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Abstract

Nowadays there is an intensive study on the functionalities and capabilities of
the robots in order to achieve the goal of building a human-like autonomous
robot. In the robotics field, a lot of research has focused on video analysis
but the contribution on the audio robot skills is much weaker. This thesis
explores the Audio Source Localization problem (ASL) using only the Direc-
tions of Arrival (DOAs) estimated by Acoustic Sensors mounted on Mobile
Robots connected in a Network. The use of the acoustic DOAs instead
of the analysis of the whole audio signal is an innovative method thought
for robotics purposes that introduces a new perspective of the audio-video
synergy using video sensors for the robot localization in the environment
in order to do the extrinsic audio sensor calibration. It is also proposed a
new algorithm for localizing the 2D/3D position of an acoustic source using
a Gaussian Probability over DOA approach (GP-DOA). Several simulation
tests varying the errors over the DOA estimations and over the positions of
the robots and the acoustic sources are done. Real test results using Mi-
crosoft Kinects as DOA sensors mounted on mobile robots and Aldebaran’s
NAO robots within the ROS framework, show that the algorithm is robust,
modular and the approach can be easily used for robotics applications.
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Sommario

Al giorno d’oggi vi è uno studio intensivo sulle funzionalità e le capacità dei
robot al fine di raggiungere l’obiettivo di costruire un robot autonomo simile
all’uomo. Nel campo della robotica, la ricerca si è concentrata sull’analisi
video, ma il contributo delle competenze audio dei robot è molto pi debole.
Questa tesi esplora il problema della Localizzazione di Sorgenti Sonore - Au-
dio Source Localization (ASL) - usando solo le Direzioni di Arrivo - Directions
of Arrival (DOAs) - stimate da Sensori Acustici montati su Robot Mobili
connessi in rete. L’utilizzo di DOAs acustici al posto dell’analisi dell’intero
segnale audio è un metodo innovativo pensavo per scopi robotici che intro-
duce una nuova visione della sinergia audio-video usando i sensori video per
la localizzazione del robot nell’ambiente per calibrare i parametri estrinseci
dei sensori audio. Viene altres̀ı proposto un nuovo algoritmo per localizzare
la posizione 2D/3D di una sorgente sonora usando un approccio probabili-
stico basato su Gaussiane e applicato alle DOA - Gaussian Probability over
DOA approach (GP-DOA). Sono stati fatti diversi test in simulazione vari-
ando l’errore sulle stime delle DOA e l’errore sulle posizioni dei robot e delle
sorgenti acustiche. Test reali usando le Microsoft Kinect come sensori DOA
montate su robot mobili e robot Aldebaran NAO all’interno del framework
ROS, dimostrano che l’algoritmo è robusto, modulare e che l’approccio può
essere facilmente usato per applicazioni robotiche.
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2 CHAPTER 1. INTRODUCTION & STATE OF THE ART

1.1 Introduction

Audio for robotics is a field that is not well explored as the vision for robotics.
Probably it happens because acoustic skills are considered less important
than visual ones in the every day life. It is a matter of fact that the visible
light frequency range is very important for the living beings (e.g. for naviga-
tion purposes, object recognition, etc.) but it cannot cover some particular
events which can be detected analysing only the acoustic signals (e.g. horn
machines, exploding bombs, barking dogs, etc.). Considering only audio
skills, we can retrieve also other important information about the environ-
ment (e.g. classification of sounds, room shape construction using echoes
and reflections, directions of arrival of the sound sources) but, on the other
hand, this information is not always enough to localize properly the acoustic
source position in the environment. For example, estimating the distance
of an acoustic source requires further skills that take into consideration also
sound reflections and echoes (i.e. bats echolocation) [2]. Hence, there is the
need for fusing data coming from different sensors in order to have more in-
formation of the surroundings. In our robotics field we imagine that a robot
should find itself in a map, hear some sounds and fuse these data to find
what and where the acoustic source is. Moreover, if we deal with connected
robots, we can in addition share the data of each robot with the others in
order to have a better understanding of the environment.
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1.2 State of the Art

The current state of the art offers lots of works that refers to Audio Source
Localization (ASL) (i.e. for a detailed and complete overview look up the
PhD Thesis of Pertilä [1] and Salvati [3]). The majority of these works focuses
on various techniques that use the signals coming from all the microphones
and estimate the position of the sources fusing all these data. In a robotics
environment, this approach cannot be applied because the collection of all
the audio signals in a unique master node for the calculations can cause a
network block and, over all, synchronizing all audio signals in time [4] could
be very challenging.

In the acoustic field, a DOA sensor consists specifically of an array of
at least two microphones. Common tested acoustic sources talking people
[5], gun shots and human screams [6], clapping hands and so on. There
are various techniques for calculating the DOA of an acoustic source such
as Angle of Arrival (AoA), Time Difference of Arrival (TDOA), Frequency
Difference of Arrival (FDOA), and other similar techniques [1][3].

Recently there was an increasing use of sensor networks, that can share
audio and video data in a cooperative way, achieving more precise knowledge
of the environment. In an Audio Sensor Network (ASN), by knowing the po-
sition and pose of each DOA sensor, it is possible to better estimate the
position of the acoustic source by sharing and synchronizing the DOA esti-
mations [5][7][8]. Following this idea, Hawkes et Al. [9] proposed an analytic
Weighted Least Square method (WLS-DOA) that minimizes the distance of
the estimated point to the estimated DOA line and achieves good results in
3D space. In his PhD thesis, Pertilä [1] also focused on 2D DOA-Based Lo-
calization and introduced a new approach that tried to eliminate the sensors
with bad acoustic DOA estimations starting from the WLS-DOA method
(Robust WLS-DOA (RWLS-DOA)) [9].

Although it was shown that this method performed better than WLS-
DOA in outlier situations, I found that it is error prone, because in some
situations it can discard the DOA sensors that are better than others (see
sections 3.4 and 5.3.1 for a complete analysis).

In the approach of this thesis, proposed for the first time in [10], I use
all the DOA sensors and I propose a new way of thinking that is based
on the probability error over the angle of the DOA estimation. The dif-
ference with all the WLS-DOA approaches is that our method minimizes
the angle (instead of the distance) of the estimated point to the estimated
DOA. Furthermore this new approach is not affected by the angle ambiguity
problems of the WLS-DOA approaches. Another contribute is the new con-
cept of Audio-Video data fusion. More specifically, Audio Localization will
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be strictly correlated to Video Calibration: working with mobile robots it
would be very hard to calibrate at each instant time the relative position
of all microphones of all moving robots with non-invasive techniques (i.e.
using an acoustic high-frequency periodic signal as audio reference). For this
reason, using SLAM techniques and knowing the relative position of the mi-
crophones with respect to the visual sensors, will help robots to share also
audio information.

In a Mobile Robot Sensor Network (Figure 1.1), to avoid bottleneck pro-
blems sharing audio-video data among robots, I proposed [10] a method that
shares only the pose of the robot and the DOAs of the acoustic sources
heard introducing the GP-DOA approach that uses a probabilistic model of
the sensor for finding the acoustic source position that outperforms the state-
of-art WLS-DOA method. Starting from the GP-DOA approach, it is also
proposed a faster algorithm for calculating the maximum probability point
using an adapted binary search.

Figure 1.1: 2D Acoustic Source Localization Problem in an indoor environ-
ment. In the example there are a fixed Microsoft Kinect, a Pioneer 3-AT
equipped with a Microsoft Kinect and a NAO robot that cooperate for lo-
calizing the position of an alarm clock.
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2.1 Introduction

The definition of the generic DOA Source Localization Problem (DOA-SL)
can be logically divided into two different sets:

• DOA Single-Source Localization (DOA-SSL);

• DOA Multiple-Source Localization (DOA-MSL).

The set representation of the above separation regarding the definition of
the DOA-SL problem is shown in Figure 2.1. It clearly shows that the DOA-
SSL problem can be seen as a particular case of the DOA-MSL problem.
Note that this representation gives an hint to the approach for managing
DOA-MSL problems. As a matter of facts, a DOA-MSL problem can be
considered as an extension of the DOA-SSL one, thought as the base case
of the problem, and will focus mainly on the algorithms that select the best
solutions among all possible DOA-SSL solutions.

DOA−MSL

DOA− SSL

DOA− SL

Figure 2.1: Set representation of the division of the DOA Source Localization
problem (DOA-SL) definition into DOA Single-Source Localization (DOA-
SSL) and DOA Multiple-Source Localization (DOA-MSL).

The DOA-SSL problem was described in [9] and [1]. On the other hand
the DOA-MSL problem was analysed in [11].

In section 2.3 it is proposed the definition of the three-dimensional (3D)
DOA-MSL case as the DOA-SSL problem definition can be derived from the
former considering only one source.
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2.2 Direction of Arrival representation

The Direction of Arrival (DOA) is just an half-line that can exist both in a
two-dimensional space (2D) and in a three-dimensional space (3D).

For representing a DOA in the 2D space it is needed the DOA initial
point s ∈ R2 and the angle of the direction φ ∈ [−π, π] with respect to the
world reference system, that it is commonly called azimuth

On the other hand, in order to represent the DOA in the 3D space using
the spherical coordinate system, it is needed a three-dimensional initial point
s ∈ R3, the azimuth φ ∈ [−π, π] and another angle θ ∈ [−π

2
, π

2
], called

elevation as shown in Figure 2.2.

azimuth ϕ

elevation θ

radius r 
3D

p2D

p3D

radius r 2D

x

z
world
y

s

Figure 2.2: DOA spherical representation in the 3D space with azimuth φ,
elevation θ, radius r and the initial point s. p2D and p3D are respectively
the 2D and 3D points that lie on the DOA.

Both in 2D and in 3D spaces, any generic point p that lies on the DOA can
be identified by using the radius r that is the norm of the vector sp:

r = ||sp|| (2.1)
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The Cartesian coordinates of the point p with respect to the point s
(labeled as ps) can be calculated from the spherical coordinates using azimuth
φ, elevation θ and radius r with the following one-shot formula1:

ps = spherical 2 cartesian(φ, θ, r) =


x = r ∗ cos(θ) ∗ cos(φ)

y = r ∗ cos(θ) ∗ sin(φ)

z = r ∗ sin(θ)

(2.2)

Finally the point p with respect to the world (labeled as pworld) is calcu-
lated by adding the coordinates of the initial point s:

pworld = s + ps (2.3)

1http://it.mathworks.com/help/matlab/ref/sph2cart.html



2.3. PROBLEM STATEMENT 9

2.3 Problem statement

Let S be a set of DOA sensors, with |S| = NS ≥ 2 and let R be a set of
sources, with |R| = NR ≥ 1. In the acoustic field, a DOA sensor si ∈ S,
i ∈ [1, NS], consists in a microphone array that can estimate different DOAs
belonging to one or more different generic audio sources rj ∈ R, j ∈ [1, NR],
with respect to the intrinsic reference system of the DOA sensor si.

Let Tsi = [sxi , s
y
i , s

z
i ]
T and Rsi represent respectively the 3D position

and the 3D rotation matrix of the i-th DOA sensor si with respect to the
Cartesian reference system world in R3. The DOA estimation of the source
rj computed by DOA sensor si in spherical coordinates it is composed by
two angles: the azimuth φi,j ∈ [−π, π] and the elevation θi,j ∈ [−π

2
, π

2
].

The problem consists in finding the closest estimation of the acoustic
source positions rj = [rxj , r

y
j , r

z
j ]
T ∈ R3, ∀j ∈ [1, NR], assuming that all Tsi

and Rsi are known a priori and all φi,j and θi,j are estimated using a DOA
estimation algorithm (Figure 2.3).
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θ1,1
Sensor Reference 

System:

Legend
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Theoretical DOAs:
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  r

Sensor pose:
s

rj

x

yz

Figure 2.3: 3D DOA Multi-Source Localization Problem (3D DOA-MSL). In
this Figure are shown three sensors and two sources but there are theoretically
no upper limits for the number of the sensors and the number of the sources.
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As it may not seem at a first sight, the problem is very complex and
has a lot of variables that have to be managed. From now on, in order to
deal with a simplified version of the problem, the following assumptions are
considered:

1. all DOA sensors are connected together within a network supported by
a framework that permits to share their poses and the DOA estimations
that can both be error-prone. Furthermore all DOA estimations from
different DOA sensors are synchronized and grouped by the framework;

2. only true positive DOA estimations are considered: all the sensors can
detect all the coexisting sources and estimate their DOA if and only if
they are present;

3. the precision of all φi,j and θi,j depends on the accuracy of each DOA
sensor and on the DOA estimation algorithm used. Echoes and sound
reflection effects are considered to be already managed by the DOA
estimation algorithm.

Assumption 1 allows to solve the problem also in the real world: the
inter-connection among sensors, the data sharing and the synchronization
within a common framework help to focus only on the DOA-SL problem.

Assumption 2 restricts the number of the cases that can occur in the real
world: this assumption allow to initially analyse the problem from a basic
case that doesn’t have to deal with false positive or true negative estimations,
preventing from dealing with the evaluation and eventual discard of some
wrong estimations.

Finally, assumption 3 leaves the problem of the DOA estimation to the
DOA estimation algorithms. This very large topic will not be deeply analysed
because the thesis will focus mainly on an higher level of programming for
robotics, considering the DOA estimation a simple signal coming from a
generic DOA sensor.



Chapter 3

Common Approaches

11



12 CHAPTER 3. COMMON APPROACHES

3.1 Introduction

In the ideal case, with perfect DOA estimations, all DOAs from each sensor
will intersect in the same point and the source could be localized by simply
finding the single intersection point of two of them.

Unfortunately, in the real world or in any realistic simulation, due to
estimation errors, the DOA estimations are not be perfect and hence the
intersections do not coincide.

In the state of the art there are some approaches that take this issue into
consideration and try to solve the DOA-SSL problem in different ways:

1. Centroid (C-DOA);

2. Weighted Least Square (WLS-DOA);

3. Robust Weighted Least Square (RWLS-DOA);

4. Grid Based (GB-DOA);

5. Gaussian Probability (GP-DOA).

All these approaches will be described in the following. The comparisons
among their behaviours and performances will be discussed in Chapters 5
and 6 using simulated tests and real experiments.
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3.2 Centroid

Let O be the set containing all the existing intersection points between all
the pairs of the DOA estimations:

O = {o(i,j) ∈ Rdim : 1 ≤ i, j ≤ Ns ∧ i 6= j ∧ o(i,j) = o(j,i)}, (3.1)

where dim can be 2 or 3 in the 2D or the 3D case respectively.
Analysing the 2D DOA-SSL problem (Figure 3.1), the first idea that comes
to mind for estimating the location of the source r is based on taking the
mean point among the intersections of the pairs of DOAs. The centroid r̂C is
simply the mean of the points in the set O; it minimizes the sum of squared
Euclidean distances between itself and each point in the set O [12] [13]:

r̂C =

∑
o(i,j)∈O o(i,j)

|O| (3.2)

r
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Sensor Reference 
System:

world

Legend

Estimated DOA:

Theoretical DOA:

Source position:
r

Sensor pose:
s

so

y

x
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r̂
o(2,i)

o(1,2)

o(1,i)

Figure 3.1: Example of 2D DOA-SSL problem with centroid solution. The
green points are the intersections between pairs of DOAs which are also the
vertexes of a triangle. The cian point r̂ is the centroid of that triangle.
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This approach has unfortunately some drawbacks: in the 2D case, the
intersection of two lines exists only if and only if the two lines are not parallel.
In this particular case, the intersection point is not considered and so the
cardinality of the set O, that is commonly |O| =

(
Ns
2

)
, has to be reduced.

In the 3D case, the intersection between two lines exists if only if the two
lines are complanar and not parallel. If two DOAs r and s are skew lines,
o(i,j) can be calculated as the medium point of the smallest segment that
links r and s using the same concept for calculating the distance between
two skew lines in the 3D space (Figure 3.2).

x

z

world
y

r

s
P

Q

O

Figure 3.2: Explanation for the centroid approach in the 3D space with two
skew lines.

This approach was introduced by Griffin et al. in [11] where they extended
this concept by removing the less reliable intersection points. In other words,
they deleted from the set O the intersection points that were too far from
the centroid r̂C .

The algorithm has a computational complexity of Θ(
(
Ns
2

)
) = Θ(N2

s ).
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3.3 Weighted Least Square

In [9], Hawkes et Al. proposed an analytic Weighted Least Square method
(WLS-DOA) that minimizes the distance of the estimated point to the esti-
mated DOA line. Here it is reported the detailed definition of the solution.
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^
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ki
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Figure 3.3: Explanation for the WLS approach.

Let the i-th DOA estimation be defined as:

ki = r− si (3.3)

The closest point from the line defined by the measurement vector ki to
the source position is written as:

si + Projk̂iki (3.4)

where the projection vector is defined as:

Projk̂iki = ki(r− si)k̂i (3.5)
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Note that the hypothetical source direction vector ki in Equation 3.5 is
projected onto the actual DOA measurement vector k̂i. The distance from
the real source position r to this closest point is:

di = ||si + Projk̂iki − r|| (3.6)

which is squared and summed to form the weighted least squares estimation:

r̂ = argmin
r

Ns∑
i=1

d2
iwi = argmin

r

Ns∑
i=1

||si + k̂
T

i (r− si)k̂i − r||2wi (3.7)

where wi is a weight associated with the accuracy of each DOA estimation
vector k̂i. The localization criterion 3.6 is illustrated in Figure 3.3. Equation
3.7 can be rewritten as:

r̂ = argmin
r

Ns∑
i=1

(
−2sTi (I− k̂ik̂

T

i )r + rT (I− k̂ik̂
T

i )r
)
wi (3.8)

where terms not related to r are omitted. Differentiating 3.7 with respect
to the source position r and setting the result to zero gives the following
equation:

2
Ns∑
i=1

(I− k̂ik̂
T

i )(si − r̂)wi = 0 (3.9)

Note that the second derivative should be confirmed positive semi-definite
to ensure that the point is actually the minimum and not the maximum. The
closed-form solution can be then written with the following one-shot formula
giving to the approach a computational complexity of Θ(1):

r̂WLS =

[(
Ns∑
k=1

wk

)
I− K̂WK̂

T

]−1

Aw (3.10)

where w = [w1, w2, . . . , wNs ]
T are the weights, W = diag(w),

I is the identity matrix, K̂ = [k̂1, k̂2, . . . , k̂Ns ]
T ,

and A =
[
(I− k̂1k̂1

T
)s1, (I− k̂2k̂

T

2 )s2, . . . , (I− k̂Nsk̂
T

Ns)sNs

]
.
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3.4 Robust Weighted Least Square

This approach was introduced first by Pertilä in [14] and starts from the
concept that some DOA estimations might not be originated from the same
source, causing a biased result. A single outlier DOA estimation may reduce
the efficiency of the WLS method. The RWLS approach tries to detect the
outlier estimations with the following procedure.

Let the power set P(S) be the set of all the subsets of S:

P(S) = {{∅}, {s1}, . . . , {s1, s2}, . . . , {sNs−1, sNs}, {s1, s2, s3}, . . . , S} (3.11)

A subset of the powerset with three or more DOA sensor and their corre-
sponding DOA measurements is noted by Sn. There are N3+ of such subsets,
where N3+ =

∑NS
i=3

(
Ns
i

)
.

The Average Distance Criterion (ADC) from a specific subset n can be
written in this way [14]:

ADC(n) =
1

|Sn|
∑
k∈Sn

dk,n (3.12)

where n = 1, . . . , N3+ is the subset index, |Sn| is the cardinality of subset
Sn, and dk,n is the distance contributed by the k-th sensor in the subset Sn
using criterion of Equation 3.6. The subset that has the minimum ADC is
selected for the solution:

ñ = argmin
n

ADC(n) (3.13)

r̂RWLS = r̂ñ (3.14)

The complexity of the algorithm is Θ(N3+) = Θ(
∑NS

i=3

(
Ns
i

)
).
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3.5 Grid based Approach

Griffin et Al. in [15] considered a 2D grid-based (GB-DOA) method that
is an approach based on discretizing the area of interest into a grid of N
points, and then finding the grid point whose DOAs match most closely the
estimated DOAs. Moreover, since the measurements are angles, it is used an
Angular Distance as a more proper measure of similarity. The grid is thus an
(S × N) matrix Φ, whose elements, Φi,n are the DOAs from the i-th sensor
to the n-th grid point.

Localizing a single source with this method is done in the following way:
we need to find the grid point whose DOAs match most closely the estimated
DOAs. However, in order to properly compare angles, Griffin defined an
angular distance function A(X, Y ) whose output is limited to the range [0, π].
An elegant, if somewhat inefficient, implementation of A(X, Y ) is given by:

A(X, Y ) = 2 sin−1

( | exp(jX)− exp(jY )|
2

)
(3.15)

With this defined, the problem may then be expressed as:

n̆ = argmin
n

Ns∑
i=1

[
A(φi,Φi,n)

]2

(3.16)

The source position estimate r̂GB is simply given as the coordinates of
the n̆-th grid point:

r̂GB = r̂n̆ (3.17)

As a source may be located anywhere within the area of interest, it is
be clear that the resolution of the grid, determined by the number of grid
points N , will influence the position estimation error. However, increasing
N to decrease the position estimation error will also increase the complexity
of the algorithm that is Θ(N). A good compromise is to use an iterative
algorithm that starts with a coarse grid, and once the best grid point is
found, a new grid centered on this point is generated, with a smaller spacing
between grid points, but also a smaller scope. Then the best grid point in
the new grid is found. This may be repeated until the desired accuracy is
obtained, while keeping the complexity under control. A drawback of this
method is that all the sensors are considered to have the same error and it is
not possible to set some weights. This issue will be resolved by the proposed
GP-DOA approach.
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4.1 DOA Single-Source Localization

The Gaussian Probability over DOA approach was first introduced in [10] for
the 2D DOA-SSL problem. This section will refer only to the 2D DOA-SSL
case. Hence it will be considered only one acoustic source r ∈ R with |R| = 1
at time and the obvious index j = 1 will be omitted (i.e. φi1 becomes φi).
As we now limit the problem to the two-dimensional case, all the sensors are
considered to be complanar and so for the DOA estimation will be taken into
consideration only the azimuth φi (Figure 4.1).
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world
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Figure 4.1: 2D DOA Single-Source Localization Problem (2D DOA-SSL).

The approach is based on the simple fact that each real DOA estimation
φi has an intrinsic error that depends mainly on the accuracy of the i-th DOA
sensor. This error can be modelled as a Gaussian probability error in the
angle domain with zero mean and variance σi using only values in the range
φi ∈ [−π, π]. Hence the angular probability sensor model Mi is defined as
follows:

Mi ∼ N (0, σi)[−π,π] =
1

σi
√

2π
e
− φ2i

2σ2
i , φi ∈ [−π, π] (4.1)
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At this step, as for the Grid-Based approach, it is needed a change of
domain from the angular domain to the Cartesian coordinate system G =
(n× n) ∈ Z2. G is as a square spatial 2D grid with a fixed spatial range [m]
and a fixed precision parameter prec [m] such that n = range

prec
.

The angle βq
i that considers Tsi = [sxi , s

y
i ]
T as vertex and it is included

between a first line that passes through Tsi and q and a second line given
by the axis syi is calculated for each generic point q = [qx, qy]T ∈ G.
soi is the orientation angle of si with respect of the world reference system
and it is calculated using the rotation matrix of the sensor Rsi (Figure 4.2):

βq
i = atan2(qy − syi , qx − sxi )− soi , q ∈ G ∧ i ∈ [1, Ns] (4.2)

where the function atan2 is the arctangent function with two arguments:

atan2(y, x) = 2 arctan

√
x2 + y2 − x

y
, atan2(y, x) ∈ (−π, π) (4.3)

x

sx

sy

s

so
ϕ

qβq
y

r
Figure 4.2: Representation of all considered angles in a DOA sensor.



22 CHAPTER 4. GAUSSIAN PROBABILITY APPROACH

The probability Gi in the grid G is given by evaluating in the angular
probability sensor model Mi the difference between the angle βq

i and the
DOA estimation φi for each point q:

Gi =Mi(β
q
i − φi) =

1

σi
√

2π
e
−

(β
q
i
−φi)

2

2σ2
i , i ∈ [1, Ns] ∧ ∀ q ∈ G (4.4)

All results of the operations among angles in Equations (4.2) and (4.4)
take a value in the range [−π, π]. The graphical representation of a single
DOA sensor estimation probability Gi over the Cartesian plane can be seen
in Figure 4.3.
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Figure 4.3: Graphical representation of a single DOA sensor estimation pro-
bability Gi over the 2D Cartesian plane G. Red and blue regions have higher
and lower likelihoods respectively.
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At this point all the Gi are multiplied point-wise for each q ∈ G obtaining
the multiplication of all the probabilities of all sensors G in the 2D space
domain (Figure 4.4).

G =
Ns∏
i=1

Gi =
Ns∏
i=1

[
1

σi
√

2π
e
−

(atan2(qy−sy
i
,qx−sxi )−s

o
i−φi)

2

2σ2
i

]
, ∀ q ∈ G (4.5)
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Figure 4.4: Example of Probability G over G with four DOA sensors.

Finally, the point in G with the maximum value of G is the estimation
of the solution r̂ ∈ G with the proposed Gaussian Probability over DOA
approach:

r̂GP = argmax
G

G (4.6)
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In Equation (4.5) the product is used instead of the sum for the fact that if
the likelihoods from different DOA sensors are independent, the intersection
of sets equals their product, as stated in [1].

It is worth noting that even though the probability axiom P (Ω) = 1 is
no longer satisfied in Equation (4.1), the omission of this axiom will not
compromise the correctness of the procedure: dealing with multiplications -
and not with sums - of probabilities (see Equation (4.5)), all unused values
can be omitted because are not useful and because the multiplication of
numbers ∈ [0, 1] still takes a value ∈ [0, 1]. On the other hand it is important
to set offline the experimented variances σi in order to represent correctly
each angular probability DOA sensor model Mi.
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4.2 Algorithm Analysis and Optimization

The algorithm showed in section 4.1 has clearly a computational complexity
of Θ(n2) because it has to calculate all the probabilities in G = (n×n) ∈ Z2

in order to find the maximum value in a two-dimensional matrix. In the
following it is described a smarter and faster approach proposed for the first
time in [16] for searching for the maximum value in G that analyses and
takes in consideration the shape of G.

Observing the shapes of the probability density function G (e.g. Figure
4.4) it seems that G is a Gaussian probability function. Unfortunately, each
Gi is no longer a Gaussian like Mi although Gi =Mi(β

q
i − φi). The reason

is due to the formula that calculates βq
i which translates the values from

the Cartesian domain to the angle domain. This change of domain causes
the loss of the property for Gi of being a Gaussian probability function,
preventing from using the well-known property that states that multiplication
of Gaussians is still a Gaussian [17]. On the other hand, in the majority of
the cases, it can be noted that Gi is unimodal, hence it has only one absolute
maximum:

Definition 1 A function f(x) is called unimodal if for some value m, it is
monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m.
In that case, the maximum value of f(x) is f(m) and there are no other local
maxima.

This property occurs when the DOA estimations are quite accurate. But
if we are not under this specific condition it can happen that the maximum
is no longer absolute. Fortunately, tests with increasing error over the DOA
estimations show that this unpleasant event happens very rarely and in most
of that cases the solution provided by the new search algorithm is still good
(see Section 5.3.2). Before explaining the details of this algorithm I suggest
a funny riddle:

The Top of the Unimodal Mountain

Suppose there is a robot-climber that needs to reach the top of
an unimodal mountain. The robot always knows which are its
geographical position and altitude - thanks to a compass and to
an altimeter - but it doesn’t know where is the top because there
is too much fog. Fortunately the robot can move safely to any
geographical position it wants only with its special jet-pack. Which
is the method that let the robot reach the top of the unimodal
mountain with the smallest number of uses of its special jet-pack?
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The solution of this funny riddle is not very immediate so let’s first con-
centrate on a single dimension of a n meters long mountain. If we start from
the foot of the mountain (e.g. from the left) and ”walk” towards the climb
(on the right), we could find the top in Θ(n) time. If the fuel of the jet-pack
is limited and the top of the mountain is on the top right, the robot couldn’t
reach the top of the mountain.

Hence, in a smarter way, we have to take advantage of the unimodal
property of the mountain by applying a special Unimodal Binary Search
(UBS) that takes also into consideration the slope of the mountain: for each
point we explore using the binary search, we will explore also the adjacent
point (i.e. the one on the left) and measure their respective altitudes in order
to decide in which direction to jump, in a binary search way. This method
will reasonably take Θ(log2 n) time.

Figure 4.5: Example of a solution of the Top of the Unimodal Mountain
riddle using the Unimodal Binary Search (UBS) approach.

Before going on, let’s see now a complete simple example in one dimen-
sion: the unimodal mountain in Figure 4.5 is long n = 64 = 2l where
l = log2n = 6 is the number of levels.
In the following there are all steps for reaching the top of the mountain:



4.2. ALGORITHM ANALYSIS AND OPTIMIZATION 27

1. Level l = 6: first the robot checks the altitude of position 32 (2l−1) and
its adjacent on the left (31) and sees that the top should be on the left.

2. Level l = 5: the robot jumps to the left to the position 16 (32 - 2l−1)
and checks also position 15.

3. The robot realizes that the altitude in 16 is higher than the one in 15
hence it jumps right to position 24 (16 + 8) (Level l = 4).

4. When the robot checks position 23 it sees that it has the same altitude
than in position 24. So it starts walking on the left till it finds a different
altitude.

5. Since in position 20 there was a lower altitude, the robot jumps right to
position 28 (24 + 4) (Level l = 3). Note that the robot can ”walk” on
the left only for 2l−1 position because the other left positions are already
been checked or can be discarded using the previous information.

6. At Level l = 2 the robot jumps to position 30 (28 + 2) where it has
to check positions 29 and 31 because the robot is at the end of the
algorithm.

7. Finally, positions 29 and 31 give minor altitudes so the robot can state
that the top of the mountain is in position 30.

For the two-dimensional unimodal mountain case it can be used a two-
level Unimodal Binary Search: the first level is a UBS over the rows; for each
visited row the approach applies another UBS (second level) that finds the
position of the maximum point of that row always in a UBS way. With this
procedure we reach the top of the mountain in Θ((log2 n)2) = Θ(log2

2 n) time
instead of the first näıve method that took Θ(n2): a very big amount of time
and fuel saved!

Working with probabilities and floating-point numbers it can happen that
two adjacent points have the same probability (see step 4 of the example).
In this case the above algorithm cannot decide where to jump. A solution
of this problem is, remembering the mountain, to ”walk” always in the same
direction until we find a different altitude. So if there are plain areas that are
all m < n long the overall complexity of the algorithm is Θ((m+ log2 n)2) =
Θ(m2 + log2

2 n+m · log2 n). Since the experimental tests were always in the
m� n condition, the computational time is still Θ(log2

2 n).
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4.3 3D DOA Source Localization

For the 3D space extension there are some differences that must be analysed.
For the explanation of the approach we need to discretize the 3D space intro-
ducing a cubic 3D spatial grid G = (n×n×n) ∈ Z3 with a fixed spatial range
[m] and a fixed precision parameter prec [m] such that n = range/prec and
q = [qx, qy, qz]T ∈ G. We now know from the formalization of the problem
that every sensor si has its own pose that is composed by a position in the
world defined as Ts

i = [sxi , s
y
i , s

z
i ]
T and an orientation Rs

i .
Taking this into consideration, at this step we suppose that the sensor si

detected a sound and estimated the DOA calculating the azimuth φi and the
elevation θi. For using the probabilistic modelM of Equation 4.1, we need a
further step that consists in calculating the angle αi between the estimated
DOA and the generic point q ∈ G, that are vector sip and the vector siq
respectively, with the following formula (see Figure 4.6):

s
azimuth ϕ

elevation θ

radius r 
3D

p

x

z
world
y

q

α

Figure 4.6: Angle α for the 3D model M.

αi =
acos(sip · siq)

||sip|| ∗ ||siq||
, α ∈ [0, π] (4.7)
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As stated in assumption 3, each real DOA estimation has an intrinsic error
that depends only on the accuracy and precision of the i-th sensor. This error
can be modelled as a Gaussian probability error in the angle domain with
zero mean and variance σi using only values in the range of α ∈ [0, π]. So the
angular probability sensor modelMi of Equation 4.1 is redefined as follows:

Mi ∼ N (0, σi)(−π,π] =
1

σi
√

2π
e
− α2i

2σ2
i , αi ∈ [0, π] (4.8)

For graphical reasons the shape of the probability model cannot be shown.
The three-dimensional model can be imagined thinking that the Gaussian is
equally distributed in all three directions. So Equation 4.5 becomes:

G(q) =
Ns∏
i=1

Gi(q) =
Ns∏
i=1

 1

σi
√

2π
e
−

(
acos(sip·siq)
||sip||∗||siq||

)2

2σ2
i

 , q ∈ G (4.9)

and from now on the algorithm follows the same procedure described in
Section 4.1.

The algorithm showed has clearly a computational complexity of Θ(n3)
because it has to calculate all the probabilities in G = (n × n × n) ∈ Z3 in
order to find the maximum value in a three-dimensional matrix (brute force).
Using the algorithm explained in Section 4.2 it is possible to reach the same
results of the brute force algorithm in Θ(log3 n) time.
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4.4 DOA Multiple-Source Localization

As said before, dealing with multiple coexisting acoustic sources makes the
DOA-MSL problem more complicated than the DOA-SSL one because it
introduces the problem of selecting and estimating among the same sensor
the DOA estimation that refers to a specific source. In the limited field given
by the initial assumption 2, we know that each sensor estimates n sources;
so we can say that n = NR and then we will search for all the NR different
solutions. In the following it will be considered the case with NS ≥ 3 because
the case NS = 2 arise the problem of selecting the right DOA intersections
(Figure 4.7).
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Figure 4.7: Problem of selecting the right DOA intersection. In the 2D space,
with only two sensors it is not possible to guess where are the location of two
sources (a). There is a need of a third sensor in order to give a solution (b).

In the GP-DOA approach, multiplying all Gij in a same probability map
G and trying to find the NR maxima would not be a correct approach be-
cause DOA estimations of different sources would mutually interfere and the
probability likelihood G would no longer be unimodal.

So the proposed approach collects and calculates all possible combinations
of DOA estimations, one for each sensor, that in this case are NNS

R . Unfor-
tunately, calculating all the possible solutions takes an exponential compu-
tational time of Θ(NNS

R ) that is the main drawback of the approach. After
collecting all the possible solution, the algorithm sorts the solutions by the
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value of the probability G(r̂j) for the GP-DOA approach and by the Average
Distance Criterion (ADC) of Equation 3.12 for the WLS-DOA approach.
The solution cannot be the first NR sorted solutions because it can happen
that, due to the intrinsic errors of the estimations, two or more of the top
NR solutions are calculated using the same DOA estimation φi,j. So it is ex-
tracted only the first solution (the most probable) and then the solution set
is pruned by eliminating all the solutions that were calculated used at least
one of the DOA estimations used for calculating the most probable solution.
At this step, the solution set is still sorted and the current first solution, that
is the second most probable solution among the available ones, is extracted.
Iterating this procedure NR times we will find out all NR estimations.

The Multiple-Source GP-DOA Selection Algorithm 1 takes in input the
solution set S and outputs the estimated positions of the NR sources. The
Solution set S contains the following information for each of the NNS

R solu-
tions:

• estimated source position in the 2D/3D space;

• probability p of the estimated source position calculated using the GP-
DOA approach;

• index of the DOA estimation used for calculating the estimated source
position for each DOA sensor.

Algorithm 1 Multiple-Source GP-DOA Selection Algorithm.

1: procedure Find Multiple Sources Solutions(S)
2: S ← sort(S, p)
3: for j ∈ [1, NR] do
4: rj ← top(S)
5: for k ∈ [1, |S|] do
6: if Sk used a DOA estimation already used in rj then
7: delete S[k] from S
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5.1 Introduction

Simulation was an helpful tool for comparing the localization performances
of the presented approaches for solving the DOA-SL problem before imple-
menting them for the real experiments. The simulation scenarios consisted
in groups of NS DOA sensors positioned in a virtual room G. It was also as-
sumed that the room G was without objects or obstructions and was always
a perfect square/cube of side n. The sound reflections over the wall were
not considered as previously assumed in assumption 3. At each iteration, all
sensors’ positions and orientations were positioned randomly in G. For each
test iteration the acoustic sources were also positioned randomly in G. For
all simulations it has been assumed that all sensors were similar so they had
the same probability error over the DOA estimation. Hence, for simulation
purposes, each DOA estimation was modified from the real one using the
probability model Mi with the same σi sim for all sensors. Each simulation
test was repeated tsim times for each group of sensors. The cardinality of
the sensors’ group NS was varied in the range [3, NS max]. The case with
NS = 2 was not considered for the reason that all the approaches give the
same solution that is the trivial intersection of the only two existing DOAs -
if the DOAs are not parallel. Simulation code was implemented in MATLAB
[18] using the Parallel Toolbox to speed up the simulation time.
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5.2 Simulation Tests

In the following are listed all the simulations done in chronological order:

1. Simulation for testing the accuracy and precision of the basic GP-DOA
algorithm versus the other state-of-art approaches;

2. Simulation for testing the accuracy and precision of the fast GP-DOA
algorithm;

3. Simulation for testing the accuracy and precision of the fast GP-DOA
algorithm augmenting only the error over the DOA estimations;

4. Simulation for testing the accuracy and precision of the fast GP-DOA
algorithm augmenting only the error over the position of the DOA
sensors;

5. Simulation for testing the accuracy and precision of the fast GP-DOA
algorithm in a 3D scenario;

6. Simulation for testing the accuracy and precision of the Multiple-Source
GP-DOA approach in a 3D scenario.

The order of the simulations follows the research steps. First of all it
was tested the accuracy and precision of the GP-DOA approach that was
proposed for the first time in [10]. Next there was the need to evaluate
the performances of the fast GP-DOA [16] and to see if the new theoretic
approach could be used without a loss of performance and most of all to
check if the binary search approach would not reach local maxima in the
majority of the cases, making the approach unusable. Once the GP-DOA
Fast approach resulted to be robust to local maxima, I tested the behaviour
of the algorithm inserting two errors separately: the error over the DOA
angle and the error over the position of the DOA sensors in order to see if
the approach could be used in a robotic environment. Finally I extended
the algorithm to the 3D scenario adding also the possibility to have multiple
sound sources at the same time.
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The localization performance metric used was the Distance Error (DE)
that is the distance between the estimated source position and the real source
position in meters [m] [1]. The validation metrics calculated were the mean
and variance values of all DEs. For each simulation type I considered the
following parameters:

• range [m] - the side of the square/cube of the grid G;

• σk sim - the variance of the DOA sensor Gaussian model;

• NS max - the maximum number of sensors in the environment;

• tsim - the number of repetitions of the simulation test;

• GP-DOA Basic prec [m] - the precision of the grid G for the GP-DOA
Basic approach;

• GP-DOA Fast 1 prec [m] - the precision of the grid G for the GP-DOA
Fast 1 approach;

• GP-DOA Fast 2 prec [m] - the precision of the grid G for the GP-DOA
Fast 2 approach;

• emaxφi
[degrees] - the maximum error of the angle given by the DOA

estimations;

• esi [m] - the maximum error of the position of the sensors in G.

Table 5.1 summarizes all the parameters’ choices for each simulation test.

# Simulation 1 2 3 4 5 6

range [m] 15 10 10 10 10 10
σk sim 0.1 0.1 0.1 0.1 0.1 0.1
NS max 20 20 20 20 20 8
tsim 103 105 105 105 105 102

GP-DOA Basic prec [m] 10−3 10−2 / / / /
GP-DOA Fast 1 prec [m] / 10−2 / / / /
GP-DOA Fast 2 prec [m] / 10−4 10−4 10−4 10−4 10−4

emaxφi
[degrees] 5 5 [5:5:50] 5 5 5

esi [m] 0 0 0 [0:0.1:1] 0 0

Table 5.1: Simulation Parameters used for each different type of simulation.
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5.3 Simulation Results

In this section are listed and commented all the results from all the simulation
tests.

5.3.1 GP-DOA vs. Other state-of-art approaches

The parameters used are for the first simulation are listed in Table 5.2.

range [m] σk sim NS max tsim GP prec [m] emaxφi
[deg] esi [m]

10 0.1 15 103 10−3 5 0

Table 5.2: Parameters used for tests in Simulation 1.
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Figure 5.1: Mean error comparison among all DOA approaches.

The Figure 5.1 shows the results of the mean values of the Distance Error
for the first simulation test with one thousand iterations. It is clear that the
Centroid method is not a good approach because it has not a stable mean.
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Figure 5.2: Zoom of the Mean error comparison among all DOA approaches.

In Figure 5.2 there is a zoom of the previous figure that give focus on
the behaviour of the other approaches. The Robust WLS-DOA approach
(RWLS-DOA) is almost stable with an error of about one meter. The re-
maining three approaches have a different behaviour while the number of
sensors augments. The mean of the Distance Error for the WLS-DOA, the
GB-DOA and the GP-DOA behaves similarly and the approaches give better
results with more sensors. The GP-DOA approach is a grid-based approach
as the GP-DOA and differs from the latter with the formula for calcula-
ting the angular distance function. As a matter of facts the behaviour and
the slope are very similar but the GP-DOA approach reaches slightly better
results.

Looking at the results of the variance of the Distance Error in Figure
5.3 we can see that the Centroid method is not plotted because its variance
values were too big. The RWLS-DOA method has a big variance that reflects
the mean error values and for these reasons cannot be considered properly
robust.
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Figure 5.3: Variance error comparison among all DOA approaches.

If we look to the zoom figure of the variance Distance Error in Figure 5.4
we see that the remaining three approaches have a similar behaviour that
again underlines the fact that the precision augment while the number of
sensors grows.
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Figure 5.4: Zoom of the Variance error comparison among all DOA ap-
proaches.
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RWLS-DOA approach failures

Although it was shown in [14] that the RWLS-DOA method performed better
than WLS-DOA in outlier situations, I found that it is error prone, because
in some situations it can discard the DOA sensors that are better than others.
A proof of the failure of this method can be easily given if we consider the
example in Figure 5.5 were we can see that the Robust WLS-DOA solution
(in magenta) is very far from the real one (in blue). On the other hand the
WLS-DOA solution (in green) and GP-DOA approach (in red) solutions are
closer to the real solution. This is due to the fact that the DOA estimations
of sensors s1, s2 and s3 intersect very close to each other (near the RWLS-
DOA solution), not considering that only sensors s1 and s5 are the only good
estimations and the others s2, s3 and s4 are outliers. So, it is not advisable to
discard any of the sensors because the real position of the source is unknown
and it is not possible to detect which DOA sensors are outliers if they have
the same probability error to be outliers. Furthermore, the simple WLS-
DOA approach can also lead to errors because a WLS-DOA estimation is
considered as a line without a precise direction. As an example, in Figure 5.5,
even if the DOA estimation of sensor s2 is pointing towards the south-east,
the WLS-DOA approach considers also the north-west direction (RWLS-
DOA fails also for this reason).

s1

s2

s5

s3

s4

x

y

world

Real Source Position

GP-DOA Solution

WLS-DOA Solution

RWLS-DOA Solution

Legend:

Figure 5.5: Example of failure of the Robust DOA-Based Localization pro-
posed in [1].



5.3. SIMULATION RESULTS 41

GP-DOA vs. WLS-DOA

In this subsection it is analysed in further detail the difference between the
GP-DOA and the WLS-DOA approaches because they resulted to be the
best among all approaches. In Figure 5.6 we see that GP-DOA performs
better in mean than WLS-DOA approach and the error diminishes as the
number of sensors grows in the environment. Conversely, the WLS-DOA
variance performs better than GP-DOA variance (Figure 5.7) that means
that GP-DOA has an higher accuracy but lower precision with respect to the
WLS-DOA approach.
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Figure 5.6: Mean error comparison among GP-DOA and WLS-DOA.
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5.3.2 GP-DOA Basic vs. GP-DOA Fast

In Figures 5.8 and 5.9 we can see the results of the mean and the variance
of the second simulation test. Here I used two different values of the preci-
sion prec for the Grid G for testing the performance of the GP-DOA Fast
approach. Looking first at the mean in Figure 5.8, we can see that both GP-
DOA Fast approaches are better than the WLS-DOA method. Although
having the same precision of the grid of the GP-DOA Basic approach, GP-
DOA Fast 1 is less precise and less accurate, as it can be seen also looking
at the variance of Figure 5.9. This can be addressed to the fact that the
shape of G is not always unimodal and so the algorithm found a local maxi-
mum. Augmenting the precision of the grid to 10−4 meters, it allows to reach
practically the same results obtained with the GP-DOA Basic method both
in mean and in variance but with much less time. The parameters used are
listed in Table 5.3.

range [m] 10
σk sim 0.1
NS max 20
tsim 105

GP-DOA Basic prec [m] 10−2

GP-DOA Fast 1 prec [m] 10−2

GP-DOA Fast 2 prec [m] 10−4

emaxφi
[degrees] 5

esi [m] 0

Table 5.3: Parameters used for tests in Simulation 2.
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Figure 5.8: Mean error comparison among GP-DOA Basic, GP-DOA Fast 1
and 2 and WLS-DOA approaches.
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Figure 5.9: Variance error comparison among GP-DOA Basic, GP-DOA Fast
1 and 2 and WLS-DOA approaches.



44 CHAPTER 5. VALIDATION WITH SIMULATION

5.3.3 Varying the DOA Angle Error

In this simulation I varied the Maximum Angle Error over the DOA esti-
mation emaxφi

between 5 and 50 degrees with a step of 5 degrees to see the
behaviour of the GP-DOA Fast compared with the WLS-DOA approach.
The simulation results, shown in Figure 5.10, reveal that GP-DOA Fast al-
ways outperforms the WLS-DOA approach1. Moreover the source estima-
tion error seems to be linearly dependent on the angle error and the different
slopes show that the GP-DOA approach is more robust over the error of the
DOA angle than the WLS-DOA approach. Finally, NS maintains its inverse
proportionality with respect of the source estimation error.

range [m] σk sim NS max tsim GP prec [m] emaxφi
[deg] esi [m]

10 0.1 20 105 10−4 [5:5:50] 0

Table 5.4: Parameters used for tests in Simulation 3.
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Figure 5.10: Simulation results of GP-DOA Fast 2 and WLS-DOA ap-
proaches varying the Maximum Angle Error over the DOA estimation emaxφi

.

1The variance chart is omitted because it is similar to the mean one.
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5.3.4 Varying the DOA Sensor Position Error

The results varying the Maximum Position Error over the DOA sensors emaxsi

are reported in Figure 5.112. It can be easily noted that WLS-DOA starts
to outperform the GP-DOA approach when the estimation of the position of
the sensors in the map has a maximum error of 0.4-0.5 [m]. This threshold
can be used in a real environment in order to select the approach to be used
for ASL purposes. Since we are dealing with small rooms, a robot position
error of 0.5 [m] can be reasonably considered as a borderline for actual SLAM
algorithms so it would be reasonable to use the GP-DOA approach.

range [m] σk sim NS max tsim GP prec [m] emaxφi
[deg] esi [m]

10 0.1 20 105 10−4 5 [0:0.1:1]

Table 5.5: Parameters used for tests in Simulation 4.
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Figure 5.11: Simulation results of GP-DOA Fast 2 and WLS-DOA ap-
proaches varying the Maximum Position Error over the DOA sensors emaxsi

.

2The variance chart is omitted because it is similar to the mean one.
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5.3.5 GP-DOA in 3D

In this simulation I extended the research also in the z axis. A MATLAB
example is shown in Figure 5.12. The results are shown in Figures 5.13 and
5.14 and the behaviour is the same as in the 2D scenario as expected.

range [m] σk sim NS max tsim GP prec [m] emaxφi
[deg] esi [m]

10 0.1 20 103 10−3 5 0

Table 5.6: Parameters used for tests in Simulation 5.

Figure 5.12: Example of 3D simulation in MATLAB. The blue point is the
real source position and the red point is the GP-DOA estimation.
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Figure 5.13: Mean error comparison among GP-DOA Fast 2 and WLS-DOA
approaches in the 3D space.
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Figure 5.14: Variance error comparison among GP-DOA Fast 2 and WLS-
DOA approaches in the 3D space.



48 CHAPTER 5. VALIDATION WITH SIMULATION

5.3.6 3D Multiple-Source GP-DOA approach

In Figure 5.15 we can see an example of the 3D simulation with three sources.

Figure 5.15: Example of 3D simulation with multiple sources in MATLAB.
The blue points are the real sources positions and the red points are the
GP-DOA estimations.
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The parameters used for the last simulation test are listed in Table 5.7.

range [m] σk sim NS max tsim GP prec [m] emaxφi
[deg] esi [m]

10 0.1 8 102 10−3 5 0

Table 5.7: Parameters used for tests in Simulation 6.

Localizing up to three sources at time and applying the approach de-
scribed in Algorithm 1 revealed that the GP-DOA approach is more robust
than the WLS-DOA while the number of sources augments5.16.
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Figure 5.16: Mean error comparison among GP-DOA Fast and WLS-DOA
approaches in the 3D space with multiple sources.
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6.1 Introduction

A real DOA sensor is a microphone array with at least two microphones. The
DOA can be calculated taking into account the Time Difference of Arrival
(TDOA) of the acoustic source among the signals of the microphones. The
number and the position of the microphones in the space is significant. For
the real tests I used mainly the Microsoft Kinect for Xbox 3601 (old model) as
DOA sensor. Microsoft Kinect has one RGB-camera, a 3D depth sensor and
four microphones positioned as shown in Figure 6.12. Each DOA estimation
came from HARK software3 implemented in a ROS package with an error
of ±0, 0873 [rad] = 5◦ [19]. For the sensors extrinsic calibration, I used the
ROS multisensor calibration software4 [20] developed in our laboratory that
helped us to easily calibrate and find the extrinsic parameters among Kinect
RGB-cameras. Starting from this calibration, I translated each RGB-camera
reference point to the reference point of the DOA estimation given by HARK
with respect to the reference system world. The reference point of the DOA
estimation given by HARK is exactly the center point over the x axis of the
Kinect as shown in Table 6.1.

A

B

D
C

RGB-Camera

Center 
Cutting Plane

K
RGB

K
C

Microphones

Figure 6.1: Kinect sensors - Microphones (A-D) and RGB-camera - positions
in 3D. Kinect RGB Reference System is shown with red arrows. The black
dashed line represents the center of the Kinect with respect to the x axis.

1http://www.xbox.com/kinect
2Note: all figures has the following well-known common notation for 3D axes: x axes

are in red, y axes are in green and z axes are in blue.
3http://winnie.kuis.kyoto-u.ac.jp/HARK
4https://github.com/iaslab-unipd/multisensor_calibration

http://www.xbox.com/kinect
http://winnie.kuis.kyoto-u.ac.jp/HARK
https://github.com/iaslab-unipd/multisensor_calibration
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Mic A [m] KRGB [m] KC [m] Mic B [m] Mic C [m] Mic D [m]
-0.1150 -0.0140 0 0.0350 0.0750 0.1150

Table 6.1: Kinect sensors - Microphones (A-D) and RGB-camera - positions
over x axis.

For the reason that the four microphones of the Kinect are all positioned
on its Kx

RGB axis (see Figure 6.1 and Table 6.1), a DOA estimator that
analyses the four audio signals can mathematically give only the rotation
angle (azimuth) of the plane with the normal perpendicular to the Ky

RGB

axis (i.e. the normal can be thought as belonging to the plane created by
Kx
RGB and Kz

RGB axes), taking the Kz
RGB axis as zero axis and KC as zero

point for the angle estimation. For example, if the sound source is in front of
the device and its position belongs to the plane created with the point KC

and the two vectors Ky
RGB and Kz

RGB, then the estimated azimuth should
be φ = 0 degrees. Note that in this way it is impossible to understand if
the sound comes from the front or behind the device (Figure 6.2), like in the
well-known Cone of Confusion problem.

π-ϕ

ϕ

Kc

S

Figure 6.2: Example of limitation of the Kinect DOA sensor. S is the right
available source position, the red crossed position is the wrong available
position.

In this Figure we can see that the Kinect DOA sensor cannot decide which
of the two available solutions is the right one. For simplicity, only the front
positions are considered as possible solution, limiting the DOA sensor range
to −π

2
≤ φ ≤ π

2
.
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6.2 Sensor Accuracy Estimation Test

6.2.1 Introduction

Evaluating the accuracy and the precision of a real sensor can be sometimes
uneasy especially for audio DOA sensors. The main problem is to find a reli-
able ground truth in the audio domain. This issue is often simply overcome
by measuring the position of the acoustic source in the environment relatively
to the sensor by hand measurements (i.e. with a meter and a goniometer).
This approach is used for example by Pavlidi et al. in [21], where the sound
source angle of both active male speaker and static speakers was measured in
a previous step. A different approach can use the video signal and associate
it to the audio signals to infer more information. Hershey and Movellan in
[22] gave an application of this topic associating facial moves to the sound in
order to localize the sound source; Siracusa et al. [23] proposed a method for
speaker localization and head focus using facial tracking with a Kinect-like
sensor. Our approach uses a visual checkerboard that allows to give with high
precision the 3D pose and position of a RGB-camera. The choice of the use
of this type of ground truth was thought to be used in robotics applications
that use video features for localizing robots with Simultaneous Localization
and Mapping (SLAM) algorithms.

This section will explain all the details of the experiment done for esti-
mating the Kinect DOA sensor accuracy and precision. For the DOA estima-
tion I used the code provided by HARK [19], that implements the adaptive
beamforming algorithm called Multiple Signal Classification (MUSIC) [24]
and can work with Kinect under the Robotic Operating System (ROS) [25].
In order to calculate the error of the DOA estimation given by HARK I set
up the following experiment that used the RGB image calibration as ground
truth: in a white square in the center of a 4 ∗ 3 checkerboard CB (with
CBsq sz = 0.675 [m]) printed over a cardboard, a circular frame was removed
in order to create a hole where it was possible to insert an acoustic speaker
(Figure 6.3). Using the OpenCV checkerboard finder [26], I determined the
position and pose of the RGB sensor KRGB of the Kinect with respect to the
reference corner of the checkerboard CBRGB (Figure 6.1).

During tests, an audio signal with pre-registered stereo speech noises was
played by an acoustic speaker positioned behind the checkerboard with the
center of the speaker in CBSPK . The 3D point CBSPK is calculated from
CBRGB taking in consideration that belongs to the checkerboard plane (with
CBsq sz = 0.675 [m]) and is in the center of one of its white squares shown in
Figure 6.3. For avoiding multiple audio sources I did the experiment totally
in silence and played it only over the channel of the stereo speaker that
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CB

CB
SPK

RGB

Figure 6.3: CB is the checkerboard used for sensor accuracy estimation.
CBRGB is the reference frame of the checkerboard found by the OpenCV
checkerboard finder. CBSPK is the center of the speaker and belongs to the
checkerboard plane.

was behind the checkerboard. During the experiment, the reference system
composed by the checkerboard and the speaker was leaved always in the same
position, with CBy

RGB (the y axis of the checkerboard) perpendicular to the
ground. Only the pose and position of the Kinect were changed. In order to
keep the Ky

RGB axis always perpendicular to the ground, I fixed the Kinect
on a wheeled cart and moved only the cart. For each noise detection, HARK
estimates the direction of arrival (DOA) of the sound with a granularity of
5 degrees.

At each new sound source detection, each DOA estimation φi and the
corresponding position and pose estimation (KR

RGB, KT
RGB) of the Kinect

with respect to the checkerboard CBRGB were associated. After collecting
data moving the device in different pose and positions, it was calculated
the azimuth error eφ considering the OpenCV checkerboard finder as ground
truth. This choice for the ground truth is supported by a previous research
that proved that the error over KR

RGB is less than 0.1 degrees and the error
over KT

RGB is about 2 cm and increases depending on the distance of the
RGB sensor from the checkerboard [20]. eφ was computed by calculating the
angle between the norms of the following two planes (Figure 6.4):
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1. Estimated Plane Pest - plane generated by:

• KC point;

• Ky
C axis;

• KCS
5 vector calculated rotating Kz

C over Ky
C by αi.

2. Ground Truth Plane Pgt - plane generated by:

• KC point;

• Ky
C axis;

• KCCBSPK vector.

eφ = arccos

[
PN
est

‖PN
est‖
• PN

gt

‖PN
gt ‖

]
(6.1)

where PN
est and PN

gt are the normals of Pest and Pgt respectively.

KC KRGB

CB
RGB

SPK
CB

ϕe

Pgt
estP

S

Figure 6.4: Angle error eφ between the Estimated Plane Pest and the Ground
Truth Plane Pgt.

5Note that the position of S is unknown and cannot be estimated. S is an arbitrary
point that belongs to the DOA and it is plotted only for understanding reasons.
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6.2.2 Experimental Results

For the experiment I used a Microsoft Kinect for Xbox 360 [27] plugged into
a laptop with i7-4700MQ CPU @ 2.40GHz 8 and 11,5 GiB RAM running
under Linux (Ubuntu 12.04). Audio signals were processed by HARK [19]
and video signals were analysed by an OpenCV application [26] used also in
[20]. The audio-video synchronization and signal processing was done within
ROS [25]. Test were done for n = 400 different positions of the Kinect with
respect to the checkerboard. Results are shown in Figures 6.5(a-d) and 6.6.
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(c) Absolute error for each φi. The red dot-
ted line is the mean angle error meφ = 3.9
in degrees.

(d) Absolute error 2D distribution for each
φi.

Figure 6.5: Test Results with different positions of the Kinect with respect
to the checkerboard.
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Figure 6.6: Absolute angle errors ordered by the angle estimation classes.
The red dotted line links the mean errors for each estimated angle class.

In Figure 6.5(a) are plotted all the φi for i ∈ (1, n). All the positions
assumed by the Kinect with respect to the checkerboard are well visible in
Figure 6.5(b). The absolute value of eφ of each position is showed in 6.5(c)
and the red dotted line is the mean angle error meφ = 3.9 in degrees. The
variance of the error is σ2

eφ
= 21.15 in degrees. In Figure 6.5(d) is plotted the

distribution of eφ in the 2D space. Notice that, for granularity reasons, the
mean error meφ of about 5 degrees corresponds to an error of only one value
of the available angles. Figure 6.5(d) shows that the error isn’t affected by
the distance of the sound source with respect to the sensor. Furthermore,
Figure 6.6 shows that the error isn’t affected by the angle of the sound source
with respect to the sensor (it doesn’t varies to much augmenting φ). Finally
we saw that the accuracy of the DOA estimation is highly corrupted if the
sensor is moving. These last two statements allows to associate this error
to the Gaussian probability error in the angle domain with zero mean and
variance of Equation 4.1.
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6.3 Tests

6.3.1 Fixed 2D DOA sensors

The first real test consisted in setting three Kinects in a line with the positions
and orientations shown in Table 6.2 and clapping hands in different positions.
A total of twenty different positions with rx ∈ [−1, 1], ry ∈ [0.5, 2] and a step
of 0.5 [m] are visible in Figure 6.9. Another simulation was done using the
same parameters used in the real test in order to compare the results. For
the GP-DOA simulation I used prec = 0.01 and tsim = 1000 and the mean
of the number of samples collected for each real test number is 35.

Sensor Type k sxk [m] syk [m] sok [rad]
Kinect 1 -1.05296 0.897504 0
Kinect 2 0 0 0
Kinect 3 0.0314011 0.0343866 0

Table 6.2: Sensors positions and orientations in real test.

Looking at real tests results and its related simulation results shown in
Figures 6.7 and 6.8 it is possible to see that G-DOA performs always better
than WLS-DOA both in mean and in variance and that real results does not
differ so much to the ones of its relative simulation. This can be addressed
to the fact that in this specific case there are only three sensors and in the
simulation results of Figures 5.6 and 5.7 G-DOA performed always better
than WLS-DOA in the case Ns = 3. It is evident that errors becomes bigger
as the distance between the acoustic source and the sensors grows. This is
visible looking at results of Test Numbers [1, 5, 11, 16, 20] in Figure 6.7, 6.8
and 6.9 that correspond to lateral positions in G. This phenomenon reflects
the fact that the distance between the real DOA and a position q increases
as q moves away from the vertex of a fixed angle. Qualitative results for
the second real test showed that the algorithm performed well and the main
problems arose when the SLAM algorithm didn’t estimate well the robot
pose.
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Figure 6.7: Mean values of the Real test results of G-DOA vs. WLS-DOA.
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Figure 6.8: Variance values of the Real test results of G-DOA vs. WLS-DOA.
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Figure 6.9: Real Tests results. WLD-DOA and G-DOA position estimations
are in green and red respectively. Source and sensors positions are in blue
and red respectively. The axis scale is measured in meters.
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6.3.2 Mobile 2D DOA sensors

In the second test I used three Microsoft Kinect as DOA sensors, with one of
them mounted over a Pioneer 3-AT with a laser scanner. The real test con-
sisted in having two fixed kinects and moving the Pioneer in the environment
towards the clapping hands position (Figure 6.10)6.

(a) Audio Localization with map in Rviz

(b) Screenshots of the video

Figure 6.10: Real experiment with three Microsoft Kinect as DOA sensors,
with one of them mounted over a Pioneer 3-AT with a laser scanner.

6A short video can be seen at: https://www.youtube.com/watch?v=TVAQ-sFSpF8

https://www.youtube.com/watch?v=TVAQ-sFSpF8
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6.3.3 Fixed 3D DOA sensors

Real Testing of the 3D DOA-ASL has been done with two different experi-
ments using two different kind of DOA sensors:

• Aldebaran NAO robot;

• Microsoft Kinect.

NAO

This experiment was done using two Aldebaran NAO robots and using the
built-in ALSoundLocalization method. This method uses the microphones
on the head of the robot to localize in the impulsive sounds. The position of
the four microphones allows to calculate the both azimuth and elevation of
the acoustic source heard (Figure 6.11).

Figure 6.11: Position of the four microphones in a NAO v4 robot.

The native procedure is not very precise (error of about 15 degrees),
especially with the elevation, because the position of the microphones does
not permit to reach better results. In this experiment the robots were first
calibrated using their cameras and a checkerboard and a human clapped the
hands in different 3D positions near the robots.
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Figure 6.12: 3D DOA-ASL using two Aldebaran NAO robots. the point in
red in the computer’s screen shows that the source comes approximately near
the camera that took the photo.

Unfortunately it has been impossible to collect data of the experiment
because the blue NAO was lent for few hours, but the results visible on the
screen show that the algorithm worked well also with the inaccurate DOA
estimator of the NAO robots7.

7A short video can be seen at: https://www.youtube.com/watch?v=vsTvc-AEdJU

https://www.youtube.com/watch?v=vsTvc-AEdJU


6.3. TESTS 65

Kinect 3D

In order to have a good and cheap 3D DOA sensor I used a combination of
two Microsoft Kinects: the old model under the Kinect one model flipped of
90 degrees clockwise (Figure 6.13). The old model was used for calculating
the azimuth and the new model was used for the elevation. In order to have
right results with the combination of the two values, the initial point of the
DOA was considered to be in the center of the new model KC .

KC

KRGB

Figure 6.13: 3D Kinect DOA sensor using a Microsoft Kinect (old model)
and a Kinect One (new model).
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The experimental set up was based on two 3D Kinect DOA sensors (4
Kinects) positioned as show in Figure 6.14. After the video calibration of
the four Kinects, the experiment consisted in setting a loud speaker playing
a continuous speech noise in 27 different 3D positions in the nearby environ-
ment (see Figure 6.15). In Table 6.3 there is the number of data collected
with a mean of about 43 DOA estimation for each source position.

Figure 6.14: 3D DOA-ASL using four Microsoft Kinect setup.

Source position number 1 2 3 4 5 6 7 8 9
Number of estimations 47 50 41 46 39 40 47 43 50

Source position number 10 11 12 13 14 15 16 17 18
Number of estimations 59 46 43 50 50 39 39 45 40

Source position number 19 20 21 22 23 24 25 26 27
Number of estimations 44 40 37 44 41 42 55 41 40

Table 6.3: Number of source estimations for each source point.



6.3. TESTS 67

Figure 6.15: 3D DOA-ASL experiment source positions.

Results are shown in Figure 6.16. As it can be noticed, the Mean Distance
Error is high with respect to the first real experiment. This is due mainly
for two reasons: first of all the distance of the sound source from the sensors
was augmented (up to more than three meters); second, the test was done
using only two 3D DOA sensors instead of three or more. As we saw from
the simulation results, more is the number of DOA sensors and better is the
source estimation. The sources that are positioned in the middle between
the two DOA sensors have better estimations (e.g. positions 4, 5, 13, 14, 23).
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Figure 6.16: Results of the 3D DOA-ASL experiment.



Chapter 7

Conclusions

This thesis dealt with the problem of finding the source position of acoustic
sounds using the DOAs calculated by the DOA sensors mounted on robots.
In the field of robotics this approach was never been used and it bring to
the state of the art a new way of using the audio sensors mounted on the
robots. So, in order to avoid bottleneck problems sharing audio-video data
among robots, I proposed a method that shares only the pose of the robot
and the DOAs of the acoustic sources heard. A new grid-based probabili-
stic algorithm is also proposed that, instead of the GB-DOA approach, can
apply different weights to the DOA sensors precision. The algorithm has
also been fastened heavily after a deep study of the problem assisted by the
simulation tests. The approach has been extended for 3D audio localisation
and for multiple audio sources. Simulation tests prove that this new method
gives better results than all the other state of the art DOA-approaches. In
conjunction with the spreading use of the Robot Operating System (ROS),
I proposed a new way of thinking the audio for robotics: use video sensors
for robot audio localization. Finally, real tests with Microsoft Kinect devices
as DOA sensors mounted on a mobile robot and with two Aldebaran’s NAO
robots show that the algorithm can be used in real time with a ROS package
with encouraging results.
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A.1 Why ROS?

The choice of using the Robot Operating System [25] for developing all the
features explained in the thesis is due to the following factors:

• simplification of sensors signal connections in a network;

• easy data sharing;

• robust data synchronization;

• abstraction of the concept of device and no further driver implementa-
tion;

• modular approach using logical nodes;

• orientation towards the large community development and reuse.

Undoubtedly the ROS framework is a very useful tool because it avoids
wasting time with other issues that does not properly concern the field of
robotics (e.g. network issues, driver compatibilities, etc.).

A.2 Package Download

I implemented a C++ ROS package that can be downloaded here:

https://github.com/iaslab-unipd/DOA_acoustic_source_localization.git

The package is written in order to be extended with other features like 3D
Audio Localization and Multiple Sources Localization. The basic version al-
lows to estimate only one acoustic source at time. A map of the environment
can be linked if the user has a fixed reference.

https://github.com/iaslab-unipd/DOA_acoustic_source_localization.git
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A.3 Installation and Required Packages

The current version of the ROS package works only under Ubuntu 12.04
(Precise) with ROS Hydro Medusa (Figure A.1).

Figure A.1: ROS Hydro Medusa.

The reason is due to the HARK-Kinect ROS package I used for the im-
plementation that is compatible only with the above configuration. After
the installation of the ROS environment, the HARK-ROS package should be
installed first, following the instruction from the HARK site1 and being care-
ful to select the Ubuntu 12.04 (Precise) section. Then the HARK-KINECT
package should be installed from the instruction of the HARK site2 and
tested with a real Microsoft Kinect plugged in. The user must verify that
the packages listed in Table A.1 are installed with the correct version. Other
versions of the following packages are not recommended. The packages signed
with an asterisk (*) must be installed with a version that is different from
the current one and can be downloaded from the repository of our package
or from the HARK repository3.

1http://www.hark.jp/wiki.cgi?page=HARK+Installation+Instructions
2http://www.hark.jp/wiki.cgi?page=HARK-KINECT+Installation+Instructions+

%28as+a+USB+recording+device%29
3http://www.hark.jp/harkrepos/dists/precise/non-free
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Package name Version
harkfd* 2.0.0.6582
harkfd-dev* 2.0.0.6582
harktool4* 2.0.0.5427
flowdesigner-0.9.1-hark 2.1.0
hark-designer 2.1.0
hark-kinect 1.2.0.4440
hark-music 2.1.0
hark-ros-hydro 2.0.0.6430
harktool4-cui 2.1.0
julius-4.2.3-hark 2.1.0
julius-4.2.3-hark-plugin 2.1.0
libhark-netapi 2.1.0
libharkio-dev 2.1.0
libharkio1 2.1.0
libharkio2 2.1.0
libharkio2-dev 2.1.0

Table A.1: HARK Packages.

For installing the DOA acoustic source localization package do the following:

1. copy DOA acoustic source localization package in your /rosbuild di-
rectory;

2. cd ./your rosbuild path/rosbuild

3. rosws set DOA acoustic source localization and then answer ”yes”

4. ∼ /.bashrc

5. roscd DOA acoustic source localization

6. make

If there are no errors, the package is correctly installed.
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A.4 Input Parameters

In this part are detailed all available input parameters:

• is simulation: type boolean. If set to “true” it disables the subscrip-
tion to the topic containing the DOA estimations published by the
HARK-Kinect ROS nodes. In this mode the DOA estimation data can
only be set in a file.

• data simulation file path: type string. Absolute path of the file con-
taining the angles (in degrees) of the DOA estimations of the sensors.
Each row contains an angle and the value in the first row is assigned
to the first sensor, the second row is assigned to the second and so
on. Example of file “/home/username/workspace/ros/angles sim.txt”
containing three angles:

90

-45

120

• n sound DOA sensors: type int. Number of DOA sensors in the
network.

• audio signal power threshold: type double. Threshold that helps
selecting the acoustic sources with a minimum signal power. Common
values go from 25 to 40. A good choice is, for example, 35.

• algorithm type: type int. There are three available algorithms:

1. GP-DOA fast

2. GP-DOA slow

3. WLS-DOA

WLS-DOA solution is always calculated (one shot formula) and it is
used as starting point for the GP-DOA research and refinement. If
there are only two DOAs in the 2D space - trivial problem - all the
three algorithms give reasonably the same solution, so it is calculated
only the WLS-DOA one because it is the fastest.

• precision grid: type double. Precision in meters of the grid. Com-
mon values are 0.01 or 0.001 for GP-DOA Basic and 0.001 or 0.0001.
Note that the precision value of the grid can be very small if used
with the GP-DOA fast algorithm because of its high reduction of the
computational time with respect to the slower one (see Section 4.2).
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• range: type double. Exploration range in meters. Note that the center
point of the grid G is the WLS-DOA solution.

• tf world name: type string. Name of the reference frame to which all
the poses are referred. Example: /world

• tf solution name: type string. Name of the reference frame of the
published solution. Example: /sound source estimated position

• rviz DOA line lenght: type double. Length in meters of the lines
that start from the DOA sensor and represent the DOA.

• sensor 3D pose topic < i >: type string. Name of the topic of the
i-th-DOA sensor pose.

• DOA topic < i >: type string. Name of the topic of DOA estimation
of the i-th-DOA sensor.
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A.5 Simulation Tests

For testing the package in simulation mode the user has first to set the pose
(position and orientation) of the DOA sensors. It can be done by modifying
the launch file that publishes the tranformations (tf ). Here is an example:

<node pkg="tf" type="static_transform_publisher" name="DOA_sensor_1"

args="1 2 0 0 0 0 1 /world /DOA_sensor_1 100" />

where the DOA sensor 1 is in the position sx,y,z1 = [1, 2, 0] and the orien-
tation is written in quaternions so1 = [0001]. Note that the program takes
into consideration the DOA in the xy-plane and a DOA with 0 degrees is con-
sidered to be on the x axis (see Figure 6.1). During the simulation tests the
user can vary the values of the data contained in the data simulation file;
after saving the file, the package will update the values and will show the
new solution.

Figure A.2: Simulation of 2D DOA-ASL in ROS using three DOA sensors in
rviz (ROS). The red point is the source position estimation.
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A.6 Real Tests

Real tests need the calibration of the DOA sensors. Doing it manually can be
a very long process and usually is error prone. Finding the extrinsic calibra-
tion parameters between DOA sensor is not so easy because the user has to
measure the position of all the microphones and then calculate the position
of the DOA starting point. As we deal with mobile robots, this procedure
cannot be done considering only the microphones because the robot changes
its pose and consequently the pose of its microphones. For this reason ,it
can be helpful to use the vision sensors that normally do the Simultaneous
Localization And Mapping (SLAM) that update the pose of the robot and
provide a link between video and audio sensors. In order to achieve this aim
I used another ROS package that allows to calibrate multiple vision sensors,
a project that I started when I was in Paris and then developed in collabora-
tion with my laboratory 4. I used this package with the RGB images coming
from the Microsoft Kinect.

A.6.1 Microsoft Kinect configuration

Using HARK with Microsoft Kinect is very simple but there are some details
to take into consideration. First of all, once the RGB calibration is done, we
need to consider the following transform that refers to Figure 6.1 and Table
6.1:

<node pkg="tf" type="static_transform_publisher" name="hark_to_rgb"

args="-0.0140 0 0 -0.5 0.5 -0.5 -0.5 /kinect_rgb /hark 100" />

Second we need to link each kinect RGB sensor to the right DOA HARK
estimation. This procedure is very important and must be done paying
attention. HARK ROS files contain all the information that HARK needs
to localize the sounds. These data are collected in files with extension “.n”.
In our package I provided also some example files that can be modified for
the user needs. The parameters that the user has to modify are substantially
three. One is the plughw value that refers to the audio hardware to which
the Kinect is associated. This value can be found in the computer by typing

cat /proc/asound/cards

and looking to the number of the device assigned to the kinect. Here is
an example of output:

4https://github.com/iaslab-unipd/multisensor_calibration

https://github.com/iaslab-unipd/multisensor_calibration
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0 [MID ]: HDA-Intel - HDA Intel MID

HDA Intel MID at 0xd3710000 irq 47

1 [PCH ]: HDA-Intel - HDA Intel PCH

HDA Intel PCH at 0xd3714000 irq 48

2 [Audio]: USB-Audio - Kinect USB Audio

Microsoft Kinect USB Audio at usb-0000:00:14.0-2.1, high speed

so in the file “.n” you have to put plughw : 2. Note that if you plug more
than one Kinect to the same computer, the plughw will increase and the
unique way to associate the right HARK signal to the right Kinect is to plug
one Kinect at time, being careful to note the plughw value in order to set
the right topic in the launch files. The second parameter that the user needs
to modify is the TOPIC NAME HARKSOURCE inserting the name of
the topic of the DOA. Finally the user have to modify the A MATRIX
parameter of the node node LocalizeMUSIC 1 and put the absolute path
of the file kinect loc.dat that contains the information for localizing sounds
in the kinect.

Summarizing, the steps for a real test are the following:

1. plug the usb cable of the Kinects to the computer one at time and label
them with a name or a number that links to the plughw number;

2. calibrate the Microsoft Kinects and find the extrinsic parameters;

3. launch roscore;

4. launch the ROS transform publishers and visualize them in rviz;

5. modify the .n files and the launch file of the ROS
DOA acoustic source localization package being careful to assign the
correct topics to the correct values;

6. launch the .n files that start to output the DOAs from the Kinects;

7. launch the ROS DOA acoustic source localization package.
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