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Abstract

We study three-dimensional non-linear models of vector and vector-spinor Gold-
stone fields associated with the spontaneous breaking of certain higher-spin coun-
terparts of supersymmetry. The Lagrangians in these models are of a Volkov-Akulov
type. Goldstone fields in these models transform non-linearly under the sponta-
neously broken rigid symmetries. We find that the leading term in the action of the
vector Goldstone model is the Abelian Chern-Simons action whose gauge symme-
try is broken by a quartic term. As a result, the model has a propagating degree of
freedom which, in a decoupling limit, is a quartic Galileon scalar field. The vector-
spinor goldstino model turns out to be a non-linear generalization of the three-
dimensional Rarita-Schwinger action. In contrast to the vector Goldstone case, this
non-linear model retains the gauge symmetry of the free Rarita-Schwinger action
and eventually reduces to the latter by a non-linear field redefinition. We thus find
that the free Rarita-Schwinger action is invariant under a hidden rigid supersym-
metry generated by fermionic vector-spinor operators and acting non-linearly on
the Rarita-Schwinger goldstino.
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Chapter 1
Introduction

One of the long-term goals of the collective studies and research in high energy
physics is to formulate a consistent theory of quantum gravity. Up till now we have
consistent theories of quantum mechanics and quantum field theory on the one
hand and general relativity on the other. But the unification of the quantum theo-

ries with general relativity remains yet to be achieved.

Three of the four fundamental forces of nature, viz. electromagnetism, the weak
force and the strong force, along with the elementary particles in the universe, can
be described through the theory of the Standard Model. The three forces can be
unified at high energy scales via the Grand Unified Theories (GUT). The Standard
Model and GUTs being quantum theories aim at the description of physics of the
world around us at the microscopic scale. However, the theory describing the force
of gravity, i.e. general relativity, is a classical theory which explains the gravitational
force only at the macroscopic scale. Theorists aim at finding a theory which can
unify the Standard Model (or its extensions) with gravity within a unique quantum

theory. String theory is a candidate for such a theory.

One of the important ingredients of string theory is supersymmetry, which is a con-
jectured symmetry of the universe. It proposes that all the matter and force particles

in the universe have superpartner particles.

There are two kinds of particles in nature — fermions, the matter particles — and
bosons, the force carriers. Fermions have half-integer spins while bosons have in-
teger spins. Supersymmetry states that every fermion has a bosonic superpartner

and vice-versa.
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Some of the elementary fermions that we know well by now are electrons, muons,
etc. and some of the elementary bosons that we know well are photons, W= bosons,
Z bosons, gluons and the Higgs boson. Though we know of both fermionic and
bosonic particles in nature, we don’t yet know of any particles that form a super-
symmetric pair. It is believed that the superpartner particles are too heavy to get

detected by us using the experiments that have been used up till now.

Since supersymmetry is not explicitly observable in nature, it is believed to be spon-
taneously broken. There is supposedly a supersymmetry-breaking energy-scale M/
such that at energies £ > M, the theory behaves in a supersymmetric way, while
at energies £/ < M, supersymmetry is spontaneously broken. If M is not too high
(e.g. around 1-10 TeV which is the maximum energy scale reachable by LHC) it may
be possible for us to observe a spontaneously broken supersymmetry which would

then serve as proof for the existence of original supersymmetry.

In quantum field theory the values of the coupling parameters vary or "run" with
varying energy. This is known as renormalization group flow. Supersymmetry renor-
malizes the coupling parameters such that they converge to a single value at a very
high energy scale, known as the GUT scale. So supersymmetry may be responsible

for the grand unification of three of the four fundamental forces.

Attempts at formulating a supersymmetric theory of gravity yielded the theory of
supergravity. In supergravity, supersymmetry is a local symmetry generalizing the
reparametrization invariance [1]. Supergravity consists of fields with spin 2 or lower.
A field with spin higher than 2 is called a higher-spin field. So we can say that super-
gravity does not have any higher spin fields. The classical dynamics of supergravity
is well known but when we try to quantize it, we run into a problem because we
find that it is non-renormalizable. In recent years, however, it has been found that a
maximal N=8 supergravity in four space-time dimensions is finite up to at least five

loops (see [2] and references therein).

Theoretical high energy physicists have been working hard trying to get closer to a
consistent theory of quantum gravity. As we have already mentioned, string theory
is a candidate theory of quantum gravity. It looks very promising. Superstring the-
oryisaquantum theory which is believed to be renormalizable and even finite in the
ultraviolet limit. So it can consistently describe quantum gravity. One main feature
of this theory which distinguishes it from supergravity and makes it renormalizable
is the quantum corrections contributed to it by an infinite tower of massive higher
spin fields. For this reason a better understanding of the dynamics of higher spin

fields is required.
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Quantum field theory has shown that massive fields with spin 1 are renormalizable
only if their mass is generated by the spontaneous breaking of the gauge symmetry
associated with the corresponding massless gauge fields. One may assume that the
same feature applies to higher spin fields. For this reason string theory has been
conjectured to be a spontaneously broken phase of an underlying gauge theory of
massless higher spin fields. So we need to study the higher spin fields which are

massless.

In string theory the mass squared of the higher spin fields is proportional to string
tension. So spontaneous breaking of higher-spin symmetry would generate both
the mass and the tension of a string.

One approach for studying higher spin string states is the framework of String Field
Theory. It is still under construction with regards to supersymmetric and closed
strings. Another possible approach is to derive an effective field theory of higher
spin fields and study it using conventional field theoretical methods. In the last few
decades, the study of massless higher spin fields has revealed a profound and rich

geometrical and conformal structure underlying their dynamics.

One of the main problems in higher spin field theory that needs to be addressed
is the description of the higher-spin field interactions of different kinds, e.g. three-
and four-vertex higher-spin interactions [3-5], interactions with electromagnetic
fields [6, 7] and with gravity [8, 9]. When we describe interactions, we need to con-
sider the S-matrix which relates the initial state and the final state of the system
undergoing the interaction process. However there are certain restrictions regard-
ing what values the entries of an S-matrix can take. The general no-go theorems
like Coleman-Mandula theorem and Haag-Lopuszanski-Sohnius theorem do not
allow conserved currents associated with the symmetries of higher spin fields to
non-trivially contribute to the unitary S-matrix in D=4 Minkowski space.

One way to circumvent the no-go theorems is to spontaneously break higher spin
symmetry, as probably happens in string theory. Another way around is to study the
theory in a spacetime different from Minkowski space, a spacetime with non-zero
cosmological constant, such as the Anti de Sitter space. This assertion has been suc-
cessfully used by Fradkin and Vasiliev in [10] to describe the interaction of massless
higher spin fields with gravity, up to cubic order.

The construction of higher spin theory was put forward by Dirac in 1936 when he

generalized his famous spin-1/2 Dirac equation to the description of free higher
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spin fields. In 1939 Fierz and Pauli initiated a systematic study of higher-spin par-
ticles. They used a field theoretic approach demanding the conditions of Lorentz
invariance and positivity of energy for physical consistency. They also proposed a
general structure of Lagrangians describing free massive higher-spin fields (involv-
ing auxiliary fields of lower spins) and gave an explicit form of the Lagrangian for a
massive field of spin 2. Their work was developed by Rarita and Schwinger [11] who
proposed a description of the theory of fields of half-integer spins (in particular of
spin 3/2) which is simpler than the formalism of Fierz and Pauli based on the use
of auxiliary fields. Wigner [12] and Bargmann and Wigner [13] put the description
of higher-spin particles on a solid group-theoretical basis by associating them with

irreducible unitary representations of the Poincaré group.

Fronsdal [14] and Chang [15] elucidated a procedure for introducing auxiliary fields
to construct higher-spin Lagrangians. Further contributions were made by Wein-
berg [16-18] and others. In 1974 Singh and Hagen [7, 19] managed to write down
an explicit form of the Lagrangian for a free massive field of arbitrary spin. The
Singh-Hagen Lagrangian for a half-integer spin incorporates symmetric gamma-
traceless tensor-spinors and for an integer spin it is written in terms of a set of
symmetric traceless tensor fields. Performing a massless limit of these Lagrangians
Fronsdal [20], and Fang and Fronsdal [21], respectively, constructed Lagrangians for
free massless integer and half-integer higher spin fields. For a review of the histori-
cal developments and various aspects of higher-spin field theory look at references
[22-47].

Theoretical studies, in particular by Vasiliev (see e.g. [22, 30] for a review), have lead
to the conclusion that interacting higher-spin gauge theories should be based on in-
finite dimensional symmetries and involve an infinite number of fields of increasing
spin. The study of the effects of spontaneous symmetry breaking and the appear-
ance of higher-spin Goldstone fields in such theories is a highly non-trivial problem.
For this reason we have studied this problem in a simplified set-up. Firstly, we have
started studying it in D=3. And secondly, we consider a special class of higher spin
algebras, which unlike the conventional higher spin algebras, are finite. We have
constructed spin-1 and spin-3/2 Goldstone field models based on these algebras

and analysed their properties. The results of this research were published in [48].
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1.1 Supersymmetry Breaking

There are two ways in which supersymmetry can be broken — spontaneously and

explicitly.

i) Spontaneoussupersymmetry breaking: In this processitis the vacuum state
of the system for which the symmetry is broken. In such vacua one or more
scalar fields acquire a vacuum expectation value of the order of the energy

scale required for breaking supersymmetry.

ii) Explicit supersymmetry breaking: In this process supersymmetry is broken
explicitly by adding non-supersymmetric terms in the Lagrangian. In order to
preserve the renormalizability of the theory, only a specific kind of terms can
be added. On adding such terms supersymmetry is said to be softly broken.

Generally even soft supersymmetry breaking models are assummed to arise as low
energy effective descriptions of models where supersymmetry is broken sponta-
neously. Therefore, we will now discuss spontaneous symmetry breaking. In this
thesis, we describe effects of spontaneous supersymmetry breaking using Volkov-

Akulov construction [49, 50], which will be explained in further detail ahead.

1.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking is a process through which a symmetric system
ends up in an asymmetric state. The Lagrangian and the equations of motion of
the system continue to obey the symmetries even after the spontaneous breaking
of symmetry but a lowest-energy state does not retain the symmetry. In field theory

the lowest energy states are the vacua.

Symmetry can be broken spontaneously only for a system with a non-unique vac-
uum state. This was first suggested by Nambu et. al [51]. If the lowest energy state of
asystem is degenerate, then its corresponding eigenstates linearly transform among
themselves under the symmetry transformations. So there is no unique eigenstate
to represent the ground state. Consequently each choice results in breaking the

symmetry spontaneously.
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When supersymmetry is broken spontaneously, the charges generating the symme-

try do not annihilate the vacuum, i.e.,

Q10) #0. (1.1)

Supersymmetry algebra implies that QTQ) + QQT = H. Then as a consequence
of eq. (1.1), the vacuum expectation value of the Hamiltonian H of the system is

positive-definite

(01H10) > 0. (1.2)
The Hamiltonian comprises of kinetic energy terms and potential energy terms. In
the vacuum the vacuum expectation values of the kinetic energy terms can be triv-

ially set to zero. So the potential energy of the vacuum state should have a positive

definite expectation value

(O[V]0) > 0. (1.3)

The requirement of the vacuum states to be invariant under Poincaré transforma-
tions necessitates that they be a function of a scalar field ¢(x) and its vacuum ex-

pectation value be constant
(0] (2)[0) = c#0. (1.4)

On the other hand, the vacuum expectation values of the vector fields A*(x) and
spinor fields ¢ *(x) present in the system, should vanish

(0]A%(2)[0) = 0,

(0]*(2)]0) = 0,. (1.5)

Conditions (1.3) and (1.4) can be summed up to say that the condition for the spon-
taneous breaking of supersymmetry is that the scalar field configuration should be

such that the vacuum expectation value of its potential energy is positive definite

0]V (¢(x))[0) > 0. (1.6)

Consider the simplest possible case of a scalar field ¢ in terms of which the potential
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Potential

Scalar field

FIGURE 1.1: No symmetry broken

V' (¢) is defined. The expectation values of the potential for four different cases re-
garding the breaking of supersymmetry and gauge symmetry are shown in Figures
1.1to 1.4.

In Figure 1.1 since the vacuum expectation value of the potential vanishes for a cer-
tain value of the scalar field ¢, supersymmetry is not broken. Since the potential is
minimised for (0]¢|0) = (¢) = 0, the gauge symmetry of the system (if it acts on ¢)

also stays intact.

In Figure 1.2 since the vacuum expectation value of the potential is positive defi-
nite, supersymmetry is spontaneously broken. However, since the potential is min-

imised for (¢) = 0, the gauge symmetry stays intact.

In Figure 1.3 the potential vanishes for two configurations of the scalar field ¢. So
its vacuum expectation value is zero and supersymmetry is not broken. Since the

potential is minimised at (¢) # 0, gauge symmetry is broken.

In Figure 1.4 the potential is positive definite. So supersymmetry is broken spon-

taneously. Gauge symmetry is also broken because the potential is minimised at

() # 0.
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Potential

Scalar field

FIGURE 1.2: Supersymmetry broken but gauge symmetry intact

Potential

Scalar field

FIGURE 1.3: Supersymmetry intact but gauge symmetry broken
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Potential

Scalar field

FIGURE 1.4: Both supersymmetry and gauge symmetry broken

Every time a continuous symmetry is broken spontaneously, be it a bosonic sym-
metry or supersymmetry, a massless particle is produced by virtue of Goldstone’s

theorem.

Goldstone’s Theorem: For every spontaneously broken continuous symmetry, the

theory must contain a massless particle known as a Goldstone field.

Proof: Suppose the system has a number of scalar fields ¢; transformed under a
certain representation of the symmetry group G. V(¢) is minimised at ¢ = (¢),

i.e.,

ov
8_¢ 0. (1.7)

=(9)

Let the generators which break the vacuum symmetry be 7, i.e. T%(¢) # 0. The

mass matrix is defined as following:

i
0; 09,

g (1.8)

»=(9)

The symmetry of the Lagrangian implies

V(g) =V(o+ieT"9)

=V(p)+ie T gz

+ O(le|*)  (using Taylor expansion)
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Retaining terms up to the 1% order in ¢,, the above equation gives us,

(1.9

Tiai@. a(‘; =0

0

Differentiating the above equation with respect to ¢, and evaluating it at ¢ = (¢)

gives
0 .oV
—(TY¢; — =0
AT
ov , ov
= T — + T/ ¢, =0 (1.10)
S " 001061 | 4

From eq. (1.7) we know that the first term on the LHS of eq. (1.10) is 0. Therefore,
the second term should also be equal to 0.

Vv

- 0
ajph. _ —
L% 5600,

=T/ (¢;) M¥ =0 (1.11)
¢=(¢)
We already know that 7%(¢) # 0. This implies that M/** has a null eigenvector which
has eigenvalue equal to 0. Since the eigenvalue of M** corresponds to the mass of
the particle, the particle’s mass is 0. Therefore spontaneously breaking the symme-

try produces a massless particle, known as a Goldstone field.

A Goldstone field with integer spin is called a Goldstone boson while a Goldstone
field with half-integer spin is called a goldstino. In this thesis we will construct mod-
els for both — a Goldstone boson and a goldstino. A distinguished feature of the ef-
fective Lagrangians for Goldstone fields (including the Volkov-Akulov Lagrangians
considered below) is that they describe low energy dynamics of the Goldstone fields
in a universal way independently of the details of the nature of the spontaneous

symmetry breaking mechanisms, which, in general, can be yet unknown.

1.3 Poincaré Group Representations and Spin

We consider Minkowski spacetime with the following line element,
ds® = Nmn dz™ dx"™ | (1.12)

where 2™ are space-time coordinates (m = 0,1,2,...D — 1) and D is the number of
spacetime dimensions.
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In D dimensions the Minkowski metric 7,,, isa D x D matrix as following.

“10--- 0
Nmn =
0O 0.--- 1

The coordinates of two arbitrary inertial reference frames, say ™ and z'™, are re-

lated to each other by the following linear non-homogeneous transformation:
'™ = A", 2" 0™ (1.13)

This transformation leaves the Minkowski metric invariant. The invariance under
the tranformation by the matrix A in particular is expressed by the following rela-

tion.

ATnA=n (1.14)
where A7 is the matrix transpose of A.
Taking the determinant of eq. (1.14), we can see that,

det A = £1
= (A%)% — (A10)® — (A%)* — (A%)* =1 (1.15)

In order to preserve the direction of time one must demand

A% >1. (1.16)

Preservation of parity or spatial orientation requires that

detA=1. (1.17)

The transformations (1.13) obeying the constraints (1.14, 1.16 and 1.17), are called
the "Poincaré transformations". In the homogeneous case, when v = 0, they are
called the " Lorentz transformations". From here onwards the Poincaré transforma-
tions will be symbolically denoted as (A, b) and the Lorentz transformations simply
by A.
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A Lie group is a differentiable manifold that is also a group which respects the con-
tinuum properties of the manifold. On taking the union of all the Poincaré trans-

formations under the following multiplication law,
(Ag,by) X (A1,b1) = (Ao Ay, by + Ay by) (1.18)

we get a real Lie group which is called the "Poincaré group". Similarly, the union
of all the Lorentz transformations forms a real (semisimple) Lie group, called the
"Lorentz group" denoted as O(1, D — 1). The Lorentz transformations physically
cause rotations and boosts. The transformation provided by the parameter 0™ gives

translations.

The generators of Lorentz transformations are denoted as M, and those of trans-
lations are denoted as F,. They form the Poincaré algebra characterized by the fol-

lowing commutation relations:

[Mab 5 Mcd] =1 (nbc Mad — Nac Mbd — Mbd Mac + Nad Mbc);
[Malmpc] :i(nbcPa - nacpb)'
[Pa, Pb] 0, (1.19)

These commutation relations define an arbitrary representation of the Poincare al-
gebra.

Now that we have the group representation and its algebra, let us look at its Casimir
operators. A Casimir operator is an operator that commutes with every generator
of the Lie group. To be concrete we will consider the most physically relevant case
of D = 4 in which the Poincaré group has two Casimir operators (commuting with
M, and P,), which are,

C, = P*P,, Cy = WW,, (1.20)
where W? is the Pauli-Lubanski vector

1
Wa = 5 Eabed MbcPd . (1.21)
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Usingeq. (1.19) one can prove the following properties of the Pauli-Lubanski vector:

WeP, =0, (1.22a)
(Wa, ] =0, (1.22b)
[May, We] = i 1jae Wy — 1105 W, (1.22¢)
(W, W] = i €apea WP (1.22d)

In quantum field theory, Poincare invariance means that any Poincaré transforma-

tion (A, b) induces a unitary transformation
U(A,b) = exp [i (—b"P, + 3 K®My)] (1.23)

acting in a Hilbert space of particle states. The union of operators U(A, b) provides
us with a unitary representation of the Poincare group. The generators of this uni-
tary group are the same as those of the Poincaré group — P, and M.

1.3.1 Stability Group

Letus consider a Hilbert space of one-particle states with mass m. Then we consider
its subspace V, consisting of particle states with a given four-momentum ¢,, such
that,

Palq) = qalq) (1.24)

for any state |¢) € V. The vector g, lies on the mass-shell surface associated with a

value of the Casimir operator C; in (1.20)

Ppa=—m*, P’ <0, (1.25)
in momentum-space. Next we define a set of group elements (A, b) in V,, such that
the unitary operators U (A, b) acting on them transform V;, onto itself. We call this
group H,. It forms a subgroup of the Poincaré group. Since itis a group of automor-

phisms that act as an identity on each V,, it is the stability subgroup for V.
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If we take a unitary operator exp (5 K“’M,;) and make it act on some state |¢), then

we get,

¢y = exp (3 K*Ma) |q)
where
¢ = (expi K)%¢". (1.26)
Since H, maps V, onto itself, we should have ¢’ = ¢. Therefore,
(exp 3 K)yd" ="
= (exp%K“)bqb —5%¢" =0
=K%¢"=0 (1.27)

The above equation has the following general solution:
Kap = abea ¢ 0 (1.28)

where n? is an arbitrary vector. So the elements of the stability group H, are of the

following form:
exp [z (— B“Pa + % g o ng Mab)] ) (1.29)

where b and n are arbitrary vectors. It can be expressed in terms of the Pauli-Lubanski

vector (1.21) acting on a state |¢) in V,, i.e., as
exp(—ia) exp(—in, W*?) (1.30)

where a = b° q,. Now if we look at identity (1.22d), we can see that the components

of the Pauli-Lubanski vector form a Lie algebra restricted to V.

1.3.2 Massive Irreducible Representations

We now proceed to find the massive irreducible representations of the Poincaré
group. Itis sufficient to construct all the unitary irreducible finite-dimensional rep-
resentations of the stability subgroup H, on the ‘mass-shell’ i.e., when p? = —m?,
po < 0. We consider the simple case of a particle atrestin D = 4. Its four-momentum
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vector takes the following value:
¢a = (—m,0,0,0). (1.31)

When the Pauli-Lubanski vector W, = % Eavea MO P? is restricted to the subspace

Vy» its components should have the following forms:
WOZO and W[:mS[ I:1,2,3 (1.32)

where the operator S} is

1
S = 3 1K MK (1.33)

It satisfies the following algebra:
[S1,S8) =ierk Sk (1.34)

This algebra is the same as the angular momentum algebra su(2). As is well-known,
the finite-dimensional irreducible representations of su(2) obey the following con-

dition:

(S1)2 4+ (S9)* + (S3)* =s(s+1) T (1.35)

113

where s takes the values s = 0, 5, 1, 3, 2, .... The dimension of a representation for

agiven sis (2s + 1).
Given the expression for the Pauli-Lubanski vector in terms of the vector .S; along
with condition (1.35), the Casimir operator C5 takes the following form:

3
WeW,=m?s(s+1)I  where s =0, ,1,572,... (1.36)

The quantum number s is called the spin of a particle. In the massive case the ir-
reducible representations of the Poincaré group are characterized by mass m and

spin s.
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1.3.3 Massless Irreducible Representations

In the massless case, where
P'pa =0, (1.37)
let us choose the Lorentz frame where the four-momentum is,

¢ = (—F,0,0,F) E#0. (1.38)

Using relations (1.21, 1.22a and 1.22b) we find that in the subspace V,, the compo-

nents of the Pauli-Lubanski vector take the following forms:

Wo = —E M,
Wi = E (Mas + M) = E R
Wy = E (M3 + M) = E Ry
W3 = E My, (1.39)

Because of eq. (1.22d) the operators M5, R; and R, obey the following algebra:

[M127 Rl] - _iRQ
[M127 RQ] — _iRl
[R1, Rs] =0 (1.40)

Algebra (1.40) is the Lie algebra of the group £ of translations and rotations on 2D
plane. E5 has the following Casimir operator:

(R1)* + (Ry)?. (1.41)
It obeys the following condition:
(R)*+ (Ro)?* =p*1 12 >0. (1.42)

For the subspace V to be finite-dimensional, we should have p? = 0. Then R; and

Ry become trivial on V, and we get,
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The non-zero components of the Pauli-Lubanski vector we are left with are W, and
Ws5. Now the only Lorentz generator belonging to /, (whose elements are of the
type (1.30)), is M, as can be seen from equations (1.39). Since the action of H, on

V, is irreducible, it has only one non-trivial state, which is,

where )\ takes the following values:

1 3
A=0, -, £1, -, .. 1.45
) 2a ) 27 ( )

The quantum number A\ is called the helicity of a particle and || is called the spin

of a massless particle.

Helicity is a Poincaré invariant characteristic of massless particles. Therefore, the
massless irreducible representations of the Poincaré group are classified by helicity.
Physically, the helicity of a particle is the projection of the spin of the particle along
its direction of motion. Therefore, while the spin of a particle is always a positive

number, its helicity can be either positive or negative.

1.4 Higher-Spin Hietarinta (Super)algebras

In general, higher-spin algebras involve an infinite number of fields of increasing

spin (see e.g. [30] for a review and references)
[T81 7T52] = T81+82—2 + T81+52—4 + ...+ 1—“51—52“‘2 (146)

Here T} is the symmetry generator of spin-s.

In 1975 Hietarinta [52] constructed graded Lie algebras with supersymmetry gen-
erators of arbitrary spin. Poincaré superalgebra is a special case of this general al-
gebra. This general superalgebra consists of anticommutators of spinor-tensor ‘su-
persymmetry’ generators for fermionic fields and commutators of tensor genera-

tors for bosonic fields.

Fermionic generators : {Q% ", Q%" } = fot-anbi-bmep,

Bosonic generators :  [S91+%, SP1-ba] = faranbibmep

@,P]=0, [S,P] =0, @,S]=0, (1.47)
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Here a1, as,...,b1,bo,... = 0,1,..., D — 1 are vector indices and «, 3 are spinor in-
dices. A spinor index represents spin—%. Every vector index added to a generator
represents spin-1 added to it, be it a fermionic generator or a bosonic generator. So
a generator of spin-s has [s]' vector indices and a spinor index if s-[s]:%. Qo1 is
a fermionic tensor-spinor generator of spin-(n + %) and S is a bosonic tensor
generator of spin-p. P, is the translation generator. The generators transform under
certain representations of the Lorentz group SO(1, D — 1). The structure constants
f a“/g“'“”’bl'“bm’c and f1--anbr-bmc gre constructed with the use of the Minkowski met-
ric, Levi-Civita tensor and gamma-matrices. They are invariant under the symme-

tries of the group SO(1, D — 1).

The algebras (1.47) are finite-dimensional higher-spin algebras. Their finiteness
distinguishes them from the more familiar infinite-dimensional higher-spin alge-
bras (1.46) in which the commutators of higher-spin generators close on generators
carrying yet higher spins.

We will consider the spontaneous breaking of symmetries associated with Hietar-
inta algebras. These symmetries are realized non-linearly on the corresponding
models of Goldstone fields. To construct higher-spin Goldstone Lagrangians we will
use the method put forward by Volkov and Akulov for the description of spin-1/2
goldstini associated with the spontaneous breaking of conventional supersymme-
try [49, 50].

1.5 Brief Historical Review

We will be studying spin-1 and spin-% models in D=3. The non-linear realisation
of spin-g superalgebra has been considered in D = 4 independently by Baaklini
in [53] and by Pilot and Rajpoot in [54, 55]. It was exploited further in [56] and the
references therein. However, the properties of these non-linear generalizations of

the Rarita-Schwinger action have never been explored.

Issues related to the consistent gravitational couplingin D = 4 of a massless spin—g
field, which might be regarded as a gauge field of the local spin-% supersymmetry,
were studied in [9, 57-59]. Aragone and Deser [60] have successfully constructed a
consistent model of "hypergravity" in D = 3. Their model is invariant under the
local symmetry transformations associated with a spin-(n + %) superalgebra where

n =0, 1,.... It describes the interaction between a non-propagating graviton and a

I[s] is the greatest integer which gives the largest integer less than or equal to s.
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spin-(n + %) gauge field*. More recently this model was extended to an AdS; back-
ground including an additional spin-4 field by Zinoviev [61] who also constructed its
higher-spin generalizations. Different aspects of higher-spin superalgebras of this
kind in D > 3 and associated models have been considered in [62—65]. We intend

to study the effect of spontaneous symmetry breaking in such models.

As is well-known, the construction of interacting higher-spin theories in space-time
dimensions higher than three is a highly non-trivial problem, even when working
with the superalgebras provided by Hietarinta in [52]. In [66] Shima et. al showed
(for the spin—% case in D = 4) that these algebras do not have non-trivial linear
unitary representations. But there is still the question of whether the higher-spin
Goldstone field constructions based on the non-linear realizations of these alge-
bras produce physically consistent interacting models. A priori, such a possibility is
not excluded since non-linearly realized symmetry may act only on positive-norm
states while the negative-norm states of the corresponding linear multiplets get cut
off.

1.6 Hietarinta Spin-3/2 Algebrasin D = 3

We will be constructing Volkov-Akulov Lagrangians in D=3 for Goldstone fields with
three different spins 1/2, 1 and 3/2. Spin-1/2 Volkov-Akulov Lagrangian will be con-
sidered as an instructive example before moving on to the new cases of Goldstone

models with spin-1 and spin-3/2.

In Chapter 4 we will consider the case of a spin-3/2 goldstino field model associated
with the spin-3/2 superalgebra [52-54] whose most general form in D = 3 is as

following

[Mab 5 Mcd] =1 (nbc Mad — TNac Mbd — Tod Mac + Nad Mbc) )

N C a ac Z a. C
M, QA) =i (" Q4 — 1™ Qo) — 5 (M) Q5.
{Mabypc] :i(nbcpa_nacpb)v
[ Z?Pb] :07
[P, By) =0, (1.48)

2Strictly speaking massless particles in D = 3 do not have a spin. However, as is often adopted in
higher-spin literature for any space-time dimension, we loosely call symmetric tensor fields A,, .4,
of rank s as fields with integer spin-s and symmetric-tensor spinor fields ¥¢'  , as fields with half-
integer spin-(s + 3).
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{Q2,Q5) =2aCape™ P+ bTUPY + ™I, P, (1.49)

a

where a, b and c are arbitrary real parameters.

Here M, is a Lorentz generator, P, is a translation generator and Q¢ (o = 1,2)
are Hietarinta symmetry generators which are Majorana (real) vector-spinors. The

matrices ['* are as following:

FO:01 Fl:01 r2:10.
-10/)’ 1 0)° 0 —1

The I" matrices obey Clifford algebra. To see the properties of these matrices, refer
to Appendix A.4.

The charge conjugation matrix C,,3 is defined as following:

0 1
Clp = .

In eq. (1.49) one of the parameters a, b and ¢ can always be set to a given num-
ber by re-scaling the fermionic generators ()% or the momentum F,. The generator
(% belongs to a reducible representation of the Lorentz group which splits into the

following irreducible parts:
a Na 1 a
QL =Q% + 3 (TMQ)a (1.50)

where (), is a Majorana-spinor generator and Qg is gamma-traceless (FGQ“ = 0).

Depending on the choice of the parameters a, b and c, the superalgebra (1.49) can

be reduced to simpler superalgebras. Three specific cases are the following ones.

« o — 5 _ 1 _
1. Casel.a——ﬁ,b—gandc——

win

In this case the only non-trivial anti-commutator in eq. (1.49) is between
the gamma-traceless Qg, ie., {Qg,@%}. The spin-1/2 generators (), anti-
commute both with themselves and with Qg ,i.e.,

{QaaQﬁ} =0
{(M"Q)a, Q%} = 0
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This superalgebra was exploited in [63].

2. Case2:b=4aandc=—-2a

In this case only the spin-; generators (), have a non-trivial commutator
which is

{Qa,Qp} = —2(I"C™Y)ap Pa.

The gamma-traceless generators Qg anti-commute both with themselves and
with @), and hence decouple

{Qa, Q3 =0
{Q5. (I"Q)s} = 0.

Therefore, in this case, the superalgebra (1.49) reduces to the conventional
N = 1 superalgebra.

3. Case3:b=c=0anda=1

In this case the algebra (1.49) reduces to

{ng Q%} =2 Caﬁ 5abcpc . (1.51)

This is the algebra that we will use to construct our vector-spin goldstino model
in Chapter 4.

We choose to work with algebra (1.51) because (as we will see) the quadratic part
of the non-linear Lagrangian associated with this algebra coincides with the Rarita-
Schwinger (or Chern-Simons-like) Lagrangian for a massless vector-spinor field x2.
The gamma-traceless case can be associated with the gauge-fixed Rarita-Schwinger
action in which I';x* = 0, while for other (inequivalent) choices of parameters
(except those corresponding to the conventional supersymmetry), the spin-3/2 su-
peralgebra does not seem to produce physically consistent models even in the free
(quadratic) approximation because of the absence of gauge symmetry and the pres-
ence of negative energy states.
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We will show that, in contrast to the spin-1 case, higher-order contributions to the
spin-3/2 goldstino action do not break the gauge symmetry of its quadratic Rarita-
Schwinger part but only require a non-linear modification of the gauge variation
of the spin-3/2 field. Moreover, the non-linear action reduces to the free Rarita-
Schwinger action by an invertible non-linear field redefinition, which means that
the Rarita-Schwinger action itselfis non-manifestly invariant under the non-linearly

realized spin-3/2 supersymmetry (1.51).



Chapter 2
Fermion Goldstino Model

In this chapter, we will construct and analyze the Goldstone model for the familiar
spin-1/2 fermion in order to demonstrate the procedure. For the construction of
the Goldstone model, we will use the Volkov-Akulov formalism. For the analysis of
the model, we will try a couple of ways including the Hamiltonian analysis using

Dirac formalism.

In 1972, two Soviet physicists Volkov and Akulov developed a special kind of La-
grangian formalism for describing Goldostone models associated with the sponta-

neous breaking of supersymmetry [49, 50].

In a standard transformation of linear supersymmetry a fermion transforms into a
boson and vice versa. But in the non-linear realisation of supersymmetry a fermion
gets shifted by a parameter and in addition, transforms by a term which is non-
linear in the field itself. Such a transformation is characteristic of the Goldstone
field.

The Volkov-Akulov Lagrangian can be generalised to higher-spin Goldstone fields
associated with Hietarinta algebras. There is a well-defined algorithm for construct-

ing the Lagrangian starting from the algebra.

Below we will demonstrate the construction of the Volkov-Akulov Lagrangian for the

simplest case of a spin-1/2 field, the Goldstone fermion we are most familiar with.

23



Fermion Goldstino Model 24

2.1 Volkov-Akulov Model of Spin-1/2 Goldstino

The conventional N = 1 superalgebra for a spin-1/2 Majorana fermion xy®in D = 3
is as following:

[Mab ) Mcd] = i(77bc Mad — Tac Mbd — Nbd Mac + Nad Mbc)a
[Mab ) Pc] - i(nbc Pa — Nac Pb)7

[Mab 5 Qa] = _% (Fab)o/j Qﬂ:
{Qa 5 Qﬂ} =-2 (Facil)aﬁ Pa7
[Qa 7Pa] = 07
[P, B) =0, 2.1)

where M, is a Lorentz generator, (), (o« = 1,2) is a Majorana spinor generator of
supersymmetry transformations and P, is a translation generator.

The supersymmetry transformations of z* and y“(x) generated by the algebra (2.1)

are:
2 =" —if e T X (), X (2") = x*(x) + €, (2.2)

where €“ is a constant spinor parameter, f is a supersymmetry breaking parameter

of mass-dimension M ? and x“ has the canonical dimension of M in D = 3. The

infinitesimal transformation of the form of the goldstino field x*(z) is

ox“(z) =" +if? (eI x(x)) Oux*() . 2.3)

This shows that the goldstino transforms non-linearly under supersymmetry.

The commutator of two variations (2.3) closes on the translations off the mass shell,
i.e. without the use of the equations of motion

[52 s (51] Xa =2i f_2 (61 re 62) 8,1)(‘" . (24)

We take a supersymmetry group element in the form g = ¢'*"Pn ¢t/ ' X*Qa_ Then

1As a shorthand notation, in what follows, we define the contraction of the spinors with a single
gamma-matrix as x I'* ¢ = x* ' PP = —xoTaeh 1. For other rules regarding the notation of
the spinor indices see Appendix A.
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the Cartan one-form g~ 'dg is invariant under the rigid supersymmetry transforma-

tions ¢’ = h(e€)g. It can be written as follows:

g ldg = e~ i TIXQa g=ia™ P g (PP eifflxﬁQﬁ)
— i P, da"™ + e~ TIXQa g i TIXPQs
=i P, dx" + Z’fflanQa _ f72XadX’B (Facfl)aﬁ P,

tE" P, 41 EYQy, (2.5)

¢ l'dg =i E™P,, +iE*Q, (2.6)

E™ is the one-form? that is used as a building block to construct the Volkov-Akulov
Lagrangian. The Lagrangian constructed using £ gives a non-linear generalisa-
tion of Dirac Lagrangian. If we were also to use £/, we would get a Lagrangian with

higher-derivative kinetic terms, not having a well-known analogue.

E™ has the following form:

E™ =da™ +if x> dx? (I™C ™) ap 2.7)
= da® (67" +if 72 x*0ux” ([ C ™ V)ap)
=dz" E"
= B =07 +if 2 x0.x" (T C ™) ag (2.8)

Having obtained the invariant one-form £, we can proceed to construct the Volkov-
Akulov action with it. The form of the Volkov-Akulov action in any dimension is

S:—fQ/de det Iy .

In D = 3 the action reduces to

2
S:—fZ/dS:cdetE{f:%/&mEaAEb/\EC, (2.9)
or explicitly
—2
Sij2 = / P (—f2 —ixT0,x + fT e (xx) Dax T 3cx> : (2.10)

2For a recent review of the different aspects and realizations of the Volkov-Akulov model and its cou-
pling to supergravity, see [67, 68] and the references therein.
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where x ¥ = x® Cus X° = X* Xa -

For the purpose of our analyses of Volkov-Akulov action and the ensuing results, the
constant term f2 in the action above will not bring any qualitative difference to our
results. Therefore from here onwards we will omit it in the Volkov-Akulov actions.
It becomes important when the goldstino couples to gravity since it gives a positive

contribution to the cosmological constant. In that scenario it cannot be omitted.

Using variational calculus we can write down the equation of motion for the gold-

stino x* from the action (2.10). It is

iT%50.x" = [ Xa €™ 0uaxTh Oex + [ 2 X T2 Oux TP Opx. @2.11)

We wish to find out how many physical degrees of freedom the system has and

whether it has gauge symmetries.

In the case of complicated dynamical systems, the most reliable method of analysing

their dynamical properties is the Dirac Hamiltonian formalism [69, 70].

2.2 Dirac Hamiltonian Formalism

If we have a Lagrangian L(g;, ¢;), function of the variables ¢; - position coordinate
and ¢; = 0yq; - time derivative of the position coordinate or the velocity, then the

conjugate momentum p; is defined as

i oL (2.12)
P= %9 '

Now let us construct a quantity that can be expressed exclusively in terms of the
position and momenta coordinates — ¢; and p’. Consider the quantity p’ ¢; — L. Let
us vary this quantity with respect to the variables ¢; and ¢;, the coordinates and the
velocities. This will bring a variation in the momentum variables p; also. It is as
following:

oL

| o oL\ .

=6p' g — <§L)6qi (2.14)
qi




Fermion Goldstino Model 27

by eq. (2.12). This shows us that the variation of the quantity p’ ¢; — L depends only
on the variation of the position coordinates ¢; and the momenta coordinates p* but
not on the velocities ¢;. So p'¢; — L is a quantity that is expressible exclusively in
terms of the position and momentum variables. It is called the canonical Hamilto-

nian H.
H=p"4¢—-L (2.15)

It is possible that the position and momenta variables are not independent of each

other. They may satisfy the following kind of relations:

Gm(qi,p’) =0 (2.16)

Such relations are the constraints in the theory. One way of classifying them is on
the basis of how they are derived. Doing so they can be classified as primary and

secondary constraints.

i) Primary constraint
A primary constraint is derived directly from the conjugate momentum with-
out using an equation of motion. For e.g., if the conjugate momentum p’ is
equal to a function f?(q), then the primary constraint corresponding to p’ is

simply C* = p' — f*(q) =0

ii) Secondary constraint
A secondary constraint is derived from the equation of motion involving the
primary constraint. Let us see below how it is derived.

The total Hamiltonian Hr is defined as:
Hr = H +u™¢,, 2.17)

where H is the canonical Hamiltonian, ¢,, is a primary constraint and u™ is the

Lagrange multiplier. The equations of motion are written as following:

F={F, Hp}
={F,H} +u"{F,én}, (2.18)
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where F is an arbitrary function of the canonical variables and the Poisson bracket®
of the functions F' and G is defined as

8_F oG B % oF
dq; Op*  Og; Op*

{F,G} = (2.19)
Since a constraint ¢,, is supposed to be preserved in time, it should obey the follow-

ing equation of motion:

qgm = {¢m s HT}

This equation can be solved to provide an expression or a restriction for the La-
grangian multipliers «”'. However, if it so happens that the equation reduces to
a relation independent of «™, involving only p’ and ¢;, then that relation is a sec-
ondary constraint.

Once we obtain the secondary constraints, we can repeat the procedure of solving
their equations of motion to see if there are tertiary constraints also present. This
procedure can be continued to higher order constraints till we reach the point where
the time derivative of the highest order constraint only imposes a restriction on the

Lagrange multipliers but does not yield yet another constraint.

Another way of classifying the constraints is as first-class and second-class con-

straints.

i) First-class constraint
A constraint F' is said to be first-class if its Poisson bracket with every con-

straint vanishes weakly,
{F,0;} =0, i=1,2, .. (2.21)

where ¢; is a constraint of the system. A quantity is said to be weakly vanishing
if it is restricted to be zero on the constraint surface but does not identically
vanish throughout the phase space. More generally, any function F' of the
canonical variables ¢ and p, that commutes with all the constraints is called a
first-class function.

3In this section, for denoting the Poisson brackets we use braces {..} without distinguishing whether
the dynamical variables are bosonic or fermionic. However, for concrete models discussed below
we will use [..] for the Poisson brackets of the bosonic variables and {..} for the fermionic ones.
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ii) Second-class constraint
A constraint is second-class if there is at least one constraint with which its
Poisson bracket does not vanish weakly. In other words, a constraint that is
not first-class, is a second-class constraint.

This classification is necessary for counting the number of the degrees of freedom
in the system. Let us see ahead how that is made possible.

2.2.1 First-class constraints generate gauge transformations

Because of the time conservation of constraints ¢;, the Lagrange multipliers u™
have the following restrictions on them:

{¢i, H} +u™{¢i, o} = 0. (2.22)

These are a system of non-homogeneous linear equations with the unknowns .
Their general solution is of the form

u"t=U"+ V" (2.23)

where U™ is a particular solution that is fixed by the consistency conditions derived
from the requirement that the constraints be preserved in time. V" is the general
solution of the associated homogeneous system

V™, dm} = 0. (2.24)

The most general solution of this equation is the linear combination of A linearly
independent solutions V,"*, a = 1, 2, ... A. Therefore,

= U™+ 0V, (2.25)

where the coefficients v* are totally arbitrary. Thus «™ is the sum of a fixed term

(U™) and arbitrary terms. Therefore

Hy=H+U™ ¢, + 0" V™ épn. (2.26)

Eqg. (2.22) can be rewritten as

{¢i, HY + U™ {¢i, O} + 0" V" {¢i, dm} = 0. (2.27)
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Because of relation (2.24) we have,

{oi  H} + U™{¢i, o} = 0O
= {¢;,H'} ~0 where H = H + U™ ¢,,,. (2.28)

This shows us that H’ is a first-class function.

Eq. (2.24) can be rewritten as

vV, {0, pm} =~ 0 (2.29)
= v {¢i,da} =0 where V," ¢, = Pa. (2.30)

As visible from eq. (2.30), ¢, are first-class constraints. In fact, since v* V"™ is the
general solution to eq. (2.29), ¢, is the complete set of first-class primary con-

straints.

The total Hamiltonian Hr in (2.26) can be written as

Hyp = H' + 1" &, 2.31)

The equations of motion can be written as
F={F,Hp} ={F,H + 1" ¢,} (2.32)

where F(q, p) is an arbitrary function of the canonical variables.

Let us now see which functions of the dynamical variables (p, ¢q) are physical ob-
servables. The classical physical observables are such functions of the canonical
varibles for which the initial values of the latter completely define the behaviour of
these observables in time through the Hamiltonian equations of motion (2.32). In
the systems with gauge symmetries a given observable (or a physical state), which is
gauge invariant, can be represented by different sets of canonical variables, playing

the role of gauge potentials.

Consider this in more detail. Since the total Hamiltonian Hp contains arbitrary
functions v, the time-dependence of F'(¢, p) is uniquely determined by (2.32) only
if the equations of motion do not depend on v“. For this to happen, the function

F(q, p) should Poisson-commute (at least weakly) with the first-class constraints

{F,¢.} = 0.
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Then the equations of motion reduce to
F={F H +v"¢,} ~{F,H}. (2.33)

On the other hand, if (¢, p) does not Poisson-commute with ¢,, its equation of
motion contains the arbitrary functions v* and there is an ambiguity in the time
dependence of F'(g,p). But this ambiguity should be physically irrelevant, i.e. it
should correspond to different choices of the canonical variables related by a gauge
transformation and defining the same physical state. To see this, let us suppose
we have an initial (fixed) value of a canonical variable F' at time ¢;. At later time
ty > t;, if any ambiguity arises in the value of the canonical variables, it should be
physically irrelevant, i.e. correspond to a gauge transformation. Indeed, consider
in particular ¢, = t; + dt. Since v* is an arbitrary function of time, let us take two
different choices v* and v°. As follows from (2.32), the difference in the values of the
variable F' at time ¢, corresponding to the different choices of v* at ¢; is:

SF = (0%(t;) — 0(t))) 6t {F(t1) , dalts)}. (2.34)

This does not change the time dependence of the physical state governed by (2.33),
and, therefore, the variations (2.34) produced by first-class constraints are gauge

transformations.

A first-class constraint not only knocks down a degree of freedom by virtue of being
a constraint, but it also knocks down another degree of freedom by gauging it away.
So a first-class constraint knocks down two degrees of freedom in the system. A
second-class constraint on the other hand, cancels only one degree of freedom as
usual.

Obtaining and classifying all the constraints in the system enables us to count the
number of physical degrees of freedom in the system, which conclusively deter-

mines the number of observables in the system.

2.3 Hamiltonian Analysis of the Spin-1/2 Goldstino Model

Now let us perform the Hamiltonian analysis of the spin-1/2 goldstino model using

Dirac formalism. We perform this analysis mainly for the following two reasons:

1. to find out how many degrees of freedom the system has
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2. tocheckwhether the energy of the system is bounded by looking at the positive-

definiteness property of the Hamiltonian.

2.3.1 Hamiltonian Analysis of Free Spin-1/2 Theory

Let us first consider the Hamiltonian of the free spin-1/2 theory where f = 0. This
case is simpler than that of the full Volkov-Akulov spin-1/2 Lagrangian which in-
cludes interaction terms in it. We will consider the latter case in the next section.

We split the D = 3 space-time indices into time and space indices a = (0, 7), and
define c% = £, Then the free Lagrangian in eq. (2.10) gets written in the following

form:
E%free =10yx T —ix T 9y (2.35)

The conjugate momentum is,

IL(t,x)
5(80)(’))

= ix*(t,x) T, (2.36)

pp<t7 X) =

where x and y stand for the spatial coordinates z* and 3.

The canonical Hamiltonian density is

Hc(t7 X) = aOXp<ta X) pp(ta X) - £<t7 X)
= —ix*(t,x) [0z X (¢, %) . (2.37)

x“(t,x) and ps(t, x) have the following equal-time (anti-commuting) Poisson bracket

relation:

{x“(t,x) ,pa(t,y)} = 056 (x —y). (2.38)

Knowing the expression for the conjugate momentum from eq. (2.36), we can write

down the primary constraint, which is,

Cy(t,x) = p,(t,x) +ix*(t,x) 0, =0. (2.39)
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The equal-time Poisson bracket relation between the primary constraints is:
{Cu(t,x),Cs(t,x)} =2iT0,6@(x—y). (2.40)

Since the Poisson bracket above is non-zero, the constraints C, (¢, x) are of the second-

class.

Now we wish to find if this system has secondary constraints. For that we need the
total Hamiltonian as defined in eq. (2.17). First we write the total Hamiltonian den-

sity which is the following:
Hr(t,x) = Heo(t,x) + u(t,x) Cu(t, x) . (2.41)

On integrating the equation above with respect to x, we get the total Hamiltonian,

which is,
Hr(t) = H.(t) + /d2x u®(t,x) Co(t,x) . (2.42)
Next we impose the time-conservation of the primary constraint C, (¢, x) for which

we equate its Poisson bracket with the total Hamiltonian to be zero as shown in the

following.

/ &y [C,(t, %), Ha(t,y)]

= /d2y [C(t, %), Helt,y)] +/d2yua(t,X){0p(t,Y)7Ca(t73/)} =0

=200 (t,x) T}, + u®(t,x)2i 0, = 0. (2.43)

The last equation above can be solved for u® (¢, x). It gives,
u(t,x) = e 0ix"(t,x) 5. (2.44)
Since [C,(t,x), Hy(t,y)] vanishes for u®(t,x) = —e” 9;x"(t,x) T4, it does not

give a secondary constraint. Therefore, the linear spin-1/2 theory has only two con-

straints, the primary constraints, which are second-class.
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Now that we know all the constraints present in this system, we count the number

of canonical degrees of freedom (DoF).

DoF to begin with : 4 because of 1, x2, p', and p?.
DoF cancelled by 1**-class constraints : 0 because there is no 1*-class constraint.

2nd

DoF cancelled by 2"?-class constraints : 2 because there are two 2"%-class

constraints — C; and Cj . (2.45)

So the total DoF = 4 — 2 = 2. These two canonical degrees of freedom correspond
to position and momentum, making up one physical degree of freedom. Therefore
the free fermionic theory has one physical degree of freedom which belongs to the

on-shell Majorana fermion.

Now let us move to the case of the full-fermionic Lagrangian which involves self-

interactions.

2.3.2 Hamiltonian Analysis of Full Volkov-Akulov Spin-1/2 The-

ory

Following is the full Lagrangian obtained after splitting the spacetime indices into
space and time indices separately.
-2

,Cl/g = 13())( FOX — IX Fl 81)( — fT €ij XX (81)( F(] an -2 a(]X Fz a]X) . (246)

The conjugate momentum is

oL
Pa = 000x°

=iT0s X7 + [ Tias Ox” (xX) (2.47)
and the canonical Hamiltonian density is

H1/2 = 00X Pa — 51/2
2
=iyIox + fT 7 xx 0ixI° 9;x . (2.48)

The primary constraint is:

Fo=pa—il0sx" = f 27 Tiap 0;x° (xx) = 0, (2.49)
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The anti-commutator of the primary constraint with itself is:

{Fa(t,x), Fs(t,y)}
= —2il%,6%(x—y)
— 2 729 (Xa(t, %) Tigg + x5(t, %) Tiga ) 9;X"(t, %) 6@ (x — y)
+2 f729 TipX(t, %) Con 05 (£, %) 0P (x — y)
— fEET (Xt x) Coa XM (8, X)) Tiap(0, + 0y,) §D(x —y) (2.50)

It is weakly non-vanishing. Therefore, it is of the second-class as was also the case

for the primary constraint in the free fermionic theory discussed in the last section.

Next, we attempt to look for secondary constraints. Following is the total Hamilto-
nian:

Hp(t) = H,(t) +/d2xuo‘(t,x) Fo(t,x). (2.51)

We impose the time conservation of the primary constraint F,,(t,x) by taking its
Poisson bracket with the total Hamiltonian and equating it with zero.

[y (B0, Harlt.y)) =
= [@yige, / yu(t,y) {Fy(t.y)  Falty)} = 0
=209 (t,y) Tl + f 727 x,(t, %) 0ix” (£, %) 0;x" (, %) Togw

— 2f 7290, (t, %) Xy (t, %) D;x" (t,%) Topw + u®(t, %) (Qirga

+ 267 f7 (Xo(t, %) Tiga + Xa(t, %) ig, ) 9;x° (£, %)

— 267 72T ,0 X" (t, %) 0 (t, x)) =0 (2.52)
The equation above can be solved for u®(t, x). It gives,
u(t,x) = (2 i Fga +2 £ 727 (xp(t,%) Diga + Xa(t, x) Tig, ) 0;x° (%)

—1
20 ) (20T,
+ f2e X,(t, %) @-Xﬁ(t, x) 0;X" (t,%x) Logy

— 2 f7290,"(t, %) X (t, %) ;X" (t, %) Fopy) (2.53)
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The time conservation of the constraint F,, (¢, x) gives us the value of the Lagrange

multiplier for the total Hamiltonian. Therefore we don’t get a secondary constraint.

Since F,, are the only constraints we have in the system, we can now start count-
ing the degrees of freedom. We begin with the fermions y* and their corresponding
momenta. We have x1, Y2, p' and p? . Therefore, we have four phase-space degrees
of freedom to begin with. The two second-class constraints F; and F; cancel two
degrees of freedom. So we are left with two canonical degrees of freedom. One of
the canonical degrees of freedom is that of the position and the other one of the mo-
mentum. So two canonical degrees of freedom correspond to one physical degree
of freedom in the configuration space.

The counting of the degrees of freedom using Dirac Hamiltonian formalism verifies
the presence of only one physical degree of freedom in the non-linear Volkov-Akulov
goldstino model.

2.3.3 On-Shell Hamiltonian Value of Full Fermion Goldstino Model

Depending on whether the energy of the system is positive, zero or negative, we get
to know whether or not the system is physical and if it has dynamical degrees of
freedom. For this purpose, we evaluate the Hamiltonian density on the mass-shell.

As shown in eq. (2.48) the canonical Hamiltonian density is
i [ ij 0
Hl/g =1X r 8,)( + T g7 XX lef an . (2.54)
The quartic order term in the above expression can be expressed differently using
I'- matrix identities (A.4). Modulo a total derivative, eq. (2.54) becomes
, 2 L f2 A
Hujp = ixT Oix + = xx Oix T Opx = == 8i(x) 0 (xx) (2.55)
Now note that the equation of motion (2.11) implies that

I"9;x = =T ox + O (x Ox 0x) - (2.56)

Substituting this expression into eq. (2.55) we get the on-shell value of the Hamil-

tonian density:

-2 -2
Hiyalon-shen = ix " ix + fT 9;(ixx) 0"(ixx) + fT A(ixx) dolixx). (2.57)
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In this expression the leading order quadratic term is the standard free Hamiltonian
of a massless Majorana fermion. The quartic terms are positive semi-definite since
1 X*Xq 1s a real nilpotent scalar. The positive semi-definiteness of the Hamiltonian
density shows that the energy of the system is bounded from below and is either

zero or positive. This verifies that the system is stable.

So we have seen that the Volkov-Akulov goldstino model is physically consistent and

does not have any unphysical ghost degrees of freedom.

Now let us move to the Volkov-Akulov Goldstone model of the field with the next
higher spin — spin-1 boson in D = 3.



Chapter 3

Vector Goldstone Model

Now we construct the Volkov-Akulov goldstone model with the spin-1 goldstone
A,(z) where a = 0, 1, 2. The corresponding Hietarinta spin-1 algebra is generated
by Poincareé generators and a bosonic vector operator S, satisfying the following
commutation relations:

[May , Meg] = i (T]bc ad = Nac Mya — Moa Mac + Nag Mye),
[Map , Pe] = 1 (e Pa — e By),
(M® 59 =i (n cha ey
[5¢, 8% =2ie™P,,
(S, ] =0,
[P, B) =0 (3.1)

The algebra above can also be regarded as an Inonu-Wigner contraction of the
s0(2,2) @ so(1,2)-algebra.

The symmetry transformations of z* and A,(z) generated by the algebra above are:

't =zt — f2e%g, A (x), (3.2)
AL (2)) = Aa(2) + 54, (3.3)

where s, is a constant vector parameter.

The infinitesimal transformation of the form of the goldstone field A, (z),

§Aq(2) = 84+ f2e%e (sb Ac(:c)) OgAa(), (3.4)

38
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shows that it transforms non-linearly under the symmetry. The commutator of two

variations (3.4) closes on the translation of A,
[02,01] Ag(2) = 2 f 2% (5] 52) 04A4() . (3.5)
In this case the invariant one-form is

E® = da® + f2 "™ Ay(x) dA.(2)
= da™ (0, + [T Ay(2) O Ac())
= ds"E, . (3.6)

3.1 Action and Equation of Motion

Using the Volkov-Akulov formalism as explained in sec. 2.1, we obtain the action.

Subtracting the constant term and modulo a total derivative the action is

Sy = —f2/d3x (det E§ — 1)
f—2
- / Pz (e Ay OpA. — 5 gtbeedel A, Ag0.Ap 05 A

—4
+ % €abc(€def€klmz4d Ae Al 8aAk 8bAf 8CAm

— &TkeféfdlmAd Ae Al aaAk 8bAf 80Am)) (37)

In the expression above the terms of the sixth order in A, vanish due to the anti-
symmetry of the Levi-Civita tensors and the Abelian nature of the vector field A,.
Therefore, the action becomes

-2
Sy = / dPx (e A, OpA. — fT el Ay Aq 0. Ay 05 A,)

(3.8)

We can see that the leading order quadratic term in the action above is the Abelian
Chern-Simons action. We know that it is gauge invariant under the following gauge
transformation:

Al (x) = Au(z) + O\ (). (3.9)
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Therefore, as is well known, the leading order Chern-Simons action describes a

gauge theory with no local degrees of freedom. Its equation of motion is
e OpA. = 0 (3.10)

On taking the divergence of the equation of motion, we get the following identity,
which is the Noether identity:

Da(e™ OyA) =0 (3.11)

This identity exists because of the anti-symmetry of the Levi-Civita tensor in the
indices a, b and ¢ and the symmetry of the partial derivatives d, and J,. A Noether
identity is a differential relation that shows that the equations of motions in the sys-
tem are not independent of each other. This tells us that there is a gauge symmetry
present in the system. So the existence of Noether identity (3.11) verifies that the
leading order Chern-Simons action is gauge invariant.

Equation of motion (3.10) can also be read as equating the field strength F,, =

0, A, — 0, A, to zero. With that perspective eq. (3.11) is a Bianchi identity.

We should now figure out whether the non-linear action (3.8) is invariant under a
non-linear generalization of the local symmetry. If it were so, then also in the non-
linear theory there would be no physical degree of freedom of A,(x) as in the free

case.

If a Noether identity exists for a system, then it has gauge symmetry. So let us try to
see if we can get a Noether identity for the non-linear action.

3.1.1 Noether Identity Test

We try to find the non-linear generalization of the Noether identity (3.11). Let us first
write the equation of motion for action (3.8), derived by extremizing the action. It
is

e Oy A, — £ A10,Ay 0 A =0 (3.12)

Note that in the linear case the identity in question is the divergence of the left hand
side of the equation (3.10) identically equal to zero. Trying to follow a similar pat-

tern here for the non-linear generalization, we re-express eq. (3.12) in the following
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form:
e DA, =0 (3.13)

where D, is the covariant derivative of the form
1
Dy = (B N0, + 3% Ou(E (BN, (3.14)

(E~1)¢ is the matrix inverse of £ defined in (3.6) and F := det EZ. It is natural to
assume that the non-linear generalization of the Noether identity of the free theory
is the vanishing of the divergence of the left hand side of (3.13) with respect to D,.
We check if the operator D, can replace the partial derivative 0, in the sought after
non-linear generalization of the Noether identity (3.11). We find that it doesn’t do
so.

£D,DyA, # 0 (3.15)

We were not able to find a more general form of D, which would produce the Noether
identity. If the Noether identity does not exist, then the non-linear Lagrangian does
not have a local gauge symmetry and the field A,(z) is a propagating physical field.
To confirm this assumption and to understand the properties of the possible propa-
gating degrees of freedom we will now carry out a perturbative analysis of the equa-
tion of motion.

3.1.2 Perturbative Analysis

The solution of the non-linear equation of motion (3.12) can be studied order-by-

order in f~2. At the zeroth order in f~2, the solution is
AY = 9,0 (3.16)
where ¢ is a scalar field. Up to the order f~2 the solution is
Ay =g+ f2AN L O(f 7). (3.17)

Plugging this into eq. (3.12) we get the following expression for the field-strength of
A((ll) in terms of ¢ :

£ Gy AW — gaedet 910 0,0y ;00 = 0. (3.18)
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Upon taking the divergence of the equation above, we get,
£ 9,0, AW — el 9,040 0.04p DOuip = 0. (3.19)

The first term in the equation above, i.e. ¢4 aaa,,Ag”, isidentically zero because the
Levi-Civita tensor is anti-symmetric in a, b and ¢ while the partial derivatives 9, and
0, commute with each other. The ¢ term in the equation above can be re-written
as following on multiplying with a constant factor of 1/6:

1
- = €abc€def aaang Geabgp 8f8090 =0

6
= det(9,0"¢) =0 (3.20)
= (Op)? — 309 0,0°p 0,0%p + 2 0,0°p 0,0°p 0.0"p = 0. (3.21)

This equation can be regarded as the higher-order equation of motion of ¢. It has
only second-order time derivatives of ¢, though. This tells us that ¢ is a propagating
scalar field albeit not the usual kind of scalar field since it does not have a usual
kinetic term 0, 0.

At the end of section (3.1.1) we mentioned that the absence of gauge symmetry
should result in the presence of a propagating field. Now that we have obtained
a propagating scalar field ¢ in the system by performing perturbative analysis, we

see that it is this field which is associated with the broken gauge symmetry.

3.1.3 Stiickelberg Trick for Vector Goldstone Model

Now we apply the Stiickelberg trick to study the properties of the system. Stiick-
elberg trick brings a local symmetry in the Lagrangian by introducing an auxiliary
field, also known as the Stiickelberg field. Let us introduce an auxiliary field ¢ into
the system and replace the vector field A, with A, as following:

N|=

Ay = Ay = Ay — 20,0 3.22)

A

A, is invariant under the following transformations:

§A, = O\,
5p = f2N. (3.23)
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Hence, by introducing the auxiliary field ¢ we made the Lagrangian gauge invari-
ant. In order to keep the Lagrangian finite in the field © under the limit f — oo,
which we take ahead, the exponential power of f in eq. (3.22) should be 1/2.

In the Lagrangian (3.8) we substitute the vector field A, with A, to get the Stiick-
elberg Lagrangian. On taking the limit f — oo in the Lagrangian, we find that the
vector field A, decouples from the Stiickelberg field ¢.

) 1
L(Ad)| o0 = ™ A 0y Ac = 5 ™2™ 0, 0 0.0p 0705 (3.24)

Therefore the limit f — oo is the decoupling limit for the Stiickelberg Lagrangian.

Now that we have the Lagrangian, we can find the dimensionality of each field in it
and see ifthe field ¢ needs to be rescaled to make it canonical. We have the following

dimensions for the fundamental scales of mass, length and time:
M]=1 [L|=[T]=-1 (3.25)

This implies that the dimension of a derivative 9, is 1.

The action S = [d®xz £ is a dimensionless quantity which implies that the La-
grangian density £ (also referred to as Lagrangian in this text) must have canonical
dimension 3. Using this we can calculate the dimensions of the fields appearing
in the Lagrangian. For the fields A, and ¢ appearing in the Lagrangian (3.24), on

counting the dimensions we get,

[A,] = (3—1(from &) )/2=1
(] = (3—6(from 0,))/4 = —3/4 (3.26)

The kinetic Lagrangian for a canonical massless scalar field ¢ is (9¢)?. So the di-

mension of a canonical scalar field is:
[¢] = (3 —2(from 9))/2=1/2 (3.27)

But in (3.26) we got the dimension of ¢ to be —3/4. That means ¢ is not canoni-
cal yet. It should be rescaled with a mass parameter in order for its dimension to
become 1/2.
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Let ¢ be rescaled by M? such that now ¢ has the canonical dimension 1/2. Then,

the ¢ term in Lagrangian (3.24) becomes
1
—5 el M* 0,0 0p 0eOpp 00p . (3.28)
On counting the dimensions of /%Y in the above Lagrangian term, we get,

[M*%] =3 —6(from ,) — 2 (from $) = —5
= y=—5/4. (3.29)

So the scalar part of Lagrangian (3.24) becomes
1
-3 el M5 0,4 04p 005 0 0cp , (3.30)

where the scalar field ¢ has the canonical dimension 1/2. We rewrite the scalar field
Lagrangian by integrating expression (3.30) by parts, to get the following:
M—5
L(§) = —5— "™ 0,00 0,045 010
= —3M " det(0,0"9)
M—5

=-— ¢ ((O¢)° — 300 0,0° 00" +20,0"¢ 9,0°4 0.0°¢)) . (3.31)

We can notice that the Lagrangian above has expressions that appeared earlier in
the perturbative analysis written in (3.20)! So the propagating scalar field ¢ that we
obtained in the last section is a Stiickelberg field. Equation (3.21) is the equation of
motion for the Stiickelberg Lagrangian in the decoupling limit (3.31) written above.

Lagrangian (3.31) happens to be the Lagrangian of a galileon.

3.2 Galileon

A galileon is a scalar field, generally called 7(z), that arises in theories of modified
gravity. It modifies general relativity on perturbed Minkowski spacetime. It couples
to the metric g, resulting in the Einstein-Hilbert action \/—gR getting replaced by
the action \/—¢g(1 — 27)R plus self-interaction terms that are derivatives of 7. It
is not coupled to matter directly but indirectly because of its coupling to g,,,,. This
is necessary to maintain the universality of gravitational interactions. It enables a
model independent analysis of a large class of modified gravity models [71].
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General relativity is an effective theory that is assumed to hold at low energy scales
below an ultraviolet cut-off limit and at large distances, such as solar system dis-
tances. Also, the accuracy of the predictions of general relativity increases with time,
so it is valid for late time scales such as the present but perhaps not at early time
scales near the Big Bang. Because of its validity at low energy scales, general relativ-

ity is said to be a theory valid in the infrared regime.

The supernovae experiments [72, 73] have shown that the universe is expanding at
an accelerated rate. If ones tries to justify the accelerated expansion through gen-
eral relativity, one needs to provide a certain value to the cosmological constant A.
Giving that particular value to A physically means giving a correction to the vacuum
energy of the universe. This correction in the vacuum energy can be accounted for

by the presence of dark energy.

The value of A obtained in general relativity [74] on positing the existence of dark
energy to explain the accelerated expansion, is smaller than the value provided by
quantum field theory by the order of magnitude 10*?°. This enormous annatural
discrepancy could mean that instead of a dark energy (cosmological constant) com-
ponent being responsible for the accelerated expansion, gravity is modified at cos-

mological distances so as to produce an accelerating universe.

A number of different theories of modified gravity [75, 76] have been proposed till
date, for e.g., Dvali-Gabadadze-Porrati (DGP) model [77], massive gravity [78], etc.
All the theories of modified gravity have a scalar field universally coupled to general
relativity. The additional degree of freedom introduced by the scalar field extends
the validity of the theory to sub-cosmological distances, hence beyond the infrared

regime. For a review on galileons, see [79-82] and the references therein.

3.2.1 Modifying Gravity

Let us see how galileons arise in the theories of modified gravity [83]. A galileon
is supposed to modify the linearized gravitational potential produced by an energy
momentum source or the Hubble flow at the order O(1), i.e., at cosmological scales.
But since general relativity gives us the correct predictions at large-scale distances,
we need to ensure that modified gravity does not deviate from general relativity at
solar system distances beyond the order O(10~3). With linear dynamics of the scalar
field, it is not possible to satisfy both the above conditions simultaneously. How-
ever, the introduction of non-linearities enables the extrapolation between differ-

ent length scales.
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In the infrared regime when gravity is locally modified by a universally coupled
scalar, we need to ensure that the solar system tests are recovered. They can be
recovered by the Vainshtein effect [84] which is the decoupling of the scalar from

matter in gravitationally bound systems.

Let us denote the universally coupled scalar field by 7.. We need to make the fol-

lowing assumptions for 7.:

1. The dynamics of 7. should be non-linear. Up to the quadratic order, it should

be expressed as following:
.= C+ Byt + A ata” + O(:ESHg) . (3.32)

This quadratic approximation is invariant under the combined action of a
spacetime translation, i.e. 7.(z) — m.(x + J) and a shift, i.e. 7.(z) — 7.(x) +
b,x*+c. When . as expressed in eq. (3.32) is transformed under these trans-

formations, we get,
me(z) = me(x + 6) — 24, 6"2” — B,o", (3.33)

This tells us that b, = —2A4,,0" and ¢ = —B,6". Generally the symmetry
of a solution follows from an invariance of the equations of motion. That in-
variance constrains the form of the Lagrangian. It can be deduced that the

Lagrangian is invariant under the following shift:
me(z) = m(x) + byt +c. (3.34)

The symmetry condition (3.34) is obtained as a result of demanding the solu-
tion to have a quadratic approximation (3.32). A solution up to the quadratic
order can be obtained even from a linear equation of motion via Taylor ex-

pansion. For e.g., consider an ordinary two derivative Lagrangian:
1 2
@0 = V(p),
where the equation of motion linearized in ¢ = p(z) — p(0) , is
O = V'(p(0)) = const . (3.35)

This is alinear equation of motion which admits the quadratic solution (3.32).

It is invariant under the symmetry (3.34). In fact, generally the symmetry
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p(x) — p(x) + b,a* + c of the approximated solution follows trivially from
the shift invariance of the equations of motion.

But as mentioned before, we want 7. dynamics even at the local quadratic
order in the coordinates to be described by a non-linear equation of motion.
So we need to ensure that the equations of motion of 7. have the shift sym-
metry (3.34) while being non-linear. This leads us to our second non-trivial
assumption.

2. The equations of motion of 7. should be invariant under the shift symmetry
(3.34) while each 7. in the equations of motion is acted upon by at least two

derivatives.

3. The third and final assumption we make is that the equations of motion of 7,
should be only of the second order (in time derivatives). This is equivalent to
demanding that the equations of motion with £, being the Lagrangian, be of

the following form:
oL

ﬁ = F(9,0,7.) (3.36)
where [’ is a non-linear Lorentz invariant function of the tensor 9,0, 7. The
need for this assumption arises by comparing the ghost-free DGP model with
the ghost-containing Fierz-Pauli massive gravity. The DGP model contains
equations of motion in 7. only of the second order while in the Fierz-Pauli
case the analogue of 7. dynamics leads to fourth order equations of motion

giving a ghost at the onset of non-linearity [85].

The three conditions listed above correspond to the three main properties of the

DGP model that guarantee its viabilty at solar system distances.

In the shift transformation (3.34) the vectorial parameter b,, corresponds to the shift

of the gradient of 7 by a constant vector, i.e.,
Oyme — Oume + by, .
This is the space-time generalization of the Galilean symmetry
T—=THv=x—x+0

of non-relativistic mechanics (0+1 field theory), where z is the position coordinate,

v is the velocity and ¢ is the time coordinate. By analogy the transformation 7. —
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7.+ bz is called the Galilean transformation. This is why 7. is called galileon. From

now on we can write it as just 7.
So now we have seen how modifying gravity gives a galileon.

The shift corresponding to ¢ in (3.34) suggests that 7. may be a Goldstone boson.
In massive gravity models it is associated with the breaking of diffeomorphism in-
variance, while in our model of the vector Goldstone field it is associated with the

spontaneous breaking of U (1) gauge symmetry.

3.2.2 Galileon Lagrangian

As mentioned before, the galileon Lagrangian must be such that its variation with

respect to 7 is of the following form:

5L,
—F )
= (8,0,) (3.37)

with /' being a non-linear function that is Lorentz invariant. When we try to con-
struct functions of the kind F', we find that there is only a small number of such
functions. In three dimensional spacetime only four such functions exist. We get
one extra such function every time we go one dimension higher. In D dimensions,
there exist D + 1 Lagrangian terms of the kind F', which we can refer to as Galileo-
invariant Lagrangian terms. The most general Lagrangian is the linear combination

of such terms multiplied by arbitrary functions of 7.

In D = 3 there are four Galileo-invariant (modulo total derivatives) Lagrangian

terms:
£1 =, (3.38)
Lo=7n0n, (3.39)
Ly =7 [(0Or)* — (9,0,7)(0"0" )], (3.40)
Ly=7[(0Or) = 3(07)(0,0,7)(8"0" ) + 2(8,0" 9,0 0,0"T)] . (3.41)

Higher order Galileo-invariants are total derivatives, so they are trivial.

The complete Lagrangian for 7 is a linear combination of the above invariants:

4
L= ayLy, (3.42)
n=1



Vector Goldstone Model 49

where the a/ s are generic coefficients.

L,ineq. (3.41) is the same as the Lagrangian (3.31) which we obtained on perform-
ing the Stiickelberg trick on the vector Goldstone in section 3.1.3. So our Goldstone

is like a galileon.

It is more convenient to look at the equations of motion derived from the extrem-
isation of the Lagrangian terms above. The equations of motion do not have any
ambiguities on account of the presence of total derivative terms obtained from inte-
gration by parts. Also, all the terms in the equations are composed of second deriva-

tives of 7.

— 0Ln

= on?

the left-hand-side of the equations of motion:

Extremising the Lagrangian terms, &, we get the following contributions to

£ =1 (3.43)
E =0n (3.44)
& = (Om)* — (9,0,7)? (3.45)
& = (On)® = 307(0,0,m)* + 2(8,0,7)* (3.46)

where (0,0, m)" denotes the cyclic contraction
(0,0,m)" = 0,0, 0”01 0,0,m - - - 0”01 (with n 7s).

The complete equation of motion is the following linear combination:

= 0Lr :chenzo. (3.47)

We can see from &, in eq. (3.46) that it is the same as eq. (3.21) that was obtained in
the perturbative analysis of the vector Goldstone model, which is also the equation
of motion of the Lagrangian obtained in the Stiickelberg trick. So the form of £, and

&, tell us that the Stiickeblerg field in our vector Goldstone model is like a galileon.

Below we rewrite the Stiickelberg Lagrangian and its equation of motion shown ear-

lier:
M—5
L(P) = — 5 ¢ ((O¢)* — 300 0,0" 00" + 20,0°¢ ,0°4 0.0°¢)) , (3.48)
(Op)? — 30 0,0° 0,0°¢ + 2 0,0°P 0,0°¢ 0.0°¢ = 0. (3.49)

We did not get the terms corresponding to £, L5, and L3 in the above.
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The equation of motion of Stiickelberg Lagrangian, i.e., (3.49), has two kinds of sim-

ple non-trivial solutions. One set of such solutions is that of the fields that are static:
Op(t, ") = 0, (3.50)

The other set of solutions consists of plane-wave-like solutions:
p = P g(p) + e~ 9" (p), (3.51)

where p, is an arbitrary time-like, space-like or light-like momentum. It is a priori
not subject to the mass-shell condition p,p® — m? = 0 since the Lagrangian (3.48)
does not contain the quadratic kinetic term £, = — 1 (9, 0" + m? $?). Hence,
there is no corresponding term in the equation of motion. So, this higher-order
model contains tachyons, unless they are excluded by imposing appropriate mass-
shell conditions on ¢.

We wish to confirm that ¢ is the only propagating field in this vector Goldstone
model and study its dynamical properties. For this purpose we now move to the

Hamiltonian analysis based on Dirac formalism.

3.3 Hamiltonian Analysis of the Abelian Chern-Simon

Theory

First we carry out the analysis of the Hamiltonian for the simpler case of the free
Chern-Simons vector field. Doing so will give us a better idea of the scheme of the
analysis. Also, it will enable us to distinctly understand the factors that make the

non-linear model different from the linear one.

In the Hamiltonian formalism, time and position coordinates are considered sep-
arately. Therefore, as in the spin-1/2 case analysis, we split the space-time indices

into time and space indices —a = (0,7) . We have e" = ¢%.
The leading order Abelian Chern-Simons Lagrangian has the following form:
Ecs = €abcAa(t, X) 8bAc(t, X)

= €jkA0(t7 X) 8jAk (t, X) - €ikAi(t, X) aoAk (t, X) + €iin (t, X) 8jA0(t, X),
(3.52)
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where x stands for the spacial coordinates z* = (z', 2?), so that * = (¢, x).

The conjugate momenta are:

, oL g
) — — WA
p (t,X) 5(60142(15’)()) € A](t,X) )
Pt x) = LR (3.53)

d(0gAp(t,x))
The equal-time Poisson bracket relation between A, and p’ is:
[Aa(t, %), p°(t,y)] = 2 6P (x — y), (a=0,17). (3.54)
The canonical Hamiltonian density is

He(t,x) = p'(t,x) OpAi(t,x) — Los(t,x)
= €ij (Ao(t, X) @Az (t, X) + Aj (t, X) 82A0(t, X)) (355)

The above expression can be integrated by parts with respect to x to yield the canon-
ical Hamiltonian. It comes out to be,

HL() = 2 / dx £ Ao t, %) 05 Ai(t, ) (3.56)

The primary constraints are:

Ci(t,x) = p'(t,x) — 7 A;(t,x) =0 (3.57)
COt,x) = p°(t,x) = 0. (3.58)

The Poisson bracket relations between these primary constraints are,

t,y)] =0,
t,y)]=0. (3.59)
We see that the constraints C" are of the second-class while CV is of the first-class.

So (' are not associated with a gauge symmetry of the system while C? is.

To find the secondary constraint following the Dirac procedure, we consider the
total Hamiltonian which includes the primary constraints with their corresponding
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Lagrange multipliers.
Ho(t,x) = He(t, x) 4+ up(t,x) CF(t,x) + up(t,x) COt, x) . (3.60)

We impose the time-conservation condition on the primary constraint C"*. For that

we take its Poisson bracket with the total Hamiltonian and equate it to 0.

/ Py [Ci(t,x), He(t,y)
- / Py (Ot %), Ho(t,y)] + [ dyun(t,y)[C (1 %), C5(t,y)]

—I—/d2xu0(t,y)[0i(t,x),C’O(t,y)] =0. (3.61)

Solving the above equation provides us with the value of the Lagrange multiplier

ug(t,x), which comes out to be,
ug(t,x) = OpAo(t,x). (3.62)

So the time conservation equation (3.61) does not provide us with a secondary con-

straint.

Now let us see if we can get a secondary constraint from the time conservation equa-

tion for C°.

[ v icox) Hatt.y)
= [@yieon 1ty + [ Eyun(ey)iC ). Oty
+ [ Eyuty)lce . Cty) =0
= 99;A;(t,x) =0
So we get a secondary constraint:

e90;A;(t,x) = 0. (3.63)

Let us compute the Poisson brackets of the above secondary constraint with the

other constraints to check whether it belongs to the first-class or the second-class.
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The Poisson bracket of the secondary constraint with C°(¢, x) turns out to be 0.

[CO(t, %), €70, A;(t, y)] = 0 (3.64)

The Poisson bracket of the secondary constraint with C*(¢, x) is as following.
[£90,A;(t,x),C*(t,y)] = *0; 6P (x — y) (3.65)

The above Poisson bracket has a non-zero value, but we will see that the secondary

constraint can be modified such that it becomes a first-class constraint.

The expression for the secondary constraint can be written as the derivative of the
second term of the primary constraint C”'(t, x) (eq. (3.57)). This fact enables us to

guess that the Poisson bracket in eq. (3.65) can also be expressed as following:

[EijaiAj(t, x) , C’k(t, y)| = Sls) 5(2)(){ -y)
= % [0,C(t,x), C*(t,y)] (3.66)

This tells us that,
. 1 A
[€90,A,(t,%x) + 3 ;C(t,x),C*(t,y)] =0 (3.67)

Let us denote the expression £79;4;(t,x) + 3 9;C'(t,x) by D(t,x). The Poisson
brackets of D(t,x) with C°(¢, y) and with D(¢, y) are,

[D(t,x),D(t,y)] =0, (3.68)

respectively. So D(¢,x) qualifies to be a first-class constraint.

Now let us try to check if there are any tertiary constraints present in this system.
For this purpose, we write down the time conservation equation for the secondary
constraint D(t, x), which is,

/ @y [D(t,x), Hr(t,y)]
_ / 2y [D(t, %), Holt,y)] + / Py uy(t, y)[D(t, %), C*(L,y)

4 / Py uo(t, y)[D(t, x), CO(t, y)] = 0
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Since [D(t,x), H.(t,y)] = 0 and D(t,x) commutes with all the constraints, the
above equation does not yield any new information. Therefore, this system has con-

straints only up till the secondary level and no further.

Now that we have all the constraints in this system, we can count the number of
canonical degrees of freedom. To begin with, we have 6 canonical degrees from the
vector field components A; , A, and Az and their corresponding momenta p*, p?
and p*. We have two firs-class constraints — C° and D. Each of them cancels two
canonical degrees of freedom, leaving us with 6 — 2 — 2 = 2 canonical degrees of
freedom. We have two second-class constraints — C'* and C?, each of which knocks
down one degree of freedom. So we are left with 2 — 1 — 1 = 0 canonical degrees of
freedom. This implies that there is no dynamical field in this theory.

It verifies that the abelian Chern-Simons action does not have a physical degree of

freedom due to the gauge symmetry (3.9).

3.3.1 Hamiltonian Value on the Constraint Surface of the Chern-

Simons Model

Let us try to see what value the Hamiltonian takes on the constraint surface. We

rewrite the Hamiltonian from eq. (3.56) below.
H.(t) =2 / d*x e Ag(t, x) 0; A (t, %) . (3.69)

Substituting the secondary constraint from eq. (3.63), i.e., €79;4;(t,x) = 0, into
the Hamiltonian above, we find that it vanishes.

H(t)freel ‘cs = O . (370)

This verifies the absence of propagating modes in the system.

Now let us move to the Hamiltonian analysis of the full vector-Goldstone model that

includes higher-order self-interaction terms.
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3.4 Hamiltonian Analysis of the Full Vector Goldstone
Model

Action (3.7) takes the following form:

S, = / B (240 0,4, + A, o Ay)
+ f_2 / d3CL’ 8ij€kl (AJAk (@Al avo — 8lA0 80141)

+ AgAy OoA; DA, — AZOLA, 8kAi>. (3.71)

We can notice that this action is first-order in time derivatives, as was also the case
for the fermionic action discussed in Section 2.3. This implies that the conjugate
momenta obtained from this action would be devoid of dependence on time deriva-
tives of the vector field, i.e., they will be expressed in terms of only the spatial deriva-

tives of the vector field components Ay and A; . The conjugate momenta are:

: oL . .
p' = SO0 g9A; — M (A; A 01 Ag — Ag Ay O1A;)
041
P’ = 5 goil y = g9eM A Ay 0, A (3.72)
0

The canonical Hamiltonian density is

He = p° 0o Ao + p' O A; — L4 (3.73)
= 2694 0;A; — VM AZ 0L A O A (3.74)

The primary constraints are:

Ci = pi — SijAj -+ f_2€ij€kl(Aj Ak 81A0 — AO Ak 8lAj) =0 s (375)
CO=p’— [2e9eM A; A 0, A = 0. (3.76)
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The Poisson bracket relations between the primary constraints are:

[Ci(t,x),CI(t,y)] = 29 0P (x —y) + 49" A (t,x) Op Ao (t,x) 0P (x — y)
— £9eM Ag(t,x) Aj(t,%) Oy, +0y,) 0P (x —y)  (38.77)

[Cz(t7 X) ) CO (tu Y)} =4 6ji€klAl<t7 X) akA](t7 X) 6(2) (X - Y)
— M A (t, %) Aj(t,X) (O, + 0y, ) 0P (x —y)  (3.78)

[C°(t,x),C°(t,y)] = 0. (3.79)

Since the constraints C* have non-zero Poisson brackets above, they are of the second-
class, as in the linear case. On comparing these constraints with the ones obtained
in the case of leading order Chern-Simons action in equations (3.59), we can see
that the first-class constraint C° of the leading order case does not commute with
C*, but we will see below that it can be modified by terms involving C* such that the

modified constraint commutes with C".

Now let us see which secondary constraints this system has. To find the secondary
constraints following the Dirac procedure, we consider the Hamiltonian density
which includes the primary constraints with their corresponding Lagrange multi-
pliers.

Her(t,x) = He(t, x) + ui(t, x) C'(t,x) + uo(t, x) C°(t, %) (3.80)

Here Hr(t,x) is the total Hamiltonian density, . (¢, x) is the canonical Hamilto-
nian density, u;(¢, x) and u(¢, x) are the Lagrange multipliers corresponding to the

primary constraints C*(¢, x) and C°(¢, x) respectively.

On integrating the above, we get the expression for the total Hamiltonian:

Hr(t) = /dgx Hr(t,x) = H.(t) + /d2xui(t,x) C'(t,x) + /d2xu0(t,x) CO(t, x)
(3.81)

As explained before, in order to get a secondary constraint, we need to impose the
time conservation of the primary constraint (see eq. (2.20)). So we take the time
derivative of the primary constraint C" (¢, x) by taking its Poisson bracket with Hr(t)
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and equate it to zero as following:

[Cl(t7 X) ) HT(t7 y)]

Yy
+ /d2y uo(t,y) [C'(t,x),C%t,y)] =0 (3.82)

Let [ d*y [C'(t,x), C?(t,y)] be denoted by C"(t,x). Let Cjx(t,x) be the inverse
such that C% (¢, x) Cji.(t, x) = §i. Then eq. (3.82) becomes:
[C*(t.x) , He(t)] + u;(t, %) CY (£, %) + uo(t, %) /dQY [C'(t,x),CO(t,y)] = 0
(3.83)

We can solve the above equation to get an expression for v, (¢, x).

%) C(t.x) = = [C(6,3) ()]~ wolt.x) [ @y [C'(t.). Cty)
= u;(t,x) = — [C'(t,x) , H.(t)] Cji(t, x)
~un(tx) [y (C(Ex). Oty Ot x) 3.84)
On substituting the values of H..(¢, x), C (¢, x) and C°(t, x) into the above equation,
we get the following:

1
(1 2eM A (1, %) D Ao 1, x))
— 92 EikElmA()(t, X) am140 (tv X) alAk (t’ X)

u;(t,x) (SikﬁkAo (t,x)

— 2ug(t,x) eMe™ Ay (t, x) O A (t, x)) (3.85)

We have obtained a restriction on the Lagrange multiplier «;(¢, x). This means that

eq. (3.82) is not going to provide us with a secondary constraint.

Now when we substitute the expression for u;(t,x) from eq. (3.85) into the total
Hamiltonian (3.81), one can check that the term proportional to u (¢, x), which will
be of the form C°(¢, x) + F (¢, x), will commute with C*(¢, y). Let us denote the term
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CO(t,x) + F(t,x) by C°(t, x). We have,

COt,x) = C°(t,x) + F(t,x) where
2 Ei’j/Ajl (t’ X) az/Ak (t, X)
(1 + 2 A;(t,x) 0;Ao(t, x) )

F(t,x) = C*(t, x) (3.86)

On taking the commutator of C°(¢, x) with C(¢, y) we get,

[CO(t,x), C'(t,y)]
1 3
= — élz]lclAAt7 QZA t,
(1""25@/],143"(@?() ai’AO(t;X)) ( eyt x) k()
+ 8k e A (,%) O Ar(t,x) Aj(t, %) 0; Ao(t, X)

-8 €ij€kl€mn14n<t7 X) amAO (ta X) AJ (t7 X) a'LAk (t’ X>

+ (1+2™ A, (t,x) 0, Ag(t,x) ) €7MA; (8, x) Ap(t,x) (O, + ayi)> d@(x —y)
(3.87)

This gives us the following result:
[COt,x), Cl(t,y)] = €7 A;(t,x) Ap(t,x) (D + Oyi) 6 (x —y) (3.88)

The right hand side of the above equation vanishes on integrating it with respect
to x while using the properties of Dirac-Delta function. Please refer to Appendix
B for further details. The terms in the Poisson brakets which are proportional to
(0s, + 0,,) 6@ (x — y) are effectively zero and can be omitted.

So, effectively eq. (3.88) reduces to
[CO(t,x),C(t,y)] = 0. (3.89)

So we have managed to modify the original constraint C°(¢,x) to the constraint

C(t, x) such that it effectively commutes with the other primary constraint C (¢, x).

Letusnow checkif we get a secondary constraint by imposing the time conservation
of the primary constraint C°(¢, x). Taking the Poisson bracket of C°(¢, x) with Hp(t)



Vector Goldstone Model 59

we get,
Co(t,x ), Hr(t,y)]

= /d2y [CO(t, %), Hr(t,y)]
It

Py [CO(t, %), Helt, y)] + / Py ui(t,y) [C(t,x), CO(t,y)]

+ /d yuo(t,y) [CO(t,x),CO(t,y)] =0 (3.90)

Since [C°(t,x),C%(t,y)] = 0, we have,

/ Py [C(t, %), Ho(t, y)] + u;(t, %) / Py [0 x), CILy)] =0 (3.91)

Substituting the expression for u;(t, x) from eq. (3.84) into the equation above, we
get,

[C°(t, %), He(t)] — [C"(t,x) , He(t)] Cji(t,X)/de [C°(t, %), C7(t,y)]

~ i) [ @2Cx,C%a) oy [ Pyicen) Ceyl) <o

(3.92)
Let us denote [ d?y [C'(¢,x),C°(t,y)] by V'(¢,x). Then,
= [C%(t, %), He(t)] — [C'(t,x) , Ho(t)] Cji(t7x)/d2y [C°(t, %), C(ty)]
+ uo(t,x) V'(t,x) Cji(t,x) VI (t,x) = 0 (3.93)

V'(t,x) and V' (t,x) are vectors which can commute with each other. So they are
symmetricin ¢ and j. C};(¢, x) on the other hand is antisymmetric in i and j. There-
fore, the last term in the equation above is equal to zero.

uo(t, x) Vi(t,x) Cji(t,x) VI (t,x) =0 (3.94)
This give us,
[CO(t,x), Ho(t)] — [C(t, %), Ho(t)] Cji(t,x)/cﬁy [CO(t,x),CI(t,y)] =0 (3.95)

In the equation above we can see that there is no Lagrange multiplier, u;(¢,x) or

uo(t,x), present. This means that this equation is a secondary constraint.
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Now let us try to simplify equation (3.95) and write down its expression in terms of

Ap(t,x) and A,(t,x). The equation can be rewritten as following:

(€Ot Hult) — [ Py [CO(t ), C7(0,3)) Gt ) [C7(8,%)  Ho(6)] =0
=[C(t,x), He(t)]p =0 (3.96)
where [..]p is a Dirac bracket'.
From eqn (3.77) we know that
C(t,x) =26 + 47 Ay(t,x) O Ao (t,X)
=2¢e" (1+2eMA)(t,x) 9 Ao(t,x) ) , (3.97)
which gives

61']'

CZ" t, - — .
i(t:%) 2 (14 2eMA(t,x) O Ao(t, %))

(3.98)

Substituting the expression for C;(¢, x) shown above into eq. (3.96), we get,

[CO(t,x), Ho(t)]p = 0
= —26909;A;(t,x) — 2 Ay (t,x) O A (t, %) O, A;(t, x)

5ij5klAj(t, x) 0; A (t, x) <E)kA0(t, x) — 2™ Ag(t,x) 0, Ao(t, X) O A (t, X))

4 — =

* 1+ QEZIJ,AjI(t,X) ai/Ao(t,X) 0

(3.99)

1 i i
T T 14267 A; 044, (5 T0;A; +29eM0, Ao (A 0,45 — A; O A))
+ 5ij€klA0 8kA] 81141 + 2 SijEkZEmnAo 81141 Gon (An 8kAj — Akﬁn Ag)) =0
(3.100)
Therefore, the secondary constraint is,
B(t, X) = €ijaz‘Aj(t, X) -2 8ij€kl Aj (t, X) 8kA0 (t, X) (%Az(t, X)
+ Ve Ay (t,x) Op A (L, x) 0, Ai(t,x) = 0 (3.101)

IDirac bracket is defined as follows:
[F,Glp =[F,G] = [F,J%]Cap [JﬂvG}v

where C, is the inverse of the matrix C*# = [J, JP].
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So the system has one secondary constraint similar to the case of the leading order

Cherns-Simons case.

The Poisson bracket of B(t ,x) with C(t , y) is

= —eY0,0(x—y)+6f29M LA (t,x) O A;(t,x) 6(x —y)
+2 f 2N 9,0 (Ao (t, x) Op A (t,x) — Aj(t,x) O Ao(t,x)) 0(x —y) . (3.102)

We can make this Poisson bracket vanish by modifying the constraint B (3.101) as

follows
B(t,x) = B(t,x) — 6 f 2" 9 Ao(t,x) O A;(t, x) CI(t, %)
+ ;09 (t,x) — 2f 289, (Ao (t, x) Op A (L, x)
— Ay(t,x) OpAo(t,x)) CU(t,x)), (3.103)
where
~j Cj (t,X)
] p—
) = ST e AL oA X)) i that
[C’j (t,x),C(t,y)] =" d(x —y). (3.104)
Thus,
[B(t,x),C(t,y)] =0. (3.105)

However, B(t, x) has a non-vanishing Poisson bracket with C°(¢ , y):

[B(t,x),CO(t,y)] = —f 27" O, Ai(t ,x) 1A (t,x) 6(x —y)
— 2 f2EM A (1, %) 0, A (t,X) D0 (X — ) . (3.106)

If we take the linear combination of the constraints B(¢,x) and C°(¢,x), namely

Bi(t,x) =3 (B(t,x)+C°(t,x))and By(t,x) = 5 (B(t,x)—C"(t,x)), the Poisson

bracket simplifies to

[Bi(t,x), By(t,y)] = f 29 0, Ai(t ,x) 0,4,(t, %) 6(x — ). (3.107)

As we had seen in the case of the free Chern-Simons theory, there were two first-

class constraints. However, we do not have any first-class constraint in this system,
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since the right hand side of eq. (3.107) is in general not zero. We should be able to

recover the constraints of the leading order case by setting f =2 = 0 here.

We can see that on setting f ~2 = 0, the Poisson brackets (3.106) and (3.107) vanish.
So then the constraints C°(¢,x) and B(t, x) (or equivalently B; (¢ ,x) and By(t , x))
be come of the the first-class and generate the local symmetry of the Chern-Simons

action.

In the non-linear case in which f~2 # 0, the Poisson brackets (3.106) and (3.107) are
non-zero for a generic field 4, (¢ , x). Therefore the constraints C°(¢ , x) and B(t , x)

belong to the second-class.

One can also check that the non-linear model does not have tertiary constraints,
i.e. that the Poisson brackets of the primary and the secondary constraints with
the total Hamiltonian (3.80) vanish provided the Lagrange multipliers u, (¢, x) and

uo(t , x) are appropriate functions of A, (¢, x) and its derivatives.

Let us count the number of canonical degrees of freedom in the non-linear case.
There are 6 canonical degrees of freedom to begin with, coming from the three vec-
tor field components Ay(t,x), A;(t,x) and A, (¢, x) and their corresponding mo-
menta. There are four second-class constraints — C°(¢,x),C'(¢,x),C?*(t,x) and
B(t,x). Each of them cancels one canonical degree of freedom. So we are left with
6 — 4 = 2 canonical degrees of freedom. These 2 canonical degrees of freedom
contained in A, (¢, x) and p“(t, x) correspond to a single degree of freedom in the
Lagrangian formulation. This is the scalar mode discussed in sections 3.1.2 and
3.1.3.

3.4.1 Hamiltonian Value on the Constraint Surface of the Full
Vector Goldstone Model

We should evaluate the value of the canonical Hamiltonian on the constraint sur-
face for getting an insight about the energy of the system. Let us once again look
at the expressions for the canonical Hamiltonian density (3.73) and the constraint
B(t,x) (3.101).

Hc(t7 X) =2 EijA()(t, X) alAJ (t, X) + €ij6klAg (t, X) 8kAJ (t, X) 85141 (t, X)
B(t, X) = 8ij8iAj (t, X) —2 Sijskl Aj (t, X) akAo(t7 X) 6lAZ<t, X)
+ eV Ay (t,x) O A (L, x) 9, Ai(t,x) = 0. (3.108)
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On rewriting the expression for [ d*x H.(t, x) using integration by parts and adding
and subtracting terms, it can be written in the following form, modulo total deriva-

tives.

Ho(t,%X)1]es = 240(t,x) B(t,x) + 343(t,x) 7" 0, A; (t,x) 01 A (t, %)
= 6A(t,x) det (9;4;(t,x)). (3.109)

Note that this Hamiltonian density is non-zero for the perturbative solution (3.17)-
(3.20), and it is not bounded from below for generic classical values of the field
A,(t,x), since det 0;A,(t,x) is not positive definite. This implies that the system

may be classically unstable.

Let us look at the form of the Hamiltonian in the decoupling limit as described in
Section 3.1.3. The Lagrangian of the scalar field ¢ in the decoupling limit is,

R M_5 ~ _abc _de ~ P b
L(p) = =5 p =" 0,04p 001 050

= —3M ¢ det(9,0"p) (3.110)

The conjugate momentum for this Lagrangian is,
pp = — 6 M~ (det 9;0;p) Do (3.111)
The canonical Hamiltonian density we get, is,

He = pp 0P — L(P)
= —6M7°(9pp)* (det 9;0;9) (3.112)

It can also be expressed in the following form:

M5pé

fH@ T 6 det azﬁjgb

(3.113)

Equation (3.113) is the three-dimensional counterpart of the quartic galileon term
in the Hamiltonian of the generic D = 4 galileon theory derived in [86, 87].
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Let us take a simple static solution which sets the Hamiltonian and hence the energy

to be zero.
P Lo
Do = 3 r'x
ps =0 (3.114)
Now we perturbe this solution by d¢ .
O =@o+00. (3.115)
Then, to the second order in ¢ we have
3 -
Hyp = — % = — 6002, (3.116)

which is negative. However, if we take another zero-energy static solution, i.e. of
the form ¢, = %' h + c.c. (where a; and b are complex constants) and consider
fluctuations around it, then the Hamiltonian density turns out to be positive.

Also, if we had started with the initial Lagrangian (3.8) with the opposite sign (which

is a priori admissible since the Chern-Simons term may have any sign), then the

1
2

p; = 0 would be positive and that with the fluctuations around ¢, = %' b + c.c.

Hamiltonian density in (3.112) and (3.113) due to fluctuations around ¢, = % z'z",

would be negative.

So the fluctuations around the zero-energy static solutions can be either negative
or positive. This, in general, leads to instabilities. These instabilities are not of the
(higher-derivative) Ostrogradski type, since the higher-order galileon Lagrangians

are quadratic in time derivatives.

To summarize, the vector Goldstone model describing the spontaneous breaking
of the rigid symmetry generated by the Hietarinta algebra does not maintain the
local gauge symmetry of the quadratic Chern-Simons action. Due to the presence
of the non-linear terms in the action there is a propagating scalar degree of freedom.
The scalar field is like a galileon field which appears in modified theories of gravity.
The Hamiltonian of the system is not bounded from below. This, in general, makes
this model classically unstable, even though the Lagrangian is linear in the time
derivative of A, (z).



Chapter 4
Vector-Spinor Goldstino Model

Now we consider the vector-spinor or the spin-3/2 goldstino model. We use the
following algebra to construct this model, which was shown earlier in equations
(1.48) and (1.51),

[Map ; Mea] = i (e Mad — Mac Mba — 1o Mac + 1ad Mpe),
[(May , Pe] = i (oe Pa — Nac Bp),

(M7 Q5) =i (" Q=" Qh) = 5 (0" Q5
{Q5,Q4) =2Cape™ P,

[ Z? Pb] — 07
[P, ] =0. 4.1)

where Q¢ (o = 1, 2) is the Majorana vector-spinor generator of the spin-3/2 sym-

metry transformations.

The spin-3/2 symmetry transformations of the spacetime coordinate x® and the

vector-spinor field x%(z) generated by the algebra above are:

o =2t — if_2 gt CZ? Xac

Xa@) =xa(@) + ¢, (4.2)
where (' is a constant parameter.

The infinitesimal transformation of the form of the goldstino field x¢(z),
oxg (@) = ¢ +1 2™ (G xe(w)) Daxs (2) (4.3)
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shows that it transforms non-linearly under the symmetry. Hence, the symmetry is

spontaneously broken.

Note that, as for all the other cases, the commutator of two variations (4.3) closes on

the translations off the mass shell, i.e. without the use of the equations of motion:

(02,61 X0 = €10xe, €1 =2if el (4.4

The one-form that is invariant under the symmetry transformations (4.2) is,

B = dx® +i f 2" v, dx.
= dax (65 + 1 f2e" X3 Daxe)
= dz? B . (4.5)

This one-form is used to construct the spin-3/2 goldstino Lagrangian via the Volkov-

Akulov Lagrangian formalism.

4.1 Action and Equation of Motion

We construct the action using the Volkov-Akulov formalism as explained in Section

2.1. On subtracting the constant term f ~2 from it, we get,

53/2 = —f2/d3$ (det Eg — 1)

-2
= [ s (1 tove L e () (ua0rs) = (00 (s 00)

=4
lf ga’b’c’
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(el — &™) (X0 Durxf) (Xa Dy Xo) (Xa 8c/xe)) . (4.6)

The leading order term in the action above, i.e. i x, dyx., is the action for a
D = 3 Rarita-Schwinger spin-3/2 free massless field. We know that the free Rarita-

Schwinger action is invariant under the following gauge transformation:

Xa' = X + 0a€” 4.7)
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The free Rarita-Schwinger action does not have local degrees of freedom due to the

gauge invariance. Its equation of motion is
£ Oxe = 0. (4.8)
On taking the divergence of the equation of motion, we get the following identity:
0a(e 0px2) = 0. (4.9)

It is a Noether identity that implies the presence of gauge symmetry in the system.

The equation of motion for the full non-linear action (4.6) has a form similar to eq.
(3.13), i.e.,
£ Dy, =0. (4.10)

Unlike the vector Goldstone case where we found that such a general equation does
not satisfy a Noether identity, in the case of the vector-spinor goldstino model here
we find that the solution does exist. We will not present it explicitly, but will simply
find that the spin-3/2 model retains the local gauge symmetry.

Let us figure outifin contrast to the spin-1 case, the spin-3/2 goldstino action can be
invariant under a non-linear generalization of the Rarita-Schwinger gauge symme-
try. We need to know if there are any extra degrees of freedom present in the system
that break the gauge symmetry of the free Rarita-Schwinger action. On performing
the Hamiltonian analysis order by order up till the order f~2, we find that the on-
shell Hamiltonian vanishes on the constraint surface. Please refer to Appendix C to

see how this result is obtained.

Since the Hamiltonian analysis beyond the order f~? becomes very complicated
and involved, it has not been shown. However, the vanishing of the Hamiltonian on
the constraint surface up to the order f 2 indicates that the system may have gauge
symmetry. This observation prompts us to use the Stiickelberg trick and verify this
possibility.

4.1.1 Stiickelberg Trick for Vector-Spinor Goldstino Model

With the aim of bringing a local symmetry into the Lagrangian we introduce an aux-
iliary field 7). We define a new vector-spinor field ¢ in terms of the original field
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x& and the Stiickelberg spinor field ¢, as following,
RS = X0+ f5 0. (4.11)

The factor /3 is chosen to perform a certain non-singular limit f — oo in the

action. By construction x%(x) is invariant under the gauge transformations:

IXS(x) = 0,%(x)
S (x) = — 5 () (4.12)
Since €*() is arbitrary, it can be given a value such that ¢*(z) vanishes.

Now we take the limit of the coupling parameter f in which f — oo. In this limit
the action (4.6) takes the following form:

1
1 = [ o (160 Bhve + 293, 020.0) O 810,0) — 3 T,
(4.13)
where M¢; = i% dy) 9,0.1) . As we can see from the second term on the right
hand side in the equation above, there is a term in the action having & and 1) terms
coupled to each other. So unlike the case of the vector Goldstone model where the

Stiickelberg action gets decoupled under the limit f — oo, in the vector-spinor

model the Stiickelberg action does not attain decoupling in the limit f — oo.

There is a quartic term present in Sy_,, in terms of only 1) which has not been
shown in eq. (4.13) because that term can be re-expressed as a total derivative,

which on getting integrated, does not contribute to the expression. That term is,

/d3x eI (1) 040.0) (01 DuOgth) . (4.14)
It can be re-written as following after integrating by parts:

el (D 04000 (051 DaOt))
=0y (™9 (1) 040:10) (051 0u040)) + °*eW9 (1) 0.041) (DyOp1h DuOg)  (4.15)

The second term on the right hand side of the equation above, vanishes because
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of the anti-commutativity of 1) and the total symmetry of this expression in the ex-

change of the pairs of the indices (cd), (bf) and (ag).
abc dfg(é? 8d7,ba) (8baf¢ Gaagw) =0 (4.16)

So term (4.14) can be re-expressed as a total derivative which can be discarded.

Due to identity (4.16), we can now see that the quartic term of even the original

action (4.6), i.e.,

2
/ d’x f2 e ((Xa Oxe) (Xa FrXg) — (Xb Daxe) (X7 DaXy)) (4.17)

vanishes modulo a total derivative on the solution of the free Rarita-Schwinger field

equation, whichis x%(z) = 0,e*(x).

This provides us a hint that the action Sy_,, (4.13) has a gauge symmetry. On taking

the following gauge transformation,

Xa = Xa + 0.A%,
Ve — P°, (4.18)

action (4.13) transforms into the following:

St = /d3 ( P (Y a OpXe + OuA OpXe) + 29\, 040
1
+ 0g A 040:0) (059 (9b39¢) i Tr(MB))
/d3 ( abe (Xa ObXe + Ou(AObXe) M + 2% dfg (Xa 0aOct

0
+ 0a(X 0adeth) — A DaDsOD) (O D0y10) — % Tr(M 3))

= Sfe (4.19)

Hence, we see the gauge invariance of Sy, .

Now we look at the equations of motion for the action (4.13). The equation of mo-

tion obtained by extremising the action with respect to x¢ is,

e Oyx = i £ 9 930,40 (D) DyOyt)) . (4.20)
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Using the following identity,

e Y9 0,00 (050 00g1) = — 5 e (0u0 00,0) Dyy®

ee 9 gy (Dpp® (94 00,0)) . (4.21)

Wl N~

the expression on the right hand side of eq. (4.20) can be written as a total derivative.
Therefore, we find that the general solution of eq. (4.20) is

X& = Qe — égdfg D™ (9 8.0,1) . (4.22)

This implies that, modulo the pure gauge degree of freedom ¢?, the field x, is com-
pletely determined in terms of the derivatives of .

The equation of motion obtained by extremising action (4.13) with respect to ¢ is
identically satisfied by the solution (4.22). Therefore, 1) is completely arbitrary in
the limit f — oo.

The form of the solution (4.22) enables us to guess that action (4.13) can be recast

into the free Rarita-Schwinger form as following:

: aoc (04 1 « ]' T
Sy =1 [ e (x4 e 00 070 0,0,0) )b (et 3 7 Oyt 040.0,0)).
(4.23)
This conjecture turns out to hold true.

We know that the free Rarita-Schwinger action is gauge invariant. Therefore, result
(4.23) implies that Sy_, is gauge invariant. Itis invariant under the following gauge

transformation:

oY = (),

0 = 0\ (@) = 5 &9 (0ue™ (9 0u0,0) + D™ (D€ Dadyd) + O (950 0udye) )
- aa@a(x) . %gdfg D% (D) age)> — 1% (946 0,0,0) D,U° (4.24)

where \“(x) and €* () are independent parameters. Hence, 1) is a pure gauge.

So we have found that the Stiickelberg trick for the vector-spinor goldstino model
does not have a decoupling limit, and the action obtained in the limit f — oo can
be recast into the Rarita-Schwinger form. The Stiickelberg case is a simpler, special
case of the original, general action. Analysing the whole general action head-on

is not easy. But if we find certain symmetries to hold for the special case of the
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Stiickelberg action, it provides us with a hint that that kind of symmetries might
hold true for the general action as well. So having found the Rarita-Schwinger form
and gauge symmetry of the action in the Stiickelberg limit, we can now try to check

if similar results hold for the general spin-3/2 action as well.

4.2 General Spin-3/2 Action Redefined as Free Rarita-

Schwinger Action

The analysis in the previous section prompts us the form of the perturbative solu-
tion of the full non-linear equation of motion (4.10), i.e., €% Dy, = 0. Up to the
order f~?itis obtained from eq. (4.22) by re-scaling ¢ — f _%1/) and taking e = ¢

Xa = Oat)® — eT99, (D51 0a0y00) + O(f 7). (4.25)

if 2
3
The way in which we guessed the free Rarita-Schwinger form of the Stiickelberg
limit by looking at the solution of the equation of motion, we can do the same here
again. We find that the full action (4.6) can be recast into the free Rarita-Schwinger

form.

: aoc o 1f—2 « 1f_2 T
Sgjp =i / d’xe® (Xa + Tedf IXa (Xfaan)>ab (xca + =" X (anCXr)>'
(4.26)
Action (4.26) is equal to the original action (4.6) modulo a total derivative due to the

following identities:

e U9y xa) (OpX 1 OaXg) = — 2™ Y9 (x, Dexa) (X DaXy),
e W9 T (y DX g) (Xa Xp) (OXq Oexr) = 2™ 9 P97 (X Daxy) (Xa OoXp) (Xq OeXr) -

(4.27)
Action (4.26) can be re-expressed as following:
Sps =1 / A3z e ¥, OpXe (4.28)
where the field y is,
e « i f72 dfg . «
Xo = Xo + =9 x5 (Xf OaXyg)- (4.29)
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So we can see that upon the field redefinition (4.29), the non-linear action can be

shown more concisely to be of the Rarita-Schwinger form.

4.2.1 Gauge Symmetry of the Vector-Spinor Action

The existence of the free Rarita-Schwinger form of the non-linear action implies the
existence of gauge symmetry of the original non-linear action. Gauge symmetry has
further implications with regards to the nature of the goldstino field — whether itis
a pure gauge field or a dynamical field. It affects the number of degrees of freedom
present in the system. We will see ahead what the gauge transformations for action
(4.26) are like.

Equation (4.29) is invertible. An explicit expression for y, as a polynomial in y, and
J» Xo can be found using an iteration procedure. The expression stops at most at

the sixth order in , because of the Grassmann nilpotency of ¥. Up to the order f~*,

we get,
@ Ao if72 dfg ~ca (o ~
Xa = Xa = 5 €N (X7 9aXy) (4.30)
f Lo o o _
— L e 2 (5 (% D) (% D) + 5 0a (X5 (X ) (R 0%0) ) + O ).

Now let uslook at the gauge variations for the non-linear action. As we already know,

the free Rarita-Schwinger action is invariant under the following gauge variation:
ORY = D,e° (4.31)

Action (4.26) is invariant under the above gauge transformation.

Knowing the relation between % and x{ fromeq. (4.29), we can express the above
gauge variation in terms of x§ as well. It is,

52 = Ope®

)
= oxg + % e¥99, (XS‘ (xs 5><g)) +if 2V (bxabaxs) Xy,  (4.32)

We can also express the gauge variation exclusively in terms of x& for the action

(4.6). Using the same iteration procedure as used to get eq. (4.30), we get the gauge
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variation of y, as following:

L2
Ix% = B, <ea _ % 9 (x age)> —if2eY9 (D4 Dax )Xo+ O(f 7). (4.33)

The commutator of two transformations (4.33) is exactly zero to all orders.
[0cy5 0es] Xa = 0. (4.34)

This is an important result as it tells us that the gauge invariance of the non-linear
action exists up till all orders in the vector-spinor field x¢ and that it is an abelian

symmetry as in the Rarita-Schwinger case.

We can see that the vector-spinor goldstino model is different from the vector Gold-

stone model in that the former is gauge invariant while the latter is not.

4.2.2 Invariance under Spin-3/2 Symmetry Transformation

Another respect in which the redefinition of the non-linear action as the free Rarita-
Schwinger action is insightful is with regards to rigid spin-3/2 supersymmetry trans-
formation. The invariance of the non-linear action under the rigid spin-3/2 super-
symmetry variation (4.3) implies the invariance of action (4.28) also under the same

transformation with x¢ being the function of x¢ as in (4.30).
The rigid spin-3/2 symmetry transformation (4.3) can be written in terms of x¢ us-
ing relation (4.29), as following:

L2
e a c - C o ! 1 c o ~ «a S\ oo —
SRe = (O +if2e™ (¢ Re) DX + fTEd” <(Xb duXe) €5 + (G 8axc)xd) +O(f
(4.35)

The commutator of two variations (4.35) closes on the translations off the mass
shell, i.e. without the use of the equations of motion:

(62,01 XS = €90, %>,  where ¢ =2i f2e®e ¢l 2. (4.36)
We have thus found that the free Rarita-Schwinger action (4.28) is non-manifestly

invariant under the rigid spin-3/2 supersymmetry with the Rarita-Schwinger field

being its goldstino transforming non-linearly under the symmetry as in (4.35).



Chapter 5
Conclusions and Outlook

We started in Chapter 1 with a general introduction followed by a literature review
on higher-spin theories. We then reviewed the process of supersymmetry breaking,
in particular spontaneous supersymmetry breaking, as it is assumed to occur in na-
ture, accounting for the absence of a direct proof for the existence of supersymme-
try at the energy scales within the reach of present experiments. Then we looked at
the representations of the Poincaré group. It showed us how the spin is defined for

massive and massless particles and what all transformations the particles undergo.

It was then followed by a brief discussion on the literature based on Hietarinta al-
gebras. Chapter 2 served the instructive material for demonstrating the construc-
tion of Volkov-Akulov Goldstone models and Dirac Hamiltonian formalism using a
spin-1/2 fermion as an example. Then we constructed and analysed the Goldstone

models for spin-1 and spin-3/2 fields.

We have found that the simplest Goldstone models constructed by the spontaneous
breaking of the symmetries introduced by Hietarinta [52], are certain non-linear

generalisations of the Chern-Simons and Rarita-Schwinger Lagrangians.

In the case of the vector Goldstone model, the spontaneous breaking of the rigid
symmetry leads to the breaking of the gauge symmetry of the Abelian Chern-Simons
action. The resulting Goldstone boson propagates a scalar mode which turns out

to be a galileon field that appears in the theories of modified gravity.

In view of this result it would be interesting to couple the Chern-Simons Goldstone
boson to a 3D gravity model which is invariant under the local symmetry associated
with the algebra (3.1). As mentioned earlier in Chapter 3, the bosonic algebra with
the generators S and F, in (3.1) is a contraction of so(2,2) = sl(2,R) & sl(2,R)
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on which the Chern-Simons description of the conventional 3D gravity is based
[88, 89]. But the full algebra also includes the Lorentz generators. Therefore, our
3D gravity model would contain two spin-2 gauge fields, the conventional gravity

dreibein, written as,
e(x) = da™ ey, (x),

associated with the translation generator P,, and another dreibein, written as,
[ () = da™ [ (),

associated with the generator S,. The model will also contain the spin connection,
w'(z) = da™ wy (r),

associated with the Lorentz generators M, = % Eabe M.

An action for these (a priori) independent fields, which is invariant under the local

symmetries generated by (3.1), has the following form:

1
S = /<€a/\Ra+§fa/\Dfa), (51)
where
a a 1 abc
R* = dw —1—55 wp N\ W, (5.2)
is the curvature and
Dfa:dfa+€abcwb/\fc (53)

is the covariant derivative associated with the local Lorentz transformations.

The local symmetry variations of the fields are,

§e” = D&Y (x) + e ey () + ™ fys. (),
§f* = Ds®(x) + € fyde(z),
dw® = DX%(x), (5.4)

where £%(z), s*(z) and A\*(z) are the parameters associated with the generators F,,
S, and M,, respectively. All the gauge fields in this model are non-dynamical as

can be easily seen by analysing the equations of motion. Recently, we have learned
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that the most general action (including action (5.1)) for so-called Maxwell-Chern-
Simons gravity invariant under the transformations (5.4) was constructed several

years ago in [90] (see also [91]).

The action (5.1) can be straightforwardly generalised to describe similar couplings
between higher-spin fields and gravity. To this end one should just promote the one-
form field f*(x) and the gauge parameter s*(x) to (generically mixed-symmetry)
tensors f1-%» and 5?1 and appropriately adjust the contraction of the indices

and the Lorentz transformations of 1t in equations (5.1)-(5.4).

Once we construct the model describing the coupling of the Goldstone boson A, (z)
with the gravity action (5.1), generating a Higgs effect, we can try to find out what
kind of 3D massive gravity or bi-gravity we get. We can try to checkif it has a relation

with one of the three-dimensional gravity models considered in [92-95].

In contrast to the vector Goldstone model, in the spin-3/2 goldstino model gauge
symmetry remains preserved on spontaneously breaking the rigid spin-3/2 super-
symmetry. We have found that upon a non-linear field redefinition the non-linear
action reduces to the free Rarita-Schwinger action, which itself turns out to be non-
manifestly invariant under the rigid spin-3/2 supersymmetry (1.51). The symmetry

is non-linearly realized on the variations of the Rarita-Schwinger goldstino (4.35).

If we couple the spin-3/2 goldstino to other fields, then the non-linear field redef-
inition may no longer remove the non-linear terms, and the two forms of the spin-
3/2 goldstino models may not be equivalent anymore. To check this out, we can
couple the Rarita-Schwinger goldstino to other matter and gauge fields such as (su-
per)gravity and Hypergravity with spin-2 and spin-5/2 gauge fields and study the
properties of these models.

Another interesting problem is to consider a four-dimensional Rarita-Schwinger

goldstino model associated with the following algebra:
{Q, Q% =2 (TsT)ap Py (o, 8=1,..,4), (a,b,...=0,1,2,3), (5.5)

to figure out if in this case also, as in D = 3, the non-linear action for spin-3/2 gold-
stino possesses alocal gauge symmetry. If it does possess gauge symmetry, then one
should check if the Lagrangian can be redefined as the quadratic Rarita-Schwinger
Lagrangian through a non-linear field redefinition. Then one can check whether the
non-linearly realised symmetry (5.5) can fit into the formulationof N = 1, D = 4
supergravity as a non-linear realization of two complex finite-dimensional super-
groups considered in [96-98].
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Further still, it would be insightful to generalise the constructions used in this work
for studying the Goldstone models with yet higher-spins and for studying the mod-
els in AdS spacetime as well.



Appendix A

Tensor and Matrix Identities

All of the following conventions and identities are in D = 3 Minkowski spacetime
with the signature (—, +, +).

a,b,c,d, e, f are spacetime indices. (a,b, ¢, d, e, f) € {0,1,2}.
i,j, k, [ are space indices. (7, j, k,1) € {1,2}.
a, 3, p, o are spinor indices. («, 3, p, o) € {1,2}.

A.1 Levi-Civita Tensor Identities

e = —gpp =1

£ pe = — 3 (A.1)
e 0ge = — 2160, 05 = — (556¢ — 62 85) (A.2)
g = — 2165 (A.3)
€abc€def = —3! (5& 516) ;']

— (698065 — 6 846G + 62 6% 85 — 64 605G + 8% 8460 — 050565 (A4)
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el? = €12 =
gle;; = 2! (A.5)
ey = 0] (A.6)
eley = 216,67 = 6,6 — 5 5} (A.7)
A.2 Charge Conjugation Matrix Identities
Coj = Coa = —Cap (A.8)
CP Coy =60 (A.9)
CP oy = 2 (A.10)
Xa = Cag X’ (A.11)
X = —C g (A.12)
A.3 Index Contraction Notation
(XX) = X" Xa = X" Cap X’ (A.13)
X" Xa = = Xa X* (A.14)
(Xa X5) = X& Xba = — Xba Xa = X Xaa = (Xb Xa) (A.15)
T4 = ) Tes 0P = —x*TeP oy (A.16)
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A.4 [I'- Matrix Identities

[os = ([C g = —T7C (A.17)
IT=—CulrC) (A.18)

{re, 1’y =29"

or more explicitly

{r*,1°},° =1,/ 1P +1°,,T%,° = 29 65 (A.19)
ab [a 78] 1 a T0b

e =rlerd = 3 [, 1Y

[aben — plapbpe ol (A.20)

rerb =e®r, +n® (A.21)

Epe 12T = — 2T, (A.22)

Fa Fb Fc — gabcl + ,r]ab Fc + ,r]bc Fa o nac Fb (A23)

A.5 Matrix Determinant

The determinant of a 3 x 3 matrix £¢ = 6% + M is

det £
= det(1+ M) (A.24)

=1+Tr M+ % [(Tr M) — Tr(M?)] + é [(Tr M)? — 3Tr M Tr(M?) +2Tr(M?)] |

where Tr (M) = M,* = — M*,.



Appendix B
Integral Identities

Let us consider a function f*(z). We wish to compute the following integral:
[ sa) @+ 0,0 8% x - ). B.1)
It can be written as following:
[ ) @+ 0,0 8%x - )
= / X [1(2) 9y 0P (x — y) + / &*x f(2) 9, 0¥ (x — ). (B.2)
The first integral in the above expression can be evaluated as following:
[ i) 0. 80 - y)

= — / d*x 0, f{(x) 0P (x —y)  (byintegration by parts)

=~ 0, /') B3
The second integral in eq. (B.2) can be evaluated as following:
[ Ex i@ o, 50— y)
= 0, / d*x fi(z)6®(x —y) (takingd,: outside the integral which is w.r.t. x)
=0, ') B4

Adding up expressions (B.3) and (B.4), we get 0. Therefore, we see that the integral
ineq. (B.2)is0.
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Similarly, if instead of f’(z) we have f*(y), then,

[ 5 5w) @0+ 0,0 58%x~y) = 0. ®.5



Appendix C

Hamiltonian Analysis of

Vector-Spinor Goldstino Model

We first analyse the Hamiltonian of the free vector-spinor model where f~2 = 0.

C.1 Hamiltonian Analysis of Free Rarita-Schwinber Model

First we separate in the action (4.6) the spacetime indices (o = 0, 1,2) into space
and time indices (0, i = 1,2).

The leading order Lagrangian, which is the free Rarita-Schwinger Lagrangian, is,

‘cfree (t, X) =—1 gabc Xg (ta X) achzb (ta X)
= —jel (Xz’a (t, X) aOxozj (t, X) + Xg(t7 X) anm’ (tv X) - X? <t7 X) anOéO(t7 X))
(C.1)

The conjugate momenta are:

pé(ta X) = 5(

(C.2)
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x%(t,x) and pfé (t,y) have the following equal-time Poisson bracket relation:

(X5t %), ph(t,y)} =056 6P (x —y). (C.3)

The canonical Hamiltonian #.(t,x) density is,

He(t, %) = pg, Dox5' (t, %) + P Doxs (t, %) — L(t,%)
= igij (Xg (ta X) ajxai(t7 X) - X?(tv X) anaO (t7 X)) : (C.49)

Following are the primary constraints we derive from the conjugate momenta (C.2):

Calt,x) = p(t,x) +icxg(t,x) =0

(C.5)
Ca(t,x) = ph(t,x) = 0.
The Poisson bracket relations between these two primary constraints are:
{Cat, %), Ch(t,y)} =20 Cape? 6P (x —y),
{Og(ta X)7 Cg(t7 Y)} =0 )
{Ci(t,x),Ch(t,y)} =0. (C.6)

We can see from these Poisson bracket relations that the constraints C? (¢,x) be-

long to the second-class whereas the constraints C?(¢,x) belong to the first-class.

Now we proceed to look for secondary constraints. For this purpose we write down

the expression for the total Hamiltonian density (¢, x), which is as following.
Hr(t,x) = He(t, x) +ul(t,x) C8(t,x) + uf(t,x) CO(t,x) (C.7)

Here u(t,x) is the Lagrange multiplier associated with the constraint C*(¢,x) and

u§ (t,x) the one associated with the constraint C?(¢,x).
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We write down the equation for the time-conservation of the constraint C*(¢, x) by
taking its Poisson bracket with the total Hamiltonian. It gives us the following:

[ Evicin ity
— [y (Gt mty) + [ Py ey (Cex,Citey))
+ [y (e y)CL 0, Oty = 0
_ / Py (— 20Co e 03 (ty) — (8, y) 20 Cay ) 6P (x —y) =0 (C8)
Solving the above equation gives,
(6 %) = — (4 ). (C.9)

We get the expression for the Lagrange multiplier «)(¢,x). Therefore, we do not

get a secondary constraint from the time conservation equation for the constraint
Ch(t,x).

Now let us try to see what we get by solving the time-conservation equation for the
constraint C§(t,y).

RG2S )
= [ #y{cie ity - [ Py y)ichiex).ciey)
- [y (e CaEx), ey = 0
= [y = y)2iCor £ G 13) =0
This gives us the following secondary constraint:

£* 0iXra(t,x) = 0. (C.10)

Let us denote this secondary constraint by D, (¢, x). The equal-time Poisson brack-

ets of D, (t,x) with the other constraints are as following:

{Da(tvx) >D5(taY)} =0,
{Dal(t,x), CE(@ y)} = et Cagp 16 (x—-y),
{Da<tax)7cg<tay)} =0. (C.11)
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The Poisson bracket of D, (t,x) with C%(t,y) does not vanish, but, as in the case
of the Chern-Simons theory discussed in the main text, the constraint D, can be
modified by adding a term proportional to the divergence of C* such that the Pois-
son bracket of the modified constraint with C* vanishes. Therefore the secondary
constraint D, (¢, x) belongs to the first-class.

Now we need to check if there are any tertiary constraints present. For checking
this, we need to solve the time conservation equation for the secondary constraint
D, (t,x).

The time conservation equation for D, (¢, x) is as following:

/ Py {Do(t,x), Ha(t,y)}
=/fﬂﬂﬁmmum%+/ﬁwWJH%w@ﬂwyﬂ

+ / Py u(t, y){Dalt, %), CO(t,y)} = 0 (C.12)

The left hand side of the above equation comes out to be zero. Therefore, the above
equation does not give us any new information. It means that the free Rarita-Schwinger

action has constraints only up till the secondary order and no higher.

Now that we know all the constraints present in the system for the case when f—2 =
0, we can count the number of degrees of freedom. We have the six-component
vector-spinor field x¢ along with the corresponding momenta. So we begin with
12 canonical phase-space degrees of freedom. There are four first-class constraints
presentin the system — C° and D,,. Each of them generates gauge transformations
and hence cancels two degrees of freedom. So we are left with 12 — 2 x 4 = 4
canonical degrees of freedom. Then there are four second-class constraints — C,
each of which cancels one degree of freedom. So that leaves us with4 — 4 = 0
degrees of freedom. This confirms that the gauge invariant free Rarita-Schwinger

action does not have any physical degree of freedom.

C.1.1 Hamiltonian Value on the Constraint Surface of the Free

Rarita-Schwinger Model

Now we try to see what value the canonical Hamiltonian takes on the constraint sur-
face. Doing so provides us an insight regarding the energy and physical consistency
of the system.
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The canonical Hamiltonian density, as shown in eq. (C.4), is,
He(t,x) =ie” (x5 (t,x) 0jXailt, x) — X3 (£, %) DjXao(t, X)) - (C.13)
Using integration by parts, it can be written as following:
He(t,x) =217 x§(t,%x) O5xailt,x) — i€” 0; (X5 (£, %) Xao(t, X)) (C.14)

On integrating the above with respect to x we get the canonical Hamiltonian, which

is,
H.(t) = 2i5ij/dgx X6 (£, %) 0jX0i(t, %) . (C.15)

On substituting the secondary constraint (C.9), i.e. €% 9;x;.(t,x) = 0, into the
Hamiltonian above, we find that it vanishes.

H(t)free3/2’cs - 0 . (CIG)

This verifies the fact that the free Rarita-Schwinger Lagrangian does not have dy-

namical degrees of freedom.

Now we perform the Hamiltonian analysis for the case with next higher order in

/72, that is the action up to the terms of the order 2.

C.2 Hamitonian Analysis of Vector-Spinor Goldstino
Model up to the Order 1~

Following is the Volkov-Akulov Lagrangian for the vector-spinor field x{ up to the

terms of the order 2.
ij gkl
f2
— (X9 X;) (X00ox1) — (Xi90X;) (X19kX0) + (Xi9kX;) (X190 X0)

— (x001X;) (X09kXi) — (XjalXO)(XiakX0)> (C.17)

Ljo = ie” (Xg JiXjo + X5 OiXoa — X7 aOXja) + ((XiaUXj)(XUale)
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The conjugate momenta are:

i _ L(tx)
Palt,x) = 5 (Dox2(t,x))

. ij I
= ie" xjalt,x) — 7e Ikt (Xja(XOak:Xl) — Xja(X10kX0) — XOa(Xkanl))

(C.18)
OL(t,x)
0 )
Pall;X) = ===
X = S g (%)
1 ..
= F gl ght Xia(XiOkX;) (C.19)
The canonical Hamiltonian is
H(t,x)
= 0ox§(t,x) pg(t, x) + doxg (t, X) pg(t, x) — L(t,x) (C.20)

Y a a 1 i
=i (X§ 0jXia — X5 OjX0a ) + 7 gleh ((XOaZXj)(XOakXi) + (XjalXO)(XiakXO))

The primary constraints derived from the conjugate momenta (C.18), are:

. . 3 1
Fo(t,x) = po(t,x) —ie” xja(t, x) + 7 geM (Xja(@x) (xo(t, %) Orxu(t, x))

— Xja (t7 X) (Xl(t7 X) 8kXO (t7 X)) - X0a<t7 X) (Xk (t7 X) anl(tv X)))

1 ..
Fc(x) (ta X) - pg(t7 X) - F ‘gzjgkl Xla(t7 X) (Xz (tu X) aka (tu X)) (CZI)
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The Poisson bracket relations between these primary constraints are,

{Fat, %), F5 (t,y)}

il 2
= — 20" Cop P (x —y) +ﬁ

— (Oexo(t,x)xi(t,x))) 0% (x —y) + = e*e"ICpaCop ((% (x6(t, x)x5 (¢, %))

5iil5kl Ca,é’ ((Xo(@ X) ale(t> X))

72
|
+0; (Xg(t, x) xh (2, x))) 0 (x—y)— F giket 100 Cao (Xg(t, X) X7 (t,%)(Opr + Oyr)

+ x5 (6, %) X0 (£, %) (0ps + 0,)) 6P (x — y) (C.22)
{F(t,x), Fy(t,y)} =0 (C.23)

{Fa(t,x), F3(t,y)}

2
== e7eM Cus (xa(t, x) Oxa(t,%)) 6P (x — y)

f
2 ..
+ 7 e9eM Cpa Cop Ok (X7 (£, %)X (¢, X)) 6§ (x —y)
2 i o
+ 7 €9eMCh Cop X (%) X7 (8, %) (O + Oyr) d@(x —y) (C.24)

The terms containing (9, + d,) 6 (x — y) in the expressions above, vanish upon
integration as explained in Appendix B . We can see that the Poisson brackets of the
primary constraints are non-vanishing.

To find the secondary constraints following the Dirac procedure, we consider the
total Hamiltonian density Hr (¢, x) which includes the primary constraints with the
corresponding Lagrange multipliers.

Hor(t,x) = He(t, x) + uf(t, x) FL(t,x) + ud(t,x) FO(t, %) (C.25)

Integrating the above equation with respect to x, we get,

Hr(t) = H.(t) + /dzx ud(t,x) FL(t,x) + /d2x ug (t,x) F2(t,x) . (C.26)
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Please note that the Poisson bracket of the constraint F’ (¢, x) with the canonical

Hamiltonian H.(¢,y) is,
[Fa(t, %), Helt, y)]
i Co (0 (0 (1,%) 6D (x — ) — 20,0 (%) 0O (x — )
+ %Sij&tkl Cap <Xg(t, x) (xo(t,x) Ox;(t, %)) O 0P (x—y)
+ akxg(tv X) ((Xj (tv X) alX0<t7 X)) - (alXj(t7 X) X0<t7 X))

= (03) (Oona(t:3) s 1) 5 x - ) ) cam)
and that between the constraint F(¢, x) and H.(t, y) is the following:

[Fao (tv X) ) HC(t> Y)]
=i Cap(20)x] (8, %) 87 (x — y) = X/ (t,%) 9,3 6 (x — y))

2 ..
2 168 Cop (1030 (1) (1) 0 3 x — )

f2
+ 31)(?(@ x) ((xo(t, %) Oexa(t, x)) — (xi(t, x) Drxo(t, x))) 6P (x — y)
— X} (£, %) (Axi(t, %) Dexo(t, X)) 6P (x — y)) : (C.28)

Now we write down the equation for the time conservation of the constraint F (¢, x).

It is as following:
/d2y [F(i(t? X) ) HT(ta y)]
_ / Py [Fi(t,x), Halt, y)] — / Py ul(t,y) {Fi(t. %), Fi(t,y)}
- / Pyl (t,y) {Fit, %), F3(t, )} = 0. (C.29)

Let [ d*y {Fi(t,x), Fi(t,y)} be denoted by Mi;(t,x) . Then, the above equation

can be re-written as following:

[F(i(t7x) ) HC(t)] - Uf/(ta X) Méi,(;(tv X) - ug(t7 X) /d2y {Foiz(tv X) 7F/?(ta y)} =0

= 1y (8, %) Mijs(t, %) = [F3(t,%) , He(t)] — uf(t,x) /dQY {Fat.,x) F)(t.y)}
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This gives us,

u (t,%)
= [Fi(t,x), Ho(t)] M7 (t,x) — uf(t, x) / d*y {Fi(t,x), F(t,y)} M) (t,x),
(C.30)
where
M (8 x) = (M (t,x)) " = {Fi(t,x), F} (t,y)}™
j 1
= % Eitg Oﬁa + 2—f2 Eilg Ekl Oﬁa (Xo(t, X) 6le(2€, X) — 8kX0(t, X) Xl(t» X))
1
+ 2_f2 (al(Xg (tv X) Xﬁ (tv X)) + 87/(X€ (ta X) X?(t X))) (C.31)

So from eq. (C.30) we see that we get a restriction on the expression for the Lagrange
multiplier uﬁ (t,x) by solving the time conservation equation for the primary con-
straint £ (¢, x). This means that the equation does not yield a secondary constraint.

Now let us see what we get by solving the time conservation equation for the con-

straint F°(,x).

/ Py [F(t,x), Ha(t,y)]
_ / Py [FO(t, %), Holt,y)] - / Pyl (t,y) {FO(t.x), Filt,y)}
- [ @y ey (B2 ex) Fity)} =0 €32

Since {FJ(t,x),Fj3(t,y)} = 0 (as shown in eq. (C.23)), the above equation be-

comes,
/de [FO(t,x) , He(t,y))] —/dQYUf(t,y) {FJ(t,x),Fi(t,y)} =0  (C.33)

Substituting the expression for the Lagrange multiplier u/(¢,y) from eq. (C.30),

into the equation above, we get,

[F (8, %) , He(t)] — [Fo(t,x) , He(t)] Mf?(tX)/dgy {F(t.x), F§ (t,y)}

i) [y Fiex), P M () [y (F)(ex) B (ty) =0
(C.34)



Appendix C 92

Let [ d*y {F’.(t,x),F.(t,y)} be denoted by V! (¢,x) . Then,

[F(tx) , He(0)] — [Fa(t.x) , Ho(t)] M7 (¢, %) /d2y {F)(t.x), F§ (t,y)}

+uf (t,x) Vi (t,x) M2 (t,x) Vi (£,%) = 0 (C.35)

Since V/_(t,x) is of the order f~2, the last term in the equation above, i.e.,
ug (t,x) Vi_(t,x) MO (t, x) Vi (t,x),is of the order f~*. We are retaining terms only
up to the order f~2, due to which ug(t,x) V/, (t,x) My (t,x) Vi, (t,x) ~ 0

Therefore, we get,

[, (t, %), He(t)] — [Fo(t,x) , He(t)] Mf?(tX)/de {F)(t.x) , F§ (t,y)} =0

The above equation is in fact a secondary constraint. Let us denote it by G,(¢,x) .
It can be expressed as follows:

Go(t,x)
, g 2 .
~2iCaa 0 (1,30 + 55 2 Co (ale@,x) (xo(t,) Dt )
T 0 (1) Gt ) () + 326 %) (Bralt,x) Dot X))

o (%) (alt, %) Dt x))) 0 ©36)

In section 3.4, we had modified the constraint C°(t,x) to give C°(t,x) such that
C(t,x) commuted with more constraints than C°(¢,x) commuted with. We can
do a similar modification here. The constraint FpO can be modified to give FS as
following.

R [y (e, By} VS

” i i o
F,? = p‘,ﬂ + F ekt Cop 13 Ok(X Xzﬂ)
Z. 7 1 ] o
~ " pl, O Dixe) — e TeM Cos Cop X (X7 XY - (C.37)
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F)(t,x) anti-commutes with F(t,y).
{E9(t, %), Fa(t,y)} =0 (C.38)

However Fg(t, x) does not anti-commute with the remaining constraints, and it
is technically quite involved to guess whether a further modification exists which
would make it first class. Instead of trying to find it let us look at the on-shell value
of the Hamiltonian at order 2.

C.2.1 Hamiltonian Value on the Constraint Surface of the Full

Vector-Spinor Goldstino Model up to the Order {2

From the constraint (C.36) we get,
igijan?(t, X)
—  f2gligh (@X?(t? x) (xo(t, %) O xi(t, %)) + X5 (t, %) (X2 (t, %) 0ixo(t, X))

+ x5 (¢, %) (Oexa(t, x) Dixo(t, %)) + 0ixg (¢, x) (xa(t, %) 9 x (L, X)) (C.39)

Plugging the above into the expression for the canonical Hamiltonian density H..(t, x)
in eq. (C.20), we get,

M%) = 51 ((mux) Yol %)) (8 (1,3) (£,

— (xo(t, %) x0(t,x)) 30k (x;(t, %) xa(t, X))) (C.40)

It turns out that this Hamiltonian density vanishes for the perturbative solution
X = 0,0 + O(f~?) of the spin- 3/2 field equations of motion.

H (t)3/2]on—sheu = 0. (C.41)

Therefore, the on-shell field configurations have zero energy at least at the order
/2. This observation prompts us that the spin-3/2 goldstino model may do not
have dynamical degrees of freedom because of a hidden local symmetry, as in the
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case of the Rarita-Schwinger action. The results given in the main text of the Thesis

prove this observation.
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