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1 Summary 
 

Improved animal production, largely as a result of genetic selection, was one of the greatest 

achievements of the last century. The dominant dairy cattle breed, at a global level, is the Holstein-

Friesian. The breed has undergone an extreme genetic selection for several decades, towards high 

milk yield, and incorporated by high-nutrient and milk output systems. However, the high genetic 

pressure on only one trait, i.e. milk yield, resulted in unfavorable impacts on the welfare of the cows 

(i.e., metabolic stress, lameness, mastitis, reduced fertility and longevity). Moreover, as animals 

tend to adapt to the environment they are selected in, it is likely that selection for increased yield 

may also lead to environmental sensitivity. For instance, the negative correlation between 

production and fitness traits in less favorable environments is indicative of a decline in adaptability 

in the modern dairy cows. An increased importance exists, nowadays, for farm animal welfare that 

is recognized by all stakeholders in the farm animal production chain.  

These considerations, together with the unchanged primary goal of the dairy industry for 

high milk quality for the consumer’s market, has lead, in some cases, in the use of crossbreeding 

between Holstein-Friesian and other dairy and dual-purpose breeds. In some countries, dual-

purpose breeds such as the Simmental, Montbéliarde, Normande, and specialized breeds such as the 

Brown Swiss and Jersey are considered the breeds of choice for crossbreeding. These breeds, 

including the local Italian (North-east Italy) breeds of Rendena and Alpine Grey, tend to offer 

superior milk quality, complemented by high beefing merits. This combination can result in 

increased revenue from male calves and cull cow sales. 

Nevertheless, comparison of milk quality of these different breeds is lacking in the literature, 

especially due to practical difficulties in the recording system of lots of animals, that are reared in 

different mixed-breed farms. To alleviate this problem, the Cowplus project has been developed at 

the Department of Agronomy, Food, Natural resources, Animals and Environment at University of 

Padova. The project permitted the sampling of 1,508 cows reared in 41 multi-breed herds, located in 
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Trentino region in the north-eastern Italian Alps. Farms were selected from a pool of 610 herds 

enrolled in the Italian milk recording system. Cows were recorded for body characteristics, daily 

milk yield and composition, renneting aptitude, and cheese-yield. In total, 6 dairy and dual-purpose 

breeds were used. As part of the Cowplus project, this study aimed in: 1) the quantification and 

characterization of the effects of high or low herd productivity (defined according to the milk net 

energy yielded daily by the cows); 2) quantifying the variability of the herds within herd 

productivity class; 3) performing a within-herd comparison between the 3 dairy and the 3 dual-

purpose breeds; 4) analyzing the effects of the days in milk (DIM) and the parity of the cows, on 

traditional milk quality and milk renneting aptitude (Chapter 1), cheese-making ability (Chapter 2), 

milk mineral elements (Chapter 3), and productivity and efficiency indicators of lactating cows 

(Chapter 4).  

More precisely, the goal of the first chapter was to test the afore mentioned effects on 

coagulation properties, and assess the repeatability and reproducibility of traditional milk 

coagulation properties (MCP) and curd-firming over time (CFt) modeled and derived traits. Milk 

samples were collected from all the 1,508 cows and analyzed in duplicates (3,016 tests) using two 

lactodynamographs (Formagraph, FOSS) to obtain 240 curd-firmness (CF) measurements in 60 

min (one every 15 sec) for each duplicate. Results showed that the effect of herd-date on the 

traditional and modeled MCP was modest while individual animal variance showed the highest 

incidence. The repeatability of MCP was high (> 80%) for all traits excluding those depending on 

the last part of the lactodynamographic curve (57 to 71%). The reproducibility, taking also into 

account the effect of instrument, was equal or slightly lower than repeatability. Milk samples 

collected in farms characterized by high level of productivity exhibited delayed coagulation but 

greater potential curd firmness compared to milk samples collected from low productivity herds. 

Large differences in all MCP traits were observed among breeds, both between specialized and 

dual-purpose breeds, and within the two groups, even after adjusting for milk quality and yield. 

Milk samples from Jersey cows, both for milk quality and MCP, and also from Rendena cows (but 
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only for coagulation time) were superior respect to milk from Holstein-Friesian cows, while 

intermediate results were found for the other breeds of Alpine origin.  

The second chapter aimed at evaluating the same effects on 508 model cheeses derived from 

508 cows of 6 different breeds. For each cow 6 milk composition traits, 4 recovery traits (REC) of 

milk nutrients (fat, protein, solids and energy) in the curd, and 3 actual % cheese yield traits 

(%CY), expressing the fresh cheese, cheese solids and cheese water as percentages of the processed 

milk were analyzed (these traits were obtained during the experimental cheese-making process). In 

addition, 2 theoretical %CYs (fresh cheese and cheese solids) were calculated from the milk 

composition, and 2 overall cheese-making efficiencies (fresh cheese and cheese solids) were 

calculated as the % ratio between actual and theoretical %CYs. Daily milk yield (dMY) was also 

measured and estimates were made of 3 actual daily cheese yield production traits (dCY) per cow 

(fresh cheese, cheese solids and water retained in the cheese). Results showed that cows reared in 

high productivity herds yielded more milk with greater nutrient contents and more cheese per day, 

and had greater theoretical %CY, although to a lesser extent, actual %CY. However, they did not 

differ from low productivity herds in terms of REC traits (except solids), while they had a lower 

solid cheese-making efficiency. Individual herds within productivity classes were an intermediate 

source of total variation with respect to REC traits (11.3% to 17.1%), and to actual and theoretical 

%CY and estimates of efficiency (10.0% to 17.2%), and a major source for milk yield and dCY 

traits (43.1% to 46.3%). Breed within herd greatly affected all traits. Compared with the dual-

purpose breeds, the 3 specialized dairy breeds (Holstein, Brown Swiss and Jersey) had, on average, 

a similar dMY, better milk composition, greater actual and theoretical %CY, similar fat and protein 

REC, and slightly lower cheese-making efficiency. Of the specialized dairy cow breeds, Holsteins 

produced more milk, but Brown Swiss cows produced milk with a greater nutrient content, greater 

nutrient REC, higher actual and theoretical %CY and a higher cheese-making efficiency, so the two 

large breeds had the same dCY. Small Jersey cows produced much less milk, with much more fat 

and protein and greater REC traits than the two large-framed breeds resulting in greater actual and 
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theoretical %CY but similar efficiencies. Although the Jersey breed had lower dMY and dCY, the 

difference was much smaller for the latter. The differences among Simmental and the local Rendena 

and Alpine Grey were not very large. Compared with medium-framed cows of the local breeds, 

Simmentals had greater dMY, tended to have better milk composition, REC and %CY traits (but 

similar efficiencies), and also had much greater dCY. Among the local breeds, the higher dMY of 

Rendena was offset by the greater nutrient content of milk from the Alpine Greys, so their dCY was 

similar. 

The objective of the third chapter was to test the same previous effects on 240 milk samples 

from 240 cows of 6 different breeds. Fifteen minerals were determined by Inductively Coupled 

Plasma - Optical Emission Spectrometry (ICP-OES). Results revealed that the effect of herd-date 

was large especially on environmental minerals (from 47 to 91% of the total variance), while it 

ranged from 11% to 61% considering both macro- and micro-minerals. Milk samples collected in 

farms characterized by high level of productivity exhibited richer mineral profile compared to milk 

samples collected from low productivity herds. Parity influenced exclusively macro-minerals, with 

the exception of Ca and S, while DIM influenced almost all minerals, with few exception related to 

the environmental elements. Large differences were observed among breeds, both between 

specialized and dual-purpose breeds, even after adjusting for milk quality and yield. Milk samples 

from Jersey and Brown Swiss cows were superior respect to milk from Holstein-Friesian cows, both 

for milk quality and mineral profile, while intermediate results were found for the other breeds of 

Alpine origin. Moreover, the variance of individual animals was much greater than variance of 

individual herds within herd productivity class.  

The fourth chapter focused on the concepts of production, productivity and efficiency. As 

breed of cows and herd characteristics are the most important factors affecting milk productivity 

and efficiency, the aim of this chapter was to obtain independent evaluation of these factors on the 

data (body size and production) and milk characteristics from the 41 multi-breed herds on all 1,508 

lactating cows from the 6 breeds. Nine productivity indicators and two simplified indicators of cow 
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efficiency for cheese production, one energetic and one economic, were calculated. Results showed 

that breed within herd greatly affected all traits. On average the 3 dairy breeds were not much 

different from the 3 dual-purpose breeds, but large differences characterized both groups of cows. 

Jersey cows were the less productive, but, after correcting for herds effect and scaling for body size, 

they showed the highest efficiency among the dairy breeds. Holstein was the most productive dairy 

breed, but Brown Swiss cows had better milk quality and more efficient cheese-making aptitude 

and thus produced more cheese per day than Holsteins. Dual-purpose breeds were less variable than 

dairy ones, with Simmental with larger body size and production, but not productivity and 

efficiency respect to local Rendena and Alpine Grey breeds. If on one hand within herd comparison 

and correctly scaling of production traits reduced strongly herd differences in productivity, on the 

other hand they did not reduce very much the differences in terms of milk composition, 

technological properties and efficiency of cheese-making (recovery of milk nutrients in cheese), so 

that the differences among breeds remained strong and their importance on the overall efficiency 

evaluation of the breeds increased.  
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2 Riassunto 
 
L’aumento della produzione animale, soprattutto a causa della selezione genetica, è stato 

uno dei più grandi successi del secolo scorso. La razza bovina da latte dominante a livello 

internazionale è la Frisona. Questa razza per molti decenni ha subito una forte selezione genetica 

verso l'alta produzione di latte, anche attraverso sistemi di produzione intensivi. Tuttavia, l'alta 

pressione genetica sulla produzione di latte ha determinato impatti negativi sul benessere degli 

animali (es., stress metabolico, zoppia, mastite, ridotta fertilità e longevità). Inoltre, dal momento 

che gli animali tendono ad adattarsi all'ambiente in cui sono selezionati, è probabile che la selezione 

per un maggiore rendimento abbia portato anche a sensibilità ambientale. Per esempio, la 

correlazione negativa tra le caratteristiche di produzione e di fitness in ambienti meno favorevoli è 

indicativo della diminuzione della capacità di adattamento delle moderne vacche da latte. Esiste una 

crescente importanza, oggi, per il benessere degli animali d'allevamento che viene anche 

riconosciuto da tutti gli attori della catena di produzione degli animali da reddito. 

Queste considerazioni, insieme all'obiettivo primario del settore lattiero-caseario di alta 

qualità del latte, ha portato, in alcuni casi, all'utilizzo di programmi di incrocio fra Frisona e altre 

razze specializzate da latte e a duplice attitudine. In alcuni paesi, razze a duplice attitudine come la 

Pezzata Rossa, la Montbéliarde, la Normanna, e razze specializzate come la Bruna e la Jersey, sono 

preferite a scopo di incrocio. Queste razze, tra cui le italiane razze locali Rendena e Grigio Alpina 

(Nord-Est Italia), tendono ad offrire una superiore qualità del latte, accompagnata da una maggior 

produzione di carne, e quindi più alto valore sia dei vitelli che delle vacche a fine carriera.  

Tuttavia, un serio confronto di queste diverse razze è carente in letteratura, in particolare a 

causa di difficoltà pratiche nel campionamento di numerosi animali, che vengono allevati in diversi 

allevamenti a razza mista. Per ovviare a questo problema, è stato sviluppato il progetto Cowplus 

presso il Dipartimento di Agronomia, di Alimentazione, delle Risorse naturali, Animali e Ambiente 

presso l'Università di Padova. Il progetto ha permesso il campionamento di 1508 bovine allevate in 
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41 aziende multi-razza, situate in provincia di Trento, nelle Alpi italiane nord-orientali. Le aziende 

sono state selezionate da un pool di 610 allevamenti iscritti al sistema di controlli funzionali del 

latte. Gli animali sono stati campionati per la morfologia, la produzione giornaliera e la 

composizione del latte, l'attitudine alla coagulazione e alla caseificazione. In totale, sono state 

utilizzate 6 razze: 3 specializzate da latte e 3 a duplice attitudine. Nell'ambito del progetto Cowplus, 

gli obiettivi di questa tesi di dottorato sono stati: 1) la quantificazione e la caratterizzazione degli 

effetti di alta o bassa produttività dell’azienda (definite in base all’energia netta di lattazione 

prodotta giornalmente dalle vacche); 2) quantificare la variabilità delle aziende entro classe di 

produttività aziendale; 3) confrontare, a parità di azienda, le 3 razze specializzate con le 3 razze a 

duplice attitudine; 4) analizzare gli effetti dei giorni di lattazione (DIM) e dell’ordine di parto delle 

bovine, sulla qualità e l’attitudine alla coagulazione (Capitolo 1), l’efficienza di caseificazione 

(Capitolo 2), e il profilo minerale del latte (Capitolo 3), e sugli indicatori di produttività di 

efficienza degli animali (Capitolo 4). 

Più precisamente, l'obiettivo del primo capitolo è stato quello di verificare gli effetti 

sopracitati sulle proprietà di coagulazione del latte tradizionali e modellizzate, e di valutarne la 

ripetibilità e la riproducibilità. I 1,508 campioni di latte sono stati analizzati in doppio (3,016 

analisi) utilizzando due lattodinamografi (Formagraph, FOSS) per ottenere 240 misurazioni di 

consistenza del coagulo in 60 minuti (una ogni 15 secondi) e per ogni ripetuta. I risultati hanno 

mostrato un contenuto effetto dell’azienda sui parametri tradizionali e modellizzati, mentre la 

varianza del singolo animale ha mostrato una più alta incidenza. La ripetibilità delle MCP 

tradizionali è risultata elevata (> 80%) per tutti i caratteri, esclusi quelli legati alla fase finale della 

curva lattodinamografica (dal 57 al 71%). La riproducibilità, anche tenendo conto dell'effetto dello 

strumento, è risultata uguale o leggermente inferiore alla ripetibilità. I campioni di latte raccolti 

nelle aziende caratterizzate da un elevato livello produttivo hanno presentato una coagulazione più 

ritardata, ma un potenziale maggiore di consistenza del coagulo rispetto ai campioni di latte 

provenienti da allevamenti a bassa produttività. Grandi differenze sono state osservate tra le razze in 
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merito all’attitudine alla coagulazione del latte, sia tra le specializzate da latte e a duplice attitudine, 

sia entro i due gruppi, anche dopo aver corretto per la qualità e la produzione giornaliera di latte. I 

campioni di latte di Jersey, sia per la composizione che per l’attitudine alla coagulazione del latte, e 

anche di Rendena (ma solo per il tempo di coagulazione) sono stati superiori rispetto al latte di 

Frisona, mentre risultati intermedi sono stati trovati per le altre razze di origine alpina. 

Il secondo capitolo è stato diretto a valutare gli stessi effetti su 508 caseificazioni individuali 

delle 6 razze. Per ogni bovina sono stati ottenuti: 6 parametri di composizione del latte, 4 caratteri 

di recupero dei nutrienti dal latte (REC - grasso, proteina, solidi ed energia) nella cagliata, e 3 

caratteri di resa reale in % (%CY), che esprime il formaggio fresco, la sostanza secca e l’acqua 

ritenuta nel formaggio, come percentuali del latte trasformato (ottenuti tramite una procedura 

individuale di micro-caseificazione). Inoltre sono state calcolate 2 rese teoriche (%Th-CY) (resa in 

sostanza secca e a fresco) dalla composizione del latte, e 2 efficienze (%Ef-CY) di caseificazione 

calcolate come rapporto in % tra resa reale e teorica. Inoltre, è stata misurata la produzione 

giornaliera di latte (dMY) oltre alle stime individuali di resa giornaliera in formaggio (dCY), 

sostanza secca e acqua del formaggio. I risultati hanno mostrato che gli animali allevati in aziende 

ad alta produttività hanno prodotto un latte più ricco in nutrienti e reso più formaggio al giorno 

(%CY e dCY). Tuttavia, nessuna differenza è stata rilevata fra aziende ad alto e basso livello 

produttivo in termini di recupero di nutrienti nella cagliata (ad eccezione della sostanza secca), 

mentre l’efficienza in sostanza secca della cagliata è stata inferiore. La singola azienda, a parità di 

livello produttivo, è risultata una fonte di variazione intermedia sui recuperi (dal 11.3% al 17.1%), 

sulle rese reali e teoriche e sulle stime di efficienza (dal 10.0% al 17.2%), e una delle principali 

fonti per la produzione giornaliera di latte (dMY), così come per le dCYs (dal 43.1% al 46.3%). La 

razza, a parità di ambiente, ha fortemente influenzato tutti caratteri analizzati. Rispetto alle razze a 

duplice attitudine, le 3 razze da latte (Frisona, Bruna e Jersey) hanno avuto, in media, una migliore 

composizione del latte, una maggiore resa reale e teorica, simile recupero di grasso e proteina nella 

cagliata, e una leggermente inferiore efficienza casearia. Delle razze specializzate, la Frisona ha 
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prodotto più latte, ma la Bruna ha prodotto il latte con un maggior contenuto di nutrienti, un 

maggiore recupero di questi nella cagliata, una più alta resa reale e teorica e una migliore efficienza 

casearia, così che la produzione giornaliera in formaggio è stata simile. Le più piccole Jersey hanno 

prodotto molto meno latte però con molto più grasso e proteina, e % più alta del recupero di 

nutrienti rispetto alle due razze grandi, presentando così una maggiore resa reale e teorica, anche se 

simile efficienza casearia. Anche se la razza Jersey ha mostrato inferiore produzione giornaliera di 

latte e formaggio, la differenza è stata molto più lieve per la seconda. Le differenze tra Pezzata 

Rossa e le due locali Rendena e Grigio Alpina non state molto grandi. Rispetto alle due, la Pezzata 

Rossa ha avuto una maggiore produzione di latte con una migliore composizione, oltre ad avere 

maggior REC e caratteri legati alla resa (ma efficienze simili). Entro le razze locali, la più alta 

produzione giornaliera di latte della Rendena è stata compensata dal maggior contenuto di nutrienti 

del latte di Grigio Alpina, quindi la loro produzione giornaliera di formaggio è stata simile.  

L'obiettivo del terzo capitolo è stato quello di testare gli effetti sopracitati su 240 campioni 

di latte da 240 vacche appartenenti alle diverse 6 razze. Quindici minerali sono stati determinati 

utilizzando lo spettrometro di emissione al plasma (ICP-OES). I risultati hanno rivelato che l'effetto 

dell’azienda ha avuto un’influenza maggiore specialmente su minerali ambientali (dal 47 al 91% 

della varianza totale), mentre ha variato dall’11% al 61% sui macro e micro-minerali. I campioni di 

latte raccolti nelle aziende caratterizzate da un elevato livello di produttività hanno presentato un 

più ricco profilo minerale rispetto ai campioni di latte provenienti dagli allevamenti a bassa 

produttività. L’ordine di parto ha influenzato esclusivamente i macro-minerali, con l'eccezione di 

Ca e S, mentre i DIM hanno influenzato tutti i minerali, con poche eccezioni relative ai micro-

ambientali. Sono state osservate notevoli differenze tra le razze, sia tra le specializzate che a duplice 

attitudine, anche correggendo il modello statistico per la qualità e la produzione di latte. Le razze 

Jersey e Bruna hanno presentato una migliore qualità del latte, sia in termini di composizione 

chimica che in profilo minerale, rispetto alle vacche di razza Frisona. Risultati intermedi sono stati 

trovati per le altre razze di origine alpina. Sulla base di questo studio gli effetti della razza sui 
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macro-minerali e alcuni degli essenziali micro-minerali sono molto più importanti rispetto agli 

effetti della produttività aziendale, dell’ordine di parto e giorni di lattazione.  

Il quarto capitolo si è focalizzato sui concetti di produzione, produttività ed efficienza. Dal 

momento che la razza e l’azienda sono i fattori che più influenzano la produttività e l'efficienza del 

latte, lo scopo di questo capitolo è stato quello di ottenere una valutazione indipendente di questi 

due fattori sui dati raccolti sugli animali (dimensioni del corpo e produzione) e le caratteristiche del 

latte, dalle 41 aziende miste e su tutte le 1,508 vacche in lattazione appartenenti alle 6 diverse razze. 

Sono stati calcolati a questo scopo nove indicatori di produttività e due indicatori semplificati di 

efficienza della vacca per la produzione di formaggio, uno energetico e uno economico. I risultati 

hanno mostrato che la razza, a parità di ambiente, ha fortemente influenzato tutti gli indicatori. In 

media, le 3 razze da latte non sono state molto diverse dalle 3 razze a duplice attitudine, ma grandi 

differenze hanno caratterizzato entrambi i gruppi di animali. Le Jersey sono state le meno 

produttive, ma, dopo la correzione per l’effetto azienda e rapportate per le dimensioni del corpo, 

hanno mostrato la più alta efficienza tra le razze da latte. La Frisona è stata la razza da latte più 

produttiva, ma la Bruna ha avuto una migliore qualità del latte e un’attitudine casearia più efficiente 

così come più formaggio prodotto al giorno, rispetto alla Frisona. Le razze a duplice attitudine sono 

state meno variabili rispetto a quelle da latte, con la Pezzata Rossa con maggiori dimensioni del 

corpo e maggior produzione, ma simile produttività ed efficienza per le razze Rendena e Grigio 

Alpina. Mentre il confronto a parità aziendale e il corretto rapporto sui caratteri di produzione 

hanno ridotto fortemente le differenze in produttività aziendale, non le hanno ridotte a livello di 

composizione del latte, abilità coagulativa, ed efficienza alla trasformazione casearia (in termini di 

recupero di sostanze nutritive dal latte nella cagliata), quindi le differenze tra le razze sono rimaste 

forti e la loro importanza sulla valutazione complessiva dell'efficienza è rimasta elevata.  
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3 General introduction 

Since the beginning of animal domestication and for thousands of years, humans were 

selecting for their needs. However, intense genetic selection, in the form that is known nowadays, is 

an achievement of the last century. At first, selection was probably limited to submissiveness and 

manageability, but then breeding programs have focused on the genetic improvement of production 

traits, such as milk yield. The high levels of milk production of Holstein-Friesian cows formed a 

practical basis for the widespread popularity of this breed (Prescott, 1960). However, the heavy 

genetic selection for increased production worsened not only the quality and the technological 

properties of milk, but also the fitness and the longevity of these animals, reducing farm 

profitability, as well as the cows’ ability to adapt to the environment in which they find themselves.  

Since both farm animal welfare and milk qualitative aspects have become increasingly 

important from the societal point of view, and because of the increased cheese production at global 

level, other dairy and dual-purpose cow breeds have been reconsidered. However, one missing 

aspect is a fair comparison among different breeds regarding the quality and the technological 

aptitude of milk, or milk and cheese production. Previous studies in literature often regarded a small 

number of cows of two-three different breeds reared in one farm (Auldist et al., 2002; Mistry et al., 

2002), or a large number of cows from many single-breed farms (Poulsen et al., 2013), so the effect 

of breed was confounded with that of herd and feeding strategies.  

In the milk industry crossbreeding programs in dairy cattle are a feasible strategy, as they 

alleviate the fertility and longevity problems that can occur as a result of selection programs in dairy 

pure breeds (Heins and Hansen, 2012). However, they are also used to improve the milk fat and 

protein contents, and the technological aptitude of milk. In fact, when compared with pure Holstein-

Friesian, crossbred cows are generally characterized for producing lower quantities of milk, fat, and 

protein (kg), with higher concentrations of milk fat and protein (%). However, the extent of these 

differences may vary upon the crossbreed type. 
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Hence, the comparison of different breeds in the same environment, and the study of the 

interactions between breeds and herd productivity level is necessary. Furthermore, the assessment 

of diverse aspects of milk production of different breeds in common environments could be useful 

not only for a reasonable choice as a function of the environment, but also for the use of more 

efficient crossbreeding programs. This evaluation could be used mainly for economic reasons, 

according to the productive vocation of the area, especially if the milk is destined to cheese 

production, and to better define the selection objectives within breed.  

Besides Holstein-Friesian, that is the dominant dairy breed in the world, another extremely 

specialized dairy breed is Jersey. Jersey is the smallest of the dairy cattle breeds and produces, on 

average, less milk than Holstein-Friesian cows. However, this breed is well-known for the high 

quality of its milk (especially for %fat and %protein). Thus, although being less productive, Jersey 

cows are probably as much efficient as the Holstein. Other larger dairy breeds are addressed 

principally to the quality and the technological properties of milk, or to the fitness and fertility 

aspects, rather than milk yield. In the case of milk quality, Brown Swiss breed is recognized to have 

high casein index and very good milk fat to protein ratio for production of most cheeses, while 

Scandinavian breeds are preferred especially for longevity and fertility traits. The dual-purpose 

breeds (i.e., Simmental at international level, and local breeds such as the Rendena and Alpine Grey 

in North-east Italy), are known for compensating the lower milk yield by a better milk quality and 

renneting properties, and by a higher meat production (higher price of calves and dairy cull cows), 

compared to the Holstein-Friesian breed.  

Hence, more focus should be given to those breeds. To make possible a fair comparison 

among such breeds we investigated different aspects of milk production, productivity and 

efficiency. The first aspect, besides the traditional quality and quantity of milk, regarded the study 

of milk renneting properties. As one of the main problems caused by the worldwide diffusion of the 

Holstein-Friesian breed is a general worsening of milk coagulation properties (MCP) (i.e., delayed 

milk coagulation and slower curd firming process), with a consequent decrease on percentage of 



18 
 

cheese wheels labelled as first quality for some Italian dairy products (Bittante et al., 2011). Breed 

variation in terms of curd firmness over time (CFt) pattern is known. Milk from Holstein-Friesian 

and some Scandinavian cattle breeds yield higher proportions of noncoagulating (NC) samples. As 

a result, samples with longer RCT and lower curd firmness (a30), and samples for which curd-

firming time (k20) are not available. The problem is much less obvious in Brown Swiss, Simmental, 

and other local Alpine breeds. Bittante et al. (2012) provided with a review on the topic, but the 

results from the reported studies have been obtained from very different experimental conditions. 

Because the experimental conditions were so variable, direct comparisons among breeds could be 

made only by using data obtained within a single trial. Besides, these works were based on a small 

number of cows of two-three different breeds reared in a unique farm (Auldist et al., 2002; Jõudu et 

al., 2008), or on many cows from single-breed farms (Poulsen et al., 2013), so that the effect of 

breed was confounded with the effects of farm, feeding strategy, and sampling date, or the study 

was based on bulk milk samples from different single-breed farms (Mariani et al., 1984; De Marchi 

et al., 2007). So there is still considerable ambiguity with regard to the direct effect of breed and 

herd on MCP. The major limitations of traditional MCP have been in part overcome by prolonging 

the observation period and by using an innovative CFt modeling, which uses all available 

information provided by lactodynamograph. The method allows the estimation of RCT, the 

potential asymptotic curd firmness, the curd-firming rate, and the syneresis rate (Bittante et al., 

2013). However for such traits, there are no studies available comparing the performance of 

different breeds. Another important aspect for the comparison among breeds concerns the cheese-

making traits, efficiency and daily cheese productions, since the measurement of cheese yield (CY) 

is of economic importance at global level, and daily yield of cheese, expressed in kilograms of 

cheese produced daily per cow (dCY), is the final production target of many dairy farmers. 

However, the main problem in this case is that most of the studies in literature that involve cheese-

making procedures have used bulk milk, principally because it is very time-consuming and labor 

intensive to produce a high number of small model cheeses from milk of individual cows. Also, due 
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to practical difficulties and cost of experimental trials on %CY and its related traits, very few 

published studies have measured the individual %CY traits of bovine milk (Cipolat-Gotet et al., 

2013), and studied their genetic and environmental relationships (Cecchinato and Bittante, 2016). 

Nevertheless,  individual cow information is needed for the genetic analysis of these traits 

(Othmane et al., 2002).  

One more aspect regards a more nutritional side of milk, the study of mineral elements. 

Macro-minerals, especially Ca, P and Mg, are also fundamental for milk coagulation (Malacarne et 

al., 2014), and Na, Cl and K are involved in diagnosis of mastitis in dairy cows (Hamann and 

Krömker, 1997). The mineral content of milk is not constant but varies according to several 

different factors, such as breed (Mariani et al., 2002), the stage of lactation (Gaucheron, 2005) and 

feed management (Van Hulzen e al., 2009). However, the effects of the most important sources of 

variation, herd and breed, are often confounded because of the use of data from single-breed herds 

and the frequent relation between specific breeds and specific environmental and management 

features. Much less focus has been given in the study of essential micro-minerals, especially for 

comparing different breeds. 

Further aspects are linked to the concepts of production, productivity and efficiency of 

animals, since they differ to each other’s, even being strictly correlated. As highlighted at the 

beginning, the high milk production of Holstein cows in the past decades promoted their worldwide 

diffusion. Productivity is often linked to the dimension or cost of the producing unit, and it is 

frequently expressed by a ratio between the food produced and the “size” of productive animal, 

where the size could be represented simply by the body weight (BW) of the animal, or by some 

predictor of its nutrients requirement for maintenance, of which the metabolic weight (MW) and the 

body protein weight (PW) are examples. The Jersey cows produces much less milk than Holsteins, 

but their size is much smaller, so if their productivity per unit BW or MW be lower or higher 

respect to Holsteins is questionable. Efficiency of production is even more complicated to be 

defined and measured. It implies a complete balance of production activity, and it could be 



20 
 

expressed as a ratio between production output, at the nominator, and the sum of all production 

inputs, at the denominator. The primary genetic characteristic of a cow - its breed - has been shown 

to have an enormous effect on milk yield, and on its main destination: cheese yield (Banks et al., 

1986; Verdier-Metz et al., 1995), but the comparisons of different breeds in scientific papers could 

go from few dozens of cows with a lot of precise data obtained in an experimental farm (Mistry et 

al., 2002; Hurtaud et al., 2009; Martin et al., 2009), to few data obtained from whole cattle 

populations underwent production recording systems with a large majority of single-breed herds 

(Malacarne et al., 2006; Bland et al., 2015). In this last case the effect of individual herds and dairy 

systems are confused with the effect of breed. 

These aspects together allow for a complete and balanced evaluation of the different breeds, 

and permit to define also their productive efficiency in a panoramic view. 
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5 The COWPLUS multi-breed trial 

This PhD thesis was part of the general architecture of Cowplus project, that was developed 

with the aim to promote cattle breeding in mountain environment of Trentino region. The data set 

serving all the chapters is constituted of 1,508 cows of 6 different breeds (3 dairy specialized: 

Holstein-Friesian, Brown Swiss, Jersey, and 3 dual-purpose: Simmental, Rendena, Alpine Grey), 

reared in 41 multi-breed herds (selected from a starting sample of 610 dairy farms previously 

surveyed) in Trentino and Bolzano provinces.  

The sampling of the animals lasted 9 months, from March till December 2013. Cows were 

checked and sampled during evening milking, for:  

1)  identification data:  

- body size: chest girth, estimated body weight, body condition score;  

- life phases: age first calving, number of lactations, calving interval, dry period, days 

in milk, lactation to calving;  

- milk production (kg): milk yield, milk fat, milk protein. 

2) Health status: rectal temperature, heart rate, respiratory profile, appetite and fecal 

consistency.  

3) Blood serum analyses (g/L):  

-  total protein, albumin, globulin, BHB.  

4) Milk quality:  

- macro components (%): fat, protein, lactose, casein, total solids;  

- acidity: pH;  

- Somatic Cell Count (SCC) converted to Somatic Cell Score (SCS);  

- casein fractions and whey proteins (g/L): αS1-CN, αS2-CN, β-CN, κ-CN, ALA, 

BLG, lactalbumin, lactoglobulin, lactoferrin; 



26 
 

- macro- and micro-minerals (mg/kg): Calcium, Phosphorous, Sodium, Potassium, 

Magnesium, Sulphur, Copper, Iron, Manganese, Selenium, Zinc, Boron, Silicon, Tin, 

Strontium;  

- fat globules (µm): D2,1, D3,2, D4,3, D50, Dmode, span, SSA (m2/g fat); 

- fatty acid profile (%): 74 single fatty acids and 17 categories and indices;  

- bacteriological analyses (cfu/mL): 7 contagious and 12 environmental pathogens.  

5) Milk renneting aptitude:  

- traditional coagulation properties (MCP): RCT (min), k20 (min), a30 (mm), a45 (mm), 

a60 (mm); 

- modeled curd firming over time (CFt) parameters: RCTeq (min), CFP (mm), kCF 

(%/min), kSR (%/min), CFmax (mm), tmax(min).  

6) Cheese-making ability (on individual model-cheeses):  

- REC traits (%): RECPROTEIN, RECFAT, RECSOLIDS, RECENERGY;  

- CY traits (%): CYCURD, CYSOLIDS, CYWATER; 

- theoretical CY traits (%): Th-CYCURD, Th-CYSOLIDS;  

- cheese-making efficiency  (%): Ef-CYCURD, Ef-CYSOLIDS;  

- daily cheese productions (kg/d): dCYCURD, dCYSOLIDS, dCYWATER.  

7) Model-cheese quality: 

- macro components (%): moisture, fat, protein, salt, total solids;  

- acidity: pH; 

- texture indices: hardness (N), shear force (J 10-3);  

- colorimetric indices: L*, a*, b*, C, h°; 

- macro- and micro-minerals (mg/kg): Calcium, Phosphorous, Sodium, Potassium, 

Magnesium, Sulphur, Copper, Iron, Manganese, Selenium, Zinc, Boron, Silicon, Tin, 

Strontium;  

- fatty acid profile (%): 74 single fatty acids and 17 categories and indices; 
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- Near-infrared (NIR) spectra collection. 

In addition, information on farm management, diet, production performance, agronomic 

management of the surfaces, the management of waste, and the energy consumption were also 

collected.  
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6 General aims 

The general aims of this research were to:  

1) quantify and characterize the effects of high or low herd productivity (defined according 

to the milk net energy yielded daily by the cows);  

2) quantify the variability of herds within herd productivity class;  

3) make a within-herd comparison of 3 dairy and 3 dual-purpose breeds;  

4) quantify the effects of DIM and parity, 

on the following traits:  

a) traditional milk quality (Chapter 1, 2, 3, 4):  

- macro components (%): fat, protein, lactose, casein, total solids;  

- acidity: pH;  

- Somatic Cell Count (SCC) converted to Somatic Cell Score (SCS);  

b) milk renneting aptitude (Chapter 1):  

- traditional MCP: RCT, k20, a30, a45, a60; 

- modeled CFt parameters: RCTeq, CFP, kCF, kSR, CFmax, tmax;  

c) cheese-making ability (Chapter 2):  

- CY traits (%): CYCURD, CYSOLIDS, CYWATER;  

- REC traits (%): RECPROTEIN, RECFAT, RECSOLIDS, RECENERGY; 

- theoretical CY traits (%): Th-CYCURD, Th-CYSOLIDS;  

- cheese-making efficiency  (%): Ef-CYCURD, Ef-CYSOLIDS;  

- daily cheese productions (kg/d): dCYCURD, dCYSOLIDS, dCYWATER.  

d) milk mineral elements (mg/kg) (Chapter 3):  

- macro-minerals: Calcium, Phosphorous, Sodium, Potassium, Magnesium, Sulphur; 

- micro-minerals: Copper, Iron, Manganese, Selenium, Zinc, Boron, Silicon, Tin, 

Strontium.  
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e) productivity and efficiency indicators (Chapter 4): 

- body size, condition and estimated composition of lactating cows: body weight 

(BW), metabolic weight (MW), body condition score (BCS), hearth girth; empty 

body composition (%): protein, fat and water; body composition (kg): protein, fat 

and water on body weight; body energy;  

- milk yield, composition and estimated energy content and cheese yield: protein, fat, 

lactose, energy;  

- cheese yield: theoretical, actual, and relative index;  

- daily yield per cow: milk, cheese, protein, fat, energy.  

- milk productivity ratios: milk yield (g/kg) on BW, MW and PW; energy yield 

(kJ/kg) on BW, MW and PW; cheese yield (g/kg) on BW, MW and PW; 

- energy requirements (MJ/d): maintenance, activity, lactation, pregnancy; 

- income over feed costs (IOFC, €/d); 

- efficiency (%); energy and costs.  

 

  



30 
 

Chapter 1 
 

Breed of cow and herd productivity affect milk 
composition and modeling of coagulation, curd 

firming and syneresis 
 

Giorgia STOCCO, Claudio CIPOLAT-GOTET, Tania BOBBO, 

Alessio CECCHINATO and Giovanni BITTANTE 

 

 

 

 

 

 

 

 

 

Published in Journal of Dairy Science, 2016. 100:1-17 

  



31 
 

ABSTRACT 

Milk coagulation properties (MCP) have been widely investigated in the past using milk 

collected from different cattle breeds and herds. However, to our knowledge, no previous studies 

have assessed MCP in individual milk samples from several multi-breed herds characterized by 

either high or low milk productivity, thereby allowing the effects of herd and cow breed to be 

independently evaluated. Multi-breed herds (n = 41) were classified into two categories based on 

milk productivity (high vs low), defined according to the average milk net energy daily yielded by 

lactating cows. Milk samples were taken from 1,508 cows of 6 different breeds - 3 specialized dairy 

(Holstein-Friesian, Brown Swiss, Jersey), and 3 dual-purpose (Simmental, Rendena, Alpine-Grey) 

breeds - and analyzed in duplicate (3,016 tests) using two lactodynamographs (Formagraph, FOSS) 

to obtain 240 curd firming (CF) measurements over 60 min (one every 15 sec) for each duplicate. 

The 5 traditional single-point MCPs (RCT, k20, a30, a45, and a60) were yielded directly by the 

instrument from the available CF measures. All 240 CF measures of each replicate were also used 

to estimate the 4 individual equation parameters (RCTeq, CFP, kCF, and kSR) and the derived traits 

(CFmax, and tmax) by curvilinear regression using a nonlinear procedure (PROC NLIN). Results 

showed that the effect of herd-date on the traditional and modeled MCPs was modest, ranging from 

6.1% of total variance for k20 to 10.7% for RCT, while individual animal variance was the highest, 

ranging from 32.0% for tmax to 82.5% for RCTeq. The repeatability of MCP was high (>80%) for all 

traits except those associated with the last part of the lactodynamographic curve (i.e., a60, kSR, kCF 

and tmax: 57 to 71%). Reproducibility, taking into account also the effect of instrument, was equal or 

slightly lower than repeatability. Milk samples collected in farms characterized by high productivity 

exhibited delayed coagulation (RCTeq: 18.6 vs 16.3 min) but greater potential curd firmness (CFP: 

76.8 vs 71.9 mm) compared with milk samples collected from low productivity herds. Parity and 

DIM influenced almost all the MCPs. Large differences in all MCP traits were observed among 

breeds, both between specialized and dual-purpose breeds, and within these two groups of breeds, 

even after adjusting for milk quality and yield. Milk quality and MCP of samples from Jersey cows, 
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and coagulation time of samples from Rendena cows were better than in milk from Holstein-

Friesian cows, while intermediate results were found with the other breeds of Alpine origin. The 

results of this study, also taking into account the intrinsic limitation of this technic, show that the 

effects of breed on traditional and modeled MCPs are much greater than the effects of herd 

productivity class and of parity and DIM. Moreover, the variance in individual animals is much 

greater than the variance in individual herds within herd productivity class. It seems that 

improvement in MCP depends more on genetics (breed, selection, etc.) than on environmental and 

management factors. 

Key words: milk coagulation, curd firming, syneresis, breed, herd productivity.  
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INTRODUCTION 

Milk coagulation properties (MCP) have consequences for cheese-making, cheese yields and 

cheese quality. The major cheese-making problems are fast coagulation of milk (acid, fermented 

milk), late or absence of coagulation of milk (especially with some milk protein genetic variants), 

weak curd firmness at cutting and slow syneresis of curd. Recently, Cecchinato and Bittante (2016) 

found strong relationships between cheese yield and curd firming patterns. Milk renneting 

properties also affect cheese quality (Horne and Banks, 2004), and are therefore particularly 

important for Protected Designation of Origin (PDO) cheeses (Mariani and Battistotti, 1999; 

Bertoni et al., 2005; Bittante et al., 2011).  

Several techniques can be used to assess MCP (Klandar et al., 2007), but the most common 

approach used in both the laboratory and industry is lactodynamography. Traditionally, three single-

point traits are recorded: rennet coagulation time (RCT, min); time to a curd firmness (CF) of 20 

mm (k20, min); and CF 30 min after enzyme addition (a30, mm).  

The major limitations of the traditional MCPs are: the incidence of samples not coagulating 

(NC) within 30 minutes (no RCT, k20 and a30 available); the much greater incidence of late-

coagulating (LC) samples that fail to reach 20 mm CF (no k20 available); the high correlation 

between RCT and a30 (so that the latter trait has limited informative value).  

Recently, a more informative method to overcome, at least in part, the above-mentioned 

limitations and acquire detailed information is to model the curd-firming process over time (CFt) 

using the hundreds of single-point pieces of information automatically available for each milk 

sample analyzed (Bittante, 2011), and extend the lactodynamographic test period beyond 30 

minutes (Bittante et al., 2013).  

Traditional MCPs obtained from lactodynamographs have been used in several studies to 

compare milk from cows of different breeds, as reviewed by Bittante et al. (2012). Comparisons are 

difficult, however, because they are often based on a small number of cows of two-three different 

breeds reared in one (experimental) farm (Auldist et al., 2002; Jõudu et al., 2008), or on a large 
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number of cows from many single-breed farms (Poulsen et al., 2013), so that the effect of breed is 

confounded with the effects of farm, feeding strategy, and sampling date, or they are based on bulk 

milk samples from different single-breed farms (Mariani et al., 1984; De Marchi et al., 2007). In 

addition, the effect of feeding strategy is not well known as experimental trials focus on some 

specific diet ingredient (Kreuzer et al., 1996; Malossini et al., 1996), and very few studies have 

been carried out at the population level (Tyrisevä et al., 2003). 

Over time, dairy farms have moved towards larger and more industrialized setups in which 

cows are fed high-energy diets, while dairy herds have changed in terms of the proportions and 

productivity of breeds, and dairy breeds have been assiduously selected to improve productivity and 

milk quality.  

We have, therefore, carried out a large study involving several multi-breed herds 

characterized by variable levels of productivity, which allows for independent evaluation of the 

effects of farm and of different cattle breeds. The specific aims of this study were: 1) to quantify 

and characterize the effects on MCP of high or low herd productivity (defined according to the milk 

net energy yielded daily by the cows); 2) to quantify the variability of herds within herd 

productivity class; 3) to make a within-herd comparison of 3 dairy and 3 dual-purpose breeds for 

their milk quality, traditional MCPs, and modeled CFt; 4) to quantify the effects of DIM and parity, 

and assess the repeatability and reproducibility of traditional MCPs and CFt modeled and derived 

traits.  

 

MATERIALS AND METHODS 

Multi-breed herds  

The present study is part of the Cowplus project. A total of 1,508 cows from 41 multi-breed 

herds (2 to 5 breeds, with an average of 3.0) located in the Trentino Alto Adige region, north-

eastern Italian Alps, were controlled once for daily milk production and sampled during the evening 

milking for milk quality analyses. A total of six breeds were sampled, 3 specialized dairy breeds: 
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Holstein Friesian (HF = 31 herds and 471 cows), Brown Swiss (BS = 36 herds, 663 cows), and 

Jersey (Je = 7 herds, 40 cows); and 3 dual-purpose breeds: Simmental (Si = 20 herds, 158 cows), 

and two autochthonous breeds, Alpine Grey (AG = 13 herds, 73 cows) and Rendena (Re = 8 herds, 

103 cows). The herds comprised fifteen combinations of breeds: HF + BS + Si (n = 8 herds), HF + 

BS (n = 7 herds), BS + Si + AG (n = 6 herds), HF + BS + Re (n = 3 herds), HF + BS + Je (n = 3 

herds), BS + AG (n = 3 herds), HF + BS + Si + AG (n = 2 herds), HF + AG (n = 2 herds), BS + Je 

(n = 1 herds), HF + BS + Si + AG + Re (n = 1 herd), BS + Si + AG + Re (n = 1 herd), HF + Si + Re 

(n = 1 herd), BS + AG + Re (n = 1 herd), HF + Si (n = 1 herd), HF + Re (n = 1 herd).  

 

Dairy and dual-purpose breeds  

The 41 mixed-breed dairy farms selected for the study had only cows enrolled in the Italian 

Herd Books of the 6 breeds studied and were practicing almost exclusively artificial insemination 

using national or imported semen from proven bulls or progeny testing young bulls.  

The dairy large-framed Holstein Friesian cows in the province of Trento were obtained from 

semen mainly from Italian, German, American and Dutch bulls (Cecchinato et al., 2015a). In this 

study, the cows were characterized by a body-weight of 654±45 kg, a parity of 2.4±1.6, and DIM of 

197±140. 

The dairy large-framed Brown Swiss cows were obtained from semen from Italian, 

Austrian, German, American and Swiss bulls. Body size was very close to Holstein Friesians 

(656±46 kg), as was parity (2.6 ± 1.6) and DIM (188 ± 139). 

The dairy small-framed Jersey breed has been recently introduced, and the cows came from 

semen imported mainly from the USA and Denmark. Body size was very small (413 ± 37 kg), 

while the other characteristics were similar to those of the other two specialized dairy breeds (parity 

2.9 ± 2.1, DIM 214 ± 116). 

The large-framed Simmental cows in the area belong to the dual-purpose strains of this 

breed reared mainly in the Alpine regions, and came from inseminations using semen from Italian, 
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German, and Austrian bulls, as well as from French Montbeliarde bulls. Sires are often pre-selected 

for growth rate and muscularity through station performance testing, and the body size of the cows 

was only slightly greater than that of the two large-framed dairy breeds (662 ± 56 kg), as was parity 

(2.7 ± 1.9), while DIM was lower (177 ± 118). 

The medium-framed local breeds, Rendena and Alpine Grey, are both dual-purpose breeds 

of Alpine origin. Bulls are selected in two steps, with pre-selection based on station performance 

testing (Bech Andersen et al., 1981). The Rendena breed has a dark chestnut coat, while the other 

has a grey coat, and both are of medium size (565 ± 48 and 527 ± 45 kg, respectively). They are 

similar to the Simmental breed in parity (2.8 ± 1.8 and 2.5 ± 1.7) and DIM (189 ± 94 and 158 ± 75). 

 

Herd productivity classification 

The herds were classified into two categories of productivity (HP), defined according to the 

average daily milk energy output (dMEO) of the lactating cows. The net energy content (NEL) of 

milk was estimated with the following equation, proposed by the NRC (2001):  

NEL (Mcal/kg) = 0.0929 × fat,% + 0.0547 × protein,% + 0.0395 × lactose,%, 

where NEL is the energy of one kg milk. The NEL values obtained were converted to MJ/kg and 

multiplied by the daily milk yield of each cow (MJ/d) to obtain the individual dMEO of each cow. 

Individual dMEO data were subjected to an ANOVA using the GLM procedure in SAS (SAS 

Institute Inc., Cary, NC) in order to estimate the least square means (LSMs) of the dMEO for the 

selected herds after correcting for breed, DIM, and parity of the cows. After ranking the dMEO 

LSMs of the 41 farms, we divided the herds into high producing (High-HP: n = 20, average 

dMEO= 90.86 MJ/d) and low producing (Low-HP: n = 21, average dMEO= 56.35 MJ/d) on the 

basis of the median value.  

Large-framed breeds (Holstein Friesian, Brown Swiss and Simmental) were found in 

herds of both high and low productivity, Jerseys only in High-HP herds, and local breeds (Rendena 

and Alpine grey) only in Low-HP herds.  
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Analysis of milk samples  

Milk samples (without preservative) were adjusted to 4°C immediately after collection, 

and processed within 24 hours of sampling at the Milk Quality Laboratory of the Department of 

Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) of the University of 

Padua.  

All samples were analyzed for pH (portable pHmeter Crison Basic 25; Crison Instruments 

SA, Barcelona, Spain), and SCC (Fossomatic Minor, Electric A/S, Hillerød, Denmark). Milk SCC 

was log-transformed to SCS (Ali and Shook, 1980). Protein, fat and lactose contents were measured 

by a Milkoscan FT2 infrared analyzer (Foss Electric A/S) calibrated according to reference methods 

[ISO 8968–2/IDF 20–2 for protein (ISO-IDF, 2014); ISO 1211/IDF for fat (ISO-IDF, 2010); ISO 

26462/IDF 214 (ISO-IDF, 2010) for lactose].  

Milk coagulation properties were measured in duplicate using mechanical 

lactodynamographs (2 instruments; Formagraph, Foss, electric A/S Hillerød, Denmark) with 

pendula calibration carried out before each session of the trial. For each animal replicate, 10 mL of 

milk, heated to 35°C, was mixed with 200 µL of rennet solution (Hansen Standard 215 with 80 ± 

5% chymosin and 20 ± 5% pepsin; Pacovis Amrein AG, Bern, Switzerland) freshly diluted to 1.2% 

(wt/vol) in distilled water. Traditional single-point measurements of each milk sample [rennet 

coagulation time (RCT; min), time interval between gelation and attainment of curd firmness of 20 

mm (k20; min), and curd firmness at 30, 45 and 60 min after rennet addition (a30, a45, and a60, mm)] 

were obtained directly from the instruments. A data file of the 240 curd firmness (CF) observations 

(1 every 15 s for the 60 min of the test) for each milk replicate was also extracted. 

 

Modeling curd firmness and syneresis 

The 4-parameter model (Bittante et al., 2013) was chosen for this study because a 

preliminary view of the CFt data showed an appreciable decrease in CF in the final part of the curve 
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of many milk samples. It uses all the information available for estimating the 4 parameters, which, 

unlike traditional MCPs, are not single-point measurements. The model tested was: 

CFt = CFP × [1 − e−k
CF × (t − RCTeq)] × e-k

SR × (t − RCTeq), 

where CFt is curd firmness at time t (mm); CFP is the asymptotical potential value of CF at an 

infinite time (mm); kCF is the curd-firming instant rate constant (% × min−1) kSR is the syneresis 

instant rate constant (% × min−1); and RCTeq is RCT estimated by CFt equation on the basis of all 

data points (min). The CFP is conceptually independent of test duration and is not intrinsically 

dependent on RCT (unlike a30). The parameter kCF describes the shape of the curve from the time of 

milk gelation to infinity and is conceptually different from k20 as it uses all available information. 

The parameter kSR is the curd syneresis instant rate constant (% × min−1). The parameter kCF is 

assumed to increase CF toward the asymptotic value of CFP, whereas kSR is assumed to decrease CF 

toward a null asymptotic value. In the initial phase of the test, the first rate constant prevails over 

the second, such that CFt increases to a point in time (tmax) at which the effects of the 2 parameters 

are equal but opposite in sign; this is when CFt attains its maximum level (CFmax). Thereafter, CFt 

decreases, tending toward a null value due to the effect of curd syneresis and the corresponding 

expulsion of whey. The RCTeq parameter has the same meaning as the traditional RCT measure but 

was estimated using all available data.  

 

Statistical Analysis 

To avoid convergence and estimation problems, the procedure (Bittante et al., 2013) was 

modified to include curd firmness measurements up to 45 min from the addition of rennet (180 

records for each individual milk sample, one every 15 sec), while CFP, was calculated multiplying 

CFmax by 1.34, that is the coefficient resulting from the linear regression between CFP and CFmax 

values obtained in a preliminary analysis. The other three CFt model parameters (RCTeq, kCF, and 

kSR) were estimated by curvilinear regression using the nonlinear procedure (PROC NLIN) in the 

SAS software (SAS, 2001). The parameters of each individual equation were estimated using the 
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Marquardt iterative method (350 iterations and a 10-5 level of convergence) according to Bittante 

(2011).  

Experimental data from traditional and modeled MCPs (two replicates per cow) were 

analyzed using the MIXED procedure (SAS Institute Inc., Cary, NC) according to the following 

base model: 

yijklmnopq = µ + HPm + Herdn(HP)m + Breedk + Parityj + Breedk × Parityj + HPm × Parityj + DIMi + 

HPm × DIMi + Animall + Instrumento + Pendulump(Instrument) o + eijklmnopq 

where yijklmnopq is the observed trait (RCT, k20, a30, a45, a60, RCTeq, CFP, kCF, kSR, CFmax, tmax); µ is 

the overall intercept of the model; HPm is the fixed effect of the mth herd productivity (m = 2 levels); 

Herdn is the random effect of the nth herd (n = 1 to 41) within the mth class of herd productivity; 

Breedk is the fixed effect of the kth breed (k = HF, BS, Je, Si, AG and Re); Parityj is the fixed effect 

of the jth parity (j = 1 to ≥ 4); DIMi is the fixed effect of the ith class of days in milk (i = 1 to 11; 

class 1, 5-35 days (324 samples); class 2, 36-65 d (254 samples); class 3, 66-95 d (256 samples); 

class 4, 96-125 d (274 samples); class 5, 126-155 d (250 samples); class 6, 156-185 d (238 

samples); class 7, 186-215 d (244 samples); class 8, 216-245 d (262 samples); class 9, 246-275 d 

(246 samples); class 10, 276-305 d (184 samples); class 11, > 305 d (482 samples); Animall is the 

random effect of the lth animal (l = 1 to 1,508); Instrumento is the random effect of the oth instrument 

(o = 2 instruments); Pendulump is the random effect of the pth pendulum (p = 1 to 10) within the oth 

instrument; eijklmnopq is the random residual ~ N (0, ). 

The MY and chemical components of milk (one observation per cow) were analyzed using 

the same model without Animal, Instrument, and Pendulum (Instrument) as random factors 

(reduced model).  

A model that also included the breed × herd productivity interaction (interaction model) was 

fitted to test the data from the three HF, BS and Si breeds present in both classes of herds. As this 

interaction was almost never significant, or, when significant, was not relevant, the results of this 
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model analysis are not shown nor discussed. The breed × DIM interaction was not included in the 

model because of the low number of observations in some cells of the less represented breeds. 

A further model (extended model) was used to analyze the direct effects of breed on MCP 

and CFt traits corrected for the milk yield and quality traits and was obtained from the base model 

with inclusion of linear covariate of milk yield, fat%, protein%, lactose%, pH and SCS. Moreover, 

the breed effect was considered random to obtain a correct quantification of breed variance. The 

indirect effect of breed on MCP and CFt traits due to breed differences in terms of milk yield and 

quality was obtained subtracting the breed variance yielded by the extended model from the breed 

variance obtained from the base model (with breed as random effect). Both direct and indirect breed 

variance were represented as percentage of total breed variance. 

Orthogonal contrasts were estimated between the LSMs of traits for the effect of breed: 

a) dairy specialized (HF, BS and Je) vs dual purpose breeds (Si, AG and Re);  

b) within specialized, large-framed vs small-framed breeds (HF + BS vs Je), and  

c) comparison of the two large-framed dairy breeds (HF vs BS);  

d) within dual-purpose, large-framed breed vs medium-framed local breeds (Si vs Re + AG), and  

e) comparison of the two medium-framed local dual-purpose breeds (Re vs AG) .  

Orthogonal contrasts were also estimated between the LSMs of traits for the effect of parity: a) 1st 

vs ≥2nd, b) 2nd vs  ≥3rd, c) 3rd vs ≥4th.  

 

RESULTS 

Milk quality and coagulative ability 

Descriptive statistics of milk yield, chemical composition, traditional coagulation properties 

and curd firming modeling (CFt) equation parameters of the milk samples are summarized in Table 

1. All traits, excluding pH and lactose, exhibited high variability due to the diversity of herd 

productivity and of the six sampled breeds. The coefficient of variation of traditional and modeled 

MCPs varied between 17% for tmax and 64% for k20. 
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Effects of animal and herd-date, repeatability and reproducibility  

Variances in single test-day milk yield (MY), milk quality, traditional MCP, and CFt 

equation parameters are summarized in Table 2. Regarding MY and chemical composition, the 

proportion of variance due to herd-date is very large for pH, followed by MY, while the incidence 

of the effect of herd-date on the other traits was smaller (8.9% for lactose content to 24.6% for 

protein content). As these traits were not analyzed in duplicate, the proportion of the total variance 

listed as animal also includes the residual component.  

In the case of traditional and modeled MCPs, among the random effects, herd-date is 

modest, compared with the same effect on milk production and quality, which varies from 6.1% for 

k20 to 10.7% for RCT. The individual effect had the highest variance, from 61.3 to 82.5% for the 

majority of the traits considered (7/11), but was lower only for the traits recorded mainly in the last 

part of the curve (5/11). Instrument had very little effect on variability in the renneting properties of 

milk (from 0.0% for the time measurements to 4.7% of the total variance for a60, data not shown), 

while pendulum within instrument affected results more than instrument, with a range from 1.0% 

for the two RCT traits to 13.6% for kCF (data not shown). Repeatability was very good (81.7 to 

94.1%) for the majority of traits analyzed (7/11), but less so in the 5 traits recorded in the last part 

of the CFt curve (57.1% for tmax to 70.7% for a60). Reproducibility was equal to or slightly lower 

than repeatability, because of the low effect of instrument on these traits.  

 

Effects of herd productivity and parity 

Least square means of herd productivity (HP) and parity, and F-values of the same factors of 

variation and of the HP × parity and HP × DIM interactions are summarized in Table 3. Milk yield 

was obviously very different in the two herd productivity categories, and also milk protein and fat 

contents were higher in High-HP than in Low-HP, while lactose, pH, and SCS were almost 

identical in the two groups.  
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Parity affected both milk production and quality, except for fat content. Least square means 

of classes of parity showed that MY increased particularly from the first to the following lactations, 

as expected, while the opposite trend was noted for protein content. It is also worthwhile noting 

(data not shown) that the milk yield of cows reared in the High-HP farms increased from the first to 

third lactation by an average of 3.7 kg/d, while the milk yield of cows reared in the Low-HP farms 

increased by only 2.2 kg/d (HP × Parity interaction: P<0.001), although these increases represent 

almost the same proportion of primiparous daily yield (+15% and +14% for High-HP and Low-HP, 

respectively). Acidity and SCS of milk tended to increase almost linearly across classes of parity, 

while lactose showed an almost opposite trend. The HP × parity interaction affected lactose slightly 

(P < 0.05), but SCS content greatly because the cell content of milk from cows reared in High-HP 

farms (data not shown) increased by 57% from first to third lactation, while SCS of milk from Low-

HP farms increased only by 8% (HP × Parity interaction: P < 0.001).  

Regarding traditional MCPs, milk samples from farms characterized by High-HP presented 

delayed RCT, although the curd firmness was higher 60 minutes after rennet addition compared 

with milk samples from Low-HP farms. Parity affected all the traditional coagulation traits, because 

milk samples from primiparous cows had faster coagulation and higher curd firming properties than 

milk from multiparous cows. The only significant, but not relevant, interaction was HP × DIM for 

k20. 

Moving to the CFt model parameters and derived traits, the predicted RCTeq was very 

similar to the measured trait (shorter in samples from Low-HP farms and from primiparous cows), 

although samples from Low-HP farms also had a smaller asymptotical potential value of CF (CFP), 

and a smaller CFmax attained at a shorter tmax time than the samples from High-HP farms.  

Results confirmed that milk from primiparous cows coagulates earlier than milk from 

multiparous cows (RCTeq), and attains a greater CF (CFP and CFmax), but has similar curd-firming 

and syneresis instant rate constants (kCF and kSR) and in the same tmax. Modest HP × parity and HP × 

DIM interactions were observed for kSR . 
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Effect of days in milk 

The variation during lactation was highly significant for all the traits analyzed. In the case of 

daily milk yield, an interaction between DIM and HP was also noted. In fact, it can be seen from 

Figure 1 that cows reared in farms characterized by High-HP displayed (as an average of the 6 

breeds studied) the typical pattern observed in dairy cows: an increase in production until lactation 

peak (65 to 95 DIM class) and an almost linear decrease thereafter. The pattern of milk yield was 

different in cows reared on farms characterized by Low-HP, because the lactation peak coincided 

with the first DIM class (5 to 35 d) followed by an almost linear decrease. 

The average values of the fat and protein contents of milk were lowest in samples collected 

at 35 to 65 DIM (3.79% and 3.39%, respectively), and then increased almost linearly until the end 

of lactation (4.78% and 4.08%, respectively). The HP × DIM interaction also affected these traits 

(table 3). The milk protein content of cows from High-HP was +0.25 percentage points greater than 

from Low-HP at the beginning of lactation, and decreased progressively to +0.06 at the end (data 

not shown). Milk fat content exhibited a similar, although more variable, trend, moving from +0.38 

to +0.13 percentage points during lactation in favor of the cows reared in High-HP.  

Lactose exhibited an opposite pattern to fat and protein, the highest value (5.12%) being in 

the second DIM class, the lowest in the last (4.86%). The pH increased over the first three classes of 

DIM (6.45 to 6.50), then to 6.52 at the end of lactation. Similarly to fat and protein, average SCS 

values were lowest in the second DIM class (2.15), then progressively increased until the end of 

lactation (3.65). Although the HP × DIM interaction was significant (Table 3), comparison of the 

two HP levels did not exhibit a clear trend during lactation, the values being more erratic (data not 

shown). 

The pattern of traditional single-point MCPs during lactation is shown in Figure 2. It is 

evident that RCT increased rapidly during the first part of lactation, while the changes occurred 

more slowly during the second part. The k20 trait increased slightly during the first trimester of 

lactation, but the initial values tended to be recovered during the following two thirds of lactation. 
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All three curd firmness values (a30, a45 and a60) were high at the beginning of lactation, reduced 

during the first part of lactation, were stable during mid-lactation, and tended to increase in the last 

couple of months. 

The patterns of the CFt modeling parameters and derived traits are shown in Figure 3 (the 

RCTeq pattern is not shown because it was almost identical to the traditional RCT pattern reported 

in Figure 2a). The pattern of the traits showing asymptotical potential and maximum curd firmness 

(CFP and CFmax) was similar to the pattern for traditional curd firmness: a decrease at the beginning, 

stabilization in the middle, and improvement toward the end of lactation. The pattern of the time 

needed to attain CFmax (tmax) was opposite to that of CFmax. Moving to the two instant rate constants, 

kCF showed a slight decrease at the beginning of lactation followed by a rapid increasing until the 

end of lactation, while kSR, on the contrary, was the only trait not affected by stage of lactation. 

Anyway, the effect on CFt modeling of different coagulation conditions (rennet concentration, pH, 

Ca, casein content, etc.), especially in late lactation samples, need to be further investigated. 

 

Effect of breed 

Least square means of the effects of breed and their orthogonal contrasts (F-value) for all the 

observed traits are reported in Table 4. All these least square means are obviously corrected for all 

the other factors of variation included in the model (herd productivity class, individual herds, and 

parity and DIM of the cows).  

Comparing, first, the average of the three specialized dairy breeds (Holstein Friesian, Brown 

Swiss and Jersey) with those of the dual-purpose breeds (Simmental, Rendena and Alpine Grey), it 

will be noted that the difference in milk yield did not attain statistical difference. Regarding milk 

quality traits, specialized dairy breeds outyielded dual-purpose breeds in the three major chemical 

components (protein, fat and lactose) but not in average pH and SCS. The productive aptitude of 

cows did not per se affect any traditional coagulation properties, nor any CFt parameters or derived 

traits, with the sole exception of the speed of the process as described by the two instant rate 
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constants for curd firming and syneresis (on average faster with dairy than with dual-purpose 

breeds). 

The three specialized dairy breeds differed considerably from each other for almost all the 

traits analyzed, while the differences were smaller among the three dual-purpose breeds. Results 

confirmed the small-framed dairy breed (Jersey) to have a smaller productive potential (daily milk 

yield: -31%) than the large-framed dairy breeds (Holstein Friesian and Brown Swiss), but higher 

milk protein (+11%) and fat (+35%) contents. Both the lactose content and pH of Jersey milk were 

slightly lower than in the heavier breeds. Milk from Jersey cows was characterized by much more 

favorable technological properties, whether expressed as MCP or CFt parameters and derived traits 

(Table 4). 

Compared with Holstein Friesians, Brown Swiss cows had a slightly lower productive 

potential (-12%), compensated for by greater milk fat and protein contents (+8% and +7%, 

respectively), and, in particular, by much more favorable milk technological properties. 

Moving to dual-purpose breeds, it will be noted that the large-framed Simmental cows 

produce, on average, more milk (+14%) than the cows of the two medium-framed local breeds 

(Rendena and Alpine Grey), with a greater fat content (+10%) and a much smaller somatic cell 

content (-20% SCS, corresponding to -33% SCC). No differences were found between the averages 

of the two local breeds with respect to the coagulation, curd firming and syneresis properties of 

milk. 

The differences recorded between the two local breeds were that Rendena cows produced 

more milk, with less protein, a lower pH, and more lactose and SCS than Alpine Greys. Moreover, 

Rendena milk samples coagulated earlier than Alpine Grey milk samples. 

The breed × parity interaction affected MY, milk pH, SCS, and rate of curd firming traits 

(k20, kCF, kSR, and tmax), but these differences were not quantitatively important.  
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DISCUSSION 

Modeling the coagulation, curd firming and syneresis process 

The major limitations of traditional MCP in cattle species, but not in sheep (Vacca et al., 

2015), are the existence of NC samples (milk not coagulating within 30 min of rennet addition), 

from which it is impossible to estimate RCT, k20, and a30, as well as the high frequency of LC 

samples whose late coagulation make it difficult to obtain a k20 value (not reaching 20 mm of curd 

firmness within 30 min), and the high correlation between RCT and a30, especially in late 

coagulating samples, so that the latter trait does not add much information beyond the former 

(Bittante et al., 2013). The use of traditional MCP with a 30 min test duration could bias 

comparisons among breeds, or dairy systems, characterized by different incidences of NC and LC 

samples. In addition, the traditional lactodynamograph setup for analyzing bovine milk was 

designed to explore primarily the coagulation and curd-firming process, not syneresis.  

Therefore, extending the lactodynamographic analysis beyond 30 minutes and applying a 4-

parameter curd firming model allowed us to model the entire pattern of coagulation, curd firming, 

and syneresis. The number of NC samples (without any traditional MCP measures) decreased from 

about 6.3% of milk samples at 30 min from rennet addition to less than 1.0% at 60 min. Also, the 

number of LC samples (those failing to reach a minimum curd firmness of 20 mm (no k20)) was 

17.0% after 30 min and only 2.6% after 60 min. However, it was also possible to extract the new 

parameters from the majority of these very late-coagulating samples using the CFt equation, so that 

milk samples without predicted CFt parameters only accounted for 1.1% of the total. Moreover, the 

pattern of coagulation, curd firming, and also syneresis emerges more clearly from the model based 

on all 240 informative points for each sample than from 5 of those points, as with traditional traits. 

The repeatability obtained was similar to that estimated by other authors on relatively small 

sets of data, (Caroli et al. 1990; Dal Zotto et al., 2008). The only previous study estimating the 

repeatability of modeled parameters (Bittante et al., 2013) used a 4-parameter model based on data 

from bulk milk samples from Holstein Friesian cows of one experimental herd, and not from 
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individual milk samples from cows of 6 breeds reared in 41 mixed-breed farms, like in the present 

study. Moreover, repeatability was not expressed in terms of the proportion of total variance, but in 

the unit of measure of each trait. Comparison of the two trials could be carried out using the 

residual mean square error as an indication of between-replicate variability. Compared with the 

previous trial, in the present study the residual variability was larger for RCTeq (1.6 vs 0.7 min, 

respectively), similar for CFP (7.1 vs 6.9 mm, respectively) and for kCF (1.5 vs 1.8 %/min, 

respectively), and smaller for kSR (0.17 vs 0.33 %/min, respectively). In any case, repeatability was 

satisfactory for RCTeq, CFP and CFmax, but lower for kCF, kSR and tmax. It is clear that the increased 

interest in prolonging the duration of the test should motivate the instrument manufacturer to 

produce lactodynamographs with improved repeatability also in the second part of the prolonged 

test. 

 

Effects of animal and herd on lactodynamographic traits 

Figure 4 shows the combined effects of parity on CFt modeling parameters and highlights 

the superiority of milk from primiparous over multiparous cows, confirming the results found with 

traditional MCP (Tyrisevä et al., 2003) as well as modeled CFt patterns (Malchiodi et al., 2014; 

Bittante et al., 2015).  

In addition to the recognized effects of lactation stage on milk production and quality traits, 

the present study confirmed the importance of DIM for both traditional MCP and CFt equation 

parameters. Figure 5 clearly shows that the effect of DIM is more important for coagulation than for 

curd firming and syneresis traits, and that milk produced at the beginning of lactation is superior to 

that produced thereafter, confirming previous reports by Macheboeuf et al. (1993a), Kreuzer et al. 

(1996), Tyrisevä et al. (2004), Jõudu et al. (2007), and Malchiodi et al. (2014).  

Some studies carried out on a large number of cows with repeated samplings made it 

possible to estimate the animal repeatability of lactodynamographic traits after correcting for parity 

and DIM. As reviewed by Bittante et al. (2012), the animal repeatability of the main traditional 



48 
 

MCPs was close to 60%, slightly greater than for milk yield and composition traits. The animal 

repeatability estimated by Caroli et al. (1990) for the same traits was slightly lower (48 to 56%). In 

the present study, the animal repeatability of traditional MCPs was greater, close to 80%, but it 

should be noted that it was calculated on replicated analyses of the same milk sample, and not on 

subsequent samplings.  

No estimates relating to animal repeatability are available in the scientific literature for the 

new modeling parameters and derived traits. It should be noted that regarding the lower 

instrumental repeatability with the increased time interval from rennet addition, animal repeatability 

is 82% for RCTeq, around 60% for the two instant rate constants, and much lower for the remaining 

traits (as for single point a60). 

The effect of individual herd has also been studied in several large surveys, although only a 

few of them included individual herd as a random factor allowing an estimation to be made of the 

corresponding variance component expressed as a proportion of total variance. Tyrisevä et al. 

(2004), Ikonen et al. (2004), and Vallas et al. (2010) sampled a large number of farms (73 to 693) 

and included this effect as a random effect in modeling MCP data. Herd variability in these studies 

represented a small proportion (lower than 10%) of total variance of traditional MCP. Slightly 

greater was the incidence of herd variance on total variance obtained by Cecchinato et al. (2013) on 

traditional MCP obtained from prolonged tests using different techniques. 

The present study confirmed that the effect of herd-date within class of herd productivity 

represented a very low proportion (6% to 13%) of total variability for both traditional single point 

MCP and new CFt modeling parameters and derived traits, especially when compared with MY and 

milk quality traits (Table 2). If we consider that herd clusters together several management criteria, 

such as housing conditions (free vs tie stalls), diet administration (total mixed ration, silage, summer 

pastures, etc.) and diet quality (percentage of starch, NDF and Crude Protein), and that herd here is 

combined with date of sample collection (and therefore also with season), the % variability in MCP 

and the modeled parameters explained by this factor is very low. This means that improvement in 
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the MCP and CFt parameters is basically affected mainly by variation in individual animal factors 

(breed, genetics, parity, stage of lactation, etc.) and much less by factors like environment, farm 

management, animal feeding, milking systems, etc. 

 

Effect of herd productivity on lactodynamographic properties 

To our knowledge no previous studies have investigated the effect of herd productivity (high 

or low) on the lactodynamographic properties of milk. Only Oloffs et al. (1992) sampled animals on 

about 1,400 farms and separated them into 3 classes based on average milk production levels, but 

the effect of these classes of herd productivity on the response variables was not shown. However, 

milk energy output (dMEO, MJ/d) is based on daily production of fat, protein and lactose, and this 

explains why, after correcting for breed, DIM and parity of cows, the herds with High-HP had not 

only higher daily MY but also better milk quality. Moreover, the herds with the highest average 

milk energy outputs are probably the best managed (i.e., in terms of diet and health). On the other 

hand, milk coagulation (RCT and RCTeq) was faster in samples from herds characterized by Low-

HP, but curd firmness tended to be reduced (Table 2). The combined effect of HP on 

lactodynamographic traits can be seen in Figure 6, which shows the patterns of coagulation, curd 

firming and syneresis obtained from the LSMs of the CFt equation parameters for the two HP 

classes. It is evident that in the first phase of the test (until 30 min) milk samples from low 

productivity farms are better, while the opposite is true in the second phase of the test (not analyzed 

in a traditional 30 min test). It worth noting that the parameters relative to the second phase of the 

lactodynamographic test are those better correlated with cheese yield, and fat and protein recovery 

in the curd (Cecchinato and Bittante, 2016). 

Further information can be indirectly obtained from the survey carried out by Tyrisevä et al. 

(2004) which classified 125 Finnish dairy farms not according to production level but to some of 

the cows’ feeding criteria (number of daily administrations of concentrates and type of concentrate 

used). The RCT was not affected by feeding criteria, but a small favorable effect on a30 was 
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observed including a moderate amount of oats in the diet. In particular, feeding practices leading to 

greater milk yield (use of compound feed and concentrates administrated 4 or more times per day) 

led to an improvement in MCP similar to that found in the present study’s comparison of milk from 

farms characterized by high vs low average daily milk energy output (Table 3). Recently, in a 

survey carried out on 85 herds of Brown Swiss cows, we found that traditional farms with lower 

average milk yields produced milk characterized by earlier coagulation, a greater syneresis rate, and 

a smaller and earlier CFmax than milk from modern, more productive, farms (Bittante et al., 2015), a 

result similar to our comparison of Low-HP and High-HP.   

Several experimental studies on the effects of feeding strategy on MCP have been published 

(Malossini et al., 1996; Coulon et al., 2004), but they often compared different forages, concentrates 

or supplements, and found small differences in the average milk yield of cows.  

The relationships between the productivity of individual cows within herd and 

lactodynamographic traits have been the subject of several studies. In a review of 8 studies on 

phenotypic and genetic parameters at the population level, Bittante et al. (2012) found very low 

phenotypic correlations between individual milk yield and traditional MCP (-0.06±0.08 for RCT 

and -0.03±0.04 for a30), and more variable genetic correlations (-0.15±0.18 for RCT and +0.04±0.22 

for a30). Herd productivity seems to have a greater effect than individual cow productivity within 

herd on both traditional and modeled MCPs. 

 

Effect of breed within herd 

In the present study, large differences among breeds were found. The comparisons of 

different cattle breeds in published research are almost all based on traditional MCPs obtained from 

lactodynamographic tests of 30 min. In these conditions, an appreciable number of milk samples do 

not coagulate (NC samples) and do not yield any MCP measures. As the incidence of NC samples 

differs in different breeds and these samples cannot yield any MCP traits, they can bias the 

estimation of MCP among different breeds, as discussed by Bittante et al. (2012), if the statistical 
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models do not accommodate censoring (Cecchinato and Carnier, 2011).  The bias on the k20 trait is 

even larger due to the LC samples, whose late coagulation does not allow curd firmness to reach the 

value of 20 mm (no k20 value). The entity of the bias in traditional MCP traits when comparing 

different breeds (in particular Holstein Friesian with Jersey and Rendena) could be predicted from 

the large differences across breeds in the incidence of NC and LC samples 30 min after rennet 

addition, as shown in Figure 7. Extending the test duration to 60 min greatly reduced the incidence 

of both NC and LC samples, so that the results reported in Table 4 for traditional MCP could be 

considered almost unbiased. The situation is even better for CFt traits, as the incidence of samples 

without trait prediction is about 1%. 

The specialized dairy breeds, in particular, exhibited large differences. Compared with 

large-framed Holstein-Friesian and Brown Swiss cows, small-framed Jersey cows are well known 

for their very low average milk yield but also the very high content of both fat and protein. Jersey 

cows also had the best renneting properties of all the 6 breeds compared in the present study. This 

superiority confirms previous results from the studies comparing breed reviewed by Bittante et al. 

(2012) and also from Poulsen et al. (2013) comparison of Jersey cows with Holstein and Swedish 

Red cows reared in different farms.  

Of the two large-framed dairy breeds, HF and BS, BS cows yielded very favorable MCPs, 

and produced milk with shorter RCT and k20 values and higher curd firmness than milk from HF 

(table 4). These results agree with 9 studies reviewed by Bittante et al (2012). Within dual-purpose 

breeds, a large number of studies have confirmed the good average technological aptitude of milk 

from the large-framed Simmental breed, which was better than Holstein Friesian and close to 

Brown Swiss. These studies, like those on specialized dairy breeds, were mainly experimental trials 

carried out on research farms or, in some cases, surveys at the population level comparing milk 

from single-breed farms.  

Medium-framed local breeds are of environmental significance, and are important from a 

cultural point of view, since they are related to local traditions and regional food products. Few 
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studies have focused on measured MCPs of local breeds, such as Alpine Grey and Rendena, 

however, De Marchi et al. (2007) in their survey compared 5 of the 6 breeds investigated in our 

research, including the two local breeds (but no Jerseys). The analyses were carried out on samples 

of bulk milk from single-breed herds and the statistical model also included the effects of protein 

and fat percentages, SCS, titrable acidity, and log bacterial count, so that the effects of these five 

dairy cattle breeds reported also included the effects of differences in geographical area, dairy 

system and feeding, and management practice, but were corrected for milk quality traits. 

Nevertheless, the ranking of the five breeds was about the same as in the present study.  

Since the differences among breeds were substantial, to distinguish the direct effect of breed 

on the lactodynamographic traits from the indirect effects arising from differences in milk 

composition and production, we included MY, protein, fat, lactose, pH, and SCS as general 

covariates in the basic model, and after that we calculated the differences in breed variances 

between the two models, with and without covariates, for each lactodynamographic trait. The 

results (not shown) revealed that no traits were affected by MY, favorable effects were exerted by 

protein (especially on curd firming traits), fat (especially on milk coagulation time), and lactose (on 

all traits) contents, an increase in pH was unfavorably related to lactodynamographic traits, while 

SCS had a minor negative effect. These effects confirmed the majority of results reported in the 

scientific literature (Bittante et al., 2012). The effect of breed was not totally explained by the 

introduction of milk quality covariates into the model, since they remained highly significant for all 

the traits examined. However, the proportion of total breed variance explained by MY and quality 

traits was very different among traits: 20% or less for RCT traits and tmax, and about 40 to 60% for 

the remaining traits (Figure 8). Even though the differences among the LSMs of the 6 breeds were 

smaller after taking the effect of milk yield and quality traits into account, the ranking of the 6 

breeds remained almost unchanged. 

No information is available in the scientific literature regarding the effect of breed of cows 

on the new CFt model parameters. The only indirect information comes from a comparison of the 
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patterns of coagulation and curd firming in milk from purebred Holstein Friesian cows with those of 

2nd and 3rd generation crossbred cows (Malchiodi et al., 2014), which revealed a favorable effect 

of using Brown Swiss and Montbeliarde sires in the crossbreeding scheme.  

The combined effects of breed on different lactodynamographic traits can be seen in Figure 

9, which shows a comparison of the patterns of coagulation, curd firming and syneresis obtained 

from the LSMs of CFt equation parameters for the 6 breeds. It is evident that breed exerts a strong 

effect, much greater than the effects of parity (Figure 4), DIM (Figure 5) and herd productivity class 

(Figure 6). Also immediately evident, is the superiority of the patterns characterizing the Jerseys 

and, in part, the Rendena breeds over the inferior Holstein-Friesian breed, while the other breeds of 

Alpine origin (Brown Swiss, Simmental and Grey Alpine) were intermediate. The differences 

among breeds are slightly less evident after correcting all the MCP traits for milk yield and quality 

(data not shown), but the ranking of breeds remains about the same. So the differences among 

breeds arise mainly from different genetic factors from those controlling milk, fat, protein and 

lactose secretions.  

As reviewed by Bittante et al. (2012), within breed traditional MCPs have been found to 

exhibit heritability coefficients similar to those characterizing other milk traits, and significant 

effects of milk protein genetic variants (in particular, those related to κ-casein). But it has been 

shown that the effect of milk protein genetic variants can also explain, but only partially, the 

differences in the lactodynamographic profiles of different breeds (Ikonen et al., 1999; Auldist et 

al., 2002). Candidate gene (Tyrisevä et al., 2008; Glantz et al., 2011; Cecchinato et al., 2012 and 

2015b) and genome-wide (Glantz et al., 2012; Gregersen et al., 2015; Dadousis et al., 2016) 

approaches have recently revealed that many other genes are involved in the control of these traits 

within breed, whether expressed as traditional MCPs or CFt modeling. A comparison of different 

breeds with respect to the cheese-making ability of their milk based on molecular information is 

still wanting, and could provide new insights into the reasons for the differences in breed not 

mediated by milk yield and composition.  
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In any case, prediction of traditional MCPs at the population level by Fourier-Transform 

Infrared (FTIR) spectroscopy, and its use in indirect selection for cheese-making aptitude has 

proven to be effective (Cecchinato et al., 2009; Ferragina et al., 2015), while there is still little 

information on modeled CFt traits. 

 

CONCLUSIONS 

In conclusion, this study on multi-breed herds allowed the effects of farm and of breed of 

cow to be independently evaluated. The use of CFt modeling based on all the information available 

after rennet addition and on extension of curd firmness recording allowed for better representation 

of the effects of the different factors examined on coagulation, curd firming and syneresis 

processes. In particular, there was a relatively low incidence of the effect of herd and season on the 

coagulative ability of milk. Comparison of farms with high or low average daily milk energy 

output, revealed some contradictory effects on coagulation and curd firmness phenomena. It may be 

speculated that the factors differentiating herds (environment, facilities, feeding, management, 

health) are not very important for traditional or modeled MCP traits, and that improvements in these 

traits at the herd level should be based mainly on modifying individual cow factors. 

Breed remained the predominant effect, showing strong differences between specialized and 

dual-purpose breeds, and especially within the two groups, even after correcting for milk yield and 

quality. In particular, results confirmed the very good milk quality and coagulative aptitude of 

Jersey cows, and, in part, also the dual-purpose Rendena cows, against the clear inferiority of 

Holstein-Friesian cows and the intermediate results of the other breeds of Alpine origin. Moreover, 

it was noted that, after correcting for effects of parity and DIM, there was still a very high animal 

effect within breed supporting that there is a strong genetic base to these traits and the possibility of 

genetic improvement.  

Further research is needed to investigate genetic differences among breeds and within breeds 

among individuals at the level of some candidate genes (especially milk protein genetic variants) 
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and of a genome-wide approach.  It is also important to study the effects of herd productivity and of 

breed of cow directly on cheese-yield and milk nutrient recovery in cheese, which would also pave 

the way for studies on the relationships between direct cheese-making traits and MCP and CFt 

model parameters. 
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TABLES AND FIGURES 

 

Table 1. Descriptive statistics of milk yield, chemical composition, traditional coagulation 
properties and curd firming time (CFt) equation parameters and derived traits  

Trait N Mean SD P14 P99 
Milk yield, kg/d 1,489 24.3 9.1 6.0 49.0 
Chemical composition of milk: 

    
Protein, % 1,490 3.70 0.44 2.89 4.71 
Fat, % 1,480 4.27 1.10 1.88 6.94 
Lactose, % 1,502 4.98 0.29 4.10 5.52 
pH  1,488 6.51 0.10 6.28 6.73 
SCS1 1,495 2.85 1.86 -0.47 7.28 

Traditional coagulation properties:
2
 

     
RCT, min 2,888 18.6 6.9 8.15 43.15 

k20, min 2,851 4.2 2.7 1.30 14.30 

a30, mm 2,889 40.1 19.0 0.00 72.40 

a45, mm 2,902 51.8 15.2 2.32 77.88 

a60, mm 2,910 54.2 13.7 17.54 79.54 

CFt equation 4 parameters:
3
 

     
RCTeq, min 2,886 18.9 7.0 7.94 43.60 

kCF, %×min-1 2,888 8.1 2.5 4.64 14.90 

kSR, %×min-1 2,884 0.63 0.23 0.00 1.31 

CFP, mm 2,914 74.5 17.4 23.35 106.2 

CFmax, mm 2,914 55.6 13.0 17.42 79.25 

tmax, min 2,930 51.9 8.9 28.00 60.0 
1SCS= 3 + log2 (SCC/100,000); 2RCT = measured rennet gelation time; k20 = time interval between 
gelation and attainment of curd firmness of 20 mm; a30 (a45, a60) = curd firmness after 30 (45, 60) 
min from rennet addition; 3RCTeq = RCT estimated according to curd firm change over time 
modeling (CFt); kCF = curd firming instant rate constant; CFP = asymptotic potential curd firmness; 
kSR = syneresis instant rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax 
= time at achievement of CFmax. 

4P1 = 1st percentile; P99 = 99th percentile. 
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Table 2. Variance of the random effects, repeatability and reproducibility of traditional milk 
coagulation properties and of curd firming modeling (CFt) equation parameters 

 

Random  effects  
(% of total 
variance): RMSE 

Repeatability 
%4 

Reproducibility 
% 

 
Herd-Date Animal 

Milk yield, kg/d 32.5 67.5 5.0 - - 
Chemical composition of milk:      

Protein, % 24.6 75.4 0.25 - - 
Fat, % 17.5 82.5 0.71 - - 
Lactose, % 8.9 91.1 0.26 - - 
pH  59.3 40.7 0.06 - - 
SCS1 14.8 85.2 1.58 - - 

Traditional coagulation properties:
2
      

RCT, min 10.7 82.4 1.6 94.1 94.1 
k20, min 6.1 80.2 0.9 88.0 88.0 
a30, mm 10.6 78.6 5.4 91.4 91.0 
a45, mm 8.5 68.2 5.9 84.0 81.9 
a60, mm 9.3 46.2 7.3 70.7 66.0 

CFt equation parameters:
3 

   
  

RCTeq, min 10.5 82.5 1.6 94.1 94.1 
kCF, %×min-1 9.6 34.8 1.5 59.1 57.9 
kSR, %×min-1 8.4 40.1 0.17 59.8 58.2 
CFP, mm 8.4 61.3 7.1 81.7 78.2 
CFmax, mm 8.4 61.3 5.7 81.7 78.2 
tmax, min 13.5 32.0 5.3 57.1 57.1 

1SCS= 3 + log2 (SCC/100,000); 2RCT = measured rennet gelation time; k20 = time interval between gelation and 
attainment of curd firmness of 20 mm; a30 (a45, a60) = curd firmness after 30 (45, 60) min from rennet addition; 3RCTeq = 
RCT estimated according to curd firm change over time modeling (CFt); kCF = curd firming instant rate constant; CFP = 
asymptotic potential curd firmness; kSR = syneresis instant rate constant; CFmax = maximum curd firmness achieved 
within 45 min; tmax = time at achievement of CFmax.  

4RT% = ( )	 	 	 	 	 ( )	

( )	 	 	 	 	 	 ( ) 	
	× 100;      

RD% = ( )	 	 	 	 ( )	

( )	 	 	 	 	 ( )	 	
	× 100, where  ( ) 	+ 	 	+ 	 	 +

	 ( ) +	  are variance components for herd within herd productivity level, animal, instrument, 

pendulum within instrument, and residual effects, respectively. 
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Table 3. Effect of herd productivity level and of parity 

 
Herd productivity (HP) 

 
Parity (LSM)  Parity Contrasts (F-value): HP  

× 
parity 

HP  
×  

DIM  
High-HP 
(LSM) 

Low-HP 
(LSM) 

F-value 
 

1st 2nd 3rd ≥4th 
 

1st vs ≥2nd 2nd 
vs ≥3rd 3rd vs ≥4th 

Milk yield, kg/d 26.6 17.3 70.2***  20.2 22.0 23.2 22.5  55.6*** 3.6 2.4 5.7*** 2.0* 
Chemical composition of milk:               

Protein, % 3.80 3.59 20.6***  3.72 3.75 3.68 3.65  2.7 16.1*** 1.7 0.8 4.0*** 
Fat, % 4.44 4.20 5.0*  4.33 4.36 4.33 4.27  0.0 1.1 1.0 1.1 2.9** 
Lactose, % 4.96 4.98 0.2  5.06 4.98 4.92 4.92  58.6*** 7.7* 0.0 3.0* 0.6 
pH  6.50 6.50 0.0  6.49 6.50 6.50 6.52  12.6*** 1.3 11.9** 0.5 1.4 
SCS1 2.76 2.71 0.1  2.28 2.50 2.97 3.21  38.2*** 19.9*** 2.9 8.0*** 3.4*** 

Traditional coagulation properties
2
:               

RCT, min 18.3 16.2 7.0* 
 

16.2 18.1 17.6 17.1  7.1* 1.2 0.5 0.6 0.7 
k20, min 3.9 4.2 0.5 

 
3.6 4.2 4.2 4.2  6.7* 0.0 0.0 2.3 1.9* 

a30, mm 41.8 43.0 0.3 
 

45.9 41.0 41.1 41.6  10.4* 0.0 0.0 0.7 1.3 
a45, mm 52.9 50.6 2.1 

 
54.4 51.3 50.5 50.7  10.0* 0.2 0.0 1.3 1.4 

a60, mm 55.1 51.0 7.5** 
 

55.3 53.3 52.0 51.6  10.8* 1.4 0.1 0.9 1.4 
CFt equation parameters

3
: 

  
 

 
     

   
  

RCTeq, min 18.6 16.3 7.7** 
 

16.4 18.3 17.8 17.3  7.2* 1.3 0.5 0.6 0.7 
kCF, %×min-1 8.7 9.1 2.9 

 
9.0 8.6 8.9 9.0  0.6 2.7 0.3 1.6 1.4 

kSR, %×min-1 0.69 0.74 3.3 
 

0.72 0.68 0.71 0.73  0.6 2.4 0.4 2.8* 1.9* 
CFP, mm 76.8 71.9 6.9* 

 
77.5 74.3 73.0 72.6  11.9*** 0.8 0.0 1.3 1.8 

CFmax, mm 57.3 53.7 6.9* 
 

57.8 55.4 54.5 54.2  11.9*** 0.8 0.0 1.3 1.8 
tmax, min 50.9 47.2 11.0** 

 
48.3 50.4 49.4 48.0  3.0 5.4* 3.1 0.5 0.8 

1SCS= 3 + log2 (SCC/100,000); 2RCT = measured rennet gelation time; k20 = time interval between gelation and attainment of curd firmness of 20 mm; a30 (a45, a60) = curd 
firmness after 30 (45, 60) min from rennet addition; 3RCTeq = RCT estimated according to curd firm change over time modeling (CFt); kCF = curd firming instant rate constant; 
CFP = asymptotic potential curd firmness; kSR = syneresis instant rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax. *P 

< 0.05; ** P < 0.01; *** P < 0.001 
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Table 4. Least square means of breed effect and their orthogonal contrasts (F-value) of traditional coagulation properties and CFt equation 
parameters and derived traits for breed and F-value of the contrasts  

 
Breed (LSM): 

 
Breed Contrasts (F-value): 

Breed 
× 

parity  

Holstein 
Friesian 

(HF) 

Brown 
Swiss  
(BS) 

Jersey 
 

(Je) 

Simmental  
 

(Si) 

Rendena 
 

(Re) 

Alpine 
Grey 
(AG) 

 
HF BS Je  

vs 

 Si AG Re 

HF BS  
vs 

 Je 

HF  
vs 
BS 

Si  
vs  

Re AG 

Re  
vs  

AG  

Milk yield, kg/d 26.5 23.4 17.1 23.6 22.0 19.3  3.2 114.4*** 129.1*** 33.4*** 13.4*** 2.2** 
Chemical composition of 

milk: 
             

Protein, % 3.47 3.75 4.07 3.63 3.50 3.77  40.7*** 165.7*** 442.7*** 0.0 54.6*** 2.3** 

Fat, % 4.01 4.28 5.59 4.27 3.79 3.98  116.1*** 202.2*** 46.6*** 27.1*** 3.4 1.5 

Lactose, % 4.97 4.96 4.87 4.96 5.08 4.98  14.1*** 6.6* 0.27 7.1* 7.9* 1.6 

pH  6.51 6.51 6.49 6.50 6.49 6.52  0.4 4.4* 0.6 3.2 8.8* 2.7*** 

SCS1 3.04 2.82 2.64 2.26 2.96 2.71  2.3 1.7 6.3 12.9*** 1.1 2.6*** 
Traditional coagulation 

properties
2
: 

             

RCT, min 19.6 18.7 13.1 18.0 15.2 18.8  0.1 26.1*** 4.2* 1.6 9.4** 0.8 

k20, min 5.7 3.8 2.5 4.5 3.5 4.3  0.2 23.4*** 100.7*** 3.6 2.4 1.7* 

a30, mm 32.7 41.7 57.0 39.1 44.7 39.3  2.3 37.0 *** 52.6*** 1.6 2.8 1.2 

a45, mm 44.3 53.6 58.6 49.7 52.7 51.4  0.4 15.1*** 95.5*** 1.7 0.3 0.9 

a60, mm 47.0 55.6 57.2 51.4 53.2 54.0  0.1 8.2** 117.0*** 2.3 0.1 0.9 

CFt equation  parameters:
3   

  
   

     
 

RCTeq, min 19.8 19.0 13.0 18.3 15.4 19.1  0.2 28.4*** 3.5 1.6 9.8** 0.8 

kCF, %×min-1 7.6 8.5 11.9 8.3 8.7 8.4  19.9*** 124*** 45.9*** 1.0 0.8 2.3** 

kSR, %×min-1 0.59 0.69 0.97 0.66 0.71 0.66  8.9** 69.5*** 41.8*** 0.6 1.5 2.0* 

CFP, mm 64.7 76.7 84.4 71.5 74.4 74.5  1.3 25.4*** 131.2*** 2.3 0.0 0.9 

CFmax, mm 48.3 57.2 63.0 53.4 55.5 55.6  1.3 25.4*** 131.2*** 2.3 0.0 0.9 

tmax, min 52.4 51.0 41.1 50.5 48.1 51.3  6.3 70.4*** 8.1** 0.8 6.2 2.3* 
1SCS= 3 + log2 (SCC/100,000); 2RCT = measured rennet gelation time; k20 = time interval between gelation and attainment of curd firmness of 20 mm; a30 (a45, a60) = curd firmness after 30 (45, 60) 
min from rennet addition; 3RCTeq = RCT estimated according to curd firm change over time modeling (CFt); kCF = curd firming instant rate constant; CFP = asymptotic potential curd firmness; kSR = 
syneresis instant rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax. *P < 0.05; ** P < 0.01; *** P < 0.001 
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Figure 1. Effect of interaction (P = 0.03) between herd productivity level (High-HP and Low-HP) 
and stage of lactation (each point represents the LSM and the bars the corresponding standard error 
of the interaction HP × DIM from a model including herd within HP, 6 breeds effect, parity and its 
interactions with HP and breed). 

 

  



66 

 

Figure 2. Effect of DIM on traditional MCP: RCT (P<0.0001) and k20 (P < 0.0001) [a] and on curd 
firmness at 30 (a30, P<0.0001), 45 (a45, P=0.002) and 60 minutes (a60, p<0.0001) [b]. 

[a]                                                                     

 

 

[b] 
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Figure 3. Effect of DIM on CFt modeling parameters and derived traits: CFP (P<0.001), CFmax (P < 
0.001), tmax (P < 0.01) [a], and kCF (P < 0.001) and kSR (ns) [b] (RCTeq showed values very similar 
to those of RCT reported in Figure 2a). 

 [a] 

 

 

 [b] 
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Figure 4. Pattern of curd firmness after rennet addition (CFt modeling) of milk samples across 
classes of parity. 

 

 

Figure 5. Pattern of curd firming after rennet addition (CFt modeling) of milk samples according to 
stage of lactation. 
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Figure 6. Pattern of curd firming after rennet addition (CFt modeling) of milk samples according to 
herd productivity level (High-HP or Low-HP) defined by the herd’s average daily milk energy 
output of the cows (corrected for breed, parity and DIM). 
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Figure 7. Incidence of: a) non-coagulating (NC) and b) late-coagulating (LC) milk samples in 
different cattle breeds after 30 or 60 min from rennet addition. 

  

 

HF = Holstein-Friesian; BS = Brown Swiss; Je = Jersey; Si = Simmental; Re = Rendena; AG = Alpine Grey. 
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Figure 8. Proportion of total breed variance explained by direct breed effect or by indirect breed 
effect through differences in milk yield and quality traits on MCP and CFt equation traits. 

 

 

RCT = measured rennet gelation time; k20 = time interval between gelation and attainment of curd firmness of 20 mm; 
a30 (a45, a60) = curd firmness after 30 (45, 60) min from rennet addition; RCTeq = RCT estimated according to curd firm 
change over time modeling (CFt); kCF = curd firming instant rate constant; CFP = asymptotic potential curd firmness; 
kSR = syneresis instant rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at 
achievement of CFmax. 
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Figure 9. Pattern of curd firmness after rennet addition (CFt modeling) of milk samples for the 6 
breeds compared within herds. 

 

HF = Holstein-Friesian; BS = Brown Swiss; Je = Jersey; Si = Simmental; Re = Rendena; AG = Alpine Grey. 
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ABSTRACT 

Cheese production is growing world-wide but cheese-making is a very complex process in 

which several qualitative, technological and productive traits are taken into account. Little is known 

of these traits at the level of individual lactating females because of the difficulties and costs of 

producing many individual model cheeses. Moreover, it is often difficult to differentiate the effects 

of the most important factors - herd and breed - because of the use of data from single-breed herds 

and the frequent links between specific breeds and specific environmental and management 

features. The objective of the present study was to differentiate between the effects of herd 

productivity class, individual herds within productivity classes, and breed of cow within herds by 

producing and analyzing 508 model cheeses from 508 cows of 6 different breeds reared in 41 multi-

breed herds classified into 2 productivity classes (high vs low).  

For each cow: a) 6 milk composition traits; b) 4 recovery traits (REC) of milk nutrients (fat, 

protein, solids and energy) in curd, and 3 actual % cheese yield traits (%CY), expressing fresh 

cheese, cheese solids and cheese water as percentages of the processed milk were analyzed (these 

traits were obtained during the experimental cheese making); c) 2 theoretical %CYs (fresh cheese 

and cheese solids) were calculated from the milk composition, and 2 overall cheese-making 

efficiencies (fresh cheese and cheese solids) were calculated as the % ratio between actual and 

theoretical %CYs; d) daily milk yield (dMY) was measured and estimates were made of 3 actual 

daily cheese yield production traits (dCY) per cow (fresh cheese, cheese solids and water retained in 

the cheese). The data were analyzed using a mixed model in which the following effects were 

included: 2 herd productivity classes, 27 random herd effects, 4 parity categories, 10 DIM classes, 6 

breed effects, 3 interactions, 3 random water-bath effects, 15 random vat effects and the random 

residual. 

Cows reared in high productivity herds yielded more milk with greater nutrient contents and 

more cheese per day, had greater theoretical %CY, although to a lesser extent, actual %CY, but did 

not differ from low productivity herds in terms of REC traits (except solids) and had a lower solid 
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cheese-making efficiency. Individual herds within productivity classes were an intermediate source 

of total variation with respect to REC traits (11.3% to 17.1%), and to actual and theoretical %CY 

and estimates of efficiency (10.0% to 17.2%), and a major source for milk yield and dCY traits 

(43.1% to 46.3%). Parity of cows was an important source of variation, especially with respect to 

productivity traits, whereas DIM affected almost all traits. 

Breed within herd greatly affected all traits. Compared with the dual-purpose breeds, the 3 

specialized dairy breeds (Holstein, Brown Swiss and Jersey) had, on average, a similar dMY, better 

milk composition, greater actual and theoretical %CY, similar fat and protein REC, and slightly 

lower cheese-making efficiency. Of the specialized dairy cow breeds, Holsteins produced more 

milk, but Brown Swiss cows produced milk with a greater nutrient content, greater nutrient REC, 

higher actual and theoretical %CY and a higher cheese-making efficiency, so the two large breeds 

had the same dCY. Small Jersey cows produced much less milk, with much more fat and protein 

and greater REC traits than the two large-framed breeds resulting in greater actual and theoretical 

%CY but similar efficiencies. Although the Jersey breed had lower dMY and dCY, the difference 

was much smaller for the latter. The differences among the 3 dual-purpose breeds (Simmental and 

the local Rendena and Alpine Grey) were not very large. Compared with medium-framed cows of 

the local breeds, Simmentals had greater dMY, tended to have better milk composition, REC and 

%CY traits (but similar efficiencies), and also had much greater dCY. Among the local breeds, the 

higher dMY of Rendena was offset by the greater nutrient content of milk from the Alpine Greys, 

so their dCY was similar. 

Differentiating the effects of herd productivity class and individual herds from the 

characteristics of individual cows gave us a better understanding of breed characteristics and 

provided information of use for better evaluating selective breeding of purebred animals and 

deciding on breed combinations in crossbreeding dairy programs. 

Key words: Cheese-making efficiency, cheese yield, herd effect, fat recovery, protein recovery 
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INTRODUCTION 

Cheese yield (CY), expressed as the percentage ratio between the cheese produced and the 

milk processed (%CY), is of global economic importance, and daily yield of cheese, expressed in 

kilograms of cheese produced daily per cow (dCY), is the final direct or indirect production target 

of many dairy farmers. CY relies primarily on the fat and protein content of milk, particularly 

casein, and on the technological properties of the processed milk (Law and Tamine, 2010), but also 

on recovery in the curd of the individual milk components (REC traits) that determine the overall 

efficiency of cheese-making. Measurement or prediction of %CY and dCY of individual cows is 

important for studies aimed at investigating the existence of a genetic basis for these traits 

(Othmane et al., 2002), and also for selecting breed combinations in crossbreeding dairy programs. 

However, most of the studies in the literature involving laboratory cheese-making procedures have 

used bulk milk, largely because it is very time-consuming and labor-intensive to produce a large 

number of small model cheeses from milk samples of individual cows. Very few published studies 

have considered individual %CY traits of bovine milk (Cipolat-Gotet et al., 2013). 

The primary genetic characteristic of a cow - its breed - has been shown to have an 

enormous effect on cheese yield traits (Banks et al., 1986; Verdier-Metz et al., 1995), but this 

information generally comes from studies using bulk milk from cows grouped into individual 

experimental herds (Mistry et al., 2002; Hurtaud et al., 2009; Martin et al., 2009), or using bulk 

milk from different commercial single-breed herds (Malacarne et al., 2006; Bland et al., 2015). 

Therefore, comparison of breeds may be affected by a lack of representativeness, or by different 

individual (parity, stage of lactation, etc.) or herd (facilities, feeding, management, etc.) 

characteristics. In fact, in a large survey on factors affecting the variability of individual cheese-

making traits in Brown Swiss cows, Cipolat-Gotet et al. (2013) found that the effect of herd 

represented 21 to 31% of total variance for the REC traits of milk components in the curd, 24 to 

42% in the case of %CY traits, and 51 to 53% for dCY, expressed as the daily production of cheese 
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per cow. It is also possible that very different dairy systems and levels of farm productivity interact 

with breed. 

Far, more studies on milk coagulation and curd firming properties (MCP) using 

lactodynamography have been carried out with individual cows, in part because of the small 

quantity of milk needed and the possibility to test several milk samples in a short period of time 

(often 10 samples in 30 min). Lactodynamography reproduces only some steps of the cheese-

making process (i.e., rennet addition, milk coagulation, curd firming) but several studies found a 

large effect of breed of cow on MCP, as reviewed by Bittante et al. (2012). Although 

lactodynamography gives no direct measurement of %CY and REC traits, some authors identified 

MCP as possible predictors of %CY (Ikonen et al., 1999b; Malacarne et al., 2006). In contrast, 

Bonfatti et al. (2014) produced small experimental cheeses from milk samples that varied widely in 

their MCP but had similar fat and casein contents, and concluded that the MCP did not affect %CY 

traits. It should be noted that these studies were not carried out with individual cows. Recently, 

Cecchinato and Bittante (2016) demonstrated that, at the individual level, traditional MCPs are not 

very relevant for predicting individual %CY. Evaluating the different REC, %CY and dCY traits 

while distinguishing between genetic and environmental (herd) factors is, therefore, very important 

when comparing different dairy and dual-purpose breeds, effectively planning breed combinations 

in crossbreeding programs, and in order to better define objectives in the selection of purebred 

animals. 

For these reasons, a large research project (Cowplus project) was established, and several 

cheese-making-related phenotypes have been measured in milk from individual cows from multi-

breed herds, thereby allowing for independent evaluation of the effects of farm and breed of cows. 

The specific aims of this study were: 1) to quantify and characterize the effects of herd productivity 

(defined on the basis of the average net energy of milk yielded daily by the cows) on 15 REC, 

%CY, and dCY traits; 2) to quantify the variability of herds within class of herd productivity; and 
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3) to make a within-herd comparison of 6 dairy and dual-purpose breeds for these cheese-making 

traits.  

 

MATERIALS AND METHODS 

Multi-breed herds  

A total of 1508 cows from 41 multi-breed herds (2 to 5 breeds per herd, on average 3) 

located in Trentino province in the north-eastern Italian Alps were monitored once for daily milk 

yield and composition. Details of the milk sampling and analysis have been described by Stocco et 

al. (2016), and of the environmental context and dairy systems involved by Sturaro et al. (2013).  

Milk from a subsample of 513 cows (reared in 27 multi-breed herds) were assessed also on 

cheese-making traits. Six breeds were investigated, 3 specialized dairy breeds: Holstein Friesian 

(HF = 17 herds, 110 cows), Brown Swiss (BS = 22 herds, 155 cows), and Jersey (Je = 6 herds, 39 

cows); and 3 dual-purpose breeds: Simmental (Si = 14 herds, 69 cows), and the two native breeds, 

Alpine Grey (AG = 13 herds, 71 cows) and Rendena (Re = 8 herds, 69 cows). Initially, 20 cows per 

herd were selected to include all breeds under study and different parities and days in milk. A few 

cows and milk samples were discarded because of health problems, milk composition abnormalities 

or technical problems. 

 

Herd productivity classification 

The herds were classified into two categories of herd productivity (HP), defined on the basis 

of the average daily milk energy output (dMEO) yielded by all lactating cows in the herd. The net 

energy content (NEL) of milk was estimated by means of the following equation, proposed by the 

NRC (2001):  

NEL (Mcal/kg) = 0.0929 × fat,% + 0.0547 × protein,% + 0.0395 × lactose,%, 

where NEL is the energy of one kg of milk. The NEL values obtained were converted to MJ/kg and 

multiplied by the daily milk yield of each cow (kg/d) to obtain the individual dMEO of each cow 
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(MJ/d). The individual dMEO data of all lactating cows were subjected to an ANOVA using the 

SAS GLM procedure (SAS Institute Inc., Cary, NC) in order to calculate the least square means 

(LSMs) for dMEO for the selected herds after correcting for breed, DIM and parity of cows. After 

ranking the dMEO LSMs of the 27 farms, we divided them into high producing (High-HP: n = 13, 

dMEO = 83.82 MJ/d) and low producing (Low-HP: n = 14, dMEO = 51.60 MJ/d) herds on the 

basis of the median value.  

All breeds were distributed throughout the high and low productivity herds, with the 

exception of the Jersey, which was only found in High-HP herds, and the Alpine Grey, found only 

in Low-HP herds.  

 

Analysis of milk samples  

Immediately after collection, individual milk samples of about 2000 mL per cow were 

stored at 4°C, and processed within 24 hours of sampling at the Milk Quality Laboratory of the 

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) of the 

University of Padova.  

All samples were analyzed for pH (Crison portable pH-meter Basic 25; Crison Instruments 

SA, Barcelona, Spain), and SCC (Fossomatic Minor, Foss Electric A/S, Hillerød, Denmark). Milk 

SCC was log-transformed to SCS (Ali and Shook, 1980). Total solids, protein, casein, fat and 

lactose contents were measured with a Milkoscan FT2 infrared analyzer (Foss Electric A/S, 

Hillerød, Denmark) calibrated in accordance with the reference methods [ISO 6731/IDF 21 for total 

solids (2010a); ISO 8968–2/IDF 20–2 for protein (ISO-IDF, 2014); ISO 17997–1/IDF 29–1 for 

casein (ISO-IDF, 2004); ISO 1211/IDF for fat (ISO-IDF, 2010b); ISO 26462/IDF 214 for lactose 

(ISO-IDF, 2010c)].  
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Individual model cheese-making procedure 

Individual milk samples were processed using a model cheese-making method to assess 

%CY and REC traits, as proposed by Cipolat-Gotet et al. (2013) with modifications. The cheese-

making apparatus consisted of 3 water baths (WB) fitted with a digital temperature controller and 

pumps for water mixing to ensure homogeneous heat distribution throughout the WB. Five stainless 

steel vats (capacity 1500 mL) were placed in each WB. 

The following procedure, summarized in Figure 1, was performed on each milk sample 

(1500 mL): milk was heated to 35°C for 30 min and pH was then recorded using a Crison Basic 20 

electrode (Crison, Barcelona, Spain). Bovine rennet solution [8 mL per sample consisting of 0.2145 

mL of Naturen Plus 215 Hansen with 80 ± 5% chymosin and 20 ± 5% pepsin; 215 IMCU/mL 

(Pacovis Amrein AG, Bern, Switzerland) diluted in distilled water] was then added. The curd was 

cut into cubes of about 0.5 cm3 10 minutes after visual observation of milk gelation by the operator. 

It was then separated from the whey (10 minutes after cutting) and placed in a cheese mold 

suspended over the vat containing the whey for 20 min, during which the curd was turned every 2 

min to facilitate draining. After draining, the curd was cross-cut into four pieces, shaped into a 

smaller cheese mold and submerged in its whey for 10 min to encourage additional whey expulsion 

from the curd. At the end of this phase, the whey was weighed and sampled for analysis of its 

composition using a MilkoScan FT2 (Foss Electric A/S, Hillerød, Denmark), while the curd was 

pressed for 30 min at 250 kPa, during which it was turned every 10 min. Finally, the curd was 

brined for 30 min (saturated solution; 20% NaCl). After brining, the cheese wheel was weighed. 

 

Definition of cheese-making traits 

The weights of the milk and whey (g) and their chemical compositions enabled us to 

calculate cheese-making traits, as proposed by Cipolat-Gotet et al. (2013). The composition of the 

curd was calculated by subtracting the weight of the nutrient in whey from the corresponding 

nutrient in the milk processed. Briefly, the measured traits were: %CYCURD, %CYSOLIDS and 
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%CYWATER, calculated as the ratio of the weight (g) of fresh curd, curd dry matter and curd water, 

respectively, to the weight of the milk processed (g); RECPROTEIN, RECFAT and RECSOLIDS, 

calculated as the ratio of the weight (g) of the curd component (protein, fat and dry matter, 

respectively) to the same component of milk (g). Recovery of energy in the curd (RECENERGY) was 

determined by estimating milk and curd energy using an equation proposed by the NRC (2001) and 

converted to MJ/kg. Lastly, daily cheese yields (dCYCURD, dCYSOLIDS and dCYWATER; kg/d) were 

calculated by multiplying the different %CYs (%CYCURD, %CYSOLIDS and %CYWATER, respectively) 

by the daily milk yield (dMY, kg/d).  

 

Definition of cheese-making efficiency 

The theoretical %CYCURD (Th-%CYCURD) of the milk samples of each cow was estimated 

using the historical formula of Van Slyke and Price (1949) reported by Emmons and Modler (2010) 

in their review: 

ℎ	% = (0.93 × % +% − 0.1) × 1.09/[(100 −% )/100] 

where 1.09 represents correction for milk minerals and cheese salt and carbohydrates, and %M is 

the percentage moisture of cheese (100 - %total solids). 

A formula for estimating the theoretical %CYSOLIDS (Th-%CYSOLIDS) was derived from the 

previous one by simply deleting the last part, which corrects for cheese moisture: 

ℎ	% = (0.93 × % +% − 0.1) × 1.09 

The efficiencies of %CYCURD (Ef-%CYCURD) and of %CYSOLIDS (Ef-%CYSOLIDS) were 

calculated by simply expressing the experimental value in relation to the corresponding theoretical 

value for each cow: 

Ef-%CYCURD = %CYCURD / Th-%CYCURD, and 

Ef-%CYSOLIDS = %CYSOLIDS / Th-%CYSOLIDS 
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Statistical Analysis 

Experimental data were analyzed using the MIXED procedure (SAS Institute Inc., Cary, 

NC), according to the following model (base model): 

yijklmnop = µ + HPm + Herdn(HP)m + Breedk + Parityj + Breedk × Parityj + HPm × Parityj + DIMi + 

HPm × DIMi  + Waterbathl + Vato(Waterbath)l + eijklmnop 

where yijklmnop is the observed trait (RECPROTEIN, RECFAT, RECSOLIDS, RECENERGY, %CYCURD, 

%CYSOLIDS, %CYWATER, Th-%CYCURD, Th-%CYSOLIDS,  Ef-%CYCURD, Ef-%CYSOLIDS, dMY, dCYCURD, 

dCYSOLIDS, and dCYWATER,); µ is the overall intercept of the model; HPm is the fixed effect of the 

mth herd productivity (m = 2 levels); Herdn is the random effect of the nth herd (n = 1 to 27) within 

the mth class of herd productivity; Breedk is the fixed effect of the kth breed (k = HF, BS, Je, Si, Re 

and AG); Parityj is the fixed effect of the jth parity (j = 1 to ≥ 4); DIMi is the fixed effect of the ith 

class of days in milk [i = 1 to 10; class 1, 5-35 days (31 samples); class 2, 35-65 d (26 samples); 

class 3, 65-95 d (41 samples); class 4, 95-125 d (56 samples); class 5, 125-155 d (64 samples); class 

6, 155-185 d (58 samples); class 7, 185-215 d (63 samples); class 8, 215-245 d (57 samples); class 

9, 245-275 d (32 samples); class 10, > 275 d (84 samples)]; Waterbathl is the random effect of the lth 

water bath (l = 4 baths); Vato is the random effect of the oth vats (o = 1 to 20) within the lth water 

bath; eijklmnopq is the random residual ~ N (0, ). 

A model that also included the breed × herd productivity interaction was fitted to test the 

data from all the breeds present in both classes of herds (Jersey and Alpine Grey excluded). As this 

interaction was never significant, the results of this model analysis are not shown nor discussed. 

A further model was used to analyze the direct effects of breed on CY and cheese-making 

efficiency traits, corrected for the milk yield and quality traits and was obtained from the base 

model with inclusion of linear covariate of dMY, total solids, protein, fat, lactose, pH and SCS. 

Moreover, the breed effect was considered random to obtain a correct quantification of breed 

variance. The indirect effect of breed on the considered traits due to breed differences in terms of 

milk yield and quality was obtained subtracting the breed variance yielded by the extended model 
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from the breed variance obtained from the base model (with breed as random effect). Both direct 

and indirect breed variance were represented as percentage of total breed variance.  

Orthogonal contrasts were estimated between the LSMs of traits for the effect of breed: 

a) specialized dairy (HF, BS and Je) vs dual-purpose breeds (Si, AG and Re);  

b) within specialized, large-framed vs small-framed breeds (HF + BS vs Je), and  

c) comparison between the two large-framed dairy breeds (HF vs BS);  

d) within dual-purpose, large-framed breed vs medium-framed local breeds (Si vs Re + 

AG), and  

e) comparison between the two medium-framed local dual-purpose breeds (Re vs AG).  

Orthogonal contrasts were also estimated between the LSMs of traits for the effect of 

parity: a) 1st vs ≥2nd,  b) 2nd vs  ≥3rd,  c) 3rd vs ≥4th.  

 

RESULTS 

Descriptive statistics and random effects on the cheese-making ability of milk 

Descriptive statistics of milk quality, REC, %CY, Th-%CY, and Ef-%CY traits, and of dMY 

and dCY of individual cows are summarized in Table 1. All traits exhibited high variability, due 

mainly to the diversity of herd productivity and of the six breeds sampled, and an almost normal 

distribution.  

Figure 2 shows the incidence of herd-date variance on total variance of the traits examined 

in this study. In the case of REC, the herd-date effect was modest, whereas it was intermediate for 

%CY, Th-%CY and Ef-%CY traits, and much greater for daily milk and cheese production per cow, 

varying from 11.3% for RECPROTEIN to 41.5 to 46.3% for production traits. Regarding the other 

random effects in the model (data not shown), both water bath and vat within water bath had little 

effect on cheese-making ability (in both cases from about 0.0% for the majority of the traits 

examined to 0.6% of the total variance for RECENERGY (water bath), and RECPROTEIN (vat within 

water bath), highlighting the good reproducibility of the method. 
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Herd productivity, effects of parity and DIM  

The least square means of the herd productivity (HP) classes, and the F-values of the same 

factors of variation and of the HP × parity and HP × DIM interactions on milk quality and cheese-

making traits are summarized in Table 2. The daily yield and nutrient contents of milk were both 

very different in the two herd productivity classes, and greater in the High-HP herds. Although 

there were no differences in the milk nutrient recoveries in the curd (except for RECSOLIDS), the 

greater content of fat and casein is responsible for the greater %CYSOLIDS (+6.3%) in High-HP herds 

than in Low-HP herds. This difference is slightly lower than the theoretical %CY (+8.3%), so actual 

cheese-making efficiency is lower (-2.5%) in High-HP than in Low-HP herds, and than the 

predictions based on milk composition (Table 2). Similar but non-significant nominal differences 

between the two classes of herds were also found with respect to water retained in the curd 

(%CYWATER). As a result, both the actual %CYCURD and Th-%CYCURD were greater in High-HP 

than in Low-HP herds (+6.7% and +10.8%, respectively), but no significant difference was found 

for Ef-%CYCURD (-3.1%). 

As a result of these differences, cows in High-HP herds produced 50% more milk, 58% 

more cheese, and 63% more cheese solids per day than the cows reared in Low-HP herds.  

Parity (Table 3) had a moderate effect on the quality of milk and on cheese-making traits. 

Milk from primiparous cows had only a slightly greater content of casein and lactose than milk 

from multiparous cows. RECPROTEIN was also slightly greater in primiparous cows, as was actual 

%CYCURD and Ef-%CYCURD, although the latter seems due to greater water retention in their model 

cheeses than to differences in Ef-%CYSOLIDS (Table 3). 

Milk from second-calvers also had slightly greater contents of total solids, protein, casein, 

fat and energy than older cows, and correspondingly slightly greater actual and theoretical %CYs, 

whereas there were no differences in water retention in the cheese and in cheese-making 

efficiencies. 
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Daily production per cow was, as expected, lower for primiparous than multiparous cows 

with respect to milk (-10%), fresh cheese (-8%), and cheese solids (-9%). The lower production of 

second-calvers compared with older cows (-6%) was in part compensated for by greater %CY traits, 

so there were no significant differences in daily cheese production. The HP × parity interaction did 

not affect any traits. 

The variation during lactation was highly significant for all the cheese-making traits 

examined, with the sole exception of RECFAT (data not shown). With respect to the 3 %CY traits, it 

can be seen from Figure 3 that, after the first month, these increased almost linearly until the end of 

lactation, when they all reached their greatest values. We also noted a weak, insignificant 

interaction between DIM and HP class for the three %CY traits, and 2 of the 4 nutrient recovery 

traits (RECFAT and RECSOLIDS). In fact, we found a greater increase in %CYCURD from the 

beginning to the end of lactation with cows from High-HP herds than with cows from Low-HP 

herds (2.6 vs 2.0%). This was also the case for CYWATER (2.3 vs 0.8%), but not for CYSOLIDS (0.8 vs 

1.1%). 

 

Effect of cow breed 

Least square means and their orthogonal contrasts (F-values) for milk quality and cheese-

making traits of the 6 breeds sampled are reported in Table 4. These least square means are 

corrected for all the other factors of variation included in the model, and particularly for herd 

productivity class, individual herds within class, and the cows’ parity and DIM.  

Comparing, firstly, the average of the three specialized dairy breeds (Holstein Friesian, 

Brown Swiss and Jersey) with that of the dual-purpose breeds (Simmental, Rendena and Alpine 

Grey) we note that 5 of the 6 milk quality traits and 12 of the 15 cheese-making traits were better 

with the former group of breeds, although the differences were not, on average, very large. 

With respect to almost all the traits examined, the individual values making up the average 

value of the three specialized dairy breeds covered a greater range than the individual values of the 
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three dual-purpose breeds. Our findings confirmed the lower milk productivity potential of Jersey 

cows compared with the large-framed dairy breeds, i.e., Holstein Friesian (-40%) and Brown Swiss 

(-29%), but greater %CYCURD (+35% and +19% compared with HF and BS, respectively). This is 

due not only to higher milk-fat and protein contents, but also to the greater recovery of all nutrients 

in the curd of Jersey cows. As a result, the differences between the daily cheese production of 

Jersey cows on the one hand and Holstein Friesian and Brown Swiss cows on the other (-12% and -

10%, respectively, for dCYCURD) are much less than the differences in daily milk yield. 

Theoretical cheese yield (both as Th-%CYCURD and Th-%CYSOLIDS) based on milk 

composition confirmed the superiority of the Jerseys over the two large dairy breeds. However, it is 

interesting to take a closer look at the differences between the actual and theoretical cheese-yields. 

The ratio between them yields an estimate of the global efficiency of different breeds in terms of 

milk nutrient and water retention in cheese. As shown in Table 4, the cheese-making efficiency 

(both as Ef-%CYCURD and Ef-%CYSOLIDS) of Jersey cows did not differ from that of the large-

framed cows.  

Compared with Holstein-Friesian, the Brown Swiss cows had a lower productivity potential 

(-16.1%), compensated for by greater CYCURD (+13.5%), CYSOLIDS (+10%) and CYWATER (+15.9%), 

due to the greater nutrient content of their milk as well as better nutrient recovery in the curd 

(+3.9% for fat, +1.5% for protein, +6.6% for solids, and +4.6% for energy). The final result was 

that none of the three dCY traits differed statistically in the two large-framed dairy breeds. 

The theoretical %CYs, as expected being based on milk composition, confirmed the large 

difference between the two breeds, the Brown Swiss having the higher values. However, as the 

difference between the Th-%CYs of the two breeds is less than the difference between the actual 

values, the cheese-making efficiency (both as Ef-%CYCURD and Ef-%CYSOLIDS) of the Brown Swiss 

breed was greater than that of the Holstein Friesians (Table 4). 

Regarding the dual-purpose breeds, it is to be noted that, compared with the two medium-

framed local breeds (Rendena and Alpine Grey), the large-framed Simmental cows had a greater 
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daily production of milk (+15.9%) and also cheese (+22%, +20% and +24% for dCYCURD, 

dCYSOLIDS and dCYWATER, respectively). The greater differences in dCY traits than in dMY are 

mainly due to differences in milk composition and not in cheese-making efficiency.  

The differences found between the two local breeds were modest: Rendena cows produced 

more milk than Alpine Greys, but had lower %CY traits (due to lower fat and protein contents), 

similar RECFAT and RECPROTEIN, and lower RECSOLIDS (Table 4). Taking daily milk yield, milk 

composition, %CY and REC traits all together, the results were slightly better for the Rendena cows 

for the three dCY traits, but the difference was not significant (Table 4).  

The breed × parity interaction did not affect any of these traits, while breed × DIM affected, 

in particular, the three actual and 2 theoretical %CY traits, RECSOLIDS and RECENERGY, but not 

overall cheese-making efficiency and daily cheese yield. In particular, of the specialized breeds, 

%CYCURD from Holstein Friesians decreased the first part of lactation and reached a peak of about 

16% at the end; with Brown Swiss cows there was a linear increase from 14.5 to 18.7% during 

lactation, while with Jersey cows there was a linear increase from 15.6% to 20.7% over 125 days 

and then a slower increase to 22.1% at the end of lactation. With all the dual-purpose breeds there 

was a small reduction in CYCURD during the first phase of lactation, then an increase towards the 

final phase.  

 

DISCUSSION 

Effect of environment on cheese-making traits 

The effect of herd, parity and DIM on %CY traits, the amount of nutrients recovered in the 

curd and the cow’s daily production (dCY) has been previously studied in 1167 individual Brown 

Swiss cows reared in 85 single-breed farms (Cipolat-Gotet et al., 2013). 

The present study provided confirmation of the finding that the effect of herd-date always 

represents a lower proportion of total variability than the effect of animal and the residual 

variability with respect to daily milk and cheese production, and %CY and REC traits (Figure 2). 



89 

 

Given that herd clusters together several management factors (i.e., housing conditions, feed 

administration and quality), as well as the collection and processing of milk samples, and given that 

here herd is combined with sample collection date (and therefore also with season), the % of 

variability in cheese-making traits explained by this factor may be considered low for REC traits, 

moderate for %CY and moderate-high for daily milk and cheese production per cow. This means 

that the improvement in REC and %CY traits is basically due to individual animal factors (i.e., 

breed, genetics, parity, stage of lactation, etc.), while herd (facilities, management, nutrition, health, 

etc.) plays a much more important role in the level of production. Cipolat-Gotet et al. (2013) found 

this factor to have a greater effect on the same traits compared with our study, and, in particular, 

they reported values of variability due to herd-date from 21 to 31% for %REC traits, from 24 to 

42% for %CY traits, and from 51 to 53% for dCY traits. However, it is worth noting that in their 

case herd-date was included in the statistical model as a random effect, but not within class of herd 

productivity. 

To our knowledge, no previous studies have investigated the effects of herd productivity 

(high or low) on cheese yield and cheese-making traits. The effects of farming conditions, season 

and cow feeding regime (Summer et al., 2003), and of cheese-making technologies (Bynum and 

Olson, 1982b) on RECPROTEIN and RECFAT have been investigated, but few studies have examined 

the effects of individual sources of variation on these traits.  

 

Effect of breed within herd 

No previous studies have processed milk obtained from individual animals of several breeds, 

but information on comparisons of some breeds is available.  

Using laboratory model cheeses produced from defatted milk samples from 45 individual 

cows, Wedholm et al. (2006) compared the cheese yield of Swedish Holstein Friesian, Danish 

Holstein Friesian and Swedish Red and White specialized dairy breeds. None of the three %CY 

traits measured was affected by breed, but it should be noted that the milk was defatted before 
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cheese-making, and that the statistical model used also included linear regressions on total casein 

and on each of the casein fractions and genetic variants. The same authors also found effects of 

parity and lactation stage similar to the results found in the present study.  

More information is available from studies using bulk milk from experimental or 

commercial farms and processed in small-scale or conventional dairy plants. Among the specialized 

dairy breeds, in particular, large differences were observed between the small-framed Jersey cows, 

and the large-framed Holstein Friesians. The former are known for their lower average milk yield, 

but also higher milk fat and protein contents, and consequently greater %CY traits. Auldist et al. 

(2004) found the cheese yields from bulk milk from 29 Jersey and 29 Holstein cows reared at 

pasture to be 12.0 and 10.8%, respectively, i.e., +11% vs + 34% for Jerseys in the present study. 

The difference is therefore smaller than in our study, but, in accordance with Cheddar production 

norms, the protein:fat ratio was normalized to 0.80 before cheese making so that it reflects the 

difference between the two breeds in terms of protein content. In another study, the same authors 

compared the two breeds, also after equalization of the solids content through ultrafiltration of 

Holstein milk, and, in this case, found no differences between the two breeds, in agreement with our 

results on overall cheese-making efficiency. Milk composition is not the only reason for the greater 

cheese yield of milk from Jersey cows. There were no differences either between the two breeds in 

the ratios between the moisture-adjusted cheese produced for every 100 kg of milk solids. This 

parameter is apparently similar to our RECSOLIDS, but the major reasons for the differences between 

Auldist et al (2004) and the present study seem to be partial skimming of the Jersey milk in the 

former study (because the higher RECFAT found in Jersey milk cannot be fully appreciated), and 

equalization of the solids content, which also causes equalization of the lactose:total solids ratio in 

the milk of the two breeds.  

Recently, Bland et al. (2015) carried out a study on the effects of blending different 

proportions of Holstein and Jersey bulk milk on cheese production in a pilot-scale cheese-making 

facility without protein:fat standardization and total solids equalization (as in the present study). 
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The %CYCURD was 12.0% using 100% Jersey milk and 9.5% using 100% Holstein milk , i.e., +26% 

for Jerseys vs + 34% in the present study. The same authors found a moisture-adjusted cheese yield 

(conceptually similar to our %CYSOLIDS) of 12.1% for Jersey milk and 9.1% for Holstein milk, i.e., 

+33% for Jerseys vs + 35% in the present study. The differences between the two breeds in both 

studies are very close (+32% for Jersey milk) to those regarded as typical of the two breeds by 

Lucey and Kelly (1994). Using the traditional van Slyke and Pryce (1949) equation, Bland et al. 

(2015) calculated a theoretical cheese yield (%CYCURD, obtained on the basis of the fat and casein 

content of milk) of 12.4% for Jersey and 10.6% for Holstein milk, i.e., +17% for Jerseys vs + 29% 

in the present study. As the %CYCURD is based on the fat and casein contents of milk, assuming 

constant recovery rate for both, the difference between the theoretical and actual yields depends on 

differences in the REC traits. In fact, Bland et al. (2015), found an RECFAT of 99.3 vs 76.6%, and an 

RECPROTEIN of 81.3 vs 71.6% for Jersey and Holstein milk, respectively, i.e., differences in the same 

direction but much larger than those obtained in the present study, probably because of very 

different cheese-making procedures.  

  In any case, the better REC traits in Jersey milk could be explained, in part, by milk 

coagulation, curd firming and syneresis properties. Several authors have found higher traditional 

MCP levels in Jersey milk than in Holstein milk, as reviewed by Bittante et al. (2012). Similar 

results also were found when the entire pattern of the curd firming process (CFt equation) was 

modeled (Stocco et al., 2016). Rapid milk gelation and, especially, an efficient curd firming process 

and syneresis have been found to result in favorable genetic and phenotypic correlations with regard 

to %CY and REC traits, especially for those parameters recorded at maximum curd firmness or later 

(Cecchinato and Bittante, 2016).   

Similar interpretations could be applied when comparing the two large-framed specialized 

dairy breeds, HF and BS. The superiority of the breed of Alpine origin is, in fact, not only based on 

greater contents of fat and protein in milk, but also on efficient milk coagulation, curd firming, 

syneresis (Bittante et al., 2012) and overall cheese-making process leading to lower fat and protein 
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losses in the whey (Cecchinato et al., 2015). Mistry et al. (2002) and Malacarne et al. (2006) found 

greater RECFAT (but not RECPROTEIN), as well as greater actual than theoretical %CY, in milk from 

Brown Swiss cows than in milk from Holstein Friesians.  

Within dual-purpose breeds, we were able to confirm the large-framed Italian Simmental 

breed, derived from Austrian and German Fleckvieh and from French Montbeliarde (Cecchinato et 

al., 2015), as having a good technological aptitude, better than Holstein Friesian and closer to 

Brown Swiss (Bittante et al., 2012; Malchiodi et al., 2014; Stocco et al., 2016). The milk from 

Montbéliarde cows is known for having a much greater %CY than milk from Holstein cows, as 

expected on the basis of the fat and protein contents (Martin et al., 2009), although other studies 

found no differences in the RECSOLIDS of the two breeds (Verdier-Metz et al., 1998).   

The differences between the two small local breeds were slight, the Alpine Grey cows 

performing better with respect to %CY traits as the milk of this breed contains more fat and protein 

than milk from Rendena cows. This greater milk fat and protein content also explains the higher 

RECSOLIDS and RECENERGY of the Alpine Greys, which is due to the lower proportion of lactose 

compared with total milk solids (and consequently the proportion of solids lost in the whey). The 

composition of milk from Rendena cows is similar to that from Holstein cows, but has better 

coagulation and curd firming patterns (Stocco et al., 2016), which could explain the greater RECFAT 

and greater, although to a smaller degree, RECPROTEIN compared with the specialized dairy breed. It 

is worth noting that, even after correcting for herd productivity class, the effect of individual herd, 

parity and DIM, this breed had the highest overall cheese-making efficiency (both as Ef-%CYCURD 

and as Ef-%CYSOLIDS) of all the 6 breeds examined in the present study. 

 

Direct and indirect effects of breed 

Since the differences among breeds were substantial, to distinguish and quantify the direct 

effects of breed on cheese-making efficiency and daily cheese-yield traits from the indirect effects 

mediated by differences in terms of milk yield and composition, we included MY, TS, protein, fat, 
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lactose, pH and SCS as general covariates in the basic model, and calculated the differences in 

breed variances with and without covariates for each trait. It can be seen from Figure 4 that the 

proportions of direct and indirect effects are very different for the various traits examined. 

Milk yield and composition (indirect effect of breed) accounted for a large proportion of the 

total breed variance for all REC traits, but the extent of the direct effect of breed ranged from 11% 

for RECFAT to 52% for RECSOLIDS. The direct effect of breed on %CY traits was, as expected, much 

lower, because of the dependence of these traits on available fat and casein. Nevertheless, they 

represent a sizeable proportion of total variability from a technical and economic point of view, 

being 8.3% for %CYCURD and representing 2.3% and 13%, respectively, for the constituent traits, 

%CYSOLIDS and %CYWATER. The theoretical cheese yields were, as expected, totally dependent on 

the indirect breed effects, as they were calculated only from milk fat and casein contents (and the 

moisture content of cheese). However, given the ratio between the actual and the theoretical %CYs, 

the two cheese-making efficiencies are, as expected, about two thirds dependent on the direct effect 

of breed. 

Moving on to production traits, the total variance of the effect of breed on dMY was only 

about 30% dependent on milk composition (indirect effect of breed, in this case, of course, as the 

model with covariates did not include dMY). In the case of dCY traits, the indirect proportion of 

breed variance was substantial, including in the model the covariate with both dMY and milk 

composition traits. In any case, it is worth noting that the direct effect of breed represented 

proportions of variance similar to or greater than those observed for %CY traits (11% for dCYCURD, 

2.4% for dCYSOLIDS and 28% for dCYWATER). 

No direct comparison is possible with other studies, as this is the first study to attempt to 

differentiate between the direct and indirect effects of breed on cheese-making traits. The approach 

that we took to examining milk coagulation, curd firming and syneresis traits (Stocco et al., 2016) 

showed that, for these traits, the direct effect of breed, i.e., not mediated by milk yield and 

composition, represented a substantial proportion of total breed variance, ranging from about 40% 
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to 80%. These traits are important in explaining REC and %CY traits at the phenotypic, genetic, 

herd and residual levels, as demonstrated in a previous paper (Cecchinato and Bittante, 2016). It is 

also worth noting that a variable fraction of the breed effect on coagulation properties is explained 

by genetic variants of milk proteins (Ikonen et al., 1999a; Auldist et al., 2002). Both milk 

coagulation traits and milk protein genetic variants could be a part of the factors influencing the 

direct effect of breed, as defined in the present study.  

In the case of Ef-%CY traits, it is interesting to see that about a third of breed variance is due 

to indirect effects of breed (MY and composition), even though they represent the ratio between 

actual %CY and theoretical %CY predicted on the basis of the fat and casein contents of milk. It is 

evident that this proportion is explained by a different relationship between %CY and milk fat and 

protein compared with the van Slyke and Price (1949) formula (a greater effect of casein and 

slightly lower effect of fat, data not shown), and by other factors included here as covariates. In 

particular, the constituents that could be considered indicators of subclinical mastitis (SCS, lactose 

and pH) were often significant for several cheese-making traits (data not shown), in agreement with 

Bobbo et al. (2016) for SCS. 

 

Implications for crossbreeding and selection 

The breed effect, when corrected for common (herd) and individual (parity, DIM, etc.) 

phenotypic sources of variation, may be considered the major genetic difference between animals 

and may also be an indicator of possible genetic variation between and within populations. 

Knowledge of the cheese-yield traits of milk from different breeds could be important for planning 

crossbreeding programs meeting industry requirements, especially in areas where a large part of the 

milk produced is destined for cheese making. No direct information is available on comparisons of 

different breed combinations or on the role of heterosis on these traits, but a study carried out on 

milk coagulation and curd firming traits (Malchiodi et al., 2014) showed that crossbred cows from 

different breed combinations may sometimes have different milk properties to those expected. If 
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knowledge of breed effects is important for crossbreeding programs, it is evident that further 

improvements to their overall efficiency requires new knowledge on the effects of heterosis and 

specific breed combinations. 

Moving to within-breed variability, no genetic studies have used data from processed milk 

from several breeds at the individual level, but the heritability of cheese-yield traits was estimated 

in the Brown Swiss breed by Bittante et al. (2013). As dMY and milk fat and protein (casein) are 

included in the selection indices of dairy breeds in almost all developed countries (Miglior et al., 

2005), it could be said that Th-%CY is selected worldwide, although with weights different from 

those indicated by van Slyke and Price (1949) and adapted to local industry requirements. It seems 

clear from the results of the present study that the dairy industry could gain an economic advantage 

by, first of all, including the recovery of nutrients, and particularly of fat and protein, in the 

selection indices. The genetic indices in use, which only include the percentages of fat and protein 

in milk, implicitly assume that the REC of these nutrients is constant, or not heritable. These traits 

are not only variable, but RECPROTEIN and RECFAT were found to have larger heritabilities than milk 

protein and fat contents (Bittante et al., 2013). Moreover, a definition of the weights in the selection 

indices of milk traits indicating subclinical mastitis (not only SCS but also lactose and pH) that 

takes into account their negative effects on cheese-yield traits could improve the economic 

efficiency of dairy cattle populations. A more general alternative would be to add the Ef-%CY traits 

to the selection indices.  

The major problem with implementing cheese-yield traits in selection programs is how to 

evaluate the animals for these traits, as laboratory analyses are not feasible at the population level. 

A promising approach is to predict them using Fourier-transform Infrared (FTIR) spectra of the 

milk samples routinely collected during milk recording. It has been proven possible to predict the 

%CY and REC traits with acceptable to good accuracy, with the sole exception of RECFAT 

(Ferragina et al., 2013 and 2015). The heritability of predicted traits is characterized by values 

comparable to or greater than those of the corresponding laboratory-measured traits (Bittante et al., 



96 

 

2014), and, more importantly, the genetic correlations between predicted and measured traits have 

always been greater than calibration accuracy. The feasibility of FTIR prediction of %CY and REC 

traits at the population level was tested on Holstein Friesian, Brown Swiss and Simmental breeds 

with good results (Cecchinato et al., 2016). Only complex traits, like Ef-%CY, have not yet been 

evaluated. 

Another promising alternative is to predict breeding values directly at the genetic level 

instead of predicting phenotypes. A genome-wide association study on these traits was carried out 

by Dadousis et al. (2016a) revealing the complex genetic pathways leading to milk coagulation and 

cheese-making traits (Dadousis et al., 2016b) The results open new perspectives on direct genomic 

selection for milk-yield efficiency of dairy cattle. Egger-Danner et al. (2015) concluded their review 

paper by stating that a combination of phenotyping and genotyping would be a highly suitable 

option for the new phenotypes. 

 

CONCLUSIONS 

In conclusion, the study carried out on 27 multi-breed herds belonging to two classes of herd 

productivity (high vs low) revealed cheese-making to be a complex phenomenon, the end result is 

of which is driven by several factors. The quality of the milk processed in terms of nutrient contents 

(mainly fat and casein), the recovery of these nutrients in the curd (affected by technological traits 

like those involved in milk coagulation, curd firming and syneresis), the retention of water in 

cheese, and overall cheese-making efficiency all contribute to the percentage cheese yield.  

Increasing herd productivity increases milk yield and quality, percentage cheese yields, and 

daily cheese production per cow, but has only a slight effect on nutrient recovery and a negative 

effect on overall cheese-making efficiency, i.e., the actual cheese yield is somewhat lower than 

expected. The factors responsible for this lower efficiency need to be identified. Within herd 

productivity classes, variability among different herds is much lower for recovery traits, percentage 

cheese yields and cheese-making efficiency than for the daily production of milk and cheese. 
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Within individual herds, animal factors are responsible for the greater part of the variability in all 

traits, and among these factors the breed of cow has proven to be the most important. The 

differences among different breeds are the result not only of the well-known differences in 

production potential and nutrient concentrations, but also of the differences in nutrient recovery 

ability and overall cheese-making efficiency. While the Holstein Friesian breed seemed to be the 

most productive but to have the least cheese-making efficiency, the most efficient out of the dairy 

breeds appeared to the Brown Swiss, and out of the dual-purpose local breeds the Rendena. When 

reared under the same environmental and management conditions, the greater percentage cheese 

yield and efficiency of the Brown Swiss breed, and also of the Simmental, meant they were able to 

overcome their lower milk productivity and to yield a daily quantity of cheese per cow similar to 

the Holstein Friesians. The Jersey cows, despite their small body size, were also able to partly 

compensate for their low milk productivity with the high fat and protein contents and recovery rates 

of their milk, so that the daily cheese production per cow was only about a tenth lower than the 

large-framed cows. Analysis of the differences between the various breeds also provided new 

insights into the possibilities and directions of genetic selection within breed and of breed 

combinations in crossbreeding programs. 

 

ACKNOWLEDGMENTS 

The authors thank the Autonomous Province of Trento (Italy) for funding. 

 

  



98 

 

REFERENCES 

Auldist, M. J., K. A. Johnston, N. J. White, W. P. Fitzsimons, and M. J. Boland. 2004. A 

comparison of the composition, coagulation characteristics and cheesemaking capacity of 

milk from Friesian and Jersey dairy cows. J. Dairy Res. 71:51-57. 

Auldist, M. J., C. Mullins, B. O’Brien, B. T. O’Kennedy, and T. Guinee. 2002. Effect of cow breed 

on milk coagulation properties. Milchwissenschaft 57:140-143. 

Ali, A. K. A., and G. E. Shook. 1980. An optimum transformation for somatic cell concentration in 

milk. J. Dairy Sci. 63(3):487-490. 

Banks, J. M., J. L. Clapperton, D. D. Muir, and A. K. Girdler. 1986. The influence of diet and breed 

of cow on the efficiency of conversion of milk constituents to curd in cheese manufacture. J. 

Sci. Food Agric. 37:461-468. 

Bittante, G., C. Cipolat-Gotet, and A. Cecchinato. 2013. Genetic parameters of different measures 

of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing 

process. J. Dairy Sci. 96:7966-7979. 

Bittante, G., A. Ferragina, C. Cipolat-Gotet, and A. Cecchinato. 2014. Comparison between genetic 

parameters of cheese yield and nutrient recovery of whey losses traits measured from 

individual model cheese-making methods or predicted from unprocessed bovine milk 

samples using Fourier-Transform infrared spectroscopy. J. Dairy Sci. 97: 6560-6572. 

Bittante, G., M. Penasa, and A. Cecchinato. 2012. Invited review: Genetics and modeling of milk 

coagulation properties. J. Dairy Sci. 95:6843-6870. 

Bobbo, T., C. Cipolat-Gotet, G. Bittante, and A. Cecchinato. 2016. The nonlinear effect of somatic 

cell count on milk composition, coagulation properties, curd firmness modeling, cheese 

yield, and curd nutrient recovery. J. Dairy Sci. 99(7):5104-5119. 

Bland, J. H., A. S. Grandison, and C. C. Fagan. 2015. Effect of blending Jersey and Holstein-

Friesian milk on Cheddar cheese processing, composition, and quality. J. Dairy Sci. 98:1-8. 



99 

 

Bonfatti, V., M. Tuzzato, G. Chiarot, and P. Carnier. 2014. Variation in milk coagulation properties 

does not affect cheese yield and composition of model cheese. Int. Dairy J. 39:139-145. 

Bynum, D. G., and N. F. Olson. 1982b. Influence of curd firmness at cutting on Cheddar cheese 

yield and recovery of milk constituents. J. Dairy Sci. 65:2281-2290. 

Cecchinato, A., A. Albera, C. Cipolat-Gotet, A. Ferragina, and G. Bittante. 2015. Genetic 

parameters of cheese yield and curd nutrient recovery or whey loss traits predicted using 

Fourier-transform infrared spectroscopy of samples collected during milk recording on 

Holstein, Brown Swiss and Simmental dairy cows. J. Dairy Sci. 98:4914-4927. 

Cecchinato, A., and G. Bittante. 2016. Genetic and environmental relationships of different 

measures of individual cheese yield and curd nutrients recovery with coagulation properties 

of bovine milk. J. Dairy Sci. 99:1975-1989. 

Cipolat-Gotet, C., A. Cecchinato, M. De Marchi, and G. Bittante. 2013. Factors affecting variation 

of different measures of cheese yield and milk nutrients recovery from an individual model 

cheesemanufacturing process. J. Dairy Sci. 96:7952-7965. 

Dadousis, C., S. Biffani, C. Cipolat-Gotet, E.L. Nicolazzi, G. J. M. Rosa, D. Gianola, A. Rossoni, 

E. Santus, G. Bittante, and A. Cecchinato. 2016a. Genome-wide association study for cheese 

yield and curd nutrient recovery from an individual model cheese-manufacturing process in 

dairy cows. J. Dairy Sci. 99(5):3654-3666 

Dadousis, C., S. Pegolo, G. J. M. Rosa, D. Gianola,  G. Bittante, and A. Cecchinato. 2016b. 

Pathway-based genome-wide association analysis related to milk coagulation properties, 

curd firmness, cheese yield and curd nutrient recovery in dairy cattle. J. Dairy Sci. Accepted 

Egger-Danner, C., j.B. Cole, J.E. Pryce, N. Gengler, B. Heringstad, A Bradley, and K.F. Stock. 

2015. Invited review: overview of new traits and phenotyping strategies in dairy cattle with 

a focus on functional traits. Animal 9(2):191-207. 

Emmons, D.B., and H.W. Modler. 2010. Invited review: A commentary on predictive cheese yield 

formulas. J. Dairy Sci. 93:5517-5537. 



100 

 

Ferragina, A., C. Cipolat-Gotet, A. Cecchinato and G. Bittante. 2013. The use of fourier-transform 

infrared spectroscopy to predict cheese yield and nutrient recovery or whey loss traits from 

unprocessed bovine milk samples. J. Dairy Sci. 96:7980-7990. 

Ferragina, A., G. de los Campos, A. I. Vazquez, A. Cecchinato, and G. Bittante. 2015. Bayesian 

regression models outperform partial least squares methods for predicting milk components 

and technological properties using infrared spectral data. J. Dairy Sci. 98:8133-8151. 

Hurtaud, C., J. L. Peyraud, G. Michel, D. Berthelot, and L. Delaby. 2009. Winter feeding systems 

and dairy cow breed have an impact on milk composition and flavor of two Protected 

Designation of Origin French cheeses. Animal 3:1327-1338. 

Ikonen, T., K. Ahlfors, R. Kempe, M. Ojala, and O. Ruottinen. 1999a. Genetic parameters for the 

milk coagulation properties and prevalence of noncoagulating milk in Finnish dairy cows. J. 

Dairy Sci. 82:205-214. 

Ikonen, T., O. Ruottinen, E.-L. Syväoja, K. Saarinen, E. Pahkala, and M. Ojala. 1999b. Effect of 

milk coagulation properties of herd bulk milks on yield and composition of Emmental 

cheese. Agric. Food Sci. 8:411-422. 

ISO-IDF (International Organization for Standardization and International Dairy Federation). 2004. 

Milk - Determination of casein-nitrogen content - Part 1: Indirect method. International 

Standard ISO 17997-1 and IDF 29-1:2004. ISO, Geneva, Switzerland and IDF, Brussels, 

Belgium. 

ISO-IDF (International Organization for Standardization and International Dairy Federation). 

2010a. Milk, cream and evaporated milk—Determination of total solids content. 

International standard ISO 6731 and IDF 21:2010. ISO, Geneva, Switzerland and IDF, 

Brussels, Belgium. 

ISO-IDF (International Organization for Standardization and International Dairy Federation). 

2010b. Milk - Determination of fat content. International Standard ISO 1211 and IDF 

1:2010. ISO, Geneva, Switzerland and IDF, Brussels, Belgium. 



101 

 

ISO-IDF (International Organization for Standardization and International Dairy Federation). 

2010c. Milk - Determination of lactose content – Enzymatic method using difference in pH. 

International Standard ISO 26462:2010 and IDF 214:2010. ISO, Geneva, Switzerland and 

IDF, Brussels, Belgium. 

ISO-IDF (International Organization for Standardization and International Dairy Federation). 2014. 

Milk and milk products - Determination of nitrogen content - Part 1: Kjeldahl principle and 

crude protein calculation. International Standard ISO 8968-1 and IDF 1:2014. ISO, Geneva, 

Switzerland and IDF, Brussels, Belgium. 

Law, B. A., and A. Y. Tamine, eds. 2010. Technology of Cheesemaking. 2nd ed. John Wiley & 

Sons, Ltd., Chicester, UK. 

Lucey, J.A., and J. Kelly. 1994.. Cheese yield. J. Soc. Dairy Technol. 47:1-14. 

Malacarne, M., A. Summer, E. Fossa, P. Formaggioni, P. Franceschi, M. Pecorari, and P. Mariani. 

2006. Composition, coagulation properties and Parmigiano-Reggiano cheese yield of Italian 

Brown and Italian Friesian herd milks. J. Dairy Res. 73:171-177. 

Malchiodi, F., A. Cecchinato, M. Penasa, C. Cipolat-Gotet, and G. Bittante. 2014. Milk quality, 

coagulation properties, and curd firmness modeling of purebred Holsteins and first- and 

second generation crossbred cows from Swedish Red, Montbéliarde, and Brown Swiss 

bulls. J. Dairy Sci. 97:4530-4541. 

Martin, B., D. Pomies, P. Pradel, I. Verdier-Metz, and B. Remond. 2009. Yield and sensory 

properties of cheese made with milk from Holstein or Montbeliarde cows milked twice or 

once daily. J. Dairy Sci. 92:4730-4737. 

Miglior, F., B.L. Muir, and B.J. Van Doormal. 2005. Selection indices in Holstein cattle of various 

countries. J. Dairy Sci. 88:1255-1263. 

Mistry, V. V., M. J. Brouk, K. M. Kaperson, and E. Martin. 2002. Cheddar cheese from milk of 

Holstein and Brown Swiss cows. Milchwissenschaft 57:19-23. 

NRC. 2001 Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press, Washington, DC. 



102 

 

Othmane, M. H., J. A. Carriedo, L. F. de la Fuente Crespo, and F. San Primitivo. 2002. An 

individual laboratory cheese-making method for selection in dairy ewes. Small Rumin. Res. 

45:67-73. 

Stocco, G., C. Cipolat-Gotet, T. Bobbo, A. Cecchinato and G. Bittante. 2016. Breed of cow and 

herd productivity affect milk composition and modeling of coagulation, curd firming and 

syneresis. J. Dairy Sci.  Accepted 

Sturaro, E., E. Marchiori, G. Cocca, M. Penasa, M. Ramanzin, and G. Bittante. 2013. Dairy systems 

in mountainous areas: farm animal biodiversity, milk production and destination, and land 

use. Livest. Sci. 158:157-168. 

Summer, A., P. Franceschi, A. Bollini, P. Formaggioni, F. Tosi, and P. Mariani. 2003. Seasonal 

variations of milk characteristics and cheesemaking losses in the manufacture of 

Parmigiano-Reggiano cheese. Vet. Res. 27(1):663-666. 

Van Slyke, L. L., and W. V. Price. 1949. Cheese. rev. ed. Orange Judd Publ. Co., New York, NY. 

Verdier-Metz, I., J. B. Coulon, P. Pradel, and J. L. Berfagué. 1995. Effect of forage type and cow 

breed on the characteristics of matured Saint-Nectaire cheeses. Lait. 75:523-533. 

Verdier-Metz, I., J. B. Coulon, P. Pradel, C. Viallon, and J. L. Berdague. 1998. Effect of forage 

conservation (hay or silage) and cow breed on the coagulation properties of milks and on the 

characteristics of ripened cheeses. J. Dairy Res. 65:9-21. 

Wedholm, A., L. B. Larsen, H. Lindmark-Mansson, A. H. Karlsson, and A. Andren. 2006. Effect of 

protein composition on the cheesemaking properties of milk from individual dairy cows. J. 

Dairy Sci. 89:3296-3305. 

 

  



103 

 

TABLES AND FIGURES 

 

Table 1. Descriptive statistics of milk composition, of cheese-making traits and production. 

Trait N Mean P12 P99 Kurtosis Skewness 
Milk composition:       

Total Solids, % 520 13.50 10.7 17.0 0.14 0.04 
Protein, % 518 3.62 2.9 4.7 0.59 0.14 
Casein, % 516 2.81 2.1 3.8 0.31 0.23 
Fat, % 513 4.18 1.4 7.1 0.42 -0.05 
Lactose, % 515 5.00 4.4 5.5 0.59 -0.09 
Milk energy, MJ/kg 515 3.29 2.2 4.5 0.35 0.00 
pH 515 6.49 6.3 6.7 -0.02 0.13 
SCS1 518 2.70 -0.6 7.1 -0.14 0.09 

Nutrients recovery, %:       
RECFAT 508 84.71 70.0 91.5 0.52 -0.58 
RECPROTEIN 512 79.33 74.1 82.7 0.01 -0.22 
RECSOLIDS 514 53.39 43.1 64.8 0.13 -0.13 
RECENERGY 512 68.91 58.3 78.0 0.35 -0.46 

Cheese Yields, %:       
%CYCURD 512 15.71 10.4 23.4 -0.03 -0.09 
%CYSOLIDS 508 7.23 4.8 10.7 0.01 -0.05 
%CYWATER 512 8.48 5.3 12.4 -0.14 -0.05 

Theoretical CY, %:       
Th-%CYCURD 514 15.66 9.5 23.4 0.20 0.08 
Th-%CYSOLIDS 515 7.21 4.4 11.0 0.32 0.10 

Efficiency of CY, %:       
Ef-%CYCURD 513 101.0 77.3 123.2 0.13 -0.06 
Ef-%CYSOLIDS 512 101.0 87.9 112.4 0.50 -0.27 

Daily production, kg/d:       
dMY 510 20.3 6.0 41.1 -0.24 0.02 
dCYCURD 504 3.16 0.8 6.0 0.02 -0.06 
dCYSOLIDS 504 1.46 0.4 2.9 0.15 0.02 
dCYWATER 504 1.71 0.4 3.4 0.05 0.05 

1SCS= 3 + log2 (SCC/100,000); 2P1 = 1st percentile; P99 = 99th percentile. 

 



104 

 

Table 2. Effect of herd productivity level and of its interactions with parity and days in milk on 
milk composition, and on cheese-making traits and production of individual cows. 

Herd productivity (HP): 
 

Interactions (F-value): 

 
High-HP 
(LSM) 

Low-HP 
(LSM) 

F-value 
 

HP  
×  

Parity 

HP  
×  

DIM 
RMSE1 

Milk composition: 
       

Total Solids, % 13.83 13.13 17.4*** 
 

1.6 2.2* 0.8 
Protein, % 3.67 3.50 8.1** 

 
0.9 2.1* 0.2 

Casein, % 2.85 2.70 9.2** 
 

0.7 1.9 0.2 
Fat, % 4.45 3.99 9.1** 

 
0.7 1.4 0.7 

Lactose, % 5.00 4.99 0.0 
 

0.4 1.6 0.2 
Milk energy, MJ/kg 3.42 3.17 15.3*** 

 
1.5 2.6** 0.3 

Curd nutrients recovery, %: 
       

RECFAT 84.69 85.31 0.6 
 

0.5 2.6** 4.1 

RECPROTEIN 79.51 79.23 0.5 
 

0.9 1.3 1.6 

RECSOLIDS 54.13 52.68 4.4* 
 

1.0 2.3* 3.1 

RECENERGY 69.44 68.49 2.8 
 

0.8 2.1* 2.9 

Cheese yields, %: 
       

%CYCURD 16.15 15.13 5.9* 
 

1.7 2.4* 1.5 
%CYSOLIDS 7.46 7.02 6.7* 

 
1.4 2.2* 0.7 

%CYWATER 8.65 8.18 3.1 
 

0.9 2.1* 0.9 

Theoretical %CY, %: 
       

Th-%CYCURD 16.46 14.86 16.3*** 
 

1.4 2.3* 1.9 

Th-%CYSOLIDS 7.57 6.83 16.3*** 
 

1.4 2.3* 0.9 

Efficiency of %CY, %:        
Ef-%CYCURD 99.42 102.57 4.2 

 
0.5 1.3 8.4 

Ef-%CYSOLIDS 99.95 102.44 7.8** 
 

0.7 1.3 4.0 

Daily production, kg/d: 
       

dMY 25.1 16.7 36.0*** 
 

2.2 1.2 4.0 

dCYCURD 3.99 2.52 34.8*** 
 

0.2 1.1 0.6 

dCYSOLIDS 1.87 1.15 43.0*** 
 

0.6 1.6 0.3 

dCYWATER 2.13 1.37 30.5*** 
 

0.1 1.3 0.4 
1RMSE= Root Mean Square Error; *P < 0.05; ** P < 0.01; *** P < 0.001. 
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Table 3. Effect of parity on milk composition, and on cheese-making traits and production of 
individual cows. 

Parity (LSM):  Parity Contrasts (F-value): 

 
1st 2nd 3rd ≥4th  1st vs ≥2nd 2nd vs ≥3rd 3rd vs ≥4th 

Milk composition: 
    

 
   

Total Solids, % 13.61 13.69 13.25 13.38  3.2 11.0** 0.8 
Protein, % 3.62 3.63 3.55 3.53  3.6 6.6* 0.3 
Casein, % 2.82 2.80 2.74 2.73  5.9* 4.6* 0.1 
Fat, % 4.27 4.31 4.04 4.25  0.7 2.6 2.8 
Lactose, % 5.07 5.01 4.94 4.97  17.6*** 3.6 1.1 
Milk energy, MJ/kg 3.33 3.35 3.20 3.28  2.3 6.2* 2.6 

Curd nutrients recovery, %:         
RECFAT 85.29 84.74 85.21 84.77  0.6 0.2 0.4 
RECPROTEIN 79.94 79.42 79.36 78.75  15.6*** 2.4 4.7* 
RECSOLIDS 53.55 53.81 53.03 53.21  0.3 2.3 0.1 
RECENERGY 69.53 69.15 68.78 68.40  4.7* 1.7 0.6 

Cheese yields, %: 
    

 
   

%CYCURD 16.07 15.82 15.29 15.38  10.3* 4.9* 0.1 
%CYSOLIDS 7.35 7.36 7.07 7.19  2.7 4.5* 0.9 
%CYWATER 8.72 8.44 8.24 8.25  13.4*** 2.0 0.0 

Theoretical %CY, %:         

Th-%CYCURD 15.80 16.10 15.22 15.52  0.7 7.2** 0.8 

Th-%CYSOLIDS 7.27 7.41 7.00 7.14  0.7 7.2** 0.8 

Efficiency of %CY, %:         

Ef-%CYCURD 102.5 99.9 101.5 100.1  4.4* 0.5 0.9 

Ef-%CYSOLIDS 101.5 100.9 101.4 100.9  0.9 0.3 0.5 
Daily production, kg/d         

dMY 19.3 20.5 22.1 21.5  19.0*** 4.7* 0.8 

dCYCURD 3.06 3.29 3.41 3.25  10.8* 0.1 2.0 

dCYSOLIDS 1.41 1.54 1.58 1.52  13.8*** 0.1 1.1 

dCYWATER 1.67 1.77 1.82 1.73  5.6* 0.0 2.0 
*P < 0.05; ** P < 0.01; *** P < 0.001. 
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Table 4. Effect of breed and of interactions between breed and parity and DIM on milk composition, and on cheese-making traits and production of 
individual cows. 

 
Breed (LSM): 

 
Contrasts (F-value): 

 
Interactions  
(F-value): 

 

Holstein-
Friesian 

(HF) 

Brown 
Swiss 
(BS) 

Jersey 
(Je) 

Simmental 
(Si) 

Rendena 
(Re) 

Alpine 
Grey 
(AG) 

 

HF BS Je 
vs 

Si AG Re 

HF BS 
vs 
Je 

HF 
vs 
BS 

Si 
vs 

Re AG 

Re  
vs  

AG 
 

Breed 
× 

Parity 

Breed 
× 

DIM 

Milk composition: 
               

Total Solids, % 13.06 13.51 14.81 13.41 12.73 13.37 
 

28.0*** 65.5*** 9.4** 4.2* 10.5** 
 

0.6 1.5* 

Protein, % 3.34 3.67 3.91 3.55 3.38 3.65 
 

9.8** 50.0*** 50.2*** 0.4 20.8*** 
 

0.9 1.6* 

Casein, % 2.55 2.84 3.10 2.76 2.56 2.83 
 

11.4*** 62.8*** 49.0*** 1.9 24.0*** 
 

0.7 1.7** 

Fat, % 4.03 4.13 5.46 4.22 3.60 3.86 
 

37.1*** 66.2*** 0.5 9.4** 2.2 
 

0.5 1.4* 

Lactose, % 4.99 5.01 4.85 4.96 5.08 5.07 
 

9.4** 10.3** 0.7 6.5* 0.1 
 

1.5 1.4 

Milk energy, MJ/kg 3.15 3.30 3.81 3.26 3.01 3.22 
 

1.2 70.1*** 30.2*** 11.9** 7.3* 
 

0.6 1.1 

Curd nutrients recovery, %: 
               

RECFAT 81.30 84.51 88.39 85.63 85.43 84.75 
 

0.8 32.3*** 17.7*** 1.4 0.5 
 

1.3 1.4 

RECPROTEIN 78.46 79.64 79.99 79.37 79.49 79.26 
 

0.0 5.7* 14.2*** 0.0 0.3 
 

1.1 1.0 

RECSOLIDS 50.42 53.78 58.86 53.56 50.85 52.93 
 

16.6*** 82.7*** 32.4*** 5.8* 7.3* 
 

0.7 1.8** 

RECENERGY 66.12 69.14 73.63 69.39 67.16 68.36 
 

9.4** 74.2*** 30.5*** 6.4* 2.9 
 

0.8 1.8** 
Cheese yields, %: 

               
%CYCURD 13.95 15.84 18.82 15.68 14.15 15.40 

 
24.4*** 117.2*** 41.9*** 7.2* 10.5** 

 
0.6 1.8** 

%CYSOLIDS 6.58 7.24 8.90 7.26 6.47 6.99 
 

35.3*** 122.5*** 20.8*** 9.7** 7.9* 
 

0.5 1.8** 

%CYWATER 7.40 8.58 10.10 8.52 7.58 8.30 
 

15.3*** 86.2*** 41.1*** 7.4* 8.7** 
 

1.0 1.5* 

Theoretical %CY, %: 
               

Th-%CYCURD 14.65 15.74 18.93 15.48 13.90 15.26 
 

38.1*** 87.0*** 12.1** 5.2* 9.5* 
 

0.5 1.7** 

Th-%CYSOLIDS 6.74 7.24 8.71 7.12 6.39 7.02 
 

37.8*** 85.5*** 11.8** 5.1* 9.5* 
 

0.5 1.7** 

Efficiency of %CY, %: 
               

Ef-%CYCURD 96.1 102.4 100.9 101.0 103.5 102.2 
 

4.0* 0.7 16.8*** 1.0 0.4 
 

0.8 1.0 

Ef-%CYSOLIDS 98.6 101.4 101.5 101.0 102.6 102.0 
 

5.3* 2.5 13.6*** 2.1 0.4 
 

1.3 1.3 
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Daily production, kg/d: 
               

dMY 26.1 21.9 15.6 22.6 20.9 18.1 
 

1.2 70.1*** 30.2*** 11.9*** 7.3* 
 

1.5 1.1 

dCYCURD 3.57 3.47 3.14 3.55 2.94 2.85 
 

7.9** 5.4* 0.6 20.1*** 0.3 
 

1.7 0.9 

dCYSOLIDS 1.71 1.59 1.43 1.62 1.38 1.33 
 

8.2** 8.0** 3.5 14.9*** 0.4 
 

1.8 0.8 

dCYWATER 1.89 1.89 1.71 1.92 1.58 1.51 
 

7.5* 3.9* 0.0 19.2*** 0.5 
 

1.5 1.0 
*P < 0.05; ** P < 0.01; *** P < 0.001. 
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Figure 1. Cheese-making procedure adopted to obtain the 508 model-cheeses from individual cows. 
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Figure 2. Incidence of herd-date variance on total variance of milk composition, and on cheese-
making traits and production of individual cows. 

 

 

 

 

Figure 3. Effect of DIM on the three actual %CY traits 
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Figure 4. Proportion of total breed variance explained by direct breed effect or by indirect breed 
effect through differences in milk yield and quality traits on REC, %CY and dCY traits. 
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ABSTRACT 

Milk macro- and micro-minerals are essential for animal’s growth and reproduction. To our 

knowledge, no previous studies have assessed the content of a large number of minerals in many 

individual milk samples collected from several multi-breed herds with different level of milk 

production, allowing the separation of the effects of herd and of breed of cows. Herds (n = 27) were 

classified into two categories based on milk productivity [HP (high production) vs LP (low 

production)], defined according to the average net energy of milk yielded daily by the lactating 

cows. Milk samples were collected from 240 cows of 6 different breeds, 3 dairy specialized 

(Holstein-Friesian, Brown Swiss, and Jersey) and 3 dual-purpose (Simmental, Rendena, and Alpine 

Grey), and they were analyzed for macro- (Ca, P, Na, K, Mg, S), essential micro- (Cu, Fe, Mn, Se, 

Zn), and environmental micro- (B, Si, Sn, Sr) elements, using Inductively Coupled Plasma - Optical 

Emission Spectrometry (ICP-OES). Results showed that the effect of herd-date varied across 

minerals, however it was large especially for environmental minerals (ranging from 47 to 91% of 

the total variance), while for macro- and micro-minerals it ranged from 11% to 61% . Milk samples 

collected in farms characterized by high level of productivity had a richer mineral profile compared 

to milk samples collected from low productivity herds. Parity influenced exclusively macro-

minerals, with the exception of Ca and S, while DIM influenced almost all minerals, with few 

exceptions related to the environmental elements. Large differences were observed among breeds, 

both between specialized and dual-purpose, and within the two groups. Differences remained even 

after adjusting for milk quality and yield. In comparison to the milk collected from Holstein-

Friesian cows, milk samples from Jersey and Brown Swiss cows had better composition and a more 

valuable mineral profile; the other breeds of Alpine origin produced milk of intermediate quality. 

Our findings suggested that the effects of breed on macro- and on some of the essential micro-

minerals are stronger than the effects of herd productivity, parity and DIM. Moreover, the cow’s 

individual variance was greater than the variance of individual herds within herd productivity level. 
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We can conclude that improvement of milk macro- and micro-mineral elements seemed to depend 

on genetics (breed, selection, etc.) rather than on environmental and management factors. 

Key words: minerals, breed, herd productivity, days in milk  
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INTRODUCTION 

Cow milk is a valuable source of minerals (Cashman, 2006; Zamberlin et al., 2012), even if 

they represent a small portion of milk composition (about 8-9 g/L). Minerals in milk occur in 

different chemical forms: inorganic ions and salts or as part of proteins, nucleic acids, fats and 

carbohydrates (Cashman, 2006). The demand of dairy products, and especially of fortified products, 

is increasing in the global market, since consumers are paying more and more attention to the 

nutritional composition of food products. Some studies reported that minerals have better functional 

effects when combined to each other (Huth et al., 2006), or with other compounds such as vitamins, 

proteins and fatty acids (Soyeurt et al., 2009). However, minerals in milk (especially Ca, P and Mg) 

are studied not only to evaluate their effects on human health, but also for their effects on milk 

technological properties, in particular for the efficiency of cheese-making (Cooke and McSweeney, 

2014; Gustavsson et al., 2014; Malacarne et al., 2014). Furthermore, some elements like Na and K 

are involved in diagnosis of specific diseases such as mastitis in dairy cows (Hamann and Krömker, 

1997). It is recognized that milk mineral content varies among breeds. Mariani et al. (2002) reported 

that Ca and P contents of milk from Holstein-Friesian cows averaged 112 mg/100 ml and 89.6 

mg/100 ml, respectively. The same authors reported that milk of Holstein-Friesian cows had lower 

concentrations of all colloidal mineral elements, except for colloidal Mg, than Brown Swiss and 

Reggiana breeds; nevertheless, it contained more colloidal Ca phosphate than milk of Modenese 

breed. The phenotypic variability of minerals within breed can be partly due to additive genetic 

effects. However, few studies dealt with the genetics of milk mineral composition because of the 

high analytical costs. However, results from a study conducted by Buitenhuis et al. (2015) 

demonstrated the high heritability of minerals, in particular of Ca (0.57), P (0.62), Mg (0.60) and Zn 

(0.41). The lack of fair comparisons among breeds on the mineral profile persists. In fact, the 

studies reported in literature are mostly based on a small number of cows of two-three different 

breeds reared in one or two farms (Mariani et al., 2002; Summer et al., 2004), or on a large number 

of cows housed in many single-breed farms (Van Hulzen et al., 2009), so that the effect of breed on 
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mineral elements continues to be confounded with the effects of farm, feeding strategy and 

sampling date. Moreover, since dairy farms have moved towards larger and more industrialized 

setups in which cows are fed high-energy diets, and dairy breeds have been persistently selected to 

improve productivity and milk quality, the majority of analytical studies were applied to elucidate 

any possible relationship between diets, season, manufacturing process and mineral elements in 

milk and dairy products of cows (Coni et al., 1995), sheep and goats (Coni et al., 1996), and not for 

the evaluation of the direct breed and herd productivity effect on these elements. 

For these reasons we have carried out a large study involving 27 multi-breed herds 

characterized by variable levels of productivity, allowing for independent evaluation of the effects 

of farm and of 6 different cattle breeds. The specific aims of this study were: 1) to quantify and 

characterize the effects of high or low herd productivity (defined according to the milk net energy 

yielded daily by the cows) on 15 minerals; 2) to quantify the variability of herds within herd 

productivity class; 3) to make a within-herd comparison of 3 dairy and 3 dual-purpose breeds for 

their milk mineral composition, and 4) to quantify the effects of DIM and parity on several minerals 

determined by Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES).  

 

MATERIALS AND METHODS 

Multi-breed herds  

The present study is part of the Cowplus project. A total of 1,508 cows from 41 multi-breed 

herds (2 to 5 breeds, with an average of 3) located in the Trentino Alto Adige region, north-eastern 

Italian Alps, were controlled once for daily milk production and sampled during the evening 

milking for milk quality analyses. The details of the milk sampling have been described by Stocco 

et al. (2016) and the environmental context and dairy systems involved by Sturaro et al. (2013).   

A subsample of 240 cows from 27 multi-breed herds were enrolled in the study on 

determination of mineral composition of milk. Six breeds were considered, 3 of them specialized 

dairy breeds: Holstein Friesian (HF = 15 herds and 50 cows), Brown Swiss (BS = 16 herds and 50 
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cows), and Jersey (Je = 7 herds and 35 cows); and the remaining 3 dual purpose breeds: Simmental 

(Si = 11 herds and 35 cows), and the two autochthonous breeds Rendena (Re = 8 herds and 34 

cows) and Alpine Grey (AG = 9 herds and 34 cows). 

 

Herd productivity classification 

The herds were classified into two categories of productivity (HP), defined according to the 

average daily milk energy output (dMEO) of the lactating cows. The net energy content (NEL) of 

milk was estimated with the following equation, proposed by the NRC (2001):  

NEL (Mcal/kg) = 0.0929 × fat,% + 0.0547 × protein,% + 0.0395 × lactose,%, 

where NEL is the energy of one kg milk. The NEL values obtained were converted to MJ/kg and 

multiplied by the daily milk yield of each cow (MJ/d) to obtain the individual dMEO of each cow. 

Individual dMEO data were subjected to an ANOVA using the GLM procedure in SAS (SAS 

Institute Inc., Cary, NC) in order to estimate the least square means (LSMs) of the dMEO for the 

selected herds after correcting for breed, DIM, and parity of the cows. After ranking the dMEO 

LSMs of the 27 farms, we divided them in high producing (High-HP: n = 13, dMEO= 82.41 MJ/d) 

and low producing (Low-HP: n = 14, dMEO= 50.63 MJ/d) herds on the basis of the median value. 

Large-framed breeds (Holstein Friesian, Brown Swiss and Simmental) were found in herds 

of both high and low productivity, Jerseys only in High-HP herds, and local breeds (Rendena and 

Alpine grey) only in Low-HP herds.  

 

Analysis of milk samples  

Milk samples (without preservative) were adjusted to 4°C immediately after collection, and 

analyzed within 24 hours of sampling at the Milk Quality Laboratory of the Department of 

Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) of the University of 

Padua.  
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All samples were analyzed for SCC (Fossomatic Minor, Electric A/S, Hillerød, Denmark). 

Milk SCC was log-transformed to SCS (Ali and Shook, 1980). Protein and fat contents were 

measured by a Milkoscan FT2 infrared analyzer (Foss Electric A/S) calibrated according to 

reference methods [ISO 8968–2/IDF 20–2 for protein (ISO-IDF, 2014); ISO 1211/IDF for fat (ISO-

IDF, 2010)].  

The ICP-OES, Arcos EOP (Spectro A. I. GmbH, Kleve, Germany) was employed to 

determine 15 elements: Ca, P, Na, K, Mg, S, Cu, Fe, Mn, Se, Zn, B, Si, Sn, Sr. All instrument 

operating parameters were optimized for nitric acid 10% solution as follows. Plasma observation 

axial, nebulizer Crossflow, spray chamber Scott doublepass, torch injector quartz diameter 3.0 mm, 

plasma power 1400 W, coolant gas 12.0 L/min, auxiliary gas 0.6 L/min, nebulizer gas 0.85 L/min, 

additional gas 0.20 L/min, sample uptake rate 2.0 mL/min, replicate read time 28 s, replicates 3, 

pre-flush time 60 s. The milk samples were analyzed after microwave closed vessel digestion 

(Ethos 1600 Milestone S.r.l. Sorisole, BG, Italy). For each sample was weighted between 1.950 and 

2.050 g of milk and placed in a TFM vessel with 2 mL of 30% hydrogen peroxide and 7 mL of 

concentrated (65%) nitric acid both Suprapur quality (Merck Chemicals GmbH, Darmstadt, 

Germany). The so prepared sample was subject to a microwave digestion as follows: Step 1 25–200 

1°C in 18 min at 1500 W with P max 45 bar; Step 2 200 1°C for 15 min at 1500 W with P max 45 

bar; Step 3 200–110 1°C in 15 min. After cool down to room temperature, the dissolved sample was 

diluted with ultrapure water (resistivity 18.2 M Ω cm at 25 1°C) to a final volume of 20 mL. 

Calibration standards were prepared using multi element and single elements standards solutions 

(Inorganic Ventures Inc. Christiansburg, VA, USA) in 10% Suprapur nitric acid (Merck Chemicals 

GmbH, Darmstadt, Germany) to get similar matrix as the samples. Concentrations of 0, 0.002, 

0.005, 0.02, 0.05, 0.2, 0.5 and 2 mg/L of the analytes were prepared. The concentrations of the 

calibration solutions for Calcium, Potassium, Magnesium, Sodium, Phosphorous and Sulphur were 

the same like other analytes plus 5, 20, 50 and 200 mg/L respectively. The accuracy and precision 

of both methods were investigated analyzing blank solution, low level control solution (recovery 
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limits ± 30%), medium level control solution (recovery limits ± 10%) and the international standard 

reference material BCR – 063R “Skim milk powder” [Institute for Reference Materials and 

Measurements (IRMM), Geel, Belgium]  prepared like above described. The measured values and 

the certified values were in excellent agreement for all the elements. 

  

Statistical Analysis 

Experimental data were analyzed using the MIXED procedure (SAS Institute Inc., Cary, 

NC) according to the following model (base model): 

ymnopqr = µ + HPm + Herdn(HP)m + Breedo + Parityp + DIMq + emnopqr 

where ymnopqr is the observed trait (Ca, P, Na, K, Mg, S, Cu, Fe, Mn, Se, Zn, B, Si, Sn, and Sr); µ is 

the overall intercept of the model; HPm is the fixed effect of the mth herd productivity (m = 2 levels); 

Herdn is the random effect of the nth herd (n = 1 to 27) within the mth class of herd productivity; 

Breedo is the fixed effect of the kth breed (k = HF, BS, Je, Si, AG and Re); Parityp is the fixed effect 

of the jth parity (j = 1 to ≥ 3); DIMqi is the fixed effect of the ith class of days in milk (i = 1 to 8; 

class 1, 8-49 days (25 samples); class 2, 50-91 d (27 samples); class 3, 92-133 d (39 samples); class 

4, 134-175 d (42 samples); class 5, 176-217 d (43 samples); class 6, 156-259 d (32 samples); class 

7, 186-301 d (18 samples); class 8, > 302 d (12 samples); emnopqr is the random residual ~ N (0, ). 

Orthogonal contrasts were estimated between the LSMs of traits for the effect of breed: 

a) dairy specialized (HF, BS and Je) vs dual purpose breeds (Si, AG and Re);  

b) within specialized, large-framed vs small-framed breeds (HF + BS vs Je), and  

c) comparison of the two large-framed dairy breeds (HF vs BS);  

d) within dual-purpose, large-framed breed vs medium-framed local breeds (Si vs Re + AG), and  

e) comparison of the two medium-framed local dual-purpose breeds (Re vs AG) .  

Orthogonal contrasts were also estimated between the LSMs of traits for the effect of parity: 

a) 1st vs ≥2nd, b) 2nd vs  ≥3rd; and the effect of dim: a) linear, b) quadratic and c) cubic trend. 
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A further model (extended model) was used to analyze the direct effects of breed on 

mineral elements corrected for the milk yield and quality traits and was obtained from the base 

model with inclusion of linear covariate of milk yield, fat%, protein%, and SCS. The indirect effect 

of breed on minerals due to breed differences in terms of milk yield and quality was obtained 

subtracting the breed variance yielded by the extended model from the breed variance obtained 

from the base model (with breed as random effect). Both direct and indirect breed variance were 

represented as percentage of total breed variance. 

 

RESULTS 

Milk mineral profile and effects of herd productivity  

Of the 31 minerals analyzed, 11 were above the limit of detection for all milk samples, 4 

were detected in 45 to 66% of milk samples and 16 were mainly below the limit of detection, and 

were not considered. Descriptive statistics of milk yield, of protein, fat and SCS content of milk 

samples, and of the mineral content of the 15 elements detected are summarized in Table 1. 

Minerals exhibited large variability due to the diversity of herd productivity and of the six sampled 

breeds. 

Least square means of herd productivity (HP), F-values and significance are summarized in 

Table 2. Milk yield was obviously very different in the two herd productivity levels, and also milk 

protein content was higher in High-HP than in Low-HP, whereas milk fat and SCS did not reached 

significant differences because of their greater residual variability.  

Regarding macro-minerals, milk samples from farms characterized by High-HP presented 

higher content of Ca, Mg and S compared with milk samples from Low-HP farms and among 

essential micro-minerals, Cu and Zn were greater in High-HP farms. No effect of HP was observed 

on environmental micro-minerals. The variability among different herds within HP classes is also 

presented in Table 2 as incidence of herd/test date variance on total variance. Considering macro-

minerals, P and S were characterized by a large variability among different herds (greater than other 
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milk traits), Ca and S by an intermediate herd variability (similar to that of milk traits) and Na and 

K by a low variability (similar to that of SCS). Essential micro-minerals were characterized by an 

intermediate herd variability with the exception of Zn (low) and Mn and Se (high and very high). 

Environmental micro-minerals were all characterized by a very high variability among different 

herds/sampling dates. This high herd within HP class variability is also to be considered the main 

reason of the non-significance of HP effect, even though large differences between the LSM of the 

two HP classes were present, as the herd variance was considered the error line for testing HP 

effect. 

 

Effect of parity 

Parity effect on production traits was limited to a greater daily milk production in 

multiparous respect to primiparous cows and to SCS (P < 0.001). Moving to mineral content, milk 

from primiparous cows was characterized by a higher content of P, Mg and Cu than multiparous 

cows. A opposite pattern with parity was observed for Na content that increased not only moving 

from 1st to 2nd lactation but further also to 3rd and more lactations. Environmental minerals did not 

modify their concentrations across parities.  

 

Effect of days in milk 

The variation of the milk content of the 15 minerals analyzed during lactation was highly 

significant for all the essential macro- and micro-minerals, except for Se, while among the 

environmental micro-minerals only B was affected by lactation stage. (data not shown). Figure 1 

shows that among the macro-minerals, the concentration of Ca and P (corrected for all the other 

sources of variation considered in statistical model) increased almost linearly (P) and curvilinearly 

(Ca) during lactation period (+6% and +10%, respectively for Ca and P between the first and the 

last class of DIM). The pattern of K and Na in milk was different, the former followed a quadratic 

and the latter a cubic pattern. Milk K, in fact, tended to decrease during the second part of lactation, 
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while Na principally increased during the central part of lactation (Figure 2). Both milk content of S 

and Mg increased almost linearly during the lactation period, respectively of 17% and 13% (Figure 

3). 

Among essential micro-minerals, milk content of Fe increased linearly of about 27% 

during lactation, while Cu had a curvilinear trend decreasing rapidly at first, and then increasing 

toward the end of lactation (Figure 4). Taking into account that about half of the milk samples 

presented a content of Cu below the instrumental limit of detection, it is particularly important to 

consider if the proportion between samples above and below the limit of detection was affected by 

stage of lactation. The pattern of the incidence of samples with a Cu content above limit of 

detection on total milk samples (Cu ISAL%) followed a pattern very similar to that observed for Cu 

content (data not shown). Milk content of Se and Mn had different patterns (Figure 5), as the former 

decreased during lactation of about 24% (with a non-significant pattern, common also to Se 

ISAL%, data not shown), while milk content of Mn raised almost linearly of about 48%. The milk 

content of Zn showed a cubic pattern with a decrease during the first third of lactation, followed by 

an increase thereafter (Figure 7), while an almost opposite cubic pattern was observed for B, the 

only environmental micro-mineral showing a variation during lactation.  

 

Effect of breed 

Least square means of the effects of breed and their orthogonal contrasts (F-value) for all the 

observed traits are reported in Table 3. All these least square means were corrected for all the other 

factors of variation included in the model (herd productivity class, individual herds, and parity and 

DIM of the cows).  

Comparing first the group of the three specialized dairy breeds (Holstein Friesian, Brown 

Swiss and Jersey) with that of the dual-purpose breeds (Simmental, Rendena and Alpine Grey), it 

will be noted that for all traits analyzed there are large differences among different breeds within 

each group, so that the orthogonal comparison between the dairy specialized and the dual-purpose 
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breeds is seldom significant.  In fact, the difference in milk yield did not attain statistical difference. 

Regarding milk quality traits, on average specialized dairy breeds outyielded dual-purpose breeds in 

protein and fat content of milk. The productive aptitude of cows on average did not affect the milk 

content of any mineral element, except for P content, which was higher in dual-purpose breeds, and 

Se and Sr, which were higher in specialized dairy breeds.  

Very large differences were observed among the three specialized dairy breeds for the 

production traits and for the majority of the minerals analyzed, while the differences were smaller 

within the three dual-purpose breeds. In particular, comparing the small-framed breed (Jersey) with 

the two large-framed breeds (Holstein Friesian and Brown Swiss), results confirmed that the former 

have a lower productive potential (daily milk yield: -37%) than the latter breeds, but that had also 

higher milk protein (+13%) and fat (+33%) contents and lower SCS. Among macro-minerals, milk 

from Jersey cows was characterized by much higher content of Ca (+10%), Mg (+8%) and S (+9%) 

and lower content of  K (-5%). Regarding essential micro-elements Mn, Se and Zn were all much 

higher in Jersey milk compared with Holstein-Friesian and Brown Swiss milk (Table 3). Among 

environmental micro-elements, only B content was different in milk from Jersey cows (lower) 

compared to milk from the two large-framed dairy breeds.  

Moving to the comparison between the two large-framed dairy breeds, compared with 

Holstein Friesians, Brown Swiss cows had a lower productive potential (-17%), compensated by 

greater milk protein content (+12%) and by favorable milk Ca (+6%), P (+9%), Mg (+6%) and S 

(+13%) macro-elements, and also by much more favorable content in Fe (+23%), Mn (+36%) and 

Zn (+24%) in milk among essential micro-minerals. For the Se it is interesting to observe that milk 

from Holsteins and Brown Swiss cows is characterized by almost the same LSM values for milk 

content but by a greater incidence of samples above limit of detection for Brown Swiss cows (it 

depends by the fact that for Holstein cows milk samples above the limit are less frequent but are 

characterized by higher amount of the mineral). Among environmental micro-minerals, only Si was 

different in the two large dairy breeds (higher in Brown Swiss milk). 
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Moving to dual-purpose breeds, it will be noted that the large-framed Simmental cows 

produce, on average, more milk (+30%) than the two medium-framed local breeds (Rendena and 

Alpine Grey), with a greater fat content (+16%). The only differences found between the Simmental 

breed and the averages of the two local breeds for minerals in milk were due to Na (-5%) and Sr 

(+64%) contents. Lastly, the only differences recorded between the two local breeds were that 

Rendena cows produced milk with less protein (-7%), and S (-8%).  

 

DISCUSSION 

Effect of environment on mineral profile of milk 

The findings of the present study on mineral profile of milk revealed strong differences in 

the effect of different sources of variation for different individual minerals, and also among the 

three main groups of minerals considered: the essential macro-minerals, the essential micro-

minerals and the environmental micro-minerals.  

The effect of herd-date within class of HP (High-HP vs Low-HP) represented a very 

variable proportion of total variability of milk content according to the mineral considered, going 

from 11-12% in the case of Na and K to 91% for Sn (Table 2). Given that herd groups together 

several management factors (i.e., housing conditions, feed supplements and diet quality, water 

quality, milking procedure and equipment, etc.), as well as the different geographical area of herds, 

the % of variability explained by this factor may be considered low to moderate for the majority of 

macro-minerals, moderate for the majority of essential micro-minerals (Se excluded), and very all 

high for environmental micro-minerals. This means that the variation of the content of macro-

minerals in milk is basically due to individual animal factors (i.e., breed, genetics, parity, stage of 

lactation, health status, etc.), while herd (diet, location, etc.) plays a much more important role in 

determining the concentration level in milk of environmental micro-elements (B, Si, Sn and Sr), 

that do not play a specific role in animal metabolism and, than, are not strictly regulated in terms of 

absorption, retention and excretion (Klasing et al., 2005).  
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Essential macro- and micro-minerals are mainly provided to animals by supplementation, 

however for some of them the concentration in milk is strongly regulated by animal factors. Among 

macro- and essential micro-minerals, those scarcely (< 25%) influenced by herd-date effect were 

Ca, Na, K, Mg, Cu, Fe and Zn. In fact, Ca, Mg and Zn are associated to casein micelles in milk, so 

their variation is correlated with casein content, while Na and K are involved in the maintenance of 

osmotic equilibrium blood-milk (Holt, 2011), so the low herd-date effect was expected. In the case 

of Mg, this element follows the metabolism of Ca and P, as confirmed by correlations reported by 

Pilarczyk et al. (2013).  

Van Hulzen et al. (2009) in their study on 1,948 Dutch Friesian cows included herd (N = 

398) as random effect in the model, and observed a  herd effect lower than 16% for Ca, Zn, Mg and 

P. Only in the case of K their herd effect was much greater than our (24% vs 11%, respectively). 

They supposed that herd variance could result from differences among herds in housing, and 

especially in feed, but probably the farms in the Dutch planes are more homogeneus for 

environmental, management, and genetic conditions respect to those in the Italian Alps. In the case 

of Zn, the low effect of herd-date was probably due to the influence of other metal ions and the 

presence of organic chelating agents or competing mineral elements (i.e., copper) on the efficiency 

of absorption of this element. It worth noting that, with the only exception of S, only minerals with 

a low proportion of variability explained by the herd-date (Ca, Mg, Cu and Zn) exhibited a 

significant effect of HP on their milk content, in every case with higher content in the milk sampled 

from cows reared in High-HP  vs Low-HP herds (Table 2). For these elements it seems reasonable 

to assume that diet fed to cows could represent an important source of variation, and in particular 

the forage:concentrate ratio (much lower in Low-HP herds) and mineral-vitamins supplementation 

(greater in High-HP) herds.  

The high effect of herd-date (34 to 41% of total variance) on P, S, and Mn, milk content 

could be explained by the fact that their content in the feedstuffs is relatively high and variable 

(Meyer et al., 2014), especially in the case of S, which content in feedstuffs is related to protein 
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concentration. In the case of Mn, its content in feedstuffs is quite variable and is influenced by soil 

type and plant species (Hurley and Keen, 1987). 

Among the essential minerals, only Se showed a very high variability among herd-dates 

within HP classes (49 and 61% of total variance when expressed as milk content or as incidence of 

samples exhibiting values above detection limit, respectively, Table 2). This high herd variability 

was confirmed by the large survey carried out by Van Hulzen et al. (2009) that observed that herd 

explained 65% of the phenotypic variance of Se content in milk. They supposed that herd variance 

could result from differences among herds in housing, and especially in feed. It is known that Se 

content in milk is directly proportional to the organic Se content in the feedstuffs (Ceballos et al., 

2009; Meyer et al., 2014) 

As previously seen, all environmental micro-minerals presented a very high variability 

among different herds and sampling dates. Available literature on these micro-minerals in bovine 

milk is really dated, but their variability in milk could be the result of their different natural content 

in feed and water consumed by cows, in relation also on the different soil characteristics in different 

valleys of the sampled province. Boron enters the environment mainly through the weathering of 

rocks, but also through fertilizers, while forages and cereal grains in fiber (i.e., oats, barley) are the 

major sources of Si (Pennington, 1991). Most fresh feeds naturally contain less than 1 mg/kg of Sn 

(Greger, 1988), thus the amount of Sn in the diets of livestock is small. However contaminated, 

water is a valid source of this element. In general, feedstuffs of plant origin are rich sources of Sr, 

especially leguminous rather than gramineous forages (Klasing et al., 2005).    

 

Effect of breed within herd 

Our study outlined that the breed of cows affected the content in milk of all essential macro- 

and micro-mineral, with the only exception of Cu. Few studies have analyzed detailed mineral 

profile of milk obtained from individual animals of several breeds, but none analyzed data only 

from multi-breed herds and used a model correcting for herd productivity class and herd effect 
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within class, and also for parity and DIM of cows. From this study it appears also that the main 

differences are not due to the attitude (specialized vs dual purpose breeds) but to the different breeds 

within the attitude group, and especially within the dairy specialized group of breeds. 

Barlowska et al. (2006) determined 8 mineral elements in 147 milk samples from five 

breeds, and the results showed that the milk from the three breeds, including the two native breeds, 

Whiteblacks, Polish Red and Simmental, contained more essential macro-elements (K, Ca, Na and 

Mg) and some micro-elements (Zn, Fe) compared to Polish Holstein-Friesian black-white and red-

white varieties. Also in our study, milk samples from Holstein Friesian cows were characterized by 

the lowest content of almost all essential minerals. 

More information is available regarding the comparison between two specialized dairy 

breeds: the Holstein and the jersey. Hermansen et al. (2005) studied 51 mineral elements in 480 

milk samples from Danish-Holstein and Jersey cows, and found that Jersey milk was richer in Ca, 

P, Cu, Fe, Mg, Mn and Zn, compared to the milk of Danish-Holstein breed. Recently, Buitenhuis et 

al., (2015) studied 10 mineral elements in 892 milk samples from cows of the same two breeds, and 

their results confirmed the superiority of the Jersey milk on the Holstein milk for all the minerals 

considered, except for K. Also in our case, Jersey cows showed the lowest K content compared to 

the other breeds. Differences between these two breeds were found also studying the susceptibility 

to Cu toxicity (Du et al., 1996): Jersey cattle fed the same diet as Holstein-Friesian accumulated 

more Cu in their livers. It was not clear whether this reflects differences in feed intake, efficiency of 

Cu absorption, or biliary excretion of Cu. In any case, Jersey had the best mineral profile, that could 

be explained, in part, by its higher protein (casein) and fat content in milk. Most of Ca, S and Zn are 

bound to casein micelles (Neville et al., 1995), so this could explain their higher concentrations in 

Jersey milk compared to the two large-framed dairy breeds. The idea that milk composition could  

explain differences among breeds with regard to mineral profile could be applied also when 

comparing the two Holstein-Friesian and Brown Swiss.  
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Moving to dual-purpose breeds, Pilarczyk et al. (2013) studied the concentrations of 10 

mineral elements (2 toxic heavy metals and 8 trace elements) in milk of Simmental and Holstein-

Friesian cows reared in organic farms, and concluded that the milk of Simmental breed was 

characterized by a more advantageous mineral composition and lower concentration of noxious 

metals compared to the milk of Holstein-Friesian cows. Also in our study milk from Simmental 

cows showed a macro-mineral profile close to that of milk from Brown Swiss cows and better than 

that of milk from Holstein Friesian cows. Also in our study, like in the survey carried out by 

Barlowska et al. (2006), the two local breeds produced a milk with a mineral profile similar to that 

characterizing Simmental breed.  

 

Direct and indirect effects of breed 

Since the differences among breeds were substantial, and since some authors related these 

differences to the different composition of milk (Neville et al., 1995), it appears important to 

distinguish and quantify the direct effects of breed on detailed mineral profile, independent from its 

effect on milk yield and composition, from the indirect effects, mediated by differences in terms of 

milk yield and composition. As no information is available, we are aware of, we try to reach this 

objective through a modification of the basic statistical models used: we included MY, protein, fat, 

and SCS as general covariates, and calculated the differences in breed variances (treated as random 

factor) with and without covariates for each mineral trait. It can be seen from Figure 7 that the 

proportions of direct and indirect breed effects are very different for the various minerals 

considered. 

Practical diets would not be expected to result in a severe deficiency of any of the essential 

elements. Most of these elements can be toxic when provided in large amounts and this is 

occasionally a problem in dairy cattle (NRC, 2001), and even less for human health. In our study, 

milk yield and composition (indirect effect of breed) accounted for a large proportion of the total 

breed variance for Ca, Mg, S among macro-minerals (81 to 94%), and Mn and Zn among trace 
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elements (76 and 68%, respectively). The direct effect of breed on Ca and S was much lower 

because of the dependence of these elements on available casein, on the contrary Mg exists mainly 

as citrate, phosphate and free ions; only 35% of Mg is bound to casein micelles (Gaucheron, 2005), 

therefore, the casein content might not be so important in determining Mg variation in milk. The 

67% of Mn in cow milk is bound to casein, 1% to globular fat membranes, 14% to whey proteins, 

and 18% to molecular weight fraction, while less than 0.1% of total Se content is bound to fat 

(Cashman, 2002). Zn is bound for 1-3% to lipid fraction, the rest can be found in the skim milk 

fraction.  

The other essential minerals, with the exclusion of Fe and included environmental B, 

showed to depend in similar proportions from milk composition and yield and from the direct, 

independent, effect of breed (Figure 8). Only Fe, among the essential micro-minerals, and the other 

environmental minerals were not much affected by milk yield and composition and showed a 

specific independent effect of breed (in the case of Sn, the breed variance was observed to even 

increase after correction for milk yield and composition). These results on direct breed effect (so 

mainly due to genetic factors) is confirmed by the study of Du et al. (1996) on different absorption 

of Cu, Zn and Fe by Jersey and Holstein-Friesian cows. Differences in trace elements metabolism 

between different breeds have been reported.  

 

CONCLUSIONS 

In conclusion, this study on multi-breed herds allowed the effects of farm and of breed of 

cow to be independently evaluated. In particular, there was a relatively low incidence of the effect 

of herd within class of farm productivity on the essential macro- minerals whose blood level is 

strictly regulated (Na, K, and, in part, Mg) while this effect was higher for the other essential 

macro- and micro-minerals, and very high for Se and the environmental micro-minerals. 

Comparison of farms with high or low average daily milk energy output revealed significant 

differences only for minerals with a moderate variability of herd effect within productivity class.  
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Breed remained a major source of variation of milk level of all essential minerals, with the 

only exception of Cu. The major differences were not noted between dairy specialized and dual-

purpose breeds, but especially within the dairy breeds. In particular, results confirmed the much 

greater concentration in milk from Jersey cows of almost all essential minerals (Na and K 

excluded), and also of milk from Brown Swiss (and the dual-purpose cows) respect to milk from 

Holstein-Friesian cows. Moreover, it was noted that the combined effects milk yield and 

composition explains a proportion of breed variance very variable according to the mineral 

considered. This indirect effect of breed is dominant in the case of Ca, Mg, S, Mn, and Zn, and 

intermediate for P, Na, K, Cu, Se, and B. For all these minerals it appears very important to try to 

analyze the reason of the dependency of their milk level with milk yield and composition, as well as 

of their independency, as a base for further understanding of the genetic and physiological 

mechanisms regulating milk minerals. In the case of Fe and of the environmental micro-minerals 

the breed effect seems not depend on milk yield and composition, but also the direct breed effect 

seems not much important. It is also important to deepen the relationships between milk mineral 

profile and cheese-making traits and cheese quality. 

 

ACKNOLEDGMENTS 

The authors thank the Autonomous Province of Trento (Italy) for funding. 

 

  



130 
 

REFERENCES 

Ali, A. K. A., and G. E. Shook. 1980. An optimum transformation for somatic cell concentration in 

milk. J. Dairy Sci. 63(3):487-490. 

Barłowska, J., Z. Litwińczuk, J. Król, and M. Kędzierska-Matysek. 2006. Fatty acid profile and 

minerals content in milk from cows of various breeds over spring-summer feeding period. 

Polish Journal of Food and Nutrition Sciences. 56(1s):13-16. 

Buitenhuis, A. J., U. K. Sundekild., N. A. Poulsen, H. C. Bertram, L. B. Larsen, and P. Sørensen. 

2013. Estimation of genetic parameters and detection of quantitative trait loci for 

metabolites in Danish Holstein milk. J. Dairy Sci. 96(5):3285-3295. 

Cashman, K. D. 2002. Macrominerals in milk and dairy products, nutritional significance. Ed. H. 

Roginski, P. F. Fox, and J. W. Fuquay. Encyclopedia of Dairy Sciences (pp. 2051-2058). 

London, UK: Academic Press. 

Cashman, K. D. 2006. Milk minerals (including trace elements) and bone health. Int. Dairy J. 

16:389-1398. 

Ceballos, L. S., E. R. Morales, G. de la Torre Adarve, J. D. Castro, L. P. Martínez, and M. R. S. 

Sampelayo. 2009. Composition of goat and cow milk produced under similar conditions and 

analyzed by identical methodology. Journal of Food Composition and Analysis. 22(4):322-

329. 

Cecchinato, A., A. Albera, C. Cipolat-Gotet, A. Ferragina, and G. Bittante. 2015. Genetic 

parameters of cheese yield and curd nutrient recovery or whey loss traits predicted using 

Fourier-transform infrared spectroscopy of samples collected during milk recording on 

Holstein, Brown Swiss and Simmental dairy cows. J. Dairy Sci. 98:4914-4927. 

Coni, E., A. Bocca, D. lanni, and S. Caroli. 1995. Preliminary evaluation of the factors influencing 

the trace element content of milk and dairy products. Food Chemistry, 52:123-130. 



131 
 

Coni, E., A. Bocca, P. Coppolelli, S. Caroli, C. Cavallucci, and M. Trabalza Marinucci. 1996. 

Minor and trace element content in sheep and goat milk and dairy products. Food 

Chemistry, 57:253-260. 

Cooke, D. R., P. L. H. McSweeney. 2014. The influence of alkaline earth metal equilibria on the 

rheological properties of rennet-induced skim milk gels. Dairy Sci. Technol. 94:341-357. 

Du, Z., R. W. Hemkin, and R. J. Harmon. 1996. Copper metabolism of Holstein and Jersey cows 

and heifers fed diets high in cupric sulfate or copper proteinate. J. Dairy Sci. 79(10):1873-

1880. 

Gaucheron, F. 2005. The minerals of milk. Reprod. Nutr. Dev. 45:473-483. 

Greger, J. L. 1988. Tin and aluminum. Trace Minerals in Food. Ed. K. T. Smith. New York: Marcel 

Dekker. 291-323. 

Gustavsson, F., M. Glantz, A. J. Buitenhuis, H. Lindmark-Månsson, H. Stålhammar, A. Andrén, 

and M. Paulsson. 2014. Factors influencing chymosin-induced gelation of milk from 

individual dairy cows: major effects of casein micelle size and calcium. Int. Dairy J. 39:201-

208. 

Hamann, J., and V. Krömker. 1997. Potential of specific milk composition variables for cow health 

managment. Livest. Prod. Sci. 48:201-208. 

Hermansen, J. E., J. H. Badsberg, T. Kristensen, and V. Gundersen. 2005. Major and trace elements 

in organically or conventionally produced milk. J. Dairy Res. 72(3):362-368. 

Holt, C. Milk salts | Interaction with caseins. 2011. Encyclopedia of Dairy Sciences. 2nd. Academic 

Press, San Diego, CA. 917-924. 

Hurley, L. S., and C. L. Keen. 1987. Manganese in Trace Elements in Human and Animal 

Nutrition. 5th ed., W. Mertz, ed. Orlando, FL Academic Press.  

Huth, P. J., D. B. Di Rienzo, and G. D. Miller. 2006. Major scientific advances with dairy foods in 

nutrition and health. J. Dairy Sci. 89:1207–1221. 



132 
 

ISO-IDF (International Organization for Standardization and International Dairy Federation). 2010. 

Milk - Determination of fat content. International Standard ISO 1211 and IDF 1:2010. ISO, 

Geneva, Switzerland and IDF, Brussels, Belgium. 

ISO-IDF (International Organization for Standardization and International Dairy Federation). 2014. 

Milk and milk products - Determination of nitrogen content - Part 1: Kjeldahl principle and 

crude protein calculation. International Standard ISO 8968-1 and IDF 1:2014. ISO, Geneva, 

Switzerland and IDF, Brussels, Belgium. 

Klasing, K. C., J. P. Goff, J. L. Greger, J. C. King, S. P. Lall, X. G. Lei, J. G. Linn, F. H. Nielsen, 

and J. W. Spears. 2005. Mineral tolerance of animals. 2nd rev. ed. Natl. Acad. Press, 

Washington, DC. 

Malacarne, M., P. Franceschi, P. Formaggioni, S. Sandri, P. Mariani, and A. Summer. 2014 

Influence of micellar calcium and phosphorus on rennet coagulation properties of cows 

milk. J Dairy Res 81:129-136. 

Mariani, P., A. Summer, P. Formaggioni, and M. Malacarne. 2002. La qualità casearia del latte di 

differenti razze bovine. La Razza Bruna 1:7-13. 

Meyer, U., K. Heerdegen, H. Schenkel, S. Dänicke, and G. Flachowsky. 2014. Influence of various 

selenium sources on selenium concentration in the milk of dairy cows. Journal für 

Verbraucherschutz und Lebensmittelsicherheit, 9(2):101-109. 

Neville, M. C., P. Zhang, J. C. Allen. 1995. Minerals, ions, and trace elements in milk. A. Ionic 

interactions in milk. Handbook of milk composition. Ed. Jensen R. G. Academic Press, New 

York. 577–592 

NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Press, Washington, DC. 

Pennington, J. A. T. 1991. Silicon in foods and diets. Food Addit. Contam. 8:97-118. 

Perween, R. 2015. Factors involving in fluctuation of trace metals concentrations in bovine milk. 

Pak. J. Pharm. Sci. 28:1033-1038. 



133 
 

Pilarczyk, R., J. Wójcik, P. Czerniak, P. Sablik, B. Pilarczyk, and A. Tomza-Marciniak. 2013. 

Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and 

Holstein-Friesian cows from organic farm. Environmental Monitoring and Assessment. 

185(10):8383-8392. 

Soyeurt, H., D. Bruwier, J.M. Romnee, N. Gengler, C. Bertozzi, D. Veselko, and P. Dardenne. 

2009. Potential estimation of major mineral contents in cow milk using mid-infrared 

spectrometry. J. Dairy Sci. 92:2444-2454. 

Spears, J. W., and W. P. Weiss. 2014. Invited review: Mineral and Vitamin nutrition in ruminants. 

The Professional Anim. Scientist. 30:180-191. 

Stocco, G., C. Cipolat-Gotet, T. Bobbo, A. Cecchinato and G. Bittante. 2016. Breed of cow and 

herd productivity affect milk composition and modeling of coagulation, curd firming and 

syneresis. J. Dairy Sci. 100:129-145. 

Summer, A., P. Franceschi, M. Malacarne, P. Formaggioni, F. Tosi, G. Tedeschi, and P. Mariani. 

2009. Influence of somatic cell count on mineral content and salt equilibria of milk. Ital. J. 

Anim. Sci. 8:435-437. 

Summer, A., M. Pecorari, E. Fossa, M. Malacarne, P. Formaggioni, P. Franceschi, and P. Mariani. 

2004. Frazioni proteiche, caratteristiche di coagulazione presamica e resa in formaggio 

Parmigiano-Reggiano del latte delle vacche di razza Bruna italiana. Proc. 7a Conferenza 

Mondiale Allevatori Razza Bruna, 77-82. 

Tsiamadis, V., G. Banos, N. Panousis, M. Kritsepi-Konstantinou, G. Arsenos, and G.E. Valergakis. 

2016. Genetic parameters of calcium, phosphorus, magnesium, and potassium serum 

concentrations during the first 8 days after calving in Holstin cows. J. Dairy Sci. 99:5535-

5544. 

Zamberlin, Š., N. Antunac, J. Havranek, and D. Samaržija. 2012. Mineral elements in milk and 

dairy products. Mljekarstvo 62:111-125. 



134 
 

Van Hulzen, K. J. E., R. C. Sprong, R. van der Meer, and J. van Arendonk. A. M. 2009. Genetic 

and nongenetic variation in concentration of selenium, calcium, potassium, zinc, magnesium, and 

phosphorus in milk of Dutch Holstein-Friesian cows. J. Dairy Sci. 92:5754-5759.  

  



135 
 

TABLES AND FIGURES  

 

Table 1. Descriptive statistics of milk yield, protein, fat, somatic cell score and mineral contents. 

Item N Mean SD Min Max 
MY, kg/d 238 20.8 8.1 4.5 46.0 
Protein, % 238 3.59 0.44 2.77 4.85 
Fat, % 238 4.23 1.20 1.02 7.97 
SCS1, unit 238 2.64 1.83 -1.06 7.56 

Macro-minerals, mg/kg      

Ca 234 877 93 679 1109 
P 236 657 73 481 834 
Na 235 372 48 292 509 
K 233 1304 81 1115 1494 
Mg 233 85 11 58 114 
S 238 181 23 135 246 

Essential micro-minerals, µg/kg      
Cu 107 46 18 13 108 
Cu, ISAL%2 238 47 50 0 100 
Fe 235 165 54 67 357 
Mn 229 17 6 4 35 
Se 110 162 46 100 287 
Se,  ISAL% 238 48 50 0 100 
Zn 233 2877 584 1788 4281 

Environmental micro-minerals, µg/kg      
B 236 158 48 50 301 
Si 147 1306 304 738 2088 
Si,  ISAL% 238 63 48 0 100 
Sn 158 588 459 103 1434 
Sn, ISAL% 238 69 46 0 100 
Sr 235 327 140 84 733 

1SCS= 3 + log2 (SCC/100,000); 2ISAL%: Percentage incidence of samples above the limit of detection 
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Table 2. Effect of class of herd productivity and of parity on milk yield, protein, fat, somatic cell score and mineral contents. 

 Herd productivity (HP)  Herd (HP) 
 

Parity (LSM)  
Parity Contrasts 

(F-value): 
RMSE 

 

 
High-HP 
(LSM) 

Low-HP 
(LSM) 

F-value  
% of total 
variance 

 
1st 2nd ≥3rd  1st vs ≥2nd 2nd 

vs ≥3rd 

MY, kg/d 24.0 14.9 51.1***  23.7  17.8 19.9 20.7  13.8*** 0.9 4.6 

Protein, % 3.74 3.54 8.8*  25.5  3.67 3.65 3.59  2.3 2.8 0.2 

Fat, % 4.50 4.15 2.5  19.1  4.37 4.27 4.33  0.3 0.2 0.9 

SCS1, unit 2.94 2.38 2.7  9.3  2.40 2.33 3.25  2.8 11.2** 1.6 

Macro-minerals, mg/kg              

Ca 907 866 4.9*  22.4  890 888 881  0.2 0.4 68 

P 676 645 2.6  40.8  685 653 643  22.2*** 1.3 51 

Na 374 376 0.0  12.0  355 375 395  27.7*** 9.1** 39 

K 1289 1300 0.5  10.6  1305 1301 1278  2.1 3.4 70 

Mg 90 84 8.1**  17.6  89 87 84  9.0** 3.3 8 

S 189 178 5.3*  33.8  185 185 182  0.5 1.6 14 

Essential micro-minerals, µg/kg              

Cu 33 23 4.4*  21.9  32 25 26  6.9** 0.0 17 

Cu, ISAL%2 57 42 1.7  25.3  52 47 50  0.3 0.2 39 

Fe 175 160 1.5  24.5  171 168 163  0.8 0.4 43 

Mn 19 16 3.7  38.0  18 17 18  1.9 1.9 4 

Se 112 96 0.9  49.2  102 105 105  0.2 0.0 41 

Se, ISAL% 60 37 2.2  61.0  45 48 52  1.0 0.7 30 

Zn 3151 2708 19.4***  13.6  2935 2942 2911  0.0 0.2 427 

Environmental micro-minerals, µg/kg              

B 149 168 1.4  67.5  158 160 157  0.1 0.5 27 

Si 699 882 0.9  46.9  763 824 783  0.3 0.2 484 

Si, ISAL% 57 61 0.1  54.2  58 60 60  0.1 0.0 34 

Sn 526 262 2.4  90.6  410 393 379  1.2 0.3 142 
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Sn, ISAL% 72 55 1.0  76.0  68 62 61  3.3 0.0 24 
Sr 333 335 0.0  78.1  324 344 334  2.3 0.7 63 

1SCS= 3 + log2 (SCC/100,000); 2ISAL%: Percentage incidence of samples above the limit of detection 
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Table 3. Effect of breed of cows on milk yield, protein, fat, somatic cell score and mineral contents. 

  Breed of cows (LSM):   Breed Contrasts (F-value): 

 
Holstein 
Friesian 

(HF) 

Brown 
Swiss  
(BS) 

Jersey 
(Je) 

Simmental  
(Si) 

Rendena  
(Re) 

Alpine 
Grey 
(AG) 

 
HF BS Je 

vs 

Si AG Re 

HF BS 
vs 

Je 

HF 
vs 

BS 

Si 
vs 

Re AG 

Re 
vs 

AG 

MY, kg/d 24.3 20.2 14.7 22.8 17.9 16.9  0.5 46.1*** 14.2** 21.5*** 0.4 
Protein, % 3.35 3.75 4.02 3.60 3.43 3.68  9.8** 66.9*** 50.7*** 0.6 10.0** 
Fat, % 4.08 4.10 5.45 4.52 3.73 4.05  7.6* 43.5*** 0.0 8.7* 1.3 
SCS1, unit 2.99 3.19 2.20 2.05 2.49 3.04  0.9 5.9* 0.3 3.6 1.4 

Macro-minerals, mg/kg             
Ca 841 895 950 900 868 864  1.8 23.2*** 10.6** 3.7 0.3 
P 611 665 660 681 660 684  8.7* 2.8 17.3*** 0.4 1.7 
Na 373 381 371 361 391 373  0.0 0.6 0.8 5.1* 2.3 
K 1298 1316 1244 1299 1307 1302  1.7 14.6*** 1.3 0.2 0.1 
Mg 83 88 92 87 84 86  1.6 10.5** 7.8* 1.1 0.6 
S 170 192 198 185 172 187  3.5 23.5*** 45.9*** 2.3 8.8** 

Essential micro-minerals, µg/kg             

Cu 24 30 33 24 30 27  0.2 2.3 2.2 1.1 0.3 
Cu, ISAL%2 46 55 64 32 51 49  2.1 2.1 0.9 3.3 0.0 
Fe 150 184 170 163 167 170  0.0 0.1 11.2** 0.3 0.1 
Mn 14 19 20 18 16 18  0.3 11.3** 18.3*** 0.3 3.0 
Se 98 98 152 93 94 90  8.4** 25.7*** 0.0 0.0 0.1 
Se, ISAL% 36 56 58 45 45 50  0.3 2.2 6.4** 0.1 0.2 
Zn 2482 3077 3171 3078 2868 2899  0.2 14.9*** 34.9*** 3.5 0.1 

Environmental micro-minerals, µg/kg             

B 160 171 147 167 147 156  0.2 7.3** 2.5 3.9 0.8 
Si 685 979 831 894 824 528  0.7 0.0 5.8* 2.7 2.7 
Si, ISAL% 55 70 67 64 59 40  2.1 0.3 2.9 2.4 2.3 
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Sn 398 362 370 382 464 390  1.5 0.1 0.9 1.2 1.7 
Sn, ISAL% 60 61 62 69 65 65  1.1 0.1 0.0 0.3 0.0 
Sr 326 357 363 373 288 299  5.1* 1.7 3.3 19.5*** 0.2 

1SCS= 3 + log2 (SCC/100,000); 2ISAL%: Percentage incidence of samples above the limit of detection 
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Figure 1. Milk content of calcium (Ca, P < 0.001) and phosphorous (P, P < 0.001) during lactation. 

 

Figure 2. Milk content of potassium (K, P < 0.001) and sodium (Na, P < 0.001) during lactation. 
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Figure 3. Milk content of sulphur (S, P < 0.001) and magnesium (Mg, P < 0.001) during lactation. 

 

Figure 4. Milk content of iron (Fe, P < 0.001) and copper (Cu, P < 0.001)  during lactation. 
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Figure 5. Milk content of selenium (Se) and manganese (Mn, P < 0.001)  during lactation. 

 

Figure 6. Milk content of boron (B, P < 0.05) and zinc (Zn, P < 0.01) during lactation. 
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Figure 7. Proportion of total breed variance explained by direct breed effect or by indirect breed 
effect through differences in milk yield and quality traits on macro-minerals, essential and 
environmental micro-minerals. 
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ABSTRACT 

The concepts of production, productivity and efficiency are interrelated but different. 

Productivity relates production to a scaling factor often associated to the dimension or cost of the 

producing unit. As a major cost of production of milk is the feed needed for the maintenance of the 

animal, often the productivity is expressed by a ratio between the output of production, in the 

nominator, and the “size” of productive animal (scaling unit), at the denominator. Efficiency of 

production implies a complete balance (for example, energetic or economic efficiency) of 

production activity, and it could be expressed as the ratio between production output, at the 

nominator, and the sum of all production inputs, at the denominator, or by the difference between 

total revenue and the costs, or the major cost of production “income over feed costs” (IOFC). As 

breed of cows and herd characteristics are the most important factors affecting milk productivity 

and efficiency, to obtain independent evaluation of these factors, the data (body size and 

production) and milk samples from 41 multi-breed herds (3 breeds per farm on average) on a total 

of 1,508 lactating cows from three dairy (Holstein, Brown Swiss and Jersey) and three dual-purpose 

(Simmental, Rendena and Alpine Grey) breeds were collected. The milk samples were processed to 

obtain milk composition and coagulation properties, while cheese-making traits were predicted on 

the basis of 508 measured individual model cheeses. Nine productivity indicators and two 

simplified indicators of cow efficiency for cheese production, one energetic and one economic, 

were calculated. The data were analyzed using a mixed model including: the class of herd 

production level (high vs low), the individual herd (random), the breed, parity and DIM class of the 

cow.   

Breed within herd greatly affected all traits. On average the 3 dairy breeds were not much 

different from the 3 dual-purpose breeds, but large differences characterized both groups of cows. 

Jersey cows were the less productive, but, after correcting for herds effect and scaling for body size, 

they showed the highest efficiency among the dairy breeds. Holstein was the most productive dairy 

breed, but Brown Swiss cows had better milk quality and more efficient cheese-making aptitude 



147 
 

and thus produced more cheese per day than Holsteins. Dual-purpose breeds were less variable than 

dairy ones, with Simmental with larger body size and production, but not productivity and 

efficiency respect to local Rendena and Alpine Grey breeds. 

If within-herd comparison and correctly scaling of production traits reduce strongly herd 

differences in productivity, they did not reduce very much the differences in terms of milk 

composition, technological properties and efficiency of cheese-making (recovery of milk nutrients 

in cheese) so that the differences among breeds remain strong and their importance on the overall 

efficiency evaluation of the breeds increased. The knowledge and correct quantification of the 

importance of productive, qualitative and technological properties of different breeds offers 

interesting new insights for modifying selection indices within dairy and dual purpose breeds and 

for projecting crossbreeding plans across breeds. 

Key words: Dairy breeds efficiency, milk productivity, energy requirements, body condition score, 

income over feed costs.  
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INTRODUCTION 

The concepts of production, productivity and efficiency are not synonyms even though they 

are correlated. The high milk production of Holstein cows in the past decades promoted a 

worldwide diffusion of this breed. Productivity relates production to a scaling factor, often related 

to the dimension or cost of the producing unit. As a major source of “fixed” cost of production of 

food of animal origin for humans is the feed needed for the maintenance of the animal. The 

productivity is often expressed by the ratio of the food produced, in the nominator, and the “size” of 

productive animal (scaling unit), at the denominator, where the size could be represented simply by 

the body weight (BW) of the animal, or by some predictor of its nutrients requirement for 

maintenance of which the metabolic weight (MW) and the body protein weight (PW) are examples. 

The Jersey cows produces much less milk than Holsteins, but their size is much smaller, so if their 

productivity per unit BW or MW be lower or higher respect to Holsteins is questionable (). 

Efficiency of production is another commonly used index, but more complicated to be defined and 

measured. It implies a complete balance (for example material, or energetic, or environmental, or 

economic, etc.) of production activity and it could be expressed as a ratio between production 

output, at the nominator, and the sum of all production inputs, at the denominator. A simplified way 

of representing economic efficiency is not a ratio but a difference between total revenue and the 

costs or the major cost of production. Often used in animal production is “income over feed costs” 

(IOFC). 

The primary genetic characteristic of a cow - its breed - has been shown to have an 

enormous effect on milk yield, and on its main destination: cheese yield (Banks et al., 1986; 

Verdier-Metz et al., 1995), but the comparisons of different breeds in scientific papers could go 

from few dozens of cows with a lot of precise data obtained in an experimental farm (Mistry et al., 

2002; Hurtaud et al., 2009; Martin et al., 2009), to few data obtained from whole cattle populations 

underwent production recording systems with a large majority of single-breed herds (Malacarne et 
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al., 2006; Bland et al., 2015). In this last case the effect of individual herds and dairy systems are 

confused with the effect of breed. 

Therefore, comparison of breeds may be affected by a lack of representativeness, or by 

different individual (parity, stage of lactation, etc.) or herd (facilities, feeding, management, etc.) 

characteristics. It is also possible that very different dairy systems and levels of farm productivity 

interact with breed. 

For these reasons, a large research project (Cowplus project) was established, and several 

milk yield, quality and coagulation properties (Stocco et al., 2016a) and cheese-making-related 

phenotypes (Stocco et al., 2016b) have been measured in individual cows from multi-breed herds, 

thereby allowing for independent evaluation of the effects of farm and breed of cows. The specific 

aims of this study were: 1) to quantify and characterize the effects of herd productivity (defined on 

the basis of the average net energy of milk yielded daily by the cows) on several indicators of cow’s 

productivity and milk-processing efficiency in cheese-making; 2) to quantify the variability of herds 

within class of herd productivity; and 3) to make a within-herd comparison of 6 dairy and dual-

purpose breeds for these productivity and efficiency indicators.  

 

MATERIALS AND METHODS 

Multi-breed herds selection and their classification 

Fourty-one multi-breed herds (2 to 5 breeds per herd, on average 3) located in Trentino 

region in the north-eastern Italian Alps were selected for evaluating body characteristics, daily milk 

yield and composition, and cheese-yield of cows of 6 dairy and dual purpose breeds. The herds 

were selected from a total of 610 herds enrolled in milk recording system in the Trento province 

previously analyzed for their environmental and management characteristics and clustered 

according to 5 different dairy systems (Sturaro et al., 2013). The selection was based on the 

following criteria: a) interest and willingness of farmers in participating to the proposed research; b) 

number of breeds present in each herd (about two thirds of the herds of the area are multi-breed 
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herds), with special emphasis on the less represented breeds and the proportions among different 

breeds; c) representativeness of all different dairy systems and geographical areas of the province. 

The selected herds were classified into two categories of herd production level (HP) 

according to the procedure described by Stocco et al. (2016a) on the basis of the average daily milk 

energy output (dMEO) yielded by all lactating cows in the herd. In brief, the net energy content 

(NEL) of milk was estimated by means of the following equation, derived from that proposed by the 

NRC (2001):  

NEL (MJ/kg) = 0.3887 × fat,% + 0.2289 × protein,% + 0.1653 × lactose,%, 

where NEL is the gross energy of one kg of milk. The NEL values obtained were multiplied 

by the daily milk yield of each cow (kg/d) to obtain the individual dMEO of each cow (MJ/d) that 

were analyzed through ANOVA using the SAS GLM procedure (SAS Institute Inc., Cary, NC) in 

order to calculate the least square means (LSMs) for dMEO for the selected herds after correcting 

for breed, DIM and parity of cows. After ranking according to the dMEO LSM, the 41 farms were 

divided, on the basis of the median value, into high producing (High-HP: n = 20, dMEO = 90.86 

MJ/d) and low producing (Low-HP: n = 21, dMEO = 57.33 MJ/d) herds, that means a daily energy 

output for High-LP cows of + 58% respect to Low-HP cows.  

Table 1 shows the main features differentiating the High-HP and Low-HP farms. Respect to 

Low-HP, High-LP farms were larger (+59% of utilized agricultural area), with larger herds (+64% 

cows). The large majority of High-HP farms (15 out of 20) were characterized by modern barns 

with loose cows, milking parlor and, with only 2 exceptions, total mixed rations. In the case of 

Low-HP farms the large majority (15 out of 21 farms) were characterized by very traditional dairy 

systems with tied animals and cow’s feeding based on farm hay and some compound feed. On 

average lactating cows of the former group of herds were receiving a daily quantity of concentrates 

almost double than the cows of the latter (Table 1). Moreover 9 of the Low-HP farms, against none 

of the High-HP farms, were practicing summer transhumance to temporary farms in the Highland 

Alpine pastures.    
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Every selected herd was visited for animal evaluation, body recording and milk and blood 

sampling once (generally one herd per week with few exceptions) by technician and veterinarians of 

Padova University and technicians of the Breeders Federation of Trento Province.  

 

Cows selection and breed characteristics 

The selection of individual cows within each herd was based on the following criteria: a) 

only lactating cows within 8 and 301 DIM were considered; b) all cows with clinical symptoms of 

any diseases were excluded from sampling; c) all crossbred cows, purebred cows not registered in 

the Herd Book, and registered cows of breeds sporadically present were excluded; d) all eligible 

cows of the smaller herds (< 20 lactating cows) were included; e) in larger herds (> 40 lactating 

cows) until 80 cows were selected, excluding the cows belonging to the more represented breeds, 

parity and DIM classes, without any selection based on daily milk yield; f) all sampled cows with 

incomplete data were excluded. 

At the end of recording and sampling, data from 1,508 lactating cows of 3 specialized dairy: 

Holstein Friesian (HF = 31 herds and 471 cows), Brown Swiss (BS = 36 herds, 663 cows), and 

Jersey (Je = 7 herds, 40 cows); and 3 dual-purpose breeds: Simmental (Si = 20 herds, 158 cows), 

and two autochthonous breeds, Alpine Grey (AG = 13 herds, 73 cows) and Rendena (Re = 8 herds, 

103 cows) were analyzed. All breeds were distributed throughout the high and low productivity 

herds, with the exception of the Jersey, which was found only in High-HP herds, and the local 

breeds Rendena and Alpine Grey, found only in Low-HP herds.  

The 41 mixed-breed dairy farms selected for the study had only cows enrolled in the Italian 

Herd Books of the 6 breeds studied and were practicing almost exclusively artificial insemination 

(AI) using national or imported semen from proven bulls or progeny testing young bulls.  

The dairy large-framed Holstein Friesian cows in the province of Trento were obtained from 

semen mainly from Italian, German, American and Dutch bulls (Cecchinato et al., 2015). In this 

study, the cows were characterized by a parity of 2.4±1.6, and DIM of 197±140. The cows of the 
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other dairy large-framed breed, Brown Swiss, were obtained from semen from Italian, Austrian, 

German, American and Swiss bulls. Parity (2.6 ± 1.6) and DIM (188 ± 139) were very close to 

those of Holstein Friesians. The dairy small-framed Jersey breed has been recently introduced in the 

area, and the cows came from semen imported mainly from the USA and Denmark. The parity and 

DIM were similar to those of the other two specialized dairy breeds (parity 2.9 ± 2.1, DIM 214 ± 

116). 

Beyond the genetic evaluation for milk traits that, like for specialized dairy breeds, is based 

on progeny testing of cows in milk recorded herds, all the three dual purpose breeds are selected for 

meat production (mainly growth rate and muscularity evaluated subjectively by experts) through a 

performance testing of all young bulls to be destined to AI.  The large-framed Simmental cows in 

the area belong to the dual-purpose strains of this breed reared mainly in the Alpine regions, and 

came from inseminations using semen from Italian, German, and Austrian bulls, and also from 

French Montbéliarde bulls. Parity (2.7 ± 1.9) was similar to that of the dairy breeds, while DIM was 

lower (177 ± 118). The medium-framed local breeds, Rendena and Alpine Grey, are both dual-

purpose breeds of Alpine origin. The Rendena breed has a dark chestnut coat, while the other has a 

grey coat, and they are similar to the Simmental breed in parity (2.8 ± 1.8 and 2.5 ± 1.7) and DIM 

(189 ± 94 and 158 ± 75). 

 

Body characteristics evaluation 

Every cow was measured for hearth girth and height at withers and evaluated subjectively 

for body-weight (BW, in kg) and body condition score (BCS) by the same skilled operator. For 

BCS scoring, the method proposed by Edmonson et al. (1989) for Holstein Friesian cows from 1 

(lean) to 5 (fat) with increments of 0.25 was adapted for the other breeds (Gallo et al. 2016; Zendri 

et al., 2016). Metabolic weight (MW, kg) was derived from BW (MW=BW0.75) for all cows, 

independently from their breed (NRC, 2001). 
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Body composition of cows was estimated from starting equations 2-20, 2-21 and 2-22 of 

Nutrient requirements of dairy cattle (NRC, 2001). As these equations estimate composition of 

empty body weight (EBW) and are referred to the BCS evaluated in 9 classes, we have modified 

them to express the composition of BW, considering EBW=0.85×BW (NRC, 2001), from BCS 

evaluated in 5 classes. Thus, the modified equations to estimate fat (BWfat), protein (BWprotein) and 

water-ash (BWw-a) proportion of BW of each cow were: 

BWfat = 0.06397×BCS -0.0320; 

BWprotein = -0.01134×BCS +0.1764; 

BWw-a = -0.05262 × BCS +0.7056; 

The total content (kg/cow) of fat, protein and water+ash of each cow was obtained 

multiplying its BW time its estimated BWfat, BWprotein and BWw-a, respectively. 

Assuming an energy value of 38.49 MJ/kg and 23.22 MJ/kg for body fat and body protein, 

respectively (Andrew et al., 1991), the equations to derive fat (Efat, MJ/kgBW), protein (Eprotein, 

MJ/kgBW) and total (Etotal, MJ/kgBW) energy per kg BW of each cow were obtained: 

Efat = 2.516×BCS -1.258; 

Eprotein = -0.264×BCS +4.097; 

Etotal = 2.252×BCS +2.839; 

The total body energy (MJ/cow) of each cow was obtained multiplying its BW (kg/cow) for 

its Etotal (MJ/kg). 

 

Milk sampling and analysis 

Daily milk yield (dMY, kg/d) was recorded and a milk sample was taken from all selected 

cows for the analysis of milk composition and technological properties. All details of the milk 

sampling and analysis and of cheese-making have been reported by Stocco et al. (2016a).  

Immediately after collection, individual milk samples of about 2000 mL per cow were 

stored at 4°C, and processed within 24 hours of sampling at the Milk Quality Laboratory of the 
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Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) of the 

University of Padova. In the present study only milk yield, and its fat, protein and lactose content 

was considered. Fat, protein, and lactose contents were measured with a Milkoscan FT2 infrared 

analyzer (Foss Electric A/S, Hillerød, Denmark) calibrated in accordance with the reference 

methods [ISO 8968–2/IDF 20–2 for protein (ISO-IDF, 2014); ISO 1211/IDF for fat (ISO-IDF, 

2010a); ISO 26462/IDF 214 for lactose (ISO-IDF, 2010b)].  

The energy content of milk (NEL, MJ/kg) was estimated as previously described for herd 

production level classification. The daily production of fat, protein and energy of each cow was 

obtained multiplying its dMY (kg/d) time its fat, protein and NEL content per kg. 

 

Cheese yield and cheese-making efficiency 

The theoretical cheese yield expressing the kg of fresh cheese obtainable from every 100kg 

milk processed (Th-%CYCURD) was estimated as reported in detail in a previous study (Stocco et 

al., 2016b) using the historical formula of Van Slyke and Price (1949) reported by Emmons and 

Modler (2010) in their review: 

ℎ	% = (0.93 × % +% − 0.1) × 1.09/[(100 −% )/100] 

where 1.09 represents correction for milk minerals and cheese salt and carbohydrates, and %M is 

the percentage moisture of cheese (100 - %total solids). 

In a previous study (Stocco et al., 2016b) we have carried out on 508 of the 1,508 cows used 

in the present study an individual cheese-making procedure for the production of a model-cheese 

from each cow and the measurement of actual %CYCURD, and we have defined the efficiency of 

%CYCURD (Ef-%CYCURD) by simply expressing the experimental value in relation to the 

corresponding theoretical value for each cow: 

Ef-%CYCURD = %CYCURD / Th-%CYCURD 

In that study the Ef-%CYCURD was found to be highly affected by the breed of cow and 

significantly by the comparison between primiparous and multiparous, so in the present study the 
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LSM of Ef-%CYCURD for breed and parity effects were used for correcting Th-%CYCURD and 

estimating actual %CYCURD of different cows. 

The daily yield of fresh cheese (dCY, kg/d) of each cow was calculated as: 

    dCY = dMY × %CYCURD 

 

Productivity of lactating cows 

Productivity of each lactating cow was expressed as a ratio between an output and a scaling 

unit, that represents a predictor of inputs. The output in the numerator of the productivity ratio was 

expressed: as dMY, as dMEO or as dCY. The scaling factor of inputs at the denominator of the 

productivity ratio was expressed: as individual cow, or as unit of MW, or as unit of PW. A total of 9 

productivity ratios were calculated. 

 

Energy requirements and efficiency 

In many commercial dairy farms, being not possible to control the daily individual feed 

intake of lactating cows, the energy efficiency of each cow was estimated as the ratio between the 

daily energy output with milk (dMEO, MJ/d, as previously defined) and the sum of energy 

requirements for maintenance, lactation, pregnancy, growth and activity expressed as NEL (MJ/d).  

Energy requirement for lactation, being expressed as NEL, is dMEO.  

Energy requirement for maintenance (MJ/d) was expressed as 0.305 × MW according to 

NRC (2001). 

Energy requirement for activity was assumed to be 10% of maintenance requirement for 

cows kept in free stall herds and null for the cows in tied stalls. No farm was practicing pasture. 

Energy requirement for variation of body reserves was not considered, assuming that the 

BCS at parturition (not known) should be very similar within and across breeds and parities and that 

the energy mobilized at the beginning of lactation need to be restored before next calving. 
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Energy requirement for pregnancy considered for calculation of efficiency indicators was 

not the specific requirement estimated in the day of milk recording and sampling but the average 

daily requirement during a calving interval to avoid biased due to large casual variation in the 

number of cows in the last couple of month of lactation, and to take into account also the pregnancy 

needs during dry period. The calculation was based on the total energy increase of the gravid uterus 

and the udder (NEPreg) of each cow, expressed in terms of NEL (MJ), and divided by the calving 

interval assumed to be 400 days for all cows, according to the following steps: 

1. Calculation of NEPreg by modifying the equation: dNEPreg (Mcal/d) = [0.00318 × (GAge-

190) – 0.0352] (Bell et al., 1995, NRC, 2001) as in the next step; 

2. NEPreg (Mcal)= [(0.00318 × (235-190) – 0.352) × 90], where 90 (190 to 280 days) 

represents the number of days during the last part of pregnancy, assumed to last 280 

days, during which energy retention is appreciable, and 235 is the central day of this 

period characterized by an average energetic cost (the equation assume a linear increase 

through the last part of pregnancy); 

3. NEL for the average calf born (MJ) = NEPreg/0.218×4.184; this estimate, according NRC 

(2001) is referred to an average Holstein calf weighing 45 kg at birth; 

4. Prediction of the calf weight (CalfW, kg) from the BW of each cow according to: CalfW 

(kg) = 0.0625×BW; 

5. NEL for the specific calf (MJ) = NEL× CalfW/45;  

6. Daily pregnancy requirement of each cow (MJ/d) = NEL for the specific calf (MJ) / 400 

days. 

 

Statistical Analysis 

Experimental data were analyzed using the MIXED procedure (SAS Institute Inc., Cary, 

NC), according to the following model (base model): 
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yijklmn = µ + HPm + Herdn(HP)m + Breedk + Parityj + Breedk × Parityj + HPm × Parityj + DIMi + HPm 

× DIMi  + eijklmn 

where yijklmn is the observed trait; µ is the overall intercept of the model; HPm is the fixed effect of 

the mth herd productivity (m = 2 levels); Herdn is the random effect of the nth herd (n = 1 to 41) 

within the mth class of herd productivity; Breedk is the fixed effect of the kth breed (k = HF, BS, Je, 

Si, Re and AG); Parityj is the fixed effect of the jth parity (j = 1 to ≥ 4); DIMi is the fixed effect of 

the ith class of days in milk [i = 1 to 10; class 1, 5-35 days (31 samples); class 2, 35-65 d (26 

samples); class 3, 65-95 d (41 samples); class 4, 95-125 d (56 samples); class 5, 125-155 d (64 

samples); class 6, 155-185 d (58 samples); class 7, 185-215 d (63 samples); class 8, 215-245 d (57 

samples); class 9, 245-275 d (32 samples); class 10, > 275 d (84 samples)]; eijklmn is the random 

residual ~ N (0, ). 

A model that also included the breed × herd productivity interaction was fitted to test the 

data from all the breeds present in both classes of herds (Holstein Friesian, Brown Swiss, and 

Jersey). As this interaction was never significant, the results of this model analysis are not shown 

nor discussed. 

Orthogonal contrasts were estimated between the LSMs of traits for the effect of breed: 

a) specialized dairy (HF, BS and Je) vs dual-purpose breeds (Si, AG and Re);  

b) within specialized, large-framed vs small-framed breeds (HF + BS vs Je), and  

c) comparison between the two large-framed dairy breeds (HF vs BS);  

d) within dual-purpose, large-framed breed vs medium-framed local breeds (Si vs Re + AG), 

and  

e) comparison between the two medium-framed local dual-purpose breeds (Re vs AG).  

Orthogonal contrasts were also estimated between the LSMs of traits for the effect of parity: 

a) 1st vs ≥2nd,  b) 2nd vs  ≥3rd,  c) 3rd vs ≥4th.  
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RESULTS 

Body size, condition and estimated composition of lactating cows 

The LSMs of all the body size, condition and estimated composition traits of cows reared in 

the High-HP and in the Low-HP herds, from the model correcting for breed, parity, DIM and 

relative interactions, were different (Table 2), being the former respect to the latter: 

1. +8%, +5%, +10%, and +2% in terms of BW, MW, BCS, and hearth girth, respectively: 

2. -2%, +11%, and- 3% in terms of estimated body protein, fat, and water+ash proportions, 

respectively; 

3. +6%, +20%, and +5% in terms of estimated protein, fat and water+ash content of the 

whole body; 

4. +16% in terms of estimated total energy content of the body. 

It worth to note that the incidence of the variability of individual herds (corrected for HP 

class, breed, parity and DIM class of cows) on total variability of all body size and composition 

traits is small, going from only 7.8% for hearth girth to 14.6% for BCS. 

The 6 breeds showed large differences for all the body traits considered (Table 2). In 

particular: the 3 specialized dairy breeds were, on average, smaller (lower average BW, MW, hearth 

girth, estimated body content of protein, fat, water+ash and energy), and leaner (lower BCS and 

estimated body fat proportion, and higher estimated body protein and water+ash proportions) than 

the 3 dual-purpose breeds; within the specialized dairy breeds, Jersey cows were much smaller than 

the two large-framed breeds (Holstein and Brown Swiss), but similar in terms of BCS and estimated 

body proportion of protein, fat and water+ash. Between the two large-framed dairy breeds, 

Holsteins were similar in size, but leaner than Brown Swiss cows. Among the dual-purpose breeds, 

the Simmental cows were heavier but with similar BCS and estimated body proportions than cows 

of the two local breeds. Between these, Rendena cows were heavier than Alpine Grey cows only in 

terms of BW, MW, and estimated body content of water and ash (Table 2). 
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Also parity affected body traits because, as expected, primiparous cows were smaller than 

multiparous ones, but, being the former slightly fatter than the latter, they had similar total 

estimated body content of energy. Among multiparous cows, the secundiparous  were slightly 

smaller than the older ones, but with similar body composition (Table 2). 

Regarding the effect of the lactation stage, the body size traits were noted to increase 

linearly with DIM, while fatness traits (BCS, estimated body fat proportion and total content, as 

well as the total body energy content) were characterized by a quadratic pattern with a decrease at 

the beginning of lactation and an increase afterward, compensated by an opposite pattern of 

estimated body protein and water+ash proportions. 

Interactions were generally not significant with the exception of that between herd 

production class and parity for BCS and estimated body proportion traits, because the effect of 

parity was more evident in High-HP than in Low-HP cows, and of that between breed and parity, 

only for BW, because the differences of BW among cows of different parities were larger for large-

framed breeds  than for mid- and small-framed breeds (Table 2).  

 

Milk yield, composition and estimated energy output  

The LSMs of all the milk yield and composition traits of cows reared in the High-HP and in 

the Low-HP herds, are illustrated in Table 3. The daily yields of cows of the High-HP herds, as 

expected, out yielded cows of the Low-HP herds by 54% to 58%, for milk, protein, fat and energy 

productions. Also the composition of milk tended to be superior for cows of the High-HP herds than 

for those of the Low-HP herds (significantly for protein content). 

The incidence of individual herds variability within HP class on total variability was low for 

composition traits (7.2 to 20.1%), while was much larger for dMY (31.9%) and intermediate for the 

other daily yield traits (21.1 to 29.9%). 

The 6 breeds showed large differences also for all the milk yield and composition traits 

considered (Table 3). Taking into consideration the orthogonal contrasts: the 3 specialized dairy 
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breeds were characterized, on average, by similar daily milk and protein production and slightly 

greater daily fat and energy yield, because of the higher content of protein, fat and energy of their 

milk (lactose content was slightly lower) respect to the 3 dual-purpose breeds; within the 

specialized dairy breeds, Jersey cows were characterized by a much lower dMY with higher 

nutrients and energy content than the cows other two large-framed breeds (Holstein and Brown 

Swiss) so that the daily yield of nutrients and energy of Jersey cows was still lower, but to a smaller 

extent (and not significantly in the case of fat yield). Between the two large-framed dairy breeds, 

Holsteins were superior to Brown Swiss cows for all daily yield traits, but inferior for milk 

composition traits (lactose excluded); among the dual purpose breeds, the Simmental cows were 

superior to the cows of the two local breeds for daily yield traits and, to a lesser extent, for milk 

composition (protein excluded). Between the local breeds, Rendena cows produced more milk than 

Alpine Grey cows but with a lower content of nutrient and energy, so that the daily production of 

nutrients and energy were not different (Table 3). 

Parity had a minor effect on milk traits because, beyond the lower daily production traits of 

primiparous respect to multiparous cows, only a decrease of lactose content with increasing parity 

and a small decrease of protein content in older cows was noted (Table 3). 

The effect of the lactation stage was important for all milk traits (with a quadratic for all 

traits excepted a linear trend of milkfat daily yield and a cubic pattern of lactose percentage) 

because, as expected, the daily yield traits decreased slowly during the first part of lactation and 

much more rapidly thereafter, whereas the composition traits showed an almost opposite pattern. 

Interactions were generally not significant or, if significant, not relevant (Table 3).  

 

Cheese yield  

The LSMs of the percent and daily cheese-yield traits of cows reared in the High-HP and in 

the Low-HP herds, are illustrated in Table 3. The theoretical, and actual cheese yields were 5% 

higher for cows reared in High-HP herds than in Low-HP herds and thus, taking into account their 
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superior dMY, they produced 58% more cheese per day. The incidence of individual herds 

variability within HP class on total variability was low for theoretical and actual %CY (10.5 and 

10.6%, respectively), and much larger for dCY (27.8%). 

The 6 breeds showed large differences also for all the cheese-yield traits considered (Table 

3). On the basis of the orthogonal contrasts: the 3 specialized dairy breeds were characterized, on 

average, by slightly higher percent and daily cheese-yield respect to the 3 dual-purpose breeds. 

Within the specialized dairy breeds, Jersey cows were characterized by a much greater theoretical 

and actual %CY, but by a lower dCY than the cows other two large-framed breeds (Holstein and 

Brown Swiss). Holsteins were superior to Brown Swiss cows in terms of dMY, but inferior for 

theoretical (based on milk composition) and especially actual %CY, and as a consequence, by 

similar dCY. Among the dual-purpose breeds, the Simmental cows were superior to the cows of the 

two local breeds for theoretical but not actual %CY and for dCY. Between the local breeds, 

Rendena cows produced more milk than Alpine Grey cows but with lower %CY, so that the dCYs 

were not different (Table 3). 

Parity had a minor effect on %CY traits (in favor of primiparous cows) and did not affect the 

dCY (Table 3). 

The effect of the lactation stage (linear and quadratic) was important for all cheese yield 

traits, with an accelerated increase of both theoretical and actual %CY during lactation and a 

correspondent decrease of dCY. 

Interactions were not significant with the only exception of breed × parity effects on dCY  

(Table 3).  

 

Estimated productivity ratios 

Table 4 summarizes the LSMs of the 9 productivity ratios, obtained by dividing three 

measures of daily cow’s output (milk yield, milk energy output, or fresh cheese yield) by three 

scaling units to take into account different size and feeding costs of cows (BW, MW and PW).  
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All the productivity ratios of cows were profoundly affected by herd production level. The 

superiority of productivity ratios of the High-HP herds respect to the Low-HP herds was not much 

different according the different output measures or scaling unit used (+36% to +43%). Also the 

incidence of individual herds variability within HP class on total variability was similar across 

different ratios (26% to 31%). 

Also the breed of cow affected profoundly all the productivity ratios, but, in this case, 

different productivity ratios yielded different ranking of the 6 breeds compared, even though all 

data were corrected for herd, parity and DIM effects. Taking into consideration the orthogonal 

contrasts, the 3 specialized dairy breeds were characterized, on average, by higher productivity 

ratios respect to the dual-purpose breeds, and this superiority was greater than those found for the 3 

daily yield per cow traits used as output measures (milk, energy and cheese daily yields; Table 3), 

because of the lower average values of the 3 scaling units used in the denominator of the ratios 

(BW, MW and PW; Table 2) of dairy respect to dual-purpose breeds. This differences are mainly 

due to the fact that the very low values of scaling units (BW, MW, and PW) typical of Jersey cows 

cause productivity ratios greater than those of the large-framed dairy cows, with the only exception 

of milk yield per kg of metabolic weight. Having the two large-framed dairy breeds very similar 

body size, the superiority of Holstein-Friesian cows respect to Brown Swiss ones, in terms of milk 

yield, was reflected by all the three productivity ratios based on this output measure. The 

differences between the two breeds become much smaller when the ratios took into account the 

energy and the cheese output measures, because of the greater content of nutrients and better 

technological properties of the milk of the latter breed respect to the former. The differences within 

dual-purpose breeds were small. As the Simmental, respect to local breeds, was characterized by 

greater daily output measures, but also by greater body size (i.e., by greater numerators and also 

denominators). However, its productivity ratios were not different from those of the two local 

breeds. Within these latter breeds, Rendena was characterized by a higher milk productivity only 

when this is related to BW and MW (Table 4). 
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Parity had a minor effect on productivity ratios because the lower daily output of 

primiparous cows were partly compensated by their lower body size (Table 4). On the contrary, the 

effect of the lactation stage was accentuated, because the decrease of daily output measures during 

lactation faced an increase in body size (Table 4). Interactions were generally not significant or, 

when significant, not relevant (Table 4).  

 

Estimated efficiency indicators 

The LSMs of the estimated daily energy requirements of individual cows are reported in 

Table 5. The daily requirements of cows of the High-HP herds, as expected, were slightly greater 

for maintenance, much greater for lactation and very similar for pregnancy, so their total 

requirements were greater than those of the cows in Low-HP herds. The efficiency of cows from 

High-HP farms was higher than for cows from Low-HP farms, in terms of energy (+13%) and 

economic (+15%) efficiency, and especially as IOFC (+84%). The incidence of individual herds 

variability within HP class on total variability was large (27 to 30%). 

The 6 breeds showed large differences also for all the energy requirements, especially, as 

expected, when comparing breeds very different in terms of body size and production traits (Table 

5). The differences among breeds in terms of efficiency indicators were much lower than in terms 

of energy requirements. 

Considering the orthogonal contrasts: the 3 specialized dairy breeds were characterized, on 

average, by greater energy and economic efficiencies and also IOFC respect to the 3 dual-purpose 

breeds. Within the specialized dairy breeds, Jersey cows were characterized by similar IOFC and 

energy efficiency but by greater economic efficiency than the two large-framed breeds (Holstein 

and Brown Swiss). Between the two large-framed dairy breeds, Holsteins were superior to Brown 

Swiss cows for energy efficiency, but inferior for both monetary indicators. Among the dual-

purpose breeds, the Simmental cows had a slightly greater energetic efficiency than the cows of the 
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two local breeds. Whereas between the two local breeds no difference in efficiency indicators was 

noted (Table 5). 

Parity affected (in favor of primiparous cows) only the economic efficiency indicator (Table 

3), whereas the effect (linear and quadratic) of the lactation stage was important for all the 3 

indicators, because of their progressive decrease with DIM. 

Interactions were significant only in the case of breed × parity (Table 5).  

 

DISCUSSION 

 The effects of herd production level, herd variability within production level, cow’s breed, 

parity and stage of lactation on milk yield, composition and coagulation properties and those on 

cheese yield and milk nutrient recovery in cheese have been discussed in our previous studies 

(Stocco et al., 2016a and b). The effects of individual factors within breed (parity and lactation 

stage) on productivity and efficiency indicators will not be discussed because, even though 

interesting from the theoretical point of view, they are not much useful for the evaluation and 

improvement of dairy farm efficiency. The discussion will be focused on the effects of herd 

characteristics and of breed of cows on milk and cheese productivity and efficiency. 

 

Efficiency of milk and cheese production in relation to herd characteristics 

Obviously cows from High-HP herds were characterized by greater values for daily milk 

yield (+53%) and milk fat and protein contents (+6% and +5%, respectively) and daily productions 

(+58% and +58%), actual cheese yield (+5%) and daily production (+57%), but also by heavier BW 

(+8%) and body fat mass (+20%), and, as a consequence, of all individual and total energy 

requirements (+37%).  

The superiority of productivity indicators of High-HP vs Low-HP farms ranged from +35% 

to 43% (Table 4), whereas the superiority of High-HP farms was greater for IOFC (+84%) and 
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much lower when expressed as ratio efficiency indices: +13% in terms of energy utilization, and 

+15% when daily milk value is divided for feed costs (Table 5). 

 

Efficiency of milk and cheese production of cows of different breeds  

The results showed that, within herd, there is a very large variation in terms of size of the 

cows and of their milk yield, composition and cheese yield. 

 

Specialized dairy and dual purpose breeds 

Both groups of specialized dairy and dual-purpose breeds presents a large variability among 

different breeds within group. Anyway, the three specialized dairy breeds, respect to the three dual-

purpose breeds, are characterized by a smaller body size and by a leaner estimated body 

composition. Within herd, on average the specialized dairy breeds do not produce more milk than 

the dual-purpose ones.  

At national level, the three dairy breeds here studied presented an average milk production 

much greater than the three dual-purpose breeds, as evidenced by Italian milk recording system 

(AIA, 2015). It is evident that the national differences in average milk production are affected by 

the different geographical distribution of the single breeds, and by the different proportion among 

the various dairy systems present in the country. Restricting the area of comparison to a more 

homogeneous environment, like when only the province of Trento (the area of this study) is 

considered, the differences between dairy and dual-purpose breeds are slightly lower, but remain 

substantial (AIA, 2015). Also, at local level many herds are single-breed herds with a different 

distribution of these herds among the different dairy systems present in the province, from the very 

small and traditional to the very modern ones (Sturaro et al., 2013). But a large difference is evident 

also in the 41 one multi-breed herds of the present study. In fact, if the raw means of daily milk 

yield of different breeds are considered (data not shown), the dairy breeds present an average 

superiority of 48% respect to dual-purpose breeds. Even though all the considered herds were multi-
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breed, it is evident that the distribution of breeds is different, and different is also the proportion of 

different breeds within herd. In particular, the specialized dairy breeds are reared especially in 

modern farms, using many concentrates, while dual-purpose breeds are more present in traditional 

low input farms. As shown in Table 1, only Holstein, Brown Swiss and Simmental cows are present 

(in different proportions) in both the High-HP and Low-HP farms, while Jerseys are only present in 

the former, and the local breeds in the latter group of farms. A preliminary statistical analysis 

carried out only on the three breeds present in both production level (data not shown) evidenced not 

significant or not relevant interactions between herd production level and breed, all data have been 

analyzed using the model shown in material and methods section, with inclusion of herd category 

and breed of cow. Correcting the least squares means for the different presence and proportion of 

breeds, and also for the parity and DIM of the cows, within category of herd and individual herds, 

the average superiority of production of dairy breeds on dual purpose breeds is only +3% (Table 3, 

not significant). 

On average, the specialized dairy breeds were superior to the dual-purpose ones in terms of 

milk content of fat, protein and energy, and consequently also of theoretical and actual percent 

cheese yield (Table 3). This explain why the average daily production of cheese of the three dairy 

breeds was greater than the corresponding value of the three dual-purpose breeds (+7%, P < 0.05, 

Table 3). 

Taking into account the average smaller body size of dairy breeds, respect to dual-purpose 

ones, all the productivity indicators, per unit of BW, MW or PW, on average were in favor of dairy 

breeds, especially for those referring to milk energy or cheese daily production (+21% to +26%, 

Table 4) rather than milk yield (+12% to +16%; Table 4).  

Regarding the estimation of energy requirements of the lactating cows, the dairy breeds 

were characterized, on average, by greater lactation requirements, but by smaller requirements for 

maintenance, activity and pregnancy (because of their lower average size) than the dual-purpose 

breeds. So, the total energy requirements of the two groups of breeds was not different and the 
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efficiency of energy utilization (proportion of lactation requirement on total requirement) was in 

favor of dairy breeds (+7%; Table 5). The differences between specialized and dual-purpose breeds 

from the economic point of view were similar, and on average, in favor of dairy breeds, both in 

terms of IOFC (+13%) and economic efficiency (+6); Table 5). 

 

Jersey breed 

Among the three dairy breeds, Jersey is the most peculiar. Even though its least squares 

means should be considered with prudency, being this the breed with the lowest number of cows 

controlled, as known, Jersey was the breed with the smallest body size, the lowest daily milk yield 

and the greatest fat, protein and energy content of milk among the three dairy breeds tested, but in 

general, among all the six breeds controlled. The milk produced by Jersey cows is very peculiar also 

from the technological point of view (Auldist et al., 2002 and 2004; Bittante et al., 2012). A 

previous study on the same cows demonstrated that the Jersey milk is characterized by the shortest 

time from addition of rennet to coagulation, by a fast curd firming, by the greatest maximum curd 

firmness and also by a rapid syneresis among all the 6 breed compared (Stocco et al., 2016a). Due 

to both high content of fat and protein and the excellent coagulation and curd firming properties, 

Jersey milk was characterized by the greatest theoretical (on the basis of its composition) and actual 

%CY (taking into account also differences in the efficiency of retention of nutrients in the cheese) 

(Stocco et al., 2016b). 

The excellent composition and cheese-making properties of its milk explain while Jersey 

cows produced 30% less milk per day, but only 12% less full-fat fresh cheese than the average of 

Holstein and Brown Swiss cows (Table 3).  

A correct comparison among breeds should not only take into consideration the production 

of milk and cheese per cow, but also their productivity after having corrected the production for a 

measure of the “fixed” costs due to energy requirement different from production (maintenance, 

activity, growth, pregnancy). If we use, as scaling factor to compare different breeds, the body 
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weight of cows, that is on average 40% lighter for Jerseys than for the other two large-framed dairy 

breeds (Table 2), we obtain an indicator of productivity (grams of milk produced daily per kg of 

body weight maintained) greater for Jersey than for the other two breeds (+20%; Table 4). 

It is well known that the energy requirement is not directly proportional to body weight of 

animals, and neither to their empty body weight (corrected for the content of gastro-intestinal tract). 

Generally, it is assumed that smaller animals consume more energy per kg of body weight for their 

maintenance respect to larger animals, and so the metabolic weight (MW = BW0.75) is a curvilinear 

function increasing less than proportionally respect to body weight. The American National 

Research Council in the “Nutrient requirement of dairy cattle” (NRC, 2001) adopted value of 80 

kcal/kg MW for the maintenance of dairy cows (included a 10% allowance for cow’s activity), 

independently of their breed.  

Differently than when using BW, using MW as a scaling factor yielded a milk productivity 

indicator not different between the Jersey and the large-framed breeds (Table 4). 

For beef cattle, the NRC (NRC, 2000) reviewed the scientific literature regarding the 

maintenance requirements of cattle belonging to different breeds and adopted specific multiplicative 

“breed adjustment factors” for different breeds. Respect to the British beef breeds, set as reference 

(breed factor 1.00) the dairy and dual-purpose breeds (Ayrshire, Brown Swiss, Braunvieh, Holstein-

Friesian, Simmental) apparently require 20% more energy (breed factor 1.20). But, also in this case, 

the curvilinear pattern of metabolic weight is used for comparing animals of different BW. This 

pattern is justified in mono-gastric animals and in ruminant reared in very cold environment with 

the fact that animal heat dispersion is roughly proportional to animal’s body surface (and not BW) 

whose relationship with BW is a function of BW0.67 (NRC, 2000). For ruminants in areas 

characterized by temperate climate, the maintenance of body temperature is not a great source of 

energetic cost, because of the large heat production of pre-stomachs. The other justification to the 

curvilinear pattern of MW is that, within breed, and in growing animals, fatty depots grow more 
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than proportionally respect to BW, while the opposite is true for lean tissues, and it is well known 

that lean tissues are characterized by higher energetic costs for maintenance than fatty tissues.  

When comparing adult animals of breeds differing widely in mature BW, adoption of MW 

as a scaling factor for estimating maintenance requirements seems not to be justified. Jerseys cows, 

on average, had a BCS very close to that of Holsteins, and only slightly lower respect to Brown 

Swiss cows (Table 2). Adopting the equation derived from those proposed by NRC (2001), we 

predicted a proportion among body fat, protein and water + ash not different in jerseys and in large-

framed dairy breeds (Table 2). 

Comparing growing beef cattle from breeds characterized by very different pattern of fat 

deposition (Schiavon and Bittante, 2012) we demonstrate that, a curvilinear pattern like MW, one 

could be used to express energy demand of early-maturing cattle breeds (like British breeds), but 

not for very lean breeds (like double muscled Piemontese), that are characterized by more linear 

pattern of energy demand. According to the models proposed by Emmans et al. (1994), we 

proposed to use body protein mass as the scaling factor for estimating maintenance requirements in 

both early and late maturing animals.  

For these reasons, we calculated a third group of productivity indicators using the body 

protein (BP) mass as a scaling factor. In the case of the comparison between Jersey and the other 

two large-framed breeds, this indicator yielded results not much different from the indicator based 

on BW (Table 4), because the percentage body composition estimated from animals BCS was 

similar across dairy breeds, independently from their average body size.  

When, as an output measures, we replaced the dMY with daily yield of milk energy or fresh 

cheese, Jersey breed maintained its superiority respect to the other two dairy breeds with all scaling 

factors (Table 4), even though the differences among breeds were greater when outputs were scaled 

on BW and BP than on MW (Table 4).  

Moving from productivity indicators to efficiency indicators (Table 5), it could be seen that 

Jersey breed was not different from the other two dairy breeds, because the former is characterized 
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by lower milk production but also by lower energy requirements for maintenance, activity and 

pregnancy because of its small size. Of the two economic indicators, IOFC, that is not scaled on 

size of cow (is a difference and not a ratio) not different in Jersey and in the other two dairy breeds, 

despite the large difference in body size. Scaling the income allowed for milk production adjusted 

for cheese-making ability on the total feed costs, Jersey breed was again superior to other dairy 

breeds. 

 

Holstein and Brown Swiss breeds 

At Italian national level, Holstein cows produce much more milk than Brown Swiss cows 

(AIA, 2015). In a less heterogeneous environment (Trento Province), on average, Holstein cows 

produced 18% more milk than Brown Swiss cows. Using the raw averages of all the cows of the 

present study across the 41 multi-breed farms, the Holsteins produced 14% more milk than Brown 

Swiss cows (results not shown). After correcting dMY for HP class, individual herds, parity and 

DIM, Holstein cows still produced 14% more milk than Brown Swiss cows (both breeds are present 

especially in the modern farms). Taking into consideration the higher fat and protein content of milk 

from Brown Swiss cows, the daily production of fat and protein of Holsteins was only 7% and 5% 

greater than for Brown Swiss cows, respectively (Table 3).  

Based on milk composition, the theoretical %CY of Brown Swiss cows was 8% higher than 

that of Holsteins, while the actual %CY, measured through individual model cheese-making, was 

16% higher in the former than in the latter breed (Table 3). Brown Swiss cows, not only produced 

milk with more fat and protein than Holsteins, but produced a milk which was able to retain in the 

curd a greater percentage of milk-fat and protein, reducing the losses in the whey, as it was proved 

in these same cows (Stocco et al., 2016b), but also in other studies carried out in Italy (Cassandro et 

al., 2005), and other countries (Mistry et al., 2002). As a result of the greater nutrients recovery, the 

daily production of cheese was not different in the two major breeds, even if nominally higher for 

Brown Swiss cows (Table 3). 
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Being the two major breeds very similar in terms of body size, the indicators of milk 

productivity ranked the two breeds about in the same way, as the output measures, independently of 

the size scaling factor (Table 4), with Holsteins superior to Brown Swiss in terms of milk indicators 

and also of milk energy (at a lower extent), but not in terms of cheese productivity (on the contrary 

the latter breed was superior to the former when the dCY was scaled on the BP mass). 

Moving to efficiency indicators, both energetic efficiency of milk production and IOFC 

were not different between the two large-framed breeds, whereas the Alpine breed was 

characterized by a higher economic efficiency respect to the Holstein breed (Table 5). 

 

Simmental breed 

At national level, Simmental cows produce less milk than Holsteins and also than Brown 

Swiss cows (AIA, 2015). Within Trento Province, on average Simmental cows produce -23% and -

9% less milk than Holstein and Brown Swiss cows, respectively (Cecchinato et al., 2015). Limiting 

the comparison to the present study, on the basis of the raw means, the Simmental cows produced 

29% and 19% less milk than Holstein and Brown Swiss cows (results not shown), respectively. On 

the same cows, after correcting dMY for HP class, individual herds, parity and DIM, Simmental 

cows produced only 11% less milk than Holsteins, and about the same daily quantity as Brown 

Swiss cows (a large proportion of Simmental cows are reared in low-HP farms). Taking into 

consideration the fat and protein content of milk, the daily production of fat and protein was very 

similar to that of Brown Swiss cows, and only 7% and 6% lower than those of Holstein cows, 

respectively (Table 3).  

Milk from Simmental cows showed coagulation and curd firming properties close to those 

of Brown Swiss milk, and better than those characterizing Holstein milk (Bittante et al., 2012; 

Stocco et al., 2016a). Better coagulation and curd firming properties respect to purebred Holsteins 

were showed also by differing crossbred combination involving Montbéliarde and Brown Swiss 

breeds (Malchiodi et al., 2014). These technological aspects, together with the different proportion 
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and frequency of genetic variants of milk protein fractions, explain the similarity of cheese-making 

efficiency of the two breeds of Alpine origin, and their superiority respect to Holstein breed (Stocco 

et al., 2016b). The combined effect of correcting data for herd factors, milk protein and fat contents, 

milk coagulation and curd firming properties and cheese-making efficiency, explain the fact that 

these three large-framed breeds produced a daily quantity of fresh cheese very similar from each 

other (Table 3). 

Moving to productivity ratios, it should be taken into consideration that Simmental cows, 

respect to the two large-framed dairy breeds, were characterized by slightly greater BW (+4%, table 

2), and MW, but not BP mass. In fact, the higher BCS values of dual-purpose breeds respect to 

specialized dairy ones, led to a predicted lower proportion of body protein and water + ash, and a 

higher proportion of fat. The predicted lean body mass of the three large-framed breeds are 

quantitatively very similar, whereas the superiority of BW of Simmental cows respect to the other 

two breeds was almost entirely explained by a greater weight of fatty tissues (Table 2). This is the 

reason why Simmental cows presented productivity ratios slightly lower than Holsteins (and similar 

to Brown Swiss) when scaling milk production on BW and on MW, whereas were very similar 

when scaling cheese production on PW (Table 4). Considering efficiency indicators, Simmental 

cows were inferior respect to Holsteins in terms of energetic efficiency, whereas they were similar 

to both the large-framed dairy breeds, in terms of both economic efficiency indicators (Table 5). 

 

Rendena and Alpine Grey local breeds 

Both local breeds were characterized by a daily milk production much lower than the large-

framed dual-purpose breed (Simmental) when averaged across herds (-16% and -35%, respectively 

for Rendena and Alpine Grey cows, data not shown). Once corrected for herds, parity and DIM 

effects, the differences fell respectively to -5% and -19% (Table 3). 

It worth to note that Rendena cows were characterize by a content of protein similar to 

Holsteins, and by a milk-fat content even lower than Holsteins, so that the theoretical %CY of the 
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local dual-purpose breed was lower than that of the international dairy breed (Table 3). But, as 

reviewed by Bittante et al. (2012) for traditional milk coagulation properties, and as reported by 

Stocco et al. (2016a) for curd firming modeling, milk from Rendena cows performed better than 

milk from Holsteins and this could explain the fact that, differently from theoretical %CY, actual 

%CY was superior for the local breed than for the international one (Table 3). 

Alpine Grey cows yielded a milk with a composition not much different from that of the 

major dual-purpose breed, nor from that of the Alpine dairy breed, so that %CY was similar. As a 

result, respect to Simmental cows, Rendena cows produced 10% less cheese per day and Alpine 

Grey 16% less cheese per day (Table 3). These differences were very similar to those regarding BW 

(and MW, and PW). In fact BW was 12% lower for Rendena cows, and 18% lower for Alpine Grey 

cows, respect to Simmental ones. The consequence is that no one of the productivity indices was 

different for local breeds vs Simmental one, and that between the two local breeds, only milk yield 

scaled for BW and MW was greater for Rendena than for Alpine Grey cows (Table 4). In terms of 

efficiency of milk production, the energetic indicator was superior for Simmental breed than for the 

local breeds, while the economic indices were not different, as any of the efficiency indices when 

the two local breeds were compared from each other (Table 5). 

 

Implications for crossbreeding and selection 

The results of the present study, especially for comparisons among different breeds, allow to 

focus the different role and relative importance of various production, qualitative and technological 

traits in relation to a dairy sector based on cheese production and not on fluid or dried milk. On the 

other hand, it has to be considered that cheese production is growing world-wide and nowadays 

represents the most important milk destination (IDF, 2013). 

A more direct utilization of this knowledge is on projecting crossbreeding schemes for dairy 

sectors. Crossbreeding among dairy breed is increasing and several studies showed the positive 

results obtainable especially on milk production and fertility (Blöttner et al., 2011; Heins et al., 
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2012; Malchiodi et al., 2014a) traits. The properties of milk were generally studied only in terms of 

milk composition (Dechow et al., 2007). Only few studies focused on the milk coagulation 

properties of crossbred cows in comparison with purebreds (Malchiodi et al., 2014b), and none, the 

authors are aware of, analyzed the cheese-yield traits. The knowledge of cheese-making specific 

traits and overall efficiency can be, therefore, very valuable for crossbreeding design, provided that 

heterosis and recombination effects be similar for different crossing. 

But the knowledge of different components of productivity and efficiency of different 

breeds in a cheese-making based dairy system offers also interesting information and stimulus for 

the evaluation of current selection indices and the need for their upgrading. Now it is much more 

clear the important role of traits different from milk production and contents in relation to 

efficiency, and then to profitability of the productive dairy chain. It is clear that model cheese 

procedure cannot be applied routinely for genetic evaluation, but indirect prediction of nutrients 

recovery in cheese through infrared spectroscopy (Ferragina et al., 2013 and 2015; Bittante et al., 

2014) and genomics (Dadousis et al., 2016a and 2016b) are available and could further developed. 

 

CONCLUSIONS 

In conclusion, the study demonstrated that an important part of the productive differences 

among dairy and dual purpose cattle breeds is due to differences in dairy systems and herd 

characteristics. When the comparison among different breeds is carried out within dairy system and 

within individual herds (using multi-breed herds) the differences in productivity traits are much 

reduced and depends a lot on the differences in body size of animals. Scaling production traits on 

the basis of body size indicators allow to obtain a more correct indication of breeds’ productivity 

(instead of production). Among different scaling factors, metabolic weight could be criticized when 

used to compare breeds of very different size but similar body composition (like Holstein and 

Jersey) while the use of body protein mass weight allows for a more correct comparison, also when 

breeds are characterized by different body condition and, consequently, body composition. 
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If within-herd comparison and correctly scaling of production traits reduce strongly herd 

differences in productivity, they do not reduce the differences in terms of milk composition, 

technological properties and efficiency of cheese-making (recovery of milk nutrients in cheese). 

The differences among breeds remains strong and their importance on the overall efficiency 

evaluation of the breeds increase. The knowledge and correct quantification of the importance of 

productive, qualitative and technological properties of different breeds offers interesting new 

insights for modifying selection indices within dairy and dual purpose breeds and for projecting 

crossbreeding plans across breeds. 
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TABLES AND FIGURES 

 

Table 1. Characteristics of mixed breed herds in North-East Italy based on classification as high or 
low herd production (HP)1  

Item High-HP Low-HP  

Number of herds 20 21 

Number of cows 920 588 

Average number of cows/herd 46 28 

Utilized agricultural area, ha2 38.2±26.3 24.0±13.2 

Concentrates, kg/d2 12.9±4.9 6.7±2.8 

Breeds3 HF, BS, Je, Si HF, BS, Si, Re, AG 

Milk yield, kg/d2 28.0±8.3 18.5±6.9 

Milk composition2    

Fat, % 4.19±1.00 3.75±0.80 

Protein, % 3.73±0.48 3.48±0.50 

Casein, % 2.92±0.37 2.73±0.36 

Lactose, % 4.84±0.23 4.85±0.24 

Urea, mg/100g 21.7±7.9 29.2±9.9 

pH 6.51±0.11 6.51±0.10 

SCS5, U 2.89±1.81 2.79±1.94 

Milk energy production, MJ/d 90.86 57.33  
1according to average daily milk energy yield of the cows corrected for breed, DIM and parity. 
2 Mean±SD 
3Holstein Friesian (HF), Brown Swiss (BS), Jersey (Je), Simmental (Si), Rendena (Re) and Alpine Grey (AG). 
5SCS = log2 (SCC/100,000) + 3 
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Table 2. Body size, condition and estimated composition of lactating cows 

 

Body size 
BCS 

Empty body % composition  Body composition Body  
Energy BW MW Hearth girth Protein Fat Water+ash  Protein Fat Water+ash 

kg kg cm (1-5) %EBW %EBW %EBW  kg kg kg MJ 
Herd productivity: 

   
 

   
 

    
High, (LSM) 604 121 197 3.1 16.6 19.8 63.7  85 102 325 6035 
Low, (LSM) 557 115 192 2.9 16.9 17.9 65.2  80 85 309 5221 

F-value 70.4*** 58.2*** 17.9*** 35.6*** 33.3*** 33.3*** 33.3***  48.4*** 51.8*** 43.1*** 57.2*** 

Herd variance (% of total) 14.0 11.2 7.8 14.6 13.1 14.0 14.0  9.8 14.4 9.3 14.4 
Breed LSM: 

   
 

   
 

    
Holstein Friesian (HF) 645 128 202 2.7 17.1 16.8 66.1  94 92 362 5850 
Brown Swiss (BS) 643 127 200 2.9 16.9 18.2 65.0  92 100 353 6106 
Jersey (Je) 384 87 174 2.7 17.1 16.9 66.1  56 52 218 3378 
Simmental (Si) 669 132 204 3.2 16.5 20.1 63.4  94 115 361 6736 
Rendena (Re) 592 120 195 3.2 16.5 20.1 63.4  83 102 317 5974 
Alpine Grey (AG) 552 113 190 3.3 16.4 20.9 62.7  76 100 292 5724 

Breed contrasts (F-value): 
   

 
   

 
    

HF+BS+Je vs Si+Re+AG 119.8*** 98.76*** 12.6*** 156.1*** 146.5*** 146.5*** 146.5***  41.5*** 161.5*** 30.0*** 159.9*** 
HF+BS vs Je 1080.0*** 880.8*** 174.1*** 1.8 1.6 1.6 1.6  1155.0*** 159.7*** 1171.5*** 296.8*** 
HF vs BS 0.4 2.6 3.6 81.8*** 67.8*** 67.8*** 67.8***  29.8*** 38.7*** 39.6*** 22.0*** 
Si vs Re+AG 344.1*** 278.8*** 68.8*** 2.5 2.1 2.1 2.1  413.4*** 35.8*** 426.7*** 77.9*** 
Re vs AG 27.6*** 23.12*** 6.2 3.2 2.9 2.9 2.9  38.4 0.5 40.6*** 2.9 

Parity LSM: 
   

 
   

 
    

1st 571 116 191 3.1 16.7 19.4 64.0  81 95 310 5632 

2nd 580 118 194 3.0 16.8 18.6 64.6  82 92 317 5580 

≥3rd 591 120 197 2.9 16.8 18.4 64.8  84 93 325 5672 

Parity contrasts (F-value): 
   

 
   

 
    

1st vs ≥2nd 17.4*** 12.3** 30.0*** 20.0*** 19.3*** 19.3*** 19.3***  32.8*** 1.4 37.1*** 0.0 
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2nd vs ≥3rd 6.9*** 6.4* 8.5** 0.6 0.4 0.4 0.4  10.4** 0.4 10.9** 1.2 

DIM LSM: 
   

 
   

 
    

8-49 d 566 116 191 2.91 16.9 18.1 65.0  81 87 313 5356 
50-91 d 563 115 191 2.85 17.0 17.7 65.4  81 85 313 5243 
92-133 d 571 116 193 2.90 16.9 18.0 65.1  81 87 314 5364 
134-175 d 574 117 192 2.91 16.9 18.2 65.0  82 89 317 5441 
176-217 d 584 118 194 3.01 16.7 18.9 64.4  83 94 319 5674 
218-259 d 591 119 196 3.04 16.7 19.2 64.2  84 97 322 5780 
260-301 d 593 120 196 3.12 16.6 19.7 63.7  83 100 320 5917 
≥302 d 604 121 199 3.26 16.4 20.8 62.8  84 108 321 6249 

DIM contrasts (F-value): 
   

 
   

 
    

Linear 142.9*** 112.6*** 72.7*** 190.7*** 183.8*** 183.8*** 183.8***  48.4*** 209.8*** 33.7*** 206.2*** 
Quadratic 3.3 3.8 4.9* 29.8*** 30.3*** 30.3*** 30.3***  0.0 24.2*** 0.4 19.9*** 
Cubic 1.4 2.4 0.0 0.2 0.4 0.4 0.4  2.9 0.3 3.0 0.6 

Interactions (F-value): 
   

 
   

 
    

Herd prod. × parity 0.4 0.0 0.4 3.5* 3.2* 3.2* 3.2*  0.4 2.2 0.6 1.5 
Herd prod. × DIM 1.1 0.6 1.1 0.8 0.6 0.6 0.6  0.5 0.8 0.5 0.8 
Breed × parity 1.8* 1.4 1.0 1.7 1.7 1.7 1.7  1.3 1.4 1.2 1.5 

RMSE 38.1 6.6 10.0 0.3 0.4 2.3 1.9  5.2 16.8 19.9 726.5 
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Table 3. Milk composition, percentage cheese yield and daily milk and cheese yield 

 
Milk composition and energy:  Cheese yield  Daily yield per cow: 

 Protein Fat Lactose Energy  theor. actual relative  Milk ChCM2 Protein Fat Energy Cheese 

 
% % % MJ/kg  % % index1  kg/d Kg/d g/d g/d MJ/d kg/d 

Herd productivity: 
    

       
   

 

High, (LSM) 3.82 4.50 4.99 3.42  14.2 14.5 1.05  26.1 26.3 959 1129 86.5 3.64 

Low, (LSM) 3.63 4.24 4.99 3.28  13.5 13.8 0.99  17.0 16.7 606 714 55.1 2.30 

F-value 13.6*** 4.9* 0.0 6.1*  8.1** 8.2** 8.2**  63.2*** 63.9*** 66.1*** 57.4*** 63.9*** 63.9*** 

Herd variance (% of total) 20.1 10.0 7.2 10.2  10.5 10.6 10.6  31.9 27.8 29.9 21.3 28.0 27.8 

Breed LSM: 
    

       
   

 

Holstein Friesian (HF) 3.51 4.06 4.99 3.18  12.8 12.4 0.90  25.9 22.8 890 1035 81.2 3.15 

Brown Swiss (BS) 3.79 4.32 4.98 3.34  13.9 14.4 1.04  22.7 23.5 849 967 75.2 3.25 

Jersey (Je) 4.08 5.54 4.88 3.89  16.7 17.1 1.24  17.0 20.3 662 914 62.3 2.81 

Simmental (Si) 3.67 4.38 4.97 3.34  13.7 14.0 1.01  23.0 22.5 826 970 74.9 3.11 

Rendena (Re) 3.52 3.77 5.11 3.07  12.4 13.0 0.94  21.8 20.5 763 841 67.6 2.83 
Alpine Grey (AG) 3.79 4.17 5.00 3.28  13.6 14.1 1.02  18.7 19.4 704 800 62.3 2.67 

Breed contrasts (F-value):                
HF+BS+Je vs 

Si+Re+AG 
16.8*** 25.6*** 7.8* 26.3***  29.2*** 17.5*** 17.5***  1.5 4.8* 2.5 8.6* 5.6* 4.8* 

HF+BS vs Je 51.7*** 48.5*** 4.1* 52.7***  61.2*** 69.9*** 69.9***  42.2*** 5.3* 24.2*** 1.8 13.5*** 5.3* 

HF vs BS 158.4*** 13.5*** 0.1 24.2***  50.4*** 157.7*** 157.7***  67.5*** 2.5 7.1* 8.4* 17.5*** 2.5 

Si vs Re+AG 0.1 10.1* 5.2* 8.2***  5.5* 2.4 2.4  14.7*** 9.8** 10.8** 12.0** 14.0*** 9.8** 

Re vs AG 19.8*** 4.5* 4.6* 6.4*  8.4** 6.8** 6.8**  8.7** 0.9 2.0 0.4 1.9 0.9 

Parity LSM: 
    

       
   

 

1st 3.74 4.37 5.06 3.35  14.1 14.6 1.06  20.1 21.2 749 877 67.5 2.92 

2nd 3.76 4.44 4.98 3.39  13.9 14.1 1.02  21.8 21.4 793 934 71.6 2.95 

≥3rd 3.67 4.30 4.92 3.31  13.5 13.8 1.00  22.6 22.0 805 953 73.4 3.03 

Parity contrasts (F-value): 
    

       
   

 

1st vs ≥2nd 1.0 0.0 25.4*** 0.0  4.7* 12.8*** 12.8***  21.3*** 0.9 1.8* 5.9* 8.9** 0.9 
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2nd vs ≥3rd 7.0* 1.7 4.6* 2.2  3.5 1.1 1.1  1.5 0.7 0.3 0.3 0.7 0.7 

DIM LSM: 
    

       
   

 

8-49 d 3.45 4.11 5.04 3.17  12.8 13.1 0.95  25.9 23.9 862 1043 80.8 3.31 

50-91 d 3.47 3.99 5.10 3.14  12.7 13.0 0.94  25.5 23.4 868 1001 79.1 3.24 

92-133 d 3.56 4.17 5.07 3.23  13.2 13.5 0.98  24.0 23.0 840 980 76.4 3.17 

134-175 d 3.66 4.15 5.05 3.25  13.4 13.7 0.99  23.0 22.4 833 941 74.0 3.09 

176-217 d 3.74 4.44 4.95 3.39  14.0 14.4 1.04  20.8 21.6 781 928 70.7 2.98 

218-259 d 3.85 4.45 4.93 3.42  14.2 14.6 1.05  19.3 20.1 737 859 65.6 2.78 

260-301 d 3.95 4.81 4.88 3.58  15.0 15.4 1.11  17.9 20.0 709 868 64.3 2.77 

≥302 d 4.12 4.84 4.87 3.62  15.4 15.7 1.14  15.5 17.6 628 749 55.6 2.43 

DIM contrasts (F-value): 
    

       
   

 

Linear 671.8*** 105.6*** 110.7*** 183.7***  232.1*** 232.6*** 232.6***  552.1*** 129.9*** 172.0*** 90.0*** 204.3*** 129.9*** 

Quadratic 12.5*** 7.0* 7.0* 6.4*  7.4** 6.8** 6.8**  8.7** 6.1* 14.2** 1.9 6.8** 6.1* 

Cubic 0.0 2.4 12.2** 2.1  1.4 1.5 1.5  0.6 0.5 0.0 1.6 0.4 0.5 

Interactions (F-value): 
    

       
   

 

Herd prod. × parity 1.9 0.7 1.5 0.8  0.6 0.6 0.6  3.7* 2.9 5.3 2.3 3.6* 2.9 

Herd prod. × DIM 2.9* 0.9 1.0 1.0  1.1 1.1 1.1  1.2 1.0 1.4 0.7 0.9 1.0 

Breed × parity 1.1 0.5 0.5 0.4  0.4 0.4 0.4  1.5 2.4** 2.4 1.8 2.3 2.4** 

RMSE 0.3 0.9 0.3 0.4  2.08 2.11 0.153  5.0 5.8 200 306 18.8 0.80 
1: The index expresses the relative value of milk for cheese production respect to average milk (a cheese-corrected milk). 

2: ChCM = Cheese corrected milk obtained multiplying actual dMY time the cheese-making relative index.  
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Table 4. Milk productivity ratios obtained dividing a measure of daily output of individual cows (milk weight, milk energy or fresh cheese weight) 
for a scaling unit to take into account different animal size and feeding costs (BW, body weight; MW, metabolic weight; PW, estimated body 
protein weight). 

Output: Milk yield  Energy yield  Cheese yield  
Scaling unit: BW MW PW  BW MW PW  BW MW PW 

 
g/kg g/kg0.75 g/kg kJ/kg kJ/kg0.75 kJ/kg g/kg g/kg0.75 g/kg 

Herd productivity: 
   

 
   

    
High, (LSM) 42.7 210 301  145 716 1024  6.15 30.2 43.2 
Low, (LSM) 31.5 151 218  105 502 728  4.42 21.1 30.6 
F-value 38.6*** 43.7*** 41.6***  42.2*** 47.5*** 45.2***  42.0*** 47.3*** 45.0*** 

Herd variance (% of total) 29.0 29.7 30.9  26.4 27.2 27.2  26.6 27.6 27.8 
Breed LSM: 

   
 

   
    

Holstein Friesian (HF) 39.8 201 273  125 632 860  4.87 24.5 33.4 
Brown Swiss (BS) 35.2 177 245  117 588 814  5.03 25.4 35.2 
Jersey (Je) 44.9 197 308  177 776 1215  7.80 34.3 53.7 
Simmental (Si) 34.4 175 244  113 571 798  4.67 23.7 33.1 
Rendena (Re) 36.0 178 256  112 554 792  4.68 23.2 33.2 
Alpine Grey (AG) 32.5 159 232  109 530 774  4.65 22.7 33.2 

Breed contrasts (F-value): 
   

 
   

    
HF+BS+Je vs Si+Re+AG 34.1*** 19.8*** 23.1***  66.2*** 43.1*** 53.0***  66.4*** 42.6*** 53.5*** 
HF+BS vs Je 17.2*** 0.9 16.2***  73.4*** 27.0*** 72.0***  103.5*** 45.7*** 102.0*** 
HF vs BS 50.4*** 53.4*** 38.6***  13.4*** 14.2*** 7.9**  2.6 2.8 6.4* 
Si vs Re+AG 0.0 1.1 0.0  0.3 1.9 0.3  0.0 0.7 0.0 
Re vs AG 4.0* 5.1* 3.7  0.3 0.6 0.2  0.1 0.1 0.0 

Parity LSM: 
   

 
   

    

1st 36.0 175 253  122 589 858  5.31 25.6 37.4 

2nd 37.4 182 261  127 618 888  5.28 25.6 36.8 

≥3rd 38.0 186 264  127 619 881  5.26 25.7 36.6 
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Parity contrasts (F-value): 
   

 
   

    

1st vs ≥2nd 5.2* 6.7* 3.2  3.6 4.8* 2.0  0.1 0.0 0.7 

2nd vs ≥3rd 0.3 0.6 0.2  0.1 0.0 0.1  0.1 0.1 0.1 

DIM LSM: 
   

 
   

    
8-49 d 44.6 217 310  144 699 1000  5.94 28.8 41.3 
50-91 d 44.4 216 308  141 685 977  5.82 28.2 40.3 
92-133 d 41.8 204 290  136 661 947  5.69 27.6 39.6 
134-175 d 39.9 195 277  131 638 913  5.52 26.8 38.4 
176-217 d 36.1 176 253  124 604 870  5.26 25.6 36.9 
218-259 d 32.9 161 231  114 557 802  4.87 23.7 34.2 
260-301 d 30.9 151 219  113 549 797  4.88 23.7 34.4 
≥302 d 26.4 128 189  98 476 700  4.29 20.8 30.6 

DIM contrasts (F-value): 
   

 
   

    
Linear 621.7*** 607.9*** 589.2***  264.4*** 254.7*** 239.5***  179.1*** 170.3*** 157.7*** 
Quadratic 12.6*** 13.0*** 10.4*  6.2* 6.5* 4.8*  5.6* 5.9* 4.3* 
Cubic 1.6 1.3 1.4  0.1 0.1 0.1  0.1 0.1 0.1 

Interactions (F-value): 
   

 
   

    
Herd prod. × parity 2.1 2.4 1.8  2.3 2.6 2.0  1.8 2.1 1.5 
Herd prod. × DIM 1.2 1.2 1.2  0.9 0.9 0.9  0.9 0.9 1.0 
Breed × parity 1.8 1.9* 2.0*  2.4* 2.4* 2.6**  2.8** 2.7** 3.0** 

RMSE 8.4 41.7 57.5  30.8 152 211  1.32 6.5 9.1 
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Table 5. Estimated energy requirements of lactating cows, income over feed costs (IOFC) and energetic and economic efficiency of milk 
production 

 
Energy requirements (MJ/d): IOFC  Efficiency (%): 

Maintenance Activity Lactation Pregnancy Total (€/d) Energy1 Costs2 
Herd productivity:   

   
 

  
High, (LSM) 37.0 3.4 86.9 3.0 129.9 4.00 63.9 196 
Low, (LSM) 34.9 1.6 55.5 2.8 94.5 2.17 56.3 170 
F-value 58.2*** 12.4** 64.1*** 62.3*** 77.0*** 56.4*** 24.2*** 25.6*** 
Herd variance (% of total) 11.2 98.4 27.1 12.3 28.7 27.2 28.4 30.2 
Breed LSM:   

   
 

  
Holstein Friesian (HF) 39.0 2.7 81.8 3.3 126.3 3.06 62.2 175 
Brown Swiss (BS) 38.8 2.7 75.6 3.2 119.9 3.46 60.8 190 
Jersey (Je) 26.6 1.7 63.6 1.9 93.9 3.29 63.2 200 
Simmental (Si) 40.1 2.8 75.4 3.4 121.1 3.12 59.7 180 
Rendena (Re) 36.5 2.6 68.4 3.0 109.8 2.85 57.9 177 
Alpine Grey (AG) 34.6 2.5 62.5 2.8 102.1 2.74 56.7 176 
Breed contrasts (F-value):   

   
 

  
HF+BS+Je vs Si+Re+AG 98.8*** 134.7*** 5.0* 100.4*** 1.1 7.2* 22.8*** 16.8*** 
HF+BS vs Je 880.8*** 478.4*** 13.8*** 903.6*** 52.5*** 0.0 1.2 12.8** 
HF vs BS 2.6 13.7** 18.1*** 2.1 19.4*** 19.3** 6.3* 66.9*** 
Si vs Re+AG 278.8*** 45.5*** 13.3*** 296.9*** 31.7*** 3.6 5.2* 1.0 
Re vs AG 23.1*** 3.4 2.2 23.7*** 3.8 0.2 0.7 0.1 
Parity LSM:   

   
 

  
1st  35.5 2.5 68.0 2.9 108.3 3.10 60.3 190 

2nd  35.9 2.5 72.0 2.9 112.9 3.03 59.9 179 

≥3rd  36.5 2.6 73.6 3.0 115.4 3.13 60.0 180 

Parity contrasts (F-value):   
   

 
  

1st vs ≥2nd  12.3** 17.1*** 7.8* 13.7*** 11.5*** 0.1 0.3 23.1*** 
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2nd vs ≥3rd  6.4* 4.0* 0.5 6.8** 1.3 0.5 0.0 0.1 

DIM LSM:   
   

 
  

8-49 d  35.3 2.5 81.4 2.9 121.5 3.54 63.2 188 
50-91 d  35.1 2.5 80.0 2.8 120.0 3.45 63.2 188 
92-133 d 35.3 2.5 77.1 2.9 117.1 3.38 62.6 188 
134-175 d 35.6 2.5 74.7 2.9 115.1 3.27 61.8 187 
176-217 d 36.1 2.5 70.9 2.9 112.3 3.10 60.3 184 
218-259 d 36.4 2.5 65.8 3.0 107.5 2.82 57.8 178 
260-301 d 36.5 2.6 64.3 3.0 106.3 2.82 58.1 181 
≥302 d 37.0 2.6 55.5 3.0 98.3 2.32 53.6 169 
DIM contrasts (F-value):   

   
 

  
Linear 112.6*** 54.4*** 210.7*** 125.4*** 163.3*** 111.9*** 191.1*** 68.8*** 
Quadratic  3.8 1.9 7.2* 4.0* 5.3* 6.4* 18.4*** 13.4*** 
Cubic  2.4 0.5 0.2 2.2 0.7 0.4 0.2 0.3 
Interactions (F-value):   

   
 

  
Herd prod. × parity 0.0 1.1 3.4* 0.0 3.5* 2.6 0.6 0.5 
Herd prod. × DIM 0.6 1.0 0.9 0.7 1.0 1.0 2.3* 1.9 
Breed × parity 1.4 1.8 2.2* 1.5 2.3* 2.5** 3.5*** 3.9*** 
RMSE 2.0 0.2 19.2 0.2 19.0 1.19 7.3 23.3 
1: Energy of milk produced daily / Sums of estimated energy lactation (in MJ/d NEL) requirements for maintenance, activity, lactation and pregnancy. 

2: Income from the selling of daily milk produced by each cow (price = 0.30 €/kg × ratio between actual/average theoretical %CY) / costs of predicted daily feed intake (feed cost 
= 0.03 €/Mj NEL × sum of predicted energy requirements). 
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7 General conclusions 

To the best of our knowledge, this is first large scale study comparing the performance 

of six different dairy cattle breeds on novel technological and nutritional properties of milk. 

The study included a considerable large number of cows, reared in many multi-breed herds, 

classified in low- and high-yielding groups. The experimental design allowed to distinguish 

the effect of breeds from the effect of herd (and herd productivity), a point of major concern 

in previous studies.  

Breed dominated on milk quality, intended as traditional composition, mineral 

profile (excluding the majority of environmental minerals), renneting aptitude and cheese-

making efficiency.  On the other side herd acted on daily milk and cheese production, on milk 

pH and on those minerals strictly related to the location of sampling (i.e., Boron, Silicon, Tin 

and Strontium, among environmental micro-minerals).  

Large differences were observed across breeds. Within herds, Holstein-Friesian 

cows produced the highest daily milk and cheese production. However, this was accompanied 

with the lowest milk protein content as well as with the poorest mineral profile (low content 

for the majority of macro-minerals and few among micro essential minerals) compared to the 

other breeds. Moreover, the Holstein-Friesian’s milk had the worst coagulation time, in terms 

of delayed curd-firming time and the weakest curd firmness. In addition, the curd-firming and 

syneresis rates were the slowest. In fact, the time to reach a maximum consistence of the curd 

had the highest values, among all breeds. All the recovery of nutrients in the curd had the 

lowest values, including the fresh cheese and water retention. Both the cheese-making 

efficiencies were the lowest.  

Brown Swiss cows within herds, were classified third based on daily milk and 

cheese productions, after the Holstein-Friesian and Simmental cows. This breed had the 
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highest content of SCS, that may explain the highest concentration of K in milk. Other 

elements, such as Fe, B and Si at most present in this breed, compared to the other breeds. 

The renneting aptitude of Brown Swiss milk was similar to those of Simmental and Alpine 

Grey breeds, albeit at shorter curd-firming time, better syneresis and higher curd firmness 

over time. Moreover, the recovery of milk fat in the curd was similar to Alpine Grey, and the 

worst after Holstein-Friesian, while cheese yield traits and efficiencies were more similar to 

Simmental breed.  

In our study, Jersey breed, within herds, produced the lowest quantity of milk and 

cheese per day, compensated by the highest protein and fat contents in milk, the highest 

concentrations of Ca, Mg and S among macro-minerals, and Cu, Mn Se and Zn among 

essentials micro-minerals. Jersey presented the shortest rennet coagulation and curd-firming 

time, the highest curd firmness values and the highest curd-firming and syneresis rates. In 

addition, this breed presented the highest cheese yield traits, due to the highest recovery of all 

nutrients in the curd. However cheese yield efficiencies were similar to those of Brown Swiss 

and Simmental breeds. 

Simmental milk and cheese production per day was close to Holstein-Friesian. 

Protein and fat contents in milk were intermediate between Brown Swiss and Jersey breeds. 

The SCS values were the lowest, as typically showed by this breed, and this could explain 

why Na had the lowest concentration in milk of these cows. The mineral profile and the 

renneting aptitude was similar to the local Rendena and Alpine Grey breeds. However, the 

cheese yield characteristics of this breed were more similar to Brown Swiss, and better than 

the two local breeds. 

Concerning the local Rendena breed, it presented modest daily milk and cheese 

productions, with a mineral profile being intermediate of the Brown Swiss and Alpine Grey 

cows. This breed had, the shortest rennet and curd-firming time, and the highest curd-firming 

and syneresis rates, after Jersey. The cheese yield traits were found similar to Holstein-
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Friesian. However, it should be noted that Rendena cows had the highest cheese-making 

efficiencies compare to the other breeds.  

Alpine Grey cows had a daily milk production between Jersey and Rendena cows, 

but also the lowest daily cheese yield production. Renneting and cheese-making aptitude, 

including the recovery of nutrients in the curd, cheese yield traits and efficiencies were 

comparable to those of Brown Swiss. 

Our results showed that the breed, and not milk composition, was the predominant 

effect, with large differences between specialized and dual-purpose breeds, but also within the 

two groups. These findings indicate that the differences among breeds are mainly due to the 

genetic makeup of the animals, and not only to the chemical composition of milk. 

An important part of the productive differences among dairy and dual-purpose cattle 

breeds is due to differences in dairy systems and herd characteristics. When the comparison 

among different breeds is carried out within dairy system and within individual herds, the 

differences in productivity traits are much reduced, and depends a lot on the differences in 

body size of animals. Scaling production traits on the basis of body size indicators allow to 

obtain a more correct indication of breeds’ productivity (instead of production). Among 

different scaling factors, metabolic weight could be criticized when used to compare breeds of 

very different size but similar body composition (like Holstein and Jersey), while the use of 

body protein mass weight allows for a more correct comparison, also when breeds are 

characterized by different body condition and composition. 

High and low herd productivity had lower impact compared to breed effect. 

However, this effect in general influenced daily milk and cheese productions, and milk 

quality, intended as protein, fat, casein, solids contents, and also as mineral composition (i.e., 

Ca, Mg, S, Cu and Zn); rennet coagulation time and curd consistence for coagulative skills, 

and theoretical cheese yields (since they are calculated from casein and solids in milk) for 

cheese-making. So, while increasing herd productivity increases milk yield and quality, 
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percentage cheese yields, and daily cheese production per cow, it has only a slight effect on 

nutrient recovery and a negative effect on overall cheese-making efficiency. 

The knowledge and correct quantification of the importance of productive, qualitative 

and technological properties of different breeds offers interesting new insights for modifying 

selection indices within dairy and dual purpose breeds and for projecting crossbreeding plans 

across breeds. 

 

 


