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Abstract

We study three-dimensional non-linear models of vector and vector-spinor Gold-
stone fields associated with the spontaneous breaking of certain higher-spin coun-
terparts of supersymmetry. The Lagrangians in thesemodels are of a Volkov-Akulov
type. Goldstone fields in these models transform non-linearly under the sponta-
neously broken rigid symmetries. We find that the leading term in the action of the
vector Goldstone model is the Abelian Chern-Simons action whose gauge symme-
try is broken by a quartic term. As a result, the model has a propagating degree of
freedom which, in a decoupling limit, is a quartic Galileon scalar field. The vector-
spinor goldstino model turns out to be a non-linear generalization of the three-
dimensional Rarita-Schwinger action. In contrast to the vector Goldstone case, this
non-linear model retains the gauge symmetry of the free Rarita-Schwinger action
and eventually reduces to the latter by a non-linear field redefinition. We thus find
that the free Rarita-Schwinger action is invariant under a hidden rigid supersym-
metry generated by fermionic vector-spinor operators and acting non-linearly on
the Rarita-Schwinger goldstino.
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Chapter 1

Introduction

One of the long-term goals of the collective studies and research in high energy
physics is to formulate a consistent theory of quantum gravity. Up till now we have
consistent theories of quantum mechanics and quantum field theory on the one
hand and general relativity on the other. But the unification of the quantum theo-
ries with general relativity remains yet to be achieved.

Three of the four fundamental forces of nature, viz. electromagnetism, the weak
force and the strong force, along with the elementary particles in the universe, can
be described through the theory of the Standard Model. The three forces can be
unified at high energy scales via the Grand Unified Theories (GUT). The Standard
Model and GUTs being quantum theories aim at the description of physics of the
world around us at themicroscopic scale. However, the theory describing the force
of gravity, i.e. general relativity, is a classical theory which explains the gravitational
force only at the macroscopic scale. Theorists aim at finding a theory which can
unify the Standard Model (or its extensions) with gravity within a unique quantum
theory. String theory is a candidate for such a theory.

One of the important ingredients of string theory is supersymmetry, which is a con-
jectured symmetry of theuniverse. It proposes that all thematter and forceparticles
in the universe have superpartner particles.

There are two kinds of particles in nature – fermions, the matter particles – and
bosons, the force carriers. Fermions have half-integer spins while bosons have in-
teger spins. Supersymmetry states that every fermion has a bosonic superpartner
and vice-versa.
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Introduction 2

Some of the elementary fermions that we know well by now are electrons, muons,
etc. and someof the elementary bosons thatwe knowwell are photons,W± bosons,
Z bosons, gluons and the Higgs boson. Though we know of both fermionic and
bosonic particles in nature, we don’t yet know of any particles that form a super-
symmetric pair. It is believed that the superpartner particles are too heavy to get
detected by us using the experiments that have been used up till now.

Since supersymmetry is not explicitly observable in nature, it is believed to be spon-
taneously broken. There is supposedly a supersymmetry-breaking energy-scaleMs

such that at energies E > Ms the theory behaves in a supersymmetric way, while
at energies E < Ms supersymmetry is spontaneously broken. IfMs is not too high
(e.g. around 1-10 TeVwhich is themaximumenergy scale reachable by LHC) itmay
be possible for us to observe a spontaneously broken supersymmetry which would
then serve as proof for the existence of original supersymmetry.

In quantum field theory the values of the coupling parameters vary or "run" with
varyingenergy. This is knownas renormalizationgroupflow. Supersymmetry renor-
malizes the coupling parameters such that they converge to a single value at a very
high energy scale, known as the GUT scale. So supersymmetry may be responsible
for the grand unification of three of the four fundamental forces.

Attempts at formulating a supersymmetric theory of gravity yielded the theory of
supergravity. In supergravity, supersymmetry is a local symmetry generalizing the
reparametrization invariance [1]. Supergravity consists of fieldswith spin2or lower.
A field with spin higher than 2 is called a higher-spin field. So we can say that super-
gravity does not have any higher spin fields. The classical dynamics of supergravity
is well known but when we try to quantize it, we run into a problem because we
find that it is non-renormalizable. In recent years, however, it has been found that a
maximal N=8 supergravity in four space-time dimensions is finite up to at least five
loops (see [2] and references therein).

Theoretical high energy physicists have been working hard trying to get closer to a
consistent theory of quantum gravity. As we have already mentioned, string theory
is a candidate theory of quantum gravity. It looks very promising. Superstring the-
ory is aquantumtheorywhich isbelieved tobe renormalizable andevenfinite in the
ultraviolet limit. So it can consistently describe quantum gravity. Onemain feature
of this theory which distinguishes it from supergravity andmakes it renormalizable
is the quantum corrections contributed to it by an infinite tower of massive higher
spin fields. For this reason a better understanding of the dynamics of higher spin
fields is required.
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Quantum field theory has shown that massive fields with spin 1 are renormalizable
only if their mass is generated by the spontaneous breaking of the gauge symmetry
associated with the correspondingmassless gauge fields. Onemay assume that the
same feature applies to higher spin fields. For this reason string theory has been
conjectured to be a spontaneously broken phase of an underlying gauge theory of
massless higher spin fields. So we need to study the higher spin fields which are
massless.

In string theory the mass squared of the higher spin fields is proportional to string
tension. So spontaneous breaking of higher-spin symmetry would generate both
the mass and the tension of a string.

One approach for studying higher spin string states is the framework of String Field
Theory. It is still under construction with regards to supersymmetric and closed
strings. Another possible approach is to derive an effective field theory of higher
spin fields and study it using conventional field theoretical methods. In the last few
decades, the study of massless higher spin fields has revealed a profound and rich
geometrical and conformal structure underlying their dynamics.

One of the main problems in higher spin field theory that needs to be addressed
is the description of the higher-spin field interactions of different kinds, e.g. three-
and four-vertex higher-spin interactions [3–5], interactions with electromagnetic
fields [6, 7] and with gravity [8, 9]. When we describe interactions, we need to con-
sider the S-matrix which relates the initial state and the final state of the system
undergoing the interaction process. However there are certain restrictions regard-
ing what values the entries of an S-matrix can take. The general no-go theorems
like Coleman-Mandula theorem and Haag-Lopuszanski-Sohnius theorem do not
allow conserved currents associated with the symmetries of higher spin fields to
non-trivially contribute to the unitary S-matrix in D=4Minkowski space.

One way to circumvent the no-go theorems is to spontaneously break higher spin
symmetry, as probably happens in string theory. Anotherway around is to study the
theory in a spacetime different from Minkowski space, a spacetime with non-zero
cosmological constant, such as theAnti de Sitter space. This assertionhas been suc-
cessfully used by Fradkin and Vasiliev in [10] to describe the interaction ofmassless
higher spin fields with gravity, up to cubic order.

The construction of higher spin theory was put forward by Dirac in 1936 when he
generalized his famous spin-1/2 Dirac equation to the description of free higher
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spin fields. In 1939 Fierz and Pauli initiated a systematic study of higher-spin par-
ticles. They used a field theoretic approach demanding the conditions of Lorentz
invariance and positivity of energy for physical consistency. They also proposed a
general structure of Lagrangians describing free massive higher-spin fields (involv-
ing auxiliary fields of lower spins) and gave an explicit form of the Lagrangian for a
massive field of spin 2. Their workwas developed by Rarita and Schwinger [11] who
proposed a description of the theory of fields of half-integer spins (in particular of
spin 3/2) which is simpler than the formalism of Fierz and Pauli based on the use
of auxiliary fields. Wigner [12] and Bargmann and Wigner [13] put the description
of higher-spin particles on a solid group-theoretical basis by associating themwith
irreducible unitary representations of the Poincaré group.

Fronsdal [14] andChang [15] elucidated a procedure for introducing auxiliary fields
to construct higher-spin Lagrangians. Further contributions were made by Wein-
berg [16–18] and others. In 1974 Singh and Hagen [7, 19] managed to write down
an explicit form of the Lagrangian for a free massive field of arbitrary spin. The
Singh-Hagen Lagrangian for a half-integer spin incorporates symmetric gamma-
traceless tensor-spinors and for an integer spin it is written in terms of a set of
symmetric traceless tensor fields. Performing amassless limit of these Lagrangians
Fronsdal [20], andFang andFronsdal [21], respectively, constructedLagrangians for
free massless integer and half-integer higher spin fields. For a review of the histori-
cal developments and various aspects of higher-spin field theory look at references
[22–47].

Theoretical studies, in particular by Vasiliev (see e.g. [22, 30] for a review), have lead
to the conclusion that interactinghigher-spin gauge theories shouldbebasedon in-
finitedimensional symmetries and involve an infinitenumberof fieldsof increasing
spin. The study of the effects of spontaneous symmetry breaking and the appear-
anceofhigher-spinGoldstonefields in such theories is ahighlynon-trivial problem.
For this reason we have studied this problem in a simplified set-up. Firstly, we have
started studying it in D=3. And secondly, we consider a special class of higher spin
algebras, which unlike the conventional higher spin algebras, are finite. We have
constructed spin-1 and spin-3/2 Goldstone field models based on these algebras
and analysed their properties. The results of this research were published in [48].
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1.1 Supersymmetry Breaking

There are two ways in which supersymmetry can be broken – spontaneously and
explicitly.

i) Spontaneous supersymmetrybreaking: In thisprocess it is thevacuumstate
of the system for which the symmetry is broken. In such vacua one or more
scalar fields acquire a vacuum expectation value of the order of the energy
scale required for breaking supersymmetry.

ii) Explicit supersymmetry breaking: In this process supersymmetry is broken
explicitly by adding non-supersymmetric terms in the Lagrangian. In order to
preserve the renormalizability of the theory, only a specific kind of terms can
be added. On adding such terms supersymmetry is said to be softly broken.

Generally even soft supersymmetry breaking models are assummed to arise as low
energy effective descriptions of models where supersymmetry is broken sponta-
neously. Therefore, we will now discuss spontaneous symmetry breaking. In this
thesis, we describe effects of spontaneous supersymmetry breaking using Volkov-
Akulov construction [49, 50], which will be explained in further detail ahead.

1.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking is a process through which a symmetric system
ends up in an asymmetric state. The Lagrangian and the equations of motion of
the system continue to obey the symmetries even after the spontaneous breaking
of symmetry but a lowest-energy state does not retain the symmetry. In field theory
the lowest energy states are the vacua.

Symmetry can be broken spontaneously only for a system with a non-unique vac-
uum state. Thiswas first suggested byNambu et. al [51]. If the lowest energy state of
a system isdegenerate, then its correspondingeigenstates linearly transformamong
themselves under the symmetry transformations. So there is no unique eigenstate
to represent the ground state. Consequently each choice results in breaking the
symmetry spontaneously.
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When supersymmetry is broken spontaneously, the charges generating the symme-
try do not annihilate the vacuum, i.e.,

Q |0〉 6= 0 . (1.1)

Supersymmetry algebra implies that Q†Q + QQ† = H . Then as a consequence
of eq. (1.1), the vacuum expectation value of the Hamiltonian H of the system is
positive-definite

〈0|H|0〉 > 0. (1.2)

The Hamiltonian comprises of kinetic energy terms and potential energy terms. In
the vacuum the vacuum expectation values of the kinetic energy terms can be triv-
ially set to zero. So the potential energy of the vacuum state should have a positive
definite expectation value

〈0|V |0〉 > 0 . (1.3)

The requirement of the vacuum states to be invariant under Poincaré transforma-
tions necessitates that they be a function of a scalar field φ(x) and its vacuum ex-
pectation value be constant

〈0|φ(x)|0〉 = c 6= 0 . (1.4)

On the other hand, the vacuum expectation values of the vector fields Aa(x) and
spinor fields ψα(x) present in the system, should vanish

〈0|Aa(x)|0〉 = 0 ,

〈0|ψα(x)|0〉 = 0, . (1.5)

Conditions (1.3) and (1.4) can be summed up to say that the condition for the spon-
taneous breaking of supersymmetry is that the scalar field configuration should be
such that the vacuum expectation value of its potential energy is positive definite

〈0|V (φ(x))|0〉 > 0 . (1.6)

Consider the simplest possible case of a scalar fieldφ in termsofwhich thepotential
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FIGURE 1.1: No symmetry broken

V (φ) is defined. The expectation values of the potential for four different cases re-
garding the breaking of supersymmetry and gauge symmetry are shown in Figures
1.1 to 1.4.

In Figure 1.1 since the vacuum expectation value of the potential vanishes for a cer-
tain value of the scalar field φ, supersymmetry is not broken. Since the potential is
minimised for 〈0|φ|0〉 = 〈φ〉 = 0, the gauge symmetry of the system (if it acts on φ)
also stays intact.

In Figure 1.2 since the vacuum expectation value of the potential is positive defi-
nite, supersymmetry is spontaneously broken. However, since the potential ismin-
imised for 〈φ〉 = 0, the gauge symmetry stays intact.

In Figure 1.3 the potential vanishes for two configurations of the scalar field φ. So
its vacuum expectation value is zero and supersymmetry is not broken. Since the
potential is minimised at 〈φ〉 6= 0, gauge symmetry is broken.

In Figure 1.4 the potential is positive definite. So supersymmetry is broken spon-
taneously. Gauge symmetry is also broken because the potential is minimised at
〈φ〉 6= 0.
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FIGURE 1.2: Supersymmetry broken but gauge symmetry intact

FIGURE 1.3: Supersymmetry intact but gauge symmetry broken
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FIGURE 1.4: Both supersymmetry and gauge symmetry broken

Every time a continuous symmetry is broken spontaneously, be it a bosonic sym-
metry or supersymmetry, a massless particle is produced by virtue of Goldstone’s
theorem.

Goldstone’s Theorem: For every spontaneously broken continuous symmetry, the
theory must contain a massless particle known as a Goldstone field.

Proof: Suppose the system has a number of scalar fields φi transformed under a
certain representation of the symmetry group G. V (φ) is minimised at φ = 〈φ〉,
i.e.,

∂V

∂φ

∣∣∣∣
φ=〈φ〉

= 0 . (1.7)

Let the generators which break the vacuum symmetry be T a, i.e. T a〈φ〉 6= 0. The
mass matrix is defined as following:

M ij =
∂2V

∂φi ∂φj

∣∣∣∣
φ=〈φ〉

(1.8)

The symmetry of the Lagrangian implies

V (φ) = V (φ+ i εaT
aφ)

= V (φ) + i εaT
a
i φ

∂V

∂φi
+O(|ε|2) (using Taylor expansion)



Introduction 10

Retaining terms up to the 1st order in εa, the above equation gives us,

T ai
jφj

∂V

∂φi
= 0 (1.9)

Differentiating the above equation with respect to φk and evaluating it at φ = 〈φ〉
gives

∂

∂φk

(
T ai

jφj
∂V

∂φi

)∣∣∣∣
φ=〈φ〉

= 0

= T ai
k ∂V

∂φi

∣∣∣∣
φ=〈φ〉

+ T ai
jφj

∂V

∂φk ∂φi

∣∣∣∣
φ=〈φ〉

= 0 (1.10)

From eq. (1.7) we know that the first term on the LHS of eq. (1.10) is 0. Therefore,
the second term should also be equal to 0.

T ai
jφj

∂V

∂φk ∂φi

∣∣∣∣
φ=〈φ〉

= T ai
j〈φj〉Mki = 0 (1.11)

We already know thatT a〈φ〉 6= 0. This implies thatMki has a null eigenvectorwhich
has eigenvalue equal to 0. Since the eigenvalue ofMki corresponds to the mass of
the particle, the particle’s mass is 0. Therefore spontaneously breaking the symme-
try produces a massless particle, known as a Goldstone field.

A Goldstone field with integer spin is called a Goldstone boson while a Goldstone
fieldwith half-integer spin is called a goldstino. In this thesiswewill constructmod-
els for both – a Goldstone boson and a goldstino. A distinguished feature of the ef-
fective Lagrangians for Goldstone fields (including the Volkov-Akulov Lagrangians
considered below) is that they describe low energy dynamics of theGoldstone fields
in a universal way independently of the details of the nature of the spontaneous
symmetry breaking mechanisms, which, in general, can be yet unknown.

1.3 Poincaré Group Representations and Spin

We consider Minkowski spacetime with the following line element,

ds2 = ηmn dx
m dxn , (1.12)

where xm are space-time coordinates (m = 0, 1, 2, ...D − 1) andD is the number of
spacetime dimensions.
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InD dimensions the Minkowski metric ηmn is aD ×Dmatrix as following.

ηmn =


−1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1



The coordinates of two arbitrary inertial reference frames, say xm and x′m, are re-
lated to each other by the following linear non-homogeneous transformation:

x′m = Λm
n x

n + bm . (1.13)

This transformation leaves the Minkowski metric invariant. The invariance under
the tranformation by the matrix Λ in particular is expressed by the following rela-
tion.

ΛT ηΛ = η (1.14)

where ΛT is the matrix transpose of Λ.

Taking the determinant of eq. (1.14), we can see that,

det Λ = ±1

⇒ (Λ0
0)

2 − (Λ1
0)

2 − (Λ2
0)

2 − (Λ3
0)

2 = 1 (1.15)

In order to preserve the direction of time one must demand

Λ0
0 ≥ 1 . (1.16)

Preservation of parity or spatial orientation requires that

det Λ = 1 . (1.17)

The transformations (1.13) obeying the constraints (1.14, 1.16 and 1.17), are called
the "Poincaré transformations". In the homogeneous case, when bm = 0, they are
called the "Lorentz transformations". From here onwards the Poincaré transforma-
tions will be symbolically denoted as (Λ, b) and the Lorentz transformations simply
by Λ.
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A Lie group is a differentiable manifold that is also a group which respects the con-
tinuum properties of the manifold. On taking the union of all the Poincaré trans-
formations under the following multiplication law,

(Λ2, b2)× (Λ1, b1) = (Λ2 Λ1, b2 + Λ2 b1) (1.18)

we get a real Lie group which is called the "Poincarè group". Similarly, the union
of all the Lorentz transformations forms a real (semisimple) Lie group, called the
"Lorentz group" denoted as O(1, D − 1). The Lorentz transformations physically
cause rotations and boosts. The transformation provided by the parameter bm gives
translations.

The generators of Lorentz transformations are denoted asMab and those of trans-
lations are denoted as Pa. They form the Poincaré algebra characterized by the fol-
lowing commutation relations:

[Mab ,Mcd] = i (ηbcMad − ηacMbd − ηbdMac + ηadMbc),

[Mab , Pc] = i (ηbc Pa − ηac Pb).

[Pa, Pb] = 0, (1.19)

These commutation relations define an arbitrary representation of the Poincarè al-
gebra.

Now that we have the group representation and its algebra, let us look at its Casimir
operators. A Casimir operator is an operator that commutes with every generator
of the Lie group. To be concrete we will consider the most physically relevant case
ofD = 4 in which the Poincaré group has two Casimir operators (commuting with
Mab and Pa), which are,

C1 = P aPa , C2 = W aWa , (1.20)

whereW a is the Pauli-Lubanski vector

Wa =
1

2
εabcdM

bcP d . (1.21)
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Using eq. (1.19) one canprove the followingproperties of thePauli-Lubanski vector:

W aPa = 0 , (1.22a)

[Wa, Pb] = 0 , (1.22b)

[Mab,Wc] = i ηacWb − i ηbcWa , (1.22c)

[Wa,Wb] = i εabcdW
cP d . (1.22d)

In quantum field theory, Poincarè invariancemeans that any Poincarè transforma-
tion (Λ, b) induces a unitary transformation

U(Λ, b) = exp
[
i (− b̂aPa + 1

2
KabMab)

]
(1.23)

acting in a Hilbert space of particle states. The union of operators U(Λ, b) provides
us with a unitary representation of the Poincare group. The generators of this uni-
tary group are the same as those of the Poincaré group – Pa andMab.

1.3.1 Stability Group

Letus consider aHilbert spaceof one-particle stateswithmassm. Thenweconsider
its subspace Vq consisting of particle states with a given four-momentum qa, such
that,

Pa |q〉 = qa |q〉 (1.24)

for any state |q〉 ∈ Vq. The vector qa lies on themass-shell surface associated with a
value of the Casimir operator C1 in (1.20)

papa = −m2 , p0 < 0 , (1.25)

in momentum-space. Next we define a set of group elements (Λ, b) in Vq such that
the unitary operators U(Λ, b) acting on them transform Vq onto itself. We call this
groupHq. It forms a subgroup of the Poincaré group. Since it is a group of automor-
phisms that act as an identity on each Vq, it is the stability subgroup for Vq.
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If we take a unitary operator exp
(
i
2
KabMab

)
andmake it act on some state |q〉, then

we get,

|q′〉 = exp
(
i
2
KabMab

)
|q〉

where

q′a =
(

exp i
2
K
)a
b q

b . (1.26)

SinceHq maps Vq onto itself, we should have q′ = q. Therefore,

(
exp i

2
Ka
)
b
qb = qa

⇒
(

exp i
2
Ka
)
b
qb − δab qb = 0

⇒Ka
b q

b = 0 (1.27)

The above equation has the following general solution:

Kab = εabcd q
c nd (1.28)

where nd is an arbitrary vector. So the elements of the stability groupHq are of the
following form:

exp
[
i (− b̂aPa + 1

2
εabcd qc ndMab)

]
, (1.29)

where bandnarearbitrary vectors. It canbeexpressed in termsof thePauli-Lubanski
vector (1.21) acting on a state |q〉 in Vq, i.e., as

exp(− i α) exp(−i naW a) (1.30)

where α = ba qa. Now if we look at identity (1.22d), we can see that the components
of the Pauli-Lubanski vector form a Lie algebra restricted to Vq.

1.3.2 Massive Irreducible Representations

We now proceed to find the massive irreducible representations of the Poincaré
group. It is sufficient to construct all the unitary irreducible finite-dimensional rep-
resentations of the stability subgroupHq on the ‘mass-shell’, i.e., when p2 = −m2,
p0 < 0. Weconsider the simple caseof aparticle at rest inD = 4. Its four-momentum
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vector takes the following value:

qa = (−m, 0, 0, 0) . (1.31)

When the Pauli-Lubanski vectorWa = 1
2
εabcdM

bcP d is restricted to the subspace
Vq, its components should have the following forms:

W0 = 0 and WI = mSI I = 1, 2, 3 (1.32)

where the operator SI is

SI =
1

2
εIJKM

JK . (1.33)

It satisfies the following algebra:

[SI , SJ ] = i εIJK SK (1.34)

This algebra is the same as the angularmomentumalgebra su(2). As is well-known,
the finite-dimensional irreducible representations of su(2) obey the following con-
dition:

(S1)
2 + (S2)

2 + (S3)
2 = s(s+ 1) I (1.35)

where s takes the values s = 0, 1
2
, 1, 3

2
, 2, .... The dimension of a representation for

a given s is (2s+ 1).

Given the expression for the Pauli-Lubanski vector in terms of the vector SI along
with condition (1.35), the Casimir operator C2 takes the following form:

W aWa = m2 s (s+ 1) I where s = 0,
1

2
, 1,

3

2
, 2, ... (1.36)

The quantum number s is called the spin of a particle. In the massive case the ir-
reducible representations of the Poincaré group are characterized by mass m and
spin s.
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1.3.3 Massless Irreducible Representations

In the massless case, where

papa = 0 , (1.37)

let us choose the Lorentz frame where the four-momentum is,

qa = (−E, 0, 0, E) E 6= 0 . (1.38)

Using relations (1.21, 1.22a and 1.22b) we find that in the subspace Vq the compo-
nents of the Pauli-Lubanski vector take the following forms:

W0 = −EM12

W1 = E (M23 +M20) ≡ E R1

W2 = E (M13 +M10) ≡ E R2

W3 = EM12 (1.39)

Because of eq. (1.22d) the operatorsM12,R1 andR2 obey the following algebra:

[M12, R1] = − i R2

[M12, R2] = − i R1

[R1, R2] = 0 (1.40)

Algebra (1.40) is the Lie algebra of the groupE2 of translations and rotations on 2D

plane. E2 has the following Casimir operator:

(R1)
2 + (R2)

2 . (1.41)

It obeys the following condition:

(R1)
2 + (R2)

2 = µ2 I µ2 ≥ 0 . (1.42)

For the subspace Vq to be finite-dimensional, we should have µ2 = 0. ThenR1 and
R2 become trivial on Vq and we get,

W1 = W2 = 0 (1.43)
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The non-zero components of the Pauli-Lubanski vector we are left with areW0 and
W3. Now the only Lorentz generator belonging to Hq (whose elements are of the
type (1.30)), isM12 as can be seen from equations (1.39). Since the action ofHq on
Vq is irreducible, it has only one non-trivial state, which is,

M12 |λ〉 = λ |λ〉 (1.44)

where λ takes the following values:

λ = 0, ±1

2
, ±1, ±3

2
, ... (1.45)

The quantum number λ is called the helicity of a particle and |λ| is called the spin
of a massless particle.

Helicity is a Poincaré invariant characteristic of massless particles. Therefore, the
massless irreducible representations of the Poincaré group are classified by helicity.
Physically, the helicity of a particle is the projection of the spin of the particle along
its direction of motion. Therefore, while the spin of a particle is always a positive
number, its helicity can be either positive or negative.

1.4 Higher-Spin Hietarinta (Super)algebras

In general, higher-spin algebras involve an infinite number of fields of increasing
spin (see e.g. [30] for a review and references)

[Ts1 , Ts2 ] = Ts1+s2−2 + Ts1+s2−4 + ...+ T|s1−s2|+2 (1.46)

Here Ts is the symmetry generator of spin-s.

In 1975 Hietarinta [52] constructed graded Lie algebras with supersymmetry gen-
erators of arbitrary spin. Poincaré superalgebra is a special case of this general al-
gebra. This general superalgebra consists of anticommutators of spinor-tensor ‘su-
persymmetry’ generators for fermionic fields and commutators of tensor genera-
tors for bosonic fields.

Fermionic generators : {Qa1...an
α , Qb1...bm

β } = fa1...an,b1...bm,cαβ Pc ,

Bosonic generators : [Sa1...ap , Sb1...bq ] = fa1...an,b1...bm,cPc ,

[Q,P ] = 0 , [S, P ] = 0 , [Q,S] = 0 , (1.47)
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Here a1, a2, ..., b1, b2, ... = 0, 1, ..., D − 1 are vector indices and α, β are spinor in-
dices. A spinor index represents spin-1

2
. Every vector index added to a generator

represents spin-1 added to it, be it a fermionic generator or a bosonic generator. So
a generator of spin-s has [s]1 vector indices and a spinor index if s-[s]=1

2
. Qa1...an

α is
a fermionic tensor-spinor generator of spin-(n + 1

2
) and Sa1...ap is a bosonic tensor

generator of spin-p. Pc is the translation generator. The generators transformunder
certain representations of the Lorentz group SO(1, D− 1). The structure constants
fa1...an,b1...bm,cαβ and fa1...an,b1...bm,c are constructedwith the use of theMinkowskimet-
ric, Levi-Civita tensor and gamma-matrices. They are invariant under the symme-
tries of the group SO(1, D − 1).

The algebras (1.47) are finite-dimensional higher-spin algebras. Their finiteness
distinguishes them from the more familiar infinite-dimensional higher-spin alge-
bras (1.46) inwhich the commutators of higher-spin generators close on generators
carrying yet higher spins.

We will consider the spontaneous breaking of symmetries associated with Hietar-
inta algebras. These symmetries are realized non-linearly on the corresponding
models ofGoldstonefields. To construct higher-spinGoldstoneLagrangianswewill
use the method put forward by Volkov and Akulov for the description of spin-1/2
goldstini associated with the spontaneous breaking of conventional supersymme-
try [49, 50].

1.5 Brief Historical Review

We will be studying spin-1 and spin-3
2
models in D=3. The non-linear realisation

of spin-3
2
superalgebra has been considered in D = 4 independently by Baaklini

in [53] and by Pilot and Rajpoot in [54, 55]. It was exploited further in [56] and the
references therein. However, the properties of these non-linear generalizations of
the Rarita-Schwinger action have never been explored.

Issues related to the consistent gravitational coupling inD = 4 of amassless spin-5
2

field, which might be regarded as a gauge field of the local spin-3
2
supersymmetry,

were studied in [9, 57–59]. Aragone and Deser [60] have successfully constructed a
consistent model of "hypergravity" in D = 3. Their model is invariant under the
local symmetry transformations associated with a spin-(n+ 1

2
) superalgebra where

n = 0, 1, ... . It describes the interaction between a non-propagating graviton and a
1[s] is the greatest integer which gives the largest integer less than or equal to s.



Introduction 19

spin-(n+ 3
2
) gauge field2. More recently this model was extended to anAdS3 back-

ground includinganadditional spin-4fieldbyZinoviev [61]whoalso constructed its
higher-spin generalizations. Different aspects of higher-spin superalgebras of this
kind inD ≥ 3 and associated models have been considered in [62–65]. We intend
to study the effect of spontaneous symmetry breaking in such models.

As iswell-known, the construction of interacting higher-spin theories in space-time
dimensions higher than three is a highly non-trivial problem, even when working
with the superalgebras provided by Hietarinta in [52]. In [66] Shima et. al showed
(for the spin-3

2
case in D = 4) that these algebras do not have non-trivial linear

unitary representations. But there is still the question of whether the higher-spin
Goldstone field constructions based on the non-linear realizations of these alge-
bras produce physically consistent interactingmodels. A priori, such a possibility is
not excluded since non-linearly realized symmetry may act only on positive-norm
states while the negative-norm states of the corresponding linearmultiplets get cut
off.

1.6 Hietarinta Spin-3/2 Algebras inD = 3

Wewill be constructing Volkov-Akulov Lagrangians inD=3 for Goldstone fieldswith
three different spins 1/2, 1 and 3/2. Spin-1/2 Volkov-Akulov Lagrangianwill be con-
sidered as an instructive example before moving on to the new cases of Goldstone
models with spin-1 and spin-3/2.

In Chapter 4wewill consider the case of a spin-3/2 goldstino fieldmodel associated
with the spin-3/2 superalgebra [52–54] whose most general form in D = 3 is as
following

[Mab ,Mcd] = i (ηbcMad − ηacMbd − ηbdMac + ηadMbc) ,

[Mab , Qc
α] = i (ηbcQa

α − ηacQb
α)− i

2
(Γab)α

β Qc
β ,

[Mab , Pc] = i (ηbc Pa − ηac Pb) ,

[Qa
α, Pb] = 0 ,

[Pa, Pb] = 0 , (1.48)

2Strictly speaking massless particles in D = 3 do not have a spin. However, as is often adopted in
higher-spin literature for any space-time dimension, we loosely call symmetric tensor fieldsAa1...as
of rank s as fields with integer spin-s and symmetric-tensor spinor fieldsΨα

a1...as as fields with half-
integer spin-(s+ 1

2 ).
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{Qa
α, Q

b
β} = 2 aCαβ ε

abc Pc + bΓ
(a
αβP

b) + c ηab Γcαβ Pc . (1.49)

where a, b and c are arbitrary real parameters.

Here Mab is a Lorentz generator, Pa is a translation generator and Qa
α (α = 1, 2)

are Hietarinta symmetry generators which are Majorana (real) vector-spinors. The
matrices Γa are as following:

Γ0 =

(
0 1

−1 0

)
, Γ1 =

(
0 1

1 0

)
, Γ2 =

(
1 0

0 −1

)
.

The Γ matrices obey Clifford algebra. To see the properties of these matrices, refer
to Appendix A.4.

The charge conjugation matrix Cαβ is defined as following:

Cαβ =

(
0 1

−1 0

)
.

In eq. (1.49) one of the parameters a, b and c can always be set to a given num-
ber by re-scaling the fermionic generatorsQa

α or themomentum Pa. The generator
Qa
α belongs to a reducible representation of the Lorentz group which splits into the

following irreducible parts:

Qa
α = Q̂a

α +
1

3
(ΓaQ)α , (1.50)

whereQα is a Majorana-spinor generator and Q̂a
α is gamma-traceless (ΓaQ̂a = 0).

Depending on the choice of the parameters a, b and c, the superalgebra (1.49) can
be reduced to simpler superalgebras. Three specific cases are the following ones.

1. Case 1: a = − 5
12
, b = 1

3
and c = −2

3

In this case the only non-trivial anti-commutator in eq. (1.49) is between
the gamma-traceless Q̂a

α , i.e., {Q̂a
α, Q̂

b
β} . The spin-1/2 generators Qα anti-

commute both with themselves and with Q̂a
α , i.e.,

{Qα, Qβ} = 0

{(ΓaQ)α, Q̂
b
β} = 0
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This superalgebra was exploited in [63].

2. Case 2: b = 4 a and c = − 2 a

In this case only the spin-1
2
generators Qα have a non-trivial commutator

which is

{Qα , Qβ} = − 2 (ΓaC−1)αβ Pa .

The gamma-traceless generators Q̂a
α anti-commutebothwith themselves and

withQα and hence decouple

{Q̂a
α, Q̂

b
β} = 0

{Q̂a
α, (Γ

bQ)β} = 0 .

Therefore, in this case, the superalgebra (1.49) reduces to the conventional
N = 1 superalgebra.

3. Case 3: b = c = 0 and a = 1

In this case the algebra (1.49) reduces to

{Qa
α, Q

b
β} = 2Cαβ ε

abcPc . (1.51)

This is thealgebra thatwewill use to construct our vector-spingoldstinomodel
in Chapter 4.

We choose to work with algebra (1.51) because (as we will see) the quadratic part
of the non-linear Lagrangian associatedwith this algebra coincides with the Rarita-
Schwinger (or Chern-Simons-like) Lagrangian for amassless vector-spinor fieldχaα.
The gamma-traceless case canbe associatedwith the gauge-fixedRarita-Schwinger
action in which Γaχ

a = 0, while for other (inequivalent) choices of parameters
(except those corresponding to the conventional supersymmetry), the spin-3/2 su-
peralgebra does not seem to produce physically consistent models even in the free
(quadratic) approximationbecause of the absence of gauge symmetry and thepres-
ence of negative energy states.
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We will show that, in contrast to the spin-1 case, higher-order contributions to the
spin-3/2 goldstino action do not break the gauge symmetry of its quadratic Rarita-
Schwinger part but only require a non-linear modification of the gauge variation
of the spin-3/2 field. Moreover, the non-linear action reduces to the free Rarita-
Schwinger action by an invertible non-linear field redefinition, which means that
theRarita-Schwinger action itself isnon-manifestly invariantunder thenon-linearly
realized spin-3/2 supersymmetry (1.51).



Chapter 2

Fermion Goldstino Model

In this chapter, we will construct and analyze the Goldstone model for the familiar
spin-1/2 fermion in order to demonstrate the procedure. For the construction of
the Goldstone model, we will use the Volkov-Akulov formalism. For the analysis of
the model, we will try a couple of ways including the Hamiltonian analysis using
Dirac formalism.

In 1972, two Soviet physicists Volkov and Akulov developed a special kind of La-
grangian formalism for describing Goldostone models associated with the sponta-
neous breaking of supersymmetry [49, 50].

In a standard transformation of linear supersymmetry a fermion transforms into a
boson and vice versa. But in the non-linear realisation of supersymmetry a fermion
gets shifted by a parameter and in addition, transforms by a term which is non-
linear in the field itself. Such a transformation is characteristic of the Goldstone
field.

The Volkov-Akulov Lagrangian can be generalised to higher-spin Goldstone fields
associatedwithHietarinta algebras. There is awell-definedalgorithm for construct-
ing the Lagrangian starting from the algebra.

Belowwewill demonstrate the constructionof theVolkov-AkulovLagrangian for the
simplest case of a spin-1/2 field, the Goldstone fermion we are most familiar with.

23
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2.1 Volkov-Akulov Model of Spin-1/2 Goldstino

The conventionalN = 1 superalgebra for a spin-1/2Majorana fermionχα inD = 3

is as following:

[Mab ,Mcd] = i(ηbcMad − ηacMbd − ηbdMac + ηadMbc),

[Mab , Pc] = i(ηbc Pa − ηac Pb),

[Mab , Qα] = − i

2
(Γab)α

β Qβ,

{Qα , Qβ} = − 2 (ΓaC−1)αβ Pa,

[Qα , Pa] = 0,

[Pa, Pb] = 0, (2.1)

whereMab is a Lorentz generator, Qα (α = 1, 2) is a Majorana spinor generator of
supersymmetry transformations and Pa is a translation generator.

The supersymmetry transformations of xa and χα(x) generated by the algebra (2.1)
are:

x′a = xa − i f−2 εα Γaαβ χ
β(x) , χ′α(x′) = χα(x) + εα , (2.2)

where εα is a constant spinor parameter, f is a supersymmetry breaking parameter
of mass-dimensionM

3
2 and χα has the canonical dimension ofM in D = 3. The

infinitesimal transformation of the form of the goldstino field χα(x) is1

δχα(x) = εα + i f−2
(
εΓa χ(x)

)
∂aχ

α(x) . (2.3)

This shows that the goldstino transforms non-linearly under supersymmetry.

The commutator of two variations (2.3) closes on the translations off themass shell,
i.e. without the use of the equations of motion

[δ2 , δ1]χ
α = 2 i f−2 (ε1 Γa ε2) ∂aχ

α . (2.4)

We take a supersymmetry group element in the form g = ei x
mPm eif

−1 χαQα . Then

1As a shorthand notation, in what follows, we define the contraction of the spinors with a single
gamma-matrix as χΓa ψ ≡ χα Γaαβ ψ

β = −χα Γa βα ψβ . For other rules regarding the notation of
the spinor indices see Appendix A.
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the Cartan one-form g−1dg is invariant under the rigid supersymmetry transforma-
tions g′ = h(ε)g. It can be written as follows:

g−1dg = e−if
−1χαQα e−ix

mPm d (eix
nPn eif

−1χβQβ)

= i Pn dx
n + e−if

−1χαQα d eif
−1χβQβ

= i Pn dx
n + if−1dχαQα − f−2χαdχβ (ΓaC−1)αβ Pa

≡ iEmPm + i EαQα (2.5)

g−1dg ≡ i EmPm + i EαQα (2.6)

Em is the one-form2 that is used as a building block to construct the Volkov-Akulov
Lagrangian. The Lagrangian constructed using Em gives a non-linear generalisa-
tion of Dirac Lagrangian. If we were also to useEα, we would get a Lagrangian with
higher-derivative kinetic terms, not having a well-known analogue.

Em has the following form:

Em = dxm + if−2χα dχβ (ΓmC−1)αβ (2.7)

= dxa (δma + if−2 χα∂aχ
β (ΓmC−1)αβ)

= dxaEm
a

⇒ Em
a = δma + if−2 χα∂aχ

β (ΓmC−1)αβ (2.8)

Havingobtained the invariantone-formEm, wecanproceed toconstruct theVolkov-
Akulov action with it. The form of the Volkov-Akulov action in any dimension is

S = −f 2

∫
dDx detEa

b .

InD = 3 the action reduces to

S = −f 2

∫
d3x detEa

b =
f 2

3!

∫
εabcE

a ∧ Eb ∧ Ec , (2.9)

or explicitly

S1/2 =

∫
d3x

(
−f 2 − iχΓa ∂aχ+

f−2

2
εabc (χχ) ∂aχΓb ∂cχ

)
, (2.10)

2For a recent review of the different aspects and realizations of the Volkov-Akulov model and its cou-
pling to supergravity, see [67, 68] and the references therein.
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where χχ ≡ χαCαβ χ
β ≡ χα χα .

For the purpose of our analyses of Volkov-Akulov action and the ensuing results, the
constant term f 2 in the action above will not bring any qualitative difference to our
results. Therefore from here onwards we will omit it in the Volkov-Akulov actions.
It becomes important when the goldstino couples to gravity since it gives a positive
contribution to the cosmological constant. In that scenario it cannot be omitted.

Using variational calculus we can write down the equation of motion for the gold-
stino χα from the action (2.10). It is

iΓaαβ ∂aχ
β = f−2 χα ε

abc ∂aχΓb ∂cχ+ f−2 χγ Γaγα ∂aχΓb ∂bχ. (2.11)

We wish to find out how many physical degrees of freedom the system has and
whether it has gauge symmetries.

In thecaseof complicateddynamical systems, themost reliablemethodof analysing
their dynamical properties is the Dirac Hamiltonian formalism [69, 70].

2.2 Dirac Hamiltonian Formalism

If we have a Lagrangian L(qi, q̇i), function of the variables qi - position coordinate
and q̇i = ∂tqi - time derivative of the position coordinate or the velocity, then the
conjugate momentum pi is defined as

pi =
∂L

∂q̇i
. (2.12)

Now let us construct a quantity that can be expressed exclusively in terms of the
position and momenta coordinates – qi and pi. Consider the quantity pi q̇i − L. Let
us vary this quantity with respect to the variables qi and q̇i, the coordinates and the
velocities. This will bring a variation in the momentum variables pi also. It is as
following:

δ(pi q̇i − L) = δpi q̇i + pi δq̇i −
(
∂L

∂qi

)
δqi −

(
∂L

∂q̇i

)
δq̇i (2.13)

= δpi q̇i −
(
∂L

∂qi

)
δqi (2.14)
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by eq. (2.12). This shows us that the variation of the quantity pi q̇i−L depends only
on the variation of the position coordinates qi and themomenta coordinates pi but
not on the velocities q̇i. So pi q̇i − L is a quantity that is expressible exclusively in
terms of the position and momentum variables. It is called the canonical Hamilto-
nianH .

H = pi q̇i − L (2.15)

It is possible that the position andmomenta variables are not independent of each
other. They may satisfy the following kind of relations:

φm(qi, p
j) = 0 (2.16)

Such relations are the constraints in the theory. One way of classifying them is on
the basis of how they are derived. Doing so they can be classified as primary and
secondary constraints.

i) Primary constraint
A primary constraint is derived directly from the conjugatemomentumwith-
out using an equation of motion. For e.g., if the conjugate momentum pi is
equal to a function f i(q), then the primary constraint corresponding to pi is
simply Ci = pi − f i(q) = 0.

ii) Secondary constraint
A secondary constraint is derived from the equation of motion involving the
primary constraint. Let us see below how it is derived.

The total HamiltonianHT is defined as:

HT = H + umφm (2.17)

where H is the canonical Hamiltonian, φm is a primary constraint and um is the
Lagrange multiplier. The equations of motion are written as following:

Ḟ = {F ,HT}

= {F ,H}+ um {F , φm} , (2.18)
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whereF is an arbitrary function of the canonical variables and the Poisson bracket3

of the functions F andG is defined as

{F ,G} =
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi
. (2.19)

Since a constraintφm is supposed to be preserved in time, it should obey the follow-
ing equation of motion:

φ̇m = {φm , HT}

= {φm , H}+ um
′ {φm , φm′} = 0 (2.20)

This equation can be solved to provide an expression or a restriction for the La-
grangian multipliers um′ . However, if it so happens that the equation reduces to
a relation independent of um′ , involving only pi and qi, then that relation is a sec-
ondary constraint.

Once we obtain the secondary constraints, we can repeat the procedure of solving
their equations of motion to see if there are tertiary constraints also present. This
procedure canbecontinued tohigherorder constraints tillwe reach thepointwhere
the time derivative of the highest order constraint only imposes a restriction on the
Lagrange multipliers but does not yield yet another constraint.

Another way of classifying the constraints is as first-class and second-class con-
straints.

i) First-class constraint
A constraint F is said to be first-class if its Poisson bracket with every con-
straint vanishes weakly,

{F , φi} ≈ 0, i = 1, 2, ... (2.21)

whereφi is a constraint of the system. Aquantity is said tobeweakly vanishing
if it is restricted to be zero on the constraint surface but does not identically
vanish throughout the phase space. More generally, any function F of the
canonical variables q and p, that commutes with all the constraints is called a
first-class function.

3In this section, for denoting the Poisson brackets we use braces {..}without distinguishing whether
the dynamical variables are bosonic or fermionic. However, for concrete models discussed below
we will use [..] for the Poisson brackets of the bosonic variables and {..} for the fermionic ones.
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ii) Second-class constraint
A constraint is second-class if there is at least one constraint with which its
Poisson bracket does not vanish weakly. In other words, a constraint that is
not first-class, is a second-class constraint.

This classification is necessary for counting the number of the degrees of freedom
in the system. Let us see ahead how that is made possible.

2.2.1 First-class constraints generate gauge transformations

Because of the time conservation of constraints φi, the Lagrange multipliers um

have the following restrictions on them:

{φi , H}+ um{φi , φm} ≈ 0. (2.22)

These are a system of non-homogeneous linear equations with the unknowns um.
Their general solution is of the form

um = Um + V m (2.23)

whereUm is a particular solution that is fixed by the consistency conditions derived
from the requirement that the constraints be preserved in time. V m is the general
solution of the associated homogeneous system

V m{φi , φm} ≈ 0. (2.24)

The most general solution of this equation is the linear combination of A linearly
independent solutions Vam, a = 1, 2, ...A. Therefore,

um ≈ Um + va Va
m (2.25)

where the coefficients va are totally arbitrary. Thus um is the sum of a fixed term
(Um) and arbitrary terms. Therefore

HT = H + Um φm + va Va
m φm. (2.26)

Eq. (2.22) can be rewritten as

{φi , H}+ Um{φi , φm}+ va Va
m {φi , φm} ≈ 0. (2.27)
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Because of relation (2.24) we have,

{φi , H}+ Um{φi , φm} ≈ 0

⇒ {φi , H ′} ≈ 0 where H ′ = H + Um φm. (2.28)

This shows us thatH ′ is a first-class function.

Eq. (2.24) can be rewritten as

va Va
m {φi , φm} ≈ 0 (2.29)

⇒ va {φi , φa} ≈ 0 where Vam φm = φa. (2.30)

As visible from eq. (2.30), φa are first-class constraints. In fact, since va Vam is the
general solution to eq. (2.29), φa is the complete set of first-class primary con-
straints.

The total HamiltonianHT in (2.26) can be written as

HT = H ′ + va φa (2.31)

The equations of motion can be written as

Ḟ = {F ,HT} = {F ,H ′ + va φa} (2.32)

where F (q, p) is an arbitrary function of the canonical variables.

Let us now see which functions of the dynamical variables (p, q) are physical ob-
servables. The classical physical observables are such functions of the canonical
varibles for which the initial values of the latter completely define the behaviour of
these observables in time through the Hamiltonian equations of motion (2.32). In
the systemswith gauge symmetries a given observable (or a physical state), which is
gauge invariant, can be represented by different sets of canonical variables, playing
the role of gauge potentials.

Consider this in more detail. Since the total Hamiltonian HT contains arbitrary
functions va, the time-dependence of F (q, p) is uniquely determined by (2.32) only
if the equations of motion do not depend on va. For this to happen, the function
F (q, p) should Poisson-commute (at least weakly) with the first-class constraints

{F , φa} ≈ 0.
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Then the equations of motion reduce to

Ḟ = {F ,H ′ + va φa} ≈ {F ,H ′}. (2.33)

On the other hand, if F (q, p) does not Poisson-commute with φa, its equation of
motion contains the arbitrary functions va and there is an ambiguity in the time
dependence of F (q, p). But this ambiguity should be physically irrelevant, i.e. it
should correspond to different choices of the canonical variables related by a gauge
transformation and defining the same physical state. To see this, let us suppose
we have an initial (fixed) value of a canonical variable F at time t1. At later time
t2 > t1, if any ambiguity arises in the value of the canonical variables, it should be
physically irrelevant, i.e. correspond to a gauge transformation. Indeed, consider
in particular t2 = t1 + δt. Since va is an arbitrary function of time, let us take two
different choices va and ṽa. As follows from (2.32), the difference in the values of the
variable F at time t2 corresponding to the different choices of va at t1 is:

δF = (va(t1)− ṽa(t1)) δt {F (t1) , φa(t1)}. (2.34)

This does not change the time dependence of the physical state governed by (2.33),
and, therefore, the variations (2.34) produced by first-class constraints are gauge
transformations.

A first-class constraint not only knocks down a degree of freedomby virtue of being
a constraint, but it also knocks down another degree of freedomby gauging it away.
So a first-class constraint knocks down two degrees of freedom in the system. A
second-class constraint on the other hand, cancels only one degree of freedom as
usual.

Obtaining and classifying all the constraints in the system enables us to count the
number of physical degrees of freedom in the system, which conclusively deter-
mines the number of observables in the system.

2.3 HamiltonianAnalysisof theSpin-1/2GoldstinoModel

Now let us perform theHamiltonian analysis of the spin-1/2 goldstinomodel using
Dirac formalism. We perform this analysis mainly for the following two reasons:

1. to find out howmany degrees of freedom the system has
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2. to checkwhether theenergyof the system isboundedby lookingat thepositive-
definiteness property of the Hamiltonian.

2.3.1 Hamiltonian Analysis of Free Spin-1/2 Theory

Let us first consider the Hamiltonian of the free spin-1/2 theory where f = 0. This
case is simpler than that of the full Volkov-Akulov spin-1/2 Lagrangian which in-
cludes interaction terms in it. We will consider the latter case in the next section.

We split the D = 3 space-time indices into time and space indices a = (0, i), and
define ε0ij ≡ εij . Then the free Lagrangian in eq. (2.10) gets written in the following
form:

L 1
2
free = i ∂0χΓ0χ− iχΓi ∂iχ (2.35)

The conjugate momentum is,

pρ(t,x) =
δL(t,x)

δ(∂0χρ)
= iχα(t,x) Γ0

αρ , (2.36)

where x and y stand for the spatial coordinates xi and yi.

The canonical Hamiltonian density is

Hc(t,x) = ∂0χ
ρ(t,x) pρ(t,x)− L(t,x)

= − i χα(t,x) Γiαβ ∂iχ
β(t,x) . (2.37)

χα(t,x)andpβ(t,x)have the followingequal-time (anti-commuting)Poissonbracket
relation:

{χα(t,x) , pβ(t,y)} = δαβ δ
(2)(x− y) . (2.38)

Knowing the expression for the conjugatemomentum from eq. (2.36), we canwrite
down the primary constraint, which is,

Cρ(t,x) = pρ(t,x) + i χα(t,x) Γ0
αρ = 0 . (2.39)
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The equal-time Poisson bracket relation between the primary constraints is:

{Cα(t,x) , Cβ(t,x)} = 2 iΓ0
αβ δ

(2)(x− y) . (2.40)

Since thePoissonbracket above isnon-zero, the constraintsCα(t,x)areof the second-
class.

Now we wish to find if this system has secondary constraints. For that we need the
total Hamiltonian as defined in eq. (2.17). First we write the total Hamiltonian den-
sity which is the following:

HT (t,x) = HC(t,x) + uα(t,x)Cα(t,x) . (2.41)

On integrating the equation above with respect to x, we get the total Hamiltonian,
which is,

HT (t) = Hc(t) +

∫
d2xuα(t,x)Cα(t,x) . (2.42)

Next we impose the time-conservation of the primary constraintCα(t,x) for which
we equate its Poisson bracket with the total Hamiltonian to be zero as shown in the
following.∫

d2y [Cρ(t,x) ,HT (t,y)]

=

∫
d2y [Cρ(t,x) ,Hc(t,y)] +

∫
d2y uα(t,x) {Cρ(t,y) , Cα(t,y)} = 0

= 2 i ∂iχ
α(t,x) Γiαρ + uα(t,x) 2 iΓ0

αρ = 0 . (2.43)

The last equation above can be solved for uα(t,x). It gives,

uα(t,x) = εij ∂iχ
β(t,x) Γαjβ . (2.44)

Since [Cρ(t,x) , HT (t,y)] vanishes for uα(t,x) = − εij ∂iχβ(t,x) Γαjβ , it does not
give a secondary constraint. Therefore, the linear spin-1/2 theory has only two con-
straints, the primary constraints, which are second-class.
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Now that we know all the constraints present in this system, we count the number
of canonical degrees of freedom (DoF).

DoF to begin with : 4 because ofχ1, χ2, p
1, and p2 .

DoF cancelled by 1st-class constraints : 0 because there is no 1st-class constraint.

DoF cancelled by 2nd-class constraints : 2because there are two 2nd-class

constraints – C1 and C2 . (2.45)

So the total DoF= 4− 2 = 2. These two canonical degrees of freedom correspond
to position andmomentum, making up one physical degree of freedom. Therefore
the free fermionic theory has one physical degree of freedom which belongs to the
on-shell Majorana fermion.

Now let us move to the case of the full-fermionic Lagrangian which involves self-
interactions.

2.3.2 Hamiltonian Analysis of Full Volkov-Akulov Spin-1/2 The-
ory

Following is the full Lagrangian obtained after splitting the spacetime indices into
space and time indices separately.

L1/2 = i ∂0χΓ0χ− iχΓi ∂iχ −
f−2

2
εij χχ

(
∂iχΓ0 ∂jχ− 2 ∂0χΓi ∂jχ

)
. (2.46)

The conjugate momentum is

pα =
δL

δ∂0χα
= i Γ0

αβ χ
β + f−2 Γiαβ ∂jχ

β(χχ) (2.47)

and the canonical Hamiltonian density is

H1/2 = ∂0χ
α pα − L1/2

= iχΓi ∂iχ +
f−2

2
εij χχ∂iχΓ0 ∂jχ . (2.48)

The primary constraint is:

Fα = pα − iΓ0
αβ χ

β − f−2 εij Γiαβ ∂jχ
β(χχ) = 0 , (2.49)
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The anti-commutator of the primary constraint with itself is:

{Fα(t,x) , Fβ(t,y)}

= − 2 iΓ0
αβ δ

(2)(x− y)

− 2 f−2 εij
(
χα(t,x) Γiηβ + χβ(t,x) Γiηα

)
∂jχ

η(t,x) δ(2)(x− y)

+ 2 f−2 εij Γiαβχ
η(t,x)Cηλ ∂jχ

λ(t,x) δ(2)(x− y)

− f−2 εij
(
χη(t,x)Cηλ χ

λ(t,x)
)
Γiαβ(∂xj + ∂yj) δ

(2)(x− y) (2.50)

It is weakly non-vanishing. Therefore, it is of the second-class as was also the case
for the primary constraint in the free fermionic theory discussed in the last section.

Next, we attempt to look for secondary constraints. Following is the total Hamilto-
nian:

HT (t) = Hc(t) +

∫
d2xuα(t,x)Fα(t,x) . (2.51)

We impose the time conservation of the primary constraint Fα(t,x) by taking its
Poisson bracket with the total Hamiltonian and equating it with zero.∫

d2y [Fρ(t,x) ,HT (t,y)] = 0

=

∫
d2y [Fρ(t,x) ,Hc(t,y)]−

∫
d2y uα(t,y) {Fρ(t,y) , Fα(t,y)} = 0

= 2 i ∂iχ
α(t,y) Γiαρ + f−2 εij χρ(t,x) ∂iχ

β(t,x) ∂jχ
ν(t,x) Γ0βν

− 2f−2 εij∂iχ
η(t,x)χη(t,x) ∂jχ

ν(t,x) Γ0ρν + uα(t,x)

(
2 iΓ0

ρα

+ 2 εijf−2
(
χρ(t,x) Γiβα + χα(t,x) Γiβρ

)
∂jχ

β(t,x)

− 2 εij f−2 Γiρα χ
η(t,x) ∂jχη(t,x)

)
= 0 (2.52)

The equation above can be solved for uα(t,x). It gives,

uα(t,x) =

(
2 iΓ0

ρα + 2 f−2 εij
(
χρ(t,x) Γiβα + χα(t,x) Γiβρ

)
∂jχ

β(t,x)

− 2 f−2 εij Γiρα χ
η(t,x) ∂jχη(t,x)

)−1(
2 i ∂iχ

α(t,y) Γiαρ

+ f−2 εij χρ(t,x) ∂iχ
β(t,x) ∂jχ

ν(t,x) Γ0βν

− 2 f−2 εij∂iχ
η(t,x)χη(t,x) ∂jχ

ν(t,x) Γ0ρν

)
(2.53)
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The time conservation of the constraint Fα(t,x) gives us the value of the Lagrange
multiplier for the total Hamiltonian. Therefore we don’t get a secondary constraint.

Since Fα are the only constraints we have in the system, we can now start count-
ing the degrees of freedom. We beginwith the fermionsχα and their corresponding
momenta. Wehaveχ1, χ2, p

1 and p2 . Therefore, we have four phase-space degrees
of freedom to begin with. The two second-class constraints F1 and F2 cancel two
degrees of freedom. So we are left with two canonical degrees of freedom. One of
the canonical degrees of freedom is that of the position and the other one of themo-
mentum. So two canonical degrees of freedom correspond to one physical degree
of freedom in the configuration space.

The counting of the degrees of freedomusingDiracHamiltonian formalism verifies
thepresenceofonlyonephysical degreeof freedomin thenon-linearVolkov-Akulov
goldstino model.

2.3.3 On-ShellHamiltonianValueofFull FermionGoldstinoModel

Depending on whether the energy of the system is positive, zero or negative, we get
to know whether or not the system is physical and if it has dynamical degrees of
freedom. For this purpose, we evaluate the Hamiltonian density on the mass-shell.
As shown in eq. (2.48) the canonical Hamiltonian density is

H1/2 = i χΓi ∂iχ+
f−2

2
εij χχ∂iχΓ0 ∂jχ . (2.54)

The quartic order term in the above expression can be expressed differently using
Γ-matrix identities (A.4). Modulo a total derivative, eq. (2.54) becomes

H1/2 = i χΓi ∂iχ+
f−2

2
χχ∂iχΓi Γj ∂jχ−

f−2

4
∂i(χχ) ∂i(χχ) (2.55)

Now note that the equation of motion (2.11) implies that

Γi ∂iχ = −Γ0 ∂0χ+O (χ∂χ ∂χ) . (2.56)

Substituting this expression into eq. (2.55) we get the on-shell value of the Hamil-
tonian density:

H1/2|on-shell = iχΓi ∂iχ +
f−2

4
∂i(iχχ) ∂i(iχχ) +

f−2

4
∂0(iχχ) ∂0(iχχ) . (2.57)
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In this expression the leading order quadratic term is the standard freeHamiltonian
of a massless Majorana fermion. The quartic terms are positive semi-definite since
i χαχα is a real nilpotent scalar. The positive semi-definiteness of the Hamiltonian
density shows that the energy of the system is bounded from below and is either
zero or positive. This verifies that the system is stable.

Sowehave seen that theVolkov-Akulov goldstinomodel is physically consistent and
does not have any unphysical ghost degrees of freedom.

Now let us move to the Volkov-Akulov Goldstone model of the field with the next
higher spin— spin-1 boson inD = 3.



Chapter 3

Vector Goldstone Model

Now we construct the Volkov-Akulov goldstone model with the spin-1 goldstone
Aa(x) where a = 0, 1, 2. The corresponding Hietarinta spin-1 algebra is generated
by Poincarè generators and a bosonic vector operator Sa satisfying the following
commutation relations:

[Mab ,Mcd] = i (ηbcMad − ηacMbd − ηbdMac + ηadMbc),

[Mab , Pc] = i (ηbc Pa − ηac Pb),

[Mab , Sc] = i (ηbc Sa − ηac Sb) ,

[Sa, Sb] = 2 i εabcPc ,

[Sa, Pb] = 0 ,

[Pa, Pb] = 0 . (3.1)

The algebra above can also be regarded as an Inonu-Wigner contraction of the
so(2, 2)⊕ so(1, 2)-algebra.

The symmetry transformations of xa andAa(x) generated by the algebra above are:

x′
a

= xa − f−2 εabc sbAc(x) , (3.2)

A′a(x
′) = Aa(x) + sa , (3.3)

where sa is a constant vector parameter.

The infinitesimal transformation of the form of the goldstone fieldAa(x),

δAa(x) = sa + f−2 εdbc
(
sbAc(x)

)
∂dAa(x) , (3.4)

38
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shows that it transforms non-linearly under the symmetry. The commutator of two
variations (3.4) closes on the translation ofAa,

[δ2 , δ1]Aa(x) = 2 f−2 εdbc (s1b s
2
c) ∂dAa(x) . (3.5)

In this case the invariant one-form is

Ea = dxa + f−2 εabcAb(x) dAc(x)

= dxm(δam + f−2 εabcAb(x) ∂mAc(x))

≡ dxmEa
m . (3.6)

3.1 Action and Equation of Motion

Using the Volkov-Akulov formalism as explained in sec. 2.1, we obtain the action.
Subtracting the constant term andmodulo a total derivative the action is

S1 = − f 2

∫
d3x (detEa

d − 1)

=

∫
d3x

(
εabcAa ∂bAc −

f−2

2
εabcεdef AaAd ∂eAb ∂fAc

+
f−4

6
εabc(εdefεklmAdAeAl ∂aAk ∂bAf ∂cAm

− εkefεdlmAdAeAl ∂aAk ∂bAf ∂cAm)
)

(3.7)

In the expression above the terms of the sixth order in Aa vanish due to the anti-
symmetry of the Levi-Civita tensors and the Abelian nature of the vector field Aa.
Therefore, the action becomes

S1 =

∫
d3x

(
εabcAa ∂bAc −

f−2

2
εabcεdef AaAd ∂eAb ∂fAc

)
(3.8)

We can see that the leading order quadratic term in the action above is the Abelian
Chern-Simons action. We know that it is gauge invariant under the following gauge
transformation:

A′a(x) = Aa(x) + ∂aλ(x). (3.9)
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Therefore, as is well known, the leading order Chern-Simons action describes a
gauge theory with no local degrees of freedom. Its equation of motion is

εabc ∂bAc = 0 (3.10)

On taking the divergence of the equation of motion, we get the following identity,
which is the Noether identity:

∂a(ε
abc ∂bAc) ≡ 0 (3.11)

This identity exists because of the anti-symmetry of the Levi-Civita tensor in the
indices a, b and c and the symmetry of the partial derivatives ∂a and ∂b. A Noether
identity is a differential relation that shows that the equations ofmotions in the sys-
tem are not independent of each other. This tells us that there is a gauge symmetry
present in the system. So the existence of Noether identity (3.11) verifies that the
leading order Chern-Simons action is gauge invariant.

Equation of motion (3.10) can also be read as equating the field strength Fab =

∂aAb − ∂bAa to zero. With that perspective eq. (3.11) is a Bianchi identity.

We should now figure out whether the non-linear action (3.8) is invariant under a
non-linear generalization of the local symmetry. If it were so, then also in the non-
linear theory there would be no physical degree of freedom of Aa(x) as in the free
case.

If a Noether identity exists for a system, then it has gauge symmetry. So let us try to
see if we can get a Noether identity for the non-linear action.

3.1.1 Noether Identity Test

Wetry tofind thenon-linear generalizationof theNoether identity (3.11). Let usfirst
write the equation of motion for action (3.8), derived by extremizing the action. It
is

εabc ∂bAc − εabcεdef Ad ∂eAb ∂fAc = 0 (3.12)

Note that in the linear case the identity in question is the divergence of the left hand
side of the equation (3.10) identically equal to zero. Trying to follow a similar pat-
tern here for the non-linear generalization, we re-express eq. (3.12) in the following
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form:
εabcDbAc = 0 (3.13)

whereDb is the covariant derivative of the form

Db = (E−1)db ∂d +
1

2E
∂d(E (E−1)db), (3.14)

(E−1)db is the matrix inverse of Ea
b defined in (3.6) and E := detEa

b . It is natural to
assume that the non-linear generalization of the Noether identity of the free theory
is the vanishing of the divergence of the left hand side of (3.13) with respect toDa.
We check if the operatorDa can replace the partial derivative ∂a in the sought after
non-linear generalization of the Noether identity (3.11). We find that it doesn’t do
so.

εabcDaDbAc 6≡ 0 (3.15)

Wewerenot able tofindamoregeneral formof Db whichwouldproduce theNoether
identity. If the Noether identity does not exist, then the non-linear Lagrangian does
not have a local gauge symmetry and the fieldAa(x) is a propagating physical field.
To confirm this assumption and to understand the properties of the possible propa-
gating degrees of freedomwewill now carry out a perturbative analysis of the equa-
tion of motion.

3.1.2 Perturbative Analysis

The solution of the non-linear equation of motion (3.12) can be studied order-by-
order in f−2. At the zeroth order in f−2, the solution is

A(0)
a = ∂aϕ (3.16)

where ϕ is a scalar field. Up to the order f−2 the solution is

Aa = ∂aϕ+ f−2A(1)
a +O(f−4) . (3.17)

Plugging this into eq. (3.12) we get the following expression for the field-strength of
A

(1)
a in terms of ϕ :

εabc ∂bA
(1)
c − εabcεdef ∂dϕ∂e∂bϕ∂f∂cϕ = 0. (3.18)
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Upon taking the divergence of the equation above, we get,

εabc ∂a∂bA
(1)
c − εabcεdef ∂a∂dϕ∂e∂bϕ∂f∂cϕ = 0. (3.19)

The first term in the equation above, i.e. εabc ∂a∂bA
(1)
c , is identically zero because the

Levi-Civita tensor is anti-symmetric in a, b and c while the partial derivatives ∂a and
∂b commute with each other. The ϕ term in the equation above can be re-written
as following onmultiplying with a constant factor of 1/6:

− 1

6
εabcεdef ∂a∂dϕ∂e∂bϕ∂f∂cϕ = 0

= det
(
∂a∂

bϕ
)

= 0 (3.20)

= (�ϕ)3 − 3�ϕ∂a∂
bϕ∂b∂

aϕ+ 2 ∂a∂
bϕ∂b∂

cϕ∂c∂
aϕ = 0 . (3.21)

This equation can be regarded as the higher-order equation of motion of ϕ. It has
only second-order timederivatives ofϕ, though. This tells us thatϕ is a propagating
scalar field albeit not the usual kind of scalar field since it does not have a usual
kinetic term ∂aϕ∂

aϕ.

At the end of section (3.1.1) we mentioned that the absence of gauge symmetry
should result in the presence of a propagating field. Now that we have obtained
a propagating scalar field ϕ in the system by performing perturbative analysis, we
see that it is this field which is associated with the broken gauge symmetry.

3.1.3 Stückelberg Trick for Vector Goldstone Model

Now we apply the Stückelberg trick to study the properties of the system. Stück-
elberg trick brings a local symmetry in the Lagrangian by introducing an auxiliary
field, also known as the Stückelberg field. Let us introduce an auxiliary field ϕ̂ into
the system and replace the vector fieldAa with Âa as following:

Aa → Âa = Aa − f
1
2 ∂aϕ̂ (3.22)

Âa is invariant under the following transformations:

δAa = ∂aλ ,

δϕ̂ = f−
1
2λ . (3.23)
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Hence, by introducing the auxiliary field ϕ̂ we made the Lagrangian gauge invari-
ant. In order to keep the Lagrangian finite in the field ϕ̂ under the limit f → ∞,
which we take ahead, the exponential power of f in eq. (3.22) should be 1/2.

In the Lagrangian (3.8) we substitute the vector field Aa with Âa to get the Stück-
elberg Lagrangian. On taking the limit f → ∞ in the Lagrangian, we find that the
vector fieldAa decouples from the Stückelberg field ϕ̂.

L(Âa)|f→∞ = εabcAa ∂bAc −
1

2
εabcεdef ∂aϕ̂ ∂dϕ̂ ∂e∂bϕ̂ ∂f∂cϕ̂ . (3.24)

Therefore the limit f →∞ is the decoupling limit for the Stückelberg Lagrangian.

Now that we have the Lagrangian, we can find the dimensionality of each field in it
and see if thefield ϕ̂needs tobe rescaled tomake it canonical. Wehave the following
dimensions for the fundamental scales of mass, length and time:

[M ] = 1 [L] = [T ] = −1 (3.25)

This implies that the dimension of a derivative ∂a is 1.

The action S =
∫
d3xL is a dimensionless quantity which implies that the La-

grangian densityL (also referred to as Lagrangian in this text) must have canonical
dimension 3. Using this we can calculate the dimensions of the fields appearing
in the Lagrangian. For the fields Aa and ϕ̂ appearing in the Lagrangian (3.24), on
counting the dimensions we get,

[Aa] =
(

3− 1 (from ∂b)
)
/2 = 1

[ϕ̂] =
(

3− 6 (from ∂a)
)
/4 = − 3/4 (3.26)

The kinetic Lagrangian for a canonical massless scalar field φ is (∂φ)2. So the di-
mension of a canonical scalar field is:

[φ] =
(

3− 2 (from ∂)
)
/2 = 1/2 (3.27)

But in (3.26) we got the dimension of ϕ̂ to be −3/4. That means ϕ̂ is not canoni-
cal yet. It should be rescaled with a mass parameter in order for its dimension to
become 1/2.
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Let ϕ̂ be rescaled byMy such that now ϕ̂ has the canonical dimension 1/2. Then,
the ϕ̂ term in Lagrangian (3.24) becomes

− 1

2
εabcεdef M4y ∂aϕ̂ ∂dϕ̂ ∂e∂bϕ̂ ∂f∂cϕ̂ . (3.28)

On counting the dimensions ofM4y in the above Lagrangian term, we get,

[M4y] = 3− 6 (from ∂a)− 2 (from ϕ̂) = − 5

⇒ y = − 5/4 . (3.29)

So the scalar part of Lagrangian (3.24) becomes

− 1

2
εabcεdef M5 ∂aϕ̂ ∂dϕ̂ ∂e∂bϕ̂ ∂f∂cϕ̂ , (3.30)

where the scalar field ϕ̂ has the canonical dimension 1/2. We rewrite the scalar field
Lagrangian by integrating expression (3.30) by parts, to get the following:

L(ϕ̂) =
M−5

2
ϕ̂ εabcεdef ∂a∂dϕ̂ ∂e∂bϕ̂ ∂f∂cϕ̂

= − 3M−5ϕ̂ det
(
∂a∂

bϕ̂
)

= −M
−5

2
ϕ̂
(
(�ϕ̂)3 − 3�ϕ̂ ∂a∂

bϕ̂ ∂b∂
aϕ̂+ 2 ∂a∂

bϕ̂ ∂b∂
cϕ̂ ∂c∂

aϕ̂)
)
. (3.31)

We can notice that the Lagrangian above has expressions that appeared earlier in
the perturbative analysis written in (3.20)! So the propagating scalar fieldϕ that we
obtained in the last section is a Stückelberg field. Equation (3.21) is the equation of
motion for the Stückelberg Lagrangian in the decoupling limit (3.31) written above.

Lagrangian (3.31) happens to be the Lagrangian of a galileon.

3.2 Galileon

A galileon is a scalar field, generally called π(x), that arises in theories of modified
gravity. It modifies general relativity on perturbedMinkowski spacetime. It couples
to themetric gµν resulting in the Einstein-Hilbert action

√
−gR getting replaced by

the action
√
−g(1 − 2π)R plus self-interaction terms that are derivatives of π. It

is not coupled to matter directly but indirectly because of its coupling to gµν . This
is necessary to maintain the universality of gravitational interactions. It enables a
model independent analysis of a large class of modified gravity models [71].
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General relativity is an effective theory that is assumed to hold at low energy scales
below an ultraviolet cut-off limit and at large distances, such as solar system dis-
tances. Also, the accuracyof thepredictionsof general relativity increaseswith time,
so it is valid for late time scales such as the present but perhaps not at early time
scales near the Big Bang. Because of its validity at low energy scales, general relativ-
ity is said to be a theory valid in the infrared regime.

The supernovae experiments [72, 73] have shown that the universe is expanding at
an accelerated rate. If ones tries to justify the accelerated expansion through gen-
eral relativity, one needs to provide a certain value to the cosmological constant Λ.
Giving that particular value toΛphysicallymeans giving a correction to the vacuum
energy of the universe. This correction in the vacuum energy can be accounted for
by the presence of dark energy.

The value of Λ obtained in general relativity [74] on positing the existence of dark
energy to explain the accelerated expansion, is smaller than the value provided by
quantum field theory by the order of magnitude 10120. This enormous annatural
discrepancy couldmean that insteadof a dark energy (cosmological constant) com-
ponent being responsible for the accelerated expansion, gravity is modified at cos-
mological distances so as to produce an accelerating universe.

A number of different theories of modified gravity [75, 76] have been proposed till
date, for e.g., Dvali-Gabadadze-Porrati (DGP) model [77], massive gravity [78], etc.
All the theories ofmodified gravity have a scalar field universally coupled to general
relativity. The additional degree of freedom introduced by the scalar field extends
the validity of the theory to sub-cosmological distances, hence beyond the infrared
regime. For a review on galileons, see [79–82] and the references therein.

3.2.1 Modifying Gravity

Let us see how galileons arise in the theories of modified gravity [83]. A galileon
is supposed tomodify the linearized gravitational potential produced by an energy
momentum source or theHubble flow at the orderO(1), i.e., at cosmological scales.
But since general relativity gives us the correct predictions at large-scale distances,
we need to ensure that modified gravity does not deviate from general relativity at
solar systemdistancesbeyond theorderO(10−3). With linear dynamics of the scalar
field, it is not possible to satisfy both the above conditions simultaneously. How-
ever, the introduction of non-linearities enables the extrapolation between differ-
ent length scales.
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In the infrared regime when gravity is locally modified by a universally coupled
scalar, we need to ensure that the solar system tests are recovered. They can be
recovered by the Vainshtein effect [84] which is the decoupling of the scalar from
matter in gravitationally bound systems.

Let us denote the universally coupled scalar field by πc . We need to make the fol-
lowing assumptions for πc:

1. The dynamics of πc should be non-linear. Up to the quadratic order, it should
be expressed as following:

πc = C +Bµx
µ + Aµνx

µxν +O(x3H3) . (3.32)

This quadratic approximation is invariant under the combined action of a
spacetime translation, i.e. πc(x)→ πc(x+ δ) and a shift, i.e. πc(x)→ πc(x) +

bµx
µ+c . Whenπc as expressed in eq. (3.32) is transformedunder these trans-

formations, we get,

πc(x) = πc(x+ δ)− 2Aµν δ
µxν −Bµδ

µ , (3.33)

This tells us that bµ = −2Aµνδ
ν and c = −Bµδ

µ. Generally the symmetry
of a solution follows from an invariance of the equations of motion. That in-
variance constrains the form of the Lagrangian. It can be deduced that the
Lagrangian is invariant under the following shift:

πc(x)→ πc(x) + bµx
µ + c . (3.34)

The symmetry condition (3.34) is obtained as a result of demanding the solu-
tion to have a quadratic approximation (3.32). A solution up to the quadratic
order can be obtained even from a linear equation of motion via Taylor ex-
pansion. For e.g., consider an ordinary two derivative Lagrangian:

−1

2
(∂ρ)2 − V (ρ) ,

where the equation of motion linearized in ϕ = ρ(x)− ρ(0) , is

�ϕ = V ′(ρ(0)) = const . (3.35)

This is a linear equation ofmotionwhich admits the quadratic solution (3.32).
It is invariant under the symmetry (3.34). In fact, generally the symmetry
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ρ(x) → ρ(x) + bµx
µ + c of the approximated solution follows trivially from

the shift invariance of the equations of motion.

But as mentioned before, we want πc dynamics even at the local quadratic
order in the coordinates to be described by a non-linear equation of motion.
So we need to ensure that the equations of motion of πc have the shift sym-
metry (3.34) while being non-linear. This leads us to our second non-trivial
assumption.

2. The equations of motion of πc should be invariant under the shift symmetry
(3.34) while each πc in the equations of motion is acted upon by at least two
derivatives.

3. The third and final assumption wemake is that the equations of motion of πc
should be only of the second order (in time derivatives). This is equivalent to
demanding that the equations ofmotionwithLπc being the Lagrangian, be of
the following form:

δLπc
δπc

= F (∂µ∂νπc) (3.36)

where F is a non-linear Lorentz invariant function of the tensor ∂µ∂νπ. The
need for this assumption arises by comparing the ghost-free DGPmodel with
the ghost-containing Fierz-Pauli massive gravity. The DGP model contains
equations of motion in πc only of the second order while in the Fierz-Pauli
case the analogue of πc dynamics leads to fourth order equations of motion
giving a ghost at the onset of non-linearity [85].

The three conditions listed above correspond to the three main properties of the
DGPmodel that guarantee its viabilty at solar system distances.

In the shift transformation (3.34) the vectorial parameter bµ corresponds to the shift
of the gradient of π by a constant vector, i.e.,

∂µπc → ∂µπc + bµ .

This is the space-time generalization of the Galilean symmetry

ẋ→ ẋ+ v ⇒ x→ x+ vt

of non-relativistic mechanics (0+1 field theory), where x is the position coordinate,
v is the velocity and t is the time coordinate. By analogy the transformation πc →
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πc + b x is called the Galilean transformation. This is why πc is called galileon. From
now on we can write it as just π.

So now we have seen howmodifying gravity gives a galileon.

The shift corresponding to c in (3.34) suggests that πc may be a Goldstone boson.
In massive gravity models it is associated with the breaking of diffeomorphism in-
variance, while in our model of the vector Goldstone field it is associated with the
spontaneous breaking of U(1) gauge symmetry.

3.2.2 Galileon Lagrangian

As mentioned before, the galileon Lagrangian must be such that its variation with
respect to π is of the following form:

⇒ δLπ
δπ

= F (∂µ∂νπ) (3.37)

with F being a non-linear function that is Lorentz invariant. When we try to con-
struct functions of the kind F , we find that there is only a small number of such
functions. In three dimensional spacetime only four such functions exist. We get
one extra such function every time we go one dimension higher. InD dimensions,
there existD + 1 Lagrangian terms of the kind F , which we can refer to as Galileo-
invariant Lagrangian terms. Themost general Lagrangian is the linear combination
of such terms multiplied by arbitrary functions of π.

In D = 3 there are four Galileo-invariant (modulo total derivatives) Lagrangian
terms:

L1 ≡ π , (3.38)

L2 ≡ π �π , (3.39)

L3 ≡ π [(�π)2 − (∂µ∂νπ)(∂µ∂νπ)] , (3.40)

L4 ≡ π [(�π)3 − 3(�π)(∂µ∂νπ)(∂µ∂νπ) + 2(∂µ∂
νπ ∂ν∂

ρπ ∂ρ∂
µπ)] . (3.41)

Higher order Galileo-invariants are total derivatives, so they are trivial.

The complete Lagrangian for π is a linear combination of the above invariants:

Lπ =
4∑

n=1

an Ln , (3.42)
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where the a′ns are generic coefficients.

L4 in eq. (3.41) is the same as the Lagrangian (3.31) whichwe obtained on perform-
ing the Stückelberg trick on the vector Goldstone in section 3.1.3. So our Goldstone
is like a galileon.

It is more convenient to look at the equations of motion derived from the extrem-
isation of the Lagrangian terms above. The equations of motion do not have any
ambiguities on account of thepresenceof total derivative termsobtained from inte-
gration byparts. Also, all the terms in the equations are composed of secondderiva-
tives of π.

Extremising the Lagrangian terms, En ≡ δLn
δπ
, we get the following contributions to

the left-hand-side of the equations of motion:

E1 = 1 (3.43)

E2 = �π (3.44)

E3 = (�π)2 − (∂µ∂νπ)2 (3.45)

E4 = (�π)3 − 3�π(∂µ∂νπ)2 + 2(∂µ∂νπ)3 (3.46)

where (∂µ∂νπ)n denotes the cyclic contraction
(∂µ∂νπ)n ≡ ∂µ∂νπ ∂

ν∂ρπ ∂ρ∂σπ · · · ∂τ∂µπ (with n πs).

The complete equation of motion is the following linear combination:

E ≡ δLπ
δπ

=
4∑

n=1

cn En = 0 . (3.47)

We can see from E4 in eq. (3.46) that it is the same as eq. (3.21) that was obtained in
the perturbative analysis of the vector Goldstonemodel, which is also the equation
ofmotion of the Lagrangian obtained in the Stückelberg trick. So the formofL4 and
E4 tell us that the Stückeblerg field in our vector Goldstone model is like a galileon.

Belowwe rewrite the Stückelberg Lagrangian and its equation ofmotion shown ear-
lier:

L(ϕ̂) = −M
−5

2
ϕ̂
(
(�ϕ̂)3 − 3�ϕ̂ ∂a∂

bϕ̂ ∂b∂
aϕ̂+ 2 ∂a∂

bϕ̂ ∂b∂
cϕ̂ ∂c∂

aϕ̂)
)
, (3.48)

(�ϕ̂)3 − 3�ϕ̂ ∂a∂
bϕ̂ ∂b∂

aϕ̂+ 2 ∂a∂
bϕ̂ ∂b∂

cϕ̂ ∂c∂
aϕ̂ = 0 . (3.49)

We did not get the terms corresponding to L1, L2, and L3 in the above.
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The equation ofmotion of Stückelberg Lagrangian, i.e., (3.49), has two kinds of sim-
ple non-trivial solutions. One set of such solutions is that of the fields that are static:

∂tϕ̂(t, xi) = 0, (3.50)

The other set of solutions consists of plane-wave-like solutions:

ϕ̂ = eipax
a

φ(p) + e−ipax
a

φ∗(p), (3.51)

where pa is an arbitrary time-like, space-like or light-like momentum. It is a priori
not subject to the mass-shell condition papa −m2 = 0 since the Lagrangian (3.48)
does not contain the quadratic kinetic term L2 = − 1

2
(∂aϕ̂ ∂

aϕ̂ + m2 ϕ̂2). Hence,
there is no corresponding term in the equation of motion. So, this higher-order
model contains tachyons, unless they are excluded by imposing appropriate mass-
shell conditions on ϕ̂.

We wish to confirm that ϕ̂ is the only propagating field in this vector Goldstone
model and study its dynamical properties. For this purpose we now move to the
Hamiltonian analysis based on Dirac formalism.

3.3 HamiltonianAnalysisof theAbelianChern-Simon
Theory

First we carry out the analysis of the Hamiltonian for the simpler case of the free
Chern-Simons vector field. Doing so will give us a better idea of the scheme of the
analysis. Also, it will enable us to distinctly understand the factors that make the
non-linear model different from the linear one.

In the Hamiltonian formalism, time and position coordinates are considered sep-
arately. Therefore, as in the spin-1/2 case analysis, we split the space-time indices
into time and space indices – a = (0, i) . We have ε0ij ≡ εij .

The leading order Abelian Chern-Simons Lagrangian has the following form:

LCS = εabcAa(t,x) ∂bAc(t,x)

= εjkA0(t,x) ∂jAk(t,x)− εikAi(t,x) ∂0Ak(t,x) + εijAi(t,x) ∂jA0(t,x),

(3.52)
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where x stands for the spacial coordinates xi = (x1, x2), so that xa = (t,x).

The conjugate momenta are:

pi(t,x) =
δL

δ(∂0Ai(t,x))
= εijAj(t,x) ,

p0(t,x) =
δL

δ(∂0A0(t,x))
= 0 . (3.53)

The equal-time Poisson bracket relation betweenAa and pb is:

[Aa(t,x), pb(t,y)] = δba δ
(2)(x− y), (a = 0, i) . (3.54)

The canonical Hamiltonian density is

Hc(t,x) = pi(t,x) ∂0Ai(t,x)− LCS(t,x)

= εij
(
A0(t,x) ∂jAi(t,x) + Aj(t,x) ∂iA0(t,x)

)
(3.55)

Theabove expression canbe integratedbypartswith respect tox to yield the canon-
ical Hamiltonian. It comes out to be,

Hc(t) = 2

∫
d2x εijA0(t,x) ∂jAi(t,x) . (3.56)

The primary constraints are:

Ci(t,x) = pi(t,x)− εijAj(t,x) = 0 (3.57)

C0(t,x) = p0(t,x) = 0 . (3.58)

The Poisson bracket relations between these primary constraints are,

[Ci(t,x), Cj(t,y)] = − 2 εij δ(2)(x− y) ,

[C0(t,x), C0(t,y)] = 0 ,

[Ci(t,x), C0(t,y)] = 0 . (3.59)

We see that the constraints Ci are of the second-class while C0 is of the first-class.
So Ci are not associated with a gauge symmetry of the system while C0 is.

To find the secondary constraint following the Dirac procedure, we consider the
total Hamiltonianwhich includes the primary constraints with their corresponding
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Lagrange multipliers.

HT (t,x) = Hc(t,x) + uk(t,x)Ck(t,x) + u0(t,x)C0(t,x) . (3.60)

We impose the time-conservation condition on the primary constraintCi. For that
we take its Poisson bracket with the total Hamiltonian and equate it to 0.∫

d2y [Ci(t,x),HT (t,y)]

=

∫
d2y [Ci(t,x),Hc(t,y)] +

∫
d2y uk(t,y)[Ci(t,x), Ck(t,y)]

+

∫
d2xu0(t,y)[Ci(t,x), C0(t,y)] = 0 . (3.61)

Solving the above equation provides us with the value of the Lagrange multiplier
uk(t,x), which comes out to be,

uk(t,x) = ∂kA0(t,x) . (3.62)

So the time conservation equation (3.61) does not provide uswith a secondary con-
straint.

Now let us see ifwe canget a secondary constraint fromthe timeconservationequa-
tion for C0.∫

d2y [C0(t,x),HT (t,y)]

=

∫
d2y [C0(t,x),Hc(t,y)] +

∫
d2y uk(t,y)[C0(t,x), Ck(t,y)]

+

∫
d2y u0(t,y)[C0(t,x), C0(t,y)] = 0

⇒ εij∂iAj(t,x) = 0

So we get a secondary constraint:

εij∂iAj(t,x) = 0. (3.63)

Let us compute the Poisson brackets of the above secondary constraint with the
other constraints to check whether it belongs to the first-class or the second-class.
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The Poisson bracket of the secondary constraint with C0(t,x) turns out to be 0.

[C0(t,x) , εij∂iAj(t,y)] = 0 (3.64)

The Poisson bracket of the secondary constraint with Ci(t,x) is as following.

[εij∂iAj(t,x) , Ck(t,y)] = εik∂i δ
(2)(x− y) (3.65)

The above Poisson bracket has a non-zero value, but we will see that the secondary
constraint can be modified such that it becomes a first-class constraint.

The expression for the secondary constraint can be written as the derivative of the
second term of the primary constraint Ci(t,x) (eq. (3.57)). This fact enables us to
guess that the Poisson bracket in eq. (3.65) can also be expressed as following:

[εij∂iAj(t,x) , Ck(t,y)] = εik∂i δ
(2)(x− y)

= − 1

2
[∂iC

i(t,x) , Ck(t,y)] (3.66)

This tells us that,

[εij∂iAj(t,x) +
1

2
∂iC

i(t,x) , Ck(t,y)] = 0 (3.67)

Let us denote the expression εij∂iAj(t,x) + 1
2
∂iC

i(t,x) by D(t,x). The Poisson
brackets ofD(t,x) with C0(t,y) and withD(t,y) are,

[D(t,x) , C0(t,y)] = 0 ,

[D(t,x) , D(t,y)] = 0 , (3.68)

respectively. SoD(t,x) qualifies to be a first-class constraint.

Now let us try to check if there are any tertiary constraints present in this system.
For this purpose, we write down the time conservation equation for the secondary
constraintD(t,x), which is,∫

d2y [D(t,x),HT (t,y)]

=

∫
d2y [D(t,x),Hc(t,y)] +

∫
d2y uk(t,y)[D(t,x), Ck(t,y)]

+

∫
d2y u0(t,y)[D(t,x), C0(t,y)] = 0
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Since [D(t,x),Hc(t,y)] = 0 and D(t,x) commutes with all the constraints, the
above equationdoesnot yield anynew information. Therefore, this systemhas con-
straints only up till the secondary level and no further.

Now that we have all the constraints in this system, we can count the number of
canonical degrees of freedom. To begin with, we have 6 canonical degrees from the
vector field components A1 , A2 and A3 and their corresponding momenta p1, p2

and p3 . We have two firs-class constraints – C0 and D. Each of them cancels two
canonical degrees of freedom, leaving us with 6 − 2 − 2 = 2 canonical degrees of
freedom. We have two second-class constraints –C1 andC2, each of which knocks
down one degree of freedom. So we are left with 2− 1− 1 = 0 canonical degrees of
freedom. This implies that there is no dynamical field in this theory.

It verifies that the abelian Chern-Simons action does not have a physical degree of
freedom due to the gauge symmetry (3.9).

3.3.1 HamiltonianValue on theConstraint Surface of theChern-
Simons Model

Let us try to see what value the Hamiltonian takes on the constraint surface. We
rewrite the Hamiltonian from eq. (3.56) below.

Hc(t) = 2

∫
d2x εijA0(t,x) ∂jAi(t,x) . (3.69)

Substituting the secondary constraint from eq. (3.63), i.e., εij∂iAj(t,x) = 0 , into
the Hamiltonian above, we find that it vanishes.

H(t)free 1|cs = 0 . (3.70)

This verifies the absence of propagating modes in the system.

Now let usmove to theHamiltonian analysis of the full vector-Goldstonemodel that
includes higher-order self-interaction terms.
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3.4 HamiltonianAnalysisof theFullVectorGoldstone
Model

Action (3.7) takes the following form:

S1 =

∫
d3x εij (2A0 ∂iAj + Aj ∂0Ai)

+ f−2
∫

d3x εijεkl
(
AjAk (∂iAl ∂0A0 − ∂lA0 ∂0Ai)

+ A0Ak ∂0Ai ∂lAj − A2
0 ∂lAj ∂kAi

)
. (3.71)

We can notice that this action is first-order in time derivatives, as was also the case
for the fermionic action discussed in Section 2.3. This implies that the conjugate
momentaobtained fromthis actionwouldbedevoidofdependenceon timederiva-
tives of the vector field, i.e., theywill be expressed in termsof only the spatial deriva-
tives of the vector field componentsA0 andAi . The conjugate momenta are:

pi =
δL

δ(∂0Ai)
= εijAj − εijεkl(Aj Ak ∂lA0 − A0Ak ∂lAj)

p0 =
δL

δ(∂0A0)
= εijεklAj Ak ∂iAl (3.72)

The canonical Hamiltonian density is

Hc = p0 ∂0A0 + pi ∂0Ai − L1 (3.73)

= 2 εijA0 ∂iAj − εijεklA2
0 ∂kAi ∂lAj (3.74)

The primary constraints are:

Ci = pi − εijAj + f−2εijεkl(Aj Ak ∂lA0 − A0Ak ∂lAj) = 0 , (3.75)

C0 = p0 − f−2 εijεklAj Ak ∂iAl = 0 . (3.76)
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The Poisson bracket relations between the primary constraints are:

[Ci(t,x) , Cj(t,y)] = 2 εij δ(2)(x− y) + 4 εijεklAl(t,x) ∂kA0(t,x) δ(2)(x− y)

− εijεklA0(t,x)Al(t,x) (∂xk + ∂yk) δ
(2)(x− y) (3.77)

[Ci(t,x) , C0(t,y)] = 4 εjiεklAl(t,x) ∂kAj(t,x) δ(2)(x− y)

− εklεjiAl(t,x)Aj(t,x) (∂xk + ∂yk) δ
(2)(x− y) (3.78)

[C0(t,x) , C0(t,y)] = 0 . (3.79)

Since theconstraintsCi havenon-zeroPoissonbrackets above, theyareof the second-
class, as in the linear case. On comparing these constraints with the ones obtained
in the case of leading order Chern-Simons action in equations (3.59), we can see
that the first-class constraint C0 of the leading order case does not commute with
Ci, but wewill see below that it can bemodified by terms involvingCi such that the
modified constraint commutes with Ci.

Now let us see which secondary constraints this system has. To find the secondary
constraints following the Dirac procedure, we consider the Hamiltonian density
which includes the primary constraints with their corresponding Lagrange multi-
pliers.

HT (t,x) = Hc(t,x) + ui(t,x)Ci(t,x) + u0(t,x)C0(t,x) (3.80)

Here HT (t,x) is the total Hamiltonian density, Hc(t,x) is the canonical Hamilto-
nian density, ui(t,x) and u0(t,x) are the Lagrangemultipliers corresponding to the
primary constraints Ci(t,x) and C0(t,x) respectively.

On integrating the above, we get the expression for the total Hamiltonian:

HT (t) =

∫
d2xHT (t,x) = Hc(t) +

∫
d2xui(t,x)Ci(t,x) +

∫
d2xu0(t,x)C0(t,x)

(3.81)

As explained before, in order to get a secondary constraint, we need to impose the
time conservation of the primary constraint (see eq. (2.20)). So we take the time
derivative of the primary constraintCi(t,x)by taking its PoissonbracketwithHT (t)
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and equate it to zero as following:

[Ci(t,x) , HT (t,y)]

=

∫
d2y [Ci(t,x) ,HT (t,y)]

=

∫
d2y [Ci(t,x) ,Hc(t,y)] +

∫
d2y uj(t,y) [Ci(t,x) , Cj(t,y)]

+

∫
d2y u0(t,y) [Ci(t,x) , C0(t,y)] = 0 (3.82)

Let
∫
d2y [Ci(t,x), Cj(t,y)] be denoted by Cij(t,x). Let Cjk(t,x) be the inverse

such that Cij(t,x)Cjk(t,x) = δik. Then eq. (3.82) becomes:

[Ci(t,x) , Hc(t)] + uj(t,x)Cij(t,x) + u0(t,x)

∫
d2y [Ci(t,x) , C0(t,y)] = 0

(3.83)

We can solve the above equation to get an expression for uj(t,x).

uj(t,x)Cij(t,x) = − [Ci(t,x) , Hc(t)]− u0(t,x)

∫
d2y [Ci(t,x) , C0(t,y)]

⇒uj(t,x) = − [Ci(t,x) , Hc(t)]Cji(t,x)

− u0(t,x)

∫
d2y [Ci(t,x) , C0(t,y)]Cji(t,x) (3.84)

On substituting the values ofHc(t,x),Ci(t,x) andC0(t,x) into the above equation,
we get the following:

uj(t,x) =
1

εij
(
1 + 2 εk′l′Al′(t,x) ∂k′A0(t,x)

) (εik∂kA0(t,x)

− 2 εikεlmA0(t,x) ∂mA0(t,x) ∂lAk(t,x)

− 2u0(t,x) εklεmiAl(t,x) ∂kAm(t,x)
)

(3.85)

We have obtained a restriction on the Lagrangemultiplier uj(t,x). This means that
eq. (3.82) is not going to provide us with a secondary constraint.

Now when we substitute the expression for uj(t,x) from eq. (3.85) into the total
Hamiltonian (3.81), one can check that the term proportional to u0(t,x), which will
be of the formC0(t,x)+F (t,x), will commutewithCi(t,y). Let us denote the term



Vector Goldstone Model 58

C0(t,x) + F (t,x) by Ĉ0(t,x). We have,

Ĉ0(t,x) = C0(t,x) + F (t,x) where

F (t,x) =
2 εi

′j′Aj′(t,x) ∂i′Ak(t,x)(
1 + 2 εijAj(t,x) ∂iA0(t,x)

) Ck(t,x) (3.86)

On taking the commutator of Ĉ0(t,x) with C l(t,y) we get,

[Ĉ0(t,x) , C l(t,y)]

=
1(

1 + 2 εi′j′Aj′(t,x) ∂i′A0(t,x)
) (4 εijεklAj(t,x) ∂iAk(t,x)

− 4 εijεklAj(t,x) ∂iAk(t,x)

+ 8 εijεklεmnAn(t,x) ∂mAk(t,x)Aj(t,x) ∂iA0(t,x)

− 8 εijεklεmnAn(t,x) ∂mA0(t,x)Aj(t,x) ∂iAk(t,x)

+
(
1 + 2 εmnAn(t,x) ∂mA0(t,x)

)
εijεklAj(t,x)Ak(t,x) (∂xi + ∂yi)

)
δ(2)(x− y)

(3.87)

This gives us the following result:

[Ĉ0(t,x) , C l(t,y)] = εijεklAj(t,x)Ak(t,x) (∂xi + ∂yi) δ
(2)(x− y) (3.88)

The right hand side of the above equation vanishes on integrating it with respect
to x while using the properties of Dirac-Delta function. Please refer to Appendix
B for further details. The terms in the Poisson brakets which are proportional to
(∂xi + ∂yi) δ

(2)(x− y) are effectively zero and can be omitted.

So, effectively eq. (3.88) reduces to

[Ĉ0(t,x) , C l(t,y)] = 0 . (3.89)

So we have managed to modify the original constraint C0(t,x) to the constraint
Ĉ0(t,x) such that it effectively commuteswith theotherprimary constraintC l(t,x).

Let usnowcheck ifweget a secondary constraintby imposing the timeconservation
of the primary constraintC0(t,x). Taking the Poisson bracket ofC0(t,x)withHT (t)
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we get,

[C0(t,x) , HT (t,y)]

=

∫
d2y [C0(t,x) ,HT (t,y)]

=

∫
d2y [C0(t,x) ,Hc(t,y)] +

∫
d2y uj(t,y) [C0(t,x) , Cj(t,y)]

+

∫
d2y u0(t,y) [C0(t,x) , C0(t,y)] = 0 (3.90)

Since [C0(t,x) , C0(t,y)] = 0 , we have,∫
d2y [C0(t,x) ,Hc(t,y)] + uj(t,x)

∫
d2y [C0(t,x) , Cj(t,y)] = 0 (3.91)

Substituting the expression for uj(t,x) from eq. (3.84) into the equation above, we
get,

[C0(t,x) , Hc(t)]− [Ci(t,x) , Hc(t)]Cji(t,x)

∫
d2y [C0(t,x) , Cj(t,y)]

− u0(t,x)

(∫
d2z [Ci(t,x) , C0(t, z)]

)
Cji(t,x)

(∫
d2y [C0(t,x) , Cj(t,y)]

)
= 0

(3.92)

Let us denote
∫
d2y [Ci(t,x) , C0(t,y)] by V i(t,x). Then,

⇒ [C0(t,x) , Hc(t)]− [Ci(t,x) , Hc(t)]Cji(t,x)

∫
d2y [C0(t,x) , Cj(t,y)]

+ u0(t,x)V i(t,x)Cji(t,x)V j(t,x) = 0 (3.93)

V i(t,x) and V j(t,x) are vectors which can commute with each other. So they are
symmetric in i and j. Cji(t,x) on the other hand is antisymmetric in i and j. There-
fore, the last term in the equation above is equal to zero.

u0(t,x)V i(t,x)Cji(t,x)V j(t,x) = 0 (3.94)

This give us,

[C0(t,x) , Hc(t)]− [Ci(t,x) , Hc(t)]Cji(t,x)

∫
d2y [C0(t,x) , Cj(t,y)] = 0 (3.95)

In the equation above we can see that there is no Lagrange multiplier, uj(t,x) or
u0(t,x), present. This means that this equation is a secondary constraint.
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Now let us try to simplify equation (3.95) and write down its expression in terms of
A0(t,x) andAi(t,x). The equation can be rewritten as following:

[C0(t,x) , Hc(t)]−
∫
d2y [C0(t,x) , Cj(t,y)]Cji(t,x) [Ci(t,x) , Hc(t)] = 0

= [C0(t,x) , Hc(t)]D = 0 (3.96)

where [..]D is a Dirac bracket1.

From eqn (3.77) we know that

Cij(t,x) = 2 εij + 4 εijεklAl(t,x) ∂kA0(t,x)

= 2 εij
(
1 + 2 εklAl(t,x) ∂kA0(t,x)

)
, (3.97)

which gives

Cij(t,x) = − εij

2
(
1 + 2 εklAl(t,x) ∂kA0(t,x)

) . (3.98)

Substituting the expression for Cij(t,x) shown above into eq. (3.96), we get,

[C0(t,x) , Hc(t)]D = 0

= −2 εij∂iAj(t,x)− 2 εijεklA0(t,x) ∂kAj(t,x) ∂lAi(t,x)

+ 4

εijεklAj(t,x) ∂iAl(t,x)

(
∂kA0(t,x)− 2 εmnA0(t,x) ∂nA0(t,x) ∂mAk(t,x)

)
1 + 2 εi′j′Aj′(t,x) ∂i′A0(t,x)

= 0

(3.99)

= − 1

1 + 2 εi′j′Aj′ ∂i′A0

(
εij∂iAj + 2 εijεkl∂kA0 (Al ∂iAj − Aj ∂iAl)

+ εijεklA0 ∂kAj ∂lAi + 2 εijεklεmnA0 ∂lAi ∂mA0 (An ∂kAj − Ak∂nAj)
)

= 0

(3.100)

Therefore, the secondary constraint is,

B(t,x) = εij∂iAj(t,x)− 2 εijεklAj(t,x) ∂kA0(t,x) ∂lAi(t,x)

+ εijεklA0(t,x) ∂kAj(t,x) ∂lAi(t,x) = 0 (3.101)

1Dirac bracket is defined as follows:

[F ,G]D = [F ,G]− [F , Jα]Cαβ [Jβ , G] ,

whereCαβ is the inverse of the matrixCαβ = [Jα, Jβ ].
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So the system has one secondary constraint similar to the case of the leading order
Cherns-Simons case.

The Poisson bracket ofB(t ,x) with Ci(t ,y) is

[B(t ,x), Ci(t ,y)]

= − εij ∂xjδ(x− y) + 6 f−2 εijεkl ∂kA0(t,x) ∂lAj(t,x) δ(x− y)

+ 2 f−2 εijεkl ∂xl
(
A0(t,x) ∂kAj(t,x)− Aj(t,x) ∂kA0(t,x)

)
δ(x− y) . (3.102)

We can make this Poisson bracket vanish by modifying the constraint B (3.101) as
follows

B̂(t ,x) = B(t ,x)− 6 f−2 εkl ∂kA0(t ,x) ∂lAj(t ,x) Ĉj(t ,x)

+ ∂jĈ
j(t ,x)− 2f−2εkl∂l

(
(A0(t ,x) ∂kAj(t ,x)

− Aj(t ,x) ∂kA0(t ,x)) Ĉj(t ,x)
)
, (3.103)

where

Ĉj(t ,x) =
Cj(t ,x)

2 (1− 2 f−2εklAk(t ,x) ∂lA0(t ,x))
, such that,

[Ĉj(t,x), Ci(t,y)] = εij δ(x− y) . (3.104)

Thus,
[B̂(t ,x), Ci(t ,y)] = 0 . (3.105)

However,B(t ,x) has a non-vanishing Poisson bracket with C0(t ,y):

[B(t,x), C0(t,y)] = −f−2εijεkl ∂kAi(t ,x) ∂lAj(t ,x) δ(x− y)

− 2 f−2εijεklAj(t ,x) ∂lAi(t ,x) ∂xkδ(x− y) . (3.106)

If we take the linear combination of the constraints B(t ,x) and C0(t ,x), namely
B1(t ,x) = 1

2
(B(t ,x)+C0(t ,x)) andB2(t ,x) = 1

2
(B(t ,x)−C0(t ,x)), the Poisson

bracket simplifies to

[B1(t,x), B2(t,y)] = f−2εijεkl ∂kAi(t ,x) ∂lAj(t ,x) δ(x− y). (3.107)

As we had seen in the case of the free Chern-Simons theory, there were two first-
class constraints. However, we do not have any first-class constraint in this system,
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since the right hand side of eq. (3.107) is in general not zero. We should be able to
recover the constraints of the leading order case by setting f−2 = 0 here.

We can see that on setting f−2 = 0, the Poisson brackets (3.106) and (3.107) vanish.
So then the constraintsC0(t ,x) andB(t ,x) (or equivalentlyB1(t ,x) andB2(t ,x))
be come of the the first-class and generate the local symmetry of the Chern-Simons
action.

In the non-linear case inwhich f−2 6= 0, the Poissonbrackets (3.106) and (3.107) are
non-zero for a generic fieldAa(t ,x). Therefore the constraintsC0(t ,x) andB(t ,x)

belong to the second-class.

One can also check that the non-linear model does not have tertiary constraints,
i.e. that the Poisson brackets of the primary and the secondary constraints with
the total Hamiltonian (3.80) vanish provided the Lagrange multipliers un(t ,x) and
u0(t ,x) are appropriate functions ofAa(t ,x) and its derivatives.

Let us count the number of canonical degrees of freedom in the non-linear case.
There are 6 canonical degrees of freedom to begin with, coming from the three vec-
tor field components A0(t ,x) , A1(t ,x) and A2(t ,x) and their corresponding mo-
menta. There are four second-class constraints − C0(t ,x) , C1(t ,x) , C2(t ,x) and
B(t ,x). Each of them cancels one canonical degree of freedom. So we are left with
6 − 4 = 2 canonical degrees of freedom. These 2 canonical degrees of freedom
contained in Aa(t ,x) and pa(t ,x) correspond to a single degree of freedom in the
Lagrangian formulation. This is the scalar mode discussed in sections 3.1.2 and
3.1.3.

3.4.1 Hamiltonian Value on the Constraint Surface of the Full
Vector Goldstone Model

We should evaluate the value of the canonical Hamiltonian on the constraint sur-
face for getting an insight about the energy of the system. Let us once again look
at the expressions for the canonical Hamiltonian density (3.73) and the constraint
B(t ,x) (3.101).

Hc(t,x) = 2 εijA0(t,x) ∂iAj(t,x) + εijεklA2
0 (t,x) ∂kAj(t,x) ∂lAi(t,x)

B(t,x) = εij∂iAj(t,x)− 2 εijεklAj(t,x) ∂kA0(t,x) ∂lAi(t,x)

+ εijεklA0(t,x) ∂kAj(t,x) ∂lAi(t,x) = 0 . (3.108)



Vector Goldstone Model 63

On rewriting the expression for
∫
d2xHc(t,x)using integration by parts and adding

and subtracting terms, it can be written in the following form, modulo total deriva-
tives.

Hc(t,x)1|cs = 2A0(t,x)B(t,x) + 3A2
0(t,x) εijεkl ∂kAi(t,x) ∂lAj(t,x)

= 6A2
0(t,x) det (∂iAj(t,x)). (3.109)

Note that this Hamiltonian density is non-zero for the perturbative solution (3.17)-
(3.20), and it is not bounded from below for generic classical values of the field
Aa(t,x), since det ∂iAj(t,x) is not positive definite. This implies that the system
may be classically unstable.

Let us look at the form of the Hamiltonian in the decoupling limit as described in
Section 3.1.3. The Lagrangian of the scalar field ϕ̂ in the decoupling limit is,

L(ϕ̂) =
M−5

2
ϕ̂ εabcεdef ∂a∂dϕ̂ ∂e∂bϕ̂ ∂f∂cϕ̂

= − 3M−5 ϕ̂ det
(
∂a∂

bϕ̂
)

(3.110)

The conjugate momentum for this Lagrangian is,

pϕ̂ = − 6M−5 (det ∂i∂jϕ̂) ∂0ϕ̂ (3.111)

The canonical Hamiltonian density we get, is,

Hϕ̂ = pϕ̂ ∂0ϕ̂− L(ϕ̂)

= − 6M−5 (∂0ϕ̂)2 (det ∂i∂jϕ̂) (3.112)

It can also be expressed in the following form:

Hϕ̂ = −
M5p2ϕ̂

6 det ∂i∂jϕ̂
. (3.113)

Equation (3.113) is the three-dimensional counterpart of the quartic galileon term
in the Hamiltonian of the genericD = 4 galileon theory derived in [86, 87].
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Let us take a simple static solutionwhich sets theHamiltonianandhence the energy
to be zero.

ϕ̂0 =
1

2
xixi

pϕ̂ = 0 (3.114)

Now we perturbe this solution by δφ .

ϕ̂ = ϕ̂0 + δφ . (3.115)

Then, to the second order in δφ we have

Hδφ = −
p2δφ
6

= − 6 δφ̇2, (3.116)

which is negative. However, if we take another zero-energy static solution, i.e. of
the form ϕ̂0 = eaix

i
b + c.c. (where ai and b are complex constants) and consider

fluctuations around it, then the Hamiltonian density turns out to be positive.

Also, if we had startedwith the initial Lagrangian (3.8) with the opposite sign (which
is a priori admissible since the Chern-Simons term may have any sign), then the
Hamiltonian density in (3.112) and (3.113) due to fluctuations around ϕ̂0 = 1

2
xixi ,

pϕ̂ = 0 would be positive and that with the fluctuations around ϕ̂0 = eaix
i
b + c.c.

would be negative.

So the fluctuations around the zero-energy static solutions can be either negative
or positive. This, in general, leads to instabilities. These instabilities are not of the
(higher-derivative) Ostrogradski type, since the higher-order galileon Lagrangians
are quadratic in time derivatives.

To summarize, the vector Goldstone model describing the spontaneous breaking
of the rigid symmetry generated by the Hietarinta algebra does not maintain the
local gauge symmetry of the quadratic Chern-Simons action. Due to the presence
of thenon-linear terms in the action there is a propagating scalar degree of freedom.
The scalar field is like a galileon field which appears in modified theories of gravity.
The Hamiltonian of the system is not bounded from below. This, in general, makes
this model classically unstable, even though the Lagrangian is linear in the time
derivative ofAa(x).



Chapter 4

Vector-Spinor Goldstino Model

Now we consider the vector-spinor or the spin-3/2 goldstino model. We use the
following algebra to construct this model, which was shown earlier in equations
(1.48) and (1.51),

[Mab ,Mcd] = i (ηbcMad − ηacMbd − ηbdMac + ηadMbc),

[Mab , Pc] = i (ηbc Pa − ηac Pb),

[Mab , Qc
α] = i (ηbcQa

α − ηacQb
α)− i

2
(Γab)α

β Qc
β ,

{Qa
α, Q

b
β} = 2Cαβ ε

abcPc ,

[Qa
α, Pb] = 0 ,

[Pa, Pb] = 0 . (4.1)

where Qa
α (α = 1, 2) is the Majorana vector-spinor generator of the spin-3/2 sym-

metry transformations.

The spin-3/2 symmetry transformations of the spacetime coordinate xa and the
vector-spinor field χαa (x) generated by the algebra above are:

x′
a

= xa − i f−2 εabc ζαb χαc ,

χ′
α
a (x′) = χαa (x) + ζαa , (4.2)

where ζαa is a constant parameter.

The infinitesimal transformation of the form of the goldstino field χαa (x),

δχαa (x) = ζαa + i f−2εdbc
(
ζb χc(x)

)
∂dχ

α
a (x) (4.3)

65
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shows that it transforms non-linearly under the symmetry. Hence, the symmetry is
spontaneously broken.

Note that, as for all the other cases, the commutator of two variations (4.3) closes on
the translations off the mass shell, i.e. without the use of the equations of motion:

[δ2, δ1]χ
α
a = ξd ∂dχ

α
a , ξd = 2 i f−2 εdbc ζ1b ζ

2
c . (4.4)

The one-form that is invariant under the symmetry transformations (4.2) is,

Ea = dxa + i f−2 εabc χb dχc

= dxd (δad + i f−2 εabc χb ∂dχc)

= dxdE a
d . (4.5)

This one-form isused to construct the spin-3/2 goldstinoLagrangian via theVolkov-
Akulov Lagrangian formalism.

4.1 Action and Equation of Motion

We construct the action using the Volkov-Akulov formalism as explained in Section
2.1. On subtracting the constant term f−2 from it, we get,

S3/2 = −f 2

∫
d3x (detEa

d − 1)

=

∫
d3x

(
i εabc χa ∂bχc +

f−2

2
εabcεdfg

(
(χa ∂bχc) (χd ∂fχg)− (χb ∂dχc) (χf ∂aχg)

)
+

i f−4

6
εa
′b′c′ (εabcεdef − εabfεdec) (χc ∂a′χf ) (χa ∂b′χb) (χd ∂c′χe)

)
. (4.6)

The leading order term in the action above, i.e. i εabc χa ∂bχc , is the action for a
D = 3 Rarita-Schwinger spin-3/2 free massless field. We know that the free Rarita-
Schwinger action is invariant under the following gauge transformation:

χαa
′ = χαa + ∂aε

α (4.7)
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The free Rarita-Schwinger action does not have local degrees of freedom due to the
gauge invariance. Its equation of motion is

εabc ∂bχ
α
c = 0 . (4.8)

On taking the divergence of the equation of motion, we get the following identity:

∂a(ε
abc ∂bχ

α
c ) ≡ 0 . (4.9)

It is a Noether identity that implies the presence of gauge symmetry in the system.

The equation of motion for the full non-linear action (4.6) has a form similar to eq.
(3.13), i.e.,

εabcDbχc = 0 . (4.10)

Unlike the vector Goldstone casewherewe found that such a general equation does
not satisfy a Noether identity, in the case of the vector-spinor goldstinomodel here
we find that the solution does exist. We will not present it explicitly, but will simply
find that the spin-3/2 model retains the local gauge symmetry.

Let usfigureout if in contrast to the spin-1 case, the spin-3/2 goldstino action canbe
invariant under a non-linear generalization of the Rarita-Schwinger gauge symme-
try. We need to know if there are any extra degrees of freedompresent in the system
that break the gauge symmetry of the free Rarita-Schwinger action. On performing
the Hamiltonian analysis order by order up till the order f−2 , we find that the on-
shell Hamiltonian vanishes on the constraint surface. Please refer to Appendix C to
see how this result is obtained.

Since the Hamiltonian analysis beyond the order f−2 becomes very complicated
and involved, it has not been shown. However, the vanishing of theHamiltonian on
the constraint surface up to the order f−2 indicates that the systemmayhave gauge
symmetry. This observation prompts us to use the Stückelberg trick and verify this
possibility.

4.1.1 Stückelberg Trick for Vector-Spinor Goldstino Model

With the aimof bringing a local symmetry into the Lagrangianwe introduce an aux-
iliary field ψα. We define a new vector-spinor field χ̂αa in terms of the original field
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χαa and the Stückelberg spinor field ψα, as following,

χ̂αa = χαa + f
2
3 ∂aψ

α . (4.11)

The factor f 2/3 is chosen to perform a certain non-singular limit f → ∞ in the
action. By construction χ̂αa (x) is invariant under the gauge transformations:

δχαa (x) = ∂aε
α(x)

δψα(x) = −f−
2
3 εα(x) (4.12)

Since εα(x) is arbitrary, it can be given a value such that ψα(x) vanishes.

Now we take the limit of the coupling parameter f in which f → ∞. In this limit
the action (4.6) takes the following form:

Sf→∞ =

∫
d3x

(
i εabc χa ∂bχc + 2 εabcεdfg(χa ∂d∂cψ) (∂fψ ∂b∂gψ)− 1

3
Tr(M3)

)
,

(4.13)

where Ma
d = i εabc ∂bψ ∂d∂cψ . As we can see from the second term on the right

hand side in the equationabove, there is a term in theactionhavingχαa andψα terms
coupled to each other. So unlike the case of the vector Goldstone model where the
Stückelberg action gets decoupled under the limit f → ∞, in the vector-spinor
model the Stückelberg action does not attain decoupling in the limit f →∞.

There is a quartic term present in Sf→∞ in terms of only ψα which has not been
shown in eq. (4.13) because that term can be re-expressed as a total derivative,
which on getting integrated, does not contribute to the expression. That term is,∫

d3x εabcεdfg (∂bψ ∂d∂cψ) (∂fψ ∂a∂gψ) . (4.14)

It can be re-written as following after integrating by parts:

εabcεdfg (∂bψ ∂d∂cψ) (∂fψ ∂a∂gψ)

= ∂b
(
εabcεdfg(ψ ∂d∂cψ) (∂fψ ∂a∂gψ)

)
+ εabcεdfg(ψ ∂c∂dψ) (∂b∂fψ ∂a∂gψ) (4.15)

The second term on the right hand side of the equation above, vanishes because
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of the anti-commutativity of ψ and the total symmetry of this expression in the ex-
change of the pairs of the indices (cd), (bf) and (ag).

εabcεdfg(∂c∂dψ
α) (∂b∂fψ ∂a∂gψ) ≡ 0 (4.16)

So term (4.14) can be re-expressed as a total derivative which can be discarded.

Due to identity (4.16), we can now see that the quartic term of even the original
action (4.6), i.e.,∫

d3x
f−2

2
εabcεdfg

(
(χa ∂bχc) (χd ∂fχg)− (χb ∂dχc) (χf ∂aχg)

)
(4.17)

vanishesmodulo a total derivative on the solution of the free Rarita-Schwinger field
equation, which is χαa (x) = ∂aε

α(x) .

This provides us a hint that the actionSf→∞ (4.13) has a gauge symmetry. On taking
the following gauge transformation,

χαa → χαa + ∂aλ
α ,

ψα → ψα , (4.18)

action (4.13) transforms into the following:

Sf→∞ →
∫
d3x

(
i εabc (χa ∂bχc + ∂aλ ∂bχc) + 2 εabcεdfg(χa ∂d∂cψ

+ ∂aλ ∂d∂cψ) (∂fψ ∂b∂gψ)− 1

3
Tr(M3)

)
=

∫
d3x

(
i εabc (χa ∂bχc + ∂a(λ ∂bχc)−����

�:0
λ ∂a∂b χc) + 2 εabcεdfg(χa ∂d∂cψ

+ ∂a(λ ∂d∂cψ)−����
��:0

λ ∂d∂a∂cψ) (∂fψ ∂b∂gψ)− 1

3
Tr(M3)

)
= Sf→∞ (4.19)

Hence, we see the gauge invariance of Sf→∞.

Now we look at the equations of motion for the action (4.13). The equation of mo-
tion obtained by extremising the action with respect to χαa is,

εabc ∂bχ
α
c = i εabc εdfg ∂d∂cψ

α (∂fψ ∂b∂gψ) . (4.20)
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Using the following identity,

εabc εdfg ∂d∂cψ
α (∂fψ ∂b∂gψ) ≡ − 1

2
εabcεdfg (∂d∂cψ ∂b∂gψ) ∂fψ

α

≡ − 1

3
εabc εdfg ∂b (∂dψ

α (∂fψ ∂c∂gψ)) , (4.21)

the expressionon the right hand sideof eq. (4.20) canbewritten as a total derivative.
Therefore, we find that the general solution of eq. (4.20) is

χαc = ∂cε
α − i

3
εdfg ∂dψ

α (∂fψ ∂c∂gψ) . (4.22)

This implies that, modulo the pure gauge degree of freedom εα, the field χa is com-
pletely determined in terms of the derivatives of ψ.

The equation of motion obtained by extremising action (4.13) with respect to ψ is
identically satisfied by the solution (4.22). Therefore, ψ is completely arbitrary in
the limit f →∞.

The form of the solution (4.22) enables us to guess that action (4.13) can be recast
into the free Rarita-Schwinger form as following:

Sf→∞ = i

∫
d3x εabc

(
χαa+

i

3
εdfg ∂dψ

α (∂fψ ∂a∂gψ)
)
∂b

(
χcα+

i

3
εpqr ∂pψα (∂qψ ∂c∂rψ)

)
.

(4.23)
This conjecture turns out to hold true.

We know that the free Rarita-Schwinger action is gauge invariant. Therefore, result
(4.23) implies thatSf→∞ is gauge invariant. It is invariant under the following gauge
transformation:

δψα = εα(x),

δχαa = ∂aλ
α(x)− i

3
εdfg

(
∂dε

α (∂fψ ∂a∂gψ) + ∂dψ
α (∂fε ∂a∂gψ) + ∂dψ

α (∂fψ ∂a∂gε)
)

≡ ∂a

(
λα(x)− i

3
εdfg ∂dψ

α (∂fψ ∂gε)
)
− i εdfg (∂dε ∂a∂fψ) ∂gψ

α , (4.24)

where λα(x) and εα(x) are independent parameters. Hence, ψ is a pure gauge.

So we have found that the Stückelberg trick for the vector-spinor goldstino model
does not have a decoupling limit, and the action obtained in the limit f → ∞ can
be recast into the Rarita-Schwinger form. The Stückelberg case is a simpler, special
case of the original, general action. Analysing the whole general action head-on
is not easy. But if we find certain symmetries to hold for the special case of the
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Stückelberg action, it provides us with a hint that that kind of symmetries might
hold true for the general action as well. So having found the Rarita-Schwinger form
and gauge symmetry of the action in the Stückelberg limit, we can now try to check
if similar results hold for the general spin-3/2 action as well.

4.2 General Spin-3/2 ActionRedefined as FreeRarita-
Schwinger Action

The analysis in the previous section prompts us the form of the perturbative solu-
tion of the full non-linear equation of motion (4.10), i.e., εabcDbχc = 0 . Up to the
order f−2 it is obtained from eq. (4.22) by re-scaling ψ → f−

2
3ψ and taking ε = ψ:

χαa = ∂aψ
α − if−2

3
εdfg∂dψ

α (∂fψ∂a∂gψ) +O(f−4) . (4.25)

The way in which we guessed the free Rarita-Schwinger form of the Stückelberg
limit by looking at the solution of the equation of motion, we can do the same here
again. We find that the full action (4.6) can be recast into the free Rarita-Schwinger
form.

S3/2 = i

∫
d3x εabc

(
χαa +

if−2

3
εdfgχαd (χf∂aχg)

)
∂b

(
χcα +

if−2

3
εpqrχpα (χq∂cχr)

)
.

(4.26)
Action (4.26) is equal to the original action (4.6)modulo a total derivative due to the
following identities:

εabc εdfg(χc χd)(∂bχf ∂aχg) = − 2 εabc εdfg (χb ∂cχd)(χf ∂aχg),

εabc εdfg εpqr (χf ∂aχg)(χd χp)(∂bχq ∂cχr) = 2 εabc εdfg εpqr (χf ∂aχg)(χd ∂bχp)(χq ∂cχr) .

(4.27)

Action (4.26) can be re-expressed as following:

SRS = i

∫
d3x εabc χ̂a ∂bχ̂c (4.28)

where the field χ̂ is,

χ̂αa = χαa +
i f−2

3
εdfg χαd (χf ∂aχg). (4.29)
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So we can see that upon the field redefinition (4.29), the non-linear action can be
shownmore concisely to be of the Rarita-Schwinger form.

4.2.1 Gauge Symmetry of the Vector-Spinor Action

The existence of the free Rarita-Schwinger formof the non-linear action implies the
existence of gauge symmetry of the original non-linear action. Gauge symmetry has
further implicationswith regards to the nature of the goldstino field − whether it is
a pure gauge field or a dynamical field. It affects the number of degrees of freedom
present in the system. We will see ahead what the gauge transformations for action
(4.26) are like.

Equation (4.29) is invertible. An explicit expression for χa as a polynomial in χ̂a and
∂b χ̂a can be found using an iteration procedure. The expression stops at most at
the sixth order in χ̂, because of the Grassmann nilpotency of χ̂. Up to the order f−4,
we get,

χαa = χ̂αa −
if−2

3
εdfg χ̂αd (χ̂f ∂aχ̂g) (4.30)

− f
−4

3
εdfg εpqr

(
χ̂αg (χ̂q ∂dχ̂r)(χ̂p ∂aχ̂f ) +

1

3
∂a

(
χ̂αd (χ̂f χ̂p)(χ̂q ∂gχ̂r))

)
+O(f−6) .

Nowletus lookat thegaugevariations for thenon-linear action. Aswealreadyknow,
the free Rarita-Schwinger action is invariant under the following gauge variation:

δχ̂αa = ∂aε
α (4.31)

Action (4.26) is invariant under the above gauge transformation.

Knowing the relation between χ̂αa and χαa fromeq. (4.29), we can express the above
gauge variation in terms of χαa as well. It is,

δχ̂αa = ∂aε
α

= δχαa +
if−2

3
εdfg ∂a

(
χαd (χf δχg)

)
+ i f−2 εdfg (δχd ∂aχf )χ

α
g , (4.32)

We can also express the gauge variation exclusively in terms of χαa for the action
(4.6). Using the same iteration procedure as used to get eq. (4.30), we get the gauge
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variation of χa as following:

δχαa = ∂a

(
εα − if−2

3
εdfg χαd (χf ∂gε)

)
− if−2 εdfg (∂dε ∂aχf )χ

α
g +O(f−4) . (4.33)

The commutator of two transformations (4.33) is exactly zero to all orders.

[δε1 , δε2 ]χ
α
a ≡ 0 . (4.34)

This is an important result as it tells us that the gauge invariance of the non-linear
action exists up till all orders in the vector-spinor field χαa and that it is an abelian
symmetry as in the Rarita-Schwinger case.

We can see that the vector-spinor goldstinomodel is different from the vector Gold-
stone model in that the former is gauge invariant while the latter is not.

4.2.2 Invariance under Spin-3/2 Symmetry Transformation

Another respect inwhich the redefinition of the non-linear action as the free Rarita-
Schwinger action is insightful iswith regards to rigid spin-3/2 supersymmetry trans-
formation. The invariance of the non-linear action under the rigid spin-3/2 super-
symmetry variation (4.3) implies the invariance of action (4.28) also under the same
transformation with χαa being the function of χ̂αa as in (4.30).

The rigid spin-3/2 symmetry transformation (4.3) can be written in terms of χ̂αa us-
ing relation (4.29), as following:

δχ̂αa = ζαa + i f−2 εdbc (ζb χ̂c) ∂dχ̂
α
a +

if−2

3
εdbc

(
(χ̂b ∂aχ̂c) ζ

α
d + (ζb ∂aχ̂c)χ̂

α
d

)
+O(f−4)

(4.35)

The commutator of two variations (4.35) closes on the translations off the mass
shell, i.e. without the use of the equations of motion:

[δ2, δ1] χ̂
α
a ≡ ξd ∂d χ̂

α
a , where ξd = 2 i f−2 εdbc ζ1b ζ

2
c . (4.36)

We have thus found that the free Rarita-Schwinger action (4.28) is non-manifestly
invariant under the rigid spin-3/2 supersymmetry with the Rarita-Schwinger field
being its goldstino transforming non-linearly under the symmetry as in (4.35).



Chapter 5

Conclusions and Outlook

We started in Chapter 1 with a general introduction followed by a literature review
on higher-spin theories. We then reviewed the process of supersymmetry breaking,
in particular spontaneous supersymmetry breaking, as it is assumed to occur in na-
ture, accounting for the absence of a direct proof for the existence of supersymme-
try at the energy scales within the reach of present experiments. Then we looked at
the representations of the Poincaré group. It showed us how the spin is defined for
massive andmassless particles and what all transformations the particles undergo.

It was then followed by a brief discussion on the literature based on Hietarinta al-
gebras. Chapter 2 served the instructive material for demonstrating the construc-
tion of Volkov-Akulov Goldstone models and Dirac Hamiltonian formalism using a
spin-1/2 fermion as an example. Then we constructed and analysed the Goldstone
models for spin-1 and spin-3/2 fields.

Wehave found that the simplestGoldstonemodels constructedby the spontaneous
breaking of the symmetries introduced by Hietarinta [52], are certain non-linear
generalisations of the Chern-Simons and Rarita-Schwinger Lagrangians.

In the case of the vector Goldstone model, the spontaneous breaking of the rigid
symmetry leads to thebreakingof thegauge symmetryof theAbelianChern-Simons
action. The resulting Goldstone boson propagates a scalar mode which turns out
to be a galileon field that appears in the theories of modified gravity.

In view of this result it would be interesting to couple the Chern-Simons Goldstone
boson to a 3D gravitymodelwhich is invariant under the local symmetry associated
with the algebra (3.1). As mentioned earlier in Chapter 3, the bosonic algebra with
the generators Sa and Pa in (3.1) is a contraction of so(2, 2) = sl(2,R) ⊕ sl(2,R)
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on which the Chern-Simons description of the conventional 3D gravity is based
[88, 89]. But the full algebra also includes the Lorentz generators. Therefore, our
3D gravity model would contain two spin-2 gauge fields, the conventional gravity
dreibein, written as,

ea(x) = dxm eam(x) ,

associated with the translation generator Pa, and another dreibein, written as,

fa(x) = dxm fam(x) ,

associated with the generator Sa. The model will also contain the spin connection,

ωa(x) = dxm ωam(x) ,

associated with the Lorentz generatorsMa = 1
2
εabcM

bc.

An action for these (a priori) independent fields, which is invariant under the local
symmetries generated by (3.1), has the following form:

S =

∫
(ea ∧Ra +

1

2
fa ∧Dfa), (5.1)

where

Ra = dωa +
1

2
εabc ωb ∧ ωc (5.2)

is the curvature and

Dfa = d fa + εabc ω
b ∧ f c (5.3)

is the covariant derivative associated with the local Lorentz transformations.

The local symmetry variations of the fields are,

δea = Dξa(x) + εabcebλc(x) + εabcfbsc(x),

δfa = Dsa(x) + εabcfbλc(x),

δωa = Dλa(x), (5.4)

where ξa(x), sa(x) and λa(x) are the parameters associated with the generators Pa,
Sa and Ma, respectively. All the gauge fields in this model are non-dynamical as
can be easily seen by analysing the equations of motion. Recently, we have learned



Conclusions and Outlook 76

that the most general action (including action (5.1)) for so-called Maxwell-Chern-
Simons gravity invariant under the transformations (5.4) was constructed several
years ago in [90] (see also [91]).

The action (5.1) can be straightforwardly generalised to describe similar couplings
betweenhigher-spinfields andgravity. To this endone should justpromote theone-
form field fa(x) and the gauge parameter sa(x) to (generically mixed-symmetry)
tensors fab1...bn and sab1...bn , and appropriately adjust the contraction of the indices
and the Lorentz transformations of fab1...bn in equations (5.1)-(5.4).

Oncewe construct themodel describing the coupling of theGoldstonebosonAa(x)

with the gravity action (5.1), generating a Higgs effect, we can try to find out what
kindof 3Dmassive gravity or bi-gravitywe get. We can try to check if it has a relation
with one of the three-dimensional gravity models considered in [92–95].

In contrast to the vector Goldstone model, in the spin-3/2 goldstino model gauge
symmetry remains preserved on spontaneously breaking the rigid spin-3/2 super-
symmetry. We have found that upon a non-linear field redefinition the non-linear
action reduces to the free Rarita-Schwinger action, which itself turns out to be non-
manifestly invariant under the rigid spin-3/2 supersymmetry (1.51). The symmetry
is non-linearly realized on the variations of the Rarita-Schwinger goldstino (4.35).

If we couple the spin-3/2 goldstino to other fields, then the non-linear field redef-
inition may no longer remove the non-linear terms, and the two forms of the spin-
3/2 goldstino models may not be equivalent anymore. To check this out, we can
couple the Rarita-Schwinger goldstino to othermatter and gauge fields such as (su-
per)gravity and Hypergravity with spin-2 and spin-5/2 gauge fields and study the
properties of these models.

Another interesting problem is to consider a four-dimensional Rarita-Schwinger
goldstino model associated with the following algebra:

{Qa
α, Q

b
β} = 2 εabcd (Γ5 Γc)αβ Pd (α, β = 1, ..., 4), (a, b, ... = 0, 1, 2, 3), (5.5)

to figure out if in this case also, as inD = 3, the non-linear action for spin-3/2 gold-
stinopossesses a local gauge symmetry. If it does possess gauge symmetry, thenone
should check if the Lagrangian can be redefined as the quadratic Rarita-Schwinger
Lagrangian throughanon-linearfield redefinition. Thenonecancheckwhether the
non-linearly realised symmetry (5.5) can fit into the formulation of N = 1, D = 4

supergravity as a non-linear realization of two complex finite-dimensional super-
groups considered in [96–98].
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Further still, it would be insightful to generalise the constructions used in this work
for studying the Goldstonemodels with yet higher-spins and for studying themod-
els in AdS spacetime as well.



Appendix A

Tensor andMatrix Identities

All of the following conventions and identities are inD = 3 Minkowski spacetime
with the signature (− , + , +).

a, b, c, d, e, f are spacetime indices. (a, b, c, d, e, f) ∈ {0, 1, 2}.
i, j, k, l are space indices. (i, j, k, l) ∈ {1, 2}.
α, β, ρ, σ are spinor indices. (α, β, ρ, σ) ∈ {1, 2}.

A.1 Levi-Civita Tensor Identities

ε012 = − ε012 = 1

εabcεabc = − 3 ! (A.1)

εabcεade = − 2 ! δb[d δ
c
e] = − (δbd δ

c
e − δbe δcd) (A.2)

εabcεabd = − 2 ! δcd (A.3)

εabcεdef = − 3 ! δa[d δ
b
e δ

c
f ]

= − (δad δ
b
e δ

c
f − δae δbd δcf + δae δ

b
f δ

c
d − δaf δbe δcd + δaf δ

b
d δ

c
e − δad δbf δce) (A.4)
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ε12 = ε12 = 1

εijεij = 2 ! (A.5)

εijεik = δjk (A.6)

εijεkl = 2 ! δi[k δ
j
l] = δik δ

j
l − δ

i
l δ

j
k (A.7)

A.2 Charge ConjugationMatrix Identities

C−1αβ = Cβα = −Cαβ (A.8)

Cαβ Cαγ = δβγ (A.9)

Cαβ Cαβ = 2 (A.10)

χα = Cαβ χ
β (A.11)

χα = −Cαβ χβ (A.12)

A.3 Index Contraction Notation

(χχ) = χα χα = χαCαβ χ
β (A.13)

χα χα = −χα χα (A.14)

(χa χb) = χαa χb α = −χb α χαa = χαb χaα = (χb χa) (A.15)

χΓa ψ ≡ χα Γaαβ ψ
β = −χα Γa βα ψβ (A.16)
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A.4 Γ- Matrix Identities

Γaαβ = Γaβα

Γaαβ ≡ (ΓaC−1)αβ = −Γaγα Cγβ (A.17)

ΓTa = −Cαβ Γβρa C−1ρσ (A.18)

{Γa ,Γb} = 2 ηab

or more explicitly

{Γa ,Γb}αβ = Γaα
ρ Γbρ

β + Γbα
ρ Γaρ

β = 2 ηab δβα (A.19)

Γab = Γ[a Γb] =
1

2
[Γa ,Γb]

Γabc...n = Γ[a Γb Γc...Γn] (A.20)

Γa Γb = εabc Γc + ηab (A.21)

εabc Γa Γb = − 2 Γc (A.22)

Γa Γb Γc = εabcI + ηab Γc + ηbc Γa − ηac Γb (A.23)

A.5 Matrix Determinant

The determinant of a 3× 3 matrixEa
m = δam +Ma

m is

detEa
m

= det(1 +M) (A.24)

= 1 + TrM +
1

2

[
(TrM)2 − Tr(M2)

]
+

1

6

[
(TrM)3 − 3 TrM Tr(M2) + 2 Tr(M3)

]
,

where Tr (M) = Mα
α = −Mα

α .
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Integral Identities

Let us consider a function f i(x). We wish to compute the following integral:∫
d2x f i(x) (∂xi + ∂yi) δ

(2)(x− y) . (B.1)

It can be written as following:∫
d2x f i(x) (∂xi + ∂yi) δ

(2)(x− y)

=

∫
d2x f i(x) ∂xi δ

(2)(x− y) +

∫
d2x f i(x) ∂yi δ

(2)(x− y) . (B.2)

The first integral in the above expression can be evaluated as following:∫
d2x f i(x) ∂xi δ

(2)(x− y)

= −
∫
d2x ∂xif

i(x) δ(2)(x− y) (by integration by parts)

= − ∂yif i(y) (B.3)

The second integral in eq. (B.2) can be evaluated as following:∫
d2x f i(x) ∂yi δ

(2)(x− y)

= ∂yi

∫
d2x f i(x) δ(2)(x− y) (taking ∂yi outside the integral which is w.r.t.x)

= ∂yif
i(y) (B.4)

Adding up expressions (B.3) and (B.4), we get 0. Therefore, we see that the integral
in eq. (B.2) is 0.
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Similarly, if instead of f i(x) we have f i(y), then,∫
d2y f i(y) (∂xi + ∂yi) δ

(2)(x− y) = 0 . (B.5)



Appendix C

Hamiltonian Analysis of
Vector-Spinor Goldstino Model

We first analyse the Hamiltonian of the free vector-spinor model where f−2 = 0.

C.1 HamiltonianAnalysisofFreeRarita-SchwinberModel

First we separate in the action (4.6) the spacetime indices (a = 0, 1, 2) into space
and time indices (0, i = 1, 2) .

The leading order Lagrangian, which is the free Rarita-Schwinger Lagrangian, is,

Lfree(t,x) = − i εabc χαa (t,x) ∂cχαb(t,x)

= − i εij
(
χαi (t,x) ∂0χαj(t,x) + χα0 (t,x) ∂jχαi(t,x)− χαi (t,x) ∂jχα0(t,x)

)
(C.1)

The conjugate momenta are:

piα(t,x) =
δL(t,x)

δ(∂0χαi (t,x))
= − i εijχαj(t,x) ,

(C.2)

p0α(t,x) =
δL(t,x)

δ(∂0χα0 (t,x))
= 0 .
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χαi (t,x) and pjβ(t,y) have the following equal-time Poisson bracket relation:

{χαi (t,x), pjβ(t,y)} = δαβ δ
j
i δ

(2)(x− y) . (C.3)

The canonical Hamiltonian Hc(t,x) density is,

Hc(t,x) = piα ∂0χ
α
i (t,x) + p0α ∂0χ

α
0 (t,x)− L(t,x)

= i εij
(
χα0 (t,x) ∂jχαi(t,x)− χαi (t,x) ∂jχα0(t,x)

)
. (C.4)

Following are the primary constraintswe derive from the conjugatemomenta (C.2):

Ci
α(t,x) = piα(t,x) + i εijχβj(t,x) = 0

(C.5)

C0
α(t,x) = p0α(t,x) = 0 .

The Poisson bracket relations between these two primary constraints are:

{Ci
α(t,x), Cj

β(t,y)} = 2 i Cαβ ε
ij δ(2)(x− y) ,

{C0
α(t,x), C0

β(t,y)} = 0 ,

{Ci
α(t,x), C0

β(t,y)} = 0 . (C.6)

We can see from these Poisson bracket relations that the constraints Ci
α(t,x) be-

long to the second-class whereas the constraints C0
α(t,x) belong to the first-class.

Nowwe proceed to look for secondary constraints. For this purpose we write down
the expression for the total Hamiltonian density HT (t,x) , which is as following.

HT (t,x) = Hc(t,x) + uαk (t,x)Ck
α(t,x) + uα0 (t,x)C0

α(t,x) (C.7)

Here uαk (t,x) is theLagrangemultiplier associatedwith the constraint Ck
α(t,x) and

uα0 (t,x) the one associated with the constraint C0
α(t,x) .



Appendix C 85

Wewrite down the equation for the time-conservation of the constraint Ck
α(t,x) by

taking its Poisson bracket with the total Hamiltonian. It gives us the following:∫
d2y {Ci

α(t,x),HT (t,y)}

=

∫
d2y {Ci

α(t,x),Hc(t,y)}+

∫
d2y uγk(t,y) {Ci

α(t,x), Ck
γ (t,y)}

+

∫
d2y uγ0(t,y){Ci

α(t,x), C0
γ(t,y)} = 0

=

∫
d2y

(
− 2 i Cαγ ε

ik ∂kχ
γ
0(t,y)− uγk(t,y) 2 i Cαγ ε

ik
)
δ(2)(x− y) = 0 (C.8)

Solving the above equation gives,

uγk(t,x) = − ∂kχγ0(t,x) . (C.9)

We get the expression for the Lagrange multiplier uγk(t,x) . Therefore, we do not
get a secondary constraint from the time conservation equation for the constraint
Ck
α(t,x) .

Now let us try to see what we get by solving the time-conservation equation for the
constraint C0

β(t,y) .∫
d2y {C0

α(t,x),HT (t,y)}

=

∫
d2y {C0

α(t,x),Hc(t,y)} −
∫
d2y uγk(t,y){C0

α(t,x), Ck
γ (t,y)}

−
∫
d2y uγ0(t,y){C0

α(t,x), C0
γ(t,y)} = 0

=

∫
d2y δ(2)(x− y) 2 i Cαγ ε

ik ∂iχ
γ
k(t,y) = 0

This gives us the following secondary constraint:

εik ∂iχkα(t,x) = 0 . (C.10)

Let us denote this secondary constraint by Dα(t,x). The equal-time Poisson brack-
ets of Dα(t,x) with the other constraints are as following:

{Dα(t,x) , Dβ(t,y)} = 0 ,

{Dα(t,x) , Ck
β(t,y)} = εik Cαβ ∂xiδ

(2)(x− y) ,

{Dα(t,x) , C0
β(t,y)} = 0 . (C.11)
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The Poisson bracket of Dα(t,x) with Ck
β(t,y) does not vanish, but, as in the case

of the Chern-Simons theory discussed in the main text, the constraint Dα can be
modified by adding a term proportional to the divergence ofCk such that the Pois-
son bracket of the modified constraint with Ck vanishes. Therefore the secondary
constraint Dα(t,x) belongs to the first-class.

Now we need to check if there are any tertiary constraints present. For checking
this, we need to solve the time conservation equation for the secondary constraint
Dα(t,x).

The time conservation equation for Dα(t,x) is as following:∫
d2y {Dα(t,x),HT (t,y)}

=

∫
d2y {Dα(t,x),Hc(t,y)}+

∫
d2y uγk(t,y) {Dα(t,x), Ck

γ (t,y)}

+

∫
d2y uγ0(t,y){Dα(t,x), C0

γ(t,y)} = 0 (C.12)

The left hand side of the above equation comes out to be zero. Therefore, the above
equationdoesnot giveusanynew information. Itmeans that the freeRarita-Schwinger
action has constraints only up till the secondary order and no higher.

Now that we know all the constraints present in the system for the case when f−2 =

0, we can count the number of degrees of freedom. We have the six-component
vector-spinor field χaα along with the corresponding momenta. So we begin with
12 canonical phase-space degrees of freedom. There are four first-class constraints
present in the system — C0

α and Dα. Eachof themgenerates gauge transformations
and hence cancels two degrees of freedom. So we are left with 12 − 2 × 4 = 4

canonical degrees of freedom. Then there are four second-class constraints — Ci
α

each of which cancels one degree of freedom. So that leaves us with 4 − 4 = 0

degrees of freedom. This confirms that the gauge invariant free Rarita-Schwinger
action does not have any physical degree of freedom.

C.1.1 Hamiltonian Value on the Constraint Surface of the Free
Rarita-Schwinger Model

Nowwe try to seewhat value the canonicalHamiltonian takes on the constraint sur-
face. Doing so provides us an insight regarding the energy and physical consistency
of the system.
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The canonical Hamiltonian density, as shown in eq. (C.4), is,

Hc(t,x) = i εij
(
χα0 (t,x) ∂jχαi(t,x)− χαi (t,x) ∂jχα0(t,x)

)
. (C.13)

Using integration by parts, it can be written as following:

Hc(t,x) = 2 i εij χα0 (t,x) ∂jχαi(t,x)− i εij ∂j
(
χαi (t,x)χα0(t,x)

)
(C.14)

On integrating the abovewith respect tox weget the canonicalHamiltonian, which
is,

Hc(t) = 2 i εij
∫

d2xχα0 (t,x) ∂jχαi(t,x) . (C.15)

On substituting the secondary constraint (C.9), i.e. εij ∂iχjα(t,x) = 0 , into the
Hamiltonian above, we find that it vanishes.

H(t)free 3/2|cs = 0 . (C.16)

This verifies the fact that the free Rarita-Schwinger Lagrangian does not have dy-
namical degrees of freedom.

Now we perform the Hamiltonian analysis for the case with next higher order in
f−2, that is the action up to the terms of the order f−2.

C.2 Hamitonian Analysis of Vector-Spinor Goldstino
Model up to the Order f−2

Following is the Volkov-Akulov Lagrangian for the vector-spinor field χαa up to the
terms of the order f−2.

Lf−2 = i εij
(
χα0 ∂iχjα + χαi ∂jχ0α − χαi ∂0χjα

)
+
εijεkl

f 2

(
(χi∂0χj)(χ0∂kχl)

− (χi∂kχj)(χ0∂0χl)− (χi∂0χj)(χl∂kχ0) + (χi∂kχj)(χl∂0χ0)

− (χ0∂lχj)(χ0∂kχi)− (χj∂lχ0)(χi∂kχ0)

)
(C.17)



Appendix C 88

The conjugate momenta are:

piα(t,x) =
δL(t,x)

δ ( ∂0χαi (t,x) )

= i εij χjα(t,x)− 1

f 2
εijεkl

(
χjα(χ0∂kχl)− χjα(χl∂kχ0)− χ0α(χk∂jχl)

)
(C.18)

p0α(t,x) =
δL(t,x)

δ ( ∂0χα0 (t,x) )

=
1

f 2
εijεkl χlα(χi∂kχj) (C.19)

The canonical Hamiltonian is

Hc(t,x)

= ∂0χ
α
i (t,x) piα(t,x) + ∂0χ

α
0 (t,x) p0α(t,x)− L(t,x) (C.20)

= i εij
(
χα0 ∂jχiα − χαi ∂jχ0α

)
+

1

f 2
εijεkl

(
(χ0∂lχj)(χ0∂kχi) + (χj∂lχ0)(χi∂kχ0)

)

The primary constraints derived from the conjugate momenta (C.18), are:

F i
α(t,x) = piα(t,x)− i εij χjα(t,x) +

1

f 2
εijεkl

(
χjα(t,x)

(
χ0(t,x) ∂kχl(t,x)

)
− χjα(t,x)

(
χl(t,x) ∂kχ0(t,x)

)
− χ0α(t,x)

(
χk(t,x) ∂jχl(t,x)

))

F 0
α(t,x) = p0α(t,x)− 1

f 2
εijεkl χlα(t,x)

(
χi(t,x) ∂kχj(t,x)

)
(C.21)
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The Poisson bracket relations between these primary constraints are,

{F i
α(t,x) , F i′

β (t,y)}

=− 2 i εii
′
Cαβ δ

(2)(x− y) +
2

f 2
εii
′
εkl Cαβ

(
(χ0(t,x) ∂kχl(t,x))

− (∂kχ0(t,x)χl(t,x))
)
δ(2)(x− y) +

2

f 2
εikεi

′jCραCσβ

(
∂k
(
χρ0(t,x)χσj (t,x)

)
+ ∂j

(
χσ0 (t,x)χρk(t,x)

))
δ(2)(x− y)− 1

f 2
εikεi

′jCραCβσ
(
χρ0(t,x)χσj (t,x)(∂xk + ∂yk)

+ χσ0 (t,x)χρk(t,x)(∂xj + ∂yj)
)
δ(2)(x− y) (C.22)

{F 0
α(t,x) , F 0

β (t,y)} = 0 (C.23)

{F i
α(t,x) , F 0

β (t,y)}

=
2

f 2
εijεkl Cαβ

(
χl(t,x) ∂jχk(t,x)

)
δ(2)(x− y)

+
2

f 2
εijεkl CραCσβ ∂k

(
χσl (t,x)χρj (t,x)) δ(2)(x− y)

+
2

f 2
εijεklCραCσβ χ

ρ
j (t,x)χσl (t,x) (∂xk + ∂yk) δ

(2)(x− y) (C.24)

The terms containing (∂x + ∂y) δ
(2)(x − y) in the expressions above, vanish upon

integration as explained in Appendix B .We can see that the Poisson brackets of the
primary constraints are non-vanishing.

To find the secondary constraints following the Dirac procedure, we consider the
total Hamiltonian densityHT (t,x)which includes the primary constraints with the
corresponding Lagrange multipliers.

HT (t,x) = Hc(t,x) + uαi (t,x)F i
α(t,x) + uα0 (t,x)F 0

α(t,x) (C.25)

Integrating the above equation with respect to x, we get,

HT (t) = Hc(t) +

∫
d2xuαi (t,x)F i

α(t,x) +

∫
d2xuα0 (t,x)F 0

α(t,x) . (C.26)
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Please note that the Poisson bracket of the constraint F i
α(t,x) with the canonical

HamiltonianHc(t,y) is,

[F i
α(t,x) ,Hc(t,y)]

= i εij Cαβ
(
∂j (χβ0 (t,x) δ(2)(x− y))− 2 ∂jχ

β
0 (t,x) δ(2)(x− y)

)
+

2

f 2
εijεkl Cαβ

(
χβ0 (t,x)

(
χ0(t,x) ∂lχj(t,x)

)
∂yk δ

(2)(x− y)

+ ∂kχ
β
0 (t,x)

(
(χj(t,x) ∂lχ0(t,x))− (∂lχj(t,x)χ0(t,x)

)
− χβ0 (t,x)

(
∂kχ0(t,x) ∂lχj(t,x)

)
δ(2)(x− y)

)
, (C.27)

and that between the constraint F 0
α(t,x) andHc(t,y) is the following:

[F 0
α(t,x) ,Hc(t,y)]

= i εij Cαβ
(
2 ∂jχ

β
i (t,x) δ(2)(x− y)− χβi (t,x) ∂yj δ

(2)(x− y)
)

+
2

f 2
εijεkl Cαβ

(
χβj (t,x) (χi(t,x) ∂kχ0(t,x)

)
∂yl δ

(2)(x− y)

+ ∂lχ
β
j (t,x)

(
(χ0(t,x) ∂kχi(t,x))− (χi(t,x) ∂kχ0(t,x))

)
δ(2)(x− y)

− χβj (t,x)
(
∂lχi(t,x) ∂kχ0(t,x)

)
δ(2)(x− y)

)
. (C.28)

Nowwewritedown theequation for the timeconservationof theconstraintF i
α(t,x).

It is as following:∫
d2y [F i

α(t,x) ,HT (t,y)]

=

∫
d2y [F i

α(t,x) ,Hc(t,y)]−
∫
d2y uβi′(t,y) {F i

α(t,x) , F i′

β (t,y)}

−
∫
d2y uβ0 (t,y) {F i

α(t,x) , F 0
β (t,y)} = 0 . (C.29)

Let
∫
d2y {F i

α(t,x) , F i′

β (t,y)} be denoted byM ii′

αβ(t,x) . Then, the above equation
can be re-written as following:

[F i
α(t,x) , Hc(t)]− uβi′(t,x)M ii′

αβ(t,x)− uρ0(t,x)

∫
d2y {F i

α(t,x) , F 0
ρ (t,y)} = 0

⇒uβi′(t,x)M ii′

αβ(t,x) = [F i
α(t,x) ,Hc(t)]− uρ0(t,x)

∫
d2y {F i

α(t,x) , F 0
ρ (t,y)}
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This gives us,

uβi′(t,x)

= [F i
α(t,x) , Hc(t)]M

βα
i′i (t,x)− uρ0(t,x)

∫
d2y {F i

α(t,x) , F 0
ρ (t,y)} Mβα

i′i (t,x) ,

(C.30)

where

Mβα
i′i (t,x) =

(
M ii′

αβ(t,x)
)−1

= {F i
α(t,x) , F i′

β (t,y)}−1

=
i

2
εi′iC

βα +
1

2 f 2
εi′i ε

kl Cβα
(
χ0(t,x) ∂kχl(t,x)− ∂kχ0(t,x)χl(t,x)

)
+

1

2 f 2

(
∂i(χ

α
0 (t,x)χβi′(t,x)) + ∂i′(χ

β
0 (t,x)χαi (t,x))

)
(C.31)

So fromeq. (C.30)we see thatwe get a restriction on the expression for the Lagrange
multiplier uβi′(t,x) by solving the time conservation equation for the primary con-
straintF i

α(t,x). Thismeans that the equationdoes not yield a secondary constraint.

Now let us see what we get by solving the time conservation equation for the con-
straint F 0

α(t,x).∫
d2y [F 0

α(t,x) ,HT (t,y)]

=

∫
d2y [F 0

α(t,x) ,Hc(t,y)]−
∫
d2y uβi (t,y) {F 0

α(t,x) , F i
β(t,y)}

−
∫
d2y uβ0 (t,y) {F 0

α(t,x) , F 0
β (t,y)} = 0 (C.32)

Since {F 0
α(t,x) , F 0

β (t,y)} = 0 (as shown in eq. (C.23)), the above equation be-
comes,∫

d2y [F 0
α(t,x) ,Hc(t,y)]−

∫
d2y uβi (t,y) {F 0

α(t,x) , F i
β(t,y)} = 0 (C.33)

Substituting the expression for the Lagrange multiplier uβi (t,y) from eq. (C.30),
into the equation above, we get,

[F 0
ρ (t,x) , Hc(t)]− [F i

α(t,x) , Hc(t)]M
βα
i′i (t,x)

∫
d2y {F 0

ρ (t,x) , F i′

β (t,y)}

+ uσ0 (t,x)

∫
d2y {F i

α(t,x) , F 0
σ (t,y)}Mβα

i′i (t,x)

∫
d2y {F 0

ρ (t,x) , F i′

β (t,y)} = 0

(C.34)
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Let
∫
d2y {F i

α(t,x) , F 0
σ (t,y)} be denoted by V i

ασ(t,x) . Then,

[F 0
ρ (t,x) , Hc(t)]− [F i

α(t,x) , Hc(t)]M
βα
i′i (t,x)

∫
d2y {F 0

ρ (t,x) , F i′

β (t,y)}

+ uσ0 (t,x)V i
ασ(t,x)Mβα

i′i (t,x)V i′

βρ(t,x) = 0 (C.35)

Since V i
ασ(t,x) is of the order f−2, the last term in the equation above, i.e.,

uσ0 (t,x)V i
ασ(t,x)Mβα

i′i (t,x)V i′

βρ(t,x) , is of the order f−4. Weare retaining termsonly
up to the order f−2, due to which uσ0 (t,x)V i

ασ(t,x)Mβα
i′i (t,x)V i′

βρ(t,x) ≈ 0

Therefore, we get,

[F 0
ρ (t,x) , Hc(t)]− [F i

α(t,x) , Hc(t)]M
βα
i′i (t,x)

∫
d2y {F 0

ρ (t,x) , F i′

β (t,y)} = 0

The above equation is in fact a secondary constraint. Let us denote it by Gα(t,x) .
It can be expressed as follows:

Gα(t,x)

= 2 i Cαβ ε
ij∂jχ

β
i (t,x) +

2

f 2
εijεkl Cαβ

(
∂lχ

β
j (t,x) (χ0(t,x) ∂kχi(t,x))

+ ∂kχ
β
j (t,x) (χl(t,x)∂iχ0(t,x)) + χβj (t,x) (∂kχl(t,x) ∂iχ0(t,x))

+ ∂iχ
β
0 (t,x) (χl(t,x) ∂jχk(t,x))

)
= 0 (C.36)

In section 3.4, we had modified the constraint C0(t,x) to give Ĉ0(t,x) such that
Ĉ0(t,x) commuted with more constraints than C0(t,x) commuted with. We can
do a similar modification here. The constraint F 0

ρ can be modified to give F̂ 0
ρ as

following.

F̂ 0
ρ = F 0

ρ −
∫
d2y {F i

α(t,x) , F 0
ρ (t,y)}Mβα

i′i F
i′

β

F̂ 0
ρ = p0ρ +

i

f 2
εkl Cσρ p

i
β ∂k(χ

σ
l χ

β
i )

− i

f 2
εkl piρ (χl ∂iχk)−

1

f 2
εijεkl Cρβ Cσρ χ

ρ
j ∂k(χ

σ
l χ

β
i ) . (C.37)
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F̂ 0
ρ (t,x) anti-commutes with F i

α(t,y).

{F̂ 0
ρ (t,x) , F i

α(t,y)} = 0 (C.38)

However F̂ 0
ρ (t,x) does not anti-commute with the remaining constraints, and it

is technically quite involved to guess whether a further modification exists which
would make it first class. Instead of trying to find it let us look at the on-shell value
of the Hamiltonian at order f−2.

C.2.1 Hamiltonian Value on the Constraint Surface of the Full
Vector-Spinor Goldstino Model up to the Order f−2

From the constraint (C.36) we get,

i εij∂jχ
α
i (t,x)

=− f−2 εijεkl
(
∂lχ

α
j (t,x) (χ0(t,x) ∂kχi(t,x)) + ∂kχ

α
j (t,x) (χl(t,x)∂iχ0(t,x))

+ χαj (t,x) (∂kχl(t,x) ∂iχ0(t,x)) + ∂iχ
α
0 (t,x) (χl(t,x) ∂jχk(t,x)

)
(C.39)

Plugging theabove into theexpression for thecanonicalHamiltoniandensityHc(t,x)

in eq. (C.20), we get,

Hc(t,x) =
1

2 f 2

((
χ0(t,x)χ0(t,x)

)(
∂kχj(t,x) ∂lχi(t,x)

)
−
(
χ0(t,x)χ0(t,x)

)
∂i∂k

(
χj(t,x)χl(t,x)

))
(C.40)

It turns out that this Hamiltonian density vanishes for the perturbative solution
χαa = ∂aψ

α +O(f−2) of the spin- 3/2 field equations of motion.

H(t)3/2|on−shell = 0 . (C.41)

Therefore, the on-shell field configurations have zero energy at least at the order
f−2. This observation prompts us that the spin-3/2 goldstino model may do not
have dynamical degrees of freedom because of a hidden local symmetry, as in the
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case of the Rarita-Schwinger action. The results given in themain text of the Thesis
prove this observation.
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