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Abstract

With technological innovations progressing rapidly, big data is now produced from various

applications. Due to its capability of handling complex problems, Deep Neural Network

(DNN) has become one of the fastest-growing and most exciting areas of Machine Learning

(ML) in the data-intensive field. However, it remains a challenge to train such a deep structure,

facing the gradient problems and slow convergence speed. In big data analysis, the original

dataset is usually characterized as high dimensionality and the key features are very often

buried in the noise, which increases computational complexity and slows down DNN training.

Through research, it is noted that the mathematical properties of activation functions may

be attributed to the gradient exploding or vanishing problem, resulting in training failure or

with big errors. As the networks go deeper and deeper to deal with more and more complex

real-world problems, many more trainable parameters of DNN model need to be trained with

higher computational efficiency.

In this thesis, we propose a new topology of Wavelet Neural Network (WNN) termed

as FDIDWT-MEXHACT-NN or simply FDMHNN for fast Deep Learning (DL) of big data

applications. With preprocessing it would have two concatenation components.

Since Fast Fourier Transform (FFT) performed at the beginning of hidden layers for feature

pre-extraction and noise reduction in the training process is demonstrated to improve compu-

tational efficiency as the preliminary work, based on the Correlation Fractal Dimension (CFD)

theory and Inverse Discrete Wavelet Transform (IDWT), the first component of FDMHNN

implements a new type of preprocessing method, i.e., FDIDWT, to transform the original

dataset to a low-dimensional and feature-extracted one for low computational complexity

and fast DNN training.

The second component of FDMHNN is a Multilayer Perceptron (MLP) model equipped

with the derived Activation Function and Derivative Function pair (ADF), i.e., Tight Frame

Wavelet Activation Function (TFWAF) and Tight Frame Wavelet Derivative Function (TFWDF)

of Mexican hat wavelet. These two functions, termed as TFMH, are designed to normalize

and constrain the training data of hidden layers to constant energy that stabilizes the training

and speeds up convergence further. The nonlinearity of wavelet functions can strengthen the



learning capacity of DNN model, while the sparse property of wavelets derived can reduce

the computational complexity of training process and enhance the robustness of model. In

addition, TFMH can also alleviate the overfitting problem.

The proposed FDMHNN model is characterized as stable, fast construct and fast conver-

gent, and is evaluated by various experiments. Through big data analysis for nonlinear system

modelling and speech signal processing, and particularly feature extraction and classification

for the astronomical data collected from a nano-satellite simulation environment and the

real Fermi-LAT source catalog (3FGL), experiments performed demonstrate that the deep

FDMHNN model achieves more stable training and faster convergence than the traditional

deep MLPs in the binary classification tasks as well as complicated applications.
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COMPTEL Imaging Compton Telescope
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CWNN Compact Wavelet Neural Network

CWT Continuous Wavelet Transform

DFT Discrete Fourier Transform

DIT Decimation In Time

DL Deep Learning
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EGRET Energetic Gamma-Ray Experiment Telescope
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EM Ensemble Method

FcL Fully-Connected Layer

Fermi-LAT Large Area Telescope on-board Fermi Gamma-Ray Space Telescope

FDAF Frequency-Domain Adaptive Filter

FDIDWT proposed method based on Fractal Dimension theory and IDWT

FDMHNN proposed model combing FDIDWT with TFMH

FFT Fast Fourier Transform

FFTNN proposed Fast Fourier Transform Neural Network activated by ELU

FFTMHNN proposed Fast Fourier Transform Neural Network activated by TFMH

FP Forward Propagation

FPR False Positive Rate

FSRQ Flat Spectrum Radio Quasar

FSSC Fermi Science Support Centre

FT Fourier Transform

GAN Generative Adversarial Nets

GCN Graph Convolutional Network

GD Gradient Descent
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HoM Hold-out Method

HEM Hard Ensemble Method

IoT Internet of Things

IC Individual Contribution

ICS Internal Covariate Shift

ID Intrinsic Dimension

IDWT Inverse Discrete Wavelet Transform
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IWT Inverse Wavelet Transform
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MLP Multilayer Perceptron

MSE Mean Square Error

NuSTAR Nuclear Spectroscopic Telescope Array

NN Neural Network

PoolL Pooling Layer

PCA Principal Component Analysis

PCC Pearson’s Correlation Coefficient

PID Partial Intrinsic Dimension

PRC Precision-Recall Curve

ReLU Rectified Linear Unit
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RNN Recurrent Neural Network
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SEM Soft Ensemble Method

SGD Stochastic Gradient Descent

SMO Sequential Minimal Optimization

SNR Signal-to-Noise Ratio

SRCC Spearman’s Rank Correlation Coefficient

SSDC Space Science Data Center

SVD Singular Value Decomposition

SVM Support Vector Machine

TFMH TFWAF and TFWDF of Mexican hat wavelet

TFWAF Tight Frame Wavelet Activation Function

TFWDF Tight Frame Wavelet Derivative Function

TPR True Positive Rate

WD Wavelet Decomposition

WNN Wavelet Neural Network
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1
Introduction

There is no doubt that scientific researches and applications in the real life are generating

massive data. Various applications and the commercial values behind the so-called big data

require us to explore how we can better benefit from the huge amount of data. Big data pro-

cessing has shown great popularity in different fields. Digging the significant information out

from big data collected from different applications, namely feature extraction, is meaningful

to serve a better human life (Bahga and Madisetti, 2016).

Machine Learning (ML) plays an important role in data analysis due to its ability to learn

from data and provide data-driven insights, decisions, and predictions. However, traditional

ML models are inefficient to deal with the increasing amount of data. Algorithms with strong

capability of feature extraction are desirable in the big data era.

In recent years, Deep Neural Network (DNN) is becoming a research focus in the ML

field. The high volume of data available today brings opportunities and challenges to the

development of DNN. How to cope with the massive-scale data technically with DNN models

becomes a hot topic in the industry area and scientific community nowadays. While there exist

many difficulties in designing and training this type of deep network structures. Extensive

researches have dedicated to overcoming these difficulties.
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1.1 Research Background

Every day we are dealing with data generated from many devices and instruments, such as

personal computers, mobile phones, servers, and industrial systems. "We are living in the

information age" is a popular saying; however, we are actually living in the data age (Han et al.,

2011). Data processing is a big topic that covers many research fields. It has incorporated

techniques from many domains, such as statistics, machine learning, pattern recognition,

database, information retrieval, high-performance computing, and so on. Discovery of the

knowledge and values behind data is the final goal of data processing.

Recently, with the development of technologies such as the Internet of Things (IoT),

the 5th generation mobile networks (5G), and cloud computing, the data generated by

the Internet, commerce, industries, healthcare, smart cities, and other fields is explosively

growing. Usually, big data can be characterized from five aspects (Qiu et al., 2016):

1) Volume: big data has high volume due to many data sources;

2) Variety: the different sources usually generate big data characterized as heterogeneous,

high-dimensional, and nonlinear;

3) Velocity: some time-sensitive tasks may require real-time big data processing;

4) Veracity: the real-world big data often contains noise and missing values;

5) Value: big data is often rich in valuable information.

Due to the aforementioned "5V" properties, the design of efficient algorithms for big data

processing is not an easy work. Over the past decades, ML models have been widely applied to

many fields, such as industry, medicine, astronomy, biology, and so on. These models provide

satisfactory solutions to mining the information of data. ML is a highly interdisciplinary field

built on the ideas from many different domains, such as artificial intelligence, optimization

theory, information theory, statistics, cognitive science, optimal control, and many other

disciplines. It has also been used for a variety of issues, including recommendation engines,

identification systems, data mining, and autonomous control systems (Qiu et al., 2016).

Training ML models is to automatically learn from experience concerning some tasks and

performance measures (Jordan and Mitchell, 2015). ML models enable users to uncover the

underlying structure and make predictions from large datasets (Zhou et al., 2017). Neural

Network (NN) is an important aspect of ML models, which usually uses multilayer structure

to automatically learn hierarchical representations (Yu and Deng, 2010). It is inspired by

the biological nervous system to extract features from data. While feature extraction is the

key to many applications (Liu et al., 2017a). NN nonlinearly projects the input data onto
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a hyper-plane, so that more features hidden in data can be detected. The hyper-plane is

constructed by the trainable model parameters whose values are adjusted in the NN training

process.

Taking advantage of the learning capability, ML models have achieved great success in

many big data applications, such as astronomical data processing. An interesting telescope

spanning over the gamma-ray band is the Fermi-LAT (Large Area Telescope on-board Fermi

Gamma-Ray Space Telescope, see Atwood et al. 2009), and it was launched in 2008. The

third Fermi-LAT source catalog (3FGL) covers the four-year observation data of the Fermi-LAT.

It contains 3034 sources, among which 1744 belong to Active Galactic Nuclei (AGN) class.

Within the AGN sources, there are 573 Blazars, a subclass of AGN, haven’t been tagged as BL

Lacertae objects (BL Lacs) or Flat Spectrum Radio Quasars (FSRQs). These uncertain Blazars

are also named as Blazar Candidate of Uncertain types (BCUs). Besides, the 3FGL remains

1010 unassociated sources (Acero et al., 2015). Therefore, these BCUs and unassociated

sources result in an incomplete catalog, which decreases the significance of observations.

Parkinson et al. (2016) used several traditional ML models, including Random Forest

(RF), Logistic Regression (LR), and Support Vector Machine (SVM), to identify AGNs from

the unassociated sources. Based on the discriminative Blazar Flaring Patterns (B-FlaP), these

predicted AGN-like sources were further classified into BL Lacs and FSRQs with a shallow

Multilayer Perceptron (MLP) (Salvetti et al., 2017). This method was also applied to classify

the BCUs of 3FGL to BL Lacs and FSRQs by Chiaro et al. (2016). While Lefaucheur and Pita

(2017) identified BCUs from the unassociated sources of 3FGL, and then classified these

BCUs together with the associated BCUs of 3FGL into BL Lacs and FSRQs with a multivariate

classifier. In their work, the prediction of the multivariate classifier came from the agreement

of Boosted Decision Tree (BDT) with a single hidden layer MLP model.

The previously discussed results indicate the effectiveness of traditional ML models in the

classification of 3FGL sources. But these models are too simple to deal with the increasing

number of sources detected by many of current and next-generation telescopes. In particular,

the low-cost and fast-launch nano-scale satellites (Lucchetta et al., 2017; Racusin et al., 2017;

Fiore et al., 2018; Chattopadhyay et al., 2018; Rando et al., 2019) will increase the volume of

data in the few coming years dramatically. The bigger and bigger data brings great challenges

to the traditional ML models. Under this circumstance, the computational efficiency and

learning performance will decrease. Learning and extracting features from big data becomes

a very complex problem, and more powerful and efficient algorithms are required.

While among the ML models, NN attracts many researchers coming from different fields,

such as science, engineering, and applied mathematics, due to its potentiality in big data

applications. Historically, there are three waves of NN research (Goodfellow et al., 2016).
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The first wave appeared in the 1940-1960s, with the development of theories of biological

learning (McCulloch and Pitts, 1943) and the implementation of the perceptron model

(Rosenblatt, 1958). The second wave appeared during the 1980-1995 period, with the

backward propagation (Rumelhart et al., 1986) used to train a NN model with one or two

hidden layers. The current and third wave, i.e., Deep Learning (DL), started around 2006

(Hinton and Salakhutdinov, 2006) and became explosively popular from 2012 when Graphics

Processing Unit (GPU) starts to be used for training (Krizhevsky et al., 2012), until now.

DL enables the computer to build complex concepts out of simpler concepts (Goodfellow

et al., 2016). The quintessential example of a DL model is the Deep Neural Network (DNN),

which typically has more than three hidden layers. Researches have indicated that in the real

world, most complex problems are expected to be handled by very deep network structures

(Bengio et al., 2009; He et al., 2016). DNN has become one of the fastest growing and most

exciting areas of ML with big data. It is able to capture more complicated, hierarchically

launched statistical patterns of inputs for achieving the adaptivity to new areas than traditional

learning models. It hence often outperforms state-of-the-art achieved by hand-made features

(Arel et al., 2010).

DNN is playing an important role in big data solutions to many applications which involve

feature extraction. Apart from MLP, different DNNs have been proposed and successfully

applied for big data processing. For instance, Convolutional Neural Network (CNN) is good

at processing images (Dong et al., 2018; Jifara et al., 2019; Li et al., 2019), while Recurrent

Neural Network (RNN) is widely used to deal with prediction problems (Zyner et al., 2019;

Alemany et al., 2019) or speech recognition (Lokesh et al., 2019; Lam et al., 2019). Besides

the data with Euclidean structure, such as images and speech, there have also some researches

dedicated to more complex data with non-Euclidean structure for example chemical molecules

and social networks. Recently, Graph Convolutional Network (GCN) becomes a hot topic for

the complex data. It is the extension of CNNs from regular grid to irregular graph and it has

shown great advantages on complex problems (Yan et al., 2018; Li et al., 2018; Chen et al.,

2018).

However, regardless of the remarkable achievements of DNN in many applications, training

such type of deep structure with big data is challenging. The gradient problems and the

slow convergence speed are two of the most troublesome problems in DNN training. The

gradient vanishing problem leads to big errors, while the gradient exploding problem causes

a numerical overflow. The slow convergence of DNN training costs a lot of computing time

and requires many resources, which may not be available in the real-world applications.

Besides, DNN model always has many trainable parameters, which increases the computing

burden. As a result, this bulky model cannot be efficiently implemented on the resource-
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limited embedding systems. Thus, nowadays more and more attentions have been focused on

alleviating the gradient problems and accelerating DNN training (Bengio et al., 2007; Erhan

et al., 2010; Dauphin and Bengio, 2013; Sainath et al., 2013; Povey et al., 2014).

1.2 Research Contents

The gradient problems refer to the abnormal change of data values during training. Specially,

gradient vanishing problem refers to the exponential decrease in the norm of the gradients. In

this case, the gradients will tend to zeros in a deep structure and the parameters of final layers

cannot be updated, which makes the training easily stick to a local minimum. While gradient

exploding problem, on the other hand, refers to the opposite behavior of gradients vanishing,

where the norm of gradients dramatically increases, thus causing numerical overflow and

leading to failure of training. To reduce the gradient problems and to speed up DNN training,

our research concentrates on the data preprocessing and the improvements of activation

function in DNN.

1.2.1 Data Preprocessing

Data collected from the real world is often described by many attributes. In other words, the

samples in a dataset can be seen as laying in a high-dimensional attribute space. Meanwhile,

the number of samples is also dramatically growing as many more sensors are used to sample

or instruments are used to measure. The large attribute space and the huge number of

samples lead to the so-called dimensionality curse (Korn et al., 2001). As a result, learning

features from such big data is difficult and requires many computing resources and time.

Because of the dimensionality curse, many problems that do not exist in low-dimensional

space will arise in high-dimensional space. While researches have shown that the real data is

actually highly redundant due to some unimportant attributes (Bakshi and Stephanopoulos,

1993; Bengio et al., 2009; Glorot et al., 2011). The redundancy of data indicates the risk of

being very sparse in high-dimensional space, which means that most samples in the dataset

are likely to be far away from each other. For instance, in classification tasks, the sparsity

makes predictions much less reliable than in low dimensions, since it will be based on much

larger extrapolations (Géron, 2017).

Moreover, real data always contains noise, which will reduce the quality of data. If there

exist too much noisy data in datasets, the key features of data will be very difficult to extract

and the training performance will dramatically decrease. Therefore, if fed the raw data, the

DNN algorithm may lead to slow training and not provide good results.

Indeed, data preprocessing is required and is important in many applications. Through
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preprocessing, the unimportant attributes and the undesirable noise of real-world data are

detected and removed for low computational complexity and fast training. Moreover, in

practice, it is also possible to combine the preprocessing step with the DNN structure to form

a new topology with high computational efficiency.

1.2.2 Activation Functions of Deep Neural Network

Even though DNN kindled the popularity of DL in many big data applications, there are few

theories to guide the design of a DNN structure. During DNN training, the activation function

plays a fundamental role since it provides the nonlinear fitting capability to DNN. DNN models

may suffer weak learning capability resulting from the linearity of activation functions, which

makes learning slow when facing complex problems. Many numerical problems arising

in DNN training can also be attributed to the inappropriately chosen activation functions.

For example, saturation activation functions easily cause gradient vanishing problem, while

unsaturation functions, such as the Rectified Linear Unit (ReLU) (Nair and Hinton, 2010; Le

et al., 2015), may lead to gradient exploding problem if not carefully tune the learning rate

or the initial values of weights.

Furthermore, Internal Covariate Shift (ICS) is considered as another reason making DNN

extract features slowly (Shimodaira, 2000; Ioffe and Szegedy, 2015). It refers to the changes

of the distributions of hidden layers’ inputs that are also affected by activation functions. Due

to ICS, the data of the next hidden layer needs to continuously adapt to the distribution of

the previous hidden layer, which will be time-consuming and slows down training.

Therefore, the activation function of DNN determines the change of data within models.

Optimization of activation functions can be one of the most attractive research fields for

overcoming the gradient problems and to accelerating DNN training.

1.3 Research Objectives

1.3.1 Dimensionality Reduction and Feature Pre-extraction

As previously discussed, the dimensionality curse is troublesome when dealing with big data.

Hence, reducing the dimensionality of original dataset before further data analysis should be

a preprocessing step for low computational complexity (Kuang et al., 2015; He et al., 2018;

Sellami and Farah, 2018). Moreover, the redundancy of real-world data also leaves room for

the better results through dimensionality reduction and denoising (Bengio et al., 2009).

One of the widely used techniques for dimensionality reduction is Attribute Selection

(AS). It picks out the subset of attributes that are most relevant to the task, and as a result,
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improves computational efficiency and reduces the generalization error of models (Raschka,

2015). However, if the data has many missing values or is disturbed by noise from the real

world, the result of AS method will not be reliable.

Another strategy to reduce the dimensionality is to project the data into another space. In

the new space, the dimensions that contribute few to the dataset are removed without losing

too much information. Principal Component Analysis (PCA) is one of the most widely used

projection tools (Jolliffe and Cadima, 2016). It linearly projects the original data into a new

space by finding the directions where the variance is maximal, and then ignores the directions

with small variances for dimensionality reduction (Calvo et al., 1998). While PCA aims at

discovering linear correlations and is therefore unsuitable for nonlinear applications. Even

though there exists kernel PCA (Schölkopf et al., 1997) proposed for nonlinear generalizations,

its nonlinear projection will increase the computational complexity. In addition, with the

PCA method, the representations of data in the new space, i.e., the components considered

principal, are difficult to comprehend.

In fact, both the AS and PCA methods can be seen as projecting the original data from

the original attribute space to another one. Specially, AS projects the data into a low-

dimensional attribute subspace, while PCA projects the data into a new space and then

removes unimportant components there. These two dimensionality reduction methods can be

referred to as a kind of "hard" projection since they just remove some attributes or components

directly and keep others as they are. Based on it, a "soft" projection can thus be inferred.

It should not only reduce the dimensionality of dataset, but also extract the key features

for the next learning process. This projection can also be seen as an operation of feature

pre-extraction before training, which consequently remove the noise and improve learning

performance (Piramuthu and Sikora, 2009; Outrata, 2010; Kaul et al., 2017; Maheshwary

et al., 2017; Alexandropoulos et al., 2019).

As an example of feature pre-extraction, the correlations among attributes give further

insight into the dataset (Verain et al., 2016; Bu et al., 2017). These correlations can be taken

as the additional features of data. Pearson’s correlation coefficient is used to measure the

correlation between two attributes, but it assumes that data is normally distributed and it

cannot discover the nonlinear relationship. Spearman’s correlation coefficient needn’t the

assumption of a normal distribution, but it cannot give any information for a set of attributes.

In addition, these two traditional correlation coefficient techniques cannot identify the

attributes that best characterize the dataset, which is important in dimensionality reduction.

Another method to measure the correlations among attributes is the fractal dimension

theory applied to estimate the potential contribution of each attribute to the dataset (Belussi

and Faloutsos, 1995, 1998). This method is proposed from the fact that the independent
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attributes contribute more to the dataset while the correlated attributes contribute less. Thus,

it not only gives more information about the attributes, but also provides a global view on

the whole dataset or sub-dataset.

It is also worthy to mention that Fourier Transform (FT) has been widely used in signal

process field to transform the data to be the frequency representations. This can be seen as

feature pre-extraction when used in big data applications, since the new representations in

frequency domain may provide more features than the original data. Even though FT doesn’t

reduce the dimensionality and thus remains problematic in high-dimensional case, it can be

a pathfinder to study the effectiveness of feature pre-extraction.

From the above analysis, it can be seen that the preprocessed data, which is characterized

as low-dimensional and feature-extracted, can be of help to decrease computational complex-

ity and accelerate DNN training. Moreover, the correlations among attributes are expected to

give more information for better learning performance.

1.3.2 Stable Training and Fast Convergence

In DNN training, slow convergence speed will require a lot of resources and computing time,

while gradient problems will lead to training failure or with big errors. There have been some

researches to interpret and deal with these issues from the perspective of training process

(Bengio et al., 1994; Erhan et al., 2009; LeCun et al., 2012).

Decrease of the computing of DNN training is one of the most efficient strategies to

accelerate training. Singular Value Decomposition (SVD) is a good way to simplify and

compress the 2D convolution operations within CNN training (Zhang et al., 2015). It belongs

to the so-called low-rank based methods that can also be extended to the high-dimensional

tensor decomposition, such as CP decomposition (Lebedev et al., 2014), Tucker decomposition

(Kim et al., 2015), Tensor train decomposition (Novikov et al., 2015), and Block term

decomposition (Wang and Cheng, 2016). Wang et al. (2018b) and Ye et al. (2018) applied

the idea of low-rank decomposition to RNNs and achieved satisfactory results. But the low-

rank approximation is not efficient for small convolutions which are already quite fast, such

as 1× 1 or 3× 3 convolutions widely-used in many CNNs nowadays.

Introducing sparsity into the training process will also help to train DNNs, where the

pruning method represents an active research topic. Yoon and Hwang (2017) attempted to

perform analysis and pruning on the weights of model. In particular, the authors imposed

sparsity regularization on grouped features to prune columns of weight matrix, and then

promoted competition for features between different weights to learn effective filters. Another

perspective of pruning focuses on the output data of hidden layers. Liu et al. (2017b)

associated a scaling factor with each channel of CNNs and imposed sparsity regularization
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on these scaling factors during training. Those channels with small scaling factors were

pruned for slim networks and as a result, the training process was accelerated. Besides the

pruning performed in Forward Propagation (FP), with meProp method (Sun et al., 2017),

the gradients with small values were pruned in Backward Propagation (BP). Even though

this method improved training performance, extra analysis of gradients was required.

Quantization is another direction to speed up DNN training. Recently Leng et al. (2018)

proposed to train low-bit networks via ADMM (Boyd et al., 2011). Besides the quantization

of weights, the output data of hidden layers can also be quantized, as proposed by Wang

et al. (2018a). Moreover, in distributed deep learning, with gradient quantization (Wen et al.,

2017), the cost of gradient communication between servers and workers was demonstrated

dramatically reduce. On the other hand, there are also some researches dedicated to design

the so-called compact networks, such as MobileNets (Howard et al., 2017; Sandler et al.,

2018) and ShuffleNet (Zhang et al., 2018), for fast deep learning.

However, most of the solutions aforementioned have fine-tuning process, where some

labeled samples required may not available in practice. Furthermore, these solutions usually

involve a number of hyper-parameters that heavily depend on the researcher’s experience.

For the gradient exploding problem, in the work Pascanu et al. (2013), authors tried to

directly clip the high values of some gradients into a valid range. A regularization term was

also added as a penalty on the gradients, demonstrating to be a useful solution to suppressing

the exploding gradients during training. In other work Glorot and Bengio (2010) and He

et al. (2015), authors proposed some strategies to better initialize the weights for a stable

start of training.

While the gradient vanishing problem can be alleviated if normalizing the layer data

for the purpose of keeping them flow well in the layer-to-layer transformations, which also

leads to a fast convergence (Glorot and Bengio, 2010; Raiko et al., 2012). Moreover, by

normalizing the output data of hidden layer to the distribution at near-zero mean, the so-

called zero-mean activation functions can partly alleviate the negative effects of ICS (Maas

et al., 2013; He et al., 2015). While a small ICS brings the standard gradient closer to the

natural gradient and can speed up training (Clevert et al., 2015). Based on the above analysis,

Batch Normalization (BN) on each training batch was proposed to accelerate the training

process (Ioffe and Szegedy, 2015), but as a drawback it increased the number of operations.

In fact, for DNN the value of inputs to the other layers changes dynamically during training

(Wiesler et al., 2014). From the signal processing point of view, these drastic changes are

referred to the high frequency components. Therefore, normalizing the layer output data

results in a low-pass filtering, so that the drastic changes can be suppressed and the ICS

between hidden layers may decrease, and that there is no need to carefully tune the learning
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rate, meanwhile the weight initialization is not so crucial, thanks to the low-pass filtering

that can ensure a stable training process. The numerical problem can also be avoided with

this method.

Hence, the design of a suitable activation function provides a promising direction for fast

deep learning. The objectives of the new activation function are to reduce computational

complexity during training and constrain the layer data in a reasonable range, which are the

keys to stable DNN training and fast convergence.

1.4 Contributions and Outline

Based on the discussions aforementioned, efforts on data preprocessing and the design of

activation function can alleviate the difficulties of DNN training. Thus this thesis focuses on

these two research aspects and its contributions are summarized as follows:

1) A pathfinder topology of DNN model is proposed to perform training in frequency domain.

The fast Fourier transform is factorized and implemented as the matrix operations of

hidden layers. The model has low computational complexity and it demonstrates the

effectiveness of feature pre-extraction for fast DNN training.

2) A preprocessing method on big data is proposed based on the fractal dimension theory

and inverse discrete wavelet transform. The processed dataset is characterized as low-

dimensional and feature-extracted. It is demonstrated to be of help to improve the

efficiency of DNN training.

3) The properties of the ideal activation function and its derivative, also called derivative

function, for fast DNN training are summarized. These can be the baseline to design

activation functions and derivative functions in the deep learning field.

4) Based on the wavelet frame theory, a tight frame wavelet activation function and a tight

frame wavelet derivative function are proposed to speed up DNN training. The proposed

functions can be the alternative activation function and derivative function on various

applications.

5) A new topology of WNN model is constructed by combing the proposed preprocessing

method and the tight frame wavelet functions. Systematic experiments on the astronomical

data processing validate its advantages on the improvements of fast deep learning.

The structure of the thesis is illustrated in Fig. 1.1.

Chapter 2 - Literatures Review
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This chapter gives the basic concepts and theories used in the thesis, including the wavelet

theory and the techniques applied at different steps of data processing.

Chapter 3 - Fast Deep Learning in Frequency Domain

This chapter proposes a new topology of deep neural network by implementing the fast

Fourier transform in the form of matrix operations. This model can be seen as performing

feature pre-extraction, i.e., Fourier transform, at the beginning of hidden layers, while training

the parameters in the latter hidden layers. It achieved better performance in the speech

recognition tasks and howl noise reduction, since the frequency representations of speech

signal provide more features for training.

Chapter 4 - Feature Pre-extraction of Big Data Based on Multiresolution Represen-

tations

As the data preprocessing step, a new feature pre-extraction method is described. The in-

verse discrete wavelet transform is performed on the arranged data obtained by estimating the

information content of attributes with fractal dimension, and finally a new low-dimensional

and feature-extracted dataset is generated for training. This method gives good results on a

real dataset coming from the UCI machine learning repository (Dua and Graff, 2017).

Chapter 5 - Tight Frame Wavelet Functions for Fast Deep Learning

Based on the wavelet frame theory, a tight frame wavelet activation function and a tight

frame wavelet derivative function are proposed for the forward and backward propagation

processes, respectively. They are designed according to the summarized properties of the

ideal activation function and derivative function. These proposed functions are demonstrated

to be of help for fast convergence of DNN training in four experiments.

Chapter 6 - Systematic Experiments

This chapter first builds the extension experiments of the speech recognition tasks per-

formed in chapter 3 to investigate the characteristics of the proposed tight frame wavelet

activation function and tight frame wavelet derivative function through training the pathfinder

DNN model in frequency domain. Then the proposed preprocessing method and the tight

frame wavelet functions are combined to construct a new topology of wavelet neural network.

The performance of the proposed model is evaluated on the astronomical data collected from

a nano-satellite simulation environment and the real Fermi-LAT sources catalog (3FGL).

Chapter 7 - Experimental Results and Discussions

The results of the systematic experiments performed in chapter 6 are reported and

discussed in this chapter.

Chapter 8 - Conclusions and Future Work

According to the research work with big data analysis and applications, some conclusions

are summarized. Several ideas are also listed for the future work.
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Figure 1.1: Outline of the thesis.
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Literatures Review

The procedure of data processing in Machine Learning (ML) field can be divided into three

steps: data preprocessing, learning process, and performance evaluation. The preprocessing

step aims to prepare the data before training. It’s usually time-consuming due to the require-

ment of human labor (Zhou et al., 2017). At the second step, the developed ML models or

methods are used to learn features from data. While their learning performances are finally

evaluated at the last step based on the predefined measure.

From this perspective, the data preprocessing and learning process cost a lot of time

when dealing with big data. Besides, the development of ML models or methods affects the

learning performance dramatically. Therefore, our research for fast Deep Learning (DL) will

concentrate on the first two steps.

As discussed before, the dimensionality reduction and feature pre-extraction are the

objectives at the data preprocessing step, where the Wavelet Transform (WT) can play due

to the sparsity and localization of wavelet. For wavelet analysis, the sparsity can be used to

remove the redundancy of data, and the localization is of help to extract more key features

from data. These properties have been widely used in many data processing applications,

such as compressed sensing (Qureshi and Deriche, 2016; Huang et al., 2017), audio coding

(Luo, 2010), and noise reduction (Lu et al., 2015; Cao and Luo, 2016). Moreover, WT has

fast algorithm, which leads to its popularity in real applications. While the key to stabilizing

and accelerating Deep Neural Network (DNN) training is to constrain the layer data in a
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reasonable range, where the wavelet frame may give some hints since it has the ability to

restrict the energy of wavelet signal similarly. Thus, applying the wavelet theory in ML field

is promising to provide better solutions for big data applications.

2.1 Data Preprocessing

Real-world datasets are highly susceptible to missing, noisy, and inconsistent data due to

their huge size and heterogeneous sources (Han et al., 2011). For example, in astrophysics

field, study the nature of different sources relies on the data (flux or flux density) collected by

various ground observatories and space telescopes. The ground-based Cherenkov telescope

(Hinton, 2009; Garrido Beltrán et al., 2011) covers the very high energies (> 100GeV). AGILE

(Astro-Rivelatore Gamma a Immagini Leggero, see Tavani et al. 2009) observes the lower

energies which range from 20 MeV to 300 GeV. A variety of X-ray observatories cover the

lower energies as well, for instance: NuSTAR (Nuclear Spectroscopic Telescope Array, see

Harrison et al. 2013) in 3∼79 keV, Swift (Gehrels et al., 2004) in 0.2∼10 keV and 15∼150keV,

and INTEGRAL (International Gamma-ray Astrophysics Laboratory, see Winkler et al. 2003) in

15keV∼10MeV. Therefore, each instrument observes different sources in a particular energy

band and produces a lot of data, which brings a big challenge to design an efficient data

analysis algorithm. While each source generates radiations detected by various instruments

in different energy bands, which means that the study of a particular source needs to deal

with the heterogeneous data coming from many instruments. Thus preparing such type of

data with complex structure for next step is difficult.

Also, in the actual situation, the data often contains noise and missing values. Therefore,

data cleaning is necessary to get a high-quality dataset featured as complete, accurate, and

consistent. Moreover, how to efficiently reduce the dimensionality and extract more key

features should be considered in the data preprocessing step for fast training.

2.1.1 Data Cleaning

Missing Data

Missing data is common under real conditions due to different reasons. Typically, there are

four methods used to deal with the missing data:

1) The simplest solution is to discard the samples which contain missing values under some

attributes. But in the case of a dataset has few samples or the new samples are not easy

to collect, this method is not reasonable.
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2) The missing values can be filled manually; but it is time-consuming and may not be

feasible when given a large dataset with many missing values.

3) Another solution is to fill the mean value of known data under the attribute that contains

missing values. While the filled-in mean value may be incorrect.

4) The filled-in values can also be determined with inference-based tools, such as Bayesian

formalism (Oba et al., 2003) or nearest neighbor methods (Tutz and Ramzan, 2015),

which is a popular strategy.

Noisy Data

Noise is unavoidable when collecting data from the real world. It can be seen as the outlier

after cluster analysis (Gan and Ng, 2017). Noisy data contains abnormal values which will

mislead the result and decrease the performance. The regularized Neural Network (NN) is

robust to noise due to its small weight values (Nielsen, 2015). In this case, the noisy data

becomes a minor issue. However, too much noisy data may slow down training since they will

cover up the key features. Therefore, noise should be reduced for better feature extraction.

Inconsistent Data

Samples in a dataset are always described by many attributes, which results from the different

data sources or different measurements. The values under the attributes may have different

ranges, even different units. However, the majority of ML and optimization algorithms behave

much better if attribute values are on the same scale (Raschka, 2015). Thus, attribute scaling,

also known as normalization, is often performed on attribute values for consistency. There

are four commonly used normalization methods:

1) "Standardize": standardizing attribute values by removing the mean and scaling to unit

variance. The operation for a particular attribute is given by:

x̂ i =
x i −µx

σx
, (2.1)

where, x i is the value of the ith sample under a particular attribute. µx and σx are

the corresponding mean and standard deviation, respectively. With this transform, each

attribute value has the distribution of zero-mean and one-variance. Standardization

maintains useful information about outliers and makes the algorithm less sensitive to

them (Raschka, 2015).
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2) "Minmax": scaling the attribute values to range [0,1]. This method is written as:

x̂ i =
x i − xmin

xmax − xmin
, (2.2)

where, xmax and xmin are the maximum and minimum values under a particular attribute,

respectively.

3) "MaxAbs": the attribute values are scaled to the range [−1, 1] after divided by the maxi-

mum absolute value under a particular attribute:

x̂ i =
x i

max (|x |)
. (2.3)

4) "Normalize": scaling one sample to unit norm. Different norms (L1-norm, L2-norm, and

Maximum-norm) used to normalize the nonzero samples can be considered.

2.1.2 Dimensionality Reduction

Attribute Selection

Big datasets usually have hundreds or thousands of attributes, but most of these attributes are

task-irrelevant and redundant. Ignoring some attributes randomly may lose key information,

while retaining all the attributes will lead to a high computational complexity. Attribute

Selection (AS) method reduces data volume by removing the "unimportant" attributes. The

goal of AS is to find a minimum set of attributes such that the resulting probability distribution

of the data classes is as close as possible to the original distribution obtained using all attributes

(Han et al., 2011).

Decision Tree (DT) is often used to select the "important" attributes. A non-leaf node in

DT denotes a test on an attribute, each branch indicates an outcome of the test, and each

leaf node denotes a class prediction. Then the attributes that appear in the tree are taken as

important. More times an attribute appears, more important it is assumed. The number of

times an attribute appears is considered to be its attribute importance. While the attributes

that do not appear in the tree are considered to be unimportant and can be removed. Random

Forest (RF) is composed of many DTs and it reduces the bias of DTs on the estimation of

attribute importance (Breiman, 2001). The attribute importance calculated with the RF

model is aggregated from all the DTs. Details of DT and RF models will be discussed in

section 2.2.1.

However, the AS method is sensitive to noisy data. In addition, this method doesn’t con-

sider the correlations among attributes, which may lead to redundancy among the important
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attributes. For instance, if two most important attributes are strongly correlated, then the

second one contains similar information to the first one and it is supposed to be removed.

Additionally, there is not any rule to decide the number of important attributes.

Principal Component Analysis

The idea of Principal Component Analysis (PCA) is to maximize the variance of the projected

samples in an orthogonal space. The goal of dimensionality reduction is achieved by remaining

the dimensions that contain most variances of the projected samples.

Assume the original dataset X has N samples and E attributes (dimensions). X has

also assumed to be centralized, which means
∑

i x i = 0, x i indicates the ith sample of X.

{w 1, w 2, . . . , w D} construct the coordinate system of the new space and D ≤ E, where w i is

an orthonormal base, i.e., ||w i||2 = 1, w T
i w i = 0. Then the projection of x i will be z i =WTx i ,

where WT = (w 1, w 2, . . . , w D). The variance of the projected samples is
∑

i WTx i x
T
i W, hence

the optimization will be:

max
W

tr
�

WTXXTW
�

s.t. WTW= I.
(2.4)

Introducing the Lagrangian multiplier, then:

XXTw i = λi w i , (2.5)

where, λi is the eigenvalue of the covariance matrix XXT; it is also the variance of the projected

samples in the ith dimension. In order to reduce the dimensionality from D to D′, firstly it is

needed to sort these eigenvalues in descending order, e.g., λ1 ≥ λ2 ≥ · · · ≥ λD. Then the D′

eigenvectors corresponding to the largest D′ eigenvalues u = (λ1,λ2, · · · ,λ′D) are considered

as the principal components V= (v1, v2, . . . , v ′D). The projected (transformed) dataset will

be Y= VTX.

Thus, the number of the principal components can be decided from the number of large

eigenvalues. The PCA procedure for dimensionality reduction is summarized in Tab. 2.1.

Note that, in practice, the eigenvalue decomposition of the covariance matrix is usually

implemented as Singular Value Decomposition (SVD) for high computational efficiency.

PCA is a kind of linear transform. It gathers most information into the transformed dataset

while loses some for obtaining lower dimension. But with this method, the nonlinear features

of data may be lost. Similar to the AS method, deciding the number of principal components

also remains problematic.
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Table 2.1: Principal Component Analysis algorithm.

Input: dataset X= {x 1, x 2, . . . , x N}, transformed dimension D′

Output: variance vector u, principal components V, transformed dataset Y

1: centralize the samples: x i ← x i −
1
N

∑N
i=1 x i;

2: obtain the covariance matrix XXT;
3: calculate the eigenvalues of XXT with SVD, and sort them in descending order;
4: construct variance vector u with D′ largest eigenvalues;
5: take the D′ corresponding eigenvectors to be the principal components V;
6: get the transformed dataset Y= VTX;

2.1.3 Analysis of Attribute Correlations

Correlations among attributes can be taken as the additional features pre-extracted at the

beginning of data processing and they can be measured by correlation coefficients and

correlation fractal dimension. While feature pre-extraction has been demonstrated to be of

help for a fast DNN training (Andrearczyk and Whelan, 2016).

Correlation Coefficients

Two commonly used correlation coefficients are Pearson’s Correlation Coefficient (PCC) and

Spearman’s Rank Correlation Coefficient (SRCC) (Mukaka, 2012). PCC is a measure of the

linear correlation between two variables x and y; it is computed by

r =

N
∑

i=1
(x i −µx)(yi −µy)

√

√

√

�

N
∑

i=1
(x i −µx)2

��

N
∑

i=1
(yi −µy)2

�

, (2.6)

where, x i and yi are the ith elements of x and y respectively, and µx and µy are the

corresponding mean values. N is the number of elements for each variable.

PCC has a value between +1 and -1, where +1 is a total positive linear correlation,

0 means no linear correlation, and -1 is a total negative linear correlation. While PCC is

sensitive to extreme values, which may exaggerate or dampen the strength of the relationship.

Hence, it is inappropriate when the assumption of a normal distribution for the variable is

not satisfied (Jiang et al., 2004).

SRCC do not need the assumption of normal distribution and it is a nonparametric

measure of rank correlation between two variables. Differs from PCC which assesses linear

relationships, SRCC can be used to assess monotonic relationships. The formula for calculating
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SRCC is given by

ρ = 1−
6

N
∑

i=1
d2

i

N (N2 − 1)
, (2.7)

where, di is the difference between the ranks of x and y .

The values of SRCC will be high when samples have a similar (or identical for a correlation

of +1) rank between variables, and low when samples have a dissimilar (or fully opposed for

a correlation of -1) rank between variables. SRCC is appropriate when variables are skewed

or ordinal and is robust to extreme values (Mukaka, 2012). But it is only used to estimate

the correlation between two variables; it cannot give the relationship among multivariate,

i.e., a set of attributes in the big dataset.

Correlation Fractal Dimension

Another technique used to estimate the correlations among attributes comes from the ap-

plication of fractal dimension theory. Let A= {a1, a2, ..., aE} denotes the E numerical, real

attribute space for a dataset, then A defined by A is a dataset in RE . The number of attributes

E is called Embedding Dimension (ED) of the dataset, and E ∈ N. Suppose each sample

of dataset A is a point in E-dimensional space, then the potential existence of correlated

attributes leads to suppose that the set of points describes one spatial object in a dimension

which lower than or equal to E. The dimension of the object represented by the dataset is

called Intrinsic Dimension (ID), denoted by D, D ∈ R+. It is the minimum number of attributes

necessary to represent a dataset.

The projected ID, named as Partial Intrinsic Dimension (PID) pD(C), can be obtained by

estimating the ID of a sub-dataset C ⊂ A, where C is defined by C ⊂ A. Therefore, there

also exist: the ID of A equals to pD(A). While an attribute ai ∈ (A−C) increases pD(C) by

at most its Individual Contribution (IC) according to the degree of the correlation between

ai and the attributes in C. The IC of attribute ai ∈ (A − C), i.e., iC(ai), is the maximum

potential contribution of the attribute ai to pD(C). The greater the correlation between ai

and the attributes in C, the lower its contribution to pD(C).

Also, the IC of attribute ai can be measured by iC(ai) = pD({ai}) and it ranges in [0, 1].

More independent distribution of the values of ai leads to iC(ai) closer to one, while a

more structured distribution brings iC(ai) closer to zero (de Sousa et al., 2007). Thus,

the E-dimensional dataset can be seen as formed by adding the attributes with different

contributions to the D-dimensional sub-dataset.

The Correlation Fractal Dimension (CFD) D2 gives a close estimation of the ID of a dataset

(Belussi and Faloutsos, 1995, 1998). It is built on the assumption that the dataset analyzed is
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fractal and self-similar. This means that the dataset has roughly the same properties for a wide

variation in scale or size, i.e., parts of any size of the fractal are similar (exactly or statistically)

to the whole fractal (Traina Jr et al., 2010). Fortunately, most of the real-world datasets are

fractals, thus their CFDs can be taken as their IDs (Traina Jr et al., 2000; Schroeder, 2009).

As a result, CFD can be used to estimate the ID of a dataset, or the PID of a sub-dataset, or

the IC of an attribute. Therefore, CFD not only gives the information of a single attribute, but

also provides the estimation of the correlations among a set of attributes. It can be used to

additionally extract the correlation features of data.

Given a dataset defined by A and is self-similar in the range of scales [r1, r2], its CFD for

this range is measured by

D2 =
∂ log

�

∑

i C2
r,i

�

∂ log (r)
, (2.8)

where, D2 ∈ R+ and r is the size of the side of the cells in a (hyper-)cubic grid divided from the

E-dimensional space. It is usually selected in geometric progression, e.g., 0.5, (0.5)2, ..., (0.5)n,

n is called scale range. Cr,i is the number of points lying in the ith cell in scale r. Eqn. (2.8)

is called the box-counting measure of D2. If define S(r) =
∑

i C2
r,i , then the CFD is computed

as the slope of the resulting box-count plot, i.e., the plot of logS(r) versus log(r).

An example of calculating the CFD of a simple dataset with three attributes is shown

in Fig. 2.1. The dataset contains five samples and they construct a line embedded in a

three-dimensional space, thus E = 3. The ceiling of the ID, dDe= 1, indicates that just one

attribute can sufficiently characterize the whole dataset, which is true for a line embedded in

a three-dimensional attribute space.

The degree of correlations among attributes is measured by a threshold ξ: a sub-dataset

B ⊂ A is said to be ξ-correlated to another sub-dataset C ⊂ A, and attribute spaces B∩C = ;,
if each attribute ai in B does not contribute more than ξ ∗ iC(ai) to pD(C). The threshold

ξ ∈ [0, 1) tunes how strong the correlation between attributes in B and attributes in C should

be in order to be detected.

Next, some concepts of attribute sets are intuitively introduced; more mathematical

definitions can be found in de Sousa et al. (2007):

• Attribute set core ξC: a subset of attributes whose PID approaches the ID of the whole

dataset. It is the union set of all correlation bases, together with the individual attributes

that not ξ-correlated to any other attributes.

• Correlation base ξBp: a minimal subset of attributes required to define a mapping

Mk(ξBp)� ak, ak ∈ (A−ξC). The attributes in a correlation base are not ξ-correlated

to each other.
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• Correlation group ξGp: it includes the correlation base ξBp and every attribute ξ-

correlated to all attributes in ξBp, but excludes the attributes not ξ-correlated to the

full correlation base ξBp.
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Figure 2.1: Illustration of a simple (normalized) dataset lying in different scales. (a)
r = 0.5, S(r) = 9; (b) r = (0.5)2, S(r) = 7; (c) r = (0.5)3, S(r) = 5; (d) Box-count plot,
dDe= 1.

Fig. 2.2 illustrates a simple example of a dataset with five attributes. It has two correlation

groups and two corresponding correlation bases. There are not individual attributes, then

the attribute set core is the union set of two correlation bases. These relationships are shown

in Tab. 2.2.

A greedy algorithm, named as FD-ASE, is proposed by de Sousa et al. (2007) to identify

the correlated attributes in a dataset. The algorithm shows a low computational complexity

O(N) (N is the number of samples in the dataset), which is extremely important when dealing

with very large datasets.
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a2

a3

a4

a5

Figure 2.2: Illustration of correlation groups in a simple dataset with five attributes.



22 Literatures Review

Table 2.2: Correlations in a simple dataset with five attributes.

Attributes A= {a1, a2, a3, a4, a5}
Mappings M2 ({a1})� a2, M5 ({a1})� a5, M4 ({a1, a3})� a4

Correlation groups ξG1 = {a1, a2, a5} ξG2 = {a1, a3, a4}
Correlation bases ξB1 = {a1} ξB2 = {a1, a3}
Attribute set core ξC = ξB1 ∪ ξB2 = {a1, a3}

2.2 Learning Process

Classification problem is common in big data fields. This section takes the classification task

as a case to study the learning process. The classification problem is often handled with

an inference rule learnt by extracting features from data. Based on the features extracted,

samples coming from different classes are separated, which also called Pattern Recognition.

The inference rule is usually given by the trained ML models.

ML model mainly involves two types of parameter. The first one is called hyper-parameter

that must be defined manually before learning. But tuning the hyper-parameters is a tedious

and tricky work, it largely depends on human’s experience. Grid search is a simple solution

to evaluating many possible combinations of given hyper-parameter values and taking the

one that performs best as the choice. But obviously, it is time-consuming. The second type of

parameter refers to the model parameter learnt automatically from the data; it usually has

a big amount. In the learning process, the model parameters can be seen as constructing

a very complex basis used to transform the original, sparse, low-level data to be the dense,

high-level abstractions, namely, features.

2.2.1 Traditional Machine Learning Models or Methods

k Nearest Neighbor

k Nearest Neighbor (kNN) is a basic classification method (Cover et al., 1967). Given a

dataset with known classes, the new sample is predicted as the class corresponding to the

output of the majority voting system of its k nearest neighbors. Hence, there is no explicit

learning process in kNN method.

Specially, kNN method used to perform classification mainly has two steps. First, based

on the predefined distance measurement such as Euclidean distance or Manhattan distance,

k neighbors of the new sample are collected to form a set. Second, the major class of the

neighbors inside the set is predicted as the class of the new sample.

k is the hyper-parameter of kNN method. If set a small k, then a small set of known

samples are used to predict the new sample. The prediction will be accurate because only the
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samples that similar to the new sample affect the result. However, if the neighbor samples

are polluted by noise, or they have missing data but not handled appropriately, the prediction

performance will decrease. So the prediction is sensitive to its neighbor samples (Hastie et al.,

2009). On the contrary, if k is a big value, then the dissimilar samples are also taken as the

neighbor samples, which will lead to an incorrect prediction. In this case, the model becomes

simple since it ignores the discriminative information of data.

Naïve Bayes

Naïve Bayes is a classification method based on the Bayes’ theorem and the conditional

independence assumption. Actually, this method attempts to learn the mechanism of data

generation; it hence belongs to generative models.

Naïve Bayes can also be summarized as two steps to classify a new sample. First, the

prior probability of each known class and the conditional probability under each attribute for

each known class are calculated. Second, based on the probabilities, the class that maximizes

the posterior probability is predicted as the class of the new sample.

The conditional independence of Naïve Bayes method is a strong assumption that makes

the method highly efficient, but it may lead to bad classification performance. Additionally,

this method only works on the dataset containing nominal data, which limits its applications.

Decision Tree and Random Forest

Based on the attributes in a dataset, Decision Tree (DT) model tries to learn a series of

questions to infer the class of a sample. One of the advantages of DT is that it requires very

little data preparation, which means that this method doesn’t need normalization. Each node

in the tree counts how many samples work on one particular attribute. Specially, for each

node, the impurity decrease of subsets split by each particular attribute is computed and the

attribute which produces the purest subsets is taken as the criterion. It is the basic idea of

Classification And Regression Tree (CART) algorithm (Breiman, 2017), which extensively

searches among the pairs of the attribute for the largest impurity decrease.

Obviously, CART is a greedy algorithm, since it searches for an optimum split at the

top level, and then repeats the process at each level. It does not check whether or not the

split will lead to the lowest possible impurity at several levels down. So it may produce a

suboptimal result. In addition, this algorithm compares all attributes for every sample at

each node, which lead to a high computational complexity when dealing with large datasets.

Thus, restricting the grown tree in a reasonable depth will help to speed up learning partly.

The depth is an important hyper-parameter of the tree model.
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Another hyper-parameter for DT models is the metric used to measure the impurity. There

are two commonly used metrics to calculate the impurity, i.e., Gini:

Gi = 1−
S
∑

s=1

p2
i,s, (2.9)

and Entropy:

Hi = −
S
∑

s=1
pi,s 6=0

pi,s log
�

pi,s

�

(2.10)

where, pi,s is the ratio of class s samples among the dataset in the ith node.

Random Forest (RF) model consists of many DTs. It was firstly proposed by Kam (1995)

to reduce both the bias and variance of DT models, which is the idea of Ensemble Learning

(EL) (Dietterich, 2002). RF model has become a powerful ML method for classification and

prediction tasks despite its simple mechanism (Breiman, 2001; Parkinson et al., 2016).

Logistic Regression

Logistic Regression (LR) model is widely used for classification in industry. It is originally

designed for binary classification problems, but it can be extended to deal with multi-class

classification problems. The parameters of LR model are usually estimated by maximizing the

likelihood function of the conditional probability distribution. In practice, the maximization

is transformed to be the minimization of a cost function, which often implemented with

Gradient Descent (GD) method.

GD method is an iterative process described in Tab. 2.3. In each step, the partial

differentials of the cost function C(w ) are calculated on the parameters w and they are

denoted as gradients g . Then g are used to update w with a learning rate η. The process is

repeated until meeting some conditions. When the cost function is convex, the output of the

GD method is a global optimal solution. While in many cases, the global optimal solution

cannot be guaranteed.

Support Vector Machines

Another powerful and widely used learning algorithm is Support Vector Machines (SVM)

that formally published in Cortes and Vapnik (1995). The training strategy of SVM is to

maximize the margin, and it can be mathematically transformed to solve a convex quadratic

programming problem. The margin is denoted as the distance between the separating

hyperplane (decision boundary) and the samples that are closest to this hyperplane. These

samples are the so-called support vectors.
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Table 2.3: Gradient Descent method.

Input: cost function C(w ), gradient function g(w ) =∇C(w )
learning rate η, precision ε, iterations K

Output: minimal point ŵ

1: initialize w (0), set k = 0;

2: calculate gradient g k = g(w (k)),
if




g k





< ε: stop, output ŵ = w (k);

3: set w (k+1) = w (k) −ηg k, compute C(w (k+1));
if




C(w (k+1))− C(w (k))




< ε or




w (k+1) − w (k)




< ε: stop, output ŵ = w (k+1);
4: set k = k+ 1,

if k = K: stop, output ŵ = w (k);
else: turn to step 2.

Considering a binary classification problem on a linearly separable dataset, as shown in

Fig. 2.3(a). The training objective is to find a separating hyperplane in the attribute space

to separate the samples into "positive" (+1) and "negative" (-1), and then to maximize the

margin, which is called hard margin maximization. However, this solution cannot be directly

used on the approximate-linearly separable dataset that contains outliers, as shown in Fig.

2.3(b). Under this circumstance, a penalty parameter that works on the misclassified results is

usually introduced to balance the predicted error and computational complexity. Hence, the

convex quadratic programming problem in the approximate-linearly separable case is called

soft margin maximization, and its solution can be obtained with the similar optimization

procedure of the hard margin maximization.

positive sample
negative sample
support vector

(a)

positive sample
negative sample
support vector
outlier

(b)

positive sample
negative sample

(c)

Figure 2.3: Binary classification problems for the (a) linearly separable dataset; (b)
approximate-linearly separable dataset; (c) linearly inseparable dataset.

Nevertheless, in real-world scenarios, datasets are often more complex and cannot be

classified by the linear SVM aforementioned, as shown in Fig. 2.3(c). In such case, the

nonlinear classification problem can be handled with the nonlinear SVM. The idea is that the

original dataset is nonlinearly transformed into a higher space with a kernel function. The
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linearly inseparable features in the original space will become linearly separable in the new

space. Then the classification becomes a linearly separable problem in the high space, which

can be solved with the linear SVM. More details about the nonlinear SVM can be found in

Scholkopf and Smola (2001) and Hofmann et al. (2008).

Sequential Minimal Optimization (SMO) (Platt, 1998) is popularly used to train SVM. It

has been efficiently implemented in many packages, such as SVM Light (Joachims, 1999)

and LIBSVM (Chang and Lin, 2011). Additionally, the binary classification SVM can also be

extended to address multi-classification problems (Weston et al., 1999; Crammer and Singer,

2001).

Ensemble Methods

Ensemble Method (EM), proposed by Freund and Schapire (1995), aggregates independent

learning models into an ensemble predictor and leads to better performance. This strategy

reduces both the bias and the variance of individual models, which always achieves good

results on unseen samples. EM usually works best when the individual models are as

independent as possible.

According to the method used to aggregate models, EM is classified into Hard EM (HEM)

and Soft EM (SEM). HEM counts the prediction of each individual model and outputs the

class that gets the most votes (Zhang et al., 2014). It is similar to the majority voting system.

The drawback of HEM is that it cannot estimate the probability of predicted class. In other

words, it cannot tell how certain the class of the predicted result is.

While SEM predicts a sample based on the weighted probability of the predictions coming

from individual models (Jiménez, 1998). The weights indicate the contributions of models,

and they are decided by the performance of individual models. Therefore, SEM often achieves

better performance than HEM, since SEM gives more weight to highly confident votes (Géron,

2017), i.e., the model that performs better will hold higher weight, while in HEM, all the

models have the same weight. Obviously, the soft ensemble strategy requires every individual

model to have the ability to estimate the probability of prediction.

According to the relationship of individual models, EM can also be cataloged into two

types. The first one is a sequence method, where there is a strong dependency between

successive models and these models must be constructed serially. A famous example of

sequence EM is AdaBoost (Freund and Schapire, 1997). While another type of EM is parallel,

where the individual models can be implemented simultaneously because they don’t have

strong dependencies. Bagging (Breiman, 1996) and RF are the common examples.
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2.2.2 Neural Network Models

Actually, the early NN can be cataloged into the traditional ML models due to its shallow

structure and straightforward mechanism (Rosenblatt, 1958; Novikoff, 1963; Widrow and

Lehr, 1990). However, in recent years, the structures of the NN model become deeper

and deeper, and they show an enormous potentiality in many complex problems. It is of

value to particularly introduce and analyze the characteristics of different NN structures for

improvements.

Multilayer Perceptron

Multilayer Perceptron (MLP) is a basic structure of NN. Each layer of the MLP model is fully

connected by the trainable parameters called weights and bias. These layers are also known

as Fully-Connected Layers (FcLs). One simple example of MLP is illustrated in Fig. 2.4. In the

figure, a contains the outputs of one hidden layer and they are called activations. Specifically,

the activations of a hidden layer constitute a vector whose length equals the number of hidden

units. For example, vector al consists of m elements corresponding to m units of the lth

hidden layer. z is called logits which is the summation of the bias b with the inner product

between the activations a of the previous layer and the weights W of the local layer. W is a

matrix with a shape of (m, n), i.e., W ∈ Rm×n. m and n are the number of hidden units of the

previous layer and local layer, respectively. f (·) is the activation function of hidden layers.

al�1
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al�1
3

al�1
m zl

n

zl
1

zl
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2
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Wl Wl+1al�1 zl al

f

f

f

f

l � 1 l l + 1

Figure 2.4: The structure of a MLP model. The superscript and subscript are the indices of
layers and hidden units, respectively.

One-time MLP training process includes Forward Propagation (FP) and Backward Propa-

gation (BP). According to the symbols shown in Fig. 2.4, the FP process of the lth hidden
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layer can be described in the matrix form:

(

z l = al−1Wl + bl−1

al = f
�

z l
�

. (2.11)

The purpose of FP process is to calculate the error (also called loss) between the model outputs

and the ground-truth, based on a predefined loss function. Cross Entropy (CE) usually acts

as the loss function in classification tasks, while Mean Square Error (MSE) function is often

used in regression problems. These two loss functions are written as:




























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CCE = −
1
N

N
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i=1

S
∑
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I (yi = s) log ai,s (2.12a)
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S
∑
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exp

�

zi,k

�

(2.12b)

CMSE =
1

2N

N
∑

i=1

(z i − r i)
2, (2.13)

In Eqn. (2.12a), N is the number of samples and S is the number of classes. I (·) is the

indication function, i.e., I = 1 if the target class for the ith sample equals to s, otherwise,

I = 0. Eqn. (2.12b) is called softmax function, where zi,s and ai,s are the logit and activation

of the sth output unit for the ith sample, respectively. When using CE function as the loss

function in classification tasks, the logits of the output layer are better to be activated by

softmax function and the one-hot labels should be used at the same time. Glorot and Bengio

(2010) has found that the plateaus in the training criterion will barely present in classification

problems when using this kind of log-likelihood loss function. In Eqn. (2.13), z i and r i are

the logits of the output layer and the ground-truth for the ith sample, respectively. In addition

to CE and MSE functions, some other non-classical loss functions can also be considered, as

listed in Janocha and Czarnecki (2016).

The BP algorithm was proposed by Rumelhart et al. (1986) to update the weights and

bias. Their idea was to construct internal representations with gradient descent procedure.

There is an opposite computing direction in comparison with the FP process: in FP process the

activation data flows from the input to the output layer, while in BP process, the error data

derived from the loss function propagates from the output to the input layer. Then the errors

of each hidden layer are calculated successively and the gradients of trainable parameters

are computed with the respective errors. Finally, the parameters are updated with different
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gradient-based optimizers, such as Stochastic Gradient Descent (SGD) (Koushik and Hayashi,

2016), Mini-batch Gradient Descent (MGD) (Li et al., 2014), AdaGrad (Duchi et al., 2011),

and Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014). The BP algorithm can be

summarized as:

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


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
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Wl ←Wl −η
�

al−1
�T
δl (2.14c)

bl ← bl −η
∑

δl (2.14d)

where, C is the error calculated with the loss function, and∇aC are the partial differentials of

the predicted error on the output a. δl contains the errors of the lth layer, l = 1, 2, ..., L−1, L,

where L indicates the output layer. σ′(·) is the derivative of activation function of the output

layer. As it often occurs in nonlinear fitting tasks, σ(zL) = zL, i.e., there is no nonlinear

mapping in the output layer. But in classification tasks, softmax function typically acts as the

σ(·) function. f ′(·) is the derivative function of the hidden layers. The Activation Function

and Derivative Function pair (ADF) of hidden layers are often discussed simultaneously in this

thesis. Eqn. (2.14c) and (2.14d) are used to update the weights and bias of the lth hidden

layer, respectively. η is called learning rate that determines the learning step in training.

Convolutional Neural Network

Besides FcLs, there are other types of layers in DNN structure. For example, the Convolutional

Layer (ConvL) and Pooling Layer (PoolL) in Convolutional Neural Network (CNN) (LeCun

et al., 1998) which is a specialized kind of NN for processing data that has a known grid-like

topology (Goodfellow et al., 2016), such as images.

ConvL was inspired by neuroscience that shows many neurons in the visual cortex system

have a small local receptive field (Hubel, 1959; Hubel and Wiesel, 1959, 1968). The abstracts of

higher-level neurons are based on the outputs of neighboring lower-level neurons (Fukushima,

1980), which leads to the multilayer structure of CNN. The receptive field is often implemented

as the convolutional window in CNN, and it is also named as kernel. The values of the kernel

are the trainable parameters of CNN and they can be updated with BP algorithm as well,

where ADF is required. The convolution operation is illustrated in Fig. 2.5.

ConvL involves the convolution operation1 which differs from the general matrix multi-

1In practice, many machine learning libraries implement "cross-correlation" instead of the "convolution"
operation in CNN. But they achieve the same performance during training. More discussions about them can be
found in section 9.1 of the deep learning book Goodfellow et al. (2016).
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Figure 2.5: Convolution for a RGB color image.

plication in FcL. The convolutional windows result in the sparse connectivity in CNN, which

will reduce the memory requirements of the model and thus improve the computational

efficiency. The sparsity will also enhance the robustness of model to noise input. In addition,

the parameters of the kernel are shared by every position of the input, which speeds up the

training further.

The pooling operation of PoolL is used to replace the output of the layer at a certain

location with a summary of the nearby outputs. The target of it is to transform the joint

feature representations into a new, more usable one that preserves important information

while discard or weaken irrelevant details (Boureau et al., 2010; Sermanet et al., 2012). Given

a rectangular window in an image, after pooling the output of a window is typically either

the maximum value (max pooling) or the average value (average pooling) of the rectangular

neighborhood. In fact, from the signal processing point of view, the PoolL of CNN can be seen

as a downsampling operation. Therefore, it doesn’t have trainable parameters and needs no

ADF.

But the simple max pooling or average pooling may not respect the structure of the

previous layer, which leads some structures in the features to be absent or lost (Chaabane

et al., 2017). Several improvements have been proposed to deal with the disadvantages of

the traditional pooling operations (Zeiler and Fergus, 2013; Yu et al., 2014; Williams and Li,
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2018).

Generative Adversarial Nets

Another promising NN model, Generative Adversarial Nets (GAN) firstly proposed by Goodfel-

low et al. (2014), can also be constructed by FcLs. It includes a discriminator and a generator,

between which an adversarial game takes place: the discriminator is trained to tell the

samples coming from the generator, while the generator is trained to produce samples which

cannot be recognized by the discriminator. The discriminator and generator are trying to find

Nash equilibria in high-dimensional, continuous, non-convex games.

GAN model can also be trained with iterative FP and BP processes. It has been quite

popular and successful to generate intuitive images, which benefits from the perfect trained

generator (Denton et al., 2015; Sønderby et al., 2017). In recent years, researchers are

focusing on the combination of semi-supervised learning with the discriminator to build a

semi-supervised classifier. This idea has been demonstrated successful in image classification

and it will be an attractive field. For example, in Odena et al. (2017) and Salimans et al.

(2016), the authors labeled the samples produced from the generator as one class, namely the

fake class, while the samples coming from the dataset were labeled as true. As the generator

was trained to approximate the true samples, the discriminator was trained to identify the

fake samples. Moreover, because the true samples had distinct known classes as well, the

discriminator was additionally trained to predict the known classes. Their work obtained

good results on some public image datasets.

2.3 Performance Evaluation

Following the learning phase, there should be some methods to evaluate the performance of

the trained models on unseen samples. In particular, monitoring the loss values is significant

to observe the status of training process.

2.3.1 Split Dataset

Usually, a dataset is divided into two parts: training dataset for learning, and test dataset

for evaluation. The samples in test dataset are considered to be unseen samples, thus they

shouldn’t simultaneously appear in the training dataset or ever used for training. For a dataset

X= {(x 1, y1), (x 2, y2), . . . , (x N , yN )}, there are two commonly used split methods to obtain

the training dataset S and test dataset T: Hold-out Method (HoM) and Cross Validation (CV).
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Hold-out Method

With the HoM, two mutually-exclusive sub-datasets are generated, i.e., X= S∪ T, S∩ T= ;.
The number of samples in training dataset and test dataset usually follows a ratio, for which,

7:3 is a common choice. Note that the split of training and test datasets should ensure the

consistency of data distribution as far as possible so that not introduce the additional bias.

For example, if dataset X has 500 positive samples and 500 negative samples, and the number

of samples in the sub-datasets follows the ratio 7:3, then the training dataset should contain

350 positive samples and 350 negative samples, while the test dataset contains 150 positive

samples and 150 negative samples.

However, how to select the samples into the sub-datasets remains problematic. For

instance, in the aforementioned example, there exist many solutions to deciding which 350

positive samples should be included in the training dataset. Therefore, the evaluation result

coming from a single partition of a dataset is usually not reliable. A commonly used method

is to split the dataset several times and return the average result.

Cross Validation

CV method divides the dataset X into k mutually-exclusive sub-datasets, i.e., X= X1 ∪X2 ∪
· · · ∪Xk, and Xi ∩X j = ;, (i 6= j). In each process, the union of k− 1 sub-datasets is taken as

the training dataset by turn, and the remaining one is the test dataset. Then k results are

averaged to be the result. The CV method is hence also called k-fold cross validation, where k

is usually chosen as 10.

CV method should also respect the consistency of data distribution. Besides, the k sub-

datasets can be generated with different partitioning strategies as well. Therefore, similar to

HoM, the training and evaluation processes of CV method should be repeated on different

partitioning datasets several times, and the average result is returned.

2.3.2 Intuitive Performance

It is expected that the ML models are able to learn the general patterns in training dataset

and have the ability to identify unseen samples in test dataset correctly. However, if a model

is trained too complex, then it tends not to generalize well to unseen data, which is called

overfitting (high variance). On the contrary, if a trained model is not complex enough to

capture the key patterns of data, it will lead to bad performance on unseen data, this is called

underfitting (high bias).

Underfitting indicates a weak learning capability of the model. It can usually be tackled

by designing a more complex model, such as, adding the depth of DT, increasing the number
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of DTs in RF, and adding the hidden layers of NN models. However, overfitting is troublesome

and is a common issue in ML field. It indicates a weak generalization capability of the model.

The overfitting problem can be alleviated in two folds. On one side, training on a larger

dataset will produce a model with stronger generalization capability, which is also one of the

reasons leading to the success of DNN nowadays. But collecting more samples is always not

feasible in practice. Thus, data augmentation is a common choice, such as, adding noise to

the samples (Salimans et al., 2016; Sønderby et al., 2017) or distorting the images as new

samples (Wong et al., 2016; Perez and Wang, 2017).

On the other side, decreasing the complexity of models is another solution to the over-

fitting problem. The improvements for the models include pruning branches in DT, and

randomly discarding some neurons during the NN training process (Srivastava et al., 2014).

Furthermore, the weights sharing mechanism of CNN inherently introduces sparsity and

gives the ability to alleviate overfitting. Therefore, designing a sparse activation function to

keep the sparsity of propagating data during training may be a promising direction to reduce

overfitting problem of DNN.

Other solutions may come from the optimization of NN training process, such as, adding

a regularization term to the loss function (Goodfellow et al., 2016; Kukačka et al., 2017) or

normalizing the data of hidden layers (Ioffe and Szegedy, 2015). Ensemble method is also a

useful strategy to strengthen the generalization capability of models.

2.3.3 Performance Measure

The mathematical evaluation of the model performance can be given by comparing the model

outputs with the ground-truth. A simple method is to use the measurement function to

calculate the distance between the model outputs and the ground-truth, such as using the

MSE function. While in classification tasks, there exist better measurements for evaluation:

accuracy, precision, and recall. For a binary classification task, the three measurements can be

defined by the form of a confusion matrix that consists of four predicted cases:

• true positive (tp): the number of positive samples correctly predicted to be positive;

• false positive (fp): the number of negative samples wrongly predicted to be positive;

• false negative (fn): the number of positive samples wrongly predicted to be negative;

• true negative (tn): the number of negative samples correctly predicted to be negative.
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The confusion matrix is described in Tab. 2.4, and the aforementioned three measurements

can be written as:

accuracy=
tp+ tn

tp+ fp+ tn+ fn
,

precision=
tp

tp+ fp
,

recall=
tp

tp+ fn
.

(2.15)

Table 2.4: Confusion matrix of the binary classification problem.

Labels
Predicted

positive negative

Truth
positive tp fn
negative fp tn

Inspecting the results with accuracy score is common in many classification tasks, while

precision or recall score is also suitable under the circumstance where the positive samples

are more concerned. Precision indicates the ability of the classifier not to label as positive a

sample that is negative, and recall shows the ability of the classifier to find all the positive

samples.

In order to get a high precision score, for example, the case of the positive samples

misclassified to be negative can be acceptable, while the negative samples are not desirable

to be misclassified as positive, as shown in Fig. 2.6. The case will be opposite if a high recall

score is expected.

positive sample
negative sample

boundary 1

boundary 2

Figure 2.6: Different boundaries in a binary classification problem. In the case of boundary
1, the precision score is lower while the recall score is higher, than in the case of boundary
2.
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2.3.4 Performance Curve

To evaluate the trained models on the test dataset, the three measurements introduced before

can be considered. However, in most cases, high precision score and high recall score cannot

be achieved at the same time. There should be some tools to perform precision/recall tradeoff.

In ML field, Precision-Recall Curve (PRC) and Receiver Operating Characteristic (ROC) are

commonly used.

In binary classification tasks, the trained models usually output real values or probabilities

for the test samples. These outputs are compared with a threshold, where the sample with an

output higher than the threshold is considered as positive, otherwise as negative. Therefore,

as the threshold varies from a high value to a low value, the precision score is decreasing

while the recall score is increasing. Given different thresholds, a PRC can be plotted as shown

in Fig. 2.7(a). A perfect classifier would fall into the top-right corner of the graph with both

precision and recall equal to 1. In particular, for accuracy measurement, the threshold is

fixed to 0.5.

However, based on different thresholds, ROC uses another two values to plot the curve,

i.e., True Positive Rate (TPR, another name for recall) and False Positive Rate (FPR), as shown

in Fig. 2.7(b). A perfect classifier would fall into the top-left corner of the graph with both a

TPR of 1 and a FPR of 0. FPR is defined as:

FPR=
fp

tn+ fp
. (2.16)

Based on the ROC curve, the so-called Area Under the Curve (AUC) is often used to further

characterize the performance of a classifier. The classifier with larger AUC performs better.

When comparing PRC with ROC, as a rule of thumb, the PRC is preferable whenever the

positive class is rare or when the false positives are more concerned than the false negatives,

and the ROC otherwise (Géron, 2017).

In particular, when training NN models, monitoring the training and test loss values is of

great help to study the status of training. The convergence can also be observed if the loss

values are plotted during training, as illustrated in Fig. 2.7(c).



36 Literatures Review

0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

A

B

Recall

Pr
ec
is
io
n

(a)

C

D

FPR

TP
R

0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

(b)

Epochs

Lo
ss

 v
al

ue
s

E

F

G

(c)

Figure 2.7: The intuitive curve examples of (a) PRC, where model A performs better than
model B; (b) ROC, where model C performs better than model D; (c) loss values, where
model E converges normally, model F diverges, while model G converges to a suboptimal
level.

2.4 Wavelet Theory

As discussed before, the key to many big data applications is feature extraction. Another

powerful tool to extract features from data is wavelet analysis. Having the property of being

localized in time as well as in frequency domain, wavelet analysis has been widely used in the

last decades. Many mathematical conclusions in wavelet theory have been validated useful

in many applications, especially in speech and image data processing (Tanmoy et al., 2018;

Wang et al., 2016; Luo et al., 2006; Vyas and Paik, 2018).

In big data era, the real data is expected to be transformed into a low-dimensional space

where the key features are also extracted. The possibility of dimensionality reduction shows

the sparsity of real data, which has been demonstrated to be of help to save storage (Langr

and Tvrdik, 2015; Bylina et al., 2018), improve computational efficiency (Dalton et al., 2015;

Elafrou et al., 2018; Yang et al., 2018), and remove noise (Zhuang and Bioucas-Dias, 2018).

Meanwhile, Donoho (1993) pointed out that wavelets are unconditional bases of various

function spaces, indicating that they typically compress the energy of signal into a smaller

number of coefficients. It is the sparsity and energy compaction of wavelet. Therefore,

wavelet analysis may provide solutions to the problems arisen in DNN training.

2.4.1 Wavelet Transform

Fourier Transform (FT) projects the one-dimensional signal in the time domain to the one-

dimensional representations in the frequency domain, i.e., transforming a pure "time de-

scription" into a pure "frequency description" (Strang and Nguyen, 1996). While the two-

dimensional coefficients, namely the time and frequency representations, can be obtained



2.4 Wavelet Theory 37

after Wavelet Transform (WT) (Sidney Burrus et al., 1998). Besides, the original signal can

be reconstructed from the wavelet coefficients with Inverse Wavelet Transform (IWT).

In practice, WT is usually performed as a Discrete Wavelet Transform (DWT) on computers

for high efficiency, which can be implemented with filtering operations. The filters are

designed based on the standpoint of multiresolution: the difference of information between

the approximation of a signal at the resolutions 2m+1 and 2m (where m is an integer) can be

extracted by decomposing this signal on a wavelet orthonormal basis of L2(Rn) (Mallat, 1989).

The pyramidal structure of the wavelet filter bank makes it possible that the information at a

low resolution can be inferred from the information at a high resolution.

Function Space

A function space is a linear vector space where the vectors are functions; the scalars are real

numbers (sometimes complex numbers). If function f (t) ∈ L2(R) and g(t) ∈ L2(R), where

L2(R) is denoted as the one-dimensional measurable, square-integrable function space, then

the inner product of f (t) with g(t) is a scalar a obtained by an integral:

a = 〈 f (t), g(t)〉=
∫

f (t)g(t)d t. (2.17)

The norm of f (t) in L2(R) is given by:

‖ f ‖2 =
∫

| f (t)|2 d t (2.18)

The convolution of two functions f (t) and g(t) is written as:

f (t) ∗ g(t) =

∫

f (u)g(t − u)du. (2.19)

The Fourier transform of f (t) is written as f̂ (ω) defined by:

f̂ (w) =

∫

e− jωt f (t)d t. (2.20)

Multiresolution Analysis

A set of scaling functions refers to the integer translates of the basic scaling function φ(t):

φk(t) = φ(t − k), k ∈ Z, φ ∈ L2. (2.21)
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A subspace of L2(R), i.e., V0 ⊂ L2(R), can be assumed to be spanned by these functions.

Moreover, the size of the subspace will change with different time scales of φ(t), which

means:

φm(t) = 2mφ(2m t), ∀m ∈ Z (2.22)

whose span is Vm ⊂ L2(R) and the resolution is 2m. According to the natural scaling condition:

f (t) ∈ Vm ⇔ f (2t) ∈ Vm+1, ∀m ∈ Z, (2.23)

a nesting of the spanned spaces exists:

0 · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · ⊂ L2, (2.24)

or

Vm ⊂ Vm+1, ∀m ∈ Z. (2.25)

Thus, based on Eqn. (2.23) and (2.24), there exist:

φ(t) =
∑

n

h(n)
p

2φ(2t − n), n ∈ Z, (2.26)

where, h(n) is called the coefficient sequence of scaling function.

Therefore, a two-dimensional family of functions can be generated from φ(t) by

φm,k(t) = 2−m/2φm(t − 2−mk)

= 2m/2φ(2m t − k), k ∈ Z
(2.27)

whose span over k is Vm ⊂ L2(R) for all integers k ∈ Z. Eqn. (2.27) shows that an orthonormal

basis2 φm,k(t) of any space Vm can be built, by dilating a function φ(t) with a coefficient 2m

and then translating the resulting function on a grid whose interval is proportional to 2−m.

However, only the subspaces Vm spanned by the orthonormal basis φm,k(t) are not

sufficient to represent a function. The detail information at the resolution 2m is needed. This

information is given by the orthogonal projection of the original signal in the orthogonal

complement of Vm in Vm+1. Let Wm be this orthogonal complement, i.e.,

Wm is orthogonal to Vm,

Wm ⊕ Vm = Vm+1,
(2.28)

2The concept of orthonormal basis will be introduced in section 2.4.2.
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then

L2 = V0 ⊕W0 ⊕W1 ⊕ · · · (2.29)

The orthonormal basis of Wm is built by dilating and translating an orthogonal wavelet ψ(t):

ψm,k(t) = 2m/2ψ(2m t − k), k ∈ Z. (2.30)

Similarly, based on the relationship Wm ⊂ Vm+1, there also exist

ψ(t) =
∑

n

g(n)
p

2φ(2t − n), n ∈ Z, (2.31)

where, g(n) is called the coefficient sequence of wavelet. Due to the orthogonal and comple-

mentary requirements of subspaces Wm and Vm, there should be

g(n) = (−1)nh(1− n). (2.32)

In signal processing, g(n) and h(n) are called Quadrature Mirror Filters. In practice, these

filters are usually designed with the orthogonal wavelets, e.g., Daubechies’ wavelets, in order

to obtain the orthogonal representations of a signal.

Implementation of DWT and IDWT

Based on the structure of the L2 space shown in Eqn. (2.29), combing Eqn. (2.27) and (2.30),

then any function f (t) ∈ L2(R) can be written as:

f (t) =
∑

k

c(m=0)(k)φm=0,k(k) +
∑

k

M−1
∑

m=0

d(m)(k)ψm,k(k), (2.33)

where, c(m)(k) and d(m)(k) are the approximation information and detail information of

the original signal f (t) at the resolution 2m, respectively. The process to get them is called

Discrete Wavelet Transform (DWT), or Wavelet Decomposition (WD). So information c(m)(k)

and d(m)(k) are also called wavelet coefficients. They are the representations of signal f (t) at

the resolution 2m in wavelet domain. For example, c(0)(k) is the approximation coefficient

at the coarsest resolution, while d(M−1)(k) is the detail coefficient at the finest resolution.

Conversely, the reconstruction of original signal f (t) based on these wavelet coefficients is

called Inverse Discrete Wavelet Transform (IDWT).

Both DWT and IDWT can be efficiently implemented with scaling filter and wavelet filter

whose coefficients are given by h(n) and g(n), respectively. Specially, to calculate the wavelet
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coefficients with DWT, there are:

c(m)(k) =
∑

n

h(n− 2k)c(m+1)(n), (2.34)

and

d(m)(k) =
∑

n

g(n− 2k)c(m+1)(n). (2.35)

In case of the wavelet coefficients at the low resolution 2m are known, the approximation

information at the high resolution 2m+1 is computed by

c(m+1)(k) =
∑

n

c(m)(n)h(k− 2n) +
∑

n

d(m)(n)g(k− 2n). (2.36)

Eqn. (2.36) indicates the IDWT process. Eqn. (2.34-2.36) are called pyramid transform or

Mallat’s algorithm (Mallat, 1989), as intuitively shown in Fig. 2.8. Note that, the computa-

tional complexity of Mallat’s algorithm is O(N), where N is the length of the original signal.

Therefore, the algorithm is really efficient and as a result widely used in many applications.
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Figure 2.8: Pyramid transform using filters. (a) DWT, ↓ 2: removing one for every two
points; (b) IDWT, ↑ 2: inserting one zero between every two points.

Practical Case

However, in practice, a finite signal should be considered. Several practical issues will arise

when taking the DWT or IDWT for a finite signal. Based on the implementation of DWT and

IDWT shown in Fig. 2.8, it can be found that there are mainly two operations in the pyramid

transform: downsampling/upsampling and filtering.
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Downsampling and upsampling operations can be easily understood from Fig. 2.8. There

are two types of sampling strategies:

1) even type: When downsampling on a one-dimensional signal x = (1,2,3,4,5), the odd-

numbered points are removed and the removing starts with the first point. It leads to

y = (↓ 2)x = (2,4). The upsampling operation inserts one zero between every two

samples but the insertion starts with the second point, i.e., (↑ 2)y = (2,0, 4).

2) odd type: In this case, downsampling and upsampling have similar operations to the even

type except for the start point. Now the removing of downsampling starts with the second

point, while the insertion of upsampling starts with the first point. Therefore, in this case,

the results will be y = (↓ 2)x = (1,3, 5) and (↑ 2)y = (0,1, 0,3, 0,5, 0).

If denote s as the length of the original signal, and ε = 1 for even sampling type, ε = 2 for

odd sampling type, then the length of the downsampled signal d will be written as:

d =
s
2
+
�

ε −
3
2

�

�

s− 2
j s

2

k�

, (2.37)

while the length of the signal upsampled from the original signal will be:

u= 2(s+ ε)− 3. (2.38)

Eqn. (2.37-2.38) can easily be derived from the lemmas described in Rajmic and Prusa

(2014).

While the implementation of filtering is usually performed by convolution that may cause

the so-called border effect (Montanari et al., 2015; Pacola et al., 2016). In practice, the

convolution window extends partially at the borders because of the absence of available data

there. It will produce abnormal coefficients and hence cause a border effect when performing

WT. Typically, extending the signal is a good solution. Traditional extension strategies include

zero-padding, periodization, and symmetrization (Strang and Nguyen, 1996; Walnut, 2013).

• Zero-padding: This method is simply to treat the finite signal as an infinite signal

padded with zeros. But it often results in a longer length of wavelet coefficients than

of the original signal, thus decreases efficiency.

• Periodization: This method views the signal as a periodic signal, then the data outside

the original signal domain is periodically extended. In this method, discontinuities may

be artificially created at the border.

• Symmetrization: The finite signal can also be symmetrically extended by the boundary

values, which seems to work fine in many applications.
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As shown in Fig. 2.8(a), in DWT process, the detail coefficients d(m) and approximation

coefficients c(m) at the low resolution 2m can be obtained from the approximation coefficients

c(m+1) at the high resolution 2m+1 with the procedure as follows:

1) Border extension: Extend c(m+1) by (l − 1) samples from both sides. l is the length of the

filters used (g(−n) or h(−n) in Fig. 2.8(a)). The extended values depend on the chosen

extension strategy. The length of the extended result will be s+2(l−1), where s indicates

the length of c(m+1);

2) Filtering: Perform convolution of extended result with filter g(−n) for detail information,

with filter h(−n) for approximation information. Then the length of the filtered result will

be s+ 3(l − 1);

3) Cropping off : Crop off l − 1 samples from both ends of the filtered result, which results in

a signal of length s+ l − 1;

4) Downsampling: Finally, downsample the cropped vector based on the defined downsam-

pling type and thus produce the coefficients d(m) and c(m).

This procedure can repeat on c(m) to obtain the coefficients at the resolution 2m−1, and the

coefficients at lower resolutions can be calculated successively. Conversely, in IDWT process,

the approximation coefficients c(m) at the high resolution 2m can be reconstructed by the

detail coefficients d(m−1) and approximation coefficients c(m−1) at the low resolution 2m−1,

as shown in Fig. 2.8(b):

1) Upsampling: Upsample the coefficients d(m−1) and c(m−1) at the resolution 2m−1 based on

the defined upsampling type;

2) Filtering: Perform convolution of upsampled signal with reconstruction filter g(n) and

h(n);

3) Summing: Add up the outputs of both filters;

4) Cropping: Take the central part of the resultant signal as the approximation coefficients

c(m) at the resolution 2m, with the same length as at the appropriate resolution of DWT.

So the length of coefficients at every resolution must be recorded in the DWT process. If

denote p as the length of c(m−1) (or d(m−1)) and s as the length of c(m), then Rajmic and

Prusa (2014) gives:

s =

(

2p− l + 1, for even s+ l − 1,

2p− l − 2ε + 4, for odd s+ l − 1.
(2.39)
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2.4.2 Wavelet Frame

Basis

In function space, a function g(t) can be expanded with a set of functions fk(t) called basis

that spans vector space F . If a function g(t) ∈ F has the form:

g(t) =
∑

k

ak fk(t), (2.40)

with k ∈ Z and t, a ∈ R, then fk(t) will be called:

• basis for space F , if the set of {ak} is unique for any particular g(t) ∈ F ;

• orthogonal basis, if 〈 fk(t), fl(t)〉= 0 for all k 6= l;

• orthonormal basis, if 〈 fk(t), fl(t)〉= δ(k− l).

Based on the definitions, if fk(t) is an orthonormal basis for space F , then the form of g(t) ∈ F

shown in Eqn. (2.40) will be written as:

g(t) =
∑

k

〈g(t), fk(t)〉 fk(t) and ak = 〈g(t), fk(t)〉 . (2.41)

However, there are cases where the orthogonal basis cannot or shouldn’t be obtained.

For these cases, a dual basis set f̃k(t) can be built to construct biorthogonal bases with the set

fk(t), such that

g(t) =
∑

k




g(t), f̃k(t)
�

fk(t). (2.42)

The elements of f̃k(t) are not orthogonal to each other, but to the corresponding element of

fk(t), i.e.,



fl(t), f̃k(t)
�

= δ(l − k). (2.43)

Frame

To be a basis requires that the set be independent, meaning no element can be written as a

linear combination of the others. While if a set of functions is dependent and yet expands

function g(t) as in Eqn. (2.42), then the set is called a frame.

Wavelet frame theory has been investigated in detail in Daubechies (1990) and Chui and

Shi (1993). The frame indicates the bounds of the wavelet signal energy. After dilating and

translating the wavelet basis functions ψ(t), the wavelet family is considered as:

ψa,b(t) = |a|
−1/2ψ

�

t − b
a

�

, (2.44)
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where, b ∈ R, a ∈ R+ with a 6= 0. ψ(t) is supposed to be admissible, which means:

Cψ =

∫ +∞

−∞

�

�ψ̂ (ω)
�

�

2

ω
dω≤∞, (2.45)

where, ψ̂ (ω) is the Fourier transform of ψ(t). In order to reduce the computational com-

plexity of continuous wavelets and apply the wavelet transform in engineering applications,

the dilation parameter a and the translation parameter b are discretized by:

a = am
0 , b = nb0am

0 , (2.46)

where, m, n range over Z, and a0 > 1, b0 > 0 are fixed. So the discretized wavelet family

becomes:

ψm,n(t) = a0
−m/2ψ

�

a0
−m t − nb0

�

. (2.47)

Wavelet frame is defined on the discretized wavelet family:

A function {ψm,n(t); m, n ∈ Z} constitutes a frame for L2(R), if exist 0< A, B <∞ so that

A‖g(t)‖2 ≤
∑

m,n

�

�




g(t),ψm,n(t)
��

�

2 ≤ B‖g(t)‖2, (2.48)

where, A and B are the lower and upper frame bound of ψm,n(t), respectively. They seem to

constrain the energy of normalized coefficients. The frame bound can be calculated with the

proposition in Daubechies (1992):

If ψ, a0 satisfy














inf
1≤|ω|≤a0

α(ω)> 0,

sup
1≤|ω|≤a0

α(ω)<∞,
(2.49)

where, α(ω) =
∑

m∈Z

�

�ψ̂
�

am
0 ω

��

�

2
. And if β(s) = supω

∑

m

�

�ψ̂ (a0
mω)

�

�

�

�ψ̂ (a0
mω+ s)

�

� decays at

least as fast as (1+ |s|)−(1+ε), with ε > 0, then there exists (b0)thr > 0 such that the ψm,n(t)

constitute frames for all choices b0 < (b0)thr. For b0 < (b0)thr, the frame bounds for the
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ψm,n(t) can be computed as:











































A =
2π
b0

¦

inf
1≤|ω|≤a0

α(ω)− γ(k)
©

,

B =
2π
b0

¦

sup
1≤|ω|≤a0

α(ω) + γ(k)
©

,

γ(k) =

∞
∑

k=−∞
k 6=0

�

β

�

2π
b0

k
�

β

�

−
2π
b0

k
��1/2

.

(2.50)

If A= B, the wavelet frame is called tight frame. Moreover, if A= B = 1, a tight frame will

become an orthogonal basis. As proofed in Daubechies (1990), the function g(t) can be

expanded by a tight frame ψm,n(t):

g(t) = A−1
∑

k




g(t),ψm,n(t)
�

ψm,n(t). (2.51)

2.4.3 Wavelet Neural Network

Recently, there were some attempts to combine wavelet transform with NN to design the

so-called Wavelet Neural Network (WNN), and they achieved good results in many tasks

(Adamowski and Chan, 2011; Yao et al., 2013; Ganjefar and Tofighi, 2015). Taking advantage

of the strong feature extraction capability of wavelets, and the superior learning ability of

DNN, WNN is becoming a hot topic in the scientific community (Alexandridis and Zapranis,

2013; Chitsaz et al., 2015). The popularity of deep learning will be facilitated further, which

benefits from the fruitful achievements of wavelet analysis in the last decades.

Continuous Wavelet Transform (CWT) is always used to understand the concept of the

wavelet transform, but it’s not efficiently implemented on computers. In order to improve

computational efficiency, the values of the translation and dilation parameters are often

limited to some discrete lattices, i.e., performing the DWT. According to the wavelet transforms

utilized, existing WNN can be classified into the following two types (Billings and Wei, 2005):

1) Adaptive WNN (Zhang and Benveniste, 1992; Zhang, 1997; Alexandridis and Zapranis,

2013): where the wavelets act as the activation functions and they perform the CWT

in the hidden layers. In these models, the weights of the neural network, the dilation

and translation parameters of the wavelets are the trainable parameters that need to be

updated with the gradient descent algorithms. The big amount of parameters to be learnt

and the low efficiency of CWT result in slow training.

2) Fixed grid WNN (Adamowski and Chan, 2011; Partal et al., 2015; Bakshi and Stephanopou-
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los, 1993): where the dilation and translation parameters of the wavelets are predeter-

mined, only the weights are needed to be trained, i.e., the DWT is performed there.

However, there are not many theories for determining the dilation and translation param-

eters in advance.

The fixed grid WNN model is commonly used in engineering applications because of its

high efficiency. The structures of fixed grid WNN can also be further classified into two types

(Yao et al., 2013):

1) Compact Wavelet Neural Network (CWNN) (Doucoure et al., 2016; Wang and Adeli, 2015):

where the wavelet basis function is employed as the "wavelon" in the hidden layers. The

activations of each hidden layer are the wavelet coefficients after DWT. So the training

process is performed in the wavelet domain, which is advantageous for extracting features

efficiently from data.

2) Loose Wavelet Neural Network (LWNN) (Omerhodzic et al., 2013; Chen et al., 2010; Sunny

et al., 2012; Benzy and Jasmin, 2015): unlike the CWNN, where the DWT stems from

the wavelons, in LWNN model the DWT acts as a preprocessing step on the original data

and then the transformed results are fed into the neural network. It can be seen as a

conjunction model concatenating the DWT with the network. Of course, the network

model can be designed and trained as usual.

The structure of CNN can also be analyzed from the viewpoint of wavelet transform.

For instance, Fujieda et al. (2017, 2018) used multiresolution concepts to explain feature

extraction of CNN and reformulate the convolution and pooling operations. After adding the

wavelet representations of data, their methods supplemented the absent spectral information

for better performance. From the perspective of signal processing, the ConvL of CNN can also

be seen as filter banks (Jarrett et al., 2009; Rippel et al., 2015; Andrearczyk and Whelan,

2016), so the knowledge of designing filters can be used to build CNN models. Considering the

disadvantages of pooling operation, the PoolL can be replaced with the wavelet decomposition

to prevent information loss (Chaabane et al., 2017). Moreover, thanks to the sparsity of

wavelet, the CNN structure was demonstrated more robust to noise after combined with

wavelet transform (Qiu et al., 2018). However, the structures of these WNNs are shallow so

that they needn’t face the training problems arised in deep structures that are desirable for

complex problems.
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2.5 Discussions

Dimensionality reduction is an important data preprocessing step for low computational

complexity. While information loss should be avoided when designing the algorithms to

reduce dimensionality, since it may destroy or ignore the key features of data and consequently

degrade the learning performance. In addition, the designed algorithm is expected to pre-

extract the key features for fast training.

FT is a well-known tool to get the frequency features of data. Even though the dimension-

ality of data is not reduced, FT can be a good start to investigate the effectiveness of feature

pre-extraction.

Furthermore, the correlations among attributes can also be taken as the additional features

of data, which provide more information for learning process and help to accelerate training.

The correlation fractal dimension theory gives the method to estimate the information content

of attributes as well as the dataset, which is a promising direction to develop the algorithms

for feature pre-extraction.

In learning process, even though traditional ML models or methods have been widely

used for feature extraction in various data applications, they have many problems in big data

era. For example, kNN method requires many storage spaces since it needs the full dataset all

the time. Naïve Bayes method and LR model suffer from underfitting and bad performance

in complex problems. While the computational complexity of DT model and SVM increases

dramatically when the data becomes bigger.

Therefore, algorithms with strong learning capability are desirable to deal with the

growing volume of data. NN has achieved great success in big data applications. Furthermore,

the implementation of NN model can easily be distributed on GPU for higher computational

efficiency. Actually, the set of NN parameters learnt from data can be seen as a complex basis,

with which the original high-dimensional data is transformed to be the low-dimensional

discriminative abstractions. The training process of NN model can be seen as trying to

construct the complex basis for feature extraction.

Moreover, it has been demonstrated that more complex problems need a deeper network

within DNN. The remarkable achievements of DNN mainly benefit from the growing number

of nested activation functions when adding hidden layers, since a large number of hidden

layers give a strong nonlinear fitting capability to the model for complex real-world problems.

Also, the significantly increased volume of data will reduce the risk of overfitting of the DNN

model.

However, training a deep network is not easy. Gradient problems and slow convergence

speed are two of the most notorious issues in DNN training. They can be analyzed from

two sides. On the one hand, feeding the original data will increase the learning difficulties
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due to the noise, which requires a carefully designed model with the denoising step and

a very strong learning capability. Besides, the dimensionality curse of original data results

in a heavy computational burden, which will slow down the training process as well. On

the other hand, the poorly designed DNN structure may cause training problems inherently.

In particularly, improper activation functions will cause gradient vanishing or exploding

problems. Furthermore, the internal covariate shift coming from the unnormalized data of

hidden layer also results in slow convergence.

Based on the analysis, there can be two directions to alleviate the difficulties in DNN

training. The first one is to preprocess the data, i.e., to extract the key features of the original

data with a transform. Meanwhile, the dimensionality of data is also expected to be reduced.

The second research direction is to optimize the DNN model, i.e., to design a new activation

function to constrain and normalize the values of propagating data. It is supposed to deal

with the gradient problems and ensure the data flows well, which will accelerate DNN training

further. The activation function is also expected to have good nonlinearity and sparsity that

help DNN model to cope with more complex problems and to be robust to noise. These two

researches, i.e., data processing and optimization of DNN model, can also be combined to

form an end-to-end topology for a high computational efficiency.

Wavelet theory is promising to provide the solutions. On the one hand, wavelet transform

gives the representations of data at different resolutions, where the key features of data are

extracted with different scales. Training on the datasets with different extracted features

produces different results, among which the best one can be picked out. Additionally, the

wavelet transform will also suppress the noise thanks to the sparsity of wavelet, and as a

result the features can be detected more easily. On the other hand, tight frame wavelet

constrains the energy of wavelet. It may alleviate the gradient problems and accelerate DNN

training if it acts as the activation function. Moreover, the nonlinearity leads wavelet to be a

promising choice of activation function for DNN models.



3
Fast Deep Learning in Frequency Domain

Fourier Transform (FT) is widely used in engineering applications to analyze the frequency

components of time-domain signals. The frequency representations may provide more

discriminative features than the original signal. This chapter preliminarily investigates

the training process performed in frequency domain with a new topology of Deep Neural

Network (DNN). Two experiments on speech signals demonstrate the advantages of frequency

representations for the improvements of training performance.

3.1 Features in Frequency Domain

According to Fourier series theory, any periodic signal x T can be approximated with infinite

sum of cosines and sines as:

x T = a0 +
∑

i

Aicos(2π fi t) + Bisin(2π fi t), (3.1)

where, a0 is the direct current component. It can be found that the periodic signal x T has

many cosine or sine components with frequency fi, which means that, with Eqn. (3.1) the

analysis of time-domain signal turns to the analysis in frequency domain. When the period

T tends to +∞, the signal x T becomes aperiodic and it is often the case in the real world.
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Then the frequency analysis of the aperiodic signal x needs the FT defined as:

x̂(ω) =

∫

e− jωt x(t)d t. (3.2)

After FT, the frequency representations of the original signal may provide more discrimi-

native features. Fig. 3.1 shows a simple application of noise reduction for the synthetic signal

polluted by Gaussian noise. The signal is not easy to be identified in time domain, while it

becomes distinct in frequency domain since the energy of the Gaussian noise is distributed to

different frequency components by FT.
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Figure 3.1: A signal polluted by Gaussian noise with the Signal-to-Noise Ratio (SNR) is
set at 5dB. The signal is generated by x = 2sin(6πt) + 3sin(10πt) + cos(20πt). (a) Time
domain; (b) Frequency domain.

Another popular application of FT is speech recognition. The speech signal is a highly

nonstationary signal over time. However, over a sufficiently short period of time (10-30ms),

its spectral characteristics are fairly stationary. Thus the speech signal can be analyzed based

on a number of frames.

The process of speech production involves many organs and muscles, but based on a

simple mathematical model for one cycle of the glottal flow waveform defined in Rosenberg

(1971), the FT of the glottal waveform is characterized by many harmonics (Loizou, 2013).

The first harmonic occurs at the fundamental frequency (F0), and the other harmonics occur

at integer multiples of the fundamental frequency.

Therefore, FT is suitable to analyze the speech signal since it also gives the harmonics of

signal. For example, based on the fact that the F0 range is about 60-150Hz for male speakers

and 200-400Hz for females and children (Peterson and Barney, 1952), the speech signal can

be used to identify the gender of speakers. Fig. 3.2 shows the frequency representations of
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two sentences coming from a male and a female. The energy of the male voice mainly locates

in the low frequency band (< 600Hz), while the energy of the female voice also covers the

high frequency band (> 600Hz). It intuitively gives the difference of speakers’ gender in

frequency domain.
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Figure 3.2: Two sentences coming from NOIZEUS database (Hu and Loizou, 2007). (a)
a male speaker says: "the birch canoe slid on the smooth planks" in time domain, with
F0 = 135; (b) a female speaker says: " we talked of the sideshow in the circus" in time
domain, with F0 = 245; (c) the sentences in frequency domain.

3.2 Fast Fourier Transform

FT is defined for the continuous signal that is usually sampled to be discrete for processing

with computers. Under this circumstance, the Discrete Fourier Transform (DFT) is applied to
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analyze the discrete signal. The DFT of a N -point signal x[k] is defined as:

y[m] =
N−1
∑

k=0

x[k]W km
N , m= 0, 1, · · · , N − 1, (3.3)

where, W km
N = e− j 2π

N mk. It can be found that the frequency representation of a discrete signal

also has length N , while obtaining each frequency point y[m] needs the whole discrete signal

x . Thus, directly performing the DFT with Eqn. (3.3) is time-consuming when the signal

length N becomes very large. Fast Fourier Transform (FFT) algorithm is designed for the

efficient implementation of DFT.

Nowadays, there have been a lot of variants to perform FFT, but most of them are proposed

based on the idea of "radix-2 splitting" (Cooley and Tukey, 1965). Repetition of the process

that quickly computing a N -point DFT from a pair of (N/2)-point DFTs is the heart of the

radix-2 FFT idea (Van Loan, 1992). The principle of the traditional radix-2 Decimation In

Time (DIT) algorithm is to split the sequence to the even and odd subsequences in time

domain, and then to obtain the DFT of the whole sequence by composing the DFTs of the

subsequences.

Benefits from the properties of W km
N , the basic component of FFT, called butterfly compu-

tation, can be derived as:

y[m] = y1[m] +W m
N y2[m]

y[m+ N/2] = y1[m]−W m
N y2[m], m= 0,1, · · · , N/2− 1,

(3.4)

where, y1[m] and y2[m] are the (N/2)-point DFTs of the even subsequence x1[k] and odd

subsequence x2[k], respectively. The butterfly computation shown in Eqn. (3.4) can be

illustrated in Fig. 3.3. While the two (N/2)-point DFTs can be further split to four (N/4)-

point DFTs, and then eight (N/8)-point DFTs, until N/2 2-point DFTs. Thus the 8-point FFT

algorithm can be performed as shown in Fig. 3.4.

Wm
N

�1

y1[m]

y2[m]

y1[m] + Wm
N y2[m]

y1[m] � Wm
N y2[m]

Figure 3.3: The butterfly computation of the radix-2 FFT.

The radix-2 FFT can also be interpreted as a sparse matrix factorization that is called

Cooley-Tukey Radix-2 Factorization in Van Loan (1992):

If a discrete signal x has length N = 2t and its DFT is denoted as y , then there is a matrix F
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Figure 3.4: 8-point radix-2 FFT.

makes

xF= y , (3.5)

and

F= PAT
1AT

2 · · ·A
T
t . (3.6)

P is called bit-reversal permutation matrix used to arrange the elements of x to the bit-reversal

index. Let x[k] be the kth element in x and [xP]k be the kth element in xP, then there is:

[xP]k = x[r(k)], (3.7)

where, r(·) is a function defined as r
�

(bt−1 · · · b1 b0)2
�

= (b1 b0 · · · bt−1)2. P can be computed

by

P= Rt · · ·R1,

Rq = I2t−q ⊗Π2q , q = 1,2, . . . , t.
(3.8)

In Eqn. (3.8), the symbol ⊗ represents Kronecker Products. In is the n-dimensional identity

matrix and Π is called the even-odd sort permutation that is defined as follows (assuming that

n is even):

Πn = In(:, v), v = [0,2, . . . , n, 1, 3, . . . , n− 1] . (3.9)

If Π is applied to a vector, then it groups the even-indexed components first and the odd-

indexed components second. While for matrix A, the result of AΠ is just A with its even-

indexed and odd-indexed columns grouped together.

In Eqn. (3.6), each Aq, q = 1,2, . . . , t, is a sparse complex matrix and it has only two
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nonzero entries per row. This is because each BL has two nonzeros per row: one from Is and

one from Ωs, these matrices are defined as:

Aq = Ir ⊗BL , L = 2q, r = N/L,

BL =

�

Is Ωs

Is −Ωs

�

, s = L/2,

Ωs = diag
�

W 0
L , W 1

L , . . . , W s−1
L

�

, WL = e− j2π/L .

(3.10)

3.3 Fast Fourier Transform Neural Network

Based on Eqn. (3.6), the DFT of a discrete signal can be obtained with a series of vector-matrix

products that can be accelerate by GPU. Moreover, both the matrices P and Aq are highly

sparse, which means that the implementation of FFT as the vector-matrix products will not

cost too many computing resources. Therefore, under the consideration that the frequency

representations of a signal may provide more information and the FFT can be efficiently

implemented inside the network, a new topology of DNN is proposed for fast training, i.e.,

the Fast Fourier Transform Neural Network (FFTNN). The matrices mentioned in Eqn. (3.6)

can be considered as the weights of the t + 1 hidden layers without activation functions and

bias, as sketched in Fig. 3.5.

The proposed FFTNN model has two components: the first one implements FFT, while

the second one is the traditional Multilayer Perceptron (MLP). Both these two components

perform vector-matrix products or matrix multiplications. While the training process of

FFTNN model only happens in the MLP component since the "trainable" parameters of the

FFT component are fixed for the DFT. The FFT component can also be seen as a highly sparse

MLP model that has been trained for the purpose of performing DFT.

Because real matrix P has only one nonzero entry per column, for a discrete signal x with

length N , xP involves N flops1 (real multiplications). While the vector-matrix product with

complex matrix Aq involves 2N complex multiplications and 2N complex add, which result

in 16N flops since a complex add involves two flops and a complex multiplication involves

six flops. Totally, the FFT component needs N + 16N t flops. While in the MLP component,

the product of the vector input with the weight matrix W ∈ Rm×n needs 2mn flops.

1In this chapter, the flop is just the counting of multiplication or add operations.
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Figure 3.5: Fast Fourier Transform Neural Network. The dashed line means the compu-
tations between two sparse matrices, the solid line means the computations between two
common matrices.

3.4 Experiments and Results

In this section, we performed two experiments on speech signals to study the proposed

FFTNN model. These experiments were running on the Ubuntu 18.04 system, with CPU Intel

Core i5-8400. TensorFlow (GPU version 1.10) (Abadi et al., 2016) was used to accelerate

computing. The graphic card was the NVIDIA GeForce GTX1050Ti with 768 CUDA cores.

3.4.1 Howl Noise Reduction

Amplification systems are commonly used, such as in the meeting room, to amplify the

speaker’s voice. However, under this circumstance, the microphone can usually collect the

amplified voice reflected by the walls. After some cycles the amplification system will output

the noise with a very high energy. The noise is also known as howl that may cover the clean

signal and heavily degrade the quality of voice.

Fig. 3.6 shows a simple method used to collect the clean signal and the noisy signal

polluted by howl noise. The cellphone was playing a piece of voice. D1 and D2 are the distances

of the cellphone and the amplification system with the recorder, respectively. Throughout

the process of collecting signal s, D1 was kept the same. When D2 was large, there was no

howl noise and the signal s was considered as the clean signal. When D2 became small, the

amplified voice was fed back and added onto the clean signal, which produced howl saved as

the noisy signal. In this experiment, we got the clean signal and noisy signal with 2000000

points. They were divided into 10937 frame samples for training and 4688 frame samples

for testing. Each frame had length of 128.

These training samples were fed into FFTNN model directly while the training was
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D2D1

s

Figure 3.6: The method used to collect clean voice and noisy voice polluted by howl noise.

performed in frequency domain inherently. In practice, the outputs of the FFT component

are the concatenations of the real and image parts of the complex DFT results. Besides

FFTNN model, two other models were performed for comparison. Specially, based on Least

Mean Square (LMS) algorithm, a Frequency-Domain Adaptive Filter (FDAF) was designed to

remove the howl noise, as shown in Fig. 3.7. In addition, a traditional MLP model without

FFT component, called "tMLP1", was also built to perform training in time domain. Note that,

the tMLP1 model had the same number of hidden units and hyper-parameters with the MLP

component of FFTNN model, as listed in Tab. 3.1.

FT
inputs X(k)x(n)

FDAF

LMS

W (k)

Y (k)

FT
desire

D(k)

E(k)

y(n)

d(n)

IFT
outputs

Figure 3.7: Frequency-Domain Adaptive Filter with LMS algorithm.

The test loss values of FFTNN and tMLP1 models are compared in Fig. 3.8. From the

figure it can be found that the FFTNN model quickly converged to a low loss level, which

means that the frequency representations helped DNN to learn the discriminative features of

voice and howl noise. Moreover, the SNRs of the denoised training and test data by three

models are listed in Tab. 3.2. The results also indicate the advantages of FFTNN model in
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howl noise reduction. The denoised voice of FFTNN model had the best quality while it

contained a little distortion, which left a room for future improvements.

Table 3.1: The number of hidden units and the hyper-parameters of the FFTNN and tMLP1
models in the howl noise reduction experiment.

number of hidden units [200, 100, 100, 100, 200]

learning rate 0.001
epochs 300

batch size 1024
optimizer Adam

weights initialization Xavier
bias initialization zero

activation function ELU
loss function CE
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Figure 3.8: Test loss values of the FFTNN and tMLP1 models in the howl noise reduction
experiment.

3.4.2 Speech Recognition

In this section, three speech recognition tasks were set up on a speech database to compare

the proposed FFTNN model with a traditional MLP model named "tMLP2". The samples

of the database were the frames split from the speech signals of five speakers. While the

content of each speech signal was one of five short commands in Mandarin (translated to

English: "go forward", "step back", "turn left", "turn right", and "stop"). Thus, the three tasks

can be termed as: 1) Mission A: 5-class voiceprint recognition, i.e., to identify five speakers;

2) Mission B: 5-class semantic recognition, i.e., to identify five commands; 3) Mission C:

25-class voiceprint-semantic recognition, i.e., to identify the speaker and the command at the

same time.
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Table 3.2: The SNRs of denoised training and test data by three models.

Model Denoised training data (dB) Denoised test data (dB)

noisy signal -18.15 -18.28

FDAF 1.19 0.27
tMLP1 3.79 2.99
FFTNN 7.38 5.61

Then three datasets were built for the three missions, respectively. In Mission A and B,

each class had 10000 samples for training and 5000 samples for testing. While in Mission C,

each class had 2000 samples for training and 1000 samples for testing. Each sample in the

datasets had length of 1024.

Three FFTNN models were built for the three missions, respectively. Correspondingly,

three tMLP2 models were also constructed for comparison. The number of units for each

hidden layer of these models are listed in Tab. 3.3. While their hyper-parameters were set

the same, as shown in Tab. 3.4.

Table 3.3: The number of hidden units of the FFTNN and tMLP2 models in the speech
recognition missions.

Mission FFTNN tMLP2

A [ 10, 10, 10 ] [ 80, 80, 50, 50, 30 ]
B [ 10, 80, 50 ] [ 100, 100, 80, 80, 30 ]
C [ 10, 50, 10 ] [ 100, 100, 50, 50, 30 ]

Table 3.4: The hyper-parameters of the FFTNN and tMLP2 models in the speech recognition
missions.

learning rate 0.0001
epochs 100

batch size 512
optimizer Adam

weights initialization Xavier
bias initialization zero

activation function ELU
loss function CE

The computational flops of the models in different missions are compared in Tab. 3.5.

The results show that FFTNN can be designed with lower computational complexity than

traditional MLP, even though introducing additional vector-matrix products due to the FFT

component. In addition, the FFTNN model learnt features quickly, which can be observed

from the training processes illustrated in Fig. 3.9. The accuracy results are also compared in
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Tab. 3.6, and they indeed indicate that the FFTNN model achieved better performance in the

speech recognition experiments.

Table 3.5: Computational flops of the FFTNN and tMLP2 models in the speech recognition
missions.

Mission FFTNN (F1) tMLP2 (F2) F2 / F1

A 185844 192940 1.038
B 197444 258700 1.310
C 187844 244300 1.301

Table 3.6: Accuracy results of the FFTNN and tMLP2 models in the speech recognition
missions.

Mission FFTNN tMLP2

A 87.73% 67.02%
B 61.57% 28.90%
C 57.14% 19.51%

3.5 Discussions

Noise and redundancy of the data collected from the real world usually cover up the key

features and slow down DNN training. Preprocessing the raw data is supposed to pre-extract

the features, and as a result accelerate training. Fourier transform is a popular tool used

to transform the signal from time domain into frequency domain, where the key features

may be easier to be detected. However, directly performing FT on discrete signal is time-

consuming. As the fast algorithm, FFT has been applied in many applications. But typically,

the implementation of FFT is separated from DNN training, which requires the manual

intervention if attempting to perform DNN training in frequency domain.

Factorizing the FFT to a series of vector-matrix products is a good solution to bridging

the gap between FFT and DNN since DNN training always involves matrix operations. All the

factorized matrices of FFT are sparse, which means that the matrix implementation of FFT

will not increase considerable computational complexity. Additionally, the GPU will further

accelerate this type of compute-intensive operations.

Experiments on speech signals demonstrated the advantages of proposed FFTNN model on

speeding up deep learning. The training performed in frequency domain helped to effectively

remove howl noise and improve accuracy in speech recognition tasks. Therefore, the idea

of combing FFT with DNN provides a direction to design an efficient topology of DNN and
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extract the features of data for fast deep learning.
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Figure 3.9: Test loss values in three speech recognition missions. (a) Mission A; (b) Mission
B; (c) Mission C.



4
Feature Pre-extraction of Big Data Based on

Multiresolution Representations

Data collected from the real world is always redundant, which means that the information of

data is mainly focused on a few attributes. Meanwhile, it is also found that in the wavelet

domain, the approximation coefficients indeed contain the most information. Based on the es-

timation of information contents, this chapter proposes a novel feature pre-extraction method

to transform the original dataset into a new one. The transformed dataset is characterized

as low-dimensional and feature-extracted, which has been discussed helpful to decrease

computational complexity and speed up Deep Neural Network (DNN) training. Experiments

demonstrate that the proposed method leads the Machine Learning (ML) models to better

performance in the classification tasks.

4.1 The Quantity of Information

4.1.1 Information Content of Attributes: Ia

In big data field, the information of attributes gives hints to discover the features of data.

However, different attributes provide information with different quantities. The information

content of an attribute reflects its contribution to the dataset. As introduced in section
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2.1.3, Individual Contribution (IC) can be used to estimate the potential contribution of an

individual attribute to the dataset. It is calculated by inspecting the distributions of the values

under an attribute at different scales, i.e., using the box-counting method. However, due to

the existence of correlation among attributes, the real contribution of data under attribute ai ,

i.e., the information content Ia({ai}), cannot be obtained from the IC when ai involves other

attributes.

On the other hand, Attribute Set Core (ASC) is known as the smallest subset of attributes

characterizing the whole dataset. When given a correlation threshold ξ, the ASC ξC can be

found out with the FD-ASE algorithm (de Sousa et al., 2007). The attributes in ASC are not

ξ-correlated with each other and they contain the most information of the dataset.

If A= {a1, a2, . . . , aE} is denoted as the universal attribute set of the dataset that has E

attributes, then the real contribution of attribute ai ∈ (A− ξC) to the dataset depends on

the degree of correlation between ai and the attributes in ξC . The weaker the correlation

between ai and ξC , the higher contribution of ai to the dataset, i.e., attribute ai contains

more information. Therefore, the information content of attribute ai can be estimated by

Ia({ai}) = pD({ai} ∪ ξC)− pD(ξC), ai ∈ (A− ξC), (4.1)

where, pD(·) is the Partial Intrinsic Dimension (PID) of a sub-dataset.

In principle, the goal of dimensionality reduction can be achieved by directly removing

the attributes with low information content. However, besides low-dimensional, a new

attribute space which provides more discriminative information is also expected to increase

the efficiency of feature extraction and improve the performance, as discussed in section

1.3.1.

4.1.2 Information Content in Wavelet Domain: Ic

From the view of wavelet analysis, the original signal is transformed into the wavelet domain

through Discrete Wavelet Transform (DWT) and it is measured along the new axes. The

transforms with orthogonal (such as Daubechies compact support orthogonal wavelets) or

biorthogonal (such as Cohen-Daubechies-Feauveau families) basis don’t remove any informa-

tion (or noise). They just move it around, aiming to separate out the noise and decorrelate

the signal (Strang and Nguyen, 1996).

In fact, the process of DWT is to analyze the original signal from a fine scale to coarse

scale. According to the expression shown in Eqn. (2.33), the representation of a finite signal

f (t) in the wavelet domain after DWT is a collection of vectors:

{cJ (k) : k ∈ Z} ∪ {d j(k) : 1≤ j ≤ J ; k ∈ Z}, (4.2)
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where, J ∈ N is called decomposition level; cJ contains the approximation coefficients at

level J , i.e., the lowest resolution, and d j contains the detail coefficients at level j, i.e., the

higher resolutions. In particular, the original signal f (t) can be seen as the approximation

coefficients at the highest resolution, i.e., c0.

These coefficients form the wavelet decomposition vector c, i.e., c = (cJ ,dJ ,dJ−1, . . . ,d1).

The number of these coefficients constitutes the bookkeeping vector l, i.e., l = (len(cJ ), len(dJ ),

len(dJ−1), . . . , len(d1), len( f (t))), where len(·) indicates the number of elements in a vec-

tor. Therefore, an example of three-level pyramid transform used to perform DWT can be

illustrated in Fig. 4.1.

d1

d2

d3c3

c2

c1

Signal f(t)

Figure 4.1: Wavelet decomposition coefficients for a three-level pyramid transform.

However, based on the priori knowledge, at a particular level/scale, most information

of the natural signal usually locates in the approximation coefficients. Meanwhile, the

information will be halved when decomposing the signal from level j to level j+1 due to the

filtering operation. Hence, it can be found that the information contents of coefficients at

different levels roughly respect:

Ic(dJ )< · · ·< Ic(d2)< Ic(d1)< Ic(cJ ). (4.3)

A three-level DWT is performed on three images to intuitively illustrate the relationship,

as shown in Fig. 4.2. These figures indicate that the approximation part at each level keeps

the contour of the image and contains the most information. While the content of the

image cannot be easily identified from the detail coefficients. But in some sense, the detail

coefficients at a low level seems like giving more information than the ones at a high level,

i.e., Ic(d j+1)< Ic(d j).

In some applications, such as image denoising, audio coding, and decoding, Inverse

Discrete Wavelet Transform (IDWT) is used to reconstruct the signal from wavelet domain to

time domain. The process of IDWT is to synthesize the wavelet coefficients from a coarse
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scale to fine scale. In practice, the IDWT can be implemented along the inverse direction of

the pyramid transform. According to the multiresolution analysis introduced in section 2.4.1,

the wavelet decomposition vector c and bookkeeping vector l are sufficient to reconstruct

the signal.

Therefore, DWT gives the representations of the original signal at different resolutions.

Some features may be extracted at a resolution while other features may be extracted at

another resolution. Typically, in DWT, the original signals are sampled at the highest resolution

and then transformed to lower resolutions for feature extraction. However, if the original

signals are seen as the data at low resolutions, then IDWT will give their representations at

higher resolutions, which may also extract some features that are not easy to be found at

the original resolution. The proposed method is inspired by it and will be described in next

section.

(a) (b) (c)

Level 1

Level 2

Level 3

Approximation Coef. Detail Coef.

(d)

Approximation Coef. Detail Coef.

(e)

Approximation Coef. Detail Coef.

(f)

Figure 4.2: The representations of images Lena, Goldhill and Peppers in (a-c) time domain,
and (d-f) wavelet domain, respectively. For display performance, the images of coefficients
have been mapped into pink color. The detail coefficients at a particular level drawn in the
figures are the sum of the corresponding horizontal, vertical and diagonal detail coefficients.
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4.2 Proposed Method: FDIDWT

The basic idea of the proposed method is to take each sample of the dataset to be the

coefficients in the wavelet domain. IDWT is performed on each sample and finally a new

dataset is generated. The new dataset is supposed to extract the features and has low-

dimensional attribute space. A J -level IDWT means to transform the original data to be

the representations at a J -higher resolution. In order to do this, the wavelet decomposition

vector and bookkeeping vector should be constructed at first, which requires the attribute

values of each sample to be arranged in the order shown in Eqn. (4.3). This sorting task can

be finished with the estimation of the information content of attributes, as defined in Eqn.

(4.1). Thus, the proposed method is termed as Fractal Dimension - Inverse Discrete Wavelet

Transform or simply FDIDWT.

As discussed before, data under the attributes of ASC ξC ⊂ A contains most information

of the dataset defined in A= {a1, a2, . . . , aE}. The number of attributes in ξC is denoted as

P. Thus if exists:

Ia({a1})< Ia({a2})< · · ·< Ia({ai})< · · ·< Ia({aQ}), (4.4)

where, ai ∈ (A− ξC) and 1≤ i ≤Q, P +Q = E, then it can be assumed that:

Ia(DGM
J )< Ia(DGN

J−1)< · · ·< Ia(DGL
j )< · · ·< Ia(DGK

1 )< Ia(ξC), (4.5)

where, DGL
j is the jth group containing L attributes whose information contents respect Eqn.

(4.4), i.e.,

DGM
J = {a1, a2, . . . , aM},

DGN
J−1 = {aM+1, aM+2, . . . , aM+N},

. . .

DGK
1 = {aQ−K+1, aQ−K+2, . . . , aQ},

M + N + · · ·+ K =Q.

(4.6)

Contrasting with the relationship of the information contents of wavelet coefficients shown

in Eqn. (4.3), the data under the attributes of DGL
j can be seen as the detail coefficients d j at

level j. While the data under the attributes of ASC ξC will be taken as the approximation

coefficients cJ at level J . Finally, the original dataset is transformed into another one through

J -level IDWT. If denote x j and xξC as the values under the attributes in group DGL
j and ASC

ξC respectively for one sample of the original dataset, then the wavelet decomposition vector
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c and bookkeeping vector l for the IDWT process can be constructed as:

c =
�

xξC , x J , x J−1, . . . , x 1

�

,

l = (P, M , N , . . . , K , O) ,
(4.7)

where, O is the number of attributes in the transformed dataset, i.e., the transformed dimension

in the new attribute space. Tab. 4.1 shows the procedure of the proposed FDIDWT method.

To better describe how the algorithm works, now fix the decomposition level J = 3. Moreover,

as in common cases, the sampling type will be fixed as ε = 1 throughout the thesis. The

length of filters m for the pyramid transform is even. Then:

Table 4.1: Proposed feature pre-extraction method - FDIDWT.

Input: original dataset defined on A, decomposition level J
transformed dimension O, correlation threshold ξ, scale range n

Output: new dataset defined on A′

1: run FD-ASE algorithm to find out the attribute set core ξC , denote its length as P;
2: calculate the information content of the remaining attributes Ia(ai) with Eqn. (4.1);
3: arrange the attributes of A into B according to their information contents;
4: based on P, calculate the length of other groups, insert placeholder attributes if needed;
5: construct the wavelet decomposition vector c and bookkeeping vector l;
6: "Standardize" the original dataset A along each dimension, as shown in Eqn. (2.1);
7: perform IDWT on each normalized sample with c and l;
8: generate the new dataset defined on A′;

1) Step 1-3: Given the correlation threshold ξ and scale range n, the FD-ASE algorithm

(de Sousa et al., 2007) is used to find out the attribute set core ξC . Then the information

contents Ia({ai}) of the remaining attributes ai ∈ (A−ξC) are calculated. The attributes of

A are arranged into a set B based on the ascending information contents of the remaining

attributes1. For instance, if the relationship in Eqn. (4.4) holds, then

B= ξC ∪ {a1, a2, . . . , ai , . . . , aQ}. (4.8)

2) Step 4-5: P is the number of attributes in ξC . In the proposed method, the length of the

approximation coefficients in c is assumed to be not shorter than P. But now, if this length

equals P, then Fig. 4.3 shows other groups divided from B. Note that, in practice, the

original dimension E, i.e., the number of attributes of the original dataset, may be smaller

than the length of wavelet decomposition vector c due to the given decomposition level

J and filter length m. In this case, some necessary placeholder attributes "∗" are inserted

1Here, B is not a strict mathematical set since the attributes of it respect an order.
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following the ASC group. The goal of the placeholder attributes is to ensure IDWT works

while keeps the information content of data as it is. Therefore, the values under the

placeholder attributes are identical so that their contributions to the dataset are zero.

⇤, . . . , ⇤| {z }
L
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Figure 4.3: Groups divided from sorted remaining attributes. Taking decomposition level
J = 3 as an example.

Typically, in the signal processing field, signals are transformed to wavelet domain with

DWT for processing, then the processed signals are reconstructed with IDWT. Thus, the

lengths of the wavelet coefficients at different levels respect the record from DWT, as

shown in Eqn. (2.39). However, there is no DWT in the proposed method. Hence there

exist many cases of the lengths of the divided groups:

M = P,

N =

(

2M −m+ 1, for even N +m− 1

2M −m+ 2, for odd N +m− 1
,

K =

(

2N −m+ 1, for even K +m− 1

2N −m+ 2, for odd K +m− 1
.

(4.9)

While the length of the placeholder attributes L can be derived based on the equality of

the length of wavelet decomposition vector c, i.e., P + M + N + K = E + L. Then the

wavelet decomposition vector c and bookkeeping vector l are constituted as:

c =
�

xξC , x 3, x 2, x 1

�

,

l = (P, M , N , K , O) ,
(4.10)

where, O is the transformed dimension computed with:

O =

(

2K −m+ 1, for even O+m− 1

2K −m+ 2, for odd O+m− 1
. (4.11)

3) Step 6-8: IDWT is performed on each sample of the normalized dataset, and finally a new
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dataset defined on A′ = {b1, b2, . . . , bi , . . . , bO} is generated. bi is the ith new attribute.

4.3 Experiments and Results

To evaluate the performance of the proposed FDIDWT method, an experiment was set up to

classify the blocks of the page layout of a document that has been detected by a segmentation

process. The dataset used in the experiment comes from the UCI machine learning repository

(Dua and Graff, 2017). It contains 5473 samples and each sample concerns one of five block

classes2, i.e., 1) text, 2) horizontal line, 3) picture, 4) vertical line, and 5) graphic. The

5473 samples were split into 3829 samples for training and 1644 for testing. There are

10 attributes in the dataset, i.e., A = {a0, a1, . . . , a9} and E = 10. Descriptions for these

attributes are given in Tab. 4.2.

Table 4.2: Descriptions for the 10 attributes of the page blocks dataset.

Index Attribute Description

[a0] height height of the block
[a1] length length of the block
[a2] area area of the block (height × length)
[a3] eccen eccentricity of the block (length / height)
[a4] p_black percentage of black pixels within the block (blackpix / area)
[a5] p_and percentage of black pixels after the application of

the Run Length Smoothing Algorithm (RLSA) (blackand / area)
[a6] mean_tr mean number of white-black transitions (blackpix / wb_trans)
[a7] blackpix total number of black pixels in the original bitmap of the block
[a8] blackand total number of black pixels in the bitmap of the block after the RLSA
[a9] wb_trans number of white-black transitions in the original bitmap of the block

4.3.1 Data Preparation

According to the algorithm described in Tab. 4.1, steps 1-5 of the FDIDWT method are

performed on the training dataset to obtain the arranged attributes set B, and construct the

wavelet decomposition vector c and bookkeeping vector l. In the experiment, at first the

training data was fed into FD-ASE algorithm and the ASC ξC = {a8, a7, a6} was returned after

given correlation threshold ξ= 0.45 and scale range n= 20. The remaining attributes were

then sorted to be A− ξC = {a5, a1, a4, a9, a0, a2, a3} in their ascending information contents

order, as sketched in Fig. 4.4.
2The dataset was downloaded from: http://archive.ics.uci.edu/ml/datasets/Page+Blocks+

Classification

http://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification
http://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification
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Figure 4.4: Ascending information contents of the remaining attributes of the page blocks
dataset.

Then the arranged attributes set B = {a8, a7, a6, a5, a1, a4, a9, a0, a2, a3} were divided into

groups for constituting c and l. For comparison, three decomposition levels J = 1,2,3 and

filters with different possible lengths are tested independently. How to constitute the vectors c

and l with the arranged attributes of B is the focus of the FDIDWT method, so the constitution

processes based on different decomposition levels are detailed next:

1) J = 1:

In this case, the attributes of B were simply divided into two groups, i.e., CG5
1 =

{a8, a7, a6, a5, a1} and DG5
1 = {a4, a9, a0, a2, a3}. There is not any special requirement

for the filter, thus filters with length m = 2,4,6,8 were tested. Thus, the length of the

transformed sample, i.e., the transformed dimension O, could be obtained with O = 11−m

or 12−m. If denote x i as the value of attribute ai for a particular sample in the dataset,

then the c and l were written as:

c =
�

{x8, x7, x6, x5, x1}, {x4, x9, x0, x2, x3}
�

,

l = (5,5, 11−m) or (5,5, 12−m) .
(4.12)

2) J = 2:

Considering the number of attributes in ASC is P = 3 and the original dimension E = 10, fix

the length of the detail coefficients at the first decomposition level to 4 seems reasonable,

which means:

c =
�

{x8, x7, x6}, {x5, x1, x4}, {x9, x0, x2, x3}
�

,

l = (3,3, 4,9−m) or (3,3, 4,10−m) .
(4.13)

Then the length of the filter would be m= 4, which resulted in O = 5 or 6.
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3) J = 3:

In this case, placeholder attributes should be considered since the length of the wavelet

decomposition vector c would be longer than the original dimension E. Here, as shown

in Eqn. (4.9), the length of the detail coefficients at the second decomposition level was

fixed to N = 4, which led to m = 4. Based on it, there would be K = 5 or 6. According to

P +M + N + K = E + L, when K = 5, the number of the placeholder attributes would be

L = 5 and the transformed dimension O = 7 or 8; while if K = 6, there would be L = 6

and O = 9 or 10. Then c and l were written as:

K = 5,

c =
�

{x8, x7, x6}, {0, 0,0}, {0,0, x5, x1}, {x4, x9, x0, x2, x3}
�

,

l = (3, 3,4, 5,7) or (3,3, 4,5, 8) .

(4.14)

or

K = 6,

c =
�

{x8, x7, x6}, {0,0, 0}, {0,0, 0, x5}, {x1, x4, x9, x0, x2, x3}
�

,

l = (3,3, 4,6, 9) or (3, 3,4, 6,10) .

(4.15)

With the constructed wavelet decomposition vector c and bookkeeping vector l, IDWT

was performed on each sample of the normalized training and test datasets. New datasets

were generated in different cases, as summarized in Tab. 4.3. In this experiment, Daubechies’

filters were used to perform IDWT, thus the filter chosen in each case can be identified with

its filter length m. For example, the filter length m= 8 indicates that the "db4" wavelet filter

was used.

4.3.2 Model Construction

In this experiment, two models, i.e., Random Forest (RF) and Multilayer Perceptron (MLP),

were built to accomplish the classification task based both on the original datasets and the

transformed datasets for comparison. The number of units for each hidden layer and the

hyper-parameters of these models can be found in Tab. 4.4. The experiments were set up

on the Ubuntu 18.04 system. To speed up the computing, RF programs were distributed on

multi-CPUs with scikit-learn (version 0.20) (Pedregosa et al., 2011). While MLP models were

accelerated by GPU with TensorFlow (version 1.10). In the experiment, the CPU was Intel

Core i5-8400 and the GPU was NVIDIA GeForce GTX1050Ti with 768 CUDA cores.
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Table 4.3: Wavelet decomposition vectors and bookkeeping vectors tested in the page
blocks classification experiments.

J c l m Cases

1
�

{x8, x7, x6, x5, x1}, {x4, x9, x0, x2, x3}
�

(5, 5,3) 8 #1
(5, 5,5) 6 #2
(5, 5,7) 4 #3
(5,5, 9) 2 #4
(5,5, 4) 8 #5
(5,5, 6) 6 #6
(5,5, 8) 4 #7
(5,5, 10) 2 #8

2
�

{x8, x7, x6}, {x5, x1, x4}, {x9, x0, x2, x3}
� (3, 3,4, 5) 4 #9

(3, 3,4, 6) 4 #10

3

�

{x8, x7, x6}, {0, 0,0}, {0, 0, x5, x1}, {x4, x9, x0, x2, x3}
� (3, 3,4, 5,7) 4 #11

(3, 3,4, 5,8) 4 #12
�

{x8, x7, x6}, {0, 0,0}, {0, 0,0, x5}, {x1, x4, x9, x0, x2, x3}
� (3, 3,4, 6,9) 4 #13

(3, 3,4, 6,10) 4 #14

Table 4.4: The number of hidden units and the hyper-parameters of the models used in the
page blocks classification experiments.

Models Number of hidden units Hyper-parameters

RF
criterion: entropy
number of trees: 5
maximum depth: 3

MLP [ 20 10 10 ]

batch size: 128
epochs: 300
optimer: Adam
learning rate: 5e−5

activation function: ReLU
loss function: Cross Entropy
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4.3.3 Results and Analysis

The accuracy results on the test datasets in different cases are compared in Tab. 4.5. In the

table, case "#0" indicates the results on the original test dataset, and others are the results on

other transformed test datasets. For each model, the accuracies that higher than case "#0"

are in bold.

Table 4.5: Accuracy results on the test datasets in different cases with RF and MLP models.

J O Cases
Models

RF MLP

10 #0 92.34% 92.58%

1

3 #1 89.17% 91.42%
5 #2 90.63% 90.45%
7 #3 92.34% 93.37%
9 #4 91.91% 93.19%
4 #5 91.97% 94.22%
6 #6 91.00% 92.94%
8 #7 91.30% 93.07%

10 #8 90.51% 93.49%

2
5 #9 73.30% 92.40%
6 #10 80.66% 92.58%

3

7 #11 92.15% 92.46%
8 #12 90.88% 92.82%
9 #13 92.82% 94.83%

10 #14 93.43% 94.28%

From the results, it can be found that the MLP model got a higher accuracy score than

the RF model in almost every case. It is also noted that, a high accuracy score was obtained

from the MLP model in case #5 (∼ 1.6% higher than in case #0) with a considerable low

transformed dimension (O = 4), which means that the proposed method was able to reduce

the original dimension without losing too much information.

When comparing the results obtained from the transformed dataset, the RF model per-

formed better when setting J = 3. For the MLP model, the suitable decomposition levels were

J = 1 and 3. For a particular model, different decomposition levels led to different results.

Even given a decomposition level, different transformed dimensions produced different re-

sults. There were also some cases where the model performances on the transformed datasets

were worse than on the original dataset. These results indeed validated the assumption that

the key features of data may be difficult to be discovered at the original resolution, but they

will be extracted at other resolutions. For example, when using the RF model, there is a high

possibility that the key features of the experimental data exist at a resolution three-higher



4.3 Experiments and Results 73

than the original resolution. But it is not a certain answer since the MLP model also performed

well when J = 1. Even though these inconsistent results might come from the different

models used, observing the MLP learning process may be helpful to give more information.

To further study the performance of the MLP model combined with the FDIDWT method,

the loss values of the model on the transformed training datasets were averaged based on the

decomposition levels, as shown in Fig. 4.5. The figure shows that the MLP model converged

faster when J = 3. Together with the accuracy results, now it is more likely to conclude that

the key features of the experimental data exist at a resolution three-higher than the original

resolution.
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Figure 4.5: Average training loss values of the MLP model with different decomposition
levels J .

In particular, the training loss values of the MLP model when setting J = 3 are illustrated

in Fig. 4.6. The results indicated that the training process can be seen as convergent after

around 150 epochs, and case #13 and #14 achieved better performance. Even though

the case #14 converged to a sighly lower level, the MLP model learnt features faster at

the beginning of the training process in case #13, which is significant to save time in deep

learning. Meanwhile, case #13 got the highest accuracy score when given the decomposition

level J = 3, which can be found in Tab. 4.5. Additionally, the transformed dimension of case

#13 is O = 9, which decreases the computational complexity in part. Anyway, case #0 had

the slowest convergence speed, which means that the FDIDWT method indeed accelerated

training.
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Figure 4.6: Training loss values of the MLP model with a given decomposition level J = 3.

4.4 Discussions

Based on wavelet analysis, the information contents of wavelet coefficients vary from resolu-

tions. While at the same resolution, the approximation coefficients have more information

than the detail coefficients. Then the wavelet coefficients at different resolutions roughly

respect an order according to their information contents.

The information content of an attribute in big data can be given by estimating its corre-

lation with ASC that is the smallest subset of attributes to characterize the whole dataset.

Based on it, the attributes in a dataset can also be sorted in the same order to the wavelet

case.

In fact, the goal of sorting the attributes is to perform IDWT on the original dataset and

produce a new dataset. The consideration of applying IDWT instead of DWT comes from

the fact that there exist correlations among attributes. These correlations can also be taken

as the features of data. While if performing DWT, which is the common solution of Loose

Wavelet Neural Network (LWNN, introduced in section 2.4.3), the correlation features are

neglected since the data under the attributes is organized randomly.

One may assume to sort the attributes like the proposed method does, but then perform

DWT to transform the original data to be the representations at a lower resolution. While in

this case, the inherent features of data may be lost. The representations of signal in wavelet

domain will be incorrect and they may not contain the right information of the original data.

For example, the order of the adjacent points is important for a discrete speech signal. The

information hidden in the speech signal can be completely lost if the order of some points

is disturbed. Another more intuitive example is image data. In principle, the values of the

adjacent pixels in an image taken from the nature change gently. Some key features such

as textures or edges are usually detected from the discriminative changes of adjacent pixel
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values. If pixels are rearranged, the image may become another one.

Therefore, it is difficult for DWT to get the correlation features and inherent features

of data at the same time. The solution is to replacing DWT with IDWT. Actually, DWT can

be seen as a bandpass filter that arranges the information of the original data to different

resolutions. The quantities of the information vary from coefficients, as found in Eqn. (4.3).

However, these varieties can be seen as the correlation features of data. Thus, it is assumed

that the original data is taken as the wavelet coefficients at some resolution. After sorting the

attributes to get the correlation features, the data is then transformed to a higher resolution

through IDWT. The lost inherent features due to the arrangement of attributes are considered

to be retrieved by the IDWT. At the higher resolution, the key features will be extracted. In

addition, the transformed attribute space will not be larger than the original one, which is

significant to reduce dimensionality.

The experiment demonstrated that the proposed FDIDWT method helped ML models

to extract more features and accelerated MLP training. This preprocessing method would

not increase considerable computational complexity due to the efficient implementation of

IDWT, i.e., the pyramid transform. However, there should be some practical considerations

to be discussed. The first one is that there is no general rule to choose the hyper-parameters

J and O. A simple method is to use different J and O to construct the alternative wavelet

decomposition vector c and the corresponding bookkeeping vector l based on the original

training dataset, as shown in Tab. 4.3. Then the convergence of models with different vector

pairs (c and l) are compared on the transformed training datasets, as shown in Fig. 4.5

and 4.6. The vector pair that leads to the fastest convergence is taken as the choice, which

determines J and O. Moreover, a lower transformed dimension O is also preferable.

The second consideration is that the performance of the model should be analyzed from

two aspects: the data preprocessing method and the model used. For example, in the

experiment, the RF model performed well with J = 3, while the MLP model also achieved

good performance when J = 1. Therefore, the model performance depends on two factors:

the feature pre-extraction capability of the preprocessing method and the learning capability

of the designed model. For the FDIDWT method, it cannot be concluded that the features

extracted at a particular resolution always help any model to achieve better performance.

But it also indicates that a well-designed model gives a possibility to get better results. For

instance, in the experiment, the MLP model performed better than the RF model in almost

every case. Thus, the optimization of model is another work of this thesis, which will be

described in next chapter.





5
Tight Frame Wavelet Functions for Fast Deep

Learning

Gradient vanishing or exploding problem and slow convergence speed are the key issues

when training Deep Neural Networks (DNN). This chapter investigates these issues from the

perspective of Activation Function and Derivative Function pair (ADF), and summarizes the

properties of an ideal ADF for fast DNN training. A tight frame wavelet solution is proposed to

alleviate the gradient problems and speed up the training process. Experiments demonstrate

that the proposed method helps to stabilize DNN training and accelerate convergence. The

tight frame wavelet functions can be a better solution to different applications.

5.1 Activation Function and Derivative Function in Deep

Learning

To tackle the gradient vanishing/exploding problem and to accelerate the convergence of

DNN, many efforts have been made to design better activation functions (Xu et al., 2015).

The difficulties in DNN training can greatly be attributed to the ADFs inappropriately chosen.

Seven widely used ADFs are listed in Tab. 5.1 and illustrated in Fig. 5.1. They can be analyzed

considering two aspects: zero-mean function and energy transfer.
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Table 5.1: Commonly used activation functions and the corresponding derivative functions.

Name Activation Function Derivative Function

Sigmoid f (x) =
1

1+ e−x
f ′(x) = f (x) (1− f (x))

ReLU f (x) =

�

x , x ≥ 0

0, x < 0
f ′(x) =

�

1, x ≥ 0

0, x < 0

ELU f (x) =

�

x , x ≥ 0

ex − 1, x < 0
f ′(x) =

�

1, x ≥ 0

ex , x < 0

Leaky ReLU f (x) =

�

x , x ≥ 0

K x , x < 0
f ′(x) =

�

1, x ≥ 0

K , x < 0

Tanh f (x) =
ex − e−x

ex + e−x
f ′(x) = 1− ( f (x))2

Softplus f (x) = log(1+ ex) f ′(x) =
ex

1+ ex

Softsign f (x) =
x

1+ |x |
f ′(x) =

1

(1+ |x |)2

5.1.1 Zero-mean Function

Zero-mean function indicates a function that normalizes the distribution of its outputs at

near-zero mean. Based on the definition, the functions in Tab. 5.1 can be categorized into

two types:

• Type I: the activation function is a zero-mean function while the derivative function

isn’t, such as ELU, Leaky ReLU (LeReLU), Tanh, and Softsign;

• Type II: neither the activation function nor the derivative function is zero-mean function,

such as Sigmoid, ReLU, and Softplus.

In a Forward Propagation (FP) process, the distributions of layer activations of type I

function will be well normalized and the Internal Covariate Shift (ICS) will be small during

training. On the contrary, their error distributions in Backward Propagation (BP) process are

not normalized and always change because of their positive derivative values. This effect is

named as Backward Internal Covariate Shift (BICS), which increases when training DNN.

The increased BICS will push the mean of error distributions to the saturation regions for

Tanh and Softsign, which will cause the gradient vanishing problem. This means that some

of the trainable parameters cannot be updated as normal and the network may converge to a

poor local minimum (Glorot and Bengio, 2010; Maas et al., 2013).

Both the ICS and BICS of a type II function exist, since the distributions of activations and

errors are not well normalized. During the training process, the distribution of each layer
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Figure 5.1: Commonly used activation functions (solid lines) and the corresponding deriva-
tive functions (dashed lines). The blue, red, cyan, purple, green, black, and magenta
colors respectively represent the Sigmoid, ReLU, ELU, LeReLU, Tanh, Softplus, and Softsign
functions.

data (activations and errors) changes according to the parameters of the preceding layers. If

the data of one hidden layer has a nonzero-mean distribution, it will cause ICS (in FP process)

or BICS (in BP process) for units in the next hidden layer. Therefore, the next layer needs to

continuously adapt to the new distribution; this will be time-consuming, slowing down the

convergence. The BICS also easily results in the gradient vanishing problem in Sigmoid case.

As discussed, the ReLU family (ReLU, ELU, and LeReLU) may not easily suffer from the

gradient vanishing problem, but if some hyper-parameters, such as the learning rate, are not

carefully tuned, that can give rise to the gradient exploding problem. This defect is attributed

to the nonzero-mean property of the ReLU family. Another vision of the gradient exploding

problem comes from the energy transfer in the training process that will be discussed below.

5.1.2 Constant Energy Transfer

With respect to the continuous input x , the characteristic energy E of a function f (x) can be

expressed as:

E =

∫ +∞

−∞
| f (x)|2 d x <∞. (5.1)
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As a consequence of this definition, all the activation functions listed in Tab. 5.1 are infinite-

energy functions, where the energies of activations are not restricted: this leads to a slow

convergence. While the derivative functions of ReLU family and Softplus are also infinite-

energy functions, resulting in potential numerical problems or gradient exploding problem

for the active units (Glorot et al., 2011).

Besides, ReLU has another problem, i.e., the so-called "dead units" (Maas et al., 2013).

When a ReLU function is used and a gradient-based optimization algorithm is applied to train

the DNN model, and the gradients are very large or the learning rate is set a little bit high,

then the weights will become very small and the corresponding units will be dead. The dead

units will not revive anymore. The weights of such dead units will never be updated. If too

many dead units occur, the model performance will be degraded.

Hence, there is a need to design a modest finite-energy ADF aiming to form a stable

energy transfer both in FP and BP processes. The energies of propagating activations and

errors are expected to range within definite bounds, so that neither gradient vanishing nor

gradient exploding problem should come up. Ideally, if the energies of the inputs and outputs

of one layer are equal, the training will be strongly accelerated. This case is referred to as

constant energy transfer, where both learning rate and weight initialization will no longer be

the key factors affecting the training process.

From the above analysis, it can be seen that the choice of ADF plays a fundamental role

in DNN training. While Sigmoid, Tanh, and Softsign can easily suffer from gradient vanishing

problem in deep structures, Softplus and ReLU family functions have the potential numerical

problem. They may perform well in some tasks, but a universal solution is needed to solve

the problems discussed in the deep learning field.

Moreover, all the seven commonly used ADFs are linear or approximately-linear, which

results in a weak learning capability of model and slows down training. Also, most of these

ADFs are not very sparse, i.e., output few zeros or near-zeros, which cannot guarantee the

sparsity of propagating data in DNN training. Thus, they may easily cause overfitting problem.

In summary, an ideal ADF for fast DNN training should have the following properties:

1) Zero-mean: It is zero-mean function for alleviating gradient vanishing and exploding

problems;

2) Constant energy transfer: It constrains the energies of layer data to a constant both in the

FP and BP processes for overcoming the ICS and BICS and accelerating training;

3) Nonlinear: It should have good nonlinearity for extracting features in data and handling

underfitting problem.



5.2 Analysis of Wavelet Functions 81

4) Sparse: It keeps the sparsity of propagating data for reducing overfitting problem and

resulting in robust model.

5.2 Analysis of Wavelet Functions

As an example shown in Fig. 5.2, wavelet ψ(t) is defined as a "small wave" which has

oscillating characteristic and finite energy (Sidney Burrus et al., 1998). Its output will thus

be well normalized, and it has near-zero mean and small variance value. Besides, wavelet

also has the nonlinear property that is good for handling complex problems when used as

the ADF. Moreover, DNN training benefits more from the sparsity of the wavelet and a tight

frame wavelet featuring constant energy transfer, which will be discussed next.
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Figure 5.2: Daubechies’ wavelet ψD10.

5.2.1 Sparsity of Wavelet Function

The sparsity of wavelet function indicates a small number of coefficients in the wavelet

domain by Wavelet Transform (WT). These coefficients are sufficient to represent the original

data. This property helps to reduce the computational complexity and the hardware resources

needed. In fact, the matrix multiplications of Multilayer Perceptron (MLP) training process can

be seen as WT, which is defined as the inner product of the signal f (t) with the two-parameter

family ψa,b(t) introduced in Eqn. (2.44):

WT(a, b) =

∫ +∞

−∞
f (t)ψ̄a,b(t)d x =




f (t),ψa,b(t)
�

, (5.2)

where, ψ̄ denotes the complex conjugate ofψ. In the FP process of MLP training, as expressed

in Eqn. (2.11), if ψa,b(·) is used as the activation function and the bias are set to zero, the
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logits data of the lth hidden layer will be:

z l = al−1Wl

=ψa,b

�

z l−1
�

Wl

=



ψa,b

�

z l−1
�

,Wl
�

,

(5.3)

where, a and W are the activations and weights, respectively. z l is the sparse logits data of

the lth hidden layer and it will propagate to next layers.

From Eqn. (5.3) it can be seen that the FP process will largely benefit from the sparsity

property of wavelet function ψa,b. The same advantage will also be seen in the BP process

since the sparse logits data z l is one of the factors to calculate error data δl , as shown in

Eqn. (2.14b). The propagating data of FP and BP processes in Convolutional Neural Network

(CNN) training has the same benefits.

The sparsity of wavelet function will help to further accelerate training, reducing the

use of hardware resources when training DNN in embedded systems. In addition, it may

strengthen the robustness of the model to noisy inputs (Glorot et al., 2011) and alleviate the

overfitting problem.

5.2.2 Constant Energy Transfer of Tight Frame Wavelets

Based on the Plancherel theorem, the energy of the discretized wavelet familyψm,n(t) defined

in Eqn. (2.47) is computed as:

E =

∫ +∞

−∞

�

�ψm,n(t)
�

�

2
d t

=

∫ +∞

−∞

�

�

�a−m/2
0 e− j b0am

0 nωψ̂(am
0 ω)

�

�

�

2
dω

= am
0

∫ +∞

−∞

�

�ψ̂(am
0 ω)

�

�

2
dω.

(5.4)

If m= 1, then the energy of the selected wavelet function ψm=1,n will be:

E′ = a0

∫ +∞

−∞

�

�ψ̂(a0ω)
�

�

2
dω. (5.5)

And if ψm,n constitutes a frame with bounds A and B, then Daubechies (1992) gives:

A≤
2π
b0

∑

m∈Z

�

�ψ̂
�

am
0 ω

��

�

2
≤ B, (5.6)
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for all ω 6= 0. So when m= 1, there exist:

A≤
2π
b0

�

�ψ̂(a0ω)
�

�

2
≤ B. (5.7)

By integrating Eqn. (5.7) with 1≤ |ω| ≤ a0, then:

Ab0

2π

∫

dω≤
∫

�

�ψ̂(a0ω)
�

�

2
dω≤

Bb0

2π

∫

dω. (5.8)

Combining Eqn. (5.5) and (5.8), finally:

A
a0 b0(a0 − 1)

π
≤ E′ ≤ B

a0 b0(a0 − 1)
π

. (5.9)

It can be found that the energy of a particular wavelet frame ranges within fixed bounds

determined by the lower and upper frame bound, i.e., A and B, respectively. Moreover, if the

wavelet frame is tight, which means A= B, then

E′ = A
a0 b0(a0 − 1)

π
= B

a0 b0(a0 − 1)
π

. (5.10)

Eqn. (5.10) implies that the energy of a tight frame wavelet is a constant determined by its

frame bounds. In other words, if a tight frame wavelet is used as the activation function or

derivative function in DNN training, the energy of propagating data will not diverge, which is

ideal and means constant energy transfer. However, the data energy ranges within bounds in

the "slack" frame case, leading to slow convergence of training. In any case, the seven ADFs

listed in Tab. 5.1 will not have a good performance on energy transfer to accelerate training.

5.3 ADFs of Tight Frame Wavelet

This section derives the tight frame wavelet functions for further experimental verifications,

i.e., Tight Frame Wavelet Activation Function (TFWAF) for FP process and Tight Frame

Wavelet Derivative Function (TFWDF) for BP process. The frames of Mexican hat wavelet

and Morlet wavelet will be constructed for comparison.

5.3.1 Mexican Hat Case: TFMH

Mexican hat wavelet is the second derivative of the Gaussian e−x2/2 and its normalized form

can be written as:

ψmexh(x) =
2

p
3 4pπ

�

1− x2
�

e−x2/2. (5.11)
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Eqn. (2.50) gives the frame bounds A and B of ψmexh(x), as listed in Tab. 5.2, with different

a0 and b0 values. From the table, it can be found that there are many situations where the

Mexican hat wavelet has a tight frame. If choosing a0 =
4p2, b0 = 0.25, m= 1, n= 1, then

the TFWAF in Mexican hat case can be written as:

fT F MH(x) =
27/8

p
3 4pπ

�

1−
�

1
4p2

x −
1
4

�2
�

e
− 1

2

�

1
4p2

x− 1
4

�2

. (5.12)

When the BP algorithm is applied to train DNN models, the derivative function is needed to

compute gradients. The derivative of fT F MH(x) is:

g(x) = f ′T F MH(x)

=

�

1− 27/4 x
� �

4
p

2x
�

4p2− 2x
�

+ 47
�

243/8
p

3π1/4
e−

1
32(1−27/4 x)2 .

(5.13)

Table 5.2: Frame bounds for wavelet frames based on the Mexican hat wavelet.

a0 b0 A B B/A

2

0.25 13.091 14.183 1.083
0.50 6.546 7.092 1.083
0.75 4.364 4.728 1.083
1.00 3.223 3.596 1.116

p
2

0.25 27.273 27.278 1.0002
0.50 13.673 13.639 1.0002
0.75 9.091 9.093 1.0002
1.00 6.768 6.870 1.015

3p2

0.25 40.914 40.914 1.0000
0.50 20.457 20.457 1.0000
0.75 13.638 13.638 1.0000
1.00 10.178 10.279 1.010

4p2

0.25 54.552 54.552 1.0000
0.50 27.276 27.276 1.0000
0.75 18.184 18.184 1.0000
1.00 13.586 13.690 1.007

However, in order to constrain the energy of errors in BP process, the TFWDF is expected.

Then the frame bounds of g(x) are calculated and shown in Tab. 5.3. When choosing
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a0 =
4p2, b0 = 0.25, m= 1, n= 1, the TFWDF in Mexican hat case is written as:

gT F MH(x) =− e−
1

128(−4
p

2x+23/4+2)2 �−4
p

2x + 23/4 + 2
�

16x2 − 8
�p

2+ 4p2
�

x + 27/4 +
p

2− 94

128
p

6 4pπ
.

(5.14)

The TFWAF ( fT F MH) and TFWDF (gT F MH) in Mexican hat case are called TFMH, and they

are illustrated in Fig. 5.3. The mean and variance of fT F MH(x) are 0 and 0.05, respectively;

while for gT F MH(x) they are 0 and 0.088, respectively. These values indicate the normalization

capacity of TFMH.

Table 5.3: Frame bounds for wavelet frames based on the derivative function of tight frame
Mexican hat wavelet.

a0 b0 A B B/A

2

0.25 20.6493 25.2042 1.2206
0.50 10.3246 12.6021 1.2206
0.75 6.8831 8.4014 1.2206
1.00 5.1433 6.3200 1.2288

p
2

0.25 45.8531 45.8915 1.0008
0.50 22.9266 22.9458 1.0008
0.75 15.2844 15.2972 1.0008
1.00 11.4385 11.4976 1.0052

3p2

0.25 68.8084 68.8085 1.0000
0.50 34.4042 34.4043 1.0000
0.75 22.9361 22.9362 1.0000
1.00 17.1662 17.2381 1.0042

4p2

0.25 91.7446 91.7446 1.0000
0.50 45.8723 45.8723 1.0000
0.75 30.5815 30.5816 1.0000
1.00 22.8883 22.9840 1.0042

5.3.2 Morlet Case

The Morlet wavelet is defined as:

ψmorlet(x) = cos(5x)e−x2/2. (5.15)

The Morlet case is proceeded similarly to what previously done; its frame bounds are listed

in Tab. 5.4.

The results show that Morlet wavelet doesn’t have a tight frame, but a comparatively-
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Figure 5.3: The TFWAF ( fT F MH , left) and TFWDF (gT F MH , right) in Mexican hat case.

Table 5.4: Frame bounds for wavelet frames based on the Morlet wavelet.

a0 b0 A B B/A

p
2

0.25 5.9369 7.1889 1.2109
0.50 1.7130 4.8499 2.8312
1.00 0.6831 2.5983 3.8037

3p2
0.25 9.7977 9.8939 1.0098
0.50 3.3591 6.4867 1.9311
1.00 1.4213 3.5016 2.4637

4p2
0.25 13.1258 13.1297 1.0003
0.50 4.5622 8.5656 1.8775
1.00 1.9370 4.6269 2.3887

tight frame can be obtained when a0 =
4p2, b0 = 0.25. If assigning m = 1, n = 1, the

comparatively-tight frame wavelet activation function in Morlet case is:

fmorlet(x) = 2−
1
8 cos

�

5
�

1
4p2

x −
1
4

��

e
− 1

2

�

1
4p2

x− 1
4

�2

. (5.16)

Then the derivative function of fmorlet(x) is:

h(x) = f ′morlet(x)

= 2−
21
8 e−

1
32(1−27/4 x)2

�

20 4p2 sin
�

5
4
−

5
4p2

x
�

+

� 4p2− 4x
�

cos
�

5
4
−

5
4p2

x
�

�

.

(5.17)

However, h(x) doesn’t have a wavelet frame, so there isn’t TFWDF in this case. For comparison,

fmorlet(x) and h(x) are used as the ADF in Morlet case, as plotted in Fig. 5.4. The mean and

variance of fmorlet(x) are 0 and 0.04, respectively; for h(x) they are 0 and 0.8, respectively.
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Note that the magnitudes of h(x) are not well normalized in [−1,1].
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Figure 5.4: The comparatively-tight frame wavelet activation function ( fmorlet , left) and its
derivative function (h, right) in Morlet case.

5.4 Experiments and Results

Four experiments were performed to verify the proposed method. First, three MLP models

were built to identify the synthetic nonlinear signals, approximate a single variable function,

and approximate a real nonlinear signal independently. The training process of MLP models

was accelerated by using Tensorflow 1.10 (GPU version). Second, a CNN model was built to

accomplish the task of handwritten digits recognition on the MNIST dataset (LeCun et al.,

1998). The CNN model was implemented with CUDA C on GPU. The graphic card was the

NVDIA GeForce GTX1050Ti with 768 CUDA cores.

These experiments were running on the Ubuntu 18.04 system, with CPU Intel Core i5-

8400. For comparison, in each experiment, six ADFs were tested independently: tight frame

Mexican hat function (TFMH), comparatively tight frame Morlet function ("morlet"), Sigmoid

function ("sigmoid"), and ReLU family ("relu" for ReLU, "lerelu" for Leaky ReLU, and "elu" for

ELU).

In addition, to evaluate the stability of the MLP training process, a Jacobian matrix was

often used to quantify the variation of the layer distributions of inputs and outputs (Glorot

and Bengio, 2010). The Jacobian matrix associated with the lth layer is computed as:

Jl =
∂ al+1

∂ al
, (5.18)

where, al represents the activations of the lth layer. If the layer Jacobian matrix J has an

average singular value close to 1, the layer activations will flow normally and the training

is considered stable. In that case, the training process will converge quickly (Pascanu et al.,
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2013; Saxe et al., 2013).

5.4.1 Identification of Synthetic Nonlinear Signals

Understanding the critical features of nonlinear signals produced from different processes may

help to identify a variety of nonlinear systems. In this experiment, three kinds of nonlinear

processes were simulated: cosine, exponent and differential, and they can be expressed by:























y0 =cos (40πx + 10) + 2cos (400πx + 20)+

3cos (1000πx + 30) + 5+ n

y1 =5e−5x + 10+ n

y2 =Bandpass
�

n′
�

, (5.19)

where, x is an even sequence with interval 1 over [1, 1024]. n is the Gaussian noise with

a standard normal distribution. The Signal-to-Noise Ratios (SNRs) of signal y0 and y1 are

both set at 20dB. Bandpass(·) is a 10th-order bandpass Butterworth filter, with its amplitude-

frequency and phase-frequency response characteristic curves depicted in Fig. 5.5. n′ is also

the Gaussian noise with mean 0 and variance 5.
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Figure 5.5: Amplitude-frequency (top) and phase-frequency (bottom) response characteris-
tic curves of the 10th-order bandpass Butterworth filter.

The MLP models with different ADFs were independently trained to classify y0, y1, and

y2 into three distinct separate classes: 0, 1, and 2, respectively. In this experiment, 18000

samples were produced in 3 classes, with 6000 samples per class. Each sample has 1024

points. These samples were divided into 15000 for training and 3000 for testing. In the

datasets, each class had the same number of samples, i.e., 5000 samples in training dataset

and 1000 samples in test dataset.
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Structures and Hyper-parameters

In this experiment, the performances of different ADFs for three MLP structures are compared.

The number of layer units and the hyper-parameters for training can be found in Tab. 5.5.

Table 5.5: Structures and hyper-parameters of the MLP models in the synthetic nonlinear
signal identification experiment.

three-hidden-layer 1 [ 1 5 3 3 1 ]
three-hidden-layer 2 [ 1 50 50 50 1 ]

ten-hidden-layer [ 1 50 50 50 30 30 30 20 20 10 10 1 ]

epochs 50
learning rate 0.0001

weights initialization Xavier
bias initialization zero

optimizer SGD
loss function MSE

Results

The test loss values of the three MLP structures are compared in the left panels of Fig. 5.6.

The results of Fig. 5.6(a) showed that the models with TFMH, morlet, and elu could converge

to a low loss level, while the TFMH case achieved the fastest convergence. The lerelu and

sigmoid cases converged to a suboptimal loss level and the relu case had the worst result,

this can be considered as the underfitting problem.

When the MLP model became deeper, as comparing Fig. 5.6(c) with 5.6(e), the sigmoid

case suffered from gradient vanishing problem and the training process of morlet case

diverged. But TFMH and elu functions still had the best performance.

The training processes of the MLP models with TFMH and Relu family could be considered

stable since their average singular values of hidden layer Jacobian matrices closed to 1, as

depicted in the right panels of Fig. 5.6. While the average singular value of the morlet

case was much higher than 1, which indicates the unstable data flow during training. The

near-zero average singular value of the sigmoid case indeed confirmed the gradient vanishing

problem.
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Figure 5.6: Test loss values (left) and average singular values of hidden layer Jacobian
matrices (right) in the synthetic nonlinear signal identification experiment. Row 1-3: three-
hidden-layer 1, three-hidden-layer 2, and ten-hidden-layer.



5.4 Experiments and Results 91

The identification results of the MLP models for the test samples were averaged and

shown in Fig. 5.7 and 5.8. It can be seen that the MLP models with TFMH could quickly and

distinctly classify the samples into different classes in spite of the depth of structure. When

the structure went deeper, the performance of Relu family would be silghtly better, while the

morlet and sigmoid cases had worse results.

5.4.2 Approximation for a Single Variable Function

In this section, an experiment was set up to approximate a piecewise defined function:

F (x) =















−2.186x − 12.864, −10≤ x < −2

4.246x , −2≤ x < 0

10sin ((0.03x + 0.7) x) e−0.05x−0.5, 0≤ x ≤ 10

(5.20)

over the domain [-10, 10] with interval 1. This single variable function is shown in grey in

Fig. 5.11.

Structures and Hyper-parameters

Two MLP models with three and ten hidden layers were respectively used in this experiment

for comparison. Their structures and hyper-parameters are listed in Tab. 5.6. The 2001

length sequence x in Eqn. (5.20) was taken as inputs and the models were trained to output

a signal approximating F(x).

Table 5.6: Structures and hyper-parameters of the MLP models in the single variable
function approximation experiment.

three-hidden-layer [ 1 100 100 100 1 ]
ten-hidden-layer [ 1 100 100 100 50 50 50 50 50 30 30 1 ]

epochs 100
learning rate 0.01

weights initialization Xavier
bias initialization zero

optimizer Adam
loss function MSE

Results

The training loss values of two MLP structures are compared in Fig. 5.9. The convergence

regions had also been scaled up for details. The TFMH case had the best performance
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Figure 5.7: Identification results of the MLP models with three-hidden-layer 2 during
training in the synthetic nonlinear signal identification experiment. (a)-(f): TFMH, morlet,
sigmoid, relu, lerelu, and elu.
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Figure 5.8: Identification results of the MLP models with ten-hidden-layer during training
in the synthetic nonlinear signal identification experiment. (a)-(f): TFMH, morlet, sigmoid,
relu, lerelu, and elu.
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regardless of the depth of MLP model. While the morlet diverged in the case of ten-hidden-

layer. The relu and lerelu cases didn’t converge to a good point when the models went deeper,

meanwhile the gradient vanishing problem came out in the sigmoid case. Even though elu

converged with a lower learning rate (0.005, colored by purple in Fig. 5.9(b)), it was found

sensitive to the learning rate where a higher one (0.01) led to the gradient exploding problem

(colored by pink in Fig. 5.9(b)). In addition, when comparing the convergence regions, as

shown in Fig. 5.9(c) and 5.9(d), it can be found that TFMH case was more stable. The

comparison indicates that TFMH has the ability to reduce the overfitting problem.

0 20 40 60 80 100

Epochs

0

5

10

15

20

T
ra

in
in

g
 L

o
s
s

Mexican hat

Morlet

Sigmoid

ReLU

LeReLU

ELU

(a)

0 20 40 60 80 100

Epochs

0

5

10

15

20

T
ra

in
in

g
 L

o
s
s

Mexican hat

Morlet

Sigmoid

ReLU

LeReLU

ELU

ELU (lr=0.005)

(b)

20 40 60 80 100

Epochs

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

T
ra

in
in

g
 L

o
s
s
 (

lo
g

1
0
)

Mexican hat

Morlet

(c)

40 50 60 70 80 90 100

Epochs

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

T
ra

in
in

g
 L

o
s
s
 (

lo
g

1
0
)

Mexican hat

ELU (lr=0.005)

(d)

Figure 5.9: Training loss values of the MLP models with three-hidden-layer (left) and
ten-hidden-layer (right) in the single variable function approximation experiment. The
second row shows the scaled convergence regions.

The average singular values of hidden layer Jacobian matrices further verified the advan-

tages of TFMH and elu for stable training process, as shown in Fig. 5.10. The approximation

results of the MLP models with different structures and ADFs are illustrated in Fig. 5.11 and
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Figure 5.10: Average singular values of hidden layer Jacobian matrices of the MLP mod-
els with (a) three-hidden-layer and (b) ten-hidden-layer in the single variable function
approximation experiment.

5.4.3 Approximation for a Real Nonlinear Signal

Interferometric Fiber Sensors (IFS) are often used to measure multiple parameters of pressure

based on two or more laser beams which exist optical path difference (OPD) (Liu et al., 2015).

They can be seen as complex nonlinear systems producing signals written as:

y =
N
∑

i=1

Aicos
�

ai

λk

�

+η0 +ηDC , (5.21)

where, η0 is random noise and ηDC is DC component, λk represents the uniform wavelength

and is the input of target signal y . Parameters Ai , ai , and N can be estimated with the current

research (Lin et al., 2019). The goal of this section was to approximate the real sample y , as

shown in grey in Fig. 5.15, with MLP models.

Structures and Hyper-parameters

Similarly, two MLP models with three and ten hidden layers were compared in this experiment.

Their structures and hyper-parameters are listed in Tab. 5.7.
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Figure 5.11: Approximation results of the MLP models with three-hidden-layer in the single
variable function approximation experiment. (a)-(f): TFMH, morlet, sigmoid, relu, lerelu,
and elu (learning rate is 0.005).
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Figure 5.12: Approximation results of the MLP models with ten-hidden-layer in the single
variable function approximation experiment. (a)-(f): TFMH, morlet, sigmoid, relu, lerelu,
and elu (learning rate is 0.005).
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Table 5.7: Structures and hyper-parameters of the MLP models in the real nonlinear signal
approximation experiment.

three-hidden-layer [ 1 500 300 100 1 ]
ten-hidden-layer [ 1 100 100 50 50 50 30 30 10 10 10 1 ]

epochs 500
learning rate 0.0001

weights initialization Xavier
bias initialization zero

optimizer Adam
loss function MSE

Results

The training loss values of two MLP structures are compared in Fig. 5.13. The model with

morlet achieved the best performance in the case of shallow structure, while diverged when

increasing the depth. The relu, lerelu, and sigmoid cases couldn’t converge to a low loss

level, and the elu case suffered from the numerical overflow problem although the learning

rate (0.0001) was not high. However, the model with TFMH converged to a low loss both

for shallow and deep structures. The average singular values of hidden layer Jacobian

matrices again verified the stable training process of TFMH case, as shown in Fig. 5.14. The

approximation results are compared in Fig. 5.15 and 5.16.
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Figure 5.13: Training loss values of the MLP models with three-hidden-layer (left) and
ten-hidden-layer (right) in the real nonlinear signal approximation experiment.
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Figure 5.14: Average singular values of hidden layer Jacobian matrices of the MLP models
with (a) three-hidden-layer and (b) ten-hidden-layer in the real nonlinear signal approxi-
mation experiment.
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Figure 5.15: Approximation results of the MLP models with three-hidden-layer in the real
nonlinear signal approximation experiment. (a)-(e): TFMH, morlet, sigmoid, relu, and
lerelu. The elu results are not plotted due to numerical overflow.
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Figure 5.16: Approximation results of the MLP models with ten-hidden-layer in the real
nonlinear signal approximation experiment. (a)-(e): TFMH, morlet, sigmoid, relu, and
lerelu. The elu results are not plotted due to numerical overflow.

5.4.4 Recognition of the Handwritten Digits

MNIST is a well-known dataset for handwritten digits recognition. Even though there have

many researches dedicated to a variety of algorithms for improvements of accuracy on

MNIST1, this dataset is a good start for us to compare the performances of different ADFs

for CNN models. MNIST contains 60000 samples for training and 10000 samples for testing.

Each sample is a bilevel image with 28 × 28 size, which indicates one of ten digits (0 to

9). However, in this experiment, a sub-dataset of the training dataset of MNIST was used

to investigate the properties of ADFs, because a smaller training dataset usually makes the

learning harder. Therefore, 1000 samples were prepared for training, with 100 samples per

class.

Structures and Hyper-parameters

The structures and hyper-parameters of the CNN models used in the experiment are listed in

Tab. 5.8.

1http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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Table 5.8: Structures and hyper-parameters of the CNN models in the handwritten digits
recognition experiment.

CNN 1

ConvL 1 2 @ 3× 3 same padding
PoolL 2 max pooling

ConvL 3 2 @ 3× 3 same padding
PoolL 4 max pooling

FcL 1 10
FcL 2 10

CNN 2

ConvL 1 2 @ 3× 3 same padding
PoolL 2 max pooling

ConvL 3 2 @ 3× 3 same padding
PoolL 4 max pooling

ConvL 5 4 @ 2× 2 valid padding
PoolL 6 max pooling

FcL 1 10
FcL 2 10
FcL 3 10

epochs 200
learning rate 0.001

weights initialization Xavier
bias initialization zero

optimizer Adam
loss function CE

Results

The training and test loss values of the two CNN models are recorded during training, as

shown in Fig. 5.17(a) and 5.17(b). From the figures we found that TFMH case converged

fastest both in shallow and deep structures, while morlet case diverged. The sigmoid always

suffered from gradient vanishing problem and learnt nothing. The lerelu and elu cases

converged slowly in deeper structure and the relu even diverged when the structure went

deeper.

The differences between training and test loss values of different ADFs are compared in

Fig. 5.17(c) and 5.17(d). The results showed that TFMH had the ability to alleviate overfitting

problem. Meanwhile, the accuracies on test datasets indeed showed the advantages of TFMH

in handwritten digits recognition, as listed in Tab. 5.9.
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Figure 5.17: Training loss values (top, dashed lines) and test loss values (top, solid lines),
and their differences (bottom) of CNN 1 (left) and CNN 2 (right) in the handwritten digits
recognition experiment.

Table 5.9: Accuracy results of the CNN models with different ADFs in the handwritten
digits recognition experiment.

Model
Activation Function and Derivative Function

TFMH Morlet Sigmoid ReLU LeReLU ELU

CNN 1 92.66% 25.88% 52.82% 85.82% 85.06% 87.69%
CNN 2 94.44% 17.19% 7.97% 9.79% 69.31% 74.70%
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5.5 Discussions

Typically, existing researches mainly focus on the design of activation function and simply

take its derivative as the derivative function. However, there is a possibility to improve the

performance of DNN training further if attempting to optimize the derivative function. Based

on the analysis, the performance of DNN training process depends on four properties of ADF

used: zero-mean, constant energy transfer, nonlinear, and sparse. Qualitatively, these four

aspects of the six ADFs used in the experiments are compared in Tab. 5.10. The performances

in the different fields are sorted into "bad" (B), "modest" (M) and "good" (G). The zero-mean

function, mentioned in section 5.1.1, performs normalization on its output data, thus it is

called "normalization property".

Table 5.10: Comparison of the properties of different ADFs.

Property
Activation Function and Derivative Function

TFMH Morlet Sigmoid ReLU LeReLU ELU

normalization G M B B M M
constant energy transfer G B B B B B

nonlinearity G G M B B M
sparsity G G B B B B

The experiments showed that the nonlinear fitting capability of NN models heavily

depended on the nonlinearity of the ADF used, especially in the case of shallow structures.

While the deep structures often had numerical issues, such as gradient vanishing or exploding

problem, where an ADF with good normalization property is helpful. Propagating data among

hidden layers in DNN training process also requires the ADF to constrain the energy of data

and keep data flow well for fast training. In addition, the sparsity of ADF helps to reduce the

hardware resources and alleviate the overfitting problem. It also resulted in robustness to

noisy inputs, which was one of the reasons why the TFMH training was more stable than

others.

Morlet function always performed well in shallow structure while bad in deep structure

in the nonlinear problems. We argue that Morlet has modest normalization property and

good nonlinearity, hence it helped DNN to learn features quickly when the model was not

too deep. But the biggest disadvantage of it is the divergent energy transfer during training,

which led to the failure in deep learning.

Sigmoid function cannot normalize its outputs to near-zero mean, and it also cannot

constrain the energy of propagating data, thus it can easily give rise to gradient vanishing

problem in DNN training. Meanwhile, it is approximately-linear, which limits its learning

capability and slows down convergence even for shallow structures.
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ReLU and LeReLU functions are also approximately-linear, thus their performances were

not improved dramatically although adding hidden layers helps to enhance the nonlinear

fitting capability of models. The linearity also resulted in slow learning processes. Another

reason of ReLU and LeReLU functions performed bad in deep structures comes from the

unrestricted propagating data during training.

The nonlinearity of ELU is a little bit stronger than ReLU and LeReLU functions, which

helped to achieve good results in shallow structures sometimes. But it was sensitive to the

depth of model and the learning rate, leading it to suffer from high risk of gradient exploding

problem. This result can be interpreted from the viewpoint of signal filtering. The drastic

changes coming from high learning rate were suppressed in the TFMH case, acting as a

low-pass filter. This filtering produced a smoother convergence curve than others, indicating

training stability. For ELU function, an all-pass filter was in place and all components could

go through, leading to numerical problems as they flowed deeper.

Taking advantage of all the properties discussed, the DNN model with TFMH function

could quickly converge to a satisfactory point. This solution indeed stabilized the training

and helped to speed up convergence. The experimental results clearly demonstrated the

advantages of the tight frame wavelet functions for fast DNN training.



6
Systematic Experiments

To investigate the effectiveness of feature pre-extraction, chapter 3 proposes a pathfinder topol-

ogy of Deep Neural Network (DNN), i.e., Fast Fourier Transform Neural Network (FFTNN), to

perform Deep Learning (DL) in frequency domain. Its Fast Fourier Transform (FFT) compo-

nent actually acts as a feature pre-extraction step within the FFTNN model. As the first part

of this chapter, some extension experiments are described to further study the proprieties of

the tight frame Mexican hat wavelet functions (TFMH, introduced in chapter 5) performing

in frequency domain.

Further, the proposed feature pre-extraction method (FDIDWT, introduced in chapter 4)

and the TFMH are combined to construct a new topology of Wavelet Neural Network (WNN),

termed as FDIDWT-MEXHACT-NN or simply FDMHNN, to finish the binary classification tasks

built on two astronomical datasets. Meanwhile, the FDIDWT and the TFMH of the proposed

FDMHNN model are also compared with other preprocessing methods and other Activation

Function and Derivative Function pairs (ADFs), respectively.

These experiments were set up on the Ubuntu 18.04 system, with CPU Intel Core i5-8400.

All the models were composed of the fully-connected layers, whose computing was accelerated

by the high-level deep learning framework, i.e., TensorFlow (GPU version 1.10). The GPU is

NVIDIA GeForce GTX1050Ti with 768 CUDA cores.
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6.1 Extension Experiments of Speech Recognition

This section describes the extension experiments of the speech recognition tasks performed in

section 3.4.2, after the TFMH has been proposed. In particular, the FFTNN model utilizes the

ELU as its ADF, while now the TFMH is tested for comparison. Thus, the comparative FFTNN

model replaced ELU with TFMH and was termed as FFTMHNN. Except for the ADF, these

two models had the same number of hidden units and hyper-parameters as shown in Tab.

3.3 and 3.4 for the speech recognition missions. The experimental data used here was also

the same as in section 3.4.2. During training, the test loss values were recorded to observe

the convergence; they will be reported and discussed in next chapter.

While gradient exploding problem is also common in DNN training. It may come out

when the model is very deep or the learning rate is set a little bit high. So in this part, a

deep FFTNN model (5 hidden layers) was also built to test the stability of DNN training in

frequency domain. The number of hidden units and the hyper-parameters of the deep FFTNN

and FFTMHNN models are listed in Tab. 6.1. The experimental results will also be discussed

in next chapter.

Table 6.1: The number of hidden units and the hyper-parameters of the FFTNN and
FFTMHNN models with a deep structure in the speech recognition missions.

number of hidden units [ 30, 30, 20, 20, 10 ]
learning rate 0.0001

epochs 100
batch size 512
optimizer Adam

weights initialization Xavier
bias initialization zero

activation function ELU for FFTNN, TFMH for FFTMHNN
loss function CE

6.2 Systematic Experiment for Astronomical Data

More systematic experiments were performed on the astronomical data to investigate the

properties of the proposed FDMHNN model.

6.2.1 Astronomical Data Preparation

Nano-satellite Mission

Even though there have been many telescopes covering different energy bands, most of the

sky is not being observed with good sensitivity around 1 MeV. While existing instruments
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have a limited field of view around the MeV range. The best instrument designed for the

MeV range was the COMPTEL (Imaging Compton Telescope, see Schonfelder et al. 1984)

on-board CGRO (Compton Gamma Ray Observatory, see Schoenfelder et al. 1993), which

flew in the 1990s and permitted a huge leap in technology. Therefore, the performance of

a future Compton telescope is expected to improve at least by an order of magnitude for

COMPTEL. Next-generation Compton observatories have been proposed for the immediate

future (Andritschke et al., 2005; Mizumoto et al., 2015; De Angelis et al., 2017), with costs

around half a billion Euros and a timescale for development and launch of ∼10 years.

Recently, a small test instrument, called nano-satellite, was designed for low cost (approx-

imately half a million Euros) and fast launch (about one year) (Lucchetta et al., 2017; Cao

et al., 2019; Rando et al., 2019). Following the general guidelines for a future Compton

telescope, a CubeSat standard nano-satellite mainly consists of three parts:

1) Silicon Tracker: in which the Compton scattering happens, and the Double-Sided Strip

Detectors (DSSDs) are used to measure the energy of the recoil electron and the position

of each interaction;

2) Calorimeter: made of CsI(Tl) crystals, and serves the purpose of measuring the energy

and the direction of the scattered photon. Two calorimeters are always used: a bottom

calorimeter and a lateral calorimeter, which detect the scattered photon in the bottom

and near the edges of the tracker, respectively;

3) Anticoincidence System: designed with a plastic scintillator to reject charged background.

The dominant interaction mechanism of gamma-ray with matter inside the nano-satellite

is Compton scattering, also called Compton events. It is discovered by Arthur Holly Compton

in 1922. The illustrated Compton scattering and the structure of a nano-satellite are shown

in Fig. 6.1. More design details can be found in Lucchetta (2016) and Berlato (2016).

From the ideal standpoint, it is possible to reconstruct both the direction and the energy

of the incident photon based on the measurements of recoil electron and scattered photon.

This process is called Compton event reconstruction. Study of the sources relies on the

reconstructed photon, thus the incident photon is expected to be reconstructed as precisely as

possible. Unfortunately, in any real telescope, several additional aspects have to be taken into

consideration. For example, measurement uncertainties, missing quantities reconstructions,

and background events will result in misleading results. The Compton kinematics and

Compton scattering in a real instrument are detailed in Berlato (2016).

One of the most significant background contributions for the nano-satellite is pair pro-

duction event. For this event, the positron produces a couple of additional gamma-rays with

a non-negligible probability of escaping the thin calorimeters. This usually translates into
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incident photon

scattered photonrecoil electron

Figure 6.1: Compton scattering interacting in the designed nano-satellite. The size of the
satellite sketched here does not strictly respect to the real design. The tracker, bottom
calorimeter, and Anticoincidence system are colored by green, red, and grey respectively.
The blue part represents the lateral calorimeter.

mis-reconstructing such events as Compton events, with a completely wrong direction of the

primary gamma. Therefore, the real Compton events are expected to be distinguished from

the pair production events, which can be treated as a binary classification task.

The experimental events were simulated with the Medium Energy Gamma-ray Astronomy

Library (MEGALib) (Zoglauer et al., 2008). They were produced from a diffuse source, which

gave a good sample of simulated photons at all inclination angles and energies in the range

of interest. The constructed dataset, termed as CPP, was a mixture of 20000 real Compton

events with 10000 pair production events.

In order to evaluate the models with the Hold-out Method (HoM, introduced in section

2.3.1), the dataset was randomly divided into the training and test datasets five times, which

resulted in five groups of sub-datasets: CPP1, CPP2, CPP3, CPP4, and CPP5. The number

of samples in the training and test datasets followed the ratio of 7:3, i.e., 14000 Compton

events and 7000 pair production events in training dataset, and 6000 Compton events and

3000 pair production events in test dataset. These events have 31 attributes described in Tab.

6.2, after measuring the direction and energies of the recoil electron and scattered photon in

Compton events.
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Table 6.2: Descriptions for the 31 attributes of the simulated CPP dataset.

Index Attribute Description

[0] m_Ei measured total energy of recoil electron and scattered photon
[1] EnergyD1 measured energy in tracker
[2] EnergyD2 measured energy in calorimeter
[3] NHitSQR0 number of measured hits in tracker
[4] NHitSQR1 number of measured hits in bottom calorimeter
[5] NHitSQR2 number of measured hits in lateral calorimeter
[6] m_SequenceLength number of hits in the reconstructed Compton sequence
[7] m_TrackLength length (cm) of the recoil electron track
[8] m_ComptonQualityFactor the Compton quality factor for event reconstruction
[9] m_TrackQualityFactor the quality factor of the recoil electron track
[10] m_LeverArm distance from Compton scattering point to photon absorption point
[11] m_Theta Compton angle: from scattered photon to recoil electron
[12] m_Epsilon Compton angle: from incident photon direction to recoil electron direction
[13] m_Phi Compton angle: from incident photon direction to scattered photon direction
[14] m_Dg_x 3D vector: direction of scattered photon (x)
[15] m_Dg_y 3D vector: direction of scattered photon (y)
[16] m_Dg_z 3D vector: direction of scattered photon (z)
[17] m_De_x 3D vector: direction of recoil electron (x)
[18] m_De_y 3D vector: direction of recoil electron (y)
[19] m_De_z 3D vector: direction of recoil electron (z)
[20] m_C1_x 3D vector: Compton scattering position (x)
[21] m_C1_y 3D vector: Compton scattering position (y)
[22] m_C1_z 3D vector: Compton scattering position (z)
[23] m_C2_x 3D vector: position of scattered photon absorption (x)
[24] m_C2_y 3D vector: position of scattered photon absorption (y)
[25] m_C2_z 3D vector: position of scattered photon absorption (z)
[26] m_Ee measured energy of recoil electron
[27] m_dEe error of measured energy of recoil electron
[28] m_Eg measured energy of scattered photon
[29] m_dEg error of measured energy of scattered photon

[30] ProbAbsorptionAlong
amount of radiation lengths between Compton scattering position and
position of scattered photon absorption

3FGL Source Samples

Fermi-LAT is an imaging high-energy gamma-ray telescope spanning the energy band from

about 20 MeV to more than 300 GeV. Its field of view covers about 20% of the sky at any time

and the whole sky every three hours through a continuous scan. In contrast to the previous

telescope, e.g., EGRET (Energetic Gamma-Ray Experiment Telescope, on-board CGRO, see

Fichtel et al. 1993), Fermi-LAT shows better energy resolution, better angular resolution, and

wider effective area in both low-energy and high-energy bands1.

1Check http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm for
more performance of Fermi-LAT.

http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
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The third Fermi-LAT source catalog (3FGL), released through the Fermi Science Support

Centre (FSSC) in January 2015, contains 3034 entries with 16 classes of gamma-ray sources

(Acero et al., 2015). In 3FGL, there are 1744 Active Galactic Nuclei (AGN), 1010 unassociated

sources, and 280 other sources termed as nonAGN. It is significant to identify AGNs from

the unassociated sources since AGN class dominates the associated sources (∼ 86%). This

can also be seen as a binary classification task. In the experiment, the 3FGL source samples

were downloaded from Space Science Data Center (SSDC)2. Each sample has 41 attributes,

as listed in Tab. 6.3.

However, there exists missing data under the attributes of uncertainties of multi-energy

bands flux, which has been summarized in Tab. 6.4. In the experiment, the missing data was

simply filled by the mean value of the attribute values of other samples. For instance, the

missing Error100−300MeV upper limits of BCU sources were filled by the mean value of known

Error100−300MeV upper limits of other BCU sources. It is worth noting that the missing data of

1010 unassociated sources was filled by the mean value of the corresponding attribute of all

the other complete sources.

After processing the missing data, all the associated sources were taken as binary classes:

AGN and nonAGN, and they were randomly divided into training and test datasets five times

as well, with the ratio of 7:3. The five groups of sub-datasets were named as: FGL1, FGL2,

FGL3, FGL4, and FGL5. The training dataset contained 1220 AGNs and 196 nonAGNs, while

the test dataset had 524 AGNs and 84 nonAGNs.

2http://www.ssdc.asi.it/fermi3fgl/

http://www.ssdc.asi.it/fermi3fgl/
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Table 6.3: Descriptions for the 41 attributes of the 3FGL dataset.

Index Attribute Description

[0] RA_h Fermi right ascension: hour
[1] RA_m Fermi right ascension: minute
[2] RA_s Fermi right ascension: second
[3] DEC_d Fermi declination: degree
[4] DEC_m Fermi declination: minute
[5] DEC_s Fermi declination: second
[6] LII Galactic longitude
[7] BII Galactic latitude
[8] Significance100MeV−300GeV source significance in σ units over the 100 MeV to 300 GeV band
[9] F1−100GeV integral photon flux from 1 to 100 GeV in units of ph · cm−2 · s
[10] Error1−100GeV 1 σ error on integral photon flux from 1 to 100 GeV
[11] Pivot Energy energy at which error on differential flux is minimal
[12] Spectral index best fit photon number power-law index
[13] α-error 1 σ error on spectral index
[14] Beta curvature parameter, for LogParabola
[15] β-error 1 σ error on curvature parameter
[16] Cutoff Energy cutoff energy for PL(Super)ExpCutoff
[17] γ-error 1 σ error on cutoff energy
[18] Power law index best fit power-law index
[19] F100−300MeV integral photon flux from 100 to 300 MeV
[20] Error100−300MeV-upper 1 σ error on integral photon flux from 100 to 300 MeV (upper limit)
[21] Error100−300MeV-lower 1 σ error on integral photon flux from 100 to 300 MeV (lower limit)
[22] Significance100−300MeV significance on 100-300 MeV
[23] F0.3−1GeV integral photon flux from 0.3 GeV to 1 GeV
[24] Error0.3−1GeV-upper 1 σ error on integral photon flux from 0.3 GeV to 1 GeV (upper limit)
[25] Error0.3−1GeV-lower 1 σ error on integral photon flux from 0.3 GeV to 1 GeV (lower limit)
[26] Significance0.3−1GeV significance on 0.3-1 GeV
[27] F1−3GeV integral photon flux from 1 GeV to 3 GeV
[28] Error1−3GeV-upper 1 σ error on integral photon flux from 1 GeV to 3 GeV (upper limit)
[29] Error1−3GeV-lower 1 σ error on integral photon flux from 1 GeV to 3 GeV (lower limit)
[30] Significance1−3GeV significance on 1-3 GeV
[31] F3−10GeV integral photon flux from 3 GeV to 10 GeV
[32] Error3−10GeV-upper 1 σ error on integral photon flux from 3 GeV to 10 GeV (upper limit)
[33] Error3−10GeV-lower 1 σ error on integral photon flux from 3 GeV to 10 GeV (lower limit)
[34] Significance3−10GeV significance on 3-10 GeV
[35] F10−100GeV integral photon flux from 10 GeV to 100 GeV
[36] Error10−100GeV-upper 1 σ error on integral photon flux from 10 GeV to 100 GeV (upper limit)
[37] Error10−100GeV-lower 1 σ error on integral photon flux from 10 GeV to 100 GeV (lower limit)
[38] Significance10−100GeV significance on 10-100 GeV
[39] Sign.Curve fit improvement between power law and LogParabola or PLExpCutoff

[40] Variability Index
sum of 2A-log(Likelihood) difference between the flux fitted in each time
interval and the average flux over the full catalog interval
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Table 6.4: The number of sources that contain missing data in 3FGL.

Source class
Attributes with missing data

Error100−300MeV Error0.3−1GeV Error1−3GeV Error3−10GeV Error10−100GeV

Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower

Unassociated 335 335 115 115 54 54 76 76 309 309
FSRQ 35 35 4 4 1 1 24 25 147 147
BCU 167 167 93 93 25 25 19 19 102 102
SPP 18 18 3 3 3 3 2 2 16 16

PWN 8 8 5 5 5 5 3 3 3 3
SNR 9 9 2 2 1 1 1 1 2 2
SFR 1 1 1 1 1 1 0 0 0 0
GLC 4 4 1 1 0 0 0 0 7 7
CSS 0 0 0 0 0 0 0 0 1 1
GAL 0 0 0 0 0 0 0 0 1 1
PSR 37 37 6 6 0 0 0 0 47 47
RDG 4 4 4 4 0 0 0 0 1 1
NOV 0 0 0 0 0 0 1 1 1 1
BLL 213 213 88 88 16 16 6 6 28 28

SSRQ 0 0 0 0 0 0 1 1 1 1
NLSY 0 0 0 0 0 0 0 0 1 1
AGN 0 0 0 0 0 0 0 0 1 1

SUMMARY 831 831 322 322 106 106 133 134 668 668

6.2.2 Proposed Wavelet Neural Network: FDMHNN

There are two classification tasks in the systematic experiments:

1) to distinguish the Compton events from the pair production events in the CPP dataset,

which is termed as Mission A;

2) to identify the AGNs from the unassociated sources of 3FGL, which is termed as Mission

B.

The proposed FDMHNN model is used to finish these two tasks. It has two components, the

first one implements the proposed feature pre-extraction method, i.e., FDIDWT; the second

one is a binary Multilayer Perceptron (MLP) classifier equipped with the TFMH. Nevertheless,

there are two hyper-parameters in the FDIDWT method, i.e., the decomposition level J

and the transformed dimension O. Based on the discussions in section 4.4, comparing the

convergence of MLP component on different datasets is useful to decide the hyper-parameters.

Hence, firstly, the transformed datasets with different J and O should be prepared with

FDIDWT.
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Hyper-parameters of FDIDWT Method

In the experiments, the training datasets in the first group of CPP and 3FGL were used to

determine the hyper-parameters for Mission A and Mission B, respectively. According to the

procedure described in Tab. 4.1, FD_ASE algorithm gave the attribute set core ξC , based on

which the attributes of CPP and 3FGL datasets were arranged as shown in Tab. 6.5. Note that,

the individual contributions of attributes a14, a15, a16, a17 in 3FGL were quite small, thus they

were not included when using FDIDWT.

Table 6.5: The arranged attributes used to transform the original CPP and 3FGL datasets.

Parameters CPP Dataset 3FGL Dataset

correlation threshold ξ 0.6 0.6
attribute set core ξC a15, a14, a26, a11 a5, a6, a2

arranged attributes B

a15, a14, a26, a11, a8, a5, a6, a2, a9, a27,
a1, a7, a28, a2, a3, a23, a40, a31, a19, a32,
a4, a23, a0, a5, a6, a33, a35, a30, a34, a26,
a9, a13, a12, a29, a27, a36, a37, a8, a29, a28,
a24, a16, a30, a25, a10, a22, a39, a24, a25, a21,
a19, a20, a21, a22, a17, a20, a10, a11, a0, a38,
a18 a3, a18, a12, a13, a7,

a4, a1

Next, the alternative wavelet decomposition vector c and bookkeeping vector l were

constructed based on the arranged attributes B. According to the priori knowledge of wavelet

analysis, a decomposition level around 5 is sufficient to represent the natural data at different

resolutions. Then levels J = 1∼ 5 were considered to construct the vectors.

The alternative vector pairs (c and l) for Mission A and B are listed in Tab. 6.6 and

Tab. 6.7, respectively. For simplicity, only the bookkeeping vector l and the filter length

m are recorded. Together with the arranged attributes B listed in Tab. 6.5, the wavelet

decomposition vector c can be derived. While it was necessary to insert one placeholder

attribute if choosing J = 1 for two missions.

Inverse Discrete Wavelet Transform (IDWT) was then performed on each sample of the

original training datasets with the alternative vector pairs, and different transformed training

datasets were generated.

Experimental Models

In order to decide the FDMHNN model, the next step is to compare the performance of the

MLP component on each transformed training dataset and take the case that results in the

best performance as the choice of hyper-parameters J and O. Hence, two baseline MLP
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Table 6.6: The alternative bookkeeping vectors and filter lengths for Mission A.

J l m J l m

1

(16,16,3) 30

2

(8,8,15,29) 2
(16,16,4) 30 (8,8,15,30) 2
(16,16,5) 28 (9,9,13,21) 6
(16,16,6) 28 (9,9,13,22) 6
(16,16,7) 26 (10,10,11,13) 10
(16,16,8) 26 (10,10,11,14) 10
(16,16,9) 24 (11,11,9,5) 14
(16,16,10) 24 (11,11,9,6) 14
(16,16,11) 22

3

(4,4,8,15,29) 2
(16,16,12) 22 (4,4,8,15,30) 2
(16,16,13) 20 (5,5,8,13,23) 4
(16,16,14) 20 (5,5,8,13,24) 4
(16,16,15) 18 (6,6,8,11,17) 6
(16,16,16) 18 (6,6,8,11,18) 6
(16,16,17) 16 (7,7,8,9,11) 8
(16,16,18) 16 (7,7,8,9,12) 8
(16,16,19) 14 (8,8,8,7,5) 10
(16,16,20) 14 (8,8,8,7,6) 10
(16,16,21) 12

4
(4,4,5,7,11,19) 4

(16,16,22) 12 (4,4,5,7,11,20) 4
(16,16,25) 8

5
(5,5,5,5,5,6,7) 6

(16,16,26) 8 (5,5,5,5,5,6,8) 6
(16,16,27) 6
(16,16,28) 6
(16,16,29) 4
(16,16,30) 4
(16,16,31) 2
(16,16,32) 2
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Table 6.7: The alternative bookkeeping vectors and filter lengths for Mission B.

J l m J l m

1

(19,19,3) 36

2

(10,10,17,31) 4
(19,19,4) 36 (10,10,17,32) 4
(19,19,5) 34 (11,11,15,23) 8
(19,19,6) 34 (11,11,15,24) 8
(19,19,7) 32 (12,12,13,15) 12
(19,19,8) 32 (12,12,13,16) 12
(19,19,9) 30 (13,13,11,7) 16
(19,19,10) 30 (13,13,11,8) 16
(19,19,11) 28

3

(5,5,9,18,35) 2
(19,19,12) 28 (5,5,9,18,36) 2
(19,19,13) 26 (6,6,9,16,29) 4
(19,19,14) 26 (6,6,9,16,30) 4
(19,19,15) 24 (7,7,9,14,23) 6
(19,19,16) 24 (7,7,9,14,24) 6
(19,19,17) 22 (8,8,9,12,17) 8
(19,19,18) 22 (8,8,9,12,18) 8
(19,19,19) 20 (9,9,9,10,11) 10
(19,19,20) 20 (9,9,9,10,12) 10
(19,19,21) 18 (10,10,9,8,5) 12
(19,19,22) 18 (10,10,9,8,6) 12
(19,19,23) 16

4

(3,3,5,9,17,33) 2
(19,19,24) 16 (3,3,5,9,17,34) 2
(19,19,25) 14 (8,8,8,7,6,3) 10
(19,19,26) 14 (8,8,8,7,6,4) 10
(19,19,27) 12

5

(5,5,5,6,7,9,13) 6
(19,19,28) 12 (5,5,5,6,7,9,14) 6
(19,19,29) 10 (3,3,4,5,8,14,25) 4
(19,19,30) 10 (3,3,4,5,8,14,26) 4
(19,19,31) 8
(19,19,32) 8
(19,19,33) 6
(19,19,34) 6
(19,19,35) 4
(19,19,36) 4
(19,19,37) 2
(19,19,38) 2
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models were built for two missions, respectively. They were composed of five fully-connected

hidden layers activated by the TFMH. More hyper-parameters of the baseline MLP models

can be found in Tab. 6.8.

Table 6.8: The number of hidden units and the hyper-parameters of the baseline MLP
models for the astronomical missions.

Hyper-parameters Mission A Mission B

number of hidden units [ 100, 100, 50, 30, 20 ] [ 50, 30, 30, 20, 10 ]
batch size 1024 64
optimizer Adam MGD

learning rate 5e−5 0.01

epochs 100
weights initialization Xavier

bias initialization zero
ADF TFMH

loss function MSE

The FDIDWT method and the baseline MLP models were concatenated to construct the

FDMHNN candidates. Then the final FDMHNN model was chosen from these candidates

once the hyper-parameters J and O were decided.

Similar to the experiments performed in section 4.3.3, the average training loss values

of the baseline MLP model based on different decomposition levels are depicted in Fig. 6.2.

From the figures, it can be found that the decomposition level J = 2 is suitable for the WNN

model in Mission A, while J = 1 will be the choice of the WNN model in Mission B. Particularly,

the training loss values in all cases at the chosen decomposition level are compared in Fig.

6.3.

Fig. 6.3(a) shows that, in the case of choosing transformed dimension O = 14, the MLP

model had the fastest convergence speed. In addition, the transformed dimension O = 14

was indeed quite lower than the original dimension 31, which will reduce the computational

complexity dramatically and accelerate training.

In Fig. 6.3(b), the cases that had considerable low transformed dimension are plotted.

There were two cases where the model converged faster at the beginning of the training

process, i.e., O = 12 and O = 16, which have been highlighted in the figure. Even though the

case of O = 16 converged a little bit faster than the case of O = 12 in the first few epochs,

the latter one converged to a lower level. Besides, the transformed dimension 12 is much

lower than the original dimension 41.

Therefore, based on the analysis, the proposed FDMHNN models were decided for two

missions. The first one for Mission A, termed as FDMHNN_A, was to transform the original

31-dimensional CPP data to the 14-dimensional data at a two-higher resolution. Then the
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MLP component with TFMH was trained on the transformed data and used to distinguish the

Compton events from the pair production events. The second FDMHNN model for Mission

B, termed as FDMHNN_B, was to transform the original 41-dimensional 3FGL data to the

12-dimensional data at a one-higher resolution. Then the trained MLP component with TFMH

was used to identify the AGNs from the unassociated sources of 3FGL.

0 20 40 60 80 100

Epochs

0.1

0.15

0.2

0.25

0.3

A
v
e
ra

g
e
 T

ra
in

in
g
 L

o
s
s

J=1

J=2

J=3

J=4

J=5

(a)

0 20 40 60 80 100

Epochs

0

0.05

0.1

0.15

0.2

A
v
e
ra

g
e
 T

ra
in

in
g
 L

o
s
s

level 1

level 2

level 3

level 4

level 5

(b)

Figure 6.2: Average training loss values of the baseline MLP model with different decom-
position levels J for (a) Mission A; (b) Mission B.
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Figure 6.3: Training loss values of the baseline MLP model with a given decomposition
level (a) J = 2 for Mission A; (b) J = 1 for Mission B.

6.2.3 Comparative Tests

Several models were built for comparative experiments to further investigate the performance

of the proposed FDMHNN models.
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Different ADFs

In the comparative experiments, the TFMH of the proposed FDMHNN model was compared

with the ReLU family, i.e., ReLU, Leaky ReLU, and ELU. While Morlet and Sigmoid functions

were not considered due to their poor performances, as discussed in section 5.5.

Different Preprocessing Methods

The preprocessing component of the FDMHNN model, i.e., FDIDWT, was also compared

with other commonly used dimensionality reduction methods, including Attribute Selection

(AS) and Principal Component Analysis (PCA). Additionally, the model performances on the

original datasets without any preprocessing were also compared.

However, there exist hyper-parameters in the AS and PCA methods as well. The number

of remaining attributes in the AS method must be decided in advance. Also, the number

of components taken as principal should be predefined in the PCA method. Similar to

the procedure used to determine the hyper-parameters of the FDIDWT method, the hyper-

parameters of AS and PCA methods were also chosen from the candidates based on the

performances of the baseline MLP model on the training dataset of the first group.

With the AS method, the importance values of attribute were calculated with a Random

Forest (RF) model whose hyper-parameters are listed in Tab. 6.9. Then the importance values

were sorted in descending order, as shown in Fig. 6.4. In order to reduce dimensionality,

the attributes with low importance values are removed, and the remaining attributes are

considered containing most information of the data. In the experiments, several amounts

of remaining attributes were tested, i.e., (28,24,22) and (33,26,20,14) for CPP dataset and

3FGL, respectively. The loss values of the baseline MLP model with different choices in two

missions are compared in Fig. 6.5.

Table 6.9: RF models used to calculate the attribute importance for the astronomical
missions. Other parameters were set as default in scikit-learn package (Pedregosa et al.,
2011).

RF parameters Mssion A Mssion B

number of trees 10000
criterions gini

Fig. 6.5(a) shows that, in Mission A, the convergence of the baseline models with different

amounts of remaining attributes were comparable. While these models had slightly different

accuracies, as listed in Tab. 6.10. Considering high accuracy score and low transformed

dimension are expected, the number of remaining attributes in Mission A is chosen to be
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22. From Fig. 6.5(b) and Tab. 6.10, it was found that the case of remaining 20 attributes

achieved high accuracy and fast convergence, and then it was the choice for Mission B.
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Figure 6.4: The descending normalized attribute importance of (a) CPP dataset and (b)
3FGL. The attributes selected by the rectangle are remained.

For the PCA method, the components with low variance values are removed for dimension-

ality reduction. The variances of the transformed datasets in two missions were normalized

and sorted in descending order, as shown in Fig. 6.6. Similarly, several amounts of com-

ponents with high variance values were considered being remained, i.e., (26,20,17) and

(27,23,16) for CPP dataset and 3FGL, respectively. From Fig. 6.7 and Tab. 6.10, it can be

found that remaining 20 and 23 components resulted in fast convergence and high accuracy

in Mission A and B, respectively.
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Figure 6.5: Training loss values of the baseline MLP model with different remaining
attributes for (a) CPP dataset; (b) 3FGL.

Comparative Models

With all the comparative preprocessing components and ADFs have been decided, the models

used to compare with the proposed FDMHNN model are summarized in Tab. 6.11 and

6.12 for Mission A and B, respectively. The structures and the hyper-parameters of the MLP

component are the same as listed in Tab. 6.8. The training processes and accuracy results of

these models will be reported and analyzed in next chapter.

Table 6.10: Accuracy results of the baseline MLP models with different hyper-parameters
for AS and PCA methods.

Method
Mission A Mission B

Number of remaining
attributes or components Accuracy

Number of remaining
attributes or components Accuracy

AS
28 75.49% 33 95.89%
24 75.48% 26 97.20%
22 75.70% 20 97.37%

14 96.38%

PCA
26 74.92% 27 95.72%
20 75.23% 23 95.82%
17 75.11% 16 94.90%



6.2 Systematic Experiment for Astronomical Data 119

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Comonents Index

0

0.05

0.1

0.15

0.2

0.25

Va
ria

nc
e 

Va
lu

es

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Components Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Va
ria

nc
e 

Va
lu

es

(b)

Figure 6.6: The descending normalized variance values of (a) CPP dataset; (b) 3FGL. The
components selected by the rectangle are remained.
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Figure 6.7: Training loss values of the baseline MLP model with different remaining
components for (a) CPP dataset and (b) 3FGL.
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Table 6.11: Comparative models for Mission A.

Model Name Preprocessing Method ADF Hyper-parameters

AS_TFMH_A

AS

TFMH

remain 22 attributes
AS_ReLU_A ReLU

AS_LeReLU_A LeReLU
AS_ELU_A ELU

PCA_TFMH_A

PCA

TFMH

remain 20 components
PCA_ReLU_A ReLU

PCA_LeReLU_A LeReLU
PCA_ELU_A ELU

FDMHNN_A

FDIDWT

TFMH
J = 2
O = 14

FDIDWT_ReLU_A ReLU
FDIDWT_LeReLU_A LeReLU

FDIDWT_ELU_A ELU

original_TFMH_A

none

TFMH
original_ReLU_A ReLU

original_LeReLU_A LeReLU
original_ELU_A ELU

Table 6.12: Comparative models for Mission B.

Model Name Preprocessing Method ADF Hyper-parameters

AS_TFMH_B

AS

TFMH

remain 20 attributes
AS_ReLU_B ReLU

AS_LeReLU_B LeReLU
AS_ELU_B ELU

PCA_TFMH_B

PCA

TFMH

remain 23 components
PCA_ReLU_B ReLU

PCA_LeReLU_B LeReLU
PCA_ELU_B ELU

FDMHNN_B

FDIDWT

TFMH
J = 1
O = 12

FDIDWT_ReLU_B ReLU
FDIDWT_LeReLU_B LeReLU

FDIDWT_ELU_B ELU

original_TFMH_B

none

TFMH
original_ReLU_B ReLU

original_LeReLU_B LeReLU
original_ELU_B ELU



7
Experimental Results and Discussions

In chapter 6, the extension experiments of the speech recognition tasks were built to study

the convergence and stability of the proposed FFTNN model and the FFTMHNN model. The

training performances of these two models with a deep structure are also interesting to

compare.

Moreover, for the systematic experiments on astronomical data, a new topology of WNN

model named as FDMHNN was proposed. Some models were also built for comparison in two

binary tasks. The structures and hyper-parameters of these comparative models can be found

in Tab. 6.8, 6.11, and 6.12. These models were evaluated on the remaining four groups

of sub-datasets and the results were averaged for comparison. This chapter reports and

analyzes the results coming from two astronomical missions independently. For each mission,

the performances of models are compared concerning the preprocessing methods and the

Activation Function and Derivative Function pair (ADF). The comparison of preprocessing

methods performed among the proposed FDIDWT method, Attribute Selection (AS), and

Principal Component Analysis (PCA). While the comparison of ADF performed between the

proposed TFMH and the ReLU family ("relu" for ReLU, "lerelu" for Leaky ReLU, and "elu" for

ELU). Model comparisons for accuracy and convergence are also given.
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7.1 Results of the Extension Experiments of Speech Recognition

With the same number of hidden units and the same hyper-parameters excluding the ADF, the

experimental results of the FFTNN and FFTMHNN models for the three missions described in

section 3.4.2 are shown in Fig. 7.1. The figures also show the results of the corresponding

MLP models without FFT component.
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Figure 7.1: Test loss values of different comparative models in the extension experiments
of speech recognition. (a) Mission A; (b) Mission B; (c) Mission C.

From the results it can be found that the TFMH case had the comparable performance with

the elu function when the training was performed in time domain. But the elu outperformed

the TFMH when training DNN in frequency domain, which could be attributed to the linearity

of Fourier transform that might lose the nonlinear features of speech signal. In this case,

the training with the nonlinear TFMH couldn’t take fully advantage of the linear features

extracted by FFT. While the elu case achieved better performance due to its linear property.
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Nevertheless, the gradient exploding problem also existed in frequency domain, which

can be seen from Fig. 7.2. Even though the learning rate was not set too high, the deep

structure resulted in exploding gradients in the elu case. While the TFMH could stabilize the

training, demonstrating its advantages in deep learning in frequency domain.
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Figure 7.2: Test loss values of deep FFTMHNN and FFTNN models in the extension experi-
ments of speech recognition. (a) Mission A; (b) Mission B; (c) Mission C. The unfinished
plotting of green line means numerical overflow.

7.2 Results on CPP Dataset

7.2.1 Comparison of Preprocessing Methods

For a particular ADF, the model performances on CPP dataset with different preprocessing

methods are illustrated in the subfigures of Fig. 7.3. These subfigures don’t give much

useful information about the performance of different preprocessing methods. The training
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performances were comparable in every ADF case. The slightly slow convergence of the

models using the AS method, as shown in Fig. 7.3(b), might result from the information loss

when ignoring the "unimportant" attributes directly.

7.2.2 Comparison of ADFs

For a particular preprocessing method, the model performance on CPP dataset with different

ADFs are illustrated in Fig. 7.4. From the results, it can be found that the model converged

faster when equipped with TFMH in spite of the preprocessing method used. The training

process could be seen as convergent after few epochs in TFMH case, while more epochs were

needed for convergence in other ADF cases. Moreover, the model performance in relu case

was a little bit worse due to the linear property.
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Figure 7.3: Average test loss values of the models for the CPP dataset with ADF (a) TFMH;
(b) relu; (c) lerelu; (d) elu.
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Figure 7.4: Average test loss values of the models for the CPP dataset after preprocessed
by (a) no method; (b) AS; (c) PCA; (d) FDIDWT.

7.2.3 Systematic Comparison

To intuitively study the performance of the proposed FDMHNN model, the models that neither

preprocessed by the FDIDWT method nor configured with TFMH are illustrated in Fig. 7.5.

The figure shows that the FDMHNN model indeed had the fastest convergence speed, while

it converged to the comparable loss level with other models.

Besides the training process, the accuracy scores of the convergent models are also

compared in Tab. 7.1. The results show that all the models almost achieved the same

accuracy score. The FDMHNN model seemed not to outperform other models concerning the

accuracy measurement.
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Figure 7.5: Average test loss values of the FDMHNN model and other models for the CPP
dataset. The loss curve of the FDMHNN model has been highlighted with blue color and a
thicker line.

Table 7.1: Accuracy results of the models in the astronomical missions.

Models
Missions

A B

FDMHNN 75.11% 96.05%

AS_ReLU 75.18% 96.71%
AS_LeReLU 75.18% 96.88%

AS_ELU 75.13% 96.82%
PCA_ReLU 75.13% 94.74%

PCA_LeReLU 74.98% 95.72%
PCA_ELU 74.77% 95.23%

original_ReLU 74.84% 95.23%
original_LeReLU 74.90% 95.56%

original_ELU 74.97% 95.40%

Average 75.02% 95.83%
Standard Deviation 0.14% 0.71%
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7.3 Results on 3FGL Samples

7.3.1 Comparison of Preprocessing Methods

Given an ADF, the model performance on 3FGL dataset with different preprocessing methods

are compared in Fig. 7.6. From the results, it can be seen that the FDIDWT method performed

worse than other preprocessing methods when working with ReLU family, but it got better

results when working with TFMH. It is attributed that the features of data extracted by

FDIDWT were nonlinear, and they couldn’t be handled by the linear ADFs, such as relu

and lerelu. While elu has modest nonlinearity, then these nonlinear features can be learnt

normally in the elu case, as shown in Fig. 7.6(d). The nonlinear property of TFMH is good,

thus the nonlinear features were fully used for training, as shown in Fig. 7.6(a).

PCA is a linear transform that will lose some nonlinear features, and then it led to

bad performance when working with the nonlinear TFMH. In the experiment, AS methods

performed better when combined with linear ReLU family, which shows that the features in

the original dataset were mainly linear and luckily AS method kept the key linear features.

7.3.2 Comparison of ADFs

For each preprocessing method, the models with different ADFs are also compared in Fig.

7.7. For the ReLU family, the models with elu function had the best performance. While the

model performance was the worst when using relu. It validates that the nonlinearity of elu

is stronger than of relu. While regardless of the preprocessing method used, TFMH always

achieved a low loss level after few epochs. It means that the TFMH helped the models to

learn the features in a short time, which is really significant for fast DNN training. There

were mainly linear features in the data preprocessed by AS and PCA, thus the linear lerelu

and elu cases converged slightly faster than the TFMH case in the latter epochs, as shown in

Fig. 7.7(b) and 7.7(c). But the models can be seen as already convergent in these epochs

since the loss values were decreasing slowly. The models with TFMH tried to learn as many

features as possible from the original dataset, which resulted in a better performance in Fig.

7.7(a). Moreover, when the nonlinear features in the original data were extracted by FDIDWT,

the models with TFMH achieved the best performance, as shown in Fig. 7.7(d).

7.3.3 Systematic Comparison

The performance of the proposed FDMHNN model was also compared with others in Fig. 7.8.

It can be seen that the FDMHNN model outperformed others on the 3FGL dataset as well.

While the accuracy results of these models were comparable, as listed in Tab. 7.1.
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Figure 7.6: Average test loss values of the models for the 3FGL dataset with ADF (a) TFMH;
(b) relu; (c) lerelu; (d) elu.
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Figure 7.7: Average test loss values of the models for the 3FGL dataset after preprocessed
by (a) no method; (b) AS; (c) PCA; (d) FDIDWT.
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Figure 7.8: Average test loss values of the FDMHNN model and other models for the 3FGL
dataset. The loss curve of the FDMHNN model has been highlighted with blue color and a
thicker line.
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7.4 Discussions

In the extension experiments of speech recognition, the TFMH was demonstrated to be of

help to stabilize the DNN training in frequency domain. While the FFTNN model didn’t get

good result when replacing the elu with TFMH due to the nonlinearity of TFMH. Thus, the

training performance of DNN also depends on the features given by the training data. In

other words, the DNN with nonlinear ADF may achieve better performance when trained on

the data dominated by nonlinear features, and vice versa.

For the systematic experiments on astronomical data, two FDMHNN models were designed

to finish the classification tasks on the CPP dataset and 3FGL samples, respectively. They

achieved faster convergence in training, which benefits from the feature pre-extraction

capability of the FDIDWT method, and good properties of the TFMH.

The goal of finding the attribute set core and then estimating the information contents

of attributes based on the correlation fractal dimension theory, is to construct the wavelet

decomposition vector and bookkeeping vector for the next IDWT operation. While the results

may be different if various correlation thresholds ξ are used. In FDIDWT method, the

correlations among attributes are important since they provides the additional features of

data for training. Thus more correlations are expected to be detected, which usually leads to

a high correlation threshold.

IDWT is used to transform the data from a low resolution to a high resolution, where

the key features of data may be extracted. Experimental results on the datasets transformed

with different decomposition levels, shown in Fig. 6.2, validated this assumption. The case

with the fastest convergence can be taken as the choice of the decomposition level J that is a

hyper-parameter of the FDIDWT method.

Another hyper-parameter of the FDIWT method is the transformed dimension O. Besides

the fast convergence, O should also be considered by the rule of low dimension. In other words,

the FDIDWT component which leads to low transformed dimension and fast convergence

will be taken as the choice for the FDMHNN model.

The FDIDWT method can be seen as a nonlinear transform that extracts the nonlinear

features of data. These nonlinear features will be fully used for training when the model

is activated by the nonlinear TFMH at the same time. While the linear ADFs, such as the

ReLU family, have a weak capability to capture these nonlinear features, which leads to slow

convergence.

However, in principle, the classification results are crucially decided by the dataset itself.

For example, in the experiments on astronomical data, the CPP dataset in Mission A contained

few discriminative features since the loss values always converged to a high level. It is the

truth that the binary classes in CPP dataset, i.e., Compton events and pair production events,
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were detected in the same energy band. Additionally, the two events were also measured

from the Compton interaction, which resulted in their similar features in some sense. But

the 3FGL dataset collected the samples from different sources and it thus contained more

discriminative information, which resulted in a lower loss level and higher accuracy score

than on the CPP dataset.

FDMHNN model is designed with MLP structure, while the proposed FDIDWT method

and TFMH function can be extended into other types of DNNs such as CNNs and GCNs, since

FDIDWT is performed on datasets and TFMH is proposed from FP and BP processes that

are independent of DNN structures. Besides, the model designed with CNNs or GCNs might

achieve better performance than FDMHNN, since the weight sharing inherently introduces

sparsity and accelerates training further. Moreover, TFMH has the ability to constrain the

energy of propagating data, which makes the training in a very deep structure possible.

Furthermore, FDMHNN doesn’t require fine-tuning process and it has few hyper-parameters,

since it is proposed from solid theories and few researcher’s experiences are required. Of

course, the FDIDWT and TFMH can also be the considerations for other acceleration algo-

rithms of DNN training.

In summary, the FDMHNN model has been demonstrated to be of great help to alleviate the

gradient problems and accelerate the training process. It is suitable to cope with the complex

problems that usually involve nonlinear features. However, in the systematic experiments,

it didn’t achieve considerable improvements on the accuracy when compared with other

models. Even though this result can be ascribed to the linear features existing in the CPP

dataset and 3FGL samples, it is interesting to further explore the FDMHNN model in the

future.





8
Conclusions and Future Work

Deep Neural Network (DNN) training usually suffers from gradient problems and slow

convergence speed. When the model goes deeper and deeper, the gradients may tend to zeros

during training, where many model parameters cannot be updated. On the other hand, the

unstable DNN training process has the risk of gradients exploding and gives rise to numerical

overflow. In addition, DNN training requires many resources and time, thus slow convergence

results in low computational efficiency.

It has been investigated that, the gradient problems can be attributed to the inappropriate

chosen Activation Function and Derivative Function pair (ADF). The saturation ADF easily

results in gradient vanishing that makes the training stick to a local minimum. And the

unsaturation ADF cannot constrain the energy of training data, resulting in failure of training.

While the slow convergence speed of DNN training can be analyzed from two aspects.

The first one comes from the characteristics of real-world datasets. The high dimensionality

of data obviously increases the computational burden. Moreover, the existence of noise buries

the key features and makes feature extraction difficult. Another analysis can also be focused

on the ADF used. In particular, the nonzero-mean ADF causes the Internal Covariate Shift

(ICS) or Back Internal Covariate Shift (BICS) that slows down training. Additionally, the

linear ADF reduces the learning capability of DNN model for more complex applications.

Based on the analysis, this thesis proposes a new topology of Wavelet Neural Network

(WNN), i.e., FDMHNN, for stable and fast deep learning. In particular, transforming the
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data to other domains is proposed to enhance the key feature extraction and noise reduction.

For instance, the frequency representations after Fourier Transform (FT) will provide clear

features for training. As a pathfinder topology, the proposed FFTNN model performs an end-

to-end procedure combining Fast Fourier Transform (FFT) with DNN training. Experiments

for howl noise reduction and speech recognition have demonstrated that feature-extracted

datasets indeed help to accelerate deep learning.

Along this line, the proposed FDIDWT method takes the correlations of attributes as the

additional features of data in wavelet domain and generates a low-dimensional and feature-

extracted dataset for the next steps. Experiments have demonstrated that the FDIDWT method

improves the accuracy in the classification tasks and speeds up DNN training.

Wavelet-based ADF is also demonstrated to be useful to accelerate the training process,

which benefits from the localization, nonlinearity, and sparsity of wavelets. Additionally,

taking advantage of the energy concentration of the tight frame wavelet, the training process

of deep networks can be accelerated further by the proposed ADF, i.e., TFMH. Experimental

results have demonstrated that TFMH performs well in different applications, and provides a

better solution to fast DNN training. The extension experiments of the speech recognition

tasks have also shown the advantages of TFMH on stabilizing the DNN training in frequency

domain.

The complicated features of data can be fully extracted for training by combining the

nonlinear FDIDWT preprocessing method with the Multilayer Perceptron (MLP) equipped

with the nonlinear TFMH, to form the FDMHNN. Benefits from the feature pre-extraction

capability of FDIDWT method and the good properties of TFMH, the FDMHNN model can

cope with the real-world problems. This new WNN model is characterized as stable, fast

construct and fast convergent. It builds a bridge between wavelet theory and Deep Learning

(DL). Besides, this thesis uses wavelet analysis to build a multilayer model and to optimize

the DNN structure. More possibilities of the combination of wavelet theory and DL for

better performance in big data applications will be investigated in the future. The systematic

experiments on the big astronomical data further indicated the advantages of FDMHNN

model on fast convergence.

Hence, it is concluded that:

1) The proposed FFTNN learns more features in the frequency domain and helps to accelerate

training.

2) The FDIDWT preprocessing method provides low-dimensional and feature-extracted

dataset for DNN training with high computational efficiency and fast convergence.

3) The derived TFMH leads to stable and fast DNN training, which can be the alternative
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ADF for many applications.

4) The data preprocessing step can be combined with the DNN structure to form a new

topology optimized for high performance. And the proposed FDMHNN model is developed

to achieve faster convergence than the traditional DNNs.

While there still exist some problems in the proposed model:

1) The strategy of weight initialization affects the start of DNN training partly, which produces

different training results each time.

2) The data preprocessing with FDIDWT requires human intervention. It may be time-

consuming. An end-to-end FDMHNN model is expected to develop for more applications.

3) The FDMHNN model cannot efficiently learn the linear features of data, which leads to its

comparable performance with other test models.

4) The FDMHNN model is only designed with the MLP structure, which limits its application

in many fields, such as image processing.

Therefore, the future work can be carried out as follows:

1) The weights initialization of DNN is an important step when training starts. A good

weights initialization strategy provides a good start point on the hyper-plane and helps

the training prevent from a local minimum. The wavelet basis can be used to initialize the

weights, which is supposed to help the model learn features quickly due to the localization

property of wavelet. This idea can be more easily understood when it is applied to initialize

the kernel of Convolutional Neural Network (CNN), where the kernel acts as a 2D wavelet

filter.

2) Besides the pyramid transform, Inverse Discrete Wavelet Transform (IDWT) can be further

accelerated with a more efficient algorithm, i.e., the lifting scheme (Sweldens, 1996),

which will make the training of the FDMHNN model possible on embedded devices.

Moreover, the lifting scheme can also be implemented as the vector-matrix operations

(Daubechies and Sweldens, 1998) within DNN for efficient feature pre-extraction, like the

FFT component acting in the FFTNN model.

3) It is interesting to study the performance of the FDMHNN model with other types of DNNs,

such as CNN and Graph Convolutional Network (GCN), instead of MLP.

4) Apart from the astronomical data dominated by linear features, more real-world datasets

and tasks are to be tested for the possible optimizations of FDMHNN model.
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5) It is also interesting to compare the performances of the FDMHNN model implemented

on different hardware platforms, such as ARM, FPGA, and GPU (low-level for specified

applications).

6) Package with C or C++ is needed to develop for efficient implementation of the proposed

model on resource-limited platforms.
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