of waves that EEG is [25] [26]. Then
several applications arose in many fields of neuroscience, e.g. cognitive assessments,
evaluations of the effects of new kinds of brain stimulations such as Transcranial Direct
Current Stimulation (TDCS) [27] [28] [29] or Transcranial Magnetic Stimulation (TMS)
[27] [29] [30] and so on.

One of the most amazing field of the EEG employment is, without any doubt, the BCI
where a subject can learn to operate a computer by the voluntary modulation of some of
his/her EEG components to communicate in an alternative way with the external world
or to move again by controlling a wheelchair or a robotic arm [1].
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Figure 2.1: The 10-20 international EEG system.

2.1.1 Basic Principles

EEG is a recording technique of the cerebral activity firstly assessed by Hans Berger in
1929 [31] [11]. Its foundations rely on the periodical firing of a neural mass constituted
by 104 up to 107 neurons mutually interacting in a complex network of connections [26]
[8].Indeed, when the neurons of a neural mass synchronously fire, a kind of laser effect
is generating and Local Field Potentials (LFPs) can be recorded inside brain under the
cortex and even outside brain, on the scalp, an electrical field can be measured by means
of the EEG.

Despite this massive effect, voltages that can be recorded on the scalp are in the order
of tens of microVolts (µV). This brings EEG to be highly sensitive to noises and distur-
bances that can easily have higher voltages. The latter usually obscure the physiology-
related changes in the EEG traces making, at the same time, power-line interference,
muscular contractions or other physiological but non task-related events completely over-
lap the interesting waveforms in the EEG signals. This is one of the most considerable
and serious problems of the EEG employment.

For this reason, international guidelines [32] for a good clinical practise of the EEG
recordings train clinical electroencephalographers to pay attention and, possibly, avoid
certain types of artefacts. Subjects undergoing the EEG are therefore instructed not
to move, to speak or to sleep in order to avoid, for example, large artefacts due to
head movements and/or electrodes pop ups and the physiological slowing of the signals
correspondent to incoming drowsiness.

Besides guidelines dealing with artefacts, international directions state also rules and
standards for the EEG operative recording: the so-called International 10-20 system [33]
is the world-wide spread adopted electrodes montage over the scalp that allows different
EEG users to compare results and observations about the neurophysiological activity thus
recorded in all kinds of subjects. The system is showed in Fig. 2.1 and requires a series
of operations to be accomplished:

1. the distance between the Inion (I) and the Nasion (N) bones has to be measured;
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Figure 2.2: The 5-10 extended international EEG system.

2. an electrode should be placed at every 20% of this distance on the imaginary line
that links the two reference points;

3. the analogous distance between the earlobes’ centres (A1 being the standard name
for the left one, A2 that of the opposite side) is measured;

4. as in 2. an electrode is located every 20% of the distance found in (3) on the line
linking A1 and A2;

5. other sensors can fulfil the montage being added in the middle of every pair of
already placed electrodes, that is the 10% of the reference distances;

6. further channels can be added outside the two perpendicular lines (crossing at the
so-called vertex, indicated as Cz, of the scalp) following the 10%-20% rule similarly
as what illustrated above.

Actually, nowadays all EEG producers have developed predefined EEG caps with
places already allocated for electrodes.

Modified and world-wide accepted versions of this standard are further adopted in
order to place a higher number of sensors on the scalp. For example, the 5%-10% system
[34] (see Fig.2.2) allows clinicians and researchers to allocate up to 385 channels on the
head of the subject, gathering much more information that can be then used for advanced
applications.

Acquiring cerebral activity at the scalp requires, actually, to choose also a ground
and a reference electrode. Usually, ground is placed on the EEG cap among the other
electrodes, while the reference could be either located either on the scalp (as more usual
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in clinics) or outside it. In research studies reference channel is usually located either on
one earlobe or mastoid, or two references are selected and put on both the earlobes or
the mastoids. Selecting an outside-scalp reference prevent experimenters to place it on
particular areas of the brain in which special activity could be present (for example an
epileptic focus). Moreover, all the scalp channels have to be monitored and can provide
useful information while, if one of them (for example Cz) was used as reference, its activity
would be lost. Choosing both earlobes or mastoids would allow to record a more balanced
activity: each scalp electrode would be indeed referred to the mean potential of the two
references and distances from each sensor and one reference would be more comparable
than in the asymmetrical situation of one reference only.

Indeed, operatively, recording the EEG of one single channel means to measure the
voltage ∆Ve−ref between each electrode and the reference as provided by the expression:

∆Ve−ref = (Ve −G)− (Vref −G)

where Ve is the electrode potential, Vref is the analogous quantity measured at the refer-
ence and G is the ground potential [25] [26].

Physiological range of voltages is limited to tens of µV, as already mentioned, while
a broad frequency range from 0 Hz up to 100 Hz can be expected for such signals.

As outlined before, these kinds of signals are easily subjected to interferences and
noises from outside as well as muscular activity. This leads EEG to be a very (and
sometimes too much) sensitive device to record such a small cerebral activity. For the
same reason, although an increasing number of electrodes could be placed on the most
recent caps and pre-amplification stages were embedded in the most advanced active
electrodes, EEG comes with a very low spatial resolution.

Indeed, multiple signal generators inside the brain have to be considered since several
physiological sources can easily be simultaneously active. Then, each electrical signal
originated from a different source propagates through several layers and tissues till the
scalp surface where the EEG recording takes place. This cerebral environment leads the
acquired signals suffer from reflections and diffractions phenomena. As a consequence,
each original transmitted signal is received by many EEG electrodes with different ampli-
tudes and delays, entailing that each EEG trace results from the combination of multiple
transmitted signals transformed in amplitude (with a certain amout of attenuation) and
time course (with some delay) during the pathway from the source to the scalp.

Moreover, voluntary as well as spontaneous muscular activity is also source of elec-
trical signals which, propagating over the skin, reach the EEG recording electrode and
contribute to the combined overall acquired signal. Nevertheless, this muscle activity is
not of interest at all for the purposes of the BCI control and has to be rather excluded
from the analysis because of its artefactual character.

In order to localise the physiological sources of the cerebral signals and their character-
istics (amplitude and frequency distributions), sophisticated signal processing techniques
are required and, specifically, the latter are asked to identify and remove muscular arte-
facts and, subsequently, spatially distinguish between the original transmitted signals.
Literature offers several examples of such techniques, each of them with their own advan-
tages as well as drawbacks. Among others, the most successful approach was described in
[35] where Low Resolution Brain Electromagnetic Tomography (LORETA) algorithm was
provided. Then, functional networks as in [36] with a small world logic are the trend of
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the moment and they have already shown promising results in many fields of neuroscience
(EEG as well as Functional Magnetic Resonance Imaging (fMRI)). Finally, other com-
mon approaches like Multiple Signal Classification (MUSIC), Bayesian or wavelets-based
algorithms as in [37], [38], [39] and [40] can be also adopted.

Although clinicians (neurologists, neurophysiologists and technicians) can develop
large expertise about the EEG traces evaluation, they can not in any way go further
into EEG detailed characteristics by eye only. Then, engineers and physicians developed
and implemented algorithms to accomplish to these more sophisticated functions making
feasible many EEG-based advanced and automated applications.

Nevertheless, it has to be mentioned that EEG has also unique advantages in compar-
ison with other possible brain recording techniques like fMRI, Magnetic Encephalogra-
phy (MEG) or Electrocorticogram (ECoG): first of all, it is indeed a relatively cheap and
portable device that every clinics owns and that could also be brought outside the hospi-
tal or the laboratory for continuing tests and experiments at patient’s home with much
longer monitoring time and/or training effects. Moreover, it is a completely non-invasive
method that prevents people to be implanted with microelectrodes placed inside the scalp
over the cerebral cortex (as in the ECoG case) to monitor specific neurophysiological ac-
tivities. Finally, despite of its poor spatial resolution (fMRI and MEG overcomes it in
this case), EEG can offer a very high temporal resolution on the order of milliseconds.

The previous mentioned advantages make this device probably the best candidate for
real-time and portable health-care and rehabilitative applications in a near future.

2.1.2 Rhythms

EEG actually contained a lot of information regarding individual’s health conditions,
intentions, external and internal stimuli reactions, drowsiness, emotions and so on.

Mainly the most physiological information is carried by the so-called rhythms. EEG
is indeed, as mentioned above, a combination of periodical signals originated from the
synchronous behaviour of some neural mass [26] inside the brain and a large variety of
signals coming from both inside and outside it, gathered by the EEG but not useful for
the purposes of determine the physiological status of the subject. For this reason the
latter are considered as disturbing phenomena and briefly labelled as noise.

Therefore rhythms is the term coined to indicate the oscillatory components belonging
to a specific frequency band that is usually associated with the prevalence of a particular
condition. Specifically, five standard most common rhythms were defined for clinical
scopes and will be presented here:

• DELTA (δ) Ranging from 0.5 Hz to 3.5 Hz is the typical rhythm of the infants and
which occur during deep sleep and in some organic brain disease (like persistent
vegetative state) in a diffuse spatial distribution.

• THETA (θ) They are rhythms in the (4,7.5) Hz band associated with drowsiness
and the earlier stages of life till the young adulthood. Waking normal adults show
only small amount of this kind of rhythm, although theta were found to correlate
with frustration and hedonic responses along with mental activity (mainly observed
on the frontal mid-line).
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• ALPHA (α) The International Federation of Societies for Electroencephalography
and Clinical Neurophysiology (IFSECN) proposed in 1974 [41] the following defini-
tion of alpha rhythms:
Rhythm at 8-13 Hz occurring during wakefulness over the posterior regions of the
head, generally higher voltage over the occipital areas. Amplitude is variable but is
mostly below 50µV in adults. Best seen with eyes closed and under conditions of
physical relaxation and relative mental activity. Blocked or attenuated by attention,
especially visual and mental effort. (IFSECN, 1974)

• BETA (β) Any rhythmical activity above 13 Hz and below 35 Hz may be regarded
as beta activity. Usually non exceeding 30 µV, it can be found in almost every
healthy adult over the frontal and central regions. It is of interest for the kind
of application presented in the following that a central β activity is related to the
movement and can be blocked by motor actions and tactile stimulation.

• GAMMA (γ) Ranging between 35 Hz and 100 Hz, γ rhythms were found to be
involved in higher mental activity including perception, problem solving, fear and
consciousness.

Fig.2.3 shows an example of rhythms subdivision of a real EEG of an healthy adult.

Figure 2.3: An example of cerebral rhythms.

A further class of oscillations has to be mentioned here: the Sensorimotor Rhythms
(SMR) [42] [43] [44]. Two main components can be distinguished within this class,
the MU (µ) rhythms and the lower β ones (as mentioned in the β rhythms definition).
Although occurring in the same α frequency band, µ rhythms can be acquired over the
sensorimotor area of the brain. Moreover, it is considered the sign of the movement
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because its amplitude significantly decreases when a movement or even its imagination,
observation or planning, is accomplished. This phenomenon is known as Movement-
Related Desynchronization (MRD) and it will be further taken into consideration in the
next Chapters.

This brings to highlight the important notion that a rhythm can not be completely
defined by its frequency distribution and sometimes neither by the further spatial dis-
tribution over the scalp. The term rhythm, actually, means a more precise concept of
electro-physiological phenomenon occurring in relation to a precise condition of the sub-
ject along with a specific frequency and spatial distribution.

Moreover, although international societies of EEG defined standard frequency ranges
and occurrences to recognize the different rhythms, experience tells that no strict dis-
tinctions can be stated but subject-to subject studies have to be carried on. Indeed both
inter-individuals and intra-individual differences were observed in literature. Among oth-
ers, state of vigilance, age, gender, body temperature as well as different emotional states
are common factors that can modify rhythms behaviour.

In this context, technology and signal processing techniques for cerebral activity iden-
tification and quantification have promised to bring electroencephalography much further
the clinicians’ experience based on by-eye expertise. Indeed, with an automatic recog-
nition of individual frequency bands and their adaptation throughout every recording
condition, diagnosis, prognosis and rehabilitation could be much more reliable and effec-
tive because individual-centred.

2.2 Brain Computer Interface (BCI)

2.2.1 Background and Applications

BCI or Human Machine Interface (HMI) systems were born at the end of the 70s to answer
the increasing need for an advanced technology for the alternative communication of
people who suffered from tetraplegia, Spinal Cord Injury (SCI), ALS or other traumatic
cerebrovascular lesions that compromised their motor system forever. Such complete
paralysed people, indeed, can not communicate with the external world through the
standard physiological vias, anymore. In most cases, however, they remain with their
cognitive functions completely intact.

If on one hand, this makes them experience the dramatic condition of being prisoner of
their own body as Jean-Dominique Bauby wrote in his ”The diving-bell and the butterfly”,
on the other side this could be also the key to help those kinds of patients in regaining a
quasi-normal life thanks to technology.

Jacques Vidal, the BCI pioneer and its world-wide recognised father, in 1973 for the
first time proved the feasibility to detect brain signals in real-time and use them to control
the movement of a cursor on a computer screen [45]. Ten years later, in 1988, Farwell and
Donchin implemented a P300 BCI system [46] that could be trained and used to write
up to 2.3 characters per minute: that was the first example of the nowadays well-known
as P300 Speller platform.

But the first claimed success in the BCI community was reached by Niels Birbaumer
and his team in 1999 [47] [48] when in Tubingen they recruited for a BCI test two patients
- called Subject A and Subject B suffered from a locked-in syndrome of an ALS disease.
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Figure 2.4: The first message from Subject A (extracted from [47]).

Both subjects were trained at a BCI system operating by means of the Slow Cortical
Potentials (SCPs). After a number of different sessions both the subjects achieved such a
high level of performance that they could easily use an electronic spelling device to write.
Famous has remained the first full message of Subject A to professor Birbaumer reported
in Fig.2.4 in which he warmly thanked the research team for the help they provided him.

Despite of the highly significant historical value of this step in the advancement of
medicine, this kind of systems did not become a gold standard for the health-care of
this severe impairments, anyway. This was mostly due to some consistent disadvan-
tages affected such systems: actually, not much higher than the 2 words/min rate of the
first Subject A’s message has been reached yet; moreover, long training periods are still
required to satisfactory using the P300 speller or other similar devices.

Since no further progresses were achieved, in the recent decades the focus of the
BCI community moved from the alternative communication targeting complete paralysed
people towards the motor rehabilitation of severe impaired patients suffered from stroke,
spinal cord injury and tetraplegia [49] [50] [51].

The most common approach is to employ a robotic arm or a prosthesis controlled
by the cerebral activity of the patients and recover his/her ability to grasp, reach and
hold objects by means of such a technological help. Successful results in this field were
recently achieved all over the world: firstly, Hochberg and collaborators at the Donoughe’s
Laboratory at Brown University, Providence, USA in 2012 made a tetraplegic woman to
use a robotic arm to autonomously drink from a can placed over the table in front of
her wheelchair [52]. Secondly, in 2013 Collinger and colleagues at the Schwartz’s Lab in
Pittsbourgh, USA found high performance in the 3D movements of a robotic arm neurally
controlled by a tetraplegic woman that had been operating the system for only two days
[53].

Although these two results opened the frontiers of the rehabilitative medicine, a fur-
ther step has not been accomplished yet: the passage from the invasive setup exploiting
an ECoG (as in the case of Providence and Pittsbourgh) to a totally non invasive plat-
form based on EEG, MEG or other recording methods that collect data from the subject’s
scalp without any surgical intervention for electrodes implantation.
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Therefore, there were implemented several other non invasive BCI applications that
reached good performance, even if not as high as in the two cases presented before: works
of Millan’s group at EPFL of Losanne, Switzerland [54], Pfurtscheller’s laboratory at the
Technical University of Graz, Austria [55], and the laboratory of Birbaumer in Tubingen,
Germany [56] represent the most famous and successful examples. They implemented
telemonitoring and telepresence neurally-guided robots, BCIs for web browsing, P300
speller devices, virtual reality BCI controlled navigations environments and many others.

Although they all represent successful prototypes of feasible BCI systems, some weak
points have already to be addressed: above all, it has to be observed that BCI is still
mostly confined to the experimental laboratory, being the devices too expensive and the
training not possible without the assistance of people with quite large expertise. Sec-
ondly, output commands are usually given on a discrete scale, even in a binary mode,
while an ideal supportive tool should operate in a continuous way miming a more nat-
ural behaviour. Similarly, turning on and off the machine should always shifted from
the caregiver control to the complete user responsibility, providing him/her the total
independence they need in their life.

Besides that, the above mentioned groups are leaders in another field of research of
BCI technology applied to rehabilitation: robotic-assisted motor recovery.

To this purpose, system to train grasping [57] and reaching [58] functions were realized
and tested on different groups of patients. Several kinds of platforms have been already
suggested for motor rehabilitation of the hand and the arm: FES-BCIs and BCI driven
by the combination of EEG and EMG are two of the most common recently investigated
systems [59].

2.2.2 Principles and Setups

Despite of the particular kind of recording method or final output, a BCI system always
exploits two already introduced principles of neuroplasticity and operant-conditioning.
This section will give a more extensive explanation of them and, in the second part, the
typical BCI setup will be shown along with the description of several categories of BCIs.

Basic Principles The ability of the brain to adapt its functionalities to altered in-
ternal or external conditions was so far referred as brain plasticity or neuro-plasticity
[4]. This is, for example, the main actor during the developmental period in which a
baby begins to discover the world and his/her knowledge about it continuously changes.
Newborns and young children have indeed to adapt themselves to life time by time, e.g.
new environments, people’s reaction to their behaviours and so on. Neuroplasticity has,
therefore, a major role in the learning process. Unfortunately, it has to be mentioned that
this same powerful property of the brain can have some negative drawbacks: plasticity
and adaptability can bring the brain to be over excited. This is the case, for example,
of the focal dystonia of the hand in the so-called writer’s and musician’s cramps where
a continuous repetition of the same gestures, postures or both, e.g. write or play, can
lead to an abnormal overflow muscles activation [60]. This brings people who suffered
from this kind of disease to the impairment of that gesture or posture. But, in the case
of stroke recovery, neuroplasticity acts in its positive way and has to be strengthen: in
fact, when a stroke event occurs, neurons in that area can’t work anymore and functions
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like the motor and the cognitive ones become impaired. Nowadays it is well-known that
immediately after the injury a spontaneous process of recovery begins and lasts for three
months at least [18]. It allows brain to regain or to delegate compromised functions to
other areas of the brain.

Neurophysiological researches on animal models of stroke have revealed indeed that,
after a cerebral infarct, a change in the brain architecture takes place along with promising
phenomena like neural sprouting, dendritic branching and synapto-genesis [14] [15] [16]
[17] as already mentioned. It is also known from literature that motor training and
physical exercises promote those kinds of neural changes: thus, recovery is suspected to
be a complex combination between spontaneous and learning-dependent processes [61].

Therefore, generally rehabilitation programs include several activities such as occu-
pational therapy, VR training and many others, besides the standard physical therapy,
manipulations by clinicians and pharmacological treatments (see also 1.2 [2][18]). Par-
ticularly, when an individual suffers from a stroke he/she loses functions like grasping,
reaching and holding. These basic abilities are products of a very ancient experience-
training performed in the early stages of the youth, during an intense learning period.
Then, the aim of a rehabilitation program is to induce patients to re-learn such func-
tions without the usual neural resources exploited in the past of their life. Thus, two
basic strategies can be employed to induce such a learning or re-learning mechanism: the
classical and the operant conditioning.

On one hand classical conditioning [62] is a way to learn that occurs when a con-
ditioned stimulus is paired with an unconditioned stimulus that causes an organism to
exhibit an automatic unconditioned response to the unconditioned stimulus. After pair-
ing is repeated the organism exhibits the unconditioned response as a reaction to the
conditioned stimulus when presented alone. On the other hand, the operant-conditioning
strategy requires the subject to perform an active behaviour following an external stim-
ulus depending by that behaviour itself. Subsequently, he/she receives either a reward
or a punishment for either a correct or a wrong response of the subject, respectively [63]
[64] [7] [65]. Therefore, a loop is created and, repeating many times the same task, the
subject should learn to correctly accomplish it in a more effective way and in a shorter
time.

In this specific case, as reported in [49] and [67] and as it will be recalled in section 3.1,
the operant learning strategy is employed in order to strictly and contingently relate the
cerebral activity of the patient with his/her motor behaviour. Specifically, while he/she
is performing a reaching movement, a feedback of his/her neural activity is provided and,
if this agrees with the study hypothesis, he/she receives also a force feedback that helps
him/her in completing the movement. Repeating this exercise several times, the learning
process takes place.

In this way, the modification of the neural activity becomes an alternative tool for
controlling the impaired reaching ability bypassing the damaged brain area.

Typical Setup Since its origin in the late 70s, BCI was defined and implemented as any
other communication or control system with an input, signal processing and a translation
algorithm that transforms the input in the output signals. Fig.2.5 extrapolated from [1]
shows a schematic block diagram that illustrates how a typical BCI works.

Therefore a typical BCI platform is made by:
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Figure 2.5: The typical BCI scheme.

• a signal acquisition unit;

• a signal processor;

• an output device.

In particular, electrophysiological signals of the subject performing the experiment
are acquired, amplified and digitized in the first block.

Two main classes of BCI can be distinguished in dependence on the acquisition method
and the kind of neurophysiological activity produced or modulated by the user: as already
cited, they can be either invasive or non-invasive; moreover they can exploit evoked or
spontaneous activity of the brain. In an invasive BCI signals are acquired inside brain ei-
ther on the cerebral cortex by means of an ECoG or even deeper inside it among a neural
population measuring the LFPs of a group of neurons or the firing rate of single neurons.
Non invasive methods, instead, prevent the subject to undergo any surgical intervention
of electrodes implantation like in the invasive case and gather, on the contrary, neuro-
physiological information from the scalp of the subject by means of either the EEG, the
MEG, or by other methods like fMRI and Functional Near Infrared Spectroscopy (fNIRS)
applied from outside the brain [68].

In case of EEG employment, different types of activity can be decoded and used
to control the BCI system. Specifically, Evocked-Related Potentials (ERPs) consist in
short waveforms (lasting less than 1 second) that appear after a cognitive stimulus to be
recognized. This is the case of the so-called (and already mentioned) P300, a positive
peak rising around 300 ms (see Fig.2.6) after such a stimulus (presented among many
meaningless others)[46][69].

On the other side, spontaneous oscillations can be also detected and quantified (not
only in EEG but also in MEG recordings) by the BCI system during their voluntary
modulation operated by the subject. The most common rhythmical activity (see Fig.2.7)
used in BCI are the SMR recorded from the sensorimotor areas [26] [11] [9] of brain where
movement and somatosensory information are usually processed [44] [1] as explained in
1.1 and 2.1.

A similar phenomenon named as SCPs can be acquired from the fronto-central areas
of the scalp and can be also modulated by a subject controlling the movement of a cursor
on a screen. Different time-domain waveforms (see Fig.2.8) are associated with different
cursor motion directions [1].

A further distinction can be made about the physiological information that is put in
charge of the BCI control: there exists a dependent and an independent operation way.
The clearest description of such two classes was provided by Wolpaw and collaborators
in 2002 [1]: ”A dependent BCI does not use the brain’s normal output pathways to carry
the message, but activity in these pathways is needed to generate the brain activity (e.g.
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Figure 2.6: P300 Evocked Potential (extracted from [1]).

Figure 2.7: Sensorimotor Rhythms (extracted from [1]).
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Figure 2.8: Slow Cortical Potential (extracted from [1]).

EEG) that does carry it”; while an ”independent BCI does not depend in any way on
the brain’s normal output pathways. [...](It) provide(s) the brain with wholly new output
pathways”. As an example, in case the Visual Evocked Potentials (VEPs) are employed
they are produced by a flashed letter on a matrix containing the whole alphabet, The
generation of VEPs within the brain depends on the gaze direction and, consequently, on
”extra-ocular muscles and cranial nerves that activate them”. This is the most common
case of dependent BCI. On the contrary, when a P300 is elicited by the subject during
(purely cognitive) identification of the meaningful stimulus among many others, the in-
formation about the supporting cognitive processes is carried only in the brain and does
not depend on any other communication pathway. Therefore, such a BCI can be viewed
as independent.

The second step of a typical BCI is the signal processing one. This could be subdivided
into two further operations: (a) the feature extraction and (b) the translation phase.

Features extraction procedure includes spatial and temporal filtering, voltage ampli-
tudes measurements, spectral analysis, single-neuron separation or a combination of some
of them, and aims at identifying the encoded user’s intentions or commands.

Afterwards a translation algorithm transforms the signal features (independent vari-
ables of the system) into proper device control commands (dependent variables).

It depends on both the output device and the specific application, and it could operate
by means of either linear or non linear transformations.

Furthermore, the most important characteristic that has to be embedded at this step
is adaptability. As far as BCI is a loop in which two agents, i.e. the subject’s brain and
the computer, have to continuously change their behaviour in dependence on each other,
three levels of adaptability have to be implemented:

1. an initial adaptation of the computer to the neurophysiological characteristics (e.g.
bandwidth of SMR, amplitude of P300, ...) of the new subject operating the system;
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2. a periodical online adjustment that accounts for spontaneous short and long-term
variations of cerebral activity due to environmental properties or subject’s condi-
tions (illness, awareness, drowsiness,...)

3. user’s development of higher skills in controlling the BCI has to be recognized and
encouraged to enhance efficiency of this new form of communication.

The third and last BCI step is the output device. In most cases this is represented by a
computer screen showing a cursor moving towards a predefined target or a set of letters or
icons to select. In the recent years prosthesis, orthesis, haptics and other robotic devices
replaced or were added to the more commonly used screen to give the users a richer
feedback of their performance or to provide them a useful artificial tool for accomplishing
simple actions of their daily life.
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Chapter 3

An Example of EEG based BCI
Platform for Stroke Motor Recovery

This Chapter provides an example of EEG based BCI platform in the rehabilitation field
and, at the same time, it represents the background that gave reason to this Ph.D. work.
The detailed description of this particular system reported in this Chapter will clarify,
indeed, the need of that specific and carefully designed signal processing that was the
major topic of this work and that will be presented in Chapter 4 and discussed in Chapter
5. Specifically, the Chapter deals with the exponation of all the features characterizing
the EEG based-BCI platform implemented at IRCCS San Camillo Hospital Foundation at
Lido of Venice for the recovery of the reaching function of mildly impaired stroke patients
hospitalized at the Institute. The Chapter will open with the description of the clinical
case to treat and the neurophysiological assumptions of the experiment along with the
thesis that was expected to be proved by the end of the study. Moreover, a protocol was
established to state all the specifications of the experimental setup and course in order to
scientifically prove the experimental thesis from the hypothesis. The hypothesis and the
main goal of the study will then be reported, along with the measures and performance
evaluations to assess the effectiveness of the system. Finally, the last section will highlight
the principal strong points of the study as well as the improvements that were required in
order to make the platform more effective for the patients. Those improvements,indeed
or at least partially, were deeply investigated and implemented through the design of
algorithms and Matlab routines and represent the core of the two following Chapters.

3.1 Study Protocol and Participants

Experimental thesis As previously mentioned in the introduction and in section 2.2,
the contingency between a correct cerebral activity and a good motor output is of funda-
mental importance in the realization of an operant-conditioning scheme aiming at making
stroke patients to relearn partially or totally lost motor functions.

The experimental thesis established, based on literature exposed in the previous Chap-
ters, that a proprioceptive and contingent feedback controlled by the voluntary and con-
tinuous modulation of the injured area’s SMR produced by the subject performing a
reaching movement can properly act as the reward mentioned in section 2.2. After sev-
eral repetitions of the exercise that reward would create the conditioned association of
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the subject’s expected cerebral activity, i.e. the contralateral SMR modifications, with
the reaching movement, i.e. the motor output, preventing in such a way the subject’s
brain to arbitrary reallocate that motor function in another less effort-demanding but
maybe also less useful area, thus promoting a more effective, faster and longer lasting
recovery beneficial effects comparing with a spontaneous process of cerebral adaptation
to the new injured condition. The experimental thesis was based also on the key and
well-known hypothesis that every subject, even a stroke patient, is able - after proper
training implementing an operant-learning strategy - to modulate their SMR.

However, to prove the experimental thesis proposed so far, a detailed and suitable
protocol was designed and is going to be described in the following.

Inclusion and exclusion criteria It preliminarily required to include in the study
only patients with some residual motor abilities, as fas as the feedback acts as a helping
reward to complete the reaching task, not to initiate it. Moreover, since a more severe
impairment can be expected to come with a larger injured brain area, a mild impairment
would assure the existence of some still healthy sensorimotor path that could be put in
charge of the motor control of the limb during the course of the experiment. The only
exclusion criterion required to discard from the study patients with cognitive deficits,
because of the major need to be absolutely confident about the subjects’ comprehension of
the experimental task. Actually, the platform could be potentially used also by individuals
affected by other cerebrovascular diseases with mild impairments in their upper limbs even
though not originated from a stroke injury. Nevertheless, the choice to involve only stroke
survivors in the study can be explained by the fact that in case of chronic condition after
stroke, neuroplastic changes that can be largely exploited by any rehabilitation technique
had been already worldwide observed.

The above mentioned strict inclusion criteria limited, as a consequence, the number
of recruited subjects: indeed, usually more severe patients are admitted to San Camillo
Hospital for a long period, while mild motor impaired ones are administered by some
therapies for a shorter period or not even come to the Institute preferring to attend some
physiotherapic sessions by their own in their home towns.

Participants Then, four only stroke patients were admitted to this BCI protocol till
now and their description will be reported in the while. They all had been hospitalized at
the IRCCS San Camillo at the moment of their participation into the study. This means
that they were following a rehabilitation program - for the upper affected limbs, specif-
ically - that included typical treatments like manipulations, physical and occupational
therapies.

Fig.3.1 and Fig.3.2 report the characteristics of the four patients recruited in the
period 2011-2013 at the Institute for the BCI protocol with their clinical evaluations at
the admission time.

Clinical evaluations were performed by a physical therapist at the beginning of the
treatment as well as at its end to assess any clinical improvement. A battery of six tests
were administered to each patient to evaluate both the general and the more task-specific
abilities of the patient in moving his/her upper limbs.

Therefore the Functional Independence Measure (FIM) (maximum score: 126), the
Fugl-Meyer Assessment for the Upper Extremity (FMA-UE) (maximum score: 66), the
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Figure 3.1: Stroke subjects data.

Figure 3.2: Clinical evaluations of the patients.

Modified Ashworth Scale (MAS) (best score: 0), the Nine Hole Peg Test (NHPT) (mea-
sured in seconds), the Box and Blocks Test (BBT) (measured in number of cubes/min)
and the Reaching Score (RS) (maximum score: 36) were performed and provide the
clinical assessment of their impairment.

In particular, patient n.1 (P1) was a 25-years old woman who suffered from an arterio-
vascular malformation (AVM) that caused her bleeding (that can be assimilated in this
context to a hemorragic stroke) when she was 16. She underwent a surgical intervention,
but six years later the edema in the peri-lesional area led her to a right-sided moder-
ate hemiplegia. Admitted at San Camillo, she underwent a rehabilitative program that
covered a wide range of treatments, from the more traditional (see section 1.2) to more
innovative ones including the use of the VR, an haptic device for the hand motricity
rehabilitation and the whole BCI-Phantom protocol.

Patient n.2 (P2) was a 47-years old man who was injured by a right-sided capsular
ischemic stroke in 2009 when he was 44. Admitted at the S. Camillo Hospital in 2012; his
rehabilitation period at the Institute consisted almost exclusively of this new BCI protocol
that he completely performed. Besides that, he only underwent standard physical therapy.
His mild upper limb disabilities do not prevent him from performing all daily life activities
without any difficulty and, as a consequence, he achieved the maximum score at all the
clinical assessments.

Patient n.3 (P3) was a 58-years old man who survived after a subcortical left-sided
pariental ischemic stroke occurred in 2011 when he was 57. As in the case of P2 he
was left with a mild motor impairment in his right-hand side. Such a disability did not
limit him in accomplishing to his normal daily life. Moreover, as the previous patients
he attended the whole BCI protocol along with other rehabilitative therapies during his
hospitalization period.

Finally, patient n.4 (P4) was a 28-years old man suffered from a AVM similarly to P1.
In 2009, when he was 24, a fronto-parietal bleeding in the right-hand side hemisphere
caused him a mild left-sided hemiplegia that impedes him in controlling upper limb precise
motor functions. P4, differently from the other patients, attended the only screening
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phase: that singular session was scheduled with the solely purpose to gather new data to
test the software advancements made in the previous months.

For the sake of completeness it can be said that all the patients signed an informed con-
sent which established the experimental guidelines, goals, risks (no one, except for even-
tual uselessness) and expected benefits in accordance with the Declaration of Helsinki.
Furthermore, the experimental protocol received approval by the Ethical Committee of
the IRCCS before to be actually tested on any patient.

Furthermore, for a standard and complete analysis of results of P1 see [66], whereas
for a preliminary explanation of the findings about P2 read [67].

As far as the experimental main variable was represented by the proprioceptive (force)
feedback delivered by an haptic device, two experimental groups of patients are needed
to verify the assumption of the study and to exclude that kinematic and functional
improvements were simply due to the training effects caused by the repetitiveness of the
task (as realized in [58]). Specifically, the first group - which includes P2 as the very first
subject - experiences an helping robotic feedback while the second group - with P3 as
first subject - receives a fake feedback, completely random, not related to the cerebral
activity.

Patients recruitment is still currently in progress because a number of about twenty
patients per group has to be reached in order to assess the statistically significance of the
experimental thesis.

Coming back to the protocol description, patients were asked to performed a very
standard task and to repeat it several times along a period of three weeks with each trial
of reaching scheduled by a precise timing sequence. In the next paragraph the structure
of a single trial and of the whole experiment course will be presented.

Study design Specifically, the required task was a standard 2D centre-out reaching one
(as can be seen from Fig.3.3) performed with the patient sit on a comfortable armchair
in front of a 1 meter-distant screen showing the interface of the experiment. One out of
four targets at the four cardinal point locations was randomly presented on the screen
with an inter-stimulus period of about 5 seconds.

Each reaching trial had, as mentioned before, a very detailed structure, as provided by
Fig.3.4: it started with a 500 ms (pre-trigger time) blank screen following by the target
appearance and a simultaneous cue sound. After a 1500 ms (post-trigger time) another
sound was heard and the patient was allowed to move towards the target. Usually a
reaction time of about 500 ms was recorded and a variable period of time between 400
and 800 ms had to be waited until the patient had completed the task (movement period).
If he/she reached the target in the (500, 740) ms interval of time, the target exploded on
the screen; otherwise, too slow movements led the target to be depicted of blue while too
fast ones made the target become red. A post-movement time was necessary to return
with the arm at the plane centre and with the cursor at the initial point on the screen.
This completed the trial.

A series of 80 trials were repeated in each run (see Fig.3.5) with an equal occurrence
of each target (20 per type). Moreover an initial rest period of 40 seconds was waited by
the subject in a relaxed way.

On one-day test a session made by three runs was performed by the patient with the
healthy arm and another with the damaged one.
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Figure 3.3: Standard 2D reaching task.

Figure 3.4: Single trial structure.

The overall study protocol is represented in Fig.3.6 and it was scheduled with a
first screening session where the patient was evaluated by means of the afore presented
standardized clinical scales and he/she performed a BCI session per arm without any help
by the robot. At this stage a set of EEG features were chosen to be associated with the
movement: a frequency band around 10 Hz and two electrodes were then selected for this
purpose. Then, the patient underwent the actual BCI training with the force feedback
related to the selected features given as an help to complete the reaching movement while
he/she was learning to modulate the SMR of the cerebral area surrounding the damaged
one. After such a two weeks training period, an end test session -identical to the screening
one- was finally scheduled in order to obtain a final evaluation of the performance of the
subject after the BCI treatment.

3.2 System Description

According to the general BCI scheme and as anticipated above, the experimental setup
for this study was made of three main blocks: the acquisition unit, the signal processor
and the feedback module. A further detailed representation is shown in Fig.3.7.

It has to be said that in this context the technical features of the specific BCI system
operating at San Camillo Hospital are reported to allow any other research group to
repeat the same identical experiment. Nevertheless, it has not to be excluded that an
alternative system implementation based on literature and further experience can bring
to similar results.
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Figure 3.5: Single run structure.

Figure 3.6: Different sessions of the experimental protocol.

1. Acquisition unit. The signal acquisition unit included an EEG cap provided with
29 recording Ag/AgCl electrodes in a modified 10-10 system arrangement and a 16
channels g.TEC amplifier g.USBamp version 3.09a[70].

Then the available EEG sensors were placed on the sensorimotor areas, e. g. pri-
mary motor cortex, primary somatosensory cortex and the associative somatosen-
sory cortex: Fz, F3, F4, Fc5, Fc1, Fc6, C3, Cz, C4, Cp5, Cp1, Cp2, Cp6, P3 and
P4 were selected (see Fig.3.8). Each of them was referred to the right ear lobe,
whereas Poz channel (a site between P3 and P4) was chosen as ground. During the
experiment, signals from the sixteen derivations were digitized by means of sixteen
24 bit Analog-to-Digital Converter (ADC)s at a sampling rate of 512 Hz. Then a
Digital Signal Processor (DSP) applied a band pass filter between 0.1 and 60 Hz
and a notch filter at 50 Hz to the data. Finally, the output amplified and digitized
EEG signals are sent via USB connection to the processing unit.

2. Signal processing module. The platform adopted for the signal processing at this
stage is BCI2000, a world widespread software implemented by Schalk and col-
leagues in 2004 [71].
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Figure 3.7: Experimental setup.

Figure 3.8: EEG Channels location.
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Since the role of this module was to continuously quantify the MRD occurring
during the movement, the spectral power decrease in the selected (11, 14) Hz band
of the chosen two electrodes had to be computed in real-time. The latter was
estimated by means of the Maximum Entropy Method (MEM) algorithm and a 500
ms sliding window that shifted by a 4 samples step along all the EEG trace. Then
the results were linearly combined and the overall outcome was normalized on the
spectral power of the baseline (initial rest).

This final quantity is called Neurofeedback (NFB) and can be viewed as a measure
of the MRD phenomenon: the higher the NFB, the stronger the MRD and, thus,
the stronger the assistive force feedback provided to the subject (during the training
period). Actually, at each time sample, the target-directed force was delivered only
if the correspondent NFB value exceeded a minimum threshold in order to ensure
an effective MRD-BCI control. Otherwise no force assistance was given. Anyway,
when feedback was present, its magnitude was computed through a linear positive
coefficient applied to the thresholded NFB (Actually, relationship between NFB
and the feedback force is almost linear because of some factors added to provide a
smooth growth and decrease of the force, in order to avoid abrupt changes in the
feedback that would be annoying and useless for the rehabilitation purposes).

Furthermore, the proportionality factor was conveniently chosen to guarantee a
maximum force feedback of 6 N with the aim to avoid excessively large forces that
could be misunderstood by the afferent nervous system of the participant making
him/her uncertain if the robot was helping or obstructing him/her in the task
accomplishment.

Finally, an UDP communication protocol allowed the signal processing unit to trans-
mit the final modified NFB value to the feedback block.

3. Feedback block. At this stage such a modified NFB value - updated every 8 ms
- was used to provide the contingent assisted target-directed force to the patient
performing the task. This was accomplished through a robotic arm device called
Phantom (PHANTOM, Premium 3.0/6 DOF Sensable Technologies)[72]. In the
same time, the feedback block was continuously sending the task execution status
to the previous unit thus enabling it to synchronize the EEG recordings with the
experiment course. This scheme is strictly necessary to effectively control the BCI
system and to correlate, in the following offline analysis, the neurophysiological data
with the kinematic performance. Indeed, the Phantom device could record the end-
effector real-time trajectory and instantaneous speed with a sampling rate of 100
Hz. Other kinematic parameters as trial duration, mean speed and displacement
from an ideal straight path connecting the starting point and the target, were
also computed and used offline as measures of motor performance. In particular,
the displacement was calculated both as the maximum distance from the ideal
trajectory (orthogonal error) and as the area between the straight and the actual
walk (area error). The moment these kinematic data were collected during the
experiment, they were analysed along with the EEG samples in order to assess the
effectiveness of the BCI treatment.

Some of the parameters implemented in this system could be finally set after pre-
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Figure 3.9: Healthy subject data.

liminary tests performed over few healthy subjects. For example, as mentioned in [49],
initially the reaching path was set to 10 cm, a too low value that led participants not
to completely develop the MRD within the limited time of the task accomplishment. In
the following, the path was lengthen to 18 cm thus. Besides that, feedback force was
delivered in an abrupt way, simply and roughly following the NFB (i.e. the MRD on
the EEG) course. Subsequently, the Fitts’ law[73] was employed to compute the most
suitable time interval to include the reaction time, living all the rest of the movement
time to the MRD actual development. For the sake of completeness, in the following
Fig.3.9 reports a brief description of the healthy participants involved in the experiment.

As it can be noted, no one of the them performed the whole BCI protocol, but the
only screening session along with some training runs for suitably setting up the force
feedback. On the contrary, as stated above, the investigation about the improvement of
the performance due to the proprioceptive feedback was not considered for the healthy
subjects.

3.3 Performance Evaluation

Improvement due to BCI training were quantified by comparing clinical, kinematic and
neurophysiological outcomes respectively provided by the clinical assessments admin-
istered to the patients by the physical therapists, by the tracking of the robotic arm
movement through the Phantom device and by the EEG measurements and their offline
analysis.

Usually, the treatment efficacy was evaluated at the end of the BCI training by com-
paring the aforementioned three classes of measurements obtained in the end-test session
in regard to the initial screening session.

It has to be noted here that as far as only mild to moderate patients could be involved
in the study and since the sensitivity of clinical scales is satisfactory only for severely
impaired subjects or in case of large improvements, the difference of the tests scores did
not significantly differ between the initial and the final phase of the study, at least for the
last three subjects. They were, indeed, really mild impaired cases but P1 showed a visible
improvement of the clinical scores because she presented a moderate dysfunction of the
motor system (see [66]). For the remaining patients only kinematic and neurophysiological
assessments gave significant findings about the effectiveness of the BCI system.
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Kinematic Measures In addition to the clinical outcomes, from the movement kine-
matics recorded during all the sessions, both those with the haptic feedback and those
without any robotic help, a series of measurements were gathered. The latter can be
subdivided in three categories:

• The general motor behaviour category takes into account how many times the sub-
ject successfully completed the task all over the three runs of a session and, on the
contrary, the number of too slow or too fast movements he/she produced.

• A second group of measures includes reaction time, duration and mean speed char-
acteristics, giving an idea of the rough arm control during the task course.

• Features like orthogonal displacement, area error and speed peak can finally quan-
tify improvements in the finer control and accuracy of the reaching movement, and
provide a more robust indication of the quality of the patient’s motion.

Statistical significance was generally tested through a Wilkoxon rank sum test except
for the correct number of trials (as well as its percentage) and the number of the slow
ones that were evaluated by a Kruskal-Wallis test.

Neurophysiological Outcomes Finally, EEG signals provided features that distin-
guish the different phases of a single trial: specifically, as mentioned above, the MRD of
the SMR µ and lower β was expected to occur - especially in the contralateral sensori-
motor cortex - during the movement and even before it, during its preparation - in the
post-trigger time - when the subject saw the target to reach but he/she was not allowed
to move toward it, yet.

Desynchronization occurring in such a situation is a measure of the reactivity i.e.
rapidity and entity of modification of the EEG sensorimotor rhythms in relation to altered
conditions of stimulation: in this specifica case, the more strongly rest period differs from
an active period (planning or actual movement) - in terms of spectral power of the µ and
lower β bands - the higher the reactivity and the desynchronization. Neurophysiologically
speaking, the larger that quantity, the stronger the expected (correct) cerebral pattern
to associate to the movement in that scheme of operant-conditioning that underlyied the
experiment.

The difference between the two conditions, i.e. rest and active period, is typically
expressed through the so-called Explained Variance (R2). This is a well-known statistical
measure that quantitatively describes how much the means of two distributions x1 and x2
differ from each other in relation to their variances. In this BCI application rest period
distribution and movement one were compared to determine the strength of the MRD.

Mathematically R2 is computed as the ratio between the squared covariance of a single
bivariate distribution constructed from the two sets of measures and the product of their
variances.

Specifically, let xi with i = 1, ..., N the first random variable formed by the set of N1

samples of x1 and N2 samples of x2 with N1 +N2 = N , and y the second random variable
with an equal number of samples N where:

yi = 1, if xi is a sample of the first distribution x1
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and
yi = −1, if xi is a sample of the second distribution x2

with i = 1, ..., N .
R2 is then computed as in formula below:

R2 =
cov(x, y)

σ2
xσ

2
y

where, given mx and my the averages of the two distribution x and y, their covariance is
obtained by:

cov(x, y) = E[(x−mx)(y −my)].

Operatively, as provided by the software BCI2000, the R2 value between two sets of
samples, the first q made by N1 samples from a rest condition and the second r formed
by N2 samples from an active period was obtained as in the following.

Let firstly define G as:

G =
(
∑N1

n=1 q(n) +
∑N2

n=1 r(n))2

N1 +N2

Then R2 results from formula below:

R2 =

(
∑N1

n=1 q(n))
2

N1
+

∑N2
n=1 r(n))

2

N2
−G∑N1

n=1 |q(n)|2 +
∑N2

n=1 |r(n)|2 −G

Therefore R2 is in fact the most compact measure to express movement-related desyn-
chronization of EEG rhythms. It can distinguish rest from motion probability distribu-
tion: the higher values of R2, the larger the distance between the two conditions, the
more considerable the MRD phenomenon.

3.4 Strong Points and Further Improvements

Previous sections provided a comprehensive and detailed overview of the BCI system for
motor rehabilitation of the arm currently used at IRCCS San Camillo Hospital. Com-
paring this platform with literature and with other BCIs adopted in the rest of the world
([74] [75] [76] [77] [78] [79] [80] [57] [81] [82] [52] [83]) by other research groups with which
there was information exchange, discussions, observations and listened oral presentations
at conferences and meetings, several considerations could be pointed out.

In this section, then, the main strong points and advantages from this BCI application
as well as some remarks for the general improvement of the system will be advanced. If
on one hand, advantages are already available and adopted in the experiment, on the
other hand some further advancements still have to be taken into account. Moreover, a
partial improvement will be provided by the new algorithm proposed in next Chapter.

It has to be recalled here that this kind of BCI platform was designed to implement the
operant-learning strategy as many other BCIs. This conditioning technique is considered
one of the most powerful way to learn (or re-learn in the case of recovery from a stroke)
because of the active involvement of the subject in the learning process. Furthermore, in
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this specific application the operant-learning potentialities are exploited along with the
neuroplasticity property of the brain that could create - especially during childhood and
after a cerebrovascular disease like stroke - new neural connections and promote in such
a way new information coding, i.e. (re-)learning.

The experimental hypothesis stating that it is possible and advantageous to use the
area surrounding the lesioned one to regain - partially, at least - the motor control should
provide the double benefit to recover from the impairment in a faster and more reli-
able manner since the neural area originally designated to motor functions is artificially
made responsible for the same abilities again. On the contrary, in other rehabilitative
approaches no attention is paid to the area that is artificially made in charge of the re-
covered functions through the treatment, even if it was not the responsible area for that
before the injury.

Exploiting the natural functional areas [68] of the patient’s brain, the recovery should
be achieved in a shorter time and benefits of the rehabilitation should be longer lasting,
persisting even further the hospitalization period.

Besides the previously highlighted advantages, one of the strongest points of this
BCI application and the major feature of novelty is the use of a proprioceptive force
feedback [84] [83] that is contingently modulated by the cerebral activity of the subject
performing the reaching task and, more importantly, that is continuously provided to
him/her helping them in completing the motion [58]. Indeed, the most BCI systems with
haptics and robotic devices operating as outputs of the BCI loop usually implements a
binary control that allows the patient to only perform very rough movements of reaching
and grasping.

This system is one of the first attempts to make patients control their robotic arms in
a continuous and, consequently, finer way. As mentioned is section 2.2, this goal had been
already successfully reached by Hochberg and colleagues in 2012 [52] and by Collinger and
his team in 2013 [53] using an ECoG that implies that the subject had to underwent a
surgical intervention for electrodes implantation facing all the risks arising from a neural
surgery and the infections problems rising from the implantation of non-physiological
materials inside the brain. Therefore, another major point of the system is its complete
non-invasiveness that could bring it to become - in the future - a common tool of the
daily rehabilitative practise.

As well as strong good points, the platform requires the modification of some weak
points of the protocol in order to ensure the rehabilitative benefits of this experiment.
Some of them represents questionable choices in the paradigm design, others - the most
- regard the EEG signals processing and its usage in transforming the cerebral activity
into commands for the BCI output device.

First of all, continuously slight changes of the force feedback could lead patients to a
confusing state in which system reaction is misunderstood or totally ignored. Different
solutions were prospected: a fixed force at a preselected value or a force with a constant
value equal to the modified version of NFB computed at the beginning of the movement,
both delivered whenever the MRD is detected (before the actual motion).

As regard as the choice of the neurophysiological features for adapting the force feed-
back, they were usually selected in a semi-quantitative manner. Indeed, after the screen-
ing session, a grid plot sketching the R2 values at each frequency bin and each electrode
(see Fig.3.10) was obtained. Following, the most significant three or four features (cor-
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responding to the three or four maximum R2 values), i.e. each one represented by a
combination of a frequency bin and an electrode, were selected for the feedback purpose.
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Figure 3.10: R2 grid plot from a screening session.

It has to be noted that while in some cases this choice was clearly unique like in
Fig.3.11(a) such that the final decision could be automatically taken, sometimes multiple
choices should be manually evaluated or discussed on the basis of other more complex
neurophysiological considerations (as in Fig.3.11(b)).

(a) Unique choice of features (14 Hz). (b) Multiple possible choices (12 Hz).

Figure 3.11: Features selection from the R2 values grid for specific frequencies within the
SMR after a screening run performed with the left arm by a healthy participant.

Therefore, it has to be highlighted that such a semi-quantitative approach with the
qualitative features selection is not repeatable and, thus, can not be perfectly replicated
by another research group, wasting the possibility to establish a useful comparison. Nev-
ertheless, this is a very common approach in the BCI community: the quantitative part
allows to discard non-significant or non-physiologically meaning features, but the final
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decision is usually qualitatively assumed in order to avoid abnormal behaviours or mean-
ingless activity localizations.

EEG artefacts, for example, can occur and distort the task-related signals conse-
quently causing the R2 to take unlikely values or distant electrodes to present a larger
activity than the task-related channels (see Fig.3.12)

If, on one hand, during the offline analysis some results can be easily addressed to an
artefactual origin (as in the case of the clearly artefactual R2 topography of Fig.3.12),
on the other hand the online procedures require more carefulness. Actually, one of the
most critical aspects of the current BCI platform is the lack of a robust and real-time
operating algorithm to detect and suppress artefacts during the experimental runs.

Such artefacts, the electrode-pop ones for example, can indeed completely distort
the EEG signal for a long period of time during which an unreliable force feedback will
be provided with the consequent useless for the rehabilitation aim or, even worse, the
complete misunderstanding by the subject.

Besides that, the extreme inter-individuals and even intra-individual variability of the
EEG signal led to an intrinsic difficulty into the artefact real-time detection along with
the following identification of the task-related desynchronization of the SMR.

It has to be recalled that the most important aim of the BCI system is to release a
real-time correct force feedback to the patient. In order to accomplish this purpose, a
comprehensive and accurate offline analysis of the EEG signals was considered as manda-
tory to identify the characteristics of the artefacts and to properly design the real-time
algorithms for cancelling them out. In the worst case in which no complete cancellation
is possible, a significantly lowering action of their effects at the noise level has to be
performed producing at most a few hundreds milliseconds of EEG signal black out. This
would be an acceptable amount of time for missing the feedback, meaning that only one
trial at most would be lost, while from the subsequent one the MRD value would be
reliable computed and the correct feedback would be applied to the BCI system again.

With this purpose, Chapters 4 and 5 will explain this analysis, a preliminary proposed
artefacts solution and the final results of an alternative MRD identification with its
advantages along with some residual weak points to address in the future.
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(a) Cz channel with the electrode pop artefact.
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Figure 3.12: Electrode-pop artefact in the Cz channel affects the R2 computation (ab-
normally negative values in Cz).
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Chapter 4

EEG Signal Processing for BCI
based Motor Rehabilitation

4.1 Electrode Pop Artefacts

This section deals with that specific kind of EEG artefact already mentioned in the pre-
vious Chapter that can arise from the displacement of an electrode during recordings, the
so-called electrode-pop artefact. This event can cause the subject to fail in operating a
BCI at least for a limited period of time - because of the artefactual analysis of the corre-
spondent EEG signal is affected by the huge abnormal peak and by the large oscillations
following the displacement and which can last for several seconds.

4.1.1 Description

EEG recordings at the scalp of a subject are a combination of useful signal and disturbance
[25] [26]. To be precise, the former is constituted by the neural response of the subject
to an experimental task or, simply, it carries the information about the status of the
individual. On the other hand all the other components of the EEG traces are labelled
as disturbance. As mentioned before, there can be several causes of disturbance but,
generally, they are classified as follows:

• External interferences. The main element of this set is the power line noise that
usually corrupts the EEG recordings. For this reason, a notch filter around 50
Hz or 60 Hz is implemented to remove this considerable interference during EEG
evaluations or experimental sessions.

• Physiological interferences. They can be further divided into two subclasses: muscu-
lar and neural noises. Eye-blinks, eye-gaze changes, chewing, gnashing, swallowing
and head slight movements are muscles activations that can compromise the whole
recordings. Skin sweat can be also a relevant phenomenon to cope with some-
times. Finally, distractions, habituation and other collateral cognitive phenomena
can elicite neural populations of different cortical regions to spike and, at the scalp
level, to show interfering waveforms. The latter are considered disturbance and are
usually removed on the basis of their spatial and/or frequency occurrence.
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Figure 4.1: Signal with electrode pop artifact. A detail.

Then artefacts can occur either accidentally or along the whole recording. For in-
stance, artefactual activity due to mains is usually present along the entire registration
while muscular contraction is in the most cases a very short phenomenon that can seri-
ously corrupt a relatively short-lasting recording segment.

One of the most impacting cause of artefact is the previously cited electrode-pop:
although quite rare, this kind of noise can be completely superimposed over the low
amplitude useful signal and make the identification procedure of the EEG characteristics
almost impossible. A typical example of its shape is captured by Fig.4.1 where the usual
abrupt negative fall, overshoot and slow-oscillating return to baseline values are clearly
visible.

Fig.4.2 then shows an overview of the entire recording coming from the same EEG
sensor.

It can be easily expected that such an artefactual activity compromises any kind of
automatic features identification. Cautions in order to avoid this kind of artefacts can be
taken during the recording preparation: clinical technicians are trained to pay attention
on this type of occurrence.

In the following, after a brief excursus of the literature on this topic, a new real-
time signal processing algorithm is presented with the aim to identify and remove this
electrode-pop artefact before to estimate the EEG features required to assess the patient’s
status or to operate an EEG-based external device in a BCI scheme.

4.1.2 Literature Solutions

Pop artefacts have been treated in many different ways in the literature. Following, two
main approaches both software and hardware are reported: the former was proposed by
Durka and colleagues in the context of polysomnographic recordings [86] and it consists
in the rough elimination of long EEG segments exceeding a fixed threshold during an
offline analysis phase after recordings. The hardware solution proposed by Barlow [87],
instead, required a circuit to cancel out the incoming pop artefact based on a previous
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Figure 4.2: Signal with electrode-pop artifact. The whole recording.

simulation study of its typical waveform.

Nevertheless, both solutions were not suitable for the purposes of this study: indeed,
on one hand the hardware solution was proposed without a rigorous quantification of
performance and moreover data of the study under analysis had been already recorded,
on the other hand discarding whole long segments of EEG traces like during polysomno-
graphic experiment can not be the solution of a real-time system that has to continuously
take decisions about the robotic feedback within a hundred of milliseconds at the latest.

Other studies ([88],[89],[90],[91],[92],[93]) proposed several Independent Component
Analysis (ICA) based methods to remove artefactual components from EEG recordings.
They also suggested a rejection algorithm based on higher order statistics of EEG to
identify and exclude artefactual EEG components. In both cases, computation requires
too much time to be performed in real-time as required in BCI applications: in fact, ICA
has a O(NM3) complexity defined by the (M) sources decomposition of a set of EEG N
time samples long signals. Methods based on higher order statistics need for, instead, a
high number of clean EEG segments before to become reliable: this can be not the case
of the BCI application studied in this Ph.D. work.

These kinds of algorithm can satisfactory be employed in the offline analysis of differ-
ent applications or in experiments using Event-Related-Potentials (ERPs) where a large
number of trials has to be collected before to take a decision about the output feedback.
In that case an ICA-based or even a threshold-based method can effectively work.

In BCI systems like the one described in Chapter 3 real-time detection of electrode-
pop artefacts is really crucial. Since no specific algorithms have been elected as the
gold-standard for the real-time detection and rejection of this particular artefacts, a
home-made solution was studied and implemented via software.

4.1.3 Proposal for a Rejection Algorithm

Therefore, the proposed solution is based on a non linear procedure and it could be
accomplished in two different ways: either by estimating the main pulse and cancelling it
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or by detecting the time instant when the main pulse starts and setting the signal to zero
in that interval. The first solution would be more precise but it would require a bunch
of computations and an accurate model of the artefact to estimate the main pulse with
enough precision. On the contrary the new algorithm is based on the second instance
and has two main steps: first of all, a single EEG trace is taken into account and its first
derivative is computed as the simple difference between each sample and the previous
one.

In order to properly identify the pop-up artefact some considerations resulted helpful.
It has to be recalled that the EEG signals were preliminarily low-pass filtered before
the amplification step with a filter bandwidth smaller than 100 Hz. Thus, an ideal unit
step pulse given as an input to such a filter will show a rise time of several milliseconds.
Moreover an additive delay is due to the signal passage through the input circuit of the
amplifier leading to an output signal with a further longer rise time. From experimental
observations it could be noted that a typical pop-up artefact had a rise time longer than
20 ms. Thus, aiming at identifying the actual pop-up artefact and avoiding false positive
errors at the same time, a set of some consecutive derivative samples with significantly
negative values (a suitable threshold had been previously selected) was subjected to the
artefact detection analysis. Particularly, in the study, 8 was chosen as a suitable set width
for this analysis. Then, the samples identified as artefactual were replaced by zero values
and discarded from the feedback procedure that decides the entity of the BCI system
reaction given to the subject performing the rehabilitative exercise.

During the interval of time where artefact is removed no feedback is intended to be
provided to the subject but the system is thought to be waiting for new reliable values.

An example of application of this method is reported in Fig.4.3 where the sum of
an original artefact-free signal (recorded from the FZ site on the scalp) and a synthetic
electrode-pop is displayed as a black curve along with its first derivative (red curve) and
the two time instants labelled as the edges of the artefactual period are highlighted with
cyan dots. The limited interval in which the artefact occurred and was detected is shown
in the figure for the convenient purpose of a better visualization.

The Purpose With regard to the BCI treatment for motor recovery of the upper
limb in stroke survivors described in [67], the current signal processing unit running
the world-spread software BCI2000 [71] does not care about the electrode-pop artefact.
Unfortunately, some recorded sessions of the whole BCI treatment were affected by this
electrode displacement. Therefore, the novel algorithm was designed and implemented to
cope with this lack of artefact detection. The procedure was realized with the further goal
to be performed in real-time during the BCI experiment. This means that it has to be as
little time-consuming as possible to allow the BCI system to process the remaining on-
line analysis and provide the robotic feedback to the subject performing the experiment
before he/she starts to execute the movement task.

Filtering After these two first steps, the standard BCI2000 or another procedure
involving a high-pass filtering above 1 Hz can run as usual. Here, for example, a band
pass filtering in an extended (7,14) Hz µ band is considered. The filtering operation leads
to the cancellation of the large remaining slow oscillation following the huge negative
abrupt fall just removed, bringing back the signal to fluctuate around reliable values
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Figure 4.3: Artifact addicted EEG signal (black), its derivative (red) and the artefactual
interval edges (cyan dots).

again. The zeros-fulfilled artefactual interval is filtered too and small oscillations arise
at the filter output: however this does not represent an issue since this period of time
is completely discarded from the following analysis. The difference between the (7,14)
Hz band filter output with a previous step of artefact detection and removal and the
same output without that preliminary operation is plotted in Fig.4.4 and Fig.4.5 (in
more detail). The (7,14) Hz band filtered version of the original raw signal without the
synthetic artefact is also reported in both figures as a comparison. Moreover, two magenta
vertical lines define the artefactual interval that is discarded from the following analysis.

From Fig.4.4 and Fig.4.5 it can be noted that ideally-filtering a signal with an electrode-
pop artefact causes an evident non-causal response that compromise the following anal-
ysis. Moreover, a real case filter would also introduce a significant delay that must be
limited to make the BCI feedback effective. On the contrary, filtering the EEG signal
with the artefact preliminarily removed do not cause any significant disturbance. The
latter considerations are confirmed by the analysis of the performance presented later on.

Performance Computation In order to quantify the algorithm performance, the
Signal-to-Noise Ratio (SNR) had to be computed. This would be possible only if a version
of the same signal with and without the disturbance was available. To this purpose, a
synthetic electrode-pop artefact was constructed and then added to a real EEG signal
where no disturbance affected the trace. Then, the SNR could be easily computed.
Different shapes of synthetic artefacts were evaluated and the most similar to the real
one chosen for the following analysis. In particular, two different choices of artefacts are
displayed in Fig.4.6 with a detail in Fig.4.7.

A trade-off between the similarity along the slope and that during the subsequent
slow oscillation has to be defined.

Let the original EEG signal filtered in the (7,14) Hz band be denoted as x while
the filter output without the algorithm application as y1 and the same quantity with
the artefact previously detected and removed as y2. Then e1 and e2 are defined as the
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Figure 4.4: The original raw signal filtered in the (7,14) Hz band (black curve), the filter
output after the application of the proposed algorithm (red curve), the filter output with-
out any artifact detection algorithm (blue curve) and the artefactual interval (magenta
vertical lines).
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Figure 4.5: A detail of Fig.4.4.
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Figure 4.6: Raw signal (black) with two different shapes of synthetic artifacts.
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Figure 4.7: Raw signal (black) with two different shapes of synthetic artefacts. A detail.
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Figure 4.8: Table with the parameters values of the two synthetic electrode-pop artifacts.

following differences:

e1 = y1− x and e2 = y2− x

and represent the errors between the filter output and the original artefact-free signal.
In order to quantify the algorithm performance, the error energy Me, the signal energy
Mx and the SNR (computed as the ratio between Mx and Me) at the filter output were
computed over 256 samples-wide time windows. Such a window width was chosen to be
the same as that used by the BCI2000 software currently operating in the online procedure
during the BCI experiment. Then the new algorithm was employed in an offline analysis
to assess its effectiveness in an MRD identification and localization procedure.

To reach this goal a preliminar description of a synthetic electrode-pop artefact is
needed. Then, the SNRs of an artefact corrupted EEG signal and an EEG signal with
the artefact previously removed can be compared.

Let s be the original raw EEG signal and a the synthetic artefact. The latter was
implemented as the formula below:

a(t) = A1 exp(−t/τ1) + A2 exp(−t/τ2) cos(2πf0t+ φ0)

where the constants A1, A2, τ1, τ2, f0 and φ0 are reported in Fig.4.8 for the two synthetic
artefacts shown in Fig.4.6 and Fig.4.7 as an example.

In both the cases the synthetic artefact shape is pretty close to that of the real one, but
the blue artefact was selected to perform the following computations. Then the linearly
combination of signal s with signal a (s + a) drives the filter in the (7,14) Hz band.
If the signal s + a has been previously processed by the algorithm for the electrode-pop
artefact detection and removal, the filter output is y2, otherwise y1 is obtained. The above
mentioned signal x is the filter output when the raw signal s drives the filter. The energy
of the two errors e1 and e2, and the correspondent SNR1 and SNR2 were computed on
the limited time intervals of 256 samples and compared to assess the advantage of the
application of the new algorithm. Fig.4.9 shows indeed the energy of the two different
errors computed within the above defined windows shifting by 8 samples at time.

The correspondent SNRs behaviours are displayed in Fig.10 where the ratio between
the signal energy Mx and the error (either e1 or e2) energy Me is computed over the
same 256 samples time interval. Fluctuations of the SNRs curves are due to those of
the original EEG signal. From Fig.4.9 and the next Fig.4.10 the advantage to apply the
algorithm to remove the electrode-pop artefact becomes definitely clear.
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Figure 4.9: Energy of the errors at the filter output along with the mean energy level of
the original artifact free signal x (green line) and the artefactual interval (magenta lines).
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Figure 4.10: SNRs at the filter output with the artefactual interval (magenta vertical
lines).
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Figure 4.11: MRD topography of an artifact-free EEG recording.

In fact, from Fig.4.10 it can be noted that SNR2 evaluated after the artefact algorithm
employment is constantly 30 dB larger than SNR1 obtained with the standard procedure
and is suddenly higher than 0 dB after the artefactual interval where the signal were reset
and its values discarded from the following MRD analysis. Indeed, it has to be incidentally
mentioned again that the part of the EEG trace within the magenta edges is not taken
into account for the following analysis of the MRD and, since the signal in the same
interval was cancelled, the correspondent SNRs values are unreliable. After proving the
quantitative advantage of the proposed procedure, the algorithm was tested in a real BCI
application.

Consequences on MRD identification As explained in Chapter 3, the BCI plat-
form taken into consideration aimed at improving the reaching movement accuracy in
mild-impaired post-stroke chronic patients by means of a force contingent feedback that
acted as a mirror of the cerebral activity related to that action. In particular, the MRD,
as sign of that cerebral activity, was computed in real-time by the BCI2000 software
as the normalization of the spectral power around 10 Hz estimated at the current time
instant on mean and standard deviation of the analogous quantity gathered during the
initial relaxation period. Moreover, these computations are performed on the basis of the
recordings coming from specific locations, i.e. the sensorimotor cortex, on the subject’s
scalp. If an electrode-pop occurs, all these estimations become affected by abnormal
values obtained by filtering the huge impulse present in the signal due to the temporary
electrode displacement. Fig.4.11 to Fig.4.13 show the mean energy values obtained dur-
ing the initial relaxation period, the movement and the correspondent MRD estimation.
It has to be recalled from Chapter 3 that the larger the MRD, the stronger the robotic
help and very likely the more efficient the BCI training.

Specifically, Fig.4.11 is plotted by analysing the artefact-free dataset where x repre-
sents the signal coming from the FZ location.

Then, Fig.4.12 shows the disastrous effect of an electrode-pop artefact occurred in the
FZ sensor during the initial rest period. The MRD values of this artefactual signal were
computed based on y1.

As clearly visible from Fig.4.12, an artefactually huge energy value is focused at the
FZ location in the scalp frontal area. While energy distribution during the movement
periods of all the following trials is almost within the range of normality, it can be
easily expected that the normalization process based on the rest period will lead to
unreliable estimation of the patient’s cerebral activity, i.e. the MRD values, with a
consequent feedback production not related to the physiological activity of the subject
and thus useless for him/her motor training. Finally, Fig.4.13 reports the analogous
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Figure 4.12: MRD topography of an artifact-addicted EEG dataset with a synthetic
electrode-pop artifact on the FZ site.

Figure 4.13: MRD topography after removing the synthetic electrode-pop artefact from
the same EEG dataset of Fig.4.11.

energies distributions and MRD estimations gathered after the application of the proposed
algorithm that removes the artefactual peak and correctly filters the remaining slow and
large overshooting oscillation. Therefore the MRD value of the FZ termination was
computed based on y2.

The figure assesses, then, the benefit of such preliminary procedure to remove this kind
of artefacts. Indeed, a focus of the activity in C3, CP1 and C4 is a reasonable expectation
since those sites are locations above the sensorimotor cortex. Moreover, energy values of
the rest period are significantly lower than those of the previous case (Fig.4.12) when the
electrode-pop artefact destroyed the EEG physiological waveforms.

Discussion The previous results have assessed the necessity and the effectiveness
of the proposed algorithm to detect and remove the electrode-pop artefact in real-time.
From the topographical distribution of the MRD values displayed in Fig.4.11, Fig.4.12 and
Fig.4.13 it can be noted that a huge artefact like an electrode-pop occurred in one location
of the scalp can compromise the MRD identification and, in particular, increase the
number of false positive or false negative detections of this cerebral phenomenon: indeed,
if such an artefact occurred during the rest period the MRD in that scalp location would
be always identified since the energy of the artefactual EEG signal in that period would
likely be much higher than that during the movement periods. If on one hand the artefact
happens in a location outside the sensorimotor area, the unreliability of the results can
be easily deducted as far as the MRD is expected to appear in the area representative of
the sensory and motor cortex. If on the other hand, an electrode of the above cited part
of the scalp pops up, a similar conclusion can be hardly taken. In that case a further
investigation would be needed but, more importantly, the current online procedure would
computes artefactual MRD values providing, as a consequence, an erroneous and useless
feedback to the subject performing the exercise at the BCI platform. On the contrary,
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in the case of electrode-pop during a movement period, the MRD would become not
identifiable since the artefactually large values of the energy would be much higher than
that of the initial rest period: thus, the MRD would mistakenly not be recognized.

Moreover, the effectiveness of the algorithm is also based on its real-time application:
in fact, a simple difference operation between consequent amplitude samples (the first
derivative step) and the check of its large decrease in few samples - less than 10, i.e. 20
milliseconds in this case - allow the detection of the artefact due to an electrode pop.
Furthermore this online identification comes at a very good performance since, as shown
in Fig.4.10, the SNR2 is constantly much better than the procedure that excludes this
detection (SNR1 curve). As expected, a constant increase of the SNR can be observed
as far as the impact of the artefact on the regular signal decreases as the recording goes
on. A final consideration can be highlighted both from Fig.4.9 and Fig.4.10: the first
part of the artefactual interval has to be excluded from the following analysis of the
MRD because of the artefact abrupt negative slope. An additional interval of time where
signal values have to be discarded can be roughly estimated in 1/B, where B is the filter
bandwidth (B = 7 Hz in this particular case, then 1/B = 150 ms). In this prolonged
period of time - lasting at most one second - the SNRs values are unacceptable (SNR1)
because of the artefact presence or unreliable (SNR2) because of the signal cancellation
in that period.

But the most interesting note is that the proposed algorithm suddenly regains a good
SNR into respect to the procedure without the artefact detection. As clearly visible from
Fig.4.9, the error energy of the signal preprocessed with the electrode-pop algorithm
becomes smaller than the mean energy of the signal immediately after the above defined
interval, allowing a much early MRD identification.

Concluding, it has to be one more time remarked that the proposed procedure removes
one only second of the signal content from the analysis which is a fairly trade-off to have
an artefact-free signal, while the current procedure should discard much more time to wait
for the SNR1 to overcome 20 dB (that is the minimum value to have the error energy less
than 1% of the useful signal energy, a satisfactory threshold for the MRD evaluations).
Finally, it can be observed that if an artefact occurs during the initial long rest period (40
seconds long), both the standard procedure and the new one can correctly estimate the
MRD value from the artefact-free remaining part of the rest recording. On the contrary,
if it happens during a movement trial (lasting at most one second) it disastrously impacts
and the current procedure can not estimate the MRD along several trials, while the new
algorithm allows this operation just one second later, that is loosing at most one trial
(where the BCI feedback is not provided and the SNR2 is not high enough).

4.2 Energy Analysis

4.2.1 Preliminary Steps

The algorithm to identify and remove pop-artefacts from the incoming signals was used
in the offline analysis of the already existing data about the experiment and it specifically
represented the first step of the energy analysis described in the following.

Particularly, each raw signal from the dataset of sixteen channels was scanned to find
any pop artefacts and, if any, the correspondent samples were marked as artefactual.
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Figure 4.14: Adjacence matrix.

Then, as explained in more detail in the following, every interval of every signal which
included some artefactual samples was discarded from the subsequent analysis.

After removing this kind of artefacts from the raw EEG signals, a Fast Fourier Trans-
form (FFT)-based filtering [94] step was performed. Each signal was thus band-passed
in the (4,40)Hz band where the edge frequencies were chosen to avoid other kinds of
artefacts.

Indeed as previously described in section 4.1 blinks, current drifts, sweat over the scalp
surface and other physiological as well as non physiological components occur in the low
frequency spectrum and can distort the EEG signal. Similarly, muscular contractions can
obscure the BCI-control signal in the spectrum mainly above 30 Hz.

Moreover, interference phenomena due to volume conduction during the propagation
of the signal from the physiological sources inside the brain to the scalp surface are also
present. Among other factors, a propagation loss can easily be accounted to model the
signal power loss during that pathway: as a matter of fact, higher voltages are measured
in the cortical areas nearer the source and, on the opposite, lower amplitude signals are
acquired in farther sites. This kind of consideration leads to the further observation that
two different EEG electrodes acquire two signals that have common components: their
entity depends on the location of the two electrodes into respect of the original sources and
the relative distance between the two sensors. Distance thus becomes a significant factor
to quantify the interference level and to improve the Signal-to-Interference Ratio (SIR).
Since the aim of the signal processing in this application (as in many others in the BCI
and neuroscience community in general) is to detect signals as they are originated from
the inherent sources, this kind of interference phenomena has to be reduced as much as
possible.

A first step in order to reject common-mode components due to signal propagation
between neighbouring channels was then to perform a differential operation among the
raw signals, based on an adjacent matrix as reported in Fig.4.14

Therefore, sample-by-sample difference between every pair of signals corresponding
to a 1-valued cell in the adjacent matrix was computed.
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Consequently, a set of thirty-three signals was obtained and then sorted in such a
way to have left-hemisphere regarding signals, right-hemisphere and inter-hemispheres
ones respectively sequenced. Specifically, the final set of differential signals contained
fifteen left-hemisphere signals, an equal number of right-hemisphere EEG traces and the
last three signals related to connections between the two hemispheres. This facilitated
the researchers during a preliminary visualization phase in which all signals were plotted
together in order to provide a comprehensive view of the cerebral activity of the subject
and a starting point for the discussion with the clinicians.

Afterwards, the elementary intervals for the following energy computation were identi-
fied: these were selected to fulfil the paradigm-stimuli occurrence provided by the trigger
variables that came with the EEG data after each run of the experiment (they were defined
in the protocol implementation phase). Specifically, five phases could be distinguished in
every trial of the experiment, as recalled from 3:

• The pre-trigger interval which consists of 500 ms before the target appearance as
already mentioned in section 3.1 about the system description.

• The post-trigger time lasting 1500 ms and aiming at making the subject planning
the movement towards the visible target without actually moving.

• The reaction time which defines the temporal interval between the second cue sound
that allowed the subject to move towards the target and the instant in which he/she
actually started the movement. Therefore, this quantity includes the propagation
time of the cue sound from the ears to the brain, its processing time in the brain
and the transmission of the motor output from the brain to the arm’s muscles.
Typically this interval lasts about 400 ms.

• The movement period which consists of the time span for the actual 18 cm long
path from the starting position to the target. It usually covers a period in the
range (400,1000) ms. Nevertheless, the experimental task required the subject to
perform the reaching movement within the limited (500, 740) ms time window. As
previously mentioned in section 3.1, the movement speed corresponded to a visual
feedback: particularly, faster movements (lasting less than 500 ms) made the target
change color to red, while slower ones (lasting more than 740 ms) caused the target
become blue.

• The post-movement phase covered the period of recovering from the hit target to
the starting position.

Then, a 256 samples (corresponding to a 500 ms given a sample frequency of 512 Hz)
interval was considered as the elementary period for the energy computation. This choice
was supported by the literature about BCI where this period was selected to update the
feedback provided to the subject performing the experiment.

Although EEG literature points out a time of two seconds for the analysis of reactivity
of the EEG rhythms, in this context this quantity would be excessively large: two seconds
would cover, indeed, different trial phases so that it would not be possible to distinguish
any change among them.
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Figure 4.15: The seven trial’s phases.

A collection of seven 256 samples intervals were identified in each trial: pre-trigger
represented the first one, post-trigger were subdivided into three 500 ms intervals, while
during reaction time the first 256 samples were collected and during movement, finally,
the first two were selected. Fig.4.15 shows the time course of the trial in terms of 256
samples intervals.

It has to be noted that in the reaction time and movement cases both the selected
intervals could overlap the subsequent phases respectively. The latter introduces an
error in the computed data that involves at most 20% of the total amount of samples
of the current interval. However, due to the signal continuity and the further filtering
operation explained in the next subsection involving filters bandwidths of 4 up to 6 Hz,
the smoothing time is on the order of 100 ms, which is roughly the duration of the
overlapping data. Based on this consideration the energy values computed during the
reaction times and movement periods are ensured to be valid for the feedback purposes.

Nobody knows yet the perfect time-line of the physiological reaction to such a stimuli-
rich paradigm: therefore, it has to be always kept in mind that a certain physiological
delay could occur during the experiment coming from distractions or different reaction
speeds among people. With the 256 samples intervals structure of Fig.4.15 the energy
analysis could be performed.

4.2.2 Energy Computation

Energy was indeed computed in every elementary interval of each trial, each differential
signal and different frequency bands only excluding artefactually-labelled intervals.

Specifically, energy was computed by means of the classical formula of energy for
digital signals reported here for the sake of completeness:

E(p, t, s, f) =
256∑
n=1

|xp,t,s,f (n+ n0 − 1)|2

where p states for phase, t for trial, s for differential signal, f for frequency band and
n0 for the initial time sample of the (p,t) segment. Each quadruplet (p, t, s, f) will be
named as condition in the following. It has to be observed that computing the energy
is equivalent to the power computation of the specified interval in this case, as far as
the time interval is the same for each computation. Only a 1

256
Ts factor, with Ts being

the sampling period, would make the difference between the two possible evaluations:
however, this does not influence the comparative analysis among different conditions.

As the frequency bands regards, the most common choice is to select the standard
bands used in the clinical practise for the EEG evaluation operated by clinicians. Then,
recalling section 2.1, the µ band (8,12) Hz and the lower β band (12,18) Hz were analysed.
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However, since a comprehensive overview of the signals originated while the subject was
performing the experiment was required, some other frequency bands were analysed to
live the researchers free to be agnostic and to be always critical towards standards de-
facto and generally accepted magic numbers. Therefore, the standard θ band (4,8) Hz
along with some other frequency bands defined in a logarithmic-like logic were considered:
(10,14) Hz, (16,24) Hz, (20,28) Hz, (24,36) Hz and (28,40) Hz were added to the previous
frequency analysis.

A final (10,20) Hz band was considered in order to assess the performance of the
algorithm in this larger band and, possibly (if similar performance was found) use it in
place of other smaller standard ones. This could provide notable advantages in terms
of real-time computation: a larger frequency band would require a filter with a shorter
delayed output signal. In fact, it can be observed that since the filter’s impulse response
transient could be assumed (roughly speaking) to equal the inverse of the filter’s frequency
bandwidth (at 3 dB), a 4 Hz bandwidth like in the case of the standard µ band (8,12) Hz
will produce a 250 ms delay in the output signal, while a 10 Hz bandwidth as in the last
suggested frequency band case will introduce 100 ms delay only, that could eventually
affect the only initial part of an analysis interval.

After these considerations multiple components of delay can be distinguished: specif-
ically, the delay due to the filtering operations described above adds to those mentioned
in section 4.1.

4.3 Movement Related Desynchronization (MRD) Quan-

tification

4.3.1 MRD Definition

In section 1.1 few notions about the neurophysiology and the neuroanatomy of motor
functions were described. In this section the EEG correlates of the sensorimotor circuit,
as already briefly introduced in section 2.1, will be highlighted and deeply analysed.

Since the 30s of last century neurophysiological studies developed by Berger, Gastaut,
Jasper, Penfield, Magnus and many others reported observations about the recurrent
behaviour of the arcade wave or or wicket rhythm or even en arceau, i.e. µ rhythms,
during movement of patients: indeed, this EEG component was noted to disappear during
motor activities.

Afterwards, several studies assessed those observations in a number - actually the most
- of patients, but only since the 70s the development of a quantitative method to measure
this phenomenon [95] [96] [97] [98] allowed to extend the results of the previous studies to
the whole population. Since that moment, µ disappearance was indeed verified in all the
subjects. Pfurtscheller, the father of the quantification algorithm aforementioned, called
desynchronization this behaviour. As previously cited in section 2.1, desynchronization
of µ rhythms was then observed not only as a consequence of a movement, but even
when a subject only images to accomplish it, plans an action or watches somebody else
performing it. Moreover it could be observed also after sensory events like burn’s of hand
or arm, vibration perception and so on.

That led Pfurtscheller to complete the denomination as Event-Related Desynchroniza-
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tion (ERD). For the purpose of this thesis work, however, where only desynchronization
related to a movement is taken into account, the original ERD name was substituted
with the previously used MRD name.

From the neurophysiological point of view, desynchronization could be roughly ex-
plained as the change in the neuronal behaviour from a synchronized condition where the
most neural populations (at least locally) are working in the same frequency band to a
desynchronized one where different functions have to be accomplished at a time so that
some neural populations need to modify their working frequency causing the laser-effect
due to a number of neurons contingently firing to vanish.

Actually, as pointed out above, the desynchronization term can not be used without
its opposite, the synchronization status leading to the definition of the Event-Related
Synchronization (ERS) and the Movement-Related Synchronization (MRS), respectively
[99] [100]. Particularly, in the case of motor activities the desynchronization of µ rhythms
can be observed along with the synchronization of β rhythms. This can be explained,
as already indicated before, as the requirement of some neural districts to change their
working frequency (around 10 Hz) towards higher frequency ranges (around 20 Hz).

Pfurtscheller in many papers written with collaborators ([101], [102], [103], [104])
stated a quantitative method to measure the desynchronization as well as the synchro-
nization of EEG rhythms.

Before to actually compute those quantities, the individual frequency bands where
to look for the ERD and the ERS respectively have to be preliminarily defined for each
subject: such bands should be chosen as the most reactive bands of frequencies showing
a modulation correlated with the movement. Usually, the individual desynchronization
band lays around 10 Hz (a slightly modified µ band) while the synchronization band
around 20 Hz (in the β rhyhtms range), but widths and band centres have to be evaluated
person-by-person because of the large variability that competes to these cerebral features.

One more time, Pfurtscheller and collaborators developed an algorithm to evaluate
these quantities. Specifically it requires the following steps:

1. A 1 second interval in a reference, e.g. rest, period (R) is selected and its power
spectrum is estimated. Usually this period is chosen few seconds (three or four)
before the movement onset.

2. Similarly, a 1 second of activity (A1) is identified as the most desynchronized period
and its power spectrum is evaluated.

3. In the recovery phase after the task accomplishment, 1 second of the trial (A2) is
taken into account, as well, to verify the β synchronized condition. As in 1 and 2
the power spectrum of this trial token is computed.

4. Average within each set of a different condition (R, A1, A2) is then operated over
the all available trials.

5. Averaged power spectra of the reference period and an active one are compared and
their difference is computed along with the 95% confidence intervals as showed in
Fig.4.16(a) and (b).
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(a) Active period chosen before the movement.
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(b) Active period chosen from the onset of the movement.

Figure 4.16: Individual frequency band identification method by Pfurtscheller in case of
a healthy subject.
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Specifically, Fig.4.16(a) illustrates the output of the individual frequency band com-
putation algorithm in the case in which the active period is chosen before the movement
onset, during the planning phase of post-trigger time. On the other hand, for Fig.4.16(b)
an active 1 s period starts from the actual movement onset time. ERD band is defined
as the interval of most significant power decrease (around 10 Hz, usually), while ERS as
that with a power increase (in the β band).

Once the individual ERD and ERS frequency bands are found, desynchronization and
post-movement synchronization can be estimated. To this purpose the method suggested
by Pfurtscheller and colleagues accounts the following steps:

1. Raw signals recorded with a hardware implemented band pass filter between 0.5
and 50 Hz are divided into trials lasting some seconds (about eight) and centred on
the movement on-set;

2. Raw trials are further band passed in the individual ERD/ERS bands respectively;

3. The power traces are obtained from each of the raw trials squaring sample-by-
sample;

4. A number of squared trials is averaged;

5. A time compression is operated averaging over some consecutive power samples.
As previously mentioned, a power decrease means a desynchronized status while,
on the contrary, a power increase corresponds to ERS.

6. Eventually, the relative percentage power is computed as the ratio between the
ERD and the ERS quantities sample-by-sample from the averaged ERD and ERS
curves.

As regard as the ERD and ERS localization, literature showed that, for hand or arm
movement [24][103][44] a general lower α (6,10) Hz band is obtained after almost any kind
of task, whereas an upper α/µ and lower β desynchronization is specifically localized over
the sensorimotor areas. To further particularize those observations, desynchronization
was found to start contralaterally - over the hemisphere on the opposite side to the
moving limb tract - and become bilaterally symmetrical with execution of movement
[104].

Then, it has to be mentioned that µ rhythms were observed to generate mainly in
the somatosensory area while β rhythms in a little more frontal region, over the motor
areas. Therefore, computing µ ERD and β ERS means to select also the proper locations
to find the electrophysiological correlate of the sensorimotor cortical activity supporting
the movement. Usually, when motor execution or motor imagery tasks are required to
the subject under test, C3 is monitored for right-side limb movements, C4 for left-side,
both C3 and C4 for simultaneous movement of right and left arms or hands and, finally,
Cz is the standard location to observe feet motor control.

From the neurophysiological viewpoint, in an arm reaching task following a proprio-
ceptive feedback (like a force stimulus, as in the current experiment described in section
3.2) two phases of cortical information processing could be expected:
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Figure 4.17: BCI2000 modules (modified from [71]).

• proprioceptive afferent vias transport the external stimulus information from the
receptors, i.e. the muscles and nerves located in the distal district of the hand, to
the contralateral somato-sensory areas of the brain located in the parietal lobe;

• with the proprioceptive information, a motor output is processed (even through the
pons and the other hemisphere) and transmitted by means of the motor areas in
the frontal lobe of the brain down to the final actuators of the movement, i.e. the
muscles, by using the efferent vias.

However such a time line has not been proved yet, but only the bilateralization phe-
nomenon in the whole sensorimotor areas as mentioned above.

4.3.2 BCI2000 Software

Operatively speaking, as already said in Chapter 3, the experiment was implemented by
means of the world-wide spread (in the BCI community) software BCI2000 designed by
Schalk and colleagues in 2004 [71].

Implementing the standard BCI structure formed by the four blocks already pre-
sented in section 2.2 (see Fig.2.5), Schalk and collaborators defined a similar software
architecture, as shown in Fig.4.17.

While blocks 1 and 3 of Fig.2.5 perfectly match the analogous blocks A and D of
Fig.4.17 representing the signal acquisition and digitalization steps and the device control
operated by the features obtained as outputs of the signal processing block, respectively,
block 2 is made by two further subroutines labelled in Fig.2.5 as B and C.

Signal processing indeed consists of the feature extraction module and the translation
algorithm. In particular, raw signals from the source module become inputs of the signal
processing block where a spatial filter, a temporal filter, a linear classifier and a normalizer
could be applied to the raw traces.

Each of them can be defined by a block scheme as in Fig.4.18, where sin is the signal
input of any of the four filters and sout its output that, in turn, will then become input
for the next filter.
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Figure 4.18: Single operation in the signal processing module of BCI2000.

Despite the particular choice of filter, to obtain the signal output each operation block
performs a product between matrices as the following formula states:

SOUT
CHxN = CCHxCHS

IN
CHxN

where SOUT is the CHxN matrix of the CH output signals with N samples, SIN is the
same quantity at the input and C is the matrix of weights.

This leads to the linear equation below:

sout(i, n) =
CH∑
j=1

sin(j, n)c(i, j)

where sout(i, n) is the output sample n of the i-th output signal, while sin(i, n) is the
analogous measure at input and c(i, j) is the weight of the j-th channel in the computation
of the i-th output.

Specifically:

• spatial filtering can operate a Laplacian derivation, a Common Average Reference
(CAR) analysis or even a Common Spatial Pattern (CSP) identification;

• temporal filtering could implement a slow wave filter, an autoregressive spectral
estimation, a Finite Impulse Response (FIR) filter, a peak detection or the average
of single evoked responses;

• classifier computes each output as the linear combination of the input as given from
a classification matrix;

• normalizer acts on the classifier’s output in order to provide a zero mean signal at
its output and a specific value range or a pre-selected standard deviation.

It has to be mentioned that coefficients for the classifier and, even more importantly,
for the normalizer are defined either by the experience of the experimenters about the
specific participant or by the statistics tool embedded in the BCI2000 software that can
provide adaptation of the output features to the spontaneous changes of the cerebral
activity thanks to a previous statistical analysis conducted over the signals.

BCI2000 is thus a very flexible and scalable tool for a variety of BCI applications and,
moreover, it is constantly updated by the whole BCI community.

A further consideration concerns about the real-time constraint: as highlighted several
times in the previous Chapters, BCI experiments require the system to perform all the
acquisition, processing and output actuation within few tens of milliseconds range of
time. This is ensured by BCI2000 software whose performance in some of the possible
pc-amplifier configurations was reported in [71]. In fact, a maximum delay at the output
level of 15 ms was found with minimal variations (i.e. latency jitter < 0.75 ms).
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In the current experiment’s settings as detailed described in 3.2 the combination of
a CAR spatial filter, a Butterworth band pass filter in the individual µ band (identified
after the screening session) and a notch filter was chosen to process raw input signals.
Then, a linear classifier computed the sum of the spectral power estimated in the (two
or three) most significantly task-related channels and in the individual frequency band.
Classifier’s output was finally adapted to spontaneous cerebral activity changes thanks
to the normalizer step which imposed a zero mean and unit variance to its output.

Although BCI2000 is that powerful and comprehensive software, the current imple-
mentation (see 3.2) for the EEG signals processing worked quite well but not in a complete
satisfactory way. Some remarks especially remained for what the possible presence of large
artefacts and the semi-automated features selection concerned. This was the reason that
gave rise to the development of the algorithm for electrode-pop up artefacts detection
and suppression presented in section 4.1 and to the subsequent detailed energy analysis
performed in section 4.2. Those preliminary steps led to a slightly modified definition
of MRD that allowed an earlier identification of the intention to move, that is the scope
of the signal processing module in compliance with the operant-conditioning strategy to
restore motor functions.

Next section will then explain the last step of the overall new algorithm for the MRD
identification. It was thought to cope with the remarks expressed so far, but it could be
generally exploited in every similar BCI application for motor recovery.

4.3.3 Proposal for an MRD Quantification Algorithm

As mentioned before, in this section the final MRD computation in a real-time design
will be illustrated. This step is accomplished thanks to the previous energy analysis of
section 4.2. After such a comprehensive statistical analysis, four definitions of MRD,
slightly different from the original Pfurtscheller’s one are suggested and, in next Chapter,
they will be proved to be beneficial for an earlier identification and quantification of
the phenomenon. Indeed, the four definitions were expressed as the following ratios
ri, i = 1, ..., 4:

1. The ratio between the first 500 ms of post-trigger time and the pre-trigger one;

2. The ratio between the second 500 ms of post-trigger time and the first 500 ms of
post-trigger;

3. The ratio between the third 500 ms of post-trigger time and the second 500 ms of
post-trigger;

4. The ratio between the reaction time and the third 500 ms of post-trigger time;

Then, in order to identify an actual MRD, the following rule was adopted:

if ri < THRESHOLD, then MRD is detected.

where THRESHOLD was initially set to 1 and then lower to 0.8 and even 0.6, meaning
that an MRD event could be identified only if a more significant power decrease (of the
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20% or 40%, respectively) were measured. Furthermore, the condition in the expression
above had to be verified for half the number of channels, i.e. CH

2
to actually decode an

MRD.
As it will be discussed in the following and last chapter, this definition - based on the

computation of the ratio between spectral powers in subsequent intervals - increased the
performance of the MRD offline identification and allowed also to distinguish between
healthy control participants and stroke survivors.

Its feasible implementation in the real-time operations will result more clearly from
the quantitative findings shown in the next chapter where the early MRD identification
will be highlighted in the most cases, both for healthy and stroke subjects.

A final mention has to be pointed out about the threshold choice. Initially it was
set to 1, i.e. the minimum value for each ratio to ensure an energy decrease (that is
the desynchronization); then it was lower down leading to the idea that a trade-off has
to be matched: tighter than 1 limit for the threshold was selected to test the entity
of the desynchronization amount, but no more than 50% energy decrease was found to
have significant performance in any case. Further notions about the neurophysiological
processes occurring during the trials could probably give reason of that qualitative con-
siderations. Finally, a systematic optimization procedure has been already planned to
find the optimal threshold value for obtaining more precise and customized results on the
MRD identification performance.

This section concludes the exposition of the new proposed algorithm for the MRD
identifcation during movement trials in a BCI experiment. Its fundamental steps are
represented by the specific procedure for the electrode-pop artefacts detection and sup-
pression described in section 4.1, the energy comprehensive statistical analysis performed
in section 4.2 and the so far presented quantification method for MRD identification.

In the next Chapter, the results of the application of such an algorithm to the already
recorded EEG data will be reported and a discussion section will provide comments about
its performance, strong points and further possible improvements.

71



72



Chapter 5

Results and Discussion

As previously mentioned this Chapter deals with the presentation of the results from the
energy analysis described in section 4.2 and the following MRD identification performance
obtained by the application of the algorithm of section 4.3.

5.1 Results from the Signal Processing

As extensively explained in section 4.2, a complete energy analysis was performed on
all the available differential signals, frequency bands, trials and phases with the aim to
describe the energy behaviour during such kind of reaching task. A large amount of data
was there collected and a statistical analysis could be performed.

In the following, Fig.5.1 provide a compact representation of those values both for the
case of a healthy subject (Fig.5.1(a)) and of a stroke patient (Fig.5.1(b)).

Each boxplot represents the energy statistics measured during trials of the screening
session in the correspondent phase (rest, pre-trigger, and so on) displayed below, in the
standard µ band (8,12) Hz in the C4 − Cz differential signal (C4 would be the usual
channel to find the MRD for a left-sided movement).

As it can be noted from Fig.5.1 a large variability was found both for the healthy and
the stroke patient cases. This could be explained by the overlapping physiological and
non-physiological components arising during such tasks and recorded at the scalp level.

Moreover, a considerable amount of variability could be addressed to the inter-sessions
variations that a subject produces when performing the experiment in different times.

Therefore, in Fig.5.2 the analogous boxplots for the energy statistics are displayed in
the case of three single runs of the screening session for a healthy subject.

One more time, a large quantity of variability still clearly remains. This is due to
the inter-trials and the intra-subject variations that occur even during different trials
of the same daily session as a consequence of the physiologically changes continuously
happening in a multi-tasking operating brain.

To this purpose a bunch of single trials energy profiles are reported in Fig.5.3.
From those profiles the cerebral activity variations can be clearly appreciated. But,

more importantly, the different timing of the energy decrease (i.e. the MRD beginning)
phenomenon strongly results. This means that, no matter the trigger events would state,
the cerebral activity does not strictly follow their rules. It is only partially conditioned
by cue sounds or target appearance, but it reacts with very different patterns to very

73



Rest Pre Trigg Post Trigg 1 Post Trigg 2 Post Trigg 3 React Time Mov 1 Mov 2
0

100

200

300

400

500

600

700

800

900

1000

E
ne

rg
y 

[µ
V

2 ]

(a) Healthy case.

Rest Pre Trigg Post Trigg 1 Post Trigg 2 Post Trigg 3 React Time Mov 1 Mov 2
0

20

40

60

80

100

120

140

160

180

200

E
ne

rg
y 

[µ
V

2 ]

(b) Stroke case.

Figure 5.1: Statistical analysis of energy for all the phases in the (8,12)Hz band during
screening with left arm for signal C4 − Cz for a healthy subject.
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similar tasks. Practically speaking, the energy decrease due to the movement processing
can arise in a large time window: sometimes it starts just after the target appearance,
some others it comes later till almost the end of the post-trigger interval or even at the
reaction time period.

Nevertheless, with a robust identification technique the energy decrease related to
the movement is detectable and quantifiable. Therefore, an algorithm that can reliably
recognize the different situations (adaptability of the algorithm) and provide the corre-
spondent robotic feedback at the most suitable moment was needed. This was indeed the
main issue the new proposed algorithm aimed to give answer.

It hasto be highlighted that two main factors can also influence the MRD identifica-
tion: the localization of the phenomenon and the baseline level selection.

As the localization as regard, no clear situation could be described: indeed, a general
energy decrease all over the sites (of differential signals) was found. Topographical maps of
Fig.5.4 report one case (Fig.5.4(a)) that matches with the neurophysiological expectation
of a contralateral activation (i.e. energy decrement) of the sensorimotor cortex, along
with one (Fig.5.4(b)) of the most common case found during the energy analysis where
a diffuse or a bilateral activation is present.

If the baseline selection is taken into account, a double choice can be made: in fact,
either the inter-trials, i.e. pre-trigger time, period could be evaluated as the reference
energy for the remaining trial phases or the initial 40 seconds rest could be used at the
same scope. Both the solutions present their advantages as well as their drawbacks,
so that a trade-off has to be accepted. Indeed, as found in a comparative analysis of
performance (not reported here for compactness purposes), the MRD identification based
on the second choice usually leads to higher detection performance, since the baseline
energy is evaluated from a longer period of registration before the experiment beginning in
which the relaxation (and the consequent µ enhancement) of the subject is thus ensured.

However, sometimes the subject conditions at the current trial are so different from
those at the beginning that a nearer (in time) reference would be a better choice, in order
to avoid many false positive errors. In these cases, the inter-trials period of EEG signals,
that is the pre-trigger time, should be used. This is the choice underlying the remaining
results presented in this section. The same option would result beneficial in case of large
and long-lasting artefacts corrupting the rest, as for example the electrode pop ones. By
its side, pre-trigger lasts only 500 ms then it could be subjected to the drawback to make
the patient not able to completely relax, leading to a number of false negative errors in
the identification process.

In this final part, results and comments from the MRD computation explained in
section 4.3 will be reported. In particular, as it can be reminded from that section, MRD
was defined as the ratio between the energies of one phase and a baseline period (i.e.
its preceding phase, in particular). The ratios between consecutive periods of time were
evaluated with the aim to detect the instant in which the energy maximally decreased.

All the results will be presented in form of tables with a number of rows equal to
the number of ratios and a number of columns equal to the number of frequency bands
considered in the analysis. Rows can be viewed, thus, as kind of time axis in which the
first row represents the MRD identification at about 2 s before the actual movement, the
second one the MRD detection 1.5 s about before the motion and so on.

As the frequency bands as concern, the all standard and the logarithmically-logic
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selected ones were included in the analysis and reported here. Moreover the larger (10,20)
Hz band will be also taken into account with the purpose already mentioned in section
4.2 to be evaluated as possible alternative to smaller frequency bands introducing higher
delays in the filter implementation phase.

Finally, each element of a table represents the percentage of detections of the MRD
within one run (that is made by 80 trials or less if artefacts were present). It is worth to
be reminded that an MRD identification occurs when the most channels presented a ratio
correspondent to the current row at the frequency band related to the current column
lower than a prefixed threshold. As mentioned before, that threshold was initially set
to 1 and then it was lower to 0.8 and even 0.6, in order to make more strict the MRD
identification requiring in this way an energy decrease of 20% or 40% into respect of the
reference period.

A first example of such tables is provided in Fig.5.5. They sum up results from the
MRD identification of a single run within the screening sessions performed by H3 and P2
in the three upper and three lower panels, respectively.

Moreover, the changes in the performance in correspondence with different values of
the threshold in the MRD identification are also displayed, as reported by the captions
of the figures.

Going further deep into the analysis of the pathological case, given a threshold value
of 0.8, Fig.5.6 shows findings from each single run of the screening session for both the
impaired and the healthy arms of P2.

As a comparison, the performance during the correspondent three runs of the end test
session is given in Fig.5.7.

As already said in the previous sections, performance of this BCI system were usually
evaluated by means of three different kinds of measures: clinical scales scores, kinematic
outcomes and neurophysiological results.

As far as the latter have been just completely investigated in this section and the
clinical scores reported in Fig.3.2 of section 3.1 are not significantly sensitive for such
mildly impaired stroke patients, a brief presentation of some kinematic findings is due in
the final part of this section to complete the overview about patient’s improvements after
this BCI experiment. Reference to these results will be mentioned in the discussion section
as a proof of the reliability of the neurophysiological data of the patients correspondent
with some kinematic variables improvement.

Therefore, kinematic outcomes of patient P2, P3 and P4 are reported in Fig.5.8,
Fig.5.9 and Fig.5.10, while for a detailed analysis of results about P1 please refer to [66].

It is convenient here to recall that the statistical significance at the 95% level of
confidence of the improvement achieved at the end test session in comparison with the
screening one, as already pointed out, was assessed by means of the Wilcoxon rank
test sum for all the kinematic measures apart for the number of correctly scored trials
evaluated by the Kruskal-Wallis test.

5.2 Discussion

This section deals with the discussion of the MRD identification performance presented in
section 5.1 of the algorithm proposed in section 4.3 and its correlation with the kinematic
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findings reported at the end of section 5.1 for two patients.

Generally speaking, the most important observation that can be highlighted from all
the tables presented so far is that the new algorithm can detect the MRD phenomenon
in an earlier way, during either the first possible interval in the healthy case or, however,
about 1 s before movement in the patient case.

Specifically, looking at Fig.5.5, a 90% identification percentage is already reached in
the first interval in the case of the healthy subject H3 even if the threshold was lower to
60% and a more strict definition of MRD was imposed (although a slight performance
decrease has to be accounted). For what the frequency distribution of the MRD concerns,
from those tables it is clear that MRD mostly occurs - as expected - in the µ and lower
β bands, the bands below 8 Hz and above 25 Hz showing definitely lower identification
rates. The (10,20) Hz band showed performance comparable to the more common bands
of analysis: this could lead to the choice of this frequencies interval with the consequent
computational advantages already mentioned in section 4.2.

On the other side, the patients showed - as in the expectations - lower performance
than the healthy case, as it can be infer from Fig.5.5. Given a threshold equal to 0.8,
for example, the third time interval (i.e. ratio) has to be waited to achieve a 90% de-
tection level. However, this means that 1 s would be already available for further signal
processing operations so that the algorithm was found to be reliable and useful also in
the pathological cases.

As in the results of the healthy subject, the most significant frequency bands are
located in the lower part of the available spectrum ((4,40) Hz is broadest spectrum at
the output of the preprocessing step). This is, one more time, in line with literature on
the topic. Moreover, the (10,20) Hz band still shows top performance, similarly to other
more standard bands.

If looking at Fig.5.6 and Fig.5.7, the improvements due to training are relevant both in
the healthy and the impaired arm of the patients, especially for subject P2. Moreover, as
expected, a higher identification percentage was achieved with the healthy limb than the
affected one. Both the last two observations are, moreover, confirmed by the contextual
kinematic improvements reported in Fig.5.8, 5.9 and 5.10.

After the BCI training (with an actual force feedback as in the P2 case), performance
are lower than the final run of the screening session but higher than the very beginning
of the protocol showing a further visible increment within the end-test session.

Herein, further considerations about the actual efficacy of the particular propriocep-
tive and contingent feedback have to be frozen and postponed to the end of the experiment
still in evaluation with the recruitment of more subjects.

Indeed, no significant changes in the behaviour of the phenomenon arose at the end
of the experiment as what frequency distribution or time course matters.

A final important note is worth: the proposed algorithm can distinguish between the
control and the pathological conditions. This is not a common feature for an algorithm
that aims in detecting the MRD and moreover this observation could lead to consider the
proposed algorithm as a diagnostic tool instead of a simple single step in the overall BCI
system. However, in order to prove the significant diagnostic value of the procedure, a
rigorous correlation analysis between the MRD performance, the clinical scores and the
kinematic measures would be also needed.

This could be considered one of the points that have to be addressed by the future

77



analysis. Accordingly, this consideration leads to the conclusive section of this chapter:
section 5.3 will illustrate indeed some perspectives along with open issues that still have
to be addressed in order to ameliorate the system and make this specific BCI application
actually effective for the rehabilitation purposes that guided its original implementation.

5.3 Future Perspectives

In order to generate such advancements in this BCI platform, further work on the signal
processing part would be necessary. Besides the hints for improvement already suggested
at the end of section 4.3 about an optimization procedure to set a suitable threshold for
the MRD identification and a rigorous correlation analysis between the MRD performance
and the kinematic outcomes, other actions should be taken into consideration and have
to be deeper discussed with the aim to optimize the current protocol and to make it
available for the largest pathological population that could benefit of it.

The first (and already under work) improvement to realize is to increase the EEG
electrodes grid density so that it would be possible to better differentiate between the
various regions and to be allowed to use signal processing techniques like CSP, CAR or
other spatial filters that require a higher number of channels to be efficient.

With this modification, a more focused spatial distribution of the MRD phenomenon
could be hopefully found in order to better evaluate the spatial neural re-organization of
cerebral functions related to movement occurring during the BCI training.

Afterwards, the real implementation of the solution proposed along chapter 4 has to
be realized and test on the real platform. To this purpose, a temporal filter should be
selected to limit the bandwidth of the signal to the individual frequency band previously
computed (during a preliminary session). A simulation study has been already performed
in [105] where the FIR filter of order 50 was found to represent the optimal choice for
this kind of protocol. As part of a future work, the application of this study to the actual
EEG data has to be carried on.

Another important aspect of this model of experimental paradigm is the analysis
of the correlation between the frontal and the parietal cortex as main actors in the
sensorimotor control: correlations in the time domain or coherence in the frequency
one of specific frequency bands and between the somatosensory and the primary motor
cortex have to be investigated as carriers of the external somatosensory stimuli and the
subsequent (delayed) motor output, respectively. The time-line of these activations and a
valid support in this kind of analysis could be represented by the EMG recordings. This
device could indeed be added to the current system to monitor the muscles activation
onset and their reaction time.

Finally, as already mentioned before, this BCI application could be suitable for other
kinds of patients rather than only stroke survivors. Indeed, the only exclusion criterion
is that patient should mildly suffered from a motor impairment due to a cortical or sub-
cortical focused injure like stroke. But, other phenotypically similar pathologies (such as
focal dystonia) could eventually be treated with the same rehabilitative method.

The protocol is actually being continued at San Camillo with the patient recruitment,
although with some difficulties about the inclusion criterion that excludes more severe
patients: actually, as previously mentioned, the most stroke survivors remains with really
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severe impairments at the upper limbs, especially at the hands level. In many cases
patients are completely blocked and they are not able to perform any movement; in
many others they are defined as flaccid and can not sustain any movement with their
affected upper limb.

However, this BCI application aims, in a near future, at including these more severe
patients in the rehabilitative program also. At the moment this is technically impossible
but realistic solutions have been already suggested: for example, completely rigid patients
can undergo a preliminary phase during which a physiotherapist would manipulate their
arm making them to recover a minimal motricity to perform - partially, at least - the
BCI reaching trials.

If this option was realized, the BCI-Phantom application could be completely tested
and its efficacy would be proved in a shorter-term. Moreover, if the latter was verified
to produce rehabilitative benefits (as already demonstrated in similar studies as [84] and
[58]) the system could be suggested to enter the daily clinical rehabilitative practise of
the Institute.

Furthermore, the project to make this system portable has been already advanced
and many other portable BCI solutions are already available on the market nowadays.
A portable and cheap EEG-based BCI solution for motor recovery of arms would allow
patients to continue at home the treatment attended during the limited period of the
hospitalization with a consequent benefit in terms of long-lasting and more effective
recovery.

79



Rest Pre Trigg Post Trigg 1 Post Trigg 2 Post Trigg 3 React Time Mov 1 Mov 2
0

100

200

300

400

500

600

700

800

900

1000

E
ne

rg
y 

[µ
V

2 ]

(a) Run no.1
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(b) Run no.2.
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(c) Run no.3.

Figure 5.2: Statistical analysis of energy for all the phases in the (8,12) Hz band of the
signal C3 − Cz during the screening session performed by the healthy subject H2 with
the right arm.
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Figure 5.3: Example of single trials energies.
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(a) Lateralized distribution (left hand movement) particu-
larly visible in the right upward map.
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(b) Diffuse distribution (right hand movement).

Figure 5.4: MRD localization in a healthy case. The topographical maps represent the
distribution of the energy values in the reference interval during the initial rest (left up
corner), in a first active period during the post-trigger time (right up), in a second active
period from the onset of the movement (left down corner) and a final active period during
the recovery phase (right down).
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(a) Healthy subject with threshold equal to 1.

(b) Healthy subject with threshold equal to 0.8.

(c) Healthy subject with threshold equal to 0.6.

(d) Stroke subject with threshold equal to 1.

(e) Stroke subject with threshold equal to 0.8.

(f) Stroke subject with threshold equal to 0.6.

Figure 5.5: MRD identification performance with different thresholds for subjects H3 and
P2.
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(a) Screening run no.1 with left affected arm.

(b) Screening run no.1 with right healthy arm.

(c) Screening run no.2 with left affected arm.

(d) Screening run no.2 with right healthy arm.

(e) Screening run no.3 with left affected arm.

(f) Screening run no.3 with right healthy arm.

Figure 5.6: MRD identification performance for P2 (left affected arm) along the screening
sessions.
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(a) End test run no.1 with left affected arm.

(b) End test run no.1 with right healthy arm.

(c) End test run no.2 with left affected arm.

(d) End test run no.2 with right healthy arm.

(e) End test run no.3 with left affected arm.

(f) End test run no.3 with right healthy arm.

Figure 5.7: MRD identification performance for P2 (left affected arm) along the end test
sessions.
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(a) Left affected arm.

(b) Right healthy arm.

Figure 5.8: Kinematic performance of P2.

(a) Right affected arm.

(b) Left healthy arm.

Figure 5.9: Kinematic performance of P3.

(a) Left affected arm.

(b) Right healthy arm.

Figure 5.10: Kinematic performance of P4.
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Conclusion

In the context of EEG-based BCI for motor rehabilitation for stroke survivors, the specific
signal processing for providing a reliable and in real-time feedback was presented and
discussed.

A particular BCI application aided by an haptic device that could release a force
that helped the patient in completing the reaching task required in the experiment was
considered.

The initial protocol and setup of the application were described in detail along with the
strong and weak points arose during the operations. Then, the motivation for proposing
new solutions especially in the signal processing module of the platform resulted clear:
identification and correction of large artefacts due to electrode pop was addressed by
means of a non linear algorithm that can run in real-time preventing from wasting large
amount of data as in the initial setup of the experiment.

Afterwards, a comprehensive analysis of the energy distribution in the time, frequency
and space domain was performed and reported for all the phases of a single trial of
reaching movement and along the whole experimental session.

Since the purpose of this work was to detect in a precise and real-time way the
cerebral pattern related to the movement (the MRD) during the experimental course and
to quantify it in order to produce a consequent force feedback associated to that, new
definitions of the MRD were proposed and evaluated.

In particular, early detection of the MRD was obtained in the expected frequency
bands µ - (8,12) Hz - and lower β - (12,18) Hz - with identification performance higher
than 90% both for the healthy subjects and the stroke patients. Once implemented, this
new solution would then allow to save time during a trial of movement before the actual
accomplishment of the reaching task to operate further processing on the EEG signals,
to combined in a more suitable way the extracted relevant features that should describe
the condition of the subject, or to compute a more effective feedback from the point of
view of the operant-learning strategy for recovering the arm functionalities.

Open questions still remain to be discussed and addressed, as mentioned in the final
Chapter of this work but, nevertheless, promising perspectives arose from this study
however: now, they need to be implemented to confirm the high performance shown in
the offline analysis mentioned so far.

If such improvements in the signal processing steps of the platform will be verified
during the online operations also, new frontiers of application could be opened from the
extension of the same BCI platform: indeed, with a suitable adaptation of the haptic
feedback and the integration of an EMG system the attempt to move by even more
severely impaired patients could be detected, supported and promoted. Moreover, this
system could be transformed into a substitutive tool for performing movement by reusing
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the same EEG signal processing methods and applying an actual robotic arm in place
of the current haptic feedback. Many other advancements could be prospected with
some of them already planned, but a robust and reliable signal processing unit has to be
previously implemented to suitably and optimally match the requirement of the system
as well as of the task , adapting at the same time to the specific subject’s characteristics
and needs.

This Ph.D. thesis work represents in fact a step towards the realization of such a
reliable system for the rehabilitative purposes, an adaptive tool for every kind of subject
and, more importantly, a potentially portable, non invasive and relatively cheap platform
for continuing the reaching training at patient’s home after the hospitalization period,
with the consequent much larger benefit from the rehabilitation underwent in the clinics.
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